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Abstract

Distributed decision-making studies the choices made among a group of interactive and
self-interested agents. Specifically, this thesis is concerned with the optimal sequence of
choices an agent makes as it tries to maximize its achievement on one or multiple objec-
tives in the dynamic environment. The optimization of distributed decision-making is
important in many real-life applications, e.g., resource allocation (of products, energy,
bandwidth, computing power, etc.) and robotics (heterogeneous agent cooperation on
games or tasks), in various fields such as vehicular network, Internet of Things, smart
grid, etc.

This thesis proposes three multi-agent reinforcement learning algorithms combined with
game-theoretic tools to study strategic interaction between decision makers, using re-
source allocation in vehicular network as an example. Specifically, the thesis designs an
interaction mechanism based on second-price auction, incentivizes the agents to maxi-
mize multiple short-term and long-term, individual and system objectives, and simulates
a dynamic environment with realistic mobility data to evaluate algorithm performance
and study agent behavior.

Theoretical results show that the mechanism has Nash equilibria, is a maximization of
social welfare and Pareto optimal allocation of resources in a stationary environment.
Empirical results show that in the dynamic environment, our proposed learning algo-
rithms outperform state-of-the-art algorithms in single and multi-objective optimization,
and demonstrate very good generalization property in significantly different environ-
ments. Specifically, with the long-term multi-objective learning algorithm, we demon-
strate that by considering the long-term impact of decisions, as well as by incentivizing
the agents with a system fairness reward, the agents achieve better results in both indi-
vidual and system objectives, even when their objectives are private, randomized, and
changing over time. Moreover, the agents show competitive behavior to maximize indi-
vidual payoff when resource is scarce, and cooperative behavior in achieving a system
objective when resource is abundant; they also learn the rules of the game, without prior
knowledge, to overcome disadvantages in initial parameters (e.g., a lower budget).

To address practicality concerns, the thesis also provides several computational per-
formance improvement methods, and tests the algorithm in a single-board computer.
Results show the feasibility of online training and inference in milliseconds.
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There are many potential future topics following this work. 1) The interaction mech-
anism can be modified into a double-auction, eliminating the auctioneer, resembling a
completely distributed, ad hoc network; 2) the objectives are assumed to be independent
in this thesis, there may be a more realistic assumption regarding correlation between
objectives, such as a hierarchy of objectives; 3) current work limits information-sharing
between agents, the setup befits applications with privacy requirements or sparse sig-
naling; by allowing more information-sharing between the agents, the algorithms can
be modified for more cooperative scenarios such as robotics.
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Zusammenfassung

Die Verteilte Entscheidungsfindung untersucht Entscheidungen innerhalb einer Grup-
pe von interaktiven und eigennützigen Agenten. Diese Arbeit befasst sich insbesondere
mit der optimalen Folge von Entscheidungen eines Agenten, der das Erreichen eines
oder mehrerer Ziele in einer dynamischen Umgebung zu maximieren versucht. Die Op-
timierung einer verteilten Entscheidungsfindung ist in vielen alltäglichen Anwendun-
gen relevant, z.B. zur Allokation von Ressourcen (Produkte, Energie, Bandbreite, Re-
chenressourcen etc.) und in der Robotik (heterogene Agenten-Kooperation in Spielen
oder Aufträgen) in diversen Feldern wie Fahrzeugkommunikation, Internet of Things,
Smart Grid, usw.

Diese Arbeit schlägt drei Multi-Agenten Reinforcement Learning Algorithmen kom-
biniert mit spieltheoretischen Ansätzen vor, um die strategische Interaktion zwischen
Entscheidungsträgern zu untersuchen. Dies wird am Beispiel einer Ressourcenallokati-
on in der Fahrzeug-zu-X-Kommunikation (vehicle-to-everything) gezeigt. Speziell wird
in der Arbeit ein Interaktionsmechanismus entwickelt, der auf Basis einer Zweitpreis-
auktion den Agenten zur Maximierung mehrerer kurz- und langfristiger Ziele sowie
individueller und Systemziele anregt. Dabei wird eine dynamische Umgebung mit rea-
listischen Mobilitätsdaten simuliert, um die Leistungsfähigkeit des Algorithmus zu eva-
luieren und das Agentenverhalten zu untersuchen.

Eine theoretische Analyse zeigt, dass bei diesem Mechanismus das Nash-Gleichgewicht
sowie eine Maximierung von Wohlfahrt und Pareto-optimaler Ressourcenallokation in
einer statischen Umgebung vorliegen. Empirische Untersuchungen ergeben, dass in ei-
ner dynamischen Umgebung der vorgeschlagene Lernalgorithmus den aktuellen Stand
der Technik bei ein- und mehrdimensionaler Optimierung übertrifft, und dabei sehr gut
auch auf stark abweichende Umgebungen generalisiert werden kann.

Speziell mit dem langfristigen mehrdimensionalen Lernalgorithmus wird gezeigt, dass
bei Berücksichtigung von langfristigen Auswirkungen von Entscheidungen, als auch
durch einen Anreiz zur Systemgerechtigkeit, die Agenten in individuellen als auch Sy-
stemzielen bessere Ergebnisse liefern, und das auch, wenn ihre Ziele privat, zufällig und
zeitveränderlich sind. Weiter zeigen die Agenten Wettbewerbsverhalten, um ihre eige-
nen Ziele zu maximieren, wenn die Ressourcen knapp sind, und kooperatives Verhalten,
um Systemziele zu erreichen, wenn die Ressourcen ausreichend sind. Darüber hinaus
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lernen sie die Ziele des Spiels ohne vorheriges Wissen über dieses, um Startschwierig-
keiten, wie z.B. ein niedrigeres Budget, zu überwinden.

Für die praktische Umsetzung zeigt diese Arbeit auch mehrere Methoden auf, wel-
che die Rechenleistung verbessern können, und testet den Algorithmus auf einem han-
delsüblichen Einplatinencomputer. Die Ergebnisse zeigen die Durchführbarkeit von in-
krementellem Lernen und Inferenz innerhalb weniger Millisekunden auf. Ausgehend
von den Ergebnissen dieser Arbeit könnten sich verschiedene Forschungsfragen an-
schließen: 1) Der Interaktionsmechanismus kann zu einer Doppelauktion verändert und
dabei der Auktionator entfernt werden. Dies würde einem vollständig verteilten Ad-
Hoc-Netzwerk entsprechen. 2) Die Ziele werden in dieser Arbeit als unabhängig be-
trachtet. Es könnte eine Korrelation zwischen mehreren Zielen angenommen werden,
so wie eine Zielhierarchie. 3) Die aktuelle Arbeit begrenzt den Informationsaustausch
zwischen Agenten. Diese Annahme passt zu Anwendungen mit Anforderungen an den
Schutz der Privatsphäre oder bei spärlichen Signalen. Indem der Informationsaustausch
erhöht wird, könnte der Algorithmus auf stärker kooperative Anwendungen wie z.B. in
der Robotik erweitert werden.
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Chapter 1

Introduction

1.1 Motivation

Distributed decision making is concerned with the probabilities of certain choices made
by a group of interactive and autonomous agents and the outcome of these choices.
In distributed decision making, each agent has one or multiple objectives it tries to
maximize through interaction with other agents and the environment. The outcome
can be quantified numerically and is the result of joint actions from all of the agents
in the group. One-step actions lead to short-term outcomes, and a sequence of actions
leads to long-term outcomes. An agent is an entity that is capable of reasoning (i.e.,
calculating the expected outcome), making a decision and acting upon it — it is usually
a mathematical or logical abstraction of a person, but can also be an abstraction of
organizations, animals, software functions, etc.

The study of distributed decision making is an interdisciplinary topic in many fields
such as statistics, operations research, computer science, networking, economics, biol-
ogy, etc. There are many application scenarios for distributed decision making in real
life. The free market itself is a typical example of distributed decision making: to allo-
cate limited commodities on the market such as products, service slots, energy, etc., each
self-interested agent makes individual decisions that are impacted by and also impacting
the outcome of other agents’ decisions, e.g., our consumer behavior is influenced by the
market price, which in turn is influenced by the dynamic demand-and-supply relation-
ship that is the result of sellers and other consumers’ decisions to sell or buy. This can
be generalized into resource allocation applications, in which the agents can be both
competitive and cooperative, depending on what behavior contributes to its self interest

1



1.1. MOTIVATION

at the time of making the decision. Another typical example is in robotics, where co-
operating agents each take care of a simplified subtask to reduce the complexity of the
original task, such as winning a soccer match or detecting / delivering an object.

It is then not surprising that with increasing computation power, the study of distributed
decision making goes hand in hand with agent-based-modeling (ABM) methods [112].
One of the first agent-based models is the von Neumann cellular automaton: a group
of agents with simple internal states that distinguish them from the common environ-
ment and other agents (i.e., autonomy); agents can transition between different internal
states through communication / interaction with other agents. Later, agent-environment
interaction is also included in the modeling; additionally, the agents can observe their
neighborhood with limited visibility and store that information as knowledge to aid
their actions. In ABM, various types of self interests can be built into heterogeneous
agents, and in a simulated environment, agent behaviors, interactions and outcomes can
be studied. As the applications in question became more complex, multi-agent systems
(MAS) were developed for simulation in different research disciplines such as biology,
economics, physics, etc. The advantage of an MAS over classical mathematical mod-
eling (e.g., through a set of differential equations) is the ability to describe uncertainty,
disturbances and the resulting state transitions with relative ease that may be otherwise
overwhelming in an analytical formulation.

Games are commonly used tools to study strategic interaction between decision makers
and its outcome. Game theory as we know it today was first described by von Neumann
and Morgenstern [146]: they analyzed a two-person zero-sum game and proved its equi-
libria in their 1944 book “Theory of Games and Economic Behavior”. Today, we easily
find applications of game theory in different fields such as social science, economics,
computer science, etc. Using game theoretic tools, we can model group decision making
and predict the probability of each outcome, and also design mechanisms to incentivize
certain group behaviors and increase the probability of some preferred outcomes. The
characteristics of various economic models and their implications, the drives and be-
haviors of participants, and the design of different mechanisms, are all topics of game
theory [101].

Perhaps the most famous example of a game is the prisoner’s dilemma: two people who
have committed a crime together are arrested at the same time and separately questioned.
If both of them confess, each gets a prison term of 5 years. If one of them confesses,
the one that confesses goes free and the other one gets the maximum prison term of 10
years. If neither of them confesses, both will get 2 years. In this simplified decision-
making scenario, it is obvious that the global optimal outcome is for both prisoners to
remain quiet and not confess. However, using game theoretic tools, we arrive at the
more realistic outcome that both prisoners will confess, assuming they are both rational.

2



1.1. MOTIVATION

The example of the prisoner’s dilemma shows the power of game theory in analyzing
and predicting the outcomes of distributed decision making: each player in the game
is capable of independently observing, deciding and acting upon its decision (i.e., self
interested). Distributed decision making does not necessarily mean the elimination of
information sharing or cooperation between players — it merely means the motivation
for and the mechanism of making the decision lies with each individual player.

Combining game theoretic application and MAS simulation, the question we ask is:
assuming a self-interested agent wants to maximize its private utility in a shared envi-
ronment with other agents, what is the optimal sequence of action that it should take?
It has to act strategically, because other agents’ decisions will also impact its utility.
The question implies that we are no longer satisfied with only analyzing the behaviors
of a group of agents, but hope to optimize one or multiple objectives with the help of
game theoretic tools and multi-agent simulations. However, obtaining complete infor-
mation for the optimization is problematic in a dynamic environment, and additionally,
as the number of agents, objectives and possible actions increases, it becomes computa-
tionally intractable. The challenge lies in determining, for each agent independently, a
strategy that best responds to other agents’ changing preferences and strategies, without
knowledge of this information a priori. In other words, the agents need to have learning
capabilities to self adapt to the dynamic environment over time.

What typically characterizes such a dynamic environment is its vast state and action
space, unknown and changing parameters, and lack of upper/lower-bound performance
benchmarks for supervised learning. Reinforcement learning (RL) is one of the favorite
learning methods in such an environment for its ability to balance between exploration
and exploitation, therefore capable of learning with partial, noisy and delayed state in-
formation in a big state and action space. Its learning is based on reward signals from the
environment, therefore it does not need supervision, i.e., a priori knowledge of what the
optimal outcome should be. Instead, the consequences of an agent’s action are observed
and then used to improve future decisions [28]. Thus, the MAS captures the charac-
teristics of a multi-player stochastic game, whereas an RL algorithm assumes a more
realistic environment — unknown, but learnable. Multi-agent reinforcement learning
(MARL) algorithms are naturally decentralized and distributed.

Game theoretic approaches augmented with MARL are already applied in some scenar-
ios, for example, reference [130] models a power-control problem as a distributed non-
cooperative game, in which the players have conflicting objectives and use Q-learning
algorithm to find equilibrium. The work focuses on relaying and solves a routing prob-
lem. References [77] and [78] model communication resource allocation in a dynamic
vehicle-to-vehicle network as a Bayesian coalition game and apply a learning algorithm.
Their work focuses on cooperative content sharing.
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MARL algorithms in a dynamic environment combined with game theoretic approaches
to optimize distributed decision making is also the focus of this thesis. The author uses
resource allocation in vehicular network as an example. To evaluate the performance
of the algorithm, the author develops a Python discrete-event simulator based on the
edge-cloud-computing paradigm and vehicle mobility (details are in Sec. 3.3).

The main contributions of the thesis are:

• The author formulates the distributed decision-making problem (specifically the
resource allocation problem) as an auction and designs a utility function to incen-
tivize both competition and cooperation, depending on resource availability. The
author also proves that the static outcome is a Nash equilibrium, a maximization
of social welfare and a Pareto optimal way of resource allocation (Sec. 4.4).

• The author proposes online distributed MARL algorithms to find the equilibrium
of the game in a dynamic and adversarial environment, maximizing multiple ob-
jectives with long-term, delayed and sparse reward signals (Sec. 4.5, 5.4 and 6.5).
The algorithms show significant individual and system performance improvement
compared to benchmarks, as well as good generalization property in different en-
vironment setups (Sec. 4.6,5.5 and 6.6).

• The proposed algorithms require no information sharing between agents, no su-
pervision of the learning process and are robust to variance in parameter initial-
ization (Sec. 5.5.2 and 6.6.3). In fact, the agents learn to use the rules of the
game to overcome disadvantages in initial parameters without predefined rules
(Sec. 4.6.1). This makes them highly flexible in previously unseen environments.

• The author tests the final multi-agent multi-objective long-term algorithm on a
single-board computer and demonstrate that inference can be done in millisec-
onds, fitting to the requirements of time-critical applications (Sec. 6.7).

• The author has open sourced the source code for both the simulator and the algo-
rithms [1, 2, 3, 53].
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Bidders join a repeated auction with one auctioneer and multiple commodity sellers. A bidder 𝑚
decides to join the auction for commodity type 𝑘 with bid 𝑖 or to back off with cost 𝑞, depending on
past information and current observations. One auctioneer determines the winner, sends back bidding
results 𝑧 and 𝑐, payment 𝑝, short-term reward (at the end of each auction round), and other long-term
rewards such as fairness (at the end of a long interval). Commodity sellers execute requests passed on
by the auctioneer. Only the bidders can learn.

Figure 1.1: Auction mechanism

1.2 Methodology

1.2.1 Application scenario

As mentioned in the previous section, the author of this thesis uses resource allocation
as an application scenario to study distributed decision making. The system is an ab-
straction of the classic edge cloud computing architecture. It is set up as an auction with
multiple bidders, one auctioneer, and multiple commodity sellers (Fig. 1.1). The bidders
do not share information with other bidders or commodity sellers, they only communi-
cate with the auctioneer. This study focuses on the behavior of the independent bidders,
conceived of as agents. Each bidder has one or multiple objectives to achieve in the
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auction. As in real life, the bidder’s preference of objectives may change over time, in
which case it needs to learn the Pareto frontier of a multi-objective optimization problem
to respond quickly to changes [121].

Commodities can be products or services. To be produced or executed, each commodity
has its own specification and resource needs (in terms of material and time). Over
time, a bidder randomly receives requests for one of multiple types of commodities and
tries to fulfill the request within a given deadline. All commodities of the same type
are equivalent. Availability of commodities is limited for each discrete time slot and
decreases after a successful bid. Maximum commodity availability is fixed per type.

Bidders have private valuations for each type of commodity (i.e. the benefit it derives
from winning the commodity). Each bidder’s direct payoff from the auction is its valua-
tion minus the price it pays the auctioneer for the commodity and other additional costs.
One of the bidder’s decision objectives from joining the auctions is to maximize its av-
erage payoff over time. If the bidder bids low and loses, it suffers additional costs such
as overhead for bidding and rebidding. If it bids high and wins, it has reduced payoff
due to high payment. Instead of bidding at a particular time, a bidder also has the option
to back off (i.e. delay its bid [33]), hoping for less competition for the commodity, but,
on the other hand, using up time towards the fixed deadline and thus making the bid
more urgent.

Besides maximizing payoff, the bidder can have other objectives, such as maximiz-
ing winning rate, or incentivized to consider system objectives, such as overall fairness
among all bidders. The importance of each objective to the bidder is private and ex-
pressed through a preference weight vector, which can change over time. The bidder
independently learns a bidding strategy to maximize its utility: all of its objectives mul-
tiplied by the preference weights. Due to frequent changes to the weights, the bidder has
to find the Pareto frontier of a multi-objective problem rather than maximizing only one
scalarized objective. The thesis studies the performance of different learning algorithms
in each bidder.

Auctioneer and commodity sellers: in this thesis, the system has one auctioneer that
determines the winners of auctions. The auction is repeated in each discrete time step,
as long as there is commodity availability. The auctioneer passes winning bidders’
requests to the commodity sellers with the lowest selling price. If no seller has that
commodity available, the bids are rejected. For a rejected bid, the bidder can rebid: the
maximum permitted rebidding rate has to trade off between higher offloading success
rate and additional communication overhead to the system. For simplicity, the author
allows rebidding once, the same as in [140]. If the request is accepted by the auctioneer,
but not executed by the commodity seller within its deadline, the seller drops the request
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and informs the auctioneer and the bidder. Both rejected and unfulfilled demands are
considered failures. Communication from auctioneer to the bidder after the auction
round includes bidding outcome, payment, and other information related to the bidder’s
objectives, such as long-term bidding success / failure rate, overall availability / resource
utilization, fairness, etc. The bidder can decide whether or not to use the feedback for
learning. For example, one bidder may have low preference for system objectives and
ignore the information; another one may find the information useful.

The commodity sellers can dynamically adjust their price of the commodities. Since the
study focuses on the behavior of the bidders, the author of this thesis makes the com-
modity sellers passive (i.e., not learning-capable) and uses a simplified pricing strategy
with load-balancing effect: a seller with higher availability sells at a lower price; the
requests flow towards the seller with higher availability until the resource availability at
all sellers converge to a common value.

To make the system in this thesis resemble the fast-paced edge cloud computing archi-
tecture in real life, the author adds transmission delay between bidders, the auctioneer
and commodity sellers, and randomizes resource requirement, queueing and process-
ing time for request execution. Each bidder learns its optimal bidding strategy despite
noisy state information in a dynamic environment. Sec. 3.2 describes a more concrete
example with vehicular network applications.

1.2.2 Step-by-step problem formulation

This thesis starts with the problem formulation of a second-price auction in its basic
form. Then, it adds complexity to the problem formulation step by step, until at the end
the problem formulation fully reflects the long-term multi-objective problem that the
thesis addresses.

Sec. 2.2.3 briefly explains various types of second-price auctions as background. The
problem formulation becomes more complex in each step:

• Basic form of a second-price auction, slightly altered to add budget constraint.

• Combinatorial second-price auction with budget constraint.

• Simultaneous single-item second-price auction with budget constraint.

• Simultaneous single-item second-price auction with budget constraint and partial
information.
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Sec. 4.3 provides the complete formulation of the short-term single-objective optimiza-
tion problem that is based on 1) the simultaneous single-item second-price auction with
budget constraint and partial information, and 2) the potential game.

This formulation will be further extended in Sec. 5.3 into a long-term single-objective
optimization problem, and finally in Sec. 6.4, into a long-term multi-objective optimiza-
tion problem.

1.2.3 Step-by-step solution approach

The sequence of problems described in Sections 4.3, 5.3 and 6.4 becomes more and
more complex, hence, the solution algorithms to solve these problems become more
and more sophisticated. In this thesis, the author will present these solution algorithms
step by step.

In Sec. 4.5, the solution algorithm to the short-term single-objective optimization prob-
lem, named DRACO, is a stand-alone MARL module with a fictitious self-play (FSP)
wrapper to improve convergence properties.

In Sec. 5.4, the solution algorithm named MALFOY adds a curiosity module for long-
term sparse reward and a credit assignment module for integration of long-term and
short-term objectives, parallel to the original MARL module with FSP.

In Sec. 6.5, the final solution algorithm for long-term multi-objective optimization,
named MOODY, splits the training into two phases and uses federated learning for gra-
dient updates.

All three algorithms are trained and evaluated in the same environments, which will be
described in detail in Chapter 3.

1.2.4 State-of-the-art analysis

State-of-the-art analysis is split into three parts. Sec. 4.1 lists previous research on short-
term single-objective optimization for resource allocation, including centralized and
distributed approaches, heuristics and learning algorithms, and application-specific ap-
proaches. Sec. 5.1 introduces previous research on long-term single-objective optimiza-
tion methods. Sec. 6.3 gives a thorough background introduction on multi-objective
optimization, and explains in detail some single-model and multi-model methods.
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1.3 Related papers by the author

The author’s published papers and paper in peer review follow the same step-by-step
development of the research topic.

[140] designs an interaction mechanism based on second-price auction for the short-
term, single-objective resource allocation problem. It proves the theoretical results of
equilibria existence, welfare maximization and Pareto optimality in a stationary envi-
ronment; then it goes on to propose and demonstrate the effectiveness of the MARL
algorithm in a dynamic environment. The paper also shows interesting characteristics
of a distributed decision-making: the right incentives can improve the system overall
performance without sacrifices to individual objectives, and through learning, the agents
can overcome disadvantages in initial parameterization and achieve similar results at the
end (Chapter 4). Source code is available on github [1].

[139] targets delayed and sparse reward signals and considers long-term effects of agent
decisions. It reformulates the problem, and proposes an algorithm with three modules.
Then it models two classic auction mechanisms and shows the performance of each
module, respectively. The results are included in Section 5.5.1 of the thesis. Source
code is available on github [53].

[141] extends the analysis in [139] to the same realistic V2X setup described in Chap-
ter 3. It shows the long-term algorithm’s improved performance and generalization
properties, as well as its robustness to initial parameters. The results are included in
Sec. 5.5.2 of this thesis. Source code is available on github [2].

Finally, one paper (as of the time of writing) in peer review, Multi-Objective Optimiza-
tion Using Adaptive Distributed Reinforcement Learning targets not only long-term de-
layed and sparse reward signals, but also the learning of multiple objectives, i.e., the
Pareto frontier. The paper uses a two-phase training approach based on MAML [52],
and demonstrates how the initial model trained through federated learning can quickly
adapt to any change in objectives in the test environment with one-shot learning. To
address practicality concerns, the paper also proposes several methods to improve com-
putation performance and demonstrates the algorithm’s performance on a single-board
computer. The results are included in Chapter 6 of this thesis. Source code is available
on github [3].
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1.4 Thesis outline

The previous section introduces the context and motivation of studying the interdisci-
plinary area of single and multi-objective optimization through combined MARL and
game-theoretic approaches. The rest of this thesis describes the proposed algorithms.
The thesis is structured as follows.

Chapter 2 provides preliminaries and related work in the areas of game theory, multi-
agent systems and reinforcement learning. Chapter 3 introduces an example resource
allocation application in vehicular network (vehicle-to-everything, or V2X) that can
benefit from such a game-theoretic MARL algorithm, and the modeling of the system.
It also describes the V2X simulation environment for all algorithms. Chapter 4 intro-
duces the short-term single-objective RL algorithm and analyzes the evaluation results.
Chapter 5 extends the solution into a long-term single-objective learning algorithm. Fi-
nally, Chapter 6 extends it further into a long-term multi-objective learning algorithm.
Chapter 7 concludes the thesis and discusses future research directions.
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Chapter 2

Background

2.1 Chapter outline

Sec. 2.2.1 briefly introduces the background on game theory, including game theoretic
terms used in the following chapters, such as utility, payoff, social welfare, etc.

Sec. 2.2.2 detailizes the scope of the thesis, or types of the games studied. Specifically,
the second-price auction mechanism that is the basis of the mechanism design is intro-
duced in Sec. 2.2.3. Then, the concept of potential games is introduced in Sec. 2.2.4.
Both types of games are used in the subsequent chapters to design the interaction mech-
anism.

Sec. 2.3.1 introduces Markov decision process (MDP), Bellman equations, and classic
single-agent learning algorithms such as dynamic programming, temporal difference
learning, policy gradient, etc. Specifically, actor-critic reinforcement learning algorithm
is explained in detail. The algorithm is the basis of the algorithms designed in this thesis.

Sec. 2.3.2 introduces the challenges multi-agent reinforcement learning (MARL) faces
(e.g., non-stationarity), and some online-learning algorithms developed to meet the chal-
lenges, such as no-regret and best-response algorithms. This is the basis for design of
the MARL algorithms in the subsequent chapters.

Sec. 2.4 concludes the chapter.
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2.2 Games

2.2.1 Preliminaries

Game theory studies the interaction of multiple economic agents who act according to
their preferences to maximize a utility. It also studies the outcome of that interaction.

An economic agent, or agent for short, is an entity that has one or multiple objectives
and is capable of making and acting on independent decisions to maximize its utility. A
utility is the scalarized objective achievement score based on the agent’s preference of
one or multiple objectives. The achievement of each objective can be measured by a real
number, a higher value represents a higher degree of achievement of the objective. An
example of an objective is the economic payoff: in this study, the author uses the term
payoff to refer to a player’s economic gain by participating in a game. A preference is
a set of real numbers, a higher value represents a higher priority for the corresponding
objective. The maximization of the utility is through a utility function that maps the
agent’s preference and objective achievements to a real number, such that utilities with
different objective achievements and preferences can be ranked. This real number is
also referred to as the reward – a term used in reinforcement learning (Sec. 2.3.1).

A game is a situation in which an agent, as a player, aims to maximize its utility by
predicting and reacting to other agents’ behaviors. Games can be roughly divided into
two categories: sequential games and simultaneous games. In a sequential game, the
agent acts when it has information of other agents’ previous actions. In a simultaneous
game, all agents act without information of other agents’ actions. A sequential game or
extensive-form game can be represented by a directed graph. Each node in the graph
represents a point of action selection; a simultaneous game or normal-form game can
be represented by a matrix. We can also categorize games by agents’ access to infor-
mation: in a game with perfect information, the agent knows all previous actions of all
agents, the rule of the game, as well as all agents’ utilities. Otherwise, it is a game with
imperfect information. A third way to categorize games is through the type of agent
interaction: if agents integrate a global objective into their private objectives, the game
is at least partially cooperative; otherwise, the game is non-cooperative or competitive.
An outcome of the game is the set of utilities of all agents, and social welfare is the sum
of utilities achieved by all agents.

Based on the definitions above, we can see that an economic agent has the following
characteristics:

1) it has objectives, preferences and a utility function.
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2) it can calculate the probability of a sequence of actions (a strategy) leading to a
certain outcome.

3) it can interact with other agents and/or the environment through action.

4) in the definition of an economic agent, the author adds another characteristic
that is typically assumed in game theoretic literature: the economic rationality
(Sec. 2.2.3). An economically rational agent always follows the sequence of ac-
tions that it believes to be the most probable to yield the most preferred outcome.

To analyze such a game, one of the most commonly used tools is equilibrium. For
example, the agents, each with its strategy, reach a Nash Equilibrium (NE) when no one
can improve its utility without changing other agents’ strategies. This set of strategies is
called the NE strategies, and none of them should be a strictly dominated strategy (i.e.
a strategy that always delivers a worse outcome than an alternative strategy).

2.2.2 Scope

Among distributed decision-making mechanisms such as auction, posted price and ne-
gotiation, an auction is most suitable in a dynamic and competitive environment where
the number of agents and their preferences vary over time and private valuations of
commodities are dispersed [47, 125]. Among various forms of auction, a second-price
sealed-bid auction maximizes welfare rather than revenue and has limited information
sharing; these assumptions befit the requirement of many real-life applications. Specifi-
cally, the approach in this thesis is based on Vickrey-Clarke-Groves (VCG) for second-
price combinatorial auction [145]. In the case of this thesis, the author uses simulta-
neous combinatorial auction as a simplified version of VCG — each bidder bids for all
commodities separately and simultaneously, without having to specify its preference for
any bundle [49]. It assumes no correlation between commodities.

In the rest of this section, the author incrementally extends the problem formulation
from a classic second-price auction to a more complex problem that resembles the short-
term single-objective problem addressed in Sec. 4.3. Sec. 4.3 provides the complete
formulation of the short-term single-objective problem. This formulation will be further
extended in Sec. 5.3 into a long-term single-objective problem, and finally, in Sec. 6.4,
into a long-term multi-objective problem. In this section:

• Basic form of a second-price auction is introduced, then slightly altered to add a
budget constraint (Sec. 2.2.3).
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• Combinatorial second-price auction with budget constraint is described. The
VCG mechanism is introduced, as well as its intractability (Sec. 2.2.3).

• To ensure feasibility, simultaneous single-item second-price auction with budget
constraint is presented (Sec. 2.2.3).

• To further reduce the complexity, the same problem is described with partial in-
formation requirements. The need for a learning algorithm motivates researches
in repeated auctions (Sec. 2.2.3).

• To incentivize cooperation, potential game is introduced (Sec. 2.2.4).

2.2.3 Second-price auction

Basic form

The author first describes the problem as an optimal allocation problem in a normal
form game, based on the definitions from Sec. 1.2.1:

Definition 2.1. A bidder 𝑚 ∈ 𝑀 receives a continuously distributed valuation of the
commodity 𝑣𝑚 ∈ [𝑙, ℎ] and chooses its strategy to submit bidding price 𝑏𝑚 = 𝑓𝑚 (𝑣𝑚)
from its strategy set 𝐹𝑚. Any strategy function 𝑓𝑚 (·) is increasing: for 𝑖 < 𝑗 ,∀𝑖, 𝑗 ∈
[𝑙, ℎ], 𝑓𝑚 (𝑖) < 𝑓𝑚 ( 𝑗). If a bidder wins the commodity, it pays a price 𝑝𝑚, and its utility
is 𝑢𝑚 = 𝑣𝑚 − 𝑝𝑚. The goal is to find an allocation of the commodity that maximizes total
welfare

∑
𝑚∈𝑀

𝑢𝑚.

Second price sealed-bid auction is first described by Vickrey in 1961 [145], and it can
be proven that it is an optimal allocation which maximizes the total welfare at Nash
equilibrium, and that it is a weak dominant strategy for rational bidders to bid their true
valuation of the commodity [25].

The winning bidder 𝑚 = 1 in a second-price auction pays the 2nd highest biding price:
𝑝1 = 𝑓2(𝑣2), and its utility is 𝑢1 = 𝑣1 − 𝑓2(𝑣2).

In some cases, a budget constraint 𝐵𝑚 is added to the basic form such that the bidder
cannot overbid, i.e., 𝑓𝑚 (ℎ) ≤ 𝐵𝑚. With budget constraint, it can also be proven that there
exists a Nash equilibrium, and that it is Pareto optimal [135]. This applies to simple,
rational multi-player, nth-price sealed-bid auctions. Sec. 4.4 describes the theoretical
results based on the method from [135], with adaptations to suit the use case in this
thesis. The case in this thesis is different from [135] in the definition of utility function.
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The author of this thesis includes the second price as part of the utility function, rather
than the constant used in [135]. The author also adds a penalty cost for losing the bid.

In this thesis, the bidders need to bid for multiple commodities as a consumption bundle.
This falls into the category of combinatorial auction. In theory, 𝑣𝑚 is known to the
bidders before they join the auction. In this study, 𝑣𝑚 is given to the bidder, drawn
from a uniform random distribution such that the valuation differs within 25% of the
maximum valuation among all bidders. This is not always a realistic assumption, as
bidders in real life may not know the precise valuation of each commodity. In future
work, the bidder may have the ability to learn the valuation function during repeated
auction.

Combinatorial second-price auction

The combinatorial problem is described as follows.

Definition 2.2. Bidder 𝑚 ∈ 𝑀 bids for a consumption bundle 𝑆 ∈ 2𝐾 among commodi-
ties set 𝐾 . Its valuation on the bundle 𝑣𝑚 (𝑆) is drawn from a distribution. It bids price
𝑏𝑚 for the bundle, and if it wins, it pays a payment 𝑝𝑚, its utility is 𝑢𝑚 (𝑆) = 𝑣𝑚 (𝑆) − 𝑝𝑚.
𝑣𝑚 (𝑆) is private information to each bidder; it is non-negative and depends only on the
commodities (i.e. no externalities influencing the valuation of the same set of commodi-
ties). The goal is to maximize

∑
𝑚∈𝑀

𝑢𝑚 (𝑆).

In a combinatorial auction, each bundle can include multiple commodities, and one type
of commodity can be included in multiple bundles. The valuation is given per bundle,
it depends on the specific combination of commodities in the bundle and is not always
linear to the valuation of each commodity. For example, if a buyer bids for a bundle of
tulips of different colors, the buyer’s valuation of a bouquet may be exponential to the
size of the bouquet, or the buyer would value a certain color combination higher than
any single-colored bouquet.

For combinatorial auctions, the VCG mechanism is known to be an incentive-compatible
and optimal allocation mechanism which maximizes the social welfare [105]. Formally,
a VCG mechanism is defined as follows.

An auction with the set of bidders 𝑀 has possible outcome 𝑤 ∈ {𝑤1, 𝑤2, · · · , 𝑤𝑛}. Each
bidder 𝑚 ∈ 𝑀 has private valuation information 𝑣𝑚 (𝑤) on each of the outcomes. Its
utility is 𝑢𝑚 (𝑣𝑚, 𝑤) = 𝑣𝑚 (𝑤) − 𝑝𝑚 (𝑤), where 𝑝𝑚 (𝑤) is its payment. The goal of the
mechanism is to find an outcome 𝑤∗ such that 𝑤∗ = arg max

𝑤

𝑢𝑚 (𝑣𝑚, 𝑤),∀𝑚 ∈ 𝑀 .
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The mechanism also calculates the best outcome without winner 𝑚 in the auction, de-
noted 𝑤∗−𝑚; −𝑚 denotes all other bidders in the auction except bidder 𝑚. Bidder 𝑚’s
payment is defined as the difference in the welfare caused by 𝑚’s participation:

𝑝𝑚 (𝑤) =
∑︁
𝑗≠𝑚

𝑢 𝑗 (𝑣 𝑗 , 𝑤∗−𝑚) −
∑︁
𝑗≠𝑚

𝑢 𝑗 (𝑣 𝑗 , 𝑤∗) (2.1)

However, the mechanism requires the bidders to know their utility for each possible
outcome, and in order to achieve optimal allocation, the mechanism requires bidders to
truthfully submit their utilities [105]. Moreover, such mechanisms are computationally
intractable, as the number of actions available to a bidder grows [49] (i.e. in the case of
continuous action space, which is also the case in this thesis, with continuous bidding
prices).

One way to simplify the problem of bidders’ unknown utilities is by simultaneous (or
item-bidding) combinatorial auction. Each bidder bids for all 𝐾 commodities separately,
without having to specify its preference for any other consumption bundles [49].

Theoretical bounds of the welfare achievable in a simultaneous combinatorial second-
price auction with no overbidding and subadditive utilities are proven in [23] to be

lower bounded at
1

2 ln 𝑘
of the optimal allocation (i.e. the welfare-maximizing allocation

through a VCG mechanism), where 𝑘 is the number of commodities, and upper bounded
at 1/2 of the optimal with incomplete information. Authors of [49] improved the lower
bound to 1/4 for more commodities.

Simultaneous single-item combinatorial second-price auction

Definition 2.3. Bidder 𝑚 ∈ 𝑀 bids price vector 𝑏 = 𝑏1, · · · , 𝑏 |𝑆 | simultaneously for
each commodity in a subset 𝑆 ∈ 2𝐾 among commodities set 𝐾 . It has a valuation on
winning any combination of the commodities 𝑣𝑚 (𝑆). If it wins, it pays a payment 𝑝𝑚,
its utility is 𝑢𝑚 (𝑆) = 𝑣𝑚 (𝑆) − 𝑝𝑚. The goal is to maximize

∑
𝑚∈𝑀

𝑢𝑚 (𝑆).

Simultaneous single-item auction mechanisms still have the problem of computational
intractability. To further reduce the complexity, the author of this thesis uses online
learning algorithms for efficient allocation, without knowledge of full information of
the game. Learning algorithms depend on only partial information; they learn the dis-
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tribution of players’ utilities and payment through feedback in each round of a repeated
game.

Incomplete-information games

Games with incomplete information are also known as Bayesian games. In a Bayesian
game, the agents are assumed to have only partial information of the utilities. Their
beliefs of their own or other agents’ utilities follow a probability distribution, which can
be updated as the agent obtains more information. There are three types of rational-
ity with different assumptions of the agent’s knowledge [102]. An ex-ante individual
rationality (IR) is based on the assumption that an agent does not have knowledge of
either its own or other agents’ precise valuation (of commodities); instead, it only has
knowledge of both distributions, and it is individually rational if it joins the auction only
when it expects a positive utility averaged over its belief of both distributions. Similarly,
interim IR is based on the assumption that the agent has knowledge of their own valua-
tion, but not of others, they would join the auction if its expected utility averaged over
its belief of other agents’ valuation distribution is positive. The strongest assumption is
in ex-post IR, agents have complete information of the game. To motivate agents to join
the auction voluntarily, they have to be either ex-ante IR, or interim IR, or ex-post IR.
The author of this thesis designs a mechanism where the agent has no prior knowledge
of other agents, but knows precisely its own valuation. It is therefore interim IR.

A simultaneous single-item combinatorial second-price repeated auction with partial
information can be formulated as follows.

Definition 2.4. Each bidder 𝑚 ∈ 𝑀 has a private value 𝑣 (𝑚,𝑘) for each commodity 𝑘 ∈
𝐾 . At each time 𝑡, bidder 𝑚 draws its action (bidding price for each of the commodities)
b𝑡𝑚 ∈ R|𝐾 | from a mixed strategy 𝜋𝑡𝑚. Its utility for any outcome of the auction is 𝑢𝑚 (b𝑡𝑚).

The auction repeats for 𝑇 periods. The goal is to maximize
1
𝑇

𝑇∑
𝑡=1

∑
𝑚∈𝑀

𝑢𝑡𝑚.

Such games have Bayesian equilibria. Authors of [32] prove that even finding an
approximate equilibrium is NP-hard. However, they also show that we can relax a
Bayesian equilibrium into a coarse correlated equilibrium, which does not have to be
best responses, but can be computed in polynomial time [32]. This is also called no-
regret dynamics.
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2.2.4 Potential games

Monderer and Shapley, in their 1996 paper [99], introduced the concept of potential
games. Potential games are games that associate social welfare with individual agent
utilities through a potential function. It is often used as basis for cooperative games,
such as in [92].

Definition 2.5. Let 𝑀 be the set of players, 𝐴 be the set of actions, 𝑢 be the set of
utilities. The game 𝐺 (𝑀, 𝐴, 𝑢) is an exact potential game if and only if there exists a
potential function 𝜙(𝐴) : 𝐴→ R such that for all𝑚 ∈ 𝑀 , 𝑢𝑚 (𝑏𝑚, 𝑏−𝑚)−𝑢𝑚 (𝑏′𝑚, 𝑏−𝑚) =
𝜙𝑚 (𝑏𝑚, 𝑏−𝑚) − 𝜙𝑚 (𝑏′𝑚, 𝑏−𝑚), 𝑏 ∈ 𝐴 [99].

All bidders’ utilities are associated through the potential function, and change in a single
bidder’s utilities is reflected exactly in (or, in the case of a weighted potential game, as
a fraction of) the system utility.

Authors of [45] prove that in a potential game with set of player 𝑀 and discrete set of
strategies 𝐴 per player, the worst case complexity of computing a best response is on the
order of 𝑀𝐴𝑀−1, and the average complexity of random potential games is 𝑒𝛾𝑀+𝑂 (𝑀),

where 𝛾 = lim
𝑛→∞
(− ln 𝑛 +

𝑛∑
𝑘=1

1
𝑘
) is the Euler constant.

Sec. 4.4.2 designs an auction mechanism that is reduced to a potential game under cer-
tain conditions. Using these results, the author demonstrates how the mechanism incen-
tivizes individual bidders to consider system goals in their utilities.

2.3 Multi-agent reinforcement learning

2.3.1 Single-agent RL

RL problem formulation has roots in dynamical systems theory. It is the control of a
partially known Markov decision process (MDP).

An MDP is one type of probabilistic sequential decision models. Such a model can
be represented by a directed graph, with a set of decision-making points (nodes), each
with its state and a set of actions. Each state-action pair has an immediate reward or
cost, as well as a transition probability to transition to another decision-making point. A
decision is made to choose an action from the available set of actions, then based on the
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transition probability, the decision maker arrives at the next decision-making point and
receives a reward or a cost, accordingly. Over time, the decision maker accumulates
rewards / costs from its sequence of decisions. The special characteristic of a MDP
that distinguishes it from other sequential decision models is the fact that everything
related to a decision-making point, i.e., its available action set, the rewards and costs and
transition probabilities, only depends on the current state-action pair and independent
from any past states or actions [118].

An RL algorithm solves problems that can be typically described as an MDP. Its goal is
to find an optimal policy that traverses a sequence of state-action pairs and returns the
maximum cumulative reward of an MDP. In this study, the policy of the RL algorithm
is equivalent to the strategy (Sec. 2.2.1) of a game – it is the RL terminology for a
sequence of actions.

RL differs from supervised learning. Supervised learning trains a model that extrapo-
lates and generalizes given situations and specifications, so that it responds correctly to
new inputs that are not present in history. RL problems are interactive: when it is hard
to obtain examples of all situations and with correct labels, RL agents observe reward
signals as consequence of their actions and learn in previously unknown environments.
RL makes tradeoff between exploitation and exploration: finding better rewards by try-
ing different states and actions, but also by improving on its past decisions. RL is also
different from unsupervised learning: unsupervised learning’s goal is to find hidden
structures in data, whereas RL’s goal is to maximize a reward signal.

RL is different from evolutionary methods commonly used to solve optimization prob-
lems (e.g.genetic algorithm, simulated annealing, etc.): optimization methods never
estimate value functions; instead, they apply static policies to separate instances of pos-
sible environments and chooses the policy with the best score. Evolutionary methods
are specially advantageous when policy space is small or structured. They do not view
policies as a function linking states and actions. In other words, evolutionary methods
search, RL agents learn. The latter can be more efficient if the result depends on in-
dividual interaction with the environment as they focus on fitting actual environment
model to their belief of the model (learn despite uncertainty).

There are four elements of RL: policy 𝜋, reward 𝑟, state value 𝑣 or state-action value 𝑞,
and, optionally, a model of the environment, expressed as the probability 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) of
getting reward 𝑟 by transitioning from state 𝑠 to 𝑠′ with action 𝑎. We define the expected
future return 𝐺 𝑡 at time 𝑡 of a MDP to be the total of future rewards over time:
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𝐺 𝑡 =

∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 = 𝑅𝑡+1 + 𝛾𝐺 𝑡+1 (2.2)

where 𝛾 is the discount factor for future rewards, 𝑅𝑡 is the reward value at time 𝑡.

The value of any MDP state 𝑠 following policy 𝜋 can be defined recursively by its
possible future states:

𝑣𝜋 (𝑠) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠] = E𝜋 [𝑅𝑡+1 + 𝛾𝐺 𝑡+1]
=
∑︁
𝑎

𝜋(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠) ·
∑︁
𝑠′,𝑟

𝑝(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)]

(2.3)

where 𝑆𝑡 = 𝑠 is the current state, 𝑆𝑡+1 = 𝑠′ is the possible next state, 𝑝(·) is transition
probability from 𝑠 to 𝑠′ through current action 𝐴𝑡 = 𝑎, 𝑅𝑡+1 is the next reward, 𝑟 is the
possible reward associated with the tuple (𝑠, 𝑎, 𝑠′).

Based on Eq. 2.3, we define the optimal state value as the maximum expected value
achievable with the optimal policy:

𝑣∗(𝑠) = max
𝜋
𝑣𝜋 (𝑠)

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣∗(𝑠′)] (2.4)

Eq. 2.4 is the Bellman optimality equation for state value. Similarly, we can also define
state-action pair value and optimal value as:

{
𝑞𝜋 (𝑠, 𝑎) = E𝜋 [𝐺 𝑡 | (𝑠, 𝑎)] =

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)]

𝑞∗(𝑠, 𝑎) =
∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾max𝑎′ 𝑞∗(𝑠′, 𝑎′)]

(2.5)

The two Bellman optimality equations are equivalent when 𝜋 is the optimal policy: get-
ting the best state value under the optimal policy is the same as choosing the best action
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from that state: 𝑣∗(𝑠) = max𝑎 𝑞𝜋∗ (𝑠, 𝑎). For finite MDPs, the Bellman optimality equa-
tions have a unique solution independent of the policy. This is a system of 𝑁 equations,
𝑁 being the number of states; and the system can be solved for the unknown vari-
ables 𝑣∗(𝑠) if transition probabilities 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) are known (i.e., complete knowledge
of the environment). Otherwise, when the environment is unknown (i.e., incomplete
𝑝(𝑠′, 𝑟 |𝑠, 𝑎) knowledge), we need an RL algorithm that balances between 1) improving
the existing best performance from past experience (i.e., “exploitation”) and 2) finding
potentially better policies in under-explored space (i.e., “exploration”) through trial and
error. During this process, the state / state-action values are incrementally updated. If
all states and actions are visited infinite times, the average (expected) value converges
to the real value.

Dynamic programming

Dynamic programming (DP) assumes a perfect model of the environment. DP is also
called a model-based algorithm. In RL, “model” refers to the model of the environment
and the reward. More specifically, if 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) is known or predicted, it is model
based; otherwise it’s model free.

DP computes optimal policies by using value functions to organize and structure the
search for good policies. They are exact solutions with finite states, actions and reward
sets. DP algorithms are obtained by turning Bellman equations into update rules for
improving approximations of the desired value functions. All updates done in DP al-
gorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. This is done through policy iter-
ation. In every iteration, policy evaluation and policy improvement steps are alternately
applied.

Policy evaluation works as follows. Given a policy, the expected value of the state can
be calculated through a value function:

𝑣𝑘+1(𝑠) = E[𝑅𝑡+1 + 𝛾𝑣𝑘 (𝑠′) |𝑠𝑡] =
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝑘 (𝑠′)] (2.6)

where 𝑘 is the index of update iteration. Iterative policy evaluation converges in a finite
MDP to 𝑣𝜋 as 𝑘 →∞, as proven by [119].

The policy improvement theorem [138] is based on the theorem that if we follow a
random policy 𝜋 except in one state 𝑠, where we choose the best action 𝑎∗ instead of
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𝑎𝜋, we would get a state value 𝑣(𝑠) that is at least as high as the random policy, and
the new policy will be better than the original one. Extending this theorem, it can be
proven [138] that if we greedily choose the best action in every state, the final policy
after the iterations is an optimal policy.

{
𝜋(𝑠) = arg max𝑎

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)]

𝑣𝜋 (𝑠) = max𝑎
∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)]

(2.7)

Temporal difference learning

Temporal difference (TD) learning is a model-free RL method with guaranteed con-
vergence if step-size parameter is sufficiently small. TD learning uses bootstrapping to
estimate the value functions. Specifically in TD(0) method, where the estimation is only
based on one-step return from the future state, the target of the current value function
called the TD target is written as 𝑅𝑡+1 + 𝛾𝑣(𝑠′), where 𝛾 is the discount rate of future
return. When a new sample of state value 𝑣(𝑠) becomes available, TD learning method
updates the state value via TD error:

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1 = 𝑠′) − 𝑣(𝑆𝑡 = 𝑠), (2.8)

and the updated state value becomes:

𝑣(𝑠) = 𝑣(𝑠) + 𝛼𝛿𝑡 (2.9)

As shown in Eq. 2.9, the TD method requires an explicit computation of each state
value. It belongs to a group of methods called the tabular methods that update single
state values during the traversal of states and actions. The state being updated goes a
small step 𝛼 (also called the learning rate) towards the TD target. As state and action
spaces grow, especially with continuous states and actions, tabular methods become
inefficient.
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Discounted and average rewards

Discounted rewards are used in episodic MDPs. With continuing tasks and infinite time
steps, average reward is used instead. Using the difference between current reward and
average reward, we redefine the Bellman equations:

{
𝑣𝜋 (𝑠) =

∑
𝑎 𝜋(𝑎 |𝑠)

∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 − 𝑟 (𝜋) + 𝑣𝜋 (𝑠′)]

𝑞𝜋 (𝑠, 𝑎) =
∑
𝑠′,𝑟 𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 − 𝑟 (𝜋) +

∑
𝑎′ 𝜋(𝑎′|𝑠′)𝑞𝜋 (𝑠′, 𝑎′)]

(2.10)

where 𝑟 (𝜋) is the average reward. Similarly, the differential form of the TD error is:

{
𝛿𝑡 = 𝑅𝑡+1 − 𝑅̄𝑡+1 + 𝑣(𝑆𝑡+1 = 𝑠′) − 𝑣(𝑆𝑡 = 𝑠)
𝛿𝑡 = 𝑅𝑡+1 − 𝑅̄𝑡+1 + 𝑞(𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎) − 𝑞(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)

(2.11)

This thesis uses average reward for continuing tasks.

Value function approximation

When the state and action spaces are big or the environment is unknown, updating
single state values is inefficient. Instead, we use function approximation with a limited
number of parameters. During traversal of states and actions, the function parameters
are updated, thus updating many state values at once. Depending on the function, the
approximation method can be arbitrarily complicated — we now have a much wider
range of approximation tools for value prediction.

Approximate value function is no longer represented by a table (as in tabular methods),
but as a parameterized function with weight vector w ∈ R𝑑 where the dimension of
the weight can be much smaller than the number of states. In this method, the value
function is written as 𝑣̂(𝑠,w) ≈ 𝑣𝜋 (𝑠) as the approximate value of state 𝑠 given weight
vector w.

Policy approximation

Policy approximation methods learn a parameterized policy that can select actions with-
out a value function. The performance of the approximated policy is the value of the
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first state for episodic MDPs or the average reward for MDPs of continuing tasks with-
out a terminal state. A terminal state is the end state of an episode in an MDP. The
advantages of parameterization of policies over parameterization of state or state-action
values are: 1) the approximation of policy can eventually reach a deterministic policy,
whereas with 𝜖-greedy action selection over action values, the 𝜖 prevents reaching the
absolute deterministic policy; 2) it enables selection of actions with arbitrary probabil-
ities (i.e., stochastic policies), and action-value methods are not designed for finding
stochastic optimal policies; 3) policy may be a simpler function to approximate than
value functions; 4) choice of policy parameterization may be a good way to incorpo-
rate prior expert knowledge on the form of the policy; 5) it has a stronger convergence
guarantee, because the action probabilities change smoothly as a function of the learned
parameter of a continuous policy parameterization. The gradient of the parameterized
policy is written as [138]:

▽𝜃𝐽 (𝜃) ∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

▽𝜃𝑞𝜋 (𝑠, 𝑎)𝜋(𝑎 |𝑠, 𝜃) (2.12)

where the reward function 𝐽 (𝜃) represents the expected return following policy 𝜋(𝜃). It
can be proven that the gradient of 𝐽 (𝜃) with regard to its parameters 𝜃 is only related to
the gradient of the parametric policy approximation function to 𝜃, and there is no need
for calculating the gradient of the state distribution 𝜇(𝑠) = ∑∞

𝑘=0 𝑃𝑟 (𝑠0 → 𝑠, 𝑘, 𝜋), or
the sum of probability of transitioning from state 𝑠0 to state s in k steps under policy 𝜋.

There are many policy approximation RL algorithms. The rest of this section briefly
introduces the actor-critic method that is most relevant to the proposed RL algorithm.
The actor-critic method is an extension of the REINFORCE and REINFORCE-with-
baseline methods, which are also briefly introduced below.

The REINFORCE method

The REINFORCE method is a stochastic gradient ascent method that requires the sam-
pling of gradient proportional to Eq. 2.12. Note that 𝜇(𝑠) = ∑∞

𝑘=0 𝑃𝑟 (𝑠0 → 𝑠, 𝑘, 𝜋) is
the expected number of times 𝑠 is traversed following 𝜋. Therefore, we only need to
sample states following policy 𝜋. With sampled state 𝑆𝑡 , the gradient can be rewritten
as:

▽𝜃𝐽 (𝜃) ∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

▽𝜃𝑞𝜋 (𝑠, 𝑎)𝜋(𝑎 |𝑠, 𝜃) = E𝜋
[∑︁

𝑎

𝑞𝜋 (𝑆𝑡 , 𝑎)▽𝜃𝜋(𝑎 |𝑆𝑡 , 𝜃)
]
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= E𝜋
[∑︁

𝑎

𝑞𝜋 (𝑆𝑡 , 𝑎)𝜋(𝑎 |𝑆𝑡 , 𝜃)
▽𝜃𝜋(𝑎 |𝑆𝑡 , 𝜃)
𝜋(𝑎 |𝑆𝑡 , 𝜃)

]
(2.13)

Action 𝐴𝑡 is sampled according to the policy distribution, we replace the sum over all
the random actions 𝑎 and probabilities 𝜋(𝑎) with sampled action 𝐴𝑡 :

▽𝐽 (𝜃) = E𝜋
[
𝑞𝜋 (𝑆𝑡 , 𝐴𝑡)

▽𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)
𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)

]
E𝜋

[
𝐺 𝑡

▽𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)
𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)

]
(2.14)

since expected return given state and action is E𝜋 [𝐺 𝑡 |𝑆𝑡 , 𝐴𝑡] = 𝑞𝜋 (𝑆𝑡 , 𝐴𝑡). Therefore,
according to gradient method, the parameter update is:

𝜃 ← 𝜃 + 𝛼▽𝐽 (𝜃) = 𝜃 + 𝛼𝐺 𝑡

▽𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)
𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃)

= 𝜃 + 𝛼𝛾𝑡𝐺 𝑡▽ ln 𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃) (2.15)

The fraction is reduced to the derivative of the natural log function because
𝑑 ln 𝑓 (𝑥)
𝑑𝑥

=

𝑓 ′(𝑥)
𝑓 (𝑥) .

Algorithm 1 REINFORCE
1: Initialize a differentiable parameterized policy (e.g. Gaussian) 𝜋(𝑎 |𝑠, 𝜃)
2: Use Monte Carlo method to generate whole episodes of state-chains until terminal

state.
3: while true do
4: Calculate expected return 𝐺 ← ∑𝑇

𝑘=𝑡+1 𝛾
𝑘−𝑡−1𝑅𝑘 .

5: Update policy parameter 𝜃 ← 𝜃 + 𝛼𝛾𝑡𝐺▽ ln 𝜋(𝑎 |𝑠, 𝜃).
6: end while

REINFORCE with baseline

A baseline 𝑏(𝑠) that can vary in value with regard to the state, but does not change
with regard to the actions, helps to reduce the high variance of the above REINFORCE
method. Also because it is invariant with regard to the actions, it can be simply added
to ▽𝐽 (𝜃) as:
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▽𝐽 (𝜃) ∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

▽
(
𝑞𝜋 (𝑠, 𝑎) − 𝑏(𝑠)

)
𝜋(𝑎 |𝑠, 𝜃) (2.16)

A natural choice of the baseline would be the estimated state value: 𝑏(𝑠) = 𝑣̂(𝑠,w).
With the added term, we get parameter update:

𝜃 ← 𝜃 + 𝛼(𝐺 𝑡 − 𝑣̂(𝑆𝑡 ,w))▽ ln 𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃) (2.17)

To update the parameters of the value function w, we calculate the gradient as:

w← w −
1
2
𝛼▽

[
𝑣𝜋 (𝑆𝑡) − 𝑣̂(𝑆𝑡 ,w𝑡)

]2 (2.18)

where the true value 𝑣𝜋 (𝑆𝑡) can be approximated by the bootstrapped value from 𝑣̂(𝑆𝑡 ,w𝑡)
with: 𝑣𝜋 (𝑆𝑡) ≈ 𝑅𝑡+1 + 𝛾𝑣̂(𝑆𝑡+1,w𝑡).

Algorithm 2 REINFORCE with baseline
1: Initialize, input differentiable 𝜋(𝑎 |𝑠, 𝜃) as well as differentiable 𝑣(𝑠,w)
2: Use Monte Carlo method to repeatedly generate episodes of state chains till terminal

state.
3: while true do
4: Calculate expected return 𝐺 ← ∑𝑇

𝑘=𝑡+1 𝑅𝑘
5: Calculate 𝛿 = 𝐺 − 𝑣̂(𝑠,w)
6: Update value parameter w← w + 𝛼w𝛿𝛾▽𝑣̂(𝑠,w)
7: Update policy parameter 𝜃 ← 𝜃 + 𝛼𝜃𝛿𝛾▽ ln 𝜋(𝑎 |𝑠, 𝜃)
8: end while

The actor-critic method

The actor-critic (AC) method is an improvement of REINFORCE-with-baseline, able to
bootstrap and learn incrementally. Based on Eq. 2.17, we substitute 𝐺 with the Bellman
update:

𝜃 ← 𝜃 + 𝛼(𝑅𝑡+1 + 𝛾𝑣̂(𝑆𝑡+1,w) − 𝑣̂(𝑆𝑡 ,w))▽ ln 𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃) (2.19)
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Algorithm 3 Actor-critic
1: Initialize, input differentiable 𝜋(𝑎 |𝑠, 𝜃) as well as differentiable 𝑣(𝑠,w)
2: Randomly initialize 𝜃 and w. Randomly initialize first state 𝑆0 in each episode.
3: Loop until terminal state
4: while true do
5: Choose 𝑎 from 𝜋(·|𝑠, 𝜃), observe next state 𝑠′ and reward 𝑟
6: Calculate 𝛿 = 𝑟 + 𝛾𝑣̂(𝑠′,w) − 𝑣̂(𝑠,w)
7: Update value parameter w← w + 𝛼w𝛾𝑡𝛿▽𝑣̂(𝑠,w)
8: Update policy parameter 𝜃 ← 𝜃 + 𝛼𝜃𝛾𝑡𝛿▽ ln 𝜋(𝑎 |𝑠, 𝜃)
9: 𝑠← 𝑠′, increase t by 1

10: end while

Note that in Alg. 3, 𝛿 = 𝑅𝑡+1 + 𝛾𝑣̂(𝑆𝑡+1,w) − 𝑣̂(𝑆𝑡 ,w) is the TD error for episodic tasks.
In fact, 𝛿 can also be other values, such as advantage: 𝐴(𝑡) = 𝑞(𝑆𝑡 , 𝐴𝑡) − 𝑣(𝑆𝑡), or the
TD error for continuing tasks: 𝛿 = 𝑅𝑡+1 − 𝑅̄𝑡+1 + 𝑣̂(𝑆𝑡+1,w) − 𝑣̂(𝑆𝑡 ,w) (Eq. 2.11).

The steps calculating 𝛿 and updating value function parameters w are called critic,
which serves to calibrate the actor — the policy gradient algorithm that updates 𝜃.
If we use a neural network for non-linear value function estimation, w, 𝜃 are param-
eters of two neural networks. In the neural network, the derivative with respect to
the parameters is calculated from the loss function. The loss function for the critic

is
1
2
[
𝑣𝜋 (𝑆𝑡) − 𝑣̂(𝑆𝑡 ,w𝑡)

]2, for the actor is 𝛿 ln 𝜋(𝐴𝑡 |𝑆𝑡 , 𝜃𝑡).

To estimate continuous actions or a stochastic policy, i.e., which action to take according
to a probability density function, the actor model learns the parameters of the distribu-
tion, and the action is sampled accordingly. Typical distribution to represent continuous
actions is a Gaussian distribution:

𝜋(𝑎 |𝑠, 𝜃) =
1

𝜎(𝑠, 𝜃)
√

2𝜋
exp

(
−
(𝑎 − 𝜇(𝑠, 𝜃))2

2𝜎(𝑠, 𝜃)2
)

(2.20)

where the mean 𝜇(𝑠, 𝜃) and the standard deviation 𝜎(𝑠, 𝜃) are functions of input 𝑠 and
learned parameters 𝜃:

{
𝜇(𝑠, 𝜃𝜇) = 𝜃𝑇𝜇𝑥𝜇 (𝑠)
𝜎(𝑠, 𝜃𝜎) = exp(𝜃𝑇𝜎𝑥𝜎 (𝑠))

(2.21)
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where 𝑥 is an extracted feature vector from states, and gradient for the mean and the
standard deviation parameters can be derived as follows:


▽ ln 𝜋(𝑎 |𝑠, 𝜃𝜇) =

1
𝜎(𝑠, 𝜃𝜎)2

(𝑎 − 𝜇(𝑠, 𝜃𝜇))𝑥𝜇 (𝑠)

▽ ln 𝜋(𝑎 |𝑠, 𝜃𝜎) =

( (𝑎 − 𝜇(𝑠, 𝜃𝜇))2
𝜎(𝑠, 𝜃𝜎)2

− 1
)
𝑥𝜎 (𝑠)

(2.22)

In this thesis, continuous action space and a Gaussian distribution are used.

2.3.2 Multi-agent RL

MARL is commonly used for learning stochastic games. Such games have multiple
players and multiple states; therefore, they differ from a classic MDP with a single
player and multiple states and also from a matrix game with multiple players and a single
state. Agents in a stochastic game may not know transition or reward functions, but are
required to select actions and observe received reward and gain information [127].

Formally, a stochastic game can be represented by (𝑛, 𝑆, 𝐴1, · · · , 𝐴𝑛, 𝑇, 𝛾, 𝑅1, · · · , 𝑅𝑛)
where 𝑛 is the number of players, 𝑇 : 𝑆 × 𝐴1 × · · · × 𝐴𝑛 × 𝑆 → [0, 1] is the transition
function, 𝐴𝑖 (𝑖 = 1, · · · , 𝑛) is the action set for player 𝑖, 𝛾 ∈ [0, 1] is the discount factor,
and 𝑅𝑖 : 𝑆 × 𝐴1 × · · · × 𝐴𝑛 × 𝑆 → R is the reward function for player 𝑖, Π𝑖 is the set of
strategies available to player 𝑖, and state value 𝑉∗

𝑖
(𝑠) = 𝑉𝑖 (𝑠, 𝜋∗1, · · · , 𝜋

∗
𝑛) is the expected

sum of discounted rewards for player 𝑖 given current state 𝑠 and all players’ strategies:

{
𝑉∗
𝑖
(𝑠) =

∑
𝑎1,··· ,𝑎𝑛∈𝐴1×···×𝐴𝑛 𝑄

∗
𝑖
(𝑠, 𝑎1, · · · , 𝑎𝑛)𝜋∗𝑖 (𝑠, 𝑎1) · · · 𝜋∗𝑛 (𝑠, 𝑎𝑛)

𝑄∗
𝑖
(𝑠, 𝑎1, · · · , 𝑎𝑛) =

∑
𝑠′∈𝑆 𝑇 (𝑠, 𝑎1, · · · , 𝑎𝑛, 𝑠′) [𝑅𝑖 (𝑠, 𝑎1, · · · , 𝑎𝑛, 𝑠′) + 𝛾𝑉∗𝑖 (𝑠′)]

(2.23)

where 𝜋∗
𝑖
(𝑠, 𝑎𝑖) ∈ PD(𝐴𝑖) is a probability distribution over action 𝑎𝑖 under player 𝑖’s

NE strategy. 𝑇 (𝑠, 𝑎1, · · · , 𝑎𝑛, 𝑠′) = 𝑃𝑟{𝑠𝑘+1 = 𝑠′|𝑠𝑘 = 𝑠, 𝑎1, · · · , 𝑎𝑛} is the probability
of the next state being 𝑠′ given 𝑠 and 𝑎.

The goal is to find a strategy 𝜋𝑖 : 𝑆 → 𝐴𝑖 that maximizes player 𝑖’s discounted future
reward.
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Learning in non-stationary environment

Three challenges in MARL are 1) non-stationary environment, 2) exploitation from
adaptive adversarial behavior [27], because MDP assumes a stationary environment [61]
and 3) continuous / infinite-dimensional action space.

To meet these challenges, research focuses on two learning dynamics: no-regret and
best-response [67]. No-regret and best-response algorithms typically fall into the cate-
gory of online-learning algorithms [71]: environment data 𝑝𝑡 drawn from an unknown
distribution becomes available in a sequential order. At each time step 𝑡, the online
learning algorithm with model parameters 𝜔𝑡 receives signal 𝑣𝑡 . Based on a historical
record of 𝑝𝑘 , 𝑣𝑘 , 𝑏𝑘 , 𝑢𝑘 , 𝑘 ∈ {1, · · · , 𝑡 − 1}, the model decides on the optimal action 𝑏𝑡
and predicts the expected utility 𝑢̂𝑡 (𝑏𝑡 , 𝜔𝑡). After new data becomes available, the model
calculates the actual utility 𝑢𝑡 (𝑏𝑡 , 𝑝𝑡) and the loss function 𝑙 (𝑢̂𝑡 , 𝑢𝑡 , 𝜔𝑡). Then, some
learning algorithm is applied to update the model parameters 𝜔𝑡+1 = 𝑓 (𝑙 (𝑢̂𝑡 , 𝑢𝑡 , 𝜔𝑡), 𝜔𝑡)
such that the loss function is minimized over time.

No-regret algorithms

No-regret algorithms try to address the non-stationarity issue by finding correlated equi-
libria. No-regret algorithms usually guarantee convergence of expected utility with fi-
nite action space; however, they guarantee best response only in certain conditions [18].

𝜖-coarse correlated equilibrium is a distribution 𝜋 over action profiles such that for
every player 𝑖 and every action 𝑏′

𝑖
, we have E𝑏∼𝜋 [𝑢𝑖 (𝑏′𝑖, 𝑏−𝑖)] − E𝑏∼𝜋 [𝑢𝑖 (𝑎)] ≤ 𝜖 [110].

This means, for an action profile 𝑏 ∈ R𝑀𝐾 drawn from the 𝜖-coarse correlated equilib-
rium, if the actions in 𝑏 are proposed to each bidder, there is no gain for any bidder to
deviate from the proposed action 𝑏𝑖 and play 𝑏′

𝑖
, because their utility will otherwise be

smaller (or at least within a very small 𝜖).

Through the no-regret dynamic, bidders can find correlated equilibria [58]: A bidder has
a history of auction outcomes as well as their utility function. At time 𝑡, bidder 𝑖 com-
pares the performance of the proposed strategy from the algorithm with the benchmark
strategy — either from external experts or from itself when it swaps all action 𝑖 with
𝑗 in the historical action sequence. If the regret (difference in performance) reduces to
zero over time, the algorithm is a no-regret algorithm, which leads the game to reach a
correlated equilibrium.
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Best-response algorithms

There are two types of adversarial learning environments [32]: adaptive and non-adaptive
adversarial learning. A non-adaptive adversary draws from the same distribution 𝜋−𝑖,
oblivious of the actions played by bidder 𝑖.An adaptive adversary draws actions 𝜋𝑡−𝑖
based on historical records ((𝑏1

𝑖
, 𝑝1

𝑖
), · · · , (𝑏𝑡−1

𝑖
, 𝑝𝑡−1

𝑖
)), and the distribution of their ac-

tions 𝜋𝑡−𝑖 is time-variant. An adaptive environment is non-stationary in nature, which
poses convergence and learning efficiency problems for a learning algorithm.

The best-response algorithms try to address the adaptive adversary issue by finding the
optimal response to the opponents to maximize utility. However, these algorithms can-
not provide a convergence guarantee in complex environments.

MARL algorithms in this category include e.g. WoLF-IGA [29], which converges with
stationary opponents by using a variable learning rate; [151] extends the Q-learning
algorithm to a non-stationary environment where the Q-values also depend on other
agents’ discrete actions and shows that the resulting policy is the policy with the highest
utility. To combine both rationality and convergence, authors of [18] propose an RL
algorithm that is best response, but converges against stationary opponents and achieves
constant bounded expected regret against non-stationary opponents.

Infinite action space

Another dimension of complexity comes from a continuous (i.e. infinite-dimensional)
action space. For example [13], in an adaptive adversarial multi-armed bandit problem
with N strategies and T time steps, the convergence rate to the best strategy is on the or-

der of𝑂 (

√︄
log 𝑁
𝑇
), which is only feasible when 𝑁 is relatively small. Previous research

on online learning in continuous action space is done with both no-regret [97] and best-
response [61, 115] algorithms. In this thesis, the action space is the continuous bidding
price. The author uses the results from previous research to improve the convergence
property of the proposed algorithms.

Independent vs. joint MARL

The simplest form of MARL is independent learning, when an agent treats all opponents
as a non-stationary environment and learns its model independently from them [61,
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157]. This method reduces the modeling and computation complexity; however, it does
not guarantee an equilibrium and independently trained models have overfitting prob-
lems [80]. The authors of [80] study the effect of overfitting and compare the perfor-
mance of independent learning and joint learning. They propose to simulate an empir-
ical game to discover strategies for the full game and estimate their utilities, then use a
RL algorithm to learn a meta-strategy for selecting policies.

Joint learning does not have to be cooperative. Authors of [115] propose ways to con-
vert system-level utilities into individual ones, and the system, as a potential game,
converges to Nash equilibria.

2.4 Conclusion of the chapter

This chapter discusses existing techniques step by step, from the basic form of second-
price auction to the auction mechanism proposed in the next chapter. The author will
use the technique of a simultaneous single-item combinatorial second-price auction,
combined with a potential game, with consideration of a continuous action space and
non-stationary environment to model the problem in the following chapters. Further-
more, the author will use classic single-agent and multi-agent RL algorithms introduced
in this chapter as the basic blocks for the proposed learning algorithms.
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Chapter 3

Application scenario and simulation
environment

3.1 Vehicular network (V2X)

For evaluation of the proposed algorithms, the author further concretizes the system
model introduced in Sec. 1.2.1 towards a vehicular network (V2X). V2X applications
are characterized by huge number of users, dynamic nature and diverse Quality of Ser-
vice (QoS) requirements [95]. They are also computation-intensive, e.g., inferring from
large neural networks [63] or solving non-convex optimization problems [15, 42]. These
applications currently reside in the vehicle’s onboard units (OBU) for short latency and
low communication overhead. Even with companies such as Nvidia developing OBUs
with high computation power [107], post-production OBU upgrades are typically not
commercially viable; and irrespective of local OBU power, the ability to offload tasks
to edge/cloud via multi-access edge computing (MEC) devices increases flexibility, pro-
tecting vehicles against IT obsolescence. Hence, offloading computation requirements
to edge or cloud devices is a key technique for future V2X scenarios [4, 7, 22, 159].
We hence need to solve a computation-resource allocation problem among multiple dis-
tributed vehicles.

Currently, computation offloading decisions are strictly separated between the user and
the operating side [90]. Users decide what to offload to optimize an individual goal, e.g.,
latency [16] or energy efficiency [86]. Apart from expressing their preference through
a predefined, static and universal QoS matrix [94], users cannot influence how their
tasks are prioritized. The operating side centrally prioritizes tasks and decides resource
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allocation to optimize a system goal that is based on the QoS matrix, but not always the
same as the users’ goals, e.g., task maximization [40] or load balancing [147].

This separation poses problems for both user and operating sides, especially in the V2X
context. V2X users have private goals [133], are highly autonomous [93], are reluctant
to share information or cooperate, and are disobedient to a central planner [48]. They
want flexible task prioritization and influence on resource allocation without sharing
private information [82]. On the operating side, edge cloud computing architecture
introduces signaling overhead and information delay in updating site utilization [90];
coupled with growing user autonomy and service customization, traditional centralized
optimization methods for resource allocation become challenging due to unavailability
of real-time information and computational intractability.

We, hence, need an interaction mechanism between user and operating sides based on
incentives, not rules, and an algorithm that makes decentralized decisions with partial
and delayed information in a dynamic environment. There are several challenges with
such a mechanism. Users may game the system, resulting in potentially worse out-
comes, both overall and individually [108] — the first challenge is how to incentivize
user behavior such that users’ private goals are aligned to the system goal while preserv-
ing user autonomy. The second challenge is finding an algorithm that efficiently learns
from partial information with just enough feedback signals, keeping information sharing
at a minimum. The third challenge is to trade off between optimality and convergence,
while keeping computation and communication complexity tractable [48].

To summarize: the distributed and dynamic environment of the V2X network is a chal-
lenging but very interesting application scenario for this study. It is an instance of the
general model described in Sec. 1.2.1. Therefore, it meets the requirement of a realistic
testbed for the proposed algorithms. In the following chapters, the author will use V2X
as the example environment and V2X applications such as motion planning and image
segmentation as example applications.

3.2 V2X system model

Corresponding to Fig. 1.1 in Sec. 1.2.1, in V2X, user-side vehicles act as bidders to
request services; operating-side admission control and assignment (ACA) units (e.g.,
road side units or base stations) are auctioneers, they control admission of service re-
quests and assign them to different computing sites — the commodity sellers, which
own resources and execute services [152] (Fig. 3.1a). The author of this thesis proposes
changes only to 1) the algorithm deciding admission and assignments, and 2) the in-
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(a) Topology (b) Message sequence

Figure 3.1: V2X system model

teraction mechanism. In addition, most signaling needs in the proposed approach are
covered by the ISO 20078 standard on extended vehicle web services [5]; additional
fields required to pass bidding information are straightforward to implement. Channel
security is not the focus of this study.

Based on the abstract concepts given in Sec. 1.2.1, the corresponding V2X entities are
explained below.

3.2.1 Service request as bid

The cloud-native paradigm decomposes services into tasks that can be sequentially de-
ployed [6]. A service request comprises 1) a task chain, with varying number, type,
order and resource needs of tasks, 2) a deadline, and 3) priority of the service request.
The author of this thesis considers a system with custom-tailored services placed at
different computing sites in the network; the properties of these services are initially
unknown to the computing sites. This enables extension to use cases into new areas,
e.g., self-driving [4, 7]. The thesis considers independent services, e.g., in self-driving,
segmentation and motion planning services can be requested independently. Note that
although services are independent, the tasks of a service depend on each other.

The author conceives of a vehicle’s service request as a bid in an auction. Besides the
service details, a bid includes the bidding price and the vehicle’s estimated resource
needs.

3.2.2 User side: bidders

The thesis focuses on the behavior of vehicles, conceived of as agents. A vehicle acts
autonomously and privately: it shares no information with other vehicles and only very
limited information with the ACA (Sec. 4.4.1 and 4.5.1). A vehicle is mapped to the
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bidder in an auction game (see Sec. 1.2.1). Same as the bidder introduced in Sec. 1.2.1,
its decision objective is to maximize average utility from joining the auction, and it
has to balance between two options: i) back off [33] and try later or ii) submit the bid
immediately to the ACA. In this thesis, 1) vehicles are incentivized to balance between
backoff and bidding through a cost factor; 2) a suitable backoff time is learned from
state information, not randomly chosen; 3) learning is only based on information visible
to the vehicle.

The bidding price used by the vehicle in the auction is an abstraction of vehicle’s prior-
itization of their service requests: a higher bidding price means a higher priority. The
abstraction makes it possible to compare priority of different custom-tailored service
requests. In this thesis, the upper bound for the bidding price is given to each vehicle
at initialization as a budget. In Chapter 4, the budget is reset after every auction round;
in Chapters 5 and 6, the budget can be accumulated over time for a fixed duration. In
reality, such an economic incentive as a given budget to each vehicle may need to be
managed more carefully, but it is not within the scope of this work.

The thesis studies the learning algorithm in each vehicle. Passive, non-learning vehicles
are used as benchmark to quantify how learning affects performance. Learning essen-
tially sets the priority of a service request. This priority is used by the ACA to order
requests; it is simply constant for non-learning vehicles, resulting in a first-in, first-out
processing order.

3.2.3 Operating side: auctioneer and commodity sellers

The ACA unit and computing sites are the operating side (Fig. 3.1b). The ACA esti-
mates available capacity of the various computing sites, based on which the ACA makes
admit/reject decisions for each service request. Upon admission, it assigns the request to
a computing site according to a load-balancing policy. Due to information delay, execu-
tion uncertainty, system noise, etc., the resource utilization information at different sites
is not immediately available to the ACA unit — specifically, when each computing site
would serve more than one ACA unit or share its resource with other applications, their
actual resource availability may differ from the ACA’s estimate, therefore, the ACA’s
admit/reject decision is only provisional. If the computing site decides that an assigned
service request cannot be executed before its deadline, the computing site drops the
service request and sends an “offloading failure” result to ACA. If the ACA estimates
that a service request cannot be executed by any computing sites before its deadline,
the service request is rejected, and vehicles can rebid for a maximum number of times.
Vehicles receive feedback on bidding and execution outcome, payment, and resource
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utilization (Sec. 4.4.1). Any service request that is not executed before its deadline is
counted as an “offloading failure”.

The operating side does not have a priori knowledge of the type, priority, or resource
requirement of service requests. For example, if at run time, a site receives a previ-
ously unknown service, it uses an estimate of resource needs provided by the vehicle.
Over time, a site updates this estimate from repeated executions of the same service.
Extension to a more sophisticated form of learning is left to future work.

The total service time of a request is the sum of processing, queueing and transmission
time. Each computing site may offer all services but with different resource profiles
(i.e., amount and duration needed), depending on the site’s configuration. Site capacity
is specified in abstract time-resource units: one such unit corresponds to the volume of
a request served in one time unit at a server, when given one resource unit.

3.3 Simulation setup

The author of this thesis develops a Python discrete-event simulator with varying num-
ber of vehicles of infinite lifespan, one road side unit with ACA and one edge computing
site, and one remote computing site (extension to multiple ACA units and computing
sites is left to future work). The edge and remote sites have different resource profiles.
To imitate a realistic, noisy environment, the remote site is some distance to the ACA
unit, such that the state information is only updated with a non-negligible delay caused
by data transmission. The author also adds a small, normally distributed noise to this
delay (truncating negative values), as well as to the actual resource required for a ser-
vice. Each vehicle is randomly and independently initialized with a budget of “high”
or “low” with 50% probability. For the operating-side load-balancing policy, the author
applies state-of-the art resource-intensity-aware load balancing (RIAL) [132] with slight
modifications. The method dynamically balances load among computing sites through
resource pricing that is correlated to the site’s load, and loads are shifted to “cheaper”
sites. Finally, the author compares the performance of active agents (the proposed algo-
rithms on the user side, RIAL on the operating side) to passive agents (only RIAL on
the operating side).
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Table 3.1: Realistic setup differences

Environment
Parameters

Training Setup Test Setup

service request
type

F1: 80 resource units (abstracted from CPU and memory usage)
needed within 100 time steps (milliseconds)

F2: 80 resource units needed within 500 time steps

service arrival
rate

F1: every 100 time steps; F2: every 500 time steps.
Arrival of the first request is uniform randomly distributed

in the first 100/500 steps.

data size
uplink: F1: 0.4 Mbit, F2: 4 Mbit;

downlink: F1: 0 (negligible), F2: 0.4 Mbit

latency
802.11ac: 65m radius, maximum channel width 1.69 Gbps,

throughput=−26 × distance + 1690 Mbps [128]

computing site
capacity

60 resource units per time
step (low contention)

10-20 units (high
contention)

vehicle arrival
rate

1 every 2.2 seconds 1 every 1 second

vehicle speed 10 km/h when driving 30 km/h

vehicle count 22-29 and slow changing 14-30 and burstya

aThe author regulates burstiness by adjusting vehicle speed, arrival rate and traffic light phases

3.3.1 Realistic setup for all algorithms

All of the proposed algorithms are evaluated in a realistic V2X setup: a 4-way traffic
intersection with realistic mobility model for vehicles and with random incoming ser-
vice requests. In this setup, the author adopts the data patterns of segmentation and
motion planning applications extracted from various self-driving data projects [43] or
referenced from relevant studies [30, 35]. The author also uses Simulation of Urban
Mobility (SUMO) [20] to create a more realistic mobility model of a single junction
with a centered traffic light; the junction is an area downloaded from open street map.
Assuming the 802.11ac protocol, the ACA unit is placed in the middle of the intersec-
tion, and the edges are limited to be within 65m of the ACA. The streetmap is with two
lanes per street per direction. SUMO uniformly at random creates a vehicle at any one
of the four edges.

Parameters of the realistic setup are according to [30, 35, 43] and listed in Table 3.1.
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3.4 Performance metrics

This section introduces the common performance metrics used for performance evalua-
tion in the following chapters.

• Offloading failure rate (OFR): Ratio of failed offloading requests, either re-
jected by ACA or not executed before deadline, compared to all requests. For
simplification, this thesis ignores the failed service requests that are admitted by
the ACA but not executed by computing sites before deadline. Empirical results
confirm that this is a close approximation of OFR, because with the proposed al-
gorithms, the author achieves a system responsiveness (i.e., the ratio of admitted
requests successfully executed before deadline) of 99%.

• Resource utilization: Ratio of resources utilized at computing sites = (sum of
utilized resource units in all resource types and all computing sites in the current
time step) / (sum of total resource units in all resource types and all computing
sites at any time). By measuring resource utilization, we get a better picture of
the algorithms’ load-balancing effect.

• Rebidding overhead: If a bid is rejected before deadline, the vehicle can bid
again. More rebidding causes communication overhead, but less rebidding re-
duces the chance of success. The thesis studies this tradeoff, comparing the aver-
age number of actual rebiddings per vehicle within maximum permitted rebidding
(MP). As an example: if a bidder bids three times until the service request is ad-
mitted, there are two rebiddings. Ideally, the bidder would need zero rebidding.
MP is a metric to avoid unlimited rebidding.

• Payoff: Individual vehicle’s valuation of the service request minus the second-
price payment, cost of bidding and cost of backoff. Payoff does not have any
practical implication and is only used to incentivize certain vehicle behaviors. In
a repeated auction, we expect individual payoff to increase over time as vehicles
learn the best bidding strategy. By measuring payoff, we see how well the vehicles
are learning.

• Fairness: System overall fairness is defined as the J-index [68] of payments over

the last T time steps: Fairness =

(∑
𝑚

∑
𝑡−T

𝑡 𝑝𝑡𝑚)2

|𝑀 |∑
𝑚
( ∑
𝑡−T

𝑡 𝑝𝑡𝑚)2
,∀𝑚 ∈ 𝑀 , where 𝑀 are the

vehicles. J-index is commonly used to measure fairness in networking. It is
the reciprocal of the original normalized Herfindahl–Hirschman Index [122] for
measuring market concentration.

39





Chapter 4

Short-term Learning

4.1 Motivation

As mentioned in Sec. 3.1, the challenges of distributed decision making in V2X resource
allocation are C1) how to incentivize user behavior while preserving their autonomy;
C2) how to find an algorithm that efficiently learns from partial information with lim-
ited feedback signals; C3) how to trade off between optimality and convergence, while
keeping computation and communication complexity tractable.

Although distributed methods are the focus of this thesis, the author mentions some
centralized optimization methods here (i.e., on the operating side of the V2X model,
see Fig. 3.1b). Centralized approaches, such as [8, 79] for resource allocation and
[36, 40, 88] for offloading are suited to core-network and data-center applications when
a central ACA can be set up and data can be relatively easily obtained. Previous studies
of decentralized systems address some of the issues in centralized approaches. Refer-
ences [24, 126] propose distributed runtime algorithms to optimize system goals but
disregard user preferences. [79] uses heuristics at runtime and [8] decouples the central
optimization problem into smaller problems, but these solutions still assume complete
information which is not available in the setting of this thesis.

Authors of [50] and [57] demonstrate the advantage of using economic models for many
types of multi-resource allocation problems. Efforts are made to jointly optimize pri-
vate and system goals through game theoretic approaches — although they naturally
deal with decentralized incentives, they often require complete information of the game
to centrally execute the desired outcome. E.g., reference [37] proposes a decentralized
offloading game and solves for the Nash equilibrium through an incremental decision
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update mechanism that is analogous to steepest descent. The mechanism converges
fairly quickly because the variable is one-dimensional. The update mechanism requires
all users to broadcast all of their decisions for all users to reach equilibrium. Reference
[34] models the non-cooperative users’ offloading decisions as a generalized Nash equi-
librium game and solves the convex optimization problem numerically. Although the
problem can be solved asynchronously and distributedly, it is a static model in which
all user and node profiles are known a priori. When the user or node profiles are not
homogeneous, the model’s complexity increases as the number of participants grow.
Other game-theoretic methods such as [38, 77, 78] only consider cooperative resource
sharing or offloading. Reference [130] only considers discrete actions. Reference [82]
learns with partial information, but it reduces complexity by assuming single service
type and arrival rate. The approach of this thesis also differs from [74] as it consid-
ers a multi-dimensional continuous action space with multiple service types, and both
cooperative and competitive behaviors. Sec. 2.3.2 highlighted the advantage of some
learning algorithms in non-stationary environment [29, 142, 151], as well as their limita-
tions [80, 157]. The proposed approach in this thesis is designed to reduce computation
complexity and improve convergence property in a non-stationary environment.

In this chapter, the author proposes a distributed decision-making mechanism based on
second-price sealed-bid auctions (see Sec. 2.2.3) that successfully addresses the chal-
lenges C1 to C3, using the V2X context as an example. The mechanism utilizes the
feedback signal to incentivize cooperative behavior among competitive, self-interested
agents and speed up learning. The author proves that in the stationary case, the outcome
of this mechanism is a Nash equilibrium (NE) and a maximization of social welfare;
under specific conditions, it is also a Pareto-optimal allocation of resources (C1). For
the dynamic case, the author proposes a MARL algorithm, for its ability to learn with
partial, noisy and delayed information, and a single reward signal (C2). Specifically, the
core RL algorithm in this thesis learns the best-response strategy updated in a fictitious
self-play (FSP) method (Sec. 4.5.1). FSP addresses strategic users’ adaptiveness in a
dynamic environment by evaluating state information incrementally and by keeping a
weighted historical record [60]. It is easier to implement than the method proposed in
[29], especially with a large state and action space (C3).

4.2 Chapter outline

Table 4.1 lists the focuses of this chapter. As the author introduces more algorithms
in the subsequent chapters, the table will contain more information for comparison be-
tween the algorithms and setups.
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Sec. 4.3 further extends the step-by-step problem formulations from Sec. 2.2.3, making
the problem concrete to finally reflect the complexity of the short-term single-objective
resource allocation problem the author addresses in this thesis. Sec. 4.4 describes the
interaction mechanism design and the corresponding utility function, and provides proof
that in a stationary environment, the mechanism has Nash equilibria, is a maximization
of social welfare and a Pareto-optimal way of resource allocation. Sec. 4.5 introduces
the first proposed algorithm in this thesis for learning to optimize a short-term, single
objective in a dynamic environment. The evaluation results of the first proposed MARL
algorithm are in Sec. 4.6. Sec. 4.7 concludes the chapter.

The training and evaluation environments and simulation parameters are as described in
Chapter 3. This includes a concrete resource allocation system modeled after vehicular
networks (Sec. 3.1 and 3.2), simulation setup, performance metrics, and the realistic
setup with mobility data (Sec. 3.3).

Table 4.1: Chapter4 outline

Chapter4: DRACO

Alg. type short term

Obj. type single objective

Synthetic
seup

Simulated second-price forward auction in V2X application
scenario, with varying resource capacity, service request types,
number of rebidding (Sec. 4.6.1). Purpose: analyze algorithm

performance with randomized inputs and a wide range of
environment parameters.

Realistic
setup

Same as in Sec.3.3.1. Purpose: analyze and compare
performance in simulated traffic.

4.3 Problem formulation

The author formulates the problem based on Sec. 2.2.3 and 2.2.4. Table 4.2 summarizes
the notation.

Let 𝑀 be the set of vehicles (bidders) and 𝐾 the set of commodities (service types),
each type with 𝑛𝑡

𝑘
available service slots at time 𝑡 in computing sites. Bidder 𝑚 ∈ 𝑀’s

demand for each service type 𝑘 ∈ 𝐾 at 𝑡 is represented by a bid indexed 𝑖𝑡
𝑘
∈ 𝐼. From

its bidding strategy 𝜋𝑚, bidder 𝑚 draws its actions 𝛼𝑡𝑚 = {𝛼𝑡
𝑚,𝑘
∈ {0, 1},∀𝑘 ∈ 𝐾} and
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Table 4.2: Short-term problem symbol definition

Sym. Description Sym. Description

𝑘 ∈ 𝐾 service type/commodity 𝑛𝑘 𝑘’s availability
𝑖 ∈ 𝐼 service request/bid 𝑣 bid value
𝑚 ∈ 𝑀 vehicle/bidder 𝑝 payment
𝑧 bidding outcome 𝑢 utility
𝛼 backoff decision 𝑏 bidding price
𝑐 lost bid penalty 𝑞 backoff cost
𝛽 utilization 𝐵 budget

b𝑡𝑚 = {𝑏𝑡
𝑚,𝑘
∈ R+,∀𝑘 ∈ 𝐾} for each service type. 𝛼𝑡𝑚 is the vector of backoff decision,

b𝑡𝑚 is the vector of bidding price. More specifically, bidder 𝑚’s options for each bid
𝑖𝑡
𝑘

are: 1) back off (𝛼𝑡
𝑚,𝑘

= 0) with a backoff cost 𝑞𝑡
𝑚,𝑘

, or 2) bid (𝛼𝑡
𝑚,𝑘

= 1) with the
bidding price 𝑏𝑡

𝑚,𝑘
.

From bidder 𝑚’s perspective, the competing bidders (denoted −𝑚) draw their actions
from a joint distribution 𝜋𝑡−𝑚 that is an unknown function of (p1, · · · , p𝑡−1), where p𝑡 ∈
R
|𝐾 |
+ is the vector of final prices at the end of time 𝑡. Bidder 𝑚 observes the new p𝑡 as

feedback. If bidder 𝑚 wins its bid 𝑖𝑡
𝑘

indicated by bidding outcome 𝑧𝑡
𝑚,𝑘

= 1, it pays
𝑝𝑡
𝑘

to the auctioneer. If it loses (𝑧𝑡
𝑚,𝑘

= 0), it pays 0 to the auctioneer but has a cost
associated with losing the bid, denoted by 𝑐𝑡

𝑚,𝑘
.

The auction repeats for 𝑇 periods, in every auction round, bidder 𝑚’s utility (Sec. 2.2.3)
is 𝑢𝑡𝑚 (𝛼𝑡𝑚, b𝑡𝑚, p𝑡 , z𝑡𝑚, c𝑡𝑚, q𝑡𝑚), its goal is to maximize the long-term utility:

U = 1
𝑇

𝑇∑
𝑡=1
𝑢𝑡𝑚, 𝑇 →∞. An illustration of the auction mechanism is in Fig. 4.1.

For any 𝑘 , when availability 𝑛𝑡
𝑘
<

∑
𝑚∈𝑀

𝛼𝑡
𝑚,𝑘

, there is more demand than available service

slots. We call such a situation “high contention”. When 𝑛𝑡
𝑘
≥ ∑

𝑚∈𝑀
𝛼𝑡
𝑚,𝑘

, we call it

“low contention”. In a dynamic environment, 𝑛𝑡
𝑘

depends on utilization at 𝑡 − 1 and
existing demand at 𝑡. Due to noise and transmission delay in a realistic environment,
this information is inaccurate and outdated when it becomes available to the ACA unit
for admission control (Fig. 1.1).

Ideally, an auction is incentive-compatible. Unfortunately, with budget constraint and
costs, the second-price auction considered here is no longer incentive-compatible. But
the author still uses this type of auction as it maximizes social welfare and optimally
allocates resources (Sec. 4.4.2 and 4.4.3). The payment signal is used as additional
feedback to aid the bidders’ learning process (Sec. 4.5.2).
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Figure 4.1: An illustration of the auction mechanism

4.4 Theoretical results in a stationary environment

Sec. 4.4.1 defines bidder’s utility function; in Sec. 4.4.2 and 4.4.3, the author proves the
existence of NE, maximization of welfare and Pareto optimality in the stationary case,
for both low and high contention situations. Notation is in Table 4.2. For readability,
we drop notation for time 𝑡 in the stationary case.

4.4.1 Utility function

In this section, we first build up the utility function based on the payoff of classic second-
price auction. Then, we add costs for backoff and losing the bid, incentivizing tradeoff
between higher chance of success and lower communication overhead. Finally, we add
the system resource utilization goal to the individual utility.

This thesis assumes each bidder has a given private, fixed valuation of commodity type 𝑘
denoted 𝑣𝑚,𝑘 that is 1) linear to the bidder’s estimated resource needs for 𝑘 and 2) within
the budget. The first condition guarantees Pareto optimality (Corollary 4.6.1); the sec-
ond avoids overbidding under rationality (Theorem 4.2). The thesis does not consider
irrational or malicious agents, e.g., whose goal is to reduce social welfare even if their
own individual outcome may be hurt.

The author of this thesis uses the second-price auction mechanism (Sec. 2.2.3) as a
solution to the problem described in Sec. 4.3. In each auction round, the auctioneer
records the price 𝑏∗

𝑘
of the highest losing bid among all bidders, which is also the (𝑛𝑘 +

1)th highest overall bidding price. For 𝑛𝑘 = 1 this would be the second highest price,
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hence the name “second-price auction”. The final price 𝑝𝑚,𝑘 = 𝑏∗
𝑘

is broadcast to all
bidders, which is also the amount the 𝑛𝑘 winning bidders (ties are broken randomly)
pay to the auctioneer. A bidder’s utility is:

𝑢𝑚,𝑘 =𝛼𝑚,𝑘 · (𝑧𝑚,𝑘 · (𝑣𝑚,𝑘 − 𝑝𝑚,𝑘 ) − (1 − 𝑧𝑚,𝑘 ) · 𝑐𝑚,𝑘 ) + (1 − 𝛼𝑚,𝑘 ) · 𝑞𝑚,𝑘 (4.1)

Adding cost 𝑐𝑖,𝑘 penalizes rebidding and gives an incentive only to bid when there is
a need and chance of success, especially in high contention. This cost reflects actual
overhead associated with rebidding, e.g., system-wide communication overhead, or in-
dividual energy overhead. Together with 𝑞𝑖,𝑘 , the bidder is incentivized to trade off
between long backoff time and risky bidding. In this chapter, the two cost factors 𝑐
and 𝑞 are hyperparameters to initialize the bidders. Chapter 6 lets each bidder decide
independently and in private its risk preference for backoff and losing the bid.

To further align the bidder’s objective with system overall objective (C1), we include
system resource utilization 𝛽 in the utility. This incentivizes bidders to minimize system
utilization. In this chapter, bidders are initialized with a given preference weight 𝑊
for the system resource utilization objective. In Chapter 6, each bidder has its own
preference for the objective, and a preference of 0 means the bidder does not consider
the objective. Evaluation result in Sec. 6.6 shows that consideration of system objectives
helps the bidders achieve their individual objective as well.

The complete utility definition is:

𝑢𝑚 =
∑︁
𝑘∈𝐾

𝑢𝑚,𝑘 +𝑊 · (1 − 𝛽),∀𝑚 ∈ 𝑀 (4.2)

To calculate Eq. 4.2, the bidder needs only these feedback signals: bidding outcome 𝑧,
final price 𝑝 and system utilization 𝛽, addressing C2.

4.4.2 Low contention

Low contention is much more common in networking and presumably also in future
V2X applications as resources are often abundantly available. Although drivers would
not know when there would be low contention, with a learning algorithm, they can
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“guess” the situation from observations and past bidding results, and learn the best ac-
tion 𝛼 in such situations.

Notation for commodity type 𝑘 is omitted. The set of actions 𝐴 for bidder 𝑚 is 𝛼𝑚. The
author will use the concept of potential functions [99] to show that in low contention,
the proposed interaction mechanism is a potential game with NE:

Definition 4.1. 𝐺 (𝑀, 𝐴, 𝑢) is an exact potential game if and only if there exists a
potential function 𝜙(𝐴) : 𝐴 → R s.t. ∀𝑚 ∈ 𝑀 , 𝑢𝑚 (𝛼𝑚, 𝛼−𝑚) − 𝑢𝑚 (𝛼′𝑚, 𝛼−𝑚) =

𝜙𝑚 (𝛼𝑚, 𝛼−𝑚) − 𝜙𝑚 (𝛼′𝑚, 𝛼−𝑚), 𝛼 ∈ 𝐴.

Lemma 4.2. Players in a finite potential game that jointly maximize a potential function
end up in NE.

Proof. See [99]. □

Theorem 4.1. Bidders with utility as Eq. 4.2 participate in a game as described in
Sec. 4.3 in low contention, the game is a potential game, and the outcome is an NE.

In low contention, 𝑝 = 0, as all bids are accepted. 𝑢𝑚 is reduced to

𝑢𝑚 (𝛼𝑚, 𝛼−𝑚) = (𝑣𝑚+𝑞𝑚)−𝛼𝑚𝑞𝑚+𝑊
(
1− ∑

𝑗∈𝑀
𝛼 𝑗 ·

𝜔 𝑗

𝐶

)
, where 𝜔 𝑗 ∈ R|𝐾 | is each bidder’s

resource requirement, 𝐶 is system capacity. Thus, the auction is reduced to a potential
game with discrete action space 𝛼𝑚 ∈ {0, 1} |𝐾 | and potential function

𝜙(𝛼𝑚, 𝛼−𝑚) =
∑
𝑗∈𝑀
(𝑣 𝑗 + 𝑞 𝑗 − 𝛼 𝑗𝑞 𝑗 ) +𝑊

(
1 − ∑

𝑗∈𝑀
𝛼 𝑗 ·

𝜔 𝑗

𝐶

)
,∀𝑚 ∈ 𝑀 .

Next, we prove that 𝑢𝑚 (𝛼𝑚, 𝛼−𝑚) − 𝑢𝑚 (𝛼′𝑚, 𝛼−𝑚) = 𝜙(𝛼𝑚, 𝛼−𝑚) − 𝜙(𝛼′𝑚, 𝛼−𝑚), and
hence it is a potential game, and bidders maximizing their utilities 𝑢𝑚 also maximize
the potential function 𝜙. Since 𝛼𝑚 ∈ R|𝐾 |, it is a finite potential game. According to
Lemma 4.2, the outcome is an NE.

Proof. To simplify, we substitute with:

𝑄𝑚 = 𝑣𝑚 + 𝑞𝑚
𝐴𝑚 = 𝛼𝑚𝑞𝑚

𝐴−𝑚 =
∑

𝑗∈𝑀, 𝑗≠𝑚
𝛼 𝑗𝑞 𝑗

𝐵𝑚 = 𝛼𝑚𝜔𝑚

𝐵−𝑚 =
∑

𝑗∈𝑀, 𝑗≠𝑚
𝛼 𝑗𝜔 𝑗
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and rewrite:

𝑢𝑚 (𝛼𝑚, 𝛼−𝑚) = 𝑄𝑚 − 𝐴𝑚 +𝑊 − 𝑊
𝐶
(𝐵𝑚 + 𝐵−𝑚)

𝑢𝑚 (𝛼′𝑚, 𝛼−𝑚) = 𝑄𝑚 − 𝐴′𝑚 +𝑊 − 𝑊
𝐶
(𝐵′𝑚 + 𝐵−𝑚)

𝜙(𝛼𝑚, 𝛼−𝑚) =
∑
𝑗∈𝑀

𝑄 𝑗 − (𝐴𝑚 + 𝐴−𝑚) +𝑊 − 𝑊 (𝐵𝑚+𝐵−𝑚)
𝐶

𝜙(𝛼′𝑚, 𝛼−𝑚) =
∑
𝑗∈𝑀

𝑄 𝑗 − (𝐴′𝑚 + 𝐴−𝑚) +𝑊 −
𝑊 (𝐵′𝑚+𝐵−𝑚)

𝐶

=⇒ 𝑢𝑚 (𝛼𝑚, 𝛼−𝑚) − 𝑢𝑚 (𝛼′𝑚, 𝛼−𝑚) = −(𝐴𝑚 − 𝐴′𝑚) −
𝑊

𝐶
(𝐵𝑚 − 𝐵′𝑚)

= 𝜙(𝛼𝑚, 𝛼−𝑚) − 𝜙(𝛼′𝑚, 𝛼−𝑚)

□

In low contention, the computation offloading problem becomes a potential game. This
enables us to use online learning algorithms such as in [115] that converge regardless
of other bidders’ behaviors. The NE is a local maximization of the potential function:
each bidder finds a balance between its backoff cost and the incentive to reduce overall
utilization. Empirical results in Sec. 3 confirm that over time this results in a more
balanced load.

4.4.3 High contention

In high contention, 𝛼 is used in a repeated auction to avoid congestion and ensure better
reward over time. To simplify the proofs, we will consider only the time steps where
𝛼 = 1 (bidder joins auction). In high contention, we assume a high enough utilization 𝛽,
such that the last term in Eq. 4.2 can be omitted, to further simplify the utility function
in the proof. 𝑢𝑖 is reduced to:

𝑢𝑚 =
∑︁
𝑘

(
𝑧𝑚,𝑘 · (𝑣𝑚,𝑘 − 𝑝𝑚,𝑘 ) − (1 − 𝑧𝑚,𝑘 ) · 𝑐𝑚,𝑘

)
(4.3)

Theorem 4.2. In a second-price auction, where bidders with utility as Eq. 4.2 compete
for service slots as commodities in high contention, 1) bidders’ best response is of linear
form, 2) the outcome is an NE and 3) welfare is maximized.
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To prove Theorem 4.2, the author will 1) describe the basic model of the second-price
auction; 2) prove the linear form of the best response; 3) prove the existence of Nash
equilibrium and maximization of social welfare.

Basic model

For simplicity, we use |𝑀 | = 2 and |𝐾 | = 1. It is an extension from [135]. Unlike [135],
this thesis includes in the utility definition the second-price payment and cost for losing
a bid. Based on [135], it can also be easily extended to multiple bidders.

2 bidders receive continuously distributed valuations 𝑣𝑚 ∈ [low𝑚, high𝑚], 𝑚 ∈ {1, 2}
for 1 commodity and choose their strategies 𝑓𝑚 (𝑣𝑚) from the strategy sets 𝐹1 and 𝐹2.
The resulting NE strategy pair is ( 𝑓 ∗1 , 𝑓

∗
2 ). Any strategy function 𝑓𝑚 (𝑣𝑚) is increasing

in 𝑣𝑚, with 𝑓𝑚 (low𝑚) = 𝑓 low
𝑚 and 𝑓𝑚 (high𝑚) = 𝑓

high
𝑚 , 𝑓 low

𝑚 and 𝑓
high
𝑚 are minimum and

maximum values of 𝑓𝑚. We also assume the users have budgets 𝐵𝑚, and they cannot bid
more than the budget. Cost for losing the bid is 𝑐𝑚. The inverse function of 𝑓𝑚 (𝑣𝑚) is:
ℎ𝑚 (𝑦𝑚) = ℎlow

𝑚 , if 𝑦𝑚 ≤ 𝑓 low
𝑚

ℎ𝑚 (𝑦𝑚) = 𝑓 −1
𝑚 (𝑦𝑚), if 𝑓 low

𝑚 < 𝑦𝑚 < 𝑓
high
𝑚

ℎ𝑚 (𝑦𝑚) = ℎhigh
𝑚 , if 𝑦𝑚 ≥ 𝑓

high
𝑚

where ℎlow
𝑚 and ℎhigh

𝑚 are minimum and maximum values of the inverse function ℎ𝑚.

For a given 𝑓1, if bidder 2 chooses a bidding function 𝑓2, according to Eq. 4.3, the
expected utility for bidder 2 is

𝑢2( 𝑓1, 𝑓2) = E𝑣1,𝑣2 [(𝑣2 + 𝑐2) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)] − E𝑣1,𝑣2 [ 𝑓1(𝑣1) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)] − 𝑐2
(4.4)

where 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1) = 1, if 𝑓2(𝑣2) ≥ 𝑓1(𝑣1), otherwise 0.

To simplify, we define{
𝐸1 = E𝑣1,𝑣2 [(𝑣2 + 𝑐2) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)]
𝐸2 = E𝑣1,𝑣2 [ 𝑓1(𝑣1) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)]

(4.5)

Hence, 𝑢2( 𝑓1, 𝑓2) = 𝐸1 − 𝐸2 − 𝑐2. 𝐸2 is the expected second price payment when
bidder 2 wins, and the payment should be no greater than min( 𝑓 high

2 , 𝐵2). Since to avoid
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overbidding, the thesis assumes 𝑓
high
2 ≤ 𝐵2, the set of feasible bidding functions for

bidder 2 given 𝑓1 is 𝑆2( 𝑓1) = { 𝑓2 ∈ 𝐹2 |𝑢2( 𝑓1, 𝑓2) ≥ 0, 𝐸2 ≤ 𝑓
high
2 }.

For the condition 𝑢2( 𝑓1, 𝑓2) ≥ 0 to hold, at any point where 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1) = 1, we need to
have 𝑣2 ≥ 𝑓1(𝑣1), which is a sufficient condition of 𝑢2( 𝑓1, 𝑓2) ≥ 0. This is true because
𝑓2 is bidder 2’s bidding signal, to avoid overbidding, 𝑓2(𝑣2) ≤ min( 𝑓 high

2 , 𝑣2), therefore
𝑓1(𝑣1) ≤ 𝑣2. We thus simplify the above equation to: 𝑆2( 𝑓1) = { 𝑓2 ∈ 𝐹2 |𝐸2 ≤ 𝑓

high
2 }.

The problem is formulated into a utility maximization problem: max
𝑓2∈𝑆2 ( 𝑓1)

𝑢2( 𝑓1, 𝑓2). 𝑓2 is

a best response of bidder 2, if 𝑢2( 𝑓1, 𝑓2) ≥ 𝑢2( 𝑓1, 𝑓 ′2), ∀ 𝑓
′
2 ∈ 𝑆2( 𝑓1). An NE strategy pair

( 𝑓 ∗1 , 𝑓
∗
2 ) has the selected strategies as each other’s best responses and also maximizes

the total utility (social welfare).

Form of the best response

Theorem 4.3. Given bidder 1’s bidding strategy


𝑓1 ∈ 𝐹1

𝑓1(ℎlow
1 ) = 𝑓 low

1
𝑓1(ℎhigh

1 ) = 𝑓
high
1

, bidder 2’s best

response has the form


𝑓2(𝑣2) ≤ 𝑓 low

1 for 𝑣2 ∈ [ℎlow
2 , 𝜃low]

𝑓2(𝑣2) = 𝑗2 · 𝑣2 + 𝑑2 for 𝑣2 ∈ [𝜃low, 𝜃high]
𝑓2(𝑣2) ≥ 𝑓

high
1 for 𝑣2 ∈ [𝜃high, ℎ

high
2 ]

,

where 𝜃low, 𝜃high ∈ [ℎlow
2 , ℎ

high
2 ] and 𝑗2𝜃low + 𝑑2 = 𝑓 low

1 , 𝑗2𝜃
high + 𝑑2 = 𝑓

high
1 .

Proof. Given 𝑓1 and bidder 2’s bid 𝑦2, probability that bidder 2 wins the bid is:

𝑃𝑤𝑖𝑛2 (𝑦2) = 𝑃( 𝑓1(𝑣1) ≤ 𝑦2) = 𝑃(𝑣1 ≤ ℎ1(𝑦2)) =
∫ ℎ1 (𝑦2)
ℎlow

1
p1(𝑣1)d𝑣1, where p is the

probability density function, and 𝑃 is the cumulative function.

Bidder 2’s optimization problem is to find a bidding function 𝑦2 = 𝑓2(𝑣2) to:

max
𝑓2
(𝐸1 − 𝐸2)

= E𝑣1,𝑣2 [(𝑣2 + 𝑐2) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)] − E𝑣1,𝑣2 [ 𝑓1(𝑣1) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)]

=

∫ ℎ
high
2

ℎlow
2

∫ ℎ1 ( 𝑓2 (𝑣2))

ℎlow
1

(
𝑣2 + 𝑐2 − 𝑓1(𝑣1)

)
p2(𝑣2)p1(𝑣1)d𝑣1d𝑣2 (4.6)

𝑠.𝑡.𝐸2 ≤ 𝑓
high
2

50



4.4. THEORETICAL RESULTS IN A STATIONARY ENVIRONMENT

To solve the optimization problem, we write the Lagrangian function with multiplier 𝜆:

max
𝑓2
L(𝑣2, 𝜆) = 𝐸1 − 𝐸2 − 𝜆(𝐸2 − 𝑓 high

2 )

=

∫ ℎ
high
2

ℎlow
2

[ ∫ ℎ1 ( 𝑓2 (𝑣2))

ℎlow
1

(
𝑣2 + 𝑐2 − (1 + 𝜆) 𝑓1(𝑣1)

)
p1(𝑣1)d𝑣1

]
p2(𝑣2)d𝑣2 + 𝜆 𝑓 high

2

(4.7)

Equation 4.7 provides an upper bound for Equation 4.6.

To maximize L, for each 𝑣2, we need to find the 𝑓2 that maximizes∫ ℎ1 (𝑦2)
ℎlow

1

(
𝑣2 + 𝑐2 − (1 + 𝜆) 𝑓1(𝑣1)

)
p1(𝑣1)d𝑣1, 𝑦2 = 𝑓2(𝑣2).

For any given 𝑣2, the above formula is the area below the function ‡ = 𝑣2 + 𝑐2 − (1 +
𝜆) 𝑓1(𝑣1), when 𝑣1 moves in the range from ℎlow

1 to ℎ1(𝑦2). As 𝑓1 is monotonously
increasing, ‡ is monotonously decreasing. Therefore, to maximize the area below ‡,
ℎ1(𝑦2) should simply be chosen as the intersection of ‡ and the x-axis, or 𝑣2 + 𝑐2 − (1 +
𝜆) 𝑓1(ℎ1(𝑦2)) = 0:

𝑦2 = 𝑓1( 𝑓 −1
1 (𝑦2)) = 𝑓2(𝑣2) = 1

1+𝜆𝑣2 + 𝑐2
1+𝜆 , ∀𝑦2 ∈ [ 𝑓 low

1 , 𝑓
high
1 ],

or 𝑣2 ∈ [(1 + 𝜆) · 𝑓 low
1 − 𝑐2, (1 + 𝜆) · 𝑓 high

1 − 𝑐2].

Since 𝑓2(𝑣2) is monotonously increasing,{
𝑓2(𝑣2) ≤ 𝑓 low

1 , if 𝑣2 ∈ [ℎlow
2 , (1 + 𝜆) · 𝑓 low

1 − 𝑐2]
𝑓2(𝑣2) ≥ 𝑓

high
1 , if 𝑣2 ∈ [(1 + 𝜆) · 𝑓 high

1 − 𝑐2, ℎ
high
2 ]

Monotonously increasing 𝑓1 and 𝑓2 makes Equation 4.6 a convex problem, therefore
equations 4.6 and 4.7 are equivalent, maximizing the Lagrangian function also maxi-
mizes the bidder’s utility function.

Theorem 4.3 implies that the best response of bidder 1 and 2 are both of the linear
form. □

Existence of Nash equilibrium

Theorem 4.4. When best response form is 𝑓1(𝑣1) = 𝑗1𝑣1 + 𝑑1 and 𝑓2(𝑣2) = 𝑗2𝑣2 + 𝑑2,
we can always find a pair ( 𝑗1, 𝑗2) such that both bidders’ bidding range [ 𝑓 low

𝑚 , 𝑓
high
𝑚 ]
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would be satisfied in NE.

Proof. An NE exists if there is a pair ( 𝑗1, 𝑗2) that satisfies the two constraints:

E𝑣1,𝑣2 [ 𝑓1(𝑣1) · 1 𝑓2 (𝑣2)≥ 𝑓1 (𝑣1)] ≤ 𝑓
high
2 ,E𝑣1,𝑣2 [ 𝑓2(𝑣2) · 1 𝑓1 (𝑣1)≥ 𝑓2 (𝑣2)] ≤ 𝑓

high
1 .

The following proves that such a pair exists. To simplify the proof, we choose 𝑐1 = 𝑐2 =

𝑐, given the linear best response forms and bidders’ bidding functions, and symmetric
to Eq. 4.5, we define{
𝐸3 = E𝑣1,𝑣2 [(𝑣1 + 𝑐1) · 1 𝑗1𝑣1≥ 𝑗2𝑣2]
𝐸4 = E𝑣1,𝑣2 [( 𝑗2𝑣2) · 1 𝑗1𝑣1≥ 𝑗2𝑣2]

(4.8)

and define bidder 1’s feasible strategy set as a function of 𝑗2: 𝑆1( 𝑗2) = { 𝑗1 ∈ [0,∞)|𝐸4 ≤
𝑓

high
1 }. Due to its linear form, and according to Eq. 4.3, bidder 1’s set of best responses

is:

b1 = arg max
𝑓1∈𝑆1 ( 𝑗2)

(𝐸3 − 𝐸4 − 𝑐1) = arg max
𝑦∈𝑆1 ( 𝑗2)

E𝑣1,𝑣2 [𝑣1 − 𝑗2𝑣2 · 1𝑦𝑣1≥ 𝑗2𝑣2]

the utility 𝑢1(𝑦) = E𝑣1,𝑣2 [𝑣1 − 𝑗2𝑣2 · 1𝑦𝑣1≥ 𝑗2𝑣2] is a non-decreasing function of 𝑦 defined
on the set 𝑆1( 𝑗2). To prove the existence of NE, we use Kakutani fixed point theorem.

Theorem 4.5 (Kakutani fixed point theorem [109]). Let A be a non-empty, compact and
convex subset of some Euclidean space 𝑅𝑛. Let 𝜑 : 𝐴→ 2𝐴 be an upper hemicontinuous
set-valued function on A with the property that 𝜑(𝑥) is non-empty, closed and convex
∀𝑥 ∈ 𝐴. Then 𝜑 has a fixed point.

The author proves Lemmas 4.3-4.8 below, to show that the thesis meets the conditions
of Theorem 4.5. Hence, 𝜑 : 𝑆1 → b1 ∈ 2𝑆1 has a fixed point, and there exists NE
(Theorem 4.4). □

Lemma 4.3. Bidder 1 strategy set 𝐴 = 𝑆1( 𝑗2) = { 𝑗1 |E𝑣1,𝑣2 [( 𝑗2𝑣2 + 𝑑2) · 1 𝑗1𝑣1≥ 𝑗2𝑣2] ≤
𝑓

high
1 , 𝑗1 ∈ [0,∞)}, ∀ 𝑗2 ∈ [0,∞) is non-empty, convex, compact.

Proof. 𝑆1( 𝑗2) is a strategy set and naturally non-empty. The product of all players’
strategy sets are therefore also non-empty. For any given 𝑗2, any combination of a
feasible strategy’s parameter still creates a feasible strategy (due to its linear form).
Therefore 𝑆1( 𝑗2) is convex. The set 𝑆1( 𝑗2) contains all of its limits, therefore it is
a closed set. Due to bidding range and budget, it is also bounded. The product of
all players’ strategy sets are therefore closed and bounded. According to Heine-Borel
Theorem, the sets are compact. □
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Definition 4.4. : A set-valued function 𝑢 defined on a convex set 𝑆1( 𝑗2) is quasiconcave
if every upper level set of 𝑢 is convex, or 𝑃 𝑗1 = { 𝑗1 ∈ 𝑆( 𝑗2) : 𝑢( 𝑗1) ≥ 𝑎} is convex
∀𝑎 ∈ R.

Lemma 4.5. The correspondence 𝜑 : 𝑆1 → 2𝑆1 , where 𝜑(𝑆1) = b1 is convex, ∀𝑠 ∈ 𝑆1.

Proof. First, we prove utility 𝑢𝑚 is quasiconcave.

Let 𝜎1
𝑚, 𝜎

2
𝑚 be two best responses in bidder 𝑚’s best response set b𝑚, we have utilities{

𝑢1
𝑚 = 𝑢𝑚 (𝜎1

𝑚, 𝜎−𝑚) ≥ 𝑢𝑚 (𝜏𝑚, 𝜎−𝑚),∀𝜏𝑚 ∈ 𝑆𝑚
𝑢2
𝑚 = 𝑢𝑚 (𝜎2

𝑚, 𝜎−𝑚) ≥ 𝑢𝑚 (𝜏𝑚, 𝜎−𝑚),∀𝜏𝑚 ∈ 𝑆𝑚

Hence, 𝜆𝑢1
𝑚 + (1 − 𝜆)𝑢2

𝑚 ≥ 𝑢𝑚 (𝜏𝑚, 𝜎−𝑚), 𝜆 ∈ [0, 1].

Given any 𝑎 ∈ R, if we create a upper level set 𝑝𝑎 containing all 𝑗1 ∈ 𝑆( 𝑗2) that meet
the condition of having a utility 𝑢𝑖 ≥ 𝑎, and if 𝑝𝑎 is always a convex set, then 𝑢𝑖 is
quasiconcave. This is apparent, as 𝑢1( 𝑗1) = 𝐸3 − 𝐸4 = E𝑣1,𝑣2 [(𝑣1 − 𝑗2𝑣2) · 1 𝑗1𝑣1≥ 𝑗2𝑣2] is
continuous and non-decreasing in 𝑗1. If 𝑗1𝑣1 ≥ 𝑗2𝑣2 and 𝑗 ′1𝑣1 ≥ 𝑗2𝑣2, we would always
have 𝜆 𝑗1𝑣1 ≥ 𝜆 𝑗2𝑣2 and (1−𝜆) 𝑗 ′1𝑣1 ≥ (1−𝜆) 𝑗2𝑣2 for any 𝜆 ∈ [0, 1]. Adding both sides
of the inequation respectively: (𝜆 𝑗1 + (1−𝜆) 𝑗 ′1)𝑣1 ≥ 𝑗2𝑣2, which means 𝜆 𝑗1 + (1−𝜆) 𝑗 ′1
is also a member of 𝑝𝑎, or that any 𝑝𝑎 is convex.

Since the utility function 𝑢1 is defined on convex set 𝑆1 and all of its upper level set is
convex, the utility function is quasiconcave. Also, as 𝑢𝑖 is quasiconcave, we have

𝑢𝑚 (𝜆𝜎1
𝑚 + (1 − 𝜆)𝜎2

𝑚, 𝜎−𝑚) ≥ 𝜆𝑢1
𝑚 + (1 − 𝜆)𝑢2

𝑚 ≥ 𝑢𝑚 (𝜏𝑚, 𝜎−𝑚).

Therefore 𝜆𝜎1
𝑚 + (1 − 𝜆)𝜎2

𝑚 is also a best response, it is in the b𝑚 set. b𝑚 is therefore
convex valued. Finally, 𝜑 is convex if and only if each b𝑚 is convex. Any combination
of best responses will still be a best response. □

Definition 4.6 (Upper hemicontinuity [109]). Correspondence 𝑆 : Ψ → Ξ is upper
hemicontinuous, if for every 𝜓1 ∈ Ψ and 𝜖 > 0, ∃𝛿 > 0 s.t.: if 𝜓2 ∈ Ψ and | |𝜓2 − 𝜓1 | | <
𝛿, then 𝑆(𝜓2) ⊂ 𝐵𝜖 (𝑆(𝜓1)), where 𝐵𝜖 (𝑥) denotes the 𝜖-ball around 𝑥. Correspondence
𝑆 is lower hemicontinuous, if for any open set 𝑈 ⊂ Ξ with 𝑆(𝜓1) ∩𝑈 ≠ ∅, ∃𝜖 > 0, s.t.
∀𝜓2 ∈ 𝐵𝜖 (𝜓1), 𝑆(𝜓2) ∩𝑈 ≠ ∅.

Lemma 4.7. let bidder 2’s feasible strategies 𝑗2 be in a set Ψ, let bidder 1’s strategies
𝐴 = 𝑆1( 𝑗2), 𝑗2 ∈ Ψ be in a set Ξ. The correspondence: 𝑆1 : Ψ→ Ξ is continuous at all
𝑗2.
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Proof. ∀ 𝑗2 ∈ Ψ, and a 𝜖-ball around 𝑆1( 𝑗2), we can find a range 𝛿 around 𝑗2, s.t. any
𝑗 ′2 ∈ Ψ, | | 𝑗

′
2− 𝑗2 | | < 𝛿, has 𝑆1( 𝑗 ′2) within the 𝜖-ball around 𝑆1( 𝑗2). This is apparent, since

for any given best response parameter 𝑗 ′2 in the neighborhood of 𝑗2, the corresponding
strategy set in 𝑆1( 𝑗2) would be a set of 𝑗 ′1 that is in the neighborhood of 𝑗1 (upper
hemicontinuous). It is proven in [46] that if the graph 𝐺 (𝑆1) is convex when 𝑆1( 𝑗2)
is monotone increasing, then 𝑆1 is lower hemicontinuous. In this thesis, due to the
linear form, and according to Lemma 4.3, 𝑆1 is lower hemicontinuous. Therefore, 𝑆1 is
continuous [46]. □

Theorem 4.6 (Berge’s maximum theorem [109]). Let Ξ,Ψ be topological spaces, 𝑢1 :
Ξ × Ψ → R be a continuous function on the product space, and 𝑆1 : Ψ → Ξ be a
compact-valued correspondence s.t. 𝑆1( 𝑗2) ≠ ∅, ∀ 𝑗2 ∈ Ψ.
Define 𝑢∗1( 𝑗2) = sup{𝑢1( 𝑗1, 𝑗2) : 𝑗1 ∈ 𝑆1( 𝑗2)}, sup being the maximum operator of 𝑢,
and the set of maximizers 𝑆∗1 : Ψ→ Ξ by: 𝑆∗1( 𝑗2) = arg sup{𝑢1( 𝑗1, 𝑗2) : 𝑗1 ∈ 𝑆1( 𝑗2)} =
{ 𝑗1 ∈ 𝑆1( 𝑗2) : 𝑢1( 𝑗1, 𝑗2) = 𝑢∗1( 𝑗2)}. If 𝑆1 is continuous (i.e., both upper and lower) at
𝑗2, then 𝑢∗1 is continuous and 𝑆∗1 is upper hemicontinuous with nonempty and compact
values.

Lemma 4.8. Correspondence 𝜑 : 𝑆1 → 2𝑆1 , where 𝜑(𝑆1) = 𝑆∗1 = b1, is upper hemicon-
tinuous with non-empty and compact values, and has a closed graph.

Proof. According to Theorem 4.6, since 𝑆1 is continuous (Lemma 4.7), non-empty and
compact (Lemma 4.3), the correspondence 𝜑 is upper hemicontinuous with non-empty
and compact values. It is apparent that best response set is a closed subset of the strategy
set 𝑆 on all 𝑠 ∈ 𝑆. Therefore 𝑏𝑖 is closed valued. A closed-valued upper hemicontinuous
correspondence has a closed graph. □

Lemmas 4.3, 4.5 and 4.8 apply to the strategy sets of all players. According to the lem-
mas, the author can prove that this setup meets the conditions of Theorem 4.5, therefore
the game has NE.

Pareto optimality

When bidders bid for service slots, the required resources are allocated. Theorem 4.2
proves the existence of Nash equilibria that maximizes welfare (total utility of bidders),
without any guarantee of convergence. It also does not guarantee the optimality of the
resource allocation, unless the following conditions are met: if bidders’ valuation of the
commodity is linear to its resource requirement, and all bidders have some access to
resources (fairness).
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Corollary 4.6.1. In a second-price auction, where 𝑀 bidders with utility as Eq. 4.2
compete in high contention, the outcome is an optimal resource allocation, if the bid-
ders’ valuation of commodities is linear to resource requirement and all bidders have a
positive probability of winning.

The setup of this thesis meets both conditions assumed by Corollary 4.6.1. 1) Valuation
of the service request is a linear function of the resource needed: 𝑣1 = 𝑔1𝜔1 + 𝑘1, 𝑣2 =

𝑔2𝜔2 + 𝑘2, 𝑔, 𝑘 are constants, 𝜔 is amount of resource required. The allocation rule
under NE is: 𝐴∗𝑣1,𝑣2 = 1, if 𝑗1𝑣1 + 𝑑1 ≥ 𝑗2𝑣2 + 𝑑2, otherwise 2. 2) In this setup, both
bidders have at least some access to the resources, as a form of fairness. The author
defines the fairness constraint to be: E[𝜔1 |𝐴𝑣1,𝑣2=1]/E[𝜔2 |𝐴𝑣1,𝑣2=2] = 𝛾 ∈ R>0.

Theorem 4.7. The allocation 𝐴∗𝑣1,𝑣2 maximizes overall resource allocation 𝜔1 + 𝜔2,
subject to the fairness constraint, when the valuations are linear functions of resources.
Or, the NE of the game achieves optimal resource allocation.

Proof. Find the Lagrangian multiplier 𝜆∗ that satisfies the fairness constraint with NE
allocation 𝐴∗𝑣1,𝑣2 . Define 𝑔, 𝑘 as: 𝑔1 = (1 + 𝜆∗)/ 𝑗1 , 𝑘1 = −𝑑1/ 𝑗1, and 𝑔2 = (1 −
𝛾𝜆∗)/ 𝑗2 , 𝑘2 = −𝑑2/ 𝑗2. Then we can rewrite the allocation: 𝐴∗𝜔1,𝜔2 = 1, if 𝜔1(1 + 𝜆∗) ≥
𝜔2(1 − 𝛾𝜆∗), otherwise 2. The rest of the proof is the same as in [135]. □

4.5 Proposed solution

The author proposes DRACO, a Distributed Reinforcement-learning algorithm with
Auction mechanism for Computation Offloading, to solve the problem described in
Sec. 4.3. The proposed algorithm for the dynamic environment is introduced in Sec. 4.5.1
and 4.5.2. Notations are in Table 4.3.

4.5.1 The fictitious self-play (FSP) algorithm

The term “fictitious play” comes from a learning algorithm in game theory: a player
“imagines” how an opponent plays a stationary strategy, by learning from a historical
distribution. The term “self-play” is a machine learning concept where the agent uses
an old copy of itself (and the old policy) as the opponent. The fictitious self-play (FSP)
method puts the two together: the agent learns a behavioral strategy that is a decision
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Table 4.3: Short-term solution symbol definition

Sym. Description Sym. Description

𝑘 ∈ 𝐾 service type/commodity 𝑛𝑘 𝑘’s availability
𝑖 ∈ 𝐼 service request/bid 𝑣 bid value
𝑚 ∈ 𝑀 vehicle/bidder 𝑝 payment
𝑧 bidding outcome 𝑢 utility
𝛼 backoff decision 𝑏 bidding price
𝑐 lost bid penalty 𝑞 backoff cost
𝛽 utilization 𝐵 budget

ℎ ∈ 𝐻 resource types 𝜔𝑖,ℎ 𝑖’s requirement of ℎ
𝑄 service deadline 𝜌 service request details
e𝑚 𝑚’s env. variables rl𝑡𝑚 𝑚’s present state for RL
sl𝑡𝑚 𝑚’s present state for SL 𝑃𝑡−𝑚 other bidders’ state at 𝑡
a action, a = (𝛼, 𝑏) 𝑆𝑡𝑚 complete state for RL
𝜃 actor parameters w critic parameters

strategy purely based on its own past observations and actions regardless of other bid-
ders’ strategies. Thus, FSP addresses the convergence challenge of a best-response al-
gorithm (C3). It balances exploration and exploitation by replaying its own past actions;
then it cautiously plays the behavioral strategy mixed with best response [60].

The method consists of two parts: a supervised learning (SL) algorithm learns the bid-
der’s own behavioral strategy 𝜓, and an RL algorithm learns its best response 𝜁 to other
bidders. The bidder has 𝜂 probability of choosing best response action a = 𝜁 (with
lim
𝑡→∞

𝜂𝑡 = 0), otherwise it chooses behavioral strategy a = 𝜓. The action includes back-
off decision 𝛼 and bidding price 𝑏. If 𝛼 = 1, the bidder submits the bid; otherwise, the
bidder backs off.

FSP only converges in certain classes of games [81]. The application in this thesis
belongs to a very general class of games that is multi-player, general-sum game with
infinite strategies. In this thesis, FSP may not converge to an NE. However, empirical
results show that by applying FSP, overall performance is greatly improved compared
to using only RL. The FSP is described in Alg. 4.

Input to SL includes bidder 𝑚’s service requests — service type, resource amount re-
quired and deadline: 𝜌𝑡𝑚 = {(𝑘𝑖, 𝜔𝑖,ℎ, 𝑄𝑖) |𝑖 ∈ 𝐼, ℎ ∈ 𝐻} (𝑚 can create multiple bids,
each an independent request for service type 𝑘𝑖; 𝜌𝑡𝑚 is the set of all of 𝑚’s bids at 𝑡), and
current environment information visible to 𝑚, denoted 𝑒𝑡𝑚 (e.g., number of bidders in
the network and system utilization 𝛽𝑡). Labels to the SL are bidder 𝑚’s past actions. The
training dataset contains all of bidder 𝑚’s historical observations and actions. Specifi-
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Figure 4.2: RL and SL algorithms

cally, the input sl𝑡𝑚 = (𝜌𝑡𝑚, 𝑒𝑡𝑚) and actual action a𝑡𝑚 are stored in SL memory to train the
regression model. Output of the regression model is the sequence of actions that com-
prises the behavorial strategy 𝜓𝑡𝑚. During learning, the SL updates its model parameters
such that the predicted actions are as close to the actual actions as possible. The author
uses a multilayer perceptron in the implementation of SL.

Input to RL is constructed from bidder 𝑚’s present state rl𝑡𝑚. rl𝑡𝑚 includes 1) 𝜌𝑡𝑚; 2) 𝑒𝑡𝑚;
3) previous other bidders’ state 𝑃𝑡−1

−𝑚 , represented by the final price 𝑝𝑘 , or 𝑃𝑡−𝑚 = p𝑡 =
{𝑝𝑡

𝑘
|𝑘 ∈ 𝐾}, that is broadcasted by the auctioneer / ACA to all bidders at the end of

each auction round; and 4) calculated utility 𝑢𝑡−1
𝑚 according to Eq. 4.2. To consider

historical records, we take 𝜈 most recent states to form the complete state input to RL:
𝑆𝑡𝑚 = {rl𝜏𝑚 |𝜏 = 𝑡 − 𝜈 + 1, · · · , 𝑡}. RL outputs best response 𝜁𝑚 (Fig. 4.2). The input
consists of bidder’s private information and easily obtainable public information, e.g.,
environment data and past prices, thus addressing C2.

4.5.2 The RL algorithm

Authors of [74] use VCG and a learning algorithm for the bidders to adjust their bidding
price based on budget and observation of other bidders. The proposed approach in this
thesis is similar in that it estimates other bidders’ state 𝑃−𝑚 from payment information
and uses the estimate as basis for a policy.

The proposed approach differs from [74] in several major points. The author of this the-
sis uses a continuous space for bidder states (i.e., continuous value for payments). As
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Algorithm 4 FSP
1: Initialize 𝜓𝑚, 𝜁𝑚 arbitrarily, 𝑡 = 1, 𝜂 = 1/𝑡, 𝜈, 𝑃𝑡−1

−𝑚 = 0, 𝑢𝑡−1
𝑚 = 0, observe 𝑒𝑡𝑚, create rl𝑡𝑚, sl𝑡𝑚

and add to memory
2: while true do
3: Take action a𝑡𝑚 = (1 − 𝜂)𝜓𝑡

𝑚 + 𝜂𝜁 𝑡𝑚
4: Receive 𝑃𝑡

𝑚, calculate 𝑢𝑡𝑚, observe 𝜌𝑡+1𝑚 , e𝑡+1𝑚

5: Create and add state to RL memory: rl𝑡+1𝑚

6: Create and add state to SL memory: (sl𝑡+1𝑚 , a𝑡𝑚)
7: Construct 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚 , calculate 𝜁 𝑡+1𝑚 = RL(𝑆𝑡𝑚, 𝑆𝑡+1𝑚 , 𝑢𝑡𝑚)

8: Calculate 𝜓𝑡+1
𝑚 = SL(sl𝑡+1𝑚 )

9: 𝑡 ← 𝑡 + 1, 𝜂← 1/𝑡
10: end while

also mentioned in [74], a finer-grained state space yields better learning results. More-
over, the author considers multiple commodity/service types, which is more realistic
and therefore has a wider range of applications. Further, the proposed approach does
not explicitly learn the transition probability of bidder states. Instead, this approach uses
historical states as input and directly determines the bidder’s next action.

The thesis uses the actor-critic algorithm [138] for RL (Alg. 5). The critic learns a state-
value function 𝑉 (𝑆). Parameters of the function are learned through a neural network
that updates with w ← w + 𝛾𝑤𝛿∇𝑉̂ (𝑆,w), where 𝛾 is the learning rate and 𝛿 is the
temporal difference (TD) error. For a continuing task with no terminal state, the average
reward is used to calculate 𝛿 [138]: 𝛿 = 𝑢 − 𝑢̄ + 𝑉̂ (𝑆′,w) − 𝑉̂ (𝑆,w). In this thesis, the
reward is utility 𝑢. The author uses exponential moving average (with rate 𝜆) of past
rewards as 𝑢̄.

The actor learns the parameters of the policy 𝜋 in a multidimensional and continuous
action space. Correlated backoff and bidding price values are assumed to be normally
distributed: 𝐹 (𝜇, Σ) = 1√

|Σ |
exp(−1

2 (x − 𝜇)
𝑇Σ−1(x − 𝜇)). For faster calculation, instead

of covariance Σ, the algorithm estimates a lower triangular matrix 𝐿 (𝐿𝐿𝑇 = Σ). Specif-

Figure 4.3: Stacked CNN with highway structure
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Algorithm 5 RL
1: Initialize 𝜃, 𝑤 arbitrarily. Initialize 𝜆
2: while true do
3: Input 𝑡 and 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚 constructed from RL memory

4: Run critic and get 𝑉̂ (𝑆𝑡𝑚,w), 𝑉̂ (𝑆𝑡+1𝑚 ,w)
5: Calculate 𝑢̄𝑚 = 𝜆𝑢̄𝑚 and 𝛿 (utility 𝑢 is reward 𝑅)
6: Run actor and get 𝜇(𝜃), Σ(𝜃)
7: Sample 𝜁 𝑡+1𝑚 from 𝐹 (𝜇, Σ), update w and 𝜃
8: end while

ically, the actor model outputs the mean vector 𝜇 and the elements of 𝐿. Actor’s final
output 𝜁 is sampled from 𝐹 through: 𝜁 = 𝜇+𝐿y, where y is an independent random vari-
able from standard normal distribution. Update function is 𝜃 ← 𝜃 + 𝛾𝜃𝛿∇ ln 𝜋(a|𝑆, 𝜃).
The algorithm uses 𝜕 ln 𝐹

𝜕𝜇
= Σ(x − 𝜇) and 𝜕 ln 𝐹

𝜕Σ
= 1

2 (Σ(x − 𝜇) (x − 𝜇)
𝑇Σ − Σ) for back-

propagation. This is a common approach for continuous action space.

The objective is to find a strategy that, given input 𝑆𝑡𝑚, determines a to maximize
1
𝑇−𝑡E[

∑𝑇
𝑡′=𝑡 𝑢

𝑡′
𝑚]. To implement the actor-critic RL, the proposed algorithm uses a stacked

convolutional neural network (CNN) with highway [134] structure similar to the dis-
criminator in [160] for both actor and critic models. Each CNN in the stack convolves
on the dimensions of sequence length (i.e., the number of historical data in the time-
series) and feature vector. These CNN layers have diverse kernel sizes to cover different
lengths of history and extract features, and it is easily parallelizable, compared to other
sequential networks. Since state information is temporally correlated, such a sequential
network extracts features better than multilayer perceptrons. The highway structure di-
rects information flow by learning the weights of direct input and performing non-linear
transform of the input. An illustration of the structure is in Fig. 4.3.

In low contention, authors of [115] prove that an actor-critic RL algorithm converges
to NE in a potential game. In high contention, although the author of this thesis proves
the existence of an NE in the stationary case (Sec. 4.4.3), the convergence property of
the proposed algorithm in a stochastic game is not explicitly analyzed. The author will
show it through empirical results in Sec. 4.6.

4.6 Evaluation

We test DRACO with the V2X system model as introduced in Sec. 3.2. The train-
ing and test environments are as described in Sec. 3.3, including the operating-side
load-balancing allocation solution RIAL. The performance metrics are as introduced in
Sec. 3.4.
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The test is in two steps. First, we comprehensively study the performance of active
agents in a synthetic setup with randomized inputs and a wide range of environment
parameters. Then, we test it in the realistic setup as described in Sec. 3.3.1.

4.6.1 Synthetic setup results

This synthetic setup is specific to the evaluation of the short-term, single-objective al-
gorithm DRACO. This setup covers a wide range of hypothetical scenarios by varying
parameters such as system capacity, service/task types and number of rebidding:

• Task types by resource needs in time-resource units: task type F1: 3 units, and
task type F2: 30 units.

• Service types by deadline and probability: F1, 300ms: 18.75%; F1, 50ms: 18.75%;
F2, 300ms: 6.25%; F2, 50ms: 6.25%; F1-F2, 300ms: 18.75%; F1-F2, 50ms:
18.75%; F2-F1, 300ms: 6.25%; F2-F1, 50ms: 18.75%.

• Service arrival rate per vehicle: requests for services are generated according
to a two-state Markov modulated Poisson process (2-MMPP) [148] with transi-
tion probabilities 𝑝high = 𝑝low = 0.6. The discrete-time MMPP in this study
is interchangeable with classic continuous-time MMPPs when modeling arrival
processes, as the sampling interval of one time step is small enough [106].

• Capacity: 50–230 resource units.

• Maximum permitted rebidding: 1 or 5 times, respectively.

• Vehicle count: constant at 30.

• Vehicle arrival rate: 0, always in the system; speed: 0.

• Data size: uniformly at random between 2.4-9.6 kbit.

• Uplink and downlink latency: 0 s.

As described in Sec. 3.3, the author sets up environments with homogeneous agents
(i.e., agents with the same types of algorithms): 1) benchmark: bidders are passive
agents with no learning capability, and the auctioneer uses the load-balancing allocation
solution RIAL. The algorithm is therefore denoted by “RIAL”; 2) the proposed solu-
tion: bidders are active agents with DRACO algorithm, and the auctioneer uses RIAL.
The algorithm is DRACO+RIAL, denoted by D+R. Fig. 4.4a shows a training example
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(a) DRACO reduces the overall offloading
failure rate.

(b) DRACO learns to better utilize resource in
remote computing site. To show the details,
only the last 300 steps in the simulation are
illustrated. More analysis of utilization is in
Fig. 4.5d.

Figure 4.4: OFR and resource utilization, capacity=60, MP=1

where D+R’s OFR is 14% compared to RIAL’s 20% at the end of training, or a reduc-
tion of 30%. The lines are the mean OFR of several simulation runs, and the shaded
area marks the standard deviation. Fig. 4.4b shows where the learning is most useful.
We depict the remote site’s resource utilization. Since the ACA unit’s information of
site utilization is delayed, with only RIAL, the site is either over utilized or starved,
in distinctive cycles (dotted line). When the vehicles learn with DRACO, they achieve
better utilization (solid line).

Overall OFR in all parameter settings is shown in Fig. 4.5a. Evaluation data is collected
from additional evaluation runs after the models are trained, with random incoming
service requests newly generated by the MMPP. Besides requests that are not admitted
by the ACA unit, the failure rate also includes requests that are admitted, but cannot be
executed by the operating side before deadline (reliability). We observe that with D+R,
reliability is 99% and consistently higher than with RIAL for all results in the paper.
We also observe that DRACO significantly reduces OFR (on average 40% reduction),
especially when MP is low. In low contention, i.e., capacity≥ 100, D+R achieves the
same level of OFR with much less resource (Fig. 4.5b). The improvement becomes
more significant as OFR decreases. In particular, D+R reaches 1% OFR with much less
resource compared to RIAL regardless of MP.

Further, higher MP reduces D+R’s advantage over RIAL. This result is to be expected:
when more rebidding is permitted, low OFR can be achieved by trial and error, limiting
the advantage of DRACO’s backoff strategy. However, trial-and-error comes at a cost:
Fig. 4.5c compares the rebidding overhead used by both algorithms when MP=5. In
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(a) D+R reduces OFR by 40%, achieves 1%
OFR in low contention; RIAL OFR only
reaches 2%.

(b) D+R needs less resource for same OFR
(e.g., 2% failure and MP=1, 38% less re-
source needed).

(c) Rebidding overhead vs capacity, MP=5.
Overhead reduces by 32% on average.

(d) Resource utilization, MP=1. DRACO
better utilizes resource by 18% in high con-
tention.

Figure 4.5: (a): OFR vs capacity, (b): required capacity to reach OFR≤ 10%, (c):
rebidding overhead, (d): utilization by capacity

high contention, both active and passive agents leverage rebidding, and the difference
in rebidding overhead is small. D+R’s advantage becomes more significant as capacity
increases. The box plot shows the median (line), mean (dot), 1st to 3rd quartiles (box)
and data range (whiskers). D+R imposes on average 32% lower rebidding overhead.

To validate the findings in Fig. 4.4b, we can compare resource utilization under different
capacities. Fig. 4.5d shows the remote site’s utilization when MP=1. In high contention,
the increase in utilization is up to 18% — when capacity is limited, D+R achieves lower
OFR through more efficient resource usage. In low contention, capacity is less critical;
active and passive agents result in similar utilization. Regardless of capacity level, D+R
reduces the standard deviation in utilization by up to 21%.

Fig. 4.6 shows the cumulative probability of vehicles’ individual OFRs. With DRACO,
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Figure 4.6: CDF of individual OFRs (capacity=70, MP=1): DRACO reduces individual
OFRs.

(a) Capacity=50, MP=5, backoff vs. price tradeoff:
for all deadlines, vehicles that bid low (high) use
long (short) backoff.

(b) MP=5, long deadline, high contention: backoff
time decreases with higher capacity, but the trade-
off with price remains.

Figure 4.7: Backoff and price tradeoff

as system overall OFR reduces, the individual OFRs reduce accordingly: the auction
does not cause disadvantage to individual vehicles. Moreover, vehicles with lower bud-
get improve by a greater margin: they learn to utilize backoff mechanism to overcome
their disadvantage in initial parameterization. This also implies an improvement in sys-
tem overall fairness. In the following chapters, Sec. 5.5.1 will analyze the algorithm’s
performance with fairness score as the single objective, and Sec. 6.6 will analyze the al-
gorithm’s performance with fairness as one of the multiple objectives. Fig. 4.7a shows
how vehicles learn to trade off between bidding price and backoff time. They are sepa-
rated into two groups: a vehicle is in the “low price” group if it bids on average lower
than the average bidding price of all vehicles; otherwise, it is in the “high price” group
(here we analyze actual bidding prices instead of the predefined budgets). When service
requests have a longer deadline, vehicles in both price groups learn to utilize longer
backoff. Regardless of the service request deadline, “low price” vehicles always use
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longer backoff in their bidding decisions, compared to the “high price” group. Fig. 4.7b
demonstrates the tradeoff effect with increasing capacity. As capacity increases, backoff
time decreases, but the tradeoff is present in all cases.

To summarize: Fig. 4.4 and 4.5 demonstrate DRACO’s excellent overall system perfor-
mance. More importantly, Fig. 4.6 shows that proper incentivization aligns the system
objective with individual objectives (C1), and Fig. 4.7 demonstrates where the proposed
approach fundamentally differs from previous approaches: differently initialized agents
learn to select the most advantageous strategy based on limited feedback signal (C2).
The capability to learn and behave accordingly makes the agents highly flexible in a
dynamic environment. Finally, Fig. 4.4a shows good convergence speed despite com-
putation and communication complexity of the problem (C3).

4.6.2 Realistic setup results

In the realistic setup as described in Sec. 3.3.1, we train our active agents with DRACO
in low contention. Fig. 4.8a-left shows convergence to OFR of 2%. Then, we evalu-
ate the trained models in the same environment with newly simulated trace data from
SUMO. In this setup, the proposed approach still reaches OFR of 4% and outperforms
RIAL (Fig. 4.8a-right). All simulations are repeated seven times to take randomness
into account.

Finally, we test the trained models in a significantly different environment, changing
traffic light phases, vehicle arrival rate and speed to make the environment more volatile
and dynamic, and reduces capacity to create a high-contention situation. The resulting
vehicle count over time (Fig. 4.8b-left) shows more frequent fluctuation with bigger am-
plitude compared to the training environment. Note that vehicle count and OFR do not
vary synchronously — OFR is determined by vehicle count and numerous other com-
plicating factors such as transmission, queueing and processing time, past utilization,
etc. Despite the significant changes to the environment, D+R still outperforms RIAL,
reaching low OFRs in high contention without requiring any further training (Fig. 4.8b-
right). It shows that DRACO generalizes very well — in fact, in the more volatile and
dynamic environment, the superiority of active agents becomes more obvious.
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(a) Training env.: low contention with abundant resource, traffic phase=10-40s, low vehicle
speed(10 km/h), low arrival rate=(1 every 2.2s), low variation in vehicle count(22-30): OFR in
training(left) and evaluation(right).

(b) Test env.: high contention with limited resource, traffic phase=20s, high vehicle speed(30
km/h), high arrival rate(1 every 1s), high variation in vehicle count(14-30): vehicle count over
time(left) and OFR(right).

Figure 4.8: Offloading failure rate (OFR) in training and test environments
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4.7 Conclusion of the chapter

Compared to only having a centralized load-balancing solution at the MEC, DRACO
succeeds in incentivizing each autonomous vehicle to add to the load-balancing effect
in a distributed manner, which significantly increases resource utilization in high con-
tention and reduces capacity needed to reach the same service level. More specifically,
DRACO lets each vehicle independently decide how to trade off between backoff time
and bidding price, at the same time overcoming their initial disadvantages such as a
lower budget.

Through incentivization, the interaction mechanism in this thesis aligns private and sys-
tem goals without sacrificing either user autonomy or system-wide resource efficiency,
despite the distributed design with limited information sharing.

Results in the realistic setup show DRACO’s excellent generalization property in dif-
ferent realistic environments, making it a potential add-on to any existing centralized
solution at the MEC.

One of the shortcomings of this setup is the disregard of the long-term effect of decisions
— e.g. if unused budget could be saved for the future, current decision would impact
future states. This is essentially a long-term, sparse reward signal with unknown length
of delay. In the next chapter, the challenge of such long-term reward signals will be
addressed.
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Chapter 5

Learning with Sparse and Delayed
Reward

5.1 Motivation

The previous chapters introduced single-agent and multi-agent RL algorithms with short-
term rewards. RL algorithms are well known for their ability to learn sequential tasks
and balance between exploitation and exploration [10, 143]. However, they are typically
“short-term” algorithms: in 1961, Minsky in [98] mentioned the necessity and difficulty
of long-term temporal credit assignment in RL — it is essential to associate long-term
reward to specific behavior or series of behaviors (e.g. strategic behaviors) such that
behaviors that contribute to the long-term reward are prioritized. In RL algorithms with
no focus on temporal credit assignment, importance of the immediate reward heavily
outweighs estimated reward in the distant future, and the estimation has a bias that is re-
lated to the length of delay and exponential in the number of possible states [12]. Worse
still, if the reward is both delayed and sparse, the reward estimation often has a high
variance due to lack of predictable future states, especially with a big state-action space
and high variance in the value of next states [96, 129]. When decisions have long-term
effects, such “short-term” algorithms would lead to worse performance. It proves to be
one of the biggest challenges of applying RL in the real world [44].

One common approach in long-term RL is to extract features from historical records,
thus linking the delayed reward to behaviors in the past [62]. Learning with such al-
gorithms is inefficient since learning from past experiences can only happen when the
delayed outcomes become available. To address the delay, reference [91] factorizes one
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state into an intermediate and a final state with independent transition probabilities and
predicts each state at different intervals. Reference [65] describes a credit-assignment
method that focuses on the most relevant memory records via content-based attention;
the algorithm is capable of locating past memory to execute new tasks and generalizes
very well. These approaches focus more on the delay in reward signal and less on spar-
sity. In this thesis, the long-term reward is delayed, sparse and sporadic, making these
approaches inapplicable.

To address sparsity of rewards, many model-based methods add intrinsic, intermediate
rewards between sparse extrinsic reward signals. Such methods often adopt a supervised
learning algorithm to predict next states and use the difference between the predicted
and target state-action pair values as intrinsic reward. Due to lack of extrinsic reward
signals, these predictions usually have low accuracy, and the inaccuracy is propagated
into the future. But such methods significantly improve data efficiency, and as a result,
the algorithms learn much faster. For example, reference [62] separately trains many
“feature models” to predict each feature of the next state as well as a “reward model”
to predict reward. Between sparse extrinsic rewards, the algorithm samples estimated
next state and reward from the models. The models are only updated when there is new
input available. Their approach assumes that state features are independent and can be
learned separately, and the accuracy of the reward model is still related to the sparsity
of the reward signal. Reference [31] uses a long-short-term memory (LSTM) to extract
features from past memory that are more relevant to the current task, thus improving
the model’s generalization properties. The algorithm also uses two independent models
to predict next state and action. The prediction loss becomes intermediate, intrinsic
rewards inserted between sparse extrinsic rewards, and where prediction loss is high,
a higher reward encourages exploration. In this approach, the intrinsic reward signal
is not related to the extrinsic sparse reward, and the final outcome of the game is not
credited to specific agent behaviors. The lack of temporal credit assignment on a long
time horizon affects learning efficiency [98], especially with sparse rewards and conflict
between the agent’s short-term and long-term goals [51, 73], as is often the case in real
life, e.g., maximizing short-term gains can hurt long-term strategic goals.

Credit assignment is a method that credits actions over a long time period according
to their contribution to a delayed outcome. It is often used in game setups, in which
the outcome and reward of the game only becomes available after a long sequence of
actions by the player. There are different approaches to credit assignment, for example,
the credit assignment in [73] does not directly credit behaviors but credits a population
of models. It requires each model to play a full episode in each step to generate expe-
rience before the model can be credited based on the final outcome, it is therefore not
applicable in the setup of this thesis: a dynamic multi-agent environment with contin-
uing task and no clear episodes. Reference [51] uses an attentional network to assign
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weights to past behaviors through reward shaping. Their credit assignment algorithm
decomposes the long-term reward to densify reward signals. In this thesis, decomposed
long-term rewards cannot be added directly to short-term rewards, because the different
types of reward can be conflicting, and a scalarized reward loses the information on the
contribution of each reward type.

In this chapter, the author expands the short-term, single-objective, stand-alone MARL
algorithm in Sec. 4.5 with 1) a feature extraction submodule for generalization, 2) an
attention layer for long-term credit assignment and 3) a curiosity module for sparse
reward signals. Sec. 5.5 shows that these modules’ effect on the agent’s performance
can be compounded, and the performance is best with all three modules.

In the synthetic setup with two common auction types (Sec. 5.5.1), we can observe that
the agents with the proposed algorithm behave more aggressively in the competition
against other agents and perform better in the long-term goal to maximize cumulated
private payoff; however, the selfish behavior has a negative impact on the overall fair-
ness. To improve system overall fairness, the author also uses fairness score as the
long-term goal in a second simulation. Simulation results in the synthetic setup show
the improvement in individual payoff and in overall fairness index score; we can also
observe an increase in social welfare. In the realistic setup (Sec. 5.5.2), empirical re-
sults show that over time, the best-response strategies stabilize and lead to significantly
improved individual and overall outcomes. The designed interaction mechanism aligns
private and system goals without sacrificing either user autonomy or system-wide re-
source efficiency, despite the distributed design with limited information sharing. Fi-
nally, the algorithm demonstrates capability to generalize to very different, previously
unseen environments without the need for retraining. Contributions of this chapter are:

• The author introduces MALFOY, a distributed algorithm that learns to utilize
long-term, sparse reward signals with varying delay; it optimizes decision strategy
over a long time period.

• The author shows using extensive simulation that agents with MALFOY outper-
form benchmark agents on overall resource utilization, offloading failure rate,
load variation and communication overhead. They also generalize well.

• The author open-sources the code [2] to encourage reproduction and extension of
the work.
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5.2 Chapter outline

Table 5.1 compares the differences in algorithm type and simulation environment setup
between chapters 4 and 5. As the author introduces more algorithms, the table will
contain more information for comparison between the algorithms and setups.

Sec. 5.3 reformulates the original problem from Sec. 4.3 into a long-term single-objective
optimization problem. Sec. 5.4 proposes the second algorithm of this thesis to solve the
problem. Sec. 5.5 evaluates the algorithm in both a synthetic and a realistic setup as
described in Sec. 3.3. Sec. 5.6 concludes the chapter.

Table 5.1: Chapter5 outline

Chapter4: DRACO Chapter5: MALFOY

Alg. type short term long term

Obj. type single objective single objective

Synthetic
setup

Simulated second-price
forward auction in V2X

application scenario, with
varying resource capacity,

service request types, number
of rebidding (Sec. 4.6.1).

Purpose: analyze algorithm
performance with randomized

inputs and a wide range of
environment parameters.

Simulated two simplified
common repeated auctions
with no specific application
scenario: first-price reversed

and second-price forward
auction, with fixed resource

capacity, one commodity type,
no rebidding (Sec. 5.5.1).

Purpose: analyze contribution
of each module and different

system reward signals.

Realistic
setup

Same as in Sec.3.3.1.
Purpose: analyze and compare performance in simulated traffic.

5.3 Problem formulation

The author reformulates the single-objective, short-term problem from the previous
chapter into a single-objective, long-term reward maximization problem. The biggest
difference is the cumulated budget 𝐵𝑡 ; it carries the effect of current decision into the
future. Notation is in Table 5.2.

70



5.3. PROBLEM FORMULATION

Table 5.2: Long-term problem symbol definition

Sym Description Sym Description

𝑘 ∈ 𝐾 service type/commodity 𝑛𝑘 𝑘’s availability
𝑚 ∈ 𝑀 vehicle/bidder 𝑖 ∈ 𝐼 service request/bid
𝐵 wealth/budget 𝑣 bid value
𝛽 utilization 𝑄 service deadline
𝛼 backoff decision 𝑏 bidding price
𝑐 cost to join the auction 𝑞 backoff cost
𝑝 payment 𝑧 bidding outcome
𝑢 immediate utility 𝑈 cumulated utility

Let 𝑀 be the set of vehicles (bidders) and 𝐾 the set of commodities (service types),
each type with, at time 𝑡, a total of 𝑛𝑡

𝑘
available service slots in computing sites. Bidder

𝑚 has an initial wealth of 𝐵0
𝑚. It has at most 1 demand for each service type 𝑘 ∈ 𝐾 at

time 𝑡, denoted by a bid 𝑖𝑡
𝑘
∈ 𝐼.

From its bidding strategy 𝜋𝑚, bidder 𝑚 draws its actions 𝛼𝑡𝑚 = {𝛼𝑡
𝑚,𝑘
∈ {0, 1},∀𝑘 ∈ 𝐾}

and b𝑡𝑚 = {𝑏𝑡
𝑚,𝑘
∈ R+,∀𝑘 ∈ 𝐾} for each service type. 𝛼 is the vector of backoff decision,

b is the vector of bidding price. More specifically, bidder 𝑚’s options for each bid 𝑖𝑡
𝑘

are: 1) back off (𝛼𝑡
𝑚,𝑘

= 0) with a backoff cost 𝑞𝑡
𝑚,𝑘

, or 2) bid (𝛼𝑡
𝑚,𝑘

= 1) with price 𝑏𝑡
𝑚,𝑘

.
To avoid overbidding, at any time 𝑡,

∑
𝑘 𝛼

𝑡
𝑚,𝑘
𝑏𝑡
𝑚,𝑘
≤ 𝐵𝑡𝑚.

From bidder 𝑚’s perspective, the competing bidders (denoted −𝑚) draw their actions
from a joint strategy distribution 𝜋𝑡−𝑚 that is an unknown function of (p1, · · · , p𝑡−1),
where p𝑡 ∈ R|𝐾 |+ is the vector of final prices at the end of time 𝑡. All bidders get the new
p𝑡 as feedback. If bidder 𝑚 wins its bid 𝑖𝑡

𝑘
indicated by bidding outcome 𝑧𝑡

𝑚,𝑘
= 1, it

pays 𝑝𝑡
𝑘

to the auctioneer. If it loses (𝑧𝑡
𝑚,𝑘

= 0), it pays 0 to the auctioneer but has a cost
associated with losing the bid, denoted by 𝑐𝑡

𝑚,𝑘
.

The auction repeats for 𝑇 periods, in every auction round, bidder 𝑚’s utility (Sec. 2.2.3)
is 𝑢𝑡𝑚 (𝛼𝑡𝑚, b𝑡𝑚, p𝑡 , z𝑡𝑚, c𝑡𝑚, q𝑡𝑚), the utility is added to the wealth pool: 𝐵𝑡+1𝑚 = 𝐵𝑡𝑚 + 𝑢𝑡𝑚. If
𝐵𝑡+1𝑚 ≤ 0, bidder 𝑚 loses all the unfinished bids and is reset. Its goal is to maximize the
long-term utility:

U = 1
𝑇

𝑇∑
𝑡=1
𝑢𝑡𝑚, 𝑇 →∞.

The bidding budget 𝐵𝑡𝑚 is accumulated over time, such that previous decisions on back-
off and bidding prices also impact future bidding decisions. In every auction round, the
budget reduces through payment and costs, and increases by the commodity’s valuation,
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Figure 5.1: Long-term algorithm MALFOY

if the bidder wins the commodity. This is different to the problem definition in Sec. 4.3,
where budget is reset to the initial value after every auction round.

5.4 Proposed solution

To solve the long-term reward maximization described in Sec. 5.3, the author proposes
MALFOY: Multi-Agent reinforcement Learning FOr sparse and delaYed reward — an
extended version of Sec. 4.5. With this extension, the algorithm is generalized to target
a wider range of problems, and the problem tackled in Sec. 4.5 becomes a special case
where the long-term reward signals have an interval of 1 (i.e. available at the end of
every auction round).

MALFOY’s utility function is similar to the original definition in Sec. 4.4.1, Eq. 4.2.
We repeat Eq. 4.2 here (the notation 𝑡 is omitted for simplicity):

𝑢(𝑚,shortterm) = 𝑊1
∑︁
𝑘∈𝐾

𝑢𝑚,𝑘 +𝑊2 · (1 − 𝛽) (5.1)

where 𝑚 is the bidder index, 𝛽 is the system resource utilization, W are preference
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Table 5.3: Long-term solution symbol definition

Sym Description Sym Description Sym Description

𝜁 best response 𝜓 behavioral strategy e𝑚 env. variables
𝜌𝑚 private bidder info a action, a = (𝛼, 𝑏) 𝑃𝑡−𝑚 other bidders state
sl𝑡𝑚 SL present state rl𝑡𝑚 RL present state 𝑆𝑡𝑚 RL complete state
𝜆 𝑢̄’s weight factor 𝜃 actor parameters w critic parameters
𝛾 learning rate 𝛿 TD error 𝜂 𝜁’s weight
𝜈 history length 𝜇 action mean Σ action covariance
𝜙 featurized state 𝜖 credit assign. weight 𝑟𝑖,𝑚 intrinsic reward
𝑟𝑒,𝑚 extrinsic reward 𝐿 𝑓 forward mdl loss 𝐿𝑖 inverse mdl loss
𝜉 reward weight

weights given as hyperparameters to scalarize the objectives. For long-term reward, we
add an additional reward signal 𝑟𝑚,longterm to it, that is only available at the end of every
interval. The agent’s preference of the objective is expressed by a constant weight𝑊3:

𝑢𝑚 = 𝑢(𝑚,shortterm) +𝑊3 · 𝑟𝑚,longterm (5.2)

This chapter studies the scalarized single-objective algorithm. Sec. 6.5 will extend the
algorithm to learn multiple objectives with a custom and changing preference vector W.

In the synthetic setup of Sec. 5.5.1, the long-term reward signal 𝑟𝑚,longterm is either the
cumulated individual payoff or a (normalized) system fairness score. In the realistic
setup of Sec. 5.5.2, the longterm reward signal is the normalized cumulated individual
payoff. In all training and evaluation of this chapter, 𝑊1 is fixed at 1, 𝑊2 at 0.1 and 𝑊3
at 0.5.

In algorithm design, alongside the original FSP (with the RL and SL modules), we add
a curiosity module and a long-term credit assignment module (Fig. 5.1). The following
section explains the details.

5.4.1 Feature extraction

In general, input to and output from the FSP’s SL and RL modules are the same as in
Sec. 4.5, only instead of the original state vector, the input to RL is now a featurized
state vector from a feature extraction submodule. The feature extraction submodule is
part of a curiosity module (Sec. 5.4.2); it extracts features that are most relevant to the
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agent’s actions and disregards influence from the environment (Fig. 5.2). By doing so,
the model’s generalization property improves significantly in new environments. This
is also shown in the empirical results in Sec. 5.5.2. We reiterate the inputs to RL and SL
below.

Figure 5.2: Feature extraction and replay memory

Input to RL: present state rl𝑡𝑚 includes 1) private bidder information 𝜌𝑡𝑚, including
service type in the bid, resource amount required, deadline, initial and current bidding
budget, etc.; 2) 𝑚’s observation of the environment 𝑒𝑡𝑚, including number of bidders in
the vicinity (provided by either vehicle sensors or the RSU) and system utilization (as
feedback from the RSU); 3) previous other bidders’ state 𝑃𝑡−1

−𝑚 , represented by the final
prices, or 𝑃𝑡−𝑚 = p𝑡 = {𝑝𝑡

𝑘
|𝑘 ∈ 𝐾}.

Next state depends not only on the current state, but on a number of historical states.
We take 𝜈 most recent states to form the complete state vector: 𝑆𝑡𝑚 = {rl𝜏𝑚 |𝜏 = 𝑡 − 𝜈 +
1, · · · , 𝑡}. Thus, input data consists mostly of information private to the user 𝑚 as well
as environment data and past prices, which are easily obtainable public information.
Each state 𝑆𝑡𝑚 corresponds to a reward 𝑢𝑡𝑚, both are saved in the RL replay memory.
The input to RL, 𝜙𝑡𝑚, is a featurized state vector from the original 𝑆𝑡𝑚. RL outputs best
response 𝜁𝑚.

Input to SL: compared to RL, inputs to SL do not include previous other bidders’
states (past final prices) or 𝑚’s utility. The input sl𝑡𝑚 = (𝜌𝑡𝑚, 𝑒𝑡𝑚) and actual actions a𝑡𝑚
are stored in SL memory to train the regression model. SL infers behavioral strategy 𝜓𝑡𝑚
purely based on 𝑚’s knowledge of its private bidder information and observation of the
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environment.

The modified FSP and RL algorithms (as an extension to Fig. 4.2) are in Algorithms 6
and 7.

Algorithm 6 FSP with featurized state vector
1: Initialize 𝜓𝑚, 𝜁𝑚 arbitrarily,𝜈, 𝑡 = 1, 𝜂 = 1/𝑡, 𝑃𝑡−1

−𝑚 = 0, 𝑢𝑡−𝜈+1𝑚 , · · · , 𝑢𝑡−1
𝑚 = 0, observe

𝑒𝑡𝑚, create rl𝑡𝑚, sl𝑡𝑚 and add to memory
2: while true do
3: Take action a𝑡𝑚 = (1 − 𝜂)𝜓𝑡𝑚 + 𝜂𝜁 𝑡𝑚
4: Receive 𝑃𝑡−𝑚, calculate 𝑢𝑡𝑚, observe 𝜌𝑡+1𝑚 , e𝑡+1𝑚
5: Create and add state to RL memory: rl𝑡+1𝑚
6: Create and add state to SL memory: (sl𝑡+1𝑚 , a𝑡𝑚)
7: Construct 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚

8: Get 𝜙𝑡𝑚, 𝜙
𝑡+1
𝑚 , 𝑟 𝑡

𝑖,𝑚
= Curiosity(𝑆𝑡𝑚, 𝑆𝑡+1𝑚 , a𝑡𝑚)

9: Get 𝜁 𝑡+1𝑚 = RL(𝜙𝑡𝑚, 𝜙𝑡+1𝑚 , 𝑟 𝑡
𝑖,𝑚
)

10: Get 𝜓𝑡+1𝑚 = SL(sl𝑡+1𝑚 )
11: 𝑡 ← 𝑡 + 1, 𝜂← 1/𝑡, 𝜁 𝑡𝑚 ← 𝜁 𝑡+1𝑚 , 𝜓𝑡𝑚 ← 𝜓𝑡+1𝑚

12: end while

Algorithm 7 RL with featurized state vector
1: Initialize 𝜃, 𝑤 arbitrarily. Initialize 𝜆
2: while true do
3: Input 𝑡 and 𝜙𝑡𝑚, 𝜙

𝑡+1
𝑚

4: Run critic and get 𝑉̂ (𝜙𝑡𝑚,w), 𝑉̂ (𝜙𝑡+1𝑚 ,w)
5: Calculate 𝑟𝑖,𝑚 = 𝜆𝑟𝑖,𝑚 and 𝛿
6: Run actor and get 𝜇(𝜃), Σ(𝜃)
7: Sample 𝜁 𝑡+1𝑚 from 𝐹 (𝜇, Σ), update w and 𝜃
8: end while

Next, we describe the curiosity learning and credit assignment modules in detail, which
are key to the long-term algorithm.

5.4.2 Curiosity module

The curiosity module used in this thesis is based on the vanilla model from [113]. The
curiosity learning algorithm from [113] predicts future states and actions with two
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Figure 5.3: Curiosity module

supervised learning parts: the forward and the inverse submodules. The objective of
these submodules is to predict the consequence of each action with minimal prediction
losses 𝐿𝑡

𝑓
= ∥𝜙𝑡𝑚 − 𝜙𝑡𝑚 ∥22 and 𝐿𝑡

𝑖
= ∥a𝑡𝑚 − â𝑡𝑚 ∥22, even without any reward signal. In

this thesis, the setup also has short-term reward signals (not aligned and potentially
conflicting with the extrinsic rewards); therefore, the author adapts the input to include
past short-term reward values, and the forward submodule’s objective is to improve
prediction accuracy of both future states and future short-term rewards.

In [113], the intrinsic reward is the weighted loss of the forward submodule: 𝑟 𝑡
𝑖,𝑚

=

𝜉𝐿 𝑓 , and the bigger the forward loss, the higher the intrinsic reward. Through the
adversarial design, the curiosity learning algorithm is encouraged to explore state-action
pairs where the agent has less experience, and prediction accuracy is low. The intrinsic
rewards are inserted between sparse extrinsic rewards to improve learning efficiency
despite the sparseness — the authors of [113] call this internal motivation “curiosity-
driven exploration”. In this thesis, the proposed approach (Fig. 5.3) applies the same
method with a modified intrinsic reward definition: 𝑟 𝑡

𝑖,𝑚
= 𝜉𝐿𝑡

𝑓
+ (1 − 𝜉)𝜖 𝑡𝑚𝑢𝑡𝑚, where 𝜉

is a predefined weight factor to balance between the two short-term objectives, and 𝜖 𝑡𝑚
is a weight factor from the credit assignment module (see below). The objective is to
maximize E𝜋 [

∑
𝑡 𝑟
𝑡
𝑖,𝑚
] − 𝐿𝑡

𝑖
− 𝐿𝑡

𝑓
. Pseudo code is in Alg. 8.

76



5.4. PROPOSED SOLUTION

Algorithm 8 Curiosity learning module
1: Initialize model parameters, 𝜖 𝑡𝑚 arbitrarily. Initialize 𝜉
2: while true do
3: Input 𝑎𝑡𝑚 and 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚 constructed from RL memory

4: Run feature extraction, get 𝜙𝑡𝑚 and 𝜙𝑡+1𝑚
5: Run forward submodule, get 𝜙𝑡+1𝑚 , calculate 𝐿 𝑓
6: Run inverse submodule, get 𝑎̂𝑡𝑚, calculate 𝐿𝑖
7: Update model parameters
8: Infer from credit assignment, extract 𝜖 𝑡𝑚 from attention layer
9: Calculate and output 𝑟 𝑡

𝑖,𝑚

10: end while

5.4.3 Credit assignment module

Figure 5.4: Credit assignment module

The proposed credit assignment module in this thesis (Fig. 5.4) uses a sequential net-
work (recurrent neural network as encoder and decoder) with an attention layer. Typi-
cally, such a sequential network is used to identify correlation between sequenced input
elements enc𝑖 and predict a corresponding sequence of output elements ˆdec𝑜. The se-
quential network is enhanced with an attention layer, which establishes relationship
between any elements in the sequence, regardless of the distance between them. The
proposed credit assignment module is inspired by [51], it is different from [51] in that it
does not decompose the extrinsic reward.
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In this credit assignment module, we are not interested in predicting ˆdec𝑜. Instead,
we want to determine the contribution of each state-action pair towards each long-term
reward 𝑟 𝑡

𝑚,longterm. Therefore, the training of the credit assignment module is triggered
only when there is a new signal 𝑟 𝑡

𝑚,longterm at time 𝑡, the corresponding 𝑢𝑡𝑚 becomes the
last element of the target vector. We train the module on the batch of 𝜈 featurized state
vectors enc𝑖 = {𝜙𝑡−𝜈𝑚 , · · · , 𝜙𝑡−1

𝑚 } with both short- and long-term rewards as target vector,
dec𝑜 = {𝑢𝑡−𝜈+1𝑚 , · · · , 𝑢𝑡𝑚}. In time step 𝜏 ∈ [𝑡 − 𝜈, 𝑡 − 1], the attention layer generates
a weight vector corresponding to input vector enc𝑖, marking its relevance to the current
output prediction ˆdec

𝜏

𝑜, until in the last time step 𝑡, the attention layer outputs a weight
vector 𝜖 𝑡𝑚 = {𝜖1, · · · , 𝜖𝜈 |

∑𝑛
𝑖=1 𝜖𝑖 = 1} corresponding to enc𝑖 that marks their relevance to

the last output 𝑢𝑡𝑚. Model parameters are updated with the mean square error between
the generated output ˆdec𝑜 and target vector dec𝑜.

The weight vector 𝜖 𝑡𝑚 is then multiplied with the original utilities 𝑢𝑡𝑚. Through 𝜖 𝑡𝑚, short-
and long-term rewards are aligned, even if they are conflicting in nature. Between sparse
extrinsic rewards, only the forward network of credit assignment module is run to infer
a weight vector. Pseudo code is in Alg. 9.

Algorithm 9 Credit assignment module
1: Initialize module parameters arbitrarily, initialize batch size 𝜈
2: Input 𝑆𝑡−1

𝑚 , · · · , 𝑆𝑡−𝜈𝑚 , 𝑢𝑡𝑚, · · · , 𝑢𝑡−𝜈+1𝑚 from RL memory
3: Run feature extraction and get 𝜙𝑡−1

𝑚 , · · · , 𝜙𝑡−𝜈𝑚
4: for 𝜏 ← 𝑡 − 𝜈 to 𝑡 − 1 do
5: Input 𝜙𝜏𝑚 to encoder, get encoder output enc𝑜
6: Input enc𝑜, 𝑢𝜏+1𝑚 to decoder, get output dec𝜏+1𝑜

7: end for
8: Calculate prediction loss | | ˆdec𝑜 − 𝑢𝑚 | |22
9: Update model parameters, output 𝜖 𝑡𝑚 from attention layer

To summarize: the features that make the proposed algorithm truly long term are: 1) re-
ward prediction, 2) more exploration in the early stages of learning, and 3) short- and
long-term reward alignment through credit assignment. Points 1) and 2) are achieved
through an adapted curiosity module (Sec. 5.4.2). Point 3) is achieved by a hierarchi-
cal structure that uses an attentional network to learn and assign weights to short-term
rewards based on their relevance to the long-term, sparse extrinsic reward; the learning
process is only triggered when a new extrinsic reward becomes available. Between the
extrinsic reward signals, the FSP+curiosity learns to better predict next states, actions
and intrinsic rewards.

In this chapter, only the extrinsic reward is delayed; for the intrinsic reward, we measure
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offloading failure at the time of task admission. However, the proposed algorithm can
also learn with delayed intrinsic rewards, e.g., if the measurement of offloading failure
is after task execution. For simplicity, the author assumes that failure rate measured
before and after actual task execution is the same. The author verifies this assumption
in the next section, where it shows that applying the proposed solution, a system re-
sponsiveness [14] of 99% can be reached (i.e. 99% of the admitted jobs at MEC are
successfully processed before their deadlines).

5.5 Evaluation

5.5.1 Synthetic setup results

The synthetic setup consists of two common repeated auction games: a first-price re-
verse auction, and a second-price forward auction. Both games have six bidder agents
and one auctioneer agent. The auctioneer is a passive agent without learning capabil-
ities. In every time step, the auctioneer offers one commodity (e.g. object or service)
for bidding, all bidders can join the auction simultaneously. The auctioneer grants the
commodity to the bidder with the highest score; ties are broken randomly. An immedi-
ate payoff is given to the winner; the value of the payoff is specific to the type of game.
Except for the winner, all other participating bidders pay a fixed cost for joining the
auction.

All bidders start with an initial wealth; the wealth pool is updated every time step with
payoffs and costs. Regardless of the bidder’s behavior, there is a constant cost each time
step (carrying cost). If the pool is depleted, the game is over for the bidder, it receives a
penalty and rejoins the game with the same initial wealth. Otherwise, the game contin-
ues for a certain number of time steps (in our simulation we take 𝑇 = 150 time steps).
When the game ends, all bidders restart the game with the same initial wealth. In the
case of long-term learning algorithms, bidder 𝑚 receives a long-term extrinsic reward
signal at the end of each game. It can be 𝑚’s own cumulated payoff in the wealth pool:
𝑟 𝑡
𝑚,longterm = 𝐵𝑡𝑚, or overall fairness, defined as the J-index [68] of payments from the

auctioneer to the bidder agents over time: 𝑟 𝑡
𝑚,longterm =

( ∑
𝑚∈𝑀

𝑡∑
𝜏=𝑡−𝑇

𝑝𝜏𝑚)2

|𝑀 |∑
𝑚
( ∑
𝜏=𝑡−𝑇

𝑡 𝑝𝜏𝑚)2
,∀𝑚 ∈ 𝑀 . To

preserve privacy, extrinsic reward signals do not contain private agent information.

There are free and occupied bidders: if a bidder wins a bid, its resources are occupied for
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(a) Payoff performance per agent, by algorithm
type. Three types of agents are pitched against
each other in the same environment.

(b) Overall fairness performance.

(c) Intrinsic reward, comparison of MAL and
CUR agents.

(d) Forward submodule loss, comparison of
MAL and CUR agents.

Figure 5.5: First-price auction with HETERO agents and payoff-signal
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a period of time, i.e. service duration, during which the occupied bidder cannot submit
new bids. Each free bidder decides 1) whether to join the auction for the commodity
in the current time step, 2) if so, a bidding price 𝑏 that is lower than or equal to the
amount in the wealth pool, and 3) other decision factors required by the specific setup,
for example, service duration 𝑑.

The author assumes correlation between service duration 𝑑 and bidding price 𝑏. The
auctioneer gives each bidder a balanced score 𝑝𝑚. There are many ways for the auction-
eer to rank the bids and determine the winner. In this thesis, the winner determination
problem is not the focus, therefore the author greatly simplifies the calculation of 𝑝 to
multiplication of price and service duration. Winner 𝑚 of the auction is the one with
the highest score 𝑝𝑚. In the first-price reverse auction, it gets an immediate payoff of
𝑏𝑚 · 𝑑𝑚. In the second-price forward auction, it pays the auctioneer the second-highest
score 𝑝∗ among all bidders and gets an immediate payoff of (𝑏𝑚 · 𝑑𝑚 − 𝑝∗). In both
games, during the service duration 𝑑𝑚, the winner cannot join any new auctions.

The bidders may use one of three learning algorithms: the short-term DRACO algorithm
from the previous chapters (DRA), the long-term algorithm based on curiosity learning
(CUR), or MALFOY (MAL), the long-term algorithm with an attention layer for credit
assignment. In the setup with homogeneous agents, all six agents have an algorithm of
the same type. In the setup with heterogeneous agents, each algorithm is given to two
out of six bidders, and all algorithms compete in the same auction game.

To summarize, the author simulates first-price reverse (FP) or second-price forward (SP)
auction, with homogeneous (MAL, CUR or DRA) or heterogeneous agents (HETERO)
and use either average cumulated payoff per agent (payoff signal) or fairness index
score (fairness signal) as extrinsic reward signals. As performance metric (Sec. 3.4),
the author uses the average cumulated payoff per agent (payoff performance) and the
overall fairness index score (fairness performance). All results come from continuous
training.

First-Price Reverse Auction (FP)

First-price reverse auction (lowest-bid-wins) is common e.g. in long-term energy con-
tracts [87] or network resource allocation [154] where multiple resource owners bid to
sell to one buyer that prefers low price for a long duration.

Each curve in Fig. 5.5a represents the average performance of two agents with the same
type of algorithm, in a heterogeneous setting. Both MAL and CUR agents outperform
DRA: through the reserve pool of wealth, current behavior influences bidding decisions
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(a) Individual payoff performance per agent
when only MALFOY agents exist in the environ-
ment: 4/6 agents receive max. reward.

(b) Average payoff performance comparison of
the all-MAL auction, vs. the HETERO auction
previously (average of Fig. 5.5a)

(c) Average payoff performance in all-MAL auc-
tion: if the long-term signal is a payoff signal to
incentivize max. individual payoff, or fairness
signal to incentivize system fairness. Counter in-
tuitively, with fairness signal, agents become less
aggressive and achieve higher payoff.

(d) Overall fairness performance comparison in
all-MAL auction: if the long-term signal is a
payoff signal to incentivize maximization of in-
dividual payoff, or fairness signal to incentivize
system overall fairness.

Figure 5.6: First-price auction with only MALFOY agents: payoff and fairness signal
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in the future and has direct impact on the delayed extrinsic reward. However, the short-
term algorithm values the immediate intrinsic reward much higher than the extrinsic
reward in the distant future, therefore failing to succeed in the game. On the other hand,
the MALFOY agents clearly perform the best but at the cost of other agents with less
aggressive algorithms. This is shown by the low fairness index in Fig. 5.5b. Fig. 5.5c
and 5.5d compare training performance of MAL and CUR agents in the game. The
MALFOY agent not only converges faster, it also converges to lower loss and higher
intrinsic reward.

If we pitch the aggressive MALFOY agents against each other, i.e. all six agents are
MALFOY agents, we have a similar result (Fig. 5.6a): only four MALFOY agents can
maximize their cumulated payoff over time, yet the game still has a higher social welfare
compared to the HETERO case (Fig. 5.6b). The difference in individual performance
is caused by MALFOY agents’ aggressive, selfish (i.e. with private individual goals),
rational (i.e. act to maximize reward) behavior, and agents fall into different behavioral
patterns over time, where winners profit from an unregulated system at the cost of social
welfare. In fact, it is possible for all six agents to maximize their reward: to motivate
cooperation, we replace the cumulated payoff with fairness index score as long-term
extrinsic reward signal. The negative impact on social welfare can thus be prevented.

Fig. 5.6c and 5.6d compare two independent simulation results. The dotted orange curve
is the average cumulative payoff of six MALFOY agents when the extrinsic reward
is also the cumulative payoff. The solid blue curve is when the extrinsic reward is
fairness index score. With fairness as incentive, all agents receive better cumulated
payoffs, while achieving a much higher fairness index score. Hence, with the proposed
solution, it is possible to increase both individual gain and social welfare. In real life,
independent and selfish agents do not have to respect system objectives such as fairness
or utilization. The effect of the agent’s custom preference of objectives is explored in
Chapter 6. In this chapter, we assume that the agents’ preferences for objectives are
given. However, agents with custom preferences are not necessarily malicious agents
— they may ignore system objectives, but they do not have the sole individual objective
of worsening system objective scores. The discussion on malicious agents is out of the
scope of this study.

To wrap up, the first simulation setup (Fig. 5.5) demonstrates how the MALFOY al-
gorithm learns quickly and aggressively in a multi-agent, dynamic environment with
partial information, a big state-action space and sparse / delayed extrinsic reward. The
second setup (Fig. 5.6c and 5.6d) demonstrates how MALFOY can be easily optimized
to integrate a system goal while preserving privacy and individual goals.
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(a) Second-price auction, payoff performance
with all three algorithms in one environment
(HETERO) and payoff signal: the result is simi-
lar to the previous first-price auction, MALFOY
agents achieve the most individual payoff at the
cost of other agents.

(b) Payoff-performance comparison with differ-
ent combinations of algorithms and long-term in-
centivation signals. Result is similar to first auc-
tion: 1. average payoff in all-MAL auction is
better than average payoff of HETERO; 2. fair-
ness signal also leads to better individual payoff.

Figure 5.7: Second-price auction, all MALFOY vs. HETERO, payoff vs. fairness signal

Second-Price Forward Auction (SP)

In a second-price forward auction, the auctioneer is a seller that grants the commodity
to the bidder with highest bidding price, but the payment for the commodity is the
second-highest price of all bidding prices. This type of auction is common for selling
public goods, maximizing welfare rather than seller profit, e.g. in networking resource
allocation [155] and e-commerce [64], where multiple end users bid for resources from
one service provider.

Fig. 5.7 shows similar results in SP as in FP. When three types of agents co-exist in
a profit-oriented setup, the two MALFOY agents win at the cost of social welfare
(Fig. 5.7a). Social welfare increases when all agents are MALFOY agents. Finally,
if the MALFOY agents are instead given a fairness index as incentive, social welfare
reaches is much higher. This can be seen from Fig. 5.7b: with fairness index score as
extrinsic reward signal, social welfare increases.

The results indicate that in real life, as service providers on the operating side, to incen-
tivize users to consider system objectives, there is need to provide system information
as feedback, e.g. fairness and resource utilization. Although the users are free to ignore
these system reward signals, the signals can provide extra information that is beneficial
for the users to achieve their individual objectives. A smart design of system reward sig-
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nals can help to align all objectives without sacrificing individual goals. Further analysis
of system reward signals and multiple objectives is in Chapter 6.

5.5.2 Realistic setup results

Again, we bring the MALFOY algorithm into the realistic V2X environment simulated
with mobility data as in Table 3.1 of Chapter 3. The only difference in the simulation
of MALFOY is the addition of a long-term reward signal from the auctioneer that is
available after 2000 time steps. Performance measurements are defined in Sec. 3.4.

As mentioned in Sec. 3.3.1, the uplink and downlink time, service request arrival rate
and service deadlines are based on the requirements of semantic segmentation and mo-
tion planning applications. If the vehicle expects its position before service deadline to
be out of range of the MEC, the service request is dropped without any performance
measurement.

Higher vehicle arrival rate and slower driving speed typically lead to high contention.
By changing the arrival rate and speed in the simulation, we create high and low-
contention scenarios.

The author trains and tests the active agents with MALFOY in low contention, with
long-term reward signal every 2000 time steps. MALFOY is tested against the short-
term DRACO algorithm in the same setup. DRACO only considers the immediate effect
of each action — for the long-term reward signal, the effect of only one previous action
is considered. Fig. 4.8a-left shows that DRACO converges to OFR of 1.4%, and MAL-
FOY converges much faster to an even lower failure rate. Then, the author evaluates the
trained models in the same environment with newly simulated trace data from SUMO
(Fig. 5.8a-right). DRACO still achieves an OFR of 4%, a reduction of 18% compared to
the passive algorithm RIAL; MALFOY further reduces failure rate by 34%, compared
to DRACO.

Then, the author tests (i.e. without retraining) the trained MALFOY models in a sig-
nificantly different environment, changing traffic light phases, vehicle arrival rate and
speed to make the environment more volatile and dynamic and reducing capacity to
create a high-contention situation. The resulting vehicle count over time (same as in
Fig. 4.8b-left) shows a much heavier and more frequent fluctuation compared to the
original training environment. Despite the significant changes to the environment, and
without requiring any further training, DRACO reduces failure rate by 20% compared to
RIAL (passive agents with no learning capability, see Sec. 3.3), and MALFOY further
reduces failure rate by 23% (Fig. 5.8b-left).
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(a) Training environment: low contention with abundant resource, traffic phase=10-40s, low
vehicle speed(10 km/h), low arrival rate(1 every 2.2s), low variation in vehicle count(22-30):
OFR in training(left) and evaluation(right). MALFOY learns faster in training, and outperforms
both DRACO and RIAL.

(b) Test environment: high contention with limited resource, traffic phase=20s, high vehicle
speed(30 km/h), high arrival rate(1 every 1s), high variation in vehicle count(14-30): OFR
(left) and sensitivity analysis (right). Left: OFR performance of MALFOY is even more dis-
tinguishable from DRACO and RIAL. Right: Individual OFR is not sensitive to private bid
values 𝑣 and backoff cost 𝑞 (normalized).

Figure 5.8: Comparison of offloading failure rate (OFR) in training and test environ-
ments, between: MALFOY, DRACO, and RIAL only.
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Fig. 5.8a shows good convergence speed despite computation and communication com-
plexity of the problem. Fig. 5.8b shows that with the capability to predict long-term
impacts of each action, MALFOY has even better performance and generalization prop-
erties. With little need for retraining in a new environment, the computation delay is
only the time for model inference.

Additionally, the author randomizes each vehicle’s private bid valuation 𝑣𝑚,𝑘 and the
backoff cost 𝑞𝑡

𝑚,𝑘
, to analyze how sensitive the individual offloading failure rate (OFR)

is to changes in 𝑣 and 𝑞. Results from this sensitivity analysis show that the changes in
𝑣 and 𝑞 have almost no impact on the individual OFR; the Pearson coefficient values are
0.008 (p-value=0.5) between OFR performance and 𝑣 values, and 0.007 (p-value=0.5)
between OFR performance and 𝑞 values. Fig. 5.8b-right visualizes this result. This and
the results in Fig. 4.7 demonstrate the robustness of the proposed auction mechanism:
vehicles learn to compensate for differences in initial parameterization through trade-off
in bidding price and backoff time, without impact on individual OFR.

5.6 Conclusion of the chapter

The extended MALFOY algorithm can utilize long-term, sparse reward signals and has
enhanced predictive power, as well as better alignment between short-term and long-
term goals. When behaving long-term, it shows further performance improvements.
A sensitivity analysis of OFR with regard to bid valuation and backoff cost shows the
robustness of the proposed solution.

The ablation study with the synthetic setup shows that each module of the MALFOY
algorithm increases overall performance, and the effect is compounded. Therefore, this
chapter and the following chapters use all three modules in the proposed algorithms.
Despite the complexity, the next chapter shows that the modules can be trained in a
distributed and asynchronous manner, greatly improving computation performance.

Until now, this thesis has only dealt with single-agent and multi-agent RL algorithms
that learn a single objective. Although both short-term and long-term objectives are
considered in this chapter, they are scalarized with a fixed preference vector into a single
objective. However, over time, the agent’s preferences to its private objectives as well
as the system’s incentives may change, and the single-objective model will not adapt to
the new objectives. The next chapter discusses multi-objective optimization problems
and proposes an extension to the MALFOY algorithm to learn multiple objectives.
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Chapter 6

Multi-objective Optimization

6.1 Motivation

The single-agent and multi-agent RL algorithms from the previous chapters focus on
single objectives, although many real-life decision-making problems are multi-objective
in nature [39]. In the previous single-objective algorithms, the multiple objectives are
scalarized into a single objective through a constant preference weight vector.

A multi-objective problem (MOP) is different from a single-objective problem (SOP)
where the objective is scalar and totally ordered: in an MOP, the set of objectives are
only partially ordered [131]. An MOP is formulated as finding values for decision vari-
ables that leads to non-dominated 𝑓 (x) = ( 𝑓1(x), · · · , 𝑓𝑙 (x)) s.t. x ∈ K ⊆ R𝑛, where 𝑓
is a vector of 𝑙 objective functions, x is the decision variable, and K is the feasible region
in an 𝑛-dimensional decision variable space. Since 𝑓 can only be partially ordered, we
use Pareto frontier to represent a set of equivalent solutions, where one objective cannot
be improved without at least one other objective being worsened. Put differently, no
two members of the Pareto frontier are better than each other, and there are no better
solutions outside of the Pareto frontier.

Converting an MOP into an SOP through scalarization is the most common way to
address an MOP [144], such as in [54, 56, 161]. But in some scenarios, the conversion
1) is impossible when utility or user preference over each objective is unknown a priori,
changing fast or incommensurate, or 2) is intractable with high dimensionality or non-
convexity, or 3) performs bad because a single-objective learning algorithm cannot track
the development of reward on multiple objectives [11, 59]. But these aspects describe
typical networking scenarios, necessitating a new approach for this thesis.
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This chapter proposes a MARL algorithm to address MOP in a dynamic and adversarial
environment. The contributions are:

• To the best of the author’s knowledge, this thesis is the first one to address the
multi-objective nature of V2X applications in its distributed, non-stationary and
adversarial environment. The proposed multi-agent, multi-objective algorithm
can optimize frequently changing combinations of objectives and preferences.

• The author trains one optimal initial model offline, then deploys the model to each
independent agent representing a vehicle user, who is able to change its private
objectives and update its offloading strategy through online few-shot learning,
needing low retraining cost and no prior knowledge for reward shaping. This ap-
proach outperforms the benchmarking state-of-the-art algorithms on all individual
and system metrics. Also, in a heterogeneous environment with different compet-
ing algorithms, this approach increases bottom-line resource efficiency, such that
other algorithms in the environment also benefit from improved offloading rate
and fairness.

• The proposed algorithm can be modularized and trained asynchronously. The
author tests the runtime inference performance of the proposed algorithm on a
single-board computer with a GPU and shows that inference in 6 milliseconds is
feasible.

• The author provides public access to the code and data at [3].

6.2 Chapter outline

Table 6.1 lists the difference between three algorithms and simulation setups introduced
in chapters 4 to 6.

Sec. 6.3 introduces the background and related work in multi-objective optimization
problems, including the single-model method used as basis for the proposed algorithm
as well as a recount of its first-order estimate. Sec. 6.4 reformulates the original problem
into a long-term multi-objective one. Sec. 6.5 proposes the third and final algorithm, that
is the same structure as the previous chapter (Fig. 5.1), but trained in a two-phase loop,
including an inner loop to train independently for different objectives and an outer loop
to consolidate local single models’ gradients. The training result is an initial generic
model that is deployed to each local agent that can quickly adapt to very different ob-
jectives and environments. Sec. 6.6 evaluates the algorithm. Sec. 6.7 addresses some
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practicality concerns and tests the algorithm on a single-board computer. Sec. 6.8 con-
cludes the section.

Table 6.1: Chapter6 outline

Chapter4: DRACO Chapter5: MALFOY Chapter6: MOODY

Alg.
type

short term long term long term

Obj.
type

single objective single objective multiple objectives

Synthetic
seup

Simulated
second-price forward

auction in V2X
application scenario,
with varying resource

capacity, service
request types, number

of rebidding
(Sec. 4.6.1). Purpose:

analyze algorithm
performance with
randomized inputs
and a wide range of

environment
parameters.

Simulated two
simplified common

repeated auctions with
no specific application

scenario: first-price
reversed and

second-price forward
auction, with fixed

resource capacity, one
commodity type, no

rebidding (Sec. 5.5.1).
Purpose: analyze

contribution of each
module and different

system reward signals.

No synthetic setup

Realistic
setup

Same as in Sec.3.3.1.
Purpose: analyze and compare performance in simulated traffic.

6.3 Preliminaries and related work

A multi-objective (or multi-criteria, multi-task) optimization problem is formulated as:

Find non-dominated values of: 𝑓 (x) = ( 𝑓1(x), · · · , 𝑓𝑙 (x)) subject to x ∈ K

where 𝑓 : R𝑛 → R𝑙 is the objective function, x is an 𝑛-dimensional decision variable
vector, K ⊆ R𝑛 is the feasible region in a 𝑛-dimensional decision variable space. 𝑓 (K)
represents the feasible objective region, which is also a subset of the objective space R𝑙 .

91



6.3. PRELIMINARIES AND RELATED WORK

Unlike in single-objective optimization problems where the fitness of the solutions can
be fully ordered, in multi-objective optimization problems, the fitness of a solution is
defined by its dominance over other solutions. Formally, 𝑓 (x1) dominates 𝑓 (x2), or
𝑓 (x1) is a better solution than 𝑓 (x2), if 1) no objective in 𝑓 (x1) is worse than in 𝑓 (x2),
and 2) at least one objective in 𝑓 (x1) is strictly better than in 𝑓 (x2).

If a solution 𝑓 (x) is not dominated by any other solution in the solution set 𝑓 (K), it is a
non-dominated solution. The subset of all non-dominated solutions in the solution set is
called the Pareto-optimal set. The Pareto frontier symbolizes the boundary defined by
the Pareto-optimal set, where any objective cannot be optimized without other objectives
being worsened. Due to conflicts between objectives, it is typically not possible to find
a single solution that is optimal in all objectives.

6.3.1 Single-objective RL for solving MOP

Most RL algorithms only solve SOP [138]. The goal of a single-objective RL algorithm
is to maximize the return 𝐽 = E[∑𝑇

𝑡=0 𝑟𝑡], where 𝑇 is the time horizon and 𝑟𝑡 is a scalar-
valued reward at time 𝑡. In a multi-objective RL algorithm, we have a vector-valued
return for |𝑂 | objectives: J = {𝐽(𝑜) |𝑜 = {1, . . . , 𝑂}} ∈ R|𝑂 |, the return for each objective
𝑜 is 𝐽(𝑜) = E[

∑
𝑡 𝑟𝑜,𝑡]. Owing to partial order of rewards, such a situation is not directly

amenable to standard RL techniques. One option is, hence, to try to cast this problem
back into a conventional SOP setting.

Weighted sum is the most widely used classical approach in scalarization [54, 161].
An MOP can be simplified to an SOP through a constant weight vector W ∈ R|𝑂 | to
form a single reward, such that classic single-objective RL algorithms can be applied
to solving MOP. Using a constant weight vector is equivalent to finding one optimal
point on the Pareto frontier. Even if the simplification is acceptable in some cases,
reference [59] points out that such simplification requires much a priori knowledge
for reward engineering and manual tuning when preferences of objectives change over
time; a scalarized reward is also inexplainable, i.e., the scalarization does not always
reflect the real relationship between decision variables and objectives. Such methods
are therefore sensitive to preference changes.

Instead, multi-objective RL algorithms aim at explicitly finding the shape of the Pareto
frontier. This befits the studied V2X setup where each vehicle is free to change their
preferences of multiple objectives over time, i.e. the preference weight vector W𝑡 is
time-variant and unknown a priori. Such multi-objective RL algorithms can be roughly
categorized into multi-model and single-model methods, described next.
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6.3.2 Multi-model, multi-objective RL

Multi-model methods aim at finding a finite set of non-dominated points on the Pareto
frontier; each point is learned through one model. The parameters of each model need to
be stored. The most straightforward extension from SOP to an MOP with the multiple-
model method is to sample different preference weight vectors (i.e., preference for each
objective), and for each such vector, train a separate SOP model. During runtime, if a
previously unknown weight vector is given, All trained models have to be evaluated in
order to select one out of all models for further training. We give two examples of the
multi-model method below.

The radiant algorithm (RA) scalarizes the gradient from each objective 𝑚 ∈ {1, . . . , 𝑀}
to efficiently find one non-dominated point 𝑖 ∈ {1, . . . , 𝑁} for a sampled weight vector
w𝑖 on the Pareto frontier. Gradient for the 𝑖th model is

𝑆𝑖 (w𝑖, 𝜃𝑖) = w𝑇
𝑖
· ▽J𝑖, where ▽J𝑖 =


▽𝜃𝑖𝐽(𝑖,1)

...

▽𝜃𝑖𝐽(𝑖,𝑀)

 .

Update in each model is 𝜃𝑖 = 𝜃𝑖 + 𝛼𝑆𝑖, where 𝛼 is the learning rate.

The Pareto following algorithm (PFA) tries to find one non-dominated point first with
one objective, then moves along the Pareto frontier to find other non-dominated points,
adding objective dimensions incrementally. The update rule is:

𝜃𝑖 = OPT(𝜃𝑖−1 + 𝛼𝑤𝑖▽𝜃𝑖−1𝐽𝑖 (𝜃𝑖−1))

where OPT is any optimization method that finds a set of 𝜃 to optimize 𝐽𝑖, 𝑤 is a weight
factor of the gradient, and 𝛼 is the learning rate.

Multiple-model methods pose several problems: 1) choice of weight vector samples
may not represent the shape of the Pareto frontier; 2) since each model is independently
trained, they do not share learning information, making learning inefficient; 3) each
time a previously unknown weight vector is given, all the models need to be evaluated,
making the method inflexible in a dynamic environment where user preferences change
frequently; 4) it is not obvious how to choose one model or combine several models as
initial points for additional training. The two multi-model methods proposed in [111]
either have many individual models to evaluate whenever user preferences change or
have high computational cost in high-dimensional objective spaces.
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6.3.3 Single-model, multi-objective RL

Single-model methods train only one model for all non-dominated solutions to the MOP.
Reference [117] proposes an algorithm that learns parameters that best estimate a con-
tinuous Pareto frontier. Once trained, the model does not need any retraining when user
preferences change. However, it is computationally expensive, requiring estimating a
Hessian matrix of the expected return w.r.t. the model parameters that is of size 𝑞𝑑 × 𝑑
where 𝑞 is the number of objectives and 𝑑 is the number of parameters.

MAML [52] is an approach that combines multi-model and single-model methods: mul-
tiple models are trained for their specific objectives in an inner loop and consolidated
into a single model in an outer loop, which can be quickly retrained for any new objec-
tive with only a few sample data points (“shots”). Although theoretically the method
requires estimating a Hessian, the authors propose a first-order estimation and prove
its sufficiency under the assumption that the inner loop uses a small learning rate and
𝑛-shot learning with very small 𝑛. The original MAML algorithm from [52] addresses
the problem of a single agent learning to do multiple tasks. Both references [72] and [9]
study MAML for multiple agents, but the former considers a stationary environment,
and the latter formulates a non-stationary SOP as a stationary MOP. To the best of the
author’s knowledge, single-model, multi-objective RL approaches similar to MAML
have not been studied in a multi-agent, non-stationary environment with multiple objec-
tives in V2X applications.

The proposed approach is based on the MAML inner/outer loop training concept. The
author uses the long-term algorithm from the previous chapter that is specifically de-
signed for a dynamic environment with sparse and delayed rewards and capable of au-
tomatically triggering adaptive few-shot retraining (Sec. 6.5). The author also applies
various performance improvement measures (Sec. 6.7). As a basis for the proposed
algorithm, the author describes MAML in detail below.

6.3.4 MAML

MAML tries to find a model initialization that produces close-to-good results for any
preference vector. With MAML, the initial model needs to be trained extensively; it
still requires a very small amount of data samples to quickly learn any new preference
vector afterwards (few-shot learning as a type of transfer learning). Although implicit,
at training time, 𝑁 local models are run in memory before gradients are consolidated in
a generic model (parallel stochastic gradient ascent).
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MAML’s inner loop optimizes local models for a single task or any scalarized objective
from the objective space of the original MOP.

J𝑖 is the expected scalarized return through any scalarization method for the 𝑖th model,
𝑖 ∈ {1, . . . , 𝑁}. The initial model is denoted 𝑓𝜃 with parameters 𝜃. Thus, J𝑖 depends

on 𝜃. Formally: J𝑖 = E[
∞∑
𝑡=1
𝑟 𝑡
𝑖
(𝑥, 𝑓𝜃 (𝑥))]; for policy gradient methods, the model 𝑓𝜃 is

the parameterized policy 𝜋𝜃 . 𝑟 𝑡𝑖 is the scalarized reward for model 𝑖 at time 𝑡, which is a
weighted sum of all rewards on all objectives. The weight vector 𝑤𝑖 is different for each
model 𝑖.

The update for each local model 𝑖 is the same as for a single-objective model:

𝜃
(𝜏)
𝑖

= 𝜃
(𝜏−1)
𝑖

+ Γ𝛿(𝜏−1)
𝑖
▽
𝜃
(𝜏−1)
𝑖

ln 𝜋
𝜃
(𝜏−1)
𝑖

, 𝜏 ∈ {1, · · · ,T }, 𝜃 (0)
𝑖

= 𝜃 (6.1)

where 𝜏 is the index of training data, 𝛿 can be TD error or advantage, depending on the
algorithm used, and Γ is the learning rate.

Outer loop: optimize model for all the differently weighted objectives

In the outer loop, the generic RL model’s objective is to maximize the sum of all re-
turns (i.e., expected future reward) from all local models. Formally, it is to find model
parameters 𝜃 to maximize J =

∑
𝑖 J𝑖.

Because the meta-learning step in the outer loop has a different objective function from
the inner loop algorithm, there is a second pass of backpropagation from the objective
function in the outer loop to 𝜃 (0) . Since every intermediate set of parameters 𝜃 (𝜏)

𝑖
is

based on 𝜃 (𝜏−1)
𝑖

and in turn based on the initial parameters 𝜃 (0)
𝑖

, the gradient of the outer
loop objective function is backpropagated to 𝜃 (𝑡)

𝑖
,∀𝑡 = {0, · · · , 𝜏} again. In the proposed

algorithm, initial model parameters 𝜃 (
𝑖
0) are randomly sampled and the same for every

model 𝑖.

If T = 1, we can simplify the update rule to 𝜃 = 𝜃+Γouter▽𝜃
∑
𝑖

J𝑖
(
𝜋𝜃+Γ▽𝜃J𝑖 (𝜋𝜃 )

)
= 𝜃+𝛽𝑆,

where 𝑆 is the collected gradient for the outer loop, and Γouter is the learning rate in the
outer loop that may be different from Γ, the learning rate in the inner loop.

For T ≥ 2, we need to calculate the inner product of all previous updates. To simplify
the notation, we define the following RL operator:
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𝐽(𝑖,𝜏) : 𝜋
𝜃
(𝜏 )
𝑖

→ J𝑖 (6.2)

where 𝑖 ∈ {1, · · · , 𝑁}, 𝜏 ∈ {1, · · · ,T }, 𝜃 (0)
𝑖

= 𝜃, and

𝑈(𝑖,𝜏) (𝜃) = 𝜃 (𝜏)𝑖 + Γ▽𝜃 (𝜏 )
𝑖

𝐽(𝑖,𝜏) (𝜃 (𝜏)𝑖 ) (6.3)

We rewrite the outer-loop gradient 𝑆 as follows:

𝑆 =
∑︁
𝑖

▽𝜃𝐽(𝑖,T) (𝜃 (T )𝑖
)

=
∑︁
𝑖

▽𝜃𝐽(𝑖,T)
(
𝑈(𝑖,T−1)

(
𝑈(𝑖,T−2)

(
. . .

(
𝑈(𝑖,1) (𝜃)

) ) ) )
=
∑︁
𝑖

▽𝜃𝐽(𝑖,T) (𝜃 (T )𝑖
) · ▽𝜃𝑈(𝑖,T−1) (𝜃 (T−1)

𝑖
) · · ·▽𝜃𝑈(𝑖,1) (𝜃)

=
∑︁
𝑖

▽𝜃𝐽(𝑖,T) (𝜃 (T )𝑖
) ·

(
𝐼 + Γ▽2

𝜃𝐽(𝑖,T−1) (𝜃 (T−1)
𝑖

)
)
· · ·

(
𝐼 + Γ▽2

𝜃𝐽(𝑖,1) (𝜃)
)

=
∑︁
𝑖

▽𝜃𝐽(𝑖,T) (𝜃 (T )𝑖
) ·

( T−1∏
𝜏=1

(
𝐼 + Γ▽2

𝜃
(𝜏 )
𝑖

𝐽(𝑖,𝜏) (𝜃 (𝜏)𝑖 )
) )
,∀𝑖 ∈ {1, . . . , 𝑁} (6.4)

In the original MAML algorithm, we need to calculate for each sample 𝜏 in each model
𝑖, the inner product of every ▽2

𝜃
(𝜏 )
𝑖

𝐽.

If Γ and T are small enough, we can omit the product of multiple Hessian matrices,
Eq. 6.4 can be further simplified into:

𝑆MAML ≈
∑︁
𝑖

▽𝜃𝐽(𝑖,T) (𝜃 (T )𝑖
) ·

(
𝐼 + Γ

T−1∑︁
𝜏=1
▽2
𝜃𝐽(𝑖,𝜏) (𝜃

(𝜏)
𝑖
)
)

(6.5)

We can also write𝑈 as the sum of updates on 𝜃 with each sample:
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
𝑈(𝑖,T−1) = 𝜃

(T )
𝑖

= 𝜃
(T−1)
𝑖

+ Γ▽
𝜃
(T−1)
𝑖

𝐽(𝑖,T−1) (𝜃 (T−1)
𝑖

)
...

𝜃
(1)
𝑖

= 𝜃 + Γ▽𝜃𝐽(𝑖,0) (𝜃)

=⇒ 𝑈(𝑖,T−1) = 𝜃
(T )
𝑖

= 𝜃 + Γ
T−1∑︁
𝜏=1
▽
𝜃
(𝜏 )
𝑖

𝐽(𝑖,𝜏) (𝜃 (𝜏)𝑖 ),∀𝑖 ∈ {1, . . . , 𝑁} (6.6)

We use these formulations to understand the core difference between MAML and its
first-order estimate.

6.3.5 Simplification of MAML’s second-order derivative

For performance, the authors of [52] and [103] provide an estimation of the Hessian
(first-order MAML, or FOMAML for short) in the case that we update the inner gradient
for each individual objective with T ≥ 2 shots, written as:

𝑆FOMAML =
∑︁
𝑖

▽
𝜃
(T)
𝑖

𝐽(𝑖,T) (𝜃 (T )𝑖
) (6.7)

FOMAML ignores the second-order derivatives, with the assumption that learning rate
Γ and inner loop sample size T are both small. The authors conclude that the second-
order derivative is not the most contributive to the learning but the meta-gradient is. By
replacing the second-order derivative with a first-order estimation, the authors claim a
33% increase in learning speed.

To demonstrate the difference between MAML and FOMAML, MAML is analyzed
through Taylor expansion [103]. We repeat the analysis in this section. To simplify the
notation, we omit the model index 𝑖 ∈ {1, . . . , 𝑁} and focus on the gradient for one
model 𝑖. The final gradient is the sum of gradients of the inner loop return 𝐽(𝑖,T) with
regard to original parameters 𝜃 (0) = 𝜃.

First, we rewrite 𝑆(FOMAML,i) with Taylor expansion:

𝑆(FOMAML,i) = ▽𝜃𝐽(T ) (𝜃 (T )) ≈ ▽𝜃𝐽(T ) (𝜃) + ▽2
𝜃𝐽(T ) (𝜃) · (𝜃 (T ) − 𝜃) (6.8)
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From the formulation of Eq. 6.6, we can derive 𝜃 (T ) − 𝜃 and get:

𝑆(FOMAML,i) = ▽𝜃𝐽(T ) (𝜃 (T ))

≈ ▽𝜃𝐽(T ) (𝜃) + Γ · ▽2
𝜃𝐽(T ) (𝜃) ·

T−1∑︁
𝜏=1
▽𝜃𝐽(𝜏) (𝜃 (𝜏)) (6.9)

From the Taylor expansion of ▽𝜃𝐽(𝜏) (𝜃 (𝜏)) ≈ ▽𝜃𝐽(𝜏) (𝜃), we get:

𝑆(FOMAML,i) = ▽𝜃𝐽(T ) (𝜃 (T ))

≈ ▽𝜃𝐽(T ) (𝜃) + Γ · ▽2
𝜃𝐽(T ) (𝜃) ·

T−1∑︁
𝜏=1
▽𝜃𝐽(𝜏) (𝜃) (6.10)

In the same way we expand ▽2
𝜃
𝐽(𝜏):

▽2
𝜃𝐽(𝜏) (𝜃 (𝜏)) ≈ ▽2

𝜃𝐽(𝜏) (𝜃) (6.11)

Next, we revisit the gradient of the meta-learning in Eq. 6.5 and rewrite 𝑆(MAML,i) into:

𝑆(MAML,i) = ▽𝜃𝐽(T ) (𝜃 (T )) ·
(
𝐼 + Γ

T−1∑︁
𝜏=1
▽2
𝜃𝐽(𝜏) (𝜃 (𝜏))

)
≈
(
▽𝜃𝐽(T ) (𝜃) + Γ · ▽2

𝜃𝐽(T ) (𝜃) ·
T−1∑︁
𝜏=1
▽𝜃𝐽(𝜏) (𝜃)

)
·
(
𝐼 + Γ

T−1∑︁
𝜏=1
▽2
𝜃𝐽(𝜏) (𝜃 (𝜏))

)
≈▽𝜃𝐽(T ) (𝜃) + Γ · ▽2

𝜃𝐽(T ) (𝜃) ·
T−1∑︁
𝜏=1
▽𝜃𝐽(𝜏) (𝜃) + Γ · ▽𝜃𝐽(T ) (𝜃) ·

T−1∑︁
𝜏=1
▽2
𝜃𝐽(𝜏) (𝜃 (𝜏))

(6.12)

And according to Eq. 6.11:
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𝑆(MAML,i) ≈ ▽𝜃𝐽(T ) (𝜃) + Γ · ▽2
𝜃𝐽(T ) (𝜃) ·

T−1∑︁
𝜏=1
▽𝜃𝐽(𝜏) (𝜃) + Γ · ▽𝜃𝐽(T ) (𝜃) ·

T−1∑︁
𝜏=1
▽2
𝜃𝐽(𝜏) (𝜃)

= ▽𝜃𝐽(T ) (𝜃) + Γ ·
T−1∑︁
𝜏=1

(
▽2
𝜃𝐽(T ) (𝜃) · ▽𝜃𝐽(𝜏) (𝜃) + ▽𝜃𝐽(T ) (𝜃) · ▽2

𝜃𝐽(𝜏) (𝜃)
)

(6.13)

This the complete gradient for model 𝑖 at the end of the inner loop, expanded at the point
𝜃, according to the original MAML.

For the average of T samples, we rewrite Eq. 6.13 into:

E[▽𝜃𝐽(T ) (𝜃)] + (T − 1) · Γ · E[▽2
𝜃𝐽(T ) · ▽𝜃𝐽(𝜏) + ▽𝜃𝐽(T ) · ▽2

𝜃𝐽(𝜏)] (6.14)

Assuming we randomize data in the experience replay to de-correlate input data and
stabilize learning (which is the case in the proposed algorithm), the index is inter-
changeable. Therefore, the second expected value is equivalent to 2 · E[▽𝜃 (▽𝜃𝐽( 𝑗) ·
▽𝜃𝐽(𝜏))], 𝑗 , 𝜏 ∈ {1, . . . ,T }

We can now define the two expected values as:

{
AvgGradOuter = E[▽𝜃𝐽(T )]
AvgGradInner = E[▽𝜃 (▽𝜃𝐽( 𝑗) · ▽𝜃𝐽(𝜏))]

(6.15)

And the expected MAML gradient based on Eq. 6.13 can be rewritten into the simplified
form:

E[𝑆MAML] ≈ AvgGradOuter + 2(T − 1)Γ · AvgGradInner (6.16)

Similarly, the expected FOMAML gradient based on Eq. 6.10 can be rewritten as:

E[𝑆FOMAML] ≈ AvgGradOuter + (T − 1)Γ · AvgGradInner (6.17)
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Comparing Eq. 6.16 and 6.17 shows that FOMAML only sacrifices learning rate. The-
oretically, FOMAML may be converging slower than the original MAML, but if T and
Γ are sufficiently small, it does not have a big impact on the final result.

6.3.6 Related work in V2X applications

RL algorithms are increasingly used to optimize performance in V2X applications.
Some studies such as [156], [158] and [70] consider the multi-objective nature of V2X
applications, they either decompose the objectives into subproblems [156] or convert the
problem into a single-objective one through scalarization [158][70]. All of these studies
simplify the V2X environment in some regards: [89] and [85] consider only one sin-
gle objective; [162], [158] and [85] require complete information to centrally solve the
optimization problem, but in a dynamic environment, acquiring enough information for
a centralized approach is often not feasible or violating user’s privacy; [104] and [156]
consider only system objectives, not user objectives, and it is assumed that users do not
make offloading and resource allocation decisions – this assumption may not apply to
the highly individual and customized environment of ITS, where even today, vehicle
and mobile users are participating in offloading and resource allocation decisions in the
network, motivated only by their individual objectives. References [17], [153], [150]
and [70] assume all users are cooperative with common objectives, and if users have
multiple objectives, the modeling complexity will increase significantly.

Other approaches to solving MOPs extend equilibria concepts to multi-objective set-
tings [69, 100, 114, 116]. They all assume some degree of cooperation and communi-
cation between agents; they therefore differ from the competitive environment setup of
this thesis where agents do not share private information. Reference [120] assumes a
stationary environment, which is different from the multi-state MDP and dynamic en-
vironment setup of this thesis. Reference [26] assumes complete information that is
different from the partial information assumption. Other approaches try to find discrete
solutions on a Pareto frontier in stationary environments through objective selection
[55] or decomposition [83, 137, 149]. However, in a dynamic environment, they do
not meet the challenge of huge state and action space, unknown state distributions, and
MDP with continuing tasks.
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6.4 Problem formulation

The auction formulation below is the same as in Sec.5.3. Notations are in Table 6.2.
The difference to the original formulation is in the objectives definition, which will be
introduced afterwards.

Let 𝑀 be the set of vehicles (bidders) and 𝐾 the set of commodities (service types), each
type with, at time 𝑡, a total of 𝑛𝑡

𝑘
available service slots in computing sites. Bidder 𝑚 has

an initial wealth of 𝐵0
𝑚. Its demand for each service type 𝑘 ∈ 𝐾 at time 𝑡 is represented

by a bid denoted 𝑖𝑡
𝑘
∈ 𝐼.

From its bidding strategy 𝜋𝑚, bidder 𝑚 draws its actions 𝛼𝑡𝑚 = {𝛼𝑡
𝑚,𝑘
∈ {0, 1}} and

b𝑡𝑚 = {𝑏𝑡
𝑚,𝑘
∈ R+} for each service type. 𝛼 is the vector of backoff decisions, b is the

vector of bidding prices. More specifically, bidder 𝑚’s options for each bid are: 1) back
off (𝛼𝑡

𝑚,𝑘
= 0) with a backoff cost 𝑞𝑡

𝑚,𝑘
, or 2) bid (𝛼𝑡

𝑚,𝑘
= 1) with price 𝑏𝑡

𝑚,𝑘
. To avoid

overbidding, at any time 𝑡,
∑
𝑘 𝛼

𝑡
𝑚,𝑘
𝑏𝑡
𝑚,𝑘
≤ 𝐵𝑡𝑚.

From bidder 𝑚’s perspective, the competing bidders (denoted −𝑚) draw their actions
from a joint strategy distribution 𝜋𝑡−𝑚 that is an unknown function of (p1, · · · , p𝑡−1),
where p𝑡 ∈ R|𝐾 |+ is the vector of final prices at the end of time 𝑡. All bidders get the
new p𝑡 on all commodities as feedback from the auctioneer. If bidder 𝑚 wins its bid 𝑖𝑡

𝑘

indicated by bidding outcome 𝑧𝑡
𝑚,𝑘

= 1, it pays 𝑝𝑡
𝑘

to the auctioneer. If it loses (𝑧𝑡
𝑚,𝑘

= 0),
it pays 0 to the auctioneer but has a cost associated with losing the bid, denoted by 𝑐𝑡

𝑚,𝑘
.

If rebidding is permitted and 𝑖𝑡
𝑘

has not reached its deadline, 𝑚 repeats the decision-
making process in 𝑡 + 1. If 𝑖𝑡

𝑘
passes the deadline before it is admitted, it is viewed as a

lost bid with cost 𝑐𝑡
𝑚,𝑘

.

The auction repeats for T rounds, in every auction round, bidder 𝑚’s utility (Sec. 2.2.3)
is 𝑢𝑡𝑚 (𝛼𝑡𝑚, b𝑡𝑚, p𝑡 , z𝑡𝑚, c𝑡𝑚, q𝑡𝑚), the utility is added to the wealth pool: 𝐵𝑡+1𝑚 = 𝐵𝑡𝑚 + 𝑢𝑡𝑚. If
𝐵𝑡+1𝑚 ≤ 0, bidder 𝑚 loses all the unfinished bids with cost 𝑐𝑡

𝑚,𝑘
and is reset.

Next, we formulate the problem with multiple objectives 𝑜 ∈ 𝑂. Bidder 𝑚 receives a
reward vector r𝑡𝑚 ∈ R|𝑂 | in random intervals from its own observation and the feedback
signals from the auctioneer for its achievement of these objectives. More details will
be provided in the next section. Each bidder’s preference vector over the objectives is
W𝑡

𝑚 ∈ R|𝑂 |. Bidder preferences can change over time. In real life, changes in preference
can be driven by long-term shifts in societal, legal and personal attitudes, or short-
term private prioritization, etc. The bidder’s goal is to maximize expected return J𝑚 =
1
T

∑T
𝑡=1(W𝑡

𝑚)𝑇 · r𝑡𝑚,T→∞, where W𝑡
𝑚 is time-variant and unknown a priori.
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Table 6.2: MOP problem symbol definition

Sym Description Sym Description

𝑘 ∈ 𝐾 commodity type 𝑛𝑘 𝑘’s availability
𝑖 ∈ 𝐼 bid/request 𝑚 ∈ 𝑀 bidder
𝐵 budget 𝑣 valuation
𝛼 backoff decision 𝑏 bidding price
𝑐 cost of losing the bid 𝑞 backoff cost
𝑝 payment 𝑧 bidding outcome
𝑢 immediate utility 𝑈 cumulated utility
𝑟 reward W preference vector

𝑜 ∈ 𝑂 objective 𝜋 bidding strategy

Typical RL techniques learn to maximize reward with a constant preference vector over
the multiple objectives. This is essentially one single point on the Pareto frontier of the
MOP. The proposed approach in Sec. 6.5 finds the shape of the Pareto frontier, befitting
the V2X environment where vehicles have time-variant preference vectors W𝑡

𝑚 that is
unknown a priori.

In the following Sec. 6.4.1, the author builds a multi-agent system to simulate the auc-
tion mechanism and bidders with multiple objectives.

6.4.1 Modified second-price auction mechanism

Utility function is a generalization of the original definitions in Sec. 4.4.1 and 5.4,
specifically of Eq. 5.1. For simplicity, the notation 𝑡 is omitted in this section.

In each auction round, bidder 𝑚 has objective 𝑜1: maximize immediate auction utility
𝑟
𝑜1
𝑚 = 𝑢𝑚. Objective 𝑜1 is broken down into three sub-objectives. 1) 𝑜1−1: maximize

payoff 𝑟 (𝑘,𝑜1−1)
𝑚 = 𝛼𝑚,𝑘 · 𝑧𝑚,𝑘 · (𝑣𝑚,𝑘 − 𝑏∗𝑘 ). 2) 𝑜1−2: minimize the chance of being

rejected by the auctioneer. The cost of bidding and then losing the bid is 𝑟 (𝑘,𝑜1−2)
𝑚 =

−𝛼𝑚,𝑘 · (1 − 𝑧𝑚,𝑘 ) · 𝑐𝑚,𝑘 . 3) 𝑜1−3: minimize backoff time. If backed off, 𝑚 has cost
𝑟
(𝑘,𝑜3)
𝑚 = −(1 − 𝛼𝑚,𝑘 ) · 𝑞𝑚,𝑘 .

𝑢𝑚,𝑘 =𝑟
(𝑘,𝑜1−1)
𝑚 +𝑊𝑜1−2

𝑚 𝑟
(𝑘,𝑜1−2)
𝑚 +𝑊𝑜1−3

𝑚 𝑟
(𝑘,𝑜1−3)
𝑚

𝑟𝑜1
𝑚 =𝑢𝑚 =

∑︁
𝑘∈𝐼

𝑢𝑚,𝑘 (6.18)
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The cost terms 𝑐𝑚,𝑘 and 𝑞𝑚,𝑘 with preferences 𝑊𝑜1−2
𝑚 and 𝑊𝑜1−3

𝑚 quantify tradeoff be-
tween long backoff time and risky bidding. In this implementation (Sec. 6.6), 𝑐𝑚,𝑘 =

𝑣𝑚,𝑘 , 𝑞𝑚,𝑘 is reciprocal to the time-to-deadline, and non-negative weights𝑊𝑜1−2
𝑚 +𝑊𝑜1−3

𝑚 =

1. Sec. 6.6.3 shows the proposed algorithm is not sensitive to changes in the hyperpa-
rameters 𝑣𝑚,𝑘 and 𝑞𝑚,𝑘 .

Bidder 𝑚’s long-term individual objective 𝑜2 is to minimize 𝑟𝑜2
𝑚 = OFR𝑚 ∈ (0, 1) at

long intervals with preference 𝑊𝑜2
𝑚 . Long-term objectives are only available to 𝑚 at

the end of each interval. The short-term system objective 𝑜3 of maximizing resource
utilization 𝑟𝑜3

𝑚 = 𝛽 and the long-term system objective 𝑜4 of maximizing fairness 𝑟𝑜4
𝑚 =

Fairness are the same for all bidders and broadcasted to all. Bidders do not have to
respect the system objectives; their preferences are reflected in the values𝑊𝑜3

𝑚 and𝑊𝑜4
𝑚 .

A preference of 0 means the bidder does not consider system objectives at all. The
definitions of OFR, 𝛽 and Fairness for this implementation are in Sec. 6.6.1.

The reward for objective achievement in each time step is:

𝑟𝑒,𝑚 = 𝑊𝑜1
𝑚 · 𝑟𝑜1

𝑚 +𝑊𝑜2
𝑚 · 𝑟𝑜2

𝑚 +𝑊
𝑜3
𝑚 · 𝑟𝑜3

𝑚 +𝑊𝑜4
𝑚 · 𝑟𝑜4

𝑚 (6.19)

The notation 𝑟𝑒,𝑚 is for the scalarized extrinsic reward (Sec. 6.5.1) specific for the bidder
𝑚 with preference vector W𝑡

𝑚 at time 𝑡. We let𝑊𝑜1
𝑚 +𝑊𝑜3

𝑚 = 1 to balance the short-term
objectives, and𝑊𝑜2

𝑚 +𝑊𝑜4
𝑚 = 1 to balance the long-term objectives.

Next, the author proposes an algorithm that learns to maximize 𝑟𝑒,𝑚 over time, with
changing W𝑡

𝑚.

6.5 Proposed solution

To solve the long-term reward maximization problem, the author proposes MOODY:
Multi-Objective Optimization through Distributed reinforcement learning with delaYed
reward.

In this chapter, the author defines six different short and long term, individual and sys-
tem objectives, and periodically samples objective weights for each agent to simulate
their changing choice and preference of objectives. If the sampled preference weight
is 0, the agent does not consider that objective. The technique comprises two parts:
the offline training cycle and the online inference/retrain cycles. In the offline training
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Figure 6.1: Two-phase training

cycle, the approach is further split into two phases: the inner-loop training phase and
the outer-loop training phase. In the inner-loop training phase, a local agent trains with
a uniform randomly sampled, constant preference vector and tries to find an optimal
solution on its Pareto frontier for the given preference vector — with |𝑀 | number of
agents, the inner-loop phase finds |𝑀 | non-dominated solutions on the Pareto frontier.
In the outer-loop training phase, one coordinator agent combines all results from inner-
loop trainings. The inner-loop and outer-loop training happens alternatively (Fig. 6.1).
At the end of the training cycle, we have an initial generic model that, given any new
preference vector, can infer an action which leads to a set of rewards that is close to
the Pareto frontier. Authors of [52] demonstrate that such a two-phase training method
creates a initial generic MOP model that can be easily retrained online for a different
task (few-shot learning).

Although reference [52] provides a framework for two-phase multi-task training, it does
not suggest a choice of the model, as it does not consider any specific problem or appli-
cation; due to the complexity of the approach, real-life implementation of their method
in a dynamic environment such as V2X is problematic.

In this thesis, the author makes several improvements to the framework: 1) the au-
thor designs a specific inner-loop algorithm for the multi-agent application scenario, it
outperforms classic RL algorithms such as actor-critic in dynamic environments with
sparse and delayed rewards. 2) In the outer loop, the author implements the parallel
stochastic gradient ascent method [84] using fully distributed, asynchronous federated
learning to increase learning efficiency. 3) The author proposes an adaptive online re-
training mechanism that continuously predicts long-term reward; a decreasing predic-
tion accuracy triggers a short, few-shot online retraining cycle. The author therefore
extends the framework proposed in [52] that only retrains the model at the beginning of
test environment deployment. The proposed approach in this thesis is more adaptive to
changing environment and objectives.
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Table 6.3: MOP solution symbol definition

Sym Description Sym Description

𝜃 model parameters Γ learning rate
𝛾 discount rate 𝛿 TD error
𝐴 action 𝑆 state
𝑉 state value 𝜋 target policy
J scalarized return 𝜏 inner-loop training shots
𝑟𝑒 extrinsic reward 𝑟𝑖 intrinsic reward
𝜁 best response strategy 𝜓 behavior strategy
𝜂 best response weight 𝐿 𝑓 state prediction loss
𝜙 state features 𝜖 credit weight for actions

The two-phase training cycle takes place offline with gradient-sharing between the
generic model and the local, single models. Otherwise, observation data, hyperparam-
eters for initialization and objective preferences remain private to the local agents with
the single models. Once the training cycle is over, the simulation environment is reset to
have all local agents initialized with the extensively trained generic model. Then we test
them for online inference and retraining without further parameter sharing, in a realistic
test environment.

Section 6.5.1 introduces the RL algorithm for the dynamic environment in the inner
loop. Section 6.5.2 describes the asynchronous federated learning approach in the outer-
loop offline training phase. Section 6.5.3 introduces the proposed adaptive retraining
method. Notations are in Table 6.3.

6.5.1 RL in the inner loop

In the inner loop, each bidder (local agent) learns autonomously to maximize its reward.
The inner-loop algorithm is based on MALFOY (Sec. 5.4), the author changes it to suit
the multi-objective problem, such that it can now learn to optimize multiple short and
long-term objectives with a preference vector W𝑡

𝑚 ∈ (0, 1) |𝑂 | that changes over time (in
the following simulation, it is drawn from a uniform distribution).

The local, single models have the same structure as in Sec. 5.4 (see Fig. 6.2): 1) a
fictitious self-play (FSP) module [60], including an RL with actor-critic and an SL, 2) a
curiosity-learning [113] module, and 3) a credit-assignment module.

In the beginning of every inner-loop offline training phase, all local agents are ini-
tialized with the same generic model that is the outcome of the previous outer-loop
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Figure 6.2: Inner loop RL

phase, with the parameters 𝜃0; during inner-loop training, local agent 𝑚 trains its own
local, single model and does not share parameters or private observations with other
agents. At each time step 𝑡, it receives extrinsic reward 𝑟 𝑡𝑒,𝑚, including the long-term
rewards if they are available. 𝑚’s curiosity module predicts next state with prediction
loss 𝐿𝑡

𝑓 𝑚
, and the credit assignment module outputs attention vector 𝜖 𝑡𝑚. The resulting

intrinsic reward is 𝑟 𝑡
𝑖,𝑚

= 𝜖 𝑡𝑚𝑟
𝑡
𝑒,𝑚 + 𝐿𝑡𝑓 𝑚, 𝑡 ∈ {1, · · · , 𝜏}. The expected return is now

J𝑚 = 1
T

∑T
𝑡=1 𝑟

𝑡
𝑖,𝑚
,T→ ∞. In trying to maximize J𝑚, the local agent encourages 1) ac-

tions that bring higher extrinsic reward, 2) exploration in less visited states with poor
prediction accuracy (high 𝐿𝑡

𝑓 𝑚
), and 3) actions that contribute more to the accurate pre-

diction of long-term rewards (high 𝜖 𝑡𝑚) . The update rule for 𝑚’s individual parameters
in the inner-loop offline training phase is [138]:{
𝜃𝑡𝑚 ← 𝜃𝑡−1

𝑚 + Γ𝛿𝑡−1
𝑚 ∇𝜃𝑡−1

𝑚
ln 𝜋(𝐴|𝜙𝑡−1

𝑚 , 𝜃𝑡−1
𝑚 )

𝜃0
𝑚 = 𝜃0,∀𝑡 ∈ {1, . . . , 𝜏}

where 𝛿𝑡−1
𝑚 = r𝑡−1

𝑖,𝑚
+ 𝛾𝑚𝑉̂ (𝜙𝑡𝑚, 𝜃𝑡−1

𝑚 ) − 𝑉 (𝜙𝑡−1
𝑚 , 𝜃𝑡−1

𝑚 ) is the TD error, Γ𝑚 is the learning
rate, and 𝛾𝑚 is the discount rate. In this thesis, action 𝐴 = (𝛼𝑡𝑚, b𝑡𝑚). At the end of 𝜏
shots, the local gradients are passed to the coordinator agent before the next outer-loop
phase. The inner-loop algorithm is in Alg. 10.
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Algorithm 10 Offline innerloop training of local agent
1: Initialize 𝑇 = 0, 𝐵0

𝑚, v𝑚, Γ𝑚, 𝛾𝑚, 𝜂𝑚, 𝜏.
2: while true do
3: 𝑡 ← 𝑇 + 1, receive new preferences W𝑡

𝑚 if available.
4: Receive 𝜃0 from coordinator agent, initialize 𝜃𝑚 = 𝜃0.
5: while 𝑡 ≤ 𝑇 + 𝜏 do
6: Observe and remember:
7: Get new service request and add to pipeline at time 𝑡.
8: Observe environment variables and past payments.
9: Retrieve details of all requests in current pipeline.

10: Create state vector 𝑆𝑡𝑚 and add to memory.
11: Infer 𝜙𝑡𝑚, 𝐿

𝑡
𝑓 𝑚

from curiosity.
12: Infer 𝜖 𝑡𝑚 from credit assignment.
13: With 𝜖 𝑡𝑚, update backwards past 𝑟𝑖,𝑚’s in memory.
14: Take action:
15: Infer actions 𝛼𝑡𝑚,b𝑡𝑚 from actor-critic RL with FSP.
16: Collect all bids with backoff decision 𝛼 = 0:
17: Calculate backoff cost q𝑡𝑚, update 𝑟 𝑡𝑒,𝑚 in memory.
18: Add those before deadline to pipeline at 𝑡 + 1.
19: Drop the rest as lost bids with penalty c𝑡𝑚.
20: Submit bids with 𝛼 = 1, with prices b𝑡𝑚.
21: Collect rewards:
22: Observe bidding results z𝑡𝑚 and payments p𝑡 .
23: Collect all lost bids with 𝑧 = 0:
24: Calculate penalty c𝑡𝑚, update 𝑟 𝑡𝑒,𝑚 in memory.
25: Collect requests before deadline and can rebid:
26: Add those to pipeline at 𝑡 + 1; drop the rest.
27: Collect all won bids with 𝑧 = 1:
28: Calculate auction utility, update 𝑟 𝑡𝑒,𝑚 in memory.
29: Update 𝐵𝑡𝑚.
30: Get other ext. rewards, update 𝑟 𝑡𝑒,𝑚 in memory.
31: Calculate and add 𝑟 𝑡

𝑖,𝑚
in memory.

32: Update learning model:
33: Train actor-critic RL with FSP and curiosity.
34: Train credit assignment if long-term reward available.
35: Update 𝜃𝑚 with gradient ∇𝜃𝑡𝑚J𝑚 = 𝛿𝑚∇𝜃𝑚 ln 𝜋𝑚.
36: 𝑡 ← 𝑡 + 1
37: end while
38: Pass ∇𝜃𝜏𝑚J𝑚 to coordinator agent.
39: 𝑇 ← 𝑇 + 𝜏.
40: end while
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6.5.2 Federated learning in the outer loop

While independent local agents with the local models learn for 𝜏 shots, the coordinator
agent with the generic model waits with the original parameters 𝜃0, until the next update
in the outer-loop phase (Fig.6.1). In the outer-loop phase, the goal of the coordinator
agent is to maximize all local agents’ sum of returns: J =

∑
𝑚 J𝑚 (𝜃𝜏𝑚). After 𝜏 shots,

at the end of the previous inner-loop phase, the generic model’s parameters are 𝜃0, and
it uses the local models’ gradients to update its parameters: 𝜃0′ = 𝜃0 + Γ∇𝜃0J . Since
each individually updated parameter 𝜃𝑡𝑚,∀𝑡 ∈ {1, . . . , 𝜏} is a function of 𝜃0, using chain
rule, the generic model’s parameter update is:

𝜃0′ = 𝜃0 +∑
𝑚

(
∇𝜃𝜏𝑚J𝑚 (𝜃𝜏𝑚)

𝜏−1∏
𝑡=1

(
I − Γ𝑚∇2

𝜃𝑡𝑚
J𝑚 (𝜃𝑡𝑚)

) )
where I is the identity matrix. Although it is computationally expensive, it can be
approximated by a first-order derivative with the assumption that both Γ and 𝜏 are small
[52, 103]. 𝜃0′ = 𝜃0 +∑𝑚 Γ𝛿𝜏𝑚∇𝜃𝜏𝑚 ln 𝜋𝜏𝑚 (𝜃𝜏𝑚) is the simplified update rule. The setup in
this thesis meets the assumptions with Γ = 0.1 and 𝜏 = 3.

The author uses asynchronous federated learning to implement the parallel stochastic
gradient ascent method (Sec. 6.7). It does not require all local models to be trained
and updated at the same time: each model is trained based on the availability of new
local data. Whenever the local model finishes training for 𝜏 shots, the local agent trans-
mits the gradients to the coordinator agent and gets updated model parameters from it.
This reduces data rate needed for gradient and parameter communication and further
increases learning efficiency.

6.5.3 Adaptive online retraining

After the offline training, and once the model is deployed in a real-world setting, the
credit-assignment module continuously predicts rewards. The current reward prediction
accuracy is compared to the moving average of past 𝑁 prediction accuracies, if it falls
below the past average, a short 𝑛-shot retraining cycle is triggered. In the simulation in
this chapter, the author uses 𝑁 = 10 and 𝑛 = 1. The algorithm is described in Alg. 11.
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Algorithm 11 Online adaptive retraining of local agent
1: Initialize 𝑡 = 0, 𝐵0

𝑚, v𝑚, Γ𝑚, 𝛾𝑚, 𝜂𝑚, 𝜏, and moving average period 𝑁 of credit
assignment’s prediction loss.

2: Initialize with 𝜃 from coordinator agent.
3: while true do
4: 𝑡 ← 𝑡 + 1, receive new preferences W𝑡

𝑚 if available.
5: Observe and remember.
6: Take action.
7: Collect rewards.
8: if long-term reward is available then
9: Calculate and store prediction loss of credit assignment.

10: if current prediction loss ¿ past 𝑁 average then
11: Update learning model.
12: end if
13: end if
14: end while

Simulation results in Sec. 6.6.2 show the effectiveness of this adaptive online retraining
approach. Sec. 6.7 mentions practical considerations in online retraining.

6.6 Evaluation

6.6.1 Simulation setup

The evaluation is done on both cycles: the offline two-phase training, and the online
testing / retraining. The coordinator agent with the generic model is only present in
the training cycle, it collects gradients from all local agents and learns a generic model.
Once deployed in the test environment, all agents are initialized with the same generic
model, but then diverge from it by adapting to the environment through online retrain-
ing. All agents are independent bidders with private observations and model parameters
that are not shared with any other agent. In both cycles, the author considers a V2X
system as defined in Sec. 3.2: vehicles are bidders who request networking services
(commodities); road-side unit or base station acts as auctioneer that controls admission
of service requests and assigns them to different computing sites (commodity sellers),
which own resources and execute services.

The algorithm is trained and evaluated in a similar environment as described in Table 3.1
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of Chapter 3, with the only difference that there are now multiple reward signals from
the auctioneer; also, the test environment has only half of the resource capacity as in the
previous chapter, creating a much higher contention situation.

To evaluate the long-term multi-objective learning algorithm, the performance metrics
in Sec. 3.4 is used to monitor how the bidders perform on the following objectives:

• Maximize individual short-term (immediate) auction utility: as defined in Eq. 6.18.

• Minimize system short-term resource utilization variation: load-balancing effect
is achieved by encouraging bidding at time of low system utilization [140]. Short-
term resource utilization is the ratio of resources effectively utilized at computing
sites at the time of ACA admission.

• Minimize long-term individual offloading failure rate (OFR): average ratio of of-
floading requests rejected by ACA during admission control. In fact, OFR should
include all failed service executions at computing sites until deadline, rather than
only those rejected by the ACA. However, this means feedback of bidding result
to the bidders is delayed, and the length of delay is specific to each service re-
quest. As a simplification, the author uses rejection rate as a proxy to OFR. This
is justified by the fact that the system responsiveness (i.e., the ratio of successfully
executed requests to all accepted requests) is ca. 99%.

• Maximize long-term system fairness: the author uses J-index [68] of payments

over the last T time steps: Fairness =
(∑𝑚

∑𝑡
𝑡−T 𝑝

𝑡
𝑚)2

|𝑀 |∑𝑚 (
∑
𝑡−T 𝑡 𝑝

𝑡
𝑚)2

,∀𝑚 ∈ 𝑀 .

The two short-term rewards on auction utility and resource utilization are available im-
mediately after the auction round. The two long-term rewards on offloading failure rate
(OFR) and fairness are available only after a 2000-time-step delay.

The same simulator is used for both offline training and online testing. However, there
are significant differences to the environment setups. In the training environment, be-
sides bidders and the auctioneer, there is a coordinator agent that is only active during
the outer-loop training phase to learn parameters for a generic model (Sec. 6.5.2). The
generic model is incrementally updated and used to initialize all local agents at the
beginning of each inner-loop training phase. During every inner-loop, each bidder ran-
domly selects a preference vector for the objectives and acts independently.

In the test environment, there is no coordinator agent, the bidders are initialized with
the generic MOODY model in the beginning of the simulation, and they uniform ran-
domly select a preference vector with values in [0, 1] whenever they get in range of the
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(a) Average RL reward of all bidders increases
over time.

(b) Average loss in credit assignment module
decreases over time.

(c) Average loss in curiosity module’s forward
submodule decreases over time.

(d) Average loss in curiosity module’s inverse
submodule decreases over time.

Figure 6.3: Training results

RSU, which depends on the vehicle arrival rate, the speed and the traffic light phases
of the simulator (Table 3.1). Throughout evaluation, their credit assignment modules
continuously predict rewards and trigger a short, adaptive retraining cycle according
to Sec. 6.5.3. Besides these setup differences, the test environment also differs signifi-
cantly from the training environment in resource capacity, vehicle arrival rate and speed,
and traffic light phases. Table 3.1 summarizes the differences.

6.6.2 Realistic setup results

Fig. 6.3 shows how all modules of MOODY converge to a local optimum in the two-
phase training cycle. In the low-contention setup of the training environment, we reach
close to optimal long-term objectives (i.e., OFR close to 0 and fairness close to 1).
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In the following test/retrain cycles, the author compares the performance of 1) MOODY
bidders initialized with the generic model for multiple objectives, 2) MALFOY bidders
with the state-of-the-art single-objective algorithm from [139], pretrained independently
with a scalarized objective, 3) benchmark AC bidders with only the actor-critic module.
The tests are run separately, each test has only one algorithm for all bidders in the
simulation and run multiple times. The confidence intervals are reported across all
runs. In all tests, bidders’ preference vectors change randomly over time, drawn from a
uniform distribution.

During testing, each MOODY bidder decides independently whether to trigger a retrain-
ing cycle. In this simulation, once retraining is triggered, the modules learn with 1 shot
in each retraining cycle. The MALFOY bidders are retrained for a fixed 10k time steps
(i.e., simulated milliseconds) at the beginning of the deployment in the test environment.
The AC bidders are not retrained.

Fig. 6.4a and 6.4b compare performance on the achievement of system long-term fair-
ness and individual long-term OFR. In fact, in all objectives, MOODY outperforms
other bidders: MOODY’s fairness score is close to 1, compared to MALFOY’s 0.89 and
AC’s 0.86; MOODY achieves 46% higher utility than MALFOY and 77% higher than
AC; MOODY also achieves 16-30% lower offloading failure rate with 5-14% less sys-
tem utilization. Although the average utilizations with MOODY and MALFOY bidders
are similar, MOODY lowers load variation by 19% compared to MALFOY.

Fig. 6.4c shows an example of how retraining contributes to the decrease in prediction
loss for one of the bidders: the retraining cycles are triggered by low reward prediction
accuracy. The vertical gray lines are where retraining cycles occur. The bidder triggers a
one-shot retraining cycle whenever the prediction accuracy of rewards reduces to below
the moving average of the past 10 prediction accuracies. As shown in Sec. 6.4c, the
retraining cycles are frequently, almost continuously triggered in the beginning of the
deployment in test environment. Overall, the MOODY bidders spend 9-15% of time in
retraining cycles, with an average of 12%.

Fig. 6.4d shows correlation between achievements of the two long-term objectives: im-
provement in fairness is correlated to reduction in failure rate. In fact, we also see such
correlation between other objectives. The reward signals on the system objectives help
bidders learn this correlation, and by considering system objectives, the bidders effec-
tively earn higher reward on their individual objectives, at the same time the auctioneer
and commodity sellers achieve their objectives through incentivization.

All of the evaluations in Fig. 6.4 are done with the same type of algorithms in the test
environment (i.e., “homogeneous”). However, in real life, drivers may run different
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(a) MOODY reduces long-term individual
OFR by 16% compared to MALFOY, 30%
compared to AC.

(b) MOODY achieves average fairness of
0.92, compared to MALFOY: 0.89 and AC:
0.86.

(c) MOODY bidders’ retrain cycles are 12%
of the time (gray lines are retrain cycles).

(d) Achievement of higher system fairness is
correlated to the achievement of lower indi-
vidual OFR.

Figure 6.4: Objective achievement in test and retraining cycles

algorithms (i.e., “heterogeneous”). Fig. 6.5 shows the cumulative distribution function
(CDF) of each bidder’s OFR performance, when the two algorithms compete in the
same environment.

The blue solid line labeled “MOODY” shows the performance of MOODY bidders
in either the homogeneous (all-MOODY) or the heterogeneous environments with dif-
ferent percentage of MOODY bidders–the average performance among vehicles with
MOODY algorithm in all environments are hardly different. In other words, they are
unimpacted by the existence of other algorithms. Hence, to simplify the figure, we
show their performance in one single curve. The dotted lines show performance in en-
vironments with different mix of MOODY and MALFOY bidders. The rightmost line
shows average performance of MALFOY bidders in a homogeneous, all-MALFOY en-
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Figure 6.5: In a heterogeneous test environment with competing algorithms, MALFOY
performance improves with MOODY unimpacted. System fairness also improves.

vironment, which has the worst performance of all environments. Interestingly, in all
of the heterogeneous environments, MALFOY bidders’ OFR performance improved,
compared to the all-MALFOY environment, reducing the difference to MOODY bid-
ders by 50%. Overall system fairness also improved significantly. These improvements
do not depend on the percentage of MOODY bidders in the environment, indicating that
even the presence of very few MOODY bidders can enhance overall performance.

To summarize: the author tests MOODY’s transfer learning capability by evaluating its
performance in more dynamic test environments and allowing the bidders to change
their objective preferences. Evaluation results show that 1) bidders initialized with
MOODY and adaptively retrained outperform bidders with other state-of-the-art learn-
ing algorithms in all objectives; 2) the MOODY bidders demonstrate good generaliza-
tion and transfer learning property, adapting to preference changes and dynamicity in
the environment; 3) the presence of MOODY bidders in the environment improves the
performance of bidders with other algorithms and system overall fairness.

6.6.3 Sensitivity analysis

Similar to the sensitivity analysis we did with MALFOY in Fig. 5.8: the same analysis
is done with MOODY. Results in Fig. 6.6 show that MOODY is a robust algorithm
that is insensitive to hyperparameter changes. Both OFR and fairness performance are
insensitive to changes to bid valuation 𝑣𝑚,𝑘 and backoff cost 𝑞𝑚,𝑘 .
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(a) Individual OFR (b) System fairnness

Figure 6.6: Sensitivity analysis shows target achievement is not sensitive to changes in
hyperparameters such as bid value and backoff cost.

6.7 Practicality considerations

To speed up the training process, the author trains each module asynchronously in fed-
erated learning (Sec. 6.5.2). Before each inner loop begins, the local agent is initialized
with generic model parameters. Then, the agent joins the auction whenever it receives a
request. Since each local agent receives requests randomly and makes independent deci-
sions, they finish the inner-loop training phase at different time steps. Furthermore, each
module trains at different time intervals, depending on their input and batch size. In this
chapter, whenever the coordinator agent receives new gradients from any local agent for
any of the modules, it trains the module and updates the parameters. The asynchronous
training approach reduces maximum data rate for gradient transmission and training
time: the time for training once (i.e., one-shot) is the maximum duration among the
modules 1) RL with credit assignment (RL+credit), 2) supervised learning (supervised)
and 3) curiosity learning (curiosity). Without the asynchronous training, one-shot train-
ing time would be the sum of all modules. More importantly, asynchronous training
reduces the online retraining time after deployment.

After deployment, bidders decide independently when to retrain the model to adapt
to new objectives and environments (Sec. 6.5.3). The retraining is easily separated
from the main program that infers bidding decisions in runtime (i.e., out-of-critical-
path). With retraining off the critical path, we can ensure fast decision-making even
with retraining.
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Table 6.4: Performance test

Modules Training Inference

Nr.calls Per call
(millisec)

Nr.calls
Per call

(millisec)

RL+credit 108 5484 431 29
supervised 108 112 431 0
curiosity 197 3092 431 0
data prep 1275 10 431 29

Time per
shot(tested
with Nano)

max. of
async. trained

modules
+data prep:

5494
sum of

all modules
+ data prep:

58

Time per
shot(estim.
AGX Orin)

1/10𝑡ℎ
of Nano: 550 1/10𝑡ℎ

of Nano: 6

6.7.1 Test on a single-board computer

The author tests real-life training and inference speed of the proposed algorithm on an
Nvidia Jetson Nano single-board computer with GPU. This represents the OBU of a ve-
hicle, hence, a bidder. The author runs the training and inference repeatedly and records
the average time for one shot. The results are shown in Table 6.4. As mentioned previ-
ously, time for one-shot training is the maximum time among all modules; time for each
inference is the sum of all modules, plus time for data preparation. The author provides
the actually measured performance on Nano and an estimated performance on the most
up-to-date AGX Orin. Although the theoretical performance difference between the
two is more than 100 times, multiple benchmark tests on various AI applications show
a more realistic performance difference of approximately 10 times (see Nvidia website
for Jetson modules technical specifications and benchmarks). The author therefore esti-
mates that with AGX Orin, training one shot takes ca. 550ms, and every inference takes
ca. 6ms. Speed can be further increased through fewer neural network layers and num-
ber of nodes, smaller batch size, shorter input length, etc. The impact on performance
needs to be analyzed in detail in future work.

These results show that despite the complexity of the proposed solution, bidders can
perform runtime inference, on current hardware, with a reaction time of 6ms. V2X
applications (e.g., segmentation, motion planning) typically run on the time scale of
seconds, an inference speed in milliseconds makes the proposed algorithm a good can-
didate for real-life deployment. The retraining cycle is longer, for which the author
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believes that out-of-critical-path few-shot retraining holds great promise. Even without
that optimization, the retraining cycle lasts only a few seconds, well below the frequency
of changes in a V2X environment that may trigger retraining.

6.8 Conclusion of the chapter

The author combines offline federated learning and online few-shot learning to solve an
MOP in a dynamic environment. Through extensive offline training, we get an optimal
initial model that learns the best initialization point. From this point, it can quickly find
a solution on the Pareto frontier, even without retraining, when the agent’s objectives
change. Only in a significantly different environment, the author allows each bidding
agent adaptive, online, few-shot retraining to customize its model, needing very few
data points.

The author shows empirically that the new multi-objective algorithm outperforms the
benchmark algorithms in all objectives. Furthermore, the proposed algorithm increases
bottom-line resource efficiency, such that other algorithms in the environment also ben-
efit from improved offloading success rate and fairness.

The proposed algorithm can be easily modularized, each module trained separately and
asynchronously. Coupled with the adaptive few-shot online training method, the algo-
rithm is a very good candidate for real-life deployment.

Simulation results show that bidders learn the correlation between different objectives.
In fact, multiple objectives in real-life are typically correlated to each other. There may
exist a hierarchy or network of objectives, and we should guide the learning process
with this knowledge of the objective structure in future work.
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Chapter 7

Conclusion of the thesis

7.1 A summary

The thesis studied the optimal choices agents can make in a distributed decision-making
scenario, using resource allocation in V2X as an example application. DRACO, the core
MARL+FSP short-term, single-objective algorithm, showed how the agents learned to
best trade off backoff time and bidding price; in the process, they managed to com-
pensate for disadvantages in initial parameterization. Further sensitivity analysis in the
subsequent chapters also showed the algorithm’s robustness in both individual and sys-
tem objective achievements, when various initial parameters changed, including initial
budget, bid valuation and backoff cost. As a result, the agents performed significantly
better in very different environments. The author showed that private and system objec-
tives could be aligned without sacrificing either user autonomy or system-wide resource
efficiency, despite the distributed design with limited information sharing.

Based on DRACO and with the help of 1) a feature extraction submodule for general-
ization, 2) an attention layer for long-term credit assignment and 3) a curiosity module
for sparse reward signals, the author developed MALFOY. Agents using this long-term,
single-objective algorithm behaved more aggressively and selfishly when competing
against other agents when the long-term goal was to maximize cumulated private pay-
off. However, this selfish behavior had a negative impact on overall social welfare. The
effect could be corrected when the service provider broadcasted system reward signals
to users, such as system fairness and resource utilization. In the subsequent chapter, the
author demonstrated that although users could choose to ignore system reward signals,
it was beneficial for users to utilize the signal to achieve their individual objectives.
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The results implied that by designing the appropriate system reward signals, the service
providers could incentivize users to willingly consider system objectives. Empirical
results showed that agents utilized these reward signals and had enhanced predictive
power as well as better alignment between objectives; MALFOY further improved per-
formance over DRACO.

In MOODY, the third proposed algorithm, the author combined offline federated learn-
ing and online few-shot learning to solve a long-term multi-objective problem in a dy-
namic environment. Through extensive offline training, the author got an optimal initial
model for solving different multi-objective decision-making problems; this initial model
found the best initialization point from where it could quickly find a local optimal on
the Pareto frontier, among the objectives of low offloading failure rate, high system
fairness, high short-term utility and high system resource utilization, even without re-
training when the agent’s objectives changed. Only once the environment had changed
significantly and the agent’s prediction accuracy of rewards decreased, the author al-
lowed each bidding agent few-shot online training to customize its model, needing very
few data points. The author showed empirically that the new multi-objective algorithm
outperformed the benchmark algorithms in all objectives.

The proposed solution combined various methods to improve different aspects of the al-
gorithm: 1) to balance between exploitation and exploration, the author let the algorithm
learn both the best response and the behavioral strategies through FSP, encouraged ex-
ploration of less visited states through the forward submodule of curiosity learning, and
used a replay buffer. 2) To further improve data efficiency, the author extracted features
from data of different time lengths, using a convolutional neural network, and guided
by the agent’s actions (i.e., supervised learning through the inverse module of curiosity
learning). 3) The breakdown of long-term objectives through the attentional network
gave the multiple objectives a structure; it also provided a way to predict delayed re-
wards and assess the need to retrain in runtime. An analysis of the modules showed that
the different modules worked together also asynchronously, and their positive effects
were compounded.

7.2 Conclusions

In this thesis, it was curious to see how a self-interested agent learned to game the
system to maximize its gain, using the very limited means available to it — the option
to back off, and the possibility to prioritize its tasks through a hypothetical bidding
price. Even as the author restricted the agent’s knowledge of the system, both in quantity
and in quality, increased environment dynamicity, introduced inequality at initialization,
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added multiple objectives and changing preferences over time, the learning algorithm
was remarkably robust.

All of the proposed algorithms generalized to very different, previously unseen envi-
ronments. Each user in the network had its own, constant-size model, and all shared
information for modeling was of constant size as well. The distributed nature meant
it was easily scalable to huge number of users without increased complexity. The pro-
posed final model could be modularized, each module could be trained separately and
asynchronously. Furthermore, the algorithm could assess the need to retrain and update
the model with only a few shots in runtime (adaptive online retraining). Therefore, the
proposed solution was applicable to a wide range of practical, distributed resource allo-
cation problems — it could learn in a dynamic and adversarial environment with no or
very limited a priori information, many autonomous users with private objectives and
many custom service requests, and it required little maintenance after deployment. The
author found such applications in e.g., telecommunications, energy, Internet of Things,
vehicular networks, cloud computing, etc.

7.3 Future works

There are many potential future topics following this work. In this thesis, the author
used a combinatorial single auction mechanism in which multiple bidders on the user
side interacted with a single auctioneer on the operating side. In a completely dis-
tributed, ad-hoc network, every user can offer its computation resources as a services
provider — a double auction mechanism between users, eliminating the need for a cen-
tral auctioneer, would provide more flexibility and efficiency for the resource allocation.
Previous studies such as [66, 124, 136] proposed double auction mechanisms and opti-
mization algorithms in various networking resource allocation applications. To extend
future work in this direction, the author needs to extend the application scenario, ana-
lyze the game theoretic properties of the proposed algorithm in a double auction, and
simulate a more complex interaction mechanism.

This thesis simulated agents’ preference of objectives with uniform randomly generated
weights, and scalarized the rewards with a linear objective function, with the assumption
that the individual objectives are independent from each other. There are two potential
improvements to this approach:1) the method for sampling preferences may impact the
approximation of the Pareto frontier and the performance of the initial model. Future
work should consider different sampling methods such as proposed in [123] and [75].
2) Simulation results showed that agents learned the correlation between different ob-
jectives. In fact, multiple objectives in real-life are typically correlated to each other.
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It can be beneficial to consider hierarchical objectives, for example, in hierarchical RL
(HRL), different value functions are learned at different temporal scales [19, 76].

Curriculum learning [21] can also improve the multi-objective algorithm’s performance
and generalization properties — if we let the algorithm start with learning one objective,
then we increase the number of objectives (i.e. “complexity”) gradually in the learning
process. Concretely, in future work, the author can first train the FSP module indepen-
dently with short-term rewards, then add the other modules and the long-term reward
signals incrementally.

Current work limited information sharing between agents, the setup befitted applications
with privacy requirements or sparse signaling; by allowing more information sharing
between the agents, or even sharing of experiences, the algorithms can be modified for
more cooperative scenarios such as robotics. Authors of [41] suggested the sharing of
experiences between similar agents: these agents shared some of the model parameters
(e.g. in the critic) but had individual states and actions.
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[45] Stéphane Durand and Bruno Gaujal. Complexity and optimality of the best response
algorithm in random potential games. In International Symposium on Algorithmic Game
Theory. Springer, 2016.

[46] Prajit K Dutta and Tapan Mitra. Maximum theorems for convex structures with an appli-
cation to the theory of optimal intertemporal allocation. Journal of Mathematical Eco-
nomics, 1989.

[47] Liran Einav, Chiara Farronato, Jonathan Levin, and Neel Sundaresan. Auctions versus

125



BIBLIOGRAPHY

posted prices in online markets. Journal of Political Economy, 2018.

[48] Joan Feigenbaum, Michael Schapira, and Scott Shenker. Distributed algorithmic mecha-
nism design. In Algorithmic Game Theory. Cambridge University Press, 2007.

[49] Michal Feldman, Hu Fu, Nick Gravin, and Brendan Lucier. Simultaneous auctions are
(almost) efficient. In ACM Symposium on Theory of Computing, 2013.

[50] Donald F Ferguson, Christos Nikolaou, Jakka Sairamesh, and Yechiam Yemini. Eco-
nomic models for allocating resources in computer systems. Market-based control: a
paradigm for distributed resource allocation, 1996.

[51] Johan Ferret, Raphael Marinier, Matthieu Geist, and Olivier Pietquin. Self-attentional
credit assignment for transfer in reinforcement learning. In IJCAI, 2020.

[52] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, 2017.

[53] Bidding game source code. https://github.com/DRACOsource/
biddinggame, 2021.

[54] Saul Gass and Thomas Saaty. The computational algorithm for the parametric objective
function. Naval research logistics quarterly, 2(1-2):39–45, 1955.

[55] Hend Gedawy, Karim Habak, Khaled A. Harras, and Mounir Hamdi. Ramos: A resource-
aware multi-objective system for edge computing. IEEE Transactions on Mobile Com-
puting, 2021.

[56] Yacov Haimes. On a bicriterion formulation of the problems of integrated system iden-
tification and system optimization. IEEE transactions on systems, man, and cybernetics,
1(3):296–297, 1971.

[57] Zhu Han, Dusit Niyato, Walid Saad, Tamer Başar, and Are Hjørungnes. Game theory
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[59] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Mac-
farlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley,
Fredrik Heintz, et al. A practical guide to multi-objective reinforcement learning and
planning. Autonomous Agents and Multi-Agent Systems, 36(1):1–59, 2022.

[60] Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form
games. In ICML, 2015.

[61] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote.
A survey of learning in multiagent environments: Dealing with non-stationarity. arXiv
preprint arXiv:1707.09183, 2017.

[62] Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforcement learning
for robots. Machine learning, 2013.

[63] Markus Hofmarcher, Thomas Unterthiner, José Arjona-Medina, Günter Klambauer, Sepp
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