
Variational Inference for Composite
Gaussian Process Models

Jakob Lindinger

Universitätsdissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

in der Wissenschaftsdisziplin
Digital Health - Machine Learning

Angefertigt am

Fachgebiet Digital Health - Machine Learning
und am

Bosch Center for Artificial Intelligence

eingereicht an der

Digital-Engineering-Fakultät
der Universität Potsdam

Datum der Disputation: 17. Juli 2023

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Betreuer
Prof. Dr. Christoph Lippert
Hasso Plattner Institute, University of Potsdam

Gutachter
Prof. Dr. Marc Deisenroth
University College London

Prof. Dr. Ralf Herbrich
Hasso Plattner Institute, University of Potsdam

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-60444
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-604441

Abstract

Most machine learning methods provide only point estimates when being queried to predict on new
data. This is problematic when the data is corrupted by noise, e.g. from imperfect measurements,
or when the queried data point is very different to the data that the machine learning model has
been trained with. Probabilistic modelling in machine learning naturally equips predictions with
corresponding uncertainty estimates which allows a practitioner to incorporate information about
measurement noise into the modelling process and to know when not to trust the predictions. A
well-understood, flexible probabilistic framework is provided by Gaussian processes that are ideal as
building blocks of probabilistic models. They lend themself naturally to the problem of regression,
i.e., being given a set of inputs and corresponding observations and then predicting likely observations
for new unseen inputs, and can also be adapted to many more machine learning tasks. However,
exactly inferring the optimal parameters of such a Gaussian process model (in a computationally
tractable manner) is only possible for regression tasks in small data regimes. Otherwise, approximate
inference methods are needed, the most prominent of which is variational inference.

In this dissertation we study models that are composed of Gaussian processes embedded in other
models in order to make those more flexible and/or probabilistic. The first example are deep Gaussian
processes which can be thought of as a small network of Gaussian processes and which can be em-
ployed for flexible regression. The second model class that we study are Gaussian process state-space
models. These can be used for time-series modelling, i.e., the task of being given a stream of data
ordered by time and then predicting future observations. For both model classes the state-of-the-art
approaches offer a trade-off between expressive models and computational properties (e.g. speed or
convergence properties) and mostly employ variational inference. Our goal is to improve inference
in both models by first getting a deep understanding of the existing methods and then, based on this,
to design better inference methods. We achieve this by either exploring the existing trade-offs or by
providing general improvements applicable to multiple methods.

We first provide an extensive background, introducing Gaussian processes and their sparse (ap-
proximate and efficient) variants. We continue with a description of the models under consideration
in this thesis, deep Gaussian processes and Gaussian process state-space models, including detailed
derivations and a theoretical comparison of existing methods.

Then we start analysing deep Gaussian processes more closely: Trading off the properties (good
optimisation versus expressivity) of state-of-the-art methods in this field, we propose a new variational
inference based approach. We then demonstrate experimentally that our new algorithm leads to better
calibrated uncertainty estimates than existing methods.

Next, we turn our attention to Gaussian process state-space models, where we closely analyse
the theoretical properties of existing methods. The understanding gained in this process leads us to
propose a new inference scheme for general Gaussian process state-space models that incorporates
effects on multiple time scales. This method is more efficient than previous approaches for long time-
series and outperforms its comparison partners on data sets in which effects on multiple time scales
(fast and slowly varying dynamics) are present.

Finally, we propose a new inference approach for Gaussian process state-space models that trades
off the properties of state-of-the-art methods in this field. By combining variational inference with
another approximate inference method, the Laplace approximation, we design an efficient algorithm
that outperforms its comparison partners since it achieves better calibrated uncertainties.

iii

Acknowledgements

I gratefully acknowledge the support of my university supervisor, Christoph. I am thankful for regular
and insightful discussions which allowed me to place my work in a broader context and see helpful
similarities. My Bosch supervisor, Barbara, and I both greatly appreciate the freedom Christoph
provided in choosing and shaping the research questions that we followed and which led to this
thesis. His experience in "selling" machine learning research was invaluable close to paper, poster, or
talk deadlines.

Furthermore, I want to sincerely thank my Bosch supervisor, Barbara, for her priceless advice,
explanations, ideas and her help with some of the experiments and during the (often hectic) paper
writing phases. I have learned a great deal about research and how to perform proper machine learning
experiments from Barbara, and I imagine I could especially learn quite a bit more about coming up
with valuable and meaningful research questions from her. Discussions with her were always fruitful
also thanks to her calm, helpful and friendly manner, and I benefited especially from her patience
when helping me transform my first (mostly extremely technical) drafts of papers, posters or talks into
a human-understandable form. I am immensely grateful for the time Barbara invested in supervising
me which she managed to allocate despite her many other duties and research projects. Without her
effort and guidance this thesis would not have been possible.

Even though there was a pandemic going on through most of the time I worked on this thesis, I
never had to feel isolated due to the many people I had the pleasure to work with: Thanks for many
interesting research-related (and also many more non-research related) discussions to my fellow PhD
students (including but not limited to Manuel, the Katharinas, Alex, and Çağatay), the members
of my Bosch research group (especially David, Sebastian, Jan, and Buote) and to the members of
Christoph’s research group that openly welcomed me the few times I visited in person. I am also
grateful to the countless people that participated actively in one of the organising teams of the Bosch
PhD program and thus helped to create a unique and extremely broad PhD experience.

Doing an industry PhD entails diverse experiences, but also leads to some organisational overhead.
I am extremely grateful to Corinna, Lena, and Kevin for the organisational help with topics concerning
my Bosch research group (and Bosch as a whole), concerning the HPI and the university of Potsdam,
and concerning particularities of the Bosch PhD program, respectively.

Luckily, the time needed for finishing a PhD is not solely filled with work but also with much
needed diversions, fun activities or other every-day things that are needed for a healthy work-life
balance. My family and friends always took me in when I escaped from Swabia and provided me
with all of the above and usually more. Whenever I needed some exercise to balance the work days
sitting in the (home) office, I could rely on members of the Ultimate Frisbee or Boulder groups, which
was always lots of fun.

Finally, I want to thank the most important person in my life, my partner Sabrina: For cheering
me up when things were not going as I wished them to, for (possibly slightly obsessed) Gloomhaven
sessions during and outside of the Corona lock-downs, and much needed other diversions from work.
Without you the time in Renningen would not have been half as much fun. Thank you for embarking
on the complete PhD journey together with me (without actually having signed up for it). Without
you and your constant moral support this thesis would not have been possible.

v

Contents

1 Introduction 1

1.1 Gaussian Process Regression . 1

1.2 Challenges and Extensions for Gaussian Process Regression 3

1.2.1 Sparse Gaussian Processes . 3

1.2.2 Flexible and Expressive Regression . 4

1.2.3 Time Series Modelling . 4

1.3 Introduction to Deep Gaussian Processes . 5

1.4 Introduction to Gaussian Process State-Space Models 7

1.5 Variational Inference for Composite Gaussian Process Models 9

1.6 Thesis Outline and Publications . 9

1.6.1 Publications and Contributions . 10

2 Background 11

2.1 Gaussian Processes . 11

2.2 Sparse Gaussian Processes and Variational Inference 14

2.2.1 Inducing Point Approximations . 14

2.2.2 Sparse Variational Gaussian Processes . 15

2.2.3 Other Approaches to Sparse Gaussian Process 17

2.3 Technical Background on Deep Gaussian Processes 18

2.4 Technical Background on Gaussian Process State-Space Models 21

3 Structured Deep Gaussian Processes 27

3.1 Fully-Coupled Deep Gaussian Processes . 28

3.1.1 Analytical Marginalisation of the Inducing Outputs 29

3.1.2 Experiments . 30

3.2 The Stripes-and-Arrow Approximation . 32

3.2.1 Experiments . 34

3.3 Chapter Summary . 36

4 Understanding Gaussian Process State-Space Models 39

4.1 Analytical Marginalisation of the Inducing Outputs 40

4.2 The Role of the FITC Approximation . 43

4.3 Chapter Summary, Conclusions and Outlook . 44

vii

viii Contents

5 Multi-Resolution Gaussian Process State-Space Models 47

5.1 Stochastic Differential Equations and Gaussian Processes 48

5.2 Training Gaussian Process State-Space Models on Multiple Resolutions 50

5.2.1 Model Formulation . 50

5.2.2 Equivalence Between Discretised GP SDEs and GPSSMs 52

5.3 Experiments . 55

5.3.1 Semi-Synthetic Data . 56

5.3.2 Engine Modelling Task . 58

5.4 Chapter Summary . 59

6 Laplace Approximated Gaussian Process State-Space Models 61

6.1 The Laplace Approximation . 62

6.1.1 Laplace Approximated Parametric State-Space Models 62

6.1.2 Laplace Approximation versus Variational Inference 63

6.2 Combining Variational Inference and the Laplace Approximation 64

6.2.1 Optimisation Objective . 65

6.2.2 Implicit Function Theorem . 66

6.2.3 Sparsity and Structure of the Hessian . 67

6.2.4 Algorithm . 68

6.3 Related Work . 70

6.3.1 Variational Inference in Gaussian Process State-Space Models 70

6.3.2 Laplace Approximation . 71

6.3.3 Other Related Work . 71

6.4 Experiments . 71

6.4.1 Kink . 72

6.4.2 System Identification . 74

6.5 Chapter Summary . 76

7 Conclusions and Outlook 79

7.1 Summary and Conclusions . 79

7.2 Outlook . 80

7.2.1 Deep Gaussian Processes . 81

7.2.2 Expressive probabilistic regression . 81

7.2.3 Probabilistic Time-Series Modelling . 82

Appendices 85

A Detailed Derivations 85

A.1 Gaussian Process Posterior . 85

A.2 Variational Inference and Evidence Lower Bounds 86

A.2.1 Sparse GP ELBO . 87

A.2.2 Deep GP ELBO . 89

Contents ix

A.2.3 GPSSM FITC ELBO . 90

A.2.4 GPSSM VCDT ELBO . 91

A.3 Derivations for Laplace Approximated Gaussian Process State-Space Models 93

A.3.1 The Laplace Approximation Applied to State-Space Models 93

A.3.2 The Implicit Function Theorem . 94

A.3.3 Efficiently obtaining the non-zero blocks of the Hessian 95

A.3.4 Efficiently calculating the Hessian determinant and performing Hessian solves 96

B Proofs 97

B.1 Analytical Marginalisation for Deep GPs . 97

B.2 Analytical Marginalisation for GPSSMs . 105

B.3 The FITC approximation for GPSSMs . 110

B.4 Equivalence of SDE GPSSMs and canonical GPSSMs 111

Bibliography 115

CHAPTER 1

Introduction

1.1 Gaussian Process Regression

The use of Gaussian processes for regression can be independently found in many different fields
such as geostatistics (e.g. Matheron, 1973; Journel and Huijbregts, 2003), meteorology (e.g. Thomp-
son, 1956; Daley, 1993), and spatial prediction and spatial statistics (Whittle, 1963; Ripley, 1981).
See also Rasmussen and Williams (2006, Sec. 2.8) for a more detailed history. Gradually it has been
realised that Gaussian processes (GPs) can be used for generic regression problems (O’Hagan, 1978),
with applications to e.g. computer experiments and their design (Sacks et al., 1989). With the seminal
finding by Neal (1996) that infinitely wide neural networks correspond to GPs, the attention of the ma-
chine learning community was directed towards GPs. Their use in the regression context was quickly
adopted (Williams and Rasmussen, 1995). In the following we introduce some basic background on
GP regression before discussing specific applications.

A GP is a distribution over functions and completely specified by a mean function and a ker-
nel (Rasmussen and Williams, 2006). Throughout this thesis we work with a mean function being
constantly zero unless otherwise specified.1 We denote a function f : Rd → R that is distributed
according to a zero-mean GP with kernel k : Rd × Rd → R as f ∼ GP(0, k), where d is the di-
mensionality of the input space. Of practical relevance is the property of GPs that for every finite set
with N ∈ N input points XN = {xn}

N
n=1 with xn ∈ Rd, the distribution over the function values

FN ≡ {f(xn)}
N
n=1 ∈ RN is given as

p(FN) = N (FN |0,KNN) . (1.1)

Here KNN ∈ RN×N is the matrix obtained by evaluating the kernel at all pairs of input points, i.e.,
KNN ≡ {k(xn, xn′)}N

n,n
′
=1

and we use N (x|µ,Σ) to denote a multivariate Gaussian distribution
(see e.g. Bishop, 2006, Sec. 2.3) over a (multi-dimensional) random variable x with mean vector µ
and covariance matrix Σ. We depict samples from Eq. (1.1) for different choices of kernels k in
Fig. 1.1 (top).

Regression is the problem of being given a set of input and corresponding output points {XN , YN}
(the training data), where YN = {yn}

N
n=1 with yn ∈ R, from which the output y∗ at an unseen input

point x∗ has to be predicted. The Bayesian approach to regression (see e.g. Bishop, 2006, Sec. 1.2;
van der Wilk, 2019, Chap. 1) is to place a so-called prior on the function describing the mapping
from inputs to outputs. This allows to incorporate prior knowledge about the expected mapping
(e.g. smoothness or periodicity) in the model, protects to some extent against overfitting to the training
data and is rewarded by probabilistic predictions, i.e., a distribution over test outputs p(y∗). In GP
regression, we assume that the mapping can be described by a function f with yn = f(xn) and that
this function can be described by a GP.2 The prior on this functional mapping is then completely
described by Eq. (1.1) and, through KNN , depends on the chosen kernel k. By choosing different

1See e.g. Rasmussen and Williams (2006, Sec. 2.7) for a detailed discussion about mean functions of GPs.
2Typically the function f is assumed to be unobserved and corrupted by additive observation noise. We discuss this in
Sec. 2.1

1

2 1.1 Gaussian Process Regression

2

0

2

f(x
)

RBF
Matern32
Periodic

4 2 0 2 4
x

2

0

2

f(x
)

Data
Mean
Confidence
Samples

Figure 1.1: Top: Shown are two samples from the prior Eq. (1.1) for three different choices of the underlying
kernel k, respectively, where the inputsXN are linearly spaced in the range [−5, 5]. The chosen kernels possess
different properties, e.g. the radial basis function (RBF, blue) and the Matern-3/2 kernel (red) produce infinitely
often and twice differentiable functions, respectively. The periodic kernel (black) leads to periodic functions,
here with a chosen period of 1. Bottom: After having seen data (black crosses), we update our prior belief,
leading to the posterior depicted here. We have chosen the RBF kernel and show the mean of the posterior
prediction (solid blue line), along with a confidence interval (2 standard deviations, shaded blue area). The
grey lines show different sample functions drawn from the posterior.

kernels (see e.g. Rasmussen and Williams, 2006, Chap. 4; Duvenaud, 2014, Chap. 2), we can express
our prior belief about different properties that we expect the function f to possess, such as smoothness,
differentiability, stationarity, or periodicity (see Fig. 1.1, top).

Using the observations YN , we can update our belief about the underlying functional mapping,
resulting in the so-called posterior p(FN |YN). The latter allows us to calculate the desired predictive
distribution over the outputs p(y∗|YN) which is depicted for a simple problem in Fig. 1.1 (bottom). We
defer the formulas for these distributions and their derivations to Sec. 2.1. Importantly, the calculation
of these distributions is analytically possible without having to rely on approximations, but incurs an
O(N3) cost since the matrix KNN appearing in Eq. (1.1) has to be inverted.

Gaussian process regression is optimally suited for cases where a function that is expensive to
evaluate is to be approximated by as little observations as possible. The probabilistic nature prevents
overfitting in these cases and the uncertainty predictions help reasoning about observations at unseen
test locations. A very prominent example of such an application is Bayesian optimisation (e.g. Srini-
vas et al., 2010; Snoek et al., 2012; Shahriari et al., 2016; Eriksson et al., 2019) where the goal is to
find the optimum of an expensive black-box function f in as little evaluations as possible. Further

1 Introduction 3

examples include active learning (sometimes also called optimal experimental design, see e.g. Krause
et al., 2008; Settles, 2009; Schreiter et al., 2015), where the goal is to explore an unknown function
f with as little queries as possible, or Bayesian quadrature (e.g. O’Hagan, 1991; Gunter et al., 2014;
Briol et al., 2019), where the goal is to approximate an integral over an expensive function f with as
little function evaluations as possible. The above-mentioned examples have in common that a GP can
be naturally employed to model the unknown (and usually expensive) function f which is done via
standard GP regression as introduced above. However, for different tasks in machine learning, GP
regression is simply not suitable or the formulation introduced so far is suboptimal (e.g. due to the
computational burden). In the following we describe how to adapt GPs in order to tackle different
challenges.

1.2 Challenges and Extensions for Gaussian Process Regression

While regression is the field of Machine Learning to which Gaussian processes can be most naturally
applied to, their success led to the exploration of different fields: One example is classification, i.e.,
the task of mapping an input x to one of C classes C1, . . . , CC (e.g. Williams and Barber, 1998; Ras-
mussen and Williams, 2006, Chap. 3). Additionally, other works were concerned with improvements
for GP regression in specific settings, e.g. when the regression data arrives sequentially and the model
has to be updated often (so-called online GPs, see e.g. Csató and Opper, 2002), or when the dimen-
sionality of the input data is large and has to be reduced to a manageable size first (so-called manifold
GPs, see e.g. Snelson and Ghahramani, 2006; Calandra et al., 2016). General dimensionality reduc-
tion techniques using GPs (Lawrence, 2005) or applications to regression with multiple correlated
outputs also exist (multi-output GPs, e.g. Bonilla et al., 2007; Álvarez et al., 2012).

In the following, we focus on three particular challenges and extensions for GP regression: First,
in Sec. 1.2.1, we briefly discuss sparse GPs that are required to make GP regression applicable to
large data sets. Then, we discuss reasons for and ways towards making GP regression more flexible
and expressive (Sec. 1.2.2). Finally, in Sec. 1.2.3, we discuss the applicability of GPs to time-series
modelling, which is a standard problem in statistics and machine learning.

1.2.1 Sparse Gaussian Processes

The same problem as in online GPs, namely the O(N3) scaling of GPs with the number of data
points N , is tackled in a more general way by so-called sparse GPs (see e.g. Liu et al., 2020 for
a recent review). Their goal is to find a way to lower the computational complexity of GPs while
still providing good approximations to the posterior p(FN |YN). The predominant approach relies on
introducing a set of pseudo-data {XM , FM}, whereXM = {xm}

M
m=1 with xm ∈ Rd are the so-called

inducing inputs and FM ≡ {f(xm)}
M
m=1 the so-called inducing outputs. Their aim is to summarise

the training data and by choosing M ≪ N to provide significant computational savings (Quinonero-
Candela and Rasmussen, 2005). Over the recent years methods that additionally use an approximate
inference scheme called variational inference (Blei et al., 2017) that aims to approximate the posterior
p(FN , FM |YN) by a parametric distribution q(FN , FM) have become the most prominent sparse GP
approach. We provide the technical details about these sparse variational GPs and discuss other
approaches to sparse GPs in Sec. 2.2.

Advances in sparse GPs have typically been picked up quite quickly in other methods relying on
GPs in order to reduce the computational complexity. This includes many of the examples men-
tioned above such as Bayesian optimisation (McIntire et al., 2016), multi-output GPs (Álvarez and
Lawrence, 2011; Nguyen and Bonilla, 2014), or online GPs (Cheng and Boots, 2016; Bui et al.,
2017). Many more examples of applications of sparse GPs can be found in the recent review by Liu
et al. (2020).

4 1.2 Challenges and Extensions for Gaussian Process Regression

1.2.2 Flexible and Expressive Regression

Another challenge for GP regression is the choice of the kernel k.3 The example in Fig. 1.1 (bottom)
did not really provide such a challenge due to its simplicity. A more instructive example is provided
in Sec. 5.4.3 of Rasmussen and Williams (2006), where the concentration of CO2 in the atmosphere
for the years 1958 to 2003 at Mauna Loa is to be modelled and predicted into the future. To this
end, a combination of multiple kernels (called kernel engineering, which yields again a valid kernel)
describing seasonal and long-term trends as well as small deviations is constructed which is able to
describe the data very well. While it is feasible for this example, the design of these kind of ker-
nels typically requires expert knowledge in the application area mixed with a proficiency for kernels
themselves.4 Additionally, kernel engineering involves the risk of overfitting if too many or the wrong
kernel components are chosen. The same two problems exist for feature engineering, where an expert
proposes a mapping of the inputs (features) XN → X ′

N such that the new features X ′
N more closely

resemble the physical quantities which are necessary for describing the mapping X ′
N → YN . A prac-

titioner therefore requires a method that is flexible and expressive enough without the need of having
to perform feature or kernel engineering first.

The first step in this direction was to introduce a learnable warping of either the outputs (Snelson
et al., 2003) or the inputs (e.g. Snoek et al., 2014), which, in combination with standard kernels, is
powerful enough to model difficult regression problems. Other approaches used a combination of
two GPs in order to create more powerful models, e.g. by using the first GP to map the inputs to a
latent space on which the second GP performs standard GP regression (Schmidt and O’Hagan, 2003;
Damianou et al., 2011) or by defining a product model from the two GPs (Adams and Stegle, 2008).
With the advent of deep learning (Krizhevsky et al., 2012; Goodfellow et al., 2016) came also the idea
to combine GPs with neural networks. One approach, deep kernel learning, is using a deep neural
network to warp the input for GPs (Wilson et al., 2016; Calandra et al., 2016), which has recently
been shown to be susceptible to overfitting due to the large number of additional parameters of the
neural network that are added to the model (Ober et al., 2021). A different method uses so-called
deep GPs, extending the idea of stacking two GPs to using a small network of GPs arranged in layers
in order to learn probabilistic representations of the data that can finally be treated as in standard GP
regression (Damianou and Lawrence, 2013). This model class will be the focus of Chap. 3 of this
thesis and we will discuss state-of-the-art approaches in Sec. 1.3.

1.2.3 Time Series Modelling

The last extension for GP regression that we wish to discuss here is time series modelling. In this
problem, the goal is to predict future observations from an observed time series YT = {yt}

T
t=1, where

yt ∈ R and t is the time index marking a time t∆t after the intital time t = 0 and ∆t is a constant
time increment.5 While it is possible for simple examples to interpret time series modelling as a
regression problem (by interpreting the time index as the input and the observation as the output) as
is done for the Mauna Loa problem mentioned at the beginning of Sec. 1.2.2, the important role that
the time is playing is completely ignored in such an approach. More powerful methods respect the
natural ordering of time and exploit this fact by considering the history to predict the present (and the
future): One example are non-linear auto-regressive approaches that model the current observation
as yt = f(yt−1, . . . , yt−nL

), where nL is the lag, i.e., the number of past observations that is taken
into account. We can simply make this a probabilistic method by adding Gaussian noise and placing
a Gaussian process prior on the function f (see e.g. Kocijan et al., 2005 or Mattos et al., 2016 and
3The parameters of the kernel, the so-called hyperparameters, have to be inferred as well. We discuss this in Sec. 2.1
4Automatic methods for performing kernel engineering also exist, see e.g. Duvenaud et al. (2013) or Bitzer et al. (2022).
5Throughout this thesis we assume one-dimensional time series with constant time increments ∆t unless mentioned other-
wise.

1 Introduction 5

references therein). In such a system the propagation of the uncertainty coming from the transition
from one time step to the next is challenging (see e.g. Girard et al., 2003).

An approach that naturally incorporates the latter uncertainty considers the time series modelling
problem as one where the yt are interpreted as the observations of the state of a system xt that
changes depending on this state and its history. A classical probabilistic approach that uses this
interpretation is the so-called state-space model (see e.g. Särkkä, 2013) that aims to separate the
observations YT from observation noise through temporal latent (unobserved) states XT = {xt}

T
t=1,

where xt ∈ Rd. The latent states and the observations are connected through an emission model
p(yt|xt) and the latent states are assumed to evolve according to a Markovian6 transition model
p(xt|xt−1). For the simplest case, where transition and emission model are linear with Gaussian

noise, i.e., p(yt|xt) = N
(
yt

∣∣∣Axt + a, σ2y

)
and p(xt|xt−1) = N

(
xt

∣∣∣Bxt+1 + b, σ2x

)
(with real

parameters A, a,B, b, σx, σy of appropriate dimensionality) this formulation is analytically tractable
as was shown in a seminal work by Kalman (1960). However, real-world problems are typically too
complicated to be described by such a simple approach, instead requiring more expressive transition
or emission models. The Bayesian non-parametric solution to this problem is to use an expressive
transition model p(xt|xt−1, f) = N

(
xt

∣∣∣f(xt−1), σ
2
x

)
and to place a GP prior on the function f ,

thus arriving at an approach called Gaussian process state-space model (GPSSM, Wang et al., 2005;
Frigola, 2015). This model class will be the focus of Chaps. 4, 5 and 6 of this thesis and we will
discuss state-of-the-art approaches in Sec. 1.4.

1.3 Introduction to Deep Gaussian Processes

As we introduced above in Sec. 1.2.2, deep GPs aim at performing flexible regression by chaining
multiple GPs with standard kernels in a small network with L layers. This leads to the regression
assumption yn = fL(· · · f1(xn)), where f l is the function given by the GP mapping in the l-th layer.
In its simplest form this amounts to two layers with a single GP each, which is already sufficient to
describe data with varying length scales which is difficult with standard kernels. This is schematically
depicted in Fig. 1.2.

In order to describe more complex mappings, we can use larger networks of GPs with L layers
and Tl GPs in the l-th layer (see Fig. 1.3 for a schematic depiction). However, the added flexibility
of deep GPs comes at the price of losing the analytical tractability of standard GPs: The output of
one layer is a distribution which can no longer be analytically fed through the next layer of GPs
since the kernels through which the inputs are processed cannot deal analytically with distributions.
Therefore, inference in deep GPs has to be performed approximately for which the current state-of-
the-art methods (Salimbeni and Deisenroth, 2017; Havasi et al., 2018) rely on sparse GPs which also
allows these approaches to scale to large data sets. As explained in Sec. 1.2.1, sparse GPs rely on
pseudo data to summarise the training data. In the case of deep GPs this has to be done for every
GP in the model, leading to the introduction of {XM , FM}, where FM = {F l,tM }Tl,Lt=1,l=1, where F l,tM
summarises the outputs F l,tN of GP f l,t, i.e., the t-th GP in layer l (see Fig. 1.3).7 Inference in deep GPs
therefore has to find a way to approximate the posterior p(FN , FM |YN), where FN = {F l,tN }Tl,Lt=1,l=1.

The method by Salimbeni and Deisenroth (2017) employs stochastic variational inference: It as-
sumes independent multivariate Gaussian distributions q(F l,tM) over the inducing outputs F l,tM which

6Here, Markovian means that every latent state is assumed to capture the complete history of latent states before, i.e., only
one previous state is needed to describe the current state. Mathematically this can be expressed as p(xt|xt−1, . . . , x1) =
p(xt|xt−1).

7With a slight abuse of notation we always useFM to denote the whole set of inducing outputs which leads to an inconsistent
meaning when switching from sparse to deep GPs. For the sake of an uncluttered notation we accept this inconsistency
since the meaning of FM is clear from the context.

6 1.3 Introduction to Deep Gaussian Processes

x

2

0

2

y

0 2 4 6 8 10
f1(x)

2

0

2

f2 (
f1 (

x)
)

Figure 1.2: We show the idea behind a two-layer deep GP schematically: The top part of the figure shows the
data (x, y) that is to be modelled, which clearly has an x-dependent length scale. The first GP f1 warps the
inputs x which is shown in the middle part of the figure. On the bottom we see that the second GP f2 can then
be used for regression on the warped inputs, where the data (f1(x), y) has a constant length scale.

YN
X N

 ...

F N
L ,TLF N

 1,T1

F N
1 F N

L

F N
 1,1 F N

L ,1

F M
L ,TL

F M
L ,1

F M
 1,T1

F M
 1,1

==

Figure 1.3: Plate diagram for an arbitrary deep GP. The inputs XN are mapped through L layers. The l-th
layer consists of Tl sparse GPs with outputs F l,t

N that are conditioned on F l,t
M for t = 1, . . . , Tl, respectively.

From the outputs of the final layer FL
N , we regress on the observed outputs YN .

1 Introduction 7

leads to them being analytically marginalisable. The GP outputs F l,tN remain analytically intractable
and have to be recursively sampled after every layer in order to be propagated through the deep GP.
This approach therefore uses doubly stochastic variational inference (Titsias and Lázaro-Gredilla,
2014) where the first source of stochasticity comes from recursively sampling the GP outputs and the
second from subsampling the training data which is enabled through the use of sparse GPs.

The approach by Havasi et al. (2018) treats the GP outputs F l,tN in the same way but uses a different
approach in order to deal with the inducing outputs FM . It employs stochastic gradient Hamiltonian
Monte Carlo (Chen et al., 2014), a Markov chain Monte Carlo approach (see e.g. Neal, 1993), that
is able to produce accurate samples from the exact posterior p(FM |YN) when using mini-batches.
Hence, in contrast to the approach by Salimbeni and Deisenroth (2017) the work by Havasi et al.
(2018) drops the independence and Gaussianity restrictions over the inducing outputs FM and in turn
accepts the loss of their analytical tractability (having only access to samples).

Both state-of-the-art approaches have their advantages: Being able to analytically marginalise la-
tent variables, as Salimbeni and Deisenroth (2017) do with the FM , is known to be needed for fast
convergence (Kingma et al., 2015). Taking correlations between latent variables into account when
performing variational inference, as Havasi et al. (2018) do with the F l,tM , is important for calibrated
uncertainty predictions (Turner and Sahani, 2011). Formulated differently, we could also state that
each of the methods lacks the advantageous property of the respective other method. It is this observa-
tion that leads us to investigating inference methods for deep GPs further, trying to find compromises
between the optimal convergence properties of Salimbeni and Deisenroth (2017) and the maximally
expressive approach of Havasi et al. (2018). Is there some way to move along the Pareto-front de-
fined by these two methods, i.e., can we sacrifice some of the expressivity of Havasi et al. (2018) to
get improved converge properties? Or equivalently, can we add more expressivity to the approach of
Salimbeni and Deisenroth (2017) while only sacrificing some of the good convergence properties?
Together with the computational complexity of the approaches, these questions will be the focus of
Chap. 3.

1.4 Introduction to Gaussian Process State-Space Models

As we discussed above in Sec. 1.2.3, GPSSMs aim at performing time series modelling for a time
series YT by combining state-space models with GPs. This amounts to introducing temporal latent
states XT that disentangle the dynamics from the observation noise through the emission model
p(yt|xt) and that evolve according to a Markovian transition model p(xt|xt−1, ft−1) (see Fig. 1.4).

Similarly as the deep GP above, this model is also not analytically tractable since the temporal latent
states XT are inputs to the GP (hence to the non-linear kernel) and therefore cannot be marginalised
out. Additionally, the task of inferring the GP modelling the transition function f is very hard since
by changing f , both the inputs (xt−1) and the regression targets (xt) for f also change. Typically, this
problem is approached by employing sparse GPs (introducing {XM , FM}), thus also enabling the
application of GPSSMs to long time series. We schematically depict the resulting model in Fig. 1.4.
The current state-of-the-art methods (Doerr et al., 2018; Ialongo et al., 2019) both use variational
inference in order to perform approximate inference over the latent variables XT , FM , and FT ≡
{f(xt)}

T
t=1.

The approach by Doerr et al. (2018) uses a multivariate Gaussian distribution as the approximate
posterior distribution q(FM) and assumes otherwise that the posterior distributions are given by the
prior ones, e.g. q(xt|·) = p(xt|xt−1, ft−1). Additionally, Doerr et al. (2018) use two other simplifying
assumptions (which we discuss in detail in Sec. 2.4), leading to the analytical tractability of the FM
and FT , while the XT still cannot be marginalised analytically. Similarly to the treatment of deep
GPs by Salimbeni and Deisenroth (2017) explained in Sec. 1.3, Doerr et al. (2018) therefore rely
on doubly stochastic variational inference (Titsias and Lázaro-Gredilla, 2014): The first source of

8 1.4 Introduction to Gaussian Process State-Space Models

yt yt+1yt−1

xt xt+1xt−1

F M

f t f t+1f t−1

Figure 1.4: Plate diagram for the GPSSM: The observations yt depend only on the corresponding temporal
latent state xt. Those are influenced by the previous latent state xt−1 and the GP output at the latter state,
ft−1 = f(xt−1). When using a sparse GP formulation, all GP outputs are additionally conditioned on the
inducing outputs FM .

stochasticity comes from sampling the xt after every time step, the second comes from being able to
sample subsequences of the observations YT through the use of the sparse GP.

The second approach by Ialongo et al. (2019), criticises the simplifying assumptions made by Doerr
et al. (2018) and tries to find an inference method that works without those. This first step signifies
theoretically more accurate inference but at the same time the loss of the analytical tractability of
FM and FT both of which have to be additionally sampled instead. In a second step, Ialongo et al.
(2019) employ a much more expressive posterior approximation over the XT , assuming a parametric
distribution q(xt|·) that introduces a set of learnable parameters for every latent state xt. The empirical
evaluation of this more expressive method (which contains the method of Doerr et al. (2018) as a
special case) is not fully convincing: In several experiments the more expressive method by Ialongo
et al. (2019) is outperformed by the much simpler of Doerr et al. (2018). Once again, similarly as
observed above for deep GPs in Sec. 1.3, we see a trade-off between expressivity and convergence
properties, i.e., the ease of finding a good local optimum for the model parameters during training.
In Chap. 6 of this thesis we will use this observation to design a new inference method for GPSSMs
that moves along the Pareto-front defined by the methods of Doerr et al. (2018) and Ialongo et al.
(2019), balancing their expressivity but working with as little parameters as possible to improve the
convergence properties.

Additionally, there remains the question of the simplifying assumptions that Doerr et al. (2018) use
and which Ialongo et al. (2019) criticise: Is this criticism fully valid and if so, can we still achieve
similar theoretical results, i.e., the analytical tractability of the FM and FT , to Doerr et al. (2018)
without their simplifications? These questions along with their general relevance for probabilistic
machine learning (and especially GPSSMs) will be the focus of Chap. 4 of this thesis.

Our findings there will provide the basis for the solution to a different problem that plagues both
approaches to a different extent: the general applicability to long time series. The approach of Ialongo
et al. (2019) is not designed to deal with mini-batches (or rather subsequences of the time series)
and would therefore encounter problems with large runtimes and memory footprints as well as the
problem of vanishing and exploding gradients (Pascanu et al., 2013) when being applied to long

1 Introduction 9

trajectories. While the method of Doerr et al. (2018) can use subsequences, a general problem of
using mini-batches for time series modelling persists: Slow effects that manifest only over a time
spanned by multiple subsequence lengths can no longer be inferred (Williams and Zipser, 1995).8

Using the theoretical results obtained from understanding the subtle differences between the two
state-of-the-art GPSSM approaches in Chap. 4, we will design a new inference method that is able to
overcome the aforementioned problems in Chap. 5.

1.5 Variational Inference for Composite Gaussian Process

Models

As we have seen in the previous two sections, while seemingly very different models used for very
different purposes (deep GPs can be used for flexible and expressive regression while GPSSMs are a
specialised approach for time series modelling), there is a surprising number of similarities between
deep GPs and GPSSMs. The most obvious similarity is that both are composite models where GPs
play an important role: deep GPs are comprised of a small network of GPs while GPSSMs incorporate
a GP in a state-space model. As we saw in the previous sections, all state-of-the-art approaches for
deep GPs (Salimbeni and Deisenroth, 2017; Havasi et al., 2018) and GPSSMs (Doerr et al., 2018;
Ialongo et al., 2019) build on sparse GPs to incorporate large data sets. Most of them therefore
naturally also employ variational inference (all except for Havasi et al., 2018). Interestingly, the
connection between the inference methods of Salimbeni and Deisenroth (2017) for deep GPs and
of Doerr et al. (2018) for GPSSMs runs even deeper as both methods rely on doubly stochastic
variational inference (Titsias and Lázaro-Gredilla, 2014). In this thesis we aim at exploiting this
connection in order to further the theoretical understanding of inference methods in both models.

Furthermore, we saw that state-of-the-art approaches for both model classes trade off expressivity
against efficiency (here loosely referring to either convergence properties or actual computational
complexity). The central goal of this thesis is to explore these trade-offs further (guided by the gained
theoretical understanding) by balancing efficiency against expressivity for inference in deep GPs and
GPSSMs, thus designing new variational inference methods for composite Gaussian process models.

1.6 Thesis Outline and Publications

Above, we gave a short introduction to GPs and their sparse variants and introduced the general idea
and the state-of-the-art methods for deep GPs and GPSSMs. We present further technical details
and other related works for all these methods in Chap. 2. Then, in Chap. 3, we introduce a new
inference method for deep GPs that trades off expressivity and computational complexity of state-of-
the-art approaches. This inference method requires a deeper theoretical understanding of variational
inference in deep GPs which we also provide.

Transfering this theoretical contribution to GPSSMs and advancing the understanding of subtle
differences between the state-of-the-art approaches in this model class is the topic of Chap. 4. We
then use this knowledge and, by exploiting connections to a related time series modeling approach,
propose a new inference method that improves the efficiency of GPSSM approaches, especially for
long time series data consisting of a composition of slowly and quickly changing signals (see Chap. 5).
In Chap. 6 we present a different new inference method for GPSSMs that balances expressivity and
convergence properties of state-of-the-art approaches by combining varational inference with another
inference method that is often used for classical state-space models. Finally, in Chap. 7, we conclude
and present an outlook.
8Existing methods that solve these problems for recurrent neural networks (Hochreiter and Schmidhuber, 1996; Chung
et al., 2014) are not directly applicable to GPSSM models.

10 1.6 Thesis Outline and Publications

1.6.1 Publications and Contributions

This thesis contains material of multiple published conference articles that appear in a modified or
extended form. These publications are listed below, along with information about the contributions
of the authors and about where which parts of the publications appear in this thesis.

� Lindinger, J., Reeb, D., Lippert, C., & Rakitsch, B. (2020). Beyond the mean-field: Structured
deep Gaussian processes improve the predictive uncertainties. Advances in Neural Information
Processing Systems.

The initial problem setting and idea were given by Barbara Rakitsch and David Reeb, while the
details and experiments were designed by all authors jointly. Jakob Lindinger was responsible
for working out the theoretical and technical details and implementing the algorithm. Jakob
Lindinger and Barbara Rakitsch performed the experiments and analysed the results. Barbara
Rakitsch and Jakob Lindinger wrote the main paper with contributions of all authors.

Chap. 3 of the thesis closely follows this work.

� Longi, K., Lindinger, J., Duennbier, O., Kandemir, M., Klami, A., & Rakitsch, B. (2022).
Traversing time with multi-resolution Gaussian process state-space models. Annual Learning
for Dynamics and Control Conference
and the accompanying technical report
Longi, K., Lindinger, J., Duennbier, O., Kandemir, M., Klami, A., & Rakitsch, B. (2021).
Traversing time with multi-resolution Gaussian process state-space models. arXiv preprint
arXiv:2112.03230.

The initial problem setting and idea were given by Barbara Rakitsch, while the details and ex-
periments were designed by all authors jointly. Krista Longi was responsible for implementing
the algorithm as well as performing the experiments and analysing the results. Jakob Lindinger
derived the theoretical analysis of the method and was responsible for its write-up. Olaf Dünn-
bier provided the data set and domain knowledge for engine modeling. Barbara Rakitsch wrote
the main paper with contributions of all authors.

The main theoretical contribution of this publication can be found in Chap. 4 of the thesis, while
some minor theoretical contributions along with the new inference method form the main part
of Chap. 5.

N.b. that I neither designed the inference method itself nor performed the experiments. These
results are still included (although in a strongly altered description compared to the paper) in
Secs. 5.2.1 and 5.3, respectively, as they provide the necessary motivation for my theoretical
contributions.

� Lindinger, J., Rakitsch, B., & Lippert, C. (2022). Laplace approximated Gaussian process
state-space models. Conference on Uncertainty in Artificial Intelligence.

The initial problem setting and idea were given by Barbara Rakitsch, while the details and
experiments were designed by all authors jointly. Jakob Lindinger was responsible for working
out the theoretical and technical details and implementing the algorithm. Jakob Lindinger and
Barbara Rakitsch performed the experiments and analysed the results. Jakob Lindinger and
Barbara Rakitsch wrote the main paper with contributions of all authors.

A small theoretical contribution from this paper can be found in Chap. 4 of the thesis, the rest
builds the basis of Chap. 6.

CHAPTER 2

Background

In this chapter we provide most of the necessary technical background for the remaining chapters
of the thesis. We start in Sec. 2.1 by introducing the technical details about GP regression that we
left out in Sec. 1.1. Then, in Sec. 2.2 we extend on the very short discussion about sparse GPs and
variational inference in Sec. 1.2.1. In the final two sections of this chapter (Secs. 2.3 and 2.4), we
continue the introduction to deep GPs and GPSSMs from Secs. 1.3 and 1.4, respectively, focussing
more on a historical and technical perspective.

2.1 Gaussian Processes

In Sec. 1.1 we briefly introduced GPs as a probabilistic method for regression, i.e., the task of predict-
ing outputs y∗ at unseen test inputs x∗ given a training set ofN input and output pairs {XN , YN}. The
underlying assumption for GP regression is that the mapping from inputs to outputs can be described
by a function f according to yn = f(xn)+ ϵn. Here, the observation noise is e.g. assumed to be inde-
pendent and identically distributed (iid.) according to a zero-mean Gaussian, i.e., ϵn ∼ N

(
ϵn

∣∣∣0, σ2y),

with σ2y being the observation noise variance. Taken together, this leads to the likelihood,

p(YN |FN) =
N∏
n=1

N
(
yn

∣∣∣fn, σ2y) = N
(
YN

∣∣∣FN , σ2yIN) , (2.1)

where fn ≡ f(xn) and IN is the identity matrix of dimensionality N . Additionally, we place a
zero-mean GP prior on the function f , resulting in the prior assumption p(FN) = N (FN |0,KNN)
[Eq. (1.1)], where FN are the GP observations at the inputs XN and KNN is the covariance matrix
obtained from evaluating the kernel k at every pair of input points (see Sec. 1.1). The joint density of
the model is then simply given by p(YN , FN) = p(YN |FN)p(FN).

In Bayesian inference (see e.g. Bishop, 2006, Sec. 1.2), the goal is to infer the posterior distribution
p(FN |YN), i.e., the updated belief about the latent (unobserved) function values after having seen the
data. The posterior can then be used to predict y∗ at unseen test points. Using Eqs. (1.1) and (2.1)

and Gaussian calculus (see e.g. Toussaint, 2011), the posterior can be shown to equal (cf. Rasmussen
and Williams, 2006, Sec. 2.3),1

p(FN |YN) = N
(
FN

∣∣∣∣KNN

(
KNN + σ2yIN

)−1
YN ,KNN −KNN

(
KNN + σ2yIN

)−1
KNN

)
.

(2.2)

We provide a detailed derivation of this equation (exemplarily for other similar derivations in this
section) in Appx. A.1. In order to obtain a prediction from this posterior, we can exploit that under

1Note that here (and already in Eq. (1.1)) and in the following we generally omit to explicitly list the XN (which appear
as inputs to the KNN) as arguments of the distributions in order to have a less cluttered notation. Typically, the XN are
merely constant inputs. Only in cases where important dependencies on XN require highlighting or when the XN are
random variables, do they appear as arguments of the distributions.

11

12 2.1 Gaussian Processes

a GP prior the function values at every finite set of input points are distributed according to a joint
multivariate Gaussian distribution. In particular, this holds for XN ∪ {x∗} which leads to

p(f∗|FN) = N
(
f∗

∣∣∣K∗NK
−1
NNFN , k∗∗ −K∗NK

−1
NNK

⊤
∗N

)
,

where f∗ ≡ f(x∗). Together with Eq. (2.2) and the fact that p(f∗|YN) =
∫
p(f∗|FN)p(FN |YN)dFN ,

this results in

p(f∗|YN) = N
(
f∗

∣∣∣∣K∗N

(
KNN + σ2yIN

)−1
YN , k∗∗ −K∗N

(
KNN + σ2yIN

)−1
K⊤

∗N

)
, (2.3)

where we used Gaussian calculus (see also Appx. A.1 for a more detailed derivation). The terms
k∗∗ ≡ k(x∗, x∗) and K∗N ≡ {k(x∗, xn)}

N
n=1 are evaluations of the kernel at different pairs of

input points. Together with the fact that p(y∗|YN) =
∫
p(y∗|f∗)p(f∗|YN)df∗ and that p(y∗|f∗) =

N
(
y∗

∣∣∣f∗, σ2y) [cf. Eq. (2.1)], predicting for an observation y∗ instead of for a latent function value

f∗ simply adds σ2y to the variance of the right side of Eq. (2.3):

p(y∗|YN) = N
(
y∗

∣∣∣∣K∗N

(
KNN + σ2yIN

)−1
YN , k∗∗ −K∗N

(
KNN + σ2yIN

)−1
K⊤

∗N + σ2y

)
.

(2.4)

This formula can then be used to calculate predictions for arbitrary input points and has been used
e.g. in Fig. 1.1 (bottom).

So far, we worked with the simplifying assumption that we are somehow given a kernel k that
works well with the data. But as we saw in Fig. 1.1 (top), the choice of the kernel has a large influence
on how typical functions drawn from the GP with the respective kernel behave. Additionally, most
kernels have a small number of parameters, the so-called hyperparameters, that further change how
typical functions look like. As an example, we take the so-called radial basis function (RBF) kernel

kRBF(x, x
′) = σ2ke

(x−x′)2/(2l2) that has two hyperparameters, the kernel variance σ2k and the length
scale l. Together with the noise variance σ2y , there are three hyperparameters θ = {σk, l, σy} that
can be adjusted in a GP regression model with the RBF kernel. In Fig. 2.1, we demonstrate their
influence by showing the GP prediction in Eq. (2.4) three times for the same data set but fixing the
length scale to three different values while adjusting the other two hyperparameters. While the GP
with the correct length scale l = 1 (the groundtruth that has been used to generate the data) explains
the data with a trade-off of signal and noise (top), the GP with a very short length scale (bottom left)
is extremely flexible and explains all of the data by signal (leading to over-fitting) while the GP with
l = 3 (bottom right) is forced to explain most of the data by noise (leading to under-fitting).

The setting of these kernel hyperparameters therefore also has a large influence on how well a GP
is able to describe certain data sets. The typical way of setting the hyperparameters is to maximise the
likelihood of the data under our model (see Rasmussen and Williams, 2006, Sec. 5.2), i.e., p(YN) =∫
p(YN , FN)dFN , the marginal2 (sometimes also called model evidence). For GP regression with a

Gaussian likelihood the marginal is analytically tractable and can be computed using Eqs. (1.1) and
(2.1) which yields p(YN) = N

(
YN

∣∣∣0,KNN + σ2yIN

)
. In order to find the optimal hyperparameters

2Called that way since the latent function values are marginalised/integrated out.

2 Background 13

4 2 0 2 4
x

2
1
0
1

f(x
)

l = 0.3

4 2 0 2 4
x

l = 3

4 2 0 2 4
x

2
1
0
1

f(x
)

l = 1

Figure 2.1: We depict the influence of the GP hyperparameters on the GP predictions. All plots show the same
data set (black crosses) and the mean (solid blue line) and the confidence interval (two standard deviations,
blue shaded areas) of different GP regression models. The top plot shows a model with the groundtruth hyper-
parameters which have been used to generate the data. The bottom plots show models where the length scale l
has been fixed to a wrong value (left: l = 0.3, right: l = 3) and the other hyperparameters have been optimised
to provide the best fit under the respective constraint.

θ∗, this formula, or rather its logarithm,3

log p(YN) = −1

2
Y ⊤
N

(
KNN + σ2yIN

)−1
YN − 1

2
log det

(
KNN + σ2yIN

)
+ C, (2.5)

can be optimised with respect to (wrt.) θ. Note that in Eq. (2.5) C is a constant independent of θ
and that the kernel hyperparameters appear only implicitly through KNN . Furthermore, the terms on
the right hand side (RHS) of Eq. (2.5) have an intuitive interpretation: The first term is the data fit
term (becoming larger the better the GP is able to describe the data) while the second is a complexity
penalty term (becoming more negative the more flexible the kernel gets). Since generally Eq. (2.5)
cannot be optimised analytically wrt. θ, numerical (gradient-based) methods have to be employed to
find θ∗. However, since the formula in Eq. (2.5) is typically not convex wrt. θ, the obtained solution
θ∗ is usually only a local optimum and not the global one (see e.g. Nocedal and Wright, 1999).

Note that especially in small data regimes such as for Bayesian optimisation, a fully Bayesian
treatment of the hyperparameters can be beneficial as it protects further from overfitting (see e.g.
Snoek et al., 2012). This involves placing a hyperprior p(θ) on the hyperparameters and finding the
corresponding posterior p(θ|YN). Generally, the latter cannot be calculated analytically such that ex-

3The logarithm is a concave transformation and therefore does not change the position at which the function is maximised.
Using the logarithm helps preventing numerical problems coming from values extremely close to zero that the marginal
likelihood can take on.

14 2.2 Sparse Gaussian Processes and Variational Inference

pensive Markov chain Monte Carlo approaches (e.g. Murray and Adams, 2010) or other approximate
inference methods have to be used.

2.2 Sparse Gaussian Processes and Variational Inference

The GP regression approach that we introduced in the previous section, while being a powerful prob-
abilistic method, does not scale to modern, large datasets. Inverting the N ×N matrix KNN required
for predictions [Eq. (2.4)] and calculating the log-determinant ofKNN which is additionally required
for model selection [Eq. (2.5)] leads to a cubic scaling in the number of data points N . This prac-
tically limits the application of GP regression to data sets with at most a few thousand data points.
Shortly after the introduction of GPs to the machine learning community, this problem was realised
and has since been the focus of a multitude of works on GPs. In this section we first provide an
overview over the history leading up to sparse variational GPs (Sec. 2.2.1) before thoroughly intro-
ducing this method in more detail in Sec. 2.2.2 as this latter approach is then used throughout this
thesis. At the end of this section we give a small (non-exhaustive) overview over other approaches to
sparse or scalable GPs (Sec. 2.2.3).

2.2.1 Inducing Point Approximations

Early approaches to sparse GPs included very simple solutions like taking a subset of M data points
out of the full data set with N data points to perform GP regression (see e.g. Hayashi et al., 2020,
for a recent theoretical analysis). This reduces the computational complexity to O(M3) but naturally
fails to include information from the whole data set. More sophisticated approaches built upon the
Nyström approximation, KNN ≈ KNMK

−1
MMK

⊤
NM , which also uses a subset of the data points of

sizeM ,XM = {xm}
M
m=1 and whereKMM = {k(xm, x

′
m)}

M
m,m

′
=1

. However, these approaches take

the relation to the rest of the data points through the kernel matrix KNM = {k(xn, xm)}
N,M
n,m=1 into

account. For M ≪ N this reduces the computational complexity to O(NM2). However, naively
using this approximation in a GP (Williams and Seeger, 2000) does not lead to a valid probabilistic
method as the variances of such an approach can become negative (Williams et al., 2002).

Different approaches based on so-called inducing points (e.g. Quinonero-Candela and Rasmussen,
2005) lead to a similar formulation as the Nyström approximation, but are motivated from a different
perspective: They start by introducing a set of inducing points {XM , FM}, where the inducing inputs
XM are not necessarily a subset of XN and the inducing outputs FM ≡ {f(xm)}

M
m=1 are the values

of the GP evaluated at the inducing inputs. Due to the property that the GP outputs for every finite
set of inputs share a joint multivariate Gaussian distribution [cf. Eq. (1.1)], the same holds true for
the input set XN ∪ XM . The joint distribution over the corresponding outputs can be written as
p(FN , FM) = p(FN |FM)p(FM) with (see e.g. Toussaint, 2011),

p(FM) = N (FM |0,KMM) , (2.6)

p(FN |FM) = N (FN |µ(XN , FM),Σ(XN)) , (2.7)

µ(XN , FM) = KNMK
−1
MMFM , Σ(XN) = KNN −KNMK

−1
MMK

⊤
NM , (2.8)

where the Nyström approximation term appears in the covariance Σ in Eq. (2.8). Note that so
far this is still an exact expression: We could analytically marginalise out the pseudo-data from
the augmented prior [Eqs. (2.6) and (2.7)], resulting again in the standard prior [Eq. (1.1)], i.e.,∫
p(FN |FM)p(FM)dFM = p(FN). However, for making predictions f∗ at unseen test points x∗ this

inducing point sparse GP approach assumes that FM is a sufficient statistic for FN which implies

2 Background 15

the approximation p(f∗|FN , FM) ≈ p(f∗|FM).4 This assumption therefore leads to the prediction
formula5

p(f∗|YN) ≈
∫
p(f∗|FM)p(FM |YN)dFM , (2.9)

where p(FM |YN) is the posterior over the inducing outputs [cf. Eq. (2.2)].
Early approaches to sparse GPs using inducing points (Smola and Bartlett, 2000; Seeger et al.,

2003; Snelson and Ghahramani, 2005) were later interpreted under a unifying framework and shown
to propose different approximations to the prior conditional in Eq. (2.7) (Quinonero-Candela and
Rasmussen, 2005). One prominent method that falls in this category and that we build on in the
course of this thesis is called fully independent training conditional (FITC, Snelson and Ghahramani,
2005). Quinonero-Candela and Rasmussen (2005) showed that the latter method is equivalent to the
assumption that the GP outputs in Eq. (2.7) are fully independent given the inducing outputs, i.e.,

p(FN |FM) ≈
N∏
n=1

p(fn|FM) = N
(
FN

∣∣∣KNMK
−1
MMFM , diag

[
KNN −KNMK

−1
MMK

⊤
NM

])
,

(2.10)

where diag[A] denotes the operation that returns a diagonal matrix containing only the diagonal el-
ements of the matrix A. In Fig. 2.2 (top) we compare the predictions made by this method [which
can be obtained by following the same derivation as in Sec. 2.1 but using Eq. (2.9)] with those of a
standard GP.

2.2.2 Sparse Variational Gaussian Processes

Instead of approximating the prior, later works have used the full augmented prior in Eqs. (2.6) and
(2.7) and attempted to approximate the posterior p(FN , FM |YN). The most prominent approaches
(Titsias, 2009; Hensman et al., 2013) are based on variational inference (see e.g. Blei et al., 2017)
and still in use today. We thoroughly introduce these approaches after giving a short introduction to
variational inference in the following.

Variational inference aims at finding an approximation q(FN , FM) to p(FN , FM |YN), the true pos-
terior. This is done by first choosing a parametric variational family for the distribution qψ(FN , FM)
with parameters ψ. Next, we find the optimal setting of the parameters such that the approximate
posterior qψ(FN , FM) is as close as possible to p(FN , FM |YN), where closeness is measured by the
(reverse) Kullback-Leibler (KL) divergence. It can be shown that maximising the so-called evidence
lower bound (ELBO),

L(ψ) ≡
∫
qψ(FN , FM) log

p(YN , FN , FM)

qψ(FN , FM)
dFNdFM , (2.11)

is equivalent to minimising the KL divergence. We provide a more detailed introduction, including a
derivation of Eq. (2.11) in Appx. A.2.

Returning to the problem of sparse GPs,6 we have p(YN , FN , FM) = p(YN |FN)p(FN |FM)p(FM)
as the prior, where the terms are given in Eqs. (2.1), (2.6) and (2.7). The conventional variational

4The name inducing is derived from the fact that the pseudo-data {XM , FM} are assumed to induce a distribution on the
GP predictions p(f∗|FM).

5Derivation: p(f∗|YN) =
∫
p(f∗|FN , FM)p(FN , FM |YN)dFMdFN ≈

∫
p(f∗|FM)p(FN , FM |YN)dFMdFN =∫

p(f∗|FM)p(FM |YN)dFM , where the first step is the definition, the next step uses the sufficient statistic assumption
and the last step is a standard marginalisation property [Eq. (A.9)].

6There are a lot of subtle points to be considered when using variational inference for minimising KL divergences between
stochastic processes (which GPs are). This is discussed in detail in Matthews et al. (2016).

16 2.2 Sparse Gaussian Processes and Variational Inference

family for this problem that Titsias (2009) introduced is given by

q(FN , FM) = p(FN |FM)q(FM). (2.12)

Choosing the prior conditional p(FN |FM) as the conditional distribution is crucial as it leads to can-
cellation of that expensive term when plugging the prior and Eq. (2.12) into Eq. (2.11). In this
particular problem it turns out that the variational distribution over the inducing outputs q(FM) can
be analytically optimised resulting in a multivariate Gaussian distribution with known mean and co-
variance (see Titsias, 2009). The calculations necessary for this scale as O(NM2) for M ≪ N and
the memory requirements as O(NM). For very large data sets this is unfortunately still insufficient.

With a subtle change in the formulation of Titsias (2009), Hensman et al. (2013) achieved the
applicability of sparse GPs also to very large data sets: Instead of calculating the optimal q(FM),
we can parametrise this distribution as qψ(FM) = N (FM |µM , SM) with variational parameters
ψ = {µM , SM}. Plugging this together with Eq. (2.12) and the prior into Eq. (2.11) leads after some
manipulation (which we detail in Appx. A.2.1) to

LSGP(ψ) =
N∑
n=1

Eq(fn) [log p(yn|fn)]− KL[qψ(FM)||p(FM)], (2.13)

the ELBO for sparse GPs. Here, E denotes an expectation value that is defined as

Ep(x) [g(x)] ≡
∫
p(x)g(x)dx, (2.14)

for an arbitrary distribution p of a variable x and a function g. Furthermore, the q(fn) are the
marginals of the distribution q(FN , FM) which are obtained by analytically marginalising out the
inducing outputs FM and all fn′ for n′ ̸= n, resulting in

q(fn) =

∫∫
q(FN , FM)dFM

∏
n
′ ̸=n

dfn′ = N (fn|µn,Σn) , (2.15)

µn = KnMK
−1
MMµM , Σn = knn −KnMK

−1
MM (KMM − SM)K−1

MMK
⊤
nM . (2.16)

Inference in this model is performed by optimising Eq. (2.13) wrt. ψ. Since the first term on its RHS
can be written as a sum over the data points while the other term is independent of the data, we can
optimise the ELBO stochastically, i.e., by taking mini-batches from YN of sizeNb < N . This reduces
the computational complexity to O(NbM

2 +M3), which for typical choices with M of O(102) and
Nb of O(103) is easily computationally tractable.7 The change from the formulation of Titsias (2009)
to the one of Hensman et al. (2013) therefore amounts to a trade-off: Instead of analytically finding
the optimal distribution q(FM) for the whole data set in one step (which has a large computational
complexity), we use subsets of the data and approximate the optimal distribution q(FM) slowly with
many small steps (each of which has a low computational complexity).

In addition to the variational parameters ψ, we still have to optimise the hyperparameters θ of the
model. For standard GPs in Sec. 2.1, we did this by optimising the log-evidence in Eq. (2.5) wrt. θ.
Conveniently, the ELBO in Eq. (2.13) is a lower bound to the log-evidence [cf. Eq. (A.11)], and in
principle also depends on the setting of the hyperparameters which we denote as LSGP(ψ, θ). Hence
by optimising LSGP(ψ, θ) wrt. both ψ and θ we simultaneously perform approximate inference and

7Note that the choice of the number of inducing points M and the initialisation of the inducing inputs XM can have a large
impact on the performance of the trained model. In a recent work, Burt et al. (2019) give theoretically grounded advice on
both these points.

2 Background 17

Figure 2.2: We show a comparison of predictions of sparse GP approaches to those of a standard GP. Both
plots depict the same data (black circles) and the mean (grey solid line) and confidence interval (grey shaded
area) of a standard GP regression model. While the top plot shows an approximate model using the FITC
approximation (Snelson and Ghahramani, 2005), the bottom plot shows a variational sparse GP (Titsias, 2009).
For both approaches, all model hyperparameters (including number of the inducing points and the location of
the inducing inputs) have been optimised. The dashed (solid) red lines show the mean (confidence intervals)
for the approximate GP predictions while the red crosses show the optimised inducing input locations. Taken
from Bauer et al. (2016).8

approximate model selection.9 Predictions in this model can then be performed by using Eq. (2.9) but
replacing p(FM |YN) with the approximate posterior qψ(FM). This results in q(f∗) = N (f∗|µ∗,Σ∗),
where µ∗ and Σ∗ are given by the equivalents of Eq. (2.16), i.e., where every occurrence of n has to
be replaced by ∗. In Fig. 2.2 (bottom) we show a comparison of predictions using this approach with
a standard GP and also with the FITC approach (top) from the previous section. For a more in-depth
comparison between the two approximate approaches we refer the interested reader to Bauer et al.
(2016).

2.2.3 Other Approaches to Sparse Gaussian Process

Even though we only build on the approaches to sparse GPs that are introduced above, we still want
to spend some effort in this section on introducing selected other sparse GPs variants. An extensive
recent review is provided in Liu et al. (2020).

An approach that is equally intuitive as simply using a subset with M data points of the whole data

8Note that the FITC approximation does not generally reduce the noise variance to almost zero (which is the case for
Fig. 2.2 (top), where there is almost no variance at the position of the inducing inputs), it however shows a tendency for
small noise variances. See also the discussion and other plots in Bauer et al. (2016).

9Note that for a Gaussian likelihood and a Gaussian variational distribution all terms in LSGP(ψ, θ) [Eq. (2.13)] are analyt-
ically tractable (see e.g. Hensman et al., 2013). Furthermore, see e.g. Adam et al. (2021) for existing best practices for the
joint optimisation of θ and ψ and a recent improvement on them.

18 2.3 Technical Background on Deep Gaussian Processes

set withN data points, is to separate the input space intoN/M disjoint regions, for each of which a so-
called local expert GP is responsible (see e.g. Kim et al., 2005; Datta et al., 2016). This leads to each
of the GPs being assigned roughlyM data points such that training all GPs has complexity O(NM2),
similarly as the methods introduced above. Unfortunately, this approach leads to discontinuities on the
boundaries of the expert regions for which two directions of research have proposed solutions: First,
the so-called mixtures of experts (see e.g. Tresp, 2000b; Rasmussen and Ghahramani, 2001; Yuksel
et al., 2012) which models the likelihood p(YN |XN) as a Gaussian mixture and second, the product
of experts (see e.g. Tresp, 2000a; Hinton, 2002; Deisenroth and Ng, 2015) which uses a product
of the individual experts’ likelihood. The review by Liu et al. (2020) discusses the differences and
advantages of these two model classes in great detail.

Another direction of work proposes placing the inducing points in variational sparse GPs on a
grid which makes the approach amenable to scalable Kronecker product approximations (Wilson and
Nickisch, 2015). In combination with tensor-train decompositions (Oseledets, 2011) and deep kernel
learning (Wilson et al., 2016; Calandra et al., 2016) this leads to a method that can deal with billions
of inducing points and data sets with a high input-dimensionality (Izmailov et al., 2018).

A further line of work deals with making exact GPs applicable to large data sets by utilising efficient
and parallelisable methods (such as using conjugate-gradient instead of matrix inversions) to perform
the calculations on multiple GPUs, culminating in the applicability of exact GPs to a data set with a
million data points (see Wang et al., 2019, and references therein). A recent addition combines these
ideas with low-precision arithmetic to increase the scalability even further (Maddox et al., 2022).

In Särkkä et al. (2013), the authors rephrase GP regression for certain (spatio)temporal problems as
a state-space model that can be solved with Kalman filtering and smoothing (Särkkä, 2013) in linear
(instead of cubic) time in the number of time points.

Finally, there is also work that generalises the notion of the inducing outputs, making it able to
place the inducing inputs in an arbitrary space such that additional prior knowledge can be considered
to sparsify GPs. This methodology is known as inter-domain inducing features (Lázaro-Gredilla and
Figueiras-Vidal, 2009). A particularly scalable approach is achieved when using the Fourier transform
to obtain the inducing outputs (Hensman et al., 2017). This method has recently been combined by
Wilson et al. (2020) with the variational sparse GP of Hensman et al. (2013) to provide an approach
that also allows efficient sampling from the approximate posterior which is for example important in
Bayesian optimisation (Shahriari et al., 2016).

2.3 Technical Background on Deep Gaussian Processes

As we discussed in Sec. 1.2.2, GPs or their sparse variants that we introduced in detail in the previous
two sections might need additional kernel or feature engineering to be optimally applied to certain data
sets. Both of these methods require expert knowledge and are prone to overfitting, whereas deep GPs
promise to be a very flexible regression approach without the need for kernel or feature engineering.
While we discussed the idea behind deep GPs and the difference between state-of-the-art approaches
in Sec. 1.3, here we provide also a short overview over other works dealing with inference in deep
GPs, and the necessary technical background. As we will see, all deep GP inference methods build
on the sparse GP frameworks introduced in the previous section.

Deep GPs have been introduced by Damianou and Lawrence (2013) as a model that maps input
point xn to observations yn via a mapping with L layers, yn = fL(· · · f1(xn)) + ϵn, where we place
GP priors on all functions f l and the noise ϵn is typically chosen to be iid. Gaussian distributed. The
functions f l are represented as layers of a small network of GPs (see Fig. 1.3) and the concatenation
of the outputs of all GPs in one layer are treated as the inputs for the GPs in the next layer, e.g. a
layer containing five GPs produces a five-dimensional output. Formally, the l-th layer output for an

2 Background 19

input point xn can be written as f ln = [f l,1(f l−1
n), . . . , f l,Tl(f l−1

n)]⊤ which is recursively defined for
l = 1, . . . , L starting with f1n = [f1,1(xn), . . . , f

1,T1(xn)]
⊤. Here we defined f0n ≡ xn, and Tl is the

number of GPs (tasks) in the l-th layer and f l,t is the t-th GP in the l-th layer of the deep GP. For a full
data set {XN , YN}, this model results in TN latent GP observations (where T ≡

∑L
l=1 Tl is the total

number of GPs in the deep GP) which we summarise in FN ≡ {F lN}
L
l=1, where the F lN = {F l,tN }Tlt=1

contain the layer-wise observations and the F l,tN ≡ {f l,tn (f l−1
n)}Nn=1 those for all data points for a

single GP. Placing independent zero-mean Gaussian priors with kernels kl,t on all functions f l,t leads
together with the recursive formulation to the factorisation p(FN) =

∏L
l=1 p(F

l
N |F

l−1
N). Here we

have p(F lN |F
l−1
N) =

∏Tl
t=1N

(
F l,tN

∣∣∣0,K l,t
NN

)
, where K l,t

NN = {kl,t(f l−1
n , f l−1

n
′)}N

n,n
′
=1

. According

to our modelling assumption yn = fL(· · · f1(xn)) + ϵn, with ϵn iid. Gaussian distributed with noise
variance σ2y , the likelihood of this model is given by [cf. Eq. (2.1)]

p(YN |F
L
N) = N

(
YN

∣∣∣FLN , σ2yIN) . (2.17)

Inference in the joint model p(YN , FN) = p(YN |F
L
N)
∏L
l=1 p(F

l
N |F

l−1
N) is intractable since the

outputs of one layer are inputs to the (non-linear) kernel of the next layer. In order to deal with this
and also to be able to scale to large data sets, the sparse GP formalism from Sec. 2.2.2 is applied
to this model: We augment every GP prior with a set of inducing points {X l,t

M , F
l,t
M } leading to the

augmented prior model [cf. the plate diagram in Fig. 1.3]

p(YN , FN , FM) = p(YN |F
L
N)

L∏
l=1

p(F lN |F
l
M , F

l−1
N)p(F lM),

p(F lN |F
l
M , F

l−1
N) =

Tl∏
t=1

p(F l,tN |F l,tM , F
l−1
N), p(F lM) =

Tl∏
t=1

N
(
F l,tM

∣∣∣0,K l,t
MM

)
.

(2.18)

Here K l,t
MM = {kl,t(xl,tm , x

l,t

m
′)}Mm,m′

=1
and p(F l,tN |F l,tM , F

l−1
N) is as in Eq. (2.7) with the K matrices

replaced by their K l,t counterparts, where e.g. K l,t
NM = {kl,t(f l−1

n , xl,tm)}N,Mn,m=1. Additionally, the

FM , F lM and F l,tM contain the collection of all inducing outputs in the deep GP, those in layer l, and
only those in the t-th GP in the l-th layer, respectively.

In order to find an analytically tractable approximate inference scheme, Damianou and Lawrence
(2013) introduce additional latent variablesX l

N per layer which are assumed to be noisy observations
of the F lN . They then proceed to perform variational inference with a variational family that assumes
independence between the X l

N and the F lN . While this leads to an analytically tractable solution,
strong independence assumptions in variational inference are known to be problematic: Especially
for strongly correlated variables (which we expect the X l

N and the F lN to be since the first is as-
sumed to be a noisy observation of the latter), assuming them to be independent can lead to a strong
underestimation of the true marginal probabilities (Turner and Sahani, 2011). Furthermore, the varia-
tional posterior has lost all correlations between different layers due to this independence assumption,
leading to some of the layers being practically turned off, i.e. the signal to noise ratio goes towards
zero during model selection (see Salimbeni and Deisenroth, 2017 and also the discussion therein for
further information). There have been several works that proposed twists or improvements to the
inference method by Damianou and Lawrence (2013), but initially all approaches still built on the
same independence assumption: In Hensman and Lawrence (2014) a nested variational compression
approach is proposed, while Dai et al. (2016) use a variational auto-encoder. Furthermore, Bui et al.
(2016) introduce an approximate expectation propagation approach that additionally builds on the
FITC approximation for the sparse GP [Eq. (2.10)] and Cutajar et al. (2017) propose using random

20 2.3 Technical Background on Deep Gaussian Processes

feature expansions to improve the scalability of deep GPs.
The first approach that takes the dependence between successive layers in a variational approach

into account is the one by Salimbeni and Deisenroth (2017): They first note that the same effect as
introducing X l

N as a noisy version of the F lN can similarly be achieved by instead introducing an
additional white noise kernel component in the kernels kl,t.10 Variational inference in the deep GP
model given in Eq. (2.18) can then be performed using the variational posterior

q(FN , FM) = q(FM)

L∏
l=1

p(F lN |F
l
M , F

l−1
N). (2.19)

Note that this is the same general form as the one used for sparse GPs [Eq. (2.12)]. With this choice,
the ELBO has the form

LDGP =

N∑
n=1

E
q(f

L
n)

[
log p(yn|f

L
n)
]
− KL[q(FM)||

L∏
l=1

p(F lM)], (2.20)

which we derive in Appx. A.2.2. Note that this ELBO looks almost identical to the one of the vari-
ational sparse GPs in Eq. (2.13). The difference lies in the last layer marginals q(fLn) which have a
much more complicated form,

q(fLn) =

∫ [∫
q(FM)

L∏
l=1

p(f ln|F
l
M , f

l−1
n)dFM

]
df1n · · · df

L−1
n , (2.21)

where the explicit formula for the marginals p(f ln|F
l
M , f

l−1
n) of the p(F lN |F

l
M , F

l−1
N) is provided

in Eq. (A.21). Compared to the equivalent term for sparse GPs in Eq. (2.15), we not only have to
marginalise out the inducing outputs and GP outputs for one GP, but rather for all GPs in all layers of
the deep GP in Eq. (2.21).

In order to achieve analytical tractability of the inner integral in Eq. (2.21), Salimbeni and Deisen-
roth (2017) choose a mean-field (MF) Gaussian approximation for q(FM), the variational distribution
over the inducing outputs:

qMF(FM) =
L∏
l=1

Tl∏
t=1

qψ(F
l,t
M), qψ(F

l,t
M) = N

(
F l,tM

∣∣∣µl,tM , Sl,tM) . (2.22)

The variational parameters ψ are therefore given as the mean vectors µl,tM and the covariance matrices
Sl,tM of all the GPs in the deep GP. The form of the variational distribution in Eq. (2.22) allows for an
analytical solution of the inner integral in Eq. (2.21) (see Appx. A.2.2), resulting in

qMF(f
L
n) =

∫ L∏
l=1

q(f ln|f
l−1
n)df1n · · · df

L−1
n , (2.23)

where q(f ln|f
l−1
n) =

∏Tl
t=1N

(
f l,tn

∣∣∣µl,tn ,Σl,tn) and the means and covariances are given by the equiv-
alents of Eq. (2.16). Note that the remaining integral in Eq. (2.23) is intractable. In Salimbeni and
Deisenroth (2017), this is solved by recursively sampling the marginals through the layers of the deep
GP, i.e., starting with f1(s)n ∼ q(f1n|xn) until fL(s)n ∼ q(fLn |f

L−1(s)
n), where the index (s) indicates

10In the experiments Salimbeni and Deisenroth (2017) note that this component has no effect on the performance and thus
can be omitted.

2 Background 21

a sampled quantity. By reparametrising these samples (Kingma and Welling, 2014; Rezende et al.,
2014; Titsias and Lázaro-Gredilla, 2014) it is possible to calculate unbiased gradients wrt. the varia-
tional parameters ψ for optimising the ELBO in Eq. (2.20). To this first source of stochasticity comes
the possibility of subsampling the data since the bound in Eq. (2.20) is a sum over the independent
data points, hence leading to the doubly stochastic variational inference approach by Salimbeni and
Deisenroth (2017).

In order to make this approach work in practice, Salimbeni and Deisenroth (2017) introduce two
small changes to the general approach described so far: First, the number of trainable parameters
is reduced by using the same kernel kl and the same inducing inputs X l

M for all GPs within the
same layer l, which simplifies finding a good local optimum for the inducing variables and the kernel
hyperparameters. Second, the authors propose using linear mean functions for all inner GPs in the
deep GP given by the principal component analysis (see e.g. Bishop, 2006, Sec. 12.1) mapping of
the original inputs XN . These mean functions are needed to avoid pathologies found in deep GPs
(Duvenaud et al., 2014), while their form is inspired by skip connections in residual neural networks
(He et al., 2016). Finally, predictions in this model can be made by taking multiple samples from
q(fL∗) using Eq. (2.23), where the training input is being replaced by the test input x∗. The resulting
predictive distribution is a mixture of Gaussians that can in principle approximate arbitrarily complex
distributions. In summary, the approach by Salimbeni and Deisenroth (2017) trades off losing the
analytical tractability during inference versus removing independence assumptions in the approximate
posterior compared to the work by Damianou and Lawrence (2013).

In a follow-up work, Havasi et al. (2018) sacrifice yet another part of analytical tractability in
order to significantly improve the expressivity of the approach by Salimbeni and Deisenroth (2017):
The authors criticise the Gaussian mean-field assumption made for q(FM) in Eq. (2.22) both for
the independence assumption between layers and the simplicity of such an approach that e.g. does
not allow for multimodality. Instead, they propose to approximately marginalise the FN from the
model in Eq. (2.18) using the same recursive sampling scheme as Salimbeni and Deisenroth (2017)
but with p(f ln|F

l
M , f

l−1
n) instead of q(f ln|f

l−1
n) leaving them with an approximation to p(YN , FM).

Havasi et al. (2018) then propose to use a specialised Markov chain Monte Carlo approach (Neal,
1993; Chen et al., 2014) in order to produce samples from the posterior p(FM |YN) which can then
be used to make predictions. Hence, in comparison to Salimbeni and Deisenroth (2017), Havasi et al.
(2018) sacrifice the analytical tractability of the FM (having only access to samples) in order to allow
for the dependence between the inducing outputs of different layers F lM and also to allow for non-
Gaussianity of the distribution over all the FM . Exactly this trade-off is what we investigate further
in Chap. 3 of this thesis.

2.4 Technical Background on Gaussian Process State-Space

Models

As we discussed in Sec. 1.2.3, GP regression is in principle applicable to time series modelling prob-
lems, but only suboptimally so since it disregards the important role that time plays in these problems.
Gaussian process state-space models provide a flexible and principled framework capable of dealing
with time series in a fully probabilistic manner. While we discussed the idea behind GPSSMs and
the difference between state-of-the-art approaches in Sec. 1.4, here we also provide a short overview
over other works dealing with inference in GPSSMs, and the necessary technical background. As
we will see, all recent GPSSM inference methods build on the sparse GP frameworks that we dis-
cussed in Sec. 2.2. Additionally, recent methods have many similarities to the state-of-the-art deep
GP inference approaches introduced in the previous section.

The idea of using GPs to model transitions in state-space models goes back to Wang et al. (2005):

22 2.4 Technical Background on Gaussian Process State-Space Models

The authors propose to model a time series YT = {yt}
T
t=1 by introducing a latent temporal state

XT0
= {xt}

T
t=0 (including an initial latent state x0)11 that separates the true dynamics from the obser-

vations using an emission model p(yt|xt) which allows modelling measurement noise.12 The latent
states are assumed to evolve according to the Markovian transition model p(xt|ft−1, xt−1), where
ft−1 ≡ f(xt−1) are the evaluations of a transition function f on which we place a GP prior with ker-
nel k leading to p(FT |XT) = N (FT |0,KTT), where FT = {ft}

T−1
t=0 and KTT = {k(xt, xt′)}

T−1

t,t
′
=0

[cf. Eq. (1.1)]. Additionally specifying an initial distribution p(x0) leads to the joint prior model

p(YT , XT0
, FT) = p(x0)

T∏
t=1

p(yt|xt)p(xt|ft−1, xt−1)p(ft−1|f0:t−2, x0:t−1), (2.24)

where we have factorised p(FT |XT) =
∏T
t=1 p(ft−1|f0:t−2, x0:t−1) using the notation x0:t−1 =

{xt′}
t−1

t
′
=0

and the individual factors can be obtained using Eq. (A.3) recursively. A typical choice for
the different parts of the model is given by

p(yt|xt) = N
(
yt

∣∣∣Axt + b, σ2y

)
, p(xt|ft−1, xt−1) = N

(
xt

∣∣∣ft−1, σ
2
x

)
, p(x0) = N (x0|0, 1) ,

(2.25)

where we introduced model parameters {A, b, σy, σx}.13

Training the GP in this model is an inherently hard task since the GP simultaneously needs to
fulfil two (possibly opposing) tasks: On one hand, the function f needs to provide a good output
mapping for xt such that the emission model p(yt|xt) has an easy task to model the outputs. On
the other hand, the GP also needs to provide a good input mapping for xt such that this can be used
as the input for modelling the next state xt+1 through the transition model. Learning in the model
given by Eqs. (2.24) and (2.25) amounts to finding settings for the model parameters and the GP
hyperparameters as well as performing inference over the latent variables {XT0

, FT }. In the work by
Wang et al. (2005), learning was performed by finding a maximum a posteriori estimate of the latent
variables and the other parameters.

The first Bayesian treatment of the latent states and the transition function in GPSSMs can be found
in Frigola et al. (2013) where a Markov chain Monte Carlo approach was used. The authors provide
two versions, one with a standard GP and one using the FITC approach to sparse GPs [Eq. (2.10)] in
order to reduce the computational complexity. However, the runtime of these approaches remained
high, mainly due to the Markov chain Monte Carlo computations such that later works focused on
variational approximations, beginning with Frigola et al. (2014): They used a sparse GP in the flavour
of Titsias (2009), introducing inducing variables XM , FM to the GPSSM model [Eq. (2.24)] in order
to deal with the GP in the transition function. This leads to the augmented joint model [cf. the plate

11Note that the subindex 0 in our notation XT0
denotes the inclusion of x0 in the set XT = {xt}

T
t=1, i.e., XT0

=
XT ∪ {x0}.

12Additionally, this allows using a latent state xt with a higher dimensionality than the observations yt, which is e.g. re-
quired when modelling a position using the latent velocity and acceleration. For GPSSMs a high dimensional latent state
is typically additionally required to reduce non-identifiabilities (see footnote 13).

13 While early approaches typically considered much more expressive emission models p(yt|xt) than the one used here,
it has been shown that the linear model in Eq. (2.25) is as powerful as choosing a GP transition and emission model,
provided the dimensionality of the latent state xt is high enough (Frigola, 2015, Sec. 3.2.1). The current parametrisation
reduces non-identifiabilities, i.e., helps attributing patterns in the data to either the dynamics or to the static observation
model. Furthermore, choosing a standard normal distribution over x0 is justified when the data is normalised.

2 Background 23

F M

yt yt+1yt−1

xt xt+1xt−1

Figure 2.3: Plate diagram for the GPSSM using the FITC approximation: The observations yt depend only on
the corresponding temporal latent state xt. Those are influenced by the previous latent state xt−1 which are
conditioned on the inducing outputs FM .

diagram in Fig. 1.4]]

p(YT , XT0
, FT , FM) = p(x0)p(FM)

T∏
t=1

p(yt|xt)p(xt|ft−1, xt−1)p(ft−1|f0:t−2, x0:t−1, FM),

(2.26)

where
∏T
t=1 p(ft−1|f0:t−2, x0:t−1, FM) = p(FT |XT , FM) is as in Eq. (2.7) with N replaced by T .

For the model in Eq. (2.26), Frigola et al. (2014) proposed the variational family q(XT0
, FT , FM) =

q(XT0
)q(FM)p(FT |XT , FM) such that the expensive term p(FT |XT , FM) cancels in the ELBO

while the other two distributions are free form. Due to the independence assumption between FM
and XT0

, the form of the optimal distributions q(XT0
) and q(FM) can be obtained, where q(XT0

) is
analytically intractable. Frigola et al. (2014) use a particle filtering approach to draw samples from
that distribution. In a later work, Eleftheriadis et al. (2017) improved the efficiency of this method by
using a doubly stochastic variational inference scheme that allows for the first time for mini-batches.
They opt for a parametric Gaussian distribution for q(FM) and a linear Markov Gaussian model for
the temporal latent states, q(XT0

) = q(x0)
∏T
t=1 q(xt|xt−1), where q(xt|xt−1) = N (xt|Atxt−1, Bt)

with parameters At and Bt for every time step. The authors additionally employ a recognition model
to amortise the inference of the many parameters of such an approach.

Only recently have variational methods also incorporated the dependency between the FM and
the XT0

in their approximations: The method by Doerr et al. (2018) called probabilistic recurrent
state-space model (PRSSM) employs the FITC approximation [Eq. (2.10)]14 to simplify the prior in
Eq. (2.26) by marginalising the FT , leading to

p(YT , XT0
, FM) = p(x0)p(FM)

T∏
t=1

p(yt|xt)p(xt|xt−1, FM), (2.27)

p(xt|xt−1, FM) = N
(
xt

∣∣∣Kt−1,MK
−1
MMFM , σ

2
x + kt−1,t−1 −Kt−1,MK

−1
MMK

⊤
t−1,M

)
(2.28)

14 Note that while the reason for using the FITC approximation is the same in both cases (intractable scaling, here with
O(T

3
), in standard GP regression with O(N

3
)), there are some differences in the two cases: For the GP regression case,

the inducing outputs FM can be efficiently analytically marginalised which is not the case for the GPSSM. Therefore, an
approximate posterior also over the FM is required here [see Eq. (2.29)]. The latter resolves the issue of vanishing noise
variances that the FITC approximation encounters in some cases (see Fig. 2.2, top).

24 2.4 Technical Background on Gaussian Process State-Space Models

which we derive in Appx. A.2.3. The plate diagram for this model can be found in Fig. 2.3. For this
model the authors propose to use the variational family

q(XT0
, FM) = q(x0)q(FM)

T∏
t=1

p(xt|xt−1, FM), (2.29)

i.e., they respect the conditional dependencies between the XT0
and the FM but use the simplest pos-

sible model for q(XT |FM), namely the prior. The variational distribution in Eq. (2.29) is inspired by
the similar one for the deep GP by Salimbeni and Deisenroth (2017) [cf. Eq. (2.19)] and consequently
leads to a structurally similar ELBO [cf. Eq. (2.20)],

LPRSSM =

T∑
t=1

Eq(xt) [log p(yt|xt)]− KL [q(x0) ∥ p(x0)]− KL [q(FM) ∥ p(FM)] , (2.30)

q(xt) =

∫∫ t∏
t
′
=1

p(xt′ |xt′−1, FM)

 q(x0)q(FM)dFMdx0:t−1, (2.31)

which we also derive in Appx. A.2.3. While the KL-divergences in Eq. (2.30) are analytically
tractable when all involved distributions are Gaussian, the marginals q(xt) in Eq. (2.31) are intractable
and have to be approximated. Doerr et al. (2018) propose to approximate the integration over FM by
changing the order of the integral and the product,

q(xt) ≈
∫ t∏

t
′
=1

∫
p(xt′ |xt′−1, FM)q(FM)dFM

 q(x0)dx0:t−1 (2.32)

=

∫ t∏
t
′
=1

q(xt′ |xt′−1)

 q(x0)dx0:t−1, (2.33)

where q(xt′ |xt′−1) is analytically tractable. However, this approximation effectively leads to having
independent GP samples for every time step t (see also the discussion in Ialongo et al., 2019, Sec. 4.7;
and Longi et al., 2021, Appx. A.2). Furthermore, the resulting expression in Eq. (2.33) is still not
analytically tractable since the latent states xt′ appear as inputs to kernels. This is exactly the same
problem that the deep GP inference scheme by Salimbeni and Deisenroth (2017) faced [cf. Eq. (2.23)]
and that is consequently solved in the same way, i.e., by recursively sampling the temporal latent
states. This is the first source of stochasticity in the algorithm of Doerr et al. (2018). The second
source of stochasticity comes from the fact that the ELBO in Eq. (2.30) is a sum over the observations
yt and is therefore amenable to mini-batching (or rather using subsequences of YT),15 making the
method of Doerr et al. (2018) also a doubly stochastic variational inference approach, similarly as the
method of Salimbeni and Deisenroth (2017) for deep GPs.

In a follow-up work, Ialongo et al. (2019) criticise several aspects of the approach by Doerr et al.
(2018), namely i) the inexpressive choice of the prior16 as the approximate smoothing distribution
q(XT0

|FM) in Eq.(2.29), ii) the FITC approximation leading to the approximate model in Eq. (2.27),
and finally iii) the approximation of the marginal q(xt) in Eq. (2.32). The authors therefore propose

15Note that naively using subsequences leads to a crude approximation since this disregards the temporal dependencies
throughout the whole sequence YT . See also the extensive discussion in Aicher et al. (2019).

16Choosing the prior as the approximate posterior is generally an extremely inexpressive choice in variational inference:
Basically, this amounts to fully relying on the prior modelling assumptions since the data cannot influence the posterior
model in this case.

2 Background 25

the following method: They use the full model in Eq. (2.26) instead of Eq. (2.27), thus remedying ii)
and propose the following variational family:

q(XT0
, FT , FM) = q(x0)p(FT |XT , FM)q(FM)

T−1∏
t=0

q(xt+1|FM , xt), (2.34)

q(xt+1|FM , xt) = N
(
xt+1

∣∣∣AtKtMK
−1
MMFM + bt, St +At

[
ktt −KtMK

−1
MMK

⊤
tM

]
A⊤
t

)
.

(2.35)

The main difference to the variational family of Doerr et al. (2018) in Eq. (2.29) lies in the replace-
ment of the prior term in Eq. (2.28) through the term in Eq. (2.35) which is a fix for criticism i). The
choice of the latter term is inspired by the true posterior filtering factors p(xt+1|f0:t, xt, y1:t+1) that
have the same functional form, i.e., a non-linear Markov Gaussian model. The parameterisation in
Eq. (2.35) is an approximation to that form that allows inference in O(T) time but introduces new
parameters At, bt, and St for every time step t, which additionally have to be inferred. Note that by
setting At = 1, bt = 0, and St = σ2x, the prior transition model in Eq. (2.28) is recovered. Hence,
the PRSSM method by Doerr et al. (2018) is a special case of the approach by Ialongo et al. (2019)
which the authors named variationally coupled dynamics and trajectories (VCDT). The ELBO for
this method can be obtained by plugging the prior model [Eq. (2.26)] and the approximate posterior
[Eq. (2.34)] in Eq. (A.12), the general formula for the ELBO, yielding

LVCDT = LPRSSM −
T∑
t=1

Eq(xt−1,ft−1,FM) [KL [q(xt|FM , xt−1) ∥ p(xt|ft−1, xt−1)]] . (2.36)

Here LPRSSM is the ELBO of the PRSSM approach in Eq. (2.30) and the additional term comes
from replacing the prior transition in Eq. (2.28) by the new parametric form in Eq. (2.35). We derive
Eq. (2.36) in detail in Appx. A.2.4, providing also the formulas for the marginals q(xt) [cf. Eq. (2.31)]
and q(xt−1, ft−1, FM) there. When it comes to optimising the ELBO, Ialongo et al. (2019) face the
same problem as Doerr et al. (2018): While the KL-terms are analytically tractable, the marginals
q(xt) and q(xt−1, ft−1, FM) [see Eqs. (A.30) and (A.32)] are not. Instead of using the biased ap-
proximation in Eq. (2.32), Ialongo et al. (2019) propose to sample from q(FM) instead which yields
an unbiased estimator (at the price of a higher variance). This therefore constitutes a solution to the
final criticism iii) that Ialongo et al. (2019) stated about the method of Doerr et al. (2018).

In summary, Ialongo et al. (2019) improve the method of Doerr et al. (2018) by using a much more
expressive variational family (that even contains the less expressive family as a special case) and by
removing two approximating assumptions. It is therefore quite surprising that Ialongo et al. (2019)
find in their experiments that in many cases the easier model still outperforms their more powerful
one.

This raises several questions that we address throughout the thesis: We will first investigate the role
of the two approximations, the FITC assumption and the one made in Eq. (2.32), more closely and
thereby get a better understanding of GPSSMs in Chap. 4. We will then use this gained knowledge
in Chap. 5 to come up with a new method that is specially designed for time series consisting of
slowly and quickly changing components. Our method is based on the one by Doerr et al. (2018)
and outperforms other approaches on the specific task it has been designed for, but also generally
improves the efficiency of GPSSMs. Finally, in Chap. 6, we will come back to the performance
issues of Ialongo et al. (2019) and design a new GPSSM. Our approach trades off the expressivity
of the VCDT method by Ialongo et al. (2019) with the good optimisation properties of the PRSSM
approach by Doerr et al. (2018), thus arriving at a method which can outperform both.

CHAPTER 3

Structured Deep Gaussian

Processes

Gaussian processes (GPs, see Sec. 2.1) provide a non-parametric framework for learning distributions
over unknown functions from data (Rasmussen and Williams, 2006): As the posterior distribution can
be computed in closed-form, they return well-calibrated uncertainty estimates, making them particu-
larly useful in safety critical applications (Amodei et al., 2016; Reeb et al., 2018), Bayesian optimisa-
tion (Snoek et al., 2012; Hebbal et al., 2021), active learning (Zimmer et al., 2018) or under covariate
shift (Snoek et al., 2019). However, the analytical tractability of GPs comes at the price of reduced
flexibility: Standard kernel functions make strong assumptions such as stationarity or smoothness. To
make GPs more flexible, a practitioner would have to come up with hand-crafted features or kernel
functions. Both alternatives require expert knowledge and are prone to overfitting (see Sec. 1.2.2).

Deep Gaussian processes (see Sec. 2.3) offer a compelling alternative since they learn non-linear
feature representations in a fully probabilistic manner via GP cascades (Damianou and Lawrence,
2013). The gained flexibility has the drawback that inference can no longer be carried out in closed-
form, but must be performed via Monte Carlo sampling (Havasi et al., 2018), or approximate inference
techniques (Damianou and Lawrence, 2013; Bui et al., 2016; Salimbeni and Deisenroth, 2017). The
most popular approximation, variational inference (see Sec. A.2), searches for the best approximate
posterior within a pre-defined class of distributions: the variational family (Blei et al., 2017). For
GPs, variational approximations often build on the inducing point framework (see Sec. 2.2) where a
small set of latent variables, the set of inducing outputs FM , acts as pseudo data points summarising
the training data (Snelson and Ghahramani, 2005). For deep GPs, each latent GP is governed by its
own set of inducing variables, which, in general, need not be independent from those of other latent
GPs.

The state-of-the-art approaches by Salimbeni and Deisenroth (2017) and Havasi et al. (2018) (that
we discuss in detail in Sec. 2.3) offer an interesting trade-off for inference in deep GPs where the main
difference lies in the treatment of the inducing outputs FM . Havasi et al. (2018) propose a maximally
expressive treatment of the FM that is advantageous for well calibrated uncertainty estimates (Turner
and Sahani, 2011). However, this has the downside that the FM cannot be treated analytically and are
only available as samples which leads to higher variance and therefore generally worse convergence
properties during training. In contrast, the method by Salimbeni and Deisenroth (2017) proposes a
rather simple approach, i.e., assuming the FM to be Gaussian distributed and independent between
and within different layers of the deep GP. This renders the FM analytically tractable which reduces
the variance in the estimators and is needed for fast convergence (Kingma et al., 2015).

In the current chapter we explore this trade-off further by taking the best of both worlds and offer-
ing a new class of variational families for deep GPs (Lindinger et al., 2020). We require that (i) all
global latent variables, i.e., inducing outputs FM can be marginalised out, and that (ii) correlations
between latent GP models can be captured. We propose using a fully-parameterised Gaussian vari-
ational posterior over the global latent variables, i.e., allowing for correlations between the inducing
outputs within and across layers, thus automatically fulfilling (ii). In Sec. 3.1, we show via a proof
by induction, that (i) can still be achieved. The proof is constructive, resulting in a novel inference

27

28 3.1 Fully-Coupled Deep Gaussian Processes

scheme for variational families that allow for correlations within and across layers. The proposed
scheme is general and can be used for arbitrarily structured covariances.1 In the remainder of Sec. 3.1
we empirically explore the properties of our proposed method. Among other things we find an inter-
esting structure in the covariance matrices governing the correlation of the inducing outputs within
and between different layers, pointing towards more and less important correlations. In Sec. 3.2,
we further propose a scalable approximation to this variational family, which only takes the stronger
correlations into account. We provide efficient implementations for both variational families, where
we particularly exploit the sparsity and structure of the covariance matrix of the variational posterior.
We then further show experimentally that our new algorithm works well in practice: Our approach
obtains a better balance between accurate predictions and calibrated uncertainty estimates than its
competitors, as we showcase by varying the distance of the test from the training points (Lindinger
et al., 2020). Finally, in Sec. 3.3 we summarise and conclude the current chapter.

3.1 Fully-Coupled Deep Gaussian Processes

We laid the theoretical groundwork for the treatment of variational deep GPs in Sec. 2.3, where we
introduced the prior model and the conventional variational family in Eqs. (2.18) and (2.19), and
the resulting ELBO which depends on the last layer marginals q(fLn) in Eqs. (2.20) and (2.21),
respectively. Due to the importance of the q(fLn) for our current undertaking, we repeat the general
formula here:

q(fLn) =

∫ [∫
q(FM)

L∏
l=1

p(f ln|F
l
M , f

l−1
n)dFM

]
df1n · · · df

L−1
n , (3.1)

where the p(f ln|F
l
M , f

l−1
n) are given in Eq. (A.21) and q(FM) is the part of the variational fam-

ily [Eq. (2.19)] describing the inducing outputs. We saw that the mean-field variational family
qMF(FM) =

∏L
l=1

∏Tl
t=1N

(
F l,tM

∣∣∣µl,tM , Sl,tM) [Eq. (2.22)] by Salimbeni and Deisenroth (2017) (which
ignores correlations of GPs between and within different layers) leads to the inner integral in Eq. (3.1)
being analytically tractable [see Eq. (2.23) and Appx. A.2.2].

Instead, we propose a new variational family that allows to couple the inducing outputs but retains
the analytical marginalisation property. We do this by leaving the Gaussianity assumption unchanged,
while permitting dependencies between all inducing outputs (within layers and also across layers).
This corresponds to the fully-coupled (FC) variational ansatz

qFC(FM) = N (FM |µM , SM) (3.2)

with dimensionality TM , where T is the total number of GPs in the deep GP and M is the number
of inducing points (per GP). By taking the dependencies between the latent processes into account,
the resulting variational posterior q(FN , FM) [Eq. (2.19)] is more expressive, i.e., better suited to
closely approximate the true posterior and contains the mean-field variational family of Salimbeni
and Deisenroth (2017) as a special case. As we will see next, this approach is also computationally
efficient since the inducing outputs can still be marginalised out.

1One particular case, in which the variational family is chain-structured, has also been considered in a recent work in which
the compositional uncertainty in deep GP models is studied (Ustyuzhaninov et al., 2020b).

3 Structured Deep Gaussian Processes 29

3.1.1 Analytical Marginalisation of the Inducing Outputs

Exchanging the distribution qMF(FM) by qFC(FM) has no influence on the general form of the ELBO
for deep GPs in Eq. (2.20). Only when it comes to the last layer marginals in Eq. (3.1), does the
new variational family make a difference: qMF(FM) can be written as a product over the L different
layers and therefore reduces the inner integral in Eq. (3.1) to L independent integrals which can be
solved using standard Gaussian calculus (see Appx. A.2.2). This is not the case for the fully-coupled
deep GP which makes the computations more challenging. The implications of using a fully coupled
qFC(FM) [Eq. (3.2)] are summarised in the following theorem (Lindinger et al., 2020).

Theorem 3.1. In a fully-coupled deep GP, the last layer marginals q(fLn) can be written as

qFC(f
L
n) =

∫ L∏
l=1

q(f ln|f
1:l−1
n)df1n · · · df

L−1
n , where q(f ln|f

1:l−1
n) = N

(
f ln

∣∣∣µ̂ln, Σ̂ln) , (3.3)

for each data point xn. The means and covariances are given by

µ̂ln = µ̃ln + S̃l,1:l−1
n

(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1
n − µ̃1:l−1

n), (3.4)

Σ̂ln = S̃lln − S̃l,1:l−1
n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n , (3.5)

where we introduced the shorthand notations

µ̃ln = Kl
nM

(
Kl
MM

)−1
µlM

S̃ll
′

n = δll′K
l
nn −Kl

nM

(
Kl
MM

)−1 (
δll′K

l
MM − Sll

′

M

)(
Kl

′

MM

)−1 (
Kl

′

nM

)⊤
.

(3.6)

In Eqs. (3.4) and (3.5) we use e.g. Al,1:l
′
=
(
Al,1 · · ·Al,l

′)
to denote a submatrix of the variable

A.2 Additionally, µlM ∈ RTlM denotes the sub-vector of µM that contains the means of the inducing
outputs in layer l, and Sll

′

M ∈ RTlM×T
l
′M contains the covariances between the inducing outputs

of layers l and l′. In Eq. (3.6), we introduced the notation Kl =
(
ITl ⊗K l

)
as shorthand for the

Kronecker product between the identity matrix ITl and the covariance matrix K l,3 and used δ for the
Kronecker delta.

By Thm. 3.1, the inducing outputs FM can still be marginalised out, which enables low-variance
estimators of the ELBO. While the resulting formula for q(f ln|f

1:l−1
n) has a similar form as Gaussian

conditionals, this is only true at first glance: The latents of the preceding layers f1:l−1
n enter the mean

µ̂ln and the covariance matrix Σ̂ln also in an indirect way via S̃n as they appear as inputs to the kernel
matrices.

Sketch of the proof of Theorem 3.1. We start the proof with Eq. (3.1), the general formula for the
last layer marginals q(fLn). In order to show the equivalence between the inner integral in Eq. (3.1)
when plugging in Eq. (3.2) and the integrand in Eq. (3.3) we proceed to find a recursive formula for

2Note that these formulas contain the mean-field solution in Eq. (2.23) as a special case. This can be seen by plugging in
the respective covariance matrix which is done in Lindinger et al. (2020, Appx. B.2).

3We follow Salimbeni and Deisenroth (2017) in choosing the same kernel kl and the same inducing inputs Xl
M for every

GP in the l-th layer. This leads to Kl,t
nM = K

l
nM and Kl,t

MM = K
l
MM∀t which allows us to use the Kronecker product.

30 3.1 Fully-Coupled Deep Gaussian Processes

integrating out the inducing outputs layer after layer:∫
qFC(FM)

L∏
l=1

p(f ln|F
l
M , f

l−1
n)dFM

=

 l−1∏
l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f ln, F
l+1:L
M |f1:l−1

n)
L∏

l
′
=l+1

p(f l
′

n |F
l
′

M , f
l
′−1
n)dF l

′

M .

(3.7)

The equation above holds for l = 1, . . . , L after the inducing outputs of layers 1, . . . , l have already
been marginalised out. This is stated more formally in Lem. B.1 in Appx. B.1, in which we also
provide exact formulas for all terms. Importantly, all of them are multivariate Gaussians with known
mean and covariance. The lemma itself can be proved by induction and we will show the general idea
of the induction step here: For this, we assume the right hand side (RHS) of Eq. (3.7) to hold for some
layer l and then prove that it also holds for l → l + 1. We start by taking the (known) distribution
within the integral and split it in two by conditioning on f ln:

q(f ln, F
l+1:L
M |f1:l−1

n) = q(f ln|f
1:l−1
n)q(F l+1:L

M |f1:ln) (3.8)

Then we show that the distribution q(f ln|f
1:l−1
n) can be written as part of the product in front of the

integral on the RHS of Eq. (3.7) (thereby increasing the upper limit of the product to l). Next, we
consider the integration over F l+1

M , where we collect all relevant terms [thereby increasing the lower
limit of the product within the integral on the RHS of Eq. (3.7) to l + 2]:∫

q(F l+1:L
M |f1:ln)p(f l+1

n |F l+1
M , f ln)dF

l+1
M

=

∫
q(F l+1

M |f1:ln)q(F l+2:L
M |f1:ln , F l+1

M)p(f l+1
n |F l+1

M , f ln)dF
l+1
M

=

∫
q(F l+1

M |f1:ln)q(f l+1
n , F l+2:L

M |f1:ln , F l+1
M)dF l+1

M = q(f l+1
n , F l+2:L

M |f1:ln). (3.9)

The terms in the first line are given by Eqs. (3.8) and (A.21). All subsequent terms are also multi-
variate Gaussians that are obtained by standard operations like conditioning, joining two distributions,
and marginalisation (see e.g. Toussaint, 2011). We can therefore give an analytical expression of the
final term in Eq. (3.9), which is exactly the term that is needed on the right hand side of Eq. (3.7) for
l → l + 1. Confirming that this term has the correct mean and covariance completes the induction
step.

After proving Lem. B.1, Eq. (3.7) can be used. For the case l = L the right hand side can be shown
to yield

∏L
l=1 q(f

l
n|f

1:l−1
n). Hence, Eq. (3.3) follows by substituting the inner integral in Eq. (3.1)

by this term. The full proof can be found in Appx. B.1.

3.1.2 Experiments

We use our novel variational approach to fit fully-coupled deep GP models with different architectures
to some UCI regression datasets.4 We vary the number of layers L and the number of GPs per latent
layer which we denote as τ . Since the regression data sets have one-dimensional outputs, we always
use a single GP in the last layer. The resulting covariance matrices SM are depicted in Fig. 3.1
where we can clearly observe that our algorithmic work pays off: There is more structure in the

4The algorithm and experimental details can be found in Appxs. F and G of Lindinger et al. (2020), respectively. Code is
publicly available at https://github.com/boschresearch/Structured_DGP.

https://github.com/boschresearch/Structured_DGP

3 Structured Deep Gaussian Processes 31

Figure 3.1: Covariance/precision matrices after optimisation for three different UCI data sets. The first column
depicts covariance matrices SM for our standard architecture, L = 3, τ = 5, while the second column depicts
covariance matrices for L = 4, τ = 3. The third column shows the precision matrices corresponding to the
second column, i.e., the inverse matrices. Plotted are natural logarithms of the absolute values of the variational
covariance/precision matrices over the inducing outputs.

covariance matrices than the mean-field approximation allows (which amounts to a block-diagonal
SM , cf. Eq. (2.22)). This can be seen even more clearly in a direct comparison of the two methods in
Fig. 3.3 in the following section.

The fact that we uncover additional structure in the covariance matrices SM implies that the fully-
coupled variational family in Eq. (3.2) is a better approximation of the true posterior than the mean-
field variational family [Eq. (2.22)]. Since our variational family contains the latter one as a special
case, this is not surprising but still a valuable sanity test. We further validate this by comparing the
values of the ELBO [Eq. (2.20)] that both models achieve after the optimisation. The results can be
seen in Tab. 3.1 and we find that our fully-coupled approximation yields better ELBOs for all datasets.

These comparisons cover the first part of the trade-off that we set out to achieve by introducing the
new variational family: more expressivity than the mean-field approach by Salimbeni and Deisenroth
(2017). The second part, a method with better convergence properties than the approach by Havasi
et al. (2018) is much harder to experimentally validate. We argued that our method should achieve
this since we are able to analytically marginalise the FM which leads to lower variance estimators
of the ELBO, while Havasi et al. (2018) have to sample the FM . A direct experimental validation
of this is not possible since the two methods build on very different approaches for which it is hard
to find a comparable setting. We therefore perform a proxy experiment in which we compare our
analytical marginalisation over the inducing outputs FM with a method that uses the same variational
family but instead approximately marginalises the inducing outputs from Eq. (3.2) via Monte Carlo
samples.5 The comparison in Fig. 3.2 clearly demonstrates that our approach which uses the analytical

5Independently from our work, this sampling-based approach has also been proposed in Ustyuzhaninov et al. (2020b) for

32 3.2 The Stripes-and-Arrow Approximation

Table 3.1: We report ELBOs (the larger, the better) for the mean-field (MF) and the fully-coupled (FC) method
and the number of data points N as well as the input dimensionality D for each data set. We used our standard
architecture with M = 128, τ = 5, and L = 3 for both methods and trained them using natural gradients (see
text). Standard errors are obtained by repeating the experiment 10 times. We warm-started the optimisation
of the fully-coupled method from the converged mean-field solution. Significantly better performing methods
(non overlapping standard errors) are marked in bold for each dataset.

Dataset boston energy concrete wine_red kin8nm power naval protein
(N,D) (506,13) (768, 8) (1030, 8) (1599,11) (8192, 8) (9568, 4) (11934,16) (45730, 9)

MF -510(30) 510(8) -910(50) -1648(8) -2000(100) -390(90) 33000(600) -44040(140)
FC -246(5) 600(20) -500(10) -1575(4) -1290(70) -10(50) 34600(500) -42610(120)

Figure 3.2: We plot the ELBO as a function of time in seconds when the marginalisation of the inducing outputs
FM is performed analytically via our Thm. 3.1 (purple) and via Monte Carlo sampling (green). Both curves
show results for a fully-coupled deep GP with our standard three layer architecture (M = 128, L = 3, τ = 5),
on the concrete UCI dataset trained with Adam (Kingma and Ba, 2015).

marginalisation has superior convergence properties. This is even true when measured in total run
time where the more complicated computations that have to be performed in our approach are taken
into account. We can also see that the optimisation curve for the sampling method is noisier, which
can be explained by the higher variance estimates that are to be expected when Monte Carlo sampling
is used.

However, in comparison with the mean-field deep GP, the increase in the number of variational
parameters also leads to an increase in runtime and made convergence with standard optimisers fragile
due to many local optima. We were able to circumvent the latter by the use of natural gradients
(Amari, 1998), which have been found to work well for (deep) GP models before (Salimbeni et
al., 2018; Salimbeni et al., 2019; Adam et al., 2021; Hebbal et al., 2021), but this increases the
runtime even further (see Fig. 3.6 in the following section). It is therefore necessary to find a smaller
variational family if we want to use our method in large-scale applications.

3.2 The Stripes-and-Arrow Approximation

An optimal variational family combines the best of both worlds, i.e., being as efficient as the mean-
field deep GP while retaining the most important interactions introduced in the fully-coupled deep GP.
We want to emphasise that there are many possible ways of restricting the covariance matrix SM that

the fully-coupled variational family.

3 Structured Deep Gaussian Processes 33

Figure 3.3: Depicted are covariance matrices SM for different variational posteriors. We used a DGP with
2 hidden layers (L1, L2) of 5 latent GPs each and a single GP in the output layer (L3). The complexity of
the variational approximation is increased by allowing for additional dependencies within and across layers in
a Gaussian variational family (left: mean-field (Salimbeni and Deisenroth, 2017), middle: stripes-and-arrow,
right: fully-coupled). Plotted are natural logarithms of the absolute values of the variational covariance matrices
over the inducing outputs.

potentially lead to benefits in different applications. For example, the recent work by Ustyuzhaninov
et al. (2020b) studies the compositional uncertainty in deep GPs using a particular restriction of the
inverse covariance matrix (we depict full inverse covariance matrices for several examples in the
rightmost column of Fig. 3.1). The authors also provide specialised algorithms to marginalise out
the inducing outputs in their model. In contrast, we provide an analytic marginalisation scheme for
arbitrarily structured covariance matrices such that a restriction to application-specific covariances
(in our case regression on UCI benchmark data sets) is easily achieved. In the following, we propose
one possible class of covariance matrices based on our empirical findings that trades off efficiency
and expressivity by sparsifying the covariance matrix SM .

Inspecting Figs. 3.1 and 3.3 (right) again, we observe that besides the M × M blocks on the
diagonal, the diagonal stripes (Smolarski, 2006) (covariances between the GPs in latent layers at the
same relative position), and an arrow structure (covariances from every intermediate layer GP to the
output GP) receive large values. This observation holds for different data sets and different deep
GP architectures. Note that the stripes pattern can also be motivated theoretically as we expect the
residual connections realised by the mean functions [in order to avoid pathologies created by highly
non-injective mappings in the deep GP (Duvenaud et al., 2014), we follow Salimbeni and Deisenroth
(2017) and add non-trainable linear mean terms given by the PCA mapping of the input data to the
latent layers] to lead to a coupling between successive latent GPs. We therefore propose as one
special form to keep only these terms and neglect all other dependencies by setting them to zero in
the covariance matrix, resulting in a structure consisting of an arrowhead and diagonal stripes (see
Fig. 3.3 middle), which we call stripes-and-arrow approximation.

Denoting the number of GPs per latent layer as τ , it is straightforward to show that the number
of non-zero elements in the covariance matrices of mean-field, stripes-and-arrow, and fully-coupled
deep GP scale as O(τLM2), O(τL2M2), and O(τ2L2M2), respectively. In the example of Fig. 3.3,
we have used τ = 5, L = 3, and M = 128, yielding 1.8 × 105, 5.1 × 105, and 2.0 × 106 non-zero
elements in the covariance matrices. Reducing the number of parameters already leads to shorter
training times since less gradients need to be computed. Furthermore, the property that makes this
form so compelling is that the covariance matrix S̃1:l−1,1:l−1

n [needed in Eqs. (3.4) and (3.5)] as well
as the Cholesky decomposition6 of SM have the same sparsity pattern. Therefore only the non-zero
elements at pre-defined positions have to be calculated.

6In order to ensure that SM is positive definite, we will numerically exclusively work with its Cholesky factor LC , a unique
lower triangular matrix fulfilling SM = LCL

⊤
C .

34 3.2 The Stripes-and-Arrow Approximation

In addition to avoiding calculating unnecessary zero blocks there are other calculations that can be
sped-up by exploiting properties from linear algebra or by vectorisations. In particular, we can exploit
that the calculations for S̃ll

′

n in Eq. (3.6) involve the Kl (which are given by Kronecker products)
for which efficient matrix multiplication routines exist. Then the calculation of the µ̂ln and Σ̂ln in
Eqs. (3.4) and (3.5) for all n in the data set (or in a batch) can be vectorised which is advantageous
especially for computations on GPUs. Finally, for the inversion of S̃1:l−1,1:l−1

n in Eqs. (3.4) and
(3.5) we can exploit that the matrix is positive semi-definite and therefore possesses a Cholesky
decomposition. Instead of directly inverting the matrix for every layer l we will instead calculate the
Cholesky factors which can be used for efficient matrix vector solves, and more importantly can be
reused to update the Cholesky factor for the next layer. These technical properties and calculations
are explained in detail in Lindinger et al. (2020, Appx. E). There, it is also shown that the complexity
for the stripes-and-arrow ELBO is O(NM2τL2 + Nτ3L3 +M3τL3). This is a moderate increase
compared to the mean-field deep GP whose ELBO has complexity O(NM2τL), while it is a clear
improvement over the fully-coupled approach with complexity O(NM2τ2L2+Nτ3L3+M3τ3L3).

After having discussed the advantages of the proposed approximation a remark on a disadvantage is
in order: The efficient implementation of Salimbeni et al. (2018) for natural gradients cannot be used
in this setting, since the transformation from our parameterisation to a fully-parameterised multivari-
ate Gaussian is not invertible. However, this is only a slight disadvantage since the stripes-and-arrow
approximation has a drastically reduced number of parameters, compared to the fully-coupled ap-
proach, and we experimentally do not observe the same convergence problems when using standard
optimisers (see Lindinger et al., 2020, Fig. S5 in Appx. G).

3.2.1 Experiments

Next, we study the predictive performance of our stripes-and-arrow approximation. Since it is dif-
ficult to assess accuracy and calibration on the same task, we ran a joint study of interpolation and
extrapolation tasks, where in the latter the test points are distant from the training points. We com-
pare the predictive performance of our efficient stripes-and-arrow approximation (STAR DGP) with
a mean-field approximation (MF DGP, Salimbeni and Deisenroth, 2017) and a stochastic gradient
Hamiltonian Monte Carlo approach (SGHMC DGP, Havasi et al., 2018). This allows us to assess the
advantages that trading-off the expressivity of the latter method with the good convergence properties
of the method by Salimbeni and Deisenroth (2017) bring. As a baseline we also include a sparse GP
(SGP, Hensman et al., 2013). As done in prior work, we report results on eight UCI datasets and
employ as evaluation criterion the average marginal test log-likelihood.

We first assessed the interpolation behaviour of the different approaches by randomly partitioning
the data into a training and a test set with a 90 : 10 split, where the results can be found in Lindinger
et al. (2020, Tab. 1). This confirmed the reports from the literature (Salimbeni and Deisenroth, 2017;
Havasi et al., 2018), that deep GPs have on interpolation tasks an improved performance compared to
sparse GPs. We also observed that in this setting SGHMC outperforms the MF DGP and our method,
which are on par.

To investigate the extrapolation behaviour, we created test instances that are distant from the train-
ing samples: We first randomly projected the inputs X onto a one-dimensional subspace z = Xw,
where the weights w ∈ RD were drawn from a standard Gaussian distribution. We subsequently or-
dered the samples w.r.t. z and divided them accordingly into training and test set using a 50 : 50 split.
Performing the same analysis than on the interpolation task we find that while our approach, STAR
DGP, seems to perform slightly better than MF DGP and also SGHMC DGP, the large standard errors
of all methods hamper a direct comparison (see Lindinger et al., 2020, Tab. S5 in Appx. G). We at-
tribute this mainly to the random 1D-projection of the extrapolation experiment: The direction of the
projection has a large impact on the difficulty of the prediction task. Since this direction changes over

3 Structured Deep Gaussian Processes 35

Table 3.2: Direct comparison of the different deep GP variants on the extrapolation task. Shown is the average
frequency µ and its standard error σ (computed over 10 repetitions) of the STAR DGP outperforming the MF
DGP (top row) and the SGHMC DGP (bottom row) on the marginal test log-likelihood of individual repetitions
of the extrapolation task (see main text for details). Note that 1 (0) therefore corresponds to our STAR approach
always outperforming (being outperformed by) the competitor. Results are for deep GPs with three layers. We
mark numbers in bold (italics) if STAR significantly outperforms its competitor (vice versa).

Dataset boston energy concrete wine_red kin8nm power naval protein

MF vs. STAR 0.55(0.04) 0.73(0.05) 0.57(0.04) 0.57(0.04) 0.36(0.03) 0.44(0.06) 0.67(0.06) 0.49(0.03)
SGHMC vs. STAR 0.50(0.05) 0.60(0.04) 0.60(0.03) 0.63(0.02) 0.44(0.05) 0.64(0.03) 0.58(0.03) 0.50(0.03)

Figure 3.4: Depicted are predicted variance and mean squared errors for several methods. The results are
recorded on the kin8nm UCI dataset and smoothed for plotting by using a median filter. Left: We show the
predicted variance as a function of the minimal distance of the test point to the training set. Right: We plot
the mean squared error as a function of the predicted variance and compare it to the groundtruth, the identity
function shown in grey. Results are recorded on the kin8nm UCI dataset and smoothed for plotting by using a
median filter.

the repetitions, the corresponding test log-likelihoods vary considerably, leading to large standard
errors.

We resolved this issue by performing a direct comparison between STAR DGP and the other two
DGP variants: To do so, we computed the frequency of test samples for which STAR DGP obtained
a larger log-likelihood than MF/SGHMC DGP on each train-test split independently. Average fre-
quency µ and its standard error σ were subsequently computed over 10 repetitions and are reported
in Tab. 3.2. On 5/8 datasets STAR DGP significantly outperforms MF DGP and SGHMC DGP
(µ > 0.50 + σ), respectively, while the opposite only occurred on kin8nm. More comparisons that
also take the absolute differences in test log-likelihoods into account and additionally consider the
comparison of fully-coupled and MF DGP can be found in Lindinger et al. (2020, Tab. S4). Taken to-
gether, we conclude that our structured approximations are in particular beneficial in the extrapolation
scenario, while their performance is similar to MF DGP in the interpolation scenario.

Next, we performed an in-depth comparison between the approaches that analytically marginalise
the inducing outputs: In Fig. 3.4 we show that the predicted variance σ2∗ increased as we moved away
from the training data (left) while the mean squared errors also grew with larger σ2∗ (right). While the
predicted variances increase for all methods as a function of the distance to the training data, we find
that at any given distance, the uncertainty decreases from SGP to STAR DGP to MF DGP (Fig. 3.4,

36 3.3 Chapter Summary

left). The mean squared error is an empirical unbiased estimator of the variance Var∗ = E[(y∗−µ∗)
2]

where y∗ is the test output and µ∗ the mean predictor. The predicted variance σ2∗ is also an estimator of
Var∗. It is only unbiased if the method is calibrated. However, as Fig. 3.4 (right) shows, we observed
for the mean-field approach that, when moving away from the training data, the mean squared error
was larger than the predicted variances pointing towards underestimated uncertainties. This is a well-
known weakness of choosing a variational family that is too compact (Turner and Sahani, 2011).
While the mean squared error for SGP matched well with the predictive variances, the predictions are
rather inaccurate as demonstrated by the large predicted variances. Our method, STAR DGP, reaches
a good balance, having generally more accurate mean predictions than SGP and at the same time
more accurate variance predictions than MF DGP.

To conclude the analysis of the benchmark experiments, we investigated the behaviour of the
SGHMC approach in more detail. We ran a one-layer model that is equivalent to a sparse GP but
with a different inference scheme: Instead of marginalising out the inducing outputs, they are sam-
pled. We often observed that the distribution over the inducing outputs is non-Gaussian (see Fig. 3.5),
even though the optimal approximate posterior distribution is provably Gaussian in this case (Titsias,
2009). A possible explanation for this are convergence problems since the global latent variables
are not marginalised out, which, in turn, offers a potential explanation for the poor extrapolation be-
haviour of SGHMC that we observed in our experiments across different architectures and datasets.
Similar convergence problems have also been observed by Salimbeni et al. (2019).

Finally, we compared the impact of the variational family on the runtime as a function of the
number of inducing points M . The runtime of the different approximations was assessed for a single
gradient update averaged over 2,000 updates on a 6 core i7-8700 CPU using a mini-batch size of 512
and the Adam optimiser (Kingma and Ba, 2015). For the fully-coupled (FC) variational model, we
also recorded the runtime when employing natural gradients (Salimbeni et al., 2018). The results can
be seen in Fig. 3.6, where the order from fastest to slowest method was proportional to the complexity
of the variational family: mean-field, stripes-and-arrow, fully-coupled DGP and then FC DGP trained
with natural gradients. For our standard setting, M = 128, our STAR approximation was only two
times slower than the mean-field but three times faster than FC DGP (trained with Adam). This
ratio stayed almost constant when the number of inducing outputs M was changed, since the most
important term in the computational costs scales as O(M2) for all methods. Additional experiments
in which the architecture parameters L and τ are varied can be found in Lindinger et al. (2020,
Fig. S7). They also confirm that the empirical runtime performance scales with the complexity of the
variational family and matches our theoretical estimates in Sec. 3.2.

3.3 Chapter Summary

In this chapter, we investigated a new class of variational families for deep Gaussian processes (GPs)
inspired by achieving a trade-off between the previous state-of-the-art methods. The approach by
Salimbeni and Deisenroth (2017) is efficient and has good convergence properties. This is due to the
choice of a rather inexpressive approximate posterior, a Gaussian approximation that neglects cou-
plings between different layers, which makes certain global latent variables analytically tractable. In
contrast, Havasi et al. (2018) use a maximally expressive free form distribution over the global latent
variables which leads to the latter no longer being analytically tractable and therefore to an approach
with worse convergence properties. We propose to keep the Gaussianity assumption of Salimbeni and
Deisenroth (2017) but allow for arbitrary couplings and show by a proof via induction that with such
an approach the global latent variables can still be treated analytically. Further trading off efficiency
and expressivity between our newly proposed method that allows for all couplings and the method
by Salimbeni and Deisenroth (2017) that ignores couplings between different GPs in the deep GP, we
propose another new variational family that takes only the couplings into account that we empirically

3 Structured Deep Gaussian Processes 37

Figure 3.5: Depicted is an empirical test whether the marginal distributions q(fm) over the inducing outputs
are Gaussian or not when using SGHMC inference (Havasi et al., 2018). We employ a deep GP with a single
layer, equivalent to a sparse GP. Top: Histogram of Monte Carlo samples for a randomly chosen inducing
output fm for all eight benchmark data sets. The red line indicates a Normal distribution fitted to the data.
Bottom: For each of the 128 inducing outputs, we computed a p-value if its Monte Carlo samples are normally
distributed. We show the negative logarithm of these p-values (the higher this value, the more likely that the
samples are not from a Gaussian distribution) for each inducing output and for all data sets. The blue line
shows the Bonferroni corrected significance threshold α = 10−5.

38 3.3 Chapter Summary

Figure 3.6: We compare the runtime of our efficient STAR DGP versus the FC DGP and the MF DGP on the
protein UCI dataset. Shown is the runtime of one gradient step in seconds on a logarithmic scale as a function
of the number of inducing points M . The dotted grey lines show the theoretical runtime O(M2).

found to be the most important. Hence, our approach is (i) efficient as it allows to marginalise ana-
lytically over the global latent variables and (ii) expressive as it takes the most important couplings
between the global latent variables across layers in the variational posterior into account. In a joint
study of interpolation and extrapolation tasks as well as in a careful evaluation of the extrapolation
task on its own, our approach outperforms its competitors (Salimbeni and Deisenroth, 2017; Havasi
et al., 2018), since it balances accurate predictions and calibrated uncertainty estimates. Further re-
search is required to understand why our structured approximations are especially helpful for the
extrapolation task. One promising direction could be to look at differences of inner layer outputs (as
done in Ustyuzhaninov et al., 2020b) and link them to the final deep GP outputs.

There has been a lot of follow-up work on deep GPs in which the probabilistic model is altered
to allow for multiple outputs (Kaiser et al., 2018), multiple input sources (Hamelijnck et al., 2019),
latent features (Salimbeni et al., 2019) or for interpreting the latent states as differential flows (Hegde
et al., 2019). Our approach can be easily adapted to any of these models and is therefore a promising
line of work to advance inference in deep GP models.

Our proposed structural approximation is only one way of coupling the latent GPs. Discovering
new variational families that allow for more speed-ups either by applying Kronecker factorisations
as done in the context of neural networks (Martens and Grosse, 2015), placing a grid structure over
the inducing inputs (Izmailov et al., 2018), or by taking a conjugate gradient perspective on the
objective (Wang et al., 2019) are interesting directions for future research. Furthermore, we think that
the dependence of the optimal structural approximation on various factors (model architecture, data
properties, etc.) is worthwhile to be studied in more detail.

CHAPTER 4

Understanding Gaussian Process

State-Space Models

Gaussian process state-space models (GPSSMs, see Sec. 2.4 for a detailed introduction) offer a
promising possibility for probabilistic time series modelling (Wang et al., 2005; Frigola, 2015): By
combining state-space models (see e.g. Särkkä, 2013) with Gaussian processes (GPs, see e.g. Ras-
mussen and Williams, 2006 or the introduction provided in Sec. 2.1) governing the transitions,
GPSSMs are non-parametric, flexible, and probabilistic. However, inference in GPSSMs in inherently
hard and analytically intractable: In order to model a time series YT = {yt}

T
t=1, the state-space model

introduces latent temporal states XT0
= {xt}

T
t=0 that separates the underlying dynamics from the

measurements by allowing for observational noise, e.g. p(yt|xt) = N
(
yt

∣∣∣xy, σ2y). The GP is used

to model the transition function f of these latent states, e.g. p(xt|xt−1, f) = N
(
xt

∣∣∣f(xt−1), σ
2
x

)
,

where we introduced noise variances σ2x and σ2y . The last step introduces another set of latent vari-
ables, the GP observations at the temporal latent states FT = {ft}

T−1
t=0 [where ft ≡ f(xt)] that need

to be inferred along with the XT0
(see Sec. 2.4 for more details).

Early approaches did not scale to long time series (Wang et al., 2005; Frigola et al., 2013), which
was remedied by relying on sparse GPs (Snelson and Ghahramani, 2005; Titsias, 2009; Hensman
et al., 2013) and variational inference (Blei et al., 2017, see also Appx. A.2 for an introduction) in
the approaches by Frigola et al. (2014) and Eleftheriadis et al. (2017). However, this leads to the
introduction of yet another set of latent variables, the M inducing outputs FM = {fm}

M
m=1 that,

roughly speaking, summarise the information in the GP observations FT (where M < T).
The main difference between recent GPSSM approaches (Frigola et al., 2014; Eleftheriadis et al.,

2017; Doerr et al., 2018; Ialongo et al., 2019) lies in the treatment of and the assumptions on the
latent variables {XT0

, FT , FM} in the model. The earlier approaches assumed independence of the
XT0

from the {FT , FM} in the variational posterior which leads to the {FT , FM} being analytically
tractable for Frigola et al. (2014) (although only for specific kernels) and Eleftheriadis et al. (2017).
Analytical tractability of latent variables is a desirable property as it is known to lead to better (and
often faster) model convergence (Kingma et al., 2015) which we also saw in the previous chapter
(see especially Fig. 3.2). However, in these cases the analytical tractability comes at the expense of
model expressivity since the XT0

and the {FT , FM} are assumed to be independent in the posterior.
Furthermore, independence assumptions in variational inference are known to problematic since they
can lead to an underestimation of predictive uncertainties (Turner and Sahani, 2011).

For these reasons, the most recent methods (Doerr et al., 2018; Ialongo et al., 2019) avoid the
independence assumption but consequently need to find other ways to deal with the latent variablesFT
and FM . Doerr et al. (2018) propose to use two approximations, first the fully-independent training
conditional (FITC, see e.g. Sec. 2.2.1) approximation which makes the FT analytically tractable and
then a biased approximation of an integral involving the FM , which makes the latter also analytically
tractable (see Sec. 2.4 for more details). In a follow-up work, Ialongo et al. (2019) criticise these
two assumptions for their loss in accuracy and expressiveness and propose a method without the
assumptions (amongst other differences) that relies on sampling both the FT and FM instead. This

39

40 4.1 Analytical Marginalisation of the Inducing Outputs

constitutes a trade-off since sampling introduces additional variance and therefore often leads to worse
convergence properties.

In this chapter, we theoretically study these important issues for general GPSSMs more closely:
First, in Sec. 4.1, we study the role of the inducing outputs FM and seek a possibility to analytically
marginalise them without assuming their independence from the XT0

. While Doerr et al. (2018) used
a biased approximation to treat the FM analytically and Ialongo et al. (2019) proposed using samples
of the inducing outputs instead, we show that the FM can be marginalised exactly and analytically.
We do this by building on the very similar integral that we solved in the previous chapter when
dealing with the marginals of deep GPs (see Sec. 3.1) and similarly use a proof by induction. Second,
we study the role of the FITC approximation in Sec. 4.2 which Doerr et al. (2018) used to achieve
analytical tractability of the FT . Following a similar analysis in Frigola et al. (2014), we find that
the optimisation objective of Ialongo et al. (2019) stays the same whether the FITC approximation is
used or not. Finally, in Sec. 4.3, we summarise our findings and discuss their implications, allowing
us to motivate and map out the content of the following two chapters.

4.1 Analytical Marginalisation of the Inducing Outputs

Before we dive into the theoretical investigations of the current section we first briefly restate the
problem at hand and also the proposed solutions of Doerr et al. (2018) and Ialongo et al. (2019):
When using variational inference to treat GPSSMs, the optimisation objective (the ELBO) depends
on the posterior marginals of the temporal latent states q(xt). This can be seen for the PRSSM method
by Doerr et al. (2018) in Eq. (2.30) and for the VCDT method of Ialongo et al. (2019) in Eq. (2.36).
For PRSSM, q(xt) is given as [cf. Eq. (2.31)]

q(xt) =

∫ ∫ q(FM)
t∏

t
′
=1

p(xt′ |xt′−1, FM)dFM

 q(x0)dx0:t−1, (4.1)

where p(xt′ |xt′−1, FM) is given in Eq. (2.28) and q(x0) and q(FM) are variational distributions that
are typically Gaussians of the form q(x0) = N (x0|m0, S0) and q(FM) = N (FM |mM , SM), re-
spectively, where the means and variances are variational parameters. Note that the q(xt) term for the
VCDT approach in Eq. (A.30) is not exactly the same, but it has the same structure. Consequently,
this leads to the same problem that we already had with Eq. (4.1), namely that neither the FM nor the
x0:t−1 can be easily integrated out.

As we already described in Sec. 2.4, Doerr et al. (2018) approximate the integral over the FM
in Eq. (4.1) by exchanging the product and the integration for the inner integral which leads to the
individual integrals inside the product being analytically tractable [cf. Eqs. (2.32) and (2.33)].1 How-
ever, this approximation is biased and effectively removes all correlations between the GP outputs at
different time points which is noted by Ialongo et al. (2019). They therefore propose to completely
approximate the integration in Eq. (4.1) via sampling: In order to obtain a sample x(s)t from q(xt), we
first sample F (s)

M ∼ q(FM) and x(s)0 ∼ q(x0) and then recursively x(s)
t
′ ∼ p(xt′ |x

(s)

t
′−1
, F

(s)
M), which

yields an unbiased estimate.
There are three reasons why we are not completely satisfied with this approach and that lead us to

a more thorough investigation of q(xt): First, we saw in the previous chapter (more specifically in
Fig. 3.2) that analytical marginalisation (as compared to sampling based marginalisation) is important
for fast convergence, at least for the related problem of ELBO maximisation for deep GPs. Second, the
integration in Eq. (4.1) very much resembles the integral in Eq. (3.1) which allows us to test whether

1The integration over the x0:t−1 is still not analytically tractable which is then resolved by sampling.

4 Understanding Gaussian Process State-Space Models 41

the formalism that we developed to solve the latter can also be applied to the former. Therefore, we
potentially obtain a better understanding of GPSSMs and their connection to deep GPs by reusing a
previously established formalism. Third, we require a formula for q(xt) with the FM marginalised
out in Chap. 5, which we discuss in more detail there.

In order to analytically marginalise the FM from q(xt), we exploit the similarity between the inte-
grals in Eqs. (3.1) and (4.1): Comparing both, we see that the role of the latent GP observations f ln for
the deep GP is transferred to the temporal latent states xt′ in the GPSSM setting and that consequently
the role of the layers l = 1, . . . , L is assumed by the time points t′ = 1, . . . , t. Unsurprisingly, we can
therefore use the same formalism, arriving at a very similar result [cf. Thm. 3.1] that we summarise
in the following theorem (Longi et al., 2021).

Theorem 4.1. The marginals of the latent state q(xt) in Eq. (4.1) at time point t ∈ {1, . . . , T},
can be obtained as

q(xt) =

∫
q(x0)

 t∏
t
′
=1

q(xt′ |xt′−1, . . . , x0)

 dx0:t−1, (4.2)

where all terms are Gaussian:

q(xt|xt−1, . . . , x0) = N
(
xt

∣∣∣µ̂t, Σ̂t) , (4.3)

µ̂t = µ̃t−1 + S̃t−1,0:t−2S̃
−1
0:t−2,0:t−2 (x1:t−1 − µ̃0:t−2) , (4.4)

Σ̂t = S̃t−1,t−1 − S̃t−1,0:t−2S̃
−1
0:t−2,0:t−2S̃0:t−2,t−1. (4.5)

Here, the terms are given by

µ̃t = KtMK
−1
MMmM , (4.6)

S̃t,t′ = KtMK
−1
MMSMK

−1
MMK

⊤
t
′
M

+ δtt′(σ
2
x + ktt −KtMK

−1
MMK

⊤
t
′
M
). (4.7)

The notation · : · is used to denote column vectors or submatrices, e.g. x1:t =
(
x1 · · · xt

)⊤ ∈
Rt, or S̃t−1,0:t−2 =

(
S̃t−1,0 · · · S̃t−1,t−2

)
∈ Rt−1. Furthermore, δtt′ symbolises the Kronecker

delta. Note that for t = 1 the slices in the additional terms of Eqs. (4.4) and (4.5) are empty and that
therefore µ̂1 = µ̃0 and Σ̂1 = S̃0,0.

Similarly as for the proof of Thm. 3.1, we have a seemingly standard Gaussian integral in Eq. (4.1).
However, the joint distribution of the latent states x1, ..., xt cannot be seen as one joint multivariate
Gaussian distribution since the latent state xt′−1 enters the mean and the covariance of the Gaussian
distribution of the following temporal latent state xt′ . Therefore, we again need to come up with a
recurrent formulation of the problem that is amenable to a proof by induction which we sketch in the
following. The full proof is provided in Appx. B.2.

Sketch of the proof of Theorem 4.1. We start the proof with Eq. (4.1), the general formula for the
posterior marginals of the temporal latent states q(xt). In order to show the equivalence between the
inner integral in Eq. (4.1) and the term in parentheses in Eq. (4.2) we proceed to find a new formula
for the integrand in the inner integral of Eq. (4.1):

q(FM)
t∏

t
′
=1

p(xt′ |xt′−1, FM) = q(FM |xt, . . . , x0)
t∏

t
′
=1

q(xt′ |xt′−1, . . . , x0), (4.8)

which holds for t = 1, . . . , T . This is stated more formally in Lem. B.2 in Appx. B.2, in which we

42 4.1 Analytical Marginalisation of the Inducing Outputs

also provide exact formulas for all terms. Importantly, all of them are multivariate Gaussians with
known mean and covariance and we will show that the q(xt′ |xt′−1, . . . , x0) are as in Eqs. (4.3) – (4.5).
The lemma itself can be proved by induction and we will show the general idea of the inductive step
here: For this we assume that Eq. (4.8) holds for some t (induction assumption) and we have to show
that it then also holds for t+ 1.

Starting from the term of interest for t+ 1, we write

q(FM)

t+1∏
t
′
=1

p(xt′ |xt′−1, FM) = p(xt+1|xt, FM)

q(FM)

t∏
t
′
=1

p(xt′ |xt′−1, FM)

= p(xt+1|xt, FM)q(FM |xt, . . . , x0)

t∏
t
′
=1

q(xt′ |xt′−1, . . . , x0), (4.9)

where we used the induction assumption [Eq. (4.8)] in the last step. Comparing Eq. (4.9) with what
we want to show, i.e., Eq. (4.8) for t→ t+ 1, we see that it remains to be shown that

p(xt+1|xt, FM)q(FM |xt, . . . , x0) = q(FM |xt+1, . . . , x0)q(xt+1|xt, . . . , x0), (4.10)

where q(xt+1|xt, . . . , x0) is as in Eqs. (4.3) – (4.5) (but with t → t + 1). In order to do so we start
from the left hand side of Eq. (4.10) and build the joint distribution,

p(xt+1|xt, FM)q(FM |xt, . . . , x0) = q(FM , xt+1|xt, . . . , x0).

We then proceed and condition the resulting joint differently, i.e.,

q(FM , xt+1|xt, . . . , x0) = q(FM |xt+1, . . . , x0)q(xt+1|xt, . . . , x0),

where it remains to be shown that these terms have the correct means and covariances. This derivation
can be done using standard formulas for multivariate Gaussian distributions [Eqs. (B.3) – (B.6)].

Having proved Eq. (4.8) (or rather Lem. B.2), it becomes straightforward to prove Thm. 4.1: Start-
ing from Eq. (4.1) and using Eq. (4.8), we obtain

q(xt) =

∫ (∫
q(FM |xt, . . . , x0)dFM

)
q(x0)

 t∏
t
′
=1

q(xt′ |xt′−1, . . . , x0)

 dx0:t−1,

where we pulled all terms not depending on FM out of the inner integral. Since q(FM |xt, . . . , x0) is
a properly normalised probability density, the inner integral equals one and only Eq. (4.2) remains.
This completes the proof.

As we discussed before Thm. 4.1, we had three reasons to try to analytically marginalise the FM :
i) faster convergence through replacing sampling with analytical formulas, ii) testing the applicability
of the general proof formalism developed in order to prove Thm. 3.1 for deep GPs, and iii) obtaining
analytical formulas in order to use them in another context to be discussed later. Clearly we have
achieved iii) and this result will be very useful in Chap. 5 when we exploit a connection to stochastic
differential equations (see e.g. Särkkä and Solin, 2019) to speed up inference for GPSSMs, especially
for long time series. Furthermore, ii) has also been satisfactorily fulfilled since we could adapt the
proof for Thm. 3.1 with ease to the proof of Thm. 4.1, even enabling us to reuse some of the steps as
is discussed further in Appx. B.2. Only i) has not been fully successful: On the one hand, it is known
(Kingma et al., 2015) and we have also empirically observed (see Fig. 3.2) that replacing sampling
of a latent variable by its analytical marginalisation leads to faster convergence. On the other hand,

4 Understanding Gaussian Process State-Space Models 43

studying the analytical formulas in Eqs. (4.3) – (4.5) closely, we see that they involve an inversion
of S̃0:t,0:t ∈ Rt×t. This implies a computational cost of O(t3) for the analytical marginalisation
whereas both approximations proposed in Doerr et al. (2018) and Ialongo et al. (2019) scale as O(t).
Therefore, it is highly unlikely that using the analytical marginalisation translates to a faster algorithm
in the case of GPSSMs. Note that for deep GPs the corresponding terms in Eqs. (3.4) and (3.5) also
have a cubic dependence but with the number of layers in the deep GP instead of the number of time
points in a time series. Whereas the number of layers in a deep GP is typically quite small (maybe 3
to 5), the number of time steps in a time series to be analysed by a GPSSM is roughly O(100−1000)
(even if mini-batching is used). Hence the cubic scaling is not a problem for deep GPs while it renders
the analytical marginalisation in GPSSMs impractical.

4.2 The Role of the FITC Approximation

Next, we turn our attention to the FITC approximation (Snelson and Ghahramani, 2005; Quinonero-
Candela and Rasmussen, 2005) that Doerr et al. (2018) use in order to marginalise the FT and that
Ialongo et al. (2019) criticise and abandon in order to arrive at a more expressive inference method.
We already discussed the general idea as an early approach to sparse GPs around Eq. (2.10) and also
the implications of using the FITC approximation in GPSSMs around Eq. (2.27). Due to the impor-
tance for the current section, we briefly recap the general idea here: Using the FITC approximation
boils down to the assumption that the GP observations FT are independent given the inducing outputs
FM , i.e.,

p(FT |XT , FM) ≈
T−1∏
t=0

p(ft|xt, FM). (4.11)

N.b. that this approximation preserves the correct marginals p(ft|xt, FM) and that therefore calcu-
lations that depend only on those will stay the same independent of whether FITC is used or not.
The approximation works well in regions with densely spaced inducing inputs XM such that the pre-
diction for ft at a new input point xt is narrowly confined by adjacent FM yielding a very narrow
marginal p(ft|xt, FM). On the contrary, the approximation yields rather bad predictions ft and ft′
for two points xt and xt′ that are close to each other (in terms of the kernel length scales of the GP)
but far away from all inducing inputs XM . The marginals for ft and ft′ would be quite broad in such
a case and there would therefore be a high variance in either prediction using the FITC approxima-
tion. However, using the full p(FT |XT , FM) yields a high correlation between ft and ft′ and having
observed one would considerably narrow down the other. But if we keep this problematic behaviour
in mind and use enough inducing points XM in the area where we expect the observations xt to be,
we can still expect to obtain a good approximation by using Eq. (4.11).

The reason why we wish to study the role of the FITC approximation is threefold: First, we would
expect that the method by Doerr et al. (2018) that uses the approximation performs worse than the
method by Ialongo et al. (2019) that does not use it, but this is not what is reported (at least not
consistently) in the latter work. Hence it could be worthwhile to investigate this discrepancy. Sec-
ond, it would be interesting to see whether there is another option to marginalise the GP observa-
tions FT from the more expressive approach by Ialongo et al. (2019). Third, in Frigola et al. (2014,
Appx. B.1) there is a remark about the FITC approximation stating that the optimisation objective of
their GPSSM approach (which does not use the FITC approximation at all) stays the same if the FITC
approximation were employed in both prior and approximate posterior. It is therefore worthwhile to
study whether the same applies also for the model of Ialongo et al. (2019) in order to get a better
understanding of that method and GPSSMs in general. We summarise our results in the following
proposition (Lindinger et al., 2022):

44 4.3 Chapter Summary, Conclusions and Outlook

Proposition 4.2. Employing the FITC approximation [Eq. (4.11)] in the prior and approx-
imate posterior [Eqs. (2.26) and (2.34), respectively] of the VCDT method of Ialongo et al.
(2019) leaves the optimisation objective, the ELBO in Eq. (2.36), unchanged.

This is the same result that Frigola et al. (2014) found for their method. The full proof can be found
in Appx. B.3 and is conceptually very simple:

Sketch of the proof of Proposition 4.2. We start by plugging the FITC approximation [Eq. (4.11)]
in Eqs. (2.26) and (2.34), the prior and approximate posterior of the VCDT method. Then, we plug
those in Eq. (A.12), the general formula for the ELBO. Simplifying the resulting terms in the same
way as we did in Appx. A.2.4 for the standard VCDT ELBO yields Eq. (2.36), i.e., the same result as
without the FITC approximation. This completes the proof.

A different phrasing of Prop. 4.2 could be: Regardless of whether the FITC approximation is used
for training the VCDT method by Ialongo et al. (2019) or not, the final trained model would be the
same.2 This finding significantly weakens Ialongo et al.’s (2019) criticism of Doerr et al. (2018) for
using the FITC approximation. It additionally opens up a possibility for marginalising the FT for the
expressive GPSSM proposed by Ialongo et al. (2019) without losing any of the expressivity (during
training). Hence, we will keep the FITC approximation in the following chapters.3

4.3 Chapter Summary, Conclusions and Outlook

In this chapter we set out to get a better understanding of modern GPSSMs by scrutinising and re-
thinking the different ways that have been proposed to deal with two sets of latent variables in the
models, the GP observations FT and the inducing outputs FM . The latter play an important role for
obtaining the posterior marginals of the temporal latent states, q(xt), and we compared the proposed
approaches in Sec. 4.1. Moreover, we found that while an analytical marginalisation of the FM in
q(xt) is possible, the resulting computations scale as O(t3) which in itself is impractical for efficient
inference in GPSSMs. Then, in Sec. 4.2, we analysed the role of the FITC approximation, which Do-
err et al. (2018) propose to be able to analytically deal with the FT and which is criticised by Ialongo
et al. (2019). Here, we found that the FITC approximation plays a much smaller role than it seems
from the criticism of Ialongo et al. (2019). Indeed, we showed that the optimisation objective of their
VCDT method does not change whether the FITC approximation is used or not.

From these findings we directly draw the following conclusions: First, while the formulas for
the analytical marginalisation of the FM from q(xt) in Thm. 4.1 reveal an interesting connection
to a similar result for deep GPs (cf. Thm. 3.1), their direct application to inference in GPSSMs is
impractical due to the O(t3) scaling. Therefore, we agree in this point with Ialongo et al. (2019)
and recommend the usage of their sampling based approach to approximate q(xt) which yields an
unbiased estimate in contrast to the approximation by Doerr et al. (2018) while keeping the same
O(t) scaling. We will use this approach in Chap. 5. Note however, that in the experiments of Ialongo
et al. (2019) it can be seen that the approach by Doerr et al. (2018) performs almost identically
whether or not the unbiased approximation via sampling is used. Second, we deem avoiding the
FITC approximation for the training of GPSSMs unnecessary since all variational inference methods
either use it directly (Doerr et al., 2018) or obtain the same optimisation objective with or without it

2Note that there still remains a difference during prediction where the FITC approximation changes the outcome. However,
this could also be changed for the method by Doerr et al. (2018), i.e., train with the FITC approximation and predict
without it.

3Note that the PRSSM approach by Doerr et al. (2018) would not efficiently be possible without the FITC approximation
as this inevitably leads to a O(t

3
) scaling for obtaining q(xt). This can be seen by deriving the ELBO as in Appx. A.2.3

but without using the FITC approximation.

4 Understanding Gaussian Process State-Space Models 45

(Frigola et al., 2014; Eleftheriadis et al., 2017; Ialongo et al., 2019).4 Consequently, we will rely on
the FITC approximation in Chaps. 5 and 6.

However, while these conclusions provide a better understanding of GPSSMs they do not directly
present obvious ways in which to significantly improve upon the state-of-the-art inference methods
of Doerr et al. (2018) and Ialongo et al. (2019). Note that a small improvement could potentially be
gained by by using the FITC approximation with the method of Ialongo et al. (2019). As we saw,
this would leave the optimisation objective unchanged, but it would allow marginalising the FT from
the model (in the same way as in Appx. A.2.3) which removes the need to sample the FT which in
turn should reduce the variance during training. However, we shall be interested in more than such
incremental changes for the remainder of this thesis and by building on the observations of the current
chapter we will be able to obtain significant improvements as we discuss below:

One of the reasons to attempt the analytical marginalisation in Sec. 4.1 is derived from our findings
for the deep GP in Chap. 3. There, we saw that analytical marginalisation leads to faster convergence
as opposed to sampling based marginalisation (see especially Fig. 3.2). Our hope was that this result
could directly be transferred to inference in GPSSMs. While this was not the case, we will still be able
to use the results of Sec. 4.1 to make inference in GPSSMs more efficient although by considering
a different aspect. In the following chapter [Chap. 5], we will consider the capability of GPSSM
approaches to deal with long time series (or rather mini-batches) that are necessary when there is a
slowly varying trend in the data that only manifests itself over hundreds or thousands of time points.
Using a connection to stochastic differential equations (Särkkä and Solin, 2019) we will then propose
a method that exploits the theoretical result in Thm. 4.1 and can efficiently deal with such time series.
This new approach generally improves the efficiency of GPSSMs applied to long time series and also
improves the prediction for time series data with slow and fast effects (towards which it is targeted).

However, this proposed approach does not generally improve over the other state-of-the-art meth-
ods. In the current chapter we only studied the differences between GPSSMs in the treatment of the
latent variables FT and FM but ignored the role of the temporal latent states XT0

. Having assessed
that the differences in the treatment of the FT and FM play only minor roles for the performance of
recent GPSSM approaches, the obvious choice for further scrutiny if we wish to improve the latter are
the temporal latent states. In Chap. 6 we will therefore discuss the differences in the treatment of the
XT0

between the modern approaches that take conditional dependencies between all latent variables
into account (Doerr et al., 2018; Ialongo et al., 2019). We will find that the new form of posterior
over the XT0

that Ialongo et al. (2019) propose actually constitutes a trade-off: While the posterior is
clearly more expressive than the one used by Doerr et al. (2018), it also introduces many additional
parameters that have to be learned thus leading to a harder inference problem. (We will find that the
additional parameters are especially problematic since they have to be learned sequentially, leading
to a difficult optimisation problem.) Exploring this trade-off further, we will come up with a new
inference method that is more expressive than the one by Doerr et al. (2018) but has no additional
parameters and thus leads to an easier learning problem than the method by Ialongo et al. (2019).

4For the method by Eleftheriadis et al. (2017) the same reasoning as in Frigola et al. (2014, Appx. B.1) applies since both
methods use the same variational approximation.

CHAPTER 5

Multi-Resolution Gaussian Process

State-Space Models

In many different fields, e.g. epidemiology (Zimmer and Yaesoubi, 2020), finance (Heaton et al.,
2017), or engineering (Yu et al., 2020), time series modelling is a core task (see also Sec. 1.2.3).
However, often the underlying physical model is unknown and the dynamics have to be learned
directly from data. In order to support arbitrary dynamics, a time series model should ideally be
non-parametric, and since characteristic features (e.g. rapid transitions in the dynamics) are often rare
events, the time series model should take this into account by relying on probabilistic techniques.
Gaussian process state-space models (GPSSMs, see Sec. 2.4 for technical details) fulfil both these
requirements by modelling non-linear, unknown dynamics via a state-space model using a Gaussian
process (GP) prior in the transition function (Wang et al., 2005; Frigola, 2015).

Early GPSSM approaches (Wang et al., 2005; Frigola et al., 2013) scaled poorly to long time series,
which was partially remedied by relying on variational inference and sparse Gaussian processes (see
Sec. A.2 for an introduction) as an approximate inference method (e.g. Frigola et al., 2014; Eleft-
heriadis et al., 2017). Some of the approaches (Frigola et al., 2014; Ialongo et al., 2019) are not
designed to deal with mini-batches (or rather subsequences of the time series) and would therefore
encounter problems with large runtimes and memory footprints as well as the problem of vanishing
and exploding gradients (Pascanu et al., 2013) when being applied to long trajectories. Note that ex-
isting methods that solve these problems for recurrent neural networks (Hochreiter and Schmidhuber,
1996; Chung et al., 2014) are not directly applicable to GPSSM models. While the recent methods
of Eleftheriadis et al. (2017) and Doerr et al. (2018) can use subsequences, a general problem when
using mini-batches for time series modelling persists: Slow effects that manifest only over a time
spanned by multiple subsequence lengths cannot be inferred (Williams and Zipser, 1995).

The goal of this chapter is therefore to provide a solution to this problem for GPSSMs and we will
do so by proposing an extension to the method by Doerr et al. (2018): We introduce an approach
that works with multiple components, each of which has its own resolution. A component with a
high resolution is well suited to describing short-term effects in the data by taking densely spaced
observations of the time series into account. In contrast, long-term effects are better captured by
low-resolutions components that take diluted observations of the time series, e.g., only every tenth or
hundredth observation, into account. This reasoning is sketched in Fig. 5.1.

As we will see below, naively training such a model is inefficient which we overcome by employing
the backfitting algorithm (Breiman and Friedman, 1985) to learn the different components and use
a novel technique to sample from the model. The latter builds on connecting our theoretical results
from Chap. 4 (especially Thm. 4.1) to stochastic differential equations (see e.g. Särkkä and Solin,
2019).

The structure of this chapter is as follows: First, in Sec. 5.1 we give a primer on stochastic differ-
ential equations and briefly review some of the work that also uses them in connection with GPs or
GPSSMs. Then we present our proposed model and show how to efficiently train it by introducing
the points mentioned above (Sec. 5.2). In Sec. 5.3 we show that our approach compares favourably to
state-of-the-art methods on two semi-synthetic data sets and on a complicated engine modelling task.

47

48 5.1 Stochastic Differential Equations and Gaussian Processes

0 10000 20000 30000
T

−0.5

0.0

0.5

y

20500 21000 21500
T

−0.5

0.0

0.5

20500 20520 20540
T

−0.5

0.0

0.5

Figure 5.1: Depicted is a semi-synthetic one-dimensional time series dataset (blue) that is created as the sum
of a slowly varying function (green) and a fast varying one (grey). On the left we show the complete trajectory.
In the middle we zoom in on the shaded blue area marked in the left plot (note the different x-axis) and show
the groundtruth diluted by a factor of 30, i.e., the blue curve shows only every 30-th observation. This allows a
good representation of the slowly varying function (green). On the right we have zoomed in once again, here
on the shaded blue area marked in the centre plot. For this subsequence every observation of the time series
in blue is shown. These densely spaced observations give a faithful representation of the fast varying function
(grey). Reproduced from Longi et al. (2022).

Finally, in Sec. 5.4, we summarise the current chapter.

5.1 Stochastic Di�erential Equations and Gaussian Processes

Stochastic differential equations (SDEs, see e.g. Särkkä and Solin, 2019) are generalisations of or-
dinary differential equations (ODEs), where stochasticity is introduced via a driving random process
(sometimes called stochastic process). Using Brownian motion Wt as the driving process, SDEs can
be written as

dx(t) = g(x(t), t)dt+ L(x(t), t)dWt, (5.1)

where we use the differential notation d· to denote infinitesimal changes in the corresponding vari-
ables. Here x(t) is the time-dependent variable (or state of a system) that we are interested in, g is the
so-called drift term that describes the deterministic change of the variable, L the so-called diffusion
(sometimes also dispersion) term that describes the randomness through a coupling to the stochas-
tic process Wt. Finally, Brownian motion (sometimes also called Wiener process) is defined by three
properties: i) it starts at the origin,W0 = 0, ii) increments of the Brownian motion follow a zero-mean
Gaussian distribution,

∆Wt =Wt −Wt
′ ∼ N (0,∆t) , ∆t = t− t′, (5.2)

and iii) increments are independent if the time spans do not overlap.1 Solving the SDE in Eq. (5.1)
typically amounts to being given an initial value x0 [or often also a distribution p(x0)] at the initial
time t0 and then finding the distribution over the variable x(t) at an arbitrary time point t > t0.
Since this is already a very hard problem for ODEs, i.e., Eq. (5.1) without the stochastic component,
where typically numerical solutions are required, it is not surprising that this becomes even harder
for SDEs. Matters are made worse by the fact that even for simple SDEs the naive approach of
trying to simply integrate both sides of Eq. (5.1) from t0 to t (with the typical Riemannian integral)
fails due to the stochasticity introduced by Wt. Fortunately there is a solution to this, namely Itô
calculus which boils down to introducing a new integral formulation that fixes the problems associated
with the stochasticity of the Brownian motion (see e.g. Särkkä and Solin, 2019, Sec. 4.1 details and
derivations).
1Generally the Brownian motion has an additional diffusion coefficient Q that changes Eq. (5.2) to ∆Wt ∼
N (∆Wt|0, Q∆t). In this work we set Q = 1.

5 Multi-Resolution Gaussian Process State-Space Models 49

However, most practical problems do not allow for analytical solutions of the resulting integrals
such that we have to use numerical approximations. The simplest approach for SDEs is a direct
generalisation of Euler’s method for ODEs (see e.g. Särkkä and Solin, 2019, Sec. 2.6) leading to the
so-called Euler-Maruyama method: In order to approximately propagate the state x(t0) forward in
time according to the SDE in Eq. (5.1) from time t0 to t1, we linearise the dynamics and approximate

x(t1) ≈ x(t0) + g(x(t0), t0)∆t1 + L(x(t0), t0)∆Wt1
, (5.3)

where ∆t1 = t1 − t0 and ∆Wt1
is as in Eq. (5.2). Note that Eq. (5.3) can be equivalently written as

x(t1) ≈ x(t0) + ∆xt0 , ∆xt0 ∼ N
(
g(x(t0), t0)∆t1, L

2(x(t0), t0)∆t1

)
, (5.4)

where we used the fact that x ∼ N
(
µ, σ2

)
is equivalent to x = µ + σϵ with ϵ ∼ N (0, 1) (a so-

called reparameterisation). The approximation in Eq. (5.3) becomes better the smaller ∆t1 and can be
used recursively to simulate x(t1), x(t2), . . . , x(tT) until time tT . For further general details about
SDEs, more accurate numerical solution methods or practical examples we refer the interested reader
to Särkkä and Solin (2019).

Finally, since we are planning to use SDEs in connection with GPs and GPSSMs below, we briefly
review some related work in the following. In a method called differential Gaussian process flows,
Hegde et al. (2019) introduce an SDE of the form

dxt = µ(xt)dt+
√

Σ(xt)dWt,

where µ and Σ are taken to be the mean and covariance of a sparse Gaussian process [see Eq. (2.7)].
Applying the Euler-Maruyama method here leads to increments ∆xt ∼ N (µ(xt)∆t,Σ(xt)∆t)
[cf. Eq. (5.4)] which is essentially the same as the sampling step through the layers of doubly stochas-
tic deep GPs (Salimbeni and Deisenroth, 2017) in Eq. (2.23). The method of Hegde et al. (2019)
therefore provides a new view on deep GPs through the lens of SDEs in which a few different layers
are replaced by applying the same layer of GPs many times (which leads to less parameters that have
to be inferred).

Other related methods (e.g. Ruttor et al., 2013; Yıldız et al., 2018; Zhao et al., 2020) are aiming
at learning the drift term of general SDEs from data by placing a GP prior on it and inferring the
posterior of the latter. This approach corresponds to the SDE

dxt = f(xt)dt+ σ∆dWt, (5.5)

where we place a GP prior on f and only assume a simple constant diffusion σ∆ since the GP is
already stochastic and can learn arbitrary mappings (Yıldız et al., 2018, additionally place a GP prior
on the diffusion and learn its posterior as well). Applying the Euler-Maruyama method to Eq. (5.5)
yields

∆xt ∼ N
(
f(xt)∆t, σ

2
∆∆t

)
(5.6)

for the increment ∆xt [cf. Eq. (5.4)]. Using xt+1 = xt+∆xt, it is easy to see that Eq. (5.6) therefore
corresponds to a transition model of the form

p(xt+1|ft, xt) = N
(
xt+1

∣∣∣xt + ft∆t, σ
2
∆∆t

)
Comparing this to the GPSSMs that we introduced in Sec. 2.4, we can see that Eq. (5.6) corresponds

50 5.2 Training Gaussian Process State-Space Models on Multiple Resolutions

essentially to the transition model for GPSSMs [Eq. (2.25)], which we repeat here for convenience:

p(xt|ft−1, xt−1) = N
(
xt

∣∣∣ft−1, σ
2
x

)
.

The only differences are the additional ∆t which will be the focus of a big part of Sec. 5.2 and the
xt in the mean, which we will also discuss there. In a recent work, Zhao et al. (2020) improved upon
this approach by considering a higher order approximation instead of the Euler-Maruyama scheme in
Eq. (5.6) and by additionally employing a state-space GP for f (see Särkkä et al., 2013 or the brief
introduction in Sec. 2.2.3).

5.2 Training Gaussian Process State-Space Models on Multiple

Resolutions

Having established the theoretical foundations on SDEs in the previous section and on GPSSMs in
Sec. 2.4, we are ready to introduce the multi-resolution GPSSM and explain how it is trained in this
section. We introduce the new model formulation in Sec. 5.2.1 and then show how it can be efficiently
trained in Sec. 5.2.2.

5.2.1 Model Formulation

So far we have only dealt with a single component in the model formulation of GPSSMs [Eqs. (2.25)
and (2.27)] and for the approximate posterior [Eq. (2.29)]. In the following we extend this formulation
to multiple components where we build on the approach by Doerr et al. (2018) since it naturally allows
for using mini-batches.

We separate the latent states xt ∈ Rdx into C components such that xt = {x(c)t }Cc=1, with x(c)t ∈
Rdc and

∑C
c=1 dc = dx. Assuming that the different components evolve independently from each

other leads to the augmented prior model [cf. Eq. (2.27)]

p(YT , XT0
, FM) =

C∏
c=1

[
p(x

(c)
0)p(F

(c)
M)
] T∏
t=1

[
p(yt|xt)

C∏
c=1

p(x
(c)
t |x(c)t−1, F

(c)
M)

]
. (5.7)

Here p(x(c)0) is as in Eq. (2.25) for each component and p(F (c)
M) = N

(
F

(c)
M

∣∣∣0,K(c)
MM

)
is the GP

prior on the inducing outputs per component with K(c)
MM = {k(c)(x(c)m , x

(c)

m
′)}Mm,m′

=1
with generally

different kernels k(c) and inducing inputs X(c)
M = {x(c)m }Mm=1 per component. We keep the emission

model p(yt|xt) from Eq. (2.25) that is the only part in our model that connects the different com-
ponents. The transition model is as in Eq. (2.28) with the important difference that inputs to the
kernels are not given by the complete latent state but only by the corresponding component such that
e.g. K(c)

t−1,M = {k(c)(x(c)t−1, x
(c)
m)}Mm=1.2

Ignoring for a moment that we wanted to use different resolutions for the different components, we
can perform inference in the model in Eq. (5.7) by generalising the variational inference approach of
Doerr et al. (2018) which leads to the approximate posterior [cf. Eq. (2.29)],

q(XT0
, FM) =

C∏
c=1

[
q(x

(c)
0)q(F

(c)
M)

T∏
t=1

p(x
(c)
t |x(c)t−1, F

(c)
M)

]
. (5.8)

2This is different from the way in which multi-dimensional temporal latent states are typically treated in GPSSMs, see
e.g. the detailed explanation in the paragraph about multi-dimensional latent states in Lindinger et al. (2020, Appx. E.2).

5 Multi-Resolution Gaussian Process State-Space Models 51

Here, we choose Gaussian variational families per component, q(x(c)0) = N
(
x
(c)
0

∣∣∣m(c)
0 , S

(c)
0

)
and

q(F
(c)
M) = N

(
F

(c)
M

∣∣∣m(c)
M , S

(c)
M

)
with the free variational parameters ψ(c) = {m(c)

0 , S
(c)
0 ,m

(c)
M , S

(c)
M }.

In addition to inferring these, we also have to optimise the parameters of the emission model p(yt|xt
[see Eq. (2.25)] and the per-component model parameters θ(c) which are given by the hyperparameters
of the kernel k(c) associated with each component and the transition noise standard deviation σ(c)x [see
Eq. (2.28)]. As usual in variational inference, we do so by optimising the ELBO [Eq. (A.12)], which
for our multi-resolution (MR) approach (following a very similar derivation as in Appx. A.2.3), can
be shown to equal

LMR =
T∑
t=1

Eq(xt) [log p(yt|xt)]−
C∑
c=1

(
KL
[
q(x

(c)
0) ∥ p(x(c)0)

]
+ KL

[
q(F

(c)
M) ∥ p(F (c)

M)
])
. (5.9)

Here, the KL-divergences are analytically tractable and the marginals of the temporal latent states
are given by q(xt) =

∏C
c=1 q(x

(c)
t), where each of the terms q(x(c)t) is given by the equivalent of

Eq. (2.31). As we discussed in detail in Sec. 4.1, these terms are analytically intractable but there
exist several approximation approaches. In this work we adopt the sampling scheme proposed by
Ialongo et al. (2019).

So far, this has been a relatively straightforward extension of the GPSSM model by Doerr et al.
(2018) with the only difference that we have introduced a structured latent space with C components.
This will change in the following when we consider how this model can be most efficiently applied
to long time series with fast and slow dynamics as depicted in Fig. 5.1. For this we require i) a way to
efficiently update the parameters of the different components, ii) a possibility to generally deal with
long time series without running into numerical issues, and finally iii) a way to efficiently sample
from q(x

(c)
t), especially if we are using a component with a low resolution.

For i) we exploit that we assumed independence of the C components in the prior and in the
approximate posterior in Eqs. (5.7) and (5.8), respectively which led also to the independence of
the marginals q(xt) which are required for computing our optimisation objective in Eq. (5.9). We
can therefore employ an iterative method and decide to use the backfitting algorithm (Breiman and
Friedman, 1985): In this approach, we cycle through the C components, fixing the parameters of
all but the c-th component to find the optimal parameters θ(c) and ψ(c) and then continue with the
next component. While this is already more efficient than updating all parameters simultaneously,
we can additionally reuse the samples from the q(x(c)t) multiple times since this distribution does not
change unless the c-th component is updated in the current cycling step. Especially this second part
is important later when we want to use components with different resolutions.

Continuing with ii), we make use of mini-batches (see e.g. Bottou, 2010) or rather subsequences
which are well established also for time series (e.g. Aicher et al., 2019) and also used by Doerr et al.
(2018). This is enabled by the ELBO in Eq. (5.9) decomposing between the data points such that we
can estimate

T∑
t=1

Eq(xt) [log p(yt|xt)] ≈
T

B

t0+B∑
t=t0

Eq(xt) [log p(yt|xt)] , (5.10)

where B is the batch-size and t0 is the initial time index of the batch under consideration. In order
to efficiently sample from q(xt) without having to start from x0 for every batch we follow Aicher
et al. (2019) and break the temporal dependency between x0 and xt0 by introducing a buffer of size
B0. We assume that this buffer is sufficient to obtain (nearly) unbiased samples from q(xt0) when we
sample q(xt0−B0

) ∼ q(x0) and continue from there according to the transition model. This requires
much less samples than having to start from a sample of the initial latent state distribution x0 and
then recursively sampling xt for t = 1, . . . , t0. Note that while introducing this buffer helps reducing

52 5.2 Training Gaussian Process State-Space Models on Multiple Resolutions

the bias of the approximation in Eq. (5.10), this approach is still not completely unbiased. This is
especially the case if there are effects that evolve slower than the length of one mini-batch B and that
can consequently not be captured by the approximation.

This indirectly leads us to iii) and the reason to use different resolutions: If we consider a compo-
nent with a low resolution that takes only every R-th observation into account (with R > 1), we can
pack a longer history into a mini-batch of the same size (compared to using the standard resolution
that corresponds to R = 1). This can further resolve the issues with the biased approximation in
Eq. (5.10). However, if we consider only components with a low resolution we will not be able to
resolve fast varying dynamics (see Fig. 5.1, right). Therefore, we plan to use different resolutions for
the different components, i.e., the c-th component takes only every R(c)-th observation into account.
Exemplarily using a batch size B, a resolution R(c), and starting at the time index t0 this corresponds
to using time indices

T = {t0 + bR(c)}Bb=0, (5.11)

which can be used instead of the consecutive indices in Eq. (5.10). Unfortunately, with this approach
we undermine the solution to the problem ii), since having a component with a low resolution (corre-
sponding to a large R(c)) means we have to sample from q(x

t0−R
(c)
B0

) to q(x
t0+R

(c)
B
) if we want to

keep the same batch size B. This amounts to an increase of a factor R(c) in sampling time which is
impractical especially for large R(c) and might additionally lead to numerical issues with the gradi-
ents due to the long subsequences required for such an approach. In order to overcome this new issue,
we draw on the connection between the discretized GP SDE in Eq. (5.6) and the transition model of
the GPSSM in Eq. (2.28): We show in the next section in detail that there exists a parameterisation
of the discretised GP SDE (interpreted as a GPSSM) such that this model is equivalent to a canonical
GPSSM. Using this connection we propose a theoretically grounded way to draw mini-batches of
approximate samples from q(xt) for different resolutions with a constant time requirement.

5.2.2 Equivalence Between Discretised GP SDEs and GPSSMs

The goal of this section is to solve the final efficiency problem of the proposed multi-resolution
GPSSM approach of the previous section, namely efficiently drawing temporal latent state samples
for components with a low resolution (which require a long history). In order to do so we will sparsify
the discretised GP SDE transition in Eq. (5.6) and embed it in a state-space model, yielding an SDE
GPSSM. We will then proceed to show that for a certain parameterisation of the latter model we can
get the same temporal latent state samples and consequently also the same optimisation objective as
for a canonical GPSSM if we use the same resolution. This will then allow us to use the models
interchangeably and we will use the SDE GPSSM model to efficiently draw approximate samples
from q(xt) for low resolutions.

We start by embedding Eq. (5.6) in a GPSSM. For this we use a different indexing than for standard
GPSSMs in Sec. 2.4 in order to clearly distinguish the two approaches: We used xt for canonical
GPSSMs to denote the latent state at time τ = t∆t (starting at τ = 0), where ∆t is the (constant)
data set dependent time difference between two subsequent observations in the time series. For SDE
GPSSMs we use xj instead to denote a latent state at time τ = jR∆t, whereR controls the resolution
and there are J = T/R latent states in the SDE GPSSM. For the latter, we additionally decorate
every distribution or parameter with a ∆ in order to clearly distinguish it from the canonical GPSSM.
Interpreting the discretised SDE increments in Eq. (5.6) as a GPSSM transition model and using the
described notation, we obtain

p∆(xj |fj−1, xj−1) = N
(
xj

∣∣∣xj−1 + fj−1R∆t, R∆tσ
2
∆

)
, (5.12)

5 Multi-Resolution Gaussian Process State-Space Models 53

where we introduced fj ≡ f(xj) and replaced ∆t by R∆t, where at the moment R is still arbitrary
and can be chosen such that Eq. (5.12) matches Eq. (5.6).3 Next, we proceed to sparsify the GP
(see Sec. 2.2.1) and, following Doerr et al. (2018) use the FITC approximation (see the discussion in
Sec. 4.2). This means we assume

p∆(FJ , FM |XJ0
) ≈ p∆(FM)

J−1∏
j=0

p∆(fj |xj , FM), (5.13)

where FJ ≡ {fj}
J−1
j=0 , XJ0

≡ {xj}
J
j=0 and p∆(fj |xj , FM) is as in Eq. (A.24) (with t replaced by j).

Finally, choosing an initial latent state distribution p∆(x0) and an emission model p∆(yj |xj) (which
we currently leave unspecified), we have our SDE GPSSM prior model,

p∆(YJ , XJ0
, FJ , FM) = p∆(x0)p

∆(FJ , FM |XJ0
)

J∏
j=1

p∆(yj |xj)p
∆(xj |fj−1, xj−1).

By marginalising the FJ from this model [exactly as in Appx. A.2.3], we arrive at

p∆(YJ , XJ0
, FM) = p∆(x0)p

∆(FM)
J∏
j=1

p∆(yj |xj)p
∆(xj |xj−1, FM), (5.14)

p∆(xj |xj−1, FM) = N
(
xj

∣∣∣xj−1 +R∆tµ
∆(xj−1, FM), R∆tσ

2
∆ + (R∆t)

2Σ∆(xj−1)
)
, (5.15)

µ∆(xj−1, FM) = K∆
j−1,M

(
K∆
MM

)−1
FM , (5.16)

Σ∆(xj−1) = k∆j−1,j−1 −K∆
j−1,M

(
K∆
MM

)−1 (
K∆
j−1,M

)⊤
. (5.17)

Here, e.g. K∆
j−1,M = {k∆(xj−1, x

∆
m)}

M
m=1, where k∆ is the kernel of the GP in the SDE and X∆

M =

{x∆m}
M
m=1 is the set of inducing inputs used for this GP.

At this point we can already compare the model in Eqs. (5.14) – (5.17) to the canonical model in
Eqs. (2.27) and (2.28), where we immediately see two differences. One is the (logical) appearance of
R∆t terms, the other that there is an additional xj−1 in the mean of Eq. (5.15) compared to Eq. (2.28).
The latter difference is also easily explained since GPSSMs describe transitions xt → xt+1, while
(discretised) SDEs describe differences xj → xj + ∆j. However, we can also consider canonical

GPSSMs with a residual transition model p(xt+1|xt, ft) = N
(
xt+1

∣∣∣xt + ft, σ
2
x

)
which leads to

[cf. Eq. (2.28)]

p(xt|xt−1, FM) = N
(
xt

∣∣∣xt−1 +Kt−1,MK
−1
MMFM , σ

2
x + kt−1,t−1 −Kt−1,MK

−1
MMK

⊤
t−1,M

)
.

(5.18)

Note that the residual transition model is equivalent (or simply a different parameterisation) to using
a GP with a linear mean function which Doerr et al. (2018) and Ialongo et al. (2019) use in their
experiments.

After this small aside we turn our attention back to the model in Eqs. (5.14) – (5.17): Inference
is equally intractable as for the model in Eqs. (2.27) and (2.28) and we therefore choose the same

3Note that Eq. (5.6) described increments ∆xt = xt − xt−1, whereas Eq. (5.12) gives a distribution over xj . Adjusting
the indices and using xj = xj−1 +∆xj , it is easy to see that Eqs. (5.6) and (5.12) are equivalent for R = 1.

54 5.2 Training Gaussian Process State-Space Models on Multiple Resolutions

approach, variational inference with an equivalent variational family [cf. Eq. (2.29)]

q∆(XT0
, FM) = q∆(x0)q

∆(FM)
J∏
j=1

p∆(xj |xj−1, FM). (5.19)

Here q∆(x0) = N
(
x0

∣∣∣m∆
0 , S

∆
0

)
, q∆(FM) = N

(
FM

∣∣∣m∆
M , S

∆
M

)
, and the p∆ are given in Eq. (5.15).

Consequently, this leads to an equivalent ELBO to the one for the canonical GPSSM formulation [see
Eqs. (2.30) and (2.31)]:

LSDE =
J∑
j=1

E
q
∆
(xj)

[
log p∆(yj |xj)

]
− KL

[
q∆(x0) ∥ p

∆(x0)
]
− KL

[
q∆(FM) ∥ p∆(FM)

]
,

(5.20)

q∆(xj) =

∫
q∆(x0)

∫ q∆(FM)

j∏
j
′
=1

p∆(xj′ |xj′−1, FM)dFM

 dx0:j−1. (5.21)

While we could in principle train this model using the ELBO in Eq. (5.20), there is no advantage
over the canonical GPSSM model in actually doing so. However, due to the extreme similarity of
Eqs. (2.30) and (5.20), an interesting question is whether there is actually a setting of one model
in terms of the other model’s parameters, such that the ELBOs coincide. This would then allow to
interpret one model as the other and use the advantages that either model has to train the respective
other one. Intuitively this equivalence of both models can only exist when R = 1 since then both
describe an equally discretised time-series modelling approach. We summarise our findings about the
equivalence between the canonical GPSSM and the SDE GPSSM in the following theorem (Longi
et al., 2021):

Theorem 5.1. There exists a setting of parameters for the SDE GPSSM in Eqs. (5.14) �
(5.17) with R = 1 and with the variational family in Eq. (5.19) such that it has the same
optimisation objective as the canonical GPSSM by Doerr et al. (2018) in Eq. (2.27) with the
residual transition model in Eq. (5.18) and the variational family in Eq. (2.29), i.e.,

LSDE = LPRSSM, (5.22)

which are given in Eqs. (2.30) and (5.20), respectively. This is achieved by setting

k∆(x∆m, x
∆
m

′) = k(x∆m, x
∆
m

′), k∆(xj , xj′) = k(xj , xj′)/(R∆t)
2, (5.23)

k∆(x∆m, xj) = k(x∆m, xj)/(R∆t), k∆(xj , xm) = k(xj , xm)/(R∆t), (5.24)

σ2∆ = σ2x/(R∆t), (5.25)

and setting all other parameters of the SDE GPSSM, i.e., those of p∆(x0), p
∆(yj |xj), p

∆(FM),

q∆(x0), q
∆(FM), the inducing inputs X∆

M , and other parameters of the kernel k∆, to the value
of the respective parameters of the canonical GPSSM.

Note that rescaling the kernel k∆ in terms of the kernel k in Eqs. (5.23) and (5.24) is often done
similarly in multi-output learning. More generally, it can be interpreted as a simple approach to inter-
domain GPs (Lázaro-Gredilla and Figueiras-Vidal, 2009). In the following we sketch the proof of
Thm. 5.1 which relies heavily on the result of Thm. 4.1 while the full proof is provided in Appx. B.4.

Sketch of the proof of Theorem 5.1. The idea of the proof is to show the equivalence in Eq. (5.22)

5 Multi-Resolution Gaussian Process State-Space Models 55

by demonstrating that all terms in the ELBOs are equal with the settings provided in Thm. 5.1. First,
it is easy to see that the KL-terms in Eqs. (2.30) and (5.20) are equal since the respective distributions
in both ELBOs are assumed to be the same. It remains to be shown that

J∑
j=1

E
q
∆
(xj)

[
log p∆(yj |xj)

]
=

T∑
t=1

Eq(xt) [log p(yt|xt)] .

By settingR = 1 (as required by Thm. 5.1) we have J = T/R = T and therefore equally many terms
in both sums. Additionally the observation model p∆(yj |xj) is assumed to be the same as p(yt|xt).
Hence it only remains to be shown that q∆(xj) = q(xt) for j = t. From the general formulas for
both terms in Eqs. (2.31) and (5.21), respectively, this is hard to see. Fortunately we already have a
formula for q(xt) with the inducing outputs FM marginalised out in Thm. 4.1. Obtaining a formula
for q∆(xj) in the same way (which we detail in Lem. B.4 in Appx. B.4, where we also provide the
proof of the lemma) we can see that the settings in Eqs. (5.23) – (5.25) lead to q∆(xj) and q(xt) being
equal for j = t, which completes the proof.

We therefore have, at least for the standard resolution (corresponding to R = 1), two equivalent
models: the canonical GPSSM by Doerr et al. (2018) and the SDE GPSSM with the settings as in
Thm. 5.1. This finally allows us to do what we set out to achieve at the beginning of this section,
namely drawing approximate latent state samples with a constant time requirement for R > 1 and
R ∈ N: Instead of using the GPSSM formula for q(xt) in Eq. (2.31), we can directly use the SDE
GPSSM formula for q∆(xj) in Eq. (5.21) to advance time by R∆t. The latter can be done in one
sampling step, whereas we would always have to sample with the standard resolution ∆t with the
former approach and therefore need R sampling steps to get from one considered observation to the
next. Note that the equivalence of both methods in Thm. 5.1 is only exact for R = 1 such that this
proposed sampling scheme is an approximation for R > 1. However, the low-resolution components
(see e.g. Fig. 5.1, right) perform a smoothing of the time series anyway, such that they can also deal
with samples of a coarser approximation level.

This completes the description of our multi-resolution GPSSM in Eqs. (5.7) – (5.9) and its efficient
training achieved by i) using the backfitting algorithm (Breiman and Friedman, 1985) to efficiently
train the different components, ii) employing mini-batches with different resolutions [Eqs. (5.10)
and (5.11)], and iii) using Eq. (5.21) to efficiently draw approximate samples for components with
low resolutions. The complete algorithm to train this model can be found in Longi et al. (2021,
Appx. D) and we continue with the experimental evaluation of our proposed approach in the next
section.

5.3 Experiments

We validate our multi-resolution GPSSM (MR-GPSSM) on a difficult engine modelling task with
more than half a million measurements4 and on semi-synthetic data derived from this data set. We
compare against the approach of Doerr et al. (2018) (PRSSM) and since they already tested against
multiple different time-series modelling approaches and achieved favourable results, refrain from
doing so again.5 In order to tease apart the effect of introducing multiple independently trained
components versus the different resolutions that we additionally consider, we also compare against a
simplification of MR-GPSSM that uses multiple components but all with same resolution which we
name multi-component GPSSM (MC-GPSSM). In all experiments we make sure that the different

4The dataset is publicly available at https://github.com/boschresearch/Bosch-Engine-Datasets.
5Code to reproduce the experiments is available at https://version.helsinki.fi/MUPI/mr-gpssm.

https://github.com/boschresearch/Bosch-Engine-Datasets
https://version.helsinki.fi/MUPI/mr-gpssm

56 5.3 Experiments

0 5000 10000 15000 20000 25000 30000 35000
T

−0.75

−0.50

−0.25

0.00

y

Fast Dynamics (F)

0 5000 10000 15000 20000 25000 30000 35000
T

−0.5

0.0

0.5

y

Mixed Dynamics (M1)

0 5000 10000 15000 20000 25000 30000 35000
T

−1

0y

Mixed Dynamics (M2)

0 5000 10000 15000 20000 25000 30000 35000
T

−1

0

1

y

Slow Dynamics (S)

Figure 5.2: We depict the semi-synthetic data sets which we use to validate our approach. The one-dimensional
time-series with approximately 38000 data points show only fast dynamics, two times mixed (fast and slow)
dynamics and only slow dynamics (from top to bottom). Reproduced from Longi et al. (2021).

models get a comparable number of iterations. The exact experimental details such as further model
choices and training or model initialisation details can be found in Sec. 4 and Appx. E of Longi et al.
(2021). We start by exploring the properties of our new approach on the semi-synthetic data set in
Sec. 5.3.1 before applying our method to the full engine modelling task in Sec. 5.3.2

5.3.1 Semi-Synthetic Data

We obtain the semi-synthetic data by extracting fast and slowly varying components from the engine
data set by training a standard GPSSM capturing either fast components Rf = 1 or slow components
Rs = 30 on different parts of the data and then combining them in different ways (see Longi et al.,
2021, Appx. E.2 for a more detailed description). This yields one data set with only fast components
(F), two with mixed components (M1, M2) and one with only slow components (S) which are depicted
in Fig. 5.2. These data sets offer a perfect playground to compare the different approaches since the
optimal resolution is known.

We test the performance of the basic PRSSM approach with the different resolutions R = 1 and

5 Multi-Resolution Gaussian Process State-Space Models 57

Table 5.1: We report average RMSEs and their standard errors over five repetitions when applying the mod-
els PRSSM (Doerr et al., 2018), MC-GPSSM and MR-GPSSM (our proposed approach) on different semi-
synthetic datasets with fast (F), mixed (M1, M2) and slow (S) dynamics (see Fig. 5.2). We use different
combinations of the resolutions R = 1 and R = 30 when trying to model the data. Note that the F dataset is
made up only of components with R = 1, the S dataset only of those with R = 30, while the datasets M1 and
M2 contain both resolutions. We mark all methods in bold that perform best or have overlapping confidence
intervals with the best performing method. Reproduced from Longi et al. (2022)

PRSSM MC-GPSSM MR-GPSSM
R = 1 R = 30 R = [1, 1] R = [30, 30] R = [30, 1]

F 0.05 (0.00) 0.14 (0.00) 0.06 (0.01) 0.16 (0.01) 0.07 (0.01)
M1 0.16 (0.02) 0.14 (0.00) 0.15 (0.01) 0.15 (0.00) 0.08 (0.01)
M2 0.14 (0.00) 0.29 (0.11) 0.14 (0.00) 0.20 (0.01) 0.09 (0.01)
S 0.33 (0.08) 0.16 (0.01) 0.29 (0.02) 0.20 (0.03) 0.17 (0.02)

Figure 5.3: We show the predictions on the second half of the semi-synthetic dataset with mixed dynamics M1
(see Fig. 5.2) for MC-GPSSM with R = [1, 1] (left), for MC-GPSSM with R = [30, 30] (middle), and for our
approach, MR-GPSSM with R = [30, 1] (right). The groundtruth data is shown in blue while the mean of the
prediction (solid line) and the confidence intervals (shaded area) are shown in orange. Reproduced from Longi
et al. (2021).

R = 30, of the MC-GPSSM with two components, once with R = [1, 1] and once with R = [30, 30],
and finally our proposed MR-GPSSM approach with two components with different resolutions, R =
[30, 1]. We report RMSEs when training on the first half of the data and predicting on the second half
in Table 5.1. (Test log-likelihood results can be found in Tab. S2 of Longi et al., 2021, Appx. E.2.)
We can clearly observe that on the mixed datasets (M1, M2) our proposed multi-resolution approach
performs much better than the approaches that only consider a single resolution. This can also be
observed visually in Fig. 5.3, where we compare the predictions obtained on dataset M1 for the
two MC-GPSSMs with different resolutions and our MR-GPSSM: While MC-GPSSM with the high
resolution (R = [1, 1]) fails to accurately model slow trends (left) and MC-GPSSM with the low
resolution (R = [30, 30]) is unable to catch all peaks (middle), our model with R = [30, 1] (right)
strikes a very good balance between the other two approaches. (See also Fig. S2 of Longi et al., 2021,
Appx. E.2 for the same visual comparisons on the other datasets.) We see furthermore in Table 5.1
that on the fast (F) and slow (S) datasets our approach is on par (for F within two standard errors)
with the single-resolution approaches with the correct resolution (R = 1 for F and R = 30 for S). We
therefore conclude that it is important to have a component present in the model that has the correct
resolution to accurately represent the data. Finally, there is little difference between the respective
single-component (PRSSM) and multi-component (MC-GPSSM) approaches that only use a fixed
resolution.

When we discussed why different resolutions are needed in Sec. 5.2, we had mainly two arguments:
i) only training with a low resolution when fast dynamic components are present makes it impossible
to resolve the latter and ii) only training with a high resolution when slow dynamic components

58 5.3 Experiments

Figure 5.4: We show the predictive performance as measured by the RMSE (lower is better) as a function of
the parameter R that controls the resolution. Results are for the PRSSM method (Doerr et al., 2018) that is
trained independently on the four outputs for each resolution. Reproduced from Longi et al. (2021).

are present (especially when using mini-batches) leads to an insufficiently long history to accurately
model long-term trends. We can clearly observe i) qualitatively in Fig. 5.3 (middle) and see it also
quantitatively when looking at the high RMSE for the R = 30 and the R = [30, 30] models for the
F dataset in Table 5.1. For this problem there exists no other solution than to simply use a higher
resolution. The problem ii) can equally be observed qualitatively in Fig. 5.3 (left) and quantitatively
when looking at the high RMSE for the R = 1 and the R = [1, 1] models for the S dataset in
Table 5.1. However, for this problem there is at least theoretically a solution, namely simply using
a longer history, i.e., larger mini-batches for training. We additionally compare to this approach
using the basic PRSSM model: Instead of using a batch with size B = 50 (the setting we used for
Table 5.1) with resolution R = 30, which yields an RMSE of 0.16(0.01) within 220 seconds we
use R = 1 and increase the batch size to B = 1500. Training with these settings for the same
time leads to unusable predictions since the model is far from being converged, while training for
the same number of iterations takes nearly 5000 seconds and still leads to worse predictions, i.e., an
RMSE of 0.30(0.02). (See Tab. S3 Longi et al., 2021, Appx. E.2 for further details.) So while being
theoretically an alternative we see that this is not a practically viable option.

5.3.2 Engine Modelling Task

Having explored some aspects of our proposed approach we are finally ready to apply it to the real-
world engine modelling task. The data set consists of 22 independent measurements which we split
into 16 train and 6 test data sets. Each of these has four outputs, particle numbers (PN), hydrocar-
bon concentration (HC), nitrogen oxide concentration (NOx), and the engine temperature (Temp),
which we model independently. (See Longi et al., 2021, Appx. E.3 for further details concerning the
data set.) We first perform a grid search to determine the optimal resolutions for the basic PRSSM
approach (Doerr et al., 2018) by setting R to several values between 1 and 70, training the models
and recording the predictive performance. The results for the RMSE can be seen in Fig. 5.4 and
show that while a high resolution (R between 1 and 5) is optimal for PN, HC, and NOx, the Temp
data set requires a much lower resolution (R around 30) for optimal performance. Therefore, we
decide to use a combination of these resolutions for our experiment with MR-GPSSM for which we
choose R = [30, 5, 1]. We compare against the performance of PRSSM with R ∈ {30, 5, 1} and
the corresponding MC-GPSSMs that use three components with the same resolution. The results of
this comparison are depicted in Fig. 5.5. We observe that our approach is competitive on each of

5 Multi-Resolution Gaussian Process State-Space Models 59

0.0 0.2 0.4
RMSE

[1,5,30]
30

5

1

PN

0.00 0.25 0.50
RMSE

HC

0.0 0.2 0.4
RMSE

NOx

0.0 0.5 1.0
RMSE

Temp

0 2 4
Avg. rel. error

Relative Error

Figure 5.5: The four leftmost plots show the predictive performance as measured by the RMSE (lower is better)
for different models and resolutions on the four outputs PN, HC, NOx, and Temp. Results are mean value and
standard error over five repetitions. The single component method (PRSSM Doerr et al., 2018) is shown in
purple while the multi-component methods (our method MR-GPSSM on top, and MC-GPSSM for different
resolutions) are shown in green. For PRSSM and MC-GPSSM we present results for different resolutions
where MC-GPSSM always uses three components with the same resolution R ∈ {30, 5, 1}. The grey vertical
line eases the visual comparison with our method. In the rightmost plot we show the relative error (with respect
to our method) averaged over the four other plots. Reproduced from Longi et al. (2022).

Table 5.2: We examine the robustness of our MR-GPSSM approach for different combinations of the resolu-
tions of the multiple components. Reported are average RMSE values (the lower the better) and their standard
errors over five repetitions for the four outputs over four different combinations of resolutions. The first data
column (R = [30, 5, 1]) corresponds to the setting used in Fig. 5.5. Reproduced from Longi et al. (2021).

Output \ R [30, 5, 1] [7, 5, 1] [40, 20] [40, 20, 10, 5, 1]

PN 0.41(0.02) 0.40(0.03) 0.45(0.02) 0.39(0.02)
HC 0.32(0.02) 0.29(0.01) 0.40(0.02) 0.32(0.01)
NOx 0.14(0.01) 0.15(0.01) 0.33(0.01) 0.17(0.02)
Temp 0.11(0.01) 0.22(0.03) 0.11(0.00) 0.10(0.00)

the outputs while the single-resolution methods PRSSM and MC-GPSSM only perform well if the
resolution is adequately set. Their performance is especially bad on the output Temp with a very high
resolution (R = 1) or on NOx with a very low resolution (R = 30) in accordance with the findings in
Fig. 5.4. A further general observation that we make is that the RMSEs for the particle numbers (PN)
are generally higher than for the other outputs which is in line with observations from the literature
(e.g. Frommater, 2018). Comparing the average relative error with respect to the performance of our
method across the four outputs (Fig. 5.5, right), we see that our multi-resolution approach has slight
advantages compared with the other approaches that only use a single resolution. We attribute this
good performance to the robustness that MR-GPSSM achieves over multiple data sets on which the
single-resolution approaches need widely different resolutions for optimal performance. In our final
experiment we check whether this robustness also holds across different sets of resolutions when us-
ing our MR-GPSSM approach. In Table 5.2 we compare the performance of the resolution which we
used to produce the results in Fig. 5.5 (first column) with one example where only high resolutions
(second column), one where only low resolutions (third column), and another one where mixed reso-
lutions (last column) have been used. (See Tab. S5 in Longi et al., 2021, Appx. E.3 for an extended
comparison.) From this we can conclude that for the Temp output a low-resolution component is
definitely needed while NOx and HC require a high-resolution component. Otherwise the results are
very robust over different combinations of resolutions.

5.4 Chapter Summary

In the current chapter we presented a new approach for variational inference in GPSSMs that allows
to traverse time with different resolutions. Our model consists of multiple components that evolve

60 5.4 Chapter Summary

independently over time which allows us to use different resolutions for the different components
and also to train them efficiently employing the backfitting algorithm (Breiman and Friedman, 1985).
We further increased the efficiency of our approach by exploiting a connection to stochastic differ-
ential equations (SDEs). This allowed us to sample approximate subsequences of the same length
for components with different resolutions (which therefore have different history lengths) at the same
computational cost. We empirically validated on semi-synthetic data that our approach outperforms
models that allow only for a single resolution when there are multiple components with different res-
olutions present in the data. On semi-synthetic data with only one resolution and on a challenging
real-world engine modelling data set our approach was on par with the single-resolution approaches
that were using an optimised resolution. However, our model proved robust across different tasks
using always the same set of resolutions. This avoids having to find an optimal resolution first which
is necessary for the single-resolution models.

Our presented method is general and can also be used in combination with different approaches
to inference in GPSSMs. While we based our approach on the model of Doerr et al. (2018) in this
chapter, the former is equally applicable to other GPSSM approaches (e.g. Eleftheriadis et al., 2017;
Ialongo et al., 2019 or the one by Lindinger et al., 2022 which we present in detail in the following
chapter). Similar to other GPSSMs our model is also applicable to other fields than the automotive
area such as e.g. medicine (e.g. Lipton et al., 2016), human motion prediction (e.g. Martinez et al.,
2017) or neuroscience (e.g. Prince et al., 2021).

An interesting direction for future work could be to further explore the connection to SDEs via
other works that also use them in combination with GPs (e.g. Ruttor et al., 2013; Yıldız et al., 2018;
Hegde et al., 2019; Zhao et al., 2020) and thus probing new ways to make inference even more
efficient and precise.

CHAPTER 6

Laplace Approximated Gaussian

Process State-Space Models

Uncertainty estimation in time-series modelling (see e.g. Särkkä, 2013) is a hard task since two differ-
ent noise sources have to be taken into account: First, the observation noise that stems from possibly
noisy measurements of the system under consideration and second, the process noise associated with
the uncertain development of the system. Especially the second noise source leads to an accumulation
of uncertainty over time and renders predictions far into the future difficult (see also Sec. 1.2.3).

Gaussian processes (Rasmussen and Williams, 2006) provide a well established framework for
dealing with uncertainty (see Sec. 2.1 for some technical background). They define a distribution
over functions f ∼ p(f) and can be used as building blocks in state-space models for modelling
complex temporal dependencies. This model class, aptly called Gaussian process state-space models
(Frigola, 2015, see also Sec. 2.4), can be used to model observations yt ∈ Rdy from a time series,
where t = 1, . . . , T is the time index. It assumes that each observation yt is emitted by a latent
state xt ∈ Rdx , yt ∼ p(yt|xt), and that the latent states have a Markovian structure, i.e., xt+1 ∼
p(xt+1|xt, f). The noise of the latter model (called transition model) and the function uncertainty
of the Gaussian process are propagated over time, resulting in complex and non-Gaussian behaviour.
The flexibility of this model class paired with its probabilistic predictions makes it an interesting
building block e.g. for model-based reinforcement learning (e.g Deisenroth and Rasmussen, 2011).

Since the first work on Gaussian process state space models (Wang et al., 2005), much work has
been devoted to deriving efficient and accurate inference schemes. The arguably most expressive
model at this point is by Ialongo et al. (2019) which assumes a flexible, parametric Markov-structured
Gaussian posterior over the temporal states, xt ∼ q(xt|·), and allows for dependencies with the
Gaussian process posterior. [See Sec. 2.4, especially Eqs. (2.26) and (2.34) for a description of their
approach.] However, its empirical performance often does not match its theoretical expressiveness:
In the original publication the authors report many cases in which this model is outperformed by an
easier alternative that simply sets q(xt|·) to the prior transition (Doerr et al., 2018). [See also Sec. 2.4,
especially Eqs. (2.27) and (2.29) for a description of their approach to inference in GPSSMs.] The
gap between the empirical and theoretical performance of Ialongo et al. (2019) can most likely be
attributed to the hard learning problem created by employing a flexible, parametric q(xt|·): The
additional parameters of such an approach have to be estimated, and, moreover, one can only start
optimizing the parameters governing the temporal state xt once the parameters governing xt−1 begin
converging since the inference scheme is built on sequential sampling of the temporal states (see
Sec. 2.4 for a detailed discussion).

In this chapter we address these issues by presenting a novel inference algorithm for Gaussian
process state-space models (Lindinger et al., 2022) that solves the latter problem and explores the
trade-off between the very expressive approach by Ialongo et al. (2019) and the method by Doerr
et al. (2018) which has good optimisation properties due to its parameter-free (but simple) choice for
q(xt|·).

1 Our approach applies stochastic variational inference over the Gaussian process posterior

1Note that we ruled out two other algorithmic changes introduced by Ialongo et al. (2019) (compared to Doerr et al., 2018)
as being not relevant for major changes in performance in Chap. 4 (see especially Sec. 4.3).

61

62 6.1 The Laplace Approximation

(Hensman et al., 2013) and, conditioned on it, the Laplace approximation (see e.g. MacKay, 2003)
over the temporal states, thereby allowing for complex dependencies. Inference is performed via a
double loop algorithm in which we optimise over the Gaussian process posterior in the outer loop
and over temporal states in the inner loop. The resulting approximate posterior over the temporal
states, q(xt|·), has a Markov Gaussian form and is found by a joint optimisation over all temporal
latent states. The latter addresses the issue of Ialongo et al., 2019, in which the parameters govern-
ing xt can only be learned once the estimate of the previous state, xt−1, is meaningful. In order to
arrive at a computationally efficient approach, we (i) compute cheap gradients through the Laplace
approximation by using the inverse function theorem (see e.g. Krantz and Parks, 2002), (ii) exploit the
Markovian structure of our model (see e.g. Bell, 2000), (iii) approximate the Gaussian process poste-
rior using inducing points (Quinonero-Candela and Rasmussen, 2005) and (iv) apply mini-batching.
Our experiments confirm the benefits of this novel inference scheme which provides higher quality
uncertainty estimates than its state-of-the-art alternatives.

The remainder of this chapter is structured as follows. First, in Sec. 6.1, we provide additional
background on the Laplace approximation and discuss its differences to variational inference, while
we already presented the background on GPSSMs in detail in Sec. 2.4. Next, we introduce our new
method and discuss different improvements that are needed in order to make it efficient (Sec. 6.2). In
Sec. 6.3, we relate our approach to other works in the literature, going beyond the brief introductions
in Sec. 2.4 by pointing out similarities and differences. Then, we experimentally compare our ap-
proach to the methods of Doerr et al. (2018) and Ialongo et al. (2019) on a toy data set and on several
benchmark data sets in Sec. 6.4. Finally, in Sec. 6.5, we summarise the current chapter.

6.1 The Laplace Approximation

In this section we first introduce the Laplace approximation by taking its existing application to para-
metric state-space models (e.g. Skaug and Fournier, 2006) as an example. Then, in the second part,
we discuss similarities and differences between the Laplace approximation and variational inference
which we employed in the previous chapters.

6.1.1 Laplace Approximated Parametric State-Space Models

As we already briefly discussed in Sec. 1.2.3, the idea of using (parametric) state-space model is
ubiquitous in the statistical and machine learning community (see e.g. Särkkä, 2013) for time-series
modelling and goes back a long time (e.g. Kalman, 1960). The work by Skaug and Fournier (2006)
proposes to use the Laplace approximation for inference in state-space models and a brief discussion
of this approach gives us the perfect opportunity to introduce the Laplace approximation. We start
this discussion with a brief reminder about parametric state-space models.

State-space models (see e.g. Särkkä, 2013) offer a principled way to model time series, i.e., noisy
observations YT = {yt}

T
t=1 from a dynamical system, where t is the time index. In order to dis-

entangle the dynamics from the observational (or measurement) noise, state-space models use latent
states XT0

= {xt}
T
t=0 that are then assumed to form a Markov sequence. Such a model is completely

described by the initial distribution pθ(x0), a transition model pθ(xt|xt−1) and the emission model
pθ(yt|xt), resulting in

pθ(YT , XT0
) = pθ(x0)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1), (6.1)

where generally the transition and emission model, and the initial distribution depend on model pa-

6 Laplace Approximated Gaussian Process State-Space Models 63

rameters θ that we wish to learn.2 This learning is typically performed by maximising the marginal
likelihood of the observations YT under our model (also called evidence) [cf. Eq. (2.5) for the equiv-
alent quantity for GP regression],

L(θ) = pθ(YT) =

∫
pθ(YT , XT0

)dXT0
, (6.2)

with respect to θ.3 With the notable exception of linear Gaussian state-space models (Kalman, 1960),
computing Eq. (6.2) is not analytically possible and we have to resort to approximations.

In the following, we introduce the Laplace approximation (see e.g. MacKay, 2003; Skaug and
Fournier, 2006) which can be used to obtain an approximate maximum likelihood estimate of the
parameters θ by approximating L(θ) in Eq. (6.2). In order to get a qualitative feeling of how the
Laplace approximation works in practice, see Fig. 6.1 where we show the approximations to different
one-dimensional probability density functions (grey) using the Laplace approximation (brown). For
a quantitative treatment, we start by introducing g as a short-hand for the log-joint:

g(XT0
, θ) ≡ log pθ(YT , XT0

), (6.3)

(note that YT is constant and hence not considered as a variable). We denote its maximiser4 with
respect to (wrt.) the latent states as

X̂T0
= argmax XT0

g(XT0
, θ). (6.4)

Performing a second-order Taylor approximation of g(XT0
, θ) in Eq. (6.3) around this mode X̂T0

,
plugging the (exponentiated) result back into Eq. (6.2), and then evaluating the resulting Gaussian
integral yields (see Appx. A.3.1 for a detailed derivation)

L(θ) ≈ p̃θ(YT) =
√
2π

dx(T+1)
pθ(YT , X̂T0

) det (H(θ))−
1
2 , (6.5)

H(θ) = − ∂2

∂X2
T0

g(XT0
, θ)

∣∣∣∣∣
XT0

=X̂T0

. (6.6)

Here and in the following we use p̃ to denote a distribution, where the Laplace approximation has
been applied to XT0

(and which therefore depends on X̂T0
in Eq. (6.4)). The expression in Eq. (6.5)

can then be optimised numerically wrt. θ in order to estimate the parameters θ∗ = argmaxθ p̃θ(YT)
(Skaug and Fournier, 2006). Note that this can be done efficiently since the Hessian H in Eq. (6.6)
is sparse and structured which we discuss in detail in Sec. 6.2.3. The same methodology can also be
efficiently applied to other latent variable models with a sparse or structured Hessian (e.g. Rue et al.,
2009; Kristensen et al., 2016).

6.1.2 Laplace Approximation versus Variational Inference

Before we finally present our proposed method that combines the approximate inference approaches
variational inference (that we introduced in detail in Appx. A.2) and the Laplace approximation (pre-
2Note that this was generally also the case for GPSSMs [see e.g. Eq. (2.25)] but as we shall see in Sec. 6.2, the dependence
on model parameters is particularly important in this chapter which we mark by using pθ .

3A fully Bayesian approach also treats the parameters θ probabilistically and then aims at estimating its posterior. See
e.g. Rue et al. (2009) for an approach that does this approximately using the Laplace approximation.

4This is in general a local optimum as the optimisation problem is non-convex. However, if the observations are dense, the
locally linear approximation to the dynamics made implicitly by the Laplace approximation is a reasonable assumption
(see e.g. Eleftheriadis et al., 2017) leading to well-identifiable optima.

64 6.2 Combining Variational Inference and the Laplace Approximation

5 0 5
x

0.0

0.1

0.2

0.3

0.4

pd
f

Mixture of Gaussians

5 0 5
x

0.0

0.2

0.4

0.6
Student-T

5 0 5
x

0.0

0.2

0.4

0.6

Log-Normal

Figure 6.1: We show the probability density functions (pdfs) of three one-dimensional distributions (Gaussian
mixture, student’s-t, and log-normal distribution from left to right) in grey. Furthermore, we depict the optimal
(numerical) approximations to these groundtruth distributions using the Laplace approximation (brown, solid)
and variational inference with a Gaussian variational family (magenta, dashed).

sented in the previous section), we provide a short comparison of them. Using variational inference
with a Gaussian variational family leads to a similar approach to the Laplace approximation since both
methods use the same functional form for the approximate distribution and both approaches are mode
seeking (see Fig. 6.1, left). While the Laplace approximation fits the mean to a mode of the distribu-
tion and has the same curvature as the true function at this mode, variational inference minimises the
KL-divergence between the approximate and the true distribution. Due to the KL-divergence being
heavily penalised by placing mass of the approximating distribution in regions that have zero mass
under the true distribution [see Eq. (A.6)], variational inference avoids this (see Fig. 6.1, right). Both
approximations are not ideally suited to approximating heavy-tailed distributions due to their Gaus-
sianity assumptions, but the Laplace approximation even slightly less so since matching the curvature
at the mode typically leads to narrower distributions in this case (see Fig. 6.1, middle).

However, as we introduce next, in our model we only use the Laplace approximation for approx-
imating the posterior over the temporal states. For many real-world applications, the dynamics can
often be well described locally by a linear model, justifying the Gaussian approximation (e.g. Eleft-
heriadis et al., 2017).

6.2 Combining Variational Inference and the Laplace

Approximation

In this section we propose a new inference method for the GPSSM in Eq. (2.27), i.e., the model used
in Doerr et al., 2018 that we repeat here for convenience:

pθ(YT , XT0
, FM) = pθ(x0)pθ(FM)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1, FM). (6.7)

In contrast to the parametric state-space model in Eq. (6.1), this model has an additional set of latent
variables, the inducing outputs FM that describe the behaviour of the GP in the transition model.5

Instead of relying solely on variational methods for performing inference over both sets of latent

5Note that we use the model of Doerr et al. (2018) here that relies on the FITC approximation which is criticised by Ialongo
et al. (2019). However, since we showed in detail in Sec. 4.2 that the latter work could have used the FITC approximation
as well without changing the optimisation objective, we rely on it here since it simplifies some calculations. Furthermore,
we will later use an approximate posterior over FM [Eq. (6.14)] that counteracts the problematic behaviour of vanishing
noise variances that this approximation can entail (see also footnote 14 in Chap. 2).

6 Laplace Approximated Gaussian Process State-Space Models 65

variables as previous works on inference in GPSSMs (e.g. Frigola et al., 2014; Eleftheriadis et al.,
2017; Ialongo et al., 2019) have done, we employ variational inference in combination with the
Laplace approximation. This allows us to treat the local latent variables, i.e. the temporal states XT0

,
and the global latent variables, i.e. the inducing outputs FM , differently. Note that naively applying
the Laplace approximation to this model, i.e., without making a distinction between the different sets
of latent variables, (i) does not lead to an efficient algorithm since the resulting Hessian would not
have an exploitable sparsity structure (see Sec. 6.2.3), (ii) would assume a linear relationship between
the two latent variable classes and (iii) would make the Gaussian assumption made by the Laplace
approximation more questionable.

We start by deriving our optimisation objective in Sec. 6.2.1 and then, in Sec. 6.2.2, discuss a
caveat that we encounter when trying to naively optimise this objective. Afterwards, we show how
the sparsity of the Hessian in the Laplace approximation can be exploited for computational savings
(Sec. 6.2.3) before summarising the algorithm in Sec. 6.2.4.

6.2.1 Optimisation Objective

Similarly as the previous methods, we wish to find an approximation to the log marginal likelihood
log pθ(YT). We start from its definition given the model under consideration, [Eq. (6.7)],

log pθ(YT) = log

∫
pθ(YT |FM)pθ(FM)dFM . (6.8)

Here, we introduced pθ(YT |FM) =
∫
pθ(YT , XT0

|FM)dXT0
, where the integrand can be obtained

from Eq. (6.7) using pθ(YT , XT0
|FM) = pθ(YT , XT0

, FM)/pθ(FM). Applying the Laplace approxi-
mation (Sec. 6.1) to the latter integral and plugging it in Eq. (6.8) leads to

log pθ(YT) ≈ log

∫
p̃θ(YT |FM)pθ(FM)dFM . (6.9)

Here, p̃θ(YT |FM) is the Laplace approximation of the conditional pθ(YT |FM), which is given by
[cf. Eq. (6.5)]

p̃θ(YT |FM) =
√
2π

dx(T+1)
pθ(YT , X̂T0

|FM) det (H(θ, FM))−
1
2 , (6.10)

where X̂T0
[cf. Eq. (6.4)] is a mode of the log-density [cf. Eq. (6.3)]

gGP(XT0
, θ, FM) = log

[
pθ(x0)

T∏
t=1

pθ(yt|xt)pθ(xt|xt−1, FM)

]
(6.11)

and

H(θ, FM) = − ∂2

∂X2
T0

gGP(XT0
, θ, FM)

∣∣∣∣∣
XT0

=X̂T0

(6.12)

is the corresponding Hessian [cf. Eq. (6.6)].
We proceed by using the methodology from variational inference to lower bound the resulting

expression in Eq. (6.9): First, we multiply the term within the integral by a suitably chosen one,

log pθ(YT) ≈ log

∫
qψ(FM)

p̃θ(YT |FM)pθ(FM)

qψ(FM)
dFM , (6.13)

where qψ(FM) is the variational distribution, an arbitrary distribution over the FM parameterised by

66 6.2 Combining Variational Inference and the Laplace Approximation

ψ. Finally, we use Jensen’s inequality to push the logarithm inside of the resulting integral (thereby
lower bounding the expression) in Eq. (6.13), and use the definition of the KL-divergence [Eq. (A.6)]
to arrive at our optimisation objective,

L(θ, ψ) ≡
∫
qψ(FM) log p̃θ(YT |FM)dFM −KL(qψ(FM) ∥ pθ(FM)), (6.14)

which is an approximate lower bound for the log evidence in Eq. (6.8), i.e., it obeys log pθ(YT) ⪆
L(θ, ψ). There are two things to note abound this bound: First, it is an approximate lower bound,
since the Laplace approximation does not provide a valid bound but only an approximation. Second,
the property that we minimise a KL-divergence between the true posterior pθ(FM |YT) and the approx-
imate posterior qψ(FM) by optimising this bound (see Sec. A.2), also only holds approximately. In
fact, the KL-divergence that is minimised by optimising this bound is KL

[
qψ(FM) ∥ p̃θ(FM |YT)

]
,

i.e., qψ(FM) approximates the posterior after applying the Laplace approximation to the latent states
XT0

.

In principle, we could now go ahead, choose a parametric family for qψ(FM), evaluate our bound
in Eq. (6.14), and use automatic differentiation to optimise the parameters θ and ψ. However, this is
inefficient for two reasons: First, evaluating Eq. (6.10) involves an optimisation to obtain X̂T0

and
automatic differentiation through this optimisation is inefficient. Second, we need the determinant
of the Hessian H(θ, FM) [Eq. (6.12)] in order to evaluate Eq. (6.10) which scales cubically in the
size of the Hessian. In the following two sections we provide solutions to both of these efficiency
problems.

6.2.2 Implicit Function Theorem

Next, we turn to an important dependence in our construction: The mode X̂T0
depends on the setting

of the model parameters θ. Since our optimisation objective L(θ, ψ) in Eq. (6.14) involves the mode

X̂T0
of the log-density gGP(XT0

, θ, FM) [Eq. (6.11)], we require the derivative
∂X̂T0
∂θ in order to

compute ∂L
∂θ .6 Being used to automatic differentiation we would usually leave this calculation to

our favourite framework, since obtaining the mode X̂T0
is nothing but a (rather long) sequence of

summations and multiplications which automatic differentiation can deal with. Nevertheless, since
several optimisation steps are needed to compute the mode, back-propagating through optimisation
would lead to a large memory footprint and long execution times. Instead, we can calculate the
derivative of the mode wrt. θ solely with the value of X̂T0

, i.e., independent of the steps taken to
get there, with the help of the implicit function theorem [IFT, see e.g. Krantz and Parks, 2002].7

Summarising the problem, we have our optimisation objective L(θ, ψ) [Eq. (6.14)] which depends
[through Eq. (6.10)] on the mode X̂T0

of the log-density gGP(XT0
, θ, FM) [Eq. (6.11)]. Since gGP is

a function of θ, there will be a dependence of X̂T0
on θ, which is why we require

∂X̂T0
∂θ in order to

compute ∂L
∂θ . In Appx. A.3.2, we show that the former derivative can be obtained as

∂X̂T0
(θ)

∂θ
= −H−1(θ, FM)

∂h(X̂T0
, θ, FM)

∂θ
, (6.15)

6Through the FM , there is also a dependence onψ which must be treated in the same way. We omit the equivalent derivation
for the sake of clarity and conciseness.

7The website http://implicit-layers-tutorial.org/ provides an introduction to the IFT geared to the Machine Learning practi-
tioner.

implicit-layers-tutorial.org

6 Laplace Approximated Gaussian Process State-Space Models 67

which we derive using the IFT and where

h(x, θ, FM) = −
∂ log pθ(YT , XT0

| FM)

∂XT0

∣∣∣∣
XT0

=x

(6.16)

is the Jacobian of the function gGP [Eq. (6.11)] (see also Skaug and Fournier, 2006). Both terms on
the right hand side of Eq. (6.15) can be obtained using automatic differentiation and require only the
value of X̂T0

such that the complete computational graph of how it has been obtained is no longer
required. Note that Eq. (6.15) exchanges potentially costly automatic differentiation computations
with a Hessian solve. Naively, this would incur memory and time costs scaling quadratically and
cubically in the size of the latent state XT0

, respectively. Therefore, this does only lead to an efficient
algorithm by also exploiting the structure and sparsity of the Hessian, as we will discuss next.

6.2.3 Sparsity and Structure of the Hessian

Taking a closer look at the definition of the Hessian H(θ, FM) in Eq. (6.12) that is needed for
Eqs. (6.10) and (6.15), we realise that it is given as the second partial derivatives of a sum of T + 1
terms since gGP in Eq. (6.11) is given as the logarithm of a product of T + 1 terms:

H(θ, FM) = − ∂2

∂X2
T0

[
log pθ(x0) +

T∑
t=1

(log pθ(yt|xt) + log pθ(xt|xt−1, FM))

]
.

Due to the Markovian structure of our model, all second partial derivatives wrt. latent states being
more than one time step t apart vanish, i.e.,

Htt
′(θ, FM) = −

∂2gGP(XT0
, θ, FM)

∂xt∂xt′
= 0 for t′ /∈ {t− 1, t, t+ 1}.

This results in a block-tridiagonal structure of the Hessian:

H =

A0 B1 0 · · · 0

B⊤
1 A1 B2

. . .
...

0 B⊤
2 A2 B3 0

...
.

...
0 · · · 0 B⊤

T AT

 , At = − ∂2gGP

∂xt∂xt
, Bt = − ∂2gGP

∂xt∂xt−1
. (6.17)

with At, Bt ∈ Rdx×dx such that H ∈ Rdx(T+1)×dx(T+1). This structure can also be found in similar
models (see e.g. Bell, 2000) and the recent work by Durrande et al., 2019 considers the efficient im-
plementation of computations for similar structures (banded matrices) into automatic differentiation
frameworks.

The structure in Eq. (6.17) reveals another interesting aspect of our algorithm: The first step of
the Laplace approximation consists of making a multivariate Gaussian approximation to the posterior
pθ(XT0

|YT , FM), where X̂T0
is the mean and H(θ, FM) is the precision matrix (see Appx. A.3.1, es-

pecially Eq. (A.37)). Therefore, the structure of H tells us something about the underlying (implicit)
structural assumption that we have used to approximate pθ(XT0

|YT , FM). Exploiting the structure in
Eq. (6.17) and using standard formulas for Gaussian conditionals (Toussaint, 2011, Eq. (43)), we can

68 6.2 Combining Variational Inference and the Laplace Approximation

rewrite the approximate posterior to find a linear Markov Gaussian model,

N
(
XT0

∣∣∣X̂T0
, H−1

)
=

T∏
t=0

N (xt|at + btxt−1, ct) , (6.18)

where the coefficients at, bt, and ct depend on X̂t−1:T and the blocks At:T and Bt:T of the Hessian H
(here we used the shorthandAt:T = {At′}

T
t
′
=t

). Such a linear Markov Gaussian model is also used by
Eleftheriadis et al. (2017), where the authors use parameters at, bt, and ct that have to be optimised
during inference while the conditional dependence on the FM is not taken into account.

Turning our attention back to the structure revealed in Eq. (6.17), there are three aspects of the
algorithm for which we can achieve considerable computational savings when we take it into account:
i) obtaining the blocks At and Bt [Eq. (6.17)] of the Hessian while not calculating the unnecessary
zero blocks, ii) calculating the determinant of the Hessian required for Eq. (6.10), and finally iii)
performing the Hessian solve in Eq. (6.15). Problem i), while not hard, requires a technical solution
which we detail in Appx. A.3.3. Problems ii) and iii) can both be solved by following e.g. Koulaei
and Toutounian (2007) in noting that the Hessian H in Eq. (6.17) allows a factorisation that can be
exploited: It is

H = (Λ +B⊤)Λ−1(Λ +B), (6.19)

where B is the strictly upper-triangular block matrix consisting only of the blocks Bt in Eq. (6.17)
and Λ is a block diagonal matrix that can be calculated from the blocks At and Bt. We provide a
detailed derivation and show how Eq. (6.19) can be used in order to solve problems ii) and iii) in
Appx. A.3.4. Implementing these improvements leads to a reduction of the memory footprint of the
algorithm from O(T 2d2x) to O(Td2x) [mainly through i)] and a reduction of the theoretical runtime
from O(T 3d3x) to O(Td3x) through ii) and iii).

6.2.4 Algorithm

Algorithm 1 Optimisation objective for Laplace approximated GPSSMs
Given time series YT
Choose number of iteration and samples I and N , latent state dimension dx
Initialise model parameters θ, variational parameters ψ = {m,S}
for i = 1 . . . I do ▷ Optimisation steps

for n = 1 . . . N do ▷ Reparameterised samples
Sample F (n)

M ∼ qψ(FM)

Find X̂(n)
T0

by maximising gGP(XT0
, θ, F

(n)
M) ▷ Eq. (6.11)

Obtain non-zero elements of H (At, Bt) ▷ Appx. A.3.3
Evaluate detH ▷ Eqs. (A.43) and (A.44)

Evaluate p̃θ(YT | F (n)
M) ▷ Eq. (6.10)

end for
Evaluate L(θ, ψ) ▷ Eqs. (6.14) and (6.20)

Obtain gradients ∂L
∂θ , ∂L∂ψ , using custom

∂X̂
(n)
T0
∂θ ,

∂X̂
(n)
T0

∂ψ ▷ Eqs. (6.15) and (A.45)

Update θ and ψ
end for

In order to evaluate and maximise our optimisation objective L(θ, ψ) in Eq. (6.14), we need to
choose a parametric family for qψ(FM). We follow the literature (e.g. Ialongo et al., 2019) and take a

6 Laplace Approximated Gaussian Process State-Space Models 69

Gaussian distribution qψ(FM) = N (FM |m,S), allowing an analytical evaluation of the KL-term in
Eq. (6.14). The first term on the right hand side of Eq. (6.14) is analytically intractable so we resort
to sampling, ∫

qψ(FM) log p̃θ(YT |FM)dFM ≈
N∑
n=1

log p̃θ(YT |F
(n)
M), (6.20)

with F (n)
M ∼ qψ(FM), and we use reparameterised samples (e.g. Kingma and Welling, 2014) to be

able to compute derivatives wrt. ψ. The resulting basic algorithm to evaluate and optimise L(θ, ψ) is
summarised in Alg. 1.

There are three extensions of this algorithm that are typically required for applying GPSSMs in
practice (e.g. in Sec. 6.4.2), i) mini-batches, ii) multi-dimensional latent states and iii) control in-
puts: Many time series are too long to be handled in one batch such that using i) mini-batches helps
obtaining a computationally tractable algorithm. Moreover, for many real-world problems a one-
dimensional latent state is not expressive enough (Frigola, 2015) and we require ii) multi-dimensional
latent states xt. Lastly, many datasets come with an additional time series ut ∈ Rdu of iii) external
inputs that additionally control the behaviour of the system. We briefly summarise these extensions
below, for additional details see Lindinger et al. (2022, Appx. E).

Starting with i) we can exploit that the first term in our optimisation objective [Eq. (6.20)] can be
written as a sum over the observations yt [while not directly obvious from Eq. (6.20), this follows from
Eqs. (6.10) and (6.7)]. We can approximate the sum using mini-batches (or rather subsequences) of
length Tb, YTb = {yt}

t0+Tb
t=t0

starting at some (random) time index t0. Note that this is an approximation
that ignores the temporal structure of the data and ignores effects coming from observations and
transitions before and after the mini-batch which is discussed in more detail in the previous chapter
and in Aicher et al. (2019). Nevertheless, mini-batching nicely integrates with the sampling step in
Eq. (6.20), where we can draw a new mini-batch Y (n)

Tb
for every sample F (n)

M from qψ(FM), resulting
in a new approximation,∫

qψ(FM) log p̃θ(YT |FM)dFM ≈ T

Tb

N∑
n=1

log p̃θ(Y
(n)
Tb

|F (n)
M), F

(n)
M ∼ qψ(FM).

Next, the multi-dimensional latent states xt needed for ii) are problematic in the transition model in
Eq. (2.28), where the mean and the covariance of the GP appear, both of which are one-dimensional.
We follow the literature (e.g. Doerr et al., 2018; Ialongo et al., 2019) and choose independent (sparse)
GPs for each dimension of the latent state resulting in

pθ(xt|xt−1, F
dx
M) =

dx∏
d=1

N
(
x
(d)
t

∣∣∣x(d)t−1 + µ(d)(xt−1, F
(d)
M), σ(d)x +Σ(d)(xt−1)

)
,

where F dxM = {F (d)
M }dxd=1 is the collection of all inducing outputs, x(d)t is the d-th dimension of the

latent state, σ(d)x is the (trainable) transition noise per dimension, and µ(d) and Σ(d) are the mean and
covariance of the sparse GP responsible for the d-th dimension, respectively [cf. Eq. (2.8)].

Finally, the control inputs for extension iii) are provided as an additional time series UT = {ut}
T
t=1,

where ut ∈ Rdu is applied at time index t and can change the behaviour of the system. In GPSSMs
these are typically modelled as additional (constant) inputs to the GP which are simply concatenated
with the latent states xt at the same time index. This leads only to two small changes in the algorithm:
The kernel of the GPs have to accept input pairs coming from Rdx+du and the inducing points XM

also have to lie in that higher dimensional space.

70 6.3 Related Work

6.3 Related Work

Before we present an empirical evaluation of our proposed algorithm, we discuss some related work
and especially differences to our approach in detail in the following. There are two lines of work that
directly relate to our proposed method: The first is on inference techniques for GPSSMs, the second
on optimising model parameters for latent variable models using the Laplace approximation. While
we already thoroughly introduced the related work on inference in GPSSMs in Sec. 2.4, we will point
out the similarities and differences of these works to our approach in Sec. 6.3.1. Then we compare
our approach to other works using the Laplace approximation in Sec. 6.3.2 before pointing out some
other recent related works [Sec. 6.3.3].

6.3.1 Variational Inference in Gaussian Process State-Space Models

The closely related work on inference in GPSSMs begins with Frigola et al. (2014): They used
a purely variational inference approach, assuming independence between the temporal latent states
XT0

and the inducing outputs FM , q(FM , XT0
) = q(FM)q(XT0

). This allowed them to find optimal
variational distributions q(FM) and q(XT0

) using variational calculus, where the latter distribution is
analytically intractable. This leads, similarly as in our work, to a double-loop algorithm, where in the
inner loop the distribution q(XT0

) is approximated and in the outer loop q(FM) has to be obtained
[cf. Alg. 1]. Frigola et al. (2014) opt for a particle filtering method in the inner loop (note that the
Laplace approximation would have also been possible here), but in contrast to our work do not take
the conditional dependencies between the FM and the XT0

into account. Note that this independence
assumption allows for alternating updates of the parameters of q(FM) and q(XT0

) without having the
need to differentiate through the latent states XT0

.
Eleftheriadis et al. (2017) improved upon this method (especially wrt. efficiency) by using a doubly

stochastic variational inference scheme that allows for the first time, and similarly as our approach,
for mini-batches. They opt for a parametric Gaussian distribution q(FM), a linear Markov Gaussian
model for q(XT0

) and additionally employ a recognition model to amortise the inference of the many
parameters of such an approach. It is worth noting that our Laplace approximation (implicitly) also
leads to a linear Markov Gaussian model as an approximation to the posterior p(XT0

|YT , FM). How-
ever, our approach respects the conditional dependence of the temporal states on the inducing outputs
FM , and does not require any additional parameters to be learned since the means and variances of
the Markov Gaussian model are obtained from the mode X̂T0

and the Hessian H [cf. Eq. (6.18)].
Recent variational methods have also incorporated the dependence between the FM and the XT0

in
their approximations by choosing q(FM , XT0

) = q(FM)q(XT0
|FM): First Doerr et al. (2018), who

have simply used the prior for q(XT0
|FM) and then Ialongo et al. (2019), who employ a parametric

non-linear Markov Gaussian model for the same term.8 While being clearly more expressive than
the approximation of Doerr et al. (2018), the functional form in Ialongo et al. (2019) also leads to a
harder learning problem through the additional introduction of the parameters of the Gauss-Markov
model which is taken to be

q(XT0
|FM) =

T−1∏
t=0

q(xt+1|xt, FM),

q(xt+1|xt, FM) = N
(
xt+1

∣∣∣Atµ(xt, FM) + bt, St +AtΣ(xt)A
⊤
t

)
, (6.21)

where µ and Σ are as in Eq. (2.8) and At, bt, and St are variational parameters that have to be

8Note that this is a more expressive approximation than our implicit one in Eq. (6.18), which is contained as a special case
in the functional form of Ialongo et al.’s (2019) approximation given in Eq. (6.21).

6 Laplace Approximated Gaussian Process State-Space Models 71

inferred. Additionally, the above approximation for q(XT0
|FM) only allows to learn the parameters

of q(xt|xt−1, FM) after the preceding state xt−1 has reached a meaningful state due to the sequential
nature of the algorithm. In contrast to these two methods, we do not employ a variational distribution
q(XT0

|FM) but rather approximately marginalise XT0
|YT , FM through the Laplace approximation,

eliminating the need to sequentially sample xt during inference.

6.3.2 Laplace Approximation

The other line of related work consists of approaches using the Laplace approximation for parame-
ter estimation in latent variable models. One influential approach is by Rue et al. (2009) that uses
the Laplace approximation (twice) to perform approximate Bayesian inference of the model parame-
ters in latent Gaussian models and pays close attention to the sparsity of the Hessian that is induced
by different models. The work of Skaug and Fournier (2006) combines the Laplace approximation
with automatic differentiation methods to arrive at an algorithm that can be used to approximate the
marginal likelihood of (non-) Gaussian latent state models and therefore for maximum likelihood
parameter estimation. The software package described in Kristensen et al. (2016) provides a recent
implementation of the ideas in Skaug and Fournier (2006) with an additional focus on efficient au-
tomatic differentiation exploiting the sparsity of the Hessian. While closely connected to our work,
these methods do not cover our approach since they jointly treat all latent variables, {FM , XT0

},
which would not lead to a Hessian whose structure can be exploited. Furthermore, a Laplace ap-
proximation over all latent variables would also lead to a less expressive approximation: This would
entail a joint Gaussianity assumption over FM and XT0

, while our current approach approximates
both sets of variables with Gaussian distributions but allows for potentially complex and non-linear
interactions.

6.3.3 Other Related Work

Casting the net of related work a little wider, we can see a lot of recent interest in the general meth-
ods that have also been applied in this work: The Laplace approximation has been used for modern
Bayesian neural networks (Ritter et al., 2018; Unlu and Aitchison, 2021), where the latter method also
consists of a combination of variational inference and the Laplace approximation, although applied
to the same set of parameters. The implicit function theorem has also seen a recent spike in inter-
est as it can be used to differentiate through implicit layers in deep neural networks (see e.g. Gould
et al., 2019). The use of both the implicit function theorem and the Laplace approximation (in com-
bination with Hamiltonian Monte Carlo) can be found in Margossian et al., 2020, which is a recent
take on the problem of Bayesian parameter estimation in latent Gaussian models (Rue et al., 2009).
Furthermore, variational inference remains ever popular as a computationally efficient approximation
method for complex probabilistic models such as Bayesian neural networks (Tomczak et al., 2021) or
deep Gaussian processes (Lindinger et al., 2020).

6.4 Experiments

In this section we validate our newly introduced approach from Sec. 6.2 experimentally. First, in
Sec. 6.4.1, we use the controlled environment of a toy dataset called kink to test different features of
our proposed approach and of the most recent related work by Ialongo et al. (2019). Afterwards, we
assess the performance of our method on a range of real-world benchmark datasets (Sec. 6.4.2). Both
experiments confirm that our new approach results in better calibrated predictions when compared
with the Variationally Coupled Dynamics and Trajectories (VCDT) method from Ialongo et al. (2019)

72 6.4 Experiments

3 2 1 0 1

3

2

1

0

1
X t

+
1

3 2 1 0 1

3

2

1

0

1

3 2 1 0 1

3

2

1

0

1

3 2 1 0 1
Xt

3

2

1

0

1

X t
+

1

3 2 1 0 1
Xt

3

2

1

0

1

3 2 1 0 1
Xt

3

2

1

0

1

Figure 6.2: Sparse GP fits (mean ± 2σ confidence interval) to the kink transition function for our model (top,
brown) and VCDT (bottom, purple) for varying emission noise (σ2

y ∈ {0.008, 0.08, 0.8}, left to right). Each
plot additionally shows the kink function (solid gray) and one sequence of T = 120 noisy latents xt drawn
from that function (tiny gray crosses).

and the Probabilistic Recurrent State-Space Model (PRSSM) method from Doerr et al. (2018). Com-
parisons to other time-series modelling approaches have already been performed in the latter work in
which the PRSSM approach performed best. Hence, we do not repeat these experiments.

6.4.1 Kink

The kink function fk(x) = 0.8 + (x + 0.2)[1 − 5/(1 + e−2x)] introduced in Ialongo et al. (2019)
(see there, Fig. 6.2 or Lindinger et al., 2022, Fig. 5 in Appx. G for visualisations) can be used as a
challenging transition function to probe state-space models: It tests the ability to model the non-linear
transition function and, by injecting additional noise, also the ability of the inference scheme to deal
with different levels of emission noise. We generate data according to

xt ∼ N
(
xt

∣∣∣fk(xt−1), σ
2
x

)
, yt ∼ N

(
yt

∣∣∣xt, σ2y) ,
for t = 1, . . . , T , where we fix T = 120, x0 = 0.5, σx = 0.05 and vary σ2y ∈ {0.008, 0.08, 0.8}.
Here, σ2y = 0.8 corresponds to the setting of Ialongo et al. (2019) for which they empirically demon-
strated that the inference scheme of Doerr et al. (2018) is not able to cope with the transition noise
σx and fails to learn the underlying dynamics. We follow Ialongo et al. (2019) and fix the emis-
sion model to the groundtruth, p(yt|xt) = N

(
yt

∣∣∣xt, σ2y). In addition, we choose a zero-mean
sparse GP transition model with trainable Gaussian noise Q [cf. Eq. (2.28)], p(xt|xt−1, FM) =
N (xt|µ(xt−1, FM), Q+Σ(xt−1)) and a fixed initial distribution p(x0) = N (x0|−0.5, 1.5), all with
one dimensional latent states xt. Further details, the description of the setup of VCDT (Ialongo et al.,
2019), and the initialisation and training routines can be found in Lindinger et al. (2022, Appx. E.1).

We present the resulting fits of the sparse GPs to the kink transition function and the noisy latent
states in Fig. 6.2. We find that the GP in our model is well able to locate the kink in the kink transition
function and finds better approximations with increasing signal to noise ratio (decreasing σ2y). The
latter is also true for the VCDT method while the former does not hold for the largest σ2y = 0.8. The

6 Laplace Approximated Gaussian Process State-Space Models 73

Table 6.1: Comparison of our method with VCDT (Ialongo et al., 2019) on the kink data set. Shown are mean
and standard errors over ten repetitions of the log-density (higher is better) of the kink function varying the
emission noise variance σ2

y . See Lindinger et al. (2022, Appx. E.1) for more details on the execution and
evaluation of the experiment.

Model σ2y = 0.008 σ2y = 0.08 σ2y = 0.8

Laplace 1.35(0.04) 0.36(0.08) -1.08(0.15)

VCDT 1.53(0.31) -1.10(0.72) -4.16(1.97)

16 32 64 128 256
Subsequence Length

10 1
100

Ti
m

e
[s

]

naive
efficient
quadratic
linear

Figure 6.3: Timing comparison between a naive Laplace GPSSM and our proposed efficient implementation.
The log-log plot shows the average time per training iteration as a function of the subsequence length T .

small confidence intervals of the VCDT method sometimes result in very good fits (σ2y = 0.008),
while other times leading to overconfident predictions (slightly for σ2y = 0.08, evidently for σ2y =
0.8), an observation that we have also made for the benchmark datasets in Sec. 6.4.2. In contrast,
our method provides higher variance estimates resulting in very few data points not lying within the
confidence intervals.

Next, we repeat the experiment 10 times, each time generating a new random dataset. Our obser-
vations also hold quantitatively as demonstrated in Tab. 6.1. In accordance with Fig. 6.2, we find that
VCDT performs slightly, but not significantly, better than our method for σ2y = 0.008, whereas we
significantly outperform VCDT on the noisier data sets.

The controllable environment of the kink dataset also allows us to test if the theoretical speed-ups
from Sec. 6.2.3 can be observed in practice. For this, we use the same setup as above, changing only
σ2y = 0.01 to provide an easy learning task and vary T ∈ {24, 25, 26, 27, 28}. We then compare
the average runtime per iteration over the first 1000 iterations of our efficient implementation with
a naive implementation, where all elements of the Hessian are calculated and the full Hessian is
used to compute its determinant and the required Hessian solves, i.e., ignoring the improvements
proposed in Sec. 6.2.3. The results of this comparison are depicted in Fig. 6.3 and clearly show
that our efficient implementation scales linearly with the length of the time series T . For the naive
implementation we observe a quadratic scaling with T even though the theoretical scaling is O(T 3)
(see Sec. 6.2.3). We attribute this to the huge cost of calculating the elements of the Hessian with
automatic differentiation whose number scales quadratically for the naive version and linearly for our
implementation. We hypothesise that the cubic scaling only sets in for very high values of T which
might become important if one wants to study long term effects requiring mini-batches of increased
size. However, as we saw in Chap. 5, there exist better and more efficient ways to deal with long-
term effects instead of simply using long mini-batches. Finally, we also aim to validate our intuition
that the parametric approach of Ialongo et al. (2019) for modelling the posterior over the latent states
q(xt|·) [see Eq. 6.21] is problematic from a practical point of view. Their approach requires the

74 6.4 Experiments

Table 6.2: Iteration number at which the mean parameters At and bt of q(xt|·) [see Eq. (6.21)] of the VCDT
method (Ialongo et al., 2019) have converged for different time points t. Shown are mean and standard errors
over ten repetitions using the kink dataset with T = 120 and σ2

y = 0.08.

t = 0 t = 40 t = 80 t = 120

At 4100(600) 5300(500) 6200(300) 6800(400)
bt 5300(500) 5500(300) 6700(400) 6400(400)

sequential sampling of xt ∼ q(xt|·) for t = 1, . . . , T during training which theoretically means that
samples for xt′ only become meaningful when the parameters of q(xt|·) for all t < t′ have converged.
Our results in Tab. 6.2 support this thesis: There, we show the average iteration number (out of 10000
in total) at which the variational parameters At and bt of the mean of q(xt|·) have converged when
running the VCDT method with the same settings as for Tab. 6.1 on the kink data set (see Lindinger
et al., 2022, Appx. E.1 for more details). There is a clear trend for At, and slightly less but still
visible for bt, that the variational parameters describing later time points t also converge later during
the optimisation. We believe that this small experiment yields a possible explanation for why our
approach, even though it uses a theoretically less expressive approximate posterior, outperforms the
method of Ialongo et al. (2019).

6.4.2 System Identi�cation

We compare the performance of our method against PRSSM (Doerr et al., 2018) and VCDT (Ialongo
et al., 2019) on five time series system identification benchmark datasets. Those consist of one di-
mensional time series of various lengths between 296 and 1024 data points and an equally long time
series of one dimensional control inputs (see Fig. 6.4 for visualisations and the appendix of Doerr
et al., 2018 for more information about the datasets). For these more complicated tasks we choose a
two dimensional latent state xt and a residual transition model with a sparse GP [cf. Eq. (2.28)],

p(xt|xt−1, FM) = N (xt|xt−1 + µ(xt−1, FM), Q+Σ(xt−1))

with (diagonal) trainable Gaussian noise Q and µ and Σ as in Eq. (2.8). We furthermore keep the ini-
tial distribution uninformative, p(x0) = N (x0|0, 1), but choose a slightly more expressive emission
model (following Ialongo et al., 2019), p(yt|xt) = N (yt|Cxt + b,Ω), where we fix C = [1, 0]⊤ and
introduce trainable parameters b and Ω. Note that an even more expressive emission model does not
lead to more expressivity of the composite model, only to more non-identifiabilities (Frigola, 2015).
For the PRSSM and VCDT methods, we use the original models detailed in Doerr et al., 2018 and
Ialongo et al., 2019, respectively. For each dataset, we create ten different training tasks by varying
the starting index of the training sequence, while keeping the length fixed to one half of the whole
time series. Whereas Doerr et al., 2018 only compared the long-term predictions and Ialongo et al.,
2019 only the short-term ones, we evaluate both regimes by recording the predictive performance
for varying time horizons Ttest ∈ {30, 60, 90, 120}. For more information about data splits, model
configurations as well as training and prediction routines for each method, see Lindinger et al. (2022,
Appx. E.2).

We plot the resulting test log-likelihoods in Fig. 6.5 (for a tabular comparison see Lindinger et al.,
2022, Tab. 3 in Appx. G). Our results clearly demonstrate that our method is a valuable addition to
the set of inference methods for GPSSMs: For short-term predictions (Ttest = 30, 60), our methods
yields excellent results over all datasets, while VCDT shows deteriorated behaviour on Dryer and
Gas Furnace, and PRSSM on Ballbeam, Drive and Gas Furnace. For long-term predictions (Ttest =

6 Laplace Approximated Gaussian Process State-Space Models 75

5
4
3
2
1
0
1
2
3

Y

4

3

2

1

0

1

2

3

4

2

0

2

4

1.0

0.5

0.0

0.5

1.0

0.2

0.1

0.0

0.1

0.2

Y

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15

0.02

0.01

0.00

0.01

0.02

0.03

1

0

1

2

3

Y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Y

3.5

4.0

4.5

5.0

5.5

6.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 25 50 75 100
T

45

50

55

60

65

70

Y

0 25 50 75 100
T

50

52

54

56

58

60

0 25 50 75 100
T

50

52

54

56

58

60

0 25 50 75 100
T

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 6.4: Exemplary figure showing the differences in predictions for the three different methods on the sys-
tem identification data sets. Shown are predictions for the same seeds on the Actuator, Ballbeam, Drive, Dryer,
and Gas Furnace datasets in the different rows (top to bottom). From left to right are the predictions for our
method, VCDT (Ialongo et al., 2019), PRSSM (Doerr et al., 2018), and the control inputs (all unnormalised).

76 6.5 Chapter Summary

T=30 T=60 T=90 T=120
2.5

2.0

1.5

1.0

0.5

lo
g

lik
el

ih
oo

d

Actuator

T=30 T=60 T=90 T=120
4

2

0

2

Ballbeam

T=30 T=60 T=90 T=120

6

5

4

3

2

1
Drive

T=30 T=60 T=90 T=120

3

2

1

0

Dryer

T=30 T=60 T=90 T=120

20

15

10

5

Gas Furnace
Laplace (ours)
VCDT
PRSSM

Figure 6.5: Comparison of average predictive log-likelihoods (higher is better) and their standard errors for
ten repetitions on five different benchmark datasets. We evaluate our model (Laplace), VCDT (Ialongo et al.,
2019) and PRSSM (Doerr et al., 2018) on predictions for Ttest ∈ {30, 60, 90, 120} steps in the future. See
Lindinger et al. (2022, Appx. E.2) for more details about the train-test splits and the evaluation.

90, 120), our method significantly outperforms its competitors on Ballbeam and Gas Furnace, while
it underperforms on Actuator. From a look at the root-mean-square errors (RMSE) in Lindinger et al.
(2022, Tab. 3 in Appx. G), it is evident that a deteriorated log-likelihood value does not necessarily
result in a large RMSE-value or vice versa. Instead, a drop in log-likelihood values is more likely
caused by overconfident predictions which we can also witness in our exemplary plots in Fig. 6.4.

In sum, we observed in our experiments that our method is able to learn the underlying dynamics
for a variety of different tasks and outperforms its comparison partners. A direct attribution of our
method’s success is unfortunately not possible due to the nature of GPSSMs: They simultaneously
learn the outputs of the sparse GP (through the inducing outputs) along with its inputs (the temporal
states) such that a distinction between learning the two is impossible as their learning is inherently
intertwined. This hinders a better theoretical understanding and also makes it very difficult to clearly
attribute predictive improvements to certain parts of the learning process.

However, for a given GP, the Laplace approximation finds an optimal latent state at every itera-
tion which we believe helps the GP convergence. In contrast, the fully variational approximation of
Ialongo et al. (2019) performs an incremental update over the latent states in each optimisation step
which only leads to an optimal latent state after full convergence. It is therefore possible that the vari-
ational approximation of q(xt|·) for VCDT might be hindered by the optimiser getting stuck in a local
optimum. Indeed, our empirical study indicates that VCDT is more susceptible to local optima than
our method since the standard errors for VCDT are significantly higher in both experiments. While
this provides a plausible explanation, we cannot completely rule out other causes for this behaviour.

Another potential reason for the success of our method is that the chosen variational family of
Ialongo et al. (2019) is too compact which can result in narrow uncertainty estimates (e.g. Turner
and Sahani, 2011). Our experiments indicate that combining variational inference with the Laplace
approximation favours less compact predictive distributions that lead to better calibrated predictions.

6.5 Chapter Summary

In this chapter, we have developed a new inference method for Gaussian process state-space models
(GPSSMs) that combines a Laplace approximation over the temporal states with variational inference
over the inducing outputs of the Gaussian process (GP) part of the model. Our approach learns a joint
approximate posterior over the inducing outputs and the temporal states, refraining from sequentially
learning the latter. We empirically find that our inference scheme is rewarded by better calibrated
predictions compared to state-of-the-art methods.

While we only focused on the application of our inference scheme to GPSSMs, it can generally
be applied to all models with two distinct sets of latent variables, e.g. the Bayesian treatment of
model parameters in latent Gaussian models (Rue et al., 2009) or of hyperparameters in (sparse) GP
models (e.g. Hensman et al., 2013). We further deem exchanging our variational inference engine

6 Laplace Approximated Gaussian Process State-Space Models 77

with Hamiltonian Monte Carlo (Margossian et al., 2020) as an interesting avenue of future work on
GPSSMs since recent research has shown promising results for a fully Bayesian treatment over GP
hyperparameters and inducing locations (Rossi et al., 2021).

CHAPTER 7

Conclusions and Outlook

7.1 Summary and Conclusions

In this thesis we introduced new inference methods for deep Gaussian processes (GPs) and Gaussian
process state-space models (GPSSMs) based on variational inference after closely investigating the
possible trade-offs that previous state-of-the-art methods offered.

Deep GPs and GPSSMs are both specialised probabilistic machine learning methods that embed
GPs in a larger model: Deep GPs use a small network of GPs for flexible regression while GPSSMs
use a GP as the transition function in a state-space model for time-series modelling. Both models ad-
ditionally have in common that exact inference is intractable and that recent approaches have mostly
relied on variational inference as an approximation method. We exploited these close connections at
several points throughout the thesis, e.g. when establishing a common background or by seamlessly
transferring the concept of a proof from one model class to the other. Generally, we initially ob-
tained a deep understanding of both model classes and the advantages and disadvantages of existing
inference approaches. We then used this understanding in order to design new inference schemes.
This was either done by identifying and fixing deficiencies common to all state-of-the-art approaches
or consisted of exploring existing trade-offs. In both cases where we did the latter, we traded off
the good convergence properties of one method with the expressivity of another one, leading to an
empirical improvement over both.

More specifically, we presented the following content in this thesis: In Chap. 2, we first provided
detailed technical background on the components that are required for inference in deep GPs and
GPSSMs, i.e., GP regression, variational inference, and sparse GPs (an approximation to standard
GPs required for their computationally tractable application to large data sets). Building on this, we
then thoroughly introduced deep GPs and GPSSMs, including a detailed overview of previous as well
as state-of-the-art approaches.

Then, in Chap. 3, we introduced a new variational inference method for deep GPs by generalis-
ing an existing state-of-the-art approach, thus making it more expressive. We showed via a proof by
induction that a desirable property of the existing approach (the ability to analytically marginalise
certain latent variables from the model) is unaffected by our generalisation. This property is known
to be advantageous for good convergence properties. A competing state-of-the-art approach does
not have this property since it employs an even more expressive approximate inference scheme and
therefore has to sample these latent variables. Empirically evaluating our newly proposed method, we
found that the analytical marginalisation property indeed improved converge. Additionally, a matrix
of (variational) parameters that needs to be optimised for our approach showed an interesting approx-
imate sparsity pattern. After taking this sparsity in our variational inference scheme into account,
thus proposing a structured approach, our method proved only to be slightly less computationally ef-
ficient than the method it generalises. We empirically assessed that the proposed approach performed
comparably to the two state-of-the-art approaches on standard regression benchmarks. Furthermore,
we found that it outperformed existing methods when the test data for regression is distant from the
training data due to better calibrated predictive uncertainties.

In Chap. 4 we turned our attention to GPSSMs and began to analyse the differences between the

79

80 7.2 Outlook

existing state-of-the-art approaches: Both of them use variational inference and approximately margi-
nalise certain latent variables related to the sparse GP in the model but the approximations differ. We
proposed a third possibility that allows for exact analytical marginalisation by exploiting the similar-
ities to deep GPs that allowed us to transfer the proof by induction from Chap. 3 to this new setting.
Furthermore, we analysed the different sparse GP approaches used by the two methods and were able
to conclude that those effectively do not change the model (or rather the optimisation thereof). Fi-
nally, we left a major difference, the choice of approximate posteriors used for variational inference,
for further scrutiny to Chap. 6.

Next, in Chap. 5, we studied an under-explored problem common to all GPSSM approaches,
namely the ability to efficiently (or at all) model time-series consisting of components with differ-
ent time scales, i.e., slowly varying and quickly changing components. We proposed a new GPSSM
model that includes different components each of which has its own time scale. In order to efficiently
train this newly proposed model, we established an equivalence between our approach and an approx-
imation to a different time-series modelling paradigm (GP stochastic differential equations). This was
possible by strongly relying on the theoretical groundwork laid in the previous chapter. In the exper-
iments we showed that our approach outperforms existing approaches on semi-synthetic data (where
multiple components are present) and performs on par with existing approaches on a challenging
real-world data set while requiring less fine-tuning.

Finally, in Chap. 6, we picked up the remaining problem from Chap. 4, namely the choice of ap-
proximate posteriors used for variational inference in GPSSMs. In similar spirit as in Chap. 3, we
proposed a new inference method that trades off the good optimisation properties of one state-of-the-
art method with the superior expressivity of the other. We achieved this by combining variational
inference with another approximate inference method, the Laplace approximation. After solving
several efficiency issues coming from a direct application of the Laplace approximation, we experi-
mentally compared our proposed approach with the two state-of-the-art methods. We found a very
good performance of our approach on a toy data set and multiple benchmark data sets due to improved
predictive uncertainties.

In conclusion, we provided a thorough and detailed technical introduction to deep GPs and GPSSMs
including state-of-the-art methods that can be employed by future researchers to quickly acquaint
themselves with the required background in the respective fields. The main contributions of this
thesis were one new inference algorithm for deep GPs and GPSSMs, respectively, where we traded
off expressivity versus good optimisation properties of existing algorithms, achieving superior per-
formance in the end. These two examples stressed the importance of keeping in mind the problems
of non-convex stochastic optimisation: First, for machine learning in general, where it is typically
simpler to find a good setting of the model parameters for a model with fewer parameters since this
translates into a lower-dimensional optimisation problem. Second, for probabilistic machine learn-
ing in particular, where analytical marginalisation instead of sampling (if possible) leads to lower
variance estimates which is important for good convergence. The third main contribution was a new
efficient inference algorithm for GPSSMs focussing on time series comprised of slowly varying and
quickly changing components. This approach generally requires less fine tuning in contrast to other
approaches and outperforms those in the scenario it was designed for. Devising this method in an
efficient manner was only possible by drawing connections between related but not obviously close
fields. This brings us to the possibly obvious final conclusion that a solid (theoretical) understanding
of related fields is certainly helpful, if not necessary, to advance ones own field.

7.2 Outlook

In the following final section of this thesis we provide a broader overview of the research fields that
deep GPs and GPSSMs stem from, namely expressive probabilistic regression and probabilistic time-

7 Conclusions and Outlook 81

series modelling. Our goal is to point out work being done in related fields in order to help identifying
under-explored or missing research directions. Additionally, we include concurrent or later works in
our overview that complement the contents of this thesis.

7.2.1 Deep Gaussian Processes

We start our overview by pointing out some of the concurrent works to our publication on deep GPs
(Lindinger et al., 2020) and some approaches that have appeared since then. Most of them provide
direct extensions of the publication by Salimbeni and Deisenroth (2017) that our work is based upon,
such as allowing for multiple outputs (Kaiser et al., 2018) or multiple input sources (Hamelijnck et al.,
2019) (both of which are orthogonal to improving the inference scheme). The approach by Salimbeni
et al. (2019) proposes the additional introduction of noisy latent variables that improve predictions
especially when the distribution of the outputs is non-Gaussian (e.g. multi-modal).

An interesting view point on deep GPs is taken by Hegde et al. (2019) that interpret them as discreti-
sations of stochastic differential equations. Doing so leads in practice to a deep GP that is significantly
deeper than other typical implementations which, however, applies always the same transformation at
each layer. A contrasting approach to the standard variational inference schemes is taken by Yu et al.
(2019) who interpret inference in deep GPs as a two-player game inspired by generative adversarial
networks (Goodfellow et al., 2014) and thus devise a new approach to approximate the posterior.

Several follow-up works considered the treatment of inducing inputs and inducing outputs in deep
GPs more closely: Ustyuzhaninov et al. (2020b) and Ober and Aitchison (2021) had the same idea,
namely treating the inducing outputs of one layer as the inducing inputs of the next layer (instead of
using independent inducing inputs for every layer as proposed by Salimbeni and Deisenroth, 2017).
Their approaches only differ in the variational posterior. In another work, Rossi et al. (2021) propose
to treat the inducing inputs (and also the GP hyperparameters) in a Bayesian manner, i.e., to assign a
prior to them and then to approximate their posterior. This can be seen as an extension of the similar
idea of Hensman et al. (2015) for sparse Gaussian processes.

Similarly as in the last example, several new deep GP approaches are based on replacing the vari-
ational sparse GP by Hensman et al. (2013) that the deep GP of Salimbeni and Deisenroth (2017) is
based on, by a different sparse GP approach. Examples for this are the inter-domain deep GP (Rudner
et al., 2020) that extends inter-domain variational Fourier features (Hensman et al., 2017) to deep
GPs, or the doubly sparse variational deep GP (Adam et al., 2020) that first extends the state-space
formulation of GPs (e.g. Särkkä et al., 2013) to sparse GPs and then to deep GPs. Another such ex-
ample are convolutional deep GPs (Blomqvist et al., 2019; Dutordoir et al., 2020) or variants thereof
(Popescu et al., 2022) that allow deep GPs to scale to higher input dimensions (e.g. images) and are
extensions of convolutional sparse GPs (van der Wilk et al., 2017).

As a possible direction for future work, it would be highly interesting to see whether a combination
of these approaches with our work is possible and advantageous. Furthermore, we believe that the
evaluation of regression models on test data that is far away from the training data (as we did in
Lindinger et al., 2020) is important to understand the advantages but also limitations of probabilistic
models (see also Popescu et al., 2022 who work on the closely related task of out-of-distribution
detection with probabilistic models). It is therefore of high practical relevance to assess how the other
approaches (especially those that aim to be more Bayesian) fare on this task.

7.2.2 Expressive probabilistic regression

The final examples of deep GP approaches in the previous section, i.e., convolutional deep GPs,
extend the capability of this model class into a domain that is predominantly governed by deep neural
networks (e.g. Goodfellow et al., 2016). If we are additionally interested in probabilistic approaches,

82 7.2 Outlook

this leads us to the large model class of Bayesian neural networks (BNNs) (e.g. Neal, 1996; Abdar
et al., 2021; Jospin et al., 2022). There exists a wide range of possible inference approaches for BNNs
(see e.g. Abdar et al., 2021; Jospin et al., 2022), however many of the ideas that we used throughout
this thesis have also been applied to BNNs. This includes the aim to marginalise latent variables (e.g.
Tomczak et al., 2021) or to include structure for efficiency (e.g Tomczak et al., 2020; Swiatkowski
et al., 2020) which we employed in Lindinger et al. (2020), or using the Laplace approximation (e.g.
Unlu and Aitchison, 2021) as we did in Lindinger et al. (2022).

Intriguingly, the connection between deep GPs and BNNs runs much deeper: Similarly as (wide)
single layer neural networks can be interpreted as GPs (Neal, 1996), recent work (Agrawal et al.,
2020; Pleiss and Cunningham, 2021; Dutordoir et al., 2021) suggests that the same holds true for
deep neural networks and deep GPs. This connection can exemplarily be exploited for improving the
accuracy of deep GPs or, vice versa, the calibration of BNNs (Dutordoir et al., 2021). It is therefore
interesting to consider whether this similarity can be further exploited to transfer recent advances
from the BNN community to the (deep) GP world. In the following we focus on two recent trends,
deep ensembles (and similar approaches) and the cold posterior effect.

One of the most prominent direction for BNNs recently, is to use ensembles of deep neural net-
works which basically amounts to training multiple neural networks at the same time and then to
combine their predictions during testing which empirically leads to better calibrated uncertainties
(Lakshminarayanan et al., 2017; Wenzel et al., 2020b). A conceptually similar approach by Maddox
et al. (2019) is to use a single network, train it with stochastic gradient descent, and then, essentially,
to interpret the parameter configurations during the last iterations of training as different networks
that form an ensemble. Similar ideas are also applicable to sparse or deep Gaussian processes where
we experimentally often observed that the initialisation of hyper- or variational parameters strongly
influenced the result of the model optimisation. Hence it would be interesting to see whether such
approaches can help overcome the simple predictive distributions that are often observed for the pre-
dictions of sparse and deep GPs and criticised and alleviated by e.g. Havasi et al. (2018) and Salimbeni
et al. (2019).

A further interesting topic concerns the observation which was recently made by Wenzel et al.
(2020a) that so-called cold posteriors (which amounts to overcounting the data) improve the predic-
tive performance of BNNs. This finding, which essentially signifies that a non-Bayesian (or at least
not completely Bayesian) treatment of BNNs leads to better results, sparked a lively debate in the
research community aiming to find an explanation or a fix for this phenomenon (e.g. Wilson and Iz-
mailov, 2020; Abdar et al., 2021; Izmailov et al., 2021; Aitchison, 2021; Fortuin et al., 2022). Initial
work on the cold posterior effect for GP models shows that it persists for GP classification but is
absent for regression (Adlam et al., 2020). In future work, it would be extremely interesting to clarify
whether the cold posterior effect can also be observed in different sparse or deep GP variants.

Finally, what is missing from a practitioner’s perspective is a guideline when to use which model.
While there exists an extremely extensive review of recent uncertainty quantification methods in deep
learning by Abdar et al. (2021), the main focus lies on neural networks and deep GPs are only briefly
touched upon. Especially for regression it would be useful to know how well GPs, deep GPs and
BNNs perform for different tasks where the data set size and the number of input dimensions is
varied. Potential extensions to such a comparison include applications to stationary or non-stationary
data and the consideration of different tasks such as classification or potential down-stream tasks,
e.g. active learning or Bayesian optimisation.

7.2.3 Probabilistic Time-Series Modelling

The second topic that we were concerned with in this thesis is probabilistic time-series modelling
with GPSSMs. Here, a recent new method exists which extends the methods that we build on to cope

7 Conclusions and Outlook 83

better with unstable and partially observed systems (Curi et al., 2020). Another approach by Ensinger
et al. (2021) introduces the possibility to conserve certain quantities in GP dynamical systems, e.g. the
total energy, (cf. Brüdigam et al., 2022) by using higher-order integration methods in order to go from
the system state at one time step, xt, to the next, xt+1.

Instead of assuming inherently discretised dynamics, several approaches also try to continuously
model the dynamics x(t). One example for such a model are ordinary differential equations (ODEs,
see e.g. Särkkä, 2013 and references therein) that model infinitesimal changes in the state via dx =
f(x)dt. In order to estimate an ODE from data, we have to learn the function f which can be done in
various ways. Here we are interested in probabilistic approaches. The most closely related approach
to GPSSMs is to place a GP prior on f and then to approximate the corresponding posterior which
is done e.g. in Heinonen et al. (2018) and Hegde et al. (2022). As discussed in Sec. 7.2.2, it is
possible to replace the GP by a BNN in order to model f , which is done for ODEs in Yıldız et al.
(2019) and Dandekar et al. (2020). The similarity of these works to GPSSMs should easily allow to
transfer several of the techniques used in order to make the above-mentioned methods work well in
practice. As possible future research directions it would therefore certainly be interesting to see if
the structured physics-inspired latent states from Yıldız et al. (2019) can reduce non-identifiabilities
in general GPSSM models. Additionally, we believe that the use of variational multiple shooting
introduced in Hegde et al. (2022) could alleviate some of the efficiency issues that general GPSSM
models have for long time-series which we addressed in Longi et al. (2022).

Another example for continuous probabilistic time-series models are stochastic differential equa-
tions (SDEs, see Øksendal, 2003 or also Särkkä and Solin, 2019 for a more recent introduction with
a focus on applications). In contrast to ODEs these models directly include stochasticity by adding
a so-called diffusion term to the ODE description, dx = f(x)dt + g(x)dW , where W is a stochas-
tic process (e.g. the Wiener process, see also Sec. 5.1). The problem here is to estimate f and g
directly from time-series data. Due to the inherent stochasticity in the model description, any kind
of model for f and g leads to a probabilistic description. Recently, approaches employing neural
networks (e.g. Tzen and Raginsky, 2019; Li et al., 2020) are ubiquitous, following the stir that their
application to ODE systems created (Chen et al., 2018). However, there are also several approaches
using either BNNs (e.g. Look and Kandemir, 2019; Haußmann et al., 2021) or GPs (e.g. Ruttor et al.,
2013; Duncker et al., 2019; Jørgensen et al., 2020; Zhao et al., 2020) to model f and/or g. We have
already exploited the similarity to discretised GP-SDEs (e.g. Ruttor et al., 2013) in order to improve
the efficiency of GPSSM for long time-series in Longi et al. (2022). It would therefore only be natural
to assess which improvements can be obtained by building on methods that improve on Ruttor et al.
(2013), e.g. Zhao et al. (2020) that proposes a more accurate numerical approximation scheme.

Other interesting recent ideas include e.g. the work by Toth and Oberhauser (2020) that uses GPs
to directly model time-series data by employing a signature kernel (which takes complete time-series
as inputs), the work by Ustyuzhaninov et al. (2020a) that specialises in modelling monotonic time-
series, or the approach by Mikheeva et al. (2022) that aims at probabilistically modelling multiple
correlated time-series using multi-output GPs.

We see several avenues for future work in this field: The first, similarly as in Sec. 7.2.1, is the
combination of the GP-based approaches with recent improvements to sparse GPs such as treating
the inducing points in a Bayesian manner (Rossi et al., 2021) or using convolutional GPs (van der
Wilk et al., 2017) in order to increase the input dimensionality that can be effectively handled by the
GPs.

The second future research direction concerns the need of most GP-based approaches to cheaply
sample from the GP posterior in order to achieve efficient algorithms. In our case this corresponds
to using the FITC approximation in Lindinger et al. (2022) and Longi et al. (2022) and this problem
is more generally discussed in Hewing et al. (2020). However, recently a solution for this problem
was proposed, namely decoupled sampling that combines two different sparse GP variants in order

84 7.2 Outlook

to be able to draw efficiently from the GP posterior (Wilson et al., 2020). While some very recent
approaches have already employed this approach (Ensinger et al., 2021; Mikheeva et al., 2022; Hegde
et al., 2022), we see a great potential in its widespread adoption in the community, e.g. for expressive
algorithms that would be too computationally demanding without decoupled sampling.

The final research direction that we propose concerns the multitude of approaches that we put
forward in this section. For a practitioner it is currently very hard (if not impossible) to decide which
approach to use in which scenario and to evaluate the advantages and disadvantages of one method
over the other ones. This is partly due to the fact that a comparison with other approaches is typically
only done within a single class of algorithms and that a review and comparison of different approaches
for probabilistic time-series modelling is currently missing. We believe that such a review is important
to identify under-explored research directions or synergies between the different field. Additionally
an experimental comparison that takes into account different areas where time-series modelling can
be applied (e.g. short/long train and test trajectories, regularly or irregularly sampled data, low- or
high-dimensional observations) would be extremely useful to spark future ideas.

APPENDIX A

Detailed Derivations

Here we provide more extensive derivations for certain theoretical results throughout the thesis. For-
mulas that are often required for these derivations are Eqs. (37), (39), and (40) from Toussaint (2011),
which give basic identities for multivariate Gaussian distributions and state, respectively,∫

N (x|a+ Fy,A)N (y|b, B) dy = N
(
x
∣∣∣a+ Fb,A+ FBF⊤

)
, (A.1)

N (x|a,A)N (y|b+ Fx,B) = N

((
x
y

)∣∣∣∣∣
(

a
b+ Fa

)
,

(
A A⊤F⊤

FA B + FA⊤F⊤

))
, (A.2)

N
((

x
y

)∣∣∣∣(ab
)
,

(
A C

C⊤ B

))
= N (x|a,A)N

(
y
∣∣∣b+ C⊤A−1(x− a), B − C⊤A−1C

)
. (A.3)

A.1 Gaussian Process Posterior

In the following we provide an instructive way to derive the GP posterior p(FN |YN) in Eq. (2.2)
and the GP predictive in Eq. (2.3) starting from Eqs. (1.1), p(FN) = N (FN |0,KNN), and (2.2),
p(YN |FN) = N

(
YN

∣∣∣FN , σ2yIN) (see e.g. Rasmussen and Williams, 2006, for an alternative deriva-
tion). The first step is to construct the joint distribution according to Eq. (A.2):

p(FN , YN) = p(FN)p(YN |FN) = N
((

FN
YN

)∣∣∣∣(00
)
,

(
KNN KNN

KNN KNN + σ2yIN

))
.

From this, we can derive p(YN , FN) = p(FN |YN)p(YN) [Eq. (A.3)], a different factorisation of the
joint, from which we can read off the posterior,

p(FN |YN) = N
(
FN

∣∣∣∣KNN

(
KNN + σ2yIN

)−1
YN ,KNN −KNN

(
KNN + σ2yIN

)−1
KNN

)
.

(A.4)

This is Eq. (2.2) in the main text.
In order to derive the GP predictive distribution p(f∗|YN) we use the sum rule of probability theory

(see e.g. Bishop, 2006, Sec. 1.2),

p(f∗|YN) =
∫
p(f∗|FN)p(FN |YN)dFN . (A.5)

The missing term, p(f∗|FN), can be obtained by using that under a GP prior the function values for
every finite set of input points are distributed according to a multivariate Gaussian distribution. In par-
ticular, this also holds forXN∪{x∗}, such that p(FN , f∗) = N

(
FN , f∗

∣∣0,KN∪∗,N∪∗
)

[cf. Eq. (1.1)].

85

86 A.2 Variational Inference and Evidence Lower Bounds

Written more explicitly,

p(FN , f∗) = N
((

FN
f∗

)∣∣∣∣(00
)
,

(
KNN K⊤

∗N
K∗N k∗∗

))
.

Factorising this as p(FN , f∗) = p(FN)p(f∗|FN) using again Eq. (A.2), we can read off

p(f∗|FN) = N
(
f∗

∣∣∣K∗NK
−1
NNFN , k∗∗ −K∗NK

−1
NNK

⊤
∗N

)
.

Plugging this together with Eq. (A.4) into Eq. (A.5) and solving the resulting integral using Eq. (A.1)
yields

p(f∗|YN) = N
(
f∗

∣∣∣∣K∗N

(
KNN + σ2yIN

)−1
YN , k∗∗ −K∗N

(
KNN + σ2yIN

)−1
K⊤

∗N

)
,

which is Eq. (2.3) in the main text.

A.2 Variational Inference and Evidence Lower Bounds

In this section we first give a thorough introduction to variational inference, including the deriva-
tion of its optimisation objective, the evidence lower bound (ELBO). Afterwards, we give detailed
derivations of various ELBOs appearing throughout the thesis.

Variational inference aims at finding an approximation q(·) to the true posterior p(·|Y), where
· is an arbitrary set of latent variables that we wish to perform inference over and Y is a set of
observed variables. This is done by first choosing a parametric variational family for the distribution
qψ(·), e.g. a multivariate Gaussian with parameters ψ corresponding to its mean and covariance, and
then finding an optimal setting ψ∗ of the parameters such that the approximate posterior qψ∗(·) is as
close as possible to p(·|Y). Here, closeness is measured by the Kullback-Leibler (KL) divergence
KL[qψ(·)||p(·|Y)] that is defined as

KL[q(x)||p(x)] =
∫
q(x) log

q(x)

p(x)
dx (A.6)

for arbitrary distributions q and p of a variable x. Important properties of the KL divergence are the
non-negativity, i.e., KL[q(x)||p(x)] ≥ 0, and that the KL divergence is zero if and only if the two
inputs are the same, i.e., KL[q(x)||p(x)] = 0 ⇐⇒ q(x) = p(x). The problem with this approach
is that directly optimising the parameters ψ of qψ(·) by minimising KL[qψ(·)||p(·|Y)] is not possible
since p(·|Y) is assumed to be intractable (either computationally or more generally this could also be
due to other reasons, e.g. analytical intractabilities) and needs to be approximated. Fortunately the
optimisation of ψ can still be done, although indirectly by using the seemingly unrelated relation for
the log-evidence,

log p(Y) = KL[qψ(·)||p(·|Y)] +

∫
qψ(·) log

p(Y, ·)
qψ(·)

d · . (A.7)

We provide a detailed derivation of this equation in the following, starting with the log-evidence
log p(Y) and a common manipulation

log p(Y) =

∫
qψ(·) log p(Y)d·, (A.8)

where qψ(·) is an arbitrary distribution over the latent variables parametrised by ψ. This can be done

A Detailed Derivations 87

since generally ∫
p(x)g(y)dx = g(y)

∫
p(x)dx = g(y), (A.9)

for arbitrary (normalised) distributions p(x) and functions g(y) of a different variable, where we
used the normalisation property

∫
p(x)dx = 1 of arbitrary probability distributions in the last step.

Multiplying by cleverly chosen ones inside the logarithm in Eq. (A.8) results in

log p(Y) =

∫
qψ(·) log

p(Y)p(·|Y)qψ(·)
p(·|Y)qψ(·)

d · .

Using standard rules for the logarithm, we can equally write this as

log p(Y) =

∫
qψ(·) log

qψ(·)
p(·|Y)

d ·+
∫
qψ(·) log

p(Y)p(·|Y)

qψ(·)
d · . (A.10)

Recognising a KL divergence [cf. Eq. (A.6)] in the first term on the right hand side (RHS) of
Eq. (A.10) and the joint distribution p(Y, ·) = p(Y)p(·|Y) (using the chain rule of probability theory)
in the numerator of the second term, we can equivalently write

log p(Y) = KL[qψ(·)||p(·|Y)] +

∫
qψ(·) log

p(Y, ·)
qψ(·)

d·,

which we recognise as Eq. (A.7).

Back to the problem at hand: Using the non-negativity of the KL divergence, we can lower bound
Eq. (A.7) yielding

log p(Y) ≥
∫
qψ(·) log

p(Y, ·)
qψ(·)

d · . (A.11)

The slack of this bound is the KL divergence that we wish to minimise. Hence, by maximising the
term on the RHS of Eq. (A.11), the so-called evidence lower bound (ELBO),

L(ψ) ≡
∫
qψ(·) log

p(Y, ·)
qψ(·)

d·, (A.12)

wrt. ψ, the KL divergence KL[qψ(·)||p(·|Y)] can be minimised, thus finding the optimal ψ∗. Note that
Eq. (A.12) no longer depends on the intractable posterior, only on the easily accessible joint p(Y, ·).
Note also that the bound in Eq. (A.11) is tight since the KL divergence is zero when qψ(·) = p(·|Y).
However, generally the true posterior is not included in the chosen variational family and the optimal
qψ∗(·) remains an approximation. It is therefore crucial for accurate variational inference to find a
good trade-off between a rich variational family qψ(·) and a simple optimisation of the variational
parameters ψ.

A.2.1 Sparse GP ELBO

The ELBO for the sparse GP LSGP(ψ) in Eq. (2.13) can be largely derived by considering only the
conditional assumptions in the joint prior p(YN , FN , FM) = p(YN |FN)p(FN |FM)p(FM) and in the
variational posterior qψ(FN , FM) = p(FN |FM)qψ(FM). The only other important assumption is the
iid. likelihood p(YN |FN) =

∏N
n=1 p(yn|fn) [cf. Eq. (2.1)]. Plugging all this in the general formula

88 A.2 Variational Inference and Evidence Lower Bounds

for the ELBO [Eq. (A.12)], yields

LSGP(ψ) =

∫
p(FN |FM)qψ(FM) log

[∏N
n=1 p(yn|fn)

]
������
p(FN |FM)p(FM)

������
p(FN |FM)qψ(FM)

dFNdFM ,

where we immediately see that the expensive term p(FN |FM) [Eq. (2.7)] that contains KNN cancels
out inside the logarithm. Splitting the remaining term in two by using standard logarithm rules,

LSGP(ψ) =

∫
p(FN |FM)qψ(FM) log

N∏
n=1

p(yn|fn)dFNdFM

+

∫
������
p(FN |FM)qψ(FM) log

p(FM)

qψ(FM)�
��dFNdFM , (A.13)

we see that the integrand of the second term is independent of FN and that therefore, using Eq. (A.9),
another term cancels. We therefore recognise the second term on the RHS of Eq. (A.13) as a negative
KL divergence [using logarithm rules and Eq. (A.6)]. Simultaneously, we transform the first term by
exploiting that the logarithm of a product is the sum of logarithms (where the summation can then be
performed outside of the integral):

LSGP(ψ) =
N∑
n=1

∫
p(FN |FM)qψ(FM) log p(yn|fn)dFNdFM −KL

[
qψ(FM)||p(FM)

]
. (A.14)

Taking a closer look at the first term on the RHS of this equation, we realise that every summand is an
integral for which the integrand only depends on fn but not on FN\n which we use to denote all other
GP outputs. Making this distinction for the first term on the RHS of Eq. (A.14) obvious, we write

N∑
n=1

∫
p(FN |FM)qψ(FM) log p(yn|fn)dFNdFM

=

N∑
n=1

∫
p(fn|FM)((((((((

p(FN\n|FM , fn)qψ(FM) log p(yn|fn)dfn����dFN\ndFM , (A.15)

where once more Eq. (A.9) is applicable. The conditioning p(FN |FM) = p(FN\n|FM , fn)p(fn|FM)
could be done using standard Gaussian calculus [Eq. (A.3)] but the complicated term p(FN\n|FM , fn)
cancels out anyway, while the other term, the marginal p(fn|FM) is very simple for multivariate Gaus-
sians: We simply have to read off the n-th element of the mean vector and the element at position
(n, n) of the covariance matrix of the distribution p(FN |FM) in Eq. (2.7) which in this case are
simply given by replacing every occurrence of N with an n, i.e.,

p(fn|FM) = N
(
FM

∣∣∣KnMK
−1
MMFM , knn −KnMK

−1
MMK

⊤
nM

)
(A.16)

The remaining term in Eq. (A.15) can be simplified further by reordering the terms and solving the
resulting integral over FM :

N∑
n=1

∫∫ [
p(fn|FM)qψ(FM)

]
dFM log p(yn|fn)dfn =

N∑
n=1

∫
q(fn) log p(yn|fn)dfn. (A.17)

A Detailed Derivations 89

Here, q(fn) =
∫
p(fn|FM)qψ(FM)dFM can be solved using Eq. (A.16), the functional form of the

approximate posterior, qψ(FM) = N (FM |µM , SM), and Eq. (A.1) resulting in [cf. Eq. (2.16)]

q(fn) = N
(
fn

∣∣∣KnMK
−1
MMµM , knn −KnMK

−1
MM (KMM − SM)K−1

MMK
⊤
nM

)
.

Finally, recognising the integral on the RHS of Eq. (A.17) as an expectation value [Eq. (2.14)], we
can combine Eqs. (A.14) - (A.17) yielding

LSGP(ψ) =
N∑
n=1

Eq(fn) [log p(yn|fn)]− KL[qψ(FM)||p(FM)],

which is Eq. (2.13) in the main text.

A.2.2 Deep GP ELBO

The ELBO for the deep GP LDGP in Eq. (2.20) can be largely derived by considering only the con-
ditional assumptions in the joint prior p(YN , FN , FM) [Eq. (2.18)] and in the variational posterior
q(FN , FM) [Eq. (2.19)]. The only other important assumption is the iid. likelihood p(YN |F

L
N) =∏N

n=1 p(yn|f
L
n) [Eq. (2.17)]. Plugging everything in the general formula for the ELBO [Eq. (A.12)]

yields

LDGP =

∫
q(FN , FM) log

p(YN |F
L
N)(((((((((((∏L

l=1 p(F
l
N |F

l
M , F

l−1
N)

∏L
l=1 p(F

l
M)

q(FM)(((((((((((∏L
l=1 p(F

l
N |F

l
M , F

l−1
N)

dFNdFM

=

∫
q(FN , FM) log p(YN |F

L
N)dFNdFM +

∫
q(���FN ,FM) log

∏L
l=1 p(F

l
M)

q(FM) �
��dFNdFM

=

∫
q(FN , FM) log

N∏
n=1

p(yn|f
L
n)dFNdFM +

∫
q(FM) log

∏L
l=1 p(F

l
M)

q(FM)
dFM

=
N∑
n=1

∫
q(fLn) log p(yn|f

L
n)df

L
n − KL[q(FM)||

L∏
l=1

p(F lM)], (A.18)

which is Eq. (2.20). The steps are equivalent to the ones for the derivation of the sparse GP ELBO
in Appx. A.2.1 and explained there in great detail. In the last step in Eq. (A.18), we introduced the
marginal q(fLn) that is given by

q(fLn) =

∫
q(FN , FM)dFM

∏
n
′∈N\n

dfL
n
′

L−1∏
l=1

dF lN . (A.19)

While requiring a quite subtle argumentation (see Salimbeni and Deisenroth, 2017, Remark 2; or
Lindinger et al., 2020, Appx. D), it can be shown that the marginal of the last layer GP output in
Eq. (A.19) depends only on the marginals for the same data point of all previous layers:

q(fLn) =

∫ [∫
q(FM)

L∏
l=1

p(f ln|F
l
M , f

l−1
n)dFM

]
df1n · · · df

L−1
n . (A.20)

90 A.2 Variational Inference and Evidence Lower Bounds

Here, the p(f ln|F
l
M , f

l−1
n) are the marginals of the p(F lN |F

l
M , F

l−1
N) in Eq. (2.18) and are given as

[cf. Eq. (2.7)],

p(f ln|F
l
M , f

l−1
n) =

Tl∏
t=1

p(f l,tn |F l,tM , f
l−1
n),

p(f l,tn |F l,tM , f
l−1
n) = N

(
f l,tn

∣∣∣∣K l,t
nM

(
K l,t
MM

)−1
F l,tM , k

l,t
nn −K l,t

nM

(
K l,t
MM

)−1 (
K l,t
nM

)⊤) (A.21)

with e.g. K l,t
nM = {kl,t(f l−1

n , xl,tm)}Mm=1 and similarly for the other terms.

Using the mean-field variational family in Eq. (2.22), and plugging it in the inner integral of
Eq. (A.20) results in

∫
qMF(FM)

L∏
l=1

p(f ln|F
l
M , f

l−1
n)dFM =

L∏
l=1

Tl∏
t=1

∫
qψ(F

l,t
M)p(f l,tn |F l,tM , f

l−1
n)dF l,tM . (A.22)

Hence we simply have to solve independent integrals, each having the form needed to apply Eq. (A.1).
Using qψ(F

l,t
M) = N

(
F l,tM

∣∣∣µl,tM , Sl,tM) [Eq. (2.22)] and Eq. (A.21), we have

q(f ln|f
l−1
n) ≡

Tl∏
t=1

∫
qψ(F

l,t
M)p(f l,tn |F l,tM , f

l−1
n)dF l,tM =

Tl∏
t=1

N
(
f l,tn

∣∣∣µl,tn ,Σl,tn) ,
Σl,tn = kl,tnn −K l,t

nM

(
K l,t
MM

)−1 (
K l,t
MM − Sl,tM

)(
K l,t
MM

)−1 (
K l,t
nM

)⊤
.

(A.23)

and µl,tn = K l,t
nM

(
K l,t
MM

)−1
µl,tM . The means and covariances are essentially the same as for the

sparse GPs in Eq. (2.16). Taken together, Eqs. (A.20) - (A.23) yield

q(fLn) =

∫ L∏
l=1

q(f ln|f
l−1
n)df1n · · · df

L−1
n , q(f ln|f

l−1
n) =

Tl∏
t=1

N
(
f l,tn

∣∣∣µl,tn ,Σl,tn) ,
which is Eq. (2.23) in the main text.

A.2.3 GPSSM FITC ELBO

Before we derive the ELBO of the GPSSM model with the FITC approximation used by Doerr et al.
(2018), we first show how applying the FITC approximation [Eq. (2.10)] to the general GPSSM prior
model in Eq. (2.26) leads to Eqs. (2.27) and (2.28).

Applying the FITC approximation from Eq. (2.10) to the GPSSM model amounts to the approxi-
mation

p(FT |XT , FM) =

T−1∏
t=0

p(ft|f0:t−1, x0:t, FM) ≈
T−1∏
t=0

p(ft|xt, FM),

p(ft|xt, FM) = N
(
ft

∣∣∣KtMK
−1
MMFM , ktt −KtMK

−1
MMK

⊤
tM

)
, (A.24)

where p(ft|xt, FM) is the typical conditional GP term coming from Eq. (2.10). Plugging this approx-

A Detailed Derivations 91

imation in Eq. (2.26) leads to

pFITC(YT , XT0
, FT , FM) = p(x0)p(FM)

T∏
t=1

p(yt|xt)p(xt|ft−1, xt−1)p(ft−1|xt−1, FM). (A.25)

Here, we see that the complicated dependencies on the FT have vanished and that therefore a direct
marginalisation of the latter from the model in Eq. (A.25) is possible:

p(YT , XT0
, FM) =

∫
pFITC(YT , XT0

, FT , FM)dFT

= p(x0)p(FM)

T∏
t=1

p(yt|xt)
∫
p(xt|ft−1, xt−1)p(ft−1|xt−1, FM)dft−1

= p(x0)p(FM)

T∏
t=1

p(yt|xt)p(xt|xt−1, FM).

This is Eq. (2.27) in the main text. In order to get to the last line, we solved the integrals independently
for each t. This can be done using the formulas in Eqs. (2.25) and (A.24) for p(xt|ft−1, xt−1) and
p(ft−1|xt−1, FM), respectively, together with Eq. (A.1). This leads to the result reported in Eq. (2.28)
for p(xt|xt−1, FM).

Next, we derive the ELBO for this model when using the approximate posterior in Eq. (2.29). This
derivation is very similar to the one for the deep GP in Sec. A.2.2 [see especially Eq. (A.18)] and
we only spell out the most important steps. See also the following section (Appx. A.2.4) for a more
detailed ELBO derivation for a GPSSM.

The starting point is plugging in the prior model and the variational family [Eqs. (2.27) and (2.29)]
in the general ELBO formula in Eq. (A.12), yielding

LPRSSM =

∫
q(XT0

, FM) log
p(x0)p(FM)

∏T
t=1 p(yt|xt)((((((((((∏T

t=1 p(xt|xt−1, FM)

q(x0)q(FM)((((((((((∏T
t=1 p(xt|xt−1, FM)

dXT0
dFM

=

∫
q(XT0

, FM) log
T∏
t=1

p(yt|xt)dXT0
dFM +

∫
q(x0,����XT , FM) log

p(x0)

q(x0)
dx0�����dXTdFM

+

∫
q(���XT0

,FM) log
p(FM)

q(FM)�
��dXT0

dFM

=

T∑
t=1

∫
q(xt) [log p(yt|xt)] dxt − KL [q(x0) ∥ p(x0)]− KL[q(FM) ∥ p(FM)]. (A.26)

The marginal q(xt) is given as [with a derivation similarly as in Eq. (A.17)]

q(xt) =

∫ t∏
t
′
=1

p(xt′ |xt′−1, FM)

 q(x0)q(FM)dFMdx0:t−1.

These are the Eqs. (2.30) and (2.31) appearing in the main text.

A.2.4 GPSSM VCDT ELBO

Here we provide the derivation of the ELBO of the VCDT method from Ialongo et al. (2019) that
cannot be found in as much detail in their original paper (see also Lindinger et al., 2022, Appx. A).

92 A.2 Variational Inference and Evidence Lower Bounds

The starting point is plugging the prior model p(YT , XT0
, FT , FM) in Eq. (2.26) and the variational

family q(XT0
, FT , FM) in Eq. (2.34) in the general formula for the ELBO [Eq. (A.12)] which yields

LVCDT = Eq(XT0
,FT ,FM)

[
T∑
t=1

log p(yt|xt) + log
p(x0)

q(x0)
+ log

p(FM)

q(FM)
+

T∑
t=1

log
p(xt|ft−1, xt−1)

q(xt|FM , xt−1)

]
.

(A.27)

after noting that the p(FT |XT , FM) terms cancel inside the logarithm and some reordering while us-
ing logarithm rules. Employing the definition of the expectation value [Eq. (2.14)], then the property
in Eq. (A.9) and then the definition of the KL-divergence [Eq. (A.6)], we identify two KL-terms:

LVCDT = Eq(XT0
,FT ,FM)

[
T∑
t=1

log p(yt|xt) +
T∑
t=1

log
p(xt|ft−1, xt−1)

q(xt|FM , xt−1)

]
− KL [q(x0) ∥ p(x0)]− KL [q(FM) ∥ p(FM)] . (A.28)

In the following we carefully treat the remaining two terms inside the expectation:

Eq(XT0
,FT ,FM)

[
T∑
t=1

log p(yt|xt)

]

=

T∑
t=1

∫∫∫
(((((((
p(FT |XT , FM)

 T∏
t
′
=1

q(xt′ |FM , xt′−1)

 q(x0)q(FM) log p(yt|xt)dFMdx0:T���dFT

=
T∑
t=1

∫ ∫ t∏
t
′
=1

q(xt′ |FM , xt′−1)

 q(x0)q(FM)dFMdx0:t−1

 log p(yt|xt)dxt

=

T∑
t=1

Eq(xt) [log p(yt|xt)] , (A.29)

where q(xt) is given by the inner integral [cf. Eq. (2.31)],

q(xt) =

∫ t∏
t
′
=1

q(xt′ |FM , xt′−1)

 q(x0)q(FM)dFMdx0:t−1. (A.30)

In order to derive Eq. (A.29) above, we used the definition of the expectation value [Eq. (2.14)] in
the first step and then Eq. (A.9) to get rid of the integrals over the FT and over all xt′ for t′ > t in the

A Detailed Derivations 93

second step. The remaining term inside the expectation value in Eq. (A.28) can be treated as follows:

Eq(XT0
,FT ,FM)

[
T∑
t=1

log
p(xt|ft−1, xt−1)

q(xt|FM , xt−1)

]

=

T∑
t=1

∫
q(x0)q(FM)p(FT |XT , FM)

 T∏
t
′
=1

q(xt′ |FM , xt′−1)

× log

p(xt|ft−1, xt−1)

q(xt|FM , xt−1)
dFMdx0:Tdf0:T−1

=
T∑
t=1

∫ ∫ q(x0)q(FM)p(ft−1|xt−1, FM)
t−1∏
t
′
=1

q(xt′ |FM , xt′−1)dx0:t−2

×
(∫

q(xt|FM , xt−1) log
p(xt|ft−1, xt−1)

q(xt|FM , xt−1)
dxt

)
dFMdft−1dxt−1

=−
T∑
t=1

Eq(xt−1,ft−1,FM) [KL [q(xt|FM , xt−1) ∥ p(xt|ft−1, xt−1)]] . (A.31)

Here, we have used Eq. (A.9) to get rid of the integrals over all ft′ for t′ ̸= t− 1 and over all xt′ for
t′ > t in the second step and additionally did some reordering of the terms. In the last step, we have
identified a (negative) KL-divergence using Eq. (A.6) and have additionally summarised

q(xt−1, ft−1, FM) =

∫
q(x0)q(FM)p(ft−1|xt−1, FM)

t−1∏
t
′
=1

q(xt′ |FM , xt′−1)dx0:t−2. (A.32)

Taken together, Eqs. (A.28) - (A.32) give the result reported in Eq. (2.36) in the main text.

A.3 Derivations for Laplace Approximated Gaussian Process

State-Space Models

In this section we collect detailed derivations for Chap. 6: First, details about the Laplace approxi-
mation in Appx. A.3.1, then a brief introduction to the implicit function theorem in Appx. A.3.2. The
final two sections, Appxs. A.3.3 and A.3.4 are concerned with exploiting the structure and sparsity of
the Hessian coming from the Laplace approximation.

A.3.1 The Laplace Approximation Applied to State-Space Models

In this section we provide a more extensive derivation for the Laplace approximation applied to para-
metric state-space models in Sec. 6.1.1 in our notation (Lindinger et al., 2022). See e.g. MacKay
(2003), Skaug and Fournier (2006), and Kristensen et al. (2016) for derivations in other notations or
contexts. As explained in Sec. 6.1.1, we use the Laplace approximation to approximate the marginal
likelihood pθ(YT) in Eq. (6.2). In some more detail, we do this with the following steps: We first
introduce an exponential and a logarithm that cancel each other out,

pθ(YT) =

∫
exp

[
log pθ(YT , XT0

)
]
dXT0

. (A.33)

94 A.3 Derivations for Laplace Approximated Gaussian Process State-Space Models

Next, we introduce g(XT0
, θ) as a short-hand for the log-joint [see Eq. (6.3)] and find its mode X̂T0

[see Eq. (6.4)] wrt. the latent statesXT0
. Then we proceed to perform a second order Taylor expansion

of g(XT0
, θ) around this mode and plug it in Eq. (A.33) leading to

pθ(YT) ≈
∫

exp

[
g(X̂T0

, θ)− 1

2

(
X̂T0

−XT0

)⊤
H
(
X̂T0

−XT0

)]
dXT0

. (A.34)

Here H is the negative Hessian of g as in Eq. (6.6) and there is no first order contribution since
we are expanding around a mode where, by definition, the Jacobian vanishes. The first term in the
exponential in Eq. (A.34) is constant in XT0

and can be pulled out of the integral (exponential and
logarithm cancel):

pθ(YT) ≈ pθ(YT , X̂T0
)

∫
exp

[
−1

2

(
X̂T0

−XT0

)⊤
H
(
X̂T0

−XT0

)]
dXT0

. (A.35)

Remaining in the integral, we recognise the exponential of a negative quadratic form, i.e., an unnor-
malised multivariate Gaussian, which generally has the density (see e.g. MacKay, 2003),

N (x|µ,Σ) = det(2πΣ)−
1
2 exp

[
−1

2
(µ− x)⊤Σ−1 (µ− x)

]
, (A.36)

with mean µ and covariance matrix Σ. We therefore recognise X̂T0
as the mean and H as the inverse

of the covariance matrix, i.e., the precision matrix, in Eq. (A.35), leading to

pθ(YT) ≈ pθ(YT , X̂T0
)

∫
det(2πH−1)

1
2N

(
XT0

∣∣∣X̂T0
, H−1

)
dXT0

. (A.37)

This integral is very easy to solve since the factor with the determinant does not depend on XT0
,

leaving us with an integral over a normalised probability density which, by definition, evaluates to
one. Therefore

pθ(YT) ≈ pθ(YT , X̂T0
) det(2πH−1)

1
2

=
√
2π

dx(T+1)
pθ(YT , X̂T0

) det(H)−
1
2 , (A.38)

using standard rules for determinants and taking into account thatH is of dimensionality dx(T +1)×
dx(T + 1). This is the formula that can be found in Eq. (6.5).

A.3.2 The Implicit Function Theorem

In order to obtain the formula for
∂X̂T0

(θ)

∂θ in Eq. (6.15) we start by defining a function h, that is the
Jacobian of the function gGP in Eq. (6.11):

h(x, θ, FM) = −
∂ log pθ(YT , XT0

| FM)

∂XT0

∣∣∣∣
XT0

=x

. (A.39)

By definition, plugging in the mode X̂T0
for the fixed value θ̂ of the parameters θ that has been

used when obtaining X̂T0
, yields a vanishing Jacobian, h(X̂T0

(θ̂), θ̂, FM) = 0. Here, we made the
dependence of the mode on the parameter setting θ̂ explicit. Under mild differentiability assumptions,
the IFT, roughly speaking, guarantees that X̂T0

(θ) is in fact a function of θ that is implicitly defined

A Detailed Derivations 95

through a vanishing Jacobian in the vicinity of θ̂, i.e., through the equation

h(X̂T0
(θ), θ, FM) = 0, (A.40)

and that is also differentiable at θ̂ and in its vicinity. Therefore, we can calculate the total derivative
wrt. θ on both sides of Eq. (A.40), yielding

∂h(X̂T0
, θ, FM)

∂θ
+
∂h(x, θ, FM)

∂x

∣∣∣∣
x=X̂T0

∂X̂T0
(θ)

∂θ
= 0, (A.41)

where we used the chain rule. Recognising

∂h(x, θ, FM)

∂x

∣∣∣∣
x=X̂T0

= H(θ, FM),

i.e., the Hessian H [Eq. (6.12)] of the function gGP in Eq. (6.11), we can solve Eq. (A.41) for the
required derivative, yielding

∂X̂T0
(θ)

∂θ
= −H−1(θ, FM)

∂h(X̂T0
, θ, FM)

∂θ
.

This is Eq. (6.15) appearing in Sec. 6.2.2.

A.3.3 E�ciently obtaining the non-zero blocks of the Hessian

In the following we provide some technical details on how we obtain the blocks of the Hessian in
Eq. (6.17): Reverse mode automatic differentiation frameworks such as TensorFlow (Abadi et al.,
2016) implement efficient vector-Jacobian products. As we can think of the Hessian as the Jacobian
of the Jacobian of the function gGP in Eq. (6.11), we can naively obtain the dx(T + 1) columns of
the Hessian in Eq. (6.17) by considering the vector-Hessian products e⊤j H with all dx(T + 1) unit
vectors ej = {δjj′}

dxT

j
′
=0

∈ Rdx(T+1), where δij is the Kronecker delta. This would require O(T 2d2x)

storage and computation time. As explained in Sec. 6.2.3, this is wasteful since many unnecessary
zeros are being calculated.

Therefore, in order to tackle the problem of obtaining only the non-zero blocks of the Hessian,
we propose instead to use only vector-Hessian products with the three block-vectors ẽ0, ẽ1, and ẽ2
defined by ẽk = {δk,k′%3Idx}

T
k
′
=0

∈ Rdx(T+1)×dx . Here % denotes the modulo operation and Idx is

the identity matrix of size dx × dx. As an example, ẽ0 = (Idx , 0, 0, Idx , · · ·)
⊤ such that

ẽ⊤0 H = (A0, B1, B
⊤
3 , A3, B4, B

⊤
6 , · · ·)

⊤,

which can be implemented as dx vector-Hessian products. Similarly ẽ⊤1 H = (B⊤
1 , A1, B2, · · ·)

⊤ and
ẽ⊤2 H = (0, B⊤

2 , A2, B3 · · ·)
⊤ such that we can obtain all non-zero elements of the Hessian with only

3dx vector-Hessian products, reducing the memory and time requirements to O(Td2x). After some
reshaping and transposing this provides us with the quantities {At}

T
t=0 and {Bt}

T
t=1 which are needed

for the further steps in our sparse algorithm in the following section.

96 A.3 Derivations for Laplace Approximated Gaussian Process State-Space Models

A.3.4 E�ciently calculating the Hessian determinant and performing Hessian
solves

Using the the block matrices At and Bt from the previous section, we show in this section how they
can be used to efficiently calculate the determinant of the Hessian and performing a Hessian solve
needed for Eqs. (6.10) and (6.15), respectively. We follow e.g. Koulaei and Toutounian (2007) in
noting that the Hessian H in Eq. (6.17) allows the factorisation

H = (Λ +B⊤)Λ−1(Λ +B), (A.42)

where B is the strictly upper-triangular part of H (consisting only of the different Bt blocks) and Λ
is the block diagonal matrix of recursively defined blocks

Λ0 = A0, Λt = At −B⊤
t Λ

−1
t−1Bt, t = 1, . . . , T. (A.43)

The factorisation in Eq. (A.42) allows us to calculate the determinant of the Hessian that is required
in Eq. (6.10) as

detH =

T∏
t=0

detΛt. (A.44)

Here we used the determinant rules det(Λ +B⊤) = det(Λ +B) = detΛ (since Λ is block diagonal
and B and B⊤ are strictly upper and lower triangular, respectively), and det(CD) = detC detD
(see also Salkuyeh, 2006).

The Hessian solve required in Eq. (6.15) can be done by exploiting Eq. (A.42) as well, yielding

H−1 = (Λ +B)−1Λ(Λ +B⊤)−1. (A.45)

Therefore a solve with a block banded lower triangular matrix (Λ+B⊤), then a matrix multiplication
with a block diagonal matrix (Λ) followed by a solve with a block banded upper triangular matrix
(Λ +B) are equivalent to a solve with H . Since all of these operations can be performed in O(Td3x)
steps, which is true as well for the calculation of the blocks of Λ in Eq. (A.43) and the determinant
in Eq. (A.44), we have achieved the desired theoretical speed-ups.

We note that further speed-ups are possible, such as considering the inverse subset algorithm to
calculate the derivative of the logarithm of the determinant of the Hessian (see e.g. Kristensen et al.,
2016; Durrande et al., 2019). Furthermore, several inherently sequential parts of the code could be
written in C++ as is done in Durrande et al. (2019).

APPENDIX B

Proofs

Here we provide extensive proofs for certain results throughout the thesis. A formula that we require
multiple times is the block matrix inversion lemma, which states that(

A B
C D

)−1

=

(
A−1 +A−1BD̃−1CA−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)
, (B.1)

D̃ = D − CA−1B. (B.2)

The second set of formulas that we require is about affine transformations of multivariate Gaus-
sians: Given two Gaussian distributed variables x and y that obey

p(x|y) = N (x|a+ Fy,A) , and p(y) = N (y|b, B) , (B.3)

the following formulas hold (see e.g. Schön and Lindsten, 2011, for a proof):

p(x) = N
(
x
∣∣∣a+ Fb,A+ FBF⊤

)
, (B.4)

p(y|x) = N
(
y

∣∣∣∣b+BF⊤
(
A+ FBF⊤

)−1
[x− (a+ Fb)] , B −BF⊤

(
A+ FBF⊤

)−1
FB

)
.

(B.5)

Note that since
p(x|y)p(y) = p(x, y) = p(y|x)p(x), (B.6)

Eqs. (B.4) and (B.5) are particularly useful if we wish to rewrite the product of two Gaussian densities
that are as in Eq. (B.3).

B.1 Analytical Marginalisation for Deep GPs

The aim of this section is to provide a complete proof for Thm. 3.1. We will do this by starting from
the formula for q(f ln) that we work out in Eq. (3.1),

qFC(f
L
n) =

∫ [∫
qFC(FM)

L∏
l=1

p(f ln|F
l
M ; f l−1

n)dFM

]
df1n · · · df

L−1
n . (B.7)

Comparing to Eq. (3.3), we see that it remains to be shown that indeed∫
qFC(FM)

L∏
l=1

p(f ln|F
l
M ; f l−1

n)dFM =
L∏
l=1

q(f ln|f
1:l−1
n), (B.8)

where the distributions q on the right hand side have the properties described in Eqs. (3.3) - (3.5).
The terms appearing on the left hand side are given by qFC(FM) = N (FM |µM , SM), which is

97

98 B.1 Analytical Marginalisation for Deep GPs

interchangeably also denoted as

q(F 1:L
M) = N

(
F 1:L
M

∣∣∣µ1:LM , S1:L,1:L
M

)
= q

F
1
M
...
FLM

 = N

F

1
M
...
FLM

∣∣∣∣∣∣∣
µ

1
M
...
µLM

 ,

S
11
M · · · S1L

M
...

. . .
...

SL1M · · · SLLM

 ,

(B.9)

and [cf. Eq. (A.21)]
p(f ln|F

l
M ; f l−1

n) = N
(
f ln

∣∣∣K̃l
nMF

l
M , K̃

l
nn

)
. (B.10)

Note the slight distinction that we make by using ; in Eq. (B.10) indicating that f l−1
n appears only as

an input to a kernel in the formula. Furthermore, we defined

K̃l
nM = Kl

nM

(
Kl
MM

)−1
(B.11)

K̃l
nn = Kl

nn −Kl
nM

(
Kl
MM

)−1
Kl
Mn. (B.12)

In order to show that Eq. (B.8) holds, we will introduce a rather technical lemma in the following and
prove it later by induction.

Lemma B.1. Given the de�nitions in Eqs. (B.9) and (B.10), ∀l = 1, . . . , L we have∫
q(F 1:L

M)
L∏
l
′
=1

p(f l
′

n |F
l
′

M ; f l
′−1
n)dF l

′

M

=

 l−1∏
l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f ln, F
l+1:L
M |f1:l−1

n)
L∏

l
′
=l+1

p(f l
′

n |F
l
′

M ; f l
′−1
n)dF l

′

M ,

(B.13)

where q(f l
′

n |f
1:l

′−1
n) is as in Eq. (3.3) and

q(f ln, F
l+1:L
M |f1:l−1

n) = N

(f ln
F l+1:L
M

)∣∣∣∣∣∣
(
µ̂ln
lµ̂l+1:L
M

)
,

 Σ̂ln
lΣ̂l,l+1:L
nM(

lΣ̂l,l+1:L
nM

)⊤
lΣ̂l+1:L,l+1:L
M

 . (B.14)

Here µ̂ln and Σ̂ln are as in Eqs. (3.4) and (3.5), respectively, and we de�ned

lµ̂l+1:L
M = µl+1:L

M + Sl+1:L,1:l−1
M diag(K̃1:l−1

Mn)
(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1
n − µ̃1:l−1

n)

lΣ̂l+1:L,l+1:L
M = Sl+1:L,l+1:L

M − Sl+1:L,1:l−1
M diag(K̃1:l−1

Mn)
(
S̃1:l−1,1:l−1
n

)−1
diag(K̃1:l−1

nM)S1:l−1,l+1:L
M

lΣ̂l,l+1:L
nM = K̃l

nMS
l,l+1:L
M − S̃l,1:l−1

n

(
S̃1:l−1,1:l−1
n

)−1
diag(K̃1:l−1

nM)S1:l−1,l+1:L
M .

(B.15)

In the equations above we used diag(A1:l) to denote the formation of a block diagonal matrix,
where the diagonal blocks are given by A1, . . . , Al. Note that while we only need one index to label
µ̂ln and Σ̂ln, we need several for the objects defined in Eq. (B.15). Take e.g. lΣ̂l+1:L,l+1:L

M : The upper
left index denotes for which l the formula is valid (which will become important when we do the
induction step l → l + 1). The upper right indices (try to) capture which terms of SM are most
important for the definition, they have nothing to do with the dimensionality of the objects. (In fact,
the matrix lΣ̂M contains L− l − 1× L− l − 1 blocks of various sizes TlM × Tl′M .) This makes it

B Proofs 99

easier later on when we do calculations with these objects. Before we prove Lem. B.1, we will first
show how its results can be used to prove Thm. 3.1:

Proof of Theorem 3.1. We start from Eq. (B.7) which reads

qFC(f
L
n) =

∫ [∫
qFC(FM)

L∏
l=1

p(f ln|F
l
M ; f l−1

n)dFM

]
df1n · · · df

L−1
n . (B.16)

Obtaining a formula for the inner integral can be done using Lem. B.1 for the case l = L, in which
case Eq. (B.13) evaluates to∫

q(F 1
M , . . . , F

L
M)

L∏
l=1

p(f ln|F
l
M ; f l−1

n)dF lM =

[
L−1∏
l=1

q(f ln|f
1:l−1
n)

]
q(fLn |f

1:L−1
n)

since there is nothing left to integrate over. According to Eqs. (3.3) and (B.14) the distribution
q(fLn |f

1:L−1
n) has the form necessary to be written as part of the product and we therefore have∫

q(F 1
M , . . . , F

L
M)

L∏
l=1

p(f ln|F
l
M ; f l−1

n)dF lM =

L∏
l=1

q(f ln|f
1
n, . . . , f

l−1
n).

Plugging this into Eq. (B.16) yields

q(fLn) =

∫ L∏
l=1

q(f ln|f
1:l−1
n)df1n · · · df

L−1
n , (B.17)

where the distributions q on the right hand side have the properties described in Eqs. (3.3) - (3.5).

For the following lengthy proof we often omit the conditioning of p(f ln|F
l
M ; f l−1

n) on f l−1
n and

interchangeably also write p(f ln|F
l
M).

Proof of Lemma B.1. We prove the lemma by induction:

Base case We need to show that Eq. (B.13) holds for l = 1, i.e., that∫
q(F 1

M , . . . , F
L
M)

L∏
l=1

p(f ln|F
l
M)dF lM =

∫
q(f1n, F

2
M , . . . , F

L
M)

L∏
l=2

p(f ln|F
l
M)dF lM , (B.18)

where q(f1n, F
2
M , . . . , F

L
M) is given according to Eqs. (B.14) and (B.15).

In order to do so, we will perform the following steps:

i) Starting with the LHS of Eq. (B.18), we isolate all terms that depend on F 1
M :∫ [∫

q(F 1
M , . . . , F

L
M)p(f1n|F

1
M)dF 1

M

] L∏
l=2

p(f ln|F
l
M)dF lM .

ii) In the previous equation, we only consider the inner integral and condition q on F 1
M :∫

q(F 1
M , . . . , F

L
M)p(f1n|F

1
M)dF 1

M =

∫
q(F 1

M)q(F 2
M , . . . , F

L
M |F 1

M)p(f1n|F
1
M)dF 1

M .

100 B.1 Analytical Marginalisation for Deep GPs

iii) Next, we obtain the joint distribution of the two terms that are conditioned on F 1
M :∫

q(F 1
M)q(F 2

M , . . . , F
L
M |F 1

M)p(f1n|F
1
M)dF 1

M =

∫
q(F 1

M)q(f1n, F
2
M , . . . , F

L
M |F 1

M)dF 1
M .

iv) Then we evaluate the integral:∫
q(F 1

M)q(f1n, F
2
M , . . . , F

L
M |F 1

M)dF 1
M = q(f1n, F

2
M , . . . , F

L
M).

v) Finally, we check that the resulting distribution is given by Eqs. (B.14) and (B.15). This then
proves the equality in Eq. (B.18).

Step ii) is the first one where we actually need to calculate something, namely the conditioning
of q(F 1

M , . . . , F
L
M). Using its definition in Eq. (B.9) and performing the conditioning according to

Eq. (A.3) yields

q(F 1
M , . . . , F

L
M) = q(F 1

M)q(F 2
M , . . . , F

L
M |F 1

M) = N
(
F 1
M

∣∣∣µ1M , S11
M

)
×

N
(
F 2:L
M

∣∣∣∣µ2:LM + S2:L,1
M

(
S11
M

)−1
(F 1

M − µ1M), S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

)
. (B.19)

For step iii) we use the formula we just obtained for q(F 2
M , . . . , F

L
M |F 1

M) and additionally the
conditional p(f1n|F

1
M), which according to Eq. (B.10) is given by N

(
f1n

∣∣∣K̃1
nMF

1
M , K̃

1
nn

)
, and then

proceed to build their joint Gaussian distribution:

q(f1n, F
2
M , . . . , F

L
M |F 1

M) = p(f1n|F
1
M)q(F 2

M , . . . , F
L
M |F 1

M)

= N

((
f1n
F 2:L
M

)∣∣∣∣∣
(

K̃1
nMF

1
M

µ2:LM + S2:L,1
M

(
S11
M

)−1
(F 1

M − µ1M)

)
,

(
K̃1
nn 0

0 S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

))
.

(B.20)

In step iv) we perform the integration using q(F 1
M) = N

(
F 1
M

∣∣∣µ1M , S11
M

)
from Eq. (B.19) for the

marginal and the term above for the joint. Applying Eq. (A.1) yields∫
q(f1n, F

2
M , . . . , F

L
M |F 1

M)q(F 1
M)dF 1

M

= N

((
f1n
F 2:L
M

)∣∣∣∣∣
(

K̃1
nMµ

1
M

µ2:LM + S2:L,1
M

(
S11
M

)−1
(µ1M − µ1M)

)
,

(
K̃1
nn 0

0 S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

)

+

(
K̃1
nM

S2:L,1
M

(
S11
M

)−1

)
S11
M

(
K̃1
nM

S2:L,1
M

(
S11
M

)−1

)⊤
= N

((
f1n
F 2:L
M

)∣∣∣∣∣
(
µ̃1n

µ2:LM

)
,

(
S̃11
n K̃1

nMS
1,2:L
M

S2:L,1
M K̃1

Mn S2:L,2:L
M

))
.

(B.21)

B Proofs 101

In order to arrive at the last line we simplified the terms and used the definitions of µ̃1n and S̃11
n in

Eq. (3.6).
Step v) requires us to evaluate Eq. (B.14) for l = 1 resulting in

N

(f1n
F 2:L
M

)∣∣∣∣∣∣
(
µ̂1n

1µ̂2:LM

)
,

 Σ̂1
n

1Σ̂1,2:L
nM(

1Σ̂l,2:LnM

)⊤
1Σ̂2:L,2:L

M

 ,

which is the term q(f1n, F
2
M , . . . , F

L
M) on the RHS of Eq. (B.18). Plugging in the definitions from

Eq. (B.15) we can easily verify that this last term indeed agrees with Eq. (B.21). Therefore our
statement in Lem. B.1 holds for l = 1.

Inductive step We assume that Lemma B.1 holds for some l = 1, . . . , L−1 (induction hypothesis)
and then need to show that it also holds for l + 1. That is, assuming that

∫
q(F 1:L

M)
L∏
l
′
=1

p(f l
′

n |F
l
′

M)dF l
′

M =

 l−1∏
l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f ln, F l+1:L
M |f1:l−1

n)

L∏
l
′
=l+1

p(f l
′

n |F
l
′

M)dF l
′

M ,

(B.22)

holds for some l with the terms on the RHS given by Eqs. (B.14), and (B.15) we need to show that
we can also write the previous equation as l∏

l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f l+1
n , F l+2:L

M |f1:ln)
L∏

l
′
=l+2

p(f l
′

n |F
l
′

M)dF l
′

M , (B.23)

where this time the terms are given by Eqs. (B.14), and (B.15) but with l → l + 1.
The way to show this is very similar to the way we showed the base case, the resulting formulas

will only look more complicated and we will need one additional step in the beginning:

o) Assuming that Eq. (B.22) holds for some l, we can start immediately with the RHS. The first
step is to marginalise f ln from the distribution q within the integral and show that the resulting
marginal q(f ln|f

1:l−1
n) has the correct form to be part of the product in front of the integral: l−1∏

l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f ln, F
l+1:L
M |f1:l−1

n)

L∏
l
′
=l+1

p(f l
′

n |F
l
′

M)dF l
′

M (B.24)

=

 l−1∏
l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(f ln|f
1:l−1
n)q(F l+1:L

M |f1:ln)

L∏
l
′
=l+1

p(f l
′

n |F
l
′

M)dF l
′

M (B.25)

=

 l∏
l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ q(F l+1:L
M |f1:ln)

L∏
l
′
=l+1

p(f l
′

n |F
l
′

M)dF l
′

M . (B.26)

Having done this, we will have to do the exact same steps as in the base case, which we will
repeat below with updated indices.

i) Continuing from Eq. (B.26), we isolate all terms that depend on F l+1
M : l∏

l
′
=1

q(f l
′

n |f
1:l

′−1
n)

∫ [∫ q(F l+1:L
M |f1:ln)p(f l+1

n |F l+1
M)dF l+1

M

] L∏
l
′
=l+2

p(f l
′

n |F
l
′

M)dF l
′

M .

102 B.1 Analytical Marginalisation for Deep GPs

ii) Comparing this to Eq. (B.23), we see that it remains to be shown that the inner integral equals
q(f l+1

n , F l+2:L
M |f1:ln) [given by Eqs. (B.14) and (B.15)]. Therefore we only consider the inner

integral and therein condition q on F l+1
M :∫

q(F l+1:L
M |f1:ln)p(f l+1

n |F l+1
M)dF l+1

M

=

∫
q(F l+1

M |f1:ln)q(F l+2:L
M |f1:ln , F l+1

M)p(f l+1
n |F l+1

M)dF l+1
M .

iii) Next, we obtain the joint distribution of the two terms that are conditioned on F l+1
M :∫

q(F l+1
M |f1:ln)q(F l+2:L

M |f1:ln , F l+1
M)p(f l+1

n |F l+1
M)dF l+1

M

=

∫
q(F l+1

M |f1:ln)q(f l+1
n , F l+2:L

M |f1:ln , F l+1
M)dF l+1

M .

iv) Then we evaluate the resulting integral:∫
q(F l+1

M |f1:ln)q(f l+1
n , F l+2:L

M |f1:ln , F l+1
M)dF l+1

M = q(f l+1
n , F l+2:L

M |f1:ln).

v) Finally, we check that the resulting distribution is given by Eqs. (B.14) and (B.15). This then
proves the equality of Eqs. (B.22) and (B.23).

Let us begin with step o): According to Eq. (B.14), we have

q(f ln, F
l+1:L
M |f1:l−1

n) = N

(f ln
F l+1:L
M

)∣∣∣∣∣∣
(
µ̂ln
lµ̂l+1:L
M

)
,

 Σ̂ln
lΣ̂l,l+1:L
nM(

lΣ̂l,l+1:L
nM

)⊤
lΣ̂l+1:L,l+1:L
M

 , (B.27)

which we condition on f ln using Eq. (A.3) (i.e., going from Eq. (B.24) to Eq. (B.25)):

q(f ln, F
l+1:L
M |f1:l−1

n) = q(f ln|f
1:l−1
n)q(F l+1:L

M |f1:ln) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln)×
N
(
F l+1:L
M

∣∣∣∣ lµ̂l+1:L
M +

(
lΣ̂l+1:L,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln),

lΣ̂l+1:L,l+1:L
M −

(
lΣ̂l+1:L,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+1:L
nM

) (B.28)

We therefore see that q(f ln|f
1:l−1
n) = N

(
f ln

∣∣∣µ̂ln, Σ̂ln), which is the right form for it to be included
in the product in front of the integral in Eq. (B.25). This lets us arrive at Eq. (B.26), hence finishing
step o).

In step i) nothing really happens, we just note that, according to Eq. (B.10),

p(f l+1
n |F l+1

M) = N
(
f l+1
n

∣∣∣K̃l+1
nMF

l
M , K̃

l+1
nn

)
. (B.29)

Using q(F l+1:L
M |f1:ln) from Eq. (B.28), we perform step ii) according to Eq. (A.3), resulting in

q(F l+1:L
M |f1:ln) = q(F l+1

M |f1:ln)q(F l+2:L
M |f1:ln , F l+1

M),

B Proofs 103

where

q(F l+1
M |f1:ln) = N

(
F l+1
M

∣∣∣∣ lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln),

lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+1
nM

) (B.30)

and

q(F l+2:L
M |f1:ln , F l+1

M)

= N
(
F l+2:L
M

∣∣∣∣ lµ̂l+2:L
M +

(
lΣ̂l+2:L,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln)

+ σM σ̃
−1
M

(
F l+1
M − lµ̂l+1

M −
(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln)

)
,

lΣ̂l+2:L,l+2:L
M −

(
lΣ̂l+2:L,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM − σM σ̃

−1
M σ⊤M

)
.

(B.31)

Here, due to space constraints we used the shorthand notations

σM = lΣ̂l+2:L,l+1
M −

(
lΣ̂l+2:L,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+1
nM ,

σ̃M = lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+1
nM .

For step iii) we have to build the joint Gaussian distribution

q(F l+2:L
M |f1:ln , F l+1

M)p(f l+1
n |F l+1

M) = q(f l+1
n , F l+2:L

M |f1:ln , F l+1
M) (B.32)

using Eqs. (B.29) and (B.31). Since this formula would be even longer than the one in Eq. (B.31), we
refrain from explicitly writing it here. While the corresponding formula for the base case [Eq. (B.20)]
is much simpler the resulting form of Eq. (B.32) would be similar.

Next, the integration in step iv) can be performed using Eqs. (A.1), (B.30), and (B.32). The
calculations are again very similar to the ones in the corresponding step for the base case [Eq. (B.21)]
so we only state the final result here:

q(f l+1
n , F l+2:L

M |f1:ln) =

∫
q(F l+1

M |f1:ln)q(f l+1
n , F l+2:L

M |f1:ln , F l+1
M)dF l+1

M

= N

(f l+1
n

F l+2:L
M

)∣∣∣∣∣∣
(
m̂l+1
n

m̂l+2:L
M

)
,

 Ŝl+1
n Ŝl+1,l+2:L

nM(
Ŝl+1,l+2:L
nM

)⊤
Ŝl+2:L,l+2:L
M

 ,

(B.33)

104 B.1 Analytical Marginalisation for Deep GPs

where

m̂l+1
n = K̃l+1

nM

(
lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln)

)
(B.34)

m̂l+2:L
M = lµ̂l+2:L

M +
(
lΣ̂l+2:L,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln) (B.35)

Ŝl+1
n = Kl+1

nn +Kl+1
nM

(
lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)
Kl+1
Mn (B.36)

Ŝl+1,l+2:L
nM = K̃l+1

nM

(
lΣ̂l+1,l+2:L
M −

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM

)
(B.37)

Ŝl+2:L,l+2:L
M = lΣ̂l+2:L,l+2:L

M −
(
lΣ̂l+2:L,l
nM

)⊤ (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM . (B.38)

What remains to be shown in step v) is that this result does in fact agree with the expected result
from Lem. B.1, i.e.,

q(f l+1
n , F l+2:L

M |f1:ln) = N

(f l+1
n

F l+2:L
M

)∣∣∣∣∣∣
(

µ̂l+1
n

l+1µ̂l+2:L
M

)
,

 Σ̂l+1
n

l+1Σ̂l+1,l+2:L
nM(

l+1Σ̂l+1,l+2:L
nM

)⊤
l+1Σ̂l+2:L,l+2:L

M

 ,

(B.39)

where the terms are defined in Eqs. (3.4), (3.5), and (B.15). That means we have to prove that
m̂l+1
n = µ̂l+1

n and similarly for the other terms in Eqs. (B.35) - (B.38). Note that this is the point
where we need the left indices in order to distinguish e.g. the term lµ̂l+2:L

M appearing in Eq. (B.35)
from l+1µ̂l+2:L

M appearing in the mean of Eq. (B.39).

We will exemplarily prove that m̂l+1
n = µ̂l+1

n : Starting from Eq. (B.34) we have

m̂l+1
n = K̃l+1

nM

(
lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)⊤ (
Σ̂ln

)−1
(f ln − µ̂ln)

)
= µ̃l+1

n + S̃l+1,1:l−1
n

(
S̃1:l−1,1:l−1
n

)−1 (
f1:l−1
n − µ̃1:l−1

n

)
+

(
S̃l+1,l
n − S̃l+1,1:l−1

n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n

)
×(

Σ̂ln

)−1
(
f ln − µ̃ln − S̃l,1:l−1

n

(
S̃1:l−1,1:l−1
n

)−1 (
f1:l−1
n − µ̃1:l−1

n

))
,

(B.40)

where we used the definitions in Eqs. (3.4) and (B.15) for the terms ·̂. Note that these definitions
are part of the induction hypothesis. It will soon become clear why we did not substitute Σ̂ln. We
furthermore used the definitions of the µ̃n and S̃n terms in Eq. (3.6) to absorb the K̃ terms.

In the following we are going to write Eq. (B.40) in a vectorised form and additionally substitute

A = S̃1:l−1,1:l−1
n , B = S̃1:l−1,l

n , C = S̃l,1:l−1
n , D̃ = Σ̂ln. (B.41)

The reason for these steps will become clear after two more equations:

m̂l+1
n = µ̃l+1

n +

S̃l+1,1:l−1
n A−1−

(
S̃l+1,l
n − S̃l+1,1:l−1

n A−1B
)
D̃−1CA−1(

S̃l+1,l
n − S̃l+1,1:l−1

n A−1B
)
D̃−1

⊤(
f1:l−1
n − µ̃1:l−1

n

f ln − µ̃ln

)
.

(B.42)

B Proofs 105

Going one step further, we recognise this as a vector matrix multiplication,

m̂l+1
n = µ̃l+1

n +

(
S̃l+1,1:l−1
n

S̃l+1,l
n

)⊤(
A−1 +A−1BD̃−1CA−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)(
f1:l−1
n − µ̃1:l−1

n

f ln − µ̃ln

)
,

(B.43)

where we additionally exploited that A and D̃ are symmetric and that B⊤ = C. In order to get any
further from here we need the block matrix inversion lemma in Eq. (B.1). Comparing Eqs. (B.43)
and (B.1) explains why we insisted on vectorising the last few formulas and also our definitions in

Eq. (B.41). Finally, since Σ̂ln = S̃lln − S̃l,1:l−1
n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n [Eq. (3.5)], we also identify

S̃lln = D [cf. Eq. (B.2)]. We can therefore rewrite Eq. (B.43) by reversing the block matrix inversion
and resubstituting the terms in Eq. (B.41):

m̂l+1
n = µ̃l+1

n +

(
S̃l+1,1:l−1
n

S̃l+1,l
n

)⊤(
S̃1:l−1,1:l−1
n S̃1:l−1,l

n

S̃l,1:l−1
n S̃lln

)−1(
f1:l−1
n − µ̃1:l−1

n

f ln − µ̃ln

)

= µ̃l+1
n + S̃l+1,1:l

n

(
S̃1:l,1:l
n

)−1 (
f1:ln − µ̃1:ln

)
.

(B.44)

In the last step we simply rewrote the vectors and the matrix according to the way we defined the
submatrix notation. Comparing the final result to Eq. (3.4), we realise that this is indeed µ̂l+1

n , i.e.,
the mean term where we substituted l → l + 1. In exactly the same way, i.e., by reversing the matrix
inversion, we can show that the other parameters of the distribution in Eq. (B.33) indeed coincide
with the respective parameters of the distribution in Eq. (B.39). Since this was the last part that
remained to be shown, we finished the proof of Lem. B.1.

B.2 Analytical Marginalisation for GPSSMs

The aim of this section is to provide a complete proof for Thm. 4.1. We will do this by starting from
the slightly reformulated formula for q(xt) in Eq. (4.1),

q(xt) =

∫
q(x0)

[∫
q(FM , xt, . . . , x1|x0)dFM

]
dx0:t−1, (B.45)

where the individual terms are given by (repeated here for convenience),

q(FM , xt, . . . , x1|x0) = q(FM)
t−1∏
t
′
=0

p(xt′+1|xt′ , FM), (B.46)

q(x0) = N (x0|m0, S0) , (B.47)

q(FM) = N (FM |mM , SM) , (B.48)

p(xt+1|xt, FM) = N
(
xt+1

∣∣∣KtMK
−1
MMFM , σ

2
x + ktt −KtMK

−1
MMK

⊤
tM

)
. (B.49)

Comparing to Eq. (4.2), we see that we have to show that

∫
q(x0)

[∫
q(FM , xt, . . . , x1|x0)dFM

]
dx0:t−1 =

∫
q(x0)

 t∏
t
′
=1

q(xt′ |xt′−1, . . . , x0)

 dx0:t−1,

(B.50)

106 B.2 Analytical Marginalisation for GPSSMs

where the distributions q(xt′ |xt′−1, . . . , x0) on the right hand side have the properties described in
Eqs. (4.3) – (4.5). In order to prove this equality and therefore Thm. 4.1, we require the following
technical lemma (Longi et al., 2021):

Lemma B.2. The term q(FM , xt, . . . , x1|x0) in Eq. (B.46) can also be written as

q(FM , xt, . . . , x1|x0) = q(FM |xt, . . . , x0)
t∏

t
′
=1

q(xt′ |xt′−1, . . . , x0), (B.51)

for t ∈ {1, . . . , T}. Here, the q(xt|xt−1, . . . , x0) are as in Eqs. (4.3) � (4.5) and

q(FM |xt, . . . , x0) = N
(
FM

∣∣∣µ̂tM , Σ̂tM) , (B.52)

µ̂tM = mM + SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1) , (B.53)

Σ̂tM = SM − SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1K0:t−1,MK

−1
MMSM . (B.54)

With a slight abuse of the slicing notation, we denote
(
K0:t−1,M

)⊤
=
(
K⊤

0,M · · · K⊤
t−1,M

)
∈

RM×t. Before providing the proof of Lem. B.2, we show how this lemma can be used to prove
Thm. 4.1:

Proof of Theorem 4.1. We have to prove the equality in Eq. (B.50) and show that the terms on the
right hand side are as in Thm. 4.1. Using Lem. B.2, more specifically Eq. (B.51), and plugging it in
the left hand side of Eq. (B.50) yields∫

q(x0)

[∫
q(FM , xt, . . . , x1|x0)dFM

]
dx0:t−1

=

∫ (∫
q(FM |xt, . . . , x0)dFM

)
q(x0)

t∏
t
′
=1

q(xt′ |xt′−1, . . . , x0)dx0:t−1, (B.55)

where we pulled all terms not depending on FM out of the inner integral. As q(FM |xt, . . . , x0)
is a properly normalised probability density, the inner integral equals one. According to Lem. B.2
the terms q(xt′ |xt′−1, . . . , x0) have the correct form [Eqs. (4.3) – (4.5)] which already completes the
proof.

What remains to be done is to prove Lem. B.2. The proof uses a similar idea as the proof of
Lem. B.1 in Appx. B.1 and is also performed via induction.

Proof of Lemma B.2. We begin with the base case of the induction and perform the inductive step
afterwards.

Base case We need to show that Eq. (B.51) holds for t = 1, i.e., that

q(FM , x1|x0) = q(FM |x1, x0)q(x1|x0) (B.56)

with the terms on the RHS given by Eqs. (B.52) – (B.54) and Eqs. (4.3) – (4.5), respectively. In order
to do so, we will perform the following steps:

i) In the first step we will show that Eqs. (B.3)-(B.6) are applicable, which will enable us to write
Eq. (B.56) as

q(FM , x1|x0) = q̄(FM |x1, x0)q̄(x1|x0),

B Proofs 107

where we denote with q̄ that these distributions have the correct conditional dependencies and
are Gaussian but we have not yet checked whether their means and covariances coincide with
Eqs. (B.52) – (B.54) or Eqs. (4.3) – (4.5). This will be done in the following steps.

ii) Next, we will show that
q̄(x1|x0) = q(x1|x0).

iii) In the final step, we will show that

q̄(FM |x1, x0) = q(FM |x1, x0).

For step i), we start with the definition of q(FM , x1|x0) in Eq. (B.46):

q(FM , x1|x0) = q(FM)p(x1|x0, FM)

= N (FM |mM , SM)N
(
x1

∣∣∣K0MK
−1
MMFM , σ

2
x + k00 −K0MK

−1
MMK

⊤
0M

)
,

(B.57)

where we used Eqs. (B.48) and (B.49) in the second step. Next, we note that the requirements in
Eq. (B.3) are given for the terms above, where we identify FM as y and x1 as x. Applying Eqs. (B.4)-
(B.6) to Eq. (B.57), results in

q(FM , x1|x0) = q̄(FM |x1, x0)q̄(x1|x0) (B.58)

with yet to be determined means and covariances, which concludes the first step.

In step ii), we start with the second term on the RHS in Eq. (B.58) and use Eqs. (B.4) and (B.57),
yielding

q̄(x1|x0)

= N
(
x1

∣∣∣K0MK
−1
MMmM , σ

2
x + k00 −K0mK

−1
MMK

⊤
0M +K0mK

−1
MMSMK

−1
MMK

⊤
0M

)
(B.59)

= N
(
x1

∣∣∣µ̃0, S̃0,0) = N
(
x1

∣∣∣µ̂1, Σ̂1

)
, (B.60)

where we used the definitions in Eqs. (4.4)-(4.7) in the last line. Together with the definition in
Eq. (4.3), this implies that in fact q̄(x1|x0) = q(x1|x0).

Finally for step iii), using Eqs. (B.5) and (B.57) for the first term on the RHS in Eq. (B.58) results
in

q̄(FM |x1, x0)

= N
(
FM

∣∣∣mM + SMK
−1
MMK

⊤
0M S̃

−1
0,0 (x1 − µ̃0) , SM − SMK

−1
MMK

⊤
0M S̃

−1
0,0K0M

K−1
MMSM

)
= N

(
FM

∣∣∣µ̂1M , Σ̂1
M

)
.

In the first line we used that a+Fb = µ̃0 and thatA+FBF⊤ = S̃0,0 (by comparing Eqs. (B.59) and
(B.60)with Eq. (B.4)). Additionally we used the definitions in Eqs. (B.53) and (B.54) in the last line.
Together with the definition in Eq. (B.52), this implies that in fact q̄(FM |x1, x0) = q(FM |x1, x0),
concluding step iii) and therefore also the base case of the induction.

108 B.2 Analytical Marginalisation for GPSSMs

Inductive step We assume that Lem. B.2 holds for some t = 1, . . . , T − 1 (induction assumption)
and then need to show that it also holds for t+ 1. That is, assuming that

q(FM , xt, . . . , x1|x0) = q(FM |xt, . . . , x0)
t∏

t
′
=1

q(xt′ |xt′−1, . . . , x0), (B.61)

holds for some t with the terms on the RHS given by Eqs. (B.52) – (B.54), and Eqs. (4.3) – (4.5),
respectively, we need to show that this implies that

q(FM , xt+1, . . . , x1|x0) = q(FM |xt+1, . . . , x0)
t+1∏
t
′
=1

q(xt′ |xt′−1, . . . , x0), (B.62)

where the terms are again given by Eqs. (B.52) – (B.54) (but with t→ t+ 1), and Eqs. (4.3) – (4.5),
respectively.

The way to show this is very similar to the way we showed the base case, the resulting formulas
will only look more complicated and we will need one additional step in the beginning:

o) Starting with the LHS of Eq. (B.62) and its definition in Eq. (B.46), we can regroup the terms
as follows:

q(FM , xt+1, . . . , x1|x0) = q(FM)
t+1∏
t
′
=1

p(xt′ |xt′−1, FM)

= p(xt+1|xt, FM)

q(FM)

t∏
t
′
=1

p(xt′ |xt′−1, FM)

= p(xt+1|xt, FM)q(FM , xt, . . . , x1|x0), (B.63)

where we identified the terms from Eq. (B.46) in the last step. We can therefore immediately
apply the induction assumption [Eq. (B.61)] to the second term in Eq. (B.63), resulting in

q(FM , xt+1, . . . , x1|x0) = p(xt+1|xt, FM)q(FM |xt, . . . , x0)
t∏

t
′
=1

q(xt′ |xt′−1, . . . , x0), (B.64)

where the q(xt|xt−1, . . . , x0) terms are given by Eqs. (4.3) – (4.5). Comparing this to what we
want to show [Eq. (B.62)], we see that it remains to be shown that

p(xt+1|xt, FM)q(FM |xt, . . . , x0) = q(FM |xt+1, . . . , x0)q(xt+1|xt, . . . , x0), (B.65)

such that the terms on the RHS are given by Eqs. (B.52) – (B.54), and Eqs. (4.3) – (4.5), respec-
tively. From this point on, we will have to do the exact same steps as in the base case, which we
will repeat below with updated indices.

i) In the first step we will show that Eqs. (B.3)-(B.6) are applicable, which will enable us to write
the LHS of Eq. (B.65) as

p(xt+1|xt, FM)q(FM |xt, . . . , x0) = q̄(FM |xt+1, . . . , x0)q̄(xt+1|xt, . . . , x0). (B.66)

ii) Next, we will show that

q̄(xt+1|xt, . . . , x0) = q(xt+1|xt, . . . , x0).

B Proofs 109

iii) In the final step, we will show that

q̄(FM |xt+1, . . . , x0) = q(FM |xt+1, . . . , x0).

Let us start with step i): We can use the definition in Eq. (B.49) and Eqs. (B.52)-(B.54) (as part of
the induction assumption) to write the terms on the LHS of Eq. (B.66) as

p(xt+1|xt, FM) = N
(
xt+1

∣∣∣KtMK
−1
MMFM , σ

2
x + ktt −KtMK

−1
MMK

⊤
tM

)
(B.67)

q(FM |xt, . . . , x0) = N
(
FM

∣∣∣mM + SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1) ,

SM − SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1K0:t−1,MK

−1
MMSM

)
(B.68)

Next, we note that the requirements in Eq. (B.3) are given for the terms above, where we identify FM
as y and xt+1 as x. Applying Eqs. (B.4) – (B.6) to Eqs. (B.67) and (B.68), allows us to write the
LHS of Eq. (B.66) as

p(xt+1|xt, FM)q(FM |xt, . . . , x0) = q̄(FM |xt+1, . . . , x0)q̄(xt+1|xt, . . . , x0) (B.69)

with yet to be determined means and covariances. This concludes the first step.
For step ii), we examine the second term on the RHS of Eq. (B.69), which can be obtained using

Eqs. (B.3) and (B.4) applied to Eqs. (B.67) and (B.68):

q̄(xt+1|xt, . . . , x0) = N
(
xt+1

∣∣m̄t+1, Σ̄t+1

)
. (B.70)

The mean is given by

m̄t+1 = KtMK
−1
MM

[
mM + SMK

−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1)

]
= µ̃t + S̃t,0:t−1S̃

−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1) = µ̂t+1, (B.71)

where we used the definitions in Eqs. (4.4), (4.6), and (4.7) in the second line. The covariance is
given by

Σ̄t+1 = σ2x + ktt −KtMK
−1
MMK

⊤
tM +KtMK

−1
MM×[

SM − SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1K0:t−1,MK

−1
MMSM

]
K−1
MMK

⊤
tM

= S̃t,t − S̃t,0:t−1S̃
−1
0:t−1,0:t−1S̃0:t−1,t = Σ̂t+1, (B.72)

where we used the definitions in Eqs. (4.5) – (4.7) in the last line. Taken together, Eqs. (B.70) –
(B.72) state that q̄(xt+1|xt, . . . , x0) is a Gaussian with mean µ̂t+1 and covariance Σ̂t+1, i.e., that
q̄(xt+1|xt, . . . , x0) = q(xt+1|xt, . . . , x0) [cf. Eq. (4.3)]. This concludes the second step.

For the last step, step iii), we consider the first term on the RHS of Eq. (B.69), which can be
obtained using Eqs. (B.3) and (B.5) applied to Eqs. (B.67) and (B.68):

q̄(FM |xt+1, . . . , x0) = N
(
FM

∣∣∣µ̄t+1
M , Σ̄t+1

M

)
. (B.73)

As in the previous step, it remains to be shown that the mean and covariance coincide with µ̂t+1
M and

Σ̂t+1
M given in Eq. (B.53) and (B.54), respectively. Here we can build on the previous experience

with the similar proof in Appx. B.1, since we require exactly the same steps (although with different

110 B.3 The FITC approximation for GPSSMs

quantities) as in Eqs. (B.40) – (B.44). Therefore we only sketch the derivation exemplarily for µ̄t+1
M

here: Starting from

µ̄t+1
M = mM + SMK

−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1)+[

SM − SMK
−1
MM

(
K0:t−1,M

)⊤
S̃−1
0:t−1,0:t−1K0:t−1,MK

−1
MMSM

]
×

K−1
MMK

⊤
tM Σ̂−1

t+1

[
xt+1 − µ̃t − S̃t,0:t−1S̃

−1
0:t−1,0:t−1 (x1:t − µ̃0:t−1)

]
,

(B.74)

where Σ̂t+1 is as in Eq. (B.72), we can reorder the terms until we get to a point where we can apply
the block matrix inversion formula [Eq. (B.1)] backwards. In order to do so, we identify the terms of
Eq. (B.1) as

A = S̃0:t−1,0:t−1, B = S̃0:t−1,t, C = S̃t,0:t−1, D̃ = Σ̂−1
t+1,

and thereforeD = S̃t,t [by comparing the definition of D̃ in Eq. (B.2) with Σ̂−1
t+1 in Eq. (B.72)]. This

results (after several steps) in

µ̄t+1
M = mM + SMK

−1
MM

((
K0:t−1,M

)⊤
K⊤
tM

)(S̃0:t−1,0:t−1 S̃0:t−1,t

S̃t,0:t−1 S̃t,t

)−1(
x1:t − µ̃0:t−1

xt+1 − µ̃t

)
(B.75)

= mM + SMK
−1
MM

(
K0:t,M

)⊤
S̃−1
0:t,0:t (x1:t+1 − µ̃0:t) = µ̂t+1

M , (B.76)

where we first rewrote the first line according to our slicing notation and then applied the definition
in Eq. (B.53) in the last step. Doing the same for the covariance, we can similarly show that Σ̄t+1

M =
Σ̂t+1
M . Hence q̄(FM |xt+1, . . . , x0) = q(FM |xt+1, . . . , x0). This concludes step iii) as well as the

induction step and therefore the proof of Lem. B.2.

B.3 The FITC approximation for GPSSMs

The aim of this section is to prove Prop. 4.2. We will do this by pointing out the differences in
the derivation of the original ELBO of the VCDT methods which is done in Appx. A.2.4. A direct
derivation can be found in Lindinger et al. (2022, Appx. A).

Proof of Proposition 4.2. Plugging in the FITC approximation [Eq. (4.11)] in the prior and the ap-
proximate posterior in Eqs. (2.26) and (2.34) yields

pFITC(YT , XT0
, FT , FM) = p(x0)p(FM)

T∏
t=1

p(yt|xt)p(xt|ft−1, xt−1)p(ft−1|xt−1, FM), (B.77)

qFITC(XT0
, FT , FM) = q(x0)q(FM)

T−1∏
t=0

p(ft|xt, FM)q(xt+1|FM , xt), (B.78)

where the definitions of the individual terms can be found throughout the thesis (especially Sec. 2.4
and Appx. A.2.4). However they are not important for the proof at hand, only the conditional depen-
dencies matter in this case.

In the following we perform the same steps as in Appx. A.2.4, only replacing p(YT , XT0
, FT , FM)

by Eq. (B.77) and q(XT0
, FT , FM) by Eq. (B.78). Plugging Eqs. (B.77) and (B.78) in Eq. (A.12)

yields essentially the same result as Eq. (A.27) since the FITC terms within the expectation cancel.

B Proofs 111

The only difference is that the expectation is over qFITC instead of the standard variational posterior.
The FITC posterior has no influence in the next step [Eq. (A.28)], where the KL-divergences for x0
and the FM emerge. Continuing with the expectation over the data fit term in Eq. (A.29), we see that
the FITC posterior in Eq. (B.78) makes no difference to the result since the data fit term is indepen-
dent of any ft such that the exact form of p(FT |XT , FM) does not play a role here. Only the last term
[Eq. (A.31)] requires a more careful consideration: Replacing p(FT |XT , FM) by

∏T−1
t=0 p(ft|xt, FM)

in the first step, i.e., plugging in the FITC approximation, makes it even easier to see that the integra-
tion over df0:T−1 will leave only the p(ft−1|xt−1, FM) term due to the property in Eq. (A.9) (see also
Lindinger et al., 2022, Eq. (33)). The rest of Eq. (A.31) remains the same.

We have therefore shown that all terms in the ELBO for the VCDT method in Eq. (A.27) stay the
same when the FITC approximation is used. This completes the proof.

B.4 Equivalence of SDE GPSSMs and canonical GPSSMs

The goal of this section is to provide a complete proof for Thm. 5.1. As discussed in the sketch of
the proof in Sec. 5.2.2, the only non-trivial step in this proof consists of showing the equivalence of
q∆(xj) and q(xt) in Eqs. (2.31) and (5.21), respectively for R = 1 and j = t. For q(xt) we already
have a formula in Thm. 4.1 which changes very little if the residual transition model in Eq. (5.18) is
used:

Remark B.3. When using the residual transition model in Eq. (5.18) instead of the usual
transition model in Eq. (2.28), the only change in Thm. 4.1 is that Eq. (4.6) is replaced by

µ̃t = xt +KtMK
−1
MMmM . (B.79)

This can be easily seen by checking the parts in the proof of Thm. 4.1 in Appx. B.2 where the mean
of the transition model plays a role (see also Longi et al., 2021, Appx. A for the complete proof with
the residual transition model).

For q∆(xj) we only have the general formula in Eq. (5.21) but we can naturally perform an equiv-
alent marginalisation of the inducing outputs FM as for q(xt) which we summarise in the following
lemma (Longi et al., 2021):

Lemma B.4. For the variational posterior of the SDE formulation of the GPSSM given in
Eq. (5.19) the marginals of the latent state at time point j ∈ {1, . . . , J} in Eq. (5.21), can be
obtained as

q∆(xj) =

∫
q∆(x0)

 j∏
j
′
=1

q∆(xj′ |xj′−1, . . . , x0)

 dx0:j−1, (B.80)

where all terms are Gaussian:

q∆(xj |xj−1, . . . , x0) = N
(
xj

∣∣∣µ̂j , Σ̂j) , (B.81)

µ̂j = µ̃j−1 + S̃j−1,0:j−2S̃
−1
0:j−2,0:j−2

(
x1:j−1 − µ̃0:j−2

)
, (B.82)

Σ̂j = S̃j−1,j−1 − S̃j−1,0:j−2S̃
−1
0:j−2,0:j−2S̃0:j−2,j−1. (B.83)

112 B.4 Equivalence of SDE GPSSMs and canonical GPSSMs

Here, the terms are given by

µ̃j = xj +R∆tK
∆
jM

(
K∆
MM

)−1
m∆
M , (B.84)

S̃j,j′ = (R∆t)
2K∆

jM

(
K∆
MM

)−1
S∆
M

(
K∆
MM

)−1
K∆
j
′
M

⊤

+ δjj′

[
R∆tσ

2
∆ + (R∆t)

2

(
k∆jj −K∆

jM

(
K∆
MM

)−1
K∆
j
′
M

⊤
)]

. (B.85)

With this lemma, which we will prove below, we can finally provide a complete proof of Thm. 5.1:

Proof of Theorem 5.1. The idea of the proof is to show the equivalence in Eq. (5.22) by demonstrat-
ing that all terms in the ELBOs are equal with the settings provided in Thm. 5.1. First, it is easy to see
that the KL-terms in Eqs. (2.30) and (5.20) are equal since the respective distributions in both ELBOs
are assumed to be the same. It remains to be shown that

J∑
j=1

E
q
∆
(xj)

[
log p∆(yj |xj)

]
=

T∑
t=1

Eq(xt) [log p(yt|xt)] .

By settingR = 1 (as required by Thm. 5.1) we have J = T/R = T and therefore equally many terms
in both sums. Additionally the observation model p∆(yj |xj) is assumed to be the same as p(yt|xt).
Hence it only remains to be shown that q∆(xj) = q(xt) for j = t. Comparing the formulas for
q(xt) provided in Thm. 4.1 and Rem. B.3 with those for q∆(xj) in Lem. B.4, we see that the settings
provided in Thm. 5.1 [especially Eqs. (5.23) – (5.25) but also m∆

M = mM and S∆
M = SM] lead to the

marginals being equal for j = t. This completes the proof.

What remains is to prove Lem. B.4. Due to its similarity to Thm. 4.1, the proof naturally works in
the same way, i.e., with the help of an auxiliary lemma that has to be proved via induction. The latter
is the equivalent of Lem. B.2 and has the following form for the SDE GPSSM:

Lemma B.5. The integrand of the inner integral in Eq. (5.21) can be equally written as

q∆(FM)

j−1∏
j
′
=0

p∆(xj′+1|xj′ , FM) = q∆(FM |xj , . . . , x0)
j∏

j
′
=1

q∆(xj′ |xj′−1, . . . , x0), (B.86)

for j ∈ {1, . . . , J}. Here, the q∆(xj |xj−1, . . . , x0) are as in Eqs. (B.81)-(B.83) and

q∆(FM |xj , . . . , x0) = N
(
FM

∣∣∣µ̂jM , Σ̂jM) (B.87)

with [see Eqs. (B.84) and (B.85) for the de�nitions of µ̃ and S̃]

µ̂jM = m∆
M + (R∆t)S

∆
M

(
K∆
MM

)−1 (
K∆

0:j−1,M

)⊤
S̃−1
0:j−1,0:j−1

(
x1:j − µ̃0:j−1

)
, (B.88)

Σ̂jM = S∆
M − (R∆t)

2S∆
M

(
K∆
MM

)−1 (
K∆

0:j−1,M

)⊤
S̃−1
0:j−1,0:j−1K

∆
0:j−1,M

(
K∆
MM

)−1
S∆
M .

(B.89)

With Lem. B.5, the proof of Lem. B.4 is very simple:

Proof of Lemma B.4. The proof can be performed in exactly the same way as the proof for Thm. 4.1
in Appx. B.2: We have to prove the equality in Eq. (B.80) and show that the terms on the right hand

B Proofs 113

side are as in Lem. B.4. Using Lem. B.5, more specifically Eq. (B.86), and plugging it in the general
formula for q∆(xj) in Eq. (5.21) yields

q∆(xj) =

∫
q∆(x0)

∫ q∆(FM)

j−1∏
j
′
=0

p∆(xj′+1|xj′ , FM)dFM

 dx0:t−1

=

∫ (∫
q∆(FM |xj , . . . , x0)dFM

)
q∆(x0)

j∏
j
′
=1

q∆(xj′ |xj′−1, . . . , x0)dx0:j−1,

where we pulled all terms not depending on FM out of the inner integral. As q∆(FM |xj , . . . , x0) is
a properly normalised probability density, the inner integral equals one. According to Lem. B.5 the
terms q∆(xj′ |xj′−1, . . . , x0) have the correct form [Eqs. (B.81) – (B.83)] which already completes
the proof.

Finally, there remains the proof of Lem. B.5. This is the SDE GPSSM equivalent of Lem. B.2
which concerned canonical GPSSMs. The proof naturally works in the same way:

Proof of Lemma B.5. The proof can be performed in exactly the same way as the proof for Lem. B.2
in Appx. B.2. Care has to be taken that the factors ofR∆t appearing in Eqs. (B.84), (B.85) and (5.15)
are treated correctly. The only difference apart from this is that the definitions of all quantities from
Appx. B.2 have to be replaced with their counterparts in Sec. 5.2.2.

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-scale machine learning. USENIX Symposium on
Operating Systems Design and Implementation.

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X.,
Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Inf. Fusion, 76, 243–297.

Adam, V., Eleftheriadis, S., Artemev, A., Durrande, N., & Hensman, J. (2020). Doubly sparse variational
Gaussian processes. International Conference on Artificial Intelligence and Statistics.

Adam, V., Chang, P., & Khan, M. E. (2021). Dual parameterization of sparse variational Gaussian processes.
Advances in Neural Information Processing Systems.

Adams, R. P., & Stegle, O. (2008). Gaussian process product models for nonparametric nonstationarity.
International Conference on Machine Learning.

Adlam, B., Snoek, J., & Smith, S. L. (2020). Cold posteriors and aleatoric uncertainty. International Confer-
ence on Machine Learning: Workshop on Uncertainty and Robustness in Deep Learning.

Agrawal, D., Papamarkou, T., & Hinkle, J. D. (2020). Wide neural networks with bottlenecks are deep Gaussian
processes. J. Mach. Learn. Res., 21, 175:1–175:66.

Aicher, C., Ma, Y.-A., Foti, N. J., & Fox, E. B. (2019). Stochastic gradient MCMC for state space models.
SIAM J. Math. Data Sci., 1(3), 555–587.

Aitchison, L. (2021). A statistical theory of cold posteriors in deep neural networks. International Conference
on Learning Representations.

Álvarez, M. A., & Lawrence, N. D. (2011). Computationally efficient convolved multiple output Gaussian
processes. J. Mach. Learn. Res., 12, 1459–1500.

Álvarez, M. A., Rosasco, L., & Lawrence, N. D. (2012). Kernels for vector-valued functions: A review. Found.
Trends Mach. Learn., 4(3), 195–266.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Comput., 10, 251–276.
Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016). Concrete problems in

AI safety. arXiv preprint arXiv:1606.06565.
Bauer, M., van der Wilk, M., & Rasmussen, C. E. (2016). Understanding probabilistic sparse Gaussian process

approximations. Advances in Neural Information Processing Systems.
Bell, B. M. (2000). The marginal likelihood for parameters in a discrete Gauss-Markov process. IEEE Trans.

Signal Process., 48(3), 870–873.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Bitzer, M., Meister, M., & Zimmer, C. (2022). Structural kernel search via Bayesian optimization and symbol-

ical optimal transport. arXiv preprint arXiv:2210.11836.
Blei, D., Kucukelbir, A., & McAuliffe, J. (2017). Variational inference: A review for statisticians. J. Amer.

Stat. Assoc.
Blomqvist, K., Kaski, S., & Heinonen, M. (2019). Deep convolutional Gaussian processes. European Confer-

ence on Machine Learning and Knowledge Discovery in Databases.
Bonilla, E. V., Chai, K. M. A., & Williams, C. K. I. (2007). Multi-task Gaussian process prediction. Advances

in Neural Information Processing Systems.
Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. International Conference

on Computational Statistics.
Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and corre-

lation. J. Amer. Stat. Assoc., 80(391), 580–598.
Briol, F.-X., Oates, C. J., Girolami, M., Osborne, M. A., & Sejdinovic, D. (2019). Probabilistic integration: A

role in statistical computation? Stat. Sci., 34(1), 1–22.

115

116 Bibliography

Brüdigam, J., Schuck, M., Capone, A., Sosnowski, S., & Hirche, S. (2022). Structure-preserving learning
using Gaussian processes and variational integrators. Annual Learning for Dynamics and Control
Conference.

Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., & Turner, R. (2016). Deep Gaussian processes for
regression using approximate expectation propagation. International Conference on Machine Learn-
ing.

Bui, T. D., Nguyen, C. V., & Turner, R. E. (2017). Streaming sparse Gaussian process approximations.
Advances in Neural Information Processing Systems.

Burt, D. R., Rasmussen, C. E., & van der Wilk, M. (2019). Rates of convergence for sparse variational Gaussian
process regression. International Conference on Machine Learning.

Calandra, R., Peters, J., Rasmussen, C. E., & Deisenroth, M. P. (2016). Manifold Gaussian processes for
regression. International Joint Conference on Neural Networks.

Chen, T., Fox, E., & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. International Confer-
ence on Machine Learning.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural ordinary differential equations.
Advances in Neural Information Processing Systems.

Cheng, C.-A., & Boots, B. (2016). Incremental variational sparse Gaussian process regression. Advances in
Neural Information Processing Systems.

Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks
on sequence modeling. Advances in Neural Information Processing Systems: Workshop on Deep
Learning and Representation Learning.

Csató, L., & Opper, M. (2002). Sparse on-line Gaussian processes. Neural Comput., 14(3), 641–668.
Curi, S., Melchior, S., Berkenkamp, F., & Krause, A. (2020). Structured variational inference in partially

observable unstable Gaussian process state space models. Annual Learning for Dynamics and Control
Conference.

Cutajar, K., Bonilla, E. V., Michiardi, P., & Filippone, M. (2017). Random feature expansions for deep Gaussian
processes. International Conference on Machine Learning.

Dai, Z., Damianou, A., González, J., & Lawrence, N. D. (2016). Variational auto-encoded deep Gaussian
processes. International Conference on Learning Representations.

Daley, R. (1993). Atmospheric data analysis. Cambridge University Press.
Damianou, A. C., Titsias, M. K., & Lawrence, N. D. (2011). Variational Gaussian process dynamical systems.

Advances in Neural Information Processing Systems.
Damianou, A. C., & Lawrence, N. D. (2013). Deep Gaussian processes. International Conference on Artificial

Intelligence and Statistics.
Dandekar, R., Chung, K., Dixit, V., Tarek, M., Garcia-Valadez, A., Vemula, K. V., & Rackauckas, C. (2020).

Bayesian neural ordinary differential equations. arXiv preprint arXiv:2012.07244.
Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). On nearest-neighbor Gaussian process models

for massive spatial data. WIREs Comput. Stat., 8(5), 162–171.
Deisenroth, M. P., & Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient approach to policy

search. International Conference on Machine Learning.
Deisenroth, M. P., & Ng, J. W. (2015). Distributed Gaussian processes. International Conference on Machine

Learning.
Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., & Trimpe, S. (2018). Proba-

bilistic recurrent state-space models. International Conference on Machine Learning.
Duncker, L., Bohner, G., Boussard, J., & Sahani, M. (2019). Learning interpretable continuous-time models

of latent stochastic dynamical systems. International Conference on Machine Learning.
Durrande, N., Adam, V., Bordeaux, L., Eleftheriadis, S., & Hensman, J. (2019). Banded matrix operators for

Gaussian Markov models in the automatic differentiation era. International Conference on Artificial
Intelligence and Statistics.

Dutordoir, V., van der Wilk, M., Artemev, A., & Hensman, J. (2020). Bayesian image classification with deep
convolutional Gaussian processes. International Conference on Artificial Intelligence and Statistics.

Dutordoir, V., Hensman, J., van der Wilk, M., Ek, C. H., Ghahramani, Z., & Durrande, N. (2021). Deep neural
networks as point estimates for deep Gaussian processes. Advances in Neural Information Processing
Systems.

Bibliography 117

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., & Zoubin, G. (2013). Structure discovery in nonparametric
regression through compositional kernel search. International Conference on Machine Learning, (3).

Duvenaud, D. (2014). Automatic model construction with Gaussian processes (Doctoral dissertation). Univer-
sity of Cambridge, UK.

Duvenaud, D., Rippel, O., Adams, R. P., & Ghahramani, Z. (2014). Avoiding pathologies in very deep net-
works. International Conference on Artificial Intelligence and Statistics.

Eleftheriadis, S., Nicholson, T., Deisenroth, M., & Hensman, J. (2017). Identification of Gaussian process state
space models. Advances in Neural Information Processing Systems.

Ensinger, K., Solowjow, F., Ziesche, S., Tiemann, M., & Trimpe, S. (2021). Structure-preserving Gaussian
process dynamics. arXiv preprint arXiv:2102.01606.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., & Poloczek, M. (2019). Scalable global optimization via
local Bayesian optimization. Advances in Neural Information Processing Systems.

Fortuin, V., Garriga-Alonso, A., Wenzel, F., Rätsch, G., Turner, R., van der Wilk, M., & Aitchison, L. (2022).
Bayesian neural network priors revisited. International Conference on Learning Representations.

Frigola, R., Lindsten, F., Schön, T. B., & Rasmussen, C. E. (2013). Bayesian inference and learning in Gaus-
sian process state-space models with particle MCMC. Advances in Neural Information Processing
Systems.

Frigola, R., Chen, Y., & Rasmussen, C. E. (2014). Variational Gaussian process state-space models. Advances
in Neural Information Processing Systems.

Frigola, R. (2015). Bayesian time series learning with Gaussian processes (Doctoral dissertation). University
of Cambridge, UK.

Frommater, S. (2018). Phenomenological modelling of particulate emissions in direct injection spark igni-
tion engines for driving cycle simulations (Doctoral dissertation). Technische Universität Darmstadt,
Germany.

Girard, A., Rasmussen, C. E., & Murray-Smith, R. (2003). Multiple-step ahead prediction for non linear
dynamic systems: A Gaussian process treatment with propagation of the uncertainty. Advances in
Neural Information Processing Systems.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y.
(2014). Generative adversarial nets. Advances in Neural Information Processing Systems.

Goodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Deep learning. MIT Press.
Gould, S., Hartley, R., & Campbell, D. (2019). Deep declarative networks: A new hope. arXiv preprint

arXiv:1909.04866.
Gunter, T., Osborne, M. A., Garnett, R., Hennig, P., & Roberts, S. J. (2014). Sampling for inference in proba-

bilistic models with fast Bayesian quadrature. Advances in Neural Information Processing Systems.
Hamelijnck, O., Damoulas, T., Wang, K., & Girolami, M. A. (2019). Multi-resolution multi-task Gaussian

processes. Advances in Neural Information Processing Systems.
Haußmann, M., Gerwinn, S., Look, A., Rakitsch, B., & Kandemir, M. (2021). Learning partially known

stochastic dynamics with empirical PAC Bayes. International Conference on Artificial Intelligence
and Statistics.

Havasi, M., Hernández-Lobato, J. M., & Murillo-Fuentes, J. J. (2018). Inference in deep Gaussian processes
using stochastic gradient Hamiltonian Monte Carlo. Advances in Neural Information Processing Sys-
tems.

Hayashi, K., Imaizumi, M., & Yoshida, Y. (2020). On random subsampling of Gaussian process regression: A
graphon-based analysis. International Conference on Artificial Intelligence and Statistics.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Conference on
Computer Vision and Pattern Recognition.

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: Deep portfolios. Appl. Stoch.
Models Bus. Ind., 33(1), 3–12.

Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., & Melab, N. (2021). Bayesian optimization using deep
Gaussian processes with applications to aerospace system design. Optim. Eng., 22, 321–361.

Hegde, P., Heinonen, M., Lähdesmäki, H., & Kaski, S. (2019). Deep learning with differential Gaussian process
flows. International Conference on Artificial Intelligence and Statistics.

Hegde, P., Yıldız, Ç., Lähdesmäki, H., Kaski, S., & Heinonen, M. (2022). Variational multiple shooting for
Bayesian ODEs with Gaussian processes. Conference on Uncertainty in Artificial Intelligence.

118 Bibliography

Heinonen, M., Yildiz, C., Mannerström, H., Intosalmi, J., & Lähdesmäki, H. (2018). Learning unknown ODE
models with Gaussian processes. International Conference on Machine Learning.

Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data. Conference on Uncertainty
in Artificial Intelligence.

Hensman, J., & Lawrence, N. D. (2014). Nested variational compression in deep Gaussian processes. arXiv
preprint arXiv:1412.1370.

Hensman, J., Matthews, A. G. d. G., Filippone, M., & Ghahramani, Z. (2015). MCMC for variationally sparse
Gaussian processes. Advances in Neural Information Processing Systems.

Hensman, J., Durrande, N., & Solin, A. (2017). Variational Fourier features for Gaussian processes. J. Mach.
Learn. Res., 18, 151:1–151:52.

Hewing, L., Arcari, E., Fröhlich, L. P., & Zeilinger, M. N. (2020). On simulation and trajectory prediction with
Gaussian process dynamics. Annual Learning for Dynamics and Control Conference.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Comput.,
14(8), 1771–1800.

Hochreiter, S., & Schmidhuber, J. (1996). LSTM can solve hard long time lag problems. Advances in Neural
Information Processing Systems.

Ialongo, A. D., van der Wilk, M., Hensman, J., & Rasmussen, C. E. (2019). Overcoming mean-field approxi-
mations in recurrent Gaussian process models. International Conference on Machine Learning.

Izmailov, P., Novikov, A., & Kropotov, D. (2018). Scalable Gaussian processes with billions of inducing inputs
via tensor train decomposition. International Conference on Artificial Intelligence and Statistics.

Izmailov, P., Vikram, S., Hoffman, M. D., & Wilson, A. G. G. (2021). What are Bayesian neural network
posteriors really like? International Conference on Machine Learning.

Jørgensen, M., Deisenroth, M. P., & Salimbeni, H. (2020). Stochastic differential equations with variational
Wishart diffusions. International Conference on Machine Learning.

Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., & Bennamoun, M. (2022). Hands-on Bayesian neural
networks—a tutorial for deep learning users. IEEE Comput. Intell. Mag., 17(2), 29–48.

Journel, A., & Huijbregts, C. (2003). Mining geostatistics. Blackburn Press.
Kaiser, M., Otte, C., Runkler, T. A., & Ek, C. H. (2018). Bayesian alignments of warped multi-output Gaussian

processes. Advances in Neural Information Processing Systems.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng.,

82, 35–45.
Kim, H.-M., Mallick, B. K., & Holmes, C. C. (2005). Analyzing nonstationary spatial data using piecewise

Gaussian processes. J. Amer. Stat. Assoc., 100(470), 653–668.
Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. International Conference on Learning

Representations.
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. International Conference on

Learning Representations.
Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local reparameterization trick.

Advances in Neural Information Processing Systems.
Kocijan, J., Girard, A., Banko, B., & Murray-Smith, R. (2005). Dynamic systems identification with Gaussian

processes. Math. Comput. Model. Dyn. Syst., 11(4), 411–424.
Koulaei, M. H., & Toutounian, F. (2007). On computing of block ILU preconditioner for block tridiagonal

systems. J. Comput. Appl. Math., 202(2), 248–257.
Krantz, S. G., & Parks, H. R. (2002). The implicit function theorem: History, theory, and applications. Springer

Science & Business Media.
Krause, A., Singh, A. P., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res., 9, 235–284.
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB : Automatic differentiation

and Laplace approximation. J. Stat. Softw., 70(5), 1–21.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural

networks. Advances in Neural Information Processing Systems.
Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation

using deep ensembles. Advances in Neural Information Processing Systems.
Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent

variable models. J. Mach. Learn. Res., 6, 1783–1816.

Bibliography 119

Lázaro-Gredilla, M., & Figueiras-Vidal, A. (2009). Inter-domain Gaussian processes for sparse inference using
inducing features. Advances in Neural Information Processing Systems.

Li, X., Wong, T.-K. L., Chen, R. T. Q., & Duvenaud, D. (2020). Scalable gradients for stochastic differential
equations. International Conference on Artificial Intelligence and Statistics.

Lindinger, J., Reeb, D., Lippert, C., & Rakitsch, B. (2020). Beyond the mean-field: Structured deep Gaussian
processes improve the predictive uncertainties. Advances in Neural Information Processing Systems.

Lindinger, J., Rakitsch, B., & Lippert, C. (2022). Laplace approximated Gaussian process state-space models.
Conference on Uncertainty in Artificial Intelligence.

Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. C. (2016). Learning to diagnose with LSTM recurrent
neural networks. International Conference on Learning Representations.

Liu, H., Ong, Y.-S., Shen, X., & Cai, J. (2020). When Gaussian process meets big data: A review of scalable
GPs. IEEE Trans. Neural Networks Learn. Syst., 31(11), 4405–4423.

Longi, K., Lindinger, J., Duennbier, O., Kandemir, M., Klami, A., & Rakitsch, B. (2021). Traversing time with
multi-resolution Gaussian process state-space models. arXiv preprint arXiv:2112.03230.

Longi, K., Lindinger, J., Duennbier, O., Kandemir, M., Klami, A., & Rakitsch, B. (2022). Traversing time with
multi-resolution Gaussian process state-space models. Annual Learning for Dynamics and Control
Conference.

Look, A., & Kandemir, M. (2019). Differential Bayesian neural nets. Advances in Neural Information Pro-
cessing Systems: Workshop on Bayesian Deep Learning.

MacKay, D. (2003). Information theory, inference and learning algorithms. Cambridge University Press.
Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., & Wilson, A. G. (2019). A simple baseline for Bayesian

uncertainty in deep learning. Advances in Neural Information Processing Systems.
Maddox, W. J., Potapczynski, A., & Wilson, A. G. (2022). Low-precision arithmetic for fast Gaussian pro-

cesses. Conference on Uncertainty in Artificial Intelligence.
Margossian, C., Vehtari, A., Simpson, D., & Agrawal, R. (2020). Hamiltonian Monte Carlo using an adjoint-

differentiated Laplace approximation: Bayesian inference for latent Gaussian models and beyond.
Advances in Neural Information Processing Systems.

Martens, J., & Grosse, R. B. (2015). Optimizing neural networks with Kronecker-factored approximate curva-
ture. International Conference on Machine Learning.

Martinez, J., Black, M. J., & Romero, J. (2017). On human motion prediction using recurrent neural networks.
Conference on Computer Vision and Pattern Recognition.

Matheron, G. (1973). The intrinsic random functions and their applications. Adv. Appl. Probab., 5(3), 439–468.
Matthews, A. G. d. G., Hensman, J., Turner, R. E., & Ghahramani, Z. (2016). On sparse variational methods and

the Kullback-Leibler divergence between stochastic processes. International Conference on Artificial
Intelligence and Statistics.

Mattos, C. L. C., Dai, Z., Damianou, A. C., Forth, J., Barreto, G. A., & Lawrence, N. D. (2016). Recurrent
Gaussian processes. International Conference on Learning Representations.

McIntire, M., Ratner, D., & Ermon, S. (2016). Sparse Gaussian processes for Bayesian optimization. Confer-
ence on Uncertainty in Artificial Intelligence.

Mikheeva, O., Kazlauskaite, I., Hartshorne, A., Kjellström, H., Ek, C. H., & Campbell, N. D. F. (2022). Aligned
multi-task Gaussian process. International Conference on Artificial Intelligence and Statistics.

Murray, I., & Adams, R. P. (2010). Slice sampling covariance hyperparameters of latent Gaussian models.
Advances in Neural Information Processing Systems.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report,
University of Toronto.

Neal, R. M. (1996). Bayesian learning for neural networks. Springer New York.
Nguyen, T. V., & Bonilla, E. V. (2014). Collaborative multi-output Gaussian processes. Conference on

Uncertainty in Artificial Intelligence.
Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer.
Ober, S. W., & Aitchison, L. (2021). Global inducing point variational posteriors for Bayesian neural networks

and deep Gaussian processes. International Conference on Machine Learning.
Ober, S. W., Rasmussen, C. E., & van der Wilk, M. (2021). The promises and pitfalls of deep kernel learning.

Conference on Uncertainty in Artificial Intelligence.
O’Hagan, A. (1978). Curve fitting and optimal design for prediction. J. R. Stat. Soc., B: Stat. Methodol., 40(1),

1–42.

120 Bibliography

O’Hagan, A. (1991). Bayes-Hermite quadrature. J. Stat. Plan. Inference, 29(3), 245–260.
Øksendal, B. (2003). Stochastic differential equations: An introduction with applications. Springer.
Oseledets, I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput., 33(5), 2295–2317.
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Inter-

national Conference on Machine Learning.
Pleiss, G., & Cunningham, J. P. (2021). The limitations of large width in neural networks: A deep Gaussian

process perspective. Advances in Neural Information Processing Systems.
Popescu, S. G., Sharp, D. J., Cole, J. H., Kamnitsas, K., & Glocker, B. (2022). Distributional Gaussian

processes layers for out-of-distribution detection. Machine Learning for Biomedical Imaging, 1.
Prince, L. Y., Bakhtiari, S., Gillon, C. J., & Richards, B. A. (2021). Parallel inference of hierarchical latent dy-

namics in two-photon calcium imaging of neuronal populations. bioRxiv:2021.03.05.434105, bioRxiv
preprint.

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process
regression. J. Mach. Learn. Res., 6, 1939–1959.

Rasmussen, C. E., & Ghahramani, Z. (2001). Infinite mixtures of Gaussian process experts. Advances in
Neural Information Processing Systems.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
Reeb, D., Doerr, A., Gerwinn, S., & Rakitsch, B. (2018). Learning Gaussian processes by minimizing PAC-

Bayesian generalization bounds. Advances in Neural Information Processing Systems.
Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference

in deep generative models. International Conference on Machine Learning.
Ripley, B. D. (1981). Spatial statistics. Wiley.
Ritter, H., Botev, A., & Barber, D. (2018). A scalable Laplace approximation for neural networks. International

Conference on Learning Representations.
Rossi, S., Heinonen, M., Bonilla, E. V., Shen, Z., & Filippone, M. (2021). Sparse Gaussian processes revisited:

Bayesian approaches to inducing-variable approximations. International Conference on Artificial
Intelligence and Statistics.

Rudner, T. G. J., Sejdinovic, D., & Gal, Y. (2020). Inter-domain deep Gaussian processes. International
Conference on Machine Learning.

Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by
using integrated nested Laplace approximations. J. R. Stat. Soc., B: Stat. Methodol., 71(2), 319–392.

Ruttor, A., Batz, P., & Opper, M. (2013). Approximate Gaussian process inference for the drift function in
stochastic differential equations. Advances in Neural Information Processing Systems.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer experiments.
Stat. Sci., 4(4), 409–423.

Salimbeni, H., & Deisenroth, M. P. (2017). Doubly stochastic variational inference for deep Gaussian pro-
cesses. Advances in Neural Information Processing Systems.

Salimbeni, H., Eleftheriadis, S., & Hensman, J. (2018). Natural gradients in practice: Non-conjugate varia-
tional inference in Gaussian process models. International Conference on Artificial Intelligence and
Statistics.

Salimbeni, H., Dutordoir, V., Hensman, J., & Deisenroth, M. P. (2019). Deep Gaussian processes with
importance-weighted variational inference. International Conference on Machine Learning.

Salkuyeh, D. K. (2006). Comments on “a note on a three-term recurrence for a tridiagonal matrix”. Appl.
Math. Comput., 176(2), 442–444.

Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press.
Särkkä, S., Solin, A., & Hartikainen, J. (2013). Spatiotemporal learning via infinite-dimensional Bayesian

filtering and smoothing: A look at Gaussian process regression through kalman filtering. IEEE Signal
Process. Mag., 30(4), 51–61.

Särkkä, S., & Solin, A. (2019). Applied stochastic differential equations. Cambridge University Press.
Schmidt, A. M., & O’Hagan, A. (2003). Bayesian inference for non-stationary spatial covariance structure via

spatial deformations. J. R. Statist. Soc. B, 65(3), 743–758.
Schön, T. B., & Lindsten, F. (2011). Manipulating the multivariate Gaussian density. Technical Report,

Linköping University.

Bibliography 121

Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., & Toussaint, M. (2015). Safe explo-
ration for active learning with Gaussian processes. European Conference on Machine Learning and
Knowledge Discovery in Databases.

Seeger, M. W., Williams, C. K. I., & Lawrence, N. D. (2003). Fast forward selection to speed up sparse
Gaussian process regression. International Workshop on Artificial Intelligence and Statistics.

Settles, B. (2009). Active learning literature survey. Technical Report, University of Wisconsin-Madison.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). Taking the human out of the loop:

A review of Bayesian optimization. Proc. IEEE, 104(1), 148–175.
Skaug, H. J., & Fournier, D. A. (2006). Automatic approximation of the marginal likelihood in non-Gaussian

hierarchical models. Comput. Stat. Data Anal., 51(2), 699–709.
Smola, A. J., & Bartlett, P. L. (2000). Sparse greedy Gaussian process regression. Advances in Neural

Information Processing Systems.
Smolarski, D. C. (2006). Diagonally-striped matrices and approximate inverse preconditioners. J. Comput.

Appl. Math., 186(2), 416–431.
Snelson, E. L., Rasmussen, C. E., & Ghahramani, Z. (2003). Warped Gaussian processes. Advances in Neural

Information Processing Systems.
Snelson, E. L., & Ghahramani, Z. (2005). Sparse Gaussian processes using pseudo-inputs. Advances in Neural

Information Processing Systems.
Snelson, E. L., & Ghahramani, Z. (2006). Variable noise and dimensionality reduction for sparse Gaussian

processes. Conference on Uncertainty in Artificial Intelligence.
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algo-

rithms. Advances in Neural Information Processing Systems.
Snoek, J., Swersky, K., Zemel, R., & Adams, R. P. (2014). Input warping for Bayesian optimization of non-

stationary functions. International Conference on Machine Learning.
Snoek, J., Ovadia, Y., Fertig, E., Lakshminarayanan, B., Nowozin, S., Sculley, D., Dillon, J. V., Ren, J., &

Nado, Z. (2019). Can you trust your model’s uncertainty? Evaluating predictive uncertainty under
dataset shift. Advances in Neural Information Processing Systems.

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2010). Gaussian process optimization in the bandit
setting: No regret and experimental design. International Conference on Machine Learning.

Swiatkowski, J., Roth, K., Veeling, B. S., Tran, L., Dillon, J. V., Snoek, J., Mandt, S., Salimans, T., Jenatton,
R., & Nowozin, S. (2020). The k-tied normal distribution: A compact parameterization of Gaussian
mean field posteriors in Bayesian neural networks. International Conference on Machine Learning.

Thompson, P. D. (1956). Optimum smoothing of two-dimensional fields. Tellus, 8(3), 384–393.
Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. International

Conference on Artificial Intelligence and Statistics.
Titsias, M., & Lázaro-Gredilla, M. (2014). Doubly stochastic variational Bayes for non-conjugate inference.

International Conference on Machine Learning.
Tomczak, M., Swaroop, S., & Turner, R. (2020). Efficient low rank Gaussian variational inference for neural

networks. Advances in Neural Information Processing Systems.
Tomczak, M., Swaroop, S., Foong, A. Y. K., & Turner, R. E. (2021). Collapsed variational bounds for Bayesian

neural networks. Advances in Neural Information Processing Systems.
Toth, C., & Oberhauser, H. (2020). Bayesian learning from sequential data using Gaussian processes with

signature covariances. International Conference on Machine Learning.
Toussaint, M. (2011). Gaussian identities. Lecture Notes, University of Stuttgart.
Tresp, V. (2000a). A Bayesian committee machine. Neural Comput., 12(11), 2719–2741.
Tresp, V. (2000b). Mixtures of Gaussian processes. Advances in Neural Information Processing Systems.
Turner, R. E., & Sahani, M. (2011). Two problems with variational expectation maximisation for time-series

models. In Bayesian time series models (pp. 109–130). Cambridge University Press.
Tzen, B., & Raginsky, M. (2019). Neural stochastic differential equations: Deep latent Gaussian models in the

diffusion limit. arXiv preprint arXiv:1905.09883.
Unlu, A., & Aitchison, L. (2021). Gradient regularization as approximate variational inference. Entropy,

23(12), 1629.
Ustyuzhaninov, I., Kazlauskaite, I., Ek, C. H., & Campbell, N. (2020a). Monotonic Gaussian process flows.

International Conference on Artificial Intelligence and Statistics.

122 Bibliography

Ustyuzhaninov, I., Kazlauskaite, I., Kaiser, M., Bodin, E., Campbell, N. D. F., & Ek, C. H. (2020b). Compo-
sitional uncertainty in deep Gaussian processes. Conference on Uncertainty in Artificial Intelligence.

van der Wilk, M., Rasmussen, C. E., & Hensman, J. (2017). Convolutional Gaussian processes. Advances in
Neural Information Processing Systems.

van der Wilk, M. (2019). Sparse Gaussian process approximations and applications (Doctoral dissertation).
University of Cambridge, UK.

Wang, J., Hertzmann, A., & Fleet, D. J. (2005). Gaussian process dynamical models. Advances in Neural
Information Processing Systems.

Wang, K. A., Pleiss, G., Gardner, J. R., Tyree, S., Weinberger, K. Q., & Wilson, A. G. (2019). Exact Gaussian
processes on a million data points. Advances in Neural Information Processing Systems.

Wenzel, F., Roth, K., Veeling, B. S., Swiatkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., &
Nowozin, S. (2020a). How good is the Bayes posterior in deep neural networks really? International
Conference on Machine Learning.

Wenzel, F., Snoek, J., Tran, D., & Jenatton, R. (2020b). Hyperparameter ensembles for robustness and uncer-
tainty quantification. Advances in Neural Information Processing Systems.

Whittle, P. (1963). Prediction and regulation by linear least-square methods. English Universities Press.
Williams, C. K. I., & Rasmussen, C. E. (1995). Gaussian processes for regression. Advances in Neural

Information Processing Systems.
Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and their

computational complexity. In Backpropagation: Theory, architectures, and applications (pp. 433–
486). L. Erlbaum Associates Inc.

Williams, C. K. I., & Barber, D. (1998). Bayesian classification with Gaussian processes. IEEE Trans. Pattern
Anal. Mach. Intell., 20(12), 1342–1351.

Williams, C. K. I., & Seeger, M. W. (2000). Using the Nyström method to speed up kernel machines. Advances
in Neural Information Processing Systems.

Williams, C. K. I., Rasmussen, C. E., Schwaighofer, A., & Tresp, V. (2002). Observations on the Nyström
method for Gaussian process prediction. Technical Report, Max Planck Institute for Biological Cy-
bernetics, Tübingen.

Wilson, A. G., & Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian processes (KISS-
GP). International Conference on Machine Learning.

Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. International Conference
on Artificial Intelligence and Statistics.

Wilson, A. G., & Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of generalization.
Advances in Neural Information Processing Systems.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., & Deisenroth, M. P. (2020). Efficiently sampling
functions from Gaussian process posteriors. International Conference on Machine Learning.

Yıldız, Ç., Heinonen, M., Intosalmi, J., Mannerström, H., & Lähdesmäki, H. (2018). Learning stochastic
differential equations with Gaussian processes without gradient matching. International Workshop on
Machine Learning for Signal Processing.

Yıldız, Ç., Heinonen, M., & Lahdesmäki, H. (2019). ODE2VAE: Deep generative second order ODEs with
Bayesian neural networks. Advances in Neural Information Processing Systems.

Yu, H., Chen, Y., Low, B. K. H., Jaillet, P., & Dai, Z. (2019). Implicit posterior variational inference for deep
Gaussian processes. Advances in Neural Information Processing Systems.

Yu, C., Seslija, M., Brownbridge, G., Mosbach, S., Kraft, M., Parsi, M., Davis, M., Page, V., & Bhave, A.
(2020). Deep kernel learning approach to engine emissions modeling. Data-Centric Engineering, 1.

Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture of experts. IEEE Trans. Neural
Netw. Learn. Syst., 23(8), 1177–1193.

Zhao, Z., Tronarp, F., Hostettler, R., & Särkkä, S. (2020). State-space Gaussian process for drift estima-
tion in stochastic differential equations. International Conference on Acoustics, Speech and Signal
Processing.

Zimmer, C., Meister, M., & Nguyen-Tuong, D. (2018). Safe active learning for time-series modeling with
Gaussian processes. Advances in Neural Information Processing Systems.

Zimmer, C., & Yaesoubi, R. (2020). Influenza forecasting framework based on Gaussian processes. Interna-
tional Conference on Machine Learning.

	Title
	Imprint

	Abstract
	Contents
	Introduction
	Gaussian Process Regression
	Challenges and Extensions for Gaussian Process Regression
	Sparse Gaussian Processes
	Flexible and Expressive Regression
	Time Series Modelling

	Introduction to Deep Gaussian Processes
	Introduction to Gaussian Process State-Space Models
	Variational Inference for Composite Gaussian Process Models
	Thesis Outline and Publications
	Publications and Contributions

	Background
	Gaussian Processes
	Sparse Gaussian Processes and Variational Inference
	Inducing Point Approximations
	Sparse Variational Gaussian Processes
	Other Approaches to Sparse Gaussian Process

	Technical Background on Deep Gaussian Processes
	Technical Background on Gaussian Process State-Space Models

	Structured Deep Gaussian Processes
	Fully-Coupled Deep Gaussian Processes
	Analytical Marginalisation of the Inducing Outputs
	Experiments

	The Stripes-and-Arrow Approximation
	Experiments

	Chapter Summary

	Understanding Gaussian Process State-Space Models
	Analytical Marginalisation of the Inducing Outputs
	The Role of the FITC Approximation
	Chapter Summary, Conclusions and Outlook

	Multi-Resolution Gaussian Process State-Space Models
	Stochastic Differential Equations and Gaussian Processes
	Training Gaussian Process State-Space Models on Multiple Resolutions
	Model Formulation
	Equivalence Between Discretised GP SDEs and GPSSMs

	Experiments
	Semi-Synthetic Data
	Engine Modelling Task

	Chapter Summary

	Laplace Approximated Gaussian Process State-Space Models
	The Laplace Approximation
	Laplace Approximated Parametric State-Space Models
	Laplace Approximation versus Variational Inference

	Combining Variational Inference and the Laplace Approximation
	Optimisation Objective
	Implicit Function Theorem
	Sparsity and Structure of the Hessian
	Algorithm

	Related Work
	Variational Inference in Gaussian Process State-Space Models
	Laplace Approximation
	Other Related Work

	Experiments
	Kink
	System Identification

	Chapter Summary

	Conclusions and Outlook
	Summary and Conclusions
	Outlook
	Deep Gaussian Processes
	Expressive probabilistic regression
	Probabilistic Time-Series Modelling

	Appendices
	Detailed Derivations
	Gaussian Process Posterior
	Variational Inference and Evidence Lower Bounds
	Sparse GP ELBO
	Deep GP ELBO
	GPSSM FITC ELBO
	GPSSM VCDT ELBO

	Derivations for Laplace Approximated Gaussian Process State-Space Models
	The Laplace Approximation Applied to State-Space Models
	The Implicit Function Theorem
	Efficiently obtaining the non-zero blocks of the Hessian
	Efficiently calculating the Hessian determinant and performing Hessian solves

	Proofs
	Analytical Marginalisation for Deep GPs
	Analytical Marginalisation for GPSSMs
	The FITC approximation for GPSSMs
	Equivalence of SDE GPSSMs and canonical GPSSMs

	Bibliography

