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“[...] ja (an unseren Hochschulen) [...] statt des Erstaunens vielmehr das

Gegenteil gelehrt wird: das Zählen und Messen statt des Entzückens, die

Nüchternheit statt der Bezauberung, das starre Festhalten am losgetrennten

Einzelnen, statt das Angezogensein vom Ganzen und Einen. Diese Hochschulen

sind ja nicht Schulen der Weisheit, sie sind Schulen des Wissens aber still-

schweigend setzen sie das von ihnen nicht Lehrbare, das Erleben Können, das

Ergriffensein Können, das Goethesche Erstaunen eben doch voraus. [...]”

Hermann Hesse: Mit dem Erstaunen fängt es an.

Suhrkamp Verlag, Frankfurt am Main (2000).
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Löhmannsröben

Z. Phys. Chem. 225, 1055 (2011).

“Current versus temperature-induced switching of a single molecule: Open-

system density matrix theory for 1,5-cyclooctadiene on Si(100)”

Karl Zenichowski, Jadranka Dokic̀, Tillmann Klamroth, Peter Saalfrank

J. Chem. Phys. 136, 094705 (2012).

“STM-switching of organic molecules on semiconductor surfaces: an above

threshold density matrix model for 1,5 cyclooctadiene on Si(100)”

Karl Zenichowski, Christophe Nacci, Stefan Fölsch, Jadranka Dokic̀, Tillmann Klamroth,
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Chapter 1

Introduction

Addressable, surface mounted structures of molecular or even atomic scale are on their

way in today’s silicon-based information technology. The development is driven by the

demand for smaller, cheaper and faster electronic devices in order to improve storage

density and data processing speed [5]. The ultimate goal is to gain a fast, but stable

and reversible switching device, formed by a single molecule or atom, which allows for

the definite control over and distinction between, its switching status. The successful

implementation in a memory device would be a major step towards the famous vision of

Richard Feynman when he said in 1960 [6]:

All of the information that man has carefully accumulated in all the books

in the world, can be written [...] in a cube of material one two-hundredth of

an inch wide.

Powerful techniques such as the scanning tunneling microscope (STM) and the atomic

force microscope (AFM) have already opened the possibility for the examination and

manipulation of two-dimensional atomic surface structures [7, 8]. While every experiment

starts with the full range of complexity in terms of environmental influences and finds its

challenge in reducing the complexity systematically, theory works in the opposite direction.

Based on rather simple models, theory finds its challenge in systematically increasing

complexity and including the environment. Thus fruitful interaction can be expected if

both sides are able to meet at a similar level of complexity. Therefore, STM experiments of

atomic or molecular scale and quantum theoretical investigations are naturally compatible

and mutually demanding partners.

This thesis was prepared in the framework of the “Sonderforschungsbereich 658: Elemen-

tarprozesse in molekularen Schaltern an Oberflächen” (Collaborative research center 658:

Elementary processes in molecular switches at surfaces). This thesis intends to make a

contribution to the understanding of experimentally observed, STM-induced switching of

adsorbates on a silicon(100) surface. The first part of the thesis covers the reversible,

bistable lateral movement of single hydrogen atoms on Si(100) surface-dimers, while the

second part studies the biconformational switching of cyclooctadiene, chemisorbed on
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Si(100). For both systems experimental data are available, describing their STM-induced

switching [9, 10].

1.1 The scanning tunneling microscope (STM)

In the last 25 years since the invention of the ultra-high vacuum (UHV) scanning tunneling

microscope by Binning, Rohrer et al. [7], a large number of surface science STM experi-

ments have been published. In order to understand the benefit of the STM technology in

surface science, a brief summary is given about STM setup and functionality.

STM setup: The principle setup of the STM is made of an ultra sharp conducting tip,

situated above a conducting surface sample [11]. If the intermediate vacuum gap is below

1 nm, the overlap of tip and sample wavefunctions allows for a net electron tunnel current

I through the gap, driven by an applied bias voltage U . Electrons tunnel from occupied

tip electronic states into unoccupied surface states at a sufficiently high positive STM

sample bias. Vice versa, the electrons tunnel from the surface to the tip at a sufficiently

negative sample bias. The tunnel current reflects the local density of states (LDOS) of

occupied or unoccupied electronic surface levels, which decays exponentially towards the

vacuum side.

The tip is movable along x-, y- and z-directions with an accuracy below 1 Å, by means of

voltage sensitive piezoelectric transducers. Surface sample, tip and piezos are placed in

an UHV chamber at pressures below 1.0 × 10−9 torr. The STM also may operate at low

temperatures down to 4K, to reduce thermal noise and the risk of impurities, or at variable

temperatures up to several hundred Kelvin. The tip, typically made from a metal or metal

alloy, can exhibit atomic protrusions at its outermost extremity. If the tunneling current

is flowing through such a single ‘apex’ atom, its magnitude, in the order of nano-Ampere,

is used to probe the surface LDOS with atomic resolution.

STM working modes: The tunneling current can be recorded as a function of the tip

position or the bias voltage, which results in two principal kinds of measurements. In the

so-called constant-current mode one uses the fact that the STM tunneling current decays

exponentially for an increasing vacuum gap. Here, a feedback loop ensures a constant

current, while the tip scanns parallel to the surface. The recorded changes in the tip

height reveal surfaces of a constant LDOS [12]. Applications, based on the capability

to perform high-resolution current measurements, are for example in the visualization of

surface topologies [13, 14] and standing electronic waves, for instance in the case of so-

called ‘quantum corrals’ [15, 16], conductivity measurements of organic ad-molecules [17]

and charge transport experiments [18, 19].

In the constant-height mode the current-voltage relation is recorded at fixed tip height. The

resulting I/U -spectra and the differential conductance of first (dI/dU) and second order
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(d2I/dU2) give information about the LDOS and energetic positions of inelastic tunneling

channels. Those appear as steps in the dI/dU curves at a certain bias voltage and indicate

adsorbate vibrations, excited by the tunneling electrons. The effect is used to determine

vibrational spectra of single, adsorbed atoms or molecules. The relevant experiment is

called STM-IETS, where IETS stands for inelastic electron tunneling spectroscopy [20,

21, 22, 23].

IET - Inelastic electron tunneling: The STM current tunneling through an

adsorbate-surface system can flow either elastically or inelastically and usually the elastic

tunneling current dominates over the inelastic fraction by a few orders of magnitude. The

maximum energy of tunneling electrons is set by the bias voltage, while the excitation rate

is tunable via the tunnel current. There are two main contributions to the inelastic tunnel-

ing current, namely dipole and resonance scattering [24]. For the first, the electric field of

tunneling electrons couples to transition dipole moments of adsorbate vibrations [25]. For

the latter, incident electrons/holes are captured in empty/occupied adsorbate electronic

states. Transient, charged adsorbate species are formed and induce nuclear motions, due

to an altered potential surface of the resonance state, as compared to the ground state

potential [26].

The influence of electronically excited states on the nuclear dynamics of surface-adsorbate

systems was studied intensively for both, photo- and STM-induced processes (see e.g., re-

view [27] and references therein). Fundamental theoretical concepts were developed which

allow for a classification of the studied phenomena. Looking at the current dependence, for

example of the STM-induced desorption yield Y , it is found, that Y scales either linearly

(Y ∝ I) or according to a power law (Y ∝ IN , N > 1) with tunnel current I [28]. A similar

behavior is seen for laser-induced desorption from surfaces, where Y scales linearly or by a

power law with the laser fluence F . These scenarios are referred to as desorption-induced

by electronic transitions (DIET) or desorption-induced by multiple electronic transitions

(DIMET) [27], for linear and superlinear dependencies, respectively. For STM-induced

DIET, the single tunneling electron/hole provides enough energy to the adsorbate in order

to overcome the desorption barrier. In the case of STM-induced DIMET, the electron/hole

energy is below the threshold energy, allowing only for a gradual heating of the system

via ‘vibrational ladder climbing’, driven by multiple excitations. Therefore, the DIMET

yield is much more sensitive to the adsorbate vibrational lifetime [29], i.e., the relaxation

time due to vibration-phonon or vibration-electron coupling. An example here is the IET

(inelastic electron tunneling)-induced ‘hopping’ of Xe atoms between tip and sample [30].

Another example, now at a semiconductor surface, is the STM-induced desorption of sin-

gle H/D atoms from a H/D passivated Si(100) surface. A negative ion resonance of σ∗

character located at the Si-H bond was identified to be responsible for both DIET and

DIMET phenomena, observed for bias voltages above [29] and below [31] a threshold

of 7V. One therefore also often speaks about an ‘above-threshold’ and ‘below-threshold’

regime, regarding the energy position of the resonance state concerned. However, it is cer-
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tainly possible to obtain single-electron-induced processes in the ‘below-threshold regime’

as shown by several STM-experiments [28, 32]. The important point here is whether the

incident electron or hole, first of all, provides enough energy to overcome a certain reaction

barrier and secondly, whether it ‘finds’ a resonance state it may occupy.

Aside from desorption processes, all other kinds of IET-induced processes at surfaces can

be classified with respect to their current dependence. The theoretical description of IET-

driven adsorbate dynamics is given in more detail in another part of the introduction

(Sec. 1.3), whereas the techniques employed are laid out in the theory chapter (Sec. 2.5.3).

Further tip-sample interactions: Besides the inelastic electron tunneling other inter-

actions also exist which allow for the manipulation of an adsorbate. Forces of attraction

and repulsion acting via the tip on the sample are caused by chemi- or physisorptive inter-

actions like van der Waals forces or by the electric field between tip and sample. The latter

may couple to the static dipole moment of the adsorbate. Also magnetic forces exist as a

possible way of interacting with the adsorbate spin. All these additional mechanisms and

IET allow for a more or less controlled manipulation of spatial, electric and magnetic prop-

erties of adsorbate surface systems on the nanometer scale [33, 34]. Some further examples

are the controlled movement of atoms and molecules on the surface [35, 36, 37, 38, 39],

single atom spin flip experiments via high-magnetic field STM [40] and STM-triggered

chemical reactions [41, 42, 43].

For instance, the reversible repositioning of single C60 molecules on Cu [44], switching

between four molecular conformations of chlorophyll on Au [45], bistable switching of

hydroxyl groups on Cu [46], biphenyl on Si(100) [47] and Co atoms on Cu [48] were

experimentally achieved. Further work concerned with the bistable rotation of an Si ad-

dimer on Si(100) [49] and cis/trans-isomerization of azobenzene on Au and Cu [50] can

be found. This list is not intended to be complete, but rather to acknowledge the general

interest in STM-induced switching.

Challenge and outlook: The concepts for high-density, miniaturized memory and/or

switching devices relying on the STM are under intense research. Further applications

are for example in the field of nanolithography [51] and in the development of molecular

mechanical or electronic devices [52, 53, 54]. But such STM-based attempts for switchable

nanodevices are also facing a number of technical problems. Here, the speed of reading and

writing processes, the signal-to-noise ratio, the accuracy of tip positioning and instabilities

of the tip have to be mentioned [55]. Much effort is being spent to increase the speed and

stability of the STM in order to make it useful for nanotechnological applications [56, 57].

For the moment, STM is a beautiful tool in the arena of fundamental research, suitable for

finding promising systems and for understanding the switching mechanism. Up to now,

the insights obtained still have to be transferred into different devices, suiting the needs

of mass production, speed and scale. As possible alternatives, the AFM technique [58, 59]

or opto-electronical devices [60] are under focus, for example.
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Figure 1.1: Cubic unit cell of crystalline silicon.

Red crosses mark one possible Si-dimer formed un-

der the (2× 1) surface reconstruction, formed after

the removal of the top layer.

1.2 The Si(100)-(2× 1) surface

The silicon surface has the advantages of being able to chemisorb various adsorbates, to

have a semiconductor band structure and to be widely utilized in commercially avail-

able microelectronics. A number of experiments regarding the STM functionalization of

adsorbate silicon surface systems have already been mentioned.

Silicon belongs to the 4th main group of the periodic table of elements and crystallizes in

a diamond lattice, where each Si-atom is bonded to a tetrahedral sphere of four Si-atom

neighbors. A schematic picture of the resulting crystal structure and the cubic unit cell

are shown in Fig. 1.1. Cutting the crystal along one of the cube planes, results in two sin-

gle ‘dangling-bond’ electrons at each surface atom (see exemplary atom positions, marked

with a red cross in Fig. 1.1). The Si-atoms at the surface carry two unbound ‘dangling-

bond’ electrons, since they have two bonding partners less than Si-atoms in bulk. The

resulting, unreconstructed (1 × 1) surface is energetically unfavorable. Therefore, the

surface undergoes a (2 × 1) reconstruction, establishing rows of silicon surface-dimers.

Each surface-dimer carries four dangling-bond electrons. A strong σ bond is established

in each silicon-dimer, using two out of four dangling-bond electrons. Additionally, the

silicon-dimer atoms are linked via a weak π bond of dangling-bond electrons [61]. The

(2 × 1) reconstruction accounts for special surface properties, like its high reactivity to-

wards adsorbate molecules and atoms. The high reactivity is due to the existence of those

weak π bonds, since the formation of alternative bonds with an adsorbate molecule can

be energetically favorable relative to the π bond [62]. The surface-dimers of the naked,

reconstructed surface are also found to be buckled by ≈ 18◦ [63, 64], relative to the surface

plane, below 200K. Here, two neighboring Si-dimers, within a dimer row, are found to be

buckled relative to each other [65] in a c(4×2) reconstruction. At room temperature, how-

ever, a symmetric appearance is observed in the STM, because of a thermally activated

flip-flopping motion of the silicon-dimers [66]. The buckling is caused by a zwitterionic

electronic configuration of the silicon-dimer, where the ‘upper’ silicon atom (Su) carries

both dangling-bond electrons. In fact, Su is found to be electron-richer than its lower part-

ner (Sd). A nucleophilic character in terms of chemical reactivity evolves at Su and its

electrophilic counterpart at Sd [67]. The occupied and unoccupied dangling-bond states

of up and down buckled Si-atoms form electronic surface bands for the c(4 × 2) recon-

struction [68]. The experimental range for the occupied dangling-bond state for Si(100) is
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found between −0.4 eV and −0.8 eV [69].

Silicon is a semiconductor. The band gap between occupied valence and empty conduction

bands depends on the surface reconstruction. It is found for example to be 1.12 eV at the

Γ point of (2× 1) reconstructed Si(100). Electron transport is possible via electron ‘holes’

in the valence band and/or electrons in the conduction band, which can be induced via

electronic excitation or charge carrier injection by an STM. Insertion of additional ‘holes’

(electron vacancies) or surplus electrons via p- or n-doping increases the conductance by

shifting the Fermi level towards the valence or conduction band, respectively [69].

1.3 Theory of STM-induced switching dynamics

Theoretical studies of IET-induced vibrational heating of adsorbates and vibrational re-

laxation on Si-surfaces have been performed in recent decades. As already mentioned,

IET can occur in the ‘above-threshold’ and ‘below-threshold’ limits. The following exam-

ples are presented for theoretical concepts for the study of IET-induced nuclear adsorbate

dynamics, including vibrational relaxation.

IET in the ‘below-threshold limit’: Here, the influence of resonance scattering events

is treated via vibrational transition rates in the ground state. Therefore, no explicit treat-

ment of the dynamics on the resonance potential energy surface is needed. Walkup et

al. [70] studied IET-induced vibrational heating, solving a set of rate equations (Pauli

master equations) for a truncated harmonic oscillator model. All population transfer rates

scale linearly with the state number i and harmonic selection rules (∆i = ±1) are applied.
Perturbation theory-based rate expressions cover inelastic dipole and resonance scatter-

ing [25, 26], vibrational relaxation and a finite surface temperature. Up- and downward

rates drive the system towards a Boltzmann-like steady state, described by a ‘character-

istic temperature’. All rates are obtained via experimentally-established estimates [70] or

via calculations of coupling matrix elements for a set of vibrational eigenstates [71], as in

the case of Xe atoms transferred between STM tip and surface [30]. Here, the double-well

potential is treated approximately as a set of two harmonic oscillators. Tunneling between

both wells is approximated via rates. Another example for an application of the truncated

harmonic oscillator model was published by Gao et al. [72], also focusing on the Xe atom

transfer problem.

The present thesis utilizes and extends the model of Walkup et al. for the ‘below-threshold

regime’, as will be discussed in theory Sec. 2.5.3.

IET in the ‘above-threshold limit’: The mentioned single-electron-induced desorp-

tion of H/D from Si(100) [29] was theoretically investigated by Boendgen et al. [73], using

‘Gadzuk’s jump and weighted average’ scheme [74, 75] (see Sec. 2.6.2). The effects of finite

surface temperature and a coordinate dependent electronic lifetime can be described, via
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further extensions to the Gadzuk method [73]. Additionally, the results were compared to

classical dynamics and results of open-system density matrix theory. Studying the same

system, semi-classical propagation of a Gaussian wave packet on the resonance state po-

tential was utilized by Avouris et al. [76, 77]. Here, complex potentials account for the

electronic quenching process.

Finally, an example using open-system density matrix theory [78] in the context of resonant

IET is mentioned. The hole-resonance driven lateral hydrogen-atom transfer on Si(100)-

(2× 1) surface-dimers was studied by Abe et al. [79]. Within open-system density matrix

theory, a set of approximations1 allows for a propagation of the system modes only, while

treating the interaction with a bath of phonons or electronic states only approximately via

perturbative population transfer rates. The system Hamiltonian, considered by Abe et al.

consists of one switching mode on two potential energy surfaces. Dissipative operators of

Lindblad type [80] were used to treat vibrational and electronic relaxation.

Vibrational adsorbate relaxation on Si(100): For adsorbates on silicon surfaces,

coupling to the surface plays a crucial role in the switching process, since the adsorbate

vibrations interact with the surface phonon-bath. The inelastic interactions with the sur-

face are responsible for the transfer of vibrational energy from or to the surface. Further-

more the inelastic and elastic interactions destroy any initially existing or, for example,

photo-induced phase information between the adsorbate vibrational levels via so-called

‘dephasing’.

The vibration-phonon coupling is the dominating dissipative energy transfer mechanism

for adsorbate vibrations on semiconductor surfaces, as long as the semiconductor band

gap energy is larger than the vibrational energy quanta [81]. A strong coupling causes

a fast system-bath equilibration. The higher the spectral density, i.e. the product of

bath phonon-density and coupling strength, is in that particular energy region the easier

a vibrational quantum of the system can be transferred to or from the bath. Here it is

important to know the Debye frequency of the surface, i.e. the upper limit of the phonon

energy band. The Debye frequency for silicon is between 500 to 580 cm−1 [82, 83, 84].

Therefore, vibrational quanta of a system within that range can perfectly couple to the

bulk phonon-density, allowing for a ‘rapid’ decay on the order of picoseconds, which is the

lower limit for vibrational lifetimes of adsorbates on silicon surfaces.

Taking the H-Si stretching and the H-Si-Si bending modes of H on Si(100)(2 × 1) as

an example, two different strategies used to calculate the vibrational lifetimes are briefly

mentioned in the following. Both modes are characterized by frequencies around 680 cm−1,

and 2100 cm−1, respectively [85].

In the first approach discussed here, lifetimes were calculated by Andrianov et al. by

means of perturbation theory [83]. The system-bath coupling strength and the phonon-

density of states were calculated explicitly, performing normal mode analysis on hydrogen

1For a detailed explanation, please refer to Sec. 2.4.
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saturated silicon clusters containing up to 320 silicon atoms. The potential energy function

was modeled via a force field, whereas the two system modes, namely the H-Si stretching

and bending modes, were described by an analytical model potential. Andrianov et al.

calculated lifetimes in the order of 1 ps for the first excited state of the bending mode.

The lifetime of the first excited state of the stretching mode was calculated as 1.53 ns

at 300K, which accords well to the experimental value of 1.2 ns [83]. Furthermore, a

nearly linear scaling was found up to the 10th excited bending mode and to a somewhat

lesser extent, also up to the 4th stretching mode. The frequency of the stretching mode

(≈ 2100 cm−1), lies outside the Si-bulk phonon-band and only allows for a decay via less

likely multi-phonon processes. It was found that inter-mode coupling is the dominating

relaxation pathway for this high-frequency adsorbate mode. Accordingly, a stretching

vibrational quantum is transformed into two bending ‘phonons’ of lower frequency. The

resulting excitation of the bending mode, subsequently decays into the silicon bulk via

two-phonon processes. An ns lifetime of a high-frequency adsorbate mode on Si(100) was

further established experimentally and theoretically for the CO@Si(100) stretching mode

(ω ≈ 2000 cm−1) [86, 81].

A second possible approach is the non-perturbative treatment via a high dimensional wave

packet propagation, including system and bath degrees of freedom, and a system-bath cou-

pling operator. Here, lifetimes are obtained by following the population evolution of a vi-

brationally excited state. For example, the multi-configurational time-dependent Hartree

(MCTDH) method [87] allows for an explicit inclusion of H-Si bending and stretching

modes as well as 50 bath oscillators of the silicon bulk into the Hamiltonian [88]. The per-

turbatively calculated ps lifetimes for the H-Si bending modes were confirmed by MCTDH.

Additionally, the time-dependent self consistent field (TD-SCF) method or time-dependent

Hartree (TDH) method is mentioned [89]. Here a single Hartree product of one dimensional

wavefunctions is used to represent multidimensional problems. The coupling between

individual modes is treated via mean-field potential, representing the interaction with all

other modes. TD-SCF allows for the inclusion of several hundreds of bath modes coupled

to a few system modes. Actually, the TD-SCF calculated lifetimes for H-Si stretching and

bending modes compare well with results obtained via perturbation theory [90]. The TD-

SCF method fails, however, if interactions between specific states determine the dynamics

and if correlated states are important. A solution to the problem is the flexibilization of

the wave function by allowing for a sum of Hartree products as in MCTDH.

In this thesis, ‘below-threshold’ IET-induced switching of adsorbates and vibrational ad-

sorbate relaxation via surface phonon coupling is treated in the framework of open-system

density matrix theory. The propagation is performed using a set of localized vibrational

states in the electronic ground state. All population transfer rates are derived via pertur-

bation theory. In the ‘above-threshold’ regime a second electronic state is included in the

propagation. The applied theory framework is explained in the following chapter.



Chapter 2

Theory

This chapter gives an overview about the theoretical concepts being utilized. Starting with

the time-independent Schrödinger equation (SE), the Fourier Grid Hamiltonian (FGH)

method is introduced. This method is used to solve the SE for a set of bound states in a

double minimum (double-well) potential surface. A localization scheme is used to arrive at

vibrational wave functions, which are localized to a single potential well. Subsequently, the

time-dependent nuclear switching dynamics are simulated, in the localized basis, by means

of the Lindblad dynamical semi-group approach [80]. The theory allows for energy transfer

between system and bath degrees of freedom by means of population transfer rates. The

rates are based on first order perturbation theory [91]. The presented rate expressions

cover vibrational relaxation and excitation via coupling to the surface phonon-bath and

due to interactions with inelastic tunneling electrons. At the end of the theory chapter

density functional theory (DFT) and Koopmans’ theorem are mentioned briefly, which are

applied in order to approximate potential surfaces of ion resonance states.

2.1 Time-independent Schrödinger equation

The time-independent Schrödinger equation (SE), for a system with mass m moving along

coordinates q1, . . . , qN is given as,

Ĥψn = Enψn = (T̂ + V )ψn =

(
p̂2

2m
+ V (q)

)

ψn =

(

− ~
2

2m
∆+ V (q)

)

ψn. (2.1)

The obtained eigenenergies En and eigenfunctions ψn further depend on the boundary

conditions. The kinetic energy operator T̂ is expressed via the momentum operator

p̂ = −i~∇, where∇ = ∂
∂q1
·e1+· · ·+ ∂

∂qN
·eN is the Nabla operator and ∆ = ∇2. V (q) is the

potential energy function, depending on N coordinates qi with q = (q1 ·e1, . . . , qN ·eN ) and

unit vectors ei. The eigenfunctions or wavefunctions ψn, depend also on all coordinates.

The statistical average of any measurable system quantity is defined via the expectation

value 〈Â〉 of an operator Â, 〈Â〉 = 〈ψ|Â|ψ〉.
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2.2 Fourier Grid Hamiltonian Method (FGH)

The nuclear switching dynamics are simulated in the basis of vibrational eigenstates.

Taking, for example, a one-dimensional potential V (q) along coordinate q, the Fourier

Grid Hamiltonian method is briefly introduced as a convenient way of solving the time-

independent Schrödinger equation for bound states ψn(q), represented on a spatial grid [92,

93]. For this purpose, a set of N spatial basis functions ϕi(q), (i = 1, . . . , N) is introduced,

namely Dirac delta functions [92], with

ϕi(q) = δ(q − qi) , (2.2)

where the N grid points qi are distributed equidistantly across the grid extension L =

(N − 1) ·∆q,
qi+1 = qi +∆q . (2.3)

Their orthogonality is proven by 〈ϕi|ϕj〉 =
∫
δ(q − qi)δ(q − qj)dq = δ(qj − qi) = δji, since

∫
f(q) · δ(q − qi)dq = f(qi) is one feature of the Dirac delta function. The expansion of

ψn(q) as linear combinations of basis functions ϕi is simply achieved via the completeness

condition,

|ψn〉 = 1̂ |ψn〉 =
∑

i

|ϕi〉〈ϕi|ψn〉 =
∑

i

ci,n|ϕi〉 . (2.4)

The representation of Ĥ in the basis of ϕi, with implicit periodic boundary conditions,

results in a Hamilton matrix H with individual elements Hij = 〈ϕi|Ĥ |ϕj〉. The potential

energy function V is diagonal in the spatial grid basis,

Vij = 〈ϕi|V |ϕj〉 = V (qj)δij . (2.5)

The kinetic energy operator T̂ only becomes diagonal in the corresponding momentum

space, when expanded in the corresponding basis ϕ̃k(p) with (k = 1, . . . , N),

Tkl = 〈ϕ̃k|T̂ |ϕ̃l〉 =
p2l
2m

δkl . (2.6)

To allow for a definition of Tkl in the spatial grid basis, a discrete Fourier transform is

used to switch between spatial and momentum representation, as defined in Ref. [92]. One

finally gains matrix elements for the kinetic energy operator T̂ , expressed in the spatial

grid basis Tij = 〈ϕi|T̂ |ϕj〉,

Tii =
~
2π2

µL2

N2 + 2

6
and Tij,i 6=j = (−1)i−j π

2
~
2

µL2

1

sin2[(i− j)π/N ]
, (2.7)

Furthermore, the accessible range of momentum and kinetic energy, represented by eigen-

function ψn, depends on the spatial grid extension L and grid spacing ∆q. The maximal

expressible momentum pmax is given by,

pmax =
π~

∆q
. (2.8)
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Finally, the obtained Hamilton matrix H, including elements Hij = Tij + V (qi)δij , has to

be diagonalized in order to satisfy the resulting secular equations,

∑

k

[Hik − Enδik]ck,n = 0 (2.9)

and to obtain the vibrational eigenfunctions ψn and corresponding eigenenergies En.

2.3 Vibrational state localization

All examples of STM-induced conformational switching studied here, take place on sym-

metric double-well shaped potential energy surfaces. Each well represents an individual

conformational state of the switch, separated by a barrier. The switching is considered as

a transfer of population initially entirely localized to the left (L) or right (R) potential well

to the opposite potential well. The vibrational state doublets for 1D potential surfaces are

obtained via the FGH method, using a symmetry-adapted grid basis (see Appendix A).

The resulting eigenstates show equal distribution probabilities on both potential wells.

Initial localization of the wave packet to the right or left potential well is achieved via a

proper linear combination of two unlocalized, symmetry related states.

The one-dimensional (1D) double-well potentials, of all examples studied in the following,

show Cs symmetry and give rise to delocalized states which transform like A and A
′

. Here,

A and A
′

refer to the corresponding irreducible representations. They are equivalently

referred to as states of odd (-) and even (+) parity, transforming like ψ+
n (q) = ψ+

n (−q)
and ψ−n (q) = −ψ−n (−q), respectively. Localized states (ψ̃L,R

n ) are simply obtained via

linear combinations of corresponding odd and even eigenstates of doublet n,

ψ̃L,R
n (q) =

1√
2

(
ψ+
n (q)± ψ−n (q)

)
. (2.10)

The corresponding localized state energies (EL,R
n ) are therefore defined via,

EL
n = ER

n =
1

2

(
E−n + E+

n

)
. (2.11)

Degree of localization, Qn:

The degree of localization QL
n of the ‘left’ (q < 0) localized state ψ̃L

n is defined via the

integral over its spatial distribution probability between the potential center (q = 0) , i.e.,

the center of the switching barrier and the ‘left’ grid border, along the switching coordinate

q,

QL
n = QR

n =

0∫

−∞

[ψ̃L
n (q)]

∗ψ̃L
n (q)dq . (2.12)

The ‘right’ (q > 0) localized state ψ̃R
n , shows the same degree of localization to the ‘right’

as the ‘left’ localized state to the ‘left’, since they originate from the same doublet n.
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2.4 Open-system density matrix theory

The nuclear switching dynamics of adsorbates at silicon surfaces, as the central topic of

the actual work, is simulated in the basis of vibrational eigenstates and their localized

linear combinations. Further open-system density matrix theory [27, 94, 78] is used as the

theoretical framework for all simulations. The corresponding equations of motion (EOM)

have the advantage of allowing for the separation of a high dimensional, not accurately

tractable problem, with many degrees of freedom, into a low dimensional, exactly tractable

‘system’ part and an approximately treated environment, called the ‘bath’. Energy ex-

change between system and bath is driven by inelastic interactions between both entities,

accompanied by changes of individual state populations in the system and the bath. The

process of energy flow from the system into the bath is also called a ‘dissipative process’ or

simply dissipation. Elastic interactions with the bath, on the other hand, do not alter the

system energy but are responsible for a loss of information about phase relations between

individual states. Such processes are subsumed as ‘pure dephasing’ and are neglected in

the following. The coupling to an external perturbation such as a time-dependent electric

field (e.g. laser pulse) is easily possible via the system Hamiltonian, as will be shown

later. The open-system density matrix theory in its various forms is especially suited for

dealing with nuclear dynamics in adsorbate-surface systems, as seen from a large number

of corresponding publications [27]. Examples such as the infrared-laser excitation of NH3

vibrations on Cu(111) [95], the surface scattering of noble gas atoms [96], and DIET of

vibrationally hot adsorbates [97] are mentioned here. Now, a short outline of open-system

density matrix theory is given.

2.4.1 The density operator ρ̂

Starting to look at the entire problem, consisting of system and bath, the density matrix

operator is defined as a sum over projector type products of system and bath states Ψj

and their populations pj,

ρ̂ =
∑

j

pj |Ψj〉〈Ψj | , (2.13)

where all pj are real numbers between 0 and 1. Ψj and thus ρ̂ can be represented in a

complete basis of orthonormal ψm,

|Ψj〉 =
∑

m

cj,m|ψm〉 and ρmn = 〈ψm|ρ̂|ψn〉 =
∑

j

pjcj,mc
∗
j,n . (2.14)

After normalization of the trace Tr{ρ}, using a complete basis
∑

n
|ψn〉〈ψn| = 1̂,

Tr{ρ} =
∑

n

ρnn =
∑

j

pj
∑

n

〈ψn|Ψj〉〈Ψj |ψn〉 =
∑

j

pj = 1 , (2.15)

diagonal elements ρnn are interpreted as populations of individual basis functions ψn. The

off-diagonal elements ρmn (m 6= n), named ‘coherence elements are given by

ρmn =
∑

j

pj〈ψm|Ψj〉〈Ψj |ψn〉 . (2.16)
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Figure 2.1: Schematic representa-

tion of system-bath separation and cou-

pling to an external electric field. Ĥ

and V̂ denote system, bath and coupling

Hamiltonians, respectively.

The expectation value 〈Â〉 of any operator Â is given as,

〈Â〉 = Tr{ρ̂Â} =
∑

j,n,m

pj〈ψn|Ψj〉〈Ψj |ψm〉〈ψm|Â|ψn〉 , (2.17)

representing an average over measurable results 〈Â〉 for an ensemble of weighted Ψj.

2.4.2 The Liouville-von Neumann equation

Using the time-dependent Schrödinger equation (TDSE),

i~
∂

∂t
Ψ = ĤΨ (2.18)

and the definition of ρ̂ in Eq. (2.13), the time derivative of ρ̂ is expressed as,

i~
∂

∂t
ρ̂ =

∑

j

pj

(

Ĥ|Ψj〉〈Ψj | − |Ψj〉〈Ψj |Ĥ
)

, (2.19)

resulting in the so-called Liouville-von Neumann (LvN) equation,

∂

∂t
ρ̂ = − i

~
[Ĥ, ρ̂] = Lρ̂ , (2.20)

where L = − i
~
[Ĥ, ◦] is the Liouvillian superoperator acting on ρ̂.

2.4.3 System-bath separation

The separation of system and bath entities, described by individual Hamiltonians ĤS({qs})
and ĤB({qb}), covering s system and b bath modes, is schematically shown in Fig. 2.1.

Here, system and bath are coupled via the system-bath coupling operator V̂SB({qs, qb}),
using system and bath operators, Q̂k and F̂k, respectively (e.g., position operators)1.

System and bath parts are optionally coupled to an external electric field E(t) via coupling

operators V̂SF and V̂BF
2. In the field-free case, the entire Hamiltonian Ĥ for system and

bath is written as, Ĥ = ĤS+ĤB+ V̂SB = Ĥ0+ V̂SB. Accordingly the LvN equation (2.20)

can be written as
∂

∂t
ρ̂ = − i

~

(

[Ĥ0, ρ̂] + [V̂SB , ρ̂]
)

. (2.21)

1Possible bilinear ansatz: V̂SB =
∑

k Q̂k(q
s
1, · · · , q

s
N ) · F̂k(q

b
1, · · · , q

b
M )

2Often the semi-classical dipole approximation is used: V̂ = −µ̂({qi}) · E(t); µ̂ - dipole operator.
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After transformation from the ‘Schrödinger picture’ to the ‘Interaction picture’3

∂

∂t
ρ̂I = − i

~
[Ĥ0, ρ̂

I ]− i

~
[V̂ I

SB , ρ̂
I ] = − i

~
[V̂ I

SB , ρ̂
I ] , (2.22)

the time derivative of ρ̂I only depends on the system-bath coupling, while the inherent

Hamiltonian part is contained in ρ̂I . Now, the equations of motion, solely for the system

part (ρ̂Is), are derived by tracing out the bath modes, TrB{ρ̂I}, in Eq. (2.22). Prior to this,

Eq. (2.22) is solved for ρ̂I via integration over time and inserted in the same equation.

The resulting LvN expression for the reduced density matrix,

∂

∂t
ρ̂IS(t) = TrB

{

− i
~

[

V̂ I
SB(t), ρ̂

I(0)
]}

− 1

~2

t∫

0

TrB

{[

V̂ I
SB(t),

[

V̂ I
SB(t

′), ρ̂I(t′)
]]}

dt′ (2.23)

is not closed and non-local in time, which means that ρ̂I depends on every previous time

step for any propagation time t > 0. The second part of Eq. (2.23), integrating over time

t is responsible for ‘memory’. The equation is still exact, but has to undergo a number of

approximations in order to arrive at a ‘memory free’ form. A bath approximation permits

neglecting the correlation between system and bath, memory effects are switched off under

theMarkov approximation, leading to the Redfield theory with a time-dependent relaxation

matrix (Redfield tensor). The secular approximation allows the use of a time-independent

relaxation matrix instead [98].

2.4.4 The Lindblad ‘dynamical semi-group’ approach

Unfortunately the Redfield equations of motion (EOM), lacking the secular approximation,

allow for negative state populations under certain initial conditions. Those are unphysical

and not observable for non-Markovian theories [99]. Among others, the Lindblad dynamical

semi-group approach [80], delivers EOM for ρ̂ (used synonymously for ρ̂S in the following)

which include the Markov approximation and maintain both positive state populations

and a conserved norm,
∑

n
ρnn, for all times, by mathematical construction. The Lindblad

form of the LvN equation for the reduced density matrix is,

∂

∂t
ρ̂(t) = LS ρ̂+ LDρ̂ = − i

~
[ĤS , ρ̂] + LDρ̂ (2.24)

where LS and LD denote the system Hamiltonian and dissipative superoperators, respec-

tively. The application of LD on ρ̂ has to obey:

LDρ̂ =
∑

k

{Ĉkρ̂Ĉ
†
k −

1

2
[Ĉ†kĈk, ρ̂]+} , (2.25)

where the Lindblad operators Ĉk describe dissipative actions on the system via k possible

channels. For population transfer processes between system levels due to vibrational dis-

sipation or inelastic electron tunneling, for example, the following form of Ĉk is used [100]:

Ĉk =
√

Wf←i|ψf 〉〈ψi| . (2.26)

3ÂI(t) = e+iĤ0t/~Âe−iĤ0t/~
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Here, the Ĉk are projectors from an initial state |ψi〉 to a final state |ψf 〉, weighted by the

square root of Wfi, which is interpreted as a rate ([Wf←i] = 1/time). Choosing, as an

example, localized vibrational states as initial |ψ̃i〉 or final state |ψ̃f 〉, the following EOM

are found for diagonal elements ρnn,

d

dt
ρ̃nn(t) = −

i

~
〈ψ̃n|[ĤS , ρ̂]|ψ̃n〉+

∑

i

Wn←i ρii −
∑

f

Wf←n ρnn (2.27)

and off-diagonal elements ρmn,

d

dt
ρ̃mn(t) = −

i

~
〈ψ̃m|[ĤS , ρ̂]|ψ̃n〉 −

1

2

∑

f

(Wf←m +Wf←n)ρmn , (2.28)

applying expressions (2.24) to Eq. (2.26), respectively. For the moment, the dissipative

superoperator LD = L
vib
D is therefore only accounting for changes in the vibrational state

populations and connected dephasing, i.e., the loss of information about phase relations

between individual states. Equations (2.27) and (2.28) are the further basis for the de-

scription of dissipation of vibrational energy using density matrix propagations.

2.4.5 Propagation in a localized state basis

As already stated, in order to follow the population transfer between two sets of localized

states, the density matrix ρ̂ and the Lindblad operators Ĉk are set up in a basis set of

localized vibrational states, ρ̃nm = 〈ψ̃n|ρ̂|ψ̃m〉. This is necessary since the propagated

density matrix becomes diagonal in the basis on to which the dissipative Lindblad oper-

ators Ĉk project on. The Hamilton matrix H̃, expanded in the localized state basis, is

block-diagonal and the individual 2× 2 blocks consist of energies EL
n = ER

n ,
(

EL
n Vn

Vn ER
n

)

, (2.29)

and real coupling elements Vn = 1
2(E

+
n − E−n ), where + and − refer to the parity of the

delocalized states. The Hamiltonian part LS ρ̂ is given as,

〈ψ̃m|LS ρ̂|ψ̃n〉 = −
i

~
〈ψ̃m|[ĤS , ρ̂]|ψ̃n〉 = −

i

~

∑

p

[
H̃mpρ̃pn − ρ̃mpH̃pn

]
, (2.30)

introducing the completeness relation for the unlocalized basis,
∑

p
|ψ̃p〉〈ψ̃p| = 1̂. Tunneling

or transfer between left and right localized states ψ̃L,R
n is driven via the off-diagonal ele-

ments Vn in the Hamiltonian part of the EOM and damped by the dissipative Liouvillian.

The damping therefore depends on the transfer rates Wn←m.

2.5 Population transfer rates based on Fermi’s Golden Rule

2.5.1 Fermi’s Golden Rule

As mentioned above, the system-bath separation of the open-system density matrix theory

is used to represent both the dynamics of the system and all important system-bath
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interactions. As stated in Sec. 2.4.4, population transfer rates Wf←i have to be specified

in order to calculate the population dynamics under the influence of the system-bath

coupling. According to Fermi’s Golden Rule (FGR), the transition rate Wf←i, between

the two states Ψi and Ψf , can be calculated as,

Wf←i =
2π

~

∑

i

wi(T )
∑

f

[1− wf (T )] · |〈Ψf |V̂ |Ψi〉|2 · δ(Ef − Ei) . (2.31)

Fermi’s Golden Rule is based on first-order perturbation theory, applicable for a ‘weak’

coupling or a ‘small’ perturbation of the system. Equation (2.31) includes the averaging

over initial states, and a summation over final states Ψf . Here, wi(T ) and wf (T ) are the

statistical weights of initial and final state at temperature T , respectively. Further, V̂ is

the coupling operator, specifying the nature of the perturbation, while the delta function

δ(Ef −Ei) ensures energy conservation. FGR is used to calculate the population transfer

rates between individual system states, due to a perturbation of the system or coupling

to a bath, for all density matrix propagations presented in the following. FGR is always

applied on a set of left L or right R localized vibrational system states ψ̃L,R
i (see Sec. 2.3).

For reasons of clarity the localized states are written as ψ without the tilde in the following

until the end of the theory chapter.

One application of FGR below will be the vibrational relaxation of localized system states

due to vibration-phonon coupling. This energy transfer due to vibration-phonon coupling

is treated via two different models, namely via the harmonic, bilinear coupling model and

the Ohmic bath dissipative model, respectively. For both, the lifetime of the first excited

vibrational level τvib1 will appear as a parameter.

Another application is the calculation of rates due to inelastic electron tunneling (IET).

Contributions arising from IET of electrons emitted or absorbed by an STM are treated

for two different mechanisms. Either on the basis of a coupling between the electric field

of the tunneling electron and the adsorbate dipole leading to W dip
f←i, and/or a transient

population of its resonance electronic states leading to W res
n←m. IET-induced transfer rates

are generally only included in single-surface (1S) models (see below). The total population

transfer rate between localized states is a sum of the individual contributions,

Wf←i =W vib
f←i +W dip

f←i +W res
f←i . (2.32)

2.5.2 Dissipative population transfer rates

(1) General expression for W vib
f←i:

Fermi’s Golden Rule, Eq. (2.31), is used to calculate vibrational relaxation rates W vib
f←i

between initial and final states, Ψi(q,Q1, . . . , QN ) and Ψf (q,Q1, . . . , QN ), as a result of

a vibrational coupling to a bath of oscillators. For now, only a one dimensional system

is considered and both states are defined as products of system states ψi,f (q) depending



2.5 Population transfer rates based on Fermi’s Golden Rule 17

on the spatial coordinate q and N 1D bath oscillator states, χ0
a(Qa) and χ

1
a(Qa), in their

ground (v = 0) or first excited vibrational state (v = 1), respectively,

Ψi = ψi ·
N∏

a=1

χ0
a and Ψf = ψf · χ1

b ·
N∏

c 6=b

χ0
c . (2.33)

Initially (Ψi), all bath oscillators are in their vibrational ground state χ0, according to

a bath temperature of 0K. The STM experiments considered in the actual thesis were

carried out around 4K, justifying the choice of the initial bath state. The excited bath

oscillator compensates, in terms of energy, for a vibrational relaxation (i → f) in the

system, meaning an excitation transfer from the system to the bath. There are several

non-occupied final states (wf = 0) considered.4 Each final state Ψf , consist of a singly

excited bath oscillator (χ1
b) and the system state ψf . Using Eq. (2.31) and Eq. (2.33), the

vibrational relaxation rate W vib
f←i is expressed as,

W vib
f←i =

2π

~

∑

b

|〈ψf · χ1
b ·

N∏

c 6=b

χ0
c |V̂SB|ψi ·

N∏

a=1

χ0
a〉|2 · δ(Ef −Ei) , (2.34)

where V̂SB is the dissipative, system-bath coupling operator, which is given in detail within

the following subsection.

(2) Dissipation in the harmonic, bilinear limit:

In the harmonic, bilinear dissipative model, as will be introduced now, the coupling matrix

elements in Eq. (2.34) can be calculated analytically. The model is based on two major

assumptions. The first assumption is to consider system and bath vibrational states as

harmonic. The second assumption is to specify the system-bath coupling as a bilinear

operator, linear in system and bath coordinates [27],

V̂SB = λb · q ·Qb , (2.35)

which describes the interaction between system mode q and a single bath oscillator b.

Here, λb defines the vibration-phonon coupling strength between bath oscillator χb and

the system. The product character of Ψi,f and V̂SB allows the separation of system and

bath states, and Eq. (2.34) becomes,

W vib
f←i =

2π

~
|〈ψf |q|ψi〉|2 ·

N∑

b=1

λ2b |〈χ1
b |Qb|χ0

b〉 ·
N∏

c 6=b

〈χ0
c |χ0

c〉
︸ ︷︷ ︸

=1

|2 · δ(~ωb − ~ωif ) , (2.36)

where ωb and ωif are the frequencies of system and bath phonons, respectively. Since

system and bath states are harmonic, the respective coupling matrix elements are given

analytically. The squared matrix elements containing system states in Eq. 2.36 scale

linearly with system state number i,

|〈ψf |q|ψi〉|2 = i · ~

2mωif
· δi,f+1 , (2.37)

4For a phonon-bath wf and wi are the Bose-Einstein coefficients wi,f = 1/(eEi,f/(kB ·T ) − 1).
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RL
x x

Figure 2.2: Dissipative vibrational transitions

for the double-well potential treated as two inde-

pendent harmonic oscillators. Harmonic selection

rules (∆v = ±1) are obeyed and only transitions

within the left (L) or right (R) well are possible.

where m is the system mass. The Kronecker delta δi,f+1 preserves the harmonic selection

rules (∆v = ±1) for all dissipative transitions (f < i). For the bath, the matrix elements

are given in an analogous manner,

|〈χ1
b |Qb|χ0

b〉|2 =
~

2Mb ωb
, (2.38)

with bath oscillator mass Mb. An additional replacement of λb by an overall coupling

constant λ in Eq. (2.36) results in,

W vib
f←i = i · δi,f+1 ·

π

mωif
· λ2 ·

N∑

b=1

~

2Mb ωb
· δ(~ωb − ~ωif ) = i · δi,f+1 ·W vib

0←1 . (2.39)

Here, W vib
0←1 subsumes the intra-bath-state matrix elements, multiplied by their respec-

tive delta-functions, as well as λ and other prefactors. Therefore, the lifetime of the first

vibrational system state τvib1 = 1/W vib
0←1 is the only adjustable parameter within the relax-

ation model. Finally, Eq. (2.39) provides a linear scaling law for dissipative, vibrational

relaxation rates and/or lifetimes τvibi = 1/W vib
f←i for all system states ψi.

Further, one can simply derive vibrational upward rates at finite temperatures via the

condition of detailed balance, as shown in the following. Here, up- and downward popu-

lation transfer rates ensure a Boltzmann distribution for all vibrational system states at a

given temperature. Via the principle of detailed balance upward rates are calculated as,

W vib
f←i(T ) =W vib

i←f · e−(Ef−Ei)/kBT . (2.40)

The expressions given so far, apply to a single harmonic oscillator in the system part.

The rate expressions, however, have to be adapted to a double-well potential, which re-

sembles the bistable conformational switching dynamics. One could approximately see

both wells as harmonic oscillator potential surfaces, which give rise to two independent

sets of ‘left’ (L) or ‘right’ (R) localized harmonic eigenfunctions, ψ̃L,R
n . For each of those

sets the vibrational transition rates are calculated according to Eq. (2.39) and Eq. (2.40).

This is schematically visualized in Fig. 2.2. Here, transitions due to dissipation or finite

temperature are only possible within the ‘left’ or ‘right’ well of the double-well potential.

(3) Ohmic bath dissipative model:

The Ohmic bath dissipative model, as presented in the following, has several advantages

compared to the simpler harmonic, bilinear scheme. First of all the Ohmic bath model
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includes information about the phonon-bath, such as its cutoff energy, represented by

ν̃cut, and its phonon-density. The latter is implicitly defined via ν̃cut, the number of

bath oscillators N and a common energetic width γ, set for all bath oscillators. Further,

the Ohmic bath approach includes anharmonicities of vibrational system states [101]a

and the coupling matrix elements between all possible pairs of those system states ψi,f

are explicitly calculated. This is of special importance for the calculation of dissipative

rates for more-dimensional potential surfaces. For the moment, only the 1D formalism is

presented, while the extension to two dimensions will be introduced in Sec. 4.4.3 as part

of the COD@Si(100) chapter. Let us return to Eq. (2.36), slightly rewritten as

W vib
f←i =

2π

~

N∑

b=1

|〈ψf |λbq|ψi〉|2 · |〈χ1
b |Qb|χ0

b〉|2 · δ(~ωb − ~ωif ) . (2.41)

For an Ohmic bath one chooses an equidistant frequency spacing,

ωb = b ·∆ωb = b · ωcut

N
= b · 2πcν̃cut

N
, (2.42)

where c is the speed of light and defines the coupling constants λb as [102],

λb = b

(
2Mbmγ (∆ωb)

3

π

)1/2

. (2.43)

Using Eq. (2.43) and harmonic bath oscillators (Eq. (2.38)), Eq. (2.41) becomes,

W vib
f←i = 2 |〈ψf |

√
mq|ψi〉|2 · γ ·

N∑

b=1

ωb δ(~ωb − ~ωif )∆ωb . (2.44)

For an infinitely small frequency spacing (continuum limit, ∆ω → 0, ωb → ω) and for

ωif centered in the bath phonon-band (wide-band limit, 0≪ ωif ≪ ωcut), one can write,

W vib
f←i = 2|〈ψf |

√
mq|ψi〉|2 ·γ ·

1

~

∫

ω δ(ω−ωif) dω =
2

~
|〈ψf |

√
mq|ψi〉|2 ·γ ·ωif . (2.45)

If one finally assumes harmonic vibrational system states, Eq. (2.37) can be used,

W vib
f←i = i · δi,f+1 · γ = i · δi,f+1 ·W vib

1←0 (2.46)

Therefore, γ = 1/τvib1 turns out to be identical with the inverse vibrational lifetime of the

first excited vibrational system state in this case.

For the actual calculations of dissipative rates via the Ohmic bath model below, anhar-

monic system states are used and all coupling matrix elements 〈ψf |q|ψi〉 are calculated

explicitly. Also, neither the continuum limit nor the wide-band limit are applied. For

the conclusive 1D rate equation the delta function in Eq. 2.44 is replaced by a Lorentz

function of width γL,

W vib
f←i = 2|〈ψf |q|ψi〉|2 ·m · γ ·∆ωb ·

N∑

b=1

ωb ·
1

π
· γL
γ2L + (~ωb − ~ωif )2

. (2.47)
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Temperature-dependent vibrational upward rates are treated the same way as in the bilin-

ear, harmonic case, namely via the condition of detailed balance, as written in Eq. (2.40).

Temperature related corrections via Bose-Einstein coefficients (see page 17) led only to

negligible effects, for COD@Si(100) studied in the following.5 Those corrections are not

included, as for the bilinear, harmonic model.

It should also be mentioned that the strict separation of left and right well, as shown in

Fig. 2.2 is an approximation, which is only valid for perfectly L/R- localized states. The

harmonic, bilinear model does not allow for L ⇆ R transitions by definition, the Ohmic

bath approach does allow for L⇆ R transitions, due to non-perfectly localized states.

2.5.3 Inelastic Electron Tunneling (IET)-induced excitations

As stated in the introduction regarding the STM-experiment, there are two major con-

tributions to the inelastic tunneling current fraction η = Iin/I, namely inelastic dipole

and resonance scattering. Iin represents the inelastic tunneling current fraction, while I is

the measurable STM tunnel current. In the following an estimate for η and the resulting

electron-phonon coupling, i.e., transition rates between individual vibrational adsorbate

levels Wf←i, are given. Dipole and below-threshold resonance excitations will be treated

in a ‘single-surface model’, adopted from Walkup et al. [70, 71]. Their harmonic model

is extended here. First, tunneling between two wells of a double minimum potential is

treated in an exact quantum mechanical way, without any rate approximations. Sec-

ondly, IET-induced transitions between all vibrational levels are included and explicitly

calculated, instead of using simple linear scaling laws only. Perturbative rate expressions,

covering the dipole scattering and the ‘below-threshold’ regime of resonance scattering, as

used by Walkup et al., are introduced in the following.

(1) Dipole scattering rates W dip
f←i:

Electrons tunneling between the STM tip and surface are accompanied by an electric field.

The field can couple to the transition dipole moment µfi of an adsorbate-surface vibration,

µfi = 〈ψf |µ̂z|ψi〉 , (2.48)

and induce a transition between vibrational states ψi and ψf . The adsorbate dipole com-

ponent µz, perpendicular to the surface, is of interest here since this direction corresponds

to the dominant direction of the flowing electrons. The number of tunneling electrons

causing vibrational transitions accounts for the inelastic, dipole-induced tunneling fraction

ηdip = Idipin /I. The ratio between dipole-inelastic and elastic current fraction is typically

in the order of 10−3 to 10−4 [34, 76]. The dipole-induced transition rates W dip
f←i between

levels ψi and ψf are calculated by a formula, based on the work of Persson et al. [25] and

5Relevant example: ω = 2π · c · 200 cm−1 ⇒ w1(150K) = 1/(e24.8meV/(kB·150 K) − 1) ≈ 0.06
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utilized by Walkup et al. [71]. The expression derived by Persson is,

W dip
f←i =

I

e
· ηdipf←i =

I

e
·
∣
∣
∣
∣

〈ψf |µ̂z|ψi〉
ea0

∣
∣
∣
∣

2

, (2.49)

where a0 is the Bohr radius, e the electron charge and I the STM tunnel current. Finally,

ηdipf←i is the inelastic current fraction generating the vibrational transition f ← i due to

dipole transitions. The formalism was derived under the following assumptions. First, the

electrons are supposed to tunnel from or to an s-shaped orbital of a single metal atom in

the STM tip. Also, the tip has to be positioned directly above the adsorbate. Further,

the distance and orientation of contributing orbitals are taken as ‘optimal’ and the limits

of perturbation theory, i.e. FGR have to be obeyed.

Persson and Walkup also considered the inelastically dipole-scattered fraction of the cur-

rent in the harmonic limit, ηdip
′

. Here, functions ψ
′

i,f are assumed to be harmonic oscillator

functions and the dipole moment is linearized, µz(q) ≈ µz,0 + µ′z,0 · (q − q0). Here, µz,0

and µ′z,0 denote the dipole moment at the position of the potential minimum and the first

derivative of µz(q) at this point, respectively.

In this double-harmonic approximation, the squared matrix elements |µ′z,0 · 〈ψ
′

i+1|q|ψ
′

i〉|2
scale linearly with state number i and harmonic selection Rules ∆v = ±1 apply for the

transition rates,

W dip
i+1←i = (i+1) · ηdip′ · I

e
= (i+1) ·

|µ′z,0〈ψ
′

1|q|ψ
′

0〉|2
(e a0)2

· I
e
= (i+1) ·

µ′z,0
2

(e a0)2
· ~

2mω0
· I
e

,

(2.50)

where m and ω0 are the harmonic oscillator mass and frequency, respectively. Here,

ηdip
′

=
µ′z,0

2

(e a0)2
· ~

2mω0
(2.51)

is the inelastically dipole-scattered current fraction, for the 1 ← 0 transition in the har-

monic limit.

For the actual thesis, Eq. (2.49) is applied for the two sets of localized, anharmonic wave-

functions ψ̃i,f . Here, the dipole transition rates between all state pairsW dip
f←i are calculated

explicitly. Further, for the perpendicular dipole component µz(q) the linear approximation

is not made. The expression is more general and now applicable to anharmonic systems,

which might not obey harmonic selection rules and a linear rate scaling. Two-, or more,

dimensional systems can easily be treated via Eq. (2.49) as well.

(2) Resonance scattering rates W res
f←i (Below-threshold regime):

Another important excitation channel for STM-induced adsorbate vibrations opens up if

the energy of tunneling electrons (holes) is close to an adsorbate resonance. The traveling

electron (hole) might be temporarily trapped in the resonance. Therefore, the nuclear

potential is changed and a net force acts on the system atoms. During an inelastic relax-

ation a transfer of phonon-energy ~ω, from the electron to the adsorbate, takes place. The
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Figure 2.3: Schematic picture of resonance inelastic elec-

tron tunneling from an occupied electronic tip state (black)

through the adsorbate resonance (red) to the conduction band

(CB) of the semiconductor (SC) surface bulk. VB is the va-

lence band of the SC. ǫa is the energy of the adsorbate reso-

nance and ǫF the Fermi level of the STM tip and ρa represents

the adsorbate resonance density of states, respectively.

physical picture of such resonance-mediated, inelastic electron-phonon scattering event is

shown for the case of an anion resonance in Fig. 2.3. Here, the Fermi level of the tip ǫF

overlaps with the resonance energy of an unoccupied state ǫa. The excitation probability

is proportional to the resonance density of states ρa at the Fermi level [24]. The amount of

vibrational energy transferred from the electron also depends on the resonance lifetime and

on the difference between ground and resonance state potential surface. Several estimates

for the inelastic, resonant tunneling fraction ηres = Iresin /I of the current can be found

in the literature. For small molecules adsorbed on metal [26, 70, 103] or semiconductor

surfaces [29, 32, 103], typically ηres ≈ 1× 10−3.

Taking into account the mentioned physical parameters we calculate the inelastic tunneling

fraction ηres in the below-threshold regime as follows. Here, the Fermi level of the STM-

tip is below the energy of the resonance center (anion resonance). The resonance-induced,

vibrational excitation of the system is taken into account via electronic ground state

vibrational transition rates W res
f←i. The utilized expression is again based on first order

perturbation theory according to Persson et al. [26],

W res
fi =

I

e
· ηresf←i =

I

e
· |〈ψf |Ves(q)− Vgs(q)|ψi〉|2

(∆Eres)2 + (γ↓el/2)
2

. (2.52)

The formula includes the difference between ground state potential Vgs(q) and resonant

state potential Ves(q), if a one-dimensional system with coordinate q is assumed. Further,

∆Eres is the difference between resonance energy ǫa and the Fermi level of the STM tip

ǫF,

∆Eres = ǫa − ǫF = ǫ0a − ǫ0F − e · U = ∆E0
res − e · U . (2.53)

Here, ǫ0a and ǫ0F are the energies of the adsorbate resonance and the Fermi level of the tip,

respectively, if no bias voltage is applied (U = 0V). ∆E0
res is the corresponding energy

gap and e is the elementary charge. Via proper adjustment of the STM bias voltage U ,

electrons or holes can tunnel from the STM tip and through the adsorbate resonance

depending on the character of the resonance.

γ↓el = ~/τres accounts for the resonance width as inverse of the resonance lifetime τres.

Finally, ηresf←i is the inelastic, resonant-induced tunneling current fraction causing the vi-

brational transition i→ f .

As for the dipole component, the harmonic limit is considered, where the transition rates

scale linearly with the state number and obey harmonic selection rules. Accordingly, ψ
′

i,f
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above-threshold below-threshold

+ - + -

ǫF < ǫa ǫF > ǫa ǫF > ǫa ǫF < ǫa

Table 2.1: Comparison of the Fermi energy of the

STM-tip ǫF and the resonance energy ǫa for below-

and above-threshold resonant switching regimes and

anion (−) or cation (+) type of resonance.

are harmonic oscillator states and the difference potential is linearized,

Ves(q)− Vgs(q) = Ves(q0)− Vgs(q0) + V ′es(q0) · (q − q0) . (2.54)

Here, q0 is the minimum position of the harmonic oscillator and V ′es(q0) is the first deriva-

tive of the resonance state potential with respect to q. The resulting expression,

W res
i+1←i = (i+ 1) · ηres′ · I

e
= (i+ 1) · |V

′
es(q0)〈ψ

′

1|q|ψ
′

0〉|2

(∆Eres)2 + (γ↓el/2)
2
· I
e

= (i+ 1) · (V
′

es(q0))
2

(∆Eres)2 + (Γ↓el/2)
2
· ~

2mω0
· I
e

,

(2.55)

provides the definition for the harmonic, inelastic, resonant tunneling current fraction,

ηres
′

= (V
′

es(q0))
2 · ~

2mω0
· 1

(∆Eres)2 + (Γ↓el/2)
2

, (2.56)

where ω0 and m are harmonic oscillator frequency and mass again, respectively.

The perturbation theory of first order (see also Sec. 2.5) only covers the ‘weak’ coupling

limit. The limit is fulfilled only if nearly all the electronic ground state population remains

in the vibrational ground state. Further the resonance center has to be far away, in terms

of energy, from the Fermi level of the tip, which is the case in the ‘below-threshold’

regime considered here (see Tab. 2.1). All important dynamics should take place in the

ground state, because the excited, resonance state is not explicitly included and enters

only indirectly via transition rates on the ground state. Depending on the gradient of

the excited state surface, the excited state lifetime has to be short enough to fulfill that

condition. Further, it should be mentioned that the resonance width depends on the

distance of the adsorbate to the surface. For both systems studied here that distance is

rather constant during the switching process. The coordinate dependence of γ↓el is therefore

neglected here. An extension to higher dimensional problems is also straightforward.

2.6 Resonance scattering in the above-threshold regime

In the above threshold regime of resonant switching, the weak coupling limit is left, since

the resonance center is located in resonance to the Fermi energy of the tip (see Tab. 2.1).

Therefore, resonance trapping of the tunneling electron becomes much more likely due

to the experienced maximum of the resonance density of states. In the above threshold

regime of resonance IET a ‘two-surface model’ is used, which allows for the study of
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Figure 2.4: Schematic view of a two-surface sys-

tem including electronic ground state (g) and reso-

nant electronic state (e), which give rise to Ng and

Ne vibrational levels.

the adsorbate dynamics in its resonance state. The resonance lifetime and the ratio of

resonance tunneling current Ir with respect to the overall tunneling current I, enters as

parameters in our model. The propagations are realized in the framework of density matrix

theory, as explained in the following section.

2.6.1 Two-surface density matrix propagation

The transient population of ion resonances, via STM-induced injection or detachment of

electrons into or from the adsorbate-surface system, can also be treated in the ‘above

threshold’ limit (see Sec. 1.3). The two-surface model includes the electronic ground state

|g〉, represented by Ng vibrational wavefunctions ψ
g
n,m and the resonant, excited electronic

state |e〉, represented byNe vibrational wavefunctions ψ
e
α,β, as illustrated in figure 2.4. The

density operator ρ̂ (see Sec. 2.4.1) is represented in the electronic state basis, consisting

of a ground state |g〉 and an excited, resonant state |e〉,

ρ̂ = ρ̂gg|g〉〈g| + ρ̂ge|g〉〈e| + ρ̂eg|e〉〈g| + ρ̂ee|e〉〈e| . (2.57)

Here, the diagonal elements ρ̂gg and ρ̂ee represent populations of ground and excited state,

while the off-diagonal elements ρ̂ge and ρ̂eg, account for coherences between both electronic

states. The latter one will not be considered in the two-state simulations of resonant

excitations for the following reasons. The density matrix is always initialized as a ‘pure’

electronic state, with unit population in the excited state. Further, no coherent coupling

term is considered for the Hamiltonian superoperator LS . Therefore, equation (2.57)

simplifies to

ρ̂ = ρ̂gg|g〉〈g| + ρ̂ee|e〉〈e| . (2.58)

The population loss in the resonance and the population gain in the electronic ground

state are mediated via an dissipative electronic superoperator Lel
D, which is added to the

LvN equation in Lindblad form (Eq. (2.24)),

∂

∂t
ρ̂(t) = LS ρ̂+ L

vib
D ρ̂+ L

el
Dρ̂ . (2.59)

In accordance to equation (2.25), Lel
Dρ̂ is chosen as,

L
el
Dρ̂ = Ĉelρ̂Ĉ

†
el −

1

2
[Ĉ†elĈel, ρ̂]+ . (2.60)

where Ĉel is the electronic Lindblad operator,

Ĉel =

√

γ↓el|g〉〈e| . (2.61)
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Here, γ↓el =
1

τres
is the resonance decay rate (~Γdownarrow

res is the resonance width) and

τres the corresponding resonance lifetime. The combination of equation (2.60) and equa-

tion (2.61),

L
el
Dρ̂ = γ↓el

[

|g〉〈e|ρ̂|e〉〈g| − 1

2
(|e〉〈e|ρ̂ + ρ̂|e〉〈e|)

]

, (2.62)

permits the calculation of the time derivatives of diagonal elements6 of the density matrix

in the electronic state basis under the influence of electronic dissipation, as represented

by L
el
D:

dρ̂gg
dt

= 〈g|Lel
D ρ̂|g〉 = γ↓elρ̂ee , (2.63)

dρ̂ee
dt

= 〈e|Lel
Dρ̂|e〉 = −γ↓elρ̂ee . (2.64)

Finally, the density matrix is represented in the vibrational state basis |ψg
m,n〉 and |ψe

α,β〉,
for ground and excited electronic states, respectively.

ρ̂gg =

Ng∑

m,n

|ψg
m〉〈ψg

m|ρ̂gg|ψg
n〉〈ψg

n| =
Ng∑

m,n

|ψg
m〉ρmn

gg 〈ψg
n| , (2.65)

ρ̂ee =

Ne∑

α,β

|ψe
α〉ραβee 〈ψe

β | , (2.66)

Equations (2.63) and (2.64) show that a gain of ground state population and a loss of

excited state population, after a resonant excitation, follows a mono-exponential decay

according to first order kinetics. This permits an easy check for proper functioning of the

two-surface propagation. Looking back at equations (2.63) and (2.64), access is gained to

the time-evolution of individual density matrix elements in the full vibronic basis, using

product basis functions of electronic and vibrational basis functions. Equations (2.67) and

(2.68),
(
d(ρmn

gg )

dt

)el

D

= 〈gψm
g |Lel

Dρ̂|gψn
g 〉 = γ↓el

∑

α,β

〈ψm
g |ψα

e 〉ραβee 〈ψβ
e |ψn

g 〉 , (2.67)

(

d(ραβee )

dt

)el

D

= 〈eψα
e |Lel

Dρ̂|eψβ
e 〉 = −γ↓elραβee , (2.68)

describe the time derivatives of electronic ground state and excited state vibrational pop-

ulations, respectively. Here 〈ψm
g |ψα

e 〉 and 〈ψβ
e |ψn

g 〉 are overlap matrix elements factors

between electronic ground state and excited state vibrational levels.

The vibrational, dissipative superoperator L
vib
D in equation (2.59) is only acting on the

ground state density operator ρ̂gg in the following, since the typical resonance lifetime of

a few fs excludes any influence of vibrational dissipation on a typical timescale of ps for

the resonance. The corresponding equations of motion for ρ̂gg in a localized vibrational

state basis were already defined via Eq. (2.27) and Eq. (2.28).

6Populations of ground and excited electronic states



26 Theory

All two-surface density matrix propagations started with a fully localized vibrational

ground state population, projected to the resonant surface. The propagation terminates

when all population has been trapped into non-switching vibrational levels of the electronic

ground state, due to electronic and vibrational relaxation.

2.6.2 Alternative two-surface models

(1) Gadzuk’s ‘jump and weighted average’ procedure:

Gadzuk’s ‘jump and weighted average’ procedure represents an alternative and efficient

description of a single electronic excitation/relaxation cycle within a two level system.

The algorithm consists of the following steps. First, the initial ground state wave packet

θ(t = 0) is projected to the excited state |e〉 and propagated for a specific residence time

τR. Afterwards, the wave packet is back-projected to the electronic ground state |g〉 and
propagated until the final time, t. In summary, the following equation of motion is used,

|θ(t, τR)〉 = exp

{

− iĤg(t− τR)
~

}

|g〉〈e| exp
{

− iĤe τR
~

}

|e〉〈g|θ(t = 0)〉 . (2.69)

utilizing the formal solution of the TDSE (Eq. (2.18)), Here Ĥg and Ĥe represent the nu-

clear Hamiltonians of ground and excited state electronic states, respectively. Considering

the excited state lifetime to be independent from the nuclear coordinates, the excited state

population decays exponentially with time. Therefore, any global expectation value 〈Â〉(t)
is derived via an incoherent averaging scheme,

〈Â〉(t) = 1

τel

∞∫

0

exp(−τR/τel)A(t, τR)dτR =

∞∫

0

w(τR)A(t, τR)dτR , (2.70)

of expectation values A(t, τR) = 〈θ(t, τR)|Â|θ(t, τR)〉 for individual values of τR, using an

exponential weight function w(τR). Here, τel is the average lifetime of the electronically

excited state. In practice, only the sum over an appropriate set of different τR is taken.

(2) Monte Carlo wave packet (MCWP) method:

The Gadzuk algorithm was proven to be equivalent to an open-system density matrix

approach [104], since it represents a special variant of the Monte Carlo wave packet

method [105, 104, 27] which belongs to the class of stochastic wave packet methods.

MCWP is particularly suitable for problems with a large number of eigenstates N , where

the storage and/or propagation of a N×N density matrix is difficult, because only a single

wave function rather than a statistical average, as in the full density matrix, is propagated

for each trajectory. In the Lindblad form a non-Hermitean Hamiltonian acts on the prop-

agated wave packet allowing for a loss of norm. Connected to a random number generator,

the loss triggers jumps between electronic surfaces which is followed by a renormalization.

The expectation values are averaged over all trajectories. A slow convergence with the

number of trajectories might occur, depending on the actual system.
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2.7 Calculation of switching rates

(1) Single-surface model:

The switching rate between both potential wells is calculated with respect to the prop-

agation time or the number of tunneling electrons. First of all, the total population for

the left or right well PL,R(t) has to be calculated at certain times during the propagation.

The operator P̂L,1D, for example, is used to obtain the probability of the 1D wave packet

to be localized in the ‘left half’ of the grid (−∞ < q ≤ 0) at any time,

P̂L,1D =

K/2
∑

k=1

|ϕk〉〈ϕk| , (2.71)

by projecting out the ‘right half’ (0 < q < +∞), where ϕi are the basis functions used to

represent the vibrational wavefunctions on the grid, usingK sampling points (see Sec. 2.2).

Applying Eq. (2.17) and (2.71) on ρ results in the following expectation value of P̂L,

PL =
〈

P̂L(t)
〉

=
∑

n,m

ρnm(t)

K/2
∑

k=1

ckmckn . (2.72)

The probability to be localized to the ‘right’ is PR(t) = 1 − PL(t) Starting with 100%

population in the left well, for example, the switching rate, Rsw, can be defined as,

Rt
sw = −dPL(t)

dt
=
dPR(t)

dt
, (2.73)

assuming a negligible back flow of population, or PL(t) ≈ 1 and PR(t) ≈ 0 when starting

from the left. For a constant switching rate, as seen for those examples considered in this

thesis, Rsw(t) can be simply estimated as,

Rsw(t− 1/2∆t) [1/s] =
∆PR

∆t
=
PR(t)− PR(t−∆t)

∆t
. (2.74)

The switching rate per tunneling electron Re
sw [1/e] is simply obtained by dividing Rt

sw by

the STM current I, Re
sw = Rt

sw/I.

(2) Two-surface model:

In the two-surface model Re
sw is calculated differently. At first, only the switching prob-

ability of a single, electronic excitation event is calculated. After an initial projection of

an left or right well localized single state or wave packet to the resonance state surface

and the exponential back-decay, the wave packet relaxes vibrationally in the ground state.

When all population relaxes to states which are ‘trapped’ in either of the ground state

potential wells, the final population of the initially empty well (P (t → ∞)) is taken as

switching probability per electronic excitation event Re′
sw. For a comparison to observable
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values of the total switching probability Re
sw, the excitation probability Wexc has to be

known and multiplied with Re′
sw,

Re
sw =Wexc · Re′

sw = (Ires/I) ·Re′
sw . (2.75)

Here Ires/I accounts for the ratio between the resonant tunneling current fraction and

and the overall, measurable tunneling current I. A quantitative comparison between

theoretical and experimentally observed switching rates can only be as good as the estimate

of Wexc. However, the qualitative description of the switching mechanism is not affected

by this uncertainty.

2.8 Quantum chemical methods

Since quantum chemical calculations are not the main scope of this thesis, a detailed

explanation of the foundations of the utilized methods, such as density functional the-

ory (DFT) [106] and complete active space self-consistent field (CASSCF) [107], is not

included here. For DFT, we use the B3LYP functional which is composed of Becke‘s

three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation func-

tional [108, 109], both including gradient corrections. Besides B3LYP its spin-unrestricted

variant (UB3LYP), was utilized in this work. The 6-31G(d) basis set [110] was further

used as standard basis set for all calculations in this work. The (U)B3LYP functional was

employed to calculate potential and dipole surfaces for the examined silicon adsorbate sys-

tems. Alternatively, the gradient corrected, non-hybrid (U)PW1 correlation and exchange

functionals of Perdew and Wang et al. [111] were used for test calculations. CASSCF

is applied for the calculation of the dipole function of H@Si(100). As a variant of the

multi-configuration MC-SCF method, it allows for an optimization of both, coefficients

of electronic configuration state functions and molecular orbitals, within a defined active

space of occupied and unoccupied molecular orbitals. The method is especially useful to

cover static correlation effects and to describe excited electronic states. All methods are

used, as implemented in the Gaussian03 program package [112].

2.9 Resonant state potentials via Koopmans’ theorem

Transient, electronically excited, anionic or cationic system states can be populated via

resonance electrons tunneling between system and STM-tip. The excited system evolves

within the lifetime of the resonance state. To simulate the resonance-induced system

dynamics, the potential surface Ves of the excited state involved has to be known (see,

e.g., Eq.(2.52)). Having already calculated the orbital energies along the neutral poten-

tial surface, it is straightforward to derive approximate anion and cation surfaces via the

application of Koopmans’ theorem [113]. According to Koopmans’ theorem the energies

of the highest occupied and lowest unoccupied molecular orbitals ǫHOMO and ǫLUMO are
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approximative vertical ionization potentials (VIP) and electron affinities (EA), respec-

tively: V IP ≈ −ǫHOMO, EA ≈ −ǫLUMO. For Hartree-Fock (HF) and an adequate

basis set, the error for Koopmans’ VIP’s is usually less than 10%, while the EA values

via Koopmans’ are known to be less reliable and strongly basis set dependent. There are

two major approximations made by Koopmans’ theorem. The first is the so-called frozen

orbital approximation, since orbital relaxation upon ionization is neglected. This causes

an overestimation of VIPs and an underestimation of EAs, respectively. The error does

not occur for the so-called ‘∆SCF method’, taking the difference between two separate

ground state energies of ionic and neutral state, respectively. The second error contribution

comes from ignoring correlation effects, which results in an underestimation of VIPs and

an overestimation of EAs. Therefore, the second error contribution has an opposite effect,

as compared to the relaxation error, resulting in a partial error cancellation [114]. Density

functional theory (DFT)-based ∆SCF calculations, using functionals which partly cover

correlation energy, reduce that error [115]. In the actual work the resonance anion and

cation surface energies V −es,n and V +
es,n were approximated, using Koopmans’ theorem and

Kohn-Sham orbital energies calculated with the B3LYP functional [108, 109] and 6-31G(d)

basis set [110] as,

V +
es,n(q) = Vgs(q)− Vgs(q0)− ΦW − ǫHOMO−n(q) and

V −es,n(q) = Vgs(q)− Vgs(q0) + ΦW + ǫLUMO+n(q) .
(2.76)

Here q denotes the spatial degree of freedom along which the 1D potential is defined. Vgs(q)

is the neutral ground state potential, Vgs(q0) is its global minimum7 and ǫHOMO/L(q) are

the HOMO and LUMO energies along q, also for the neutral ground state. ΦW denotes

the work function8 for the STM-tip and is set here to 4.5 eV for tungsten.

The use of the Kohn-Sham orbital energies to estimate VIPs is exact for the HOMO, if

an exact functional would be used [116]. Energies of ‘lower’ occupied orbitals are inter-

preted as approximate ‘orbital-relaxed’ VIPs. The quality of that interpretation decreases

parallel to the increase of inner shell character for the considered orbital. Unfortunately,

the use of common, non-exact, exchange-correlation functionals, as for example B3LYP,

can result in absolute errors of several eV, compared to experiment. But, in the case of

B3LYP (and other functionals), a uniform shift of VIP’s, predicted by Koopmans’ theo-

rem, and experimental values have been demonstrated by several authors [117, 115, 118].

The findings justify the assumption that the B3LYP-based cationic resonance state po-

tentials have at least a ‘correct’ shape, but might be shifted in energy, with respect to the

experimental values. Such shifts would not influence the switching dynamics, but do not

allow predicting the absolute resonance energies. The energy gap to the tip Fermi level,

∆Eres in Eq. (2.52) therefore only enters as a parameter in the following calculations.

7Therefore, all ionic state energies are defined with respect to Vgs(q0).
8−ΦW is the energy that has to be invested or is gained during the abstraction or addition of an electron

from or to the metal bulk of the tip.
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Chapter 3

Hydrogen on Si(100) [1]

3.1 Introduction

It has been previously mentioned in Sec. 1.1 that the hydrogen-covered on Si(100) surface

was already a subject of intense studies by both theory and experiment. STM-driven DIET

and DIMET processes of H and D were observed at positive bias voltages [29, 31], as well

as STM-driven DIET at negative voltages [119]. Controlled desorption of hydrogen from

H-passivated Si-surfaces on the nanoscale is of special interest for lithographic applications,

and was achieved via STM [51] and optical excitation [120]. Subsequent theoretical models,

mentioned in Sec. 1.3, studied the STM-induced, resonance-mediated desorption dynamics

using wave packet techniques, open-system density matrix theory [73] and semi-classical

Gaussian wave packet propagations [76, 77].

Another interesting feature of the H/D@Si(100) system is its ability to serve as a bi-

nary switch of atomic scale. More precisely, single dangling bond defects on dimers of

a Si(100)(2 × 1) surface allow for the switching phenomenon. Dangling-bond sites are

created via STM-induced desorption of single H-atoms from a fully H-covered surface (see

below). The single H-atom remaining at the silicon-dimer can be laterally moved between

two stable positions by further applying an STM current pulse, as first observed by Grey

et al. [9]. Since the system was found to switch reversibly and stable at room temperature,

it is a promising candidate for a memory device on a atomic scale [121].

Subsequently, detailed STM studies by Quaade et al. [122] and Stokbro et al. [32] revealed

that switching only takes place at negative sample bias and has its maximum rate around

−2.7V bias voltage. Furthermore, a linear dependence between tunneling current and

switching rate became apparent, showing a switching yield per tunneling electron of ≈
8× 10−8 at the resonance center. This finding was taken as evidence for a hole resonance-

based switching mechanism. An isotope ratio of ≈ 7, between the switching yield of

hydrogen and deuterium, was observed as well. A resonance lifetime τres ≈ 2.5 fs was

estimated via the full width at half maximum (FWHM) of a Lorentzian, fitted to the

voltage dependency of the switching rate. The ratio Ir/I between the tunneling current

Ir traveling through the resonance and the overall STM current I was estimated as about



32 Hydrogen on Si(100) [1]

1 × 10−3 in an analytical model. Further, switching was supposed to take place on the

excited/resonance state surface.

As mentioned in Sec. 1.3, the ‘above-threshold regime’ of resonance-mediated switching,

was already studied by Abe et al. [79] using open-system density matrix theory and a

one-dimensional, two-surface model. While a model potential was used for the resonance

surface, a plane-wave DFT-based ground state potential was used as determined by Stok-

bro et al. [32], both along a 1D lateral switching coordinate. Details of the underlying

switching Hamiltonian, also serving as basis for the actual dynamics simulation, are ex-

plained in the following Sec. 3.2.2. Contrary to the mechanism suggested by Stokbro et al.,

Abe et al. found the switching to be dominated by tunneling in the ground state. Setting

the resonance lifetime to 2.53 fs, and the vibrational lifetime in the electronic ground state

to τ1vib ≈ 1 ns, a switching yield of 8 × 10−4 and an isotope ratio of 18 are observed, in

reasonable agreement to the already mentioned experimental data. However, Abe et al.

did consider the ‘above-threshold’, low current regime only.

In this thesis, the ‘below-threshold’ resonance switching regime for the H@Si system is

studied instead. Here, the focus lies on the high current-regime, above 1 nA, which has not

been studied experimentally so far. Here, a multiple electronic excitation mechanism might

become the dominating contribution to the switching. STM-induced excitations of the

hydrogen bending mode on a Si(100) surface and subsequent lateral, intra-dimer switching

dynamics, are treated using a one-dimensional open-system density matrix approach. The

extended ‘single-surface’ model of Walkup et al. [70, 71], as described in Sec. 1.3 and

Sec. 2.5.3 is applied in order to simulate dipole- and below-threshold resonance switching

of H on Si(100).

The chapter is organized as follows. In Sec. 3.2.2 the utilized 1D switching Hamiltonian

is introduced, followed by a discussion of the neutral ground state potential (Sec. 3.2.1)

and corresponding eigenfunctions (Sec. 3.2.3). The resonance state potential, as obtained

via Koopmans’ theorem, is presented in Sec. 3.3.3. In Sec. 3.4 the switching rates are

calculated and analyzed for thermal-, dipole- and resonance-mediated switching, including

a discussion of switching mechanism and various parameter dependencies.

3.2 Ground state potential and vibrational states

Within the ‘single-surface’ model of IET-induced switching, the vibrational state popu-

lation dynamics are simulated in the neutral ground state. Dipole and cation resonance-

induced transition rates between vibrational levels of the ground state are calculated via

perturbative rate equations (2.49) and (2.52). Therefore, the neutral ground state po-

tential, its dipole function, and the cation resonance potential are needed. Additionally,

some system specific parameters are of interest, i.e.m the lifetimes of vibrationally excited

states as well as the lifetime of the electronically excited, resonance states.
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Parameter Value Parameter Value

A0 −25.8505 C6 2.742 × 10−1

A1 −2.0514 C8 −2.726 × 10−2

A2 27.2304 C10 1.647 × 10−3

C2 5.1279 C12 −5.50 × 10−5

C4 −1.6500 C14 7.5× 10−7

Table 3.1: Parameters for the neutral ground state potential surface for H@Si(100) according to

Eq. (3.1) as published by Abe et al. [79]. All parameters are given in units of Eha
−2k
0 (k = 0,. . . ,9).

3.2.1 Ground state potential

The ground state potential along switching coordinate x, was provided by periodic DFT

calculations of Stokbro et al. [32]. An analytical fit to the ground state potential, as shown

in Fig. 3.1 and provided by Abe et al. [79], has the following form:

Vg(x) = A0 sech2
(
x

A1

)

+A2 sech4
(
x

A1

)

+
7∑

k=1

C2k x
2k; |x| ≤ 6.6a0 . (3.1)

The fit parameters as taken from Abe et al. are listed in Tab. 3.1. The minima are

located at x = ±3.3 a0 and the height of the switching barrier at x = 0.0 a0 is 1.35 eV. The

analytic fit of Abe et al. covers a range from x = −6.6 to x = 6.6 a0. Here, a grid between

x = ±10 a0 is used, to calculate vibrational eigenstates via the Fourier grid Hamiltonian

method (see Sec. 2.2), in order to ensure zero amplitudes at the grid boundaries, for all

states up to an energy of 2.3 eV. A cutoff of 2.5 eV is chosen for the potential energy, since

the experimental activation barrier of recombinative hydrogen desorption on H-saturated

Si(100) surfaces is about 2.5 eV [123]. The value of 2.5 eV is taken as an asymptotic limit

for our potential, extrapolating the fit of Abe et al. beyond x = ±6.6 a0 via an exponential

function,

Vg(x) = A3(1− e±A4·x+A5) , (3.2)

with the following parameters: A3 = 0.0918 Eh, A4 = 2.475 a−10 , A5 = 14.2699. During

the extrapolation it is ensured that the potential values and their first derivatives are

continuous at the connection points of both potential regions at x = ±6.6 a0.

3.2.2 Switching Hamiltonian

The employed one-dimensional, field-free nuclear Hamiltonian Ĥ0,

Ĥ0 = −
~
2

2mH

d2

dx2
+ V (x) , (3.3)

describes the lateral movement of a single hydrogen atom along the silicon-dimer axis x,

as depicted on the left side of Fig. 3.1. The influence of a static electric field ~E is included
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SiSi

H H

STM

1D

Figure 3.1: Left: Schematic depiction of a single H-atom, switchable between two lateral positions,

on top of a Si(100)(2 × 1) surface-dimer. Right: The corresponding 1D neutral ground state potential in

eV, as taken from periodic DFT calculations of Stokbro et al. [32]. The underlying fit function is taken

from Abe et al. [79] (see Eq. (3.1) and Tab. 3.1).

grid boundaries: x [a0] ±10
grid points: N 1000

mass (H/D): m [me] 1837.36/ 3674.72

potential cutoff: [eV] 2.5

Table 3.2: FGH parameters, as used for the

representation of 1D vibrational eigenfunctions

of H on Si(100) in its neutral state.

in semiclassical dipole approximation as,

Ĥ = Ĥ0 − µzEz . (3.4)

Here, µz refers to the dipole component perpendicular to the surface plane, and Ez is the

perpendicular field component.

3.2.3 Vibrational eigenstates of the ground state potential

The FGH method, a symmetry-adapted basis set1 and the Hamiltonian of Eq. (3.3) are

utilized in order to calculate eigenenergies E±n and eigenfunctions ψ±n of odd (−) and even

(+) parity for the given potential V (x) of Cs symmetry. The tunnel splitting for each

doublet is calculated as,

∆En = E−n − E+
n , (3.5)

defining the tunneling time Tn needed for a wave packet consisting of states ψ+
n and ψ−n

of a single doublet n, to tunnel through the potential barrier,

Tn ≈
π~

∆En
. (3.6)

The parameters, listed in Tab. 3.2, are used to resolve 30 doublets or 60 unlocalized,

bound states with energies up to 1.5 eV. Obtained energies En, tunnel splittings ∆En and

tunneling times Tn are summarized in Tab. 3.3. Since the barrier height is 1.35 eV, the

1Details are given in theory Sec. 2.2 and Appendix A
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Doublet (n) E+
n (meV) ∆En (meV) Tn (ns)

0 34 < 10−9 > 106

1 104 < 10−9 > 106

2 176 < 10−9 > 106

3 249 < 10−9 > 106

3 - 7 · · · < 10−9 > 106

8 626 8.03 × 10−9 2.57 × 105

9 702 1.08 × 10−7 1.91 × 104

10 778 1.32 × 10−6 1.57 × 103

11 854 1.46 × 10−5 141

12 930 1.48 × 10−4 14.0

13 1004 1.38 × 10−3 1.50

14 1078 1.17 × 10−2 1.77× 10−1

15 1150 8.98 × 10−2 2.30× 10−2

16 1220 6.16 × 10−1 3.35× 10−3

17 1286 3.6 5.47× 10−4

18 1342 14.0 1.48× 10−4

19 1396 27.7 7.47× 10−5

20 1460 34.3 6.03× 10−5

Table 3.3: Selected eigenenergies E+
n for wave functions of even parity, tunnel splittings ∆En and

tunneling times Tn for selected doublets n.
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energy for the odd and even eigenstates of doublet n = 18 are found to be above and below

the barrier, respectively. The tunneling times decrease from the µs- down to Tn ≈ 1 ps at

the barrier top (n ≈ 18) and decreases by another order of magnitude up to the highest

doublet considered, n = 30.

All eigenfunctions for the symmetric double-well potential are delocalized over left (L) and

right (R) wells. L/R-localized functions ψ̃L,R
n are needed instead for the rate expressions

entering the dissipative Liouvillian in the density matrix propagation, as explained in

Sec. 2.4.5. After localization, the degree of localization, as described in Sec. 2.3, is > 99%

up to the barrier and decreases to about 82% for doublet n = 30.

3.3 Vibrational transition rates Wf←i

The switching dynamics are studied by means of open-system density matrix propagation

with a dissipative super operator of Lindblad type, as explained in Sec. 2.4. System-bath

couplings are subsumed in inter-state population transfer ratesWf←i, covering interactions

with the surface phonon-bath and IET-induced processes, as shown in Eq. (2.32). The

corresponding rate expressions, discussed in Sec. 2.5, are applied for H@Si(100) in the

following. It should be mentioned again, that for the actual problem of a symmetric

double well potential all transition rates calculated for the manifold of vibrational states

localized to the left potential well are identical to those calculated for states localized to

the right well.

3.3.1 Vibrational relaxation and excitation rates W vib
f←i:

The lateral transfer coordinate x is a combination of Si-H stretching and H-Si-Si bending-

modes. Experimental and theoretical work revealed vibrational lifetimes in the order of

ns and ps for stretching- and bending-modes, respectively (see Sec. 1.3). Therefore the

relaxation of the involved H-Si stretching mode is the ‘bottleneck’ for dissipative processes

in H@Si. For the harmonic, bilinear model, as introduced in Sec. 2.5.2 used here, the

vibrational lifetime parameter τvib1 is set to 1 ns throughout, if not stated otherwise. Within

the bilinear harmonic relaxation model, left and right sets of localized vibrational states

are treated as independent harmonic oscillator functions. Within each set, the lifetimes

scale linearly and only ∆v = ±1 transitions are allowed, as depicted in Fig. 2.2 on page 18.

That is, for downward rates (f < i) we use for vibrational relaxation rates (see Eq. (2.39)),

W vib
f←i = i · δi,f+1 · (τvib1 )−1, (3.7)

as ingredient of Eq. (2.32), where τvib1 is the vibrational lifetime of the first vibra-

tional excited state and f, i are localized states as defined earlier (see Sec. 2.5.2).

Temperature-dependent ‘upward’-rates are included via the condition of detailed balance,

using Eq. (2.40).
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3.3.2 Dipole transition rates W
dip
f←i

In order to estimate the contribution of dipole-induced switching, the static dipole com-

ponent µz(x), perpendicular to the Si-surface was calculated from a simple cluster model.

(1) Cluster model and dipole function µz(x):

The cluster used to calculate µz(x) is shown in Fig. 3.2. It consists of 9 Si-atoms and 13

H-atoms, needed to saturate the non-surface Si atoms and one Si-atom of the top silicon-

dimer. The Si-dimer has a single hydrogen atom and a dangling bond, carrying a single

Figure 3.2: The Si9H13 cluster in its neutral

electronic ground state geometry. The cluster is

optimized via UB3LYP/6-31G(d).

electron. Because of the resulting doublet multiplicity, the spin-unrestricted UB3LYP

functional [108] is used in combination with the 6-31G(d) basis set [110] to fully optimize

the cluster geometry. The minimum character is checked by the absence of imaginary fre-

quencies. The agreement between the results of the periodic DFT calculations of Stokbro

et al., in bond lengths and bond angles is better than 0.05 a0 and 3◦, respectively. Neutral

ground state potential Vgs(x) and dipole function µz(x) are calculated along the lateral

H-atom switching coordinate x (see Fig. 3.2). The height of H above the Si-dimer is op-

timized at each point along x. The resulting position of the obtained potential minima is

0.09 a0 outside the minima position, calculated by Stokbro et al. [32]. Unfortunately, the

UB3LYP calculated dipole function was found to be not continuous at large Si-H bond

lengths. This was addressed to difficulties of the UB3LYP functional in order to describe

the Si-H bond breakage. Therefore, the CASSCF [107] method is used (see also Sec. 2.8)

instead, which is more appropriate for the description of the H-Si bond breaking at ‘large’

values of x. The UB3LYP cluster geometry is taken for all values of x except the hydro-

gen z-coordinate which is re-optimized while using CASSCF(3,4)/6-31G(d). The active

space consists of the two highest occupied and two lowest unoccupied Hartree-Fock or-

bitals [114], including three electrons for each CASSCF calculation. The calculated dipole

function µz(x) and its analytical fit are shown in Fig. 3.3. The utilized fit function is of

the following form,

µz(x) = (D2 cos(D3x) +D1x
2 +D4x

4 +D5x
12) · eD6x2

+D7 , (3.8)

employing seven fit parameters, summarized in Tab. 3.4. The quality of the dipole mo-

ment was checked by DFT calculations using different basis sets, and density functionals
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Figure 3.3: Static dipole function µz(x), per-

pendicular to the Si-surface-dimer of the Si9H13-

cluster, as calculated along the switching coordi-

nate x, using CASSCF(3,4)/6-31G(d) (red), and

analytic fit (dashed, black). The height of hydrogen

above the Si-surface-dimer is re-optimized at each

point, while using the UB3LYP cluster geometries

for all other atoms.

Parameter Value

D1 0.1

D2 −0.2
D3 0.6

D4 −1.0× 10−4

D5 1.9 × 10−6

D6 −0.275
D7 −0.143

Table 3.4: Fit parameter used for the static

dipole function µz(x) (see Fig. 3.3). D1 is in units

of Debye/(a0)
2, D2 andD7 in Debye,D3 1/(a0), D4

in Debye/(a0)
4, D5 in Debye/(a0)

12, D6 1/(a0)
2.

(PW91, [111]). Also, a larger cluster, Si17H21, with four silicon layers below the top

silicon-dimer, was tested. It was found that method and basis set dependence of µz(x) is

weak.

(2) Calculation of dipole transition rates:

Eq. (2.49) is used to estimate the inelastic tunneling current fraction of dipole-induced

1← 0 vibrational transitions, ηdip1←0, based on an expression derived by Persson et al. [25].

Using Eq. (2.49) a dipole-induced 1 ← 0 transition rate W dip
1←0 = 1.1 × 10−10 (~/Eh)

−1

was calculated, for a STM current I of 1 nA. The corresponding inelastic dipole-current

fraction was ηdip = 7.5 × 10−4. This value fits very well to the range of 10−3 to 10−4,

published for similar surface-adsorbate systems [34, 76].

Now, Eq. (2.49) is used to calculate dipole-induced vibrational transition rates, W dip
f←i,

within and between two sets of left- and right-well localized states ψ̃i,f for the H@Si(100)

system. The resulting dipole-induced rates for i to i+ n (n = 1, . . . , 4) transitions, within

the left potential well, are plotted in Fig. 3.4. The ∆v = ±1 rate curve dominates until

i ≈ 25 and shows a maximum in the barrier range around state i = 18. The decrease

after the barrier is explained by the fact of a decreasing localization of the respective

states. The existence of overtone transitions ∆v = ±2, ∆v = ±3, etc. and the non-linear

behavior of the fundamental ∆v = ±1 transition rates reflect the degree of anharmonicity

of vibrational states and the non-linearity of the dipole function (see Eq. (2.50)), as already

found by Walkup et al. for a similar problem [70].

Since the localization of vibrational states ψ̃i,f is not perfect around and above the energy

level of the switching barrier, dipole-induced L ↔ R transition rates are non-zero, in



3.3 Vibrational transition rates Wf←i 39

Figure 3.4: Dipole-induced transi-

tion rates W dip
f←i between left-localized

vibrational levels (i) of the H@Si(100)

ground state potential. I = 1nA.

principle2. It is found, that transitions between left- and right-localized states are not

significant up to state 15, however. In the barrier region around state 18, on the other

hand, the L ↔ R rates are of the same order of magnitude as comparable intra-well

transition rates. It is found, however, that the switching mainly results from tunneling of

states which are below the region where L↔ R rate-induced switching becomes significant

(see below).

3.3.3 Resonance transition rates W res
f←i

(1) Cation resonance potential surface:

The potential surface for the cation hole resonance is needed in order to derive IET-induced

vibrational transition rates via Eq. (2.52). Stokbro et al. and Abe et al. utilized model

potentials which were based on educated guesses [32, 79]. It is a challenging task, even

for semiconductor surfaces, to calculate potential surfaces for electronically excited states.

The aim of the following section is to obtain a qualitatively correct resonance surface,

based on first principles and a reasonable numerical effort. Therefore, the combination of

cluster calculations for the neutral state and Koopmans’ theorem (see also Sec. 2.9), are

applied for H@Si.

Application of Koopmans’ theorem: Applying Koopmans’ theorem [113] on the

UB3LYP/6-31G(d) calculated energies ǫα,βHOMO−n(x) of occupied α- and β-spin orbitals,

vertical ionization potentials (VIPs) are derived along x. Overall, n cation resonance state

surfaces V +,α
es,n (x) and V

+,β
es,n (x), are generated applying Eq. (2.76),

V +/α,β
es,n (x) = Vgs(x)− Vgs(x0)−ΦW − ǫα,βHOMO−n(x) , (3.9)

where Vgs(x) is the neutral ground state potential energy, normalized by the energy of its

global minimum Vgs(x0) and ΦW ≈ 4.5 eV as the work function of the tungsten tip of the

STM.

Fig. 3.5 summarizes potential surfaces obtained by Eq.(3.9), utilizing HOMO−N orbital

energies of α- and β-spin orbitals. The so-called ‘dangling bond state’ is plotted as blue line

2IET related transition rates are generally calculated between all possible state combinations i, f except

for i = f .
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Figure 3.5: Two sets of potential surfaces V
+/α,β
es,n determined from Eq. (3.9), representing cation

resonance states, as derived from occupied orbital energies of α- and β-spin and Koopmans’ theorem.

Orbital energies are calculated for the Si9H13 cluster, at UB3LYP/6-31G(d) level of theory. The energy-

zero is relative to the minimum of the neutral ground state potential.

Ves,0(x) and shows a minimum energy of ≈ 1.2 eV . The dangling bond state is the lowest

possible cation state of the system and results from an abstraction of the HOMO-electron,

the dangling bond electron.

Periodic DFT calculations of Stokbro et al. [32], obtained the dangling bond state at

0.5 eV which is more consistent with the experimental data. Our shift of 0.7 eV is mostly

related to the differences in the utilized density functional. Stokbro et al. utilized the

PW91-functional of Perdew and Wang [111] instead of B3LYP used here. Also for the

Si9H13 cluster calculation, using UPW91/6-31G(d), a dangling bond minimum of 0.5 eV

was observed (data not shown). Also, higher cation states are shifted downward by 0.7 eV

for UPW91 test-calculations. However, due to convergence problems for the UPW91

functional, the UB3LYP-based surfaces had to be used.

The ‘dangling bond state’ is followed by a number of cation states, plotted in black and

in red color, respectively, since they belong to different energy ranges (see below). The

plots of the black and red set of states are approximately equal in shape for both, α- and

β-spin. Further, avoided crossings are seen, connecting the lowest three black surfaces, via

‘non-adiabatic couplings’. All curves show similar values for the switching barrier, except

for the lowest α- and β-spin orbital derived surfaces in the black set of surfaces. Here, a

smaller barrier of approximately only 0.5 eV is seen. This is of special interest, since the

microscopic model of Stokbro et al. based on experimental findings, expects a lowered

switching barrier in the excited state [32].

Test calculations have shown that all considered cation state surfaces are largely indepen-

dent from cluster size, basis set and density functional. The applicability of Koopmans’

theorem for the calculation of ionization energies from spin-unrestricted UB3LYP orbital

energies was proven by Gritsenko and Baerends [124]. Furthermore, errors coming from

orbital relaxation and correlation effects were found to be insignificant, as tested by ∆

SCF calculations. Nuclear relaxation is neglected because of the short resonance lifetime.

Construction of the resonant surface: We will now use the obtained manifold of

adiabatic Koopmans’ type potential surfaces to generate an approximate, diabatic cation
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resonant state potential. The composition of the final potential will be guided by three dif-

ferent criteria, namely energy, localization and lifetime of the resonance state as discussed

in the following. The diabatic potential is needed, since the resonance will undergo mul-

tiple diabatic, electronic relaxation processes, driven by electron-phonon coupling, within

the band of states on a timescale of several fs.

According to experiments the cation resonance is ≈ 2.7 eV above Fermi level of the

tip [122]. The black colored curves in Fig. 3.5 are in a suitable energy range, whereas

the red colored states are too high in energy. The ‘dangling bond’ state, shown in blue

probably plays no role in the switching dynamics. It is certainly not the initial resonant

state, due to its low energy. Further, it can not induce any vibrational excitation in the

system, since its shape is too similar to the ground state potential. Also, for the pure

Si(100) surface, the dangling bond state lies within the semiconductor band gap, resulting

in a lifetime in the order of several ps, in contrast to the expected fs-range3.

Periodic slab calculations of Stokbro et al. [32] gave evidence for a positive ion resonance

state at 2.4 eV, localized around and below the top Si2H layer, which is embedded in a

band of other states. Fig. 3.6 shows several UB3LYP/6-31G(d) derived orbitals of the

fully optimized Si9H13 cluster, from the β-HOMO to the β-HOMO-6 (black colored curves

in Fig. 3.5) and the α-HOMO (dangling bond state). Here, the assignment of the ‘blue

α-HOMO β-HOMO β-HOMO-1 β-HOMO-2

β-HOMO-3 β-HOMO-4 β-HOMO-5 β-HOMO-6

Figure 3.6: Occupied molecular orbitals of the fully optimized Si9H13 silicon cluster, i.e with the

H-atom in its ’right’ minimum position. All calculations are done on UB3LYP/6-31G(d) level of theory.

curve’ V
+/α
es,0 (x) to the ‘dangling bond state’ is confirmed. It can be further seen that

several of the ‘black curves’ show localization in the first two silicon layers, as worked out

by Stokbro et al. [32].

Overall, it is found that the black set of states in Fig. 3.5 is suitable in terms of energy and

orbital character for the construction of a diabatic resonance potential surface Ves(x). For

3Personal communication: Prof. Martin Weinelt, Department of Physics, Freie Universität Berlin
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that, we note that the adiabatic, ‘black’ cation states show avoided crossings, indicating

a dominantly diabatic dynamic after excitation.

Because we only aim for a qualitative correct resonance surface, the accurate calculation

of non-adiabatic coupling elements within the cation state manifold and a proper diaba-

tization is not attempted here. Instead, we use a polynomial fit to interpolate between

selected points and avoided crossings of the three lowest ‘black’, β-spin state surfaces,

Ves(x) =

9∑

i=0

ai · x2i , (3.10)

in order to derive an approximate diabatic, resonance potential. This potential, as shown

in Fig. 3.7, can be generated by the 10 fit parameters of Eq. (3.10) as shown in Tab. 3.5.

Figure 3.7: Adiabatic potential energies for

V
+/β
es,0 , V

+/β
es,1 and V

+/β
es,2 along the switching coordi-

nate x (dashed lines), generated as described in the

text. (b) Polynomial fit for the chosen set of points

(a) of cation states, taken to generate a diabatic

resonance potential. Adiabatic, cationic states at

higher energies are plotted in gray.

The minimum of the diabatic state Ves(x) is shifted by 1 Å towards the barrier, with respect

Parameter Value Parameter Value

a0 5.1297 a5 −1.0382 × 10−4

a1 −0.7796 a6 3.2018 × 10−6

a2 0.1737 a7 −5.8954 × 10−8

a3 −0.0244 a8 5.9464 × 10−10

a4 2.0537 × 10−3 a9 −2.5249 × 10−12

Table 3.5: Fit parameters ai for the diabatised excited cation state potential (Fig. 3.7), fitted via

Eq. (3.10). All parameters ai are given in Eh/a
2i
0 .

to the neutral state Vgs(x). A lowered barrier for the resonance surface, with respect to

Vgs(x), was expected by experiment and theory [122, 32, 79]. Since the β-HOMO-1 derived

surface V
+/β
es,1 is the only one showing a substantially lowered switching barrier of 0.5 eV,

it is chosen for the barrier region.

The inclusion of energetically higher cation states, like indicated in gray, or the use of

another functional, basis set or cluster might result in altered cation surfaces and crossing

points. Also, the usage of Koopmans’ theorem itself comes with an error. Therefore, the

following analysis of resonance-induced switching should be seen as a model study for the

H@Si system.
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(2) Calculation of resonance transition rates:

Difference potential Ves(x)−Vgs(x): The resulting difference potential Ves(x) −
Vgs(x), entering the generalized rate equation (2.52) for W res

f←i, is plotted in Fig. 3.8,

along with the ground and excited state potentials Vgs(x) and Ves(x). Its derivative with

Figure 3.8: Potential curves for the lateral

movement of an H-atom, along coordinate x, on top

of a Si(100) surface-dimer. The ground state poten-

tial (gs) is taken from Stokbro et al. [32] and Abe

et al. [79]. The cation, resonance state potential

(es), is derived via Koopmans’ theorem and Si9H13

cluster calculations at the UB3LYP/6-31G(d) level

of theory, as explained in Sec. 3.3.3. Also, the dif-

ference potential (es-gs) is plotted.

respect to x, represents an energy gradient acting on the wave packet in the resonance

electronic state. In the region of the equilibrium geometries at ±x0, a nearly linear slope of

≈ 0.6 eV/Å, pointing towards the potential barrier is obtained for the difference potential.

Resonance rates: Now, the inelastic STM tunneling current fraction, related to

resonance-induced 1 ← 0 transitions, ηres1←0, is estimated according to Eq. (2.52). The

expression also depends on parameters, ∆Eres, the excitation energy, and Γ↓el = ~/τres,

the resonance decay rate. A rate of W res
1←0 = 2.7 × 10−9 (~/Eh)

−1, is calculated for

∆Eres = −0.5 eV, τres = 2.5 fs and I = 1nA. The corresponding value of ηres1←0 = 1.8×10−2,
is higher by a factor of ≈ 24 as compared to the inelastic dipole current fraction ηdip1←0 and

transition rate W dip
1←0. A dominance of ηres over ηdip by approximately one order of mag-

nitude, was also expected by Persson et al. for similar situations [26]. Fig. 3.9 depicts the

dependence of the resonance-induced rate W res
1←0, between localized vibrational states 0

and 1, calculated via Eq. (2.52), on parameters ∆Eres and τres. The influence of the res-

Figure 3.9: Resonance-induced transition rate

W res
1←0 between localized states 0 and 1, using

Eq. (2.52), as a function of ∆Eres and τres, for

a constant I = 1nA.

onance lifetime parameter τres is most pronounced at ∆Eres = 0 and levels off quickly as

|∆Eres| increases. The observed behavior results from the Lorentzian in rate Eq. (2.52),
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depending on ∆Eres and τres. For energy differences ∆Eres below 1 eV, the resonance

lifetime τres is not very significant at all. According to the estimate of Stokbro et al. [32],

τres is fixed to 2.5 fs for all calculations.

The resonance-induced rates for transitions i + n ← i (n = 1, . . . , 4), within localized

states ψ̃n, are shown in Fig. 3.10. The fundamental ∆v = ±1 transition rates dominate

over the whole range, by at least two orders of magnitude, as for the dipole rates. Again,

the existence of overtone transitions and deviations of a linear dependence of Wi+1←i

with respect to i are caused by the anharmonicity of the localized vibrational states and

the non-linearity of the difference potential. A comparison to the dipole-induced rates

Figure 3.10: Resonance-induced

transition rates,W res
f←i between localized

states ψ̃i,f . I = 1nA, |∆Eres| = 0.6V,

τres = 2.5 fs.

for transitions i + 1 ← i of Fig. 3.4 shows, as expected, that the resonance rates are

approximately two to three orders of magnitude larger. IET-driven vibrational excitation

is therefore expected to be dominated by resonance contributions.

3.4 Density matrix propagation

In the following, the results of open-system density matrix propagations (see Sec. 2.4) for

the H@Si(100) model system will be presented. The model is based on the ground state

potential (Sec. 3.2.1), the harmonic, bilinear relaxation model (Sec. 3.3.1) and IET-based

vibrational transition rates as introduced in Secs. 3.3.2 and 3.3.3, respectively. The section

provides a systematic study of the switching mechanism based on IET-induced vibrational

excitation as well as an examination of switching rate dependencies on vibrational lifetime,

resonance energy, temperature, isotope mass, and electric field strength.

The equations of motion for the density matrix are solved via a Runge-Kutta integrator of

fourth order (see Appendix B). The time step is set to 160 ~/Eh, the overall propagation

time is ≈ 10 × τvib1 for each propagation and 60 vibrational states up to an energy of

≈ 1.5 eV are included for each propagation. Each propagation starts, regardless of the

actual bath-temperature, with 100% population in the left-localized vibrational ground

state.
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3.4.1 Switching mechanism

The influence of IET-, thermal- and dissipative transition rates drives the system towards

a quasi steady state, having a ‘characteristic temperature’ with regard to the population

distribution. The left graph of Fig. 3.11 shows the development of selected populations of

the left well, where all population was initially in the ground state. The tunnel current is

set to 1 nA, the energetic difference between the resonance center and the Fermi level of the

tip |∆Eres| is 0.9 eV. It can be seen from the graph, that the system is approaching a quasi

Figure 3.11: Propagation of the H@Si(100) system, starting in the left-localized vibrational ground

state. |∆Eres| = 0.9 eV, τvib1 = 1ns, I = 1nA, τres = 2.5 fs. Left: Pi: Population of the left well localized

states i = 13, 14, 15, as a function of propagation time t [ns]. Right: PR: Population of the entire right

well, as a function of propagation time t [ns].

steady state for the left well populations, shortly after the propagation has started. Such

behavior was also expected by Walkup et al. [71], who studied the IET-induced transfer

of Xe atoms between tip and surface using a ‘characteristic temperature’ model (see also

Sec. 1.3). As a result, a population transfer, from the left to the right potential well sets

in. The rate of population flow to the opposite well is constant, as long as the ‘back-flow’

to the original well is negligible. This is seen from the linear increase of the right well

population PR, plotted in the right-hand side of Fig. 3.11. In this case the switching rate

Rt
sw is simply defined as the ratio ∆PR/∆t (see also Sec. 2.7).

Current dependency: For T = 0K, the dependence of the switching rate on the

tunneling current is examined in Fig. 3.12. Both dipole- and resonance-induced switching

are at work. Two plots are shown, which include or exclude ‘overtone-excitations’, i.e.

transitions other than ∆v = ±1. If no overtone-excitations are included, all transition

rates which do not obey the harmonic selection rule ∆v = ±1 are set to zero during

the propagation. The linear behavior of a double-logarithmic plot indicates a power law,

Rt
sw ∼ IN . Values of N = 7.8 and 11.3 are obtained from the plots, including and

excluding overtones, respectively. Both values point towards a multi-electron process

for the switching mechanism, resembling a ‘DIMET’-like switching regime (as discussed

in Sec. 1.1). Here multiple excitations are necessary to arrive, via vibrational ‘ladder

climbing’, at the barrier region of the potential. Since in order to tunnel through the
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Figure 3.12: Logarithmic switching rates

logRt
sw [1/s], for dipole- and resonance-induced

switching, depending on the STM tunneling cur-

rent I [A]. Switching rates are calculated under in-

clusion (with overtones) and exclusion (without) of

transition rates Wf←i, with |f − i| > 1. Power

law fits (Rt
sw ∼ IN) are indicated as solid lines.

|∆Eres| = 0.6 eV, T = 0K, τvib1 = 1ns.

barrier, the population must ‘reach’ states with a suitable tunneling time. In order to

not be suppressed by vibrational relaxation takes place on the ns-timescale, tunneling is

only possible on the same or even shorter time-scales. The tunneling times Tn, given in

Tab. 3.3, show that complete tunneling within a few ns is possible from state 13 onward.

First, we focus on the curve including overtones, plotted in Fig. 3.12. The slope indicates

an ≈ 8 electron process for the switching. Overtone excitations must contribute, since

8 subsequent ∆v = +1 transitions would end in a ‘slow-tunneling’ area (see Tab. 3.3).

Therefore, if we neglect all transitions except i+1← i transitions, it can be seen in Fig. 3.12

that the slope increases to about 11.3. Therefore, the higher transitions i + 2, 3, 4 ← i

participate and decrease the slope of Rt
sw with respect to I, in the former case. The

tunneling times for states 11 and 12 are about 140 ns and 14 ns, respectively, according

to table 3.3. The experiment obtained a linear dependence between switching rate and

tunneling current for voltages up to and above 1V below the threshold [122, 32]. However,

the actual model is studying the ‘below-threshold limit’ for an approximate excited state

surface, dipole function and 1D Hamiltonian. The presence of ‘ladder-climbing’ processes,

under real conditions, can not generally be excluded. Especially at higher currents (I >

1 nA), switching in a DIMET-like manner might become important. Currents above 1 nA

are technically realizable, but it might be difficult to record the increased switching rates,

since so far no experimental data are available for that current region. For the actual

model, the switching rates in the regime below-1 nA-regime are too small to be numerically

resolvable. Therefore, the actual model is for a ‘high-current’, below-threshold regime

which has not been studied so far experimentally .

The role of dipole-induced switching: In order to check the influence of dipole-

induced switching, compared to the purely resonance-induced one, Fig. 3.13 shows rates

for pure resonance (R), pure dipole-induced switching (D) and also the combination of

both (R+D). Further parameters are given in the caption. It can be seen that the dipole-

induced switching rates are 3 to 6 orders of magnitude smaller than the purely resonance-

induced ones. A qualitative dominance of resonance excitation was already expected from

the estimates of ηres and ηdip in Sec. 3.3.3. Within the numerical accuracy of our calcula-

tion no dipole-induced switching could be observed for currents smaller than 5.0 nA. One
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Figure 3.13: Switching rates Rt
sw [1/s],

for pure dipole- (D), pure resonance-induced (R)

switching and switching via both (R+D), in de-

pendence on the current I [A]. |∆Eres| = 0.9 eV,

τvib = 1ns, T = 0K.

could further argue that the dipole rates are negligible for the switching process. How-

ever, as both mechanisms act together (R+D), the switching rates are slightly increased

with respect to pure resonance switching. The increase is much larger than expected for

a simple addition of the dipole rates, pointing out a non-additive interaction between

both contributions. Therefore, both excitation mechanisms are included in all following

calculations.

3.4.2 Dependence on ∆Eres

According to the resonance rate formula (2.52), ∆Eres is the energy difference between

the resonance energy ǫa and the Fermi level of the tip ǫF. In practice, ∆Eres can be tuned

via the bias voltage U , as specified in Eq. (2.53). The resulting Lorentzian dependence

of the fundamental transition rate W res
f←i on ∆Eres was already discussed in Sec. 3.3.3.

One would expect a similar behavior for the overall switching rate. The switching rates,

plotted in Fig.3.14, indeed shows the expected pattern. The switching rates per electron

Figure 3.14: Switching rates per electron Re
sw [1/e] for dipole- and resonance-induced switching of

H@Si(100). τvib = 1ns, τres = 2.5 fs, T = 300K and 0K. Left: Switching rates per electron in dependence

on the STM tunneling current I A for different values of |∆Eres| in eV. For |∆Eres| = 0.6 eV, two rate

curves are plotted for 0K (filled symbols) and 300K (empty diamonds), respectively. Right: Rates in

dependence on the absolute energetic spacing between tip-Fermi level and resonance center |∆Eres| eV.

I = 5nA.

Re
sw increase the closer the tip Fermi-level becomes to the resonance center at −2.7 eV.
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For |∆Eres| > 0.6 eV, switching rates could not be calculated down to 0.1 nA, because of

their very small values.

The higher the overtone-transition rates that are involved, the lower the power law ex-

ponent N for the current dependency (Rt
sw ∝ IN ) becomes. Therefore, higher ‘overtone’

excitations might dominate at low currents, while lower ‘overtones’ or harmonic transi-

tions dominate at higher currents. This is the reason for the lower slope in the lower

current range of the plot around 0.1 nA, which is actually the upper limit of the experi-

mental current range [122]. As stated previously, the switching rates in the low current

and below-threshold region is lower by a few orders of magnitude, than the experimental

value ≈ 5× 10−8 1/e observed for the above-threshold limit [32].

The slope of the central section of each curve and therefore the multiple excitation charac-

ter of the switching mechanism does not change, as can be seen from the plots. This finding

is reasonable, since the Lorentzian only enters as multiplicative factor in the transition

rate calculations, changing all calculated rates simultaneously.

Since a bath temperature of 300K, as also used in some of the experiments, is included

here, additional thermal upward rates are incorporated in the model (see Sec. 2.5.2) for

|∆Eres| = 0.6 eV. It is seen for the corresponding blue curves on the left side of in Fig. 3.14,

that the switching rates are larger at 300K and the slope with respect to I is decreased as

compared to 0K. The reason is that the thermally excited H-atoms don’t have to ‘climb’

all the way ‘up’ via IET-induced transition rates in order to switch.

3.4.3 Vibrational lifetime dependence

In Fig. 3.15, the dependence of switching rates on the vibration lifetime parameter τvib1 is

analyzed. As expected, the switching, depending on a ‘ladder-climbing’ process, strongly

Figure 3.15: Switching rates per electron Re
sw [1/e] for dipole- and resonance-induced switching of

H@Si(100). |∆Eres| = 0.6 eV, τres = 2.5 fs, T = 300K. Left: Rates in dependence of the STM tunneling

current I for different values for the vibrational lifetime parameter τvib1 [ns]. Right: Rates in dependence

of τvib1 [ns]. I = 5nA.

depends on the dissipative strength. Here, vibrational relaxation competes on every ladder
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step with IET excitation processes. The slight change of τ1vib by a the factor of two alters

the switching rates by two orders of magnitude. As justified in Sec. 3.3.1, a ns lifetime

is chosen for the first excited vibrational state in the harmonic, bilinear limit. Since

the utilized switching coordinate x is a combination of H@Si stretching- and bending-

modes, the accurate lifetime is not known. For a ps lifetime, as found by Adrianov et

al. for the H-Si-Si bending mode [83], the tunneling current necessary to obtain switching

in the below-threshold regime and for the actual model would be on the order of µA.

Therefore, DIMET-like switching processes only have to be expected for H@Si(100) if the

vibrational lifetime is in the ns region and the STM current is above ≈ 1 nA. This range

clearly exceeds the range of existing STM experiments for this system. Still, a 2D model,

separately covering the dissipation for stretching and bending modes, would be desirable

for the future.

3.4.4 Temperature dependence

Several studies about temperature effects on STM-driven processes in the H/D@Si(100)-

system can be found in the literature. Regarding for example, the Si-H 5σ hole resonance

driven H-desorption, an increase of temperature from 300K to 610K was found to reduce

the desorption yield by several orders of magnitude. The effect was much less pronounced

at bias voltages ≈ 2V below the resonance center [125]. The reduction was attributed

mainly to the decrease of the resonance lifetime, caused by an increased electron-phonon

coupling at higher temperatures. Since the effect becomes weaker for off-resonance exci-

tations, considered here, and an increase of switching rates at higher temperatures is seen

for the H@Si(100) switch [32], such dependencies of τres on T are not included here.

Another reason for the reduced desorption yield at higher temperatures was the decrease of

vibrational lifetimes for the H-Si system, also verified by theoretical studies of Andrianov

et al. [83]. Here, the calculated lifetimes for H@Si bending- and stretching-modes are

varied at maximum by a factor of two over a temperature range from 0K and 600K.

According to the vibrational lifetime dependence of the actual H@Si switch, discussed in

Sec. 3.4.3, a factor of two already largely affects the switching rates for the ladder climbing

mechanism. However, the exact temperature dependence of the utilized lateral mode x is

unknown and an inclusion of temperature effects is not possible, at that point.

An interesting aspect of the studied lateral switching of H@Si is that its switching states

are stable up to temperatures of at least 400K [32]. For the similar D@Si(100) system it

was also found that the intra- and inter-dimer hopping of dangling bond defects on the

surface is completely suppressed for temperatures below 500K [126].

Starting initially from the localized vibrational ground state and setting all IET-transition

rates to zero while increasing the temperature, purely temperature-induced switching is

studied for H@Si within the actual model. At 400K no switching is seen within the limits

of numerical accuracy and propagation time in agreement with experiment.
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Purely temperature-induced switching: At higher temperatures however, purely

temperature-induced switching becomes possible, as can be seen in Fig. 3.16, where switch-

ing rates are plotted versus the lifetime parameter τvib1 . The plots show, that at 700K and

Figure 3.16: Switching rates Rt
sw [1/s] in de-

pendence on vibrational lifetime of the first ex-

cited vibrational state τvib1 [~/Eh]. Purely thermal

switching was considered in this case.

1000K thermally induced switching becomes possible. At 1000K more population reaches

the tunneling region than at 700K. The switching rates are consequently smaller at 700K

than at 1000K.

From the plots it is clearly seen that the calculated switching rates depend on the dissipa-

tive strength and that the rate curves show a turning point. The maximum is found for

τvib1 = 5ps at 1000K and for τvib1 = 2ps at 700K. This effect, called ‘Kramers turnover’ is

well known for kinetics in classical and quantum systems with friction [127]. For the limit

of weak and strong dissipation, beside the maximum, the switching rates behave linearly

with respect to τvib1 within our double logarithmic plot.

Also here all calculations start from an initially 100% populated left well. For small

couplings the curves in Fig. 3.16 can be rationalized as follows. The longer the vibrational

lifetime τvib1 , the weaker becomes the coupling to the bath. The thermalization for the

left well slows in direct relationship to the weakness of the coupling. For weak system-

bath coupling, the tunneling wave packet coming from the left well is trapped at high

energies, because the relaxation is slow. The population transfer from left to right well,

and consequently the switching are slowed down for weak system-bath coupling.

For a system-bath coupling larger than obtained for the plot maximum, another effect

hinders the switching process. The strong coupling destroys the off-diagonal elements of

the density matrix, which mediate the tunneling. In a classical picture, for a hydrogen

atom which gains enough energy to tunnel the barrier, the probability to be cooled down,

before it is able to tunnel, becomes larger with increasing coupling strength.

Combined IET- and temperature driven switching: In Fig. 3.17 effects of increas-

ing system temperature under inclusion of transition rates resulting from both, dipole and

resonance mechanisms, are shown. |∆Eres| and τvib1 are set to 0.6 eV and 1 ns, respectively.

For the middle parts of all curves in the left graph a constant slope is seen, indicating a

multiple-electron process. The slope is decreasing for an increasing temperature, which is
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Figure 3.17: Switching rates Re
sw [1/e] for dipole- and resonance-induced switching of H@Si(100).

|∆Eres| = 0.6 eV, τres = 2.5 fs, τvib1 = 1ns. Left: Rates in dependence on the STM tunneling current I [A]

at different temperatures T [K]. Right: Rates in dependence on temperature T [K]. I = 1nA.

explained as follows. The higher the temperature, the higher the initial state populations,

and the less vibrational levels have to be passed on average by the action of tunneling

electrons in order to reach a level with a sufficiently short tunneling time. Switching in

the ‘low current’ regime, around 0.1 nA, mediated by ‘overtone excitation’ rates, becomes

visible at higher temperatures. All curves approach the same switching rates at 10 nA,

since here, the resonance rates dominate over the temperature-induced upward rates.

The right side of Fig. 3.17 depicts the temperature dependence of the switching rates

per electron at a single current level of 1 nA. Below ≈ 100K a temperature independent

switching regime is seen, while for temperatures above a constant slope is seen. Therefore,

it is concluded that for the first part switching is purely tunneling-mediated, while for the

second part thermally assisted switching takes place.

3.4.5 Isotope effect

An isotope effect for the switching on Si(100) was seen in the experiment [32]. The observed

ratio of switching rates per tunneling electron, between hydrogen and deuterium (D), is

about 7 around the resonance center. This value is characteristic for the single-electron

process. However, here the isotope effect for a multi-electron process be will evaluated.

To check for an isotope effect within our system, vibrational wave functions for D are

calculated for the same ground state potential as used for H@Si previously. The higher

atomic mass of D results in a higher density of vibrational states. The dimension of the

density matrix is therefore increased to 90 states. |∆Eres| and τvib1 are set to 0.3 eV and

1 ns, respectively, neglecting isotope effects for the vibrational lifetime. Fig. 3.18 shows the

calculated switching rates per electron Re
sw for H and D with respect to I. It is seen, that

the atomic mass has a large influence on the rates, since tunneling through the barrier is

dominating the switching process also for D. For the plotted rates, we find an increased

slope for D compared to H. An increase was expected, since for D a larger number of

vibrational states has to be passed, up to the tunneling region. The ratio between H and

D is about 1 × 104 at I = 0.5 nA and decreases with increasing I. The decrease can be
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Figure 3.18: Switching rates per electron

Re
sw [1/e] in dependence on STM tunneling cur-

rent I [A] for hydrogen (H) and deuterium (D) on

Si(100). τvib = 1ns, |∆Eres| = 0.3 eV, T = 300K.

explained on the basis of a higher slope for D, with respect to I, than that observed for

H.

3.4.6 Influence of a static electric field

The static electric field under the tip can influence the switching behavior, beyond dipole-

induced IET. An estimate is given for the field strength Ez influencing the H-Si-adsorbate

system. A common set of parameters for an STM-experiment are for example a bias

voltage of ±2V and tip-surface distances around 10 Å. Further, one can assume a linear

decay for the electrostatic potential across a semiconductor-metal tunnel junction [19].

Therefore, the estimated field strength Ez is on the order of 0.2V/Å (= 2GV/m).

Such strong electric fields are often found to have an effect in STM experiments. Such

as, field-induced diffusion of single atoms [128], bond-breaking [36], or the localization of

adsorbate vibrational energies [129]. The influence of an electric field for the system under

investigation is analyzed using the Hamiltonian including the field, according to Eq. (3.4),

as introduced on page 34. In the right graph of Fig. 3.19, switching rates are plotted

versus the current I. Since it is of interest if and how the electric field would influence

the measured switching rates, T is set to 300K, and the transition rates for dipole and

resonance mechanism are included. The values of ∆Eres and τvib1 are unchanged.

At first sight, the rate plots look similar to those obtained for the temperature dependence

in Fig. 3.17. At very large field strengths of −0.6 and −1.0V/Å, the switching process

is strongly enhanced. Similar to the effect of temperature, the slope in the rate plots

is slightly lowered. In contrast to the behavior for an increased temperature, the rate

plots for different field strengths do not converge. This is not because the population

distribution is changed, such as for an increased temperature, but rather because the

tunnel splittings and tunneling times are altered. The dipole function, plotted in Fig. 3.3,

shows a pronounced minimum around the region of the switching barrier. An electric

field with a negative sign lowers the barrier, according to Eq. (3.4). It therefore reduces

the number of vibrational levels between vibrational ground state and tunneling region,

and finally enhances the switching. Since no considerable changes are seen at typical
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Figure 3.19: Switching rates per electron Re
sw [1/e] for dipole- and resonance-induced switching of

H@Si(100). |∆Eres = 0.6| eV, τres = 2.5 fs, τvib1 = 1ns. Left: Rates in dependence on the STM tunneling

current I [A] at different absolute field strengths Ez [V/Å]. Right: Rates in dependence on the absolute

field strength Ez [V/Å]. I = 1nA, T = 300K.

field strengths around −0.2V/Å, field enhanced switching plays no role for the multiple-

electron switching of the actual system. Purely field-induced switching was ruled out by

experimentalists [32] and is not observed here, within the range of tested field strengths.

3.5 Summary

A theoretical study of the STM-induced lateral switching dynamics of single H-atoms on

top of a Si(100) surface-dimer, as experimentally observed by Grey et al. and Quaade et

al. [9, 122], was the purpose of this chapter. Provided that one can distinguish clearly

between the two states of the switch, the system allows for the storage of binary data in

atomic dimensions. Furthermore, the information is stable at room temperature [121].

A 1D Hamiltonian was set up and vibrational eigenstates were calculated for the ground

state potential, adopted from slab calculations of Stokbro et al. [32]. The hole resonance

state surface, for which only model potentials were published so far, was approximated

via Koopmans’ theorem and cluster calculations using a Si9H13 model cluster. A diabatic

resonance potential surface was constructed from a set of adiabatic, cationic states, fol-

lowing ‘avoided crossings’ within the set. The vibrational dynamics was modeled within

the framework of open-system density matrix theory. Transition rate expressions, treat-

ing the coupling to the surface phonon-bath and inelastic scattering events with incident

STM electrons, were applied to two sets of vibrational states, localized either on the left

or right side of the double-well potential. All rate expressions are based on first order

perturbation theory and vibrational dissipation was treated within a ‘harmonic, bilinear’

coupling limit. The one-dimensional switching coordinate is a mixture of H@Si stretching

and bending mode. Therefore, its exact vibrational lifetime is unclear. Thus, it is an inter-

esting task for the future to establish a 2D model, separately treating the H-Si stretching-

and bending-modes. Further, the dissipative relaxation model could be extended towards

a treatment of two-phonon relaxation processes, as found to be important for the H@Si
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system [83].

A ‘multi-electron’ switching mechanism, based on a ‘ladder climbing’ and subsequent tun-

neling through the barrier was identified for the H@Si(100) system in the actual model. In

contrast, a single-electron mechanism for switching was proposed by experiment, however,

for a low-current regime. A ‘ladder-climbing’ mechanism might naturally dominate over

‘single-electron’ processes at higher currents, which was studied here. At this stage, a

detailed comparison between theory and experiment is not useful. It must also be said

that the resonance state as used here, is based on ab initio information, but still of model

character. Also, the resonance lifetime has experimental uncertainties.

Resonance-surface independent features, such as field- and temperature-effects, were stud-

ied as well. Here, the findings were in agreement with experiment regarding the temper-

ature stability up to 400K and the negligible contribution of purely field-induced switch-

ing [32].

A theoretical model for IET-induced switching in a double well potential surface was

established. The localization and vibrational relaxation scheme for the ground state can

easily be extended to a second electronic surface. A similar model will be used for a related

problem, namely the STM-induced bi-conformational switching of cyclooctadiene (COD)

on Si(100), in the following chapter.



Chapter 4

Cycloocatdiene on Si(100) [2, 3, 4]

4.1 Introduction

Ultrathin organic layers on silicon surfaces have been investigated for possible applica-

tions in the fields of sensor- and display-techniques, molecular electronics and nanolithog-

raphy [130]. Adsorption on silicon layers is of special interest, since it would allow for a

rapid integration into the existing silicon-based technology of microelectronics. A quote

from a review article covering organic adsorbates on silicon states [131]:

Although no one can foretell where successful applications will be found, it seems likely that

organic molecules with their myriad and tunable properties, including size, shape, absorp-

tion spectrum, flexibility, chemical affinity, and conductivity, will create new functional

possibilities.

As a consequence, in addition to the large number of STM experiments on Si(100), uti-

lizing inorganic adsorbates (see Chap. 1), another focus is on organic admolecules. For

example experiments regarding conductance of styrene and cyclopentene molecules [17],

STM-induced rotation of bi-phenyl molecules [132, 47], conformational changes of stil-

bene [133] and the desorption of benzene [134], all on the Si(100) surface, can be found in

the literature. For the last example, a comprehensive dynamical study was presented by

Alavi et al. [135, 136].

A further class of organic molecules on Si(100), examined via STM, are unsaturated cyclic

hydrocarbons like cyclopentene, 1,5-cyclooctadiene and 1,5-cyclohexadiene [137, 138]. The

dangling-bond electrons at Si(100) surface-dimers allow a coupling to π-bonds of unsat-

urated hydrocarbons. Depending on the existence of either an isolated or conjugated

π-system in the admolecules, the coupling reaction can be formally classified as [2 + 2] or

[2+4] cycloaddition. 1,5-cyclooctadiene (see Fig. 4.1) contains two isolated double bonds.

They are expected to bind to the Si(100)(2×1) surface via [2+2] cycloaddition. According

to the Woodward-Hoffmann rules [139], such a reaction is symmetry forbidden for the elec-

tronic ground state. In contrast, the COD adsorption reaction on Si(100) is found to be

very rapid, without the need for any photo-excitation. This can be explained by an ionic
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Figure 4.1: 1,5-cyclooctadiene (COD)

electronic configuration of Si(100) dangling-bond electrons (see Sec. 1.2). They allow for

a nucleophilic attack, rather than a concerted [2 + 2] cycloaddition [140, 67]. The actual

adsorbate geometry of COD on Si(100) was an issue of controversial discussion. Based on

STM images, Fourier-transform infrared- (FTIR) and X-ray photoelectron-spectroscopy

(XPS), Hovis et al. [141] proposed an adsorption geometry in which only one of the two

COD double bonds reacted with the surface. COD was thought to stand upright on the

surface. XPS and FTIR measurements of Jolly et al. [142] further supported this inter-

pretation. Here, the surface π states were found to be quenched. Further, the existence

of unreacted COD double bonds was proven. In contrast, the STM images of Hovis et

al. were interpreted as a bridge-like structure by Wolkow et al. [131]. For the bridge

structure, both double bonds couple to two adjacent silicon-dimers. A picture of such a

bridged COD-silicon cluster model is shown in Fig. 4.2 [143]. Periodic DFT results of Cho

Figure 4.2: COD on a Si15H16 cluster in its

global minimum. All atom positions are fully op-

timized, except the lowest two silicon atoms which

were kept frozen in the position of the optimized

cluster without COD. All calculations were done

at B3LYP/6-31G(d) level of theory, by Dokić et

al. [143].

et al. [144] supported Wolkow’s interpretation, predicting a stabilization of 0.88 eV for the

bridge relative to the upright structure. Their simulated STM images were in agreement

to the original pictures [137]. Further the STM images, taken by Nacci et al. [10], showed

that both bridge and upright structures existed at the surface simultaneously when ≈ 3%

of the surface-dimers were covered by COD. The bridge structure was found to be preva-

lent and located between two adjacent silicon-dimers in agreement with the DFT study of

Cho et al. [144].

The most recent STM-based experiments for COD on Si(100) were published by Nacci

et al. [10, 145]. The experiments were carried out at 7K on n-type, As-doped silicon.

Time-resolved recording of the STM tunnel current revealed random telegraph noise for

a fixed tip position above chemisorbed COD admolecules. The finding was interpreted as

a result of a reversible, bistable conformational switching process of COD, without any

bond breaking or re-bonding events. A high-to-low current level ratio of 1.2 : 1 is found by
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experiment, indicating two comparably stable switch positions [10]. The statistical analysis

showed basically equal mean residence times for both states of the switch. This was

interpreted as the switching between two degenerated conformational molecular positions.

Furthermore the linear current dependence showed that the switching was triggered by

an inelastic single-electron process (IET). A power law fit, for the current dependence of

the observed switching rates, Rt
sw ∼ IN , resulted in an exponent N of 1.07 ± 0.03. The

quantum yield per tunneling electron was measured as 1× 10−9 1/e [10, 145]. Further, no

voltage dependence of the switching rate is seen for COD@Si(100) in the range between

−2.5 and + 2.5V [10]. The upright structure also showed telegraph noise under the

STM tip and an increased switching yield of 5 × 10−8 compared to the bridge structure.

The upright structure has in general a more complex switching behavior because of its

more flexible degrees of freedom at the surface and its dynamics are not part of the actual

thesis. Instead we will focus on the bridge-structure of COD@Si only.

4.2 Potential- and dipole surfaces

4.2.1 Neutral ground state potential

The potential surface for the bi-conformational switching of COD@Si(100) in its bridge-

structure was calculated by Dokić et al. [143]. The neutral ground state potential, shown

in Fig. 4.3 (a) was calculated at the B3LYP/6-31G(d) level of theory, as implemented

in the Gaussian03 program suite [112]. The two lowest silicon layers, out of four, were

kept frozen during the calculation of the potential surface, while all other atom positions

were fully optimized during the potential energy surface (PES) calculation. The torsional

movement of both COD-(CH2)2 groups was represented via dihedral angels, φl and φr,

between carbon atoms (a,b,c,d) on the left and right side of the COD@Si scheme in Fig. 4.5.

The potential surface was determined at 19 × 19 points, using a step size of 10 ◦ between

φl = ±90 ◦ and φr = 0 ± 90 ◦. The resulting surface is further processed as explained in

the following.

Intermediate data points are obtained by cubic spline interpolation [146]. At the grid

boundaries, the potential is extrapolated quadratically. The extrapolated value at grid

point i + 1 builds on the first and second derivatives of the potential surface at the last

known grid point i,

V (φi+1) = V (φi) + V
′

(φi) ·∆φ+ 0.5 · V ′(φi) · (∆φ)2 , (4.1)

where ∆φ = φi+1 − φi is the distance between adjacent grid points. Since C2v symmetry

is expected for the final surface, the calculated data set V is symmetrized,

V sym(φl, φr) = [V (φl, φr) + V (−φl, φr)
+ V (φl,−φr) + V (−φl,−φr)]/4 .

(4.2)

Therefore, the resulting potential surface, shown in Fig. 4.3 (a), perfectly reflects C2v

symmetry. The surface consists of two symmetry equivalent minima positions (Mi) and
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Figure 4.3: (a): Symmetrized neutral ground state potential, calculated for COD@Si15H16, along

dihedral angles φl and φr. The surface was calculated by Dokić et al. at the B3LYP/6-31G(d) level of

theory [143]. The utilized Si15H16 cluster is shown in Fig. 4.2. (b): Transformed surface, using angles φ1

and φ2 instead. (Further details are given in the text). (a/b): The maximum (φl/r = φ1/2 = 0) is set to

0 eV. Isolines are separated by 20meV, starting from the potential minima. For a clear presentation, the

energy cutoff is set to 0.26 eV. Mi - minimum, TS - transition state, Ma - 2nd order maximum.

Figure 4.4: Two different definitions of an-

gles for (CH2)2 group torsion of COD on Si(100).

φl, φr: Dihedral angles between COD atoms a, b, c

and d on both sides (see Fig. 4.5). φ1, φ2: An-

gles between vectors connecting atoms pairs a,d

and b,c on both sides. (a) Relation between φl,

φr [◦] and φ1, φ2 [rad]. (b) Linear relation: φ1 =

(π · φl/180
◦)/2.75.

transition states (TS). A maximum (Ma) of second order is located in the potential center.

TS- and Ma-character were proven by normal mode analysis for the corresponding TS-

or Ma-geometry by Dokić et al. [143]. One and two imaginary frequencies were obtained

for TS- and Ma-geometry, respectively, beside the imaginary frequencies caused by the

fixation of the two lower Si-layers. The minima are located at (50◦, 50◦) and (−50◦,−50◦),
respectively. The barriers are rather shallow with 0.170 eV for the TS at (±30◦,±30◦) and
0.179 eV for the Maximum (0◦, 0◦). It is shown in Fig. 4.4 that a simple linear relationship

is sufficient to map the calculated surface along the dihedrals φl and φr into the new

surface defined via two angles φ1 and φ2 which are shown in Fig. 4.5. Using the linear

equations,

φ1 =
π · φl
180◦

· 1

2.75
and φ2 =

π · φr
180◦

· 1

2.75
, (4.3)

the transformation from the angles φl and φr to angles φ1 and φ2 is achieved. The

resulting, transformed potential surface, along φ1 and φ2, is shown in Fig. 4.3 (b). The

surface extends between ±0.57 rad for both angles.
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4.2.2 Switching Hamiltonian

To simulate the switching dynamics observed by experiment, a two-dimensional Hamilto-

nian is set up, as will be explained in the following. Our Hamiltonian Ĥ describes the

φ φ1 2bd

C

S i

a

d

c

a

cb

Figure 4.5: Schematic representation of the

COD C-skeleton (black) on two Si(100) surface-

dimers (blue). H-atoms are not shown for clarity.

φ1 and φ2 denote the rotational angles of both CH2

groups (b,c), rotating along the blue dashed axis,

which pass the midpoints between atom pairs (ad)

and (bc) on each side of the adsorbed COD.

rotational motion for the two (CH2)2 groups of the adsorbed COD molecule, which are not

bound to the silicon surface (see Fig. 4.5). Also the corresponding rotation angles φ1 and

φ2 are depicted in this schematic representation of COD@Si in Fig. 4.5. Both rotational

axes are defined via the midpoints between two pairs of carbon atoms, as shown in the

figure. The moment of inertia for the rotation of each respective (CH2)2 unit is,

I = 2mCH2(
dCH2−CH2

2
)2 = 109476.09mea

2
0 . (4.4)

Mass mCH2 and distance dCH2−CH2 are set to 25520.439 me and 2.93 a0, respectively, where

me is the electron mass and a0 the Bohr radius. Alternatively, collective coordinates φs,

φu will be used in the following. φs is the ‘center of mass coordinate’, describing the C2

symmetry preserving, opposite motion of both CH2 groups. It is defined as,

φs =
φ1 + φ2

2
. (4.5)

φu represents the relative motion between both rotors via,

φu = φ1 − φ2 . (4.6)

The use of collective coordinates, as introduced for the switching Hamiltonian in Sec. 4.2.2,

allows for a separate, one- or two-dimensional representation of the COD switching dy-

namics. The final, two-dimensional potential surface in collective coordinates is shown

in Fig. 4.6. Minima positions and barrier heights are summarized in Tab. 4.1. For the

sake of clarity, the potential is only plotted up to an energy of ≈ 0.3 eV. The borders

for the calculated potential are ±0.57 rad for φs and ±1.14 rad along φu. A cutoff energy

of 1.27 eV and grid boundaries of ±0.8 rad for φs and ±1.6 rad for φu are chosen for the

calculation of vibrational eigenstates.

The corresponding moments of inertia in our collective coordinate system can be derived

as Iu = 0.5I and Is = 2I [143]. Using the quantum operator for the angular momentum,

l̂ =
~

i

d

dφ
, (4.7)
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Figure 4.6: Potential surface for COD on

Si(100) in its neutral ground state, along collective

switching coordinates φs [rad] and φu [rad]. Orig-

inal data are taken from B3LYP/6-31G(d) cluster

calculations by Dokić et al. [143]. The maximum

(φs/u = 0) is set to 0 eV. The isolines are sepa-

rated by 20meV, starting from the potential min-

ima. For a clear presentation, the energy cutoff is

set to 0.26 eV. Mi - minimum, TS - transition state,

Ma - 2nd order maximum. Red line: 1D switching

coordinate along φs.

the Hamilton operator is derived from the classical Hamilton function as

Ĥ = − ~
2

2Iu

∂2

∂φ2u
− ~

2

2Is

∂2

∂φ2s
+ V (φu, φs) . (4.8)

The two modes, φs and φu, are coupled by the potential but not by the kinetic energy

operator. As mentioned before, this two-dimensional problem can easily be divided into

two one-dimensional parts using collective coordinates. φu in Eq. (4.6) stays at zero if the

changes in φ1 and φ2 are equal in amount and sign. This describes a symmetric, collective

rotation of the two (CH2)-dimers. The motion is symmetric, i.e the C2 rotational axis,

perpendicular to the cluster surface and pointing through the cluster-center, is preserved.

The second dimension, namely the coordinate φu allows the system to break the C2 sym-

metry. The one-dimensional field-free Hamiltonian for the symmetric motion is written

as,

Ĥ = − ~
2

2Is

d2

dφ2s
+ V (φu = 0, φs) . (4.9)

4.2.3 Resonant state potential surfaces

In order to describe the dynamics induced by inelastic electronic excitations, the relevant

resonance state potential surfaces are required. In the following, an anion and a cation

resonance potential surface are introduced for the COD@Si system. Anion and cation

surfaces were calculated on the basis of orbital energies of HOMO and LUMO, respectively,

applying Koopmans’ theorem on the B3LYP/6-31G(d) level. [143] (see Sec. 4.2.1).

Within the single-surface rate model (see Sec. 2.5.3), the potential energy differences

between excited state and ground state are needed for the calculation of resonant IET

rates. Fig. 4.7 shows contour plots of anion and cation resonance states. The isolines are

separated by 20meV. The grid borders are the same as for the neutral surface.

Minima positions and barrier heights for the resulting resonance and neutral surfaces

are summarized in Tab. 4.1. It can be seen from the different minima positions and

barrier heights that the anion state geometry differs more from the neutral ground state,

in comparison to the cation. Still, the overall differences are rather small and a shallow

switching barrier of ≈ 0.2 eV is found for both resonance surfaces.
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Figure 4.7: Anion (-) and cation (+) potential surface of COD on Si(100), along collective switching

coordinates φs [rad] and φu [rad], as derived via Koopmans’ theorem (Eq. (2.76)) and LUMO/HOMO

energies, based on B3LYP/6-31G(d) cluster calculations by Dokić et al. [143]. The isolines are separated

by 20meV, starting from the potential minima. For a clear presentation, the energy cutoff is set to 2.4 eV.

Mi - minimum, TS - transition state, Ma - 2nd order maximum. Red line: 1D switching coordinate along

φs. Details of the potential calculation are given in the text.

∆E [meV]

Neutral Anion Cation

Ma 179 220 185

TS 170 195 173

φs/u [rad]

Mi ±0.321 ±0.348 ±0.324
TS ±0.309 ±0.392 ±0.325

∆V ±,0 [eV]

0.0 3.22 1.59

Table 4.1: Energies and coordinates of station-

ary points on the potential surfaces of neutral, an-

ion and cation electronic states of COD@Si(100)

(see Fig. 4.6 and 4.7). ∆E: Barrier heights of tran-

sition states (TS) and 2nd order maxima (Ma) in

meV. φs/u: coordinates of minima (Mi), TS and Ma

in rad. ∆V ±,0: Vertical energy gap between reso-

nant and neutral surface at the global minimum of

the neutral potential in eV (see Eq. (4.10)).
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All three 2D potential surfaces were analyzed via normal mode analysis (see Appendix C).

It was shown that the transformed and interpolated surfaces still share the characteris-

tics of the surfaces originally calculated by Dokić et al. [143]. Furthermore, the normal

mode vectors were found to be perfectly parallel to the collective coordinate system axes,

confirming their separability, as assumed for the Hamiltonian utilized in Eq. (4.8).

The energetic positions of HOMO and LUMO, relative to the Fermi level of the STM tip,

are unfortunately not directly accessible via Koopmans’ theorem and B3LYP/6-31G(d)

orbital energies of the COD@Si15H16 cluster.

The vertical energy gaps at the position of the neutral ground state minimum ∆V ±,0 =

∆V ±(φs = 0.321 rad, φu = 0 rad) between anion (−) and cation (+) resonant surfaces

V ±,0es and neutral surface V 0
gs are defined via Eq. (2.76) as,

∆V +,0 = V +,0
es − V 0

gs = −Φw − ǫ0H − V 0
gs and

∆V −,0 = V −,0es − V 0
gs = +Φw + ǫ0L − V 0

gs ,
(4.10)

where V 0
gs, V

±,0
es and ǫ0L/H are the ground state energy, the excited state energy and the

HOMO/LUMO orbital energies at the minimum position (φs = 0.321 rad, φu = 0 rad),

respectively. Φw is the work function the tungsten STM tip and is set to 4.5 eV. The

resulting values1 for ∆V ±,0 are given in Tab. 4.1.

In the following, the below-threshold model of resonant switching of COD@Si is called

single-surface (1 S) model. As for the H@Si, the energetic spacing between Fermi level of

the STM tip and the resonance center enters as adjustable parameter, ∆Eres. In contrast

to H@Si, a two-surface (2 S) approach is also used which allows for a detailed propagation

of the electronically excited wave packet on the resonant surface. For the latter, perfect

resonance conditions are assumed (∆Eres ≈ 0).

4.2.4 Dipole surface

The dipole component µz, perpendicular to the surface, is used for a calculation of dipole-

induced vibrational excitation rates, as discussed in Sec. 2.5.3. The dipole surface is

calculated at the same set of points along φl and φr as the potential surfaces, except that

only 17×17 points between −80◦ and 80◦ are used here. An interpolation via cubic splines

is done for the final set of calculated points. Beyond, the surface is extrapolated using the

outermost calculated dipole value as a constant, since such a constant element does not

influence the dipole coupling matrix elements. The direct quantum chemical calculation of

µz in the extrapolated area leads to unphysical dipole functions and is therefore avoided.

The resulting discontinuity at the junction between interpolated and extrapolated values

is circumvented by using an analytical, two-dimensional fit in collective coordinates for the

entire surface. Symmetrization and transformation into collective coordinates, as described

for the ground state potential in Sec. 4.2, are performed beforehand. Fit function and

parameters are listed in Appendix D. Fig. 4.8 shows the fitted dipole function for the

1ǫ0H ≈ −6.09 eV, ǫ0L ≈ −1.28 eV as calculated by Dokić et al. [143], V 0
gs = 0 eV (by choice).
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Figure 4.8: Contour and perspective plot, of the z-component of the static dipole function µz in

ea0, perpendicular to the Si-surface, calculated for the COD@Si15H16 cluster by Dokić et al. [143]. All

calculations were done at a B3LYP/6-31G(d) level of theory for the neutral ground state. φs, φu: collective

coordinates. The isolines are separated by 2× 10−3 ea0 per isoline. Red line: 1D switching coordinate.

neutral ground state in collective coordinates φs and φu. The dipole moment is given in

ea0 and isolines in the contour plot are separated by 2× 10−3 ea0.

The red line again symbolizes the 1D reaction path. Minimal and maximal dipole values

are found to be 1.41 ea0 and 1.46 ea0, respectively. The maximum is situated in the plot

center, while the smallest dipole values are located at φs ∼ ±0.63 rad and φu ∼ 0 rad.

Thus the maximal difference is about 0.06 ea0 or 0.15Debye. As for the potential, the

slope is steeper along φs compared to φu. The triangular pattern at the borders of both

plots represent extrapolated parts of the surface which are set to a constant dipole value.

4.3 One-dimensional density matrix propagation

Here, the switching proceeds only along the φs coordinate, taking the maximum in the

two-dimensional (2D) potential center as the switching barrier. The C2 symmetry is

preserved during the 1D switching process. First the eigenstates obtained via the FGH

method for 1D potential surface cuts are discussed. There are three different surfaces,

namely for the neutral ground state and for anion and cation resonances, as obtained via

Koopmans’ theorem (see Eq. (2.9)).

Results obtained for exclusive propagation in the neutral one-dimensional ground state

(1S1D) are shown first (see Sec. 4.3.4 - 4.3.6). As mentioned before, those refer to the

below-threshold regime, where the energy of tunneling electrons is lower than the energy

gap between ground state and the resonance state. The resonance state surfaces enter via

the rate formula, used to describe the process of resonance-induced vibrational excitation.

Further, dipole-induced switching and the influence of temperature will be discussed.

Later in this section (Sec. 4.3.7) we present results for the above-threshold regime of res-

onance excitation for comparison. The reader is reminded that in this case the second
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Figure 4.9: 1D potential surfaces for the neu-

tral (n), cation (c) and anion (a) electronic states

of COD@Si(100), as obtained from 1D cuts along

φs of 2D potential surfaces based on B3LYP/6-

31G(d) COD@Si15H16 cluster calculations by Dokić

et al. [143] (Sec. 4.2). All surfaces are shifted down-

ward by 0.179 eV in order to set the neutral state

maximum as zero point in energy (V (φs = φu =

0) = 0 eV).

grid boundaries, φs [rad] ±0.8
number of grid points 1000

moment of inertia, Is [me] 218952.18

potential cutoff [eV] ≈ 1.3

Table 4.2: Fourier Grid Hamiltonian

(FGH) parameters, used for the calculation of

1D vibrational eigenstates of COD@Si(100),

based on potentials presented in Fig. 4.9 for

the neutral, anion and cation states. The cut-

off energy is defined with respect to the global

potential minima of each potential.

resonance surface is explicitly included in the density matrix propagations (2S1D). The

neutral ground state population is projected instantaneously to the anion or cation surface

at the beginning of each propagation. Subsequently, the population is evolving and decays

back to the ground state, where the final vibrational relaxation takes place. A compari-

son of results obtained for both single-surface (1S1D) and two-surface (2S1D) approaches

completes the section.

4.3.1 Vibrational eigenstates

The 1D reaction path was already indicated as a red line in the 2D potential surface

plots for neutral (Fig. 4.6) and resonance surfaces (Fig. 4.7) as presented in Sec. 4.2. The

resulting 1D potential cuts for neutral, anion and cation surfaces are shown in Fig. 4.9.

For the neutral surface the barrier maximum is set as the zero point in energy and the

resonance surfaces are shifted accordingly. Using the 1D Hamiltonian in Eq. (4.9), the

Fourier Grid Hamiltonian (FGH) method permits obtaining the vibrational eigenstates.

Parameters used for the 1D FGH input are shown in Tab. 4.2. Potential cutoff, grid

length and number of points are sufficient to resolve at least 50 eigenstates or 25 doublets

n for all three surfaces. As for the 1D double well potential of hydrogen on Si(100), the

eigenfunctions appear as doublet pairs ψ±n of odd (+) and even (−) parity. Eigenenergies
of even eigenfunctions E+

n , tunnel splittings ∆En and tunneling times Tn for the first 20

doublets (n = 0 . . . 19) of the neutral ground state are summarized in Tab. 4.3. Negative

eigenvalues of the first 5 ground state doublets show their energetic location below the

switching barrier. For the 6th doublet (n = 5) the energies of the even and odd eigenstates

are found to be slightly below and above the barrier, respectively. The 20 doublets cover
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Doublet (n) E+
n (meV) ∆En (meV) Tn (ps)

0 −161 8.0× 10−8 2.6× 107

1 −125 1.1× 10−5 1.9× 105

2 −92 7.2× 10−4 2.9× 103

3 −58 2.8× 10−2 74

4 −27 0.63 3.3

5 −4 5.8 0.36

6 19 14 0.15

7 49 17 0.12

8 85 19 0.11

9 124 21 9.9 × 10−2

10 166 22 9.3 × 10−2

...
...

...
...

19 644 30 6.9 × 10−2

Table 4.3: Eigenenergies E+
n for wave function of even parity ψ+

n and doublet n, corresponding tunnel

splittings ∆En and tunneling times Tn, as obtained by the FGH method for the 1D neutral ground state

potential of COD@Si(100) (Fig. 4.9) as calculated by Dokić et al. [143].

an energy range of 0.81 eV, where the potential energy cutoff is set to 1.27 eV. Tunnel

splittings ∆En and tunneling times Tn are calculated via Eq. (3.5) and Eq. (3.6).

The values obtained for Tn start at 26µs for doublet 0, reach the ns-regime at the barrier

top and approach the regime of a tenth of a ps for doublets n > 7. Approximate harmonic-

ity is seen for doublets below the barrier, with a repeating energy spacing of ≈ 34meV.

Later the energetic spacing decreases to about 23meV around the barrier top and slightly

increases again afterwards. The calculated eigenstates ψ±n and n = 0 · · · 6 are plotted

along φs within the neutral state potential surface at the right hand side of Fig. 4.10.

Eigenenergies, tunnel splittings and tunneling times for the anion and cation surfaces are

given in Appendix E. All three sets of eigenvalues are very similar, as expected, because of

rather similar potential shapes. The energetic spacing between delocalized eigenfunctions

ψ+
0 and ψ+

1 of cation and anion surfaces are 36meV and 38meV, respectively. It can be

seen from Tab. 4.1, that the anion minimum is slightly shifted outward by ≈ 0.03 rad, with

respect to the positions of the neutral and cation minima. The anion barrier is slightly

broader and ≈ 40meV higher, compared to cation and neutral surfaces. Tunnel splittings

for the anion are therefore two orders of magnitude smaller for the lowest 4 doublets. After

doublet 6 the splittings are comparable to those obtained for cation and neutral surfaces.

The localization quality of right well localized functionsQR
n , whereQ

R
n = QL

n , of the neutral

ground state is obtained via Eq. (2.12) and plotted on the left-hand side of Fig. 4.10 for

the ground state. All states below the barrier, up to doublet n = 4 are perfectly localizable

(QR
n > 99%). Above the barrier, the degree of localization decreases to about ≈ 82%,

for doublets n ≈ 10 . . . 25. As mentioned in Sec. 2.3, all IET-induced population transfer
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Figure 4.10: Left: Localization quality QR
n (Eq. (2.12)) of states ψ̃R

n which are localized within the

1D, neutral electronic ground state potential, as plotted in Fig. 4.9 and calculated by Dokić et al. [143].

Right: Double-minimum potential along φs and delocalized doublets n = 0 · · · 6 obtained via the FGH

method.

rates Wf←i are defined between all possible combinations of L- and R-localized states

ψ̃L,R
n . Therefore rate-based L⇆ R transitions are possible.

4.3.2 Propagation details

The Liouville-von Neumann equation of motion for the density matrix is solved via a

Runge-Kutta integrator of fourth order (see Appendix B). The time step is fixed to 30 ~/Eh

and 25 ~/Eh for single-surface and two-surface calculations, respectively. For resonance

lifetimes below 1 fs and vibrational lifetimes below 0.1 ps the time step is further reduced

by a factor of 10. The overall length of each propagation is set to ≈ 10× τvib1 , where τ1vib
is the vibrational lifetime of the first (localized) vibrational state as defined in Sec. 2.5.2.

The tunnel splitting for the lowest doublet ∆En is set to zero for all propagations. This

is done to avoid tunneling on the µs-timescale of the localized wave packet created from

ψ+
0 and ψ−0 eigenfunctions of the ideal symmetric double-minimum potential. In reality,

however, this would not happen because surface imperfections and the presence of the tip

will lead to localized initial wave functions and tunneling is suppressed. For H@Si the

phenomenon was not observed, since the tunnel splitting ∆E0 is much smaller than for

COD@Si (Tab. 3.3 and Tab. 4.3).

4.3.3 Harmonic, bilinear dissipative model: W rel
f←i

Vibrational quanta can be exchanged between vibrational system degrees of freedom and

the surface phonon-bath. As in the case of H@Si(100), vibrational upward and downward

transition ratesW vib
f←i are calculated for two sets of functions ψ̃L,R

i , localized in the left (L)

or right (R) ground state potential well. Transition rates between vibrational levels are

evaluated on the basis of a harmonic, bilinear dissipative model with vibrational transition

rates W vib
f←i scaling linearly with state number i (see Eq. (2.39)).
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parameter value

A0 0.0574993

σ 0.222262

A1 1.40562

Table 4.4: Fit function parameters for the 1D

dipole surface cut µz(φs) of COD@Si(100), as plot-

ted in Fig. 4.8.

Figure 4.11: B3LYP/6-31G(d) cal-

culated (calc.) and Gaussian fitted

(fit) dipole values µz along φs for the

COD@Si(100) dipole surface as pre-

sented in Sec. 4.2.4, based on B3LYP/6-

31G(d) calculations of Dokić et al [143].

Further details of the fit are discussed in

the text.

All dissipative rates obey the selection rule of ∆v = ±1 and τvib1 = 1/W vib
0←1 enters as

the only parameter defining the dissipative strength. As before, upward rates are given

by the detailed balance condition in Eq. (2.40) and permit the testing of the influence

of temperature on the switching rate. No experimental or theoretical data are available

for τvib1 , which is set to 1.0 ps in the following, if not stated otherwise. This choice is

motivated by the following considerations. Due to the selection rule (∆v = ±1), any

phonons absorbed or emitted by the system are below 400 cm−1 in energy. Therefore they

are well below the Debye frequency of the silicon surface, which allows for an efficient

decay of vibrational quanta into the silicon bulk via ‘fast’ single-phonon processes.

4.3.4 Dipole-induced switching: W
dip
f←i

(1) One-dimensional dipole function:

The dipole component of STM-induced transition rates W dip
f←i is calculated between local-

ized states ψ̃i and ψ̃f , via first order perturbation theory, using Eq. (2.49). Here, the dipole

component perpendicular to the surface µz(φs) is used along the 1D switching coordinate

φs. A corresponding cut of the 2D dipole surface is fitted to a single Gaussian,

µz(φs) = A0 · e−(φs/σ)2 +A1 . (4.11)

The fit parameters (A0, A1, σ) are shown in Tab. 4.4. The cut includes 17, B3LYP/6-

31G(d)-calculated, dipole values for µz between φs = ±0.508 rad, as calculated by Dokić

et al. [143]. Two calculated dipole values at the surface border are omitted, as already

discussed in Sec. 4.2.4. Both the fit and the calculated values are plotted in Fig. 4.11,

showing good agreement. The fit of the entire 2D dipole function (Eq. (D.1)) is much more

complicated and was not available from the beginning. Therefore, Eq. (4.11) was used for

the 1D case instead of a cut φu = 0 through the 2D dipole surface. For comparison, the

dipole function for the 1D and 2D case are plotted as black and red line in Fig. 4.12,

respectively. Both functions are identical except for minor oscillations introduced by the
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Figure 4.12: Permanent dipole component

µz(φs, φu = 0) for COD@Si(100) as calculated via

one- (1D) and two-dimensional (2D) analytical fit

functions, Eq. (4.11) and Eq. (D.1), respectively.

Figure 4.13: Dipole-induced tran-

sition rates W dip
i+n←i between (left-) lo-

calized states of the COD@Si(100) 1D

model. I = 1nA.

2D fit, at the outer regions of the 2D fit, resulting in slightly increased switching rate

for the 2D surface, while preserving the linear switching rate dependence on the STM

current.

(2) Discussion of calculated dipole rates:

Before starting to discuss the calculated dipole rates W dip
f←i for the system, the inelastic

STM tunneling current fraction ηdip1←0 is estimated for the COD@Si(100) system and a

current of 1 nA, as already done for H@Si on page 38. Using Eq. (2.49) a rate W dip
1←0

of about 2.9 × 10−12 (~/Eh)
−1 or 1.2 × 105 s−1 is found for the 1 ← 0 transition between

ground and first excited vibrational states localized in the left potential well. The resulting

value for ηdip1←0 is 1.9× 10−5, which is smaller than the value of 7.5 × 10−4, calculated for

the H@Si(100) system (see Sec. 3.3.2) and other cases [34, 76, 71]. Nevertheless, because

of the shallow barrier, even weak dipole coupling is sufficient to achieve switching yields,

which are comparable to experimental values, as presented in the following.

The dipole transition rates W dip
f←i between non-harmonic, left-localized, vibrational levels

ψ̃i and ψ̃i+n are plotted in Fig. 4.13. The i+ 1 ← i rates are smooth and dominate over

the whole range of states i. Higher transitions, like the i+ 2← i overtone transition and

so forth, do not show the same smoothness as the i+1← i transition rates. The i+n← i

transition rates decay with increasing n. The existence of ‘overtone’ transitions for such

systems is not surprising as was already shown for H@Si in the preliminary chapter (see

Sec. 3.3.2). They reflect both the anharmonicity of the ground state potential and the

non-linearity of the dipole function.
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Figure 4.14: Dipole-induced switching rates Rt
sw [Hz] and rates per electron Re

sw [Hz] [1/e] with

respect to the STM current and depending on different vibrational lifetimes τvib1 . T = 0K.

(3) Switching mechanism:

In the following we want to explore if and how dipole-induced vibrational transitions

switch the COD molecule at the silicon surface. Therefore we extract the switching rate,

as explained in Sec. 2.7 on page 27 for a set of 1S1D propagations. Here, two parameters

are tested. First, the parameter I, representing the STM current, is varied between 1

to 10 nA. Secondly, the vibrational lifetime τvib1 is set to 0.1, 1 and 10 ps, respectively.

An interesting behavior can be seen in Fig. 4.14, where the switching rate and the rate

per electron are plotted versus the current. Obviously the switching rate Rt
sw increases

linearly with current, therefore the switching rate per electron Re
sw stays constant, which is

in accordance with experimental findings [145]. Therefore, the conformational switching

of COD on Si(100) can be explained by a dipole-induced single electron process. The

experimentally observed quantum yield is about 1.0×10−9 per electron [10], which can be

approximately reproduced for a vibrational lifetime τvib1 = 10 ps, as plotted in Fig. 4.14.

By lowering the lifetime to 1 ps and 0.1 ps, the quantum yield decreases approximately by

one or two orders of magnitude, respectively. In order to further understand the influence

of τvib1 on the switching rate, the underlying mechanism has to be analyzed.

In Fig. 4.15 the role of dipole-induced overtone excitation is investigated by showing the

switching rate per electron as a function of the maximal ‘inter-state distance’ nmax of

dipole- and relaxation-rate driven population transfer. The parameter sets the maxi-

mal number of states between any vibrational levels i and i + nmax, connected by a rate

Wi+nmax←i. Two vibrational lifetimes τvib1 of 1 ps and 10 ps are tested for a current of

100 nA. The switching rate per electron increases strongly up to a value of ∆i ≈ 5. After-

wards a constant switching rate is seen. The following interpretation is provided for the

observed behavior. It is already known that the switching process is driven by a single,

dipole-induced transition. At the temperature of 0K, all population is located in the vi-

brational ground state initially. According to Fig. 4.15, direct transfers to states 4 and

5 are sufficient for the switching, since according to Tab. 4.3 tunneling times are 3.3 ps

and 0.36 ps for states 4 and 5, respectively. State 4 is still below and state 5 already right
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Figure 4.15: Switching rate per electron Re
sw

for dipole-induced switching, depending on nmax,

where nmax is the maximal quantum number up to

which dipole and dissipative transitions: Wf←i =

W vib
f←i +W dip

f←i have been included. T = 0K, I =

100 nA.

at the top of the barrier. Therefore, the switching is based on tunneling at the barrier

top, after excitation by a single-electron process. A reduced vibrational lifetime hinders

the tunneling process and the switching rate is lowered, as seen in figures 4.14 and 4.15.

For the same reason, the maximal switching rate is reached at nmax = 4 for a vibrational

lifetime of 10 ps but at nmax = 5 for the a lifetime of 1 ps in Fig. 4.15.

In summary, switching is driven by dipole-induced overtone excitations and subsequent

tunneling. A dominance of overtone excitations over ‘traditional ladder climbing’ is ob-

served. Such effect was already expected by Walkup et al. in the limiting case of low STM

currents [70], as considered here.

(4) Influence of vibrational lifetime and L↔R-rate driven switching:

Within the harmonic, bilinear dissipative model for vibrational relaxation (see Sec. 2.5.2),

only transitions within the left or right well are allowed for. The dipole rates, instead, are

calculated between all possible combinations of localized states. Since the localizability

is reduced to ≈ 82% for states above the barrier transition rates between left and right

well localized states are possible. The influence of those inter-well transitions on the

switching rates is studied for the dipole-induced switching in the following. In Fig. 4.16

the switching rate per electron is plotted versus the vibrational lifetime τvib1 . Curve (a)

includes the complete set of dissipative and dipole-induced rates. In curve (b) only dipole

transitions between either left or right well localized functions are allowed. That means

all inter-well transition rates are set to zero. It can be seen that the contribution of

dipole-rate-induced switching is not dominating over the whole range of τvib1 and that the

major contribution for the switching process comes from tunneling. A brief explanation of

the strong switching rate dependence on τvib1 , as observed in Fig.4.16, was already given

previously. In the range between 0.1 ps and 1.0 ns, the switching rate increases by roughly

four orders of magnitude, since tunneling becomes more efficient for weaker dissipation.
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Figure 4.16: Dipole-induced switching rates

Rsw [1/e] in dependence on the vibrational lifetime

of the first vibrationally excited state τvib1 . (a)

Dipole transitions between all states allowed. (b)

Only dipole transitions exclusively within left or

right well are included. T = 0K, I = 10nA.

4.3.5 Temperature-assisted switching

(1) Arrhenius expression:

The coupling between vibrational system modes and surface phonons allows for a thermal

equilibration between both heat reservoirs of system and bath. The heat flow out of and

into the system is described via downward and upward population transfer rates, as gov-

erned via the detailed balance condition Eq. (2.40). The condition ensures that the system

population resembles a Boltzmann distribution in case of being in a thermal equilibrium

state. It is expected that an temperature-induced increase of excited vibrational state

population results in an increased rate for the conformational switching of COD.

For an analysis of the temperature dependence the Arrhenius rate law is used. The

Arrhenius rate law provides a simple quantitative connection between temperature T and

the temperature-dependent reaction rate Rt
sw(T ),

Rt
sw(T ) = A · e−EA/(kBT ) , (4.12)

depending further on prefactor A, activation energy EA and Boltzmann constant kB . In

general, the Arrhenius law is based on the assumption of a one-dimensional reaction path.

Furthermore, there is no possibility of a ‘return’ once the barrier is passed and a classical

behavior can be assumed, i.e., tunneling is negligible. The Arrhenius law is widely used

for the analysis of thermal activated processes at surfaces [147, 148, 149, 150]. For a

unimolecular reaction, like the switching of COD considered here, the prefactor A can

be interpreted as the frequency of ‘collisions’ between reactant and reaction barrier. EA,

as activation energy, refers to the ‘height’ of the reaction barrier. R(T ) data are usually

pictured in so-called Arrhenius plots, as

lnR(T ) = lnA− EA

kB
· 1
T

, (4.13)

which easily gives access to the values of EA and A via simple linear regression. Here it is

assumed that both values remain constant over the entire temperature range of interest.

Any deviation from such linear behavior is classified as being ‘non-Arrhenius’.
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Figure 4.17: Arrhenius plots of purely

temperature-induced switching. Results for three

different vibrational lifetimes τvib1 are plotted. Cor-

responding Arrhenius rate law parameters are listed

in Tab. 4.5.

In the following section, several Arrhenius plots are used in order to investigate the tem-

perature dependence of switching rates using the harmonic, bilinear dissipative model

(Sec. 2.5.2). After discussing the purely temperature-induced switching process, the com-

bined excitation via both thermal and dipole mechanism will be considered and a com-

parison to experimental results will be made.

(2) Purely temperature-induced switching:

The Arrhenius plot for purely thermally-induced switching is shown in Fig. 4.17. The rates

were calculated from density matrix propagations using only dissipative rate equations

(2.36) and (2.40), starting with all population in the left-localized vibrational ground

state. Three different lifetimes τvib1 of 1, 10 and 100 ps are tested for bath temperatures

between 5 and 150K. When looking at the plot from the right (low temperatures) to the

left, three different regimes can be identified in the Arrhenius plot for each lifetime. First,

coming from the right, up to ∼ 46K (∼ 0.022K−1), a region of an approximately constant

slope is seen. (Since switching rates become too small at lower temperatures, no further

data points are available.) Secondly, the slope increases between ∼ 46K (∼ 0.022K−1)

and ∼ 66K (∼ 0.015K−1). The third part, above ∼ 66K (below ∼ 0.015K−1), shows a

constant slope which is higher than in the first part.

This can be explained as follows. Initially all population is in the left-localized vibrational

ground state. Tunneling is not allowed here, as discussed in Sec. 4.3.2. Therefore, popu-

lation has to be transferred to the next doublet (n = 1) which is 36meV higher in energy,

where tunneling on a 100 ns scale is possible. Thus, the slope of the first curve resembles

an activation energy of 39meV and the first doublet is the dominant switching channel.

With increasing temperature, faster tunneling at energetically higher doublets becomes

possible. Therefore, the slope of all three curves increases, as seen in the second part

between ∼ 46K and ∼ 66K. After the 6th doublet (n = 5), however, tunnel splittings

and tunneling times stay rather constant (see also Tab. 4.3). Therefore, a constant slope

is seen for the temperature range above 66K, as would be expected for a classical “over

the barrier” process. Here, only the population, in doublets above n = 6, given by bath

temperature and energy level, dominates the switching rate. EA and A, as found along
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τvib1 [ps] 1 10 100

A [Hz] 4.098 × 1011 4.722 × 1010 5.185 × 109

EA [meV] 140.3 118.8 96.8

Table 4.5: Activation energies EA and frequency factors A according to the Arrhenius rate law applied

on three data sets of temperature-dependent switching rates, as shown in Fig. 4.17, for the regime T ≥ 66K.

Figure 4.18: Left: Arrhenius plots of temperature and dipole-induced switching of COD@Si(100).

Right: Second derivatives of all plots shown in the left, with respect to T−1. The underlying switching

rates Rsw [Hz] were calculated for three different vibrational COD lifetimes τvib1 . The STM tunneling

current I is set to 10 nA. The Arrhenius rate law parameters for the steep descending curve parts in the

left and the maxima positions of the 2nd derivatives (≈ crossover temperature Tc) are listed in Tab. 4.6.

the linear increasing rates above 66K, are shown in Tab. 4.5 for all three lifetimes. Two

major trends are seen here, namely a decrease of EA and A for an increasing vibrational

lifetime τvib1 .

(3) Combined dipole- and temperature-induced switching:

This section treats the temperature dependence of the switching of COD@Si, including

the dipole mechanism in addition to purely thermal transitions.

The influence of the vibrational lifetime: The Arrhenius plots of switching rates

and their second derivatives with respect to (1/T ), are shown on the left and right hand

sides of Fig. 4.18, respectively. All rates are calculated for a constant tunnel current of

10 nA and three different lifetimes (τvib1 = 1, 10 and 100 ps). An ‘elbow’ shape is seen as the

main feature of all three plots. First, a temperature independent region with a constant

switching rate is seen for temperatures below ≈ 60K. It is followed by a part with a

linear increase of rates on the logarithmic scale caused by classical thermally-activated

Arrhenius-like behavior. The corresponding rate law parameters are shown in Tab. 4.6.

They are almost identical to those observed for the purely thermal switching as plotted in

Tab. 4.5. It is concluded that the switching is nearly entirely driven by thermal processes

above ≈ 60K.
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τvib1 [ps] 1 10 100

1/Tc [K
−1] 0.016 0.0155 0.0145

Tc [K] 63 65 69

A [Hz] 4.356 × 1011 4.793 × 1010 4.387 × 109

EA [meV] 141.0 119.0 94.8

Table 4.6: Cross-over temperatures Tc [K], 1/Tc [K
−1] and Arrhenius rate law parameters A [Hz]

and EA [meV] for Arrhenius plots of dipole- and temperature-induced switching rates of COD@Si(100),

depending on the vibrational lifetime τvib1 and temperature T as plotted in Fig. 4.18.

The lifetime dependence has already been discussed in Sec. 4.3.5. The temperature-

independent part is due to switching via the dipole mechanism and the rate increases for

longer lifetimes, as expected. Some population in states with energies below the barrier

is allowed to switch via tunneling. The ‘crossover temperature’ Tc, as midpoint between

both regimes, is found via the maximum of the second derivative of the switching rate

with respect to the temperature: d2Rt
sw(T

−1)/d(T−1)2. This estimation of Tc is only ap-

proximate with an estimated error below 5K. The values for Tc are listed in Tab. 4.6. The

differences are smaller than the mentioned error of 5K but it can be seen that Tc depends

on the vibrational lifetime and increases with τvib1 . As already discussed for the purely

dipole-induced switching, a weaker dissipation leads to higher switching rates. The higher

the base level of dipole-induced switching, the higher are the temperatures needed for the

temperature-induced switching in order to dominate the process. This results in a rise of

Tc, which explains the observed trend.

Several further examples of a crossover between classical (thermal) and quantum

(tunneling-dominated) behavior for surface-adsorbate systems can be found in the lit-

erature. Sn adatoms, for example, form specific 3× 3 super-structures on Ge(111), where

they appear in two possible vertical (‘up’ and ‘down’) positions. In an STM analysis of

time- and temperature-dependent position inversion of individual Sn atoms, a crossover

temperature of 15K between classical and quantum regimes was found [149]. As another

example, two combined experimental and theoretical studies of H-atom diffusion on nickel

and copper surfaces found crossover temperatures of 63K and 60K, respectively [148, 150].

The influence of the STM current: The influence of the tunnel current on the value

of Tc is examined, as shown in Fig. 4.19. The ‘elbow’ shaped Arrhenius plots can be

seen on the left side. The dipole-induced, temperature-independent part increases with

the current. The higher the base level of dipole-induced switching, the higher are the

temperatures needed in order to allow thermal excitation to dominate the switching and Tc

is shifted to higher temperatures as seen from Tab. 4.19. Therefore an external parameter,

namely the STM tunnel current, influences the position of Tc. This finding is a new aspect,

not reported for similar experiments mentioned above [148, 149, 150]. There, Tc was only

determined by the internal characteristics of the system, like barrier height and width.
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Figure 4.19: Left: Arrhenius plots of temperature- and dipole-induced switching of COD@Si(100).

Right: Second derivatives of all plots shown in the left, with respect to T−1. The underlying switching

rates Rt
sw [Hz] were calculated for four different STM tunneling currents I [nA]. The vibrational lifetime

τvib1 is set to 10 ps. Corresponding Arrhenius rate law parameters are listed in Tab. 4.7.

I [nA] 0.1 1 10 100

1/Tc [K
−1] ≈ 0.019 0.0175 0.015 0.013

Tc [K] ≈ 53 57 67 77

A [Hz] 3.714 × 1010 3.928 × 1010 4.793 × 1010 5.602 × 1010

EA [meV] 116.6 117.1 119.0 120.4

Table 4.7: Cross-over temperatures Tc [K], 1/Tc [K
−1], Arrhenius rate law parameters A [Hz] and

EA [meV] for plots of dipole- and temperature-induced switching rates of COD@Si(100) depending on

temperature T and tunnel current I as plotted in Fig. 4.19.
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Figure 4.20: Left: Arrhenius plots of temperature and dipole-induced switching of COD@Si(100).

Right: Second derivatives of all plots shown in the left, with respect to T−1. Comparison between calculated

(solid lines) and STM experimental data (black crosses) [151]. Calculations: Switching rates Rt
sw [Hz] for

three different vibrational lifetimes τvib1 of 1, 10 and 100 ps and a current of 0.7 nA. Experiment: Switching

rates in [Hz], obtained for measurements of the tunnel current vs. time. The tip was centered above a

single COD molecule in a constant position. STM current and bias were initially set to 0.7 nA and +1.50V,

respectively. Further details are given in the text.

Comparison to experiment: It was mentioned in the introduction that the observed

binary telegraph noise is seen as the result of conformational switching of COD at Si(100)

between the two minima [10, 145]. Up until now, the experimentally observed single-

electron mechanism and the measured switching yield per electron could be reproduced

within the framework of our calculations by including only dipole-induced (and thermal)

transitions. The temperature-dependence, as obtained from the simulations, was tested

experimentally [151]. The measurements, motivated by the theoretical predictions of Tc,

validated the theoretical findings, as will be shown in the following. Fig. 4.20 again shows

Arrhenius rate plots for COD@Si(100), considering three different lifetimes τvib1 . The cur-

rent is set to 0.7 nA, in order to meet experimental conditions [151]. The experimental data

points (black crosses) were recorded within a temperature range of 5K to 80K. Experimen-

tal difficulties, caused by the temperature increase, such as surface vibrations, desorption

of impurities from the surfaces of the STM chamber and temperature-induced sample

drifts did not allow for stable measurements above 80K. For the measured temperature-

independent portion, the closest agreement with theory is seen for τvib1 being in the order

of 10 ps, as already discussed in Sec. 4.3.4. Theoretically obtained values for Tc, A and

EA, are summarized in Tab. 4.8. In the STM-experiment a crossover behavior was seen at

≈ 45K, while the theoretical prediction for I = 0.7 nA is at 56K (see Tab. 4.8). Consider-

ing all the approximations of our model, as well as the error coming with the experiment,

such precise agreement is a persuasive result of the actual study. An experimental check of

the predicted current dependence of Tc is underway to be tested in the same laboratory 2.

As can be seen from the second derivatives in Fig. 4.20, no clear τvib1 -dependence of Tc

is observed at 0.7 nA. A weak dependence of Tc on τvib1 has to be expected, as seen for

2Personal communication: Stefan Fölsch, Paul-Drude-Institut, Berlin, Germany
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τvib1 [ps] 1 10 100

1/Tc [K
−1] 0.018 0.018 0.018

Tc [K] 56 56 56

A [Hz] 2.9× 1011 3.3× 1010 4.0× 109

EA [meV] 136.9 115.3 94.0

Table 4.8: Cross-over temperatures Tc [K], 1/Tc [K
−1] and Arrhenius rate law parameters A [Hz] and

EA [meV] for plots of calculated dipole- and temperature-induced switching rates of COD@Si(100), de-

pending on temperature T and vibrational lifetime τvib1 [ps] as plotted in Fig. 4.20.

example in Fig. 4.18 for an STM current of 10 nA. At 0.7 nA the switching rates were

much smaller and the error due to numerical noise too high in order to obtain a better

resolution for the second derivative plot.

The Arrhenius parameters, for the simulated rates, are in agreement with the values

of former calculations, listed in Tab. 4.6, obtained at I = 10 nA. For the experimental

data no Arrhenius parameters were obtained. The reason is the restricted temperature

range in which the experiment can be performed, i.e., below 80K, and an increase of the

experimental error with increasing temperature.

4.3.6 Resonance-induced switching: Below-threshold regime, W res
f←i

(1) Introduction:

Up until now, the influence of temperature on dipole-induced switching has been tested in

detail. In the following, the below-threshold, resonance switching regime will be studied

as another or additional possibility of IET-induced switching of COD@Si. The study is

performed on the basis of one-dimensional vibrational wave functions of the electronic

ground state surface 1S1D model. As stated before (Sec. 4.1), no pronounced voltage

dependence was found for the switching rates within a bias voltage range of −2.5 to

2.5V. This seems to exclude a resonance mechanism, since the resonance-mediated IET-

rates typically show a distinct voltage-dependence (see Sec. 2.5.3). However, the lack of

experimental evidence of a resonance does not fully exclude the presence of resonance-

mediated vibrational excitation and switching. For Xe adsorbed on nickel, for example,

surface-tip hopping was obtained at ±0.8V, while the responsible 6s resonance level is

4 to 5 eV away from the Fermi level [30]. Eigler et al. concluded, that even far-off-

resonances can be important tunneling channels for electrons from the STM tip [152]. For

a typical resonance lifetime τres = ~/Γ of ≈ 1 fs, the corresponding width in energy Γ is

about 0.7 eV. The width becomes smaller for longer resonance lifetimes. The energy of

tunneling electrons is adjustable via the bias voltage. The bias voltage range is limited in

practice in order to preserve the stability of the tip and surface arrangement. Therefore,

the experiment might not be able to detect such ‘narrow’, far-off-resonances outside that

range. Other experimental techniques, which could prove resonances outside that energy
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N A C

dV

dφs

∣
∣
∣
∣
φN
s,0

[eV/rad] 0 -0.265 0.021

Table 4.9:
dV

dφs

∣

∣

∣

∣

φN
s,0

: First deriva-

tives of neutral (N), cation (C) and an-

ion (A) potential surfaces, as obtained

via cluster calculations and Koopmans’

theorem (see Sec. 4.2), with respect to

switching coordinate φs at the left min-

imum position of the neutral ground

state φN
s,0.

region, such as for example photoemission spectroscopy, have so far not been applied to

the current system .

Another scenario is that of a very short-lived resonance, whose density of states profile is

very broad. The resonance rates W res
f←i are proportional to the resonance density of states

at the Fermi level of the tip [12, 24]. Therefore also the IET-induced switching would vary

only very smoothly with the bias voltage for a broad resonance with a short lifetime (e.g.

0.1 fs). The small changes might not be resolvable in an STM experiment.

The parallel existence of anion and cation resonance, not visible via voltage dependent

measurements and both causing a similar rate of switching, might be unlikely. However,

we would like to perform a study of the possible case of IET-induced, resonant switching

of COD@Si for a HOMO-derived cation resonance and a LUMO-derived anion resonance

in the following. It was seen for H@Si, that possibly involved ‘higher’ resonant, electronic

state surfaces were mostly of similar shape (see Fig. 3.5). Therefore, it is a reasonable

assumption to choose HOMO and LUMO energies in the following.

(2) Model, transition rates and switching mechanism:

The 1D resonant state potential surfaces V ±es,0(φs, φu = 0) are based on HOMO and LUMO

energies of B3LYP/6-31G(d) cluster calculations of Dokić et al. [143], and Koopmans’

theorem, as described in Sec. 4.2.3. The energetic distance ∆Eres between the Fermi

level of the tip and the molecular adsorbate level can not be easily calculated using our

simple cluster approach. The energetic distance enters as a parameter ∆Eres, instead.

From Tab. 4.1 on page 61 it was already seen that HOMO-based cation and neutral

surfaces predict rather similar minima positions and barrier heights. The first derivatives

of the potential surfaces with respect to the switching coordinate φs are calculated at the

Franck-Condon point of both resonance surfaces. Their values are plotted in Tab. 4.9 and

underline the similarity of neutral and cation surface. For the more different, anion surface

a force pointing towards the outer potential boarder is seen, while on the cation surface the

direction of the comparatively much smaller force vector is reversed. Therefore, intuitively

one would expect a higher switching yield for the anion resonance.

In order to study the below-threshold regime, only the neutral ground state vibrational

levels have to be included in the density matrix propagation. The resonance-induced
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Figure 4.21: Population transfer rates W res
i+n←i between left-localized states ψ̃L

i and ψ̃L
i+n, as obtained

via Eq. 2.52 for anion (A) and cation (C) resonance state potentials (see also Sec. 4.2.3). τres = 1 fs,

|∆Eres| = 1.0 eV, I = 1nA.

vibrational excitation and de-excitation events in the ground state are treated by transition

rates W res
f←i, obtained via Eq. (2.52) in Sec. 2.5.3. In Eq. (2.52), the following parameters

are needed: ground and excited state potential surface, Vgs and Ves, the energy difference

∆Eres between the resonance center and the Fermi level of the STM tip, the tunnel

current I and the resonance width Γ = ~/τres. A cation state in the sample is created via

electrons tunneling from the sample to the STM tip. In the above-threshold regime, the

Fermi level of the tip is below the resonance energy here, while the opposite is true in the

below-threshold case (see Tab. 2.1). The whole situation is simply reversed for an anion

resonance.

Corresponding transition rates W res
f←i, calculated for both resonances, are shown in

Fig. 4.21. Here, the resonant transition rates between left-localized wave functions ψ̃L
i

and ψ̃L
i+n are plotted. The resonant transition rates between right-localized states are of

course identical to those between left-localized states. From the left plot in the figure it is

seen that the anion rates exceed the cationic ones by roughly two orders of magnitude for

all i+1 transitions. Such behavior was already expected from the discussion of the excited

state potential surfaces above. Interestingly no linear behavior is seen for the ‘harmonic’

i + 1 transitions, which was one of the assumptions of the truncated harmonic oscillator

model of Walkup et al. [70] (see also Sec. 1.3). Further, non-harmonic overtone excitations

are present for the actual system. Their magnitude results from the anharmonicity of the

ground state potential and the non-linearity of the difference potential between ground and

excited state. The importance of overtone excitations for the switching will be outlined in

the following. The rates decrease, with an increasing order of the overtone transitions, by

several orders of magnitude. The differences between an- and cation rates become smaller

and their order is alternating. The i+ 5 and i+ 6 transitions, for example, show slightly

higher rates for the cation than for the anion, while it was the other way around for i+ 1

and i + 2 transition rates. We should keep in mind the dominance of cation, resonant

overtone transitions for the further discussion.

As for the dipole scattering, the inelastic, resonant tunneling current fraction ηres is calcu-

lated using Eq. (2.55). Taking the rates from Fig. 4.21 for |∆Eres| = 1eV, τres = 1 fs and
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Figure 4.22: Switching rates per electron Re
sw for anion and cation resonance-induced switching,

versus STM current I for three different values of |∆Eres|. τ
vib
1 = 1ps, T = 0K, τresI = 1 fs.

I = 1nA, W res
1←0 is about 1.6× 10−11 (Eh/~) and 2.5× 10−13 (Eh/~) for anion and cation,

respectively. This would translate into an inelastic resonance tunneling current fractions

ηres of 1.0 × 10−4 and 1.7 × 10−6. Values of ηres between 1.0 × 10−4 and 4.0 × 10−2 can

be found in the literature calculated for similar systems [70, 26]. The estimate for the

dipole-induced inelastic tunneling fraction ηdip of about 1.9×10−5 was given in Sec. 4.3.4.

Taking the calculated numbers, the anion-induced switching would be faster than the

dipole-induced and both would be much faster than the cation one. However, neither a

large difference for switching at positive or negative voltages nor a ladder climbing mech-

anism were observed by experiment [10].

Now, in the below-threshold model the question arises whether the resonance excitations

allow for switching and if a ladder climbing mechanism or a one-electron process is at work.

To answer this question the switching rate dependence on the STM current, for anion and

cation, is plotted in Fig. 4.22. The most important information is that the switching

rate per electron remains constant at all studied currents. Therefore a single-electron

overtone excitation is at work. The same was already seen for the dipole component and

is therefore also compatible with the experimental data [10, 145]. As expected, the rates

decrease as |∆Eres| increases. All rates lie above the experimentally observed switching

rates of 1×10−9 1/e. Quantitative agreement can only be achieved by a reduction of both

vibrational and resonance lifetime or an increase of ∆Eres above 5 eV, as will be discussed

in the following.

The cation rates are comparable to the anion ones, which is compatible with experiment,

if one assumes a resonant switching mechanism for COD@Si. To be more precise, the

cation switches 1.8 times more rapidly than the anion, for all three values of ∆Eres. This

is counter-intuitive to the stated similarity between neutral and cation surface and the low

W res
1←0 values for the cation resonance, and has to be explained in the following. Switching

is driven by transition rates between the vibrational ground state and doublets i = 5, 6,

which tunnel on the ps-timescale, as observed for the dipole-mechanism already. The

corresponding, cation-derived overtone transition rates are higher than for the anion case,

as seen on the right side of Fig. 4.21. The left side of Fig. 4.23 further exemplifies the
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Figure 4.23: Left: Switching rate per electron Re
sw for anion (A) and cation (C) resonance-induced

switching, in dependence upon nmax = |f − i|, the maximal overtone transition included. I = 10 nA,

τres = 1 fs, |∆Eres| = 1.5 eV. Right: Energy differences ∆E = Ves − Vgs between resonance (A/C) and

neutral (N) potential energy surfaces of COD@Si(100), as shown in fig 4.9. The minima of all three surfaces

are set to zero. (The ’kinks’ are discussed in the text.) (A) ∆E = VA − VN . (C) ∆E = VC − VN . The

spatial probability distribution for the 20th left localized vibrational state is shown in gray.

findings. Here, the switching rate per electron is plotted vs. the maximal overtone level

nmax. The cation switches more rapidly than the anion, only if higher overtone transitions

(nmax > 4) are included. Also, the direct excitation to the tunneling region is more efficient

than ladder climbing, despite much higher i+1 transition rates for both anion and cation.

It might be possible however, that ladder climbing dominates at higher currents I > 10 nA

and longer vibrational lifetimes. It is further seen that for the switching, only transitions

up to nmax = 9 are of importance. Fig. 4.23 shows energy differences between ground and

resonance state potentials on the right. Additionally the spatial probability distribution

of the 20th, left-localized vibrational state ψL
20, the highest state in the propagation, is

plotted for exemplary purposes3.

|ψL
20|2 has its global maximum between φs = −0.5 and −0.7 rad. Here the anion difference

potential has its minima, while the cationic one is much steeper. It shows that ‘higher’

states are more ‘affected’ by the cation surface, than by the anionic one. The comparatively

higher, overtone excitation rates for the cation and subsequent switching rates seem to

have their origin in the steeper side portion of the corresponding difference potential of

the cation resonance.

(3) Parameter dependencies:

In the following, the dependence of the switching rate on several parameters of the below-

threshold model are tested. In Fig. 4.24, the switching rate is plotted versus the resonance

lifetime. A nearly constant switching rate is seen for resonance lifetimes above 1 fs where

the parameter becomes rather unimportant, while below 1 fs the dependence is strong.

3The kinks in the borders of the difference potential are artificial, due to numerical inaccuracies, but

have no influence on the results.
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Figure 4.24: Re
sw switching rate per electron,

as obtained for anion (A) and cation (C) resonance

as a function of the resonance lifetime τres. τ
vib
1 =

1ps, I = 1nA.

Figure 4.25: Switching rates per electron Re
sw plotted versus the energy gap ∆Eres between Fermi

level of the STM tip and adsorbate resonance center energy. τvib1 = 1ps.

The dependence of Re
sw on τres also decreases for an increasing value of |∆Eres| as illus-

trated by Fig. 4.25. Here the switching rate is plotted versus ∆Eres for three different

resonance lifetimes. It is seen that |∆Eres| is only of minor influence on the switching

rate if τres ≤ 0.1 fs, which would refer to the case of a ‘broad’ resonance with a short

lifetime, as mentioned previously. Hence, agreement between experiment (i.e., only weak

U-dependence and a switching probability of ≈ 1 × 10−9 per electron at positive and

negative bias sample) and the below-threshold model is realized, assuming an short-lived

resonance. Also for values of |∆Eres| above 5 eV, the switching rate varies only slightly

with |∆Eres|, independent of the resonance lifetime τres, and has the right order of mag-

nitude. This is the second limit for voltage independent switching in the below-threshold

regime, i.e., the far-off-resonance case mentioned before.

Furthermore, the vibrational lifetime dependence is tested. Fig. 4.26 shows the switch-

ing rates in dependence upon τvib1 . The left plot compares anion and cation resonance-

mediated switching rates. The cation-induced resonance switching is slightly more rapid

than for the anion and both curves show the same behavior up to τvib1 ≈ 10 ps. Above that

lifetime, the anion-mediated switching rates further increase while those for the cation re-

main constant until both curves cross and the anion switches more rapidly than the cation.

Based on the preliminary discussion, one can argue that the cation shows a greater capac-

ity to induce high-order overtone-transitions into fast tunneling states, compared to the
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Figure 4.26: Resonance-induced switching rates per electron Re
sw [1/e] in dependence on the vibra-

tional lifetime τvib1 . Left: Cation vs. anion resonance, all transition rates included. Center/Right: All

transition rates included (LR). L ↔ R transitions rates between left and right well population are set to

zero (no LR). τres = 1 fs, I = 1nA, |∆Eres| = 1 eV.

anion. The anion rates on the other hand exceeded the cationic ones for lower overtone

transitions. The lower state tunneling is slower and therefore more affected by vibrational

relaxation (dissipation) than tunneling in higher states. If the competing vibrational re-

laxation is weakened, tunneling via lower states gains more importance for the switching.

Since the anion resonance populates such lower lying states more efficiently than the cation,

its switching yield exceeds the cationic one at higher values of τvib1 > 100 ps.

Another important point is the existence of a purely rate-based switching channel, as

illustrated from two plots in the middle and on the right of Fig. 4.26. The L ↔ R-rate-

based switching becomes possible, since the states above the barrier are not perfectly

localized (see also Fig. 4.10). The contribution of the purely rate-mediated switching is

negligible for vibrational lifetimes τvib1 above 1 ps for both anion- and cation-resonance.

Shorter lifetimes are rather unrealistic (as discussed in Sec. 1.3). Below 1 ps, however,

tunneling is suppressed and L↔ R rates start to dominate switching. The latter finding

explains the constant, lifetime-independent, switching rate level below τvib1 = 1ps.

Finally, a comparison of dipole and resonance-induced switching rates is given in Fig. 4.27.

The dipole component plays no role for τvib1 ≤ 1 ps but already makes a difference of

≈ 30% at τvib1 = 10 ps. For τvib1 > 100 ps, the dipole-induced switching exceeds the reso-

nance component. Such a long vibrational lifetime is rather improbable for COD@Si(100),

because of the strong coupling to the Si-surface phonon-band. The crossing point between

purely dipole and purely resonance rates is |∆Eres|-dependent and therefore expected to

be shifted towards shorter vibrational lifetimes for an increasing value of |∆Eres| and vice

versa. Additionally, it is seen that the τvib1 dependence of resonance switching rates de-

creases with increasing |∆Eres|. It is also seen that the dependence on τvib1 is much weaker

in Fig. 4.27 (|∆Eres| = 5 eV) as compared to Fig. 4.26 (|∆Eres| = 1eV).

The temperature dependence as found for the dipole-induced switching would be repro-
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Figure 4.27: Switching rates Re
sw, as resulting from purely dipole (D), purely resonance (R) or

dipole and resonance (R+D)-induced switching versus the vibrational lifetime parameter τvib1 . τres = 1 fs,

|∆Eres| = 5 eV, I = 10 nA.

Figure 4.28: Proposed electronic relaxation scheme for

STM-injected electrons (e−) and holes (h+) in the COD@Si(100)

adsorbate system. Occupied electronic levels are shown in red,

empty levels in blue.

ducible for the resonance switching model as well, since the underlying switching mecha-

nism is identical. For both, single rate transitions and subsequent tunneling to the neigh-

boring potential well are the dominating processes. The analysis of thermal switching is

therefore not repeated explicitly for the resonance mechanism.

4.3.7 Resonance-induced switching: Above-threshold regime

(1) Introduction:

In the current section, the above-threshold regime is studied within a one-dimensional two-

surface (2S1D) model. Each single electron now provides enough energy for the system

to populate the resonance state. In other words, the Fermi level of the tip is above an

unoccupied or below an occupied resonance state, leading to an anion or cation resonance,

respectively. Fig. 2.3 shows as an example the situation for a negative ion resonance and

a positive sample bias.

Electronic population and depopulation of certain resonant electronic states of the

adsorbate-surface system would lead to a voltage dependent switching rate, not observed

by the experiment. Therefore, Fig. 4.28 sketches a possible, physical depiction of voltage

independent, resonance excitations within the above-threshold regime. The STM either

injects holes h+ or electrons e− into the occupied (red) or unoccupied (blue) electronic

levels of valence- and conduction-bands of the COD@Si(100) system. Taking each elec-

tronic level as a possible resonance, the resulting resonance density of states is broad and



4.3 One-dimensional density matrix propagation 85

rather voltage independent. It is further assumed that the injected electron or hole relaxes

very rapidly to the band edges (similar to the short-lived resonance scenario as discussed

for the below-threshold regime). In the vicinity of the COD-adsorbate, these are further

assumed to be partly composed of the HOMO and LUMO of the COD-adsorbate-surface

system. The resonance lifetime of those states at the band gap is presumably longer

than for states in the band. As a result, the nuclear dynamics of the COD-adsorbate is

dominated by HOMO- and LUMO-based resonances.

(2) Propagation details:

In the following, some details about the algorithm used for the density matrix propagations

are given. A second resonance surface is included in the density matrix propagation, as

explained in Sec. 2.6. Via the resonance lifetime τres, a single exponential decay channel

for an instantaneously excited wave packet is defined. For the resonance surface, no

vibrational relaxation is included, because the electronic lifetime is much shorter than the

vibrational lifetime. The one-dimensional potential surfaces and corresponding vibrational

eigenstates of anion and cation resonance were already discussed in Secs. 4.2.3 and 4.3.1.

The switching barriers are 220meV for the anion and 185meV for the cation and therefore

rather similar to the neutral state barrier of 179meV. Tunneling on the ps-timescale is

found for the 4th doublet of the cation and for the 5th doublet of the anion state. 30

vibrational states are included for the anion and cation resonance state in the propagations,

while 40 states are included for the electronic ground state, as before. The number of

states is sufficient to achieve adequate conservation of norm and initial localization for an

upward-projected, localized vibrational ground state wave function, by which the initial

excitation step is modeled. For example after a consecutive, upward-downward projection

a wave packet localization error below 1×10−10 and a loss of norm smaller than 5×10−10

is obtained.

At this point, it is important to recall the definition of the switching rate per electron Re
sw

for the two-surface propagations, as given in Eq. (2.75). Since all propagations start on

the resonant surface and the electronic excitation probability Wexc is neglected, only the

switching yield per resonant excitation event Re′
sw can be calculated. Re′

sw is simply defined

as the final electronic ground state population of the right well, if the propagation started

in the left well of the resonant surface and vice versa, multiplied byWexc = Ir/I, as shown

in Eq. 2.75. Ir/I accounts for the fraction of overall, measurable tunneling electrons which

travel via the COD-adsorbate resonance. Unfortunately, the ratio Ir/I is unknown for the

actual system. Instead, the Ir/I ratio for the resonance-driven intra-dimer switching of

H@Si(100) of ≈ 1 × 10−3 is taken [32]. But, the ‘real’ ratio Ir/I of the system might

differ from this value. A strict quantitative comparison of theoretical and experimental

switching rates per electron is therefore not possible. Nevertheless, it is possible to study

the mechanism of a possible resonant switching process, including all parameter depen-

dencies (τvib1 , τres). Also the experimentally observed equality of switching at positive and

negative sample bias can be examined. Finally, it will be shown that the reproduction
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Figure 4.29: Left: Population in the right well (PR) of the electronic ground state (gs) and the

resonance, electronically excited state (es) versus propagation time t. Right: P : Total population for

ground state (gs) and excited state (es) surfaces. The propagation started with 100% population in the

left well of the excited state potential. τres = 1 fs, τvib1 = 1ps.

of experimentally observed switching yields is possible for a reasonable set of parameters,

with the choice Ir/I = 1× 10−3.

(3) Switching mechanism:

As an example, we illustrate the above-threshold 2S1D model for the anion resonance in

the following. The propagation started with the left-localized vibrational ground state ψ̃L
0

(see Eq. (2.10)) projected to the anion resonance state with a resonance lifetime set to

1 fs. From the plotted norm in the right graph of Fig. 4.29 it is seen that the resonance

population nearly completely decays back to the electronic ground state, within the first

1000 atomic time units or ≈ 25 fs. The left graph in Fig. 4.29 shows the population of the

right potential well of electronic ground state and of the resonance as a function of time.

It is seen that the population of the right well of the resonant state (originating from the

initial localization error) is steadily decreasing. In the same time the population in the

right well of the electronic ground state is increasing.

Therefore, no switching takes place on the resonance surface and it can be concluded that

the wave packet only gains the kinetic energy there in order to switch in the neutral ground

state. Since the same switching mechanism is observed for the cation resonance, it will

not be discussed in detail here.

(4) Parameter dependencies:

The parameter dependencies of the 2S1D switching rates are tested in the following. Here,

a special focus lies on the comparability between below-and above-threshold regimes, i.e.,

1S1D and 2S1D models. While the resonant excitation in the 1S1D model is explicitly

modeled by perturbation theory, propagation in the 2S2D model already starts from an

electronically excited wave packet. Here, the resonance state provides the kinetic energy
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Figure 4.30: Left: Resonance-induced switching rates per electron Re
sw as calculated for one- (1 S)

and two-surface (2 S) models with respect to the vibrational lifetime parameter τvib1 . Right: Comparison

of 2 S switching rates as obtained for anion and cation resonance. τres = 1 fs. Additional 1 S-parameters:

I = 1nA, |∆Eres| = 1 eV.

for the wave packet in order to switch in the electronic ground state, after electronic

relaxation. Therefore, in both models the switching takes place in the ground state and

a qualitative agreement between both models is expected. The dependence of Re
sw on the

vibrational lifetime τvib1 is plotted in Fig. 4.30. Here, the expected qualitative agreement

between both models can be observed. It is seen that switching for both models, 1S1D and

2S1D, is driven by the same mechanism, namely the tunneling of vibrationally excited,

electronic ground state population. Within the 1S1D model, ‘lower’ vibrational states are

populated more effectively via the anion- than via the cation-resonance, while for ‘higher’

vibrational states it is the other way around. This manifests itself also in a different

behavior of anion and cation resonance regarding the switching rates with respect to τvib1 .

The same qualitative behavior for anion and cation is seen for the 2S1D model, here. It can

be concluded that also the same excited vibrational levels of the electronic ground state are

populated via anion- and cation-resonances, for both models. An example of qualitative

equivalence between both models is shown for the vibrational lifetime dependence in in

the right half of Fig. 4.30. Here, the cation resonance induces faster switching than the

anion for τvib1 < 5× 104 fs, as already discussed for the 1S1D model.

The two plots in the left part of Fig. 4.30 also show that the 1S1D rates are higher than

the 2S1D rates, depending of course on the chosen ratio Ir/I. At first, similar switching

yields for anion and cation have been found for 2S1D as well as for 1S1D in accordance

to the experimental findings. However, for the chosen ratio Ir/I = 1 × 10−3 the 2S1D

switching rates are lower by two orders of magnitude than those for 1S1D and correspond,

within an order of magnitude, to the experimental switching yield of 1× 10−9 1/e, if τvib1

is in the realistic range of ≈ 1 ps. It was already mentioned that the perturbative rate

formula (Eq. (2.52)), used for the 1S1D model, only gives an ‘order of magnitude’ estimate

for the vibrational excitation due to the inelastic tunneling current fraction. Therefore a

quantitative agreement of 1S1D and 2S1D models can not be expected. The 1S1D, below-

threshold, rate-based model possibly overestimates the density of states for the resonance

and therefore the inelastic tunneling current fraction. For |∆Eres| = 1 eV the situation of
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Figure 4.31: Comparison of resonance-induced switching rates per electron Re
sw, calculated for the

1S1D and 2S1D models, with respect to the resonance lifetime τres for different ∆Eres. τvib1 = 1ps.

Additional 1 S-parameter: I = 1nA.

Figure 4.32: Comparison of switching rates per electron Re
sw calculated for anion and cation resonance

and the 2S1D model, as functions of vibrational lifetime τvib1 and resonance lifetime τres.

a resonance ‘close’ to the tip Fermi level might also violate the weak perturbation limit of

Fermi’s Golden Rule.

Fig. 4.31 focuses on the comparability of 1S1D and 2S1D model, regarding the dependence

on the resonance lifetime τres. It is seen immediately that the 2S1D model has a higher

sensitivity with respect to τres than the 1S1D model. In the range between τres =0.1

to 10 fs, the rates change by four orders of magnitude for the 2S1D model but only by

two orders of magnitude for the 1S1D model (|∆Eres| = 0.5 eV). Also no constant Re
sw is

seen above τres ≈ 1 fs for 2S1D, as it is for 1S1D. The 2S1D model therefore differs from

the simpler 1S1D estimate also qualitatively in the description of the τres dependence.

Since the dynamics at the resonance surface are only covered by the 2S1D model, gaining

naturally more importance for extended resonance lifetimes, this result was expected.

Taking the factor Ir/I = 1× 10−3 as realistic for the system, one finds good quantitative

agreement between calculated and experimentally obtained switching yields of 1 × 10−9

per electron, for a reasonable set of parameters. The calculated values of Re
sw in 1/e versus

parameters τres and τ
vib
1 are shown for anion and cation resonance on the left and right side

of Fig. 4.32, respectively. The regions plotted in green indicate quantitative agreement

between experiment and calculation. Anion and cation-induced switching rates are in a
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proper range for vibrational lifetimes between 1 to 10 ps and resonance lifetimes around

2 fs. Another window of good agreement opens up at τres ≈ 5.0 fs and τvib1 ≈ 0.5 ps for the

anion and at at τres ≈ 3.0 fs and τvib1 ≈ 0.5 ps for the cation, respectively.

4.3.8 Summary

Finally the main results for the one-dimensional, 1S1D (below-threshold) and 2S1D (above-

threshold) scattering models are summarized. For the first model, two contributions,

namely dipole and resonance scattering were included. The dipole mechanism accounts

for the experimentally obtained, linear current dependence of switching rates Rt
sw and

the measured switching yield per electron of 1 × 10−9 1/e. The switching mechanism is

based on overtone-transitions as included in extension to the harmonic, linear perturbative

rate model of Persson et al. [25]. The voltage-independence is naturally a characteristic of

the dipole mechanism. For the dipole model a temperature-dependent crossover between a

quantum tunneling and a classical Arrhenius regime was predicted. The calculations moti-

vated further temperature dependent STM measurements, which confirmed the calculated

crossover temperature [151].

For resonance scattering, anion and cation resonances were taken into account and based

on the LUMO and HOMO orbital levels by applying Koopmans’ theorem. The below-

threshold regime of resonant switching was examined by extending the harmonic, linear

model for the resonance inelastic current fraction of Persson et al. [26], and calculat-

ing corresponding vibrational excitation and de-excitation rates. Generally, qualitative

agreement with experiment was observed, e.g., a single-electron mechanism and simi-

lar switching rates for anion and cation resonance. Quantitative agreement in terms of

switching yield and voltage independence could only be achieved for the limiting cases of

a far-off-resonance (|∆Eres| > 5 eV) and a broad, short-lived resonance (τres < 0.5 fs).

Both dipole and resonance-mediated switching in the 1S1D model could therefore ratio-

nalize the experimental results. For the dipole-scattering-induced switching a vibrational

lifetime τvib1 of 10 ps was chosen in order to reproduce the experimental switching yield,

while it was set to 1 ps for the resonance mechanism.

Taking into account an additional resonance state surface for the density matrix propaga-

tion in the 2S1D model, the resonance switching in the above-threshold/ non-perturbative

limit was analyzed and compared to the 1S1D results. Again, agreement with experiment

was achieved within a reasonable parameter range of vibrational and resonance lifetimes.

The qualitative findings for the 1S1D model, such as switching via tunneling in the ground

state and vibrational lifetime dependence, could be affirmed.

4.4 Two-dimensional density matrix propagation

So far, the switching of COD was approximated as a one-dimensional, symmetrical and

opposite rotation of two (CH2)2-units of COD@Si(100), along the collective switching
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coordinate φs. We will now study the switching, including a second mode. The sec-

ond collective switching coordinate φu as introduced earlier describes an unsymmetrical

rotation of both (CH2)2-units. Its inclusion allows the system to switch along its real

transition states (TS) at φs = 0 rad and φu = 0.309 rad, as found for the potential surfaces

calculated by Dokić et al. [143] (see Sec. 4.2). The TS is 9meV lower in energy than the

former 1D transition state (see Sec. 4.2). Additionally, the 2D dipole function and the 2D

resonance state potentials are utilized in the following. Therefore, the validity of the 1D

approach tested via the results obtained for the 2D model, for single-surface (1S2D) and

two-surface propagations (2S2D). In the following all wave functions (φ,ϕ) are understood

as two-dimensional states depending on both coordinates φs and φu, independent of their

previous definitions.

This section is organized as follows. First, the 2D state functions for neutral and res-

onance surfaces are presented as well as technical details about state localization and

the density matrix propagation for 2D states. Afterwards, the Ohmic bath dissipative

model, as introduced for one-dimensional vibrational states in Sec. 2.5.2, is extended to

two dimensions. In analogy to previous sections, thermal-, dipole- and resonance-induced

switching rates are calculated and compared to previous 1D. In order to account for the

contribution of inelastic, resonance scattering, the below- and above-threshold scenarios

are tested as well.

4.4.1 Vibrational eigenstates

The Fourier Grid Hamiltonian (FGH) method is used to obtain the 2D vibrational eigen-

states, represented in a spatial grid basis. Accordingly, a product ansatz of two Dirac-

like basis functions is chosen, in order to represent 2D eigenstates ψm/n(φs, φu), for a

two-dimensional (2D) potential surface V (φs, φu), on a spatial grid with basis functions

ϕi/l(φu) and ϕj/k(φs).

|ψm〉 =
∑

ij

cij,m|ϕi〉|ϕj〉 and |ψn〉 =
∑

kl

ckl,n|ϕk〉|ϕl〉 . (4.14)

The resulting 2D Fourier Grid Hamilton matrix elements Hijkl are defined as,

Hijkl = 〈ψm|Ĥ|ψn〉 = 〈ϕi|〈ϕj |T̂ + V (φs, φu)|ϕk〉|ϕl〉
= 〈ϕj |T̂s|ϕk〉δil + 〈ϕi|T̂u|ϕl〉δjk + V (φs, φu)δjkδil ,

(4.15)

if φs and φu are uncoupled in T̂ = T̂s+ T̂u. Parameters used for the FGH method are listed

in Tab. 4.10. The chosen values for potential cutoff energy, grid extension and number of

grid points are found to be sufficient in order to resolve more than 1000 states ψm or 250

quartets ψA1,A2,B1,B2
p on each of the three surfaces. Each state belongs to one of the four

irreducible representations (A1, A2, B1, B2) of the C2v point group. Eigenenergies Em of

800 unlocalized states obtained for neutral (N), anion (A) and cation (C) state surfaces

are plotted in Fig. 4.33. For the sake of comparability, anion and cation state energies in

the plot are shifted by -3220meV and -1590meV, respectively, corresponding to the gauge
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grid boundaries, φs [rad]: ±0.8
grid boundaries, φu [rad]: ±1.6
number of grid points: 150 × 150

moment of inertia, Is [me]: 218952.18

moment of inertia, Iu [me]: 54738.045

potential cutoff [eV]: ≈ 1.3

Table 4.10: FGH parameters used

for the calculation of 2D vibrational

eigenstates of COD on Si(100), utilizing

the two-dimensional, neutral, anion and

cation state surfaces.

Figure 4.33: Energies Em ofm = 1 · · · 800 unlocalized states

as obtained via the Fourier Grid Hamiltonian (FGH) method

(see above) for neutral (N), anion (A) and cation (C) potential

state surfaces of COD@Si(100) (see Sec. 4.2). For the sake of

comparability, anion and cation state energies are shifted by -

3220meV and -1590meV, respectively (VN (φs = φu = 0) =

VA(φs = φu = 0) = VC(φs = φu = 0) = 0).

(VN (φs = φu = 0) = VA(φs = φu = 0) = VC(φs = φu = 0) = 0). The state energies in the

left reveal qualitative information about the system. For all three surfaces approximately

40 states with energies below the energy of the potential maximum at φs = φu = 0 are

found. For all three surfaces an energy range of ≈ 900meV is covered by the first 750

states, which have been included as a maximum for each surface during all propagations.

It is further seen from the plotted energies, that all three surfaces are rather equal in

shape. The anion potential differs a bit more from the neutral surface (higher barrier),

than the cationic one, as already discussed in the 1D section on page 78.

4.4.2 Technical details

(1) Vibrational state localization in two dimensions:

By means of the FGH (see Sec. 2.2) N quartets of unlocalized 2D wave functions

ψA1,A2,B1,B2
p (φs, φu) are obtained, for the 2D potential surfaces showing C2v symmetry,

which transform like A1, A2, B1 and B2. They have amplitudes on the left- and right-

hand side of the potential-centered switching barrier (see Fig. 4.34). Localization to the

left or right of the switching barrier, as needed for our dissipative model (see Sec. 2.4.5),

is achieved via the following linear combinations for each quartet,

ψ̃L,R
n=2·p =

1√
2

(
ψA1
p ± ψB1

p

)
and

ψ̃L,R
n=2·p+1 =

1√
2

(
ψA2
p ± ψB2

p

)
,

(4.16)

resulting in four localized states or two localized state doublets ψ̃L,R
n (∀p = 0, . . . , N).

Left-localized states have their spatial probability maximum at φs < 0, right-localized
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Figure 4.34: Quartet ψA1,A2,B1,B2

0 of 2D unlocalized states and doublets ψ̃L,R
0 , ψ̃L,R

1 of localized

states as obtained for the neutral ground state potential of COD@Si (see Sec. 4.2.1).

states at φs > 0. Fig. 4.34 shows the first quartet of unlocalized ψA1,A2,B1,B2
0 and localized

wave functions ψ̃L1,L2,R1,R2
0 , respectively, as an example.

The absolute value of the wave function between the potential center, i.e., the center of the

switching barrier and the ‘left’ grid border, along the switching coordinate φs is taken as

a measure for the corresponding degree of localization to the left, QL
n . The corresponding

integral for localized state ψ̃L
n is given as,

QL
n =

0∫

−∞

+∞∫

−∞

∣
∣
∣ψ̃L

n (φs, φu)
∣
∣
∣

2
. (4.17)

According to the definition in Eq. (4.16), the relation QL
n = QR

n holds true as in the case

of 1D localized states (Eq. (2.12)).

The localized state energies are calculated in analogy to Eq. (2.11) as,

EL
n=2·p = ER

n=2·p =
1

2

(
EA1

p + EB1
p

)
and

EL
n=2·p+1 = ER

n=2·p+1 =
1

2

(
EA2

p +EB2
p

)
.

(4.18)

It has to be mentioned that after the FGH diagonalization, the states are ordered with

respect to their energy and not with respect to their suitable localization partners. There-

fore, an algorithm is used to allocate appropriate partners for localization. The highest

localizability can be achieved only for the ‘correct’ partners, which is the selection criterion

used in the localization algorithm. Finally, the localized functions are sorted with respect

to their energies EL
n = ER

n .

For all doublets of localized states ψ̃L,R
n tunnel splittings ∆En are defined as,

∆En=2·p = EA2
p − EB2

p and ∆En=2·p+1 = EA1
p − EB1

p . (4.19)

The corresponding tunneling times are calculated accordingly via,

Tn = (π~)/∆En . (4.20)

Tunneling times Tn and degrees of localization QL
n for 375 localized state doublets are

plotted in Fig. 4.33, for neutral (N), anion (A) and cation (C) state surfaces, respectively.
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Figure 4.35: Tunneling times Tn in ps and degree of localization QL
n as calculated via Eq. (4.20)

and Eq. (4.17), respectively, for left-localized states of neutral (N), anion (A) and cation (C) states of

COD@Si(100).

The corresponding tunneling times Tn start in the µs-range and decay to ≈ 0.1 ps within

the first 20 doublets. The state localizability is better than 80% up to doublet 20 and

oscillates by ±10% around that value afterwards. The final behavior of Tn and QL
n does

not change for localized state doublets up to n = 375. The oscillations in both, Tn and

QL
n , are partly due to the resorting of the localized states according to their energies EL,R

n ,

as mentioned before.

(2) Calculation of switching rates in two dimensions:

As formulated for 1D in Sec. 2.7, the switching rate per time Rt
sw is defined as,

Rt
sw = −dPL(t)

dt
=
dPR(t)

dt
, (4.21)

where PL,R(t) are the overall populations of ‘left’ and ‘right’ oscillator well, respectively.

PL is obtained via the application of the following projection operator (see Eq. (2.71)),

P̂L(t) =

K/2
∑

k=1

L∑

l=1

|ϕk〉|ϕl〉〈ϕk|〈ϕl| , (4.22)

resulting in the following equation,

〈

P̂L(t)
〉

=
∑

n,m

ρnm(t)

K/2
∑

k=1

L∑

l=1

cklmckln , (4.23)

summing over half the grid along the switching coordinate (φs) and the full grid along the

second coordinate (φu). The probability of right-localization is PR(t) = 1− PL(t)

(3) Density matrix propagation in two dimensions:

As for the 1D propagations of the density matrix (see Sec. 4.3.2), a 4th order Runge-Kutta

integrator is used. The time step is set to 50 ~/Eh and 30 ~/Eh for one- and two-surface
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calculations, respectively. The propagation time for all single-surface calculations is set

to about 3 × τvib1 . 200 unlocalized states ψA1,A2,B1,B2
p or 100 localized doublets ψ̃L,R

1 are

included for all 1S2D propagations and 750 unlocalized states or 375 localized doublets on

ground state and resonance surface for the 2S2D propagations, respectively.

As explained in section 4.3.2 for the 1D case, the tunnel splitting for the lowest doublet

∆E0 is set to zero for all propagations, to avoid tunneling on the µs timescale. In reality,

the slow tunneling should be suppressed by environmental noise.

For the 2S2D propagation some additional measures are taken, in order to reduce the prop-

agation time. After the rapid electronic relaxation of the resonance population, the excited

state surface is excluded from the propagation. To further reduce the propagation time,

the number of off-diagonal elements being considered in the electronic ground state den-

sity matrix is adapted dynamically during the propagation. Off-diagonal elements ρnn±1,

connecting individual states of localized doublet pairs are important for the description

of tunneling. Other off-diagonal elements ρmn, outside the ‘first’ line of off-diagonal el-

ements in the electronic ground state result from the electronic decay of the resonance

state population. Fortunately, these elements decay according to the vibrational relax-

ation, since here no coherence-creating processes are included. Accordingly, off-diagonal

elements are excluded from the propagation below a threshold for their absolute value of

1 × 10−12. During the relaxation also the number of populated states decrease. Since no

rate-based upward processes are included for the 2S2D model, the maximal range of a

single rate transition is dynamically adopted to the highest state which has population

above 1× 10−12.

4.4.3 Ohmic bath dissipative model

For the 1D calculations, the harmonic, bilinear dissipative model, as introduced in

Sec. 4.3.3, was used. This model does not allow for L ↔ R transitions and the rates

scale linearly with the state number i. For 2D, a clear assignment of quantum numbers

along φs and φu is not possible for states above the barrier. Therefore, a simple linear

scaling law is not applicable for a calculation of 2D vibrational state lifetimes. Instead,

the calculation of state-resolved vibrational relaxation rates is performed via the Ohmic

bath model, as introduced for 1D in Sec. 2.5.2. In the following, the extension to two

dimensions is briefly presented.

Initial and final vibrational system states ψi,f (φs, φu) depend upon two spatial coordinates

φs and φu, now. Also, the former 1D bilinear coupling operator of single-phonon excitation

form in Eq. (2.35) is adopted to two dimensions,

V̂sb = (λb,s · φs + λb,u · φu) ·Qb , (4.24)

where λb,s/u denote the vibration-phonon coupling constants between system modes (s, u,)

and bath oscillator χb(Qb). Since the product of system and bath states is separable (see
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Eq. (2.33)), the general dissipative rate Eq. (2.34) can be rewritten as,

W vib
f←i =

2π

~

N∑

b=1

|〈ψf |λb,s · φs + λb,u · φu|φi〉|2 · |〈χ1
b |Qb|χ0

b〉|2 · δ(~ωb − ~ωif ) , (4.25)

where, ωb and ωif are the frequencies of bath phonons and system vibrations, respectively.

Again, a bath at 0K is assumed and only single phonon transitions are allowed. Therefore,

only the ground and first excited bath oscillator states, χ0
b and χ1

b , are considered. The

Ohmic phonon-bath has an equidistant frequency spacing between the N bath oscillators,

ωb = b ·∆ω = b · ν̃cut · c ·h/N , where c is the speed of light and ν̃cut · c ·h the cutoff energy.

Further, the definition of the coupling constants λb,s/u are chosen as [102],

λb,s/u = b

(

2Mb Is/u γs/u (∆ωb)
3

π

)1/2

, (4.26)

with the moments of inertia Is/u. In Sec. 2.5.2 it was shown, within the harmonic wide-

band and continuum limit, that the coupling parameter γ = 1/τvib1 . Further we choose

γs = γu = γ for all 2D calculations. Assuming a harmonic bath, one can use the analytic

solution for the corresponding matrix elements, 〈χ1
b |Qb|χ0

b〉 =
√

(~/2Mb ωb). Applying

the above definition of λb,s/u, Eq. (4.25) becomes if Lorentzian broadening is assumed for

the δ − functions:,

W vib
f←i = 2 |〈ψf |

√

Isφs+
√

Iuφu|ψi〉|2 ·γ ·∆ωb ·
N∑

b=1

ωb ·
1

π
· γL
γ2L + (~ωb − ~ωif )2

. (4.27)

The 2D Ohmic bath rate model includes four parameters, namely the number of bath

oscillators N , the cutoff ‘energy’ ν̃cut, and the Lorentzian width γL. ν̃cut is set to 530 cm−1

for all calculations (see Sec. 1.3). The two other parameters, n and γL, will be considered

shortly. γ is chosen such, that for the calculation of W vib
0←1 via Eq. (4.27) the condition

W vib
0←1 = 1/τvib1 is fulfilled. Eq. (4.27) is the working equation for relaxation rates between

2D vibrational states of COD@Si. Thermal heating and corresponding vibrational upward

rates are calculated via the condition of detailed balance, as defined in Eq. (2.40). In

Appendix F additional information about the calculation of coupling matrix elements is

given.

(1) Parameter testing: One-dimensional model

In the following the 1D results for the harmonic, bilinear and the Ohmic bath dissipative

models (see Sec. 2.5.2) are compared to each another. First, the convergence of the 1D

Ohmic bath parameters is considered. Fig. 4.36 shows three plots for switching rate

dependencies on ν̃cut, γL and N . The vibrational dissipation parameter τvib1 is set to 1 ps,

here. The plots show switching rates Rt
sw for the dipole mechanism (in blue) at 10 nA, as

an example of IET-induced switching, and the purely temperature-induced switching (in

black) at 150K.
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Figure 4.36: Switching rates Rt
sw [Hz] obtained for 1S1D propagations, using one-dimensional vibra-

tional states depending on Ohmic bath parameters. Default parameters: ν̃cut = 530 cm−1, γL = 10 cm−1,

N = 500. Left: Dependence upon the Ohmic bath cutoff frequency ν̃cut. Center: Dependence upon

the Lorentzian width of single surface-bath oscillators γL. Right: Dependence upon the number of bath

oscillators N . Black circles: Switching rates Rt,T
sw [Hz] for temperature-induced switching. T = 150K,

τvib1 = 1ps. Blue squares: Switching rates Rt,D
sw [Hz] for dipole-induced switching. I = 10 nA, τvib1 = 1ps,

T = 0K.

ν̃cut [cm
−1] 530

γL [cm−1] 10

N 500

Table 4.11: Ohmic bath parameters, cho-

sen for 1D calculations of dissipative population

transfer rates, between 1D vibrational levels of

COD@Si(100).

The switching rates are nearly constant beyond ν̃cut = 300 cm−1 for both temperature-

and dipole-induced switching. Therefore, using a cutoff at 530 cm−1 is unproblematic,

since all important vibrational quanta of the system can be transferred between adsorbate

and bath in that frequency range. The switching rates show a weak linear correlation with

respect to the energetic width γL in a range between 1 to 30 cm−1. The parameter is not

of great influence on the switching rates of our COD@Si model and γL is set to 10 cm−1 for

all our calculations. No large dependency of switching rates on the number of oscillators

N is seen either, as shown in the last plot. N has to be large enough to ensure frequency

independent damping, which is the definition of the Ohmic bath. A value of N = 500 is

sufficient in the 1D case. Table 4.11 again summarizes the Ohmic bath parameters used

for all 1D calculations.

(2) Comparison of Ohmic and harmonic, bilinear bath model:

A comparison of both dissipative models, showing switching rates for dipole-, thermally-

and anion resonance-induced switching, is shown in Fig. 4.37. In each graph no major

differences are observed for vibrational lifetimes τvib1 above 10 ps. Therefore, the earlier

discussion about the switching process in the one-dimensional, single-surface model is also

valid for the dissipative Ohmic bath model.

Contrary to the bilinear, harmonic dissipative model, the Ohmic bath approach allows for

overtone and L ↔ R transition, increasing the switching yield by maximally 30%. Con-

sidering the small changes, as compared to the harmonic, bilinear dissipative model, these
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Figure 4.37: Comparison of 1D switching rates Re
sw [1/e] for (a) harmonic, bilinear and (b) Ohmic

bath dissipative models, respectively. Default Ohmic bath parameters: ν̃cut = 530 cm−1, γL = 10 cm−1,

N = 500. Left: Dipole-induced switching rates Re
sw [1/e] versus vibrational lifetime parameter τvib1 [fs].

I = 10 nA. Center: Arrhenius plot of dipole and temperature-induced switching rates Rt
sw [Hz] versus

the inverse temperature 1/T . I = 0.7 nA, τvib1 = 10ps. Right: Anion resonance-induced switching rates

Re
sw [1/e] versus the vibrational lifetime τvib1 [fs]. I = 1nA, ∆Eres = 1 eV.

Figure 4.38: 1D dissipative downward transition rates W vib
i−n←i [Eh/~] between 1D, left localized

states ψL
i , versus doublet number i. Left: i − 1 ← i transition rates for (a) harmonic, bilinear- and (b)

Ohmic bath dissipative model, respectively. Right: Transition rates for the Ohmic bath model and variable

‘overtone-height’ n = |f − i|.

are obviously not too important, in the 1D representation at least. The finding proves the

major assumption, made for the harmonic, bilinear model, namely the representation of

dissipative processes in the double-well potential via two independent harmonic oscillators

(see also Fig. 2.2 in Sec. 2.5.2.). Fig. 4.38 shows the dissipative transition ratesW vib
i−n←i for

both models. The i− 1 ← i transition rates evolve linearly with state number i for both

dissipative models. The overtone transitions are, except for a few i − 2 ← i transitions

rates, several orders of magnitude below the i − 1 ← i transition rates. Therefore, the

harmonic, bilinear dissipative model seems to be a reasonable approximation.
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Figure 4.39: Switching rates Rt
sw [Hz] vs. Ohmic bath parameters using localized, 2D vibrational

states Left: Cutoff frequency ν̃cut. Center: Lorentzian width of single bath oscillators γL. Right: Number

of bath oscillators, N . Black circles: Switching rates Rt,T
sw for temperature-induced switching at T = 100K.

Blue squares: Switching rates Rt,D
sw as obtained for the dipole mechanism and I = 10 nA. τvib1 = 1ps.

ν̃cut [cm
−1] 530

γL [cm−1] 10

N 1000

Table 4.12: Parameters, as used for the Ohmic

bath dissipative model and localized, 2D vibra-

tional states of COD@Si(100).

(3) Parameter testing: Two-dimensional model:

The Ohmic bath dissipative model is used to calculate dissipative population transfer

rates between the 2D vibrational states of COD on Si(100). First, convergence for all

Ohmic bath parameters has to be ensured. The switching rate dependencies on cutoff fre-

quency ν̃cut, Lorentzian width γL and number of bath oscillators N are shown in Fig. 4.39.

Switching rates in Hz for temperature- and dipole-IET driven vibrational excitation are

plotted in black. It is seen from the left graph of Fig. 4.39 that the switching rates are

nearly constant for ν̃cut > 300 cm−1. This finding indicates, as in 1D, that all ‘important’

vibrational transitions for the 2D case are covered within the energy range of ≈ 40meV.

Regarding the γL dependence, an inverted parabola is seen for the thermal switching and

a somewhat larger dependence for the dipole case, as compared to 1D. Still, the changes

are small and γL is set to 10 cm−1, as before. Despite only minor changes in the result-

ing switching rates, the number of bath oscillators is increased to N = 1000 for all 2D

calculations. Table 4.12 summarizes the 2D Ohmic bath parameters.

4.4.4 Dipole-induced switching

2D localized states and the 2D dipole surface, as shown in 4.2.4, are used in the pertur-

bative rate equation (2.49) to obtain dipole-induced population transfer rates W dip
f←i.

Eq. (2.49) is also used to obtain the inelastic, dipole tunneling current fraction ηdip. The

first non-negligible transition rate is found to connect the vibrational ground state and the

third doublet of localized, 2D vibrational states. For a current of I = 1nA, the resulting

value for ηdip2←0 is 2.1×10−5 which is close to the value of 1.9×10−5 obtained for the 1← 0

transition in 1D (see Sec. 4.3.4).
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Figure 4.40: Dependence of purely dipole-induced switching rates per electron Re
sw. Left/Center:

STM current (I) dependence and vibrational lifetime (τvib1 ) dependence: Rates calculated for 1S2D model

(a) and 1S1D model (b), respectively. The ratio (a/b) is plotted in blue. Right: Vibrational lifetime (τvib1 )

dependence: Rates calculated for the 1S2D model, including (a) and excluding L↔ R transition rates (c).

The ratio (a/c) is plotted in blue.

In order to study the switching mechanism and to compare 1S1D and 1S2D results,

Fig. 4.40 shows the dependence of dipole-induced switching rates per electron Re
sw, upon

the STM current and the vibrational lifetime. A constant switching yield per electron is

observed for 1S2D, as well as an increase of Re
sw by a factor of ≈ 1.8, relative to the 1S1D

results. The single-electron switching mechanism is preserved and the increase is in the

expected range, due to different dipole-surface fits for 1D and 2D as already discussed

previously (see Sec. 4.3.4). Since all population is initially in the vibrational ground states

ψ̃L
0 or ψ̃R

0 , direct transitions to states in the ps-tunneling regime dominate the switching

process, as already found for the 1S1D model. The transition rates between vibrational

ground state and the first state above the barrier are somewhat larger for 2D as compared

to 1D. This is taken as the main reason for the observed increase for the switching rates

for 2D. Besides the increase in the dipole rates, another reason for faster switching in 2D

lies in the 9meV lowered switching barrier for the 2D potential energy surface.

In the middle graph in Fig. 4.40, the vibrational lifetime dependencies of 1S1D and 1S2D

dipole-induced switching rates are shown. The ratio between both rates is plotted in blue

and reveals qualitative agreement for τvib1 > 5 ps, where a constant ratio of ≈ 1.8 is seen.

For smaller values of τvib1 , the purely L↔ R rate-induced switching dominates, as can be

seen from the right graph of Fig. 4.40. Again the 1S2D switching rates are plotted versus

the vibrational lifetime τvib1 , (a) including and (c) neglecting L ↔ R transition rates.

Below τvib1 = 0.5 ps only L ↔ R rate dominated switching is seen, since switching rates

are virtually zero for curve b. Switching via the L↔ R rates seems to be more important

for the 1S2D model than for 1S1D. A possible reason is the decreased localizability Q of

2D vibrational states (see Fig. 4.33) compared to 1D vibrational states. In 2D, some

states show Q-values of only 70% whereas Q is always above 80% for 1D vibrational

states. An additional contribution comes from L↔ R dissipative rates in the 2D model.
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Figure 4.41: Left: Arrhenius plots of dipole- and temperature-induced switching for COD@Si(100) in

the 2D neutral electronic ground state. Comparison between calculated switching rates (solid lines) and

STM-experimental data (black crosses) [151]. Calculations: Switching rates Rt
sw [Hz] for τvib1 = 1ps and

10 ps at a current of 0.7 nA. Experiment: Please refer to the caption of Fig. 4.20 for further details. Right:

First derivative of switching rates Rt
sw with respect to the inverse temperature.

τvib1 [ps] 1 10

1/Tc [K
−1] ≈ 0.018 ≈ 0.018

Tc [K] ≈ 56 ≈ 56

A [Hz] 2.41 × 1012 9.62 × 1010

EA [meV] 134.9 111.0

Table 4.13: Crossover temperatures

Tc [K], 1/Tc [K
−1] and Arrhenius rate

law parameters A [Hz] and EA [meV] for

dipole-induced switching rates obtained

for the 1S2D model and different vibra-

tional lifetimes τvib1 .

4.4.5 Combined temperature- and dipole-induced switching

Next, combined dipole- and temperature-induced switching in the electronic ground state

is examined and compared to 1D results and the experiment. The left side of Fig. 4.41

shows Arrhenius plots for two different vibrational lifetimes τvib1 . The current is set to

0.7 nA in order to meet experimental conditions [151]. The crossover temperatures Tc and

Arrhenius parameters obtained from Fig. 4.41 are summarized in Tab. 4.13. Unfortunately,

the calculated data points show small oscillations. Therefore, only the first derivatives

could be evaluated here. The comparison to the corresponding 1S1D data, listed in Tab. 4.8

on page 77, shows perfect agreement for the value of Tc. The Arrhenius prefactors A are

slightly higher for 1S2D, which is due to the higher rates of purely dipole-induced switching

here. The activation energy is lowered by ≈ 3meV, as compared to the 1S1D data. The

decrease is slightly smaller than expected, since the 2D TS is 9meV lower in energy than

for the 1D potential.

4.4.6 Resonance-induced switching: Below-threshold regime

Next, the analysis of resonance-induced switching in the below-threshold limit is performed

for the 1S2D model, in analogy to the 1S1D procedure (see Sec. 4.3.6). The HOMO- and

LUMO-based resonance state surfaces for anion and cation of COD@Si(100) are plot-

ted in Fig. 4.7 on page 61. The 2D switching barriers are lowered relative to 1D by

9meV, 25meV and 12meV for neutral, anion and cation surfaces, respectively, as listed
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Figure 4.42: Switching rates per electron Re
sw for below-threshold resonance switching via anion

and cation electronic states. |∆Eres| = 3 eV, τvib1 = 1ps. Left: Switching rates vs. STM current I [A].

τres = 1 fs. Right: Switching rates vs. resonance lifetime τres. 1S1D results (1D) are shown for comparison.

I = 1nA.

in Tab. 4.1.

As previously, the perturbative rate equation (2.52) is used to calculate resonance-induced

transfer rates. The resulting resonance transition rates W res
f←i are determined by the

difference-potential between resonance and neutral ground state surfaces, (Ves(φs, φu) −
Vgs(φs, φu)). Further the resonance lifetime τres and the spacing between resonance center

and Fermi level ∆Eres enter as model parameters. Before checking the parameter depen-

dencies of the resonance switching rates, the 1S2D inelastic resonance tunneling current

fraction ηres is calculated via Eq. (2.55). The first, non-negligible transition rate is seen

between the vibrational ground state and the third doublet of localized 2D vibrational

states. The rate W res
2←0 is ≈ 1.3 × 10−11 (Eh/~) for the anion- and ≈ 1.4 × 10−13 (Eh/~)

for the cation-resonance with τres = 1 fs, |∆Eres| = 1 eV and I = 1nA. The resulting

values for ηres are about 8.6× 10−5 and 9.3× 10−7 for anion- and cation-surfaces, respec-

tively. The large difference between both, of about two orders of magnitude, was already

observed for 1S1D. A comparison to values for ηres as calculated for the 1S1D model on

page 80, shows a decrease by ≈ 20% and ≈ 80% for anion- and cation-induced switching

and 1S2D, respectively.

The dependence upon the STM current, plotted in the left graph of Fig. 4.42, reveals

the same single-electron switching mechanism as for 1S1D. The 1S2D ratio of about 1.08,

between switching yield of cation and anion is smaller than the ratio of about 1.8, obtained

for 1S1D. Here, it was already seen that the ratio does not depend on |∆Eres|, which is

set to 3 eV here. Also τres, set to 1 fs here, does not affect the rate, as one can seen from

two plots on the right side of Fig. 4.42. 1S2D and 1S1D results are plotted in comparison,

showing that the anion yield is higher and that the cation yield is lower in 1S2D than

in 1S1D (for τ1vib > 1 ps). For τvib1 = 1ps, the ratios between 1S1D- and 1S2D-switching

rates are 0.8 and 1.4 for anion and cation, respectively. These changes further improve

the agreement to the experimentally observed equivalence of switching yields per electron

at positive and negative bias voltages [10]. The ratio between cation- and anion-induced

switching, given as a blue dotted line in the left plot of Fig. 4.43, is almost constant.
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Figure 4.43: Below-threshold, resonance-induced switching rates per electron Re
sw in dependence of

the vibrational lifetime τvib1 . Parameters: τres = 1 fs, I = 1nA, |∆Eres| = 1 eV. Left: Cation and anion

resonance-induced switching in 2D. Middle/Right: Anion and cation resonance-induced switching in 1D

and 2D. The ratio between 2D- and 1D-switching rates is plotted in blue.

A new finding for the 1S2D model is the constant rate of resonance-induced switching

for τvib1 < 1 ps, as compared to the 1S1D results. A comparison of resonance-induced

switching rates versus the parameter τvib1 = 1ps is shown in the center and on the right

hand of Fig. 4.43.

Further it is seen, that the anion switches more rapidly compared to the cation in con-

junction with an increasing vibrational lifetime. The same picture was already seen for

the 1S1D model and is also here caused by the fact that doublets with a long tunneling

time Tn states (states of lower energy) are less efficiently populated via the cation surface

compared to the anionic one. Therefore switching via the anion resonance is more sensitive

to the the parameter τvib1 . A detailed explanation, taking transition rates and tunneling

times into account, was already given in Sec. 4.3.6.

In the following the qualitative difference between 1S1D and 1S2D models, found for the

‘below 1ps regime’ is discussed. For this purpose, the 1S2D switching rates are calculated

and plotted in dependence upon the vibrational lifetime in Fig. 4.44. The calculations

include (a) and exclude (b) L↔ R transition rates between both potential wells. It turns

out that the L ↔ R-rate driven switching becomes much more important for 1S2D, as

compared to 1S1D, since it entirely dominates the switching below τvib1 = 1ps. For 1S1D,

the L↔ R-dominating regime was found for vibrational lifetimes below 0.1 ps. As already

discussed for the 1S2D dipole results, the increased importance of L↔ R transition rates

is assumed to originate from the lower degree of localization for the 2D states and from

the inclusion of L ↔ R transitions via the Ohmic bath dissipative model. Nevertheless,

within the reasonable vibrational lifetime range above 1 ps the switching rates changes by

a factor of two at most. This is an acceptable range for an order of magnitude estimate

of resonance-induced switching in the below-threshold regime.

Fig. 4.45 depicts the dependence of resonance-induced switching rates upon the parameter

∆Eres . The qualitative picture, shown here, resembles the behavior as already seen for
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Figure 4.44: Switching rates per electron Re
sw, for anion resonance- (left) and cation resonance-

induced switching (right), depending on the vibrational lifetime parameter τvib1 . (b) All transition rates

are included, (a) all L↔ R-transition rates are set to zero. τres = 1 fs, I = 1nA, |∆Eres| = 1 eV.

Figure 4.45: Anion- and cation-resonance-induced switching rates per electron Re
sw [1/e], depending

upon the energetic spacing between resonance and the Fermi level of the tip ∆Eres for three different

resonance lifetimes τres. 1S1D results are shown for comparison as green, solid lines. τvib1 = 1ps.
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Figure 4.46: 2S2D ground state population P gs
R (t) in the first 100 fs of the propagation for various

resonance lifetimes τres. All population was initially located in ψ̃L,g
0 of the electronic ground state and

upward projected to the resonance surface before the start of each propagation. τvib1 = 1ps.

the 1S1D model. The 1S1D results for τres = 1 fs are shown in green for comparison.

A slight increase and decrease for anion and cation, respectively, are seen again. If one

considers the voltage independence observed in the experiment, the previously discussed

possibilities for the below-threshold regime are conceivable within certain limits for both

1S1D and 1S2D models.

4.4.7 Resonance-induced switching: Above-threshold regime

Finally, the 2S2D, above-threshold calculations for resonance switching are compared to

the 1S2D results. Technical details of those two-surface propagations were already dis-

cussed in Sec. 4.4.2. As stated there, each propagation is split into two parts. In the

first part, including two surfaces, the upward projected, localized ground state population

quickly decays back to the ground state. In the second part, only the neutral surface

is propagated further. The switching yield is determined after all population relaxed to

non-switching, i.e., non-tunneling vibrational states in the electronic ground state. Con-

vergence in the switching yield per electron is observed, including 750 vibrational wave

functions for the electronic ground state and also for the resonant surface, respectively.

Only two parameters enter the 2S2D simulation of resonance-induced switching, namely

the vibrational lifetime in the electronic ground state τvib1 and the resonance lifetime τres.

The following part focuses on the mechanistic discussion of resonance switching in the

2S2D model. Therefore, a set of propagations will be looked at starting with an upward

projection of state ψ̃L,g
0 carrying all electronic ground state population, initially.

Fig. 4.46 depicts the switched population in the right potential well of the electronic ground

state and the resonance state for both anion and cation resonances, respectively.

The localization error, coming with the upward projection of the entirely left-well localized

ground state population of ψ̃L
0 , is below ≈ 1 × 10−10. The error is far below the final

switching yield and therefore taken as insignificant. So far, the switching mechanism for

the 2S1D approach was stated to be dominated by tunneling in the electronic ground state.
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Figure 4.47: Switching rates per electron Re
sw [1/e] for the 2S2D model of above-threshold, resonance

switching. Rates are plotted in dependence upon the resonance lifetime τres for various vibrational lifetimes

τvib1 .

The same picture is seen for the 2S2D model, despite explicitly including the possibility

for switching in the resonant state. For all tested resonance lifetimes τres = 1 . . . 9 fs, the

amount of population, switching already in the resonance state, stays below 1× 10−8 1/e.

Resonant state lifetimes above 9 fs are considered unlikely for the system and were therefore

not tested.

Instead, Fig. 4.46 shows that the switching takes place in the neutral ground state. It

is seen that within the first few fs of each propagation, the major part of the switching

population is already trapped in the right well of the ground state potential. Oscillations

due to back- and forth tunneling of the excited wave packet are not observed, since they

are damped by vibrational dissipation (τvib1 = 1ps).

Fig. 4.47 shows the dependence of the switching rate upon the resonance lifetime for

different vibrational lifetimes. The qualitative shape of the plots was already seen for

2S1D and therefore 2S1D rates are added as blue lines for comparison. All rates in the

first and second graph are scaled by 1× 10−3, accounting for the ratio Ir/I or excitation

probability (see Sec. 4.3.7). Under this assumption, the switching rates for anion and

cation are reasonably close to the experimental value of ≈ 1 × 10−9 [1/e] [10]. Generally,

each curve has two regimes. A zone of ‘strong’ τres dependence up to 2.5 fs and a zone of

weaker dependence above. While for the first one, switching via anion and cation resonance

is similarly rapid, the switching rates diverge for anion and cation in the latter zone, as

can be seen in the right graph of Fig. 4.46. Here it is found, that the switching yield for

the cation stays nearly constant above τres = 2.5 fs, while the yield for the anion further

increases. The difference becomes larger with increasing values of τres and τvib1 . Within

the 2S2D model, combinations of ‘large’ values for both, e.g. τres > 5 fs and τvib1 > 10 ps

therefore, do not fit to the experimentally observed insensitivity of the switching yield

on the sign of the bias voltage. The dependence of the anion resonant switching rates

upon τres decreases with an increasing dissipative strength for the neutral ground state.
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Figure 4.48: Switching rates per electron Re
sw [1/e] for the 2S1D and 2S2D models of above threshold,

resonance switching. Rates are plotted in dependence upon the vibrational lifetime τvib1 . τres = 1 fs. Left:

Comparison of 1D and 2D switching rates per electron, with respect to the vibrational lifetime τvib1 . Right:

Comparison of anion- and cation-resonance-induced switching rates obtained in 2D. Rates are not scaled.

Obviously, a longer lifetime on the excited anion surface allows for higher vibrational

excitation in the ground state, which is not seen for the cation resonance.

Fig. 4.48 shows the vibrational lifetime dependence of the 2S2D resonance switching.

Here the focus is on the comparability of 2S1D and 2S2D results. As already seen from

the one surface calculations in Fig. 4.43, qualitative agreement is achieved only above

τvib1 ≈ 1 ps. Within the 1S2D model L ↔ R rate-induced switching was dominating

for smaller vibrational lifetimes (see Fig. 4.44). In the 2S2D model no IET rates are

present. Now, the same constant switching yield per electron is seen below τvib1 < 1 ps, as

already observed for the 1S2D. The latter finding shows that switching is dominated by

L ↔ R transition rates, below τvib1 < 1 ps, originating from the Ohmic bath dissipative

model applied on non-perfectly localized vibrational states. The latter can be taken as

an artifact which is not further considered in the discussion since the L ↔ R transition

rates are not dominating the switching process for physically realistic vibrational lifetimes

τvib1 ≥ 1 ps.

In the right graph it is further seen that the anion switching yield per tunneling electron

exceeds the cation yield for τvib1 > 1 ps, which is also in agreement to the already discussed

2S1D and 1S2D models.

4.4.8 Summary

The last section included the extension to a two dimensional representation of the bi-

conformational switching of COD@Si(100). Preliminarily, the one-dimensional switching

Hamiltonian used earlier only allowed for a symmetric rotation of both COD-(CH)2 groups.

The second dimension includes the possibility of an independent rotation of both groups.

As a consequence, the switching barrier is slightly lowered, following the ‘real’ transition
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state of the potential. Using the same toolbox as before, the 2D switching dynamics

was tested using one- and two-surface calculations. But, in 2D the dissipative rates were

calculated via the ‘Ohmic bath’ model, allowing for the calculation of dissipative rates

between all states, instead of a simple linear scaling law and harmonic selection rules.

Nevertheless, the former 1S1D and 2S1D results, using the bilinear, harmonic dissipative

model were confirmed for the 1D models via the Ohmic approach. Further, most other

findings, obtained in 1D, were confirmed by the 2D models. Those findings included

the single-electron mechanism, equivalent switching rates via anion and cation resonance

states, and the crossover temperature between IET- and temperature-driven switching

regimes. As the only major difference, an increased contribution of switching via direct

L↔ R transition rates was seen for vibrational lifetimes below 1 ps, coming mainly with

the Ohmic bath dissipative model being applied on non-perfectly localizable states.
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Chapter 5

Conclusion

The aim of this thesis is the quantum dynamical study of two examples of scanning tun-

neling microscope (STM)-controllable, Si(100)(2×1) surface-mounted switches of atomic

and molecular scale.

The STM and the atomic force microscope (AFM) are powerful experimental techniques

that, in a revolutionary way, have opened the possibility for the examination and manip-

ulation of preliminary hidden landscapes, composed out of three-dimensional molecular

and atomic surface structures [7, 8].

The Si(100)(2×1) surface and semiconductor surfaces in general are an experimentally

challenging, but very flexible and interesting object for examinations via the STM. They

offer well defined chemisorption sites and a moderate coupling to the adsorbate, preserving

the flexibility for intermolecular structure rearrangements of a switching molecule, for

example. Additionally, silicon is a standard substrate of the current electronic industry

and as such an interesting basis for future surface-mounted switches. Beside that, the

understanding of fundamental processes, like vibrational and electronic excitation and de-

excitation of surface-adsorbates, was the main motivation for this theoretical study. For

the provision with recent experimental results and the ability to simulate and interpret

them theoretically, the collaborative research centre Sfb 658 ”Elementary processes in

molecular switches at surfaces” is greatly acknowledged in whose framework this thesis

was created.

The actual work focuses on STM-induced changes in chemisorbed adsorbates on the

Si(100)(2×1) surface, studied by the means of quantum dynamical simulations. There-

fore, a general model for binary switching on a 1D and 2D double well potential energy

surface (PES) is established, as introduced in the following. The double well structure

represents the two stable switching states on the potential energy landscape of the surface-

adsorbate. Initially, for each dynamical simulation the adsorbate is set to an electronically

and vibrationally relaxed state, i.e., a state of low energy. As a consequence the switch

is ‘trapped’ or localized in one of the two switching positions or PES minima. Therefore,

the adsorbate was characterized by a group of localized vibrational states, which sepa-

rately describe the so called ‘left’ and ‘right’ potential well of the PES. The distribution
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of the adsorbate population among the localized vibrational states represents its amount

of vibrational energy.

Within the STM experiment energy is transfered between the electrons, tunneling between

the STM-tip and the surface, and the adsorbate in a process of inelastic electron tunneling

(IET). The adsorbate might become vibrationally excited and eventually passes the barrier

between both wells of the PES and might switch to the opposite switching state. Also the

transfer of vibrational energy between the surface and the adsorbate has to be considered.

A thermally ‘cool’ surface for example will absorb vibrational energy in a dissipative

relaxation process from a vibrationally excited adsorbate.

In order to be able to describe this processes an entity called ‘density matrix’ is used, which

contains all information about the system, e.g., the population of individual vibrational

and localized states or mixtures of those states. The temporal dynamics are provided by

the propagation of the density matrix in time via an according set of equations of motion

(EQM). The latter are based on the open-system density matrix theory in Lindblad form.

Via this formalism it is possible to separate system and bath in order to restrict the

complexity of the overall problem, i.e., the number of vibrational and electronic states,

to a feasible number. Both, the tunneling electrons and the surface are subsumed in a

so called ‘bath’ entity, while the switching adsorbate is treated as the ‘system’. While

the system is treated in detail, the influence of the bath is subsumed in transition rates

between individual system states.

First order perturbation theory is used to evaluate those transition rates between vibra-

tional levels of the system part. In order to account for interactions with the surface

phonons, two different dissipative models are used, namely the bilinear, harmonic and the

Ohmic bath model. The first one considers the system states as harmonic which results in

a linear scaling law between state number or energy and dissipative transition rate. The

Ohmic bath model considers anharmonicities of the state functions and some information

about the bath, e.g. the bath phonon density of states. Additionally, the influence of

the silicon surface could be systematically tested via both models, using partly unknown

parameters in both dissipative models, covering the coupling strength between adsorbate

and surface as well as the surface temperature.

IET-induced vibrational transitions in the system are due to the dipole- and the resonance-

mechanism. The tunneling electron charge can inelastically couple to the permanent

dipole moment of the adsorbate. For the resonance mechanism a temporal population

(anion resonance) or depopulation (cation resonance) of adsorbate electronic levels causes

vibrational transitions. If the bias voltage of the STM and therefore the energy of tunneling

electrons (or holes) is below the resonance energy, resonant excitation can still take place

in the below-threshold regime. Those events are rare and their influence can be described

by first order perturbation theory again. For the above-threshold regime the probability

for a temporal population of an ionic resonant state is much higher, and a second electronic

state surface has to be incorporated into the density matrix propagation.

Therefore, only a single surface approach is used to study the influence of dipole scat-
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tering and resonance scattering in the below-threshold regime. For this, the harmonic

approximations of Persson et al. [25, 24] and Walkup et al. [70] are utilized and extended

towards a non-harmonic treatment of dipole function, resonance state potential and vibra-

tional states. The extension permits the inclusion of overtone-contributions arising from

anharmonicities, which turned out to play an important role for the switching process and

were not considered before. Further, a second electronic surface was included to study the

resonance-induced switching in the above-threshold regime.

Static properties of the adsorbate, e.g., potentials and dipole function and potentials, are

obtained from quantum chemistry and used within the established quantum dynamical

models as described above. The first example considers the switching of single H-atoms

between two dangling-bond chemisorption sites on a Si-dimer of the Si(100) surface [9].

The second system examines the conformational switching of single 1,5-cyclooctadiene

molecules chemisorbed on the Si(100) surface [10].

For H@Si(100) a hole-resonance based, single-electron mechanism was found experimen-

tally for the above-threshold, low-current regime. For the below-threshold, high-current

regime, considered here, a multi-electron switching mechanism based on vibrational ladder-

climbing and subsequent tunneling was established for a 1D switching model, i.e., H-Si

stretching and bending mode are subsumed to a single lateral switching coordinate. Un-

fortunately, there are no experimental data available for the high-current regime in the

moment, while the above-threshold, low-current regime was already a subject of a com-

prehensive theoretical study by Abe et al. [79]. Further, a model potential for the cation

resonance state is derived via Koopmans’ theorem. The theorem allows the calculation of

ionic state energies based on ab initio calculations for a neutral cluster model of H@Si(100).

Also, the influence of surface temperature and the field strength provided by the STM-tip

is tested and is found to be in good accordance with experimental and other theoretical

data. It is found that the correct quantum chemical description of the switching barrier

in the neutral state is difficult using standard density functional theory. The barrier is

located at the site of a conical intersection, showing multi-reference character. Also an

enhanced description of the resonance state surface as well as simultaneous treatment of

H-Si stretching- and bending model would be an interesting project for the future.

In the second part of the thesis, the bi-conformational, STM-induced switching of

COD@Si(100) is studied, using and extending the theoretical model utilized for H@Si(100).

No distinct resonance was seen by experiment and equal switching rates were observed

at positive and negative bias voltages. Despite this findings, model PES for anionic and

cationic resonant states are derived via Koopmans’ theorem in order to simulate resonant

excitation processes.

The results for the study of dipole- and resonance-induced switching permit the repro-

duction of major experimental finding like the single-electron switching mechanism, the

equality of switching rates for anion- and cation-resonances and the absence of voltage

dependence in the switching rates. Further, resonance-induced switching was studied in

the below- and above-threshold regime (see above). For the below-threshold regime, the
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experimentally observed voltage independence can be explained by two different physical

scenarios. The first would be a very broad and flat resonance, .i.e., the probability for a

resonant excitation is equally low for a wide range of tunneling electron or hole energies.

For the second, the resonance center stays far above the energy range of tunneling holes

or electrons within the experimentally feasible range. For the above-threshold resonance

excitation a different physical picture is suggested for the explanation of the voltage-

independence. Here, electrons or holes are injected into the conducting- or valence bands

of the semiconductor surface. Since the band consist of a continuum of states which are

coupled amongst each other, the electron or hole quickly relaxes via non-adiabatic coupling

events into the LUMO- or HOMO-orbital of the surface-adsorbate entity. The electronic

lifetime of an electron injected into the LUMO or a hole injected in the HOMO is much

longer as compared to electronic states in the band, inducing nuclear dynamics in the

system. However, the question regarding the likelihood of the depicted below- and above-

threshold switching models can not be satisfactorily answered within the current thesis

and remains a very interesting question for the future.

Also for the dipole mechanism, a linear dependence of the switching rates upon the tun-

neling current was seen within our actual model. Both resonance- and dipole-mediated

switching in the below-threshold regime were found to be based on overtone-transitions

towards rapidly tunneling vibrational states. The latter finding was based on the pertur-

bative model as developed for H@Si(100), mentioned previously. Also here, a final decision

about the dominating mechanism, i.e., dipole or resonance, is not possible until now, since

in principle both mechanisms would be compatible to experimental findings. An estimate

of the vibrational lifetime of COD or the current fraction, passing a resonance, would help

to finally decide about the quality of the models used.

For the study of temperature dependence of the switching process the actual model predicts

a crossover temperature between IET- and thermal switching regimes of ≈ 50K, which

was confirmed by subsequent STM measurements at variable temperatures, carried out

by a cooperating experimental group [151]. The 2D models, using an alternative Ohmic

bath formalism to calculate vibrational relaxation rates, confirmed the results obtained in

1D.

For an future application, e.g., in a storage device, the conformational switching bar-

rier for COD@Si(100) has to be increased in order to allow for an increased stability of

the switching states at elevated temperatures. Also the insertion of photo-sensitive sub-

stituents might allow for a photo-induced switching process as well as for an optical test of

the switching states. Also here, a theoretical study should precede and accompany those

future experiments.



Appendix A

Symmetry-adapted basis set

This section deals with the calculation of vibrational eigenfunctions (ψn) for a symmet-

ric potential (V {qi}) using a spatial grid basis and the FGH (Fourier Grid Hamiltonian)

method [92] (see also Sec. 2.2). All eigenfunctions reflect the symmetry of the correspond-

ing potential. Unfortunately, due to numerically limitations, the diagonalization of the

Hamilton matrix reveals unsymmetrical eigenfunctions for symmetric potentials, in the

case of small tunnel splittings. One can avoid the problem by using symmetry-adapted

basis functions, as will be explained for the case of a one-dimensional potential V (q), of

Cs symmetry, i.e., V (q) = V (−q). The delta functions ϕ±i = δ(q ± (i+ 1/2)∆q), are used

to represent ψn in the basis of a spatial grid,

ψn(q) =

N/2
∑

i=1

c+i,nϕ
+
i + c−i,nϕ

−
i . (A.1)

Here, N is the number of grid points. The ϕ±i are transformed into the symmetry-adapted

basis functions, ϕ
′

i and ϕ
′′

i ,

ϕ
′

i =
1√
2
(ϕ+

i + ϕ−i ) ; ϕ
′′

i =
1√
2
(ϕ+

i − ϕ−i ) . (A.2)

The functions ϕ
′

i and ϕ
′′

i constitute a basis for the symmetric (A
′

) and antisymmetric (A
′′

)

irreducible representations of the Cs point group. Under influence of the mirror operator

(σ̂) they transform like,

σ̂ϕ
′

i = ϕ
′

i ; σ̂ϕ
′′

i = −ϕ′′i . (A.3)

H is block-diagonal in the basis {ϕ′k, ϕ
′′

k}, with blocks H
′

and H
′′

,

H
′

i,j = 〈ϕ
′

i|Ĥ|ϕ
′

j〉 =
1

2
(Hi,j +H−i,−j +H−i,j +Hi,−j) = (Hi,j +H−i,j) . (A.4)

For symmetry reasons Hij = H−i,−j.

H
′′

ij = 〈ϕ
′′

i |Ĥ|ϕ
′′

j 〉 = (Hi,j −H−i,j) . (A.5)



114 Symmetry-adapted basis set

After solving the eigenvalue problem for both sub-matrices,

H
′

C
′

n = E
′

nC
′

n ; H
′′

C
′′

n = E
′′

nC
′′

n (A.6)

via diagonalization, the resulting eigenfunctions (ψ
′

n and ψ
′′

n) are expressed in the non

symmetry-adapted grid basis, using Eq. (A.1) and (A.2).

ψ+
n (q) =

N/2
∑

i=1

c
′

in√
2
(ϕ+

i + ϕ−i ) ψ−n (q) =

N/2
∑

i=1

c
′′

in√
2
(ϕ+

i − ϕ−i ) . (A.7)

The resulting functions of even and odd parity, ψ+
n (q) and ψ

−
n (q), are now symmetric and

antisymmetric with respect to the potential center, reflecting both irreducible represen-

tations of the Cs point group. Also for higher dimensionalities an analog procedure can

be performed. In the case of potential, belonging to the C2v point group, four different

Hamilton matrices are set up to evaluate symmetry-adapted eigenfunctions, according to

the four irreducible representations, A1, A2, B1 and B2.
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4th order Runge-Kutta integrator

The Runge-Kutta integrator of 4th order [153] represents a four step algorithm for the

approximate numerical solution of ordinary differential equations. Here, the integrator is

used to solve the Liouville-von Neumann equation, i.e., the time evolution of the reduced

density matrix. The discretization error is reduced to 5th order, using a clever combination

of different difference quotients, where h = tn+1 − tn = ∆t is the distance between two

discrete points on the time axis with corresponding function values yn and yn+1. To

calculate the time derivative,

f(tn, yn) =
dy

dt

∣
∣
∣
yn,tn

, (B.1)

the following algorithm steps are passed,

1.) k1 = hf(tn, yn)

2.) k2 = hf(tn +
h

2
, yn +

k1
2
)

3.) k3 = hf(tn +
h

2
, yn +

k2
2
)

4.) k4 = hf(tn + h, yn + k3)

5.) yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

.

(B.2)
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Appendix C

Normal mode analysis of COD@Si

potential surfaces

In the following a normal mode analysis is presented for the two-dimensional (φs, φu)

potential surfaces for COD@Si. For details of the underlying Hamiltonian and surface

calculations refer to Sec. 4.2. In order to obtain eigenvectors ~c1,2 and normal mode fre-

quencies ω1,2 =
√

Λ1,2 at stationary potential points, the Hessian matrix H. has to be

diagonalized. The Hessian matrix as shown here,

H =

(
kss
Iss

ksu√
Is
√
Iu

kus√
Is
√
Iu

kuu
Iuu

)

, (C.1)

includes mixed derivatives, ksu, of second order for the potential energy with respect to

the collective coordinates φs and φu. They are calculated as,

ksu =
∂2V

∂φs∂φu
. (C.2)

The results obtained for TS, Ma and Mi points of the transformed are shown as black

numbers in Tab. C.1. The quantum chemically obtained frequencies, calculated via

B3LYP/6-31G(d) along dihedral angles φl and φr on the neutral surface by Dokić [143],

are shown in red (Sec. 4.2). The B3LYP/6-31G(d) calculated frequencies for the global

minimum are not shown, since the high number of quantum chemically obtained low fre-

quency modes around 200 to 300 cm−1 does not allow for a clear assignment. It is seen

that the transformed potential reproduces the expected imaginary frequencies at TS- and

Ma-positions. The deviation of ≈ 100 cm−1 or ≈ 12meV, as compared to the calculated

frequencies, is within the expected range, as explained in the following. While the quan-

tum chemically calculated frequencies are based on the “exact” potential energies (see

Dokić et al. [143]), the normal mode analysis, as shown above, is based on a transformed

and interpolated (cubic splines) potential surface (Sec. 4.2). The second order derivatives

of the Hessian matrix are very sensitive to the resulting differences between both surfaces,

resulting in the observed differences.
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Mi TS Ma

N 242 288 i199 [i108] 160 i261 [i152] i127 [i86]

A 285 314 −201 170 i246 i124

C 239 272 −185 154 i244 i94

Table C.1: Normal mode analysis at minimum (Mi), transition state (TS) and maximum (Ma) positions

on the 2D potential surfaces, of COD on Si(100), shown in Fig. 4.6 and 4.7 (see Sec. 4.2). Black: Wave

numbers ν̃ in cm−1 of normal mode frequencies at neutral (N), anion (A) and cation (C) potential surfaces.

Numbers on the left hand of each column refer to mode vectors along φs, numbers on the right side

refer to modes along φu. Red/ square brackets: Imaginary frequencies obtained by calculations for the

COD@Si15H16 cluster, performed at the B3LYP/6-31G(d) level of theory by Dokić et al. [143] (Further

details are given in Sec. 4.2.1.)

Furthermore, the normal mode vectors are found to be perfectly parallel to the collective

coordinate system axes, confirming their separability (ksu ≈ 0), as assumed for the utilized

Hamiltonian in Eq. (4.8). Furthermore, a comparison of frequencies along φs and φu shows

that all three potentials are steeper along φs than along φu. It is further seen in Tab. 4.1,

that the anionic resonance potential differs more from the neutral surface than does the

cationic one.
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Dipole function of COD@Si(100)

The dipole component µz(φs, φu), perpendicular to the silicon(100) surface, was evaluated

as described in Sec. 4.2.4 on page 62. The resulting two-dimensional surface, depending on

two rotational angles φs and φg (see Sec. 4.2.2), was fitted using the following functional

form,

µz(φs, φu) = A0 +A1 · e−(φs/A2)2 · e−(φu/A3)2

+A4 · e−(φs/A5)2 · e−(φu/A6)2

+A7 ·
[

e−((A8φu−A9φs)/A10)2 + e−((A8φu+A9φs)/A10)2
]

+A11 · tanh(A12φu −A13φs) · tanh(A12φu +A13φs)

+A14 · e−(φu/A15)2 · cos(A16φu) · f(φs, φu) and

(D.1)

f(φs, φu) = sin(A17(φs−A18))·e−((φs−A19)/A20)2−sin(A17(φs+A18))·e−((φs+A19)/A20)2 .

(D.2)

The fit parameters obtained are listed in Tab. D.1. The squared sum over residuals between

fitted and original data points was below 0.0007 ea0 compared to the overall amplitude for

the dipole function of about 0.058 ea0.
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Parameter Value unit Parameter Value unit

A0 1.41395 ea0 A11 0.0137324 ea0

A1 -0.417009 ea0 A12 1.09754 rad−1

A2 0.267643 rad A13 2.20431 rad−1

A3 0.426138 rad A14 3.62481 ea0

A4 0.436053 ea0 A15 0.47060 rad

A5 0.255634 rad A16 1.88681 rad−1

A6 0.427714 rad A17 2.26405 rad−1

A7 0.0151565 ea0 A18 0.896692 rad

A8 0.0180749 A19 1.64901 rad

A9 0.0376762 A20 0.374054 rad

A10 0.0130293 rad

Table D.1: Fit parameter for the two-dimensional dipole function (µz(φs, φu)) of COD

on Si(100). The fit function is written in equations (D.1) and (D.1).



Appendix E

1D resonant vibrational

eigenstates of COD@Si(100)

Here, data about vibrational eigenstates obtained for 1D and 2D excited state surfaces

of COD are shown. First the data about anion and cation 1D eigenstates are given in

tables E.1 and E.2, respectively. Here eigenenergies E+
n for doublet wavefunctions n of

even parity (+), tunnel splittings ∆En and tunneling times tn are listed.
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Doublet (n) E+
n (meV) ∆En (meV) tn (ps)

0 0 1.3× 10−9 1.6 × 109

1 38 2.7× 10−7 7.6 × 106

2 76 2.6× 10−5 7.9 × 104

3 112 1.4× 10−3 1.5 × 103

4 146 4.5× 10−2 47

5 176 0.88 2.3

6 200 7.1 0.295

7 223 15 0.14

8 255 18 0.12

9 292 20 0.11

10 333 21 9.7× 10−2

...
...

...
...

19 796 29 7.1× 10−2

Table E.1: Eigenstate data obtained for the 1D, anionic resonant state potential of COD on Si(100).

Given are eigenenergies E+
n for wavefunctions of even parity (+), tunnel splittings ∆En and tunneling

times tn.

Doublet (n) E+
n (meV) ∆En (meV) tn (ps)

0 0 4.3× 10−8 4.8 × 107

1 36 6.1× 10−6 3.4 × 105

2 72 4.4× 10−4 4.7 × 103

3 105 1.8× 10−2 1.2 × 102

4 137 0.43 4.8

5 162 4.8 0.43

6 184 13 0.15

7 213 17 0.12

8 249 19 0.11

9 288 21 10× 10−2

10 330 22 9.3× 10−2

...
...

...
...

19 810 30 6.9× 10−2

Table E.2: Eigenstate data obtained for the 1D, cation resonant state potential of COD on Si(100).

Given are eigenenergies E+
n for wavefunctions of even parity (+), tunnel splittings ∆En and tunneling

times tn.
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Ohmic bath, 2D dissipative model

The coupling matrix elements between initial and final system states ψi/f (φu, φs) in rate

Eq. (4.27) of the 2D, Ohmic bath vibrational relaxation model are calculated as,

|〈ψf |
√

Isφs +
√

Iuφu|ψi〉|2 ≈ Is |〈ψf |φs|ψi〉|2 + Iu |〈ψf |φu|ψi〉|2 ≈ Is V 2
fi,s + Iu V

2
fi,u ,

(F.1)

neglecting the 2
√
Is Iu Vfi,s Vfi,u term. This simplification of Eq. (4.27) introduces only

small errors1, as can be explained by the separable, harmonic limit of ψi/f ,

ψk(φs, φu) ≈ αk,s(φs) · βk,u(φu) , (F.2)

where αk,s(φs) and βk,u(φu) are harmonic state functions. In this harmonic, separable

limit the coupling matrix element Vfi,s/u can be approximated as,

Vfi,s/u ≈ 〈αf,s · βf,u|φs/u|αi,s · βi,u〉 ≈
√

is/u ·
√

~

2 Is/u · ωs/u
· δis/u,(fs/u+1) · δiu/s,fu/s .

(F.3)

The matrix elements Vfi,s/u can only be non-zero, if fs/u = is/u + 1 and fu/s = iu/s.

In other words, there can’t be a relaxation in both modes φs and φu at the same time.

Therefore, the approximation in Eq. (F.1) holds for the harmonic, separable limit since,

2
√

Is Iu Vfi,s Vfi,u ≈ ~ ·
√
is iu ·

√
1

ωs ωu
· δis,(fs+1) · δiu,fu · δiu,(fu+1) · δis,fs ≈ 0 . (F.4)

1For the 1000 lowest 2D vibrational states of the electronic COD ground state potential (see Sec. 4.4.1)

the corresponding relaxation rate error is less than 1.5× 10−20 (~/Eh)
−1.
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Mitgliedern der Arbeitsgruppe insbesondere Frau Dr. Jadranka Dokic̀ und Dr. Jean

Christophe Tremblay danken.
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