
Wireless In-Network Processing for
Multimedia Applications

Haitham Afifi

Universitätsdissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr. Ing.)

in Internet-Technology
and Softwarization

eingereicht an der
Digital-Engineering-Fakultät
der Universität Potsdam

Unless otherwise indicated, this work is licensed under a Creative
Commons License Attribution 4.0 International.
This does not apply to quoted content and works based on other
permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by/4.0

Betreuer
Prof. Dr. Holger Karl
Hasso Plattner Institute, University of Potsdam

Gutachter
Prof. Dr. Olaf Landsiedel
Kiel University

Prof. Dr. Christoph Sommer
Technische Universität Dresden

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-60437
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-604371

0Abstract
With the recent growth of sensors, cloud computing handles the data processing of

many applications. Processing some of this data on the cloud raises, however, many

concerns regarding, e.g., privacy, latency, or single points of failure. Alternatively,

thanks to the development of embedded systems, smart wireless devices can share

their computation capacity, creating a local wireless cloud for in-network processing.

In this context, the processing of an application is divided into smaller jobs so that

a device can run one or more jobs.

The contribution of this thesis to this scenario is divided into three parts. In part

one, I focus onwireless aspects, such as power control and interferencemanagement,

for deciding which jobs to run on which node and how to route data between nodes.

Hence, I formulate optimization problems and develop heuristic and meta-heuristic

algorithms to allocate wireless and computation resources. Additionally, to deal

with multiple applications competing for these resources, I develop a reinforcement

learning (RL) admission controller to decide which application should be admitted.

Next, I look into acoustic applications to improve wireless throughput by using

microphone clock synchronization to synchronize wireless transmissions.

In the second part, I jointly work with colleagues from the acoustic processing

field to optimize both network and application (i.e., acoustic) qualities. My contri-

bution focuses on the network part, where I study the relation between acoustic

and network qualities when selecting a subset of microphones for collecting audio

data or selecting a subset of optional jobs for processing these data; too many

microphones or too many jobs can lessen quality by unnecessary delays. Hence, I

develop RL solutions to select the subset of microphones under network constraints

when the speaker is moving while still providing good acoustic quality. Further-

more, I show that autonomous vehicles carrying microphones improve the acoustic

qualities of different applications. Accordingly, I develop RL solutions (single and

multi-agent ones) for controlling these vehicles.

In the third part, I close the gap between theory and practice. I describe the

features of my open-source framework used as a proof of concept for wireless

in-network processing. Next, I demonstrate how to run some algorithms devel-

oped by colleagues from acoustic processing using my framework. I also use the

framework for studying in-network delays (wireless and processing) using different

distributions of jobs and network topologies.

iii

0Zusammenfassung

Mit der steigenden Anzahl von Sensoren übernimmt Cloud Computing die Da-

tenverarbeitung vieler Anwendungen. Dies wirft jedoch viele Bedenken auf, z. B.

in Bezug auf Datenschutz, Latenzen oder Fehlerquellen. Alternativ und dank der

Entwicklung eingebetteter Systeme können drahtlose intelligente Geräte für die

lokale Verarbeitung verwendet werden, indem sie ihre Rechenkapazität gemeinsam

nutzen und so eine lokale drahtlose Cloud für die netzinterne Verarbeitung schaffen.

In diesem Zusammenhang wird eine Anwendung in kleinere Aufgaben unterteilt,

so dass ein Gerät eine oder mehrere Aufgaben ausführen kann.

Der Beitrag dieser Arbeit zu diesem Szenario gliedert sich in drei Teile. Im ers-

ten Teil konzentriere ich mich auf drahtlose Aspekte wie Leistungssteuerung und

Interferenzmanagement um zu entscheiden, welche Aufgaben auf welchem Knoten

ausgeführt werden sollen und wie die Daten zwischen den Knoten weitergeleitet

werden sollen. Daher formuliere ich Optimierungsprobleme und entwickle heu-

ristische und metaheuristische Algorithmen zur Zuweisung von Ressourcen eines

drahtlosen Netzwerks. Um mit mehreren Anwendungen, die um diese Ressourcen

konkurrieren, umgehen zu können, entwickle ich außerdem einen Reinforcement

Learning (RL) Admission Controller, um zu entscheiden, welche Anwendung zu-

gelassen werden soll. Als Nächstes untersuche ich akustische Anwendungen zur

Verbesserung des drahtlosen Durchsatzes, indem ichMikrofon-Taktsynchronisation

zur Synchronisierung drahtloser Übertragungen verwende.

Im zweiten Teil arbeite ich mit Kollegen aus dem Bereich der Akustikverarbei-

tung zusammen, um sowohl die Netzwerk- als auch die Anwendungsqualitäten (d.

h. die akustischen) zu optimieren. Mein Beitrag konzentriert sich auf den Netzwerk-

teil, wo ich die Beziehung zwischen akustischen und Netzwerkqualitäten bei der

Auswahl einer Teilmenge von Mikrofonen für die Erfassung von Audiodaten oder

der Auswahl einer Teilmenge von optionalen Aufgaben für die Verarbeitung dieser

Daten untersuche; zu viele Mikrofone oder zu viele Aufgaben können die Qualität

durch unnötige Verzögerungen verringern. Daher habe ich RL-Lösungen entwickelt,

um die Teilmenge der Mikrofone unter Netzwerkbeschränkungen auszuwählen,

wenn sich der Sprecher bewegt, und dennoch eine gute akustische Qualität zu ge-

währleisten. Außerdem zeige ich, dass autonome Fahrzeuge, die Mikrofone mit sich

führen, die akustische Qualität verschiedener Anwendungen verbessern. Dement-

v

sprechend entwickle ich RL-Lösungen (Einzel- und Multi-Agenten-Lösungen) für

die Steuerung dieser Fahrzeuge.

Im dritten Teil schließe ich die Lücke zwischen Theorie und Praxis. Ich beschrei-

be die Eigenschaften meines Open-Source-Frameworks, das als Prototyp für die

drahtlose netzinterne Verarbeitung verwendet wird. Anschließend zeige ich, wie

einige Algorithmen, die von Kollegen aus der Akustikverarbeitung entwickelt wur-

den, mit meinem Framework ausgeführt werden können. Außerdem verwende

ich das Framework für die Untersuchung von netzinternen Verzögerungen unter

Verwendung verschiedener Aufgabenverteilungen und Netzwerktopologien.

vi

0Acknowledgments

I would like to express my sincere gratitude to all those who have supported and

encouraged me throughout my journey towards completing this PhD thesis.

First and foremost, I am deeply indebted to my supervisor Prof. Dr. Holger

Karl, whose expertise, guidance, and constant encouragement have been invaluable

throughout my research. I am grateful for his patience, encouragement, and the

countless hours spent reviewing my work and providing constructive feedback. I

would not have been able to complete this thesis without his support. Not to forget,

he always made sure to have a comfortable working environment.

I would also like to thank the members of my thesis committee, Prof. Dr. Olaf

Landsiedel and Prof. Dr. Christoph Sommer, for their valuable time to review my

Thesis. Furthermore, I would like to express my gratitude to Prof. Dr. Andreas

Polzen, who agreed to chair my doctoral examination board, as well as Prof. Dr.

Christian Dörr who agreed to be my second supervisor and Prof. Dr. Patrick

Baudisch for taking part in my examination board

I am grateful tomy colleagues at “Computer Networks” and at “Internet-Softwarization

and Technology" groups for their friendship and support. My thanks also go to

Ms. Kerstin Miers for being always ready to help. Additionally, I would like to

thank my colleagues at “Deutsche Forschungsgemeinschaft (DFG) - Acoustic Sensor

Networks”, whose insights, feedback and encouragement have been invaluable in

helping me navigate the challenges of the PhD journey.

I am also grateful to my family and friends for their unwavering support and

encouragement. Their belief in me and my abilities has been a constant source

of inspiration throughout my PhD journey. Finally, I would like to express my

gratitude to the DFG, whose financial support made this research possible.

Thank you all for your invaluable contributions towards the completion of this

thesis.

vii

0Contents
Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

I The Problem 1

1 Introduction 5
1.1 Motivation . 5

1.2 Research Questions . 7

1.3 Thesis Overview . 8

2 Background 11
2.1 Wireless Acoustic Sensor Networks 11

2.1.1 Sensor Network Basics . 11

2.1.2 Acoustic applications . 11

2.1.3 Wireless Technology Specifications 12

2.2 Wireless Medium Access Control Protocols 13

2.2.1 Basics of Medium Access Control 13

2.2.2 Contention-Based and Contention-Free Protocols 14

2.3 Reinforcement Learning . 15

2.3.1 Model-Based and Model-Free Reinforcement Learning . . 16

2.3.2 Value-Based and Policy-Based Reinforcement Learning . . 16

2.3.3 Exploration and Exploitation 17

2.3.4 Deep Q-Learning . 18

2.3.5 Multi-Objective Reinforcement Learning 19

2.3.6 Constrained Reinforcement Learning 19

ix

II Wireless Virtual Network Embedding 23

3 Optimization Problems for Resource Allocation 27
3.1 Placement, Routing and Scheduling 30

3.1.1 Optimisation Problem . 32

3.1.2 Objective . 35

3.1.3 A Backtrack Heuristic . 36

3.1.4 Evaluating Backtracking Heuristic 41

3.2 Power Allocation . 43

3.2.1 Constraints . 43

3.2.2 Fixed vs. Flexible Power Results 47

3.3 A Greedy Heuristic and Approximation Ratio 50

3.3.1 Linearize Quadratic Power Constraint 50

3.3.2 Greedy Heuristic . 51

3.3.3 Theoretical Analysis . 53

3.3.4 Evaluating the Greedy Heuristic and Estimating Symbol

Error Rate . 57

3.4 Summary . 62

4 Meta-Heuristics for Resource Allocation 65
4.1 Genetic Algorithm . 66

4.1.1 Chromosome . 66

4.1.2 Fitness Function . 68

4.1.3 New Generations and Selection 69

4.1.4 Evaluation of Genetic Algorithms 69

4.2 Reinforcement Learning for Placement 74

4.2.1 States and Actions . 75

4.2.2 Reward Function . 75

4.2.3 Exploration Rate . 76

4.2.4 Evaluation of Reinforcement Learning for Placement . . . 76

4.3 Conclusion . 83

5 Admission Control for Incoming Jobs 85
5.1 Problem formulation . 86

5.1.1 Virtual Network Requests 87

5.1.2 Wireless Sensor Network 87

5.1.3 Constraints . 88

5.1.4 Virtual Network Embedding (VNE) Heuristic Solution . . 88

x

5.2 Reinforcement Learning . 88

5.2.1 Observation Space . 89

5.2.2 Action Space . 90

5.2.3 Reward Function . 90

5.3 Simulation Setup . 90

5.4 Simulation Results . 91

5.4.1 Duration Control Parameter 91

5.4.2 Priority Control Parameter 93

5.4.3 Maximum Trained Duration 95

5.5 Summary . 97

6 Impact of MAC Protocols 99
6.1 System Model . 101

6.1.1 CSMA/CA . 102

6.1.2 TDMA . 104

6.2 Environment setup . 106

6.3 Results . 107

6.3.1 Probability of collision . 107

6.3.2 CSMA/CA throughput . 108

6.3.3 TDMA throughput . 108

6.3.4 Comparison of CSMA/CA and TDMA throughput 109

6.3.5 Throughput for unsaturated nodes 112

6.4 Summary . 112

III Subset Selection of Jobs, Nodes and Moves 113

7 Resource Allocation for Optional Jobs 117
7.1 Problem Formulation . 118

7.2 Simulation Setup . 119

7.3 Results for Optional Block Selection 121

7.4 Summary . 122

8 Sensor Selection in Acoustic Sensor Networks 123
8.1 Microphone Selection for Stationary Speakers 125

8.1.1 Network Cost Function 125

8.1.2 Joint Optimization . 127

8.1.3 Experimental Evaluation 127

xi

8.2 Microphone Selection for Moving Speakers 131

8.2.1 Problem Definition . 131

8.2.2 Reinforcement Learning Solution 132

8.2.3 Experimental Evaluation 135

8.3 Minimizing Rate of Changing the Selection 139

8.3.1 Problem Formulation . 139

8.3.2 Reinforcement Learning Formulation 140

8.3.3 Evaluation . 141

8.4 Conclusion . 147

9 Movement Selection in Dynamic Environment 149
9.1 Problem Formulation . 152

9.1.1 Speaker . 152

9.1.2 Microphones and acoustic quality 153

9.1.3 Wireless data transport . 153

9.1.4 Utility . 154

9.2 Centralized Deep Reinforcement Learning Solution 155

9.3 Multi-agent DeepRL Solution . 156

9.4 Practical Baseline Solutions . 157

9.5 Experimental Results . 158

9.5.1 Convergence of training: Temporal Difference 158

9.5.2 Performance of centralized RL vs. baselines 158

9.5.3 Performance of centralized RL vs. heuristics 162

9.5.4 Performance for Varying Vehicle Speeds for Centralized RL 162

9.5.5 Changing the Microphone Speeds for Multi-agent RL . . . 164

9.5.6 Single- vs. Multi-agent RL 166

9.5.7 Up-scaling with multi-agent RL 168

9.6 Theoretical Discussion . 169

9.6.1 Impact of Environment Setup on the Deep Reinforcement

Learning (deepRL) Training 169

9.6.2 Heuristic Sub-optimality 172

9.7 Summary . 173

IV Proof of Concept 175

10 Framework for In-network Processing 179
10.1 Framework Overview . 180

10.1.1 Client . 181

xii

10.1.2 Server . 181

10.1.3 Jobs . 181

10.1.4 Pipes . 181

10.2 Implementation . 182

10.2.1 Attributes and Features 182

10.2.2 Job Placement and Redistribution 183

10.2.3 Job Synchronization . 184

10.3 Show Cases . 185

10.3.1 Job Distribution . 185

10.3.2 Failover in Wireless Distributed Computing 187

11 Case Studies 189
11.1 System Model . 191

11.1.1 Cocktail Party Application 191

11.1.2 Synchronization . 192

11.2 Experiment Setup . 192

11.3 Results . 195

11.3.1 Wireless Network Delay 195

11.3.2 End-to-End Delay . 197

11.4 Conclusion . 198

12 Conclusions & Outlook 199

Appendices 203

A CSMA/CA: Channel vs. Node Throughput 205

Bibliography 207

List of Publications 231

xiii

Part I

The Problem

Chapter 0

Wireless Sensor Networks (WSNs) were originally developed to collect data from

the surroundings and process them. Managing these networks (e.g., routing and

resource allocation) to optimize energy efficiency, data accuracy and latency has

been well studied over the past decades. The results were then adopted by similar

networks such as Internet of Things (IoT).

However, there is an overall lack of research how to best manage these networks

for newly emerging applications, especially those with substantial amounts of data

to collect under tight delay constraints – for example, wireless multimedia applica-

tions. Moreover, these applications may be used in a highly dynamic environment,

making network management even more complex.

This thesis aims to identify and evaluate WSN management approaches – which

are also applicable for IoT networks – focusing on wireless multimedia applications

such as Wireless Acoustic Sensor Network (WASN), while exploiting recent trends

in hardware and network development.

This part will provide an introduction to the thesis by first discussing the motiva-

tion and context, followed by the background, where I highlight the specific needs

and challenges of WASN, explain the wireless properties used in this thesis and pro-

vide a background on Reinforcement Learning (RL) as it will be a main contribution

in later chapters. Finally, I will introduce the research aims and questions

3

1 Introduction

1.1 Motivation

WSNs have conventionally focused on simple data collection applications owing

to their hardware constraints. With the advent of more powerful yet still cheap

hardware (e.g., Arduino or Raspberry Pis), a new class of applications for WSNs is

emerging where the collected data is more voluminous and the application con-

straints like maximum acceptable delays are tighter. Examples for such applications

often come from the acoustic or video-signal processing domain: distributed mi-

crophone arrays, collecting streams of audio data, or acoustic-based localisation

of speakers. In such applications, nodes are often plugged into easily available

power outlets, but wired data communication is often not available or too costly or

cumbersome to install. Hence, conventional figures of merit for WSNs like energy

efficiency take second place; application-oriented ones like delays, dependability, or

feasibility with constrained wireless are more important. Wireless communication

is still an absolute necessity.

A simplistic approach to support such applications in acoustic sensor networks

would be to record data on distributed nodes and send all that data to a central server

where the signals included in the data is processed. Yet an alternative approach

exists: to move some (not necessarily all) of the processing jobs from a central server

to the wireless nodes themselves. This thesis will investigate whether and which

advantages exist in this approach. In the following, I identify different viewpoints

on the benefits.

1. Real-time applications (e.g., WASN) can require powerful and expensive

processors for fast computation. Distributing some of these processing

jobs to wireless smart nodes like Raspberry Pis or Arduinos will consid-

erably lower the cost requirements of a central server and leverage good

price/performance ratios of this class of devices.

To support this hypothesis, Google would have to double the number of

its data centres if each user used google-voice services for 3 minutes a day,

due to high computation loads [Jou+17]. In fact, this was the motivation of

developing Google’s embedded device, Tensor Processing Unit (TPU). But

5

Chapter 1 Introduction

here, it is not necessary to buy new devices, this viewpoint holds when

exploiting the idle smart devices as seen in smart homes.

2. There are two options to increase dependability

• Option 1: Lest there is a glitch or failure at the central processor that

may breakdown the system, we distribute the jobs on wireless nodes.

Thus, if a node has failed, we can easily re-assign its job to another node.

Even if we intend to have standby central servers, we are back to the

first point, where we save costs for the standby servers.

• Option 2: There will typically be multiple wireless nodes, as seen in

smart homes or smart factories, that can act as mutual standby devices.

Although provisioning standbys for central servers is still possible, it

would, as mentioned earlier, increase cost and complexity, compared to

the wireless nodes.

3. It might actually be more energy-efficient when some of the jobs compress

data (which is often, but not always the case in such distributed multimedia

applications) as the well-known energy trade-off between processing and

sending data still holds [Kad16].

4. Distributing processing can reduce latency compared to central solutions as

only smaller amounts of data have to be communicated. This holds under the

assumption that the wireless nodes are supported with advanced processing

units, being capable of processing the jobs in reasonable time.

5. It can save wireless data rate by reducing the amount of data to com-
municate. Even with high-performance Wireless Local Area Networks

(WLANs), this can still be a concern in dense deployments, when all wireless

nodes are sending raw data at high rates.

6. It can provide higher privacy by relying on local computation instead of

sharing raw data with third parties on a cloud.

Another type of WSN environment is when the nodes can move, i.e., they are

not power-plugged anymore. This adds an additional degree of freedom to improve

the data collection, especially for online streaming. Although, this raises again the

concern of energy consumption, I assume that stored energy, needed as a power

supply for the motor, eclipses the energy needed for sensing and sending the data.

6

ResearchQuestions Section 1.2

1.2 ResearchQuestions

The network architecture of WSNs were originally designed for low data rate

requirements, and hence, they cannot be directly applied for high data rates, because

they will over-utilize the wireless network. The most basic architecture forwards

the raw data to the central server. To reduce power dissipation during signal

transmission, data reduction techniques (such as aggregation [KW05; LFZ13] and

compressive sensing [MCN17]) has been introduced. Although these techniques use

in-network processing, they are limited to specific types of applications and were

designed to do specific jobs (e.g., finding correlation or summing and averaging),

so that they are not applicable for arbitrary jobs with predefined connections. Data

centres and wide-area networks have a similar problem, with respect to voluminous

data traffic, supported with numerous studies proposing different solutions, such

as virtual network functions [Sun+22] and service function chains [GB16; WCY20].

They use the network devices for data processing and rely on virtualized jobs (let

them be functions or services) that could be easily migrated from one device to

another. Hence, these solutions were also adopted in wireless networks. Yet, there

is a literature gap, due to the differences between how wired (as in data centres)

and wireless networks behave.

It is important to fill this gap, otherwise, practical implementations yield a differ-

ent (and very likely worse) results compared to the expectations from theory. For

example, in wired networks every port on a router is typically in a separate collision

domain, while in wireless networks, wireless devices operate in the same collision

domain, adding the interference challenge and the multi-cast property. Additionally,

wireless networks can be mobile, which is a feature that wired networks do not

have.

Given the lack of research regarding using WSN for in-network processing in

wireless multimedia applications, this thesis aims to identify and evaluate wireless

network management approaches, while considering the wireless properties and

exploiting the wireless network features in general
1
.

Accordingly, the research objectives are:

1. to adopt resource allocation approaches for in-network processing from

wired for wireless networks, while considering physical wireless properties

(e.g., Signal-to-Interference-Noise Ratio (SINR)) and data link properties (e.g.,

Medium Access Control (MAC) protocols).

1 codes can be found in git@gitlab.hpi.de:itsw-workgroup/itsw-theses/hatiham-afifi/codes.git

7

Chapter 1 Introduction

2. to exploit wireless features in in-network processing, such as multi-cast

transmission, power control and mobility.

3. to evaluate the effectiveness of these approaches in wireless multimedia

applications.

4. to provide an in-situ test-bed as a proof-of-concept for wireless network

management in general and for showing demos from wireless multimedia

applications.

In this context, I focus on the following research questions:

• what is the gain of considering wireless properties in in-network processing

approaches? I focus here on delay and symbol error rate as metrics.

• how effective is it to exploit the wireless features? I choose multi-cast, power

control and mobility as wireless features.

• how to exploit multimedia features to assist in network management? More

specifically, I choose the synchronization feature in WASN to assist the

wireless MAC.

1.3 Thesis Overview
In Chapter 2, I introduce the context of the study and the background of some of the

applied solutions. In Part II, I focus onwireless metrics when evaluating the network

approaches. In Chapter 3, I consider wireless network management by distributing

the application processing inside the network and show the gain of considering

the wireless properties and features, compared to wired networks approaches. I

worked with Sébastien Auroux on the optimization problem in [AAK18], and built

up on it to add power control [AK19b] and develop a heuristic solution [AK19a].

In Chapter 4, I worked with Konrad Horbach [AHK19] to solve the same problem,

yet, the focus is on meta-heuristic approaches to quickly find feasible solutions and

show the gap between these solutions and the ones in Chapter 3. In Chapter 5, I

worked with Fabian Sauer [ASK21] with the assumption that multiple applications

are competing for wireless network resources and we use RL for choosing which

applications to admit. In Chapter 6, I use synchronization from WASN to synchro-

nize the transmissions in WSN; I highlight in which scenarios such approaches can

be applied and what their gain would be. The acoustic processing was developed

by Tobias Gburrek and Joerg Schmalenstroeer; the work was published in [Afi+22].

8

Thesis Overview Section 1.3

In Part III, I focus on features fromwireless multimedia (more specifically, WASN)

applications for network management. In Chapter 7, I show the impact of selecting

a subset of jobs from the application on the performance of wireless networks. The

WASN application was developed by Michael Gunther and Andreas Brendel, while

I evaluated the network aspects, so that the work was published in [Gun+21] and

received the “Best Poster" award.

In Chapter 8, I study the impact of selecting a subset of sensors on both wireless

network and application performance. Again, the application was developed by

Michael Gunther and Andreas Brendel, while I developed the selection approach.

Here, the evaluation took place jointly and the results were published in [Afi+21]

In Chapter 9, I exploit the mobility feature of wireless networks and show how

it improves application performance. This work was jointly done with Arunselvan

Ramaswamy where we jointly work on the RL formulation and published the work

in [ARK21b] and submitted it to [ARK22].

In Part IV, I present a test-bed for wireless network management, where in

Chapter 10, I describe the features and implementation of the test-bed. The test-bed

is an open-source [Afi] and has been successfully shown in many Demos in the

field of acoustic sensor networks. Examples of WASN applications were show in

cooperation with:

• Aleksej Chinaev [CA22], Tobias Gburrek and Joerg Schmalenstoeer [TA22]

for acoustic synchronization

• Markus Bachman and Andreas Brendel for acoustic signal extraction [Mar18]

• Alexander Nelus and Luca Becker for privacy preserving in acoustic applica-

tion [Ale22]

• Janek Ebbers for acoustic scene classification on a Raspberry-Pi network [JA22]

Thanks to this cooperation, I was able to update the test-bed with additional features

needed by the acoustic applications for an easy setup and better management.

In Chapter 11, I present case studies for WASN applications, where I worked

with Konrad Horbach on evaluating acoustic applications, running on the tesbed,

from the network perspectives.

9

2 Background

2.1 Wireless Acoustic Sensor Networks
In acoustic sensor networks where there can be a cooperation between wireless con-

nected devices when exchanging audio information (either raw or processed data).

Such a cooperation can reduce the communication data rate and the computational

load, improve scalability and flexibility and enhance the performance.

2.1.1 Sensor Network Basics
The structure of sensor networks is mainly based on two roles: node and a sink
(a.k.a. gateway) [KW05]. In principle, nodes are responsible for collecting data and

transmitting them to the sink. Thanks to hardware development, nodes are also

able to preprocess data and forward it.

Based on these two simple roles, different variants of the network architecture

arise. For example, the network can have several sinks, while the nodes choose

which sink to forward the data to, based on factors such as proximity and availability.

Additionally, the data transmission can be single-hop (nodes are only sensors) or

multi-hop (nodes act as sensors and relays). The management of data transmission

should be considered on at least two different layers: data link and network layers.

In this thesis I consider MAC protocols for the data link layer and routing for the

network one.

The mobility in sensor networks is considered in two ways. First, network

mobility, where nodes and/or sinks continuously move over time (e.g., sensors

installed on vehicles) or occasionally being moved (e.g., a node is moved from one

position to another over long measurement time). The latter is used for re-planning

while the former is live events, where both changes are controllable. Second, event

mobility, where the case of the event change position over time (e.g., speaker

localization). In this case, changes are not controllable.

2.1.2 Acoustic applications
Different acoustic applications may have different requirements. Here, I list some

of the applications as well as their requirements, which will be used in later chapter.

11

Chapter 2 Background

For instance, collecting audio from multiple microphones requires that the audio

sampling clocks (i.e., the collected audio samples) are synchronized. This imposes

the challenge of estimating and correcting the Sampling Rate Offset (SRO) between

the microphones [GSH21]. This require high data rates, especially when data are

being relayed (i.e., multi-hop routing), hence, over utilizing the wireless network.

Some applications inherit the dynamic topology in sensor networks as seen in

mobility or node failures, i.e., uncontrollable changes. Detecting the dynamicity

may be easy from the networking perspective, but the acoustic application still

needs to handle the changes in the network, since dynamicity also impacts acoustic

performance. As an example, by losing nodes we also lose their contribution, i.e.,

information in terms of raw or processed data.

For specific types of applications, such as speaker localization and diarisa-

tion [BAK04b; JSH12] the applications are time-sensitive. Meanwhile, as the number

of wireless devices increases, the network delay will very likely increase. Addition-

ally, forwarding high quality audio data (i.e., large number of audio samples) results

in high delays. In case the data are processed on the wireless devices before being

forwarded (e.g., feature extraction or audio compression), computational delay can

also be a bottleneck, because these devices, unlike cloud servers, have very limited

computational resources. This results in the trade-off between raw data forwarding

and local data processing (a.k.a. in-network processing).

When multiple applications or audio processing algorithms run on the top of

the sensor networks, the wireless network may have conflicting or complementary

jobs that over-utilize the network, decreasing the performance of all applications.

Alternatively, either the applications should self-configure themselves to cope with

the available network resources or the other way around, the applications could be

given priorities (based on their importance or revenue) and the network decides

how to allocate its resources. I focus on the latter in this thesis.

2.1.3 Wireless Technology Specifications
Selecting the most adequate wireless technology depends on the application re-

quirement. For example, mobile broadband protocols e.g., 3G/4G/5G, offer high

data rates but they are far away from being cost effective in dense sensor networks,

especially if there is a need for planning additional relay cells (such as femto and

pico cell) in case of bad coverage, in addition to the subscription costs [ABZ20].

On the contrary, technologies operating in unlicensed bands are low cost, hence,

they are more popular for end-users with dense networks as in smart homes. I

summarize in Table 2.1 their specifications. For example, LoRaWAN seems to have

the longest battery life and covers more than 100 m, which makes it very suitable

12

Wireless Medium Access Control Protocols Section 2.2

Table 2.1: Summary of wireless technology specifications

Protocol Bluetooth

[02]

BLE

[Gup16]

WiFi [21] Zigbee/ 6LoWPAN

[20]

LoRaWAN

[Fra+20]

Frequency 2.4 GHz 2.4 GHz 2.4/5 GHz 2.4/0.868/0.915 GHz 169/868/915

MHz

Coverage

(m)

30 10 25–50 30 >100

Data rate 2 Mbps 270

Kbps

0.45-2.4

Gbps

150 kbps 12.5/21 kbps

Battery

life

Month Year Day Month-Year Year(s)

for outdoor applications. However, in this thesis I focus on indoor sensor networks,

more specifically, WASNs requiring high data rates, which makes WiFi (specified

by IEEE 802.11 standards) the most adequate technology.

2.2 Wireless Medium Access Control Protocols
The main objective of wireless MAC is to coordinate which nodes access the

shared wireless medium when. An additional requirement, when focusing on

WSN, is energy efficiency and its trade-off with typical network metrics such as

delay and data rates [KW05]. However, this is not the case in this thesis. Unlike

traditional WSN applications (such as motion monitoring and temperature alarms

in forests) that are battery-operated and run for months/years, wireless multimedia

applications (e.g., WASN) are normally power-plugged and even when they are

battery-operated (e.g., smart phones), they have a short life-cycle expectancy (hours

or a couple of days) (Table 2.1).

In Chapter 11, I explain how the delay requirements of acoustic applications

evince into MAC protocols.

2.2.1 Basics of Medium Access Control
Since I focus in this thesis on wireless multimedia applications, the focus is on

MAC protocols with high throughput and low delay. There are multiple factors that

impact these metrics such as collisions and MAC signaling overhead. Collisions

take place when transmission from two or more nodes arrives at a receiver at the

13

Chapter 2 Background

same time. Hence, the receiving nodes (which are also in the same collision domain)

cannot decode the arrived packets, resulting in data losses (affecting application

performance) or/and retransmissions, resulting in lower throughput and higher

delays.

The MAC is tightly coupled with the physical channel status (e.g., fast vs slow

fading, heated devices, etc.). For example, as the noise level at the receiver changes

rapidly, it is hard to define SINR. In this thesis, I assume that the physical layer

is (very) slowly changing, so I can ignore small-scale parameters’ impact (e.g.,

coherence time and shadowing) and focus on large-scale parameters impact)(e.g.,

attenuation). Accordingly, using such properties, it is easy to define the size of

the collision domain and estimate the SINR, and accordingly, correctly estimate

assigned data rates.

Signaling overhead is used to regulate the access to a shared medium of multiple

nodes, by providing extra information or instructions. For example, solutions such

as RTS/CTS and busy tone are used to tackle the exposed- and hidden-terminal

problems. Other signaling protocols are used to synchronize wireless transmissions

of different nodes. In my work, I ignore the impact of such protocols because I

assume the impact of these protocols is a constant to subtract from performance

metrics such as delay and throughput. Additionally, it makes the analysis and

problem formulations simpler. Note that, however, different MAC protocols may

have different signaling overhead. I show in Chapter 6 how MAC protocols can

benefit from the properties of acoustic application.

2.2.2 Contention-Based and Contention-Free Protocols
There is a huge number of MAC protocols that have been developed over the past

decades. I focus on two popular classes: contention-based and contention-free

protocols.

On the one hand, contention-free protocols assign the available wireless resources

to the nodes so that the assignment is long-term. Assignments last minutes or

even longer. A key source of overhead is to distribute these assignments as a

schedule to all nodes. To handle changes in the network (e.g., mobility and failing

nodes), signaling is used to reassign the resources, in order to avoid collisions.

Fixed-schedule Time Division Multiple Access (TDMA) (or just briefly, TDMA) is

an example of contention-free protocols where the time is divided into time slots

and each node is assigned one or more time slots for transmission. The period

between the time of sending a packet and the time of sending the next packet

(i.e., a node sends a packets and waits for other nodes to send then restart the

cycle) is defined as a time frame. Another signaling overhead is synchronization

14

Reinforcement Learning Section 2.3

because TDMA requires tightly synchronized clocks between the nodes. There

exists also other multiplexing dimensions such as frequency, carrier and spatial

division multiple access. Contention-free protocols are conventionally centralized,

yet there exists proposals for distributed implementations as well.

Contention-based protocols are typically distributed and usually have a random

access behavior. Packets to be sent may be generated at random (e.g., motion

detection) or on-demand (e.g., acoustic application), the timers for sending the

packets are random as well as the reattempts. A popular protocol Carrier Sense

Multiple Accesses with Collision Avoidance (CSMA/CA) by IEEE 802.11 [21] is

a listen-before-send protocol: a node senses the channel before sending, if the

channel is idle, it sends the packet. Otherwise, the node awaits the channel being

idle then waits a random (a.k.a. back-off) time that is chosen from the current

contention window. Although the back-off time reduces the probability of two or

more nodes sending at the same time after the channel being idle, it decreases the

channel throughput since the channel is idle while nodes have packets to send.

Further details on the operation of TDMA and CSMA/CA will be discussed in

Chapter 6.

2.3 Reinforcement Learning
RL is an area of machine learning that aims to optimise an agent’s behaviour in
an environment over time. It works by taking actions to maximize the reward in

a particular situation or environment [SB18, Ch. 3]. Unlike supervised learning,

which needs the knowledge about labels or the answer key in advance, RL trains an

agent to learn from trial and error without any prior knowledge about the ground

truth.

The agent’s behaviour, i.e., its translation from states to corresponding actions,

is called a policy and it can be controlled via feedback to the agent. This feedback

is commonly called reward, which is then perceived by the agent. Hence, it makes

it easy for the agent to adapt a policy to different objectives by just updating the

reward. For each action the agent takes, the environment reports back not only the

reward but also the new state.

The concept of an environment is very similar to the concept of an agent. It

also reacts to inputs with certain outputs. In contrast to the agent’s workflow, the

environment will use the agent’s outputs (actions) as input and will feed its outputs

back to the agent as new states. The difference is that the environment’s translation

from inputs to outputs cannot be influenced externally. Therefore, there is also no

reward mechanism involved in the environment.

15

Chapter 2 Background

The rewards can be both good or bad to indicate positive or negative behaviours,

respectively. Using a series of consecutive actions, the agent aims at maximizing

the cumulative discounted reward over time. Note that this is my main objective in

this thesis when using RL, but it is not only the use case.

The learning process relies on a cycle of interactions between the agent and

the environment. At time 𝑡 , the agent observes state 𝑠𝑡 ∈ 𝑆 and performs action

𝑎𝑡 ∈ 𝐴 to receive a reward 𝑟𝑡 and the new state 𝑠𝑡+1. The RL return can be either

episodic or continuous. On the one hand, episodic return has finite number of steps

to calculate the reward. In other words, there is at least one state in 𝑆 as a terminal.

On the other hand, continuous return encounters infinite number of steps, aiming

at maximizing the reward on long term and not just current state. To achieve this,

they both use discounted return 𝑅𝑡 given by

𝑅𝑡 =
1

𝑇

𝑇∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 , (2.1)

where 0 < 𝛾 < 1 is the discount factor.

There are different classifications for reinforcement learning algorithms, such as

model-based vs. model-free [SB18, Ch. 8] and on-policy vs off-policy [SB18, Ch.7].

2.3.1 Model-Based and Model-Free Reinforcement Learning
Model-based RL assumes that an action takes time to be executed, thus the agent uses

this time to simulate a model to learn more about the environment given the previ-

ously taken actions and corresponding rewards. It aims to estimate the transition

probabilities 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 and the corresponding expected reward 𝐸 [𝑟𝑡 |𝑠𝑡 , 𝑠𝑡+1, 𝑎𝑡]
when going from 𝑠𝑡 to 𝑠𝑡+1 via action 𝑎𝑡 .

This becomes impractical when the state and action space is large. Nonetheless,

it is still useful when getting data is expensive and computation does not matter.

Unlike model-based algorithms, model-free RL learns directly by trial and error and

does not require the relatively large memory of a model-based approach. In either

of these models, learning can take place using value-based or policy-based RL.

2.3.2 Value-Based and Policy-Based Reinforcement Learning
Conventionally, RL algorithms consider Markov Decision Problem (MDP) with a

single criterion. For each state 𝑠𝑡 at time instant 𝑡 , an action 𝑎𝑡 is selected based

on a policy 𝜋 (𝑠𝑡). Given the policy value 𝑉 𝜋 (𝑠𝑡) =
∑∞
𝑡=0
𝛾 𝑡𝑟𝑡 , the main objective

is, as stated above, is to maximize the discounted reward 𝑟𝑡 . This is approached

16

Reinforcement Learning Section 2.3

by searching for the optimal policy𝜋∗(𝑠𝑡), defined as the one that maximizes the

policy’s value in each state

Value-based RL uses a value function to represent how “good" it is to be in a

certain situation. I focus here on a specific type of value function known as Q-

Learning, which maps a combination of state and action to a Q-value via a𝑄 (𝑠𝑡 , 𝑎𝑡)
function. Hence, it extends the representation of the value to be for an action at a

particular state.

𝑄 (𝑠𝑡 , 𝑎𝑡) ← 𝑄 (𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 arg max𝑄 (𝑠𝑡+1, 𝑎𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)) , (2.2)

where 𝛼 ∈ [0, 1] is defined as the learning rate; the extent to which Q-values are

updated per each step. Accordingly, the policy 𝜋 is a straight-forward greedy policy:

𝜋 (𝑠) = arg max𝑄 (𝑠𝑡+1, 𝑎𝑡) (2.3)

The fact that Q-Learning relies on a arg max function makes it only applicable

to discrete action space. For a continuous action space, other value-based functions

(e.g., actor-critic function) can be used.

Policy-based RL avoids the problem of finding the action with maximum value

arg max, which makes it popular for continuous action and state spaces. Unlike

Q-Learning, states are mapped to actions directly by means of a function approxi-

mation, without utilising Q-values; it is equivalent to the actor-critic architecture

without a critic. The parameters of the function approximation are updated follow-

ing gradient representing the policy’s performance [PS08].

In this thesis I focus on value-based functions since I use RL with problems that

have discrete action spaces, which is faster in learning (i.e., fewer training steps).

2.3.3 Exploration and Exploitation

Initially, the agent has no knowledge about the environment. The aim when

exploring the environment is to be broad enough not to miss good solutions and

economical in the sense of not requiring too many trials. This results in the

exploration/exploitation dilemma: without exploration, the agent will only choose

the best solution found so far, not learning about potentially better solutions. Too

much exploration leads to a random behaviour without exploiting the available

knowledge. The trade-off between exploration and exploitation is dependent on

the problem definition and must be carefully balanced.

In this thesis Section 4.2, I focus on two variants for exploring the environment;

17

Chapter 2 Background

greedy epsilon and epsilon decay [Mor20, Ch. 4]. Both variants rely on an 𝜖

parameter; a random action is selected (i.e., exploration) with probability 𝜖 . Greedy

epsilon fixes the epsilon parameter over all steps to explore/exploit the environment.

Epsilon decay, on the other hand, initially sets 𝜖 to a high value, meaning that

the agent chooses actions at random to explore the new environment and update

the Q-function. Then, the epsilon’s value decays over time steps to shrink the

exploration rate as the Q-values are refined through several steps, hence, the agent

starts exploiting the learned experience.

2.3.4 Deep Q-Learning

In general, Q-Learning is a tabular method that is applied when states and actions

are in discrete spaces. When the number of states is very large (i.e., large storage is

required) or the states are in continuous space, the table is then replaced by a neural

network (a.k.a Deep Q-Learning) that acts a value function approximation. This is

an example of deepRL, which still guarantees convergence to the optimal solution

in case of a discrete state space [Tes94] (under the assumption that the environment

is static). Meanwhile, for continuous state spaces, it has been shown that even for

simple toy problems, the value function approximations can become unstable and

diverge [BM94]. Hence some techniques were proposed to avoid divergence [Bai95;

Rie05]. In this thesis, I choose the Bellman residual approach [SB18, Ch. 3]. First,

let us parameterize the function approximation with \ so that the optimal value

function 𝑄∗ is given by

arg max

𝑎

𝑄∗(𝑠𝑡 , 𝑎𝑡) ≡ arg max

𝑎

𝑄 (𝑠𝑡 , 𝑎𝑡 ;\ ∗) , (2.4)

where \ ∗ represents the optimal neuron weights. Optimal weights are those that

minimizes the Bellman loss function B

B𝑡 = (𝑟𝑡 + 𝛾𝐸 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1;\𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)])2 (2.5)

Note that the Markov state transition 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is not known in practice (and

in model-free RL), therefore, the expected value 𝐸 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1;\𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)] is
substituted withmax

𝑎
𝑄 (𝑠𝑡+1, 𝑎;\𝑡) to use the sample-gradient instead. This is known

as temporal difference L.

L(𝑡)2 = (𝑟𝑡 + 𝛾 max

𝑎′
(𝑄∗(𝑠𝑡+1, 𝑎′)) −𝑄∗(𝑠𝑡 , 𝑎𝑡))2 (2.6)

After 𝑇 steps, the parameter \ is then given by

18

Reinforcement Learning Section 2.3

\𝑇 = \0 +
𝑇−1∑
𝑡=0

𝛼𝑡∇\B𝑡 (2.7)

where \0 represents the initial assigned weights to the neural network. In Chapter 9,

I extend this analysis to consider the impact of the environment on the convergence.

2.3.5 Multi-Objective Reinforcement Learning

The main difference between a single-objective and a multi-objective RL is the

reward function. In the former, the reward is a numeric feedback 𝑟 → ℝ, while the

latter has a vector of rewards r→ ℝ𝑑
, where 𝑑 is the number of objectives. Hence,

single-objective RL has at least one optimum solution, while multi-objective RL has

a set of solutions, such as convergence set and Pareto front [Roi+14], where it is not

necessarily possible to compare two solutions with respect to a single optimality

criterion.

There are different ways to handle such a case. For example, there could be a

policy (i.e., an agent) for each objective and then based on the user’s preference

or the most dominating agent (whose policy value at a given state is better than

the corresponding policy values of other agents) is selected [WZ15]. In this work,

I use the scalarisation approach [Rad+19]; I reduce the multi-objective reward’s

domain to a single domain: 𝑢
(
ℝ𝑑

)
→ ℝ via a utility function 𝑢. In this thesis, I

use weighted sum rewards since it follows the assumption of additive return in the

Bellman equation Equation (2.5), which is necessary when using RL models like

Q-Learning [RSN20; RWO15].

Accordingly, the utility function computes the product of a weight vector q and

the reward vector r
𝑢 (V𝜋) = qTV𝜋 (2.8)

where the weights q are defined based on the user’s preference.

2.3.6 Constrained Reinforcement Learning

In principle, constrained-RL is a special case of multi-objective RL. Even themethods

used for solving constrained-RL are very similar to multi-objective RL. For example,

the later uses scalarisation for optimizing multiple rewards, while the former

also uses scalarisation methods such as Lagrangian relaxation [Ber99], to handle

multi-dimension objectives. In contrast to multi-objective RL, constrained-RL have

constraints with corresponding thresholds that must not be exceeded.

19

Chapter 2 Background

There are, however, some constrained-RL problems that do not have hard con-

straint thresholds but rather soft-constraints; violating a constraint is undesirable

but not catastrophic [Hua+22]. Another type of RL that also achieves constraint sat-

isfaction is safe-RL, not only in the deployment but also during learning [GFF15a].

In constrained-RL, a second reward function 𝑝 (𝑡) (as defined by [Gei06]) is used

to denote a constrained value function 𝑃𝜋 (𝑠𝑡). Hence, the objective is

max

𝜋
𝑉 𝜋

(2.9)

s.t. 𝑃𝜋 ≤ 𝑃0 (2.10)

where 𝑃0 is an upper-limit bound. There exist multiple approaches for constrained

RL problems [Ach+17; Gei06; GFF15b]. I focus in this thesis on approaches that

can be used in online learning scenarios.

In general, the average value of the second reward function is

E[𝑃𝜋 (𝑠𝑡)] = E
∞∑
𝑡=0

𝛾 𝑡𝑝 (𝑡) ≤ 𝑃0 (2.11)

where 𝑝 (𝑡), 𝑃0 ≥ 0.

Considering constrained-RL with risk-neutral criterion [GFF15b], I can define

the constrained valued function as:

𝑃𝜋 (𝑠𝑡) = max(𝑝, 𝑃𝜋) (2.12)

= max

(
𝑝,E

∞∑
𝑡=0

𝛾 𝑡𝑝 (𝑡)
)

(2.13)

where 𝑝 ≤ 𝑃0. Note that the second value function changes over time. Additionally,

∀𝑠𝑡 , 𝑃𝜋 ≤ 𝑃0 =⇒ E𝑃 (𝑠𝑡) ≤ 𝑃0, but not necessarily the other way around

(⇐=). Hence, the output of this approach could be sub-optimal [Gei06].

Another criterion is the risk-sensitivity. It is a weighted approach that jointly

maximizes the primary reward, while minimizing the second one (i.e., the risk).

This is achieved by introducing an empirical parameter𝑤 (also known as sensitivity

parameter), so that the objective is to maximize the modified reward 𝑔(𝑡), where

𝑔(𝑡) = 𝑟 (𝑡) −𝑤 · 𝑝 (𝑡) . (2.14)

Similar to the risk-neutral criterion, the weighted approach may lead to a sub-

optimal solutions. Moreover, for problems with multi-objective optimization, the

20

Reinforcement Learning Section 2.3

𝑤 in the weighted approach controls (but does not guarantee) the Pareto fron-

tier [KW06]. In Section 8.2, I use constrained RL and show how the sensitivity

parameter can be used to optimize RL performance.

21

Part II

Wireless Virtual Network Embedding

Chapter 2

In this part, I propose to exploit the computation capabilities of the surrounding

smart devices to offload the processing from the cloud server. In this context, a

processing request is broken down into smaller jobs. Hence, I need to answer

the following questions: Which nodes should be selected for processing the jobs

and how is data routed from one job to the next, possibly running on different

nodes? In [AAK18], I provide a formal problem formulation using a mixed-integer

quadratically-constrained optimisation problem. The main highlights of this for-

mulation are that it

• exploits the multi-cast property of the wireless infrastructure for routing and

• allows cycles in the application graph (these cycles are needed for applications

that require feedback loops in their algorithms).

Additionally, a novel embedding heuristic is proposed that uses continued frac-

tion [BT17] for routing. The heuristic showed a close performance to the optimiza-

tion model.

The work in [AK19b] adds power allocation to the problem, yet it simplifies

the formulation to be mixed-integer linear programming (instead of the quadratic

formulation from above). Moreover, the heuristic is simplified to be faster. This

overcomes the limitation, in [AAK18], of evaluating a maximum of 6 wireless

nodes in the infrastructure. The approximation ratio of this heuristic (without

power allocation) has been derived in [AK19a]. Additionally, I compare in the lat-

ter [AK19a] the symbol/packet error rate of the proposed formulation to the related

work. Consequently, I show that the proposed solution performs better because

it considers the SINR (and the resulting collision probability) to change based on

the transmitting nodes, unlike in related work that considers the probability of

collision to be fixed between the nodes.

A meta-heuristic is proposed in [AHK19] using genetic algorithms, which also

performs well compared to the optimization problem. An additional feature com-

pared to the heuristic in [AK19a] is that the genetic algorithm can provide sub-

optimal solutions in case of early termination. This is useful for online optimization

where we may sacrifice optimality to find just feasible solution. Similarly, another

heuristic is proposed in [AK20] using RL. Here, RL is used only for placement,

while shortest-path-first is used for routing. The performance compared to the

optimization model is still good and more importantly, the run-time is much shorter

compared to all other proposed heuristics.

So far we have been dealing with one request at a time. But when the load of

incoming requests to reserve resources increases, it becomes challenging to decide

which requests should be admitted and which one should be rejected. In [ASK21],

25

Chapter 2

I propose an RL solution for admission control that maximizes the acceptance

rate and also consider the requests’ priorities. Then, I show that the RL solution

outperforms a simple first-come-first-serve admission control.

In all of the aforementioned work, I assume that the used MAC protocol is

a collision-free TDMA with perfect synchronization. But TDMA is not popular

within wireless sensor networks protocols due to its signalling overhead compared

to CSMA/CA protocols, despite their potential collisions. Yet, since synchronization

is also an issue for distributed microphones in acoustic sensor networks, what if we

use the synchronization from the acoustic applications to synchronize the wireless

transmission? That way, we could have the benefits of a collision-free TDMA

without its overhead – but only if the acoustic synchronization is good enough to

keep collisions probability reasonably small. In [Afi+22], I investigate the probability

of collision due to synchronization error when using acoustic synchronization.

Additionally, I compare the throughput to that of CSMA/CA and show that using

TDMA – synchronized via acoustic applications – yields a higher throughput than

CSMA/CA.

26

3 Optimization Problems
for Resource Allocation

Embedded devices have evolved from processing-limited units to computing devices

capable of doing heavy processing. Accordingly, wireless sensor nodes benefit from

such evolution by relying on on-device processing [Qua19]. For instance, mobile

phones are attached to many sensors (e.g., microphones, cameras, GPS, etc.), and

many home appliances are supported with wireless connectivity and connected to

sensors (e.g., light, motion and electrical sensors). A common property for all of

these devices is that they are running open-source firmware or supported with APIs,

which allows us to add extra functions for data processing, rather than limiting

their functionalities to data collection.

This idea of in-network processing has been considered in WSNs before but

typically for much simpler applications than signal processing applications (be it

acoustic or otherwise). Typically, only simple aggregation functions and low data

rates were investigated [LFZ13; PAA19]. The scenario here is more challenging as

the processing requirements of signal processing jobs can differ substantially, as do

data rate and delay requirements between them.

A similar idea of in-network processing is currently considered in the context of

Network Function Virtualization (NFV), coming from wired networks. Solutions

from that field are not easily applicable due to the inherently different characteristics

of wired and wireless networks. Just to name a few: in wired networks, paths

between the nodes have dedicated bandwidth while all nodes in wireless networks

share the same bandwidth. Hence, wireless networks have an extra challenge

since they need to handle interference from simultaneously transmitting nodes.

Nevertheless, sharing the medium can be an opportunity, since it allows using multi-

cast transmissions, which is not popular (nor recommended) in wired networks.

Formally, the problem is related to virtual network embedding (VNE) [Fis+13]:

given a wireless network modelled as an infrastructure graph and a distributed

application modelled as an application graph, map the jobs of the application

to nodes of the infrastructure and map links of the application to paths in the

infrastructure, under typical node and link capacity constraints. Figure 3.1 illustrates

an example scenario for the differences: The signal processing jobs 1, 2, and 3 are

mapped to the nodes A, C, and D, respectively; job 1 sends the same data to jobs 2

and 3, which might be exploited by cleverly multicasting from B.

The main difference between wired and wireless VNE arise from the wireless

27

Chapter 3 Optimization Problems for Resource Allocation

(a) Application graph.

1
2

3

(b)Multicast in infrastructure.

Figure 3.1: VNE maps processing jobs to nodes.

�

�

�

�

(a) Application graph.

�

�

�

�

(b)Wired VNE.

�

�

�

�

(c) Wireless VNE.

Figure 3.2: Wired vs. wireless virtual network embedding.

28

Optimization Problems for Resource Allocation Chapter 3

Table 3.1: Summary of wireless VNE

VNE Shared medium Multicast wireless parameter

[BAD14] single link embedding yes No time and frequency

[Sel+17] only link embedding yes No stochastic data rate per path

[Abd+16a] Node and link embedding limited to direct

nodes

No fixed bandwidth per path

[Rig+16] Node and link embedding limited to receiv-

ing nodes and not

interfering nodes

No fixed bandwidth per node

[SAC13] Node and link embedding yes No SINR between the nodes

[Li+16] Node and link embedding yes No SINR between the nodes

[Lv+12] Only a single multi-cast no multi-

hop jobs

No Yes fixed paths reliability between the nodes

[Gao+15] Only a single multi-cast, no multi-

hop jobs

No Yes fixed paths reliability between the nodes

[Li+17] Node and link embedding No Yes fixed delay per path

nature when one active path interferes on neighbouring nodes [BAD17]. This fact

was compensated for in [BAD14][Sel+17] by assuming a perfect interference can-

cellation mechanism running at nodes. But such perfect interference cancellation

is not necessarily available in WSNs, making this approach not directly applicable.

The work in [Abd+16a][Rig+16] also studied the wireless VNE problem, but they

assumed a limited interference model, only neighbours who directly connect to a

node are considered to be interfering with this node. However, when nodes operate

in the same collision domain (i.e., same space, spectrum, time), this assumption

oversimplifies the problem due to two reasons. First, the interference of one path

on its neighbours may break the connectivity of neighbours’ paths. Second, even

nodes that do not have a direct connection still contribute to the interference.

Although the authors of [SAC13] [Li+16] considered interference from all neigh-

bouring nodes when assigning jobs to node, their network flow model follows the

flow conservation rule, ignoring the wireless multicast advantage.

In [Lv+12], the authors proposed a heuristic solution for the wireless multicast

problem, while in [Gao+15] the authors proposed an exact MILP formulation for a

multi-cast VNE problem. However, neither solution directly supports multi-hop

paths. This is rectified by the authors of [Li+17] who formulated the multi-hop

paths using a non-linear formulation. Nevertheless, they all assumed that the packet

loss ratio for each wireless path is fixed; overlooking the dependency between

packet loss ratio and the signal to interference noise ratio (SINR). I summarize the

related work in Table 3.1.

29

Chapter 3 Optimization Problems for Resource Allocation

3.1 Placement, Routing and Scheduling

The following formulation and results are inherited from [AAK18].

The infrastructure represents the physical network consisting of multiple nodes

with wireless connectivity, where multiple application may run on a single in-

frastructure. The infrastructure graph is defined as 𝐺𝐼 = (𝑉 ,𝑇 , 𝛤 ,𝐶, SINR𝑡ℎ, 𝑁𝑜).
Each node 𝑣 ∈ 𝑉 has a capacity 𝑐𝑣 = 𝐶 (𝑣) (representing resources such as memory

and CPU). Moreover, I define

[
𝑣src1

. . . 𝑣src𝑀

]
and 𝑣sink for𝑀 sources and a sink node,

respectively. The former can sense input signals (e.g., via a microphone); the latter

is a gateway node. Later on in Chapter 8 I look into how to select this set of sources

when there are multiple available ones.

For simplicity, all nodes transmit with the same transmission power, and have

an identical normalized noise floor 𝑁0. The transmission power assumption will be

generalized in Section 3.2. The matrix 𝛤 contains the long-term average, slowly

varying attenuation 𝛾𝑣,𝑣 ′ between any two nodes (𝑣, 𝑣′); 𝑣 ≠ 𝑣′. I assume central

knowledge of 𝛤 , updated within its coherence time, and consider potential fast-

fading phenomenon to be handled by lower-layer mechanisms.

A time-slotted model is assumed where transmissions take place in distinct time

slots 𝑡 ∈ 𝑇 grouped into time frames; |𝑇 | is the maximum number of slots in a

time frame. Consequently, a time frame is the duration a node has to wait before it

can send again. All nodes are perfectly synchronized to these slots. For a node to

receive at time slot 𝑡 at a given, desired transmission rate 𝑅 bit/s , its SINR must

exceed a given threshold SINRth to enable transmission at negligible error rate. We

only consider a single transmission rate here; this is not difficult to generalize.

The application graph denotes the distributed application as a directed graph

𝐺𝑂 = (𝑃, 𝐿,𝑊). Each processing job 𝑝 ∈ 𝑃 requests node resources given by

𝑤𝑝 =𝑊 (𝑝). Job 𝑝 sends the same data to all its successors 𝑝′with (𝑝, 𝑝′) ∈ 𝐿 ⊂ 𝑃× 𝑃 .
A link (𝑝, 𝑝′) needs a data rate of at most 𝑅/|𝑇 | bit/s; this effectively means that a

link can be scheduled in a single time slot per time frame. Extending this model

to different link rates and spreading one transmission over multiple time slots

or grouping links in a time slot is not difficult but requires notation that is a bit

cumbersome. As this would detract from the core points here, I will focus on the

scenario at hand. Similar to the infrastructure graph, I define

[
𝑝src1

. . . 𝑝src𝑀

]
and

𝑝end as the𝑀 source and sink jobs of the application. The source jobs are assigned

to the predefined source nodes and the sink job is assigned to the sink node, so that

they define the start and end points of the traffic flow of the application graph

The task is now to map jobs to nodes and overlay links to infrastructure paths.

For job mapping, typical capacity constraints hold (Section 3.1.1). For link mapping,

30

Placement, Routing and Scheduling Section 3.1

A B

C

D

1 2

3

(a) Flow conservation

1 2

31
1

1

(b) Unwanted loops

Figure 3.3:Wireless-VNE flow challenges

one would be tempted to use common flow conservation constraints: a node’s

incoming paths equals its outgoing ones unless a job is placed on this node.

However, this would not do justice to the goal of leveraging multicast. Let us

reconsider Figure 3.1. Node B receives one flow from A but has to forward it to C

and D. Under the flow conservation rule, it could only do that if it received the flow

from A twice, but that is wasteful (Figure 3.3 (a)). Hence, we have to loosen the

flow conservation restriction by allowing a node to forward at least as much traffic

as it has received.

This relaxation, however, ensues an unfortunate consequence. Consider Fig-

ure 3.3 (b), which shows a loop of job’s A traffic being forwarded among nodes D,

E, and F. While conventional flow conservation rules would prevent such a loop (as

block 3 on D would remove this flow), under this relaxed rule, this loop is consistent

with all constraints (say, node D receives flow 1, pushes it into its job 3 but D also
forwards it to F; flow 1 at E and F is balanced). Hence, I need to come up with

additional constraints to prevent such loops. In doing so, I also have to deal with

loops deliberately created in the overlay graph (Figure 3.4).

𝑏𝑠𝑟𝑐 1 2

3

4 5 𝑏𝑠𝑖𝑛𝑘

Figure 3.4: Overlay graph from acoustic signal processing [Sch+17a] with a loop from

block 5 to 2

31

Chapter 3 Optimization Problems for Resource Allocation

3.1.1 Optimisation Problem

This section formalises the above model as an optimisation problem. I target

multicast flow embedding in combination with virtual network embedding, where

multiple outputs of the same job have the same traffic. In order to focus on this

feature, I ignore the fact that multiple outputs from a job may carry different traffic.

The VNE solution is not concerned with scaling out of processing jobs, and allows

multiple jobs to be placed on same nodes (many to one) but not vice versa (one to

many; an application job cannot be automatically distributed over multiple nodes).

Decision variables

Given the infrastructure and application graphs, I use a binary variable \ ∈ 𝛩 =

𝑃 ×𝑉 for placing a job 𝑝 on an actual node 𝑣.

Additionally, I use a binary variable 𝑓 ∈ 𝐹 = 𝑃 × 𝑉 × 𝑇 to indicate if the

output traffic of job 𝑝 is either originated or forwarded by node 𝑣 at time slot 𝑡

(𝑓 (𝑝, 𝑣, 𝑡) = 1).

The binary variable 𝑠 ∈ 𝑆 = 𝑉 × 𝑉 × 𝑃 ×𝑉 ×𝑇 is used for scheduling and path

routing; 𝑠 (𝑣1, 𝑣2, 𝑝, 𝑣3, 𝑡) = 1 if and only if node 𝑣1 is sending to 𝑣2 at time slot 𝑡 the

output traffic of job 𝑝 , which is placed on node 𝑣3. Otherwise, 𝑠 (𝑣1, 𝑣2, 𝑝, 𝑣3, 𝑡) is
equal to 0.

In fact, 𝑠 fully determines \ and 𝑓 , which are mostly for conceptual and notational

convenience. For additional convenience, I use a binary variable 𝛽 ∈ 𝐵 = 𝑇 to

indicate if a time slot 𝑡 is used or not.

Constraints

I group the constraints into four main groups. First, I define variable interdepen-
dency between 𝑠 , 𝑓 , and 𝛽 (variables 𝑠 and \ are coupled via the flow constraints

later on). The relationship 𝑓 (𝑝, 𝑣, 𝑡) > 0⇔ ∑
𝑣𝑖∈𝑉 \𝑣

∑
𝑣 𝑗∈𝑉 𝑠 (𝑣, 𝑣𝑖, 𝑝, 𝑣 𝑗 , 𝑡) > 0∀𝑝, 𝑣, 𝑡

is expressed by the constraints (3.1) and (3.2) by means of a big-M construction. In

other words, 𝑓 (𝑝, 𝑣, 𝑡) = 1 if and only if 𝑠 (𝑣, 𝑣𝑖, 𝑝,𝑣 𝑗 , 𝑡) = 1. Similarly, (3.3) and (3.4)

expresses 𝛽 (𝑡) > 0⇔ ∃𝑣𝑖, 𝑣 𝑗 , 𝑣𝑘 , 𝑝 : 𝑠 (𝑣𝑖, 𝑣 𝑗 , 𝑝, 𝑣𝑘 , 𝑡) > 0∀𝑡 . So that 𝛽 (𝑡) = 1 if and

only if 𝑠 (𝑣, 𝑣𝑖, 𝑝, 𝑣 𝑗 , 𝑡) = 1

∑
𝑣𝑖 ∈𝑉 \𝑣

∑
𝑣𝑗 ∈𝑉

𝑠 (𝑣, 𝑣𝑖 , 𝑝, 𝑣 𝑗 , 𝑡) − 𝑓 (𝑝, 𝑣, 𝑡) ≥ 0,
∀𝑣∈𝑉
∀𝑝∈𝑃
∀𝑡 ∈𝑇

(3.1)∑
𝑣𝑖 ∈𝑉 \𝑣

∑
𝑣𝑗 ∈𝑉

𝑠 (𝑣, 𝑣𝑖 , 𝑝, 𝑣 𝑗 , 𝑡) −M · 𝑓 (𝑝, 𝑣, 𝑡) ≤ 0,
∀𝑣∈𝑉
∀𝑝∈𝑃
∀𝑡 ∈𝑇

(3.2)

32

Placement, Routing and Scheduling Section 3.1

∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈𝑉

∑
𝑝∈𝑃

∑
𝑣𝑘 ∈𝑉

𝑠 (𝑣𝑖 , 𝑣 𝑗 , 𝑝, 𝑣𝑘 , 𝑡) −M · 𝛽 (𝑡) ≤ 0 ∀𝑡 ∈ 𝑇 (3.3)∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈𝑉

∑
𝑝∈𝑃

∑
𝑣𝑘 ∈𝑉

𝑠 (𝑣𝑖 , 𝑣 𝑗 , 𝑝, 𝑣𝑘 , 𝑡) − 𝛽 (𝑡) ≥ 0 ∀𝑡 ∈ 𝑇 (3.4)

Second, I ensure node mapping and adequate wireless communication in con-

straints (3.5) – (3.8).

In (3.5) and (3.6), I ensure that a job is placed only once and the nodes’ capacity

constraints are not violated, respectively. Since I assume unit data rate between

jobs, (3.7) ensures that only one job’s traffic is sent by a node in one time slot. Also,

a node is allowed either to transmit or receive in a given time slot (i.e., half-duplex

radios). In (3.8), I have the only quadratic constraint, which allows transmissions

from node 𝑣 to 𝑣′ if the SINR at 𝑣′ is bigger than or equal to SINRth. In this check, I

consider interference from all nodes except the transmitting node 𝑣.

∑
𝑣∈𝑉

\ (𝑝, 𝑣) = 1, ∀𝑝 ∈ 𝑃 (3.5)∑
𝑝∈𝑃

\ (𝑝, 𝑣) ·𝑤𝑝 ≤ 𝑐𝑣, ∀𝑣 ∈ 𝑉 (3.6)∑
𝑝∈𝑃

𝑓 (𝑝, 𝑣, 𝑡) +
∑
𝑣𝑖 ∈𝑉

∑
𝑝∈𝑃

∑
𝑣𝑗 ∈𝑉

𝑠 (𝑣𝑖 , 𝑣, 𝑝, 𝑣 𝑗 , 𝑡) ≤ 1,
∀𝑣 ∈ 𝑉
∀𝑡 ∈ 𝑇 (3.7)

∑
𝑝∈𝑃

∑
𝑣𝑖 ∈𝑉

𝑠 (𝑣, 𝑣 ′, 𝑝, 𝑣𝑖 , 𝑡) · SINRth ≤
∑

𝑝∈𝑃
∑

𝑣𝑖 ∈𝑉 𝑠 (𝑣, 𝑣 ′, 𝑝, 𝑣𝑖 , 𝑡)
𝑁𝑜 + 𝐼 (𝑣, 𝑣 ′)

,

where 𝐼 (𝑣, 𝑣 ′) =
∑
𝑝∈𝑃

∑
𝑢∈𝑉
𝑢≠𝑣

𝑓 (𝑝,𝑢, 𝑡) · 𝛾𝑢,𝑣′,
∀𝑣, 𝑣 ′ ∈ 𝑉
∀𝑡 ∈ 𝑇 (3.8)

Third, I check flow constraints in the infrastructure graph. I consider in these

constraints the mapping of the application’s links 𝑙 = (𝑝1, 𝑝2) to a path between

nodes.

Constraint (3.9) checks that a node 𝑣 has received 𝑝1’s traffic, irrespective from

which node 𝑣𝑖 , before placing 𝑝2 on node 𝑣. For flow control, (3.10) ensures that

when node 𝑣 receives 𝑝1’s traffic, it will either forward this traffic or place 𝑝2 on

𝑣. Conversely, (3.11) allows node 𝑣 to send job 𝑝’s traffic only if 𝑣 has received 𝑝’s

traffic or 𝑝 is placed on 𝑣. Note that when not supporting multicast, these three

inequalities collapse into one equality constraint.

∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈𝑉

∑
𝑡 ∈𝑇

𝑠 (𝑣𝑖 , 𝑣, 𝑝1, 𝑣 𝑗 , 𝑡) − \ (𝑝2, 𝑣) ≥ 0,
∀𝑣 ∈ 𝑉

∀(𝑝1, 𝑝2) ∈ 𝐿
(3.9)

33

Chapter 3 Optimization Problems for Resource Allocation

∑
𝑣𝑖 ∈𝑉

∑
𝑡 ∈𝑇

𝑠 (𝑣𝑖 , 𝑣, 𝑝1, 𝑣 𝑗 , 𝑡) −
∑

(𝑝1,𝑝2) ∈𝐿
\ (𝑝2, 𝑣)

−
∑

𝑣𝑖 ∈𝑉 \𝑣

∑
𝑡 ∈𝑇

𝑠 (𝑣, 𝑣𝑖 , 𝑝1, 𝑣 𝑗 , 𝑡) ≤ 0,
∀𝑣, 𝑣 𝑗 ∈ 𝑉
∀𝑝1 ∈ 𝑃

(3.10)∑
𝑣𝑖 ∈𝑉

𝑠 (𝑣, 𝑣𝑖 , 𝑝, 𝑣 ′, 𝑡)

−M
∑

𝑣𝑖 ∈𝑉 \𝑣

∑
𝑡𝑖 ∈𝑇

𝑠 (𝑣𝑖 , 𝑣, 𝑝, 𝑣 ′, 𝑡𝑖) −M\ (𝑝, 𝑣) ≤ 0,
∀𝑣,𝑣′∈𝑉
∀𝑝∈𝑃\𝑝

sink

∀𝑡 ∈𝑇
(3.11)

Fourth, I need to exclude loops as in Figure 3.3 (b) (page 31). In that figure,

e.g. 𝐹 cannot really send to 𝐸 the traffic originated by job 1 on A – because there

is no active path via which 𝐹 could receive 1’s traffic. Checking whether such a

path exists is not obvious. Constraints for a maximum path length of 1 are easy to

write down; it gets more and more complex the longer I allow the paths to become.

Hence, lest I have to write down all these constraints manually, I use Algorithm 1

to construct these constraints systematically.

Algorithm 1’s goal is to generate a constraint expressing whether a node 𝑣start has

received job 𝑝’s traffic originating from node 𝑣. To do so, it generates all possible

infrastructure paths from 𝑣 to 𝑣start via a depth-first search (DFS). For each path, a

conjunctive constraint is produced to check whether each node on this path has

received this traffic. Then, I need to check whether at least one of all these paths

does carry the traffic; this is expressed by a disjunction of these conjunctions.

The challenge to expressing conjunctions and disjunctions is to find a linear

form for it. A conjunction between variables 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 (with 0=False and True,

otherwise) can be expressed as
1

2
𝑛 +

∑𝑛
𝑖=1

𝑥𝑖
2
𝑖 ≥ 1. A disjunction corresponds to

1

2
+∑𝑛

𝑖=1

𝑥𝑖
2
≥ 1.

In the present case, 𝑥𝑖 corresponds to the fact that a node 𝑣2 receives a particular

job 𝑝’s traffic (placed at some 𝑣) from a neighbour 𝑣1, irrespective of the time slot.

This corresponds to

∑
𝑡∈𝑇 𝑠 (𝑣1, 𝑣2, 𝑝, 𝑣, 𝑡) being zero or larger. These sums have

to be computed, for every 𝑝 , for (𝑣1, 𝑣2) along all possible paths starting from a

particular node 𝑣start under consideration to 𝑝’s hosting node (i.e., 𝑣). This happens

by calling Algorithm 1 recursively with parameters (𝑣start, 𝑣end, 𝑝, 𝑣, visitedNodes, 𝑟).
visitedNodes represents nodes on the currently considered path from 𝑣start to 𝑣; 𝑟 is

the recursively constructed conjunction along this path. Algorithm 1 constructs

the conjunction sum as a continued fraction, which is simpler to do in a recursive

algorithm. It produces the terms stated above. For details, please see the listing of

Algorithm 1.

The result of this algorithm, called for all node combinations, is then forming

the following constraint:

34

Placement, Routing and Scheduling Section 3.1

trackFlow(𝑣start, 𝑣end, 𝑝, 𝑣, {𝑣start, 𝑣end}, 1)
∀𝑣start∈𝑉 \𝑣end

∀𝑣
end
∈𝑉 \𝑣start

∀𝑝∈𝑃
∀𝑣∈𝑉 \{𝑣start,𝑣end

}
∀𝑡∈𝑇

− 𝑠 (𝑣start, 𝑣end, 𝑝, 𝑣, 𝑡) ≥ 0 (3.12)

The initial value of 𝑟 is equal to one and any new path updates 𝑟 as follows

𝑟new =
𝑟+𝑥𝑖

2
. Consequently, the value of 𝑟 falls in range [0, 1].

Figure 3.5 depicts the algorithm’s progress. Given 4 fully connected nodes, I

check if node A (i.e., 𝑣start) can send to node B (i.e. 𝑣end) traffic of job 𝑝 that is

originated by node C (i.e. 𝑣). There are two available routes from 𝐶 to 𝐴 (directly

and via𝐷), but only one route may be selected so that they do not conflict with (3.10)

and (3.11). Each route’s availability is characterised by the fractional terms on the

right.

Algorithm 1: trackFlow function

Input :𝑣1, 𝑣2, 𝑝 , 𝑣, visitedNodes, 𝑟

Result: Constraint for possible paths in a DFS tree

1 if 𝑣1 = 𝑣 then
2 return

∑
𝑡∈𝑇 𝑠 (𝑣1,𝑣2,𝑝,𝑣,𝑡)+𝑟

2

3 visitedNodes = visitedNodes+{𝑣1}
4 sum = 0

5 foreach 𝑣𝑖 ∈ 𝑉 \ visitedNodes do
6 𝑟new =

∑
𝑡∈𝑇 𝑠 (𝑣𝑖 ,𝑣1,𝑝,𝑣,𝑡)+𝑟

2

7 sum = sum + trackFlow (𝑣i,𝑣1, 𝑝, 𝑣,visitedNodes,𝑟new)

8 return sum

3.1.2 Objective

The objective is to minimize the number of used time slots; min

∑
𝑡∈𝑇 𝛽 (𝑡). This

reflects latency requirements of typical signal-processing or real-time applications.

35

Chapter 3 Optimization Problems for Resource Allocation

Figure 3.5: Example for Algorithm 1: 𝑝 is placed on 𝐶 , can 𝐴 send to 𝐵 the traffic of 𝑝

originated by 𝐶?

3.1.3 A Backtrack Heuristic

Overview

The core idea is to start from any of the source jobs, progress from one application

link to another in a topological order, mapping the link to a path in the infrastructure

and mapping jobs to nodes in the same step. More precisely, when we map a link

(𝑝1, 𝑝2), there are two cases: (1) The receiving job has already been placed, then

link mapping just means finding a path between the two nodes hosting 𝑝1 and 𝑝2.

(2) If 𝑝2 is not yet placed, I also have to find a hosting node for 𝑝2, jointly with

finding a path towards that node.

We can hence think about this as (an application graph) a link mapping problem,

where we progress from link to link. Whenever a link has been mapped, we have

choices for mapping the next link (to different paths, or to different nodes and paths).

This is a search problem in a tree of possible link mapping decisions. A sequence

of link mapping decisions that maps all links constitutes a feasible solution.

A brute-force algorithm to find the optimal solution would have to explore this

tree in its entirety. This is clearly not feasible. Hence, I introduce three control

mechanisms to limit the search space: lookahead, backtracking, and degree of this

search tree.

36

Placement, Routing and Scheduling Section 3.1

A

BCD

ABD

22
1

344

(a) 1-level lookahead

A

BCD

ACDABDABC

22
1

4
34344544

(b) 2-level lookahead

Figure 3.6: Looking ahead in the link mapping search tree (dashed boxes indicate levels of

decision making)

Lookahead level

Suppose we have committed to the mapping of a link 𝑙1. To determine how to

map the next link 𝑙2, we could just look at the options for this link and pick the

best possible option. In addition, we could also look ahead: I consider all possible
options for mapping the next level many links, exploring an entire subtree. Among

those possible mapping combinations, I choose the best one and map level many

links in a single step. Figure 3.6 shows examples for 1-level and 2-level lookahead

mapping (note that numbers in these figures indicate the total number of used time

slots and the circles are link mappings, not nodes!). When level equals the number

of links, this scheme degenerates into exhaustive brute-force search.

Limit tree degree

As a second parameter, I limit the degree of the link mapping search tree. When

mapping a link (𝑝1, 𝑝2) with 𝑝1 hosted on 𝑣1, and trying to find a node 𝑣2 to host

𝑝2, I only look at the 𝑘 neighbors of 𝑣1 with best attenuation values.

Backtracking

Suppose we have mapped level many links and try to find a solution for the next

level links. What happens if no feasible solution can be found? As is typically done,

I backtrack, reject the decisions taken for the previous mapping of level many links,

and start again with the remaining best solution. This is illustrated in Figure 3.7.

37

Chapter 3 Optimization Problems for Resource Allocation

(a) Mapping failed

No Feasible Solution Found

C

BCD
55 4

A

BCD

ACDABDABC

22
1

4
34344544

A

BCD

ACDABDABC

55 4

7
67678788

(b) Restarting after backtracking

Figure 3.7: Backtracking in the link mapping search tree

4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

Nodes

T
i
m
e
/
s

k=3

k=6

k=all

(a) 𝑘 execution time

4 6 8 10 12

0

5

10

15

20

25

Nodes

T
i
m
e
/
s

lookakead=1

lookakead=2

lookakead=3

(b) n-level execution time

Figure 3.8: Execution time for different configuration

38

Placement, Routing and Scheduling Section 3.1

4 6

0

50

100

Nodes

H
e
u
r
i
s
t
i
c
G
a
p
(
%
)

k=3 k=6 k=all

Figure 3.9: 1-level gap

4 6

0

50

100

Nodes

H
e
u
r
i
s
t
i
c
G
a
p
(
%
)

k=3 k=6 k=all

Figure 3.10: 2-level gap

4 6

0

50

100

Nodes

H
e
u
r
i
s
t
i
c
G
a
p
(
%
)

k=3 k=6 k=all

Figure 3.11: 3-level gap

39

Chapter 3 Optimization Problems for Resource Allocation

4 6 8 10 12

0

2

4

6

Nodes

T
i
m
e
s
l
o
t
s

k=3 k=6 k=all

(a) 1-level used slots

4 6 8 10 12

0

2

4

6

Nodes

T
i
m
e
s
l
o
t
s

k=3 k=6 k=all

(b) 2-level used slots

4 6 8 10 12

0

2

4

6

Nodes

T
i
m
e
s
l
o
t
s

k=3 k=6 k=all

(c) 3-level used slots

Figure 3.12: Average number of used slots using the heuristic algorithm

40

Placement, Routing and Scheduling Section 3.1

3.1.4 Evaluating Backtracking Heuristic

Given the optimal solution, my main objective here is to evaluate the performance

of the heuristic solution in terms of execution time and the optimality gap.

Scenario

The exact formulation is solved using Gurobi Optimizer 7.5; the heuristic is im-

plemented in Python. All simulations were executed in single-threaded mode on

Intel Xeon X560 cores running at 2.67 GHz. The simulated environment consists

of a room with area 25 × 25 m
2
, where nodes are placed uniformly at random,

independently from each other. The attenuation between two nodes 𝑣, 𝑣′ ∈ 𝑉 is

given by 𝛾𝑣,𝑣 ′ =
1

𝑑2

𝑣,𝑣′
, where 𝑑𝑣,𝑣 ′ is the distance between the two nodes.

I vary the number of nodes and run 50 independent realizations for each number

of nodes. In each realization, node capacities 𝑐 are uniformly distributed 𝑐 (𝑣) ∼
𝑈 (max(𝑤𝑝),

∑
𝑝∈𝑃 𝑤𝑝), ensuring that each node can at least host even the heaviest

job. Furthermore, 𝑣src and 𝑣sink nodes are picked randomly per realization.

I choose a generic algorithm from the field of acoustic signal processing for

the application graph [Sch+17a]; a typical algorithm used for synchronizing the

clocks of wireless microphones. Figure 3.4 depicts the application graph with 5 jobs

equally weighted 𝑤𝑝 = 𝑤𝑜 . I add two artificial jobs 𝑝src and 𝑝sink to assign to 𝑣src

and 𝑣sink; 𝑤𝑝src
= 𝑤𝑝

sink
= 0. The overlay graph has a typical use case for multi-cast

routing between blocks 2–3 and 2–4, and a feedback from nodes 5 to 2.

Execution Time

Figures 3.8 (a) and 3.8 (b) evaluate the heuristic’s median runtime for different

configuration setups. First, in Figure 3.8 (a), I set the lookahead level to 1 and

vary the search tree degree 𝑘 between 3, 6, and all neighbours. It is observed that

the runtime increases exponentially in the number of nodes. Moreover, limiting

the search space to 𝑘 neighbours reduces the execution time significantly as 𝑘

decreases.

I investigate the impact of increasing the lookahead level in Figure 3.8 (b). I

observe that increasing the level from 1 to 2 has a higher impact than increasing the

number of neighbours 𝑘 . The median execution time (over 50 runs) of the solver

for an optimal solution is 140 seconds for 4 nodes and 2564 seconds for 6 nodes.

Therefore, I limit the exact model’s evaluation to 6 nodes.

41

Chapter 3 Optimization Problems for Resource Allocation

Schedule length: Heuristic vs. optimal solution

I compare the heuristic and the exactmodel via the approximation ratio

∑
𝑡 ∈𝑇 𝛽ℎ (𝑡)−

∑
𝑡 ∈𝑇 𝛽𝑜𝑝𝑡 (𝑡)∑

𝑡 ∈𝑇 𝛽𝑜𝑝𝑡 (𝑡) ,

where

∑
𝑡∈𝑇 𝛽ℎ (𝑡) and

∑
𝑡∈𝑇 𝛽opt(𝑡) are the heuristic and optimal (with no gap) solu-

tion’s schedule length per realization.

In Figures 3.9 and 3.10, I show the 95% confidence interval for the mean gap

with 4 and 6 nodes for different 𝑘 . When using 1-level lookahead (in Figure 3.9),

2-level (in Figure 3.10) and 3-level (in Figure 3.11)

First, when the number of nodes is 4 and for every 𝑘 , the 1-level lookahead
has lower (better) gap than 2-level. Hence, increasing the level number does not

necessarily yield fewer time slots (except when level = |𝐿 | ↔ brute-force).

Although the heuristic gap increases for 2-level lookahead, limiting the number

of neighbors 𝑘 = 3 has a lower heuristic gap for 4 nodes. The reason is the random

selection during early link mapping, when two or more mappings give the same

minimal additional number of time slots. Yet progressing with link mapping may

yield higher time slots, (which is not anticipated with low lookahead levels). As the

search space shrinks (i.e., decreasing 𝑘), such randomness becomes more guided

towards nearby nodes. Another way of mitigating such behavior may be increasing

the lookahead level to anticipate future embedding in the application graph. As

seen in Figure 3.11 the heuristic gap decreases for both 4 and 6 nodes compared to

Figure 3.10.

Schedule length in large scenarios

I further investigate the schedule length using the heuristic for many nodes. Fig-

ures 3.12 (a) and 3.12 (b) show that (a) the average schedule length does not change

significantly with the number of nodes, (b) the level number has an impact; 1-level
has smaller mean gap than 2-level lookahead. This confirms our hypothesis in

Section 3.1.4: increasing the level number does not have to yield a better solution.

Furthermore, I observe that limiting 𝑘 yields (in most cases) a shorter schedule. An

exception would be in Figure 3.12 (a), 𝑘 = 6 and 14 nodes yields longer schedules

than considering all neighbouring nodes.

A utilized node is a node that hosts a job or that is just being used for traffic

forwarding. Figures 3.13 (a) and 3.13 (b) show the number of utilized nodes for

different number 𝑘 of considered neighbours and lookahead level configurations.
In Figure 3.13 (a), 1-level backtrack is used while considering all, 6 and 3 nearest

neighbours. Similarly, in Figure 3.13 (b), I repeat the same experiment, but using

2-level backtrack.
As seen in both Figures 3.13 (a) and 3.13 (b), there is no clear interdependency

42

Power Allocation Section 3.2

between the number of used nodes and the available nodes in the substrate network.

Moreover, neither parameter, level and 𝑘 , has a significant impact on the number of

utilized nodes. Hence, increasing the degree number does not have to yield lower

number of utilized nodes.

To sum up, I introduced a new formulation for the wireless VNE problem, suitable

for multicast multi-hop environments. Since optimally solving such a problem is

time consuming, I also proposed a heuristic algorithm that can be controlled using

two parameters; level and k nearest neighbours. Changing both parameters can

have a significant impact on the execution time, especially for the level parameter.

Reducing the search space to the nearest k-neighbours does not have a substantial

impact on the number of used time slots.

A typical use case of such analysis is for applications with fast embedding

requirements. I have shown that the heuristic can get acceptable results using a

setup that requires low execution time. In this case, a quick solution can be found

for the wireless VNE problem. Then, it can be optimized by changing the level and

k-neighbours parameters if more time is provided

3.2 Power Allocation
Earlier, I assumed that all nodes operate in the same collision domain. Meanwhile,

using power control may allow to achieve more feasible results [AK19b]. Here, I

reformat the optimization problem to be simpler and include power allocation. The

simplicity comes from removing the continued fractionmethod and introducing two

more decision variables ℎ and _, and redefining 𝑓 (see Table 3.2), so that the resulted

formulation is an MILP instead. The latter offers less complexity. The continued

fraction solution requires less number of variables and more constraints, created by

the continued fraction algorithm. This can find faster solution when using search

techniques such as branch and bound. But, I need to highlight that creating this

constraints also take some time which increases the complexity of creating the

problem itself, especially with high number of nodes and links. Accordingly, the

proposed formulation in this chapter is better to save resources. To include power

control, the decision variable 𝜔 is introduced, yet the formulation then reverts back

to an MIQP.

3.2.1 Constraints
I group the constraints into three main groups so that I highlight here only the

substantially new ones compared to Section 3.1.1. First, I define variable interde-

43

Chapter 3 Optimization Problems for Resource Allocation

4 6 8 10 12

0

2

4

6

Nodes

U
t
i
l
i
z
e
d
N
o
d
e
s

k=3 k=6 k=all

(a) 1-level backtrack

4 6 8 10 12

0

2

4

6

Nodes

U
t
i
l
i
z
e
d
N
o
d
e
s

k=3 k=6 k=all

(b) 2-level backtrack

4 6 8 10 12

0

2

4

6

Nodes

U
t
i
l
i
z
e
d
N
o
d
e
s

k=3 k=6 k=all

(c) 3-level backtrack

Figure 3.13: Number of used nodes using n-level backtrack

Table 3.2: Summary of Variables.

Variable Description

𝑓 (𝑣, 𝑡) ∈ {0, 1} to determine if node 𝑣 is transmitting

at time slot 𝑡

ℎ(𝑣1, 𝑣2, 𝑏𝑝) ∈ ℕ to determine how many blocks needs to

receive the 𝑏𝑝 when node 𝑣1 sends it to 𝑣2

_(𝑣, 𝑣′, 𝑡) ∈ ℤ+⋃ 0 a McCormick helper variable to linearize

the quadratic interference between (𝑣, 𝑣′) at 𝑡
𝜔 (𝑣, 𝑡) ∈ [0, 1] defines the transmit power for 𝑣 at 𝑡

44

Power Allocation Section 3.2

pendency, so I show here the interdependency between ℎ and 𝑠 in constraints (3.13)

and (3.14).

ℎ(𝑣𝑖, 𝑣 𝑗 , 𝑏𝑝) −
∑
𝑡∈𝑇

𝑠 (𝑣𝑖, 𝑣 𝑗 , 𝑏𝑝, 𝑡) ≥ 0,
∀(𝑣𝑖 ,𝑣 𝑗)∈𝑉×𝑉
∀𝑏𝑝∈𝐵𝑃 (3.13)

ℎ(𝑣𝑖, 𝑣 𝑗 , 𝑏𝑝) −M ·
∑
𝑡∈𝑇

𝑠 (𝑣𝑖, 𝑣 𝑗 , 𝑏𝑝, 𝑡) ≥ 0,
∀(𝑣𝑖 ,𝑣 𝑗)∈𝑉×𝑉
∀𝑏𝑝∈𝐵𝑃 (3.14)

Second, I check flow constraints in the infrastructure graph. In these constraints,

I consider the mapping of an application link 𝑙 = (𝑏𝑝, 𝑏′) to a path between nodes.

Constraint (3.15) checks that a source node 𝑣src has virtually sent the traffic of 𝑏src

as often as the number of successor jobs. Similarly, constraint (3.16) ensures that

the virtually received traffic by the sink node is at least equal to the number of

required traffic from the predecessors’ jobs of 𝑏sink. Then, I give the flow balance

for any other node in (3.17); for a given node, the incoming traffic is equal to the

outgoing traffic unless jobs are mapped on this node.

∑
𝑣 ′∈𝑉

ℎ(𝑣src, 𝑣
′, 𝑏src𝑝

)

−
∑

(𝑏src𝑝 ,𝑏
′)∈𝐿

\ (𝑏src, 𝑣src) = 0 , ∀𝑏src𝑝
∈ 𝑏src𝑃

(3.15)∑
𝑣 ′∈𝑉

∑
(𝑏𝑝 ,𝑏sink

)∈𝐿
ℎ(𝑣′, 𝑣sink, 𝑏𝑝) −

∑
(𝑏𝑝 ,𝑏sink

)∈𝐿
\ (𝑏sink, 𝑣sink) ≥ 0 (3.16)∑

𝑣 ′∈𝑉
ℎ(𝑣, 𝑣′, 𝑏𝑝) −

∑
(𝑏𝑝 ,𝑏 ′)

\ (𝑏, 𝑣)

=
∑
𝑣 ′∈𝑉 \𝑣

ℎ(𝑣′, 𝑣, 𝑏𝑝) −
∑
(𝑏𝑝 ,𝑏 ′)

\ (𝑏′, 𝑣), ∀𝑣∈𝑉
∀𝑏𝑝∈𝐵𝑃\{𝑏𝑝

sink
,𝑏𝑝

sink
} (3.17)

Keeping track of the multicast requirements of a job via ℎ is the key technique

that allows a linearised multicast formulation, without using continued fraction. In

other words, ℎ virtually represents how often a job’s output needs to be forwarded

or multicasted, so that it allows a node to physically duplicate the traffic (via variable

𝑠), even if the traffic is received only once. In other words, ℎ is a helper variable

that follows the flow conservation rule (Figure 3.3 (a)), while 𝑠 is physical and does

not follow the flow conservation (Figures 3.1 (b) and 3.2 (b)).

45

Chapter 3 Optimization Problems for Resource Allocation

The Third group concerns wireless interference constraints and depends on the

transmission power.

Uniform transmit power – MILP

∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) · SINRth ≤
𝑓 (𝑣, 𝑡)

𝑁𝑜 + 𝐼 (𝑣, 𝑣′, 𝑡)
𝛾𝑣,𝑣 ′,

∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇

where 𝐼 (𝑣, 𝑣′, 𝑡) =
∑
𝑢∈𝑉
𝑢≠𝑣

𝑓 (𝑢, 𝑡) · 𝛾𝑢,𝑣 ′ (3.18)

𝑓 (𝑣, 𝑡) · 𝛾𝑣,𝑣 ′
SINRth

≥ _(𝑣, 𝑣′, 𝑡) + 𝑁𝑜
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.19)

_(𝑣, 𝑣′, 𝑡) ≤ 𝐼 (𝑣, 𝑣′, 𝑡), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.20)

_(𝑣, 𝑣′, 𝑡) ≤
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) · 𝛾𝑣,𝑣 ′ |𝑉 | , ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.21)

_(𝑣, 𝑣′, 𝑡) ≥ 𝐼 (𝑣, 𝑣′, 𝑡) − |𝑉 | (1 −
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′𝑏𝑝, 𝑡)), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.22)

In (3.18), I formally control interference 𝐼 (𝑣, 𝑣′, 𝑡). This constraint allows trans-
missions from node 𝑣 to 𝑣′ if the SINR at 𝑣′ is bigger than or equal to SINRth.

It will, however, yield a quadratic constraint. Thus, I reformat it in (3.19) to

be linearly constrained, and do not need to use (3.18) any more. The lineari-

sation of (3.18) is inspired by the McCormick method for 0/1 quadratic prob-

lems [McC76]. First, _ defines the effect of interference on an active path as

_(𝑣, 𝑣′, 𝑡) ↔ 𝐼 (𝑣, 𝑣′, 𝑡) · ∑𝑏𝑝∈𝐵𝑃 𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡). Given that the interference 𝐼 (𝑣, 𝑣′, 𝑡)
is bounded between [0, |𝑉 |], while ∑

𝑏𝑝∈𝐵𝑃 𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) ∈ {0, 1}, I ensure in Equa-

tions (3.20) and (3.22) that _ = 𝐼 when 𝑠 = 1 is active, else _ = 0 using Equation (3.21).

Accordingly, I define the conditional boundaries of the integer variable _(𝑣, 𝑣′, 𝑡)
through constraints (3.20) – (3.22).

Power allocation – MIQCP

I rewrite the SINR constraint to consider power allocation as in (3.23). I ensure

in (3.24) – (3.25) that power allocation takes place if and only if the node is trans-

mitting.

46

Power Allocation Section 3.2

(a) 4 Nodes. (b) 6 Nodes.

��

(c) 9 Nodes.

Figure 3.14: Examples of network distribution.

∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) · SINRth ≤
𝜔 (𝑣, 𝑡)

𝑁𝑜 + 𝐼 (𝑣, 𝑣′, 𝑡)
𝛾𝑣,𝑣 ′,

∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇

where 𝐼 (𝑣, 𝑣′, 𝑡) =
∑
𝑢∈𝑉
𝑢≠𝑣

𝜔 (𝑢, 𝑡) · 𝛾𝑢,𝑣 ′ (3.23)

𝜔 (𝑣, 𝑡) − 𝑓 (𝑣, 𝑡) ≤ 0, ∀𝑣∈𝑉
∀𝑡∈𝑇 (3.24)

M · 𝜔 (𝑣, 𝑡) − 𝑓 (𝑣, 𝑡) ≥ 0, ∀𝑣∈𝑉
∀𝑡∈𝑇 (3.25)

The objective is same as in 3.1.2, to minimize the number of used time slots

within a time frame; min

∑
𝑡∈𝑇 𝛿 (𝑡). This reflects latency requirements of typical

signal-processing or real-time applications, so that traffic is received within the first

few time slots in a time frame (or it can also be used for slicing in a multi-tenant

network).

3.2.2 Fixed vs. Flexible Power Results

As an example, I consider a seminar roomwhere the nodes are uniformly distributed

over a grid (Figure 3.14). The attenuation between nodes 𝛾𝑣,𝑣 ′ is given by
1

𝑑2

𝑣,𝑣′
. The

simulation is repeated for a network of 4, 6, and 8 nodes, and the nodes’ capacities

are changed to be proportional to the weight per job;
𝑐𝑣
𝑤𝑏

ranges between 1 and 5.

For each simulation, the source and sink nodes are changed. The jobs’ weights are

fixed over all simulation runs, while the number of jobs ranges between 3 and 6.

I evaluate the computation time required with and without power allocation and

focus on the evaluation for the number of used time slots for different scenarios. I

select a subset of our results when, first, I choose the structure of application graphs

47

Chapter 3 Optimization Problems for Resource Allocation

� � �

(a) Loop.

�

�

�

(b) Same to many.

�

�

�

(c) Different to many.

� � �

(d) Linear.

�

�

�

�

�

(e) Parallel.

Figure 3.15: Examples of overlay graphs.

to be linear or parallel. Second, I increase the number of an application’s jobs.

Third, I increase the number of nodes. Fourth, I change

𝑐𝑝

𝑤𝑝
. I use the Gurobi solver,

integrated with Pyomo modelling language [HWW11], to solve the optimisation

models.

Execution Time

First, I set
𝑐𝑣
𝑤𝑏

to 1 and fix the number of jobs to 5 in Figure 3.16 (a). We observe that

increasing the number of nodes has a high impact on the computation time and, in

addition, considering power allocation increases the computation time significantly

due to the quadratic constraint. It ends up being on the order of hundreds of seconds

(Figure 3.16 (a) compared to mere seconds for uniform transmit power.

In contrast to the optimal solution in Section 3.1.1 and the used application graph,

we observe that the proposed (MILP) solution here can solve the same problem

for 4 and 6 nodes in 2 and 4 seconds, respectively, compared to 140 and 2564 in

Section 3.1.1; a clear tribute to the improved problem formulation as an MILP rather

than a quadratic problem.

48

Power Allocation Section 3.2

4 5 6 7 8 9

0

200

400

600

Nodes

T
i
m
e
(
s
)

Allocation

Uniform

(a) #Jobs=5.

3 3.5 4 4.5 5

0

5

10

15

Jobs

T
i
m
e
(
s
)

Allocation

Uniform

(b) #Nodes = 4.

1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

𝑐𝑣/𝑤𝑏

#
S
l
o
t
s

jobs=3 jobs=4

jobs=5 jobs=6

(c) Linear.

1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

𝑐𝑣/𝑤𝑏

#
S
l
o
t
s

jobs=3 jobs=4

jobs=5 jobs=6

(d) Parallel.

1 1.5 2 2.5 3 3.5 4

0

2

4

6

𝑐𝑣/𝑤𝑏

S
l
o
t
s

Nodes=4

Nodes=6

Nodes=9

(e) Uniform Power.

1 1.5 2 2.5 3 3.5 4

0

2

4

6

𝑐𝑣/𝑤𝑏

S
l
o
t
s

Nodes=4

Nodes=6

Nodes=9

(f) Power Allocation.

Figure 3.16: Summary of results

49

Chapter 3 Optimization Problems for Resource Allocation

Used Time Slots

I fix the number of nodes to 6 and observe that increasing the number of jobs

(Figure 3.16 (c)) will increase the number of used time slots, due to the need for

extra nodes, and consequently extra transmissions.

Additionally, we observe that for all scenarios, increasing the nodes’ capacity

(given by
𝑐𝑣
𝑤𝑏
) decreases the number of required time slots, until it reaches a point

where the capacities are no longer a constraint. In other words, increasing the

capacities of nodes allows more jobs to be placed per node, until we can place all

the jobs on only two nodes; 𝑣src and 𝑣sink. Hence, the problem reduces to a mere

routing problem where the objective is to find a route between 𝑣src and 𝑣sink.

Moreover, increasing the number of nodes (Figures 3.16 (e) and 3.16 (f)) has

barely an impact on the number of required time slots: without (Figure 3.16 (e))

and with power allocation (Figure 3.16 (f)). This behaviour is due to the fact that

additional nodes are neither used for placement nor for routing. These results are

similar to those presented in Section 3.1.1. However, using power allocation can

achieve lower number of time slots compared to using a uniform power, especially

for scenarios where nodes have low capacities; when many nodes need to transmit

data, power control can be used to allow simultaneous transmissions. But as the

nodes’ capacities increase, power control becomes insignificant since not many

nodes are transmitting data (i.e., used for placement)

3.3 A Greedy Heuristic and Approximation Ratio

Here, I reapply the McCormick method to linearize the power allocation constraint

in Section 3.2. Additionally, I simplify the heuristic of Section 3.1 and derive an

upper bound of the output with respect to the optimal solution. Furthermore,

I compare my solution to the proposed formulation in the literature when the

interference is independent of the allocation. The following results are based on

the outcome of [AK19a].

3.3.1 LinearizeQuadratic Power Constraint

The following equations formalize the power allocation to control wireless interfer-

ence in a linear formulation. Such linearisation offers tight boundaries that relaxes

the problem, decreases the computation overhead of the quadratic constraint and

still guarantees convexity. Additionally, it results in the same optimal solution.

50

A Greedy Heuristic and Approximation Ratio Section 3.3

∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) · SINRth ≤
𝑤 (𝑣, 𝑡)

𝑁𝑜 + 𝐼 (𝑣, 𝑣′, 𝑡)
𝛾𝑣,𝑣 ′,

∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇

where 𝐼 (𝑣, 𝑣′, 𝑡) =
∑
𝑢∈𝑉
𝑢≠𝑣

𝑤 (𝑢, 𝑡) · 𝛾𝑢,𝑣 ′ (3.26)

𝑤 (𝑣, 𝑡) · 𝛾𝑣,𝑣 ′
SINRth

≥ _(𝑣, 𝑣′, 𝑡) + 𝑁𝑜
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.27)

_(𝑣, 𝑣′, 𝑡) ≤ 𝐼 (𝑣, 𝑣′, 𝑡), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.28)

_(𝑣, 𝑣′, 𝑡) ≤
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) · 𝛾𝑣,𝑣 ′ |𝑉 | , ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.29)

_(𝑣, 𝑣′, 𝑡) ≥ 𝐼 (𝑣, 𝑣′, 𝑡) − |𝑉 | (1 −
∑
𝑏𝑝∈𝐵𝑃

𝑠 (𝑣, 𝑣′𝑏𝑝, 𝑡)), ∀{𝑣,𝑣 ′}∈𝑉
∀𝑡∈𝑇 (3.30)

Recall that to guarantee a successful transmission, constraint (3.26) controls the

interference 𝐼 (𝑣, 𝑣′, 𝑡) between nodes (𝑣, 𝑣′). This also ensures that the SINR at

node 𝑣′ is bigger than or equal to SINRth. Nevertheless, this is a quadratic con-

straint. I linearize the constraint using McCormick’s method for 0/1 quadratic

problems [McC76]. First, I define the effect of interference on an active path as

_(𝑣, 𝑣′, 𝑡) = 𝐼 (𝑣, 𝑣′, 𝑡) · ∑𝑏𝑝∈𝐵𝑃 𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡). Then, I define the conditional bound-

aries of the integer variable _(𝑣, 𝑣′, 𝑡) through constraints (3.28) – (3.30); it trans-

lates the quadratic constraint to a linear one, so that _(𝑣, 𝑣′, 𝑡) = 𝐼 (𝑣, 𝑣′, 𝑡) if and
only if there is an active transmission between nodes 𝑣, 𝑣′ at time slot 𝑡 , so that∑
𝑏𝑝∈𝐵𝑃 𝑠 (𝑣, 𝑣′, 𝑏𝑝, 𝑡) = 1.

3.3.2 Greedy Heuristic

Finding a zero-gap optimal solution for an optimization problem is time-consuming

and, thus, heuristic solutions can be used for finding a fast sub-optimal solution,

especially when the size of the problem is big.

I propose a constructive heuristic (i.e., starts with an empty solution and continu-

ously extends the current solution) that can find a solution by following a sequence

of pre-ordered constraints. It is a simplified version of the heuristic algorithm

proposed in Section 3.1, which considers only 1-level lookahead and turns off the

back-off feature.

Figure 3.17 shows how and when the power allocation decision is taken. First, a

51

Chapter 3 Optimization Problems for Resource Allocation

������ ��� ��� ���

� ���

� ���

��������	
�
���� �

������
��
������ �

��������
�������������� �

���� �
�� ��

� �����

�
����

�������������

�	��
���
� � SINR��

�� � ��

���
���
����	
�

�

�����������
����

������

��������

����������������� 	
 � �

��� ��

�����

��

���

����

�� � ��

� �

��

���

Figure 3.17: Visualization of the heuristic power allocation with VNE.

job is assigned to a node (while ensuring the capacity constraints are met), then a

search process starts to find a route between two assigned jobs, using a breadth-first

search (BFS) algorithm. Hence, the runtime complexity is 𝑂 (𝑛2). For a feasible
solution, all routes need to have a minimum SINRth across each of its paths.

To ensure this SINR threshold on a path, we look at candidate links in the

topological order as given in the application graph. For this link’s path, I choose

the maximum possible transmission power to best protect against interference,

while not interfering with other active transmissions. Then, for the same time

slot, I continue looking for further paths to schedule, giving each path the largest

transmission power that fulfills its own SINR requirement without violating the

requirements of already scheduled paths. I continue that search per time slot until

no more paths can be scheduled. Once it is no longer possible to find a power

allocation for another path, the transmission takes place in a new time slot.

To have a better understanding of the power allocation procedures, I show a

mock-up example in Figure 3.18, which represents the transmissions taking place

at a specific time slot. At the beginning, only one transmission (T1) takes place in

this time slot. In Figure 3.18 (a), the red line represent the SINRth, while the blue

region (above the red line) is the extra SINR that is above the threshold value. In

Figure 3.18 (b), I show that it is possible to pack another transmission (T2) in the

same time slot and observe that the blue region for T1 has decreased. Trying to

pack another transmission in the same time slot (Figure 3.18 (c)) will decrease the

SINR of the other two transmissions to be below the threshold. Therefore, only

52

A Greedy Heuristic and Approximation Ratio Section 3.3

T1 T2
Transmissions

SI
NR

SINRth

Min.
Extra

(a) 1 Transmission

(accepted).

T1 T2
Transmissions

SI
NR

Min. Extra

(b) 2 Transmissions

(accepted).

T1 T2 T3
Transmissions

SI
NR

(c) 3 Transmissions

(rejected).

Figure 3.18: Visualization heuristic decisions.

two transmissions can run in this time slot, and following transmissions must be

packed in the next time slot. This approach of allocation is inspired by the inverse

water filling algorithm [Pro01].

Adding power control to the SINR constraints reopens the question of how well

the heuristic performs compared to the optimization approach. Therefore, I discuss

in Section 3.3.3 the bounds of the heuristic when calculating the required number

of time slots for data traversing.

3.3.3 Theoretical Analysis
Proposing VNE suboptimal solutions with bounds on their performance was pro-

posed, but only for wired networks, as in [Ban+11; ERS16]. For the special case of

a linear infrastructure and a linearly connected application graph, I derive a tight

lower bound for the required number of time slots.

▶ Theorem 3.1. In an infrastructure with a linear topology where nodes are

equidistantly separated by distance 𝑑 and transmit in a free-space environment

so that the SINR threshold is bounded by
1

𝑑2·𝑁𝑜
> SINRth > 1

4𝑁𝑜 ·𝑑2
, the optimal

number of time slots 𝛿opt for a linear application graph is bounded from below by

𝛿opt >
(𝑀tot−1) (2·SINR

th
−1)

3·SINR
th
−1

, where𝑀tot is the number of nodes used for transmissions

and running the jobs.

◀

Proof. The infrastructure network consists of |𝑉 | nodes that are linearly separated

by distance𝑑 . After distributing the jobs in the infrastructure network, only𝑉tot ⊂ 𝑉
nodes are used for running the jobs and forwarding the data. The number of these

nodes is given by𝑀tot = |𝑉tot |. A set with the maximum number of nodes that can

transmit simultaneously is given by 𝑉max, where |𝑉max | = 𝑀max.

We want to find a lower bound on the number of time slots in which one source-

to-sink communication can be completed. The idea is to find the largest number of

53

Chapter 3 Optimization Problems for Resource Allocation

nodes that can communicate simultaneously in one time slot (𝑀max) and divide the

total number of used nodes𝑀tot by this number.

The worst interference that can be generated by these 𝑀max nodes is at the

middle receiving node for 𝑉max, such that the maximum inter-distance between

two consecutive transmitting nodes is 2𝑑 and the minimum is 𝑑 .

To better visualize this interference problem, Figure 3.19 depicts 5 transmitting

nodes (𝑉max), each sending to its direct neighbour. Since SINRth > 1

4𝑁𝑜 ·𝑑2
, only

transmissions to the immediate neighbours are possible, but a node cannot be

sending and receiving at the same time (duplex constraint). Then, we select a

(shaded) node, which is the middle receiving node for 𝑉max and suffers from the

highest interference (4 interferers given as 𝐼𝐴, 𝐼𝐵, 𝐼𝐶 and 𝐼𝐷). Accordingly, the lowest

possible SINR is given by

SINRth ≤ SINR =
Received Power

𝑁𝑜 +
∑𝑀max−1

𝑛=1
𝐼𝑣𝑛

(3.31)

SINRth ≤ SINR =
1

𝑑2

1

𝑁𝑜 + 1

𝑑2

∑𝑀max−1

𝑛=1

1

𝑛2

, (3.32)

Consequently, we will have𝑀max − 1 interfering nodes at this time slot. Using the

integral test [W B12], we recall that

𝑀max−1∑
𝑛=1

1

𝑛2
< 2 − 1

𝑀max − 1

(3.33)

Thus, substituting (3.33) into (3.32), we assume that the following equation still

holds

SINRth <
1

𝑁𝑜 · 𝑑2 + 2 − 1

𝑀max−1

(3.34)

Since typically 𝑁𝑜 · 𝑑2 << 1, we can rewrite (3.34) as

𝑀max < 1 + SINRth

2 · SINRth − 1

(3.35)

Note that SINRth is bounded by
1

𝑁𝑜 ·𝑑2
as per (3.32). Therefore, in case of relatively

high values of SINRth, we cannot ignore 𝑁𝑜 · 𝑑2

Given that nodes are operating in a half-duplex mode and a maximum 𝑀max

54

A Greedy Heuristic and Approximation Ratio Section 3.3

� � ��

Figure 3.19:Wireless nodes placed in a linear topology with equidistant d separation. 𝐼𝑥
represents the interference by node 𝑥 on the selected (shaded) receiving node, while 𝑤𝑥 is

the transmitted power.

nodes are sending at a time slot, then 𝛿opt will be at least

𝛿opt ≥
𝑀tot − 1

𝑀max

(3.36)

As the number of𝑀max tends to be large enough [W B12], we can rewrite (3.33) as

Riemann zeta function
∞∑
𝑛=1

1

𝑛2
=
𝜋2

6

(3.37)

Obviously the difference between (3.33) and (3.37) is less than 1, while 𝛿opt is an

integer. Therefore, our assumption in Eq. (3.34) holds. Then, we substitute (3.35) in

(3.36)

𝛿opt >
Mtot − 1

1 + SINR
th

2·SINR
th
−1

𝛿opt >
Mtot − 1

3 · SINRth − 1

· (2 · SINRth − 1) (3.38)

■

▶ Corollary 3.2. Given the previous conditions but for a generic wireless propa-

gation where the path-loss exponent 𝛼 ≥ 2 and the minimum allocated transmit

power is 𝑤min, the relation between 𝛿opt and Mtot is given by

𝛿opt ≥
Mtot − 1

1 + SINR
th

(2+𝑁𝑜 ·𝑑𝛼)·SINR
th
−𝑤min

(3.39)

55

Chapter 3 Optimization Problems for Resource Allocation

◀

Without loss of generality, we assume that all services have the same processing

weights 𝑤𝑏 and all nodes have the same processing capacity 𝑐𝑣 . Then

Mtot ≥
|𝐵 | ·𝑤𝑏
𝑐𝑣

(3.40)

▶ Corollary 3.3. The value 𝛿opt is bounded by the available and required resources

so that

𝛿opt · 𝑐𝑣 ≥
|𝐵 | ·𝑤𝑏 − 𝑐𝑣

1 + SINR
th

(2+𝑁𝑜 ·𝑑𝛼)·SINR
th
−𝑤min

(3.41)

◀

▶ Theorem3.4. The proposed heuristic has an approximation
4

𝑐2

𝑣

|𝐵 |2·𝑤2

𝑏
−𝑐2

𝑣

1+ SINR
th

(2+𝑁𝑜 ·𝑑𝛼) ·SINR
th
−𝑤

min

for the optimization problem ◀

Proof. The total number of required time slots relies on two dimensions; the number

of nodes used for mapping and the number of time slots used for transmissions

between nodes. Thus, the product of both upper bounds results in the overall upper

bound.

Relying on the topological order for assigning jobs to nodes yields a first-fit

behavior for the bin-backing problem [JG85]. Thus, the total number of used nodes

is bounded from above by

2

|𝐵 | ·𝑤𝑏
𝑐𝑣

= 2(#optNodes) (3.42)

Similarly, the number of transmissions rely on the first-fit transmission. By

replacing Eq. (3.40) with (3.42), we can rewrite Eq. (3.41) so that the number trans-

missions is upper-bounded by

𝛿opt ≤
4

𝑐2

𝑣

|𝐵 |2 ·𝑤2

𝑏
− 𝑐2

𝑣

1 + SINR
th

(2+𝑁𝑜 ·𝑑𝛼)·SINR
th
−𝑤min

(3.43)

■

We observe from Eq. (3.43) that as the ratio
𝑤𝑏

𝑐𝑣
decreases, the required number

of time slots decreases. But we need to bear in mind that in Eq. (3.40), Mtot is at

least equal to 2 since we predefine 𝑣src and 𝑣sink. Accordingly, in our special case,

56

A Greedy Heuristic and Approximation Ratio Section 3.3

the upper bound in Eq. (3.43) is rewritten as:

𝛿opt ≤ max(|𝑉 | − 1,
4

𝑐2

𝑣

|𝐵 |2 ·𝑤2

𝑏
− 𝑐2

𝑣

1 + SINR
th

(2+𝑁𝑜 ·𝑑𝛼)·SINR
th
−𝑤min

) (3.44)

3.3.4 Evaluating the Greedy Heuristic and Estimating
Symbol Error Rate

During the simulations, I assume that the applications have a linear topology. To

find an optimal solution, I used a Gurobi solver [Gur18] with Pyomo [HWW11]

interface. I show two types of simulations to demonstrate the wireless VNE solution.

In the beginning, I compare between the optimal (with zero optimality gap) and

heuristic solutions to evaluate the latter’s sub-optimality for the required number

of time slots. Then, I compare the proposed interference-aware formulation with

fixed-data rate assumptions (in related work) for wireless VNE in terms of symbol

error rate.

Required Time Slots

The simulations are divided into two scenes. First, I distribute the nodes in linear

(hallway-style) scene to validate the output from Section 3.3.3. Second, I consider
a more generic (lattice-style) distribution of nodes and observe the changes.

The focus is mainly on the relation between the number of used time slots as

a metric and the number of nodes, number of jobs, and ratio between the node’s

capacity and required computation (
𝑐𝑣
𝑤𝑏
) as parameters. When changing the number

of nodes, I fix the number of jobs to 4. When changing the number of jobs, I fix the

number of nodes to 6. In both cases, I set the ratio (
𝑐𝑣
𝑤𝑝
) to 1. When changing the

ratio
𝑐𝑣
𝑤𝑏
, I fix the number of nodes to 6 and the number of jobs to 4.

Figure 3.20 shows the number of time slots required by the heuristic algorithm

compared to the optimal solution as well as the lower and upper bounds formulas.

On one hand, I observe that the lower bounds and optimal solutions are close;

the difference is less than 1 time slot. On the other hand, I observe a large gap

between the heuristic’s solutions and the upper bound, when changing the number

of jobs or nodes in Figure 3.20 (b) and Figure 3.20 (a)), respectively. This is due

to the fact that the upper bounds assume the worst scenario where transmissions

between two jobs go through all nodes, which did not happen in these simulations.

Nevertheless, increasing
𝑐𝑣
𝑤𝑝

(Figure 3.20 (c)) tightens the upper bound to overlap

57

Chapter 3 Optimization Problems for Resource Allocation

3 3.5 4 4.5 5 5.5 6

0

10

20

30

Jobs

S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(a)

4 6 8 10 12 14

5

10

15

Nodes
S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(b)

1 1.5 2 2.5 3 3.5 4

0

5

10

15

𝑐𝑣/𝑤𝑏

S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(c)

Figure 3.20: Results for nodes with linear distribution.

58

A Greedy Heuristic and Approximation Ratio Section 3.3

3 3.5 4 4.5 5 5.5 6

0

10

20

30

40

Jobs

S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(a)

4 6 8 10 12 14

0

5

10

15

Nodes

S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(b)

1 1.5 2 2.5 3 3.5 4

0

5

10

15

𝑐𝑣/𝑤𝑏

S
l
o
t
s

Optimal

Heuristic

Lower

Upper

(c)

Figure 3.21: Results for nodes with lattice distribution.

59

Chapter 3 Optimization Problems for Resource Allocation

with the heuristic’s results. This is explained by Equation (3.44), increasing
𝑐𝑣
𝑤𝑝

will

relax the problem to be multi-hop routing upper bound; when
𝑐𝑣
𝑤𝑝

is very high, all

jobs can run on one node and I may rewrite Equation (3.44) as 𝛿opt ≤ |𝑉 | − 1.

Additionally, I observe, in Figure 3.20 (b), that the upper and lower bounds are

independent of the number of available nodes as long as
𝑐𝑣
𝑤𝑝

is constant and the

number of jobs does not change (see Equations (3.41) and (3.44)). Nevertheless,

the heuristic performance shows a slight correlation between the number of time

slots and the number of nodes, due to following the topological order during the

assignment process. Such behaviour is expected as it is inherited from the first-fit

bin-backing solution [JG85].

Figure 3.21 shows the output for nodes distributed on a lattice when changing

the number of nodes (Figure 3.21 (b)), number of jobs (Figure 3.21 (a)) and the ratio

𝑤𝑝

𝑐𝑣
(Figure 3.21 (c)). A straightforward derivation for the upper bound in a lattice

distribution is

√
2× upper bound 𝛿 .

Considering the nodes being distributed on a lattice leads to longer computation

time for the optimizer (due to more possible paths), especially for a high number of

jobs. Therefore, I limit the investigation to five jobs. I observe, in Figure 3.21 (a), that

the gap does not change much compared to the linear distribution (Figure 3.20 (a)).

This shows that the heuristic’s performance is independent of the number of jobs

as long as the number of nodes does not change.

Again, in Figure 3.20 (b) I observe that increasing the number of nodes increases

the number of time slots used by the heuristic. Nevertheless, we do not get the exact

results as in 3.1 because in the lattice distribution new routes are found through

the diagonal paths.

In Figures 3.21 (a) and 3.21 (c) (as well as Figures 3.20 (a) and 3.20 (c)), the graphs

are reciprocal, which means that decreasing the number of jobs is equivalent to

increasing
𝑐𝑣
𝑤𝑏
. Because increasing the ratio

𝑐𝑣
𝑤𝑏

allows more jobs to be running per

node, this is equivalent to decreasing the number of jobs that need to be distributed.

Therefore, we observe such reciprocity.

I need to highlight that the computation time required to solve the problem with

zero gap optimality was tens of minutes (40 minutes in extreme cases) while the

heuristic solution required in most cases 10s of seconds.

Symbol Error Rate

Considering the broadcast property in the proposed model introduces a lot of

complexities. In order to demonstrate the importance of considering SINR in the

formulation, I compare the results of the proposed model to other models that do

60

A Greedy Heuristic and Approximation Ratio Section 3.4

not manage interference explicitly [Abd+16b]. By ignoring the interference, only

paths that have an SNR (note the absence of “I”, so no interference considered)

larger than SINRth have their nodes connected.

For simplicity, I assume that no channel coding is used and all transmissions

have the same modulation (16-QAM). Accordingly, I use a high SINRth (17 dB) and

evaluate the symbol error rate as [FS94]

𝑃𝑠 (𝑒) =
3

2

erfc

(√
SINR(e)

10

)
, ∀𝑒 ⊂ 𝑉 ×𝑉 (3.45)

where 𝑒 represents the path used for transmission between two nodes. Conse-

quently, the worst-case symbol error when having at least one error at any trans-

mission is given by

𝑃𝑠 = 1 −
∏

𝑒⊂𝑉×𝑉
(1 − 𝑃𝑠 (𝑒)) (3.46)

where 𝑃𝑠 represents the worst-case symbol error rate for the multi-hop embedding

solution.

In the evaluation, I use, on one hand, the term Fixed-link model to represent the

output when paths are assumed to have a fixed data rate, regardless the interference

from other nodes. On the other hand, I use Interference-aware model to represent

the output of the proposed model, which controls the interference over different

time slots. In other words, each path will have a different data rate at each time

slot. The data rate depends on the SINR, which is controlled by the transmission

power of sending nodes.

I show the results with 95 % confidence intervals for the time slots and symbol

error rate in Figure 3.22. As expected, the Fixed-link model required fewer time slots

than the Interference-aware model (Figure 3.22 (a)), because the former assumes

that the data rate is fixed between the nodes and thus, it requires the time slots

only for multi-hop transmissions, while the latter may not send at a time slot and

needs extra time slots with lower interference.

The additionally required time slots range between 1 to 2 time slots. Moreover,

when considering overall symbol error rate (Figure 3.22 (b)), the interference-aware

model outperformed the fixed-link one. I observe that the proposed approach had

almost negligible symbol error rate, while fixing the paths can have a severe symbol

error rate that ranges from 3% to 40 %.

61

Chapter 3 Optimization Problems for Resource Allocation

6 8 10 12 14 16 18
Nodes

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Us

ed
 ti

m
es

lo
ts

Interference-aware model
Fixed-link model

(a) Average used number of time slots

6 8 10 12 14 16 18
Nodes

0.0

0.1

0.2

0.3

0.4

Sy
m

bo
l e

rro
r r

at
e

Interference-aware model
Fixed-link model

(b) Upper-bound for symbol error rate

Figure 3.22: Comparison between fixed-link and interference-aware models

3.4 Summary

In this chapter, the focuswas on formulatingwireless VNE and showing the improve-

ment compared to related work. Different optimization problems were proposed,

where each had different number of variables and constraints; which formulation

62

Summary Section 3.4

to use highly depends on the solver. Meanwhile, finding exact solutions for opti-

mization problem takes long time. Hence, I proposed a greedy heuristic that can

find a feasible solution relatively fast and I analysed the gap between the heuristic

and optimal solutions: theoretically via derivation and empirically via simulations.

Furthermore, I have shown that considering the interference as a variable in

the VNE formulation is essential for handling wireless transmission errors. In the

presented scenarios, the improvements in symbol error rate were between up to

40%.

63

4 Meta-Heuristics for
Resource Allocation

In the previous chapter, I provided an optimization problem for wireless virtual

embedding as well as a greedy heuristic with its lower and upper bounds. Yet the

provided heuristic is problem-specific and cannot be applied to other problems. In

other words, changing or adding new variables to the problem (e.g., battery life or

motion control) will not be easy to integrate into the heuristic. Additionally, greedy

heuristics in general can get stuck in a local optimum. Accordingly, I apply two

generic meta-heuristic solutions: Genetic Algorithm (GA) and RL), which can be

easily modified to adapt to any changes in the problem. Other meta-heuristics are

also applicable, yet I choose those two, since their formulation were for me pretty

much straight forward.

Genetic algorithms belong to a popular family of population-based stochastic

algorithms. These algorithms are also known to be inter-life [Kar20] algorithms,

where an individual interacts with the others to define their ranking and their

chance of survival. In fact, such algorithms have been applied to similar VNE

problems. The authors in [Faj+11] used an ant-colony algorithm to maximize the

number of applications running in parallel inside a wired network. In such an

approach, ants explore different solutions over multiple iterations and at the end,

the best solution over all iterations is selected. Similarly, the work in [Zha+13] uses

particle swarm for the same objective; solutions are encoded as particles that keep

moving to improve their positions based on their current experience and the group

experience. Moreover, the work in [BMH19; MKA21] use genetic algorithms for

the same objective. In Section 4.1, I use genetic algorithm to solve the wireless VNE

problem.

In contrast to genetic algorithms, RL belongs to intra-life algorithms [SC18],

meaning that an individual learns through its existence, e.g., it learns how to

communicate and walk. Essentially, genetic algorithms can be applied to any

problem, while RL is used to find optimal strategies that maximize the output. This

means that RL is suited for problems, where a sequence of actions are required.

Nevertheless, RL has not been well investigated for wireless VNE in particular.

Most of the RL work, related to wireless networks, focused on building paths

between the nodes [Guo+19], without considering the placement aspect. The work

in [Fu+20] reconfigured existing placement solutions under changing resource

requirements, but in our problem, no initial placement exists nor do resource

65

Chapter 4 Meta-Heuristics for Resource Allocation

requirements change. The authors in [Wan+19] considered the placement aspect

in mobile edge computing (MEC); unlike the presented case, they consider the

placement of separate functions rather than a graph of functions.

To sum up, existing RL solutions do not address the same facets of the addressed

problem here and cannot be directly applied to the given input assumptions of

wireless networks. In Section 4.2, I integrate RL with a heuristic solution for a

complete VNE solution. Then, I compare the RL framework to the optimization

problem.

4.1 Genetic Algorithm

The results in this section are based on the work in [AHK19]. A GA encodes

a solution as a chromosome [Mit96]. In the beginning, a set of chromosomes,

called population, is generated randomly. Then, the GA starts an iteration process,

where over each iteration the population evolves to a new one by using crossover,

mutation, and selection. The final solution is the fittest chromosome from the

last population. In this section, I show how I match the GA to the wireless VNE

problem.

4.1.1 Chromosome

A chromosome represents a joint solution for three problems: placement, routing

and scheduling. Since the initial population consists of randomly generated chro-

mosomes, a chromosome may represent an invalid solution as well. I do not ignore

these chromosomes for a reasonable diversity among the initial population, lest we

converge prematurely. In this context, a chromosome consists of three genes:

1. placement: an array to represent the node running each job

2. routing: a 2D matrix that represents a random cost of every wireless edge to

calculate routing table

3. scheduling: a 2D matrix that represents a priority to every wireless edge to

assign a time slot

The process of evolving a population is described as follows:

66

Genetic Algorithm Section 4.1

Placement

The crossover of two chromosomes swaps the jobs running on a node. In a muta-

tion, one randomly chosen job will be assigned to a randomly chosen node. The

randomness, for both crossover and mutation, increases the diversity for the new

generation; however, this may also lead to invalid chromosomes, which can be

alleviated by the selection for the new population (see Section 4.1.3).

Routing

Each direct path between two nodes is assigned a random cost ∈ [0, 1], except
for those with low SNR (i.e. < SINRth); they are assigned an infinity cost. During

crossover, the path’s cost for the new chromosome is set to the mean of parent

paths, while in the mutation, a few links are selected randomly and get new random

costs, except for paths with infinity costs.

These costs are used to compute a routing table using Dijkstra’s algorithm. Next,

the routes between nodes running jobs 𝑏, 𝑏′ ∈ 𝐿 are computed via getTransmissions
(Algorithm 2)), to determine transmissions (sending and receiving nodes), as well

as the transmitted data (i.e., from which job). So far, the transmissions have not

been yet scheduled.

Scheduling

In the beginning, each transmission is assigned a random priority between 0 and

1. The crossover of two chromosomes assigns the average priority to the new

transmission and the mutation selects a new random priority. These priorities

represent, which transmission should be scheduled first.

The output of getTransmissions is scheduled in a time slots 𝑠 ∈ 𝑆 via Random-
Scheduler (Algorithm 4), as follows. Two priority queues,𝑄𝑠 and𝑄

′
𝑠 are used to sort

the transmissions, where 𝑄𝑠 represents transmissions that will try to be scheduled

in slot 𝑠 and 𝑄′𝑠 represents transmissions that failed to be scheduled in time slot 𝑠 .

Whether a transmission can be scheduled in a time slot or not, this is determined

by the algorithm placeable (Algorithm 3). It checks if SINR ≥ SINRth, checks for

duplex constraints (a node cannot transmit and receive at the same time slot), and

allows multi-cast scheduling so that a node can send the same data to multiple

nodes in the same time slot.

For all transmissions in𝑄′𝑠 that failed to be scheduled in time slot 𝑠 , they try again

in the next time slot (𝑠 + 1) so that 𝑄𝑠+1 = 𝑄′𝑠 . The algorithm RandomScheduler
terminates if 𝑄𝑠 and 𝑄

′
𝑠 are empty (successful termination) or if no single transmis-

67

Chapter 4 Meta-Heuristics for Resource Allocation

sion can be scheduled at two consecutive time slots;𝑄𝑠+1 = 𝑄𝑠 and no transmission

exits at time slot 𝑠 (no feasible solution is found).

After handling every link of the application graph, the algorithm returns 𝑆 and

terminates.

Algorithm 2: getTransmissions

Input: Application graph 𝐺𝑂 , Chromosome 𝑐

1 𝑇 ← empty list of transmissions

2 foreach link (𝑏,𝑏′) in 𝐺𝑂 do
3 𝑡 ← new transmission

4 𝑡 .job← 𝑏

5 𝑡 .sender← placement(𝑏)

6 𝑡 .receiver← 𝑐 .routingtable(𝑡 .source,placement(𝑏′))
7 𝑇 ← 𝑇 ∪ {𝑡}
8 while 𝑡 .receiver ≠ 𝑐 .placement(𝑏′) do
9 prev← 𝑡

10 𝑡 ← new transmission

11 𝑡 .job← 𝑏

12 𝑡 .sender← prev.receiver

13 𝑡 .receiver← 𝑐 .routingtable(𝑡 .source,𝑐 .placement(𝑏′))
14 𝑇 ← 𝑇 ∪ {𝑡}

15 return 𝑇

4.1.2 Fitness Function

A high fitness value represents a good solution. The objective is to minimize

the number of time slots, given by RandomScheduler. Hence, I design the fitness

to be inversely proportional to the number of time slots used per chromosome.

Nevertheless, some chromosomes, having very low number of time slots, may

represent infeasible solutions.

Accordingly, I prefer chromosomes that do not violate the constraints, by adding

a binary variable 𝛼 (𝑐) to the fitness function. 𝛼 (𝑐) = 1 if the chromosome 𝑐 satisfies

all the constraints and 0 otherwise. Also, if the scheduler failed for a chromosome,

its fitness is set to 0.

fitness(c) = 1

|𝑆 | + 1

+ 𝛼 (c) (4.1)

68

Genetic Algorithm Section 4.1

Algorithm 3: placeable
Input: Transmission 𝑡 , slot 𝑠

1 foreach 𝑡 ′ ∈ 𝑠 do
2 I← interference at 𝑡 ′.receiver

3 SINR← 𝛾𝑡 .sender,𝑡 .receiver
·𝑃

𝐼+𝑁0

4 if SINRth < SINR then
5 return false

6 if t.receiver is receiving or sending in 𝑠 then
7 return false

8 if t.sender sending data of t.job in 𝑠 then
9 return true

10 if t.sender is receiving or sending in 𝑠 then
11 return false

12 return true

4.1.3 New Generations and Selection

As a result of mutation and crossover within a population, new chromosomes

are generated that create a new generation. Out of this generation, I select a

subset of chromosomes to be the new population. Each new population receives

the chromosomes with the highest 10 % fitness from the previous population, to

guarantee that the so-far best solutions are not lost in the course of the evolution.

Then, each other chromosome is selected with a probability equal to their relative

fitness weight:

ℙ(c is selected) = fitness(c)∑
c
′∈population

fitness(c′) (4.2)

This gives a chance for low-fitness chromosomes to be selected in the new pop-

ulation, which increases the diversity and may later find better chromosomes by

means of crossover and mutation.

4.1.4 Evaluation of Genetic Algorithms

Different choices of the population size (𝑝), crossover rates (𝑟𝑐) and the mutation

rates (𝑟𝑚) are investigated. After that, I evaluate the GA when changing the number

of network nodes as well as the number of jobs.

69

Chapter 4 Meta-Heuristics for Resource Allocation

Algorithm 4: RandomScheduler

Input: Infrastructure graph 𝐺𝐼 , Application graph 𝐺𝑂 , Chromosome 𝑐

1 𝑆 ← empty schedule

2 𝑄 ← empty priority-queue of transmissions

3 𝑄′← empty priority-queue of Transmissions

4 𝑖 ← 1

5 𝑄 ← getTransmissions(𝐺𝑂 , 𝑐)

6 while 𝑄 ≠ {} do
7 𝑡 ← 𝑄.𝑝𝑜𝑝 ()
8 𝑏 ← false

9 if placeable(𝑡 ,𝑠𝑖) then
10 𝑆 .add(𝑠, 𝑡)
11 𝑏 ← true

12 else
13 𝑄′.put(𝑡)
14 if 𝑄 = {} then
15 if 𝑏 = false then
16 return null

17 𝑖 ← 𝑖 + 1

18 𝑄 ← 𝑄′

19 𝑄′← empty priority-queue of transmissions

20 return 𝑆

70

Genetic Algorithm Section 4.1

I consider power-plugged wireless devices as seen in home appliances and factory

setups; the sensor nodes have fixed positions. The nodes of the infrastructure graph

are distributed uniformly at random in an area of 10 by 10 meters. The attenuation

between two nodes 𝑣 and 𝑣′ is set to 𝛾𝑣,𝑣 ′ = 𝐾/𝑑2

𝑣,𝑣 ′, where 𝑑𝑣,𝑣 ′ is the distance

between the nodes and 𝐾 is a power constant.

When varying the number of nodes and jobs, two different scenarios are con-

sidered. First, I change the number of nodes while the application graph is fixed

to represent an algorithm from the field of acoustic signal processing [Sch+17a]

(Figure 3.4), which consists of hybrid topologies (linear, parallel, and loop). Second, I

fix the number of nodes to 15 and vary the number of jobs, where the links between

the jobs are generated at random, so that each pair of jobs has a probability of being

connected by a link. Unless stated otherwise, I see the priority to
1

8
.

For each analysis, there are 50 independent realizations of the application and

infrastructure graphs. I set a maximum of 2000 generations for each scenario.

Although 2000 generations seem to be an overkill – all scenarios converges not

later than the 1000th generation (Figure 4.1, 4.5) – but I want to avoid constraining

the final result of the algorithm by setting the generation limit too low.

Population Size, Crossover Rate and Mutation Rate

I evaluate the performance of GA with different configurations for the popula-

tion (𝑝 ∈ {50, 100, 200}), crossover (𝑟𝑐 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}), and mutation

(𝑟𝑚 ∈ {0.05, 0.1, 0.15, 0.2, 0.25}), where I experiment with low, middle and high

probabilities. For the sake of clear visibility in the figures, I select the most signifi-

cant configurations to show the dependency for the number of time slots (Figure 4.1)

and the runtime (Figure 4.2).

In Figure 4.1, it is clear that the GA converges faster for bigger populations

since it contains more chromosomes and has better chances of convergence, but of

course this comes at the expense of computation time (Figure 4.2). When sweep-

ing over the mutation probabilities, I observe that convergence speeds up with

increasing probabilities, (Figure 4.1) at only a slight increase in computation time

(Figure 4.2). The crossover probabilities have barely any impact on the convergence

rate. At the end, all simulations converge to the same number of time slots as found

by Section 3.1.

For further simulations, 𝑝 = 100, 𝑟𝑐 = 1.0 and 𝑟𝑚 = 0.25 are selected. Using these

values, the best placement, routing and scheduling is on average already computed

in generation 144, and the median runtime is 5.89 seconds; the median is selected

to prune outliers due to runtime glitches or similar problems.

71

Chapter 4 Meta-Heuristics for Resource Allocation

0 1,000 2,000

0

2

4

6

8

10

12

𝑝 = 50, 𝑟𝑐 = 1.0, 𝑟𝑚 = 0.25

𝑝 = 100, 𝑟𝑐 = 1.0, 𝑟𝑚 = 0.15

𝑝 = 100, 𝑟𝑐 = 0.6, 𝑟𝑚 = 0.25

𝑝 = 100, 𝑟𝑐 = 1.0, 𝑟𝑚 = 0.25

𝑝 = 200, 𝑟𝑐 = 1.0, 𝑟𝑚 = 0.25

generation

t
i
m
e
s
l
o
t
s

Figure 4.1: Average number of time slots depending on the generation of different combi-

nations of population size 𝑝 , crossover rate 𝑟𝑐 and mutation rate 𝑟𝑚

0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0

0

10

20

30

𝑟𝑚 = 0.05

𝑟𝑚 = 0.15

𝑟𝑚 = 0.25

r
u

n
t
i
m

e
/𝑠

𝑟𝑐 =
𝑝 = 50 100 200

Figure 4.2: Median runtime of different population sizes, crossover rates and mutation

rates with a 95% confidence interval

72

Genetic Algorithm Section 4.1

7 10 15 20 25 30

0

10

20

30

40

50

number of nodes

r
u

n
t
i
m

e
/𝑠

Figure 4.3: Median runtime of different node numbers with 95% confidence interval

Runtime

To consider the bound on largest possible runtime of the GA, I assume a full mesh

application graph, so that the runtime is given by O
(
𝑔 · 𝑝 ·

(
|𝑉 |3 · |𝐵 |6 + |𝑉 |4

))
,

where 𝑝 is the population size and 𝑔 the number of generations.

Using simulations, the polynomial dependency is evaluated in time units (/s) for

the number of nodes (Figure 4.3) and for the number of jobs (Figure 4.4), where I

show the median runtime as a function of the number of nodes and blocks with

95% confidence intervals. Again, the median is selected instead of the average, to

ignore the outliers impact. Note that the application graph topology is no longer a

full mesh graph, jobs are rather connected with a probability
1

8
. In comparison, the

runtime increases with a higher gradient with respect to the number of jobs than

to the number of nodes.

For Figure 4.4, I generate different topologies at random for the application,

where the probability of having a link between two jobs is
1

4
(red) or

1

8
(blue). I

observe that the runtime increases not only with the number of jobs, but also with

the number of links in the application graph.

Impact of application graph topology

Here, I investigate the impact of application topologies on the resulting end-to-end

delay. In this experiment, the number of nodes is fixed (to be 15) and I fix the GA

configuration (𝑝 = 100, 𝑟𝑐 = 1.0, 𝑟𝑚 = 0.25). I change, however, the application

73

Chapter 4 Meta-Heuristics for Resource Allocation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

20

40

60

80

100

link prob. = 1/4
link prob. = 1/8

number of jobs

r
u

n
t
i
m

e
/𝑠

Figure 4.4: Median runtime and 95% confidence interval of random generated application

graphs with different number of jobs and link probabilities

graphs to have linear (Figure 3.15 (d)) and parallel (Figure 3.15 (e)) topologies. Note

that the objective here is not to evaluate GA, but to find a relation between the

application graph topology and the number of used time slots.

I observe, in Figure 4.5, that even when the linear topology has more jobs than

the parallel one, the former needs lower number of time slots, because the parallel

topology has more links in the application graph. This highlights the importance

of considering the links in the application graphs rather than considering only

the number of jobs that need to be distributed as in [Din18], especially when

considering latency requirements. I highlight that the output from GA was the

same as from the optimization model (Section 3.1), using the setup in Section 3.1.4.

4.2 Reinforcement Learning for Placement

In this section, I propose a solution for the VNE problem using a modular implemen-

tation. In other words, the solution consists of 3 modules, each solving a different

problem: RL for placement, shortest-path-first for routing and mixed-integer linear

programming for scheduling. The results of this section are based on the work

in [AK20]

74

Reinforcement Learning for Placement Section 4.2

0 1,000 2,000

0

2

4

6

8

10

linear

parallel

generation

t
i
m
e
s
l
o
t
s

Figure 4.5: Average number of time slots depending on the generation of the linear

application graph (red) and the parallel application graph (blue)

4.2.1 States and Actions

The state space represents the placement of jobs on the infrastructure nodes. Con-

sequently, a state is given by an array of length |𝐵 |, where each element of this

array has a value ∈ 𝑉 ; the total number of states is given by |𝑉 | |𝐵 | .
The placement solution per state is not necessarily always valid (e.g., the capacity

constraint may be violated as in Figures 4.7 (b) and 4.7 (c)). Therefore, the agent

takes an action to move the placement of a virtual function from one node to

another (Figures 4.7 (c) and 4.7 (d)); the total number of possible actions per state

is equal to |𝑉 | · |𝐵 |. Note that actions are only taken, if and only if the placement

solution is invalid.

4.2.2 Reward Function

The main objective of RL is to find a solution as fast as possible, i.e., with minimum

number of steps, while still minimizing the number of used time slots. Hence the

reward for every state-action is based on two main criteria: first, it checks whether

the new state’s solution satisfies all constraints (Figure 4.7 (d)). Second, it calculates

the number of timeslots required to send the data from source to destination, based

on the placement solution (Figure 4.7 (f)) and the resulting route.

Each state-action pair yields a reward according to its placement solution. If

the solution violates any of the constraints (Section 3.1.1), a negative value (−𝑟Z) is
given every time the constraints are violated (Eq. (4.3))

𝑅𝑡 = −𝑟Z (4.3)

75

Chapter 4 Meta-Heuristics for Resource Allocation

If the state has a valid placement solution, the shortest path between the nodes

used for placement is calculated, where a path is determined for each link in the

application graph (Figure 4.7 (e)). Then, I calculate the number of timeslots needed

to send the data along the paths, by solving for the duplex (Eq. (3.7)) and interference

(Eq. (3.8)) constraints. Finally, I terminate the episode and calculate the reward

using Eq. (4.4)

𝑅𝑡 =
|𝐵 | · 𝑟Z∑
𝑖∈𝑇 𝛿𝑖

(4.4)

4.2.3 Exploration Rate
I investigate two variants for exploring the environment; Greedy epsilon and

Epsilon decay (Section 2.3.3).

Greedy epsilon

I fix the epsilon parameter over all steps for all episodes to explore and exploit the

environment. Accordingly, an agent selects a random action with a probability

equal to 𝜖 .

Epsilon decay

Epsilon is initially set to 1, meaning that the agent chooses actions at random to

explore the new environment and update the Q-table. After each episode, to 𝜖 is

reduced to slowly transition from exploration to exploitation.

4.2.4 Evaluation of Reinforcement Learning for Placement
I define two different infrastructure graphs with 4 and 6 nodes. For each one, I

change the source and destination nodes, the attenuation between the nodes, and

the nodes’ capacities, to have in total 50 different scenarios per each graph. I fix the

application graph to a linear topology of five jobs, where all links in the application

graph require the same data rate.

I set the hyper-parameters for the RL algorithm to 𝛼 = 0.1 and 𝛾 = 0.6. When

using Greedy epsilon, I set 𝜖 = 0.1, 0.5, 0.9 and fix it later to 𝜖 = 0.1 (Section 4.2.4).

For the Epsilon decay variant, I decrease the value of 𝜖 by
1

|episodes |
2
−1

, and stop

decaying epsilon after
|episodes|

2
episodes. The maximum number of episodes is set

to triple the number of states, so that we have 3072 episodes and 23328 episodes

for 4- and 6-nodes networks, respectively.

76

Reinforcement Learning for Placement Section 4.2

Figure 4.6: RL framework describing the role of agent and the process of environment as

described in Section 4.2.1

(a) Input graphs
(b) Initial random

placement

(c) New placement for

B

(d) New placement for

C

(e) Find shortest paths (f) Assign timeslots

Figure 4.7: Visualizing the RL framework steps; assume all nodes can run one process at

maximum.

77

Chapter 4 Meta-Heuristics for Resource Allocation

0 500 1000 1500 2000 2500 3000
Episodes

2.5

2.0

1.5

1.0

M
ea

n
Q Epsilon decay

Greedy epsilon (0.1)
Greedy epsilon (0.5)
Greedy epsilon (0.9)

(a) 4 Nodes

0 5000 10000 15000 20000
Episodes

1.8

1.6

1.4

1.2

1.0

M
ea

n
Q

Epsilon decay
Greedy epsilon (0.1)
Greedy epsilon (0.5)
Greedy epsilon (0.9)

(b) 6 Nodes

Figure 4.8: Mean Q-value convergence

Value based convergence

I first investigate the Q-table’s convergence when using Epsilon decay and Greedy

epsilon with different values for 𝜖 (0.1, 0.5 and 0.9). In Figure 4.8, we observe that

when using 𝜖 = 0.1 or using Epsilon decay, the mean value for the Q-table seems

to converge within 2000 episodes for 4 nodes network (Figure 4.8 (a)) and 10000

episodes for 6-nodes network (Figure 4.8 (b)). However, when 𝜖 = 0.5 or 0.9, the

mean value does not converge neither for a 4-nodes network nor for a 6-nodes

network.

It is expected that the higher the value for 𝜖 is, the more episodes it needs to

converge. Nevertheless, if we choose a very low value for 𝜖 , we will converge

78

Reinforcement Learning for Placement Section 4.2

0 200 400 600 800 1000
States

0.0

2.5

5.0

7.5

10.0

12.5

M
ax

 r
ew

ar
d

Baseline
Epsilon Decay
Epsilon Greedy

(a) 4 Nodes

0 1000 2000 3000 4000 5000 6000 7000 8000
States

0.0

2.5

5.0

7.5

10.0

12.5

M
ax

 r
ew

ar
d

Baseline
Epsilon Decay
Epsilon Greedy

(b) 6 Nodes

Figure 4.9: Explored maximum reward per state

79

Chapter 4 Meta-Heuristics for Resource Allocation

0 500 1,000 1,500 2,000 2,500 3,000

−200

−150

−100

−50

0

Episodes

R
e
w
a
r
d

average rewards

max rewards

min rewards

(a) 4 Nodes, Epsilon decay

0 0.5 1 1.5 2

·10
4

−300

−200

−100

0

Episodes

R
e
w
a
r
d

average rewards

max rewards

min rewards

(b) 6 Nodes, Epsilon decay

0 500 1,000 1,500 2,000 2,500 3,000

−200

−150

−100

−50

0

Episodes

R
e
w
a
r
d

average rewards

max rewards

min rewards

(c) 4 Nodes, Greedy epsilon

0 0.5 1 1.5 2

·10
4

−300

−200

−100

0

Episodes

R
e
w
a
r
d

average rewards

max rewards

min rewards

(d) 6 Nodes, Greedy epsilon

Figure 4.10: Average reward over episodes.

80

Reinforcement Learning for Placement Section 4.2

fast but also prematurely to a misleading or suboptimal value, because we do not

explore all possible good choices. Accordingly, I fix Greedy epsilon to 𝜖 = 0.1 for

the rest of the evaluation and compare the goodness in Section 4.2.4.

Exploration and Exploitation

To investigate the exploration for Greedy epsilon and Epsilon decay, I show in Fig-

ure 4.9 the resulting maximum reward from all actions for each state. The baseline

represents the maximum ground truth for each state. For 4 nodes (Figure 4.9 (a)),

we have 1024 states where both Greedy epsilon and Epsilon decay tend to give

higher weights for the lower numbered states. We observe a similar behavior for a

6-nodes network (Figure 4.9 (b)) with 7776 states.

This behavior is due to the greediness of both approaches: The baseline has the

same reward for different states, therefore, a greedy approach will select an action

that exploits the first (i.e., the lowest number) state, out of all possible actions with

the same reward.

When taking a closer look at the reward and see how it evolves with increasing

number of episodes (Figure 4.10), over the last 100 episodes, I show the maximum,

minimum and average rewards for the selected actions.

On the one hand, we observe that for the Epsilon decay method (Figure 4.10 (a)

and Figure 4.10 (b)), theminimum rewards converge and become close to the average

reward after 1600 and 11000 episodes for 4 and 6 nodes networks, respectively. This

is due to the decaying property of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, where the agent becomes greedier as

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 approaches zero.

On the other hand, the minimum reward for the Greedy epsilon (Figure 4.10 (c)

and Figure 4.10 (d)) has a high variance, because the greediness of the agent is fixed

(𝜖 = 0.1) and it does not always aim at maximizing the reward, but also try other

random actions. Meanwhile, the average values converge similar to the Epsilon

decay method.

Comparison to the Optimization Model

Next, I focus on the resulted timeslots using Greedy epsilon and Epsilon decay

(Figure 4.11). I simulate 50 different scenario, where each scenario has different

source and sink nodes, different attenuation between the nodes, and different

capacities per nodes. Each scenario is solved 50 different times using Greedy

epsilon and Epsilon decay methods. Out of the 50 solutions, I calculate the mean,

maximum and minimum achieved number of timeslots. Additionally, I calculate

81

Chapter 4 Meta-Heuristics for Resource Allocation

0 10 20 30 40 50

2

2.5

3

3.5

4

Scenarios

T
i
m
e
s
l
o
t
s

Decay𝑀𝑎𝑥−𝑀𝑖𝑛 Greedy𝑀𝑎𝑥−𝑀𝑖𝑛
Optimal Decay

Greedy

(a) 4 Nodes

0 10 20 30 40 50

2

2.5

3

3.5

4

Scenarios

T
i
m
e
s
l
o
t
s

Decay𝑀𝑎𝑥−𝑀𝑖𝑛 Greedy𝑀𝑎𝑥−𝑀𝑖𝑛
Optimal Decay

Greedy

(b) 6 Nodes

Figure 4.11: Resulted number of timeslots

the optimal number of timeslots per each scenario using the optimization model

in Sections 3.1.1 and 3.2.1.

As expected, the optimal number of timeslots (blue) acts as lower bounds for

both Epsilon decay (red) and Greedy epsilon (yellow) methods. Moreover, I observe

that in worst case scenarios, for both methods, the additional number of timeslots

(compared to the optimal solution) is 2 timeslots, for both 4- (Figure 4.11 (a)) and

6-nodes (Figure 4.11 (b)) networks. Meanwhile, the mean number of timeslot of the

Epsilon decay is always less than or equal to that of Greedy epsilon.

I show in Figure 4.12 the confidence interval for the average number of timeslots

using both methods for all scenarios per each network. Although the Epsilon decay

method has lower mean for both networks, the confidence intervals do not really

allow to conclude that the decay method is always better than the greedy one.

Nevertheless, the results from Figure 4.11 (a) and Figure 4.11 (b) show that the

decay method is at least as good as the greedy one in all 50 scenarios. It is worth

mentioning that the number of steps required to find a valid solution are almost

the same: on average 1.8 steps using the Epsilon decay and 1.98 steps using the

Greedy epsilon.

82

Conclusion Section 4.3

4 6

0

1

2

3

4

Nodes

T
i
m
e
s
l
o
t
s

Epsilon decay

Greedy epsilon

Figure 4.12: Epsilon decay vs Greedy epsilon

4.3 Conclusion
Here, I used meta-heuristics to solve the wireless VNE problem. First a genetic

algorithm was defined and used to solve the problem. Then, I showed that the

feasible solutions found by the genetic algorithm are close to the optimal solutions.

Another RL-based meta-heuristic is also used to solve the wireless VNE problem,

where the results are also good compared to the optimal ones.

Estimating the exact gap between the meta-heuristics and the optimal solutions

is not easy since both solutions rely on initial random seeds. They have the same

objective. however, they are recommended in different scenarios. The RL-based

heuristic aims at finding a good solution as fast as possible and then it terminates,

making it suitable for handling network failures with minimum number of mi-

grations. Meanwhile, the genetic algorithm aims at finding a solution, but if it is

given more time, it may find a better one, making it suitable for problems with

distinct due dates. Hence, depending on the user’s preference, any of the solutions

is chosen.

83

5 Admission Control
for Incoming Jobs

In general, acoustic applications require high Quality of Service (QoS) deliveries

(e.g., low end-to-end delays) as seen in streaming services [Drä+18] . In previous

chapters, I showed how an application is divided into multiple fine-grained jobs,

where each job has some processing requirement (e.g., CPU resources) as well as

the communication between the jobs (e.g., data rate). To embed this application

within the network, I use VNE but without over-utilizing any of network resources,

with the objective of having high QoS.

In this context, a controller receives a request to embed an application, i.e., Virtual

Network Request (VNR), and then it decides how to embed the VNR. The objective

would then be to maximize the QoS. If the controller cannot find a feasible VNE

solution, it rejects the VNR.

A naive controller simply embeds VNRs as first-come-first-serve. But this may

limit the revenue/efficiency from utilizing the physical network, especially if the

VNRs have different resource requirements. Admission control is one way of

handling this issue; a controller may reject a VNR with high requirements to accept

later on more VNRs or to later accept VNRs with higher revenues. In this chapter, I

focus on WSN and use two parameters to describe incoming VNRs:

1. duration of leasing the network resources

2. priority of the VNR to express the revenue/importance

The main objective of the admission control is then to embed as many VNRs

as possible (or more VNRs with higher revenues) while minimizing unnecessary

rejections. An important challenge to consider, when designing such a controller,

is the uncertainty of future incoming VNRs. For example, this could be related to

dynamic arrival rate or the incoming VNRs parameters. I focus here on the latter,

so that future VNRs have different lease duration and different priorities.

Instead of using the naive admission, RL may be a promising candidate that can

better deal with this challenge. In the RL framework, an agent interacts with the

environment (i.e., VNE solution) to optimize its policy of accepting or rejecting a

VNR, without getting information about future VNRs.

Generally speaking, using an RL approach in the context of WSNs has been used

to solve many problems as in MAC [Mus+17], energy saving [CLZ16], and many

85

Chapter 5 Admission Control for Incoming Jobs

other similar problems [PAA19]. Only some work focused on VNE, admission

control and RL together. The authors in [BTS98; RTL20] assume that the QoS is a

constraint; hence, their proposed solutions reject VNRs that are likely to violate

QoS bounds. In contrast to their assumption, I assume that QoS is an objective for

the VNE problem, while the admission control maximizes the embedding revenue.

Furthermore, the work in [RTL20] assumed arriving VNRs wait in a queue for a

decision to be embedded or to be rejected. Meanwhile, in this chapter, and similar

to [BTS98], I have a queue length of only one. Therefore, queuing issues have been

ignored to emphasize other features of the admission control problem.

I use a VNE solution to check the feasibility of embedding a VNR. To combine both

admission control and VNE problems, the work in [Ble+16] uses recurrent neural

networks to reject VNRs that are likely to fail the QoS constraints, which saves the

computational time needed by the VNE solution to check the VNR implementation

feasibility. Hence, the admission control was trained to have high accuracy of

detecting feasible accepted VNR embedding. In this chapter, the admission control

is trained to maximize the network’s revenue, meaning that it can reject feasible

VNRs in order to accept more VNRs later.

Combining both admission control and VNE decisions has been solved using

RL in [Ble+18; Yao+20]. Similar to the work presented here, the objective is to

maximize the network’s revenue. Unlike those references, I assume a modular

implementation, where admission control and VNE solutions are two separate

modules that interact with each other. This allows reusing different modules in

similar problems. Additionally, the simplicity of this problem will probably lead to

less training time (i.e., time for the models to converge). For example, the mix of

VNE and admission control into a single module, as shown in [Yao+20], is valid

only for wired networks and cannot be applied or reused in the wireless network,

due to the differences between wired and wireless VNE problems. The presented

work is from [ASK21].

5.1 Problem formulation

The objective is to maximize the acceptance rate of incoming VNRs while also

prioritizing some VNRs over others. Hence, this would require rejecting VNRs,

even if they could be embedded resource-wise, to allow more future VNRs to be

embedded instead. In the following subsections, I describe the features of the VNRs

and the wireless network for formulating our problem.

86

Problem formulation Section 5.1

5.1.1 Virtual Network Requests
Each job requires a processing capacity 𝑐req, while all links have the same minimum

required data rate 𝑟req to guarantee an upper-bound delay. Similar to previous

chapters, I assume that the propagation and processing delays are negligible and

the medium access delay is constant.

I assume that we have a predefined set of VNRs, whose topologies are known in

advance. Hence, each VNR is labeled with an Identifier (ID), where the duration

and priority of each VNR can change, but the topology and required resources do

not.

Additionally, I assume that I have a discrete time environment where at each

time slot a new VNR 𝑣 arrives, whose duration 𝛿𝑣 is uniformly distributed between

[𝛿min, 𝛿max] time steps. By altering the value of 𝛿min and 𝛿max, the average VNR

duration can be adjusted to simulate different loads. Similarly, each VNR has a

priority _𝑣 ∈ [_min, _max]. The priory can express the revenue of running the

application or how important it is compared to other applications.

𝛿𝑣 and _𝑣 play an important role in the admission decision. For example, if the

goal is to maximize the number of admitted VNR, it is very likely to admit only

VNR with short duration. In this chapter, I alter the objective between, maximizing

the acceptance rate, having a high revenue and a mix between both objectives (see

Section 5.2.3).

5.1.2 Wireless Sensor Network
The wireless sensor nodes operate in half-duplex communication mode; a node

can be in one of three states: send, receive, idle. Each node 𝑝 ∈ 𝑃 is defined using

this set of properties: position in network 𝑋 𝑝 , computational capacity 𝐶𝑝 , actual

transmit power 𝑆𝑝 and noise floor 𝑁0.

I assume that all sensor nodes share the same collision domain with band-

width BW. To allow multiple channel access, I use TDMA, where a time step

is divided into 𝑇 time slots. Consequently, two nodes can transmit data of different

links simultaneously.

I use a simple distance-based model (5.1) to define the attenuation 𝛾 𝑖, 𝑗 based on

the distance 𝑑 between two nodes 𝑖, 𝑗 ∈ 𝑃

𝛾 𝑖, 𝑗 =
1

𝑑 (𝑋 𝑖, 𝑋 𝑗)2 . (5.1)

Accordingly, the maximum achievable data rate 𝑟
𝑖, 𝑗,𝑡
max

between two nodes 𝑖, 𝑗 ∈ 𝑃
at time slot 𝑡 ∈ 𝑇 is given by

87

Chapter 5 Admission Control for Incoming Jobs

𝑟
𝑖, 𝑗,𝑡
max

=
BW

|𝑇 | log2(1 +
𝑆𝑖𝛾 𝑖, 𝑗

𝐼 𝑖, 𝑗,𝑡 + 𝑁0

) (5.2)

where 𝐼 𝑖, 𝑗,𝑡 =
∑
𝑝∈𝑃𝑡
𝑝≠𝑖

𝛾𝑝,𝑗𝑆𝑝 is the interference at node 𝑗 from other nodes 𝑃 𝑡 that are

simultaneously transmitting with node 𝑖 at time slot 𝑡 .

5.1.3 Constraints

A successfully embedded VNR 𝑣 will decrease its remaining duration 𝛿𝑣 = 𝛿𝑣 − 1 in

each time step; 𝑣 runs as long as 𝛿𝑣 > 0. Second, let us assume that we have a list of

VNRs 𝑉 + which are currently running inside the network (i.e., 𝛿𝑣 > 0, ∀𝑣 ∈ 𝑉 +).
Then, we need to follow the typical VNE constraints in Section 3.2: capacity, flow

conservation, duplex constraints.

5.1.4 VNE Heuristic Solution

The VNE solution is a straightforward, first-fit constructive heuristic as described

in Section 3.3; it finds a solution by following a sequence of pre-ordered constraints.

First, wireless nodes are chosen in topological order of the jobs, while still checking

the capacity constraint. If any node does not satisfy the capacity constraint, another

node is selected at random. Next, shortest path routes are computed between the

nodes running the jobs. At the end, time slots are allocated to the transmissions

between the nodes in a topological order. We start with one time slot. If simultane-

ous transmissions cannot take place within the available time slots – i.e., due to

duplex or SINR constraints – new additional time slots are used for transmissions.

5.2 Reinforcement Learning

To train the RL agents, the Proximal Policy Optimization (PPO) [Sch+17b] RL

algorithm is used, because it is recommended for accelerating the training process,

thanks to its multiprocessing implementation[Hil+18]. Other RL algorithms (e.g.

Q-Learning) would have been possible, but the training time would have been

longer. In the following subsections, I define the observation space, the action space

and the reward function of the RL environment.

88

Reinforcement Learning Section 5.2

Figure 5.1: Example of activation link for 1 time slot and how it relates to VNR properties.

5.2.1 Observation Space

All observations are stored in a multi-dimensional discrete vector containing the

following information:

• Node capacities:→ ℝ𝑃

• Link activation ≡ [→ ℝ𝑃×𝑃×𝑇×2

• New VNR’s properties→ ℝ3

– ID

– Duration

– Priority

Node capacities contain the available capacities of each node at the current

time step. Link activation is a multi-dimensional matrix containing the activation

status of all currently embedded links. The first and second dimension encode

the sending and receiving nodes (Figure 5.1). The third dimension stands for the

time step at which the transmission takes place. Each transmission is labeled by 2

IDs representing which VNR and which link within the VNR. For newly incoming

VNRs, the VNR ID, duration 𝛿𝑣 and priority _𝑣 are added.

89

Chapter 5 Admission Control for Incoming Jobs

5.2.2 Action Space
The RL agent decides whether an incoming VNR is rejected or accepted (binary

space). In case of acceptance, the VNE algorithm will try to embed the VNR into

the network.

5.2.3 Reward Function
The reward function is chosen to train the agent towards the desired behavior

described in Section 5.1.

Table 5.1: Reward function

Agent decision VNE solution Label Reward

accepted feasible true positive +6

accepted infeasible false positive -2

rejected feasible false negative -1 + 𝑟extra

rejected infeasible true negative ±0

Table 5.1 describes the combinations of agent decisions and VNE algorithm

solutions with their corresponding reward. An incoming VNR is labeled as true
positive if the agent decides to accept and the VNE algorithm successfully embedded

the VNR. The other labels describe the remaining combinations of agent’s decisions

and the VNE solution feasibility.

During training, False negatives compute VNE, although the agent rejects the

VNR. This is used so that False negatives receive an extra reward 𝑟extra calculated

using Eq. (5.3). It relies on the relative delay (𝑓 𝑣
𝛿
= 𝛿𝑣

𝛿max

) and the relative priority

(𝑓 𝑣
_
=

_max−_𝑣
_max−1

) of the rejected VNRs 𝑣.

𝑟 𝑣
extra

= 𝑐𝛿 · 𝑓 𝑣𝛿 + 𝑐_ · 𝑓
𝑣
_

(5.3)

The control parameters 𝑐𝛿 and 𝑐_ are used to tune the false negative behavior on
the extra reward. The extra reward is used to recompense for rejecting VNR, when

a VNR has a very long duration, low priority or both.

5.3 Simulation Setup
The number of time slots per time step 𝑇 = 8 for all simulations in this chapter.

5 nodes are placed in a small-sized room (e.g., a seminar room) with dimensions

90

Simulation Results Section 5.4

5 m × 5 m,×3 m. The wireless channel bandwidth is set to BW = 20 MHz. The

minimum time duration per VNR 𝛿min = 2, while the VNR’s priority is uniformly

distributed between _ ∈ [1, 10]. All trained agents are compared to an always accept
baseline agent. This baseline agent will accept each incoming VNR and forward

it to the VNE algorithm. Hence, the embedding of a VNR depends only on the

VNE solution’s feasibility. With respect to Table 5.1, the output of this algorithm

corresponds only to true positives and false positives.
To measure the impact of the control parameters (𝑐𝛿 and 𝑐_) and the sensitivity

of the trained agent to incoming VNR properties, 3 simulation setups are defined:

1. fix 𝑐_ and change 𝑐𝛿

2. change 𝑐_ and fix 𝑐𝛿

3. fix both 𝑐_ and 𝑐𝛿 , while evaluating different agents trained on different 𝛿max

The VNR used in this simulation is made of three processing jobs 𝐵 = {K, L,M}
connected via two links (𝐸 = {KL, LM}) as shown in Figure 5.2.

K L M
𝑐req
K = 15 𝑐req

M = 8𝑐req
L = 15

𝑟req
KL = 5Mbps 𝑟req

LM = 5 Mbps

Figure 5.2: VNR overlay graph

5.4 Simulation Results
In general, for each configuration setup there are 100 different runs, where each

run has 1000 time steps (i.e., 1000 incoming VNRs). The median of these runs is

compared to that from the baseline solution (gray dots). Note that the acceptance

rate in the following subsections is calculated after the RL agent and the VNE

heuristic.

5.4.1 Duration Control Parameter
As stated in Section 5.2.3, 𝑐𝛿 controls the agent’s decision (i.e., accept/reject a VNR

𝑣) with respect to the VNR’s duration 𝛿𝑣 . To illustrate the sensitivity of agent’s

decision to this parameter, eight agents are trained, where I manually 𝑐𝛿 between

91

Chapter 5 Admission Control for Incoming Jobs

6 10 14 18 22 26 30
Evaluated max

15

20

25

30

35

40

45

50

Ac
ce

pt
an

ce
 ra

te
 [%

]

trained c
3.0
2.8
2.6
2.4
2.2

2.0
1.8
1.6
always
accept

(a) Acceptance rate

6 10 14 18 22 26 30
Evaluated max

0

10

20

30

40

50

Fa
lse

 n
eg

at
iv

es
 [%

]

(b) False negatives

Figure 5.3: Results of 𝑐𝛿 parameter analysis

[1.6, 3.0]. All agents have the same number of training time steps 10
6
and 𝛿max = 30

(Figure 5.3)

Figure 5.3 (a) shows the median acceptance rate (
number of accepted VNR

total number of incoming VNRs
) values

of all different trained agents and the always accept baseline agent in different

offered load environments. Figure 5.3 (b) shows the corresponding relative number

of false negatives created by those agents.

The agent trained with 𝑐𝛿 = 1.6 does not increase overall acceptance rate com-

pared to the always accept baseline agent and does not make any false negatives
decisions. In other words, the agent learns to behave the same way as the baseline.

Meanwhile, agents with higher values for 𝑐𝛿 show an increase in overall acceptance

rate especially in higher offered load environments, i.e., better than the baseline.

This increase comes with the cost of creating more false negatives, i.e., unneces-
sary computations for the heuristic. The difference between each other is, as ex-

pected, most present for medium offered loads. The agents with 𝑐𝛿 = 1.8, 2.0, 2.2, 2.4

show a gradual increase in acceptance rate compared to each other when evalu-

ating 𝛿max between 10 and 22. For incoming VNRs with higher 𝛿max, the agents

perform very close to each other, i.e., diminishing return. Hence, the agents with

𝑐d = 2.6, 2.8, 3.0 do not further increase the acceptance rate compared to agents

trained with smaller values for 𝑐d. Meanwhile, in Figure 5.3 (b), increasing 𝑐𝛿 tends

to have more false negatives. Accordingly, at some point, increasing 𝑐𝛿 does not

increase the acceptance rate and just increase the false negatives.

92

Simulation Results Section 5.4

c =0 c =1.2 c =1.5 c =1.8 always
accept

14

16

18

20

22

24

Ac
ce

pt
an

ce
 ra

te
 [%

]

(a) Acceptance rate

c =0 c =1.2 c =1.5 c =1.8 always
accept

0

10

20

30

40

50

60

Fa
lse

 n
eg

at
iv

es
 [%

]

(b) False negatives

Figure 5.4: Results of 𝑐_ parameter analysis with 𝑐𝛿 = 1.8 and 𝛿max = 26

5.4.2 Priority Control Parameter

All previous analyses focused on maximizing the acceptance rate by rejecting long

VNRs. This may not be ideal because it prevents longer VNRs from being embedded

at all. for a different goal, 𝑐_ can be used to give higher priority for longer VNRs

(e.g., higher revenue). Figure 5.4 shows the evaluation results of the trained agents

with different values for 𝑐_ and _ ∈ [1, 10], while all agents use 𝛿max = 26 for

training and evaluations.

In Figure 5.4 (a), it is observed that the higher the value of 𝑐_ during training,

the lower the acceptance rate of the resulting agent. This is due to accepting VNRs

with high 𝛿max and high priority. Meanwhile, the number of false negatives tends
to decrease as 𝑐_ increases.

To extend the analysis, in Figure 5.5, I investigate which VNRs are getting

accepted or rejected during evaluation. Figure 5.5 (a) shows the number of true
positives while Figure 5.5 (b) shows the number of false negatives using different
values for 𝑐_ during training. Each point represents the number of VNRs with their

corresponding duration and priority values. For the agent with 𝑐_ = 1.2, most

true positives are short VNRs of different priorities. As the VNR duration increase,

they are being rejected by the admission control; very long duration VNRs are not

embedded at all, which can be seen in the dark area. The results for false negatives
in Figure 5.5 (b) confirm this behaviour. Mainly, long VNRs are being rejected, even

if they can be embedded.

Higher values for 𝑐_ have two obvious impacts on the acceptance rate (Fig-

ure 5.5 (a)). First, the slope of the red boundary increases – the agent starts to

accept longer VNRs with high priorities rather than short VNRs with low priority.

93

Chapter 5 Admission Control for Incoming Jobs

5 10

5

10

15

20

25

Du
ra

tio
n

c = 1.2

5 10
Priority

5

10

15

20

25
c = 1.5

5 10

5

10

15

20

25
c = 1.8

(a) True positives

5 10

5

10

15

20

25

Du
ra

tio
n

5 10
Priority

5

10

15

20

25

5 10

5

10

15

20

25

(b) False negatives

0

50

100

150

200

Figure 5.5: Impact of 𝑐_ on true positives and false negatives with 𝑐𝛿 = 1.8 and 𝛿max = 26.

Second, the dark area in the true positive graphs gradually changes to red. That

means the agent becomes more flexible toward accepting long VNRs, given that

these strict constraints no longer exists.

Depending on the use case (e.g., seeking higher revenues) this behaviour can be

beneficial – when increasing 𝑐_ ,long VNRs get a chance to be embedded rather

than being always rejected.

Meanwhile, 𝑐_ should be carefully tuned, otherwise it will lead to an undesired

agent behaviour. In Figure 5.6, I retrain the environment for 𝑐𝛿 = 30 and, again, with

increasing 𝑐_ . It is observed that agents trained with high values for 𝑐_ eventually

start to prioritize false negatives (Eq. (5.3)). Hence, the results could be even worse

than the baseline solution: lower acceptance rate (Figure 5.6 (a)) and higher false

positive (Figure 5.6 (b)).

94

Simulation Results Section 5.5

c =0 c =1.5 c =1.8 c =2.1 c =2.4 c =2.7 always
accept

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ac
ce

pt
an

ce
 ra

te
 [%

]

(a) Acceptance rate

c =0 c =1.5 c =1.8 c =2.1 c =2.4 c =2.7 always
accept

0

20

40

60

80

Fa
lse

 n
eg

at
iv

es
 [%

]

(b) False negatives

Figure 5.6: Results of 𝑐_ parameter analysis with 𝑐𝛿 = 1.8 and 𝛿max = 30

5.4.3 Maximum Trained Duration

In the previous evaluations, agents are trained with a fixed 𝛿max and evaluated for

different incoming 𝛿max. What if the agents are trained for a shorter 𝛿max? How would
that impact the acceptance rate for incoming VNRs with longer, shorter, or equal to
the trained 𝛿max?
To answer these questions, in total 9 agents are trained for 𝛿max between 12

and 30 and evaluated, in addition to the baseline, for different 𝛿max (Figure 5.7).

All training runs are performed with 𝑐𝛿 = 1.8, which is a compromise between

increasing acceptance rate and limiting the number of false negatives as described
in 5.4.1, and 𝑐_ = 0.

In Figure 5.7 (a), each agent shows the highest increase in median acceptance rate

compared to the always accept baseline agent in the exact scenario it was trained

for. For higher offered loads, the performance of agents drops but still stays above

the baseline level. This behaviour results from agents not having encountered any

larger VNR duration during training; thus, they do not know how to properly deal

with them during evaluation.

This can also be interpreted from Table 5.2. Agents performmostly the best when

the trained and evaluated 𝛿max are the same. As the difference between the trained

and evaluated 𝛿max increase, the acceptance rate decrease, but it is still better than

the baseline solution. Meanwhile, Figure 5.7 (b) does not show consistent patterns

for the relation between trained and evaluated 𝛿max with respect to false negatives.
Hence, it depends more on the environment and should be tuned with respect to

other environment parameters (e.g., distribution of arriving VNR duration).

95

Chapter 5 Admission Control for Incoming Jobs

6 10 14 18 22 26 30 40 50
Evaluated max

10
15
20
25
30
35
40
45
50

Ac
ce

pt
an

ce
 ra

te
 [%

]
trained max
always
accept
12
16
20
24

30
35
40
45
50

(a) Acceptance rate

6 10 14 18 22 26 30 40 50
Evaluated max

0

10

20

30

40

50

Fa
lse

 n
eg

at
iv

es
 [%

]

(b) False negatives

Figure 5.7: Impact of trained 𝛿max on agent performance in different 𝛿max enviromnets

Table 5.2: Comparison between agents with different trained 𝛿max in multiple 𝛿max envi-

ronments

eval 𝛿max 12 16 20 24 30 35 40 45 50

trained 𝛿max

12 34.3 26.8 22.3 19.2 15.6 13.6 12.1 10.9 9.8

16 33.9 29.5 24.7 21.5 18.1 16.0 14.3 13.0 12.1

20 32.2 29.1 26.3 22.0 17.7 15.3 13.5 12.0 10.8

24 30.2 27.9 25.9 24.1 17.5 14.6 12.7 11.3 10.2

30 30.9 27.7 25.5 23.7 21.2 18.1 15.8 14.1 12.9

35 29.9 26.9 25.1 23.5 21.3 19.6 18.3 17.1 16.2

40 30.3 26.0 24.0 22.4 20.4 18.4 16.6 15.1 14.0

45 28.8 24.7 23.5 22.6 20.9 19.6 18.5 17.5 16.7
50 28.4 23.3 22.1 21.2 19.8 19.0 17.9 17.1 16.4

baseline 28.4 22.2 18.1 15.4 12.6 11.0 9.7 8.6 7.8

96

Summary Section 5.5

5.5 Summary
This chapter uses RL for admission control of VNRs in wireless VNE. RL agents are

trained to maximize the revenue (e.g., acceptance rate or number prioritized VNR)

by rejecting some VNRs to be able to accept more/better future VNRs. The agent’s

behavior can be tuned by modifying the parameters 𝑐𝛿 and 𝑐_ . On the one hand,

low values of 𝑐𝛿 lead to a behavior with little to no increase in overall acceptance

rate while keeping the number of false negatives small. High values of 𝑐𝛿 yield

more false negatives aggressively, resulting in a higher overall acceptance rate, but

with a diminishing return. On the other hand, the higher 𝑐_ the more likely the

agent consider priority over duration. Hence, longer VNRs with a high priority

value can be accepted. This should be carefully tuned, otherwise the results can be

even worse than a first fit baseline. Meanwhile, training an agent with a predefined

𝛿max yields a better solution than the first fit baseline, even if there is a mismatch

between the trained and deployed/evaluated 𝛿max.

97

6 Impact of MAC Protocols

In the previous chapters, I assumed that the number of wireless nodes are fixed

and the nodes do not move. Additionally, when fixing the application, the data rate

is known in advance. For example, the data rate generated from microphones for

acoustic applications are fixed and given. Accordingly, it makes sense to use a TDMA

MAC. However, TDMA requires signalling protocols that can create substantial

overhead, especially when there are external factors (e.g., heat) influencing the

clocks used for wireless transmissions. This makes TDMA less attractive even

though it offers tight bounds on medium access delay and guaranteed data rates.

As an alternative, typical ad hoc standards (as seen in IEEE 802.11 family) rely on

CSMA/CA or listen-before-send protocols. They are, however, subject to collisions,

high delays and fluctuating data rates
2
.

In much the same way, data synchronization is a critical issue that appears for

multimedia applications with distributed sensors/actuators, where audio and video

devices are separated in space. In this context, data synchronization means syn-

chronizing the timing of data collected from different sensors (e.g., microphones

and cameras). This is indeed crucial for many applications such as lip synchro-

nization, video animation, and real-time audio streaming [Ban+09]. As a concrete

example, let us consider acoustic source localization in acoustic sensor networks

using audio synchronization [DSB01] via a set of distributed microphone nodes.

Without synchronizing the audio streams of the nodes, the localization suffers,

for example, from the problem that the Time Differential of Arrival (TDoA) of the

signals changes over time [GSH21]. Consequently, the acoustic source seems to be

moving even while it actually remains at a fixed position.

In this chapter, I ask how to reduce the synchronization overhead for TDMA

protocols and whether they become a competitor to CSMA/CA protocols. To do

so, I reuse the results from an application running audio stream synchronization

between microphones [GSH21] to synchronize the time slots for wireless transmis-

sions. In a sense, I leverage application synchronization for MAC synchronization.

To bootstrap this process, the application starts running using CSMA/CA for an

acoustic SRO estimation. Once audio synchronization accuracy is below a certain

threshold, I recommend to switch to TDMA for a more stable or a higher network

2 I assume that RTS/CTS is turned off

99

Chapter 6 Impact of MAC Protocols

throughput. In general, I look into the following aspects: How to set the accuracy

threshold for switching? Is the resulting audio synchronization good enough for

synchronizing TDMA slots? How big do the guard intervals need to be? And

overall, what would be the gain of switching between CSMA/CA and TDMA?

I use throughput (number of bits successfully received per time unit) as a metric to

evaluate the performance of the two MAC protocols and show the relation between

audio synchronization error, back-off interval and achieved throughput. On the

one hand, throughput is chosen as a metric due to the fact that most multimedia

applications exchange a substantial amount of data. On the other hand, I assume

that these applications do not have delay requirements, where the accuracy of the

synchronization from the application (in this chapter audio synchronization) is

independent of network delays. The network delays may, however, impact the time

required to estimate the SRO and to synchronize the audio streams.

Generally, several communication protocols have been proposed to synchronize

the clocks of wireless nodes. The most famous protocol is Network Time Protocol

(NTP) [Mil91], yet it was originally developed to be used over the internet, i.e., wired

networks, and rests on assumptions that are usually violated in wireless networks,

e.g., constant transmission delays. In NTP, synchronization is achieved using a

hierarchical structure of time servers, where the root node is synchronized with

the Coordinated Universal Time (UTC). NTP assumes that the transmission delays

between two nodes forward and backward are the same, yet this is not always true

in wireless networks. Moreover, NTP adds an overhead to the limited data rate

(with multi-hopping properties) of wireless networks. To address some of these

problems, extensions to NTP [DH04; EGE03; GKS03; GR03] have been proposed.

To specifically address multimedia applications, the authors in [FYD09] proposed

combining both TDMA and CSMA/CA MAC protocols for predictive network

delays, in which, similar to NTP, the nodes exchange beacons for clock synchro-

nization. The IEEE 1588 standard (a.k.a. precision time protocol [CEP07]) also uses

beacons only for estimating time offsets but not for transmissions. A comprehensive

survey on wireless MAC protocols and the synchronization protocols was done

in [Mah+17; ZMS20].

What is common between the aforementioned works is that they all require

additional signalling overhead to achieve synchronization. On the contrary, driving

MAC synchronization from an application synchronization process that takes place

anyway, and thus reducing signalling overhead, is vastly less investigated. For

example, [MR14] uses the time information inside the application’s query packets

to synchronize the virtual clocks of the nodes. The nodes then alternate between

awake and sleep states and adjust the amount of time spent in each phase (duty

cycle). Hence, nodes running the same application should synchronize their virtual

100

System Model Section 6.1

clocks to have the same duty cycle. This works, however, best for applications

that periodically send queries and works not so well for on-demand applications as

in some multimedia applications. This is due to the fact that periodic queries, as

well as periodic data traffic, regularly ensure an adequate synchronization between

the nodes. But on-demand queries do not exchange packets for some periods

in time [Gun+21], in which synchronization errors accumulate. This makes the

synchronization problem more complex, because the synchronization error may

become arbitrarily large during long periods in time without exchanging queries.

Thus, the synchronization needs to be re-started when queries are available again.

Here, I assume that the nodes are not synchronized at the begging of sending data

flows.

In fact, many multimedia applications, such as acoustic applications, also require

synchronization, but between multiple distributed clocks driving the sampling

processes of the audio signals [BAK04b; DG15; GBW01]. Accordingly, many algo-

rithms were developed using different assumptions, such as static SROs [CG17a]

and time-varying SROs [GSH21]. Such algorithms run independently of the wire-

less synchronization and are a part of the acoustic application. Here, I leverage the

output of an audio synchronization algorithm to synchronize the wireless clocks.

6.1 System Model
I consider a wireless network with 𝑁 > 2 nodes, each equipped with a microphone.

All nodes operate in the same collision domain with negligible propagation delays.

The nodes exchange audio data over a single hop, i.e., no packet forwarding. I

assume that neither the nodes’ positions nor their used data rates change. However,

the position of the acoustic source (i.e., speaker) changes over time. The buffer size

of the nodes is assumed to be infinite, so that packets are buffered (and not lost) in

case of wireless channel over-utilization.

In reality, there is a time-varying difference between the rates of the clocks

driving the sampling processes of the audio signals of different nodes. This results

in a time-varying SRO between the audio signals recorded by different nodes, whose

effect accumulates over time, causing a growing SRO-induced shift 𝜏 between the

audio signals of different nodes [GSH21]. Accordingly, the SRO has to be estimated

from the audio signal to adapt the rates of the clocks driving the audio sampling

processes before using these clocks to drive the wireless transmission.

Additionally, there are Sampling Time Offsets (STOs) between the audio signals

recorded by different nodes, due to the fact that the nodes start recording at different

points in time. It corresponds to a constant time shift between audio signals recorded

101

Chapter 6 Impact of MAC Protocols

31

1

2

2

32

STO

time

Channel utilization

Packet generation

𝜎

1

1

𝜏

𝜇

𝜇

Figure 6.1: Channel access with CSMA/CA

by different nodes. SRO and STO models as well as the algorithms used to estimate

these quantities have been discussed in detail in [GSH21]. I use the outcome of this

work in the TDMA throughput analysis.

Next, I provide a simple analytic model for the throughput achieved by CSMA/CA

and TDMA under the given assumptions.

6.1.1 CSMA/CA
The contribution of this section is to derive the throughput of CSMA/CA for a

specific scenario, which will be used later for comparison with TDMA. Accordingly,

I apply some modifications to the derivations in the related work [BFO96; Bia00;

KSM03], to fit my scenario here.

Since nodes operate in the same collision domain, the RTS-CTS feature of 802.11-

MAC [21] is turned off, and for simplicity, I ignore the delays introduced by the

acknowledgment time and inter-frame spacing (IFS) [Bia00], which are typically

used for carrier sensing and sending/receiving acknowledgements. For fairness,

even if a node has multiple packets buffered, it only attempts to transmit one packet

and then enters back-off, as specified by 802.11 [WK05].

Additionally, I assume that the contention window size is fixed and does not

increase exponentially as in [21], which allows to derive the analysis for a particular

contention window size𝑊 . This is justifiable for this scenario where the number

and positions of nodes do not change and the application generates packets with a

constant length 𝐿 at the same rate (assuming that the remaining SRO is negligible

after audio synchronization).

For such a predefined, unchanging setup, I will derive a suitable contention

window size. Initially, a node senses the wireless channel and sends a packet if

102

System Model Section 6.1

the channel is idle. Otherwise, a random back-off interval 𝐵𝑛 starts when node 𝑛

attempts a packet transmission after sensing collisions or a busy channel. While

the wireless channel is idle, the timer counts down until it reaches zero and the

node transmits the packet. If the channel is detected busy before reaching zero, the

timer freezes until the channel becomes idle again (Figure 6.1). The time needed to

send a packet for node 𝑛 is `𝑛=𝐿/𝑅𝑛 , where 𝑅𝑛 is the bit rate given that node 𝑛 is

transmitting. I assume 𝑅𝑛 to be below the channel’s (Shannon) capacity [Sha48] for

all nodes.

In practice, audio data is not continuously transmitted, since there may be

time intervals without acoustic source activities. Hence, a channel may be idle

but the nodes still have no data to exchange, due to speech pauses or late gener-

ated/processed packet. I refer to the fraction of time for a scenario, where there is

no packet to send, given that the channel is idle, as 0 < 𝜌𝑛 ≤ 1, where 1 means that

nodes always have a packet to send and 0 means that nodes are not transmitting.

Nonetheless, when a node has packets to send, the objective is still to send at a

high throughput.

For simplicity, and unless mentioned otherwise, it is assumed that all nodes

have the same data rate 𝑅, traffic load 𝜌 and average back-off windows 𝐸 [𝐵]. The
analysis is based on the capacity formulation in [Bia00], where the focus is on

single-hop flows in a single collision domain. The channel throughput is then given

by

𝑆 =
𝑝tr𝑝𝑠𝐿

𝑝tr𝑝𝑠𝜏𝑠 + 𝑝tr(1 − 𝑝𝑠)𝜏𝑐 + 𝜏𝑖
, (6.1)

such that 𝜏𝑠 is the sending time, 𝜏𝑐 is the collision time, and 𝜏𝑖 is the expected

duration of the channel’s idle interval (slightly different from [Bia00] where 𝜏𝑖 is

the duration of a single back-off slot Chapter A). The content difference is due to

different focus; in [Bia00], the author focus on system throughput, while here I

focus on the throughout per node.

Furthermore, 𝑝tr is the probability that at least one node is transmitting, while

𝑝𝑠 is the probability of successful transmission conditioned by at least one node

transmitting. When the propagation and inter-frame spacing delays are ignored,

i.e., 𝜏𝑠 = 𝜏𝑐 [Bia00], we get

𝑆′ =
𝑝tr𝑝𝑠𝐿

𝑝tr` + 𝜎
., (6.2)

where ` is, again, the time to send a packet and 𝜎 is the average duration of the

idle interval when sending a packet.

For a fixed contention window𝑊 , the back-off window time has a uniform

103

Chapter 6 Impact of MAC Protocols

distribution 𝐸 [𝐵] = 𝑊 +1
2

. Accordingly, the probability that any node tries to access

the channel is [Bia00; KSM03]

𝑝𝑡 =
2

𝑊 + 1

. (6.3)

With the probability that any node tries to access the channel, the probability of

at least one transmitting node (𝑝tr) and, respectively, a successful transmission (𝑝𝑠)

are given by:

𝑝tr = 1 − (1 − 𝑝𝑡)𝑁 , (6.4)

𝑝𝑠 =
𝑝𝑡 (1 − 𝑝𝑡)𝑁−1

𝑝tr

. (6.5)

To derive the idle interval 𝜎 , it is assumed that when a node has a packet to send,

every other node also has a packet ready to transmit (𝜌 = 1). Therefore, the idle

interval is only due to the back-off count down. When 𝑁 nodes compete for the

channel the idle interval is given by [BFO96]

𝜎′ =
𝐸 [𝐵]
𝑁

=
𝑊 + 1

2𝑁
. (6.6)

If the nodes are not fully saturated, i.e., 𝜌 < 1, nodes start counting down only

for a fraction of time 𝜌 . Hence, as derived in [LK13], the relation between 𝜌 and 𝜎

is given by

𝜎 =
𝜎′

𝜌
=
𝑊 + 1

2𝜌𝑁
. (6.7)

Accordingly, the throughput per node 𝑛 is

𝑥CSMA−CA

𝑛 =
𝑆

𝑁
=

𝑝𝑠𝑝tr𝐿

𝑝tr𝑁` + 𝑊 +1
2𝜌

. (6.8)

6.1.2 TDMA

The derivation is divided into two parts. In the first part, TDMA has synchronized

time slots. I assume a pre-planned TMDA scheme where 𝑁 nodes take turns to send

a packet. Each node uses a time slot of fixed length in a TDMA frame comprising

𝑁 slots, separated by 𝑁 guard intervals (Figure 6.2).

The application requirements set the upper bound on the guard interval 𝜖 . As-

104

System Model Section 6.1

3

1

1

1

1

2

2

32

STO

time

Channel utilization

Packet generation

𝜖

𝜏

𝜇

𝜇

Figure 6.2: Channel access with TDMA

sume that after audio synchronization the remaining SRO is vanishingly small

and thus all microphone signals are sampled at a rate 𝑓s (samples/s). The samples

are encoded into bits using a code rate of C(bits per sample). Given that the time

required to transmit a packet is `, then the time when a node is ready to send its

next packet after every other node has sent a packet and waited a guard interval

is 𝑡send=𝑁 (` + 𝜖), while the time needed to generate a packet of size 𝐿 is 𝑡pkt=
𝐿
𝐶𝑓s

.

Ideally to avoid queuing delays, we would require

𝑁 (` + 𝜖)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝑡
send

≤ 𝜌 𝐿

𝐶𝑓 ∗
s±

𝑡
pkt

, (6.9)

where 𝑓 ∗
s
is the highest expected sampling frequency across all microphones, de-

pending on the SRO accuracy, and 𝜌 = 1 if 𝑡pkt = 𝑡send. Given that𝑅=𝐿/` and solving
(6.9) for 𝜖 it holds:

0 ≤ 𝜖 ≤ 𝜌𝐿
(

1

𝑁𝐶𝑓 ∗
s

− 1

𝑅

)
. (6.10)

As long as 𝜖 is smaller than this value, the TDMA scheme satisfies the application

data rate requirement. Meanwhile, the acoustic application needs to provide a clock

synchronization whose remaining SRO-induced shift 𝜏 is less than 𝜖; otherwise,

there are unnecessary queuing delays.

The second part is concerned with TDMA throughput with varying accuracy.

The challenge is that the accuracy of the synchronization of the acoustic application

varies randomly [GSH21]. Therefore, sometimes packets are lost because the guard

105

Chapter 6 Impact of MAC Protocols

interval was chosen too small (clocks are too inaccurate), or there are large delays

because the guard interval was chosen too large, wasting throughput. Additionally,

when load is too low, a node has to wait (1 − 𝜌)𝑡pkt for a packet to be ready to be

sent. Consequently, from (6.9) the throughput in TDMA is given by:

𝑥TDMA

𝑛 =
𝐿

𝑡send + (1 − 𝜌)𝑡tpkt

=
𝑅/𝑁

1 + 𝜖
`
+ (1−𝜌)𝑡pkt

𝑁`

𝑝 (|𝜏 | < 𝜖 + (1 − 𝜌)𝑡pkt) . (6.11)

Without training the network, the probability of a successful transmission

𝑝 (|𝜏 | < 𝜖 + (1 − 𝜌)𝑡pkt) will typically not be available inside a system, hence, it is

difficult to find a scheme that adapts the guard interval. But it is easy to evaluate,

for an empirically collected distribution of synchronization errors, which impact a

fixed guard interval length would have, as shown in the following sections.

6.2 Environment setup
I look into two aspects: 1) obtaining a distribution of synchronization errors based

on the simulation of an acoustic application and 2) using this distribution to derive

a TDMA-based throughput (and compare it to CSMA/CA throughput). As be would

the case in reality as well, I separate out these two aspects in separate simulation

systems.

Regarding the first part, I briefly describe the wireless acoustic network setup for

getting the synchronization results and refer to [GSH21] for more details. In total,

100 different acoustic sensor networks were simulated, each having different node

positions. For each network, the recordings of an acoustic scene are simulated with

a single acoustic source being active at any given time. Hereby the source positions

vary over time. Such a scene is 5 min long and may contain speech pauses. The

audio signals were re-sampled to simulate a time-varying SRO. In total, there are

more than 11 million data points of SROs estimation error and the corresponding

induced shift 𝜏 , from which I derive the empirical cumulative distribution function

of the synchronization error (Figure 6.3 (a)).

Regarding the second part of the simulation, I fix the nominal sampling frequency

𝑓𝑠=16 kHz, the coding scheme 𝐶=32 bits/sample and the packet length to 𝐿=8

kbit. The duration of back-off slot is 20`𝑠 . In the following sections, I evaluate

the throughput of TDMA and CSMA/CA while varying the number of nodes in

106

Results Section 6.3

-0.05 0 0.05 0.1

0

0.2

0.4

0.6

0.8

Induced shift 𝜏 (ms)

C
D
F
𝜏

(a) CDF of induced shift

0 0.04 0.08 0.12

0.0

0.2

0.4

0.6

0.8

1.0

Guard interval 𝜖 (ms)

P
r
o
b
.
o
f
c
o
l
l
i
s
i
o
n

(b) TDMA probability of

collision

100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Back-off interval (slots)

P
r
o
b
.
o
f
c
o
l
l
i
s
i
o
n N=5

N=10

N=20

(c) CSMA/CA probability

of collision

Figure 6.3: Probability of collision distribution for TDMA and CSMA

the network and the data rate used for transmission. For CSMA/CA, I use the

length of the contention window as a parameter; for TDMA, I use the guard

interval length. All throughput results are based on the derivations in Section 6.1.

Additionally, I validated the throughput results of CSMA/CAwith the data in [Bia00;

LK13]. I highlight again that algorithms used for microphone synchronization were

developed by my colleagues Tobias Gburrek and Joerg Schmalenstroeer, so I do not

discuss these algorithms here.

6.3 Results
In the following sections, I first show the probability of collisions for both TDMA

(due to incorrect synchronization) and CSMA/CA protocols. Based on that, I

estimate their average throughput per node and compare those. At the end, I show

the throughput when there is the same low-to-medium traffic load among all nodes.

6.3.1 Probability of collision
Figure 6.3 (a) visualizes the cumulative distribution function (CDF) of the SRO-

induced shift 𝜏 that remains after audio synchronization; it was given from the

results of [GSH21]. Figures 6.3 (b) and 6.3 (c) depict the probability of collisions

for TDMA (when changing the guard interval) and CSMA/CA (when changing

the number of nodes and the contention window), respectively. On the one hand,

I show the results of CSMA/CA for the sake of convenience to demonstrate how

changing the contention window size and number of nodes impact the probability

of collision. These results will be used in the next sections when estimating the

throughput. On the other hand, and more importantly, it is observed that the

probability of collision of TDMA depends solely on the SRO estimation accuracy

107

Chapter 6 Impact of MAC Protocols

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Contention window (ms)

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

N=5

N=10

N=20

(a) 𝑅 = 20Mbps

0 2 4 6 8 10

0

1

2

3

4

5

Contention window (ms)

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

R=5 Mbps

R=20 Mbps

R=40 Mbps

(b) 𝑁 = 5

Figure 6.4: CSMA/CA throughput for varying number of nodes and transmission rate;

contention window size as a parameter

of the acoustic application and, unlike CSMA/CA, is independent of the number

of nodes in the network. Also, it is clear how increasing the length of the guard

interval decreases the probability of collisions.

6.3.2 CSMA/CA throughput
Figure 6.4 shows the throughput of CSMA/CA in different parameter combinations.

First, we observe that for many nodes (𝑁 = 20) in Figure 6.4 (a) or low data rates

(𝑅 = 5 Mega bits per second (Mbps)) in Figure 6.4 (b) shows low throughput. But

for lower numbers of nodes (Figure 6.4 (a)) or higher data rates (Figure 6.4 (b))

the throughput becomes higher, but more sensitive to the contention window. In

particular, for large contention windows, different data rates have similar through-

put (Figure 6.4 (b)). Hence, the contention window size in CSMA/CA needs to be

tuned carefully; otherwise, the achieved throughput drops steeply, especially for

low numbers of nodes and high data rates.

6.3.3 TDMA throughput
I repeat the previous parameter settings for data rates and number of nodes, but I

show the throughput using TDMA, where the guard interval is changed instead

of the contention window (Figure 6.5). Additionally, I integrate the probability

of collision from Figure 6.3 (b) for a convenient translation between throughput

and probability of collision, when 𝜌 = 1. These probabilities can be used as a

threshold for switching between TDMA and CSMA/CA for a given throughput;

108

Results Section 6.3

when the resulting probability of collision is higher than the expected one, fall back

to CSMA/CA to get a better synchronization and consequently a better estimation

of the guard interval. I observe the throughput when changing the number of nodes

(Figure 6.5 (a)) and changing the data rates (Figure 6.5 (b)), similar to CSMA/CA,

the throughput is low for a large number of nodes and small data rates and is barely

sensitive to the guard interval of TDMA.

An interesting fact observed in Figure 6.5, beside not having the steep drop-

down behavior, is that two different guard intervals, with corresponding different

probability of collisions, will achieve in many cases the same throughput. Although

delay is not a metric in the analysis here, this may be useful for an application

developer when setting up the network. Hereby, the target could either be to

achieve a certain throughput with a small guard interval and high probability of

collisions but low delay, or with a large guard interval, small probability of collisions

and high delays. This of course also depends on other factors such as how the

application handles packet losses, whether re-transmissions are necessary and if

there is a maximum queuing delay.

6.3.4 Comparison of CSMA/CA and TDMA throughput

I compare the throughput of CSMA/CA (while changing the contention window)

with TDMA (while selecting the guard interval with highest throughput 𝜖opt and

the corresponding maximum threshold 𝜖th from (6.10)). For low data rates and

many nodes (Figure 6.6 (a)) CSMA/CA has lower throughput compared to TDMA.

For high data rates and small numbers of nodes (Figure 6.6 (b)), CSMA/CA has

a higher throughput than TDMA with threshold guard interval but only over a

narrow contention window interval. Additionally, the throughput of CSMA/CA

decreases fast when increasing the size of the contention window, to be even lower

than the throughput of TDMA using the threshold guard interval 𝜖th, which is the

lowest recommended TDMA throughput.

It is worth noting that TDMA using the optimal guard interval 𝜖opt has in both

scenarios higher throughput than CSMA/CA. Consequently, TDMA,with 𝜖opt, offers

a stable behavior (with respect to the number of nodes) and higher throughput

than CSMA/CA, while other values may yield in some cases (Figure 6.6 (b)) a lower

throughput. Such properties are important for acoustic applications and multimedia

ones in general.

109

Chapter 6 Impact of MAC Protocols

0 0.02 0.06 0.12

0.0

0.2

0.4

0.6

0.8

1.0

Guard interval (𝜖) ms

P
r
o
b
.
c
o
l
l
i
s
i
o
n

0 0.02 0.06 0.12

0

1

2

3

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

N=5

N=10

N=20

(a) 𝑅 = 20Mbps

0 0.02 0.06 0.12

0.0

0.2

0.4

0.6

0.8

1.0

Guard interval (𝜖) ms

P
r
o
b
.
c
o
l
l
i
s
i
o
n

0 0.02 0.12

0

2

4

6

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

R=5 Mbps

R=20 Mbps

R=40 Mbps

(b) 𝑁 = 5

Figure 6.5: TDMA throughput for varying number of nodes and transmission rate; guard

interval length as a parameter

110

Results Section 6.3

0 2 4 6 8 10

0.0

0.2

0.4

0.6

Contention window (ms)

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

CSMA-CA

𝜖opt=0.06ms

𝜖th=0.26ms

(a) 𝑅 = 15Mbps –𝑁 = 20

0 2 4 6 8 10

0

2

4

6

8

10

Contention window (ms)
T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

CSMA-CA

𝜖opt=0.05ms

𝜖th=5.01ms

(b) 𝑅 = 40Mbps – 𝑁 = 3

Figure 6.6: TDMA vs CSMA for throughput per node

0 0.03 0.06 0.09 0.12

0

1

2

3

Gaurd interval 𝜖 (ms)

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

𝜌=0.2
𝜌=0.5
𝜌=1

(a) TDMA

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Contention window (ms)

T
h
r
o
u
g
h
p
u
t
(
M
b
p
s
)

𝜌=0.2
𝜌=0.5
𝜌=1

(b) CSMA/CA

Figure 6.7: Unsaturated nodes for 𝑅 = 20 Mbps and 𝑁=5

111

Chapter 6 Impact of MAC Protocols

6.3.5 Throughput for unsaturated nodes
As mentioned earlier, acoustic applications may have moments of silence (i.e.,

pauses) where a node is not sending, although the channel is idle. Here, I assume

that all nodes have the same traffic load 𝜌 for both TDMA (Figure 6.7 (a)) and

CSMA/CA (Figure 6.7 (b)), fixing the number of nodes (𝑁 = 5) and the data rate

(𝑅 = 20 Mbps). An interesting observation is that when TDMA has small guard

intervals, a network with low load (e.g., 𝜌 = 0.2) tends to have higher throughput

than highly load ones (e.g., 𝜌 = 1). Since the channel is idle for some time and the

nodes have no data to send for some time, this time compensates for the induced

shift, decreasing the probability of collision. As the guard interval increases, the

impact of the time without having data to send decreases and the impact of the

guard interval becomes more dominant: the higher the network load, the higher

the throughput.

Similar to TDMA, and as mentioned in [LK13], increasing 𝜌 in CSMA/CA in-

creases the throughput. Yet, I highlight that the throughput for all 𝜌 is higher for

TDMA than for CSMA/CA. This is another advantage of using TDMA in wireless

multimedia applications where 𝜌 may change.

6.4 Summary
In this chapter, I use the synchronization achieved by wireless multimedia applica-

tions to synchronize wireless transmissions. Accordingly, I derive the throughput

of TDMA resulting from the synchronization error of the audio stream synchro-

nization and compare it to CSMA/CA, when nodes operate in a single collision

domain. A major advantage of the TDMA approach over CSMA/CA is the stability,

because the probability of collision is independent of the number of wireless nodes,

as well as its higher throughput.

To use the synchronization from the application for TDMA, first a minimum

throughput (or other metrics like probability of collision) need to be defined. Ac-

cordingly either TDMA or CSMA/CA can be used. If CSMA/CA is used due to to

bad synchronization, the application can later switch to TDMA after synchronizing

the clocks and optimizing the guard interval, for a higher throughput. It is worth

noting that such MAC systems will be application proprietary; TDMA will always

need an application running synchronization.

112

Part III

Subset Selection of Jobs, Nodes and Moves

Chapter 6

Admission control is not the only way to handle resource intensive requests;

in some cases jobs within a request could be optional, so not all jobs have to be

allocated. In [Gün+19], I use an acoustic application as a case study where some of

the jobs are optional to allocate. Consequently, a request consists of many optional

jobs and the objective is to select at maximum 𝑘 jobs while having an upper bound

on the allocated time slots for transmissions.

Another way to control the load of an application is to control the amount of data

being transmitted/forwarded. In [Gun+21], a speaker is assumed to be stationary,

where only the best 𝑘 microphones are selected to maximize the acoustic quality at

low network cost. Similarly, my work in [Afi+21; ARK21a] solves a similar problem

using RL, yet for a moving speaker, while using different utilities of the acoustic

application. Moreover, I add an objective in [Afi+21] to decrease the frequency of

changing the selected microphone set.

So far I have assumed that the microphones are stationary, yet moving the

microphones adds a degree of freedom that can improve the performance, as seen

in theatres and stadiums. In [ARK21b], I show how the performance enhances

when using autonomous vehicles pre-installed with microphones compared to using

static microphones. Additionally, I propose a centralized single-agent solution that

controls the movements of the microphones. Then, I show how it performs better

than a greedy heuristic that simply moves all the microphones towards the active

speaker.

Because the training of a single agent does not scale up easily when increasing the

number of microphones to control, I propose two different multi-agent solutions;

with either shared or separate policies. The shared policy uses a the same trained

model by all agents. In the separate one, each agent independently trains its model.

The performance of this separate model is compared to the single agent as well

as to the heuristic; it is found to be close to the single agent and better than the

heuristic. Moreover, I show theoretically how the speed of the vehicles and the

speaking time of the speaker impact the learning process of the RL agent.

115

7 Resource Allocation
for Optional Jobs

Typical research in WSN applications optimizes the application’s output while

focusing solely on its parameters [Cob+17; JSH12].In acoustic signal processing,

this could be the acoustic Signal-to-Noise Ratio (SNR) or word error rate for speech

enhancement. Similarly, optimizing the WSN itself focuses on the network’s as-

pects (such as data rates and delays) while considering arbitrary parameters of

the application, hoping it will serve any application to its best. In this chapter, I

consider cross-layer optimization where both application (in this work, an acous-

tic application) and network aspects are jointly considered. The results in this

chapter are based on the joint work in [Gün+19], yet I shall describe here only my

contribution.

Besides the benefits mentioned in Section 1.1 of distributing signal processing

application, an additional benefit is to optimize the application itself. Let us consider

an application graph with many jobs, while some of these jobs are optional to

run. Ideally with unlimited resources, running all the jobs may yield the best

performance, but if there are not enough resources or tight delay constrains, it is

beneficial to ignore some of these jobs, while still having the algorithm running.

Consequently, in addition to the research questions regarding node selection,

routing and time slot allocation (Chapter 3), two more questions arise:

• Which jobs should be selected to maximize the quality?

• What is the impact of dropping the jobs compared to running them all?

In this context, TRIple-N-Independent component analysis for CONvolutive

mixtures (TRINICON) [BBK18], an acoustic signal processing algorithm for Blind

Source Separation (BSS), is distributed inside a WASN. Choosing TRINICON here is

only to have a representative application with many jobs and it is interchangeable

with other algorithms such as Independent Component Analysis (ICA) [MI98] and

Independent Vector Analysis (IVA) [Kim+07].

Solving wireless VNE with optional jobs in the application graph has not been

investigated before. Nevertheless, scaling the jobs (by placing a job more than

once) is very similar to having optional jobs, but it has been considered only in

wired networks [DSK18]. The main difference between job scaling and selecting

optional jobs, the latter has a given application graph whose topology may change

117

Chapter 7 Resource Allocation for Optional Jobs

by dropping some jobs, while the former changes its topology in a predefined

manner by adding more jobs. The authors is [Dek+22] considered cross-layer

optimization between wireless networks and acoustic application but they have

focused only on energy consumption, here I focus on network delay. Additionally,

work that focused on the wireless communication cost and microphone selection

(i.e., also cross-layer optimization) will be discussed later (Chapter 8).

7.1 Problem Formulation

The application graph consists of obligatory jobs 𝑃 ′ that have to be placed and

optional 𝑃 jobs that may or may not be placed. Similar to Chapter 3, all jobs have

processing requirements and the links between the jobs describe the data rate

requirement. The infrastructure graph is defined the same as in Chapter 3; a group

of wireless nodes 𝑣 ∈ 𝑉 each of which has a processing capacity 𝑐𝑣 and the wireless

channel is divided into 𝑇 time slots.

In contrast to the formulation in Chapter 3, here I add andmodify constraints, and

I have a different objective. Let us recall the binary variables \ (𝑝, 𝑣), which indicate

that job 𝑝 ∈ 𝑃 is running on network node 𝑣 ∈ 𝑉 , and the binary variable 𝛿 (𝑡),
which indicate whether any node is transmitting in a time slot 𝑡 . The processing of

the jobs requires that all calculations, per job, are finished and transmitted within

some time duration to avoid dropping samples.

I still assume that the time of computation is negligible and the delay is introduced

mainly due to the transmission delay. Thus, the resulting upper bound on the

allowable end-to-end delay is determined primarily by the application (here the

sampling rate and the number of samples are used for real-time effect), which is

reflected by the newly-added constraint Equation (7.1) that limits the number of

utilized transmission time slots (i.e., scheduling time frame) to a maximum number

of time slots 𝑇max: ∑
𝑡

𝛿 (𝑡) ≤ 𝑇max. (7.1)

While all jobs have to be distributed in Chapter 3, I relax this restriction to allow

partial distribution of the jobs in 𝑃 by replacing the original constraint Eq. (3.5) with

the modified one Eq. Equation (7.2). If necessary, jobs can be discarded, particularly

to satisfy Equation (7.1), while still ensuring that no job is placed multiple times.∑
𝑣∈𝑉

\ (𝑝, 𝑣) = 1,∀𝑝 ∈ 𝑃 {
∑
𝑣∈𝑉

\ (𝑝, 𝑣) ≤ 1,∀𝑝 ∈ 𝑃 (7.2)

118

Simulation Setup Section 7.2

𝐾 optional jobs

record
... demix

update 1

update 𝐾

mixed signals

demixed

∇

∇

Figure 7.1: Multicast-Aware Routing for Virtual network Embedding with Loops in Over-

lays (MARVELO) application graph for distributed TRINICON.

Note that for the obligatory jobs 𝑃 ′, the old constraint still holds∑
𝑣∈𝑉

\ (𝑝, 𝑣) = 1,∀𝑝 ∈ 𝑃 ′ (7.3)

Last but not least, the objective is changed. Instead of minimizing the end-to-

end delay, i.e., the number of used time slots used for transmission, the modified

problem aims to maximize the number of running jobs:

min

∑
𝑡∈𝑇

𝛿 (𝑡) { max

∑
𝑝∈𝑃
𝑣∈𝑉

\ (𝑝, 𝑣). (7.4)

I assume in this formulation that all jobs have the same resource requirements,

which is actually the case as in [Gun+21], but they do not have the same contribution.

An important part of the solution is to determine the contribution of each of the

optional jobs, yet I do not discuss this here, since it is not a part of my contribution

and I assume the contribution per job is given. Accordingly, it is enough to abstract

the quality as the number of running jobs, instead of summing their contribution,

especially when calculating this contribution has a large simulation overhead. For

other applications, a natural extension would be to assume different requirements

with different contribution for the jobs, yet I focus here on the application at hand,

without adding further complexities.

7.2 Simulation Setup
The application graph consists of two obligatory jobs, record and demix, and𝐾 update
optional jobs. The record job produces blocks of audio signals for simultaneously

active speakers. The demix job is used for demixing multiple active speakers, using

a linear convolution on the input recorded signal blocks and a demixing filter of

119

Chapter 7 Resource Allocation for Optional Jobs

Table 7.1: Network parameters.

Parameter Value

𝑅 2.048Mbps

𝑡max 128ms

𝑁0 -82 dBm

SINRth 7 dB

𝑇max 8 slots

length 𝐻 [BAK04a]. The signal blocks are further divided into 𝐾 signals (let us call

them offline signals), so that the update jobs calculate the offline gradient between
a shift of the input signal and the 𝑘𝑡ℎ offline signal where 𝑘 ∈ 𝐾 . The gradients are
then forwarded to the demix job to update its demixing weights, which are sent

back to the update jobs (Figure 7.1). Up to 𝑃 = 8 update jobs can be placed.

I simulate a WASN in a room of dimensions 25𝑚 × 25𝑚 and use its infrastructure

graph as embedding target for the TRINICON application graph in Figure 7.1, with

different numbers of nodes, where each node can only run one job simultaneously.

The minimum payload rate for inter-node communication is given by

𝑅 = 𝑃src · 𝑆type · 𝑓s = 2 · 64 · 16000 𝑏𝑝𝑠 = 2.048𝑀𝑏𝑝𝑠, (7.5)

where 𝑆type denotes the width of the underlying data type in bits, 𝑓s = 16𝑘𝐻𝑧

represents the sampling frequency and 𝑃src is the number of microphones. The

maximum end-to-end delay due to block processing for a convoluted signal of

length 2𝐻 = 2048 is

𝑡max =
2𝐻

𝑓s
=

2048

16000

𝑠 = 128𝑚𝑠, (7.6)

where 𝐻 is the demixing filter length
3
.

The three remaining parameters in Table 7.1, the transmission noise floor 𝑁0,

the minimum required SINR for successful wireless transmission SINRth and the

maximum number of transmission time slots 𝑇max, are configured with respect to

the IEEE 802.11 standard [19] to meet the specified values for 𝑅 and 𝑡max.

3 I ignore packet overheads

120

Results for Optional Block Selection Section 7.3

Table 7.2: 𝛥SIR in decibels, averaged over channels and scenarios.

Selection scheme 𝐾′ = 1 𝐾′ = 2 𝐾′ = 3 𝐾′ = 5

Reference 6.64 6.64 6.64 6.64

Recent 4.55 5.38 5.87 6.29

Random 4.66 5.49 5.96 6.40

Proposed 5.27 6.20 6.56 6.93

7.3 Results for Optional Block Selection
The proposed formulation in Section 7.1 outputs the maximum number of optional

jobs that can be placed 𝐾′, but it does not define the subset of jobs that should
be selected. In this application, the optional jobs are the gradient jobs, which are

ranked based on the magnitude-squared coherence [Gün+19] and the highly ranked

ones are selected.

To demonstrate the efficacy of the proposed jobs selection, three baselines are

used for comparison:

• Reference, where no optional jobs are discarded and the network impact is

ignored, hence its performance is independent of 𝐾′,

• Recent, where the 𝐾′ most recent update jobs are selected,

• Random, where 𝐾′ update jobs are randomly selected.

Three pairs of clean speech signals of different gender and speaker age sampled at

16kHz with a duration of 60s are convolved with room impulse responses measured

in a low-reverberant chamber and superimposed with additive white Gaussian

noise to obtain an acoustic SNR of 20𝑑𝐵 at two microphones spaced 21𝑐𝑚 apart.

Two speakers are active in 20 scenarios with different combinations of speaker

positions. More details about the acoustic parameters are found in [Gün+19]

The demixing performance of TRINICON is quantified using the acoustic loga-

rithmic Signal-to-Interference Ratio (SIR). In each output channel, the extracted

speaker acts as the target while the suppressed speaker acts as the interferer. Thus,

the SIRs improvement 𝛥SIR is the difference between the SIRs of the output and

input signals, averaged over all scenarios, to yield the values depicted in Table 7.2.

As expected, the algorithmic performance deteriorates with a decreasing number

of selected optional jobs 𝐾′. Nevertheless, the proposed method outperforms the

two baseline methods: random and recent, consistently for all investigated different

121

Chapter 7 Resource Allocation for Optional Jobs

Table 7.3: Job distribution results.

#Nodes #Jobs (= 𝐾′) #Slots

4 3 5

6 4 7

8 6 8

9 6 8

10 6 8

number of selected jobs and, due to its ability to discard harmful update jobs (jobs
with negative contribution due to adding harmful gradients [Gun+21]), 𝐾′ = 5

even outperforms the reference method which exploits all update jobs. Thus, even

when sufficient computational power is available, sparse adaptation using subset

of the optional jobs does not only save computational power but also improves the

performance.

Table 7.3 shows the distribution results in terms of distributed optional update

jobs (recall Figure 7.1) and used transmission time slots for different numbers of

network nodes. Two limiting factors can be identified. On the one hand, the limited

computation capacity of the network nodes only allows distributing 3 and 4 jobs

for 4 and 6 nodes, respectively. On the other hand, when increasing the number of

nodes above 8, no more than 𝐾′ = 6 of the 𝑃 = 8 available jobs can be distributed

due to the end-to-end delay constraint, irrespective of the available number of

nodes.

7.4 Summary
In this chapter, the formulation in Chapter 3 is modified to be used for speaker

separation, using TRINICON, while the objective is to maximize the number of

optional jobs that could be placed.

The job placement results demonstrate the limiting factors of WASN and their

implications on an exemplary acoustic signal processing scheme. Additionally, the

simulation results show an improved separation performance even when selecting

only a subset of optional jobs and not all jobs as it was expected, achieving higher

performance at lower computation load. I focused on one example of acoustic

application that optimizes application’s quality under network constraints, which

can be applied to different application with similar properties. In next chapters, I

investigate how to jointly optimize both the application and network qualities.

122

8 Sensor Selection in Acous-
tic Sensor Networks

In the previous chapters, I assumed that the source nodes (e.g., microphones) are

always given. But this does not have to be the case; there may be the opportunity

to select a subset of microphones that results in the best quality and at the same

time has load on the network.

For example, let us consider a scenario based on hybrid learning [ZB13]; classes

take place in-person with a limited number of attendees while others join the

classes virtually at the same time. Such scenarios require a camera and multiple

wireless microphones distributed inside the classroom.

A naive solution would select all available microphones for recording, but this

might over-utilize the wireless network leading to high latency and packet losses.

Another solution would activate 𝑁 microphones with the best signal quality, but

they do not necessarily have good wireless connectivity, which again results in

problems of latency and packet losses.

In Chapter 7, I showed that selecting a subset of optional jobs can actually improve

performance. Similarly, selecting a subset of sensors (in this case, microphones)

can also be better than selecting all microphones:

1. It decreases the load on the wireless network for transmitting audio signals

2. Some signals may be noisy (e.g., microphones placed close to a fan or a

window) which decreases the overall quality of the received audio signal.

When selecting a subset of microphones, again, twometrics should be considered:

Quuality of Service (QoI) and QoS. The former is used to describe the quality of

the collected data (e.g., accuracy and SNR), while the latter describes the quality of

how the data is delivered (e.g., delay and packet losses) [ASV15; SBB13].

Both QoI and QoS are important factors for end users’ the overall Quality of Expe-

rience (QoE); there is a lot of work that estimates and maximizes this QoE [Sko+18].

Nevertheless, it is necessary here to separate between both QoS and QoI for the

application developer, because the sensed data are not the final results; after the

data are collected, they are further processed, hence, QoI should be investigated as

a separate metric in decision making.

For example, when audio data are collected from microphones and further pro-

cessed to classify speech or to localize speakers, based on the quality of the sensed

123

Chapter 8 Sensor Selection in Acoustic Sensor Networks

data, different algorithms can be used with different complexity and performance.

Increasing the number of microphones may enhance the QoI and the performance

of the algorithm. But for that, the data must be delivered within a bounded time

in case of real-time applications or with low packet losses for high reliability. Se-

lecting more and more microphones for data collection will increase the load on

the wireless network, causing unwanted delays, which decreases the QoS. Thus, a

developer can define the QoE with respect to the application itself, e.g., by setting

a minimum required QoI, while maximizing the QoS, or vice versa.

In order to jointly solve for these metrics, let us consider each one separately.

On the one hand, choosing a subset of microphones to increase the QoI is thought

to be a submodular problem [Bac10; SBV10]. In other words, increasing the subset

size of selected microphones increases the QoI, yet with a diminishing return; at

some point, the rate of gain when increasing the subset size decreases. On the other

hand, choosing a subset of microphones for optimizing QoS is a supermodular

problem, so that all microphones need to coordinate together who is going to be

active, otherwise they overload the wireless channel and decreases the QoS. In

case of wireless networks, two unequal subsets of wireless microphones can have

different QoS, even if they have the same size. This is due to the fact the QoS is

directly proportional with the wireless signal quality of the microphones and not

only the number of transmitting microphones.

The results shown in this chapter are from the joint work in [Afi+21; ARK21a;

Gun+21]. Since I focus here only on my results, I note that the QoI problem alone

is not always submodular [Gun+21], but it is still convex. In fact, it showed skew-

supermodular behaviour [FK09]. This means that there exists one or more subsets (I

shall call them parity subsets), when increasing the number of microphones within

these subsets, the QoI decreases. However, there exists other subsets that intersects

with the parity subsets, increasing the number of microphones of these subsets still

increases the QoI.

Most of the work that studied QoI exploits all available microphones for data

processing [NM18; WW19]. When it comes to subset selection, some generic

approaches have been proposed [CL13; JB09] to optimize QoI using convex and

non-linear optimization. When focussing on WASN, there is several work related

to synchronization [CG17b] and beamforming [ZH14]. However, they ignore the

network aspect.

Thework in [Zha+18; ZHH18] selects themost usefulmicrophones for beamformer-

based noise reduction, while minimizing the subset’s size to save energy. Similarly,

the authors in [CKS21] select the most useful microphones for speech enhancement

while minimizing the subset size to decrease communication cost. The communi-

cation cost is a simple model, based only on the number of nodes. In contrast to

124

Microphone Selection for Stationary Speakers Section 8.1

related work, my network cost model for QoS is based on the SINR which is more

generic, so that the microphones do not have to be equidistant to the receiver and

they do not need to be all in the same collision domain. Hence, I treat QoS as a

submodular problem and not just linear in the number of microphones.

In this chapter, I look into solving the problem when the speakers are stationary

(Section 8.1) and when they are moving (Sections 8.2 and 8.3).

8.1 Microphone Selection for Stationary Speakers
The motivating scenario here is a meeting room where the speaker is sitting (i.e.,

not moving). One objective is to find a set of microphones to activate for recording

the meeting. More importantly, I investigate the relation between QoS and QoI

and how it impacts the set selection, e.g., how many microphones within a set and

which ones should be activated.

8.1.1 Network Cost Function
Recall from Section 3.1 the definition of application and infrastructure graphs. Here,

the application graph consists of up to ∥𝑉 ∥ instances of a job 𝑝src, responsible for

recording the microphone signals, and one job 𝑝𝑠𝑖𝑛𝑘 at the central vertex of the

graph that collects the captured data and performs further processing.

The infrastructure graph captures how the wireless microphones transfer their

data to the access point. Specifically, the wireless link from node 𝑣 to the access

point is characterized by the radio attenuation 𝛾𝑣,∀𝑣 ∈ 𝑉 , while the transmission

noise floor 𝑁0 is identical for all nodes. The communication between the wireless

nodes and the access point adheres to the IEEE 802.11 standards [21]. In general, it

relies on 𝐿SC sub-carriers for transmitting the modulated signal, Modulation and

Coding Scheme (MCS) for setting the number of bits per symbol,number 𝐿M of data

streams using a MIMO antenna and the symbol time interval 𝑇SI for determining

the time duration per symbol.

Assuming that all nodes within the selected subset 𝑆 have the same transmit

power of one Watt, then recall the wireless SINR is

SINR(𝑣) = 𝛾𝑣

𝑁0 +
∑
𝑢∈𝑆
𝑢≠𝑣

𝛾𝑢
. (8.1)

Depending on SINR(𝑣), different MCS can be employed, which in turn affect the

achievable data rate. An example of the MCS table is shown in Table 8.1, where

125

Chapter 8 Sensor Selection in Acoustic Sensor Networks

SINRth 2 5 9 11 15

MCS
1

2
1

3

2
2 3

Table 8.1: An exemplary MCS table with bandwidth 20MHz [21]

SINRth represents the minimum required SINR to use the corresponding MCS. Then,

the wireless data rate between node 𝑣 and the access point is

𝑟𝑣 =
𝐿SC · 𝐿M ·MCS(SINR(𝑣))

𝑇SI

. (8.2)

Consequently, the transmission delay 𝜏 (𝑆) when selecting the channels in 𝑆 is

given by

𝜏 (𝑆) =
∑
𝑣∈𝑆

𝐿b

𝑟𝑣
, (8.3)

where 𝐿b is the number of bits per sample. For Equation (8.3) to hold, two constraints

must be satisfied: ∑
𝑣∈𝑉

\ (𝑣) ≥ 1, ∀𝑣 ∈ 𝑉 , (8.4)

SINR(𝑣) ≥ SINRth, ∀𝑣 ∈ 𝑆, (8.5)

where \ (𝑣) is a binary placement variable that indicates that an instance of block

𝑝src runs on node 𝑣. In other words, 𝑆 ⊆ 𝑉 ∋ \ (𝑣) = 1, ∀𝑣 ∈ 𝑆 . As the microphone

selection pertains only to the blocks 𝑝src, block 𝑝𝑠𝑖𝑛𝑘 always runs on the gateway.

Equation (8.4) ensures that 𝑆 ≠ ∅ and Equation (8.5) ensures that the wireless

transmissions are (semi-) collision free.

Finally, I define the network cost function Jn(𝑆) as

Jn(𝑆) = 1 −
(

1

𝜏 (𝑆)

)[
(8.6)

where [≥ 0 is a user-specified parameter capturing the sensitivity of an acoustic

application to the network delay; small values of [indicate low sensitivity and vice

versa.

126

Microphone Selection for Stationary Speakers Section 8.1

8.1.2 Joint Optimization

Now let us assume there is another cost function Ja(𝑆) that mimics the QoI, in this

case the acoustic quality. In [Gun+21], there are detailed steps on how to calculate

such an acoustic cost function. There is a fundamental trade-off between acoustic

and network cost. By emphasizing one of the two aspects, the obtained solutions

offer different optimal trade-offs and form a Pareto front [MGS09]. Therefore, I

select the joint cost function as

J (𝑆, 𝛼) = min

(
{𝛼Ja(𝑆), (1 − 𝛼)Jn(𝑆)}

)
(8.7)

with 0 ≤ 𝛼 ≤ 1 controlling the relative weight of the individual cost functions. I

consider 𝛼 to be time-invariant as long as the application does not change. For

online processing, 𝛼 is controlled by the subsequent signal processing algorithm,

e.g., a speech enhancement algorithm could emphasize acoustic cost to increase

the speech quality. The optimal solution

𝑆opt(𝛼) = arg min

𝑆

J (𝑆, 𝛼) (8.8)

is found offline by an exhaustive search over all 2
∥𝑉 ∥ − 1 admissible 𝑆 . Although

I have chosen Equations (8.7) and (8.8) to emphasize the trade-off between the

acoustic and network domains, Ja(𝑆) and Jn(𝑆) will be also later incorporated

into Equation (8.8) as constraints to ensure a minimum signal quality or maximum

network utilization (Section 8.2).

8.1.3 Experimental Evaluation

In this section, I show the efficacy of the proposed selection scheme while consider-

ing practical acoustic conditions using recorded speech signals. I show empirically

that the proposed microphone-set selection 𝑆opt outperforms the majority of pos-

sible choices with respect to the latency performance for an exemplary practical

signal processing algorithm. Note that the acoustic cost is generic and was not

specifically optimized for the acoustic application (in this case, Signal-to-Distortion

Ratio (SDR) obtained from BSS [FGV05]). I demonstrate how the parameter 𝛼

impacts the trade-off between acoustic and network cost and how this translates to

the ground-truth (i.e., SDR and delay) performance measures.

127

Chapter 8 Sensor Selection in Acoustic Sensor Networks

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

1
.0
0
0

0
.8
8
8

0
.9
2
5

0
.8
9
5

0
.9
0
9

0
.8
6
2

0
.9
5
8

0
.9
7
8

0
.9
0
0

1
.0
0
0

|𝑆 |

S
D
R
[
𝑑
𝐵
]

Figure 8.1: SDR for admissible 𝑆 , grouped by cardinality |𝑆 |. Utility-based 𝑆u(|𝑆 |) outper-
forms majority of 𝑆 .

Environment Setup

The experimental setup is illustrated in Figure 8.4. ∥𝑉 ∥ = 10 microphones, clustered

in five pairs with inter-microphone distance 4𝑐𝑚, are placed in a quarter circle

of 2𝑚 radius surrounding the loudspeaker/speaker inside a room of dimensions

6.26𝑚 × 4.86𝑚 × 3𝑚. All microphones face the loudspeaker and with sampling

frequency 𝑓s = 16𝑘𝐻𝑧 via a common clock, which allows computing the ground-

truth performancemeasures. To replicate a realistic scenario with physical obstacles,

the first two arrays, representing microphones 1–4, have their line-of-sight to the

loudspeaker blocked by a solid object 1𝑚 wide and 2𝑚 high, hence suppressing the

line-of-sight contribution in the corresponding microphone signal. The loudspeaker

signal consists of 22𝑠 of adult male speech.

The delay sensitivity of the signal processing application is set to [= 0.4 while

the radio noise floor is
𝑁0

transmission power
= 10

−4
. I restrict the calculations to 20MHz

wireless bandwidth, i.e., 𝐿SC = 48 sub-carriers, with symbol time interval 𝑇SI = 4`𝑠

and one omni-directional antenna (𝐿M = 1)
4
. For sample encoding, I set 𝐿b = 8.

Figure 8.1 shows the efficacy of the acoustic utilitymeasure proposed in [Gun+21],

without considering the network aspects. Therein, the SDR for all admissible 𝑆

are shown, grouped by the number of selected microphones. For each |𝑆 |, the
corresponding utility-based selection 𝑆u(|𝑆 |) is highlighted by black circles, while

the numbers above each point cloud indicate the fraction of combinations with

the same number of microphones, while not having a higher SDR than 𝑆u(|𝑆 |).
Again, recall that the acoustic utility is a generic utility and was not specifically

designed for SDR. Nevertheless, as shown, calculating the acoustic cost can still

4 These values are needed to look up the modulation and coding scheme in [21]

128

Microphone Selection for Stationary Speakers Section 8.1

0 0.2 0.4 0.6 0.8

0.5

1

1.5

Jn (𝑆)
J a
(𝑆
)

Pareto front

Figure 8.2: Acoustic Ja(𝑆) vs. network Jn(𝑆) cost for all admissible 𝑆 . Pareto front shows

trade-off between acoustic and network cost.

0 10 20 30

2

4

6

8
0.874

0.779

0.916

0.880

𝜏 [𝑚𝑠]

S
D
R
[
𝑑
𝐵
]

Pareto front

Figure 8.3: SDR vs. network delay 𝜏 for all admissible 𝑆 . Points of Pareto front in Figure 8.2

outperform the majority of admissible 𝑆 .

rely on this utility metric. According to [Gun+21], selecting microphones with the

lowest acoustic cost consistently achieves SDR values in the top 15%.

Results

Here I show the results of joint optimization using acoustic and network cost

functions. Figure 8.2 shows a scatter plot of acoustic cost Ja(𝑆) vs. network

cost Jn(𝑆), where each data point again represents a set selection 𝑆 . Obviously,

there is a trade-off between acoustic and network cost. The black-circled data

points form the Pareto frontier, i.e., combinations where neither cost can be any

further reduced without increasing the other one. These points offer an optimum

trade-off between acoustic and network cost, and are found for the minima of

Equation (8.7) by varying the value of 0 ≤ 𝛼 ≤ 1. Thus, minimizing the cost

function in Equation (8.7) captures the intention of emphasizing either acoustic or

network cost.

Furthermore, Figure 8.3 shows the SDR ground truth vs. network delay. The

129

Chapter 8 Sensor Selection in Acoustic Sensor Networks

6.26 m

4
.8

6
m

0.85 m

0.75 m

Loudspeaker

Mic. 1, 2

Mic. 3, 4

Mic. 5, 6

Mic. 7, 8
Mic. 9, 10

2 m

Obstruction

Access point 𝑝0

Figure 8.4: Illustration of the experimental setup. Line-of-sight between the loudspeaker

and microphones 1–4 is blocked.

circled data points correspond to the Pareto front in Figure 8.2. Similar to Figure 8.1,

the optimality of the acoustic cost function does not exactly reflect the optimality

with respect to the SDR; the subset of nodes with the highest acoustic utility has a

high SDR, but not necessarily the highest.

Accordingly, the four Pareto points framed by the gray box are the most desirable,

since they offer high SDR values at low delay. They can be obtained by choosing

𝛼 ∈ [0.42, 0.67], but this does not necessarily generalize to other applications. The

number next to the chosen points represents the fraction of admissible 𝑆 which are

strictly worse, i.e., achieve lower SDR and incur higher network delay. Obviously,

the selected combinations still outperform the majority of other possible ones.

Up to this point, I showed how microphone subset selection relies on both QoI

and QoS. By sweeping over different subsets and different 𝛼 , I have shown the

Pareto frontier of the cost functions and found a range of 𝛼 that yields high acoustic

and network gains (or in other words, low costs). The results from the cost functions

were good to be in the top 15% of the SDR (ground truth). Meanwhile, sweeping

over the parameters is valid for stationary microphones and a stationary speaker.

Once the speaker starts moving, it becomes impracticable and in some cases even

sub-optimal. Hence, I show in the next subsections other approaches (with slight

changes in the formulation) for a moving speaker.

130

Microphone Selection for Moving Speakers Section 8.2

8.2 Microphone Selection for Moving Speakers
Modeling the QoI is, as seen in [Gun+21], complex and computationally challenging,

yet modeling QoS is not easier. In fact, the authors in [Liu+10] claimed that QoS is

not easy to model because there is no clear interrelation between physical, medium

access control, and network layers. Hence, they used a “black box" to generate

QoS samples. Next, a value function is derived by interpolating these samples.

A major drawback of this approach is the memory required to keep a record of

these samples, which may be infeasible for large scale problems, making them less

desirable with such constraints.

Similarly, neural network-based models are used to estimate the optimal config-

uration. In [Akb+19], the authors assumed that the black box is a mixed integer

programming model, which requires a long termination time. The objective of

the black box is to find the optimal configuration and the corresponding quality.

Next, they used samples from the black box to train the neural network and used

the trained model to estimate the output without the need for a memory to save

the samples (as in interpolating-based models). Neural networks are, however, by

nature regression or classification models and the samples are generated at random.

Therefore, they may need a large number of samples to achieve good performance,

especially for a constraint guarantee.

Alternatively, RL solutions are experience-based models that learn to take best

actions based on previous state-actions and their corresponding rewards (e.g., Q-

learning). let us consider Deep Q-Learning, it uses neural networks for value

function approximation, hence, they require less memory and are very useful when

collecting samples is expensive. Unlike neural network-based models, Deep Q-

Learning kind of chooses which samples to collect; they rely on epsilon greedy (or

epsilon decaying) method to select the samples during the exploration phase.

Based on the above givens, RL is the best candidate to usewhen collecting samples

is expensive. This fits well to the problem at hand, when calculating the acoustic

quality is expensive, especially for a moving speaker. In this section, I consider

replay-based RL models [HHA19] to update the RL function approximation for

high data efficiency. The results in this section are based on the work in [ARK21a].

Although I use here a mock function for calculating the acoustic quality as a proof

of concept, later on (in Section 8.3) I use pre-computed acoustic quality metrics.

8.2.1 Problem Definition
The problem at hand is related to hybrid e-learning and hybrid conferences. There

is a camera and a set of wireless microphone nodes ∥𝑉 ∥ distributed inside a room

131

Chapter 8 Sensor Selection in Acoustic Sensor Networks

to stream the audio data via an access point as the gateway. The main difference

compared to Section 8.1 is that the speaker is no longer stationary but moving.

In fact, there could be more than one speaker but only on is active at a time. An

acoustic application simultaneously analyzes the classroom (speaker localization

and speech enhancement), therefore, again the QoI (𝐺QoI) and QoS (𝐺QoS) gains
are separated.

The acoustic quality per each microphone is a distance-based function given by

𝑞𝑣 (𝑡) = 1

𝛥𝑣 (𝑡) , where 𝛥𝑣 (𝑡) is the distance between the speaker and the microphone

𝑣 at instant 𝑡 . The distance can be easily estimated via the installed camera. Then, I

select a subset of nodes 𝑆 (𝑡) ⊆ 𝑉 for recording, so that 𝜏 (𝑡) is the corresponding
total transmission delay. Note that in this scenario, there are no obstacles as in

Section 8.1.

Now I define two objectives, which I compare them between later. First, as an
application developer, I set a maximum number of recording nodes 𝛿𝑛 and an upper

bound on the network delay 𝛿𝑑 . Then, the objective is to select a subset of recording

nodes 𝑆 (𝑡) to maximize the 𝑄𝑜𝐼 under 𝑄𝑜𝑆 constraints

max

𝑎
𝐺QoI(𝑡) =

∑
𝑛∈𝑆 (𝑡)

1

𝛥𝑛 (𝑡)
∀𝑡 ∈ 𝑇 (8.9)

s.t. |𝑆 (𝑡) | ≤ 𝛿𝑛 ∀𝑡 ∈ 𝑇
𝜏 (𝑡) ≤ 𝛿𝑑 ∀𝑡 ∈ 𝑇

The second objective it to select a subset 𝑆 (𝑡) to maximize the 𝑄𝑜𝐼 while dis-

couraging having the delay higher than 𝛿𝑑 (i.e., soft constraint):

max

𝑎

∑
𝑛∈𝑆 (𝑡)

1

𝛥𝑛 (𝑡)
−𝑤 ·max(0, 𝜏 (𝑡) − 𝛿𝑑) ∀𝑡 ∈ 𝑇 (8.10)

s.t. |𝑆 (𝑡) | ≤ 𝛿𝑛 ∀𝑡 ∈ 𝑇

Note that the goal from comparing both objectives is not to find out which

objective is better, but to understand the impact of moving from hard constraints

to soft constraints.

8.2.2 Reinforcement Learning Solution

In the implementation of the RL environment, the continuous state (observation)

132

Microphone Selection for Moving Speakers Section 8.2

space 𝑠 (𝑡) represents the position of the speaker. The action space is a discrete

space that selects a subset of nodes 𝑆 (𝑡) ∈ 2
∥𝑉 ∥

to stream the data.

Next, I rewrite the objective in (Equation (8.9)) as follows:

max

𝑎
𝐺QoI(𝑡) =

∑
𝑛∈𝑆 (𝑡)

1

𝛥𝑛 (𝑡)

−𝑐1 ·max(0, |𝑆 (𝑡) | − 𝛿𝑛)
−𝑐2 ·max(0, 𝜏 (𝑡) − 𝛿𝑑) ∀𝑡 ∈ 𝑇 (8.11)

where 𝑐1 and 𝑐2 are positive penalty numbers. However, this requires calculating

the acoustic quality (QoI) and the resulting delay (QoS) at each time step for every

chosen action. Recall that calculating these metrics is not easy, computational

expensive and may require collecting empirical data first. To avoid unnecessary

computation when getting learning samples, I define the reward function 𝑟 (𝑡) as
follows

𝑟 (𝑡) =
{
−𝑐1(|𝑆 (𝑡) | − 𝛿𝑛)2 if |𝑆 (𝑡) | > 𝛿𝑛
𝐺QoI − 𝑐2 max(0, 𝜏 (𝑡) − 𝛿𝑑)2, otherwise

(8.12)

where 𝐺QoI(𝑡) =
∑
𝑛∈𝑆 (𝑡)

1

𝛥𝑛
. Consequently, I do not need to sample (i.e., calculate)

any of the delay or quality costs, if and only if the maximum-number-of-recording-

nodes is exceeded.

For high values of both 𝑐1 and 𝑐2, the solution has hard constraints, which

penalizes any violation of delay or number-of-nodes constraints. Meanwhile, when

𝑐1 ≫ 𝑐2 and 𝑐2 is relatively a small number, the solution converges to a weighted

approach for multi-objective optimization. In other words, 𝑐2 denotes a sensitivity

parameter (similar to 𝑤 in Equation (8.10)) that allows compromising the delay

constraint when the gain in the acoustic quality is high enough (i.e., soft constraint

Section 2.3.6).

In order to understand the use of risk sensitivity, I use an arbitrary QoI func-

tion for the sake of illustration (Figure 8.5). QoI increases with network delay

(i.e.,decreasing QoS). Yet there is an upper bound delay 𝛿𝑑 = 𝑃0, at the vertical

dashed line, which is not recommended to be exceeded (QoS soft constraint). Never-

theless, the QoI value will almost double if the dashed line moves slightly to the left,

i.e., compromising the delay constraints to achieve a higher QoI. In many acoustic

applications, such compromise may be valid if the QoI gain is high enough. The

133

Chapter 8 Sensor Selection in Acoustic Sensor Networks

Figure 8.5: Example of risk sensitivity

parameter 𝑤 is used to control the sensitivity of compromising 𝑃0; the lower the

value of 𝑤, the less the sensitivity. Note that when 𝑤 = 0, the constraint is ignored.

The reason for having a quadratic max function in Equation (8.12), when calcu-

lating the reward is to make our problem differentiable, which eases the process of

learning (see Equation (2.7)). For example, if we consider the resulted delay from

IEEE PHY MAC [21] (Figure 9.2), the derivative of 𝜏 (𝑡) is a sum of Dirac functions.

The max function can be written as

max(0, 𝜏 (𝑡) − 𝛿𝑑) =
{

0, for 𝜏 (𝑡) ≥ 𝛿𝑑
𝜏 (𝑡) − 𝛿𝑑 , for 𝜏 (𝑡) ≤ 𝛿𝑑

(8.13)

so when differentiating at 𝜏 (𝑡) = 𝛿𝑑 , we will get 0 from left side and 𝜏′(𝑡), which is

a constant Dirac, on the right side, thus it is not differentiable. Meanwhile, when

considering max(0, 𝜏 (𝑡) −𝛿𝑑)2 instead, the function is still differentiable at 𝜏 (𝑡) = 𝛿𝑑
to be 0.

The RL agent is a DQN agent with experience replay with discount factor set

close to 0, since the speaker’s position can change arbitrarily. This is in particular

useful for our formulation since actions have no impact on next states (speaker’s

position); therefore, I discourage that the constraint is violated at any state (i.e.,

134

Microphone Selection for Moving Speakers Section 8.2

highly penalized), while ignoring the long-term cumulative reward. More discussion

on the impact of discount factor will follow in Section 9.6.1.

8.2.3 Experimental Evaluation
Two similar scenarios were used for evaluating the RL solution. In Scenario 1

(Figure 8.6 (a)), 3 wireless microphone nodes (𝐴, 𝐵 and 𝐶) are equidistant to the

sink node (i.e., access point). Accordingly, all nodes have the same delay to the

access point. I assume that each node 𝑣 introduces delay 𝜏𝑣 , which is directly

proportional to the total delay 𝜏 (𝑡), i.e., 𝜏 (𝑡) = ∑
𝑣∈𝑆 (𝑡) 𝑘𝑣 + 𝜏𝑣 where 𝑘𝑣 is overhead

delay introduced by the wireless MAC protocol (as seen in CSMA/CA) per each

node 𝑣.

Since all nodes are equidistant to the sink, I simplify the problem and assume

that all nodes have the same delay to the access point 𝜏 . The maximum number of

selected microphone nodes is 𝛿𝑛 = 2. Note that in this case, the upper limit delay

should be at least 𝛿𝑑 ≥ 𝛿𝑛𝜏 ; otherwise, there is no feasible solution. I set 𝛿𝑑 = 𝛿𝑛𝜏
for this scenario. Note that here, there is no trade-off between the delay and signal

quality (as in Equation (8.10)) due to the dependency between the 𝛿𝑑 and 𝛿𝑛 , and

only the objective in Equation (8.9) can be used. Therefore, I set high values for 𝑐1

and 𝑐2

In Scenario 2 (Figure 8.6 (b)), again, there are 3 wireless microphones and 𝛿𝑛 = 2.

But the sink is closer to one of the nodes, thus, the delay 𝜏 (𝑡) is no longer equal

for all nodes; nodes have different wireless signal qualities and hence different

transmission delays. Consequently, I apply the trade-off objective in Equation (8.10)

to this scenario, by setting a high value to 𝑐1 and a low one to 𝑐2.

As a baseline solution, I use the optimization model in Equation (8.9) to both

scenarios (Figure 8.7) and compare them to their corresponding objectives. The

optimization model is solved using the Gurobi solver [Gur18] with the Pyomo

interface [HWW11]. Since Equation (8.9) is already the objective of Scenario 1, I do

not expect the RL solution to have better results in terms of QoI. Nevertheless, it is

possible that the RL solution results in better results in Scenario 2 since the reward

function optimizes Equation (8.10).

Before evaluating the two scenarios, I also evaluate the RL solution when the

speaker is not moving.

Static Speaker

A sanity check of the RL implementation makes sure that the RL agent learns to

take the best action in the simplest case, i.e., when the speaker is not moving. At

135

Chapter 8 Sensor Selection in Acoustic Sensor Networks

A B

C

X
AP

(a) Scenario 1

A B

C

X

AP

(b) Scenario 2

Figure 8.6: Visualization of the layouts

0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6

(a) Scenario 1

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25

(b) Scenario 2

Figure 8.7: Visualization of the rewards

136

Microphone Selection for Moving Speakers Section 8.2

maximum 3 samples from the real environment (i.e., baseline) are needed and I

compare the best solution to the agent’s action. In Figure 8.8, the agent’s average

reward is close the baseline after ≈ 3000 learning steps, which confirms the agent’s

ability of finding good actions.

0 1000 2000 3000 4000 5000
Number of Timesteps

60

50

40

30

20

10

0

Re
wa

rd
s

RL
Optimal

Figure 8.8: Average reward for a static speaker in Scenario 1

Moving Speaker – Scenario 1

I repeat the previous experiment again, but this time the speaker is moving. 200

samples are available from the state space for training RL agents. Two similar

agents are used for comparison; they only differ in the number of training steps:

10
4
and 10

6
steps. Thanks to the simplification in (Equation (8.12)), the maximum

number of combinations for which an agent needs to calculate the quality per state

is
∥𝑉 ∥𝐶𝛿𝑛 = 3. Remember that calculating the quality is expected to be an expensive

process.

Supporting speaker mobility requires more training steps, compared to the

previous setup. Figure 8.9 shows that the agent with 10
4
training steps obviously

behaves worse (lower reward) than the agent with 10
6
steps. Additionally, the RL

agent with 10
6
steps has rewards very close to the optimal solution.

I take a deeper look into the results and compare the agent with 10
6
training steps

to 1500 samples from the optimization model, where the samples are distributed all

over the room. In other words, I compare the agent’s solution to the optimal one,

in states that it has not seen before. I show the difference between the optimal and

137

Chapter 8 Sensor Selection in Acoustic Sensor Networks

RL solutions in Figure 8.10 (a). It is clear that the RL and optimal solution are very

close; the maximum difference, which is 0.048 or ≈ 1% of the maximum reward (see

Figure 8.7 (a)) and the average difference is almost 0.

Three spots show differences in reward (Figure 8.10 (a)). At these spots, the

agent’s solutions have similar rewards to the optimization model, hence, it is

expected that after more training steps and more samples, the agent will converge

exactly to the optimal solution.

0 25 50 75 100 125 150 175 200
Time

1.0

1.5

2.0

2.5

3.0

3.5

R
ew

ar
d

RL_𝑒6

RL_𝑒4

Opt

Figure 8.9: Reward for a moving source in Scenario 1

Moving Speaker – Scenario 2

Again, the speaker is moving but this time in Scenario 2 and the agent’s solution

is compared to the optimization model in Equation (8.9) for 1500 samples. In this

case, the RL targets a QoI/QoS trade-off while the optimization model maximizes

QoI under QoS constraints. Based on the results from the previous experiment, I

train the RL agent with 10
6
steps and compare the differences in rewards (8.10 (b)).

The RL solution learns to compromise between QoI and QoS by achieving higher

rewards than the optimization model. Such behavior is noticed when the speaker

is between microphones 𝐴 and 𝐵 (Figure 8.6 (b) and Figure 8.7 (b)); the acoustic

quality is high enough so that the delay constraint is compromised.

Comparing the achieved rewards of both RL and the optimization model in

Fig 8.7 (b), the agent achieves a higher reward up to 23% and lower reward till 12%.

Nevertheless, the mean average reward is almost the same: -0.04. The performance

138

Minimizing Rate of Changing the Selection Section 8.3

0.000

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

(a) Scenario 1

0.75

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

(b) Scenario 2

Figure 8.10: Visualization of the rewards difference

of the RL agent can be calibrated by optimizing 𝑐2. Also, increasing the number of

training steps and samples may slightly improve the agent’s performance, as seen

in the previous experiment.

8.3 Minimizing Rate of Changing the Selection
In Section 8.1, I demonstrated the relation between QoI and QoS, then in Section 8.2,

I used RL in a small-scale environment to select the best set of microphones for

recording or streaming. Here, I update the QoS metric to include the frequency of

changing the set of microphones; I assume that these changes (i.e., reconfiguring

the microphone set) cause interruptions while adding/removing a new connection.

Additionally, I reformulate the problem to be applied to a large-scale environment.

The results in this section are based on the output of [Afi+21].

8.3.1 Problem Formulation
In general, selecting the microphone set depends on three metrics:

1. the achieved QoI from the selected microphone set

2. the required delay to collect the audio data from the microphones within the

set

3. the frequency of reconfiguring the microphone set while a speaker is active

Audio samples are divided into time frames. Calculating QoI per a time frame 𝑘

is application-dependent. Hence, I assume that there is a black box that calculates

the QoI for a given microphone set. Next, there are different sources of network

delay such as queuing, processing and transmission delays. Here, again, I focus

139

Chapter 8 Sensor Selection in Acoustic Sensor Networks

only on the transmission delay 𝜏 [𝑘], i.e., the time needed to transfer data from the

microphones to the access point. It is calculated in the same way as mentioned

in Section 8.1.1.

I use two weighting parameters, [𝛺 and [𝜏 , for QoI and network delay, respec-

tively. Accordingly, the objective is choosing the microphone set that maximizes the

weighted sum of these two metrics, while minimizing the frequency of changing

the set when the speaker is active.

8.3.2 Reinforcement Learning Formulation
When everything is static and not changing, it is easy to estimate the best solution

for the set of microphones by solving a linear system of equations. But in this

problem, the parameters change over time 𝑘 and the solution at 𝑘 may not be the

best for 𝑘 + 1. Moreover, changing the solution (i.e., reconfiguring the microphone

set) also impacts quality over time. Hence, I here use RL to find the best decisions

to take for each 𝑘 .

The RL environment is defined by three main components: observation space,

action set (i.e., a discrete space) and a reward function. The observation space is

continuous, where a vector 𝑠 [𝑘] =
[
uT [𝑘], 𝑆T [𝑘], Z [𝑘]

]
T

describes the continuous

acoustic utility per microphone u[𝑘] and has a binary (multi-discrete) indicator

vector for the selected set of microphones 𝑆 [𝑘] at time frame 𝑘 . For ∥𝑉 ∥ micro-

phones, there are 2
∥𝑉 ∥ − 1 different possible combinations for microphone selection,

so that I discard empty set selection. Moreover, there is a binary activity detection

variable Z [𝑘] to indicate speech pauses. Hence, the length of the observation vector

is 2∥𝑉 ∥ + 1.

The action corresponds to selecting at most one microphone to switch its state

per time frame 𝑘 , i.e., changing the selected microphone set by adding or removing

a microphone, or not changing the microphone set. Hence, the size of the action set

is ∥𝑉 ∥ + 1. This is better than other solutions, such as picking a set of microphones,

because here the action space is smaller and other solutions will take loner time for

learning.

Based on the chosen actions, the RL agent receives corresponding rewards. The

reward function combines three different aspects: QoI, network delay and number

of changes applied to the set selection within a predefined number of time frames

^. I explain in the following the reward modelling.

In order to evaluate the QoI of a certain set of selected microphones relative

to all other microphone subsets, I define a goodness metric 𝛺 . All subsets are

sorted at each time instant 𝑘 in ascending order w.r.t. the QoI metric given by the

black box . Then, the goodness 𝛺 [𝑘] ∈ [0, 1] of the selected subset in 𝑠 [𝑘] is the

140

Minimizing Rate of Changing the Selection Section 8.3

normalized rank (rank of selected subset divided by the number of all possible

subsets 2
∥𝑉 ∥ − 1) in ascending order; 0 is the worst and 1 is the best. The network

delay is calculated in the same way as Section 8.1.1, hence, the higher the delay the

lower the quality of the corresponding subset. Moreover, every time the selected

set of microphones changes from 𝑘 − 1 to 𝑘 such that 𝑆 [𝑘 − 1] ≠ 𝑆 [𝑘] (i.e., a new
microphone is selected/discarded), I reduce the reward by a penalty term

𝛥 [𝑘] =
{
𝑘 mod ^ + 1, if 𝑆 [𝑘 − 1] ≠ 𝑆 [𝑘]
0, otherwise.

(8.14)

This ensures network stability and decreases jitters or delays due to reconfiguration

within ^ duration. Consequently, the reward 𝑟 [𝑘] is given by

𝑟 [𝑘] =
{
[𝛺𝛺 [𝑘] + [𝜏𝜏 [𝑘] − 𝛥 [𝑘], if speaker active

0, otherwise

(8.15)

where the constants [𝛺 and [𝜏 are used to normalize the goodness 𝛺 [𝑘] and delay

𝜏 [𝑘], respectively. Note that the observation space has acoustic utilities which

are calculated per microphones (similar to Section 8.1.2), while here the goodness

depends on the quality of a set of microphones. As shown in [Gun+21], there is

a direct correlation between the acoustic utilities per microphones and the set of

selected microphones.

I use the deep-Q-network (DQN) as the RL agent with experience replay and

epsilon greedy for training [HS19]. Although other training models would also be

plausible, DQN is recommended because the action space is discrete (Section 2.3.2).

Consequently, I use neural networks to model the relation between microphone

set selection and microphones utilities on the one hand, and the achieved reward

of adding or removing a microphone from the selected set on the other hand.

8.3.3 Evaluation

Here I define the setup for data generation and two baselines for benchmarking–

quality and frequency of changes of– the RL solution.

A total of ∥𝑉 ∥ = 10 microphones are placed in a room with random, but fixed,

positions, depicted in Figure 8.11. The room has dimensions of 5m×5.2m×3m. The

microphones’ sampling rate is 𝑓s = 16kHz, the size of data sent per each microphone

is 𝐿 = 64ms long, which is later used for estimating the microphones’ utility. The

details of calculating a generic microphone’s utility is described in [Gun+21]. In

141

Chapter 8 Sensor Selection in Acoustic Sensor Networks

−2 −1 0 1 2 3

−2

−1

0

1

2

3

Region of In-

terest (RoI)

Example

source

trajectory

𝑥 [m]

𝑦
[m
]

Figure 8.11: Top-down view on an exemplary acoustic scenario.

this setup, the BSS application is considered so that the QoI metric is the Signal-to-

Distortion Ratio (SDR) [FGV05].

All microphones and the active speaker are at a height of 1m. An active speaker

moves randomly within the region of interest (RoI) of size 3m × 3.2m. To simulate

a human movement, the speaker remains almost stationary for 8s, then moves

to a new random position, by random uniformly selecting x and y positions, in

the RoI within 2s (i.e., low speed). Each experiment trial is 28s long, such that it

contains 3 stationary intervals, and 2 movement intervals. An example is shown in

Figure 8.12.

Two different speaker signals (male and female speech) and 30 random trajecto-

ries are used for simulation, resulting in a total of 60 unique combinations of signal

and trajectory. To facilitate computation of the acoustic reward in Section 8.3.2, the

SDR values for each possible microphone selection are computed for each trajectory

in advance. All microphones are assumed to be synchronized.

The wireless bandwidth is 20 MHz and the wireless attenuation depends only

142

Minimizing Rate of Changing the Selection Section 8.3

0 5 10 15 20 25

−0.5

0

0.5

1

time [s]

{
𝑥
,𝑦
,𝑧
}
[
m
]

𝑥 𝑦 𝑧

Figure 8.12: Exemplary speaker trajectory. Shaded intervals indicate source movement.

on the distance 𝑑𝑣 between the microphone 𝑣 and the access point. Next, I use

802.11 PHY standards [21] to calculate the transmission delay based on the SNR

determined by the distance-based attenuation model
1

𝑑2.5
𝑣
. Since the positions of the

microphones are fixed, the delay for each microphone is time-invariant and can

be calculated once at the beginning of the simulation (which I do here), but other

alternatives are also plausible such as empirically measuring the delays.

Half of the simulated trajectories are used for training while the other half is

used for evaluation. All recordings are equally long, resulting in time frames

𝑘 ∈ {0, 1, . . . , 842}. I choose the normalization factors so that

max

𝑘
([𝛺𝛺 [𝑘])

max

𝑘
([𝜏𝜏 [𝑘]) = 9. This

prioritizes the optimization of the acoustic quality over the minimization of the

network delay. Nevertheless, they can be tuned for any application with other

values.

During the training phase, both the initial microphone set selection, the trajectory

of the speaker and the starting time frame of the trajectory 𝑘 are randomly selected.

The random process of selecting the initial 𝑆 [−1] is repeated 2 × 10
5
times during

training, where I set ^ = 5 to avoid many changes in microphone selection within

few number of time frames.

Baselines

Furthermore, I simulate two baseline methods for benchmarking the proposed RL

solution. First, Fixed, where the initial selection of microphones is random (in terms

of how many and which ones) and does not change as the speaker moves. Second,

Greedy, where the activity of at most one microphone is changed per 𝑘 to maximize

the instant reward based on oracle knowledge. An oracle is a black box that can

pre-compute the SDR values for any microphone set selection. In a real-world

scenario, such an oracle does not exist as it requires a reference (original) signal,

143

Chapter 8 Sensor Selection in Acoustic Sensor Networks

0 200 400 600 800

0.4

0.6

0.8

1

1.2

time instant 𝑘

r
e
l
a
t
i
v
e
r
e
w
a
r
d

𝑟RL[𝑘]/𝑟Greedy[𝑘]
𝑟Fixed[𝑘]/𝑟Greedy[𝑘]

(a) reward

0 200 400 600 800

0.4

0.6

0.8

1

1.2

time instant 𝑘
r
e
l
a
t
i
v
e
g
o
o
d
n
e
s
s 𝛺RL[𝑘]/𝛺Greedy[𝑘]

𝛺Fixed[𝑘]/𝛺Greedy[𝑘]

(b) goodness

RL Fixed Greedy

0

20

40

60

80

100

n
e
t
w
o
r
k
d
e
l
a
y
/m

s

(c) delay

Figure 8.13: Comparing RL to Fixed and Greedy baselines where 𝛥 [𝑘] = 0

144

Minimizing Rate of Changing the Selection Section 8.3

0 100 200 300 400 500 600 700 800

1

2

3

4

·10
−2

time instant 𝑘

r
e
l
a
t
i
v
e
c
h
a
n
g
e
s

RL

Figure 8.14: Relative number of changes per time frame

which is provided as an input to the oracle during simulation, but it is not needed

by the RL solution during inference.

The greedy approach is short sighted, hence, it maximizes the instant reward

and ignores the penalty due to changes, i.e., 𝛥 [𝑘] = 0, ∀𝑘 .

Results

During evaluation, each trajectory starts from the beginning (𝑘 = 0) with 50 random

initializations for trajectory generation and initial microphone set selection. The

focus in Figure 8.13 is on the rewards in terms of QoI and transmission delay, while

ignoring the penalty due to reconfiguring the selected microphone set. For a better

visualisation in the figures, I ignore the results with speech pauses.

In Figure 8.13 (a), I plot the relative rewards 𝑟RL [𝑘]/𝑟Greedy [𝑘] and 𝑟 Fixed [𝑘]/𝑟Greedy [𝑘]
for the RL and Fixed approaches, respectively. As can be seen, the RL approach

shows higher rewards than the Fixed baseline. The fact that the curves correspond-

ing to the relative rewards of the RL and Fixed approach are below one shows that

the Greedy approach obtains the highest rewards. However, recall that the Greedy

reward values do not include the penalty 𝛥 [𝑘] due to changing the microphone

selection and are based on oracle knowledge, which is not always available or can-

not be obtained in real-time operation. Yet, it is still plausible here for simulation

purposes.

I also look at the goodness for both RL and Fixed approaches relative to the

145

Chapter 8 Sensor Selection in Acoustic Sensor Networks

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SDRGreedy − SDR𝑖 [dB]

t
i
m
e
f
r
a
m
e
s
d
e
n
s
i
t
y

𝑖 = RL

𝑖 = Fixed

mean RL degradation

mean Fixed degradation

Figure 8.15: Histogram of SDR degradation

Greedy baseline, see Figure 8.13 (b). Similarly to Figure 8.13 (a), the RL approach

shows, again, better performance than the Fixed baseline but here with a smaller

gap, because I ignore the delay’s impact and the weight parameter [𝛺 is dropped.

Meanwhile, Figure 8.13 (c) shows that both the Fixed baseline and the proposed RL

approach show a similar distribution of the resulting network delays. Nevertheless,

the Greedy approach has a higher upper bound on the network delays, but this is

compensated for by higher goodness (Eq. Equation (8.15)) resulting in the optimum

reward per instant time frame.

The RL approach achieves on average 60% of the Greedy rewards (Figure 8.13 (a)).

Remember that the Greedy baseline is the best what we can achieve, when ignoring

penalties due to network reconfiguration. Hence, I look at the cumulative rela-

tive number of changes of the RL approach with respect to the Greedy baseline

(Figure 8.14), which lets us focus on network stability. First, I observe that the RL

approach seems to apply many changes at the beginning to minimize the number

of changes for the remaining part of the trajectories. Second, the Greedy approach

changes the set of selected microphones hundred times more than the RL one.

Accordingly, the proposed RL approach sacrifices 40% in goodness performance (

Figure 8.13 (b)) to achieve more stability for the microphone set selection.

146

Conclusion Section 8.4

This results in the following question: what is the equivalent of 40% performance

difference in goodness to that of SDR? Remember that goodness is only a rankmetric

and not an absolute number. In other words, I need to quantify the stability in terms

of SDR. To answer this question, I show in Figure 8.15 the normalized histogram

of SDR degradation for both RL (blue) and Fixed (orange) approaches, w.r.t. the

Greedy one. In other words, small values correspond to a performance similar to

the Greedy approach, while large values correspond to a worse performance. The

vertical lines represent the mean difference of 1.7dB for the RL approach (green)

and 3dB for the Fixed one (red). Additionally, the distribution of RL degradation

has a skewed distribution, i.e., low differences are more probable than large ones.

Also there is a tendency of being heavy tailed (Kurtosis for RL is 13.7 while for

Fixed is 8.3).

To sum up, the results show that the RL actions are better than simply keeping the

initial microphone set selection (Fixed), while the changes applied by the RL agent

achieves on average 60% of the (oracle) Greedy approach’s rewards. Nevertheless,

this 40% sacrifice is equivalent to 1.7dB in SDR. This compromise is acceptable

when considering that the number of changes done by the RL approach is hundred

times less than that of the Greedy one, resulting in a more stable solution compared

to the greedy approach.

8.4 Conclusion
In this chapter, I studied the relation between QoI and QoS when selecting a subset

of microphones. First, I assumed that both microphones and speakers are static

and showed that not only QoS benefit from subset selection but also QoI. Then,

I used RL to microphone set selection, using a simple QoI/QoS model. Finally, I

used RL again yet for a more complex QoI model adopted from acoustic signal

processing and considered the frequency of changing the selected subset as a

metric that influence both QoI and QoS. The RL solutions showed in general better

performance compared to greedy approaches and in particular to a naive approach

where the subset selection does not change over time.

147

9 Movement Selection in
Dynamic Environment

Now I take dynamics to the next level, where not only the speakers are moving, but

the microphones move as well. In contrast to the dynamic properties in Sections 8.2

and 8.3, here the dynamics from moving microphones can be controlled, a.k.a.

autonomous vehicles. Autonomous vehicles – like unmanned ground vehicles (e.g.,

social robots [AL21]) or unmanned aerial vehicles (UAV, e.g., drones [JMA15]) –

have a broad range of applications, such as entertainment, industrial scenarios and

ambient-assisted living, all working in dynamic environments.

Such control presents both an opportunity and a challenge. Controlling such

vehicles via rule-based systems can be feasible, but is often labor-intensive, rigid

and static. The user’s needs and preferences or the environment may, also, change

over time, while adapting hard-coded rules to changes in application setup or

environment is difficult. As an alternative, RL-based approaches allow vehicles to

continuously learn from interactions with each other and with their environment

to adapt their behaviour.

To illustrate the idea, I consider the scenario of a room (e.g., meeting room or large

conference hall) with several human speakers and a couple of such autonomous

vehicles, equipped with microphones (Figure 9.1). The objective is to move the

microphones to appropriate positions in the room to obtain high-quality recordings

of the speakers (e.g., for question-and-answer sessions in conference setups). Hence,

there is a need for an algorithm to move these vehicles so that they can best acquire

audio signals when speakers take turns (e.g., multiple people asking questions from

different locations), under the constraint that only a few vehicles are available. Note

that the ideas can be transposed to similar problems in other modalities like video

streaming, but for the sake of concreteness and clarity in presentation, I limit the

description to audio streams.

Depending on the problem at hand, there are multiple objectives that yield a

multitude of solution behaviours. Such a scenario can support different concrete use

cases, with different desired vehicle behaviours. For instance, localizing a speaker

as best as possible or to record the audio in stereo [BK18; Sch+17a] will require

moving multiple vehicles towards the “active speaker” to act as a microphone array.

Audio filtering, on the other hand, requires at least one vehicle close to the “active

speaker”, and data from other vehicles is used for noise cancelling [Xu+18].

Here, there are two different problems that can (and will) be solved using the

149

Chapter 9 Movement Selection in Dynamic Environment

QoI

QoS
Access Point

Speaker

Figure 9.1: Example of the motivating scenario

same approach. This approach must be flexible enough to support such different

behaviours; ideally, it should learn how to best behave in these different use cases,

even ones that were not foreseen during system design. This flexibility is difficult

to achieve with conventional, non-learning-based approaches.

I assume that the vehicles are wirelessly connected to an access point that

forwards the collected data for monitoring and/or further processing. Therefore, it

is important to maintain good connectivity between the vehicles and the access

point to avoid packet losses and unnecessary delays.

Simultaneously, it is important to choose the right locations for best audio quality

(e.g., to be close to the active speaker). These two aspects can be in conflict with

each other, creating a trade-off between audio and network quality. To express this

trade-off, again I use QoI and QoS to evaluate the solution’s performance

This trade-off has not yet been fully explored in the literature, especially not for

groups of autonomous vehicles and dynamic scenarios (e.g., alternating speakers).

A possible approach to explore this trade-off would be to formulate an optimization

problem and try to solve it in (near) real time Section 8.1. But this is fraught

with many obstacles; to name but a few: the high solution times for conventional

optimization problems, the non-obvious way in which QoI/QoS interact towards

overall application quality, and the difficulty to adapt to changing application

objectives.

Next, the question is, how to build such autonomous vehicle systems. In general,

there are two main building blocks: scene understanding and decision making [LI04].
Understanding the scene is via sensors (such as cameras and microphones) to

perceive the environment and localize the vehicles. This is achieved by using various

150

Movement Selection in Dynamic Environment Chapter 9

techniques such as motion detection [Sia+18], semantic segmentation [Sia+17],

and mapping [Mil+18]. Here, I assume that these techniques are at hand and are

error-free.

Decision making is divided into two blocks [Kir+20]: planning and control. The
planning block is necessary for motion and trajectory estimation. There are many

possible assumptions regarding trajectory estimation. For instance, trajectories

could be static when the route to the destination is predefined and the traffic density

is already known [LI04]. Other planning approaches [LaV06] consider dynamics in

the environment such as in indoor environments [LK99]. The control block decides

aspects like speed, steering angle, or braking. Here, I assume that the speed is
constant and I control only the steering angle and braking.

Similar to the work in [Sah+21], I rely on neural networks to implicitly model the

motion patterns of active speakers and act upon. Nevertheless, this is not the only

role of neural networks; they also approximate the QoI or QoS values for a given

system state. As mentioned in Section 8.1, calculating QoI is based on the data

collected from the sensors. One of the reasons why one uses neural networks for

approximation instead of directly calculating QoI or QoS is that the algorithms used

for calculating QoI are usually time-consuming and normally cannot be expressed

explicitly (Section 8.3). Consequently, I use neural networks to implicitly extract

features from these data (e.g., location of vehicles and speaker) and express the

combination of current data and taken actions via some values [HGS15]. Hence,

the neural networks handles the functions of both planning and control blocks.

There exists some work concerned with data acquisition quality (i.e., QoI) and

network connectivity (i.e., QoS), when controlling vehicles. The work in [FGD16;

JMA15] optimized the movement of one UAV to maximize QoI. On one hand, they

assumed that all nodes are fixed except for one node that acts as a relay node for

data collection and routing. On the other hand, I assume that the nodes are installed

with sensors and move around for data collection, while only one node is fixed as

a gateway. This adds an additional challenge with respect to the position of the

mobile nodes. Furthermore, I assume that all mobile nodes have a direct connection

to the access point, hence, they do not need relay nodes. Meanwhile, considering the

challenge of a mobile sink node (with fixed sensors), instead of mobile microphones,

is a simplified version of my problem and should be straightforward, since I then

control only one node.

Social robotics environments [AL21] are very close to the scenario at hand. These

robots are often equipped with one or more sensors and move to improve data

acquisition. Nevertheless, such work mainly focuses on data acquisition quality

and ignores network aspects. Similarly, planning the trajectory for the vehicles has

151

Chapter 9 Movement Selection in Dynamic Environment

been studied in [Cha+19; CSB19], but the focus was only to achieve low latency

and low wireless interference.

Combining both QoS and QoI was modeled in [Kat+20], but under the assumption

that sensor nodes do not move and only a subset of these nodes is selected for

maximizing QoI with a certain QoS level. In summary, previous work aims at either

optimizing data acquisition with best effort network performance or maximizing

QoI for a given QoS. Unlike previous work, I explore the trade-off between QoI and

QoS.

To address these challenges, I develop a dynamic programming-based centralized

(Section 9.2) and multi-agent (Section 9.3) solutions. I show empirically how a cen-

tralized solution has superior performance compared to standard, ad hoc solutions

(Section 9.5.2). Additionally, I develop two variants ofmulti-agent deepRL solutions

that are more scalable and practical. I compare these solutions to the solution

with fixed microphone positions and when each speaker carries a microphone

(Section 9.5.5). In addition to empirical evaluations, I attempt a theoretical analysis

to explain how the changes in the scenario (e.g., speed of the speaker) impacts the

deepRL training and performance (Section 9.6).

9.1 Problem Formulation
The results in this section are based on the work in [ARK21b], where I discussed

with Arunselvan Ramaswamy possible formulations and RL tuning. The problem

comprises assumptions about speakers (Section 9.1.1), vehicles carrying micro-

phones along for acoustic data collection
5
(Section 9.1.2), and wireless transmission

to the access point (Section 9.1.3). Acoustic andwireless properties together describe

the utility of a microphone (Section 9.1.4).

9.1.1 Speaker
𝑁 speakers are in a room, with at most one speaker active at any time; the active
speaker trajectory has a stochastic distribution. The speaker’s speed is a𝑈 (0, 𝑣src)
random variable, i.e., it is sampled uniformly from the interval [0, 𝑣src] every time

a speaker talks. The initial direction is randomly selected and can slightly change

while moving. The speaker is reflected when it bounces a wall. Speakers are

anomalously treated, meaning that no information about a speaker is retained once

5 Note that vehicle and microphone represent the same thing; I interchangeably use then for

logical-meaning sentences. For example, a vehicle moves at slow speed and a microphone records

acoustic data)

152

Problem Formulation Section 9.1

it stopped speaking; a new talk spurt is treated the same irrespective from which

speaker it originates

Without loss of generality, I assume that the talk time of each active speaker

is uniformly distributed in𝑈 (𝜏min, 𝜏max); talk times of consecutive talk spurts are

stochastically independent. Hence, the average talk time 𝜏 is the same for all

speakers. Once a speaker finishes talking, there is no acoustic pause, I uniformly

and independently choose the next speaker at random.

9.1.2 Microphones and acoustic quality
𝑀 moving microphones record audio data from a speaker and transmit them to a

fixed access point via some wireless transport (Section 9.1.3). Unlike the speaker’s

movement, I control the movement of microphones: the control system decides, for

each microphone, whether it moves at all and its direction. The Microphones move

at a constant speed 𝑣𝑚 , or 0. I assume that all microphones are active all the time,

so there is no microphone selection here, just to make the problem easier to learn.

At every time-step 𝑡 , I calculate the acoustic gain 𝑔𝑚 (𝑡) provided by microphone

𝑚 from its distance to active speaker at that time:

𝑔𝑚 (𝑡) =

−1

3
log

(
𝑑𝑚 (𝑡)
𝑑

th

) ,
if 𝑑𝑚 ≤ 𝑑th

−3 log

(
𝑑𝑚 (𝑡)
𝑑

th

)
, otherwise

(9.1)

where 𝑑th is a threshold distance at which the relation between 𝑑𝑚 and acoustic

gain (𝑔𝑚) changes [SK18]. Again, I highlight that in practice calculating the acoustic

gain relies on more complex and time-consuming algorithms. They are not easy to

compute in real time [GBK21]; they are more suitable as a ground truth. Instead,

I use simpler acoustic features (namely, distance between microphones and the

speaker) and let the acoustic gain be part of the utility.

9.1.3 Wireless data transport
Each microphone𝑚 sends to the access point audio data of constant size in regular

intervals. At time step 𝑡 , microphone𝑚 takes 𝛿𝑚 (𝑡) time units to do so. This time

𝛿𝑚 (𝑡) depends on the available data rate, which in turn depends on the wireless

signal-to-noise ratio at the access point from microphone𝑚, which in turn depends

on distance as well as the number of microphones. I use IEEE 802.11 PHY standard

parameters [21] to map SNR to data rate and required time to transmit a packet.

Using the location of the vehicles and the access point, I estimate the attenuation

of the wireless signal via the log-normal shadowing modelN(0, 1.6) [Uni21]. Based

153

Chapter 9 Movement Selection in Dynamic Environment

0 5 10 15 20 25 30

20

40

60

80

distance /m

T
h
r
o
u
g
h
p
u
t
/
M
b
p
s

Figure 9.2: IEEE 802.11 data rate vs distance; step function resulting from finite set of

802.11 transmission parameters [21]

on that, I calculate the wireless SNR and thence the transmission time from each

vehicle. Figure 9.2 shows the data rate for the step-wise characteristic resulting

from IEEE 802.11 finite number of PHY modes.

For simplicity, I ignore propagation delay, medium access delays, as well as

retransmission overhead (caused by, e.g., interference from other access points).

This is justified as propagation delay inside a cell is marginal in any case, and

medium access as well as interference-induced retransmissions can be kept under

control by a properly working MAC protocol (I do not assume an 802.11 MAC, just

802.11 PHY parameters).

9.1.4 Utility

Finally, I define the utility of microphone𝑚 as

𝑢𝑚 (𝑡) = 𝑔𝑚 (𝑡) −𝑤𝛿𝛿𝑚 (𝑡). (9.2)

To compute utility, I need to normalize 𝛿𝑚 as it is measured in seconds but 𝑔𝑚 is

unit-less; this is done by factor 𝑤𝛿 , with unit 1/s. Moreover, I use 𝑤𝛿 to weight

acoustic QoI and network QoS performance against each other. In practice, this

weight can be chosen by the application developer. In the following evaluation, I

ensure that 0 < 𝑔𝑚 (𝑡) ≤ 1 and 0 < 𝑤𝛿𝛿𝑚 (𝑡) ≤ 1.

I consider two popular models for the utility of a set of microphones. First, the

154

Centralized Deep Reinforcement Learning Solution Section 9.2

joint model [BK18] calculates the sum of the microphone utilities

𝑟J(𝑡) =
∑
𝑚∈𝑀

𝑢𝑚 (𝑡), (9.3)

which is useful for stereo streaming applications.

Second, the contented model [Xu+18] selects the maximum utility of all micro-

phones

𝑟C(𝑡) = max

𝑚∈𝑀
𝑢𝑚 (𝑡) (9.4)

which is relevant to noise-cancelling applications.

9.2 Centralized Deep Reinforcement Learning
Solution

In this solution, there is a single, central agent running at a central unit (e.g., access

point). I assume that this agent knows the locations of the vehicles – installed with

microphones – and location of the active speaker (e.g., via one of the localization

techniques mentioned earlier in this chapter). Hereafter, I define a continuous

observation space so that the state vector 𝑠 (𝑡), at time slot 𝑡 , contains the position

of each vehicle as well as the position of the active speaker.

At time slot 𝑡 , action vector 𝑎(𝑡) determines the direction of movement of all

vehicles. Specifically, each vehicle may move in one of 8 directions: horizontal,

vertical and diagonal direction. Additionally, 𝑎(𝑡) may specify that a vehicle does

not move. Hence, there are 9 possible actions per vehicle, and 𝑎(𝑡) is one among

9
𝑀
possibilities.

At time slot 𝑡 , the agent picks an action 𝑎(𝑡) and receives feedback for it (perfor-

mance measure at time slot 𝑡), in the from of rewards 𝑟 calculated using either the

joint or contended model from Section 9.1.4, denoted as 𝑟 𝐽 or 𝑟𝐶 , respectively.

Using dynamic programming, the problem of optimally controlling the vehi-

cles reduces to finding a sequence of actions, {𝑎(𝑡)}𝑡≥0, such that the cumulative

discounted rewards – for 𝑟J or 𝑟C – are maximized over time. In other words,

maximize:
∞∑
𝑡≥0

𝛾 𝑡𝑟 (𝑡), (9.5)

where 𝑟 could be 𝑟J or 𝑟C. This boils down to calculating the optimal 𝑄-function

𝑄∗. I train a deepRL (intelligent agent) in order to best approximate 𝑄∗, i.e., to
minimize the squared Bellman loss function Equation (2.5). Note that I train the

155

Chapter 9 Movement Selection in Dynamic Environment

deepRL in order to learn from past experiences, which is emulated through the use

of an experience replay [SB18, Ch. 14].

9.3 Multi-agent DeepRL Solution
The centralized solution presented in Section 9.2 exhibits excellent empirical char-

acteristics, but it is neither practical nor scalable. To overcome this, I develop a

multi-agent solution wherein each vehicle is controlled by an autonomous agent

(𝑀 agents in total). Hence, agent𝑚 only determines the direction of movement of

a microphone𝑚.

Furthermore, it decides based on partial knowledge of the environment. I assume

that agent 𝑚 only knows the positions of vehicle 𝑚 and the active speaker; it

does not know the position of other microphones. Moreover, it is also blind of

their existence. The agents are, however, linked through the reward function. All

agents obtain the same reward at time 𝑡 . Using this common reward structure, the

empirical results show that the agents learn to cooperate with each other.

To summarize, I define the environment as follows: there are𝑚 = 1, . . . , 𝑀 agents

whose observation 𝑠𝑚 (𝑡) represents the position of microphone𝑚 and the active

speaker position. The action per each agent 𝑎𝑚 (𝑡) decides one out of 9 possible
actions. Accordingly, I reduce the size of both observation space to be for the

location of the agent (per mic) and the speaker (size = 4) and action space (size = 9),

compared to the centralized solution (observation size = 2(𝑀 + 1) and action size =

9
𝑀
).

I develop the solutions based on two multi-agent DeepRL paradigms, (a) shared
policy paradigm [Zha+19], and (b) separate policy paradigm [Lan+17]. In the former,

I train a single deepRL to take actions in lieu of each of the 𝑀 intelligent agents.

To facilitate effective training, the experiences of all the agents, at every time step,

are collected in the experience replay buffer. Training using this buffer amounts to

learning from the past experiences of all the agents. This solution is then a scalable

version of the centralized solution presented in Section 9.2. Note that this design

also facilitates cooperation between agents through the shared experience replay

buffer [Nai04; OH19].

When using the separate policy paradigm, I train a separate deepRL for each

of the𝑀 agents. In particular, each agent maintains a separate experience replay

buffer in order to train the associated deepRL. At time 𝑡 , the actions taken by all of

the𝑀 agents (guided by different deepRLs) result in the same feedback, i.e., all the

agents obtain the same reward at time 𝑡 . Cooperation between agents is achieved

only through the use of the common reward structure.

156

Practical Baseline Solutions Section 9.5

On the one hand, the centralized solution requires centralized training and cen-

tralized execution. On the other hand, both multi-agent solutions have distributed

execution. Nevertheless, the shared policy relies on centralized training (i.e., par-

tially distributed implementation), while the separate policy’s training is distributed

(i.e., fully distributed implementation).

Recall from Section 9.1.4, there are two reward models in order to account for

different applications, (a) joint model and (b) contended model. In case of the

joint reward model, it can be shown [Gre84] that solving the problem of finding

the optimal policy (sequence of actions) for each agent separately amounts to

finding the optimal policy for all the𝑀 agents combined. In particular, maximizing∑
𝑡≥0

𝛾 𝑡𝑢𝑚 (𝑡) separately, for each 1 ≤ 𝑚 ≤ 𝑀 , amounts to maximizing

∑
𝑡≥0

𝛾 𝑡𝑟 𝐽 (𝑡) over

time (recall that 𝑟 𝐽 (𝑡) =
𝑀∑
𝑚=1

𝑢𝑚 (𝑡)), which is easy to learn.

But with contended rewards 𝑟𝐶 , one cannot make such claims. This is because,

unlike the joint model, the utilities are mixed in a non-linear manner (using the

max function) in order to obtain the reward at time 𝑡 . Hence, that non-linearity in

the contended model is more interesting to test the performance of a multi-agent

solution.

9.4 Practical Baseline Solutions

I adopt two practical implementations to act as baselines to evaluate the deepRL

solutions. First, a carry-on solution such that all users carry a microphone with

themselves (implying𝑀 = 𝑁 and perfect motion control). Second, a fixed set-up,

where the microphones are preinstalled and cannot be moved. The assumption

that only one user is speaking at a time still holds.

Additionally, I compare the deepRL solutions to a greedy heuristic that controls
the positioning of the microphone nodes. The heuristic checks all possible com-

binations of moving the vehicles and selects the one that maximizes the instant
reward at the current state. Note that the run time complexity of the heuristic is not

a part of the evaluation. The performance is evaluated just like the RL solution’s

performance (Section 9.1), so it is either the utilities from all microphones (joint)

or the best utility (contended). This algorithm is considered greedy as it ignores

the long-term utility maximization in favor of maximizing a per-time-step one.

157

Chapter 9 Movement Selection in Dynamic Environment

9.5 Experimental Results

The initial simulation setup consists of two moving vehicles𝑀 = 2, each installed

with a microphone. The centralized RL agent is trained for a speaker that moves in

random trajectories (Section 9.1.1) while talking, where the average talking time is

uniformly distributed between 𝜏min = 8 and 𝜏max = 12 time steps. Then, the next

speaker starts speaking from a new random position; a previous speaker might

have moved while being silent.

For the upcoming results and unless stated otherwise, I assume that 𝑣𝑚 ≥ 𝑣src

and 𝑤𝛿 = 0.1. In case of the fixed set-up baseline, the microphones are placed

on a uniform equidistant grid, distributed evenly inside the room (20×20 m
2
).

The average speed of the speakers is 1m per time step. I show in [Haia; Haib]

some videos to visualize the environment as well as the trained agents in different

scenarios.

9.5.1 Convergence of training: Temporal Difference

I use the temporal difference loss L (Equation (2.6)) of a single run (yet tuned

over 50 runs) to visualize the convergence of the single agent while learning; the

results are in Figure 9.3. Clearly, L decreases with more training steps for both

joint (Figure 9.3 (a)) and contented (Figure 9.3 (b)) models.

Additionally, changing the relative speed of the vehicles
𝑣𝑚
𝑣src

(i.e., the vehicles

move longer distances than the speaker per time step) changes the value to which

L converges, for the contended reward model. In general, convergence will also

change when varying the hyperparameters.

9.5.2 Performance of centralized RL vs. baselines

I compare the performance of the trained centralized single RL agent to that of the

carry-on and static baseline solutions (Section 9.4). I assume that there are two

speakers 𝑁 = 2 and they take turns in speaking; both carry a microphone and move

according to their predefined paths inside the room. These paths are selected to

represent extreme cases moving near the edges of the room, while maximizing the

distance between the speakers. Meanwhile, averaging over multiple paths is shown

in Section 9.5.4.

For the joint model (Figure 9.4 (a)), the RL agent has on average better re-

wards/performance compared to both the static and carry-on solutions. This is due

to additional degrees of freedom for the RL agent that can control the position of

158

Experimental Results Section 9.5

0 20 40 60 80 100

0

1,000

2,000

3,000

steps (/10
3
)

L

𝑣𝑚
𝑣src

= 0.2

𝑣𝑚
𝑣src

= 0.4

𝑣𝑚
𝑣src

= 1.0

𝑣𝑚
𝑣src

= 2

(a) joint model

0 20 40 60 80 100

0

200

400

600

800

1,000

steps (/ 10
3
)

L

𝑣𝑚
𝑣src

= 0.2

𝑣𝑚
𝑣src

= 0.4

𝑣𝑚
𝑣src

= 1.0

𝑣𝑚
𝑣src

= 2

(b) contented model

Figure 9.3: Temporal difference error

0 100 200 300 400 500

10
−6

10
−4

10
−2

Time

R
e
w
a
r
d
s

RL

Static

Carry

(a) joint model

0 100 200 300 400 500

10
−3

10
−2

10
−1

Time

R
e
w
a
r
d
s

RL

Static

Carry

(b) contented model

Figure 9.4: Comparison between centralized single-agent and the baseline models. Paths

of the speakers are predefined to be as far as possible from each other, while
𝑣𝑚
𝑣src

= 0.2.

159

Chapter 9 Movement Selection in Dynamic Environment

0 100 200 300 400 500

−16

−14

−12

−10

−8

Time

a
c
o
u
s
t
i
c
g
a
i
n

RL

Static

Carry

(a) joint model

0 100 200 300 400 500

−6

−4

−2

0

Time

a
c
o
u
s
t
i
c
g
a
i
n

RL

Static

Carry

(b) contented model

Figure 9.5: Comparison between centralized single-agent and the baseline models with

respect to acoustic gain

the microphones to be closer to the speaker, which results in a better performance

than having only one microphone close to the speaker as in the carry baseline.

In the case of the contended model (Figure 9.4 (b)), carrying the microphone has

the best acoustic performance (Figure 9.5 (b)), but not necessarily the best network

one (Figure 9.6 (b)). Because microphones are wirelessly connected to the access

point, the network performance degrades if the users carrying the microphones

are far away from the access point. Accordingly, it is useful to sacrifice some

acoustic performance in return for better network performance. Moreover, the

RL agent adapts itself to the movement of the speakers to improve performance

(acoustic and network) at some time steps, yet carrying the microphones seems

to have on average the best performance here: remember that the acoustic gain is

weighted more than the network one 10:1 and the speakers can cross paths close

to the access point. It is worth recalling that, unlike the carry-on solution, the RL

single-agent can scale for any number of 𝑁 speakers, while still working with only

2 microphones.

The reason why carrying the microphone can have a high acoustic gain in the

joint model (Figure 9.5 (a)) is due to the fact that two speakers may be near each

other while carrying the microphone. Yet, still they do not account for how far they

are from the access point; decreasing the network performance (Figure 9.6 (a)).

160

Experimental Results Section 9.5

0 100 200 300 400 500

0.4

0.6

0.8

Time

n
e
t
w
o
r
k
c
o
s
t

RL

Static

Carry

(a) joint model

0 100 200 300 400 500

0.4

0.5

0.6

0.7

Time
n
e
t
w
o
r
k
c
o
s
t

RL

Static

Carry

(b) contented model

Figure 9.6: Comparison between centralized single-agent and the baseline models with

respect to network cost

0 100 200 300 400 500

10
−5

10
−3

10
−1

Time

R
e
w
a
r
d
s

RL

heuristic

(a) joint model

0 100 200 300 400 500

10
−5

10
−3

10
−1

Time

R
e
w
a
r
d
s

RL

heuristic

(b) contented model

Figure 9.7: Comparison of single-agent RL with the heuristic model

161

Chapter 9 Movement Selection in Dynamic Environment

9.5.3 Performance of centralized RL vs. heuristics

I compare the trained single agent from Section 9.5.2 against the greedy heuristic

(Figure 9.7). Here I show the average reward over 50 different path, while the light

shades depict the 90% confidence interval.

In the joint reward model (Figure 9.7 (a)), the heuristic solution has a high

variance (as well as large confidence interval) since all vehicles follow the speaker.

So the acoustic quality drops once the speaker changes and the microphones are

far away from the last speaker. Meanwhile, the RL solution has smaller variance

because it chooses actions that maximize the average reward and not just instant

rewards.

When looking at the contented reward model (Figure 9.7 (b)), the RL agent, again,

has on average higher rewards than the heuristic algorithm, because it learns how

to move the vehicles. When a new speaker pops up, one of the vehicles will be able

to reach the new speaker faster than in the heuristic case.

In both cases of Figure 9.7, the relative speed
𝑣𝑚
𝑣src

= 0.2. Although the RL solution

has a higher reward than the heuristic one, the latter still has better results than

the baselines at high speeds (𝑣𝑚 ≥ 2𝑣src). At low speeds (𝑣𝑚 < 𝑣src), this highly

depends on the reward model. For the joint model, the heuristic still performs better

than the baselines, while for the contended model the baselines (more specifically,

carrying the microphone) perform better than the heuristic one. These differences

are due to the fact that high speeds compensate for the greediness of the heuristic;

the vehicles can reach the speaker quickly once it is active.

I show in Figures 9.8 and 9.9 the acoustic and network qualities of the heuristic

and RL solutions separately. The RL solution performs better than the heuristic in

terms of acoustic gain but the network cost is higher. Note that the acoustic gain

has a higher weight than the network cost, si that RL still achieves in total a better

performance than the heuristic one.

9.5.4 Performance for Varying Vehicle Speeds for
Centralized RL

Now, I look into how speed will impact the learning process of the RL agent

as well as its impact on performance. I start with the impact on convergence

point (Figure 9.10) by varying 𝑣𝑚 ∈ {0.2, 0.4, 1, 2}𝑣src. For slow moving vehicles

–relative to the speaker– the achieved reward is lower than with vehicles moving

at high speed; when 𝑣𝑚 ≥ 2𝑣src the RL agent has the highest rewards for both joint

(Figure 9.10 (a)) and contended (Figure 9.10 (b)) reward models. Additionally, while

162

Experimental Results Section 9.5

0 100 200 300 400 500

0.5

0.6

0.7

Time

n
e
t
w
o
r
k
c
o
s
t

RL

heuristic

(a) joint model

0 100 200 300 400 500

0.5

0.6

0.7

Time

n
e
t
w
o
r
k
c
o
s
t

RL

heuristic

(b) contented model

Figure 9.8: Comparison of joint model with respect to network

0 100 200 300 400 500

−14

−12

−10

−8

−6

−4

−2

Time

a
c
o
u
s
t
i
c
g
a
i
n

RL

heuristic

(a) joint model

0 100 200 300 400 500

−14

−12

−10

−8

−6

−4

−2

Time

a
c
o
u
s
t
i
c
g
a
i
n

RL

heuristic

(b) contented model

Figure 9.9: Comparison of joint model with respect to acoustic gain

163

Chapter 9 Movement Selection in Dynamic Environment

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps(×106)

−150

−100

−50

0

R
ew

ar
d

vm
vsrc

=0.2

vm
vsrc

=0.4

vm
vsrc

=1

vm
vsrc

=2.0

(a) joint model

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps(×106)

−20

0

20

40

60

80

100

R
ew

ar
d

vm
vsrc

=0.2

vm
vsrc

=0.4

vm
vsrc

=1

vm
vsrc

=2.0

(b) contented model

Figure 9.10: Convergence rate while learning with respect to the speed

training, RL agents with high-speed vehicles reach higher rewards in fewer number

of training steps.

Next, I look into the impact of speed on the reward by repeating the experiment

in Section 9.5.2 for different environments with different vehicle speeds. But this

time, the speakers move within 50 different regions of interest and I show the results

of averaging over 50 runs. Note that now the speakers may cross over between their

regions and they are not necessarily far away from each other as in Section 9.5.2.

Next, I compare the average reward (as well as the confidence interval) of a trained

single-agent RL model to that of carry-on and static baselines (Figure 9.11).

When using the joint model (Figure 9.11 (a)), the RL solution has a better perfor-

mance than the baselines. Again, this is due to the degree of freedom of moving

the vehicles. But this is not enough for the contended model (Figure 9.11 (b)). At

low speeds, a vehicle cannot catch up with a moving speaker, thus carrying the

microphones is better. Nevertheless, as the speed of the vehicles increases (e.g.,

𝑣𝑚 = 𝑣src) the performance of a single-agent RL becomes better than carrying the

microphone.

9.5.5 Changing the Microphone Speeds for Multi-agent RL

Extending the analysis the previous speed analysis, I investigate the impact of

changing the vehicle’s speed on the multi-agent solution. Recall from Section 9.3

that a multi-agent environment only supports the contended reward model and

two different policies: shared and separate.

First, I look at the value to which the mean reward converges for both policies

(Figure 9.12). On one hand, the shared policy is sensitive to the microphone’s speed;

the mean reward increases with the microphone’s speed. On the other hand, the

164

Experimental Results Section 9.5

0 0.5 1 1.5 2 2.5

10
−6

10
−4

10
−2

speed (

𝑣𝑚

𝑣𝑠
)

R
e
w
a
r
d

RL

Static

Carry

(a) joint model

0 0.5 1 1.5 2 2.5

10
−3

10
−2

10
−1

speed (

𝑣𝑚

𝑣𝑠
)

R
e
w
a
r
d RL

Static

Carry

(b) contented model

Figure 9.11: Comparing single-agent RL to baselines with respect to the speed. Rewards

are evaluated over 50 different paths per each speaker, while the shaded parts show the

90% confidence interval.

separate policy’s reward is less sensitive to the microphone’s speed, yet, the mean

reward and microphone’s speed are also directly proportional.

Additionally, at high speeds (
𝑣𝑚
𝑣src

= 2), the shared and separate policies have

almost the same value of converged mean reward. But at low speeds (
𝑣𝑚
𝑣src

= 0.2), the

separate policy converges to a higher reward than the shared policy. In conclusion,

a task-specific policy (as in separate policy) may be better than having a global

policy (as in shared policy) depending on the parameters in the environment.

The reason why a separate policy performs better than a shared one is indeed an

inherited property from modular hierarchical learning [SPS99]. The formulation

with partial observations and unknown variables (e.g., the position of the other

microphones) is a complex environment, which is hard to solve with a single

monolithic policy [AKL16]. Hence, hierarchical learning can be used to divide

the main objective into sub-goals or sub-policies using fined-grained [Soc+12] or

structured supervision [AKL16]. In this formulation, the shared policy is equivalent

to a global monolithic policy and the separate policy is equivalent to learning sub-

policies. In contrast to previous work, all agents have the same reward functions

while they decide their own policies.

165

Chapter 9 Movement Selection in Dynamic Environment

0.0 0.2 0.4 0.6 0.8 1.0
20

30

40

50

60

70

80

Steps(/10
6
)

R
e
w
a
r
d

𝑣𝑚
𝑣src

=0.2
𝑣𝑚
𝑣src

=0.4
𝑣𝑚
𝑣src

=1.0
𝑣𝑚
𝑣src

=2.0

(a) Shared policy

0.0 0.2 0.4 0.6 0.8 1.0
20

30

40

50

60

70

80

Steps(/10
6
)

R
e
w
a
r
d

𝑣𝑚
𝑣src

=0.2
𝑣𝑚
𝑣src

=0.4
𝑣𝑚
𝑣src

=1.0
𝑣𝑚
𝑣src

=2.0

(b) Separate policy

Figure 9.12: Average reward with respect to the speed

9.5.6 Single- vs. Multi-agent RL

Moving forward, I compare the convergence of multi-agent solutions to that of the

centralized with contended utility (Figure 9.13). For the sake of a clear visibility

of the plots, I show the convergence at low (
𝑣𝑚
𝑣src

= 0.2) and high (
𝑣𝑚
𝑣src

= 2) speeds.

The vertical lines represent the point of convergence for each solution; I define the

convergence point as the point after which the reward changes with a variance less

than 2.

Similar to the results in Section 9.5.5, for low speed, the separate policy has

slightly higher rewards than the shared one, while the centralized solution is

very similar to the separate one (Figure 9.13 (a)). For high speed (Figure 9.13 (b)),

the separate and shared policies have similar reward but the centralized solution

performs better (i.e., higher rewards) than either other policy.

Likewise, I compare the converged mean reward of the multi-agent policies to

that of the heuristic (Figure 9.14). For both slow and high speeds (Figure 9.14 (a)

and Figure 9.14 (b) respectively), the averaged reward for multi-agent’s policies is

higher than the heuristic’s one. Hence, not only the centralized single agent but

also the multi-agent RL solutions learn how to move the vehicles better than the

heuristic solution.

166

Experimental Results Section 9.5

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Steps(/10
6
)

R
e
w
a
r
d

separate

shared

single

(a) low speed

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Steps(/10
6
)

R
e
w
a
r
d

separate

shared

single

(b) high speed

Figure 9.13: Average reward with respect to the policy

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Time

R
e
w
a
r
d

shared

separate

heuristic

(a) slow speed

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

R
e
w
a
r
d

shared

separate

heuristic

(b) high speed

Figure 9.14: Multi-agent vs Heuristic over 50 different runs. The shaded curves depicts

90% confidence interval

167

Chapter 9 Movement Selection in Dynamic Environment

0.0 0.2 0.4 0.6 0.8 1.0

Steps(/106)

−0.3

−0.2

−0.1

0.0

0.1

T
D

er
ro

r M =2

M =3

M =4

M =8

(a) shared

0.0 0.2 0.4 0.6 0.8 1.0

Steps(/106)

−0.4

−0.2

0.0

0.2

T
D

er
ro

r M =2

M =3

M =4

M =8

(b) separate

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps(/106)

0

5

10

15

20

T
D

er
ro

r

M =2

M =3

M =4

(c) centralized

Figure 9.15: Temporal difference error for up-scaling

9.5.7 Up-scaling with multi-agent RL
The centralized single-agent RL solution has indeed better results compared to

multiple agents, yet it is not scalable; the more microphones it has, the longer

the training will be (recall that action space = 9
𝑀
). Meanwhile, a multi-agent

approach can better scale up while sacrificing a bit of performance compared to

the single-agent RL.

Figure 9.15 shows how the multi-agent solutions scale up with the number

of microphones and converge for both policies. Given that an agent does not

know about the existence of other cooperating agents, convergence is achieved

by averaging the losses over multiple steps per a single state 𝑠 . In contrast to the

multi-agent RL solution, the centralized one shows multiple spikes as the number

of microphones increases, which clearly indicates that the agent has not converged.

Due to the exponential increase in the action space with respect to the number

of microphones, I drop the convergence results for 8 microphones, since it is not

feasible on the available training resources: memory (64 GB RAM) and CPU (16

cores Intel Xeon with 2.3 GHz clock frequency).

Next, I look at the gain in reward when increasing the number of microphones.

168

Theoretical Discussion Section 9.6

0.0 0.2 0.4 0.6 0.8 1.0

30

40

50

60

70

80

90

14

5.6

8.6

Steps(/10
6
)

R
e
w
a
r
d

𝑀 =2

𝑀 =3

𝑀 =4

𝑀 =8

(a) shared

0.0 0.2 0.4 0.6 0.8 1.0

50

60

70

80

90

11.6

5.3

6.1

Steps(/10
6
)

R
e
w
a
r
d

𝑀 =2

𝑀 =3

𝑀 =4

𝑀 =8

(b) separate

2 3 4 5 6 7 8

65

70

75

80

85

90

M

R
e
w
a
r
d

separate

shared

(c) reward

Figure 9.16: Average reward with respect to the number of microphones𝑀

The shared policy (Figure 9.16 (a)) converges to higher rewards as the number

of microphones increases. However, the reward gain shows diminishing returns:

increasing from 2 to 3 microphones yields a gain of 14, while doubling the number

of nodes from 4 to 8 yields only a gain of 8.6.

A similar behaviour is observed for the separate policy (Figure 9.16 (b)); the gain

increases with more and more microphones, yet the gain in reward decreases as

the number of microphone increases; moving from 2 to 4 microphones gains 11.6

reward, while doubling the number of nodes from 4 to 8 gives only 6.1 gain. The

decrease in gain can also be depicted in Figure 9.16 (c).

9.6 Theoretical Discussion
I show how a dynamic environment impacts the behavior of both deepRL and

heuristic models, where a generic theory of this impact is discussed in [Ram20].

Here, I show the relation between changing some of the attributes of the envi-

ronment and the changes in deepRL behavior. For simplicity in notation, I drop

the time index from 𝑠 (𝑡), 𝑎(𝑡) and 𝑟 (𝑡), and merely use 𝑠 , 𝑎 and 𝑟 , respectively.

Wherever necessary, I explicitly revert back to the notation involving the time

index 𝑡 .

9.6.1 Impact of Environment Setup on the deepRL Training
As briefly stated earlier (Section 2.3.4), the main objective of deepRL is to find the

optimal state-action function 𝑄∗(𝑠, 𝑎) (optimal Q-function). To do this, it in turn

finds an optimal set of weights of a neural network, \ ∗.
Now the question is, can any of the environment attributes (configuration of

the environment) impact the convergence of RL? If yes, how? To answer these

169

Chapter 9 Movement Selection in Dynamic Environment

questions, I first consider the expected value of squared Bellman loss as a reference

Equation (2.5):

B2

𝑡 =

(
𝑟𝑡 + 𝛾

∫
𝑄 (𝑠𝑡+1, 𝑎𝑡+1;\𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) −𝑄 (𝑠𝑡 , 𝑎𝑡)

)
2

(9.6)

where the integral is taken with respect to the distribution of the next state 𝑠′.
Ideally speaking, if ∇\B = 0 for every state action pair (𝑠, 𝑎), then the model has

converged. This seems to depend on learning the kernel transition 𝑝\ (𝑠′|𝑠, 𝑎) such
that:

𝑝 (𝑠
′|𝑠, 𝑎) ≈ 𝑝 (𝑠′|𝑠, 𝑎;\)

= 𝑝

(
𝑠′|𝑠, arg max

𝑎

𝑄 (𝑠, 𝑎;\)
)

(9.7)

In other words, updating \ will alter the estimate of the transition kernel. How-

ever, this is not the only parameter that influences the estimation. Next, I show

how the environment variables can influence the kernel transition estimation.

Let us consider the centralized solution. A state 𝑠 is defined by the position of

the speaker 𝑥src and the position of the microphones 𝑥𝑀 . The speaker position 𝑥src

does not depend on the microphone positions 𝑥𝑀 , but vice versa, they do. Hence,

Equation (9.7) becomes:

𝑝 (𝑠′|𝑠, 𝑎) = 𝑝 (𝑥′
src
, 𝑥′𝑀 |𝑥src, 𝑥𝑀 , 𝑎)

= 𝑝 (𝑥′
src
|𝑥src)𝑝 (𝑥′𝑀 |𝑥src, 𝑥𝑀 , 𝑎) (9.8)

I assume that the speakers are inside a square room, with dimension 𝑧 × 𝑧 (Fig-
ure 9.17). The initial position of the speaker is assumed to be a random variable that

is uniformly distributed across the room. Then, its position changes in accordance

to the following transition probability (within an area of 4𝑣2

src
):

𝑝 (𝑥′
src
|𝑥src) =

{
∥𝑥′

src
∥2

(
[

4𝑡2𝑣2

src

+ 1−[
𝑧2

)
, ∥𝑥′

src
− 𝑥src∥2 <

√
2𝑡𝑣src

∥𝑥 ′
src
∥2

𝑧2
, otherwise

(9.9)

where [is the probability that the same speaker is talking. In simple words, if the

distance between the new position of the speaker 𝑥′
src

and the old one 𝑥src is less than

the distance that a speaker moves within 1 time step, i.e., 𝑣src, then two cases are

possible. First, the same speaker is talking and has moved with average speed 𝑣src

170

Theoretical Discussion Section 9.6

2

2

Figure 9.17: Depicting the attributes for the environment. In this example, 𝑥src and 𝑥
′
src

are the positions of two different speakers, because the distance between them is bigger

than 𝑣src

in either horizontal, vertical or diagonal directions, i.e., 𝑝 (𝑥′
src
|same src) =

∥𝑥 ′
src
∥2

4𝑡2𝑣2

src

.

Second, this is the position of a new speaker, which is uniformly distributed inside

the room, i.e., 𝑝 (𝑥′
src
|new src) =

∥𝑥 ′
src
∥2

𝑧2
. If there is a counter 𝜔 (𝑡) that resets each

time a new speaker starts talking, then [is

[(𝑡) = 𝑝 (𝜏 > 𝜔 (𝑡)) (9.10)

Hence, I have shown theoretically how the room dimensions, speaker’s speed

and talking time (Equation (9.9) and Equation (9.10)) impact the behavior of the

trained model; the bigger the room is, the slower the training convergence is and

probably the performance of RL will decrease, while the faster the vehicle is, the

faster is the convergence and the better the performance is. Consequently, and

without loss of generality, the system dynamics characterize the behavior of the

training process. A takeaway message is, for short talk duration Equation (9.10)

and slow speed Equation (9.9), learning the best policy becomes very hard for the

RL agent. As an example, I have shown empirically how the relative speed of the

autonomous vehicle, with respect to the speaker’s speed, impacts the training phase

(Section 9.5.4).

Furthermore, from Equation (2.5), the discount factor 𝛾 is another parameter that

influences the converged RL policy. Indeed, 𝛾 is tightly related to the talking time

𝜏 and defines the scope over which the agent maximizes the rewards. To explain

171

Chapter 9 Movement Selection in Dynamic Environment

more in detail, I define the discounted reward 𝐺 (𝑡) as

𝑅(𝑡) =
∞∑
𝑘=0

𝛾𝑘𝑟 (𝑡 + 𝑘), (9.11)

then relate it to the time horizon 𝜏 , so that

𝑅(𝑡) =
∞∑
𝑘=0

𝑒
−𝑘
𝜏 𝑟 (𝑡 + 𝑘) (9.12)

where 𝛾 = 𝑒
−1

𝜏 . When 𝑘 ≥ 𝜏 , the contributions of future rewards decreases expo-
nentially. By picking 𝜏 = ∞ =⇒ 𝛾 = 1, I model a system with only one speaker

speaking all the time. When 𝜏 ≈ 0 =⇒ 𝛾 ≈ 0, I model a system where there are

multiple speakers, each speaking for a very short duration, so that the objective is

to maximize the reward for this short duration. Consequently, the discount factor

should be carefully selected with respect to the talking time, e.g., close to 𝑒
−1

𝜏 ;

otherwise, the RL solution will converge to a sub-optimal one.

9.6.2 Heuristic Sub-optimality

When considering the joint reward model, the proposed heuristic is indeed equiva-

lent to solving a Markov decision problem associated with the discounted reward

problem with a discount factor of 𝛾 = 1. This explains the similarity in the perfor-

mances of the heuristic and the RL model in Figure 9.7. To elaborate more, let us

substitute in Equation (9.11) 𝛾 = 0, then the discounted return 𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡).
Hence, in Q-learning, I end up picking actions that maximize the rewards, i.e.,

argmax

𝑎

𝑟 (𝑠, 𝑎). This is also, roughly speaking, the strategy of the heuristic baseline,

which moves all microphones towards the speaker, regardless how long the speaker

has been talking.

Another takeaway to consider if the heauritic will be used, as the values of 𝜏

and 𝑣src decrease, the speakers’ positions will start bouncing inside the room (e.g.,

seminar rooms where alternating speakers normally do not change their places).

This would obviously result in a poor performance using the heuristic solution.

Meanwhile, the RL solution is generic and can be retrained and adapted to the

changes in the environment.

172

Summary Section 9.7

9.7 Summary

I showed in this chapter how autonomous vehicles improve data acquisition in

wireless sensor networks, where the results are supported by simulations and

theoretical discussions. I compared the performance of RL-controlled autonomous

vehicles to current solutions (called baselines) as well as a heuristic one to show

that the proposed solution achieves very good performance and more flexibility.I

showed via theoretical analysis how the parameters in a dynamic environment

(such as 𝑣src, 𝜏 and room dimensions impact the RL behavior.

The centralized RL solution is not scalable. Hence, I propose two multi-agent RL

solutions with two different policies. One common property for these formulations

is that each agent takes an action independent of the actions taken by other agents.

This will avoid the need for frequent exchange of information between the agents,

resulting in a quick decision making for moving the vehicles. The multi-agent

solutions rely on partial information of current states while the action space per

agent is the same for any number of nodes. Therefore, their performances are

slightly lower than the centralized solution, which is the price they pay to easily

upscale for different number of vehicles.

Both multi-agent policies scale with respect to the number of vehicles, but

each has its own advantages with respect to the specific application and available

resources. On the one hand, the shared policy provides a generic model that can be

used by any node in the network. Hence, newly joining nodes can use the same

trained model and improve their performance over time. This requires, however,

sharing experience from all other nodes, which yields two problems. First, it raises

privacy concerns since experiences will be visible to other agents. Second, it will

not allow online learning since all experiences need to be shared on one central

server, processed and then update the trained model. The fact that there is a round

trip between the agent and the central server (sending training data and receiving

a new model) will slow down training process due to the communication delay.

Note that the communication delay for sending the trained data is different from

the transmission time for streaming the data.

On the other hand, the separate policy learns using its own experience with

no need of sharing experience with other nodes. Hence, it is easier to use for

online learning without privacy concerns. A challenge here is that the learned

models could be asymmetric, meaning that each agent learns to be task-specific.

The problem then appears when a new agent (i.e., a new vehicle) joins the network,

what is the new agent’s model? Training the model from scratch is impractical

because it may take long time for each agent to find its new task. Accordingly, this

173

Chapter 9 Movement Selection in Dynamic Environment

might introduce instabilities in the performance of the multi-agent solution during

the training phase, when switching from the old tasks to the new ones.

174

Part IV

Proof of Concept

Chapter 9

The previous parts were solely based on simulations. Hereafter, a test-bed (hard-

ware+software) [Afi+18] is proposed that inherits some of the properties of Part II.

I focus here on the software framework and its architecture. The framework allo-

cate jobs to raspberry pi nodes, where the jobs could be python modules or any

executables. An additional feature is supporting fail-over mechanism when nodes

are no more reachable due to hardware or network problems.

The framework is used then with different acoustic applications such microphone

synchronization, scene analysis and privacy applications. The main objective is to

show that it is possible to run these applications locally using in-network processing

without relying on third parties or a cloud server. Evaluating these applications’

algorithms is out of scope of this work. The framework can be used for any other

application and not solely acoustic applications.

177

10 Framework for In-
network Processing

The current progress in hardware development of embedded devices offers more

performance at reduced costs. Example are neural network-empowering chips, like

the Tensor Processing Units (TPUs) from Google or the Bionic SoCs from Apple,

which enable the local processing of large neural networks on embedded devices.

Recall from Part II that there are multiple advantages of processing the data

on local devices rather than transferring them to a cloud. But since these devices

may not be powerful enough to run the whole processing on a single device,

the processing is divided into multiple jobs and a device processes one or more

jobs. Previous chapters have dealt with algorithmic questions how to decide such

divisions. But doing that practically is still a challenge.

In this chapter, I provide the prototype of a framework – called “MARVELO”

– that deals with such practical concerns. In particular, it allocates and executes

jobs to and on nodes (i.e., the embedded devices). I assume that an application is

implemented in a block-oriented fashion (e.g., [Sch+17a]), as is common practice for

many online acoustic signal processing algorithms. These blocks, which from now

on will be called jobs, represent parts of the application with standard operations,

e.g., a Fast Fourier Transform (FFT), or even bigger algorithm parts like a gradient

descent filter update. Hence, I look now at placing the jobs across the networking

nodes.

The “MARVELO” framework does not split an application into jobs, so that the

degree of freedom is defined by the given jobs. Therefore, all jobs are recommended

to be kept as small as possible. “MARVELO” combines the concepts of two systems:

distributed computing [Ng+20] and routing. When focusing on wireless distributed

computing [AM06; Dat+12], such systems consider distributing jobs and servers

and collecting their outputs. Hence, there is no interaction between the servers.

Recent examples of such systems are DreamLab [Vod] and Folding@home [Gre],

where they use the idle processing of embedded devices (e.g., smart devices) to help

analyse and process complex data.

The routing concept is adopted from Software Defined Network (SDN); it relies

on a controller (a.k.a client), which receives all networking updates (e.g., bandwidth

utilization) from the networking nodes, then, it client builds a forwarding table

and sends it to the nodes. The nodes use the routing table for data forwarding.

SDN has been introduced to WSN in Sensor OpenFlow [LTQ12], Software Defined

179

Chapter 10 Framework for In-network Processing

Wireless Networks (SDWN) [Cos+12] and TinySDN [OMG14]. However, they were

all limited to the routing functionalities and, unlike my framework, they do not

support job placement.

More closely related to MARVELO, there have also been some ideas on using

job distribution in WSN. PixieOS [Lor+08] collects information about the available

resources at each node and allocates jobs accordingly. Apple has also proposed a

patent [VL16] where some jobs (e.g., recording) can be activated or deactivated

at nodes (mainly smart devices) in an infrared network. Nevertheless, they are

concerned only with job distribution of independent jobs and do not consider the

jobs to be interconnected or cooperating.

SDN-WISE [Gal+15] is an operating system framework that combines the SDN

and job distribution concepts. It focuses, however, on networking applications (e.g.,

firewalls or proxies) and considers routing only for auto-configuration purposes.

10.1 Framework Overview
MARVELO framework combines the concepts of SDN and job distribution, so

that it jointly considers job placement and routing. Moreover, it supports various

types of applications and is not limited to networking ones. I focus here on WASN

applications as a case study.

But first, I describe here the framework architecture and briefly show in Sec-

tion 10.2 how to use it.

Client

Nodes

Jobs

Pipes

Figure 10.1: Framework Architecture

The framework follows a client-server architecture (Figure 10.1). A client requests

the execution of application jobs from one or multiple servers. The client role is

180

Framework Overview Section 10.1

hosted either on one of the wireless nodes or other external devices that are still

connected to the network (e.g., a gateway or a cloud host). Meanwhile, the server
role runs on the wireless nodes inside the network. Note that the implementation

allows the server to run on nodes outside the network, but this property was not

used in my work. The aim is to run an application (from the client) on one or more

servers.

10.1.1 Client

The client role is responsible for placing the jobs and sending their dependencies

(e.g., files and packages) to the servers. In principle, it has the application graph

and an overview of the network status. The decision on which node to run which

job can be taken by the client or manually given. Additionally, it collects log files

for debugging purposes and controls the life-cycle (e.g., start, stop and restart) of

the jobs. Furthermore, it builds the routing table (via BATMAN [Fre]), but the routes

can also be manually given on the application level, if desired.

10.1.2 Server

The server role is given to the nodes that run one or more jobs, depending on

the computation capacity and the client’s decision. A server also keeps the client

up-to-date with the status of running jobs (e.g., running or dead) as well as the

status of the node itself (e.g., available CPU percentage, memory and disk space).

Idle servers (i.e., not running any jobs) keep sending keep-alive messages to inform

the client about their availability. This is useful in particular in case of fail-over.

10.1.3 Jobs

A job is a part of the application as defined in Part II. It can be any executable and

is not restricted to a specific programming language. The job profile, such as CPU

and memory usage, should be given to the client. Otherwise, default values are

used for deciding job placement. Alternatively, a job can be given a default server

to run on.

10.1.4 Pipes

For two jobs to exchange the output between each other, they need some form

of interprocess communication. MARVELO uses Linux named pipes to do so.

181

Chapter 10 Framework for In-network Processing

Compared to other inter-processing communication alternatives [Din20], named

pipes are faster and allow data exchange between different devices.

Here, pipes are data communication channels between jobs, where is the com-

munication is assumed to be simple enough to use raw binary bytes. Additionally,

“MARVELO” supports custom Pipes, so that not only can the data types be bytes,

but data can be objects such as JavaScript Object Notation (JSON) and Pickle. Note

that Pickles are only supported for Python-based jobs.

10.2 Implementation
The MARVELO framework is implemented with “dispy", a framework for executing

multiple jobs in parallel across one or many machines. The main objective of dispy
is to execute a job with different datasets independently with no communication
among jobs. In MARVELO, we additional need communication between jobs and

have to add it. Furthermore, extending dispy further, the framework mixes both

parallel and sequential computations, i.e., allowing pipeline computations, and

not only parallel ones. In the following, I highlight the most commonly used

components and their features [Afi].

10.2.1 Attributes and Features
The implementation is based on three main classes: Job, Node and Pipe. A Job has

three main attributes: GROUPS, DEFAULT_NODE and MAX_QUEUE. GROUPS,

which is also used by Node, is a string (or a list of strings) that acts as a tag to

group jobs with common requirements. For example, jobs that needs microphones

can have a tag GROUPS = “microphone”. Similarly, nodes that are equipped with

a microphone, have GROUPS = “microphone”. A job can have multiple tags and

hence belong to multiple groups, e.g., GROUPS = [“microphone”, “camera”]. By
default, all jobs and nodes have GROUPS = “ALL”, i.e., any Job can run on any

Node.

Note that a job normally runs on a server node, but if there is a need to explicitly

run a job on a client, there is a LocalJob class, which inherits all properties of Job,

except that it can only run on the client. Such jobs may be useful for analysing data

from other jobs or sending feedbacks.

DEFAULT_NODE is a string attribute that defines the IP address or the hostname

of the node (i.e., server) that should be running the job. If this server is not reachable

or does not have enough resources, the client will look for other nodes within the

job’s GROUPS.

182

Implementation Section 10.2

MAX_QUEUE is an integer that keeps the most recent MAX_QUEUE input data

(depending on the input data size) and delete old ones if the queue is full. It is

optional and does not have to be used.

There are other optional Job attributes such as DEPENDENCIES and HEAD. The

former is a string (or a list of strings) to point to the path (or paths) of files and

packages that a job needs to run. For example, it could be an audio file that a

job will load and process, or a neural network model that a job will load to infer

some data. HEAD is a Boolean attribute; if it is True, it adds 8 bits (acting as

flags) to the data to describe its status. It contains the following flags in this order:

[Corrupted, Reset, Finished, Free, Free, Free, Free, Free]

• Corrupted marks a Dummy packet or a packet that resulted from a corrupted

packet. A job can use such information to handle the packet in a special way

or just drop it.

• Reset marks the sequence number is restarting at 0. It only can be set on a

source node. It is helpful when a new source of data (e.g., a microphone) is

selected; the sequence number is reset.

• Finished marks the packet to be the last one being processed, then the job

will be shut down.

• Free flags can be set individually, e.g. for a job, if it need some extra flags.

Pipe has an important attribute, BLOCK_COUNT. It is an integer that defines the

number of outputs that need to be buffered from the sending job before forwarding

them to the receiving job. The default value is BLOCK_COUNT = 1. For example,

if a job’s output is 8 bytes and BLOCK_COUNT = 2, then 16 bytes will be buffered

before sending the data. Note that in case of custom pipes (e.g., JSON and Pickle), 2

objects will be buffered before sending the data.

10.2.2 Job Placement and Redistribution

There are two options for job placement. If the job profiles (e.g., CPU and memory

usage) as well as the data rate requirement between the jobs are given, methods

discussed in Part II are used for generating a configuration file with job placement

(i.e., GROUPS and DEFAULT_NODE). Otherwise, and this is the default option,

default resource requirements are used (hard-coded in the framework) and the jobs

are placed accordingly.

183

Chapter 10 Framework for In-network Processing

In case of node failures, jobs running on the failed nodes will fail-over to other

available nodes within the same GROUPS. Selecting these nodes depends on avail-

able resources and the wireless link status between the possible new nodes and the

old one running the other jobs. In case of wireless link failures (e.g., obstacles be-

tween nodes), the BATMAN routing protocols is used to find alternative routes [Fre].

Note that initial placement, when all network information is given, does not use

BATMAN for routing decisions; these decisions are made by MARVELO, i.e., the

optimization problems in Chapter 3.

10.2.3 Job Synchronization

For in-network processing, we need to share the pipe’s state among all jobs, so that

they can react accordingly. For example, if a packet is lost, not only does the next

job, but all other next jobs need to know this information. This can be checked

via a sequence number. Nevertheless, if the source job (e.g., microphone) has been

restarted (or newly selected), the sequence number will be reset, so other jobs need

to know this information as well.

In this context, a synchronization wrapper is built around each job on a node.

This wrapper consists of two parts, SQN-Check dealing with the input data of a job

and Head-Check dealing with the output data of the job (Figure 10.2). This wrapper

can be deactivated (default).

The SQN-Checker checks the sequence numbers (SQN) and headers of the job’s

incoming data. In the case of a missing Block (i.e., SQN is higher than expected),
a Dummy Block is created, either by creating a packet filled with zeros or reusing

the data from the last packet. Selecting between both options is defined by setting

the attribute mode. The actual packet is buffered until the SQN matches again, i.e.,

until the receiving and sending jobs have the same SQN. Here I chose to generate

dummy packets instead of resending the packets, since the latter imposes longer

delays (via acknowledgements and timeouts), which are not desirable for real-time

applications.

If the SQN is smaller than expected and the reset flag is not set in HEAD, the

packet is dropped. If the reset = True, the SQN will reset.

Head-Check has one main role, increment the SQN of outgoing packets. An

additional role, which is exclusive to source jobs (i.e., the first jobs in the application

graph), is to set the reset flag to True. This is useful in case of failover of source

jobs. Then, the SQN needs to be reset since the source job will start from 1 while

all other jobs already have high SQN. Otherwise, all packets from the source job

will be dropped until SQN of the source job matches that of the others.

184

Show Cases Section 10.3

Figure 10.2: Visualization of the synchronization wrapper.

10.3 Show Cases

The framework has been seen in action in a show-and-tell special session at the

Information Technology Society Conference for Speech Communication in Old-

enburg, Germany (2018) and at the International Workshop on Acoustic Signal

Enhancement (IWAENC 2022) conference in Bamberg, Germany. Here, I describe

briefly the applications as well as the features that were used from the framework.

10.3.1 Job Distribution

The following applications have been used as a proof of concept of the framework

functionality and usability. Themain focus here is the capability of using in-network

processing, while my main role in all of the following was setting up the network

and assisting my colleagues with troubleshooting.

Scene Classification

The details behind the scene classification implementation [JA22] have been dis-

cussed in [Ebb+18]. There are mainly two objectives of this application. First, sound

recognition (e.g., speech or music) for the input audio signal. Second, it provides

starting and ending times for each recognized sound. Moreover, it supports poly-

185

Chapter 10 Framework for In-network Processing

phonic sound, e.g., it detects multiple events (e.g., clapping and whistling) at the

same time.

AudioRecordingJob 1 MelFeatureJob 2101 SEDJob 3102 MonitoringJob 4103

Figure 10.3: Sound event detection graph [Ebb+18] generated by the framework

In Figure 10.3, I show the application graph developed by Janek Ebbers [JA22], yet

visualized by the my framework. The application consists of 4 jobs: AudioRecord-
ingJob is used for streaming audio data from the microphones. MelFeatureJob
extracts audio features and forward them to SEDJob for sound event detection. The
output is then visualized via the MonitoringJob.

Privacy Preserving Audio Classification

The audio features used for scene classification may also carry a significant amount

of speaker-dependent data, which compromises the speaker’s privacy andmakes the

system vulnerable to speaker recognition attacks. Hence, the work in [Ale22; NM21]

introduces a variational information feature extraction scheme that allows sound

classification while minimizing the feature representation’s level of information

that is needed for speaker recognition.

Figure 10.4 shows the privacy application graph developed by Alexander Nelus.

MicGenerator is a job that can either collect audio data from the microphone or

forwarded previously recorded audio data. The FeautureExtractionJob is respon-
sible for the variational feature extraction and forward the output to the scene

classification job (TrustJob) and the speaker recognition attacker (ThreatJob).

Coherence Drift Based Sampling Rate Synchronization

When collection audio data from multiple microphones, there is the challenge

of having different sampling clocks between the microphones. This yields many

problem such as the illusion of have a moving audio source. To overcome this

problem, this demo uses an algorithm [GSH21] as well as a hardware [Afi+18] that

were developed by my colleagues, which can control the sampling frequency of the

microphones.

The application graph of the algorithm is shown in Figure 10.5. AudioSourceJob is
running on two nodes: one with a normal microphone and the other can control the

186

Show Cases Section 10.3

MicGenerator 1 FeatureExtractionJob 21

TrustJob 3

2

ThreatJob 4

3

Figure 10.4: Privacy preserving graph [NM21] generated by the framework

sampling rate via HWFreqChangeJob. The audio data is processed by CoarseSyncJob
and its output is forwarded to SROJob and DelayJob to estimate the SRO and delay

between audio data, respectively. MonitoringJob is used to visualize the SRO and

delay in real time.

[GSH21]

10.3.2 Failover in Wireless Distributed Computing

Failover in wIreleSS dIstributed cOmputiNg (Fission), which means division or

splitting into two or more parts, is an ad-on property to the framework that allows

failover of a job from one node to another Section 10.2.2. This is useful in particular

187

Chapter 10 Framework for In-network Processing

AudioSourceJob 1

CoarseSyncJob 3

101
201

HWFreqChangeJob 7

203

AudioSourceJob 2

102 202

204

SROJob 4

103
105 107

DelayJob 5

104
106 108

MonitoringJob 6

109

111

110

Figure 10.5: SRO estimation graph [GSH21] generated by the framework

when a node leaves the network (e.g., a node failure or a smart phone leaves the

room).

Fission has been successfully shown in a live demo with Section 10.3.1 and

Section 10.3.1 demos, where a node fails (i.e., restarting a node running one or

more jobs) and other node(s) takes/take over. Demo [TA22] presents a unique

fail-over feature; when a microphone is dead, another microphone is selected and

the application is still able to synchronize the sampling frequency with the new

microphone. As a take away message, Fission is a generic framework that can

work with different applications having different properties (e.g., interacting with

hardware). My main contribution here was developing the framework but not the

acoustic applications themselves.

188

11 Case Studies

Use cases were used as examples of application with different functions that can use

my framework smoothly. Here, I use case studies to select a couple of applications

to study delay of in-network processing. Although I claim that executing jobs

distributed on multiple nodes can be faster than just forwarding the raw data and

processing it on a single node, these jobs need to be carefully distributed without

over-utilizing any node or the wireless network. Otherwise, the (processing and/or

communication) delays could be higher or the throughput might be inadequate

than what would be the case by just forwarding the data and processing it re-

motely [Afi+18]. Here, I use the framework to evaluate the end-to-end delay of

acoustic applications in different distribution scenarios.

One of the major contributors of the total delay is the wireless network topology.

The most common topology nowadays is the star topology; nodes are connected to

an Access Point (AP) and the communication between any two nodes goes via the

AP. In contrast to the star topology, a mesh topology allows direct communication

between the nodes without relying on an AP.

In any of these topologies, there are multiple sources of delay, especially when

it comes to in-network processing. From the literature, key aspects are the chan-

nel access delay [AYY02; RLH15], the processing delay [Afi+18; Gon20] and the

transmission delay [WSM08].

Without loss of generality, I explain in Figure 11.1 the sources of delay and how

they relate to end-to-end delay in in-network processing. I assume that there are

3 wireless nodes: Node X, Node Y and a Gateway, where Node X and Node Y

are running Job A and Job B, respectively. Furthermore, I assume that the output

from Job A needs to be processed by Job B, whose output is forwarded to the

gateway. The processing delay of a job (black region) is the time needed by a node

to finish processing this job. It depends on the job’s complexity and the processing

capabilities per node. After processing the first packet at Node X, the output is

forwarded to Node Y.

Transmission delay between nodes X and Y is the time needed to transmit the

packet from Job A (gray region) to Job B. There are two main factors that affect the

transmission delay: wireless channel condition [Che+09] (influencing data rate and

the required number of retransmissions for a packet) and routing (influencing inter-

ference from neighboring transmissions and not the multi-hop itself). The authors

189

Chapter 11 Case Studies

1

1

1

1

2

2

2

2

Processing

Transmission

Channel
accessEnd-to-end

Job A
on Node X

Job B
on Node Y

Gateway

Packet interarrival

Figure 11.1: A snapshot of delays in wireless in-network processing.

in [WSM08] considered a single-hop network for data transmission, assuming that

all nodes are in mutual communication range. Meanwhile, the work on multi-hop

delay estimation has been theoretically and analytically studied in [CS15; Kan+20],

but there are no experimental studies, especially that encompass transmission and

processing delays for acoustic applications in the context of in-network processing.

After processing the second packet at Node X, the node cannot directly send to

Node Y, since the channel is not yet free. This is an example of channel access delay,

where a node has to wait because the wireless channel is busy (Node Y utilizes the

channel to send to the Gateway) and the receiver cannot be sending and receiving at

the same time (duplex constraints). Another type of delay is the packet inter-arrival

delay, where the first Job needs to wait for receiving the next Packet for processing.

In acoustic applications, this can be controlled using the microphone’s sampling

rate, which control the time needed creating samples that are then encapsulated in

a packet. Last but not least, end-to-end delay is the aggregation of all previously

mentioned delays, i.e., the delay starting from processing a packet at the first job

till receiving its processed output from the last job at the gateway.

Here, I strive to close the gap between theory and practice: I empirically eval-

uate the end-to-end delay of different acoustic applications using the framework

and compare it to centralized processing. Consequently, there are in total three

different scenarios (Figure 11.2). First, centralized processing, where the raw data

190

System Model Section 11.1

(a) Centralized processing with AP topology. (b) Distributed processing with mesh topology.

(c) Distributed processing with AP topology.

Figure 11.2: Examples of application processing

is forwarded to a centralized server for processing. Second, a mesh-distributed

scenario, where jobs are distributed among nodes for processing and the nodes can

directly communicate with each other. Finally, an AP-distributed setup where jobs

are again distributed among nodes but they communicate with each other via an

AP (Figure 11.2).

11.1 System Model
I describe here examples for typical acoustic applications suitable for in-network

processing deployment. I choose two exemplary acoustic applications for experi-

mentation, where each application has a different application graph with different

computation requirements: Cocktail Party for speaker separation (Section 11.1.1)

and Double-cross-Correlation Processor (DXCP) for microphone synchronization

(Section 11.1.2).

11.1.1 Cocktail Party Application
In a room with multiple speakers 𝑠 ∈ 𝑆 who may talk at the same time, there

are several microphones 𝑝 ∈ 𝑃 collecting the combined audio signals from these

191

Chapter 11 Case Studies

speakers, known as 𝑋 . The aim is to separate these mixed signals into the original

source signals, represented by 𝑠𝑝 ∈ 𝑆, ∀𝑝 ∈ 𝑃 . In other words, we need to

reconstruct the individual source signals from the observed mixed signals. To

achieve this, the process of separating the signals employs the ICA [Car89] method.

Here we have three assumptions: 1) the mixed signals are a combination of the

original signals, 2) the original signals are independent, and 3) the original signals

are not Gaussian.

The process involves estimating the |𝑃 | × |𝑃 | matrix 𝑨, a mixing matrix that

represents the acoustic properties of the environment, and the source signals 𝑆

from the mixed signals 𝑋 , where 𝑋 = 𝑨𝑆 . A set of four jobs (Cov1, Whitening, norm
and Cov2 as shown in Figure 11.3 (a)) are carried out to achieve this, starting with

defining job Cov1 as cov(𝑋) = 𝑥𝑥𝑇 = 𝑈𝜎2𝑈𝑇 . This can be rewritten as 𝑥𝑥𝑇 = 𝐸𝐷𝐸𝑇

where 𝐸 is the eigenvector and 𝐷 is a diagonal matrix of the eigenvalues. Then, job

whitening whitens the data so that 𝑋𝑤 = (𝐷 −1

2 𝐸𝑇)𝑋
This result is then fed into the norm job, where vector normalization is applied,

resulting in 𝑋𝑛 .

Next in job cov2, we calculate the cov(𝑋𝑛𝑋𝑤) and calculate its eigenvector 𝐵.

Finally, the source signals are estimated as 𝑆′ = 𝐵𝑋𝑤 . These four jobs will be

executed in a wireless distributed computing environment.

11.1.2 Synchronization
In WASN, the microphones have their own sampling clock, however, when the

clocks are not synchronize, it will degrade the performance of acoustic applications.

I consider DXCP[CTE19] for estimating the sampling rate offset between different

microphones, which can then be used to adjust the sampling clock [Afi+18] or to

compensate for their synchronization error in further acoustic processing. DXCP

applies only under the assumption that sampling rate offset is time-invariant.

The DXCP application can be divided into two main jobs (Figure 11.3 (b)): cross-

correlation and parabolic interpolation. The former is used to estimate the accumu-

lated time delay between two (time-framed) signals. The output is then forwarded

to the latter that uses a second-order polynomial interpolation to find the maximum

lag and estimate the sampling rate offset.

11.2 Experiment Setup
The wireless network consists of 4 Raspberry Pi nodes (each supported with 4

CPU’s) and one access point, whose MAC follows IEEE 802.11 MAC standard. I run

192

Experiment Setup Section 11.2

(a) ICA processing jobs.

X-Correlation Interpolation

(b) DXCP processing jobs.

Figure 11.3: Examples of acoustic applications.

Node 4Node 1

Node 2

Node 3

Cov 1

Whitening

norm

Cov 2

(a) Centralized.

Node 4Node 1

Node 2

Node 3

Cov 1

Whitening norm

Cov 2

(b)Mesh-distributed.

Access Point

Node 4Node 1

Node 2

Node 3

Cov1

Whitening norm

Cov2

(c) AP-distributed.

Figure 11.4: Cocktail party distribution.

193

Chapter 11 Case Studies

Node 4Node 1

Node 2

Node 3

X-Correlation

Interpolate

(a) Centralized.

Node 1

Node 2

Node 3

X-Correlation

Node 4

Interpolate

(b)Mesh-distributed.

Node 1

Node 2

Node 3

X-Correlation

Node 4

Interpolate

Access Point

(c) AP-distributed.

Figure 11.5: Synchronization distribution.

6 experiments: two applications (cocktail-party and synchronization applications)

running in three different topologies:

• centralized: all jobs run at a central server while the network operates in

an ad hoc mode. I define a two-hop route where data need to be forwarded

by an intermediate node before reaching the central server (Figure 11.5 (a)

and Figure 11.4 (a)).

• mesh-distributed: jobs are distributed among nodes while the network

operates in an adhoc mode. In this case, the intermediate node can process

the data instead of just forwarding it (Figure 11.5 (b) and Figure 11.4 (b)).

• AP-distributed: jobs are distributed the same way as inmesh-distributed sce-
nario , but the nodes communicate via AP (Figure 11.5 (c) and Figure 11.4 (c)).

I run the centralized scenario in an ad hoc mode because it allows to set a static

multi-hop routing over the nodes (e.g., Node 3 here) and not via the access point.

The reason of using multi-hop routing is to emulate the behavior when a node

cannot communicate directly with the access point. Therefore, Node 3 is only

forwarding the data from the microphones (Node 1 and Node 2) to Node 4 (acting

194

Results Section 11.3

as a central server). Although the nodes operate in the same collision domain,

the two-hop route is used to highlight the drawbacks of the centralized topology

compared to mesh-distributed.

The reason for selecting this distribution among nodes is to have fair distribution

of the computation power (i.e., not over-utilizing the nodes) and minimize the

transmission delay. Each experiment runs using a recorded audio of 170 seconds,

then data are collected for further analysis. The reason of using a recorded audio is

to have sanity checks; I make sure that the algorithmic output from each scenario

is the same per application. I do not change the position of the nodes between

scenarios to exclude the dependency on wireless channel conditions.

11.3 Results
I measure the network delay – defined as the aggregation of both transmission

and channel access delays (Figure 11.1) – between two jobs running on different

nodes for each experiment. In other words, network delay for a job 𝑇 is the time

from starting to send a packet from job 𝑇 ’s predecessor (or the microphone, if 𝑇

has no predecessor) to the time until that data has been completely received by 𝑇 .

Additionally, I measure the end-to-end delay for each experiment and observe the

relation between the transmission delay and end-to-end delay.

11.3.1 Wireless Network Delay
I show in Figure 11.6 two types of delay: network delay (as in centralized, mesh-
distributed and AP-distributed) and processing delay (represented by CPU-time).

For example, I show the network delay in the cocktail party application for Cov1
job as the average delay for receiving the data from the microphones (here the

recorded data) to Cov1, while the network delay for task norm is the average delay

for receiving the data from Whitening. In case of centralized processing, I look

only at the network delay of the first job, since the rest of the jobs are running

on the same node, i.e., they have no network delay (yet I will talk later about the

processing delay).

In the cocktail party application (Figure 11.7 (a)), I observe that the network delay

for Cov1 job with centralized processing is the highest compared to other delays.

This is expected since centralized processing requires forwarding the raw data from

the microphone over two hops. Although the data also go through two hops in the

AP-distributed scenario (since they need to go through the access point anyway),

the network delay is slightly lower than the centralized processing, which is due to

195

Chapter 11 Case Studies

Figure 11.6: Network delay for different Setups.

Cov1 norm Cov2

0

5

10

15

D
e
l
a
y
(
m
s
)

centralized mesh-distributed

AP-distributed CPU-time

(a) ICA network delay.

X-Corr interpolate

0

20

40

60

D
e
l
a
y
(
m
s
)

centralized mesh-distributed

AP-distributed CPU-time

(b) DXCP network delay.

196

Results Section 11.3

centralized mesh-distributed AP-distributed

20

30

40

De
la

y(
m

s)

(a) Cocktail party.

centralized mesh-distributed AP-distributed

50

100

150

De
la

y(
m

s)

(b) Synchronization.

Figure 11.8: Box plots for end-to-end delay.

the higher interference in mesh networks — interference management is distributed

over multiple nodes and not handled by one node as in AP. This also explains why

the norm job has similar network delay for mesh-distributed and AP-distributed

scenarios (same applies to Cov2). I highlight that the network delay for Cov2 is not
only due to transmission channel access delay from Whitening job, but also the

processing delay of norm job. This is seen in Figures 11.4 (b) and 11.4 (c), where

Cov2 has to wait for both the network delay whenWhitening finishes processing

till Node 4 received the packet and the processing delay from norm job running on

the same node.

I observe a similar behaviour in the synchronization application (Figure 11.7 (b));

the mesh-distributed topology has the lowest network delay when forwarding

recorded data to the first job, X-correlation) while having similar network delay to

AP-distributed for the interpolate job. In contrast to the cocktail party application,

I observe that the network delay for mesh-distributed topology is lower than the

processing delay for the X-correlation task. This may result in unwanted delays

from queuing (from previous jobs or high inter-arrival packet rate) or even packet

losses, but this discussion is left for future work.

11.3.2 End-to-End Delay
The sum of the delay per each scenario in Figure 11.6 shows that distributed pro-

cessing scenarios have more network delay than centralized scenarios. Meanwhile,

we do not sum up all network delays to calculate the end-to-end delay, thanks to

the pipeline execution; when a packet is being transmitted another packet/s is/are

being processed.

I show in Figure 11.8 the end-to-end delay for both the cocktail party (Fig-

ure 11.8 (a)) and synchronization (Figure 11.8 (b)) applications. I observe that the

median end-to-end delay of the cocktail party application is almost similar for all

197

Chapter 11 Case Studies

scenarios. This is probably due to the fact that the Cov1 job processes 𝑁 chunks of

audio signals to send a single output chunk (i.e., BLOCK_COUNT = N). Thus, the

waiting time of a job can be a bottleneck for the end-to-end delay (N:1 processing).

Nevertheless, the third quartile of the mesh-distributed scenario still has the lowest

delay.

In case of the synchronization application, the relation between the output and the

input data is 1:1. Hence, both the median and upper bound of the mesh-distributed

scenario are the lowest for all scenarios.

11.4 Conclusion
I showed that wireless in-network processing with mesh topology can achieve

lower network delay than the centralized and AP topologies. Meanwhile, the

lowest network delay setup does not necessarily have the lowest end-to-end delay,

since that also depends on the job processing delay. Yet, it is at least as low as

other setups. Additionally, mesh topologies need to be carefully designed since

interference avoidance is harder than the that of AP, whichwill increase the network

delay.

198

12 Conclusions & Outlook

In this chapter, I conclude the thesis by summarizing the key research outcomes in

relation to the research aims and questions, as well as the value and contribution

herein.

One of the aims in this thesis was to highlight the missing properties in regard

to managing distributed wireless network processing and whether their impact is

substantial. I considered these properties from three different aspects: wireless,

application-specific and application-generic.

The wireless aspects appear when nearby nodes share the bandwidth and op-

erate in the same collision domain, making them subject to collisions. Moreover,

being wireless adds other features such as power control and multi-casting. In

this context, I formulated optimization problems for distributed wireless network

processing while managing collisions. Compared to the related work, my solution

improves network reliability by decreasing the symbol error rate. I investigated

other features for distributed wireless processing, such as power control and multi-

casting, showing slight improvements in throughput but not as notable as collision

management.

The application-specific aspect comes from the acoustic application. Here, I did

exploit the synchronization feature of WASN to synchronize wireless transmissions;

it showed higher throughput compared to state of art, CSMA/CA.

Mobility is the application-generic aspect, which also fits well in wireless net-

works. Hence, I put it to use in autonomous vehicles, carrying microphones, for

streaming audio data. I compared such a scenario with stationary microphones and

carrying the microphones. Not only did it provide scalability, but it also showed

good (and in some cases better) quality compared to the other scenarios.

I evaluated these aspects, while considering the trade-off between the quality

of the collected information and the network performance, expressed as QoI and

QoS. To find the relation between both metrics, I studied the impact of selecting a

subset of microphones, which did not only show an improvement in the network

performance, but also in the acoustic one. Similarly, when distributing the acoustic

processing, some processing jobs can be dropped to improve, again, both acoustic

and network qualities. Although, it may be thought that both QoI and QoS are

inversely proportional, I showed that in some scenarios they may be actually

directly proportional.

199

Chapter 12 Conclusions & Outlook

To put ideas into practice, I developed a test-bed for managing wireless in-

network processing, while showing use cases for WASN. The framework adopts

some of the developed resource allocation approaches and was used with a couple

of case studies to show empirically that in-network processing is effective in terms

of latency.

I provided different problem formulations for networkmanagement, with varying

number of variables and constraints. Choosing the most suitable formulation

depends on the used solver; some solvers can find a solution faster with a few

number of variables or a few number of constraints. But in general, getting optimal

solutions for complex problems is time-consuming, hence, I proposed a heuristic

solution and derived its upper bound theoretically and showed empirically that it

achieves good results compared to the optimal solutions.

Furthermore, two meta-heuristic solutions were proposed. First, a GA that

improves its solution over time and second, an RL-based solution that finds a

feasible solution as fast as possible and then terminates. Typical use cases for these

approaches would be finding a solution within a due date using GA. If the due date

is extended, GA may be able to find a better solution. The RL solution can be used

in case of failover; given an invalid solution, RL finds a new solution with minimum

number of migrations (i.e., replacement).

I used the outcome of the study on QoI/QoS to design an RL solution for con-

trolling the movements of the autonomous vehicles. Comparing its performance

to a heuristic solution, the former showed a better quality. Moreover, I developed

a multi-agent solution that can learn faster and be more scalable, in case of con-

trolling many vehicles. Additionally, I showed theoretically and empirically how

environment properties impact the learning process.

Meanwhile, when there are multiple applications competing for the network

resources, it is important to decide which application to admit. Hence, I developed

an RL solution to control the admission based on revenue, priority or both. The

proposed solution then showed better results compared to a first-come-first-serve

protocol.

My contribution shows how to do in-network processing in wireless networks

from theory to practice, yet there is still room for improvement and further investi-

gations. For example, I studied job distribution while considering multiple wireless

features simultaneously, such as power control and multi-cast transmission. But

other features (e.g., mobility) were investigated separately. The reason I did that was

to simplify the problem without having high dimension of variables. Accordingly,

my work here is a first step that gives some insight into the gain of exploiting

all wireless features simultaneously. How much gain we can achieve is yet to be

studied.

200

Conclusions & Outlook Chapter

One of the advantages behind disturbing the jobs is energy-efficiency, yet I have

not study that in my thesis. I claim that processing the data before sending it, may

decrease the amount of the data need to be sent. Another claimed advantage is the

cost; exploiting the idle resources of smart devices lying around will decrease the

required resources to be rent. However, the energy cost of operating these devices

compared to renting the resources is yet to be investigated.

On one hand, I assumed that a subset of microphones is given when distributing

the acoustic processing inside the network. On the other hand, I look separately at

selecting the best subset of microphones to serve both QoI and QoS. Combining

both approaches is an interesting, yet more complex problem that I have not looked

into. Similarly, selecting a subset of microphones to move in autonomous vehicles

may have simplified the problem of vehicle control (but not the subset selection),

so that instead of controlling all microphones, a subset of microphones would be

selected that best serve QoI and QoS. In this case, hierarchical learning would have

been a good candidate [SPS99].

As seen in this thesis, calculating QoI is a complex process even just for acoustic

processing. For other multimedia applications, QoI may follow different, even more

complex calculations. An alternative approach, to hand craft the reward based on

QoI, is curiosity learning [Pat+17]; it is agnostic to the external reward, which is

QoI here. This is a natural follow up to my work since I use RL to solve many

problems in this thesis.

Last but not least, distributed processing in WASN is immature and needs to be

more motivated within the signal processing community. Here, I jointly worked

with my colleagues from four different fields of signal processing (privacy, synchro-

nization, feature extraction and scene analysis) to develop the required features

of the framework. Nevertheless, additional features may be required to further

simplify the deployment or the debugging of acoustic or any other application.

Hence, the framework can be further developed while spreading awareness of

in-networking processing.

201

Appendices

203

A CSMA/CA: Channel
vs. Node Throughput

Proof. When ignoring the propagation and inter-frame spacing delays in CSMA/CA,

the sending time 𝜏𝑠 and the collision time 𝜏𝑐 are the same. In other words, the time

needed to detect that there is collision is equal to the time needed to transmit a

packet; the acknowledgment time is neglected. Following from equation (6.2)

𝑆 =
𝑝tr𝑝𝑠𝐿

𝑝tr` + 𝜎
. (A.1)

=
𝑝𝑠𝐿

` + 𝐸 [𝐵]/𝑁 , (A.2)

where the average time of the channel being idle with 𝑁 nodes not transmitting

is due to the average back-off window given than the node wants to transmit

𝜎 = 𝑝tr𝐸 [𝐵]/𝑁 .

Now, let us consider the throughput 𝑥 per node [[LK13] – eq. 4] instead of that

per channel.

𝑥 =
𝐿

`

\

1 + 𝑁\ 𝑝𝑠 (A.3)

=
𝐿

𝑁` + 𝐸 [𝐵]𝑝𝑠, (A.4)

where \ =
`

𝐸 [𝐵] is the ratio between the Markov states of a node is sending and the

channel being idle. Alternatively, the node throughput is given by

𝑥 = 𝑆/𝑁 (A.5)

=
𝑝𝑠𝐿/𝑁

` + 𝑁𝐸 [𝐵]/𝑝tr

(A.6)

=
𝐿/𝑁

𝐸 [𝐵] + 𝑁`𝑝𝑠 (A.7)

= (A.2) (A.8)

■

205

12Bibliography

[02] IEEE Standard for Telecommunications and Information Exchange
Between Systems - LAN/MAN - SpecificRequirements - Part 15:Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications for Wireless Personal Area Networks (WPANs). IEEE Std
802.15.1-2002 (2002), 1–473. doi: 10.1109/IEEESTD.2002.93621 (see page 13).

[19] IEEE 802.11ac-2013. https://standards.ieee.org/standard/802_11ac-2013.html.

[Online; accessed 2019]. 2019 (see page 120).

[20] IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2020
(Revision of IEEE Std 802.15.4-2015) (2020), 1–800. doi: 10.1109/IEEESTD.2020.
9144691 (see page 13).

[21] IEEE Standard for InformationTechnology–Telecommunications and
Information Exchange between Systems - Local and Metropolitan
AreaNetworks–SpecificRequirements - Part 11:Wireless LANMedium
Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE
Std 802.11-2020 (Revision of IEEE Std 802.11-2016) (2021), 1–4379. doi: 10.1109/
IEEESTD.2021.9363693 (see pages 13, 15, 102, 125, 126, 128, 134, 143, 153,

154).

[AAK18] Haitham Afifi, Sébastien Auroux, and Holger Karl.MARVELO: Wireless
virtual network embedding for overlay graphs with loops. In: 2018
IEEE Wireless Communications and Networking Conference (WCNC). 2018,
1–6. doi: 10.1109/WCNC.2018.8377194 (see pages 8, 25, 30).

[Abd+16a] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati. Efficient Virtual
Network Embedding With Backtrack Avoidance for Dynamic Wire-
less Networks. IEEE Transactions on Wireless Communications 15:4 (Apr.

2016), 2669–2683. issn: 1536-1276. doi: 10.1109/TWC.2015.2507134 (see

page 29).

[Abd+16b] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati. Efficient Virtual
Network Embedding With Backtrack Avoidance for Dynamic Wire-
less Networks. IEEE Transactions on Wireless Communications 15:4 (Apr.

2016), 2669–2683. issn: 1536-1276 (see page 61).

207

https://doi.org/10.1109/IEEESTD.2002.93621
https://standards.ieee.org/standard/802_11ac-2013.html
https://doi.org/10.1109/IEEESTD.2020.9144691
https://doi.org/10.1109/IEEESTD.2020.9144691
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/WCNC.2018.8377194
https://doi.org/10.1109/TWC.2015.2507134

[ABZ20] RosaMa Alsina-Pagès, Patrizia Bellucci, and Giovanni Zambon. SmartWire-
less Acoustic Sensor Network Design for Noise Monitoring in Smart
Cities. Sensors 20:17 (2020). issn: 1424-8220. doi: 10.3390/s20174765. url:
https://www.mdpi.com/1424-8220/20/17/4765 (see page 12).

[Ach+17] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained
Policy Optimization. In: ed. by Doina Precup and Yee Whye Teh. Vol. 70.

Proceedings of Machine Learning Research. International Convention Centre,

Sydney, Australia: PMLR, June 2017, 22–31 (see page 20).

[Afi] Haitham Afifi. MARVELO Documentation. https://marvelo.readthedocs.io/

en/latest/. Accessed: 2022-12-10 (see pages 9, 182).

[Afi+18] Haitam Afifi, Joerg Schmalenstroeer, Joerg Ullmann, Reinhold Haeb-Umbach,

and Holger Karl. MARVELO - A Framework for Signal Processing in
Wireless Acoustic Sensor Networks. In: Speech Communication; 13th ITG-
Symposium. 2018, 1–5 (see pages 177, 186, 189, 192).

[Afi+21] Haitham Afifi, Michael Guenther, Andreas Brendel, Holger Karl, and Walter

Kellermann. Reinforcement Learning-based Microphone Selection in
Wireless Acoustic SensorNetworksConsideringNetwork andAcous-
tic Utilities. In: Speech Communication; 14th ITG Conference. 2021, 1–5 (see
pages 9, 115, 124, 139).

[Afi+22] HaithamAfifi, Holger Karl, Tobias Gburrek, and Joerg Schmalenstroeer.Data-
driven Time Synchronization in Wireless Multimedia Networks. In:
IWCMC 2022 Multimedia Symposium (IWCMC 2022 Multimedia). Dubrovnik,
Croatia, May 2022 (see pages 8, 26).

[AHK19] Haitham Afifi, Konrad Horbach, and Holger Karl. A Genetic Algorithm
Framework for SolvingWirelessVirtualNetworkEmbedding. In: 2019
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). 2019, 1–6. doi: 10.1109/WiMOB.2019.8923271 (see

pages 8, 25, 66).

[AK19a] Haitham Afifi and Holger Karl. An Approximate Power Control Algo-
rithm for a Multi-CastWireless Virtual Network Embedding. In: 2019
12th IFIP Wireless and Mobile Networking Conference (WMNC). 2019, 95–102.
doi: 10.23919/WMNC.2019.8881324 (see pages 8, 25, 50).

[AK19b] Haitham Afifi and Holger Karl. Power allocation with a wireless multi-
cast aware routing for virtual network embedding. In: 2019 16th IEEE
Annual Consumer Communications & Networking Conference (CCNC). IEEE.
2019, 1–4 (see pages 8, 25, 43).

208

https://doi.org/10.3390/s20174765
https://www.mdpi.com/1424-8220/20/17/4765
https://marvelo.readthedocs.io/en/latest/
https://marvelo.readthedocs.io/en/latest/
https://doi.org/10.1109/WiMOB.2019.8923271
https://doi.org/10.23919/WMNC.2019.8881324

[AK20] Haitham Afifi and Holger Karl.Reinforcement Learning for Virtual Net-
work Embedding in Wireless Sensor Networks. In: 2020 16th Interna-
tional Conference on Wireless and Mobile Computing, Networking and Commu-
nications (WiMob). 2020, 123–128. doi: 10.1109/WiMob50308.2020.9253442

(see pages 25, 74).

[Akb+19] Ayhan Akbas, Huseyin Ugur Yildiz, Ahmet Murat Ozbayoglu, and Bulent

Tavli. Neural network based instant parameter prediction for wire-
less sensor network optimization models.Wireless Networks 25:6 (Aug.
2019), 3405–3418. issn: 1572-8196. doi: 10.1007/s11276-018-1808-y (see

page 131).

[AKL16] Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Rein-
forcement Learning with Policy Sketches. CoRR abs/1611.01796 (2016).

arXiv: 1611.01796. url: http://arxiv.org/abs/1611.01796 (see page 165).

[AL21] Neziha Akalin and Amy Loutfi. Reinforcement Learning Approaches in Social
Robotics. 2021. arXiv: 2009.09689 (see pages 149, 151).

[Ale22] Haitham Afifi Alexander Nelus. Privacy-perversing Adversial Feature Ex-
traction in Speaker Classification Tasks (Demo at WASPAA 2021). 2022. url:
https://ruhr-uni-bochum.sciebo.de/s/flwOSPlsp6fYAKi (see pages 9, 186).

[AM06] Sanjay P. Ahuja and Jack R. Myers. A Survey on Wireless Grid Comput-
ing. The Journal of Supercomputing 37:1 (July 2006), 3–21. issn: 1573-0484.

doi: 10.1007/s11227-006-3845-z. url: https://doi.org/10.1007/s11227-006-

3845-z (see page 179).

[ARK21a] HaithamAfifi, Arunselvan Ramaswamy, andHolger Karl.AReinforcement
Learning QoI/QoS-Aware Approach in Acoustic Sensor Networks. In:
2021 IEEE 18th Annual Consumer Communications & Networking Conference
(CCNC). 2021, 1–6. doi: 10.1109/CCNC49032.2021.9369626 (see pages 115,
124, 131).

[ARK21b] Haitham Afifi, Arunselvan Ramaswamy, and Holger Karl. Reinforcement
Learning for Autonomous Vehicle Movements in Wireless Sensor
Networks. In: ICC 2021 - IEEE International Conference on Communications.
2021, 1–6. doi: 10.1109/ICC42927.2021.9500318 (see pages 9, 115, 152).

[ARK22] Haitham Afifi, Arunselvan Ramaswamy, and Holger Karl. Reinforcement
Learning for Autonomous Vehicle Movements in Wireless Multime-
dia Applications. In: Pervasive and Mobile Computing. submitted. 2022 (see

page 9).

209

https://doi.org/10.1109/WiMob50308.2020.9253442
https://doi.org/10.1007/s11276-018-1808-y
https://arxiv.org/abs/1611.01796
http://arxiv.org/abs/1611.01796
https://arxiv.org/abs/2009.09689
https://ruhr-uni-bochum.sciebo.de/s/flwOSPlsp6fYAKi
https://doi.org/10.1007/s11227-006-3845-z
https://doi.org/10.1007/s11227-006-3845-z
https://doi.org/10.1007/s11227-006-3845-z
https://doi.org/10.1109/CCNC49032.2021.9369626
https://doi.org/10.1109/ICC42927.2021.9500318

[ASK21] HaithamAfifi, Fabian Sauer, andHolger Karl.Reinforcement Learning for
Admission Control in Wireless Virtual Network Embedding. CoRR
abs/2110.01262 (2021). arXiv: 2110.01262. url: https://arxiv.org/abs/2110.

01262 (see pages 8, 25, 86).

[ASV15] Ram Bhushan Agnihotri, Ajay Vikram Singh, and Shekhar Verma. Chal-
lenges in wireless sensor networks with different performance met-
rics in routing protocols. In: 2015 4th International Conference on Relia-
bility, Infocom Technologies and Optimization (ICRITO) (Trends and Future
Directions). 2015, 1–5. doi: 10.1109/ICRITO.2015.7359295 (see page 123).

[AYY02] Khaled Arisha, Moustafa Youssef, and Mohamed Younis, 21–40. In: System-
Level Power Optimization for Wireless Multimedia Communication: Power
Aware Computing. Ed. by Ramesh Karri and David Goodman. Boston, MA:

Springer US, 2002. isbn: 978-0-306-47720-1. doi: 10.1007/0-306-47720-3_2

(see page 189).

[Bac10] Francis R. Bach. Convex Analysis and Optimization with Submodular
Functions: a Tutorial. CoRR abs/1010.4207 (2010). arXiv: 1010.4207. url:

http://arxiv.org/abs/1010.4207 (see page 124).

[BAD14] J. van de Belt, H. Ahmadi, and L. Doyle. A Dynamic Embedding Algo-
rithm for Wireless Network Virtualization (June 2014) (see page 29).

[BAD17] J. van de Belt, H. Ahmadi, and L. E. Doyle. Defining and Surveying Wire-
less Link Virtualization and Wireless Network Virtualization. IEEE
Communications Surveys Tutorials 19:3 (2017), 1603–1627. doi: 10 . 1109 /

COMST.2017.2704899 (see page 29).

[Bai95] Leemon Baird. “Residual Algorithms: Reinforcement Learning with Func-

tion Approximation.” In: Machine Learning Proceedings 1995. Ed. by Armand

Prieditis and Stuart Russell. San Francisco (CA): Morgan Kaufmann, 1995,

30–37. isbn: 978-1-55860-377-6. doi: https://doi.org/10.1016/B978-1-55860-

377-6.50013-X. url: https://www.sciencedirect.com/science/article/pii/

B978155860377650013X (see page 18).

[BAK04a] H. Buchner, R. Aichner, andW. Kellermann.TRINICON:A versatile frame-
work formultichannel blind signal processing. In: IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP). Montreal, Canada, May 2004 (see page 120).

[BAK04b] H. Buchner, R. Aichner, andW. Kellermann.TRINICON: a versatile frame-
work for multichannel blind signal processing. In: Proc. IEEE Intl. Conf.
Acoustics, Speech, and Signal Processing. Vol. 3. 2004, iii–889. doi: 10.1109/
ICASSP.2004.1326688 (see pages 12, 101).

210

https://arxiv.org/abs/2110.01262
https://arxiv.org/abs/2110.01262
https://arxiv.org/abs/2110.01262
https://doi.org/10.1109/ICRITO.2015.7359295
https://doi.org/10.1007/0-306-47720-3_2
https://arxiv.org/abs/1010.4207
http://arxiv.org/abs/1010.4207
https://doi.org/10.1109/COMST.2017.2704899
https://doi.org/10.1109/COMST.2017.2704899
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://www.sciencedirect.com/science/article/pii/B978155860377650013X
https://www.sciencedirect.com/science/article/pii/B978155860377650013X
https://doi.org/10.1109/ICASSP.2004.1326688
https://doi.org/10.1109/ICASSP.2004.1326688

[Ban+09] Yonghwan Bang, Jongpil Han, Kyusang Lee, Jongwon Yoon, Jinoo Joung,

Sungbo Yang, and June-Koo Kevin Rhee. Wireless network synchroniza-
tion for multichannel multimedia services. In: Proc. 11th Intl. Conf. Ad-
vanced Communication Technology. Vol. 02. 2009, 1073–1077 (see page 99).

[Ban+11] Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer.

Minimum Congestion Mapping in a Cloud. In: Proceedings of the 30th
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting. PODC ’11. San Jose, California, USA: ACM, 2011, 267–276. isbn:

978-1-4503-0719-2 (see page 53).

[BBK18] M. Bachmann, A. Brendel, and W. Kellermann. Resource Allocation for
Distributed Blind Source Separation. In: Speech Commun.; 13th ITG-
Symp. Oldenburg, Germany, Oct. 2018 (see page 117).

[Ber99] D.P. Bertsekas.Nonlinear Programming. Athena Scientific, 1999 (see page 19).

[BFO96] G. Bianchi, L. Fratta, and M. Oliveri. Performance evaluation and en-
hancement of the CSMA/CAMAC protocol for 802.11 wireless LANs.
In: Proceedings of PIMRC ’96 - 7th International Symposium on Personal, Indoor,
and Mobile Communications. Vol. 2. 1996, 392–396 vol.2. doi: 10.1109/PIMRC.

1996.567423 (see pages 102, 104).

[Bia00] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coor-
dination function. IEEE Journal on Selected Areas in Communications 18:3
(2000), 535–547. doi: 10.1109/49.840210 (see pages 102–104, 107).

[BK18] A. Brendel and W. Kellermann.Distance Estimation of Acoustic Sources
Using theCoherent-to-Diffuse PowerRatioBased onDistributedTrain-
ing. In: 2018 16th International Workshop on Acoustic Signal Enhancement
(IWAENC). 2018, 1–5 (see pages 149, 155).

[Ble+16] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer. Boost online
virtual network embedding: Using neural networks for admission
control. In: 2016 12th International Conference on Network and Service Man-
agement (CNSM). 2016, 10–18. doi: 10.1109/CNSM.2016.7818395 (see page 86).

[Ble+18] A. Blenk, P. Kalmbach, J. Zerwas, M. Jarschel, S. Schmid, and W. Kellerer.

NeuroViNE: ANeural Preprocessor for Your Virtual Network Embed-
ding Algorithm. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. 2018, 405–413. doi: 10.1109/INFOCOM.2018.8486263 (see

page 86).

211

https://doi.org/10.1109/PIMRC.1996.567423
https://doi.org/10.1109/PIMRC.1996.567423
https://doi.org/10.1109/49.840210
https://doi.org/10.1109/CNSM.2016.7818395
https://doi.org/10.1109/INFOCOM.2018.8486263

[BM94] Justin Boyan andAndrewMoore.Generalization inReinforcement Learn-
ing: Safely Approximating the Value Function. In: Advances in Neural
Information Processing Systems. Ed. by G. Tesauro, D. Touretzky, and T. Leen.

Vol. 7. MIT Press, 1994. url: https://proceedings.neurips.cc/paper/1994/file/

ef50c335cca9f340bde656363ebd02fd-Paper.pdf (see page 18).

[BMH19] Liu Boyang, Wu Muqing, and Zou Haosen. Virtual Network Embedding
Based onHybrid Adaptive Genetic Algorithm. In: 2019 IEEE 5th Interna-
tional Conference on Computer and Communications (ICCC). 2019, 1197–1202.
doi: 10.1109/ICCC47050.2019.9064173 (see page 65).

[BT17] Martin Bunder and Joseph Tonien. Closed form expressions for two har-
monic continued fractions. The Mathematical Gazette 101:552 (2017), 439–
448. doi: 10.1017/mag.2017.125 (see page 25).

[BTS98] Timothy X. Brown, Hui Tong, and Satinder Singh. Optimizing Admission
Control While Ensuring Quality of Service in Multimedia Networks
via Reinforcement Learning. In: Proceedings of the 11th International Con-
ference on Neural Information Processing Systems. NIPS’98. Denver, CO: MIT

Press, 1998, 982–988 (see page 86).

[CA22] Aleksej Chinaev and Haitham Afifi. Acquisition of Asynchronous Data and
Parameter Estimation based on Double-Cross- Correlation Processor with Phase
Transform (Demo atWASPAA 2021). 2022. url: https://sigport.org/documents/

acquisition-asynchronous-data-and-parameter-estimation-based-double-

cross-correlation (see page 9).

[Car89] J. -. Cardoso. Source separation using higher order moments. In: Inter-
national Conference on Acoustics, Speech, and Signal Processing, 1989, 2109–
2112 vol.4. doi: 10.1109/ICASSP.1989.266878 (see page 192).

[CEP07] Todor Cooklev, John C. Eidson, and Afshaneh Pakdaman. An Implemen-
tation of IEEE 1588 Over IEEE 802.11b for Synchronization of Wire-
less Local Area Network Nodes. IEEE Transactions on Instrumentation and
Measurement 56:5 (2007), 1632–1639. doi: 10.1109/TIM.2007.903640 (see

page 100).

[CG17a] Dani Cherkassky and Sharon Gannot. Blind Synchronization inWireless
Acoustic Sensor Networks. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 25:3 (2017), 651–661. doi: 10.1109/TASLP.2017.2655259

(see page 101).

[CG17b] Dani Cherkassky and Sharon Gannot. Blind Synchronization inWireless
Acoustic Sensor Networks. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 25:3 (2017), 651–661. doi: 10.1109/TASLP.2017.2655259

(see page 124).

212

https://proceedings.neurips.cc/paper/1994/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
https://doi.org/10.1109/ICCC47050.2019.9064173
https://doi.org/10.1017/mag.2017.125
https://sigport.org/documents/acquisition-asynchronous-data-and-parameter-estimation-based-double-cross-correlation
https://sigport.org/documents/acquisition-asynchronous-data-and-parameter-estimation-based-double-cross-correlation
https://sigport.org/documents/acquisition-asynchronous-data-and-parameter-estimation-based-double-cross-correlation
https://doi.org/10.1109/ICASSP.1989.266878
https://doi.org/10.1109/TIM.2007.903640
https://doi.org/10.1109/TASLP.2017.2655259
https://doi.org/10.1109/TASLP.2017.2655259

[Cha+19] U. Challita, A. Ferdowsi, M. Chen, and W. Saad. Machine Learning for
WirelessConnectivity and Security ofCellular-ConnectedUAVs. IEEE
Wireless Communications 26:1 (2019), 28–35. doi: 10.1109/MWC.2018.1800155

(see page 152).

[Che+09] X. Chen, T. R. Newman, D. Datla, T. Bose, and J. H. Reed. The Impact of
Channel Variations on Wireless Distributed Computing Networks.
In: GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference. Nov.
2009, 1–6. doi: 10.1109/GLOCOM.2009.5425441 (see page 189).

[CKS21] Jonah Casebeer, Jamshed Kaikaus, and Paris Smaragdis. Communication-
Cost Aware Microphone Selection for Neural Speech Enhancement
with Ad-Hoc Microphone Arrays. In: ICASSP 2021 - 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021,
8438–8442. doi: 10.1109/ICASSP39728.2021.9414775 (see page 124).

[CL13] Sundeep Prabhakar Chepuri and Geert Leus. Sparsity-Promoting Sen-
sor Selection for Non-linearMeasurementModels. CoRR abs/1310.5251

(2013). arXiv: 1310.5251. url: http://arxiv.org/abs/1310.5251 (see page 124).

[CLZ16] H. Chen, X. Li, and F. Zhao. A Reinforcement Learning-Based Sleep
Scheduling Algorithm for Desired Area Coverage in Solar-Powered
Wireless Sensor Networks. IEEE Sensors Journal 16:8 (2016), 2763–2774.
doi: 10.1109/JSEN.2016.2517084 (see page 85).

[Cob+17] MaximoCobos, Fabio Antonacci, Anastasios Alexandridis, AthanasiosMouchtaris,

and Bowon Lee. A Survey of Sound Source Localization Methods in
Wireless Acoustic Sensor Networks. Wireless Communications and Mo-
bile Computing 2017 (Aug. 2017), 3956282. issn: 1530-8669. doi: 10.1155/2017/
3956282. url: https://doi.org/10.1155/2017/3956282 (see page 117).

[Cos+12] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo. Software Defined
Wireless Networks: Unbridling SDNs. In: 2012 European Workshop on
Software Defined Networking. Oct. 2012, 1–6. doi: 10.1109/EW{SDN}.2012.12

(see page 180).

[CS15] Shanti Chilukuri and Anirudha Sahoo. Delay-Aware TDMA Scheduling
for Multi-Hop Wireless Networks. In: Proceedings of the 2015 Interna-
tional Conference on Distributed Computing and Networking. ICDCN ’15. Goa,

India: Association for Computing Machinery, 2015. isbn: 9781450329286. doi:

10.1145/2684464.2684493. url: https://doi.org/10.1145/2684464.2684493 (see

page 190).

213

https://doi.org/10.1109/MWC.2018.1800155
https://doi.org/10.1109/GLOCOM.2009.5425441
https://doi.org/10.1109/ICASSP39728.2021.9414775
https://arxiv.org/abs/1310.5251
http://arxiv.org/abs/1310.5251
https://doi.org/10.1109/JSEN.2016.2517084
https://doi.org/10.1155/2017/3956282
https://doi.org/10.1155/2017/3956282
https://doi.org/10.1155/2017/3956282
https://doi.org/10.1109/EW{SDN}.2012.12
https://doi.org/10.1145/2684464.2684493
https://doi.org/10.1145/2684464.2684493

[CSB19] Ursula Challita, Walid Saad, and Christian Bettstetter. Interference Man-
agement forCellular-ConnectedUAVs:ADeepReinforcement Learn-
ing Approach. IEEE Transactions on Wireless Communications 18:4 (Apr.

2019), 2125–2140. issn: 1558-2248. doi: 10 .1109/ twc .2019 .2900035. url:

http://dx.doi.org/10.1109/TWC.2019.2900035 (see page 152).

[CTE19] A. Chinaev, P. Thüne, and G. Enzner. A Double-Cross-Correlation Pro-
cessor for Blind Sampling Rate Offset Estimation in Acoustic Sensor
Networks. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. May 2019,

641–645. doi: 10.1109/ICASSP.2019.8683605 (see page 192).

[Dat+12] Dinesh Datla, Xuetao Chen, Thomas Tsou, Sahana Raghunandan, S.M. Sha-

jedul Hasan, Jeffrey H. Reed, Carl B. Dietrich, Tamal Bose, Bruce Fette,

and Jeong-Ho Kim. Wireless distributed computing: a survey of re-
search challenges. IEEE Communications Magazine 50:1 (2012), 144–152.
doi: 10.1109/MCOM.2012.6122545 (see page 179).

[Dek+22] Gert Dekkers, Fernando Rosas, Toon van Waterschoot, Bart Vanrumste,

and Peter Karsmakers. Dynamic sensor activation and decision-level
fusion in wireless acoustic sensor networks for classification of do-
mestic activities. Information Fusion 77 (2022), 196–210. issn: 1566-2535.

doi: https://doi.org/10.1016/j.inffus.2021.07.022 (see page 118).

[DG15] Yuval Dorfan and Sharon Gannot. Tree-Based Recursive Expectation-
MaximizationAlgorithm for Localization ofAcoustic Sources. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 23:10 (2015), 1692–

1703. doi: 10.1109/TASLP.2015.2444654 (see page 101).

[DH04] Hui Dai and Richard Han. TSync: A Lightweight Bidirectional Time
Synchronization Service for Wireless Sensor Networks. SIGMOBILE
Mob. Comput. Commun. Rev. 8:1 (Jan. 2004), 125–139. issn: 1559-1662. doi:
10.1145/980159.980173 (see page 100).

[Din18] Yuanming Shi; Zhi Ding. Low-Rank Optimization for Data Shuffling in
Wireless Distributed Computing (2018) (see page 74).

[Din20] Hamed Dinari. Inter-Process Communication (IPC) in Distributed En-
vironments: An Investigation andPerformanceAnalysis of SomeMid-
dleware Technologies. International Journal of Modern Education and Com-
puter Science 12 (Apr. 2020), 36–52. doi: 10.5815/ijmecs.2020.02.05 (see

page 182).

[Drä+18] Sevil Dräxler, Manuel Peuster, Marvin Illian, and Holger Karl. Generating
Resource and PerformanceModels for Service Function Chains: The
Video Streaming Case. In: 2018 4th IEEE Conference on Network Softwariza-
tion and Workshops (NetSoft). 2018, 318–322. doi: 10.1109/NETSOFT.2018.
8460029 (see page 85).

214

https://doi.org/10.1109/twc.2019.2900035
http://dx.doi.org/10.1109/TWC.2019.2900035
https://doi.org/10.1109/ICASSP.2019.8683605
https://doi.org/10.1109/MCOM.2012.6122545
https://doi.org/https://doi.org/10.1016/j.inffus.2021.07.022
https://doi.org/10.1109/TASLP.2015.2444654
https://doi.org/10.1145/980159.980173
https://doi.org/10.5815/ijmecs.2020.02.05
https://doi.org/10.1109/NETSOFT.2018.8460029
https://doi.org/10.1109/NETSOFT.2018.8460029

[DSB01] Joseph H. DiBiase, Harvey F. Silverman, and Michael S. Brandstein, 157–180.

In: Microphone Arrays: Signal Processing Techniques and Applications. Ed. by
Michael Brandstein and Darren Ward. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001. isbn: 978-3-662-04619-7. doi: 10.1007/978-3-662-04619-7_8

(see page 99).

[DSK18] Sevil Dräxler, Stefan Schneider, and Holger Karl. Scaling and Placing Bidi-
rectional Services with Stateful Virtual and Physical Network Func-
tions. In: 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). 2018, 123–131. doi: 10.1109/NETSOFT.2018.8459915 (see page 117).

[Ebb+18] Janek Ebbers, Jens Heitkaemper, Joerg Schmalenstroeer, and Reinhold Haeb-

Umbach. Benchmarking Neural Network Architectures for Acoustic
Sensor Networks. In: Speech Communication; 13th ITG-Symposium. 2018,

1–5 (see pages 185, 186).

[EGE03] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-Grained Network
Time Synchronization Using Reference Broadcasts. SIGOPS Oper. Syst.
Rev. 36:SI (Dec. 2003), 147–163. issn: 0163-5980. doi: 10.1145/844128.844143
(see page 100).

[ERS16] Guy Even, Matthias Rost, and Stefan Schmid. An Approximation Algo-
rithm for Path Computation and Function Placement in s. In: Struc-
tural Information and Communication Complexity. Ed. by Jukka Suomela.

Cham: Springer International Publishing, 2016, 374–390. isbn: 978-3-319-

48314-6 (see page 53).

[Faj+11] Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann. VNE-
AC: Virtual Network Embedding Algorithm Based on Ant Colony
Metaheuristic. In: 2011 IEEE International Conference on Communications
(ICC). 2011, 1–6. doi: 10.1109/icc.2011.5963442 (see page 65).

[FGD16] E. F. Flushing, L. M. Gambardella, and G. A. Di Caro. On Using Mobile
Robotic Relays for Adaptive Communication in Search and Rescue
Missions. In: 2016 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR). 2016, 370–377 (see page 151).

[FGV05] Cédric Févotte, Rémi Gribonval, and Emmanuel Vincent. BSS_EVAL Tool-
box User Guide – Revision 2.0. report. 2005. url: https://hal.inria.fr/inria-
00564760 (visited on 09/24/2019) (see pages 127, 142).

[Fis+13] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach. Virtual
Network Embedding: A Survey. IEEE Communications Surveys Tutorials
15:4 (2013), 1888–1906 (see page 27).

215

https://doi.org/10.1007/978-3-662-04619-7_8
https://doi.org/10.1109/NETSOFT.2018.8459915
https://doi.org/10.1145/844128.844143
https://doi.org/10.1109/icc.2011.5963442
https://hal.inria.fr/inria-00564760
https://hal.inria.fr/inria-00564760

[FK09] András Frank and Tamás Király, 87–126. In: Research Trends in Combinatorial
Optimization: Bonn 2008. Ed. byWilliam Cook, László Lovász, and Jens Vygen.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. isbn: 978-3-540-76796-1.

doi: 10.1007/978-3-540-76796-1_6 (see page 124).

[Fra+20] Lidia Pocero Fraile, Stelios Tsampas, Georgios Mylonas, and Dimitrios Amax-

ilatis. A Comparative Study of LoRa and IEEE 802.15.4-Based IoT De-
ployments Inside School Buildings. IEEE Access 8 (2020), 160957–160981.
doi: 10.1109/ACCESS.2020.3020685 (see page 13).

[Fre] Freifunk. Better Approach To Mobile Adhoc Networking (B.A.T.M.A.N.) https:
//github.com/open-mesh-mirror/batman-adv. Accessed: 2022-11-24 (see

pages 181, 184).

[FS94] Michael P. Fitz and James P. Seymour. On the bit error probability of
QAM modulation. International Journal of Wireless Information Networks
1:2 (Apr. 1994), 131–139. issn: 1572-8129 (see page 61).

[Fu+20] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao. Dynamic Service Function
ChainEmbedding forNFV-Enabled IoT:ADeepReinforcement Learn-
ing Approach. IEEE Transactions on Wireless Communications 19:1 (Jan.

2020), 507–519. issn: 1558-2248. doi: 10 . 1109 / TWC . 2019 . 2946797 (see

page 65).

[FYD09] Osama Farrag, Mohamed Younis, and William D’Amico. MAC Support for
Wireless Multimedia Sensor Networks. In: Proc. IEEE Global Telecommu-
nications Conference (GlobeCom). 2009, 1–6. doi: 10.1109/GLOCOM.2009.

5425242 (see page 100).

[Gal+15] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo. SDN-WISE: Design,
prototyping and experimentation of a stateful SDN solution forWIre-
less SEnsor networks. In: 2015 IEEE Conference on Computer Communica-
tions (INFOCOM). Apr. 2015, 513–521. doi: 10.1109/INFOCOM.2015.7218418

(see page 180).

[Gao+15] X. Gao, W. Zhong, Z. Ye, Y. Zhao, J. Fan, X. Cao, H. Yu, and C. Qiao. Vir-
tual NetworkMapping for ReliableMulticast Services withMax-Min
Fairness. In: 2015 IEEE Global Communications Conference (GLOBECOM).
Dec. 2015, 1–6. doi: 10.1109/GLOCOM.2015.7417549 (see page 29).

[GB16] Juliver Gil Herrera and Juan Felipe Botero. Resource Allocation in NFV:
A Comprehensive Survey. IEEE Transactions on Network and Service Man-
agement 13:3 (2016), 518–532. doi: 10.1109/TNSM.2016.2598420 (see page 7).

216

https://doi.org/10.1007/978-3-540-76796-1_6
https://doi.org/10.1109/ACCESS.2020.3020685
https://github.com/open-mesh-mirror/batman-adv
https://github.com/open-mesh-mirror/batman-adv
https://doi.org/10.1109/TWC.2019.2946797
https://doi.org/10.1109/GLOCOM.2009.5425242
https://doi.org/10.1109/GLOCOM.2009.5425242
https://doi.org/10.1109/INFOCOM.2015.7218418
https://doi.org/10.1109/GLOCOM.2015.7417549
https://doi.org/10.1109/TNSM.2016.2598420

[GBK21] Michael Günther, Andreas Brendel, and Walter Kellermann. Online estima-
tion of time-variant microphone utility in wireless acoustic sensor
networks using single-channel signal features. In: 29th European Signal
Processing Conference (EUSIPCO 2021). Dublin, Ireland, 2021 (see page 153).

[GBW01] S. Gannot, D. Burshtein, and E. Weinstein. Signal enhancement using
beamforming and nonstationarity with applications to speech. IEEE
Transactions on Signal Processing 49:8 (2001), 1614–1626. doi: 10.1109/78.

934132 (see page 101).

[Gei06] Peter Geibel. Reinforcement Learning for MDPs with Constraints. In:
Machine Learning: ECML 2006. Ed. by Johannes Fürnkranz, Tobias Scheffer,

and Myra Spiliopoulou. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

646–653. isbn: 978-3-540-46056-5 (see page 20).

[GFF15a] Javier García, Fern, and o Fernández. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16:42

(2015), 1437–1480. url: http:// jmlr.org/papers/v16/garcia15a.html (see

page 20).

[GFF15b] Javier García, Fern, and o Fernández. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16:42

(2015), 1437–1480 (see page 20).

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-Sync
Protocol for Sensor Networks. In: Proc. 1st Intl. Conf. Embedded Networked
Sensor Systems (SenSys). SenSys. Los Angeles, California, USA: Association
for Computing Machinery, 2003, 138–149. isbn: 1581137079. doi: 10.1145/

958491.958508 (see page 100).

[Gon20] Xiaowen Gong. Delay-Optimal Distributed Edge Computing in Wireless Edge
Networks. 2020. arXiv: 2002.02596 [cs.NI] (see page 189).

[GR03] Jana van Greunen and Jan Rabaey. Lightweight Time Synchronization
for Sensor Networks. In: Proc. 2nd ACM Intl. Conf. Wireless Sensor Networks
and Applications. WSNA. San Diego, CA, USA: Association for Computing

Machinery, 2003, 11–19. isbn: 1581137648. doi: 10.1145/941350.941353 (see

page 100).

[Gre] Greg Bowman. Folding at home. https://foldingathome.org/. Accessed: 2022-

12-10 (see page 179).

[Gre84] Rick Greer. Trees and Hills: Methodology for Maximizing Functions
of Systems of Linear Relations. NLD: North-Holland Publishing Co., 1984.
isbn: 0444875786 (see page 157).

217

https://doi.org/10.1109/78.934132
https://doi.org/10.1109/78.934132
http://jmlr.org/papers/v16/garcia15a.html
https://doi.org/10.1145/958491.958508
https://doi.org/10.1145/958491.958508
https://arxiv.org/abs/2002.02596
https://doi.org/10.1145/941350.941353
https://foldingathome.org/

[GSH21] Tobias Gburrek, Joerg Schmalenstroeer, and Reinhold Haeb-Umbach. On
Synchronization of Wireless Acoustic Sensor Networks in the Pres-
ence of Time-varying Sampling Rate Offsets and Speaker Changes.
arXiv preprint arXiv:2110.12820 (2021) (see pages 12, 99, 101, 102, 105–107,
186–188).

[Gün+19] Michael Günther, Haitham Afifi, Andreas Brendel, Holger Karl, and Walter

Kellermann. SparseAdaptation ofDistributedBlind Source Separation
in Acoustic Sensor Networks. In: 2019 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA). 2019, 190–194. doi:
10.1109/WASPAA.2019.8937194 (see pages 115, 117, 121).

[Gun+21] Michael Gunther, Haitham Afifi, Andreas Brendel, Holger Karl, and Walter

Kellermann. Network-Aware Optimal Microphone Channel Selection
inWireless Acoustic Sensor Networks. In: ICASSP 2021 - 2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021,
820–824. doi: 10.1109/ICASSP39728.2021.9414528 (see pages 9, 101, 115, 119,

122, 124, 127–129, 131, 141).

[Guo+19] X. Guo, H. Lin, Z. Li, and M. Peng. Deep Reinforcement Learning based
QoS-aware Secure Routing for SDN-IoT. IEEE Internet of Things Journal
(2019), 1–1. issn: 2372-2541. doi: 10.1109/JIOT.2019.2960033 (see page 65).

[Gup16] Naresh Kumar Gupta. 2016 (see page 13).

[Gur18] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2018. url:
http://www.gurobi.com (see pages 57, 135).

[Haia] Haitham Afifi. Trained multi agents. https://git.cs.uni-paderborn.de/hafifi/
particle_mic. Accessed: 2022-12-10 (see page 158).

[Haib] Haitham Afifi. Trained RL agents. https://git.cs.uni-paderborn.de/hafifi/rl_
uav. Accessed: 2022-12-10 (see page 158).

[HGS15] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-learning. CoRR abs/1509.06461 (2015). eprint:

1509.06461. url: http://arxiv.org/abs/1509.06461 (see page 151).

[HHA19] Hado van Hasselt, Matteo Hessel, and John Aslanides.When to use parametric
models in reinforcement learning? 2019. arXiv: 1906 .05243 [cs.LG] (see

page 131).

[Hil+18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kan-

ervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov,

Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor,

and Yuhuai Wu. Stable Baselines. https://github.com/hill-a/stable-baselines.

2018 (see page 88).

218

https://doi.org/10.1109/WASPAA.2019.8937194
https://doi.org/10.1109/ICASSP39728.2021.9414528
https://doi.org/10.1109/JIOT.2019.2960033
http://www.gurobi.com
https://git.cs.uni-paderborn.de/hafifi/particle_mic
https://git.cs.uni-paderborn.de/hafifi/particle_mic
https://git.cs.uni-paderborn.de/hafifi/rl_uav
https://git.cs.uni-paderborn.de/hafifi/rl_uav
1509.06461
http://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1906.05243
https://github.com/hill-a/stable-baselines

[HS19] J. FernandoHernandez-Garcia and Richard S. Sutton.UnderstandingMulti-
Step Deep Reinforcement Learning: A Systematic Study of the DQN
Target. CoRR abs/1901.07510 (2019). arXiv: 1901.07510. url: http://arxiv.org/

abs/1901.07510 (see page 141).

[Hua+22] Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J.

Mankowitz, Michael Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess,

Martin Riedmiller, and Raia Hadsell. A Constrained Multi-Objective Re-
inforcement Learning Framework. In: Proceedings of the 5th Conference
on Robot Learning. Ed. by Aleksandra Faust, David Hsu, and Gerhard Neu-

mann. Vol. 164. Proceedings of Machine Learning Research. PMLR, Aug.

2022, 883–893. url: https://proceedings.mlr.press/v164/huang22a.html (see

page 20).

[HWW11] William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: mod-
eling and solving mathematical programs in Python. Mathematical
Programming Computation 3:3 (2011), 219–260 (see pages 48, 57, 135).

[JA22] Joerg Schmalenstoeer Janek Ebbers Tobias Gburrek and HaithamAfifi.Acous-
tic scene classification on a Raspberry-Pi network (Demo at WASPAA 2021).
2022 (see pages 9, 185, 186).

[JB09] Siddharth Joshi and Stephen Boyd. Sensor Selection via Convex Opti-
mization. IEEE Transactions on Signal Processing 57:2 (2009), 451–462. doi:

10.1109/TSP.2008.2007095 (see page 124).

[JG85] David S Johnson and Michael R Garey. A 7160 theorem for bin packing.
Journal of Complexity 1:1 (1985), 65–106. issn: 0885-064X (see pages 56, 60).

[JMA15] I. Jawhar, N. Mohamed, and J. Al-Jaroodi. UAV-based data communica-
tion in wireless sensor networks: Models and strategies. In: 2015 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS). 2015, 687–694.
doi: 10.1109/ICUAS.2015.7152351 (see pages 149, 151).

[Jou+17] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al

Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy

Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, Richard C.

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaf-

fey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen

Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,

Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Mag-

giore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami,

Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,

Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn,

219

https://arxiv.org/abs/1901.07510
http://arxiv.org/abs/1901.07510
http://arxiv.org/abs/1901.07510
https://proceedings.mlr.press/v164/huang22a.html
https://doi.org/10.1109/TSP.2008.2007095
https://doi.org/10.1109/ICUAS.2015.7152351

Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing,

Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-

sudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. CoRR
abs/1704.04760 (2017). arXiv: 1704.04760. url: http://arxiv.org/abs/1704.04760

(see page 5).

[JSH12] Florian Jacob, Joerg Schmalenstroeer, and Reinhold Haeb-Umbach.Micro-
phone Array Position Self-Calibration from Reverberant Speech In-
put. In: IWAENC 2012; International Workshop on Acoustic Signal Enhance-
ment. 2012, 1–4 (see pages 12, 117).

[Kad16] Yasin Murat Kadioglu, 117–125. In: Computer and Information Sciences: 31st
International Symposium, ISCIS 2016, Kraków, Poland, October 27–28, 2016,
Proceedings. Ed. by Tadeusz Czachórski, Erol Gelenbe, Krzysztof Grochla,

and Ricardo Lent. Springer International Publishing, 2016. isbn: 978-3-319-

47217-1 (see page 6).

[Kan+20] Takeshi Kanematsu, Kosuke Sanada, Zhetao Li, Tingrui Pei, Young-June

Choi, Kien Nguyen, and Hiroo Sekiya.Throughput and delay analysis for
IEEE 802.11 multi-hop networks considering data rate. International
Journal of Distributed Sensor Networks 16:9 (2020), 1550147720959262. doi:
10.1177/1550147720959262. eprint: https://doi.org/10.1177/1550147720959262.

url: https://doi.org/10.1177/1550147720959262 (see page 190).

[Kar20] ThommenGeorge Karimpanal.Neuro-evolutionary Frameworks forGen-
eralized Learning Agents. CoRR abs/2002.01088 (2020). arXiv: 2002.01088.

url: https://arxiv.org/abs/2002.01088 (see page 65).

[Kat+20] R. Katona, V. Cionca, D. O’Shea, and D. Pesch. Virtual Network Embed-
ding forWireless SensorNetworksTimeEfficientQoS/QoIAwareAp-
proach. IEEE Internet of Things Journal (2020), 1–1 (see page 152).

[Kim+07] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee. Blind Source Separation
Exploiting Higher-Order Frequency Dependencies. IEEE Trans. Audio,
Speech, Language Process. 15:1 (Jan. 2007), 70–79 (see page 117).

[Kir+20] Bangalore Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion,

Ahmad A. Al Sallab, Senthil Kumar Yogamani, and Patrick Pérez. Deep
Reinforcement Learning for Autonomous Driving: A Survey. CoRR
abs/2002.00444 (2020). arXiv: 2002.00444. url: https://arxiv.org/abs/2002.

00444 (see page 151).

[KSM03] Byung-Jae Kwak, Nah-Oak Song, and L.E. Miller. Analysis of the stability
and performance of exponential backoff. In: Proc. IEEE Wireless Com-
munications and Networking, vol. 3. 2003, 1754–1759 vol.3. doi: 10.1109/

WCNC.2003.1200652 (see pages 102, 104).

220

https://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://doi.org/10.1177/1550147720959262
https://doi.org/10.1177/1550147720959262
https://doi.org/10.1177/1550147720959262
https://arxiv.org/abs/2002.01088
https://arxiv.org/abs/2002.01088
https://arxiv.org/abs/2002.00444
https://arxiv.org/abs/2002.00444
https://arxiv.org/abs/2002.00444
https://doi.org/10.1109/WCNC.2003.1200652
https://doi.org/10.1109/WCNC.2003.1200652

[KW05] Holger Karl and Andreas Willig, 59–81. In: Protocols and Architectures for
Wireless Sensor Networks. 2005. doi: 10.1002/0470095121.ch3 (see pages 7, 11,
13).

[KW06] I. Y. Kim and O. L. de Weck. Adaptive weighted sum method for mul-
tiobjective optimization: a new method for Pareto front generation.
Structural and Multidisciplinary Optimization 31:2 (Feb. 2006), 105–116. issn:

1615-1488. doi: 10.1007/s00158-005-0557-6 (see page 21).

[Lan+17] Marc Lanctot, Vinícius Flores Zambaldi, Audrunas Gruslys, Angeliki Lazari-

dou, Karl Tuyls, Julien Pérolat, David Silver, and Thore Graepel. A Uni-
fied Game-Theoretic Approach to Multiagent Reinforcement Learn-
ing. CoRR abs/1711.00832 (2017). arXiv: 1711.00832. url: http://arxiv.org/

abs/1711.00832 (see page 156).

[LaV06] S.M. LaValle.PlanningAlgorithms. Available at http://planning.cs.uiuc.edu/.
Cambridge, U.K.: Cambridge University Press, 2006 (see page 151).

[LFZ13] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile
and Efficient All-to-All Data Sharing and in-Network Processing at
Scale. In: Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems. SenSys ’13. Roma, Italy: Association for Computing Machin-

ery, 2013. isbn: 9781450320276. doi: 10.1145/2517351.2517358 (see pages 7,

27).

[Li+16] M. Li, X. Wang, S. Chen, M. Song, and Y. Ma, 238–249. In: Human Centered
Computing: Second International Conference, HCC 2016, Colombo, Sri Lanka,
January 7-9, 2016, Revised Selected Papers. Springer International Publishing,
2016. isbn: 978-3-319-31854-7. doi: 10.1007/978-3-319-31854-7_22 (see

page 29).

[Li+17] M. Li, C. Hua, C. Chen, and X. Guan.Application-driven virtual network
embedding for industrial wireless sensor networks. In: IEEE Intl. Conf.
on Communications (ICC). May 2017, 1–6. doi: 10.1109/ICC.2017.7996431

(see page 29).

[LI04] Kun Li and P. Ioannou. Modeling of traffic flow of automated vehicles.
IEEE Transactions on Intelligent Transportation Systems 5:2 (2004), 99–113.
doi: 10.1109/TITS.2004.828170 (see pages 150, 151).

[Liu+10] C. H. Liu, C. Bisdikian, J. W. Branch, and K. K. Leung. QoI-Aware Wireless
Sensor Network Management for Dynamic Multi-Task Operations.
In: 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON). 2010, 1–9 (see page 131).

221

https://doi.org/10.1002/0470095121.ch3
https://doi.org/10.1007/s00158-005-0557-6
https://arxiv.org/abs/1711.00832
http://arxiv.org/abs/1711.00832
http://arxiv.org/abs/1711.00832
https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1007/978-3-319-31854-7_22
https://doi.org/10.1109/ICC.2017.7996431
https://doi.org/10.1109/TITS.2004.828170

[LK13] Rafael Laufer and Leonard Kleinrock.On the capacity ofwirelessCSMA/CA
multihop networks. In: Proc. IEEE INFOCOM. 2013, 1312–1320. doi: 10.

1109/INFCOM.2013.6566924 (see pages 104, 107, 112, 205).

[LK99] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. In:
Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C). Vol. 1. 1999, 473–479 vol.1. doi: 10.1109/ROBOT.1999.
770022 (see page 151).

[Lor+08] Konrad Lorincz, Bor-rong Chen, Jason Waterman, Geoff Werner-Allen, and

Matt Welsh. Resource Aware Programming in the Pixie OS. In: Proceed-
ings of the 6th ACM Conference on Embedded Network Sensor Systems. SenSys
’08. Raleigh, NC, USA: ACM, 2008, 211–224. isbn: 978-1-59593-990-6. doi:

10.1145/1460412.1460434. url: http://doi.acm.org/10.1145/1460412.1460434

(see page 180).

[LTQ12] T. Luo, H. P. Tan, and T. Q. S. Quek. Sensor OpenFlow: Enabling Software-
Defined Wireless Sensor Networks. IEEE Communications Letters 16:11
(Nov. 2012), 1896–1899. issn: 1089-7798. doi: 10.1109/LCOMM.2012.092812.

121712 (see page 179).

[Lv+12] P. Lv, Z. Cai, J. Xu, and M. Xu. Multicast Service-Oriented Virtual Net-
work Embedding in Wireless Mesh Networks. IEEE Communications
Letters 16:3 (Mar. 2012), 375–377. issn: 1089-7798. doi: 10.1109/LCOMM.2012.

012412.112364 (see page 29).

[Mah+17] Aneeq Mahmood, Reinhard Exel, Henning Trsek, and Thilo Sauter. Clock
Synchronization Over IEEE 802.11—A Survey of Methodologies and
Protocols. IEEE Transactions on Industrial Informatics 13:2 (2017), 907–922.
doi: 10.1109/TII.2016.2629669 (see page 100).

[Mar18] Andreas Brendel Markus Bachman Haitham Afifi. Acoustic signal extraction
and enhancement over acoustic sensor networks (Demo at ITG conference on
Speech Communication). 2018 (see page 9).

[McC76] Garth P. McCormick. Computability of global solutions to factorable
nonconvex programs: Part I — Convex underestimating problems.
Mathematical Programming 10:1 (Dec. 1976), 147–175. issn: 1436-4646. doi:

10.1007/BF01580665 (see pages 46, 51).

[MCN17] Rajarshi Middya, Nabajit Chakravarty, and Mrinal Kanti Naskar. Compres-
sive Sensing in Wireless Sensor Networks – a Survey. IETE Technical
Review 34:6 (2017), 642–654. doi: 10.1080/02564602.2016.1233835. eprint:

https://doi.org/10.1080/02564602.2016.1233835. url: https://doi.org/10.1080/

02564602.2016.1233835 (see page 7).

222

https://doi.org/10.1109/INFCOM.2013.6566924
https://doi.org/10.1109/INFCOM.2013.6566924
https://doi.org/10.1109/ROBOT.1999.770022
https://doi.org/10.1109/ROBOT.1999.770022
https://doi.org/10.1145/1460412.1460434
http://doi.acm.org/10.1145/1460412.1460434
https://doi.org/10.1109/LCOMM.2012.092812.121712
https://doi.org/10.1109/LCOMM.2012.092812.121712
https://doi.org/10.1109/LCOMM.2012.012412.112364
https://doi.org/10.1109/LCOMM.2012.012412.112364
https://doi.org/10.1109/TII.2016.2629669
https://doi.org/10.1007/BF01580665
https://doi.org/10.1080/02564602.2016.1233835
https://doi.org/10.1080/02564602.2016.1233835
https://doi.org/10.1080/02564602.2016.1233835
https://doi.org/10.1080/02564602.2016.1233835

[MGS09] Daniel Mueller-Gritschneder, Helmut Graeb, and Ulf Schlichtmann. A Suc-
cessive Approach to Compute the Bounded Pareto Front of Practical
Multiobjective Optimization Problems. SIAM Journal on Optimization
20:2 (2009), 915–934. doi: 10.1137/080729013 (see page 127).

[MI98] Noboru Murata and Shiro Ikeda. An on-line algorithm for blind source
separation on speech signals. In: Proc. NOLTA98. Vol. 3. Crans-Montana,

Switzerland, Sept. 1998, 923–926 (see page 117).

[Mil+18] Stefan Milz, Georg Arbeiter, Christian Witt, Bassam Abdallah, and Senthil

Yogamani. Visual SLAM for Automated Driving: Exploring the Appli-
cations of Deep Learning. In: 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW). 2018, 360–36010. doi:
10.1109/CVPRW.2018.00062 (see page 151).

[Mil91] D.L. Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications 39:10 (1991), 1482–1493. doi: 10.1109/
26.103043 (see page 100).

[Mit96] Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge,

MA, USA: MIT Press, 1996. isbn: 0-262-13316-4 (see page 66).

[MKA21] Pedro Martinez-Julia, Ved P. Kafle, and Hitoshi Asaeda. A Genetic Ap-
proach to Continuous Optimization of Virtual Network Embedding.
In: 2021 24th Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN). 2021, 70–74. doi: 10.1109/ICIN51074.2021.9385542 (see
page 65).

[Mor20] M. Morales. Grokking Deep Reinforcement Learning. Manning, 2020.

isbn: 9781638356660 (see page 18).

[MR14] Bruno F. Marques and Manuel P. Ricardo. Improving the energy effi-
ciency of WSN by using application-layer topologies to constrain
RPL-defined routing trees. In: Proc. 13th Annual Mediterranean AdHoc Net-
workingWorkshop (MED-HOC-NET). 2014, 126–133. doi: 10.1109/MedHocNet.

2014.6849114 (see page 100).

[Mus+17] Ibrahim Mustapha, Borhanuddin M. Ali, A. Sali, M.F.A. Rasid, and H. Mo-

hamad. An energy efficient Reinforcement Learning based Cooper-
ative Channel Sensing for Cognitive Radio Sensor Networks. Perva-
sive and Mobile Computing 35 (2017), 165–184. issn: 1574-1192. doi: https:

//doi.org/10.1016/j.pmcj.2016.07.007. url: https://www.sciencedirect.com/

science/article/pii/S1574119216301079 (see page 85).

[Nai04] Ranjit Nair. Coordinating multiagent teams in uncertain domains us-
ing distributed POMDPs . PhD thesis. 2004 (see page 156).

223

https://doi.org/10.1137/080729013
https://doi.org/10.1109/CVPRW.2018.00062
https://doi.org/10.1109/26.103043
https://doi.org/10.1109/26.103043
https://doi.org/10.1109/ICIN51074.2021.9385542
https://doi.org/10.1109/MedHocNet.2014.6849114
https://doi.org/10.1109/MedHocNet.2014.6849114
https://doi.org/https://doi.org/10.1016/j.pmcj.2016.07.007
https://doi.org/https://doi.org/10.1016/j.pmcj.2016.07.007
https://www.sciencedirect.com/science/article/pii/S1574119216301079
https://www.sciencedirect.com/science/article/pii/S1574119216301079

[Ng+20] Jer Shyuan Ng, Wei Yang Bryan Lim, Nguyen Cong Luong, Zehui Xiong,

Alia Asheralieva, Dusit Niyato, Cyril Leung, and Chunyan Miao. A Survey
of Coded Distributed Computing. CoRR abs/2008.09048 (2020). arXiv:

2008.09048. url: https://arxiv.org/abs/2008.09048 (see page 179).

[NM18] AlexandruNelus and RainerMartin.GenderDiscriminationVersus Speaker
Identification Through Privacy-Aware Adversarial Feature Extrac-
tion. In: Speech Communication; 13th ITG-Symposium. 2018, 1–5 (see page 124).

[NM21] Alexandru Nelus and Rainer Martin. Privacy-Preserving Audio Classifi-
cation Using Variational Information Feature Extraction. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 29 (2021), 2864–2877.

doi: 10.1109/TASLP.2021.3108063 (see pages 186, 187).

[OH19] Afshin Oroojlooyjadid and Davood Hajinezhad. A Review of Cooperative
Multi-AgentDeepReinforcement Learning.CoRR abs/1908.03963 (2019).
arXiv: 1908.03963. url: http://arxiv.org/abs/1908.03963 (see page 156).

[OMG14] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel. TinySDN: Enabling mul-
tiple controllers for software-defined wireless sensor networks. In:
2014 IEEE Latin-America Conference on Communications (LATINCOM). Nov.
2014, 1–6. doi: 10.1109/LATINCOM.2014.7041885 (see page 180).

[PAA19] D. PraveenKumar, TarachandAmgoth, andChandra Sekhara RaoAnnavarapu.

Machine learning algorithms for wireless sensor networks: A survey.
Information Fusion 49 (2019), 1–25. issn: 1566-2535. doi: https://doi.org/10.

1016/j.inffus.2018.09.013. url: https://www.sciencedirect.com/science/

article/pii/S156625351830277X (see pages 27, 86).

[Pat+17] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.Curiosity-
Driven Exploration by Self-Supervised Prediction. In: Proceedings of
the 34th International Conference on Machine Learning - Volume 70. ICML’17.

Sydney, NSW, Australia: JMLR.org, 2017, 2778–2787 (see page 201).

[Pro01] J.G. Proakis. Digital Communications. McGraw-Hill series in electrical

and computer engineering : communications and signal processing. McGraw-

Hill, 2001. isbn: 9780071181839 (see page 53).

[PS08] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills
with policy gradients. Neural Networks 21:4 (2008). Robotics and Neuro-

science, 682–697. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.

2008 .02 .003. url: https : / /www.sciencedirect . com/science /article /pii /

S0893608008000701 (see page 17).

[Qua19] Qualcom. The wireless edge transformation has begun. https://www.qualcomm.

com /media / documents / files / the - wireless - edge - transformation . pdf.

April,2019 (see page 27).

224

https://arxiv.org/abs/2008.09048
https://arxiv.org/abs/2008.09048
https://doi.org/10.1109/TASLP.2021.3108063
https://arxiv.org/abs/1908.03963
http://arxiv.org/abs/1908.03963
https://doi.org/10.1109/LATINCOM.2014.7041885
https://doi.org/https://doi.org/10.1016/j.inffus.2018.09.013
https://doi.org/https://doi.org/10.1016/j.inffus.2018.09.013
https://www.sciencedirect.com/science/article/pii/S156625351830277X
https://www.sciencedirect.com/science/article/pii/S156625351830277X
https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
https://www.sciencedirect.com/science/article/pii/S0893608008000701
https://www.sciencedirect.com/science/article/pii/S0893608008000701
https://www.qualcomm.com/media/documents/files/the-wireless-edge-transformation.pdf
https://www.qualcomm.com/media/documents/files/the-wireless-edge-transformation.pdf

[Rad+19] Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, and Ann Nowé.

Multi-Objective Multi-Agent DecisionMaking: A Utility-based Anal-
ysis and Survey. CoRR abs/1909.02964 (2019). arXiv: 1909.02964. url: http:

//arxiv.org/abs/1909.02964 (see page 19).

[Ram20] Arunselvan Ramaswamy. Theory of Deep Q-Learning: A Dynamical Systems
Perspective. 2020. arXiv: 2008.10870 [cs.LG]. url: arxiv.org/abs/2008.10870
(see page 169).

[Rie05] Martin Riedmiller. Neural Fitted Q Iteration – First Experiences with
a Data Efficient Neural Reinforcement Learning Method. In: Machine
Learning: ECML 2005. Ed. by João Gama, Rui Camacho, Pavel B. Brazdil, Alípio

Mário Jorge, and Luís Torgo. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, 317–328. isbn: 978-3-540-31692-3 (see page 18).

[Rig+16] R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, and T. Ahmed. Scheduling
Wireless Virtual Networks Functions. IEEE Transactions on Network and
Service Management 13:2 (June 2016), 240–252. issn: 1932-4537. doi: 10.1109/
TNSM.2016.2549563 (see page 29).

[RLH15] Hyun-Gyu Ryu, Sang-Keum Lee, and Dongsoo Har. Data Transmission
with Reduced Delay for Distributed Acoustic Sensors. International
Journal of Distributed Sensor Networks 11:11 (2015), 247612. doi: 10.1155/

2015 /247612. eprint: https : / /doi . org /10 . 1155 /2015 /247612. url: https :

//doi.org/10.1155/2015/247612 (see page 189).

[Roi+14] DiederikMarijn Roijers, Peter Vamplew, ShimonWhiteson, and RichardDaze-

ley. A Survey of Multi-Objective Sequential Decision-Making. CoRR
abs/1402.0590 (2014). arXiv: 1402.0590. url: http://arxiv.org/abs/1402.0590

(see page 19).

[RSN20] Diederik M. Roijers, Denis Steckelmacher, and Ann Nowé. Multi-objective
reinforcement learning for the expected utility of the return. English.
In: 2018 Adaptive Learning Agents, ALA 2018 - Co-located Workshop at the

Federated AI Meeting, FAIM 2018 ; Conference date: 14-07-2018 Through

15-07-2018. July 2020 (see page 19).

[RTL20] Majid Raeis, Ali Tizghadam, and Alberto Leon-Garcia. Reinforcement
Learning-based Admission Control in Delay-sensitive Service Sys-
tems. CoRR abs/2008.09590 (2020). arXiv: 2008.09590. url: https://arxiv.org/

abs/2008.09590 (see page 86).

[RWO15] Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Comput-
ing Convex Coverage Sets for Faster Multi-Objective Coordination. J.
Artif. Int. Res. 52:1 (Jan. 2015), 399–443. issn: 1076-9757 (see page 19).

225

https://arxiv.org/abs/1909.02964
http://arxiv.org/abs/1909.02964
http://arxiv.org/abs/1909.02964
https://arxiv.org/abs/2008.10870
arxiv.org/abs/2008.10870
https://doi.org/10.1109/TNSM.2016.2549563
https://doi.org/10.1109/TNSM.2016.2549563
https://doi.org/10.1155/2015/247612
https://doi.org/10.1155/2015/247612
https://doi.org/10.1155/2015/247612
https://doi.org/10.1155/2015/247612
https://doi.org/10.1155/2015/247612
https://arxiv.org/abs/1402.0590
http://arxiv.org/abs/1402.0590
https://arxiv.org/abs/2008.09590
https://arxiv.org/abs/2008.09590
https://arxiv.org/abs/2008.09590

[SAC13] G. Di Stasi, S. Avallone, and R. Canonico. Virtual network embedding
in wireless mesh networks through reconfiguration of channels. In:
IEEE 9th Intl. Conf. on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). Oct. 2013, 537–544. doi: 10.1109/WiMOB.2013.6673410

(see page 29).

[Sah+21] Olimpiya Saha, Guohua Ren, Javad Heydari, Viswanath Ganapathy, and Mo-

hak Shah.Deep Reinforcement Learning Based Online Area Covering
Autonomous Robot. In: 2021 7th International Conference on Automation,
Robotics and Applications (ICARA). 2021, 21–25. doi: 10.1109/ICARA51699.
2021.9376477 (see page 151).

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Second. The MIT Press, 2018 (see pages 15, 16, 18, 156).

[SBB13] Sukhwinder Sharma, Rakesh Kumar Bansal, and Savina Bansal. Issues and
Challenges in Wireless Sensor Networks. In: 2013 International Confer-
ence on Machine Intelligence and Research Advancement. 2013, 58–62. doi:
10.1109/ICMIRA.2013.18 (see page 123).

[SBV10] Manohar Shamaiah, Siddhartha Banerjee, and Haris Vikalo. Greedy sensor
selection: Leveraging submodularity. In: 49th IEEE Conference on Deci-
sion and Control (CDC). 2010, 2572–2577. doi: 10.1109/CDC.2010.5717225
(see page 124).

[SC18] Christopher Stanton and Jeff Clune. Deep Curiosity Search: Intra-Life
Exploration Improves Performance on Challenging Deep Reinforce-
ment Learning Problems. CoRR abs/1806.00553 (2018). arXiv: 1806.00553.

url: http://arxiv.org/abs/1806.00553 (see page 65).

[Sch+17a] J. Schmalenstroeer, J. Heymann, L. Drude, C. Boeddecker, and R. Haeb-

Umbach. Multi-Stage Coherence Drift Based Sampling Rate Synchro-
nization for Acoustic Beamforming. IEEE 19th International Workshop
on Multimedia Signal Processing (MMSP) (2017) (see pages 31, 41, 71, 149,
179).

[Sch+17b] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov.Proximal PolicyOptimizationAlgorithms.CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347 (see page 88).

[Sel+17] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and L. Veiga.

Practical Service PlacementApproach forMicroservicesArchitecture.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). May 2017, 401–410. doi: 10.1109/CCGRID.2017.28 (see

page 29).

226

https://doi.org/10.1109/WiMOB.2013.6673410
https://doi.org/10.1109/ICARA51699.2021.9376477
https://doi.org/10.1109/ICARA51699.2021.9376477
https://doi.org/10.1109/ICMIRA.2013.18
https://doi.org/10.1109/CDC.2010.5717225
https://arxiv.org/abs/1806.00553
http://arxiv.org/abs/1806.00553
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/CCGRID.2017.28

[Sha48] C. E. Shannon. Amathematical theory of communication. The Bell Sys-
tem Technical Journal 27:3 (1948), 379–423. doi: 10.1002/j.1538-7305.1948.
tb01338.x (see page 103).

[Sia+17] Mennatullah Siam, Sara Elkerdawy, Martin Jagersand, and Senthil Yogamani.

Deep semantic segmentation for automated driving: Taxonomy, roadmap
and challenges. In: 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). 2017, 1–8. doi: 10.1109/ITSC.2017.8317714
(see page 151).

[Sia+18] Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani,

Martin Jagersand, and Ahmad El-Sallab. MODNet: Motion and Appear-
ance based Moving Object Detection Network for Autonomous Driv-
ing. In: 2018 21st International Conference on Intelligent Transportation Sys-
tems (ITSC). 2018, 2859–2864. doi: 10.1109/ITSC.2018.8569744 (see page 151).

[SK18] Mikhail B. Salin andDmitrii A. Kosteev. Examples of usage of nearfield acoustic
holography methods for far field estimations: Part 1. CW signals. 2018. arXiv:
1812.03826 [eess.AS] (see page 153).

[Sko+18] Lea Skorin-Kapov, Martín Varela, Tobias Hoßfeld, and Kuan-Ta Chen. A
Survey of Emerging Concepts and Challenges for QoE Management
of Multimedia Services. ACM Trans. Multimedia Comput. Commun. Appl.
14:2s (May 2018). issn: 1551-6857. doi: 10.1145/3176648 (see page 123).

[Soc+12] Richard Socher, BrodyHuval, Christopher D.Manning, andAndrewY. Ng. Se-
mantic Compositionality Through Recursive Matrix-Vector Spaces.
In: Proceedings of the 2012 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). 2012 (see page 165).

[SPS99] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence 112:1 (1999), 181–211. issn: 0004-3702. doi:
https://doi.org/10.1016/S0004-3702(99)00052-1 (see pages 165, 201).

[Sun+22] Jie Sun, Yi Zhang, Feng Liu, Huandong Wang, Xiaojian Xu, and Yong Li.

A survey on the placement of virtual network functions. Journal of
Network and Computer Applications 202 (2022), 103361. issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2022.103361. url: https://www.sciencedirect.

com/science/article/pii/S1084804522000285 (see page 7).

[TA22] Joerg Schmalenstoeer Tobias Gburrek and Haitham Afifi. Signal synchroniza-
tion using online weighted average coherence drift (Demo at IWAENC 2022).
2022 (see pages 9, 188).

227

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ITSC.2017.8317714
https://doi.org/10.1109/ITSC.2018.8569744
https://arxiv.org/abs/1812.03826
https://doi.org/10.1145/3176648
https://doi.org/https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103361
https://www.sciencedirect.com/science/article/pii/S1084804522000285
https://www.sciencedirect.com/science/article/pii/S1084804522000285

[Tes94] Gerald Tesauro. TD-Gammon, a Self-Teaching Backgammon Program,
Achieves Master-Level Play. Neural Computation 6:2 (1994), 215–219. doi:

10.1162/neco.1994.6.2.215 (see page 18).

[Uni21] International Telecommunication Union. 2021. url: https://www.itu.int/rec/

R-REC-P.1238-10-201908-I/en (see page 153).

[VL16] K. W. Jonhson V. M. Tiscareno and C. H. Lawrence. “Systems and methods

for receiving infrared data with a camera designed to detect images based

on visible light.” June 2016 (see page 180).

[Vod] Vodafone Research Lab. DreamLab by Vodafone. https://www.vodafone.com/

vodafone-foundation/focus-areas/dreamlab-app. Accessed: 2022-12-10 (see

page 179).

[W B12] B. Gillett W. Briggs L. Cochran. Calculus for Scientists and Engineers.
Pearson, 2012 (see pages 54, 55).

[Wan+19] J. Wang, L. Zhao, J. Liu, and N. Kato. Smart Resource Allocation for
Mobile Edge Computing: ADeep Reinforcement Learning Approach.
IEEE Transactions on Emerging Topics in Computing (2019), 1–1. issn: 2376-

4562. doi: 10.1109/TETC.2019.2902661 (see page 66).

[WCY20] Shuyi Wang, Haotong Cao, and Longxiang Yang. A Survey of Service
FunctionChains Orchestration inData Center Networks. In: 2020 IEEE
Globecom Workshops (GC Wkshps. 2020, 1–6. doi: 10.1109/GCWkshps50303.

2020.9367463 (see page 7).

[WK05] Xin Wang and K. Kar. Throughput modelling and fairness issues in
CSMA/CA based ad-hoc networks. In: Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. Vol. 1. 2005,
23–34 vol. 1. doi: 10.1109/INFCOM.2005.1497875 (see page 102).

[WSM08] C.Wang, Y. Sun, and H. Ma.Analysis of Data Delivery Delay in Acoustic
Sensor Networks. In: 2008 IEEE/IFIP International Conference on Embedded
and Ubiquitous Computing. Vol. 1. 2008, 283–287. doi: 10.1109/EUC.2008.21
(see pages 189, 190).

[WW19] Zhong-Qiu Wang and DeLiang Wang. Combining Spectral and Spatial
Features forDeepLearningBasedBlind Speaker Separation. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 27:2 (2019), 457–468.

doi: 10.1109/TASLP.2018.2881912 (see page 124).

[WZ15] Kyle HollinsWray and Shlomo Zilberstein.Multi-Objective POMDPswith
Lexicographic Reward Preferences. In: Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina:
AAAI Press, 2015, 1719–1725. isbn: 9781577357384 (see page 19).

228

https://doi.org/10.1162/neco.1994.6.2.215
https://www.itu.int/rec/R-REC-P.1238-10-201908-I/en
https://www.itu.int/rec/R-REC-P.1238-10-201908-I/en
https://www.vodafone.com/vodafone-foundation/focus-areas/dreamlab-app
https://www.vodafone.com/vodafone-foundation/focus-areas/dreamlab-app
https://doi.org/10.1109/TETC.2019.2902661
https://doi.org/10.1109/GCWkshps50303.2020.9367463
https://doi.org/10.1109/GCWkshps50303.2020.9367463
https://doi.org/10.1109/INFCOM.2005.1497875
https://doi.org/10.1109/EUC.2008.21
https://doi.org/10.1109/TASLP.2018.2881912

[Xu+18] Xingwang Xu, Zisheng Cao, Hualiang Qiu, Mingyu Wang, and Xiaozheng

Tang. Unmanned aerial vehicle (UAV) for collecting audio data. US Patent

9,889,931. Feb. 2018 (see pages 149, 155).

[Yao+20] Haipeng Yao, Sihan Ma, Jingjing Wang, Peiying Zhang, Chunxiao Jiang,

and Song Guo. A Continuous-Decision Virtual Network Embedding
Scheme Relying on Reinforcement Learning. IEEE Transactions on Net-
work and Service Management 17:2 (2020), 864–875. doi: 10.1109/TNSM.2020.

2971543 (see page 86).

[ZB13] Yiran Zhao and Lori Breslow. Literature review onhybrid/blended learn-
ing. Unpublished manuscript, HarvardX, Harvard University, Cambridge, MA
(2013) (see page 123).

[ZH14] Yuan Zeng and Richard C. Hendriks. Distributed Delay and Sum Beam-
former for Speech Enhancement via Randomized Gossip. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 22:1 (2014), 260–273.

doi: 10.1109/TASLP.2013.2290861 (see page 124).

[Zha+13] Zhongbao Zhang, Xiang Cheng, Sen Su, Yiwen Wang, Kai Shuang, and Yan

Luo. A unified enhanced particle swarm optimization-based virtual
network embedding algorithm. International Journal of Communication
Systems 26:8 (2013), 1054–1073. doi: https : / /doi .org/10 .1002/dac .1399.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.1399. url:

https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.1399 (see page 65).

[Zha+18] Jie Zhang, Sundeep Prabhakar Chepuri, Richard Christian Hendriks, and

RichardHeusdens.Microphone Subset Selection forMVDRBeamformer
Based Noise Reduction. IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing 26:3 (2018), 550–563. doi: 10.1109/TASLP.2017.2786544 (see

page 124).

[Zha+19] Jian Zhang, Yaozong Pan, Haitao Yang, and Yuqiang Fang. Scalable Deep
Multi-AgentReinforcement Learning viaObservationEmbedding and
Parameter Noise. IEEE Access 7 (2019), 54615–54622. doi: 10.1109/ACCESS.
2019.2913235 (see page 156).

[ZHH18] Jie Zhang, RichardHeusdens, and Richard ChristianHendriks.Rate-Distributed
Spatial Filtering Based Noise Reduction in Wireless Acoustic Sensor
Networks. IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing 26:11 (2018), 2015–2026. doi: 10.1109/TASLP.2018.2851157 (see page 124).

[ZMS20] Marco Zimmerling, Luca Mottola, and Silvia Santini. Synchronous Trans-
missions in Low-Power Wireless: A Survey of Communication Pro-
tocols and Network Services. ACM Comput. Surv. 53:6 (Dec. 2020). issn:
0360-0300. doi: 10.1145/3410159 (see page 100).

229

https://doi.org/10.1109/TNSM.2020.2971543
https://doi.org/10.1109/TNSM.2020.2971543
https://doi.org/10.1109/TASLP.2013.2290861
https://doi.org/https://doi.org/10.1002/dac.1399
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.1399
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.1399
https://doi.org/10.1109/TASLP.2017.2786544
https://doi.org/10.1109/ACCESS.2019.2913235
https://doi.org/10.1109/ACCESS.2019.2913235
https://doi.org/10.1109/TASLP.2018.2851157
https://doi.org/10.1145/3410159

12List of Publications

Articles in Refereed Conference Proceedings
[1] MARVELO:Wireless virtual network embedding for overlay graphs

with loops. In: 2018 IEEE Wireless Communications and Networking Con-
ference (WCNC). 2018, 1–6. doi: 10.1109/WCNC.2018.8377194. Joint work

with Sébastien Auroux and Holger Karl.

[2] Reinforcement Learning for Autonomous Vehicle Movements in
Wireless Sensor Networks. In: ICC 2021 - IEEE International Conference
on Communications. 2021, 1–6. doi: 10.1109/ICC42927.2021.9500318. Joint
work with Haitham Afifi, Arunselvan Ramaswamy, and Holger Karl.

[3] Reinforcement Learning for Autonomous Vehicle Movements in
Wireless Multimedia Applications. In: Pervasive and Mobile Computing.
submitted. 2022. Joint work with Haitham Afifi, Arunselvan Ramaswamy,

and Holger Karl.

[4] Reinforcement Learning-based Microphone Selection in Wireless
Acoustic Sensor Networks Considering Network and Acoustic Util-
ities. In: Speech Communication; 14th ITG Conference. 2021, 1–5. Joint work
with Michael Guenther, Andreas Brendel, Holger Karl, and Walter Keller-

mann.

[5] Sparse Adaptation of Distributed Blind Source Separation inAcous-
tic Sensor Networks. In: 2019 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA). 2019, 190–194. doi: 10.1109/
WASPAA.2019.8937194. Joint work with Michael Günther, Andreas Brendel,

Holger Karl, and Walter Kellermann.

[6] Network-Aware Optimal Microphone Channel Selection in Wire-
less Acoustic Sensor Networks. In: ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021, 820–
824. doi: 10.1109/ICASSP39728.2021.9414528. Joint work with Michael

Gunther, Andreas Brendel, Holger Karl, and Walter Kellermann.

231

https://doi.org/10.1109/WCNC.2018.8377194
https://doi.org/10.1109/ICC42927.2021.9500318
https://doi.org/10.1109/WASPAA.2019.8937194
https://doi.org/10.1109/WASPAA.2019.8937194
https://doi.org/10.1109/ICASSP39728.2021.9414528

[7] A Genetic Algorithm Framework for Solving Wireless Virtual Net-
work Embedding. In: 2019 International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob). 2019, 1–6. doi:
10 .1109/WiMOB.2019 .8923271. Joint work with Konrad Horbach and

Holger Karl.

[8] An Approximate Power Control Algorithm for a Multi-Cast Wire-
less Virtual Network Embedding. In: 2019 12th IFIP Wireless and Mobile
Networking Conference (WMNC). 2019, 95–102. doi: 10.23919/WMNC.2019.

8881324. Joint work with Holger Karl.

[9] Power allocation with a wireless multi-cast aware routing for vir-
tual network embedding. In: 2019 16th IEEE Annual Consumer Commu-
nications & Networking Conference (CCNC). IEEE. 2019, 1–4. Joint work
with Holger Karl.

[10] Reinforcement Learning for Virtual Network Embedding in Wire-
less Sensor Networks. In: 2020 16th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob). 2020,
123–128. doi: 10.1109/WiMob50308.2020.9253442. Joint work with Holger

Karl.

[11] Data-drivenTime Synchronization inWirelessMultimediaNetworks.
In: IWCMC 2022Multimedia Symposium (IWCMC 2022Multimedia). Dubrovnik,
Croatia, May 2022. Joint work with Holger Karl, Tobias Gburrek, and Joerg

Schmalenstroeer.

[12] A Reinforcement Learning QoI/QoS-Aware Approach in Acoustic
Sensor Networks. In: 2021 IEEE 18th Annual Consumer Communications
& Networking Conference (CCNC). 2021, 1–6. doi: 10.1109/CCNC49032.2021.
9369626. Joint work with Arunselvan Ramaswamy and Holger Karl.

[13] MARVELO - A Framework for Signal Processing inWireless Acous-
tic Sensor Networks. In: Speech Communication; 13th ITG-Symposium.

2018, 1–5. Joint work with Joerg Schmalenstroeer, Joerg Ullmann, Reinhold

Haeb-Umbach, and Holger Karl.

[14] Reinforcement Learning for Admission Control in Wireless Vir-
tual Network Embedding. In: vol. abs/2110.01262. 2021. arXiv: 2110 .
01262. url: https://arxiv.org/abs/2110.01262. Joint work with Fabian Sauer

and Holger Karl.

232

https://doi.org/10.1109/WiMOB.2019.8923271
https://doi.org/10.23919/WMNC.2019.8881324
https://doi.org/10.23919/WMNC.2019.8881324
https://doi.org/10.1109/WiMob50308.2020.9253442
https://doi.org/10.1109/CCNC49032.2021.9369626
https://doi.org/10.1109/CCNC49032.2021.9369626
https://arxiv.org/abs/2110.01262
https://arxiv.org/abs/2110.01262
https://arxiv.org/abs/2110.01262

Poster
[15] Acoustic signal extraction and enhancement over acoustic sensor

networks (Demo at ITG conference on Speech Communication). In:
ITG conference on Speech Communication. 2018. Joint work with Markus

Bachman and Andreas Brendel.

[16] Acquisition ofAsynchronousData andParameter Estimation based
onDouble-Cross-CorrelationProcessorwithPhaseTransform (Demo
at WASPAA 2021). In: IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics. 2021. Joint work with Aleksej Chinaev.

[17] A Rapid Prototyping for Wireless Virtual Network Embedding us-
ing MARVELO. In: 2019 IEEE Wireless Communications and Networking
Conference (WCNC) (IEEE WCNC 2019) (Demo). 2019. Joint work with Hol-

ger Karl, Sebastian Eikenberg, Arnold Mueller, Lars Gansel, Alexander

Makejkin, Kai Hannemann, and Rafael Schellenberg.

[18] Privacy-perversing Adversial Feature Extraction in Speaker Classi-
fication Tasks (Demo at WASPAA 2021). In: IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics. 2022. url: https://ruhr-uni-
bochum.sciebo.de/s/flwOSPlsp6fYAKi. Joint work with Alexander Nelus.

[19] Signal synchronization using online weighted average coherence
drift (Demo at IWAENC 2022). In: International Workshop on Acoustic
Signal Enhancement (IWAENC 2022). 2022. Joint work with Joerg Schmalen-

stoeer Tobias Gburrek.

[20] Distributed Processing Plattform for Wireless acoustic sensor net-
works (Demo at IWAENC 2022). In: IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics. 2022. Joint work with Tobias

Gburrek Teamproject 2019 and Joerg Schmalenstoeer.

233

https://ruhr-uni-bochum.sciebo.de/s/flwOSPlsp6fYAKi
https://ruhr-uni-bochum.sciebo.de/s/flwOSPlsp6fYAKi

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	I The Problem
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Overview

	2 Background
	2.1 Wireless Acoustic Sensor Networks
	2.1.1 Sensor Network Basics
	2.1.2 Acoustic applications
	2.1.3 Wireless Technology Specifications

	2.2 Wireless Medium Access Control Protocols
	2.2.1 Basics of Medium Access Control
	2.2.2 Contention-Based and Contention-Free Protocols

	2.3 Reinforcement Learning
	2.3.1 Model-Based and Model-Free Reinforcement Learning
	2.3.2 Value-Based and Policy-Based Reinforcement Learning
	2.3.3 Exploration and Exploitation
	2.3.4 Deep Q-Learning
	2.3.5 Multi-Objective Reinforcement Learning
	2.3.6 Constrained Reinforcement Learning

	II Wireless Virtual Network Embedding
	3 Optimization Problems for Resource Allocation
	3.1 Placement, Routing and Scheduling
	3.1.1 Optimisation Problem
	3.1.2 Objective
	3.1.3 A Backtrack Heuristic
	3.1.4 Evaluating Backtracking Heuristic

	3.2 Power Allocation
	3.2.1 Constraints
	3.2.2 Fixed vs. Flexible Power Results

	3.3 A Greedy Heuristic and Approximation Ratio
	3.3.1 Linearize Quadratic Power Constraint
	3.3.2 Greedy Heuristic
	3.3.3 Theoretical Analysis
	3.3.4 Evaluating the Greedy Heuristic and Estimating Symbol Error Rate

	3.4 Summary

	4 Meta-Heuristics for Resource Allocation
	4.1 Genetic Algorithm
	4.1.1 Chromosome
	4.1.2 Fitness Function
	4.1.3 New Generations and Selection
	4.1.4 Evaluation of Genetic Algorithms

	4.2 Reinforcement Learning for Placement
	4.2.1 States and Actions
	4.2.2 Reward Function
	4.2.3 Exploration Rate
	4.2.4 Evaluation of Reinforcement Learning for Placement

	4.3 Conclusion

	5 Admission Control for Incoming Jobs
	5.1 Problem formulation
	5.1.1 Virtual Network Requests
	5.1.2 Wireless Sensor Network
	5.1.3 Constraints
	5.1.4 VNE Heuristic Solution

	5.2 Reinforcement Learning
	5.2.1 Observation Space
	5.2.2 Action Space
	5.2.3 Reward Function

	5.3 Simulation Setup
	5.4 Simulation Results
	5.4.1 Duration Control Parameter
	5.4.2 Priority Control Parameter
	5.4.3 Maximum Trained Duration

	5.5 Summary

	6 Impact of MAC Protocols
	6.1 System Model
	6.1.1 CSMA/CA
	6.1.2 TDMA

	6.2 Environment setup
	6.3 Results
	6.3.1 Probability of collision
	6.3.2 CSMA/CA throughput
	6.3.3 TDMA throughput
	6.3.4 Comparison of CSMA/CA and TDMA throughput
	6.3.5 Throughput for unsaturated nodes

	6.4 Summary

	III Subset Selection of Jobs, Nodes and Moves
	7 Resource Allocation for Optional Jobs
	7.1 Problem Formulation
	7.2 Simulation Setup
	7.3 Results for Optional Block Selection
	7.4 Summary

	8 Sensor Selection in Acoustic Sensor Networks
	8.1 Microphone Selection for Stationary Speakers
	8.1.1 Network Cost Function
	8.1.2 Joint Optimization
	8.1.3 Experimental Evaluation

	8.2 Microphone Selection for Moving Speakers
	8.2.1 Problem Definition
	8.2.2 Reinforcement Learning Solution
	8.2.3 Experimental Evaluation

	8.3 Minimizing Rate of Changing the Selection
	8.3.1 Problem Formulation
	8.3.2 Reinforcement Learning Formulation
	8.3.3 Evaluation

	8.4 Conclusion

	9 Movement Selection in Dynamic Environment
	9.1 Problem Formulation
	9.1.1 Speaker
	9.1.2 Microphones and acoustic quality
	9.1.3 Wireless data transport
	9.1.4 Utility

	9.2 Centralized Deep Reinforcement Learning Solution
	9.3 Multi-agent DeepRL Solution
	9.4 Practical Baseline Solutions
	9.5 Experimental Results
	9.5.1 Convergence of training: Temporal Difference
	9.5.2 Performance of centralized RL vs. baselines
	9.5.3 Performance of centralized RL vs. heuristics
	9.5.4 Performance for Varying Vehicle Speeds for Centralized RL
	9.5.5 Changing the Microphone Speeds for Multi-agent RL
	9.5.6 Single- vs. Multi-agent RL
	9.5.7 Up-scaling with multi-agent RL

	9.6 Theoretical Discussion
	9.6.1 Impact of Environment Setup on the deepRL Training
	9.6.2 Heuristic Sub-optimality

	9.7 Summary

	IV Proof of Concept
	10 Framework for In-network Processing
	10.1 Framework Overview
	10.1.1 Client
	10.1.2 Server
	10.1.3 Jobs
	10.1.4 Pipes

	10.2 Implementation
	10.2.1 Attributes and Features
	10.2.2 Job Placement and Redistribution
	10.2.3 Job Synchronization

	10.3 Show Cases
	10.3.1 Job Distribution
	10.3.2 Failover in Wireless Distributed Computing

	11 Case Studies
	11.1 System Model
	11.1.1 Cocktail Party Application
	11.1.2 Synchronization

	11.2 Experiment Setup
	11.3 Results
	11.3.1 Wireless Network Delay
	11.3.2 End-to-End Delay

	11.4 Conclusion

	12 Conclusions & Outlook
	Appendices
	A CSMA/CA: Channel vs. Node Throughput
	Bibliography
	List of Publications

