

Institut für Geowissenschaften Mathematisch-Naturwissenschaftliche Fakultät Universität Potsdam

School of Earth, Atmospheric and Life Sciences Faculty of Science, Medicine and Health University of Wollongong UNIVERSITY OF WOLLONGONG AUSTRALIA

Kumulative Dissertationsschrift

Interactions between tectonics, climate, and surface processes in the Kyrgyz Tian Shan

zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM »DR. RER. NAT.«

Eingereicht durch

Anna Kudriavtseva

im Fachbereich Geowissenschaften

Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam Potsdam, März 2023 Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution – NonCommercial 4.0 International.

This does not apply to quoted content and works based on other permissions. To view a copy of this licence visit:

https://creativecommons.org/licenses/by-nc/4.0

Advisors

apl Prof. Edward R. Sobel, University of Potsdam, Germany Dr. Alexandru Codilean, University of Wollongong

Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-60372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-603728

Declaration of Authenticity

I declare that I wrote this thesis entitled "Interactions between tectonics, climate, and surface processes in the Kyrgyz Tian Shan" on my own and it does not contain any unmentioned sources.

All sources and materials have been indicated by in-text citations and references. This thesis has not been submitted to any other University.

My contribution to this thesis has been explained in the Introduction. I acknowledge that Chapter 2 "Miocene to Early Pleistocene Depositional History and Tectonic Evolution of the Issyk-Kul basin, Central Tian Shan" constitutes a part of Sophie Roud's doctoral thesis submitted and defended at the Ludwig-Maximilians-Universität München.

Potsdam, March 21, 2023

Date

Anna Kudriavtseva

Table of contents

ABSTRACT	XI
PLAIN LANGUAGE SUMMARY	XII
ALLGEMEINVERSTÄNDLICHE ZUSAMMENFASSUNG	XIII
ACKNOWLEDGEMENTS	XV
1 INTRODUCTION	1
1.1 OVERVIEW OF THE RESEARCH	1
1.2 THESIS OUTLINE	4
1.2.1 CHAPTER 2: MIOCENE TO EARLY PLEISTOCENE DEPOSITIONAL HI TECTONIC EVOLUTION OF THE ISSYK-KUL BASIN	
1.2.2 CHAPTER 3: NEOGENE ARIDIFICATION AND LAKE DEVELOPMENT KUL BASIN	
1.2.3 Chapter 4: Impact of Quaternary glaciations on denud. The Kyrgyz Tian Shan inferred from cosmogenic ¹⁰ Be and lov Thermochronology	N-TEMPERATURE
1.2.4 Chapter 5: Discussion and conclusions	6
1.3 PUBLICATION AND AUTHOR CONTRIBUTION	7
2 MIOCENE TO EARLY PLEISTOCENE DEPOSITIONAL HISTOF TECTONIC EVOLUTION OF THE ISSYK-KUL BASIN, CENTRAL	
ABSTRACT	8
2.1 INTRODUCTION	8
2.1.1 REGIONAL GEOLOGY	8
2.1.2 LOCAL GEOLOGY AND STRATIGRAPHY	
2.2 SECTIONS AND SAMPLING	
2.2.1 AK TEREK SECTION	
2.2.2 Kaji Say section	
2.3 PALEO AND ROCK MAGNETIC CHARACTERIZATION	
2.3.1 LABORATORY METHODS	16
2.3.2 ROCK MAGNETIC ANALYSES	
2.3.3 PALEOMAGNETIC ANALYSES	
2.4 MAGNETOSTRATIGRAPHY	
	19
2.4.1 Ак Тегек	
2.4.1 АК ТЕРЕК 2.4.2 Кајі Say	21
	21
2.4.2 Kaji Say	21 21 22

2.5.3 THE SHAMSI GROUP, EASTERN ISSYK-KUL BASIN	26
2.6 TECTONIC IMPLICATIONS OF THE SYN-OROGENIC SEDIMENTARY RECORD	27
2.6.1 UPLIFT OF THE TERSKEY RANGE	27
2.6.2 UPLIFT OF THE KUNGEY RANGE AND FORMATION OF LAKE ISSYK-KUL	29
2.7 CONCLUSIONS	31
3 NEOGENE ARIDIFICATION AND LAKE DEVELOPMENT IN THE ISSYKBASIN, KYRGYZSTAN	-
ABSTRACT	33
3.1 INTRODUCTION	33
3.2 GEOLOGICAL AND CLIMATIC SETTING	37
3.2.1 CENOZOIC REACTIVATION OF THE TIAN SHAN	37
3.2.2 Precipitation in the Tian Shan	38
3.2.3 DEVELOPMENT OF THE ISSYK-KUL BASIN	39
3.3 MATERIALS AND METHODS	40
3.3.1 SEDIMENTOLOGICAL DESCRIPTIONS	40
3.3.2 ²⁶ AL/ ¹⁰ BE ISOCHRON BURIAL DATING	40
3.3.3 THIN SECTION PETROGRAPHY	43
3.3.4 STABLE ISOTOPE ANALYSIS	43
3.4 RESULTS	44
3.4.1 SEDIMENTARY SEQUENCES	44
3.4.2 ²⁶ AL/ ¹⁰ BE ISOCHRON BURIAL DATING	52
3.4.3 PETROGRAPHIC STUDY OF THIN SECTIONS	54
3.4.4 OXYGEN AND CARBON ISOTOPE RATIOS	55
3.5 DISCUSSION	55
3.5.1 DEPOSITIONAL AGE AND ENVIRONMENT	55
3.5.2 DIAGENETIC CHARACTERISTICS	59
3.5.3 STABLE ISOTOPE ANALYSIS	61
3.5.4 PLIOCENE HIATUS AND LAKE FORMATION IN THE KAJI SAY AREA	72
3.5.5 Tectonic and climatic development of the Issyk-Kul basin in the i Miocene - Pliocene	
3.6 CONCLUSIONS	77
4 IMPACT OF QUATERNARY GLACIATIONS ON DENUDATION RATES IN KYRGYZ TIAN SHAN INFERRED FROM COSMOGENIC ¹⁰ BE AND LOW- TEMPERATURE THERMOCHRONOLOGY	
ABSTRACT	79
4.1 INTRODUCTION	79
4.2 TECTONIC AND CLIMATIC SETTING	82
4.3 MATERIALS AND METHODS	84

4.3.1. COSMOGENIC ¹⁰ BE ANALYSIS	84
4.3.2. AFT AND AHE THERMOCHRONOLOGY	86
4.3.3. GEOMORPHIC, CLIMATIC, AND TECTONIC PARAMETERS	86
4.3.4. DATA GROUPING	88
4.4 RESULTS	88
4.5 DISCUSSION	91
4.5.1. Spatial and temporal changes in denudation and exhumation	RATES 91
4.5.2. IMPLICATIONS OF THE ONSET OF PLIO-PLEISTOCENE GLACIATION IN THE TIAN SHAN	
4.5.3. THE IMPACT OF QUATERNARY GLACIATION ON DENUDATION RATES	94
4.6 CONCLUSIONS	98
5 DISCUSSION AND CONCLUSIONS	101
5.1 TIMING OF CENOZOIC SEDIMENTARY ACCUMULATION IN THE ISSYK-KUL I	BASIN
	101
5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI	101 BASIN
	101 2 BASIN 102
5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI IN THE LATE MIOCENE – EARLY PLEISTOCENE	
5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI IN THE LATE MIOCENE – EARLY PLEISTOCENE	101 2 BASIN 102 103 1104 KYRGYZ
 5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI IN THE LATE MIOCENE – EARLY PLEISTOCENE 5.3 EASTWARD GROWTH OF THE KUNGEY RANGE IN THE LATE MIOCENE 5.4 NEOGENE EVOLUTION OF CLIMATIC CONDITIONS IN THE ISSYK-KUL BASIN 5.5 DENUDATIONAL RESPONSE TO QUATERNARY CLIMATIC CHANGES IN THE I 	101 2 BASIN 102 103 1104 KYRGYZ 105
 5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI IN THE LATE MIOCENE – EARLY PLEISTOCENE 5.3 EASTWARD GROWTH OF THE KUNGEY RANGE IN THE LATE MIOCENE 5.4 NEOGENE EVOLUTION OF CLIMATIC CONDITIONS IN THE ISSYK-KUL BASIN 5.5 DENUDATIONAL RESPONSE TO QUATERNARY CLIMATIC CHANGES IN THE I TIAN SHAN. 	101 2 BASIN 102 103 1104 KYRGYZ 105 107
 5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUL IN THE LATE MIOCENE – EARLY PLEISTOCENE	101 2 BASIN 102 103 1104 KYRGYZ 105 107 107
 5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUL IN THE LATE MIOCENE – EARLY PLEISTOCENE	101 L BASIN 102 103 V104 KYRGYZ 105 107 107 107 110
5.2 DEPOSITIONAL ENVIRONMENT ON THE SOUTHERN SIDE OF THE ISSYK-KUI IN THE LATE MIOCENE – EARLY PLEISTOCENE	101

List of figures

Figure 1.1. Topographic maps of Central Asia and the Kyrgyz Tian Shan based on SRTM90 digital elevation data
Figure 2.1. Geologic overview of the study area at lake Issyk-Kul (Central Tian Shan, Kyrgyzstan)
Figure 2.2. Field photos of the Ak Terek (AT) and Kaji Say (KS) sections
Figure 2.3. Summary of sedimentologic and rock magnetic data of the Ak Terek (a) and Kaji Say (b) sections. 14
Figure 2.4. Summary of paleomagnetic data18
Figure 2.5. Magnetostratigraphy of Ak Terek and Kaji Say
Figure 2.6. Magnetostratigraphic correlations of sections from the central (Kyrgyz)Tian Shan 24
Figure 2.7. Characterization of the Mio- to early Pleistocene sediments from the southern Issyk-Kul basin. 25
Figure 2.8. Depositional history of the Issyk-Kul basin with implications for mountain building and lake formation
Figure 3.1. Topographic maps of Central Asia based35
Figure 3.2. The Kaji Say stratigraphic section45
Figure 3.3. Characteristic field photos from the Kaji Say section
Figure 3.4. Kaji Say section area
Figure 3.5. The Ak Terek stratigraphic section
Figure 3.6. Characteristic field photos
Figure 3.7. Satellite imagery and field photos of the Jergalan section
Figure 3.8. Summary of cosmogenic ²⁶ Al/ ¹⁰ Be isochron burial dating results
Figure 3.9. Characteristic microphotographs of thin sections from the Kaji Say and Ak Terek sequences
Figure 3.10. δ^{18} O and δ^{13} C data from the Issyk-Kul basin plotted against the age model

Figure 3.11. New and published δ^{18} O and δ^{13} C data from the basins on the northern (windward) side of the Tian Shan, Altai and Pamir, plotted against age63
Figure 3.12. A schematic representation depicting the Neogene development of the Issyk-Kul basin 66
Figure 4.1. Topographic maps of the Tian Shan based on the 90-m SRTM DEM and distribution of samples 81
Figure 4.2. ¹⁰ Be-derived modern and paleo-denudation rates, AFT and AHe exhumation rates, topographic gradient, and local relief data distributed by region87
Figure 4.3. Modern ¹⁰ Be-derived denudation rates, AFT and AHe exhumation rates, topographic gradient, and local relief data from across the Kyrgyz Tian Shan plotted together
Figure 4.4. Correlation matrix displaying Pearson's correlation coefficients for ¹⁰ Be- derived denudation rates and different topographic, tectonic, and climatic metrics calculated for the Kyrgyz Tian Shan dataset
Figure 4.5. Modern ¹⁰ Be-derived denudation rates, topographic gradient, and strain rate from Pamir (Grin et al., 2018), Kyrgyz Tian Shan (this study), and Eastern (Chinese) Tian Shan (Charreau et al., 2023)
Figure 4.6. Correlation matrix displaying Pearson's correlation coefficients for ¹⁰ Be- derived denudation rates and different topographic, tectonic, and climatic metrics calculated for data from Pamir (Grin et al., 2018), Kyrgyz Tian Shan (this study), and Eastern (Chinese) Tian Shan (Charreau et al., 2023)
Figure S2.1 Comparison of normalized magnetization decay curves of thermally and AF demagnetized sample pairs of the same sites (horizons) from the Ak Terek and Kaji Say sections
Figure S2.2 Representative Zijderveld plots with normalized magnetization decay curves (M/M_{max}) from the Ak Terek and the Kaji Say sections
Figure S3.1. Ak Terek section area
Figure S3.2. Kungey range area
Figure S3.3. The Toru Aygir stratigraphic section
Figure S3.4. The Cholpon Ata stratigraphic section
Figure S4.1. Detailed maps of the eight regions with positions of samples and drainage basins

Figure S4.2. ²⁶ Al vs. ¹⁰ Be concentrations in individual clast and amalgamated sand	
samples collected from Ak Terek (AKT) and Kaji Say (PET-QTS) localities, in the	
proximity of lake Issyk-Kul	150

List of tables

Table 2.1. Average paleomagnetic directions from this study	19
Dataset S2.1 Interpreted paleomagnetic directions used for the	
magnetostratigraphy	128
Table S3.1 Stable isotope data	138
Table S3.2 ²⁶ Al/ ¹⁰ Be data	141
Supplementary paleocurrent and clast count data	142
Table S4.1. ¹⁰ Be data from modern river sand	152
Table S4.2. ¹⁰ Be data from buried sediment.	154
Table S4.3. AFT data and exhumation rates	155
Table S4.4. AHe data and exhumation rates	159
Table S4.5. Modern ¹⁰ Be denudation rates and basin-wide geomorphic, clinetectonic parameters.	
Table S4.6. Mean and median ¹⁰ Be, AFT and AHe values	164

ABSTRACT

During the Cenozoic, global cooling and uplift of the Tian Shan, Pamir, and Tibetan plateau modified atmospheric circulation and reduced moisture supply to Central Asia. These changes led to aridification in the region during the Neogene. Afterwards, Quaternary glaciations led to modification of the landscape and runoff.

In the Issyk-Kul basin of the Kyrgyz Tian Shan, the sedimentary sequences reflect the development of the adjacent ranges and local climatic conditions. In this work, I reconstruct the late Miocene – early Pleistocene depositional environment, climate, and lake development in the Issyk-Kul basin using facies analyses and stable δ^{18} O and δ^{13} C isotopic records from sedimentary sections dated by magnetostratigraphy and 26 Al/¹⁰Be isochron burial dating. Also, I present ¹⁰Be-derived millennial-scale modern and paleo-denudation rates from across the Kyrgyz Tian Shan and long-term exhumation rates calculated from published thermochronology data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan.

In the Issyk-Kul basin, the style of fluvial deposition changed at ca. 7 Ma, and aridification in the basin commenced concurrently, as shown by magnetostratigraphy and the δ^{18} O and δ^{13} C data. Lake formation commenced on the southern side of the basin at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. ²⁶Al/¹⁰Be isochron burial dating and paleocurrent analysis show that the Kungey range to the north of the basin grew eastward, leading to a change from fluvial-alluvial deposits to proximal alluvial fan conglomerates at 5-4 Ma in the easternmost part of the basin. This transition occurred at 2.6-2.8 Ma on the southern side of the basin, synchronously with the intensification of the Northern Hemisphere glaciation. The paleo-denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only the millennial-scale denudation rates record an acceleration of denudation.

This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at ca. 7 Ma and a subsequent aridification in the Issyk-Kul basin. Increased subsidence and local tectonically-induced river system reorganization on the southern side of the basin enabled lake formation at ca. 5 Ma, while growth of the Kungey range blocked westward-draining rivers and led to sediment starvation and lake expansion. Denudational response of the Kyrgyz Tian Shan landscape is delayed due to aridity and only substantial cooling during the late Quaternary glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.

PLAIN LANGUAGE SUMMARY

During the past ~66 Myr, global cooling and growth of the Tibetan plateau, Tian Shan, and Pamir mountains modified atmospheric circulation and reduced moisture supply to Central Asia. These changes resulted in a dry and arid climate in the region. Afterwards, glaciations in the past ~2.6 Myr modified the landscape and river runoff.

In the Issyk-Kul basin of the Kyrgyz Tian Shan, sedimentary layers record information about the development of the adjacent mountain ranges and local climatic conditions. In this work I reconstruct the processes that led to climatic changes and lake development. In order to do so, I describe and date sedimentary deposits and extract oxygen and carbon isotopic data, which are a proxy for local climatic conditions. Also, I present denudation rates (modern and from 2.7-2.0 Ma) from across the Kyrgyz Tian Shan and long-term (millions of years) exhumation rates calculated from published data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan.

The results show that in the Issyk-Kul basin, the style of the river sediment accumulation changed at ~7 Ma, and aridification in the basin commenced concurrently. Lake formation commenced on the southern side of the basin at ~5 Ma, followed by a ~2 Ma local break in sediment accumulation. Directions of sedimentary deposition indicate that the Kungey range to the north of the basin grew eastward and caused intensification of sediment accumulation at 5-4 Ma in the easternmost part of the basin, which is reflected by an abrupt increase in grain size. Similar intensification of sediment accumulation occurred at 2.6-2.8 Ma on the southern side of the basin synchronously with the intensification of the Northern Hemisphere glaciations. The denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only modern denudation rates record an acceleration of denudation.

This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at \sim 7 Ma, which prevented moisture-bearing winds from penetrating into the Issyk-Kul basin, leading to aridification. Local tectonic activity on the southern side of the basin reorganized the river system and enabled lake formation at \sim 5 Ma, while eastward growth of the Kungey range blocked the connection of the Issyk-Kul basin, leading to lake expansion.

Landscape modification of the Kyrgyz Tian Shan is slow due to aridity and only substantial cooling and glaciations during the latest glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and river runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.

Allgemeinverständliche Zusammenfassung

Während der letzten ca. 66 Millionen Jahre veränderten die globale Abkühlung und das Wachstum der tibetischen Hochebene, des Tian Shan und des Pamirgebirges die atmosphärische Zirkulation und verringerten die Feuchtigkeitszufuhr nach Zentralasien. Diese Veränderungen führten zu einem trockenen und ariden Klima in der Region. Danach veränderten die Vergletscherungen der letzten ca. 2,6 Millionen Jahre die Landschaft und den Flussabfluss.

Im Issyk-Kul-Becken des Kirgisischen Tian Shan geben die Sedimentschichten Aufschluss über die Entwicklung der angrenzenden Gebirgszüge und die lokalen klimatischen Bedingungen. In dieser Arbeit rekonstruiere ich die Prozesse, die zu den klimatischen Veränderungen und der Entstehung der Seen geführt haben. Zu diesem Zweck beschreibe und datiere ich die Sedimentablagerungen und extrahiere Sauerstoffund Kohlenstoffisotopendaten, die stellvertretend für die lokalen klimatischen Bedingungen stehen. Außerdem präsentiere ich Denudationsraten (heutige und aus der Zeit von vor 2,7 bis 2,0 Millionen Jahren) aus dem gesamten kirgisischen Tian Shan und langfristige (Millionen von Jahren) Exhumierungsraten, die aus veröffentlichten Daten berechnet wurden. Dies ermöglicht es mir, räumliche und zeitliche Veränderungen der Oberflächenprozesse im kirgisischen Tian Shan zu untersuchen.

Die Ergebnisse zeigen, dass sich im Issyk-Kul-Becken der Stil der Flusssedimentakkumulation vor ca. 7 Millionen Jahren veränderte und gleichzeitig eine Aridifizierung des Beckens einsetzte. Die Bildung von Seen begann auf der Südseite des Beckens vor ca. 5 Millionen Jahren, gefolgt von einer lokalen Unterbrechung der Sedimentakkumulation vor ca. 2 Millionen Jahren. Die Richtungen der Sedimentablagerung deuten darauf hin, dass das Kungey-Gebirge im Norden des Beckens nach Osten wuchs und vor 5-4 Millionen Jahren im östlichsten Teil des Beckens eine Intensivierung der Sedimentakkumulation bewirkte, was sich in einer abrupten Zunahme der Korngröße widerspiegelt. Eine ähnliche Intensivierung der Sedimentakkumulation fand vor 2,6-2,8 Millionen Jahren auf der Südseite des Beckens statt, zeitgleich mit der Intensivierung der Vergletscherung der Nordhemisphäre. Die Denudationsraten von vor 2,7-2,0 Millionen Jahren sind so niedrig wie die langfristigen Exhumierungsraten, und nur die modernen Denudationsraten zeigen eine Beschleunigung der Denudation.

Diese Arbeit kommt zu dem Schluss, dass das Wachstum der Gebirgsketten im Norden des Beckens zur Entstehung der topografischen Barriere vor ca. 7 Millionen Jahren geführt hat, die das Eindringen feuchtigkeitsführender Winde in das Issyk-Kul-Becken verhinderte und zur Aridifizierung führte. Lokale tektonische Aktivitäten auf der Südseite des Beckens führten zu einer Neuordnung des Flusssystems und ermöglichten die Bildung von Seen vor ca. 5 Millionen Jahren, während das östliche Wachstum des Kungey-Gebirges die Verbindung des Issyk-Kul-Beckens mit anderen östlichen Becken blockierte, was zur Ausdehnung der Seen führte.

Die Landschaftsveränderung im kirgisischen Tian Shan erfolgt aufgrund der Trockenheit nur langsam, und erst die starke Abkühlung und die Vergletscherung während der letzten Gletscherzyklen führten zu einer bemerkenswerten Beschleunigung der Denudation. Gegenwärtig wird die Denudation des Nordhangs des Terskey-Gebirges im Vergleich zu anderen Gebirgszügen des kirgisischen Tian Shan durch den verstärkten Gletscherschwund und den Flussabfluss beschleunigt.

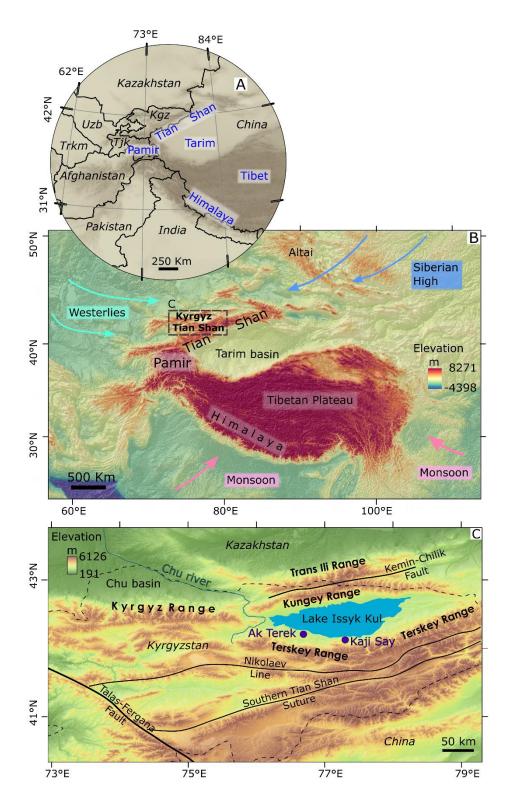
ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors Edward Sobel and Alexandru Codilean for the guidance, support, patience, and encouragement. Every time I had obstacles in the way of my research and life, they helped me to find a solution and get back on track. I am very thankful to them for this fascinating project that expanded my knowledge of our planet enormously and let me achieve a very clear understanding of how closely everything and everyone is linked, even if it seems otherwise at first glance. And of course, I am very thankful for the opportunity they gave me to live and work in a beautiful Potsdam and wonderful Wollongong.

I am also very grateful to all my co-authors and colleagues for their help with field trips, lab work, discussions, and advice that helped me develop an all-round view of my research topic.

I am especially grateful to my family for their endless moral support and to our cats Marius and Olve for their unique stress relief qualities which helped me a lot over the years.

1 INTRODUCTION


1.1 OVERVIEW OF THE RESEARCH

My work is focused on the reconstruction of Cenozoic paleoclimatic changes in the Kyrgyz Tian Shan and the development of the Issyk-Kul basin (Figure 1.1). The main goal of the project is to decipher the relative importance of global and regional climatic changes, surface processes, and tectonic uplift shaping the Central Asian environment.

The most significant stages of the tectonic and climatic development of the Tian Shan and, more broadly, Central Asia occurred during the Miocene and Pliocene. The uplift of the Tibetan Plateau, Pamir, Tian Shan, and Altai mountains (e.g., Molnar & Tapponnier, 1975) occurred simultaneously with westward Parathetys retreat (e.g., Ramstein et al., 1997; Bosboom et al., 2017; Kaya et al., 2019) and global cooling (e.g., Herbert et al., 2016), changing atmospheric circulation and leading to aridification in Central Asia (e.g., Caves Rugenstein & Chamberlain, 2018), which led to changes in flora and fauna across the region (e.g., Barbolini et al., 2020).

Subsequently, the Plio-Pleistocene onset of glaciation and Quaternary glacial-interglacial cycles also affected the Central Asian climate and landscape development. Glacial erosion modifies topography, and associated changes in the hypsometry of the landscape influence the relationships between climate and glacial extent by enabling rapid and nonlinear glacial growth (Pedersen & Egholm, 2013). Ice and snow accumulation affect river runoff, particularly during interglacial periods. Moreover, Pleistocene moisture variability caused by the interplay between high topography in Central Asia and air masses influenced Siberian rivers discharge and their ability to transfer fresh water to the Arctic Ocean (Prud'homme et al., 2021).

At present, Central Asia is the largest arid region in the Northern Hemisphere, accommodating millions of people living in Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan, Afghanistan, western China, and Mongolia (Figure 1.1A), who depend on the regional climatic conditions and water resources. Aridity controls vegetation and water availability, and glacial retreat due to climatic changes raises concern about the future of the region (Chen et al., 2022a). The Miocene and Pliocene periods are considered the best analogues for future climatic conditions (Burke et al., 2018; Steinthorsdottir et al., 2021). Studying the Cenozoic development of the landscape and climate in Central Asia is, therefore, essential for understanding moisture transfer in Eurasia and estimation of future climatic changes on the continent.

Figure 1.1. Topographic maps of Central Asia and the Kyrgyz Tian Shan based on SRTM90 digital elevation data. (A) Map of Central Asia with countries and major topographic features. Kgz – Kyrgyzstan; Tjk – Tajikistan; Uzb – Uzbekistan; Trkm – Turkmenistan. (B) Map of Central Asia showing major ranges and major atmospheric circulation directions. Light blue arrows – westerly winds; dark blue arrows – Siberian High; pink arrows – monsoons. (C) Topographic map of the Kyrgyz Tian Shan showing the main ranges and faults, the north-flowing Chu river, country borders (dashed line), and locations of the Ak Terek and Kaji Say sedimentary sections.

In this study, I focus on the Kyrgyz part of the Tian Shan range (Figures 1.1B-C). Together with other active mountain ranges in Central Asia, the Tian Shan was created due to reactivation of Palaeozoic structures by the Cenozoic India-Asia collision (Molnar and Tapponnier, 1975). The Kyrgyz Tian Shan is a perfect area for studying tectonic-climatic interactions because this range is situated in the north-western part of Central Asia (Figure 1.1B), creating an immediate topographic barrier in the way of the moisture-bearing westerly winds, enhancing aridification in Central Asia (Baldwin & Vecchi, 2016), and ultimately leading to desertification of the Tarim basin (Heermance et al., 2018; Richter et al., 2022).

This work emphasises the importance of studying the tectonic-climatic interactions within the range and particularly in the Issyk-Kul basin (Figure 1.1C). The internally-drained intermontane Issyk-Kul basin hosts a large lake and is mainly fed by meltwater from snow and glaciers of the Terskey and Kungey ranges (Aizen et al., 1995). The lake formed while the basin and the whole Kyrgyz Tian Shan experienced intensive aridification, creating a unique environment. The basin contains late Mesozoic - Cenozoic sedimentary deposits (Abdrakhmatov et al., 2001), which record information about local climatic conditions, tectonic activity, and lake-level fluctuations. Therefore, by studying these deposits, we are able to obtain information about the development of the basin and the adjacent ranges and interactions with global climatic changes.

Previously, the late Oligocene – late Miocene (ca. 25-8 Ma) Issyk-Kul basin deposits have been dated using magnetostratigraphy (Wack et al., 2014) and the first paleoclimatic record was provided for these deposits using stable δ^{18} O and δ^{13} C isotopes (Macaulay et al., 2016). In this study we aim to complete the Cenozoic record of the Issyk-Kul basin by providing the first magnetostratigraphic age models, ²⁶Al/¹⁰Be isochron burial ages, and paleoclimatic records using stable δ^{18} O and δ^{13} C isotopes for the late Miocene – early Pleistocene sedimentary deposits. We also examine the landscape development by discussing spatial and temporal variability of surface processes in the Kyrgyz Tian Shan and particularly in the Terskey range and their interactions with tectonic activity and climatic changes. In order to do this, we provide a dataset of modern ¹⁰Be-derived denudation rates from across the Kyrgyz Tian Shan, ¹⁰Be-derived paleo-denudation rates from the Issyk-Kul basin, and long-term exhumation rates calculated from published thermochronology data.

We collected samples for magnetostratigraphic dating, ²⁶Al/¹⁰Be isochron burial dating, and stable isotope analysis during the field seasons in 2016 and 2017. During the 2016 field season, we also collected samples for the study of denudation rates, which constitute

a part of the whole dataset. This dataset of modern ¹⁰Be-derived denudation rates was kindly provided by Dr. Angela Landgraf and Dr. Alexandru Codilean for interpretation and publication. We aimed to collect samples from as many late Miocene – early Pleistocene sedimentary sections around the lake Issyk-Kul as possible. However, due to poor quality of outcrops and scarce availability of material suitable for sampling and analysis, I was able to provide detailed description and study of only two stratigraphic sequences on the southern side of the basin. These sequences provide valuable information related to the development of the Terskey range, local climatic conditions, and commencement of lake formation.

The study and analysis of the magnetostratigraphic record was primarily conducted by Dr. Sophie Roud, Prof. Stuart Gilder, and Dr. Michael Wack. I prepared the samples for stable isotope analysis; measurements were performed at the Joint Goethe University–Senckenberg BiK-F Stable Isotope Facility at Goethe University Frankfurt, Germany in collaboration with Prof. Andreas Mulch and Prof. Maud Meijers. I prepared samples for ²⁶Al/¹⁰Be isochron burial dating in both Potsdam and during my 3-month and 14-month stays in Wollongong; analyses were conducted at the University of Wollongong, Australia, and the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements for the ¹⁰Be denudation rates were conducted at ANSTO and the AMS facility DREAMS, Dresden. The results are discussed in the following chapters, two of which are peer-reviewed and published in the journals Geochemistry, Geophysics, Geosystems and Basin Research, and one is submitted to the Journal of Geophysical Research: Earth Surface. In chapters 3-4, I refer to the publications instead of chapters: chapter 2 is referred to as Roud et al. (2021), chapter 3 is referred to as Kudriavtseva et al. (2023).

1.2 Thesis outline

1.2.1 CHAPTER 2: MIOCENE TO EARLY PLEISTOCENE DEPOSITIONAL HISTORY AND TECTONIC EVOLUTION OF THE ISSYK-KUL BASIN

In chapter 2, we present a magnetostratigraphic age model for the sedimentary section Ak Terek in the southwestern part of the Issyk-Kul basin, and we propose two magnetostratigraphic age models for the section Kaji Say further east (Figure 1.1C). Previously, lithostratigraphic correlation with deposits in the neighboring Chu basin suggested a late Miocene – early Pliocene age for the Issyk-Kul sediment accumulation, and this work provides the first relatively robust age models based on the Issyk-Kul basin data.

The Ak Terek age model suggests sedimentation between 6.3 and 2.8 Ma. The two Kaji Say models suggest very different ages and depositional environments for the sequence: one suggests continuous sedimentation from 12.7 to 9.5 Ma, while the second one suggests sediment accumulation from 7.0 to 5.1 Ma and from 3.0 to 2.4 Ma with a ca. 2 Myr hiatus. At this point it was impossible to suggest which of the two options was more plausible. However, the advantage of the second option is that it places the transition from fine-grained to coarse-grained deposits in the Kaji Say section to the same time interval as the age model of the Ak Terek section. Additionally, in this chapter we reevaluate magnetostratigraphic age models for older deposits in the eastern part of the basin previously described by Wack et al. (2014). These previously published age models showed inconclusive results because of ambiguous polarity intervals.

This work allowed us to date transitions between sedimentary groups of the Issyk-Kul basin, estimate sedimentation rates, and describe Miocene-Pliocene tectonic development of the Terskey range. Inconclusive results of the magnetostratigraphic dating of the Kaji Say section raise a question of precise timing of sediment accumulation there, which we discuss in the next chapter.

1.2.2 CHAPTER 3: NEOGENE ARIDIFICATION AND LAKE DEVELOPMENT IN THE ISSYK-KUL BASIN

Chapter 3 further develops the study of the sedimentary sequences in the Issyk-Kul basin. This work is based on detailed descriptions of the Ak Terek and Kaji Say sedimentary sections. We provide 26 Al/ 10 Be isochron burial ages for the upper parts of both sections. These results support the Ak Terek magnetostratigraphic age model and allow us to choose one of the age models for the Kaji Say section. The chosen Kaji Say age model suggests a ca. 2 Myr depositional hiatus in the middle of the section occurring simultaneously with commencement of lake formation. Therefore, we provide an explanation for existence of the hiatus in a tectonically active region. We also provide the first paleoclimatic record for the late Miocene – early Pleistocene deposits based on stable δ^{18} O and δ^{13} C isotope data from the Ak Terek and Kaji Say sections. This record suggests that aridification in the basin started at ca. 7 Ma. As there were no significant global climatic changes at this time, we suggest that local tectonic activity is responsible for this environmental change, which was later amplified by global climatic changes. Furthermore, we discuss how the lake formed in arid climatic conditions.

This chapter provides a comprehensive description of the environmental development of the Issyk-Kul basin and surrounding ranges in the late Miocene – early Pleistocene due to local tectonic activity and global climatic changes. However, we were not able to fully

clarify the timing of sediment deposition in the Kaji Say section because the samples for the ²⁶Al/¹⁰Be isochron burial dating of the basal part of the section did not provide any reliable results. Therefore, the question remains whether the proposed depositional hiatus existed as described.

<u>1.2.3 Chapter 4: Impact of Quaternary glaciations on denudation rates in</u> <u>The Kyrgyz Tian Shan inferred from cosmogenic ¹⁰Be and low-temperature</u> <u>Thermochronology</u>

In chapter 4 we discuss denudation and exhumation rates at different timescales within the Kyrgyz Tian Shan. These data reflect different surface processes that shaped the landscape during the Cenozoic. A combination of 54 millennial-timescale ¹⁰Be-derived denudation rates from across the Kyrgyz Tian Shan with three ¹⁰Be-derived denudation rates from 2.7-2 Ma from the southern Issyk-Kul basin, as well as with 421 long-term exhumation rates derived from published thermochronology data provides an insight into spatial and temporal variability of denudation in the Kyrgyz Tian Shan. The data show that the Plio-Pleistocene onset of Northern Hemisphere glaciations did not significantly affect denudation in the Terskey range, but Pleistocene glacial-interglacial cycles led to a widespread increase in denudation after substantial cooling and growth of the glacial cover. We show that tectonic activity notably but temporarily affects exhumation rates in the Kyrgyz range, situated in the northwestern part of the Kyrgyz Tian Shan (Figure 1.1C), due to rapid exhumation of the sediments, which covered the area before surface uplift. Our data also show relatively fast modern denudation of the Terskey range due to intensive glacier melting compared to the rest of the Kyrgyz Tian Shan. We compare our data with published ¹⁰Be-derived denudation rates from the parts of the Tian Shan to the west and to the east from our study area. We show a west to east decreasing trend and suggest that enhanced deformation in the Pamir and Western Tian Shan controls denudation there, erasing the glacial signal, while further east, the intensity of deformation decreases and the influence of global climate and local factors increases.

In summary, this chapter shows that in the Kyrgyz Tian Shan surface processes are mainly controlled by local factors, while on a regional scale only substantial environmental changes triggered by global climate affect denudation.

1.2.4 CHAPTER 5: DISCUSSION AND CONCLUSIONS

Chapter 5 summarizes the conclusions of each chapter and provides an integrated view of environmental development of the Issyk-Kul basin and the entire Kyrgyz Tian Shan in relation to tectonic activity in the range and climatic changes.

1.3 PUBLICATION AND AUTHOR CONTRIBUTION

For the study discussed in chapter 2, magnetostratigraphic analysis was done by Dr. Sophie Roud, Prof. Stuart Gilder, and Dr. Michael Wack based on my descriptions and sedimentological analysis of the Kaji Say and Ak Terek sedimentary sequences. I participated in sample collection and data discussion and interpretation by providing information about the depositional environment in the Issyk Kul basin. The text was drafted by Dr. Sophie Roud and refined by all coauthors. This work is published as: Roud, S.C., Wack, M.R., Gilder, S.A., Kudriavtseva, A., & Sobel, E.R. (2021). Miocene to Early Pleistocene Depositional History and Tectonic Evolution of the Issyk-Kul Basin, Central Tian Shan. *Geochemistry, Geophysics, Geosystems*, 22(4), e2020GC009556. https://doi.org/10.1029/2020GC009556

For the study discussed in chapter 3, I described the sedimentary sequences, participated in sampling, sample preparation, analytical work, and interpretation of the results. I drafted the manuscript, which was then refined by all coauthors. Also, I refined the text according to comments provided by reviewers during the peer-review process. This work is published as: Kudriavtseva, A., Sobel, E.R., Codilean, A.T., Meijers, M.J.M., Mulch, A., Hoke, G.D., Fink, D., Mikolaichuk, A.V., Fülöp, R.-H., Wilcken, K.M., & Enge, T.G. (2023). Neogene aridification and lake development in the Issyk-Kul basin, Kyrgyzstan. *Basin Research*, *00*, 1–35. https://doi.org/10.1111/bre.12751

For the study discussed in chapter 4, I interpreted the data and participated in sampling, sample preparation, and analytical work for the ¹⁰Be-derived paleo-denudation rates analysis. Sampling for modern ¹⁰Be-derived denudation rates was conducted mainly by Dr. Angela Landgraf and Dr. Alexandru Codilean. I drafted the manuscript, which was then refined by all coauthors. This manuscript has been submitted to the Journal of Geophysical Research: Earth Surface as: Kudriavtseva, A., Codilean, A.T., Sobel, E.R., Landgraf, A., Fülöp, R.-H., Dzhumabaeva, A., Abdrakhmatov, K., Wilcken, K.M., Schildgen, T., Fink, D., Fujioka, T., Rosenwinkel, S., Merchel, S., Rugel, G. Impact of Quaternary glaciations on denudation rates in the Kyrgyz Tian Shan inferred from cosmogenic ¹⁰Be and low-temperature thermochronology.

Potsdam, March 21, 2023

Date

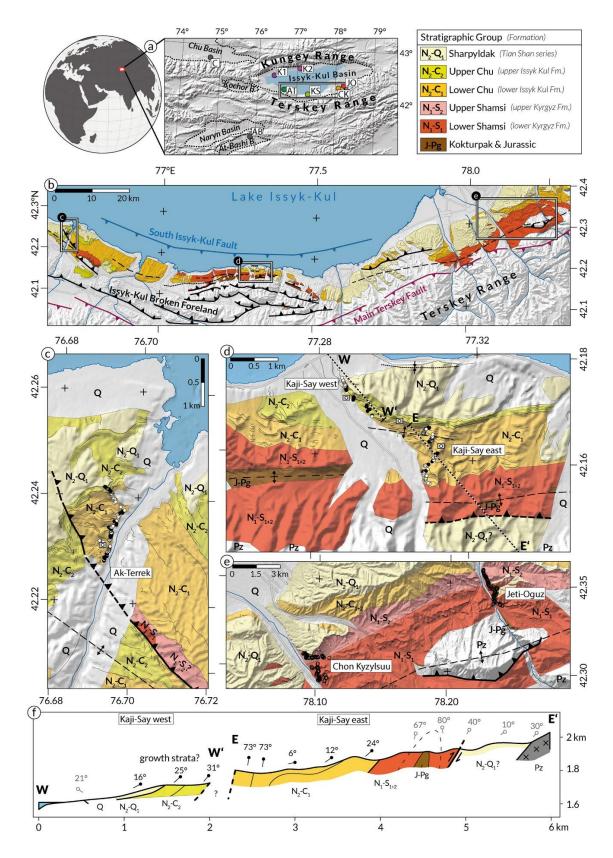
Signature principal advisor

2 MIOCENE TO EARLY PLEISTOCENE DEPOSITIONAL HISTORY AND TECTONIC EVOLUTION OF THE ISSYK-KUL BASIN, CENTRAL TIAN SHAN

Sophie C. Roud, Michael R. Wack, Stuart A. Gilder, Anna Kudriavtseva, & Edward R. Sobel

ABSTRACT

The Issyk-Kul basin (Kyrgyzstan), situated in the central Tian Shan Mountains, hosts the largest and deepest mountain lake in Central Asia. Erosion of the surrounding Terskey and Kungey ranges led to the accumulation of up to 4 km of sediment in the adjacent depression. Creation of the basin from regional shortening and uplift likely initiated around the Oligocene-Miocene, yet precise age control is sparse. To better understand the timing of these processes, we obtained magnetostratigraphic age constraints on fossilpoor, fluvio-lacustrine sediments exposed south of lake Issyk-Kul, that agree well with previous age constraints of the equivalent strata outside the Issyk-Kul basin. Two 500-650 m thick sections comprised mainly of Chu Group sediments were dated at 6.3-2.8 Ma and 7.0-2.4 Ma (late Miocene to early Pleistocene). Together with reinterpreted magnetostratigraphic constraints from underlying strata, we find that syn-tectonic deposition commenced at ca. 22 Ma with average sedimentation rates <10 cm ka⁻¹. Sedimentation rates increased to 10-30 cm ka⁻¹ at 7 Ma, concurrent with accelerated uplift in the Terskey Range to the south. A deformation event in one section (Kaji-Say) between 5 and 3 Ma together with concurrent shifts of depositional centers throughout the basin signal the onset of substantial uplift of the Kungey Range to the north at ca. 5 Ma. This uplift and deformation transformed the Issyk-Kul area into a closed basin that facilitated the formation of a deep lake. Lacustrine facies deposited around 3 Ma mark the existence of lake Issyk-Kul by that time.


2.1 INTRODUCTION

2.1.1 REGIONAL GEOLOGY

The Tian Shan mountains comprise a 2500-km-long orogenic belt in Central Asia. Ongoing uplift of the range is driven by the India-Asia collision. Although located 1500 km north of the India-Asia plate boundary, the Tian Shan currently accommodate about 20 mm yr⁻¹ of north-south shortening, which is equivalent to nearly two-thirds of the total convergence between India and Asia (Zubovich et al., 2010). Mountain building in Central Asia initiated along reactivated Paleozoic structures in the late Oligocene, creating vast basins that were subsequently dissected by younger ranges (Sobel & Dumitru, 1997; Buslov et al., 2003; Macaulay et al., 2014).

The Issyk-Kul basin is one of the largest intermountain basins in the Tian Shan realm, bounded by the Kungey range to the north and the Terskey range to the south (Figure 2.1) with maximum peak heights of 4.8 and 5.2 km, respectively. The basin contains up to 4 km of Cenozoic sediments (Turchinskiy, 1970; Buslov et al., 2003) that record the uplift and erosion history of the surrounding mountain ranges. Unroofing of the Terskey range commenced around the Oligocene-Miocene boundary between 26 and 20 Ma based on thermochronologic cooling ages (De Grave et al., 2013; Macaulay et al., 2013, 2014) and on the onset of sediment deposition in the adjacent Issyk-Kul basin (Wack et al., 2014). The initial uplift phase was followed by a second phase of rapid basement cooling after 10 ± 5 Ma when deformation of the Terskey range propagated northward, creating the Issyk-Kul Broken Foreland (Macaulay et al., 2013, 2014). Uplift of the youngest ranges initiated in the Plio-Pleistocene. Unroofing of the Kungey range that led to the closure of the Issyk-Kul basin is loosely estimated to ca. 7–4 Ma based on sediment provenance data (Selander et al., 2012).

To better resolve the uplift history of the Central Tian Shan around the Issyk-Kul basin, we collected Cenozoic sediments at two sections, Ak Terek and Kaji Say (Figure 2.1), in the southern rim of the basin in 2016 and 2017 to constrain the age, sedimentation rate and the depositional environment. Here, we describe the geologic setting, the rock magnetism and magnetostratigraphy of the sections. We then discuss the new and existing magnetostratigraphic age constraints from the Issyk-Kul basin, and place our results in the larger context of the tectonic evolution of the area.

Figure 2.1. Geologic overview of the study area at lake Issyk-Kul (Central Tian Shan, Kyrgyzstan). (a) General location map. Names and abbreviations in white boxes denote locations of new and previously studied stratigraphic sections as follows: (C) Chu, (AB) At Bashi, (K1) Toru Aygir, (K2) Cholpon Ata, (AT) Ak Terek, (KS) Kaji Say, (CK) Chon Kyzylsuu and (JO) Jeti Oguz. (b) Geology of the southern Issyk-Kul basin with mapped sedimentary units (see legend and text for details), major faults (thick lines) and folds (thin lines, anticlines dashed, synclines dotted). Geologic and structural information were mapped from satellite images, a digital elevation model, Burgette (2008), Macaulay et al. (2013; 2014; 2016) and Korzhenkov and Deev (2017). Rectangles show locations of maps (c)–(e); units corresponding to the

legend: Q, Quaternary; N, Neogene; 1, lower, 2, upper; Pg, Paleogene, J, Jurassic; Pz, Paleozoic basement. Filled circles in (c) and (d) indicate paleomagnetic sample locations of this study (black = normal polarity and white = reversed polarity). Circles in (e) show sample locations from Wack et al. (2014). Projection (b)–(e): Pulkovo 1942/Gauss-Kruger zone 14. (f) Cross-section through the western (W-W') and eastern transect (E-E') at Kaji Say (2:1 vertical exaggeration); bedding attitudes outside the magnetostrigraphic section from Burgette (2008). Camera symbols show locations where the field photos in Figure 2.2 were taken.

2.1.2 LOCAL GEOLOGY AND STRATIGRAPHY

Cenozoic sediments in the Central Tian Shan can be divided into four main lithologic groups. These are, from oldest to youngest, the Kokturpak, Shamsi, Chu, and Sharpyl Dak groups (Abdrakhmatov et al., 2001). All four groups are exposed in the southern Issyk-Kul basin, where we mapped their extent with satellite images (Bing Maps and Sentinel 2, Bands 12-4-2) using QGIS software (Figure 2.1). Outside our study area, we also referred to Soviet geological maps (Turchinskiy, 1970; Pomazkov, 1971) and the PhD thesis of Burgette (2008).

The Kokturpak group represents pre-orogenic sediments. It comprises deeply weathered paleosols, thin lacustrine deposits and reddish sandstones that formed in shallow, low-relief areas above the Paleozoic basement or above locally preserved Jurassic deposits (Fortuna et al., 1994). In the Issyk-Kul basin, the Kokturpak group reaches up to 100 m in thickness (Selander et al., 2012). The age is loosely constrained as late Cretaceous to Eocene (Fortuna et al., 1994; Sobel & Arnaud, 2000). Kokturpak and Jurassic sediments were combined in our geologic maps (Figure 2.1, J-Pg); these are identified as white and yellow layers that cover basement rocks and/or by resistant red horizons that crop out in the cores of anticlines (Figures 2.1D-E).

The Shamsi group represents the basal, syn-orogenic sediments (locally called the Kyrgyz or Dzhety Oguz formation) overlying the Kokturpak group. In the Issyk-Kul basin, these deposits consist of poorly sorted sandstone and conglomerate with a characteristic red pigment near the base that fades toward the top. In the vicinity of the Terskey Range (CK and JO in Figure 2.1A), the ca. 1-km-thick sections were magnetostratigraphically dated between 26 and 11 Ma (Wack et al., 2014). We mapped the Shamsi unit in Figure 2.1 based on its distinctive red color and strong reflectance in the Sentinel bands 12 and 4. In the eastern part of the basin, the Shamsi group can be subdivided into a lower (N₁-S₁, red) and upper (N₁-S₂, light red) unit based on a characteristic decrease in red pigment (Figure 2.1E). The similar appearance of lower Shamsi and upper Kokturpak groups made it sometimes ambiguous to distinguish them on the aerial images.

The Shamsi group grades upward into lighter, more fine-grained strata of the Chu group, which consists of white to tan sandstone and siltstone, intercalated with conglomerate. The Chu group is often described as the main basin-filling unit, with thicknesses up to 2.5 km reported in the Naryn basin (Goode et al., 2011), 1.5 km in the Chu basin (Bullen et al., 2001) and 3 km in the At-Bashi basin (Abdrakhmatov et al., 2001). In the latter two, the Chu group was magnetostratigraphically dated between 7.5 and 3.0 Ma (Abdrakhmatov et al., 2001; Bullen et al., 2001). Selander et al. (2012) reported a maximum thickness of 600 m in the northern Issyk-Kul basin. This unit was mapped based on its tan color at the base that fades toward the top and possesses alternating lighter and darker horizons. Where possible, we differentiated between lower Chu (dominantly darker tones; mapped as N₁C₁) and upper Chu (highly reflective, grayish beds; mapped as N₁C₂; Figures 2.1B-D).


Poorly sorted, coarse conglomerates of the Sharpyl Dak group overlie the Chu group, with the contact being sometimes gradual and sometimes unconformable, indicating that locally, deformation has occurred prior to deposition of the conglomerates. The basal age of the Sharpyl Dak group was dated to ca. 5-3 Ma in adjacent basins (Abdrakhmatov et al., 2001; Bullen et al., 2001). We mapped the Sharpyl Dak deposits (N₂-Q₁) based on their bright gray appearance without visible bedding structures. The Sharpyl Dak conglomerates are locally covered by lacustrine deposits and river terraces that formed in response to lake level variations and glaciation events during the Quaternary (Burgette et al., 2017). We did not map these youngest features (Q in Figures 2.1C-E) in detail. The distinction between Sharpyl Dak conglomerates and Quaternary terraces in Figure 2.1 was primarily based on topography.

The major tectonic structures in Figure 2.1 were adapted from Burgette (2008), Macaulay et al. (2013, 2014, 2016), and Korzhenkov and Deev (2017) and mapped on a 30" (arcsec) digital surface model (Tadono et al., 2015) that is shown as topographic shading in all maps. The two major thrust faults are the north-vergent South Issyk-Kul Fault and the Main Terskey Fault. The Issyk-Kul Broken Foreland, north of the Main Terskey Fault, is dominated by secondary south-vergent reverse faults that thrust Cenozoic sediments over basement rocks (Burgette, 2008; Macaulay et al., 2014; Korzhenkov & Deev, 2017), thereby producing E-W striking folds in the southern Issyk-Kul basin. Anticlines with gently tilted northern and steep southern limbs are typically thrust up along reverse faults (Buslov et al., 2003; Figure 2.1F).

2.2 SECTIONS AND SAMPLING

2.2.1 AK TEREK SECTION

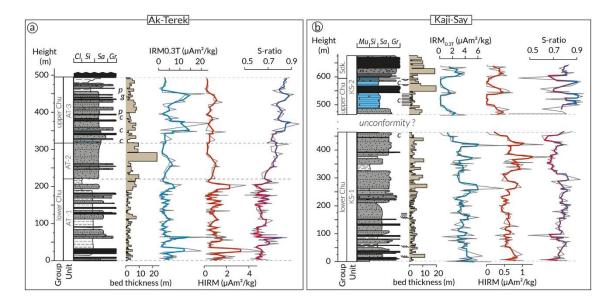

The Ak Terek section was sampled on the west side of the Ak Terek river valley, spanning 500 m in stratigraphic height (Figures 2.1C, 2.2A, and 2.3A). Figure 2.3A includes a stratigraphic column of the section that can be subdivided into three lithologic units (AT-1 to AT-3). The lower part (AT1) contains alternating sand and silt layers intercalated with conglomerate. Above ca. 230 m, fine massive sandstones become dominant (AT2). Above 324 m, the number of conglomerate layers, sporadic calcareous deposits and paleosols increase (AT3). A 30-cm-thick gypsum layer was found at 430 m. Massive conglomerates above ca. 500 m mark the conformable transition from Chu to Sharpyl Dak deposits. Bedding dips gradually flatten from 21° at the base to 5° at the top, reflecting regional scale folding or growth strata. No major discontinuity, unconformity, or fault was observed in the section.

Figure 2.2. Field photos of the Ak Terek (AT) and Kaji Say (KS) sections. (a) Upper ca. 400 m of the AT section; view to the north with lake Issyk-Kul in the background; dashed lines highlight bedding structures and numbers indicate approximate stratigraphic heights. (b) Panorama of the eastern part of the KS section with bedding attitudes steepening from nearly horizontal to >70° above ca. 250 m. (c) Syncline structure between the eastern and western parts of KS (d) Panorama of the Chu-Sharpyl Dak

contact in the western part of the KS section. See Figure 2.1 for the locations where the photos were taken.

We collected two oriented paleomagnetic cores per horizon (302 in total), generally selecting fine-grained mud or silt layers. The lower 200 m of the section were sampled along the Ak Terek river valley in ca. 2 m intervals. The coarser grained upper 300 m of the section were sampled every 7 m on average, following tributaries away from the river valley. Samples were obtained using a battery-powered, water or air-cooled drill; poorly lithified strata were sampled with a handheld push corer that we manufactured for this purpose. The corer injects the extracted, oriented sediment directly into plastic cylinders of the same dimension as standard paleomagnetic specimens (2.5 cm diameter, 2.2 cm height). All samples were oriented with a magnetic and, when possible, with a sun compass using a Pomeroy orientation tool. The average anomaly from 58 sun compass readings was $4.0^{\circ} \pm 2.5^{\circ}$, in good agreement with the International Geomagnetic Reference Field (IGRF) declination anomaly of 4.6° , which we used to correct the declination azimuths of all samples.

Figure 2.3. Summary of sedimentologic and rock magnetic data of the Ak Terek (a) and Kaji Say (b) sections. Lithologic columns show fluvial beds in gray scale; lacustrine carbonates in blue, with dominant grain size of clay (Cl), mud (Mu), silt (Si), sand (Sa) and gravel (Gr). Letters indicate: p, paleosol; c, carbonate; g, gypsum. Groups correspond to the lower and upper Chu and Sharpyl Dak (Sdk.) groups mapped in Figure 2.1; Units (AT-1 to AT-3 and KS-1 to KS-2) defined based on prominent changes in the lithologic and rock magnetic parameters. Parameters left to right: bed thickness, IRM_{0.3T} reflecting magnetite concentration, HIRM reflecting hematite concentration and S-ratio reflecting relative magnetite to hematite proportions.

2.2.2 KAJI SAY SECTION

The Kaji Say section is located 10 km northeast of Kaji Say village and spans 650 m in stratigraphic height. We sampled the section along two transects, west and east

(Figures 2.1D and 2.1F). Bedding dips in the eastern transect are ca. 25° (N) at the base of the section (0 m) and flatten to horizontal at around 225 m height. After 245 m the beds abruptly dip ca. 75° (N), defining an asymmetric anticline with its axis striking E-W (Figure 2.2B). The beds remain steeply dipping (ca. 75°) until the top of the eastern transect at 464 m. Farther north of these sites, the steeply dipping beds disappear under Sharpyl Dak conglomerates. Following 1 km along strike to the west (western transect), the Chu beds dip more gently around 30° (N) (Figure 2.2D) shallowing to ca. 15° (N) toward the top of the section. The beds thicken to the northwest and pinch out to the southeast, which could indicate the presence of growth strata.

We could not follow individual beds between the eastern and western transects. The change in dip from ca. 75° in the eastern section to ca. 30° in the western section could signal an unconformable surface thereby suggesting the section was folded prior to the deposition of the upper unit, with a hiatus between the two. The postulated unconformable surface likely strikes E-W, parallel to the strike of the strata, which would explain why we did not identify it on the ground or in aerial images. An alternate interpretation that we cannot rule out is that a syncline observed between the two transects (Figure 2.2C) connects the steeply dipping (ca. 75°) units in the east to the shallow-dipping (ca. 30°) units in the west.

Fluvial deposits of alternating sand, silt, and mudstone layers intercalated with conglomerates characterize the lower, eastern part of the section (Figure 2.3B, KS-1). At the top of this transect, between 440 and 460 m, we identified two, < 0.5 m thin calcareous interbeds. Along the western transect, the sediments consist mostly of fine-grained calcareous silt, and carbonates that alternate with laminated silt or mudstone, and rippled or cross-bedded sandstone (Figure 2.3B, KS-2). The up to 9 m thick calcareous, partially laminated beds indicate lacustrine deposition. The number and thickness of interbedded coarse conglomerates increases above ca. 550 m, marking the transition between Chu and Sharpyl Dak style deposits (Figure 2.2D); above 600 m the section is dominated by Sharpyl Dak conglomerates.

Paleomagnetic samples were collected in approximately 2 m intervals, taking two oriented cores per horizon (312 in total) and selecting fine grained mud or silt when possible. In contrast to Ak Terek, most strata in this section were poorly lithified. We obtained drill cores from 15 horizons, while 297 horizons were sampled with the push corer. Therefore, samples from Kaji Say were predominantly contained within plastic cylinders. The average anomaly from 156 Sun compass readings was $4.2^{\circ} \pm 2.3^{\circ}$, again in good agreement with the IGRF declination anomaly of 4.5° .

2.3 PALEO AND ROCK MAGNETIC CHARACTERIZATION

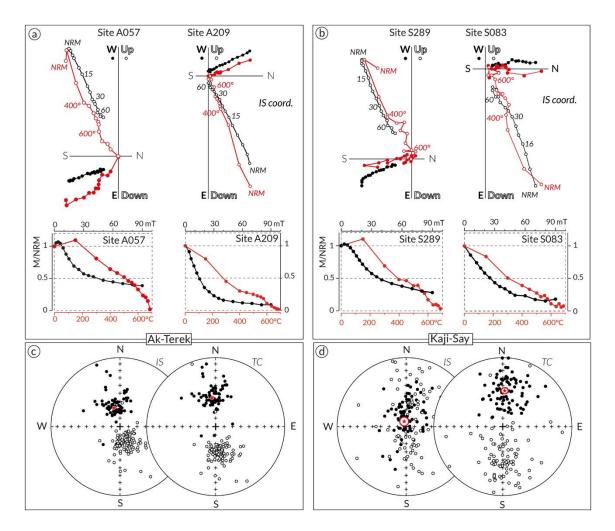
2.3.1 LABORATORY METHODS

Because the majority of the samples were contained in plastic cylinders that prevented thermal treatment, we subjected one sample of each horizon to stepwise alternating field (AF) demagnetization. In case of unstable trajectories, or if polarity intervals were defined by a single specimen, a second sample was AF demagnetized. In addition, samples from all 15 drilled horizons from Kaji Say and from 23 of the drilled sites from Ak Terek were thermally demagnetized using 14 heating steps to compare against the AF demagnetization data. AF demagnetization (16 steps up to 90 mT) and magnetic moment measurements were conducted inside a magnetically shielded room (ca. 500 nT) using an automated measurement system (SushiBar) based on a 2G Enterprises, three-axis superconducting magnetometer (Wack & Gilder, 2012). Characteristic remanent magnetizations were determined by principal component analysis (Kirschvink, 1980) and mean directions were calculated with Fisher statistics (Fisher, 1953) using the software PaleoMac (Cogné, 2003).

Rock magnetic parameters were measured on at least one sample per horizon to determine magnetic mineralogy and grain size variations throughout both sections. We measured magnetic susceptibility (χ), anhysteretic remanent magnetization (ARM) with a peak alternating field of 90 mT and a 0.1 mT bias field and calculated the ARM/ χ ratio as a proxy for grain size and/or mineralogic changes (King et al., 1982). Subsequently, a 1 T isothermal magnetic remanence (IRM) followed by a back field IRM of -0.3 T were measured in order to calculate the S-ratio (Bloemendal et al., 1992), which is a proxy for the relative hematite to magnetite concentration. We further determined the low coercivity component (IRM_{0.3T}) and the high coercivity component (HIRM) representative of the magnetite and hematite concentrations, respectively (e.g., Liu et al., 2012).

2.3.2 ROCK MAGNETIC ANALYSES

Thermal demagnetization experiments indicated that both sections contain two magnetic phases: one that unblocks between 300°C and 580°C, suggestive of magnetite with variable titanium concentrations and another whose magnetic remanence persists to ca. 680°C, indicative of hematite (Figures 2.4A-B, S2.1 and S2.2). At Ak Terek, the magnetic mineralogy changes midsection, as indicated by an increase in the S-ratio from an average of 0.65 below 200 m (AT1) to 0.82 above 300 m (AT3) (Figure 2.3A), signifying a decrease in relative hematite contribution with increasing stratigraphic


height. HIRM and $IRM_{0.3T}$ show that this trend is linked to a decrease in hematite concentration above 200 m and an increase in magnetite above 350 m.

At the Kaji Say section, $IRM_{0.3T}$ and HIRM indicate that hematite and magnetite concentrations are significantly lower above the hypothetical unconformity at 464 m (KS-2) compared to below (KS-1) (Figure 2.3B). In unit KS-2, the magnetic properties correlate with lithology, where calcareous lacustrine horizons have an order of magnitude lower $IRM_{0.3T}$ and HIRM than coarser grained, fluvial deposits. Substantially lower magnetite and hematite concentrations in the lacustrine sediments likely reflect the dilution of detrital particles by diamagnetic carbonate. Sharpyl Dak conglomerates are characterized by elevated HIRM and low S-ratios, reflecting higher proportions of hematite. A slightly reddish color of the Sharpyl Dak Group at Kaji Say (Figure 2.2C) further suggests the presence of hematite pigment in these layers.

2.3.3 PALEOMAGNETIC ANALYSES

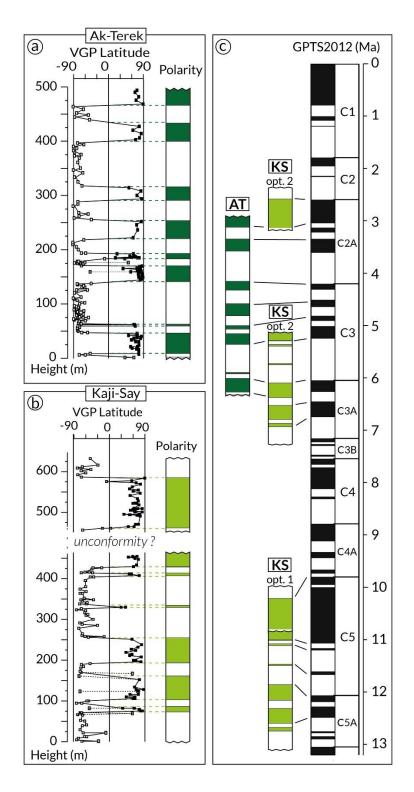
AF demagnetization removed 70%-80% of the natural remanent magnetization (NRM) on average, suggesting that at least 20%-30% of the NRM is carried by hematite. Most samples had a single magnetization component that decayed toward the origin or close to it, and demagnetization trajectories from thermal and AF treatment of samples from the same horizon yielded compatible demagnetization components (Figures 2.4A-B, and S2.2).

Best-fit directions from AF demagnetized samples were derived using an average of nine steps between 20 and 80 mT, and thermally demagnetized samples were mostly fit between 400°C and 680°C. For Ak Terek, we retained 188 magnetization directions out of 216 demagnetized samples (Figure 2.4C). For Kaji Say, 163 magnetization directions were retained from 235 demagnetized samples (Figure 2.4D). At both sections, the McFadden and McElhinny (1990) reversals test is negative. For Ak Terek, the angle between the two polarity populations is 6.3°, which exceeds the critical angle of 4.3°; for Kaji Say, the angle between the two means is 7.9° with a critical angle of 6.7° (Table 2.1, Figures 2.4C-D). The bootstrap reversals test of Tauxe (2010) shows that the Y and Z components overlap at 95% confidence but not X for Ak Terek and overlap for the X and Z components but not Y for Kaji Say. Incompletely removed recent field components can explain the differences between the two polarities. For Kaji Say, the fold test is positive at 95% confidence limits McFadden (1990) (Xicrit₉₅: 14.85, Xi_{1g}: 23.27, Xi_{1s}: 6.39), with the Fisher (1953) precision parameter (k) being maximized at $96 \pm 32\%$ unfolding when considering no uncertainty on bedding attitudes or at $90 \pm 18\%$ unfolding with 5° uncertainty on bedding attitudes (Watson & Enkin, 1993). Only minor differences in

bedding attitudes at Ak Terek lead to an insignificant change in k, hence an inconclusive/indeterminate fold test.

Figure 2.4. Summary of paleomagnetic data. (a)–(b) Comparison of stepwise thermal (red) and AF (black) demagnetization trajectories showing selected demagnetization steps (values in °C and mT, respectively). A normal and reversed polarity sample pair from the same horizons are shown for (a) Ak Terek and (b) Kaji Say. Further examples shown in Supplementary Figures S2.1 and S2.2. (c)–(d) Stereographic projections of the best-fit line components in in-situ (IS) and tilt corrected (TC) coordinates for both sections; mean directions and 95% confidence ellipsoids shown in red.

 Table 2.1. Average paleomagnetic directions from this study


	n	Dg	Ig	k	A 95	Ds	Is	k	A 95
Ak-Terek (42.2°N, 76.7°E)				·	·				
All samples	188	341.6	67.0	24.9	2.1	352.4	56.0	24.3	2.1
Reversed-only	110	157.5	-68.8	29.5	2.5	170.3	-58.3	30.8	2.5
Normal-only	78	346.5	64.2	21.5	3.5	355.0	52.6	19.8	3.7
Kaji-Say (42.2°N, 77.3°E)									
All samples	163	335.2	85.7	5.9	5.0	2.9	48.0	11.5	3.4
Reversed-only	83	42.4	-80.5	4.7	8.1	178.0	-50.3	10.5	5.0
Normal-only	80	10.2	76.2	11.0	5.0	7.4	45.5	13.4	4.5

Note. Precise GPS coordinates are given for each sample in the on-line data.

Abbreviations: n, number of samples; D, declination; I, inclination; g, geographic (in-situ) coordinates, s, stratigraphic (tilt-corrected) coordinates; k, best estimate of the precision parameter; α 95, radius that the mean direction lies within 95% confidence.

2.4 MAGNETOSTRATIGRAPHY

To establish a magnetic polarity sequence for each section we converted the magnetization component directions into virtual geomagnetic poles (VGPs; Figures 2.5A-B). At least two successive horizons of the same VGP polarity were used to define polarity intervals. The obtained polarity sequence was then correlated to the Neogene geomagnetic polarity time scale (GPTS2012) of Gradstein et al. (2012). Because both sections mostly contain Chu group sediments, our correlations assumed the sections must be younger than the top of the underling Shamsi group, which was previously dated to 11 or 13 Ma (Wack et al., 2014) in the Issyk-Kul basin. We therefore took 13 Ma as the maximum possible age for both sections.

Figure 2.5. Magnetostratigraphy of Ak Terek and Kaji Say. (a)–(b) Virtual geomagnetic pole (VGP) latitude versus stratigraphic height and assigned polarity sequences (green: normal polarity, white: reversed polarity). (c) Magnetostratigraphic correlation of Ak Terek (AT) and Kaji Say (KS) with the geomagnetic polarity time scale (GPTS2012) of Gradstein et al. (2012). Two options are shown for Kaji Say assuming either continuous (Opt. 1) or discontinuous (Opt. 2) deposition between the eastern and western transects. AT, Ak Terek; KS, Kaji Say; VGP, Virtual geomagnetic pole.

2.4.1 AK TEREK

Based on 188 tilt-corrected VGP directions, we established 15 polarity intervals for Ak Terek (Figure 2.5A). Visual correlation of the polarity sequence with the GPTS yields the best match between 6.3 and 2.8 Ma (Figure 2.5C). This correlation includes a missing normal polarity subchron (C2An.2n) at ca. 3.2 Ma (450 m) and a normal polarity interval at 5.9 Ma (60 m) that has no equivalent with the reference scale. The former lasted ca. 90 ka, which corresponds to about 10 m in thickness. With an average sampling interval of 7 m in this part of the section, the subchron could have been missed given fluctuations in the sedimentation process. The normal polarity interval at ca. 60 m is restricted to a 2.5 m thin conglomerate layer of anomalously high IRM values (Figure 2.4A), so it likely represents an isolated aberration in the magnetic recording process.

2.4.2 KAJI SAY

The magnetic polarity sequence for Kaji Say was based on 165 tilt-corrected directions (Figure 2.5B), which identified 13 polarity intervals. A normal polarity interval spans ca. 150 m across the potential unconformity between the eastern and western transect. However, the base of the upper section contains a single reversed and two transitional samples, which may indicate that a reversed polarity interval lies below. Two possibilities were considered when correlating the obtained polarity sequence with the global reference scale. Option 1 assumes continuous sedimentation between the eastern and western transects, where a correlation can be found between 12.7 and 9.5 Ma (Figure 2.5C). This solution includes one reversed polarity interval at ca. 100 m that does not exist in the reference scale and misses two short subchrons at the top of the section (580-620 m). Option 2 assumes a hiatus exists between the eastern and western transects at 464 m. The stratigraphically higher, western section spans ca. 200 m in thickness but contains only two polarity intervals. However, assuming the sedimentation rates are similar in the lower unit, restricts the possible correlations with the GPTS. Moreover, the transition between Chu and Sharpyl Dak deposits between 550 and 600 m can serve as a tentative tie point to the equivalent transition at the Ak Terek section. When respecting these criteria, the 160 m normal polarity interval, followed by a 50 m reversed polarity interval of the upper section, best match the reference scale between 3.0 and 2.4 Ma (Figure 2.5C).

Correlating the lower part of the section (eastern transect) individually to the GPTS yields two plausible matches. One possibility is to correlate the lower section in the same way as in Option 1, from 12.7 to 10.9 Ma (Figure 2.5C). However, this correlation results in an 8 Myr hiatus within the section and a ca. 4 Myr age gap between the Chu Group at

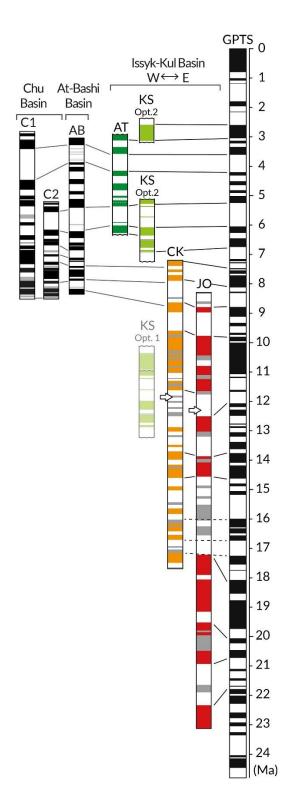
Kaji Say and Ak Terek. The other possible correlation to the reference scale lies between 7.0 and 5.1 Ma, which overlaps our age estimate for the base of the Ak Terek section and reduces the hiatus to 2 Myr (Figure 2.5C). This correlation involves two normal polarity zones around 320 and 400 m height that are not matched to the reference scale. Considering their short duration, the unmatched intervals are likely explained by local magnetic recording aberrations in our sections but could also represent true subchrons that were too short to be recognized in the global polarity scale.

2.5 DEPOSITIONAL HISTORY OF THE ISSYK-KUL BASIN

2.5.1 DEPOSITIONAL AGE AT AK TEREK

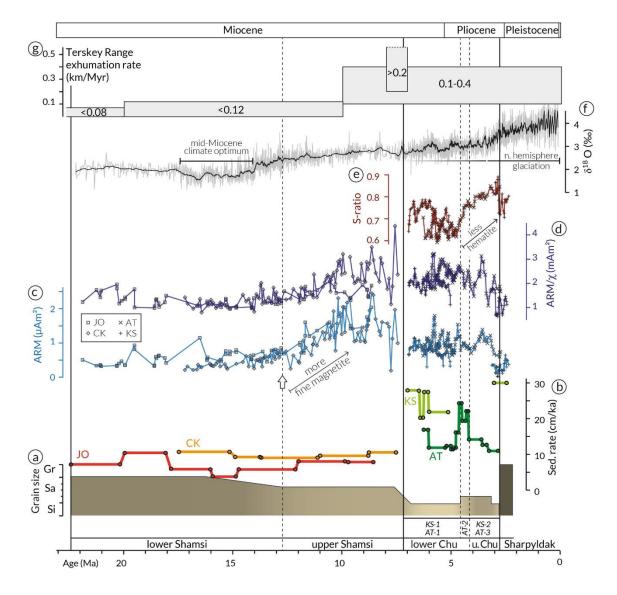
The magnetostratigraphic correlation of the 500-m-thick Ak Terek section yields a robust correlation to the reference scale, suggesting that the Chu sediments were deposited between 6.3 and 2.8 Ma with an average sedimentation rate of 14 cm ka⁻¹. The conformable transition to conglomerate at the top of the section dates the Chu-Sharpyl Dak transition at 2.8 Ma. We did not observe a lithologic transition at the base of the section; however, along strike to the east, Shamsi deposits are exposed by a reverse fault (Figure 2.1C). Together with the observation of slightly reddish layers at the base of the section (Figure 2.2A) that are rich in hematite (Figure 2.3A), this points to a Shamsi-Chu transition close to 6.3 Ma at Ak Terek.

2.5.2 DEPOSITIONAL AGE AT KAJI SAY


Of the two plausible magnetostratigraphic correlations for Kaji Say, Option 1 assumes quasi-continuous sedimentation between the eastern and western transects, thereby dating the ca. 650 m thick section to between 12.7 and 9.5 Ma, with an average sedimentation rate of 25 cm ka⁻¹ and places the Chu-Sharpyl Dak transition at ca. 10 Ma. Based on more reddish strata south of the sampled section, suggestive of Shamsi type deposits (Figure 2.1D), we assume that the base of our section represents approximately the base of the Chu group at Kaji Say. A basal age of ca. 13 Ma for the Chu group is consistent with previous age estimates from the eastern Issyk-Kul basin that dated the top of the Shamsi group to 13–11 Ma (Wack et al., 2014). On the other hand, this age model implies a 4 Myr hiatus between the Chu sediments deposited at Kaji Say and Ak Terek. It also suggests that the stratigraphic boundary between the Chu and Sharpyl Dak groups at Kaji Say predates the equivalent transition at Ak Terek by more than 7 Myr.

Option 2 dates the lower unit to 7.0–5.1 Ma and the upper unit to 3.0–2.4 Ma with average sedimentation rates of 23 and 30 cm ka⁻¹, respectively. This places the Shamsi-Chu transition at around 7 Ma and the Chu-Sharpyl Dak transition at 2.8–2.6 Ma, which agrees

well with the stratigraphic boundaries inferred for Ak Terek. Although average sedimentation rates of the two age models are similar, Option 2 involves less variability within the section (20–30 cm ka⁻¹, Figure 2.7A) compared to Option 1 (16–43 cm ka⁻¹). The presence of calcareous lacustrine deposits in the upper part of Kaji Say (Figure 2.3B) yields an additional age constraint that points to the younger age of Option 2, as it implies the existence of a lake (lake Issyk-Kul) at the time of deposition. A precondition for lake formation was the closure of the Issyk-Kul basin, caused by uplift of the Kungey Range, which was estimated to post-date 7 Ma (Selander et al., 2012; Macaulay et al., 2014).


A conformable transition to Sharpyl Dak conglomerates in the upper section also argues for the younger ages implied by Option 2. Deposition of Sharpyl Dak-type conglomerates marks a prominent transition from a low to high energy depositional regime, a widely recognized phenomenon throughout the Tian Shan, with Sharpyl Dak equivalents identified in China as the Xiyu Formation (e.g., Zhou et al., 2020) and the Polizak Formation in Tajikistan (e.g., Dedow et al., 2020). Commonly, these formations are late Plio-Pleistocene in age and have been linked to the onset of northern hemispheric glaciation (e.g., Peizhen et al., 2001; Zhao et al., 2021). However, other authors described the Xiyu conglomerates as a time-transgressive prograding gravel wedge with depositional ages ranging from ca. 15 to 2 Ma (Heermance et al., 2007; Charreau et al., 2009), therefore, regional correlation of the formations should be made with caution.

In the Chu basin (Noruz section, 150 km west of AT, Figure 2.1A), the transition between the Shamsi equivalent (Saryagach Formation) and the 1.5 km thick Chu Formation was dated magnetostratigraphically to ca. 7.5 Ma, while the Chu-Sharpyl Dak transition was dated to ca. 3 Ma (Bullen et al., 2001) and 4.5 Ma (Abdrakhmatov et al., 2001; C1 and C2 in Figure 2.6). Based on similar depositional ages inferred for a ca. 3.5 km thick Chu group in the At-Bashi basin (AB in Figure 2.6) and on further preliminary magnetostratigraphic studies from the Kochor and Naryn basins, Abdrakhmatov et al. (2001) suggested that the transitions between the main stratigraphic groups occurred coevally from basin to basin in the Central Tian Shan. Their proposed Shamsi-Chu and Chu-Sharpyl Dak transition ages around 8 and 4 Ma, respectively, generally agree with the depositional ages we determined for Ak Terek and with the age model of Option 2 at Kaji Say (Figure 2.6).

Figure 2.6. Magnetostratigraphic correlations of sections from the central (Kyrgyz) Tian Shan. Abbreviations above the polarity sequences indicate name and location of the sections from Figure 2.1. New and reinterpreted magnetostratigraphies from the Issyk-Kul basin are shown in color (this study). Polarity sequences of CK and JO after Wack et al. (2014); arrows indicate tie points based on a prominent change in magnetic properties (see also Figure 2.8). C1 and C2 represent the Naryn section from the Chu Basin after Bullen et al. (2001) and Abdrakhmatov et al. (2001), respectively; AB is from the At Bashi basin (Abdrakhmatov et al., 2001). CK, Chon Kyzylsuu; JO, Jeti-Oguz.

Taking into account all local and regional age constrains from the Chu and Sharpyl Dakequivalent formations supports Option 2 at Kaji Say, suggesting a depositional age of ca. 7.0–2.4 Ma, with a hiatus between ca. 5 and 3 Ma.

Figure 2.7. Characterization of the Mio- to early Pleistocene sediments from the southern Issyk-Kul basin. From bottom to top: (a) Dominant average grain size; data for the Shamsi group after Macaulay et al. (2016). (b) Sedimentation rates determined from the magnetostratigraphic age models; JO, CK, KS, and AT indicate section name/location from Figure 2.1. Option 2 is shown for KS. (c)–(e) Rock magnetic parameters ARM, ARM/X χ , and S-ratio; symbols denote the section as shown in (c); arrow indicates tie point between sections; data for the Shamsi group from Wack et al. (2014), data for the Chu group (this study) were smoothed using a 5 point moving average. (f) Global climate trends represented by compiled deep-sea oxygen isotope (δ^{18} O) record from Zachos et al. (2001) using a 90 point moving average. (g) Exhumation rates of the Terskey Range in 10 Ma bins determined from thermochronologic data (Macaulay et al., 2013). Vertical lines indicate transitions between stratigraphic groups and lithologic units (solid and dashed lines, respectively). AT, Ak Terek; CK, Chon Kyzylsuu; JO, Jeti Oguz; K1, Toru Aygir; K2, Cholpon Ata; KS, Kaji Say.

2.5.3 THE SHAMSI GROUP, EASTERN ISSYK-KUL BASIN

The new age constraints for the Chu group at Ak Terek and Kaji Say with a tentative Shamsi-Chu transition age close to 7 Ma led us to reevaluate the magnetostratigraphy of the Shamsi group in the eastern Issyk-Kul basin (Figure 2.1E), previously dated between 26 and 11 Ma (Wack et al., 2014). Owing to its lower sedimentation rate and poorer magnetic recording than the Chu group, the magnetizations in the Shamsi group were less stable and their polarity sequence yielded ambiguously defined polarity intervals, leading to inconclusive magnetostratigraphic age estimates (Wack et al., 2014). The polarity sequence of Chon Kyzylsuu (CK) was assigned to two age models (A) and (B), with model A yielding 26–16 Ma and model B yielding 25–11 Ma. Re-correlating this section with the GPTS2012 (Gradstein et al., 2012) to the period from 26 to 7 Ma, by considering all inconclusive horizons as unknown polarities, yields a plausible match between 17.3 and 7.5 Ma (Figure 2.6), with an average sedimentation rate of 9 cm ka⁻¹.

The polarity sequence of Jeti-Oguz (JO) was originally correlated between ca. 23 and 13 Ma or 23 and 11 Ma (Wack et al., 2014). The lower 400 m of the section are robustly defined as 23–18 Ma in both age models they considered. Polarity intervals were more ambiguously defined above 400 m. However, a tie-point exists between the two sections based on a characteristic change in magnetic properties (up-section increase in ARM) observed at around 550 and 700 m stratigraphic height in the CK and JO sections, respectively (arrows in Figures 2.6 and 2.7; Wack et al., 2014). Respecting this tie point, the whole section yields a plausible correlation to the GPTS2012 as well as to the CK polarity sequence between 22.4 and 8.5 Ma with an average sedimentation rate of 8 cm ka⁻¹ (Figure 2.6).

Geologic mapping based on satellite images further supports the proposed tie-point between the two sections (Figure 2.1E). In both sections, the levels characterized by increasing ARM values, reflecting an increase in fine grained magnetite (Figures 2.7C-D), mark a prominent color transition from intense dark red beds below (lower Shamsi) to lighter, pale red beds above (upper Shamsi; Figure 2.1E), indicating a decrease in pigmentary hematite. The difference in basal ages (22.4 Ma vs. 17.3 Ma) of the two sections appears reasonable, considering that the Shamsi deposits extend significantly farther below the base of the CK section. In contrast, the base of JO lies above white (lower) Kokturpak or Jurassic strata (observed on satellite images and in the field) that onlap on up-thrusted basement rocks (Figure 2.1E). The transition from Shamsi to Chu type deposits is unconformably overlain by Sharpyl Dak conglomerates at both sections and was therefore not identified in the field. However, our satellite image mapping further

supports that the top of both sections lies within the uppermost Shamsi group (Figure 2.1E). Good agreement between the here suggested age of the Shamsi group, the new age constraints for the Chu Group, and geologic mapping between the studied sections, leads us to conclude that the Shamsi group was likely deposited throughout the Miocene, between ca. 22 and 7 Ma in the Issyk-Kul basin.

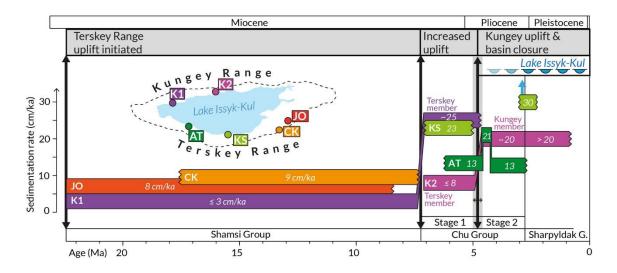
2.6 TECTONIC IMPLICATIONS OF THE SYN-OROGENIC SEDIMENTARY RECORD

2.6.1 UPLIFT OF THE TERSKEY RANGE

Taken together, the age constraints from four different sedimentary sections yield a nearly complete record of the Neogene to early Pleistocene depositional history of the southern Issyk-Kul basin. These sediments accumulated in response to the exhumation and successive erosion of the Terskey Range (Macaulay et al., 2016), thus the sedimentation rate and lithologic characteristics of these units hold information concerning the upliftand climate-history of the area. The Shamsi group, deposited between 22.4 and 7.5 Ma, consists dominantly of coarse-medium sized sandstone (Figure 2.7A) with relatively low sedimentation rates of 4–11 cm ka⁻¹ (Figure 2.7B). A prominent increase in fine grained magnetite (higher ARM and ARM/Sus, Figures 2.7C and 2.7E) and a decrease in pigmentary hematite mark the transition from lower to upper Shamsi Group at ca. 12 Ma and coincide with a grain size fining from coarse to medium sand (Figure 2.7A). Assuming that the oldest sediments from the Jeti-Oguz section represent the base of the Shamsi group, implies that syn-tectonic sedimentation in the Issyk-Kul basin, and therefore uplift in the Terskey range, commenced by 22.4 Ma, which is compatible with the estimated onset of deformation in the range at 26-20 Ma (Macaulay et al., 2013, 2014). Relatively constant and low sedimentation rates throughout the Shamsi group imply that erosion rates were comparatively low and did not change significantly until 7.5–7.0 Ma. However, changes in magnetic mineralogy may indicate a change in source material around 12 Ma. The timing of these changes generally coincides with the onset of global cooling after the mid-Miocene climate optimum (Figure 2.7F); consequently, a climatically driven change in erosion cannot be excluded. Exhumation rates inferred from thermochronologic data (Figure 2.7G) point to a slight increase in exhumation during the early to middle Miocene from <0.08 to <0.12 km Myr⁻¹ (Macaulay et al., 2013), which is, however, not mirrored by an increase in sedimentation rate.

The transition from Shamsi to Chu-type deposits between 7.5 and 7.0 Ma is linked to a fining in grain size from medium sand to dominantly fine sand and silt deposits and an overall increase in sedimentation rates (Figures 2.7A-B). Up to three-fold higher sedimentation rates of the Chu compared to the Shamsi group indicate an increase in

erosion rate after 7 Ma. Thermochronologic data point to accelerated unroofing of the Terskey range after 10 Ma with exhumation rates of 0.1-0.4 km Myr⁻¹ and of >0.2 km Myr⁻¹ between 8 and 7 Ma (Figure 2.7G and 2.7F) (Macaulay et al., 2013). A good agreement between the increase in exhumation and sedimentation rates suggests that the stratigraphic boundary between the Shamsi and Chu groups at ca. 7 Ma marks the onset of accelerated uplift of the Terskey range.


Based on local and temporal variations in lithology and sedimentation rates, the Chu group can be subdivided into two distinctly different deposition stages. Stage 1, between 7 and 5 Ma, is characterized by comparatively high sedimentation rates (on average 23 cm ka⁻¹) in the central part of the basin (at Kaji Say) and low sedimentation rates (ca. 13 cm ka⁻¹) at Ak Terek further west. It comprises the lithologic units KS-1 and AT-1. Stage 2 between 5 and 3 Ma is characterized by a hiatus at Kaji Say, while sedimentation rates nearly doubled at Ak Terek between 5 and 4 Ma (AT-2, Figure 2.7B) and the lithology changed to more massive and uniform sandstone beds (Figure 2.3A). After ca. 4 Ma sedimentation rates decreased again, and a more frequently changing lithology includes sporadic carbonates and a gypsum layer that indicate still water deposition (AT-3), while laminated limestones deposited after 3 Ma imply lacustrine deposition (KS-2). The hiatus together with strongly folded strata (dip $> 70^{\circ}$) of the lower Chu group at Kaji Say likely reflect the onset of deformation and uplift within the foreland basin, which shifted the local depocenter farther north. The concurrent changes in sedimentation rates, lithology and magnetic mineralogy at Ak Terek (Figures 2.7C and 2.7E) may signal a change of source material in the western side of the basin at ca. 4.5 Ma. The transition from Stage 1 to 2, between 4.5 and 5.0 Ma, therefore, marks a prominent change in the deposition dynamics in the Issyk-Kul basin. The associated northward propagation of the locus of deformation at Kaji Say indicates that the formation of the Issyk-Kul Broken Foreland initiated around 5 Ma.

Uplift of the mountain ranges to the north may have influenced the depositional dynamics throughout the basin. Thermochronologic data suggest an onset of exhumation of the northern Tian Shan (Zaili Range) between 29 and 15 Ma (De Grave et al., 2013). However, paleocurrent and provenance data from the Kungey Range in the northern Issyk-Kul basin attest that sediments from the Terskey Range in the south persisted until ca. 7–4 Ma, suggesting that substantial uplift north of the lake commenced only after 7 Ma (Selander et al., 2012).

2.6.2 UPLIFT OF THE KUNGEY RANGE AND FORMATION OF LAKE ISSYK-KUL

A shift in sediment provenance within the Chu Group exposed north of lake Issyk-Kul, from the lower Terskey member to the upper Kungey member, marks the onset of substantial uplift in the Kungey range (Selander et al., 2012). Although no precise age constraints are available for the sediments in the northern part of the basin, our new age constraints for the Chu group at Ak Terek and Kaji Say (7.0–2.8 Ma) likely apply to the entire Issyk-Kul basin, yielding an average sedimentation rate of 14 cm ka⁻¹ for the up to 600 m thick Chu group in the northern basin. Assuming a constant sedimentation rate dates the transition from the Terskey member (up to 200 m thickness) to the Kungey member (up to 400 m thickness) to ca. 5.5 Ma. Consideration of the evidence for major spatio-temporal shifts of depocenters during this time interval in the southern and in the northern part of the Issyk-Kul basin points to a link between the change in deformation style around 5 Ma in the southern basin. We therefore propose that the unconformity at Kaji Say and the doubling of sedimentation rates at Ak Terek at ca. 5 Ma coincide with the initiation of substantial uplift in the Kungey range.

To further test this hypothesis, we dated the available stratigraphic columns of the northern side of the Issyk-Kul basin (K1 and K2 in Figure 2.1A; Selander et al., 2012), based on the depositional record of the southern basin, by assuming synchronous transitions between equivalent stratigraphic groups (Figure 2.8). Based on the stratigraphic thicknesses of ca. 500 m for the Shamsi and Sharpyl Dak groups and ca. 600 m for the Chu group reported by Selander et al. (2012) and assuming Shamsi, Chu, and Sharpyl Dak were deposited between ca. 22–7, 7–3, and <3 Ma, respectively, (Figure 2.7), we infer a progressive increase in average sedimentation rates over time from ≤ 3 to ≤ 12 to ≥ 20 cm ka⁻¹, respectively. Assuming further that the transition from Terskey (10–200 m at K1; 600 m at K2) to Kungey-derived Chu group sediments (400 m at K1, absent at K2) coincides with the transition from Stage 1 to Stage 2 in the southern side of the basin at ca. 5 Ma, yields a sedimentation rate of ca. 25 cm ka⁻¹ for the Terskey member at location K1 in the northwest and suggests an increase from <8 to ca. 20 cm ka⁻¹ after 5 Ma at K2 in the central Kungey area (Figure 2.8).

Figure 2.8. Depositional history of the Issyk-Kul basin with implications for mountain building and lake formation. Sedimentation rates and depositional ages of four magnetostratigraphic sections located in the southern side of the Issyk-Kul basin (Terskey area; JO, CK, KS, AT) and two stratigraphic sequences from the northern part of the basin (Kungey areas K1 and K2). Sedimentation rates in the Terskey area were based on the magnetostratigraphic age models of this study and average values were determined for the whole Shamsi group and for the lithologic sub-units (see also Figure 2.3) of the Chu group. The respective average sedimentation rates for the Kungey area were estimated based on stratigraphic thicknesses reported by Selander et al. (2012) and the stratigraphic boundaries dated in the southern part of the basin (black arrows). Site locations in inset (see also Figure 2.1). AT, Ak Terek; CK, Chon Kyzylsuu; JO, Jeti Oguz; K1, Toru Aygir; K2, Cholpon Ata; KS, Kaji Say.

The proposed sedimentation rates compare well with the values determined in the southern part of the basin (Figure 2.8). Comparing Kaji Say and K2 both located in the central basin, more sediment was deposited at Kaji Say (up to 28 cm ka⁻¹), in proximity to the Terskey Range, than at K2 (<8 cm ka⁻¹) between 7 and 5 Ma. However, comparing Ak Terek and K1, in the western side of the basin, indicates that here sedimentation rates were twice as high at the more distal location K1 (ca. 25 cm ka⁻¹) than at Ak Terek (ca. 13 cm ka⁻¹) before 5 Ma. Together, this suggests that between 7 and 5 Ma in the western part of the basin, deposition was located farther north from the Terskey range than in the central part of the basin. This pattern may be applicable for the entire Miocene, as indicated by the westward thickening of the Shamsi group in the northern side of the basin (Selander et al., 2012) and an apparent eastward thickening of the Shamsi group on the southern side (Figure 2.1B). Uplift of the Kungey range would shift the deposition of Terskey sourced sediments southward to more proximal areas, which is consistent with the observed doubling of sedimentation rates around 4.5 Ma at Ak Terek. This uplift event may be associated with a change in the direction of compression from NW-SE to N-S reported for the central Tian Shan around the Miocene-Pliocene transition (Buslov et al., 2003).

Mountain building north of the basin transformed the Issyk-Kul area from a foreland to an intermountain basin, thereby facilitating the formation of a deep lake within it. Two thin limestone layers at the top of the eastern transect at Kaji Say, corresponding to ca. 5 Ma according to Option 2, as well as sporadic calcareous horizons and a gypsum layer deposited between 4 and 3 Ma at Ak Terek, may point to the expansion and retreat of an early lake. Up to 50 m thick sequences of mostly calcareous lacustrine strata in the western section at Kaji Say signify the existence of lake Issyk-Kul at 3 Ma.

2.7 CONCLUSIONS

New and reinterpreted magnetostratigraphic age constraints of continental sediments from the Issyk-Kul basin yield a near-continuous stratigraphic record of the Mio- to early Pleistocene, syn-tectonic depositional history in one of the largest sedimentary basins in the central Tian Shan. From these, we draw the following main conclusions:

- The Shamsi group, which represents the basal syn-tectonic unit, was deposited between 22.4 and 7.5 Ma. This unit is found in the southeastern and northwestern parts of the basin, with maximum thicknesses of ca. 1,000 and 500 m, respectively, implying average sedimentation rates of 8–9 cm ka⁻¹ and ca. 3 cm ka⁻¹, respectively. Slight fining in grain size and changes in magnetic mineralogy after the middle Miocene (ca. 13 Ma) may reflect a gradual shift in sediment source or transport conditions
- A major grain size fining between 7.5 and 7 Ma marks the stratigraphic boundary between the Shamsi and Chu groups. Overall higher sedimentation rates after 7 Ma (11–28 cm ka⁻¹) indicate that erosion rates increased, linked to accelerated uplift of the Terskey Range around this time. It is interesting to note the inverse relationship between grain size and sedimentation rate across the Shamsi-Chu transition, which may be related to longer sediment transport or increased subsidence of the basin
- Spatio-temporal shifts in the deposition centers documented north and south of lake Issyk-Kul indicate that the locus of deformation propagated from the Terskey range into the basin around 5 Ma, forming the Issyk-Kul Broken Foreland. This change in deformation style likely coincides with the initiation of uplift in the Kungey range to the north, which led to the closure of the basin, a precondition for the formation of lake Issyk-Kul. Lacustrine deposits dated at ca. 3 Ma demonstrate that a substantial lake must have existed by that time

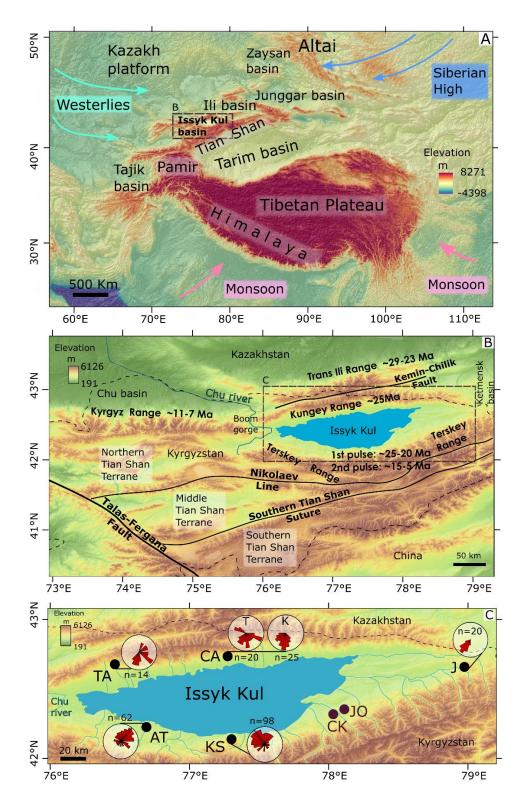
• Equivalent stratigraphic boundaries around 7 and 3 Ma in nearby basins suggest that the driving mechanisms that controlled sediment accumulation and the lithology of the three main syn-tectonic units were regionally synchronized throughout the central (Kyrgyz) Tian Shan

3 NEOGENE ARIDIFICATION AND LAKE DEVELOPMENT IN THE ISSYK-KUL BASIN, KYRGYZSTAN

Anna Kudriavtseva, Edward R. Sobel, Alexandru T. Codilean, Maud J.M. Meijers, Andreas Mulch, Gregory D. Hoke, David Fink, Alexander V. Mikolaichuk, Réka-H. Fülöp, Klaus M. Wilcken, & T. Gabriel Enge

ABSTRACT

Uplift of the Tian Shan range modified regional climate during Cenozoic aridification in Central Asia. This study presents facies analyses and Neogene oxygen and carbon isotopic records from magnetostratigraphically-dated terrestrial sedimentary sections on the southern side of the intermontane Issyk-Kul basin in the Kyrgyz Tian Shan and 26 Al/ 10 Be isochron burial ages from the southern and eastern sides of the basin. The δ^{18} O and δ^{13} C data show a positive ca. 2‰ shift in values between ca. 8 and 7 Ma and a change from a negative to a positive trend. This change is attributed to the upwind growth of the Kyrgyz, Kungey and Trans Ili (Zaili) ranges, which diverted the westerlies, thereby changing the Issyk-Kul basin from a windward to a leeward position, enhancing aridification, and establishing the modern-day spring and summer precipitation regime within the basin. Two 4 to 5 Ma ²⁶Al/¹⁰Be isochron burial ages constrain the onset of Sharpyl Dak deposition on the eastern side of the basin; southward paleocurrent directions there suggest the eastward growth of the Kungey range in the Pliocene. Increased subsidence on the southern side of the basin and local tectonically-induced river system reorganization led to the commencement of lake formation at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. The transition from sandstones of the Chu sedimentary group to conglomerates of the Sharpyl Dak group, marking a change from fluvial-alluvial deposits to a proximal alluvial fan, is dated at 2.6-2.8 Ma by ²⁶Al/¹⁰Be isochron burial dating on the southern side of the basin, driven either by tectonics or Northern Hemisphere glaciation. This study concludes that the late Miocene - Pliocene northward growth of Tian Shan significantly altered environmental conditions within the range, preventing the moisture-bearing westerlies from reaching the intermontane Issyk-Kul basin and promoting lake formation and expansion.


3.1 INTRODUCTION

Central Asia is the largest arid region in the Northern Hemisphere. Aridity there has increased during the Cenozoic (e.g., Caves et al., 2016; Li et al., 2018; Fang et al., 2020; Wasiljeff et al., 2022). A decrease in the moisture flux delivered by the northern mid-

latitude westerlies, which transport moisture eastward across Eurasia, likely played a major role in aridification (e.g., Caves et al., 2015). Decreased westerly moisture transport resulted from Cenozoic global cooling (e.g., Miao et al., 2012; Bosboom et al., 2014a) and Paratethys retreat (e.g., Ramstein et al., 1997, Bosboom et al., 2014b, 2017; Kaya et al., 2019), while surface uplift of the Tibetan Plateau, Tian Shan and other mountain ranges created topographic barriers to moisture input (e.g., Kent-Corson et al., 2009; Caves et al., 2014; Liu et al., 2014; Sun et al., 2015; Chang et al., 2021).

The Issyk-Kul intermontane basin in the Kyrgyz Central Tian Shan (Figure 3.1) contains a Neogene geological record that provides valuable information about the complex interactions between tectonic deformation and Central Asian climate at global and regional scales (e.g., Oberhänsli and Molnar, 2012; Macaulay et al., 2016). Nevertheless, details of how and why this internally-drained basin formed remain unclear. Within the Tian Shan range, changes in the magnitude of precipitation and the vegetation system can reflect either globally- or locally-driven climatic changes or a combination of both. Local and regional climate and landscape can be modified by tectonic surface uplift, which influences the distribution of precipitation, river discharge, and erosion rates, while global climatic changes alter overall moisture delivery to the region, vegetation, and the characteristics of surface processes (e.g., Ramstein et al., 1997; Dupont-Nivet et al., 2007; Rowley and Garzione, 2007; Chamberlain et al., 2012; Herbert et al., 2016). The spatial and temporal distribution of paleoprecipitation proxy data, such as oxygen and carbon isotopes, has been used to distinguish between the influence of tectonic and global climatic factors (e.g., Miao et al., 2012; Caves Rugenstein and Chamberlain, 2018). Here we investigate differences in timing of regional environmental change and corresponding global climate change to identify the impact of changing relief and elevation of the regional mountain belts.

Available paleoclimate records from northern Central Asia are relatively scarce compared to data from the Chinese portion of East Asia; moisture, delivered by the westerlies, was blocked from reaching the latter region as a result of the development of complex topography (e.g., Dettman et al., 2003; Graham et al., 2005; Fan et al., 2007; Kent-Corson et al., 2009; Hough et al., 2011; Zhuang et al., 2011; Li et al., 2016). The >2500-km-long Tian Shan (also called the Tien Shan, i.e. the Heavenly mountains in Chinese) presently forms a significant orographic barrier to the westerlies, which creates a distinctive difference in seasonality of precipitation on its windward and leeward sides, as well as within the range (e.g., Baldwin and Vecchi, 2016). Creation of an orographic barrier occurred during the late Oligocene by growth of the Pamir and western Tian Shan (Wang et al., 2020).

Figure 3.1. (A) Topographic map of Central Asia based on SRTM90 digital elevation data showing major ranges and sedimentary basins. Light blue arrows – westerly winds; dark blue arrows – Siberian High; pink arrows – monsoons. (B) Topographic map of the Kyrgyz Central Tian Shan showing the main faults, positions of the basement terranes, the north-flowing Chu river, country borders (dashed line), and the main ranges with estimated ages for the onset of Cenozoic deformation: Kyrgyz Range (Bullen et al., 2001, 2003; Sobel et al., 2006b); Terskey Range (Macaulay et al., 2013, 2014, 2016); Kungey and Trans Ili Ranges (de Grave et al., 2013; De Pelsmaeker et al., 2015). (C) Topographic map of the study area and paleocurrent directions measured in imbricated clasts and cross-bedded sandstones. Localities of this study: AT – Ak Terek; KS – Kaji Say; J – Jergalan; TA – Toru Aygir; CA – Cholpon Ata. T – Terskey member of the Chu group, K – Kungey member of the Chu group. Localities from Wack et al. (2014) and Macaulay et al. (2016): CK – Chon Kyzylsu; JO – Jeti Oguz. Dashed line shows country borders.

We present a study of the sedimentary record preserved in the Issyk-Kul basin, which is located to the west and/or north of other published Cenozoic climatic records from this region: Tajik basin, Ili basin, Junggar basin, Zaysan basin. (Figure 3.1A; Charreau et al., 2012; Caves et al., 2014, 2017; Hellwig et al., 2018; Frisch et al., 2019a; Wang et al., 2020; Prud'homme et al., 2021). The Issyk-Kul basin is connected to the Ketmensk basin to the east and is situated between the Terskey, Kungey, Trans Ili (also called Zaili) and the Kyrgyz ranges; these ranges are all part of the northern Tian Shan (Figure 3.1B). The Issyk-Kul basin contains up to 4 km of Oligocene to Quaternary strata, which record the sedimentary response to regional climate change and proximal tectonic processes. The first magnetostratigraphic dating of the fossil-poor sedimentary deposits of the Chon Kyzylsu and Jeti Oguz sections in the southeastern part of the Issyk-Kul basin (Wack et al., 2014) shows early to middle Miocene ages of these deposits. Macaulay et al. (2016) presented the first oxygen (δ^{18} O) and carbon (δ^{13} C) stable isotope data for the dated sections. Roud et al. (2021) presented late Miocene to early Pleistocene magnetostratigraphic age models for two new sections (Kaji Say and Ak Terek) from the southern flank of the Issyk-Kul basin and revised age models for Wack et al.'s (2014) stratigraphically-older sections.

Here, we present facies analyses from five stratigraphic sections around lake Issyk-Kul (Kaji Say, Ak Terek, Toru Aygir, Cholpon Ata, Jergalan; Figure 3.1C), ²⁶Al/¹⁰Be isochron burial ages from three of them (Kaji Say, Ak Terek, Jergalan), and δ^{18} O and δ^{13} C records of pedogenic, fluvial, and lacustrine carbonates from the two late Miocene – early Pleistocene sections (Kaji Say, Ak Terek) dated by Roud et al. (2021) using magnetostratigraphy. Our ²⁶Al/¹⁰Be isochron burial ages refine the age model for these deposits and constrain when lake Issyk-Kul formed. We combine our data with published records from stratigraphically-older nearby sections (Macaulay et al., 2016) to present nearly complete Miocene-Pliocene δ^{18} O and δ^{13} C records and to study how the growth of the adjacent mountain ranges influenced the environmental conditions in the Issyk-Kul basin. Comparing our combined stable isotopic record from the Issyk-Kul basin with data from across the region provides new insights into the role of the Tian Shan and its interaction with the westerlies under a globally cooling climate in the late Neogene.

3.2 GEOLOGICAL AND CLIMATIC SETTING

3.2.1 CENOZOIC REACTIVATION OF THE TIAN SHAN

The Cenozoic India – Asia collision led to the creation of the Tibetan Plateau and the Pamir and tectonically reactivated the Tian Shan and Altai ranges to the north during the late Oligocene – Miocene (Figure 3.1A; e.g., Molnar and Tapponnier, 1975; Abdrakhmatov et al., 2002; Sobel et al., 2006a; Glorie et al., 2016). The Tian Shan is a 2500-km-long orogenic belt with present-day shortening rates of up to 20 mm.yr⁻¹ (Abdrakhmatov et al., 1996; Zubovich et al., 2010). The Central Kyrgyz Tian Shan and the Chinese Central and Western Tian Shan are bounded by the Tarim basin to the south and the Kazakh platform to the north. The Issyk-Kul basin is situated within the Northern terrane of the Central Kyrgyz Tian Shan (Figure 3.1B).

The Northern, Middle and Southern Tian Shan terranes comprise the three major faultbounded Paleozoic terranes of the Central Kyrgyz Tian Shan (Figure 3.1B; Bakirov and Maksumova, 2001; Biske and Seltmann, 2010). The Northern terrane is built of late Ordovician to early Silurian granites, along with Precambrian metamorphic rocks and early Paleozoic ophiolites, overlain by Ordovician sedimentary rocks (Bakirov and Maksumova, 2001; Maksumova et al., 2001; Windley et al., 2007). The Middle Tian Shan comprises Paleoproterozoic metamorphic rocks, overlain by Neoproterozoic and Paleozoic clastic and volcanic rocks, as well as middle Devonian to early Permian marine carbonate and clastic rocks (Biske, 1996; Bakirov and Maksumova, 2001; Maksumova et al., 2001; Seltmann et al., 2011). The Southern Tian Shan consists of Silurian – lower Permian ophiolites and sedimentary rocks of a Late Paleozoic collisional system with early Permian granites (Biske, 1996; Maksumova et al., 2001; Seltmann et al., 2011).

Paleozoic deformation of the Tian Shan started in the late Carboniferous and the late Permian - Triassic collision led to development of the Southern Tian Shan Suture and large sinistral strike-slip faults, including the Nikolaev line, which separate the terranes (Figure 3.1B; e.g., Bazhenov et al., 1999; Bazhenov and Mikolaichuk, 2004). Afterwards, parts of the Tian Shan were reactivated during the Mesozoic and early Cenozoic (see Figure 8 in Macaulay et al., 2014 for a detailed depiction).

The most recent deformation started in the late Oligocene after a period of tectonic quiescence. Deformation during the Miocene led to the formation of a vast, east-west trending mountain range (e.g., De Grave et al., 2013; Macaulay et al., 2013). Thermochronological data show that the Terskey range on the south side of the Issyk-Kul basin and the Trans Ili range on the north side of the basin started deforming in the late

Oligocene – early Miocene (De Grave et al., 2013; De Pelsmaeker et al., 2015; Macaulay et al., 2013, 2014, 2016). Deformation within the Terskey range propagated eastward and reached the eastern side of the Issyk-Kul basin by the middle Miocene (Macaulay et al., 2014). The onset of deformation in the Kungey range, separated from the Trans Ili range by the Kemin-Chilik fault, also started in late Oligocene, as defined by thermochronology (de Grave et al., 2013; De Pelsmaeker et al., 2015). However, paleocurrent data suggest that the sediments from the Terskey range were deposited on the southern flank of the Kungey range area until the late Miocene, with a late Miocene – early Pliocene estimated age of initiation of significant deformation there (Selander et al., 2012). Thermochronological data show that deformation of the Kyrgyz range, to the northwest of the Issyk-Kul basin, initiated in the present center of the range during the late Miocene and propagated eastward (Bullen et al., 2001, 2003; Sobel et al., 2006b).

3.2.2 PRECIPITATION IN THE TIAN SHAN

Today, the entire Tian Shan range forms a significant topographic barrier to westerly winds and is responsible for the differences in seasonality of precipitation with dominantly winter-spring precipitation on the windward (northwestern) side of the Tian Shan and summer precipitation within the range itself and on its leeward (southeastern) side (Baldwin and Vecchi, 2016). However, during the late Cretaceous, a low-relief and low-elevation erosion surface extended over much of the Tian Shan region; therefore, the orographic barrier postdates this time (e.g., Bullen et al., 2001, 2003; Sobel et al., 2006b; Yang et al., 2014; Macaulay et al., 2014). The moisture supply in Central Asia has been dominated by the westerlies since at least the Eocene (Caves et al., 2015; Licht et al., 2016; Bougeois et al., 2018). The Tian Shan and Pamir have interacted with the westerlies since the late Oligocene (Wang et al., 2020) and caused a reorganization of Central Asian climate during the Neogene (e.g., Bougeois et al., 2018; Caves Rugenstein and Chamberlain, 2018; Hellwig et al., 2018). Growth of the Terskey range formed a topographic barrier during the Miocene, placing the Issyk-Kul basin area in a windward position with respect to the path of the westerlies and local topography (Figure 3.1; Macaulay et al., 2016). Formation of an orographic barrier typically requires relief of ca. 1300 - 2000 m (Bookhagen and Strecker, 2008; Bookhagen and Burbank, 2010).

Precipitation in the Tian Shan is seasonally influenced by interactions between the westerlies and the Siberian High (e.g., Aizen et al., 1997; Zech, 2012; Schwarz et al., 2017; Prud'homme et al., 2021). Moisture, delivered by the monsoon, never consistently reached the Tian Shan and did not influence long-term climate within the range (Caves et al., 2015). The westerlies bring moisture from the North Atlantic, the Mediterranean, and

the Black Sea (Aizen et al., 2006; Lauterbach et al., 2014). In winter, the Siberian High reaches the Tian Shan and blocks the midlatitude westerlies, resulting in cold conditions and low precipitation (Aizen et al., 2001; Ricketts et al., 2001).

3.2.3 DEVELOPMENT OF THE ISSYK-KUL BASIN

Today, the semi-arid Issyk-Kul basin is internally drained, hosting a large lake (ca. 180 km x ca. 60 km with a depth of 668 m). Issyk-Kul means warm lake in the Kyrgyz language; however, to prevent confusion in this paper, we refer to the basin as Issyk-Kul and to the lake as lake Issyk-Kul. During past lake highstands, the lake has been periodically externally drained via the northward-flowing Chu river, which flows through the Boom gorge (Figure 3.1B; e.g., Rosenwinkel et al., 2017; Gebhardt et al., 2017). Maximum precipitation is recorded in spring and summer (Aizen et al., 2001). As indicated by palynologic data, during the Cenozoic the basin underwent aridification and forests were gradually replaced by steppe and desert elements (Grigina and Fortuna, 1981). Since the late Pleistocene, the vegetation is similar to modern flora (Grigina and Fortuna, 1981; Fortuna et al., 2017). Subsurface sedimentological data from the eastern side of the basin suggest that a local shallow lake existed in the Miocene and expanded westward in the late Pliocene (Grigina and Fortuna, 1981; Voskresenskaya, 2013; Voskresenskaya and Leflat, 2015). However, to date there are only sparse data with wellestablished age constraints indicating when or how the lake first formed or when the present climate was established.

The late Mesozoic - Cenozoic sedimentary deposits of the Issyk-Kul basin are divided into four sedimentary groups: the Kokturpak, Shamsi, Chu and Sharpyl Dak groups (Abdrakhmatov et al., 2001). The Kokturpak group is the oldest in the Issyk-Kul basin with a late Cretaceous to Eocene age based on palynology (Fortuna et al., 1994) and comprises paleosols, lacustrine and poorly-sorted low energy fluvial sedimentary rocks. The unconformably overlying Shamsi group contains reddish conglomerates deposited in a high energy regime; the deposits are coarser and better rounded than those in the underlying group. Palynologic data implies an Oligocene – early Miocene age of the group (Fortuna et al., 1994). The first magnetostratigraphic age models of the Shamsi group suggest depositional ages of 22.8 to 13.3 Ma or 22.1 to 11.1 Ma in the Jeti Oguz section and 26.0 to 16.2 Ma or 25.2 to 11.0 Ma in the Chon Kyzylsu section (Figure 3.1C; Wack et al., 2014). More recent paleomagnetic results (Roud et al., 2021) from these two sections allowed for a reevaluation of the age models. The revised magnetostratigraphic age models from Roud et al. (2021) suggest a depositional age of 22.4 to 8.5 Ma in the Jeti Oguz section and 17.3 to 7.5 Ma in the Chon Kyzylsu section. Deposits of the

stratigraphically younger Chu group are finer-grained than the older Shamsi group. The Chu group contains beige and yellowish fluvial sandstones and siltstones, as well as conglomerates deposited by high energy river systems. The estimated age of the Chu group in the Chu basin is late Miocene – early Pliocene; lithostratigraphic correlation implies the same age range in the Issyk-Kul basin (Bullen et al., 2001; Omuraliev and Omuralieva, 2004). The Sharpyl Dak group overlies the Chu group gradually or with an unconformity and represents poorly sorted, very coarse conglomerates. Palynologic data implies a late Pliocene – early Pleistocene age of the group (Grigina and Fortuna, 1975; Fortuna et al., 1994). The first magnetostratigraphic age models for the Chu group and Chu – Sharpyl Dak transition were proposed by Roud et al. (2021). In that study, the depositional age of the Chu group in the Ak Terek section is interpreted to be 6.3 to 2.8 Ma. Two possible age models were proposed for the Chu – Sharpyl Dak deposits in the Kaji Say section. The first one is 12.7 to 9.5 Ma. The second option implies a hiatus in the middle of the section, with ages of 7.0 to 5.1 Ma for the lower part and 3.0 to 2.4 Ma for the upper part.

3.3 MATERIALS AND METHODS

3.3.1 SEDIMENTOLOGICAL DESCRIPTIONS

Sedimentary sequences were described at five localities around lake Issyk-Kul during field work in 2016 and 2017: Kaji Say and Ak Terek on the southern side, which were previously dated by Roud et al., (2021) using magnetostratigraphy, Jergalan on the eastern side, and Cholpon Ata and Toru Aygir on the northern side (Figure 3.1C). The work included detailed descriptions of composition, bedding structures, paleocurrent directions, conglomerate clast counts and facies interpretations. Paleocurrent directions were defined by measuring the orientations of imbricated conglomerate clasts and crossbedding. Conglomerate clast counts were performed by identifying at least 100 clasts within a 1 m² space in suitable areas of the sections.

$3.3.2^{26}$ AL/¹⁰BE ISOCHRON BURIAL DATING

We use the technique of terrestrial cosmogenic nuclide isochron burial dating to determine the age of the sedimentary sequences. Terrestrial cosmogenic nuclides are isotopes produced in silicate minerals by the interactions of secondary cosmic rays with the upper few meters of the Earth's surface (Lal, 1991; Schaefer et al., 2022). Quartz is the main target mineral from which the concentration of cosmogenic radionuclides ²⁶Al and ¹⁰Be are most routinely measured. Burial dating is based on the radioactive decay of ²⁶Al and ¹⁰Be isotopes in rocks that are completely shielded from new production. The

concentrations of ²⁶Al and ¹⁰Be in a sample are proportional to the duration of exposure (Granger and Muzikar, 2001). The ²⁶Al is produced faster than the ¹⁰Be. Although the exact ²⁶Al/¹⁰Be production ratio is still debated (see Corbett et al., 2017 and references therein; Halsted et al., 2021), the consensus value, widely used in the literature, is 6.75:1 (Balco et al., 2008). Therefore, for consistency with other work, we use the latter in our calculations here. The two isotopes decay at different rates according to their half-lives: 0.717 Myr for 26 Al (Norris et al., 1983) and 1.387 Myr for 10 Be (Korschinek et al., 2010; Chmeleff et al., 2010). When sediments are buried and completely shielded from cosmic radiation, there is no new isotope production and the initial ${}^{26}Al/{}^{10}Be$ ratio, which is equal to the production ratio, decreases. Assuming that sediments were rapidly buried after deposition and minimally re-exposed to new production prior to collection, the half-lives of the two nuclides and their initial production rate ratio (above) can be used to calculate the time of burial. The lower the ratio and concentrations, the longer the duration of burial. This assumption is the basis for conventional burial dating that requires the measurement of a single ²⁶Al/¹⁰Be ratio from a clast or an amalgamated sand sample in order to provide a meaningful age (Granger and Muzikar, 2001).

In tectonically active areas like the Tian Shan, ideal burial conditions rarely occur. Sediments may experience post-burial production that can alter the inferred burial age. Post-burial nuclide production occurs if the overlying deposits are not thick enough (approx. <30 m) – and therefore material is not completely shielded from incoming cosmic radiation – or when sediments are brought close to the surface after the initial deposition and burial due to erosion, river incision or other factors. Post-burial nuclide production will increase nuclide concentrations and ratios and result in seemingly younger burial ages. Also, the sediments are affected by a complex combination of exposure and material mixing prior to burial which can lead to obtaining inherited concentrations of nuclides (Codilean and Sadler, 2021). In settings where conventional burial dating assumptions are violated, a relatively new method – isochron burial dating – may be used to obtain a reliable burial age (Balco and Rovey, 2008; Erlanger et al., 2012; Knudsen et al., 2020).

The isochron burial dating method does not require information about depth, exposure, and post-burial nuclide production (Balco and Rovey, 2008). Rather, it requires a set of quartz-bearing clasts from one depositional horizon that was sufficiently shielded such that post-burial production is minimized (but not necessarily eliminated). Each clast in the depositional horizon will record the same post-burial history but different pre-burial exposure histories as the clasts likely originated from different source areas. The ²⁶Al and ¹⁰Be concentrations form an isochron on a ¹⁰Be-²⁶Al plot and the slope of this isochron

will depend only on the burial age. The isochron slope reflects the deviation from the ${}^{26}\text{Al}/{}^{10}\text{Be}$ production rate, and will depend on the half-lives of the nuclide pair and on the duration of decay. Therefore, the burial age (*t_b*) may be calculated as shown by Balco and Rovey (2008):

$$t_b = -\ln \left(\mathbf{R}_{\mathrm{M}} / \mathbf{R}_{\mathrm{init}} \right) / \left(\lambda_{26} - \lambda_{10} \right)$$

where R_M is the slope of the isochron; R_{init} is the ²⁶Al/¹⁰Be production ratio; λ_{26} and λ_{10} are the decay constants of ²⁶Al and ¹⁰Be, respectively.

To confirm and improve the magnetostratigraphic age models from Roud et al. (2021), we dated the Kaji Say and Ak Terek sections. We also attempted to date the sections on the northern and eastern sides of the basin. We therefore collected a total of ten samples (one sample is one isochron) of individual clasts and amalgamated sand (250 – 500 µm grain size) from four localities – the Kaji Say, Ak Terek, Jergalan and Cholpon Ata sections (Figure 3.1C). Four samples were taken in the Kaji Say section: PET-L and PET-U from the lowermost part of the section, PET-QTS-PIT from the Chu-Sharpyl Dak transition, and PET-QTS-L from the uppermost Sharpyl Dak. Two samples were taken in the Ak Terek section: AKT-U from the uppermost Chu and AKT-Q from the lower Sharpyl Dak. Two samples were taken in the Jergalan section: JGL-2 from the Chu-Sharpyl Dak transition. Two samples were taken in the Cholpon Ata section: CA17-6 from the upper Chu part and CA17-1 from the lower Sharpyl Dak.

At each of the ten sampled locations, we collected about ten clasts. Clasts were chosen based on their size, lithology, and inferred amount of quartz present. Our aim was to collect diverse, quartz-rich lithologies, in order to capture different pre-burial histories. All collected clasts were approximately 10-12 cm in diameter. Smaller clasts would not contain enough quartz and larger clasts could have been subject to self-shielding. The clasts were collected from areas where modern production is minimized due to shielding. Due to very low quartz yield in some of the clasts, only three to six clasts were analyzed per isochron. At six of the sampled locations, in addition to the individual clasts, we also collected an amalgamated sand sample as an independent test of the isochron and assumptions about shielding and post-burial production (the ²⁶Al-¹⁰Be of the sample should plot on the isochron defined by the individual clasts if assumptions are met).

The initial sample preparation (crushing and sieving) was done at the University of Potsdam, Germany. Quartz was isolated and purified at the University of Wollongong, Australia, following procedures described in Kohl and Nishiizumi (1992), using froth

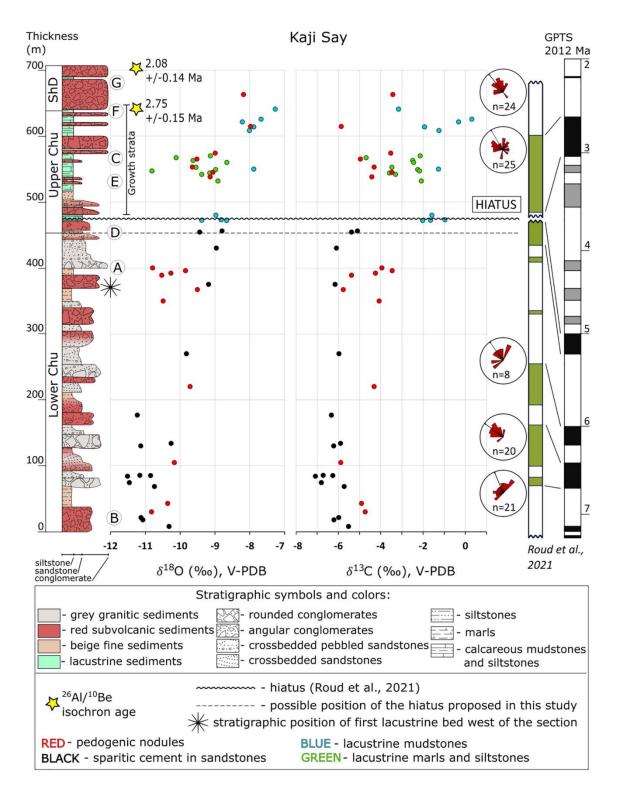
flotation to separate feldspars from quartz. Be and Al were separated at the University of Wollongong following procedures described in von Blanckenburg et al. (1996) with the modification that Al was separated from Be and Ti using pH sensitive precipitation before Be cation exchange chromatography (Child et al., 2000). Samples were spiked with \approx 300 µg of ⁹Be from a low-level beryllium carrier solution added prior to complete HF dissolution. ¹⁰Be/⁹Be and ²⁶Al/²⁷Al ratios were measured using the 6MV SIRIUS facility at the Australian Nuclear Science and Technology Organisation (ANSTO; Wilcken et al., 2019; 2022). The native Al concentrations of the samples ranged from 47 to 490 ppm (median = 96 ppm; average = 124 ppm) and were determined via ICP-OES with a precision of 3-4% (Fujioka et al., 2015). ¹⁰Be/⁹Be ratios were normalised to the KN-5-2 and KN-5-3 (Nishiizumi et al., 2007) standards and ²⁶Al/²⁷Al ratios were normalised to the KN-4-2 (Nishiizumi, 2004) standard. Analytical uncertainties for the final ¹⁰Be and ²⁶Al concentrations (atoms g⁻¹) include AMS measurement uncertainties (the larger of counting statistics or standard deviation of repeats and blank corrections) in quadrature with 1-2% for ¹⁰Be and 2-3% for ²⁶Al standard reproducibility (depending on the individual AMS measurement conditions), 1% uncertainty in the 9Be carrier concentration and 4% uncertainty in the ICP-OES Al measurements.

3.3.3 THIN SECTION PETROGRAPHY

Petrographic analysis was performed using a polarized light microscope on 27 sandstone and lacustrine micrite thin sections from Kaji Say and 16 sandstone thin sections from Ak Terek to evaluate the diagenetic and palustrine alteration of the sediment sequences. Compaction and cementation of fluvial-alluvial samples as well as the amount of recrystallization and pedogenic alteration of lacustrine micrite samples were evaluated.

3.3.4 STABLE ISOTOPE ANALYSIS

To reconstruct paleoenvironmental conditions, a total of 122 carbonate samples were collected for stable isotope analysis: 53 samples from the Kaji Say section and 69 from the Ak Terek section. The Kaji Say samples consist of pedogenic nodules (17 samples), sparitic cement in sandstones (16 samples), micrite in lacustrine mudstone (10 samples), and micrite in lacustrine marl and siltstone (10 samples). The majority of the Ak Terek samples are pedogenic nodules (64 samples), with only 5 samples of sparitic cement in sandstones.


Stable isotope values were measured at the Joint Goethe University– Senckenberg BiK-F Stable Isotope Facility at Goethe University Frankfurt, Germany. The finest parts of the samples were drilled, the powder was digested in orthophosphoric acid and analyzed using a Thermo MAT 253 mass spectrometer interfaced with a Thermo GasBench II. The analytical procedures follow Spötl and Vennemann, (2003). Raw isotopic ratios were calibrated against NBS 18, Merck and Carrara marble standards. All isotope values are relative to the Pee Dee Belemnite (V-PDB). Analytical uncertainties are typically smaller than 0.10 ‰ (δ^{18} O) and 0.07 ‰ (δ^{13} C).

3.4 RESULTS

3.4.1 SEDIMENTARY SEQUENCES

3.4.1.1 Kaji Say section

The 700-m-thick Kaji Say section is located in the Tossor – Kaji Say area and comprises the Chu and Sharpyl Dak groups (Figure 3.1C). Paleocurrent directions indicate predominantly NW flow directions in the section. The Chu group deposits can be divided into two depositional units (Figure 3.2). The lower unit is 450 m thick; it is formed of alternating grey rounded conglomerates with clasts of mainly cobble and boulder size (Figure 3.3A), red angular conglomerates with clasts of mainly gravel and cobble size (Figure 3.3B), grey and red sandstones, and beige siltstones. The upper unit is 190 m thick and comprises alternating red angular conglomerates with clasts of mainly gravel and cobble size, beige pebbly sandstones, blue calcareous mudstones, white marls, calcareous siltstones and marly sandstones (Figures 3.3C-E). The red and grey colors represent different sedimentary lithologies. Red conglomerates are matrix supported and composed of clasts of porphyry with quartz phenocrysts in a fine-grained groundmass. Grey conglomerates are clast supported and consist predominantly of granite clasts. In order to measure well-exposed outcrops, the Kaji Say section was divided into western and eastern transects, situated in different valleys (Figure 3.4). Continuous beds can be followed between the two transects; no more than 10 m of strata was omitted. Bedding dips indicate the presence of a fold: ca. 10-25° (dip direction is ca. 350-355N) at the base of the section (0-245 m), ca. 75° (ca. 0N) at the top of the lower Chu unit (ca. 245-480 m), ca. 25-35° (ca. 5-10N) in the upper Chu unit (ca. 480-640 m), and ca. 15° (ca. 5-10N) at the top of the section (Figure 3.4).

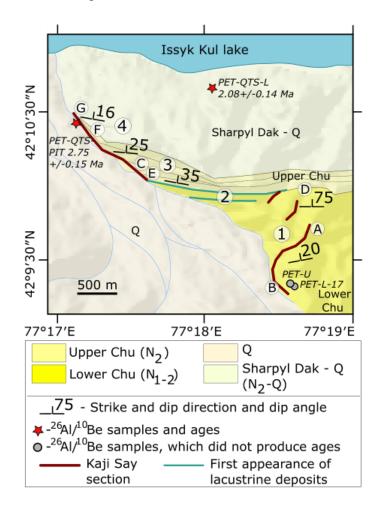
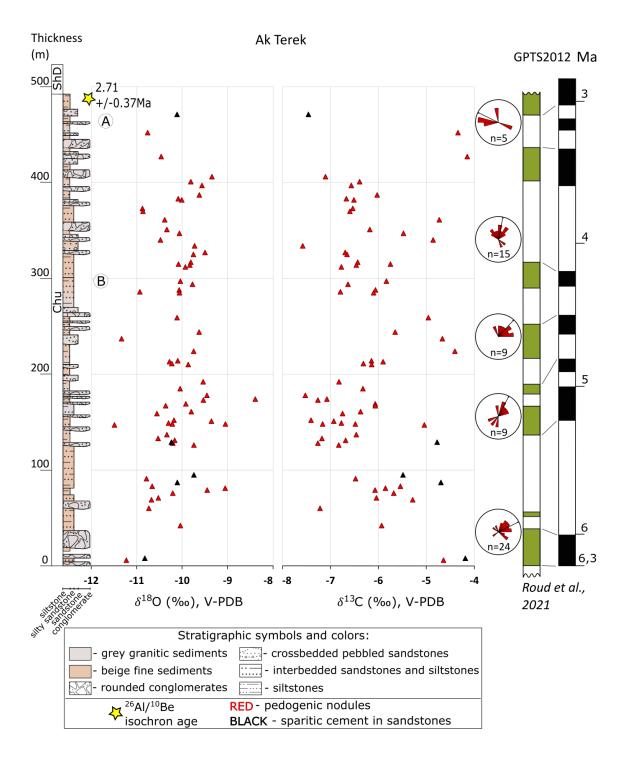

Figure 3.2. The Kaji Say stratigraphic section (location shown in Figure 3.1) with ²⁶Al/¹⁰Be isochron burial ages, rose diagrams of paleocurrent flow directions (black arrow shows the main vector) and stable isotopic values plotted against the magnetostratigraphic age model of Roud et al. (2021). ShD is Sharpyl Dak. A-G show stratigraphic positions of photos, represented in Figure 3.3.

Figure 3.3. Characteristic field photos from the Kaji Say section. Stratigraphic positions are shown in Figure 3.2; locations are shown in Figure 3.4. (A) Grey granitic conglomerates. Hammer for scale. (B) Angular red gravel conglomerates. Hammer for scale. (C) Lacustrine sediments. Pen for scale is 15 cm long. (D) Sandstones of the beach facies, which mark the beginning of lacustrine deposition. Hammer for scale. (E) Interbedding of lacustrine (greenish-white) and alluvial (beige) deposits. Person for scale is 170 cm tall. (F) Growth strata. Person for scale is 170 cm tall. (G) Deposits of the Sharpyl Dak sedimentary group. Car for scale is ca. 2 m high.

In the lower Chu unit, the red and grey conglomerates laterally and stratigraphically change into sandstones and siltstones. Grey and red beds alternate and have sharp boundaries. Mixed coarse grey and greyish-red sandstones with red gravel lenses occur in the middle part of the section. Grey granitic channel lag conglomerates are generally coarser than the red ones, and grey deposits are better sorted and better cemented. Sandstones are crossbedded; siltstones are laminated and contain pedogenic calcrete

nodules and lenses of poorly sorted pebbly and sandy gravel. In the upper Chu unit, white marly sandstones are fine, well sorted and well cemented; beige sandstones are coarse and contain lenses of red gravel. Blue calcareous mudstones contain rare ostracode shells (see petrography section, below); calcareous siltstones contain rare pedogenic calcrete nodules and display soft sediment deformation and slump folding directed towards the lake. The beds in the upper Chu unit thicken to the northwest. The Chu – Sharpyl Dak transition is gradational. Sharpyl Dak deposits are 60 m thick in the section; they consist of 10-20-m-thick red conglomerate beds of angular gravel and cobble clasts with poorly sorted matrix, as well as beige sandstones, white marls and white calcareous siltstones.


Figure 3.4. Kaji Say section area (location shown in Figure 3.1). Sedimentary units are mapped using Bing Maps satellite imagery and topography based on SRTM30 digital elevation data. A-G show locations of the corresponding photos, represented in Figure 3.3. 1 – Eastern transect of the section showing shallow dips in the stratigraphically older part and vertical dips in the stratigraphically younger part. This dip pattern defines a fold; cross section shown in Roud et al. (2021). 2 – First lacustrine beds in the area. The stratigraphically older lacustrine bed does not reach the measured section and is not included in the description (Figure 3.2). The stratigraphically younger bed represents the first lacustrine beds included in the description. 3 – Growth strata (photo shown in Figure 3.3F). 4 – Western transect of the section with shallow dips. Stratigraphic units in the legend: N_{1-2} – Late Miocene – early Pliocene; N2 – Pliocene; N2-Q – Pliocene – Quaternary.

Clast counting was performed at 4 localities in the lower Chu unit: 85 m, 144 m, 320 m, and 411 m. Grey conglomerates consist predominantly of white and red granite clasts with a minor occurrence of volcanic rocks, shale, quartzite, pegmatitic quartz, metamorphic sandstone, and sandstone clasts. Red angular conglomerates show the prevalence of red porphyry clasts with quartz phenocrysts, and the presence of granite, quartzite, pegmatitic quartz, volcanic, and metamorphic sandstone clasts. Clast compositional data for this and the other four localities are shown in the Supplementary Material.

3.4.1.2 Ak Terek section

The Ak Terek section is a 500-m-thick sequence of the Chu group, located in the southwestern part of the basin (Figure 3.1C; see Supplementary Figure S3.1 for detailed location of the section; detailed geological maps of the Ak Terek section area are available in Roud et al., 2021 and Burgette et al., 2017). The deposits represent a series of depositional cycles with normal gradation: grey conglomerates are interbedded with well sorted sandstones, beige siltstones and mudstones (Figure 3.5). The top of the section represents the uppermost Chu deposits close to the overlying coarse conglomerates of the Sharpyl Dak group. Paleocurrent measurements indicate predominantly northeast flow directions. Well rounded conglomerate clasts are of gravel and cobble size (Figure 3.6A). Granite is the dominant source rock type in the lowermost part of the section. Metamorphic sandstone, volcanic rocks and quartzite clasts are also found.

In the lowermost part of the section, mudstone beds contain layers of poorly developed paleosols and slickensides, with a gradual upsection increase in paleosol nodule abundance (Figure 3.6B). In the uppermost 80 m of the section, the thickness of fine deposits and the amount of pedogenic nodules decrease. Two prominent 30-cm-thick gypsum layers were found at 430-440 m of the section, while older deposits of the section contain only rare thin lenses of gypsum.

Figure 3.5. The Ak Terek stratigraphic section (location shown in Figure 3.1) with a ²⁶Al/¹⁰Be isochron burial age, rose diagrams of paleocurrent flow directions (black arrow shows the main vector) and stable isotopic values plotted against the magnetostratigraphic age model of Roud et al. (2021). ShD is Sharpyl Dak. A-B show stratigraphic positions of photos, represented in Figure 3.6.

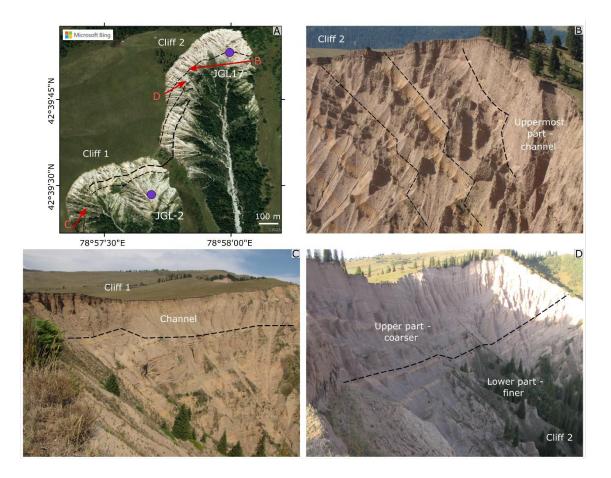


Figure 3.6. Characteristic field photos from the Ak Terek (A-B), Toru Aygir (C) and Cholpon Ata (D) sections. Stratigraphic positions of A-B are shown in Figure 3.5; geographical locations of A-B are shown in Supplementary Figure S3.1. Stratigraphic position of C is shown in Supplementary Figure S3.3. Stratigraphic position of D is shown in Supplementary Figure S3.4. (A) Conglomerates in the Ak Terek section. Hammer for scale. (B) Floodplain deposits with paleosol horizons in the Ak Terek section. Hammer for scale. (C) Conglomerate channels in the Toru Aygir section. Pen for scale is 15 cm long. (D) Conglomerate channels and floodplain deposits in the Cholpon Ata section.

3.4.1.3 Jergalan section

The Jergalan section is located in the eastern part of the Issyk-Kul basin (Figure 3.1C). We could not describe the sedimentary sequence in detail because of the steep relief and poor exposure due to numerous landslides. The sequence crops out in two cliffs (Figure 3.7A). The lower part of the section in cliff 1 represents mostly sandstones and fine-grained material. The amount and thickness of conglomerates gradually increase upsection. The conglomerates are massive, matrix supported, and interbedded with thin sandstone beds. Conglomerates were deposited in channel structures incising into finer beds. The beds dip gently to the west. We estimated the most probable position of the Chu – Sharpyl Dak transition prior to sampling for 26 Al/ 10 Be isochron burial dating. The contact between lower fine-grained sedimentary rocks and upper conglomerates in cliff 2 is visually similar to the Chu – Sharpyl Dak transition in the Kaji Say section and might also represent the beginning of the Sharpyl Dak conglomerate accumulation (Figure

3.7D). Sharp contacts are exposed in the uppermost parts of both ca. 200 m high cliff walls (Figures 3.7B-C). The gently dipping beds are truncated by almost flat-lying boulder-bearing conglomerates. These conglomerates cut down into the underlying units. Clast count and paleocurrent measurements were performed at the position of sample JGL17 at the base of the gently-dipping conglomerates above the lower part of the section. Conglomerates are mainly composed of clastic sedimentary rocks, as well as clasts of granites, volcanic rocks, quartzite and quartz. Paleocurrent measurements suggest south-directed transport.

Figure 3.7. Satellite imagery and field photos of the Jergalan section (location shown in Figure 3.1). (A) Bing Maps image of the section showing the two cliffs and positions of the 26 Al/ 10 Be isochron burial dating samples. Lower (finer) part of the section outcrops in cliff 1; cliff 2 represents the transition between the lower and upper (coarser) parts of the section. Dashed lines show bedding and correlation of beds between the two cliffs. Red arrows show the view directions of the corresponding photos B-D. (B) Uppermost part of the section with angular unconformity and a channel structure on top of the cliff 2. (C) Angular unconformity and a channel structure on top of the cliff 1. (D) Gradational transition between the lower (finer) and upper (coarser) parts. Dashed line shows the estimated beginning of the Sharpyl Dak group deposition.

3.4.1.4 Toru Aygir section

The 24-m-thick Toru Aygir section is situated in the northwestern side of the basin (Figure 3.1C; detailed geological map of the Toru Aygir area is shown in Supplementary

Figure S3.2). The lower part consists of brown fine and coarse sandstones, with interbeds of granitic pebbles and gravel and thin lenses of siltstones. The upper part consists of a series of normally-graded conglomerates deposited in channel structures and well-sorted sandstones (Figure 3.6C; stratigraphic log is shown in Supplementary Figure S3.3). The conglomerates and sandstones gradually change into one another along strike. Paleocurrent measurements show predominantly south-directed transport (Figure 3.1C and Supplementary Figure S3.3). The most abundant rock type among the conglomerate clasts is subvolcanic rocks with plagioclase phenocrysts. Clasts of granites, mafic igneous rocks, and volcanic rocks are also found.

3.4.1.5 Cholpon Ata section

The 20-m-thick Cholpon Ata section is situated on the northern side of the basin (Figure 3.1C; detailed geological map of the Cholpon Ata area is shown in Supplementary Figure S3.2). It consists of rounded conglomerates, siltstones, and beige well-sorted crossbedded fine to coarse sandstones with lenses of granitic pebbles and cobbles (Figure 3.6D; stratigraphic log is shown in Supplementary Figure S3.4). Interbeds of well-cemented and well-sorted sandstones appear every ca. 1.5 meter. Thickness of conglomerate beds varies along the section from 20 cm to 1.5 m. Paleocurrent directions show predominantly southward flow directions (Figure 3.1C and Supplementary Figure S3.4). Granites are dominant among conglomerate clasts besides clasts of phyllite, volcanic rocks and clastic sedimentary rocks.

$3.4.2^{26}$ AL/ 10 BE ISOCHRON BURIAL DATING

Five of the ten collected samples yielded usable results (Figure 3.8). The ²⁶Al and ¹⁰Be concentrations of the other samples do not form an isochron – either due to the low number of datapoints (e.g., PET-L and PET-U) or due to burial ages exceeding the useful time range of the ²⁶Al - ¹⁰Be isotope pair (e.g., CA17-1 and CA17-6) – and so burial ages could not be calculated with confidence for these samples. In the Kaji Say section, the Chu – Sharpyl Dak ²⁶Al/¹⁰Be-isochron-inferred transition age is 2.75 ± 0.15 Ma (sample PET-QTS-PIT; Figure 3.8E) and the top of the section in the Sharpyl Dak deposits is 2.08 \pm 0.14 Ma (sample PET-QTS-L; Figure 3.8D). In the Ak Terek section, the upper Chu deposits close to the overlying Sharpyl Dak provide an age of 2.71 ± 0.37 Ma (sample AKT-U; Figure 3.8C). In the Jergalan section, sample JGL17 yielded an age of 4.26 ± 0.44 Ma for the presumable Chu – Sharpyl Dak transition (Figure 3.8H). In the case of JGL-2, the obtained ²⁶Al concentrations were statistically indistinguishable from the procedural blank. Given that no ²⁷Al carrier solution was added to the JGL-2 samples during processing, correcting for ²⁶Al blank is not strictly necessary (see Wilcken et al.,

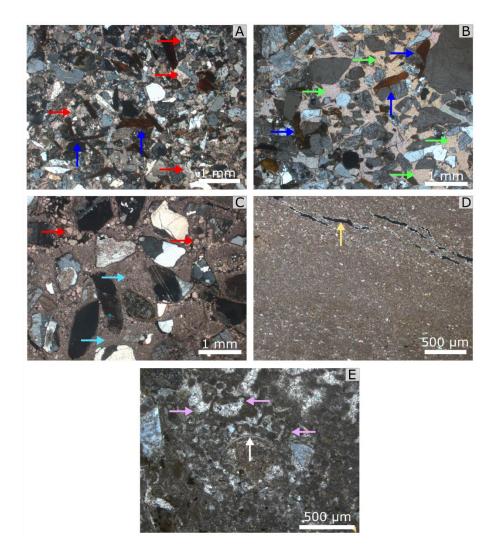

2022 for more details). Using the raw (i.e., not blank-corrected) ²⁶Al, JGL-2 produces an age of 4.76 ± 0.82 Ma (Figure 3.8I2).

Figure 3.8. Summary of cosmogenic ²⁶Al/¹⁰Be isochron burial dating results. (A) Compilation of isochrons (solid red lines) with data points excluded for clarity. Plots (B-C) – Ak Terek; (D-G) – Kaji Say; (H-I2) – Jergalan; (J-K) – Cholpon Ata. (B-K) Raw cosmogenic ²⁶Al and ¹⁰Be concentrations are shown as yellow 1-sigma error ellipses and linearised concentrations are shown as grey 1-sigma error ellipses. Solid red lines are the error-weighted best fit to the data, and dashed red lines are 1-sigma error bounds. Ages are in Myr. Solid black lines in all plots represent theoretical isochrons for constant production (i.e., no burial) assuming an ²⁶Al/¹⁰Be production rate ratio of 6.75. Amalgamated sand samples are not included in the plots. (I1) shows ²⁶Al concentrations at JGL-2 corrected for procedural blank (blue dashed line) and (I2) shows results without blank correction applied to the ²⁶Al data (see text for more details).

3.4.3 PETROGRAPHIC STUDY OF THIN SECTIONS

Thin sections of fluvial-alluvial sandstones from the Kaji Say and Ak Terek sections show mechanical compaction of sandstones, which resulted in point to concavo-convex contacts, as well as ductile deformation of detrital mica (Figures 3.9A-B). Detrital feldspar grains are partially corroded by calcite cement. The Ak Terek and Kaji Say sandstone samples are predominantly arkose and cemented by calcite, which consists mostly of sparitic blocky cement (Figure 3.9A). Poikilotopic calcite cement is found in samples of fluvial-alluvial sandstones of the Ak Terek section and the lower Chu unit of the Kaji Say section (Figure 3.9B). Sandstones from the upper Chu unit of the Kaji Say section are not compacted; they contain primary carbonate micrite and microsparite cement, as well as patchy sparitic cement (Figure 3.9C). Lacustrine samples are composed of primary dense micrite and microsparite (Figure 3.9D). Some lacustrine samples contain ostracode shells, desiccation cracks, and pores with alveolar textures filled with sparitic cement (Figures 3.9D-E).

Figure 3.9. Characteristic microphotographs of thin sections from the Kaji Say and Ak Terek sequences under XPL representing early diagenetic and palustrine alteration. (A) Sandstones from the fluvial-alluvial

facies, characteristic of the Kaji Say and Ak Terek sections, with sparitic blocky calcite cement (red arrows) and mechanical compaction (dark blue arrows). (B) Sandstones from the fluvial-alluvial facies, characteristic of the Kaji Say and Ak Terek sections, with poikilotopic calcite cement (green arrows) and mechanical compaction (dark blue arrows). (C) Sandstones from the beach facies (Kaji Say) with primary micrite (light blue arrows) and sparitic calcite cement (red arrows). (D) Lacustrine micrite (Kaji Say) with planar cracks (yellow arrow). (E) Lacustrine micrite (Kaji Say) with an ostracode shell (white arrow) and pores with pedogenic alveolar texture (pink arrows) filled with sparitic calcite cement.

3.4.4 OXYGEN AND CARBON ISOTOPE RATIOS

 δ^{18} O values of Kaji Say samples (Figure 3.2) range from -11.5‰ to -7.3‰ (PDB), with an average value of -9.6 ± 1.1‰ (1 σ); δ^{13} C values range from -7.1‰ to 0.3‰ (PDB), with an average value of -4.1 ± 1.9‰ (1 σ). Samples of pedogenic nodules were taken throughout the whole section, with average values of δ^{18} O = -9.7 ± 0.8‰ and δ^{13} C = -4.5 ± 0.8‰. Samples of carbonate cement in fluvial sandstones were taken from the lower Chu unit, with average values of δ^{18} O = -10.4 ± 0.9‰ and δ^{13} C = -6.1 ± 0.5‰. Samples of lacustrine marl, siltstone, and mudstone were taken from the upper Chu unit, with average values of δ^{18} O = -8.8 ± 0.9‰ and δ^{13} C = -2.1 ± 1.2‰.

 δ^{18} O values of Ak Terek samples (Figure 3.5) range from -11.5‰ to -8.4‰ (PDB), with an average value of -10.1 ± 0.6‰ (1 σ); δ^{13} C values range from -7.6‰ to -4.2‰ (PDB), with an average value of -6.1 ± 0.9‰ (1 σ).

Both δ^{18} O and δ^{13} C values from the Kaji Say gradually increase upsection, whereas Ak Terek values show no trend, but have a higher variability.

The stable isotope data are provided in the Supplementary Material (Table S3.1).

3.5 DISCUSSION

3.5.1 DEPOSITIONAL AGE AND ENVIRONMENT

3.5.1.1 Kaji Say

Two magnetostratigraphic age models have been published for the Kaji Say section (Roud et al., 2021). The first option features continuous sedimentation between 12.7 Ma and 9.5 Ma, with an average sedimentation rate of 25 cm ka⁻¹ and the Chu – Sharpyl Dak transition at ca. 10 Ma. The second, preferred option assumes a 2 Ma hiatus in the middle of the section with ages of 7.0–5.1 Ma for the lower part and 3.0–2.4 Ma for the upper part, and average sedimentation rates of 23 and 30 cm ka⁻¹, respectively. The Chu – Sharpyl Dak transition for the second option is at 2.8–2.6 Ma. The new ²⁶Al/¹⁰Be isochron burial ages we obtained from the upper part of the section show that this transition at ca.

640 m in the section is 2.75 ± 0.15 Ma (sample PET-QTS-PIT, Figure 3.8E), and the Sharpyl Dak sample at the top of the section is 2.08 ± 0.14 Ma (sample PET-QTS-L, Figure 3.8D). The two sample localities are shown in Figure 3.2 and Figure 3.4. Although the isochron burial dating did not work in the lowermost part of the section (samples PET-L and PET-U, Figure 3.8F and Figure 3.8G, respectively; see Figure 3.4 for position), our two 26 Al/¹⁰Be isochron burial ages allow for the elimination of the first magnetostratigraphic age model option and stipulate that the age of the Kaji Say section is late Miocene – early Pleistocene (Figure 3.2).

Predominantly northwest paleocurrent flow directions indicate that the sediments were sourced from the Terskey range. The lower Chu unit represents a fluvial-alluvial system with overbank deposits, reflecting a braided river system with different source areas within the Terskey range. Rounded well-sorted grey conglomerate clasts (Figure 3.3A) originated from the widespread granites of the Terskey range. Angular unsorted matrix-supported red gravel conglomerates (Figure 3.3B) were presumably delivered from the Taldysui subvolcanic complex, located at the front of the Terskey range around the Kaji Say area. This interpretation is based on the geological map of Kyrgyzstan (scale 1:500000, VSEGEI, 2008). The Taldysui subvolcanic complex does not crop out upstream of our other studied sedimentary sections and they do not contain such clasts.

The characteristics of the red gravel conglomerates indicate that they are debris flow deposits, which represent an alluvial fan with deposits derived from a proximal source area. The grey granitic conglomerates and sandstones were deposited in channel structures and represent the bedload of a braided river with prolonged flows that allowed sorting and normally-graded deposition. Conglomerates and well-sorted sandstones mark pulses of high-energy flows. Siltstones represent floodplain deposits that accumulated from sheet flows during strong floods. Pedogenic alteration of the fine sediments is weak, represented by immature horizons of small calcrete nodules. Their presence indicates changes in the depositional environment with periods of decreased deposition between pulses of conglomerate accumulation (Alonso-Zarza, 2003; Breecker et al., 2009).

The depositional environment changed significantly in the upper Chu unit, which represents a lacustrine environment with a beach, a distal fan delta, and periodic rapid intense debris flow deposits of predominantly red angular conglomerates. Lacustrine calcareous mudstones, calcareous siltstones and marls (Figure 3.3C) were deposited in a shallow lake with low sedimentation rates and decreased clastic input. These are the oldest reported lacustrine deposits in the Issyk-Kul basin above the modern lake level. The occurrence of pedogenic nodules in the lacustrine carbonates and pedogenetic

alteration of the lacustrine mudstone, observed in thin sections (see section 5.2.1), point to repeated lowering of the lake level and exposure of the deposits during dry periods with very slow sedimentation (Alonso-Zarza, 2003; Breecker et al., 2009). The occurrence of thin sandstone lenses within lacustrine marls indicates distal fan delta deposition at the lake margin. The coarse debris flow deposits show that intensified terrigenous input propagated into the lake. Within the measured section, the first beach facies sandstone bed occurs at 450 m, followed by a 5-cm-thick lacustrine calcareous mudstone bed (Figure 3.3D). Our field observations indicate that lacustrine deposits first appear stratigraphically earlier, ca. 200 m to the west of the measured section and laterally change into fluvial-alluvial deposits eastward (Figure 3.4). Overall, there were periodic shifts between slow sedimentation in a lacustrine/palustrine system and rapid sedimentation in an active alluvial system (Figure 3.3E). The gradational Chu - Sharpyl Dak transition marks an increase in frequency and thickness of the conglomerate beds, while lacustrine beds became thinner. The overlying Sharpyl Dak conglomerates represent a large series of debris flow deposits in a proximal alluvial fan that progressively filled the basin and shifted the lake margin northward (Figure 3.3G).

3.5.1.2 Ak Terek

The straightforward correlation of the polarity pattern retrieved from the Chu group deposits with the geomagnetic polarity time scale indicates that the Chu group was deposited between 6.3 and 2.8 Ma with an average sedimentation rate of 13 cm ka⁻¹; there is a short interval with a sedimentation rate of 21 cm ka⁻¹ at ca. 5 Ma (Roud et al., 2021). This age model places the Chu – Sharpyl Dak transition at 2.8 Ma (Figure 3.5). Our ²⁶Al/¹⁰Be isochron burial age for the uppermost Chu is 2.71 ± 0.37 Ma (sample AKT-U, Figure 3.8C; see Figure 3.5 and Supplementary Figure S3.1 for position of the sample), consistent with the magnetostratigraphic age constraints. The sample from the Sharpyl Dak deposits did not yield reliable results (sample AKT-Q, Figure 3.8B). However, these two dating methods provide highly-consistent results; thus, we can conclude that the Ak Terek section was deposited during the late Miocene – Pliocene.

The Ak Terek section is interpreted to represent the deposits of a meandering river system. The rounded and well-sorted conglomerates and sandstones are mostly granitic and originate from the granites of the Terskey range, as indicated by the predominantly northeast paleocurrent flow directions. The conglomerates were deposited in large channels; together with well-sorted grey sandstones, they comprise the river bed load (Figure 3.6A). Sandy siltstones and massive mudstones represent a floodplain with episodical fluvial input during flood stages. Repeated alternations between fluvial and

floodplain deposits suggest a distal fluvial system with a migrating channel on a floodplain. Pedogenesis occurred in fine-grained deposits throughout the section with thin, immature, rare horizons of small calcrete nodules in the lower part of the section and a gradual upsection increase in their size and abundance (Figure 3.6B). Calcrete nodule horizons and gypsum layers in the upper part of the section suggest alternation of stronger rainfall and prolonged dry periods (Breecker et al., 2009) with very low sedimentation rates (Alonso-Zarza et al., 1992). The upsection increase in nodule abundance between ca. 6 and ca. 3.5 Ma reflects a Pliocene increase in water availability and seasonality. A decrease in the pedogenic nodule abundance and decreasing thickness of floodplain deposits after ca. 3.5 Ma suggest shortening of periods of slow deposition and soil formation and likely more frequent conglomerate deposition due to an increase in tectonic activity or glaciation in the Terskey range.

3.5.1.3 Jergalan

The sequence records a proximal high energy braided river system gradually transforming into a proximal alluvial fan. Conglomerates in the uppermost parts of the two cliffs represent the fill of a coarse-grained braided river above an angular unconformity (Figures 3.7B-C). Both channel structures probably represent Quaternary deposition. We interpret the Chu – Sharpyl Dak transition to be represented by the gradational contact between finer and coarser gently-dipping deposits; therefore, Sharpyl Dak deposition started when the conglomerates started to prevail. The results from sample JGL17, taken from the bottom of the upper (coarser) part (Figure 3.7A), suggest that the age of the Chu - Sharpyl Dak transition occurs at 4.26 ± 0.44 Ma (Figure 3.8H). The stratigraphically older JGL-2 sample yields an ${}^{26}\text{Al}/{}^{10}\text{Be}$ isochron burial age of 4.76 ± 0.82 Ma when ${}^{26}\text{Al}$ concentrations are not blank-corrected (Figure 3.8I2). The above results roughly constrain the Chu - Sharpyl Dak transition in Jergalan to be not older than 5 Ma; i.e. early Pliocene. This age is notably older than at Kaji Say and Ak Terek, where the transition occurred at 2.8-2.6 Ma. The paleocurrent analysis suggests that the Chu - Sharpyl Dak transition unit was fed by sediments from the Kungey range. Hence, we suggest that exhumation of the eastern Kungey range began at ca. 5 Ma.

3.5.1.4 Toru Aygir and Cholpon Ata

The Toru Aygir and Cholpon Ata sequences represent deposits from a meandering fluvial system. A series of channels in the Toru Aygir section with subrounded conglomerates and well-sorted sandstones represent deposition in a high energy flow from the bedload of a river (Figure 3.6C). In the Cholpon Ata section, large channels filled with rounded conglomerates and sandstones are interbedded with siltstones and represent the coarse

bedload of a migrating channel on a floodplain (Figure 3.6D). A detailed description of both sections and geological maps of the area are presented in Selander et al. (2012). The Toru Aygir area is also described in details in Bowman et al. (2004).

Both sequences belong to the Chu group. Selander et al. (2012) described two members of the Chu group on the southern flank of the Kungey range – the stratigraphically older Terskey member with northward-flowing paleocurrent indicators, sourced from the Terskey range, and the stratigraphically younger Kungey member with southwardflowing indicators, sourced from the Kungey range. The Terskey member is mapped throughout the range front, while the Kungey member is exposed only in the eastern part of the Kungey range (Supplementary Figure S3.2). The initiation of Kungey range growth is estimated to be between 7-4 Ma (Selander et al., 2012). The Toru Aygir section is located in the western Kungey range and the Chu deposits there belong to the Terskey member (Supplementary Figure S3.2), although our measurements of mainly southward paleocurrent directions contradict data from Selander et al. (2012) (Figure 3.1C and Supplementary Figure S3.3). The Cholpon Ata section is situated in the eastern Kungey range and exhibits both members (Supplementary Figure S3.2), although our measurements of mostly southward paleocurrent directions in both the stratigraphically older (Terskey member) and stratigraphically younger (Kungey member) parts of the section also contradict data from Selander et al. (2012) (Figure 3.1C and Supplementary Figure S3.4). This suggests that the Terskey member of the Cholpon Ata and Toru Aygir sections includes deposits sourced mainly from the Kungey range, in contrast with data from Selander et al. (2012), which show a distinctive prevalence of northward-directed paleocurrents in the Terskey member.

3.5.2 DIAGENETIC CHARACTERISTICS

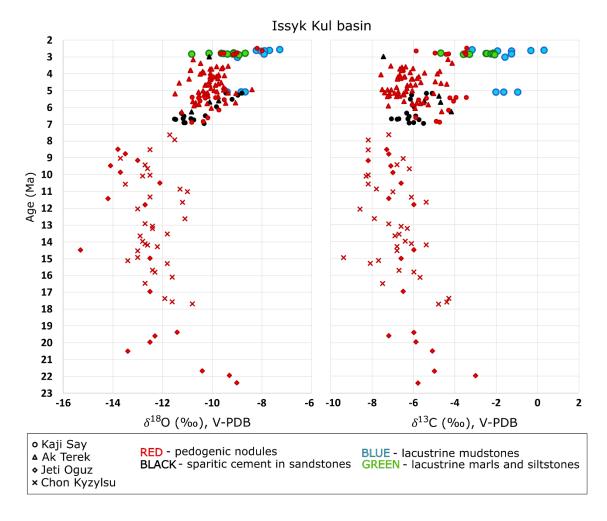
3.5.2.1 Thin section inspection

Sparitic and poikilotopic calcite cement and mechanical compaction in fluvial-alluvial sandstone samples (Figures 3.9A-B) suggest that the Ak Terek section and the lower Chu unit of Kaji Say underwent early stages of diagenesis (Worden et al., 2018). Higher temperatures associated with diagenesis may lead to crystal growth within the calcite cements (Worden and Burley, 2003). Therefore, the Ak Terek section and the lower Chu unit of Kaji Say might have undergone a higher degree of recrystallization than sandstones from the beach facies, alluvial and lacustrine deposits with microsparitic cement and micrite of the upper Chu unit of the Kaji Say section (Figure 3.9C). Nevertheless, some of the samples with poikilotopic cement only have point contacts between grains, which may mean that cementation occurred at an early stage of alteration

without substantial burial and compaction. Lacustrine carbonate of the upper Chu unit of the Kaji Say section consists of primary micrite and microsparite and exhibits evidence of palustrine alteration during dry periods without significant burial, such as desiccation cracks and pores with alveolar textures and pore-filling sparitic calcite cement (Figures 3.9D-E; Alonso-Zarza et al., 2010). Microsparite infills porosity in primary lacustrine micrite and can result from primary cementation in a subaerial environment or during pedogenesis (Freytet and Verrecchia, 2002).

3.5.2.2 Evaluation of the diagenetic overprint in the stable isotopic record

 δ^{18} O values of carbonate depend on the δ^{18} O values of the fluid from which carbonate precipitated and on the carbonate formation temperature. As such, carbonate formation and recrystallization under elevated temperatures, as well as the presence of basinal fluids during burial diagenesis, can affect the primary δ^{18} O values of authigenic carbonate minerals. Higher temperature resetting of δ^{18} O values during burial and diagenesis typically results in low δ^{18} O values (e.g. Methner et al., 2016; Quade et al., 2020) due to the temperature-dependance of water-calcite fractionation (e.g. Swart et al., 2015 and references therein). The δ^{18} O values of the Kaji Say and Ak Terek sections do not yield suspiciously low δ^{18} O values that would be associated with deep (higher temperature) burial diagenesis. One could hypothesize that the increasing δ^{18} O and δ^{13} C values with stratigraphy in the Kaji Say section could be burial related, i.e. lower values at the base of the section might reflect a higher level of diagenetic overprint due to higher temperatures. Unlike the Kaji Say samples, those from Ak Terek do not show such a trend; however, the data scatter along the Ak Terek record could reflect alteration in connection with dissolution and reprecipitation of calcite at different temperatures related to different burial depths (Sanyal et al., 2005). Distinctively more positive δ^{13} C values of lacustrine calcareous mudstone samples suggest that the primary lacustrine isotopic signal was not significantly affected by diagenetic and pedogenetic alteration (Alonso-Zarza, 2003).


We suggest that cementation and pedogenetic alteration happened under similar nearsurface meteoric conditions and we argue that the similarity of δ^{18} O and δ^{13} C values of sandstone cement, pedogenic and lacustrine carbonates in the Kaji Say section suggests similar post-depositional environments in the stratigraphically older and younger parts of the Kaji Say section. At the same time, as the values in the Kaji Say and Ak Terek sections overlap (Figure 3.10), we conclude that the rocks of the Ak Terek and Kaji Say sections reflect similar post-depositional conditions of early diagenesis. Early diagenesis corresponds to near-surface and shallow burial conditions under the influence of the depositional environment when sediments are buried to less than 2 km and temperatures below 70 °C (Worden and Burley, 2003). Early diagenesis does not alter oxygen isotopic values when occurring at near surface temperatures (Garzione et al., 2004; Sanyal et al., 2005), such as would be expected in the relatively thin stratigraphic sequences that we have studied. Moreover, our stable isotope values overlap with the values from other northern Central Asian sections (Figure 3.11), the rocks of which were reported to be unaffected by burial diagenesis. As the sedimentary sequences in Central Asia have different thicknesses but show similar δ^{18} O and δ^{13} C values, burial diagenesis does not appear to have played a major role (Caves Rugenstein and Chamberlain, 2018). We therefore conclude that our sections did not experience late diagenesis and that our isotopic results reflect primary values.

3.5.3 STABLE ISOTOPE ANALYSIS

3.5.3.1 Stable isotope-based paleoenvironmental reconstructions from continental carbonates

 δ^{18} O and δ^{13} C values of terrestrial carbonates may record information on paleoclimate, paleoaltimetry, vegetation types, lake water characteristics and diagenesis, provided that carbonate precipitation occurs in equilibrium with soil or lake water (e.g., Cerling, 1984; Talbot, 1990; Cerling et al., 1997; Poage and Chamberlain, 2001; Garzione et al., 2004; Levin et al., 2006; Quade et al., 2011).

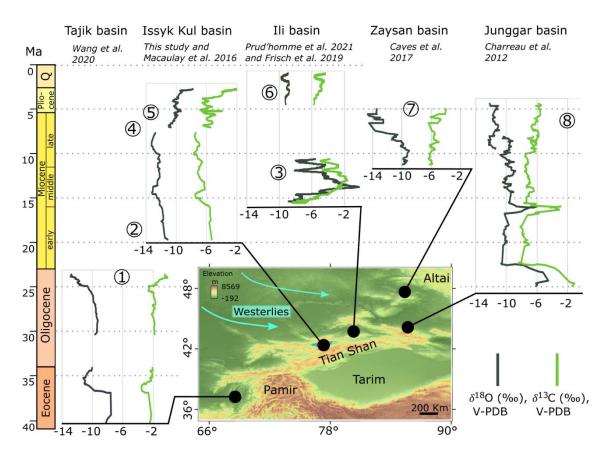

 δ^{18} O values of pedogenic and lacustrine/palustrine carbonate reflect the temperature of carbonate formation and the δ^{18} O values of soil water or lake water, respectively. In the absence of reconstructed carbonate formation temperatures, we interpret the pedogenic carbonate δ^{18} O values in terms of changes in δ^{18} O values of local precipitation (Cerling and Quade, 1993). We interpret the lacustrine and palustrine carbonate δ^{18} O values to reflect average precipitation δ^{18} O values within the catchment area (Talbot, 1990). δ^{18} O may be modified by the impact of lake level and evaporation dynamics. For example, the preferential release of ¹⁶O from lake water during evaporation leads to increased δ^{18} O values in response to enhanced evaporation.

Figure 3.10. δ^{18} O and δ^{13} C data from the Issyk-Kul basin plotted against the age model. Kaji Say and Ak Terek data plotted against the original age model of Roud et al. (2021). Using the revised age for the hiatus proposed in this manuscript would shift the lacustrine mudstones plotted at 5 Ma to 3 Ma. Jeti Oguz and Chon Kyzylsu data are from Macaulay et al. (2016), replotted using the age model of Roud et al. (2021).

Mountain growth leads to orographically-induced rainout, which preferentially removes ¹⁸O from water vapor and results in a systematic decrease of δ^{18} O values with elevation on the windward side and low δ^{18} O values in the lee (e.g., Chamberlain and Poage, 2000; Rowley and Garzione, 2007; Quade et al., 2011; Chamberlain et al., 2012; Mulch, 2016). Therefore, δ^{18} O values of pedogenic and lacustrine carbonates may provide a proxy for the δ^{18} O of meteoric water, and thus paleoelevation of carbonate formation.

Moreover, an increase in pedogenic carbonate δ^{18} O can point to increased evaporation or a shift in seasonality of precipitation to a warmer season. Aridity of Central Asia leads to an increase in soil and lake water evaporation, resulting in moisture recycling and high and relatively steady δ^{18} O values (Caves Rugenstein and Chamberlain, 2018). Furthermore, topographic growth of the Tian Shan created a seasonality pattern of winterspring precipitation on the windward (northwestern) side and summer precipitation within the range and on the leeward (southeastern) side (Baldwin and Vecchi, 2016). Dry winter conditions due to weak westerlies and a dominant Siberian High lead to orographic rainout of the westerly moisture on the windward side in winter, but prevalence of cyclonic activity at high elevations in the summer leads to rainfall at high elevations (Bershaw and Lechler, 2019). This effect results in low δ^{18} O values of winter precipitation on the windward side and high and steady δ^{18} O values of summer precipitation within the range and in the lee (Wang et al., 2016; Bershaw and Lechler, 2019).

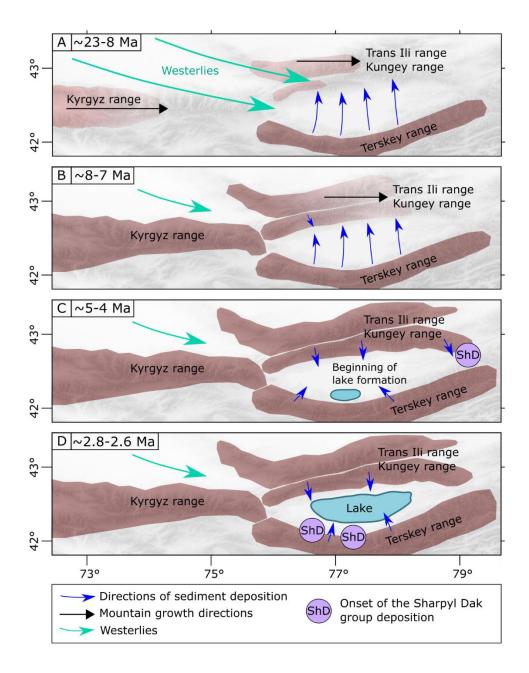
Figure 3.11. New and published δ^{18} O and δ^{13} C data from the basins on the northern (windward) side of the Tian Shan, Altai and Pamir, plotted against age. New data from the Issyk-Kul basin plotted against the original age model of Roud et al. (2021). All data except IIi basin are smoothed using a 6-point moving mean, data from the IIi basin are smoothed using a 30-point moving mean. Ili basin data from Hellwig et al. (2018) are not included due to a lack of age constraints. 1-8 show main events, reflected in the stable isotopic records (interpretations are taken from the corresponding articles): (1-2) – windward positions of the Tajik (Wang et al., 2020) and Issyk-Kul (this study and Macaulay et al., 2016) basins due to growing Tian Shan and Pamir; (3) – global climatic changes in the IIi basin caused by orbital forcing (Frisch et al., 2019), which are not reflected in time-equivalent records from other basins; (4) – change from a windward to leeward position of the Issyk-Kul basin after Kyrgyz, Kungey and Trans IIi ranges blocked the westerly moisture from reaching the basin (this study); (6) – aridification in Central Asia, caused by interactions between the westerlies and the Siberian High (Prud'homme et al., 2021); (7) – windward position of the Zaysan basin due to growing Altai (Caves et al., 2017); (8) – two records from the Junggar basin are controlled by hypsometry of the drainage basins and do not reflect climatic or tectonic changes (Charreau et al., 2012).

The δ^{13} C values of pedogenic carbonates are primarily driven by the carbon isotopic composition of vegetation and ultimately reflect the relative importance of atmospheric and soil-respired CO₂ during their formation (Cerling, 1984; Cerling and Quade; 1993).

Reduced precipitation theoretically leads to lower soil respiration rates and subsequently to a decrease in the soil carbonate formation depth and a higher contribution of atmospheric CO₂. Overall, a decrease in precipitation therefore typically results in more positive δ^{13} C values of pedogenic carbonates (e.g., Caves et al., 2016). Differences in fractionation of δ^{13} C in C₃ and C₄ plants during photosynthesis lead to ca. 14 per mil lower δ^{13} C values in C₃ plants. However, we neglect this effect because of scarce abundance of C₄ vegetation in Central Asia (e.g., Caves Rugenstein and Chamberlain, 2018).

Variations in lake carbonate δ^{13} C values generally reflect changes in biogenic productivity (e.g., Li and Ku, 1997). Because organic matter preferentially takes up the light carbon isotope (¹²C), increased biogenic productivity leads to a relative increase of ¹³C in dissolved CO₂, which is incorporated in carbonate during precipitation. Therefore, increased biogenic productivity in a lake leads to an increase in δ^{13} C in lacustrine carbonate. Hydrologically closed basins have no surface outlet and hence most water exits the basin through evaporation. δ^{13} C and δ^{18} O generally display a covariance in closed basins. This is typically the result of temperature changes during carbonate formation, which governs biogenic productivity as well as evaporation (e.g. Li and Ku, 1997).

3.5.3.2 Published stable isotopic records from the windward basins of the Tian Shan and Altai


By combining new stable isotope data from the Kaji Say and Ak Terek sections and published data from the Jeti Oguz and Chon Kyzylsu sections (Macaulay et al., 2016) with the age models for the four sections (Roud et al., 2021), we have compiled a continuous oxygen and carbon stable isotopic record that covers the time interval from the early Miocene to the early Pleistocene (Figure 3.10).

Other studied windward basins in the Tian Shan and Altai include the Ili basin (Hellwig et al., 2018; Frisch et al., 2019a; Prud'homme et al., 2021), Tajik basin (Wang et al., 2020), Junggar basin (Charreau et al., 2012), and Zaysan basin (Caves et al., 2017) (Figure 3.11). In the sedimentary section in the Tajik basin (1800-m-thick, 41-23.3 Ma), mudstones and carbonate cement in sandstones were analyzed. The δ^{18} O record shows a change toward wetter conditions after ca. 25 Ma when the basin setting shifted to a windward position due to the establishment of the Pamir and Tian Shan orographic barrier (Wang et al., 2020). The Kendyrlisai Valley section in the Ili basin is ca. 166-m-thick and is of late Oligocene to early Miocene ages. Starting from ca. 23.3 Ma, the sedimentary sequence records the establishment of a fluvial system, while the δ^{18} O and δ^{13} C values of pedogenic carbonates increase and reflect increasing aridity and pronounced seasonality

(Hellwig et al., 2018). The Aktau section in the Ili basin (371-m-thick, 15.6-10.6 Ma) provides a sedimentary record with pedogenic and lacustrine carbonates with features of early diagenesis and shows an overall increase in water availability, whereas the δ^{18} O and δ^{13} C values reflect changes in the depositional environment due to global climatic changes caused by orbital forcing (Frisch et al., 2019a). The δ^{18} O and δ^{13} C values of sampled pedogenic carbonates of the Charyn Canyon section in the Ili basin (ca. 80-m-thick, 4.5-0.5 Ma) reflect long-term aridification in Central Asia, caused by the interplay between the westerlies and the Siberian High (Prud'homme et al., 2021). In the Kuitun He (1800 m, ca. 10-4.5 Ma) and Jingou He (4500 m, ca. 26-8 Ma) sections in the Junggar basin, lacustrine and paleosol carbonates were analyzed, as well as carbonate cement from fluvial deposits. The δ^{18} O values of the two records are interpreted to be controlled by hypsometry of the drainage basin (Charreau et al., 2012). In the Zaysan basin section (188 m, 11.5-5 Ma), pedogenic carbonates were sampled and the late Miocene decrease in δ^{18} O values is interpreted to reflect the establishment of the spring and fall precipitation due to the downwind topographic growth of the Altai (Caves et al., 2017).

3.5.3.3 Climatic conditions from 23 to 8 Ma

 δ^{18} O and δ^{13} C records from the Jeti Oguz and Chon Kyzylsu sections suggest rather stable long-term climatic conditions between 23 and 8 Ma. One may observe a subtle negative trend upsection from ca. -3 to -5% to ca. -7 to -8% in δ^{13} C values and from ca. -9 to -11‰ to ca. -12 to -14‰ in δ^{18} O values (Figure 3.10), which may reflect the establishment of windward conditions at higher elevations within the basin and a progressively higher degree of orographic rainout since the early Miocene due to topographic growth of the Terskey range downwind (Figure 3.12A). The sampled rocks in the Jeti Oguz and Chon Kyzylsu sections are thin overbank deposits with a weak pedogenic overprint; therefore, river run-off water delivered to the river overbank during floodings possibly may have had an impact on stable isotopic values. An increase in catchment area's elevation would cause delivery of water from higher elevations within the Terskey range with lower δ^{18} O values that would result in lower δ^{18} O values of the carbonates. Concurrently, wetter conditions would increase soil respiration rates and/or decrease hydraulic stress on the C3 vegetation and lower δ^{13} C values (Macaulay et al., 2016). Therefore, this suggests that topographic growth of the Terskey range played the primary role in the decrease of δ^{18} O and δ^{13} C values between 23 and 8 Ma.

Figure 3.12. A schematic representation depicting the Neogene development of the Issyk-Kul basin. (A) Windward position of the Issyk-Kul basin due to growing Terskey range. Sediments from the Terskey range reach the low-elevated Kungey range area. (B) Sufficient surface uplift of the Kyrgyz, Kungey and Trans Ili ranges prevent the westerlies from reaching the Issyk-Kul basin. Issyk-Kul basin became leeward. (C) Beginning of lake formation in the Kaji Say area and commencement of Sharpyl Dak deposition in Jergalan due to tectonic activity. Sharpyl Dak sediments in Jergalan are sourced from the Kungey range. (D) Lake expansion and commencement of Sharpyl Dak deposition in the Kaji Say and Ak Terek areas.

A similar subtle decreasing trend in δ^{18} O values from the Tajik basin between ca. 25 and ca. 23.3 Ma, suggests the primary role of the growing topography in both Tajik and Issyk-Kul basins (Figure 3.11). At the same time, the late Oligocene – early Miocene stable isotopic records from the Ili basin show increasing trends of δ^{18} O from ca. -11 to ca. -7‰ and δ^{13} C from ca. -9 to ca. -5‰ (Hellwig et al, 2018; these data are not included in Figure 3.10 due to a lack of age constraints). The time-equivalent part of the Junggar basin δ^{18} O

and δ^{13} C records shows no trend with δ^{18} O values of ca. -10‰ and δ^{13} C values of ca. -8‰ (Figure 3.11). Not only the δ^{18} O values, but also the δ^{13} C values from the Issyk-Kul and Ili basins show opposing trends. Whereas the Issyk-Kul stable isotopic values reflect the topographic growth of the Terskey range, the results from the Ili basin are interpreted to reflect increased evaporation and aridification in Central Asia (Hellwig et al., 2018), and the Junggar record reflects the hypsometry of the drainage basin (Charreau et al., 2012). Even though higher water availability was detected in the Ili basin by the establishment of a fluvial system at ca. 23 Ma (Hellwig et al., 2018), and in the Junggar basin by the presence of lacustrine deposits in the late Oligocene (Charreau et al., 2012), the stable isotopic records from these two basins do not unequivocally point to locally wetter conditions. The slight negative δ^{18} O and δ^{13} C trends in the early Miocene deposits of the Issyk-Kul basin suggest wetter conditions that are mainly controlled by local topographic, rather than regional or global climatic factors.

The middle Miocene Issyk-Kul and Ili stable isotope records show drastically different values and trends (Figure 3.11). This can be explained by the difference in data resolution and the sampled sediment facies. The Ili basin represents lacustrine and distal alluvial facies and has 821 measurements spread over ca. 5 Ma (371 m; Frisch et al., 2019a), whereas the Jeti Oguz and Chon Kyzylsu records include 53 samples, which were taken from overbank pedogenic horizons and spread over ca. 15 Ma. The low-resolution Issyk-Kul record of isotopic values obtained from pedogenic carbonate is therefore mostly driven by long-term climatic conditions. In contrast, the Ili sedimentary succession reflects global climatic and orbital changes (Voigt et al., 2017; Frisch et al., 2019b), and the Ili stable isotopic record is reported to be primarily controlled by the changes in the depositional environment (Frisch et al., 2019a). Therefore, these two records cannot be directly compared. The Issyk-Kul, Zaysan and Junggar stable isotopic records of pedogenic carbonates suggest comparable and relatively unchanged paleoenvironments up to ca. 8 Ma with no significant influence of either climatic changes or mountain growth in the middle Miocene (Figure 3.11).

3.5.3.4 Positive shift in $\delta^{18}O$ and $\delta^{13}C$ values between 8 and 7 Ma

Between 8 and 7 Ma we observe a distinctive ca. 2‰ positive shift of δ^{18} O and δ^{13} C values within the Issyk-Kul basin (Figure 3.10). The shift occurs during a ca. 0.6 Ma gap in the combined Issyk-Kul basin record and occurs between the records from the Jeti Oguz and Chon Kyzylsu sections and the records from the Kaji Say and Ak Terek sections.

There are several possible mechanisms that could induce a ca. 2‰ shift in δ^{18} O and δ^{13} C values at 8-7 Ma. 1) Given that the ca. 0.6 Ma stratigraphic gap coincides with a change in sampling localities, the decrease in δ^{18} O values may result from spatial environmental changes within the basin (Figure 3.1C). 2) An orographically-induced change from a windward to a leeward position of the basin by changes in atmospheric circulation and topography to the northwest, blocking of moisture-bearing westerlies, and an increase in evaporation and aridification. 3) Global cooling and retreat of the Parathetys, the proximal moisture source for Central Asia, to the west, which reduced the amount of water vapor in the atmosphere and enhanced aridification during Miocene times (e.g., Ramstein et al., 1997; Zachos et al., 2001; Miao et al., 2012).

Differences in the geographic positions and depositional environments between the sections within the Issyk-Kul basin likely did not play a role in creating the observed change in δ^{18} O and δ^{13} C values. The amount of moisture and precipitation, as well as the isotopic composition of rainfall and mean annual temperature were likely the same within the basin. Even though the Kaji Say section is situated ca. 70 km west from the Jeti Oguz and Chon Kyzylsu sections, it is also ca. 50 km east from the Ak Terek section, and the δ^{18} O and δ^{13} C values at Kaji Say and Ak Terek overlap. Also, the Jeti Oguz and Chon Kyzylsu sections belong to the Shamsi sedimentary group, which consists of coarsergrained deposits than the Chu group of the Kaji Say and Ak Terek sections. However, there was no isotopic shift or change of trend in the coarse-grained alluvial deposits of the upper Chu and Sharpyl Dak groups compared to the finer-grained lower Chu deposits in the Kaji Say section. The match of the timing of the Shamsi-Chu transition and the shift in stable isotopic values mark a significant tectonic event that could have reorganized local climate and fluvial systems. We consider the intensification of basin-wide evaporation and aridification through changes in topography as the most plausible explanation for this observed shift. Contemporaneous stable isotope data from the Zaysan (Caves et al., 2017) and Junggar (Charreau et al., 2012) basins do not show a similar shift in δ^{18} O and δ^{13} C values or changes in the trends in the late Miocene (Figure 3.11). Therefore, we conclude that the positive shift had a local, rather than a regional or global driver, and that global cooling and Paratethys retreat were unlikely to have caused the isotopic shift in the Issyk-Kul record.

Low temperature thermochronological data show that the onset of deformation in the Terskey, Trans Ili, and Kungey ranges occurred during the late Oligocene – early Miocene (Macaulay et al., 2013, 2014, De Grave et al., 2013, De Pelsmaeker et al., 2015), with a second pulse of exhumation during the middle-late Miocene (Macaulay et al., 2014). Paleocurrent data from the Kungey range (Selander et al., 2012) indicate that sediments

from the southerly Terskey range were deposited in the Kungey area during the middle Miocene, implying that the Kungey range was relatively low-lying at that time; thus, Selander et al. (2012) proposed that substantial uplift of the Kungey happened during the second pulse of exhumation between 7 and 4 Ma. Thermochronological data from the Kyrgyz range, northwest of the Issyk-Kul basin, indicate that range uplift prograded eastward from 11 to 7 Ma (Bullen et al., 2001, 2003, Sobel et al., 2006b).

We therefore interpret the ca. 2‰ shift in δ^{18} O and δ^{13} C values between 8 and 7 Ma to be caused by sufficient surface uplift (ca. 1300 – 2000 m, Bookhagen and Strecker, 2008; Bookhagen and Burbank, 2010) of the Kyrgyz range, as well as the growth of the Trans Ili and Kungey ranges. The isotopic shift therefore reflects a change from a more windward to a more leeward position of the Issyk-Kul basin (Figures 3.12A-B). Prior to surface uplift of the aforementioned ranges, the Issyk-Kul basin received moisture by the westerlies coming mainly from the NW. The formation of a rain shadow would lead to a decrease in δ^{18} O values in the basin due to orographically-induced rainout on the windward sides of the Kyrgyz, Trans Ili and Kungey ranges. However, the ca. 2‰ shift and the switch of the stable isotopic trend from increasingly negative values between ca. 23 and 8 Ma to increasingly positive δ^{18} O values and relatively steady δ^{13} C values rather reflect an increase in aridity and evaporation as a result of surface uplift after ca. 8-7 Ma. Moreover, the change from a windward to a leeward position might have caused a change in the seasonality of precipitation due to interactions of the moisture-bearing air masses with high topography. At present, the Issyk-Kul basin is characterized by a spring and summer precipitation regime with higher δ^{18} O values of summer precipitation than winter precipitation (Baldwin and Vecchi, 2016; Macaulay et al., 2016; Wang et al., 2016). We suggest that the simultaneous establishment of a rain shadow, which would lower the δ^{18} O values, and an associated increase in aridity and change in the seasonality of precipitation, which would lead to an increase in the δ^{18} O values, led to a combined ca. 2‰ positive shift in the δ^{18} O record.

3.5.3.5 Climatic conditions from 7 to 2.5 Ma

Between 7 and 5 Ma, a subtle upsection trend towards more positive δ^{18} O and δ^{13} C values can be observed in Kaji Say. In Ak Terek, δ^{18} O and δ^{13} C values are more variable and lack a trend, which can reflect natural scatter of isotopic values and indicate a steady fluvial environment with no noticeable climatic changes. A meandering river, situated farther from the range front, has more diverse water sources and a larger drainage area than a proximal braided river near the range front. This results in the accumulation of runoff water with variable isotopic signals on a floodplain and, subsequently, in higher variability of δ^{18} O values in the water of a meandering rather than a braided river (Kent-Corson et al., 2009). Sediments in the two studied sections primarily record the isotopic signal of runoff river water, because, as mentioned above, in the Issyk-Kul basin summer rainout occurs at high elevations (Bershaw and Lechler, 2019), which is supported by palynology (Fortuna, 2016). Therefore, between 7 and 5 Ma the difference in Kaji Say and Ak Terek stable isotopic records may reflect a small difference between a more proximal position with respect to the Terskey range front of a braided river in Kaji Say and a more distal position of a meandering river at Ak Terek. The proximal position of the Kaji Say section with a smaller drainage area could result in higher sensitivity of pedogenic carbonates to changes in water isotopic composition and lead to the creation of the observed trend. Nevertheless, between 6.3 and 5 Ma the δ^{18} O and δ^{13} C values from the two sections overlap, suggesting a similar fluvial environment across the basin.

In the lower Chu unit of the Kaji Say section (fluvial-alluvial, 0 - 450 m; Figure 3.2), δ^{18} O and δ^{13} C values of sandstone cement and pedogenic carbonates are comparable (average values: $\delta^{18}O_{cement}$ = -10.4 \pm 0.9‰ and $\delta^{18}O_{pedogenic}$ = -10.2 \pm 0.4‰; $\delta^{13}C_{cement}$ = -6.1 \pm 0.5% and $\delta^{13}C_{\text{pedogenic}} = -4.7 \pm 0.8\%$), suggesting that both types of carbonate formed in similar near-surface conditions from meteoric water. In the upper Chu and the Sharpyl Dak units (alluvial and lacustrine, 450 - 700 m; Figure 3.2), lacustrine δ^{18} O values are comparable to the pedogenic carbonate δ^{18} O values, and sustain the trend towards more positive values without abrupt changes (average values: $\delta^{18}O_{\text{lacustrine}} = -8.8 \pm 0.9\%$ and $\delta^{18}O_{pedogenic} = -8.9 \pm 0.6\%$). This suggests that pedogenic and lacustrine carbonates reflect similar conditions and that the lake did not experience significant evaporation, which would increase the δ^{18} O and δ^{13} C values. The lacustrine samples from the Kaji Say section show a relatively weak correlation between the δ^{18} O and δ^{13} C values, with r = 0.49. Poor correlation with r < 0.7 (Talbot, 1990) suggests a hydrologically open lake system with relatively short water residence time and δ^{18} O values reflecting the isotopic composition of rainfall and inflowing river water (Talbot, 1990; Leng and Marshall, 2004). In contrast, the isotopic composition of lacustrine carbonates in closed lakes is mainly controlled by the hydrological balance and evaporation, so that the δ^{18} O and δ^{13} C values of lake water reflect lake level changes, showing variable and high δ^{18} O values and a strong covariance between δ^{18} O and δ^{13} C (Li and Ku, 1997; Leng and Marshall, 2004). The upper Chu and Sharpyl Dak units have more positive lacustrine mudstone δ^{13} C values (average value: δ^{13} C_{lacustrine mudstone} = -1.4 ± 1.0‰), while lacustrine marls and siltstones samples yield δ^{13} C values between those from pedogenic carbonates and lacustrine mudstones (average values: $\delta^{13}C_{\text{lacustrine marl and siltstone}} = -2.9 \pm 0.9\%$ and $\delta^{13}C_{\text{pedogenic}} = -4.3 \pm 0.9\%$). The distinctively more positive lacustrine mudstone δ^{13} C values likely represent higher biogenic activity within the lake.

Between 7 and 5 Ma, a subtle trend towards positive δ^{18} O values can be observed in the combined Issyk-Kul record when the data from the Kaji Say and Ak Terek sections are merged (Figure 3.10). This is in agreement with gradual aridification in the basin, which was primarily caused by the growth of the Kyrgyz, Kungey and Trans Ili ranges upwind and was also suggested by the spore and pollen data (Grigina and Fortuna, 1981). Aridification across Central Asia was enhanced since ca. 8-7 Ma (Jia et al., 2020), and global cooling intensified between ca. 7 and ca. 5.4 Ma (Herbert et al., 2016). Therefore, primarily orographically-induced aridification in the Issyk-Kul basin might have been sustained and amplified by global factors. During this period, the δ^{18} O and δ^{13} C data are comparable in the Issyk-Kul and Junggar basins and reflect similar climatic conditions (Figure 3.11). The ca. 2‰ difference in δ^{18} O values of the two records from the Junggar basin is interpreted to be caused by differences in elevation of the catchment area (Charreau et al., 2012), which might also be the case for the ca. 2‰ difference between the Issyk-Kul and Junggar records. The ca. 4‰ lower δ^{18} O values from the Zaysan basin compared to Issyk-Kul can be explained by the windward position of the Zaysan basin, while the Issyk-Kul basin maintained a leeward position starting from ca. 8 Ma (Figure 3.11). Growth of the Altai, downwind from the Zaysan basin, led to changes in the interactions of the cyclones and topography, and, subsequently, in the seasonality of precipitation, resulting in a decrease in δ^{18} O values (Caves et al., 2017).

From 4.5 to 2.5 Ma the stable isotopic values from the Issyk-Kul basin are comparable to the values from the nearby IIi basin (Figure 3.11). The IIi basin record is interpreted to be primarily controlled by global climatic changes and to reflect relatively warm and wet conditions between ca. 4.5-3.3 Ma with the dominance of the westerlies and aridification between ca. 3.3-2 Ma due to a southward shift of the westerlies and the prevalence of dry air masses from the Siberian High (Prud'homme et al., 2021). The similarity in records from the two basins indicates that the primarily orographically-induced aridification in the Issyk-Kul basin has been enhanced by these changes in the moisture source at that time.

We conclude that the stable isotopic record from the Issyk-Kul basin reflects a relatively steady environment of a leeward basin with a possible influence of global climatic changes from ca. 7 to ca. 2 Ma. Similarity in records from the northern side of the Tian Shan (Issyk-Kul, Ili, and Junggar basins) may indicate that during this time the character of interactions between the Tian Shan and the westerlies was relatively steady and similar along the range.

3.5.4.1 Three episodes of deformation

Deciphering the relative importance of climate and tectonics on the creation of lake Issyk-Kul requires understanding the stratigraphic, climatic and tectonic records of the formation of the Issyk-Kul basin. The most useful record for this purpose comes from the Kaji Say area, where we see evidence of three deformation episodes.

The first deformation episode recorded in the section occurred at about 5 Ma. The braided river system, which delivered grey granitic conglomerates, was succeeded by lacustrine deposition. The decrease in fluvial clastic input allowed time for lacustrine carbonate mud to precipitate during periods of lake highstands, and for pedogenic carbonate to form during dry periods. We suggest that deformation close to the modern Terskey range front was responsible for a change in drainage pattern; clastic material was apparently delivered either to the east or west along strike. Lacustrine deposition with reduced clastic input in a subsiding basin may reflect slower accumulation rates than in a fluvial system. Lacustrine deposition of poorly-sorted matrix-supported angular rocks from the Taldysui subvolcanic complex, which is the nearest source area. These pulses could have been caused by either an increase in local tectonic activity, by climatically-driven floods, or the combination of the two factors.

Northwestern thickening of the beds in the upper Chu unit indicates the presence of growth strata, which record the second episode of deformation (Figure 3.4). The growth strata can be observed at ca. 480-640 m in the stratigraphic section (Figure 3.3F), i.e. after the 2 Ma hiatus proposed by Roud, et al. (2021). There is no visible unconformity at the base or within the growth strata and the bedding strike does not change; therefore, the orientation of the stress field likely did not change at this time.

The third episode of deformation is represented by folding of the section. This fold is very tight to overturned and only affects the stratigraphy between ca. 245-480 m in the stratigraphic section, which is deeper in the section than the growth strata and located on the eastern flank of this outcrop. The core of the fold is marked by vertically-dipping strata. However, both the overlying growth strata, observed to the northwest, and the base of the section, observed to the south-southeast, have much gentler dips (Figure 3.4). We suggest that this stage of deformation is younger than 2 Ma, because there is no unconformity within the section and because this folding would have prevented

northward transportation of the coarse Sharpyl Dak sediments, which outcrop on the north side of this fold.

3.5.4.2 Lake formation in the late Miocene

Lake formation started in the late Miocene in the southern part of the basin in the Kaji Say area (Figure 3.12). There, individual lacustrine and beach beds transition into fluvial sandstone beds eastward or grow thinner and disappear. Growth strata also thicken to the west. This suggests that the deeper part of the basin was located westward along strike. The first lacustrine and beach facies deposits observed in the area are stratigraphically older than those recorded in the described Kaji Say section. They appear ca. 200 m to the west and do not reach the measured section (Figure 3.4). Their stratigraphic position roughly corresponds to 360-380 m in our studied section. Gradual lake progression and northwest thickening of the growth strata suggest enhanced subsidence to the west of the section during the late Miocene-Pliocene. This generally agrees with shallow seismic reflection data from the lake basin that shows that in Holocene time, subsidence was higher in the southern part of the lake basin than in the northern part (Gebhardt et al., 2017). Eastward growth of the Terskey range in the middle – late Miocene (Macaulay et al., 2014) and eastward spreading of the depositional area due to growth of the Kungey range in the late Miocene (Selander et al., 2012) support the idea that higher subsidence occurred in the southwestern part of the basin. However, the steady fluvial environment in the Ak Terek section shows that the lake first formed locally in the Kaji Say area. We conclude that enhanced subsidence in the Kaji Say area (and likely farther north, beneath the modern lake) led to formation of a topographic depression in the late Miocene and enabled formation of the lake on the southern side of the basin. Enhanced subsidence led most likely simultaneously to an internally drained basin, i.e. a closed basin without a surface outlet. Therefore, even though moisture delivery was reduced due to the creation of an orographic barrier, moisture retention in the closed basin resulted in a lake phase. Furthermore, sedimentological evidence of a local shallow lake presence in the early Miocene – Pliocene was observed in the subsurface deposits obtained from the boreholes on the eastern side of the basin (Grigina and Fortuna, 1981; Voskresenskaya, 2013; Voskresenskaya and Leflat, 2015). However, this age constraint is based only on lithostratigraphical correlation of the deposits to the Shamsi and Chu groups and, therefore is imprecise.

3.5.4.3 Position of the hiatus

Roud et al. (2021) proposed a 2 Ma hiatus between ca. 5 and ca. 3 Ma based on the interpretation of the magnetic polarity record (Figure 3.2). The hiatus may be detected by

a short interval of one reversed and two transitional polarity samples within a long normal polarity interval. The hiatus was placed at 475 m in the section within an alternation of thin lacustrine mudstones, marls, and sandstones. The end of the hiatus roughly marks the beginning of the growth strata formation. Here, we discuss the hiatus in terms of the sedimentology and the depositional system. The position of the hiatus at 475 m within the interbedded beach and lacustrine deposits might be caused by changes in fluvial input and the disappearance of the braided river system in response to the first stage of deformation in the area. However, deposition of thin, lacustrine and beach sandstone beds implies rapid changes in the depositional environment, which may not be consistent with a depositional hiatus. Moreover, pedogenic alteration in the lacustrine mudstone is weak, indicating that dry periods with no sedimentation were relatively short (Alonso-Zarza, 2003). We suggest that the hiatus actually occurred slightly earlier, during deposition of the first beach facies at 450 m in the section (a shift from lower Chu to upper Chu; Figure 3.2). We assume that the presence of the lake might not be recorded in local stratigraphy if the lake margin and beach position did not change significantly over a period of time. Reworking of material to sustain the beach would prevent rapid soil formation. Together with the disappearance of the braided river system, this would create a gap in the stratigraphic record. This 1.5-m-thick beach sandstone bed at 450 m in the section consists of well reworked and sorted coarse quartz sandstone and is laterally continuous. Such characteristics suggest a long-term and stable beach position without frequent lake transgressions and represent a more plausible stratigraphic location for the hiatus. This interpretation stipulates that the position of the hiatus is within the interval of normal magnetic polarity. Assuming a continuous accumulation rate of ca. 23 cm ka⁻¹, the 25 m downward shift of the stratigraphic position would correspond to an increase of ca. 100 ka in the age of the hiatus, i.e. it would place the hiatus between 5.2 and 3.1 Ma rather than between 5.1 and 3.0 Ma.

As mentioned above, the Kaji Say section consists of the western and eastern transects, situated in different valleys (Figure 3.4). The reversed and transitional polarity samples, which bound the interpreted hiatus, are situated at the base of the western transect. We cannot exclude the possibility that the lacustrine deposits with slow accumulation rates represent a condensed section and some magnetic reversals might have been missed between the two transects. We note that lacustrine micritic carbonates were avoided while collecting paleomagnetic samples as they would likely provide a biased and unreliable magnetic record (Roud et al., 2021). The hiatus may also be misplaced due to general differences in the sedimentation rates of fluvial-alluvial and lacustrine deposits. As we discussed earlier, lacustrine deposits gradually change into fluvial-alluvial sandstones eastward in the Kaji Say area and, therefore, the sedimentation rates also can change

laterally. It may be that instead of one long hiatus, the lake experienced a series of shorter hiatuses because of the shifts between the periods of slow lake sediment accumulation, pedogenesis, and rapid debris flow deposition. The studied section may not represent a complete magnetostratigraphic sequence or the polarity intervals may be of different stratigraphic thickness due to increase in sedimentation rates from lacustrine to fluvial environment. However, variations in alternation of lacustrine and fluvial-alluvial deposits in the Kaji Say area can only affect the distribution of possible hiatus positions in the middle of the section. A fluvial system of the lower part of the section represents a steady depositional environment without changes along strike. Moreover, the robust correlation of the magnetostratigraphic age model and 26 Al/¹⁰Be data proves the 2.8-2.6 Ma age of the Chu – Sharpyl Dak transition. Therefore, we consider the overall magnetostratigraphic model to be reliable.

<u>3.5.5 Tectonic and climatic development of the Issyk-Kul basin in the late</u> <u>Miocene - Pliocene</u>

3.5.5.1 Diachronous deposition of the Sharpyl Dak group conglomerates

The hiatus in the Kaji Say section at ca. 5 Ma and disappearance of grey granitic conglomerates possibly reflect tectonically-driven reorganization of the local river system. Intensified tectonic activity in the early Pliocene is also indicated by a short period of increased sedimentation rates in the Ak Terek section at 5 Ma (Roud et al., 2021), and 4-5 Ma onset of Sharpyl Dak deposition at Jergalan. South-directed paleocurrents at Jergalan suggest that Sharpyl Dak deposits were sourced from the Kungey range. Deposition of the Sharpyl Dak group at Jergalan ca. 2 Ma earlier than in the Kaji Say and Ak Terek sections could be driven tectonically because of the eastward progradation of the Kungey range (Figure 3.12). Thermochronological data also show that exhumation increased at 15-5 Ma in the Kyrgyz Tian Shan and that the Terskey range also grew eastward, although lateral propagation was complicated as the deformation in the Terskey range progressed out of sequence (Macaulay et al., 2014). The Xiyu group in the Chinese Tian Shan, which is analogous to the Sharpyl Dak group in the Kyrgyz Tian Shan, is reported to be deposited diachronously with the ages from 15 to 0.7 Ma across Central Asia (e.g., Chen et al., 2002; Heermance et al., 2007). Xiyu deposits have a ca. 3 Ma age difference in the Junggar basin (Charreau et al., 2009). In the Junggar basin, the late Miocene Xiyu-like deposits are related to tectonic activity, while deposition of the younger Pliocene-Pleistocene conglomerates is believed to be induced by the onset of the Northern Hemisphere glaciation (Zhao et al., 2021). Therefore, a ca. 2 Ma age difference for the onset of Sharpyl Dak deposition within the Issyk-Kul basin is plausible. Intensive Pliocene conglomerate deposition in the Jergalan area might have temporarily blocked westward-draining rivers, possibly permanently blocking a paleo-drainage connection with the Ketmensk basin, causing sediment starvation in the Issyk-Kul basin and helping the lake expand. Channels feeding the eastern submerged lake delta are visible now and are associated with the modern rivers that flow westward into the lake (De Batist et al., 2002).

3.5.5.2 Influence of global climatic changes on sedimentation and lake development in the basin

The Pliocene was characterized by the meridional poleward shift of the westerlies, responsible for changes in moisture delivery (Abell et al., 2021). This shift of the westerlies at 5-3.3 Ma caused relatively high rainfall and fluvial activity in Northern Central Asia, as detected in the windward Ili basin (Prud'homme et al., 2021). Although our stable isotopic data does not show intensifying influence of the westerlies, the spore and pollen data from the Issyk-Kul basin suggest wetter conditions in the early Pliocene (Grigina and Fortuna, 1981). We suggest that despite the leeward position of the Issyk-Kul basin, a relatively high level of precipitation and water availability might be marked by expansion of a lake in the Kaji Say area and by the presence of a steady meandering river at Ak Terek with increasing abundance of paleosols from ca. 6 to ca. 3.5 Ma. Increased precipitation might also have enhanced tectonically-driven sedimentation in the Jergalan area.

Late Pliocene expansion of the Northern Hemisphere ice sheets caused a southward shift of the westerlies (Abell et al., 2021). The Siberian High reached the Tian Shan and amplified aridification in Northern Central Asia (Prud'homme et al., 2021). Cooling, aridification, increased aeolian sedimentation in the Ili basin since ca. 3.3 Ma and increased erosion in the Junggar basin since ca. 3 Ma are interpreted to be triggered by prevalence of cold and dry air masses of the strengthened Siberian High and connected to the onset of Northern Hemisphere glaciation (Charreau et al., 2011; Prud'homme et al., 2021). In the Tarim basin, southward-shifted westerlies enhanced aridification since ca. 2.7 Ma (Fang et al., 2020), and a possible Northern Hemisphere glaciation impact was detected in the Qaidam basin since ca. 3.3 Ma (Zhuang et al., 2011). In the Issyk-Kul basin, increased sedimentation and continuing aridification might have been enhanced by the Siberian High and Northern Hemisphere glaciation. Accumulation of the alluvial fan debris flow deposits since ca. 3 Ma at Kaji Say, an increase in the abundance of conglomerates at Ak Terek since ca. 3.5 Ma, as well as deposition of the Sharpyl Dak conglomerates at Ak Terek and Kaji Say since ca. 2.7 Ma may reflect accumulation of sediments derived from upstream glaciation, as well as tectonically-driven deposition. The spore and pollen data suggest intensified aridification in the basin in the late Pliocene

(Grigina and Fortuna, 1981). Increased evaporation due to aridification, as well as vast conglomerate accumulation have affected the lake-level fluctuations and moved the lake shore from the Kaji Say area towards the center of the basin (Figure 3.12D). Lake-level variations of at least 400 m in Issyk-Kul during the Holocene are also connected to changes in precipitation and evaporation due to interactions between the westerlies and the Siberian High rather than tectonic activity (Gebhardt et al., 2017). Today, the Issyk-Kul basin is an underfilled basin, with water depths of up to 668 m. The main sediment input since middle Pleistocene is represented by a westward-propagating delta system at the east end of the lake (De Batist et al., 2002; Gebhardt et al., 2017). We propose that the onset of lacustrine deposition at ca. 5 Ma reflects the commencement of the underfilled basin system. However, proof of this hypothesis will require stratigraphic information taken from deep cores within the lake. A related question is whether basin-wide accumulation rates were drastically reduced.

3.6 CONCLUSIONS

The most notable finding of our study of the Issyk-Kul basin is an environmental change that is expressed by a shift of ca. 2‰ in δ^{18} O and δ^{13} C values at ca. 8-7 Ma and an associated change from a negative to a positive stable isotopic trend. We suggest that the upwind growth of the Kyrgyz, Kungey and Trans IIi (Zaili) ranges created an orographic barrier that diverted westerly moisture sources at ca. 8-7 Ma, which changed the position of the Issyk-Kul basin from windward to leeward, and led to the establishment of the modern-day spring and summer precipitation regime. The associated creation of a rain shadow led to enhanced aridification and evaporation, as expressed in δ^{18} O and δ^{13} C values. During the late Miocene – Pliocene, the primarily orographically-induced aridification in the Issyk-Kul basin has likely been strengthened by the periodic dominance of dry air masses of the Siberian High during Northern Hemisphere glaciations, when the moisture-bearing westerlies shifted southward.

The transition from the Chu sedimentary group, which consist of fluvial-alluvial sandstones and conglomerates, to massive alluvial conglomerates of the Sharpyl Dak group marks the change from a fluvial-alluvial system to a proximal alluvial fan. Our ²⁶Al/¹⁰Be isochron burial data suggests a 5-4 Ma age for the transition between the Chu and Sharpyl Dak sedimentary groups in the eastern part of the basin in the Jergalan area; south-directed paleocurrents there suggest the growth of the eastern Kungey range at 5-4 Ma. Also, ²⁶Al/¹⁰Be isochron burial dating confirms the previously proposed 2.6-2.8 Ma age of the transition between the Chu and Sharpyl Dak sedimentary groups on the

southern side of the Issyk-Kul basin (Roud et al., 2021). Initiation of the Sharpyl Dak conglomerates' deposition at 2.6-2.8 Ma on the southern side of the basin could have been induced tectonically or by the North Hemisphere glaciation, while older late Pliocene Sharpyl Dak deposition in the Jergalan area is related to intensified tectonic activity.

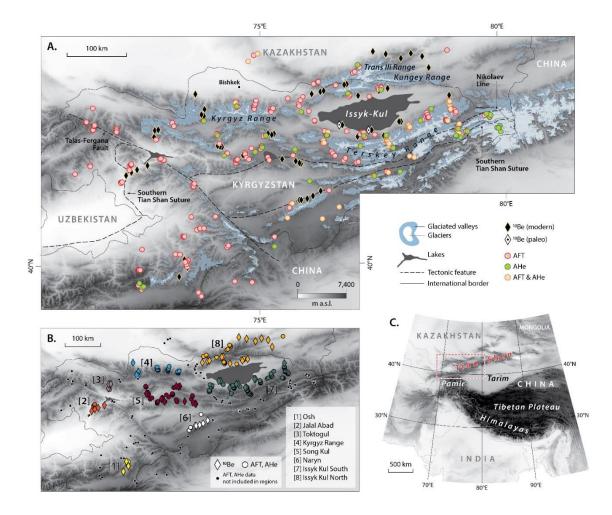
We propose the formation of an internally drained lake Issyk-Kul at ca. 5 Ma on the southern side of the basin due to enhanced subsidence and reorganization of the river systems in the Kaji Say area. Initiation of lake formation coincides with the disappearance of the braided river system and a 2 Ma hiatus in deposition. Changes in the fluvial network and basin subsidence rates were likely induced by deformation of the Terskey range. We suggest that the hiatus occurred because of fluctuations of the water level in a shallow lake with dry periods of very slow sedimentation and a stable lake margin, so that the beach facies deposits were regularly reworked without subsequent sediment accumulation or pedogenesis. Aridification and conglomerate accumulation since the late Pliocene have moved the lake shore towards the center of the basin.

4 IMPACT OF QUATERNARY **GLACIATIONS** ON TIAN DENUDATION THE **K**YRGYZ SHAN RATES IN ^{10}BE COSMOGENIC AND INFERRED FROM LOW-**TEMPERATURE THERMOCHRONOLOGY**

Anna Kudriavtseva, Alexandru T. Codilean, Edward R. Sobel, Angela Landgraf, Réka-H. Fülöp, Atyrgul Dzhumabaeva, Kanatbek Abdrakhmatov, Klaus M. Wilcken, Taylor Schildgen, David Fink, Toshiyuki Fujioka, Swenja Rosenwinkel, Silke Merchel, & Georg Rugel

ABSTRACT

We explore the spatial and temporal variations in denudation rates in the Kyrgyz Tian Shan using ¹⁰Be-derived denudation rates from modern (n = 54) and buried sediment dated to 2.0-2.7 Ma (n = 3), and long-term exhumation rates derived from published apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology. Modern ¹⁰Be denudation rates are generally higher than the long-term AFT and AHe exhumation rates across the studied area. On average, the highest ¹⁰Be denudation rates are recorded in the Terskey range, south of Lake Issyk-Kul. Here, modern denudation rates are higher than ¹⁰Be-derived paleo-denudation rates, which are comparable in magnitude with the long-term exhumation rates inferred from AFT and AHe. We propose that denudation in the Kyrgyz Tian Shan, particularly in the Terskey range, remained relatively steady during the Neogene and early Pleistocene. Denudation increased due to glacialinterglacial cycles in the Quaternary, but this occurred after the onset and intensification of the Northern Hemisphere glaciation at 2.7 Ma. Comparison with published data from the wider Pamir-Tian Shan region show a spatial trend of decreasing modern denudation rates from west to east, suggesting that deformation controls denudation in the Pamir and Western Tian Shan, while further east, the denudational response of the landscape to Quaternary glaciations becomes detectable. We find moderate correlations between modern denudation rates and topographic metrics and weak correlation between denudation rate and annual rainfall, highlighting complex linkages between tectonics, climate, and surface processes that vary locally.


4.1 INTRODUCTION

The evolution of orogens depends on the balance between rock uplift and denudation, which reflects complex interactions among tectonics, climate, and surface processes (Molnar & England, 1990; Raymo & Ruddiman, 1992; Avouac & Burov, 1996;

Montgomery & Brandon, 2002; Burbank et al., 2003; Whipple, 2009). However, these factors are often interdependent, and their relative importance for denudation is mainly controlled by regional and local conditions (Portenga & Bierman, 2011; Chen et al., 2022b). On a global scale, denudation has been argued to either increase with the late Cenozoic onset of Northern Hemisphere glaciations (Zhang et al., 2001; Molnar, 2004; Herman et al., 2013, 2018; Herman & Champagnac, 2016, Norton & Schlunegger, 2017; Chen et al., 2022b), or remain steady (Willenbring & von Blackenburg, 2010; Willenbring & Jerolmack, 2016). However, other studies argue that denudation rates are too poorly resolved during the late Cenozoic to determine any global patterns (Schildgen et al., 2018), but at least locally, they have been argued to be primarily controlled by enhanced tectonic activity (Koppes & Montgomery, 2009; Hecht & Oguchi, 2017) or by post-orogenic isostatic rebound of foreland basins (Bernard & Sinclair, 2022).

During the Cenozoic, Central Asia experienced extensive tectonic deformation associated with uplift of the Tibetan Plateau, the Pamir mountains, the Tian Shan, and the Altai mountains (Molnar & Tapponnier, 1975), as well as dramatic changes in climate associated with the onset of Quaternary glacial-interglacial cycles (Caves et al., 2016; Batbaatar et al., 2020). Moreover, the Tian Shan creates an important topographic barrier to moisture-bearing westerly winds, playing a crucial role in the Cenozoic aridification of Central Asia (Caves Rugenstein & Chamberlain, 2018).

Studies on the Cenozoic denudation in the Pamir (Fuchs et al., 2015; Grin et al., 2018) and the Eastern (Chinese) Tian Shan (Charreau et al., 2011, 2017, 2023; Liu et al., 2011; Guerit et al., 2016; Puchol et al., 2017; Guan et al., 2022) shed light on spatio-temporal variations in denudation throughout northern Central Asia, yet denudation within the Kyrgyz part of the Tian Shan (Figure 4.1), situated between the Pamir and Chinese Tian Shan, has been poorly studied. Available thermochronology data from the Kyrgyz Tian Shan help to constrain exhumation rates averaging over million-year timescales; however, these data are not suitable for evaluating the variability of late-Cenozoic denudation rates following the Plio-Pleistocene onset of Northern Hemisphere glaciations (e.g.,Reiners & Brandon, 2006).

Figure 4.1. Topographic maps of the Tian Shan based on the 90-m SRTM DEM and distribution of samples. (A) Positions of ¹⁰Be, AFT, and AHe samples across the Kyrgyz Tian Shan. (B) Distribution of ¹⁰Be, AFT, and AHe samples by region within the Kyrgyz Tian Shan. (C) Position of the Kyrgyz Tian Shan in Central Asia. Glacier and glaciated valley extents based on Stroeven et al. (2013).

Here we present ¹⁰Be-derived basin-wide denudation rates from modern river sediment (n = 54) from across the Kyrgyz Tian Shan and the Kazakh part of the Trans IIi (Zaili) and Kungey ranges, as well as ¹⁰Be-derived paleo-denudation rates from buried river sediment dated to 2.0–2.7 Ma (n = 3) from the southern side of the Issyk-Kul basin (Figure 4.1A). We compare these data to long-term exhumation rates calculated from published apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology data. We also explore relationships between denudation rates and geomorphic, tectonic, and climatic parameters to identify potential controls on denudation at the regional and local scales. Taken together, these data provide insights into spatial and temporal variations in denudation in the Kyrgyz Tian Shan and allow us to untangle the effects of tectonics and climatic changes on denudation across the range.

4.2 TECTONIC AND CLIMATIC SETTING

The Tian Shan is a 2500-km long intracontinental mountain belt, situated between the Tarim and Tadjik basins to the south and the Kazakh platform to the north, and extending over the territories of north-western China, Kyrgyzstan, southern Kazakhstan, eastern Uzbekistan, and northern Tajikistan (Figure 4.1C).

The Kyrgyz Tian Shan is composed of the Northern, Middle, and Southern terranes, formed by accretion and collision during the Palaeozoic (e.g., Windley et al., 2007; Biske & Seltmann, 2010). The terranes are cross-cut by the dextral strike-slip Talas-Fergana Fault and separated by the sinistral strike-slip Nikolaev Line and the Southern Tian Shan Suture (Figure 4.1A) (Bazhenov & Mikolaichuk, 2004; Glorie et al., 2011; Alexeiev et al., 2017). In the Mesozoic and early Cenozoic, the Tian Shan was periodically reactivated in response to distal collisions (Hendrix et al., 1992; Jolivet et al., 2010; De Grave et al., 2013), followed by a period of tectonic quiescence (Abdrakhmatov et al., 2001; Macaulay et al., 2013).

The present topography of the Tian Shan is a result of crustal shortening triggered by the most recent deformation due to the India-Asia collision (Molnar & Tapponier, 1975). Cenozoic deformation in the Kyrgyz Tian Shan progressed out of sequence and associated rock uplift rates vary along strike (Thompson et al., 2002; Glorie et al., 2011, Goode et al., 2014; Macaulay et al., 2014; Bande et al., 2017b; Glorie & De Grave, 2016). Deformation started in the late Oligocene at ca. 25 Ma, as indicated by thermochronology, and remained tectonically confined to the major fault zones (Sobel et al., 2006a; Glorie & De Grave, 2016). North-south shortening and deformation in the Tian Shan intensified at ca. 15–5 Ma and caused widespread thrusting at ca. 10 Ma (e.g., Bullen et al., 2003; Jolivet et al., 2010; Zubovich et al., 2010; Macaulay et al., 2014; Bande et al., 2017a; Li et al., 2022; Wang et al., 2023). Deformation in the interior ranges possibly intensified at ca. 3-2 Ma (e.g., Glorie et al., 2010, 2011; Goode et al., 2014; Macaulay et al., 2014) mostly in the western and partly in the central parts of the Tian Shan (Wang et al., 2023). Strike slip displacement of the Talas-Fergana Fault commenced at ca. 25 Ma and was relatively rapid until ca. 13.5 Ma (Bande et al., 2017b). The Cenozoic shortening in the Tian Shan decreases from south to north. The present-day shortening rate in the central Tian Shan is ca. 20 mm yr⁻¹, which is approximately half of the present-day India-Asia convergence rate (Abdrakhmatov et al., 1996; Zubovich et al., 2010). Quaternary shortening is distributed across the entire Tian Shan and rates are inferred to be similar to modern shortening rates. However, seismicity seems to be concentrated along the northern margin, including a significant series of five large-magnitudes earthquakes

between AD 1885 and 1938 (M6.9 to >8) (e.g., Landgraf et al., 2016). The most rapid Quaternary shortening documented in the Kyrgyz Tian Shan occurred in the Naryn basin (Thompson et al., 2002).

Climate in Central Asia during the Cenozoic has been arid and mainly influenced by the northern mid-latitude westerlies, which transport moisture eastward across Eurasia (e.g., Caves et al., 2015, 2016). Aridification was likely caused by a decrease in the westerlies' moisture flux, which resulted from Cenozoic global cooling and Parathethys retreat (Ramstein et al., 1997; Miao et al., 2012), as well as the creation of an orographic barrier due to surface uplift of the Tibetan Plateau and Tian Shan, and the indentation of the Pamir (Kent-Corson et al., 2009; Caves Rugenstein & Chamberlain, 2018; Wang et al., 2020). The Tian Shan has interacted with the westerlies since the late Oligocene (Wang et al., 2020). In mid-Pliocene and Quaternary interglacial periods, precipitation increased due to the northward migration of the latter (Botsyun et al., 2022).

Modern precipitation in the Tian Shan is controlled by interactions between the westerlies and the Siberian High (Aizen et al., 1997; Zech, 2012; Schwarz et al., 2017). The westerlies bring moisture from the North Atlantic, the Mediterranean, and the Black Sea (Aizen et al., 2006; Lauterbach et al., 2014). In winter, the Siberian High reaches the Tian Shan and blocks the midlatitude westerlies, resulting in cold conditions and low precipitation (Aizen et al., 2001; Ricketts et al., 2001). The Asian monsoon never consistently reached the Tian Shan and does not influence precipitation and long-term climate within the range (Caves et al., 2015; Wu et al., 2022). Presently, an orographic barrier created by the range is responsible for the seasonality of precipitation, with dominantly winter-spring precipitation on the windward (north-western) side of the Tian Shan and summer precipitation within the range and on its leeward (south-eastern) side (Baldwin & Vecchi, 2016). This seasonality is created because in winter a combination of the prevalent Siberian High and weak westerlies leads to orographic rainout of the westerly moisture on the windward side, while strong cyclonic activity at high elevations in the summer leads to rainfall at high elevations (Bershaw & Lechler, 2019).

Summarizing the above, high topography of the Tian Shan developed during the Neogene due to India-Asia collision, with the most significant intensification at 15-5 Ma. The range prevents the westerly moisture from reaching the Chinese part of Central Asia, playing a part in aridification.

4.3 MATERIALS AND METHODS

4.3.1. COSMOGENIC ¹⁰BE ANALYSIS

Cosmogenic ¹⁰Be produced in quartz has proven to be the best suited technique for studying the erosion of Earth's continental topography over millennial timescales (Schaefer et al., 2022). Indeed, ¹⁰Be-based denudation rates have now been determined in more than 4000 river basins – mostly from mountain landscapes – providing us with a large inventory of denudation rate estimates (Codilean et al., 2018; 2022). The concentration of ¹⁰Be nuclides in river sediments is proportional to their exposure age, with the highest ¹⁰Be concentrations reflecting longer exposure time and, consequently, slower denudation (Granger & Schaller, 2014; Schaefer et al., 2022).

4.3.1.1. Sampling

We collected 54 modern river sediment samples to calculate ¹⁰Be-derived millennialscale basin-wide denudation rates (Figures 4.1A and Supplementary Figure S4.1, Supplementary Table S4.1). Sampling was performed in locations across Kyrgyzstan accessible by road with the purpose of covering the largest possible area of the Kyrgyz Tian Shan and covering several catchments in individual ranges, if possible. River sediment was sieved in the field to isolate the 250–500 µm fraction for analysis. At two sampling locations we also collected material in the 8–16 mm (samples KYR16-01B and KYR16-02B) and 16–32 mm (sample KYR16-01C) grain size ranges. Sampling of buried sediments for calculation of ¹⁰Be-derived paleo-denudation rates and calculation of ages using isochron burial dating (Figure 4.1A, Supplementary Table S4.2) are described in Kudriavtseva et al. (2023). Our sample inventory includes one modern river sediment sample (KYR-DRMS1) previously reported by Landgraf et al (2016).

4.3.1.2. Sample Preparation

Quartz was purified following procedures described in Kohl & Nishiizumi (1992) using froth flotation to separate feldspars from quartz. For all samples except those labelled 'DRMS' in Supplementary Table S4.1, beryllium was separated at the University of Wollongong following procedures described in Codilean et al. (2023). Samples were spiked with \approx 300 µg of ⁹Be from a low-level beryllium carrier solution added prior to complete HF dissolution. ¹⁰Be/⁹Be ratios were measured using the 10 MV ANTARES accelerator (samples with cathode ID's in Supplementary Table S4.1 starting with 'B') and using the 6MV SIRIUS accelerator (samples with cathode ID's in Supplementary Table S4.1 starting with 'Be' and 'XBE') at the Australian Nuclear Science and Technology Organisation (ANSTO) (Fink & Smith, 2007; Wilcken et al., 2017, 2019, 2022), and were normalised to the KN-5-2 and KN-5-3 (Nishiizumi et al., 2007) standards. Analytical uncertainties for the final ¹⁰Be concentrations (atoms g^{-1}) include AMS measurement uncertainties (the larger of counting statistics or standard deviation of repeats and blank corrections) in quadrature with 1-2% for ¹⁰Be standard reproducibility (depending on the individual AMS measurement conditions) and 1% uncertainty in the ⁹Be carrier concentration. Samples labelled 'DRMS' were prepared and analysed at the DREAMS facility at Helmholtz-Zentrum Dresden Rossendorf (Rugel et al., 2016).

4.3.1.3. Denudation rates from modern samples

Denudation rates were calculated using the open-source program CAIRN v.1 (Mudd et al., 2016). Basin-averaged nuclide production from neutrons and muons was calculated with the approximation of Braucher et al. (2011) and using a sea-level and high-latitude total production rate of 4.3 atoms g⁻¹ yr⁻¹ for ¹⁰Be (Mudd et al., 2016). Production rates for catchment-wide denudation rates were calculated at every grid cell of a hydrologically enforced 90-m SRTM DEM (Farr et al., 2007), using the time-independent Lal/Stone scaling scheme (Stone, 2000). Atmospheric pressure was calculated via interpolation from the NCEP2 reanalysis data (Compo et al., 2011). Topographic shielding was calculated from the same DEM using the method of Codilean (2006) with $\Delta\theta = 8^{\circ}$ and $\Delta\phi = 5^{\circ}$. We also calculated denudation rates with production rates corrected for ice shielding using present day glacier extent data from Stroeven et al. (2013). These along with the uncorrected denudation rates calculated using CAIRN are listed in Supplementary Table S4.1.

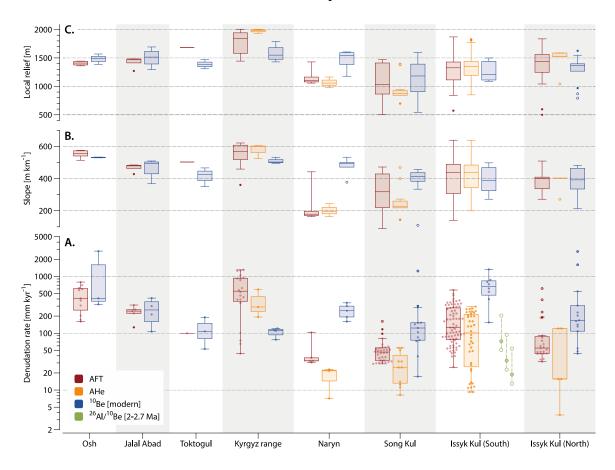
4.3.1.4. Paleo-denudation rates from buried samples

Paleo-denudation rates were calculated using three buried amalgamated sand samples (250–500 µm grain size) from south of lake Issyk-Kul (Figure 4.1A), taken from the same stratigraphic layers as the individual clasts collected for isochron burial dating by Kudriavtseva et al. (2023). The ²⁶Al and ¹⁰Be concentrations measured in the sand samples plot near (sample AKT) or intersect (samples PET-QTS) the lines defined by the isochron clast samples (Supplementary Figure S4.2) indicating that the sands and clasts have experienced similar exposure and burial histories. We calculate paleo-denudation rates by first correcting the ¹⁰Be concentrations measured in the sand samples for radioactive decay using the isochron burial ages calculated for each location (see Supplementary Table S4.2 and Kudriavtseva et al., 2023). To account for uncertainties related to the average elevation of the sediment's source areas and to the possibility of incomplete burial or lengthy exposure to cosmic radiation prior to sampling, we express paleo-denudation rates for each of the three localities as a range of values in addition to a

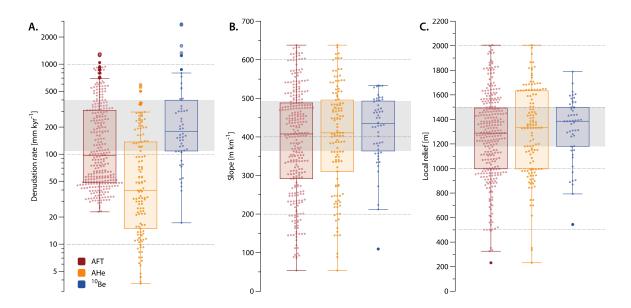
central value obtained by assuming complete and continuous burial (Supplementary Table S4.2).

4.3.2. AFT AND AHE THERMOCHRONOLOGY

Thermochronology is used to reconstruct the timing of rocks cooling through a temperature window during uplift, which allows estimation of the timing and pace of exhumation (e.g., Reiners & Brandon, 2006). The age corresponds to the closure temperature, and different closure temperatures result in different averaging timescales of exhumation. The temperature windows for the AFT and AHe systems are 60–120°C and 40–85°C, respectively, and the typical closure temperatures are 110°C and 70°C, respectively (e.g., Reiners & Brandon, 2006).


To estimate long-term exhumation rates, we compile a set of published apatite fissiontrack (AFT, n=296, Supplementary Table S4.3) and apatite (U-Th-Sm)/He (AHe, n=125, Supplementary Table S4.4) ages from across Kyrgyzstan (Bullen et al., 2003; De Grave, 2003; Sobel et al., 2006b; Glorie et al., 2010, 2011; De Grave et al., 2011, 2012, 2013; Macaulay et al., 2013, 2014; Bande et al., 2017a, 2017b; DePelsmaeker et al., 2015; Chu et al., 2016; Käßner et al., 2017; Nachtergaele et al., 2018; Rolland et al., 2020). We calculated one-dimensional, steady-state exhumation rates from the published AFT and AHe ages using the age2exhume MATLAB code (van der Beek & Schildgen, 2023). The parameters we used for both AFT and AHe systems are as follows: surface temperature = 25°C; temperature lapse rate = 5°C km⁻¹; initial geotherm = 25°C km⁻¹; thermal diffusivity = $30 \text{ km}^2 \text{ Myr}^{-1}$; model thickness = 30 km. To calculate a smoothed version of the DEM from which Δh values are derived (which enable corrections for local relief and surface temperature), the 90-m resolution SRTM DEM was smoothed over a circular radius equal to 70 pixels (6300 m) for the AHe system, and 105 pixels (9450 m) for the AFT system. These distances are equivalent to assuming a closure depth (z_c) of ca. 2 km for the AHe system, and ca. 3 km for the AFT system, with a smoothing radius equal to $\pi * z_c$ (Willett and Brandon, 2013). The Δh values for each sample (modern elevation minus smoothed DEM) are included in Supplementary Tables S4.3 and S4.4.

4.3.3. GEOMORPHIC, CLIMATIC, AND TECTONIC PARAMETERS


To explore potential environmental controls on ¹⁰Be-derived denudation rates, we calculate the average, median, and standard deviation of various geomorphic, tectonic, and climatic metrics for each drainage basin. For geomorphic metrics we use a hydrologically enforced 90-m SRTM DEM (Farr et al., 2007). We calculate the topographic gradient using the algorithm proposed by Horn (1981), local relief as the

elevation range within a moving circular window with radii varying between 1 and 10 km, and we calculate the normalised channel steepness index (k_{sn}) using the Topographic Analysis Kit (TAK) for TopoToolbox MATLAB package (Forte & Whipple, 2019). As metrics for climate, we use the bioclimatic variables available as part of the WorldClim Global Climate database (Fick & Hijmans, 2017), and the global aridity index (AI) map (Zomer et al., 2022), and as a metric for tectonism we use data from the Global Strain Rate Model (Kremer et al., 2014). The extracted metrics are summarised in Supplementary Table S4.5.

We also compare our inferred AFT and AHe exhumation rates to topographic gradient and local relief. To achieve this we calculate the average, median, and standard deviation of the two metrics for 90-m SRTM DEM grid cells falling within 5 km (Figures 4.2 and 4.3) and 10 km (Supplementary Figures S4.3 and S4.4) radii buffers created around each AFT and AHe sample location. The areas defined by these buffers are similar to the areas of the drainage basins for which we have ¹⁰Be data, and so the topographic metrics obtained for the different chronometers are comparable.

Figure 4.2. ¹⁰Be-derived modern and paleo-denudation rates, AFT and AHe exhumation rates, topographic gradient, and local relief data distributed by region. Slope and local relief for ¹⁰Be data is calculated as average for drainage basins using 90-m SRTM DEM. Slope and local relief for AFT and AHe data is calculated using 90-m SRTM DEM with 5-km radius buffers created around each AFT and AHe sample location.

Figure 4.3. Modern ¹⁰Be-derived denudation rates, AFT and AHe exhumation rates, topographic gradient, and local relief data from across the Kyrgyz Tian Shan plotted together. See caption of Figure 4.2 for further details.

4.3.4. DATA GROUPING

To facilitate a meaningful comparison between the ¹⁰Be-derived denudation rates and the long-term exhumation rates inferred from the published AFT and AHe data, we divide our ¹⁰Be dataset into eight regions (Figures 4.1B and Supplementary Figure S4.1, Supplementary Table S4.5): Issyk-Kul North (n = 14), Issyk-Kul South (n = 8), Song Kul (n = 13), Naryn (n = 5), Kyrgyz range (n = 4), Toktogul (n = 3), Jalal Abad (n = 4), and Osh (n = 3). The grouping strategy is focused on the regional distribution of our modern sediment ¹⁰Be data. In each region we include AFT and AHe datapoints that are located within or in the proximity of the drainage basins with ¹⁰Be data and belong to the same tectonic position (e.g., footwall/hanging wall).

4.4 RESULTS

The ¹⁰Be concentrations of modern river sands range between $7.92 \pm 0.83 \times 10^3$ and $1,460.12 \pm 29.24 \times 10^3$ atoms g⁻¹ (Supplementary Table S4.1). Basin-wide denudation rates calculated from these concentrations range between 17.3 and 2,780.4 mm kyr⁻¹, with the mean value of 393.8 mm kyr⁻¹ and median value of 179.6 mm kyr⁻¹ (Supplementary Table S4.1). Averaging times range between 34.8 and 0.2 kyr (Supplementary Tables S4.1 and S4.5).

The cosmogenic nuclide concentrations, ages, and paleo-denudation rates of buried samples from the southern part of the Issyk-Kul basin are shown in Supplementary Table S4.2. The ¹⁰Be and ²⁶Al concentrations (× 10³ atoms g⁻¹) of the buried samples are as follows: 30.80 ± 1.01 and 57.34 ± 6.56 (¹⁰Be and ²⁶Al respectively, AKT-U); 92.04 ± 2.53 and 272.15 ± 16.11 (PET-QTS-L); and 114.78 ± 3.16 and 227.15 ± 17.31 (PET-QTS-PIT). Paleo-denudation rates (mm kyr⁻¹) obtained by assuming complete and continuous burial are: 72.2 ± 11.7 (AKT-U), 33.0 ± 3.5 (PET-QTS-L), and 18.7 ± 1.8 (PET-QTS-PIT). Allowing for uncertainties related to the average elevation of the sediment's source areas and to the possibility of incomplete burial or lengthy exposure to cosmic radiation prior to sampling, we obtain the following paleo-denudation rate ranges for the three sites: $50.6 \pm 8.2 - 204.0 \pm 32.8$ for AKT-U; $22.9 \pm 2.5 - 94.1 \pm 10.0$ for QTS-L; and $12.9 \pm 1.2 - 53.8 \pm 5.1$ for QTS-PIT.

The calculated long-term AFT and AHe exhumation rates are summarised in Supplementary Tables S4.3 and S4.4. For each AFT and AHe age we calculate three exhumation rates: high — expressed as the age plus the uncertainty; middle — calculated from the age; and low — expressed as the age minus the uncertainty. Inferred AFT exhumation rates (middle values) range between 22.9 and 1,301.4 mm kyr⁻¹, and inferred AHe exhumation rates (also middle values) range between 3.6 and 590.0 mm kyr⁻¹. The compiled Kyrgyz AFT and AHe data excluded from the eight regions (see above) are still used for calculation of the mean and median values for the entire datasets. Mean and median AFT middle exhumation rates in the Kyrgyz Tian Shan are 212.0 and 96.0 mm kyr⁻¹, respectively. Mean and median middle AHe exhumation rates in the Kyrgyz Tian Shan are 94.1 and 39.4 mm kyr⁻¹, respectively.

We find moderate, but statistically significant, correlations between the log-transformed ¹⁰Be-derived modern denudation rates and topographic gradient (R = 0.430; p-value < 0.01) and local relief (R = 0.428; p-value < 0.01) (Figure 4.4). We also find a weak correlation between the log-transformed denudation rates and mean annual rainfall, albeit this correlation is counterintuitively negative (R = -0.326; p-value < 0.05) (Figure 4.4). We find weak correlations between the log-transformed denudation rates and mean basin elevation and normalised channel steepness (k_{sn}), and no correlation between denudation rate and strain rate. When looking at the data grouped into regions, the picture is more complicated: albeit a moderate to strong correlation is observed between denudation rate and topographic gradient in most regions, metrics such as mean annual rainfall, the rainfall of the wettest month, and the aridity index are stronger predictors of ¹⁰Be denudation rate in some regions including the Terskey range, south of lake Issyk-Kul (Figure 4.4).

Kyrgyz Tian Shan (<i>n</i> = 54)								
Log[10Be]	Elevation	Slope	Local relief	ksn	Strain rate	Rainfall	Aridity index	
0.75 - 0.5 - 0.25 - 0 -	0.245	0.430**	0.428**	0.250	0.072	-0.326*	-0.187	Log[10Be]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\sim	0.274*	0.273*	0.301*	-0.118	-0.422**	0.032	Elevation
0.5 - 0000000000000000000000000000000000		$ \ \ $	0.916***	0.768***	-0.295*	-0.099	-0.006	Slope
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	معیٰمی ۵ ۵ ۵ محمی ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	می می می می	\square	0.883***	-0.282*	-0.035	0.069	Local relief
0.5 – °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	۵ ۵۵۵۵ ۵۵۵۵ ۵ ۵۵۵۵ ۵ ۵۵۵ ۵ ۵۵ ۵ ۵	°		-0.287*	0.078	0.225	ksn
100 - 0 75 - 0 50 - 000 0 25 - 000 0 000 0000 000000	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	° & 800000000000000000000000000000000000	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	\bigwedge	-0.123	-0.145	Strain rate
0.6 - 0.5 - 0.4 - 0.3 - 0.3 - 0.6 - 0.7 -	00000000000000000000000000000000000000	80000000000000000000000000000000000000	° &	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\sim	0.869***	Rainfall
8 - 80 7 - 00000 6 - 00000 5 - 00000 4 - 0000000 4 - 0000000 3 - 0000000	60000000000000000000000000000000000000	မိုလ် (၃) (၃) (၃) (၃) (၃) (၃) (၃) (၃) (၃) (၃)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Aridity index
1.5 2 2.5 3 3.5 mm kyr ⁻¹	2 2.5 3 3.5 (km a.s.l	0.1 0.2 0.3 0.4 0.5 0 m m ⁻¹	.25 0.5 0.75 1 1.25 km	0.1 0.2 0.3 0.4 0.5 km ^{0.9}	25 50 75 100 10 ⁻⁹ yr ⁻¹	0.3 0.4 0.5 0.6 m	3 4 5 6 7 8 ×10 ³	
Song Kul (<i>n</i> = 13)								
Log[10Be]	Elevation	Slope	Local relief	ksn	Strain rate	Rainfall	Aridity index	
	0.351	0.671*	0.560*	0.439	-0.466	0.251	0.289	Log[10Be]
1.5 2 2.5 3 Issyk-Kul South (n = 8)								
¹⁰ Be	Elevation	Slope	Local relief	Strain rate	Rainfall	Rainfall wettest month	Aridity index	
1e-3 - 5e-4 -	0.287	-0.335	-0.210	0.338	0.782*	0.885**	0.811*	¹⁰ Be
Image: source Image: s								
Log[10Be]	Elevation	Slope	Local relief	ksn	Strain rate	Rainfall	Aridity index	
0.9 - 0.6 - 0.3 - 0 -	0.608*	0.700*	0.617*	0.456	-0.314	-0.649*	0.165	Log[10Be]
2 2.5 3 3.5				(*) p-value < 0.05; (**) p-value < 0.01	; (***) p-value < (0.001

Figure 4.4. Correlation matrix displaying Pearson's correlation coefficients for ¹⁰Be-derived denudation rates and different topographic, tectonic, and climatic metrics calculated for the Kyrgyz Tian Shan dataset.

The mean and median values for the ¹⁰Be-derived millennial-timescale denudation rates, AFT-, and AHe-derived long-term exhumation rates for each of the eight regions are summarised in Supplementary Table S4.6.

4.5 DISCUSSION

4.5.1. SPATIAL AND TEMPORAL CHANGES IN DENUDATION AND EXHUMATION RATES

The following are some general spatial and temporal trends that we can observe in our data:

- The ¹⁰Be-derived paleo-denudation rates obtained from material dated to 2.0–2.7 Ma are lower than the ¹⁰Be-derived denudation rates obtained from modern river sediment (Figure 4.2).
- The ¹⁰Be-derived denudation rates obtained from modern river sediment are generally higher than the long-term AFT and AHe exhumation rates across the studied area, except for the Kyrgyz range. On average, the highest ¹⁰Be-derived denudation rates are recorded in the Issyk-Kul South region (Figure 4.2).
- The ¹⁰Be-derived paleo-denudation rates obtained from material dated to 2.0–2.7 Ma are comparable in magnitude with the long-term exhumation rates inferred from AFT and AHe in the Issyk-Kul South region (Figure 4.2).
- Long term exhumation rates inferred from AHe ages are overall lower than those obtained from AFT ages (Figure 4.3).

Sample AKT-U, in the south-western part of the Issyk-Kul basin, dated to 2.71 ± 0.37 Ma (Kudriavtseva et al., 2023), yields a paleo-denudation rate between $50.6 \pm 8.2 - 204.0 \pm 32.8$ mm kyr⁻¹, whereas the nearest modern river sediment sample (KYR16-05) yields a rate of 612.1 ± 112.8 mm kyr⁻¹. Further east, samples PET-QTS-L (2.08 ± 0.14 Ma) and PET-QTS-PIT (2.75 ± 0.15 Ma) (Kudriavtseva et al., 2023) yield paleo-denudation rate ranges between $22.9 \pm 2.5 - 94.1 \pm 10.0$ mm kyr⁻¹ and $12.9 \pm 1.2 - 53.8 \pm 5.1$ mm kyr⁻¹, respectively, lower than those obtained from the nearest modern river sediment samples: 154.7 ± 28.6 mm kyr⁻¹ (KYR16-03), 871.9 ± 158.8 mm kyr⁻¹ (KYR16-55), 727.0 ± 131.3 mm kyr⁻¹ (KYR16-01B), and 798.17 ± 144.31 mm kyr⁻¹ (KYR16-01C) (Supplementary Tables S4.1 and S4.2). The elevated ¹⁰Be-derived modern denudation rates compared to both the 2.0-2.7 Ma ¹⁰Be-derived paleo-denudation rates and the long-term AFT and AHe exhumation rates indicate that in the Kyrgyz Tian Shan, denudation remained relatively steady until an increase in the Quaternary, after ca. 2 Ma. Ganti et al. (2016) suggested

that in glaciated areas — such as our study area — there is a time-dependent bias of higher denudation rates towards the present with shorter averaging time scales caused by the discrete nature of erosional processes. Their model shows that when using a power law distribution, erosional hiatuses result in a systematic increase in denudation rates towards the present and this mechanism might be invoked to explain the observed increase in ¹⁰Be derived modern denudation rates as compared to the long-term AFT and AHe exhumation rates. However, the difference between our modern denudation rates and the ¹⁰Be derived paleo-denudation rates — that are also similar in magnitude to the AFT and AHe derived rates — suggests that the observed temporal increase in denudation rates in the Kyrgyz Tian Shan is real rather than being an artefact of differing averaging timescales.

Exhumation of the Kyrgyz range commenced at 11–7 Ma and propagated eastward (Bullen et al., 2001, 2003; Sobel et al., 2006b). Before that time, this area was a basin filled with ca. 2 km of young, relatively poorly consolidated sediments and so the elevated AFT exhumation rates recorded for the Kyrgyz range represent rapid exhumation of these poorly consolidated sediments in the beginning of the range growth (Bullen et al., 2003; Sobel et al., 2006b). ¹⁰Be-derived modern denudation rates in the Kyrgyz range are similar to those recorded in other regions (Supplementary Table S4.1; Figure 4.2), suggesting a deceleration of denudation after removal of the poorly consolidated sediments and a subsequent adjustment of denudation rates here to the glacial conditions across the Kyrgyz Tian Shan.

Both AFT and AHe thermochronological systems average exhumation rates over the timescale of millions of years, but the difference in their closure temperatures and closure depths denotes a difference in averaging timescales, with AHe exhumation rates averaging over a shorter timescale than AFT rates (Reiners et al., 2005; Reiners & Brandon, 2006). Our calculated AFT and AHe exhumation rates are comparable, but slightly lower AHe than AFT rates imply slightly decelerating exhumation despite intensification of deformation in the Kyrgyz Tian Shan in the late Miocene (Macaulay et al., 2014; Glorie & De Grave, 2016; Wang et al., 2023). Notwithstanding the above, incorrect AHe ages are more frequently too old rather than too young, as the most prevalent problem with the AHe method is the under detection of U- or Th-rich inclusions (e.g., Farley, 2002). Although every effort is made in the individual studies to remove incorrect aliquot ages, it is possible that some of the reported ages compiled here are too old and hence our calculated AHe exhumation rates may be too low. For this reason, we do not place a strong emphasis on the slight difference between the AFT and AHe exhumation rates reported here.

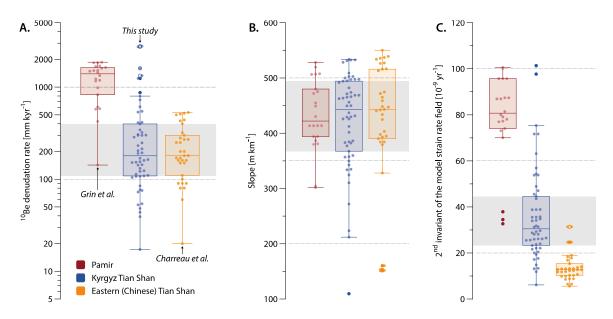
Northern Hemisphere glaciations initiated in the Pliocene (Westerhold et al., 2020) and intensified after 2.7 Ma (Ruggieri et al., 2009; Hayashi et al., 2020), but our 2.0–2.7 Ma ¹⁰Be-derived paleo-denudation rates from the southern side of the Issyk-Kul basin do not seem to reflect these global climatic changes. Furthermore, thermochronological data suggest that the Terskey range (situated on the southern side of the Issyk-Kul basin; Figure 4.1A) formed in the Miocene and did not experience strong deformation and exhumation afterwards (Macaulay et al., 2014). The strongest glacial erosional response is predicted by numerical modelling to occur in regions with large glaciations, moderate rock uplift (0.3–1 mm per year) and wet climate, whereas in arid conditions the response time of glacial erosion is predicted to be long and of small magnitude (Herman et al., 2018). Given the above, we propose that the aridity of the Tian Shan has dampened and delayed the denudational response to climatic forcing, and that the Quaternary glacial-interglacial cycles had a primary role in increasing millennial-scale denudation rates in the Kyrgyz Tian Shan and particularly in the Terskey range. We discuss these trends in more detail next.

4.5.2. IMPLICATIONS OF THE ONSET OF PLIO-PLEISTOCENE GLACIATION IN THE KYRGYZ TIAN SHAN

The similarity in magnitudes between the 2.0–2.7 Ma ¹⁰Be-derived paleo-denudation rates and the long-term AFT and AHe exhumation rates implies a relatively steady denudation through the Miocene, Pliocene, and early Pleistocene. The three samples used to determine our ¹⁰Be-derived paleo-denudation rates were collected from sandstone lenses in conglomerates from the Sharpyl Dak sedimentary group, which was deposited above finer-grained sediments and is analogous to the Xiyu formation conglomerates in the Chinese Tian Shan (Abdrakhmatov et al., 2001; Chen et al., 2002; Heermance et al., 2007). Deposition of the Sharpyl Dak and Xiyu conglomerates is diachronous across the Tian Shan, varying from mid-Miocene to Pleistocene (Chen et al., 2002; Heermance et al., 2007; Charreau et al., 2009; Kudriavtseva et al., 2023), and is considered to mark either the intensification of tectonic activity or the onset of Plio-Pleistocene glaciation in the region (Zhao et al., 2021). Samples AKT-U (2.71 ± 0.37 Ma) and PET-QTS-PIT (2.75 \pm 0.15 Ma) were taken from the basal parts of the conglomerates, whereas sample PET-QTS-L (2.08 \pm 0.14 Ma) was collected from the youngest outcropping Sharpyl Dak conglomerates (Kudriavtseva et al., 2023). Therefore, commencement of the deposition of the Sharpyl Dak conglomerates was synchronous with the global intensification of Northern Hemisphere glaciation at 2.7 Ma (Ruggieri et al., 2009; Hayashi et al., 2020). Nevertheless, despite the transition from fine-grained to conglomerate deposition, our data do not indicate an acceleration of denudation at 2.7 Ma.

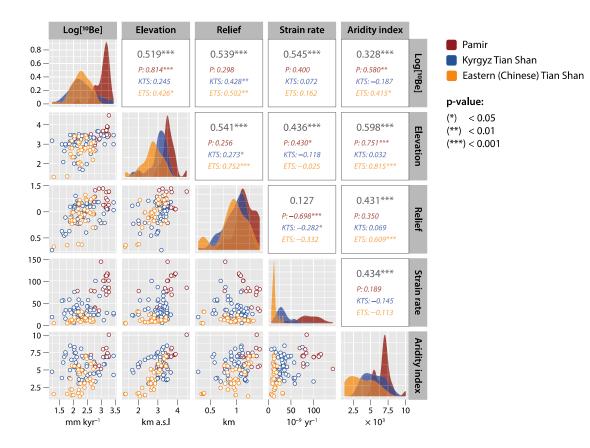
In the Tian Shan, denudation is generally slow due to arid conditions, despite tectonic activity, high relief, and glaciations (Guerit et al., 2016; Jepson et al., 2021). Absence of a denudational response to the Plio-Pleistocene onset of glaciation inferred from our data may indicate that significant glaciation in the Kyrgyz Tian Shan only initiated after 2 Ma, or that the onset of the Kyrgyz Tian Shan glaciation did occur simultaneously with that of the global Northern Hemisphere glaciations but did not cause a detectable increase in denudation rates. Deciding on which of the two explanations is more likely is confounded by the fact that the onset of glaciation in the Tian Shan is poorly constrained, although there is evidence suggesting that glaciations there occurred asynchronously with those in Europe and North America (Koppes et al., 2008; Sanhueza-Pino et al., 2011). It is also possible that the ¹⁰Be-derived paleo-denudation rates reported here are not representative of the entire Kyrgyz Tian Shan and rather reflect local conditions of the Terskey range (Figure 4.1A). For example, Charreau et al. (2011) reported a ¹⁰Be-derived erosional pulse from 3.0 to 1.7 Ma in the Eastern (Chinese) Tian Shan, suggesting a transient increase in denudation in response to the onset of glaciation. However, this conclusion is based only on data from a single drainage basin. Conversely, Puchol et al. (2017) report ¹⁰Be-derived paleo-denudation rates from four localities in the Eastern (Chinese) Tian Shan that indicate that denudation continuously increased since 9 Ma and remained relatively steady since 4 Ma (i.e., since before the onset of glaciation). Additionally, Puchol et al. (2017) also found an increase in the spatial and short-term (< 1 Myr) temporal variability of denudation rates between 3 and 1 Ma, suggesting a transient response of the landscape to glacial-interglacial cycles. Taken together, the above suggest that the erosional response and adjustment of the landscape to the onset of Plio-Pleistocene glaciation may vary spatially and temporally across the Tian Shan. Furthermore, each studied drainage basin may also be affected by local tectonic processes. However, it is intriguing that the recent sequence of large magnitude earthquakes in the Kyrgyz, Kungey, and Trans Ili ranges (Landgraf et al., 2016) does not seem to be specifically reflected within the modern denudation rates.

4.5.3. THE IMPACT OF QUATERNARY GLACIATION ON DENUDATION RATES


Glaciers advanced and retreated during the late Pleistocene (Marine Isotope Stages [MIS] 6–2) and extended beyond individual valleys, but the only well-constrained regional glacial expansion occurred during MIS 2 (29–14 ka; Lisiecki & Raymo, 2005), with glaciers restricted to valleys due to aridity (Blomdin et al., 2016 and references therein). The largest glacial cover developed in the eastern part of the Kyrgyz Tian Shan (Blomdin et al., 2016). Alpine glacial cover impacts cosmogenic ¹⁰Be abundances via two mechanisms: (1) excavation of material from depth, and (2) shielding of bedrock from

cosmic radiation. Both mechanisms result in a decrease in ¹⁰Be concentration in the sediment mix exiting a glaciated drainage basin and consequently an overestimation of ¹⁰Be-derived denudation rates (Granger & Schaller, 2014; Schaefer et al., 2022). Our ¹⁰Be-derived modern denudation rates are consistent with a global compilation of ¹⁰Be-derived denudation rates, which shows a detectable increase in denudation in the mid-latitude glaciated regions, driven by Quaternary glaciations (Codilean et al., 2018; 2022; Chen et al., 2022b). Glacial erosion enhances sedimentation, which lasts longer than the period of glaciation, resulting in an increased erosional signal during interglacial periods as well (Ganti et al., 2016). Moreover, extensive glaciation could lead to a change in the locus of deformation in the ranges of the Kyrgyz Tian Shan, which could also result in acceleration of erosion (e.g., Berger et al., 2008).

Relatively high ¹⁰Be-derived denudation rates in the Issyk-Kul South region suggest increased denudation of the northern flank of the Terskey range compared to other sampled ranges in the Kyrgyz Tian Shan. The reason for these elevated rates, however, is unclear. This region receives a low amount of precipitation (Supplementary Table S4.5), and exhumation in the Terskey range did not increase after 5 Ma (Macaulay et al., 2014). At the present time, the northern peripheral ranges of the Tian Shan, including the Terskey range, experience severe glacier shrinkage (Kutuzov & Shahgedanova, 2009; Sorg et al., 2012). The Terskey range receives the majority of precipitation in summer, when rainout occurs at high elevations (Bershaw & Lechler, 2019), so that the streams probably bring sediments from previously glaciated areas of the drainage basins. Also, the Tian Shan drainage basins with a higher portion of glaciated area, especially the northern slope of the Terskey range, show a substantial increase in runoff due to glacier reduction (Unger-Shayestech et al., 2013 and references therein). Additionally, correlation between the denudation rates and precipitation (Figure 4.4) indicates that river runoff might be amplified by summer rainout despite the generally low amount of precipitation. Therefore, relatively high ¹⁰Be-derived denudation rates in our study area can reflect either an increase in denudation due to higher runoff or admixing of previously shielded sediments with lower ¹⁰Be concentration, or a combination of both.


Comparison of our ¹⁰Be data with published data from the Western Tian Shan and Northern Pamir (Grin et al., 2018) as well as Eastern (Chinese) Tian Shan (Charreau et al., 2023) illustrates a spatial west to east trend of decreasing average ¹⁰Be-derived modern denudation rates (Figure 4.5). In the Northern Pamir and Western Tian Shan, ¹⁰Be-derived basin-wide denudation rates (n=20) range from 180.0 to 2700.0 mm kyr⁻¹, with an average of 1400.0 mm kyr⁻¹ (Grin et al., 2018), significantly higher than the average of our ¹⁰Be-derived denudation rates from across the Kyrgyz Tian Shan (i.e.

393.8 mm kyr⁻¹). Furthermore, our denudation rates are comparable but slightly higher than those in the Eastern (Chinese) Tian Shan, where ¹⁰Be-derived basin-wide denudation rates (n=34) range from 20.0 to 530.0 mm kyr⁻¹, averaging at 200.0 mm kyr⁻¹ in the north and 110.0 mm kyr⁻¹ in the south (Charreau et al., 2023). Denudation rates remained elevated but steady over million-year timescales in the Western Tian Shan and Northern Pamir, as suggested by the similarities in magnitude between short-term (river load), (^{10}Be) (10^{6}) millennial-scale and long-term years; thermochronology) denudation/exhumation rates (Grin et al., 2018). Conversely, in the Eastern (Chinese) Tian Shan, denudation stayed relatively steady since at least the Pleistocene (Charreau et al., 2011; 2017; 2023). Therefore, high rates of exhumation and denudation in the Pamir and Western Tian Shan are most likely mainly controlled by strong deformation caused by the indentation of the Pamir (Figure 4.5C; Wang et al., 2023), and might also be sustained by higher amount of precipitation because the Pamir acts as a topographic barrier to the westerlies (Figure 4.6; Carrapa et al., 2014; Wang et al., 2020; Richter et al., 2022).

Figure 4.5. Modern ¹⁰Be-derived denudation rates, topographic gradient, and strain rate from Pamir (Grin et al., 2018), Kyrgyz Tian Shan (this study), and Eastern (Chinese) Tian Shan (Charreau et al., 2023).

Taken together, the available data suggest that strong tectonic activity and higher precipitation rates exert a pronounced control on denudation in the Western Tian Shan, whereas further east, precipitation and tectonically driven denudation decrease and the denudational response of the landscape to Quaternary glaciations becomes detectable.

Figure 4.6. Correlation matrix displaying Pearson's correlation coefficients for ¹⁰Be-derived denudation rates and different topographic, tectonic, and climatic metrics calculated for data from Pamir (Grin et al., 2018), Kyrgyz Tian Shan (this study), and Eastern (Chinese) Tian Shan (Charreau et al., 2023). The grey values represent the correlation coefficient for the entire dataset when all data are considered together. The coloured values are the correlation coefficients for the three separate datasets.

4.5.4. CORRELATIONS BETWEEN ¹⁰BE-DERIVED DENUDATION RATES AND TOPOGRAPHIC, TECTONIC, AND CLIMATIC METRICS

When considering the complete Kyrgyz dataset, our analyses found only moderate correlation between log-transformed ¹⁰Be-derived modern denudation rates and topographic metrics such as gradient and local relief (R = 0.430 and R = 0.428, respectively, significant at p-value < 0.01; Figure 4.4). The lack of a strong correlation between denudation rate and topography is not unusual, considering the complex interplay between surface processes and tectonic and climatic controls (Portenga & Bierman, 2011; Dosseto & Schaller, 2016; Chen et al., 2022b), and is consistent with similar findings by Grin et al. (2018) and Charreau et al. (2023) in the Western Tian Shan and Northern Pamir and the Eastern (Chinese) Tian Shan, respectively — both studies reported weak correlations between ¹⁰Be denudation rates in the Kyrgyz Tian Shan and strain rate (expressed as the second invariant of the model strain rate field; Kreemer et al., 2014) and only weak correlations with annual rainfall and the aridity index.

Interestingly, but not surprisingly, however, when considering the entire available dataset (i.e., including the Pamir, the Western Tian Shan, and the Chinese Tian Shan), we find a statistically significant moderate correlation between the log-transformed ¹⁰Be denudation rate and strain rate (R = 0.545, p-value < 0.001; Figure 4.6), and we also find a weak but statistically significant correlation between the log-transformed ¹⁰Be denudation rate and the aridity index (R = 0.328, p-value < 0.001). The above, again, likely reflects both strong deformation and high precipitation rates in the Pamir.

¹⁰Be-derived denudation rates in the Terskey range, south of lake Issyk-Kul (Figures 4.1 and 4.4), show a statistically significant strong correlation with annual rainfall (R = 0.782, p-value < 0.05), the aridity index (R = 0.811, p-value < 0.05), and precipitation of the wettest month (R = 0.885, p-value < 0.01). However, this region, with the exception of the easternmost drainage basin (sample KYR16-04), receives a relatively small amount of precipitation compared to the other regions (Supplementary Table S4.5), and the correlations with annual rainfall and the aridity index break down when this basin is excluded. The exclusion of KYR16-04 is justified by the large number of documented landslides in close vicinity to the sampling point (Pittore et al., 2018). Landslides in Kyrgyzstan are strongly correlated with rainfall and snowmelt (Wang et al., 2021). Unlike other drainage basins in the Terskey range, KYR16-04 has high values of both strain rate and annual precipitation which can cause active landsliding responsible for an overestimated ¹⁰Be denudation rate that may bias the correlation (e.g., Niemi et al., 2005). Correlation with precipitation of the wettest month remains statistically significant when the basin KYR16-04 is excluded. This might indicate that in the Terskey range summer rainout is intense enough to increase river runoff and control denudation, unlike in other parts of the Kyrgyz Tian Shan.

To summarise, the lack of strong correlation at the mountain range scale, and the variability in dominant predictors between regions is not surprising and might be explained by the large spatial spread of our ¹⁰Be dataset and the influence of local factors.

4.6 CONCLUSIONS

Our study reports ¹⁰Be-derived basin-wide denudation rates from modern river sediment from across the Kyrgyz Tian Shan and the Kazakh part of the Trans IIi and Kungey ranges, as well as ¹⁰Be-derived paleo-denudation rates from buried river sediment dated to 2.0–2.7 Ma from the southern side of the Issyk-Kul basin. We compare these data to long-term exhumation rates, calculated from published apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronology data, and explore the spatial and temporal variations in denudation rates in the Kyrgyz Tian Shan as well as relationships between denudation rates and geomorphic, tectonic, and climatic metrics to identify potential controls on denudation at the local scale.

Our results show that the ¹⁰Be-derived denudation rates obtained from modern river sediment are generally higher than the long-term AFT and AHe exhumation rates across the studied area, except for the Kyrgyz range. Here, ¹⁰Be-derived modern denudation rates are lower than long-term exhumation rates likely because of rapid exhumation and removal of soft sediments in the beginning of the range growth. On average, the highest ¹⁰Be-derived denudation rates are recorded in the Terskey range, south of lake Issyk-Kul. Here ¹⁰Be-derived modern denudation rates are higher than ¹⁰Be-derived paleo-denudation rates obtained from material dated to 2.0–2.7 Ma, which are comparable in magnitude with the long-term exhumation rates inferred from AFT and AHe. The high ¹⁰Be-derived denudation rates on the southern side of the Issyk-Kul basin compared to other sampled regions in the Kyrgyz Tian Shan suggests a recent increase in denudation rates on the northern slope of the Terskey range due to high glacial meltwater runoff, and/or admixing of previously shielded sediments with low ¹⁰Be concentration.

We propose that denudation in the Kyrgyz Tian Shan, particularly in the Terskey range, remained relatively steady during the Neogene and early Pleistocene despite the late Pliocene facies change from fine-grained sediment to conglomerates. Denudation increased due to glacial-interglacial cycles in the Quaternary, but this occurred after the onset and intensification of the Northern Hemisphere glaciation at 2.7 Ma. This delay in the denudational response of the landscape could indicate that glacial erosion in arid regions is detectable using cosmogenic radionuclides only after substantial cooling and extensive growth of glaciers. We acknowledge, however, that our ¹⁰Be-derived paleodenudation rate data is limited in size and areal extent and so might not be representative of the entire Kyrgyz Tian Shan, and that other parts of the range might exhibit different temporal patterns of denudational response to Quaternary climate changes.

Comparison of our ¹⁰Be-derived modern denudation rates with published data from the Western Tian Shan, Northern Pamir and Eastern (Chinese) Tian Shan show a spatial trend of decreasing denudation rates from west to east, suggesting that deformation caused by the indentation of the Pamir controls denudation in the Pamir and Western Tian Shan, while further east, precipitation and tectonically driven denudation decrease and the denudational response of the landscape to Quaternary glaciations becomes detectable.

Our analysis found moderate correlations between ¹⁰Be-derived modern denudation rates and topographic metrics (i.e., topographic gradient and local relief) and weak correlation between denudation rates and annual rainfall. When considering the entire available dataset (i.e., including the Pamir, the Western Tian Shan, and the Chinese Tian Shan), correlations between ¹⁰Be denudation rate and topographic metrics improve slightly, and we also find a statistically significant moderate correlation between the ¹⁰Be denudation rate and strain rate, and a weak but statistically significant correlation between ¹⁰Be denudation rate and the aridity index. At the local scale the picture is more complicated: albeit a moderate to strong correlation is observed between denudation rate and topographic gradient in most of the eight regions, metrics such as annual rainfall, the rainfall of the wettest month, and the aridity index are stronger predictors of ¹⁰Be denudation rate in some regions including the Terskey range, south of lake Issyk-Kul. The above highlights the complex linkages between tectonics, climate, and surface processes, that may lead to the dominant controls on denudation varying locally.

5 DISCUSSION AND CONCLUSIONS

Cenozoic uplift of the Tian Shan, Pamir, and the Tibetan plateau created topographic barriers while upwind, the Paratethys retreated; these occurred simultaneously with global cooling (Ramstein et al., 1997; Miao et al., 2012; Bosboom et al., 2017; Caves Rugenstein & Chamberlain, 2018; Kaya et al., 2019). Together, these changes eventually resulted in a decrease of the westerly moisture supply to Central Asia, subsequent aridification in the region (Miao et al., 2012), and creation of a unique environment within the Tian Shan with a strong difference in precipitation on the windward and leeward sides of the range (Baldwin & Vecchi, 2016; Caves Rugenstein & Chamberlain, 2018; Bershaw and Lechler, 2019). The Issyk-Kul basin lies within the Tian Shan range, surrounded by the Terskey range to the south, the Kungey and Trains Ili (Zaili) ranges to the north, and the Kyrgyz range to the south side of the basin allows us to reconstruct the progression of local and regional changes.

5.1 TIMING OF CENOZOIC SEDIMENTARY ACCUMULATION IN THE ISSYK-KUL BASIN

The Issyk-Kul basin contains deposits divided into four sedimentary groups: the Kokturpak, Shamsi, Chu and Sharpyl Dak (Abdrakhmatov et al., 2001); our work better constrains the ages of three of these units. The oldest Kokturpak group has a late Cretaceous to Eocene age based on palynology (Fortuna et al., 1994). The overlying coarse deposits of the Shamsi group were first dated using magnetostratigraphy by Wack et al. (2014) in the Chon Kyzylsu and Jeti Oguz sections in the southeastern part of the basin. These authors suggest depositional ages of 22.8 to 13.3 Ma or 22.1 to 11.1 Ma in the Jeti Oguz section and 26.0 to 16.2 Ma or 25.2 to 11.0 Ma in the Chon Kyzylsu section. Poor magnetic recording of the Shamsi group deposits resulted in ambiguously defined polarity intervals and inconclusive age constraints (Wack et al., 2014). We re-evaluated the magnetostratigraphic data from these two sections and discuss the results in chapter 2. For the Chon Kyzylsu section, we re-correlated the polarity sequence considering all inconclusive horizons as unknown polarities and suggest bounding ages of 17.3 and 7.5 Ma. We also re-correlated the polarity sequence from the Jeti Oguz section to 22.4 to 8.5 Ma based on the tie-point between the Jeti Oguz and Chon Kyzylsu sections. This tiepoint represents a change in magnetic properties observed in both sections (Wack et al., 2014).

The stratigraphically younger, fine-grained deposits of the Chu group and overlying conglomerates of the Sharpyl Dak group measured in the Ak Terek and Kaji Say sections

are the main object of our study. In chapter 2 we propose the first magnetostratigraphic age models for the Chu group and Chu – Sharpyl Dak transition. The depositional age of the Chu group in the Ak Terek section is interpreted to be 6.3 to 2.8 Ma. However, magnetostratigraphy alone was insufficient for providing one robust age model for the Kaji Say section, as shown in chapter 2. Therefore, we propose two possible age models for the Chu – Sharpyl Dak deposits there. The first age model shows continuous sedimentation from 12.7 to 9.5 Ma and suggests that the Chu deposits of the Kaji Say section accumulated synchronously with the Shamsi group deposits from the Jeti Oguz and Chon Kyzylsu sections. The second proposed age model is 7.0 to 5.1 Ma and 3.0 to 2.4 Ma with a depositional hiatus in the middle of the section. ²⁶Al/¹⁰Be isochron burial dating of the upper part of the Kaji Say section, discussed in chapter 3, resolved the ambiguity in timing of deposition and let us choose the second option (7.0 to 2.4 Ma with a depositional hiatus from 5.1 to 3.0 Ma). Combining our new magnetostratigraphic age models from the Ak Terek and Kaji Say sections with ²⁶Al/¹⁰Be isochron burial ages from the same sections, we provide a late Miocene – Pliocene age for the Chu group deposits and place the Chu – Sharpyl Dak transition on the southern side of the basin at 2.6-2.8 Ma. However, the ²⁶Al/¹⁰Be isochron burial age, measured from the Jergalan section, suggests a 5 to 4 Ma age for the Chu – Sharpyl Dak transition in the eastern side of the basin. This shows that the commencement of the Sharpyl Dak conglomerate deposition occurred diachronously in the Issyk-Kul basin, which is consistent with the diachronous deposition of the analogous Xiyu group conglomerates in the Chinese Tian Shan (e.g., Chen et al., 2002; Heermance et al., 2007; Charreau et al., 2009).

5.2 Depositional environment on the southern side of the Issyk-Kul basin in the late Miocene – early Pleistocene

The sedimentary sequence which outcrops at the Ak Terek section in the southwestern part of the basin suggests continuous fluvial deposition in the late Miocene. Rare still water deposition after 4 Ma is indicated by the presence of a gypsum layer. The conglomerates are sourced from the widespread granites of the Terskey range, to the south. Further east, the Kaji Say sedimentary section includes grey rounded granite conglomerates, typical for material sourced from the Terskey range, and red angular gravel conglomerates, sourced from the Taldysui subvolcanic complex, situated locally and proximally to the Kaji Say section.

As shown in chapter 2, a change in depositional environment from the coarse-grained Shamsi group to the fine-grained Chu group at ca. 7 Ma is marked by an increase in sedimentation rates on the southern and on the northwestern sides of the Issyk-Kul basin. Near the Terskey range, sedimentation rates are faster at Kaji Say than at Ak Terek. At ca. 5 Ma, sedimentation rates increase in the northeastern part of the basin in the Kungey range area, and a short but intensive pulse of increased sedimentation occurred in Ak Terek. These changes in sedimentation rates are consistent with a pulse of exhumation in the Terskey range at 15-5 Ma (Macaulay et al., 2014). Concurrently, a depositional hiatus commenced at Kaji Say due to tectonically-induced river system reorganization.

Tectonically-driven reorganization of the river system recorded in the Kaji Say section at 5 Ma led to the disappearance of grey granitic conglomerates, while enhanced subsidence in the area resulted in commencement of lacustrine deposition and lake formation. We suggest that the hiatus occurred at this time due to changes in fluvial input in response to local deformation in the area. Alternatively, the hiatus might occur during deposition of the stratigraphically older beach facies due to a stable lake margin and reworking of the material. This second option implies that the hiatus is ca. 100 ka older than proposed by our magnetostratigraphic model. After termination of the depositional hiatus at ca. 3 Ma, local deformation in the Kaji Say area intensified. This is shown by higher sedimentation rates in Kaji Say than before the hiatus and formation of growth strata. Northwest thickening of the growth strata supports the idea of enhanced subsidence in the Kaji Say area in the late Miocene – Pliocene, which enabled lake formation. Furthermore, local deformation led to folding in the middle part of the section which is upstream of the youngest outcropping flat-lying Sharpyl Dak conglomerates, dated as 2.08 ± 0.14 Myr old according to the ²⁶Al/¹⁰Be isochron burial dating. Deformation must postdate conglomerate deposition, as the fold isolated the youngest conglomerates from the source area.

5.3 EASTWARD GROWTH OF THE KUNGEY RANGE IN THE LATE MIOCENE

Our paleocurrent measurements, discussed in chapter 3, show predominantly southward paleocurrent directions of the Chu deposits sourced from the Kungey range. Therefore, our data suggest that the deposits in the northern part of the basin are mainly sourced from the growing Kungey range. If the stratigraphic boundary between the Shamsi and Chu groups adjacent to the Kungey range is 8-7 Ma, as in the Terskey range, then our data show that substantial uplift in the Kungey range commenced by this time. Conversely, Selander et al. (2012) presented mainly northward paleocurrent directions from the Chu deposits from the western Kungey, and both northward (stratigraphically older) and southward (stratigraphically younger) directions from the Chu deposits from the eastern Kungey. This led to a conclusion that in the middle Miocene the Kungey range was flat,

sediments were sourced from the Terskey range, and initial uplift of the Kungey range commenced between 7 and 4 Ma (Selander et al., 2012).

However, eastward spreading of the depositional area in the Kungey range (Selander et al., 2012) and eastward increase in sedimentation rates adjacent to the Kungey range, shown in chapter 2, both suggest gradual eastward growth of the Kungey range in the late Miocene. Moreover, our southward paleocurrent directions measured in the Chu – Sharpyl Dak transitional deposits from the Jergalan section, dated to 5-4 Ma by ²⁶Al/¹⁰Be isochron burial dating, suggest that surface uplift and exhumation of the easternmost Kungey range led to Sharpyl Dak deposition in the easternmost part of the Issyk-Kul basin at ca. 5 Ma, potentially leading to termination of a paleo-drainage connection with eastern basins and causing sediment starvation in the Issyk-Kul basin.

5.4 NEOGENE EVOLUTION OF CLIMATIC CONDITIONS IN THE ISSYK-KUL BASIN

Deformation and surface uplift of the Kyrgyz Tian Shan progressed generally from south to north (e.g., Macaulay et al., 2014; Li et al., 2022). Distribution of precipitation throughout the Kyrgyz Tian Shan shows increased rainout on the windward (northern) side (Baldwin & Vecchi, 2016; Caves Rugenstein & Chamberlain, 2018; Bershaw and Lechler, 2019), and surface uplift of the southern Tian Shan and Pamir resulted in desertification of the Tarin basin at ca. 12 Ma (Richter et al., 2022). Previous study of the Shamsi group deposits from the Jeti Oguz and Chon Kyzylsu sections using stable δ^{18} O and δ^{13} C isotopes suggests a windward position of the Issyk-Kul basin and increased rainout in the early and middle Miocene (Macaulay et al., 2016). This interpretation is based on the inconclusive age models from Wack et al. (2014). Our new age models for these sections combined with stable δ^{18} O and δ^{13} C isotopic records from Macaulay et al. (2016) support the idea that a growing Terskey range created windward and relatively wet conditions in the basin between 23 and 8 Ma, and prevented the moisture-bearing westerlies from penetrating farther into Central Asia.

Based on the δ^{18} O and δ^{13} C data presented in chapter 3, we show that substantial aridification in the Issyk-Kul basin started at 8-7 Ma. This environmental change is represented by a ca. 2‰ shift in δ^{18} O and δ^{13} C values and a change in the trend. There were no significant global climatic changes at this time and, furthermore, the δ^{18} O and δ^{13} C values from the neighboring Ili basin reflect global climatic changes and do not show similar changes in stable isotopic values (Hellwig et al., 2018; Frisch et al., 2019a; Prud'homme et al., 2021). Therefore, this local environmental change was most likely caused by creation of a local topographic barrier due to tectonic activity. Thermochronology data show that surface uplift of the Kyrgyz range, situated north-west

of the Issyk-Kul basin, started at 11-7 Ma and advanced eastward (Bullen et al., 2001, 2003; Sobel et al., 2006b). Additionally, surface uplift of the northern Trans IIi and Kungey ranges commenced in the late Oligocene – early Miocene, as also defined by thermochronology (De Grave et al., 2013; De Pelsmaeker et al., 2015), but paleocurrent data show that the Chu group sediments deposited on the south side of the Kungey range area are sourced from the Tersky range and significant deformation in the Kungey range started in the late Miocene – early Pliocene (Selander et al., 2012). Therefore, surface uplift of the Kyrgyz, Trans IIi, and Kungey ranges created a topographic barrier, changing the position of the Issyk-Kul basin from a windward to a leeward position. During the Pliocene, aridification in the Issyk-Kul basin might have been sustained by global climatic changes when the moisture-bearing westerlies migrated southward and dry air masses of the Siberian High were dominant in Northern Central Asia. This is suggested by similarity of our δ^{18} O and δ^{13} C records with data from the contemporaneous IIi basin (Prud'homme et al., 2021).

5.5 DENUDATIONAL RESPONSE TO QUATERNARY CLIMATIC CHANGES IN THE KYRGYZ TIAN SHAN

One might expect that an increase in the rock uplift rate of the Terskey range would cause an increase in the exhumation rate. In turn, this should lead to an increase in the sedimentation rate, such as that observed at ca. 7 Ma. Subsequently, there is a transition from fine-grained fluvial-alluvial deposits of the Chu group to proximal alluvial fan conglomerates of the Sharpyl Dak group. The Chu – Sharpyl Dak transition occurred at 2.6-2.8 Ma on the southern side of the Issyk-Kul basin according to ²⁶Al/¹⁰Be isochron burial dating, which is synchronous with the intensification of the Northern Hemisphere glaciation (Ruggieri et al., 2009; Hayashi et al., 2020). Additionally, an increase in sedimentation rates in the Kaji Say section occurs at ca. 3 Ma and marks a change in the depositional environment. However, in chapter 4 we show that our ¹⁰Be-derived paleodenudation rates from 2.0-2.7 Ma from the Kaji Say and Ak Terek sections are as low as long-term AFT- and AHe-derived exhumation rates from the adjacent Terskey range and do not reflect the changes recorded in the stratigraphic section. Therefore, our results, presented in chapter 4, suggest that tectonic activity in the late Miocene - Pliocene, river system reorganization, and the Plio-Pleistocene global climatic changes did not cause a detectable increase in denudation rates in the Terskey range.

Across the Kyrgyz Tian Shan, millennial-timescale ¹⁰Be-derived denudation rates are higher on average than the long-term AFT- and AHe-derived exhumation rates are, except in the Kyrgyz range. We discuss these data in chapter 4. We suggest that the aridity has dampened and delayed the denudational response in the Kyrgyz Tian Shan (Herman et al., 2018; Jepson et al., 2021), and that only significant glaciation and cooling occurring during the Quaternary glacial-interglacial cycles had a primary role in increasing millennial-timescale denudation rates in the Kyrgyz Tian Shan. Moreover, a global compilation of ¹⁰Be-derived denudation rates also shows that Quaternary glaciations caused a detectable increase in denudation in the mid-latitude glaciated regions (Codilean et al., 2018; 2022; Chen et al., 2022).

In the Kyrgyz range, unlike in other regions of the Kyrgyz Tian Shan, long-term thermochronology-derived exhumation rates are higher than millennial-timescale ¹⁰Bederived denudation rates. In chapter 4, we suggest that this is caused by rapid exhumation of young poorly consolidated sediments, which covered this area before commencement of surface uplift at 11-7 Ma (Bullen et al., 2001, 2003; Sobel et al., 2006b). Afterwards, denudation rates adjusted to the glacial conditions and showed similar average values as in other regions of the Kyrgyz Tian Shan.

The millennial-timescale denudation rates are notably higher on the southern side of the Issyk-Kul basin, reflecting more rapid denudation of the northern slope of the Terskey range compared to other areas in the Kyrgyz Tian Shan. We suggest that this is triggered by higher runoff and/or admixing of previously shielded sediments with lower ¹⁰Be concentration due to particularly severe glacier shrinkage in the northern side of the Terskey range (Unger-Shayestech et al., 2013 and references therein). This can potentially lead to faster modification of the Terskey range topography and affect lake level.

Our new data presented in chapter 4 allow us elaborate on the spatial distribution of millennial-timescale denudation rates across the Tian Shan when combining with published data from the Western Tian Shan and Northern Pamir (Grin et al., 2018) and Eastern (Chinese) Tian Shan (Charreau et al., 2023). A spatial west to east trend of decreasing average ¹⁰Be-derived denudation rates. In the Western Tian Shan and Northern Pamir, millennial-timescale ¹⁰Be-derived denudation rates are of a similar magnitude as long-term thermochronology-derived exhumation rates (Grin et al., 2018). We suggest that in this area denudation is mainly controlled by strong deformation caused by the indentation of the Pamir (Wang et al., 2023), while further east in the Kyrgyz Tian Shan the denudational response of the landscape to Quaternary glaciations becomes detectable.

5.6 FACTORS CONTROLLING MODERN ¹⁰BE-DERIVED DENUDATION RATES

In chapter 4, we show that in the Kyrgyz Tian Shan, correlations between ¹⁰Be-derived modern denudation rates and topographic metrics (i.e., topographic gradient and local relief) are moderate, while correlations between ¹⁰Be denudation rates and annual rainfall are weak. However, the correlation between ¹⁰Be denudation rates and precipitation during the wettest month is strong in the Terskey range. This area receives the majority of precipitation in summer (Bershaw & Lechler, 2019). Therefore, we suggest that summer rainout in the Terskey range might be strong enough to increase runoff and affect denudation. Moreover, moderate correlation exists between ¹⁰Be denudation rates and strain rate in the entire Tian Shan (Northern Pamir and Western Tian Shan, Grin et al., 2018; our study, and the Chinese Tian Shan, Charreau et al., 2023). This illustrates the complex interplay between tectonics, climate, and surface processes at a local and regional scales.

5.7 CONCLUSIONS AND FUTURE RESEARCH

Untangling interactions between climate, tectonics, and surface processes in the Tian Shan during the Cenozoic is the overall goal of my study. This research contributes to our knowledge of such interactions by providing a comprehensive study of the processes which controlled the development of the Issyk-Kul basin and denudation rates in the Kyrgyz Tian Shan. In this thesis, I showed how climatic conditions changed in the Issyk-Kul basin in relation to the uplift of individual mountain ranges of the Kyrgyz Tian Shan and Cenozoic global cooling. These changes within the Kyrgyz Tian Shan contributed to modification of Central Asian climate during the Cenozoic. Also, I described the processes which led to the formation of lake Issyk-Kul and subsequent expansion in the late Miocene – Pliocene, when the general climatic trend was towards aridification. Finally, I showed what controls and affects denudation and exhumation in the Kyrgyz Tian Shan on different timescales and in different climatic conditions and showed how modern Central Asian climate affects surface processes in the individual mountain ranges of the Kyrgyz Tian Shan.

The most significant outcomes of this study are as follows:

• Despite the generally windward position of the Kyrgyz Tian Shan in the northwestern part of Central Asia and immediate interactions with the moisture-bearing westerly wind, climatic conditions within the range, particularly in the Issyk-Kul basin, change drastically at 8-7 Ma with uplift of the northernmost Kyrgyz and Kungey ranges.

- Commencement of lake formation occurred in the Kaji Say area due to local tectonic activity and consequent enhancement of subsidence and reorganization of the river system in the central part of the Terskey range at ca. 5 Ma. Later during the Pliocene, eastward growth of the Kungey range possibly blocked westward-draining rivers, which had formerly connected the Issyk-Kul basin with eastern basins, leading to sediment starvation and lake expansion.
- Denudational response of the landscape to Quaternary glaciations in the Terskey range is delayed due to aridity of the region and becomes detectable only in the late Quaternary when cooling and glaciation was substantial.
- Currently, denudation of the northern slope of the Terskey range is more rapid than denudation of other ranges of the Kyrgyz Tian Shan due to intensive glacier reduction, summer rainout, and consequent increase in runoff. Therefore, the topography of the Terskey range might be modified faster in the future.

In this work, we were not able to unequivocally answer the question of the presence and precise position of the depositional hiatus in the Kaji Say stratigraphical section. Solving this is necessary to better understand the processes and timing of the beginning of lake formation. To answer this, it is necessary to obtain precise ages for the basal and/or middle parts of the section. Our work, described in chapter 3, showed that finding suitable samples for ²⁶Al/¹⁰Be isochron burial dating at the bottom of the section is problematic. Therefore, more field work in the Kaji Say area is necessary to find suitable deposits which can be reliably correlated to our studied section. Additionally, it will be useful to do more field work to describe stratigraphical and geographical positions of lacustrine deposits in the Kaji Say area but beyond the studied stratigraphical section to see how exactly the initial lake developed.

This study also could not provide ages for the Chu – Sharpyl Dak transition on the south flank of the Kungey range, and our 26 Al/¹⁰Be isochron burial ages for the easternmost Jergalan section are ambiguous. Knowing precise ages of the Chu – Sharpyl Dak transition in these areas will be useful to better reconstruct the eastward growth of the Kungey range and to understand the processes of basin development and lake expansion. Studying and dating the sedimentary deposits in the western and eastern parts of the basin might also help answer the question of when exactly the basin was isolated from the neighboring basins and became internally drained. Obtaining this information is necessary to understand how sediment accumulation in the basin controls the existence of this lake. However, these tasks will require extensive field work and a careful selection of outcrops and samples for dating.

Apart from that, a question remains whether the Plio-Pleistocene onset of glaciation enhanced denudation in other parts of the Kyrgyz Tian Shan besides the sampled Terskey range. This information will broaden our understanding of whether individual ranges respond to global climatic changes or if these processes are relatively uniform across the Tian Shan. This task, however, will require extensive work selecting and dating existing Chu – Sharpyl Dak transitional deposits in other Tian Shan basins.

REFERENCES

- Abdrakhmatov, K., Aldazhanov, S., Hager, B. et al. (1996). Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. *Nature*, *384*(6608), 450-453. https://doi.org/10.1038/384450a0
- Abdrakhmatov, K., Djanuzakov, K.D., & Delvaux, D. (2002). Active Tectonics and Seismic Hazard of the Issyk-Kul Basin in the Kyrgyz Tian-Shan. In: Klerkx, J., Imanackunov, B. (editors) *Lake Issyk-Kul: Its Natural Environment*. NATO Science Series, 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0491-6_11
- Abdrakhmatov, K., Weldon, R., Thompson, S.C., Burbank, D.W., Rubin, C., Miller, M., & Molnar, P. (2001). Onset, style and current rate of shortening in the central Tien Shan, Kyrgyz Republic. *Russian Geology and Geophysics*, *42*(10), 1585-1609.
- Abell, J.T., Winckler, G., Anderson, R.F., & Herbert, T.D. (2021). Poleward and weakened westerlies during Pliocene warmth. *Nature*, 589(7840), 70-75. https://doi.org/10.1038/s41586-020-03062-1
- Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., & Ohta, T. (2001). Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. *International Journal of Climatology: A Journal of the Royal Meteorological Society*, 21(5), 535-556. https://doi.org/10.1002/joc.626
- Aizen, V.B., Aizen, E.M., Joswiak, D.R., Fujita, K., Takeuchi, N., & Nikitin, S.A. (2006). Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). *Annals of Glaciology*, 43, 49-60. https://doi.org/10.3189/172756406781812078
- Aizen, V.B., Aizen, E.M., & Melack, J.M. (1995). Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia 1. JAWRA Journal of the American Water Resources Association, 31(6), 1113-1129. https://doi.org/10.1111/j.1752-1688.1995.tb03426.x
- Aizen, V.B., Aizen, E.M., Melack, J.M., & Dozier, J. (1997). Climatic and hydrologic changes in the Tien Shan, Central Asia. *Journal of Climate*, 10(6), 1393-1404. https://doi.org/10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2
- Alexeiev, D.V., Bykadorov, V.A., Volozh, Y.A., & Sapozhnikov, R.B. (2017). Kinematic analysis of Jurassic grabens of soulthern Turgai and the role of the Mesozoic stage in the evolution of the Karatau– Talas–Ferghana strike-slip fault, Southern Kazakhstan and Tian Shan. *Geotectonics*, 51, 105-120. https://doi.org/10.1134/S0016852117020029
- Alonso-Zarza, A.M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. *Earth-Science Reviews*, 60(3-4), 261-298. https://doi.org/10.1016/S0012-8252(02)00106-X
- Alonso-Zarza, A.M., & Wright, V.P. (2010). Palustrine carbonates. *Developments in Sedimentology*, 61, 103-131. https://doi.org/10.1016/S0070-4571(09)06102-0
- Alonso-Zarza, A.M., Wright, V.P., Calvo, J.P., & Del Cura, M.G. (1992). Soil-landscape and climatic relationships in the middle Miocene of the Madrid Basin. *Sedimentology*, *39*(1), 17-35. https://doi.org/10.1111/j.1365-3091.1992.tb01021.x
- Avouac, J.P., & Burov, E.B. (1996). Erosion as a driving mechanism of intracontinental mountain growth. *Journal of Geophysical Research: Solid Earth*, *101*(B8), 17747-17769. https://doi.org/10.1029/96JB01344
- Bakirov, A.B., & Maksumova, R.A. (2001). Geology and evolution of the Tien Shan lithosphere (in Russian). *Russian Geology and Geophysics*, *42*, 1359–1366.
- Balco, G., & Rovey, C.W. (2008). An isochron method for cosmogenic-nuclide dating of buried soils and sediments. *American Journal of Science*, 308(10), 1083-1114. https://doi.org/10.2475/10.2008.02
- Balco, G., Stone, J.O., Lifton, N.A., & Dunai, T.J. (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001
- Baldwin, J., & Vecchi, G. (2016). Influence of the Tian Shan on arid extratropical Asia. Journal of Climate, 29(16), 5741-5762. https://doi.org/10.1175/JCLI-D-15-0490.1

- Bande, A., Sobel, E.R., Mikolaichuk, A., Schmidt, A., & Stockli, D.F. (2017a). Exhumation history of the western Kyrgyz Tien Shan: Implications for intramontane basin formation. *Tectonics*, 36(1), 163-180. https://doi.org/10.1002/2016TC004284
- Bande, A., Sobel, E.R., Mikolaichuk, A., & Torres Acosta, V. (2017b). Talas–Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation. *Geological Society, London, Special Publications*, 427(1), 295-311. https://doi.org/10.1144/SP427.1
- Barbolini, N., Woutersen, A., Dupont-Nivet, G., Silvestro, D., Tardif, D., Coster, P.M.C., Meijer, N., Chang, C., Zhang, H.X., Licht, A., & Rydin, C. (2020). Cenozoic evolution of the steppe-desert biome in Central Asia. *Science Advances*, 6(41), p.eabb8227. https://doi.org/10.1126/sciadv.abb8227
- Batbaatar, J., Gillespie, A.R., Koppes, M., Clark, D.H., Chadwick, O.A., Fink, D., Matmon, A., & Rupper, S. (2021). Glacier development in continental climate regions of central Asia. In: Waitt, R.B., Thackray, G.D., Gillespie, A.R., (Eds), Untangling the Quaternary Period—A Legacy of Stephen C. Porter. *Geological Society of America, Special Paper, 548*, 119–149. https://doi.org/10.1130/2020.2548(07)
- Bazhenov, M.L., Burtman, V.S., & Dvorova, A. V. (1999). Permian paleomagnetism of the Tien Shan fold belt, Central Asia: post-collisional rotations and deformation. *Tectonophysics*, *312*(2-4), 303-329. https://doi.org/10.1016/S0040-1951(99)00181-X
- Bazhenov, M.L., & Mikolaichuk, A.V. (2004). Structural evolution of Central Asia to the North of Tibet: a synthesis of paleomagnetic and geological data. *Geotectonics*, *38*(5), 379-393.
- Berger, A.L., Gulick, S.P., Spotila, J.A., Upton, P., Jaeger, J.M., Chapman, J.B., Worthington, L.A., Pavlis, T.L., Ridgway, K.D., Willems, B.A., & McAleer, R.J. (2008). Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. *Nature Geoscience*, 1(11), 793-799. https://doi.org/10.1038/ngeo334
- Bernard, T., & Sinclair, H.D. (2022). Accelerated sediment delivery to continental margins during postorogenic rebound of mountain ranges. *Basin Research*, 00, 1-20. https://doi.org/10.1111/bre.12727
- Bershaw, J., & Lechler, A.R. (2019). The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia. *Chemical Geology*, *516*, 68-78. https://doi.org/10.1016/j.chemgeo.2019.03.032
- Biske, Y. S. (1996). Paleozoic Structure and History of Southern Tien Shan. *Saint Petersburg State University*, p.187 (in Russian)
- Biske, Y.S., & Seltmann, R. (2010). Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans. *Gondwana Research*, *17*(2-3), 602-613. https://doi.org/10.1016/j.gr.2009.11.014
- Bloemendal, J., King, J. W., Hall, F. R., & Doh, S.-J. (1992). Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. *Journal of Geophysical Research*, 97(B4), 4361–4375. https://doi.org/10.1029/91jb03068
- Blomdin, R., Stroeven, A.P., Harbor, J.M., Lifton, N.A., Heyman, J., Gribenski, N., Petrakov, D.A., Caffee, M.W., Ivanov, M.N., Hättestrand, C., & Rogozhina, I. (2016). Evaluating the timing of former glacier expansions in the Tian Shan: a key step towards robust spatial correlations. *Quaternary Science Reviews*, 153, 78-96. https://doi.org/10.1016/j.quascirev.2016.07.029
- Bookhagen, B., & Burbank, D.W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. *Journal of Geophysical Research: Earth Surface*, 115(F3). https://doi.org/10.1029/2009JF001426
- Bookhagen, B., & Strecker, M.R. (2008). Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. *Geophysical Research Letters*, 35(6). https://doi.org/10.1029/2007GL032011
- Bosboom, R.E., Abels, H.A., Hoorn, C., van den Berg, B.C., Guo, Z., & Dupont-Nivet, G. (2014a). Aridification in continental Asia after the middle Eocene climatic optimum (MECO). *Earth and Planetary Science Letters*, 389, 34-42. https://doi.org/10.1016/j.epsl.2013.12.014
- Bosboom, R.E., Dupont-Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Huang, W., Yang, W., Guo, Z., & Krijgsman, W. (2014b). Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. *Basin Research*, *26*(5), 621-640. https://doi.org/10.1111/bre.12054

- Bosboom, R., Mandic, O., Dupont-Nivet, G., Proust, J.N., Ormukov, C., & Aminov, J. (2017). Late Eocene palaeogeography of the proto-Paratethys sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). *Geological Society, London, Special Publications*, 427(1), 565-588. https://doi.org/10.1144/SP427.11
- Botsyun, S., Mutz, S.G., Ehlers, T.A., Koptev, A., Wang, X., Schmidt, B., Appel, E., & Scherer, D.E. (2022). Influence of Large-Scale Atmospheric Dynamics on Precipitation Seasonality of the Tibetan Plateau and Central Asia in Cold and Warm Climates During the Late Cenozoic. *Journal of Geophysical Research: Atmospheres*, 127(12), e2021JD035810. https://doi.org/10.1029/2021JD035810
- Bougeois, L., Dupont-Nivet, G., de Rafélis, M., Tindall, J.C., Proust, J.N., Reichart, G.J., de Nooijer, L.J., Guo, Z., & Ormukov, C. (2018). Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth and Planetary Science Letters, 485, 99-110. https://doi.org/10.1016/j.epsl.2017.12.036
- Bowman, D., Korjenkov, A., Porat, N., & Czassny, B. (2004). Morphological response to Quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrghyzstan. *Geomorphology*, *63*(1-2), 1-24. https://doi.org/10.1016/j.geomorph.2004.03.007
- Braucher R., Merchel S., Borgomano J., & Bourlès D. (2011). Production of cosmogenic radionuclides at great depth: a multi element approach. *Earth and Planetary Science Letters*, 309, 1-9. https://doi.org/10.1016/j.epsl.2011.06.036
- Breecker, D.O., Sharp, Z.D., & McFadden, L.D. (2009). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. *Geological Society of America Bulletin*, 121(3-4), 630-640. https://doi.org/10.1130/B26413.1
- Bullen, M.E., Burbank, D.W., & Garver, J.I. (2003). Building the northern Tien Shan: Integrated thermal, structural, and topographic constraints. *The Journal of Geology*, *111*(2), 149-165. https://doi.org/10.1086/345840
- Bullen, M.E., Burbank, D.W., Garver, J.I., & Abdrakhmatov, K.Y. (2001). Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building. *Geological Society of America Bulletin*, 113(12), 1544-1559. https://doi.org/10.1130/0016-7606(2001)113<1544:LCTEOT>2.0.CO;2
- Burbank, D.W., Blythe, A.E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., & Ojha, T. P. (2003). Decoupling of erosion and precipitation in the Himalayas. *Nature*, 426(6967), 652-655. https://doi.org/10.1038/nature02187
- Burgette, R. J. (2008). Uplift in response to tectonic convergence: The Kyrgyz tien Shan and Cascadia subduction zone. PhD Thesis, Oregon. 242 pp.
- Burgette, R.J., Weldon II, R.J., Abdrakhmatov, K.Y., Ormukov, C., Owen, L.A., & Thompson, S.C. (2017). Timing and process of river and lake terrace formation in the Kyrgyz Tien Shan. *Quaternary Science Reviews*, *159*, 15-34. https://doi.org/10.1016/j.quascirev.2017.01.003
- Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., & Otto-Bliesner, B. L. (2018). Pliocene and Eocene provide best analogs for near-future climates. *Proceedings of the National Academy of Sciences*, 115(52), 13288-13293. https://doi.org/10.1073/pnas.1809600115
- Buslov, M. M., Klerkx, J., Abdrakhmatov, K., Delvaux, D., Batalev, V. Y., Kuchai, O. A., et al. (2003). Recent strike-slip deformation of the northern Tien Shan. Geological Society, London, Special Publications, 210(1), 53–64. https://doi.org/10.1144/gsl.sp.2003.210.01.04
- Carrapa, B., Mustapha, F.S., Cosca, M., Gehrels, G., Schoenbohm, L.M., Sobel, E.R., DeCelles, P.G., Russell, J., & Goodman, P. (2014). Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir. *Lithosphere*, *6*(6), 443-455. https://doi.org/10.1130/L360.1
- Caves, J.K., Bayshashov, B.U., Zhamangara, A., Ritch, A.J., Ibarra, D.E., Sjostrom, D.J., Mix, H.T., Winnick, M.J., & Chamberlain, C.P. (2017). Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate. *GSA Today* 27(2), 19–26. https://doi.org/10.1130/GSATG305A.1
- Caves, J.K., Moragne, D.Y., Ibarra, D.E., Bayshashov, B.U., Gao, Y., Jones, M.M., Zhamangara, A., Arzhannikova, A.V., Arzhannikov, S.G., & Chamberlain, C.P. (2016). The Neogene de-greening of central Asia. *Geology*, 44(11), 887-890. https://doi.org/10.1130/G38267.1

- Caves, J.K., Sjostrom, D.J., Mix, H.T., Winnick, M.J., & Chamberlain, C.P. (2014). Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. *American Journal of Science*, *314*(8), 1171-1201. https://doi.org/10.2475/08.2014.01
- Caves, J.K., Winnick, M.J., Graham, S.A., Sjostrom, D.J., Mulch, A., & Chamberlain, C.P. (2015). Role of the westerlies in Central Asia climate over the Cenozoic. *Earth and Planetary Science Letters*, 428, 33-43. https://doi.org/10.1016/j.epsl.2015.07.023
- Caves Rugenstein, J.K., & Chamberlain, C.P. (2018). The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. *Earth-Science Reviews*, *185*, 1129-1156. https://doi.org/10.1016/j.earscirev.2018.09.003
- Cerling, T.E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. *Earth and Planetary science letters*, 71(2), 229-240. https://doi.org/10.1016/0012-821X(84)90089-X
- Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., & Ehleringer, J.R. (1997). Global vegetation change through the Miocene/Pliocene boundary. *Nature*, *389*(6647), 153-158. https://doi.org/10.1038/38229
- Cerling, T.E., & Quade, J. (1993). Stable carbon and oxygen isotopes in soil carbonates. *Climate change in continental isotopic records. Geophysical Monograph*, 78, 217-231. https://doi.org/10.1029/GM078p0217
- Chamberlain, C.P., Mix, H.T., Mulch, A., Hren, M.T., Kent-Corson, M.L., Davis, S.J., Horton, T.W., & Graham, S.A. (2012). The Cenozoic climatic and topographic evolution of the western North American Cordillera. *American Journal of Science*, *312*(2), 213-262. https://doi.org/10.2475/02.2012.05
- Chamberlain, C.P., & Poage, M.A. (2000). Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. *Geology*, 28(2), 115-118. https://doi.org/10.1130/0091-7613(2000)28<115:RTPOMB>2.0.CO;2
- Chang, J., Glorie, S., Qiu, N., Min, K., Xiao, Y., & Xu, W. (2021). Late Miocene (10.0~ 6.0 Ma) rapid exhumation of the Chinese South Tianshan: Implications for the timing of aridification in the Tarim Basin. *Geophysical Research Letters*, 48(3), e2020GL090623. https://doi.org/10.1029/2020GL090623
- Charreau, J., Blard, P.H., Lavé, J., Dominguez, S., & Li, W.S. (2023). Unsteady topography in the eastern Tianshan due to imbalance between denudation and crustal thickening. *Tectonophysics*, 848, 1-16. https://doi.org/10.1016/j.tecto.2022.229702
- Charreau, J., Blard, P.H., Puchol, N., Avouac, J.P., Lallier-Vergès, E., Bourlès, D., Braucher, R., Gallaud, A., Finkel, R., Jolivet, M., & Chen, Y. (2011). Paleo-erosion rates in Central Asia since 9 Ma: A transient increase at the onset of Quaternary glaciations? *Earth and Planetary Science Letters*, 304(1-2), 85-92. https://doi.org/10.1016/j.epsl.2011.01.018
- Charreau, J., Gumiaux, C., Avouac, J.P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N., & Wang, Q. (2009). The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: Climatic and tectonic implications. *Earth and Planetary Science Letters*, 287(3-4), 298-310. https://doi.org/10.1016/j.epsl.2009.07.035
- Charreau, J., Kent-Corson, M.L., Barrier, L., Augier, R., Ritts, B.D., Chen, Y., France-Lannord, C., & Guilmette, C. (2012). A high-resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains. *Earth and Planetary Science Letters*, 341, 158-169. https://doi.org/10.1016/j.epsl.2012.05.033
- Charreau, J., Saint-Carlier, D., Dominguez, S., Lavé, J., Blard, P.H., Avouac, J.P., Jolivet, M., Chen, Y., Wang, S., Brown, N.D., Malatesta, L.C., Rhodes, E., & Aster Team. (2017). Denudation outpaced by crustal thickening in the eastern Tianshan. *Earth and Planetary Science Letters*, 479, 179-191. https://doi.org/10.1016/j.epsl.2017.09.025
- Chen, J., Burbank, D.W., Scharer, K.M., Sobel, E., Yin, J., Rubin, C., & Zhao, R. (2002). Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting. *Earth and Planetary Science Letters*, *195*(1-2), 113-130. https://doi.org/10.1016/S0012-821X(01)00579-9
- Chen, F., Yuan, Y., Trouet, V., Büntgen, U., Esper, J., Chen, F., Yu, S., Shen, M., Zhang, R., Shang, H., & Chen, Y. (2022a). Ecological and societal effects of Central Asian streamflow variation over the past eight centuries. *npj Climate and Atmospheric Science*, *5*(1), p.27. https://doi.org/10.1038/s41612-022-00239-5

- Chen, S.A., Michaelides, K., Richards, D.A., & Singer, M.B. (2022b). Exploring exogenous controls on short-versus long-term erosion rates globally. *Earth Surface Dynamics*, *10*(6), 1055-1078. https://doi.org/10.5194/esurf-10-1055-2022
- Child, D., Elliott, G., Mifsud, C., Smith, A.M., & Fink, D. (2000). Sample processing for earth science studies at ANTARES. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 172(1-4), 856-860. https://doi.org/10.1016/S0168-583X(00)00198-1
- Chmeleff, J., von Blanckenburg, F., Kossert, K., & Jakob, D. (2010). Determination of the ¹⁰Be half-life by multicollector ICP-MS and liquid scintillation counting. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 268(2), 192-199. https://doi.org/10.1016/j.nimb.2009.09.012
- Codilean A.T. (2006). Calculation of the cosmogenic nuclide production topographic shielding scaling factor for large areas using DEMs. *Earth Surface Processes and Landforms*, *31*, 785-794. https://doi.org/10.1002/esp.1336
- Codilean A.T., Fülöp R.-H., Wilcken K.M., Koutamanis D.S., Fink D., Fifield L.K., Wong H., Enge T.G., Vardanega C., & Rowling B. (2023). Cosmogenic Be-10 and Al-26 sample preparation at the University of Wollongong. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 535, 61-73. https://doi.org/10.1016/j.nimb.2022.12.003
- Codilean, A.T., Munack, H., Cohen, T.J., Saktura, W.M., Gray, A., & Mudd, S.M. (2018). OCTOPUS: An open cosmogenic isotope and luminescence database. *Earth System Science Data*, *10*(4), 2123-2139. https://doi.org/10.5194/essd-10-2123-2018
- Codilean, A.T., Munack, H., Saktura, W.M., Cohen, T.J., Jacobs, Z., Ulm, S., Hesse, P.P., Heyman, J., Peters, K.J., Williams, A.N., Saktura, R.B.K., Rui, X., Chishiro-Dennelly, K., & Panta, A. (2022). OCTOPUS database (v.2). *Earth System Science Data*, *14*(8), 3695–3713. https://doi.org/10.5194/essd-14-3695-2022
- Codilean, A.T., & Sadler, P.M. (2021). Tectonic Controls on Himalayan Denudation? *AGU Advances*, 2(3), e2021AV000539. https://doi.org/10.1029/2021AV000539
- Cogné, J. P. (2003). PaleoMac: A Macintosh[™] application for treating paleomagnetic data and making plate reconstructions. Geochemistry, Geophysics, Geosystems, 4(1), 1007. https://doi.org/10.1029/2001gc000227
- Compo G.P., Whitaker J.S., Sardeshmukh P.D., Matsui N., Allan R.J., Yin X., Gleason B.E., Vose R.S., Rutledge G., Bessemoulin P., Brönnimann S., Brunet M., Crouthamel R.I., Grant A.N., Groisman P.Y., Jones P.D., Kruk M.C., Kruger A.C., Marshall G.J., Maugeri M., Mok H.Y., Nordli O., Ross T.F., Trigo R.M., Wang X.L., Woodruff S.D., & Worley S.J. (2011). The Twentieth Century Reanalysis Project. *Quarterly Journal of the Royal Meteorological Society*, 137, 1-28. https://doi.org/10.1002/qj.776
- Corbett, L.B., Bierman, P.R., Rood, D.H., Caffee, M.W., Lifton, N.A., & Woodruff, T.E. (2017). Cosmogenic ²⁶Al/¹⁰Be surface production ratio in Greenland. *Geophysical Research Letters*, 44(3), 1350-1359. https://doi.org/10.1002/2016GL071276
- De Batist, M., Imbo, Y., Vermeesch, P., Klerkx, J., Giralt, S., Delvaux, D., Lignier, V., Beck, C., Kalugin, I., & Abdrakhmatov, K.E. (2002). Bathymetry and sedimentary environments of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): a large, high-altitude, tectonic lake. In *Lake Issyk-Kul: its natural environment* (pp. 101-123). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0491-6_9
- Dedow, R., Franz, M., Szulc, A., Schneider, J. W., Brückner, J., Ratschbacher, L., et al. (2020). Tajik Basin and Southwestern Tian Shan, Northwestern India-Asia collision zone: 3. Preorogenic to synorogenic retro-foreland basin evolution in the eastern Tajik depression and linkage to the Pamir hinterland. Tectonics, 39(5). e2019TC005874. https://doi.org/10.1029/2019tc005874
- De Grave, J. (2003). Apatite fission-track thermochronology of the Altai Mountains (South Siberia, Russia) and the Tien Shan Mountains (Kyrgyzstan): relevance to Meso-Cenozoic tectonics and denudation in Central Asia (Doctoral dissertation, Ghent University).
- De Grave, J., Glorie, S., Buslov, M.M., Izmer, A., Fournier-Carrie, A., Batalev, V.Y., Vanhaecke, F., & Elburg, M. (2011). The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermochronometry and zircon U/Pb dating. *Gondwana Research*, 20(4), 745-763. https://doi.org/10.1016/j.gr.2011.03.011

- De Grave, J., Glorie, S., Buslov, M.M., Stockli, D.F., McWilliams, M.O., & Batalev, V.Y. (2013). Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz northern Tien Shan, central Asia). *Gondwana Research*, 23(3), 998-1020. https://doi.org/10.1016/j.gr.2012.06.014
- De Grave, J., Glorie, S., Ryabinin, A., Zhimulev, F., Buslov, M.M., Izmer, A., Elburg, M., & Vanhaecke, F. (2012). Late Palaeozoic and Meso-Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multi-method thermochronology in the Trans-Alai, Turkestan-Alai segment and the southeastern Ferghana Basin. *Journal of Asian Earth Sciences*, 44, 149-168. https://doi.org/10.1016/j.jseaes.2011.04.019
- De Pelsmaeker, E., Glorie, S., Buslov, M.M., Zhimulev, F.I., Poujol, M., Korobkin, V.V., Vanhaecke, F., Vetrov, E.V. & De Grave, J. (2015). Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement. *Tectonophysics*, 662, 416-433. https://doi.org/10.1016/j.tecto.2015.06.014
- Dettman, D.L., Fang, X., Garzione, C.N., & Li, J. (2003). Uplift-driven climate change at 12 Ma: a long δ^{18} O record from the NE margin of the Tibetan plateau. *Earth and Planetary Science Letters*, 214(1-2), 267-277. https://doi.org/10.1016/S0012-821X(03)00383-2
- Dosseto, A., & Schaller, M. (2016). The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides. *Earth-Science Reviews*, *155*, 60-81. https://doi.org/10.1016/j.earscirev.2016.01.015
- Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S., & Fang, X. (2007). Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. *Nature*, 445(7128), 635-638. https://doi.org/10.1038/nature05516
- Erlanger, E.D., Granger, D.E., & Gibbon, R.J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. *Geology*, *40*(11), 1019-1022. https://doi.org/10.1130/G33172.1
- Fan, M., Dettman, D.L., Song, C., Fang, X., & Garzione, C.N. (2007). Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 247(3-4), 313-328. https://doi.org/10.1016/j.palaeo.2006.11.001
- Fang, X., An, Z., Clemens, S.C., Zan, J., Shi, Z., Yang, S., & Han, W. (2020). The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. *Proceedings of the National Academy of Sciences*, *117*(40), 24729-24734. https://doi.org/10.1073/pnas.1922710117
- Farley, K.A. (2002). (U-Th)/He dating: Techniques, calibrations, and applications. *Reviews in Mineralogy and Geochemistry*, 47(1), 819-844. https://doi.org/10.2138/rmg.2002.47.18
- Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., & Alsdorf D. (2007). The Shuttle Radar Topography Mission. *Reviews of Geophysics*, 45, RG2004. https://doi.org/10.1029/2005RG000183
- Fick, S.E., & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, *37*(12), 4302-4315. https://doi.org/10.1002/joc.5086
- Fink, D., Smith, A. (2007). An inter-comparison of ¹⁰Be and ²⁶Al AMS reference standards and the 10Be half-life. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 259, 600-609. https://doi.org/10.1016/j.nimb.2007.01.299
- Fisher, R. (1953). Dispersion on a sphere. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064
- Forte, A.M., & Whipple, K.X. (2019). The topographic analysis kit (TAK) for TopoToolbox. *Earth Surface Dynamics*, 7(1), 87-95. https://doi.org/10.5194/esurf-7-87-2019
- Fortuna, A.B. (2016). Paleogene and Neogene paleoclimate in the Northern Tian Shan (in Russian). *Vestnik IS NAN KR*, 1(7), 102-111.
- Fortuna, A.B., Abdieva, S.V., & Korzhenkov, A.M. (2017). The history of flora and vegetation development in the Issyk-Kul basin during the Cenozoic (in Russian). *Vestnik KRSU*, *17*(8), 201-205.
- Fortuna, A.B., Kerimbekov, C.K., Kuzikov, S.I., & Mikolaichuk, A.V. (1994). Lithostratigraphic and palynologic data of Cenozoic deposits of Tessik-Sarybulak depression (in Russian). In: *Geology of Cenozoic and Seismotectonics of the Tien Shan* (Edited by O.K. Chediya), 26–39. Frunse: Ilim, Bishkek, Kyrgyzstan.

- Freytet, P., & Verrecchia, E.P. (2002). Lacustrine and palustrine carbonate petrography: an overview. *Journal of Paleolimnology*, 27(2), 221-237. https://doi.org/10.1023/A:1014263722766
- Frisch, K., Voigt, S., Verestek, V., Appel, E., Albert, R., Gerdes, A., Arndt, I., Raddatz, J., Voigt, T., Weber, Y., & Batenburg, S.J. (2019a). Long-period astronomical forcing of westerlies' strength in Central Asia during Miocene climate cooling. *Paleoceanography and Paleoclimatology*, 34(11), 1784-1806. https://doi.org/10.1029/2019PA003642
- Frisch, K., Voigt, S., Voigt, T., Hellwig, A., Verestek, V., & Weber, Y. (2019b). Extreme aridity prior to lake expansion deciphered from facies evolution in the Miocene Ili Basin, south-east Kazakhstan. *Sedimentology*, *66*(5), 1716-1745.
- Fuchs, M.C., Gloaguen, R., Merchel, S., Pohl, E., Sulaymonova, V.A., Andermann, C., & Rugel, G. (2015). Denudation rates across the Pamir based on ¹⁰Be concentrations in fluvial sediments: dominance of topographic over climatic factors. *Earth Surface Dynamics*, 3(3), 423-439. https://doi.org/10.5194/esurf-3-423-2015
- Fujioka, T., Fink, D., & Mifsud, C. (2015). Towards improvement of aluminium assay in quartz for in situ cosmogenic ²⁶Al analysis at ANSTO. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 361, 346-353. https://doi.org/10.1016/j.nimb.2015.07.120
- Ganti, V., Von Hagke, C., Scherler, D., Lamb, M.P., Fischer, W.W., & Avouac, J. P. (2016). Time scale bias in erosion rates of glaciated landscapes. *Science Advances*, 2(10), e1600204. https://doi.org/10.1126/sciadv.1600204
- Garzione, C.N., Dettman, D.L., & Horton, B.K. (2004). Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. *Palaeogeography, Palaeoclimatology, Palaeoecology, 212*(1-2), 119-140. https://doi.org/10.1016/j.palaeo.2004.05.020
- Gebhardt, A.C., Naudts, L., De Mol, L., Klerkx, J., Abdrakhmatov, K., Sobel, E.R., & De Batist, M. (2017). High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data. *Climate of the Past*, *13*(1), 73-92. https://doi.org/10.5194/cp-13-73-2017
- Glorie, S., & De Grave, J. (2016). Exhuming the Meso–Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: a review based on low-temperature thermochronology. *Geoscience Frontiers*, 7(2), 155-170. https://doi.org/10.1016/j.gsf.2015.04.003
- Glorie, S., De Grave, J., Buslov, M.M., Elburg, M.A., Stockli, D.F., & Gerdes, A. (2010). Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): from emplacement to exhumation. *Journal of Asian Earth Sciences*, *38*(3-4), 131-146. https://doi.org/10.1016/j.jseaes.2009.12.009
- Glorie, S., De Grave, J., Buslov, M.M., Zhimulev, F.I., Stockli, D.F., Batalev, V.Y., Izmer, A., Van den Haute, P., Vanhaecke, F., & Elburg, M.A. (2011). Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: The role of inherited structures during deformation-propagation. *Tectonics*, *30*(6). https://doi.org/10.1029/2011TC002949
- Goode, J. K., Burbank, D. W., & Bookhagen, B. (2011). Basin width control of faulting in the Naryn Basin, south-central Kyrgyzstan. Tectonics, 30(6). TC6009. https://doi.org/10.1029/2011tc002910
- Goode, J.K., Burbank, D.W., & Ormukov, C. (2014). Pliocene-Pleistocene initiation, style, and sequencing of deformation in the central Tien Shan. *Tectonics*, *33*(4), 464-484. https://doi.org/10.1002/2013TC003394
- Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.), (2012). The geologic time scale 2012. Elsevier.
- Graham, S.A., Chamberlain, C.P., Yue, Y., Ritts, B.D., Hanson, A.D., Horton, T.W., Waldbauer, J.R., Poage, M.A., & Feng, X. (2005). Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim basin. *American Journal of Science*, *305*(2), 101-118. https://doi.org/10.2475/ajs.305.2.101
- Granger, D.E., & Muzikar, P.F. (2001). Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. *Earth and Planetary Science Letters*, *188*(1-2), 269-281. https://doi.org/10.1016/S0012-821X(01)00309-0

- Granger, D.E., & Schaller, M. (2014). Cosmogenic nuclides and erosion at the watershed scale. *Elements*, *10*(5), 369-373. https://doi.org/10.2113/gselements.10.5.369
- Grigina, O.M., & Fortuna, A.B. (1975). Main stages of the vegetation development in the Issyk-Kul basin in the Cenozoic (in Russian). In: *History of lakes and inland seas in arid zone: Thesis*, 79–85. Leningrad, 4.
- Grigina, O.M., & Fortuna, A.B. (1981). *Paleogeography of the Northern Tian Shan in the Cenozoic* (in Russian). Frunse: Ilim, Bishkek, Kyrgyzstan.
- Grin, E., Schaller, M., & Ehlers, T.A. (2018). Spatial distribution of cosmogenic ¹⁰Be derived denudation rates between the Western Tian Shan and Northern Pamir, Tajikistan. *Geomorphology*, *321*, 1-15. https://doi.org/10.1016/j.geomorph.2018.08.007
- Guan, X., Ma, Y., Lu, H., Jiang, Y., Pang, L., Zheng, X., & Li, Y. (2022). Topographic and climatic controls on decadal-scale catchment-basin erosion rates in the northern Chinese Tian Shan. *Catena*, 210, 105862. https://doi.org/10.1016/j.catena.2021.105862
- Guerit, L., Barrier, L., Jolivet, M., Fu, B., & Métivier, F. (2016). Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems. *Earth Surface Processes and Landforms*, 41(8), 1088-1106. https://doi.org/10.1002/esp.3890.
- Halsted, C.T., Bierman, P.R., & Balco, G. (2021). Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic ²⁶Al/¹⁰Be Production Ratio. *Geosciences*, *11*(10), 402. https://doi.org/10.3390/geosciences11100402
- Hayashi, T., Yamanaka, T., Hikasa, Y., Sato, M., Kuwahara, Y., & Ohno, M. (2020). Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. *Communications Earth & Environment*, 1(1), 25. https://doi.org/10.1038/s43247-020-00023-4
- Hecht, H., & Oguchi, T. (2017). Global evaluation of erosion rates in relation to tectonics. *Progress in Earth and Planetary Science*, 4(1), 1-9. https://doi.org/10.1186/s40645-017-0156-3
- Heermance, R.V., Chen, J., Burbank, D.W., & Wang, C. (2007). Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. *Basin Research*, *19*(4), 599-632. https://doi.org/10.1111/j.1365-2117.2007.00339.x
- Heermance, R.V., Pearson, J., Moe, A., Langtao, L., Jianhong, X., Jie, C., Richter, F., Garzione, C.N., Junsheng, N., & Bogue, S. (2018). Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma. *Geology*, 46(10), pp.919-922. https://doi.org/10.1130/G45085.1
- Hellwig, A., Voigt, S., Mulch, A., Frisch, K., Bartenstein, A., Pross, J., Gerdes, A., & Voigt, T. (2018). Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (south-eastern Kazakhstan, Central Asia). *Sedimentology*, 65(2), 517-539. https://doi.org/10.1111/sed.12390
- Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., McKnight, C.L., Schulein, B.J., & Wang, Z. (1992). Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. *Geological Society of America Bulletin*, *104*(1), 53-79. https://doi.org/10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2
- Herbert, T.D., Lawrence, K.T., Tzanova, A., Peterson, L.C., Caballero-Gill, R., & Kelly, C.S. (2016). Late Miocene global cooling and the rise of modern ecosystems. *Nature Geoscience*, 9(11), 843-847. https://doi.org/10.1038/ngeo2813
- Herman, F., Braun, J., Deal, E., & Prasicek, G. (2018). The response time of glacial erosion. *Journal of Geophysical Research: Earth Surface*, 123(4), 801-817. https://doi.org/10.1002/2017JF004586
- Herman, F., & Champagnac, J.D. (2016). Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. *Terra Nova*, 28(1), 2-10. https://doi.org/10.1111/ter.12186
- Herman, F., Seward, D., Valla, P.G., Carter, A., Kohn, B., Willett, S.D., & Ehlers, T.A. (2013). Worldwide acceleration of mountain erosion under a cooling climate. *Nature*, *504*(7480), 423-426. https://doi.org/10.1038/nature12877
- Horn, B.K.P. (1981). Hill shading and the reflectance map. *Proceedings of the IEEE*, 69(1), 14–47. https://doi.org/10.1109/PROC.1981.11918.

- Hough, B.G., Garzione, C.N., Wang, Z., Lease, R.O., Burbank, D.W., & Yuan, D. (2011). Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau. *Bulletin*, *123*(1-2), 168-185. https://doi.org/10.1130/B30090.1
- Jepson, G., Carrapa, B., Gillespie, J., Feng, R., DeCelles, P.G., Kapp, P., Tabor, C.R., & Zhu, J. (2021). Climate as the Great Equalizer of Continental-Scale Erosion. *Geophysical Research Letters*, 48(20), e2021GL095008. https://doi.org/10.1029/2021GL095008
- Jia, Y., Wu, H., Zhu, S., Li, Q., Zhang, C., Yu, Y., & Sun, A. (2020). Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 557, 109907. https://doi.org/10.1016/j.palaeo.2020.109907
- Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y., & Wang, Q. (2010). Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. *Tectonics*, 29(6). https://doi.org/10.1029/2010TC002712
- Kaya, M.Y., Dupont-Nivet, G., Proust, J.N., Roperch, P., Bougeois, L., Meijer, N., Frieling, J., Fioroni, C., Altiner, S.Ö., Vardar, E., & Barbolini, N. (2019). Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. *Basin Research*, *31*(3), 461-486. https://doi.org/10.1111/bre.12330
- Käßner, A., Ratschbacher, L., Pfänder, J.A., Hacker, B.R., Zack, G., Sonntag, B.L., Khan, J., Stanek, K.P., Gadoev, M., & Oimahmadov, I. (2017). Proterozoic–Mesozoic history of the Central Asian orogenic belt in the Tajik and southwestern Kyrgyz Tian Shan: U-Pb, 40Ar/39Ar, and fission-track geochronology and geochemistry of granitoids. *GSA Bulletin*, 129(3-4), 281-303. https://doi.org/10.1130/B31466.1
- Kent-Corson, M.L., Ritts, B.D., Zhuang, G., Bovet, P.M., Graham, S.A., & Chamberlain, C.P. (2009). Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. *Earth and Planetary Science Letters*, 282(1-4), 158-166. https://doi.org/10.1016/j.epsl.2009.03.011
- King, J., Banerjee, S. K., Marvin, J., & Özdemir, Ö. (1982). A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth and Planetary Science Letters, 59(2), 404–419. https://doi.org/10.1016/0012-821x(82)90142-x
- Kirschvink, J. L. (1980). The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365-246x.1980.tb02601.x
- Knudsen, M.F., Nørgaard, J., Grischott, R., Kober, F., Egholm, D.L., Hansen, T.M., & Jansen, J.D. (2020). New cosmogenic nuclide burial-dating model indicates onset of major glaciations in the Alps during Middle Pleistocene Transition. *Earth and Planetary Science Letters*, 549, 116491. https://doi.org/10.1016/j.epsl.2020.116491
- Kohl, C.P., & Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. *Geochimica et Cosmochimica Acta*, 56(9), 3583-3587. https://doi.org/10.1016/0016-7037(92)90401-4
- Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., & Stone, J. (2008). Late quaternary glaciation in the Kyrgyz Tien Shan. *Quaternary Science Reviews*, 27(7-8), 846-866. https://doi.org/10.1016/j.quascirev.2008.01.009
- Koppes, M.N., & Montgomery, D.R. (2009). The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. *Nature Geoscience*, 2(9), 644-647. https://doi.org/10.1038/ngeo616
- Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Von Gosstomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A. (2010). A new value for the half-life of ¹⁰Be by heavy-ion elastic recoil detection and liquid scintillation counting. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 268(2), 187-191. https://doi.org/10.1016/j.nimb.2009.09.020
- Korzhenkov, A. M., & Deev, E. V. (2017). Underestimated seismic hazard in the south of the Issyk-Kul Lake region (northern Tian Shan). Geodesy and Geodynamics, 8(3), 169–180. https://doi.org/10.1016/j.geog.2017.03.012
- Kreemer, C., Blewitt, G., & Klein, E.C. (2014). A geodetic plate motion and Global Strain Rate Model. *Geochemistry, Geophysics, Geosystems, 15*, 3849–3889. https://doi.org/10.1002/2014gc005407

- Kudriavtseva, A., Sobel, E.R., Codilean, A.T., Meijers, M.J.M., Mulch, A., Hoke, G.D., Fink, D., Mikolaichuk, A.V., Fülöp, R.-H., Wilcken, K.M., & Enge, T.G. (2023). Neogene aridification and lake development in the Issyk-Kul basin, Kyrgyzstan. *Basin Research*, 00, 1–35. https://doi.org/10.1111/bre.12751
- Kutuzov, S., & Shahgedanova, M. (2009). Glacier retreat and climatic variability in the eastern Terskey– Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. *Global and Planetary Change*, 69(1-2), 59-70. https://doi.org/10.1016/j.gloplacha.2009.07.001
- Lal, D. (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. *Earth and Planetary Science Letters*, 104(2-4), 424-439. https://doi.org/10.1016/0012-821X(91)90220-C
- Landgraf, A., Dzhumabaeva, A., Abdrakhmatov, K.E., Strecker, M.R., Macaulay, E.A., Arrowsmith, J.R., Sudhaus, H., Preusser, F., Rugel, G., & Merchel, S. (2016). Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan. *Journal of Geophysical Research: Solid Earth*, 121(5), 3888-3910. https://doi.org/10.1002/2015JB012714
- Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., & Schwarz, A. (2014). Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. *The Holocene*, *24*(8), 970-984. https://doi.org/10.1177/0959683614534741
- Leng, M.J., & Marshall, J.D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. *Quaternary Science Reviews*, 23(7-8), 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012
- Levin, N.E., Cerling, T.E., Passey, B.H., Harris, J.M., & Ehleringer, J.R. (2006). A stable isotope aridity index for terrestrial environments. *Proceedings of the National Academy of Sciences*, 103(30), 11201-11205. https://doi.org/10.1073/pnas.0604719103
- Li, B., Sun, D., Wang, X., Zhang, Y., Hu, W., Wang, F., Li, Z., Ma, Z., & Liang, B. (2016). δ^{18} O and δ^{13} C records from a Cenozoic sedimentary sequence in the Lanzhou Basin, Northwestern China: implications for palaeoenvironmental and palaeoecological changes. *Journal of Asian Earth Sciences*, *125*, 22-36. https://doi.org/10.1016/j.jseaes.2016.05.010
- Li, H.C., & Ku, T.L. (1997). δ¹³C–δ¹⁸O covariance as a paleohydrological indicator for closed-basin lakes. *Palaeogeography, Palaeoclimatology, Palaeoecology, 133*(1-2), 69-80. https://doi.org/10.1016/S0031-0182(96)00153-8
- Li, J.X., Yue, L.P., Roberts, A.P., Hirt, A.M., Pan, F., Guo, L., Xu, Y., Xi, R.G., Guo, L., Qiang, X.K., Gai, C.C., Jiang, Z.X., Sun, Z.M., & Liu, Q.S. (2018). Global cooling and enhanced Eocene Asian midlatitude interior aridity. *Nature Communications*, 9(1), 1-8. https://doi.org/10.1038/s41467-018-05415-x
- Li, W., Chen, Y., Yuan, X., Xiao, W., & Windley, B.F. (2022). Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision. *Nature Communications*, *13*(1), 3738. https://doi.org/10.1038/s41467-022-30795-6
- Licht, A., Dupont-Nivet, G., Pullen, A., Kapp, P., Abels, H.A., Lai, Z., Guo, Z., Abell, J., & Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. *Nature communications*, 7(1), 1-6. https://doi.org/10.1038/ncomms12390
- Lisiecki, L.E., & Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. *Paleoceanography*, 20(1). https://doi.org/10.1029/2004PA001071
- Liu, Q., Roberts, A. P., Larrasoaña, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., & Oldfield, F. (2012). Environmental magnetism: Principles and applications. Reviews of Geophysics, 50(4), RG4002. https://doi.org/10.1029/2012rg000393
- Liu, W., Liu, Z., An, Z., Sun, J., Chang, H., Wang, N., Dong, J., & Wang, H. (2014). Late Miocene episodic lakes in the arid Tarim Basin, western China. *Proceedings of the National Academy of Sciences*, *111*(46), 16292-16296. https://doi.org/10.1073/pnas.1410890111
- Liu, Y., Métivier, F., Gaillardet, J., Ye, B., Meunier, P., Narteau, C., Lajeunesse, E., Han, T., & Malverti, L. (2011). Erosion rates deduced from seasonal mass balance along the upper Urumqi River in Tianshan. *Solid Earth*, 2(2), 283-301. https://doi.org/10.5194/se-2-283-2011

- Macaulay, E.A., Sobel, E.R., Mikolaichuk, A., Kohn, B., & Stuart, F.M. (2014). Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan. *Tectonics*, 33(2), 135-165. https://doi.org/10.1002/2013TC003376
- Macaulay, E.A., Sobel, E.R., Mikolaichuk, A., Landgraf, A., Kohn, B., & Stuart, F. (2013). Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan. *Tectonics*, *32*(3), 487-500. https://doi.org/10.1002/tect.20040
- Macaulay, E.A., Sobel, E.R., Mikolaichuk, A.V., Wack, M., Gilder, S.A., Mulch, A., Fortuna, A.B., Hynek, S., & Apayarov, F. (2016). The sedimentary record of the Issyk-Kul basin, Kyrgyzstan: climatic and tectonic inferences. *Basin Research*, 28(1), 57-80. https://doi.org/10.1111/bre.12098
- Maksumova, R.A., Djenchuraeva, A.V., & Berezanskii, A.V. (2001). Structure and evolution of the Tien Shan nappe-folded orogen. *Russian Geology and Geophysics*, 42, 1367–1374.
- McFadden, P. L. (1990). A new fold test for palaeomagnetic studies. Geophysical Journal International, 103(1), 163–169. https://doi.org/10.1111/j.1365-246X.1990.tb01761.x
- McFadden, P. L., & McElhinny, M. W. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729. https://doi.org/10.1111/j.1365-246x.1990.tb05683.x
- Methner, K., Fiebig, J., Wacker, U., Umhoefer, P., Chamberlain, C.P., & Mulch, A. (2016). Eocene-Oligocene proto-Cascades topography revealed by clumped (Δ47) and oxygen isotope (δ¹⁸O) geochemistry (Chumstick Basin, WA, USA). *Tectonics*, 35(3), 546-564. https://doi.org/10.1002/2015TC003984
- Miao, Y., Herrmann, M., Wu, F., Yan, X., & Yang, S. (2012). What controlled Mid–Late Miocene longterm aridification in Central Asia? – Global cooling or Tibetan Plateau uplift: A review. *Earth-Science Reviews*, *112*(3-4), 155-172. https://doi.org/10.1016/j.earscirev.2012.02.003
- Molnar, P. (2004). Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? *Annu. Rev. Earth Planet. Sci.*, *32*, 67-89. https://doi.org/10.1146/annurev.earth.32.091003.143456
- Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? *Nature*, *346*(6279), 29-34. https://doi.org/10.1038/346029a0
- Molnar, P., & Tapponnier, P. (1975). Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. *Science*, *189*(4201), 419-426. https://doi.org/10.1126/science.189.4201.419
- Montgomery, D.R., & Brandon, M.T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. *Earth and Planetary Science Letters*, 201(3-4), 481-489. https://doi.org/10.1016/S0012-821X(02)00725-2
- Mudd S.M., Harel M.A., Hurst M.D., Grieve S.W., & Marrero S.M. (2016). The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. *Earth Surface Dynamics*, *4*, 655-674. https://doi.org/10.5194/esurf-4-655-2016
- Mulch, A. (2016). Stable isotope paleoaltimetry and the evolution of landscapes and life. *Earth and Planetary Science Letters*, 433, 180-191. https://doi.org/10.1016/j.epsl.2015.10.034
- Nachtergaele, S., De Pelsmaeker, E., Glorie, S., Zhimulev, F., Jolivet, M., Danišík, M., Buslov, M.M., & De Grave, J. (2018). Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology. *Geoscience Frontiers*, 9(5), 1495-1514. https://doi.org/10.1016/j.gsf.2017.11.007
- Niemi, N.A., Oskin, M., Burbank, D.W., Heimsath, A.M., & Gabet, E.J. (2005). Effects of bedrock landslides on cosmogenically determined erosion rates. *Earth and Planetary Science Letters*, 237(3-4), 480-498. https://doi.org/10.1016/j.epsl.2005.07.009
- Nishiizumi, K. (2004). Preparation of ²⁶Al AMS standards. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 223, 388-392. https://doi.org/10.1016/j.nimb.2004.04.075
- Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., & McAninch, J. (2007). Absolute calibration of ¹⁰Be AMS standards. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 258(2), 403-413. https://doi.org/10.1016/j.nimb.2007.01.297

- Norris, T.L., Gancarz, A.J., Rokop, D.J., & Thomas, K.W. (1983). Half-life of ²⁶Al. *Journal of Geophysical Research: Solid Earth*, 88(S01), B331-B333. https://doi.org/10.1029/JB088iS01p0B331
- Norton, K.P., & Schlunegger, F. (2017). Lack of a weathering signal with increased Cenozoic erosion? *Terra Nova*, 29(5), 265-272. https://doi.org/10.1111/ter.12278
- Oberhänsli, H., & Molnar, P. (2012). Climate Evolution in Central Asia during the Past Few Million Years: A Case Study from Issyk-Kul. *Scientific Drilling*, *13*, 51-57. https://doi.org/10.2204/iodp.sd.13.09.2011
- Omuraliev, M., & Omuralieva, A. (2004). *Late Cenozoic Tectonics of the Tien Shan*. Institute of Seizmology, National Academy of Sciences Kyrgyz Republic, Bishkek.
- Pedersen, V. K., & Egholm, D. L. (2013). Glaciations in response to climate variations preconditioned by evolving topography. *Nature*, 493(7431), 206-210. https://doi.org/10.1038/nature11786
- Pittore, M., Ozturk, U., Moldobekov, B., & Saponaro, A. (2018). EMCA Landslide catalog Central Asia. V. 1.0. GFZ Data Services. https://doi.org/10.5880/GFZ.2.6.2018.004
- Poage, M.A., & Chamberlain, C.P. (2001). Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. *American Journal of Science*, 301(1), 1-15. https://doi.org/10.2475/ajs.301.1.1
- Pomazkov, K. D. (1971). Geological map of the USSR of 1:200,000 scales: Northern Tien-Shan series. Sheet K-43-XVII. Russian Geological Research Institute. (VSEGEI).
- Portenga, E.W., & Bierman, P.R. (2011). Understanding Earth's eroding surface with 10Be, *GSA Today*, 21, 4–10, https://doi.org/10.1130/G111A.1, 2011.
- Prud'homme, C., Scardia, G., Vonhof, H., Guinoiseau, D., Nigmatova, S., Fiebig, J., Gerdes, A., Janssen, R., & Fitzsimmons, K.E. (2021). Central Asian modulation of Northern Hemisphere moisture transfer over the Late Cenozoic. *Communications Earth & Environment*, 2(1), 1-8. https://doi.org/10.1038/s43247-021-00173-z
- Puchol, N., Charreau, J., Blard, P.H., Lavé, J., Dominguez, S., Pik, R., Saint-Carlier, D., & ASTER Team. (2017). Limited impact of Quaternary glaciations on denudation rates in Central Asia. GSA Bulletin, 129(3-4), 479-499. https://doi.org/10.1130/B31475.1
- Quade, J., Breecker, D.O., Daëron, M., & Eiler, J. (2011). The paleoaltimetry of Tibet: An isotopic perspective. *American Journal of Science*, *311*(2), 77-115. https://doi.org/10.2475/02.2011.01
- Quade, J., Leary, R., Dettinger, M.P., Orme, D., Krupa, A., DeCelles, P.G., Kano, A., Kato, H., Waldrip, R., Huang, W., & Kapp, P. (2020). Resetting Southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. *Global and Planetary Change*, 191, 103194. https://doi.org/10.1016/j.gloplacha.2020.103194
- Ramstein, G., Fluteau, F., Besse, J., & Joussaume, S. (1997). Effect of orogeny, plate motion and land– sea distribution on Eurasian climate change over the past 30 million years. *Nature*, *386*(6627), 788-795. https://doi.org/10.1038/386788a0
- Raymo, M.E., & Ruddiman, W.F. (1992). Tectonic forcing of late Cenozoic climate. *Nature*, 359(6391), 117-122. https://doi.org/10.1038/359117a0
- Reiners, P.W., & Brandon, M.T. (2006). Using thermochronology to understand orogenic erosion. *Annu. Rev. Earth Planet. Sci.*, *34*, 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
- Reiners, P.W., Ehlers, T.A., & Zeitler, P.K. (2005). Past, Present, and Future of Thermochronology. *Rev Mineralogy Geochem*, 58, 1–18. https://doi.org/10.2138/rmg.2005.58.1
- Richter, F., Pearson, J., Vilkas, M., Heermance, R.V., Garzione, C.N., Cecil, M.R., Jepson, G., Moe, A., Xu, J., Liu, L., & Chen, J. (2022). Growth of the southern Tian Shan-Pamir and its impact on central Asian climate. *GSA Bulletin*. https://doi.org/10.1130/B36471.1
- Ricketts, R.D., Johnson, T.C., Brown, E.T., Rasmussen, K.A., & Romanovsky, V.V. (2001). The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. *Palaeogeography, Palaeoclimatology, Palaeoecology, 176*(1-4), 207-227. https://doi.org/10.1016/S0031-0182(01)00339-X
- Rolland, Y., Jourdon, A., Petit, C., Bellahsen, N., Loury, C., Sobel, E. R., & Glodny, J. (2020). Thermochronology of the highest central Asian massifs (Khan Tengri-Pobedi, SE Kyrgyztan): Evidence

for Late Miocene (ca. 8 Ma) reactivation of Permian faults and insights into building the Tian Shan. *Journal of Asian Earth Sciences*, 200, 104466. https://doi.org/10.1016/j.jseaes.2020.104466

- Rosenwinkel, S., Landgraf, A., Schwanghart, W., Volkmer, F., Dzhumabaeva, A., Merchel, S., Rugel, G., Preusser, F., & Korup, O. (2017). Late Pleistocene outburst floods from Issyk-Kul, Kyrgyzstan? *Earth Surface Processes and Landforms*, 42(10), 1535-1548. https://doi.org/10.1002/esp.4109
- Roud, S.C., Wack, M.R., Gilder, S.A., Kudriavtseva, A., & Sobel, E.R. (2021). Miocene to Early Pleistocene Depositional History and Tectonic Evolution of the Issyk-Kul Basin, Central Tian Shan. *Geochemistry, Geophysics, Geosystems*, 22(4), e2020GC009556. https://doi.org/10.1029/2020GC009556

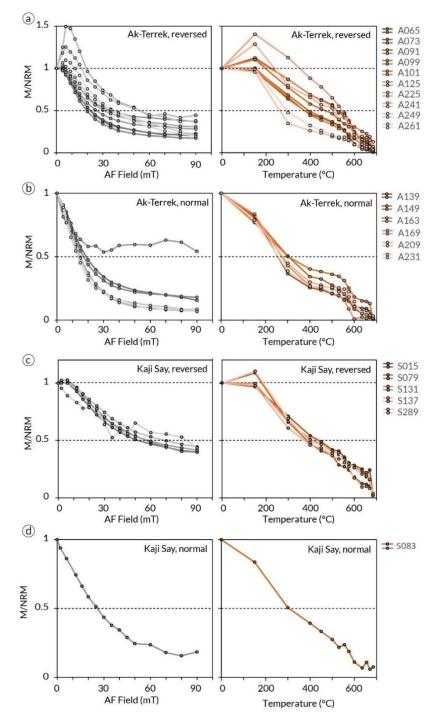
Rowley, D.B., & Garzione, C.N. (2007). Stable isotope-based paleoaltimetry. *Annu. Rev. Earth Planet. Sci.*, *35*, 463-508. https://doi.org/10.1146/annurev.earth.35.031306.140155

Rugel, G., Pavetich, S., Akhmadaliev, S., Baez, S.M.E., Scharf, A., Ziegenrücker, R., & Merchel, S. (2016). The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 370, 94–100. https://doi.org/10.1016/j.nimb.2016.01.012

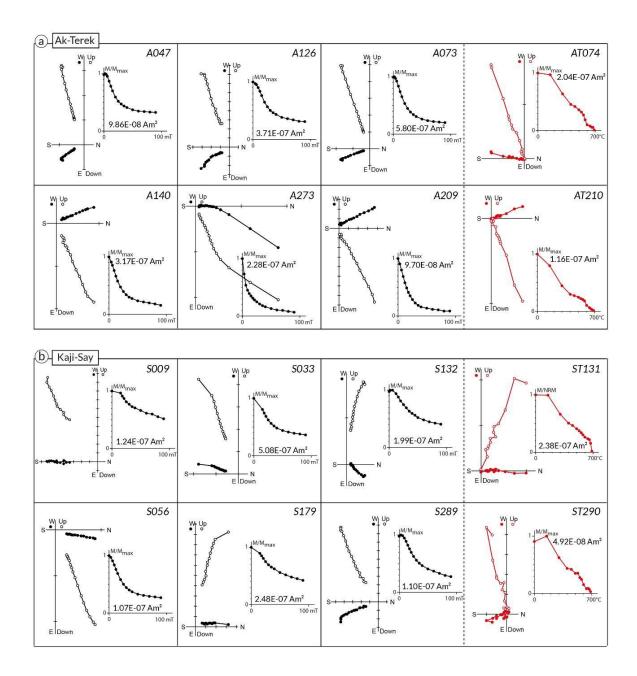
Ruggieri, E., Herbert, T., Lawrence, K.T., & Lawrence, C.E. (2009). Change point method for detecting regime shifts in paleoclimatic time series: application to δ18O time series of the Plio-Pleistocene. *Paleoceanography*, 24(1). https://doi.org/10.1029/2007PA001568

- Sanhueza-Pino, K., Korup, O., Hetzel, R., Munack, H., Weidinger, J.T., Dunning, S., Ormukov, C., & Kubik, P.W. (2011). Glacial advances constrained by ¹⁰Be exposure dating of bedrock landslides, Kyrgyz Tien Shan. *Quaternary research*, *76*(3), 295-304. https://doi.org/10.1016/j.yqres.2011.06.013
- Sanyal, P., Bhattacharya, S.K., & Prasad, M. (2005). Chemical diagenesis of Siwalik sandstone: isotopic and mineralogical proxies from Surai Khola section, Nepal. *Sedimentary Geology*, 180(1-2), 57-74. https://doi.org/10.1016/j.sedgeo.2005.06.005
- Schaefer, J.M., Codilean, A.T., Willenbring, J.K., Lu, Z.-T., Keisling, B., Fülöp, R.-H. & Val, P. (2022). Cosmogenic nuclide techniques. *Nature Reviews Methods Primers* 2, 18. https://doi.org/10.1038/s43586-022-00096-9
- Schildgen, T. F., van der Beek, P. A., Sinclair, H. D., & Thiede, R. C. (2018). Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology. Nature, 559(7712), 89-93.
- Schwarz, A., Turner, F., Lauterbach, S., Plessen, B., Krahn, K.J., Glodniok, S., Mischke, S., Stebich, M., Witt, R., Mingram, J., & Schwalb, A. (2017). Mid-to late Holocene climate-driven regime shifts inferred from diatom, ostracod and stable isotope records from Lake Son Kol (Central Tian Shan, Kyrgyzstan). *Quaternary Science Reviews*, 177, 340-356. https://doi.org/10.1016/j.quascirev.2017.10.009
- Selander, J., Oskin, M., Ormukov, C., & Abdrakhmatov, K. (2012). Inherited strike-slip faults as an origin for basement-cored uplifts: Example of the Kungey and Zailiskey ranges, northern Tian Shan. *Tectonics*, *31*(4). https://doi.org/10.1029/2011TC003002
- Seltmann, R., Konopelko, D., Biske, G., Divaev, F., & Sergeev, S. (2011). Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. *Journal of Asian Earth Sciences*, 42, 821–838, https://doi.org/10.1016/j.jseaes.2010.08.016
- Sobel, E. R., & Arnaud, N. (2000). Cretaceous–Paleogene basaltic rocks of the Tuyon basin, NW China and the Kyrgyz Tian Shan: The trace of a small plume. Lithos, 50(1–3), 191–215. https://doi.org/10.1016/s0024-4937(99)00046-8
- Sobel, E. R., & Dumitru, T. A. (1997). Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research, 102(B3), 5043–5063. https://doi.org/10.1029/96jb03267
- Sobel, E.R., Chen, J., & Heermance, R.V. (2006a). Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations. *Earth and Planetary Science Letters*, 247(1-2), 70-81. https://doi.org/10.1016/j.epsl.2006.03.048
- Sobel, E.R., Oskin, M., Burbank, D., & Mikolaichuk, A. (2006b). Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology. *Tectonics*, 25(2). https://doi.org/10.1029/2005TC001809

- Sorg, A., Bolch, T., Stoffel, M., Solomina, O., & Beniston, M. (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). *Nature Climate Change*, 2(10), 725-731. https://doi.org/10.1038/nclimate1592
- Spötl, C., & Vennemann, T.W. (2003). Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. *Rapid communications in mass spectrometry*, 17(9), 1004-1006. https://doi.org/https://doi.org/10.1002/rcm.1010
- Steinthorsdottir, M., Coxall, H.K., De Boer, A.M., Huber, M., Barbolini, N., Bradshaw, C.D., Burls, N.J., Feakins, S.J., Gasson, E., Henderiks, J., & Holbourn, A.E. (2021). The Miocene: the future of the past. *Paleoceanography and Paleoclimatology*, 36(4), p.e2020PA004037. https://doi.org/10.1029/2020PA004037
- Stone J.O. (2000). Air pressure and cosmogenic isotope production. *Journal of Geophysical Research: Solid Earth, 105,* 23753-23759. https://doi.org/10.1029/2000JB900181
- Stroeven, A.P., Hättestrand, C., Heyman, J., Kleman, J., & Morén, B.M. (2013). Glacial geomorphology of the Tian Shan. *Journal of Maps*, 9, 505–512. https://doi.org/10.1080/17445647.2013.820879
- Sun, J., Gong, Z., Tian, Z., Jia, Y., & Windley, B. (2015). Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. *Palaeogeography, Palaeoclimatology, Palaeoecology, 421,* 48-59. https://doi.org/10.1016/j.palaeo.2015.01.001
- Swart, P.K. (2015). The geochemistry of carbonate diagenesis: The past, present and future. *Sedimentology*, *62*(5), 1233-1304. https://doi.org/10.1111/sed.12205
- Tadono, T., Takaku, J., Tsutsui, K., Oda, F., & Nagai, H. (2015). Status of "ALOS World 3D (AW3D)" global DSM generation. In 2015 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 3822–3825).
- Talbot, M.R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. *Chemical Geology: Isotope Geoscience Section*, 80(4), 261-279. https://doi.org/10.1016/0168-9622(90)90009-2
- Tauxe, L. (2010). Essentials of paleomagnetism. University of California Press. 489 pp.
- Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K., Molnar, P., & Berger, G.W. (2002). Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. *Journal of Geophysical Research: Solid Earth*, *107*(B9), ETG-7. https://doi.org/10.1029/2001JB000596
- Turchinskiy, V. P. (1970). Geological map of the USSR of 1:200 000 scales: Northern Tien Shan series. Sheet K-43-XVIII. Moscow, Russia: Russian Geological Research Institute (VSEGEI), Nedra.
- Tursungasiev, B.T., & Petrov, O.V. (editors) (2008). Geological map of Kyrgyzstan of 1:500000 scales. Russian Geological Research Institute (VSEGEI), Saint Petersburg.
- Unger-Shayesteh, K., Vorogushyn, S., Farinotti, D., Gafurov, A., Duethmann, D., Mandychev, A., & Merz, B. (2013). What do we know about past changes in the water cycle of Central Asian headwaters? A review. *Global and Planetary Change*, *110*, 4-25. https://doi.org/10.1016/j.gloplacha.2013.02.004
- Van der Beek, P., & Schildgen, T.F. (2023). *age2exhume–a* MATLAB/Python script to calculate steadystate vertical exhumation rates from thermochronometric ages and application to the Himalaya. *Geochronology*, *5*(1), 35-49. https://doi.org/10.5194/gchron-5-35-2023
- Voigt, S., Weber, Y., Frisch, K., Bartenstein, A., Hellwig, A., Petschick, R., Bahr, A., Pross, J., Koutsodendris, A., Voigt, T., Verestek, V., & Appel, E. (2017). Climatically forced moisture supply, sediment flux and pedogenesis in Miocene mudflat deposits of south-east Kazakhstan, Central Asia. *The Depositional Record*, 3(2), 209-232. https://doi.org/10.1002/dep2.34
- von Blanckenburg, F., Belshaw, N.S., & O'Nions, R.K. (1996). Separation of ⁹Be and cosmogenic ¹⁰Be from environmental materials and SIMS isotope dilution analysis. *Chemical Geology*, *129*(1-2), 93-99. https://doi.org/10.1016/0009-2541(95)00157-3
- Voskresenskaya, T.N. (2013). Lacustrine sediments and paleogeography in the Issyk-Kul basin in the Cenozoic (in Russian). In: *Sedimentary basins, sedimentary and postsedimentary processes in the geological history, 1,* 180-183. Novosibirsk: INGG SO RAN.
- Voskresenskaya, T.N., & Leflat, O.N. (2015). Paleogeographic evolution of the Issyk-Kul basin during the Pleistocene (in Russian). *Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya*, 71-77.


- Wack, M. R., & Gilder, S. A. (2012). The SushiBar: An automated system for paleomagnetic investigations. Geochemistry, Geophysics, Geosystems, 13(3), a. https://doi.org/10.1029/2011gc003985
- Wack, M.R., Gilder, S.A., Macaulay, E.A., Sobel, E.R., Charreau, J., & Mikolaichuk, A. (2014). Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan. *Tectonophysics*, *629*, 14-26. https://doi.org/10.1016/j.tecto.2014.03.030
- Wang, X., Carrapa, B., Sun, Y., Dettman, D.L., Chapman, J.B., Caves Rugenstein, J.K., Clementz, M.T., DeCelles, P.G., Wang, M., Chen, J., Quade, J., Wang, F., Li, Z., Oimuhammadzoda, I., Gadoev, M., Lohmann, G., Zhang, X., & Chen, F. (2020). The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. *Geology*, 48(7), 728-732. https://doi.org/10.1130/G47400.1
- Wang, X., Otto, M., & Scherer, D. (2021). Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century. *Natural Hazards and Earth System Sciences*, 21(7), 2125-2144. https://doi.org/10.5194/nhess-21-2125-2021
- Wang, S., Zhang, M., Hughes, C.E., Zhu, X., Dong, L., Ren, Z., & Chen, F. (2016). Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. *Tellus B: Chemical and Physical Meteorology*, 68(1), 26206. https://doi.org/10.3402/tellusb.v68.26206
- Wang, Y., Zhang, J., Huang, X., & Wang, Z. (2023). Cenozoic exhumation of the Tianshan as constrained by regional low-temperature thermochronology. *Earth-Science Reviews*, 104325. https://doi.org/10.1016/j.earscirev.2023.104325
- Wasiljeff, J., Salminen, J.M., Stenman, J., Zhang, Z., & Kaakinen, A. (2022). Oligocene moisture variations as evidenced by an aeolian dust sequence in Inner Mongolia, China. *Scientific reports*, *12*(1), 1-14. https://doi.org/10.1038/s41598-022-09362-y
- Westerhold, T., Marwan, N., Drury, A.J., et al. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. *Science*, *369*(6509), 1383-1387. https://doi.org/10.1126/science.aba6853
- Watson, G. S., & Enkin, R. J. (1993). The fold test in paleomagnetism as a parameter estimation problem. Geophysical Research Letters, 20(19), 2135–2137. https://doi.org/10.1029/93gl01901
- Whipple, K.X. (2009). The influence of climate on the tectonic evolution of mountain belts. *Nature geoscience*, 2(2), 97-104. https://doi.org/10.1038/ngeo413
- Wilcken K.M., Codilean A.T., Fülöp R.-H., Kotevski S., Rood A.H., Rood D.H., Seal A.J., & Simon K. (2022). Accelerator mass spectrometry of Be-10 and Al-26 at low nuclide concentrations. *Geochronology*, 4, 339-352. https://doi.org/10.5194/gchron-4-339-2022
- Wilcken, K.M., Fink, D., Hotchkis, M., Garton, D., Button, D., Mann, M., Kitchen, R., Hauser, T., & O'Connor, A. (2017). Accelerator mass spectrometry on SIRIUS: New 6 MV spectrometer at ANSTO. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 406, 278-282. https://doi.org/10.1016/j.nimb.2017.01.003
- Wilcken K.M., Fujioka T., Fink D., Fülöp R.-H., Codilean A.T., Simon K., Mifsud C., & Kotevski S. (2019). SIRIUS Performance: Be-10, Al-26 and Cl-36 measurements at ANSTO. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 455, 300-304. https://doi.org/10.1016/j.nimb.2019.02.009
- Willenbring, J.K., & Jerolmack, D.J. (2016). The null hypothesis: Globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. *Terra Nova*, 28(1), 11-18. https://doi.org/10.1111/ter.12185
- Willenbring, J.K., & Von Blanckenburg, F. (2010). Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. *Nature*, *465*(7295), 211-214. https://doi.org/10.1038/nature09044
- Willett, S.D., & Brandon, M.T. (2013). Some analytical methods for converting thermochronometric age to erosion rate, *Geochem. Geophy. Geosy.*, 14, 209–222, https://doi.org/10.1029/2012gc004279.
- Windley, B.F., Alexeiev, D.V., Xiao, W., Kröner, A., & Badarch, G. (2007). Tectonic models for accretion of the Central Asian Orogenic Belt. *Journal of the Geological Society, London, 164*, 31–47, https://doi.org/10.1144/0016-76492006-022
- Worden, R.H., Armitage, P.J., Butcher, A.R., Churchill, J.M., Csoma, A.E., Hollis, C., Lander, H., & Omma, J.E. (2018). Petroleum reservoir quality prediction: overview and contrasting approaches from

sandstone and carbonate communities. *Geological Society, London, Special Publications, 435*(1), 1-31. https://doi.org/10.1144/SP435.21


- Worden, R.H., & Burley, S.D. (2003). Sandstone diagenesis: the evolution of sand to stone. *Sandstone diagenesis: Recent and ancient*, *4*, 3-44. https://doi.org/10.1002/9781444304459.ch
- Wu, F., Fang, X., Yang, Y., Dupont-Nivet, G., Nie, J., Fluteau, F., Zhang, T., & Han, W. (2022). Reorganization of Asian climate in relation to Tibetan Plateau uplift. *Nature Reviews Earth & Environment*, 3(10), 684-700. https://doi.org/10.1038/s43017-022-00331-7
- Yang, W., Jolivet, M., Dupont-Nivet, G., & Guo, Z. (2014). Mesozoic–Cenozoic tectonic evolution of southwestern Tian Shan: Evidence from detrital zircon U/Pb and apatite fission track ages of the Ulugqat area, Northwest China. *Gondwana Research*, *26*(3-4), 986-1008. https://doi.org/10.1016/j.gr.2013.07.020
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. *science*, 292(5517), 686-693. https://doi.org/10.1126/science.1059412
- Zech, R. (2012). A late Pleistocene glacial chronology from the Kitschi-Kurumdu Valley, Tien Shan (Kyrgyzstan), based on ¹⁰Be surface exposure dating. *Quaternary Research*, 77(2), 281-288. https://doi.org/10.1016/j.yqres.2011.11.008
- Zhang, P., Molnar, P., & Downs, W.R. (2001). Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. *Nature*, 410(6831), 891-897. https://doi.org/10.1038/35073504
- Zhao, X., Zhang, H., Lv, H., Lü, Y., Li, X., Liu, K., Zhang, J., & Xiong, J. (2021). Signatures of tectonicclimatic interaction during the Late Cenozoic orogenesis along the northern Chinese Tian Shan. Basin Research, 33(1), 291-311. https://doi.org/10.1111/bre.12466
- Zhou, Y., Wu, C., Yuan, B., Wang, J., Zhou, T., Wang, Y., & Tang, X. (2020). Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China. Journal of Asian Earth Sciences, 198. https://doi.org/10.1016/j.jseaes.2020.104237
- Zhuang, G., Hourigan, J.K., Koch, P.L., Ritts, B.D., & Kent-Corson, M.L. (2011). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. *Earth and Planetary Science Letters*, *312*(1-2), 152-163. https://doi.org/10.1016/j.epsl.2011.10.005
- Zomer, R.J., Xu, J., & Trabuco, A. (2022). Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. *Scientific Data*, *9*, 409. https://doi.org/10.1038/s41597-022-01493-1
- Zubovich, A.V., Wang, X.Q., Scherba, Y.G. et al. (2010). GPS velocity field for the Tien Shan and surrounding regions. *Tectonics*, 29(6). https://doi.org/10.1029/2010TC002772

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

Supplementary figures S2.1 and S2.2 show additional examples of the natural remanent magnetization (NRM) demagnetization behavior from representative samples, complementing Figure 2.4. Dataset S2.1 lists all interpreted paleomagnetic directions shown in Figure 2.5. Data produced during this study are available in the open-access online database Zenodo (https://doi.org/10.5281/zenodo.4548968).

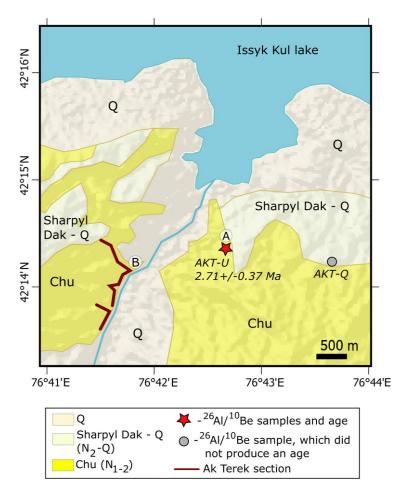
Figure S2.1 Comparison of normalized magnetization decay curves of thermally and AF demagnetized sample pairs of the same sites (horizons) from the Ak Terek and Kaji Say (c and d) sections

Figure S2.2 Representative Zijderveld plots with normalized magnetization decay curves (M/M_{max}) from a) the Ak Terek and b) the Kaji Say sections. Alternating field and thermal demagnetization experiments are shown in black and red, respectively. Italic names in the upper right corners indicate sample ID; numbers inside the decay plots indicate the maximum magnetic moments of the samples. The four sample pairs on the right, separated by a dashed line, stem from the same horizons.

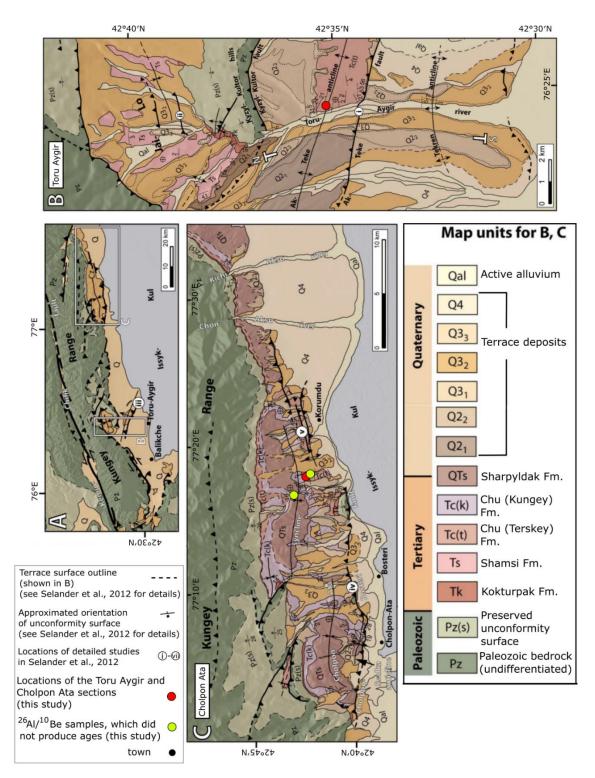
Dataset S2.1 Interpreted paleomagnetic directions used for the magnetostratigraphy. Given are the section name, sample ID, demagnetization method, number of interpreted demagnetization steps, declination and inclination in geographic and stratigraphic coordinates, stratigraphic height and VGP latitude.

Section: AT, Ak-Terek (42.2°N, 76.7°E), KS, Kaji-Say (42.2°N, 77.3°E) Method: Demagnetization method n: number of interpreted demagnetization steps Dg: Declination (deg) in geographic coordinates (in-situ) Ig: Inclination (deg) in geographic coordinates (in-situ) Ds: Declination (deg) in stratigraphic coordinates (tilt-corrected) Is: Inclination (deg) in stratigraphic coordinates (tilt-corrected) Height: Stratigraphic height (m) VGP.Lat: Virtual geomagnetic pole latitude (deg)

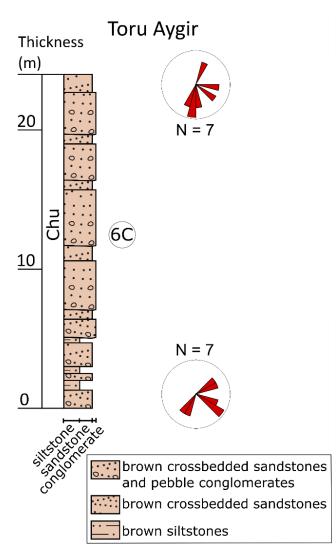
Section	Sample_Id VGP.Lat	Method	n	Dg	Ig	Ds	Is	Strike	Dip	Height	
AT	A001	AF	12	293.4	41.8	309.8	35.6	285	21	1.5	42.3
AT	A002	AF	12	14.5	58.4	14.7	37.4	285	21	1.5	65.4
AT	A007.4	AF	5	143	-63	163.3	-47.1	285	21	5.9	-70.6
AT	A007	AF	10	179.5	-68.7	186.6	-48.1	285	21	6.2	-75.9
AT	A007.9	AF	5	155.1	-29.1	160.0	-12.4	285	21	8.9	-49.9
AT	A009.5	AF	8	325.4	70	349.4	52.9	285	21	10.15	77.9
AT	A012	AF	13	356.8	69.7	5.2	50.2	285	20	15.8	78
AT	A013	AF	12	350.7	61.3	359.5	42.4	285	20	17.1	72.3
AT	A015	AF	11	7.1	46.7	8.9	26.8	285	20	18.8	60.9
AT	A017	AF	9	339.8	39.1	346.2	22.1	285	20	21.3	57
AT	A018	AF	10	331.8	65.1	349.3	48.4	285	20	21.3	74.5
AT	A020	AF	9	344.6	67.6	357.5	50.1	285	19	24	78.5
AT	A021	AF	11	359.9	69.5	6.7	50.8	285	19	30.5	78.1
AT	A022	AF	12	344	57.4	353.7	40.3	285	19	30.5	70
AT	A023	AF	8	339	42.3	346	26.2	285	19	33.9	59.1
AT	A027	AF	11	324.9	74.2	351.4	58.5	285	19	36.8	82.8
AT	A028	AF	9	36.5	68	27.3	49.7	285	19	36.8	65.3
AT	A029	AF	8	340.2	73.1	357.4	56.7	285	18	40.1	84.7
AT	A031	AF	10	347.3	60.2	356.4	43.6	285	18	40.6	73
AT	A033	AF	9	341.6	62.3	353.3	46.2	285	18	42.2	74.4
AT	A034	AF	8	349.3	25.5	351.6	9.1	285	18	42.2	51.6
AT	A035	AF	8	350.9	60.7	358.9	43.8	285	18	43.7	73.4
AT	A037	AF	8	352.3	61.1	360	44	285	18	45.6	73.6
AT	A039	AF	4	156.4	-56.5	167.7	-41.2	285	18	47.3	-68.8
AT	A040	AF	4	77	-69	127.2	-70.1	285	18	47.3	-53.8
AT	A041	AF	8	118.4	-78.9	166.6	-66.9	285	18	50	-78.2
AT	A044	AF	10	141	-72.9	167.6	-58.8	285	18	52.3	-80.3
AT	A045	AF	4	132.3	-75.5	166.4	-62.3	285	18	54.45	-80
AT	A047	AF	11	145.3	-71.8	168.2	-58.2	285	17	55.65	-80.4
AT	A049	AF	10	120.3	-74.8	159	-64.5	285	17	57.25	-74.4
AT	A051	AF	9	146.4	-69.4	167	-55.8	285	17	59.45	-78.4
AT	A051.9	AF	11	7.5	56.8	9.6	39.9	285	17	59.45	68.9
AT	A053	AF	8	15.1	54.6	15.1	37.6	285	17	61.95	65.4
AT	A054	AF	8	12.1	55.2	12.9	38.2	285	17	61.95	66.6
AT	A053.2	AF	3	190.9	-65.5	192.4	-48.5	285	17	61.97	-73.8
AT	A055	AF	10	148	-60.5	163	-47.2	285	17	63.75	-70.5
AT	A057	AF	9	163.2	-64.7	174.8	-49.3	285	17	65.05	-77.3
AT	A059	AF	9	155	-64.2	169.3	-49.8	285	17	68	-75.6
AT	A061	AF	4	198	-46.7	197.3	-29.7	285	17	69.25	-59.8
AT	A064	AF	10	143.3	-78.3	173.6	-64.1	285	17	70.75	-84.1
AT	A065	AF	10	160.4	-73.2	177.1	-57.8	285	17	72.35	-85.6
AT	AT066a	thermal	11	148	-67.1	166.5	-53.5	285	17	72.35	-76.6
AT	A067	AF	11	138.7	-73.9	165.8	-61.8	285	16	73.15	-79.5


4 T	1000	4.55	10		(7.0	167.0	- 4 1	205	16	5 4 65	
AT	A069	AF	10	151.1	-67.3	167.9	-54.1	285	16	74.65	-77.9
AT	A071	AF	10	155.4	-62.2	168.3	-48.7	285	16	76.15	-74.3
AT	A073	AF	11	159.2	-69.9	174.1	-55.7	285	16	79.15	-82.5
AT	AT074a	thermal	10	184.9	-70	189.1	-54.1	285	16	79.15	-79.7
AT	A075	AF	9	139.9	-57.2	155	-46.3	285	16	80.95	-65
AT	A078	AF	10	136.4	-73.2	163.9	-61.5	285	16	83.05	-78.1
AT	A079	AF	9	182.9	-74.8	188.9	-59	285	16	84.55	-82.9
AT	A080	AF	6	138	-78.6	171	-65.8	285	16	84.55	-81.4
AT	A081	AF	8	134	-80.7	172.8	-68	285	16	85.5	-79.9
AT	A084	AF	10	130.7	-59.9	149.7	-50.5	285	16	87.25	-63.5
AT	A085	AF	10	150.4	-73.3	171.3	-59.8	285	16	89.35	-83.3
AT	A088	AF	10	151.8	-74.2	172.8	-60.5	285	16	89.55	-84.6
AT	A089	AF	9	141.1	-80.5	174.9	-67.1	285	16	91.15	-81.6
AT	A092	AF	9	145.6	-67.5	163.8	-55.9	285	15	92.45	-76.3
AT	AT091a	thermal	10	125.9	-78.3	164.7	-68	285	15	92.45 92.45	-76.3
AT	A093	AF	9	141.9	-71.4	164.3	-60	285	15	93.45	-78.2
AT	A096	AF	9	155.2	-70.8	171.7	-57.9	285	15	95.25	-82.7
AT	A097	AF	12	172.5	-70.2	181.7	-55.9	285	15	96.55	-84.1
AT	A099	AF	11	146.8	-64.7	162.9	-53.1	285	15	100.25	-74.1
AT	AT100a	thermal	10	151.1	-67.9	167.5	-55.6	285	15	100.25	-78.6
AT	A102	AF	10	128.3	-58.7	146.4	-50.6	285	15	102.25	-61.2
AT	A104	AF	10	146	-72.3	167.4	-60.3	285	15	106.85	-80.5
AT	AT103a	thermal	10	134.3	-76.5	165.6	-65.4	285	15	106.85	-78.5
AT	A106	AF	7	179.7	-76.7	187.6	-62	285	15	108.85	-84.3
AT	A107	AF	5	157	-75.4	175.6	-62	285	15	110.55	-86.6
AT	A110	AF	12	221.7	-83.2	203.9	-69.7	285	14	112.75	-70.6
AT	A111	AF	12	171.9	-68.2	180.3	-54.9	285	14	120.65	-83.3
AT	A113	AF	10	127	-51.7	140.8	-44.9	285	14	125.65	-54.5
AT	A114	AF	6	187.2	-75.7	191	-61.8	285	14	125.65	-81.9
AT	A117	AF	10	114.8	-73.9	150.5	-67.1	285	14	130.75	-68.3
AT	A118	AF	3	123.2	-61.7	143.3	-54.9	285	14	130.75	-60.9
AT	A122	AF	8	123.2	-60	149.5	-52.3	285	13	133.55	-63.9
											-03.9 -79.4
AT	A123	AF	10	193.3	-76.4	194.1	-63.4	285	13	135.75	
AT	A126	AF	7	159.6	-66.7	171.3	-55.4	285	13	136.85	-80.8
AT	AT125a	thermal	10	145	-59.6	157.8	-50.1	285	13	136.85	-69
AT	A127	AF	9	109.4	-52	125	-49.2	285	13	137.65	-44.8
AT	A130	AF	10	2.7	67.9	7	55.1	285	13	144.4	81.5
AT	A131	AF	10	344	70.2	355.5	58.3	285	13	146.15	85.4
AT	A134	AF	10	6.8	71.4	10	58.5	285	13	147.75	81.8
AT	A135	AF	10	349.7	72.1	359.8	59.9	285	13	149.25	88.5
AT	A138	AF	10	15.9	70.6	15.6	57.6	285	13	149.65	77.5
AT	A140	AF	10	337.7	64.6	349.2	53.5	285	13	150.75	78.2
AT	AT139a	thermal	10	354.6	64.9	0.9	52.5	285	13	150.75	80.8
AT	A143	AF	12	352.7	71.7	1.5	59.2	285	13	153.25	87.6
AT	A145	AF	10	344.1	72.5	356.6	60.6	285	13	154.25	87.4
AT	A147	AF	9	356.8	71.6	3.9	59	285	13	155.75	86.1
AT	A150	AF	10	354.5	60.4	0	48	285	13	155.75	76.8
AT	AT149a	thermal		343.9	65.7	353.8	53.9	285	13	155.75	80.9
AT	A151	AF	10	335.9	74.4	352.2	64	285	12	158.65	83.4
AT	A154	AF	10	313.5	51.7	324.7	44.9	285	12	159.25	57.2
AT	A156	AF	10	1.6	71.4	6.6	59.6	285	12	159.95	84.8
AT	A150 A157	AF	9	330.9	62.6	342.7	53.1	285	12	162.35	84.8 74
AT	A158	AF	10	339.7	62.1	349.1	51.8	285	12	162.35	76.9 82.6
AT	A159	AF	10	336.2	70.6	350.2	60.3	285	12	163.65	82.6
AT	A162	AF	10	115.5	71.2	81.2	69.8	285	12	165.35	37.5
AT	A164	AF	9	319.7	82.9	354.8	73	285	12	166.15	73.4
AT	AT163a	thermal		12.3	72	13.3	60	285	12	166.15	79.9
AT	A166	AF	8	353.3	61.4	359	50.1	285	12	167.35	78.6
AT	A168	AF	8	327.4	73.4	346.5	63.8	285	12	168.85	79.7
AT	A169	AF	10	349	69.8	358.1	58.6	285	12	169.95	86.8
AT	AT170a	thermal	10	8.1	76.3	11.2	64.4	285	12	169.95	81
AT	A171	AF	4	117.8	-78.6	157.1	-71.8	285	12	170.65	-69.4

			10			150					
AT	A173	AF	10	163	-55.8	170	-45.3	285	12	174.15	-72.6
AT	A174	AF	8	116.5	-71.7	145.1	-66.3	285	12	174.15	-64.9
AT	A175	AF	10	129.7	-74.9	157.4	-67.1	285	12	175	-72.6
AT	A176	AF	10	153.6	-79.1	175	-68.6	285	12	175	-79.7
AT	A175.2	AF	11	194.2	-79.5	194.6	-67.5	285	12	175.2	-77
AT	A175.8	AF	11	180.8	-68.4	185.6	-56.6	285	12	175.8	-83.4
AT	A177.2	AF	8	173.5	-36.4	176	-25.1	285	12	176.5	-60.8
AT	A177.8	AF	11	148.8	-66.1	162.8	-56.7	285	12	176.8	-75.9
AT	A179	AF	10	147.6	-72.2	165.6	-62.7	285	12	178.25	-79.4
AT	A180	AF	9	142.7	-71.6	162.1	-62.6	285	12	178.25	-76.9
AT	A179.1	AF	5	159.8	-79.6	178.4	-68.7	285	12	178.35	-80.1
AT	A181	AF	4	5.2	-61.7	359.5	-72.5	285	11	183.45	-10
AT	A182	AF	7	339.3	5.2	339.4	-3.7	285	11	183.45	42.2
AT	A183.1	AF	10	355.7	60.9	0.4	50.3	285	11	185.25	78.9
AT	A183.2	AF	10	350.4	56.6	355.6	46.4	285	11	185.25	75.1
AT	A184	AF	10	223.2	60.8	237	69.9	285	11	185.25	17.7
AT	A185	AF	10	313.3	68.9	332.4	62	285	11	186.85	69.8
AT	A186	AF	10	328.7	58.3	338.8	49.9	285	11	186.85	69.5
AT	A187	AF	9	315.2	47.2	324	40.9	285	11	188.45	54.8
AT	A188	AF	7	322.4	58.3	333.7	50.7	285	11	188.45	66.5
AT	A189	AF	9	11	44.3	11.6	33.3	285	11	192.55	64
AT	A190	AF	5	191.9	68.5	188.7	79.5	285	11	192.55	22
AT	A191	AF	4	102	-73.4	135.5	-70.6	285	11	193.75	-58.6
AT	A192	AF	10	132.4	-69.2	152.1	-62.5	285	11	193.75	-69.6
AT	A193	AF	5	165.8	-60.9	172.9	-51	285	11	200.15	-78.1
AT	A197	AF	11	156.5	-73.1	170.9	-63.6	285	11	205.25	-82.8
AT	A199	AF	10	168.6	-71	177.2	-61.7	285	10	209.55	-87.8
AT	A201	AF	10	169.7	-72.1	178.3	-62.7	285	10	213.25	-87.7
AT	A204	AF	10	143.7	-53.5	152.5	-46.7	285	10	218.25	-63.5
AT	A205	AF	7	325.1	52.7	333.4	45.7	285	10	222.15	63.6
AT	A207	AF	11	329.8	64.8	341.2	57.1	285	10	236.55	75
AT	A209	AF	11	335.1	58	342.5	50.8	285	9	246.05	72.4
AT	AT210a	thermal	10	343	67.6	351.4	59.6	285	9	246.05	83.3
AT	A211	AF	11	343.7	70.2	352.9	62.2	285	9	251.95	84.6
AT	A213	AF	5	148.6	-16.1	150.1	-9.8	285	9	255.65	-44.3
AT	A215	AF	11	171.2	-74.1	179.5	-65.6	285	9	258.45	-84.4
AT	A217	AF	8	160.8	-59.1	167.5	-51.4	285	9	262.15	-75.8
AT	A219	AF	10	129.2	-49.6	137.8	-45.3	285	9	265.95	-52.5
AT	A222	AF	10	194.3	-63.5	194.5	-54.5	285	9	268.15	-76.6
AT	A223	AF	11	172.3	-66.8	177.7	-59.3	285	8	280.55	-87.2
AT	A225	AF	8	155	-67.9	164.7	-61.4	285	8	284.55	-78.7
AT	AT226a	thermal	10	143.2	-66.5	154.9	-60.9	285	8	284.55	-71.5
AT	A227	AF	6	178.8	-58.2	181.7	-50.5	285	8	288.35	-79
AT	A229	AF	10	0.6	65.8	3.9	58	285	8	293.65	85.3
AT	A231	AF	9	327.1	65.9	337.7	60	285	8	300.15	73.3
AT	AT232a	thermal	10	349.6	58	354	50.7	285	8	300.15	78.2
AT	A233	AF	7	347	65	353.2	57.8	285	8	308.25	83.6
AT	A236	AF	9	346.2	18.9	347.2	12.8	285	7	314.25	52.5
AT	A238	AF	4	189.3	-46.1	189.9	-39.2	285	7	317.75	-68.3
AT	A239	AF	6	165.2	-59.6	170.1	-53.3	285	7	325.05	-78.6
AT	A242	AF	11	186.2	-70.3	188.4	-63.3	285	7	333.85	-83.3
AT	AT241a	thermal	10	153.8	-68.1	162.9	-62.4	285	7	333.85	-77.4
AT	A243	AF	5	135	-67	147.2	-62.9	285	7	341.85	-66.1
AT	A245	AF	10	174.6	-70.6	179.7	-63.9	285	7	347.05	-86.5
AT	A247	AF	8	207.2	-71.1	204	-64.2	285	7	350.35	-72.4
AT	A249	AF	9	191.2	-72.3	192.1	-66.3	285	6	360.85	-79.3
AT	AT250a	thermal		177.5	-70	181.3	-64.2	285	6	360.85	-86.1
AT	A251	AF	9	191.3	-55.8	191.7	-49.8	285	6	369.05	-75.1
AT	A254	AF	6	170.1	-62.4	174.1	-56.9	285	6	373.05	-83.5
AT	A255	AF	9	150.6	-59	156.6	-54.5	285	6	375.45	-70.5
AT	A257	AF	9	179.1	-60.7	181.5	-54.9	285	6	380.05	-83.1
AT	A260	AF	8	182.5	-66.4	184.9	-60.5	285	6	383	-86.3


AT	A261	AF	8	190.4	-67.7	191.3	-61.7	285	6	387.05	-81.6
AT	AT262a	thermal	10	176.2	-65.9	179.6	-60.2	285	6	387.05	-88.9
AT	A263	AF	10	181.7	-68.2	184.4	-62.3	285	6	390.35	-86.5
AT	A265	AF	5	179.5	-35.3	180.5	-29.5	285	6	394.05	-63.6
AT	A268	AF	10	193.4	-65.8	193.7	-59.8	285	6	396.65	-79.6
AT	A270	AF	6	22.5	56.9	21.5	50.9	285	6	402.75	69.9
AT	A272	AF	10	358.9	73.6	2.5	68.8	285	5	406.25	79.9
AT	A273	AF	8	5.9	67.7	7.4	62.8	285	5	414.25	84.2
AT	A276	AF	6	321.7	56.2	327.1	53	285	5	420.25	62.9
AT	A278	AF	8	347.2	58.5	350.5	54.1	285	5	427.25	79.3
AT	A281	AF	9	122.8	-53.7	129	-51.9	285	5	439.55	-48.9
AT	A283	AF	12	188.3	-67.2	189.4	-62.3	285	5	444.65	-83
AT	A285	AF	6	235.1	-60.7	230	-56.7	285	5	448.45	-51.8
AT	A287	AF	8	188.9	-63.5	189.8	-58.6	285	5	452.05	-82
AT	A290	AF	9	137.3	-64.7	145.3	-61.8	285	5	458.95	-64.6
AT	A291	AF	9	180.9	-67.5	183.3	-62.6	285	5	463.7	-87
AT	A294	AF	10	356.6	64.9	358.9	61.1	285	4	468.45	89.2
AT	A295	AF	10	10	47.3	10.3	43.3	285	4	475.65	71
AT	A295 A298	AF	11	4.3	73.7	6.3	69.8	285	4	481.9	77.8
AT	A298 A299	AF	9	325.2	63.4	330.7	60.7	285	4	490.15	68.3
AT	A302	AF	9 11	525.2 7.4	49.4	7.9	45.4	285 285	4	490.13	73.4
KS	S001	AF	9	123.5	-76.1	162	-56.1	274	25 25	1.3	-75
KS	S002	AF	9	237.2	-16.3	234.3	-0.6	274	25	1.3	-25.9
KS	S004	AF	9	281.9	-88.1	188.5	-65.2	274	25	3.5	-82.1
KS	S005	AF	5	180.3	-78.7	182.8	-53.8	274	25	7.8	-81.8
KS	S007	AF	9	209.3	-48.9	202.2	-25.6	274	25	11.35	-55.5
KS	S009	AF	9	179.9	-52.6	181.1	-28.6	274	24	12.75	-63.1
KS	S011	AF	6	88.7	-16.7	96.1	-17.4	274	24	21.8	-10.5
KS	S012	AF	9	164.6	-60.7	172.2	-37.5	274	24	21.8	-67.8
KS	S013	AF	9	219.8	-74.6	198.7	-52.5	274	24	29.6	-72.7
KS	S015	AF	9	151.9	-64	165.7	-42	274	24	39.3	-68.6
KS	ST016	thermal	8	164.2	-73.6	175.4	-50.2	274	24	39.3	-78.2
IZ C					40.0	1 1 1 1	07.6	074		41.0	
KS	S017	AF	10	153.5	-48.3	161.6	-27.6	274	23	41.2	-58.3
KS KS	S017 S020	AF AF	10 9	153.5 183.2	-48.3 -51.4	161.6 183.5	-27.6 -28.4	274 274	23 23	41.2 47.8	-58.3 -62.8
KS	S020	AF	9	183.2	-51.4	183.5	-28.4	274	23	47.8	-62.8
KS KS	S020 S021	AF AF	9 8	183.2 158.5	-51.4 -67.7	183.5 170.4	-28.4 -45.8	274 274	23 23	47.8 51.6	-62.8 -73.1
KS KS KS	S020 S021 S025	AF AF AF	9 8 9	183.2 158.5 218	-51.4 -67.7 -68.9	183.5 170.4 201.5	-28.4 -45.8 -47.9	274 274 274	23 23 23	47.8 51.6 64.2	-62.8 -73.1 -68.2
KS KS KS KS	S020 S021 S025 S027	AF AF AF AF	9 8 9 9	183.2 158.5 218 224.8	-51.4 -67.7 -68.9 -87.3	183.5 170.4 201.5 188.1	-28.4 -45.8 -47.9 -64.9	274 274 274 274	23 23 23 23	47.8 51.6 64.2 65.45	-62.8 -73.1 -68.2 -82.5
KS KS KS KS KS	S020 S021 S025 S027 S033	AF AF AF AF AF	9 8 9 9 9	183.2 158.5 218 224.8 194.7	-51.4 -67.7 -68.9 -87.3 -69.9	183.5 170.4 201.5 188.1 189.5	-28.4 -45.8 -47.9 -64.9 -48.1	274 274 274 274 274 274	23 23 23 23 23 22	47.8 51.6 64.2 65.45 71.45	-62.8 -73.1 -68.2 -82.5 -74.9
KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034	AF AF AF AF AF AF	9 8 9 9 9 9	183.2 158.5 218 224.8 194.7 183.7 222.4	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74	183.5 170.4 201.5 188.1 189.5 183.8 201	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8	274 274 274 274 274 274 274 274	23 23 23 23 23 22 22	47.8 51.6 64.2 65.45 71.45 71.8 71.45	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4
KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035	AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1	274 274 274 274 274 274 274	23 23 23 23 23 22 22 22 22	47.8 51.6 64.2 65.45 71.45 71.8	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72
KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036	AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1 36.7	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3	274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22	47.8 51.6 64.2 65.45 71.45 71.8 71.45 75.45 75.45	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7
KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037	AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6	274 274 274 274 274 274 274 274 274 274	23 23 23 23 23 22 22 22 22 22	47.8 51.6 64.2 65.45 71.45 71.8 71.45 75.45 75.45 75.45 77.3	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4
KS KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038	AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 9 9 8	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1 36.7 85.1 195.4	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67	274 274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 75.45 77.3 77.3	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77
KS KS KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040	AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 9 9 9 9 9	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1 36.7 85.1 195.4 348.3	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8	274 274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 75.45 77.3 77.3 82.15	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5
KS KS KS KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1	AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 9 9 8 9 9 8	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1 36.7 85.1 195.4 348.3 19.8	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5	274 274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 75.45 77.3 77.3 82.15 82.3	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7
KS KS KS KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8	AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 9 8 9 8 9 8 9	183.2 158.5 218 224.8 194.7 183.7 222.4 333.1 36.7 85.1 195.4 348.3 19.8 10.6	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5 31.3	274 274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 77.3 77.3 82.15 82.3 84	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7
KS KS KS KS KS KS KS KS KS KS KS KS KS	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045	AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 8 9 9 8 9 8 9 10	$183.2 \\158.5 \\218 \\224.8 \\194.7 \\183.7 \\222.4 \\333.1 \\36.7 \\85.1 \\195.4 \\348.3 \\19.8 \\10.6 \\146.1 \\$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6 161.7	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5 31.3 -44.7	274 274 274 274 274 274 274 274 274 274	23 23 23 23 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 77.3 77.3 82.15 82.3 84 94	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046	AF AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 8 9 8 9 8 9 10 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 181.4$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5 31.3 -44.7 -61.9	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 77.3 82.15 82.3 84 94 94	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047	AF AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 8 9 8 9 8 9 10 9 9	$183.2 \\158.5 \\218 \\224.8 \\194.7 \\183.7 \\222.4 \\333.1 \\36.7 \\85.1 \\195.4 \\348.3 \\19.8 \\10.6 \\146.1 \\181.4 \\164 \\$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9	$183.5 \\ 170.4 \\ 201.5 \\ 188.1 \\ 189.5 \\ 183.8 \\ 201 \\ 352.2 \\ 12.6 \\ 14.5 \\ 2.3 \\ 346.6 \\ 14.6 \\ 8.6 \\ 161.7 \\ 183.4 \\ 166.9 \\ 166.9 \\ 100000000000000000000000000000000000$	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5 31.3 -44.7 -61.9 -12	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 77.3 82.15 82.3 84 94 94 95.65	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3 -52.1
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S048	AF AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 8 9 9 8 9 9 8 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 10.2 \\ 1000$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4 166.9 172.8	-28.4 -45.8 -47.9 -64.9 -48.1 -42.8 -54.1 56.6 61.3 67 70.7 -24.8 34.5 31.3 -44.7 -61.9 -12 -17.4	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	47.8 51.6 64.2 65.45 71.45 71.45 71.45 75.45 75.45 77.3 82.15 82.3 84 94 94 95.65 95.65	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3 -52.1 -56.2
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S048 S049	AF AF AF AF AF AF AF AF AF AF AF AF AF	9 8 9 9 9 9 9 9 9 8 9 9 8 9 9 8 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ \end{cases}$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4 166.9 172.8 29.3	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3 -52.1 -56.2 62.7
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S048 S047 S048 S049 S050	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\158.5 \\218 \\224.8 \\194.7 \\183.7 \\222.4 \\333.1 \\36.7 \\85.1 \\195.4 \\348.3 \\19.8 \\10.6 \\146.1 \\181.4 \\164 \\170.2 \\47.2 \\66.4 \\$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4 166.9 172.8 29.3 29.4	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ 105.75\\ 105.75\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S048 S047 S048 S049 S050 S051	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 166 \\ 166 \\ 100 \\ 10$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8	$183.5 \\ 170.4 \\ 201.5 \\ 188.1 \\ 189.5 \\ 183.8 \\ 201 \\ 352.2 \\ 12.6 \\ 14.5 \\ 2.3 \\ 346.6 \\ 14.5 \\ 2.3 \\ 346.6 \\ 14.6 \\ 8.6 \\ 161.7 \\ 183.4 \\ 166.9 \\ 172.8 \\ 29.3 \\ 29.4 \\ 294.7 \\ 183.4 \\ 164.9 \\ 172.8 \\ 29.3 \\ 29.4 \\ 294.7 \\ 100 \\ 10$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ 105.75\\ 109.65\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S045 S045 S046 S047 S048 S049 S050 S051 S052	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\158.5 \\218 \\224.8 \\194.7 \\183.7 \\222.4 \\333.1 \\36.7 \\85.1 \\195.4 \\348.3 \\19.8 \\10.6 \\146.1 \\181.4 \\164 \\170.2 \\47.2 \\66.4 \\261.6 \\128.3 \\$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2	$\begin{array}{c} 183.5\\ 170.4\\ 201.5\\ 188.1\\ 189.5\\ 183.8\\ 201\\ 352.2\\ 12.6\\ 14.5\\ 2.3\\ 346.6\\ 14.5\\ 2.3\\ 346.6\\ 14.6\\ 8.6\\ 161.7\\ 183.4\\ 166.9\\ 172.8\\ 29.3\\ 29.4\\ 294.7\\ 25.6\\ \end{array}$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ 109.65\\ 109.65\\ 109.65\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S040 S039.1 S039.8 S045 S045 S046 S047 S048 S049 S050 S051 S052 S053	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 128.3 \\ 66.8 \\ 158.5 \\ $	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7	$\begin{array}{c} 183.5\\ 170.4\\ 201.5\\ 188.1\\ 189.5\\ 183.8\\ 201\\ 352.2\\ 12.6\\ 14.5\\ 2.3\\ 346.6\\ 14.6\\ 8.6\\ 161.7\\ 183.4\\ 166.9\\ 172.8\\ 29.3\\ 29.4\\ 294.7\\ 25.6\\ 41.6\\ \end{array}$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 94\\ 95.65\\ 105.75\\ 109.65\\ 109.65\\ 109.65\\ 115.75\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S046 S047 S048 S049 S050 S051 S052 S053 S054	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 9.4 \\ \end{cases}$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7 68.3	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4 166.9 172.8 29.3 29.4 294.7 25.6 41.6 6.9	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \\ 47.4 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.45\\ 75.45\\ 75.45\\ 75.45\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 94\\ 95.65\\ 105.75\\ 109.65\\ 105.75\\ 109.65\\ 115.75\\ 115.75\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55 75.2
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S046 S047 S046 S047 S048 S049 S050 S051 S052 S053 S054 S056	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 9.4 \\ 7.4 \\ \end{cases}$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7 68.3 70.5	$\begin{array}{c} 183.5\\ 170.4\\ 201.5\\ 188.1\\ 189.5\\ 183.8\\ 201\\ 352.2\\ 12.6\\ 14.5\\ 2.3\\ 346.6\\ 14.6\\ 8.6\\ 161.7\\ 183.4\\ 166.9\\ 172.8\\ 29.3\\ 29.4\\ 294.7\\ 25.6\\ 41.6\\ 6.9\\ 5.7\\ \end{array}$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \\ 47.4 \\ 49.5 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ 105.75\\ 109.65\\ 109.65\\ 115.75\\ 115.75\\ 115.75\\ 122.85\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55 75.2 77.3
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S046 S047 S048 S049 S050 S051 S052 S053 S054 S056 S055.1	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 9.4 \\ 7.4 \\ 4.1 \\ 1000 $	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7 68.3 70.5 73	$\begin{array}{c} 183.5\\ 170.4\\ 201.5\\ 188.1\\ 189.5\\ 183.8\\ 201\\ 352.2\\ 12.6\\ 14.5\\ 2.3\\ 346.6\\ 14.6\\ 8.6\\ 161.7\\ 183.4\\ 166.9\\ 172.8\\ 29.3\\ 29.4\\ 294.7\\ 25.6\\ 41.6\\ 6.9\\ 5.7\\ 4.1\\ \end{array}$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \\ 47.4 \\ 49.5 \\ 52 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 105.75\\ 105.75\\ 109.65\\ 109.65\\ 115.75\\ 115.75\\ 115.75\\ 122.85\\ 122.85\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55 75.2 77.3 79.9
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S048 S045 S046 S047 S048 S049 S050 S051 S052 S053 S054 S055.1 S057	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 9.4 \\ 7.4 \\ 4.1 \\ 7.8 \\ \end{cases}$	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7 68.3 70.5 73 58.1	183.5 170.4 201.5 188.1 189.5 183.8 201 352.2 12.6 14.5 2.3 346.6 14.6 8.6 161.7 183.4 166.9 172.8 29.3 29.4 294.7 25.6 41.6 6.9 5.7 4.1 6.6	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \\ 47.4 \\ 49.5 \\ 52 \\ 38.1 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 95.65\\ 105.75\\ 105.75\\ 109.65\\ 105.75\\ 109.65\\ 115.75\\ 115.75\\ 122.85\\ 122.85\\ 127.55\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55 75.2 77.3 79.9 68.5
KS KS KS KS KS KS KS KS KS KS KS KS KS K	S020 S021 S025 S027 S033 S033.1 S034 S035 S036 S037 S038 S040 S039.1 S039.8 S045 S046 S047 S046 S047 S048 S049 S050 S051 S052 S053 S054 S056 S055.1	AF AF AF AF AF AF AF AF AF AF AF AF AF A	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$183.2 \\ 158.5 \\ 218 \\ 224.8 \\ 194.7 \\ 183.7 \\ 222.4 \\ 333.1 \\ 36.7 \\ 85.1 \\ 195.4 \\ 348.3 \\ 19.8 \\ 10.6 \\ 146.1 \\ 181.4 \\ 164 \\ 170.2 \\ 47.2 \\ 66.4 \\ 261.6 \\ 128.3 \\ 66.8 \\ 9.4 \\ 7.4 \\ 4.1 \\ 1000 $	-51.4 -67.7 -68.9 -87.3 -69.9 -64.8 -74 77.4 82.4 85.8 87.2 -3.7 55.9 53.2 -64 -83.9 -32.9 -38.9 65 75.9 57.8 82.2 63.7 68.3 70.5 73	$\begin{array}{c} 183.5\\ 170.4\\ 201.5\\ 188.1\\ 189.5\\ 183.8\\ 201\\ 352.2\\ 12.6\\ 14.5\\ 2.3\\ 346.6\\ 14.6\\ 8.6\\ 161.7\\ 183.4\\ 166.9\\ 172.8\\ 29.3\\ 29.4\\ 294.7\\ 25.6\\ 41.6\\ 6.9\\ 5.7\\ 4.1\\ \end{array}$	$\begin{array}{c} -28.4 \\ -45.8 \\ -47.9 \\ -64.9 \\ -48.1 \\ -42.8 \\ -54.1 \\ 56.6 \\ 61.3 \\ 67 \\ 70.7 \\ -24.8 \\ 34.5 \\ 31.3 \\ -44.7 \\ -61.9 \\ -12 \\ -17.4 \\ 47.4 \\ 59.9 \\ 56.2 \\ 72.2 \\ 49.9 \\ 47.4 \\ 49.5 \\ 52 \end{array}$	274 274 274 274 274 274 274 274 274 274	23 23 23 22 22 22 22 22 22 22 22 22 22 2	$\begin{array}{c} 47.8\\ 51.6\\ 64.2\\ 65.45\\ 71.45\\ 71.8\\ 71.45\\ 75.45\\ 75.45\\ 77.3\\ 77.3\\ 82.15\\ 82.3\\ 84\\ 94\\ 94\\ 95.65\\ 105.75\\ 105.75\\ 109.65\\ 109.65\\ 115.75\\ 115.75\\ 115.75\\ 122.85\\ 122.85\\ \end{array}$	-62.8 -73.1 -68.2 -82.5 -74.9 -72.4 -72 82.2 80.7 77.4 77 33.5 63.7 63.7 -68.2 -87.3 -52.1 -56.2 62.7 68 40.5 67.8 55 75.2 77.3 79.9

KS	S062	AF	10	347	65.9	353.9	47.4	274	19	152.3	75.5
KS	S064	AF	9	166.1	-65.3	172.5	-49.8	274	16	160.3	-77
KS	S069	AF	9	197	-61.7	193.2	-48	274	14	171.4	-73.1
KS	S071	AF	9	170.6	-60.9	174.5	-47.1	274	14	172.5	-75.4
KS	S075	AF	9	177.2	-54.3	178.7	-42.3	274	12	180.7	-72.3
KS	S077	AF	9	172.7	-43.3	174.4	-31.5	274	12	183.2	-64.4
KS	S080	AF	9	212.2	-75.9	200.9	-66.6	274	10	189.5	-73.9
KS	ST079	thermal	9	192.4	-79.4	188.4	-69.4	274	10	189.5	-77.7
KS	S081	AF	8	192.4	-13.4	187.6	-3.4	274	10	190.6	-49
	S081 S084				62.3			274	9	190.0	
KS		AF	10	344.2		348.6	53.7				78 70-2
KS	ST083	thermal	9	355.6	59.9	357.3	51	274	9	196.1	79.3
KS	S086	AF	10	10.1	49.3	9.2	40.3	274	9	199.2	69.4
KS	S087	AF	9	9.4	36	9	28	274	8	201.7	61.7
KS	S091	AF	8	5.7	57.8	5.4	50.9	274	7	207.85	78.5
KS	S093	AF	9	35.2	41.5	32.8	36.4	274	6	211.35	54.7
KS	S095	AF	9	34.7	68.5	28.5	63.2	274	6	214.45	69.3
KS	S097	AF	9	57.1	44.4	53.5	41.3	274	5	218.8	42.3
KS	S105	AF	8	1.2	57.5	2.2	32.5	274	25	222.85	65.5
KS	S103	AF	8	2.8	40	3	15	274	25	225.25	55.3
KS	S101	AF	9	10.2	75.2	6.5	50.2	274	25	231.85	77.7
KS	S099	AF	9	359.2	81.6	2.7	56.6	274	25	237.65	84.6
KS	S109	AF	9	123.2	72.3	23.2	24.3	276	73	251.05	54.3
KS	S109 S111	AF	8	97.8	-63.6	158.7	-14.4	276	73	256.05	-50.4
KS	S113	AF	8	52.8	-75.8	174.5	-26.4	276	73	256.2	-61.4
KS	S115	AF	9	294.5	-25.3	255.2	-23.5	276	73	257.8	-19.1
KS	S117	AF	8	9.7	-63.1	183.7	-43.8	276	73	259.85	-73.2
KS	S119	AF	8	4.2	-61.9	187.2	-45.1	276	73	264.4	-73.4
KS	S121	AF	8	19.2	-35.3	155.8	-68.2	276	73	278.2	-71.1
KS	S123	AF	8	21.8	-9.1	70.8	-72.7	276	73	285.3	-26.2
KS	S125	AF	8	12.8	-30.2	162	-75.4	276	73	287.9	-67
KS	S127	AF	8	11.6	-57.6	181.4	-49.2	276	73	291.4	-77.8
KS	S130	AF	9	342.6	-29.2	242.3	-65.3	276	73	300	-46.7
KS	S132	AF	9	17.4	-82.2	184.3	-24.6	276	73	310	-60.5
KS	ST131	thermal	9	359.6	-67.4	189.2	-39.5	276	73	310	-68.8
KS	S134	AF	9	329.1	-59.4	209.4	-39.9	276	73	311.8	-58.7
KS	S134 S135	AF	8	6.8	-75.8	185.8	-31.2	276	73	314.05	-64.2
		AF		347.2	-43.5		-51.2	276	73		
KS	S138		9			213				321.4	-65.1
KS	ST137	thermal	9	6	-37.1	186	-69.9	276	73	321.4	-77.7
KS	S139	AF	8	15.6	-49.5	174.6	-56.6	276	73	323.7	-83.5
KS	S141	AF	8	4.7	-61.9	186.9	-45.1	276	73	326.2	-73.5
KS	S143	AF	4	68.2	67.8	25.6	5.9	276	73	329.8	44.6
KS	S144	AF	5	11.9	50.6	10	-22.2	276	73	329.8	35.5
KS	S145	AF	8	25	-56.9	170.6	-47.6	276	73	338	-74.6
KS	S146	AF	9	4.8	-83.4	186.1	-23.6	276	73	338	-59.7
KS	S147	AF	8	17.2	-80.5	183.9	-26.3	276	73	341	-61.5
KS	S149	AF	8	34.4	-55.6	163.4	-45.7	276	73	344.7	-69.8
KS	S153	AF	9	25.2	-59.1	172	-45.6	276	73	348.1	-73.6
KS	S155 S154	AF	9	12.6	-15.4	82.9	-83.5	276	73	348.1	-39.3
KS	S154 S155	AF	8	30.1	-40.1	148.9	-58.9	276	73	352.1	-66.5
KS	S155 S156	AF	8 4	46.7	-40.1		-38.9	276	73	352.1	-60.2
						149.6					
KS	S161	AF	9	26.8	-42	154.8	-59.4	276	73	364	-71
KS	S162	AF	9	22.9	-38.7	155.1	-63.8	276	73	364	-71.8
KS	S163	AF	8	345.5	-48.8	209.1	-54.1	276	73	368.2	-66.1
KS	S165	AF	8	12.7	-66.2	182.4	-40.6	276	73	374.2	-70.9
KS	S172	AF	8	351.7	-32.2	223.6	-70	276	73	380.2	-59.1
KS	S174	AF	8	11.9	-34.6	170.4	-71.6	276	73	382.9	-74.5
KS	S179	AF	8	357	-77.5	188.2	-29.3	276	73	395	-62.6
KS	S180	AF	9	353.3	-73	190.4	-33.5	276	73	395	-64.6
KS	S183	AF	8	59	-44	139.1	-38.1	276	73	403.5	-50.1
KS	S185	AF	8	43.5	-49.7	151.8	-45.5	276	73	403.5	-62.5
KS	S184 S185	AF	8	43.5 194.4	-49.7	346.6	-43.3 69.4	276	73	403.5	-02.5 75.9
KS		AF AF	8 8	194.4	50.5 69.3	27.7		276	73	407.5	49.6
КЭ	S187	Ar	0	105.5	09.3	21.1	19.2	2/0	15	411.0	49.0


KS	S188	AF	8	243.9	76.9	353.9	23.6	276	73	411.6	59.7
KS	S189	AF	8	5.9	-64.3	186.1	-42.7	276	73	414.3	-71.9
KS	S190	AF	8	40.1	-25.2	116.4	-57.2	276	73	414.3	-42.2
KS	S191	AF	8	70.4	-55.3	150.3	-28.4	276	73	416.1	-52.8
KS	S192	AF	8	48.5	-55.3	155.9	-40	276	73	416.1	-62.1
KS	S196	AF	9	16.3	-18.2	104.2	-80.1	276	73	423.3	-43.9
KS	S197	AF	8	8.1	-32.4	179.2	-74.5	276	73	426.5	-71.2
KS	S198	AF	8	350.8	-18.6	267.4	-75.4	276	73	426.5	-37.7
KS	S199	AF	8	150.2	71.7	18.4	31.4	276	73	429.4	60.3
KS	S201	AF	8	196.3	67.9	1	38.7	276	73	433.3	69.6
KS	S203	AF	8	196.3	57.3	357.5	49	276	73	448.8	77.6
KS	S205	AF	8	199.3	73.6	1.6	32.9	276	73	451	65.7
KS	S207	AF	8	349.4	74.1	1.5	1.7	276	73	454.2	48.7
KS	S209	AF	8	205.7	45.8	340.5	56.9	276	73	463.7	74.4
KS	S209.1	AF	8	218.2	44.3	328.2	51.6	276	73	463.7	63
KS	S211	AF	6	29.1	-46	153.3	-53.1	277	31	465.2	-67.4
	S211 S215	AF	5	2.5	59.7	4.4	28.8	277	31	482.4	62.9
KS											
KS	S216	AF	9	6.9	78.8	7	47.8	277	31	482.4	75.5
KS	S217	AF	8	20.7	62.6	14.4	32.1	277	31	497.6	62.3
KS	S218	AF	8	39.8	78.9	16.2	49.3	277	31	497.6	72.3
KS	S230	AF	5	112.2	66.7	51.9	57.2	277	31	516.2	50.6
KS	S231	AF	6	55.8	85.3	13.3	55.8	277	31	518	78.2
KS	S232	AF	9	158.1	83.9	13.8	64.2	277	31	518	79.4
KS	S233	AF	9	93.2	70.3	40.8	52.7	277	31	519.7	56.9
KS	S235	AF	5	49.4	36.6	40.6	11.8	277	31	521.6	39
KS	S236	AF	9	257.3	81.5	350.4	60.9	277	31	521.6	82.8
KS	S237	AF	9	25.7	65.5	16.4	35.3	277	31	527.5	63.4
KS	S238	AF	8	336.6	76.7	357.2	47.1	277	31	527.5	75.9
KS	S239	AF	8	54.3	61.9	32.4	36.3	277	31	531.9	54.9
KS	S240	AF	8	351.5	60.7	358.3	30.3	277	31	531.9	64.1
KS	S241	AF	8	343.5	62.6	354.4	33	277	31	534.3	65.3
KS	S242	AF	9	347.9	71.3	359	41	277	31	534.3	71.3
KS	S243	AF	8	208.2	86.9	4.6	61.9	277	31	536.3	86.5
KS	S243 S244	AF		312	78.3	351.6	51.2	277	31	536.3	77.7
			8								
KS	S245	AF	8	339.5	65.5	353.3	36.2	277	31	537.3	67.2
KS	S246	AF	8	6.9	67.4	7	36.4	277	31	537.3	67.3
KS	S249	AF	8	354.1	79.6	3.5	48.8	277	31	545.3	77.3
KS	S251	AF	8	339.5	71.3	355.6	41.7	277	31	548.6	71.5
KS	S254	AF	8	310.8	61.7	334.2	43.4	277	25	545.3	62.9
KS	S254 S255	AF	8	328.6	65.7	346.3	43.6	277	25	548.6	69.9
KS	S257	AF	8	338.9	72.9	354.8	49.2	277	25	555	77.2
KS	S259	AF	8	318.8	71.3	345.1	50.2	277	25	560.6	73.6
KS	S261	AF	6	85.5	65	49	51.8	277	25	565.6	50.4
KS	S263	AF	9	350.3	71.9	359.4	47.4	277	25	573.8	76.3
KS	S265	AF	7	49.1	58.3	33.3	37.3	277	25	578.8	54.9
KS	S267	AF	8	4.5	65.3	5.7	40.3	277	25	581.6	70.2
KS	S269	AF	8	99.1	70	48.5	59	277	25	584.4	53.8
KS	S271	AF	11	4.5	73.2	5.7	57.3	277	16	589.6	83.9
KS	S274	AF	11	24.8	72.2	16.8	56.6	277	16	593.7	76.2
KS	S275	AF	8	320.2	62.8	335.6	50.3	277	16	596.5	67.6
KS	S279	AF	9	293.5	75.1	330.8	65.4	277	16	604.5	68.8
KS	S281	AF	11	339	76.5	353.8	61.3	277	16	607.5	85.4
KS	S284	AF	9	114.9	-81.8	163.6	-69.9	277	16	613.4	-74.1
KS	S285	AF	9	151.2	-73.2	167.9	-58.8	277	16	619.1	-80.5
KS	S287	AF	8	106.2	-72.3	142.9	-64.5	277	16	623.6	-63.3
KS	S289	AF	9	158	-62.1	167.4	-47.4	277	16	629.1	-73
KS	ST290	thermal	9	178.4	-75.7	182.8	-59.8	277	16	629.1	-87.4
KS	S291	AF	6	253	-69.7	225.8	-59.6	277	16	632.1	-56
KS	S294	AF	8	182.7	-77.7	185.1	-61.7	277	16	635.6	-86.2
KS	S296	AF	9	187	-79	187	-63	277	16	638.7	-84.4
KS	S299	AF	7	147.8	-22.7	150.7	-10	277	16	658.1	-44.6
			-				-				

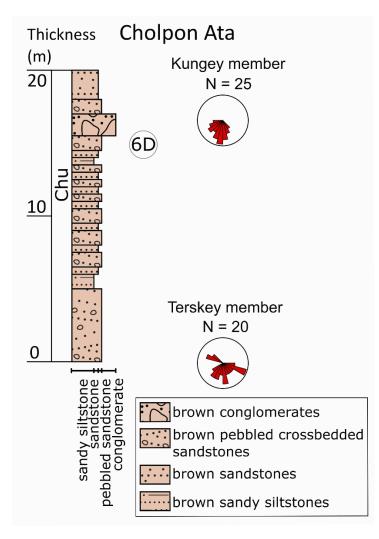

Figure S3.1. Ak Terek section area (location shown in Figure 3.1 in the main text of Chapter 3). Sedimentary units are mapped after Roud et al. (2021) and Burgette et al. (2017) on topography based on SRTM30 digital elevation data. A-B show locations of the corresponding section photos, represented in Fig. 6 in the main text. Stratigraphic units in the legend: N_{1-2} – Late Miocene – Pliocene; N2-Q – Pliocene – Quaternary; Q – Quaternary.

Figure S3.2. Kungey range area (modified from Selander et al., 2012). (A) Geological map of the Kungey range area and positions of the Toru Aygir (B) and Cholpon Ata (C) sections areas.

Figure S3.3. The Toru Aygir stratigraphic section (location shown in Supplementary Figure 3.2 and in Figure 3.1 in the main text of Chapter 3) with rose diagrams of paleocurrent flow directions. (6C) shows stratigraphic position of the section photo 3.6C, represented in Figure 3.6 in the main text of Chapter 3.

Figure S3.4. The Cholpon Ata stratigraphic section (location shown in Supplementary Figure 3.2 and in Figure 3.1 in the main text of Chapter 3) with rose diagrams of paleocurrent flow directions of the Terskey and Kungey members (see section 3.5.1.4 in Chapter 3 for detailed description). 6D shows stratigraphic position of the section photo 3.6D, represented in Figure 3.6 in the main text of Chapter 3.

Sample ID	Stratigraphic position (m)	Age (Ma)	δ18O, ‰ (PDB)	δ13C, ‰ (PDB)	Material	Group/Unit	Carbonate content (%)
			Kaji Say s	ection (42°(09'50"N, 77°18'30"E)		
S108	663	2,501	-8,18	-3,42	pedogenic nodule	Sharpyl Dak	23,3
S109	641	2,581	-7,27	-3,16	lacustrine mudstone	Sharpyl Dak	102,4
S106	625,5	2,625	-7,68	0,31	lacustrine mudstone	Upper Chu	43,8
S105	621,5	2,636	-8,21	-0,31	lacustrine mudstone	Upper Chu	37,3
S102	614,5	2,656	-7,98	-5,86	pedogenic nodule	Upper Chu	76,4
269	614	2,658	-7,88	-1,93	lacustrine mudstone	Upper Chu	1,6
S101	608,5	2,673	-8,01	-1,25	lacustrine mudstone	Upper Chu	57,1
S100	574	2,769	-8,99	-3,52	pedogenic nodule	Upper Chu	37,3
245	570	2,780	-9,13	-2,13	lacustrine marl and siltstone	Upper Chu	5,6
243	567	2,788	-10,11	-4,69	lacustrine marl and siltstone	Upper Chu	0,9
16S43	565	2,794	-9,52	-4,96	pedogenic nodule	Upper Chu	57,3
241	563	2,800	-9,63	-2,49	lacustrine marl and siltstone	Upper Chu	7,5
237	560	2,808	-8,66	-2,44	lacustrine marl and siltstone	Upper Chu	40,0
16S41	553	2,828	-9,65	-4,31	pedogenic nodule	Upper Chu	54,6
235	552,5	2,829	-9,54	-3,46	lacustrine marl and siltstone	Upper Chu	19,8
233	550	2,836	-7,89	-1,26	lacustrine mudstone	Upper Chu	8,4
231	549	2,839	-8,98	-2,24	lacustrine marl and siltstone	Upper Chu	12,3
229	547	2,845	-10,81	-2,16	lacustrine marl and siltstone	Upper Chu	5,1
16S40	545	2,850	-9,06	-3,46	pedogenic nodule	Upper Chu	41,7
227	544	2,853	-9,15	-3,58	lacustrine marl and siltstone	Upper Chu	26,6
16539	542	2,855	-9,38	-3,29	lacustrine marl and siltstone	Upper Chu	51,5
221	538	2,858	-9,14	-4,42	pedogenic nodule	Upper Chu	19,7
219	532	2,809	-8,91	-4,42	lacustrine marl and siltstone	Upper Chu	5,2
16S36	480	3,032		-2,07	lacustrine mudstone		1
16S36	480		-8,97		lacustrine mudstone	Upper Chu	37,1
209	473	5,100	-8,82	-0,96	lacustrine mudstone	Upper Chu	61,2
16S33	472,5	5,102	-9,38	-1,64	lacustrine mudstone	Upper Chu	3,6
		5,104	-8,66	-2,00		Upper Chu	74,7
16S32 16S30	456 454,5	5,176	-8,79	-5,09 -5,37	sandstone cement	Upper Chu	72,4
16S29	430	5,183	-9,44		sandstone cement	Upper Chu	73,8
		5,292	-8,96	-6,09	sandstone cement	Lower Chu	29,9
16S27	400	5,423	-10,79	-3,94	pedogenic nodule	Lower Chu	39,2
16S25	396	5,440	-9,85	-3,45	pedogenic nodule	Lower Chu Lower Chu	32,4
16S24	392	5,457	-10,26	-4,25	pedogenic nodule		31,4
16S23	389	5,470	-10,53	-5,38	pedogenic nodule	Lower Chu	28,7
16S26	375	5,531	-9,18	-6,15	sandstone cement	Lower Chu	28,9
16S22	367	5,566	-9,50	-5,76	pedogenic nodule	Lower Chu	41,3
16S21	350	5,640	-10,48	-4,07	pedogenic nodule	Lower Chu	39,3
16S18	270	5,989	-9,82	-5,97	sandstone cement	Lower Chu	42,9
16516	220	6,187	-9,71	-4,30	pedogenic nodule	Lower Chu	41,8
16S15	177	6,366	-11,23	-6,32	sandstone cement	Lower Chu	35,3
16S14	134	6,529	-10,26	-5,89	sandstone cement	Lower Chu	87,5
16S13	130	6,543	-11,13	-6,22	sandstone cement	Lower Chu	92,0
16S12	105	6,630	-10,16	-5,88	pedogenic nodule	Lower Chu	36,2
16S10	85,5	6,698	-11,16	-6,71	sandstone cement	Lower Chu	92,6
16S09	85	6,700	-10,84	-6,26	sandstone cement	Lower Chu	104,4
16S08	84	6,703	-11,51	-7,07	sandstone cement	Lower Chu	91,6
S110	74,5	6,736	-11,46	-6,79	sandstone cement	Lower Chu	95,7
16S07	68,5	6,758	-10,73	-5,72	sandstone cement	Lower Chu	37,2
16S06	43	6,851	-10,35	-4,90	pedogenic nodule	Lower Chu	37,2
16S04	30	6,898	-10,82	-4,73	pedogenic nodule	Lower Chu	42,2
16S02	21,5	6,929	-11,12	-5,98	sandstone cement	Lower Chu	51,5
16S03	18	6,942	-11,07	-6,20	sandstone cement	Lower Chu	51,8
16S01	8	6,978	-10,32	-5,52	sandstone cement	Lower Chu	41,5

Table S3.1 Stable isotope data

		0.000			°14'N, 76°41'40"E)	~	
A144	471	2,992	-10,11	-7,46	sandstone cement	Chu	54,5
A143	452	3,16	-10,76	-4,34	pedogenic nodule	Chu	41,9
A139	427	3,379	-10,46	-4,15	pedogenic nodule	Chu	37,2
A138	406	3,548	-9,34	-7,10	pedogenic nodule	Chu	48,2
A137	401	3,588	-9,81	-6,39	pedogenic nodule	Chu	36,1
			-	,			
A136	397	3,623	-9,56	-6,57	pedogenic nodule	Chu	35,6
A135	387	3,693	-9,62	-6,03	pedogenic nodule	Chu	58,9
A134	383	3,721	-10,09	-6,67	pedogenic nodule	Chu	43,2
A133	382	3,728	-10,01	-6,51	pedogenic nodule	Chu	45,6
A131	373	3,791	-10,87	-6,53	pedogenic nodule	Chu	40,2
A130	370	-	-		pedogenic nodule	Chu	
		3,812	-10,86	-6,59	1 0		38,8
A129	361	3,872	-10,38	-4,73	pedogenic nodule	Chu	37,2
A128	351	3,942	-10,33	-6,18	pedogenic nodule	Chu	44,6
A127	347	3,97	-10,06	-5,48	pedogenic nodule	Chu	32,
A126	340	4,019	-10,48	-4,86	pedogenic nodule	Chu	21,
		-	-	-			
A125	334	4,061	-9,73	-7,58	pedogenic nodule	Chu	43,
A123	327	4,11	-9,50	-6,69	pedogenic nodule	Chu	48,4
A122	325	4,124	-9,75	-6,65	pedogenic nodule	Chu	36,0
A121	317	4,18	-9,81	-6,43	pedogenic nodule	Chu	55,
A120	315	4,1915	-10,08	-5,75	pedogenic nodule	Chu	42,9
		-		-			
A119	314	4,196	-9,83	-6,46	pedogenic nodule	Chu	55,2
A118	312	4,205	-9,93	-6,77	pedogenic nodule	Chu	47,
A117	297	4,2728	-10,04	-5,83	pedogenic nodule	Chu	33,0
A116	294	4,2864	-9,77	-6,64	pedogenic nodule	Chu	47,8
A115		-	-	-			
-	288	4,316	-10,06	-6,06	pedogenic nodule	Chu	25,
A114	286	4,326	-10,93	-6,79	pedogenic nodule	Chu	37,
A113	285	4,331	-10,06	-6,10	pedogenic nodule	Chu	35,0
A111	259	4,467	-10,11	-4,96	pedogenic nodule	Chu	23,
A109	244	4,534	-9,63	-5,65		Chu	45,
			-	-	pedogenic nodule		
A108	237	4,562	-11,33	-4,67	pedogenic nodule	Chu	17,
A107	224	4,615	-9,75	-4,40	pedogenic nodule	Chu	36,
A106	214	4,669	-10,10	-6,15	pedogenic nodule	Chu	56,
A104	213	4,675	-10,28	-5,90	pedogenic nodule	Chu	42,
			-	-			
A103	211	4,687	-10,23	-6,31	pedogenic nodule	Chu	50,
A102	210	4,693	-9,86	-6,14	pedogenic nodule	Chu	39,
A150	192	4,81	-9,54	-6,82	pedogenic nodule	Chu	52,
A151	185	4,87	-10,04	-6,32	pedogenic nodule	Chu	53,
			-	-	1 0		
A152	178	4,93	-9,45	-7,52	pedogenic nodule	Chu	52,
A154	174	4,964	-8,39	-7,07	pedogenic nodule	Chu	54,
A153	173	4,972	-9,53	-7,26	pedogenic nodule	Chu	40,
A155	169	5,007	-9,92	-6,07	pedogenic nodule	Chu	65,
A156	167	5,023	-10,36	-6,07	pedogenic nodule	Chu	31,
A157	161	5,072	-9,80	-6,37	pedogenic nodule	Chu	62,
A158	159	5,088	-10,55	-6,75	pedogenic nodule	Chu	50,
A159	152	5,145	-10,18	-7,41	pedogenic nodule	Chu	48,
A160	151	5,153	-9,36	-6,93	pedogenic nodule	Chu	46,
					1 0	Chu	
A163	149	5,169	-10,30	-6,77	pedogenic nodule		18,
A161	148	5,177	-9,05	-7,16	pedogenic nodule	Chu	46,
A164	148	5,177	-10,22	-6,48	pedogenic nodule	Chu	42,
A165	147	5,185	-11,49	-5,04	pedogenic nodule	Chu	28,
A166	137	5,269	-10,34	-6,46	pedogenic nodule	Chu	48,
A168	133	5,303	-10,53	-7,18	pedogenic nodule	Chu	43,
A167	131	5,32	-10,17	-6,68	pedogenic nodule	Chu	41,
16A10	129	5,337	-10,24	-4,78	sandstone cement	Chu	39,
A169	128	5,345	-10,20	-7,26	pedogenic nodule	Chu	50,
	126					Chu	
A170		5,362	-9,74	-6,83	pedogenic nodule		50,
16A09	95	5,622	-9,74	-5,48	sandstone cement	Chu	35,
A171	91	5,656	-10,79	-6,48	pedogenic nodule	Chu	47,
16A08	87	5,69	-10,10	-4,70	sandstone cement	Chu	23,
A172	83	5,724	-10,66	-5,54	pedogenic nodule	Chu	62,
A173	81	5,741	-9,05	-5,85	pedogenic nodule	Chu	29,
A174	79	5,758	-9,45	-6,07	pedogenic nodule	Chu	38,
A175	76	5,783	-10,21	-5,68	pedogenic nodule	Chu	36,
A176	70	5,825	-10,53	-6,04	pedogenic nodule	Chu	31,
A177	69	5,842	-10,68	-5,28	pedogenic nodule	Chu	26,
A178	60	5,918	-10,73	-7,22	pedogenic nodule	Chu	45,
A179	42	6,06	-10,04	-5,93	pedogenic nodule	Chu	33,
16A01	8		-10,82	-4,19	sandstone cement	Chu	
A181		6,262					33,
	6	6,272	-11,23	-4,64	pedogenic nodule	Chu	26,

Jeti O	guz section (Data are from	m Macaula	y et al., 20	16. Age model is from Roud et	al., 2021)
JTP82	990	8,500	-13,8	-7,3	pedogenic	Shamsi
JTP81	972	8,771	-13,5	-7,2	pedogenic	Shamsi
JTP80	941	9,164	-13,0	-8,2	pedogenic	Shamsi
JTP79	916	9,481	-14,1	-7,1	pedogenic	Shamsi
JTP78	885	9,873	-13,7	-7,0	pedogenic	Shamsi
JTP77	834	10,507	-12,1	-6,6	pedogenic	Shamsi
JTP75	760	11,427	-14,2	-7,2	pedogenic	Shamsi
JTP74	730	11,800	-12,7	-6,0	pedogenic	Shamsi
JTP68	569	14,482	-15,3	-6,0	pedogenic	Shamsi
JTP67	544	14,988	-12,5	-6,6	pedogenic	Shamsi
JTP62	449	16,964	-12,5	-6,5		Shamsi
					pedogenic	
JTP57	245	19,398	-11,4	-6,0	pedogenic	Shamsi
JTP56	224	19,599	-12,3	-7,2	pedogenic	Shamsi
JTP55	186	19,963	-12,5	-5,9	pedogenic	Shamsi
JTP54	144	20,510	-13,4	-5,1	pedogenic	Shamsi
JTP52	58	21,698	-10,4	-5 <i>,</i> 0	pedogenic	Shamsi
JTP51	37	21,966	-9,3	-3,0	pedogenic	Shamsi
JTP50	2	22,400	-9,0	-5 <i>,</i> 8	pedogenic	Shamsi
Chara II						-1 -1 - 2024)
	•	-i			2016. Age model is from Roud	
CKP41	947	7,63	-11,7	-7,2	pedogenic	Shamsi
CKP35	916	7,95	-11,5	-8,2	pedogenic	Shamsi
CKP34	855	8,54	-12,5	-8,2	pedogenic	Shamsi
CKP33	806	9 <i>,</i> 05	-13,7	-6,5	pedogenic	Shamsi
CKP32	769	9,42	-12,7	-6,8	pedogenic	Shamsi
CKP31	744	9,66	-12,6	-6,2	pedogenic	Shamsi
CKP30	707	10,04	-12,5	-8,2	pedogenic	Shamsi
CKP29	703	10,09	-12,8	-8,3	pedogenic	Shamsi
CKP28	657	10,57	-13,5	-8,2	pedogenic	Shamsi
CKP27	628	10,87	-11,3	-7,8	pedogenic	Shamsi
CKP26	613	11,03	-11	-7	pedogenic	Shamsi
CKP25	584	11,35	-12,5	-6,1	pedogenic	Shamsi
CKP24	557	11,65	-11,2	-5,4	pedogenic	Shamsi
CKP23	521	12,05	-13	-8,6	pedogenic	Shamsi
CKP22	468	12,63	-11,1	-7,9	pedogenic	Shamsi
	408					Shamsi
CKP21		12,94	-12,7	-7,2	pedogenic	
CKP20	427	13,08	-12,4	-6,6	pedogenic	Shamsi
CKP19	414	13,22	-12,4	-6,3	pedogenic	Shamsi
CKP18	385	13,54	-11,8	-6,7	pedogenic	Shamsi
CKP17	375	13,65	-12,9	-6,9	pedogenic	Shamsi
CKP15	346	13,97	-12,8	-6,4	pedogenic	Shamsi
CKP14	331	14,13	-12,7	-6,1	pedogenic	Shamsi
CKP13	325	14,19	-12,6	-5,4	pedogenic	Shamsi
CKP12	316	14,29	-12,2	-6,8	pedogenic	Shamsi
CKP11	293	14,54	-13	-6,8	pedogenic	Shamsi
CKP10	254	14,94	-13	-9,4	pedogenic	Shamsi
CKP09	233	15,13	-13,4	-7,7	pedogenic	Shamsi
CKP08	214	15,30	-11,8	-8,1	pedogenic	Shamsi
CKP06	171	15,70	-12,4	-6,7	pedogenic	Shamsi
CKP07	159	15,81	-12,3	-6	pedogenic	Shamsi
CKP05	128	16,12	-11,6	-5,7	pedogenic	Shamsi
CKP04	96	16,48	-12,7	-7,5	pedogenic	Shamsi
CKP03	36	17,37	-11,9	-4,3	pedogenic	Shamsi
CKP02	18	17,58	-11,6	-4,4	pedogenic	Shamsi
	10	JC, 11	тт,U	·+,+	pedogenic	Juanis

Ak-Terek // Iower // Sharpyl Dak // A2°13(3).30"N // 76°43(3).50"E // Ak-Tera?	•								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•			-/ IN/2/IN02				KNNID DU3
k 30"N 50"E			٩	Cathode ID	rtz Igi	[ct-vnt] (st	[CT0T] [ST		[CT- OT] (CT -)	[an]	atoms/el	[CT] (ST	1s) [10^-15]		1s) [10^-15]	[a/an]	atoms/el
80"N 50"E	AKT-Q-01	UOW149	Be1053	Al1128	40,020	52.33 (2.01)	0.37 (0.17)	UOW Be 14&15	51.96 (2.01)	288,5	25.03 (0.99)	69.8 (5.06)	0.56 (0.4)	UOW AI 08&09	69.24 (5.08)	73,2	113.15 (9.45)
k 30"N 50"E	AKT-Q-05	UOW579	XBE0733	XAL0182	55,244	98.4 (2.3)	Boron correction*		87.14 (2.37)	366,7	38.65 (1.06)	64.04 (4.78)	1.41 (1)	UOW AI 33&34	62.63 (4.89)	155,3	217.02 (19.03)
30"N 50"E	AKT-Q-07	UOW150	Be1054	AL1129	40,012	77.47 (2.14)	0.37 (0.17)	UOW Be 14&16	77.1 (2.14)	288,8	37.19 (1.08)	65.08 (5.63)	0.56 (0.4)	UOW AI 08&09	64.52 (5.65)	103,1	148.52 (14.3)
50"E	AKT-Q-08	UOW151	Be1055	AL1130/31	100,001	125.7 (3.2)	0.37 (0.17)	UOW Be 14&17	125.33 (3.2)	288,6	24.17 (0.65)	50.83 (3.33)	0.56 (0.4)	UOW AI 08&09	50.26 (3.35)	95,8	107.52 (8.36)
	AKT-Q-sand	UOW152	Be1056	AL1132	90,010	163.6 (4.57)	0.37 (0.17)	UOW Be 14&19	163.23 (4.57)	287,9	34.88 (1.02)	52.89 (4.71)	0.56 (0.4)	UOW AI 08&09	52.32 (4.72)	97,0	113.28 (11.19)
	AKT-U-02	UOW153	Be1057	AL1133/34	70,004	83.59 (3.8)	0.37 (0.17)	UOW Be 14&20	83.22 (3.8)	288,4	22.91 (1.07)	10.17 (2.55)	0.56 (0.4)	UOW AI 08&09	9.61 (2.58)	367,1	78.7 (21.39)
uppermost Chu A	AKT-U-04	UOW154	Be1058	AL1135	40,022	17.51 (0.84)	0.37 (0.17)	UOW Be 14&21	17.14 (0.86)	288,2	8.25 (0.42)	44.63 (3.99)	0.56 (0.4)	UOW AI 08&09	44.07 (4.01)	47,3	46.57 (4.63)
42°14'19.80"N /	AKT-U-06	UOW580	XBE0734	XAL0183	27,761	26.48 (0.95)	Boron correction*	,	16.94 (1.07)	367,3	14.98 (0.95)	26.19 (2.7)	1.41 (1)	UOW AI 33&34	24.78 (2.88)	81,1	44.87 (5.52)
76°42'39.36"E A	AKT-U-07	UOW155	Be1059	AL1136/37	90,010	35.25 (1.31)	0.37 (0.17)	UOW Be 14&22	34.88 (1.32)	289,1	7.49 (0.29)	21.66 (3.01)	0.56 (0.4)	UOW AI 08&09	21.1 (3.04)	100,8	47.46 (7.09)
	AKT-U-08	UOW581	XBE0735	XAL0184	47.563	138.11 (3.58)	Boron correction*		128.73 (3.61)	366.1	66.21 (1.87)	34.05 (3.39)	1.41 (1)	UOW AI 33&34	32.64 (3.54)	212.7	154.94 (17.89)
	AKT-U-sand	UOW156	Be1060	AL1138/39	40.033	64.36 (2.01)	0.37 (0.17)	UOW Be 14&25	63.99 (2.02)	288.4	30.8 (1.01)	19.54 (1.99)	0.56 (0.4)	UOW AI 08&09	18.98 (2.03)	135.4	57.34 (6.56)
Kaii Sav F	2	UOW157	Be1061	AI 1140/41	95.014	671.7 (17.48)	0.37 (0.17)	UOW Be 14&26	671.33 (17.48)	289.0	136.43 (3.75)	204.61 (8.88)	0.56 (0.4)	UOW ALO8&09 204.04 (8.89	204.04 (8.89)	79.1	360.36 (21.31)
oct		10/0/158	Be1062	AI 1147/43	80.088	340 9 (8 5)	0 37 (0 17)	10W Be 148.27	340 53 (8 5)	2,002	82 13 (2 17)	99 04 (5 76)	0 56 (0 4)		98 47 (5 77)	109.2	240 11 (17 04)
				011114				10/M Bc 110.20		1,002	(17.7) (17.70				(11.0) (1.00	71001	100 0) 0C 00
2		GCT M OO	CONTAG	AL1144	100,020	(CD.T) 56.04	(71.0) 75.0	UOW BE 14820	(+0.1) 20.04	0,002	(TO'D) #7:57	(02.6) 02.60			(12.5) 00.25	0,01	(60.6) 67.06 (90 11) 61 661
	EI-UI3-L-U0		1001 d	01/C11140	670'00T	(0/.c) c.U22	(/T·O) /C·O	UOW BE 14029	(0/.C) CT.U22	0'007	(/T'T) /+'7+	(60) (00) (00)			(TO:+) 6.20		(00'TT) 74'7CT
/0.'E	PET-QTS-L-sanc UOW161	U0W161	Be1065	AL1147/48	85,024	406.4 (10.58)	0.37 (0.17)	UOW Be 14&30	406.03 (10.58)	288,4	92.04 (2.53)	159.03 (6.9)	0.56 (0.4)	UOW AI 08&09		76,9	272.15 (16.11)
Kaji Say F	PET-QTS-PIT-01UOW162	UOW162	Be1066	AL1149/50		261.5 (6.89)	0.37 (0.17)	UOW Be 14&31	261.13 (6.89)	289,5	84.19 (2.34)	51.83 (3.74)	0.56 (0.4)	UOW AI 08&09		177,2	202.81 (16.95)
oyl Dak	ET-QTS-PIT-03	UOW163	Be1067	AL1151/52		244.3 (5.83)	0.37 (0.17)	UOW Be 14&32	243.93 (5.83)	288,1	117.28 (2.99)	61.79 (3.82)	0.56 (0.4)	UOW AI 08&09	61.22 (3.84)	171,0	233.65 (17.39)
	PET-QTS-PIT-04 UOW164	UOW164	Be1068	AL1153/54		485.1 (12.1)	0.37 (0.17)	UOW Be 14&33	484.73 (12.1)	288,2	266.75 (7.06)	152.16 (6.51)	0.56 (0.4)	UOW AI 08&09	151.6 (6.52)	157,1	531.47 (31.22)
z	PET-QTS-PIT-05 UOW165	UOW165	Be1069	AL1155/56	40,004	87.79 (2.4)	0.37 (0.17)	UOW Be 14&34	87.42 (2.41)	288,9	42.19 (1.22)	29.02 (2.54)	0.56 (0.4)	UOW AI 08&09	28.46 (2.57)	205,0	130.2 (12.87)
77°17'9.55"E F	PET-QTS-PIT-sa UOW166	UOW166	Be1070	Al1157/58	75,010	446.4 (11.62)	0.37 (0.17)	UOW Be 14&35	446.03 (11.62)	288,9	114.78 (3.16)	101.46 (6.53)	0.56 (0.4)	UOW AI 08&09	100.89 (6.54)	100,9	227.15 (17.31)
Kaji Say F	PET-L-17-01	U0W677	XBE0815	XAL0325	61,153	80.22 (1.81)	0.88 (0.22)	UOW Be 66&67	79.35 (1.82)	189,4	16.43 (0.41)	36.02 (3.37)	2.03 (1.56)	UOW AI 47&48	33.98 (3.72)	77,2	58.53 (6.81)
lower Chu F	PET-L-17-03	UOW678	XBE0816	XAL0326	7,155	35.98 (2.89)	0.88 (0.22)	UOW Be 66&68	35.1 (2.9)	130,1	42.63 (3.54)	13.99 (2.92)	2.03 (1.56)	UOW AI 47&48	11.96 (3.31)	108,4	28.94 (8.09)
42°9'18.69"N F	PET-L-17-04	UOW679	XBE0817	XAL0327	3,665	10.14 (1.01)	0.88 (0.22)	UOW Be 66&69	9.26 (1.03)	103,7	17.52 (1.96)	3.43 (1.21)	2.03 (1.56)	UOW AI 47&48	1.4 (1.97)	265,2	8.26 (11.69)
	DET-11-01	110/0/573	XRE0776	XAI0175	00 480	55 J6 (1 75)	Boron correction*		52 49 (1 79)	365 1	12 87 (0.44)	13 /1 /1 60)	(1) 17 1	110/11 238.34	12 (1 06)	71.8	10 23 (2 24)
	DET-11-02				104,00	(C/T) 07.CC	Boron correction*		(CV L) 24.70	1'rnr	72 0/ (7 8)	19 2) V 13 2)	(T) T4-T	10/0/ 01 238.34	(NG:T) 7T	153 1	(12 C1) CZ:CT
Z	PET-U-05	10W575	XBF0729	XAL0178	13,520	11 97 (3 32)	Boron correction*		(37:1) 01:21	366.6	5.4 (6.09)	13 77 (1 82)	(1) 141 (1)	110W AI 33&34	12 31 (2 08)	67.9	26.89 (4.66)
ш										0,000		(10)-1					
	JGL17-1-01	UOW566	XBE0719	XAL0168	26,400	7.35 (0.64)	Boron correction*		3.21 (0.72)	366,2	2.97 (0.67)	4.48 (1)	1.41 (1)	UOW AI 33&34	3.07 (1.42)	141,6	9.71 (4.49)
Chui-Sharnvi Dak 16117-1-03	GI 17-1-03	1010568	XRF0721	X410170	70 775	67 61 (2 16)	Roron correction*		63 35 (2 18)	364 9	21.83 (0.76)	8 51 (1 64)	1 41 (1)	110W AI 33834	7 1 (1 92)	131.0	20.76 (5.67)
transition	JGL17-1-06	U0W571	XBE0724	XAL0173	87,871	21.25 (0.95)	Boron correction*		19.3 (1.05)	366,5	5.38 (0.29)	3.48 (0.97)	1.41 (1)	UOW AI 33&34	2.07 (1.39)	68,6	3.17 (2.13)
28"N	JGL17-1-07	UOW572	XBE0725	XAL0174	99,226	27.01 (0.98)	Boron correction*	ı	24.44 (1.02)	365,8	6.02 (0.25)	3.58 (0.92)	1.41 (1)	UOW AI 33&34	2.17 (1.36)	74,6	3.62 (2.27)
78°57'59.35"E																	
Jergalan J	JGL-2-02	UOW673	XBE0811	XAL0321	34,866	5.47 (0.52)	0.88 (0.22)	UOW Be 66&69	4.59 (0.56)	190,6	1.68 (0.21)	2.33 (0.82)	2.03 (1.56)	UOW AI 47&48	0.3 (1.76)	82,1	0.54 (3.23)
	JGL-2-03	UOW674	XBE0812	XAL0322	79,477	32.67 (1.18)	0.88 (0.22)	UOW Be 66&69	31.79 (1.2)	189,8	5.07 (0.2)	2.49 (0.83)	2.03 (1.56)	UOW AI 47&48	0.46 (1.77)	107,3	1.1 (4.23)
	JGL-2-04	UOW675	XBE0813	XAL0323	92,955	25.02 (1.07)	0.88 (0.22)	UOW Be 66&69	24.14 (1.09)	191,0	3.32 (0.15)	2 (1)	2.03 (1.56)	UOW AI 47&48	-0.03 (1.85)	81,1	-0.06 (-3.35)
	JGL-2-07	UOW676	XBE0814	XAL0324	53,246	10.68 (0.7)	0.88 (0.22)	UOW Be 66&69	9.8 (0.74)	190,0	2.34 (0.18)	1.2 (0.69)	2.03 (1.56)	UOW AI 47&48	-0.84 (1.7)	80,8	-1.51 (-3.07)
on Ata	CA17-1-02	UOW668	XBE0806	XAL0316	4,638	4.48 (0.77)	0.88 (0.22)	UOW Be 66&69	3.6 (0.8)	131,5	6.82 (1.52)	8.81 (2.08)	2.03 (1.56)	UOW AI 47&48	6.78 (2.6)	274,1	41.51 (15.98)
	CA17-1-03	UOW669	XBE0807	XAL0317	43,260	31.08 (1.22)	0.88 (0.22)	UOW Be 66&69	30.2 (1.24)	189,9	8.86 (0.38)	33.85 (3.32)	2.03 (1.56)	UOW AI 47&48	31.82 (3.67)	56,3	40.01 (4.88)
	CA17-1-05	0/9/00	XBEUSUS	XAL0318	25,303 01 700	(60.L) 8.22	(22.0) 88.0		(11.1) 20.12	1,661	9 (0.46) (77 07 77)	(20.1) 05.22	2.03 (1.56) 2.03 (1.56)	UOW AI 4 / & 48	23.33 (3.19) 45 42 (4.20)	88,4	46.04 (6.56) F0.36 (F.36)
N SC.21 54 24	CA17-1-00		VBE0010	VALU319	01, /00 11 677	(9T'7) 7C'/ 9	(22.0) 88.0		01,07 (2.19)	155 G	13.47 (U.37) 0.03 (0.7)	(/0.4) 01.74	(9C.L) 20.2		(05.4) 21.C4	4,24 00 E	20.28 (5.26) 42 4E (7.28)
	CA17-2-sand	UOW576	XBE0730	XAL0320 XAL0179	55.731	37.39 (1.65)	Boron correction*		21.46 (1.8)	367.3	9.45 (0.79)	20.91 (2.23)	(nc.1) cn.2	UOW AI 33&34	(+C·C) + /·TZ	80.5 80.5	35.03 (4.61)
Cholpon Ata	CA17-6-01	UOW761	XBE0918	XAL0409/10	50,116	25.55 (0.9)	1.38 (0.19)	UOW Be 76	24.17 (0.92)	217,4	7.01 (0.28)	29.03 (2.86)	2.61 (1.31)	UOW AI 57	26.42 (3.14)	74,1	43.68 (5.48)
	CA17-6-02	UOW762	XBE0919	XAL0411/12	50,118	54.76 (1.47)	1.38 (0.19)	UOW Be 76	53.38 (1.48)	217,1	15.45 (0.46)	6.91 (1.2)	2.61 (1.31)	UOW AI 57	4.31 (1.78)	489,6	47.05 (19.49)
42°42'15.82"N 0	CA17-6-03	UOW763	XBE0920	XAL0413/14	43,038	34.78 (1.09)	1.38 (0.19)	UOW Be 76	33.4 (1.11)	215,3	11.16 (0.39)	22.63 (2.22)	2.61 (1.31)	UOW AI 57	20.02 (2.57)	124,6	55.67 (7.5)
77°18'2.79"E 0	CA17-6-05	UOW765	XBE0922	XAL0417/18	45,994	26.41 (0.94)	1.38 (0.19)	UOW Be 76	25.03 (0.96)	216,2	7.86 (0.31)	21.83 (1.73)	2.61 (1.31)	UOW AI 57	19.22 (2.16)	110,6	47.44 (5.67)
2	CA17-6-06	UOW766	XBE0923	XAL0419/20	65,324	31.75 (1.03)	1.38 (0.19)	UOW Be 76	30.37 (1.04)	214,7	6.67 (0.24)	29.81 (2.65)	2.61 (1.31)	UOW AI 57	27.2 (2.95)	81,8	49.64 (5.74)
2	CA17-6-07	UOW767	XBE0924	XAL0421/22	30,040	17.99 (0.63)	1.38 (0.19)	UOW Be 76	16.61 (0.65)	215,3	7.96 (0.32)	31.3 (2.48)	2.61 (1.31)	UOW AI 57	28.69 (2.81)	67,8	43.39 (4.58)
)	CA17-7-sand	UOW577	XBE0731	XAL0180	55,248	31.61 (1.26)	Boron correction*		20.46 (1.38)	366,2	9.06 (0.61)	28.19 (2.33)	1.41 (1)	UOW AI 33&34	26.78 (2.53)	83,8	50.1 (5.15)

Supplementary paleocurrent and clast count data

		Kaji Say Paleocurrent	data	
Poco				Imbricator
Rose	Stratigraphic	Bedding (dip		Imbricates
diagram in	position (m)		(dip direction	(dip direction
Fig.3.2		dip angle)		and dip angle)
			345 35	
			5 31	
			355 43	
	20	333 19	5 35	
			15 40	
			0 33	
			345 30	
			0 30	
			355 30	
Lower Chu	72	355 21	5 30	
0-100 m		000 11	5 28	
0 100 111			350 30	
			310 40	
			325 40	
	82	345 21	285 30	
			260 35	
			335 42	
			305 28	
	05	245.24	315 28	
	95	345 21	290 25	
			315 33	
Lower Chu 100-200 m	144	345 21		125 35 95 20 190 40 110 28 80 55 95 40 110 43 75 40 105 23 130 50 150 18 135 25 100 40 135 20 115 20 160 25 60 35 30 40 90 35
Lower Chu 200-300 m	265 280	15 64	355 60 15 85 10 75 15 85 0 87 0 52 5 72	75 30
		15 64	5 67	

		Kaji Say		
	1	Paleocurrent		I
Rose	Stratigraphic	Bedding (dip		Imbricates
diagram in	position (m)		(dip direction	(dip direction
Fig.3.2		dip angle)	and dip angle)	and dip angle)
	457	10 72	355 75	
	520	7 19	65 36	
			25 38	
	570	50 35	335 60	
			335 28	
	632	10 16	35 22	
			95 25	
				65 45
				205 45
				100 50
				10 50
Unner Chu				35 35
Upper Chu				175 30
				190 30 225 55
				10 45
	598	15 30		75 30
				120 50
				80 55
				50 45
				70 40
				88 50
				75 20
				190 40
				340 20
			315 20	540 20
			315 22	
	650	10 16	325 35	
			120 20	
				100 40
				105 45
				175 25
				160 50
				75 35
				175 35
				105 40
Sharpyl				125 40
Dak				110 28
	74.0	0.00		105 10
	712	0 20		145 50
				205 35
				125 20
				145 45
				65 50
				210 35
				175 45
				125 42
				90 50

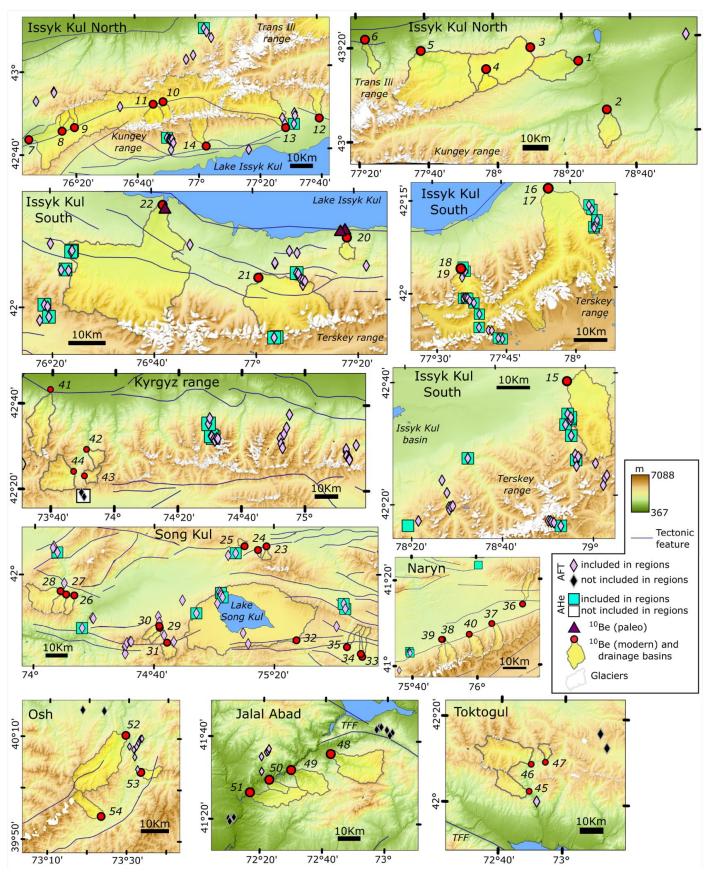
	Kaji Say	
	Clast count	
Stratigraphic position (m)	Type of rock	Number of clasts
	Red granite	35
	Volcanic rocks	20
	Metamorphic sandstone	19
85	White granite	14
65	Shale	10
	Quartz	3
	Sandstone	3
	Quartzite	2
	Red granite	69
	White granite	14
144	Volcanic rocks	14
144	Metamorphic sandstone	13
	Quartzite	1
	Quartz	1
	Red porphyry with quartz phenocrysts	70
	Red granite	23
	White granite	4
320	Volcanic rocks	5
	Sandstone	3
	Quartzite	2
	Quartz	2
	White granite	55
	Red granite	27
411	Red porphyry with quartz phenocrysts	8
411	Volcanic rocks	7
	Metamorphic sandstone	5
	Quartzite	1

	Ak Terek Clast count	
Stratigraphic position (m)	Type of rock	Number of clasts
	White granite	41
	Red granite	28
	Metamorphic	
2	sandstones	22
3	Volcanic rocks	10
	Quartzite	2
	Sandstone	2
	Quartz	1

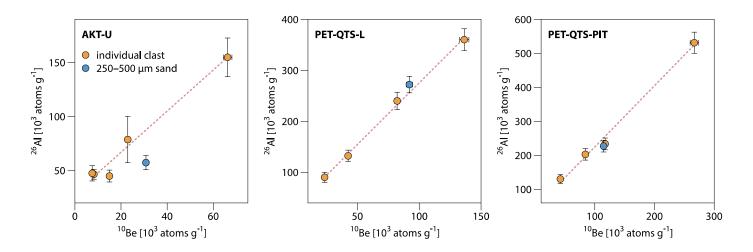
		Paleocurrent d	ata	
Rose	Stratigraphic	Bedding (dip	Cross-beds	Imbricates (dip
diagram in	position (m)	direction and	(dip direction	direction and
Fig.3.5	posición (m)	dip angle)	and dip angle)	dip angle)
				210 30
				315 23
				275 30
				45 40
				130 30
				110 45
				345 30
				235 25
				315 10
				350 27
	36	30 20		355 29
Chu 0-100 m				200 50
				285 40
				245 20
				225 42
				245 50
				275 25
				280 43
				280 43
				255 55
				230 20
			30 60	
	40	25 20	35 30	
			75 30	
			285 15	
		20 10	225 10	
			185 85	
Chu 100-200			20 30	-
m	140-160		30 35	
			30 25	
		345 10	350 28	
			10 28	
			35 20	
		40 15	15 35	-
			70 30	
			45 40	
Chu 200-300			55 30	
m	200-260	58	340 30	
			30 25	
			75 35	
			15 45	
			42 32	
			15 25	
			330 25	
			10 20	
			25 35	
			150 35	
			10 28	
Chu 300-400			355 20	
m	300-350	58	335 20	
			330 20	
			5 28	
			115 25	
			340 30	
			30 20	
			45 32	
			30 30	
			305 22	
Chu 400-500			95 30	
m	450-500	58	350 40	
			300 25	
	1	i i	285 25	1

	Jerg	alan	
	Paleocurre	ent data	
Position	Bedding (dip direction and dip angle)	Cross-beds (dip direction and dip angle)	Imbricates (dip direction and dip angle)
Position of the JGL17 sample 42°39'53.28"N 78°57'59.35"E	330 10		25 42 30 35 5 30 35 55 5 50 25 50 35 55 35 52 45 37 20 50 35 41 10 55 15 48 55 48 40 35 25 30 50 55 40 55 30 48 10 35

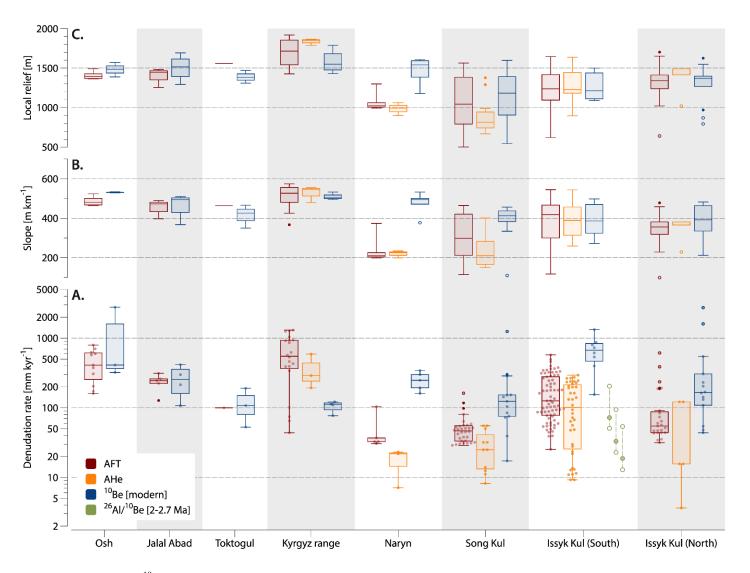
	Jergalan Clast count	
Position	Type of rock	Number of clasts
Position of the JGL17 sample 42°39'53.28"N 78°57'59.35"E	Clastic sedimentary rocks Volcanic rocks Granite Quzrtzite Quartz	35 26 20 16 8


	Toru	Aygir	
	Paleocu	rrent data	
Stratigraphic position (m)	Bedding (dip direction and dip angle)	Cross-beds (dip direction and dip angle)	Imbricates (dip direction and dip angle)
		60 20 48 30	
		233 9	
1	0 5	210 15	
		130 45	
		100 18	
		95 9	
		185 32	
		80 15	
		215 20	
23	0 5	165 22	
		15 12	
		195 30	
		120 18	

	Toru Aygir	
	Clast count	
Stratigraphic position (m)	Type of rock	Number of clasts
	Subvolcanic rocks with plagioclase phenocrysts	88
23	Granite	11
25	Mafic igneous rocks	4
	Volcanic rocks	4


	Cholpon Ata	
	Clast count	
Unit and stratigraphic position (m)	Type of rock	Number of clasts
	Granite	55
Torskov	Volcanic rocks	36
Terskey member; 0	Phyllite	20
member, o	Subvolcanic rocks with plagioclase phenocrysts	15
	Clastic sedimentary rocks	3

			oon Ata	
	1		rrent data	
	Stratigraphic	Bedding (dip	Cross-beds (dip	Imbricates (dip
Unit	position (m)	direction and	direction and dip	
	• • • •	dip angle)	angle)	dip angle)
				80 25
				15 55
				35 45
				325 25
				50 33
				345 40
				25 42
				0 35
				35 48
Terskey	0 (just below	45 16		10 52
member	the section)	45 10		315 25
				300 47
				315 40
				320 45
				300 45
				30 60
				15 33
				95 25
				100 48
				15 30
			205 10	
			245 5	
			185 28	
			275 8	
			310 15	
	10-15	45 16	240 20	
			75 11	
			250 17	
			250 22	
			100 3	0 37
Kungey				5 47 12 40
member				
				10 30
				25 45
				355 27
	47	507		20 25
	17	50 7		15 30
				30 35
				330 30
				355 45
				5 17
				30 20
				5 20
				10 20


SUPPLEMENTARY MATERIAL FOR CHAPTER 4

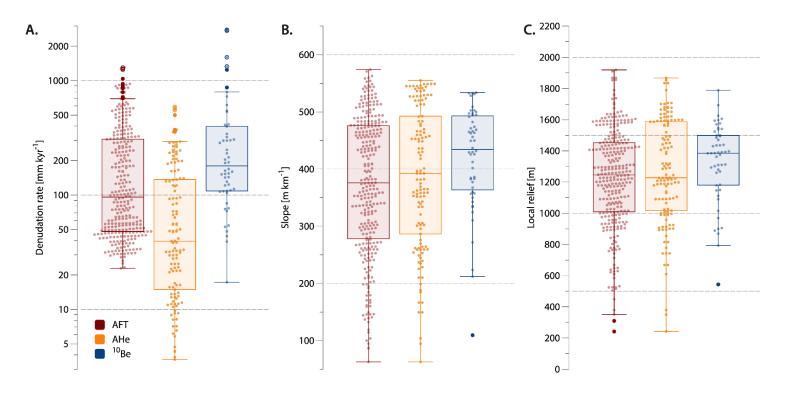

Figure S4.1. Detailed maps of the eight regions with positions of samples and drainage basins. ¹⁰Be sample numbers 1-54 correspond to ID numbers of samples in Supplementary Table S5. TFF is Talas-Fergana Fault. Tectonic features are taken from Mohadjer et al. (2016).

Figure S4.2. ²⁶Al vs. ¹⁰Be concentrations in individual clast and amalgamated sand samples collected from Ak Terek (AKT) and Kaji Say (PET-QTS) localities, in the proximity of lake Issyk-Kul (see Chapter 3 for further details).

Figure S4.3. ¹⁰Be-derived modern and paleo-denudation rates, AFT and AHe exhumation rates, slope, and local relief data distributed by region. Slope and local relief for ¹⁰Be data is calculated as average for drainage basins using 90-m SRTM DEM. Slope and local relief for AFT and AHe data is calculated using 90-m SRTM DEM with a 10-km radius buffers created around each AFT and AHe sample location.

Figure S4.4. Modern ¹⁰Be-derived denudation rates, AFT and AHe exhumation rates, slope, and local relief data from across the Kyrgyz Tian Shan plotted together. Slope and local relief for ¹⁰Be data is calculated as average for drainage basins using 90-m SRTM DEM. Slope and local relief for AFT and AHe data is calculated using 90-m SRTM DEM with a 10-km radius buffers created around each AFT and AHe sample location.

Additional reference for Supplementary Figure S4.1 (not mentioned in the main text):

Mohadjer, S., Ehlers, T.A., Bendick, R., Stübner, K., & Strube, T.A. (2016). Quaternary fault database for central Asia, *Nat. Hazards Earth Syst. Sci.*, *16*, 529–542, https://doi.org/10.5194/nhess-16-529-2016.

Longitude ^(b) MGS84 [deal
78,406841 sand (250-500 µm)
sand (250-500 µm)
73.488839 sand (250-500 mm) 40.348
sand (250-500 µm)
72,901000 sand (250-500 µm) 40,283
sand (250-500 µm)
_
76,813015 sand (250-500 µm) 43,656
sand (250-500 µm)
pebbles (~16 mm)
pebbles (~32 mm)
//,919/6/ sand (250-500 µm) 40,/10 77 010767 200bloc (~23 mm) 40,710
sand (250-500 um)
sand (250-500 µm)
74,22204 Sana (250-500 µm) 40,030
sand (250-500 µm)
sand (250-500 µm)
74,694960 sand (250-500 µm) 40,309
sand (250-500 µm)
sand (250-500 µm)
(mu uuc-ucz) bus
sand (250-500 µm)
76,076680 sand (250-500 µm) 57,306

Table S4.1. ¹⁰ Be data from modern river sand
--

(a) Cathode IDs starting with 'B' were analysed on the 10 MV ANTARES accelerator at ANSTO and cathode

IDs starting with 'Be' and 'XBE' were analysed on the 6 MV SIRIUS accelerator at ANSTO

(b) Sample coordinates indicate basin outlet as extracted from 90 m resolution SRTM data and are not the coordinates recorded in the field

(c) Uncertainties at the 1-sigma level

(d) Normalised to 07KNSTD (Nishiizumi et al., 2007)

(e) Effective atmospheric pressure calculated using CAIRN (Mudd et al., 2016)

(f) Calculated using CAIRN (Mudd et al., 2016) with default values for all parameters

(g) Denudation rates corrected for ice shielding using present day glacier extent from Stroeven et al. (2013)

	4	ANSTO 10Be	ANSTO 26AI	Latitude ^(b)	ANSTO 26Al Latitude ^(b) Longitude ^(b)	Total Qtz	Corr. 10Be/9Be ^(c,d)	Blank 10Be/9Be ^(c)	9Be Spike	10Be ^(c)	Corr. 26AI/27AI ^(c)	Blank 26AI/27AI ^(c)	27AI	26AI ^(c,e)	Burial Age ⁽¹⁾	Palaeo-denud. Rate ^(g)	Rate Range ^(h)
sample ID		LaD ID Cathode ID ^(a)	Ldtiloue ID ^(a)	WGS84 [deg]	WGS84 [deg]	[8]	[×10 ⁻¹⁵]	[×10 ⁻¹⁵]	[BH]	[μg] [x10 ³ atoms g ⁻¹] [x10 ⁻¹⁵] [x10 ⁻¹⁵] [μg/g] [[] x10 ³ atoms g ⁻¹]	[×10 ⁻¹⁵]	[×10 ⁻¹⁵]	[b/g/]	[×10 ³ atoms g ⁻ ¹]	[Myr]	[mm kyr ⁻¹]	[mm kyr ⁻¹]
AKT-U-sand	UOW156	Be1060	AL1138/39	42,238833	76,710933	40,033	63.99 ± 2.02	$\label{eq:result} AKT-U-sand \\ UOW156 \\ Be1060 \\ Al1138/39 \\ 42,238833 \\ 76,710933 \\ 40,033 \\ 63.99 \\ \pm 2.02 \\ 0.37 \\ \pm 0.17 \\ (n=2) \\ 288,4 \\ 48,4$	288,4	30.8 ± 1.01	18.98 ± 2.03	0.56 ± 0.4 (n = 2)	135,4	57.34 ± 6.56	2.71±0.37	72.2±11.7	$18.98 \pm 2.03 0.56 \pm 0.4 \ (n=2) 135,4 \textbf{57.34} \pm \textbf{6.56} \textbf{2.71} \pm \textbf{0.37} \textbf{72.2} \pm \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.2} - \textbf{204.0} \pm \textbf{32.8} = \textbf{11.7} \textbf{50.6} \pm \textbf{8.7} = \textbf{11.7} \textbf{50.7} = \textbf{50.7} =$
PET-QTS-L-sand	UOW161	Be1065	AL1147/48	42,177475	77,301044	85,024	406.03 ± 10.58	PET-QT5-L-sand UOW161 Be1065 Al.1147/48 42,177475 77,301044 85,024 406.03±10.58 0.37±0.17 (n = 2) 288,4	288,4		158.47 ± 6.91	92.04 ± 2.53 158.47 ± 6.91 0.56 ± 0.4 (n = 2) 76,9 272.15 ± 16.11 2.08 ± 0.14	76,9	272.15 ± 16.11	2.08 ± 0.14	33.0 ± 3.5	$22.9 \pm 2.5 - 94.1 \pm 10.0$
PET-QTS-PIT-sand UOW166 Be1070	UOW166	Be1070	Al1157/58	42,173947	77,285986	75,010	446.03 ± 11.62	Al1157/58 42,173947 77,285986 75,010 446.03±11.62 0.37±0.17 (n=2) 288,9	288,9		100.89 ± 6.54	114.78 \pm 3.16 100.89 \pm 6.54 0.56 \pm 0.4 (n = 2) 100,9 227.15 \pm 17.31 2.75 \pm 0.15	100,9	227.15±17.31	2.75±0.15	18.7 ± 1.8	$12.9 \pm 1.2 - 53.8 \pm 5.1$
(a) Analysed on the 6 MV SIRIUS accelerator at ANSTO	e 6 MV SIRI	JS accelerator a	it ANSTO														
(b) Sample coordinates as determined in the field using a hand-held GPS unit	nates as det	ermined in the	field using a hi	and-held GPS	unit												
(c) Uncertainties at the 1-sigma level	t the 1-sigm	a level															
(d) Normalised to 07KNSTD (Nishiizumi et al., 2007)	07KNSTD (N	ishiizumi et al.,	2007)														
(e) Normalised to KNSTD (Nishiizumi et al., 2004)	KNSTD (Nish	iizumi et al., 20	04)														
(f) Taken from Kudriavtseva et al. (2023) and determined using 26Al/10Be isochron burial dating	driavtseva et	: al. (2023) and	determined us	sing 26AI/10B	e isochron buria	I dating											
(g) Calculated usin	ig the isochr	on burial ages,	and assuming	continuous ar	ոd complete bur	rial and a su	ource area averag	(g) Calculated using the isochron burial ages, and assuming continuous and complete burial and a source area average elevation of 1500 m	F								
(h) Palaeo-denudation rate range obtained by assuming \pm 500 m uncertainty in source area elevation and all	ation rate ra	nge obtained b	y assuming ± !	500 m uncerta	inty in source ar	rea elevatic	on and allowing fo.	r up to 50 % of meas	sured nuc	lowing for up to 50% of measured nuclide inventory to be accumulated post deposition and burial (i.e., incomplete burial or lengthy exposure prior to sampling)	accumulated pos	it deposition and bu	ırial (i.e., iı	ncomplete burial or	 lengthy expos 	sure prior to samp	ling)
			:														

Additional reference for Table S4.2 (not mentioned in the main text): Nishiizumi K. (2004). Preparation of ³⁶Al AMS standards. *Nucleor Instruments and Methods in Physics Research Section B: Beom Interactions with Materials and Atoms, 223 ,* 388-392.

Table S4.2. ¹⁰Be data from buried sediment

Table S4.3. AFT data and exhumation rates

Iat		J. A	L I UC		u canu	Inati	on rates						
	Commin ID	Latituda	اممعنف مام	A == (M=)	Age	Current a ma	Deference	Elevation	Local relief	Exhumation	Exhumation		Decien
ID	Sample ID	Latitude	Longitude	Age (Ma)	uncertainty	System	Reference	(km)	correction ∆h	rate high	rate mid	rate low	Region
0	100//1	41 4270	71 2269	110.7	67	A.F.T.	Danda atal 2017h	1 200	(km)	(mm/kyr)	(mm/kyr)	(mm/kyr)	
0	10CK41	41,4378		119,7	6,7	AFT	Bande_etal_2017b	1,369	1,97017	44,45	41,84	39,48	
1 2	10UM12	42,2331		51,5	2,8	AFT	Bande_etal_2017b	3,456	3,27059	137,41	129,83	122,99	
3	10UM14 10UM15	42,2401		27,5	3,2	AFT	Bande_etal_2017b	2,082	3,22857	265,94	235,02	210,41	
		42,2415		37,6	3,8	AFT	Bande_etal_2017b	2,945	3,21082	194,93	174,99	158,71	
4 5	10CK43 10CK44	41,5843	71,527	51	5,5 5	AFT AFT	Bande_etal_2017b	1,874	2,0611	118,63	105,47	94,86	
6	10CR44 10TR17	41,5658		64,7 25,2	2,8	AFT	Bande_etal_2017b	1,695 1,269	1,95919 1,66663	87,59	80,53 199,27	74,55	
7	10TR17	42,4589 42,1195	71,5338		2,8 1,6		Bande_etal_2017b	2,713	2,98523	224,26 652,82	563,97	179,10 496,07	
8	10TR23			11 26,4	2,9	AFT	Bande_etal_2017b		3,01351	269,95	240,40	216,56	
9	10TR22 10TR21	42,1287				AFT	Bande_etal_2017b Bande_etal_2017b	2,458					
10	10TR21	42,1837 42,1855		24,5 27,4	2,6 3,5	AFT AFT	Bande_etal_2017b	2,778 2,815	3,16709 3,17137	297,63 273,37	266,34 238,60	240,87 211,51	
10	10TR20			27,4	2,4	AFT							
12	10TR05	42,1992 42,122	72,0371	25,8		AFT	Bande_etal_2017b Bande etal 2017b	2,978 2,921	3,18552 3,27493	240,02 301,38	220,66 264,52	204,14	
13	10TR02	42,122	72,0371	23,1	3,1 3,1	AFT	Bande etal 2017b	2,521	3,11526	340,03	204,32	235,51 256,95	
14	10TR02	42,1382		23	2,3	AFT	Bande etal 2017b	2,678	3,25691	317,44	286,11	260,27	
14	10TR04	42,1085	72,0405	25,4	2,9	AFT	Bande etal 2017b	3,12	3,24584	295,11	261,73	234,99	
16	101K04 10SU61	42,1085	72,3286	23,4 16,4	2,9	AFT	Bande_etal_2017b	1,985	1,6757	354,98	312,86	234,99	Jalal Abad
17	105U67	41,5306		19,2	5,6	AFT	Bande_etal_2017b	0,922	1,35594	344,12	245,15	189,53	Jalal Abad
18	103007 10SU62	41,6092		23,9	2,1	AFT	Bande_etal_2017b	2,386	1,82276	244,12	223,46	205,37	Jalal Abad
19	105U65	41,613	72,3641	20,8	1,9	AFT	Bande_etal_2017b	2,580	1,85857	285,11	259,40	237,83	Jalal Abad
20	105U64	41,6229	72,3676	43	2,7	AFT	Bande etal 2017b	2,767	1,94165	135,75	127,02	119,38	Jalal Abad
20	103004 12KA22	40,0047	72,572	21,5	1,8	AFT	Bande_etal_2017a	3,86	3,45047	350,63	321,77	297,44	Jalal Abau
21	12KA22 12KA23	40,0047		21,5		AFT		3,66	3,45394		337,39	312,05	
22		40,0030	72,5818		1,7		Bande_etal_2017a			367,42			
23	12KA21	,	,	13,6	1,3	AFT	Bande_etal_2017a	3,475	3,49301	549,62	499,53	457,79	
	12KA24		72,6057	11,4	1,1	AFT	Bande_etal_2017a	3,122	3,62573	654,70	595,47	545,86	
25	12KA25	39,9989	72,6081	13	1,2	AFT	Bande_etal_2017a	3,297	3,62951	578,85	528,03	485,41	
26	10FR69	41,7191		25,5	2,4	AFT	Bande_etal_2017a	1,844	1,51092	215,96	195,59	178,59	
27	10FR71	41,7104	72,9985	46,5	3,2	AFT	Bande_etal_2017a	2,131	1,64903	117,80	109,47	102,18	
28	10FR73	41,6888	73,0148	10,4	1	AFT	Bande_etal_2017a	1,789	1,87665	546,05	496,95	455,72	
29	10FR72	41,6998	73,0284	22	3	AFT	Bande_etal_2017a	1,939	1,74783	273,48	236,44	208,13	
30	12NU12	40,1286	73,5256	9,8	1,3	AFT	Bande_etal_2017a	1,838	2,46361	654,60	573,86	510,52	Osh
31	12NU17	40,1452	73,5395	7,9	0,9	AFT	Bande_etal_2017a	2,056	2,43928	782,24	701,24	635,18	Osh
32	12NU16	40,1519	73,5429	6,9	1,1	AFT	Bande_etal_2017a	2,21	2,42789	926,31	794,01	694,53	Osh
33	12NU15	40,1615	73,5489	9	0,7	AFT	Bande_etal_2017a	2,5	2,4103	674,13	626,00	584,09	Osh
34	12NU14	40,1658	73,5531	9,5	1,1	AFT	Bande_etal_2017a	2,67	2,40591	668,93	597,48	539,56	Osh
35	12NU13	40,1659	73,5573	36,9	2,7	AFT	Bande_etal_2017a	2,89	2,41432	172,72	159,92	148,84	Osh
36	11TS533	41,2944	73,6358	8,2	1,2	AFT	Bande_etal_2017a	2,911	2,47572	800,75	694,34	612,60	
37	11TS534	41,3383	73,6474	41,6	3,5	AFT	Bande_etal_2017a	2,036	2,3212	148,84	136,11	125,28	
38	11TS532	41,3058	73,655	6,3	0,9	AFT	Bande_etal_2017a	2,758	2,40369	993,59	868,12	770,65	
39	11TS535	41,346	73,6642	51	3,9	AFT	Bande etal 2017a	2,122	2,2718	119,23	109,86	101,81	
40	12FE30	40,6375	73,7307	48,7	5,3	AFT	Bande_etal_2017a	1,582	1,96518	121,45	107,86	96,91	
41	12NU11	39,6747	73,7777	11,8	1,3	AFT	Bande_etal_2017a	2,939	3,36045	620,48	556,17	503,70	
	12FE29		73,7877	11,4	3,3	AFT	Bande_etal_2017a	1,655	2,24972	660,50	480,45	376,54	
43	12FE28	40,6596		38	2,9	AFT	Bande_etal_2017a	1,667	2,26974	158,74	146,38	135,82	
44	12NU02		73,8372	10,7	1,3	AFT	Bande_etal_2017a	2,93	3,54285	703,10	623,36	559,59	
	12FE27	40,6615		10,7	2,1	AFT	Bande_etal_2017a	1,765	2,56356	655,70	535,07	451,37	
46	11T75	39,8504	74,4984	6,9	0,9	AFT	Bande_etal_2017a	2,8	2,9498	977,19	863,06	772,64	
47	11T23	39,8382		6,7	0,9	AFT	Bande etal 2017a	3,117	3,16893	1041,96	917,01	818,72	
48	212-16	42,5953		15,6	2,3	AFT	Bullen_etal_2003	2,24	2,85227	458,06	392,75	343,53	Kurguz range
49	98-33			10,8	2,3	AFT							Kyrgyz range Kyrgyz range
50	212-14	42,6167	74,498	10,8		AFT	Bullen_etal_2003	1,8	2,56251	693,25	530,78	429,23	
51	98-30	42,5484		10,5	1,3	AFT	Bullen_etal_2003	2,69	3,38707	636,38	568,76	513,88	Kyrgyz range
52	212-9	42,5455 42,5362	74,5091	10,5	2,1 1,7	AFT	Bullen_etal_2003 Bullen etal 2003	2,8 3,2	3,40928 3,47395	765,34	622,62 460,01	524,29 413,99	Kyrgyz range
	212-9	42,5302		14,7	2,2			3,2	3,49648	517,41 495,62	400,01	378,91	Kyrgyz range
						AFT	Bullen_etal_2003						Kyrgyz range
54	212-13	42,5395	74,5347	103,2	11,3	AFT	Bullen_etal_2003	3,63	3,41178	73,24	64,97	58,34	Kyrgyz range
55	212-12	42,5376		20,3	5,5	AFT	Bullen_etal_2003	3,97	3,3999	460,56	339,19	268,01	Kyrgyz range
56	KG05-1	42,664	75,5795	68	5	AFT	Chu_etal_2016	2,09	1,89424	83,10	76,72	71,28	
57	KG08-2	41,7872		119	7	AFT	Chu_etal_2016	3,126	3,08543	56,38	52,93	49,87	Song Kul
58	KG30-5	42,5785	75,8054	72	5	AFT	Chu_etal_2016	1,495	2,07621	78,63	72,93	67,99	
59	KG06-1B	42,8816	76,119	32	3	AFT	Chu_etal_2016	2,452	2,6092	207,16	187,54	171,28	Issyk Kul North
60	KG28-5	42,3117	76,1308	73	5	AFT	Chu_etal_2016	1,715	1,82944	74,92	69,56	64,89	lander later of
61	KG24-5	42,6713	77,2739	88	6	AFT	Chu_etal_2016	1,632	1,79299	61,00	56,64	52,87	Issyk Kul North
62	KG20-5	42,7953		63	4	AFT	Chu_etal_2016	2,102	2,47637	97,41	91,00	85,41	Issyk Kul North
63	KG19-6	42,7714	77,4745	85	6	AFT	Chu_etal_2016	1,943	2,26542	69,32	64,21	59,79	Issyk Kul North
64	KG23-5	42,8141	77,528	94	7	AFT	Chu_etal_2016	2,019	2,46368	64,80	59,78	55,45	Issyk Kul North
65	KG25-5	41,9697	77,6364	22	2	AFT	Chu_etal_2016	2,513	3,65189	343,36	312,64	286,83	Issyk Kul South
66	KG26-5	41,871	77,736	58	5	AFT	Chu_etal_2016	3,809	3,93015	137,77	125,66	115,47	Issyk Kul South
67	AI-88	42,3178	76,1275	101	3,5	AFT	DeGrave_etal_2013	1,74	1,81092	51,23	49,36	47,64	
68	TS-04	42,8553	76,5775	132,2	6,7	AFT	DeGrave_etal_2013	2,36	3,12495	49,21	46,60	44,24	Issyk Kul North
69	AI-33	42,1458	76,7908	198	41	AFT	DeGrave_etal_2013	2,22	1,93019	32,24	25,23	20,67	Issyk Kul South
70	TS-06	42,7264	76,8308	137,4	6,8	AFT	DeGrave_etal_2013	3,95	3,25521	50,34	47,76	45,41	Issyk Kul North
71	TS-07	42,7231	76,8436	147	8	AFT	DeGrave_etal_2013	3,7	3,18996	46,45	43,82	41,46	Issyk Kul North
72	TS-08	42,7181	76,8439	147,3	6,2	AFT	DeGrave_etal_2013	3,515	3,13014	45,13	43,13	41,34	Issyk Kul North
73	TS-09	42,7169	76,8497	115,9	3,9	AFT	DeGrave_etal_2013	3,3	3,09884	56,77	54,78	52,93	Issyk Kul North
74	TS-12	42,6778	76,8508	129,7	8	AFT	DeGrave_etal_2013	2,42	2,57005	46,99	43,98	41,30	Issyk Kul North
	TS-10	42,7206	76,8586	134	5,3	AFT	DeGrave_etal_2013	3,085	3,13373	49,06	47,04	45,17	Issyk Kul North
	TS-11	42,7047	76,8642	138,2	7,2	AFT	DeGrave_etal_2013	2,86	2,91529	46,41	43,89	41,62	Issyk Kul North
77	ALMA3-01		77,0458	22,9	4	AFT	DeGrave_etal_2013	1,64	2,03739	285,05	235,56	200,48	Issyk Kul North
78	ALMA3-02		77,0592	29,4	1,4	AFT	DeGrave_etal_2013	1,96	2,27968	201,68	192,02	183,20	Issyk Kul North
	TS-27	42,0947	77,0681	23,4 99,4	5,7	AFT	DeGrave_etal_2013	2,06	2,16322	57,32	53,87	50,81	Issyk Kul South
		42,0947	77,0683	115,8	20,8	AFT	DeGrave_etal_2013	2,00	2,10322	56,25	45,73	38,43	Issyk Kul South
79	Kyr-33			70,9	20,8	AFT	DeGrave_etal_2013		2,14030	88,82	43,73	58,45 79,02	Issyk Kul North
79 80	Kyr-33	12 175	77 10 10		4			2,4			83,65 61,02		
79 80 81	ALMA3-03	43,125	77,0842		10 7	ACT							Iccyle Kul Counter
79 80 81 82	ALMA3-03 TS-28	42,125	77,1167	85,7	10,7	AFT	DeGrave_etal_2013	1,7	2,05335	70,15		53,93	Issyk Kul South
79 80 81 82 83	ALMA3-03 TS-28 TS-26	42,125 42,0706	77,1167 77,1386	85,7 78,4	6,6	AFT	DeGrave_etal_2013	2,7	2,60154	82,50	75,33	69,26	Issyk Kul South
79 80 81 82 83 84	ALMA3-03 TS-28 TS-26 TS-19	42,125 42,0706 42,1197	77,1167 77,1386 77,1417	85,7 78,4 107,5	6,6 16,5	AFT AFT	DeGrave_etal_2013 DeGrave_etal_2013	2,7 2,02	2,60154 2,1538	82,50 58,92	75,33 49,48	69,26 42,58	Issyk Kul South Issyk Kul South
79 80 81 82 83 84 85	ALMA3-03 TS-28 TS-26 TS-19 Al-09	42,125 42,0706 42,1197 42,0683	77,1167 77,1386 77,1417 77,1444	85,7 78,4 107,5 68,9	6,6 16,5 7,9	AFT AFT AFT	DeGrave_etal_2013 DeGrave_etal_2013 DeGrave_etal_2013	2,7 2,02 2,94	2,60154 2,1538 2,65003	82,50 58,92 99,02	75,33 49,48 87,33	69,26 42,58 78,04	Issyk Kul South Issyk Kul South Issyk Kul South
79 80 81 82 83 84 85 86	ALMA3-03 TS-28 TS-26 TS-19 Al-09 TS-24	42,125 42,0706 42,1197 42,0683 42,0544	77,1167 77,1386 77,1417 77,1444 77,1519	85,7 78,4 107,5 68,9 102,6	6,6 16,5 7,9 8,6	AFT AFT AFT AFT	DeGrave_etal_2013 DeGrave_etal_2013 DeGrave_etal_2013 DeGrave_etal_2013	2,7 2,02 2,94 3,08	2,60154 2,1538 2,65003 2,82456	82,50 58,92 99,02 65,16	75,33 49,48 87,33 59,49	69,26 42,58 78,04 54,70	Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
79 80 81 82 83 84 85 86 87	ALMA3-03 TS-28 TS-26 TS-19 Al-09	42,125 42,0706 42,1197 42,0683	77,1167 77,1386 77,1417 77,1444 77,1519 77,1581	85,7 78,4 107,5 68,9	6,6 16,5 7,9	AFT AFT AFT	DeGrave_etal_2013 DeGrave_etal_2013 DeGrave_etal_2013	2,7 2,02 2,94	2,60154 2,1538 2,65003	82,50 58,92 99,02	75,33 49,48 87,33	69,26 42,58 78,04	Issyk Kul South Issyk Kul South Issyk Kul South

90 150 42,082 72,28 62,3 35 47,3 47,3 47,3 151,3 47,3 151,3 47,3 151,3 47,3 151,3 47,3 151,3														
06 15.0 20.00 71.01 0.02 80.75 80.70 80.7	89	TS-22	42,05	77,1653	69,3	7,2	AFT	DeGrave etal 2013	3,5	2,91685	102,48	91,55	82,67	Issyk Kul South
92 93<														Issyk Kul South
90 91 92.8 92.	91	TS-13	42,7692	77,5236	162,8	8,7	AFT	DeGrave_etal_2013	1,85	2,10638	33,41	31,50	29,81	Issyk Kul North
bit bit constraint constai constraint	92	TS-14	42,8019	77,5306	153,1	7,9	AFT	DeGrave_etal_2013	2,08	2,34484	37,28	35,25	33,42	lssyk Kul North
b b b construction 137 construction 137 construction 21.44 21.40	93	Kyr-42	42,0394	77,5978	17,6	0,8	AFT	DeGrave_etal_2013	2,255	3,13711	379,63	362,69	347,26	Issyk Kul South
b 1	94	Kyr-38	41,8708	77,7361	108,4	5,7	AFT	DeGrave_etal_2013	3,815	3,93139	69,92	66,15	62,73	Issyk Kul South
17 16.11 40.202 17.003 12.03 4.71 Northwy, file partial, p	95	IK-13	42,4519	78,5517	26,3	1,3	AFT	DeGrave_etal_2013	1,97	2,48456	233,00	221,42	210,94	Issyk Kul South
18 A. 2002 Space	96	IK-12	42,4308	78,9511	38,6	14,4	AFT	DeGrave_etal_2013	2,9	3,4455	279,98	175,36	126,98	Issyk Kul South
Ip A.00 B.0189 T.288 B.0189 F.288 B.0120	97	IK-11	42,4228	79,0208	129,8	9,1	AFT	DeGrave_etal_2013	3,2	3,52534	55,38	51,35	47,87	Issyk Kul South
100 4.20 3.11.01 7.47 0.6569x, etc., 2012 3.1 3.32863 332.02 31.0.7 256.02 100 107 40.0337 7.338 11.0 41.0 40.03 47.03 7.338 11.0 41.0 7.338 11.0 41.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 10.0 7.338 <th7.338< th=""> <th7.338< th=""></th7.338<></th7.338<>	98	AI-27	42,3811	79,0533	122,6	6,7	AFT	DeGrave_etal_2013	3,765	3,67082	59,73	56,36	53,33	Issyk Kul South
101 102 103 413 44.7 26.084 49.09 47.03 44.7 103 42.07 42.08 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01 12.08 12.01	99	AI-40	39,7639	72,5814	8,4	0,3	AFT	DeGrave_etal_2012	4,51	4,15912	889,59	860,83	833,69	
102 No.2	100	AI-42	39,7142	72,6656	22,3	1,1	AFT	DeGrave_etal_2012	3,1	3,59263	326,29	310,47	296,05	
103 A.27 40.197 73.28 1.8 1.6 A.47 Bocker et al. 202 1.8 2.44173 3.84,76 DBC470 27.36 Oh 106 M.28 0.202 1.31 1.4 1.4 A.77 Bocker et al. 202 1.9 2.4461 43.13 9.247 3.43 Bocker et al. 202 1.9 2.4461 43.13 9.247 4.35 3.4461 4.137 1.7 Bocker et al. 202 1.0 3.446 4.137 1.7 Bocker et al. 202 1.0 3.446 4.137 1.7 1.7 Bocker et al. 201 2.23 3.0014 4.7 4.55 4.57 1.8 S.7 3.56 3.101 5.7 3.56 3.101 5.7 3.56 3.101 5.7 3.56 3.101 5.7 3.56 3.101 5.7 3.56 3.101 5.7 3.56 3.11 3.7 5.7 5.56 3.11 5.7 3.56 3.11 5.7 5.56 3.11 3.11 3.11 3.11 </td <td>101</td> <td>KYR-13</td> <td>40,2567</td> <td>73,3058</td> <td>117,8</td> <td>6,5</td> <td>AFT</td> <td>DeGrave_etal_2012</td> <td>2,34</td> <td>2,36894</td> <td>49,90</td> <td>47,03</td> <td>44,47</td> <td></td>	101	KYR-13	40,2567	73,3058	117,8	6,5	AFT	DeGrave_etal_2012	2,34	2,36894	49,90	47,03	44,47	
Job Alb Alb Alf Alf Deforme rule Deforme rule <thdeforme rule<="" th=""> <th< td=""><td>102</td><td>KYR-12</td><td>40,2533</td><td>73,3975</td><td>223</td><td>19,3</td><td>AFT</td><td>DeGrave_etal_2012</td><td>1,825</td><td>2,18117</td><td>25,18</td><td>22,86</td><td>20,92</td><td></td></th<></thdeforme>	102	KYR-12	40,2533	73,3975	223	19,3	AFT	DeGrave_etal_2012	1,825	2,18117	25,18	22,86	20,92	
105 0.064 7.8.7.1 0.5.7 7.8.7.2 0.8.7.2 0.7.8.7.2 0.8.7.2 0.9.7.2 0.8.7.2 0.9.7.2 <th0.9.7.2< th=""> <th0.9.7.2< th=""> <th0.9.7.2< td=""><td>103</td><td>AI-37</td><td>40,1297</td><td>73,5236</td><td>18,8</td><td>1,6</td><td>AFT</td><td>DeGrave_etal_2012</td><td>1,81</td><td>2,46173</td><td>334,76</td><td>306,66</td><td>283,04</td><td>Osh</td></th0.9.7.2<></th0.9.7.2<></th0.9.7.2<>	103	AI-37	40,1297	73,5236	18,8	1,6	AFT	DeGrave_etal_2012	1,81	2,46173	334,76	306,66	283,04	Osh
16 4.87 4.878 4.878 4.878 4.878 4.878 4.878 4.878 4.878 4.878 5.878 5.878 108 4.88 4.888 7.001 1.3 4.7 Deferse_2011 1.04 3.0314 4.707 4.505 4.18 Soreplat 111 4.001 4.328 7.007 5.05 4.18 Soreplat 111 4.001 4.328 7.007 6.35 4.47 Deferse_2011 2.14 2.14124 1.14 1.10 8.29 8.364 3.29 3.28 Soreplat 113 4.401 4.218 7.107 1.83 4.47 Deferse_2011 2.141 1.14 8.29 3.39 3.28 Soreplat Soreplat 114 4.471 4.218 7.318 1.14 1.14 1.14 3.14 3.29 3.28 Soreplat 114 4.471 4.538 7.58 1.33 4.77 8.33 1.33 3.78 8.358 <td>104</td> <td>AI-38</td> <td>40,1394</td> <td>73,5353</td> <td>14</td> <td>1,4</td> <td>AFT</td> <td>DeGrave_etal_2012</td> <td>1,99</td> <td>2,44617</td> <td>453,15</td> <td>409,70</td> <td>373,66</td> <td>Osh</td>	104	AI-38	40,1394	73,5353	14	1,4	AFT	DeGrave_etal_2012	1,99	2,44617	453,15	409,70	373,66	Osh
127 APA 44.840 7.8401 20.11 1.2.3 0.0133 2.2.9 0.0123 0.0133 0.2.9 0.0123 0.0133 0.0239 0.0133 0.0133 0.0239 0.0133 <th0.0133< th=""> 0.0133 0.01333</th0.0133<>	105	KYR-10	40,0664	73,5411	15,9	1,5	AFT	DeGrave_etal_2012	2	2,68661	412,57	374,73	343,21	Osh
180 4.885 7.011 5.946 5.03534 7.07 4.505 8.438 Sorreg Mail 100 A.182 2.2028 5.208 5.11 3.441 2.4456 3.248 3.248 5.507 gAI 110 A.110 4.120 7.0207 1.63 1.1 3.442 3.446 3.456 3.248 5.507 gAI 111 A.102 7.0207 1.63 1.1 A.102 7.0207 4.53 5.707 gAI 5.507 gA	106	AI-93	41,8975	74,8236	152	10,8	AFT	DeGrave_2011	2,29	2,46634	39,41	36,48	33,95	Song Kul
190 4 9.22 7.22 19.5 1 A/T Decremy 2011 3.544 2.8845 3.24 3.29 2.91 Sameg La 111 A/100 4.138 7.200 10.5 3.16 3.10	107	AI-97	41,8436	74,9011	201,1	12,3	AFT	DeGrave_2011	3,253	3,03133	32,59	30,52	28,67	Song Kul
10 100 41,201 15,207 18,3 1.4 A A Description 20,44 Same Line 31,10 22,44 Same Line 111 A101 14,107 75,047 15,55 8,2 A Description 20,319 35,64 31,00 23,28 Some Line 112 A102 41,017 75,006 15,7 12,0 75,007 15,00 15,7 12,0 75,007 15,00 15,7 12,0 75,007 15,00 15,0 11,0 15,00 15,0 11,0 15,00 15,0 11,0 15,00 15,0 11,	108	AI-98	41,885	75,0181	138	5,7	AFT	DeGrave_2011	3,046	3,05034	47,07	45,05	43,18	Song Kul
111 A1102 41,213 75,207 13.5 31.10 31.10 31.10 32.20 22.80 Some Gui 113 A122 42,084 75,071 15.35 12.7 42.993 35.40 33.20 35.20 Some Gui 114 A191 42,017 42.901 75,107 15.35 15.3 11.0 A171 55.00 42.912	109	AI-99	41,9322	75,0289	195,6	11	AFT	DeGrave_2011	3,514	2,85865	32,83	30,91	29,19	Song Kul
112 112 113 124 1257 1246434 53,11 50,71 124 125 125 126 124 126 124	110	AI-100	41,9281	75,0375	189,3	15,4	AFT	DeGrave_2011	3,364	2,89425	34,96	31,99	29,49	Song Kul
111 Augu 2.4.042 7.0791 1.5.3 AT Decine_2011 2.4.08 2.7.030 4.1.04 3.7.01 5.7.01 7.7.01 5.7.01	111	AI-101	41,9189	75,0392	194,9	11,6	AFT	DeGrave_2011	3,212	2,94319	33,16	31,10	29,28	Song Kul
114 41.091 42.091 75.197 118.6 5.4 APT Deforme_2011 3.20 3.14483 35.77 33.20 33.10 Song full 116 KW17 41.7167 75.166 206 13.0 APT Deforme_2011 3.27 3.21055 33.30 30.07 28.20 Song full 118 1016 KM17 41.7167 75.164 13.0 APT Deforme_2030 0.76 0.02365 2.4842 2.3102 2.164 75.84 2.320 2.165 75.84 2.310 2.165 75.84 2.4647 75.84 1.37 1.76644 4.244 37.84 8.23 2.4675 75.89 3.838 1.87 1.287 2.3665 75.899 3.838 1.87 1.237 2.3305 5.21 3.15.15 8.38.8 1.237 2.3305 5.21 3.15.15 8.38.8 1.247 77.07 2.3305 5.21 3.15.15 4.318 8.344 8.344 8.344 8.344 8.344 8.344 8.344 8.344 8.344 8.344 8.347 3.3454 8.344	112	AI-102	41,91	75,0467	182,5	8,2	AFT	DeGrave_2011	3,066	2,99338	35,04	33,39	31,88	Song Kul
15 Nr.1-6 41.764 7.160 17.7 12 AT Declarge_2011 3.29 3.2155 3.30 30.77 2.22 Song kul 117 KAC20 43.233 1.47 To To Felorey_203 1.25 3.2155 3.30 30.77 2.226 Song kul 118 KAC20 43.33 1.47 T Pelorey_203 1.25 1.13744 3.01.4 2.52.8 2.31.8 119 Tita 4.2417 7.2484 1.05 6.3 AT Declarey_203 1.35 2.001.9 4.04.8 8.5.7 120 130.2 4.24617 7.2481 1.5.4 AT Declarey_203 1.37 1.7646 4.2.4 3.7.8 3.8.8 122 130.2 4.24627 7.0149 1.0.4 2.6 7.4.8 1.6.8.4 1.6.8.2 2.9.17.8 3.7.6.0 4.9.2.8 1.9.9.8 1.9.9.8 1.9.8.8 1.9.9.8 1.9.9.8 1.9.9.8 1.9.9.8 1.9.9.8 1.9.9.8 1.9.9.8 1.9.9.8 1.1.8 1.9.9.8 1.9.9.8 1.9.9.8 1.	113	AI-92	42,0842	75,0781	154,3	11,3	AFT	DeGrave_2011	2,438	2,79103	41,04	37,90	35,20	Song Kul
115 117 12,712 3,2128 3,302 3,027 2,822 Song rul 118 124 24,338 1,475 1,47 Performe_203 1,65 1,1374 3,302 3,07 2,027 5,033 4,48 2,302 1,364 119 154 4,4347 7,8549 1,00 6,3 47 Deforme_203 1,05 1,314 2,0312 4,40 4,48 4,03 4,48 4,03 4,44 4,04 4,48 4,03 4,44 4,04 4,44 4,04 4,44 4,04 4,44 4,04 4,44 4,04 4,44 4,04 4,44 4,04 4,44 4,05 5,124 4,04 4,44 4,053 5,056 4,042 3,154 4,04 4,144 7,056 6,024 1,04 7,7 4,7 Deferme-crist 2,013 3,076 2,042 3,153 4,144 4,143 5,144 4,143 1,144 4,144 1,144 4,144 1,144 4,144 1,144 4,144 1,144 4,144 1,144 4,144 1,144 4,144 1	114	AI-91	42,0931	75,1197	118,6	5,4	AFT	DeGrave_2011	2,572	2,86634	53,19	50,67	48,37	Song Kul
117 K4/203 4.2383 74,75 162,2 91,1 APT Defore 2003 1,25 1,1374 1,1374 1,2174 2,11374 3,11374 2,11374 3,113744	115	KYR-16	41,7614	75,1606	187,4	12	AFT	DeGrave_2011	3,09	3,14483	35,57	33,20	31,11	Song Kul
117 Ku203 4.2333 7.475 1.62.2 9.1 ATT Deforme_2003 1.25 1.33741 3.01 2.85.8 2.71.8 119 TS16 4.4.431 7.85.84 1.10.6 6.3 ATT Deforme_2003 1.25 2.13741 3.04 2.85.8 2.71.8 121 TS13 4.4.537 7.85.84 1.10.6 5.3 ATT Deforme_2003 1.23 2.107.8 4.4.40 7.8.80 3.32.8 122 TS20 4.2.451 7.8.118 1.0.8 5.3.7 2.3.83 3.2.3.8 3.2.3.8 123 8.2.0 2.4.245 7.6.118 1.0.9 6.8 ATT Deforme_2003 1.37 2.3.95 5.2.2 5.1.6 4.8.3 Mode Nut Nett 124 1.1.2 8.3.4 8.3.97 7.3.94 1.6.8 ATT Deforme_2013 3.377 3.0.977 3.3.7.3 3.0.1.7.8 3.3.7.3 3.0.1.7.8 3.3.7.3 3.0.1.7.8 3.3.7.3 3.0.1.7.8 3.3.7.7 1.0.7.8 3.3.7.7 3.0.7.7 3.3.7.7 3.0.2.7 N.9.7.7 3.3.7.7<	116	KYR-17	41,7169	75,1886	206	13,9	AFT	DeGrave_2011	3,72	3,21955	33,30	30,97	28,92	Song Kul
110 1	117	KAZ 03	43,2333	74,75	162,2	9,1	AFT			0,802695		23,30		
110 110 1516 42,457 75,556 112,6 6,3 APT DeGrave_2003 1,3 2,0372 6,340 42,28 47,05 43,28 121 1520 42,484 75,8893 123,1 124 154 42,444 76,144 44,44 470 67,78 33,28 123 1520 42,447 76,444	118	KAZ 01				7	AFT		1,25				27,18	
120 1512 42,458 75,5569 122,1 124 134 PerGrave_2003 1,38 2,10722 45,40 75,88 40,99 121 1518 42,462 75,88 AFT DeGrave_2003 1,38 2,0021 84,40 37,83 35,54 124 58,41 42,318 76,148 120,4 77,48 AFT Defermezergal 2015 35,57 73,15 73,16 43,33 37,33 31,34 18,354 14,4	119	TS16		75,8564	110,6	6,3	AFT	DeGrave_2003	1,96			47,05		
121 TS20 42,6842 75,887 128,14 AFT DeGrave_203 1.37 1.78644 42,44 40,69 38,28 123 J10-20 43,227 78,465 100,4 66 AFT DeGrave_203 1.83 2,06715 40,40 40,69 35,23 15,46 125 Sk31 42,915 76,218 85,14 48,14 AFT DeFelomeker_rela_2015 3,076 2,96132 78,15 30,20 15,94,641 Aett 124 J1.24 43,056 78,981 10,1 6,6 AFT DeFelomeker_rela_2015 31,134 13,97 43,52 31,24 15,94,641 Aett 124 J1.44 40,038 75,227 47,555 15,5 1,4 AFT DeFelomeker_rela_2011 3,501 33,7446 15,74 11,4 34,57 11,4 14,57 14,4 Namp 14,4 11,5 34,74 10,14 11,5 34,78 33,48 36,44 84,54 34,64 14,4 Namp 14,4 Namp 14,4 Namp 14,4 Namp 14,4 14,4 <t< td=""><td></td><td></td><td>42,4536</td><td>75,8569</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			42,4536	75,8569				-						
122 T318 42,462 76,014 126 7,5 AT Declowe_retai_015 0,60 1,602 7,815 7,406 35,54 123 15-04 24,315 7,6119 10,04 7,7 AT Declowere_retai_015 3,57 7,815 7,815 7,815 7,815 7,815 7,815 7,815 7,815 7,816 7,816 7,815 7,816 7,816 7,815 7,816 6,71,93 1,717 47,70 AT Declowere_retai_0120 3,377 7,061 6,71,93 1,11 4,71 Declowere_retai_0120 1,317 1,962 3,827 7,552 1,11 AT Operlainmaker_retai_0120 1,317 1,962 3,827 7,555 1,1 AT Grone_reta_1011 2,045 3,903 30,938 30,939 11,5 3,44 1,15,54 4,84 3,663 3,524 12,44 1,44 1,47 Grone_reta_1011 2,445 2,6414 3,663 3,524 12,44 3,64 3,422 3,426 3,426 3,426 3,426 3,426 3,426 3,426 3,426 3,427	121	TS02	42,6842		128,1	13,4	AFT	DeGrave_2003	1,37			37,58		
121 10-20 43,227 74,6638 102,4 7.4 To effetomaeker_real_2015 3,77 2,9612 75,12 55,22 51,52 51,52 51,52 51,52 51,52 51,52 51,52 51,52 51,52 51,52 51,53 71,60 66,52 155,44 kl,10 122 11-28 63,035 75,444 6,4 64,44 71 Defetomaeker_real_2015 3,78 3,014 64,73 387,7 33,43 53,74 73,64 53,74 74,64 14,74 43,78 73,34 14,87 44,44 3,74 44,49 74,74 43,78 73,43 14,38 14,74 14,37 14,13 14,74 14,37 14,13 14,74 14,37 14,13 14,13 14,74 14,38 14,14 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,45 14,41 14,45 14,41,43 14,45 14,41,45 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AFT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							AFT							
124 Sx-21 4.2,915 7,214 7,47 Dereksmaeker, etal. 2015 3,375 2,503 55,56 4,33 keyk kul North 125 Sx-31 4,315 76,214 165,1 4,4 To Dereksmaeker, etal. 2015 3,379 3,0167 40,52 387,3 337,3 31,14 tsyk kul North 128 Sk-56 43,34 78,9338 122,4 AFT Dereksmaeker, etal. 2015 1,339 1,644 157,4 144,87 141,38 130 A1-75 40,237 75,5564 21,1 1,9 AFT Gelore, etal. 2011 4,005 3,79043 337,03 35,84 131 A1-77 40,237 75,5564 21,3 1,4 AFT Gelore, etal. 2011 2,667 3,1644 141,4 34,68 36,49 32,27 Harry 133 A1-72 41,0537 75,651 13,3 1,3 AFT Gelore, etal. 2011 2,462 2,4644 34,48 36,40 35,27 Harry 134 A1-72 41,438 A4,697 75,652 13,3 1,3 AFT								-		1,06255				
122 1127 1128 43025 759.444 16.8 0.8 AFT Defesmeler, reil 2015 3.379 30.10 bigk kill North 128 SKOSA 43.34 759.338 12.33 1.3365 31.345 31.14 Bigk kill North 128 AV74 AV35 74.4 2.5 AV74 AV74 2.5 AV74 3.33 33.1 3.14 1.74 1.336 3.130 3.14 1.74 1.336 3.130 3.130 3.130 3.130 3.14 3.14 North Morth 3.14 AV7 AV74 3.14 AV74 AV74 3.14 AV74 3.14 AV74 AV74 3.14 AV74 AV84 3.14 AV74 AV87 AV84 3.14 AV84 AV84 AV84 3.14 AV84 AV84 AV84 AV84 AV84 AV84	124	SK-32	42,9195	76,2169	120,4	7,7	AFT	DePelsmaeker_etal_2015	3,357	2,9305	55,22	51,56	48,33	Issyk Kul North
122 11.27 43,05 76,983 10.1 0.6 AT Derbeimaeker gell 2015 2.5.1 3,0307 647.50 611,78 579.62 bisyk kul North 128 AV-74 40,338 72,337 47,44 2.5 AV-75 AV-77 AV-75 AV-75 AV-75 AV-75 AV-75 AV-75 AV-75 AV-77 AV-75 AV-74 AV-7	125	SK-31	42,915	76,2181	85,1	4,8	AFT	DePelsmaeker_etal_2015	3,076	2,96132	78,15	73,60	69,52	Issyk Kul North
128 5xC5A 43,44 7,8938 123 124 ATT Defetmaeker (al., 2015) 1,37 1,005C2 88,77 43,35 31,14 Itsy (kul North 130 AL75 40,8275 7,5556 12 1,1 AFT Gione (atl, 2011) 4,005 3,79043 379,9743 379,974 345,70 315,84 133 AL77 40,0827 7,5556 1,5 1,4 AFT Gione (atl, 2011) 2,667 3,16414 138,68 350,29 Narm 134 AL72 41,0527 7,5551 17,38 3,4 ATT Gione (atl, 2011) 2,345 2,4678 34,24 3,2,6 Narm 135 AL72 41,0937 7,5552 17,8 8,9 ATT Gione (atl, 2011) 2,632 2,68361 3,22,9 3,1,10 Narm 136 AL69 41,0407 7,5552 13,8 8,9 ATT Gione (atl, 2011) 2,663 3,6323 5,001 AT,2 44,40 Narm	126	_11-28	43,0395	76,9444	16,8	0,8	AFT	DePelsmaeker_etal_2015	3,379	3,09167	406,23	387,39	370,30	Issyk Kul North
129 AV-74 40,538 75,232 47,4 2,5 AFT Glore_etal_2011 3,901 3,07448 157,41 146,97 141,38 131 AV-75 40,8375 75,556 15 1,1 AFT Glore_etal_2011 3,99 3,79043 377,15 360,437 355,64 Namp 133 AV-74 40,8375 75,555 15,59 6,7 AFT Glore_etal_2011 2,455 2,64144 113,58 0,524 Namp Namp 133 AV-74 40,055 7,56515 15,9 6,7 AFT Glore_etal_2011 2,453 2,64248 35,42 32,64 Namp Namp 133 AV-74 40,055 7,5625 17,8 AFT Glore_etal_2011 2,523 2,64846 32,12 33,03 30,03 20,08 Namp 133 AV-75 7,6605 125,1 7,8 AFT Glore_etal_2011 3,043 3,3471 60,8 3,212 60,8 43,212 30,33 20,00 Namp 133 AV-76 15,46 42,04 Namp 143,44 141,434 1	127	_11-27	43,056	76,9831	10,1	0,6	AFT	DePelsmaeker_etal_2015	2,51	3,0307	647,50	611,78	579,62	Issyk Kul North
130 Al-75 408,275 75,556 21 1,0 AFT Glone_etal_2011 2,00 3,79043 379,15 34,70 315,84 131 Al-77 40,8377 75,595 62,1 4,4 AFT Glone_etal_2011 2,667 3,16414 13,65 103,4 96,44 Naryn 133 Al-73 41,0527 75,652 17,8 13 Al-77 10,0537 75,652 17,8 13 Al-77 Glose 31,0414 13,86 42,22 32,29 31,10 Naryn 135 Al-71 40,037 75,652 13,78 8,9 AFT Glone_etal_2011 2,632 2,68361 32,25 30,53 2,008 Naryn 138 Al-69 41,0497 76,062 135,1 7 AFT Glone_etal_2011 2,663 3,3303 50,07 46,33 41,2 144 Al-13 41,767 78,066 12,5 8,7 AFT Glone_etal_2011 2,663 3,32726 <td>128</td> <td>SK-05A</td> <td>43,34</td> <td>78,9338</td> <td>128,3</td> <td>12,4</td> <td>AFT</td> <td>DePelsmaeker_etal_2015</td> <td>1,337</td> <td>1,30562</td> <td>38,27</td> <td>34,35</td> <td>31,14</td> <td>Issyk Kul North</td>	128	SK-05A	43,34	78,9338	128,3	12,4	AFT	DePelsmaeker_etal_2015	1,337	1,30562	38,27	34,35	31,14	Issyk Kul North
131 A+77 40.827 75.555 15.5 1.1 A+T Glone_tal_2011 2.697 3.79043 390.66 390.68 350.29 133 A+73 41.0572 75.555 15.3 6.7 A+T Glone_tal_2011 2.445 2.6474 33.6614 11.05 75.652 17.8 1.0 Naryn 135 A+71 41.0535 75.652 17.5 7.9 A+T Glone_tal_2011 2.533 2.64846 3.422 3.259 3.31.01 Naryn 135 A+79 40.6908 76.652 18.8 7.9 A+T Glone_tal_2011 2.653 2.64834 3.216 70.0 6.65.2 139 A+22 40.987 76.652 139.5 10 A+T Glone_tal_2011 2.663 3.38172 60.56.2 52.2 140 A+31 41.736 78.666 2.8 3.4 Glone_tal_2011 2.663 3.3403 13.09 12.92 12.07.6 144 A+32 41.747 78.666 2.8 3.4 TGlone_tal_2011 2.663 3.32097<	129	AI-74	40,5383	75,2937	47,4	2,5	AFT	Glorie_etal_2011	3,591	3,67448	157,41	148,97	141,38	
132 Ai-92 40.983 75.995 62.1 4.4 AFT Glore_etal_2011 2.667 3.16414 38.66 36.99 35.27 Naryn 133 Ai-72 41.052 75.654 17.38 13 AFT Glore_etal_2011 2.435 2.6676 35.42 32.44 30.26 Naryn 136 Ai-72 41.0355 75.658 187.8 7.9 AFT Glore_etal_2011 2.632 2.6686 32.15 30.33 2.908 Naryn 137 Ai-79 40.988 76.6202 13.5 0.7 AFT Glore_etal_2011 2.652 2.66861 32.15 30.33 2.908 Naryn 138 Ai-32 40.987 76.6064 16.61 8.7 AFT Glore_etal_2011 2.0613 3.9003 50.08 2.528 2.52 140 Ai-14 47.047 78.664 12.61 8.7 AFT Glore_etal_2011 2.663 3.27291 53.75 55.68 5.528 5.252 2.07.8 141 Ai-20 42.0647 79.8871 72.02	130	AI-75	40,8275	75,5564	21	1,9	AFT	Glorie_etal_2011	4,005	3,79043	377,15	343,70	315,84	
133 Al-73 41,072 75,6515 153,9 6,7 AFT Glorne_etal_2011 2,445 2,6478 38,64 32,64 30,26 Nayn 135 Al-71 41,055 75,553 173,8 7,9 AFT Glorne_etal_2011 2,533 2,64846 34,22 32,59 31,10 Nayn 136 Al-90 40,4097 75,563 173,8 8,9 AFT Glorne_etal_2011 2,638 32,62 30,33 50,01 47,02 44,40 138 ky-21 41,249 76,602 135 10 AFT Glorine_etal_2011 3,066 3,3403 50,07 46,33 45,25 144 Al-13 41,747 78,166 55,5 3,9 AFT Glorine_etal_2011 2,661 3,3462 3,47,28 12,29 12,078 144 Al-14 17,147 78,165 55,5 47,47 13,041 3,4708 13,091 12,291 12,078 144 Al-14 42,062 79,087 78,68 3,267 23,012 20,08 27,4,68 <	131	AI-77	40,8273	75,5565	19,5	1,1	AFT	Glorie_etal_2011	3,99	3,79043	390,96	369,38	350,29	
134 Al-12 41,053 75,624 17.8 13 APT Glorie_etal_2011 2,435 2,6648 34,24 32,64 30,26 Naryn 135 Al-79 41,0697 75,6559 18.78 8.9 APT Glorie_etal_2011 2,628 2,6846 34,24 32,55 30,53 29,08 Naryn 136 Al-79 40,0888 7,6207 8.4 0.9 APT Glorie_etal_2011 2,615 2,9637 79,877 655,23 139 Al-82 40,9857 76,064 126,1 8,7 APT Glorie_etal_2011 2,616 3,3803 50,07 46,33 43,312 140 Al-13 41,747 76,164 126,1 8,7 APT Glorie_etal_2011 2,663 3,3803 50,072,3 50,56 47,42 44,40 41,41 41,43 42,063 79,0877 7,9 0,5 APT Glorie_etal_2011 2,663 3,20977 72,08 64,56,7 54,75 54,75 54,65 54,75 54,75 54,65 54,75 54,75 54,94 7,53	132	AI-62	40,9833	75,5995	62,1	4,4	AFT	Glorie_etal_2011	2,667	3,16414	111,55	103,44	96,44	Naryn
135 Al-9 41,053 75,622 17,1 7,9 AFT Glorie_etal_2011 2,533 2,64861 34,22 32,59 31,10 Nanyn 137 Al-79 40,0488 76,6228 138,2 7,9 AFT Glorie_etal_2011 2,615 2,65361 32,15 30,53 50,01 47,02 44,40 138 kn-21 41,439 76,407 8,4 0,9 AFT Glorie_etal_2011 2,6615 2,96324 79,887 72,070 656,23 139 Al-12 41,1376 76,0664 126,1 8,7 AFT Glorie_etal_2011 4,067 3,8172 60,58 52,82 52,52 144 Al-13 42,0643 79,065 3,77 60,66 2,717 7,20 86,64,57 55,56 47,74 144 Al-13 42,0643 79,087 75,055 54,67 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,75 54,74 74,83 54,9	133	AI-73	41,0572	75,6515	153,9	6,7	AFT	Glorie_etal_2011	2,345	2,61414	38,66	36,89	35,27	Naryn
136 Al-96 41.0497 75.659 187.8 8.9 ATT Gione_etal_2011 2.628 2.6333 32.15 30.53 29.08 Naryn 138 Nr-70 40.088 76.228 138.2 70.70 655.23 139 Al-24 0.04857 76.0664 126.1 8.7 AFT Gione_etal_2011 2.663 3.3663 50.07 46.33 43.12 140 Al-11 4.7287 78.0664 126.1 8.7 AFT Gione_etal_2011 2.663 3.36632 307.23 29.08 274.68 143 Al-14 42.0647 79.0664 128.1 79.0666 23 1.4 FGione_etal_2011 2.663 3.20726 842.2 79.8,67 74.5 144 Al-14 42.0647 79.064 133.5 AFT Gione_etal_2011 2.663 3.20726 842.47 79.847 74.08 144 Al-13 42.0647 79.085 133.5 AFT Gione_etal_2011 2.633 3.04612 79.834 45.24 45.97 74.45 145	134	AI-72	41,0559	75,6524	173,8	13	AFT	Glorie_etal_2011	2,435	2,62678	35,42	32,64	30,26	Naryn
137 Al-79 40,808 76,628 138,2 7,9 AFT Glorie_etal_2011 3,259 3,33603 50,01 47,02 44,40 138 Ky-21 41,2439 76,6052 139,5 10 AFT Glorie_etal_2011 3,068 3,33603 50,07 46,33 43,12 140 Al-31 41,7147 78,1664 56,5 9,9 AFT Glorie_etal_2011 4,067 3,8172 60,58 56,28 52,52 141 Al-30 42,0624 79,066 23 1,3 AFT Glorie_etal_2011 2,683 3,36623 307,23 290,08 274,68 144 Al-13 42,0624 79,0872 7,9 0,5 AFT Glorie_etal_2011 2,663 3,20977 70,288 645,27 50,56 144 Al-13 42,0624 79,087 74,70 66,67 61,72 72,88 45,87 54,75 50,56 74,42 14,40 71,44 43,59 47,51 45,39 47,51 45,39 47,51 45,39 47,51 45,39 47,51 4	135	AI-71	41,0535	75,6528	175,1	7,9	AFT	Glorie_etal_2011	2,533	2,64846	34,22	32,59	31,10	Naryn
138 kiy-21 41,243 76,4072 8,4 0,98 AFT Gioric_etal_2011 2,615 2,9264 788,87 720,70 656,23 140 Al-31 41,767 78,0664 126,1 8,7 AFT Gioric_etal_2011 40,67 33303 5007 46,33 43,12 141 Al-29 41,747 78,0664 126,1 8,7 AFT Gioric_etal_2011 2,683 3,36632 307,23 290,08 274,68 143 Al-14 42,0644 70,041 12,8 0,8 AFT Gioric_etal_2011 2,663 3,2077 720,88 645,87 584,75 594,75 144 Al-14 42,0643 70,041 12,8 AFT Gioric_etal_2011 2,781 3,24811 49,85 47,51 45,39 144 Al-16 42,039 73,140 8,9 2,7 AFT Gioric_etal_20101 2,77 2,834 16,48 10,49 10,49 54,75 56,64 47,14 50,78 56,74 43,45 44,85 50,97 56,74 14,53 74,74	136	AI-69	41,0497	75,6559	187,8	8,9	AFT	Glorie_etal_2011	2,628	2,68361	32,15	30,53	29,08	Naryn
139 Al+82 40.9857 76.0602 139,5 10 AFT Glorie_etal_2011 3.066 3.38172 60.58 56.28 52.25 141 Al-15 41.7167 78.066 126.1 78.77 3.304 3.34978 139.09 129.29 120.78 142 Al-15 42.1111 79.066 123 1.3 AFT Glorie_etal_2011 2.683 3.36632 307.23 290.08 274.68 144 Al-14 42.0624 79.0817 7.9 0.5 AFT Glorie_etal_2011 2.663 3.20977 70.86 645.27 584.75 145 Al-11 42.002 79.307 79 0.5 AFT Glorie_etal_2011 2.784 3.04946 110.54 110.89 105.91 147 Al-16 42.0397 73.373 128.2 128.4 AFT Glorie_etal_2010 2.77 2.8344 3.09466 10.54 110.89 105.91 147 Al-16 150 127.7 74.844 12.89 14.55 3.74 65.91 77.47 15.86	137	AI-79	40,8088	76,2628	138,2	7,9	AFT	Glorie_etal_2011	3,259	3,33673	50,01	47,02	44,40	
140 Al-31 41,7147 78,0664 126,1 8,7 AFT Glorie_etal_2011 3,047 60,58 55,28 52,25 141 Al-29 41,7147 78,1636 56,5 3,9 AFT Glorie_etal_2011 2,683 3,36622 307,23 290,08 274,68 143 Al-14 42,0643 790,847 1,2 0,5 AFT Glorie_etal_2011 2,663 3,27266 842,26 793,87 750,56 144 Al-13 42,0643 790,872 7,9 9,8 1,1 AFT Glorie_etal_2011 2,663 3,27266 842,26 793,87 750,56 145 Al-16 42,0198 79,1161 133,55 6 AFT Glorie_etal_2011 3,543 3,2481 49,85 45,80 42,99 105,91 147 Al-16 42,0393 33,872 12.8 147 Glorie_etal_2010 2,07 2,8319 52,26 46,83 42,39 97,14 43,25 41,38 Song Kul 150 TF-21 42,032 74,1659 12,47 7,4 AFT <td>138</td> <td>Kyr-21</td> <td>41,2439</td> <td>76,4072</td> <td>8,4</td> <td>0,9</td> <td>AFT</td> <td>Glorie_etal_2011</td> <td>2,615</td> <td>2,96324</td> <td>798,87</td> <td>720,70</td> <td>656,23</td> <td></td>	138	Kyr-21	41,2439	76,4072	8,4	0,9	AFT	Glorie_etal_2011	2,615	2,96324	798,87	720,70	656,23	
141 Al-29 41,7147 78,1636 55,5 3.9 AFT Gione_etal_2011 3,804 3,84708 130,09 129,29 120,78 142 Al-15 42,1111 79,0686 23 13 AFT Gione_etal_2011 2,683 3,3663 307,23 200,08 27,7468 144 Al-14 42,0624 79,0841 12,8 0,8 AFT Gione_etal_2011 2,663 3,20977 720,88 645,87 58,75 146 Al-11 42,042 79,104 58,9 2,7 AT Gione_etal_2011 2,781 3,29461 10,89 10,591 147 Al-16 42,0198 79,1161 125 9,8 AFT Gione_etal_2010 2,77 2,8394 52,26 46,83 42,39 149 TF-22 42,1192 7,4165 124,7 7,4 AFT Gione_etal_2010 2,77 2,1384 12,51 14,7 44,7,35 Song Kul 150 TF-21 42,032 7,4126 13.8 AFT Gione_etal_2010 1,76 2,23814 44,50	139	AI-82	40,9857	76,6052	139,5	10	AFT	Glorie_etal_2011	3,086	3,33603	50,07	46,33	43,12	
142 Al-15 42,1111 79,0866 23 1.3 AFT Glorie_etal_2011 2,619 3,27231 537,95 508,86 477,42 143 Al-14 42,0647 79,0841 12,8 0,8 AFT Glorie_etal_2011 2,669 3,27291 537,95 508,86 477,42 144 Al-11 42,0647 79,0027 9,8 1,1 AFT Glorie_etal_2011 2,669 3,27276 642,26 793,87 750,56 145 Al-10 42,1988 79,1161 133,5 6 AFT Glorie_etal_2011 2,781 3,24811 49,85 47,51 45,39 147 Al-16 42,0198 79,1404 58,9 2,7 AFT Glorie_etal_2010 2,77 2,834 52,6 46,83 42,39 50,91 150 TF-21 42,0327 74,1651 125 9,8 AFT Glorie_etal_2010 2,01 2,6511 49,64 45,50 42,33 Song Kul 151 TF-20 41,955 74,1551 126,7 74,45 44,52 41,89	140	Al-31	41,7367	78,0664	126,1	8,7	AFT	Glorie_etal_2011	4,067	3,83172	60,58	56,28	52,52	
143 Al-14 42,0643 79,0842 7.9 0,5 AFT Glorie_etal_2011 2,66 3,27296 582,76 793,87 750,56 144 Al-13 42,0643 79,0872 7,9 0,5 AFT Glorie_etal_2011 2,663 3,27296 642,267 793,87 750,56 145 Al-11 42,0198 79,1404 58,9 1.1 AFT Glorie_etal_2011 2,781 3,24811 49,85 47,51 45,39 147 Al-16 42,0198 79,1405 128,9 2.7 AFT Glorie_etal_2010 2,77 2,8394 52,26 46,83 42,319 148 Kyr-03 42,1927 74,1652 14,8 5.5 AFT Glorie_etal_2010 2,49 2,5401 49,68 45,50 42,13 Song kul 151 TF-20 41,9657 74,1659 124,7 7,4 AFT Glorie_etal_2010 1,75 2,11384 172,51 161,62 51,98 Song kul 153 TF-19 41,729,767 3,83 2,1 AFT Glorie_etal_2010	141	AI-29	41,7147	78,1636	56,5	3,9	AFT	Glorie_etal_2011	3,804	3,94708	139,09	129,29	120,78	
144 Al-13 42,0643 79,0872 7.9 0.5 AFT Glorie_etal_2011 2,663 3,20267 720,88 645,87 584,75 145 Al-11 42,042 79,1027 9,8 1,1 AFT Glorie_etal_2011 2,781 3,24811 49,85 47,51 45,39 147 Al-16 42,0198 79,1404 58,9 2,7 AFT Glorie_etal_2010 2,77 2,834 52,6 46,83 42,39 50,70 46,83 42,39 50,70 46,83 42,39 50,71 46,83 42,39 74,105 125 9,8 AFT Glorie_etal_2010 2,77 2,8301 49,64 45,60 42,13 Song kul 150 TF-20 41,955 74,165 124,7 7,4 AFT Glorie_etal_2010 1,76 2,5301 47,45 44,52 41,89 Song kul 151 TF-17 41,7297 74,267 33,8 2,1 AFT Glorie_etal_2010 2,04 72,913 <td>142</td> <td>Al-15</td> <td>42,1111</td> <td>79,0686</td> <td>23</td> <td>1,3</td> <td>AFT</td> <td>Glorie_etal_2011</td> <td>2,683</td> <td>3,36632</td> <td>307,23</td> <td>290,08</td> <td>274,68</td> <td></td>	142	Al-15	42,1111	79,0686	23	1,3	AFT	Glorie_etal_2011	2,683	3,36632	307,23	290,08	274,68	
145 Al-11 42,042 79,1027 9,8 1,1 AFT Glorie_etal_2011 2,678 3,20977 720,88 645,87 554,75 146 Al-20 42,0198 79,116 133,5 6 AFT Glorie_etal_2011 2,781 3,24811 49,85 47,51 45,39 147 Al-16 42,0198 79,116 133,55 6 AFT Glorie_etal_2010 2,77 2,8394 52,26 46,83 42,39 148 Kyr-03 42,1192 74,1262 114,8 5,5 AFT Glorie_etal_2010 2,77 2,8394 52,26 46,83 42,39 150 TF-20 41,9657 74,1262 114,8 5,5 AFT Glorie_etal_2010 1,76 2,1314 174,24 41,89 Song Kul 151 TF-14 41,927 74,4 AFT Glorie_etal_2010 2,02 2,0596 53,11 50,52 48,14 Song Kul 155 IK-64 41,8805 75,7281 125 6,5 AFT Glorie_etal_2010 2,24 2,05968 53,11 </td <td>143</td> <td>Al-14</td> <td>42,0624</td> <td>79,0841</td> <td>12,8</td> <td>0,8</td> <td>AFT</td> <td>Glorie_etal_2011</td> <td>2,619</td> <td>3,27291</td> <td>537,95</td> <td>505,86</td> <td>477,42</td> <td></td>	143	Al-14	42,0624	79,0841	12,8	0,8	AFT	Glorie_etal_2011	2,619	3,27291	537,95	505,86	477,42	
146 Al-20 42,1998 79,1161 133,5 6 AFT Glorie_etal_2011 2,781 3,24811 49,85 47,51 45,39 147 Al-16 42,0198 79,1404 58,9 2,7 AFT Glorie_etal_2010 2,77 2,8394 52,26 46,83 42,399 149 TF-22 42,1192 74,1061 125 9,8 AFT Glorie_etal_2010 2,01 2,6316 52,37 49,74 47,35 Song Kul 150 TF-21 42,0932 74,1659 124,7 7,4 AFT Glorie_etal_2010 1,76 2,52801 47,45 44,52 41,89 Song Kul 151 TF-19 41,822 74,2329 91,1 4,6 AFT Glorie_etal_2010 2,07 5,11 5,30 5,1,2 Song Kul 153 TF-19 41,822 74,229 104,5 4,9 AFT Glorie_etal_2010 2,44 2,054 5,17 5,5 Song Kul 154 Kr.60 41,8831 77,059 1,7 AFT Glorie_etal_2013 3,24	144	Al-13	42,0643	79,0872	7,9	0,5	AFT	Glorie_etal_2011	2,66	3,27266	842,26	793,87	750,56	
147 Al-16 42,0198 79,1404 58,9 2,7 AFT Glorie_etal_2011 3,533 3,09466 116,34 110,89 105,91 148 Kyr-03 42,309 73,8379 128,2 12,8 AFT Glorie_etal_2010 2,47 2,401 49,68 45,60 42,13 Song Kul 150 TF-22 42,1192 74,165 124,7 7,4 AFT Glorie_etal_2010 1,76 2,5201 47,45 44,52 41,89 Song Kul 151 TF-20 41,822 74,1659 124,7 7,4 AFT Glorie_etal_2010 1,77 2,11384 172,51 161,62 151,98 Song Kul 153 TF-19 41,822 74,3289 97,1 4,6 AFT Glorie_etal_2010 2,2 2,0676 57,11 54,30 51,72 Song Kul 155 IK-06 41,8894 75,7281 125 6,5 AFT Glorie_etal_2010 2,44 2,8815 39.97 37,87 <t< td=""><td>145</td><td>Al-11</td><td>42,042</td><td>79,1027</td><td>9,8</td><td>1,1</td><td>AFT</td><td>Glorie_etal_2011</td><td>2,663</td><td>3,20977</td><td>720,88</td><td>645,87</td><td>584,75</td><td></td></t<>	145	Al-11	42,042	79,1027	9,8	1,1	AFT	Glorie_etal_2011	2,663	3,20977	720,88	645,87	584,75	
148 Kyr-03 42,3099 78,8379 128,2 128,2 AFT Giorie_etal_2010 2,77 2,8394 52,26 46,83 42,39 149 TF-22 42,0192 74,1061 125 9,8 AFT Giorie_etal_2010 2,01 2,63196 52,37 49,74 47,35 Song Kul 151 TF-12 42,0637 74,1659 124,7 7,4 AFT Giorie_etal_2010 1,76 2,52801 47,45 44,52 41,89 Song Kul 153 TF-19 41,8279 74,22676 33,8 2,1 AFT Giorie_etal_2010 2,77 2,205968 53,11 50,52 48,14 Song Kul 154 TF-19 41,828 74,329 104,5 4,9 AFT Giorie_etal_2010 2,74 2,8315 39,97 3,787 35,95 Song Kul 155 IK-06 41,8594 77,607 12,7 2,24 2,97439 51,93 49,10 46,59 Song Kul 156 </td <td>146</td> <td>AI-20</td> <td>42,1998</td> <td>79,1161</td> <td>133,5</td> <td>6</td> <td>AFT</td> <td>Glorie_etal_2011</td> <td>2,781</td> <td>3,24811</td> <td>49,85</td> <td>47,51</td> <td>45,39</td> <td></td>	146	AI-20	42,1998	79,1161	133,5	6	AFT	Glorie_etal_2011	2,781	3,24811	49,85	47,51	45,39	
149 TF-22 42,1192 74,1061 125 9,8 AFT Giorie_etal_2010 2,49 2,5401 49,68 45,60 42,13 Song Kul 150 TF-20 42,0932 74,1262 114,8 5,5 AFT Giorie_etal_2010 1,76 2,51301 47,45 44,52 41,89 Song Kul 151 TF-19 41,8228 74,329 97,1 4,6 AFT Giorie_etal_2010 2,02 2,0566 53,11 50,52 48,14 Song Kul 153 TF-19 41,8228 74,3289 104,5 4,9 AFT Giorie_etal_2010 2,2 2,05668 53,11 50,52 48,14 Song Kul 155 IK-06 41,8805 75,718 157,9 8 AFT Giorie_etal_2013 3,52 3,54798 191,34 178,88 168,04 issyk Kul Soutt 156 IK-05 41,9814 77,6009 38,9 2,5 AFT Macaulay_etal_2013 3,52 3,54798 191,34 178,88 168,04 issyk Kul Soutt 159 CP1 41,9831 <td>147</td> <td>Al-16</td> <td>42,0198</td> <td>79,1404</td> <td>58,9</td> <td>2,7</td> <td>AFT</td> <td>Glorie_etal_2011</td> <td>3,543</td> <td>3,09466</td> <td>116,34</td> <td>110,89</td> <td>105,91</td> <td></td>	147	Al-16	42,0198	79,1404	58,9	2,7	AFT	Glorie_etal_2011	3,543	3,09466	116,34	110,89	105,91	
150 TF-21 42,0932 74,1262 114,8 5,5 AFT Giorie_etal_2010 2,01 2,63196 52,37 49,74 47,35 Song Kul 151 TF-17 41,769 74,1659 124,7 7,4 AFT Giorie_etal_2010 1,77 2,11384 172,51 161,62 151,98 Song Kul 153 TF-13 41,8228 74,3239 97,1 4,6 AFT Giorie_etal_2010 2,2 2,0566 53,11 50,52 48,14 Song Kul 155 IK-66 41,8805 75,718 157,9 8 AFT Giorie_etal_2010 2,24 2,8315 39,97 37,87 35,95 Song Kul 156 IK-66 41,8805 75,718 125 6,5 AFT Giorie_etal_2013 2,447 2,90554 383,37 347,77 318,18 Issyk Kul South 158 NP2 42,0624 77,610 17,3 1,4 AFT Macaulay_etal_2013 3,242 2,9554 383,37 347,77 318,18 Issyk Kul South 150 PP3 41,9828 <td>148</td> <td>Kyr-03</td> <td>42,3099</td> <td>73,8379</td> <td>128,2</td> <td>12,8</td> <td>AFT</td> <td>Glorie_etal_2010</td> <td>2,77</td> <td>2,8394</td> <td>52,26</td> <td>46,83</td> <td>42,39</td> <td></td>	148	Kyr-03	42,3099	73,8379	128,2	12,8	AFT	Glorie_etal_2010	2,77	2,8394	52,26	46,83	42,39	
151 TF-20 41,9657 74,1659 124,7 7,4 AFT Glorie_etal_2010 1,76 2,52801 47,45 44,52 41,89 Song Kul 152 TF-17 41,7799 74,267 33,8 2,1 AFT Glorie_etal_2010 2,03 2,067 57,11 54,30 51,72 Song Kul 153 TF-18 41,82 74,3289 104,5 4,9 AFT Glorie_etal_2010 2,2 2,05968 53,11 50,52 48,14 Song Kul 155 IK-66 41,8804 75,7281 125 6,5 AFT Glorie_etal_2010 2,84 2,97439 51,93 49,10 46,59 Song Kul 156 IK-05 41,8594 77,6009 38,9 2,5 AFT Maculay_etal_2013 3,52 3,54798 191,34 178,88 168,04 Issyk Kul Soutt 159 CP1 41,9837 77,6009 38,9 2,5 AFT Maculay_etal_2013 3,262 3,5459 23,547 250,05 231,67 538,46 Issyk Kul Soutt 160 NP1	149		42,1192	74,1061	125	9,8	AFT	Glorie_etal_2010	2,49	2,5401	49,68	45,60		Song Kul
152 TF-17 41,7799 74,2676 33.8 2,1 AFT Glorie_etal_2010 1,775 2,11384 172,51 161,62 151,98 Song Kul 153 TF-18 41,822 74,3289 97,1 4,6 AFT Glorie_etal_2010 2,03 2,067 57,11 54,30 51,72 Song Kul 154 TF-18 41,828 74,3289 104,5 4,9 AFT Glorie_etal_2010 2,74 2,88115 39,97 37,87 35,95 Song Kul 156 IK-06 41,8807 75,718 157 CP1 41,9817 77,605 17,9 1,7 AFT Macaulay_etal_2013 2,447 2,9054 383,37 347,77 318,18 Issyk Kul South 150 NP1 42,0624 77,6017 2,7 2,2 AFT Macaulay_etal_2013 3,247 2,90554 383,37 347,77 318,18 Issyk Kul South 160 NP1 42,0563 77,611 3,33 2,6 AFT	150	TF-21	42,0932	74,1262	114,8	5,5	AFT	Glorie_etal_2010	2,01	2,63196	52,37	49,74		Song Kul
153 TF-19 41,8228 74,3239 97,1 4,6 AFT Glorie_etal_2010 2,03 2,067 57,11 54,30 51,72 Song Kul 154 TF-18 41,82 74,3229 104,5 4,9 AFT Glorie_etal_2010 2,2 2,05968 53,11 50,52 48,14 Song Kul 155 IK-05 41,859 75,7181 125 6,5 AFT Glorie_etal_2010 2,74 2,8815 39,97 37,87 35,95 Song Kul 156 IK-05 41,981 77,609 38,9 2,5 AFT Macaulay_etal_2013 3,522 3,54798 191,34 178,88 168,04 Issyk Kul South 159 CP2 41,9859 77,61 17,3 1,4 AFT Macaulay_etal_2013 3,242 3,54559 27,150 250,05 231,67 Issyk Kul South 161 CP3 41,9842 77,611 17,3 1,4 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 Issyk Kul South 162 CP4 4,983	151				124,7	7,4	AFT			2,52801	47,45	44,52	41,89	Song Kul
154 TF-18 41,82 74,3289 104,5 4,9 AFT Glorie_etal_2010 2,2 2,05968 53,11 50,52 48,14 Song Kul 155 IK-06 41,8804 75,718 157,9 8 AFT Glorie_etal_2010 2,74 2,88315 39,97 37,87 35,95 Song Kul 156 IK-05 41,8594 75,7281 125 6,5 AFT Glorie_etal_2013 3,52 3,54798 191,34 178,88 168,04 Issyk Kul South 158 NP2 42,0624 77,6056 17,9 1,7 AFT Macaulay_etal_2013 3,247 2,90554 383,37 347,77 318,18 Issyk Kul South 160 NP1 42,0563 77,611 23,3 2,6 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 Issyk Kul South 161 CP3 41,976 77,613 21,2 1,6 AFT Macaulay_etal_2013 2,645 3,640,53 349,41 323,55 301,13 Issyk Kul South 162 CP4							AFT							
155 IK-06 41,8805 75,7198 157,9 8 AFT Glorie_etal_2010 2,74 2,88315 39,97 37,87 35,95 Song Kul 156 IK-05 41,8584 75,7281 125 6,5 AFT Glorie_etal_2013 3,52 3,54798 191,34 178,88 168,04 issyk Kul South 158 NP2 42,0624 77,6056 17,9 1,7 AFT Macaulay_etal_2013 3,52 3,54798 191,34 178,88 168,04 issyk Kul South 159 CP2 41,9859 77,6074 27,7 2,2 AFT Macaulay_etal_2013 3,264 3,54559 271,50 250,05 231,67 issyk Kul South 161 CP3 41,9842 77,611 12,3 2,6 AFT Macaulay_etal_2013 2,645 2,98534 396,6 365,07 338,36 issyk Kul South 162 CP4 41,9832 77,613 14,8 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 issyk Kul South 166 Ssyk Kul South 165 <td></td> <td>TF-19</td> <td>41,8228</td> <td>74,3239</td> <td>97,1</td> <td>4,6</td> <td>AFT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		TF-19	41,8228	74,3239	97,1	4,6	AFT							
156 IK-05 41,8594 75,7281 125 6,5 AFT Glorie_etal_2010 2,845 2,97439 51,93 49,10 46,59 Song Kul 157 CP1 41,9831 77,6009 38,9 2,5 AFT Macaulay_etal_2013 3,52 3,54798 191,34 178,88 166,04 issyk Kul South 158 CP2 41,9859 77,6074 27,7 2,2 AFT Macaulay_etal_2013 3,242 3,54559 271,50 250,05 231,67 issyk Kul South 160 NP1 42,0563 77,611 17,3 1,4 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 issyk Kul South 161 CP3 41,9842 77,613 21,2 1,6 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 383,36 issyk Kul South 163 CP5 41,9766 77,6229 21,8 2,7 AFT Macaulay_etal_2013 2,605 3,65059 282,72 244,76 215,62 issyk Kul South 165 SP4	1							Glorie etal 2010	22	0.050.00	E2 11	50.52	48 14	Song Kul
157 CP1 41,9831 77,6009 38,9 2,5 AFT Macaulay_etal_2013 3,52 3,54798 191,34 178,88 168,04 Issyk Kul South 158 NP2 42,0624 77,6074 27,7 2,2 AFT Macaulay_etal_2013 2,447 2,90554 383,37 347,77 318,18 Issyk Kul South 150 NP1 42,0563 77,61 17,3 1,4 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 Issyk Kul South 161 CP3 41,982 77,613 21,2 1,6 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 338,36 Issyk Kul South 163 CP4 41,9832 77,613 21,2 1,6 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 Issyk Kul South 164 NS 41,9703 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,643 3,81931 305,02 266,83 236,96 Issyk Kul South 165 <td></td> <td></td> <td>41,82</td> <td></td>			41,82											
158 NP2 42,0624 77,6056 17,9 1,7 AFT Macaulay_etal_2013 2,447 2,90554 383,37 347,77 318,18 issyk Kul South 159 CP2 41,9859 77,6074 27,7 2,2 AFT Macaulay_etal_2013 3,282 3,54559 271,50 250,05 231,67 issyk Kul South 160 NP1 42,0563 77,6113 23,3 2,6 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 338,36 issyk Kul South 161 CP3 41,9842 77,6113 23,2 AFT Macaulay_etal_2013 2,645 2,98534 349,41 323,55 301,13 issyk Kul South 163 CP5 41,9766 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,605 3,60495 358,11 314,52 280,18 issyk Kul South 166 SF4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,641 3,85858 </td <td>155</td> <td>IK-06</td> <td>41,82 41,8805</td> <td>75,7198</td> <td>157,9</td> <td>8</td> <td>AFT</td> <td>Glorie_etal_2010</td> <td>2,74</td> <td>2,88315</td> <td>39,97</td> <td>37,87</td> <td>35,95</td> <td>Song Kul</td>	155	IK-06	41,82 41,8805	75,7198	157,9	8	AFT	Glorie_etal_2010	2,74	2,88315	39,97	37,87	35,95	Song Kul
159 CP2 41,9859 77,6074 27,7 2,2 AFT Macaulay_etal_2013 3,282 3,54559 271,50 250,05 231,67 Issyk Kul South 160 NP1 42,0563 77,61 17,3 1,4 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 338,36 Issyk Kul South 161 CP3 41,9842 77,613 23,3 2,6 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 338,36 Issyk Kul South 162 CP4 41,9842 77,613 21,2 1,6 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 Issyk Kul South 164 NS 41,9703 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,605 3,65059 282,72 244,76 215,62 Issyk Kul South 165 SP4 41,9038 77,6577 28,5 6,6 AFT Macaulay_etal_2013 3,441 3,81931 305,02 266,83 236,96 Issyk Kul South 166<	155 156	IK-06 IK-05	41,82 41,8805 41,8594	75,7198 75,7281	157,9 125	8 6,5	AFT AFT	Glorie_etal_2010 Glorie_etal_2010	2,74 2,845	2,88315 2,97439	39,97 51,93	37,87 49,10	35,95 46,59	Song Kul Song Kul
160 NP1 42,0563 77,61 17,3 1,4 AFT Macaulay_etal_2013 2,645 2,98534 396,36 365,07 338,36 Issyk Kul South 161 CP3 41,9842 77,6113 23,3 2,6 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 Issyk Kul South 162 CP4 41,9832 77,6163 21,2 1,6 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 Issyk Kul South 163 CP5 41,9706 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,665 3,60495 358,11 314,52 280,18 Issyk Kul South 164 NS 41,9703 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,615 3,65059 282,72 244,76 215,62 Issyk Kul South 165 SP4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,43 3,81931 305,02 266,83 236,96 Issyk Kul South 166<	155 156 157	IK-06 IK-05 CP1	41,82 41,8805 41,8594 41,9831	75,7198 75,7281 77,6009	157,9 125 38,9	8 6,5 2,5	AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013	2,74 2,845 3,52	2,88315 2,97439 3,54798	39,97 51,93 191,34	37,87 49,10 178,88	35,95 46,59 168,04	Song Kul Song Kul Issyk Kul South
161 CP3 41,9842 77,6113 23,3 2,6 AFT Macaulay_etal_2013 3,04 3,55895 332,24 295,71 266,25 Issyk Kul South 162 CP4 41,9832 77,6163 21,2 1,6 AFT Macaulay_etal_2013 2,839 3,5708 349,41 323,55 301,13 Issyk Kul South 163 CP5 41,9766 77,6229 21,8 2,7 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 Issyk Kul South 165 SP4 41,9038 77,6377 26,9 3,4 AFT Macaulay_etal_2013 3,43 3,81931 305,02 266,83 236,96 Issyk Kul South 166 SS 41,9387 77,6564 58,5 6,6 AFT Macaulay_etal_2013 3,41 3,81931 305,02 266,83 236,96 Issyk Kul South 167 SP3 41,8956 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,611 3,8251 3,7113 631,55 178,86 102,69 Issyk Kul South	155 156 157 158	IK-06 IK-05 CP1 NP2	41,82 41,8805 41,8594 41,9831 42,0624	75,7198 75,7281 77,6009 77,6056	157,9 125 38,9 17,9	8 6,5 2,5 1,7	AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447	2,88315 2,97439 3,54798 2,90554	39,97 51,93 191,34 383,37	37,87 49,10 178,88 347,77	35,95 46,59 168,04 318,18	Song Kul Song Kul Issyk Kul South Issyk Kul South
162 CP4 41,9832 77,6163 21,2 1,6 AFT Macaulay_etal_2013 2,839 3,5708 349,41 323,55 301,13 issyk Kul South 163 CP5 41,9766 77,6229 21,8 2,7 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 issyk Kul South 164 NS 41,9703 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,605 3,60495 358,11 314,52 280,18 issyk Kul South 165 SP4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 2,721 3,756 134,53 119,00 106,69 issyk Kul South 166 SS 41,8956 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,641 3,85858 250,77 180,07 140,06 issyk Kul South 168 SP2 41,8945 77,693 40,7 29,5 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 issyk Kul South 170 <td>155 156 157 158 159</td> <td>IK-06 IK-05 CP1 NP2 CP2</td> <td>41,82 41,8805 41,8594 41,9831 42,0624 41,9859</td> <td>75,7198 75,7281 77,6009 77,6056 77,6074</td> <td>157,9 125 38,9 17,9 27,7</td> <td>8 6,5 2,5 1,7 2,2</td> <td>AFT AFT AFT AFT AFT</td> <td>Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013</td> <td>2,74 2,845 3,52 2,447 3,282</td> <td>2,88315 2,97439 3,54798 2,90554 3,54559</td> <td>39,97 51,93 191,34 383,37 271,50</td> <td>37,87 49,10 178,88 347,77 250,05</td> <td>35,95 46,59 168,04 318,18 231,67</td> <td>Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South</td>	155 156 157 158 159	IK-06 IK-05 CP1 NP2 CP2	41,82 41,8805 41,8594 41,9831 42,0624 41,9859	75,7198 75,7281 77,6009 77,6056 77,6074	157,9 125 38,9 17,9 27,7	8 6,5 2,5 1,7 2,2	AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282	2,88315 2,97439 3,54798 2,90554 3,54559	39,97 51,93 191,34 383,37 271,50	37,87 49,10 178,88 347,77 250,05	35,95 46,59 168,04 318,18 231,67	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South
163 CP5 41,9766 77,6229 21,8 2,7 AFT Macaulay_etal_2013 2,626 3,60495 358,11 314,52 280,18 Issyk Kul South 164 NS 41,9703 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,605 3,65059 282,72 244,76 215,62 Issyk Kul South 165 SP4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,43 3,81931 305,02 266,83 236,96 Issyk Kul South 166 SS 41,8937 77,6547 40,2 11,3 AFT Macaulay_etal_2013 3,775 134,53 119,00 140,69 Issyk Kul South 168 SP2 41,8945 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 875410 41,9673 76,293 107,5 9,2 AFT Macaulay_etal_2014 3,445 3,20696 65,64 59,81 54,95 Issyk Kul South 170 875410 </td <td>155 156 157 158 159 160</td> <td>IK-06 IK-05 CP1 NP2 CP2 NP1</td> <td>41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563</td> <td>75,7198 75,7281 77,6009 77,6056 77,6074 77,61</td> <td>157,9 125 38,9 17,9 27,7</td> <td>8 6,5 2,5 1,7 2,2</td> <td>AFT AFT AFT AFT AFT</td> <td>Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013</td> <td>2,74 2,845 3,52 2,447 3,282 2,645</td> <td>2,88315 2,97439 3,54798 2,90554 3,54559</td> <td>39,97 51,93 191,34 383,37 271,50</td> <td>37,87 49,10 178,88 347,77 250,05</td> <td>35,95 46,59 168,04 318,18 231,67</td> <td>Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South</td>	155 156 157 158 159 160	IK-06 IK-05 CP1 NP2 CP2 NP1	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563	75,7198 75,7281 77,6009 77,6056 77,6074 77,61	157,9 125 38,9 17,9 27,7	8 6,5 2,5 1,7 2,2	AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645	2,88315 2,97439 3,54798 2,90554 3,54559	39,97 51,93 191,34 383,37 271,50	37,87 49,10 178,88 347,77 250,05	35,95 46,59 168,04 318,18 231,67	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
164 NS 41,9703 77,6377 28,2 3,8 AFT Macaulay_etal_2013 2,605 3,65059 282,72 244,76 215,62 issyk Kul South 165 SP4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,43 3,81931 305,02 266,83 236,96 issyk Kul South 166 SS 41,9397 77,6564 58,5 6,6 AFT Macaulay_etal_2013 2,721 3,7756 134,53 119,00 106,69 issyk Kul South 167 SP3 41,8956 77,6934 40,7 29,5 AFT Macaulay_etal_2013 3,641 3,85858 250,77 180,07 140,06 issyk Kul South 168 SP1 41,8735 77,7219 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 issyk Kul South 170 8T5410 41,9673 76,2355 107,5 9,2 AFT Macaulay_etal_2014 3,145	155 156 157 158 159 160 161	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842	75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113	157,9 125 38,9 17,9 27,7 17,3 23,3	8 6,5 2,5 1,7 2,2 1,4 2,6	AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895	39,97 51,93 191,34 383,37 271,50 396,36 332,24	37,87 49,10 178,88 347,77 250,05 365,07 295,71	35,95 46,59 168,04 318,18 231,67 338,36 266,25	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
165 SP4 41,9038 77,6537 26,9 3,4 AFT Macaulay_etal_2013 3,43 3,81931 305,02 266,83 236,96 Issyk Kul South 166 SS 41,9397 77,6564 58,5 6,6 AFT Macaulay_etal_2013 2,721 3,7756 134,53 119,00 106,69 Issyk Kul South 167 SP3 41,8956 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,641 3,85183 250,77 180,07 140,06 Issyk Kul South 168 SP2 41,8955 77,7219 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 8TS410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,145 3,20696 65,64 59,81 54,95 Issyk Kul South 171 8TS411 42,001 76,3193 64,7 3,7 AFT Macaulay_etal_2014 3,835	155 156 157 158 159 160 161 162	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832	75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113 77,6163	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6	AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
166 SS 41,9397 77,6564 58,5 6,6 AFT Macaulay_etal_2013 2,721 3,7756 134,53 119,00 106,69 Issyk Kul South 167 SP3 41,8956 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,641 3,85858 250,77 180,07 140,06 Issyk Kul South 168 SP2 41,8945 77,693 40,7 29,5 AFT Macaulay_etal_2013 3,821 3,87113 631,55 178,86 102,69 Issyk Kul South 169 SP1 41,8735 77,7219 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 8TS410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,455 3,33752 111,19 104,69 98,88 Issyk Kul South 171 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,558 <td>155 156 157 158 159 160 161 162</td> <td>IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5</td> <td>41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832</td> <td>75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113 77,6163</td> <td>157,9 125 38,9 17,9 27,7 17,3 23,3 21,2</td> <td>8 6,5 2,5 1,7 2,2 1,4 2,6 1,6</td> <td>AFT AFT AFT AFT AFT AFT AFT</td> <td>Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013</td> <td>2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626</td> <td>2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708</td> <td>39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41</td> <td>37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52</td> <td>35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18</td> <td>Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South</td>	155 156 157 158 159 160 161 162	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832	75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113 77,6163	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6	AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
167 SP3 41,8956 77,6874 40,2 11,3 AFT Macaulay_etal_2013 3,641 3,85858 250,77 180,07 140,06 Issyk Kul South 168 SP2 41,8945 77,6993 40,7 29,5 AFT Macaulay_etal_2013 3,821 3,87113 631,55 178,86 102,69 Issyk Kul South 169 SP1 41,8735 77,719 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 8T5410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,145 3,20696 65,64 59,81 54,95 Issyk Kul South 171 8T5411 42,0054 76,3199 21 2,3 AFT Macaulay_etal_2014 3,835 3,33752 111,19 104,69 98,88 Issyk Kul South 172 8T5414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 <td>155 156 157 158 159 160 161 162 163</td> <td>IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS</td> <td>41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832 41,9766</td> <td>75,7198 75,7281 77,6009 77,6056 77,6074 77,6113 77,6163 77,6163 77,6229 77,6377</td> <td>157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8</td> <td>8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7</td> <td>AFT AFT AFT AFT AFT AFT AFT AFT</td> <td>Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013</td> <td>2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626</td> <td>2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495</td> <td>39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11</td> <td>37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52</td> <td>35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18</td> <td>Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South</td>	155 156 157 158 159 160 161 162 163	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832 41,9766	75,7198 75,7281 77,6009 77,6056 77,6074 77,6113 77,6163 77,6163 77,6229 77,6377	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7	AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
168 SP2 41,8945 77,6993 40,7 29,5 AFT Macaulay_etal_2013 3,821 3,87113 631,55 178,86 102,69 Issyk Kul South 169 SP1 41,8735 77,7219 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 8TS410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,145 3,20696 65,64 59,81 54,95 Issyk Kul South 171 8TS411 42,0054 76,303 64,7 3,7 AFT Macaulay_etal_2014 3,835 3,33752 111,19 104,69 98,88 Issyk Kul South 172 8TS413 42,001 76,319 21 2,3 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 Issyk Kul South 173 8TS418 42,1548 76,3232 140,3 10,2 AFT Macaulay_etal_2014 2,122	155 156 157 158 159 160 161 162 163 164 165	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9832 41,9766 41,9703 41,9038	75,7198 75,7281 77,6009 77,6056 77,6074 77,6113 77,6163 77,6163 77,6229 77,6377 77,6537	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4	AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96	Song Kul Song Kul Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South Issyk Kul South
169 SP1 41,8735 77,7219 92,5 4,9 AFT Macaulay_etal_2013 3,78 3,90265 82,01 77,55 73,53 Issyk Kul South 170 8T5410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,145 3,20696 65,64 59,81 54,95 Issyk Kul South 171 8T5411 42,0054 76,393 64,7 3,7 AFT Macaulay_etal_2014 3,435 3,33752 111,19 104,69 98,88 Issyk Kul South 172 8T5413 42,001 76,319 21 2,3 AFT Macaulay_etal_2014 3,558 3,34024 361,59 322,72 291,47 Issyk Kul South 173 8T5414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 Issyk Kul South 174 8T5418 42,1548 76,3322 140,3 10,2 AFT Macaulay_etal_2014 2,122 </td <td>155 156 157 158 159 160 161 162 163 164 165 166</td> <td>IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS</td> <td>41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9842 41,9766 41,9703 41,9038 41,9397</td> <td>75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113 77,6163 77,6229 77,6377 77,6537 77,6564</td> <td>157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5</td> <td>8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4</td> <td>AFT AFT AFT AFT AFT AFT AFT AFT AFT</td> <td>Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013</td> <td>2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721</td> <td>2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756</td> <td>39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53</td> <td>37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00</td> <td>35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69</td> <td>Song Kul Song Kul Issyk Kul South Issyk Kul South</td>	155 156 157 158 159 160 161 162 163 164 165 166	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9842 41,9766 41,9703 41,9038 41,9397	75,7198 75,7281 77,6009 77,6056 77,6074 77,61 77,6113 77,6163 77,6229 77,6377 77,6537 77,6564	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4	AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69	Song Kul Song Kul Issyk Kul South Issyk Kul South
170 8TS410 41,9673 76,2935 107,5 9,2 AFT Macaulay_etal_2014 3,145 3,20696 65,64 59,81 54,95 Issyk Kul South 171 8TS411 42,0054 76,3093 64,7 3,7 AFT Macaulay_etal_2014 3,835 3,33752 111,19 104,69 98,88 Issyk Kul South 172 8TS413 42,001 76,3199 21 2,3 AFT Macaulay_etal_2014 3,558 3,4024 361,59 322,72 291,47 Issyk Kul South 173 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,578 3,4024 361,59 322,72 291,47 Issyk Kul South 174 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 Issyk Kul South 175 8TS418 42,1548 76,3222 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 Issyk Kul South	155 156 157 158 159 160 161 162 163 164 165 166	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS SP3	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9842 41,9766 41,9703 41,9038 41,9397	75,7198 75,7281 77,6009 77,6056 77,6074 77,611 77,6113 77,6163 77,6229 77,6377 77,6537 77,6564 77,6574	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721 3,641	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69	Song Kul Song Kul Issyk Kul South Issyk Kul South
171 8TS411 42,0054 76,3093 64,7 3,7 AFT Macaulay_etal_2014 3,835 3,33752 111,19 104,69 98,88 Issyk Kul South 172 8TS413 42,001 76,3199 21 2,3 AFT Macaulay_etal_2014 3,558 3,34024 361,59 322,72 291,47 Issyk Kul South 173 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 Issyk Kul South 174 8TS418 42,1548 76,3222 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 Issyk Kul South 175 8TS421 42,0901 76,3626 111 10,9 AFT Macaulay_etal_2014 2,222 2,47898 42,78 39,53 36,72 Issyk Kul South 176 8TS419 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 2	155 156 157 158 159 160 161 162 163 164 165 166 167	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS SP4 SS SP3 SP2	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9859 41,9703 41,9703 41,9038 41,9397 41,8956	75,7198 75,7281 77,6009 77,6056 77,6074 77,611 77,6113 77,6163 77,6229 77,6377 77,6537 77,6564 77,6574	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721 3,641 3,821	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,60495 3,6059 3,81931 3,7756 3,85858	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06	Song Kul Song Kul Issyk Kul South Issyk Kul South
172 8TS413 42,001 76,3199 21 2,3 AFT Macaulay_etal_2014 3,558 3,34024 361,59 322,72 291,47 issyk Kul South 173 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 issyk Kul South 174 8TS418 42,1548 76,3232 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 issyk Kul South 175 8TS421 42,0901 76,3662 111 10,9 AFT Macaulay_etal_2014 2,853 2,84126 60,76 54,55 49,50 issyk Kul South 176 8TS419 42,082 76,3906 87,2 11,8 AFT Macaulay_etal_2014 3,223 2,79862 81,92 70,47 61,79 issyk Kul South 177 8TS417 42,1345 76,3999 118,1 6,5 AFT Macaulay_etal_2014 2,538 2,47401 50,92 47,98 45,36 issyk Kul South 178	155 156 157 158 159 160 161 162 163 164 165 166 167 168	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS SP4 SS SP3 SP2	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9766 41,9703 41,9038 41,9038 41,938 41,8956 41,8945	75,7198 75,7281 77,6009 77,6056 77,6074 77,6113 77,6133 77,6537 77,6537 77,6537 77,6544 77,6874 77,6993	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721 3,641 3,821	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69	Song Kul Song Kul Issyk Kul South Issyk Kul South
173 8TS414 41,9758 76,3235 144,8 10,5 AFT Macaulay_etal_2014 3,274 3,28044 48,12 44,49 41,37 Issyk Kul South 174 8TS418 42,1548 76,3322 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 Issyk Kul South 175 8TS421 42,0901 76,3662 111 10,9 AFT Macaulay_etal_2014 2,853 2,84126 60,76 54,55 49,50 Issyk Kul South 176 8TS417 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 2,853 2,47401 50,92 70,47 61,79 Issyk Kul South 177 8TS417 42,1345 76,3999 118,1 6,5 AFT Macaulay_etal_2014 2,538 2,47401 50,92 70,47 61,79 Issyk Kul South 177 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 SP4 SS SP4 SS SP4 SS SP2 SP1 8TS410	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9763 41,9703 41,9038 41,9397 41,8956 41,8945 41,8945 41,8735 41,9673	75,7198 75,7281 77,6009 77,6074 77,6113 77,6113 77,6133 77,6537 77,6537 77,654 77,6874 77,6874 77,6993 77,7219	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,605 3,43 2,721 3,641 3,821 3,78 3,78 3,78	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 73,53	Song Kul Song Kul Issyk Kul South Issyk Kul South
174 8TS418 42,1548 76,3322 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 Issyk Kul South 175 8TS421 42,0901 76,3662 111 10,9 AFT Macaulay_etal_2014 2,853 2,84126 60,76 54,55 49,50 Issyk Kul South 176 8TS419 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 2,853 2,47401 60,76 54,55 49,50 Issyk Kul South 176 8TS417 42,145 76,3906 87,2 11,8 AFT Macaulay_etal_2014 3,223 2,79862 81,92 70,47 61,79 Issyk Kul South 177 8TS417 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,538 2,47401 50,92 47,98 45,36 Issyk Kul South 178 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	IK-06 IK-05 CP1 NP2 CP2 CP3 CP4 CP5 NS SP4 SS SP4 SS SP3 SP2 SP1 8TS410 8TS411	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9763 41,9703 41,9038 41,9397 41,8956 41,8945 41,8945 41,8735 41,9673	75,7198 75,7281 77,6009 77,6074 77,6113 77,6113 77,6133 77,6537 77,6537 77,654 77,6874 77,6874 77,6993 77,7219	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5 107,5	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 2,645 2,645 2,645 2,645 2,605 3,43 2,721 3,641 3,821 3,821 3,78 3,78 3,785	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 140,06 73,53 54,95	Song Kul Song Kul Issyk Kul South Issyk Kul South
174 8TS418 42,1548 76,3322 140,3 10,2 AFT Macaulay_etal_2014 2,122 2,47898 42,78 39,53 36,72 Issyk Kul South 175 8TS421 42,0901 76,3662 111 10,9 AFT Macaulay_etal_2014 2,853 2,84126 60,76 54,55 49,50 Issyk Kul South 176 8TS419 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 2,853 2,47401 60,76 54,55 49,50 Issyk Kul South 176 8TS417 42,145 76,3906 87,2 11,8 AFT Macaulay_etal_2014 3,223 2,79862 81,92 70,47 61,79 Issyk Kul South 177 8TS417 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,538 2,47401 50,92 47,98 45,36 Issyk Kul South 178 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	IK-06 IK-05 CP1 NP2 CP2 CP3 CP4 CP5 NS SP4 SS SP4 SS SP3 SP2 SP1 8TS410 8TS411	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9763 41,9703 41,9038 41,9397 41,8956 41,8945 41,8735 41,9673 42,0054	75,7198 75,7281 77,6099 77,6074 77,6113 77,6113 77,6137 77,6574 77,6577 77,6574 77,6874 77,6874 77,693 77,7219 76,2935 76,3093	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5 107,5 64,7	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013	2,74 2,845 3,52 2,447 3,282 2,645 2,645 2,645 2,645 2,645 2,605 3,43 2,721 3,641 3,821 3,821 3,78 3,78 3,785	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,33752	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81 104,69	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 73,53 54,95 98,88	Song Kul Song Kul Issyk Kul South Issyk Kul South
175 8TS421 42,0901 76,3662 111 10,9 AFT Macaulay_etal_2014 2,853 2,84126 60,76 54,55 49,50 Issyk Kul South 176 8TS419 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 3,223 2,79862 81,92 70,47 61,79 Issyk Kul South 177 8TS417 42,1345 76,3999 118,1 6,5 AFT Macaulay_etal_2014 2,538 2,47401 50,92 47,98 45,36 Issyk Kul South 178 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731 2,45119 41,74 38,99 36,58 Issyk Kul South	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	IK-06 IK-05 CP1 NP2 CP2 CP3 CP4 CP5 NS SP4 SS SP4 SS SP4 SS SP3 SP2 SP1 8TS411 8TS413	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9822 41,9766 41,9703 41,9038 41,9038 41,937 41,8956 41,8735 41,8754 42,001	75,7198 75,7281 77,6056 77,6074 77,6113 77,613 77,613 77,6377 77,6537 77,6537 77,6537 77,6593 77,7219 76,2935 76,2935 76,3093 76,3199	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 26,9 58,5 40,2 92,5 107,5 64,7 21	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7 2,3	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2014 Macaulay_etal_2014	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,605 2,605 2,605 3,43 2,721 3,641 3,821 3,78 3,145 3,835 3,835	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,33752 3,34024	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19 361,59	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81 104,69 322,72	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,69 106,69 140,06 102,69 73,53 54,95 98,88 291,47	Song Kul Song Kul Issyk Kul South Issyk Kul South
176 8TS419 42,0882 76,3906 87,2 11,8 AFT Macaulay_etal_2014 3,223 2,79862 81,92 70,47 61,79 Issyk Kul South 177 8TS417 42,1345 76,3999 118,1 6,5 AFT Macaulay_etal_2014 2,538 2,47401 50,92 47,98 45,36 Issyk Kul South 178 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731 2,45119 41,74 38,99 36,58 Issyk Kul South	155 156 157 158 159 160 161 162 163 164 165 165 166 167 168 169 170 171 172 173	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS SP3 SP3 SP2 SP1 8TS410 8TS411 8TS413	41,82 41,8805 41,8594 41,9831 42,0563 41,9859 42,0563 41,9842 41,9766 41,9703 41,9038 41,9703 41,9038 41,9397 41,8955 41,8735 41,8745 41,8755	75,7198 75,7281 77,6056 77,6056 77,6113 77,613 77,6239 77,6237 77,6537 77,6534 77,693 77,693 77,693 76,2935 76,3199 76,3295	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5 64,7 21 144,8	8 6,5 2,5 1,7 2,2 1,4 2,6 1,4 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7 2,3 10,5	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,839 2,626 2,626 2,605 3,43 2,721 3,641 3,821 3,821 3,821 3,814 3,825 3,558 3,558 3,274	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,60495 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,33752 3,34024 3,28044	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19 361,59 48,12	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81 104,69 322,72 44,49	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 73,53 54,95 98,88 291,47 41,37	Song Kul Song Kul Issyk Kul South Issyk Kul South
178 8T5416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731 2,45119 41,74 38,99 36,58 Issyk Kul South	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	IK-06 IK-05 CP1 NP2 CP2 P3 CP4 CP5 CP5 SP4 SS SP4 SS SP3 SP3 SP2 SP1 8TS410 8TS411 8TS414 8TS418	41,82 41,8805 41,8594 41,9851 42,0563 41,9859 42,0563 41,9842 41,9826 41,9703 41,9703 41,9038 41,9397 41,8956 41,8945 41,8735 41,9673 42,0054 42,0054	75,7198 75,7281 77,6009 77,6056 77,6074 77,6113 77,613 77,6259 77,6259 77,6554 77,6554 77,6584 77,693 77,7219 76,2935 76,3199 76,3225 76,3325	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5 107,5 64,7 21 144,8 140,3	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7 2,3 10,5 10,2	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,626 2,626 2,626 3,43 2,721 3,641 3,821 3,821 3,78 3,821 3,78 3,145 3,835 3,558	2,88315 2,97439 3,54798 2,90554 3,55895 3,5708 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,31752 3,24024 3,28044 2,47898	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19 361,59 48,12 42,78	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 188,86 77,55 59,81 104,69 322,72 44,49 39,53	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 73,53 54,95 98,88 291,47 41,37 36,72	Song Kul Song Kul Issyk Kul South Issyk Kul South
178 8TS416 42,1371 76,403 144,4 9,1 AFT Macaulay_etal_2014 2,731 2,45119 41,74 38,99 36,58 Issyk Kul South	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	IK-06 IK-05 CP1 NP2 CP2 NP1 CP3 CP4 CP5 NS SP4 SS SP4 SS SP4 SS SP3 SP2 SP1 8TS410 8TS411 8TS411 8TS414 8TS418 8TS421	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9763 41,9703 41,9038 41,9397 41,8945 41,8735 41,8745 41,8745 41,8745 41,8745 41,9763 42,0054 42,001	75,7198 77,609 77,6074 77,6113 77,6113 77,613 77,629 77,629 77,629 77,654 77,654 77,693 77,7219 76,2935 76,3093 76,3199 76,3222 76,3322 76,362	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 92,5 107,5 64,7 21 144,8 140,3 111	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7 2,3 10,5 10,2 10,9	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,626 3,43 2,605 3,43 2,721 3,641 3,821 3,78 3,78 3,78 3,78 3,745 3,558 3,274 2,122 2,853	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,5708 3,60495 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,33752 3,34024 3,28044 2,47898 2,84126	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19 361,59 48,12 42,78 60,76	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81 104,69 322,72 44,49 39,53 54,55	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 140,06 102,69 140,06 93,53 54,95 98,88 291,47 41,37 36,72 49,50	Song Kul Song Kul Issyk Kul South Issyk Kul South
	155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 174	IK-06 IK-05 CP1 NP2 CP2 CP3 CP4 CP5 SP4 SS SP4 SS SP3 SP2 SP1 8TS410 8TS411 8TS413 8TS414 8TS421 8TS419	41,82 41,8805 41,8594 41,9831 42,0624 41,9859 42,0563 41,9842 41,9763 41,9703 41,9038 41,9397 41,8955 41,9345 41,8945 41,8945 41,8945 41,8945 41,8945 41,8945 41,8945 41,8945 41,9733 42,0054 42,0054 42,014 42,0154 42,01442,014 42,014	75,7198 77,609 77,6074 77,6074 77,6113 77,613 77,6137 77,6574 77,6574 77,6574 77,6574 77,6593 77,7219 76,2935 76,3093 76,3199 76,325 76,3622 76,3622 76,3606	157,9 125 38,9 17,9 27,7 17,3 23,3 21,2 21,8 28,2 26,9 58,5 40,2 40,7 92,5 107,5 64,7 21 144,8 140,3 111 87,2	8 6,5 2,5 1,7 2,2 1,4 2,6 1,6 2,7 3,8 3,4 6,6 11,3 29,5 4,9 9,2 3,7 2,3 10,5 10,2 10,9 11,8	AFT AFT AFT AFT AFT AFT AFT AFT AFT AFT	Glorie_etal_2010 Glorie_etal_2010 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2013 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014 Macaulay_etal_2014	2,74 2,845 3,52 2,447 3,282 2,645 3,04 2,605 3,43 2,605 3,43 2,605 3,43 2,721 3,641 3,821 3,835 3,78 3,78 3,78 3,145 3,835 3,258 3,273	2,88315 2,97439 3,54798 2,90554 3,54559 2,98534 3,55895 3,5708 3,65059 3,81931 3,7756 3,85858 3,87113 3,90265 3,20696 3,33752 3,20696 3,33752 3,20696 3,33752 3,20696 3,33752 3,20696 3,2072 3,20044 2,60726 2,70986 2,60726 3,20696 3,20726 3,20766 3	39,97 51,93 191,34 383,37 271,50 396,36 332,24 349,41 358,11 282,72 305,02 134,53 250,77 631,55 82,01 65,64 111,19 361,59 48,12 42,78 60,76 81,92	37,87 49,10 178,88 347,77 250,05 365,07 295,71 323,55 314,52 244,76 266,83 119,00 180,07 178,86 77,55 59,81 104,69 322,72 44,49 39,53 54,55 70,47	35,95 46,59 168,04 318,18 231,67 338,36 266,25 301,13 280,18 215,62 236,96 106,69 140,06 102,69 73,53 54,95 98,88 291,47 41,37 36,72 49,50 61,79	Song Kul Song Kul Issyk Kul South Issyk Kul South

179	8TS408	41,8388	76,4693	115,3	6,6	AFT	Macaulay etal 2014	3,333	3,31286	60,29	56,72	53,53	
180	8TS407	41,8121	76,4973	114,6	5,1	AFT	Macaulay_etal_2014	3,193	3,31835	59,64	56,88	54,37	
181	8TS406		76,5406	130,4	6,3	AFT	Macaulay_etal_2014	2,96	3,21754	51,33	48,76	46,41	
182	8TS401	41,6968	76,7163	124,4	9,6	AFT	Macaulay_etal_2014	2,738	2,97651	53,51	49,21	45,53	
183	8TS402	41,7349	76,751	154,9	6,7	AFT	Macaulay_etal_2014	2,999	2,94478	41,16	39,28	37,59	
184	8TS398	41,6648		124,1	7,3	AFT	Macaulay_etal_2014 Macaulay_etal_2014	2,988	3,30094	55,32	51,93	48,96	
185	8TS394		77,0178	125,8	6,6	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,522	3,38262	55,59	52,56	49,84	
185	9TS475	41,9141		87,6	4,7	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,918			79,87	75,67	Issyk Kul South
180	8TS368	41,4502	,	107,9		AFT	·	3,089	3,64957	84,52		58,53	ISSYK KUI SOULII
	8TS372		77,3159		6,7		Macaulay_etal_2014		3,56357	66,58	62,31		
188			77,3254	121,1	5,8	AFT	Macaulay_etal_2014	3,232	3,53074	58,16	55,27	52,67	
189	8TS371	41,4548	77,3285	122,6	7,3	AFT	Macaulay_etal_2014	3,581	3,55236	58,88	55,26	52,04	
190	8TS369	41,4505	77,3417	122	6,5	AFT	Macaulay_etal_2014	4,061	3,57999	59,75	56,47	53,51	
191	8TS362		77,5876	240,7	19,8	AFT	Macaulay_etal_2014	3,142	3,44274	29,15	26,64	24,52	
192	8TS359	41,4986	77,6227	155,9	8,7	AFT	Macaulay_etal_2014	3,797	3,48334	45,59	42,93	40,59	
193	8TS358	41,4968	77,6238	218,3	24,4	AFT	Macaulay_etal_2014	3,95	3,49194	34,42	30,41	27,24	
194	8TS361	41,5036	77,6298	201,2	9,5	AFT	Macaulay_etal_2014	3,482	3,46222	34,24	32,53	31,00	
195	7TS322	42,224	78,0655	30,2	3,6	AFT	Macaulay_etal_2014	2,407	2,64047	226,60	199,44	177,99	Issyk Kul South
196	7TS327	42,2114	78,0757	21,5	2,7	AFT	Macaulay_etal_2014	2,534	2,78559	327,05	286,62	254,87	Issyk Kul South
197	7TS324	42,1649	78,08	64,2	8,4	AFT	Macaulay_etal_2014	3,438	3,20804	118,58	102,72	90,51	Issyk Kul South
198	7TS323	42,1613	78,0818	59,1	8,2	AFT	Macaulay_etal_2014	3,594	3,23828	131,29	112,74	98,66	Issyk Kul South
199	7TS325	42,1739	78,091	51,7	8,7	AFT	Macaulay_etal_2014	3,095	3,13427	151,89	125,88	107,31	Issyk Kul South
200	7TS326	42,1827	78,0931	29,1	2,8	AFT	Macaulay_etal_2014	2,939	3,0629	245,91	222,24	202,65	Issyk Kul South
201	9TS502	42,2864	78,3605	23,9	2,1	AFT	Macaulay_etal_2014	3,445	3,2031	305,18	278,72	256,38	, Issyk Kul South
202	7TS321	42,3948	78,4532	105	5,8	AFT	Macaulay_etal_2014	2,188	2,74248	59,23	55,81	52,79	Issyk Kul South
203	7TS320	42,3601	78,4697	39,4	11,8	AFT	Macaulay_etal_2014	2,402	3,08005	231,64	161,74	123,77	Issyk Kul South
203	7TS318	42,3001	78,4749	20,4	1,9	AFT	Macaulay_etal_2014 Macaulay_etal_2014	2,569	3,36092	358,13	325,45	298,07	Issyk Kul South
204	7TS318	42,3213	78,4771	20,4 31,9	7,1	AFT		2,555	3,40243	269,53	209,53	171,02	Issyk Kul South
		42,3139					Macaulay_etal_2014 Macaulay_etal_2014						
206	7TS317	,	78,482	14,4	2,5	AFT	Macaulay_etal_2014 Macaulay_etal_2014	2,752	3,37052	550,40	458,86	393,14	Issyk Kul South
207	7TS316	42,3238	78,4892	13,4	1,5	AFT	Macaulay_etal_2014	2,866	3,37387	551,95	492,99	445,34	Issyk Kul South
208	9TS467	42,2718	78,8378	72,9	6,5	AFT	Macaulay_etal_2014	4,06	3,85778	109,17	99,22	90,93	Issyk Kul South
209	9TS468		78,8452	67,4	12,1	AFT	Macaulay_etal_2014	3,792	3,85436	130,74	106,79	90,13	Issyk Kul South
210	9TS469	42,2681		73,3	10,4	AFT	Macaulay_etal_2014	3,616	3,84097	113,96	97,38	85,00	Issyk Kul South
	9TS470	42,2662	78,858	70	6,8	AFT	Macaulay_etal_2014	3,453	3,82402	112,66	101,46	92,28	Issyk Kul South
212	9TS471	42,2566	78,8828	79,4	4,4	AFT	Macaulay_etal_2014	3,374	3,7614	93,63	88,31	83,54	Issyk Kul South
213	SJTC-6	42,5322	78,9172	10,7	1,3	AFT	Macaulay_etal_2014	2,54	2,96113	648,40	574,79	515,92	Issyk Kul South
214	7TS333	42,5609	78,9268	17,9	1,8	AFT	Macaulay_etal_2014	2,704	2,76777	381,08	343,65	312,87	Issyk Kul South
215	7TS328	42,5012	78,9362	17,2	1,9	AFT	Macaulay_etal_2014	2,719	3,19916	423,49	378,00	341,25	Issyk Kul South
216	7TS331	42,5476	78,9362	19,1	1,4	AFT	Macaulay_etal_2014	3,262	2,89598	358,32	332,57	310,30	Issyk Kul South
217	7TS330	42,5433	78,9368	21,9	2,2	AFT	Macaulay_etal_2014	3,41	2,9285	325,30	293,06	266,74	Issyk Kul South
218	7TS332	42,5517	78,938	15,7	1,7	AFT	Macaulay_etal_2014	3,106	2,86636	445,90	399,29	361,44	Issyk Kul South
219	9TS458	42,4498	78,9476	38,4	5,5	AFT	Macaulay etal 2014	2,875	3,39033	204,50	174,92	152,77	Issyk Kul South
220	SJTC-5	42,4345	78,9501	46,7	14,9	AFT	Macaulay_etal_2014	2,893	3,43565	212,90	144,29	108,74	Issyk Kul South
	9TS452	42,4173	78,9504	37,9	6,9	AFT	Macaulay_etal_2014	2,816	3,48342	219,28	179,05	151,17	Issyk Kul South
222	9TS456		78,9584	50,2	7,4	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,264	3,41759	158,87	135,08	117,36	Issyk Kul South
223	SJTC-3		79,0455	88	3,4	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,393	3,68033	81,95	78,68	75,66	Issyk Kul South
223	SJTC-4	42,3888	79,0607	81		AFT					86,39		
					3,3		Macaulay_etal_2014	3,788	3,6601	90,15		82,91	Issyk Kul South
225	SJTC-1	42,0426	79,0758	6,9	0,7	AFT	Macaulay_etal_2014	2,611	3,24957	983,52	893,96	819,18	
226	9TS465	42,1291	79,08	44,7	7,7	AFT	Macaulay_etal_2014	2,679	3,36466	180,17	148,66	126,44	
227	SJTC-2		79,0833	11,3	1,7	AFT	Macaulay_etal_2014	2,612	3,28243	663,56	569,84	498,97	
228	8TS437	42,0542	79,0847	13,7	3,3	AFT	Macaulay_etal_2014	2,698	3,2589	615,15	474,12	385,03	
229	8TS435	42,0545	79,0912	12,4	2,1	AFT	Macaulay_etal_2014	2,857	3,25337	622,34	522,78	450,28	
230	8TS436	42,0545	79,0913	14,6	3,8	AFT	Macaulay_etal_2014	2,857	3,25337	595,36	447,34	357,54	
231	9TS461		79,0924	88,3	9,5	AFT	Macaulay_etal_2014	3,292	3,33175	84,18	74,87	67,35	
232	9TS466	42,1743	79,0937	75,2	7,7	AFT	Macaulay_etal_2014	2,657	3,3008	96,62	86,47	78,17	
233	8TS434	42,0548	79,0944	15,3	2,8	AFT	Macaulay_etal_2014	2,992	3,25057	520,26	428,77	364,33	
234	8TS433	42,0545	79,0944	18,7	4,4	AFT	Macaulay_etal_2014	2,992	3,25057	457,64	352,93	286,86	
235	8TS432	42,0535	79,0981	21,5	4,8	AFT	Macaulay_etal_2014	3,204	3,2439	395,66	309,08	253,29	
236	8TS431		79,1014	16,6	2,2	AFT	Macaulay_etal_2014	3,43	3,24073	458,43	399,72	354,22	
237	mav658		79,2463	105,2	8,6	AFT	Macaulay_etal_2014	2,835	3,39892	67,93	62,20	57,32	
238	8TS427	42,0782	79,275	103,1	15,1	AFT	Macaulay etal 2014	3,506	3,39205	76,14	64,66	56,11	
239	7TS304	,	79,6467	200,1	11,5	AFT	Macaulay_etal_2014	3,58	3,65491	35,79	33,64	31,73	
240	7TS308		79,6848	161,6	16,2	AFT	Macaulay_etal_2014	3,202	3,58738	46,01	41,23	37,32	
240	7TS302		79,7506	96,1	7,7	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,812	3,92617	81,54	74,83	69,10	
241	7TS302		79,7627	110,9	12	AFT	Macaulay_etal_2014 Macaulay_etal_2014	3,538	3,89124	71,83	63,82	57,40	
242	KS13-13		72,1616	121,8	7,8	AFT	Nachtergaele_etal_2018	3,338 0,777	0,851914	34,52	32,14	30,07	
	KS13-15 KS13-16												
244			72,1695	85	16	AFT	Nachtergaele_etal_2018	0,664	0,840304	58,50	46,86	38,98	
245	KS13-17		72,1697	91	13	AFT	Nachtergaele_etal_2018	0,648	0,838331	51,30	43,52	37,72	
246	KS13-18		72,1697	126	13	AFT	Nachtergaele_etal_2018	0,636	0,838331	34,50	30,68	27,61	
247	KS13-11		72,1905	118	11	AFT	Nachtergaele_etal_2018	0,658	0,835865	36,60	32,94	29,93	
248	F11-775		72,6317	118,1	6,5	AFT	Nachtergaele_etal_2018	1,2	1,34511	39,90	37,57	35,50	
249	TF-06		72,8606	53,2	2,8	AFT	Nachtergaele_etal_2018	1,355	2,10221	105,58	99,82	94,69	Toktogul
250	KYR-04		72,9433	73,5	7,4	AFT	Nachtergaele_etal_2018	1,625	1,57887	73,66	65,88	59,59	
251	KYR-05	41,7222	72,9681	97,5	6,7	AFT	Nachtergaele_etal_2018	2,11	1,49441	52,96	49,14	45,82	
252	TF-15	42,2772	73,1858	115,6	6,6	AFT	Nachtergaele_etal_2018	3,3	3,14635	58,76	55,29	52,18	
253	TF-16	42,2219	73,2211	102,2	20,7	AFT	Nachtergaele_etal_2018	2,97	3,10889	78,26	61,90	51,11	
254	KS13-10	40,5323	73,4502	84,1	3,9	AFT	Nachtergaele_etal_2018	2,328	2,04474	66,78	63,53	60,59	
255	KS13-02		73,4658	148,4	8,3	AFT	Nachtergaele_etal_2018	1,905	2,08657	36,88	34,71	32,76	
256	KS13-01	40,5246	73,466	144	4,8	AFT	Nachtergaele_etal_2018	1,898	2,09173	37,16	35,83	34,60	
257	KS13-04		73,4698	123,8	6,1	AFT	Nachtergaele_etal_2018	1,91	2,07864	44,25	41,97	39,89	
258	KS13-08		73,4814	130,4	5,3	AFT	Nachtergaele_etal_2018	1,928	2,03087	41,20	39,44	37,82	
259	KS13-20	40,8335	73,6099	102,2	6,3	AFT	Nachtergaele_etal_2018	1,37	1,66896	50,12	46,86	44,01	
260	KS13-19A	40,8344	73,6117	110	6,1	AFT	Nachtergaele_etal_2018	1,375	1,67574	46,12	43,44	41,02	
261	KYR-15		73,6469	110,1	8,2	AFT	Nachtergaele etal 2018	2,03	2,32391	53,80	49,60	45,99	
261	AI-44		73,6494	110,1	8,2 5,6	AFT	Nachtergaele_etal_2018	2,05	2,32391 2,42301	50,58	49,80 48,06	45,99 45,79	
263	AI-45		73,6636	130	5,8	AFT	Nachtergaele_etal_2018	2,125	2,27292	43,50	41,46	39,62	
264	KYR-02		73,8281	115,5	7,1	AFT	Nachtergaele_etal_2018	2,92	2,8825	56,37	52,77	49,58	
265	KS13-22	40,8451	74,0999	11,4	0,9	AFT	Nachtergaele_etal_2018	2,501	3,00924	588,08	544,47	506,69	I

266	TF-23	42,1117	74,1017	101,5	4,5	AFT	Nachtergaele_etal_2018	2,27	2,55154	59,11	56,37	53,87	Song Kul
267	KS-113	40,3762	74,3414	61,1	2,9	AFT	Nachtergaele_etal_2018	2,651	2,81958	105,50	100,34	95,71	
268	KS-106	40,4002	74,3649	25,1	1,8	AFT	Nachtergaele_etal_2018	2,992	3,02682	276,42	256,74	239,62	
269	KB-135	41,7034	74,5056	53,5	3	AFT	Nachtergaele_etal_2018	2,822	2,92175	124,36	117,24	110,85	Song Kul
270	KS-128	41,6763	74,5072	202,9	20	AFT	Nachtergaele_etal_2018	2,28	2,93634	32,23	28,90	26,17	Song Kul
271	KS-126	41,675	74,5073	198	16	AFT	Nachtergaele_etal_2018	2,2	2,93674	32,31	29,56	27,23	Song Kul
272	KB-134	41,7085	74,5091	64,1	3,1	AFT	Nachtergaele_etal_2018	2,98	2,93508	103,10	97,97	93,36	Song Kul
273	KB-133	41,7205	74,5166	98,6	4,8	AFT	Nachtergaele_etal_2018	3,387	2,9519	67,06	63,67	60,60	Song Kul
274	KB-132	41,7263	74,5344	113,2	5,3	AFT	Nachtergaele_etal_2018	3,802	3,00576	59,13	56,25	53,64	Song Kul
275	KB-131	41,725	74,5392	134,6	6,5	AFT	Nachtergaele_etal_2018	4,143	3,02349	50,10	47,57	45,31	Song Kul
276	KB-124	41,8303	74,6898	111,7	7,5	AFT	Nachtergaele_etal_2018	2,385	2,57045	55,22	51,35	47,97	Song Kul
277	KB-123	41,8067	74,6952	101,3	8,1	AFT	Nachtergaele_etal_2018	2,431	2,74585	63,73	58,44	53,93	Song Kul
278	KB-122	41,7524	74,7222	145,4	9,5	AFT	Nachtergaele_etal_2018	2,578	3,07862	45,30	42,20	39,51	Song Kul
279	KB-121	41,7258	74,7759	80,2	5,6	AFT	Nachtergaele_etal_2018	2,756	3,26516	87,00	80,74	75,29	Song Kul
280	TS158	42,5394	74,8696	4,7	0,7	AFT	Sobel_etal_2006b	2,56	3,34741	1458,56	1269,74	1124,71	Kyrgyz range
281	TS159	42,5185	74,8738	6,9	0,6	AFT	Sobel_etal_2006b	2,85	3,46565	1000,60	922,53	855,59	Kyrgyz range
282	TS161	42,5018	74,8817	7,6	1,9	AFT	Sobel_etal_2006b	3,29	3,51867	1108,84	857,72	699,22	Kyrgyz range
283	TS162	42,5565	74,8892	4,4	0,6	AFT	Sobel_etal_2006b	2,35	3,12738	1474,78	1301,38	1164,94	Kyrgyz range
284	TS163	42,5809	74,9031	5,4	2,8	AFT	Sobel_etal_2006b	2,09	2,82507	1930,98	1040,33	715,52	Kyrgyz range
285	Mav38	42,6319	74,9183	3,9	0,7	AFT	Sobel_etal_2006b	1,84	2,19492	1473,58	1250,36	1086,83	Kyrgyz range
286	TS166	42,4884	75,2162	17	2	AFT	Sobel_etal_2006b	2,87	3,32349	439,90	389,66	349,63	Kyrgyz range
287	TS165	42,4972	75,2166	6,7	1,8	AFT	Sobel_etal_2006b	2,61	3,25527	1210,69	918,59	740,13	Kyrgyz range
288	TS167	42,4706	75,2189	66,6	3,4	AFT	Sobel_etal_2006b	3,16	3,41192	106,32	100,79	95,76	Kyrgyz range
289	TS169	42,4625	75,2324	151,1	7,7	AFT	Sobel_etal_2006b	3,57	3,40649	46,09	43,65	41,45	Kyrgyz range
290	TS170	42,4557	75,2337	91,1	5,6	AFT	Sobel_etal_2006b	3,77	3,42409	79,32	74,31	69,86	Kyrgyz range
291	TS164	42,5123	75,2693	6,3	0,8	AFT	Sobel_etal_2006b	2,25	3,04876	1058,33	938,58	843,05	Kyrgyz range
292	TS84	42,5448	75,8145	150,2	7,6	AFT	Sobel_etal_2006b	1,62	2,05576	35,63	33,70	31,98	
293	TS27	42,6335	75,8427	127,5	10,1	AFT	Sobel_etal_2006b	1,376	1,97337	42,73	39,17	36,14	
294	96TS1	40,1053	73,5282	20,6	1	AFT	Kaessner_etal_2017	1,888	-0,1976704	181,89	172,98	164,85	Osh
295	96TS2	40,1395	73,5053	16,1	0,8	AFT	Kaessner_etal_2017	1,808	-0,5265276	214,26	203,70	194,03	Osh

Site parameters for calculating exhumation rates presented in table S4.3:

T0 = 25; Temperature (deg C) at elevation = 0 km

lapse = 5; Temperature lapse rate (deg C km-1)

Crustal properties:

G_init = 25; initial geotherm, deg C km-1

kappa = 30; thermal diffusivity, km2 My-1

L = 30; model thickness, km

Table S4.4. AHe	data and	exhumation rates
-----------------	----------	------------------

					Age			Elevation	Local relief	Exhumation	Exhumatio	Exhumatio	
D	Sample ID	Latitude	Longitude	Age (Ma)	uncertaint	System	Reference	(km)	correction ∆h	rate high	n rate mid	n rate low	Region
_				_	У				(km)	(mm/kyr)	(mm/kyr)	(mm/kyr)	
)	KG-13-28	42,0453		9	0	AHe	Rolland_etal_2020	5,52	0,551731	356,85	356,96	356,96	
	KG-13-27	42,0453		6,3	0	AHe	Rolland_etal_2020	5,53	0,551731	499,51	499,39	499,39	
	KG-13-04abe			41	0,9	AHe	Rolland_etal_2020	3,785	-0,346777	49,64	48,42	47,26	
	KG-13-0cdf	42,1384		15,5	0,1	AHe	Rolland_etal_2020	3,785	-0,346777	140,72	139,81	138,86	
	KG-13-06c	42,1124	,	67,8	3,4	AHe	Rolland_etal_2020	4,401	-0,0564873	35,17	33,23	31,47	
	KG-13-06de KG-13-32b	42,1124 42,1111		265,7 277,4	7,8 20,5	AHe AHe	Rolland_etal_2020 Rolland_etal_2020	4,401 4,625	-0,0564873	7,38 8,87	7,13 8,14	6,90 7,52	
,	KG-13-32b KG-13-32e	42,1111		161,2	4,7	AHe	Rolland_etal_2020	4,625	0,300586 0,300586	15,39	14,89	14,43	
	KG-13-52e KG-13-11ad	42,1067		82,6	3	AHe	Rolland_etal_2020	4,75	0,411635	33,98	32,64	31,40	
	KG-13-11au KG-13-11c	42,1067		231,5	8,6	AHe	Rolland_etal_2020	4,75	0,411635	10,96	10,51	10,09	
	KG-13-39ade			260	1,9	AHe	Rolland_etal_2020	3,566	0,596496	9,00	8,93	8,86	
	KG-13-39bc	41,9958		117,1	1,1	AHe	Rolland_etal_2020	3,566	0,596496	21,85	21,63	21,41	
	KG-13-48a	42,0205		4,6	0,1	AHe	Rolland_etal_2020	2,486	-0,657069	379,98	372,24	364,74	
	KG-13-48d	42,0205		76,2	1	AHe	Rolland_etal_2020	2,486	-0,657069	16,60	16,33	16,07	
	KG-13-46ac	42,0254		21,2	0,2	AHe	Rolland_etal_2020	2,977	-0,290688	96,07	95,06	94,09	
	KG-13-46bd	42,0254		, 62,9	0,4	AHe	Rolland_etal_2020	2,977	-0,290688	28,21	28,00	27,80	
	7TS302a	42,2842	79,751	159,9	1,1	AHe	Rolland_etal_2020	3,818	-0,262935	10,81	10,72	10,63	
	7TS302b	42,2842	79,751	13,6	0,2	AHe	Rolland_etal_2020	3,818	-0,262935	168,72	166,16	163,65	
	7TS302cd	42,2842		58	0,3	AHe	Rolland_etal_2020	3,818	-0,262935	34,41	34,20	34,01	
	7TS305ab	42,3108		65,9	0,7	AHe	Rolland_etal_2020	3,54	0,532971	40,17	39,70	39,24	
)	7TS305ce	42,3108	79,7712	30,1	0,3	AHe	Rolland_etal_2020	3,54	0,532971	93,63	92,65	91,67	
L	7TS305d	42,3108	79,7712	110,1	3,6	AHe	Rolland_etal_2020	3,54	0,532971	23,43	22,59	21,80	
2	7TS307ad	42,3341	79,6858	15,3	0,4	AHe	Rolland_etal_2020	3,202	-0,33701	139,18	135,30	131,63	
;	7TS307bc	42,3341	79,6858	55,3	0,7	AHe	Rolland_etal_2020	3,202	-0,33701	33,02	32,53	32,07	
ŀ	8TS416	42,1371	76,403	153,2	6,3	AHe	Macaulay_etal_2014	2,731	0,234574	13,39	12,76	12,19	Issyk Kul S
	8TS418	42,1345	76,3999	155,8	16	AHe	Macaulay_etal_2014	2,538	0,0462664	12,61	11,12	9,93	Issyk Kul S
,	8TS420	42,0909	76,3803	188,8	27,4	AHe	Macaulay_etal_2014	3,081	0,333992	13,06	10,94	9,38	Issyk Kul S
1	9TS474	41,9154	77,068	87,8	7,5	AHe	Macaulay_etal_2014	4,054	0,302357	30,71	27,81	25,42	Issyk Kul S
	9TS475	41,9141	77,0598	49,7	5,1	AHe	Macaulay_etal_2014	3,918	0,144629	54,63	48,54	43,60	Issyk Kul S
	7TS323ab	42,1613	78,0818	80,1	12,7	AHe	Macaulay_etal_2014	3,594	0,32616	36,16	29,88	25,38	Issyk Kul S
	7TS323c	42,1613		28,1	18	AHe	Macaulay_etal_2014	3,594	0,32616	270,61	93,62	54,84	Issyk Kul S
	7TS324	42,1649	78,08	35,5	4,1	AHe	Macaulay_etal_2014	3,438	0,135386	76,76	67,18	59,61	Issyk Kul S
	7TS325	42,1739	78,091	42,9	3,8	AHe	Macaulay_etal_2014	3,095	-0,124426	52,67	47,49	43,18	Issyk Kul S
	7TS326	42,1827		11	0,8	AHe	Macaulay_etal_2014	2,939	-0,266073	208,25	192,57	179,12	Issyk Kul S
1	7TS327	42,2114	78,0757	7,6	0,8	AHe	Macaulay_etal_2014	2,534	-0,253997	304,69	272,84	246,70	Issyk Kul S
	7TS322	42,224	78,0655	8,7	0,5	AHe	Macaulay_etal_2014	2,407	-0,268351	248,70	234,18	221,17	Issyk Kul S
	9TS496	42,2745		95,4	4,4	AHe	Macaulay_etal_2014	2,508	-0,591937	13,88	13,08	12,38	Issyk Kul S
	7TS330	42,5433		11,6	1,2	AHe	Macaulay_etal_2014	3,41	0,413792	266,92	239,24	216,49	Issyk Kul S
	7TS331	42,5476		13,3	2,4	AHe	Macaulay_etal_2014	3,262	0,296193	243,31	198,75	167,42	Issyk Kul S
)	7TS332	42,5517	78,938	9,4	0,2	AHe	Macaulay_etal_2014	3,106	0,125167	270,08	264,42	258,89	Issyk Kul S
	7TS333	42,5609		11,1	0,4	AHe	Macaulay_etal_2014	2,704	-0,121135	205,96	198,34	191,20	Issyk Kul S
	SJTC-6	42,5322 42,5012		7	1	AHe	Macaulay_etal_2014	2,54	-0,506565	310,15	266,24	232,66	Issyk Kul S
	7TS328 SJTC-5	42,5012	,	7,9 29,4	0,1 3 1	AHe AHe	Macaulay_etal_2014	2,719 2,893	-0,453429	248,39 72,08	245,14	242,04 56,86	Issyk Kul S Issyk Kul S
	8TS411ab	42,4345		29,4 19,9	3,1 2,4	АНе	Macaulay_etal_2014 Macaulay etal 2014	2,893 3,835	-0,356807	159,88	63,65 139,86	124,10	Issyk Kul S
	8TS411ab 8TS411c	42,0054	,	19,9 9,6	2,4 3,5	АНе	Macaulay_etal_2014 Macaulay etal_2014	3,835 3,835	0,387802 0,387802	455,05	139,86 293,98	124,10 215,26	Issyk Kul S
	8TS411C 8TS414ac	42,0054		9,6 159,6	3,5 25	AHe	Macaulay_etal_2014 Macaulay_etal_2014	3,855 3,274	-0,0167319	455,05 13,93	295,98 11,46	9,69	Issyk Kul S
	8TS414ac 8TS414b	41,9758		159,0 90,9	35,4	AHe	Macaulay_etal_2014 Macaulay etal_2014	3,274	-0,0167319	37,99	21,79	9,69 14,98	Issyk Kul S
	9TS471	42,2566		32,4	3,5	AHe	Macaulay_etal_2014 Macaulay_etal_2014		-0,49766	63,78	56,09	49,95	Issyk Kul S
	8TS369	41,4505		68,8	3,5	AHe	Macaulay_etal_2014 Macaulay_etal_2014	4,061	0,535539	41,67	39,44	37,42	
	8TS370	41,4493		59,8	4,8	AHe	Macaulay etal 2014	3,855	0,29591	45,66	41,66	38,27	
	8TS370 8TS371	41,4548		86,1	4,0 11,7	AHe	Macaulay_etal_2014 Macaulay_etal_2014	3,581	0,0880234	29,48	25,04	21,70	
	8TS372	41,4609		62,4	1,4	AHe	Macaulay_etal_2014	3,232	-0,140448	32,18	31,37	30,59	
	8TS368	41,4502		37	3,8	AHe	Macaulay_etal_2014	3,089	-0,438964	54,44	48,15	43,08	
	8TS358	41,4968		371,1	20,1	AHe	Macaulay_etal_2014	3,95	0,565792	6,54	6,14	5,79	
	8TS359	41,4986		209	21,5	AHe	Macaulay_etal_2014	3,797	0,500968	12,65	11,21	10,05	
	8TS361ab	41,5036		108,6	15,5	AHe	Macaulay_etal_2014	3,482	-0,232188	19,53	16,37	14,02	
	8TS361c	41,5036		170	21,9	AHe	Macaulay_etal_2014	3,482	-0,232188	11,42	9,73	8,44	
	9TS463	42,1261		22,2	2,3	AHe	Macaulay_etal_2014	3,039	-0,227822	105,28	93,49	83,93	
	9TS465	42,1291	79,08	40,6	3,7	AHe	Macaulay etal 2014	2,679	-0,55734	42,97	38,43	34,70	
	8TS432a		79,0981	58,2	8,5	AHe	Macaulay etal 2014		0,133874	45,45	38,15	32,77	

	8TS432b	42,0535		28,3	4,1	AHe	Macaulay_etal_2014	3,204	0,133874	99,71	84,22	72,70	
	SJTC-1	42,0426		6,4	0,7	AHe	Macaulay_etal_2014	2,611	-0,534359	324,03	289,23	260,85	
	SJTC-2ab		79,0833	12,9	2,9	AHe	Macaulay_etal_2014	2,612	-0,586743	179,10	136,57	109,49	
	SJTC-2c BTS428	42,0695 42,0796		24,1 435	4,1 9,2	AHe AHe	Macaulay_etal_2014 Macaulay_etal_2014	2,612 3,367	-0,586743 0,0849629	84,29 3,93	68,28 3,83	57,09 3,74	
	ALMA3-01	43,1633		435 14,6	0,5	AHe	Macaulay_etal_2014 Macaulay_etal_2014	1,64	-0,34322	126,25	121,49	117,08	Issyk Kul North
	TS-06	42,7264		159,9	4,8	AHe	Macaulay_etal_2014 Macaulay_etal_2014	3,95	0,561368	16,17	15,63	15,13	Issyk Kul North
	TS-26	42,0706		183,5	5,5	AHe	Macaulay_etal_2014	2,7	0,0162651	9,57	9,24	8,92	Issyk Kul South
	K-13	42,4519		11,4	0,4	AHe	Macaulay_etal_2014	1,97	-0,372563	168,37	162,08	156,22	Issyk Kul South
	NP1	42,0563	77,61	, 9,8	0,2	AHe	Macaulay_etal_2014	2,645	-0,318243	211,64	207,12	202,85	Issyk Kul South
71 I	NP3		77,6024	7,6	0,1	AHe	Macaulay_etal_2014	2,243	-0,507221	241,64	238,37	235,22	Issyk Kul South
72 I	NP4	42,0677	77,6026	8	0,3	AHe	Macaulay_etal_2014	2,184	-0,552035	228,99	220,13	211,92	Issyk Kul South
73 (CP1	41,9831	77,6009	21,9	0,6	AHe	Macaulay_etal_2014	3,52	0,00426465	111,75	108,49	105,39	Issyk Kul South
74 (CP3	41,9842	77,6113	14,7	0,6	AHe	Macaulay_etal_2014	3,04	-0,456169	137,96	132,00	126,44	Issyk Kul South
75 (CP4	41,9832	77,6163	13	0,6	AHe	Macaulay_etal_2014	2,839	-0,684889	138,88	131,97	125,67	Issyk Kul South
76 I	NS	41,9703	77,6377	16,5	0,5	AHe	Macaulay_etal_2014	2,605	-0,97109	85,76	82,74	79,94	Issyk Kul South
77 5		41,9397		19,8	0,7	AHe	Macaulay_etal_2014	2,721	-0,891731	75,04	72,02	69,19	Issyk Kul South
	SP1	41,8735		134,2	4,8	AHe	Macaulay_etal_2014	3,78	-0,187867	14,18	13,60	13,06	Issyk Kul South
	SP4	41,9038		9,3	0,3	AHe	Macaulay_etal_2014	3,43	-0,373966	235,58	227,90	220,67	Issyk Kul South
	AI-20a	42,1998		57	3,4	AHe	Glorie_etal_2011	2,781	-0,34618	31,90	29,70	27,77	
	AI-20bc	42,1998		125,7	7,5	AHe	Glorie_etal_2011	2,781	-0,34618	12,61	11,72	10,94	
	Al-14ab	42,0624		14,9	0,9	AHe	Glorie_etal_2011	2,619	-0,53886	128,13	119,79	112,35	
	Al-14c	42,0624 42,0643		50,6	3	AHe	Glorie_etal_2011	2,619	-0,53886	31,99	29,78	27,82	
	Al-13a Al-13bc	42,0643		6,6 33,8	0,4 2	AHe AHe	Glorie_etal_2011	2,66 2,66	-0,495062 -0,495062	304,95 52,72	286,68 49,16	270,41 46,04	
	AI-155C AI-16a	42,0043		169	10	AHe	Glorie_etal_2011 Glorie etal 2011	3,543	0,451495	14,57	13,62	12,77	
	Al-16bc	42,0198		435	26	AHe	Glorie_etal_2011	3,543	0,451495	5,04	4,70	4,40	
	AI-31	41,7367		107,1	6,4	AHe	Glorie_etal_2011	4,067	0,157056	22,63	21,13	19,81	
	AI-29	41,7147		30	1,8	AHe	Glorie_etal_2011	3,804	-0,233082	77,06	72,02	67,56	
	AI-73	41,0572		73,2	4,4	AHe	Glorie_etal_2011	2,345	-0,175265	24,84	23,12	21,60	Naryn
	AI-69	41,0497		85,1	5,4	AHe	Glorie etal 2011	2,628	-0,0221321	23,52	21,81	20,32	Naryn
92	AI-77	40,8273	75,5565	10,7	0,6	AHe	Glorie_etal_2011	3,99	0,147801	262,36	247,67	234,46	
93 A	AI-74	40,3883	75,2937	41,4	2,5	AHe	Glorie_etal_2011	3,591	0,0668047	59,97	56,02	52,52	
94 /	AI-79	40,8088	76,2628	254,1	15	AHe	Glorie_etal_2011	3,259	-0,0516501	7,03	6,54	6,12	
95 A	AI-82	40,9857	76,6052	331,9	19	AHe	Glorie_etal_2011	3,086	-0,169425	4,64	4,33	4,05	
	Kyr-03	42,31	73,8372	57,6	3,5	AHe	Glorie_etal_2010	2,77	-0,149403	34,91	32,50	30,38	
	TF-17	41,78	74,2669	29,4	1,8	AHe	Glorie_etal_2010	1,775	-0,531511	53,96	50,13	46,74	Song Kul
	TF-21	42,0933		98,6	6,5	AHe	Glorie_etal_2010	2,01	-0,612896	12,16	11,14	10,26	Song Kul
	K-05	41,8594		119,4	7,2	AHe	Glorie_etal_2010	2,845	-0,171867	15,03	13,98	13,05	Song Kul
100 I		41,8806		134,6	8,1	AHe	Glorie_etal_2010	2,74	-0,103474	13,40	12,46	11,64	Song Kul
	212-10	42,5418		10,2	0,8	AHe	Bullen_etal_2003	2,935	-0,448865	209,68	192,74	178,18	Kyrgyz range
	212-14 212-16	42,5484 42,5953		6,4 3	0,1 0,2	AHe AHe	Bullen_etal_2003	2,69 2,24	-0,548665	293,97 626,17	289,35 589,96	284,96 557,63	Kyrgyz range
103 /		42,3933 39,7639		5	0,2	AHe	Bullen_etal_2003 DeGrave_etal_2012	2,24 4,51	-0,446454 0,329095	587,54	555,58	526,94	Kyrgyz range
104 /		39,7136		12,5	0,5	AHe	DeGrave_etal_2012	3,56	-0,116201	200,92	187,80	176,13	
106 /		39,7142		9,7	0,6	AHe	DeGrave_etal_2012	3,1	-0,445541	220,18	206,26	193,89	
107 1		42,7264		159,9	9,6	AHe	DeGrave_etal_2013	3,95	0,561368	16,74	15,63	14,66	Issyk Kul North
108 1		42,7692		312,3	16,7	AHe	DeGrave_etal_2013	1,85	-0,195455	3,90	3,64	3,41	Issyk Kul North
109 1		42,4492		111,6	6,7	AHe	DeGrave_etal_2013	2,15	0,208005	18,19	16,95	15,85	
110	TS-17	42,4536	75,8569	122,5	7,6	AHe	DeGrave_etal_2013	1,83	-0,0352885	13,79	12,78	11,90	
111 1	TS-26	42,0706	77,1386	183,5	5,1	AHe	DeGrave_etal_2013	2,7	0,0162651	9,55	9,24	8,95	Issyk Kul South
112 H	KAZ-01	43,35	74,95	296,3	17,8	AHe	DeGrave_etal_2013	1,25	0,061749	4,61	4,27	3,97	
113 H	KAZ-03	43,2333	74,75	196,6	11,5	AHe	DeGrave_etal_2013	0,76	-0,0635141	6,28	5,81	5,41	
114 I	K-03	41,3897	76,0114	186,3	11,2	AHe	DeGrave_etal_2013	2,315	-0,270281	7,68	7,12	6,63	Naryn
115 I	K-13	42,4519	78,5517	11,4	0,7	AHe	DeGrave_etal_2013	1,97	-0,372563	173,37	162,09	152,08	Issyk Kul South
	ALMA3-01	43,1633		14,6	0,9	AHe	DeGrave_etal_2013	1,64	-0,34322	130,27	121,50	113,76	lssyk Kul North
	KYR-38	41,8708		85	5,1	AHe	DeGrave_etal_2013	3,815	-0,151585	25,09	23,39	21,89	Issyk Kul South
118 /			75,1197	176,5	10,6	AHe	DeGrave_etal_2013	2,57	-0,225584	8,82	8,19	7,63	Song Kul
119 /		41,8436		68,8	4,1	AHe	DeGrave_etal_2013	3,25	0,139213	34,11	31,87	29,87	Song Kul
	AI-100	41,9281		45,5	2,7	AHe	DeGrave_etal_2013	3,36	0,357825	59,01	55,20	51,83	Song Kul
	AI-102		75,0467	78,3	4,7	AHe	DeGrave_etal_2013	3,065	-0,038656	26,81	24,99	23,39	Song Kul
122		41,8436		68,8	4,1	AHe	DeGrave_etal_2011	3,25	0,139213	34,11	31,87	29,87	Song Kul
	AI-100	41,9281		45,5	2,7	AHe	DeGrave_etal_2011	3,36	0,357825	59,01	55,20	51,83	Song Kul
124 /	AI-102	41,91	75,0467	78,3	4,7	AHe	DeGrave_etal_2011	3,065	-0,038656	26,81	24,99	23,39	Song Kul

Site parameters for calculating exhumation rates presented in

table S4.4:

T0 = 25; Temperature (deg C) at elevation = 0 km

lapse = 5; Temperature lapse rate (deg C km-1)

Crustal properties:

G_init = 25; initial geotherm, deg C km-1

kappa = 30; thermal diffusivity, km2 My-1

L = 30; model thickness, km

Table S4.5. Modern ¹⁰ Be denudation rates and basin-wide geomorphic, climatic and tecto	nic
parameters	

ID*	Sample	Longitude	Latitude	Region	10Be rate	10Be rate	Averaging Time	Area [km2]	Ele	vation [m]
	-	_		_	[mm/kyr]	uncertainty	[kyr]		Mean	Median	St Dev.
1	KAZ16-02	78°24'25"E	43°15'41"N		43,72	8,24	13,7	151,06	2087,25	2013,00	386,50
2	KAZ16-03	78°32'7"E	43°5'6"N		108,54	20,15	5,5	82,04	2333,60	2264,00	483,39
3	KAZ16-04	78°10'37"E	43°18'57"N		48,10	8,88	12,5	330,73	2648,83	2625,00	281,69
4	KAZ16-05	77°57'33"E	43°14'39"N		54,16	9,90	11,1	37,67	2936,06	2936,00	206,94
5	KAZ16-06	77°38'43"E	43°18'59"N		231,35	42,26	2,6	569,75	2828,16	2793,00	613,31
6	KAZ16-07	77°22'34"E	43°21'43"N		168,67	32,56	3,6	36,93	1742,80	1672,00	431,31
7	KYR-DRMS2	76°4'36"E	42°43'42"N	Issyk Kul	545,60	100,13	1,1	1421,72	3185,98	3292,00	602,61
8	KYR14-20	76°15'30"E	42°45'38"N	North	142,18	26,01	4,2	22,66	2920,16	2950,50	531,58
9		76°19'38"E	42°46'27"N		163,35	29,95	3,7	18,03	3046,44		550,06
10		76°48'47"E	42°52'19"N		1600,57	294,83	0,4	29,50	3482,99	3514,00	338,54
11		76°45'32"E	42°51'43"N		2735,39	511,57	0,2	64,19	3454,55		344,29
12		77°39'44"E	42°47'21"N		131,03	23,83	4,6	58,49	3118,16		550,52
13		77°28'42"E	42°45'19"N		305,78	55,26	2,0	319,93	3351,27		554,07
14		77°2'34"E	42°41'22"N		204,09	36,89	2,0	74,20	3423,73	3509,00	506,63
15	KYR16-04	78°55'47"E	42°39'2"N		1329,50	248,66	0,5	246,82	2994,96		476,80
16		78 55 47 E			398,07	72,14	1,5				
			42°16'21"N		-	-		607,06	3332,34		677,11
17		77°55'11"E	42°16'21"N	lssyk Kul	535,34	97,08	1,1	607,06	3332,34		677,11
18		77°35'41"E	42°3'50"N		727,00	131,25	0,8	317,05	3654,03	3744,00	482,87
19	KYR16-01C		42°3'50"N	South	798,17	144,31	0,8	317,05	3654,03		482,87
20		77°18'24"E	42°9'15"N		154,67	28,62	3,9	15,55		2534,00	268,77
21		77°0'46"E	42°3'42"N		871,91	158,81	0,7	288,04	3277,18		588,02
22		76°42'12"E	42°14'39"N		612,09	112,79	1,0	705,28		2452,00	733,43
23		75°17'28"E	42°7'18"N		104,39	18,84	5,7	13,14	3462,89	,	338,28
24	KYR16-31	75°14'39"E	42°6'23"N		151,56	27,46	4,0	4,30	3088,29	3040,00	275,32
25	KYR16-32	75°10'9"E	42°7'20"N		75,39	13,76	8,0	10,68	3128,11	3138,00	198,80
26	KYR16-33	74°13'20"E	41°54'56"N		152,95	27,74	3,9	29,31	3038,45	3118,00	504,77
27	KYR16-34	74°10'36"E	41°55'9"N		123,54	22,38	4,9	43,71	3115,46	3223,00	485,61
28	KYR16-35	74°8'44"E	41°55'58"N		84,55	15,35	7,1	128,77	3113,39	3220,00	460,11
29	KYR16-36	74°41'54"E	41°46'59"N	Song Kul	143,53	25,99	4,2	17,82	3170,97	3225,00	319,76
30	KYR16-37	74°41'42"E	41°47'28"N		301,10	54,74	2,0	24,89	3182,08	3198,00	398,47
31	KYR16-38	74°44'19"E	41°43'18"N		1242,84	229,34	0,5	37,83	3417 <i>,</i> 84	3428,00	315,37
32	KYR16-39	75°27'22"E	41°43'51"N		17,26	3,17	34,8	1350,28	3176,87	3102,00	192,98
33	KYR16-52	75°49'11"E	41°39'35"N		39,20	7,17	15,3	25,80	2992,59	2877,00	308,50
34	KYR16-53	75°48'45"E	41°40'19"N		72,57	13,27	8,3	17,56	3014,60	2856,50	336,89
35	KYR16-54	75°44'9"E	41°42'3"N		286,02	52,07	2,1	24,08	2980,75	2892,00	342,42
36	KYR16-46	76°14'12"E	41°14'10"N		342,47	61,90	1,8	31,45	3277,13	3292,00	471,57
37	KYR16-48	76°4'39"E	41°9'42"N		248,15	44,72	2,4	38,07	3465,95	3560,00	462,41
38	KYR16-49	75°49'25"E	41°6'7"N	Naryn	193,33	34,86	3,1	36,68	3431,15	3497,00	545,84
39		75°49'5"E	41°6'7"N	, ,	299,33	54,00	2,0	33,17		3484,00	548,73
40		75°57'36"E	41°7'17"N		160,06	28,85	3,7	45,57		3582,00	462,76
41	KYR-DRMS1		42°43'20"N		113,00	20,57	5,3	187,89		3126,00	755,92
41		73°51'3"E	42°43'20'N 42°29'28"N	Kyrgyz	121,52	22,20	4,9	37,31	3252,44		
42		73°50'29"E	42°23'17"N	range	76,75	14,25	4,3 7,8	34,55		3502,00	299,22
				, ange	109,97	20,50	7,8 5,5				
44		73°47'3"E	42°24'16"N					163,66		3341,00	434,95
45		72°49'12"E	42°2'53"N	Toktogul	52,70	9,88 25.56	11,4	86,74		3060,00	433,49
46		72°49'38"E	42°9'13"N	Toktogul	190,59	35,56	3,1	238,52		3325,00	409,71
47		72°54'4"E	42°9'45"N		107,74	20,05	5,6	24,95		3264,00	343,77
48		72°41'59"E	41°36'32"N		414,92	81,33	1,4	243,78		2528,00	638,36
49		72°29'23"E	41°32'24"N	Jalal Abad	299,00	58,30	2,0	129,58		2010,00	497,98
50		72°22'26"E	41°29'53"N		213,82	42,67	2,8	33,63		1679,00	390,47
51		72°16'21"E	41°26'41"N		106,97	20,60	5,6	134,66		2125,00	585,18
52		73°29'20"E	40°10'32"N		2780,42	581,94	0,2	209,92		3045,00	531,70
53		73°33'17"E	40°3'23"N	Osh	411,01	78,29	1,5	21,93	2856,64		463,36
54	KYR14-12	73°23'26"E	39°54'42"N		321,45	60,06	1,9	49,11	3283,19	3243,00	451,93

ID*	Topograph	nic gradien	t [m/km]	Local reli	ief 1km ra	dius [m]	Local reli	ef 2km ra	dius [m]	Local reli	ef 5km rad	lius [m]	Local relie	ef 10km ra	dius [m]
	Mean	Median	St Dev.	Mean	Median	St Dev.	Mean	Median	St Dev.	Mean	Median	St Dev.	Mean	Median	St Dev.
1	223,59	185,64	139,00	335,28	314,00	144,20	582,77	515,00	209,65	1159,18	1255,00	295,36	1802,19	1811,00	150,95
2	334,85	320,84	163,40	473,70	463,00	154,39	786,99	773,00	233,48	1557,67	1654,00	319,23	2253,33	2288,00	145,81
3	211,93	184,36	134,74	315,91	316,00	135,54	544,98	568,00	181,24	1036,18	1007,00	160,59	1581,36	1521,00	304,99
4	310,35	314,41	122,21	382,37	384,00	72,05	572,47	581,00	67,99	926,79	931,00	50,53	1290,60	1282,00	66,07
5	382,21	355,31	203,98	553,79	539,00	177,27	897,28	896,00	218,30	1613,69	1604,00	297,59	2387,93	2356,00	328,10
6	359,74	346,17	157,28	472,05	439,00	141,79	769,06	776,00	238,12	1592,67	1643,00	458,88	2668,11	2903,00	434,96
7	401,74	393,08	203,50	599,36	597,00	159,77	953,36	954,00	210,91	1604,88	1574,00	275,75	2051,03	2067,00	291,80
8	473,88	499,97	178,46	726,29	759,00	163,92	1204,75	1259,00	195,16	2090,67	2095,50	192,64	2480,94	2479,00	27,38
9	462,60	471,18	167,23	668,42	654,00	137,90	1123,89	1169,50	177,65	1992,49	1986,00	180,70	2407,37	2422,00	39,25
10	482,19	485,41	196,84	691,96		118,79	1044,87	1027,00	131,98	1613,37	1646,00	80,96	1901,59	1900,00	23,99
11	463,55	467,90	192,45	676,85	669,00	108,20	1026,74	1042,00	100,56	1671,99	1645,00	165,42	2214,62	2230,00	95,39
12	465,07	461,52	190,08	669,04	658,00	114,80	1019,51	1032,00	141,71	1711,99	1795,00	207,54	2342,19	2333,00	139,61
13	425,61	400,70	221,36	633,76		169,31	1007,59	995,00	204,24	1644,80 1661,09	1626,00	235,24	2252,47	2300,00	192,75
14 15	356,80 342,54	323,94 305,84	178,33 192,56	550,08 499,01	554,00 501,00	99,00 154,09	901,66 786,10	894,00 783,00	105,00 179,48	1282,62	1744,00 1309,00	275,42 215,33	2463,29 1792,91	2511,00 1810,00	240,76 170,48
16	468,78	455,56	271,36	695,98	710,00	257,82	1089,90	1153,00	360,14	1714,36	1787,00	380,77	2255,63	2290,00	257,90
17	468,78	455,56	271,30	695,98	710,00	257,82	1089,90	1153,00	360,14	1714,30	1787,00	380,77	2255,63	2290,00	257,90
18	408,78	433,30 501,96	269,14	751,69	716,00	256,42	1179,23	1133,00	367,60	1795,23	1872,50	476,72	2233,03	2318,00	392,13
19	497,53	501,96	269,14	751,69	716,00	256,42	1179,23	1130,00	367,60	1795,23	1872,50	476,72	2274,77	2318,00	392,13
20	429,66	437,21	162,24	566,32		93,92	881,58	878,00	88,62	1422,32	1440,00	92,89	1718,24	1682,00	158,94
21	324,46	286,33	188,16	506,17	520,00	143,48	833,80	856,00	180,21	1527,13	1491,00	259,05	2253,88	2282,00	271,12
22	271,80	210,98	230,53	420,44	441,00	255,12	698,62	765,00	365,42	1313,07	1350,00	543,50	2016,37	2156,00	573,22
23	386,18	322,35	230,00	581,85	576,00	88,71	1035,67	1055,00	137,80	1826,91	1831,50	112,64	2122,89	2113,00	48,31
24	429,16	434,17	132,05	670,82		99,09	1177,46	1195,00	113,03	1844,61	1855,00	50,96	2052,45	2057,00	16,03
25	412,31	428,29	132,27	575,92		67,20	809,66	807,00	45,76	1167,18	1163,00	43,50	1511,93	1493,00	78,22
26	449,48	452,17	190,80	671,26	675,00	112,80		1192,00	234,36	2079,78	2139,00	238,93	2502,37	2487,00	44,57
27	431,59	431,31	202,30	626,74	627,50	153,19	1037,91	1079,00	234,54	1939,67	2007,00	276,98	2391,71	2409,00	44,14
28	384,49	367,52	194,85	563,10	538,00	184,83	903,42	859,00	253,80	1576,94	1557,00	259,39	2198,07	2274,00	188,17
29	437,07	412,79	196,47	560,13	549,00	100,26	857,17	863,00	92,07	1437,71	1434,00	87,64	1744,14	1736,00	43,04
30	456,17	480,87	181,43	658,38	679,00	159,79	1001,67	1005,00	203,56	1518,87	1529,00	85,00	1860,84	1861,00	60,65
31	449,88	446,50	188,32	616,95	604,00	87,30	960,09	954,00	132,34	1461,26	1468,00	48,58	1693,42	1688,00	50,89
32	109,52	67,04	125,33	156,09	118,00	146,77	271,07	238,00	227,05	604,55	679,00	360,77	1144,41	1215,00	359,97
33	357,54	338,12	208,95	431,49	460,00	167,77	630,17	680,00	194,99	1056,70	1097,00	170,46	1503,16	1522,00	102,22
34	383,07	375,94	212,07	429,09	483,00	169,22	629,84	640,00	194,90	1036,73	1102,00	204,31	1504,01	1501,00	96,04
35	333,86	307,44	164,89	410,19	389,00	130,56	603,97	547,00	172,64	1075,53	1175,00	199,22	1467,98	1480,00	67,14
36	377,15	391,70	210,45	522,96	583,00	221,06	834,50	957,00	280,50	1413,59	1486,00	231,93	1944,79	1932,00	113,82
37	471,29	487,14	192,65	684,92	683,00	154,93	1019,73	1028,00	193,75	1680,98	1695,00	146,65	2158,80	2154,00	76,13
38	499,96	491,82	242,65	740,93	759,00	167,30	1160,33	1200,00	204,26	1960,32	1967,00	176,21	2562,83	2568,00	94,31
39	494,30	469,21	248,05	726,30	752,00	160,16		1190,00	182,53	1928,46	1937,00	145,45	2567,14	2576,00	98,54
40	532,62	531,67	219,48	764,81	768,00	167,81	1162,47	1217,00	227,32	1843,76	1852,00	156,46	2393,38	2399,00	74,26
41	502,60	526,40	215,00	723,50	730,00	168,07	1114,79	1110,00	228,86	1847,40	1938,00	355,19	2621,17	2753,00	434,86
42	532,50	546,67	212,19	777,31	768,00	139,95	1298,12	1330,00	217,74	2317,37	2327,00	233,61	2765,42	2745,00	63,06
43	502,76	519,56	209,47	711,95	697,00	135,76		1073,00	173,64	1777,68	1771,00	194,53	2515,33	2558,00	109,42
44	494,86	501,54	211,21	706,24		176,16		1048,00	258,47	1690,25	1706,00	265,18	2245,02	2218,00	236,05
45	349,83	285,79	208,69	529,71	505,00	215,90	888,19	825,00	280,56	1665,23	1698,00	291,10	2457,62	2483,00	177,14
46	425,90	433,57	185,11	632,17		154,19	972,38	937,00	220,53	1522,35	1547,00	287,27	2112,09	2112,00	261,80
47	466,16	492,20	196,16	708,90		166,29		1073,00	217,52	1838,11	1894,00	184,55	2241,27	2232,00	49,23
48	497,31	489,09	235,63	743,24		222,29	1204,98	1234,00	286,16	2054,62	2036,00	315,22	2771,52	2774,00	177,09
49	508,98	517,75	186,63	715,77		169,29		1147,00	213,03	1871,81	1844,00	181,74	2424,60	2463,00	81,21
50 51	491,61	498,94	165,78	693,63	688,00	119,42	1108,97	1109,00	133,81	1847,83	1814,00	178,64	2329,80	2305,00	126,89
51	367,51	359,42	151,85	505,37		119,36	829,40 1172,17	812,00	189,12	1575,88	1611,00	236,44	2263,75	2234,00	147,26
52	531,09	537,50	245,51	766,42		178,54		1170,00	215,90	1773,95	1763,00	200,93	2229,13	2262,00	127,80
53 54	533,66	556,25	171,19	754,09		157,88		1162,00	271,05	1927,13	1970,00	190,66	2417,60	2439,00	77,14
54	528,27	560,63	180,76	726,54	743,00	160,86	1075,00	1115,00	185,02	1628,82	1620,00	92,94	2126,84	2146,00	101,67

							Strain r	ate [10^-9) vr^_1]				BIO13 P	recipitati	on of	Δ	ridity index	
ID*		-		Ksn [stream		-		-			nual precip			test mont				
		Median	St Dev.		Median	St Dev.	Mean	Median		Mean		St Dev.		Median		Mean	Median	St Dev.
1	969,48	985,00	154,60	194,77	187,90	81,34	56,91	56,91	0,80	673,64	681,50	32,08	90,73	90,00	5,38	6076,36	6014,50	781,35
2	1267,54	1303,00	182,22	293,38	306,97	80,46	36,02	54,33	25,45	671,74	684,00	45,00	92,84	95,00	6,78	6463,21	6676,00	797,17
3 4	869,23	846,00	141,93	148,02	147,24	61,60	27,66	29,27	3,91	638,26	643,00	26,60	90,78	91,00	2,62	6912,79	6862,00	295,20
4 5	792,69 1362,80	799,00 1380,00	37,33 205,97	183,69 377,72	193,24 295,24	45,45 260,05	34,98 21,67	34,14 20,04	8,89 5,43	612,17 576,18	614,50 579,00	12,19 17,10	91,57 85,84	92,00 86,00	1,25 6,12	7261,45 6803,26	7286,50 6662,00	
6	1302,80	1380,00	203,97 292,58	276,45	295,24	71,10	23,56	20,04	3,92	511,66	504,00	17,10	72,69	72,00	2,40	4641,81	4526,00	600,02
7	1301,78	1299,00	174,17	346,98	322,78	177,74	35,74	34,81	16,79	456,48	481,00	75,27	72,03	84,00	13,79	6184,33	6395,00	
8	1625,29	1656,00	118,03	440,34	391,31	89,37	31,99	28,14	7,40	437,00	453,00	83,09	75,92	79,50	15,36	4881,95	4902,00	
9	1547,68	1547,00	117,19	465,75	443,72	149,19	31,57	28,14	8,61	465,62	491,00	79,78	80,59	86,00	14,85	5476,00	5559,00	
10	1312,57	1311,00	70,41	362,81	367,27	97,65	29,06	28,73	4,76	483,39	486,50	19,92	85,35	86,00	5,22	6879,80	6939,00	865,09
11	1397,18	1407,00	81,05	341,15	330,01	108,17	28,58	29,70	4,42	484,43	489,00	21,40	85,80	87,00	5,12	7042,49	7105,00	925,02
12	1435,31	1444,00	117,23	420,92	370,57	207,54	46,33	48,90	12,08	544,14	546,50	12,22	83,68	85,50	6,38	6850,10	6927,00	1149,95
13	1384,28	1358,00	149,24	358,54	309,09	185,70	43,47	43,58	0,42	511,42	510,00	23,69	84,53	86,00	7,51	6974,19	6958,00	1223,45
14	1393,65	1422,00	147,07	426,47	311,04	262,16	50,22	44,52	6,26	515,82	526,00	31,77	86,04	88,50	8,36	7017,81	7112,50	1374,36
15	1089,79	1080,00	140,72	260,76	240,04	154,18	86,03	101,32	23,49	513,15	474,00	90,12	83,46	80,00	7,49	5825,62	5709,00	325,73
16	1438,60	1492,00	274,47	372,41	338,86	242,98	24,71	22,10	6,18	357,41	356,00	23,62	60,38	60,00	3,28	4463,93	4373,00	676,88
17	1438,60	1492,00	274,47	372,41	338,86	242,98	24,71	22,10	6,18	357,41	356,00	23,62	60,38	60,00	3,28	4463,93	4373,00	676,88
18	1499,86	1518,00	344,57	418,97	367,23	312,63	25,33	26,12	2,90	345,41	344,00	18,32	61,85	62,00	4,33	4648,02	4697,50	727,26
19	1499,86	1518,00	344,57	418,97	367,23	312,63	25,33	26,12	2,90	345,41	344,00	18,32	61,85	62,00	4,33	4648,02	4697,50	727,26
20	1146,74	1148,00	42,99	272,38	262,42	63,27	58,55	53,83	14,33	319,50	320,00	16,61	55,46	56,00	3,84	3038,15	3046,50	282,72
21	1279,87	1296,00	141,25	315,15	259,05	199,88	66,63	63,15	6,42	350,19	357,00	35,91	63,53	65,00	7,09	4258,40	4212,00	
22	1111,75	1173,00	389,95	209,14	156,98	221,12	99,78	97,69	21,84	311,29	292,50	76,72	57,93	55,50	14,78	3338,82	2695,00	
23	1391,47	1395,00	58,08	370,55	432,37	150,13	41,01	38,85	4,58	441,24	451,00	43,78	76,24	78,00	6,06	5447,10	5613,00	938,52
24	1435,95	1452,00	56,73	302,43	293,73	11,90	38,74	38,79	0,07	391,17	389,50	33,38	68,50	69,00	5,35	4389,67	4333,50	634,84
25	1015,80	1014,00	31,39	239,76	252,97	39,86	35,54	35,54	0,00	441,67	444,00	22,20	73,27	74,00	3,23	4994,07	5007,00	393,19 1198,05
26 27	1597,29 1498,63	1640,00 1523,00	127,85 161,50	514,90 455,43	466,36 448,83	274,89 268,86	33,19 31,35	33,96 31,35	3,37 0,33	501,26 522,73	514,50 543,00	66,44 63,29	76,96 80,03	79,00 83,00	10,60 10,02	5593,83 6078,08	5615,00 6263,00	
27	1310,01	1323,00	191,50	455,45 361,90	281,72	200,00	29,81	31,35	5,61	544,73	568,50	65,04	80,05	87,00	10,02	6461,37	6753,00	
20	1149,40	1145,00	58,92	288,88	225,85	247,34	17,26	13,36	5,81	468,78	486,00	39,72	82,41 76,15	77,00	5,58	5405,44	5688,00	758,93
30	1259,57	1268,00	96,59	290,88	332,13	115,50	17,66	19,36	2,40		481,00	51,01	77,24	77,00	6,75	5506,39	5482,00	
31	1182,56	1177,00	50,28	318,26	265,22	117,43	13,07	11,88	3,07	469,38	471,50	31,58	75,05	75,00	4,47	5804,64	5846,50	628,26
32	543,65	568,00	255,20	42,43	0,00	148,21	19,92	20,45	7,70	408,54	404,00	28,62	70,27	69,00	4,04	4736,07	4600,00	503,55
33	905,00	903,00	93,23	202,55	200,38	108,20	55,89	71,68	30,56	364,61	353,00	43,19	68,76	67,00	8,31	3843,63	3603,00	742,17
34	899,54	882,00	99,29	211,85	188,50	106,38	58,60	71,68	29,25	364,40	351,00	47,48	68,36	66,00	8,81	3844,76	3559,00	810,75
35	889,05	904,00	108,15	207,91	213,34	40,37	27,84	45,51	44,33	360,89	352,00	38,20	68,05	67,00	7,43	3778,46	3559,00	672,90
36	1178,58	1274,00	189,49	265,74	228,34	123,56	57,51	53,80	15,44	319,22	325,00	37,98	58,20	59,00	7,30	3662,90	3616,50	902,51
37	1385,74	1395,00	130,28	391,22	382,05	157,74	17,30	17,19	8,12	297,47	308,00	27,61	53,49	55,00	4,81	3570,88	3782,00	677,68
38	1605,73	1633,00	134,80	452,99	442,80	159,69	21,61	21,63	2,74	296,89	306,00	34,46	53,50	56,00	6,16	3542,24	3650,00	791,06
39	1593,54	1633,00	124,37	478,15	443,20	111,12	21,74	23,28	3,22	299,60	310,00	38,98	53,83	56,00	6,75	3616,79	3728,00	887,96
40	1540,73	1581,00	132,38	447,20	433,01	200,50	14,99	17,63	5,22	301,43	307,00	28,89	54,06	55,00	4,83	3652,71	3726,50	684,78
41	1576,34	1616,00	258,56	461,47	372,65	284,70	26,71	26,52	20,41	617,24	662,00	90,36	90,97	96,00	11,52	7429,85	7909,00	2058,46
42	1789,18	1800,00	135,37	552,49	588,19	289,09	26,63	25,48	5,86	621,81	653,00	77,43	90,15	94,00	10,11	7485,76	7852,00	
43	1523,58	1520,00	133,02	386,72	380,27	168,44	35,51	35,52	9,67	672,87	672,00	25,00	95,43	96,50	4,81	8498,20	8446,50	744,14
44	1430,00	1416,00	203,30	399,37	345,15	209,95	75,35	75,35	10,31	649,65	666,00	57,55	92,60	95,00	8,56	8289,32	8550,00	
45 46	1384,81	1332,00	201,02	355,27	240,90	373,20	16,53	14,80	5,74	654,37	654,00	25,29	100,08	101,00	5,07	7530,02	7522,50	857,69
46 47	1309,37 1470,32	1309,00 1471,50	200,81 132,98	361,91 430,86	315,72 288,61	216,66 329,53	13,15 6,84	13,15 6,13	3,36 3,87	656,95 669,37	656,00 673,00	33,42 25,08	97,79 101,89	99,00 104,00	5,78 5,08	8067,44 7949,34	8205,00 7976,50	953,89 669,14
47	1470,32	1471,50	132,98	430,86	412,75	262,72	38,84	38,90	2,03	666,95	667,00	43,84	101,89	104,00	5,08	6742,38	6858,00	852,15
40 49	1536,71	1714,00	188,67	356,22	360,44	108,76	38,84	38,90	4,07	652,39	676,50	45,64 81,04	95,59	102,00	13,66	5793,59	6253,00	
50	1494,68	1489,00	92,69	329,93	301,40	105,08	24,23	23,96	0,80	600,11	637,00	92,73	86,18	90,00	15,25	4993,84	5177,00	
50	1293,23	1312,00	128,76	322,07	241,55	229,70	25,60	25,60	2,39	614,25	665,00	105,50	90,50	100,00	17,59	5404,43	6033,00	
52	1485,04	1482,00	127,96	345,30	301,86	390,88	25,98	25,98	11,89	429,28	431,00	16,97	73,13	73,00	3,37	4286,94	4210,00	447,67
53	1570,23	1610,00	141,69	374,53	366,94	97,95	35,18	35,75	8,15	364,50	360,50	13,29	63,63	62,50	2,75	3393,44	3319,50	187,21
54	1388,92	1409,00	105,90	310,23	325,33	116,29	44,04	47,07	6,97	405,82	407,00	26,19	66,71	67,00	2,00	4213,60	4149,00	703,21

* ID numbers correspond to sample numbers in the Supplementary Figure S4.1

Region		AFT Mean		A	AFT Median			AHe Mean		A	AHe Median	E	10Be Mean	10Be Median
	High	Mid	Low	High	Mid	Low	High	Mid	Low	High	Mid	Low	(modern)	(modern)
AII	244,6	212,0	189,6	102,8	95,9	88,7	102,9	94,1	88,2	43,0	39,4	37,4	393,8	179,6
IK North	120,1	111,6	104,5	56,8	54,8	52,9	58,7	55,6	52,8	16,7	15,6	15,1	463,0	166,0
IK South	205,9	176,0	157,3	137,8	125,7	106,7	138,8	121,5	111,5	124,9	101,1	92,7	678,3	669,5
Kyrgyz range	774,4	625,8	535,8	664,8	549,8	471,6	376,6	357,4	340,3	294,0	289,4	285,0	105,3	111,5
Song Kul	55,5	52,1	49,1	49,9	46,6	44,2	31,2	29,1	27,2	26,8	25,0	23,4	215,0	123,5
Naryn	50,4	47,2	44,4	35,4	32,6	31,1	18,7	17,3	16,2	23,5	21,8	20,3	248,7	248,2
Toktogul	105,6	99,8	94,7	105,6	99,8	94,7	no data	no data	no data	no data	no data no data no data	no data	117,0	107,7
Jalal Abad	273,0	233,6	206,3	285,1	245,2	205,4	no data	no data	no data	no data	205,4 no data no data no data no data no data	no data	258,7	256,4
Osh	497,8	447,3	406,5	453,2	409,7	373,7	no data	no data	no data	no data	373,7 no data no data no data no data no data no data	no data	1171,0	411,0