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ABSTRACT
In nowadays production, fluctuations in demand, shortening product life-cycles, and highly con-
figurable products require an adaptive and robust control approach to maintain competitiveness.
This approach must not only optimise desired production objectives but also cope with unfore-
seenmachine failures, rush orders, and changes in short-term demand. Previous control approaches
were often implemented using a single operations layer and a standalone deep learning approach,
which may not adequately address the complex organisational demands of modern manufac-
turing systems. To address this challenge, we propose a hyper-heuristics control model within a
semi-heterarchical production system, in which multiple manufacturing and distribution agents are
spread across pre-defined modules. The agents employ a deep reinforcement learning algorithm
to learn a policy for selecting low-level heuristics in a situation-specific manner, thereby leveraging
system performance and adaptability. We tested our approach in simulation and transferred it to a
hybrid production environment. By that, we were able to demonstrate its multi-objective optimisa-
tion capabilities compared to conventional approaches in termsofmean throughput time, tardiness,
and processing of prioritised orders in a multi-layered production system. The modular design is
promising in reducing the overall system complexity and facilitates a quick and seamless integration
into other scenarios.
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1. Introduction

With growing challenges of fluctuating demand, market
volatility, and increasingly complex manufacturing pro-
cesses, there is a strong need for a resilient and adaptable
production control (Kapoor et al. 2021). The production
controlmust not only cope with unforeseenmachine fail-
ures while managing high product individualisation lev-
els and dynamic processes, but also handle large amounts
of data under sustainable matters which requires sen-
sible data collection and processing (Bueno, Godinho
Filho, and Frank 2020; Tao et al. 2018). To cope with
these challenges, companies must seize the opportunity
to implement control approaches that can copewith vary-
ing production conditions and facilitate ongoing opti-
misation of performance indicators to increase compet-
itiveness (Grassi et al. 2020; Lee et al. 2018; Parente
et al. 2020). Recent advancements in cyber-physical sys-
tems, the industrial internet of things, and other related
technologies already facilitated widespread data collec-
tion and processing in production systems (Lass and
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Gronau 2020; Lee, Bagheri, and Jin 2016; Lee, Bagheri,
and Kao 2015; Ritterbusch and Rolf Teichmann 2023).
By leveraging the Industry 4.0 principles, these technolo-
gies can unlock significant process potentials and com-
petitive advantages (Parente et al. 2020). In production
control practice, however, conventional algorithms are
often applied, such as the First-in-First-out rule (FiFo),
which do not guarantee global optimality while others
are hard-coded and layout specific (Kuhnle et al. 2021;
Mönch, Fowler, and Mason 2013), which do not meet
recent demands regarding flexibility.

A recent approach to process large amounts of input
data, deep reinforcement learning (RL), was increas-
ingly applied in production control in recent years
(Panzer and Bender 2022; Samsonov et al. 2021; Sut-
ton and Barto 2017). Deep RL is characterised by its
interactive, trial-and-error learning principle and often
demonstrated superior performance compared to con-
ventional production control approaches. Its online opti-
misation and direct data processing capabilities make
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it particularly well-suited for real-time decision mak-
ing in fast-paced applications, setting it apart from other
AI-based methods that may require longer computa-
tion times (Chang et al. 2022). Despite the consider-
able attention paid to deep RL-based single-agent sys-
tems, multi-agent-based systems have received compar-
atively less attention due to the significant challenges
associated with agent orchestration and communication
design (Panzer and Bender 2022). Yet, they can assist
in achieving both, local and global, performance objec-
tives and develop robust control policies (Tampuu et al.
2017).

To combine the advantages of deep RL and multi-
agent-based systems to cope with recent demands, this
paper proposes a novel hyper-heuristics based control
approach for modular multi-agent production systems
that utilises both, distributed resources and deep RL.
The hyper heuristic is applied for control optimisation
that utilises deep neural networks for the selection of
low-level heuristics. Each agent deploys its own neu-
ral networks, tailored to its specific modular production
environment which is transferable to similar systems.
To leverage adaptability and scalabilty, our further moti-
vation is to implement the approach within a semi-
heterarchical production to cope with the prevailing
organisational challenges of multi-layered production
systems. The key contribution is an adaptive control
approach that combines deep learning-based control
with an adaptive and scalable production organisation
that optimises pre-defined production performance indi-
cators. The approach is designed to handle spontaneous
events, such as machine failures and rush orders, while
ensuring stability and facilitating a seamless transition to
real-world production scenarios.

The remainder of the paper is organised as follows: In
Section 2, basics of deep RL and multi-agent-based pro-
duction control are outlined and the research objective
is specified. The conceptual design and artifact require-
ments are defined in Section 3. Results are outlined and
evaluated in Section 4, and transferred to a real test-bed
in Section 5. A discussion is outlined in Section 6 and a
conclusion is given in Section 7.

2. Problem statement

This section first discusses the basics and organisations
of modular and matrix production systems and elab-
orates on the principles of (deep) RL. Finally, results
of a systematic literature review of the combination of
these in decentralised and multi-agent based production
control is conducted for defining the specific research
objectives.

2.1. Modular and semi-heterarchical production
systems

Nowadays, adaptability is vital in production systems
to handle machine failures, rush orders, and other
disruptions. To cope with such internal and external
disruptions, modular production systems were designed
and often validated in simulated approaches (May
et al. 2021). Such modular systems allow individu-
alised production processes through line-less control
and the ability to define arbitrary production flows
by using automated guided vehicles, which enable a
detached process execution (May et al. 2021; Mayer,
Classen, and Endisch 2021; Tamás 2021). This flexibility
leads to higher use of resources through sharing strate-
gies, shorter transportation routes, and reduced buffer
stocks (as in (Greschke et al. 2014; Schenk, Wirth, and
Muller 2010)). However, despite its advantages, modular
production approaches suffer from an increased control
complexity due to the highly flexible operation of man-
ufacturing modules and the large control solution space
(Schenk, Wirth, and Muller 2010; Schmidtke, Rettmann,
and Behrendt 2021). The increased number of poten-
tial process paths leads to large actions spaces that raises
optimisation complexity and a proper extraction of rel-
evant information through a neural network gets more
complex.

With this regard, previous research emphasised the
importance of decentralising decision-making among
production agents, allowing them to make decisions
based on their specific task and available resources to
leverage their reasoning, perception, and action capabil-
ities (Balaji and Srinivasan 2010; Parunak et al. 1986).
Weiss (2001) particularly emphasises the flexible and re-
configurable properties of multi-agent structures as con-
ventional decentralised control approaches. In a more
recent review, Herrera et al. (2020) further emphasises
the relevance of multi-agent systems for existing and
planned real-world applications. A specific differentia-
tion of such multi-agent systems is established by sub-
dividing them into organisational forms, depending on
the allocation, grouping, and interaction of the agents.
While a hierarchy is characterised by a multitude of fixed
master-slave relationships, a heterarchy consists primar-
ily of peer-level relationships with distributed privileges
to fulfil global and local objectives (Baker 1998; Bon-
gaerts et al. 2000). Hierarchical systems are rather static,
whereas heterarchical organisations suffer from local
optimisation tendencies andmyopic behaviour due to the
lack of master-slave relationships (Sallez et al. 2010).

A semi-heterarchical production system seeks to com-
bine the advantages of both hierarchical andheterarchical
concepts. It achieves high integrity of the sub-components
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through its hierarchical structure (Valckenaers et al. 1994)
while maintaining a high reactivity and robustness
through the distribution principle within the heterar-
chical systems (Groover 2019). The semi-heterarchical
concept simultaneously enables both, long-term and
short-term objectives to be reached, and allows the corre-
sponding parameters to be optimised (Sallez et al. 2010).
Implementations of this concept were made by Grassi
et al. (2020) and Grassi et al. (2021) in different pro-
duction levels. This facilitates a multi-agent system that
enables the allocation of agents based on their functional
scope. The semi-heterarchical conceptwas further imple-
mented within a single control structure and by estab-
lishing domain-wise clustering by Borangiu et al. (2009)
and Borangiu et al. (2010) in the field of product-driven
scheduling and by Zambrano Rey et al. (2013) in the
field of flexible manufacturing control. By using a 2-
layer approach, Borangiu et al. (2010) fulfilled differ-
ent objective horizons and obtained comparably higher
robustness and agility of the system. Through the semi-
heterarchical approach, Zambrano Rey et al. (2013) was
further able to achieve control over the otherwise myopic
agent behaviour.

2.2. Deep reinforcement learning based
hyper-heuristic

To cope with the dynamic control requirements and
allow for an adaptive control deep RL was imple-
mented in production control approaches (Bahrpeyma
and Reichelt 2022; Esteso et al. 2022). It made the leap to
competitiveness especially with its successful implemen-
tation of the Atari environment, and has since become
increasingly appealing for complex optimisation prob-
lems (Mnih et al. 2013). Due to its particularly interactive
learning strategy and the neural network’s ability to pro-
cess large state inputs, deep RL can be tailored to a variety
of data-centric online applications (Baer et al. 2020). As
indicated in recent reviews, particularly value-based RL
approaches were widely deployed in production control
and demonstrated superior performances (Bahrpeyma
and Reichelt 2022; Panzer, Bender, and Gronau 2022).

To facilitate the fundamental integration capability
of deep RL to production control, the problem under
consideration must satisfy the Markov property and cor-
respond to a Markov Decision Process (MDP). Besides
the rigid definition of the considered scope, the Markov
assumption must be met, which implies that all future
production states only depend on the current state. This
constitutes the underlying assumption of our approach
and of the later designed discrete-event based simulation
(Sutton and Barto 2017). Q-learning is a variant of
RL, which is a model-free, off-policy RL algorithm that
exploits an action- or Q-value function. The Q-value

function, see Equation (1), is typically defined based on
an agent’s expected cumulative reward in Equation (2),
which follows its current policy, derived from the
Bellman equation Bellman.

Q(st , at) = r + γ max(Q(st+1, at+1)) (1)

Gt =
∞∑
k=0

γ krt+k (2)

In following functionsQ(st , at) resembles theQ-value for
a state st and action at at a certain time t. r is the immedi-
ate reward received after taking action a in state st, γ is the
discount factor, andmax(Q(st+1, at+1)) is the maximum
Q-value over the next states st+1 and actions at+1 that can
be executed from state st+1 (Sutton and Barto 2017).

Whereas in conventional Q-learning a table is used to
map Q-values, deep RL exploits a deep neural network
to function approximator to map the policy of an agent,
which is frequently updated based on past made experi-
ences. The neural network enables the agent to learn from
high-dimensional and complex input data such as raw
sensory information. It can handle non-linear and non-
convex environments better than traditional RL, allowing
it to be more accurate and efficient in learning. During
the learning process, often a batch replay is used, which
iteratively trains and fits the network based on the stored
batch data. The neural network, also known as the Q-
network, takes the current state st of the agent as input
and outputs a Q-value for each possible action at . The
Q-network is trained to minimise the difference between
the predictedQ-values and the target Q-values, which are
calculated using the above mentioned Bellman equation.
Thereby, Equation (3) is utilised for updating the weights
of the Q-network in deep Q-learning (DQN), wherein w
represents the weights of the Q-network, α denotes the
learning rate, and E signifies the loss function, defined as
the mean squared error between the predicted Q-values
and the target Q-values, as shown in Equation (4).

w = w− α �w(E) (3)

E = (Q(s, a)− (r + γ max(Q(st+1, at+1))))2 (4)

The DQN equation is derived by combining Equa-
tions (1)–(4), where the Q-network is trained to approxi-
mate the Q-values by minimising the loss function using
the Bellman equation, as summarised in Equation (5). To
further stabilise learning and performance, a target net-
work with weights θ− is introduced and used to calculate
Q(st+1, at+1) for the next states (Mnih et al. 2013, 2015).

Q(st , at , θ) ← Q(st , at , θ)

+ α [r + γ max Q(st+1, at+1, θ−) − Q(st , at , θ)]
(5)
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Figure 1. Hyper-heuristics based optimisation approach (Cowling, Kendall, and Soubeiga 2001; Swiercz 2017).

Building up on deep RL, a hyper-heuristic is an opti-
misation model that utilises a machine or deep learning
algorithm such as the DQN to learn a high-level policy
for selecting and adapting low-level policies. Due to the
deep learning algorithm, the hyper-heuristic possess the
capability to adapt to specific optimisation tasks, and thus
effectively utilise the inherent capabilities and process
logic’s of low-level heuristics. This enables an automa-
tion of the design process, and allows for the utilisation of
knowledge from online machine learning algorithms as
an optimiser, resulting in the derivation of near-optimal
scheduling and dispatching policies, which are based on
established and more comprehensible low-level heuris-
tics (Burke et al. 2010, 2019; Drake et al. 2020). Dur-
ing operation, the smart agent is trained to select one
suitable heuristic from a pre-defined set depending on
the received production state. The objective of a deep
RL based hyper-heuristic is to improve the performance
of the underlying optimisation problem by utilising the
strengths and process implications of multiple low-level
heuristics as illustrated in Figure 1 (Van Ekeris, Meyes,
and Meisen 2021; Zhang et al. 2022).

2.3. Deep RL andmulti-agent based production
control

Prevailing approaches in multi-agent-based production
control already try to leverage deep RL to benefit from
a decentralised and online decision making and opti-
misation process. To get a comprehensive overview of
the research field and trends, we searched the databases
Scopus and WebofScience to identify relevant scientific
papers.

Several studies have explored different approaches to
improve production performance indicators such as util-
isation rates or order tardiness. Malus, Kozjek, and Vra-
bič (2020) proposed an order bidding mechanism for
autonomous mobile robots that utilised a joint global
reward to minimise delays, optimising global utilisation
efficiency upon part completion and locally accepted
bids. The agents could bid between 0 and 1 based on
their respective states and proximal policy optimisation

(PPO) output, and the order with the highest bid was
assigned for the dispatch task. The PPO ensured updates
of the policy of not being too large, thus providing a bal-
ance between policy exploration and exploitation, mak-
ing it more sample-efficient and stable compared to other
RL algorithms Schulman et al. (2017). To cope with
the dynamics of inherent order scheduling, Hammami,
Mouelhi, and Ben Said (2017) proposed an multi-agent
system based on simultaneous learning and information
sharing between agents to reduce average delay. Deci-
sional agents, responsible for overall decision-making
process and order dispatching, were associated with
choice agents that selected the best neural network for
the decisional agent based on the desired performance
optimisation criteria. In the dispatching approaches con-
ducted by Dittrich and Fohlmeister (2020) and Hof-
mann et al. (2020), a centralised DQN decision module
was employed for training purposes. This central mod-
ule functioned as a repository for storing and updat-
ing the dispatching policy among all agents, and pro-
vided the current control policy upon request. Dittrich
and Fohlmeister (2020) created a job shop with three
process steps (turning, milling, and assembly), where
agents could access local and global information to allo-
cate orders to machine within a machine group to opti-
mise mean cycle time. These agents could request nec-
essary local and global system information to facilitate
informed decision-making which was facilitated by glob-
ally defined rewards, whichwere then propagated to indi-
vidual agents. Other studies focussed on different train-
ing strategies to improve production control. Waschneck
et al. (2018) implemented a strategy where one network
was trained at a time for stability and learning speed rea-
sons, and subsequently each wafer manufacturing work-
station was controlled by one neural network at a time to
optimise formaximumuptimeutilisation as a global goal.
The network input comprised all possible lot positions
and an idle option, while the network output included
machine states (capacity, availability, etc.) and job states
(type, progress). To optimise the product sequence in
car manufacturing, Gros, Gros, and Wolf (2020) used an
iterative learning strategy to prevent instabilities caused
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by parallel training of several agents, determining the
output sequence of cars to a buffer after finishing paint
jobs. This minimised costs caused by inefficient car
sequences and non-balanced flow of goods in subse-
quent manufacturing processes. Overbeck et al. (2021)
utilised PPO agents and hyper-parameter tuning, to
determine the optimal action in an automated assem-
bly system adhering to Chaku-Chaku principles, where
workers were tasked with loading machines and trans-
porting orders. An evaluation in a real assembly cell
for automotive parts demonstrated an improvement in
decision quality over time and a more produced parts.

The aforementioned approaches primarily dealt with
control problems in conventional job shops. Initial
approaches in matrix systems were proposed by Gankin
et al. (2021),May et al. (2021), andHofmann et al. (2020).
In Hofmann et al., agents received immediate rewards
after each operational step for a chosen action and a
delayed reward based on the total global cycle time after
an order was completed, which accelerated the learn-
ing process and reduced order throughput times. The
simulated system featured 10 workstations and several
autonomous guided vehicles (AGVs) that could perform
multiple process steps and were fully flexibly intercon-
nected. Meanwhile, May et al. (2021) implemented an
economic bidding approach to increase utilisation effi-
ciency in a matrix-structured production system. The
approach to maximised the operational profit for each
agent independently and optimised the execution time
and resource utilisation efficiency against conventional
heuristics. Gankin et al. (2021) introduced a first large-
scale matrix layout comprising 25 machines, which was
based on the modular approach developed by Mayer,
Classen, and Endisch (2021). Two distinct product types
were manufactured, each involving 13 process steps. To
reduce decision complexity, an action masking mecha-
nism was implemented for preventing the selection of
incorrect actions as each process step could be performed
only at specific machines. All 20 transport units were
trained in parallel as DQN agents, and the same neu-
ral network and buffer were used as the central decision
instance and to facilitate experience sharing between the
agents.

2.4. Problem formulation and contribution

From the previous literature set, several performant
applications can be observed, however, most approaches
are rather specific, such as the wafer fabrication or the
car paint buffer re-ordering.Amore scalable and adaptive
approach is given with the matrix approaches of Mayer,
Classen, and Endisch (2021) or Gankin et al. (2021).
However, these assume a matrix structure and are less

focussed on the clustering of production units, and, in
case of Gankin et al. (2021), exploit a central decision
entity. Also, all mentioned approaches deploy a single-
staged control organisation at the operations level. In
addition to the application and organisation scope, which
is summarised in Table 1, the algorithmic approaches are
often self-contained AI algorithms.

Table 1 highlights three fields of potential research
in production control, algorithmic (1), organisational
(2), and optimisation opportunities (3). The algorith-
mic field (1) currently lacks a deep RL-based hyper-
heuristics approach, which operates at a higher level and
can quickly select lower-level heuristics, as opposed to
meta-heuristics that serve as search process optimisers or
general guidelines (Tamás 2021). Previous research indi-
cated that a deep RL-based hyper-heuristic can outper-
form population-based meta-heuristics, such as genetic
algorithms, in terms of performance and interpretability
(Kallestad et al. 2023; Zhang et al. 2022). Additionally,
hyper-heuristics have benefit from fast computation of
operations (as in Chang et al. 2022; Liu, Chang, and
Tseng 2020), making them particularly suitable for real-
time environments.

Regarding the organisational design (2), our approach
deploys shopfloor and distribution layers to facilitate
modular and semi-heterarchical production processes.
The use of a deep RL-basedmulti-agent system is empha-
sised due to its collaborative possibilities and the abil-
ity to cope with larger systems requirements (Tampuu
et al. 2017). Despite the current focus on single-agent
environments (Esteso et al. 2022), our approach takes
advantage of a distributed and semi-heterarchical agent
organisation and manages system complexity by decom-
posing the overall complexity into respective fragments
of only processing relevant information. The approach
will be applied in a modular production environment
that allows pre-defined tool bundling and configura-
tion of machine groups, similar to real production. The
modularity aims to exploit product-specific machine
synergies while reducing coordination complexity and
increasing scalability. This aligns with the requirement
for a common modelling approach, as articulated by
Mourtzis (2020), which is supported by the proposed
standardised production modules within the underlying
simulation framework. Consequently, the simulation can
serve as an evaluation tool for our deep learning con-
trol framework prior to its deployment in the intended
(hybrid) real-world environment, functioning as an pro-
gressive Industry 4.0 test-bed, as emphasised by de Paula
Ferreira, Armellini, and AntonioDe Santa-Eulalia (2020)
and de Paula Ferreira et al. (2022).

Regarding the optimisation task (3), various approaches
were proposed to optimise one or two objectives such
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Table 1. Deep RL-based multi-agent approaches in production control.

Application Algorithm Training strategy Control strategy Agent interaction Objective parameter Orga. levels Transfer scope Year Source

Car buffer DQN Iterative learning Distributed – Cost/ decision time 1 Simulation 2020 Gros et al.
Chaku-chaku line PPO Shared PPO

module
Central – Utilization/throughput 1 Simulation 2021 Overbeck

et al.
SA Concurrent

learning
Distributed Agent information

exchange
Mean tardiness 1 Simulation 2017 Hammami

et al.
Job shop DQN Iterative DQN/

heuristics
learning

Distributed Global rewards WIP/ uptime
utilisation

1 Simulation 2018 Waschneck
et al.

DQN Shared DQN
module

Central Agent information
exchange

Mean cycle time 1 Simulation 2020 Dittrich
et al.

DRL (TD3) Concurrent
learning

Distributed Order bidding
mechanism

Tardiness 1 Simulation 2020 Malus et al.

DQN Shared DQN
module

– Agent state
information

Throughput time 1 Simulation 2020 Hofmann
et al.

Matrix production DQN Shared DQN
module

Central – Throughput 1 Simulation 2021 Gankin
et al.

PPO – Distributed Economic bidding Execution
time/utilisation
eff.

1 Simulation 2021 May et al.

Matrix/modular
production

DQN-based
hyper-heuristic

Concurrent
learning Distributed

Agent and cell
states

Throughput
time/ priori-
ties/tardiness > 1

Simulation and
reality Our approach
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Figure 2. Pursued DSRMmethodology (Peffers et al. 2007).

as tardiness, throughput, or utilisation. However, two
variables that were not yet explored are order prior-
ity and urgency. Especially in modern production with
customer-oriented services, order priority and urgency
directly affect resource allocation and operational effi-
ciency, to meet customers needs. Prioritized or premium
customer groups as well as rush orders represent a signif-
icant source of revenue, and require a flexible production
control that can adapt to fluctuating demands. To address
this order features effectively, a combined measure or
reward function is designed, that balances the prioritisa-
tion of orders according to the pre-defined objectives of
mean throughput-time, tardiness as well as order priority
and urgency.

To the best of our knowledge, this is the first approach
of a hyper-heuristics-based production control in amod-
ular production system. We seek to leverage production
performance and control production complexity through
a layered approach to enable a robust and adaptive con-
trol. Furthermore, this will be the first approach that
transfers a control approach of deep RL-based hyper-
heuristics control to a real application.

3. Conceptual design

To ensure a systematic approach for reaching the research
objectives, we followed the design science research
methodology according to (Peffers et al. (2007) , see
Figure 2). The first two steps of problem identification
and objectives definition were addressed in the previ-
ous sections, which are now followed by constructing
the research artefact as the third step. To satisfy the
emerging dynamic requirements anddeliver an adaptable
and scalable simulation approach, an appropriate simu-
lation framework must first be chosen. The framework
should seamlessly integrate the hyper-heuristic control
approach, to enable decentralised decision-making and
leverage production performance.

3.1. Simulation approach

To implement the simulation, the production simulation
frameworkCoBra, developed at our research department,

was utilised. CoBra is based on the SimPy simulation
library, commonly used in the field of discrete-event
production simulation, as done in previous works (e.g.
Kuhnle et al. 2021, 2020; Liu, Piplani, and Toro 2022).
This tool enables the rapid creation of modular produc-
tion environments, and supports the arbitrary design of
production processes and control rules. A key require-
ment is the ability to seamlessly transfer the approach
to a real environment. To achieve this, real-world
requirements such as machine failures, maintenance
efforts, randomly determined order sequences, and other
process-dependent parameters were incorporated into
the simulation. However, considering all the information
for decision-making is impractical, necessitating a sys-
tematic construction of the state vector that is used for
feeding the neural network, as outlined in Section 3.2.1.

In our approach, the modular production system con-
sists of entities or groups of distributed autonomous
agents, referred to as manufacturing (1) and distribution
(2) modules (Giret and Botti 2004). The agents operate
in parallel, making decisions based on the information
they individually receive, thereby reducing the need for a
centralised control model. The base/bottom layer is com-
posed of several manufacturing agents, that are respon-
sible for the processing of goods (refer to the bottom of
Figure 3). These agents serve in modules that are typ-
ically specialised in conducting specific manufacturing
processes, such as welding or assembly. The upper layers
consist of distribution modules, that are responsible for
the production coordination and distribution of goods
(see top three layers in Figure 3). All agents can work
in collaboration with other agents to process intermedi-
ate products. They have the capability to make decisions
based on a shared policy and the individually received
information. This facilitates the system’s adaptability to
adapt to changing production conditions in a flexible
and efficient manner. The CoBra framework effectively
enables the conceptual design of such semi-heterarchical
systems up to a fully matrix-like production, that can
be controlled by either deep learning based or conven-
tional approaches. During the simulation, all agents are
trained concurrently based on the obtained rewards, fol-
lowing the epsilon-greedy strategy. This facilitates an
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Figure 3. Projected multi-agent and semi-heterarchical system; right: adapted from Sallez et al. (2010).

exploration of the action space and potential policies and
provides a broad database for the batch replay.

Illustration of our modular production system organ-
ised into hierarchical layers, with manufacturing layer/
shop-floor at the bottom and distribution layers for
logistics activities at higher levels. Each layer comprises
multiple interconnected modules, following a semi-
heterarchical organisation.

3.2. Variable hyper-heuristic design

The development of a hyper-heuristic involves multiple
steps that address the third step of the DSRM method-
ology (Peffers et al. 2007). Following problem identifica-
tion and objective definition, the hyper-heuristic must be
designed in compliance with system constraints, avail-
able information, and the performance indicators that
require optimisation. To enable an adaptive and online
decision-making, and maintain the accessibility of the
CoBra and SimPy simulation framework, TensorFlow
was used for implementing deep learning functionali-
ties. Based on that, the state vector design is first dealt
with (see Section 3.2.1), that represents the current pro-
duction state and also the system’s interface that allows
the hyper-heuristic to access the essential information for
the decision making process. Second, in Section 3.2.2,
lower-level heuristics are identified and the action space
vector is constructed that addresses specific key per-
formance criteria. Finally, in Section 3.2.3, the train-
ing and reward mechanisms are considered, which have
an crucial impact on the learning process and system
performance.

3.2.1. State space design
The state space design is an crucial step towards achiev-
ing an efficient and performant production control and
should correlate to the targeted rewards and overall
objectives (Kuhnle et al. 2020). The challenge is to select
a state-set that contains all the essential information
while avoiding the inclusion of unnecessary inputs. This
may include general order information such as priori-
ties, as well as process-related information pertaining to
order throughput times or current tardiness. Machine
information, including their operational status, mainte-
nance needs, and current setup, could also be taken into
account for specific scenarios if necessary. The state vec-
tor in our approach integrates buffers, storage, machine
and agent order information, such as occupation type,
along with associated order details, granting the spe-
cific agent’s access to a comprehensive module state
and global processing information, thereby facilitating
situation-dependent decision-making.

Following other approaches (Kuhnle et al. 2021; Over-
beck et al. 2021), we apply a min-max-normalisation
for the various state inputs to scale the gathered values
within a predefined and constrained range. This should
leverage the performance of the neural network and not
only enables a smoother mapping between states and
actions while mitigating outliers and disproportionate
input variables.

For time-related state inputs, the normalisation results
in a state value range of [−1, 1] for each order n out
of all processable orders o within the respective mod-
ule, as denoted in Equation (6). A processable order
is defined by its feasibility of having one or more
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possible subsequent steps, i.e. when the input buffer of
the machine with the next needed processing step is
unblocked, or when the order can be transported from
module input to an available storage slot. Concerning
the part of Equation (6), sn,tpt is calculated individually
for each order concerning their global systemic and local
module start time. For the discrete state space of order
priorities, the state inputs are discretised to [0, 1], signi-
fying an input of sn,prio = 0 for normal orders, 0.5 for
prioritised orders, and 1 for high-priority orders. This is
intended to ensure more stable gradients, faster training,
and correct weight initialisation.

[1] sn,tpt = ( 1 − 2
ttpt, max − ttpt, n
ttpt, max − ttpt, min

)

[2] sn,due_to = (2
tdt, max − tdt, n
tdt, max − tdt, min

− 1)

[3] sn,prio =
⎧⎨
⎩

0 if prion = 0
0.5 if prion = 1, (prioritized order)
1 if prion = 2, (high priority order)

(6)

The resulting state vector St , which is used as the input for
the neural networks in subsequent processes, was derived
from iterative testing and consistent mapping to targeted
production performance indicators, which encompass
the order throughput time, tardiness, and order priori-
ties. To achieve this, the due date, local and global start
time, and priority of all processable orders o at each avail-
able slot are concatenated, as outlined in Equation (7).
For orders that are blocked or reserved by other agents,
undergoing processing by a machine, or situated in input
buffers, the state input for each metric (stpt,_due_to,_prio)
is assigned a value of 0 to maintain a constant state size.
Additional module positions in Equation (7) correspond
to those depicted in Figure 3.

St = (

Stpt local︷ ︸︸ ︷
1, 0.8, −0.2,︸ ︷︷ ︸ . . . , 0, 0, −0.5,︸ ︷︷ ︸

Cell input Further module Storage slots
buffer slots positions

+ Stpt global + Sdue to + Sprio) (7)

3.2.2. Action space design
The action space design refers to the process of defin-
ing the set of possible actions that the deep RL agent
can take at any given state and defines the manufactur-
ing sequence. With the generic optimisation approach
according to Kanervisto, Scheller, andHautamaki (2020),
the objective is not a maximum number of actions, but
a discretization of the action space and the selection

of genuinely necessary actions. The former is given by
the set of dispatching rules as control heuristics and the
linking of each with a corresponding deep RL action.
Dispatching rules can be deployed as low-level heuris-
tics as they provide a quick and efficient selection of the
next job to be processed, thereby reducing overall pro-
cessing time and increasing the overall efficiency of the
production process. Even though there are various dis-
patching rules available, some might be less effective,
since they do not affect the desired performance param-
eter. Nevertheless, the idea of providing a wide range of
production strategies can make it easier to tailor subse-
quent production scenarios and its specific optimisation
problem and constraints.

The selection of low-level dispatching rules is a cru-
cial step before the training and optimisation procedure
and results in a representative rule-set that was derived
from benchmarks and related approaches (Bergmann,
Stelzer, and Strassburger 2014; Kaban, Othman, and
Rohmah 2012; May et al. 2021; Tay and Binh Ho 2007).
Also, due to the pre-defined set of dispatching rules, the
action space does not increase with large layout sizes and
there is no need to introduce masked actions for learn-
ing as the logic is mapped intrinsically. In the further
course, we apply the local and global first-in-first-out
(FiFo), shortest processing time (SPT), earliest due date
(EDD) and highest priority (HP) dispatching rules as the
low-level rule-set. The local and global FiFo rule deter-
mine the next order, out of the processable order set o,
based on their local or global processing start time. The
SPT rule selects an order based on the time required to
complete the remaining process step, which particularly
beneficial in resource-constrained scenarios. The EDD
rule selects an order based on its due date, to meet tar-
diness objectives and the HP rule selects orders with a
higher priority first.

3.2.3. Reward function design
The reward function is a fundamental component of the
deep RL algorithm as it provides a scalar feedback signal
to the agent, guiding its behaviour towards maximis-
ing the cumulative reward (Sutton and Barto 2017). In
the context of hyper-heuristics based production control
and multi-objective optimisation, the reward function
is utilised to evaluate the performance of different low-
level heuristics and guide the agent’s selection towards a
situation–specific and optimal control policy. To capture
the desired performance criteria is crucial for the task
completion and significantly affects system dynamics.

Based on the optimisation criteria of throughput time,
tardiness, and respective order priorities and urgencies,
we derived a combined reward function that can be trans-
ferred to other scenarios. For this purpose, the total
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reward Rtotal =
∑

Ri for the chosen order n is com-
posed of the mentioned optimisation criteria i according
to Equation (8). Normalizing the total return proved to
be negative in the later tests. Although an optimal total
return can be calculated for each state, it fluctuates and is
complex to interpolate in between.

Rtotal = Rtpt local + Rtpt global + Rdue to + Rprio (8)

The rewards for the throughput time RTPT local and
RTPT global are a measure of how long it takes for an
order to be completed from start to finish and can be
used to prioritise policies that support faster comple-
tion times within a single module or the whole system.
The tardiness-related reward, Rdue to, reflects the delay in
completing an order, incentivizing the algorithm to pri-
oritise solutions that minimise delays and achieve earlier
completion times. Priority related rewards Rprio are used
to assign different levels of relevance to the orders to pri-
oritise orders with a higher priority orders first. The deep
RL algorithm takes the rewards and penalties that are
outlined in Equation (9) to adjust its decision-making
process and improve the performance over time. To
emphasise positive and negative actions, we normalised
and raised the evaluation parameters in the respective
range to calculate the reward with respect to the specific
maximum reward Rdt ,Rtpt ,Rprio,1/2.

[1] Rn,tpt = ( 1 − 2
ttpt, max − ttpt, n
ttpt, max − ttpt, min

)5 ∗ Rtpt

[2] Rn,due to = (2
tdt, max − tdt, n
tdt, max − tdt, min

− 1)5 ∗ Rdt

[3] Rn,prio =
⎧⎨
⎩

0 if prion = 0
Rprio,1 if prion = 1, (prioritized order)
Rprio,2 if prion = 2, (high priority order)

(9)

The variable Rtpt represents throughput time and can be
defined separately for global and local measures. Addi-
tionally, Rprio has a constraint that ensures its values are
greater than zero, specifically 0 < Rprio,1 < Rprio,2. The
testings under consideration involve rewards for orders
and utilise the values Rdt = 100, and for both local and
global Rtpt = 100. The rewards were iteratively deter-
mined through a sensitivity analysis and can be modified
depending on the objectives. In the case that a higher-
priority order is selected, it will receive a reward of either
Rprio,1 = 100 or a significantly increased Rprio,2 = 500.
Conversely, selecting a regular orderwhen ahigh-priority
order is available, will result in a penalty.

4. Demonstration

In accordance with the DSRM demonstration step
(Peffers et al. 2007), we will present the simulation

pre-requisites in Section 4.1) and analyse its perfor-
mance regarding the fulfilment of the pre-defined opti-
misation performance criteria and conduct benchmarks
against conventional heuristics in Section 4.2.2. The
results will facilitate making in-depth conclusions about
the potential benefits and limitations of using deep RL as
a top-level policy inmulti-agent andmulti-objective pro-
duction control. The computations were carried out on
an Intel Core i9-12900kCPUand 32GBofRAM. For each
performance indicator, several simulations were run to
obtain a representative set for training and benchmarking
purposes.

4.1. Experimental settings

The simulation approach involves aCoBramodel to emu-
late the behaviour of the agents within the manufactur-
ing system. The simulated system contains 3 layers for
distributing orders and respective materials within the
manufacturing system to fulfil machining steps at the
distributed resources. The top distribution module D1
resembles the high-level control module, overseeing the
operation of the mid-layer modules and system in- and
output. Below, there are 2 mid-layer distribution mod-
ules D1.1/D1.2 that control the flow of goods between
the underlying manufacturing modules. Each manufac-
turingmodule possesses specific process capabilities, and
there are 2 manufacturing mid-layer modules as illus-
trated in Figure 4 (M1.1.1/2; M1.2.1/2). The distances
within and between the modules are determined based
on 1m base heights and widths, with a distance between
modules of 1m and a safe distance of 0.4m for the agents,
respectively autonomous vehicles. The outer dimensions
of the high-level distribution module are 13m in width
and 6m in height. The speed of the agents is set to 0.5m
per second,with a pick-up andunloading time of 0.1min.

The conducted simulations indicate that in the case
of less complex modules, which i.e. contain a single
machine and few add-on positions (asM1.2.1 orM1.2.2),
a heuristic control mechanism is similar in effectiveness
compared to utilising a dedicated hyper-heuristic. Con-
versely, in cellular systems with larger state spaces and
more complex dynamics and interactions, the deep RL
approach proves to be superior. As a result, a hybrid
approach, which employs both, heuristics and deep
learning-based hyper-heuristic was implemented. Due
to the system modularity, this approach allows to lever-
age the advantages of both control approaches. For the
smart modules, varying input layers were incorporated
according to the module state space. The distribution
agents in D1, D1.1 and D1.2 deploy 88, 84 and 52 neu-
rons for the input layer, and agents inM1.1.1 andM1.1.2
deploy 80 and 60 neurons. In total, 20 neural networks
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Figure 4. Simulated three-layer modular production system

Table 2. Parameter settings for the deep RL agents.

Parameter Value

Batch size 128
Neurons in hidden layers 128/64
Learning rate α 0.005
Discount factor γ 0.98
Drop out ratio 0.01
Target update step 5
Minimum ε 0.01
ε-decay 0.997

are trained for the 10 deep learning-based agents, with
each agent deploying one online and one target net-
work. The agents in the manufacturing modules M1.2.1
and M1.2.2 are controlled by a FiFo rule, following its
benchmarking results in Balaji and Srinivasan (2010)
or Kaban, Othman, and Rohmah (2012). The iteratively
optimised algorithmic parameters were initially related
to similar approaches (as in Gankin et al. 2021) and are
listed in Table 2. A batch size of 128 was deployed as
a balance between training performance and computa-
tional efficiency. Batch sizes smaller than 128 resulted
in decreased performance, especially for rush and high-
priority orders, due to limited exploitation of solution
spaces and prioritisation. Conversely, larger batch sizes
resulted in significantly increased training times.

The simulation seeks to represent a real production
scenario with stochastically varying urgency and priority

of orders, where the number of orders processed depends
on the pre-defined system load. The order sequence is
randomly determined based on the order frequency (see
Table 3, left). The order urgency is reflected in the due
to time, with 20% of orders designated as rush orders,
receiving a due to time Tdt,n, which is the sum of the
order release timeTrelease,n, the predicted processing time
Tproc,n, assuming a low system load (see Table 3, right),
and a load-dependent factor Tload. The remaining orders
(80%) are classified as standard orders, with an additional
random distributed time buffer Tbuffer between 30 and
60min. Orders are further categorised as high-priority
(10%, i.e. for a highly valuable customer), prioritised
(15%), or standard orders (75%).

The simulation comprises two types of orders, steel
shafts (1.) and aluminum shafts (2.). The processing
steps, times, and order frequencies for each type and
value-added service (e.g. labelling) are listed in Table 3,
accounting for the unique properties of steel and alu-
minum, such as their strength, weight, and durability,
that affect processing times. The value-added services,
including labelling, coating, and packaging, can increase
throughput time through additional steps. Process steps
progress from left to right and are completed at the
machine with the corresponding number in brackets, as
pointed out in Figure 4. The time for a machine tool-set



12 M. PANZER ET AL.

Table 3. Order type specifications with associated processing times [min.] and sequences.

Processing time (at machine)

Order type Order frequency Milling Grinding Value-added-service

Avg. throughput time
w. transportation

(low-load)

Steel shaft 1.1 13% 8 (1) 4 (2) – 18.9
1.2 34% 8 (1) 4 (2) Labelling/ packaging: 4 (6) 26.6

Aluminium shaft 2.1 13% 3 (3) 3 (4) – 13.8
2.2 40% 6 (3) 6 (4) Coating/ packaging: 4 (5) 21.5

Figure 5. Moving average of obtained rewards for the top-layer D1 agent

exchange between product groups and the time required
to load and release an item is 0.5 minutes each. Machine
failures occur at an average rate of 4 per 1000min and
have a stochastic duration with a repair time ranging
from 10 to 20min.

4.2. Experimental results

In Section 4.2.1, a high-load scenario was adapted during
the training process with a maximum system conges-
tion, which increases task complexity of order selection
and allows the mapping of a substantial number of state-
action pairs for later operation. This implies an infinite
number of planned orders and immediate order release
to the input buffer throughout the whole training pro-
cess. This scenario presents challenges to learn effective
strategies tomaintain control performance and efficiency
in terms of order allocation and system management. In
Section 4.2.2, a normal load scenario was adapted that
reflects a real processing equilibrium for benchmarking
purposes. In Section 4.2.3, the scalability and robust-
ness of our approach are trial to ensure stability and
efficiency during operation, thereby confirming its reli-
ability for real-world applications. For conducting the
performance analysis, the mean tardiness (Ttd,mean =
1
n �n

i=1max(0,Ci − di)), and the mean global through-
put time (Ttpt,mean = 1

n �n
i=1Ttpt,i), for all n orders,

were considered. A particular emphasis is put on the
interconnected order indicators, regarding their priority
and urgency.

4.2.1. Training process
Incorporating the comparative analysis of the hyper-
heuristic approach against conventional heuristics within
the training process, as depicted in Figure 5, we observe
that the hyper-heuristic outperforms these traditional
rules in terms of the received rewards. Despite of the ini-
tial random rule selection at the beginning of the training
phase (with ε = 1, see left side in Figure 5), the hyper-
heuristic demonstrates performance levels close to those
of traditional dispatching rules at the start of the train-
ing. It maintains a functional policy that complies with
process requirements which results in a working pol-
icy right from the start of training, without the need
for action masking or other acceleration mechanisms. As
the training process progresses, the optimisation criteria
are increasingly satisfied, leading to continuous learn-
ing and performance enhancements. This trend high-
lights the progressive performance convergence of the
approach.

Upon completion of the training, the hyper-heuristic
achieved a moving average score of 200, a significant
improvement over conventional heuristics such as FiFo
local (-50), EDD (-78), and high priority rule (-207). This
demonstrates the superiority of the deep learning-based
rule selection approachwithin the hyper-heuristic frame-
work, which has significantly exploited its optimisation
potential compared to conventional heuristics.

Figure 6 illustrates a throughput time related perfor-
mance analysis of the hyper-heuristic, which is crucial
for evaluating the true effectiveness of our approach. The
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Figure 6. Moving average of throughput times related to order priorities

results indicate a significant decrease in throughput time
as the simulation progresses, which can be attributed
to higher utilisation rates despite the capacity limita-
tions that restrict the simultaneous processing of orders
at a machine. Regarding standard priority orders, the
throughput time decreases by 43% and 51%, 59% for
prioritised and high-priority orders. In contrast to the
conventional rules, a noticeable decrease in fluctuations
is observed with an increasing number of episodes, indi-
cating that the deep RL algorithm is trending towards its
optimal policy. Additionally, the analysis indicates that
higher-priority orders have significantly faster through-
put times compared to standard orders. Specifically, high-
priority orders have a throughput time of 74.1min, repre-
senting a 32.6% lower throughput time compared to stan-
dard orders, while prioritised orders exhibit a throughput
time of 89.3min, corresponding to an 18.7% decrease
with a throughput time of 109.9min. The green dotted
line indicates the average Work-In-Progress (WIP) level.
Despite a slight increase in throughput times as WIP
levels rise, the robustness of control and optimisation is
evident with the occurring WIP peaks in Figure 6.

4.2.2. Benchmark results
In this Section, we conducted a benchmarking scenario
that encompassed a simulation range of 7200min, cor-
responding to three 8-hour shifts over a period of 5
days. The order amount of 2800 was iteratively deter-
mined to be near the system equilibrium. Unlike the
training mode, in which batch replay is required, the
trained agents are now applied in an operational mode.
To facilitate comprehensive analysis, we included a ran-
dom rule in addition to the average benchmarks, which
are summarised in Table 4. The left column of the table
presents the hyper-heuristics results, while the rightmost
column lists comparison indicators of the hyper-heuristic
approach with the average of the individual dispatching

rules (improved values are highlighted in green, wors-
ened in red). The inclusion of the random rule allows
for a more thorough evaluation of the other rules perfor-
mances.

The results demonstrate that the summarised order
values in the upper part were all improved using our
approach. The mean tardiness was reduced by nearly
39.5% and the throughput was increased by 1.4%. In the
individual benchmark comparison, the throughput time
is comparable to the local FiFo rule, but priority-related
indicators are improved. The order priority-related per-
formance indicators are listed in the lower part for stan-
dard (0), prioritised (1) and high-priority (2) orders.
With our approach, high priority orders were deliv-
ered with 60.8% reduced tardiness, and with a shorter
throughput time. In contrast, both FiFo rules, as the
most commonly used ones, performed worse regarding
total order indicators compared to the proposed hyper-
heuristic.

However, it was expected that rules that are specifi-
cally designed to optimise a particular indicator would
perform better in that specific case. For instance, the SPT
rule indicates shorter throughput times and the lowest
work in progress levels, but it produced 78 fewer orders
due to the blocking of buffers and storages by orders with
additional process steps that are scheduled with higher
throughput times. This led to a considerably high tar-
diness for these orders of 21.5min. Consequently, all
orders that comprised value-added services had to wait
for orders with fewer remaining processing time. The
mean tardiness was lowest with the EDD rule, which
optimises based on order due dates. However, none of
the conventional dispatching rules were performing in
combined measures and multi-objective view.

In the following, we compare the hyper-heuristic
approach with individual dispatching rules in relation to
the order priorities. In this regard, the hyper-heuristic
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Table 4. Multi-objective optimization benchmark incorporating order priorities

Hyper-
heuristic FiFo local FiFo global

Earliest due
date first

Shortest
processing
time first

Highest priority
first

Random (excl.
in avg.

benchmark)
Hyper-heuristic against

avg. benchmark

Total throughput
[#] 2734 2722 2709 2718 2656 2678 2645 1.4%

Total order set
Throughput time

[min.] 86.2 91.7 88.8 88.4 83.0 79.9 87.8 −0.2%
Mean tardiness

[min.] 8.9 12.0 10.7 8.5 21.5 20.8 22.3 −39.5%
Work-in- progress

[#] 28.3 29.5 30.2 29.7 27.0 28.9 29.9 −2.6%
Order priority 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Total throughput
[#] 2066 402 266 2059 401 263 2049 399 261 2055 399 263 2012 389 254 2021 398 259 2005 387 253 1.3% 1.2% 2.3%

Priority related
order set

Throughput time
[min.] 88.3 83.6 73.3 91.1 93.9 93.1 88.4 89.6 90.5 88.1 90.3 88.0 81.4 85.1 93.2 91.5 44.5 44.1 87.6 85.9 87.8 0.2% 3.6% −10.4%

Mean tardiness
[min.] 10.0 6.2 5.0 11.8 12.7 12.5 10.6 10.6 10.7 8.4 8.8 8.9 20.0 23.1 31.4 28.0 0.2 0.3 22.4 19.7 25.6 −36.5% −44.0% −60.8%

Work-in- progress
[#]

22.2 3.8 2.3 22.7 4.1 2.8 23.2 4.1 2.9 22.8 4.1 2.7 20.6 3.6 2.8 25.2 2.2 1.5 23.0 3.9 3.0 −3.1% 5.0% −9.4%
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outperformed the FiFo, EDD, and SPT rules, particularly
for prioritised and high-priority orders. Specifically, for
prioritised and high-priority orders, the hyper-heuristic
reduced throughput by almost 7% to 83.6min, and 20%
73.3min, respectively, compared to the average time of
the previously mentioned rules. Individually, theHP rule
performed best for prioritised and high-priority orders,
but had a 13.5% higher throughput time for standard
orders than our approach, which account for 75% of
the total order-set. Although the higher-priority orders
are completed with a minimum mean tardiness with the
HP rule, this leads to longer processing times for the
much larger set of standard orders. Despite the hyper-
heuristic’s slightly poorer performance in the prioritised
order class, it still outperformed the other rules from
a multi-objective perspective. Additionally, the hyper-
heuristic produced 2.7% more high-priority orders than
the HP rule.

For a further analysis, we included Table 5 which
demonstrates the relationship between order urgencies
and priorities for the optimisation of throughput times.
The table includes a comparison of the corresponding
throughput times with a high-priority and rush order as
the base value in the lower section. As previous results
indicate, the global FiFo and random rules were less per-
formant compared to other the benchmarks, which is
why they are excluded in further analysis.

One notable finding is the significant increase in
throughput times of the hyper-heuristic (Table 5, left) for
low prioritised and non-rush orders. The development is
progressive, with a clear 22.8% increase from the highest
to the lowest urgency and priority class. This suggests that
non time-critical orders are processed at higher through-
put times. However, due to the high priority relevance
within the reward function, the increase is observable,
but rather small with 2.1%. On the other hand, the EDD
rule, as a single-criterion rule, only optimises one cri-
terion, which is the due date, equally for all priorities.
Similarly, the HP rules also indicates a similar pattern
for priorities, in which rush orders were processed 3%
or 1% slower. The hyper-heuristic approach appears to
be the more effective in optimising combined urgency
and priority measures. While the EDD andHP rules may
be suitable for constrained optimisation, they may not
perform well in stand-alone operation.

4.2.3. Analysis of optimisation robustness and
scaleability
In addition to analysing the performance of our approach,
we also evaluated its robustness and scalability. It is essen-
tial to ensure that the approach can operate efficiently and
reliable, even with increased order volumes, to guaran-
tee long-term effectiveness. Previously, we demonstrated

the control efficiency of our approach with increasing
WIP levels in Figure 6. Now, we evaluate the robustness
of our approach by measuring the rewards received dur-
ing operation, which serve as an indicator of how well
the desired production objectives were fulfilled. As illus-
trated in Figure 7, the received rewards of each dispatch-
ing rule were analysed, with the random rule serving
as the lower benchmark. The rewards of conventional
rules exhibit significant fluctuations in both, short-term
and long-term rewards. Despite occasional near-parity
with the hyper-heuristic, on average, conventional rules
were less robust than the hyper-heuristic in fulfilling the
multiple defined optimisation objectives.

Table 6 summarises the statistical values obtained
from our robustness analysis. It can be observed that the
hyper-heuristic approach achieved good performance in
terms of robustness, which is in line with our earlier
findings. However, the performance of the HP rule was
surprisingly poor, which can be explained by the pre-
defined rewards. Although its policy of favouring higher
prioritised orders was followed, the larger amount of
neglected standard orders led to a corresponding dete-
rioration in performance. This trend is reflected in the
decreasing reward trend, as the tardiness of the orders
in the modules continued to increase over time (as indi-
cated in Figures 5/7) which results in poor tardiness
and throughput values and respective negative rewards.
This highlights the importance of considering combined
objectives, as neglecting standard orders, although being
less valuable per order, can have a detrimental effect
on optimisation objectives. Therefore, it is crucial to
find a balance between prioritising high-priority orders
and ensuring that standard orders are also processed
efficiently.

The scalability of our approach is supported by the
assumption of decentralised decision-making and the
small state spaces of the neural networks that are used
for action calculation. Due to the modular layout, also
the overall task complexity was broken down among the
agents which could thereby deploy compact neural net-
works. As a result, all agent computations were carried
out in real-time, taking less than 0.01 seconds.We distin-
guish between the cases of pure training and the change
of production organisation during operation. Thereby,
adding a new manufacturing module does not require
the re-training of the entire system, as it would be the
case with a central control instance. Instead, only the
affected module and its overlying distribution module
would need to be trained. Furthermore, if an identi-
cal manufacturing module is added, the logic can be
learned via transfer learning, which reduces the train-
ing time to just training the overlying distribution mod-
ule. Although training our scenario for 10,000 simulated
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Table 5. Order urgency and priority dependent optimisation of throughput times [min.].

Hyper-heuristic FiFo local EDD HP

Total orders Rush order Standard order Rush order Standard order Rush order Standard order Rush order Standard order

High priority 72.1 73.6 90.0 90.7 59.1 96.3 45.1 43.9
Prioritized 72.5 86.2 86.2 90.4 56.1 98.6 44.0 44.6
Standard 87.1 88.6 87.5 88.7 57.5 96 93.8 90.9
In relation to high-priority and rush orders
High priority 1 2.1% 1 0.8% 1 62.8% 1 -3%
Prioritized 0.6% 19.5% -4.2% 0.4% -5.2% 66.8% -2% -1%
Standard 20.8% 22.8% -2.7% -1.4% -2.8% 62.6% 108% 101%

Figure 7. Moving average of agent rewards for the D1 distribution module.

minutes required approximately 36 h (due to the itera-
tive calculation), re-training a new network for a new
module takes only a fraction of this time. Re-training
the D1.2 layer (see Figure 4) after an additional manu-
facturing module was added took only about 4 h. From
an organisational perspective, the scalability of our is not
dependent on the complexity of the layout, as it can be
broken down into sub-modules. Thus, our approach can
be extended to more complex systems without requiring
a complete overhaul of the existing training model. This
scalability feature, combined with the real-time process-
ing capabilities, leads to an suitable option for transfer-
ring it into a real production system.

5. Simulation to reality transfer

The transfer of the evolved and simulated approach
was further deployed within the Center for Industry 4.0
and validated using its modular manufacturing system.
Figure 8 contains the real production environment (1),
the updated simulation model (2), and the correspond-
ing layout (3). The manufacturing cells are projected into
the availablemachine cubes (numbers 1–5), and the input
and output buffers are located within these. The real lay-
out is similar to the simulated layout, with an additional
robot manufacturing cell (see cell 4) and an additional

storage slot in the distribution cell to use the full stor-
age capacity of the real environment (see number 8). For
the transport of an order on the distribution level, the
load carrier cubes are used as autonomous agents (9). If
such a cube arrives at one of the machine cubes ( 1–5),
an order is placed or picked up there and can then be
transported to the next machine cube or to the system
output. In the system input (6) and output (7), orders are
generated (including the buffer capacity) and collected or
deposited by the autonomous load carriers. The transfer
of deep learning-based instructions from the simulated
agents to the real-world logistics elements was conducted
by implementing the simulated system’s logic into the
workload carriers. The instructions of the neural network
were processed by the FabOS (factory operating system,
Lass and Gronau (2020)). The action-set and state-vector
remained consistent, with only the destinations being
modified.

Since the agents are the bottleneck of this simulation
due to their low speed, we based the performance eval-
uation on a fixed period of 5 h. The path of the load
carriers from one location to another is determined by
the FabOS to avoid collisions and blockages. Due to time
restrictions, the operation was carried out on the basis of
previously trained agents. Control decisions were made
after examining the status of new orders, after arriving at
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Figure 8. Testing setup of the hyper-heuristic within the hybrid production environment.

Table 6. Summary of reward mean and standard deviation.

Hyper-heuristic FiFo local Earliest due date High-priority Random

Arithmetic mean [-] 178.8 49.2 −24.1 −156.9 −193.2
Standard deviation [-] 21,2 60,9 85,5 59,8 84,6

a destination, and after any changes in the system, when
the agents had no assigned task. The results of the real
test are listed in Table 7 and are compared against the
FiFo local dispatching rule, due to its performance, but
also its wide-spread use in real production systems. The
best values are indicated in bold letters.

Although there was a slight decrease of one unit in
throughput when compared to simulation performance,
it is important to note that this may be attributed to
the rather short duration of the conducted testing. Con-
versely, there was a 1.7% reduction in throughput time
while maintaining a comparable level of tardiness for the
total order-set. Additionally, higher-priority orders were
processed more frequently and with an average tardiness
that was 90% lower than that of lower-priority orders.

6. Discussion

Today’s production systems must cope with increas-
ingly demanding customer requirements, shorter prod-
uct and development cycles and short-term fluctuations
in demand. One approach to address these challenges in
production control is deep RL as a data-driven optimi-
sation tool, which differs from other machine learning

methods mainly in its online adaptability and real-time
processing of sensor data. In our approach, we have
demonstrated the superior performance of deep RL com-
pared to conventional rules that are still in widespread
use. We also transferred our approach into a hybrid pro-
duction environment, highlighting is real-world capabil-
ities. It becomes clear that deep RL can master the link
between input states, optimisation goal and the deriva-
tion of necessary actions and can help to achieve indi-
vidual production goals. A multi-level system with dis-
tributed production resources was considered, which is
composed of agents with different tasks. This is intended
to cover different industry backgrounds and maximise
transferability to specific applications.

Managerial insights

The increasing connectivity of future factories and the
growing complexity of products and processes require
accelerated corporate adaptation cycles, especially in
manufacturing. To meet these challenges, companies are
well-advised to consider more sophisticated approaches
to increase flexibility, mitigate process risks, and max-
imise production robustness. However, in addition to
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Table 7. Performance benchmark within the hybrid production environment.

Hyper-heuristic FiFo local Comparison (FiFo as base)

Scope/ order priority Total 0 1 2 Total 0 1 2 Total 0 1 2

Total throughput [#] 121 92 17 12 122 95 16 11 −0.8% −3.2% 6.3% 9.1%
Throughput time [min.] 56,9 59,4 55,4 51,5 57,9 56,8 67,6 53,6 −1.7% 4.6% −18.0% −3.9%
Mean tardiness [min.] 9,8 12,8 1,6 1,1 9,8 9,4 13,9 14,1 0.0% 36.2% −88.5% −92.2%

sustaining processes, it is also important to fully exploit
competitiveness through the deliberate use of new algo-
rithmic approaches and organisational capabilities. By
using hyper heuristics, companies can limit their depen-
dence on scarce human capital and proactively use data-
driven operations to reduce costly manual processes.
In contrast to conventional approaches, which can only
react to changing conditions to a limited extent, the
modular framework presented in our approach has a
significantly higher transferability and can be adapted
according to market requirements. In addition, the
defined objectives were achieved in a combined man-
ner more effectively, which increases cash flow and can
reduce conversion costs. Furthermore, additional ser-
vices such as rush orders and prioritised orders were
integrated, which not only enable additional cash flow,
but also integrate customer-oriented services on the shop
floor.

7. Conclusion

This paper presents a novel hyper-heuristic based con-
trol approach for modular designed holonic produc-
tion systems. Holons were modelled as autonomous
manufacturing entities, providing high adaptability in
a semi-heterarchical structure. Unlike previous multi-
agent approaches that were limited to a single opera-
tional level or that implemented confined deep learning
techniques, we deployed dispatching rules for facilitating
a deep learning-based performance optimisation. Each
agent within the production system had its own con-
trol policy and shared experiences with agents within
the same cell. The differentiated contemplation of man-
ufacturing agents at the shop-floor layer and the use of
distribution agents within the upper transport layers was
emphasised.

The control approach targeted several parameters for
optimisation, including global throughput time, adher-
ence to due dates, and the processing of rush and
prioritised orders. Simulations and real-world scenar-
ios demonstrate the superiority of the hyper-heuristic
approach in multi-objective optimisation of average
throughput time, total throughput, and tardiness. Pri-
oritized and rush orders, which often emerge in prac-
tice, were processed with better performance than with

dedicated dispatching rules. Likewise, not only were
more orders processed within the real environment, but
the existing rule-set was outperformed with regard to the
defined performance indicators.

The hybrid and decentralised hyper-heuristic control
approach integrates both, deep learning based and con-
ventional elements, to facilitate a scenario-specific pro-
cess optimisation. Whereas the holonic approach allows
for an easy adoption of new resources and processes,
the hyper-heuristic prevents the selection of mislead-
ing actions by leveraging the rule-set integrated process
logic. It resembles a self-configuring system that auto-
matically adapts to changing production conditionswith-
out human intervention and leverages system scaleability.
The addition of a cell does not necessitate re-training of
the entire system which leverages utilisation efficiency.
The distributed resources further avoid the need for
large state and action spaces, as the modules and asso-
ciated state or action parameters have a pre-defined
scope.

Future research should focus on reducing the train-
ing effort required for comparable modules through the
use of parameter learning strategies and the freeze and
transfer of network layers to differing cells for faster
scenario adoption. Moreover, to better adapt to vary-
ing environmental conditions, agents should be assigned
specific action spaces based on cell objectives and levels,
which can be kept variable, allowing different strategies
to be executed. This will allow for an hybrid operational
model, avoiding the prevalent pre-training in a digital
twin, which further leverages production performances
and adaptability. Future research should also target
bridging the gap between the real-world and simulated
environments, which will ultimately reduce operational
barriers.
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