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Summary

Leaf senescence is an active process required for plant survival, and it is flexibly controlled,
allowing plant adaptation to environmental conditions. Although senescence is largely an
age-dependent process, it can be triggered by environmental signals and stresses. Leaf
senescence coordinates the breakdown and turnover of many cellular components, allowing
a massive remobilization and recycling of nutrients from senescing tissues to other organs
(e.g., young leaves, roots, and seeds), thus enhancing the fitness of the plant. Such metabolic
coordination requires a tight regulation of gene expression. One important mechanism for
the regulation of gene expression is at the transcriptional level via transcription factors (TFs).
The NAC TF family (NAM, ATAF, CUC) includes various members that show elevated
expression during senescence, including ORE1 (ANAC092/AtNAC2) among others. ORE]
was first reported in a screen for mutants with delayed senescence (oresaral, 2, 3, and 11).
It was named after the Korean word “oresara,” meaning “long-living,” and abbreviated to
OREI, 2, 3, and 11, respectively. Although the pivotal role of OREI in controlling leaf
senescence has recently been demonstrated, the underlying molecular mechanisms and the
pathways it regulates are still poorly understood.

To unravel the signaling cascade through which ORE1 exerts its function, we analyzed
particular features of regulatory pathways up-stream and down-stream of ORE1. We
identified characteristic spatial and temporal expression patterns of OREI1 that are
conserved in Arabidopsis thaliana and Nicotiana tabacum and that link ORE1 expression
to senescence as well as to salt stress. We proved that ORE1 positively regulates natural
and dark-induced senescence. Molecular characterization of the OREI promoter in silico
and experimentally suggested a role of the 5’UTR in mediating OREI expression. ORE1
is a putative substrate of a calcium-dependent protein kinase named CKOR (unpublished
data). Promising data revealed a positive regulation of putative ORE1 targets by CKOR,
suggesting the phosphorylation of ORE1 as a requirement for its regulation. Additionally,
as part of the ORE ] up-stream regulatory pathway, we identified the NAC TF ATAF1 which
was able to transactivate the ORE promoter in vivo. Expression studies using chemically
inducible ORE overexpression lines and transactivation assays employing leaf mesophyll
cell protoplasts provided information on target genes whose expression was rapidly induced
upon ORE] induction. First, a set of target genes was established and referred to as early
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responding in the ORE1 regulatory network. The consensus binding site (BS) of ORE1
was characterized. Analysis of some putative targets revealed the presence of ORE! BSs
in their promoters and the in vitro and in vivo binding of ORE] to their promoters. Among
these putative target genes, BIFUNCTIONAL NUCLEASE I (BFNI) and VND-Interacting?2
(VNI2) were further characterized. The expression of BFNI was found to be dependent on
the presence of ORE. Our results provide convincing data which support a role for BFNI
as a direct target of ORE1. Characterization of VNI2 in age-dependent and stress-induced
senescence revealed OREI as a key up-stream regulator since it can bind and activate VNI2
expression in vivo and in vitro. Furthermore, VNI2 was able to promote or delay senescence
depending on the presence of an activation domain located in its C-terminal region. The
plasticity of this gene might include alternative splicing (AS) to regulate its function in
different organs and at different developmental stages, particularly during senescence. A

model is proposed on the molecular mechanism governing the dual role of VNI2 during
senescence.
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Chapter 1

Introduction

1.1. General concepts of plant senescence and its regulation

The process of aging and senescence in humans and plants has been the focus of major
studies for a long time (Breeze et al., 2011; Howard et al., 2009; Kirkwood and Austad,
2000; Lim et al., 2007; Thomas 2002). A primary motivation for this is to understand what
controls the decline of tissue and organ functionality and reproduction ability when higher
organisms age, and which factors determine the length of life. Certainly, both aspects have
a broad spectrum of explanations ranging from an inherent genetic control present in each
organism to external factors such as environmental conditions and natural selection. In the
following, I will give an overview of current knowledge with respect to the physiological
process of senescence in plants.

Two major theories of senescence are currently acknowledged and have been developed
mainly in the animal field: the antagonistic pleiotropic theory and the mutation accumulation
theory. Both theories suggest that two classes of mutations are responsible for senescence:
those with beneficial early-life, but deleterious late-life effects; and late-acting mutations
with purely deleterious effects (Jing et al., 2007; Kirkwood and Austad, 2000). In animals
and yeast, those theories have been well demonstrated based on physiological and molecular
studies on individuals at the population and species levels (Kirkwood and Cremer, 1982;
Williams, 1957). Plants exhibit modular growth, exposes a propensity for vegetative
reproduction, and can begin senescence in one or more organs at different times throughout
the life-span of the plant. Without doubt, senescence in plants exposes particular features that
do not fit well into these theories (Bleecker, 1998). In an effort to reconcile the theories about
animals with plants, some authors have proposed to scale them down and treat an individual
leaf as an autonomous entity (Thomas, 2002). I agree with the concept that has already
been exposed by different authors in which leaf senescence is conceived as a detrimental
consequence of an indirect selection for traits that favor nutrient salvage, remobilization,
and reassimilation to optimize the plant genome for reproduction (Bleecker, 1998; Jing et
al., 2007). This highly regulated and orderly process controls an efficient redistribution of
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valuable resources (especially nitrogen and carbon) to other developing organs (Bleecker,
1998; Breeze et al., 2011; Buchanan-Wollaston 1997; Gan and Amasino, 1997).

The concepts described above are complemented by the fact that leaf senescence can be
influenced by hormonal and developmental processes and is fuelled by experimental and
modeling assays in which a differential expression of genes is evident among the whole
process (Buchanan-Wollaston, 1997; Pontier et al., 1999). Despite the fact that plants
suffer drastic ultrastructural changes during the breakdown of chloroplasts, a decrease of
cytoplasmic volume and ribosomes, and the dismantling of various organelles, other cellular
entities remain largely intact initially to guarantee effective gene expression and energy
production during the senescence process. Thus, the plasma membrane, mitochondria, and
the nucleus remain intact until the latest senescence stages (Gan and Amasino, 1997). Apart
from environmental nutrition deficiency and other stresses, plants ultimately initiate and
progress leaf senescence in an independent manner. Arabidopsis thaliana is a monocarpic
model plant, in which senescence is controlled by the reproductive structures. The seeds
are being produced while the plant starts to senescence, reusing the storage nutrients from
photosynthetic tissues (Gan and Amasino, 1997).

During the reassimilation and dismantling process, plants exhibit a strong biochemical
activity to degrade most of the macromolecules such as chlorophyll, proteins, and lipids.
Later, different strategies are used to modulate the progression of senescence, like hormonal
changes and redistribution of the metabolic flux, particularly with respect to nitrogen and
sugars (Lim ef al., 2003; Liu et al., 2008; Noodén and Guiamet 1996; Otegui et al., 2005;
Quirino et al., 2000).

Following this line of argument, the functional characterization of senescence-regulatory
networks and their underlying genes represents an appropriate way to further discern the
ongoing processes during senescence. In addition, such an approach will allow studying
senescence from a cross-kingdom phylogenetic view and will likely add to our understanding
of the evolutionary paths through which senescence developed.

1.2. Dismantling of chloroplasts

Chloroplasts break down early during the senescence process, prior to the loss of
mitochondria and nuclei (Lim et al., 2007), and concomitantly undergo a progressive
decrease in photosynthetic rate. The major fraction of nitrogen (70-90%) exported from
senescent leaves comes from the degradation of Rubisco, light-harvesting chlorophyll a/b-
binding proteins, and proteins from Photosystem II (PSII) and Photosystem I (PSI) which
are located in the stroma and thylakoid membranes (Morita, 1980). During chloroplast
formation in young, growing leaves, pigments and proteins are assembled as active and
interacting complexes; therefore, the dismantling of these complexes during senescence

2
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is a prerequisite for the enzymatic degradation of the individual components. A series of
characteristic events can be observed during senescence using electron microscopy, x-ray
diffraction, and immunological and fluorescence techniques (Barton, 1966; Biswal et al.,
2003; Freeman et al., 1978; Hurkman, 1979; Sundqvist and Dahlin, 1997; Suzuki et al.,
1997). One of the earliest changes is the disappearance of stacked grana regions followed
by the elongation of lamellae. This distension is followed by massive degradation with a
concomitant increase in the number and size of lipid droplets called plastoglobules and a
swelling of the intrathylakoid space (Baker, 1992; Biswal, 1995; Biswal and Biswal, 1984;
Matile et al., 1999; Roberts et al., 2003).

Recently, it was shown that chloroplasts remain outside of the vacuole, even at late stages of
senescence, while the thylakoid membranes are internally dismantled. As thylakoids were
dismantled, Rubisco large subunit protein (Lhcb1) and chloroplast DNA levels declined, but
variable levels of mRNA persisted. This observation demonstrates that even though certain
plastid components are degraded in the vacuole, the whole chloroplast was not transported
into the vacuole for degradation, as suggested in previous studies (Evans et al., 2009;
Minamikawa et al., 2001; Wittenbach et al., 1982).

1.2.1. Control of chlorophyll catabolism

During autumn, it is common to see beautifully colored leaves. This is a result of the
action of the catabolic pathway of chlorophyll (Chl), combined with the partial retention
of carotenoids, and the accumulation and unmasking of colorless breakdown products
with newly synthesized red anthocyanins and dark-colored oxidation products of phenolic
compounds. Nevertheless, some authors propose that the removal of greenness in leaves has
been underestimated, even though it is catalogued as the simplest and most easily measured
index of leaf senescence syndrome (Thomas, 1997). Evidence indicates that the physiological
pathway of yellowing is a robust and consistent component of the senescence syndrome
and justifies its study in isolated organs and tissues in the plant (Ougham et al., 2008).
Chlorophyll degradation is a symptom of the transition of chloroplasts to gerontoplasts. A
gerontoplast is defined as a distinctive senescence-specific form of plastids and is entirely
catabolic. Developing gerontoplasts persist and remain intact throughout leaf senescence
(Baker, 1992; Parthier, 1988). As leaf senescence proceeds, chlorophyll (Chl) levels decrease
and photochemical efficiency of photosystem II and Rubisco protein levels decline (Evans
et al., 2009). Pathogen attack, as well as other biotic or abiotic stresses, can also accelerate
premature leaf senescence and color change. Nevertheless, this pathological degreening has
only a superficial resemblance to true senescence, proposed by some authors as “pseudo-
senescence”. According to these authors, pseudo-senescence differs from the senescence in
its genetic and biochemical components. Furthermore, it seems that senescence maintains
viability in tissues that would otherwise rapidly divert into the pseudosenescence pathway
and, therfore, avoid premature cell death (Ougham et al., 2008).

3
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The catabolic pathway of chlorophyll (Chl) during senescence and fruit ripening leads to
the accumulation of colorless breakdown products so called non-fluorescent chlorophyll
catabolites (NCCs) (Hortensteiner, 2006). During catabolism, chlorophyll follows a route
that initiates when chlorophyll is separated from the binding proteins within the thylakoid
membranes (Ougham et al., 2008). In the first proposed pathway, the chlorophyllase enzyme
(Chlase) hydrolyses the ester linkage of the phytol chain to the porphyrin macrocycle of
chlorophyll (Jacob-Wilk et al., 1999; Matile et al., 1999; Tsuchiya et al., 1999), releasing
phytol and chlorophyllide. In a second step, magnesium dechelatase removes the Mg**
ion from the tetrapyrrole, converting chlorophyllide to the chlorin molecule pheophorbide
(Pheide a) (Shioi et al., 1996). Chlorophyll and its immediate catabolites are colored and
strongly excited by ambient light. Thus, the catabolic route is organized in a way to avoid
photodynamic damage by free pigments. The opening of the tetrapyrrole ring is a two-stage
reaction which is catalyzed by PaO (Phaephorbide a oxygenase) and adds oxygen across the
methine bridge between rings A and B (Hortensteiner, 2006). A metal chelating substance
(MCS) has been shown to be required for the activity of magnesium dechelatase (Tadashi,
2005). This pathway avoids the risk of photodamage, and the green color disappears when
PaO opens the macrocycle of Pheide a (Rodoni ez al., 1997) and the red chlorophyll catabolite
(RCC), a photoactive red pigment, appears (Ougham et al., 2008). Immediately after this
reaction, the RCC reductase abolished the photodynamic properties of RCC, resulting in
the production of the colorless fluorescent Chl catabolite (pFCC) (Ougham et al., 2008;
Schenk et al., 2007). The colorless linear product is exported from the plastid and in different
ways depending on the plant species, may conjugate in the cytosol before being transported
into the cell vacuole where the final chemical modification may take place (Hortensteiner,
2006; Kréautler and Hortensteiner, 2006; Tanaka and Tanaka, 2006). However, evidence
inconsistent with this model has been presented by other authors. AtCLHI and AtCLH?2 are
the only two Chlase genes reported in Arabidopsis, and it has been shown that (i) neither
of these isoforms is localized to plastids, (ii) double knockout mutant plants are still able to
degrade chlorophyll during leaf senescence (Schenk et al., 2007), (iii) their activity could
be detected prior to the onset of senescence (Benedetti and Arruda, 2002), and (iv) increases
in Chl synthesis are also accompanied by increases in Chlase activity (Roca and Minguez-
Mosquera, 2003). This inconsistence generated an alternative description of the pathway
during senescence. This model postulates that the removal of Mg* to form pheophytin
occurs first and is followed by the removal of the phytol tail, catalyzed by pheophytinase
(PPH) without a direct interaction with chlorophyll. This perspective generated the idea that
chlorophyll synthesis and breakdown are metabolically separated during leaf senescence,
and a careful revision of proposed pathway, as well as new experiments, are suggested to
clarify the pathway of chlorophyll degradation during leaf senescence (Eckardt, 2009).

As a final step, the nonfluorescent chlorophyll catabolites (NCCs) produced during the
opening of Chl macrocycles are deposited into the vacuole with any recycling of the nitrogen

contained within them (Hinder ef al., 1996; Tommasini et al., 1998). This presupposes that
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degradation is required in principle to facilitate access to more valuable materials present
in thylakoid proteins and lipids and to detoxify the cell of these highly reactive compounds,
maintaining the viability of the cell during the process and not a nutrient salvage (Buchanan-
Wollaston et al., 2003; Matile et al., 1999).

1.2.2. Chloroplast protein loss

Protein metabolism guarantees normal development and homeostasis in a plant cell. This
complex process involves a broad spectrum of enzymes and manifold proteolytic pathways
localized in different subcellular compartments (Grudkowska and Zagdanska, 2004; Vierstra
1996). Nitrogen exists mainly in chlorophyll and proteins. More than 75% of leaf protein is
located within the chloroplast (Feller et al., 2008a). Rubisco is the most abundant protein on
earth and contributes up to 50% of the soluble proteins and up to 30% of total leaf nitrogen in
leaves of C3 plants (Ellis, 1979; Feller et al., 2008b). Some plant species are able to complete
a life-cycle based on the initial supply of nitrogen during young developmental stages and
eventually achieve good seed production. The most fundamental process in N-reabsorption is
degradation of proteins, and its efficiency is close to 90%, thus being one of the most efficient
of all metabolic pathways (Himelblau and Amasino, 2001; Mei and Thimann, 1984).

Many genes involved in protein turnover, such as proteases (e.g. cysteine and aspartic proteases)
(Woo et al., 2004) and protein kinases, are significantly upregulated during senescence
(Buchanan-Wollaston et al., 2005). All of the amino acids derived from protein catabolism
during senescence may be redistributed within the plant via the phloem and serve as basis/raw
materials for protein synthesis in other organs of the plant. During senescence, a preferential
expression of a specific set of “senescence-associated genes” (SAGs) has been reported, and
based on the functional classes involved, there are three principal pathways that might regulate
protein degradation: the ubiquitin/proteasome system; the chloroplast degradation pathway;
and the vacuolar and autophagic (APG) pathway (Liu et al., 2008).

In the ubiquitin/proteasome pathway, the covalent attachment of the 76-amino acid protein
ubiquitin is used as a signal to target specific proteins for degradation by the 26S proteasome
(Smalle and Vierstra, 2004). The principal enzymes involved are an ubiquitin-activating
enzyme (El), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3). Expression
profile analysis during leaf senescence in Arabidopsis revealed a large number of genes of the
ubiquitin-26S proteasome pathway, suggesting that ubiquitin-dependent proteolysis might
be an important step in protein degradation outside the chloroplast (Park et al., 1998). It has
been shown that UBQ3 and UBQ4 are the predominant polyubiquitin genes up regulated,
while other ubiquitin-related protein genes are also highly represented (Lin and Wu, 2004).

Proteolysis of chloroplast proteins (Chlp) takes place during the transition from proplastid
to plastid, or during senescence (Adam, 1996). Proteases localized to the stroma, the
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thylakoid membrane, and the thylakoid lumen have been described (Adam et al., 2001).
The Arabidopsis genome contains at least 23 genes predicted to encode Chlp proteases
located in the stroma, and most of them have been described during leaf senescence (Adam
et al., 2001; Adam and Clarke, 2002; Gottesman, 1996; Liu et al., 2008; Sakamoto, 2006).
Nevertheless, degradation of the light-harvesting complex of Photosystem II (LHCII) is still
poorly characterized, and the protease/proteases involved, as well as their exact role, remain
to be uncovered (Liu et al., 2008).

The autophagy (APG) pathway is a catabolic process that allows recycling of cytoplasmic
components (including organelles) into monomers and is the last proposed pathway of protein
degradation. Through this pathway, protein degradation occurs via micro or macroautophagy.
In microautophagy, targeted cytosolic components are enclosed in lysosomal or vacuolar
membranes via invagination (Klionsky and Ohsumi, 1999; Mukaiyama et al., 2002). By
contrast, macroautophagy takes place in the cytoplasm and is initiated with the generation of
membranes that can eventually fuse and form autophagosomes in which enclosed material
can be transported into the vacuoles and degraded by vacuolar exo- and endoproteases, such
as cysteine proteinase (S4G12), aspartic proteinase, serine proteinase, and other peptidases
which are well documented during leaf senescence (Buchanan-Wollaston, et al., 2003;
Buchanan-Wollaston, et al., 2005; Klionsky and Ohsumi, 1999; Lin and Wu, 2004). Recently,
it has been reported that autophagosome formation requires essentially two ubiquitin-like
proteins, ATG8 and ATG12, which conjugate with phosphatidylethanolamine (PE) and ATGS,
respectively, forming ATG8-PE and ATG12-ATGS5 complexes in higher eukaryotes (Geng
and Klionsky, 2008). Other studies in wheat, soybean, tobacco, and Arabidopsis revealed
the presences of vesicles in the cytoplasm that include Rubisco and/or Rubisco degradation
products and other stromal proteins, and also small senescence-associated vacuoles involved
in the degradation of chloroplast proteins (Chiba ef al., 2003; Martinez et al., 2008).

1.2.3. Degradation of membrane components and lipid breakdown

In plants, like in other eukaryotes, lipids are used for membrane biogenesis, in molecular
signaling, as a source of energy, and as a protective layer that does not permit desiccation
and infection. The chloroplast and other organelles present in plant cells have the capacity
to synthetize fatty acids and confer to plants not only a different lipid composition, but also
a different metabolic pathway when compared to animal cells. Contrary to animal lipid
bilayers, chloroplast and other plastids are largely composed of galactolipids, rather than
phospholipids, as the predominant lipids in green tissues. The thylakoid membrane system is
mainly composed of phosphatidylglycerols, whereas most of the limited phosphatidylcholine
in chloroplasts is associated with their outer membrane (Cullis ef al., 1996). These fatty
acids cannot be transported for long distances in the plant; due to this, the only way to use
them as a practical carbon reserve for growing tissues is through the conversion of acetyl-
CoA to sucrose by beta-oxidation. The content of fatty acids in green leaves represents
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around 5% of their dry weight and 10% of the total energy (Nishimura ef al., 1993; Schmid
and Ohlrogge, 2002).

It has been reported that the levels of monogalactosyl diglyceride, digalactosyl diglyceride,
and phospholipid phosphatidylglycerol decline at the onset of leaf senescence accompanied
by a progressive decrease as senescence advances. In contrast, waxes present in Arabidopsis
leaves exhibited only a minor reduction during senescence (Ferguson and Simon, 1973; Fong
and Heath, 1977; Harwood et al., 1982; Koiwai et al., 1981; Wanner et al., 1991; Yamauchi
et al., 1986). Active metabolism of fatty acids is a typical feature of seed germination
and seedling growth. In addition, the process is also necessary during senescence to
guarantee the flux of stored carbon from leaves to other developing organs like seeds,
and to eliminate negative effects of free fatty acids after the hydrolysis of lipids (Graham,
2008). Membrane disruption has been proposed to be a key event in plant senescence.
One of the most characteristic features in membrane deterioration is a progressive decline
of phospholipid levels with a relative enrichment of free fatty acids and sterols in the
membranes, accompanied by an increase in the level of different enzymes (McKersie and
Thompson, 1978; Thompson et al., 1982).

It is well documented that leaf peroxisomes are transformed directly to glyoxysomes during
senescence (Nishimura et al.,, 1993). The peroxisome of senescent leaves metabolize the
fatty acids after hydrolysis by the B-oxidation pathway (Gerhardt, 1992). Lipid-degrading
enzymes, such as phospholipase D (PLD), phosphatidic acid phosphatase, lipolytic acyl
hydrolase, and lipoxygenase, constitute the first degradation machinery of membrane
phospholipids (Thompson et al., 1998). Some of the products from lipid catabolism may
serve as substrates for other reactions; this is the case for free linoleic acid that is released
during membrane lipid degradation and later used for jasmonic acid biosynthesis (Creelman
and Mullet, 1997).

When lipid-degrading enzymes degrade membrane phospholipids and release free fatty
acids, the bilayer structure of the membrane is perturbed. This facilitates the action of other
lipid-degrading enzymes like SAG101 acyl hydrolase, which was proposed to be one of
the key enzymes during the onset of leaf senescence (Thompson et al., 1998; Yang and
Ohlrogge, 2009). In addition, some authors have suggested an additional nonenzymatic
oxidation pathway that includes an autoxidation due to reactive oxygen species, such as
superoxide anion, hydrogen peroxide, and hydroxyl radical (Fong and Heath, 1977; Paliyath
and Droillard, 1992; Thompson et al., 1998). Finally, plants can use the fatty acids from this
step of lipid degradation to obtain energy by oxidation of the fatty acids. The glyoxylate
cycle produces succinate and malate. These are converted to oxaloacetate, which then enters
into the gluconeogenesis pathway to produce sugars and, ultimately, sucrose. This final
product can then be transported by the phloem to other plant organs (Buchanan-Wollaston,
1997; Smart, 1994).



Lilian Paola Matallana-Ramirez

1.3. Integration of hormonal changes during leaf senescence

Senescence of different organs in the plant can be regulated by external and internal
factors. Internal factors influencing senescence include the developmental stage as well as
endogenous levels of phytohormones and other growth substances. These factors may act
individually or in concert (He et al., 2001). In general phytohormones are able to promote
or repress the senescence process. Cytokinin, auxin, gibberellic acid (GA), and polyamines
are considered to delay senescence, whereas ethylene, abscisic acid (ABA), jasmonic acid
(JA) and its derivative methyl jasmonate (MeJA), salicylic acid (SA), and brassinosteroids
(BRs) are thought to be involved in its induction. Published data show an overlap between
different hormone signaling pathways during normal plant development and in response to
different abiotic and biotic stresses, making the study a real complex task (Lim ez al., 2001).
Research on phytohormones and their influence on plant senescence is normally based on
the external application of the hormone, the measurement of endogenous levels before and
after the onset of senescence, and finally, molecular analysis in which modification of the
phytohormone levels in specific organs is measured in mutants or transgenic lines. A vast
amount of documentation is available on the effects of plant hormones during senescence. In
the following, I present a brief overview of the documentation and try to highlight important
findings regarding hormonal effects on senescence.

1.3.1. Hormones promoting senescence

A correlation between ethylene production and leaf senescence has been reported in several
plant species. An increase in the level of ethylene promotes senescence and some of its specific
components, such as the degradation of chlorophyll, proteins, and other macromolecules, a
rise in the expression of different senescence associated genes (SAGs), and the enhancement
of catabolic enzyme activities (Mattoo and Aharoni, 1988). Molecular analysis of the ethylene
perception and signal transduction mutants etr/ and ein2 revealed an increase of the lifespan
as a consequence of a delay in the onset of senescence (Aeong Oh et al., 1997; Grbic and
Bleecker, 1995). Nevertheless, some authors have pointed out that ethylene, itself, is neither
necessary nor sufficient for promoting leaf senescence in some species such as Arabidopsis.
Furthermore, this hormone may promote senescence only in mature or old leaves, and in
comparison to floral organs or fruits, its effect on leaves is considerably less pronounced
(Grbic and Bleecker, 1995).

The second plant hormone responsible for the promotion of senescence is JA. Some studies
of wild type Arabidopsis plants revealed that the exogenous application of this phytohormone
might induce premature senescence in attached and detached leaves, but its exogenous
application to mutant coil plants could not induce premature senescence, suggesting the
importance of the complete signaling pathway to promote leaf senescence (He et al., 2002).
Transcriptional analysis revealed an upregulation of genes involved in JA biosynthesis during
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leaf senescence; but even when plants underproduce JA (in the case of JA mutants), there
is no significant retardation in leaf senescence, and this hormone pathway probably plays
just a secondary role or complements other signaling pathways during senescence (Gan and
Amasino, 1997; Harms et al., 1995).

SA is another hormone involved in plant senescence. Its role in the process has recently
been documented. SA plays a role in the initiation of senescence and may share the same
pathway as stress responsive genes. The endogenous levels of SA increase in parallel with
the progression of senescence, and Arabidopsis plants with a deficiency of SA exhibit a
retardation of senescence and changes in SAG expression (Abreu and Munné-Bosch, 2008;
Morris et al., 2000).

The last two plant hormones involved in the promotion of senescence are brassinosteorids
(BRs) and abscisic acid (ABA). Despite evidence for a positive influence on the progression
of senescence, their specific roles are still unclear. In the case of BRs, there is evidence for the
induction of senescence by external application of 24-epibrassinolide (eBR). Furthermore,
Arabidopsis mutants which lack BR, such as det2 or bril, show a leaf senescence phenotype
(Bishop and Koncz, 2002; Clouse, 1997; Clouse et al., 1996). In addition, reactive oxygen
species (ROS) signaling may have links with the BR signaling pathway, and through this,
may mediate BR-induced senescence.

1.3.2. Hormones delaying senescence

Cytokinins have the strongest effect on the longevity of plant organs, and their impact in
delaying senescence is one of the most documented topics in plant physiology (McCabe
et al., 2001; Richmond and Lang, 1957). Modifications in cytokinin biosynthesis allowed
detection of a delay of senescence in different plant organs and a significant increase in plant
productivity (Gan and Amasino, 1995; Nelson, 1988), whereas reduction of the endogenous
levels resulted in an acceleration of the process (Masferrer et al., 2002). There is an inverse
correlation between the endogenous cytokinin levels and senescence progression. Mutants
carrying defects in the cytokinin biosynthesis pathway gave strong evidence of its effect in
the retardation of senescence (Gan and Amasino, 1996). Due to the fact that cytokinins are
implicated in a wide range of physiological processes in plants and are often influenced by
developmental processes of other organs/tissues, the effect of this phytohormone depends on
several external and internal factors and varies under different experimental conditions (Gan
and Amasino, 1995; Gan and Amasino, 1996).

Auxins are the second group of plant hormones involved in the retardation of senescence;
external application of the hormone delays senescence, and a negative correlation exists
between the endogenous auxin levels and the degree of leaf senescence. Some of the
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senescence features, like chlorophyll loss and protein degradation, were established by the
application of either synthetic or natural auxins (Noodén and Leopold, 1988). A more recent
study finds that overexpression of the Arabidopsis thaliana YUCCAG6 gene, which encodes a
member of the flavin monooxygenase protein family that limits de novo auxin biosynthesis,
exhibits the classic delayed, dark-induced and hormone-induced senescence in detached
rosette leaves, as showed the mutant (Kim et al., 2011).

The effects of gibberellins on natural senescence, and their relationship with senescence,
are not fully understood. Experimental data suggested that GAs are able to inhibit mitotic
and postmitotic senescence in pea apical buds (Zhu and Davies, 1997), and postmitotic leaf
senescence in many other plant species. The mitotic, or proliferative senescence is defined
when germline-like meristem cells lose their ability to undergo mitotic cell division. In
contrast, the postmitotic senescence refers to an active degenerative process that occurs
in organs such as leaves and floral petals (Gan, 2003).The increase in GAs by external
application inhibits the degradation of chlorophyll, proteins, and/or nucleic acids in leaves
(Noodén and Leopold, 1988). Among different kinds of gibberellins, GA4 has a strong effect
in delaying leaf senescence in different species (Gan, 2010; Kappers et al., 1998; Ranwala
and Miller, 2000). Like other groups of hormones, the effect of GAs is highly dependant on
many internal and external factors as well as the species being used for the study.

1.4. Abiotic and biotic stresses

Leaf longevity and abiotic stress are closely related terms, and strong evidence supports
the model that both physiological plant traits are regulated by a partially overlapping set of
complex molecular networks (Buchanan-Wollaston ef al., 2005; Breeze et al., 2011). Stress
is generally understood as the reaction of a biological system to extreme environmental
factors that, depending on intensity and duration, may cause significant changes in the
system (Godbold, 1998; Orcutt and Hale, 2000). Favorable or disadvantageous factors press
the plants throughout their entire life. Plants are sessile organisms and cannot move away
from adverse environmental conditions or perturbations. To compensate for this deficiency,
plants have developed a variety of molecular strategies against biotic and abiotic stresses.
According to this idea, each organism displays a specific genetic tolerance to a specific stress.
The definition of stress is present in the cases where external changes exceed this tolerance,
and plants must not only change their metabolism but also lose the equilibrium. Thus, the
normal energy consumption, growth, development, and productivity are affected and finally
cause bodily injury, disease, or aberrant physiology (Gaspar et al., 2002; Mandre, 2002).
Those biotic stressors are concerned with the mechanism of interaction between different
species like in the case of diseases and herbivores; these are of particular interest to forest
and agricultural systems (Orcutt and Hale, 2000). Abiotic stressors may be of physical or
chemical character and include stresses associated with temperature, salinity, and drought,
and they may act alone or in combination. (Mandre, 2002; Orcutt and Hale, 2000).
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Various gene expression-profiling studies revealed that many genes encoding NAC
transcription factors are induced during both natural and abiotic stress-induced senescence
(Buchanan-Wollaston, 1997; Olsen et al., 2005; Uauy et al., 2006; Yang et al., 2001,
2003; Balazadeh et al., 2008b). Therefore, the functional characterization of senescence-
associated NAC transcription factors may provide important information with respect
to understanding senescence-regulatory pathways and their overlap with stress-response
signaling pathways.

1.5. Regulation of gene expression: the role of transcription factors

The development of any organism depends on proper coordination of gene expression. The
genetic information encoded in the DNA must first be converted into mRNA through the
action of RNA polymerase II in a process called transcription; subsequently, the produced
transcript serves as a template for the generation of a specific protein through translation.
RNA polymerase II cannot bind directly to promoters and initiate transcription itself.
Therefore, one of the most important points in this mechanism is the regulation of gene
transcription via transcription factors (TFs). TFs are a very broad category of DNA binding
proteins with a positive (activation) or negative (repression) effect on transcription. The
central role of transcription in the process of gene expression is exemplified by general
transcription factors (GTFs), such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, present
in eukaryotes. These are necessary not only for control in a large-scale regulation of different
genes, but also for the initiation of transcription itself (Facciotti et al., 2007). A key challenge
in genetic research is to understand how TFs bind the correct DNA sequence to control
gene expression. Transcription establishes a control point for regulating gene expression and
gives the ability to perform different functions by generating alternative splicing of the same
transcript. Several factors are required to locate and orient the RNA polymerase correctly,
and each is given by different time-specific molecular events at the end the expression of
a gene. In addition to the GTFs, recognition and response to regulatory signals requires
promoter-regulatory sequences (cis-regulatory elements). The specific recognition of a cis-
element is given by the conformation and three-dimensional structure of the TF, allowing its
DNA to bind. A multiprotein complex called transcriptional mediator, or mediator complex,
is required to transmit signals from transcription factors to the RNA polymerase II initiation
complex (Fig. 1) (Latchman, 2008).
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Figure 1. Schematic view of the molecular events in the expression of a gene. (1) Transduction of signals from the cell
surface to the nucleus. (2) Beads on a string form of chromatin. (3) Nucleosome disassembly by SWI/SNF complexes
and histone chaperones. (4) In combination with general transcription factors, RNA polymerase II forms the preinitiation
complex (PIC). This complex is assembled at the core promoter region and is able to initiate transcription. The core promoter
is the minimal promoter (approximately 34 bp up-stream of the start codon) which is required for transcription initiation.
It is form by TBP (TATA binding protein), some activators (as TF), and some coactivators. Those factors are required to
transmit regulatory signals from transcription factors to the RNA pol II. In addition to promoters, other regulatory regions,
such as enhancers, may be required for full expression. (5) Gene transcription by RNA polymerase 11.

TF families are classified based on structural similarities. The PInTFDB (Plant
Transcription Factor Database) reports 2657 protein models and 2451 distinct protein
sequences of Arabidopsis thaliana arranged in 81 gene families (Pérez-Rodriguez et al.,
2010). Classification of those TFs is given on the basis of sequence similarities, most
often in the DNA-binding domain (DBD) (Guo et al., 2005). Within families, the members
are similar to each other only in their DNA-binding. The names of the DBDs (e.g., AP2/
ERF or EREBP, WRKY, NAC) are also used as the names of the transcription factor
families. Frequently, the same family binds DNA in a sequence-specific manner, and this
region is highly conserved. In contrast, the transcription regulatory domain (TRD) has
been classified according to its amino acid profile, i.e., as acidic, glutamine-, proline- or
serine/threonine-rich, and exhibits protein segments that determine the three-dimensional
structure of the TF with a relative flexibility (Luscombe and Thornton, 2002; Skriver et al.,
2010; Tompa, 2005). The NAC transcription factors, along with the MYB, AP2/EREBP,
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and bHLH proteins, are the largest families of transcription factors in the plant kingdom
(Riechmann et al., 2000). The specificity of the DNA-binding activity could be modulated
by the presence of more than one domain in a single TF as well as homodimerization or
heterodimerization. Modifications like phosphorylation, glycosylation, nuclear transport,
and oligomerization are important post-translation modifications that can control TF
activity (Meshi and Iwabuchi, 1995).

1.5.1. Molecular regulation of senescence

Breakdown of different macromolecules, and their massive remobilization from senescent
to young tissues, requires that cells retain their nuclear integrity to allow for effective
transcription and further translation of proteins; thus nuclei remain intact until the very
late stages of senescence. In the particular case of senescence, regulation of the process is
reported to be strictly controlled by the molecular interaction of genes known as senescence
associated genes (SAGs) and modulated by internal and environmental signals (Buchanan-
Wollaston, 1997; Gan and Amasino, 1997). It is well known that its progression can be
inhibited by enucleation and inhibitors of RNA and protein biosynthesis, and it is highly
controlled by gene expression (Noodén and Leopold, 1988). There are more than 100
genes differentially up regulated during the process. Among them, NAC and WRKY TFs
constitute a large proportion of the senescence-regulated genes already assigned to play an
important role in Arabidopsis senescence (Balazadeh et al., 2008a,b; Breeze et al., 2011).
Despite the importance of senescence, few SAGs have been completely characterized;
some of them, like SAGI2 (encoding a cystein protease), SAGI3 (oxidoreductase),
SAGI01 (acyl hydrolase) from Arabidopsis (He and Gan, 2002), and LSC54 (a gene
encoding methallothionein) from Brassica napus (Buchanan-Wollaston, 1994) are highly
upregulated during the onset and progression of senescence. Nevertheless, their expression
is not exclusive to the senescence process, and expression of SAG/2 and SAGI3 was
also reported in floral organs. Other genes involved in the genetic control of senescence,
like the senescence-associated gene 1 (SENI), are detectable during all stages of leaf
development but show a significant increase in expression during senescence (Gan and
Amasino, 1997).

1.5.2. The NAC transcription factor family

The NAC transcription factor family was first reported as the RESPONSIVE TO
DEHYDRATION 26 (RD26) gene in Arabidopsis. The name “NAC” has been derived
from the first letters of the first three genes described as containing the NAC domain: (i)
the petunia gene NAM (no apical meristem); (ii) ATAF1/2; and (iii)) CUC?2 (cup-shaped
cotyledon) from Arabidopsis (Miyoshi et al., 2002; Nakashima et al., 2007; Yamaguchi-
Shinozaki et al., 1992). NAC proteins appear to be widespread in plants. For example, the
genome of Arabidopsis thaliana contains around 100 NAC-encoding genes, whereas NAC
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genes appear to be absent from algae and other eukaryotes, indicating that the family has
emerged from an event likely related to the water-to-land transition in plants along with the
challenges that this transition may have imposed (Arabidopsis,2000; Lang et al.,2010; Ooka
et al., 2003; Riechemann et al., 2000). NAC transcription factors are related to a variety of
plant-specific processes, such as development of plant-specific organs (Aida et al., 1997;
Souer et al., 1996), responses to plant hormones (Greve et al., 2003; Xie et al., 2000; Yang
et al., 2011), and responses to drought and high salinity stresses (Balazadeh et al., 2008b;
Balazadeh et al., 2010a,b; Seki et al., 2002; Yamasaki et al., 2008). Analysis of conserved
amino acid residues and construction of a phylogeny with the conserved NAC domain in
Arabidopsis, rice, lycophyte (Selaginella moellendorffii), and moss (Physcomitrella patens)
gave strong support for an early appearance of NACs in an ancient plant lineage, which
probably emerged after the separation of lycophytes and other vascular plants prior to the
separation of monocots from dicots (Nakashima et al., 2011). Crystallography and global
transcriptional analysis not only revealed a structural similarity, but also demonstrated that
the NAC domain lacks a classical helix—turn—helix motif, and it possesses a new type of
TF-fold consisting of a twisted beta-sheet that is surrounded by a few helical elements
(Olsen et al., 2005D).

The typical NAC domain (DNA-binding domain) is located in the N-terminal region and
is divided into five conserved regions, or subdomains (A to E), containing around 150
amino acids (Ooka ef al., 2003; Yamasaki ef al., 2008). This domain also contains a nuclear
localization signal. In contrast, the variable C-terminal region contains a transactivation
domain and exhibits protein-binding activity (Seo et al., 2008; Tran et al., 2010; Yamasaki
et al., 2008) (Fig. 2.A). Additionally, some NACs from Arabidopsis and rice have been
shown to contain a-helical transmembrane motifs in the terminal part of the C-terminal
region. These motifs help the proteins anchor to intracellular membranes, and at the same
time, make them inactive; only through controlled proteolytic cleavage from this anchor can
the proteins recover their activity and exert their functions (Kim ez al., 2007). Even though
NAC proteins share a common structure, recent studies revealed few atypical NAC genes
that show variations from the usual structure. Some encoded only the NAC domains, while
others exhibit a C-terminal NAC domain with variable regions in the terminal part of the
N-terminal region (Christiansen et al., 2011; Ooka et al., 2003) (Fig. 2.B).
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Figure 2. Structural characteristic of NAC proteins. (A) The highly conserved NAC domain is located at the N-terminal
region and consists of five sub domains (A to E). The C-terminal region includes a highly divergent transcriptional activation
region. (B) Structural modifications of the typical NAC protein. Some NAC proteins exhibit transmembrane domains (TM)
in the C-terminal region. Other NACs encode only the NAC domain or have the NAC domain in the C-terminal region.
Modified from (Christiansen et al., 2011; Ooka et al., 2003).

The molecular characterization of NAC proteins began with the report of two NAC proteins
that were able to activate the Cauliflower Mosaic Virus (CaMV) 35S promoter in yeast (Souer
et al., 1996), and it was followed by the characterization of NACI, AtNAM and ANACO019 in
Arabidopsis, and others in Brassica napus (Duval et al., 2002; Ernst et al., 2004; Hegedus
et al., 2003; Xie et al., 2000). Later, the core sequence (CACG) was identified as the DNA
motif recognized by the ANAC proteins ANAC019, ANAC055, and ANACO72 that allows
their binding to a fragment of the ERDI (EARLY RESPONSE TO DEHYDRATION STRESS
1) promoter (Tran et al., 2004). One year later, the consensus binding sequences of three
members of the NAC family were determined by two different methods. The DNA protein
binding (DPB)-CelD-fusion method was used to identify the consensus sequence of the wheat
TF TaNAC69, a homologue of AtNAP from Arabidopsis (Xue, 2005), and the CASTing
(cyclic amplification and selection of targets) method allowed the identification of the core
binding sequence (CGT(G/A)) of ANACO19 and ANAC092 (Olsen et al., 2005a). After
determinating the core sequence, electrophoretic mobility gel shift assays (EMSAs) confirmed
that NAC domains are able to bind to a sequence containing one identified binding site
(CGTG) and a sequence containing two identified binding sites in a palindromic orientation
(TTGCGTGTTNNCACGCAA) (Olsen et al., 2005a). One of the most recently characterized
NAC genes is ORS1, a paralog of ANAC092 that positively regulates senescence through a
regulatory network that might be involved in the cross-talk between salt and H,O, -dependent
signaling pathways. Determination of its consensus binding sequence was reported and
analyzed among ORS! down-stream genes (Balazadeh et al., 2011).
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The large number of biological processes regulated by NAC TFs in plants not only highlights
their general importance in plant biology, but also indicates that its functional characterization
will provide valuable information about the initial inputs and final outputs through which
plants regulate the senescence syndrome.

1.6. Aim of the thesis

Leaf senescence is a complex developmental process that delimits the lifespan of one of the
most important organs responsible for photosynthesis in plants. During senescence, leaves
undergo a massive degradation process that affects all of their physiological traits including
their photosynthetic capability. Leaf senescence requires a tight control that ensures the
synchronous dismantling of the cellular components, relocation of the degraded products,
and maintenance of the nucleus integrity in the leaf until the very end. Primarily, senescence
regulatory genes and their signaling networks must be fully characterized to understand
senescence as an integrative process. The progress in the plant senescence field must later
be extended to practical approaches to improve food longevity and decrease food losses
in all stages of the crop postharvest system, as well as to understand the environmental
factors that cause precocious senescence, which makes plants more susceptible to diseases
and plagues.

My contribution to this ambitious idea is contained in the main objective of my thesis:
unravel the signaling cascade through which OREI1, a key regulator of leaf senescence,
exerts its function. To this end, I analyzed particular features of ORE [ up-stream and down-
stream regulatory pathways.
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Unraveling the up-stream regulatory pathway of ORE1

Part of this work was published in The Plant Journal (2010), 62, 250-264.

“A gene regulatory network controlled by the NAC transcription factor
ANAC092/AtNAC2/ORE! during salt-promoted senescence”

Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia,
M., Zanor, M.1., Kohler, B. and Mueller-Roeber, B.

! University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Stralle 24-
25, Haus 20, 14476 Potsdam-Golm, Germany, and 2 Max-Planck Institute of Molecular Plant
Physiology, Am Miihlenberg 1, 14476 Potsdam-Golm, Germany

2.1. Introduction

The plant transcription factor ORE (At5g39610) has been reported to play a key role in
natural and induced senescence in Arabidopsis (Kim et al., 2009; Balazadeh et al., 2010a,b;
Breeze et al., 2011). A general approach to unravel transcriptional regulatory pathways
includes the analysis of the up-stream signaling pathways that control the expression of the
respective gene. Besides others, this involves the identification of cis-regulatory elements
(CREs) present in the promoters of the genes under analysis and, subsequently, the search
for TFs that bind to them. Currently, CREs of the ORE] promoters are poorly characterized.
There are only one up-stream regulator of ORE/ described thus far: miR164. This regulation
corresponds to a trifurcate feed-forward regulation that involves EIN2, miR164, and ORE1
(Kim et al., 2009). EIN2 is a membrane-spanning protein whose biochemical functions
are still unknown, but genetic studies indicate that it is absolutely required for ethylene
signaling (Alonso et al., 1999; Kim ef al., 2009). It has been shown that ORE1 expression
increases in an age-dependent manner, apparently through induction by EIN2. miR164
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targets ORE ] and down-regulates its expression. However, expression of miR164 decreases
with age through an unknown mechanism. This complex regulatory mechanism suggests
that ORE1 expression is tightly regulated to avoid up-regulation in young leaves that lead to
premature senescence and cell-death (Kim et al., 2009). The MADS-box transcription factor
SEPALLATA3 (SEP3) was characterized based on a genome-wide DNA-binding profile and
targets ORE1. Chromatin immunoprecipitation (ChIP), followed by ultrahigh-throughput
Solexa sequencing (ChIP-seq), were used to obtain direct target genes of SEP3 and construct
a framework for a hierarchical transcriptional network underlying the formation of floral
organs. Interestingly, the study determined that SEP3 binds in vivo to the ORE] promoter.
Nevertheless, the biological relevance of this interaction remains unknown (Kaufmann et al.,
2009). Understanding how the expression of ORE! is modulated is essential to reconstruct
its regulatory network and provide information on the molecular mechanisms that control
senescence in Arabidopsis.

2.2. Results

2.2.1. Tissue-specific expression of ORE1] is conserved in Arabidopsis thaliana and
Nicotiana tabacum

Reporter genes were used to investigate the tissue-specific expression of ORE transgenic
lines harboring a 1.5 kb sequence up-stream of the start codon ATG fused to the
Staphylococcus p-glucuronidase (GUS). Prom1-ORE1:GUS constructs were transformed
into A. thaliana ecotype Col-0 and N. tabacum L. cv. Samsun plants. Independent transgenic
lines of the T4 and TS5 generations were used to assess the GUS activity mediated by
the OREI promoter. We identified conserved expression patterns in both species among
different organs and tissues. Representative expression patterns are shown in Figure 3. In
both species, the expression of GUS was observed in most tissues from early stages right
after germination to the end of the plant’s life cycle. Strong and rapidly appearing GUS
activity was observed in mature embryos extracted from seeds (detected already after 30
minutes of staining) and in cotyledons (Fig. 3. Panel A.a-f). Embryos were extracted after
imbibition in water for 10 hours to avoid damage of the tissues while removing the testa.
The expression of the ORE promoter in cotyledons and in the tip and margin regions of
the leaves in young seedlings (15-day-old) was in accordance with reported progression of
aging from the tip to the base of the leaves (Fig. 3. Panel B.a-b) (Hill, 1980). In primary
roots, we observed ORE promoter-driven GUS staining particularly in the columella root
cap (Fig. 3. Panel B.c-d). GUS activity was absent in young leaves (data not shown).
In contrast, older leaf parts exhibited the same expression patterns detected on seedling
leaves (tip and margin regions) when senescence became apparent. GUS staining was
evident in response to mechanical damage in mature leaves in both species (Fig. 3. Panel
C and D.c-d). Expression was also detected in floral organs, especially in sepal and petal
tips and mature anthers in Arabidopsis and tobacco. Strong GUS activity was detected in
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Panel A Panel B

Figure 3. OREI1 driven GUS expression in tobacco and Arabidopsis. Panel A. (a) Tobacco and (b) Arabidopsis seeds
with testa. Faint GUS staining was detected near to the testa rupture site in Arabidopsis (indicated by arrow). (c-d) Tobacco
and Arabidopsis mature embryos without testa before GUS staining, respectively. (e-f) The same embryos after GUS
staining (30 minutes). Panel B. (Upper corner right). (a) Tobacco seedling (15-day-old) after 12 hours GUS staining.
(b) Arabidopsis seedling (15-day-old) after one hour GUS staining. Strong GUS activity was detected in both species in
cotyledons and the tip regions of leaves in Arabidopsis (indicated by arrows). (¢) Tobacco and (d) Arabidopsis main roots
from seedlings (15-day-old). Strong GUS staining in the columella root cap and among the roots covering the elongation
zone (indicated by arrows). Panel C. (Lower corner left) (a) Young tobacco flower. Promoter GUS expression was absent in
immature anthers and was weak in the stigma papillae and tip region of the sepals (indicated by arrows). (b) Mature tobacco
flower exhibited strong promoter GUS activity in mature anthers and faint activity in sepal tips (indicated by arrows). (¢-d)
Mature leaves from tobacco showed strong GUS activity in the tip of the leaves and also in response to mechanical damage.
Panel D. (Lower corner right) (a) Arabidopsis unfertilized flower at stage 12 of development into mature plant (28-day-
old) showing strong GUS activity in tips of sepals and in upper part of stigma corresponding to the stigmatic papillae. GUS
activity was absent in immature anthers (indicated by arrow, flower was opened for picture). (b) Open flower from mature
Arabidopsis at stage 15 of development exhibiting strong GUS activity in mature anthers and faint activity in tip region of
sepals. (c-d) Arabidopsis leaves from mature plant (40-day-old). GUS promoter activity detected in response to mechanical
damage (left) and in tip region of the leaves corresponding to oldest tissue (right).
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the stigma at the stigmatic papillae in unfertilized Arabidopsis young flowers at stage 12
of floral development. This was when the stigmatic papillae was visible, the petals reach
the height of the medial stamens, and anthesis had not yet taken place (Smyth et al., 1990).
In a mature plant at stage 15 (28 days old), strong GUS activity was also detected in the
stigmatic papillae of mature stigma in the opened mature flowers when stigma extended
above the long anthers (Ferrandiz et al., 1999) Immature anthers and petals did not show
any GUS activity in Arabidopsis or tobacco (Fig. 3. Panel C-D.a). Expression was also
detected in floral organs, especially in sepal tips and mature anthers in Arabidopsis and
tobacco.

2.2.2. ORE]I controls dark-induced senescence in Arabidopsis

It is well established that senescence can be triggered and enhanced by endogenous and
exogenous factors (Bleecker, 1998; Buchanan-Wollaston et al., 2005; Gan and Amasino,
1997; Gepstein et al., 2003; Howard et al., 2009; Weaver and Amasino, 2001). Despite
the relevance of light as an exogenous factor involved in both senescence inhibition and
promotion, the regulatory pathways involved in those processes are not well understood
(Biswal and Biswal, 1984; Noodén and Guiamet, 1996; Weaver and Amasino, 2001).
Based on published studies, the absence of light is more commonly considered an inducer
of senescence. The artificial induction of senescence has been reported in detached leaves
placed for several days in the dark (Weaver and Amasino, 2001). Several genes associated
with dark-induced senescence have been identified in Arabidopsis (Blank and McKeon 1991;
Kleber-Janke and Krupinska 1997; Buchanan-Wollaston ef al., 2005; Van Der Graaff et al.,
20006). To test whether ORE plays a role in dark-induced senescence, Arabidopsis wild type
plants, as well as 35S:ORE1 overexpressor line and the anac092-1 T-DNA insertion mutant
(Balazadeh et al., 2010a), were assayed. As an additional control, plants transformed with
an empty vector (E.V.) were included.

Senescence was artificially induced in Arabidopsis leaves by darkness. Detached leaves
from 27-day-old plants corresponding to the lines described above were incubated for four
days. Leaves were placed on moist filter paper and incubated at room temperature. As a
control, detached leaves from the same lines were placed on moist filter paper under long-
day photoperiod (16 hours of light; 8 hours of darkness). As seen in Figure 4, wild type
anac092-1 T-DNA insertion mutant and empty vector (E.V.) control leaves that were kept
in a long-day photo period showed only slight yellowing in some leaves. Moreover, the
tissue became dry in comparison to leaves placed in darkness. When compared to control
detached leaves (E.V.), senescence was notably pronounced in leaves from the 35S:ORE1
overexpressor line that had been placed in darkness. Senescence was inhibited in leaves from
the anac092-1 T-DNA insertion mutant when compared to wild type leaves that had been
placed in darkness. Thus, we suggest that ORE! constitutes a key transcriptional regulator
of the dark-induce senescence network.
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Figure 4. ORE1 overexpression enhances the effect of dark-induced senescence in Arabidopsis leaves. Detached
leaves from 27-day-old plants from wild type (Wt), anac092-1 T-DNA insertion mutant, 35S:ORE overexpressor line, and
Empty Vector (E.V.) control were placed in the dark. Leaves from E.V. and Wt served to compare the effect on anac092-1
T-DNA insertion mutant and 35S:ORE1 overexpressor line, respectively. Control detached leaves from each tested line
were placed in moist filter paper in open boxes. Overexpression of ORE! enhanced dark-induced senescence, whereas
senescence was delayed in the anac092-1 T-DNA insertion mutant. Underlined detached leaves exhibited the clearest
comparative patterns.

2.2.3. Salt stress enhances ORE expression

Screening of microarrays from public repositories revealed that ORE! was induced by
salt stress in roots and shoots of Arabidopsis (Hruz et al., 2008; Winter et al., 2007).
Furthermore, He et al. (2005) reported that intact ethylene and auxin signaling pathways
are required for salt stress responsiveness in seedlings. To test if the response of ORE! to
salt stress is regulated at the transcriptional level, Arabidopsis Prom-ORE1:GUS lines were
grown on Murashige-Skoog (MS) (Murashige and Skoog, 1962) agar plates without salt.
After 15 days, seedlings were transferred for 40 hours to a liquid MS medium containing
150 mM NaCl. GUS activity was enhanced in salt-treated seedlings compared to untreated
controls (Fig. 5.g-h). We also analyzed ORE [ promoter activity in transgenic tobacco plants
(Nicotiana tabacum). Elevated GUS activity was observed in salt-treated (150 mM NaCl)
leaves and other tissues including anthers, sepals, and petals (Fig. 5.a-f). The elevated
expression of ORE] detected by histochemical analysis was confirmed by fluorometric
measurements using 4-methylumbelliferyl-beta-D-glucuronide (4-MUG) and qRT-PCR
(detailed information about these experiments has been published in Balazadeh et al.,
(2010)).
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Nicotiana tabacum Arabidopsis thaliana

Control

NaCl (150 mM)

Figure 5. Salt stress activates transcription of the ORE1 promoter. Left panel. GUS expression in different tobacco
organs. (a) Anther, (b) flower, and (¢) leaves were placed in water for 40 hours as controls. (d-f) Enhanced GUS activity in
leaves and floral organs after 40 hours of salt treatment (150 mM NaCl). Right panel. Two-week-old Arabidopsis seedlings
were treated for 40 hours with (g) 0 mM NacCl (Control) or (h) 150 mM NaClL

2.2.4. OREI senescence-specific expression is regulated by cis-elements in the
5°UTR

The specific relationship among gene regulatory networks is dependent on direct interactions
between transcription factors and cis-regulatory elements (CREs) in promoter regions. One
major area of study focuses on the understanding of the interaction between transcription
factors and different CREs. Some well characterized CREs include the abscisic acid-
responsive element (ABRE) (Marcotte Jr et al., 1989; Mundy et al., 1990), the dehydration-
responsive element (DRE) (Yamaguchi-Shinozaki and Shinozaki, 1994), the C-repeat motif
(Baker et al., 1994), and the W-box (Rushton et al., 1996), among others. Therefore, the
elucidation of CREs that confers specificity in the expression of a given TF is crucial to
understanding its regulatory pathway.

To gain further insights into the regulation of ORE[ expression, promoter deletions were
made to narrow down regions that confer the specific expression patterns observed (see
patterns in Fig. 3). Results obtained with the long version of the ORE] promoter (1.5 kb)
were described above (section 2.2.1). Two principle criteria were used to select the positions
for the promoter deletions: (i) the presence of conserved sequences within the ORE]
promoter, taking into consideration sequences that are present in orthologous promoters
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from other plant species (Fig. 6.A); and (ii) the locations of CREs predicted to be present in
the promoter (Table 1).

We produced two deletions that encompassed 230 bp (Prom2-ORE1:GUS) and 120 bp
(Prom3-ORE1:GUS), respectively, up-stream of the start codon ATG, and transformed
Arabidopsis plants. GUS staining patterns were determined in transgenic plants and compared
with those obtained in plants harboring the 1.5 kb long up-stream region fused to the GUS
reporter gene. The expression patterns were conserved in at least 70% of the evaluated
plants (Prom2-ORE1:GUS;, data not shown). The only visible difference between lines was
a slight reduction in GUS activity in some senescent tissues, like leaves and cotyledons, of
plants carrying the shortest version of the ORE [ promoter (Prom3-ORE1:GUS) (see Fig. 6).
Balazadeh et al., (2011) analyzed conserved regions of ORE [ up-stream of the ATG (1 kb up-
stream of the ATG). This region included the 5’UTR regarded as a specific, highly conserved
marker segment. Nevertheless, the analysis of the two truncated promoters described above
suggested that a region proximal to the ATG is important to confer ORE [ senescence-specific
expression observed in leaves. Thus, we performed a comparative promoter analysis. First,
we searched for clade orthologs of ORE! that exhibited high amino acid similarity using
the Phytozome webpage (Goodstein et al., 2012). The program performed a sequence
alignment of all proteins in the platform against the sequence of ORE . Any peptide similar
to OREI was listed with its percentage of similarity in parenthesis. Arabidopsis lyrata
(97.2%), Capsella rubella (81.8%), Brassica rapa (89.8%), Manihot esculenta (69.5%),
Populus trichocarpa (67.7%), and Vitis vinifera (67.7%) proteins were selected based on
the highest similarity to ORE from the species listed. The up-stream sequences of these
genes, corresponding to the peptides, were retrieved and compared to the ORE] promoter
(120 bp up-stream of the ATG). The MEME Suite web server (Bailey et al., 2009) searched
for conserved motifs to predict conserved putative regulatory elements (Baileyet al., 2009).
As shown in Figure 6.A, the selected up-stream sequences share conserved motifs among
different plant species and may be taken as putative CREs important for ORE! tissue-
specific expression. The program allowed us to define three different conserved motifs,
although only the first and second motifs were present in Arabidopsis thaliana. Notably, the
first motif identified in Arabidopsis is similar to the LE~SUTR-Py-rich stretch motif. This
motif has been described as a CRE that confers a high transcription level without the need
for further up-stream CREs except for a TATA-box (Daraselia et al., 1996; Lescot et al.,
2002). Furthermore, this motif consists of highly conserved ORE] putative orthologs. The
second motif'is similar to a described light responsive AAAC-motif, and is placed around 50
bp up-stream of the ATG; it is only conserved between Arabidopsis thaliana and Capsella
rubella. We performed a CRE analysis to identify previously described CREs present in the
ORE] promoter (1.2 kb) (Table 1). This analysis led us to identify two LE~SUTR-Py-rich
stretch motifs in the 5’UTR of ORE. Despite the high similarity between the promoters of
ORE1 and ORSI (70%) (Balazadeh et al., 2011), ORS1 does not have a LE~SUTR-Py-rich
stretch motif in the proximity of the ATG (data not shown). The motifs obtained by MEME
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are similar to some CREs that have already been described. As shown in Figure 6.A, the
region 100 bp up-stream of the ATG showed the presence of a motif highly similar to the
LE~5UTR-Py-rich stretch motif (exact location -111 bp) and a second motif similarity to
the AAAC-motif that corresponds to a light responsive motif (exact location 50 bp up-
stream of the ATG).

To test if the CREs identified in silico may have relevance in vivo, we designed new deletions.
The final constructs were designated Prom4-ORE1:GUS, Prom5-ORE1:GUS, and Prom6-
ORE1:GUS. The regions covered by these constructs are schematically shown in Fig. 6.B.
Three independent lines per construct were selected for further analysis. Prom6-ORE1:GUS
lines that lacked the entire 5’UTR showed highly reduced GUS activity that was in some cases
almost undetectable (see Fig. 6.B). In contrast, Prom3-ORE:GUS lines, carrying a small
fragment of the 5’UTR (120 bp) where one LE~5UTR-Py-rich stretch motifs lay, showed
GUS activity in the tip and margin regions of senescent leaves (Fig. 6.B) and in cotyledons
of seedlings (data not shown). Both expression patterns are characteristic features of the
senescence syndrome. In Figure 6.B, it is shown that Prom5-ORE1:GUS lines carrying the
same up-stream region as Prom6-ORE:GUS lines, plus a short region of the 5’UTR, have
the characteristic OREI expression pattern in senescence leaves. The part of the 5’UTR
present in Prom5-ORE1:GUS contains the other LE~SUTR-Py-rich stretch motif. Our data
clearly show that ORE promoter activity was highly dependent on the presence of the
5’UTR. In particular, the two LE~SUTR-Py-rich stretch motifs appeared to be necessary for
the tissue-specific expression of ORE1 during senescence. Nevertheless, a visible reduction
of GUS activity in Prom5-ORE[1:GUS and Prom3-ORE[:GUS lines suggests that other
CREs outside the 5’UTR are needed to reach the high expression levels during senescence.
Interestingly, the ORE [ promoter contains more than 13 motifs described as light responsive
elements and circadian regulatory elements within the first 1.0 kb up-stream of the ATG. One
heat stress responsive element (HSE), a drought regulator element (MBS), and three TC-
rich repeat elements involved in defense and stress responses are also predicted in the up-
stream region (Table 1). These data are in good agreement with our findings regarding dark-
induced senescence (see section 2.2.2) and ORE] activity in wounded leaves (see section
2.2.2) and in response to salt stress (see section 2.2.3). Further experiments are required to
confirm which of these predicted CREs are, in fact, involved in dark-induced, salt stress, and
wounded responsiveness of ORE].
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Figure 6. Deletion analysis of the OREI up-stream region. (A) Non-coding sequences conserved in the ORE! promoter
and six ORE] orthologs (120 bp up-stream of the ATG). The first motif is highly similar to the LE~SUTR-Py-rich stretch
motif and is highly conserved in the promoters of ORE! orthologs (B) Four different deletions in the OREI promoter
showed that the decrease of ORE expression is dependent on the presence of the S’UTR. Boxes shown in colors indicate
CREs predicted by the PlantCARE database (Lescotet al., 2002). (1) Represents the sites of two predicted TATA-boxes. (2)
Represents two predicted LE~SUTR-Py-rich stretch motifs (positions -111 and -136 from the ATG) that may confer high
transcription levels (Daraselia et al., 1996).
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Table 1. Putative CREs found in the ORE promoter (1.2 kb up-stream of the ATG).

MOTIF SEQUENCE MATRIX STRAND POSITION* FUNCTION
SCORE
LE~5UTR-Py-rich TTTCTTCTCT 9/10 (+) -136* Element conferring high
stretch transcription levels
10/10 ) -111*
AAAC-motif CAACAAAAACCT 1112 (+) -50* Light responsive element
ATCT-motif AATCTAATCC 7 () -390
ACE CTAACGTATT 9/10 (+) -802
Box 4 ATTAAT 6/6 (+) -1150
G-box CACATGG 7 +) -1241
7 () -990
TCT-motif TCTTAC 6/6 () -924
6/6 +) -41*
6/6 () -334
I-box GATAAGATT 9/9 () -627
Gap-Box CAAATGAA(A/G)A 9.5/10 +) -181
ARE TGGTTT 6/6 () -852 Anaerobic induction
Box Il CATTTACACT 9/10 (+) -848 Protein binding site
Box-W1 TTGACC 6/6 () -573 Fungal elicitor responsive element
6/6 () -227
6/6 +) -240
HD-Zip 1 CAAT(AM)ATTG 8.5/9 ) -235 Differentiation of the palisade
mesophyll cells
HSE AAAAAATTTC 9/10 () -984 Heat stress responsiveness
MBS CAACTG 6/6 () -1098 Drought-inducibility
RY-element CATGCATG 8/8 (+) -1059 Seed-specific regulation
Skn-1_motif GTCAT 5/5 ) -900 Endosperm expression
5/5 (+) -864
TC-rich repeats ~ ATTTTCTTCA 9/10 (+) -861 Defense and stress responsiveness
GTTTTCTTAC 9/10 () -334
GTTTTCTTAC 9/10 () -441
Circadian CAAAAACATC 6/10 +) -658 Circadian control
ATCTTATCAC 6/10 +) -628
CAAGAAGATC 6/10 (+) -36*

2 Numbers represent the locations of the regulatory elements relative to the ATG. Distal CREs correspond to position -1281. Proximal CREs
correspond to position -1.
*  Motifs present in the 5S"UTR

2.2.5. ATAF1 positively regulates ORE expression

The identification of the crosstalk between different signal transduction pathways, especially
in relation to senescence, abiotic stress tolerance, and leaf growth in general, is a major task
in our research group. Based on transcriptional profiling of lines overexpressing the NAC
TF ATAF I under the control of an estradiol-inducible promoter (after 10 hours and 24 hours
of estradiol induction), ATAFI was identified as a potential up-stream activator of ORE
(Fig. 7). Like ORE1 (At5g39610), ATAF'1 (At1g01720) also encodes a NAC TF; both have
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been reported as senescence associated genes (SAGs) (Buchanan-Wollaston et al., 2005;
Balazadeh et al., 2008b). Additionally, both genes are regulators of common signaling
pathways related to drought and wounding responses, salt stress response, (Balazadeh et
al., 2010a,b; Buchanan-Wollaston et al., 2005; Mauch-Mani and Flors 2009; Wu et al.,
2009), and defense response (Al-Daoud and Cameron 2011; Collinge et al., 2008; Wang et
al., 2009).

BATAF] BOREI

Expression level; Fch (log 2)
compared to wild type
n

2 hours 10 hours 24 hours

Figure 7. Transcription levels of ORE1 and ATAFI in ATAFI inducible overexpressor (ATAF1-IOE) lines upon
estradiol (EST) induction. ORE/ transcript abundance increased concomitantly with 4T4AF 1. Maximal level of ORE!
transcript abundance was reached after 10 hours of EST induction.

The induction of ORE upon inducible overexpression of ATAF [ suggests a possible direct
control of ATAFI over OREI and, by this, the regulation of natural and stress-induced
senescence. In order to test a direct interaction in vivo between ATAFI and OREI, 1 used
protoplast transactivation assays. The ORE] promoter (1.0 kb up-stream of the ATG) was
amplified by PCR from Arabidopsis genomic DNA (ecotype Col-0), cloned into the pENTR/
D-topo vector (Invitrogen), and then recombined into the Gateway-compatible destination
vector p2GWL7.0 (Karimi et al., 2002) to obtain the final reporter vector OREI-LUC. The
effector plasmid was the 355:ATAFI construct. For detailed descriptions, see sections 2.4.3
and 2.4.7. Briefly, a dual-reporter system determines the transcriptional activation of the
OREI-LUCpromoter. Activation is detected by the relative light emitted from firefly luciferase
(LUC) enzymatic activity. The internal control reporter, Renilla luciferase (35S:RLuc)
(Licausi et al., 2011) provides the parameter to normalize the data and calculate OREI-
LUC promoter activity (Fig. 8.A). Arabidopsis mesophyll cell protoplasts co-transfected
with the OREI-LUC and 35S:ATAFI constructs showed high luciferase activity indicating
an activation of the ORE promoter by the ATAFI TF (Fig. 8.B).

27



Lilian Paola Matallana-Ramirez

Effector plasmid
35:ATAF1 )
A B
Arabidopsis
mesophyll protoplast
02
15 *
-]
Dl 3
g 0’1
-
S
=2
=
- 5
Control plasmid g 8.9
: ]
&
> 0
Control OREI-LUC OREI-LUC +
(basal) 35S:ATAF1

Figure 8. Protoplast transactivation assay of ATAF1 and OREI promoter. A. Schematic representation of the
transactivation assay. Effector and reporter/control vectors are shown. B. Relative luciferase activity detected in mesophyll
cell protoplasts co-transfected with OREI-LUC and 355:ATAF 1. Results are the mean of two biological replicates with
three technical replicates per probe. Data were normalized to the corresponding Renilla luciferase activity. *P<0.05.

2.3. Conclusions

In this study we confirmed the evolutionary conservation of ORE] expression in two different
plant species (Arabidopsis thaliana and Nicotiana tabacum). The conservation of ORE]
expression is extended from early mature embryos and primary roots until advanced stages of
aging. Also the responsiveness to salt stress of ORE] is conserved in both species. We found
that ORE1 positively regulates dark-induced senescence. The characterization of the ORE
promoter led us to suggestthatthe 5’UTR plays an important role in mediating the characteristic
expression pattern observed during natural senescence. ORE] is transcriptionally activated
by another NAC transcription factor, ATAF'/. Considering that ATAFI has been reported as
a senescence associated gene (SAG) (Buchanan-Wollaston et al., 2005; Balazadeh et al.,
2008b) and that ATAF1 activates the expression of ORE1, we propose ATAF1 as a positive
regulator of ORE [ in the regulatory pathway that mediates age-dependent senescence. Further
analyses are required to confirm direct regulation of OREI by ATAFI.

2.4. Experimental procedures

2.4.1. General

Standard molecular techniques were performed as described (Sambrook and Russell, 2001).
Oligonucleotides were obtained from MWG (Ebersberg, Germany). DNA sequencing was
performed by MWG. Unless otherwise indicated, other chemicals were purchased from Roche
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(Mannheim, Germany), Merck (Darmstadt, Germany), or Sigma (Deisenhofen, Germany).
The Arabidopsis Information Resource (TAIR; http://www.Arabidopsis.org/) and the Plant
Transcription Factor Database (http://pIntfdb.bio.uni-potsdam.de/v2.0/) were used to obtain
CDS and promoter sequences. The tools used for sequence analyses were provided by the
National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and NCBI’s
BLAST database/genebank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1997).
qRT-PC reactions were conducted using an ABI PRISM 7900HT sequence detection system
(Applied Biosystems Applera). Except for those already published, primers used during this
study are described and codified by an internal labor code (Annex 1).

2.4.2. Plants and growth conditions

All Arabidopsis thaliana lines used were in the wild type (Col-0 ecotype) background. Seeds
from Arabidopsis and tobacco were surface sterilized with 70% ethanol (1 minute), 20% sodium
hypochlorite (30 minutes) and rinsed with sterile water (six times). Arabidopsis seeds were
immediately germinated on Murashige—Skoog (MS) half-strength medium (Murashige and
Skoog, 1962) supplemented with 7% agar and 1% sucrose. Seeds were stratified for 48 hours in
the dark at 4°C and then transferred into a climate chamber with 16 hours of day light provided by
fluorescent light at 100 uE m™ sec? intensity and a day/night temperature of 20/16°C and relative
humidity (RH) of 60/75%. In the case of tobacco, plants were grown with 16 hours of day light at
25°C and 8 hours of darkness (20°C). The homozygous T-DNA insertion line (anac092-1 T-DNA
insertion mutant) originated from the SALK collection (ID 090154) described in Balazadeh et
al. (2010a). In cases were plants were grown directly on soil, seeds were stratified for one week
at 4°C, then transfer to long-day photoperiod in phytotron and after two weeks transferred into
a climate chamber with 16 hours of day light provided by fluorescent light at 100 uE m? sec?
intensity and a day/night temperature of 20/16°C and relative humidity (RH) of 60/75%.

2.4.3. Constructs

Description of the Prom-ORE1:GUS and the 358:0ORE]1 overexpressor line were given in
Balazadeh et al., (2010a).

Prom3-OREI1:GUS. A 120 bp genomic fragment up-stream of the start codon (ATG) of
ORE] (At5g39610) was amplified by a polymerase chain reaction (PCR) using forward
(110) and reverse (111) primers. The isolated fragments were inserted first into plasmid
pCR2.1-TOPO (Invitrogen), and after sequencing were fused via BamHI and Ncol sites to
the GUS reporter gene into pCAMBIA1305. 1-hygromycin (CAMBIA).

ORE1:GUS promoters. The promoter regions corresponding to 1.0 kb, 263 bp, and 250 bp
up-stream of the ATG, respectively, were amplified from genomic DNA by PCR using an
Advantage HF 2 PCR Kit (Clontech) with gene-specific forward and reverse primer sets for
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each promoter region (Annex 1). The fragments were subcloned into a pENTR-D-TOPO
vector (Invitrogen) to generate the entry vectors pProm4-, pProm5-, and pProm6- OREI-
ENTRY. Entry vectors were recombined into Gateway destination vector pKGWSF7,0 using
the LR reaction mix II (Invitrogen) to obtain the final reporter vectors Prom4-, Prom5-, and
Prom6- ORE1:GUS.

OREI-LUC. This vector was used as a reporter vector in the transactivation assays (section
2.2.5). The pProm4-OREI-ENTRY entry vector was recombined into Gateway destination
vector p2GWL7.0, which is a recombination of the gateway vectors pBGWL?7.0 (transcription
reporter vector) and p2GW7.0 (overexpression vector) (Licausi et al., 2011) using the LR
reaction mix II (Invitrogen) to obtain the final reporter vector OREI-LUC.

ATAFI-IOE. PCR was used to amplify the ATAFI (Atlg01720) coding region using
Arabidopsis Col-0 leaf cDNA as a template and by using forward (204) and reverse (205)
primers (Annex 1). The ATAF1 cDNA was inserted into the pCR2.1-TOPO vector and, after
sequence confirmation, cloned via Xhol and Spel sites into the pER-8 vector (Zuo et al.,
2000).

358:ATAF1. The vector was used as effector plasmid in transactactivation assays (section
2.2.5). The ATAF'I (Atlg01720) coding region was amplified by PCR using a combination of
forward (206) and reverse (207) primers (Annex 1) and by using Arabidopsis Col-0 leaf cDNA
as a template, and then it was inserted into pUni/V5-His-TOPO (Invitrogen). After sequence
confirmation, the cDNAs were cloned via added Pmel/Pacl sites into a modified pGreen0229
plant transformation vector (www.pgreen.ac.uk) containing the Cauliflower Mosaic Virus
(CaMV) 35S promoter located in the Pmel/Pacl restriction sites (Skirycz et al., 2006).

2.4.4. Plant transformation

Agrobacterium tumefaciens strain GV2260 and GV3101 (pMP90) containing specific
ORE] promoter deletions fused to the GUS reporter gene were used to transform tobacco
and Arabidopsis, respectively. In all cases, positive clones were confirmed by PCR and
sequencing. Agrobacterium cultures were grown overnight (O.N) in constant agitation (200
rpm) at 28°C in liquid Yeast —Extract —Broth (YEB)/ rifampicin (50 mg/ml)/gentamicin
(20 mg/ml) and the bacterial resistance marker antibiotic hygromycin (10 mg/ml). In the
case of Arabidopsis, wild type (Col-0) flower buds were immersed in the suspension of
A. tumefaciens and transformed by dipping method (Bechtold and Pelletier, 1998; Clough
and Bent, 1998). In the case of tobacco plants, a transformed Agrobacterium pellet was
collected by centrifugation (4000 rpm) for 10 minutes at room temperature (RT). The pellet
was resuspended in 10 mL (10 mM) MgSO,. Leaf squares of tobacco plants grown in vitro
(max. 4-week old) were placed in resuspended bacteria for 3-4 minutes. Leaf squares were
transferred to MS media for two days and placed in the dark and RT. The callus formation
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initiated in only putative transformed leaf squares; untransformed leaf squares yellowed
after 3-5 days. The transformed leaflets developed into bright white-green calluses and
were transferred to shoot induction tobacco media containing gentamicin (20 mg/mL) and
carbenicillin (500 mg/L).

2.4.5. Histochemical GUS assay

Histochemical in sifu staining was used to determine the expression pattern in different
tissues of transformed-GUS plants. Plant tissues at different developmental stages were
submerged in a staining solution of 50 mM sodium phosphate pH 7.0, 0.1% (v/v) Triton
X-100, 0.1 mM potassium ferricyanide, 0.1 mM potassium ferrocyanide, | mM Na, EDTA
pH 8.0, 20% (v/v) methanol, and 0.5 mg/mL 5-bromo-4-chloro-3-indolyl-b-D-glucuronid
acid (X-gluc; Duchefa). Samples were incubated at 37°C for a period of several hours to
overnight depending on the tissue type, construct, and color rate. Chlorophyll was removed
by submerging the samples in ethanol 70% (v/v). GUS staining was visualized using a
stereomicroscope Leica MZ 12,5 with software LAS (Leica).

2.4.6. Dark-induced senescence

Experiments for artificial induction of senescence were performed with all rosettes leaves
of 27-day-old plants from wild type (Wt), anac092-1 T-DNA insertion mutant, 355:ORE]
overexpressor line and Empty Vector (E.V.). Detached leaves were incubated in the dark into
boxes on moist filter paper during four days at RT (room temperature). As control detaches
leaves from the same lines were placed on moist filter paper under long-day photoperiod
(16 hours light; 8 hours darkness) on moist filter paper. In both cases filter papers were
maintained always humid.

2.4.7. Salt treatment for Arabidopsis and tobacco plants

Arabidopsis seedlings were grown in long-day conditions (section 2.4.2) and after two weeks
were transfer to liquid media and treated for 40 hours with 0 mM NaCl (Control) or 150 mM
NaCl. In the case of tobacco, detached leaves and flowers from different developmental
stages were isolated from mature tobacco plants (five months after sowing) and treated for
40 hours with 0 mM NaCl (Control) or 150 mM NaCl. Immediately after treatment, tobacco
and Arabidopsis seedlings were stained with GUS buffer as described in section 2.4.5.

2.4.8. Dual-luciferase assay

This experimental procedure was used in different assays, and for this reason, the description
will be given as a general protocol. Promoter regions of ORE] putative target genes were
used as reporter plasmids: a 1.0 kb up-stream of the translation start site were amplified
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from genomic Arabidopsis ecotype Col-0 DNA to generate reporter final constructs. A
detailed description of each prom-LUC construct is described in the experimental procedure
section of each chapter. In this case, we used ORE[-LUC construct as the reporter (section
2.4.3). Renilla luciferase CDS was amplified using pRL-null (Promega) as a template. The
resulting amplicon was ligated into the pENTR/D-topo vector (Invitrogen) and subsequently
recombined in p2GW7 (Karimi et al., 2002) using the LR clonase enzyme (Invitrogen) to
generate the 35S:RLuc normalization vector (Licausi et al., 2011). A 35S:ATAF1 construct
was used as effector plasmid (described in section 2.4.3). The effector, reporter, and
reference plasmids were co-transfected into mesophyll cell protoplasts that were prepared
from rosette leaves of 4-week-old Arabidopsis plants, as reported by Sheen (Sheen, 2002).
The protoplasts had a maximum reaction volume of 10 ul and contained 6.0 ug DNA of each
construct. Luciferase activity was assayed with the Dual Luciferase Reporter Assay System
(Promega), and the luminescence was read in a GloMax 2020 Luminometer (Promega).
All tests were performed in 3-4 independent biological replications with three technical
replications per assay. Assays by t-test using the SigmaPlot software (http://www.sigmaplot.
com) were statistically significant.

2.4.9. cDNA synthesis and quantitative real-time PCR (qQRT-PCR)

Total RNA extraction, cDNA synthesis, and qRT-PCR were done as previously described
(Balazadeh et al., 2008b; Caldana et al., 2007). Primer sequences used for qRT-PCR analysis
to quantify transcript levels of OREI (At5g39610) and ATAF1 (Atlg01720) are given in
Annex 1. The PCR reactions were run on an ABI PRISM 7900HT sequence detection system
(Applied Biosystems Applera). At least five measurements were carried out to determine
the mRNA abundance of each gene in each sample. The absence of genomic DNA was
verified by PCR using forward (202) and reverse (203) primers designed to amplify an
intergenic region in a control gene (At5g65080). cDNA was produced from 2.0 pg total RNA
using SuperScriptT III Reverse Transcriptase (Invitrogen). cDNA synthesis efficiency was
controlled by qRT-PCR amplification of a housekeeping gene ACTIN2 (At3g18780) using
specific forward (204) and reverse (205) primers (Annex 1). Data analysis was performed
using SDS 2.2.1 software (Applied Biosystems Applera). Amplification curves were
analyzed with a normalized reporter (R : the ratio of the fluorescence emission intensity
of SYBR Green to the fluorescence signal of the passive reference dye) threshold of 0.2 to
obtain C_ values (threshold cycle). Dates were normalized to ACTIN2 as follows AC, = C,
(gene) — C, (ACTIN2). The expression was measured with three replicates in each PCR run,
and the average C_ was used for relative expression analyses. Relative transcript abundance
was determined using the comparative AAC, method (AAC_ = AC, (condition of interest) -
AC, (control condition)), and the Fold Change (Fch) was calculated using the expression
24T where the obtained results were Log, transformed. In some cases, the expression was
expressed as 40-AAC, to improve visualization.
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Contributions

The PromI1-ORE1:GUS, ORE1-IOE, 355:OREI lines and anac092-1 T-DNA insertion mutant
screening were performed by Dr. Hamad Sidiqui (Molecular Biology, Potsdam University).
ATAF I-1OE constructs were provided by Dr. Dagmar Kupper (Molecular Biology, Potsdam
University). 35S:ATAF I construct and ATAF I transcriptome data were provided by Prashant
Garapati, Ph.D student of Prof. Dr. Mueller-Roeber’s Group.
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Chapter 3

A calcium-dependent protein kinase CKOR positively
regulates the expression of three ORE1 putative
target genes

This work has been developed through a collaboration with Prof. Tina Romeis’s Group
(Biochemistry of Plants Group. Institute of Biology. Freie Universitéit Berlin)

3.1. Introduction

Cells are exposed to a broad spectrum of internal and external stimuli. The cell-to-cell
interactions during development, as well as the environmental fluctuations and stresses,
constitute messages that need a correct integration into the molecular signaling pathways to
generate specific and appropriate responses (Krebs, 1993). Signal transduction frames include
post-transcriptional modification of sundry proteins by kinases. During protein phosphorylation,
protein kinases covalently link phosphate groups to the target proteins (Feilner ez al., 2005).
Calcium-dependent protein kinases (CDPKs) are a group of serine/threonine kinases that are
regulated by a Ca™/ calmodulin complex. Therefore, calcium-stimulated kinase activities
could be activated by direct calcium biding (Cheng et al., 2002). Because osmotic stress
elicits calcium signaling (Knight et al., 1997), calcium-dependent protein kinases are prime
candidates that link the calcium signal to down-stream responses (Zhu, 2002).

In order to interact with their target DNA sequences, transcription factors (TFs) need to be
located in the cell nucleus. Several TFs are constitutively nuclear, and phosphorylation and
dephosphorylation by protein kinases and protein phosphatases take place within the nucleus.
However, TFs can be mobilized between cytoplasm and the nucleus, and in many cases
this mobilization is regulated by phosphorylation/dephosphorylation (Whitmarsh and Davis,
2000). DNA binding activity of TFs may also be regulated indirectly by phosphorylation at
residues that are remote from the DNA binding domain. The deletion of genes that encode
protein kinases and protein phosphatases that target particular transcription factors, as well
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as targeted mutations of the codons that encode the phosphoacceptor sites on TFs, provide
genetic evidence for the importance of these signaling molecules in regulating particular
functions of a transcription factor (Whitmarsh and Davis, 2000). For instance, the NAC
transcription factor ORE has been reported as a putative substrate of the mitogen-activated
protein kinases (MPKs) MPK2, MPKS5, MPKS, and MPK 10 in vitro (Popescu et al., 2009).
However, the implications in planta of this modification remain unknown.

A phosphoproteomic approach using transgenic lines that were overexpressing a CDPK
named CKOR (for calcium-dependent kinase regulating ORE1) revealed OREI is one of the
few proteins differentially phosphorylated (unpublished data, Biochemistry of Plants Group,
Prof. Tina Romesis, Freie Universitit Berlin). We determined that the overexpression of ORE1
led to a significant increase in the transcriptional activation of three putative target genes of
OREl (BFNI, VNI2 and RNS3) in vivo, and that ORE1 binds directly to the promoters of
their putative targets (see Chapter 4). Furthermore, BFNI, VNI2, and ORE] are senescence
associated genes (SAGs) (Balazadeh et al., 2008a; Breeze et al., 2011; Buchanan-Wollaston et
al., 2005; Guo et al., 2004), and RNS3 is involved in inorganic phosphate (Pi) remobilization
during Pi starvation and senescence. The molecular mechanisms initiated by nutrient
remobilization during senescence are poorly characterized, but in the case of Pi starvation,
ribonucleases are considered to play important roles in the remobilization process (Bariola
et al., 1994). Here, we show that the transcriptional activation of BFNI (Atlgl11190), VNI2
(At5g13180), and RNS3 (At1g26820) is strongly influenced by the co-expression of CKOR.
Mesophyll protoplasts co-transfected with CKOR showed an increase in transcriptional
activity, while protoplasts co-trasfected with a mutated version of CKOR (that renders an
inactive kinase) showed a marked decrease in the transcriptional activity of BFNI, and they
left the activity of VNI2 and RNS3 undistinguishable from the basal activity.

3.2. Results

3.2.1. CKOR influences the transcriptional activation of ORE1 direct targets

OREI1 is a key regulator of natural and induced senescence, and evidences suggest that
interaction to BFNI, VNI2 and RNS3 could play an important role in senescence regulation.
In an effort to identify the effect of ORE[ phosphorylation by CKOR, we tested the expression
of OREI1 targets in cells co-transformed with two different versions of CKOR. The promoter
regions (1.0 kb up-stream of the start codon (ATG)) of BFNI, RNS3, and VNI2 were cloned
into the Gateway destination vector p2GWL7.0 (Licausi ef al., 2011) that contains the firefly
luciferase reporter gene (LUC). Thus, the expression of LUC is under the transcriptional
control of each promoter. The final vectors BFNI-LUC, RNS3-LUC, and VNI2-LUC (Chapter
4, section 4.4.4) were used as reporters. Two different versions of CKOR were used as
effector vectors: either the wild type version of the protein (CKORac), or a mutated version
(CKORm) where one aspartic acid is replaced by alanine in the catalytic domain (rendering
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the kinase inactive) (see section 3.4.3). As an internal control, we used reporter Renilla
luciferase (35S:RLuc) (Licausi et al., 2011) to normalize the data and calculate the activity
of each tested promoter. We co-transfected Arabidopsis wild type mesophyll cell protoplasts
in a series of protoplast transactivation assays using the PEG method (Sheen, 2002). Each
promoter-LUC construct and 35S:RLuc were co-transfected with/without CKORac (active
form) or with/without CKORm (inactive form). In each case, we evaluated the promoter
activation upon overexpression of CKOR (active or mutated) as well as the basal promoter
expression.

All promoters showed a basal activity (BFNI, VNI2, and RNS3), likely due to the TFs present
in the protoplasts (including ORET) that can activate these promoters. BFNI exhibited
the stronger basal activity (10-fold) compared to VNI2 or RNS3. Thus, we inferred that
protoplasts from five-week-old plants have a stronger BFNI expression than VNI2 or RNS3
(Fig. 9.A). Co-transfection with a catalytically active CKOR protein (CKORac) increased
the expression of all promoters tested in comparison to the basal expression (Fig. 9.A-C).
In contrast, co-transfection with the catalytically inactive CKOR (CKORm) resulted in a
transcriptional activity undistinguishable from the basal activity for VNI2 and RNS3, and a
significant decrease of transcriptional activity in the case of BFN1 (Fig. 9.D-F).

To explain the increase in transcriptional activation observed in BFNI, VNI2, and RNS3 upon
co-transfecting with CKORac (Fig. 9.A-C), we hypothesized that CKORac overexpression
may have resulted in increased ORE1 phosphorylation that, in turn, increased the activation
level of its direct targets. These results provide some insights into the role of CKOR as a
positive regulator of BFNI, VNI2, and RNS3 perhaps through the phosphorylation of the
transcription factor ORE1 (Fig. 9.A-C).

On the contrary, the overexpression of CKORm, which is unable to phosphorylate its targets,
led to a decreased level of BFNI promoter activity and a decrease in activities that are
undistinguishable from the basal activity for the promoters of VNI2 and RNS3. This result
may indicate that the overexpression of CKORm, which is unable to phosphorylate ORE1
(although is able to bind the protein), hinders the normal activity of ORE1. Thus, an excess of
CKORm leads to an even lower BFNI promoter activity. The basal activity of the other tested
promoters (V'NI2 and RNS3) is already so low at the starting conditions that overexpression
of CKORm has just a minor effect on these promoters. Currently, our collaborating partner
(Biochemistry of Plants Group, Prof. Dr. Tina Romeis, Freie Universitdt Berlin) is carrying
out further experiments to unravel detailed interactions between CKOR and ORE].

3.3. Conclusions

We suggest that ORE] is post-transcriptionally regulated by CKOR. The phosphorylation of
ORE]1 plays a crucial role in its activity and favors the transcriptional activation of its targets
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BFNI, VNI2, and RNS3. Nevertheless, phosphorylation seems to affect the activation of
BFNI more severely than the other promoters. These results provide important information
related to additional mechanisms influencing the activity of ORE].

A

0.6
0,5

0,4

Relative luciferase expression

0.1
0,09
0,08
0,07
0.06
0,05

0,02

Relative luciferase expression

0.01 -

0,1
0,09
0,08

0,06

Relative luciferase expression

0,02
0,01

CKOR active form

0,3 =

0,04 -
0,03 -

0,07 -

0,05 -
0,04 -
0,03 -

BFN1
Control Basal + CKORac
VNI2

B
Control  Basal + CKORac
RNS3

,+|
Control Basal + CKORac

=)

Relative luciferase expression

!

Relative luciferase expression

Relative luciferease expression

CKOR mutated inactive form

0,6

0,5

0,4

0,3

BFN1

1 . |

0,1

0,09 -

Control

Basal + CKORm

VNI2

0,08 -
0,07 -
0,06 -
0,05 -
0,04 -
0,03 -

0,02

0,01 -

0,1
0.09
0,08
0,07
0,06
0,05
0,04
0,03
0,02
0,01

= .

Control

Basal + CKORm

RNS3

=) | I

Control

Basal + CKORm

Figure 9. Activation of ORE1 direct targets by CKOR. (A-C) Co-transfection of BFNI:LUC, VNI2:LUC, and RNS3:LUC
with 35S:RLuc and with or without (basal) CKORac (active form). (D-E) Co-transfection of BFNI1:LUC, VNI2:LUC and
RNS3:LUC with 35S:RLuc and with or without (basal) CKORm (inactive form). Data represent mean values + standard
deviation (SD) (n=2) 3 technical replicates. Luciferase values are normalized to the corresponding Renilla expression level.
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3.4. Experimental procedures

3.4.1. General

Standard molecular techniques were performed as described in Chapter 2, section 2.4.1.

3.4.2. Plant material

Plant material and growth conditions were similar to those described in Chapter 2, section
2.4.2.

3.4.3. Constructs

Promoter-LUC constructs: promoter regions spanning 1.5 kb up-stream of the ATG of
VNI2, BFNI, and RNS3 were amplified from genomic DNA by PCR using an Advantage HF
2 PCR Kit (Clontech) with gene-specific forward and reverse primers (Annex 1). Promoter
fragments were subcloned into pENTR-D-TOPO vectors (Invitrogen), to generate individual
entry vectors. The entry vectors were then recombined into a p2GWL?7.0 Gateway destination
vector which is a recombination of the pBGWL7.0 gateway vector (transcription reporter
vector) (Karimi et al., 2002) and p2GW7.0 vector (overexpression vector) (Licausi et al.,
2011) ) using the LR reaction mix II (Invitrogen) to obtain the final BFNI-LUC, VNI2-LUC,
RNS3-LUC reporter vectors.

CKORac and CKORm: Plasmids containing the constitutively active and mutated versions
of CKOR in the pXCS-G-Strepll binary vector were kindly provided by G. Durian (Freie
Universitdt Berlin). This vector uses the pamPATMCS backbone (accession number
AY436765) and allows convenient and rapid expression of proteins in planta (Witte et
al., 2004). The effectors vectors are named CKORac and CKORm for normal (active) and
mutated (inactive) versions, respectively.

3.4.4. Dual-luciferase assay (Transactivation assay)

A detailed description of the procedure was given in Chapter 2, section 2.4.7. Based on
previous data (data not shown) for this particular assay, the time of protoplast co-transfection
was decreased from 24 hours to 14 hours to avoid tissue damage and cell death.
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Chapter 4

Inferring putative targets of ORE1 through
transcriptome-based expression analysis

Part of this work will be submitted to The Plant Journal with the tittle:

“Expression of BIFUNCTIONAL NUCLEASEI (BFN1) during senescence in Arabidopsis
is regulated by the NAC transcription factor ORE1/ANAC092/AtNAC2”

Lilian P. Matallana-Ramirez,'> Mamoona Rauf,' Hakan Dortay,' Liliane Sorego,’
Amnon Lers,’ Gang-Ping Xue,* Wolfgang Droge-Laser,” Salma Balazadeh,'*
and Bernd Mueller-Roeber!*

'University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strafie 24-
25, 14476 Potsdam-Golm, Germany; *Max-Planck Institute of Molecular Plant Physiology,
14476 Potsdam-Golm, Germany, *Department of Postharvest Science of Fresh Produce.
Volcani Center, Agricultural Research Organization, Bet Dagan, 50250 - Israel; *CSIRO
Plant Industry, 306 Carmody Road, St Lucia, QId 4067, Australia; SJulius-Maximilians-
Universitdt Wiirzburg, Julius-von-Sachs-Platz 2, 97082 Wiirzburg, Germany.

4.1. Introduction

Plant senescence is a highly regulated process that involves many regulatory proteins,
including transcription factors (TFs), which control the expression of target genes and
constitute up-stream control elements of gene regulatory networks (GRNs). ORE1, a NAC
TF, has recently been shown to be a central regulator of senescence in Arabidopsis thaliana
(Balazadeh et al., 2008; Balazadeh et al., 2010a; Kim et al., 2009). In our previous work,
we identified ORE1 responsive genes using estradiol-inducible overexpressor lines (ORE -
IOE) (Balazadeh et al., 2010a). Many of the up-regulated genes encode proteins known
to function in the degradation of different macromolecules as part of the mechanism of
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nutrient salvage that occurs in plants during senescence (Bleecker, 1998). The ORE1 regulon
includes proteins involved in further signal transduction pathways such as other TFs (NAC TF
among them). In this study, in order to identify direct target genes of ORE1, additional global
transcriptome analyses were carried out. Inducible ORE1 overexpressing plants (OREI-
IOE) were incubated for two hours in estradiol (EST). To account for artifacts cuased by the
use of EST, further global expression profiling experiments were made using Arabidopsis
mesophyll cell protoplasts transformed with a 35S:ORE! construct and harvested six hours
after transfection. We determined the ORE1 binding site (BS) and its frequency within the
promoter regions of putative target genes. Additionally, our results showed that ORE1 is able
to bind to the promoters of BFNI, VNI2, and RNS3 in vitro and to transactivate them in vivo.
Our data strongly suggests that BFNI, VNI2, and RNS3 are putative direct targets of ORE].

4.2. Results

4.2.1. Transcriptome profiling reveals a core set of putative ORE1 direct targets

In our previous study, we observed that after five hours of estradiol induction, 218 genes
were differentially expressed. From these, 170 were significantly up-regulated and 48 were
significantly down-regulated (Balazadeh et al., 2010a). In this study, in order to identify direct
targets of OREI, additional expression profiling experiments were carried out using cells/
plants that were overexpressing ORE constitutively (using the strong constitutive promoter
35S (CaMV) Cauliflower mosaic virus) or inducibly (using an estradiol-inducible promoter).
Log2 intensity values were converted to Log2 fold change ratios by comparing the intensity
of induced/transformed and uninduced/untransformed plants/cells. Differentially expressed
genes were determined by setting a twofold cut-oft (Log2 £ 1). Our data revealed that 78
genes were differentially expressed after two hours EST induction in OREI-IOE plants.
From these genes, 54 were up- and 24 were down-regulated (Annex 3). After five hours of
EST induction in our new profiling experiments, 269 genes were differentially expressed.
From these, 195 genes were up- and 74 were down-regulated (Annex 4). Six transcription
factors were identified after five hours ORE1 induction including one zinc-ion binding
factor (At2g28200), one signal transduction response regulator (At2g40670), one MYB TF
(At3g10590), and three members of the NAC TF family (ANAC010, ANAC041, and VNI2).
In our datasets, we observed that the number of up-regulated genes after EST induction
increased around fourfold (from 54 after two hours to 195 after five hours). Among them,
only less than 1.0% overlapped (two genes). The number of down-regulated genes increased
threefold (from 24 after two hours to 74 after five hours), and none overlapped between
datasets. Upon transient overexpression of ORE1 in mesophyll protoplasts, 831 genes were
found differentially expressed, of which 643 were up- and 188 were down-regulated (Annex
5 only in the electronic version). Venn diagrams show overlapping up- (Fig. 10.A) or
down-regulated genes among datasets (Fig. 10.B). Taking together all datasets, 731 genes
were significantly up-regulated while 273 were significantly down-regulated upon ORE1
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overexpression. There is a larger overlap between genes up- or down-regulated from five
to six hours overexpression (144 up- and 10 down-regulated) than from two to five hours
overexpression (Fig. 10.A-B). Interestingly, there were no common down-regulated genes
among the three datasets (Fig. 10.B). We were able to identify a set of 17 commonly up-
regulated genes among the three datasets (Fig. 10.A).
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Figure 10. Differentially expressed genes in plants/cells overexpressing ORE1. (A-B) Venn diagrams to compare up/
down-regulated genes in ORE[-IOE-2 hours plants, ORE-IOE-5 hours plants, and 35S:ORE1-6 hours protoplasts. (C)
Hierarchical clustering based on 54 up-regulated genes after two hours of EST induction (ORE-IOE plants). Ten clusters
were identified and color coded from right to left.

The cluster analysis, based on genes significantly up-regulated in ORE[-1OE plants induced
for two hours with EST (54 genes), revealed ten different patterns of expression when
compared to datasets two (ORE[-IOE induced five hours with EST) and three (constitutive
overexpression for six hours in protoplasts). In Figure 1.C, cluster 1 (in red) includes highly
up-regulated genes in all data-sets. Clusters 2 and 3 (in light and dark yellow, respectively)
include highly up-regulated genes in at least two datasets and less induced in the other. Cluster
4 (in green) encompasses up-regulated genes in data set one and three, but not differentially
expressed or slightly down-regulated genes in data set two. Clusters 5, 6, and 7 (in different
shades of magenta) group up-regulated genes in data set one and not differentially expressed
or slightly down-regulated genes in datasets two and three. Cluster 8 (in white) groups up-
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regulated genes in data set one, slightly up/down-regulated genes in data set two, and not
differentially expressed genes in data set three. Clusters 9 and 10 (in light and dark blue)
group up-regulated genes in data set one, slightly up- or down-regulated genes in data set
two, and not differentially expressed or down-regulated genes in data set three. The common
set of up-regulated genes (17) comprises clusters 1, 2, and 3. These 17 genes (Table 2)
are good candidates to be direct targets of ORE1 as they are rapidly induced after ORE1
overexpression (two hours) and are expressed in elevated levels at later time points (five
hours) and in mesophyll cell protoplasts transiently overexpressing ORE]1 for six hours. From
17 up-regulated genes, 14 are senescence associated genes (SAGs) (Buchanan-Wollaston et
al., 2005; Parlitz et al., 2011; Van Der Graaff et al., 2006; Balazadeh et al., 2008a; Breeze
et al., 2011). We aimed to determine the role of other NACs within the ORE1 regulon and
included VNI2 (ANAC083) and ORE1 (ANAC092) to complete our set of putative ORE1
direct targets. V'NI2 is one of the six TFs that were up-regulated at later time points (after
five hours EST induction) as we described before, and based on published data (Breeze et
al.,2011), we decided to test a possible auto-regulation of OREI; therefore, we also include
OREI1 itself in our analyses (Table 2).

Table 2. Common set of up-regulated genes upon ORE1 overexpression. Expression is given as Log2 Fch (fold change).
Data represent the mean of three biological replicates for ORE1-IOE-5 hours and two biological replicates for the ORE -
1OE-2 hours datasets and transfected protoplast (six hours). Bold letters indicate the subset of selected putative genes to
prove direct interaction with ORE1.

AGI Description I0E-2 h I0E-5h Protoplast-6 h
AT5G39610* ORE1/ANAC092/ATNAC2/ATNACS (Arabidopsis) 3,646 3,454 3,259
AT1G02470* similar to unknown protein 1,065 2,955 1,736
AT1G02660* lipase class 3 family protein 1,052 2,397 3,677
AT1G11190* BFN1 (BIFUNCTIONAL NUCLEASE I); 2,029 5,291 10,026
AT1G26820 RNS3 (RIBONUCLEASE 3); endoribonuclease 1,060 4,634 10,553
AT1G48260* CIPK17 (CIPK17); kinase 1,027 2,454 4,437
AT1G73750 similar to unknown protein similar to unknown protein 1,178 2,616 2,928
AT1G74010* strictosidine synthase family protein 1,404 2,782 1,303
AT1G80450* VQ motif-containing protein 1,445 1,191 1,642
AT2G31945* similar to unknown protein 1,253 2,230 1,469
AT2G47950 similar to unknown protein 2,757 1,863 1,803
AT3G13672* seven in absentia (SINA1) family protein 1,806 4,338 4,002
AT3G45010* SCPL48 (serine carboxypeptidase-like 48) 1,109 3,689 4,292
AT4G04490* protein kinase family protein 1,017 1,605 1,509
AT4G18425* similar to unknown protein 1,542 4,984 10,013
AT4G19810* glycosyl hydrolase family 18 protein 1,620 3,973 2,712
AT5G13170* nodulin MtN3 family protein (SAG29) 2,083 4549 9,151
AT5G39520* similar to unknown protein 1,373 4,205 3,047
AT5G13180* VNI2/ANACO083 (Arabidopsis) 0,615 2,19 1,035

* Senescence up-regulated genes (Buchanan-Wollaston et al., 2005; Parlitz ez al., 2011, Van Der Graaff et al., 2006; Balazadeh et al., 2008a;
Breeze et al., 2011).
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In an attempt to characterize particular pathways that are over-represented in the set of
differentially expressed genes, we classified the genes into functional categories using
PageMan (Usadel et al., 2006). Over-representation was assessed using the Wilcoxon rank
sum test. We selected the set of commonly up-regulated genes (17 genes, presented in Table
2). Due to the fact that we could not identify a set of commonly down-regulated genes, we
assayed the over-represented functional categories in down-regulated genes of each dataset
and produced a consolidated table of over-represented functional categories in all three data
sets. Over-representation is assayed by comparing the categories in the set under analysis
with the represented functional categories of the whole Affymetrix ATH]1 array.

Significantly over-represented categories in the set of commonly up-regulated genes involved
“lipid metabolism and degradation,” “secondary metabolism,” “stress” (particularly “abiotic
stress”), “RNA processing” (particularly “ribonucleases”), “DNA synthesis and chromatin
structure,” “protein, posttranscriptional modification, and degradation,” and “signaling”
(particularly “receptor kinases”) (Table 3a). Significantly over-represented functional
categories in the set of down-regulated genes included “RNA regulation of transcription,”
“lipid metabolism and degradation,” “stress” including both, abiotic and biotic, “secondary
metabolism” (particularly “phenylpropanoids™), “hormone metabolism,” “redox,” and
“transport.” In the case of over-represented categories in down-regulated genes, the P-values
are not given since for each dataset we obtained a p-value. Nonetheless, in all cases, the
differences observed are statistically significant (Table 3b).

99 ¢

Table 3. Significantly over-represented functional categories in up- or down-regulated genes after six hours constitutive
overexpression of ORE1 (35S:ORE1/6 hours cotransfected protoplasts) relative to the categories represented by the ATH1
array. (a) Up- and (b) down-regulated categories found using the Wilcoxon statistical test.

Functional Category P-value

a) Up-regulated classes

Lipid metabolism, degradation 7,92E-04
Secondary metabolism 7, 92E-04
Stress.abiotic 7, 92E-04
RNA.processing, ribonucleases 7,92E-04
DNA Synthesis, Chromatin structure 7,92E-04
Protein. postranslational modification, degradation 7,92E-04
Signaling.receptor kinases 7,92E-04
Development unspecified 4,15E-10

b) Down-regulated classes

RNA regulation of transcription

Lipid metabolism, degradation

Stress, biotic, abiotic

Protein

Development unspecified

Secondary metabolism, phenylpropanoids
Hormone metabolism

Redox

Misc

Transport
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4.2.2. Characterization of the ORE1 binding site and its occurrence in putative
target genes

The group of genes that are direct targets of a transcription factor can be identified among
early responsive genes by screening for the presence of its binding site (BS). Therefore,
the characterization of the sequences bound by a transcription factor is an essential step
in the identification of true targets. Olsen et al. (2005) reported the binding site of OREI
as TTAGGACGTGATCATAG. The binding site of other NAC TFs has been characterized
by the DNA-binding-protein-CELD method (DBP-CELD). Xue et al. (2005) reported that
sequences bound by NAC TFs are rather long, including two consensus motifs separated by
a spacer that is a few bp long (Balazadeh et al., 2011; Wu et al., 2012; Xue 2005). To deduce
the BS of OREI, our collaboration partner, Dr. Gang-Ping Xue, performed a binding site
selection assay using a fusion protein consisting of a translational fusion of the ORE1 cDNA
to a 6-His-tagged cellulase D (CELD), which serves for the affinity purification of the ORE1-
DNA complex (Xue, 2005) (Fig. 11.A, C-D). As shown in Figure 11.B, positive clones
carrying the OREI-CELD construct were identified by a light red halo around the clones
growing on a medium containing CMC (carboxymethyl cellulose). The halo is produced by
the hydrolysis of cellulose and is visible after staining with a Congo-Red solution. A detailed
description of the assay is given in experimental procedures section 4.4.4.
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OREI-CELD fusion H

protein
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Cloning of selected
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Figure 11.0RE1-BS selection assay. (A) Schematic representation of the OREI-CELD construct. (B) E. coli colony
expressing ORE1-CELD; bacteria were plated in sterile LB medium supplemented with Carboxymethyl-Cellulose (CMC,
sodium salt). Positive colonies are detected after staining with a clear halo due to the positive cellulase activity. (C)
Schematic representation of the CELD method. (D) ORE! has high affinity to a target DNA where two core motifs,
(RMGTR) and (YACGY), are spaced by 5-6 bp.

44



Chapter 4 « Inferring putative targets of ORE1 through transcriptome-based expression analysis

It has been shown that NAC TFs require more stringent binding sequences, not just the
conserved core motif. Previously, we had reported RCGTR(4-5n)RYACGCAA as the
consensus sequence recognized by ORS1/ANACO059 (Balazadeh et al., 2011). According to
Ooka et al. (2003), ORSI and ORE] are closely related proteins and represent paralogous
in Arabidopsis. Within their NAM domains, they share an overall amino acid identity of
94% and a sequence identity of around 41% at the C-terminal region. Considering such
high similarity between the NAM domains, we hypothesized that ORE1 binding specificity
may be similar to that of ORS1. We tested the binding affinity of OREI with the ORSI1-
BS and with different oligonucleotides with small variations (substitutions or deletions/
additions). As shown in Table 4, ORE1 binding specificity to ORS1-BSs (ORS1) is very
high (1.00). Nevertheless, a transversion in the first motif (ORS1m2) from C to A causes
only a slight reduction in binding from 1.00 to 0.93, while a transition in the second binding
motif (ORS1m1) from G to A results in a greater reduction in binding affinity from 1.00 to
0.63. To test the influence of the spacer between the first and second motifs, deletions and
additions analyses were carried out (motifs OREIm5 to ORE1m?7). It can be seen that a
spacer of either 4 bp or 7 bp causes a drastic reduction in binding affinity (from 1.00 to 0.17
and 0.33, respectively). These data allowed us to conclude that ORE1 preferentially binds to
the consensus sequence RMGTR(5-6n)YACGY (Fig. 11.D).

Table 4. ORE1 binding sequence determined by comparison with the ORS1-BS. Tested oligonucleotides are in the first
column. Grey shadowing indicates the first core motif of ORE-BS, and red coloring indicates the spacer. Blue indicates the
second core motif of ORE1-BS. Transitions are underlined in each case.

Selected oligonucleotides

Synthetic oligos Sequence ORE1
ORSt CGGGGTTACGTA  CGGCA  CACGCAACCGTGC 1.00 = 0.09

Mutated oligos (substitutions)

ORS1m1 CGGGGTT ACGTA  CGGCA CACACAACCGTGC 0.63 = 0.01
ORS1m2 CGGGGTT AAGTA  CGGCA CACGCAACCGTGC 0.93 = 0.11
ORS1m3 CGGGGTT GCGTA  CGGCA CACGCAACCGTGC 1.13 £ 0.02
ORS1m4 CGGGGTT ACGTA  CGGCA CACGTAACCGTGC 1.20 = 0.20

Mutated oligos (deletions and additions)

ORS1m5 CGGGGTT ACGTA GGCA CACGCAACCGTGC 0.17 = 0.01
ORS1m6 CGGGGTT ACGTA CCGGCA CACGCAACCGTGC 1.07 = 0.06
ORS1m7 CGGGGTT ACGTA CTCGGCA CACGCAACCGTGC 0.33 = 0.01

Values are means + SD of three assays.

4.2.3. ORET1 activates its putative target genes in vivo

We performed a series of in vivo and in vitro analyses to test whether ORE1 can directly bind
and activate the promoters of its putative target genes. First, we searched in silico for the
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presence of the ORE1 binding site as determined by the DBP-CELD method (section 4.2.2) in
the promoter regions of BFN1 (1084 bp), VNI2 (1571 bp), RNS3 (1062 bp), ORE1 (1281 bp),
SINAI (1018 bp), and SAG29 (831 bp) (sequences refer to up-stream of the start codon ATG).
The program fuzznuc from EMBOSS was used to search for the presence of the complete
or partial ORE1-BS that covers at least the first core motif (http://helixweb.nih.gov/emboss/
html/fuzznuc.html) (Rice et al., 2000). We identified 11 putative binding sites in BFNI, 19
in VNI2, nine in RNS3, eight in ORE], 16 in SINAI, and 13 in SAG29. Notably, exclusively
up-stream sequence of VNI2 exhibited a putative ORE1-BS spanning the whole ORE1-BS
RMGTR(5n)YACGC. This binding site corresponds to the sequence GAGTATGGTTTACGC
and is located 164 bp up-stream of the ATG. BFNI contains the second longest version of the
OREI1-BS with a transversion in the second motif (T instead of A in the twelve position) the
sequence is ACGTATGAGACTCGC and is located 196 bp up-stream of the ATG (Annex 2).

To test whether OREL1 activates the promoter regions of its putative target genes in vivo, we
performed a series of transactivation assays. The promoter regions of the putative target genes
linked to the firefly luciferase reporter (BFNI-LUC, VNI2-LUC, RNS3-LUC, SAG29-LUC,
SINA1-LUC, and ORE1-LUC) were co-transfected into Arabidopsis mesophyll protoplasts in
the presence or absence of ORE1 fused to the Cauliflower Mosaic Virus (CaMV) 35S promoter
(35S:ORE1) (Balazadeh et al., 2010a) by PEG-mediated transformation (see Experimental
Procedures, section 4.4.8). As shown in Figure 12, luciferase activity was significantly higher
if the promoters of BFN1, VNI2, and RNS3 were co-transfected with 35S:ORE 1, indicating that
OREI transactivates the expression of these targets in mesophyll cell protoplasts. Promoter
activity of SAG29, SINA1, and OREI was not significantly different from basal expression;
therefore, we concluded that these genes might not be direct targets of ORE1 (Fig. 12).

e by

SINAIL & Dplus OREL

m basal expression

SAG29 ﬁ

RNS3 ‘I

Control |

0 1 2 3 4 5
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Figure 12. Protoplast transactivation of ORE1 and promoter regions of its targets. Promoter-LUC constructs were
co-transfected into mesophyll protoplast with 35:RLuc and with/without 355:ORE1. Luciferase activities were determined
with the Dual Luciferase Reporter Assay System (Promega) 24 hours after transfection. Transfections were conducted in
triplicate, and repeated once with a separate set of plants. Luciferase activities were normalized to corresponding Renilla
luciferase activities (*P value<0,05).
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4.2.4. ORE1 binds to its putative target genes in vitro

Regulation of gene expression is in part mediated through the direct interaction of
transcription factors with their consensus motifs located in the promoter of targets. In order
to investigate the physical interaction of ORE1 with promoter regions of its putative target
genes, we performed electrophoretic mobility shift assays (EMSAs). We designed primers
by (Annex 1) flaking one of the OREI-BS identified by the program fuzznuc (except for
the gene SAG29) (Fig. 13.A). In our analysis, we included a primer designed for SINA,
although we found that in vivo this promoter is not significantly transactivated by OREI
overexpression (section 4.2.3). We selected the longest and perfect biding site of VNI2 and
BFNI genes, and we selected RNS3 and SINA I oligos by searching for a sequence containing
the invariable core for ORE1 (ACGTA) and tested in CELD method (section 4.2.2). As a
positive control, we used the sequence that showed the highest binding affinity in the CELD
experiment: ORS1 synthetic oligo 5'-CGGGGTTACGTACGGCACACGCAACCGTGC-'3
(Table 4). Recombinant ORE1 protein fused to glutathione S-transferase (GST-ORE1) was
incubated with 5’-DY682-labeled 40-bp double-stranded DNA fragments containing the
different ORE1-BSs. GST-OREI1 was able to bind to all tested promoter fragments, including
promoters that were not effective in the transactivation assays. All probes contained the same
concentration of ORE1 protein and oligonucleotides. Thus, we assume that differences in
band intensity are related to differences in binding affinity that may reflect the effect of the
presence of the two core motifs of ORE1-BS. As shown in Figure 13.B, GST-ORE]1 protein
complexes migrate slower than the free DNA due to the interaction of ORE1 with its targets.
OREI1 exhibited the strongest affinity to the VNI2 promoter fragment in comparison to all
other promoter-fragments tested. We attribute this strong affinity to the presence of a complete
and perfect version (15 nucleotides) of the ORE1-BS in the V'NI2 promoter fragment. In the
cases where the fragments span only the first core motif, like for RNS3, or only up to the first
nucleotide of the second core motif, like in SINA 1, the biding affinity was strongly reduced.
Nevertheless, in the case of BFNI, the promoter fragment contained 15 nucleotides of the
OREI-BS and exhibited a low binding affinity. The BFNI promoter fragment contained a
transversion in the second core motif of OREI-BS (see above section 4.2.3). Therefore,
we concluded that conservation of the first and second motif is essential to preserve ORE1
binding affinity. Binding affinity was significantly reduced if unlabeled promoter fragments
were added in excess (competitor). The competition was dose-dependent, and no mobility
shift was detected if the competitor was added in excess, indicating specific binding of ORE1
(Fig. 13.B).
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Figure 13. ORE1 binding activity in vitro by EMSA. (A) Schematic representation of 5'-DY682-labeled 40-bp DNA
fragments (B) Electrophoretic mobility shift assays (EMSAs). Positive shift for all tested ORE 1-putative-target genes in the
presence of GST-OREI protein is indicated by a red arrow. Free DNA-oligos are seen at the bottom of the gel.

4.3. Conclusions

The transcriptome analyses provided important information about early regulated genes
upon overexpression of ORE1. We identified a set of 17 commonly up-regulated genes
that are highly and rapidly induced upon ORE1 overexpression. In contrast, we did not
identify commonly down-regulated genes, and therefore, propose that OREI1 functions as
a transcriptional activator like many other NAC TFs. The analysis for over-represented
functional categories among the genes up- or down-regulated revealed that up-regulated
genes are associated primarily with the degradation of macromolecules and signaling. We
designed a list of six up-regulated genes to test if they are direct targets (BFN1, VNI2, RNS3,
OREI, SINAI, and SAG29). All the genes selected are known senescence-associated genes
(SAGs), and two of them encode NAC TFs (Buchanan-Wollaston et al., 2005; Balazadeh
et al., 2008a,b; Breeze et al.,2011). We have characterized ORE1-BS as RMGTR(5-6n)
YACGY and found that all selected targets contained different versions of ORE1-BSs in
their promoters. ORE1 was able to bind to all of them in vitro (except for SAG29 that was not
tested). Additionally, BFN1, VNI2, and RNS3 were significantly transactivated by OREI in
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mesophyll cell protoplasts from Arabidopsis. Our results provide convincing evidence that
supports BFNI, VNI2 and RNS3 as direct targets down-stream of ORE1. Further analyses are
required to elucidate the biological relevance of these targets in the context of natural and
induced-senescence.

4.4. Experimental procedures

4.4.1. General

Standard molecular techniques were performed as described in Chapter 2, section 2.4.1.

4.4.2. Plant material

The plant material and growth conditions used were similar to those described in Chapter
2, section 2.4.2.

4.4.3. Plant transformation

Arabidopsis transformation was performed as described in Chapter 2, section 2.4.4.

4.4.4. Constructs

Description of the overexpressor construct (35S:OREI) was given in Balazadeh et al.
(2010a).

Promoter-LUC constructs: promoter regions spanning 1.5 kb up-stream of the translation
start codon ATG of VNI2, BFNI, RNS3, OREI, SINAI and RNS3 were amplified from
genomic DNA by PCR using an Advantage HF 2 PCR Kit (Clontech) with gene-specific
forward and reverse primers (Annex 1). Promoter fragments were subcloned into a pENTR-
D-TOPO vector (Invitrogen, www.invitrogen.com) to generate individual entry vectors. The
entry vectors were then recombined into the Gateway destination vector p2GWL?7.0 which is
a recombination of the gateway vectors pBGWL7.0 (transcription reporter vector) (Karimi et
al.,2002) and p2GW?7.0 (overexpression vector) (Licausi et al., 2011) using the LR reaction
mix II (Invitrogen) to obtain the final BFNI-LUC, VNI2-LUC, RNS3-LUC, OREI-LUC,
SINAI-LUC, and SAG29-LUC reporter vectors.

OREI-CELD: OREI cDNA was amplified by PCR from leaf cDNA with forward (116) and
reverse (117) primers (Annex 1). The amplified fragment was inserted into pCR2.1-TOPO
and then cloned via Nhel and BamHI sites into plasmid pTacLCELD6XHis (Xue, 2005) to
create an ORE[-CELD in-frame fusion construct (pTacORE1LCELD6XHis).
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4.4.5. Transient expression of ORE] in protoplasts for transcriptome profiling

The protoplast preparation protocol was adapted from Sheen (2002). Arabidopsis mesophyll
cell protoplasts were isolated from leaves (the second and/or third/fourth pair) of 5-week-
old Col-0 (CS60000) plants grown on soil under long-day (16 hours light/8 hours dark)
conditions. Leaves were placed in enzyme solution (1% cellulase R10, 0.3% macerozyme
R10 (Yakult Honsha, Tokyo, Japan), 0.4 M mannitol, 20 mM KCl, 10 mM CaCl,, 20 mM
MES, 0.1% BSA (Sigma A-6793), pH 5.7) for 8.5 hours. Protoplasts were collected and
kept on ice in W5 medium (154 mM NaCl, 125 mM CaCl,, 5 mM KCl, 2 mM MES, pH
5.7) for 13 hours in the growth cabinet. Protoplasts were transferred to MMG solution (0.4
M mannitol, 15 mM MgCl,, 4 mM MES pH 5.7), and subjected to PEG transfection. To
2.12 x 10° protoplasts, a total of 250 pug plasmid DNA was added followed by 30 minutes
of incubation in 1 vol. of PEG solution (40% PEG 3500, 3 mL H,O, 0.2 M mannitol, 0.1 M
CaCl,). After transfection, the samples were diluted with 2 vol. of W5 solution and collected
by centrifugation at 100 g for two minutes. Protoplasts were then resuspended in 4 mL WI
medium (0.5 M mannitol, 20 mM KCl, 4 mM MES, pH 5.7), transferred to 5 cm Petri dishes
pre-coated with 5% calf serum, and incubated for 6 hours in the growth cabinet. After the
incubation, protoplasts were collected, and 100 - 200 mg aliquots were flash-frozen in liquid
nitrogen for subsequent RNA isolation and expression profiling.

4.4.6. Gene expression analysis by microarray

Three micrograms of quality-checked total RNA obtained from leaves of two and three
biological replicates of /OE-OREI and wild type lines, respectively (two hours and five
hours after 10 uM estradiol treatment), and two biological replicates of the mesophyll cell
protoplasts transiently overexpressing 35S:OREI, were processed for use in Affymetrix
GeneChip hybridisations (GeneChip® Arabidopsis ATH1 array) as described (Redman et
al., 2004). RNA was obtained from /OE-ORE] and wild type 15-day-old seedlings grown
in half MS (Murashige and Skoog, 1962) media with the selective antibiotic hygromycin
(as described in Chapter 2). Seedlings were transferred from solid to liquid MS media
one day before treatment to minimize secondary effects by stress. Seedlings of ORE-IOE
and wild type were treated/non treated with EST and, immediately after, whole seedlings
were frozen in liquid nitrogen (N) for RNA extraction. ATHI1 arrays allow the analysis of
around 24.000 Arabidopsis genes. Labeling, hybridization, washing, staining, and scanning
procedures were performed by Affymetrix Authorized Service Provider (ATLAS Biolabs,
Berlin, Germany) as described in the Affymetrix technical manual. Raw data (CEL files)
obtained from RNA hybridization experiments were normalized with the affyPLM package
from the Bioconductor software project (Gentleman et al., 2004) using the GCRMA that
uses GC content of probes in normalization with RMA (Robust Multiple array Average)
and gives one value for each probe set instead of keeping probe level information (Wu and
Irizarry, 2004).The heat map was produced using the software gplots from R. The Log2FC
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results for the 54 probe sets up-regulated in the ATHI1 Affymetrix after two hours inducible
overexpression of ORE1 were clustered together with the corresponding results after five
hours inducible overexpression and 6 hours constitutive overexpression. The hierarchal
clustering was performed using Euclidian-distance as the method of pairwise distance
calculation. The dendrograms group treatments (columns) and probe sets (rows) according
to their similarity (Warnes et al., 2009)

4.4.7. ORE1 binding affinity to ORS1 perfect and mutated binding sites

This work was performed in collaboration with Dr. Gang-Ping Xue, CSIRO Plant Industry,
St. Lucia, Australia. The DNA-binding activity of ORE1-CELD protein was measured using
methylumbelliferyl 3-D-cellobioside (MUC) as substrate as described in Xue (2002). DNA-
binding assays with a biotin-labeled single-stranded oligonucleotide, or a biotin-labeled
double-stranded oligonucleotide without a target binding site, were used as controls.

4.4.8. Dual-luciferase assay

Dual-luciferase assay was performed as described in Chapter 2, section 2.4.7. Promoter
regions of ORE1 putative genes were used as reporter plasmids: a 1.0 kb up-stream of the
ATG was amplified from genomic Arabidopsis ecotype Col-0 DNA to generate reporter
final constructs: BFNI-LUC, VNI2-LUC, RNS3-LUC, SAG29-LUC, SINAI-LUC, and
OREI-LUC (described in section 4.4.4). As an effector plasmid, a 355:ORE construct was
used. Normalization of data was performed based on relative luciferase of the 355:RLuc
normalization vector (Licausi et al., 2011).

4.4.9. EMSA

For protein expression and purification, the ORE1 cDNA was recombined in vitro into the
Gateway vector pDEST24 (Invitrogen) encoding a C-terminal GST-tag, and transformed
into the E. coli expression strain BL21 (DE3) pLysS (Agilent Technologies). The pDEST15
vector (Invitrogen) was used for expression and purification of GST alone. Expression of
GST and OREI-GST fusion proteins was carried out in 400-smL cultures and induced at
30°C by 1 mM isopropyl thio-B-D-galactoside for 3 hours. Harvested cells were lysed in 20
mL GST lysis buffer (20 mM sodium phosphate buffer, pH7.3, 150 mM NaCl, 1 mM EDTA,
0.2% Triton X-100, 1 mM dithiotreitol, I mM phenylmethanesulfonyl fluoride, 10 pg/mL
aprotonin, 10 pg/mL leupeptin, 2 mM benzamidin) and ultrasound treatment. According to
the instructions of the manufacturer, the supernatant of ultracentrifuged samples was used
for affinity purification with 70 mg of pre-equilibrated glutathione-agarose beads (Sigma-
Aldrich). Aliquots of the elution fractions were analyzed by SDS-PAGE and Coomassie
staining. One-mL fractions containing the purified proteins were pooled and dialyzed against
PBS buffer (20 mM sodium phosphate buffer, pH7.4 and 150 mM NaCl). Concentrations
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of purified proteins were determined by SDS-PAGE and Coomassie staining using BSA
standards. 5-DY682-labeled DNA fragments were obtained from MWG (Ebersberg,
Germany). Sequences of labeled DNA fragments, unlabeled competitors, and mutated
fragments are given in Annex 1. Annealing was performed by heating the primers to 100°C
followed by slow cooling to room temperature (RT). Binding reaction was performed at RT
for 20 minutes as described in the Odyssey Infrared EMSA kit instruction manual. DNA-
protein complexes were separated on 6% retardation gel while DY 682 signal was detected
using the Odyssey Infrared Imaging System for LI-COR Biosciences.

Contributions

Dr. Gang Ping Xue performed the CELD experiment. Dr. Wolfgan Droge Laser performed
transient overexpression of ORE in Arabidopsis protoplasts (35S:ORE1/6 hours). Dr. Hakan
Dortay and Katharina Schulz produced recombinant ORE1-GST protein.
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during senescence in Arabidopsis is regulated by the NAC
transcription factor ORE1/ANAC092/AtNAC2
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5.1. Introduction

Senescence is a regulated process associated with the final developmental stages in plants. It
can also be triggered by abiotic and biotic stresses. Several of the more than 20 senescence
up-regulated NAC TFs in Arabidopsis thaliana have been shown to regulate senescence,
including (among others) AtNAP/ANAC029 (Guo and Gan, 2006), OREI/ANAC092/
AtNAC2 (Balazadeh et al., 2010a,b; Kim et al., 2009), and ORESARAI SISTERI1/ORS1/
ANACO059 (Balazadeh et al., 2011) which all promote senescence, and recently, the NAC
factor VASCULAR-RELATED NAC-DOMAIN (VND) INTERACTING?2 (VNI2, ANACO083)
has been reported to integrate ABA signaling and leaf senescence (Yang et al., 2011). ORE1
has been shown to be a central regulator of senescence in Arabidopsis thaliana (Balazadeh et
al.,2010a,b; Breeze et al.,2011). Despite the amount of available data, the exact mechanisms
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that govern the onset and progression of senescence remain unknown at present, but direct
interactions between this NAC TF (ORE1) and their target genes are clearly needed for
this process. ORE1 has recently been shown to play a role in developmental and induced
senescence as well as programmed cell death (PC) (Balazadeh ef al., 2010a,b; Kim et al.,
2009).

It was establish that the orel-I allele isolated from an EMS-mutagenized pool, and the
orel-2 allele isolated from a population of fast neutron-mutagenized Col-0 seeds, conferring
the delayed leaf senescence phenotype (Aeong Oh et al., 1997; Kim et al., 2009) as well
as the anac092-1 T-DNA insertion mutant. In contrast, ORE[ overexpression strongly
enhances senescence (Balazadeh et al., 2010a). Kim et al. (2009) proposed a trifurcate feed-
forward pathway involving ORE1, microRNA164 (miR164), and EIN2 (ethylene insensitive
2) ensuring highly robust regulation of leaf senescence and aging induced cell death. ORE]
expression is positively regulated by EIN2 but negatively by miR164 with leaf age. EIN2
functions as a negative regulator of miR164 expression in an age-dependent manner. Age-
dependent down-regulation of miR164 leads to accumulation of ORE1 expression. Despite
clear evidence of ORE1 as a key role in the regulation of leaf senescence, knowledge about
the molecular mechanism(s) and gene network(s) through which ORE1 exert its senescence
regulatory function is still limited. We have previously described genes whose mRNA
expression is rapidly induced upon ORE1 induction (ORE1 regulon), and are, therefore,
candidates for being direct targets of ORE1 (Chapter 4). Bioinformatics analysis and
network modeling, based on high-resolution time-course profiles of gene expression during
leaf development, predict genes whose expression is positively influenced by ORE1 (Breeze
et al., 2011). BFNI, which is among the genes that are rapidly and positively regulated by
OREI1, encodes a type I nuclease; it shares high amino acid sequence similarity to DSA6
nuclease, which is associated with petal senescence in daylilies (Panavas, 1999), and to
ZENI nuclease, which is associated with PCD in Zinnia elegans (Ito and Fukuda, 2002).
BFNI expression was already enhanced by around fourfold two hours after EST treatment
in OREI-IOE lines. Its expression further increased to fortyfold within five hours of EST
treatment. An extreme activation of BFNI expression (a thousandfold) was observed in the
35S:ORE] six hours after protoplast transfection (section 4.2.1). BFNI expression has been
shown to be specifically enhanced during leaf and stem senescence, as well as in the floral
abscission zone and during developmental PCD (Breeze et al., 2011; Buchanan-Wollaston
et al., 2005; Farage-Barhom et al., 2011; Pérez-Amador et al., 2000; Wagstaft et al., 2009).
Intracellular localization studies revealed that at later stages of senescence, BFN1-GFP is
localized with fragmented nuclei in membrane coated vesicles, suggesting the role for BFN1
in regulated nucleic acid degradation occurs during senescence and developmental PCD
(Farage-Barhom et al., 2011). In Chapter 4 we obtained strong evidence that support a
possible direct interaction of BFNI by ORE1. Here, we demonstrated that ORE1 specifically
activates the BFNI promoter. BFNI and ORE| tissue-specific expression show largely over-
lapping patterns, reaffirming the idea of co-expression. We proved that binding of OREI
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to BNF1 promoter is highly specific, and single mutations in ORE-BS that are present
in the BFNI promoter hardly affect binding activity in vivo. Moreover, we revealed that
senescence-enhanced expression of BFNI is abolished in the anac092-1 T-DNA insertion
mutant, indicating ORE1 as a major regulator of BFN/ expression during senescence. Our
results give convincing data that supports BFN/ as a direct target down-stream of ORE1.

5.2. Results

5.2.1. Overlapping patterns of transcriptional activities of BFNI and ORE]
promoters

The elevated expression of BFNI in the cells and transgenic plants overexpressing ORE1
indicated that the NAC TF acts as an up-stream positive regulator of BFNI. We, therefore,
analyzed the extent of co-expression of both genes in Arabidopsis plants. Gene expression
profiling data revealed induction of both BFN1 and ORE [ during leaf and pistil developmental
senescence (Breeze et al., 2011; Buchanan-Wollaston et al., 2005; Farage-Barhom et al.,
2011; Pérez-Amador et al., 2000; Wagstaftf et al., 2009) and during dark- and salt-induced
senescence (Balazadeh et al., 2010b; Buchanan-Wollaston et al., 2005). Moreover, expression
of both genes was highly induced upon 180 minutes ABA treatment in 7-day-old seedlings
(Arabidopsis Hormone Database) (Jiang et al., 2011) and significantly reduced in the ein2
mutant that lacks a major component of the ethylene signaling pathway (Buchanan-Wollaston
et al., 2005). To investigate the extent of overlapping promoter activities during senescence,
we looked at OREI and BFNI promoter activities using promoter-p-glucuronidase (GUS)
reporter lines. Transgenic Arabidopsis lines expressing the GUS reporter gene, driven by
the 2.3 kb BFNI up-stream region (Farage-Barhom et al., 2008) or the 1.5 kb OREI up-
stream region (Balazadeh ef al., 2010a), were analyzed side by side to identify unique and
overlapping expression patterns of both genes. In general, expression patterns of both promoter
fusions were highly similar in leaves and floral organs at different developmental stages,
while expression was largely absent in young tissues, consistent with the function of both
genes during senescence (Fig. 14). Examination of GUS expression in 15-day-old seedlings
revealed high BFNI and ORE1 expression in cotyledons as well as in the tip regions of leaves.
BFNI expression was faint in roots (Fig. 14.a) compared to ORE] expression in the same
tissues (Fig. 14.f). In both BFNI and ORE1 plants 40 days after sowing (DAS), GUS activity
was specifically detected in tip and margin regions of senescence leaves (Fig. 14.b,g). GUS
activity was prominent in the stigma, mature anthers, and sepals of mature/fully opened flowers
(flower stage 13/14 as classified by Ferrandiz et al. (1999) (Fig. 14.d,i and ¢,h). Expression
in mature siliques was detectable in abscission zones (AZ) at the bottom and upper parts of
the valve margins for both Prom-ORE1:GUS and Prom-BFNI1:GUS (Fig. 14.e,j). We also
observed GUS expression in Prom-ORE:GUS lines in the replum of mature fruits and faintly
in Prom-BFN1:GUS (Fig. 14.j). Thus, our data largely demonstrated overlapping expression
patterns for the NAC transcription factor ORE[ and its direct down-stream target BFNI.
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Prom-BFN1:GUS

Prom-ORE1:GUS

Figure 14. Histochemical GUS staining of Prom-BFNI1:GUS and Prom-ORE1:GUS in Arabidopsis. Plants were
transformed with Prom-BFNI1:GUS (top) and Prom-OREI1:GUS (bottom): (a, f) Arabidopsis seedlings (15-day-old)
exhibited strong GUS activity in cotyledons and tip regions of leaves. (b, g) Arabidopsis leaves (40 DAS) showed strong
GUS activity in the tip and margin regions of leaves corresponding to the oldest tissues. (¢, h) Bolting branch with young
and old flowers. GUS was observed in mature/opened flowers. GUS activity was observed in the flower abscission zone
(indicated by arrows). (d,i) close-up of mature/opened flowers (flower stage 13/14 as classified by Ferrandiz et al. (1999).
Strong GUS activity on stigma and mature anthers was detected. GUS activity was faint in sepals (indicated by arrows).
(e,j) close-up of mature siliques. GUS activity was detected in abscission zones (AZ) at the bottom and upper part of the
siliques. In the case of Prom-ORE1:GUS, promoter activity was also detected in the replum (indicate by arrows) and along
the aperture site of the valves.

5.2.2. Altered level of BFN1 protein in ORE1 transgenic plants

Nuclease I enzymes are involved in the degradation of RNA and single-stranded DNA during
several plant growth and developmental processes, including senescence. BFN1 RNase
and DNase nuclease activities were detected in activity gels at about 38 kDa using leaves
from transgenic Arabidopsis plants overexpressing BFNI. Nuclease activity was almost
undetectable when using roots and non-senescent leaves and stems. Furthermore, senescent
flowers also exhibited enhanced nuclease activity. These results demonstrated that BFN/
encodes a bifunctional nuclease capable of degrading RNA and DNA (Pérez-Amador ef al.,
2000). To further confirm that BFN1 expression is ORE1-dependent, we measured changes in
BFN1 nuclease protein levels in plants overexpressing or lacking ORE1 protein. All protein
was extracted from (i) estradiol (EST) treated and (ii) non-treated (15-day-old) OREI-IOE
seedlings after 24 hours of induction. In order to avoid artifacts due to the EST treatment,
we analyzed BFNI1 activity in ORE[ overexpressor lines (35S:ORE1, lines 23 and 24) using
protein extracts from leaves in which senescence was artificially induced. All leaves were
at full senescence, as judged by complete yellowing of the tissue, and empty vector lines
(E.V.) were used as controls. Additionally, BEN1 nuclease protein level was measured in the
anac092-1 T-DNA insertion mutant and wild type plants (30-DAS). Same position leaves
(6 and 7) were detached and incubated in the dark until full senescence was obtained (after
seven days in the wild type and nine days in the mutant). Proteins were extracted from the
plant material described above and used for Western blot analysis using BFN1 antiserum.
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The position of the senescence-induced BFN1 protein was clearly visible in the analysis,
indicated by black arrows on the gels. The expression level of BFN1 nuclease protein was
detected in OREI-IOFE seedlings upon treatment with EST (Fig. 15.D), whereas it was
undetectable in untreated ORE-IOE seedlings (Fig. 15.C). This result strongly supports
that at earlier developmental stages, BFN1 expression is absent. Nevertheless, an increase in
the ORELI protein level after EST treatment is able to trigger the expression of BFN1, even
in young plants like seedlings (Fig. 15.D). Interestingly, proteins extracted from inducible
ORE]1 lines and constitutive ORE overexpressors (Fig. 15.D, G-H) exhibited a substantial
reduction in the amount of proteins compared to non-treated ORE[-IOE seedlings and wild
type protein extracts; in particular, degradation of Rubisco LSU (ribulose bisphosphate
carboxylase/oxygenase large subunit) was evident, which is in accordance with the fact that
overexpression of OREI triggers senescence and accelerates protein degradation. Rubisco
protein is indicated by red arrows on the gel images. As expected, BFN1 nuclease protein
was almost absent in senescent leaves of the anac092-1 T-DNA insertion mutant compared
to senescing leaf protein extract from wild type plants. As expected, the anac092-1 T-DNA
insertion mutant plants showed bands of Rubisco signal which is in accordance with the
delay of senescence in these lines and the retardation of protein degradation (Fig. 15.A-B).
Overall, our results confirm that BFNI expression is ORE1-dependent.
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Figure 15. Altered level of BFN1 protein in ORE1 transgenic plants detected by Western blot. In all blots, red arrows
corresponds to Rubisco LSU (ribulose bisphosphate carboxylase/oxygenase large subunit) and black arrows correspond
to BFN1 protein. (A) Enhanced BFN1 protein level in wild type protein extract. (B) BFN1 protein is almost absent in
anac092-1 T-DNA insertion mutant. anac092-1 T-DNA insertion mutant shows a considerable concentration of Rubisco
LSU, indicating that protein degradation is almost absent. BFN1 protein level was absent in untreated inducible ORE
overexpression seedlings (C) compared to treated seedlings after 24 hours EST treatment (D). Lower levels of BFNI
protein were detected in pGreen empty vector lines (E.V.) control plants (E-F) compared to a markedly BFN1 protein level
in 35S:ORE] overexpressor lines (L24 and L25) (G-H).
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5.2.3. Senescence-specific expression of BFN1 is ORE1-dependent

In order to test whether the senescence-induced expression of BFN/ is dependent on the
presence of functional ORE1, we tested BFNI expression in the orel/-1 EMS mutant using
plants from different developmental stages; plants were grown in soil and leaves were
harvested from plants 12, 16, 20, 24, 28, 32, and 36 days after sowing. As shown in Figure
16, BFN1 expression strongly increased with age in wild type plants; expression was sixtyfold
higher in leaves of 28-day-old plants compared to leaves of 24-day-old plants. Expression of
BFNI remained high and increased further at later time points (in 32- and 36-day-old plants),
consistent with previous observations that BFN/ is a senescence-associated gene (Farage-
Barhom et al., 2011; Pérez-Amador et al., 2000; Wagstaff et al., 2009). In contrast, the age-
dependent increase of BFNI transcript abundance was completely abolished in leaves of the
orel-1 EMS mutant. These data indicate that senescence-associated expression of BFN/ is
mainly, if not exclusively, regulated by ORE1. Considering the negative regulation of ORE[
by mirl64abc during leaf aging, we next tested BFN transcript level in the mirl 64abc triple
mutant at different leaf developmental stages (as described above). The difference in BFNI
transcript between younger and older leaves was greater in mirl64abc mutants than wild
type plants (Fig. 16.A).

To further confirm that expression of BFNI is ORE1-dependent, we tested the expression
of an exclusively senescence marker. SAG/2 mRNA expression was measured in the same
plant material. As expected, SAG12 expression increased with age in wild type plants with
a maximum value at the later time point (36-day-old plant). In contrast to BFN/ mRNA
expression in orel-1 EMS mutant, SAG/2 increased with age following the same pattern
as in wild type and mirl64abc mutants. SAGI2 expression increased at a lower rate in the
orel-1 EMS mutant than in wild type and mil64abc mutants, confirming that the absence of
OREI1 delays senescence. In the end, expression of SAG12 was the same in all tested plants.
These results confirm that all tested plants reach senescence in the latest time point (after 36
days after germination), and the absence of functional ORE1 not only delays senescence but
directly controls the expression of BFNI (Fig. 16.B).
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Figure 16. BFN1 and SAG12 expression in orel-1 EMS mutant, mirl64abc, and wild type plants. (A) BFNI and (B)
SAG12 transcript levels in leaves of orel-1 EMS mutant, mil64abc mutant, and wild type Arabidopsis plants at different
ages (12, 16, 20, 24, 28, 32, and 36 days after germination). Expression level was determined by qRT-PCR, and data are
means of two biological replicates.

To further confirm ORE1-dependent expression of BFNI during senescence, we transformed
the anac092-1 T-DNA insertion mutant with the Prom-BFN1:GUS construct (Farage-Barhom
etal.,2008) and compared it to the expression patterns and GUS activity in wild type plants that
were transformed using the same construct. To minimize the potential effect of the integration
point, we analyzed more than 50 independent lines transformed with Prom-BFN1:GUS. The
presence of the GUS gene in all lines was confirmed by PCR on genomic DNA (Fig. 17.E).
Histochemical staining revealed strong reduction, and in most cases, absence of detectable
BFNI promoter activity in the anac092-1 T-DNA insertion mutant background compared
to wild type (Fig. 17.A-B). Additionally, we quantitatively determined GUS activity using
4-methylumbelliferyl-B-D-glucoronide (4-MUG) as substrate in an assay and taking fully
expanded juvenile leaves (from 20-day-old plants) and senescent leaves showing less than
50% yellowing (from 40-day-old plants) of Prom-BFNI1:GUS transgenic lines. As shown in
Figure 17.F, reporter gene activity was significantly reduced in Prom-BFN1:GUS/anac092-1
T-DNA insertion mutant lines compared to Prom-BFNI11:GUS/wild type plants. Reduced
GUS activity was particularly pronounced in senescent leaves compared to young leaves.
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These data confirm that ORE1 plays a central role as an up-stream transcriptional regulator
of BFNI.

Prom-BFN1:GUS in wild type Prom-BFNI1:GUS in anac092-1
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Figure 17. Expression patterns of Prom-BFNI1:GUS in wild type (Col-0) (upper left panel) and anac092-1 T-DNA
insertion mutant (upper right panel) backgrounds. (A) Percentage of transgenic lines (Prom-BFN1:GUS in wild type
background) with strong GUS activity (strong signal) compared to percentage of plants without GUS activity (no signal).
(B) Percentage of transgenic lines (Prom-BFN1:GUS in anac092-1 T-DNA insertion mutant background) that exhibited
reduction (low signal) or absence of GUS activity (no signal). (C.a) Strong GUS activity in the tip region of an old leaf
(line 24). (D.c) Faith GUS activity in the tip region of an old leaf (line 54). (D.d) Absence of GUS activity in tip region of
an old leaf (line 2). (C.b—D.e) GUS activity within floral abscission zone (AZs) in the remaining cells for protective scar
tissue and the region surrounded. The images displayed are representative of at least 30 plants examined for each line per
experiment. Bottom right panel: (F) Quantitative GUS activity of Prom-BFNI:GUS measured by a MUG assay in fully
expanded transgenic lines from young leaves (from 20-day-old plants) and senescent leaves (from 40-day-old plants);
Prom-BFNI:GUS in wild type background (lines 21 and 24) and Prom-BFNI1:GUS in anac092-1 T-DNA insertion mutant
background (lines 2 and 24). Data are the means of two biological and three technical replicates. Bottom left panel: (E)
PCR analysis of 40-day-old Prom-BFN1:GUS transgenic plants. DNA was isolated and used as templates for GUS specific
amplification. Lane 1 is DNA size marker. Lane 2 is PCR product of Prom-BFN1:GUS in wild type background (line 21).
Lane 3 is PCR product of Prom-BFN1:GUS in anac092-1 T-DNA insertion mutant line background (line 2; plants showed
no GUS staining). Lane 4 is the negative control. White arrows indicate GUS-specific amplification, fragment size 1139 bp.
The sequence of GUS-specific primers is given in Annex 1.
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5.2.4. ORE1 binding activity to BFN1 promoter is highly regulated by ORE1-
binding site (BS)

Transient transactivation assays have been widely used as a powerful and rapid method
to predict transcription factor direct target genes and elucidate functional cis-regulatory
motifs within promoters of target genes (Licausi ef al., 2011; Park et al., 2010; Yang et
al.,2011; Zhong et al., 2010, Zhou et al., 2009). In section 4.2.3, we established that OREI
transactivates BFNI-promoter in mesophyll protoplast. Additionally, we determined that
the BFN1 promoter contains 11 different versions of the ORE1 binding site (BS), but only
one corresponds to the longest version (ACGTATGAGACTCGC) that is 15 nucleotides
long and contains one transition (“T” instead of “A”). This OREI-BS is located 196 bp
up-stream of the ATG and was named BS-1 for further analysis. We aimed to test if BS-1 is
crucial for ORE1-mediated transactivation of the BFNI promoter. We compared the effect
in the transcriptional activation of BFNI using three different BFNI promoters fused to
luciferase (reporter gene): (i) 1084 bp up-stream of the start codon ATG and contained the
original BS-1 (BFNI-LUCQ); (ii) a second version BFNI-M-LUC covered the same region
but carried a substitution in the first core motif of BS-1 (("CGT"" was substituted with
“AAA™); and (ii1) BFNI-S-LUC comprised truncated promoter (192 bp) that lacked all
ORE1-BSs (binding sites) (Fig. 18.A). Our luciferase-based assay data demonstrate that
the introduction of these substitutions in BS-1 significantly reduced the ORE1 mediated
transactivation (Fig. 18.B). This data made us conclude that BS-1 regulated the direct
interaction of OREI to BFNI promoter. However, the change in BS-1 did not lead to a
complete abolishment of BFNI transactivation, indicating that other active binding sites
in BFNI promoter mediated its transactivation. Analyses in silico indicated that BFN1
promoter contains 11 ORE1-BS in the promoter which covers at least the complete first
core motif (Annex 2). Thus, it is plausible to think that those ORE1-BS are active and able
to transactivate BFN1. Indeed, the deletion of BFNI promoter to a 192 bp fragment resulted
in further reduction of BFNI transactivation. Interestingly, BFNI-S-LUC transcriptional
activity was still detectable at a higher level than basal activity. Therefore, we conclude that
OREI is a major regulator of BFNI but might possess other active BSs that are able to lead
transactivation of its promoter.
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Figure 18. Transactivation of BFNI expression by ORE1l in Arabidopsis mesophyll protoplasts. Schematic
representation of the constructs co-transfected in Arabidopsis mesophyll protoplast. (A) 1.0 kb promoter fused to luciferase
(BFNI-LUC), (B) 1.0 kb promoter carrying substitutions (BFNI-M-LUC), and (C) 192 bp (BFNI-S-LUC) lack all ORE1-
BSs. (D) Luciferase activity of each version of BFNI promoter in presence (plus ORE1) or absence (BFN1-basal) of
35S:ORE1. Luciferase activity was determined using the Dual Luciferase Reporter Assay System (Promega) 24 hours
after transfection. In all cases, normalization of data was performed using the CaMV 35S:Rluc plasmid. Bars indicate the
standard errors of three biological replicates.

5.3. Conclusions

We determined that ORE1 binds to the BFNI promoter in vitro and is able to transactivate
the BFNI promoter in vivo. In this study, we show that BFNI and ORE] tissue-specific
expression show largely over-lapping patterns, and BFNI expression is highly dependent
on the presence of OREl. We confirmed that OREl and BFNI1 are highly expressive
during senescence. Our results demonstrate that senescence-induced BFNI expression is
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regulated by OREI1. Previous studies have demonstrated the central importance of ORE1
for the control of leaf senescence and developmental PCD. Considering the possible role of
BFNI in degradation of nucleic acids during senescence, it is assumed that ORE1 exerts its
senescence promoting function partly through BFNI.

5.4. Experimental procedures

5.4.1. General

Standard molecular techniques were performed as described in Chapter 2, section 2.4.1.

5.4.2. Plant material

The plant material and growth conditions were as described in Chapter 2, section 2.4.2.

5.4.3. Plant transformation

Wild type Arabidopsis transformation and supertransformation of the anac092-1 T-DNA
insertion mutant with the Prom-BFNI1:GUS was performed as described in Chapter 2,
section 2.4.4. TO seedlings were selected on kanamycin (50 mg/L). Kanamycin-resistant
lines were analyzed by PCR for GUS reporter gene-specific amplification.

5.4.4. Constructs

Descriptionof BFN1-LUC construct was given in section 4.4.4. Descriptions of overexpressor
construct (358:0ORET) and Prom-BFNI1:GUS were given in Balazadeh et al. (2010a) and
Farage-Barhom et al. (2008), respectively.

Promoter-LUC construct: The 1.0 kb BFNI promoter and a 0.2 kb long truncated versions
(counted from the translation initiation codon) were amplified from genomic Arabidopsis
(Col-0) DNA by PCR using an Advantage HF 2 PCR Kit (Clontech) and specific primer pairs
listed for each construct (Annex 1). A mutated version of BFNI promoter (BFNI-M-LUC)
was generated by site-directed-mutagenesis. Briefly, two short complementary promoter
fragments were amplified by PCR and introduced into the final vector. Primers were used in
two independent PCR reactions combining (i) forward primer (139) with reverse mutated
primer (148), and (i1) forward mutated primers (147) with reverse primer (140) (Annex 1). The
final products were isolated and purified using a QUIAGEN-PCR cleanup kit (QUIAGEN))
and used as a template for a final PCR to amplify the long version (1084 bp) of the promoter
using forward (139) and reverse (140) primers (Annex 1). The amplified DNA fragments
were cloned into the pENTR/D-topo vector (Invitrogen) to generate entry vectors. The entry
vectors were then recombined into the Gateway destination vector p2GWL?7.0 (Karimi et
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al., 2002) which is a recombination of the gateway pBGWL7.0 (transcription reporter and
p2GW?7.0 (overexpression vector) vectors (Licausi et al.,2011) using the LR reaction mix II
(Invitrogen) to obtain the final reporter BFNI-M-LUC (full-length mutated promoter) and
BFNI-S-LUC (short promoter).

5.4.5. Histochemical and quantitative GUS assay

Histochemical GUS assay was performed as described in Chapter 2, section 2.3.4.
Quantitative measurements of GUS activity were made by fluorometric GUS assays using
4-methylumbelliferyl glucuronide (MUG) as substrate for the GUS enzymatic reaction, in
which the fluorescent product 4-methyl umbelliferone (4-MU) can be detected (Jefferson et
al. 1987). Tissue samples were ground in GUS extraction buffer 50 mM NaH,PO,, 1 mM
EDTA, 0.1% Triton X-100, 0.1% (w/v) sarcosine, and 10 mM dithiothreitol (DTT), and
following removal of tissue debris by centrifugation at 10 000 g for 10 minutes at 4°C, the
crude total protein extract was used to measure GUS activity with a Fluorescence microplate
reader (FLUOstar Omega). A standard curve was prepared with 4-MU, and GUS activity
was expressed as pmol 4-MU mg/ul (Jefferson et al., 1987). Protein content was determined
in the same sample used for the GUS assay by Bradford (Bio-Rad Protein assay) (Bradford,
1976). Tissue-specific expression was analyzed using plants of the T3 generation.

5.4.6. Dark-induced senescence

Experiments for artificial induction of senescence were performed with leaves in position
6th or 7th of the Arabidopsis plant rossete. The leaves were detached and incubated in the
dark in containers fitted with inlet and outlet ports, and they were stored for 6-9 days in the
dark at 25°C. The containers were sealed and connected to a flow-through air supply that
was bubbled through sterile water to maintain humidity.

5.4.7. BFN1 protein extraction and Western Blots

Proteins forimmunoblot analysis were extracted from leaftissues. The tissue was homogenized
in the presence of 150 pL extraction buffer (50 mM Tris-HCI, pH 7.5, 0.1% w/v SDS, 10%
w/v polyvinylpyrrolidone, and 1 mM phenylmethylsulfonyl fluoride) in a microtube by
means of a fitted pestle and a motorized drill. Following 15 minutes of centrifugation at
4°C, the soluble protein extract was assayed for protein content by Bradford assay (Bio-Rad,
Hercules, CA, USA) and stored at -80°C. Protein extracts of 10-20 pg were mixed with
sample buffer and boiled for five minutes before separation on a 15% SDS-polyacrylamide gel
(Laemmli, 1970). Separated proteins were blotted onto nitrocellulose membranes with a gel
blotter (Bio-Rad). Membranes were blocked with a solution containing 5% (v/v) nonfat milk
and 0.1% Tween 20 in Tris-buffered saline for 60 minutes. The anti-BFN1 serum (Farage-
Barhom et al., 2008) was diluted 1:2.000 in the blocking solution and incubated with the
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membrane for 12 to 16 hours at 4°C. The membrane was washed for 30 minutes in several
changes of Tris-buffered saline containing 0.1% Tween 20. The secondary antibody was goat
anti-rabbit IgG:horseradish peroxidase conjugate (Bio-Rad), which was diluted 1:50.000
in blocking solution and incubated with the membrane for 1 hour at room temperature. For
signal detection, EZ-ECL Chemiluminescent (Biological Industries Ltd., Beit Haemek,
Israel) or WesternBright ECL (Advansta Ltd, CA, USA) kits were used.

5.4.8. Dual-luciferase assay

The truncated BFNI promoters (BFNI-LUC, BFNI-M-LUC, and BFN1-S-LUC) were used as
reporter plasmids. Renilla luciferase was used as an internal control and 355:ORE construct
was used as effector plasmid. Detailed description of the procedure is described in Chapter
2, section 2.4.7.

Contributions

The ore 1-1 EMS mutant plant material was provided by Dr. Hong Gil Nam (Department
of Agronomy, Korea University). Mamoona Rauf tested expression of ORE! and SAGI2
in orel-1 EMS mutant and mirl64abc triple mutant. Dr. Amnon Lers provided seeds of
the Prom-,, :GUS lines; Dr. Amnon Lers and Liliane Sorego carried out immunublotting
experiments.
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Chapter 6

VND-Interacting2 (VNI2) is a potential down-stream
target of ORE1

6.1. Introduction

The Arabidopsis thaliana NAC transcription factor VND-Interacting? (VNI2) has been
recently identified as a key regulator of xylem vessel differentiation acting as a repressor of
gene expression (Yamaguchi et al., 2010). Furthermore, VNI2 also works as a mediator of
signaling crosstalk between salt stress-response and leaf aging in an ABA-dependent manner
(Yang et al., 2011). VNI2 has a complex structure. As a NAC transcription factor (TF), it
has a characteristic DNA-binding domain (DBD) at the N-terminal region. Within the DBD
a potential repression-related sequence has been identified. The C-terminal region includes
a putative PEST proteolysis target motif and a transcriptional activation domain (TAD)
(Yang et al., 2011). We have provided evidence that V'NI2 might be a direct target of OREI
(Chapter 4, section 4.2.1). In fact, overexpression of OREI transactivates the V'NI2 promoter
in Arabidopsis mesophyll cell protoplasts (Chapter 4, section 4.2.3) and ORE1 binds directly
to the V'NI2 promoter in vitro (Chapter 4, section 4.2.4). Here we aimed to elucidate the signal
transduction cascade that links ORE1 and VNI2 during leaf senescence in Arabidopsis.

6.2. Results

6.2.1. VNI2 Encodes a NAC TF regulated by ORE1

In Chapter 4 we described experiments carried out to identify genes up- or down regulated by
OREI. According to our data V'NI2 is one direct target down-stream of ORE1 (tested in vivo and
invitro) (see Chapter 4, section 4.2.1). VNI2 was highly up-regulated after five hours of estradiol
induction in estradiol-inducible ORE overexpressing lines and after six hours of constitutive
overexpression in protoplasts (Fig. 19.A). Considering that VNI2 is another NAC transcription
factor down-stream of OREI, it motivated our interest to analyse V'NI2 expression in plants
with altered levels of ORE1. We measured the expression of V’NI2 in constitute overexpressing
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plants (35S:ORE1) and in plants loss-of-function mutants (anac092-1 T-DNA insertion mutant);
as controls we used plants transformed with the pGreen0229 empty vector (E.V.) (Skirycz et al.,
2006). As expected, VNI2 was significantly up-regulated in plants overexpressing ORE1 and
showed a decreased expression in the anac092-1 mutant (Fig. 19.B).
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Figure 19. VNI2 expression in ORE1 gain- and loss-of-function mutant plants. (A) VNI2 expression determined by
microarrays (Affymetrix ATH1 array, Probe Id 245987 at) using plants and protoplasts overexpressing ORE1. (B) VNI2
expression determined by qRT-PCR. Levels measured in estradiol-inducible overexpressing lines (ORE-IOE), anac092-1
T-DNA insertion mutant and empty vector (E.V.) control plants. Statistical significance was assessed using Student’s #-test
implemented in the SigmaPlot Software. *P<0.05.

6.2.2. VINI2 expression in planta associates with senescence

To investigate the tissue-specific expression of VNI2 and whether it correlates with the
expression of ORE (Chapter 2, section 2.2.1) we created VNI2 promoter fusion lines using
the Staphylococcus B-glucuronidase (GUS) as a reporter gene. We generated two promoter
versions, a long version (VNI2,,,  -GUS) spanning ~1.5 kb up-stream (LV) of the translation
start site (SST), and a short version (VNI2,, :GUS) comprising ~0.5 kb (SV) up-stream of
the SST. The most representative expression patterns are shown in Figure 20. GUS expression
driven by the VNI2 promoters (VNI2,,, :GUS and VNI2,,, :GUS) was tested in eight
independent transgenic lines per construct (T2 and T3 generations). GUS activity was mainly
but not exclusively associated whit senescent tissues throughout the plant (Fig. 20). Our
observations confirmed published data (Yang et al., 2011) and expression patterns reported
in GENEVESTIGATOR (Hruz ef al., 2008). In the early stages of development (15-day-old
seedlings), strong GUS activity was detected in cotyledons, margins and tips of leaves as well
as roots (Fig. 20.f). Bolts (stems with inflorescences) exhibited faint GUS activity in flower
buds particularly in flowers of stage 12 of development before the bud opens (Fig. 20.c) and
in 1.0 cm primary bolts in the axis of the secondary inflorescence stem as indicated by arrows
(Fig. 20.d). A strong and characteristic pattern was found among the axillary inflorescence axes
and pedicels (Fig. 20.c). A closer look into opened mature flowers of stage 15 where the stigma
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extends above the anthers (Smyth ez al., 1990) revealed strong GUS activity in the upper part
of the stigma, in anthers and filaments as well as in the abscission zone (AZ), in older petals
and sepals (Fig. 20.a). Mature opened flowers of stage 14 when long anthers extend above the
stigma (Smyth et al., 1990) exhibited strong VNI2 promoter-driven GUS activity specifically
in the upper part of the stigma, anthers, filaments and among the vascular tissues of sepals.
Abscission zones lack GUS expression at this developmental stage (indicated by arrow) (Fig.
20.b). VNI2 expression in senescent siliques was detected in the upper and bottom part of the
valves near the abscission zone (AZ) (Fig. 20.e). These observations are in good agreement with
the reported VNI2 expression patterns derived from transcriptome analyses of senescing siliques,
leaves and petals (Wagstaff ez al., 2009). Like other senescence-associated genes (SAGs) (e.g.,
ORE]I (Balazadeh et al., 2010), ORS! (Balazadeh et al., 2011) and BFNI (Farage-Barhom et
al., 2008)), VNI2 shares a common expression pattern in the tips and margins of senescence
leaves which corresponds to the older regions of the leaves (Fig. 20.g). We could not identify
substantial differences between the expression patterns determined by the long or short versions
of the VNI2 promoter at any of the developmental stages tested (comparison of both constructs
not shown). This suggests that the region ~500 bp up-stream of the initiation codon is sufficient
to drive VNI2 promoter tissue-specific expression and that cis-regulatory elements (CREs) that
confer the specific pattern observed during senescence may be within this region.

Figure 20. Tissue-specific expression of VNI2 in Arabidopsis. (a-d) VNI2 promoter-driven GUS expression in bolts of mature
plants (25 days after sowing, DAS). Close-ups of (a) opened mature flower in stage 15 of development in which the stigma
extends above long anthers (Smyth ez al., 1990). (b) Mature opened flower in stage 14 of development in which long anthers
extend above the stigma (Smyth ez al., 1990). (¢) Strong and characteristic pattern among the axillary inflorescence and pedicels
(indicated by arrows). (d) One-cm bolt of primary inflorescence. (e) Mature silique (three weeks after sowing). (f) VNI2 promoter
activity in 15-day-old seedlings. (g) Enhanced V’NI2 promoter activity in the tip and margin regions of leaves from a rosette three

weeks after sowing on soil (percentage of yellowing in leaves ~20%). All pictures correspond to VNI2,,,  -GUS lines.
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6.2.3. VNI2 expression is strongly regulated by salt

A considerable number of SAGs are regulated by abiotic-stresses. In our published data
we determined that VNI2 is regulated by salt, like OREI. Wild type plants were grew in a
hydroponic culture system and subjected them to salt stress at two developmental stages.
Stage 1: 28-day-old plants and (ii) Stage 2: 34-day-old plants. Plants were subjected to short-
(six hours) or long-term (4, 9 and 12 days) salt stress (150 mM NaCl). Similarly to ORE ],
VNI2 expression was highly up-regulated by long-term stress. In young plants that still have
expanding leaves (Stage 1), V'NI2 transcript level increased around 4-fold after four days of
salt stress compared to non-treated plants (Fig. 21). In mature plants which were still in the
vegetative stage (Stage 2, 34 days old), V'NI2 levels were up-regulated ~4-fold and ~2-fold,
respectively, after nine and 12 days of salt stress (Fig. 21).
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Figure 21. VNI2 levels in response to salt stress. Expression of VNI2 determined by quantitative real-time PCR (qRT-
PCR) in plants subjected to salt stress at two plant developmental stages. Values expressed as expression ratios (salt-treated
compared to control). Data are means of two independent experiments + Standard deviation (SD) according to published
data (Balazadeh et al., 2010).

6.2.4. Identification of vni2-2 a T-DNA insertion mutant

To investigate the role of VNI2 in leaf aging and longevity we obtained a VNI2 T-DNA
insertion line (GABI-KAT 799-H09) in the Col-0 background from the GABI-Kat consortium
(Li et al. 2003). Homozygous VNI2 knockout mutants (vni2-2) were isolated (section 6.4.5).
The T-DNA insertion was confirmed via PCR using primers annealing between the start and
stop codon of the VNI2 open reading frame. A second combination of primers consisting of
the previous forward primer and the T-DNA left border primer (LB) was used to confirm
the T-DNA insertion (Fig. 22.B). Two homozygous plants (P1, P2) were selected based
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on selection in sulfadiazine (section 6.4.6) and on-gel results using wild type as a positive
control (Fig. 22.C). The band amplified from the line P1 using forward and LB primer was
used to determine the exact position of the T-DNA insertion by sequencing (http://www.
eurofinsdna.com/). In Figure 22.A a schematic representation of the protein is shown. The
sequence allowed us to locate the T-DNA insertion to the third exon. It is placed within the
PEST proteolysis target motif (TTDLNLLPSSPSSD; PEST score of +4.94; threshold +5.0)
(Gasteiger et al., 2003). This motif covers the region between nucleotides 640 - 681 that
corresponds to amino acids 214-227 in the protein (Fig. 23). The T-DNA insertion lies in
the middle of the PEST motif. The second half of the motif is enriched in proline and serine
residues and is required to maximize the proteolytic activity of the PEST motif (Fig. 23).
We could not detect a full version of the VNI2 transcript in the homozygous vni2-2 mutant
(Fig. 22.D).
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Figure 22. vni2-2 T-DNA insertion line. (A) Schematic representation of the VNI2 protein. The N-terminal domain covers
the conserved NAM domain, which contains five subdomains (A-E). The C-terminal region contains a predicted PEST
domain and the transactivation domain (TAD) (protein length 252 amino acids, aa) (B) Schematic representation of the
primers used to identify homozygous mutant lines. The yellow triangle indicates the T-DNA insertion point (vni2-2). (C)
Identification of homozygous lines by PCR. Genomic DNA was used for amplification. Two homozygous plants were
selected (P1 and P2). The VNI2 transcript was amplified only in the wild type, while the vni2-2 mutant was positive for
amplification using of T-DNA left border primer.

Considering the location of the T-DNA insertion in the third exon (Fig. 23), we designed
specific primers that cover the three exons (I -II1) of the VNI2 gene in gene to test transcript
abundance of each exon in vni2-2. RNA isolated from leaves of 30 DAS plants was used
to determined transcript abundance by qRT-PCR. The combination of primers used to
analyze the transcript level of the third exon covered the whole PEST motif. No product
was amplified using this combination of primers, while products corresponding to the first
and second exon were amplified. These data suggest that vni2-2 might be able to produce a
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truncated V'NI2 transcript that may potentially lead to the generating of a truncated protein
(Fig. 23). Further analyses are required to clarify whether this mRNA indeed produces a
(partially functional) protein.
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Figure 23. Amplification of VNI2 exons by qRT-PCR in vni2-2. Upper part: The combination of primers used to
analyze the transcript level of the third exon (indicated by arrows), covered the whole PEST motif region (PEST motif is
indicated by colored letters). The T-DNA insertion is marked with a triangle. Red letters indicate the half of the PEST motif
that confers a higher proteolytic activity of the PEST region. Bottom part: VNI2 transcript abundance was analyzed using
primers annealing to each exon (I - III) of the gene.

6.2.5. Bolting and leaf aging are delayed in vni2-2

Phenotypic analysis of vni2-2 showed a delay in bolting in comparison to wild type (Fig.
24.A). We counted the number of bolted plants (80 different plants) 32 DAS as well as the
number of cauline and rosette leaves at the time of flowering. Mutant plants flowered later
than wild type plants under long photoperiod (16 hours light /8 hours dark) (Fig. 24.B). At
26 DAS only around 20% vni2-2 plants have bolted compared to 80% in the wild type plants.
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The number of leaves at bolting was significantly less in vni2-2 (around 10 leaves) than in
wild type plants (around 18) (Fig. 24.B-C). Nevertheless, at the end of our observations (at
32 DAS) the difference in the numbers of leaves between wild type and vni2-2 mutants was
not statistically significant. Besides a delayed bolting in vni2-2, we observed two remarkable
other features (i) a prolonged life-span with green rosette leaves even at advanced flowering
stages and (ii) an increased biomass represented by bigger leaves (25. A-B).
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Figure 24. Delayed bolting in vni2-2. (A) Onset of bolting in wild type and vni2-2 plants of the same age (26 DAS). vni2-2
showed delayed bolting compared to wild type (bolting indicated by an arrow). (B) Percentage of bolted plants 22 to 32
DAS (C) Total number of leaves (cauline and rosette leaves) were counted at 26 DAS (beginning of counting) and 32-DAS
(last day of counting). *P<0.05.

To confirm our observations regarding a prolonged life span in vni2-2 we examined the
expression of four senescence associated genes (SAGs) (Buchanan-Wollaston ef al.
2005; Balazadeh et al., 2008b; Breeze et al., 2011). We extracted total RNA from three
independent biological replicates 29 DAS, synthesized cDNA and tested the expression of
SAG12 (At5g45890), ORE1 (At5g39610), BFNI (Atlgl1190) and RNS3 (At1g26820) by
qRT-PCR (Fig. 25.C). The expression of three out of four SAGs (SAG12, OREI and BFNI)
was significantly reduced in vni2-2 compared to wild type. This result is in accordance with
the delay senescence observed in vni2-2.

72



Chapter 6 « VND-Interacting2 (VNI2) is a potential down-stream target of ORE1

vni2-2 (P1) vni2-2 (P2)

Bvni2-2 OWt

= -

(98]

=3
] %

b %

Expression level; (40-ACt)
[ o]
(o]

S4AG12 ORE1 BFN1 RNS3

Figure 25. Prolonged life span in the vni2-2 mutant. Upper panel: (A) Developmental delay in vni2-2 (two different
plants) compared to wild type plants at the same time after sowing. Bottom panel: Close up shows extended longevity of
vni2-2 and increased biomass represented as bigger leaves (plant age: 32 DAS). (B) Transcriptional level of SAGs in vni2-2
(29 DAS) compared to wild type. SAG12, ORE1, BFNI transcript abundance was significantly reduced in vni2-2. SD+3.
(*P<0.05).

6.2.6. Salt stress tolerance is enhanced in vni2-2

It is known that seed germination can be delayed under unfavorable environmental conditions
such as high salinity (Kim and Park, 2008). Salt stress also retards plant growth and accelerates
senescence (Lee and Zhu, 2010). Considering that ORE [ and V'NI2 expression is enhanced under
long-term salt stress and that VNI2 is regulated by ORE1, we tested whether the response of
vni2-2to salt stress is impaired. We assayed seed germination rate under high salinity conditions.
vni2-2 and wild type plants were grown on sterile plates with or without sodium chloride (100
mM, 150 mM and 200 mM NaCl). Germination rate was scored 15 days after sowing. Seeds
were considered germinated if the radicles had penetrated the seed coats (Lee and Zhu, 2010).
The assay was performed in three independent biological replicates for each salt concentration
including controls. As can be seen in Figure 26.B, around 80% of the seeds germinated in the
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absence of salt stress (Mock). As expected, the germination rate decreased concomitantly with
increasing salt concentration in the medium. Nevertheless, vni2-2 germinated better in saline
conditions than the wild type (Fig. 26.A). There was no difference in germination rate among
wild type and mutants in control conditions. At 100 mM NacCl this difference was around
2-fold. At 150 mM NacCl the difference increased to 5-fold, and at 200 mM NaCl vni2-2 was
around 7-fold more tolerant to salt stress than the wild type (Fig. 26.B). The negative effect of
salt was already evident at the lowest concentration (100 mM). Roughly all germinated seeds
in both lines developed with a notable decrease in size and exhibited yellowish color. At 150
and 200 mM NaCl only the radicles of vni2-2 could penetrate the seed coat and generated very
small leaves (Fig. 26.A). In contrast, nearly all wild type seeds died at 200 mM NaCl and the
small percentage of seeds that germinated did not survive.
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Figure 26. Salt stress tolerance is enhanced in vni2-2. (A) 15-DAS seedling growth under two different concentration
of salt (100 and 150 mM NaCl). The vni2-2 mutant showed enhanced salt-stress tolerance compared to wild type. (B)
Germination rate of vni2-2 mutants and wild type plants at three different salt concentrations. SD=2 biological replicas and
two technical replicas. *P<0.05.
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6.2.7. The activation domain of VNI2 exerts a marked influence on development
and senescence regulation

Recently, Yamaguchi et al. (2010) established that the protein stability of VNI2 is regulated
by the PEST motif located at the C-terminal. A truncated version which lacks the PEST motif
was more stable, and the full version was more stable if proteasome inhibitors were applied.
Transgenic seedlings expressing the truncated version under the control of the endogenous VNI2
promoter showed impaired xylem vessel differentiation. Moreover, constitutive overexpression
of VNI2 resulted in the formation of discontinuous vessels and slow plant growth. To examine if
the role of VNI2 in senescence requires the PEST motif and the activation domain, we generated
two inducible overexpression lines using a chimeric transcription activator system (XVE) (Zuo
et al., 2000). We designed two versions of VNI2 (Fig. 27.A). One version, designated VNI2-
IOE, refers to the full protein (252 aa). The other version, VNI2-IOE-AC refers to a truncated
protein lacking the C-terminal region corresponding to half of the PEST motif (221 aa) and
the whole transcriptional activator. For both constructs we generated transgenic lines in the
Arabidopsis wild type (Col-0) background. Transformed plants were selected on hygromycin
and subsequently transferred to soil. Induction of ¥'NI2 was tested in the T1 generation; detached
leaves were subjected to estradiol induction for five hours. Based on the induction level, two
independent lines for each construct were selected for further experiments.

Transcript levels were determined by qRT-PCR using cDNA from seedlings of both constructs
lines grown in media supplemented with estradiol (EST). Wild type seedlings in media with/
without EST were used as controls. Two combinations of primers annealing to the first two
exons (I, IT) were used for expression analyses. VNI2 expression was significantly higher in
transgenic seedlings overexpressing the truncated version of the protein (VNI2-IOE-AC) than in
plants overexpressing the full-length version (VNI2-IOE) compared to wild type (Fig. 27. B).
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Figure 27. Differences in VNI2 transcript level with/without the activation domain. (A) Upper: Schematic
representation of the V'NI2 coding sequence used to produce estradiol-inducible V'NI2 expression lines (Zuo et al., 2000a).
Bottom: Schematic representation of the constructs used. The VNI2-IOE-AC construct lacks the whole transcriptional
activation domain and almost half the PEST motif. (B) Transcript abundance of VN2 in seedlings (15 DAS) carrying the
complete and the truncated version of VNI2. I and II correspond to primers annealing to the first and second exon of VNI2.
SD+2 biological replicas and three technical replicates.

75



Lilian Paola Matallana-Ramirez

We detected phenotypic differences between seedlings expressing either the full or the
truncated version of the protein even without estradiol induction. These differences were
determined also at transcript level. Seedlings expressing the truncated version of the protein
were smaller than wild type and VNI2-IOE, and exhibited signs of yellowing (Fig. 28.B).
The effect was more pronounced in media supplemented with estradiol. The VNI2-IOE-AC
seedlings were markedly smaller and showed increased premature yellowing, indicating an
accelerated senescence. To test if these plants showed indeed accelerated senescence the
expression of the senescence associated gene (SAG) SAG12 was tested. We extracted total
RNA from 15-day-old seedlings and synthetized cDNA from two independent biological
replicates. It was previously shown that SAG/2 expression is exclusively detected during
senescence (V.,2003). Therefore, we used its expression as a molecular marker of senescence.
SAG 12 expression was significantly increased in plants over-expressing both versions of VNI2
(VNI2-1OE and VNI2-10E-AC) compared to wild type. SAG 12 was markedly up-regulated in
VNI2-1OE seedlings expressing the full version of the protein (~6-fold) and only ~3-fold up-
regulated in VNI2-IOE-AC seedlings that showed more extensive yellowing. These results
suggest (1) the presence of the VNI2 full-length protein positively regulates senescence and
(i1) overexpression of a truncated version lacking the transcriptional activation domain and
the PEST motif results in plants with considerable developmental disruptions unrelated to
senescence albeit the seedlings show precocious yellowing (Fig. 28.B).
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Figure 28. VNI2-1OE and VNI2-IOE-AC plants under estradiol induction. (A) Enhanced expression of S4G12 in VNI2-
1IOE and VNI2-IOE-AC plants grown under estradiol induction. (B) Phenotypic analysis of VNI2-IOE and VNI2-IOE-AC
seedlings (15 days old). Close-ups of VNI2-IOE and VNI2-IOE-AC plants show that plants overexpressing a truncated
version of VNI2 were considerably smaller than plants overexpressing the full version of the protein.
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6.2.8. ATAF1 positively regulates VNI2 expression

We determined that ORE! is positively and significantly up-regulated by ATAF1. We
probed that ORE] promoter is transactivated by ATAF1 in protoplast, suggesting that
ATAF1 is a direct regulator of ORE! (Chapter 2). We determined that overexpression
of a CDPK named CKOR (for calcium-dependent kinase regulating ORE1) in vivo leads
to an increase in transcriptional activity of VNI2 (Chapter 3). Additionally, based on our
observations that ORE1 binds in vitro to a VNI2 promoter fragment containing an OREI-
BS and transactivated in vivo VNI2 promoter (Chapter 4) we propose that VNI2 is a
putative direct target gene of ORE1. In order to unravel the transcriptional network and
possible regulatory loops among these NAC TFs involved in senescence and salt-stress
responses we performed a series of assays. Using whole genome transcriptomics assays
we uncover that along ORE1 VNI2 expression is significantly up-regulated by ATAFI.
Expression profiles are based in lines overexpressing ATAF1 under the control of an
estradiol-inducible promoter (Fig. 29).
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Figure 29. VNI2 and ATAFI expression in ATAF1 inducible overexpressing lines (474 F1-I0E) upon estradiol (EST)
induction. VNI2 expression determined by microarrays (Affymetrix ATH array, probe Id 245987 _at). Significant up-regulation
(two cut-off) after 10 hours upon ATAF I induction. Maximal level of VNI2 was reached after 10 hours EST induction.

The rapid induction of V'NI2 upon inducible over-expression of ATAFI after two hours EST
induction suggests a positive control of ATAF1 over VNI2. Interestingly, the expression
pattern of VNI2 highly resembles the expression pattern of ORE[ under the same conditions
(Chapter 2, section 2.2.5). Two hours after EST induction VNI2 expression is less than
2-fold up related. Nevertheless, ten hours after EST induction VNI2 expression if more than
4-fold up-regulated (Fig. 29). These observations suggest two hypotheses: either VNI2 is
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activated through a signal cascade in which ATAF1 activates ORE and then ORE1 directly
activates VNI2; or ATAF1 can directly activate VNI2 as well as ORE] meaning that VNI2
activation occurs independently of OREI. In order to test if VNI2 up-regulations occurs
independently or depends on ORE1 activation by ATAF1 we used transactivation assays in
mesophyll protoplasts. A VNI2 region spanning ~1.5 kb up-stream of the translation start
site was amplified by PCR from Arabidopsis genomic DNA (Col-0), and then cloned into
pENTR/D-topo vector (Invitrogen) and recombined into the Gateway destination vector
p2GWL7.0 (Karimi et al., 2002) to obtain the final reporter vector VNI2-LUC. The effector
plasmid was the 35S:4ATAF I construct. For detail description see Experimental procedures
in Chapters 2 and 4. A dual-reporter system determines the transcriptional activation of
the VNI2-LUC promoter when ATAF1 is overexpressed. The internal control reporter,
Renilla luciferase (35S:RLuc) (Licausi et al., 2011) provides the parameter to normalize
the measured luciferase activity. Arabidopsis mesophyll cell protoplasts from wild-type and
anac092-1 lines were co-transfected with the VNI2-LUC and 35S:ATAFI constructs. No
statistical differences in luciferase activity were detected when using either wild type or
anac092-1 mesophyll protoplasts; evidencing that VNI2 transactivation does not requires
OREI and can be achieved directly by ATAF1 overexpression (Fig. 30).
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Figure 30. Protoplast transactivation assay of ATAF1 and VNI2 promoter. Arabidopsis wild type or anac092-1 T-DNA
insertion mutant mesophyll protoplasts were co-transfected with VNI2-LUC and 35S:ATAF 1. Results are the mean of two biological
replicates with three technical replicates per probe. Data were normalized to the corresponding Renilla luciferase activity.

6.3. Conclusions

Transcriptome analyses revealed V'NI2 as a highly up-regulated gene downstream of the key
senescence regulator ORE1 (a NAC TF). VNI2 was preferentially expressed in senescence
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tissues at different developmental stages. The CREs required for senescence-dependent
expression are located within ~500 bp up-stream of the transcription start site. We confirmed
that ORE] is a transcriptional activator of VNI2. Moreover, ORE1 binding to the VNI2-
promoter was confirmed in vitro and in vivo (Chapter 4, section 4.2.3 and 4.2.4). Our data
support the conclusion that VNI2 is a direct target of ORE].

We show that salt stress tolerance is enhanced in vni2-2 mutants. vni2-2 mutants also
exhibited a prolonged life-span, delayed onset of bolting, higher salt stress tolerance and
apparently increased in biomass demonstrating a role of VNI2 not only in the regulation of
natural- and stress-induced senescence in Arabidopsis. The delayed senescence phenotype
observed in vni2-2 may be due to the absence of the transcriptional activation domain and
the PEST motif although a truncated VNI2 protein may still be produced.

6.4. Experimental procedures

6.4.1. General

Standard molecular techniques were performed as described in Chapter 2, section 2.4.1.

6.4.2. Plant material

The plant material and growth conditions used were similar as described in Chapter 2,
section 2.4.2.

6.4.3. Plant transformation

Arabidopsis transformation was performed as described in Chapter 2, section 2.4.4.

6.4.4. Constructs

Description of the 355:ORE1 overexpressor line was given in Balazadeh et al., (2010a).
Description of the ATAFI-IOE and 355:ATAF 1 constructs were given in section 2.4.3.

VNI2-GUS constructs: approximately ~1.5 kb (long version) and ~0.5 kb (short version)
fragments up-stream of the VNI2 ATG were amplified from genomic Arabidopsis Col-0
DNA by PCR using primers forward (133) and reverse (134) for the long version, and
forward (135) and reverse (134) primers for amplification of the short version (Annex 1).
Isolated fragments were inserted first into plasmid pCR2.1-TOPO (Invitrogen), and after
sequencing fused via BamHI and Ncol sites to the GUS reporter gene into pPCAMBIA1305.
1-hygromycin (CAMBIA). The final constructs were designated as VNI2, . -GUS and
VNI2 ‘GUS.

SVProm®
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Estradiol-inducible overexpression (IOE) constructs. The complete VNI2 coding
sequence (CDS) was amplified by PCR using leaf cDNA from Arabidopsis plants. We
used primers forward (142) and reverse (201) (Annex 1). To generate a version without the
transcriptional activation domain, we used forward (142) and reverse (141) primers (Annex
1). Both fragments were inserted into pBluescript SK and then cloned via Xhol and Spel sites
into the pERS8 vector (Zuo et al., 2000b). The resultant plasmids were electroporated into
Agrobacterium tumefaciens strain GV3101/pMP90, which was used to transform Arabidopsis
ecotype Col-0. The final vectors were named VNI2-IOE (complete CDS) and VNI2-IOE-AC
(CDS without transcriptional activation domain). The T1 generation of transgenic seedlings
was selected on MS medium supplemented with (10 mg/L) spectinomycin for 15 days.

6.4.5. Histochemical GUS assay

Histochemical GUS assay was performed as described in Chapter 2, section 2.4.5.

6.4.6. Identification of homozygous T-DNA insertion line

The vni2-2 homozygous mutant was isolated from a T-DNA line (GABI-KAT 799-H09)
(L1 et al., 2003). Firstly, lines were selected based on resistance to sulfadiazine (7.5 mg/
mL). Seeds were sown on MS medium (Murashige and Skoog, 1962) supplemented with
sulfadiazine (7.5 mg/mL) for 15 days. Surviving green seedlings were transferred to soil
and two weeks later genomic DNA was extracted. Homozygous line was identified via PCR
screening on genomic DNA using gene-specific primers forward (131) and reverse (132)
together with T-DNA-specific primer LB (158) (Annex 1). Additionally, we determined the
transcript abundance of VNI2 by qRT-PCR using specific sets of primers covering the first
exon (149-150), second exon (70-71) or the third exon (160-161) (Annex 1).

6.4.7. cDNA synthesis and quantitative real-time PCR (qQRT-PCR)

Total RNA extraction, cDNA synthesis and qRT-PCR were done similarly as described
(Balazadeh et al., 2008; Caldana et al., 2007). Primer sequences used for qRT-PCR analysis
to quantify transcript levels of SAG12 (At5g45890), ORE (At5g39610), BENI (Atlgl1190)
and RNS3 (At1g26820) are given in Annex 1. The PCR reactions were run on an ABI
PRISM 7900HT sequence detection system (Applied Biosystems Applera, http://www.
appliedbiosystems.com/). At least triplicate measurements were carried out to determine the
mRNA abundance of each gene in each sample. The absence of genomic DNA was verified by
PCR using primers forward (202) and reverse (203) designed to amplify an intergenic region
of'a control gene (At5g65080). cDNA was produced from 2 pg total RNA using SuperScriptT
[T Reverse Transcriptase (Invitrogen). cDNA synthesis efficiency was controlled by qRT-PCR
amplification of transcripts from a housekeeping gene ACTIN2 (At3g18780) using specific
forward (204) and reverse (205) primers (Annex 1). Data analysis was performed using SDS
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2.2.1 software (Applied Biosystems Applera). Amplification curves were analyzed with a
normalized reporter (R : the ratio of the fluorescence emission intensity of SYBR Green to
the fluorescence signal of the passive reference dye) threshold of 0.2 to obtain the C_ values
(threshold cycle). Date were normalized to the ACTIN2 transcript as follows AC_ = C_ (gene)
— C, (ACTIN). The expression was measured with three replicates in each PCR run, and the
average C_ was used for relative expression analyses. Relative transcript abundance was
determined using the comparative AAC, method (AAC = AC_ (condition of interest) - AC,
(control condition) and the Fold Change (Fch) was calculated using the expression 2-44¢T,
where the obtained results were transformed to Log2 scale. In some cases the expression was
expressed as 40-AAC_ to improve the visualization of results.

Contributions

The OREI-IOE, 35S:OREI lines and anac092-1 T-DNA insertion mutant screening were
performed by Dr. Hamad Sidiqui (Molecular Biology, Potsdam University). ATAFI-IOE
constructs was provided by Dr. Dagmar Kupper (Molecular Biology, Potsdam University).
358:ATAF1 construct and ATAF1 transcriptome data were provided by Prashant Garapati,
Ph.D student of Prof. Dr. Mueller-Roeber’s Group.
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The recent years have seen considerable progress with respect to the dissection of the
molecular pathways controlling the induction and progression of senescence in plants,
mainly in the model plant Arabidopsis thaliana. Leaf senescence determines the end of
leaf development and constitutes an efficient recycling process that involves the breakdown
of cellular organelles, the hydrolysis of different macromolecules, and the mobilization
of nutrients from senescent tissues to young and reproductive organs. An example of the
important role that recycling processes play in plants is the increase in nitrogen-use efficiency
by resorption of foliar nitrogen (N) (Himelblau and Amasino, 2001). N is stored in younger
and reproductive tissues and can be used for early growth in the subsequent progeny to
supply the demands of developing foliage (Kang ef al., 1982). Therefore, senescence favors
the fitness of plants and is thought to be an evolutionary acquired process (Nam, 1997,
Noodén and Leopold, 1988). Leaf senescence must be synchronized and tightly controlled
to ensure not only the disassembling of cellular components like photosynthetic apparatus in
early senescence, but also the conservation of cellular compartmentalization (Hortensteiner
and Feller, 2002), as well as nucleus and mitochondria integrity, until advanced senescence
stages (Noodén and Guiamet, 1996; Noodén and Leopold, 1988). Transcriptome analysis of
senescence leaves in Arabidopsis thaliana revealed a complex network of genes involved in
the process, including many transcription factors (TFs) (Buchanan-Wollaston et al., 2005;
Gepstein et al., 2003; Balazadeh et al., 2008; Breeze et al., 2011) . TFs recognize specific
regions on the promoter region of targets regulating their activation or repression. NAC (NAM,
ATAF, and CUC) TFs represent a large fraction of the genes regulated during developmental
and induced senescence in many plant species, including monocots and dicots, some of
which are of particular agronomic importance (Balazadeh et al., 2008; Buchanan-Wollaston
et al., 2005; Christiansen et al., 2011; Guo et al., 2004). The importance of the NAC TF
OREI (also called ANAC092, AtNAC2, or At5g39610) is well documented as a senescence
regulatory protein (Balazadeh et al., 2010a; He et al., 2005; Kim et al., 2009; Ooka et al.,
2003). Its role in senescence was first described by Kim et al., (2009) who observed that
the oresaral (orel) EMS mutant displayed a delayed senescence phenotype. Despite the
importance of OREI as a positive regulator of senescence, mechanisms and elements of its
regulatory pathway are still poorly understood. In this study, we describe two previously
unknown regulatory pathways up-stream of OREI, and we addressed the challenging task
of identifying potential direct targets of ORE].
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Up-stream regulation of ORE]

As we described in Chapter 2, miR164 is the only regulator up-stream of ORE1 described
so far. miR164 together with EIN2 and ORE1 form a trifurcate feed-forward loop. EIN2 is a
membrane-spanning protein whose biochemical function is still unknown, but genetic studies
indicate that it is absolutely required for ethylene signaling (Alonso et al., 1999; Kim et al.,
2009). It has been shown that ORE1 expression increases in a leaf age-dependent manner,
apparently through induction by EIN2. miR 164 targets OREI mRNA and down-regulates its
expression. Nevertheless, the mechanism that governs an age-dependent decrease in miR 164
expression remains unknown. All that can be speculated is that miR 164 functions in younger
leaves as a “guard” against premature overexpression of ORE!. Kim et al. (2009) proposed
that this feed-forward loop exists to guarantee that senescence and the accompanying
programmed cell death occurs when leaves are aged (Kim et al., 2009). Notably, a screening
for down-stream targets of the MADS-box transcription factor SEPALLATA3 (SEP3) revealed
that SEP3 binds to the OREI promoter. Chromatin immunoprecipitation (ChIP), followed
by next-generation sequencing (ChIP-Seq) or hybridization to whole-genome tiling arrays,
revealed four aspects of particular interest: (i) SEP3 binds to the ORE promoter in vivo,
(i) ORE1 is SEP3 target-specific during stamen and carpel development; (iii) DNA-binding
sites of SEP3 are predominantly located a few hundred base pairs directly up-stream of
the ATG of its targets; and finally, (iv) ChIP-Seq data revealed a dependency between the
presence of perfectly matching CArG boxes and the binding of SEP3 in vivo.

In this study, we report for the first time two mechanisms that positively influence ORE]
expression. First, using transcriptional profiling, we identified that ORE] expression is up-
regulated by the NAC transcription factor ATAF1. Moreover, co-transfection of the ORE]
promoter (ORE[-LUC) together with 355:ATAF I leads to transactivation of the promoter in
mesophyll protoplasts, suggesting a direct interaction between ORE! promoter and ATAF1
(section 2.2.5). Interestingly, ATAF1 also transactivates VND interacting factor 2 (VNI2),
another NAC TF that we characterized in this study as a putative direct target of ORE1. The
possible interaction between ATAF1 and VNI2 mediated by ORE1 will be further described
in this discussion.

The second mechanism we described in this work was discovered in collaboration with
the group of Prof. Dr. Tina Romeis from the Freie Universitét in Berlin. They performed a
phosphoproteomic approach that revealed that CKOR, a calcium-dependent protein kinase
(CDPK), is able to phosphorylate ORE1. We found that overexpression of CKOR in wild
type mesophyll protoplasts led to a marked increase in the transcriptional activation of the
OREI direct target BFN1 and the putative targets V'NI2 and RNS3 (Section 3.2.1). On the
contrary, the overexpression of CKORm, which is unable to phosphorylate its targets, led to
a decreased BFNI promoter activation but did not affect the activation of VNI2 and RNS3. It
is widely acknowledged that phosphorylation and dephosphorylation of transcription factors
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can directly regulate distinct aspects of their function (Whitmarsh and Davis, 2000). ORE,
BFNI, and VNI2 are senescence associated genes (SAGs) (Balazadeh et al., 2008; Breeze
et al., 2011; Buchanan-Wollaston et al., 2005) and the S-like RNase RNS3 gene is induced
during phosphate (Pi) starvation and has been associated with the nutrient remobilization
process (Bariola et al., 1994; Taylor et al., 1993). If we assume that phosphorylation of
OREI by CKOR enhances its transcriptional activity, we would expect that an increase
in phosphorylated ORE1 level would, in turn, result in a higher transcriptional activity.
We observed that BFNI, whose expression is strongly up-regulated by OREI, shows a
significant increase in transcriptional activation when the amount of phosphorylated ORE1
increases (achieved by the overexpression of CKOR in mesophyll protoplasts). This tight
transcriptional dependency is further supported by the significant reduction in BFNI
activation if a mutated version of CKOR is overexpressed in mesophyll protoplasts. In the
case of VNI2 and RNS3, the overexpression of a mutated version of CKOR did not lead to
a reduction in transcriptional activity, unlike BFNI. It can be assumed that both genes are
strongly up-regulated by ORE1 phosphorylation. Nevertheless, it is plausible that ¥'NI2 and
RNS3 require a higher accumulation of ORE1 to be activated, and the ORE1 concentration
in wild type protoplast, concurrently with the overexpression of a mutated version of
CKOR that binds but is unable to phosphorylate ORE1, contributes to make any changes in
transcriptional activity indistinguishable from the basal expression. In the Outlook section at
the end of the discussion, a set of experiments is proposed to shed light on the role of OREI
phosphorylation in regulating its activity.

ORE]I, as well as most of its putative targets, have been characterized in ABA-dependent
responses to stresses such as salt stress (section 2.2.3 and 6.2.3) (Balazadeh et al., 2010b;
Jiang et al., 2011; Yang et al., 2011). The role of phosphorylation in ABA-dependent
regulation of transcriptional expression has been well documented (Furihata et al., 2006;
Lopez-Molina et al., 2001; Zhu 2002). Thus, it may be suggested that phosphorylation of
ORE1 by CKOR integrates a regulatory pathway involved in both developmental and stress-
induced leaf senescence. Further analyses are required to elucidate the exact role of this
novel ORE1 regulatory pathway.

Tissue-specific expression of OREI gives direct insights linking ORE1 with
germination, floral development, and senescence

We have shown that tissue-specific promoter activity of ORE] is not restricted to senescent
tissues in Arabidopsis or tobacco (Nicotiana tabacum) transformed with the same chimeric
gene. In both plant species, OREI promoter expression shared the same tissue-specific
patterns in almost all the evaluated tissues and organs. During early developmental stages,
OREI promoter activity was detected in roots and was particularly enhanced in embryos
from mature seeds and cotyledons of 15-day-old seedlings in both species (section 2.2.1).
These observations are in agreement with previous studies that reported OREI promoter
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expression during lateral root development (He et al., 2005), and in embryos under different
stress conditions (Penfield et al., 2006). Cotyledons are embryonic leaves that undergo a
fast tissue differentiation (Fridlender ef al., 1996) and serve as storage to supply nutrient
demand. We know that many ORE up-regulated genes that are related to senescence share
common patterns during the last stages of seed development (Balazadeh e al., 2010a).
Nevertheless, the biological relevance of this common pattern has not yet been studied.
Seed germination shares some clear similarities with leaf senescence; both involve
the degradation and transport of macromolecules, and the organs involved (leaves and
cotyledons) keep structural similarities. Nevertheless, this does not account for the particular
expression in mature embryos of Arabidopsis and tobacco. Interestingly, we have found
a recent discovery that describes ORE! expression during seed germination. It has been
shown that in Arabidopsis seeds, glutamate decarboxylase (GAD) catalyze the unidirectional
decarboxylation of glutamate to form y-aminobutyric acid (GABA) (Fait et al., 2011). Fait
et al. (2011) described that GABA is strongly associated with early seed germination. In
plants, glutamate (Glu) metabolism is pivotal for efficient N incorporation, and its levels are
maintained under tight regulation (Forde and Lea, 2007; Stitt and Fernie, 2003). Furthermore,
accumulation of GABA is associated with enhanced amino acid contents and associates with
an up-regulation of genes involved in the degradation of proteins and cellular components
(Fait et al., 2011). Hyperaccumulation of GABA enhanced the expression of two senescence
associated genes (SAGs), i.e. OREI and SAG21 (SENESCENCE-ASSOCIATED GENE 21),
as well as DOGI (DELAY-OF-GERMINATIONI), which is one of the major regulators of
seed dormancy (Bentsink et al., 2010). Their results highlight a link between seed maturation
and the expression of ORE 1. However, our promoter expression analyses are based on wild
type seeds carrying an ORE [ promoter fusion (ORE1:GUS) that should not hyperaccumulate
GABA. Moreover, according to our published germination assays, we suggested that
ORE1 might contribute to seed dormancy, which may be partly lost or enhanced, at least
under salt stress , in anac092-1 T-DNA insertion mutants and 355:ORE1 overexpressors,
respectively (Balazadeh et al., 2010a). The enhanced OREI promoter activity observed in
embryos (imbibed in water for 12 hours before testa removal) suggests that ORE1 is more
deeply implicated in seed germination than has been considered so far. Additional studies are
required to elucidate the signaling pathways governed by ORE1 during seed germination.

The promoter expression of ORE], as identified by GUS staining, is in accordance with
the role of ORE1 during senescence. The expression along the leaf blade is consistent with
the reported progression of aging from the tip to the base of leaves due to remobilization
of nutrients out of the leaf and in the direction of the rest of the plant organs (Hill, 1980).
ORE] promoter activity was also detected in floral organs of mature opened flowers in the
carpel/pistil, especially in the upper region of the stigma. This observation is in agreement
with the recent discovery that Arabidopsis unfertilized/fertilized carpels exhibit senescence
first in the stigma, and then it progresses from basal to apical ovules (Carbonell-Bejerano et
al., 2010). Furthermore, ORE! has been reported as up-regulated during carpel senescence
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(Carbonell-Bejerano et al., 2010). ORE1 expression was strongly evident in mature anthers,
whereas it was absent in immature anthers (section 2.2.1). Notably, GUS staining, driven
by the OREI promoter, was also detected in the tip region of the stigma in Arabidopsis
unfertilized flowers (section 2.2.1), suggesting that ORE1 is not exclusively involved in
floral senescence, but also during early developmental stages.

Recently, two works linked ORE1 with flower development. First, whole transcriptome
analyses and chromatin immunoprecipitation assays, combined with massive parallel DNA
sequencing (ChIP-Seq), were used to characterize the down-stream regulatory pathway of
SEPALLATA3 (SEP3). SEP3 is a MADS-box TF that plays a crucial role in the transition
from vegetative to reproductive growth and finally to floral meristems (Kaufmann et al.,
2009). It was found that SEP3 binds to the ORE promoter in vivo and that ORE] is a SEP3
target specifically during stamen and carpel development. The ORE ] promoter displays two
perfect CArG boxes, one CTAAAAAAA]GG located at position -601 bp (from the ATG) and
the other CTAATTATT]GG located at position -225 bp (from the ATG); a third box located
within the 5’UTR differs only one nucleotide from the perfect CArG matching C[CTATTA]
GG (position -5 bp). Moreover, Al-Daoud et al., (2011) have found that ORE1 promotes
floral transition under short-day photoperiods. Results from other research groups, taken
together with our results (section 2.2.1), suggest it is feasible that ORE1 may play a role
during early flower development that has not yet been explored, and it offers a new facet of
OREI1 that is complementary to its role as a master regulator of leaf senescence.

ORE1 5°’UTR contains important regulatory elements required for senescence-
specific expression

In an attempt to characterize the promoter region essential for the characteristic senescence
associated pattern of ORE ] expression, we performed promoter deletion analyses. Our results
give insights into the pivotal role of the 5’UTR in maintaining the characteristic expression of
ORE ] during senescence. Nevertheless, a visible reduction in the strength of the signal indicates
that other elements outside the 5’UTR are needed to reach the high expression levels observed
during senescence (section 2.2.4). It has been demonstrated that in some particular cases, the
region that is up-stream of the TATA box is not essential to reach high levels of expression, and
that this particular feature associates with the presence of pyrimidine-rich sequences (SUTR-
Py-rich stretch) in the 5’UTR. The Py-rich stretches seem to have a positive effect on the
overall expression level of a gene, as seen in tomatos (Daraselia et al., 1996) spinach (Bolle
et al., 1994), Chinese wild Vitis pseudoreticulata (Xu et al., 2011), rice, and Arabidopsis
(Xue et al., 2008). Recently, it has been demonstrated that actin genes, from bryophytes to
angiosperms, include a SUTR-Py-rich stretch that confers high levels of transcription (Vitale
etal.,2003; Weise et al., 2006). Interestingly, we found that the ORE [ promoter contains two
Py-rich stretch motifs in its 5’UTR. On the one hand, we have shown that plants transformed
with the Prom6-ORE:GUS construct that contains two predicted TATA boxes but lacks both
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SUTR-Py-rich stretch motifs, lose the senescence-specific pattern from the tip to the base
of the leaves (Section 2.2.4). On the other hand, plants overexpressing a short fragment of
the 5’UTR (Prom3-ORE1:GUS) that contains one SUTR-Py-rich stretch maintain the leaf
senescence specific expression pattern, albeit at a much lower level. Our results suggest a
pivotal role of the SUTR-Py-rich stretch motifs. The fact that plants transformed with the
Prom3-ORE1:GUS construct display GUS activity suggests the presence of an alternative
start codon ATG since the predicted TATA boxes lie up-stream of this fragment. Interestingly,
despite the high homology between ORE1 and ORS1 (ORESARA1 SISTERI), an evolutionary
closer NAC TF (Balazadeh et al., 2011; Ooka et al.,2003), ORS does not contain any SUTR-
Py-rich stretch within its promoter (data not shown), confirming that ORE1 5’UTR conserves
typical features and plays an important role in ORE up-stream regulation. To conclusively
probe the contribution of the 5’UTR to the ORE expression pattern in senescent tissues, two
approaches may be taken. The first is to replace the ORE! 5’UTR with a standard 5’UTR
such as the GSTF8 minimal promoter (Thatcher et al., 2007). We would expect a minimal
promoter to completely abolish the senescence-specific pattern of expression. The second
approach is to mutate both SUTR-Py-rich motifs present in the 5’UTR, which should also
lead to abolishment of the senescence-specific pattern of expression.

Defining the ORE1 regulon based on a genome-wide analysis

The rate at which individual genes are transcribed is controlled by the binding of transcription
factors (TFs) to their up-stream promoter regions. Over 2,000 TFs are encoded by Arabidopsis
(Pérez-Rodriguez et al., 2010). Nevertheless, so far only a minority (around one-third) of all
TFs have been functionally characterized in Arabidopsis. The determination of the regulatory
circuits controlled by each TF, and the identification of the cis-regulatory elements (CREs)
for all genes, have been identified as two of the goals of the Multinational Coordinated
Arabidopsis thaliana Functional Genomic Project by the Multinational Arabidopsis Steering
Committee (June, 2002) (Davuluri et al., 2003).

Recently, high-resolution temporal profiling of transcripts during Arabidopsis leaf senescence
revealed a distinct chronology of the process and its regulation (Breeze ef al., 2011).
Surprisingly, , this model of the senescence regulatory network identified ORE! as a master
regulatory element that controls several genes implicated in leaf senescence. Therefore,
we combined three different approaches to unravel key elements in the architecture of the
OREI regulatory network. First, a transcriptome analysis included short- and long-term
induction of ORE1 in order to identify putative direct target genes (section 4.2.1). Next, we
characterized the ORE1 consensus binding site (BS) to identify ORE1-BSs in the promoter
region of putative OREI targets (section 4.2.2), and we selected a group of genes for further
confirmation of the direct interaction with OREI (section 4.2.3 and 4.2.4). Finally, we
characterized the genes at the molecular and physiological level to be able to categorize
them as direct targets. (Chapters 5 and 6).
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Based on our previous work (Balazadeh et al., 2010a), we have identified a set of
differentially expressed genes after inducible over-expression of ORE1, and we confirmed
some by qRT-PCR. Additional global transcriptome analyses were carried out. We incubated
OREI-IOFE seedlings for two hours and five hours in estradiol (EST), and we constitutively
overexpressed ORE1 for six hours in Arabidopsis mesophyll protoplasts. In total, we found
711 genes up- and 273 genes down-regulated in the three experiments. As expected, upon
ORE1 overexpression, we observed a significant over-representation of genes involved
in metabolism and degradation among the up-regulated genes. The significant over-
representation of genes from these functional categories may be due to the prevalent role of
degradation of different macromolecules as part of the mechanism of nutrient salvage that
occurs in the plant during senescence (Bleecker, 1998). Considering we found more genes
up- than down-regulated, and we were able to identify 17 genes commonly up-regulated
but none commonly down-regulated in all three data sets, we propose that OREI, like most
NAC TFs, functions as a transcriptional activator. Among these 17 putative targets are
genes encoding proteins for degradation and dismantling processes such as lipases, kinases,
synthases, hydrolases, and nucleases (Balazadeh et al., 2003). We found six TFs that were
up-regulated after five hours of ORE1 induction. All of them were commonly up-regulated
after five hours inducible overexpression or six hours constitutive overexpression. The TFs
include one zinc-ion binding factor (At2g28200), one signal transduction response regulator
(At2g40670), one MYB TF (At3g10590), and three members of the NAC TF (ANACO010,
ANACO041, VNI2). Thus, most of the up-regulated TFs belong to the NAC TF family,
highlighting the predominant role of this family in leaf senescence (Buchanan-Wollaston et
al., 2005; Guo and Gan, 2004; Guo and Gan, 2012). The fact that overexpression of OREI
leads to the up-regulation of 711 genes, most of which are SAGs, and to the up-regulation
of six TFs, highlights the importance of OREI as a key regulator of leaf senescence.
Considering that six TFs are significantly up-regulated also underlines the apparent fact that
not many transcriptional networks are activated down-stream of OREI, and it is tempting to
speculate that ORE ] expression plays a pivotal role in the progression rather than the onset
of senescence. Our results strongly support the importance of the molecular characterization
of regulatory pathways governed by NAC TFs, especially ORE1, not only during senescence
but also in Arabidopsis development.

Validation of putative direct targets of ORE1 and their functional characterization

Several members of the NAC TF family, including OREI/ANAC092/AtNAC2 (Guo and
Gan, 2006) and ORS1/ANACO059, have been shown to positively regulate leaf senescence
in Arabidopsis (Balazadeh et al., 2011). Knocking out the function of each of those genes
generates a delay-of-senescence phenotype. In contrast, other members of the NAC TF
family, like VNI2/ANACO083 (Yang ef al., 2011) and JUBI/ANAC042 (Wu et al., 2012),
have recently been shown to negatively regulate leaf senescence and enhance plant longevity
in Arabidopsis. Despite the fact that ORE [ and ORS1 are paralogues that exhibit evolutionary
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conservation (Balazadeh ef al., 2011) and share a common function as positive regulators of
leaf senescence, only eight genes are commonly up-regulated by both TFs upon inducible
overexpression (At3g01830, At3g61190, At2g32680, At5g38710, At5g39520, At3g29250,
At4g27280 andAt3g61930) (Balazadeh et al., 2011). All overlapping genes are SAGs, but
only At5g39520 that encodes an unknown protein is among the 17 genes commonly up-
regulated by ORE I overexpression. Thus, overexpression of a single senNAC TF (senescence-
associated NAC transcription factor) affects specific down-stream genes, suggesting that
functional redundancy between NAC genes controlling senescence is limited. This can be
explained if each of those senNACs controls a specific or partially specific subset of down-
stream target genes, which is essential for the correct timing of the onset and progression of
senescence. Therefore, unraveling the gene regulatory network administrated by senNAC
TFs and discovering the specificity of those regulations is of particular importance.
Nevertheless, direct or indirect regulation between senNACs and their putative targets can
only be determined experimentally. It is well known that characterization of the sequences
bound by a transcription factor is an essential step in the identification of its true targets. The
ORE]1 binding site was originally reported by Olsen et al. (2005). However, recent studies
demonstrated that sequences bound by NAC TFs are rather long and include two consensus
motifs separated by a spacer of few bp (base pairs) (Balazadeh et al., 2011; Xue, 2005; Wu
et al.,2012). The binding affinity of OREI to certain oligonucleotides in vitro was evaluated
by the DNA-binding-protein-CELD method (DBP-CELD). The binding sequence of ORE1
was characterized as containing the two core motifs (RMGTR) and (YACGY) spaced apart
by 5-6 bp. Thus, the ORE1 binding site (ORE1-BS) was determined to be RMGTR(5-6n)
YACGY (section 4.2.2).

We focused our efforts to elucidate ORE1 directly from indirect interactions within a subset
of six highly up-regulated genes. We selected BFNI (Atlgl1190), RNS3 (At1g26820), SINA1
(At3g13672), and SAG29 (At5g13170) from the 17 commonly up-regulated genes, and we
selected ORE and VNI2 based on (i) the novel hypothetical model proposed by Breeze et al.
(2011) that predicts an autoregulatory feedback loop for ORE] and shows VNI2 as a possible
OREI direct target and (ii) the strong up-regulation of VNI2 in our long-term transcriptome
analyses (section 4.2.1). We tested whether ORE1 was able to transactivate the promoter
regions of those six putative targets in vivo. Our results show that overexpression of OREI
transactivates the expression of BFNI, VNI2, and RNS3 (section 4.2.3). In the case of ORE ],
we were unable to identify the proposed autoregulatory feedback loop . Based on our results,
we decided to test the ability of OREI to bind in vitro by EMSA to ORE1 binding sites
(ORE1-BSs) identified in silico in the promoters of BFNI, VNI2, and RNS3. Additionally,
we included SINAI to test whether non-significant transactivation in vivo correlates with
no binding in vitro (section 4.2.4). The selected genes contained more than ten different
versions of ORE1-BSs taken as ORE1-BS sequences containing at least the first core motif.
Nevertheless, in general, only the longest ORE1-BS found in each promoter was considered
for the EMSAs. We found that OREI is able to bind to all tested promoters in vitro, but
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the binding affinity was different among them. Based on the intensity of the band in the
retardation gels, we were able to determine that ORE] exhibits the highest affinity to the BS
in VNI2. The oligonucleotides tested for RNS3 and SINAI contained 5 bp and 11 bp long
OREI1-BSs, respectively, and for the most part lacked the second core of the ORE1-BS. In
this study, we characterized for the first time the longest consensus sequence that corresponds
to the OREI-BS and is probed by two different methods (DBP-CELD and EMSA). ORE1
binding affinity is highly dependent on the presence of both core motifs. We found that
OREI overexpression results in a strong transactivation of RNS3 in vivo, and only a slight
binding affinity in vitro. Additional EMSAs are required to pin-point the ORE1-BSs that
causes the strong RNS3 transactivation in vivo. Currently, we have better candidates that may
fit as ORE1-BS in RNS3.

Based on these observations, we aimed to prove that ORE1 binds directly to these putative
target genes in vivo by Chromatin Inmunoprecipitation (CHiP) using two different tags linked
to OREL. In both cases, we used transgenic plants expressing ORE1 tagged with the green
fluorescence protein (GFP) or a newly developed HaloTag (Urh ez al., 2008). This was the first
attempt focused on the implementation of HaloTags in plants, and it represented a challenge
to implementing new methods for the characterization of down-stream regulatory pathways
in TFs in plants. In the case of ORE1-GFP, the cassette contains the constitutive 355 promoter,
whereas ORE1-HaloTag is under the control of an estradiol-inducible promoter. Striking
results were obtained in both cases. As expected, we were able to obtain high expression of
OREI1, and we were able to determine the subcellular location of ORE1 in the nucleus of guard
cells in Arabidopsis leaves (Annex 6). Nevertheless, none of the selected putative targets that
are highly regulated by ORE1 were induced in those plants. In both cases, constructs were
confirmed by sequencing for the presence of the HaloTag and GFP on transformed plants
and by ORE1 expression. One possible explanation for these results is that the linked tag
placed at the end of the C-terminal region of ORE1 blocked or restricted the interaction with
target promoters and, therefore, expression of OREI putative targets was notdetectable. In
order to probe this hypothesis, we suggest transforming Arabidopsis with a different cassette
in which the Tag is fused to the N-terminal region. Although we were unable to check the
binding of OREI1 to the target promoters by CHiP, different assays in planta strongly support
the hypothesis that BFN1, VNI2, and RNS3 are direct targets of ORE].

We selected BFN1, RNS3, SINA1, SAG29, and VNI2 to test if they are direct targets of ORE1.
Remarkably, VNI2, RNS3, and BFNI have been described as prominent players in another
process quite unrelated to leaf senescence: xylem vessel differentiation (Pesquet et al., 2010;
Yamaguchi et al., 2010). The most interesting thing about the unexplored connection between
both processes comes from the programmed cell death. Nonetheless, Zhong et al. (2010)
showed that NAC transcription factors involved in secondary wall biosynthesis (SWNs) do not
include ORE] as a key player. The conclusion that can be drawn from our study and Zhong’s
analyses is that different processes, such as senescence and xylem vessel differentiation that
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results in the up-regulation of a core set of genes, are transduced by separated pathways
involving different transcription factors from the same family (the NAC family).

For the targets BFNI and VNI2, we addressed two tasks: (i) prove that BFN/ is a direct
ORE] target during senescence; and (ii) characterize the molecular pathway through which
ORE]1 regulates V'NI2 by proposing a model of this control mechanism during senescence
and of their direct interaction.

ORE1 and BFNI constitute a non-described senescence regulatory pathway in
Arabidopsis

Leaf senescence undergoes three general phases: (i) the initiation phase in which chlorophyll
is affected, leading to a decrease in photosynthetic activity and the transition in leaves from
a nutrient sink to a nutrient source; (ii) a degenerative phase, mainly characterized by the
dismantling of cellular components and their degradation; and (iii) a terminal phase, where
cell integrity is lost prior to cell death and death of the whole organ (Lim et al., 2003; Yoshida,
2003). During the degenerative and terminal phase, a marked decrease in total RNA levels
is evident, whereas nuclear DNA is maintained to allow gene expression to continue until
late in the process. The up-regulation of genes that are encoding for several nucleases has
been reported, and they presumably act to degrade nucleic acids during senescence (Blank
and McKeon, 1989; Buchanan-Wollaston et al., 2003; Buchanan-Wollaston et al., 2005;
Lers et al., 2001; Wood et al., 1998). As we described before in the discussion, we were able
to determine more than 700 up-regulated genes upon ORE]1 induction (section 4.2.1). The
BFNI transcript level rapidly increased upon induction of ORE1, both in intact Arabidopsis
plants and in isolated mesophyll protoplasts. In order to integrate our results, we described a
hypothetical model that combines our findings with published data in which ORE1 directly
regulates BFN1 and favors senescence and programmed cell death (PCD) in Arabidopsis.

Aging and a variety of environmental inputs can induce senescence. These external and
internal stimuli mustbe integrated into the senescence signal transduction to initiate senescence
syndrome. ORE]1 function as a positive regulator of leaf senescence in Arabidopsis, limiting
the longevity of the leaf. Breeze et al. (2011) determined that a wide number of SAGs are under
the control of OREI1. Thus, OREI may function as an up-stream regulator in the regulatory
cascade of the senescence pathway. BFNI was the first senescence-associated gene encoding
a nuclease I enzyme as described in Arabidopsis (Pérez-Amador et al., 2000). Despite the
relevance of chlorophyll degradation as the first visible symptom during senescence, by the
time yellowing of the leaf has become apparent, the majority of the senescence process has
already occurred (Buchanan-Wollaston et al., 2003). We determined a marked overlap in the
expression patterns of ORE] and BFNI-GUS lines in advanced senescence stages (section
5.2.1), and we were able to identify enhanced DNase and RNase activity in protein extract
from OREI overexpressor lines as well as from advanced dark-induced senescence leaves
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(section 5.2.2). Thus, we suggest that ORE] and BFNI interact and exert their functions
during the late degenerative and terminal phases of senescence.

Analysis of the BFNI promoter revealed the presence of several partial OREI binding
sites (ORE1-BS), all of which contained the first core motif, but lacked the second core
motif. Interestingly, BFNI promoter contains one complete ORE1-BS that differs by just
one nucleotide in the second core motif to the consensus motif defined by us (section
4.2.2). Although punctual transversion severely affects ORE1 binding in vitro and in vivo,
transcriptional activation was still observed, indicating that these partial binding sites are
functional. Apparently all or at least many of the BSs present in the BFN1 promoter are
functional since the deletion promoter (190 bp) that removed all sites strongly reduced BFN1
transactivation (section5.2.4).Itis plausible to think thatup-regulation of BFN1 is fundamental
in the senescence progression and, therefore, must be guaranteed by having several ORE1-
BSs that favor an activation, even if one of the binding sites is absent. Remarkably, the
absence of ORE1-BS does not completely abolish BFN1 expression. Nonetheless, our data
strongly support that OREI is the most prominent direct regulator of BFNI, and it is likely
that other TFs may bind and be co-regulators of BFNI. Overall, our observations confirm
that, on the one hand, BFN1 plays a pivotal role during senescence, and on the other hand,
if ORE1 activation is not possible (as is the case in one promoter deletion), other TFs can
activate BFNI, but OREI is the BFNI master regulator.

In this study, we found extended overlapping expression of BFNI and ORE] in Arabidopsis
(section 5.2.1). BFNI is completely lost in the anac092-1 T-DNA insertion mutant background,
as shown by PCR and BFNI promoter-GUS reporter studies (section 5.2.3). The strong
decrease of BFNI promoter expression in the anac092-1 insertion mutant is consistent with
the model that OREI is the master regulator of BFN/. Prominent expression of BFNI in
senescence leaves, mature flowers, stigma, anthers, and the abscission zone in mature siliques
agrees with the common knowledge that during senescence of floral parts, the degradation
of DNA and RNA is the most common feature (Thomas et al., 2003). Senescence petals of
Petunia were found to be associated with DNA laddering and increased nuclease activity (Xu
and Hanson, 2000); in senescence petals of Ipomea, enhanced DNA degradation, chromatin
condensation, and nuclear fragmentation during PCD have been reported (Taylor et al.,
1993). Recently, senescence-associated RNases have also been characterized from petals of
Arabidopsis (Taylor et al., 1993) and tomato (Farage-Barhom et al., 2008; Lers ef al., 2001).

Aswe described above, the up-stream regulatory pathway of ORE [ has not been characterized
extensively. OREI transcript is targeted by micro-RNA164 (miR164), triggering its
degradation. Kim et al. (2009) suggested a trifurcate feed-forward regulatory pathway
involving ORE1, miR164, and EIN?2 (ethylene insensitive 2) that ensures a robust regulation
of leaf senescence and age-induced cell death. EIN2 negatively affects miR 164 expression in
an age-dependent manner, and through this allows ORE mRNA to accumulate, thus acting
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as a positive control element. ORE] and BFNI are highly induced during leaf senescence
in the wild type mutant, but not in the ein2 (Buchanan-Wollaston et al., 2005), and it is up-
regulated during pistil senescence (Carbonell-Bejerano et al., 2010). We determined that the
difference in BFNI transcript abundance between younger and older leaves was greater in
mirl64abc mutants than wild type plants (section 5.2.3). From published work, we know
that miR164 functions as a guard against premature overexpression of ORE!, fine-tuning
senescence timing (Kim ez al., 2009). We identified that BFNI expression in the mirl64abc
triple mutant resembles exactly the age-dependent expression of ORE! in mirl64abc (Kim
et al., 2009). Thus, we propose that the regulatory pathway that involves ORE1, mirl 64,
and EIN2, and favors senescence and programmed cell death, includes the up-regulation of
BFNI by the direct biding of ORE1 to the BFNI promoter (Fig. 31).
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Figure 31. Hypothetical model of ORE1 as a direct regulator of BFNI. Environmental and developmental signals
trigger senescence syndrome, increasing ethylene and ABA levels. ORE transcript is targeted by micro-RNA164 (miR164),
triggering its degradation and suggesting a trifurcate feed-forward regulatory pathway involving OREI, miR164, and EIN2
(ethylene insensitive 2) that ensures a robust regulation of leaf senescence and aged-induced cell death partially by the
direct regulation of BFNI.
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Abscission is an active process that occurs in different organs and regulates the detachment
of organs from the main body of the plant. This process is triggered during developmental
senescence and in response to environmental cues such as disease or pathogen attack (Patterson
and Bleecker, 2004). The factthat ORE [ and BFN1 were co-expressed during flower senescence,
especially in abscission zones (AZ), is a fascinating finding in our study. Taking leaf and silique
senescence as an entire process, we suggest that both ORE1 and BFN1 may be involved not only
during the progression of senescence, but as modulators in the detachment of non-functional
organs in the plant. So far it is known that most genes expressed in the abscission zone do not
directly affect abscission, but rather represent general housekeeping genes or genes involved in
basic plant processes (Patterson and Bleecker, 2004). It is tempting to suggest that ORE1 and
BFN1 expression are specific for the abscission process through EIN2. Therefore, unraveling
the molecular mechanism involved represents a promising challenge.

In conclusion, our results demonstrate that senescence-induced BFN1 expression is regulated
by OREI. Previous studies have demonstrated the central importance of ORET1 for the control
of leaf senescence and developmental PCD. Considering the role of BFN1 in degradation of
nucleic acids during senescence, it is reasonable to assume that ORE1 exerts its senescence
promoting function partly through BFN1.

Dual function of VND Interacting2-VNI2 in developmental and induced leaf
senescence in Arabidopsis

In section 4.2.1, the up-regulation of VNI2 as a result of OREl overexpression was
described. Presumably, this up-regulation is at the transcriptional level and mediated by
the direct interaction of ORE1 with the VNI2 promoter (section 4.2. 3 and 4.2.4). The role
of VNI2 in relation to senescence has been published by Yang et al. (2011). In this study,
controversial evidences came to light regarding the role of VNI2 in senescence and seed
germination under salt stress. Previously, it has been published that vni2-1 shows accelerated
senescence, while constitutive expression of VNI2 leads to delayed senescence. The overall
morphology and size of the full-grown transgenic plants overexpressing V'NI2 was similar
to wild type plants. Moreover, bolting time was similar in wild type, VNI2 overexpressor,
and vni2-1 mutant plants. The expression of the stress-responsive genes COR154, CORI15B,
RD294, and RD29B was up-regulated in overexpressing lines and unchanged in the vni2-1
mutant under normal growth condition. Likewise, effects of ABA and high salinity on gene
expression were significantly reduced in the vni2-1 mutant (Yang ef al., 2011). The T-DNA
insertion line used in this study, vni2-2, displays delayed senescence, delayed onset of bolting,
longer and wider leaves (section 6.2.5), and increased salt tolerance (section 6.2.6). Yang et
al. (2011) used the T-DNA insertion mutant SALK 143793, while I used GABI-KAT 799-
HO9. In vni2-2, the T-DNA insertion mutant was identified in the third exon (section 6.2.4),
and the production of a truncated protein lacking the activation domain and the PEST motif
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cannot be discarded. On the contrary, vni2-/ insertion lies either immediately up-stream of
the coding region (Yamaguchi et al., 2010) or in the first intron (Yang et al., 2011).

To explain the dual role of V'NI2 during leaf senescence and salt stress, the following molecular
model is proposed: expression of ORE]1 that is triggered during the onset and progression
of leaf senescence leads to an increase in VNI2 transcript and favors senescence. Inducible
overexpression of VNI2 (full transcript) confirms an accelerated senescence in seedlings
underlined by the dramatic up-regulation of the senescence marker SAG12 (section 6.2.7).
Nonetheless, constitutive overexpression of VNI2 (35S:VNI2) leads to delayed senescence
(Yang et al., 2011), more likely due to an unknown transcriptional regulatory loop that
may lead to an increased mRNA turnover (Hypothesis 1) (Fig. 32). Seedling inducible
overexpressing VNI2 (VNI2-IOE-lines) exhibited a slight reduction in size, whereas seedling
inducible overexpressing truncated VNI2 (VNI2-AC-IOE-lines) was severely affected and
exhibited a dwarfed, yellowish phenotype (section 6.2.7).

According to Yamaguchi et al. (2010), a C-terminal truncated VNI2 is more stable than the
full-length protein, and the overexpression of a truncated VNI2 protein effectively causes a
vessel defect. Thus, it is plausible to think that the marked reduction in size observed in the
VNI2-AC-IOE seedlings is caused by severe defects in root vessel formation. Microscopic
analyses of these lines are required to confirm this assertion. The inducible overexpression
of VNI2-AC-IOE results in higher levels of mRNA (tested by qRT-PCR) than the inducible
over-expression of the full transcript (VNI2-IOE) (section 6.2.7). Moreover, seedlings that
were overexpressing a truncated version of VNI2 exhibited higher levels of SAG12 compared
to wild type, but a marked decrease compared to seedlings that were overexpressing a full
VNI2 transcript, suggesting a delay in senescence. Strikingly, vni2-2 also displays a delayed
senescence phenotype, along with a delayed onset of bolting and an apparent increase in
biomass, represented by bigger leaves (section 6.2.7). Likely, vni2-2 is able to produce a
truncated protein that comprises only the NAC domain which has been characterized to be a
transcriptional repressor under normal growth condition and a transcriptional activator under
salt stress (Yamaguchi ef al., 2010; Yang et al., 2011). It is feasible to think that this protein
is, in fact, produced in planta since a screening of databases revealed that an alternative
splicing (AS) form of VNI2 has been reported (Iida et al., 2009) (Hyphothesis 2) (Fig. 32).
Ostensibly, an uncharacterized switch is activated during salt stress and also if VNI2 is
constitutively overexpressed which, in turn, promotes the expression of stress responsive
genes, such as COR154/B and RD29A4/B, and represses the expression of genes involved in
senescence progression (such as SAG12), thus enhancing salt and cold resistance (Yang et
al.,2011). The delayed senescence phenotype observed in seedling inducible overexpressing
truncated VNI2 and in the vni2-2 mutant, as well as the enhanced salt resistance displayed by
the vni2-2 mutants, might be associated with the same mechanism. It is feasible to assume
that the switch is transcriptional and post-transcriptional, and it may likely influence both
mRNA and protein stability (Hypothesis 3) (Fig. 32).
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Figure 32. Molecular model of VNI2 dualole during developmental and salt-induced leaf senescence. Hypothesis 1.
(A). Overexpression of ORE]1 leads to an increase of VNI2, probably by direct binding of ORE1 to the V'NI2 promoter. (B).
VNI2 protein has a conserved NAC domain in the N-terminal region described as a repressor (R). The C-terminal region
has a characterized activator domain (A) and a PEST motif (P) that regulates protein stability. Inducible overexpression of
VNI2 (VNI2-1OF) leads to up-regulation of SAGI2, suggesting that ORE1 and VNI2 integrate a regulatory pathway that
positively controls developmental senescence. Hypothesis 2. (C). Overexpressing of a truncated VNI2 protein VNI2-DC-
1OE (lacking half P and A) leads to delayed senescence. Hypothesis 3. (D). vni2-2 likely produces a truncated protein
(lacking half P and A) and exhibits delayed senescence. (E). VNI2 acts as activator and repress senescence, and it induces
resistance under salt stress by up-regulation of COR/RD genes. Presumably, this role is controlled by uncharacterized
mechanisms involving post-transcriptional and/or post-translational changes.

The evidence obtained from this study, along with available public data, suggests a connection
between ATAF1, OREI, and VNI2 during senescence. Therefore, the following model (Fig.
33) is proposed, and it integrates these senescence NAC TFs (senNAC TF) into the senescence
regulatory pathway. The model considers the dual role of VNI2 during developmental and
induced leaf senescence, and it describes two regulatory pathways that positively/negatively
regulate senescence. OREI and VNI2 mRNA expression are positively and significantly
regulated by ATAF1. Both promoters are transactivated by ATAF1 (section 2.2.5 and section
6.2.8), but transactivation of the V'NI2 promoter occurs even in the absent of ORE, suggesting
that ATAF1 might exert its regulatory function directly on V’NI2 and/or ORE1 (section 6.2.8).
We determined that overexpression of a CDPK named CKOR (calcium-dependent kinase
regulating ORE1) in vivo leads to an increase in the transcriptional activity of VNI2, and
apparently VNI2 requires a considerable accumulation of phosphorylated ORE1 protein to be
activated (Chapter 3). This is likely the phosphorylated ORE1 that binds to one (or more)
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OREI1-BS (binding site) present in the VNI2 promoter and then proceeds with senescence.
Based on experimental data using knockout and VNI2 overexpressor lines, it can be speculated
that under the control of an uncharacterized post-transcriptional/post-translational mechanism,
VNI2 can turn from a transcriptional repressor to an activator. This likely involves the
production of two V'NI2 splicing forms; one that generates a full protein (showing an increased
proteasome-mediated proteolysis), and a more stable truncated VNI2 mRNA whose protein
lacks the PEST motif and the activator domain. During developmental leaf senescence, VNI2
up-regulation may lead to the repression of a set of genes that prevent senescence, most likely
COR/RD genes. As we described above, there is evidence that the constitutive overexpression
of VNI2 delays senescence and increases salt resistance (Yang et al., 2011), whereas inducible
overexpression of VNI2 has the opposite effect on seedlings growing in estradiol. Moreover,
the vni2-2 T-DNA insertion mutant (T-DNA insertion in the third exon) and an inducible
overexpressor line carrying a truncated version of VNI2 (producing a protein lacking part of
the third exon) exhibited a prolonged life span and enhanced salt tolerance, presumably due
to the expression of a VNI2 that harbors the NAC domain and lacks the PEST motif as well
as the activation domain located in the N-terminal region.

It is well establish that ATAF1, OREI, and VNI2 are highly induce by salt stress and ABA
(Balazadeh et al., 2010a,b; He et al., 2005; Lu et al., 2007; Yang et al., 2011). According
to published data, in the case of ATAFI, the induction in response to drought salinity is
achieved in an ABA-independent manner, even though ABA alone is able to induce ATAF'1
expression (Wu et al., 2009). Under short-term salt stress (two hours of treatment), plants
overexpressing ATAF1 showed down-regulation of three COLD-REGULATED (COR) and
RESPONSIVE TO DEHYDRATION (RD) genes (RD22, RD29A4, and COR47). Interestingly,
these transcripts were slightly up-regulated in the same line of plants after long-term salt
stress (10 hours). Authors suggested that there should be a feedback regulation of those
genes affected by ATAF1 under salt stress (Wu et al., 2009). In addition, V' NI2 has been
reported to integrate ABA-mediated abiotic stress signals into leaf aging by regulating a
subset of COR/RD genes. Constitutive overexpression of V'NI2 leads to an up-regulation of
CORI15A4/B andRD29A4/B. The expression of these genes was unchanged in vni2-1 mutants
under normal growth conditions and significantly reduced under ABA and high salinity.
Notably, VNI2 behaves like a transcriptional activator under high salinity. To explain these
observations, the authors suggest that high salinity may induce structural and/or activity
changes of VNI2 (Yang ef al., 2011). All observations strongly support the existence of an
uncharacterized mechanism that regulates the transcriptional activity of VNI2. The novelty
is that such a mechanism has not yet been elucidated for any senNAC TFs. The challenge is
to determine if it is a structural change or a post-transcriptional/post-translational regulatory
loop that results in turning VNI2 from a transcriptional repressor to a transcriptional activator.
Nevertheless, salt stress and ABA seem to be master input signals for the regulatory pathway
that integrates ATAF'1, ORE1, and VNI2 during developmental and induced leaf senescence
(Fig. 33).
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Figure 33. Model of ATAF1, ORE1, and VNI2 in the regulation of developmental and induced leaf senescence. 1.
ATAFTI is able to regulate expression of ORE and VNI2. Aging activates the expression of CKOR that regulates ORE1 and
favors the transcriptional activation of VNI2. An uncharacterized switch controls post-transcriptional and/or post-translational
changes in VNI2. Progression of senescence might be regulated by a full version of VNI2 that represses the expression of
COR/RD genes. It is likely another version of VNI2 is produced or activated under certain conditions and involves the
activator domain and the PEST motif present in the C-terminal region of VNI2. Delayed senescence and enhanced salt
resistance may be achieved through the production of VNI2 which lacks the activator domain and the PEST motif.
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Future challenges and outlook

This PhD focused in unraveling the OREI regulon, elucidating up- and down-stream
components. Substantial evidences were obtained that demonstrate the role of ORE1 as a
TF that positively regulates the expression of more than 700 genes related to the senescence
syndrome. A set of 17 genes were identified as putatively regulated by a direct interaction
with ORE1. The interaction of ORE1 with the promoter region of some targets was tested
in vitro and in vivo. Furthermore, the direct regulation of BFNI by ORE! during senescence
was probed and important evidences that suggest VNI2 and RNS3 as putative direct targets
of ORE1 were collected. Nevertheless, this knowledge is only the starting point to suggest
conclusive models about the exact mode of interaction of ORE1 during developmental and
induced leaf senescence with these targets. Therefore, here further experiments are proposed
with the aim to elucidate the signal transduction cascades activated by OREI. For a better
view of the future challenges, the following work packages are suggested (WP):

WP1: Extension of the ORE1 up-stream regulatory pathway

As described in Chapter 2 the up-stream regulatory pathway of OREI still poorly
characterized. Therefore, the novel discover of ATAF1 and CKOR as possible regulators
of ORE1 provide a good starting point for further studies. It is necessary to confirm if the
senNAC TF ATAF1 and the calcium-dependent protein kinase CKOR control ORE1 and
favors senescence in Arabidopsis. Using chromatin immunoprecipitation (ChIP) coupled
with deep-sequencing or tilling arrays (ChIP-CHIP) employing transgenic plants expressing
ATAF1-GFP and/or ATAF1-Halotag fusion proteins, will help to confirm the direct binding
of ATAF1 to OREI promoter and maybe to the promoter regions of some ORE1 putative
targets like VNI2 in vivo. These results will help to clarify not only if ATAF1 binds directly
to ORE1 promoter but also which ORE1 putative targets may also be regulated by ATAF1.
This work will allow to define up to which point there is a redundancy between ATAF1 and
ORE1 during senescence. It would be of great advantage implementing promoter arrays
to identify sequences bound by all three senNAC TFs that are of primary interest after this
study. Also, yeast one-hybrid experiments can be used to identify TFs that bind specifically
to the ORE ] promoter. Due to the important role of ATAF'I and ORE in salt stress responses
and the dual role of V’NI2 upon salt stress, transactivation assays that includes a phase of salt
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stress will give insights into a possible cross-talk between these three senNAC TFs during
developmental and salt- induced leaf senescence.

Previous phosphoproteomic approach using a CKOR overexpressor lines revealed ORE1 as
one of the few proteins differentially phosphorylated. We determine that BFNI, VNI2 and
RNS3 promoter transactivation was enhanced in presence of overexpression of CKOR in
wild type protoplast (Chapter 3). The extent and dynamic changes in ORE1 phosphorylation
have not been studied. As a baseline for these future studies, firstly a series of transactivation
assays using protoplasts that lack the expression of OREIl compared to transactivation
of promoter regions in protoplasts that overexpress ORE1 will be required. Secondly,
affinity chromatography will be used to purify/enrich phosphorylated ORE1 to identify the
sites phosphorylated using high-accuracy mass spectrometry. Thirdly, the physiological
characterization of CKOR transgenic lines and the phenotypic characteristics of such lines
will provide information if they exhibit a particular developmental senescence phenotype or
particular resistance to abiotic stresses such as salt and cold stress.

ORE1 promoter deletion analysis gave the first insights to generate the hypothesis that the
SUTR-Py-rich motifs are related to ORE 1 senescence-specific expression patterns. Additional
experiments are required to confirm that the 5’UTR in general and both motifs in particular
are the important motifs and if their absence causes a lost of promoter-driven GUS activity
or if our observations are purely an artifact due to the shortening of the promoter that renders
an unspecific weaken signal. Thus, mutations of this specific motifs as well as substitution
of the OREI 5’UTR for a conventional 5’UTR will clarify the role of this region in ORE]
promoter activity related to the senescence syndrome.

WP2: Analysis of the role of ORE1 during germination and abscission

Two interesting findings of this work were related to the marked and rapid promoter expression
of ORE] in mature embryos and abscission zones in mature siliques in Arabidopsis (Chapter
2 and Chapter 4). Some recent studies suggested the possible role of ORE! as a regulator
during embryo and seed development (Fait ez al., 2011) and anac092-1 T-DNA insertion
mutant was reported to have a delayed flowering phenotype (AL-Daoud and Cameron,
2011). Nevertheless, these are unexplored facets of ORE1 and therefore there is not
available data yet. The characterization of expression patterns during embryo development
and seed maturation are required to shed light on the role of ORE1 in both processes. One
significant contribution to understand the role of ORE1 during abscission will be gain by
the identification and characterization of anac092-1 T-DNA insertion mutant pattern during
abscission. It is feasible that the anac092-1 T-DNA insertion mutant reveals as a delayed
abscission mutant.
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WP3: Determination of the dual role of VNI2 during senescence

The novel finding of VNI2 as a possible NAC TF that has (i) a dual role as activator or repressor
of senescence (Chapter 6) and (ii) a mutant that exhibits a prolonged life span, delayed onset of
bolting, higher salt stress tolerance and a presumable increase on biomass open a complete new
research on this NAC TF. Firstly, a confirmation of the production of a truncated VNI2 protein
in vni2-2 T-DNA insertion mutant is required using for instance Western blots. The complete
characterization if the presumable increase on biomass really takes place is also required.

The role of the PEST-motif in regulating the stability of the protein has already been studied
(Yamaguchi et al., 2010) using proteasome inhibitors. Nevertheless, we found that the inducible
overexpression of a full or truncated version of ¥’NI2 (with or lacking the PEST motif) result also
in differences at the transcriptional level (section 6.2.7). Clearly the transcript corresponding
to the truncated protein was strongly overexpressed as the transcript corresponding to the full
version. This unexpected and exciting discovery may indicate that VNI2 stability is regulated
both at the transcriptional as well as at the post-transcriptional level. To really differentiate if
the overexpression of a shorter transcript (lacking the PEST motif and the activation domain)
leads to a higher production of mRNA or simply to a longer half-life of the mRNA, experiments
using the widely known inhibitor of transcription Actinomycin D are required.

The base of our work to identify target genes regulated by ORE1 relies on the use of Affymetrix
chip arrays. The prominent role of microRNAs in the regulation of ORE1 is known (Kim
et al., 2009) and evidently at least ATH1 Affymetrix chips do not consider this level of
regulation, since no microRNA is represented in this chip. In order to extend our knowledge
and measure transcript levels using an unbiased method that allows us the identification of
all kinds of RNAs present in a particular line/cell/condition including mRNAs, non-coding
RNAs and small RNAs new technologies must be implemented for the analysis of TFs in our
group. RNA-Seq a transcriptome profiling approach based on deep-sequencing technologies
offers itself as the most promising tool to acquire more precise measurements of transcript
levels and their isoforms. The implementation of this technology is of particular interest for
the analysis of VNI2 to establish with certainty if indeed this senNAC TF may be regulated
at the transcriptional level by alternative splicing.

And last but not least, the knowledge gain in our transcriptome profiling assays, functional
and molecular characterization of transgenic lines and in vivo, in vitro and in silico analysis of
promoters need to be integrated to allow the reconstruction of the gene regulatory networks
(GRN) during developmental and salt induced senescence. The reconstruction of the GRN
that joins ATAF1, ORE1 and VNI2 will serve not only to complete our knowledge on onset
and progression of developmental and induced senescence, but also will allow us to predict
new components and regulatory mechanisms that may remain unforeseen if the current
knowledge is not combined to make use of the advantages of computer modeling.
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Annex 2

OREI1-BS (Binding Sites) present in the up-stream region of ORE1-putative target genes.
Positions are on relation to the ATG (first nucleotide up-stream is -1). Size of the upstream
regions BFNI 1084 bp, VNI2 1571 bp, RNS3 1062 bp, ORE1 1281 bp, SINAI 1018 bp,
SAG29 831 bp. Bold letters indicate ORE1-BSs tested by EMSA. The program fuzznuc from
EMBOSS was used to detect ORE1-BSs (Rice et al. 2000). Underlined letter in the BFNI
promoter (position -196) indicates one nucleotide difference from the consensus ORE1-BS.

ORE1 BS- Start Final Sequence

Gene - Strand i, . . Nucleotides
Binding Sequence position position in promoter
BFN1 RMGTR + 771 775 AAGTA 5
(Atsg11190) RMGTR + -295 -299 GAGTA 5
RMGTR - -987 -991 AAGTA 5
RMGTR - -1017 -1021 AAGTA 5
RMGTR(6n)Y + -864 -875 GAGTAACTATAC 12
RMGTR(6n)Y - -846 -857 AAGTAATGGGTT 12
RMGTR(6n)Y - -862 -873 GCGTATAGTTAC 12
RMGTR(6n)Y - -958 -969 GAGTATAAGATC 12
RMGTR(6n)Y - -997 -1008 AAGTAGTGAGGT 12
RMGTR(6n)YA - -239 -251 GAGTATAAACATA 13
RMGTR(5n)YACGY + -196 210 ACGTATGAGACTCGC 15
VNI2 RMGTR(6n)Y + -1430 -1441 AAGTAAAACTCT 12
(At5g13180) RMGTR(5n)Y + -1130 -1140 GCGTGCCCATT 11
RMGTR(6n)Y + -760 =771 GAGTGCAAGATC 12
RMGTR(6n)Y + -396 -407 AAGTAGTCCTTT 12
RMGTR(5n)Y - -1178 -1188 AAGTGCTTTCC 11
RMGTR(6n)Y - -337 -348 AAGTGTAAACTC 12
RMGTR(6n)Y - -672 -683 AAGTGAGAAGTT 12
RMGTR(5n)Y - -1101 1111 GAGTAACTAAT 11
RMGTR(6n)Y - -1233 -1244 AAGTGACGCAAC 12
RMGTR(6n)Y - -1368 -1379 GAGTGGGTGAGC 12
RMGTR(5n)YA + -1338 -1349 AAGTGATTCATA 12
RMGTR(6n)YA + -1065 -1077 ACGTATGTGTATA 13
RMGTR(5n)YA + -1032 -1043 ACGTGTTGAACA 12
RMGTR(6n)YA + -459 -471 GAGTGTATGATTA 13
RMGTR(5n)YA - -57 -68 GAGTGCGGTGTA 12
RMGTR(5n)YA - -164 -175 GCGTAAACCATA 12
RMGTR(5n)YA - -483 -494 ACGTGGAGGTTA 12
RMGTR(6n)YA - -1074 -1086 ACGTACAGTTTTA 13
RMGTR(5n)YACGY + -164 -178 GAGTATGGTTTACGC 15
RNS3 RMGTR + -761 -765 AAGTA 5
(At1926820) RMGTR + -587 -591 AAGTA 5
RMGTR + -422 -426 AAGTG 5
RMGTR - -143 -147 ACGTG 5
RMGTR - -234 -238 ACGTA 5
RMGTR - -298 -302 ACGTA 5
RMGTR - -303 -307 ACGTA 5
RMGTR - -489 -493 AAGTG 5
RMGTR - -541 -545 ACGTA 5
RMGTR(6n)Y + -537 -548 ACGTACGTTTCC 12
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Gene _ ORE1BS- Strand Start Final Sequence Nucleotides
Binding Sequence position position in promoter
RNS3 RMGTR(5n)Y -104 -114 ACGTGAAGTGT 11
(At1926820) RMGTR(6n)Y -109 -120 AAGTGTGATATT 12
RMGTR(5n)Y -138 -148 ACGTGACGTGT 1
RMGTR(6n)Y -378 -389 GAGTATTCGATT 12
RMGTR(5n)YA + -570 -581 AAGTAGCCAACA 12
RMGTR(5n)YA + -415 -426 AAGTGAATACTA 12
RMGTR(6n)YA -226 -238 AAGTAATAACGTA 13
RMGTR(5n)YA -276 -287 GAGTATTTTGTA 12
RMGTR(6n)YA -971 -983 AAGTAAGAAGATA 13
ORE1 RMGTR + -573 577 AAGTG 5
(At5g39610) RMGTR -962 972 AAGTA 5
RMGTR(6n)Y + -788 -799 ACGTATTAGTAC 12
RMGTR(6n)Y -796 -807 ACGTAAGGTTAC 12
RMGTR(6n)YA + -324 -336 AAGTAAGATAACA 13
RMGTR(6n)YA -135 -147 AAGTGTTTGAGCA 13
RMGTR(6n)YA -465 -477 GCGTAGATTGTTA 13
RMGTR(6n)YA -1069 -1081 AAGTATATTTTTA 13
SINA1 RMGTR + -413 -417 GAGTG 5
(At3g13672) RMGTR -23 27 AAGTG 5
RMGTR -127 -131 ACGTG 5
RMGTR -169 -173 ACGTA 5
RMGTR(5n)Y + -491 -501 GAGTAATCAAT 1
RMGTR(6n)Y + -165 -176 ACGTACGTAATC 12
RMGTR(5n)Y + -162 -172 ACGTAATCTCC 1
RMGTR(6n)Y + -81 -92 ACGTAAACGTAT 12
RMGTR(6n)Y + -75 -86 ACGTATCTATGT 12
RMGTR(6n)Y + -38 -48 ACGTACACCTTT 12
RMGTR(5n)Y -132 -142 GAGTAAATGGT 11
RMGTR(6n)Y -307 -318 AAGTATCCAATT 12
RMGTR(6n)Y -356 -367 AAGTGGACAAAT 12
RMGTR(5n)Y -751 -760 AAGTAATGTGT 11
RMGTR(6n)YA + -836 -848 AAGTATGTGATCA 13
RMGTR(5n)YA + -274 -285 GAGTGTCGTGTA 12
SAG29 RMGTR + -476 -480 GAGTA 5
(Atsg13170) RMGTR + -423 -427 GCGTG 5
RMGTR + -377 -381 GAGTA 5
RMGTR + -361 -365 AAGTA 5
RMGTR -252 -256 AATAA 5
RMGTR(6n)Y + -640 -651 ACGTGGGATATT 12
RMGTR(5n)Y + -384 -394 GCGTACGAGAT 11
RMGTR(5n)Y -232 -242 GCGTGTAACGT 11
RMGTR(6n)Y -310 -322 AAGTGGAGATAT 12
RMGTR(5n)YA + -344 -355 GAGTGAATGATA 12
RMGTR(5n)YA -239 -250 ACGTGTTGAGTA 12
RMGTR(6n)YA -648 -660 ACGTATCTATTCA 13
RMGTR(6n)YA -729 741 AAGTATGATTACA 13
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Annexes

Annex 6

Subcellular localization of ORE1-GFP fusion protein in Arabidopsis

Upper panel: ORE! cDNA was amplified using a combination of primer forward and
reverse (123-124 respectively) (Annex 1) and then cloned into the Gateway pENTR-D-
TOPO entry vector. The entry vector construct was recombined into Gateway destination
vector pK7FWG2.0 (Karimi et al. 2002) using the LR reaction mix II (Invitrogen) to obtain
the final reporter vector ORE[-GFP. The recombination reactions were done according with
the manufacturer’s instructions (Invitrogen).

Bottom panel: The p35S-driven ORE1-GFP fusion protein was expressed in wild type
(Col-0) after Agrobacterium-mediated transformation as described in section 2.4.4 and
viewed under fluorescence light using a confocal laser scanning microscopy (LSCM) SPS5,
Leica with software LAS AF (Leica). (I) is shown in bright field (IT) shows the red auto-
fluorescence of chlorophyll, (IIT) the GFP-signal, and (IV) the merged signals. (A) The
image shows and overview of epidermal cells, guard cells and stomata from a leaf of 15-day-
old Arabidopsis seedling. Seedlings were grown in MS media as described in section 2.4.2.
(B) Close-up of a pair of guard cells forming the stoma. ORE1-GFP protein is expressed in
nucleus. Chloroplasts are visible in guard cells fluorescing red.

[ | T-DNA borders [ 35S terminator [l aR2 [ Janr1
D Plant selectable marker l:l Egfp - ORE1 ¢cDNA D 35S promoter

ORE1-GFP construct
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Allgemeinverstandliche
Zusammenfassung

DerAlterungsprozesslebender OrganismenwirdseitvielenJahrenwissenschaftlichuntersucht.
In Pflanzen wird der Alterungsprozess Seneszenz genannt. Er ist fiir das Uberleben der Pflanze
von grofler Bedeutung. Dennoch ist unser Wissen iiber die molekularen Mechanismen der
Blattseneszenz, dessen komplexe Steuerung und die Wechselwirkungen mit Umweltsignale
noch sehr limitiert. Ein wichtiges Steuerungselement besteht in der Aktivierung bestimmter
Transkriptionsfaktoren (TFs) die wahrend der Seneszenz unterschiedlich exprimiert werden.
Aus der Literatur ist bekannt, dass Mitglieder der NAC TF Familie (NAM/ATAF/CUC) an der
Regulation der Seneszenz bei Pflanzen beteiligt sind. ORE1 (ANAC092/AtNAC2), ein NAC
TF mit erhohter Genexpression wiahrend der Seneszenz, wurde erstmals in Mutanten mit
verzogerte Seneszenz beschrieben, die molekularen Mechanismen, wie ORE1 die Seneszenz
kontrolliert und die Stoffwechselwege reguliert, sind aber noch weitgehend unbekannt.

Die Arbeiten im Rahmen dieser Dissertation wurden durchgefiihrt, um einen tieferen
Einblick in die Regulationsmechanismen von ORE1 auf natiirliche, dunkel induzierte
sowie Salzstress-induzierte Seneszenz zu erhalten. Ergebnisse von Untersuchungen an
zwei unterschiedlichen Pflanzenspezies (Arabidopsis thalinana und Nicotiana tabacum)
deuten auf ein dhnliches Expressionsmuster von ORE1 wéhrend der natiirlichen als auch der
Salz-induzierten Seneszenz hin. In der Promotorregion von ORE1 wurde ein fiir natiirliche
Seneszenz charakteristisches Muster identifiziert. In vivo Analysen ergaben dariiber hinaus.
Hinweise auf zwei weitere ORE1 Regulatoren. Debei handelt es sich umeinen weiteren NAC
TF (ATAF1) und (ii) CKOR, einer Calcium-abhdngige Protein-Kinase (CDPK).In weiteren
Studien wurden sechs Gene identifiziert, die durch ORE1 reguliert werden. In den Promotoren
dieser Gene wurden entsprechende Bindestellen fiir ORE1 lokalisiert. Die ORE1-Bindung
an die Promotoren wurde darauthin sowohl in vitro als auch in vivo verifiziert. Zwei dieser
Gene, die BIFUNCTIONAL Nuclease I (BFNI) und VND-Interacting? (VNI2), wurden
zudem auf molekularer und physiologischer Ebene untersucht.
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