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Abstract

Casualties and damages from urban pluvial flooding are increasing. Triggered by short,

localized, and intensive rainfall events, urban pluvial floods can occur anywhere, even in

areas without a history of flooding. Urban pluvial floods have relatively small temporal

and spatial scales. Although cumulative losses from urban pluvial floods are compara-

ble, most flood risk management and mitigation strategies focus on fluvial and coastal

flooding. Numerical-physical-hydrodynamic models are considered the best tool to rep-

resent the complex nature of urban pluvial floods; however, they are computationally

expensive and time-consuming. These sophisticated models make large-scale analysis

and operational forecasting prohibitive. Therefore, it is crucial to evaluate and bench-

mark the performance of other alternative methods.

The findings of this cumulative thesis are represented in three research articles.

The first study evaluates two topographic-based methods to map urban pluvial flood-

ing, fill–spill–merge (FSM) and topographic wetness index (TWI), by comparing them

against a sophisticated hydrodynamic model. The FSM method identifies flood-prone

areas within topographic depressions while the TWI method employs maximum like-

lihood estimation to calibrate a TWI threshold (τ ) based on inundation maps from the

2D hydrodynamic model. The results point out that the FSM method outperforms the

TWI method. The study highlights then the advantage and limitations of both methods.

Data-driven models provide a promising alternative to computationally expensive

hydrodynamic models. However, the literature lacks benchmarking studies to evaluate

the different models’ performance, advantages and limitations. Model transferability in

space is a crucial problem. Most studies focus on river flooding, likely due to the relative

availability of flow and rain gauge records for training and validation. Furthermore, they

consider these models as black boxes. The second study uses a flood inventory for the

city of Berlin and 11 predictive features which potentially indicate an increased pluvial

flooding hazard to map urban pluvial flood susceptibility using a convolutional neu-

ral network (CNN), an artificial neural network (ANN) and the benchmarking machine

learning models random forest (RF) and support vector machine (SVM). I investigate

the influence of spatial resolution on the implemented models, the models’ transfer-
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ability in space and the importance of the predictive features. The results show that all

models perform well and the RF models are superior to the other models within and

outside the training domain. The models developed using fine spatial resolution (2 and

5 m) could better identify flood-prone areas. Finally, the results point out that aspect is

the most important predictive feature for the CNN models, and altitude is for the other

models.

While flood susceptibility maps identify flood-prone areas, they do not represent

flood variables such as velocity and depth which are necessary for effective flood risk

management. To address this, the third study investigates data-driven models’ trans-

ferability to predict urban pluvial floodwater depth and the models’ ability to enhance

their predictions using transfer learning techniques. It compares the performance of RF

(the best-performing model in the previous study) and CNN models using 12 predictive

features and output from a hydrodynamic model. The findings in the third study sug-

gest that while CNN models tend to generalise and smooth the target function on the

training dataset, RF models suffer from overfitting. Hence, RF models are superior for

predictions inside the training domains but fail outside them while CNN models could

control the relative loss in performance outside the training domains. Finally, the CNN

models benefit more from transfer learning techniques than RF models, boosting their

performance outside training domains.

In conclusion, this thesis has evaluated both topographic-based methods and data-

driven models to map urban pluvial flooding. However, further studies are crucial to

have methods that completely overcome the limitation of 2D hydrodynamic models.
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Zusammenfassung

Die Zahl der Todesopfer und Schäden durch Überschwemmungen in Städten nimmt

zu. Ausgelöst durch kurze, lokal begrenzte und intensive Niederschlagsereignisse können

urbane pluviale Überschwemmungen überall auftreten - sogar in Gebieten, in denen es

in der Vergangenheit keine Überschwemmungen gab. Urbane pluviale Überschwemmungen

haben eine relativ geringe zeitliche und räumliche Ausdehnung. Obwohl die kumula-

tiven Verluste durch urbane pluviale Überschwemmungen vergleichbar sind, konzen-

trieren sich die meisten Hochwasserrisikomanagement- und -minderungsstrategien auf

Fluss- und Küstenüberschwemmungen. Numerisch-physikalisch-hydrodynamische Mod-

elle gelten als das beste Instrument zur Darstellung der komplexen Natur städtischer

pluvialer Überschwemmungen; sie sind jedoch rechenintensiv und zeitaufwändig. Diese

anspruchsvollen Modelle machen groß angelegte Analysen und operationelle Vorher-

sagen unerschwinglich. Daher ist es von entscheidender Bedeutung, die Leistung an-

derer Methoden zu bewerten und zu vergleichen, die komplexe hydrodynamische Mod-

elle ersetzen könnten.

Die Ergebnisse dieser kumulativen Arbeit werden in drei Forschungsartikeln dargestellt.

In der ersten Studie bewerte ich zwei topografiebasierte Methoden zur Kartierung von

Überschwemmungen in Städten, die Fill-Spill-Merge-Methode (FSM) und den topografis-

chen Nässeindex (TWI), indem ich sie mit einem hochentwickelten hydrodynamis-

chen Modell vergleiche. Die FSM-Methode identifiziert überschwemmungsgefährdete

Gebiete innerhalb topografischer Senken, während die TWI-Methode eine Maximum-

Likelihood-Schätzung verwendet, um einen TWI-Schwellenwert (τ ) auf der Grund-

lage von Überschwemmungskarten aus dem hydrodynamischen 2D-Modell zu kalib-

rieren. Die Ergebnisse zeigen, dass die FSM-Methode die TWI-Methode übertrifft.

Anschließend werden die Vorteile und Grenzen beider Methoden aufgezeigt.

Datengesteuerte Modelle stellen eine vielversprechende Alternative zu recheninten-

siven hydrodynamischen Modellen dar. In der Literatur fehlt es jedoch an Benchmarking-

Studien zur Bewertung der Leistung, Vorteile und Grenzen der verschiedenen Modelle.

Die räumliche Übertragbarkeit von Modellen ist ein entscheidendes Problem. Die meis-

ten Studien konzentrieren sich auf Flussüberschwemmungen, was wahrscheinlich auf
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die relative Verfügbarkeit von Abfluss- und Regenmesserdaten für Training und Vali-

dierung zurückzuführen ist. Außerdem betrachten sie diese Modelle als Black Boxes.

In der zweiten Studie verwende ich ein Hochwasserinventar für die Stadt Berlin und 11

prädiktive Merkmale, die potenziell auf eine erhöhte pluviale Hochwassergefahr hin-

weisen, um die Anfälligkeit für pluviale Überschwemmungen in Städten zu kartieren.

Dazu verwende ich ein Faltungsneuronales Netzwerk (CNN), ein Künstliches Neu-

ronales Netzwerk (ANN) und die Benchmarking-Modelle Random Forest (RF) und

Support Vector Machine (SVM). Ich untersuche den Einfluss der räumlichen Auflösung

auf die implementierten Modelle, die Übertragbarkeit der Modelle im Raum und die

Bedeutung der prädiktiven Merkmale. Die Ergebnisse zeigen, dass alle Modelle gut

abschneiden und die RF-Modelle den anderen Modellen innerhalb und außerhalb des

Trainingsbereichs überlegen sind. Die Modelle, die mit feiner räumlicher Auflösung

(2 und 5 m) entwickelt wurden, konnten hochwassergefährdete Gebiete besser identi-

fizieren. Schließlich zeigen die Ergebnisse, dass der Aspekt das wichtigste Vorhersage-

merkmal für die CNN-Modelle ist, und die Höhe für die anderen Modelle.

Während Hochwasseranfälligkeitskarten überschwemmungsgefährdete Gebiete iden-

tifizieren, stellen sie keine Hochwasservariablen wie Geschwindigkeit und Wassertiefe

dar, die für ein effektives Hochwasserrisikomanagement notwendig sind. Um dieses

Problem anzugehen, untersuche ich in der dritten Studie die Übertragbarkeit datenges-

teuerter Modelle auf die Vorhersage der Überschwemmungstiefe in städtischen Gebi-

eten und die Fähigkeit der Modelle, ihre Vorhersagen durch Transfer-Learning-Techniken

zu verbessern. Ich vergleiche die Leistung von RF- (das beste Modell in der vorherigen

Studie) und CNN-Modellen anhand von 12 Vorhersagemerkmalen und den Ergebnis-

sen eines hydrodynamischen Modells. Die Ergebnisse der dritten Studie deuten darauf

hin, dass CNN-Modelle dazu neigen, die Zielfunktion auf dem Trainingsdatensatz zu

verallgemeinern und zu glätten, während RF-Modelle unter Overfitting leiden. Daher

sind RF-Modelle für Vorhersagen innerhalb der Trainingsbereiche überlegen, versagen

aber außerhalb davon, während CNN-Modelle den relativen Leistungsverlust außerhalb

der Trainingsdomänen kontrollieren können. Schließlich profitieren die CNN-Modelle

mehr von Transfer-Learning-Techniken als RF-Modelle, was ihre Leistung außerhalb

der Trainingsbereiche erhöht.

Zusammenfassend lässt sich sagen, dass in dieser Arbeit sowohl topografiebasierte
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Methoden als auch datengesteuerte Modelle zur Kartierung von Überschwemmungen

in Städten bewertet wurden. Weitere Studien sind jedoch von entscheidender Bedeu-

tung, um Methoden zu entwickeln, die die Beschränkungen von 2D-hydrodynamischen

Modellen vollständig überwinden.
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CHAPTER 1

Introduction

1.1 Background and motivation

Urban pluvial flooding has caused heavy damage and loss of life around the world, e.g.
Hull (UK) in 2007 (Coulthard & Frostick 2010), Rome (Italy) in multiple events over
the past decades (Di Salvo et al. 2017), Beijing (China) in 2012 (Zhang et al. 2015),
and several cities in Turkey in the last decade (Koç et al. 2021). In Germany, heavy
rainfall events caused damage in cities such as in Dortmund 2008 (Bung et al. 2011),
Muenster 2014 (Spekkers et al. 2017), Berlin in 2017 and 2019 (Berghäuser et al. 2021,
Dillenardt et al. 2022, Caldas-Alvarez et al. 2022) and Aachen in 2018 (Hofmann &
Schüttrumpf 2021).

Urbanization changes natural surfaces to impervious surfaces such as buildings and
pavements, reducing the landscape’s capacity for infiltration, and accelerating runoff
generation. On the other hand, climate change has been increasing the frequency and
severity of heavy rainfall events (Myhre et al. 2019). These factors combine to sig-
nificantly increase the frequency and severity of urban pluvial flooding (Ashley et al.
2005, Skougaard Kaspersen et al. 2017), and hence the caused economic damage and
casualties (Merz et al. 2010, Smith 2006, Nofal & Van De Lindt 2020b). The Intergov-
ernmental Panel on Climate Change reports support this presumption (Qin et al. 2007,
Bates et al. 2008, Pörtner et al. 2022). Furthermore, regional climate models predict
future changes in the frequency and severity of heavy rainfall events in many regions
in Europe (Pfeifer et al. 2015, Martel et al. 2020). Seneviratne et al. (2006) predicted
an increase in extreme rainfall events in Germany under the changing climate. The
ongoing urbanization and climate change, along with the densification of the human
population and assets, will exacerbate the risk of urban pluvial flooding, making cities
more vulnerable. (Rosenzweig et al. 2018).

Urban pluvial flooding occurs when the rainfall intensity exceeds the capacity of the
urban stormwater drainage system and the ground’s capacity to infiltrate water (Hous-
ton et al. 2011) (see Figure 1.1). These floods are typically caused by short intense local
rainfall such as the flood events in Muenster in 2014 (Spekkers et al. 2017) and Aachen
in 2018 (Hofmann & Schüttrumpf 2021). They are less often caused by long events; but
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such flooding can occur such as the flooding in Berlin in 2017 (Berghäuser et al. 2021,
Caldas-Alvarez et al. 2022). Urban pluvial flooding could theoretically occur in any
location within an urbanized watershed, even in areas without flooding history (Zhang
& Pan 2014). It depends on the local meteorology and the catchment’s characteristics
such as topography, soil type, and land cover (Zhang & Pan 2014, Skougaard Kaspersen
et al. 2017). Falconer et al. (2009) emphasized the importance of not confusing pluvial
flooding with surface water flooding, with the latter referring to combined flooding in
urban areas during heavy intense rainfall. It is caused by a combination of factors such
as blocked drainage systems, sewer flooding, pluvial flooding, and excessive ground-
water overflow (Falconer et al. 2009, Prokic et al. 2019). Pluvial flooding also differs
from flash flooding, which typically arises from a watercourse and is associated with
heavy intense rainfall (Borga et al. 2010, Prokic et al. 2019).

Fig. 1.1 Permeable surfaces such as natural ground, facilitate the infiltration of rainfall,
which reduces the volume and velocity of runoff. Conversely, sealed surfaces such as
buildings and pavements reduce water infiltration, causing an increase in excess runoff.
Some of the excess runoff is drained by the storm drainage system, while the remaining
becomes a surface flow that accumulates in topographic depressions.

Urban pluvial floods usually occur at small temporal and spatial scales compared to
river and coastal floods. However, they occur frequently at different locations and cause
comparable cumulative damage over years to the damage caused by river and coastal
floodings (Ten Veldhuis 2011, Tanaka et al. 2020). In recent years, urban pluvial flood-
ing has caused property damage in the hundreds of millions of euros, traffic disruptions,
and in some cases fatalities as shown in Table 1.1. Unlike river floods, people affected
by urban pluvial floods are less well informed about possible dangers and take fewer
precautions themselves (Thieken et al. 2022). Although the literature is rich with risk
management and mitigation strategies for river and coastal floods (Samela et al. 2020),
there are fewer strategies to face the increasing pluvial flood risk (Penning-Rowsell et al.
2005, Zhou et al. 2012, Hammond et al. 2015). Furthermore, the European Floods Di-
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Table 1.1 Examples of flood damage and casualties caused by urban pluvial flooding in
Germany in the last decades.

City Event Fatalities Damage
(million)

Reference

Dortmund 26th July 2008 3 e17 Rözer et al. (2016)
Muenster 28th July 2014 2 e140 Burrough et al. (2015)
Berlin and
Potsdam

29th and 30th

June 2017
- e60 Dillenardt et al. (2022)

Berlin Summer 2019 - e50 Berghäuser et al. (2021)

rective (2007/60/EC) obliges all member states to prepare flood hazard maps for major
rivers. While pluvial floods are excluded from the directive, municipalities in Germany
are responsible for preparing pluvial flood maps (Kaiser 2021). There are several types
of flood maps that can be used to identify and understand flood risk. Bentivoglio et al.
(2022) divided the flood maps into three categories as shown in Figure 1.2:

1. Inundation extent maps (see Figure 1.2a) often obtained from remote sensing
analysis. They show the observed inundation extent for a specific flood event.

2. Flood susceptibility maps (see Figure 1.2b) which identify areas that are likely to
be affected by floods. They are created by analysing the combination of factors
that contribute to flood risk such as topography, soil type, land use, and historical
flood inventories. They can be created using different methodologies, such as
statistical analysis and data-driven models.

3. Flood hazard maps (see Figure 1.2c) which are often created using physical nu-
merical models. They show the spatial distribution of variables that define the
flood hazard of a specific event such as floodwater depth and velocity.

These maps are widely used, each with its own limitations. For example, remote
sensing data are not always able to capture the flood peak and can require manual re-
finement (Notti et al. 2018). Historical flood inventories are not always available to map
flood susceptibility (Zhao et al. 2020). Finally, numerical hydrodynamic simulations are
computationally expensive and time-consuming (Löwe et al. 2021).

1.2 Modelling urban pluvial flooding

Modelling urban pluvial flooding is crucial to flood risk management in urban areas. It
involves simulating the runoff generation and the movement of water through the urban
environment. It considers factors such as rainfall patterns, topography and infrastruc-
ture. The model estimates the flood extent, water depth and the volume of generated
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Fig. 1.2 Examples of flood map types. (a) flood inundation map, (b) flood susceptibility
map, and (c) flood hazard map. The figure is obtained from Bentivoglio et al. (2022).

runoff by a specific rainfall event. The complex nature of urban pluvial floods is consid-
ered the major challenge to developing a fast and accurate flood model at both spatial
and temporal resolution (Merz & Thieken 2005, Teng et al. 2017). Conventional ur-
ban pluvial flood models could be grouped into hydrodynamic models and simplified
topographic-based models (Bulti & Abebe 2020). Finally, data-driven models are rising
as a potential that overcomes the limitations of the computationally expensive hydrody-
namic models.

1.2.1 Hydrodynamic models

Hydrodynamic models are widely used to simulate flood dynamics (Teng et al. 2017).
They solve physical equations with various degrees of complexity. They predict vari-
ables such as flood extent, flood water depth, and velocity, which are necessary for
flood risk management strategies (Néelz et al. 2010, Néelz & Pender 2013). They can
be categorised as one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) models (Teng et al. 2017, Bulti & Abebe 2020). The 1D hydrodynamic models are
used to model the flow in a pipe or a confined channel. They are considered too simple
to represent floodplains. The 2D models are considered the best representation of the
floodplain flow in two dimensions assuming that the third dimension is shallow com-
pared to the two others (Teng et al. 2017). Finally, the 3D hydrodynamic models are
more suitable to simulate floods due to dam breaks, levee breaches and tsunamis. They
are regarded as complexly unnecessary for urban pluvial flooding (Teng et al. 2017).

The rainfall-runoff process in urban areas describes how rainwater becomes surface
runoff. During this process, some of the rainwater evaporates or infiltrates into the
ground, while the rest will flow into the storm drainage system and over the surface as
runoff (Bedient et al. 2008). The process is influenced by various factors ranging from
rainfall patterns and terrain profiles to building footprints, urban storm drainage capac-
ity, and even gullies and manhole locations (Houston et al. 2011). The best-established
approach to simulate the rainfall-runoff process in a complex urban environment is
coupling the 1D and 2D hydrodynamic models (see Figure 1.3) where the 1D model
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simulates the flow in the storm drainage system and the 2D model simulates the sur-
face flow (Tayefi et al. 2007, Maksimović et al. 2009, Patel et al. 2017, Fan et al. 2017,
Bermúdez et al. 2018). However, the storm drainage system data is often unavailable
(Rangari et al. 2018) and the 2D hydrodynamic models can be computationally de-
manding. They are suitable neither for large urban watersheds (Costabile et al. 2017,
Bates 2022) nor for real-time predictions (Hsu et al. 1995, Bhola et al. 2019).

Fig. 1.3 Schematisation of a coupled 1D-2D hydrodynamic model. The 1D model
simulates the part of the generated runoff that enters the storm drainage system through
gullies and flows to the nearest manhole, while the 2D model simulates the remaining
runoff that becomes a surface flow.

1.2.2 Simplified topography-based models

Simplified topographic-based models simulate the behaviour of urban flooding by first
filling topographic depressions and then spilling the excess volume to travel down-
hill and accumulate in the downstream topographic depressions (Zhang & Pan 2014,
Samela et al. 2017, Bulti & Abebe 2020). These models are relatively fast and only
require terrain and rainfall data (Liu et al. 2015, Yang et al. 2015, Shen et al. 2015);
however, model outputs are limited to final flood depth and extent. The output does
not include other flood variables, such as velocity, flood duration, and time of the peak,
upon which flood risk management decisions are based (Fritsch et al. 2016).

Previous studies proposed methods to identify urban pluvial flood-prone areas based
on topographic indices (Samela et al. 2018, Manfreda & Samela 2019, Huang et al.
2019, Kelleher & McPhillips 2020). Kelleher & McPhillips (2020) showed that the to-
pographic wetness index (TWI) could identify urban pluvial flood-prone areas. Huang
et al. (2019) proposed a topography-based index to identify urban pluvial flood-prone
areas, namely the topographic control index (TCI). De Risi et al. (2015, 2018) used
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the maximum likelihood function to estimate a TWI threshold (τ ) based on inunda-
tion maps from a 2D hydrodynamic model for a given window within the city. Loca-
tions with TWI above the estimated threshold (τ ) are then considered flood-prone areas.
These methods are often used to identify flood-prone areas in large regions. However,
there are no benchmark studies that evaluate these methods.

1.2.3 Data-driven models

Recently, using data-driven models to map flooding is gaining growing attention (Guo
et al. 2021). The implemented models to map flooding in the literature could be clas-
sified into the point and image-based models. Point-based traditional machine learning
algorithms such as support vector machine (SVM) (Cortes & Vapnik 1995) and ran-
dom forest (RF) (Breiman 2001) have shown their ability to map flood susceptibility
(Tehrany et al. 2014, 2015, Zhao et al. 2020) and to predict floodwater depth (Zahura
et al. 2020, Hou et al. 2021). They establish a relationship between the local flood pre-
dictive features and flood occurrence (Zhao et al. 2020). However, they have not been
tested outside their training domains and are mostly applied to map fluvial flooding as
shown in Figure 1.4. It points out that previous studies tended to use artificial neural
networks (ANN) and multilayer perceptron (MLP) rather than classification and regres-
sion trees (CART), support vector machine (SVM), support vector regression (SVR),
decision trees (DT), and random forest (RF).

Fig. 1.4 Overview of studies using data-driven models for fluvial and pluvial flood
prediction based on Web Scopus (search on 09.06.2021). The figure is obtained from
Hofmann & Schüttrumpf (2021).
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Recently, deep learning represented in convolutional neural networks (CNN) (image-
based model) has been used to map floods (Wang et al. 2020, Zhao et al. 2020, Löwe
et al. 2021, Guo et al. 2022). CNN models have the advantage over traditional machine
learning algorithms that they could learn patterns in two dimensions and understand
relevant patterns around a predicted location. Recent publications claimed that deep
learning models outperform traditional machine learning algorithms. However, Grinsz-
tajn et al. (2022) put these claims into question.

Hofmann & Schüttrumpf (2021) showed that data-driven models developed by pre-
vious studies aimed mostly to predict fluvial flooding due to the availability of historical
hydrologic data from stream gauge stations and their corresponding meteorologic data.
Similar datasets are not available for urban pluvial flooding. Therefore, data gener-
ated from hydrodynamic models and flood inventories (reported flood locations) are
being used to develop data-driven models to predict floodwater depth and map flood
susceptibility respectively caused by urban pluvial flooding. The models’ performance
is limited with the amount of available data and the model transferability to new areas
outside the training domains is a major challenge (Bentivoglio et al. 2022).

In summary, data-driven models are raising as a surrogate that might overcome
the limitations of the computationally expensive hydrodynamic models (Löwe et al.
2021, Guo et al. 2022, Bentivoglio et al. 2022). However, a data-driven model that
generalizes outside the training domain is still a major challenge (Bentivoglio et al.
2022). In addition, these models are not commonly used to map urban pluvial flooding
due to the lack of reliable flood inventories (Yang et al. 2016) and in-situ measurements
(Hofmann & Schüttrumpf 2019).

1.3 Research questions and structure

The computationally expensive hydrodynamic models are suitable neither for identify-
ing urban pluvial flood-prone areas nor mapping flood hazards for a large urban water-
shed using fine spatial resolution. Hence the overarching aim of this thesis is to evaluate
alternatives to map urban pluvial flooding. In regard to the overarching aim, this thesis
comprises three main Chapters in the form of manuscripts to facilitate answering the
following research questions:

RQ1: Can simplified topographic-based methods mimic the two-dimensional hydrody-
namic models to simulate urban pluvial flooding?

The research question is answered in the second chapter, where I evaluate and com-
pare the fill-spill-merge (FSM) and the TWI methods to identify urban pluvial flood-
prone areas. FSM is a simplified topographic-based method while the TWI method
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identifies a TWI threshold (τ ) which defines flood-prone areas. Chapter 2 highlights
the advantage and limitations of each method.

RQ2.1: Does deep learning outperform traditional machine learning algorithms to map
urban flood susceptibility?

RQ2.2: Does the spatial resolution of the predictive features impact the data-driven
models’ prediction?

RQ2.3: How transferable are data-driven models to map urban flood susceptibility?

RQ2.4: Which predictive features are most useful for flood susceptibility mapping?

These questions are addressed in the third chapter, where I compare the perfor-
mance of various data-driven models to map urban pluvial flood susceptibility. Chapter
3 shows the implemented data-driven models and predictive features used to train, val-
idate and test the models. The model’s output is a map which shows the flood suscepti-
bility of a certain location. These maps are useful to identify flood-prone areas but they
do not show the important variables for flood hazard mapping, e.g. floodwater depth
and velocity which led us to the following research questions:

RQ3.1: How transferable are data-driven models to predict urban pluvial floodwater
depth?

RQ3.2: Can transfer learning techniques improve the model performance outside the
training domain and thus help to overcome the issue of limited training data?

I approach these questions in the fourth chapter. I compare the performance of ran-
dom forest (RF) (the best-performing model in the previous study) with a deep learning
model to predict urban pluvial floodwater depth among and outside the training domain.
Then, I investigate if the data-driven models could boost their performance outside the
training domain beneficially from transfer learning techniques.

1.4 Author Contributions

The main core of this thesis consists of three research papers, which have been pub-
lished, or are submitted and intended to be published in international peer-reviewed
journals. The manuscripts are adjusted to the formatting of this thesis. I would like to
express my appreciation and gratitude to the co-authors, namely Axel Bronstert, Maik
Heistermann, Georgy Ayzel and Arthur Costa Tomaz de Souza who contributed to these
manuscripts. The contributions are as follows:
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Chapter 2: Seleem, O., Heistermann, M. and Bronstert, A., 2021. Efficient Hazard
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for the City of Berlin, Germany. Water, 13(18), p.2476.

Conceptualization: OS and MH.; Methodology, software, formal analysis: OS;
Writing—original draft preparation: OS and MH; Visualization: OS and MH; Supervi-
sion: AB and MH; Writing -review & editing: OS, MH, AB

Chapter 3: Seleem, O., Ayzel, G., de Souza, A.C.T., Bronstert, A. and Heistermann,
M., 2022. Towards urban flood susceptibility mapping using data-driven models in
Berlin, Germany. Geomatics, Natural Hazards and Risk, 13(1), pp.1640-1662.

Conceptualization: OS, GA and MH.; Methodology, software, formal analysis: OS
and AC; Writing—original draft preparation: OS and MH; Visualization: OS and MH;
Supervision: AB and MH; Writing -review & editing: OS, GA, MH, AB

Chapter 4: Seleem, O., Ayzel, G., de Souza, A.C.T., Bronstert, A. and Heistermann,
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CHAPTER 2

Efficient hazard assessment for pluvial floods in urban
environments: A benchmarking case study for the city of Berlin,

Germany

This chapter is published as:
Seleem, O., Heistermann, M. and Bronstert, A., 2021. Efficient Hazard Assessment

for Pluvial Floods in Urban Environments: A Benchmarking Case Study for the City of
Berlin, Germany. Water, 13(18), p.2476.

Abstract
The presence of impermeable surfaces in urban areas hinders natural drainage and di-
rects the surface runoff to storm drainage systems with finite capacity, which makes
these areas prone to pluvial flooding. The occurrence of pluvial flooding depends on
the existence of minimal areas for surface runoff generation and concentration. Detailed
hydrologic and hydrodynamic simulations are computationally expensive and require
intensive resources. This study compared and evaluated the performance of two simpli-
fied methods to identify urban pluvial flood-prone areas, namely the Fill–Spill–Merge
(FSM) method and the topographic wetness index (TWI) method and used the TELEMAC-
2D hydrodynamic numerical model for benchmarking and validation. The FSM method
uses common GIS operations to identify flood-prone depressions from a high-resolution
digital elevation model (DEM). The TWI method employs the maximum likelihood
method (MLE) to probabilistically calibrate a TWI threshold (τ ) based on the inunda-
tion maps from a 2D hydrodynamic model for a given spatial window (W) within the
urban area. We found that the FSM method clearly outperforms the TWI method both
conceptually and effectively in terms of model performance.

2.1 Introduction

Pluvial flooding causes massive human and economic losses (Smith 2006, Nofal & Van
De Lindt 2020b). They are considered as an omnipresent hazard both in urban and ru-
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ral areas, e.g., (Tabari et al. 2021, Bronstert et al. 2018). Pluvial floods are caused by
intensive and short duration precipitation storms due to the limited capacity of storm
drainage systems, typically called “minor systems”, which result in the generation of
overland flow that travels through the terrain, depressions and the road networks, cre-
ating a surface flow network typically called the “major system”. The major system
could transfer the overland flow for a long distance, which can cause flooding in an area
that is located far from the location where the minor system’s capacity was exceeded
(Maksimović et al. 2009, Guerreiro et al. 2017).

Pluvial flood-prone areas can be defined as the low elevated areas within the urban
watershed where excess runoff accumulates (Schanze 2018). It is challenging to predict
pluvial floods as they could strike areas with no flood records with little warning time.
They have no defined flood plains such as rivers and seashores (Di Salvo et al. 2017).
Furthermore, they depend on how well the storm drainage system and the associated
infrastructure respond to a sudden precipitation storm. The damage depends not only
on the event intensity and duration but also on physical and social urban characteristics
(Leal et al. 2019, Kumar et al. 2021, Nofal & van de Lindt 2020a). The European
Flood Directive widely implements flood hazard maps for rivers and coastal areas, but
corresponding efforts are scarce for pluvial flooding (Union 2017, Zhou et al. 2012,
Di Salvo et al. 2017).

Urban pluvial floods are affected by several local factors, for example, the pres-
ence and maintenance conditions of the storm drainage system, the existence of under-
ground infrastructures, and the extent of impervious surfaces within the urban water-
shed (Di Salvo et al. 2017). Sustainable urban development requires efficient pluvial
flood modeling (Zhang & Pan 2014). Urban pluvial flood hazard mapping is commonly
carried out by performing hydrologic modeling to estimate the excess runoff followed
by a 1D-2D hydrodynamic simulation to compute the inundation extent and depth and
runoff velocity. This method is considered the most accurate representation of the storm
drainage system. However, this method is computationally expensive, requires compre-
hensive knowledge of hydrology and hydraulics, as well as detailed input data such
as topography, land cover, soil type, and storm drainage system data, which hamper its
widespread application in a large urban watershed for pluvial flood hazard mapping and
early warnings (Schumann et al. 2011, Neal et al. 2009, Hunter et al. 2005).

In recent years, the increasing availability of higher resolution DEM has encour-
aged not only the advanced application of the 2D hydrodynamic models but also the
development of quick and simplified methods that are based on DEM as valid alterna-
tives for flood hazard mapping. These simplified methods have been mainly developed
and applied for mapping fluvial flood hazards, and their application for pluvial flood-
ing hazard mapping is still sparse in the literature (Samela et al. 2020). They are less
accurate than using detailed hydrologic and 1D-2D hydrodynamic models, but they are
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faster and require fewer input data. Therefore, they are suitable for flood hazard map-
ping and early warnings for urban areas. Many of the simplified models are based on
the fill–spill–merge (FSM) concept where the excess runoff concentrates in the DEM
depressions and when a depression is completely filled with excess runoff, the excess
runoff spills, and flows downstream towards lower elevated depressions. (Zhang & Pan
2014, Balstrøm & Crawford 2018, Samela et al. 2020) applied the FSM method to dif-
ferent case studies in China, Italy, and Denmark. FSM can map the pluvial flood hazard
in urban watersheds quickly as it only shows the final inundation extent. Samela et al.
(2020) evaluated the FSM method performance based on evaluating the estimated in-
undation area extent with the obtained inundation area extent from a 2D hydrodynamic
model. However, they did not evaluate the water depth, which is vital for damage as-
sessment. Therefore, this study evaluates the FSM method performance based on both
flood extent and the water depth for pluvial flooding.

Other previous studies proposed methods to delineate flood-prone areas based on
geomorphic classifiers (Manfreda & Samela 2019, Samela et al. 2018, 2017). They are
suitable for data-scarce regions and to analyze large geographic regions that have lim-
ited information on flooding potential. Kelleher & McPhillips (2020) showed that urban
flood reported areas tend to have high TWI values and suggested using the TWI as an
index for urban pluvial flooding. On the contrary, Huang et al. (2019) showed that TWI
failed to map the urban pluvial flooding and proposed a DEM-based index to map the ur-
ban pluvial flooding, namely the topographic control index (TCI). References (Jalayer
et al. 2014, De Risi et al. 2015, 2018) proposed a framework for identifying urban
flood-prone areas based on TWI. The framework (hereafter, the TWI method) uses the
maximum likelihood method (MLE) to probabilistically calibrate the TWI threshold
(τ ) based on the inundation maps from a 2D hydrodynamic model for a given spatial
window (W) within the urban area, where areas with TWI values that exceed the TWI
threshold (τ ) are defined as flood-prone areas.

The objective of this study is to evaluate and compare the FSM method and the TWI
method to assess and map pluvial flooding and highlight the limitations of each method.
We applied the two methods to two urban areas in Berlin for different precipitation
depths ranging from 30 to 150 mm (10 mm increments) and used the TELEMAC-2D
hydrodynamic numerical model for benchmarking and validation to show how these
methods can mimic the behavior of a 2D-hydrodynamic model with regard to inunda-
tion depth and inundation extent. Finally, we discuss the advantages and limitations of
each method.
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2.2 Data

The high-resolution DEM was downloaded from Berlin’s city geographical information
systems spatial databases (ATKIS 2020). The DEM has a 1 × 1 m horizontal resolution
and 20 cm vertical accuracy, as shown in Figure 2.1a. The soil type, hydrologic condi-
tion (Ross et al. 2018) and land use data from open street map (Haklay & Weber 2008)
were used to generate the curve number map. Furthermore, the radar precipitation data
for the period between 2005 and 2019 were obtained from the German Weather Service
(DWD) (Winterrath et al. 2017, Kreklow et al. 2019).

Fig. 2.1 (a) Digital elevation model (DEM) of Berlin, the two case studies and the city
districts. (b) The spatial distribution of TWI for Berlin and the city districts.

2.3 Models

2.3.1 Two-Dimensional Hydrodynamic Simulations

We used the TELEMAC-2D model to perform the 2D hydrodynamic simulations. The
TELEMAC-2D model (Hervouet 2007, Galland et al. 1991) is an open-source model
and included in the TELEMAC-MASCARET suite. It solves the shallow water equa-
tions using both the finite volume method (FVM) and the finite element method (FEM)
over non-structured triangular grids. Urban flood inundation mapping is considered a
challenge because of the complex characteristics of the urban watersheds. Buildings
are known as one of the most significant components of urban flood modeling because
they withstand the flow of excess runoff. Li et al. (2019) showed that the building resis-
tance (BR) method is the best representation of buildings in numerical models. The BR
method is based on assigning a high roughness coefficient value to the buildings to al-
low excess runoff to flow through the buildings. Furthermore, the roughness coefficient
is also a significant uncertainty factor in urban flood modeling. In the current study, the
Manning roughness coefficient was defined based on the surface type as follows: 104
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m-1/3· s for buildings and 0.013 for other surface types (Testa et al. 2007, Papaioannou
et al. 2018, French & French 1985).

The Blue Kenue software was used to define the boundary conditions and to gen-
erate the non-structured triangular mesh with a maximum side length of 1 m for the
TELEMAC-2D model (Kenue 2021). A one-hour event duration and precipitation
depths ranging from 30 to 150 mm (10 mm increments) were used to perform the simu-
lations. The precipitation depth range was selected based on the analysis of the extreme
precipitation events that caused urban flooding in Berlin in the period between 2005
and 2019 (Winterrath et al. 2017, Kreklow et al. 2019). Infiltration and losses were esti-
mated by the SCS-CN method per pixel. We tested both the FVM and FEM. Eventually,
FVM was used for all the numerical simulations to obtain better simulation accuracy (R.
2019). Finally, a variable computation time step was defined according to the Courant’s
criterion (Cu ≤ 1.0). We used the inundated areas from the TELEMAC-2D model as a
“true” reference to evaluate the other implemented methods.

2.3.2 The Fill–Spill–Merge (FSM) Method

The FSM method identifies flood-prone areas based on nested depressions as extracted
from a DEM, the accumulated precipitation volume in depressions, and the vertical and
horizontal connectivity between the depressions: when a depression is filled, excess
runoff water spills and flows downstream to depressions at a lower elevation, as shown
in Figure 2.2a. Figure 2.2b, and c show the depression filling process and the vertical
hierarchy structure, respectively. The FSM method considers flood-prone areas as areas
within the depression with an elevation below a specified water level, as shown in Figure
2.2.

Fig. 2.2 Process of the FSM method. (a) Runoff flowing process between depressions.
(b) Schematic of the nested depressions. (c) Vertical hierarchical tree.
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We implemented three main steps to estimate the inundation depth, extent, and vol-
ume in a study area, as shown in Figure 2.3: (1) DEM prepossessing and derivation of
effective rainfall, (2) flood routing and (3) hazard mapping.

1. DEM prepossessing and derivation of effective rainfall: The first step in delin-
eating a watershed is to fill sinks, in which existing depressions (called also sinks
and pits) in the DEM are filled to guarantee stream connectivity. However, excess
runoff is accumulated in these depressions in urban watersheds. Therefore, it is
vital to identify them in urban areas as they are more prone to urban flooding.
Depressions were identified by computing the elevation difference between the
filled DEM and the original DEM in ArcGIS (v. 10.5.1). After that, only de-
pressions with a depth of more than 0.20 m (the vertical accuracy of the original
DEM) and surface areas bigger than 1000 m2 were considered. We calculated the
flow direction and the flow accumulation using the D8 algorithm from the filled
DEM and used them to estimate the flow paths, spilling points, and the vertical
hierarchy of the depressions. Finally, we obtained the partially filled DEM by
filling the depressions in the original DEM except for the selected depressions.
The partially filled DEM was used to estimate the contributing watershed for each
depression. The curve number method was used to estimate the effective rainfall
for each pixel. Therefore, the curve number map for Berlin was created based
on the soil type, hydrologic condition from Ross et al. (2018) and land use from
an open street map (Haklay & Weber 2008), Figure 2.3 shows the implemented
workflow.

2. Flood routing: In general, rainfall is transformed to either evapotranspiration,
infiltration, or surface and sewer system runoff. Runoff at the surface and in
the urban storm drainage system could contribute to pluvial flooding in terms of
inundation of areas in depressions. This study neglected the latter because of
the difficulties of obtaining the detailed urban storm drainage system data if they
exist. In addition, the urban storm drainage system tends to be ineffective in the
case of intensive rainstorms (Di Salvo et al. 2018, Falconer et al. 2009). Using
the Hydrologic Engineering Center—Hydrologic Modeling System (HEC-HMS)
model (Scharffenberg & Harris 2008), we estimated the excess runoff based on
the SCS method (Cronshey 1986) for precipitation depths ranging from 30 to 150
mm (10 mm increments), performed the runoff routing, and estimated the stored
depth and volume at each depression.

3. Hazard mapping: We estimated the water depth and inundation extent inside the
depressions by subtracting the obtained water level minus the elevation for each
pixel from the original DEM in ArcGIS (v. 10.5.1).
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Fig. 2.3 FSM method’s workflow.

2.3.3 TWI Method

The TWI was initially introduced by Kirkby (1975) for conceptual hydrological mod-
eling at the catchment scale on mountainous and hilly terrain. It was intended to reflect
the tendency of a location along a hillslope to generate surface runoff from saturation
excess but was later used to generally represent the tendency of a location to accumulate
water subject to the local slope and the upstream contributing area. To that end, it was
also suggested as an index for pluvial flooding in urban areas (Kelleher & McPhillips
2020). We obtained the TWI from a DEM using ArcGIS (v. 10.5.1): the eight-direction
(D8) flow model was used to calculate the flow direction from the fully filled DEM,
upslope area and local slope. Finally, we estimated the TWI on a cell-by-cell basis, as
shown in Figure 2.1b:

TWI = ln(a/tanβ), (2.1)

The parameter a represents the upslope contributing area per grid length, and β is
the local slope angle.

We applied the TWI method in Berlin to identify flood-prone areas (referred to as
FP). The underlying assumption is that a location is flood-prone if its TWI exceeds a
certain threshold τ . The estimation of τ employs the maximum likelihood method, as
described in detail by (Jalayer et al. 2014, De Risi et al. 2018, 2015). We used the inun-
dation maps from the TELEMAC-2D model for two case studies within Berlin, which
have frequent flooding, to estimate the TWI threshold (τ ) for each case independently.

Hence, FP represents the pluvial flood-prone area that meets the condition TWI
> τ , and IN represents the inundated area as obtained from the TELEMAC-2D model
for a certain precipitation event depth (simulated water depth h is larger than 0, h > 0)
as shown in Figure 2.4a. The probability of correctly identifying the flood-prone area,
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or the likelihood function for τ (L(τ |W)), can be calculated for various values of τ as
follows:

L(τ |W ) = P (FP, IN |τ,W ) + P (FP , IN |τ,W ) (2.2)

where P (FP, IN |τ,W ) indicates the probability that a certain pixel within a spatial
window W is identified both as inundated IN (based on the calculated inundation maps
from TELEMAC-2D model) and FP (based on the TWI method), and conditioned on a
given value of τ . Furthermore, P (FP , IN |τ,W ) indicates the probability that a certain
pixel within the spatial window W is neither identified as IN nor as FP conditioned
on a given τ .

Fig. 2.4 Flood-prone (FP) and inundated (IN) areas.

P (FP, IN |τ,W ) and P (FP , IN |τ,W ) could be expanded by utilizing the product
rule of the probability theory (Jaynes 2003), as follows:

P (FP, IN |τ,W ) = P (FP |τ,W ) · P (IN |FP, τ,W ) (2.3)

P (FP , IN |τ,W ) = P (FP |τ,W ) · P (IN |FP , τ,W ) (2.4)

where P (FP |τ,W ) and P (FP |τ,W ) indicate the probability that a certain pixel
within the spatial window W is FP and FP , respectively, conditioned on a given value
of τ . The P (IN |FP, τ,W ) indicates the probability that a certain pixel within the spa-
tial window W is identified as IN on the condition that it is FP , and P (IN |FP , τ,W )

indicates the probability that a certain pixel within the spatial window W is identified
as IN on the condition that it is FP , for a given value of τ .

Maximum Likelihood Estimation

1. Mesoscale estimations: The terrain in Berlin is relatively flat. Therefore, we cal-
culated the P (FP |τ,W ) using the spatial extent of the case study area as follows:

P (FP |τ,W ) =
Aurban(FP )

Aurban
(2.5)
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where Aurban(FP ) indicates the FP area within the case study area (area with
TWI values > τ ) and Aurban is the case study area.

2. Microscale estimations: P (IN |FP, τ,W ) and P (IN |FP , τ,W ) were calcu-
lated using the spatial extent of the selected window within the study area, as
shown in Figure 2.5 as follows:

P (IN |FP, τ,W ) =
AW(IN, FP )

Aw(FP )
(2.6)

P (IN |FP , τ,W ) =
AW(IN, FP )

Aw(FP )
(2.7)

where AW(IN, FP ) indicates the area that is defined as both IN and FP within
the selected window (the green-colored area in Figure 2.4b), and AW(FP ) indi-
cates the area that is defined as FP within the selected window. Furthermore,
AW(IN, FP ) indicates the area that is defined as neither IN nor FP within the
selected window (the yellow-colored area in Figure 2.4b) and AW(FP ) indicates
the area that is defined as FP within the selected window.

Fig. 2.5 The spatial extent for the mesoscale and microscale.

Finally, we calculated the likelihood function Equation (2.2) and estimated the TWI
threshold value (τ ) as the value that maximizes the likelihood function.
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2.3.4 Benchmarking Experiments

1—Case Studies
We selected two case studies within Berlin, as shown in Figure 2.1a. They have been

frequently inundated in the last decades (Berghäuser et al. 2021). Case study 1 and 2
areas are 6.3 and 12.5 km2, respectively. Depressions represent 14% and 8% of case
study 1 and 2 areas, respectively. Depressions with a surface area more than 1000 m2

represent approximately 89% of the area of the total depression in the two case studies.
The estimated historical precipitation depth that caused flooding in the period between
2005 and 2019 for the two case studies ranges from 30 to 150 mm based on the rainfall
radar data analysis (Winterrath et al. 2017, Kreklow et al. 2019).

2—Evaluation Metrics
We compared the output of the two methods, FSM and TWI, with the output from

the TELEMAC-2D model and considered the latter as a true reference. Considering the
uncertainty of the FSM method, TWI method, and TELEMAC-2D model and the dif-
ference in the computational domain discretization (i.e., pixel-based for FSM method
and TWI method, and unstructured triangular mesh for TELEMAC-2D model), we con-
sidered pixels with a simulated water depth (h) higher than 0.10 m as flooded for both
the FSM method and the TWI method for comparing and evaluating the performance
of the two methods. Then, we categorized every pixel into one of the following four
categories:

1. True positive (TP): correctly classified as flooded;

2. True Negative (TN): correctly classified as non-flooded;

3. False positive (FP): incorrectly classified as flooded;

4. False negative (FN): incorrectly classified as non-flooded.

The performance of the applied methods was then evaluated based on the following
metrics (Table 2.1):
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The Sensitivity (TPR) refers to the proportion of the pixels that are correctly identi-
fied as inundated among all the inundated pixels from the true reference. The Matthews
correlation coefficient (MCC) measures the correlation between binary classifications,
and the Flood Area Index (FAI) refers to the agreement in identifying the inundated
area with the true reference.

We evaluated the output water depth (h) from the FSM method and TELEMAC-2D
model by the Nash Sutcliffe Efficiency index (NSE) (Nash & Sutcliffe 1970).

NSE = 1−
∑n

i=1(W
Obs
i −W sim

i )2∑n
i=1(W

Obs
i −Wmean)2

(2.8)

where WObs
i is the water depth from the TELEMAC-2D model; W sim

i is the water depth
from the FSM method; Wmean is the mean water depth from TELEMAC-2D model, and
n is the total number of pixels. NSE value is between−∞ and 1.0, values less than or
equal to zero indicate unacceptable performance, a value between 0 and 1.0 indicates
acceptable performance and 1.0 indicates total agreement.

2.4 Results and Discussion

We applied the FSM and TWI methods to identify pluvial flood prone areas for two case
studies in Berlin by using input precipitation depths from 30 to 150 mm (10 mm incre-
ments) and compared the results to the inundation extent obtained from the TELEMAC-
2D model. We structured the result section as follows: First, we estimated the TWI
threshold (τ ) for the two case studies separately, considering IN areas as areas with wa-
ter depths (h) greater than zero (h > 0). We then estimated the TWI threshold (τ ) for
various definitions of IN areas (water depth (h) greater than zero, 1, 5, and 10 cm) for
case study 1. Finally, we evaluated the performance of the FSM method and the TWI
method compared to the TELEMAC-2D model performance.

2.4.1 Maximum Likelihood Estimation

We calculated the likelihood function L(τ |w) for all possible values of τ by using Equa-
tion (2.2). This was performed separately for different event precipitation depths be-
tween 30 and 150 mm. Figure 2.6 shows the estimated maximum likelihood for a 100
mm precipitation depth for case study region 1. The TWI threshold (τ ) value associated
with the maximum likelihood is τ = 5.3. This means, hence, that for a 100 mm storm,
we would expect all areas in region 1 with a TWI > 5.3 to inundate. Furthermore, we
defined the maximum likelihood interval as the τ interval that represents the 99 th per-
centile of the estimated maximum likelihood values. The maximum likelihood interval
is [4.8, 6.4] for case study 1 for the 100 mm precipitation depth, as shown in Figure 2.6.
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Fig. 2.6 Likelihood function L(τ /W) for a 100 mm precipitation depth (case study 1).

Figure 2.7 shows the estimated TWI threshold (τ ) for the two case studies together
with the 99% confidence interval, depending on precipitation depth. The values of τ
are very similar for the two case studies. It also appears that after exceeding a certain
precipitation threshold (100 mm in the two case studies), τ does not decrease much
more with increasing the precipitation. A possible explanation is that a further increase
in precipitation does not increase the inundation extent but only the inundation depth.
This is shown in Figure 2.8 with the inundation-extent for 100 and 150 mm precipitation
depths and the inundation depth difference from the two precipitation depth scenarios.
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Fig. 2.7 TWI threshold (τ ) for the two case studies with the 99% confidence interval.

Fig. 2.8 Inundation-extent for 100 and 150 mm precipitation depths for case study 1.
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2.4.2 Water Depth (h) Threshold

(De Risi et al. 2015, 2018, Jalayer et al. 2014) defined inundated areas as areas with a
water depth greater than zero. However, inundation starts to become a disturbance for
pedestrians when the water depth exceeds 10 cm (height of sidewalk) and cars when
the water depth is typically higher than 30 cm (depth at which the floodwater reaches
the car electronics and causes traffic chaos) (Huang et al. 2019). Therefore, we esti-
mated the TWI threshold (τ ) by defining the inundated areas as areas with water depths
greater than zero, 1, 5, and 10 cm for case study 1. The likelihood function L(τ |W ) for
case study 1 for a precipitation depth 100 mm is shown in Figure 2.9 for the different
water depth thresholds as a function of τ . As expected, the τ value corresponding to the
maximum likelihood increased with increasing the water depth threshold. As a conse-
quence, flood-prone areas as identified by the TWI method decrease with an increasing
water depth threshold, as shown in Figure 2.10. Furthermore, Figure 2.10 shows that
estimated flood-prone areas did not change with increasing the water depth threshold
from 1 to 10 cm, which could be explained by the low difference between the estimated
TWI thresholds (τ ) for these water depth thresholds.

Fig. 2.9 Likelihood function L(τ /W) for a 100 mm precipitation depth (case study 1).
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Fig. 2.10 Flood-prone area (FP) for different water depth thresholds for a 100 mm
precipitation depth.

Figure 2.11a shows the estimated TWI threshold (τ ) for different water depths
thresholds and precipitation depths for case study 1. As we can see, the TWI method
could not find a local maximum for the likelihood function and hence no τ value for
lower precipitation depths together with water depth thresholds greater than zero (h >

0). Obviously, this limits the applicability of the TWI method to identify flood-prone ar-
eas for impact-relevant water depth thresholds in combination with rather low (but also
impact-relevant) precipitation scenarios. The reason behind the inability to identify a
value for τ in such cases (i.e., the inability to find a local maximum in the likelihood
function) can be explained by looking at the two components of the likelihood function
Equation (2.2): the P (FP, IN |τ,W ) (the probability of areas being identified both as
flood-prone by the TWI method and as inundated based on the TELEMAC-2D model),
and P (FP , IN |τ,W ) (the probability of areas being neither identified as flood-prone
nor modeled as inundated). As we can see in Figure 2.12a, an increase in the water depth
threshold (h) beyond 0 cm reduces the inundated area (IN) so much that the probabil-
ity term P (FP, IN |τ,W ) is reduced to just a negligible contribution to the maximum
likelihood value L(τ |W ). As a consequence, L(τ |W ) is dominated by the probabil-
ity of identifying an area as neither flood-prone nor inundated (P (FP , IN |τ,W )), as
shown in Figure 2.12b,c. In that case, maximizing L(τ |W ) corresponds to choosing the
maximum possible TWI value in the spatial domain W .
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Fig. 2.11 (a) TWI threshold (τ ) for different water depth thresholds (h). (b) Percentage
of inundated areas for different water depth thresholds (h).

Fig. 2.12 Probabilities of 50 mm precipitation event.

2.4.3 Evaluating FSM and TWI Methods Performance

Figure 2.13 shows the performance of the FSM and TWI methods with regards to their
ability to represent the inundation extent as simulated by the TELEMAC-2D model
for the different precipitation scenarios (from 30 to 150 mm) and case study areas. A
pixel is considered as flooded if the simulated water depth (h) exceeds 0.10 m. For this
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threshold of h, the performance of the TWI method could only be measured for precip-
itation depths of 90 mm and more (see the above discussion about how the estimation
of τ is limited).

Figure 2.13 highlights two main results: first, the FSM method clearly outperforms
the TWI method for those precipitation depths for which both methods are applicable
(i.e., 90 mm and more). This holds for both case studies and all performance metrics
(sensitivity TPR, Matthew Correlation Coefficient MCC, Flood Area Index FAI). For
a 100 mm precipitation event, e.g., the FSM method has a TPR of 0.72 and 0.68 (case
studies 1 and 2) while the TWI method only achieves TPR values of 0.37 and 0.26 for
the same event.

Second, the performance of all methods tends to increase with precipitation depth.
This is most pronounced for case study 1 with both methods across all performance
metrics: TPR increases from 0.31 to 0.79, MCC from 0.08 to 0.76, and FAI from 0.02
to 0.67. For case study 2, the performance metrics increase steeply at first. Then,
MCC and FAI values of the FSM method slightly decline at precipitation depths of
more than 110 mm, and TPR exhibits a more pronounced decrease beyond 100 mm of
precipitation. The reason for this behavior of the FSM method in case study 2 is that
the depressions in this area were completely filled with excess runoff at a precipitation
depth around 100 m, so that inundation spread to areas outside the depressions. The
FSM method, however, only represents inundation within depressions. Therefore, the
method fails to represent flooding beyond depressions and hence shows a performance
decrease for such situations. For the TWI method, such a decrease in performance
does not occur as it is not explicitly limited to represent depressions (but obviously, the
performance of the TWI method continues to increase at a much lower performance
level). Please note that, for a more comprehensive evaluation, we provided additional
evaluation metrics (precision, specificity, accuracy, and balanced accuracy) in Figure S1
in the supplementary material. However, these additional metrics do not provide new
insights as to the differences in performance for the different models, case studies, and
precipitation thresholds, so we do not discuss them here in further detail.
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Fig. 2.13 Performance indices for the FSM and TWI methods for different precipitation
scenarios.

In Figure 2.14, we compare the spatial distribution of inundated areas from FSM
and TWI methods with the inundation obtained from the TELEMAC-2D model for a
100 mm precipitation depth scenario. With this figure, we can better understand why the
FSM method outperforms the TWI method so clearly. Obviously, the TWI method fails
to identify the inundated areas since the TWI concept does not include the concept of a
“depression” as a flood-prone structure and hence fails to correctly detect depressions
in terms of flood-prone areas. It is exactly the inherent strength of the FSM method to
identify such depressions, so that the inundation extent obtained from the FSM method
agrees well with the TELEMAC-2D model.

In order to evaluate the ability of the FSM method not only to identify flood-prone
areas but also the water depth in inundated areas, we calculated the Nash Sutcliffe
Efficiency (NSE) for the two case studies, as shown in Figure 2.15. The NSE values for
case study 1 continuously increase with precipitation depth from −68.66 to 0.78. For
case study 2, the NSE increases from −4.42 to 0.47, and starts to saturate (and slightly
decrease) at precipitation depths above 70 mm. Given that the NSE indicates skill only
for values above 0 (as compared to just assuming an average observation), the FSM
method can be considered as skillful to quantify inundation depth only for precipitation
depths beyond 90 (case study 1) and 50 mm (case study 2).
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Fig. 2.14 Comparison of the inundation extent for a 100 mm precipitation event: (a)
Comparison of TELEMAC-2D model and the TWI method inundation extents. (b)
Comparison of TELEMAC-2D model and the FSM method inundation extents.
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Fig. 2.15 NSE values for the simulation results of the two case studies.
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2.5 Conclusions

Loss and damage caused by pluvial floods are increasing globally, yet the establish-
ment of accurate hazard and risk maps is still impeded by high computational costs
and the resource-intensive model setup of hydrodynamic models. At the same time,
the availability of high-resolution DEMs is increasing, which means that limitations in
terms of the availability of high-quality data are not as acute as, e.g., a decade ago.
Still, we require effective and efficient techniques to capitalize on the potential of these
data. In the present study, we evaluated two methods that have been suggested in the
recent literature to identify urban areas that are prone to pluvial flooding, namely the
Fill–Spill–Merge (FSM) method and the Topographic Wetness Index (TWI) method.
As a reference for this evaluation, we used the hydrodynamic model TELEMAC-2D.
As case studies for this evaluation, we selected two areas in the city of Berlin, Germany.

The TWI method has the obvious advantage that a map of TWI values can be created
with minimal effort from a DEM. The TWI method, however, requires a “calibration”
in the sense that a TWI threshold τ has to be estimated above which a location is con-
sidered as flood-prone (by using maximum likelihood estimation). This calibration has
to be repeated for each precipitation depth of interest. To this end, a reference is re-
quired, here the simulation results of a hydrodynamic model (TELEMAC-2D). While
this requirement is certainly undesirable, as it again involves the effort to set up and
apply a hydrodynamic model, we found that the identified values of τ were similar for
the two case study areas, so that there might be potential to transfer threshold values be-
tween regions of application. Unfortunately, though, we found serious limitations in the
applicability of the TWI method, at least in a rather flat terrain such as Berlin. Using
maximum likelihood estimation, we were unable to identify a local likelihood maxi-
mum and hence a value for τ for lower but still impact-relevant precipitation depths.
We were only able to estimate τ across the entire range of precipitation event depths
from 30 to 150 mm in the case we defined an “inundated area” as an area where the wa-
ter depth exceeded 0 m. However, if we defined inundation as a water depth exceeding
0.1 m, we were only able to identify τ for precipitation depths of 90 mm and more.

Apart from this serious limitation, the FSM method clearly outperformed the TWI
method when it came to detecting flood-prone areas in terms of inundation above 0.1 m.
This superiority of the FSM method held for both case study regions and across all con-
sidered performance metrics (sensitivity TPR, Matthew Correlation MCC, Flood Area
index FAI). The main reason for the failure of the TWI method was that inundation
patterns in urban areas are dominated by depressions, while the TWI method has no
“notion” of depressions as a structural element that is specifically prone to the accumu-
lation of excess runoff.
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While the FSM method was clearly superior to the TWI method, we also found that
its performance tends to be higher with increasing event precipitation. For case study
2, however, we also found that the performance of the FSM method can start to decline
with very high precipitation depths in case inundation starts to spread beyond depression
structures. While the FSM method is theoretically able to point out flood-prone areas
and quantify the water depth in flooded areas, this ability was only recognizable beyond
minimum precipitation depths of 50 and 90 mm (case study 2 and 1, respectively).

In summary, however, our study showed that at least for the investigated case study
areas, the simple and easy to apply TWI method cannot at all compete with the FSM
method. Another large advantage of the FSM method is that it does not need to be cali-
brated to the output of a hydrodynamic model, while its application is about 600 times
faster than the hydrodynamic model. Therefore, while the transferability of the FSM
method appears high, it is still limited by the effort to actually set up the required model
chain: this requires the DEM pre-processing and depression analysis as well as the im-
plementation of runoff routing in a hydrological model. Prospective research should
hence aim at providing more efficient and reproducible software tools so that future
efforts can advance with more informative and extensive benchmarking experiments.

Funding

This research was funded by the Deutscher Akademischer Austauschdienst (DAAD).
We acknowledge the support of the Deutsche Forschungsgemeinschaft and Open Ac-
cess Publishing Fund of the University of Potsdam.

Supplementary Materials

The supplementary materials are available online at https://www.https://
www.mdpi.com/2073-4441/13/18/2476

Conflicts of Interest

The authors declare no conflict of interest.

31

https://www.https://www.mdpi.com/2073-4441/13/18/2476
https://www.https://www.mdpi.com/2073-4441/13/18/2476


CHAPTER 3

Towards urban flood susceptibility mapping using data-driven
models in Berlin, Germany

This chapter is published as:
Seleem, O., Ayzel, G., de Souza, A.C.T., Bronstert, A. and Heistermann, M., 2022.

Towards urban flood susceptibility mapping using data-driven models in Berlin, Ger-
many. Geomatics, Natural Hazards and Risk, 13(1), pp.1640-1662.

Abstract
Identifying urban flood-prone area is necessary but the application of hydrodynamic
models is limited to small areas. Data-driven models have shown their ability for flood
susceptibility mapping. A flood inventory (4333 flooded locations) and 11 flood influ-
encing factors were used as the predictor variables to implement convolutional neural
network (CNN), artificial neural network (ANN), random forest (RF) and support vector
machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial
resolutions. (2) Evaluate the trained models transferability in space. (3) Estimate the
most useful factors for flood susceptibility mapping. The models’ performance was
validated using the accuracy, F−score, Kappa, and the area under the receiver operat-
ing characteristic curve (AUC). The results indicated that all models perform very well
(minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other
models at all spatial resolutions and the RF model at 2 m spatial resolution was superior
for the present flood inventory and predictor variables. Aspect and altitude were the
most influencing factors on the image-based and point-based models respectively. We
conclude that data-driven models can be a reliable tool for urban flood susceptibility
mapping wherever a flood inventory is available.

3.1 Introduction

Urbanization increases both life and damage losses caused by floods (Karamouz et al.
2011, Cherqui et al. 2015, Zhou et al. 2019). Floods can be classified based on their
generation mechanisms into different types such as river floods, urban pluvial floods,
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flash floods, and coastal floods (Kundzewicz et al. 2014). Urban pluvial floods usually
occur due to inundation caused by excess runoff before it enters stormwater drainage
system (Falconer & De Hemptinne 2009) or due to intense rainfall that leads to over-
whelming the stormwater drainage system’s capacity (Schmitt et al. 2004). They could
occur anywhere subject to the occurrence of high intensity rainstorms and the existence
of a critical area for runoff generation (Zhang & Pan 2014). The ubiquity of this haz-
ard highlights the importance of accurate flood susceptibility mapping to support urban
pluvial flood risk management.

Commonly, physical hydrodynamic models are used to simulate urban pluvial flood-
ing. They can be divided into one-dimensional (1D) hydrodynamic models such as
SWMM model (Barco et al. 2008), two-dimensional (2D) hydrodynamic models such
as TELEMAC-2D model (Seleem et al. 2021), and 1D-2D hydrodynamic models such
as MIKE URBAN (Bisht et al. 2016). These models solve the shallow water equation
numerically, and are considered the best representation of the involved processes; yet,
the computational costs are high. Therefore, they can only be applied to small areas us-
ing a fine spatial resolution and can’t be scaled to produce flood hazard maps for large
areas (Petroselli 2012).

To overcome this limitation, (Zhang & Pan 2014, Balstrøm & Crawford 2018,
Samela et al. 2020) applied simplified methods based on digital elevation models (DEM),
where depressions in the terrain were considered as the inundated areas. (Jalayer et al.
2014, Huang et al. 2019, Kelleher & McPhillips 2020) proposed using topographic in-
dices as indicators of urban pluvial flooding locations. However, these methods have
limitations, for example, they perform poorly with low precipitation events, consider
inundation only within the topographic depressions, and some parameters need to be
calibrated for every precipitation depth of interest (Seleem et al. 2021).

Point-based data-driven models such as logistic regression (Al-Juaidi et al. 2018),
the statistical index (Wi) method (Shafapour Tehrany et al. 2019), random forests (RF)
(Wang et al. 2015, Lee et al. 2017, Chen et al. 2020), support vector machines (SVM)
(Tehrany et al. 2014, 2015), and artificial neural networks (ANN) (Bui et al. 2020) have
been used as alternatives to map flood susceptibility for large areas. They can incremen-
tally create high-level features from a raw dataset, and capture complex patterns in the
dataset (Bui et al. 2020). They have demonstrated powerful performance in several ar-
eas worldwide (Tehrany et al. 2014, 2015, Zhao et al. 2018, Chen et al. 2020, Vafakhah
et al. 2020, Costache et al. 2021). However, few studies have utilized such models for
flood susceptibility mapping in urban areas because of the lack of inundation data and
reliable flood inventories (Yang et al. 2016). Furthermore, the fundamental assumption
of point-based models is that a relationship between local flood influencing factors and
the local occurrence of flooding could be established (Zhao et al. 2020).

Recently, convolutional neural networks (CNN) have been used for flood suscepti-
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bility mapping (Wang et al. 2020, Zhao et al. 2020, Lei et al. 2021). Zhao et al. (2020)
demonstrated that convolutional neural networks (CNN) could outperform point-based
models. They could learn patterns in two dimensions and understand relevant patterns
around a predicted location. However, (Zhao et al. 2020, Lei et al. 2021) used a dataset
at a coarse spatial resolution (30 and 25 m respectively). The coarse spatial resolution
could hide essential details of the urban surface that affect flow paths and inundation
patterns (Komolafe et al. 2018, Arrighi & Campo 2019). So far, the impact of spatial
resolution on the results of data-driven flood susceptibility mapping has scarcely been
studied (Avand et al. 2021). Moreover, (Zhao et al. 2020) considered the CNN model
as a black box and did not investigate the importance of the flood influencing factors.

In previous studies, data-driven models for flood susceptibility mapping were typ-
ically evaluated in the same area used to train the models. (Zhao et al. 2021) showed
that using transfer learning technique could improve the CNN model performance. The
trained CNN performed poorly outside the training area, but its performance improved
by adding more training data from the area outside the training area. Such techniques
have not been yet investigated for RF and SVM which are considered as a benchmark
for other models in the literature (Tehrany et al. 2015).

In summary, the use of data-driven models for urban pluvial flood susceptibility
mapping still lacks a sufficient understanding of: the effect of spatial resolution on
different model types, the transferability of models in space, and the importance of
specific predictor sets. On the basis of these research gaps, this study aims to address
the following research questions:

1. How do image-based models (CNN) and point-based models (RF, SVM and
ANN) compare with regard to the spatial resolution (i.e., 30, 10, 5, and 2 m)
of the input data?

2. How transferable (in space) are the trained models?

3. Which factors are most useful for flood susceptibility mapping?

We will investigate these questions on the basis of a unique flood inventory that is
available for the city of Berlin, Germany (Berghäuser et al. 2021).

3.2 Study area

Berlin is the capital and the largest city in Germany. It has 12 administrative districts
as shown in Figure 3.1. The city’s population was around 3.6 million in 2020. 55
% of the city consists of built-up areas (Kottmeier et al. 2007). It is located in the
northeast of Germany and has a relatively flat topography: 95 % of the city has an
altitude between 30 and 60 m above sea level, and 55 % of the city has a slope angle less
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Fig. 3.1 Spatial distribution of 4333 reported flooded locations between 2005 –2017
and administrative districts in Berlin, Germany.

than 2°(as shown in Figure S1 in the supporting information). It has an oceanic climate
(Köppen: Cfb) (Peel et al. 2007), with an average annual precipitation around 570

millimetres (Berghäuser et al. 2021), see also Figure S2 in the supporting information.
Several pluvial urban flood events occurred in the last decades as a consequence of
heavy summer precipitation. For example, the 24 hr precipitation depth for the 29th and
30th of the June 2017 event was around 170 mm and the 3 hr precipitation depth for the
2nd August 2019 event was around 45 mm (Berghäuser et al. 2021).

3.3 Data and methods

The overall approach implemented in this study is as follow: Firstly, the flood inven-
tory and eleven factors that potentially influence flood occurrence were used to prepare
the training, validation, and testing data sets for models development. Then, the mod-
els performance was compared based on selected performance indices. After that, the
flood susceptibility maps were compared for a selected area within the training area
and the ability of the trained models to map flood susceptibility for the whole city was
evaluated. Finally, the importance of the flood influencing factors was estimated for all
the implemented models. Figure S3 in the supporting information provides a graphical
overview of the implemented methodology.
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3.3.1 Flood inventory for Berlin

The flood inventory from Berlin Wasserbetriebe includes 4333 reported flood locations
distributed all over the city as shown in Figure 3.1. These were compiled based on
reports of the fire brigade, from social media and from customer reports between the
years 2005 to 2017.

We selected an area within the city (170 km2) that has a high density of flooded
locations to develop the models as shown in Figure 3.2. There were 1967 reported
flood locations within this area. Additionally, 1967 non-flooded locations were selected
in area free of flooding. In comparison to previous studies, this is a very large and
unique dataset (e.g., Termeh et al. (2018) with 53 flooded locations in an area of 5737
km2; Choubin et al. (2019): 51 locations in 126 km2; Zhao et al. (2020): 216 locations
in 131 km2). Flooded and non-flooded locations within the model training area were
randomly split into a training set (60 %), a validation set (20 %), and a testing set (20
%) (Yacoub et al. 2003, Trost et al. 2014, Raschka 2015). The training dataset was
used to fit the different models, the models’ hyper-parameters were estimated based on
the model performance on the validation dataset, then the testing dataset was used to
evaluate the models’ performance. Evaluating the models based on a testing dataset
that the models have not seen before allowed us to get a less biased estimate of their
ability to generalize to new data. Flooded locations outside the models’ training area
and an equivalent number of non-flooded locations were used to evaluate the models’
transferability.

3.3.2 Flood influencing factors

According to the available data for Berlin and a literature review (Arabameri et al. 2019,
Khosravi et al. 2019, Zhao et al. 2020), 11 factors were identified which potentially indi-
cate an increased hazard for pluvial flooding. These factors represent the topographical,
infrastructural, and hydrometeorological conditions: altitude, slope, topographic wet-
ness index (TWI), curvature (Curve), distance to the river (DTRiver), distance to the
road (DTRoad), distance to stormwater drainage system (DTDrainage), curve number
(CN), and the frequency (FP) and magnitude (AP) of extreme precipitation events.

• Altitude is one of the most important flooding triggering factors (Tehrany et al.
2014). In general, runoff tends to accumulate at lower elevation (Zhang & Pan
2014, Seleem et al. 2021). A digital elevation model (DEM) with 1 × 1 m pixel
size is available for the entire city of Berlin (ATKIS 2020).

• Slope affects runoff velocity and thus time available for infiltration, and also the
speed for runoff concentration and hence accumulation (Rahmati et al. 2016).
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Fig. 3.2 (a) Location of the models’ training area and spatial distribution of the reported
flooded locations within it. (b) Zoom area (the area used to compare flood susceptibil-
ity maps at different spatial resolutions) showing the topographic depressions and the
flooded locations within it.

• The TWI was originally proposed by Kirkby (1975) for hydrological modelling in
mountainous and hilly terrain. It is a physical property that indicates the level of
geotechnical wetness (Chapi et al. 2017) and can be used to identify flood-prone
areas (Jalayer et al. 2014, Seleem et al. 2021). It is calculated as:

TWI = ln(a/tanβ) (3.1)

Where a and β are the upslope contributing area per grid length and the slope
gradient respectively. TWI map was calculated in ArcGIS.

• The DTRiver indicates the Euclidean distance between a point and the nearest
river. The DTRiver is considered as one of the most important factors to map
flood susceptibility (O’Neill et al. 2016). The river network was obtained from
open street maps (Haklay & Weber 2008).

• Aspect indicates the direction of the maximum slope. It is considered relevant
because it is directly related to the water flow direction and indicates the flat areas
(Regmi et al. 2014, Jaafari et al. 2015, Shafapour Tehrany et al. 2019, Choubin
et al. 2019).
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• Curvature (Curve) represents the changes in slope inclination (Wilson & Gallant
2000). The curvature value indicates whether the surface is convex, concave or
flat. Flood water tends to retain in concave surfaces, potentially increasing flood-
ing susceptibility (Rejith et al. 2019).

• DTRoad indicates the Euclidean distance between a point and the nearest road.
In pluvial flooding, the limited capacity of the stormwater drainage system can
generate runoff that travels through the road network converting it to a preferential
path for runoff (Yin et al. 2016, Singh et al. 2018). The road network was obtained
from open street maps (Haklay & Weber 2008).

• DTDrainage indicates the Euclidean distance between a point and the nearest
inlet to the stormwater drainage system. Pluvial flooding can occur when the
capacity of the stormwater drainage system is exceeded. We downloaded the
gullies’ locations from (ATKIS 2020).

• CN is an empirical parameter that is used to calculate the direct runoff (Cronshey
1986). It represents the ability of the land surface to retain water, and is calculated
using the land-cover and the soil type and texture. We used the CN map for Berlin
generated by (Seleem et al. 2021).

• By definition, urban pluvial flooding is caused by heavy precipitation. There-
fore, flood susceptibility mapping should consider both the spatial and temporal
precipitation patterns (Wang et al. 2015, Zhao et al. 2018). To that end, we se-
lected the annual maximum daily precipitation (AP) and the frequency of extreme
precipitation storm (FP) (Zhao et al. 2020). AP indicates the maximum daily pre-
cipitation depth recorded between 2005 and 2017 and FP indicates the frequency
of occurrence of daily precipitation depth greater than 50 mm between 2005 and
2017. Both AP and FP were calculated from radar precipitation estimates from
the German Weather Service (DWD) in the period between 2005 and 2017 (Win-
terrath et al. 2017, Kreklow et al. 2019).

Figure 3.3 shows the spatial distribution of flood influencing factors (predictors) in
Berlin.

3.3.3 Models

The following sub-sections provide a brief summary of the different model types, de-
signs and set-ups, including hyper-parameters which were applied and which can influ-
ence both model performance and feature importance (Probst et al. 2019), and need to
be set by the user.
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Fig. 3.3 Spatial distribution of flood influencing factors used to develop the models.
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3.3.3.1 Convolutional neural networks (CNN)

The application of CNNs for flood susceptibility mapping is still rare in the literature
(Zhao et al. 2020). In our study, we adopted the LeNet-5 architecture with an input
image size of 23 × 23 pixels (Zhao et al. 2020). LeNet-5 has one input layer which is
followed by two convolutional layers, each convolutional layer is followed by one pool-
ing layer; then two fully connected neural network layers, and, a final output layer. The
design is shown in Figure 3.4a. This study used the Rectified Linear Unit (ReLU) and
the softmax functions as the activation and transfer functions respectively. The Adaptive
moment estimation (Adam) (Kingma & Ba 2014) was used to update and optimize the
weights of the CNN. A drop-out strategy with a drop rate of 0.4 was implemented to the
convolutional layers and the fully connected layer to avoid overfitting. We considered
the batch size and the learning rate as the hyper-parameters for the CNN models setup
(Table S1 in the supporting information shows the best hyper-parameters combinations
for the implemented CNN models).

3.3.3.2 Artificial neural network

This study adopted the Artificial Neural Network (ANN) architecture from Bui et al.
(2020) to generate urban pluvial flood susceptibility maps. ANN includes 3 hidden
layers and 192 neurons as shown in Figure 3.4b. The ReLU and the sigmoid functions
were used as the activation and transfer functions respectively, while the weights of the
ANN were updated and optimized using Adam (Kingma & Ba 2014). Similar to the
CNN, a drop-out strategy with a drop rate of 0.4 was implemented to the hidden layers
to avoid overfitting. We considered the batch size and the learning rate as the hyper-
parameters for the ANN models setup (Table S2 in the supporting information shows
the best hyper-parameters combinations for the implemented ANN models).

3.3.3.3 Random Forest (RF)

RF was proposed by Breiman (2001). It has been widely used for flood susceptibil-
ity mapping (Zhao et al. 2020, Lee et al. 2017, Chen et al. 2020). It implements the
bootstrap technique which divides the input data to several sub-samples and develops
a tree model for each sub-sample. The final result is determined based on the majority
result of all the tree models. This allows RF models to avoid problems such as outliers,
noise, and overfitting. We considered the number of trees in the forest, the minimum
number of samples necessary to split an internal node, the minimum number of samples
required to be at a leaf node, and the maximum depth of the tree as the hyper-parameters
for the RF models setup (Table S3 in the supporting information shows the best hyper-
parameters combinations for the implemented RF models).
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Fig. 3.4 CNN and ANN network architectures.

3.3.3.4 Support vector machine (SVM)

SVM is a machine learning technique proposed by Cortes & Vapnik (1995). It is based
on the risk minimization and statistical learning theory (Tien Bui et al. 2012). It has
been widely implemented in flood susceptibility mapping (Tehrany et al. 2014, 2015,
Wang et al. 2020, Zhao et al. 2020). It works on finding the optimal hyperplane that
separates the non-flooded and flooded classes [0, 1] (Choubin et al. 2019).

This study used the RBF kernel of the SVM as it outperformed other kernels in
flood susceptibility mapping (linear, sigmoid, polynomial, see Tien Bui et al. 2012,
Tehrany et al. 2015, Hong et al. 2018, Wang et al. 2020). We considered the penalty
coefficient and the radial basis function bandwidth as the hyper-parameters for the SVM
models setup (Table S4 in the supporting information shows the best hyper-parameters
combinations for the implemented SVM models).

3.3.4 Feature importance

Previous studies have not investigated the importance of individual factors to predict
flood susceptibility. In this study, the SHAP (SHapley Additive exPlanations) python
package (Lundberg & Lee 2017) was used to determine the feature importance for all
models. SHAP assigns an importance value for each feature for each prediction (Lund-
berg & Lee 2017). It can be used with a wide range of models, including tree-based
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models, linear models and neural networks. Compared to other techniques, SHAP does
not only show feature importance, but also determines whether a feature has a positive
or negative effect on the predicted values.

3.3.5 Evaluation of model performance

We used Kappa and the area under the receiver operating characteristic (ROC) curve
(AUC) to evaluate model accuracy (additional indices are shown in Table S5 supporting
information). Both indices have been widely used to evaluate the flood susceptibility
maps in literature (Tehrany et al. 2015, Zhao et al. 2020, Bui et al. 2020, Zhao et al.
2021). Kappa is calculated as follow:

Kappa =
po − pe

1− pe
(3.2)

Where observed agreement (p0) and hypothetical probability of chance agreement (pe)
(Viera et al. 2005) can be calculated by comparing observations to model predictions.
Kappa can range between -1 (less than chance agreement) and 1 (almost perfect agree-
ment) while the AUC can range between 0 and 1, where 1 indicates a perfect model
while a value of 0.5 markes the performance of a random prediction.

3.3.6 Computational details

The maps of the flood influencing factors were created using ArcGIS. The Keras python
package (Chollet et al. 2015) was used to implement both the CNN and ANN models
while the RF and SVM models were developed using the sklearn.ensemble.RandomForestClassifier
(Pedregosa et al. 2011) and the sklearn.svm.SVC python modules (Chang & Lin 2011)
respectively. K-fold cross validation was applied to quantify the model performance.

3.4 Results and discussion

3.4.1 Comparison of predicted flood susceptibility

To produce flood susceptibility maps for Berlin utilizing different data-driven models at
different horizontal resolutions. We used 11 factors which we assumed to affect flood
susceptibility (altitude, slope, curvature, TWI, CN, DTRoad, DTRiver, DTDrainage, FP
and AP), and used 60 % of the flooded locations as training data. Flood susceptibility
values range from 0 (lowest) to 1 (highest). For visualisation, the flood susceptibility
was categorized into five classes using the natural breaks (Jenks) method (Jenks 1967)
which is widely utilized in flood susceptibility mapping (Chapi et al. 2017, Zhao et al.
2020, Wang et al. 2020): very low, low, moderate, high and very high. Figure 3.5 shows
the flood susceptibility maps using the different models and the different horizontal
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Fig. 3.5 Flood susceptibility maps from all models at different spatial resolution for the
zoom area in the training area.

resolutions for the zoom area inside the training area (Figure 3.2). Visually, the majority
of the flooded locations coincide with high flood susceptibility values. Due to excessive
computation costs, the CNN model at 2 m resolution was not applied for the entire area.
Instead, we produced a flood susceptibility map only for topographic depressions S1
and S2 (Figure 3.2b).

We selected topographic depressions S1 and S2 to evaluate the models’ ability to
detect topographic depressions (where normally excess runoff would accumulate). Fig-
ure 3.6 shows the predicted flood susceptibility maps for S1. The figure highlights the
impact of the spatial resolution, for example, for the RF models, the impact of the road
network on the identification of locations with high flood susceptibility becomes obvi-
ous only at resolutions of 5 and 2 m. Moreover, it is very interesting to see that the
CNN models (image-based) could only recognize S1 as a flood-susceptible area at the
5 and 2 m spatial resolutions. Figure 3.7 shows the produced flood susceptibility maps
for S2. Again, it becomes obvious that a higher resolution allows the CNN model to
identify the flood-prone area more clearly.

43



Fig. 3.6 Flood susceptibility maps from all models at different spatial resolution for
topographic depression S1.

3.4.2 Model validation

The performance of the CNN, ANN, RF and SVM models with 30, 10, 5, and 2 m spa-
tial resolutions was quantified based on the metrics AUC and Kappa (other metrics are
shown in Table S5 in the supporting information). Figure 3.8 shows the results for the
training dataset, testing dataset (which was reserved as 20 % of the flooded locations),
and the points located outside the training area. Generally, all models achieved AUC
values higher than 0.88, 0.87, and 0.8 for the three datasets respectively.

For the training data set, the RF models outperformed the other models at all spatial
resolutions. All the performance indices calculated for the RF models were equal to
1 which demonstrate the models’ ability to perfectly distinguish between the flooded
and non-flooded locations. The CNN - 2 m model had the lowest performance indices:
AUC=0.88 and kappa=0.59 which represent a moderate performance (0.41 < kappa <

0.60) based on the kappa evaluation criteria (Viera et al. 2005).
For the testing dataset, the RF models outperformed the other models at all spatial

resolutions, too. The RF-model at 2 m resolution had the highest AUC (0.96) while
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Fig. 3.7 Flood susceptibility maps from all models at different spatial resolution for
topographic depression S2.

the CNN-model at 5 m resolution had the lowest AUC (0.87). According to the kappa
evaluation criteria, the predictions from the RF - 2 m model (kappa = 0.79) demon-
strated substantial agreement with the observations (0.61 < kappa < 0.80) while the
predictions from CNN - 5 m model (kappa = 0.58) showed moderate agreement.

3.4.3 Flood susceptibility for Berlin

The trained models were then used to predict flood susceptibility for all of Berlin. The
flooded and sampled non-flooded locations outside the training area were then used
to assess the model performance outside the training area, and hence the model trans-
ferability in space. For illustration, Figure 3.9 shows flood susceptibility from the RF
model at 2 m resolution (best model on training and testing data sets). Visually, areas
with high flood susceptibility coincide with the flooded locations.

Figure 3.8 shows the performance indices for the points located outside the training
area. The RF models were superior to the other models. While the RF - 2 m had the best
performance (AUC =0.92 Kappa =0.61), ANN - 30 m had the least performance (AUC
= 0.8 Kappa =0.02). Figure 3.8 and Figure S4 and S5 in the supporting file show that
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Fig. 3.8 Calculated performance indices for the training dataset, testing dataset and the
locations located outside training area, models are arranged horizontally in descending
order according to their score for the testing dataset.

despite the superiority of the RF models to other models, the CNN and ANN models
had smaller relative loss for the testing dataset and locations outside the training area.

3.4.4 Feature importance

We used the SHAP algorithm to evaluate feature importance for all competing mod-
els. As mentioned before, the SHAP values do not only show the feature’s importance
but also whether a feature affects the predicted values positively or negatively. Flood
susceptibility values range from 0 to 1. A balanced training dataset (the same number
of flooded and non-flooded locations) was used to develop the models. Therefore, the
default model prediction would be 0.5 if we did not know the input feature values at the
predicted location. Then, the prediction would change from 0.5 to the final prediction
based on the values of the input feature as shown in Figure 3.10. The feature effects
are represented by the SHAP values in Figure 3.11 for the RF model at 2 m resolution.
Figure 3.11 shows that the predictor variables affect the model prediction (flooded or
non-flooded) and floods tend to occur in locations at low altitudes close to drainage
system inlets and roads (RF - 2 m model).

For the image-based CNN model, the SHAP algorithm can detect which pixels in-
crease the probability of a certain prediction (flooded or non-flooded) as shown in Fig-
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Fig. 3.9 Flood susceptibility map for Berlin from RF - 2 m model (best performance
model).

ure 3.12. Figure 3.12 shows images for two locations, the top images represent a flooded
location while the bottom images represent a non-flooded location. Both locations were
correctly predicted by the model. Figure 3.12 shows an advantage of using the image-
based CNN model as it shows the importance of considering the area surrounding a
location and how they influenced the prediction.

SHAP value can be positive or negative, depending on whether the feature increase
or decrease the probability of a certain class (flooded or non-flooded). The higher the
absolute SHAP value, the more impact the feature has on the model prediction. There-
fore, the mean absolute SHAP values could indicate the importance of each feature on
the models’ prediction. Figure 3.13 and Table S6 in the supporting information show the
calculated mean absolute SHAP values for each feature for all the developed models.
For the point-based models (RF, SVM, and ANN), the feature importance depended on
the model and the horizontal resolution of the used dataset. The mean absolute SHAP
value for the altitude was always significantly higher than for other features. Altitude,
DTDrainage, DTRiver, AP and FP had high values while TWI, slope, curve, aspect
and CN had low values which demonstrated that they had a low impact on the models’
prediction. Despite the CN had no impact on the models’ prediction at 30 m spatial res-
olution, it had impact at finer spatial resolutions. Similarly, the importance of DTRoad
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Fig. 3.10 SHAP values of each feature and their impact on the model prediction for a
certain location by the RF model at 2 m resolution. The values of the input features
at this location (shown here as normalized values between 0 and 1) moved the model
prediction from 0.5 to 0.83 (final prediction). Features that decreased the probability
of classifying the location as flooded are colored in blue while features increased the
probability of classifying the location as flooded are colored in red. The features visual
size show the magnitude of their impact on the prediction. For example, altitude had
the largest impact on the prediction at this location.

on the RF models prediction increases with finer resolutions which demonstrates that
the importance of the features could change with different spatial resolutions.

The common most important features for the CNN models were aspect, DTRiver,
FP, and AP while curvature, slope and DTRoad were the common least important fea-
tures as shown in Figure 3.13d. Although altitude was the most important feature for
the point-based models, it is of moderate importance for the CNN models. The SHAP
values are not explaining how the CNN models are working but only show which fea-
tures and pixels influenced the model predictions. Aspect value equals -1 represents a
flat area and 55 % of Berlin has a slope less than 2°as shown in Figure S1 in the support-
ing information. Therefore, we claimed that the CNN models had found a relationship
between flood occurrence and the aspect as a flood predicting factor for the used flood
inventory and predictor factors. The magnitude of SHAP values from the CNN models
was different from other models because SHAP uses different algorithms to explain the
prediction of different models (Lundberg & Lee 2017).

3.5 Conclusions

CNN, ANN, RF and SVM models were used to map flood susceptibility for the city of
Berlin using 11 predictor variables at 30, 10, 5, and 2 m spatial resolution. A detailed
urban flood inventory served as reference data for training, testing, and validation. The
key findings are summarized in the following sections:

3.5.1 Model performance

Based on the calculated performance indices, we found that all models performed well
on the training and testing data sets, while the RF model outperformed the others at
all spatial resolutions, and the RF model at 2 m spatial resolution performed best. We
evaluated CNN and ANN architectures that had been used in the literature (Zhao et al.
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Fig. 3.11 SHAP values for the testing dataset using RF - 2 m model. The features
are arranged vertically based on their importance in descending order. The horizontal
axis shows the SHAP values, a positive value means that it increased the probability
of classifying the location as flooded and a negative value means that it increased the
probability of classifying the location as non-flooded, the colour shows whether the
feature value is low or high, the SHAP values for each feature at every location are
represented by dots. The dots tend to pile up along each feature row to represent the
dots density.

2020, 2021, Bui et al. 2020). Both architectures performed well. However, we expect a
better model performance by examining other architectures that fit with the used flood
inventory and the predictor data for Berlin. In contrast to Zhao et al. (2020) findings,
we found that the RF and SVM models outperformed the CNN models.

The models’ ability to identify topographic depressions was evaluated using two to-
pographic depressions (S1 and S2). Although all the models could predict S2 as a flood-
susceptible area at all spatial resolutions, the performance varied for the S1. RF models
at fine resolution (2 and 5 m) could recognize the streets in S1 as a flood-susceptible
area, the CNN models recognized the topographic depression as a flood-susceptible
area only at fine resolution (5 and 2 m). The maps showed that the models could better
understand the complex urban environment using finer horizontal resolution and the 30
m coarse resolution is not recommended to be used for urban areas. The literature still
lacks models which use fine resolution data sets (Zhao et al. 2020, Lei et al. 2021).

3.5.2 Model transferability in space

Model transferability in space could enable the prediction of flood susceptibility for
areas outside the model’s training area. It is still a new rising topic for flood mapping
(Zhao et al. 2021). Our findings show that the majority of the models had a moderate
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Fig. 3.12 The right figures show images of two locations for the CNN model including
the topographic depression in the images and the left figures show the calculated SHAP
values for the two images based on the CNN - 30 m model. The intense red coloured
pixels increase the probability that the image is predicted as flooded, whereas intense
blue coloured pixels increase the probability that the image is predicted as non-flooded.

performance for predictions outside the training area based on Kappa evaluation. Al-
though the predicted maps had a relative error up to 20 % (minimum AUC = 0.8), it is a
quick method to generate flood susceptibility maps for urban areas. The RF at 2 m spa-
tial resolution outperformed all the other models. It had substantial performance-based
on kappa evaluation (kappa = 0.61) and AUC = 0.92. The model performance outside
the training area could be improved by adding more training data to the trained model
or using transfer learning techniques (Zhao et al. 2021). Future research requires testing
transferability further in environments with different characteristics (particularly with
cities in more mountainous environments).

3.5.3 Feature importance

So far, data-driven models in pluvial flood susceptibility mapping were considered as
black boxes. In this study, we investigated the importance of individual factors to predict
pluvial flood susceptibility and explained the models’ predictions based on the input
features values using SHAP.

The spatial resolution affected the importance of the feature for the model predic-
tion. SHAP values showed how each feature affected the model prediction and for the
CNN models, it showed which pixels affected the model prediction. The point-based
models agreed with the findings in the literature that low-lying areas located closer to
the stormwater drainage system, to river banks and roads are more flood-prone. In con-
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Fig. 3.13 Feature importance for all models based on the calculated absolute mean
SHAP values.

trast, the CNN models identified aspect as the most important flood predicting factors
in Berlin which confirm (Löwe et al. 2021) findings. We used 11 flood influencing fac-
tors that are widely used in the literature for flood susceptibility mapping. However,
we found that many features are not important for the point-based model while more
features affected on the CNN model predictions. Löwe et al. (2021) showed that using
fewer predicting features would improve the CNN model performance. Therefore, we
recommend further research to carry out a detailed feature selection analysis to consider
only features that would strongly impact the model prediction.

Flood susceptibility mapping using a data-driven model is considered as an alter-
native for the complicated hydrodynamic simulations. However, it should be empha-
sized that the reported flood locations were compiled by citizens, socioeconomic factors
(such as education level, age and past pluvial flooding experience) may have an impact
on the data. These models also consider the topographic factors as the most influenc-
ing features on model prediction reducing the role of precipitation in causing flooding.
Therefore, we recommend future research to use output of hydrodynamic simulations
to develop data-driven models for urban flood management.

Overall, all the used models could map the urban flood susceptibility efficiently.
The point-based model would be recommended for flood susceptibility mapping for
large areas because the CNN models were both computationally and time-consuming
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in terms of input data preparation especially for fine resolution which is necessary to
show the urban watershed characteristics.
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CHAPTER 4

Transferability of data-driven models to predict urban pluvial flood
water depth in Berlin, Germany

This chapter is under review as:
Seleem, O., Ayzel, G., Bronstert, A. and Heistermann, M., 2022. Transferability

of data-driven models to predict urban pluvial flood water depth in Berlin, Germany.
Natural Hazards and Earth System Sciences Discussions, pp.1-23.

Abstract
Data-driven models have been recently suggested to surrogate computationally expen-
sive hydrodynamic models to map flood hazards. However, most studies focused on
developing models for the same area or the same precipitation event. It is hence not ob-
vious how transferable the models are in space. This study evaluates the performance of
a convolutional neural network (CNN) based on the U-Net architecture and the random
forest (RF) algorithm to predict flood water depth, the models’ transferability in space
and performance improvement using transfer learning techniques. We used three study
areas in Berlin to train, validate and test the models. The results showed that (1) the
RF models outperformed the CNN models for predictions within the training domain,
presumable at the cost of overfitting; (2) the CNN models had significantly higher po-
tential than the RF models to generalize beyond the training domain; and (3) the CNN
models could better benefit from transfer learning technique to boost their performance
outside training domains than RF models.

4.1 Introduction

Urbanization increases the frequency and severity of extreme urban pluvial flood events
(Skougaard Kaspersen et al. 2017). Therefore, it is crucial to quantify the flood water
depth and extent due to pluvial flooding in urban environments. While 2-dimensional
hydrodynamic models are effective and robust in estimating urban floodwater depth,
they are difficult to scale due to prohibitive computational costs (Costabile et al. 2017).
Data-driven models are raising as a surrogate might overcome the limitations of the
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computationally expensive numerical models (Hou et al. 2021, Guo et al. 2021, Löwe
et al. 2021, Guo et al. 2022, Bentivoglio et al. 2022). They do not simulate the physical
process of runoff generation and concentration, but find patterns between the input and
output data. The model’s accuracy depends on the amount, quality and diversity of the
available data. They could predict water depth with a sufficient level of accuracy within
seconds. Consequently, they are a helpful tool that can support decision-makers with a
real-time forecast.

Data-driven models used to address urban pluvial flood hazards in the literature can
be grouped into models that use only rainfall input to map flood hazards (Hou et al.
2021, Hofmann & Schüttrumpf 2021), and models that account for the topographic
characteristics of the urban landscape (Löwe et al. 2021, Guo et al. 2022). The former
group interpolates the flood response between rainfall events that were used to train the
model and hence can only predict flood hazards within the training domain while the
latter has the potential to generalize and make accurate predictions outside the training
domain (Bentivoglio et al. 2022).

Point-based data-driven models such as the random forest (RF) algorithm have been
widely used in the literature to map susceptibility for pluvial flooding (Lee et al. 2017,
Chen et al. 2020, Zhao et al. 2020, Seleem et al. 2022). RF models outperformed
convolutional neural networks (CNN) to map flood susceptibility in Berlin at various
spatial resolutions, and showed promising results outside the training domain (Seleem
et al. 2022). (Hou et al. 2021) trained RF and K-nearest neighbour (KNN) algorithms
to predicate urban pluvial flood water depth using only the rainfall characteristics as
inputs, and Zahura et al. (2020) trained a RF model to predict flood water depth in an
urban coastal area using three topographic predictive features. However, both studies
evaluated the model performance inside the training domain only. The algorithm per-
formance to map urban pluvial flood hazards using different topographic characteristics
of the urban area and its ability to generalize to other areas than the training domain
have not been systematically investigated in the literature, yet.

CNNs have recently demonstrated the potential to map urban pluvial flood suscep-
tibility (Zhao et al. 2020, 2021, Seleem et al. 2022) and flood hazard (Löwe et al. 2021,
Guo et al. 2022).They are designed to extract spatial information from the input data and
to handle image (raster) data without an unwarranted growth in the model complexity.
Löwe et al. (2021) trained a CNN model based on the U-Net architecture (Ronneberger
et al. 2015) to predict urban pluvial flood water depth. They divided the city into a
grid, used part of it for training and the rest for testing. The testing areas were close to
or surrounded by training areas which guaranteed that the testing dataset had minimal
diversity from the training dataset. Guo et al. (2022) used four topographic predictive
features and one precipitation event to train a CNN model. The model performed well
outside the training domain for the same precipitation event used to train the model.
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Deep learning uses transfer learning techniques to mitigate the problem of insuf-
ficient training data (Tan et al. 2018). Zhao et al. (2021) applied transfer learning
techniques to map urban pluvial flood susceptibility using the LeNet-5 network archi-
tecture. A model that was trained on a certain part of the city (pre-trained model)
performed poorly outside the training domain. A transferred model trained by freezing
the pre-trained model weights and allowing only a few weights to be re-trained using a
few new training data from the new area improved the model performance. The trans-
ferred model used the knowledge learned from the pre-trained model and outperformed
a model that was only trained for the new area. These techniques have not yet been in-
vestigated for predicting flood water depth or for shallow machine learning algorithms
such as RF.

In summary, deep learning was consistently superior to shallow machine learning in
literature but recent studies showed the contrary (Seleem et al. 2022, Grinsztajn et al.
2022). However, shallow machine learning algorithms have not been systematically
challenged in terms of transferability for urban flood modelling. A data-driven model
that generalizes outside the training domain is still a major challenge in literature (Ben-
tivoglio et al. 2022). While previous studies tried to examine the transferability of CNN
in space to predict flood water depth under certain limitations (Löwe et al. 2021, Guo
et al. 2022) and use transfer learning techniques to improve the CNN performance out-
side the training domain to map flood susceptibility (Zhao et al. 2021), such efforts have
been examined neither for RF models nor for surrogates of physical numerical 2D hy-
drodynamic models. It is not obvious how transfer learning techniques could improve
the data-driven model performance and be a useful tool to overcome the limitations of
applying computationally expensive 2D hydrodynamic models to a big region. In this
study, we investigate the transferability of data-driven models to surrogate the physical
numerical 2D hydrodynamic models by addressing the following research questions:

(1) How does the performance of RF and CNN models in predicting urban pluvial
flood water depth compare inside and outside the training domain?

(2) Can transfer learning techniques improve the model performance outside the
training domain and thus help to overcome the issue of limited training data?

4.2 Methodology

4.2.1 Study design

The overall design of this study was as follows: firstly, we selected three areas (Figure.
4.1) that have frequently been flooded in the last decades based on a flood inventory (Se-
leem et al. 2022) gathered between 2005 and 2017. 2D hydrodynamic simulations were
carried out in these areas. Then, the precipitation depth, topographic predictive features
and water depth from the 2D hydrodynamic simulations were used to prepare the train-
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ing, validation and testing datasets. We randomly selected 10000 images (raster with
spatial extent 256 × 256) and 10 % of the available data (number of pixels within the
training domain × number of training precipitation events) to develop both the U-Net
and RF models respectively. We split the data into training (60 %), validation (20 %)
and testing (20 %) datasets. The validation dataset was used to estimate the optimal hy-
perparameter combinations. The testing dataset included data from three precipitation
events (50, 100, and 140 mm) which were not included in the training and validation
datasets. Next, we defined six combinations of training and testing datasets as shown
in Table 4.1, and evaluated the model performance inside each training domain and the
models’ spatial transferability to other testing domains, hence we evaluated the trans-
ferability between precipitation events (at the same training domains) and the transfer-
ability in space between study areas. Afterwards, we selected the best hyperparameter
combinations for the data-driven model that best fit the validation dataset. Finally, we
investigated whether the learned knowledge from the pre-trained models can improve
urban flood hazard mapping outside the training domain using transfer learning tech-
niques and which predictive features are mostly influencing the model predictions.

Table 4.1 Examined training data combinations to train the data-driven models.

Training domain Testing domain Training domain Testing domain
SA0 SA0*, SA1, & SA2 SA0 & 1 SA0*, SA1*, & SA2
SA1 SA0, SA1*, & SA2 SA0 & 2 SA0*, SA1, & SA2*
SA2 SA0, SA1, & SA2* SA1 & 2 SA0, SA1*, & SA2*

⋆ refers to testing the model with precipitation events that were not included in the
training dataset.

4.2.2 Study area and hydrodynamic model

Berlin is the capital of Germany and has around 3.6 million inhabitants. The city has
a relatively flat topography (Seleem et al. 2022) and has an oceanic climate (Köppen:
Cfb) (Peel et al. 2007). The average annual precipitation is around 570 mm (Berghäuser
et al. 2021). Heavy summer precipitation caused several urban pluvial floods in the last
decades, for example, the 170 mm precipitation depth event on the 29th and 30th of
June 2017 (Berghäuser et al. 2021). The selected study areas are between 6, 11, and
12 km2. Seleem et al. (2021) showed that SA0 has large deep topographic depressions
where flood water tends to accumulate, while flood water spills outside the topographic
depressions after a certain precipitation depth threshold in SA2.

The maximum water depths were obtained from TELEMAC-2D (Galland et al.
1991) hydrodynamic simulations (for SA0 and SA2) performed by (Seleem et al. 2021).
We performed additional simulations for SA1 using the same model setup. We used the
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Fig. 4.1 (a) The three study areas in Berlin and the altitude map in the background. (b),
(c) and (d) show the water depth map from TELEMAC-2D simulation for a one-hour
block rainfall 100 mm precipitation event for SA0, SA1, and SA2 respectively and the
altitude map in the background.

finite volume scheme to solve the shallow water equations over non-structured triangu-
lar grids (1 m maximum side length). The simulations were carried out using one-hour
duration precipitation events (block rainfall) with precipitation depths ranging from 20
to 150 mm (10 mm increments), the one-hour intensive precipitation event in 2019
caused pluvial flooding (Berghäuser et al. 2021). We used the SCS-CN method (Cron-
shey 1986) to estimate excess runoff. The storm drainage system was not included in
the TELEMAC-2D simulations due to the unavailability of detailed data of the storm
drainage system. Additionally, the city of Berlin has a relatively flat topography and van
Dijk et al. (2014) showed that there was no significant difference between the results of
2D and coupled 1D-2D hydrodynamic models in urban areas with flat terrain. For more
information about the model setup, please see (Seleem et al. 2021).

57



4.2.3 Predictive features

While data-driven models do not ”understand” the physical processes of runoff genera-
tion and concentration, they are designed to detect relationships between input and tar-
get variables (Grant & Wischik 2020), in this case simulated inundation depth. There-
fore, predictive features should represent the surface characteristics of the study area
which could inform the model of governing hydrological and hydrodynamic patterns.
Table 4.2 shows the selected 12 predictive features that we considered potentially rele-
vant for mapping urban floods and their description. The topographic predictive features
were generated from a digital elevation model (DEM) with a 1 x 1 m pixel size which is
openly available to download for the entire city of Berlin (ATKIS 2020).
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Table 4.2 Spatial predictive features used to train the data-driven models.

Predictive feature Data adjustment Description

Altitude Normalized to [0,1]

Surface elevation is important for flood hazard
mapping because runoff tends to accumulate at
low elevation (Zhao et al. 2020, Seleem et al.
2021, Löwe et al. 2021, Seleem et al. 2022).

Slope Normalized to [0,1]
Slope impacts the runoff velocity and the avail-
able time for infiltration (Rahmati et al. 2016).

Aspect Scaled to [-1,1]

Aspect indicates the flow direction. We used the
cosine and sine of aspect as two separate predic-
tive features to deal with the cyclic behaviour of
flow direction (Löwe et al. 2021). (Löwe et al.
2021, Seleem et al. 2022) found that aspect was
the most important predictive feature for map-
ping urban floods using CNNs.

TWI Normalized to [0,1]

Topographic wetness index was proposed by
(Kirkby 1975). It indicates the geotechnical
wetness level and is being used to identify ur-
ban flood-prone areas (Jalayer et al. 2014, Se-
leem et al. 2021).

Curvature Normalized to [-1,1]

Depending on the curvature value, the surface is
flat, concave or convex. (Guo et al. 2021, Löwe
et al. 2021) used it to predict urban flooding us-
ing data-driven models.

SDepth Normalized to [0,1]

Depth of topographic depression impacts the
volume of excess runoff that can be accumu-
lated in it (Zhang & Pan 2014, Seleem et al.
2021, 2022, Löwe et al. 2021).

FLACC Normalized to [0,1]

Flow accumulation indicates the number of pix-
els draining into a certain pixel. We used the
upper cutoff at 250 ha because very large values
represent natural streams (Löwe et al. 2021).
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TPI Normalized to [-1,1]

Topographic position index is defined as the
difference between the pixel elevation and the
mean elevation of the surrounding pixels (Lei
et al. 2021). A positive value denotes that
the pixel is higher than the neighbouring pixels
while a negative value indicates that the pixel
is lower that the neighbouring pixels and a zero
value represents flat areas (Weiss 2001).

CN Normalized to [0,1]

Curve number is an empirical parameter that is
computed using land-cover and soil hydrologic
group (Cronshey 1986). It is used to estimate
the direct runoff. We used the CN map pro-
duced by (Seleem et al. 2021).

Roughness Normalized to [0,1]

Roughness impacts the excess runoff flow over
the surface. We used the Manning rough-
ness coefficient map produced by (Seleem et al.
2021). Buildings were defined by a high rough-
ness coefficient similar to the TELEMAC - 2D
model setup (Seleem et al. 2021).

DEML Normalized to [0,1]

It is computed as the difference between the ele-
vation of a pixel and the focal mean of elevation
within 100 m radius. Urban pluvial floods occur
on a small spatial scale (< 1 km) and are con-
nected to the local variation in elevation (Löwe
et al. 2021).

Precipitation depth Normalized to [0,1]

We used one-hour duration precipitation events
with precipitation depths ranging from 20 to
150 mm (10 mm increments) (Seleem et al.
2021).

4.2.4 Models

4.2.4.1 U-Net

The application of CNNs for mapping urban flood hazards is still rare in the literature
(Löwe et al. 2021). This study adopted the U-Net architecture (Ronneberger et al. 2015)
as shown in Figure 4.2. The U-Net architecture showed a good performance to predict
water depth in the literature (Löwe et al. 2021, Guo et al. 2022). The model input is a
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terrain raster with 13 image channels (13 channels represent the predictive features) and
the output is the resulting water depth at the surface. The U-Net architecture belongs
to encoder/decoder architectures. The encoder follows the typical architecture of a con-
volutional neural network and uses pooling to downscale the spatial resolution, while
the decoder uses upsampling to upscale the learned patterns. Skip connections concate-
nate the output of each encoder layer to its corresponding decoding layer to provide the
spatial information (Srivastava et al. 2015).

We applied LeakyReLU with an activation threshold of 0.2 to all layers except the
output layer (Maas et al. 2013, Löwe et al. 2021, Guo et al. 2022) and adaptive moment
estimation (Adam; Kingma & Ba 2014) to update and optimize the network weights.
We used average pooling because it showed better performance than maximum pooling
(Löwe et al. 2021), and added a batch normalization layer after each convolutional layer
to stabilize and speed up the training process (Ioffe & Szegedy 2015, Santurkar et al.
2018). A drop-out strategy was implemented with a rate of 0.5 to the convolutional
layers (Löwe et al. 2021, Seleem et al. 2022), and early stopping to prevent overfitting
(Prechelt 1998). We used a batch size of 10 and the mean squared loss as a loss function
to train the models (Löwe et al. 2021).

The success of CNN relies on finding a suitable architecture that fits a given task
(Miikkulainen et al. 2019). Therefore, we varied three parameters similar to (Löwe et al.
2021) to obtain the most suitable network architecture, namely the network depth (i.e.
number of encoding and decoding blocks) (varied between 3 and 4), number of filters in
the first convolutional layer (varied between 16, 32 and 64) and the size of the kernels in
the convolutional layers (varied between 3, 5, and 7). Using a deeper network and more
filters increases the number of parameters and the computational expense. Moreover,
using a larger kernel size allows the network to perform spatial aggregation on a larger
region, again, however, at increasing computational cost. All the implemented models
were validated based on the holdout validation method. Löwe et al. (2021) showed that
a model trained using the holdout validations method was superior to models trained
using the k-fold cross-validation method to predict urban floodwater depth.

We implemented an input image size of 256 × 256 pixels (1 × 1 m spatial resolu-
tion). Löwe et al. (2021) used the same image size but with a 5 m spatial resolution. We
understand that this image size may be not sufficient to fully capture urban watersheds
or topographic depressions. Then again, the selected study areas are small (area ranges
from 6 to 12 km2). We also used 12 predictive features to guarantee that the input data
are well representing both the terrain and hydrological characteristics. The predictive
features were calculated for the whole city and hence the calculated rasters consider the
characteristics of the upstream urban catchment. Finally, training models with larger
images is also limited by the memory of the graphic card.
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Fig. 4.2 Schematic diagram of the applied U-Net architecture for a network of depth =
4 (4 blocks of encoder and decoder). The transferred model obtained the weights from
the pre-trained model except for the weights in the last decoder block (black colour).
Then, the new training data was used to train the remaining untrained weights.

4.2.4.2 Random forest

The random forest (RF) is a decision tree algorithm that was proposed by (Breiman
2001). It solves both classification and regression problems by combining several ran-
domized decision trees and averaging their predictions. RF divides the training data
into several sub-datasets. Then, a tree model is developed for each dataset. Finally, a
prediction is determined based on the majority result of the decision trees as shown in
Figure 4.3. This approach intends to prevent overfitting (Biau & Scornet 2016).

It is well known that RF performs relatively well with default hyper-parameter val-
ues. Still, hyperparameter tuning may improve model performance (Probst et al. 2019).
This study used the default values for the hyperparameters such as the minimum number
of samples in a node and the maximum depth of each tree in the sklearn.ensemble.RandomForestRegressor
(Pedregosa et al. 2011), and varied the number of trees in the forest (between 10, 100,
200 and 300) (Zahura et al. 2020). Finally, an increasing number of training data points
increases the training time and the model size dramatically. We used 10 % of the avail-
able training data (number of pixels within the training domain × number of training
precipitation events) to train the RF model for all the simulations carried out in the
study. We also tried to use larger portions of the training data, but without a significant
improvement in model performance. In addition, we performed hyperparameter tuning
using the k-fold cross-validation method using a smaller training dataset (number of
samples = 100,000) to investigate the models’ performance and their transferability.

4.2.5 Transfer learning

The transfer learning technique is a vital tool in deep learning to overcome the problem
of insufficient training data (Tan et al. 2018). It is based on the idea that a model is
firstly trained for a certain task (called the pre-trained model). Then, a new model
is implemented (the transferred model) where some of its layers are frozen (they use
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Fig. 4.3 Schematic diagram of the random forest algorithm and the additional trees that
are added to the model in case of a warm start. The additional trees are trained using the
new training data while the old trees ( from the pre-trained model) remain unchanged.

the same weights from the pre-trained model) and the remaining layers (weights) are
trained using new training data and/or a new task. This technique hence extends the
application of data-driven models outside the training domain of the pre-trained model.
It also reduces the training time because of the reuse of the weights from the pre-trained
model. In this study, we froze all the layers in the U-Net model except the layers in the
last decoding block which were then re-trained using new training data (see Figure 4.2)
(Adiba et al. 2019).

The majority of shallow machine learning algorithms do not support transfer learn-
ing techniques because training the model is always fast and not complicated. However,
RF offers the warm start option which allows adding more trees to the forest to be fitted
using a new training dataset which means a model can be trained (pre-trained model)
then new trees can be added to the forest and trained using the new training data ( trans-
ferred model) without changing the trees in the pre-trained model as shown in Figure
4.3.

4.2.6 Performance evaluation

The models’ performance was assessed based on predicting water depth and inunda-
tion extent. For computing the performance indices, we compared the water depth and
extent obtained from the TELEMAC-2D model to the results of the competing data-
driven models. Table 4.3 gives an overview of performance metrics. We computed
other indices like balanced accuracy, mean absolute error and the total flooded area ra-
tio. However, we found that root mean square error (RMSE), Nash Sutcliffe efficiency
(NSE) and critical success index (CSI) are well representing the model performance. A
10 cm threshold was applied for the CSI calculation.
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Table 4.3 Performance indices used to evaluate the models’ predictions. The yi and
ŷi denote the water depth from the TELEMAC-2D model and the data-driven model
respectively. ŷi is the average of water depths from the data-driven model. Hits, misses
and false alarms are estimated by the contingency table.

Index Equation Range Description

RMSE
√

1
n

∑n
i=1 (yi − ŷi)

2 [0, ∞]
Root mean square error measures the difference
between the predicted and observed values. The
optimal RMSE is zero.

NSE 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ŷi)
2 [-∞, 1]

Nash Sutcliffe efficiency shows how well the
observed values are predicted by the model
(Nash & Sutcliffe 1970). The optimal NSE
value is one.

CSI hits
hits+misses+falsealarms

[0, 1]
Critical success index is a binary index calcu-
lated based on pixel basis. The optimal value is
one.

4.2.7 Predictive feature importance

We adopted the forward selection process from Löwe et al. (2021) to estimate the most
important topographical predictive features for the U-Net model. Firstly, we trained
11 models, each of which considered one of the 11 topographical predictive features
(precipitation depth was included in all models) from Table 4.2. Then, we evaluated
the model performance based on the performance indices in Table 4.3 and selected the
best model. After that, we trained 10 new models based on the best model from the
previous step by adding one of the remaining 10 predictive features to the inputs. We
repeated this procedure three times to get the three most important predictive features
for the U-Net model.

One of the advantages of the RF algorithm is the ability to compute the importance
of predictive features, hence no forward selection process was required to estimate the
importance of specific features for the RF models. We used the built-in feature im-
portance in the RF model, which is implemented in scikit-learn Python package (Pe-
dregosa et al. 2011). The importance of the predictive features is calculated as the
mean and standard deviation of accumulation of the impurity decrease within each tree
(Pedregosa et al. 2011).

4.2.8 Computational details

The U-Net models were implemented using the Keras Python package (Chollet et al.
2015) while the RF models were implemented using the method ensemble.RandomForestRegressor
from the Python package scikit-learn (Pedregosa et al. 2011). The U-Net models were
trained using a high-performance machine with NVIDIA Quadro P4000 GPU while RF
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models were trained using a machine with Intel(R) Xeon(R) CPU E5-2667 v3@ 3.20
GHz. The training time ranged from 20 minutes to 48 hours and from 10 minutes to 2
hours for the U-Net and RF models respectively. The U-net models needed around 20
seconds to predict and map the water depth while the RF models took around 3 minutes.

4.3 Results and discussion

4.3.1 Evaluating different combinations of training data

In order to evaluate model transferability between spatial domains, we used a U-Net
model with the following combination of hyperparameters: depth = 4, kernel size = 3,
number of filters in the first encoding block = 32. This combination showed reasonable
performance with the training datasets and had performed well in previous studies (Guo
et al. 2021, Löwe et al. 2021). For the RF model, we used the holdout validation method
with a number of trees in the forest = 10 as it shows also reasonable results and training
time (around 10 minutes).

Figure 4.4 compares the performance indices for each study area (SA) and for all
combinations of training/testing datasets, for both the U-Net and RF models. The NSE
values show that the RF models outperformed the U-Net models for predicting water
depth within the training domains; however, they failed to predict water depth outside
the training domains. It is obvious from Figure 4.4 that the RF models were overfitted
to the training data while the U-Net models tended to generalise better. The CSI and
RMSE values are in line with that finding: they show that the RF models could predict
the inundation extent better than the U-Net models in some training combinations de-
spite failing to predict the water depth outside the training domain accurately. Allowing
the decision tree to have unlimited maximum depth may cause overfitting, so we per-
formed multiple simulations varying it (as shown in the supporting information). The
simulations showed that reducing the maximum depth of the decision tree improved the
model performance outside the training domain at the cost of lower performance inside
the training domain. We also trained RF models using the K-fold validation method.
The results indicated that the models were not able to generalise outside the training
domain as demonstrated in the supporting information. Finally, it is clear from Figure
4.4 that the models U-Net - SA1 and RF - SA1 performed best outside the training
domain, compared to models trained using training data from the SA0 and SA2 sep-
arately. The U-Net-SA1 & 2 model had the best performance within and outside the
training domain.
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Fig. 4.4 Computed performance indices (based on the testing dataset) for different com-
binations of training datasets for both the U-Net and RF models. The X-axis shows the
used model and the training domain while the Y-axis shows the perfromacne indices.
The U-Net-SA1 & 2 model had the best performance within and outside the training
domain.

4.3.2 Transfer learning

We evaluated how transfer learning could improve model performance outside the orig-
inal training domain. Specifically, we investigated how the improvement from transfer
learning depends on the percentage of data that was used from the target domain of the
transfer. Figure 4.5 compares the performance of the transferred U-Net and RF models
to the models trained exclusively on the target domain of the transfer. The figure shows
that the transfer learning technique boosted the U-Net and RF model performance out-
side the training domain of the pre-trained models. Another advantage for transfer
learning for U-Net models is that training of the transferred models (20 minutes to two
hours) was faster than training the whole network from scratch.

All U-Net models transferred to the SA0 domain outperformed the U-Net-SA0
model for all performance indices. This applies even if we used only 10 % of the

66



available training data (from SA0) for transfer learning (in contrast to using 100 % of
the SA0 training data for training the U-Net-SA0 model). We could conclude from
Figure 4.5 that the transferred model could use the previously learned knowledge from
the U-Net-SA1&2 model to predict water depth in SA0. Contrary to U-Net, the trained
RF models for each SA separately outperformed all the transferred RF models. All RF
models transferred to the SA0 domain performed better than the RF-SA1&2 model,
but worse than the RF-SA0 model. Figure 4.5 confirms the previous findings that RF
models are prone to overfitting.

4.3.3 Flood maps

In order to convey a visual idea of the resulting flood maps, Figure 4.6 compares the
water depth as predicted by the different models to the water depths as simulated by
the TELEMAC-2D model for region SA0 and for a precipitation depth of 100 mm (Fig-
ures S2 and S3 in the supporting information show the flood maps for 50 and 140 mm
precipitation depths). Apparently, all models could identify topographic depressions
and predict flood water within them. The U-Net - SA0 model underestimates the wa-
ter depth as shown in Figure 4.6b. Figure 4.6c and d show the predicted water depth
from the best performance U-Net - SA1&2 model and the transferred model (U-Net -
SA1&2 → SA0) using 10 % of the training data of SA0 (including only 40 and 120
mm precipitation depths) to train the weights in the transferred model. The transferred
model outperformed both U-Net-SA0 and U-Net-SA1&2. It predicted the most identi-
cal inundation extent as the TELEMAC-2D model. Finally, Figure 4.6e, f and g show
the predicted water depth from the RF - SA0, RF - SA1&2 and RF - SA1&2 → SA0
models respectively. The RF - SA0 model memorised the training data as shown in
Figure 4.4 and thus predicted the water depth accurately while the RF - SA1&2 model
could not predict the flood water inside the topographical depressions correctly and the
RF - SA1&2 → SA0 model overestimated the water depth.

4.3.4 Feature importance

Figure 4.7 shows the NSE for SA1 and SA2 for the first three rounds in the predic-
tive feature forward selection process for the best performance model U-Net-SA1&2
(other indices were computed but not shown here since the results regarding feature
importance did not change). We stopped after three rounds because the process was
computationally expensive and we aimed to obtain just the most important topographi-
cal predictive features. These were TWI, SDepth, roughness and altitude. TWI showed
the best performance in the first round for both SA1 and SA2, while a model trained
with TWI and SDepth was superior to other models in round two. Finally, training a
model with TWI, SDepth and altitude outperformed the other models in round three.
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Fig. 4.5 Evaluation of transfer learning: The colored markers represent the performance
indices for transferred models with different percentages of data from the domain where
the model has been transferred to. For example, SA0→SA1&2 refers to a model pre-
trained on SA0, and then transferred (re-trained) on SA1 and SA2. The bars show the
performance indices for the models trained exclusively on the transfer target domains.
10%⋆ denotes that the training data from the transferred domain was generated using
only two precipitation events (40 and 120 mm). The transferred U-Net-SA1&2→SA0
(pre-trained model SA1&2 and transfer target SA0) models outperformed the U-Net-
SA0 model but the RF-SA0 model was superior to the transferred RF-SA1&2→SA0
models for all used percentages of new training data from SA0.

While the gained knowledge in round three by adding altitude and roughness was the
same for SA1, adding roughness reduced the model performance in SA2. It is explain-
able that roughness influenced the models’ prediction because buildings were defined in
the input dataset by having high roughness values. The precipitation depth was added
as a predictive feature to all the trained models but not included in Figure 4.7 because
the main objective was to estimate the most important topographical predictive features.
In contrast to (Löwe et al. 2021, Seleem et al. 2022), aspect was not among the most
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Fig. 4.6 Comparison of water depths from different models and TELEMAC-2D model
for a 100 mm precipitation event for SA0. The figure highlights the boundary of two
topographic depressions within SA0 where runoff accumulates. The altitude is shown
in the background.

important features.
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Figure 4.8 shows the feature importance for the RF-SA1&2 model. SDepth, altitude
and CN were the most important predictive features. In contrast to U-Net models, TWI
was not among the most important predictive features for the RF models. The estimated
best predictive features from the U-Net and RF models were not the same but the results
agree with the findings in the literature that TWI (Jalayer et al. 2014, Seleem et al. 2021,
Bentivoglio et al. 2022), SDepth (Zhang & Pan 2014, Seleem et al. 2021) and altitude
(Zhang & Pan 2014, Seleem et al. 2021, 2022) are indicators for urban flood-prone
areas.

Fig. 4.7 NSE values for SA1 (a) and SA2 (b) for the models trained in the forward
selection process for the best performance training data combination (U-Net - SA1&2).
The best-performing model in every round is marked in red.

4.4 Conclusions

This study developed and tested CNN models (based on the U-Net architecture) and
RF models to emulate the output of a 2-D hydrodynamic model (TELEMAC-2D) for
three selected areas within the city of Berlin. We trained the data-driven surrogate mod-
els to map topographic, land cover and precipitation variables to flood water depths as
obtained from 2D hydrodynamic model simulations. The evaluation of model perfor-
mance was designed to assess the transferability of trained models to areas outside the
training domain. It is worth mentioning that the accuracy of the predicted flood maps by
a data-driven model highly depends on the accuracy of the used hydrodynamic model
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Fig. 4.8 Predictive feature importance for RF-SA1&2 model.

simulations to train the model. While urban area lacks monitoring devices, crowd-
sourced data and fine-resolution satellite images could be helpful tools to validate the
hydrodynamic models.

Both U-Net and RF models were skilful in predicting water depth within the train-
ing domain (minimum NSE=0.6). Contrary to the hypothesis that deep learning algo-
rithms were superior to shallow machine learning algorithms (Bentivoglio et al. 2022),
the results suggested that the RF models outperformed the U-Net models for predic-
tions within the training domain. However, we found that the high performance of RF
models was largely owed to overfitting: outside of the training domains, RF models
exhibited a substantial performance loss for all considered metrics (NSE, RMSE, and
CSI). Although some RF models showed better performance outside the training do-
main (as shown in the supporting information), this study aimed to evaluate the model
transferability, not to optimize the model to generalize. For the CNN models, the loss of
performance was also considerable, but clearly less pronounced than for the RF models.
We hence conclude that the potential of CNN models to generalize beyond the training
domain is significantly higher than for RF models. Further research requires testing the
data-driven model’s transferability further in environments with different characteristics
(particularly with cities in more mountainous environments).

Furthermore, we found that the CNN models’ ability to generalize and hence to
be transferred beyond the training domain could be boosted by transfer learning: by
providing only a small fraction of training data from a target domain, transfer learning
improved the performance of some pre-trained CNN models in a way it outperformed
a CNN that was trained from scratch with the full amount of training data from that
domain. This outcome clearly distinguishes deep learning models such as CNN from
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shallow models such as RF which could not benefit from transfer learning in a similar
fashion. Transfer learning hence provides a promising perspective to efficiently use
additional training data to adjust deep learning models to specific target areas or to
provide an additional level of generalization, at a minimum computational expense.

Analyzing the results showed that the depth of a depression (SDepth) is a strong
predictive feature for both the U-Net and RF models. SDepth, altitude and CN were the
most influencing topographical predictors for the RF model while TWI, SDepth,roughness
and altitude were the most influencing topographical predictive features for the U-Net
model. This is in contrast to Löwe et al. (2021) and Seleem et al. (2022) who found
the aspect to be the most important predictive feature for flood hazard and susceptibility
mapping using CNN. We hence suggest a detailed future study to systematically explore
the suitability of different topographical predictive features for data-driven models of
urban flood hazard.

Altogether, this study confirms that deep learning could be a skilful tool for upscal-
ing flood hazard maps in urban environments. Given the excessive costs of providing
complete high-resolution 2-D hydrodynamic model coverage, deep learning, namely
CNN, has shown the ability to learn transferable knowledge of simulated inundation
patterns. This puts into perspective previous study results by Seleem et al. (2022) that
highlighted the performance of random forest models – which we now found less able
to generalize. Given the apparent potential of CNN for generalization, however, it is all
the more important to collect training and testing data from many and diverse regions in
order to capitalize on this learning capability. This could be a community effort, and the
basis for future benchmarking experiments that move beyond the boundaries of isolated
cities. In order to start this process, we provided the output of the 2-D hydrodynamic
simulations along with this paper.
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The predictive features and water depth from the TELEMAC 2D model simulations are
available at https://doi.org/10.5281/zenodo.7516408 (last access: 10
January 2023); the source code for the models are provided through a GitHub repository
https://github.com/omarseleem92/Urban_flooding.git.
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CHAPTER 5

Conclusions

5.1 Main findings and conclusions

Urban pluvial flooding poses a growing threat to cities worldwide. Hence, accurate
urban pluvial flood hazard maps are required. Hydrodynamic models can effectively
predict flood variables such as floodwater depth and velocity. However, they are com-
putationally expensive and not practical for fast predictions in urban watersheds. This
thesis aims to investigate and evaluate alternative methods for mapping urban pluvial
flooding. The following summarizes and discusses the main findings and conclusions
of this doctoral thesis.

Simplified topography-based methods

This section addresses the following research question:

• RQ1: Can simplified topographic-based methods mimic the two-dimensional hy-
drodynamic models to simulate urban pluvial flooding?

The first study (Chapter 2) evaluated two simplified methods that have been sug-
gested by recent studies to identify areas prone to urban pluvial flooding: the fill-spill-
merge (FSM) and the topographic wetness index (TWI). The simulation results of the
TELEMAC-2D model for two case studies in Berlin were used as a reference for the
evaluation. The TWI method has the advantage of requiring minimal effort to create a
TWI map from a digital elevation model (DEM). However, the TWI method requires
to be calibrated to the output of a hydrodynamic model for each precipitation depth of
interest. This requirement necessitates the task of setting up and applying the hydro-
dynamic model. The results showed that the estimated values of the TWI threshold (τ )
were similar for the two case study areas, indicating the potential for transferring thresh-
old values between different regions of application. However, the analysis also revealed
several limitations of the TWI method. The TWI threshold τ could only be estimated
across the examined rainfall depths (from 30 to 150 mm with 10 mm incremental steps)
by defining an ”inundated area” as an area with a water depth higher than 0 m. By
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defining the inundation area as an area with a water depth exceeding 0.1 m, τ could
only be estimated for rainfall depths greater than 90 mm. This can be attributed to the
fact that runoff tends to accumulate in topographic depressions within urban watersheds
and the TWI method was not able to identify depressions as urban pluvial flood-prone
areas.

The results pointed out that the FSM method is clearly superior to the TWI method
in identifying urban pluvial flood-prone areas. The FSM method has an advantage over
the TWI method of being able to predict the floodwater depth, while the TWI method
prediction is limited to identifying flood-prone areas. While the FSM method is much
faster than the 2D hydrodynamic models (about 600 times), it requires effort to set up
the required model chain. Additionally, its performance may decline with extremely
heavy rainfall when flooding begins to spread beyond topographic depressions. Finally,
the results showed that the performance of both methods tended to improve with in-
creasing the rainfall depth.

Data-driven models performance and transferability

This section addresses the following research questions:

• RQ2.1: Does deep learning outperform traditional machine learning algorithms
to map urban flood susceptibility?

• RQ2.3: How transferable are data-driven models to map urban flood susceptibil-
ity?

• RQ3.1: How transferable are data-driven models to predict urban pluvial flood-
water depth?

Chapters 3 and 4 compared the performance of deep learning and traditional ma-
chine learning algorithms such as random forest (RF) and support vector machine
(SVM) to map flood susceptibility and predict floodwater depth. I evaluated the mod-
els’ performance in the training domain and their transferability in space. In Chapter 4,
I investigated the models’ ability to boost their performance outside the training domain
using transfer learning techniques.

Previous studies claimed that deep learning models are superior to traditional ma-
chine learning algorithms (Zhao et al. 2020). However, this study disputes this claim.
The results from Chapters 3 and 4 contradict each other. Specifically, the results in
Chapter 3 pointed out that the RF models outperformed their comparative models within
and outside the training domain for mapping urban flood susceptibility. In Chapter 4,
the RF models outperformed deep learning models again in predicting floodwater depth
within the training domain. However, the high performance of RF models was mainly
due to overfitting when evaluating their performance outside the training domains.
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The fact that the RF models were superior to their comparative models in the sec-
ond study (Chapter 3) aligns with the findings of recent studies such as Grinsztajn et al.
(2022). These studies found that tree-based models are still state-of-the-art on medium-
sized datasets (around 10,000 samples). Deep learning models tend to smooth out the
target function on the training data (Grinsztajn et al. 2022) and also tend to bias towards
less complex functions (Rahaman et al. 2019). In contrast, RF models learn piece-wise
constant functions and do not have this bias. It is worth noting that while traditional
machine learning models may be the better choice in the specific case of flood suscep-
tibility mapping due to limited data availability, deep learning models have shown suc-
cess in other areas where large datasets are available, such as precipitation nowcasting
(Ehsani et al. 2021). In conclusion, the superiority of either model is problem-specific
and dependent on the amount of data available.

Breiman (2001) claimed that RF models do not overfit. This claim is correct when
there is no significant difference in the distribution of training and testing datasets (Gy-
ori et al. 2022). Altitude, distance to the road (DTRoad) and distance to the storm
drainage system (DTDrainage) were the most influencing predictive features for the
best-performance RF model (at 2 m spatial resolution) in Chapter 3. Figure 5.1 shows
that these predictive features have the same distribution within the training domain.
Contrary to altitude and DTRoad, there is a difference in the distribution of DTDrainage
within and outside the training domain. This can explain the decline in the model’s
performance for predictions outside the training domain (the area under a receiver op-
erating characteristic curve (AUC) dropped from 1 on the training dataset to 0.92 on
the dataset outside the training domain). Finally, the poor performance of the RF mod-
els outside the training domains in Chapter 4 can be attributed to the difference in the
study areas (SA) characteristics as shown in Figure 5.2. CNN models which included
data from SA1 in the training dataset could better generalize to other study areas. SA1
has deeper topographic depressions compared to the other study areas, as illustrated
in Figure 5.2, this might have aided the CNN models in recognizing the relationship
between the depth of topographic depressions and floodwater depth and hence could
better generalize.

Transfer learning techniques

This section addresses the following research question:

• RQ3.2: Can transfer learning techniques improve the model performance outside
the training domain and thus help to overcome the issue of limited training data?

A transferred model is a model that has been trained on one task or a dataset (called
a pre-trained model) and then adapted for a different task or dataset. This approach is
particularly useful when limited data are available for training a model from scratch.
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Fig. 5.1 Characteristics of the most influencing predictive features on the best perform-
ing RF model to map urban flood susceptibility (Chapter 3), i.e., the Y-axis shows the
normalized values between 0 and 1.

Fig. 5.2 Characteristics of the three study areas (SA) in Chapter 4. Topographic wetness
index (TWI) and topographic depression depth (SDepth) were the most influencing
features for the convolutional neural network (CNN) models while SDepth and altitude
were the most important for RF models.

In Chapter 4, transfer learning techniques were applied to both convolutional neural
networks (CNN) and random forest (RF) models to enhance their performance for pre-
dicting floodwater depth outside the training domain. The results indicated that deep
learning models benefit more from transfer learning techniques than traditional machine
learning models. Moreover, a transferred deep learning model that was trained using a
small fraction of the training dataset beat a deep learning model that had been trained
from scratch with the complete training dataset from the target domain. This shows that
a pre-trained deep-learning model can be easily adapted to a specific target area with
minimal computational cost.

Spatial resolution

This section addresses the research question:

• RQ2.2: Does the spatial resolution of the predictive features impact the data-
driven models’ prediction?

In the second paper (Chapter 3), the impact of spatial resolution of the predictive
features on the data-driven models’ performance was evaluated. The CNN models could
only recognize topographic depressions as a flood-susceptible area at the 5 and 2 m spa-
tial resolution. However, this fine spatial resolution was computationally expensive and
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time-consuming to map flood susceptibility using CNN. Furthermore, the best perfor-
mance models (RF at 5 and 2 m spatial resolution) could recognize the streets in the
topographic depression as the flood-susceptible area. The relative loss in performance
from inside to outside the training domain was particularly high for models at 30 m spa-
tial resolution. The results highlighted the importance of using fine spatial resolution
for predictions in a complex urban environment.

Predictive features

This section addresses the research question:

• RQ2.4: Which predictive features are most useful for urban pluvial flood map-
ping?

In Chapters 3 and 4, I used three methods - Shapley values (Lundberg & Lee 2017),
forward feature selection and random forest feature importance (Pedregosa et al. 2011) -
to assess the importance of the predictive features for all implemented models. Shapley
values are particularly useful because they can explain the complex data-driven models
that are often considered a black box. The analysis in Chapter 3 revealed that the im-
portance of the predictive features could vary depending on the used spatial resolution.
Point-based models identified flood-susceptible areas based on altitude, while image-
based models were strongly influenced by the aspect values. Aspect values indicate the
direction of the slope and hence the flow direction. They pinpoint where the flow direc-
tion changes and hence the locations where the terrain has a concave shape and where
floodwater thus accumulates. In Chapter 4, the CNN model found a strong relationship
between topographic wetness index (TWI), topographic depression depth (SDepth) and
floodwater depth, while RF models were most influenced by SDepth, altitude and curve
number.

Predictive features denoting changes in elevation, such as altitude in Chapter 3 and
topographic depression depth and altitude in Chapter 4, were the most influencing pre-
dictive features for the RF models. On the other hand, the CNN models were mostly
influenced by the aspect to map urban pluvial flood susceptibility (Chapter 3), but the
aspect was not among the most three influencing predictive features to predict urban
floodwater depth (Chapter 4). The importance of the predictive features can vary de-
pending on the used dataset and model. It is worth mentioning that using different
network architectures (LeNet 5 in Chapter 3 and U-Net in Chapter 4) may have also
influenced the importance of the predictive features.

5.2 Outlook

This thesis demonstrated that data-driven models can be a useful tool for mapping urban
pluvial flooding and highlighted the advantages and limitations of topographic-based
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methods. The availability of data such as high-resolution digital elevation models, land
use, soil type and precipitation is increasing, which makes data-driven models a valu-
able tool for urban pluvial flood hazards mapping. This thesis has made some progress,
but further research is needed for a comprehensive understanding of data-driven mod-
els’ capabilities and limitations in flood hazard mapping. Further studies should focus
on understanding how these models can be used to improve urban pluvial flood hazard
mapping.

Topographical based methods to predict urban flooding

Topographical-based methods mainly require a digital elevation model (DEM) and
rainfall data to identify urban pluvial flood-prone areas. The availability of these data
has been increasing, reducing the limitations that were more acute in the past due to data
unavailability. While urban pluvial floods could occur anywhere within an urban water-
shed, even in areas without flooding history, hydrodynamic models can only be applied
to small areas (a few square kilometres) using fine spatial resolution (less than 5 m).
The Fill-Spill-Merge (FSM) method, for example, can predict urban pluvial floodwater
depth 600 times faster than hydrodynamic models. However, there is currently no open-
source software tool to automate this method. Further research should also investigate
these methods in other urban environments with different characteristics, particularly
in cities located in more mountainous regions. To support these efforts, future research
should focus on developing more efficient and reproducible software tools, allowing for
more informative and extensive benchmarking experiments.

Data-driven models for flood modelling

Previous studies focused on using shallow machine learning algorithms (point-based)
to map urban flooding while recent studies claimed that deep learning models repre-
sented in convolutional neural networks (CNN) (image-based) outperform the point-
based models. This thesis focused on investigating the transferability of data-driven
models because it is the major challenge that they face. Future research needs to be
conducted to address the following:

• While random forest (RF) models were superior to other models to map urban
flood susceptibility in Chapter 3, they overfitted the training dataset in Chapter 4
and could not generalize outside the training domain. Chapters 3 and 4 emphasize
the importance of conducting benchmark studies to determine which models are
most effective for different types of flood maps.

• A simple CNN architecture (LeNet-5) was used to map urban flood susceptibility.
Future studies are recommended to investigate deeper network architectures.
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• Data-driven model’s transferability in space is still a new rising topic for flood
mapping. This thesis evaluated the models’ transferability within the same city
to map urban flood susceptibility and predict urban floodwater depth in Chapters
3 and 4 respectively. Future research requires testing transferability further in
environments with different characteristics (cities in more mountainous environ-
ments).

• Data-driven models’ ability to make accurate predictions strongly depends on the
used predictive features to train the model. This thesis showed that the importance
of the predictive features varies with the implemented models. While point-based
models were influenced by predictive features representing the change in eleva-
tion, the importance of the predictive features for the CNN varied between Chap-
ters 3 and 4. Therefore, further studies are needed to investigate which predictive
features are relevant for urban pluvial flood mapping.

• This thesis used transfer learning techniques to improve the data-driven models’
performance outside the training domains in Chapter 4. While flood inventories
and flood hazard maps showing floodwater depth are not often available, transfer
learning techniques can be a useful tool to overcome this problem. Therefore,
future research is necessary to assess their applicability across different regions.

Finally, this thesis shows that the data-driven model has the potential to generalize to
map urban pluvial floods. It is crucial to collect training and testing data from a variety
of regions to fully take advantage of this learning capability. This could be a collabora-
tive effort and could serve as the foundation for future benchmarking experiments that
extend beyond individual cities.

Towards open science

I would like to express my deep gratitude to the open science community. This re-
search would not have been possible without the support, open data and tools from the
community. In support of reproducibility, transparency and open science in flood mod-
elling, the scripts with hands-on tutorials and data used in this thesis are made available
in publicly available GitHub repositories (https://github.com/omarseleem92?tab=repositories)
and the work done in this thesis is explained in a series of publicly available articles
(https://medium.com/@omar.abdwahab92).
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Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. (2006), ‘Land–atmosphere cou-
pling and climate change in europe’, Nature 443(7108), 205–209.

Shafapour Tehrany, M., Kumar, L., Neamah Jebur, M. & Shabani, F. (2019), ‘Evaluating
the application of the statistical index method in flood susceptibility mapping and its
comparison with frequency ratio and logistic regression methods’, Geomatics, Natural

Hazards and Risk 10(1), 79–101.

91



Shen, D., Wang, J., Cheng, X., Rui, Y. & Ye, S. (2015), ‘Integration of 2-d hydraulic
model and high-resolution lidar-derived dem for floodplain flow modeling’, Hydrology

and Earth System Sciences 19(8), 3605–3616.

Singh, P., Sinha, V. S. P., Vijhani, A. & Pahuja, N. (2018), ‘Vulnerability assessment of
urban road network from urban flood’, International journal of disaster risk reduction

28, 237–250.

Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H. & Drews,
M. (2017), ‘Comparison of the impacts of urban development and climate change on
exposing european cities to pluvial flooding’, Hydrology and Earth System Sciences

21(8), 4131–4147.

Smith, M. B. (2006), ‘Comment on’analysis and modeling of flooding in urban drainage
systems”, Journal of Hydrology .
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