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Abstract

Cyber-physical systems achieve sophisticated system behavior exploring the
tight interconnection of physical coupling present in classical engineering sys-
tems and information technology based coupling. A particular challenging
case are systems where these cyber-physical systems are formed ad hoc ac-
cording to the specific local topology, the available networking capabilities, and
the goals and constraints of the subsystems captured by the information pro-
cessing part.

In this paper we present a formalism that permits to model the sketched class
of cyber-physical systems. The ad hoc formation of tightly coupled subsys-
tems of arbitrary size are specified using a UML-based graph transformation
system approach. Differential equations are employed to define the resulting
tightly coupled behavior. Together, both form hybrid graph transformation sys-
tems where the graph transformation rules define the discrete steps where
the topology or modes may change, while the differential equations capture
the continuous behavior in between such discrete changes. In addition, we
demonstrate that automated analysis techniques known for timed graph trans-
formation systems for inductive invariants can be extended to also cover the
hybrid case for an expressive case of hybrid models where the formed tightly
coupled subsystems are restricted to smaller local networks.
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Chapter 1

Introduction

Cyber-physical systems (CPS) [10] exhibit sophisticated system behavior that
results from the tight interconnection of physical coupling present in classical
engineering systems and coupling via information technology that cannot be
achieved by classical control or information technology alone.

A particular challenging case are systems where these cyber-physical sys-
tems are formed ad hoc according to the specific local topology, the available
networking capabilities, and the goals and constraints of the subsystems cap-
tured by the information processing part.

In such cyber-physical systems with dynamic structure we have to cover two
sources for complexity: At first we have cyber-physical subsystems tightly cou-
pled locally via physical effects but also information technology. In addition, at
the coarse-grain level we have arbitrary complex topologies that evolve over
time and control which locally tightly coupled cyber-physical subsystems come
into existence.

While the locally tightly coupled cyber-physical subsystems alone already re-
sult in complex hybrid systems [1] with finite discrete state space, the coarse-
grain level results also in dynamic structures that evolve potentially infinitely
and where the relevant initial configurations can be only characterized by some
constraints but not collapsed into a finite set of initial configurations. Therefore,
we in essence have to deal with hybrid systems that also have a infinite dis-
crete state component.



2 Introduction

1.1 Contribution

In this paper we present a formalism that permits to model the sketched class
of cyber-physical systems. The ad hoc formation of tightly coupled cyber-
physical subsystems of arbitrary size is specified using UML-based graph
transformation systems. Modes, rules for mode changes, and differential equa-
tions defined for the modes are employed to define the tightly coupled cyber-
physical behavior by means of hybrid behavior. Together, both options result
in hybrid graph transformation systems where the graph transformation rules
define the discrete steps such as formation of subsystems or mode changes,
while the differential equations of the modes capture the continuous behavior
in between such discrete changes.

Besides modeling the outlined class of cyber-physical systems, we of course
also need means to predict their behavior and provide guarantees for crucial
system properties. To this means, we demonstrate that automated analysis
techniques for inductive invariants known for untimed and timed graph transfor-
mation systems can be extended to also cover the hybrid case for a subclass
of the presented approach, where the tightly coupled cyber-physical subsys-
tems result from only local reconfiguration rules and are of bounded size.

1.2 Former Work

The presented results extend former work that started with an approach to
model and checking inductive invariants for graph transformation systems in
[6]. This work was combined with result for the checking of timed coordina-
tion behavior in [13]. However, the structural rules and the real-time aspects
had to provide the required guarantees independent of each other. Later, in
[7] the modeling and checking concepts have been extended to timed graph
transformation systems where real-time constraints for the ad hoc formation
of coordination structures could be first modeled and also verified. In contrast
to these earlier results, in the current paper the supported hybrid graph trans-
formation systems permit that the complex hybrid behavior that results from
the tight coupling via physical effects as well as information technology can be
captured. In addition, also the checking procedures have been extended to a
subclass of these hybrid systems.
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1.3 Application Example

In this paper we will use the RailCab' system as running example to illustrate
the presented approach. The RailCab system has been developed at the Uni-
versity of Paderborn and targets the development of a new railway technology
(see Figure 1.1).

Figure 1.1: The test track and shuttle prototype of the RailCab project

The RailCab system’s main constituents are so called Shuttles, which are small
and autonomous vehicles and can either be used for cargo or persons. Cus-
tomers place their transportation requests online and shuttle can reply to these
requests by an offer. However, to be a competitive alternative to established
public and individual transportation, the shuttles have to be fast and affordable.
This can only be achieved if the shuttles consume less or at least not more en-
ergy per passenger than other means of transport. Unfortunately the energy
consumption of a single shuttle, driving alone, is worse than that of classi-
cal trains. But it can be improved if multiple shuttles collaborate and build a
convoy. Within the convoy only the first shuttle has to overcome the wind resis-
tance and all following shuttles can benefit from the first shuttle’s work. Thus
in average the energy consumption of multiple shuttles is less compared to
today’s most energy efficient trains.

The convoy are not build by mechanical coupling but via information technol-
ogy and thus a convoy is a nice example for a cyber-physical system where

Thttp://www.railcab.de



4 Introduction

besides the physical coupling effects also information technology plays a major
role. In addition, the RailCab system requires that the convoys are established
but also destructed according to the local situation and thus we have a cyber-
physical system with dynamic structures.

Obviously the RailCab system is a safety critical system. As the shuttles are
autonomous, the system’s safety has to be guaranteed for this cyber-physical
system with dynamic structures. In this paper we focus on the convoy building
aspects of the RailCab system, demonstrate how it can be modeled with the
presented approach, and prove that collisions between two following shuttles
are excluded.

1.4 Outline

The report is structured as follows: In Section 2 we outline the modeling ap-
proach for hybrid graph transformation systems by means of the application
example. Then, the automated verification approach permitting to verify in-
ductive invariants is introduced and the verification of the application example
is outlined in Section 3. The paper closes with a discussion of the related work
in Section 4 and a final conclusion and outlook on future work.



Chapter 2

Modeling

For the modeling of the outlined class of cyber-physical systems with dynamic
structure we extend graph transformation systems. These graph transforma-
tion systems are extended towards hybrid behavior by special nodes, which
represent the laws of the system’s continuos behavior. In a first step we will
shortly introduce graph transformation systems and extend them in a second
step to cover also the hybrid behavior.

2.1 Graph Transformation Systems

We employ UML class diagrams and story patterns for the modeling of the sys-
tem’s behavior. To allow the also the modeling of continuous behavior we will
introduce in the next subsection special control modes, that represent different
laws describing the continuous behavior.

2.1.1 Notation

A UML class diagram is used to model the system’s type system and which
associations are required and allowed to exist between the instances. In Fig-
ure 2.1 the class diagram showing the types for our application example is
depicted. Shuttles are located at one Track per time and can be connected to
other Shuttles through a DistanceCoordination pattern. The DistanceCoordination

5



6 Modeling

pattern ensures a communication exchange, which is required to ensure safe
driving in close proximity. Further, each Shuttle must have either a Speed- or
PositionControlMode attached to it. These two control modes determine the
way the Shuttle drives, by specifying the control laws for the Shuttle’s attributes
(details to this are presented in Section 2.2).

SpeedControlMode PositionControlMode

v_ref: float pos_ref: float

™M AT

controlModel - ControlMode

T
1 1 0.
Shuttle front_InistanceCoordination
1 0.1

pos: float rear dc
v: float oLl

a: float — Track

t: float isAt |

Figure 2.1: Class diagram of the RailCab system

o |xau

.1

For the modeling of the Shuttle’s behavior we facilitate StoryDiagrams, a variant
of UML collaboration diagrams, that are augmented with stereotypes to indi-
cate side effects for creation and deletion of elements (cf. [17]). The stereo-
type <create>> marks elements that will be created if the StoryDiagram is
executed. The stereotype <delete>> is defined analogously, but for the dele-
tion of elements. All other elements — those that neither have a <create>>
nor a <delete>> stereotype attached — are preserved by the StoryDiagram.
The precondition of an StoryDiagram is given by the preserved elements and
those that are to be deleted. Figure 2.2 depicts an example for a StoryDiagram
specifying the movement of a Shuttle to the succeeding Track. This StoryDia-
gram deletes the association between Shuttle s1 and Track t1 and creates an
association between Shuttle s1 and Track t2.

The StoryDiagram in Figure 2.2 contains only a constructive precondition, i.e.
the precondition exactly states which elements have to exist. However, such
preconditions are not expressive enough to express that, e.g., a Shuttle moves
to an empty Track. To formulate StoryDiagrams like this it is required to use
so called negative application conditions (NAC). NAC explicitly forbid the exis-
tence of the elements contained in the NAC. Figure 2.3 shows a StoryDiagram
that specifies that a Shuttle is allowed is only allowed to move to the next Track
if this Track does not have a Shuttle located on it.
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cm : PositionControlMode dc : DistanceCoordination

| :controlMode : front
: rear
sl : Shuttle s2 : Shuttle
delete
- isAt T isAt
tl: Track - next t2 : Track
{sl.t' == 0}

Figure 2.2: StoryDiagram moveDC

cm : SpeedControlMode

:controlMode

|

sl : Shuttle | Nac : Shuttle i
! |
! |
! |
|

: i
<<delete>> }_“““““—:_is_/-\_t““}

L isAt

tl: Track - next t2 : Track

{sl.t' == 0}

Figure 2.3: StoryDiagram for the move rule including a NAC

We use StoryDiagrams to specify the unsafe states of the system, too. How-
ever, these StoryDiagrams must not contain side effects. In our application
example we want to forbid states where two Shuttles are located at the same
Track without having a DistanceCoordination pattern instantiated between them
(cf. Figure 2.4).

2.1.2 Formal Model

After having introduced the concrete syntax of our modeling language we will
use the following paragraphs to specify the formal semantics of StoryPattern
and forbidden states.
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: /
| noDCRistanceCogreirration |
| |
| |
| |
Z _________________________ !

“rear front
s1: Shuttle s2 : Shuttle

T isAt T isAt

tl: Track : next t2 : Track

Figure 2.4: Forbidden pattern noDC

Graph transformation systems (GTS) are a well established way to specify
behavior of a system, whose state can be expressed as a graph. This holds
for object-oriented and component based systems as well as for networks. A
graph G is formally specified as G = (V, E,l,,l.) where V is a finite set of
vertices, £ C V x V is a set of edges and [,, [, are labeling functions for the
nodes and edges, respectively. The labeling functions [, and /. assign each
node and each edge a label from the global alphabet .A. In our application
example the alphabet A is given as

A = {Track, Shuttle, DistanceCoordination, PositionControl M ode,
SpeedControl Mode, isAt, next, front,rear, control Mode}.
The set of all graphs is denoted G. A graph isomorphism is a bijective mapping
function between two graphs, which preserves the graphs’ type and structural
constraints. Let G, H € G be Graphs and m = (my, mg) a mapping from G
to H. This mapping is a graph isomorphism if and only if
Vo € Vg : W v € Vg A(v,0) € my,A
ly(v) = 1,(v')
Vede' :e € Eq — € € EgA
(e,e') € me Alo(e) = 1e(€)
V(e = (s,t),e = (s,t)) :(e,€) € me —
(s,8) € my A (t, 1) €m,
We write G =,,, H if the isomorphism m maps the graph G to the graph H.

A graph pattern represents a possibly infinite number of graphs. A graph pat-
tern is formally specified as P = (P*, P~) with P™ € Gand P~ =€ G. A
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graph pattern P = (P*, P~) can be matched to a graph G € G if a sub-
graph of G’ of G exists, such that G’ =,, P and the subgraph G’ could not
extended in such a way, that any of the elements contained in P~ could be
matched, too. A graph pattern P matches a graph pattern @ if there exist
two isomorphic functions m™* and m~ that map all elements from P* to the
elements of Q* and all elements from P~ to Q.

A graph transformation P = (L, R, i) can be specified through two graph pat-
terns L = (L*,L7) and R = (R*, () and a graph isomorphism i : Lt — R*,
The graph isomorphism i identifies those elements in L™ and R* that are pre-
served by the graph transformation. Following, the elements, that are deleted
by the graph transformation P are given as delp = L™\ dom/(¢) and the created
elements are given as newp = R* \ ran(i). A graph transformation can be ap-
plied to a graph H if we can find an isomorphism a that maps the graph rule’s
left hand side L = (L*, L™) to H. The result of the application is specified as

H' = H\ (delpoa)U(newpoa). We write graph rule applications as H Lo
We can define a GTS S = (R, prio) with R being a set of graph transforma-
tions and prio : R — N is a priority function that assigns each rule a priority.
A transition G ¢ H under the restrictions of the GTS S exists iff G — H
is a valid application of r and Ap : p € R A prio(p) > prio(r) NG 2 H'.
We say H is reachable from G. A sequence of multiple rule applications un-
der the restrictions of .S is written as G —§ H and following we can define
REACH(S, Gy) = {H|Gy —% H}.

2.2 Hybrid Graph Transformation systems

2.2.1 Notation

The notation of graphs, graph transformation and forbidden patterns is mostly
in conformity with the notation we have presented in Section 2.1. However, we
add constraints to the graph transformations and forbidden patterns to restrict
their applicability. These conditions have to be linear, thus allowing only prod-
ucts of variables and real valued coefficients. In Figure 2.2 the rule moveDC
is restricted to situations where the shuttle’s position has reached the current
track’s end. After the rule has been applied the shuttle’s attribute t — a clock
measuring the time the shuttle has already spent at the current track — is reset
to zero.
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ControlMode

VA

A

SpeedControlMode PositionControlMode
v_ref: float pos_ref: float

pos = v pos = v

V=a v = (dc.front.pos - dist -

. 20 - pos) -
a=v_ref-v (dc.frontv -3 -v)

Figure 2.5: Clas diagram snippet showing the control laws
2.2.2 Formal Model

To capture also continuous behavior we introduce attributes and control laws
that constrain the attribute’s continuous development. The global set V ar con-
tains all available attributes. Each attribute is assigned to a type from the
global alphabet A. This assignment is specified in Attr : A — 2V with
a,a’ € AAttr(a) N Attr(a’) = 0 for a # o'.

Obviously, graphs as defined above are not well suited to represent the state
of a hybrid system. Thus, we extend graphs to also hold information of the
system attributes’ values. A hybrid graph is givenas G = (V, £, [, 1., X, 3, 0).
The constituents V, E, [,,, [, are defined as known. The set X C V' x Var with
V(v,i) : (v,i) € X — i € Attr(l,(v)) contains all variables existing in the
graph G. The function g : X — R assigns all occurring variables a real value.
The constraint § : X U X — B with X representing the first derivative with
respect to the time of the variables contained in X.

Let G = (V,E,l,,l.,X,[,0) be a hybrid graph and CM C V the set of
control nodes contained in G. Each control mode vey € CM specifies

a constraint ¢,.,, over the variables X,,,, € X and X,_,,. The nodes
holding these variables must be reachable from vsy,. We can now define
Og = /\UCMECM v, - In our application example we have two possible control
modes (cf. Figure 2.5) that can only be connected to Shuttles: SpeedCon-
trolMode and PositionControlMode. If the Shuttle is in SpeedControlMode 0,,,,,, iS

givenas pos =v AU =a/Aa = Uy — 0.

A hybrid graph transformation is given as P = (L, R,i,¢) with ¢ : X+ U
Xgr+ — B being a linear constraint, that restricts the transformation’s appli-
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cability. The transformation H L% [’ from the hybrid graph H to the hy-
brid graph H'’ is correct if H, H', P and a meet all requirements for graph
transformations as defined in Section 2.1 and ¢(Bu dom(a), Br'jran(a)) = true
with Bx140m(a) DEING H's valuation restricted to the isomorphism’s domain,
and Srr4om(a) being H”s valuation restricted to the isomorphism’s range. If
want to explicitly mention that H and H’ are hybrid graphs we can also write

(H,8) =% (H'.5).

A hybrid graph pattern P = (P*, P~, ¢), where ¢ is a constraint over the vari-
ables X p+, matches a hybrid graph H under the isomorphism m if there non
hybrid counterparts match as described above and additionally the graph’s
valuation § fulfills the pattern’s condition ¢. A hybrid graph pattern P =
(P*,P~,¢p) matches a hybrid graph pattern @ = (Q,Q~,¢¢) if we find
isomorphisms between P and @ and V3 : § € X+ x Vo+ = RA ¢g(8) =
¢p(Bm). With 5, = {(v,7)|(v/,7) € B A (v,v') € m,} being the translation
of 5 according to the isomorphism m = (m,, m.). We write P C @ or again
(P, ¢p) C (Q, ¢q) to explicitly stress the matching of hybrid graph pattern.

Given a set of hybrid graph transformations we can combine them to a hy-
brid graph transformation system (HGTS) S = (R, prio, R,) with R being
a set of hybrid graph transformations, prio : R — N a function that as-
signs each rule a priority (rules can be preempted by other rules having a
higher priority) and R, C R is a set of urgent rules. If a rule is marked

as urgent the rule has to be applied as soon as the rule is applicable. In

a HGTS S = (G, prio, R,) a discrete transition (G, 8¢) EiN (H,By) is al-

lowed if no rule P € R with prio(P) > prio(R) and (G, ) i (H', By)
exists. A continuous transition(G, f¢) LN (G, B(;) with duration 0 < § is al-

lowed if and only if a function f : R — (X — R) exists that is differen-
tiable in the closed interval [0...d], with f(0) = S and f(J) = f(, such that

O(f(t), f(t)) = true for every 0 < t < § and not exists ¢’ with 0 < ¢’ < § such

that (G, f(t)) L for any R € R,. We use ¢ © z for z < § to denote the con-
tinuous change of the attributes over time for the time difference x according
to the differential equations starting with the constraint assignment space ¢
(PO = BLI(G, Ba) = (G, BL) A Ba [ ¢ for the given G). We write G —g H
to denote that the HGTS specifies a transition (either continuous or discrete)
from GG to H. If the graph H can be reached from GG by a sequence of tran-
sitions we write G —% H. Finally the set REACH(S, Gy) = {G|Gy —% G}
defines the reachable graphs, given the start graph GGy and the HGTS S.






Chapter 3

Verification of Inductive Invariants

The UML-based modeling introduced in Section 2 and the underlying formal
HGTS allow us to extend an existing verification technique for GTS which cov-
ers inductive invariants for the possible structural changes. Our former ap-
proach [6] for GTS is first explained and we then outline its extension towards
HGTS. Furthermore, results for the checking of the RailCab example using the
new technique are presented.

3.1 GTS Case

A set of forbidden graph patterns 7 = {F3,..., F,} are employed in the un-
derlying approach [6] for GTS to represent those cases of the system that have
to be excluded (hazards, accidents, incidents). We say that the property ® r,
denoted by G' |= @£, holds iff G matches none of the forbidden graph patterns
in F. If a graph G matches a forbidden graph pattern ' € F, we call G a
witness for the inverted property —® r.

® r is an operational invariant for the GTS S iff for all G € REACH(.S, G°) for a
given initial graph G° holds G = @ (cf. [8]). As graph transformation systems
with types are Turing-complete, checking them is restricted to finite models.
As the considered systems fall not into this category, we instead tackle the
problem whether @~ is only an inductive invariant which is the case if for all
graphs G and for all rules » € R holds that G = & A G & G’ implies

13



14 Verification of Inductive Invariants

G' E ®z. ltis to be noted that an inductive invariant implies the related
operational invariant but not vice versa as inductive invariants are stronger.

In our case we can reformulate the conditions for an inductive invariant to
have a falsifiable form as follows: ® = is an inductive invariant of a GTS S =
(R, prio) iff there exists no pair (G,r) of a graph G and a rule »r € R with
G E &7, G5 G and G’ £ $x. If in contrast a pair (G,r) witnesses the
violation of property @~ by rule r, we have a counterexample for ® r.

The application of a rule can only have a local effect (cf. [6]). We exploit this
fact to verify whether a counterexample (G, r) exists. It can only exist when
the rule is not preempted by one with a higher priority and the local modifica-
tion of G by rule r is transforming the correct graph G into a graph that violates
the property. By representing the potentially infinite many possible counterex-
amples by an only finite set of representative set O(R,, F;) of graph patterns
P’ (each a combinations of a RHS R, of a rule r; and a forbidden graph pat-
tern F; € F; cf. [6]), we can only consider a finite number of cases to check
that no counterexample exists (and @ ~ is thus an inductive invariant).

oL N

Figure 3.1: Schema to check a potential counterexample (P, ;) with resulting
graph pattern P’ that is a combination of a RHS R; of a rule r; and a forbidden
graph pattern F; € F (cf. [7])

As depicted in Figure 3.1 to do so, we have to check for some F; € F and
r; € R for any graph pattern P’ € O(F;, R;) whether the pair (P, r;) with P
defined by P - P’ is a counterexample for ® » or not as follows:

1. Check first that the rule r; can be applied to graph pattern P at all and
that the resulting graph pattern is P’. this requires that no other rule
rr € R\ {r;} with higher priority (prio(ry) > prio(r;)) exists that matches
P.
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2. Check in addition that there exists no F; € F with F; C P as otherwise
P is already invalid.

The checking algorithm has to perform this check for any given rule (L, R), €
‘R and forbidden graph pattern F' € F. It first computes the set of all possible
target graph patterns for R and the forbidden graph pattern ' (©(R, F')) and
then computes the related source graph patterns. The conditions are then
checked for all source graph pattern to determine if the pair (P,r) is a valid
counterexample. In [6] an explicit as well as symbolic algorithm for GTS along
these lines have been presented.

In Figure 3.4 a pair of source graph pattern and target graph pattern is shown.
The pair has been created by combining the right hand side of the moveDC
rule (cf. Figure 2.2) and the forbidden subgraph collision.

3.2 HGTS Case

To extend the checking scheme to the extension of the modeling technique for
continuous and hybrid behavior outlined in Section 2, we have to take into ac-
count that the behavior is described by a combination of rule applications and
time steps where the continuous dynamic evolves. Consequently, reaching a
forbidden graph pattern could involve a rule application as well as a time step.
The trick to approach the checking is to extend the untimed case similar to
[7]. At first we have to determine for which graph pattern the forbidden graph
pattern might be reached. Then, we habe to check whether for this case the
combination between the rule application and time steps could really lead from
a valid configuration to an invalid one using a hybrid automata model checker.

We can analogously to the untimed case formulate the definition of an in-
ductive invariant for the hybrid case in a falsifiable form: & with forbidden
hybrid graph pattern (F;,;) € F is an inductive invariant of a HGTS S =
(R, Ry, prio) iff no pair ((G, «), r) of an hybrid graph (G, «) and an hybrid rule
r € R an a time length § exists such that (G, ) E ¢, (G, ) LR (G, 5),
and (G', ) ~ ®x. Such a pair ((G,«),r) which witnesses the violation of
property @~ by rule r is then a counterexample for the hybrid case.

Using the same idea as for the untimed case we can lift this problem to hy-
brid graph pattern. Again, only a finite set of representative hybrid patterns
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O((F;,vs), Ry, i of graph patterns P’ that are combinations of a RHS R, of a
rule r; = ((Ly, 1), Ry, tu)-, and a forbidden graph pattern (£}, ;) € F have to
be considered.

t
tl

\ \ wi
bm
L) = R

t

Figure 3.2: Schema to check a potential counterexample ((P, ¢p),r;) with
resulting graph pattern (P’, ¢p) that is a combination of a RHS R, of a rule r;
and a forbidden graph pattern (F;, ;) € F in the hybrid case (cf. [7])

For the hybrid case we have to check for any hybrid graph pattern (P’, ¢p/) €
O((F;, ), Ry, i) for some (F;, ;) € F and r; € R as depicted in Figure 3.2
whether the pair ((P, ¢p),r;) with (P, ¢p) defined by (P, ¢p) LN (P, pp) is
a counterexample for &~ as follows:

1. Check first that the rule ; can be applied to hybrid graph pattern (P, ¢p)
and that the (P’, ¢p/) results from this application plus a time step of
length & > 0. Note that this requires that no r, € R, \ {r} exists
with prio(ry) > prio(r;) that matches (P, ¢p) and that (P’, ¢pp © x) can
really be reached as for all z < ¢ holds that (P’, ¢p © x) is matched by
nor,, € R,.

2. Check secondly that there exists no (Fj, ¢,) € F with (F};, ¢;) T (P, ¢p)
as otherwise (P, ¢p) is already invalid.

The extended checking algorithm employs in its first step a slightly adjusted
version of the untimed algorithm to derive potential counterexamples (see Fig-
ure 3.2). For the potential counterexamples a hybrid model checker is used to
encode whether it is a real counterexample.

In the untimed case, it was sufficient to check whether the target graph pat-
tern can be reached to judge whether the forbidden graph can be reached. In
the hybrid case urgent rules may in fact prevent that we reach a state which
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fulfills the conditions of the embedded forbidden hybrid graph patterns. There-
fore, the encoding in form of a hybrid automata include transitions to a spe-
cial urgent state that capture the behavior of urgent rules with higher priority
((Lk, ¢x))- Therefore, in the hybrid automata model a path to the forbidden
hybrid pattern can only occur when no such higher priority rule has to be exe-
cuted before.

Also the initial configuration before the rule application has to exclude that any
forbidden hybrid graph pattern ((F},;)) is already present as otherwise we
would not have the required transition from a valid configuration to an invalid
one. This can be encoded by initial constraints for the initial state of the con-
structed hybrid automata.

Due to both steps the hybrid automata can then be checked by the model
checker to prove whether a rule application and subsequent time step could
really result in an invalid configuration starting from a valid one (whether we

have a real counterexample).

source
nay  Pattern
timer < 0,

target
Pattern
—¢F; A
~ouU

PSRN
timer > 0

Figure 3.3: Generic automata for verifying the system’s continuous part

In Figure 3.3 the generic translation scheme to hybrid automata for some rule
(Lg, Rr, ®r) and some forbidden pattern (F;, ¢, ) is depicted. The initial con-
dition ¢;,;; guarantees that the source graph pattern is safe, ¢y holds if one
urgent transition is active. Let Fg¢ C F be the set of forbidden pattern that
could be mapped into the source graph pattern and U C R, the set of urgent
transitions, that could be mapped to the target graph pattern. Then we can
giVe Qinit @S Pinit = Pr N /\Fse]-'s —¢r, and ¢y as ¢, = \/ .y ¢r,- Thus the
failureState location can only be reached if we start in a correct source graph
pattern, apply the rule and wait until the condition ¢, holds. We use a clock
called timer to force the hybrid automata to immediately leave the location
initialState.
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3.2.1 \Verification Results

The verification of the rules’ structural parts yields multiple possible witnesses
against the system’s correctness. As mentioned above our verification ap-
proach is twofold and the structural analysis gives us characteristic scenarios
that could result in an unsafe situations. However, to be sure that the found ex-
ample prove the system to be incorrect we have to show that starting in a safe
source graph pattern the application of the rule brings the system into a situa-
tion where the condition of the forbidden pattern is reachable. With respect to
possibly activated rules having a higher priority and urgent rules.

cm: PositionControlMode [| c¢cm: SpeedControlMode cm: PositionControlMode [| cm: SpeedControlMode

dc : DistanceCoordination

/rear : front

: Shuttle s2 : Shuttle

dc : DistanceCoordination

/rear . front

: Shuttle s2 : Shuttle l[:

| :isAt | :isAt moveDC - isAt :isAt

:controlMode
controlMode
:controlMode
:controlMode

[
iy
[

iy

t: Track tl: Track t: Track tl: Track

I next . next

Figure 3.4: Possible counter example, derived from rule moveDC and forbid-
den pattern collision

One possible counter example the structural verification found is depicted in
Figure 3.4. The figures left hand side shows the source graph pattern and the
right hand side the target graph pattern, respectively. The target graph pattern
has been created by overlapping the right hand side of rule moveDC and the
forbidden pattern collision at the nodes s1, s2 and t2, thus the whole pattern
collision could be found in the rule’s right hand side. Reverse application of
the rule led to the source graph pattern. In the source graph pattern we can
find only one forbidden pattern: The collision of two Shuttles while on two suc-
ceeding Tracks.! We require this forbidden pattern as the Shuttle’s length is
supposed to be positive and thus it can happen that a Shuttle is physically at
two Tracks at the same time. In our system the Shuttle is only allowed to be
at one Track at one point in time (we use the Shuttle’s front to determine the
current track).

"Note that the forbidden pattern noDC (cf. 2.4) does not match due to the existence of the
DistanceCoordination instance.
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Listing 3.1: Hybrid automaton to counter example from Figure 3.4

automaton GenericHybridGTS
contr_var: s1_pos,s2_pos,sl.v,s2.v,sl.a,s2.a,v_ref, pos_ref,
timer;
parameter: distance, failure;
synclabs: void;

loc sourcePattern: while t<=0 wait {timer’ == 1};
when timer >= 0 sync void do {pos.ref’ == s1_pos —
distance — 2 & s1_pos’ == s1_pos & s2_pos’ == s2_pos &
s2.v’ == 82.v & s1.v’ == s1.v & s1.a’ == s1.a & s2.a’
== s2.a & v_ref’ == v_ref & failure’ == 0} goto
targetPattern;
loc targetPattern: while s1_pos — distance — s2_pos >= 0
wait {s1.pos’ == s1.v & s1.v’ == sl_a & st.a’ == P x (
v_ref — sl_v) & s2.v’ == P2 x (s1_pos — distance — 10 —
s2 pos) — Q2 % (s2.v — 3 — s1_.v) & pos_ref’ == s1_pos’ &
v_ref’ == 0};

when s1_pos — distance — s2_pos <= 0 sync void do {failure
" == 1} goto failureState;

loc failureState: while true wait {true};

loc urgentTransition: while true wait {true};

initially : sourcePattern & s1_pos > s2_pos + distance + 10 &
s2. pos > 0 & 60 < v_ref & v_ref < 200 & 60 < s1.v & sl1_v
< 200 & 3 <=s1.v — s2v & s1.v — s2.v <= 3 & failure ==
0 & 5 < distance & distance < 10;

end

In the target graph pattern we do not find an urgent rule that could restrict
the reachability of the failure state. Thus, the hybrid automaton we have to
check using PHAVer is the one shown in Listing 3.1. In this automaton mainly
three locations are of interest: sourcePattern, targetPattern and failureState.
The automaton’s initial state is given by the line starting with initially :... . In
the initial state all velocities are in their boundaries (we assume that velocities
are less than 200 km/h) and that the shuttles s1 and s2 have not collided,
yet. The situation we want to verify starts with the moment in time, when the
rule is applied. Hence, the automaton has to leave the location sourcePattern
immediately. We can express this in PHAVer with the use of a timer variable
and a corresponding location invariant. Initially the timer is set to zero and
the invariant is given as timer < 0. The guards of the transitions leaving the
sourcePattern location are fulfilled if timer > 0 holds.
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Following the active transition to the targetPattern location only resets the shut-
tle’s timer t, which stores the time the shuttle is at the current Track. All other
statements within the transitions do condition specify that no other attribute
values are changed. The automaton can stay at the targetPattern location as
long as the forbidden pattern’s condition is not fulfilled, i.e. the Shuttles have
not collided. If the forbidden pattern’s property is fulfilled the transition to the
failureState location becomes activated. This transition changes the value of
the automaton’s failure parameter to 1. The reachability analysis we perform
using PHAVer checks, whether a state is reachable where the failure param-
eter’s value is set to 1. Performing this analysis on the automaton shown in
Listing 3.1 we find out that such a state (with failure set to 1) is not reachable,
within the automaton. Thus, we showed that the possible counter example,
provided by the structural analysis, is not a witness against the system’s cor-
rectness.

3.3 Complete Checking

The complete algorithm performs this check for any given rule ((L;, ¢1), Ry, ),
€ R and forbidden graph pattern (F;, ;) € F by computing the related set of
all possible target graph patterns (O((F;, ), Ry, 1) and then derives the re-
lated source graph patterns. The above outlined cases are then employed to
decide whether the source graph pattern (P, ¢p) represents potentially safe
graphs that can be transformed into unsafe graphs by applying r plus a time
step 0. If so, the pair ((P, ¢p), r) is a valid counterexample.

In the application example we had a total of six rules and fourteen forbidden
patterns. We had to introduce several forbidden pattern to show that the multi-
plicity constraints implicitly introduced through the system’s class diagram are
satisfied, too. We further modeled rules that allow the Shuttles to accelerate
and decelerate if they are in SpeedControlMode. However, the algorithm had
to check 64 pairs of rules and forbidden pattern. While he did this, he found
37 possible counterexamples, which we manually translated into a hybrid au-
tomaton for PHAVer and checked whether the failureState location could be
reached. Between the possible counter examples were lots of similarities,
which were mainly introduced due to isomorphism.



Chapter 4

Related Work

A number of related approaches for the verification of systems with structural
changes like our earlier work [6] exist which do not support time dependent
behavior. Further some approaches directly adresses the verification of hy-
brid systems, mostly relying on hybrid automata for the input specification.
DynAlloy [12] extends Alloy [16] in such a way that changing structures can
be modeled and analyzed. For operations and required properties in form of
logical formulae it can be checked whether given properties are operational
invariants of the system. An approach which has been successfully applied to
verify service-oriented systems [4] is the one of Varr6 et al. It transforms visual
models based on graph theory into a model-checker specific input [20]. A more
direct approach is GROOVE [19] by Rensink where the checking works directly
with the graphs and graph transformations. However, these approaches do not
fully cover the problem as they require an initial configuration and only support
finite state systems (or systems for which an abstraction to a finite state model
of moderate size exist).

There are only first attempts that address the verification of infinite state sys-
tems with changing structure: In [3] graph transformation systems are trans-
formed into a finite structure, called Petri graph which consists of a graph and
a Petri net, each of which can be analyzed with existing tools for the analy-
sis of Petri nets. For infinite systems, the authors suggest an approximation.
The approach is not appropriate for the verification of the coordination of au-
tonomous vehicles even without time, because it requires an initial configura-
tion and the formalism is rather restricted, e.g., rules must not delete anything.
Partner graph grammars are employed in [5] to check topological properties
of the platoon building. The partner abstraction is employed to compute over
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approximations of the set of reachable configurations using abstract interpre-
tation. However, the supported partner graph grammars restrict not only the
model but also the properties which can be addressed a priori. It is to be noted
that in addition to the mentioned limitations, both approaches do not support
time as approached in this paper.

The only approach we are aware of that addresses structural changes as well
as time is Real-Time Maude [18] which is based on rewriting logics. The tool
supports the simulation of a single behavior of the system as well as bounded
model checking of the complete state space, if it is finite. Again, the require-
ment of having an initial configuration and the limitation to finite state models
excludes that the real-time coordination of autonomous vehicles can be fully
covered.

Concerning the direct verification of hybrid system the work of Henzinger et
al. [2, 15] is the first to mention. However, although we could have in princi-
ple used the tool HyTech we decided to use the improved implementation by
Frehse [11] called PHAVer. Both tools are applicable for the verification of the
counterexamples the structural analysis presents but are not applicable to the
verification task in general.

There exist many approaches to cover the modeling of complex hybrid behav-
ior sucvh as CHARON, Masaccio, HybridUML, UMLh, HyROOM, HyCharts,
Mechatronic UML or Ptolemy (cf. [14]). However, none of them provides the
capability to describe dynamic structures as required for the considered class
of cyber-physical systems.



Chapter 5

Conclusion and Future Work

We have presented an approach that is able to model cyber-physical systems
with dynamic structure. By extending established graph transformation sys-
tems theory towards hybrid systems, the approach permits to capture such
systems at a reasonable high level of abstraction and to describe how the ad
hoc formation of tightly coupled cyber-physical subsystems can happen.

Furthermore, the also presented extended checking approach for inductive
invariants enables us to provide guarantees for such cyber-physical systems
with dynamic structure if the number of different types (not instances) of tightly
coupled cyber-physical subsystems is not too large.

5.1 Future Work

Future work will look for more convenient means to specify the local hybrid be-
havior in form of models and differential equations (e.g., supporting algebraic
ones) as well as exploiting more sophisticated analysis tools for the checks
required for the inductive invariants that would allow us to relax the constraints
on the differential equations for checking inductive invariants.

For the case of discrete GTS we have recently developed an algorithm to
check the existence of patterns, i.e. application of a set of graph-rules pre-
servers the patterns, [9], in contrast to showing the absence of forbidden pat-

23
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terns, as we have done in this report. We still have to evaluate to which extent
this approach has to be adopted to be applicable for HGTS, too.

We also plan to apply our approach to a cyber physical system of small robots
to evaluate the applicability of our approach. An important aspect of this is
to ensure that the verified system models remain valid models of the running
code. One possibility to narrow the gap between model and code is the imple-
mentation of an story diagram interpreter for embedded systems.
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