
Institut für Biochemie und Biologie

Universität Potsdam

Mass-balanced randomization
A significance measure for metabolic networks

Dissertation

zur Erlangung des akademischen Grades
”doctor rerum naturalium” (Dr. rer. nat.)

in der Wissenschaftsdisziplin ”Bioinformatik”

eingereicht in kumulativer Form an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von

Georg Basler

Potsdam, den 26. Januar 2012



This work is licensed under a Creative Commons License: 
Attribution - Noncommercial - Share Alike 3.0 Germany 
To view a copy of this license visit 
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URL http://opus.kobv.de/ubp/volltexte/2012/6203/ 
URN urn:nbn:de:kobv:517-opus-62037 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62037 



Abstract

Complex networks have been successfully employed to represent different levels of biological systems,
ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has
mainly focused on identifying unifying structural properties, including small average path length, large clus-
tering coefficient, heavy-tail degree distribution, and hierarchical organization, viewed as requirements for
efficient and robust system architectures. Existing studies estimate the significance of network properties
using a generic randomization scheme—a Markov-chain switching algorithm—which generates unrealistic
reactions in metabolic networks, as it does not account for the physical principles underlying metabolism.
Therefore, it is unclear whether the properties identified with this generic approach are related to the func-
tions of metabolic networks.

Within this doctoral thesis, I have developed an algorithm for mass-balanced randomization of metabolic
networks, which runs in polynomial time and samples networks almost uniformly at random. The properties
of biological systems result from two fundamental origins: ubiquitous physical principles and a complex
history of evolutionary pressure. The latter determines the cellular functions and abilities required for an
organism’s survival. Consequently, the functionally important properties of biological systems result from
evolutionary pressure.

By employing randomization under physical constraints, the salient structural properties, i.e., the small-
world property, degree distributions, and biosynthetic capabilities of six metabolic networks from all king-
doms of life are shown to be independent of physical constraints, and thus likely to be related to evolution
and functional organization of metabolism. This stands in stark contrast to the results obtained from the
commonly applied switching algorithm. In addition, a novel network property is devised to quantify the
importance of reactions by simulating the impact of their knockout. The relevance of the identified reac-
tions is verified by the findings of existing experimental studies demonstrating the severity of the respective
knockouts. The results suggest that the novel property may be used to determine the reactions important for
viability of organisms.

Next, the algorithm is employed to analyze the dependence between mass balance and thermodynamic
properties of Escherichia coli metabolism. The thermodynamic landscape in the vicinity of the metabolic
network reveals two regimes of randomized networks: those with thermodynamically favorable reactions,
similar to the original network, and those with less favorable reactions. The results suggest that there is an
intrinsic dependency between thermodynamic favorability and evolutionary optimization.

The method is further extended to optimizing metabolic pathways by introducing novel chemically feasibly
reactions. The results suggest that, in three organisms of biotechnological importance, introduction of the
identified reactions may allow for optimizing their growth. The approach is general and allows identifying
chemical reactions which modulate the performance with respect to any given objective function, such as
the production of valuable compounds or the targeted suppression of pathway activity. These theoretical
developments can find applications in metabolic engineering or disease treatment.

The developed randomization method proposes a novel approach to measuring the significance of biological
network properties, and establishes a connection between large-scale approaches and biological function.
The results may provide important insights into the functional principles of metabolic networks, and open
up new possibilities for their engineering.





Acknowledgement

I would like to deeply thank Joachim Selbig for extensive advice and help throughout the develop-
ment of this thesis. I further greatly thank Zoran Nikoloski for extraordinary scientific and moral
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Chapter 1

Introduction

1.1 Background

The emerging field of systems biology aims at systematically analyzing and modeling biological
systems at various levels of organization, from molecules and cells to tissues, organs, and entire
organisms. The field is characterized by multidisciplinary approaches and highly depends on
modern technologies facilitating high-throughput experiments. Computational methods play a
central role, as they are fundamental in virtually all aspects of systems biology research, and
enable the automated analysis and generation of hypotheses from an otherwise unmanageable
plethora of experimental data.

The knowledge about complex biological systems is typically represented as networks of interact-
ing components. In recent years, the accumulation of high-throughput data has led to increasingly
accurate reconstructions of cellular networks. A central challenge in computational systems bi-
ology is the development of algorithmic methods facilitating predictions with biotechnological or
clinical applications based on formal representations of biological systems.

1.1.1 Computational methods in biology

Classical applications of computational methods in biology were concerned with modeling meta-
bolic processes (Chance et al., 1960) and automated assembly of DNA sequences (Staden, 1979).
Their importance for addressing biological questions has ever since continuously increased. The
development of high-throughput technologies for DNA sequencing, gene expression measure-
ment, and metabolic profiling, has led to the accumulation of large amounts of data describing all
levels of biological systems (Ideker et al., 2001). Nowadays, computational approaches are in-
dispensable tools for establishing a connection between the plethora of experimental data and the
functional principles of biological systems, with the aim of automatically generating biological
knowledge.

Not only the amount of generated data, but also the inherent data complexity has drastically in-
creased. Starting with the genome, which may be regarded as one-dimensional code, composed
of four different nucleotides, data describing various levels of biological processes has been col-
lected. Some examples include: the regulation of gene expression by transcription factors and
micro-RNA, signal transduction and the formation of protein complexes, or the catalysis of met-
abolic reactions by enzymes. In contrast to the genetic code, all of these processes involve a
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multitude of different molecular entities which perform their biological function through a com-
plex network of mutual interactions. Consequently, our ability to harness the wealth of information
contained in high-throughput experimental data depends ever more on the development of struc-
tured modeling approaches and efficient computational tools.

In the past decades, the need to view biological processes in the context of their complex inter-
actions, instead of regarding molecular components independently, was increasingly recognized.
Even biological processes which are often treated as independent, such as gene expression, signal
transduction and metabolism, are closely interrelated (Gianchandani et al., 2006). Consequently,
biological research has moved from reductionist to holistic approaches, which led to the recon-
struction and analysis of large networks underlying diverse cellular processes (reviewed in Papin
et al., 2005; Krogan et al., 2006; Karlebach and Shamir, 2008; Palsson, 2009). At the same time,
computational power has rapidly increased, and more sophisticated algorithms for in silico inves-
tigations of biological processes have been developed. Thus, the promises of the emerging field of
computational systems biology lie in obtaining predictive computational models of complex bio-
logical processes, which will ultimately lead to a deeper mechanistic understanding of biological
systems and applications in biotechnology and medicine.

1.1.2 From data to knowledge

In its raw form, data from a single high-throughput experiment consists of thousands of data
points. In addition, the publicly available knowledge of biological processes, such as gene reg-
ulation and metabolism, easily spans several thousands of experiments. Clearly, harnessing the
information from these immense data sets requires that they are first brought into a structured and
computationally accessible form.

Graphs provide both an intuitive and formal representation of a complex process of interacting
components. The components, including genes, proteins, and metabolites, are represented as
vertices, and their interactions are represented as edges (see Section 1.2.2). (In the following, the
terms graph and network are used synonymously.) The representation of biological processes as
graphs has several advantages. First, heterogeneous data types from several different experiments
together with their relationships can be transparently represented in a unified fashion, as vertices
and edges. Second, different levels of detail may be integrated coherently, which can be used to
combine precise information, where available, with higher levels of abstraction, where details are
lacking. For instance, in the same graph, one vertex may be annotated by molecular information
of atomic detail, while another one may represent an abstraction of an entire biological process.
Likewise, edges may be annotated by the type and weighted by the strength of the represented
interaction. Finally, a large variety of established and efficient computational methods from other
fields of research on networks exists, including graph theory, sociometry, statistical mechanics,
or systems engineering, which may be useful in analyzing the functional principles of biological
systems (Alon, 2003; Barabási and Oltvai, 2004).

Naturally, the abstraction of knowledge by means of graphs also comes with considerable draw-
backs, complicating the potential applications in biology. For example, it is tempting to analyze
large biological systems while neglecting levels of detail. However, the omission of necessary
details may lead to erroneous results or limit the applicability of their findings, which must be
considered when drawing conclusions. Further, it is not easy to represent time-variant, quantita-
tive data in a graph. Therefore, one often cannot directly infer the dynamic behavior of physio-
logical processes from a purely structural graph representation of a biological system. Finally, in
order to be useful, any network-based analysis must find a trade-off between detailed molecular
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representations and computational complexity. Thus, the challenge remains of developing effi-
cient methods for network analysis to draw a connection between the structure and function of
biological systems.

1.1.3 Complex networks

The first attempts to model complex processes by means of networks were made in sociomet-
ric studies, where a network represented social friendship relationships among a group of people
(Moreno and Jennings, 1937). However, these studies were limited to very small networks, as
the data were obtained from personal inquiries, while the large-scale structure of complex social
or other networks remained unknown. Around the turn of the millennium, large amounts of data
became available to describe complex systems ranging from technology to sociology and natu-
ral sciences (Newman, 2001; Liljeros et al., 2001; Albert et al., 1999; Pandey and Mann, 2000;
Ito et al., 2001), which allowed the first computational analyses of the large-scale properties of
complex systems.

The initial findings pointed out that a network of film actors, a power grid, and the neural net-
work of C. elegans were dissimilar to both regular and random graphs. Despite their large sizes,
the average length of the shortest paths connecting any two vertices was found to be relatively
small, while most vertices were grouped into local clusters, which is known as the small-world
phenomenon. In the following, the small-world property was found in different social, technolog-
ical, metabolic, protein-protein interaction and brain networks (Wagner and Fell, 2001; Giot et al.,
2003; Sporns and Zwi, 2004), indicating that different types of complex networks share some fun-
damental structural properties. Further, in many social, technological, and biological networks, the
degree distributions are scale-free (follow a power law) (Barabási and Albert, 1999; Jeong et al.,
2000, 2001), and vertices are organized hierarchically (Ravasz et al., 2002; Girvan and Newman,
2002). These studies aimed at discovering the universal principles of complex networks, and sug-
gested that general frameworks may be developed to draw connections between the structure and
function of networks across different research disciplines (Barabási and Oltvai, 2004).

However, subsequent studies revealed a clearer picture of the commonalities of and differences
between the various types of networks. For example, the average path lengths and the scaling co-
efficients of degree distributions differ among social, technological and biological networks (New-
man, 2003b), and some degree distributions are better described by a truncated power-law or an
exponential distribution (Amaral et al., 2000). For metabolic networks, the small-world property
crucially depends on the type of network representation and the corresponding definition of a path
(Arita, 2004; Pitkänen et al., 2005, see Section 1.4.4). In most social networks, the degrees be-
tween neighboring vertices are positively correlated (assortativity), while negative degree-degree
correlations prevail in technological and biological networks (dissortativity) (Maslov and Snep-
pen, 2002; Newman, 2003a). Further, different frequencies in the occurrence of motifs, small
subnetworks with a particular connection pattern, allow to distinguish different types of biological
and technological networks (Milo et al., 2002).

Particularly in biology, the impact of identifying the global properties of complex networks on ex-
perimental research was long and is still debated, mostly due to the difficulties in using structural
properties for making predictions about the behavior of individual network components, such as
genes or proteins, under in vivo conditions (Wolf et al., 2002; Kitano, 2002; Bray, 2003; Arita,
2004; Papp et al., 2009; Yamada and Bork, 2009; Lima-Mendez and van Helden, 2009). Clearly,
it seems unlikely that a unified theory will eventually allow elucidating the underlying mecha-
nisms of all types of biological processes. Instead, these analyses, aimed at developing a unifying



4 CHAPTER 1. INTRODUCTION

theory, can identify the emergent properties of a system, such as robustness or adaptability, which
may give hints at their evolutionary history and facilitate classifications (e.g., of healthy and dis-
eased states of cells or organisms). Finally, the central findings in complex network analyses
strengthened the holistic view on biological systems, and inspired the development of more so-
phisticated methods for their analysis. Today, several successful applications of network analyses
exist, ranging from the prediction of physiological metabolic states and metabolic engineering
of microorganisms (Edwards et al., 2001; Famili et al., 2003; Almaas et al., 2004; Smid et al.,
2005; Lee et al., 2005, 2007; Sohn et al., 2010) to the successful classification of diseases using
protein-interaction networks (Chuang et al., 2007) and the prediction of drug targets using human
metabolic (Folger et al., 2011) and functional brain networks (Sanz-Arigita et al., 2010).

1.1.4 Significance testing

A first step in establishing a connection between the large-scale structure and the function of
biological systems is to identify the network properties which carry meaningful biological infor-
mation. To this end, it is necessary to determine the importance, or significance, of a proposed
network property with respect to biological function. Randomization is a classical statistical ap-
proach for determining the functionally important features in complex data sets (Fisher, 1925;
Rubin, 1978; Lipman et al., 1984; Pearson and Lipman, 1988). The general idea of randomization
is to determine the significance of an observation by estimating how likely the same observation
could have been made by chance, i.e., by assuming that no functionally relevant principles are
reflected in the data. For example, in order to identify co-regulated genes from complex gene
expression data, a threshold has to be specified for detecting pairs of genes which are significantly
co-regulated. By randomly reshuffling the underlying data points, one can obtain the probabil-
ity that a set of genes has a similar expression pattern by chance. The threshold is then chosen
such that the probability of identifying sets of genes which have a similar expression pattern by
chance, i.e., without any functional importance, is reasonably small (lower than the a priori chosen
significance level of usually 1 or 5%).

Randomization enables the extraction of the meaningful patterns from complex data sets by test-
ing the null hypothesis that a pattern is observed by chance. If an observed pattern is significantly
different in randomized data, then the null hypothesis can be rejected, and the pattern is assumed
to be of functional importance. Unfortunately, it is not straightforward to devise an appropri-
ate random background for structured data represented as networks. As complex networks are
reconstructed from a large diversity of experiments, it is not obvious how to obtain randomized
networks which lack any functionally important patterns. Consequently, complex networks have
been compared to different types of random graphs, with differing results (Albert and Barabási,
2002). Nevertheless, virtually all network analyses rely on the generic Markov-chain switching
algorithm for generating randomized networks (Maslov and Sneppen, 2002; Milo et al., 2002;
Itzkovitz et al., 2003; Maslov et al., 2004; Milo et al., 2004; Nunes Amaral and Guimerà, 2006;
Guimerà et al., 2007a,b; Marr et al., 2007; Sales-Pardo et al., 2007; Zhu et al., 2007; de la Fuente
et al., 2008). Based on this algorithm, a random network is obtained by randomly reshuffling the
edges of the original network while preserving the degrees of the vertices. The property of interest
is then determined in the original network, and its significance is calculated by comparison to the
distribution of values for the property in a large set of networks obtained from randomization.

The idea of preserving the degrees originates from the observation that the degree distributions
are a ubiquitous feature, which constrains all classes of networks independently of their function
(a different motivation was raised for ecological networks, see Cobb and Chen, 2003). By pre-
serving this universal feature, the identified network properties are independent of the degrees,
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and, therefore, assumed to be a result of other, functionally important constraints imposed on
the network. However, when applied to metabolic networks, the algorithm generates physically
impossible chemical reactions, since physical principles, such as mass balance and thermodynam-
ics, are disregarded (see Section 2.1 and Figure 5.1 on page 46). In addition, it is unclear whether
preservation of the degrees is sufficient for obtaining randomized networks void of biological func-
tion, as biological systems are shaped by complex physical and evolutionary constraints. Thus,
it is arguable whether switch randomization can be used in identifying the functionally important
features of biological networks.

In addition, some statistical tests assume that the values of an analyzed property follow a normal
distribution in randomized samples, which is rarely verified in practice. The z-score based p-value
relies on this assumption, as it derives the distance from the mean in standard deviations of a
normal distribution as test statistic. This test is applied in Chapter 5 for estimating the significance
of the small-world property. The corresponding randomized distributions were tested for normality
(see Figures C.5-C.8).

A more general limitation of significance testing is that no conclusions can be drawn if the null
hypothesis is not rejected, i.e., if a property is not significant. While it is frequently suggested in
the literature that a ”non-significant” property is a result of chance, or unimportant (e.g. Gionis
et al., 2006), this conclusion is not statistically sound. The reason is that, in statistical hypothesis
testing, the p-value gives an estimation of the probability, that an observation, D (such as a prop-
erty in the original network), is made under the assumption that the null hypothesis, H0, is true:
p ≈ P (D|H0). Here, H0 represents the hypothesis that a network property is not functionally
important, but a result of random events. If p is small, then the observation is likely to contradict
H0, and the null hypothesis may be rejected. However, if p is large, H0 is not necessarily likely
to be true, as this only reflects that D does not contradict H0. Instead, the possible reasons for
a large p-value are manifold: the significance threshold, which is usually chosen arbitrarily, may
be too small, especially if the p-value only slightly missed the threshold. In addition, there may
be errors in the experimental design (here, the reconstructed networks), or the number of random
samples may be insufficient (see Nickerson, 2000 for a detailed discussion). More intuitively, a
property may be related to an important function, but some randomized samples may exhibit the
same property value ”by chance”, resulting in a large p-value. Therefore, one may not draw any
conclusions from a non-significant property.

1.2 Metabolic networks

A metabolic network is a collection of chemical reactions involving molecules (metabolites)
within an organism. Most metabolic reactions are catalyzed by enzymes, which are encoded
in the genome. Thus, the metabolic capabilities of an organism are determined by its genotype.
The biological functions of metabolism are diverse: uptake of nutrients from the environment,
excretion of unnecessary or toxic compounds, conversion and harness of energy, and biosynthesis
of cellular components. Therefore, metabolism is sometimes regarded as the molecular phenotype
of a cell (Fiehn et al., 2000).

Research in metabolism has traditionally focused on bottom-up approaches, such as kinetic mod-
eling. Therein, the time-dependent changes in metabolite concentrations are represented by a
system of differential equations, which can be used to calculate the steady-state as well as the
temporal trajectories of the concentrations within the pathway. Unfortunately, kinetic modeling
approaches are limited to relatively small pathways due to their dependence on parameters whose
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values are often unknown (Famili et al., 2005; Jamshidi and Palsson, 2008). In addition, statistical
approaches, such as network analysis, are of limited application to small subnetworks, as their
reliability depends on large amounts of available data. Therefore, I will focus in the following on
the structure of genome-scale metabolic networks, which are the object of study of this doctoral
thesis.

In Section 1.2.1, I will first describe how metabolic networks are reconstructed. Next, I will
summarize different ways of formally representing a metabolic network in Section 1.2.2.

1.2.1 Reconstruction

There are two principally different yet complementary techniques for reconstructing a metabolic
network. The more accurate (and more tedious) methods rely on identification of enzymes and
metabolites in a biological sample using analytical techniques, such as mass spectrometry (Bre-
itling et al., 2006), followed by the characterization of enzymes using biochemical methods (e.g.,
Martı́nez-Blanco et al., 1990), correlation analysis (Arkin et al., 1997), or, more recently, compu-
tational function prediction from the protein structure (Hermann et al., 2007). Such approaches
can detect with high confidence the enzymes present in a particular sample and the relationships
between metabolites. The faster and more widespread approach is to transfer knowledge on meta-
bolic reactions from a well-annotated organism by identifying homologous enzyme-coding genes
(Ma and Zeng, 2003a; Francke et al., 2005). Without further refinement, e.g., by using exist-
ing knowledge from the literature, this approach results in an incomplete network draft which
may not be able to account for known metabolic functions. Ideally, knowledge transfer and com-
putational modeling approaches should be combined with experimental data in order to obtain
high confidence models (Ideker et al., 2001; Feist et al., 2009). A workflow for reconstructing a
genome-scale metabolic network is shown in Figure 1.1.

A typical genome-scale metabolic network consists of several thousands of reactions and metabo-
lites, and is regarded as a complex network. For example, a recent reconstruction of human me-
tabolism includes 3731 unique reactions and 1469 metabolites (Duarte et al., 2007), while another
one contains 2819 reactions and 2691 metabolites (Ma et al., 2007). Both networks include infor-
mation on the reversibility of reactions and the genes encoding their catalyzing enzymes, while
only the first includes information on the subcellular localization of metabolites and reactions
(which may account for the larger number of reactions, Ma et al., 2007). A recent reconstruction
of A. thaliana primary metabolism consists of 1567 unique reactions and 1748 metabolites, and
contains information on reversible reactions, gene annotations, and subcellular location of reac-
tions (de Oliveira Dal’Molin et al., 2010). A large number of metabolic network reconstructions
for organisms throughout all kingdoms of life is publicly available in database collections such as
KEGG (Ogata et al., 1999), Reactome (Joshi-Tope et al., 2005), BioCyc (Caspi et al., 2010), or
their integrations (Schellenberger et al., 2010; Kumar et al., 2012). These networks were recon-
structed primarily using homology transfer and information from the literature, while experimental
validations are presently scarce.

There are some general limitations of the applications of genome-scale metabolic networks. First,
as most reactions are included automatically based on knowledge transfer from other organisms,
organism-specific metabolites and reactions are more likely to be missing than those which are
shared with well-studied organisms (Breitling et al., 2008). Second, experimental discovery and
knowledge transfer is not equally possible for all parts of metabolism, so that certain, less studied
pathways, e.g., from secondary metabolism, may be incomplete or entirely missing. Third, even
reactions included with high confidence do not necessarily occur under physiological conditions
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Figure 1.1: Workflow for re-
constructing a genome-scale
metabolic network. Start-
ing from the unannotated ge-
nome for an organism of in-
terest, homologous enzyme-
coding genes are identified in
a well-annotated reference ge-
nome. The identified reactions
are transferred in order to ob-
tain a first draft of a metabolic
network. In the next step, in-
formation from the literature
describing the metabolic activ-
ities of the target organism is
used to add, modify or remove
reactions, resulting in a refined
network. Finally, the meta-
bolic capacities of the recon-
struction are modeled and val-
idated iteratively using experi-
mental techniques, resulting in
a high-confidence model.

due to gene regulation, subcellular separation of substrates and enzymes, or differences between
the in vitro measurements and in vivo conditions (Feist et al., 2009; Daily et al., 2007; Teusink
et al., 2000). Finally, for multicellular organisms, most genome-scale network reconstructions
do not specify in which tissue types individual reactions occur (see Section 7.4). Unless such
information is integrated, the metabolic networks of higher organisms cannot be reliably used for
physiological predictions on the organism-level (Shlomi et al., 2008).

Some of these problems can be alleviated by the aforementioned manual refinement and experi-
mental validation of metabolic network reconstructions. Therefore, within this thesis, I relied pri-
marily on reconstructed networks from dedicated publications, where particular effort was made
in refining the model (summarized in Table B.1).

1.2.2 Graph representations

In the following, I will compare the most common forms of representing metabolic networks,
and will present the bipartite graph representation which is used throughout the thesis. The most
illustrative way of representing a network of metabolic reactions is to denote the metabolites by
their names and connect them by arrows representing reactions (Figure 1.2a). The more detailed
reaction diagrams allow to visualize the rearrangements of chemical groups (Figure 1.2b). In both
representations, frequently occurring metabolites are repeatedly drawn, which allows for a clear
layout. However, their purpose is limited to visualization, as the arbitrary repetition of metabolites
does not coherently reflect the number of involved metabolic species, as required for modeling
approaches.
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Figure 1.2: Different ways of representing metabolic networks, illustrated by two successive
GTP 8,9-hydrolase reactions. (a) Pathway map commonly used in biology. Frequently occur-
ring metabolites, here H2O, are drawn repeatedly for each reaction. (b) Reaction diagram de-
picting the chemical structure and stoichiometric coefficients, commonly used in chemistry. The
picture was created using Jmol (http://www.jmol.org). (c) Directed metabolite-metabolite net-
work commonly used in complex network analysis (left) and the corresponding adjacency matrix
(right). Metabolites are represented by vertices, two vertices are connected by a directed edge
if the corresponding metabolites occur as substrate and product in the same reaction. (d) Di-
rected metabolite hypergraph (left) and the corresponding adjacency matrix (right). Metabolites
are represented by vertices, a directed hyperedge connects the substrates with the products of
a reaction. (e) Directed, weighted bipartite network (left) and the corresponding stoichiometric
matrix (right). Metabolites and reactions are represented by two types of vertices. Metabolite ver-
tices are connected to reaction vertices by directed edges, which represent the substrate-reaction
or product-reaction relationship, and are weighted by the stoichiometric coefficients. Note that,
if a metabolite is allowed to occur as substrate and product of the same reaction, this cannot be
represented in the stoichiometric matrix, which marks the difference between stoichiometric and
adjacency matrix. Metabolite abbreviations: FPN: Formamidopyrimidine nucleoside triphosphate,
GTP: Guanosine 5’-triphosphate, Pi: Phosphate, AFP: 2-Amino-5-formylamino-6-(5-phospho-D-
ribosylamino)pyrimidin-4(3H)-one.

http://www.jmol.org
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In complex network research, metabolic networks are frequently represented as directed metabolite-
metabolite graphs. Therein, metabolites are represented by vertices, and reactions are represented
by edges connecting the vertices of substrates with those of the products (Figure 1.2c). In this rep-
resentation, each metabolic species corresponds exactly to one vertex. However, it is not possible
to distinguish individual reactions, as a single edge may represent multiple reactions. Therefore,
stoichiometric coefficients cannot be considered, and it is not possible to determine biosynthetic
routes, where multiple substrates are converted into multiple products (Arita, 2004; Pitkänen et al.,
2005).

A directed hypergraph is a generalization of a directed graph, where an edge may connect two sets
of vertices (Gallo et al., 1993). Metabolites are represented as vertices, and a hyperedge connects
the substrates of a reaction with its products (Figure 1.2d). This representation provides an ac-
curate representation of the biosynthetic routes as hyperpaths. Stoichiometric coefficients of the
substrates and products can be represented by assigning functions to hyperedges (Klamt et al.,
2009). However, some algorithmic problems, such as average hyperpath length, are computation-
ally prohibitive in large networks, and it is not straightforward to calculate the properties of the
corresponding metabolite-metabolite graphs, as commonly analyzed in complex network research.

The directed, weighted bipartite graph used throughout the thesis combines the advantages of
metabolite-metabolite graphs and hypergraphs. Metabolites and reactions are represented as two
different types of vertices. Vertices representing metabolites are connected by directed edges to the
corresponding reaction vertices. The direction of an edge indicates a substrate or product relation-
ship, and its weight represents the stoichiometric coefficient (Figure 1.2e). Thus, the stoichiomet-
ric relationships between substrates and products are reflected properly and in a straightforward
manner. In addition, this representation facilitates the annotation of both metabolites and reactions
with additional information, such as the chemical structure of metabolites, or the enzyme catalyz-
ing a reaction and its coding genes. The properties of the corresponding metabolite-metabolite
graph may be calculated simply by neglecting the additional reaction vertices and edge weights.
At the same time, this representation may be used to efficiently calculate biosynthetic routes of a
network using the network expansion algorithm (Handorf et al., 2005) or metabolite fluxes through
reactions using constraint-based approaches (Varma and Palsson, 1994).

1.3 Related work

In the following, I will explain the differences between random graph models and randomization
approaches, and give some examples of studies which are related to the subject of this thesis.
Random graph models clearly differ from randomization approaches in their formulation and ob-
jectives. In contrast to randomization approaches, random graphs are not obtained by modifying a
network of interest, but consist of a set of vertices connected by a random set of edges. A classical
problem in random graph theory is to study the probability of network properties, such as the fre-
quency of subgraphs and the size of the largest connected component, emerging as a function of
the number of vertices (Erdös and Rényi, 1959; Itzkovitz et al., 2003; Dorogovtsev et al., 2008). In
complex network research, the structural properties of random graphs were compared to those in
social, technological, and biological networks in order to study their evolutionary origins (Watts
and Strogatz, 1998; Barabási and Albert, 1999; Newman et al., 2001; Oikonomou and Cluzel,
2006).

In contrast, the goal of network randomization approaches is not to model all aspects of a com-
plex network as closely as possible. Instead, a network is randomized under certain constraints in
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order to determine the properties which differ between the original network and its randomized
variants. These properties are independent of the imposed constraints, and assumed to be of func-
tional importance. Thus, a randomization algorithm can be considered as a method for estimating
the significance of network properties. As discussed in Section 1.1.4, the widespread approach for
estimating the significance of complex network properties is based on a Markov-chain switching
algorithm (in the following referred to as switch randomization), which randomizes a given net-
work while preserving the vertex degrees. Switch randomization generates a randomized network
from a given network by repeatedly choosing a pair of edges, a → b, c → d at random and re-
placing them by new edges a → d and c → b, if these do not already exist (see Figure C.1). In
Chapters 3 and 5, the number of iterations was chosen as the number of unique edge pairs in the
network, which is conservative compared to other estimations for obtaining a properly random-
ized network (Milo et al., 2003). As the degrees of vertices are not changed, all switch randomized
networks have the same degree sequence as the original network. By comparison of a property in
the original network to the distribution of its values in switch randomized networks, the network
properties which are independent of vertex degrees can be determined as significantly different.
Since the degree distribution is assumed to be a ubiquitous feature of all networks independently
of their function, a significant property is assumed to result from some non-arbitrary, functionally
important constraint imposed on the network.

Recently, several enhancements of switch randomization have been proposed. In dense weighted
networks, switch randomization may enable substitutions for only few edge pairs. To overcome
this limitation, Zlatic et al. (2009) proposed a randomization method applicable to dense weighted
networks. The goal was to measure the significance of the rich-club effect, i.e., the tendency of
high-degree vertices to form cliques in social networks (Colizza et al., 2006), which are commonly
dense. However, the method is of limited applicability to metabolic networks, which are inherently
sparse.

Ying and Wu (2008) modified the switch randomization algorithm to minimizing the change in
the graph spectra, i.e., the eigenvalues of the adjacency matrix and the corresponding Laplacian
matrix. The graph spectra are directly linked to important topological properties of a graph, such
as average path length, degree distribution, and hierarchical organization. By deriving the change
in eigenvalues resulting from the switching of two edges, those switches which lead to an in-
crease of the eigenvalues are alternated by switches which lead to a decrease. As a result, the
graph spectra, and thus some of the fundamental topological properties, are less affected by the
randomization procedure. While the original motivation of this randomization algorithm was to
anonymize privacy information in social networks on the internet, the authors later extended the
method to preserving arbitrary feature distributions, and suggested to use the method for testing
the significance of topological properties (Ying and Wu, 2009). However, the algorithms have
never been applied to real networks.

A similar approach was suggested by Hanhijärvi et al. (2009a), who developed a general frame-
work for randomizing undirected unweighted graphs while preserving any user-defined set of
graph statistics, as exemplified by the average path length and clustering coefficient. Additional
operations for modifying graphs are proposed, which preserve the degree distribution and the con-
nected components. While preservation of such properties may also be desirable for randomizing
metabolic networks, the computational complexity increases, as the preserved properties are re-
peatedly calculated in each step of the algorithm. Therefore, when preserving the average path
length, the algorithm is inefficient for large networks (Hanhijärvi et al., 2009a). In addition, its
extension to directed, weighted biparite graphs is not straightforward.

The most similar approach to the present work is a recently proposed randomization method for
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genome-scale metabolic networks (Samal and Martin, 2011). The aim of the approach is to ana-
lyze the dependence of topological properties on different functional constraints. The metabolic
network of E. coli is randomized by exchanging randomly chosen reactions with reactions from
the KEGG database. The authors study how the successive addition of constraints to the randomi-
zation algorithm affects the average path length, clustering coefficient, reachability of metabolites,
and the size of the largest strongly connected component. The successively imposed constraints
are: (1) Preservation of the number of reactions; (2) Limitation of the number of metabolites to
be less or equal as in the original network; (3) Skipping of reactions which may not carry a flux
under steady-state conditions; (4) Viability of the metabolic network under different nutritional
environments, as predicted by flux balance analysis (Varma and Palsson, 1994). The authors find
that, although a diverse set of randomized networks is obtained even when imposing all constraints
(<50% of identical reactions), the topological properties become visually similar to the original
network, particularly after imposing the constraints (2) and (4).

The approach differs from the present work in various aspects. Samal and Martin (2011) investi-
gate to what extent the topological properties of E. coli depend on biological constraints. The au-
thors rely on a metabolite-metabolite graph representation (Figure 1.2c), and remove metabolites
with a large degree from the network before conducting their analyses. By randomly exchanging
the reactions of the investigated network with reactions from a database, the authors obtain net-
works consisting only of reactions which are known to exist. While this approach may generate
feasible networks, it is also restricted to those reactions which are annotated in the corresponding
database, and thus have a known biological role. The topological similarities between the network
of E. coli and the networks obtained from randomization under constraints are judged visually,
and may thus reveal different results when subjected to a statistical test.

Further, by including functional constraints, such as the viability under nutritional environments,
networks with increasingly complex biological functions are generated. Therefore, the approach
does not allow to evaluate the importance of network properties with respect to biological function.
By contrast, the present thesis aims at developing a significance measure for metabolic networks,
which preserves the physical constraints in order to identify properties related to biological func-
tion. Hence, it is not desired to impose constraints regarding complex biological functions, as
these may impede functionally important properties from being identified as significant.

Finally, all randomization approaches differ from the present work in the addressed problem and
analyzed networks. The existing methods aim at preserving topological constraints, such as the
degree distribution, clustering coefficient, or the number of connected components. The approach
by Samal and Martin (2011) is not suitable for measuring the significance of network properties,
and has so-far only been applied to one metabolic network. The central idea of the present work
is to preserve only the fundamental physical constraints which are irrevocable and govern the fea-
sibility of metabolic processes, as detailed in the following section. The approach was applied to
the directed, weighted bipartite graph representations of seven genome-scale metabolic networks.

1.4 Definitions

In the following, I will give the definitions of mass balance and the most important analyzed
network properties, which are used throughout the thesis.
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1.4.1 Mass balance

The term mass balance is used frequently in the literature with a different meaning as used here.
All constraint-based (Burgard et al., 2003; Varma and Palsson, 1994), elementary mode (Schuster
and Hilgetag, 1994), and extreme current analyses (Prigogine and Rice, 1980) rely on the assump-
tion that the analyzed system is at steady state, which is defined as

M · v = 0, (1.1)

where M is the stoichiometric matrix (see Figure 1.2e), and v is the vector of reaction fluxes.
As a consequence, the concentrations of all metabolites are balanced, i.e., they are not allowed
to change over time, so that the accumulation or depletion of any metabolic species is avoided.
Therefore, the steady state assumption is also referred to as the requirement of ”mass balance” or
”flux balance”.

Here, a different but related definition of mass balance is used. In any realistic chemical reaction
r, all atomic elements must be balanced, i.e., the number of involved atoms must be equal on both
sides of the reaction. This definition will be referred to as mass balance in the following, and is
given by

∑

s∈S

as,r · ms =
∑

p∈P

ap,r · mp, (1.2)

where S is the set of substrates, P is the set of products, ms, mp are the vectors of sum formulas
of s and p, respectively, and as,r, ap,r their stoichiometric coefficients. For example, the reaction
equation 2·CH2 + 2·C → C4H2 + H2 is mass balanced, as the number of atoms sums to four
carbon and four hydrogen atoms on each side. In contrast to flux balance, this definition of mass
balance is a fundamental physical principle which must always be satisfied for a reaction in order
to be possible. Although obvious, it is rarely taken into account that, if any reaction in the network
violates equation 1.2, then equation 1.1 becomes meaningless, as it is not sufficient to ensure that
the system is at steady state. Therefore, the definition used here may be regarded as a lower level
physical constraint, which is a requirement for any analysis involving the steady-state assumption.

Mass balance is the fundamental physical constraint which is explicitly preserved by the proposed
randomization algorithm (see Chapter 2). Note that the algorithm preserves balances, but does not
establish balance of previously unbalanced reactions, so that all reactions in randomized networks
will only be balanced if this holds for the original network. Notably, a large proportion of the
reactions contained in metabolic databases as well as manually refined network reconstructions is
not mass balanced (see Poolman et al., 2006 and Table B.1). Mostly, the imbalances are due to
hydrogen atoms missing or in excess, which is a consequence of varying sum formulas depend-
ing on the pH state of the surrounding medium. Only few reconstructions consider sum formulas
under different pH states, which would allow to balance most reactions, e.g., Feist et al. (2007).
Here, this problem was largely resolved by replacing phosphate, hydrogen phosphate, dihydrogen
phosphate, or phosphoric acid in unbalanced reactions by a form which establishes balance, by
increasing the stoichiometric coefficient of an involved hydrogen atom, or by adding hydrogen to
the corresponding side of an unbalanced reaction. This simple yet biochemically reasonable pro-
cedure allows to obtain networks where nearly all of the reactions are mass balanced (Table B.1).

By preserving mass balance, the generated randomized networks consist of physically possible
metabolic reactions. This has at least two advantages: (1) the null model can be used as a biolog-
ically meaningful measure of significance for estimating the independence of network properties
from principal physical constraints, and thus their evolutionary importance (Chapter 5), and (2)
previously unknown, yet physically possible metabolic reactions are generated, which may pro-
vide a novel impetus for metabolic engineering and drug design (Chapter 6 and Section 7.6).
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1.4.2 Thermodynamic favorability

Aside from mass balances, another fundamental physical requirement is the thermodynamic fa-
vorability of reactions, which can be estimated by the Gibbs free energy change under standard
conditions, denoted by ∆rG

0 (Mavrovouniotis, 1991). The thermodynamic favorability of meta-
bolic reactions is directly affected by the constraint of mass balance. The values of ∆rG

0 obtained
for randomized reactions under the constraint of mass balance are strikingly more similar to the
values of reactions in the original network, and thus more realistic, as compared to the reactions
obtained from switch randomization (Figure 5.2). Nevertheless, the distribution of ∆rG

0 sig-
nificantly differs between reactions in the metabolic network of E. coli and its mass-balanced
randomized variants. The randomized networks, though structurally distant from the original net-
work, may be classified in two types according to their ∆rG

0: those with thermodynamically fa-
vorable reactions, similar to the original network, and those with less favorable thermodynamics.
This finding suggests an evolutionary optimization with respect to the thermodynamic favorability
of reactions (Chapter 4). Detailed definitions and applications of thermodynamic favorability are
given in Section 4.1.

1.4.3 Distance measure for metabolic networks

The thermodynamic landscape analyzed in Chapter 4 relies on a distance measure for pairwise
comparison of randomized metabolic networks. Most existing distance measures aim at recon-
structing phylogenetic relationships by comparison of metabolic networks from different organ-
isms, and rely on the functional similarity of enzymes, as reflected by their EC number (Heymans
and Singh, 2003), or on the number of shared enzymes (Ma and Zeng, 2004). More recent ap-
proaches rely on topological graph kernels, neglecting substrate-product relationships and stoi-
chiometry (Oh et al., 2006; Kuchaiev et al., 2010).

The aforementioned approaches are not suitable for comparing randomized networks, as they
either rely on biological knowledge of existing reactions, or they do not account for the substrates
and products shared by reactions. Therefore, the distance µ between two metabolic networks is
defined here as the number of shared substrate-reaction and product-reaction relationships1. For a
network M t obtained by randomizing the original network M0, the relative complement between
the edge sets E0 and Et is determined as follows:

µ(M t) = |E0\Et| = |E0| − |E0 ∩ Et|. (1.3)

Note that |E0| = |Et|, as the randomization algorithm does not modify the number of edges (see
Section 2.3.1). Thus, µ measures the number of substrates and products, by which the reactions in
M t and M0 differ. This accounts for the substrate-product relationship of the underlying bipartite
representation, and allows for comparison of randomized networks lacking any previous biological
knowledge. The measure could be used to construct a multidimensional landscape by calculating
the distances between any pair of randomized networks. However, due to the large number of
1010 networks analyzed in Section 4.3, a two-dimensional landscape representation is employed
to illustrate the dependency between network distance and thermodynamic favorability.

1After developing our distance measure, Chang et al. (2011) proposed an approach to decompose reactions into pairs of
substrates and products with similar atomic substructures. Therein, metabolic networks are compared by the signatures
of their substrate-product pairs, which is applicable to mass-balanced randomized networks, as they contain existing
metabolites with known structures.
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1.4.4 Average path length

Within this doctoral thesis, I have applied the method of mass-balanced randomization to estimat-
ing the evolutionary significance of several topological properties, which have been extensively
studied in complex network research. The average path length, referred to as diameter in the
physics community, is defined as the average length of all directed shortest paths connecting any
pair of reachable metabolites in a network. In Chapter 5, the length of a path is defined as the
number of reactions involved in the path. For example, the shortest path length from FPN to AFP
in Figure 1.2e is 2. This corresponds to the classical definition of path length used in complex
network analysis (Watts and Strogatz, 1998; Albert et al., 2000; Jeong et al., 2000) (note that Wag-
ner and Fell, 2001 represent metabolic networks as undirected graphs, resulting in shorter average
path lengths).

Path length should not be confounded with the length of a biosynthetic pathway, or the number of
reactions involved in producing one metabolite from another, as a simple path does not take into
account the dependencies between substrates and products of a reaction. For example, the path
length between H2O and AFP in Figure 1.2e is 1, although the production of AFP requires both
GTP and H2O. Instead, the average path length characterizes the global structure of a network, and
is related to robustness and the ability of a network to generate complex dynamic patterns (Lago-
Fernández et al., 2000; Albert et al., 2000). Methods for determining biosynthetic pathways in
metabolic networks were proposed elsewhere (Arita, 2004; Pitkänen et al., 2005; Handorf et al.,
2005, see Section 1.4.6). The evolutionary importance of the average path lengths of six genome-
scale metabolic networks is analyzed in Section 5.2.3.

1.4.5 Clustering coefficient

The clustering coefficient, also referred to as cluster index, is a measure of the local clustering of
vertices in a network. In an undirected metabolite-metabolite graph, the clustering coefficient is
defined as the average ratio of mutually connected neighbors of metabolite vertices: two metabo-
lite vertices are connected, if they take part on opposing sides of a reaction (see Figure 1.2c). Thus,
the neighbors N(m) of a metabolite m are all metabolites, which form a substrate-product rela-
tionship with m. Let G = (V, E) be an undirected metabolite-metabolite graph, where V is the set
of (metabolite) vertices, and E the set of edges. Further, let c(m) = |{(a, b) ∈ E : a, b ∈ N(m)}|,
the number of mutually connected neighbors of m. Then,

C(G) =
1

|V |
·

∑

m∈V
|N(m)|>1

2 · c(m)

|N(m)|2 − |N(m)|
(1.4)

is the clustering coefficient of G. Thus, for each metabolite vertex m with |N(m)| > 1, the
number of mutually connected neighbors c(m) is divided by the number of possible connections
between the neighbors. This number is averaged over all metabolite vertices.

Equation 1.4 corresponds to the classical definition of the clustering coefficient used in complex
network analysis (Watts and Strogatz, 1998; Wagner and Fell, 2001; Albert and Barabási, 2002). In
order to calculate the clustering coefficient in directed bipartite graphs, used throughout the thesis,
reaction vertices and the directionality of edges are neglected (in other words, the metabolite-
metabolite graph corresponding to the bipartite graph, also referred to as the corresponding uni-
partite graph, is used). A large clustering coefficient is associated with an overlap in function-
ally segregated networks (Sporns and Zwi, 2004), and, in conjunction with small average path
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length, promotes complex dynamic patterns, efficient routing, and robustness (Lago-Fernández
et al., 2000; Latora and Marchiori, 2001; Amaral et al., 2004; Albert et al., 2000). The clustering
coefficients of six genome-scale networks are analyzed in Section 5.2.3.

1.4.6 Biosynthetic capabilities

The network expansion algorithm is a computationally efficient method for calculating the biosyn-
thetic capabilities of a metabolic network (Handorf et al., 2005). By taking the substrate-product
relationships of bipartite networks into account (Figure 1.2e), this method can be employed to de-
termine the set of metabolites which can be synthesized from a specified subset of nutrients. The
set of synthesizable metabolites, also referred to as scope, is calculated as follows: (1) From the
given set of nutrients, the reactions for which all substrates are contained in the nutrient set are
determined; (2) The products of these reactions are added to the nutrient set; (3) The procedure is
repeated, until no more products can be added (see Algorithm A.3 on page 74).

The distribution of scope sizes, obtained by determining the scope sizes for a large number of
random nutrient sets, characterizes the biosynthetic capability of a network and was shown to
be correlated with the evolutionary history of organisms (Borenstein et al., 2008; Ebenhöh and
Handorf, 2009). Therefore, the scope size distributions were used to validate the ability of the ran-
domization method to identify the evolutionary importance of network properties (Section 5.2.2).

1.5 Thesis statement

The goal of network-based research in biology is to draw conclusions about the function of large-
scale biological systems from their network structure. Due to the inherent complexity of biologi-
cal processes, it is prohibitive to develop mathematical representations which precisely model all
physical details at a molecular level, while accounting for all interactions on a system level (e.g.,
cell or organism). Two fundamentally different approaches allow for reducing the complexity in
the analysis of biological systems. Bottom-up approaches, such as kinetic modeling, attempt to
explicitly model dynamic processes at the molecular level, while restricting to well-characterized
subsystems of manageable size. On the other hand, top-down approaches, such as complex net-
work analyses, include all known interactions of the system, while neglecting dynamic information
on the molecular level. Eventually, both paradigms will have to be unified by addressing only the
dynamical details and large-scale interactions which are necessary in order to precisely model the
dynamics of a process, cell, or an entire organism. Consequently, the challenge for bottom-up ap-
proaches is to increase their scope in order to allow modeling of larger systems (Bulik et al., 2009),
while top-down approaches should aim at including more detailed information on the molecular
level in order to allow for biologically more meaningful predictions.

The aim of this doctoral thesis was to develop an efficient computational method for assessing the
biological importance of network properties in genome-scale metabolic networks. By accounting
for a fundamental level of physical detail—mass balance—the method aims at determining the
relation between topological properties and biological function. The method is based on the widely
accepted hypothesis that biological systems and their properties evolve under physical constraints
and evolutionary pressure (Lotka, 1922). In metabolic networks, the physical constraints (such as
fundamental mass-balance and thermodynamic laws) are well-understood, while the biologically
relevant functional properties arise from a long history of evolutionary pressure, which in turn
depends on hardly understood complex interactions on various molecular, cellular, organismal, and
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population levels. Consequently, a biologically meaningful significance measure should account
for the fundamental physical principles underlying metabolic networks, and aim at identifying
properties which are a consequence of evolutionary pressure.

It has been suggested that, in order to discover novel important properties, a randomization method
should preserve the already known, lower-level properties, such as the degree distribution or mod-
ularity (Maslov, 2007; Hanhijärvi et al., 2009b). The method developed here further extends this
idea with the aim of identifying the functionally important properties in biological networks. With
this respect, in order to discover the properties which are a result of evolutionary pressure, and thus
of functional importance, one should preserve the physical constraints imposed on the network.
Consequently, properties identified as statistically significant are independent of basic physical
principles, and thus likely to be a result of evolutionary pressure. Randomization constrained by
physical laws may help to identify the network properties which are of functional importance, and
thus of particular interest for modeling biological systems and generating biologically meaningful
hypotheses.

In this spirit, an efficient method for randomizing metabolic networks was developed, which pre-
serves mass balance, a fundamental physical principle constraining metabolic networks. A ques-
tion which may arise is how the method behaves if a network property is a result of both physical
principles as well as evolutionary pressure. Under the abovementioned hypothesis, any such prop-
erty would be identified as significant by the method, if its value is affected by the dependence
on evolutionary pressure. Thus, the method should also be able to detect properties which have
evolved from both evolutionary pressure and physical constraints, which is certainly desirable, as
they may be related to an important biological function.

The method was analyzed and applied to detecting the evolutionary importance of the salient net-
work properties in six genome-scale metabolic networks. The results of this doctoral thesis are: (1)
Development of a computationally feasible method for randomizing genome-scale metabolic net-
works and analysis of its complexity and uniformity properties (Chapter 2), published as Basler
et al. (2011a). (2) Implementation of a user-friendly tool for mass-balanced randomization and
calculation of several topological properties in metabolic networks and their randomized variants
(Chapter 3), published as Basler and Nikoloski (2011). (3) Analysis of the dependency between
mass balance constraints and thermodynamic favorability of reactions (Chapter 4), published as
Basler et al. (2010). (4) Validation of the method and its application to determining the evolu-
tionary importance of the salient properties in six genome-scale metabolic networks (Chapter 5),
published as Basler et al. (2011b). (5) Extension of the method to generating feasible reactions
which are predicted to facilitate improvements in biomass production (Chapter 6, unpublished
manuscript). Finally, the results are summarized and future developments are proposed in Chap-
ter 7.
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Abstract

Motivation: Network-centered studies in systems biology attempt to integrate the topological
properties of biological networks with experimental data in order to make predictions and posit
hypotheses. For any topology-based prediction, it is necessary to first assess the significance of the
analyzed property in a biologically meaningful context. Therefore, devising network null models,
carefully tailored to the topological and biochemical constraints imposed on the network, remains
an important computational problem.

Results: We first review the shortcomings of the existing generic sampling scheme—switch
randomization—and explain its unsuitability for application to metabolic networks. We then
devise a novel polynomial-time algorithm for randomizing metabolic networks under the (bio)-
chemical constraint of mass balance. The tractability of our method follows from the concept of
mass equivalence classes, defined on the representation of compounds in the vector space over
chemical elements. We finally demonstrate the uniformity of the proposed method on seven
genome-scale metabolic networks, and empirically validate the theoretical findings. The pro-
posed method allows a biologically meaningful estimation of significance for metabolic network
properties.
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2.1 Introduction

The advances in omics technologies and algorithmic techniques for analysis of high-throughput
data have placed network-based integrative studies in the focus of systems biology (Yamada and
Bork, 2009; Albert, 2005). The promise of network analyses lies in the possibility to devise
genome-scale representations of biological systems for predictive analyses. However, the statisti-
cal significance of any prediction must be validated in a biologically meaningful context using an
appropriate null model.

The seminal work of (Barabási and Albert, 1999) directed complex networks research toward re-
vealing the unifying properties of biological networks, starting from metabolic (Jeong et al., 2000)
to gene-regulatory (Shen-Orr et al., 2002) to protein-protein networks (Maslov and Sneppen, 2002)
and their integrated variants (Yamada and Bork, 2009). Despite the identification of simple mecha-
nisms by which these networks may arise and evolve, such as the preferential attachment of newly
added nodes (representing genes, proteins, reactions, or metabolites) to already highly connected
ones, the advantage of such approaches to answering biological questions remains debatable.

Nevertheless, this direction in network research has resulted in the discovery of salient proper-
ties of biological networks, i.e., properties which show similar trends for a wide variety of net-
works from different cells, tissues, and species. Some of these properties include: scale-free (i.e.,
power-law) degree distribution, large clustering coefficient, small average path length, degree-
degree correlation, different behavior of various centrality measures, and the distribution and over-
representation of subnetworks, known as motifs (Milo et al., 2002; Barabási and Oltvai, 2004).

The studies following the work of Barabási and Albert have attempted to relate the salient proper-
ties of biological networks to their functionality (Jeong et al., 2001; Ma and Zeng, 2003b; Stuart
et al., 2003; Albert and Albert, 2004; Papin et al., 2005; Marr et al., 2007)). However, it is often
the case that the detection of novel salient properties of complex biological networks and deter-
mination of their statistical significance is based on a generic null model, which may result in
misleading conclusions and, consequently, in inappropriate biological reasoning (Artzy-Randrup
et al., 2004; Bernhardsson and Minnhagen, 2010).

Network null models are essential for establishing the significance of any prediction obtained from
a network representation of a biological system. A randomization procedure allows for sampling
from the (usually large) space of networks from a null model, and for estimating the statistical sig-
nificance empirically. A p-value of a given property is usually calculated based on the following
procedure: (1) determine the chosen property from an investigated biological network, (2) sample
a large number of random networks which have a similar structure to that of the analyzed network,
and (3) estimate the mean and variance of the property from the simulated networks to calculate a
z-score and p-value under the assumption of normal distribution. Without this assumption, in prin-
ciple, step (3) requires determining the distribution of values for the property under the considered
network null model.

Clearly, the p-value of a property strongly depends on the sampling procedure and structure of
the network null model. Therefore, any network-based analysis is prone to detecting statistically
significant properties due to an ill-posed null model (Artzy-Randrup et al., 2004).

Finally, a null model strongly and ultimately depends on the type of analyzed network. For
instance, gene-regulatory networks include directionality, while protein-protein interaction net-
works are undirected; signal transduction and metabolic networks are directed hypergraphs (repre-
sentable as bipartite graphs) (Klamt et al., 2009), whereas metabolic networks include stoichiom-
etry and biologically meaningful node-labels (representing chemical structure). Thus, a common
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randomization procedure, which samples from a generic network null model, is unlikely to resolve
the problem of relating the properties of different classes of networks to their biological function.

Despite these observations, many network-based studies (e.g., Maslov and Sneppen, 2002; Milo
et al., 2002; Guimerà et al., 2007a; Sales-Pardo et al., 2007) do rely on a common reference frame
for all biological networks, called switch randomization. According to switch randomization, a
randomized network is obtained from a given network by shuffling its edges while ensuring that the
number of (incoming and outgoing) edges of every node remains unchanged. This can be achieved
by the switch operation, whereby a randomly chosen pair of edges, (u, v) and (x, y), is replaced by
two other edges, (u, y) and (x, v), provided that they do not already exist in the network. Switch
randomization ensures that the probability of two nodes being connected is effectively independent
of their distance in the original network. However, there are contradicting results with regard
to whether the generated networks are sampled uniformly from the ensemble of networks with
preserved degree distribution (Milo et al., 2003; Artzy-Randrup and Stone, 2005; Picard et al.,
2008).

The underlying assumption of switch randomization is that the distribution of incoming and out-
going edges sufficiently characterizes the constraints under which networks of the analyzed type
evolve. While this assumption may be valid on, e.g., gene-regulatory networks, where the number
of regulatory targets of a gene is a principle constraint, completely different constraints permeate
the evolution of metabolic networks. For illustration, consider the following two metabolic reac-
tions: glucose isomerase (Glucose → Fructose) and maleate isomerase (Maleate → Fumarate).
After applying switch randomization we may obtain: Glucose → Fumarate and Maleate → Fruc-
tose, which is chemically infeasible due to the violation of the preservation of mass, since the
corresponding chemical equations are C6H12O6 → C4H2O4 and C4H2O4 → C6H12O6. In the
metabolic networks we analyzed, 99.8% of the reactions are unbalanced after applying switch
randomization. By disregarding this fundamental principle, the generated networks are able to
consume and produce matter out of nothing, yielding them incomparable to metabolic networks.

Establishing the statistical significance of a network property, mediated through a common, yet
inappropriate reference frame, may result in the erroneous detection of significant properties, lead-
ing to questionable biological hypotheses. Therefore, the techniques for establishing suitable null
models and randomization procedures need to be developed further, before making any statements
about their biological importance. Recent work of (Picard et al., 2008) on estimating the over-
representation of motifs is a first step toward a network null model tailored to a particular set of
real-world biological networks (therein, protein-protein interaction networks).

Motivated by the shortcomings of the switch randomization and the lack of a network null model
for metabolic networks which includes directionality, topological salient properties, and biochem-
ical constraints (e.g., reaction degrees and preservation of mass in biochemical reactions), here we
present a method for randomizing metabolic networks. Our randomization procedure is based on
the notion of mass equivalence classes for compounds and can be used to estimate the significance
of a given topological property with respect to its importance in chemically constrained biological
systems. Moreover, we show that our procedure samples a randomized network uniformly at ran-
dom, which is another important requirement for any network sampling scheme. For the empirical
validation of our results, we use the metabolic networks of seven organisms from all kingdoms of
life: (1) Bacillus subtilis (Oh et al., 2007), (2) Saccharomyces cerevisiae (Herrgård et al., 2008),
(3) Escherichia coli from iAF1260 (Feist et al., 2007) and (4) EcoCyc (Keseler et al., 2009), (5)
Chlamydomonas reinhardtii (May et al., 2008), (6) Arabidopsis thaliana (Swarbreck et al., 2008),
and (7) Homo sapiens (Ma et al., 2007) (network properties are shown in Table B.1).
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2.2 Approach

A metabolic network is represented as a directed bipartite graph G = (Vc ∪ Vr, E), where Vc is
the set of compound nodes, Vr the set of reaction nodes, and E ⊆ (Vc × Vr)∪ (Vr × Vc) is the set
of directed edges denoting substrate-reaction and product-reaction relationships. For a compound
c ∈ Vc, we denote by mc ∈ Nn its mass vector, i.e., the vector representation of c over n chemical
elements. For instance, one may consider only the six most abundant elements in biological sys-
tems (Dobson, 2004): carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S). The mass vector of water is then mH2O = (0, 2, 0, 1, 0, 0) · (C, H, N, O, P, S)T . For
a given reaction r, rin = {c ∈ Vc | (c, r) ∈ E} denotes the set of substrates, and rout = {c ∈
Vc | (r, c) ∈ E}, the set of products. We abbreviate the expression c ∈ rin ∪ rout by c ∈ r, and
write d(r) = |rin| + |rout| for the degree of r (we omit the definition of compound degree, as
it is not required for our purpose). Reversible reactions are represented by one reaction node for
each direction: r+ and r−, where r+

in = r−out and r+
out = r−in. Furthermore, let sc,r ∈ N+ be the

stoichiometric coefficient of a substrate (product) c of reaction r. A reaction is mass balanced, i.e.,
chemically feasible with respect to the conservation of mass, if and only if the sum of its substrate
atoms equals the sum of its product atoms:

∑

c∈rin

sc,r · mc =
∑

k∈rout

sk,r · mk. (2.1)

In order to uniformly randomize a network while preserving mass balance, each possible mass
balanced network has to be generated with equal probability. This requires enumeration of all
possible sets of substrates and products, for which Equation (2.1) is satisfied. A special case of
this problem is to find all possible partitions of a set of integers, which sum up to 0 (which, in turn,
is a special case of the Knapsack problem, see (Horowitz and Sahni, 1974)). As a consequence, the
number of possible mass balanced networks is at least exponential in the number of compounds.

We approach the complexity of the general problem by restricting the set of possible solutions to
Equation (2.1) twofold: (1) the in- and out-degrees of reactions are preserved, and (2) the substi-
tution of compounds is limited to certain subsets, as detailed below, which allows to easily find
a solution for Equation (2.1). The first restriction is in line with the observation that reaction de-
grees are biochemically constrained by the number of interacting compounds. The second allows
to divide the randomization procedure into a precalculation step and an actual randomization. As
a result, the generation of a large set of mass balanced randomized networks becomes computa-
tionally feasible.

We now move to the description of our randomization procedure including the abovementioned
restrictions. Our procedure depends on determining the classes of linearly dependent mass vectors.
Two compounds c, k ∈ Vc will be called mass equivalent if and only if their respective mass
vectors mc and mk are linearly dependent. Moreover, two pairs of compounds, denoted by (c, k)
and (c′, k′), will be called mass equivalent if and only if the corresponding sums of mass vectors
mc + mk and mc′ + mk′ are linearly dependent. Note that mass equivalence is an equivalence
relation, which follows from the reflexivity, symmetry, and transitivity of linear dependence for
vectors in Nn. As a result, the mass equivalence relation partitions the set of compounds and
pairs of compounds (see Tables 2.1 and 2.2 for examples, and Figures C.2, C.3 for the class size
distributions).

The inclusion of linear dependent triplets of mass vectors is straightforward and may further in-
crease the sample space. However, due to the computational restrictions imposed by the size of
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Compound C H N O P S
Allose 6 12 0 6 0 0
Alpha-d-galactose 6 12 0 6 0 0
Alpha-glucose 6 12 0 6 0 0
Arabinose 5 10 0 5 0 0
Cpc-10774 5 10 0 5 0 0
Cpd0-1108 5 10 0 5 0 0
Cpd0-1110 5 10 0 5 0 0
D-arabinose 5 10 0 5 0 0
D-ribulose 5 10 0 5 0 0
D-xylulose 5 10 0 5 0 0
Dihydroxyacetone 3 6 0 3 0 0
Formaldehyde 1 2 0 1 0 0
Galactose 6 12 0 6 0 0
Glc 6 12 0 6 0 0
Glycolaldehyde 2 4 0 2 0 0
L-lyxose 5 10 0 5 0 0
L-ribulose 5 10 0 5 0 0
L-xylulose 5 10 0 5 0 0
Mannose 6 12 0 6 0 0
Myo-inositol 6 12 0 6 0 0
Xylose 5 10 0 5 0 0

Table 2.1: Example of a mass equivalence class for individual compounds and their mass vectors.
Each mass vector is a multiple of a scalar and the basis vector (1, 2, 0, 1, 0, 0).

Compound pair C H N O P S
2-Ketoglutarate 5 4 0 5 0 0
D-beta-D-heptose-17-diphosphate 7 12 0 13 2 0
2-pg 3 4 0 7 1 0
Methyl-glyoxal 3 4 0 2 0 0
3-p-hydroxypyruvate 3 2 0 7 1 0
Acetol 3 6 0 2 0 0
3-p-hydroxypyruvate 3 2 0 7 1 0
Hydroxypropanal 3 6 0 2 0 0
3-p-hydroxypyruvate 3 2 0 7 1 0
Lactald 3 6 0 2 0 0
3OH-4P-OH-alpha-ketobutyrate 4 4 0 8 1 0
Acetald 2 4 0 1 0 0
Ascorbate 6 6 0 6 0 0
Fructose-16-diphosphate 6 10 0 12 2 0
Ascorbate 6 6 0 6 0 0
Tagatose-1-6-diphosphate 6 10 0 12 2 0
Cpd0-1063 9 14 0 12 1 0
Phospho-enol-pyruvate 3 2 0 6 1 0
Formate 1 1 0 2 0 0
Cpd-10551 5 7 0 7 1 0
Dihydroxy-butanone-p 4 7 0 6 1 0
Glyox 2 1 0 3 0 0
Dihydroxyacetone 3 6 0 3 0 0
Phospho-enol-pyruvate 3 2 0 6 1 0
Dihydroxy-acetone-phosphate 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0
Gap 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0
G3P 3 4 0 7 1 0
Methyl-glyoxal 3 4 0 2 0 0
Hydrogen-molecule 0 2 0 0 0 0
L-ascorbate-6-phosphate 6 6 0 9 1 0
L-glyceraldehyde-3-phosphate 3 5 0 6 1 0
Pyruvate 3 3 0 3 0 0
OH-pyr 3 3 0 4 0 0
Propionyl-P 3 5 0 5 1 0
Propionyl-P 3 5 0 5 1 0
Tartronate-S-ald 3 3 0 4 0 0

Table 2.2: Example of a mass equivalence class for pairs of compounds and their mass vectors.
The sum of mass vectors for each pair is a multiple of a scalar and the basis vector (6, 8, 0, 9, 1, 0).
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genome-scale metabolic networks, we rely only on substitutions of individual and pairs of com-
pounds. Finally, our approach is in line with the observations that some fundamental properties
should be fixed while carrying out the randomization—here, these are the degrees of the reaction
nodes and mass balance.

2.3 Methods

In this section, we present the details of the proposed algorithm for randomizing metabolic net-
works together with its computational complexity, and show the main result about the uniformity
of the method for network randomization.

2.3.1 Randomization algorithm

The algorithm consists of two steps: In the first step, for a given metabolic network G, the mass
equivalence classes are generated from the set of compounds Vc(G). This step is to be executed
only once for all subsequent randomizations of the same network. In the second step, the reactions
of G are randomized while preserving mass balance. To randomize a reaction, chosen uniformly
at random from Vr(G), substrates and products are replaced by randomly chosen substitutes from
their corresponding mass equivalence classes. In addition, this substitution entails recalculation
of the stoichiometric coefficients to guarantee the preservation of mass balance. The output from
this step is a network in which stoichiometric coefficients are changed, edges are replaced, and,
consequently, the degrees of the compounds are altered, while the reaction degrees and mass
balance of all reactions are preserved (see Figure C.1 for an overview and comparison to switch
randomization).

Let σ(c) denote the mass equivalence class of a compound c and σ(c, k), the mass equivalence
class of a pair of compounds (c, k). Given a reaction r, a substrate (product) c of r will be called
substitutable in r by a compound c′ ∈ Vc, denoted by c ∼r c′, if and only if the following two
conditions are satisfied:

• (S1) the compounds are mass equivalent, i.e., c′ ∈ σ(c),

• (S2) the substitute c′ is not already a substrate (product) of r.

Similarly, we define a pair of substrates (products) (c, k) ∈ (rin × rin) ∪ (rout × rout), c 6= k, to
be substitutable in r by a pair of compounds (c′, k′), c′ 6= k′, denoted by (c, k) ∼r (c′, k′), if and
only if the following three conditions hold:

• (P1) (c, k) is mass equivalent to (c′, k′), i.e., (c′, k′) ∈ σ(c, k),

• (P2) neither c′ nor k′ is already a substrate (product) of r,

• (P3) there are stoichiometric coefficients sl,r′ ∈ N+, l ∈ r′ for the new reaction r′, such that
Equation (2.1) is satisfied.

Note that substitutability, in contrast to mass equivalence, is defined over substrates and products
of a reaction, such that a substitution only affects either the substrates or the products of one
reaction. In addition, conditions (S2) and (P2) imply c′ 6= c, such that each substitution results in
a reaction r′ 6= r (i.e., substitutability is irreflexive).

In order to choose a particular substitution for a given reaction r uniformly at random, the set
of all possible substitutions for r has to be determined. Let the set of substitutions of individual
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compounds be denoted by Ψs(r), and the set of substitutions of pairs of compounds be denoted
by Ψp(r). According to the above definitions, these sets are then given by

Ψs(r) = {(c, c′) | c ∼r c′, c ∈ r}, (2.2)

Ψp(r) = {(c, k, c′, k′) | (c, k) ∼r (c′, k′),

(c, k) ∈ (rin × rin) ∪ (rout × rout)},

where c, k, c′, k′ ∈ Vc. The combined set of all possible substitutions for r is then given by
Ψ(r) = Ψs(r) ∪ Ψp(r). Note that substitutability is symmetric, i.e., any substitution can be re-
versed, as we can always replace the substitutes and their stoichiometric coefficients by those of
the original reaction.

Proposition 2.3.1. For a given reaction r, each substitution results in a unique reaction.

Proof. Suppose the substitutions of individual compounds (c, c′) and (k, k′) in r both result in the
same reaction r′. Then, c′ ∈ r′ and k′ ∈ r′ imply that c′ ∈ r and k′ ∈ r, which contradicts con-
dition (S2). By condition (P2), this holds analogously for the substitution of pairs of compounds.
Suppose the substitution of individual compounds (c, c′) results in the same reaction r′ as the sub-
stitution of a pair of compounds (k, l, k′, l′). Then, either k′ ∈ r or l′ ∈ r, both contradicting
condition (P2).

In the following, we analyze the algorithm for randomizing metabolic networks: For a reaction
r, chosen uniformly at random, the set of possible substitutions for all substrates, products, and
pairs of substrates or products in r is generated, in order to then choose one substitution uniformly
at random (see Algorithm 2.1). The stoichiometric coefficients in r are recalculated (line 6) by
finding positive integers sl,r ∈ N+, l ∈ r satisfying Equation (2.1). For the substitution of an
individual compound (c, c′), such coefficients can always be found, due to the linear dependence of
the mass vectors: sc′,r is obtained as 1

mc′
· sc,rmc. If sc′,r is a non-integer a/b, then all coefficients

of r are multiplied by b. Recalculation of the stoichiometric coefficients for the substitution of
pairs of compounds requires solving a system of n linear equations with two unknowns. In case
there is no solution, the substitution is not carried out. Table 2.3 shows examples of possible
substitutions (see Algorithms A.1 and A.2 for more details).

Note that the number of reactions in G as well as the in- and out-degrees of perturbed reactions
are not changed by the algorithm. Since both directions of a reversible reaction are considered in-
dependently, reversibilities can optionally easily be preserved by choosing only forward reactions
in line 1, and updating the reversed reaction accordingly after line 6.

Due to the consideration of all pairs of compounds, the time complexity for precalculating the
mass equivalence classes is in O(|Vc|

2). However, this step is executed only once for any (usually
large) number of subsequent randomizations of the same network.

For the randomization procedure, choosing a reaction and a substitution uniformly at random
(lines 1 and 3), and replacing edges (lines 4 and 5) can be performed in constant time. Determin-
ing all possible substitutions for a reaction r (line 2) requires retrieving the precalculated mass
equivalence class of each substrate, product and each pair of substrates or products, which is in
O(d(r)2). Then, for each mass equivalent compound or pair of compounds, one has to determine
whether they are already substrates or products in r, and whether there exist stoichiometric coeffi-
cients satisfying Equation (2.1), in order to obtain Ψ(r). The latter requires solving a system of n
linear equations with two unknowns, which is in O(n), such that the solution can be used in line
6. Hence, line 2 is in O(d(r)2 · σmax · n), where σmax is the size of the largest mass equivalence
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Input:
Mass balanced metabolic network, G = (Vc ∪ Vr, E),
Mass equivalence classes, σ = σ(c) ∪ σ(c, k), (c, k) ∈ Vc × Vc, c 6= k,
Number of iterations, t ∈ N+

Output:
Randomized mass balanced network
Repeat t times: ;

1 Choose a reaction r ∈ Vr uniformly at random
2 Determine the set of possible substitutions Ψ(r) from σ
3 Choose a substitution d ∈ Ψ(r) with probability 1/|Ψ(r)|
4 if d is an individual substitution (c, c′) then

if c is a substrate of r then
replace the edge (c, r) by (c′, r)

else
replace the edge (r, c) by (r, c′)

5 else if d is a pair substitution (c, k, c′, k′) then
if c,k are substrates of r then

replace the edges (c, r) and (k, r) by (c′, r) and (k′, r)

else
replace the edges (r, c) and (r, k) by (r, c′) and (r, k′)

6 Recalculate the stoichiometric coefficient(s) in r

Algorithm 2.1: Mass-balanced randomization of metabolic networks

Dihydroxyacetone + Phospho-enol-pyruvate → Dihydroxy-acetone-phosphate + Pyruvate
C3 H6 O3 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3

3 Formaldehyde + Phospho-enol-pyruvate → Dihydroxy-acetone-phosphate + Pyruvate
C1 H2 O1 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3

3 Glycolaldehyde + 2 Phospho-enol-pyruvate → 2 Dihydroxy-acetone-phosphate + 2 Pyruvate
C2 H4 O2 C3 H2 O6 P1 C3 H5 O6 P1 C3 H3 O3
G3P + Methyl-glyoxal → Dihydroxy-acetone-phosphate + Pyruvate
C3 H4 O7 P1 C3 H4 O2 C3 H5 O6 P1 C3 H3 O3
Ascorbate + Fructose-16-diphosphate → 2 Dihydroxy-acetone-phosphate + 2 Pyruvate
C6 H6 O6 C6 H10 O12 P2 C3 H5 O6 P1 C3 H3 O3

Table 2.3: Phosphoenolpyruvate-glycerone phosphotransferase reaction in E. coli (EcoCyc)
(row 1) and examples of possible substitutions for individual substrates (rows 2 and 3) and pairs
of substrates (rows 4 and 5). The mass vectors are given below the compound names, modified
stoichiometric coefficients and compounds are shown in bold.
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class, and line 6 can be executed in constant time. Therefore, the algorithm has time complexity
in O(t · (∆2 · σmax · n)), where ∆ is the maximum reaction degree of G. Note that ∆ and n are
bounded by small constants: ∆ ≤ 17, n ≤ 23, and σmax ≤ 780 in the investigated networks.

2.3.2 Uniformity of sampling

Any algorithm for randomizing a combinatorial structure should guarantee that every random in-
stance is generated with equal probability. In other words, the probability distribution over the
space of possible combinatorial structures must converge to the uniform probability distribution.
Otherwise, the properties of the sample space would be biased towards those of more frequently
generated networks, and, consequently, the significance assigned to any property would be ques-
tionable. Here, we show that our proposed algorithm for randomizing metabolic networks indeed
has this property on the class of metabolic networks randomized via substitutions of single com-
pounds and pairs of compounds (with mild assumption for the latter).

To establish this result, we rely on a transition graph ΣG, in which a node represents a network
that can be generated by our algorithm, and two nodes are connected by an edge (u, v), if there
exists a substitution in u generating v. The given metabolic network to be randomized is denoted
by G0 ∈ V (ΣG). The set of networks obtained after applying t substitutions to G0 is denoted
by Γt = {Gt

i | i = 1, . . .m, m ∈ N+}. Note that, due to the symmetry of the substitutability
relation, ΣG is undirected (i.e., each edge corresponding to a substitution can be traversed in
both directions). Moreover, since each node in the transition graph ΣG corresponds to a network
obtained after applying t substitutions starting from G0, the transition graph ΣG is connected.

Applying the randomization algorithm is equivalent to a random walk on ΣG, starting at G0.
Therefore, we use the existing results from the theory of random walks on graphs. The classical
theorem for uniformity of random walks on graphs (see Lovász, 1993) states that, for any non-
bipartite regular transition graph ΣG, a random walk using transition probabilities, 1/d(u), u ∈
V (ΣG), is stationary, i.e., the probabilities for stopping the random walk at a node after any
number t of transitions do not change with t → ∞. Therefore, to prove the uniformity, we show
that ΣG is (almost) regular, i.e., the degree distribution of ΣG is (almost) uniform.

We first show the uniformity of our method if only individual compounds are allowed to be substi-
tuted. Given a metabolic network G0, for any reaction r ∈ Vr the number of possible substitutions
of individual compounds in r is |Ψs(r)| (see Equation 2.2). From Proposition 2.3.1, it follows that
each substitution corresponds to a unique edge in ΣG. Therefore, the degree of G0 in the transition
graph is

ds(G
0) =

∑

r∈Vr(G0)

|Ψs(r)|. (2.3)

Theorem 1. If only individual compounds are allowed to be substituted, then ΣG is regular.

Proof. To establish the claim, we need to show that d(G0) = d(G), G ∈ Γt, for any number of
substitutions t ∈ N. Note that the number of reactions |Vr| and their degrees remain unchanged.
Therefore, it suffices to show that the number of possible substitutions for a reaction r does not
change after substituting a compound.

Let x be a substrate (product) of a reaction r and let x ∼r y, i.e., y ∈ σ(x) and y is not already
a substrate (product) of r. The symmetry of mass equivalence implies x ∈ σ(y). The possible
substitutions for x are then the same as the possible substitutions for y after replacing x in r by y,
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except that x ∼r y is replaced by y ∼r′ x in the new reaction r′. For any substrate (product) z 6= x,
if z ∈ σ(x), then the transitivity of mass equivalence implies z ∈ σ(y). Thus, the substitutions
for z do not change, except that z ∼r y is replaced by z ∼r′ x (as y is a substrate (product) of the
new reaction r′). On the other hand, if z /∈ σ(x), then z /∈ σ(y) implies that the substitutions for
z do not change after substituting x in r by y. Thus, we have d(G0) = d(G), and the sampling is
uniform.

The more general case, on which our algorithm is based, considers substitutions of both individual
compounds and pairs of compounds. In this case, due to changes after applying a substitution, ΣG

may not be regular. To illustrate this point, for a reaction r, if a substrate c is substituted by a com-
pound x, we may subsequently substitute the pair of substrates (x, k), where k is any other sub-
strate of r. The possible substitutions for (c, k) in r, {(c, k, c′, k′) | (c, k) ∼r (c′, k′)}, may be dif-
ferent from the possible substitutions for (x, k) in the new reaction r′, {(x, k, x′, k′′) | (x, k) ∼r′

(x′, k′′)}. Similarly, the possible substitutions for individual compounds may change after substi-
tuting a pair of compounds. Consequently, the sizes of substitutability classes Ψs(r) and Ψp(r)
may differ from the sizes of Ψs(r

′) and Ψp(r
′), so that two nodes in ΣG may have different de-

grees.

In the following, we analyze the probability that the algorithm samples nodes from ΣG almost
uniformly at random. Let us consider a random walk {G0, G1, . . . , Gt} on ΣG, starting at node
G0. Let Yi be the non-negative random variable whose value is the absolute value of difference
of degrees between two neighbors Gi and Gi+1 on the walk, i.e., Yi = |d(Gi) − d(Gi+1)|, 0 ≤
i < t. We assume that all Yi are independent and identically distributed variables, with probability
density function P (Yi = k) = P (Y = k) = Ck−γ for a positive constant C. Since all networks
and the number of possible substitutions are finite, this distribution exhibits a finite mean.

A sequence of random variables X0, X1, . . . , Xt, where the expected value of Xt is determined by
Xt−1, is called a martingale (Williams, 1991). Then, the sequence Xj =

∑j−1
k=0 Yk+

∑t−1
k=j E [Yk],

0 ≤ j ≤ t, forms a martingale, and, in particular, X0 = E
[

∑t−1
k=0 Yk

]

and Xt = Y0+Y1+. . . Yt−1

(Chung and Lu, 2006). Furthermore, let Bj denote the event that |Xj − Xj+1| > cj , cj > 0,
0 ≤ j < t; then, P (Bj) = P (|E[Yj ] − Yj | > cj) is the probability that the absolute difference
between expected and actual degree changes in step j of the random walk on ΣG exceeds some
cj > 0. By a result of Chung and Lu, 2003 (Theorem 8.3), the following generalized Azuma
inequality holds for the probability that degree changes differ at least by λ from the expected
degree changes after t steps:

P (|Xt − X0| ≥ λ) ≤ exp

(

−λ2

2
∑t

j=1 c2
j

)

+ P (B), (2.4)

where B = Bt.

Let δ denote the expected degree difference of adjacent nodes, i.e., δ = E[Y ] = E[|d(Gi) −
d(Gi+1)|], 0 ≤ i < t. Given that P (Y = k) = Ck−γ , the cumulative probability distribu-
tion is given by P (Y > k) = C ′k1−γ (Li et al., 2005). Therefore, the probability that the
degree difference between neighbors is larger than the expected difference can be expressed as
P (B) = P (Y > δ) ∼ δ1−γ . We then have the following claim:

Theorem 2. If the distribution of differences in degrees between neighboring nodes follows a
power-law P (Y = k) ∼ k−γ and P (|Xj − Xj+1| > δ) ∼ δ1−γ , δ = E[Y ], then the probabil-
ity that the accumulated degree difference between any two nodes, sampled by a random walk,
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exceeds the number of steps t is bounded by:

P (|Xt − X0| ≥ t) ≤ exp

(

−t

2δ2

)

+ δ1−γ .

Proof. By invoking Equation (2.4) with cj = δ, 2
∑t

j=1 c2
j = 2t · δ2, we get the probability that,

after t steps, the accumulated difference between expected and actual degree differences is at least
t:

P (|Xt − X0| ≥ t) ≤ exp

(

−t2

2t · δ2

)

+ δ1−γ .

As Xt and X0 are the sums of absolute differences in degrees, the above expression represents the
maximum difference in degrees between any two nodes reachable within t steps, i.e., |Xt−X0| ≥
|d(Gt) − d(G0)|.

The proof relies on the assumption that the distribution of differences in degrees of neighboring
nodes in ΣG follows a power-law distribution. This is confirmed in Figure 2.1A for E. coli (see
Figure C.4 for the remaining organisms).

Let d(ΣG) denote the average degree of ΣG. We call ΣG almost regular if, for any two nodes
G, H ∈ V (ΣG), the following holds:

|d(G) − d(H)|

d(ΣG)
≤ 1.

We then have the following corollary:

Corollary. The probability that the algorithm samples nodes from ΣG almost uniformly at random
is bounded by:

P

(

|Xt − X0|

d(ΣG)
< 1

)

≥ 1 − exp

(

−d(ΣG)2

2t · δ2

)

− δ1−γ .

Proof. Since |Xj − Xj+1| = |E[Yj ] − Yj | ≤ |d(Gj) − d(Gj+1)| + E
[

|d(Gj) − d(Gj+1)|
]

, from
Equation (2.4) we can establish the probability that |Xt−X0| ≥ λ with λ = d(ΣG), as in the proof

of Theorem 2. We then have P
(

|Xt − X0| ≥ d(ΣG)
)

≤ e
−d(ΣG)2

2t·δ2 + δ1−γ , which is equivalent to

1 − P

(

|Xt − X0|

d(ΣG)
< 1

)

≤ exp

(

−d(ΣG)2

2t · δ2

)

+ δ1−γ .

As an example of the corollary, for the case of E. coli, we obtain P (∆ = k) ∼ k−1.87, δ ≈ 7.14,
and d(ΣG) ≈ 19490 from sampling 104 random walks. Then the probability, that the algorithm
samples nodes from ΣG uniformly at random within t = 106 steps is bounded by:

P

(

|d(Gt) − d(G0)|

d(ΣG)
< 1

)

≥ 1 − e
−194902

2·106·7.142 − 7.141−1.87 ≈ 0.80

(Table B.3 shows the results for the remaining organisms). Note that these probabilities represent
a rare worst-case, since all Xj are the sums of absolute differences in degrees. In practice, the
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cumulative degree changes of sampled nodes are likely to be smaller due to positive and negative
changes in degree.

Finally, we briefly analyze some practical implications of these findings. First, we determine the
size of the sample space, i.e., the number of distinct randomized networks which can be generated
from a given metabolic network G, if only individual compounds are substituted. Let Φs(r) denote
the set of all mass equivalence classes, which contain a substrate or product of r. From each
such equivalence class es ∈ Φs(r), we may choose any subset with the size of the number of
substrates (products) of r contained in Φs(r); let φ denote this number. Then, there are

(|e|
φ

)

possible reactions for each mass equivalence class es, where the original reaction may be obtained
by reversing any previous substitutions. Therefore, the number of distinct networks which can be
generated from G by substituting only individual compounds is

ΩG,s =
∏

r∈Vr(G)

∏

e∈Φs(r)

(

|e|

φ

)

. (2.5)

For the model organism E. coli, the size of the sample space is Ωs ≈ 2.97 · 10957 (see Table B.3
for the remaining organisms). The large sample spaces, again, illustrate the importance of uniform
sampling.

As shown before, the number of distinct networks which can be generated by substituting pairs
of compounds does not merely depend on the reactions in the original network, as the number of
possible substitutions may change after applying substitutions. Therefore, we are unable to give
a precise expression for the sample size in this case. Nevertheless, it is clear that, for the case of
substituting individual compounds and pairs of compounds, the sample space is at least as large as
ΩG,s.

In order to confirm the result of uniformity empirically, we analyze a random walk on the transition
graph of the TCA cycle, a central respiratory metabolic pathway consisting of only 8 reactions and
20 compounds. For this network, the sample spaces are ΩTCA,s = 256, ΩTCA,p = 1024, with a
combined total of 1024 possible randomized networks (i.e., all networks generated by a sequence
of individual compound substitutions can also be generated by pair substitutions). We observe
that the sojourn frequencies, i.e., the number of times each network is visited by the random walk,
indeed converge towards the uniform distribution (see Figure 2.1B), confirming our theoretical
claims.

2.4 Conclusion

The advances in high-throughput omics technologies require developing algorithmic techniques
for the analysis of large-scale biological networks. However, the significance of any network-
based prediction must be validated using a realistic null model. While the method based on switch
randomization has been extensively used to study the significance of topological properties in
many different types of networks, we argued that it is unsuitable for the analysis of metabolic
networks.

We presented a new method for randomizing metabolic networks under the constraint of mass
balance. We observed that a null model should satisfy two important requirements: preservation
of ubiquitous constraints characterizing the class of analyzed networks, and uniformity of the
sampling procedure. We demonstrated the uniformity of the proposed method theoretically and
empirically on seven metabolic networks from all kingdoms of life.
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A B

Figure 2.1: (A) Distribution of absolute differences in degrees between neighbors, sampled by a
random walk on the transition graph of E. coli (EcoCyc). The dashed line shows the power-law fit
with a scaling coefficient of γ ≈ 1.87. The mean difference is δ ≈ 7.14 (see Figure C.4 for the
remaining organisms). (B) Sojourn frequencies of a random walk on the transition graph of the
TCA cycle (equivalent to a randomization of the TCA cycle). For 105 steps, the standard deviation
of sojourn frequencies is σ ≈ 10.8, yielding a coefficient of variation of 0.113 (grey line); after
106 steps, we have σ ≈ 34.6 and a coefficient of variation of 0.038 (black line), confirming that
the probability distribution over the 1024 networks converges towards the uniform distribution.

By integrating the (bio)chemical constraint of mass balance into a network null model, our method
allows for a more realistic measure of significance. In addition, the proposed approach can be used
for identifying network properties which are independent of mass balance constraints, and thus are
likely to relate to the evolutionary history of metabolic networks. For instance, in a recent study,
we applied the method to assess the evolutionary significance of thermodynamic favorability of
metabolic reactions (Basler et al., 2010). We believe the integration of mass balance constraints is
a necessary first step toward extracting biologically meaningful properties of genome-scale meta-
bolic networks.
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Abstract

Summary: Analysis of biological networks requires assessing the statistical significance of net-
work-based predictions by using a realistic null model. However, the existing network null model,
switch randomization, is unsuitable for metabolic networks, as it does not include physical con-
straints and generates unrealistic reactions. We present JMassBalance, a tool for mass-balanced
randomization and analysis of metabolic networks. The tool allows efficient generation of large
sets of randomized networks under the physical constraint of mass balance. In addition, various
structural properties of the original and randomized networks can be calculated, facilitating the
identification of the salient properties of metabolic networks with a biologically meaningful null
model.

Availability and Implementation: JMassBalance is implemented in Java and freely available on
the web at http://mathbiol.mpimp-golm.mpg.de/massbalance/.

http://mathbiol.mpimp-golm.mpg.de/massbalance/
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3.1 Introduction

Network-based studies of biological systems attempt to relate topological properties to biological
function. The first step in drawing this connection involves determining the network properties
which do not arise by chance. To this end, a network null model can be used to assess the statistical
significance of network properties.

The common approach for determining the statistical significance of a given property is to de-
termine a p-value based on the following procedure: (1) determine the chosen property from an
investigated biological network, (2) sample a large number of random networks under biologically
meaningful constraints, and (3) estimate the mean and variance of the property from the simulated
networks to calculate a z-score (with the corresponding p-value) under the assumption of normal
distribution.

Clearly, the significance of a network property strongly depends on the null model. The commonly
used method, switch randomization (Milo et al., 2002; Guimerà et al., 2007a; Sales-Pardo et al.,
2007), does not account for physical constraints, and thus generates unrealistic biochemical reac-
tions (see Figure C.1 for an example). Thus, it is questionable whether the significance determined
by this generic randomization scheme helps to elucidate the relation between network properties
and biological functions.

Motivated by the lack of a biologically meaningful null model for metabolic networks, we de-
veloped a method for randomizing metabolic networks under the constraint of mass balance, and
analyzed its computational complexity and uniformity of sampling (Basler et al., 2011a). Here,
we present a tool which can be run via a graphical user interface (GUI) or from the command
line, and implements mass-balanced randomization of metabolic networks provided in one of
three standard data formats: (1) BioCyc (http://www.biocyc.org), (2) Systems Biology Markup
Language (SBML, http://sbml.org), or (3) a customizable text file format.

3.2 Method

A metabolic network is represented as a weighted directed bipartite graph G = (Vc∪Vr, E), where
Vc is the set of compound nodes, Vr the set of reaction nodes, and E ⊆ (Vc×Vr)∪(Vr×Vc) is the
set of weighted, directed edges denoting stoichiometric substrate-reaction and product-reaction
relationships. For example, an edge (c, r) specifies that compound c is a substrate of reaction r,
while the stoichiometric coefficient sc,r of c in r is represented as the weight of (c, r).

A compound node is uniquely represented by a name, a compartment, and a mass vector, mc ∈
Nn, i.e., the vector representation of the compound c over n chemical elements. For instance,
when considering the six most abundant elements in biological systems: carbon (C), hydrogen
(H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S), then the mass vector of water is
mH2O = (0, 2, 0, 1, 0, 0) · (C, H, N, O, P, S)T . The set of considered chemical elements can be
specified in a configuration file (see online Reference Manual).

For a reaction r, rin denotes the set of substrates, and rout the set of products. A reaction node
is uniquely represented by a name and its direction: reversible reactions are represented by one
reaction node for each direction, r+ and r−, where r+

in = r−out and r+
out = r−in. A reaction is

mass balanced, i.e., chemically feasible with respect to the conservation of mass, if the sum of its

http://www.biocyc.org
http://sbml.org
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substrate atoms equals the sum of its product atoms:
∑

c∈rin

sc,r · mc =
∑

k∈rout

sk,r · mk. (3.1)

The randomization procedure consists of a pre-calculation step, which classifies the compounds
from the network according to their chemical sum formula (see Basler et al., 2011a), followed by
the actual randomization. The precalculation is executed only once for all subsequent random-
izations of the same network, and renders the method applicable to large networks. A network is
randomized by replacing the substrates and products of randomly chosen reactions by compounds
from within the same network, and choosing their stoichiometric coefficients, such that Equa-
tion 3.1 is satisfied (Figure 3.1). The polynomial-time algorithm generates randomized networks
uniformly at random and clearly outperforms switch randomization (see Table B.1).

Dihydroxyacetone

C3H6O3

1. A reaction is chosen uniformly at random from the network

Phospho-enol-

pyruvate

C3H2O6P

Dihydroxyacetone-

phosphate

C3H5O6P

Phosphoenolpyruvate

glycerone

phosphotransferase

Pyruvate

C3H3O3

3 Glycolaldehyde

C2H4O2

2. A compound is replaced and the stoichiometric coefficients recalculated

2 Phospho-enol-

pyruvate

C3H2O6P

2 Dihydroxyacetone-

phosphate

C3H5O6P

Randomized

reaction

2 Pyruvate

C3H3O3

The resulting reaction has the same in- and out-degree and is mass balanced:

3 C2H4O2 + 2 C3H2O6P = 2 C3H3O3 + 2 C3H5O6P.

Figure 3.1: Mass-balanced substitution of a substrate. A large number of substitutions is applied
in order to obtain fully randomized networks.

3.3 Application

JMassBalance is written in Java and comes with all required libraries. Hence, an installation is not
required, and it can be used on any operating system with installed Java (http://www.oracle.com).

The randomization procedure accepts network files in BioCyc, SBML, or a customizable text for-
mat. Additional optional parameters allow specifying whether unbalanced reactions in the original
network should be fixed, whether compartments should be considered, the randomization depth
and probability, and the number of randomized networks to generate. All calculations can easily
be parallelized by executing the program multiple times with different network indices (see online
Reference Manual). Switch randomization is also implemented, and can be applied to compare
the results of the two null models.

In addition to randomization, the following structural properties can be calculated for the original
and randomized networks, respectively, which allows to determine their statistical significance in
a biologically meaningful context:

http://www.oracle.com
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• Average path length: the average number of reactions on the shortest path between two
compounds.

• Clustering coefficient: average fraction of mutually connected neighbors of a node in the
corresponding (unipartite) metabolite-metabolite network.

• Assortativity: correlation coefficient of the in-/out-degree of a node and the average in-/out-
degree of its predecessors/successors in the corresponding (unipartite) metabolite-metabolite
network.

• n-cycles: the number of directed cycles of length n in the corresponding (unipartite) metab-
olite-metabolite network.

• Path: test whether the given compounds constitute a path.

• Connectedness: test whether the given compounds are connected via paths.

• Transition degree: the number of possible mass-balanced substitutions.

• Local essentiality: the ratio of successor reactions affected by the knockout of a reaction.

• Reaction centrality: the ratio of reactions globally affected by the knockout of a reaction.

• Knockout set: the set of reactions globally affected by the knockout of a given reaction.

• Degree distribution: the compound degree distribution.

• Weight distribution: the distribution of edge weights.

• Scope size distribution (Handorf et al., 2005): the distribution of the number of compounds
producible from a random set of seed compounds of the given size.

• Distribution of ∆0
rG (Mavrovouniotis, 1991): the distribution of the standard Gibbs free

energy change of reactions.

The randomized networks may be printed as stoichiometric matrices or as text files, thus enabling
subsequent investigations, such as constraint-based analysis (Feist et al., 2010).

3.4 Conclusion

JMassBalance is a flexible and efficient tool for assessing the significance of metabolic network
properties through a biologically meaningful null model. It can be used to determine the salient
structural properties of metabolic networks and to identify new properties, which are statistically
significant and independent of basic physical constraints. Thus, we believe the tool is useful
for the initial analysis of reconstructed metabolic networks, as well as subsequent network-based
research.
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Abstract

Genome-scale metabolic network models are valuable tools for deciphering the evolutionary prin-
ciples of metabolism. However, the effect of evolutionary pressure on basic thermodynamic prop-
erties of such models is not well understood. We analyze the thermodynamic favorability of reac-
tions in the metabolic network of E. coli and its variants obtained by randomization under physical
constraints, but free of evolutionary pressure. We find that the reactions of E. coli exhibit a char-
acteristic pattern of Gibbs free energies, and are energetically more favorable compared to the
reactions of randomized networks. This indicates that the prevalence of thermodynamically favor-
able reactions in metabolism is a result of evolutionary pressure, and not of physical constraints
imposed on the network. As a consequence, thermodynamic patterns of species might provide
interesting insights into evolutionary optimization principles.
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4.1 Introduction

The staggering importance of Systems Biology studies, directed at improving the understanding
of cellular processes, strongly depends on the integration of omics data with biological knowledge
about the physical and biochemical principles of genome-scale gene, protein, and metabolite in-
teractions. Thermodynamics, adding an important piece in the puzzle of biological systems, has
already proven valuable in providing additional constraints to further confine the solution space
in constraint-based analyses (Beard et al., 2002; Henry et al., 2006, 2007; Hoppe et al., 2007;
Nagrath et al., 2007). Thermodynamic data, represented by the feasible ranges for the Gibbs free
energy change of biochemical reactions, has been consequently applied to the reconstruction, cu-
ration, and kinetic modeling of metabolic networks (Feist et al., 2007; Ederer and Gilles, 2007),
and assessing the degree of reaction reversibility (Kümmel et al., 2006).

With regard to the thermodynamic properties of metabolic networks, it is not yet known to what
extent the energetic favorability of certain reactions is related to the evolution of metabolism. In
particular, it is unclear whether the observed patterns of Gibbs free energy of metabolic reactions
are a result of evolutionary pressure, or basic physical principles, such as the conservation of
mass. One way of addressing this problem is to compare the thermodynamic properties of high
quality metabolic networks to those obtained by randomization under physical constraints. In
particular, we compare the distributions of Gibbs free energy changes in reactions, and analyze
the thermodynamic landscape of randomized networks, defined by a simple topological distance
measure.

The degree of thermodynamic favorability of a biochemical reaction r can be quantified by ∆rG,
its standard Gibbs free energy change. One of the most prominent methods for estimating ∆rG
is the group contribution method of Mavrovouniotis (1991), which is based on rapid calculation
of accurate estimations for ∆cG, the standard Gibbs free energy, for a wide variety of biological
compounds. In group contribution methods, the molecular structure of a single compound c is
decomposed into a set of smaller molecular substructures, based on the hypothesis that ∆cG and
∆rG can be estimated using a linear model. Each model parameter is associated with one of the
constituent molecular substructures (or groups) that combine to form the compound. To estimate
∆cG of the entire compound, the contributions of each of the groups are summed as follows:

∆cGest =
∑

j∈gr

nj∆grGj ,

where gr is the set of groups in c for which ∆grGj is known and nj is the number of occurrences
of the group in the molecular structure. Similarly, ∆rG can be estimated as:

∆rGest =
∑

c∈r

sc,r∆cGest, (4.1)

where sc,r is the stoichiometric coefficient of compound c in reaction r. The method has already
been employed to estimate ∆cG and ∆rG for the majority of the compounds and reactions con-
tained in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Tanaka et al., 2003) and in a
genome-scale model of E. coli (Henry et al., 2006).

It is worth mentioning that the standard Gibbs free energy only quantifies the thermodynamic
favorability of reactions under standard conditions, i.e., a pH of 7, temperature of 298.15 K, and
concentrations of 1 mole per liter. However, for physiologically relevant conditions, the Gibbs free
energy change of a reaction also depends on the pressure, magnesium ion concentration (pMg),
and other factors (Vojinovi and von Stockar, 2009). Nonetheless, as a genome-scale metabolic



4.2. METHODS 37

Figure 4.1: Distribution of ∆rG for metabolic reactions in E. coli (grey), and distribution of ∆rG
averaged over 104 networks obtained after applying 106 randomization steps (white). In E. coli,
characteristic ∆rG are close to -13, -7, -2, 0, and 7, while most reactions in randomized networks
have ∆rG ∼ 0, with no further characteristic peaks.

network reflects the evolutionary history of metabolism, including various possible physiological
conditions, here we only consider the standard values of ∆rG. In the rest of the paper, we focus
on a genome-scale metabolic model of E. coli, where the standard Gibbs free energy of formation
is known for 872 of 1039 compounds (84%), which also allows the estimation of the Gibbs free
energy over networks obtained by randomization, as detailed in the next section.

4.2 Methods

4.2.1 Mass-balanced randomization

We apply a recently developed method for randomization of metabolic networks (Basler et al.,
2011a)1 in order to generate biochemically feasible networks not constrained by evolutionary pres-
sure. A metabolic network is represented as a directed bipartite graph M = (Vc ∪ Vr, E), where
Vc is the set of compound nodes, Vr the set of reaction nodes, and E ⊆ (Vc × Vr) ∪ (Vr × Vc) is
the set of directed edges representing substrate-reaction and product-reaction relationships.

For a compound c ∈ Vc, we denote by mc ∈ Nn its mass vector, i.e., the vector representation
of c over n chemical elements. Here, we restrict our approach to the six most common elements
in organic compounds: carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S). For instance, mH2O = (0, 2, 0, 1, 0, 0) · (C, H, N, O, P, S)T . For a given reaction r ∈
Vr, rin = {c ∈ Vc | (c, r) ∈ E} denotes the set of substrates, and rout = {c ∈ Vc | (r, c) ∈ E}
the set of products.

We say that a reaction is mass balanced, i.e., biochemically feasible with respect to the conser-
vation of mass, if and only if the total number of substrate atoms equals the number of product
atoms:

1The original publication references an unpublished manuscript.
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Figure 4.2: Distributions of ∆rG for 9 arbitrarily chosen randomized networks obtained after
applying 106 randomization steps. The networks have a characteristic ∆rG ∼ 0, higher absolute
values and higher variance, which clearly distinguishes them from the original network of E. coli.

∑

c∈rin

sc,r · mc =
∑

k∈rout

sk,r · mk. (4.2)

A metabolic network M is then randomized by repeating the following steps: (1) choose a reaction
r at random, and (2) substitute edges of r uniformly at random, such that the in- and out-degrees
of reactions are preserved, and Equation (4.2) is satisfied. This substitution entails recalculation
of the stoichiometric coefficients to guarantee the preservation of mass balance. After applying a
reasonably large number of randomization steps we obtain a uniformly randomized network, in
which stoichiometric coefficients are changed, the degrees of the compounds are altered, while the
reaction degrees and mass balance are preserved in all reactions.

4.2.2 Thermodynamic favorability

The amount of free energy released during the occurrence of a metabolic reaction r is given by
∆rG, where low values indicate a high energetic contribution to metabolism. Therefore, the
thermodynamic favorability of a metabolic network can be captured by the following summary
statistic:

∆rG =
1

|R|
·
∑

r∈R

∆rG, (4.3)

where R ⊆ Vr is the subset of reactions with known ∆rG. Note that only irreversible reactions
contribute to Equation (4.3), as the contribution of reversible reactions, according to Equation
(4.1), is 0. While in E. coli, the ∆rG are known for 84.5% of reactions, this set reduces to an
average of 76.5% in the randomized networks, due to random substitutions involving compounds
with unknown ∆cG.
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Figure 4.3: At each randomization step t a histogram of ∆rG values is calculated and plotted on a
gray scale. The dashed line marks the ∆rG for the unperturbed network, while the solid line gives
the average ∆rG for the randomized networks. The inlay magnifies the first 5 · 104 randomization
steps. The average ∆rG drops even below the initial value before it sharply increases, and finally
reaches a plateau.

4.2.3 Randomization of the metabolic network of E. coli

Starting from the initial metabolic network of E. coli from (Feist et al., 2007), denoted as M0 =
(Vc ∪ Vr, E

0), we apply t = 106 randomization steps, leading to a trajectory of randomized
networks M t = (Vc ∪ Vr, E

t). At each step, first ∆rG is calculated for every reaction in R, and
then the average ∆rG is determined. We repeat this procedure 104 times starting from the initial
network M0, giving a total of 1010 randomized networks.

In order to quantify the distance between a randomized network M t and the initial network M0

we define a function µ, which accounts for the differences between the substrates and products
in reactions of M t, and the corresponding reactions in M0, from which they were derived by
randomization. For this purpose, we determine the relative complement between the edge sets E0

and Et as follows:

µ(M t) = |E0\Et| = |E0| − |E0 ∩ Et|.

4.3 Results

To get a general idea of how randomization affects the Gibbs free energy of metabolic reactions,
we compare the distribution of ∆rG in E. coli with the distributions of 104 randomized networks,
which were obtained after completing 106 randomization steps. Figure 4.1 shows that the distri-
bution averaged over the ∆rG of randomized networks shows fewer modes, a tendency to higher
absolute values and higher variance, and is more symmetrically distributed around zero compared
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Figure 4.4: Randomized networks are binned according to their distance µ(M t), and for each
bin a histogram of ∆rG is shown on a gray scale. Again, the dashed line marks the ∆rG for the
unperturbed network, while the solid line gives the average ∆rG for the randomized networks. For
a wide range of µ the average ∆rG is well below the initial value. Only at large µ the average ∆rG
increases dramatically and stays at a high level. The inlay shows µ as a function of randomization
steps t. After only 2.6 · 104 steps µ is at 90% of its largest observed value, which explains the
limiting upper bound of µ in the main figure.

to the initial network. It is further confirmed by Figure 4.2, which shows the distributions of ∆rG
for 9 arbitrarily chosen randomized networks. This initial observation points out that, after 106

randomization steps, the randomized networks can be clear-ly separated from the initial network
with respect to the distribution of ∆rG.

In the following, we analyze how the randomization process influences ∆rG and, hence, ∆rG.
At each randomization step we calculate a histogram of ∆rG over the 104 randomized networks
(Figure 4.3). In very close proximity to the initial network the average ∆rG even decreases below
the initial value of −9.1kcal

mol
. However, the average ∆rG increases sharply after approximately

3000 randomization steps and remains on a high level of about −4.6kcal
mol

.

Next, we generate a landscape of randomized networks using our previously defined function µ
to describe the topological distances to M0 (Figure 4.4). We group all randomized networks M t

according to the value of µ(M t) into bins of size 50 and calculate a histogram of ∆rG for each
such bin. Since the value for µ grows much faster than the number of randomization steps, not
every bin contains the same number of randomized networks. For instance, about 80% of all
randomized networks have a distance of µ > 4500. For µ < 3000, the average ∆rG is even lower
than in the initial network. In this region, also the variance of ∆rG increases with increasing µ.
In contrast, for large values of µ, ∆rG increases and remains at a high level, while the variance
decreases. Interestingly, after 3 · 105 randomization steps, there are four networks with a distance
µ ∼ 4500 and ∆rG ∼ −9.4kcal

mol
(data not shown). Even after 9.9·105 steps one network maintains

a low ∆rG = −9.23kcal
mol

, while attaining a high distance of µ = 4551. Such networks represent
artificial reaction systems with highly favorable thermodynamics, possibly of great interest for
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synthetic biology studies.

Regardless of whether we consider the changes of ∆rG over the randomization steps or the land-
scape defined by the topological measure, we observe two clearly separated regions of attraction.
The first region contains those networks which are sufficiently similar to the metabolic network
of E. coli, yielding equally low or even lower ∆rG. The second region contains randomized
networks topologically dissimilar to the initial network and with significantly increased ∆rG.

4.4 Conclusion

We applied a recently developed algorithm for physically constrained randomization of metabolic
networks in order to analyze the relation between thermodynamic properties and the evolutionary
history of E. coli. Our results demonstrate that the Gibbs free energy change of reactions is sig-
nificantly more favorable as compared to the randomized networks. This first finding may point
out directions for future research aimed at discovering optimization principles of thermodynamic
favorability in metabolic networks.

In addition, we define and analyze a thermodynamic landscape for the randomized network ensem-
ble, which is based on the average Gibbs free energy of reactions and the distance to the curated
network of E. coli. This landscape reveals a clear separation into two classes of networks: those
with favorable thermodynamics, similar to and including the original network of E. coli, and those
with less favorable thermodynamics and topologically dissimilar to E. coli.

While networks of the second class are obtained after relatively few randomization steps, they are
characterized by a large topological distance to the original network. This indicates that the applied
randomization method generates networks with distinct coherent thermodynamic characteristics
in a defined and limited number of randomization steps. Moreover, the method itself allows for a
clear distinction between the thermodynamic favorability of the original network of E. coli from
those of the randomized networks obtained by exceeding the indicated number of steps.

To summarize, our results demonstrate that thermodynamic properties, in particular the Gibbs free
energy of reactions, are a product of evolutionary constraints imposed on the genome-scale met-
abolic network of E. coli. As a consequence, thermodynamic favorability of metabolic reactions
represents a biologically meaningful pattern, and may therefore provide novel biological insights
when applied to extending the existing structural approaches. Furthermore, as the evolutionary
history is reflected in such patterns, one may, as a next step, perform biologically motivated func-
tional analyses based on thermodynamic properties.

The thermodynamic landscapes of this single-species study could be extended to include meta-
bolic networks from multiple organisms. In such a multi-dimensional thermodynamic landscape
the local minima would represent the present species, while elevated regions would reflect evo-
lutionary unfavorable chemical reaction systems. Regions within the vicinity of known species
could give hints at how biochemical reaction systems evolve in an evolutionary and physically
constrained environment.

We believe that our study provides a first necessary step towards assessing the relationship between
thermodynamic favorability and evolutionary constraints in genome-scale metabolic networks, and
may serve as a starting point for analyzing thermodynamic properties on a large scale.
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Abstract

Complex networks have been successfully employed to represent different levels of biological
systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-
based research has mainly focused on identifying unifying structural properties, such as small
average path length, large clustering coefficient, heavy-tail degree distribution, and hierarchical
organization, viewed as requirements for efficient and robust system architectures. However, for
biological networks, it is unclear to what extent these properties reflect the evolutionary history
of the represented systems. Here we show that the salient structural properties of six metabolic
networks from all kingdoms of life may be inherently related to the evolution and functional
organization of metabolism by employing network randomization under mass balance constraints.
Contrary to the results from the common Markov-chain switching algorithm, our findings suggest
the evolutionary importance of the small-world hypothesis as a fundamental design principle of
complex networks. The approach may help to determine the biologically meaningful properties
which result from evolutionary pressure imposed on metabolism, such as the global impact of local
reaction knockouts. Moreover, the approach can be applied to test to what extent novel structural
properties can be used to draw biologically meaningful hypothesis or predictions from structure
alone.
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5.1 Introduction

The central findings in network-based research suggest that there exist simple mechanisms di-
recting the evolution of both engineered and natural networks (Ciliberti et al., 2007; Kuchaiev
et al., 2010; Hyduke and Palsson, 2010; Duarte et al., 2007; Newman, 2003b; Ravasz et al., 2002;
Guimerà and Amaral, 2005; Jeong et al., 2000; Dorogovtsev and Mendes, 2003; Barabási and Al-
bert, 1999). However, the relation between the functions of a biological system and its network
properties is hardly understood. Therefore, the advantage of using network representations for
positing meaningful hypotheses about biological systems remains largely debatable (Yamada and
Bork, 2009).

Properties of biological systems arise from two fundamental origins: physical principles, univer-
sally constraining the feasibility of biochemical processes, and evolutionary pressure, bearing the
specific functional abilities required for an organism’s vitality (Lotka, 1922). The former comprise
well-understood physical laws, such as mass balance and thermodynamics, which constitute the
basic requirements imposed on all living systems. In contrast, evolution depends on the interplay
of complex phenomena, such as adaptation to environmental changes, symbiosis, and biodiversity
of populations (Caetano-Anolls et al., 2009; Fani and Fondi, 2009), leading to diverse cellular
functions. Consequently, the unique properties related to the functions of a biological system are
a result of its evolutionary history.

Explaining cellular behavior through network representations and their properties is a key chal-
lenge of modern biology. While many structural properties of metabolic networks are similar to
those of other complex networks (Wagner and Fell, 2001)1, it is unclear whether they are a con-
sequence of the evolutionary history or merely arise as a result of general physical principles.
Here, we apply a randomization method to determine which properties of metabolic networks,
represented as bipartite metabolite-reaction graphs, may result from evolutionary pressure. This is
an essential step in understanding the relation between the functional characteristics of biological
systems and their network representations.

The common approach for estimating the relevance of a network property is to determine the
statistical significance (p-value) by comparing the value of the property in the investigated net-
work to those in the null-model distribution obtained from randomized networks (Casella and
Berger, 1990). Clearly, the significance of a property strongly depends on the chosen null model,
which should be constrained to preserve universal network properties (Maslov, 2007; Serrano
et al., 2006). Since the p-value is the probability that the value of a property originates from the
null-model distribution, a statistically significant property is likely to have emerged from some
non-arbitrary process influencing network evolution independently of the imposed constraints.

In virtually all network-based studies (Guimerà et al., 2007a; Milo et al., 2002; Maslov and Snep-
pen, 2002; Sales-Pardo et al., 2007; de la Fuente et al., 2008; Milo et al., 2004; Marr et al.,
2007), a Markov-chain switching algorithm, switch randomization, has been employed to de-
termine the significance of network properties by generating randomized networks with preserved
degree sequence. Its motivation stems from the finding that heavy-tail degree distributions are
a universal feature of complex networks. This generic null model can be applied to any type
of network, and guarantees the independence of an identified property from vertex degrees. We
demonstrate how switch randomization affects the citric acid (TCA) cycle, a central respiratory
metabolic pathway of outstanding importance for aerobic organisms (Figure 5.1a): two reac-
tions substrate1 → product1 and substrate2 → product2 are substituted with new reactions

1In the original publication, the reference points erroneously to Barabási and Albert (1999).
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Figure 5.1: Illustration of how switch and mass-balanced randomization of the genome-scale met-
abolic network of Escherichia coli affect the TCA cycle. (a) The TCA cycle in Escherichia coli,
consisting of 8 reactions and 22 compounds. Compound names are shown with corresponding
sum formulas, irreversible reactions are represented by solid squares, and reversible reactions by
blank squares. Internally, a reversible reaction is represented by one vertex for each direction,
in order to adequately model the substrate-product relationships (see Methods). (b) Reactions
involving metabolites from the TCA cycle (bold arrows and names) after applying switch random-
ization. The degrees of compounds and reactions are preserved, but the generated reactions violate
fundamental physical constraints (see inlay). Note that the shown reactions are obtained from ran-
domization of the entire network of Escherichia coli; the degrees therefore do not correspond to
those shown in a. (c) All reactions obtained by mass-balanced randomization are chemically fea-
sible due to balanced atom masses and realistic thermodynamic energy ranges, as indicated by the
sum formulas and stoichiometric coefficients (thermodynamic data not shown).

substrate1 → product2 and substrate2 → product1, ensuring that the vertex degrees remain
unchanged (Figure 5.1b). Since chemical feasibility is disregarded, a reaction that converts α-
Ketoglutarate into Succinyl-CoA may be generated, where several atoms are created out of noth-
ing. Hence, it remains hypothetical to what extent the properties, identified as significant with this
method, relate to the function of the network, as they could well result from universal physical
constraints imposed during network evolution.
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5.2 Results

5.2.1 Measuring evolutionary significance

To identify the properties which originate from evolutionary pressure, a network should be com-
pared to random networks which evolved free of evolutionary pressure, but persistently satisfy
all relevant physical constraints. As this is practically impossible to simulate, we apply our recent
method for randomizing metabolic networks while preserving mass balance of the biochemical re-
actions (Basler et al., 2011a). A reaction r with substrate set S and product set P is mass balanced
if the number of substrate atoms equals the number of product atoms:

∑

s∈S

as,r · ms =
∑

p∈P

ap,r · mp. (5.1)

where ms, mp are the vectors of sum formulas of s and p, respectively, and as,r, ap,r their stoi-
chiometric coefficients (see Methods). The mass-balanced randomization of the TCA cycle does
not violate this basic physical constraint, as shown in Figure 5.1c.

Thermodynamic properties, reflecting the energy change of reactions, constitute another impor-
tant physical requirement for metabolic networks. As shown in Figure 5.2, the reactions generated
by mass-balanced randomization of the Escherichia coli network are characterized by plausible
Gibbs free energy changes under standard conditions (pH=7, T=298.15K, see Section 4.1) (Feist
et al., 2007). In contrast, switch randomization results in unrealistic energy ranges. By preserving
mass balance and thermodynamic properties during randomization, our null model imposes real-
istic physical constraints on the generated randomized networks. This ensures that the significant
properties are independent of the fundamental physical requirements, and instead are likely to re-
sult from evolutionary pressure. Therefore, we refer to the statistically significant properties under
the proposed null model as evolutionary significant.

For illustration, consider a landscape formed by the values of any given property over all random-
ized networks (Figure 5.3). The constrained networks, obtained by mass-balanced randomization,
carve out a region in the vicinity of the original network which is embedded in the region of
unconstrained networks resulting from switch randomization. As these regions exhibit different
distributions of values, illustrated by different magnitudes of the peaks, an evolutionary signifi-
cant property may only be identified when comparing the property of the original network to the
constrained region.

5.2.2 Biosynthetic capabilities

To verify our approach, first we determine the evolutionary significance of the scope size dis-
tribution in the genome-scale metabolic networks of six model organisms: Bacillus subtilis, Es-
cherichia coli (bacteria), Saccharomyces cerevisiae (fungi), Chlamydomonas reinhardtii (protista),
Arabidopsis thaliana (plantae), and Homo sapiens (animalia) (see Methods). The scope (Handorf
et al., 2005) represents the set of compounds which can be produced in a metabolic network from
a given set of initial nutrients. We determine the scope size distribution of each network by repeat-
edly calculating the scope for 5000 randomly chosen sets of nutrient compounds, one set at a time,
according to the following procedure: (1) from the initial set of nutrients, determine the reactions
for which all substrates are contained in the nutrient set; (2) add the products of these reactions;
(3) repeat the procedure, until no more products can be added (see Algorithm A.3 on page 74).
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Figure 5.2: Distributions of Gibbs free energy changes under standard conditions (∆rG
0) in Es-

cherichia coli (black), and averaged over 104 mass-balanced (blue) and switch randomized (red)
networks. Energy changes in Escherichia coli have a mean of 7.5 and standard deviation 15.1,
mass-balanced randomized networks have a similar mean of 6.5 and standard deviation 53.5. In
contrast, switch randomization generates implausible energy ranges with a mean of 32.5 and stan-
dard deviation 847.3.

The scope size distribution characterizes the biosynthetic capability of a network and has been
shown to exhibit a strong correlation with the evolutionary history of organisms (Ebenhöh and
Handorf, 2009; Borenstein et al., 2008). After applying mass-balanced randomization to the six
networks, we compare the scope size distributions of each organism and its randomized network
ensemble, and determine p-values using the Kolmogorov-Smirnov test (see Methods). We find the
scope size distributions to be evolutionary significant for all studied organisms (p-values < 10−49,
Table B.2 and Figures C.9, C.10), which demonstrates that our method correctly identifies the
interdependence of the network property and its evolutionary background.

5.2.3 Small-world property

In the following, we focus on determining the evolutionary significance of salient network proper-
ties which have been extensively studied in complex network research and are prominently applied
in biological studies. In particular, we analyze the small-world property (Wagner and Fell, 2001),
defined by a large clustering coefficient in conjunction with small average path length (see Sec-
tions 1.4.4 and 1.4.5), and the metabolite degree distribution (Jeong et al., 2000). We find that
the clustering coefficient is significant in all species (p-values < 10−5), regardless of the applied
null model. On the other hand, the average path length is evolutionary significant with p-values
< 0.025 in all species. With switch randomization, this property is significant (p-values < 10−5)
in all but Saccharomyces cerevisiae (p-value = 0.77, Table B.2).

More importantly, we may now assess the importance of the small-world phenomenon by deter-
mining whether this property is more pronounced in the analyzed networks as compared to their
randomized variants. Interestingly, in each species we find that the average path length is smaller
and the clustering coefficient is greater than the values of the respective properties obtained from
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Figure 5.3: Illustration of a landscape of property values over all randomized networks. The prop-
erty of the original network stands out from the inner region of constrained networks, but becomes
inconspicuous in the outer region of unconstrained networks. Therefore, only by comparison with
the constrained networks one may detect the evolutionary significance of the property.

mass-balanced randomization (Figure 5.4). This finding indicates that the small-world property is
independent of physical constraints, and thus likely to be of evolutionary importance for metabolic
networks. By contrast, when comparing the networks with their switch randomized ensembles, we
arrive at a contrary conclusion–larger average path lengths and smaller clustering coefficients are
prominent in real-world metabolic networks. Therefore, the results from switch randomization
suggest that metabolic networks are the opposite of small worlds, disproving the small-world
hypothesis. Moreover, this finding hints at two major hazards of network null models: (1) the ob-
tained results crucially depend on the chosen model, and (2) the application of a generic null model
which provides an unrealistically constrained environment may lead to counterintuitive results.

5.2.4 Degree distributions

Next, we analyze the metabolite degree distributions, where the degree of a metabolite is the num-
ber of reactions it is involved in either as substrate or product. The degree can be interpreted as
metabolite specificity, with highly specific metabolites occurring in only few reactions. To our
knowledge, the significance of degree distributions was never studied, since switch randomization
is unsuited for this task. The degree distributions of all six organisms are evolutionary signifi-
cant (p-values < 10−17, Table B.2 and Figure C.13), suggesting that the patterns of metabolite
specificities across different organisms emerge as a consequence of their evolutionary history, and
not from the imposed physical constraints. This finding complements the well-known evolution-
ary requirement of a network architecture which is robust to random errors, as exhibited by the
heavy-tail degree distributions (Jeong et al., 2000).
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Figure 5.4: Characteristic path
lengths (L) and clustering coef-
ficients (C) of the six investi-
gated metabolic networks (black
dots) and averaged values of their
mass-balanced (blue triangles) and
switch randomized (red crosses)
ensembles. Compared to the
mass-balanced null model, char-
acteristic path lengths are small
and clustering coefficients large in
all six organisms, confirming the
small world hypothesis. Contrar-
ily, in comparison to the switch
based null model, characteristic
path lengths are large and cluster-
ing coefficients small. The stan-
dard deviation is below 0.02 for
each randomized distribution.
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5.2.5 Reaction centrality

Finally, we propose a measure for determining the global importance of individual reactions,
which is based on a centrality index previously used in sociological studies (Hubbell, 1965) (also
referred to as Hubbell Index). For two reactions ri and rj , we define the dependence of rj on
ri as the largest ratio by which ri contributes to the overall production of an intermediary c (i.e.,
a compound which is produced by ri and consumed by rj): ω(ri, rj) = maxc din(c)−1, where
din(c) is the in-degree of c, which is the total number of reactions producing c. Note that this
definition corresponds to the strength of impact of a knockout of ri on rj , where ω(ri, rj) = 1, if
rj becomes inoperable upon knockout of ri (e.g. if ri and rj are neighbours in a linear chain of
reactions), and ω(ri, rj) ∼ 0, if the intermediaries required by rj can be produced by many other
reactions in the network.

The global impact of the knockout of a reaction on the entire network, which we call reaction
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centrality, is
ν(ri) =

∑

rj∈R

ν(rj) · ω(ri, rj), (5.2)

where R is the set of all reactions in the network, and ω(ri, rj) = 0, if ri and rj do not share any
intermediary compound (i.e., ri and rj are not directly connected). This measure accounts for the
direct dependencies between reactions through their intermediary compounds, as well as the global
importance of the affected reactions: a knockout may affect only few other reactions directly, but
can still have a large impact on the network, if an important reaction is affected indirectly (e.g. the
knockout of a reaction at the beginning of a linear chain which leads to a reaction producing many
important compounds).

Equation 5.2 can be written in matrix form as Aν = ν, where Ai,j = ω(ri, rj). In order to solve
this eigenvalue problem, we need to ensure the inverse of A exists, which can be achieved by the
PageRank transformation (Langville and Meyer, 2003). In particular, the transformed matrix A′

is obtained by normalizing the columns of A and applying a damping factor d:

A′
i,j = d · Ai,j/

∑

i

Ai,j + (1 − d)/|R|,

which yields the Markov chain represented by A′ ergodic, as the corresponding network is strongly
connected, and ensures the largest eigenvalue is 1. In order to minimize the diluting effect of the
damping factor on the topology of A, we choose d = 0.99. The eigenvector ν corresponding to
the eigenvalue 1 of A′ then contains the global centrality values of the reactions in the network,
where ν(i) corresponds to the reaction centrality of the i-th reaction. The calculation for large
networks is tractable using a Fortran implementation of the Implicitly Restarted Arnoldi Method
(Lehoucq et al., 1998).

We determine a p-value for each reaction by comparing its centrality value in the original network
with those obtained from mass-balanced randomized networks while preserving the reaction itself.
In order to estimate the effect of evolutionary pressure toward high centrality values, we apply a
one-sided test with the null hypothesis, that the values obtained from randomization are at least as
large as the values of the original reactions (see Methods).

Table 5.1 shows the reactions which have a significant centrality (p-value ≤ 0.025) in at least three
of the analyzed species (see Table S7 in the online Supplementary Material for a complete list).
The references provide evidence that each reaction is of outstanding importance for metabolism,
as demonstrated by their evolutionary ubiquity, severity of knockout or inhibition effects, and
clinical applications. For instance, catalase (EC 1.11.1.6) inactivation was shown to have severe
effects on the life span of Saccharomyces cerevisiae cells (Mesquita et al., 2010). Superoxide
dismutase (EC 1.15.1.1) is essential for defense against oxygen toxicity and aerobic growth in
eukaryotes (van Loon et al., 1986; Gralla and Valentine, 1991), and is involved in a multitude of
diseases (Noor et al., 2002). Carbonic anhydrase (EC 4.2.1.1) fulfills diverse metabolic functions
in organelles, tissues, and membranes of virtually all species, is used as a drug target for various
diseases, and is one of the evolutionary oldest enzymes (Tashian, 1989; Henry, 1996; Smith et al.,
1999; Smith and Ferry, 2000; Ferreira et al., 2008; Duanmu et al., 2009; Gilmour, 2010). The
numerous experimental corroborations suggest that the proposed centrality index, in conjunction
with the evolutionary significance determined by using our null model, could be used to predict
enzymes responsible for maintaining organismal viability solely from the network structure.

For comparison, when repeating the analysis using switch randomization, the picture is less clear.
In Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens, 89%, 27%, and 14% of the
reactions have a p-value of 0.0099, rendering the analysis useless at least for the first two species.
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Enzyme EC no. BS EC SC CR AT HS Ref.
Catalase 1.11.1.6 X X X - X n/a [1-2]
Superoxide dismutase 1.15.1.1 X X n/a - X X [3-5]
Carbonic anhydrase 4.2.1.1 X - X X X n/a [6-12]
L-Arabinose isomerase 5.3.1.4 X X n/a n/a n/a X [13-14]
Phosphoglycerate mutase 5.4.2.1 X - X - - X [15-18]

Table 5.1: All reactions with centrality p-values ≤ 0.025 in at least three of the following species:
Bacillus subtilis (BS), Escherichia coli (EC), Saccharomyces cerevisiae (SC), Chlamydomonas
reinhardtii (CR), Arabidopsis thaliana (AT), and Homo sapiens (HS). A checkmark indicates that
the reaction catalyzed by the enzyme has a significant centrality in the corresponding species;
a hyphen indicates not significant; n/a indicates the corresponding enzyme is not annotated for
the species. References: [1-2]: Mesquita et al. (2010); Zamocky et al. (2008); [3-5]: van Loon
et al. (1986); Gralla and Valentine (1991); Noor et al. (2002); [6-12]: Tashian (1989); Henry
(1996); Smith et al. (1999); Smith and Ferry (2000); Ferreira et al. (2008); Duanmu et al. (2009);
Gilmour (2010); [13-14]: Novotny and Englesberg (1966); Schleif (2010); [15-18]: Irani and
Maitra (1974); Oh and Freese (1976); Lam and Marmur (1977); Papini et al. (2010).

Five reactions have a significant centrality in at least two of the remaining three analyzed species
(see Table B.4 on page 78 and Table S8 in the online Supplementary Material). We omit a detailed
statistical analysis of these initial results, which will be necessary to draw further conclusions.

5.3 Discussion

To conclude, we proposed a novel method to reveal the relation between network properties and
their evolutionary background by preserving the universal physical principles which constrain
the design of metabolic networks. Any property which originates from evolutionary pressure,
and thus relates to an important biological function, should not be observed in artificial metabolic
networks, which evolved free of evolutionary pressure, but satisfy all relevant physical constraints.
This should even hold for properties evolved from complex time-dependent phenomena, if they
are reflected in the ultimately observed network.

We recognize that the proposed method only preserves mass balance and thermodynamic con-
straints, while other physical principles, such as electric charges, may also be relevant for meta-
bolic network properties. Nevertheless, the considered physical constraints are the most funda-
mental and ubiquitous ones. Therefore, we believe that the method is a reasonable first approach
to extract the biological importance of metabolic network properties. Accounting for additional
physical constraints is complicated by the lack of reliable data for genome-scale metabolic net-
works; however, we expect such extensions to become possible in the future, which should further
improve the biological relevance of the significance measure and the accuracy of the resulting
predictions.

In contrast to the commonly applied switch randomization, our approach provides a realistic net-
work background, and attributes an important evolutionary role to the small-world property and
heavy-tail degree distributions. Our findings shed new light on the conclusions of previous stud-
ies, and suggest that the salient network properties are indeed a product of evolutionary pressure.
Therefore, these properties carry important biological information, and can be justifiably used to
generate meaningful hypotheses for experimental research.
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We demonstrate that the proposed centrality index is one such network property which determines
reactions important for viability of organisms. The method could therefore be used to identify can-
didate reactions for metabolic engineering and drug development. The results provide an impetus
for addressing the long-standing doubts concerning the biological relevance of network properties.
In addition, the proposed null model could be employed to verify the evolutionary assumptions
in constraint-based approaches (Feist et al., 2010) and to provide an interface to synthetic biology
studies.

Finally, we envision that, similar to the proposed approach for metabolic networks, specifically
designed null models will be developed for other physically constrained systems, represented by
gene-regulatory, protein-protein interaction and signaling networks. For instance, transcription
factors depend on cis-elements and DNA binding domains, which constrain the sequence of genes
by which they are encoded. Likewise, protein interactions and signaling interactions depend on
functional domains and binding sites. Development of null models which integrate the governing
physical constraints of such systems will likely stimulate novel insights into the structure-function
relationship in complex biological networks.

5.4 Methods

5.4.1 Genome-scale metabolic networks

We conduct our analyses on the most widely used genome-scale metabolic networks of six model
organisms from all kingdoms of life: Bacillus subtilis (Oh et al., 2007), Escherichia coli (Feist
et al., 2007), Saccharomyces cerevisiae (Herrgård et al., 2008), Chlamydomonas reinhardtii (May
et al., 2008), Arabidopsis thaliana (Rhee et al., 2003), and Homo sapiens (Ma et al., 2007). The
sizes of the networks vary according to the complexity of the represented organisms, ranging
from 855 reactions and 766 compounds (Bacillus subtilis) to 2819 reactions and 2691 compounds
(Homo sapiens). Resulting from the bipartite graph reconstruction, detailed in the next section,
the number of vertices and edges varies accordingly, from 1877 vertices and 5368 edges (Bacillus
subtilis) to 7059 vertices and 19651 edges (Homo sapiens). The networks further differ in their
quality regarding mass balance of reactions, availability of information on reversible reactions, and
the number of (strongly) connected components (see Table B.1): only the network of Escherichia
coli is fully balanced and consists of one connected component.

5.4.2 Mass-balanced randomization

To estimate the evolutionary significance of network properties, we generated 104 mass-balanced
randomized networks for each of the six analyzed genome-scale metabolic networks. A metabolic
network is represented as a directed bipartite graph G = (Vc ∪ Vr, E), where Vc is the set of com-
pound vertices, Vr the set of reaction vertices, and E ⊆ (Vc ×Vr)∪ (Vr ×Vc) is the set of directed
edges denoting substrate-reaction and product-reaction relationships. For a compound c ∈ Vc, we
denote by mc ∈ Nn its mass vector, i.e., the vector representation of c over n chemical elements.
Here, we consider only the six most abundant elements in biological systems (Dobson, 2004): car-
bon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S). The mass vector
of water is then (0, 2, 0, 1, 0, 0) · (C, H, N, O, P, S)T . Reversible reactions are represented by one
reaction vertex for each direction: r+ and r−, such that r+

in = r−out and r+
out = r−in.
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In order to uniformly randomize a network while preserving mass balance, each possible mass-
balanced network has to be generated with equal probability. This requires enumeration of all
possible sets of substrates and products, for which Equation (5.1) is satisfied. As this problem
is a special case of the Knapsack problem (Horowitz and Sahni, 1974), the number of possible
mass-balanced networks is at least exponential in the number of compounds.

We approach the complexity of the general problem by applying a new method for mass-balanced
randomization, introduced in (Basler et al., 2011a). The set of possible solutions to Equation (5.1)
is restricted twofold: (1) the in- and out-degrees of reactions are preserved, and (2) the substitution
of compounds is limited to certain subsets, as detailed below, which allows to easily find a solution
for Equation (5.1). The first restriction is in line with the observation that reaction degrees are
biochemically constrained by the number of interacting compounds. The second allows to divide
the randomization procedure into a precalculation step and an actual randomization. As a result,
the generation of a large set of mass-balanced randomized networks becomes computationally
feasible.

The randomization procedure consists of two steps: In the first step, for a given metabolic network
G, we determine the classes of mass equivalent compounds and pairs of compounds from Vc(G).
Two compounds are called mass equivalent, if the mass vector of one compound is a multiple of
the other (e.g. CO2 and C2O4). Two pairs of compounds are called mass equivalent, if the sum of
mass vectors of one pair is a multiple of the sum of mass vectors of the other pair (e.g. (CH2O,
CO2) and (C4H2O4, H2O2)). This definition ensures that the mass vectors of two compounds (and
the sums of the mass vectors of two pairs of compounds) from the same mass equivalence class
differ only by rational factors (e.g. 2· CH2O + 2· CO2 = C4H2O4 + H2O2). The precalculation
of mass equivalent compounds is to be executed only once for all subsequent randomizations of
the same network and renders the generation of large sets of mass-balanced randomized networks
computationally feasible (see Table B.1 for a performance comparison to switch randomization).

In the second step, the reactions of G are randomized while preserving mass balance. To random-
ize a reaction chosen uniformly at random from Vr(G), its substrates and products are replaced
by randomly chosen substitutes from their corresponding mass equivalence classes. When sub-
stituting an individual substrate or product, the stoichiometric coefficients of the new reaction are
obtained by multiplying the corresponding previous coefficients with the abovementioned factor,
such that Equation (5.1) is satisfied. For the substitution of a pair of substrates or products, the
stoichiometric coefficients satisfying Equation (5.1) are determined by solving a system of n lin-
ear equations with two unknowns (see Table 2.3 on page 24 for examples). In case there is no
solution, the substitution is not carried out. The output from this step is an (almost) uniformly
randomized network in which stoichiometric coefficients are changed, edges are replaced, and,
consequently, the degrees of the compounds are altered (Basler et al., 2011a). The approach is in
line with the observation that some fundamental properties should be fixed while carrying out the
randomization—here, these are the degrees of the reaction vertices and mass balance.

5.4.3 Calculation of p-values

The analyzed properties are calculated in the original metabolic network and in each of the 104

randomized networks. For the average path length and clustering coefficient, we derive a z-score,
z = x−y

σ
, from the original value x, the average randomized value y, and the standard deviation

of randomized values σ. The two-sided p-value is determined as p = 2 ·
∫ ∞
|z| N (0, 1).

For comparing the metabolite degree and scope size distributions of the metabolic networks with
their randomized versions we apply the two-sample Kolmogorov-Smirnov test. From the cumula-
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tive distribution Fn of the property in the original network, and the joint cumulative distribution
Fn′ of the randomized networks, a test statistic is derived as dn,n′ = supx |Fn(x) − Fn′(x)|, where
n and n′ are the number of values in the original, respectively the joint randomized distributions.

The p-value is p =
√

nn′

n+n′ dn,n′ .

For each reaction vertex r, we determine its centrality, ν(r), in the original network and in 100
randomized networks, which are obtained by preserving r and randomizing the remaining reac-
tions. The p-value of r is pr = q′r+1

n′+1 , where q′r is the number of randomized networks, in which
the centrality of r is at least as large as in the original network, and n′ = 100.
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Abstract

Background: Reconstruction of genome-scale metabolic networks has resulted in models capable
of reproducing experimentally observed biomass yield/growth rates and predicting the effect of
alterations in metabolism for biotechnological applications. The existing studies rely on modifying
the metabolic network of an investigated organism by removing or adding reactions taken either
from evolutionary similar organisms or from databases of chemical reactions (e.g., KEGG). A
potential disadvantage of these knowledge-driven approaches is that the result is biased towards
known reactions, as they do not account for the possibility of including novel enzymes, together
with the reactions they catalyze.

Results: Here, we explore the alternative of increasing biomass yield in three model organisms:
Bacillus subtilis, Escherichia coli, and Hordeum vulgare, by applying small, chemically feasible
network modifications. We use the predicted and experimentally confirmed growth rates of the
wild-type networks as reference values and determine the effect of replacing existing reactions by
mass-balanced, thermodynamically feasible reactions on the predicted growth rate by using flux
balance analysis.

Conclusions: While many replacements of existing reactions naturally lead to a decrease or com-
plete cease of biomass production, in each of the three organisms we find feasible modifications
which facilitate a significant increase in this biological function. We focus on modifications with
feasible chemical properties and a significant increase in biomass yield. The results demonstrate
that small modifications are sufficient to substantially alter biomass yield in the three organisms.
The method can be used to predict the effect of targeted modifications on the yield of any set of
metabolites, thus providing a computational framework for metabolic engineering.
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6.1 Background

Current estimates on the completeness of the knowledge of proteomes suggest that the function
of approximately 50-70% of the proteins expressed in organisms is known (Hanson et al., 2010).
Consequently, large fractions of enzymatic pathways remain undiscovered, and genome-scale met-
abolic network reconstructions are inherently incomplete (Breitling et al., 2008; Yamada and Bork,
2009). Nevertheless, such models include sufficient level of detail to computationally predict the
growth of microorganisms under different environmental conditions (Edwards et al., 2001), de-
tect missing reactions (Quek and Nielsen, 2008), or discover genetic modifications resulting in a
desired phenotype with biotechnological applications (Oliveira et al., 2005; Sohn et al., 2010).

Metabolic engineering aims at designing or re-programming the genetic information of an organ-
ism with clinical and biotechnological applications. The existing approaches for modifying an
organism’s metabolic system rely either on knocking out enzyme-coding genes (Burgard et al.,
2003; Alper et al., 2005; Lee et al., 2007) or introducing genes, together with the corresponding
reactions, from other organisms (Sohn et al., 2010; Bar-Even et al., 2010; Wang et al., 2011). The
advantage of relying on the entire set of known biochemical reactions lies in the potential to use
them in various experimental applications, since the introduced reactions are known to be chem-
ically feasible. However, given the large fraction of unknown chemical reactions in biological
systems, and the immense space of possible macromolecules potentially catalyzing chemical re-
actions (Dobson, 2004), the most promising targets for metabolic engineering may not be found
among the already known and characterized enzymes, but by systematic screening for chemically
feasible, but so-far unknown reactions.

We present an approach for systematic generation of novel reactions and evaluate its ability to
modulate, and particularly increase, biomass yield. The introduced reactions are chemically feasi-
ble, as they satisfy mass conservation and thermodynamic constraints under standard conditions,
and make use only of the compounds already present in the analyzed network. We investigate
the metabolic networks of three model organisms, for which growth was predicted in silico and
experimentally validated: Bacillus subtilis (Oh et al., 2007), Escherichia coli (Feist et al., 2007),
and seeds of Hordeum vulgare (Grafahrend-Belau et al., 2009). Each of these organisms has
several important agricultural or biotechnological applications: B. subtilis is used for food and
enzyme production and has been genetically engineered for producing riboflavin and polyhydrox-
yalkanoates (Schallmey et al., 2004; Perkins et al., 1999; Wang et al., 2006); E. coli has a long
history of biotechnological applications, such as: production of insulin, lycopene, and succinic
acid (Goeddel et al., 1979; Alper et al., 2005; Lee et al., 2005), and is currently explored for its
use in producing polymers and biofuels (Atsumi et al., 2008; Bond-Watts et al., 2011; Yim et al.,
2011); Hordeum vulgare has been genetically engineered for enhanced breeding properties, pro-
tein synthesis, food and cellulose production (Horvath et al., 2000, 2001; von Wettstein et al.,
2000; Patel et al., 2000).

We point out that our approach is not restricted to optimizing biomass yield, thus allowing the
detection of reactions which, when introduced into the respective network, improve any metabolic
objective of interest.
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6.2 Methods

6.2.1 Generating chemically feasible reactions

We modified the reactions in the wild-type networks by replacing one reaction at a time by a
new reaction. In order to obtain realistic chemical reactions, we extended the recent method for
mass-balanced randomization of metabolic networks (Basler et al., 2011a). The method generates
a new reaction from an existing reaction by replacing its substrates and products by compounds
from within the network, while preserving the mass-balance equation, i.e., the number of substrate
atoms equals the number of product atoms:

∑

e∈Er

se,r · me =
∑

p∈Pr

sp,r · mp, (6.1)

where Er is the set of substrates and Pr the set of products of r, me, mp are the vectors of sum
formulas of e and p, respectively, and se,r, sp,r their stoichiometric coefficients. As an example
for replacing an individual substrate, consider the Aldose 1-epimerase reaction in E. coli: β-D-
Galactose → D-Galactose, with mβ−D−Galactose = mD−Galactose = C6H12O6. Then, as Glycer-
aldehyde with mGlyceraldehyde = C3H6O3 participates in the network, the method may generate
the mass-balanced reaction 2 Glyceraldehyde → D-Galactose, which satisfies Equation 6.1, as
2 C3H6O3 = C6H12O6. In addition to substituting individual substrates or products, the method
also allows more complex substitutions involving pairs of substrates or products, yielding a large
number of possible substitutions.

While the presence of the involved compounds and the requirement of mass-balance ensure the
reaction can in principal take place, it may still be thermodynamically infeasible. Unfortunately,
the current genome-scale metabolic networks do not contain information about the physiological
conditions under which individual reactions may occur. However, under the assumption of stan-
dard conditions (pH=7, T=298.15K), the thermodynamic feasibility of a reaction can still be esti-
mated from the chemical structure of the involved molecules using the group contribution method
(Mavrovouniotis, 1991; Tanaka et al., 2003; Henry et al., 2006). The estimated standard Gibbs free
energy change of a reaction, ∆rG

0
est, can be calculated from the corresponding estimates of the

Gibbs free energy of formation of its substrates, ∆fG0
est(e), and products, ∆fG0

est(p), as follows:

∆rG
0
est =

∑

p∈Pr

sp,r · ∆fG0
est(p) −

∑

e∈Er

se,r · ∆fG0
est(e). (6.2)

Thus, the thermodynamic feasibility of a reaction can be estimated only from its stoichiometry
and the chemical structure of its substrates and products. We obtained ∆fG0

est for all compounds
in KEGG (Vassily Hatzimanikatis, personal communication) and mapped them to the compounds
of the three analyzed metabolic networks. This further facilitated the prediction of the thermody-
namic feasibility for the newly generated reactions.

Given the lack of information on physiological conditions for the reactions of a network, we
consider a generated reaction infeasible, if its Gibbs free energy change, ∆rG

0
est, is larger than the

energy change of any other reaction in the network. In this case, it is unlikely that the organism is
able to provide sufficient energy for its activation, and we discard it in the further analysis.
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6.2.2 Calculating biomass yield

Most existing studies rely on flux balance analysis (FBA) (Varma and Palsson, 1994) in order to
predict the effect of pathway modifications. FBA allows to calculate an optimal flux of metabolic
species through the network for a given objective function under the assumption that the system is
at steady state.

In order to apply FBA, one needs to specify the stoichiometric matrix, S, containing the stoichio-
metric coefficients si,j of compound i in reaction j and including the reaction stoichiometries of
import and export reactions. Under the assumption that the network operates at steady state, one
can then calculate the optimal flux distribution by solving the linear program:

max vb

s.t. S · v = 0

where v is the vector of reaction fluxes, and vb the entry in v corresponding to the metabolic
objective function.

In order to predict the growth rate of an organism, vb is chosen such that the b-th column in S
describes the consumption of biomass precursors. By applying FBA to the metabolic networks
with experimentally validated nutrient uptake and growth rates, we can calculate the growth rates
of the wild-type networks and their modified variants.

6.2.3 Screening for feasible synthetic reactions

First, we calculate the optimal biomass yield for the metabolic networks of each analyzed organ-
ism, in order to reproduce the experimental results and obtain a reference value of the wild-type
networks. We then generate all possible networks obtained by substituting individual substrates
or products, and pairs thereof, in each reaction (see Basler et al., 2011a). Thermodynamically
infeasible reactions are neglected, as described in Section 6.2.1. The total number of remaining
modified networks is 20579 for B. subtilis, 23835 for E. coli, and 722 for the smaller network of
H. vulgare seeds. For these networks, we calculate the biomass yield by using the import/export
fluxes and biomass precursors of the corresponding original network.

6.3 Results and Discussion

We determine the distribution of biomass yield in the modified networks relative to the wild-
type network (Figure 6.1). We find that most modifications do not affect the optimal biomass
yield of the three analysed organisms, indicating that only few reactions contribute to optimal
growth. This is most pronounced in the genome-scale metabolic networks, where only 12.8%
(B. subtilis), respectively 11% (E. coli) of the modifications affect biomass yield, suggesting that
most reactions may be needed for other objectives, such as response to environmental changes or
stress. In contrast, the smaller and more specialized, organ-specific network of H. vulgare seeds
requires a larger fraction of the reactions for producing biomass, as it is affected by 31.3% of the
modifications.

Similarly, in B. subtilis and E. coli, 8-9% of modifications result in a complete loss of the capacity
to produce biomass, which corresponds to a non-viable phenotype. In H. vulgare, this ratio is
24.4%, indicating this metabolic network is highly sensitive to small modifications.
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(a)

(b)

(c)

Figure 6.1: Distributions of the relative change in biomass yield after modifying the wild-type
networks of (a) B.subtilis, (b) E. coli, and (c) H. vulgare seeds. In each organism, most modifica-
tions do not affect biomass yield, while several lead to a complete loss, and some to a significant
decrease or increase. The main panels are scaled for clarity; the inlays show the full frequency
ranges on the y-scale.
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Modifications with largest increase in biomass yield
Original equation Modified equations Increase

(a) L-Malate + NADP → Pyruvate + CO2 + NADPH 2 L-Malate + 2 NADP → D-Malate + Oxaloacetate + 2 NADPH 42.5%
(b) Fumarate + H2O ↔ L-Malate Methylisocitrate + Bicarbonate ↔ 2 L-Malate 51.3%
(c) Glutamate + NAD ↔ 2-Oxoglutarate + NH3 + NADH Glutamate + NAD ↔ Glycine + Pyruvate + NADH 1.9%

Table 6.1: Equations of the original and modified reactions with the highest increase in biomass
yield. (a) Malic enzyme reaction in B. subtilis (EC 1.1.1.40), (b) Fumarate hydratase reaction in E.
coli (EC 4.2.1.2), (c) Glutamate dehydrogenase reaction in H. vulgare (EC 1.4.1.2). In B. subtilis,
98 other modifications give the same biomass yield, and in H. vulgare one more.

Oxaloacetate Citrate

Isocitrate

2-Oxoglutarate

Succinyl-CoASuccinate

Malate

Acetyl-CoA

Fumarate

Alanine

Glutamate

Pyruvate

Aspartate

Acetoacetate

Biomass
Original and perturbed

Original flux

Perturbed flux

Original reaction

Perturbed reaction

Figure 6.2: Modification of the Alanine transaminase reaction in the TCA cycle leading to a 5.9%
increase in biomass yield in B. subtilis. From the original reaction, Pyruvate + Glutamate ↔ 2-
Oxoglutarate + L-Alanine (dashed blue), we have generated the reaction Acetoacetate + Aspartate
↔ 2-Oxoglutarate + L-Alanine (dashed red). Calculated fluxes in the original network are shown
as blue arrows, fluxes in the modified network as red arrows. Black arrows indicate a flux in both
networks.

While several modifications lead to a decrease or total loss of biomass yield (B. subtilis: 11% E.
coli: 9.5% H. vulgare: 29.6%), only few modifications allow a significant increase (B. subtilis:
1.8% E. coli: 1.4% H. vulgare: 0.3%) . This indicates that the wild-type networks are strongly
optimized, though not optimal, with respect to biomass yield. Interestingly, the highest level of
optimization is observed in the organ-specific network of H. vulgare, where only two modifications
allow for an increase in biomass yield by more than 1%. Table 6.1 shows the modifications with
the highest increase in biomass yield for each organism.

To illustrate the underlying mechanism leading to increased biomass yield, we show how a modi-
fication of the Alanine transaminase reaction (EC 2.6.1.2) affects the metabolite fluxes of the TCA
cycle and leads to a 5.9% increase in biomass yield in B. subtilis (Figure 6.2). Instead of using
Pyruvate and Glutamate as substrates for producing L-Alanine, a direct biomass precursor, the
modified network uses Acetoacetate and Aspartate in order to produce L-Alanine more efficiently.

For comparison, we repeated the analysis by adding instead of replacing reactions, i.e., the original
reaction and its modified variant are both part of the modified network. Naturally, when adding
a reaction, biomass yield may only increase, but never decrease. Interestingly, we find that, in B.
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Modifications with largest biomass yield when added to E. coli
Original equation Modified equations

D-Lactate + NAD ↔ Pyruvate + NADH + H
3 D-Lactate + 3 NAD ↔ Pyruvate + 3 NADH + 2-dehydro-3-deoxy-D-galactonate
3 D-Lactate + 3 NAD ↔ Pyruvate + 3 NADH + 2-Dehydro-3-deoxy-D-gluconate
4 D-Lactate + 4 NAD ↔ 5-Dehydro-4-deoxy-D-glucarate + 4 NADH + Glycogen

Table 6.2: D-Lactate dehydrogenase (EC 1.1.1.28) and three modified reactions, each resulting in
a 214% increase in biomass yield when added to the network.

subtilis and H. vulgare, none of the modifications by adding a reaction allow for a higher biomass
yield compared to the previously analyzed replacements of reactions. Only in E. coli, we find
three modifications with a further increased biomass yield (+214%) when adding the generated
reactions to the network (Table 6.2).

Most of the identified reactions are not present in KEGG nor Brenda, but might well occur in
a less characterized or unknown organism, as they are biochemically feasible. In addition, the
corresponding enzymes could be artificially synthesized and introduced into the organism in order
to experimentally validate the predicted growth effect. We point out that the identified reactions
could not have been found using a standard knowledge-based approach.

6.4 Conclusions

We have presented a new approach for systematic detection of novel feasible reactions which al-
ter biomass yield. We found that the three analyzed metabolic networks are strongly optimized,
particularly the more specialized network of H. vulgare seeds. Nevertheless, we identified sev-
eral reactions which, when introduced into the organism, are predicted to further increase biomass
yield. By using a different objective function, the same approach may be directly applied to gener-
ate reactions facilitating the improved production of valuable compounds, or a parallel suppression
of the production of toxic compounds.

As all reactions satisfy basic mass conservation and thermodynamic constraints, they may be po-
tentially catalyzed by suitable enzymes. Strategies for their design and synthesis may be developed
in three ways: (1) targeted search for a gene encoding the enzyme in a less characterized organ-
ism; (2) discovery of the enzyme in the environment; (3) targeted synthesis of the enzyme using
methods of chemical engineering (Qi et al., 2001).

We further point out that, in order to obtain the predicted effect of introducing a reaction in the
network, one does not necessarily need to catalyze the exact stoichiometry of the reaction. Alter-
natively, concatenated reactions having the same net consumption and production as the identified
reaction will have the same effect, broadening the possibilities for obtaining suitable enzymes.

Another possible application is the automated curation of metabolic networks. If an analyzed
network is not capable of reproducing the experimental observations, it is likely to be incomplete.
The generation of novel reactions which allow a model to better fit experimental data might then
give hints to which important reactions are missing. We thus believe that the approach provides a
valuable tool for reconstruction of metabolic networks and their use in metabolic engineering or
drug development.





Chapter 7

Conclusions & Outlook

7.1 Summary

Motivated by the lack of a biologically meaningful null model, I have developed a computational
method for mass-balanced randomization of metabolic networks. In comparison, the existing ap-
proaches either disregard basic physical principles or do not aim at estimating the significance
of network properties (see Section 1.3). The presented method is based on the hypothesis that
metabolic network properties arise as a consequence of evolutionary pressure and physical con-
straints. By preserving the basic physical constraints, the method can be used in demonstrating
the independence of a network property from physical principles, and thus in estimating its signif-
icance with regard to evolutionary pressure. The method may therefore be a reasonable proxy for
quantifying functional importance in metabolic networks.

The randomization algorithm was presented and its complexity and uniformity properties analyzed
(Chapter 2). The method was further implemented as a user-friendly tool, which allows efficient
randomization and calculation of several important network properties (Chapter 3). It was then ap-
plied to assessing the dependence of the thermodynamic properties on mass balance (Chapter 4).
A principal goal of the thesis was to address the question whether the salient network proper-
ties, analyzed frequently in complex network research, can be justifiably used as determinants of
metabolic network function, and thus for drawing biologically meaningful conclusions. The pre-
sented results confirm this claim in six genome-scale metabolic networks. Based on the proposed
randomization algorithm, a novel network property was developed, which promises to reveal the
importance of metabolic reactions for viability of organisms, as measured by the global impact of
their knockout (Chapter 5). Finally, the method was extended to the identification of previously
unknown metabolic reactions, which improve the predicted growth rates of biotechnologically
important organisms, when introduced into the network (Chapter 6).

7.2 Uniform mass-balanced randomization

In Section 2.3.2, we demonstrated the uniformity of the algorithm for mass-balanced randomiza-
tion, if only individual compounds are substituted. The general algorithm allows for substituting
individual compounds and pairs of compounds, which greatly increases the sample space, but does
not result in a strictly uniform randomization. Therefore, we derived worst-case bounds for the
probabilities that networks are sampled almost uniformly at random after a given number of steps,



66 CHAPTER 7. CONCLUSIONS & OUTLOOK

and empirically validated the results. Uniformity of sampling is an important requirement for any
randomization approach, as it provides the basis for an unbiased measure of significance.

Switch randomization in its general form is not uniform, which can be seen by a simple
example. Consider the directed graph G0 = (V, E0) with V = {a, b, c, d} and E0 =
{(a, b), (b, c), (c, d), (c, a)}. Then, from G0, only the graph G1 = (V, E1) with E1 =
{(a, d), (b, c), (c, b), (c, a)} can be generated by switching (a, b) with (c, d) (we do not allow self-
edges, such as (a, a)). However, from G1, two graphs can be generated: either by switching (a, d)
with (c, b) to generate G0, or by switching (a, d) with (b, c) to obtain a new graph, G2. Thus, the
transition degree of G0 is 1, while the transition degree of G1 is 2. Consequently, the transition
graph is not regular and the corresponding Markov chain does not converge to a uniform stationary
distribution, as G1 is sampled with a higher probability than G0. Hence, switch randomization is
not uniform for directed graphs.

It is easy to circumvent this problem by allowing for ”void” switches, which do not change the
graph but are counted as an iteration (corresponding to self-loops in the transition graph): in the
example, a void switch is created for G0, so that the transition degrees of both G0 and G1 are 2, and
the randomization becomes uniform (Cobb and Chen, 2003; Ying and Wu, 2009). Unfortunately,
this approach requires prior knowledge of all degrees in the transition graph, which is unrealistic
for the mass-balanced randomization algorithm, as the sample spaces are prohibitively large (see
equation 2.5 on page 28 and Table B.3).

A more general approach for obtaining a uniform sampling is given by the Metropolis-Hastings al-
gorithm (Metropolis et al., 1953; Hastings, 1970). Before applying a randomization step t → t+1,
the transition degree d(Gt) of the graph Gt is compared to the transition degree of the new graph,

d(Gt+1). The probability for applying the modification is chosen as pt→t+1 = min{1, d(Gt)
d(Gt+1)

}.
Thereby, the probabilities for obtaining graphs with a larger transition degree are adjusted to
yield a uniform stationary distribution of the Markov-chain, and thus a uniform sampling. The
mass-balanced randomization algorithm with single and pair substitutions (Algorithm 2.1 on page
24) can be easily adjusted in accordance with this argument to yield a strictly uniform ran-
domization. To this end, the total number of possible substitutions of the original network G0,
d(G0) =

∑

r∈Vr
Ψ(r), where Ψ(r) is the set of all possible substitutions for a reaction r, must be

determined once at the beginning of the algorithm. The time complexity of this calculation is in
O(|Vr|·∆

2 ·σmax ·n) (∆ is the maximum reaction degree of G, σmax is the size of the largest mass
equivalence class, and n the number of considered chemical elements, see Section 2.3.1). In every
subsequent randomization step, the number of possible substitutions, Ψ(r′), must be calculated
for the new reaction r′, before applying the substitution, in order to adjust the probability as men-
tioned above. This does not require any additional calculation time, as the original algorithm also
calculates the possible substitutions for a chosen reaction in each step. Thus, the computational
complexity of the algorithm would increase to O((t + |Vr|) · ∆

2 · σmax · n). However, note that
we have chosen t ≫ |Vr| (Algorithm A.2 on page 73), so that the applicability of the algorithm to
genome-scale networks should not be hampered (as can be estimated from Table B.1).

7.3 Preserving thermodynamic constraints

The presented randomization algorithm preserves mass balance of reactions, which is a funda-
mental physical requirement constraining metabolic networks. Thermodynamic laws constitute
further important requirements for the feasibility of biochemical processes. The Gibbs free energy
change of reactions under standard conditions, ∆rG, was shown to remain in a realistic range
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in mass-balanced randomized networks (Section 5.2.1). Nevertheless, the distribution of ∆rG
does change (Figure 5.2 on page 48). An extension of the randomization algorithm to preserving
thermodynamic constraints could aim at preserving the distribution of ∆rG.

Preserving the distribution of ∆rG exactly is not straightforward, as the randomized reactions in
general have different values of ∆rG from the reactions in the original network. However, the
distribution can be easily approximated by choosing the direction of randomized reactions accord-
ingly, as the direction determines the sign of its ∆rG. To this end, first the ∆rG of all reactions in
the original network are partitioned into intervals Xi = [xi, xi+1), xi ∈ R, i = 1, ..., n. Then, for
a reaction r′ obtained by randomizing an existing reaction, its ∆rG, denoted as δ(r′), is estimated
from the molecular structures of the substrates and products and their stoichiometric coefficients
(Mavrovouniotis, 1991, Section 4.1). Let δ(r′) ∈ Xi and −δ(r′) ∈ Xj , and let |Xi|, |Xj | denote
the numbers of reactions in the corresponding partitions. The direction of r′ is then reversed (i.e.,
substrates and products are swapped) with probability

prev =
|Xj |

|Xj | + |Xi|
, (7.1)

Thus, the direction of r′ is chosen according to the probabilities of a reaction r in the original
network to have a ∆rG similar to δ(r′), respectively −δ(r′). Consequently, when choosing proper
interval bounds for Xi, the distribution of ∆rG is approximated as closely as possible by choosing
the direction of randomized reactions.

Note that, for brevity, the abovementioned approach only applies to irreversible reactions. The
distribution of ∆rG for reversible reactions may be approximated likewise by deriving the prob-
abilities for choosing the reversibility of randomized reactions. In addition, randomized reactions
with δ(r′) far from the ∆rG of any reaction in the original network may be skipped in order
to avoid generating reactions with unrealistic thermodynamic properties. Note that these consid-
erations may affect the uniformity of the randomization algorithm, as reactions which are ther-
modynamically similar to the reactions in the original network are more likely to be generated.
Nevertheless, generating randomized networks while preserving thermodynamic properties may
yield an interesting new tool for future analyses.

7.4 Compartments

Within this work, mass-balanced randomization was applied to seven genome-scale metabolic
networks, most of which were obtained from dedicated publications, where particular effort was
made in refining the model (see Table B.1). Nevertheless, the networks were continuously im-
proved and extended by additional details. For example, in 2009, only two of the seven analyzed
networks contained information on the subcellular localization of metabolites and reactions in
compartments (Herrgård et al., 2008; Feist et al., 2007), while the remaining five did not (Oh
et al., 2007; Keseler et al., 2009; Swarbreck et al., 2008; May et al., 2008; Ma et al., 2007). Mean-
while, several metabolic network reconstructions include this information (Duarte et al., 2007;
de Oliveira Dal’Molin et al., 2010, and more recent versions of Keseler et al., 2009; Swarbreck
et al., 2008; May et al., 2008). Ongoing empirical analyses revealed that, in a recent genome-
scale metabolic network of E. coli (Orth et al., 2011), the average path length increases, while
the clustering coefficient decreases when taking compartments into account. Thus, it would be
intriguing to re-assess the significance of the small-world and other properties using more recent
network reconstructions. The implementation of mass-balanced randomization already allows for
randomizing compartmentalized networks (Chapter 3), rendering this a straightforward task.
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7.5 Network properties

In Chapter 5, mass-balanced randomization was applied to estimating the evolutionary importance
of the average path length, clustering coefficient, biosynthetic capabilities, and to determining
reactions important for viability of organisms. The method can be directly applied to testing
the significance of any property defined on the structure of metabolic networks. For example,
small subnetwork patterns, also called motifs, represent the elementary building blocks which
may facilitate specific molecular functions in biological networks (Milo et al., 2002; Alon, 2003).
Analyzing the evolutionary importance of different motifs by mass-balanced randomization would
be an interesting future study. However, care must be taken when analyzing patterns which are
sensitive to local changes in the networks, as switch randomization was found to generate different
network motifs in a highly correlated manner (Ginoza and Mugler, 2010). Therefore, identification
of correlations in the local structure of mass-balanced randomized networks must precede the
analysis of local patterns, such as motifs or cycles of a given length, in order to remove artificial
redundancies.

Flux balance analysis is a widespread computational approach for determining metabolic fluxes in
microorganisms (Varma and Palsson, 1994). Under the steady-state assumption (Equation 1.1 on
page 12), the method determines a flux distribution which optimizes a given objective function.
Usually, the optimization of biomass production is used as objective function, as this reflects the
optimization of an organism for growth (Edwards et al., 2001). Clearly, growth is a complex bio-
logical function, which results from a long history of evolutionary optimization. Thus, one would
expect the optimal flux distribution determined using flux balance analysis to be of outstanding
evolutionary importance.

A possible application of mass-balanced randomization is therefore to test the evolutionary im-
portance of the growth rate by applying flux balance analysis to randomized networks. An initial
observation is that, in fully randomized networks of H. vulgare seeds (Grafahrend-Belau et al.,
2009), there is no possible steady-state flux, and, thus, growth is impossible. At an average, when
applying only 10% of the usual number of substitutions, the ratio of randomized networks allowing
for growth sharply drops below 10% (Figure 7.1). While this result may seem disappointing, it is
not unexpected when recalling the hypothesis underlying mass-balanced randomization (Section
1.5): the randomized networks satisfy basic physical principles, but lack any biological function.
Consequently, complex biological functions such as growth are not found in randomized networks,
which may also be interpreted as a confirmation of the relation between evolutionary optimization
and growth. It is thus of more interest to analyze network properties for which the relation to an
important biological function is less obvious, such as alternative definitions of feasible metabolic
pathways (Pitkänen et al., 2005). Nevertheless, these results inspired the extension of the random-
ization algorithm to identifying novel reactions, which improve the growth rate in organisms of
biotechnological importance, presented in Chapter 6.

7.6 Application to metabolic engineering and disease treatment

In Chapter 6, the randomization algorithm was extended to identifying feasible reactions, which
improve the growth rates of E. coli, B. subtilis, and H. vulgare, as predicted by flux balance anal-
ysis. For a biotechnological application, however, an enzyme catalyzing the identified reaction
must be introduced into the organism of interest. Therefore, the next step is to identify suitable
enzymes catalyzing the identified reactions. This may be achieved by three consecutive strategies:
(1) Search for an identified reaction and its catalyzing enzyme in public databases. If such an
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Figure 7.1: Application of flux balance analysis to randomized networks of H. vulgare seeds
under optimal growth conditions. Randomization is applied gradually, demonstrating that the
average number of randomized networks capable of carrying a steady-state flux drops sharply
with progressing randomization. Randomization strength refers to the percentage of the default
number of applied substitutions, here t = ⌈|Vr| · d(Vr)

2⌉ = 3395 (see Algorithm A.2).

enzyme is found, the coding gene may be a promising candidate for transformation into the ana-
lyzed organism and experimentally testing the predicted increase in growth; (2) If no such enzyme
is found, screen for suitable enzymes by predicting the function of protein structures contained
in protein databases (e.g., Berman et al., 2000). A computational method for screening protein
structures could be adopted based on Hermann et al. (2006); (3) Finally, if no matching protein
structure is found for a promising candidate reaction, protein databases could be searched for pro-
teins which are suitable for designing the enzyme by chemical engineering approaches (Qi et al.,
2001).

Notably, the approach presented in Chapter 6 can easily be applied to any metabolic objective
function of interest. Thus, not only reactions improving growth could be identified, but also those
that improve the efficient production compounds valuable for agricultural or medical purposes. In
addition, the approach could be applied to identifying novel enzymatic drugs. The applicability
of a genome-scale, tissue-specific cancer metabolic network to the prediction of cancer drug tar-
gets was recently demonstrated (Folger et al., 2011). Enzymes, in contrast to small molecules,
are promising drug candidates due to their high affinity and specificity, and they have been suc-
cessfully applied to the treatment of different cancers (Vellard, 2003). Thus, metabolic reactions
and their catalyzing enzymes, predicted to suppress growth in cancer cells, may be promising
candidates for novel anticancer drugs.

7.7 Extension to other biological networks

The presented method was developed specifically for the analysis of metabolic networks, as the
mass balance principle applies to chemical reactions. However, the general idea of physically con-
strained randomization is applicable to all kinds of biological networks, such as gene-regulatory,
protein-protein-interaction, and signaling networks, as they are all shaped by basic physical princi-
ples and evolutionary pressure. Thus, similar null models could be specifically designed for other
biological networks by preserving their governing physical principles, with the aim of assessing
the functional importance of network properties.
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For example, in gene-regulatory networks, genes are represented by vertices, and edges represent
regulatory relationships between genes, such as transcriptional activation or inhibition (Karlebach
and Shamir, 2008). Clearly, edges should be directed and weighted, depending on the direction
and type of regulation. The key entities are the transcription factors, i.e., proteins which contain
one or more DNA-binding domains. The number and type of binding domains of a transcription
factor determines the cis-regulatory elements on the DNA it can bind to and its specificity. Thus,
the number of binding domains and their target DNA sequences may be regarded as physical
principles. On the other hand, the particular genes located downstream of a regulatory site may
be regarded a result of evolutionary pressure, as they are determined by evolutionary events, such
as gene duplication. Consequently, a randomization approach for gene-regulatory networks could
aim at preserving the number of binding domains of transcription factors and their target DNA
strands, while randomizing the location of target genes.

In signaling networks, vertices represent proteins and protein complexes in different phosphory-
lation states, while edges represent the phosphorylation of proteins and the formation of protein
complexes. Thus, signaling networks can be regarded as chemical reaction networks for which
the principles of mass balance apply, similar to metabolic networks (Papin and Palsson, 2004).
Consequently, a randomization approach for signaling networks could impose similar constraints
of mass balance, where phosphate groups are transferred among proteins in a balanced fashion,
and protein complexes are formed by the participating individual proteins.

To conclude, the careful design of null models which account for the physical principles of a
particular class of biological networks may give important insights into their structure-function
relationships and open up valuable new strategies for their modification.
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Algorithm: Mass equivalence class calculation

Input:
Set of compounds, Vc

Output:
Mass equivalence classes, σ = {σ(c), σ(c, k)}, (c, k) ∈ Vc × Vc, c 6= k
σ := {}
∀c, k ∈ Vc: σ(c) := {}, σ(c, k) := {}
foreach c ∈ Vc do

1 if σ(c) /∈ σ then
2 add σ(c) to σ

3 add c to σ(c)
4 foreach σ(x) ∈ σ do
5 foreach k ∈ σ(x), k 6= c do
6 if σ(c, k) /∈ σ then
7 add σ(c, k) to σ

8 add (c, k) to σ(c, k)

Algorithm A.1: Algorithm for calculating the mass equivalence classes for all individual com-
pounds and pairs of compounds. Lines 1 and 6 involve testing whether a mass equivalent com-
pound, respectively pair of compounds, is already in σ; likewise, lines 3 and 8 require retrieving
the corresponding mass equivalence class from σ. Both can be done in constant time when using
a hash map for σ, with the basis of the mass vector(s) as hash key, as the basis uniquely identifies
a mass equivalence class (see Tables 1 and 2 in the main manuscript). Thus, the time complexity
of the algorithm is in O(|Vc|

2), as we iterate over each pair of compounds exactly once in line 5.
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Algorithm: Mass balanced randomization of metabolic networks
Input:
Mass balanced metabolic network, G = (Vc ∪ Vr, E),
Mass equivalence classes, σ = σ(c) ∪ σ(c, k), (c, k) ∈ Vc × Vc, c 6= k,
Set of preserved compounds, D ⊂ Vc,
Number of iterations, t ∈ N+

Output:
Randomized mass balanced network
Repeat t times:

1 Choose a reaction r ∈ Vr uniformly at random
2 foreach c ∈ r \ D do
3 foreach c′ ∈ σ(c), c′ /∈ r ∪ D do
4 add (c, c′) to Ψs(r)

5 foreach (c, k) ∈ (rin × rin) ∪ (rout × rout), c, k /∈ D do
6 foreach (c′, k′) ∈ σ(c, k), c′, k′ /∈ r ∪ D do
7 Let A = (mc′ , mk′) be the (n × 2) matrix of mass vectors of length n
8 Solve As = b with b = sc,r · mc + sk,r · mk

9 if there is a solution s1, s2 ∈ N+ then
10 add (c, k, c′, k′, s1, s2, 1) to Ψp(r)

11 else if there is a solution s1, s2 ∈ Q+ then
12 Let f > 0 be the smallest integer, such that fs1, fs2 ∈ N+

13 add (c, k, c′, k′, s1, s2, f) to Ψp(r)

14 Ψ(r) := Ψs(r) ∪ Ψp(r)

15 Choose a number u ∈ N+ uniformly at random from [1, |Ψ(r)|]
16 Let du be the u-th substitution in Ψ(r)
17 if du is an individual substitution (c, c′) then
18 if c is a substrate of r then
19 replace the edge (c, r) by (c′, r)

20 else
21 replace the edge (r, c) by (r, c′)

22 Let f > 0 be the smallest integer, such that f

m
c
′

· sc,rmc ∈ N+

23 sc′,r := 1
m

c
′

· sc,rmc

24 Multiply the stoichiometric coefficients of r by f

25 else if du is a pair substitution (c, k, c′, k′, s1, s2, f) then
26 if c,k are substrates of r then
27 replace the edges (c, r) and (k, r) by (c′, r) and (k′, r)

28 else
29 replace the edges (r, c) and (r, k) by (r, c′) and (r, k′)

30 sc′,r := s1

31 sk′,r := s2

32 Multiply the stoichiometric coefficients of r by f

Algorithm A.2: Detailed algorithm for mass-balanced randomization of a metabolic network. For a randomly
chosen reaction, the set of individual compound substitutions (lines 2-4) and the set of pair substitutions (lines 5-13)
are determined from the mass equivalence classes. Optionally, a set of preserved compounds D may be specified,
e.g. cofactors, which remain unmodified. For pair substitutions, it is necessary to determine whether there are
stoichiometric coefficients satisfying mass balance (lines 7-8). If there is no rational solution, the pair substitution
is neglected. In lines 14-16, a substitution is chosen uniformly at random from the set of all possible substitutions.
In lines 18-21 and 26-29, the edges corresponding to the chosen substituted compounds are replaced by new edges
connecting the substitutes. For an individual compound substitution, this involves determining the new stoichiometric
coefficients of the reaction, which can always be found due to the linear dependence of mass vectors (lines 22-24). For
a pair a substitution, the previously determined solution is used (lines 30-32). Note that the stoichiometric coefficients
of compounds other than the substitutes are modified only if f > 1, which is the case if the substituted (sum of) mass
vector(s) is no integer multiple of the new (sum of) mass vector(s) (see Table 3 in the main manuscript). For a full
randomization, the number of iterations, t, should be chosen as the number of compounds and pairs of compounds
available for substitutions. We use t = ⌈|Vr| · d(Vr)

2⌉ as an upper approximation, where d(Vr) is the average
(undirected) reaction degree.
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Algorithm: Network expansion

Input:
Metabolic network, G = (Vc ∪ Vr, E),
Set of initial nutrients, N ⊂ Vc.
Output:
Set of compounds which can be produced from N in G.
repeat

1 N∗ := N
2 foreach r ∈ Vr do
3 if rin ⊆ N∗ then
4 N := N ∪ rout

until N∗ = N

Algorithm A.3: Network expansion algorithm for determining the set of producible compounds
(scope) from a set of nutrients in a metabolic network. In order to determine the biosynthetic
capabilities of a network, we generated 5000 sets of randomly chosen initial nutrients, and de-
termined their scope. The scope size is the number of producible compounds, |N∗|. The scope
size distribution (Figures C.9 to C.12) gives the probability S(m, n), that n compounds can be
produced from a random set of m nutrients, and is determined empirically by calculating the
scope sizes for the 5000 sets of nutrients. We used m = 8, 16, and 32, and applied the procedure
to the original networks, and each of the randomized networks.
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Network γ δ d(ΣG) Puni Ωs

B. subtilis 1.85 6.91 15641 0.73 4.4 · 10645

S. cerevisiae 2.04 6.15 16032 0.82 3.8 · 10610

E. coli (iAF1260) 1.89 6.52 21769 0.81 4.3 · 101089

E. coli (EcoCyc) 1.87 7.14 19490 0.80 3.0 · 10957

C. reinhardtii 1.77 7.38 25047 0.78 6.3 · 10972

A. thaliana 1.63 12.50 54201 0.80 1.2 · 102033

H. sapiens 1.24 22.55 158138 0.53 2.8 · 102210

Table B.3: Scaling coefficient γ of the distribution of differences in degrees of adjacent nodes
and their expected degree difference δ were obtained from a random walk, average degree of the
transition graph d(ΣG) was obtained from sampling 103 random walks on each network. Puni:
lower bound for the worst-case probability, that nodes from ΣG are sampled almost uniformly at
random after t = 106 steps; Ωs: size of the sample space for individual substitutions.

Enzyme EC no. BS EC CR
L-arab 5.3.1.4 X X n/a
P-amino 5.3.1.6 X X -
S-ribose 5.3.1.23 X X n/a
Gluta 5.4.3.8 X X X

Iso 5.4.99.6 X X n/a

Table B.4: All reactions with centrality p-values ≤ 0.025, obtained from switch randomiza-
tion, in at least two of Bacillus subtilis (BS), Escherichia coli (EC), and Chlamydomonas rein-
hardtii (CR). A checkmark indicates that the reaction catalyzed by the enzyme has a significant
centrality in the corresponding species; a hyphen indicates not significant; n/a indicates the cor-
responding enzyme is not annotated for the species. The remaining three species are excluded
due to unreasonably large numbers of significant reactions: 2266 (94.2%) in Saccharomyces cere-
visiae, 1349 (41.2%) in Arabidopsis thaliana, 1022 (23.4)% in Homo sapiens (both directions
of reversible reactions are considered independently). Abbreviations: L-arab: L-Arabinose iso-
merase, P-amino: Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase,
S-ribose: S-methyl-5-thioribose-1-phosphate isomerase, Gluta: Glutamate-1-semialdehyde 2,1-
aminomutase, Iso: Isochorismate synthase
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Dihydroxyacetone

C3H6O3

1. A reaction is chosen uniformly at random from the network

Phospho-enol-

pyruvate

C3H2O6P

Dihydroxyacetone-

phosphate

C3H5O6P

Phosphoenolpyruvate

glycerone

phosphotransferase

Pyruvate

C3H3O3

2. A substitution is chosen randomly from the mass equivalence 

classes of the substrates and products of the reaction

Compound C  H N O P S

Allose 6 12 0 6 0 0

Alpha-d-galactose 6 12 0 6 0 0

Alpha-glucose 6 12 0 6 0 0

Arabinose 5 10 0 5 0 0

Cpc-10774 5 10 0 5 0 0

Cpd0-1108 5 10 0 5 0 0

Cpd0-1110 5 10 0 5 0 0

D-arabinose 5 10 0 5 0 0

D-ribulose 5 10 0 5 0 0

D-xylulose 5 10 0 5 0 0

Dihydroxyacetone 3  6 0 3 0 0

Formaldehyde 1  2 0 1 0 0

Galactose 6 12 0 6 0 0

Glc 6 12 0 6 0 0

Glycolaldehyde 2  4 0 2 0 0

Y  ...

Compound pair C  H N O P S

2-Ketoglutarate 5  4 0 5 0 0

D-beta-D-heptose-17-diphosphate 7 12 0 13 2 0

2-pg 3  4 0 7 1 0

Methyl-glyoxal 3  4 0 2 0 0

3-p-hydroxypyruvate 3  2 0 7 1 0

Acetol 3  6 0 2 0 0

3-p-hydroxypyruvate 3  2 0 7 1 0

Lactald 3  6 0 2 0 0

3OH-4P-OH-alpha-ketobutyrate 4  4 0 8 1 0

Acetald 2  4 0 1 0 0

Ascorbate 6  6 0 6 0 0

Fructose-16-biphosphate 6 10 0 12 2 0

Y  ...

The mass equivalence classes are precalculated, but additional 

conditions have to be met, e.g. that the substitute does not already 

occur in the reaction.

3 Glycolaldehyde

C2H4O2

3. The substitution is applied and stoichiometric coefficients are 

recalculated

2 Phospho-enol-

pyruvate

C3H2O6P

2 Dihydroxyacetone-

phosphate

C3H5O6P

Randomized

reaction

2 Pyruvate

C3H3O3

The resulting reaction has the same in- and out-degree, and is mass 

balanced: 3 C2H4O2 + 2 C3H2O6P = 2 C3H3O3 + 2 C3H5O6P.

Mass balanced randomization

1. An edge pair is chosen uniformly at random from the network

Glucose

C6H12O6

Fructose

C6H12O6

Glucose isomerase

Dihydroxyacetone

C3H6O3

Phospho-enol-

pyruvate

C3H2O6P

Dihydroxyacetone-

phosphate

C3H5O6P

Phosphoenolpyruvate

glycerone

phosphotransferase

Pyruvate

C3H3O3

2. The targets of the edges are switched

Glucose

C6H12O6

Fructose

C6H12O6

Dihydroxyacetone-

phosphate

C3H5O6P

Randomized

reaction

Dihydroxyacetone

C3H6O3

Phospho-enol-

pyruvate

C3H2O6P

Randomized

reaction

Pyruvate

C3H3O3

The reactions and compounds have the same in- and out-degrees,

but mass balance is violated:

     C6H12O6 B C3H5O6P

                  and

   C3H6O3 + C3H2O6P B�C3H3O3 + C6H12O6

Switch randomization

Figure C.1: Workflow schemes depicting the mass balanced (left) and switch (right) randomization
methods. The procedures are repeated a large number of times in order to obtain fully randomized
networks.
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Figure C.2: Mass equivalence class size distributions for individual compounds (left column) and
pairs of compounds (right column) in B. subtilis, S. cerevisiae, and E. coli (iAF1260).



82 APPENDIX C. FIGURES

Figure C.3: Mass equivalence class size distributions for individual compounds (left column) and
pairs of compounds (right column) in E. coli (EcoCyc), C. reinhardtii, A. thaliana, and H. sapiens.
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Figure C.4: Distributions of absolute differences in degrees between neighbors, sampled by ran-
dom walks on the transition graphs of B. subtilis, S. cerevisiae, E. coli (iAF1260), C. reinhardtii,
A. thaliana, and H. sapiens. The dashed lines show the power-law fit. Scaling coefficients and
mean differences are given in Table B.3.
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Figure C.5: Distributions of average path lengths in 104 mass-balanced randomized networks
of six genome-scale metabolic networks. The red curve indicates the normal distribution with
identical mean and standard deviation, the purple line shows the average path length in the original
network. The distribution in randomized networks of C. reinhardtii (middle right) is rejected
by the one-sample Kolmogorov-Smirnov test as normally distributed at a significance level of
0.05 (Massey, 1951). Strictly, one can therefore not rely on the significance attributed to the
average path length of C. reinhardtii in Section 5.2.3. Nevertheless, the distribution is visually
similar to a normal distribution, and the average path length is more than two standard deviations
different from the mean of the distribution (Figure C.5), supporting the result that this property is
evolutionary significant.
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Figure C.6: Distributions of clustering coefficients in 104 mass-balanced randomized networks of
six genome-scale metabolic networks. The red curve indicates the normal distribution with iden-
tical mean and standard deviation, the purple line shows the clustering coefficient in the original
network. All distributions are accepted by the one-sample Kolmogorov-Smirnov test as normally
distributed at a significance level of 0.05
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Figure C.7: Distributions of average path lengths in 104 switch randomized networks of six
genome-scale metabolic networks. The red curve indicates the normal distribution with identi-
cal mean and standard deviation, the purple line shows the average path length in the original
network. All distributions are accepted by the one-sample Kolmogorov-Smirnov test as normally
distributed at a significance level of 0.05. The average path length of S. cerevisiae (middle left) is
not significant with a p-value of 0.77 (see Section 5.2.3)
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Figure C.8: Distributions of clustering coefficients in 104 switch randomized networks of six
genome-scale metabolic networks. The red curve indicates the normal distribution with identi-
cal mean and standard deviation, the purple line shows the clustering coefficient in the original
network. All distributions are accepted by the one-sample Kolmogorov-Smirnov test as normally
distributed at a significance level of 0.05
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