
Elect. Comm. in Probab. 9 (2004), 119�131 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

ERGODICITY OF PCA : EQUIVALENCE BETWEEN
SPATIAL AND TEMPORAL MIXING CONDITIONS

PIERRE-YVES LOUIS1

Institut für Mathematik2, Potsdam Universität, Am neuen Palais-Sans Souci,
Postfach 60 15 53, D-14 415 Potsdam
email: louis@math.uni-potsdam.de

Submitted 11 February 2004, accepted in �nal form 28 September 2004

AMS 2000 Subject classi�cation: 60G60 ; 60J10 ; 60K35 ; 82C20 ; 82C26 ; 37B15
Keywords: Probabilistic Cellular Automata, Interacting Particle Systems, Weak Mixing Con-
dition, Ergodicity, Exponential rate of convergence, Gibbs measure

Abstract

For a general attractive Probabilistic Cellular Automata on SZd

, we prove that the (time-)
convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the
uniform norm, is equivalent to a condition (A). This condition means the exponential decay
of the in�uence from the boundary for the invariant measures of the system restricted to �nite

boxes. For a class of reversible PCA dynamics on {−1,+1}Zd

, with a naturally associated
Gibbsian potential ϕ, we prove that a (spatial-) weak mixing condition (WM) for ϕ implies
the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics
towards the unique Gibbs measure associated to ϕ holds. On some particular examples we
state that exponential ergodicity holds as soon as there is no phase transition.

1 Introduction

The main feature of Probabilistic Cellular Automata dynamics (usually abbreviated in PCA)
is the parallel, or synchronous, evolution of all interacting elementary components. They
are precisely discrete-time Markov chains on a product space SΛ (con�guration space) whose
transition probability is a product measure. In this paper, S (spin space) is assumed to be
a �nite set with total order denoted by 6 and Λ (set of sites) a subset, �nite or in�nite,
of Zd. The fact that the transition probability kernel P (dσ|σ′) (σ, σ′ ∈ SΛ) is a product
measure means that all spins {σk : k ∈ Λ} are simultaneously and independently updated.
This transition mechanism di�ers from the one in the most common Gibbs samplers, where
only one site is updated at each time step. In opposition to these dynamics with sequential
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updating, it is simple to de�ne PCA's on the in�nite set SZd

without passing to continuous
time.

The main purpose of this article is to study relation between di�erent types of conditions
which insure the fastest convergence towards an equilibrium state (νP = ν) of PCA dynamics

on SZd

. Let us emphasise that the non-degeneracy hypothesis we will assume implies that
the asymptotic behaviour of PCA dynamics on SΛ where Λ is a �nite subset of Zd (called
�nite volume PCA dynamics) is well-known. It is a classical result from the theory of �nite
state space aperiodic irreducible Markov Chains. Such discrete time processes admit a unique
stationary probability measure, and are ergodic. However, if the PCA dynamics is considered

on SZd

(in�nite volume dynamics), some non-ergodic behaviour may arise (see for instance
example 2 section III in [8]). The most famous condition which insures ergodicity of the PCA

dynamics on SZd

is due to Dobrushin and Vasershtein's work (see [15]), and applies in the
high-temperature regime. Others conditions of ergodicity for general PCA can be found in the
following works: [4, 7, 9, 12, 13]. See for instance Sections 6.1.2 and 6.1.3 in [10] for details.
They all are e�ective only when some high-temperature condition holds or in perturbative
cases.

We will here adopt another approach, partially inspired by Martinelli and Olivieri's work for
a class of continuous time Interacting Particle Systems called Glauber dynamics (see [14]),
and based on a famous statement of Holley about rate of convergence ([6]). We introduce a
condition (A) which means the exponential decay of the in�uence from the boundary for the
invariant measure of the system restricted to any �nite box, which will be here proved to be
equivalent to the exponentially fast ergodicity (Theorem 1). The condition (A) we use is not
a constructive criterion like the Dobrushin-Vasershtein condition, or its generalised version
developed in [12] and numerically studied in [2]. But, theoretically, comparison of spatial and
time mixing are always interesting (cf. [14, 3]). Furthermore we present di�erent examples
in which (A) is satis�ed on a larger domain than Dobrushin-Vasershtein condition, and is
moreover optimal for these models.

In section 2 we state our main results. The �rst and more general one (Theorem 1) is the
following: convergence towards equilibrium in the uniform norm with an exponential rate is
equivalent to the condition (A). In other words exponential mixing in space is equivalent
to exponential mixing in time. It will then be applied to a class of reversible PCA dynamics

on {−1,+1}Zd

, associated in a natural way to a Gibbsian potential ϕ. We prove that the usual
weak mixing condition for ϕ implies the validity of (A), thus the exponential ergodicity of the
dynamics towards the unique Gibbs measure associated to ϕ holds (Theorem 2). For some
particular PCA of this class, we also prove that (A) is weaker than the Dobrushin-Vasershtein
ergodicity condition and note that the exponential ergodicity holds as soon as there is no phase
transition. Our result are then the �rst optimal ones in this context. Sections 3 and 4 are
respectively devoted to the proof of the Theorems and useful Lemmas.

2 Main results

Let P denotes a PCA dynamics on SZd

. This means a Markov Chain on SZd

whose transition

probability kernel P veri�es for all con�guration η ∈ SZd

, σ = (σk)k∈Zd ∈ SZd

, P ( dσ | η ) =

⊗
k∈Zd

pk( dσk | η ), where for all site k ∈ Zd, for all η, pk( . |η) is a probability measure on S,
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called updating rule. For any subset ∆ of Zd, and for all con�gurations σ and η of SZd

, the
con�guration σ∆η∆c is de�ned by σk if k ∈ ∆, else ηk. Let the notation σ∆ design (σk)k∈∆

too. Let Λ be a �nite subset of Zd (denoted by Λ b Zd). We call �nite volume PCA dynamics

with boundary condition τ (τ ∈ SZd

or τ ∈ SΛc

), the Markov Chain on SΛ whose transition

probability P τ
Λ is de�ned by: P τ

Λ(dσΛ | ηΛ ) = ⊗
k∈Λ

pk( dσk | ηΛτΛc ). It may be identi�ed with

the following in�nite volume PCA dynamics on SZd

: P τ
Λ(dσ | ηΛ ) = ⊗

k∈Λ
pk( dσk | ηΛτΛc )⊗

δτΛc (dσΛc). Let ντ
Λ denote the stationary measure associated to the �nite volume dynamics

P τ
Λ . For ν probability measure on SZd

(equipped with the Borel σ-�eld associated to the
product topology), νP refers to νP (dσ) =

∫
P (dσ|η)ν(dη). Recursively νP (n) = (νP (n−1))P .

For each function f on SZd

, P (f) is the function de�ned by P (f)(η) =
∫

f(σ)P (dσ|η). All the
measures considered in this paper are probability measures.

PCA dynamics considered here are assumed to be non degenerate: ∀k ∈ Zd, ∀η ∈ SZd

, ∀s ∈ S,
pk( s | η ) > 0; they are also local, which means: ∀k ∈ Zd,∃ Vk b Zd, pk( . |η) = pk( . |ηVk

) and
they are also translation invariant: ∀k ∈ Zd, ∀s ∈ S, ∀η ∈ SZd

, pk( s | η ) = p0( s | θ−kη ),
where θk0(σ) de�nes the translation of a con�guration σ of SZd

with θk0(σ) = (σk−k0)k∈Zd .

Attractivity of PCA dynamics is moreover assumed here: One can order two con�gurations by
de�ning σ 4 η if ∀k ∈ Λ, σk 6 ηk. A real function f on SΛ will then be said to be increasing
if σ 4 η implies f(σ) 6 f(η). Thus two probability measures ν1 and ν2 satisfy the stochastic
ordering ν1 4 ν2 if, for all increasing functions f on SΛ, ν1(f) 6 ν2(f), with the notation
νi(f) =

∫
f(σ)νi(dσ). As Markov chain, a PCA dynamics P on SΛ (Λ ⊂ Zd) is attractive if

for all increasing function f , P (f) is still increasing. Let us de�ne too, for s ∈ S, σ ∈ SΛ, the
function Gk(s, σ) by:

Gk(s, . ) =
∑
s′>s

pk(s′| . ). (1)

Recall that a PCA dynamics is attractive if, and only if, for all k in Λ, and all value s ∈ S,
the function Gk(s, .) is increasing (in σ).

A real valued function f on SZd

is said local if ∃Λf b Zd, ∀σ ∈ SZd

, f(σ) = f(σΛf
). We de�ne,

for each f continuous function on the compact SZd

and for all k in Zd,

∆f (k) = sup
{∣∣∣f(σ)− f(η)

∣∣∣ : (σ, η) ∈ (SZd

)2, σ{k}c ≡ η{k}c

}
,

and the semi-norm |‖ f |‖=
∑

k∈Zd ∆f (k). For L integer, B(L) is the ball B(0, L) with respect

to the norm ‖k‖
1

=
∑d

i=1 |ki|, k = (k1, k2, . . . , kd) ∈ Zd.

Theorem 1 Let S be a totally ordered �nite set with maximal (resp. minimal) element denoted
by +(resp. −). +++ (resp. −−−) denotes con�gurations equal to + (resp. −) in all sites. Let P be

an attractive, translation invariant, non degenerate, local PCA dynamics on SZd

. Let ν+++
B(L)

(resp. ν−−−B(L)) be the stationary measure of P+++
B(L) (resp. P−−−B(L)). The following spatial mixing

condition: ∃C > 0, ∃M > 0, ∃L1 ∈ N∗,∀L ∈ N∗, L > L1,∫
σ0 dν+++

B(L) −
∫

σ0 dν−−−B(L) 6 Ce−ML (A)
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is equivalent to the convergence of the dynamics P towards the unique equilibrium state ν with

exponential rate: ∃λ > 0, ∃n1, ∀n > n1, ∀f local function on SZd

:

sup
σ

∣∣∣δσP (n)(f)− ν(f)
∣∣∣ 6 2|‖ f |‖ e−λn. (2)

In order to better interpret the meaning of condition (A) and the relevance of Theorem 1,

we then apply it to a wide class of reversible PCA dynamics on {−1,+1}Zd

. First, let us
recall some known facts about reversible PCA dynamics (that is to say PCA dynamics whose
set of reversible measures R is not empty). The study of the qualitative nature of their
equilibrium states as Gibbs measures was initiated by Kozlov and Vasilyev (see [8, 16]). Gibbs
measures with respect to some dynamics' naturally associated potential, are indeed natural
candidates as stationary states. In [1, 10], precise relations were established between the sets of
stationary measures, reversible measures and some Gibbs measures (see Proposition 3.3 in [1]).
Moreover, unlike what is done (or expected to hold) for continuous time Interacting Particle
Systems like Glauber dynamics or gradient di�usions, it is shown that Gibbs measures may
be non stationary for PCA's dynamics, which is a characteristic manifestation of the discrete
time case.

Assume until the end of this section and in section 4 that S = {−1,+1}. We call class C0 the

family of PCA dynamics on {−1,+1}Zd

whose updating rule (pk)k∈Zd is given by: ∀k ∈ Zd,

∀η ∈ SZd

, ∀s ∈ S

pk(s | η) =
1
2

(
1 + s tanh(β

∑
k′∈Zd

K(k′ − k)ηk′)
)
, (3)

where β is a positive real parameter and K : Zd → R is an interaction function between sites
which is symmetric and has �nite range R > 0 (i.e. for all k of Zd such that ‖k‖

1
> R then

K(k) = 0). Remark that β = 0 is the independent case (sites don't interact), and that when
β increases, the dynamics becomes less and less random. So β may be thought as a kind
of inverse temperature parameter. See subsection 4.1.1 in [10] for the generality of the class

C0 among reversible PCA dynamics on {−1,+1}Zd

. Due to their de�nition, PCA dynamics
in C0 are local, translation invariant, non degenerate. It is known (see [8, 1]) that any PCA
dynamics P in C0 admits at least one reversible measure which is a Gibbs measure associated
to the following translation invariant multibody potential ϕ:

ϕUk
(σUk

) = − log cosh
(
β

∑
j K(k − j)σj

)
where Uk = {j : K(k − j) 6= 0}

ϕΛ(σΛ) = 0 otherwise.
(4)

Moreover Proposition 3.3 in [1] stated the precise relations R = S ∩ G(ϕ) and Rs = Ss,
where S (resp. R) denotes the set of P -stationary (resp. P -reversible) measures, Ss and Rs

their respective space-translation invariant measures' parts, and G(ϕ) the set of Gibbs measures

on SZd

associated to the potential ϕ.
One also checks that such a PCA dynamics P is attractive, if and only if function K(.) is
non-negative (see Property 4.1.2 in [10]). From now on, let us assume that K is non negative.

Mixing conditions for a potential ϕ de�ne di�erent regions in the domain of absence of phase
transition for the associated Gibbs measures. Strong mixing conditions are usually related
to the domain where Dobrushin's uniqueness holds, and weak mixing conditions are ex-
pected to be valid in the main part of the uniqueness domain: See [14] for a review on
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these conditions. Here, we call weak mixing condition for the potential ϕ, the condition:
∃C > 0, ∃M > 0, ∀L > 2,∫

σ0 µ(dσB(L)|σB(L)c = +1)−
∫

σ0 µ(dσB(L)|σB(L)c = −1) 6 Ce−ML (WM)

where µ is the unique Gibbs measure associated to ϕ. For ferromagnetic potentials, it is indeed
the equivalent form of more general weak mixing condition.

Theorem 2 Let P be an attractive PCA dynamics on {−1,+1}Zd

of the class C0 de�ned by (3),
let ϕ denote the potential canonically associated de�ned in (4), and G(ϕ) the set of Gibbs
measures w.r.t ϕ.

• If there is phase transition (i.e. #G(ϕ) > 1) then the dynamics P is non-ergodic.

• Otherwise, when there is no phase transition (i.e. G(ϕ) = {µ}) the dynamics P is ergodic
towards the unique Gibbs measure µ.
Moreover if we assume the potential ϕ satis�es the weak mixing condition (WM), then
the convergence towards µ holds with exponential rate.

In [1], we established that, for nearest neighbour interaction function K, phase transition holds
for β large. For instance, when d = 2, let PJ be the PCA dynamics of the class C0 obtained
taking: K(±e1) = K(±e2) = J > 0, K(k) = 0 otherwise, where (e1, e2) is a basis of R2 and J a
positive constant. The canonically associated potential ϕJ (cf. (4) ) is the following four-body
potential: ϕJ,Vk

(σVk
) = − log cosh(βJ

∑
j∈Uk

σj) where Uk = {k − e1, k + e1, k − e2, k + e2}.
From Theorem 2 we conclude here that for β large, the PCA PJ is non-ergodic since it has at
least two di�erent stationary states ν− and ν+.

Let us now discuss how large is the domain where condition (WM) holds. One conjectures
Weak Mixing condition for Gibbs measure is valid up to the critical temperature, that is, as
soon as there is no phase transition. In that sense, our main result would give ergodicity with
exponential rate on a much larger region as the region where the Dobrushin-Vasershtein crite-
rion holds. In fact, let us mention the reference [5], where, using percolation techniques, it is
proved that in dimension d = 2, for a ferromagnetic nearest neighbour Ising model without ex-
tremal magnetic �eld, the associated Gibbs measure is weak mixing as soon as it is unique (i.e.
∀β, β < βc). In order to precise this assertion, let us consider the dynamics PJ . A projection
argument relates the potential ϕJ associated to PJ with the usual Ising ferromagnetic pair po-
tential with intensity coe�cient J (see [16]). Due to Higuchi's result, we know that the Gibbs
state associated to this potential ϕJ is weak mixing as soon as there is no phase transition,
which happens for β lower than the critical value βc, which coincides with the Ising critical

inverse temperature βc = log(1+
√

2)
2J . In other words, we obtain that the PCA dynamics PJ is

ergodic with exponential rate for β < βc and non-ergodic for β > βc. Taking J = 1, βc ' 0.441;
since Dobrushin-Vasershtein criterion applies only for β < 1

2Argth( 1
2 ) ' 0.275 (cf. part 6.1.2

in [10]), ours is better.

3 Proof of the Theorem 1

The proof of Theorem 1 is based on the existence of some coupling of PCA dynamics preserv-
ing the stochastic ordering. Let (P 1, P 2, . . . , PN ) be an increasing N -uple of PCA dynamics
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which means PCA related by the following monotonicity property ∀k ∈ Zd, ∀ζ1 4 ζ2 4
. . . 4 ζN ∈ SZd

,∀s ∈ S, G1
k(s | ζ1) 6 G2

k(s | ζ2) 6 . . . 6 GN
k (s | ζN ) where Gi is the

function associated to P i by (1). There exists (cf. [11]) a monotone synchronous coupling on

(SZd

)N denoted by P 1 ~ P 2 ~ . . . ~ PN with the following property: for all initial con�gura-
tion σ1 4 σ2 4 . . . 4 σN and for all times n,

P 1 ~ . . . ~ PN
(

ω1(n) 4 . . . 4 ωN (n)
∣∣ (ω1, . . . , ωN )(0) = (σ1, . . . , σN )

)
= 1.

Such a coupling will be called increasing synchronous coupling. The notation IP denotes the
coupling P ~P ~ . . .~P of N times the same PCA dynamics P , where N will be a �nite large
enough number.

This coupling allows us to develop some monotonicity argument and to state the following
result, whose proof is in [11]:

Proposition 3 The measure ν+++
Λ (resp. ν−−−Λ ) is the maximal (resp. minimal) measure of the

set {ντ
Λ : τ ∈ SΛc} of stationary measures associated to the PCA dynamics P τ

Λ on the �xed
�nite volume Λ and with boundary condition τ . Let ν+++ and ν−−− denote the maximal and the
minimal elements of the set S of stationary measures associated to the PCA dynamics P .
Following relations hold:

ν+++ = lim
L→∞

ν+++
B(L) ⊗ δ(+++)B(L)c = lim

n→∞
δ+++P (n) (5)

ν−−− = lim
L→∞

ν−−−B(L) ⊗ δ(−−−)B(L)c = lim
n→∞

δ−−−P (n). (6)

In particular, P admits a unique stationary measure ν if and only if ν−−− = ν+++.

Note that P (n) denotes P ◦ P ◦ . . . ◦ P , and so is for instance δ+++P (n) the law at time n of the
Markov Chain with transition kernel P and initial distribution δ+++.

Remark 4 Note the following range of dependence w.r.t. the past for local PCA. Let us

de�ne Λ = ∪k∈ΛVk = Λ
(1)

, and Λ
(n)

= ∪
k∈Λ

(n−1)Vk. Then: ∀n,∀Λ b Zd, ∀(σ, η) ∈ (SZd

)2

with σ
Λ

(n) ≡ η
Λ

(n) , IP
(
ω1

Λ(n) ≡ ω2
Λ(n)

∣∣∣(ω1, ω2)(0) = (σ, η)
)

= 1.

Proof. ((2) implies (A) in Theorem 1)
It uses a usual strategy and takes advantage of the coupling P ~ P+++

B(L). Let L be a �xed

integer, larger than L1 = n1 where n1 is de�ned in (2). Using the relation (stated in [11])

ν−−−B(L) ⊗ δ(−−−)B(L)c 4 ν 4 ν+++
B(L) ⊗ δ(+++)B(L)c ; (7)

the positivity of each following term is stated. We have:

0 6
∫

σ0 dν+++
B(L)−

∫
σ0 dν−−−B(L) =

( ∫
σ0 dν+++

B(L)−
∫

σ0 dν
)

+
( ∫

σ0 dν −
∫

σ0 dν−−−B(L)

)
,

and we will state that each part is lower than 2|‖ f0 |‖ e−λL (where f0(σ) = σ0). We only give
the proof for

∫
σ0 dν+++

B(L) −
∫

σ0 dν since the proof for the minimal −−− boundary condition is

analogous. For any n ∈ N∗,

ν+++
B(L)(σ0)− ν(σ0) =

(
ν+++
B(L)(σ0)− δ+++P+++

B(L)

(n)
(f0)

)
+

(
δ+++P+++

B(L)

(n)
(f0)− δ+++P (n)(f0)

)
+(

δ+++P (n)(f0)− ν(σ0)
)
.
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Using the monotonicity of P+++
B(L) ~ P+++

B(L) the �rst term is non positive. Using the assump-

tion (2) the third term is bounded from above by 2|‖ f0 |‖ e−λn (∀n > n1). Choose now
n = L. Rewrite the second term as lQ+++,+++(ω2

0(n)− ω1
0(n)) where

lQ+++,+++( . ) = P ~ P+++
B(L)

(
. |(ω1, ω2)(0) = (+++,+++)

)
.

Using Lemma 5, we bound the second term from above with κ′ lQ+++,+++(ω2
0(n) 6= ω1

0(n)). Ac-
cording to the construction of the coupling and using Remark 4, note that with respect to
lQ+++,+++(.), ω2

0(n) 6= ω1
0(n) is possible only if it exists a previous time n′ (0 < n′ < n) and a site k

in B(L)c ∩ {0}
(n′)

such that ω2
k(n′) = ω1

k(n′) 6= +++. By taking n = L, we have {0}
(n′)

⊂ B(L);
so is this event empty, which ensures lQ+++,+++(ω2

0(n) 6= ω1
0(n)) = 0. Thus is (A) proved. 2

Proof. ((A) implies (2) in Theorem 1)
The most delicate part is to establish the exponential rate of convergence towards equilibrium.
Our proof is inspired by Martinelli and Olivieri proof of exponential ergodicity for continuous

time Glauber dynamics on {−1,+1}Zd

(see [14]). For any time n ∈ N, let us de�ne a coe�cient
which controls the ergodicity:

ρ(n) = IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (−−−,+++)
)
. (8)

If we assume the exponential bound (A), thanks to forthcoming Lemma 8, we deduce that
limn→∞ ρ(n) = 0. Reporting assumption (A) in the inequality (10), we can use forthcoming
Lemma 11 to deduce that (ρ(n))n∈N∗ converge to 0 faster than 1

nd . Finally, using inequality (9)
and Lemma 12, we conclude that ρ(n) converges to 0 exponentially fast; thus, thanks to
Lemma 7, conclusion holds. 2

Technical lemmas: First remark the easy fact:

Lemma 5 Let (Ω,A,P) be a probability space, and Z a random variable with values in a �nite
set {z1 < . . . < zm} of R, such that P(Z > 0) = 1. Then, if κ = max{ 1

zi
, zi > 0, 1 6 i 6 m}

and κ′ = max{zi, 1 6 i 6 m} (which do not depend on the law of Z under P) we have:
P(Z 6= 0) 6 κ

∫
ZdP and

∫
ZdP 6 κ′P(Z 6= 0).

Using the monotonicity property of the coupling, the two following Lemmas are easily proved.

Lemma 6 � ∀σ, η ∈ SZd

, σ 4 η, IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (σ, η)
)

6 ρ(n).

� ∀Λ b Zd, ∀n ∈ N, ∀ξ ∈ SZd

,
P−−−Λ

(
ω(n) ∈ .

∣∣ω(0) = ξΛ(−−−)Λc

)
4 P

(
ω(n) ∈ .

∣∣ω(0) = ξ
)

4 P+++
Λ

(
ω(n) ∈ .

∣∣ω(0) = ξΛ(+++)Λc

)
.

� ρ(n) 6 P−−−Λ ~ P+++
Λ (ω1

0(n) 6= ω2
0(n) |(ω1, ω2)(0) = (−−−,+++)).

Lemma 7 The sequence (ρ(n))n∈N∗ is decreasing, and ∀f , ∀σ, η,∣∣∣P (f(ω(n))|ω(0) = σ)− P (f(ω(n))|ω(0) = η)
∣∣∣ 6 2 |‖ f |‖ ρ(n).

Thus, if limn→∞ ρ(n) = 0, the dynamics P is ergodic, and supσ

∣∣∣P (f(ω(n))|ω(0) = σ)− ν(f)
∣∣∣

6 2 |‖ f |‖ ρ(n), where ν denotes the unique stationary measure.

Note that due to the monotonicity of ρ(.), we can restrict ourselves to the case ρ(.) > 0.



126 Electronic Communications in Probability

Lemma 8 ∃κ, ∀Λ b Zd, limn→∞ ρ(n) 6 κ
( ∫

σ0 dν+++
Λ −

∫
σ0 dν−−−Λ

)
.

Proof. Note P−−−Λ ~ P+++
Λ

(
ω1

0(n) 6 ω2
0(n))

∣∣∣ (ω1(0), ω2(0)) = (−−−,+++)
)

= 1 since the coupling

preserves the order. So, thanks to Lemma 5, applied with
P = P−

Λ ~ P+
Λ ( . |(ω1(0), ω2(0)) = (−−−,+++)) and Z = ω2

0(n)− ω1
0(n) we have:

P−
Λ ~P+

Λ

(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1(0), ω2(0)) = (−−−,+++)
)

6 κ
(
P+++

Λ (ω0(n)|ω(0) = +++)−P−−−Λ (ω0(n)|ω(0) =

−−−)
)

where κ = (min{s − s′ : s > s′; s, s′ ∈ S})−1. By Lemma 6, ρ(n) is bounded from above by
the l.h.s of the previous inequality. We conclude by taking the limit in n, and using the �nite
volume ergodicity. 2

Remark 9 As an immediate consequence of Lemma 8 we get limn→∞ ρ(n) = 0, which implies
the ergodicity of P thanks to Lemma 7.

Let us denote by R = maxk′∈V0 ‖k′‖1
the �nite range of the local translation invariant PCA

dynamics P .

Lemma 10 The following two inequalities hold:

∀n ∈ N∗, ρ(2n) 6 (2nR + 1)dρ2(n) ; (9)

∀n,∀L ∈ N∗, ρ(2n) 6 2(2L + 1)dρ2(n) + 2κ
( ∫

σ0 dν+++
B(L) −

∫
σ0 dν−−−B(L)

)
. (10)

Proof. Let n be a �xed integer.
Proof of inequality (9)

Let ν−−−,+++
n ( . ) = IP

(
(ω1, ω2)(n) ∈ .

∣∣∣(ω1, ω2)(0) = (−−−,+++)
)
. Using Markov property of IP:

ρ(2n) =
∫

IP
(
ω1

0(2n) 6= ω2
0(2n)

∣∣∣(ω1, ω2)(n) = (ξ−−−, ξ+++)
)
ν−−−,+++

n (dξ−−−, dξ+++) .

Note that ν−−−,+++
n -almost surely, ξ−−− 4 ξ+++. Let A = {(ξ−−−, ξ+++) : ∃k ∈ Zd, ‖k‖

1
6 nR, ξ−−−k 6= ξ+++

k }.
Thanks to Remark 4 observe that the exact control of interaction information's propaga-

tion for PCA implies that the above integral vanishes on Ac because B(nR) ⊃ {0}
(n)

, and so
ξ−−−B(nR) ≡ ξ+++

B(nR). Then:

ρ(2n) =
∫

A

IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (ξ−−−, ξ+++)
)

ν−−−,+++
n (dξ−−−, dξ+++) .

Using Lemma 6, we obtain ρ(2n) 6 ρ(n) ν−−−,+++
n (A).

Writing A = ∪{k∈Zd: ‖k‖
1

6nR}{(ξ−−−, ξ+++) : ξ−−−k 6= ξ+++
k } we deduce:

ν−−−,+++
n (A) 6

∑
k∈Zd,‖k‖

1
6nR

IP
(
ω1

k(n) 6= ω2
k(n)

∣∣∣(ω1, ω2)(0) = (−−−,+++)
)
.

Since P is translation invariant, the conclusion follows from ν−−−,+++
n (A) 6 ρ(n)#B(nR) 6

ρ(n)(2nR + 1)d where #B(nR) denotes the cardinality of B(nR).
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Proof of inequality (10)

Write ρ(2n) =
∫

IP
(
ω1

0(2n) 6= ω3
0(2n)

∣∣∣(ω1, ω2, ω3)(0) = (−−−, η,+++)
)
ν(dη) where ν is a P -stationary

measure. Note that ω1
0(n) 6 ω2

0(n) 6 ω3
0(n),

IP
(
(ω1, ω2, ω3) ∈ .

∣∣∣ (ω1, ω2, ω3)(0) = (−−−, η,+++)
)
-almost surely, so that

{ω1
0(n) 6= ω3

0(n)} = {ω1
0(n) 6= ω2

0(n)} ∪ {ω2
0(n) 6= ω3

0(n)}, where the union is non necessarily
disjoint (unless cardinality of S is 2). Thus, following decomposition holds:

ρ(2n) 6
∫

IP
(
ω1

0(2n) 6= ω2
0(2n)

∣∣∣(ω1, ω2)(0) = (−−−, η)
)

ν(dη)

+
∫

IP
(
ω1

0(2n) 6= ω2
0(2n)

∣∣∣(ω1, ω2)(0) = (η,+++)
)

ν(dη) . (11)

It is then enough to prove that each of these quantities are bounded from above by half the
quantity wanted. Consider �rst the second term in the r.h.s. .

Let νη,+++
n = IP

(
(ω1, ω2)(n) = .

∣∣∣ (ω1, ω2)(0) = (η,+++)
)
. Let us write:∫

IP
(
ω1

0(2n) 6= ω2
0(2n)

∣∣∣(ω1, ω2)(0) = (η,+++)
)

ν(dη)

=
∫∫

IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (ξ1, ξ2)
)

νη,+++
n (dξ1, dξ2) ν(dη) .

Let L ∈ N∗ and AL = {(ξ1, ξ2) ∈ (SZd

)2 : (ξ1)B(L) ≡ (ξ2)B(L)}. Let decompose the integration
with respect to (ξ1, ξ2) into an integration on Ac

L and AL. We will prove that:

(I) =
∫∫

Ac
L

IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (ξ1, ξ2)
)

νη,+++
n (dξ1, dξ2) ν(dη)

6 (2L + 1)dρ2(n), (12)

(II) =
∫∫

AL

IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (ξ1, ξ2)
)

νη,+++
n (dξ1, dξ2) ν(dη)

6 κ
( ∫

σ0 dν+++
B(L) −

∫
σ0 dν−−−B(L)

)
. (13)

Let us consider part (I). Thanks to νη,+++
n (ξ1 4 ξ2) = 1 and using Lemma 6, we have

(I) 6 ρ(n)
∫

νη,+++
n (Ac

L) ν(dη). Note that Ac
L may also be written ∪k∈B(L){(ξ1, ξ2) : (ξ1)k 6= (ξ1)k}.

Thus we have:
νη,+++

n (Ac
L) 6

∑
k∈B(L)

νη,+++
n {(ξ1, ξ2) : (ξ1)k 6= (ξ2)k} .

Using translation invariance of the coupling and Lemma 6, the previous general term is equal

to IP
(
ω1

k(n) 6= ω2
k(n)

∣∣∣(ω1, ω2)(0) = (η,+++)
)

6 ρ(n). So νη,+
n (Ac

L) 6 #B(L) ρ(n), and then (12)

follows.

Part (II): let τ ∈ SB(L) be �xed, and de�ne AL,τ = {(ξ1, ξ2) : (ξ1)B(L) ≡ (ξ2)B(L) ≡ τ}. So

AL =
⊔

τ∈SB(L)
AL,τ and following decomposition holds:

(II) =
∫ ∑

τ∈SB(L)

∫
IP

(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (ξ1, ξ2)
)
11AL,τ

(ξ1, ξ2)νη,+++
n (dξ1, dξ2) ν(dη).

(14)
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Let us now use the �nite volume dynamics. νη,+++
n almost surely, we have ξ1 4 ξ2, (ξ1)B(L) =

(ξ2)B(L) = τ and also ξ2 = τ(ξ2)B(L)c 4 τ(+++)B(L)c , τ(−−−)B(L)c 4 ξ1 = τ(ξ1)B(L)c . Then:

P−−−B(L) ~ P ~ P ~ P+++
B(L)( ω1 4 ω2 4 ω3 4 ω4

∣∣∣(ω1
B(L), ω

2, ω3, ω4
B(L))(0) =

(τ, τ(ξ1)B(L)c , τ(ξ2)B(L)c , τ)) = 1

which implies:

IP
(
ω1

0(n) 6= ω2
0(n)

∣∣∣(ω1, ω2)(0) = (τξ1
B(L)c , τξ2

B(L)c)
)

6 P−−−B(L) ~ P+++
B(L)

(
ω1

0(n) 6= ω2
0(n) | (ω1, ω2)(0) = (τ, τ)

)
6 κ

(
P+++
B(L)(ω0(n) | ωB(L)(0) = τ)− P−−−B(L)(ω0(n) | ωB(L)(0) = τ)

)
, (15)

where the last inequality comes from Lemma 5 and from the fact that

P−−−B(L) ~ P+++
B(L)

(
.
∣∣∣ (ω1, ω2)(0) = (τ, τ)

)
-almost surely, we have ω1

0(n) 6 ω2
0(n).

On the other hand, note the following inequality:

νη,+++
n (AL,τ ) = IP

(
ω1(n)B(L) ≡ ω2

B(L)(n) ≡ τ
∣∣∣(ω1, ω2)(0) = (η,+++)

)
6 νη,+++

n

(
(ξ1, ξ2) : (ξ1)B(L) ≡ τ

)
= P (ωB(L)(n) = τ | ωB(L)(0) = η) . (16)

Reporting (15) and (16) in (14) we �nd

(II) 6 κ

∫ ∑
τ∈SB(L)

(
P+++
B(L)(ω0(n) | ωB(L)(0) = τ)− P−−−B(L)(ω0(n) | ωB(L)(0) = τ)

)
P (ωB(L)(n) = τ | ωB(L)(0) = η) ν(dη) 6 κ

(
(a)− (b)

)
.

We remark that (a) =
∫

P
(
fn,+++(ωB(L)(n))

∣∣∣ ωB(L)(0) = η
)

ν(dη) with

fn,+++(τ) = P+++
B(L)(ω0(n) | ωB(L)(0) = τ). Using the fact that the function fn,+++(.) is increasing,

and Lemma 6 we state:

(a) 6
∫ ∑

τ∈SB(L)

P+++
B(L)(ω0(n) | ωB(L)(0) = τ) P+++

B(L)(ωB(L)(n) = τ | ωB(L)(0) = ηB(L)) ν(dη) .

Using Markov property for the P+++
B(L) �nite volume dynamics, we �nd: (a) 6 ν(f2n,+++). The

function f2n,+++ is increasing; thanks to inequality (7), we thus have (a) 6 ν+++
B(L)(f2n,+++). We can

now write:

(a) 6
∫

P+++
B(L)(ω0(2n)|ωB(L)(0) = ηB(L)) ν+++

B(L)(dηB(L)) =
∫

σ0 dν+++
B(L),

where the last equality comes from the stationarity of ν+++
B(L) with respect to P+++

B(L).

Analogously we prove (b) >
∫

σ0 dν−−−B(L). Thus, the following inequality holds:

(II) 6 κ
(
(a)− (b)

)
6 κ

(∫
σ0 dν+++

B(L) −
∫

σ0 dν−−−B(L)

)
,
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which gives the estimate of the second term in inequality (11). The �rst term is treated in the
same way. So the recursive inequality (10) is established. 2

We now state some general analytic lemmas; for proofs see [10, 14].

Lemma 11 If limn→∞ ρ(n) = 0 and if ∃ (C̃, M) ∈ (R+
∗ )2, ∃L1 ∈ N∗,∀L ∈ N∗, L > L1,∀n ∈ N∗

ρ(2n) 6 2(2L + 1)dρ(n)2 + 2C̃e−ML

then limn→∞ ndρ(n) = 0.

Lemma 12 If limn→∞ ndρ(n) = 0, and if inequality (9) holds then, for all n1 such that
(2dĈ) nd

1ρ(n1) < 1, we have:
∀n > n1, ρ(n) 6 e−λn

where λ = − 1
2n1

log(2dĈnd
1ρ(n1)) > 0.

4 Proof of the Theorem 2

For general PCA in �nite volume, invariant measures are not explicitly known; but for the
class C0 here considered, we computed them (cf. Proposition 3.1 in [1]). The unique reversible
measure for the PCA dynamics P τ

Λ is de�ned by

ντ
Λ(σ) =

1
Wτ

Λ

∏
k∈Λ

cosh

β
∑
j∈Zd

K(k − j)σ̃j

 eβσk

P
j∈Λc K(k−j)τj , (17)

where σ̃ = σΛτΛc , and Wτ
Λ is the normalisation factor. Such measure does not coincide with

the �nite volume Gibbs measures µτ
Λ(σ) = 1

Zτ
Λ
exp(−

∑
A⊂Zd,A∩Λ6=∅ ϕA(σΛτΛc)) contrary to

what happens for Glauber dynamics when detailed balance holds. Nevertheless, they are
related as relation (18) attempts. We will not write down all technical computations which
prove relations (18), (19). Interested reader may refer respectively to Proposition 4.1.8 and
Property 4.1.12 in [10].

Let Λ,Λ′ two �nite subsets of Zd such that Λ ⊂ Λ′ and ∂iΛ ∩ ∂iΛ′ = ∅, where ∂iΛ , {k ∈ Λ :
Uk ∩ Λc 6= ∅}. Let τ ′ be a boundary condition of Λ and µτ ′

Λ denotes the �nite volume Gibbs
distribution associated to the potential ϕ on the volume Λ with boundary condition τ ′. We
then state:

ντ
Λ′(dσΛ|σΛ′\Λ) = µ

σΛ′\ΛτΛ′c

Λ (dσΛ) . (18)

Note that the potential ϕ is not really a ferromagnetic potential in the usual sense. However we
can check that associated �nite volume Gibbs measures verify a kind of monotone behaviour:

τ1 4 τ2 ⇒ µτ1
Λ 4 µτ2

Λ (see Proposition 4.1.9 in [10]). In particular, Gibbs measures on SZd

obtained as µ+ = limΛ↗Zd µ
(+)Λc

Λ and µ− = limΛ↗Zd µ
(−)Λc

Λ are extremal states in the sense

of stochastic ordering of the set G(ϕ). Recall µ probability measure on SZd

is in G(ϕ) if, per
de�nitionem, for any �nite volume Λ ⊂ Zd, a version of the conditioned measure µ(dσΛ|σΛc)
is µσΛc

Λ (dσΛ). Finally, let us state the following lemma:

Lemma 13 If the Weak Mixing Condition (WM) holds for the potential ϕ associated to the
PCA dynamics P , then assumption (A) holds for P .
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Proof. According to the �nite range R, let L > R. It is enough to show( ∫
σ0 dν+

B(L) −
∫

σ0 dν−B(L)

)
6

( ∫
σ0 dµ+

B(L−R) −
∫

σ0 dµ−B(L−R)

)
. Let us �rst check∫

σ0 dν+
B(L) 6

∫
σ0 dµ+

B(L−R). Let f0 be the increasing function de�ned on SZd

by f0(σ) = σ0.

Note
∫

σ0 dν+
B(L) = ν+

B(L)( ν+
B(L)( f0 |σB(L)\B(L−R))). Using relation (18) with Λ′ = B(L) and

Λ = B(L−R), we then get ν+
B(L)(f0) = ν+

B(L)(µ
σB(L)\B(L−R)(+1)B(L)c

B(L−R) (f0)). On the other

hand, using the monotonicity in the boundary condition of the �nite volume Gibbs mea-

sures, we �nd µ
σB(L)\B(L−R)(+1)B(L)c

B(L−R) (f0) 6 µ
(+1)B(L−R)c

B(L−R) (f0). So desired inequality holds.

ν−B(L)(f0) > µ−B(L−R)(f0) can be analogously checked. 2

Lemma 14 For a PCA dynamics P of class C0 with K(.) non negative, the extremal station-
ary measures ν−−−, ν+++ coincide respectively with extremal Gibbs measures µ− and µ+ of G(ϕ)
(possibly these four measures coincide).

Proof. Let Λ, Λ′ be two �nite subsets of Zd such that Λ ⊂ Λ′. Then, for all con�gurations
σΛ′\Λ ∈ SΛ′\Λ, �nite volume reversible measures with extremal boundary condition are such
that:

ν+
Λ′

(
(.)Λ|σΛ′\Λ

)
4 ν+

Λ (.) ; ν−Λ′
(
(.)Λ|σΛ′\Λ

)
< ν−Λ (.) (19)

(see Property 4.1.12 in [10] for a precise proof). Using relation (18), we can deduce from the
previous result the following inequalities between �nite volume Gibbs measure and reversible
measure, with extremal boundary condition: µ+

Λ 4 ν+
Λ and µ−Λ < ν−Λ . Taking now the limit in

volume, we �nd: µ+ 4 ν+ and µ− < ν−.

On the other hand, ν+
Λ is P+

Λ -reversible, so taking the limit, ν+ is P -reversible. Analogously,
ν− is P -reversible. From R = S∩G(ϕ), we conclude ν− and ν+ are Gibbs measures, so thanks
to the fact that µ− and µ+ are stochastic ordering extremal states for Gibbs measures, we
deduce: ν+ 4 µ+ and µ− 4 ν−. Thus the conclusion follows. 2

Here is the proof of Theorem 2:
Proof. When there is phase transition, since µ− and µ+ are extremal states for G(ϕ), we
have that µ− 6= µ+. So, using Lemma 14, the two reversible (also stationary) measures ν−

and ν+ are di�erent. Then, dynamics P can not be ergodic.

When there is no phase transition, then G(ϕ) = {µ} where µ = µ− = µ+ is the unique Gibbs
state. Thanks to Lemma 14, it holds ν− = µ− = µ+ = ν+. The Proposition 3 states the
uniqueness of the P -stationary measure and the ergodicity of the PCA dynamics P .

Finally, if weak mixing condition (WM) is assumed, then Lemma 13 implies that inequal-
ity (A) holds. We conclude using Theorem 1. 2
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