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A B S T R A C T

Nowadays, production planning and control must cope with mass customization, increased fluctuations in
demand, and high competition pressures. Despite prevailing market risks, planning accuracy and increased
adaptability in the event of disruptions or failures must be ensured, while simultaneously optimizing key
process indicators. To manage that complex task, neural networks that can process large quantities of high-
dimensional data in real time have been widely adopted in recent years. Although these are already extensively
deployed in production systems, a systematic review of applications and implemented agent embeddings and
architectures has not yet been conducted. The main contribution of this paper is to provide researchers and
practitioners with an overview of applications and applied embeddings and to motivate further research
in neural agent-based production. Findings indicate that neural agents are not only deployed in diverse
applications, but are also increasingly implemented in multi-agent environments or in combination with
conventional methods — leveraging performances compared to benchmarks and reducing dependence on
human experience. This not only implies a more sophisticated focus on distributed production resources, but
also broadening the perspective from a local to a global scale. Nevertheless, future research must further
increase scalability and reproducibility to guarantee a simplified transfer of results to reality.
1. Introduction

Despite growing market uncertainties and increasingly complex
product structures up to mass customization, production planning and
control (PPC) must enable a robust production and meet internal and
external customer requirements. Besides common key performance
indicators (KPIs) such as product quality or lead time, these increas-
ingly include aspects of sustainability and the ability to adapt quickly
to new environmental conditions. The remarkable set of addressable
capabilities, performance measures, and environmental factors that can
be significantly leveraged through intelligent production planning and
control has already been analyzed by Bueno et al. [1], indicating a wide
range of potentials for process optimization.

To reduce system complexity, besides single-agent (SA) systems,
various multi-agent (MA) implementations have been proposed that
imply collaborative, competitive, or mixed-agent interactions [2,3]. In
addition, machine learning (ML) is increasingly employed due to the
growing capabilities of the given infrastructure in recent years [4]. ML
can assist in performing multi-criteria optimization involving local and
global objectives, multiple resources, machines, and factories [5] that
demand a continuously optimized production control and schedule [4].

However, according to Cadavid et al. [6], 75% of potential research
domains in the field of ML-based PPC have not yet been sufficiently
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investigated. This also becomes apparent in the work of Liao et al. [7],
who state that while Big Data and other disciplines are increasingly
focused on PPC-related research, ML lags behind these. This impression
has already been countered in a previous review of ours in the field
of deep reinforcement learning (RL)-based production [8], but also by
others such as Weichert et al. [9], Kang et al. [4], and Zhou et al. [10],
highlighting the versatility of ML algorithms in various production sce-
narios. Nevertheless, Weichert et al. [9] emphasize that the integration
of an ML model for the optimization of production processes must
be carried out carefully to balance the increasing process and model
complexities and ensure that appropriate decisions are made regarding
the algorithmic structure and its interaction with the environment.

As one possible ML technique, (deep) neural networks (NN) in
particular are increasingly utilized in production due to their ability to
process large amounts of data in real time and map complex non-linear
interdependencies, thus avoiding the need for complex models [6].
Our review specifically addresses the application and embedding of
NN-based algorithms in production as a data-driven online optimiza-
tion approach and highlights their beneficial properties for production
systems. Considering the flexible and scalable properties and high per-
formance of NNs, our contribution aims to capture the current state of
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the art in real and simulated production systems. Furthermore, we want
to identify existing challenges and derive future research directions.

Already in 1990, Rabelo et al. [11] demonstrated the superior
abilities of a hybrid scheduling approach to combine NN-based pattern
identification and expert-based constraint refinement. By identifying
scheduling task patterns, Zhou et al. [12] adopted what Baker [13]
considered to be a heterarchical approach to job shop scheduling —
mapping scheduling operations to the network structure. As a result
of their successes, Zhang and Huang [14] and Garetti and Taisch [15]
summarized previous efforts and highlighted the effectiveness of NNs
for handling PPC problems. However, in recent reviews, NN-based PPC
has only partially been considered in the context of flexible job shop
scheduling [5], or just in the context of other ML techniques [4], lack-
ing a consolidation of NN-based PPC contributions. This also becomes
apparent in the work of De Modesti et al. [16], who described the
increased relevance of NNs but, like C̨alis̨ and Bulkan [17] for job
shop scheduling or Bertolini et al. [18] for general industrial use cases,
incorporated NNs into the context of general ML.

From an organizational perspective, the potential of hierarchical
production processes was highlighted by Bitran et al. [19]. The benefits
of holonic systems were further outlined, among others, in Babiceanu
and Chen [2] and recently in Derigent et al. [20], and was featured
as one of 6 enablers for smart manufacturing control in Rojas and
Rauch [21]. Beyond that, Lee and Kim [22] and Monostori et al.
[23] outlined how MA systems enable robust and flexible production,
similar to Gronauer and Diepold [3] or Herrera et al. [24], who focused
on deep reinforcement learning as a possible implementation of MA
systems and general systems engineering. However, a focused review
of the existing results of NN-based PPC and the applied architectures
has yet to be conducted.

To the best of our knowledge, this is the first attempt to capture the
main findings of NN-based applications and agent embeddings in PPC.
The review should serve practitioners in identifying potential research
directions and provide incentives for implementation. We intend to
highlight performance potentials that might arise from applying NN-
based PPC in practice, but also emphasize existing challenges. For this
purpose, we attempt to answer the following research questions.

• RQ1: What are current neural network applications in PPC?
• RQ2: What are the predominant neural network-based PPC em-

beddings?
• RQ3: What are major challenges of the reviewed PPC implemen-

tations?
• RQ4: How can those challenges be addressed and what future

fields of research emerge?

he paper is structured as follows: Section 2 describes the basics
f NN-based PPC methods. Section 3 specifies the methodology and
onceptual framework of the review. Section 4 answers RQ1 and RQ2
ased on the conducted review. Section 5 outlines the corresponding
axonomy design followed by the predominant challenges (RQ3) and
uture research fields (RQ4) in Section 6. Section 7 discusses the
esults of the review, existing limitations, and managerial insights. A
onclusion is provided in Section 8. Analysis tables with detailed review
nformation can be found in Appendix.

. Neural network-based production planning and control

The goal of PPC is to maintain production and meet the desired
echnical, financial, and organizational objectives, even given uncer-
ainties around the markets and production itself [25]. Production
lanning refers to disciplines such as scheduling, which must cope
ith multi-product environments, limited resources, and rush orders to
chieve high efficiency and cost-effectiveness. Production control, such
s dispatching, on the other hand, must execute planned actions taking
nto account unsteady conditions such as machine status or varying
744

rocessing times to compensate for unforeseen events and maintain
stable and robust production [26]. Related to Industry 4.0, the adoption
of technologically advanced techniques in PPC can be deployed to
improve performance [27]. In recent years, this has included NNs in
particular, which have not only experienced great success with Google
DeepMind [28] but are also increasingly implemented in production
and can prevent extensive modeling or high dependence on human
experience (as in [29]).

2.1. Neural networks

NNs can learn (long-term) dependencies and exploit past experi-
ences gained. The networks learn and store experiences by updating
the strength of the neural connections, which enables real-time com-
putations and adaptive behavior. Based on non-linear computations
that mimic the nervous system, inputs are processed and outputs are
derived in the form of direct action recommendations, classifications,
or others. Besides feed-forward networks (FFNN), which process in-
puts in one direction, others such as recurrent NN, long–short-term
memory networks (LSTM), or deep belief networks possess different
forms of information processing and provide certain properties and
strengths [30]. NNs can help to increase the performance of ML al-
gorithms such as (semi-)supervised, unsupervised, or reinforcement
learning through their ability to process large and stochastic data sets
while still exhibiting high generalizability [30,31].

2.2. ML-based PPC

As a data-driven optimization method, NN-based ML approaches
can help not only to optimize production schedules and control, but
also to maintain robust operation of production lines. Whereas con-
ventional decision rules often have problems coping with machine
failures or other dynamic and stochastic events occurring such as new
order entries, intelligent agents can help not only to reduce problem
complexity by means of task decomposition but also to better deal with
the above incidents due to their learning behavior [32,33]. According
to Baker [13], an agent is a self-controlled software object that has its
own values and communicates with other objects. Based on this, Patel
et al. [34] attributes intelligent properties to this agent, enabling it
to interpret its perceptions and independently select actions to pursue
its specific goals and, through its learning skills, to adapt its behavior
to the changing environment [35]. Early approaches in 1995 such
as Zhang and Dietterich [36] and Zhang and Dietterich [37] demon-
strated the superiority of a reinforcement learning-based scheduling
mechanism over an iterative repair-based scheduling. Having more
agents available, early MA and NN-based approaches were proposed
to optimize PPC problems [38,39]. Riedmiller and Riedmiller [38]
pursued an RL-based dispatching approach consisting of distributed
machine agents that learn local dispatching rules and decide on which
order to process, thereby outperforming heuristics while demonstrating
good generalization behavior. Monostori et al. [39] proposed a 3-level
MA scheduling scheme consisting of order, mobile, and resource agents.
Herein, mobile agents explore possible routes, and those with the best
schedule yield the final one, which significantly reduces computational
costs with increasing operation numbers compared to a branch and
bound algorithm. Since a detailed introduction of algorithms and MA
systems would go beyond the scope of this paper, we would like to refer
to Aggarwal [40] and Dorri et al. [41], respectively.

2.3. MA system organization

A further differentiation of MA systems is established by classifying
them as hierarchical, heterarchical, or holonic structures, depending on
their agent collaboration [42]. Whereas a hierarchy is characterized
by multiple master–slave relationships, a heterarchy predominantly
consists of peer-level relationships with distributed privileges to satisfy

global and local objectives [13]. The intermediate step between both
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Table 1
Pursued taxonomy framework.
extremes is characterized as a holonic structure [43]. Agent interaction
itself can be classified as either a collaborative way to achieve a com-
mon (global) goal or a competitive way, in which each agent tries to
accomplish its own goal [44]. For further classification, we additionally
differentiate between MA, incorporated embedded, and plain NN agent
designs. Plain NN approaches employ one or more NNs using the same
ML method, like target and value network in deep Q-learning, to solve
a task. Embedded approaches can consist of multiple NN-based learning
methods, but also combine NN approaches with heuristics in a construct
consisting of multiple stages. Each stage can address a sub-problem that
contributes to the solution of the whole task.

Unlike other algorithmic or ML-focused reviews in manufactur-
ing, applications and embeddings of NNs in PPC have not yet been
consolidated in a focused manner. To address this gap and illustrate
the diversity of existing approaches, an overview of applications and
NN embeddings can help practitioners and researchers to identify
individual use-cases and highlight challenges and fields for future
research.

3. Methodology

The following section specifies the review methodology that is used
to identify relevant NN-based PPC publications. To ensure a compre-
hensive and transparent review and content analysis, we follow the
guidelines provided by Tranfield et al. [45] and Thomé et al. [46].
Thereby, we try to consolidate and analyze relevant research in the
field at the time of the review and provide researchers with much faster
access. This will help researchers and practitioners identify research
gaps, incentivize research, and provide management insights [47]. Fol-
lowing Thomé et al. [46], we have organized the systematic literature
review (SLR) into 8 (iterative) steps, from planning to updating the
review, which are addressed next.

3.1. Review focus

The research questions to be answered and current research needs
were discussed in Section 1 above. The review team consisted of the
three authors of this study, who performed each step separately and
eventually merged their work. To specify the problem and scope of
the review and facilitate the collection and evaluation of contributions,
the review planning is based on Brocke et al. [48] and follows the
associated taxonomy framework of Cooper [49], which is outlined in
Table 1. Cells highlighted in gray represent the selection of underlying
characteristics of the review and the associated objectives and focus
areas.

Concerning the presented taxonomy, the review focuses on ex-
isting applications and obtained research outcomes and applications
of NN-based PPC (1). The goal is to present existing research in an
integrative and synthesizing manner, highlighting the benefits but also
the prevailing key challenges of the research field (2). It is intended to
provide a neutral (3), representative (4), and conceptual (5) synthesis
of the scope under consideration. Finally, the review should appeal to
a broad audience (6). We refrain from in-depth algorithmic explana-
tions or other technical details, which benefits general scholars and
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practitioners while attempting to provide specialized scholars with an
overview of detailed research streams. We intend to highlight the broad
application opportunities of the deployed NN structures as a promising
optimization method in production and inspire further research and
implementations.

3.2. Literature search

To conduct the review, we initially determined the search terms
and underlying databases. The raw literature output was then screened
based on pre-defined criteria to obtain the final dataset for the later
in-depth analysis.

3.2.1. Phase 1 - Database and iterative keyword selection
To conduct the review, we included the databases Web of Science

(all fields), Scopus (article title, abstract, keywords), and IEEE Xplore
(journals) to identify relevant publications. The keywords were defined
in an iterative process and are listed in Table 2. Besides a keyword
category that addresses deep learning algorithms, a domain-based cat-
egory was included that covers relevant aspects of production planning
and control. To obtain the intended scope of papers, organizational
keywords were not included. Terms such as Holonic or Heterarchic were
rarely mentioned and reduced the hit ratio in the search query.

3.2.2. Phase 2 - Defining inclusion and exclusion criteria
To define a clear review scope and systematically constrain the

obtained literature set, we established several inclusion and exclusion
criteria. To ensure high quality, we only considered publications from
peer-reviewed journals, proceedings, conference papers, and books (as
in [50]). Working papers, pre-prints, and other non-peer-reviewed
publications were not included. In addition, we considered only pub-
lications in English and, because of the significant improvements of
NN performance in recent years, those that were published after 2010.
For instance, it was not until the release of Mnih et al. [51] in 2013
that the field of deep RL was enabled on a large scale and with high
performance in various applications. Based on the defined research
questions and taxonomy, we defined thematic inclusion and exclusion
criteria. Due to the focus on NN-based PPC applications and the subse-
quent analysis of the employed organization and interactions, papers
were excluded that primarily dealt with methodology development,
theory generation, or algorithms without validating them for an explicit
production use case. Other reviews were accessed to identify additional
potentially relevant papers. Given the focus, we only considered papers
that address a real or simulated NN implementation in PPC and attempt
to leverage production performance. Papers that do not use NNs were
not reviewed.

3.2.3. Phase 3 - Conducting the literature search
The review process was conducted from October through December

2021, with a final data retrieval completed on 12/29/2021. A sum-
mary of the review is outlined in Fig. 1. Beginning with the database
extraction and the 1794 papers initially obtained, duplicates were first
removed and years filtered before applying thematic criteria.
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Table 2
Keywords defined for the review.
Fig. 1. Consolidated review process.
To ensure a high review quality, we screened the remaining 708
papers by title, keywords, and abstract according to Thomé et al. [46]
based on the inclusion and exclusion criteria and research questions. In
the next step, many papers were excluded due to a lack of production
context or missing application of NNs, reducing it to 185 papers. During
the full-text review, the remaining set was reduced to 82 and, in
addition to the initial essential coding, the groundwork was laid for the
forward/backward search. Following the approach proposed by Web-
ster and Watson [52], the backward/forward search is an essential
extension to identify papers beyond the initial search scope. In this
last retrieval, an additional 47 papers were found, increasing the total
number of papers to be considered to 129.

3.2.4. Phase 4 - Data gathering
In accordance with Thomé et al. [46] and Webster and Watson [52],

we developed a concept matrix for the subsequent analysis based on the
objectives and research questions.

The categorization and coding of the resulting dataset was based
on the PPC domain and agent configuration as the main criteria. In
terms of configuration, the approaches were categorized into plain,
embedded, and MA systems. Within these categories, a selective screen-
ing for configuration-unspecific and configuration-specific properties
was conducted. For all approaches, configuration-unspecific properties
included the particular application, the optimization objective, applied
algorithms, and NNs, as well as possible benchmark results and de-
ployment in a simulated and/or real environment. For the embedded
approaches, the type of embedding and the supplementary imple-
mented algorithms were further examined. In contrast, for MA systems,
the type of agent interaction and training of the agent population were
additionally considered.

3.3. Analysis of yearly and outlet-related contributions

A preliminary analysis of publication years outlines the increased
research activity of NN-based PPC in Fig. 2(a). Whereas a constant
number of publications was observed until 2017, it has since increased
from 5 in 2017 to 31 in 2021 (the time of the last retrieval), thus
highlighting the increased relevance of NN-based PPC.

An analysis of the most frequently cited outlets with three or more
published papers is given in Fig. 2(b). Overall, most findings were
published in journals (89, 69%), followed by proceedings (25, 19%)
and conference papers (15, 12%). Altogether, contributions from 59
746

journals, 15 conferences, and 12 proceedings were accessed.
4. Analysis

To focus on fundamental developments within the defined scope,
a summary of the research field is presented first. Subsequently, the
individual categories defined during the iterative analysis are addressed
to answer research questions RQ1 and RQ2. Finally, a general analysis
is conducted in Section 4.4.

Besides the increasing tendency for total publication numbers from
Fig. 2(a), a shift of research foci within the field becomes apparent in
the system split shown on the left in Table 3. Whereas in the years
2010–2013 one MA paper was published (8%), they take up 14% of the
publications in recent years. Especially in the last year, the field of MA
approaches has grown rapidly (8 publications) and is already further
along in 2021 than in previous years (3 at the last data retrieval). We
may conclude that particularly difficulties in agent communication and
collaboration are continuously addressed, and distributed learning is
accessible for broader applications.

Although most of the publications within the categorical split on the
right of Table 3 implemented plain approaches, especially in production
control, one-fifth of the publications were based on MA approaches
that benefit from a resulting complexity breakdown and increased
scalability. The high embedded share within forecasting is also strik-
ing, indicating an increased utilization of the combined benefits of
the individual methods, such as fuzzy C-Means job classification and
subsequent NN cycle time prediction (as in [53]).

To ensure a consistent structure and address RQ1, the rest of the
review is organized according to the section numbers given in Table 3
within the categorical split. In each category, we further classified
the papers according to the agent organization, either MA, embedded,
or plain approach. In addition to production planning and produc-
tion control, forecasting was incorporated as a further subcategory
following the final interactive review step as an increasingly important
production planning support tool.

For the subsequent sections we have truncated some terms. How-
ever, in order to facilitate understanding of the topics addressed, please
find below a list of the abbreviations and their meanings.

4.1. Production planning

The objective of production planning is to exploit production re-
sources in such a way that the forecast is met and target parame-
ters such as minimum cost are realized, which can comprise optimal

utilization of resources, lot sizing, scheduling, and others [54].
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Fig. 2. Analysis of yearly and outlet publications.
Table 3
System and categorical split of the reviewed literature.

Yearly split Categorical split

avg.
2010–2013

avg.
2014–2017

avg.
2018–2021

Production
planning
(4.1)

Production
forecasting
(4.2)

Production
control
(4.3)

Plain agent 6 (50%) 11 (61%) 56 (57%) 27 (49%) 23 (64%) 23 (61%)
Embedded agent 5 (42%) 5 (28%) 29 (29%) 20 (36%) 12 (33%) 7 (18%)
Multi-agent 1 (8%) 2 (11%) 14 (14%) 8 (15%) 1 (3%) 8 (21%)

Sum 12 18 99 55 36 38
4.1.1. Plain NN planning approaches
The category of plain NN-based approaches employs a single ML

method for optimization. As in the other planning categories, most
of the papers (85%) were superior to the conventional approaches.
Hereby, a common motivation for implementation was the high com-
putational overheads of conventional methods, which were 1000 times
smaller in flow shop scheduling when employing a combination of
unsupervised RL for training and supervised learning while maintaining
the same or better performance Wu et al. [55]. Also in flow-shop
scheduling, Marchesano et al. [56] demonstrated how a DQN can
optimize complex production by selecting dispatching rules as actions.
By applying the same rule selection approach using a DDDQN with
PER and a DQN, respectively, Han and Yang [57] and Lin et al. [58]
outperformed heuristics such as FIFO or SPT in job-shop scheduling.
For implementation, Lin et al. [58] employed a multi-class DQN that
contained structured indicators for all job-shop machines and corre-
sponding rules for all edge devices summed up in its output layer. Other
use cases were implemented by employing an A2C RL algorithm to in-
crease profitability [59], a DQN RL approach to minimize makespan in
dynamic scheduling [60], a double DQN in rescheduling color batches
to minimize change-over cost [61], or a BP algorithm in lot sizing to
minimize production, set-up, and inventory costs [62], among others
listed in Table A.9.

4.1.2. Embedded NN planning approaches
Apart from plain approaches, embedded systems leverage a com-

bined optimization within the internal agent structure during training
and operation. In flow-shop scheduling, whereas Kumar and Giri [63]
chose a hybrid fuzzy and NN-based approach to minimize the makespan
and reduce time-consuming efforts, Ramanan et al. [64] proposed two
approaches in which a NN generates priorities of a scheduling action,
which is subsequently optimized by a heuristic or genetic algorithm
(GA). Other superior hybrid approaches were implemented by deploy-
ing a NN to prioritize orders and heuristics for resolving ties [65], or
by splitting the scheduling problem into sub-problems and deploying a
GA in training and a convolution two-dimensional transformation that
elaborates scheduling features, thus providing a highly generalizable
approach [66]. To improve slow convergences and avoid the local
747
optima trap in job-shop scheduling, Zhang et al. [67] combined a par-
ticle swarm optimization (PSO) algorithm with a NN. Particle positions
were associated with weights of the NN and performances were further
leveraged by optimizing the sub-problem of machine selection and
scheduling through elite retention and neighborhood search. Another
PSO approach was pursued by Lan et al. [68], employing a NN to
estimate the credibility objective, which is embedded in the PSO and
takes significantly less time for planning compared to using conven-
tional approximation methods. A virus PSO was implemented by Wen
et al. [69], using a NN to approximate the expectation function by
converting an infinite into a finite dimensional optimization problem,
thereby solving a 2-stage remanufacturing problem better than a PSO.
Another approach was to combine a NN with GA in remanufacturing to
prevent the slow convergence of the NN and calculate the target output
of chromosomes [70,71] .

In a hybrid simulation, Sobottka et al. [72] leveraged the NN as a
meta-modeler of an industrial bakery for a GA, reducing global energy
costs by 25%. In a real copper mining complex, Kumar and Dimi-
trakopoulos [73] employed a self-play approach using a Kalman filter
and Monte Carlo tree search to train a NN, all of which benefited from
each other’s interaction, improving self-play and increasing cumulative
cash flow by 12%. Further approaches of embedded NNs are listed in
Table A.10.

4.1.3. Multi-agent planning approaches
To prevent the exploration problem of existing approaches in large

state spaces and circumvent the problem of gaining knowledge from
stochastic production systems, Hammami et al. [74] introduced multi-
ple decision agents in job-shop scheduling that chose dispatching rules
to reduce mean tardiness. Depending on the performance criterion,
each agent had different embedded NNs to choose from and might have
received intervention from choice agents assisting with choosing the
optimal policy. Other decision agents were contacted as acquaintances
to collect information and were optimized concurrently with respect to
a global objective.

To reduce high implementation costs of conventional approaches,
Liu et al. [75] and Baer et al. [76] defined local and shared global
rewards to meet production goals and ensure better process adapta-
tion. To subsequently optimize the agents with respect to the global
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goal, Baer et al. [76] employed a multi-stage learning strategy in which
a single agent was trained locally first while others were controlled
by heuristics. Furthermore, Baer et al. [77] demonstrated the gener-
alizability and scalability of the MA approach, in which each agent
was controlled by a DQN RL. By learning the basic task principles
and deploying a parameter-sharing training strategy among the agents,
training 700 scheduling topologies took only twice as long as training
a single one. In the case of a new scenario, the agent slightly mod-
ified its policy with respect to the new task specifics, thus reducing
reconfiguration time and cost.

Similar to the work of Baer et al. [77], in which agents did not
communicate and only perceived each other’s actions, Park et al. [78]
and Lee et al. [79] pursued planning approaches in semiconductor and
mold scheduling. Both utilized a centralized DQN learning approach
and let agents exploit the same NN while benefiting from each other’s
experiences. Although the agents did not communicate directly, both
approaches outperformed conventional ones and did not need to be
retrained for new scheduling scenarios. Based on Baer et al. [77], Pol
et al. [80] integrated a re-training phase after local-only training, in
which local rewards were multiplied by a global factor or by receiving
sparse global rewards based on eligibility traces. Combined with a
policy-sharing strategy among the production agents, the local-only
optimization was outperformed.

The only real scenario of MA in production planning was imple-
mented by Zhou et al. [81] on a small scale and deployed RFID
for collaboration among participants to prevent inefficiencies in cen-
tralized data processing. This enabled the participants to consider
attributes from other machines and learn from the experiences of other
agents through mutual updates of manufacturing value networks. Each
participant in the scenario, such as a warehouse or drill machine, was
provided with a NN, which was activated when a job needed to be
scheduled or information was needed. The distributed NNs were trained
using RL, and were superior to a central RL and a GA.

Implementations in MA-based planning were carried out with flat
hierarchies to a large extent in the reviewed papers, which have,
however, outperformed conventional methods in all benchmarks as
indicated in Table A.11.

4.2. Forecasting

Production forecasting can be deployed, among other opportunities,
as a support tool to increase the robustness of planning processes.
Often, complex non-linear processes that require sophisticated model-
ing and cause high computational costs motivate the use of NN-based
forecasting as in Worapradya and Thanakijkasem [82]. To avoid ter-
minological conflicts, we categorized each paper according to the key
variable addressed.

4.2.1. Plain NN forecasting approaches
Plain NN-based forecasting approaches were often adopted due to

existing planning uncertainties or complex dependencies, including
human factors. In garment production, Onaran and Yanık [83] pre-
dicted cycle time significantly better than linear regression with feature
extraction, despite high dependency on human capabilities. Likewise,
in textile production, to cope with highly fluctuating process times of
different products and avoid production imbalances and the inclusion
of human estimates, Cao and Ji [84] implemented a NN-based cycle-
time prediction and obtained a maximum error of 5%. An approach to
improve holistic production control and circumvent complex modeling
due to non-linear interdependencies was proposed by Glavan et al.
[85], who employed three NNs as black-box models to calculate cost,
production, and quality metrics. To avoid rescheduling due to volatile
electricity prices, Windler et al. [86] proposed a superior approach to
the monthly forecast and energy cost-oriented planning. To perform a
simulative what-if analysis for production control, Huang et al. [87]
estimated the throughput based on scheduling information, constant
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work in progress, and mean-time-to-repair levels. In a real petrol mine
scenario, by employing six NNs for six wells, Pham and Phan [88]
reached superior results predicting the production rates of liquid, oil,
and gas flow to optimize the production back-allocation of each well.
While the difference in throughput was only about 2% compared to
simulation, the computational effort was reduced about 100 times. A
superior flow-time prediction was implemented by Silva et al. [89]
based on job and shop status information to estimate the due date.
Based on the flow time, Karaoglan and Karademir [90] further esti-
mated production costs to generate more precise price offers. Among
other papers listed in Table A.12, Kramer et al. [91] predicted lead
times assuming constantly changing environmental variables, which
cannot be captured in regular models. Similarly, Göppert et al. [92] pre-
dicted makespans, which is difficult to achieve through conventional
methods in dynamic environments due to ever-changing variables such
as remaining jobs states, gate queue lengths, process duration, and
others.

4.2.2. Embedded NN forecasting approaches
To forecast cycle times in wafer fabrication, Chen [53] deployed

multiple NNs for jobs of different categories, which were determined
by a fuzzy c-means classifier beforehand. Compared to conventional
approaches, this reduced mean absolute forecasting error by more
than 38%. A combined prediction of cycle, blockage, and starvation
time in an assembly line was proposed by Lai et al. [93] by applying
a 2-stage LSTM framework, which increased prediction accuracy by
35% compared to conventional approaches. Based on the forecasted
cycle time of the first LSTM and the historical cycle time, as well
as blockage and starvation time, these two were forecasted in the
second stage. In lead-time prediction, Schneckenreither et al. [94] in
a three-stage make-to-order flow shop and Mezzogori et al. [95] in
a 6-machine job shop outperformed conventional approaches (1) by
integrating two FFNNs, one of which predicted flow time for bottle-
neck and non-bottleneck products, and (2) via NN-based LT prediction
combined with workload control to determine delivery dates. Other
approaches exploited a NN-generated gross demand forecast for sub-
sequent scheduling algorithms to circumvent high computational cost
and unknown system dynamics [96] or proposed a combined analytical
and LSTM approach [97] to cope with arising production complexities.
While the analytical model calculates the lower bound of the product
completion time, the LSTM adds aggregates based on varying inputs
in real time, thereby outperforming a plain LSTM-based approach and
other conventional ones. Worapradya and Thanakijkasem [82] pre-
dicted the mean and standard deviation of the system performance in a
continuous steelmaking casting process by employing one NN for each
machine group. Based on a K-means clustering of machines with similar
processes for complexity decomposition, extensive modeling could be
avoided and non-linear relationships were reflected more accurately
with a computational time that was approximately 30 times lower than
a Monte-Carlo simulation. Besides a deep autoencoder and NN-based
order remaining time prediction implemented by Fang et al. [98], other
approaches are listed in Table A.13.

4.2.3. Multi-agent forecasting approaches
As the only MA forecasting approach, Morariu and Borangiu [99]

implemented multiple LSTMs to optimize production cost and subse-
quent scheduling according to pre-defined objectives. The LSTM net-
works for each resource operated based on a bidding mechanism, and
a resource was subsequently assigned or not assigned to a job according
to its bid or prediction of what a job would likely cost if produced with

the resource.
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4.3. Production control

Apart from planning and forecasting, production control in partic-
ular must be capable of coping with direct production complexities
and solving optimization problems despite the inherent dynamics and
non-linear interrelationships. Although production planning already
tries to incorporate potential incidents and breakdowns on the job
floor, production control must update schedules and direct production
decisions in real time to keep processes stable and adjust decisions
based on the current production state.

4.3.1. Plain NN control approaches
The semiconductor industry, as one of the fastest moving, was ad-

dressed with 5 publications to handle high cost pressures and complex
processes. To circumvent missing methodological approaches, Kuhnle
et al. [100] implemented a TRPO-based RL approach to determine a dis-
patching agent’s next move to minimize throughput and waiting time
and maximize utilization rates. In wafer fabrication, Altenmüller et al.
[101] implemented an agent to choose the next operation destination
with a shifting local to global reward function. While work-in-progress
levels were optimized in both phases, the local utilization ratio was
optimized in the first, followed by minimizing global time constraints
in the second one.

Due to the limited capabilities of existing models to cope with
dynamic system behavior, Bergmann and Stelzer [102] and Bergmann
et al. [103] applied a control strategy approximation approach to
increase the accuracy of system reproduction and minimize manual
interventions. Luo [104] adopted a double DQN RL to minimize total
tardiness and avoid otherwise assumed static conditions. The state-
dependent selection of dispatching rules outperformed the respective
individually applied rules. Following the same basic concept, Mouelhi-
Chibani and Pierreval [105] and Zhao and Zhang [106] outperformed
conventional approaches using NN-based rule selection depending on
the flow- or job-shop system parameters. For this purpose, Zhao and
Zhang [106] employed a convolutional NN, which takes matrices of
processing times, and two Boolean matrices of pending and completed
operations as input to choose rules such as SPT and LPT, and out-
performed a GA in terms of machine utilization, waiting times, etc.
Similarly, in a job-store environment, deploying the production state
representation as a 2-D matrix and a dispatching policy transfer, Zheng
et al. [107] not only proved strong performance but also increased
generalizability using the transfer strategy.

Other publications listed in Table A.14 considered, for example,
short-term material flow control in a copper mining complex to reduce
costly re-optimizations and avoid unsteady updates based on the qual-
ity and quantity of extracted materials [108], or implemented unit-cost
minimization to mitigate the disadvantage of conventional methods’
uncertain demands and long changeovers in a dishwasher wire-rack
production system [109].

4.3.2. Embedded NN control approaches
A pure NN-based approach for job allocation and operation se-

quence selection to minimize makespan and tardiness was proposed
by Lang et al. [110]. Due to the generalization of the FFNN-based
allocation and LSTM-based sequencing DQN RL agents, the predic-
tion of new schedules was significantly faster. Another superior two-
hierarchical DQN job-shop scheduling approach was implemented by
Luo et al. [111]. The controller NN determined temporary goals for
the lower DQN, which selected a dispatching rule depending on the
indicated goal and production state. Goals were defined as different re-
ward functions that aimed at optimizing a certain production indicator
such as tardiness or machine utilization. A DQN as a hyper-heuristic
to adjust parameters of a sequencing rule reduced mean tardiness
up to 5% in Heger and Voss [112]. Kim et al. [113] combined a
NN with a heuristic to maximize machine utilization via supervised
machine buffer selection and rule-based dispatching. An overview of
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the reviewed papers is given at the top of Table A.15.
4.3.3. Multi-agent control approaches
To cope with the inherent dynamics in job-shop scheduling, Ham-

mami et al. [114] implemented an MA system based on simultaneous
learning and inter-agent information exchange to reduce mean tardi-
ness. Each resource was linked with a decisional agent that, to leverage
decision making, involved a choice agent for NN selection. A central
DQN module for training was used by Dittrich and Fohlmeister [115]
and Hofmann et al. [116]. In Dittrich and Fohlmeister [115], the
central module is optimized based on the globally defined rewards
and transferred to individual agents, which can request required local
and global system information for decision making. Hofmann et al.
[116] provides agents with immediate rewards for selected actions
and delayed rewards based on the total global cycle time achieved to
increase the speed of learning. In comparison to a rule-based and a
non-coordinated strategy, this strategy, which prevented the blocking
of other agents and assigned global rewards, outperformed the previous
strategies. Another training strategy was introduced by Waschneck
et al. [117] in a wafer fabrication job shop, which, for reasons of
stability and learning speed, initially trained one NN at a time while
the other work centers were controlled by heuristics. Subsequently,
each work center was controlled by one NN respectively and the system
was optimized cooperatively toward a maximum uptime utilization as
a global goal. The same training strategy was applied to minimize cost
in a car after-paint buffer control system [118]. [118] implemented one
NN for each, inserting and discharging from the buffer, and the agents
were trained with an iterative curriculum learning strategy in which
only one agent was trained at a time to circumvent instabilities that
arise from parallel training.

An order-bidding approach for dispatching was proposed by Malus
et al. [119] for 5 autonomous mobile robots with a common global
reward to minimize tardiness. Based on the observed state, the agent
that bids the most but does not handle more than 2 orders at the same
time is assigned to the order. To decrease execution time and increase
utilization efficiency, May et al. [120] followed an economic bidding
approach in which each participant in the production system should
reach a maximum profit independently of other participants. Based on a
deep RL PPO, the global utilization efficiency after part completion and
locally accepted quotes, non-value-adding time, as well as consecutive
failed quotations, could be optimized. Other MA production control
papers, besides those introduced above, are listed at the bottom of
Table A.15.

4.4. General analysis

The general analysis is briefly summarized in Table 4. Out of the
129 reviewed papers, a total of 95% were implemented and validated in
simulations. As a common outlook of the individual papers, the transfer
to reality was mentioned as a further objective to incorporate other
parameters and to be able to map complexity more accurately. Besides,
with 89%, the high share of superior approaches is conspicuous, which
does not contain similarly performing approaches. Especially the field
of MA and embedded-based planning yielded impressive results and
outperformed conventional approaches in all tests.

Moreover, algorithmic deductions can be drawn on the basis of the
reviewed papers. A DQN or deep RL is mainly implemented in planning
and control, regardless of the agent structure. The learning-by-doing
behavior as well as the straightforward definition of rewards, likewise
the absence of necessity for an already existing set of data, constitute an
advantage. In forecasting, NNs are primarily trained via BP algorithms,
rather than with deep RL (one approach), and most employ an FFNN.
Whereas 8 of all considered papers employed an LSTM architecture,
6 were employed in forecasting, thus profiting from their capability
to map long-term dependencies. Nevertheless, the FFNN share (25) is
decisively higher, similar to the other disciplines.

Referring to MA systems, most papers defined a global objective for

agent-to-agent interaction (see Table 5). For this purpose, Pol et al. [80]
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Table 4
Key statistics from the review process.

Paper
count

Simulation-only
share

Superiority
(#benchmarks)

Most freq.
NN

Most freq.
algorithm

Planning 55 95% 90% (41) FFNN DQN
Plain 27 100% 82% (22) FFNN DQN
Embedded 20 90% 100% (13) FFNN BP
Multi-agent 8 88% 100% (6) FFNN DQN

Forecasting 36 92% 95% (25) FFNN BP
Plain 23 91% 79% (14) FFNN BP
Embedded 12 92% 100% (11) FFNN BP
Multi-agent 1 100% - (-) RNN Supervised

Control 38 100% 87% (30) FFNN DQN
Plain 23 100% 94% (16) FFNN DQN/TRPO
Embedded 7 100% 86% (7) FFNN DQN
Multi-agent 8 100% 71% (7) FFNN DQN

Total 129 95% 89% (96) FFNN DQN
Table 5
MA system interaction and training approaches.

Interaction Training

Global
objective

Agent
exchange

Agent state
information

Bidding
mechanism

Market-based
negotiation

None Central Decentral n.a.

36% 18% 14% 9% 5% 18% 44% 37% 19%
derived a reward factor based on the total makespan and multiplied it
by the local rewards for each agent. Waschneck et al. [117], on the
other hand, considered the total sum of all due-date derivatives of all
lots as a global minimizing objective. Another interaction type was
the direct or active system information exchange between the agents,
e.g. by information requests between machine and order agents in Dit-
trich and Fohlmeister [115] or by partial activation of agents in Zhou
et al. [81], which subsequently provided real-time state information
and became idle again when no scheduling task was pending. The
provision of agent state information in a Boolean job-agent matrix was
implemented in Liu et al. [75]. Such sharing of agent information was
also referred to as indirect interaction [80] or sensing [77], indicating
that agents must anticipate what the others might do next. A direct
collaboration approach was also facilitated by bidding (as in [119]) or
negotiation mechanisms (as in [121]).

Another analysis examined the training patterns of MA systems.
44% of the reviewed MA papers pursued a centralized learning ap-
proach, such as implementing a central intelligence as in Park et al.
[78] or Dittrich and Fohlmeister [115], and executed it in a decen-
tralized manner. Thus, aggregated experiences were leveraged through
transfer learning or parameter sharing, making the experience of indi-
vidual agents available to others, which enabled an increased scalabil-
ity (as in [79]). Others, such as Morariu and Borangiu [99] and Wasch-
neck et al. [117], adopted a decentralized or decentralized iterative
training approach, respectively. While Morariu and Borangiu [99] de-
ployed LSTMs in parallel to learn machine cost patterns and generate
bids, Waschneck et al. [117] trained one agent first, while the others
were controlled by heuristics before all were controlled by one DQN
each. Additionally, reward designs were designed accordingly, such as
in Pol et al. [80]. Where agents learned to meet local goals first in a
decentralized manner, they were optimized to reach a global goal in a
subsequent phase.

5. Taxonomy

We propose a taxonomy to classify the implementation of NN in
production and general systems, following the taxonomy development
method of Nickerson et al. [122]. Proceeding from the empirical-
to-conceptual path, we first identified object subsets based on the
employed NNs and agent structures through our review and then
condensed them into a coherent framework. The clustering of these is
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integrated into Table 6 and describes the central dimensions for the
taxonomy creation, independent of the specific production background.

Initially, the classification is driven by the assumption that a self-
contained system is considered, which consists of clearly defined
boundaries as well as input and output variables for the optimization
of the problem. Segregated multi-production or factory systems that do
not interact with each other are not included.

Starting with the top left and with one agent and method each
(1), a classical optimization approach is described whose inputs pro-
vide parameters for optimization. In particular, its fast implementation
and few inherent interdependencies reduce initial personnel and com-
putational efforts. This enables prototypical use cases to be quickly
evaluated for their benefits, and experience can be gathered to clarify
necessary follow-up actions and potential serial deployment. In large
systems, however, applying just one NN might imply low scalability and
performance due to the curse of dimensionality (as in [123]). The em-
bedded approach (2) combines a NN-based optimization with other ML
methods or heuristics. It describes an intrinsically structured approach
that breaks down the overall optimization problem and complexity
into sub-tasks. This approach can be carried out either in parallel or
subsequently, e.g. by predetermining a baseline through an analytical
model, to which the NN output is added to dynamically determine total
product completion times (as in [97]). Although the implementation
is more extensive in terms of effort, the advantages of the respec-
tive methods can be exploited to leverage the overall performance
and cope with complex tasks. Additionally, available employee and
system knowledge can be utilized to enable an optimal division of
tasks and derive appropriate problem-solving strategies. While these
two MA variants are more complex or costly than the others in terms
of interaction design, system requirements, and computational effort,
they are more suitable for large environments due to their improved
scalability and straightforward adding of agents.

The bottom lines of Table 6 (cases 3/4) describe MA approaches
within a confined system. Several plain or embedded agents of the
upper line are combined and interact with each other. The agents act
as independent autonomous entities according to the definition of Patel
et al. [34] and are provided with information from the same associated
system. The respective system inputs can be distributed and received
by an agent as a collective set but can also be specifically filtered and
processed. Filtering and provisioning can be dependent on the linked
entity (e.g., a machine), and can be independent of the overall system
and global states if only local state variables are considered.
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Table 6
Proposed taxonomy for single- and multi-agent system interaction.
It is feasible to link several of the above forms of organization
nd interaction in a hybrid manner to benefit from the advantages of
oth. For instance, a plain or embedded agent in one subsystem can
eep performing a specific task in some expert role without interac-
ion. Neighboring subsystems, on the other hand, can be designed as
ulti-agent systems. As such, the system could exploit its strength in

everaging its group dynamics and take on logistical tasks where the
gents act as autonomous planners bidding on transportation orders.

In addition to the above differentiation, a distinction can be made
etween parallel and iterative task completion and the applied control
r training model. In parallel completion, agents are able to work
oncurrently on jobs of the same category, and each agent, such as a
ogistics robot, can be assigned to each job. In subsequent or iterative
ompletion, agents can differ in their capabilities and thus influence
rocess chains. Rather, a set of jobs is not allocated to different agents,
or example, to increase the throughput in logistics with each addi-
ional agent, but segments of the process chain are distributed to the
ppropriate agents.

In the centralized control or training of agents (lower left row), the
gent shares input data with a central intelligence instead of processing
t individually. This can be facilitated by deploying a central NN that
earns through the experiences of each individual agent, rather than
aving an independent NN for each agent. An intermediate step may
e embodied by a parameter sharing strategy that collects and shares
elevant experiences after specific time intervals. Compared to the other
ethods, initial efforts and adjustments for MA training and interaction

etween decentralized agents are significantly higher during training
nd control optimization. Nevertheless, this approach provides a high
calability and agents can be easily added and benefit from all expe-
iences without the need for costly re-training. If the agent is trained
n a decentralized manner, it can better adapt to its specific role in the
espective subsystem and act as a kind of dedicated expert. Thus, if a
ystem consists of procedurally independent interacting possessors, the
N should not be shared in order to allow the specific shaping and
evelopment of unique sills to maximize the system performance. In
parameter-sharing or completely centralized strategy, on the other

and, agents with the same or similar tasks benefit from all experi-
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nces and thereby optimize global performances. However, this could
suppress specific skills due to a progressive standardization of agent
behavior.

As indicated in Table 5, the interaction between agents can adopt
different forms. Based on this, Table 7 summarizes the possibilities
related to the specific type of inter-agent interaction and exchanged
information. The interaction between agents can be described as direct
(agents directly interact with each other) or indirect (no direct data
transfer). In addition, depending on the exchanged or mediated good,
the type of exchange is considered in terms of the (processed) state
information of an agent (such as the workload), or relevance criteria.
The special case of sensing, i.e. no exchange at all, is not covered.

A direct interaction based on state information can be considered
a direct form of communication. An indirect interaction, on the other
hand, is not based on any direct information exchange but, for example,
on a global goal or the sharing of global state information. The agent
does not receive information from other agents but from the system
as such. One step further, agents can exchange already processed
information and negotiate with each other in a direct manner ( Table 7,
bottom left) or place bids that are not communicated directly with each
other, but are submitted to an independent entity such as a machine or
an order itself. In this context, the prior evaluation of an order in terms
of the pre-negotiation measure or bid level is interpreted as an indicator
of the order’s relevance to an agent.

The exact interaction that should be chosen for a specific application
depends on the exact task and environment. For a fast use case creation,
but also the indirect communication of global information, a global
objective can optimize the system as a whole. The direct communi-
cation of state information would rather serve the local optimization
and only consider the closer environment. Advanced mechanisms for
the processing of relevant information facilitate the joint processing
of several agents’ observations and impressions. In this case, it is not
the individual agent that decides whether or not to do something,
but rather other agents are involved in the decision-making process.
Thereby, processes can be designed in a more interactive and bal-
anced way to profit from group dynamics. Nevertheless, negotiation
and bidding are more complex in their implementation and require
a thoroughly elaborated design. It is further possible to combine the
presented types of interaction. For instance, an agent can pursue a
global objective based on a DRL, but still be in contact with other agents
via negotiation.
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Table 7
Types of interaction in multi-agent systems.

Type of agent interaction

Direct Indirect

Exchange of ... State
information

Direct
communication

Global objective,
receive global states

Relevance
information

Market-based
negotiation

Bidding mechanism

6. Implementation challenges and research agenda

In the previous section, the broad application base, embedding
variants, and benefits of NN-based PPC were highlighted and properties
were defined in a taxonomy. However, there are still some challenges
that prevent widespread adoption and real-world deployment (RQ3)
and that need to be addressed in future research (RQ4).

6.1. Implementation challenges

During the review, we identified some challenges and categorized
them into the following subgroups, which are further reflected upon
afterward by identifying respective research gaps.

• Transferability: Many of the above-mentioned papers examined
the implemented approaches within a pre-defined simulation
scope. The extent to which these are structurally rigid and require
NN adjustments in the case of modified scenarios was hardly con-
sidered. Even though approaches like Baer et al. [77] attempted to
identify fundamental and transferable relationships in scheduling,
small changes in scenarios can cause decreasing performances
and demand large efforts of reconfiguration and retraining as
well as deep process insights. Also, Lang et al. [110] pointed out
that in DQN-based scheduling, i.e. if a new machine or buffer
location is added, it cannot be mapped directly by the prevailing
NN structure that limits adaptability and reliability in dynamic
processes, especially of plain agent approaches.

• MA training and interaction: Additional complexities in MA
environments require deep consideration during implementation
and increased evaluation of the learning behavior of each agent.
Concurrent learning might lead to instabilities during training and
cause the mutual dynamic and non-stationary behavior of the
agents to negatively affect the individual, as mentioned in Malus
et al. [119]. To avoid instabilities, Gros et al. [118] and Wasch-
neck et al. [117] chose an iterative approach, which must be
optimally adjusted in terms of frequency and transition to pure
NN-based operation. To facilitate synergy effects between the
agents and guarantee mutual optimization, it should further be
clarified which form of interaction is selected depending on the
specific scenario. Although an indirect communication in Baer
et al. [77] proved to be functional without direct agent interac-
tion, other papers integrated global states and rewards. However,
advanced negotiation and bidding mechanisms were scarce and,
in summary, represent an additional complexity dimension in
addition to finding an appropriate training strategy, algorithm,
and NN parameters, which potentially impede implementation
efforts.

• Handling (real) production complexity: A total of 123 papers
(or 95%) were implemented and evaluated solely in simulations.
Although simulations are becoming more accurate due to the
inclusion of failures, noise, etc., they do not capture the full
complexity of a real system with its non-linear dependencies,
human intervening factors, etc. Therefore, the results cannot
directly be transferred to reality and no general conclusions can
be drawn about the reliability and sustainability of the results in
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real environments where additional influences would affect the
system and agent. Such effects can lead to unstable learning [118]
or vibration during training [124]. Particularly in the field of
production control, no approach was implemented due to the high
implementation and security efforts required in real operations.

• Limited diversification of NNs and algorithms: In summary,
80% of the papers employed an FFNN, which in most cases
outperformed conventional approaches. Nevertheless, leveraged
performances could be reached through the deployment of more
advanced networks such as LSTMs for capturing long-term rela-
tionships or convolutional networks, i.e. for processing produc-
tion state matrices. Furthermore, 47% of the papers employed a
BP or DQN RL, both of which are basic algorithms in machine
learning. In the case of the DQN, however, it was often inferior
to a DoubleDQN, which was employed in only 2% of the papers,
even though it exhibited outstanding performance in Hasselt et al.
[125].

• Manual parameter optimization: In addition to the algorithm
and NN adaptation to the framework conditions, the search for
fine-grained parameters represents a central hurdle during im-
plementation [126] and has a tremendous impact on the final
performance [103,127]. In particular, Wu et al. [128] visually
demonstrated the effects of the optimizer setting, number of NN
layers, and neurons, and their impact on performance. Still, there
are no common guidelines or rules for setting NN parameters
that must be set by hand, thereby enforcing a black-box model
character. Consequently, parameter tuning not only consumes
a lot of time and causes significant computational efforts, but
also requires expert knowledge in parameter fitting, which is not
always available among practitioners.

6.2. Future research agenda

Although the aforementioned challenges still prevent seamless real-
world and large-scale applications, they did reveal some opportuni-
ties for further research during the course of the review. These are
summarized in the following bullet points.

• Scalability: Most of the reviewed papers already revealed the ca-
pabilities of NN-based solutions in PPC and forecasting. However,
a stronger focus on MA systems could help to cope with large-
scale production environments, as indicated in Waschneck et al.
[117]. The system would not have to rely on only a single NN
as in a plain agent optimization, but could distribute the pro-
duction complexity and data streams accordingly as introduced
by Wang et al. [129] in a resource preemption environment,
or by Kim et al. [130] in dynamic resource scheduling by de-
ploying job weights and multi-agent sociability aspects. Assuming
that machines or others are added to a production line, agents
would not necessarily need to be retrained, but could instead
rely on the same logic. Potentially resulting scale effects, the
necessity of altered global objectives, and the question of what
purposeful data provisioning should look like all still need to be
investigated in further research. Also, novel dynamic and hybrid
control approaches such as the non-NN-based hybrid hierarchical
predictive and heterarchical reactive architecture, as in Pach et al.
[131], can lead to increased scalability due to the combination of
respective organizational benefits.

• Design of NN-based MA systems: As a considered sub-area, es-
pecially research on MA systems is not yet exhausted. Previously
mentioned as a hurdle, there are still a lot of potentials, especially
in communication design, stable and reliable training methods,
and the definition of guidelines for developing MA systems. The
extent to which a centralized intelligence and parameter-sharing
strategies are advantageous, or whether fully decentralized and
co-learning swarm intelligence strategies should rather be ap-

plied, are conceptual questions that need to be clarified. The
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same accounts for the choice of interaction, such as collaborative,
competitive, or hybrid approaches, and how bidding or nego-
tiation mechanisms must be designed to enhance performance,
adaptability, and resilience. In addition, the agent’s interaction
behavior in new environments, how the adaptability of a collec-
tive set differs from that of a single agent, and how interaction
approaches can be exploited to maintain production stability
are further research directions that could accelerate a broader
implementation of MA systems.

• Simplification through embedded approaches: Increasingly
large state spaces and, in general, the emergence of Big Data cou-
pled with ever larger data streams caused by a growing amount of
sensor data and system interdependencies lead to less-manageable
problem spaces. The decomposition of tasks into sub-tasks, plain
and embedded approaches can better cope with and help to
contribute to increasing algorithm performances. Further research
could focus on how holistic NN-based approaches can be enabled
and optimally deployed through sequential task sharing or paral-
lelization of tasks. Parallelization can be problem-centric, but also
location-, strategy-, or scenario-centric, such as the bottleneck and
non-bottleneck flow time forecast in Schneckenreither et al. [94],
depending on the specific complexity allocation.
Another non-NN-based example was presented in Minguillon and
Lanza [132] by combining centralized and decentralized schedul-
ing properties for the adjustment of degrees of freedom. As men-
tioned in Schwung et al. [133], a NN-based system can also
initially learn from established methods before applying them
individually. This allows already recognized system knowledge
to be transferred and expert knowledge to be leveraged in future
applications. A collaborative application to mitigate exceptional
events with the help of human operators might be explored
in more detail and can be initially realized in learning factory
environments, as discussed by Teichmann et al. [134].

• Generalizability: The flexibility and adaptability of an approach
to quickly fit to new environments could be deepened. This would
not only mitigate exceptional situations such as machine break-
downs or large-scale events such as the Corona pandemic, but
also increase system sustainability through significantly increased
resource utilization and longer service lives, since not only would
fewer machines or robots be needed, but also necessary manual
and technological adjustments that cause constant effort would
be minimized. Further research on how basic task patterns can be
learned, as in Baer et al. [77], or the implementation of a central
intelligence that prevents local skill generation and exploitation
would leverage generalizability. Such over-adaptation could be
circumvented by adequate exploration of the broader problem
space or increased context awareness to adapt more quickly and
robustly to new environments and scenarios, as already done in
computer vision [135] or nuclear mass training [136]. To achieve
this within the relevant scope, Zang et al. [66] developed a
hybrid approach with a prior problem classification before being
solved by the NN scheduler. Further investigation of NN-based
optimization and adaption of advanced analytics or heuristics
could exploit both methods’ advantages. Once analytically accu-
rate but static knowledge is available, the NN model can be added
as a dynamic and adaptive component to generalize process
knowledge. With a high accuracy and adaptability, appropriate
trade-offs between conventional and ML-based optimization could
be facilitated. Thus, by circumventing the vanishing applicability
of simulations and hard-coded algorithms, generalizability could
be optimized.

• Simulation to reality transfer: To take further steps toward
the implementation of real applications, simulations could be de-
signed more realistically. By integrating dynamics and non-linear
parameters, implemented approaches can already be evaluated
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for robustness at an early stage. A further step toward reality
could be accelerated by hybrid hardware-in-the-loop (HiL) envi-
ronments, in which real elements like control units are installed
and the rest of the environment is simulated. Likewise indicated
by Jones [137], it is worthwhile to advance the approaches to
higher cognitive levels in order to circumvent existing limitations
of prevailing machine learning approaches and not only build a
sophisticated digital twin, but benefit from the strong artificial
intelligence paradigm. Also, small-scale implementations such as
in Zhou et al. [81] can help to collect initial insights before
transferring the applied methods to larger scales. At this level,
further tests can be carried out, and reliability as well as safety
factors can be evaluated. Especially in forecasting, approaches can
be pre-tested in parallel to already proven methods and assist,
i.e., by conducting what-if analyses in Huang et al. [87] for
decision support.

7. Discussion

Today’s PPC, as well as forecasting, must increasingly cope with
dynamic processes, fast-paced product cycles, and sharp fluctuations
in demand. To ensure robust and adaptive production, NNs have been
increasingly deployed in recent years since they can process large
amounts of data in real time and provide great flexibility. Although the
potentials of NNs as an optimization tool have already been indicated
in other reviews, a specific review of NN-based PPC was still missing
until now. Based on a taxonomy framework, we retrieved 120 papers
and subdivided them according to their PPC application, agent con-
figuration, applied NN and algorithm, pursued objective, benchmark
results, and other category-dependent criteria, such as interaction in
MA systems.

Although 95% of the reviewed papers were assessed in simulations,
we could identify a broad application range and superior performance
in 89% of benchmarks. NN-based approaches demonstrated their ability
to cope with external interference and unpredictable events while
maintaining robust production and optimizing a variety of performance
indicators. This not only reduced lead times, costs, and manual effort,
but also increased overall flexibility and adaptability. Additionally,
based on the review results, a taxonomy was defined which enables
the classification of the implemented NN approach based on the agent
and method count. In this regard, implementations are categorized
into plain, embedded, and multi-(embedded) agent systems, which
differ particularly in terms of scalability, implementation effort, and
prevailing task breakdown.

7.1. Managerial implications

Companies must be able to generate profits and meet customer
expectations despite the challenging market conditions and increas-
ingly complex production processes. To counteract the disadvantages
of conventional methods such as high manual effort, companies should
leverage the increasingly available machine and process data to en-
able data-driven analysis and optimization. This review is intended
to demonstrate the potential of NN-based PPC to increase production
efficiencies and minimize process risks.

The review revealed the practical relevance and superior perfor-
mance of NN-based PPC, which not only saved costs and increased
production throughputs but also optimized production flexibility and
robustness. The reviewed papers and defined taxonomy can serve man-
agers as guidance for the identification and prototypical design of
company-specific implementations. A plain approach, with minimized
trade-offs, can help with rapid integration, whereas embedded and
multi-agent approaches can solve more complex and larger-scale prob-
lems, but also entail higher implementation effort and development
complexity. Through the integration of NNs in PPC and forecasting,
dependency on human experience can be reduced, and data-driven
production optimization, as well as real-time process adaption, can be

facilitated.
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7.2. Limitations

Although the review is based on a fundamental methodology for
conducting the review, as well as for creating the taxonomy, existing
limitations should be mentioned. First, the review originates from
iteratively defined keywords, which were optimized in the course of
the review. Also, the retrieved database was supplemented by a forward
and backward search. Yet, despite our best endeavors, some papers may
not have been identified. Further, some supplementary articles may not
have been included by the databases, although Scopus, WoS, and IEEE
Xplore should cover the most accessible articles. Lastly, we integrated
proceedings and conference papers in addition to journal articles to
obtain a comprehensive literature set, which, however, may cause bias
to similar reviews.

8. Conclusion

This review intends to provide an outline of existing NN approaches
in PPC and forecasting and establishes a taxonomy to classify the imple-
mentations based on the number of employed agents and intrinsically
combined methods. The broad application base and superior perfor-
mance of the approaches were highlighted in a variety of different
scenarios (RQ1). A multitude of process and economic parameters could
be improved, and process accuracy and flexibility were optimized.
Drawbacks of conventional methods, such as costly re-training or high
dependency on human experience, were thereby significantly reduced.

The different types of embeddings (RQ2) were incorporated into
the basic review structure and the developed taxonomy framework.
Whereas most papers employed one NN for plain optimization, partic-
ularly since 2018 a significant increase can be observed in intrinsically
embedded approaches that combine multiple methods, including non-
NN-based ones, and MA approaches that split the task among multiple
agents through complexity partitioning and appropriate communica-
tion.

Although the combined benefits of the respective methods in em-
bedded approaches and the scalability and robustness of the MA ap-

Table A.8
List of abbreviations.
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AC Actor-critic algorithm
proaches became apparent, the lack of guidelines still poses a major
challenge (RQ3) that leads to sophisticated design processes and man-
ual efforts in framework and parameter selection, as well as extensive
procedures for training and interaction design. In addition, only a
limited number of different algorithms and NN types were deployed
and trials were primarily conducted in simulations.

Future research (RQ4) could focus on optimizing the generaliz-
ability and transferability of trained agents with limited additional
effort, e.g. through non-specific scenario training and learning general
tasks patterns, as well as adopting a broader range of algorithms and
NNs. To further mitigate the gap to real-world testing, simulations can
be designed more realistically by incorporating additional input and
disturbance parameters and deploying hybrid environments.

Advancing embedded and collaborative MA approaches can con-
tribute to the ability to cope with the ever-increasing process com-
plexity and significantly optimize production efficiency. Although few
approaches have been tested in reality, NN-based PPC provides an op-
portunity to create robust and sustainable production processes and has
already demonstrated its superior capabilities. Further research and a
shift to large-scale and hybrid environments can further drive NN-based
PPC solutions in manufacturing in order to benefit from simultaneous
global and local optimization opportunities in times of on-going au-
tomation and an increasing importance of data-driven decisions in the
sense of Big Data.
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Appendix. Supplements and detailed review tables

See Tables A.8–A.15
Mfg. Manufacturing
A2C Advantage actor critic algorithm ML Machine learning
A3C Asynchronous advantage actor critic NEAT Neuro evolution of augmenting topologies
ADP Approximate dynamic programming NN Neural network
BP Backpropagation algorithm PER Prioritized experience replay
Conv. Convolutional neural network PPC Production planning and control
DBN Deep belief network PPO Proximal policy optimization
DDDQN Dueling double DQN PSO Particle swarm optimization
DDPG Deep deterministic policy gradient RBFN Radial basis function network
DP Dynamic programming RL Reinforcement learning
DQN Deep Q-learning RM Regression model
DRL Deep reinforcement learning RNN Recurrent neural network
GA Genetic algorithm SA Simulated annealing
GCNN Graph convolutional neural network TD3 Twin delayed DDPG
GNN Graph neural network TRPO Trust region policy optimization
HNN Hopfield network VPSO Virus particle swarm optimization
LSTM Long-short-term memory WIP Work in progress
MDP Markov-decision process
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Table A.9
Plain NN based approaches in production planning.

Plain planning approaches

Subtopic Algo. NN Objective Superior Application Simulation Source

1 Dynamic
scheduling

DQN GCNN Minimize makespan Superior Flexible
manufacturing

Simulation Hu et al. [60]

2 Dynamic
scheduling

A2C FFNN Max. profitability Superior Continuous
chemical
process

Simulation Hubbs et al. [59]

3 Dynamic
scheduling

DQN FFNN Minimize
completion time

– General tasks,
services

Simulation Zhou et al. [138]

4 Dynamic
scheduling

Policy
gradient

FFNN Maximize resource
utilization

Similar Cloud
manufacturing

Simulation Zhu et al. [139]

5 Flow-shop
scheduling

DQN FFNN Maximize
throughput

– Flow-shop Simulation Marchesano et al.
[56]

6 Flow-shop
scheduling

Levenberg-
Marquardt

FFNN Minimize overall
completion time

– Flow-shop Simulation Rouhani et al. [140]

7 Flow-shop
scheduling

REINFORCE LSTM Negative total
tardiness

Superior Medical mask
production

Simulation Wu et al. [55]

8 Job-shop
scheduling

AC RNN Min. setup waste Similar Blown film
extrusion

Simulation Gannouni et al.
[141]

9 Job-shop
scheduling

HNN HNN Min. makespan – Job-shop Simulation Fnaiech et al. [142]

10 Job-shop
Scheduling

DQN FFNN Minimize makespan Superior Job-shop Simulation Groth et al. [143]

11 Job-shop
scheduling

DDDQN
with PER

Conv. Minimize makespan Superior Job-shop Simulation Han and Yang [57]

12 Job-shop
scheduling

DQN FFNN Minimize lead-time Superior Job-shop Simulation Kardos et al. [144]

13 Job-shop
scheduling

PPO GNN Minimize makespan Superior Job-shop Simulation Park et al. [145]

14 Job-shop
scheduling

PPO FFNN Optimize exec. time,
minimize makespan

Superior Job-shop Simulation Wang et al. [146]

15 Job-shop
scheduling

DQN FFNN Minimize makespan,
costs, balance
workloads

Superior Job-shop Simulation Zhou et al. [147]

16 Job-shop
scheduling

DQN FFNN Completion time,
energy con.,
utilization

Superior Reconfigurable
production

Simulation Chen et al. [148]

17 Job-shop
scheduling

DQN FFNN Minimize makespan Superior Semiconductor Simulation Lin et al. [58]

18 Job-shop
scheduling

DQN FFNN Minimize
completion
time, lateness

Superior Single machine
job-shop

Simulation Xie et al. [149]

19 Job-shop
scheduling

DRL GCNN Maximize
fill rate

– swv11 in OR
library

Simulation Seito et al. [150]

20 Lot scheduling PPO FFNN Min. waiting times,
amount, cost

Superior Single machine Simulation Rummukainen
et al. [126]

21 Lot-sizing BP FFNN Minimize
production,
set-up, and
inventory costs

Superior Air supply and
maintenance
center

Simulation S̨enyiğit and Atici
[62]

22 Re-entrant
production

DQN FFNN Robustness Similar Single-product
production

Simulation Shi et al. [124]

23 Rescheduling DQN Conv. Minimize tardiness Superior Semi-continuous
extruders

Simulation Palombarini et al.
[151]

24 Rescheduling DQN Conv. Minimize tardiness Superior Semi-continuous
extruders

Simulation Palombarini et al.
[152]

25 Rescheduling Double DQN Conv. Minimize
changeover costs

Superior Color batching Simulation Leng et al. [61]

26 Rush-order
rescheduling

Supervised/
BP

FFNN Precision
and accuracy

Similar Job-shop Simulation Madureira et al.
[153]

27 Task scheduling DQN FFNN Minimize makespan Superior Cloud
manufacturing

Simulation Dong et al. [154]
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Table A.10
Embedded NN based approaches in production planning.

Embedded planning approaches

Subtopic Algo. NN Objective Super. Embedding Application Simulation Source

28 Batch
scheduling

RM FFNN Feasibility
accuracy

Superior NN anticipates batch
feasibility for top
batch scheduler. If
feasible, instructions
go to base model for
final complex nesting

Metal
processing

Simulation Gahm et al. [155]

29 Flow-shop
scheduling

Supervised FFNN Minimize
makespan

Superior Hybrid fuzzy and NN
based concept

Three echelon
supply chain

Simulation Kumar and Giri
[63]

30 Flow-shop
scheduling

BP FFNN Minimize
makespan

Superior NN optimized by
Suliman heuristic (1)
and NN with GA (2)

Benchmark
flow-shops

Simulation Ramanan et al. [64]

31 Job-shop
scheduling

BP FFNN Minimize
makespan

Superior Hybrid algorithm,
stand-alone heuristic
combined with NN
operation prioritizing
with dispatching rules

Job-shop Simulation Sim et al. [65]

32 Job-shop
scheduling

BP FFNN/
Conv. NN

Minimize
makespan

Superior Hybrid scheduler, GA
for training,
then generate
subproblems and
scheduling
transformation for NN
scheduler.

Job-shop Simulation Zang et al. [66]

33 Job-shop
scheduling

Gradient
search

Conv. NN Minimize
completion time

– Conv. NN for
scheduling, differential
evolution for sequence
optimization

Job-shop Simulation Zhao et al. [156]

34 Job-shop
scheduling

BP FFNN Minimize max.
makespan

Superior PSO-based NN
optimization

Job-shop Simulation Zhang et al. [67]

35 Modeling BP FFNN Accuracy Superior NN as meta-modeler for
GA tuning

Industrial
bakery

Hybrid Sobottka et al. [72]

36 Order
allocation

Lagrangian FFNN Utility of
AM Cloud

Superior Allocation and
payment network

Additive mfg.
order allocation

Simulation Mashhadi et al.
[157]

37 Production
planning

BP FFNN Production,
inventory cost

– NN approximates
credibility objective
and is embedded into
PSO

6 sources/period
production

Simulation Lan et al. [68]

38 Production
planning

BP FFNN Production cost – Hybrid monkey
algorithm,
stochastic simulation,
NN

Fuel production Simulation Lan et al. [158]

39 Production
planning

SA FFNN Optimal
credibility

– Combined NN and SA
algorithm
approximation for
multi-product
multi-period scheduling

Furniture
manufacturing

Simulation Feng and Yuan
[159]

40 Remanufacturing
scheduling

BP FFNN Minimum
completion time

– Double fuzzy algorithm
with
GA to prevent local
optimality
and slow convergence
of BP algorithm.

Crankshafts
remanufacturing

Simulation Zhang [71]

41 Remanufacturing
scheduling

RBFN FFNN Minimum total
mfg. costs

Superior NN for approximating
the expectation
function which converts
infinite to
finite problems for
VPSO

Camshaft
remanufacturing

Simulation Wen et al. [69]

42 Remanufacturing
scheduling

BP FFNN Accuracy – FFNN into GA to
calculate
chromosome output

Cam-/crankshaft
remanufacturing

Simulation Wen et al. [70]

43 Rescheduling – FFNN Minimize
response time

Superior Supervised
dimensionality
reduction,
GRNN mapping, SVM
rescheduling

Job-shop Simulation Wang et al. [160]

(continued on next page)
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Table A.10 (continued).
Embedded planning approaches

Subtopic Algo. NN Objective Super. Embedding Application Simulation Source

44 Scheduling /
reconfiguration

A2C FFNN Minimum total
tardiness cost

Superior DRL (1) scheduling for
job processing and
(2) reconfiguration for
production mode

Test instances Simulation Yang and Xu [161]

45 Short-term
scheduling

DRL (sim.
AlphaGo)

FFNN Short-term
profit

Superior MC tree search to train
a NN to adapts
short-term production.
NN improves
tree search strength for
better experiences

Ore production Reality Kumar et al. [73]

46 Single machine
scheduling

BP FFNN Minimum total
weighted
tardiness

Superior Two-stage approach
with NN problem
downscaling and
metaheuristics solution

Single machine Simulation Liu et al. [162]

47 Task scheduling BP FFNN Optimal
evaluation

– 3-module system with
stochastic
classification,
training/validation NN,
and interactive
validation

Knitting
processes

Simulation Baeza Serrato [163]
Table A.11
Multi-agent NN based approaches in production planning.

Multi-agent planning approaches

Subtopic Algo. NN Objective Superiority Interaction Training Application Simulation Source

48 Job-shop
Scheduling

– – Minimize
process
time

– Global
objective

Iterative training
of
local NN, other
agents
crtl. by
heuristics

Job-shop Simulation Baer et al. [76]

49 Job-shop
scheduling

DQN FFNN Minimize
makespan

– None
(sensing)

Joint-action
learning

Job-shop Simulation Baer et al. [77]

50 Job-Shop
scheduling

Asyn.
DDPG

Conv. Minimize
makespan

Superior Agent state
information

Central and
parallel training

Job-shop Simulation Liu et al. [75]

51 Job-shop
scheduling

DQN FFNN Minimize
makespan

Superior Agent state
information,
global
objective

Single NN
instance

Job-shop Simulation Pol et al. [80]

52 Job-shop
scheduling

Modified
DQN

FFNN Minimize
make-span

Superior Agent
information
exchange

Central Q-value/
decentral
scheduling
network

Job-shop Reality Zhou et al. [81]

53 Real-time
scheduling

Simulated
annealing

FFNN Minimize
tardiness

Superior Agent
information
exchange,
global
objective

– Job-shop Simulation Hammami
et al. [74]

54 Robust
scheduling

DQN FFNN Minimize
makespan

Superior None Central training Semicond.
scheduling

Simulation Park et al. [78]

55 Sustainable
scheduling

DQN FFNN Minimize
process
time

Superior None Central training Mold
scheduling

Simulation Lee et al. [79]
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Table A.12
Plain NN based approaches in production forecasting.

Plain forecasting approaches

Forecast Subtopic Algo. NN Super. Application Simulation Source

56 Cycle-time Dispatching BP FFNN – Semiconductor Simulation Chakravorty et al.
[164]

57 Cycle-time Flexible mfg. BP FFNN Superior Textile mfg. Simulation Onaran et al. [83]

58 Cycle-time Production
planning

BP FFNN – Textile mfg. Simulation Cao and Ji [84]

59 Cycle-time Virtual
machine
prototype

BP FFNN – Job-shop Simulation Jain et al. [165]

60 Electricity
price

Energy cost
oriented
planning

BP FFNN Superior Electricity
price forecast

Simulation Windler et al. [86]

61 Energy cost /
consumption

Production
planning

Levenberg-
Marquardt

FFNN – Rotary clinker
furnace

Simulation Pusnik et al. [166]

62 Energy
consumption

Production
planning

– FFNN Superior Industrial
facility

Simulation Ramos et al. [167]

63 Failure
occurrence
time

Dynamic
scheduling

– FFNN Superior Pharmaceutical
factory

Simulation Azab et al. [168]

64 Flow-time Cost
estimation

BP FFNN Superior Oil-/dry-type cast
resin transformers

Simulation Karaoglan et al.
[90]

65 Flow-time Job-shop
scheduling

Levenberg-
Marquardt

FFNN Superior Job-shop Simulation Silva et al. [89]

66 Lead-time Job-shop
scheduling

Supervised FFNN Superior Job-shop Simulation Kramer et al. [91]

67 Lead-time Job-shop
scheduling

– FFNN – Aluminum
extrusion

Simulation Sajko et al. [169]

68 Make-span Online
scheduling

AlphaZero Conv. NN – Interconnected
assembly

Simulation Göppert et al. [92]

69 Number of
mfg. products

Feasibility
assessment

– FFNN – Flywheel
production

Simulation Burduk et al. [170]

70 Liquid, oil,
gas flow

Production
back
allocation

BP FFNN Superior Samarang
petrol mine

Reality Pham and Phan
[88]

71 Order
compl. time

Job-shop
control

BP Deep belief
network

Superior RFID-driven
job-shop

Simulation Wang and Jiang
[171]

72 Costs, output,
quality

Black-box
modeling

Levenberg-
Marquardt

FFNN – Tennessee
Eastman proc.

Simulation Glavan et al. [85]

73 Processing
times

Offline
scheduling

BP RNN Inferior Parallel
machine sched.

Simulation Yamashiro et al.
[172]

74 Sequence
deviation

Sequencing BP FFNN Inferior Automotive Simulation Stauder et al. [173]

75 Time
constraint
violations

Production
planning

BP RNN/LSTM Similar Job-shop Simulation May et al. [174]

76 Through-put Process ctrl. Supervised FFNN Superior Geo-metallurgy Simulation Both et al. [175]

77 Through-put Process ctrl./
order release

BP FFNN – Color filter
fabrication

Reality Huang et al. [87]

78 WIP Production
planning

– LSTM Superior Bottleneck
machine

Simulation Gallina et al. [176]
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Table A.13
Embedded and multi-agent NN approaches in production forecasting.

Embedded forecasting approaches

Forecast Subtopic Algo. NN Super. Embedding Application Simulation Source

79 Cycle-time Multi-job
production

BP FFNN Superior Fuzzy c-means job
classifying and NN
based
prediction for each
class

Semiconduc-
tor

Simulation Chen [53]

80 Cycle/ blockage/
starvation time

Bottleneck
prediction

Levenberg–
Marquardt

LSTM Superior 2-staged cycle and
starvation time
prediction

Underbody
assembly

Simulation Lai et al. [93]

81 Energy con.
patterns

Predictive
planning

Unsupervised LSTM Superior LSTM with prior
classification and
clustering

Job-shop Simulation Morariu et al.
[177]

82 Gross demand Master prod.
scheduling

BP FFNN Superior NN forecast for
subsequent
scheduling algorithms

Kalak
Refinery
System

Simulation Sadiq et al. [96]

83 Job remaining
time

Rescheduling BP FFNN Superior Deep autoencoder
extracts
features, NN predicts
jobs
remaining time
forecast

Aeroengine
production

Reality Fang et al. [98]

84 Lead-time Make-to-order
manufacturing

BP FFNN Superior Non-/Bottleneck
forecasting separation

Three-stage
flow-shop

Simulation Schneckenreither
et al. [94]

85 Lead-time Workload
control

– FFNN Superior WLC based control
with NN prediction
to define delivery
dates

Job-shop Simulation Mezzogori et al.
[95]

86 Load-value Production
scheduling

BP FFNN – Affinity propagation
operations clustering
with FFNN forecasting

Semiconduc-
tor

Simulation Han et al. [178]

87 Order
completion time

Production
scheduling

BP FFNN Superior NN for prediction,
GA/SA for global/
local tuning

Job-shop Simulation Hu and Zhou
[179]

88 Performance
mean/standard
deviation

Proactive
scheduling

BP FFNN Superior K-means clustering for
decomposition and
NN based perf.
measures

Steelmaking
contin.
casting

Simulation Worapradya
et al. [82]

89 Product
completion time

Production
scheduling

– LSTM Superior NN prediction
w.analytical
model as baseline

Multi-product
serial
production

Simulation Huang et al.
[97]

90 Production
process

Make-to-order
manufacturing

BP DBN Superior 2-staged DBN based
encoding
and progress
prediction

Job-shop Simulation Huang et al.
[180]

Multi-agent forecasting approaches

Forecast Subtopic Algo./ NN Super. Interaction Training Application Simulation Source

91 Manufacturing
cost

Production
scheduling

Supervised/
RNN; LSTM

– Bidding
mechanism

Decentral training General inter-
connected
assembly

Simulation Morariu et al.
[99]
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Table A.14
Plain NN based approaches in production control.

Plain control approaches

Subtopic Algo. NN Objective Superiority Application Simulation Source

92 Accuracy
control

Bacterial
memetic

FFNN Opt. performance
measurement

– Small-batch
assembly

Simulation Németh et al. [181]

93 Dispatching DQN FFNN WIP; util. ratio (1.);
min. global time
constraints (2.)

Superior Semiconductor Simulation Altenmüller et al.
[101]

94 Dispatching TRPO FFNN Min. throughput
time

Superior Semiconductor Simulation Kuhnle et al. [182]

95 Dispatching TRPO FFNN Max. utilization,
min. lead time

Superior Semiconductor Simulation Kuhnle et al. [183]

96 Dispatching TRPO FFNN Max. utilization,
min.throughput/
waiting time

Superior/similar Semiconductor Simulation Kuhnle et al. [100]

97 Dispatching DQN FFNN Max. utilization,
min. lead times

Superior Semiconductor Simulation Stricker et al. [184]

98 Dispatching DDDQN FFNN Min.
reconfiguration,
min. makespan

Superior Reconfigurable
mfg. system

Simulation Tang and Salonitis
[185]

99 Dispatching MDP FFNN Min. average
cycle time

– Re-entrant
production

Simulation Wu et al. [128]

100 Dispatching DP FFNN Minimize total
production cost

– Re-entrant
production

Simulation Zhou et al. [127]

101 Flow control – FFNN Min. makespan,
cost,
energy consumption

Superior WIP bounding Simulation Danishvar et al.
[186]

102 Flow control DQN FFNN High throughput,
min. WIP

Superior WIP bounding Simulation Silva and Azevedo
[187]

103 Flow-shop
scheduling

– FFNN Minimize mean
tardiness

Superior Flow-shop Simulation Mouelhi-Chibani
et al. [105]

104 Job-shop
scheduling

BP algorithm FFNN Speed up modeling
process, raise
accuracy

– Job-shop Simulation Bergmann and
Stelzer [102]

105 Job-shop
scheduling

BP algorithm FFNN Imitation of
dispatching rule

– Job-shop Simulation Bergmann et al.
[103]

106 Job-shop
scheduling

DoubleDQN FFNN Minimize total
tardiness

Superior Job-shop Simulation Luo [104]

107 Job-shop
scheduling

DQN FFNN Minimize
makespan

Superior Job-shop Simulation Moon and Jeong
[188]

108 Job-shop
scheduling

PPO FFNN Max. productivity – Job-shop Simulation Overbeck et al.
[189]

109 Job-shop
scheduling

AC Cong. Min. makespan and
total delay

Superior Job-shop Simulation Zhao and Zhang
[106]

110 Job-shop
scheduling

REINFORCE FFNN Min. mean lateness,
tardiness

Superior Job-shop Simulation Zheng et al. [107]

111 Material flow
control

Policy
gradient

FFNN Max. profit, min.
cost,
target deviation

Superior Copper mining
complex

Simulation Kumar et al. [108]

112 Modular
control

PPO FFNN Max. throughput – Modular production Simulation Mayer et al. [190]

113 Order release A3C,
Q-learning

FFNN Min. tardiness,
throughput time

Superior Two-stage flow-shop Simulation Scheckenreither
et al. [191]

114 Production and
inventory
control

ADP FFNN Min. total cost per
unit

Superior Dishwasher wire
rack production
system

Simulation Wu et al. [109]
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Table A.15
Embedded and multi-agent NN approaches in production control.

Embedded control approaches

Subtopic Algo. NN Objective Superiority Embedding Application Simulation Source

115 Dynamic
scheduling

Supervised FFNN Maximize
machine
utilization

Superior NN machine buffer
targeting and rule
based lot
dispatching

Semicond. Simulation Kim et al. [113]

116 Flow-shop
scheduling

DQN FFNN Minimize mean
tardiness

Superior RL dynamically
adjust scheduling
k1/ k2 values

Flexible
flow-shop

Simulation Heger and Voss
[112]

117 Flow-shop
scheduling

NEAT FFNN Min. total
tardiness
and makespan

Superior GA sets NN
topology/
hyper-parameters

Flow-shop Simulation Lang et al. [192]

118 Job-shop
scheduling

DQN FFNN/LSTM Minimize
makespan
and total
tardiness

Superior Job allocation and
operation sequence
agent

Job-shop Simulation Lang et al. [110]

119 Job-shop
scheduling

DoubleDQN FFNN Min. total
weighted
tardiness and
max.
machine
utilization

Superior Two-hierarchy,
higher
DQN determines
temp.
goal for lower DQN

Job-shop Simulation Luo et al. [111]

120 Job-shop
scheduling

DQN FFNN Optimize
average
slack time

Superior 3-staged
release/order,
DQN scheduling and

allocation structure

Job-shop Simulation Zhao et al. [193]

121 Job-shop
scheduling

TRPO FFNN Explainability Similar RL scheduling and
decision tree based
control abstraction

Semicond. Simulation Kuhnle et al. [194]

Multi-agent control approaches

Subtopic Algo./ NN Objective Superiority Interaction Training Application Simulation Source

122 Goal
formulation

AC/ FFNN Maximize
profit/
utilization

Superior Market-based
negotiation

GARIC framework Self-evol.
mfg. system

Simulation Shin et al. [121]

123 Job-shop
scheduling

DQN/ FFNN Min. mean
cycle time

Similar Agent
information
exchange, global

objective

Central DQN
module
for approximator
transfer

Job-shop Simulation Dittrich et al. [115]

124 Job-shop
scheduling

SA/ FFNN Min. mean
tardiness

– Agent
information
exchange

Simultaneous
learning
with simulated
annealing

Job-shop Simulation Hammami et al.
[114]

125 Job-shop
scheduling

DQN/ FFNN Min. through-
put time

Superior Agent state info.,
global objective

Central DQN
module

Matrix
production

Simulation Hofmann et al.
[116]

126 Job-shop
scheduling

DQN/ FFNN Min. WIP,
max. util.

Similar Global objective While one DQN
is trained, others
are
controlled by
heuristics

Semicond. Simulation Waschneck et al.
[117]

127 Order
dispatching

TD3/ FFNN Minimum
tardiness

Superior Order bidding
mechanism,
global
objective

Concurrent learning Job-shop Simulation Malus et al. [119]

128 Re-ordering DQN/ FFNN Min. cost and
decision time

Superior None Iterative curriculum
learning

Car after
paint buffer

Simulation Gros et al. [118]

129 Routing,
dispatchting,
scheduling

PPO/
Conv. NN

Min.
execution
time, max.
util.
efficiency

Superior Economic
bidding/
global objective

– Matrix
production
system

Simulation May et al. [120]
761
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