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Abstract

One of the central themes of biology is to understand how individual cells achieve a high
fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper
functioning and its capability to proliferate. Therefore, complex regulatory mechanisms
have evolved in order to render the expression of each gene dependent on the expression
level of (all) other genes. Regulation can occur at different stages within the framework of
the central dogma of molecular biology. One very effective and relatively direct mechanism
concerns the regulation of the stability of mRNAs. All organisms have evolved diverse
and powerful mechanisms to achieve this. In order to better comprehend the regulation
in living cells, biochemists have studied specific degradation mechanisms in detail. In
addition to that, modern high-throughput techniques allow to obtain quantitative data
on a global scale by parallel analysis of the decay patterns of many different mRNAs from
different genes.
In previous studies, the interpretation of these mRNA decay experiments relied on a
simple theoretical description based on an exponential decay. However, this does not
account for the complexity of the responsible mechanisms and, as a consequence, the
exponential decay is often not in agreement with the experimental decay patterns.
We have developed an improved and more general theory of mRNA degradation which pro-
vides a general framework of mRNA expression and allows describing specific degradation
mechanisms. We have made an attempt to provide detailed models for the regulation in
different organisms. In the yeast S. cerevisiae, different degradation pathways are known
to compete and furthermore most of them rely on the biochemical modification of mRNA
molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically,
i.e. it is governed by the initial cleavage within the coding region. In addition, it is often
coupled to the level of maturity and the size of the polysome of an mRNA. Both for S.
cerevisiae and E. coli, our descriptions lead to a considerable improvement of the inter-
pretation of experimental data. The general outcome is that the degradation of mRNA
must be described by an age-dependent degradation rate, which can be interpreted as a
consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to
address this much debated topic from a theoretical perspective.
The improvements of the understanding of mRNA degradation can be readily applied
to further comprehend the mRNA expression under different internal or environmental
conditions such as after the induction of transcription or stress application. Also, the role
of mRNA decay can be assessed in the context of translation and protein synthesis.
The ultimate goal in understanding gene regulation mediated by mRNA stability will
be to identify the relevance and biological function of different mechanisms. Once more
quantitative data will become available, our description allows to elaborate the role of
each mechanism by devising a suitable model.





1. Introduction

The central dogma of molecular biology describes the core processes in each cell [1, 2].
The genetic information is stored in DNA. The ultimate (and necessary) goal for the
viability of each cell is having the optimum level of each protein. Therefore, each gene is
transcribed into messenger RNA (mRNA) and proteins are produced from mRNAs in the
process of translation. However, both mRNAs and proteins are subject to degradation
and dilution, such that the molecules have to be constantly renewed. There are four
principal rates that regulate the amount of proteins in a cell: The rates of transcription
and translation and the mRNA and protein degradation rates (see figure 1.1). These rates
can however be different for each gene and depend also on the physiological state of the
cell. Furthermore, many proteins and ribonucleic acids interact such that the presence
of one molecule regulates the amount of the others. The cell’s biochemistry has evolved
specific pathways of regulation. There are enzymes that control the transcription, others
stabilize or destabilize mRNAs and also at the level of translation and protein degradation,
the corresponding rates are governed by biochemical interactions. The rates themselves
are then determined by the concentration of the regulating enzymes, hence, diffusion (or
active transport) plays a central role. These are central ideas of systems biology - to view
the complex cascades of reactions as a complex network of interactions between all the
individual entities. In systems biology one aims at systematically analyzing the pathways,
for example by specifically isolating a subset of reactions or by observing the response
to an external stimulus. The subsequent response of the network can be quantitatively
analyzed and compared to the expected changes from a theoretical model.

Gene expression is fundamentally governed by noise. The noise arises due to the inher-
ent stochasticity of all processes involved in gene expression. One distinguishes between
intrinsic noise which is due to the random order of chemical reactions occurring on the

DNA mRNA Protein

Figure 1.1.: Central dogma of molecular biology. Genes are transcribed from DNA to
messenger RNA (mRNA). Each mRNA is in turn translated into proteins. Regulation of gene
expression can proceed by adjusting the rates of transcription and translation, respectively.
Both mRNAs and proteins are actively degraded in cells thus providing another type of efficient
mechanisms for regulation.
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molecular scale and extrinsic noise which arises from the changing concentrations of en-
zymes involved in gene expression [3, 4]. Recently, the different sources of noise could be
determined experimentally [5].

Regulation of gene expression

Cells of all organisms use regulation of gene expression at all stages to obtain an optimal
protein level for their viability and proliferation [2, 6]. At the level of transcription, the
adjustment of the transcription rate of a gene is a powerful regulatory mechanism [7, 8, 9].
Recently, much research was devoted to post-transcriptional mechanisms of regulation. At
least in eukaryotes, a cellular machinery for RNA processing control exists, i.e. regulation
via editing (i.e. splicing) the precursor-mRNAs [10] or by controlling the mRNA export
to the cytoplasm [11]. In addition, regulation occurs on the level of translation [12] - for
instance by regulating translation initiation by the number of available ribosomes and
the specific action of initiation complexes or by regulating translation elongation via the
availability of transfer RNAs (tRNAs). At the end of the central dogma, the cell can
directly control the protein amount by activating proteases or by phosphorylating the
proteins and thus changing their enzymatic activity [13].

As another possibility, the number of proteins per mRNA can be changed by altering the
stability of mRNA. More stable mRNAs will produce more proteins and a decrease of
stability quickly reduces the production of new proteins and saves the metabolic cost of
producing them.

In summary, for all regulation mechanisms time and metabolic cost are the crucial factors
and all have their respective benefits and disadvantages. Research has addressed all areas
of regulation, although only recently the role of regulation at the level of mRNA stability
became a major focus of research. In the following, we will sketch some biochemical
mechanisms of mRNA degradation. This part is followed by a description of experimental
methods and current theoretical models important for mRNA turnover.

Biochemical mechanisms of mRNA degradation

In the past decades, a number of different mechanisms responsible for the degradation of
the mRNA have been unveiled [14, 15, 16]. Some mechanisms of degradation are known
to affect the decay of all mRNA species and are thus unspecific. On the contrary, other
mechanisms are known to affect certain mRNAs more than others depending on different
physical and chemical characteristics of the nucleotide chain. For example, micro-RNAs
mediate the docking of the degrading enzymes specifically for each mRNA and contribute
thus to the large variation of the stability between mRNA species [17, 18, 19, 20].

In all organisms, one can distinguish between two types of degradation mechanisms,
the endonucleolytic and the exonucleolytic degradation pathways. In the endonucleolytic
pathways, degradation is initiated by cleavage within the coding region of an mRNA.
Once the degradation process has been initiated, it leads to a rapid decay of the attacked
mRNA with a sudden interruption of the translation process. In this case, the time
scale related to the random encounter between the degradation complex and the mRNA
primarily determines the lifetime of the mRNAs. It is commonly believed that eukaryotic
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mRNAs are affected to a lesser extent by endonucleolytic degradation than prokaryotic
mRNAs [14].

In the exonucleolytic degradation pathways, mRNAs are degraded processively from one
end to the other. Here, typically a set of biochemical and physical modifications to
the untranslated regions is required for the initiation of degradation. For instance, the
decapping mechanism, which is thought to be the main degradation pathway in eukaryotic
cells, requires deadenylation at the 3′ region and the destabilization of the 5′ cap structure
before degradation occurs in the 5′ to 3′ direction behind the last translating ribosome
[21]. Also in bacteria different exonucleolytic degradation pathways exist. For instance
in E. coli, modification of the 3′ stem-loop is a prerequisite of exonucleolytic degradation
initiation [14]. Moreover, in B. subtilis a 5′ exonuclease has been discovered recently
[22, 23]. In summary, in all organisms there are different degradation pathways leading
to the destabilization of mRNA. However, the precise contribution of each mechanism to
the destabilization of an mRNA remains unknown

Experimental procedures to assess mRNA stability

The standard approach to quantitatively assess mRNA stability consists of impeding
the further transcription of a certain gene (or genome-wide) in a populations of cells
[24, 25, 26]. This proceeds for instance via the incorporation of a drug that inhibits
the initiation or elongation of RNA polymerases or by heating up a probe containing
heat-sensitive RNA polymerases. Consequently, the subsequent decay of the previously
synthesized mRNAs is observable and one can take samples at different points in time after
the interruption of transcription. For each sample, the amount of mRNA of a specific gene
can by assessed by northern blotting. Furthermore, high-throughput techniques such as
microarray, qRT-PCR and RNA-Seq allow the simultaneous detection of the mRNA level
of all genes separately. One implicit assumption of this method is that the incorporation of
the drug occurs sufficiently fast and parallel in all cells of a cell culture. Moreover, the stop
of transcription has a strong impact on the entire metabolism of the cell and one might
only observe the reaction of the cell due this extreme stress condition. However, instead of
blocking transcription one can also introduce heavy or radioactive nucleotides into the cell
(metabolic labeling). Henceforth, one can distinguish between mRNAs synthesized before
the label introduction (i.e. mRNAs free of modified nucleotides) and newly synthesized
ones. One can now also follow the fraction of previously synthesized mRNAs over time.
Also with this method side effects might arise and it remains a challenge to evaluate the
quality of each procedure and the associated detection methods.

The current paradigm of mRNA degradation

From the theoretical point of view, the simplest model is to assume that for each gene there
is a constant mRNA synthesis and a constant mRNA decay rate (in analogy to radioactive
decay). The transcription is zeroth-order, i.e. it only depends on the rate, whereas the
degradation is first-order, i.e. proportional to the amount of mRNA. Mathematically,
the mRNA number can be obtained via a Master equation (see chapter 2). According to
these assumptions, it follows that after the stop of transcription the decay pattern follows
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an exponential decrease (or a straight line on a linear-log scale). It is here that theory
and experiment meet and one can fit the theoretical decay function to the experimental
data to obtain the decay rate, the mean lifetime and the half-life of an mRNA of a given
species.
In many experiments in different organisms it was found that large amounts of the decay
patterns are not exponential. One example is given in figure 1.2 A for S. cerevisiae
(a yeast model organism) [27]. There, only 11 out of 424 (selected) mRNAs obey an
exponential decay (as will become more clear in chapter 3 we select only bona-fide curves,
all other allow no interpretation). Similarly in E. coli only 11 out of 103 and in the
marine cyanobacterium Prochlorococcus 117 out of 1102 genes resemble an exponential
decay (our analysis, experiments from [28, 29]). It is therefore clear that this simple
first-order kinetic model does not suffice to describe the experimental situation in detail.
Moreover, the assumption of a single, constant rate contradicts the detailed knowledge of
the degradation process. Whenever a series of modifications are required for degradation,
each process contributes with its specific reaction rate. The assumption of a single rate
implies that either all reaction rates are the same (hence also the concentrations of all
participating enzymes and their time scales of catalytic activity) or one rates dominates
strongly over all other rates (i.e. it is much smaller than all other rates). Hence, a
description with a single rate constant seems inappropriate in light of the knowledge of
the mechanisms leading to degradation.
As a final remark, the assumption of a constant decay rate throughout the lifetime of an
mRNA is also counterintuitive. As we will point out in detail in chapter 3, this implies
that the molecules do not age. To see this, consider the case that one had hypothetically
taken a subsample of only the oldest mRNAs in a population. Under the assumption of a
constant decay rate, it would turn out that these mRNAs had the same life expectancy as
the entire mRNA population. Though this holds for radioactive decay (the decay constant
does presumably not change over billions of years, nor do environmental conditions afflict
the stability of a single radionuclide), it is difficult to preserve this idea for molecular
reactions in living matter.
Previously, when a large number of non-exponential decay patterns was noticed, the prob-
lem was addressed by introducing heuristic fitting functions such as a double exponential
[28, 29]. While this might be suitable to decrease the fitting error, it does not establish
a link to the mechanisms of degradation. Therefore, we seek a mathematical descrip-
tion that expands the current description, that improves the analysis of the experiments
and that allows to link the stability of an mRNA as seen in decay experiments with the
underlying mechanisms of its degradation.

1.1. Overview of thesis

In this thesis, we elaborate a theory on mRNA stability and its implications on mRNA and
protein turnover. We depart from the classical method of a Master equation to put it in
a broader, stochastic framework. Thereby, we expand the possibilities to understand and
analyze experiments on mRNA decay. Also, we establish a link between the biochemical
mechanisms and decay experiments. Furthermore, this thesis provides a method to plan
and analyze more detailed mRNA decay experiments.
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Figure 1.2.: Non-exponential decay and multi-step mechanisms. Panel A: A selection
of experimental mRNA decay patterns in the yeast S. cerevisiae (plotted in log-scale) reveal
that the majority of patterns does not follow an exponential decay curve (adapted from [27]).
Furthermore, different biochemical pathways of degradation of mRNAs have been discovered.
In panel B degradation is depicted as a relatively simple process determined by only a single
step, e.g. by unspecific and fast endonucleolytic single-step decay. In panel C, instead, we show
a schematic representation of the degradation pathway known as decapping which is one of the
main degradation mechanisms in eukaryotic cells. The decapping mechanism consists of several
biochemical steps, which contribute to destabilize the mRNA until complete degradation takes
place, and can be considered as a prototype of multi-step degradation.

In chapter 2 we lay the theoretical foundations of this thesis and derive a general result.
Our theory is based on a constant mRNA transcription rate (which corresponds to a
Poisson process) and arbitrary lifetime probabilities. We obtain the distribution of the
number of mRNAs as well as the age and residual lifetime distribution for all times before
and after the interruption of the mRNA transcription process. In the same chapter we
introduce further concepts and methods that will be used in the remainder of the thesis.
In chapter 3 we will use the general results obtained in chapter 2 to study mRNA decay
as measured in two model organisms. Therefore, we develop a concrete model for each of
the two organisms. Thereby, we improve the analysis of the experiments but also envision
how our theory can be applied for present and future experimental studies on mRNA
decay. Furthermore, in this chapter we derive general properties of the decay pattern
that hold for any experiment. In chapter 4 we elaborate the role of mRNA degradation
in the turnover of mRNA and its transient nature. On the one hand, the results of this
chapter are based on the general theory derived in chapter 2. On the other hand, we make
use of the knowledge about the degradation process acquired in chapter 3. In the same
chapter we analyze an experiment on stress response in S. cerevisiae where all methods
introduced by then come to application. Chapter 5 puts our theory into a broader setting.
Here we study how the transient mRNA turnover afflicts translation and protein synthesis
and we discuss implications of the mRNA turnover for the cell cycle. Finally, in chapter
6 we summarize the main findings and give an outlook on theoretical challenges that lie
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ahead and where the main results of this thesis could become useful in a broader context.
Further details to all chapters and recent lines of research are discussed in the appendix.

Published articles

During the thesis work, two articles were submitted so far to peer-reviewed journals:

1. Transient Phenomena in Gene Expression after Induction of Transcrip-
tion. PLoS ONE 7(4): e35044. This article deals with the transient phenomena in
mRNA turnover and protein synthesis. This article forms parts of chapters 4 and
5.

2. Decay patterns and aging of messenger RNA. (Under review). This article
introduces the general theory of mRNA decay as presented in chapters 2 and 3.
Also, a detailed model was introduced and compared to experimental data on the
yeast S. cerevisiae which is presented in chapter 3.



2. Mathematical background

In the present chapter, we develop the central mathematical concepts for the description
of the mRNA turnover. We begin by discussing the fundamental time scales that are
involved in the process. Next, we argue why the transcription can be modeled via a
Poisson process. This is followed by the derivation of the stochastic evolution of the
number of mRNAs for arbitrary mRNA lifetime distributions (section 2.1.3 and 2.1.4).
This result will be of central importance for the entire thesis. Similarly, in section 2.1.5,
we find the distributions for the age and residual lifetime of an mRNA. It follows a
comparison of our general theoretical results to the standard approach with a Master
equation (section 2.2). We also derive the relation between general lifetime distributions
and age-dependent rates (section 2.3). The final sections introduce general methods that
will prove useful throughout this thesis. We introduce continuous-time Markov chains
(section 2.4) and simulation techniques that provide a complementary tool for studying
mRNA and protein expression (section 2.5).

2.1. The fluctuation of the mRNA number

Our mathematical description is build upon general concepts of stochastic modeling as
introduced in ref. [30]. In this section, we develop the mathematical description for the
number of mRNAs as a function of time. It fundamentally depends on two points in
time, the start of the transcription process and the stop or inhibition of transcription.
Central to our theory is the concept of the random lifetime of an mRNA which follows a
statistical distribution.

Furthermore, at any instant a given mRNA has an age and a residual lifetime. We will
see how these quantities are statistically related to the lifetime of an mRNA.

2.1.1. Introduction of time scales

Many of the variables that we need in the following can be introduced via a simple
visualization of the mRNA turnover process (see figure 2.1). Starting at a time t = 0,
transcription events occur at random time points. The total number of mRNAs generated
until a time t is denoted by the random variable X(t). Each of the transcripts has a
random lifetime U , where U is distributed according to the lifetime density φU . At each
point in time a random number of mRNAs is still alive, i.e. not degraded. We will denote
this quantity by Y (t), and by definition Y (t) ≤ X(t) holds for all times t.

For the purpose of studying mRNA decay experiments, we are also interested in the
number of mRNAs at a time interval ∆t after the interruption of transcription at t = ts.
Therefore, we will perform the derivation of the distribution of Y (t) for two different cases:
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before the interruption of transcription, i.e. t ≤ ts, and after the stop of transcription,
i.e. t = ts +∆t.
The time t is a global time and can be seen as a laboratory time scale. Without loss of
generality, we set the start of the counting process at t = 0 for convenience - note however
that one could consider t = −∞ instead. Nevertheless, t can denote also the time elapsed
since the start of a physical process such as for example the induction of transcription of
a certain gene (or all genes) via an external stimulus. Therefore, we might refer to the
time t also as the time after the start of transcription.
As mentioned earlier, transcription is often globally stopped via the addition of a drug or
other external stimuli. The time elapsed ∆t is also a laboratory time scale and it will be
referred to mostly as time after stop of transcription.
However, both t and ∆t can have a broader connotation and can also be interpreted as
the time elapsed since an internal signal or the introduction of a label.
Here, we have introduced the terms global or laboratory time scales to emphasize the
difference to local or molecular time scales. The latter concern times that are related
to the lifetime of an individual mRNA. For instance, at any specific point in time each
mRNA has always a well-defined age. According to each age it also has an excess or
residual lifetime. Moreover, during the lifetime of an individual mRNA, the transcript
might undergo biochemical transformations. To make this more clear, we will denote the
molecular time scale as the age of an mRNA.

Definition of lifetime We have already mentioned that the lifetime of a single mRNA is
a random variable for each individual mRNA whose distribution is given by the lifetime
density φU . In this paragraph, we seek to obtain a biological definition of the lifetime.
Generally, one can distinguish between a chemical and a functional lifetime.
During the chemical lifetime of an mRNA, the sequence of nucleotides is fully intact.
Conversely, functional lifetimes describe the time interval during which an mRNA is
functional, i.e. during which translation is active. While the first definition corresponds
to the quantitative detection in biochemical assays, the second is relevant in protein
synthesis.
Both possible approaches are however not unambiguous. For a chemically intact mRNA,
the detection via a microarray experiment depends on the choice of the oligonucleotides
for hybridization. Additionally, in eukaryotes precursor mRNAs (pre-mRNAs) are syn-
thesized from DNA which still undergo sequence alterations such as intron splicing and
untranslated region (UTR) modification. Hence, the time point of generation of a mature
mRNA does not coincide with the time point of the transcription of a pre-mRNA. For
simplicity, in the following we will, however, term the rate of maturation and delivery to
the cytosol also as the transcription rate.
For the functional lifetimes, the lifetime can be defined to range from the first ribosome
bound until the unbinding of the last ribosome. Alternatively, the functional lifetime can
encompass the time interval of active translation initiation, elongation or termination.
Furthermore, in eukaryotic cells translation can be temporarily inactivated and resumed
at a later time point.
Therefore, it depends always on the specific aim which definition is more appropriate.
Additionally, different organisms and detection methods play an important role. Never-
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Figure 2.1.: Illustration of the counting process and definition of time scales. The
function X(t) counts the total number of mRNAs generated in the interval (0, t] according to
a Poisson process. Each generation event is symbolized by a blue dot. Additionally, every
mRNA has a random lifetime U according to the probability distribution ΦU , defined in Eq.
(2.2), which is symbolized by the length of the blue bars. We want to compute the number
of live mRNAs, Y (t), at each time point t. In this visualization, it is given by the number of
intersecting mRNA bars with a vertical line at a given t. For instance, Y (t1) = 1, Y (t2) = 4 and
Y (t3) = 1. At a definite time t = ts transcription is interrupted. Hence, X(t > ts) remains
constant and Y (t > ts) decreases with the time elapsed since the interruption, denoted by
∆t. The mRNA highlighted in green possesses a lifetime of u. Furthermore, a (hypothetical)
measurement at time t2 would reveal that at that point in time the mRNA has an age a and
a residual lifetime r. This cartoon represents one realization of the counting process - in our
computation X(t), Y (t), A, U and R are random numbers and we calculate the corresponding
marginal probability distributions.

theless, both definitions need not yield largely different values of a lifetime. For a given
mRNA species in a particular organisms, the different definitions should give rise to sim-
ilar values of the lifetime. Rather, differences between different mRNA species should
be manifest in any definition. We will come back to discuss functional lifetimes more
specifically in chapter 3 where we will discuss an alternative approach to measure the
functional lifetime which goes back to ref. [31].
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2.1.2. Transcription modeled as a Poisson process

The process of transcription is a random process determined by the underlying biochem-
ical reactions. Furthermore, also the enzymes involved in transcription, in particular the
RNA polymerase and transcription factors have a low abundance and fluctuate [32, 4].
This gives rise to intrinsic and extrinsic noise [4, 5]. However, we will restrict ourselves
to assume a Poisson process for the transcription of each gene [33].

Poisson distribution Let X be the random number of mRNAs generated since a time
t = 0. Our initial condition is X(0) = 0, i.e. the transcription process started at
t = 0, or mRNAs transcribed priorly are not counted. According to a Poisson process the
probability of generating k mRNAs until time t reads

Pr{X(t) = k | X(0) = 0} =
(ωtct)

k exp(−ωtct)

k!
. (2.1)

The parameter of the distribution is ωtc t where ωtc denotes the transcription rate for that
gene. More precisely, it denotes the rate of delivery of the mRNA to the cytosol.
Thus, the total number of transcribed mRNAs is growing with time according to a Pois-
son distribution with a time dependent parameter ωtc t. The property of the Poisson
distribution is that its variance equals the mean value which is the only parameter of the
distribution. That means that the Fano factor of a Poisson distribution, defined as the
ratio of variance and mean value, is precisely 1. The time between consecutive events is
exponentially distributed. Hence, the Poisson process is memoryless, it carries no memory
about past occurrences. However, conditioned on a fixed number of total events in (0, t],
the origination time of each event is uniformly distributed in (0, t]. The last property
will be important for the subsequent computation and is derived in the appendix (section
A.1).

Single-cells Although the Poisson process is a very powerful mathematical tool that
is conventionally applied to model gene expression, it is not known to what extend
it accounts for all processes during transcription in single cells. In particular, though
transcription events might be infrequent, they might not be independent from another.
Fluctuations in the number of available RNA polymerases lead to a fluctuation of the
transcription rate. Moreover, different promotor states lead to a random modulation of
the transcription rate. Consequently, mRNAs are transcribed in bursts during the active
state of the promotor. Furthermore, at different stages of the cell cycle, the transcription
rate might not be constant. In these case, one needs to extend the description to a non-
homogeneous Poisson process to obtain a more detailed description of the transcription
process, see appendix D.
Experiments with single cell resolution could measure the cell-to-cell variation in the
expression of mRNAs. In ref. [34], the distribution of the mRNA Fano factor (i.e. the
ratio of the variance to the mean) over all genes in E. coli centered around 1.6 - indicating
also non-homogeneous mRNA synthesis production. However, some genes display a Fano
factor of one which indicates that these could be described by a Poisson process. In
ref. [35] it was found that transcription proceeds via single transcription-initiation events
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that are clearly separated in time, rather than by transcriptional bursts. With a more
detailed method, no correlation between individual transcripts was found for the construct
POL1p−GLT1 [36] in S. cerevisiae. Hence, the role of different transcription modes on
a single-cell level remains open.

Cell populations In spite of this, many experiments investigate different processes of
gene expression on the level of cell populations. Typically, one performs a bulk experiment
on a large number of unsynchronized cells, ranging from 109 up to more than 1012 cells.
Usually, the total number of cells Ncells is held constant by diluting the cell culture and
cells of different age and in different stages of the cell cycle are present. Thus, the
transcription rate ωi(t) of each cell i can adopt a different value and fluctuate in time in
a non-synchronal way. The population transcription rate is given by Ωtc(t) =

∑

i ωi(t). If
Ncells is large, fluctuations of ωi(t) will average out and Ωtc will be constant. Therefore, on
the scale of a large cell population, the process of transcription is a Poisson process with
constant rate Ωtc. In the following, we will use the average rate ωtc = Ωtc/Ncells to describe
the process of generation of new mRNAs in an average cell (of a large population of cells).
To some extent, a large cell population resembles a giant cell with many independent sites
of transcription that each add up to the global transcription rate Ωtc.

An even more general analytical description including random fluctuations of the tran-
scription rate goes beyond the scope of this work. In this thesis, we concentrate on
an improved theoretical description of the process of mRNA degradation. Nevertheless,
effects of a varying transcription rate are briefly discussed in chapters 4 and D.

2.1.3. mRNA number after start of transcription

To investigate the mRNA turnover, we have to take the lifetime of the mRNAs into
account. Each mRNA of a given gene has a random lifetime U according to the lifetime
probability density φU . Correspondingly, the cumulative distribution function reads

ΦU(u) =

∫ u

0

dτ φU(τ) , (2.2)

and the average lifetime of that mRNA species is given by

〈U〉 =

∫ ∞

0

duuφU(u) . (2.3)

Let Y (t) be the random number of mRNAs that have been transcribed in the interval
[0, t) and are still present at time t, i.e. that have not been degraded until time t. Hence
0 ≤ Y (t) ≤ X(t) for all t ≥ 0.

We aim to calculate the probability that k mRNAs are still present at t, i.e.

Pr{Y (t) = k | X(0) = 0} , (2.4)

by following the method of ref. [30].
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Via the law of total probability, we can rephrase this to

Pr{Y (t) = k | X(0) = 0} =
∞
∑

n=k

Pr{Y (t) = k | X(0) = 0, X(t) = n}Pr{X(t) = n | X(0) = 0} .
(2.5)

We sum from n = k since Y (t) ≤ X(t) and hence all terms n < k are zero. The second
term is just the Poisson process for the generation of mRNAs. In the following, we will
compute the first term.
First, we calculate the probability p for a single mRNA to be still present at time t. Each
mRNA has random origin O and random lifetime U . The mRNA is still present at time
t if the random variable Z ≡ O + U ≥ t. Therefore, we aim to compute

p ≡ Pr{Z ≥ t} .

We rephrase the probability p using the law of total probability and the definition of the
marginal probability. Furthermore, we exploit the fact that, in a conditioned Poisson
process, the origin of a single mRNA is uniformly distributed in the time interval (0, t]
(see section A.1 in appendix). Hence,

p =
1

t

∫ t

0

ds Pr{Z ≥ t | O = s} .

Next, we utilize Pr{Z = O + U ≥ t | O = s} = Pr{U ≥ t− s}, thus giving

p =
1

t

∫ t

0

ds Pr{U ≥ t− s} .

Finally, we use Eq. (2.2) and substitute u = t− s to find

p ≡ Pr{Z ≥ t} =
1

t

∫ t

0

du (1− ΦU(u)) . (2.6)

In a second step, we exploit that, conditioned on X(t) = n, the number of mRNAs
is binomially distributed. This becomes clear once one realizes that the probability p(t)
defines the outcome of a Bernoulli trial - whether an mRNA is still present at time t or not.
The combination of n independent Bernoulli variables leads to the binomial distribution.
Thus, we find

Pr{Y (t) = k | X(0) = 0, X(t) = n} =

(

n

k

)

pk(1− p)n−k . (2.7)

Inserting Eqs. (2.7) and (2.1) into Eq. (2.5) results in

Pr{Y (t) = k | X(0) = 0} =
pk(1− p)1−k

k!
e−ωtct

∞
∑

n=k

[(1− p)ωtct]
n

(n− k)!

=
(p ωtct)

k

k!
e−ωtct

∞
∑

n′=0

[(1− p)ωtct]
n′

(n′)!

=
(p ωtct)

k

k!
e−pωtct

(2.8)
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Finally, using Eq. (2.6) we arrive at

Pr{Y (t) = k | X(0) = 0} =
[ωtcH(t)]k exp [−ωtcH(t)]

k!
(2.9)

where we introduced

H(t) ≡

∫ t

0

du (1− ΦU(u)) . (2.10)

Hence, we have arrived at an expression for the number of mRNAs at any time t after
the start of the transcription process for any lifetime distribution ΦU . We find that
the distribution of the number of mRNAs is a time dependent Poisson distribution with
parameter ωtcH(t) [30]. In chapter 4 we will investigate implications of this finding when
we deal with the time evolution of the mRNA amount after induction of transcription
and under stress conditions.

2.1.4. mRNA number after stop of transcription

To understand experiments where the transcription is interrupted we want to calculate
the number of mRNAs at any time interval ∆t after the interruption at time t = ts, i.e.

Pr{Y (ts +∆t) = k | X(0) = 0} (2.11)

We can compute this quantity by performing the same steps as in Eqs. (2.5), (2.7) and
(2.8).

Pr{Y (ts +∆t) = k | X(0) = 0} =
(ps ωtcts)

k

k!
e−ps ωtcts . (2.12)

This equation differs from Eq. (2.8) since the Poisson process for the synthesis of mRNAs
runs from 0 to ts only and hence the probability ps of a single mRNA to be still present
at t = ts +∆t is different. Nevertheless, we can compute ps similarly to Eq. (2.6)

ps = Pr{Z ≥ ts +∆t}

=
1

ts

∫ ts

0

ds Pr{Z ≥ ts +∆t | O = s}

=
1

ts

∫ ts+∆t

∆t

du (1− ΦU(u)) .

(2.13)

In the first step, we have exploited again the fact that the generation events are uniformly
distributed in the interval [0, ts). In the second step, we have used Pr{Z = O + U ≥
ts + ∆t | O = s} = Pr{U ≥ ts + ∆t − s}, Eq. (2.2) and a suitable transformation of
variables. Thus, inserting Eq. (2.13) into Eq. (2.12) yields

Pr{Y (ts +∆t) = k | X(0) = 0} =
[ωtcH2(ts +∆t)]k exp [−ωtcH2(ts +∆t)]

k!
(2.14)

where

H2(ts +∆t) ≡

∫ ts+∆t

∆t

du (1− ΦU(u)) . (2.15)



16 Mathematical background

Thus, we conclude that also after the stop of transcription the distribution of the number
of mRNAs remains Poissonian with a time-dependent parameter ωtcH2(ts+∆t) regardless
of the underlying mRNA lifetime distribution ΦU . In chapter 3 we will use this central
result to describe the decreasing amount of mRNAs in decay experiments.
It is convenient to introduce a common abbreviation for both cases, H(t) and H2(ts+∆t)

Ht2
t1 ≡

∫ t2

t1

du (1− ΦU(u)) . (2.16)

For t1 = 0 and t2 = t we arrive again at H(t) from Eq. (2.10). Conversely, for t1 = ∆t
and t2 = ts +∆t we regain H2(ts +∆t) from Eq. (2.15). Note that always t2 > t1 ≥ 0 to
ensure a positive number of mRNAs.

2.1.5. Age and residual lifetime distribution

A randomly selected mRNA has a random age. Hence, a large ensemble of mRNAs at a
given (global) time t will reveal an age distribution (see also figure 2.1).
We are interested in the age of a randomly chosen mRNA at any point in time t. Therefore,
in the following, we consider mRNAs that have been created according to a Poisson process
in the interval [0, ts) and have a random lifetime U distributed according to the density
φU . Let A be the random variable that gives the age of a randomly chosen mRNA. The
age distribution of the mRNA is given by the distribution of A = ts +∆t−O (see figure
2.1), where O is the random variable giving the time point of origination. As shown
in detail in the appendix, section A.2, we can find an analytical expression of the age
probability density function

φA(a | ts +∆t) =

[∫ ts+∆t

∆t

du (1− ΦU(u))

]−1

(1− ΦU(a)) , (2.17)

for ∆t ≤ a < ts+∆t and zero otherwise. Note that Eq. (2.17) is the marginal probability
density of the age random variable.
The age distribution at a given time t is an interesting quantity which allows insights into
the composition of an ensemble of mRNAs. Note that we can consider different scenarios,
before and after the stop of transcription, by choosing t and ∆t accordingly. In chapter
4 we will discuss the time dependence of φA(a | t) and its average value 〈A〉t. Moreover,
in chapter 5 we will examine the role of the age distribution for mRNA translation and
protein synthesis.

Residual lifetime distribution Similar to its age, a randomly selected mRNA will also
have a random residual (or excess) lifetime. Hence, a large ensemble of mRNAs at a given
time t will reveal a residual lifetime distribution (see also figure 2.1).
The residual lifetime R of an mRNA is a statistical quantity complementary to the age
of the mRNA. A detailed computation (see section A.2 in appendix) reveals that the
residual lifetime probability density is given by

φR(r | ts +∆t) =

[∫ ts+∆t

∆t

du (1− ΦU(u))

]−1

(ΦU(ts +∆t+ r)− ΦU(∆t+ r)) , (2.18)
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for all r ≥ 0. Thus, φR(r) is the marginal probability density of the random residual
lifetime R. The residual lifetime of an mRNA is a compelling quantity which is capable
to characterize the aging of the mRNA molecules. In analogy to the age distribution, for
the residual lifetime distributions several limit cases of interest exist and will be further
discussed in chapters 3 and 4.
Therefore, both the age distribution as well as the residual lifetime distribution depend on
the form of the lifetime probability density φU and on the time after start of transcription
ts as well as the time interval since the interruption of transcription ∆t.

Short summary In this section we have performed the central computations used for
the remaining parts of the thesis. We found an analytical expression for the number and
distribution of mRNAs under different experimental conditions as well as for the age and
residual lifetime distributions. To the best of our knowledge, Eqs. (2.14), (2.17) and
(2.18) are original results of this work.
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2.2. Formulation with a Master equation

In this section, we confirm the results derived in the previous chapter for the limit case
of exponentially distributed lifetimes.
The conventional description of mRNA turnover considers transcription with a constant
synthesis rate ωtc and mRNA degradation with a constant decay rate ωr. This can be
formulated via the following Master equation

dPk(t)

dt
= ωtc Pk−1(t) + ωr (k + 1)Pk+1(t)− ωr k Pk(t)− ωtc Pk(t) . (2.19)

Here, Pk(t) denotes the probability that k mRNAs are present. It holds k ≥ 0 and
for k = 0 obvious modifications have to be applied to Eq. (2.19). The first two terms
on the right hand side are source terms and the last two are loss terms. The synthesis
is zeroth-order, i.e. just determined by the rate, whereas the degradation first-order,
i.e. proportional to the existing amount of mRNA. The solution can be obtained via
generating functions and solving the resulting differential equation. Using the initial
condition P0(0) = 1 and Pi(0) = 0 (i > 0), we find

Pk(t) =
[ωtc/ωr (1− e−ωr t)]

k

k!
exp

[

−ωtc/ωr

(

1− e−ωr t
)]

. (2.20)

It is a Poisson distribution with a time-dependent parameter ωtc

ωr
(1− e−ωr t). If we insert

an exponential lifetime distribution ΦU(t) = 1 − exp(−ωr t) into Eq. (2.9), we retrieve
the following parameter for the Poisson distribution after the start of transcription

ωtcH(t) ≡ ωtc

∫ t

0

du (1− ΦU(u))

= ωtc

∫ t

0

du exp(−ωr u)

=
ωtc

ωr

(1− exp(−ωr t)) .

(2.21)

Hence, the formulation with a Master equation corresponds to the solution of the special
case of an exponential probability distribution for the lifetime of an mRNA.
The stochastic description of mRNA decay after the interruption of transcription can be
discussed in a similar way. The corresponding Master equation for a time interval ∆t
after the interruption describes a pure death process,

dPk(∆t)

d(∆t)
= ωr (k + 1)Pk+1(∆t)− ωr k Pk(∆t) . (2.22)

Eq. (2.20) at t = ts serves as the initial condition of Eq. (2.22). Hereby, we can confirm
our result for Eq. (2.14) for the limit case of an exponential lifetime distribution with
constant decay rate via a Master equation.
The advantage and the principal reason for the choice of the approach in section 2.1 is
that it extends the formulation for arbitrary lifetime distributions φU . This cannot be
achieved with a Master equation. Note that in the appendix, section A.4, we scrutinize
how partial results of our general approach can be formulated with a Master equation.
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2.3. Age-dependent degradation rate

The aim of this section is to show how one can reinterpret the results for general lifetime
distributions as an age-dependent degradation rate.
The extension to arbitrary mRNA lifetime densities φU means that the rate of degradation
ωdeg is no longer constant. Rather the degradation rate ωdeg changes during the lifetime
of an mRNA which can be formulated as an age-dependent rate ωdeg(a). This reflects
aging of the mRNA molecules and in chapter 3 we will discuss the origins of the molecular
aging.
In the following, we shall derive how the age-dependence is related to the mRNA lifetime
densities φU . Consider a newly synthesized mRNA (with a = 0). The probability ℘(a)
that the mRNA is still intact at age a obeys

℘̇(a) = −ωdeg(a)℘(a) . (2.23)

We can find the solution via integration and assuming the initial condition ℘(0) = 1.
Hence we obtain

℘(a) = exp

(

−

∫ a

0

dτ ωdeg(τ)

)

. (2.24)

As the cumulative probability is related via ΦU(a) = 1 − ℘(a), we have

ΦU(a) = 1− exp

(

−

∫ a

0

dτ ωdeg(τ)

)

. (2.25)

According to Eq. (2.2) the derivative of Eq. (2.25) gives the probability density

φU(a) = ωdeg(a) exp

(

−

∫ a

0

dτ ωdeg(τ)

)

. (2.26)

Rearranging finally leads to

ωdeg(a) =
φU(a)

1− ΦU(a)
. (2.27)

Thus, this well-known result shows that every lifetime probability density can be trans-
lated into an age-dependent degradation rate. We will use this concept in chapter 3 when
we discuss the degradation of mRNAs and its mechanisms in more detail. It is important
to note that the degradation rate depends on its age, i.e. on the time elapsed since its
synthesis, as opposed to a dependency on a global time. It is this what makes it a very
interesting quantity to describe molecular aging.
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2.4. Continuous-time Markov processes

In section 2.1.2 we have already introduced the Poisson process - it is a typical example
of a continuous-time, discrete-state Markov chain. There, the state X(t) takes discrete
values and transitions between states occur at continuous times t. In appendix D we will
also discuss a non-homogeneous Cox process, where values of the intensity parameter will
fluctuate in time according to a Markov chain. In this section, we will review some more
concepts of continuous-time Markov chains that will prove useful in this thesis.

Motivation In the derivation of the distribution of the mRNA number as well as age
and residual lifetime distribution, we stressed on the fact that the formulation holds for
general lifetime probability densities φU . Nevertheless, for any concrete comparison of
the theory to experimental data, we need to define an adequate, specific form of φU . As
we will see, continuous-time Markov chains will prove useful to describe the stochastic
changes between states. In particular, we will define φU as the probability density of the
random time to reach an absorbing state. In this section, we will introduce the concepts
necessary to compute φU . In chapter 3 we will explain in more detail how we relate
Markov chains with biochemical processes related to the degradation of mRNA.

General formulation Markov chains consist of discrete states i which are connected via a
network of transitions. The Markov property expresses the assumption that the transition
probability from one state to another depends only on the corresponding transition rate
and not on the history of previous steps. In continuous-time Markov chains, the waiting
time at each time is a continuous quantity and the frequency of transition is given by an
exponential probability distribution with a corresponding rate.
In order to study Markov chains, we apply the generator formalism that is built on matrix
algebra - in the literature also the term phase-type distributions is used [37]. Note that
one can also obtain a recursive solution from a Master equation.
The transition rate matrix is defined as

Q ≡

(

S S0

0 0

)

. (2.28)

The matrix S denotes the inner transitions between the transient states and the matrix
S0 the transitions to the absorbing states. These two matrices obey the condition

S0 ≡ −S 1 , (2.29)

so that all rows sum up to zero. The symbol 1 is a column vectors of ones, 1 ≡
(1, 1, · · · , 1)⊺.
One can compute the cumulative distribution function of the time until absorption [37]
as

Φ(t) = 1−α exp(S t)1 . (2.30)

Here, α is a row vector containing the initial conditions. Hence, the result is a scalar
function of t. The probability density function reads

φ(t) = α exp(S t)S0 (2.31)
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Figure 2.2.: Visualization of a Markov chain of n discrete states. Transitions from a state i
to the state i + 1 are governed by a rate λi. Moreover, from each state i a transition to the
absorbing state is possible with a rate µi. We are interested in the time to absorption which
we map to the lifetime probability density φU (chapter 3).

It is our goal to compute the density φ(t) for any desired form of a Markov chain. We
will identify φ(t) with the lifetime probability density φU .

Network of states with one absorbing state In the following, we consider a Markov
chain with n transient states and one absorbing state, see figure 2.2. One realization of
a Markov chain consists of transitions from each state to the following and a transition
from each state to the absorbing state with different rates. In the following, we denote
the transition rates from a state i to the state i+ 1 with λi. The transitions from a state
i to the absorbing state are described by the rate µi. Hence, the matrix S takes the form

S =















−µ1 − λ1 λ1 0 0
0 −µ2 − λ2 λ2 0
...

...
. . . . . .

0 0 −µn−1 − λn−1 λn−1

0 0 0 −µn















(2.32)

and the vector S0 is given by

S0 = (µ1, µ2, . . . , µn−1, µn)
⊺ (2.33)

For any concrete computation of the absorption probability density φ(t), we have to
define an appropriate initial condition α. In view of the later application of this model,
the initial conditions generally assumed here reads

α = (1, 0, · · · , 0) . (2.34)

The main task is to find the matrix exponential exp(S t) defined as

exp(S t) =
∞
∑

k=0

1

k!
Sktk . (2.35)
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For this simple system, diagonalization is always possible for arbitrary numbers of tran-
sitions. For a large number of transitions, the resulting expression will be lengthy but
takes a much simpler forms if some rates are the same. Once the matrix exponential is
known, the corresponding probability density functions φ(t) can be computed according
to Eq. (2.31).

Example cases The probability density φ(t) takes the simple form of an exponential with
a single rate constant if one rate λk is much smaller than all others (e.g. λk ≪ λi , µi) or if
µi = µ ∀ i. The same is true for the trivial cases where λ1 ≪ µ1 or n = 1. Another simple
solution consists in setting µ1 = µ2 = · · · = µn−1 = 0, i.e. absorption is only possible from
the last state. If furthermore λi = λ ∀ i, the probability density function takes the form of
a Γ-distribution. We will use this case later as an generic example for a multi-step process
(see chapter 4). In the case that µ2 = µ3 = · · · = µn = µ the probability of absorption is
the same in all states. Therefore, transitions between non-absorbing states play no role
and the probability to absorption takes a relatively simple form that is independent of
the number of transient states n. Some specific forms of the function φ(t) that we will
apply in chapter 3 are given explicitly in the appendix (see section B.2).

Markov chains and molecular aging In section 2.3, we discussed that general forms of
φU lead to an age-dependent degradation rate. The latter provides a theoretical concept
to describe molecular aging. Moreover, as will become more clear in the subsequent
chapters of this thesis, Markov chains prove useful to visualize the aging of molecules.
As the age of a molecule increases, it will undergo modifications that can be understood
as transitions on a Markov chain. Therefore, older mRNAs have a higher probability of
being in a more advanced state. Since mRNAs sampled at different time points have
a different age distribution (see above), also the probability of finding an mRNA in a
specific state is time dependent. In chapter 4, we will see how aging can be related to
different states in the Markov chain.

Short summary Markov chains are a useful tool to capture the stochastic behavior of
processes consisting of multiple, random steps. Here, we presented an approach where
the chain connecting subsequent transient steps is linear and only one absorbing state is
present. However, the concept is more general and can be extended to more complicated
networks of states. The network should also reflect the existing knowledge of the random
process and the desired resolution.
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2.5. Simulation techniques

In the previous sections of this chapter we have developed a powerful analytical framework
that allows studying the evolution of the number of mRNA under different conditions.
Additionally, one can perform stochastic (Monte-Carlo) simulations to study the turnover
of mRNA. It is a means to illustrate the mathematically described processes but also a
way to confirm our computations. Furthermore, we can use computer simulations in
combination with our theory of degradation to study the process of translation. Finally,
we will use stochastic simulations when we conceive more detailed models that are no
longer analytically tractable.
Monte-Carlo simulations are frequently used to study different stochastic phenomena (in
absence of an analytical theory). Gillespie was one of the first to prove that they provide
an alternative to analytic solutions of a Master equation [38]. With the advent of more
powerful computers, they were readily applied to gene expression [33, 4, 39]. However,
the Gillespie algorithm - as it is commonly used in applications - relies on exponentially
distributed random variables and our theory goes beyond this by considering arbitrary
lifetime distributions. Additionally, we investigate translation with related simulation
techniques, commonly referred to as TASEP (Totally antisymmetric exclusion process)
[40, 41, 42]. From the side of analytical theory TASEPs have been described in detail
[43].

2.5.1. Simulation of mRNA turnover

One can interpret figure 2.1 as one realization of a stochastic simulation of mRNA
turnover. The time points of the origination events are sampled from randomly gen-
erated exponential numbers and iterate the time by increments δt. For each origination
event, the lifetime is a priori determined from another random number sampled from a
lifetime distribution. The variable X counts the transcription events, the array Start()
stores the transcription time points and End() the degradation times. Therefore, for each
realization one can keep track of the live mRNAs. The simulation ends after a preassigned
run length T has been reached.
One can express this more formally via the following algorithm:

Basic mRNA turnover algorithm

set t = 0, X = 0
while t < T

generate δt
set t = t+ δt
set X = X + 1, Start(X) = t
generate U , set End(X) = t+ U

This simple algorithm can be used to check our computations. Furthermore, it can
be straightforwardly extended to simulate the protein turnover and non-homogeneous
transcription (see appendix sections A.6 and D as well as section 5.2). Additionally, it
can be adapted for a more detailed model of the cell cycle (section 5.3).
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2.5.2. TASEP simulations

A TASEP simulation (Totally antisymmetric exclusion process) can be used to understand
the process of translation. There, ribosomes bind to an mRNA with an initiation rate ωon

and walk on a homogeneous chain with an elongation rate v. For each ribosome i on the
chain as well as the pool of ribosomes waiting to initiate translation, one can determine
the time of the next event by a random number generator. An event consists either in
the attempt of a ribosome to progress by one codon or - in the case of initiation - in
the attachment of a ribosome to the first site of an mRNA. The attempt is, however,
only successful if the site is empty, i.e. not occupied by another ribosome. Finally, after
reaching the last codon, the ribosome detaches since it has completed the synthesis of a
polypeptide. Furthermore, the ribosomes are modeled as extended objects of size l since
they typically occupy more than one codon (in fact, typically 10 codons [44, 45]).
An algorithm for a TASEP simulation is given in section A.6.

2.6. Chapter summary

In this chapter, we have learned how the process of mRNA turnover can be theoretically
described for general lifetime distributions. This extends the standard description with
a Master equation and provides a powerful framework for modeling mRNA turnover
and decay. We found that the mRNA number distribution before and after the stop of
transcription is Poissonian regardless of the choice of the lifetime distribution (see Eqs.
(2.9) and (2.14), respectively). Eqs. (2.10) and (2.15) describe the time-dependence of
the parameter of the distribution. Moreover, in section 2.1.5 we explained how related
quantities such as the age and the residual lifetime of an mRNA can be derived. To find
appropriate mRNA lifetime distributions, we introduced continuous-time Markov chains.
Here, we map biochemical transformations of the mRNA molecules into a network of
states. The computation of the time to absorption gives the desired lifetime probability
density. Finally, we have outlined how Monte-Carlo simulations can aid to confirm and
extend the analytical approaches introduced here. All of the concepts introduced here will
be applied in the subsequent chapters. Most of the methods introduced in this chapter are
a review of textbook material. Nevertheless, to the best of our knowledge, Eqs. (2.14),
(2.17) and (2.18) are original results of this work. Moreover, the connection of the mRNA
lifetime distribution to the absorption process of a Markov chain (figure 2.2) has been
formulated for the first time here.



3. Decay of the amount of mRNA

In this chapter, we elaborate how the theory we introduced in chapter 2 can be used
to study mRNA decay experiments. Thereby, we can improve the analysis of decay
experiments and establish the link between the decay experiments and the underlying
biochemical processes leading to decay. In the first part, we provide general implications
for mRNA decay (section 3.1). In section 3.2, we apply our theory of multi-step degra-
dation to studies on S. cerevisiae. In section 3.3, we develop a concrete model for the
degradation in the bacterium E. coli (section 3.3).

3.1. General results

As mentioned in the introduction, the stability of mRNA is typically experimentally
assessed via the interruption of transcription. An antibiotic such as rifampicin or actino-
mycin D which blocks the further synthesis of mRNAs is introduced to the cell culture.
Hence, the mRNAs that are present in the cell decay thus allowing to conclude about the
stability of the mRNAs for a given gene. An alternative procedure is based on metabolic
labeling. When a heavy or radioactive nucleotide is incorporated into the cells, one can
distinguish mRNA transcripts synthesized before and after the incorporation of the label
(e.g. due to their different weight). Therefore, the previously synthesized mRNAs decay
similarly to those mRNAs after the complete inhibition. The advantage of the latter
method is that it is thought to perturb the cell metabolism to a much lesser extent. In
the following, we will refer to all techniques as the stop of transcription.
In chapter 2, Eq. (2.14), we found that the number of mRNAs after the stop of transcrip-
tion is described by a Poisson distribution

Pr{Y (ts +∆t) = k | X(0) = 0} =
[ωtcH2(ts +∆t)]k exp [−ωtcH2(ts +∆t)]

k!
,

with the time-dependent parameter given in Eq. (2.15)

H2(ts +∆t) =

∫ ts+∆t

∆t

du (1− ΦU(u)) .

For the analysis of the experiments we are interested in the average mRNA number which
is given by ωtcH2(ts + ∆t). In the following, we will assume that the cells were growing
long enough to have reached a steady state mRNA level prior to the stop of transcription.
Hence, we consider the limit case ts → ∞1. Thus, the number of mRNAs after the stop

1With our general formalism one could easily adapt the following analysis also to the case when the
steady state assumption was not met (see also appendix, section B.1).
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of transcription reads

Nr(∆t) ≡ N↓
r (∆t) ≡ ωtc

∫ ∞

∆t

du (1− ΦU(u)) . (3.1)

We can normalize this relation to define the relative number of mRNAs

Λ(∆t) ≡
1

〈U〉

∫ ∞

∆t

du (1− ΦU(u)) . (3.2)

Hence, the decay pattern is governed by the lifetime probability function ΦU(u) and its
average value 〈U〉 - note, however, that it is independent of the transcription rate. In
Eq. (2.2) we previously defined ΦU(u) =

∫ u

0
dt φU(t), which gives the probability that an

mRNA has a lifetime smaller or equal than u.
The half-life t1/2 can be computed by solving

Λ(t1/2) ≡ 1/2 . (3.3)

We can make some general inferences about the form of the decay pattern regardless
of the details of the mRNA lifetime distribution. From the first derivative of Λ we can
conclude

dΛ(x)

dx
= −

1− ΦU(x)

〈U〉
≤ 0 , (3.4)

since the cumulative probability function always satisfies ΦU(x) ≤ 1. Hence, the mRNA
amount should decay monotonically as should be intuitively clear. Furthermore, an anal-
ysis of the second derivative of Λ shows also that

d2Λ(x)

dx2
=

φU(x)

〈U〉
≥ 0 , (3.5)

which implies that the decay pattern is always convex.
Given the model independent nature of the relations (3.4) and (3.5), all experimental
data about mRNA decay must satisfy the following bona-fide criteria:

• the mRNA amount is monotonically decreasing in time

• the decay pattern is always convex

Indeed, when we compare our theory with experimental data, we will use these criteria to
exclude implausible data sets. Often, decay patterns show different behavior which might
hint to the perturbing nature of the decay experiments including transcription inhibition.
Experimental decay data always measure the mRNA abundance at discrete time points.
Therefore, to analyze the validity of these necessary conditions, in practice one would
have to consider the discrete analogues of the first and second derivative. Given the
limited temporal resolution and the noisiness of the experimental setups, one should lift
the criteria to some extent and include a certain error tolerance. In any case, from the
theoretical point of view, data that do not exhibit both of these properties should involve
additional processes that interfere with degradation.
Given a decay pattern, Eq. (3.2) also shows how one can in principle infer the lifetime
distribution directly from the decay data. Thus, Eqs. (3.2) provides a method how one can
measure indirectly the lifetime probability density φU of an mRNA species. Practically,
however, a very high number of recorded time points is necessary to determine the mRNA
lifetime distribution accurately.
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3.2. Multi-step degradation in yeast

Any mRNA decay pattern should reflect the molecular mechanism of its degradation.
Therefore, the ultimate goal is to build a consistent theoretical description which reflects
the degradation pathways and successfully describes the outcome of a decay experiment.
In the light of our theory, the quest lies in formulating the correct lifetime distribution
function ΦU .

3.2.1. Idea of multi-step degradation

In the introduction, we have outlined various biochemical mechanisms that are responsible
for degradation. In each organism, degradation is a complex process that involves a
multitude of different enzymes, many of which appear in degradation complexes. Different
mechanisms compete and each one of them may consist of several rate-limiting steps.
Hence, for the regulation of the stability of an mRNA of a given gene, various enzymes
are responsible. Furthermore, the concentration of each enzyme and their physicochemical
characteristics should determine the efficiency and therefore the corresponding rates.
To link these criteria to the lifetime distribution of an mRNA species, we use a Markov
chain model which we introduced in section 2.4. We imagine that each mRNAs undergoes
a series of biochemical modifications occurring at random time points during its lifetime.
Moreover, each modification might alter the efficiency of degradation of that mRNA. The
different states of a Markov chain represent the mRNA after certain modifications and
the mRNA makes transitions from one state to another with a rate that represents the
biochemical process that govern these transitions. Furthermore, at each state the mRNA
can be degraded with a rate that is related to its biochemical affinity to the degrading
enzymes in that particular state. The lifetime probability density φU can be computed
from the time to absorption (see also figure 2.2). In general, however, the Markov chain
does not have to be a linear chain as visualized there.
Therefore, to find an optimal φU , one would have to identify the relevant modifications
and construct an appropriate state network. Next, one would need to estimate the rates
of the transitions and degradation from experiment.
To unveil all possible pathways and the corresponding modifications including their rates
seems far from practice. Nevertheless, the advantage of this approach is that one can
construct different models of degradation and verify or falsify them via the comparison
to experiment. One can start with simple assumptions and then increase the accuracy of
the description step-by-step.

Decapping as an example

To illustrate these general ideas, we want to analyze how one can map the decapping
mechanism to a Markov chain (see figure 3.1).
The decapping mechanism is thought to be the most important degradation pathway
in eukaryotic organisms such as yeast but also in higher organisms [14]. It consists of
several distinguishable steps. First, an mRNA has to be targeted for degradation, thus
the enzyme complex (possibly including micro RNAs) must encounter the molecule via
diffusion. Next, an enzyme complex (such as the PAN2-PAN3 complex) digests the
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Figure 3.1.: The decapping mechanism of mRNA degradation. Shown is a concrete
realization of the Markov chain model for the decapping mechanism. Each transformation
from one state to another occurs with rate λi. From the decapped state, the transcripts can be
degraded via 5′ → 3′ exonuclease with rate ν and 3′ → 5′ exonuclease with rate κ. At all times,
there is also a competing degradation pathway which is initiated endonucleolytically with a
rate µ. The description contains three absorbing states but can be reduced to one absorbing
state with one degradation rate at each state.

poly(A) tail of the mRNA, leading to the deadenylation of the mRNA, which occurs
at a certain rate. Additionally, also the enzyme needs to encounter the mRNA which
is governed by another random waiting time. Once the poly(A) tail is short enough,
decapping is performed via the action of the decapping enzyme DCPL with yet another
rate. Finally, exonucleolytic degradation occurs in 5′ → 3′ direction behind the last
translating ribosome [14, 17].

Each of these steps occurs with a certain rate associated with a random waiting time.
The waiting time itself is governed by the diffusion time across the cell and the time scale
of catalytic activity. Additional steps may occur between each of the steps enlisted here.
However, an adequate resolution has to be chosen for the description and only the rate
limiting steps have to be considered. An example for different resolution can be given
in this case by considering deadenylation as either a single-step process or as the sum of
individual A-removing steps.

Furthermore, alternative pathways can influence the stability of the mRNA, for instance
in this case 3′ → 5′ exonuclease after decapping or also endonucleolytic degradation even
before decapping [14]. We can include the latter by allowing degradation at all times
even before decapping. Therefore, there is a transition to the absorbing state from each
state with a certain rate. The 3′ → 5′ pathway can also be incorporated by adjusting the
absorption rate after decapping.

Therefore, to construct such a network of transitions, one has to carefully choose which
steps to consider. Ideally, the associated rates can also be inferred from experiment.
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3.2.2. Model specification

In the present chapter, we want to illustrate how the Markov chain model can be applied to
study decay experiments. Since the exact pathways for each different gene are unknown,
we distinguish, in the following, between single-step and multi-step degradation. On the
one hand, we consider endonucleolytic degradation, such as depicted in figure 1.2 B, as a
prototype of single-step degradation. On the other hand, we regard the decapping mech-
anism shown in figure 1.2 C as a prototype of multi-step degradation. As outline above,
our theory is able to capture the essential features of different pathways of degradation
and, thus, allows interpolating between single-step and multi-step degradation pathways.
Hence, mRNA degradation can be studied mathematically as a continuous-time Markov
chain (see section 2.4). The lifetime distribution will resemble an exponential function if
there is only one rate limiting process relevant for degradation, like for instance in figure
1.2 A. Conversely, the lifetime distribution will have a more complicated form if several
biochemical modifications are necessary, like for instance in figure 1.2 B, and it will be
directly related to the details of the particular degradation pathway.
For the multi-step description, we choose a linear Markov chain with 5 different states.
Such a model consists of up to 9 different rate constants that describe the different tran-
sitions. However, since the rates are unknown and a large number of free parameters
renders a comparison to data trivial, we restrict the number of free parameters in the
concrete formulation of the model to three (see figure 3.2). In absence of more detailed
knowledge of the rates, we consider that all transitions between states occur with the
same rate λ. In the following we distinguish between two possibilities for the degradation
rate, namely either setting µi ≡ µ for ∀ i < 5 and µ5 ≡ ν (case A) or assuming µ1 ≡ µ and
µi ≡ ν for ∀ i > 1 as well as µ > ν (case B). Furthermore, in some cases it proved useful
to set µ = 0 (in case A) or λ = ν (in case B) to reduce the number of free parameters and
thus to improve the search for a global minimum in the fitting algorithm when comparing
the theory to experimental data. The analytical result for the lifetime density is given in
section B.2 in the appendix.

3.2.3. General results

From the concrete realization of the Markov chain model, we can compute the lifetime
probability density φU(t) and the distribution function ΦU(t) and insert it into Eq. (3.2).
This fixes the functional form of the theoretical decay function Λ(∆t) after stop of tran-
scription. To determine the unknown parameters λ, µ and ν, we devised a fitting proce-
dure based on non-linear regression.
For each measured time point in the experiment carried out on the yeast S. cerevisiae
[27], we reduce the root mean square difference between the data and our theoretical
curve Λ(∆t). Thus, we obtain the optimal parameters as well as the fitting error (more
precisely the residual sum of squares) for each gene. Furthermore, we can compare the
outcome of this analysis with a competing model of single-step decay.
However, large parts of the data bear obvious errors as they are not bona-fide, namely
they do not satisfy the conditions (3.4) or (3.5). Even after putative interruption of
transcription, some mRNAs do not decay at all but their level increases. Besides, many
mRNA patterns exhibit non-convex profiles. This might indicate general problems in the
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Figure 3.2.: Markov chain model in practice. For the practical analysis of multi-step
degradation, we use a model with 5 states where, for simplicity, we assume always the same
transition rate λi ≡ λ. Degradation is possible from all states. To reduce the number of free
parameters, we assume moreover either µi ≡ µ for ∀ i < 5 and µ5 ≡ ν (case A) or µ1 ≡ µ and
µi ≡ ν for ∀ i > 1 as well as µ > ν (case B).

quantitative measurement in these types of experiments where transcription is blocked
globally. However, the limited temporal resolution of the experiment, the precision of
the microarray detector and the inherent fluctuations of the mRNAs should be accounted
for. Hence, we restrict the analysis to those data sets that meet these criteria within a
reasonable tolerance (see appendix section B.1).

We find 424 nearly bona-fide data sets, 315 of which have a very low fitting error (residual
sum of squares r2 < 0.005). In figure 3.3 we display the decay patterns as obtained from
our fitting procedure for the subset of the 315 well described genes. The decay patterns
can be divided into three different categories. If the fitting of the Markov chain model
leads to a negligible improvement of the fitting error compared to a model based on
a constant decay rate, the assumption of an exponential decay with constant rate is
reasonable. Conversely, if one of the two possible variants of the Markov chain model (see
cases A and B above) leads to a substantial refinement of the fitting result, we can assign
these data sets to different categories. We find that 36 mRNAs decay exponentially in
a good approximation (black curves in figure 3.3). Thus, only in a minority of the cases
a description with a constant decay rate is valid. For 69 mRNAs we conclude that they
decay slowly in the beginning of the experiment followed by a faster decay at larger
times (blue). Moreover, the majority of the mRNAs, namely 210 (red), decay faster than
exponential, i.e. a very rapid decay at short times is followed by a more moderate one at
later times.

All of our theoretical curves improve the fitting error compared to an single-step model.
This is clear since we introduced more parameters and the shape of the decay pattern can
be more accurately described.

In the following, we want to discuss two exemplary cases, where each one of them repre-
sents one of the non-exponential categories in figure 3.3.
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Figure 3.3.: mRNA decay patterns in S. cerevisiae. The patterns are obtained from a
systematic fit of our model, i.e. Eqs. (3.2) and (2.31), to the experimental data from ref.
[27]. The curves show the theoretical decay patterns that minimize the deviation between
theory and experiment. Note that the experimental data points are omitted here for better
legibility. The left panel shows 36 fitted curves that decay exponentially in good approximation.
Conversely, 69 curves show a moderate decay followed by a fast decay (central panel) and 210
curves decay rapidly at short times and then level off (right panel). Hence, this shows that the
purely exponential decay is only one of several possible decay patterns. For this visualization of
different categories we considered data that were bona-fide (see above) in a good approximation
and with a very low residual sum of squares r2 < 0.005 obtained from the model fit. Moreover,
in the central and right panel we highlighted a number of decay patterns that display a strong
contrast to an exponential decay.

3.2.4. Exemplary decay patterns

In figure 3.4 A, we analyze two instructive examples from the experimental decay patterns
in figure 3.3: The mRNA encoding MGS1 (Maintenance of Genome Stability 1, red) and
the constitutive acid phosphatase precursor (PHO3, blue). A comparison between the
best fit with an exponential function and the best fit with our model shows that the
latter is clearly more accurate than a single exponential in describing the decay profiles
over the entire time course of the experiment. Furthermore, in the case of MGS1 mRNA,
the fit reveals a half-life t1/2 which is substantially smaller than the estimated half-life
from an exponential fit. This shows also that a measurement of the half-life t1/2 is, in
general, not a good measure of the average lifetime 〈U〉 of the mRNAs and thus fails to
predict the decay rate accurately. In fact, a constant decay rate does not exist at all if
the lifetime distribution is not exponential (see Eq. (2.27)).

3.2.5. Age-dependent degradation rates

Figure 3.4 A reveals, indeed, that for MGS1 degradation of the corresponding mRNA
becomes less efficient during the lifetime of the molecule. Conversely, for PHO3 mRNA
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Figure 3.4.: mRNA decay patterns and lifetime distributions. (A) Two different exper-
imental decay patterns are reproduced from [27] (circles) corresponding to the genes MGS1

(red) and PHO3 (blue) of S. cerevisiae. The solid lines represent decay patterns as calculated
by the Markov chain model via Eq. (3.2) and the corresponding rates are estimated from a
non-linear regression analysis (see section 3.2.3 above). For comparison, we also show a fit
with a simple exponential function (dashed lines) which is clearly not suitable to capture the
entire information of the degradation process. In particular, the exponential fit for the red
data points suggests a half-life (intersection with the horizontal line) that is almost twice as
large as the true half-life. (B) The corresponding lifetime densities φU are derived from the
fitted rates by inverting Eq. (3.2). Evidently, both densities differ strongly from an exponential
distribution indicated by the dashed lines. While the red line shows a rapidly decaying lifetime
distribution, the blue line is broadly distributed, with a clear maximum at an intermediate
time.

degradation becomes effective only after a transient time. In both cases we conclude that
the effective degradation rate ωdeg depends on the age a of the mRNA. This relationship
can be expressed as Eq. (2.27) in section 2.2,

ωdeg(a) =
φU(a)

1− ΦU(a)
,

which is often referred to as the hazard or failure rate in the literature [30]. Figure
3.5 illustrates the age-dependence of the degradation rates for the curves in figure 3.4.
Clearly, the degradation rate varies greatly during the lifetime of the depicted mRNAs.
Indeed, it can either decrease or increase, depending on the particular mechanism that is
responsible for degradation.

3.2.6. Signature of aging in mRNA decay experiments

In chapter 2 we have introduced the residual lifetime of an mRNA. It allows to characterize
the aging of mRNAs sampled from a cell population at any time interval ∆t after the
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Figure 3.5.: Effective degradation rate ωdeg(a) as a function of the age a of an mRNA.

The lifetime distribution of an mRNA can be translated into an age-dependent degradation
rate ωdeg(a) via Eq. (2.27). Here, we illustrate the change of the degradation rate during the
lifetime of an mRNA for the two decay patterns shown in figure 3.4. For the mRNA encoding
MGS1 (red), the degradation rate is high for young mRNAs and decreases to a constant value
after some transient time. In contrast, for PHO3 mRNA (blue), the degradation rate is close
to zero upon birth of the mRNA and increases gradually to a constant value. For comparison,
the constant rates corresponding to a fit of the decay data with purely exponential functions
(dashed lines) are also included.

stop of transcription. For the present case, we are interested in the limit case ts → ∞ of
Eq. (2.18),

φR (r | ∆t) =
1− ΦU(∆t+ r)
∫∞

∆t
dt (1− ΦU(t))

. (3.6)

A simple integration of this quantity shows that if φU is exponential then φR = φU . This
is trivial due to the memoryless property of the exponential distribution. Nevertheless,
for any other functional form of φU , we find that φR is a non-trivial function. The average
residual lifetime is determined by the integral

〈R(∆t)〉 =

∫ ∞

0

dr r φR (r | ∆t) , (3.7)

for any ∆t ≥ 0. As we shall see, this expression enters into the determination of the
residual protein synthesis capacity.
The residual lifetime of a given mRNA is the remaining time until it is degraded. The
average residual lifetime in a sample of mRNA can be easily computed both at the begin-
ning of the experiment, namely at steady state, and during the decay assays if one knows
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Figure 3.6.: Average residual lifetime and residual protein synthesis capacity. In
panel A we see the evolution of the residual lifetime as a function of the interval ∆t following
the interruption of transcription for MGS1 (red) and PHO3 mRNA (blue). Under steady state
conditions, i.e. ∆t = 0, both have similar residual lifetimes. However, when the synthesis of
mRNAs is stopped, the remaining mRNA population ages. Hence, the residual lifetime of
MGS1 mRNA increases since the remaining mRNAs have been stabilized (see figure 3.5). On
the contrary, for PHO3 mRNA the average residual lifetime decreases. Only for exponentially
distributed lifetimes (dashed lines) the average residual lifetime stays constant. This is due to
the special memoryless property of the exponential distribution. In panel B we plot Eq. (3.8),
which is proportional to the amount of proteins that will be produced by an average mRNA
from the sample. In this semi-log plot we see that the residual protein synthesis capacity
decays exponentially if the mRNA has an exponential lifetime distribution (dashed lines) but
decays differently if the process of degradation is more complex.

the residual lifetime distribution. In figure 3.6 A we show the behavior of the average
residual lifetime 〈R(∆t)〉 as a function of the time interval ∆t following the interruption
of transcription for the two mRNAs discussed in figure 3.4. We see that the average
residual lifetime changes with time due to the aging of the mRNA population after the
stop of transcription. This is a consequence of the non-constant degradation rate in figure
3.5. Because the remaining mRNAs are older, their average degradation rate has changed
and, thus, the average residual lifetime can increase (MGS1 ) or decrease (PHO3 ). Only
mRNAs with exponentially distributed lifetime show no aging and a constant residual
lifetime (dashed lines).

The residual lifetime affects the number of proteins that can be synthesized by the remain-
ing mRNAs at any given point in time. Thus, the residual lifetime enters in the assays
aimed to measure the so-called functional lifetime which is an additional experimental
method to determine the stability of mRNAs [31, 46]. If one assumes that aging does not
affect the ribosomal traffic, the residual protein synthesis capacity of an average mRNA
still present at a time ∆t after the stop of transcription can be defined as

C(∆t) ≡
Nr(∆t) 〈R(∆t)〉

Nr(0) 〈R(0)〉
. (3.8)
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It is proportional to the number of remaining mRNAs and their corresponding average
residual lifetime at any time ∆t after the interruption of transcription. Note that we
normalized Eq. (3.8) such that C(0) ≡ 1.
The plot of the residual protein synthesis capacity is shown in figure 3.6 B. Note that only
for exponentially distributed lifetimes the synthesis capacity follows an exponential decay
since only in this case 〈R(∆t)〉 is a constant. Conversely, for more complex degradation
processes, mRNA stability experiments based on the functional lifetime are affected by
the same issues as the other procedures discussed above. Indeed, as figure 3.6 B indicates,
the residual protein synthesis capacity does not decay strictly exponential for MGS1 and
PHO3 mRNA.

Short summary

In this section, we have learned how the general theory of mRNA turnover as introduced
in chapter 2 can be linked to mRNA decay experiments. We have devised a strategy
based on Markov chains. Transient biochemical modifications of the mRNA molecules
are mapped to different states and the degradation rate from each state can be different.
We could improve the analysis of an experiment on S. cerevisiae by finding more accurate
decay patterns. We have obtained different categories of decay patterns that clearly show
that the exponential decay is only an exceptional case. Furthermore, we could show how
additional information, the residual lifetime and the residual protein synthesis capacity,
can be obtained from the analysis of the age-dependent degradation rate.
All the material presented in sections 3.1 and 3.2 is original and is presented in a
manuscript currently under review.
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3.3. Model of endonuclease in bacteria: Effect of

ribosome shielding

In the following, we develop a model of degradation that is designed to match the bio-
chemical mechanisms in E. coli. It relies on the general formalism we developed in chapter
2 and on the general findings of section 3.1. However, here we will pursue the inverse
approach to define the lifetime distribution function ΦU(t). We will build a mechanistic
model on the basis of an age-dependent degradation rate that allows us to obtain ΦU(t).

3.3.1. Introduction and motivation

In contrast to eukaryotes, in bacteria such as E. coli degradation is known to proceed
primarily endonucleolytically. Therefore, one might argue that in this case a first-order
kinetic model would be sufficient to describe the experiments. However, also in several
experiments in bacteria it has been found that exponential decay is only one of many
different decay patterns [28, 29]. Furthermore, also in bacteria it is persuasive that the
mRNA molecules are subject to aging. In particular, in E. coli the enzyme RNase E
and its homologues are believed to initiate the main pathway of mRNA degradation [14].
The action of RNase E consists of cleaving the mRNA in the coding region. Once this
has been accomplished, a series of further steps including exonucleolytic digestion and
endonucleolytic cleavage follows. Since the subsequent steps are fast, it is the initial step
that determines the stability of mRNAs.
The activity of the ribonucleases is, however, not independent of the translational state of
the mRNA. First, it was shown experimentally that the stability is dramatically improved
when the mRNA is well covered by ribosomes mRNA [47, 48, 49] because the coverage
by the ribosomes shields the mRNA from the action of the endonucleolytic enzymes such
as RNase E. Secondly, ribosomal coverage of mRNA is itself a time dependent process. It
takes indeed a certain amount of time until the whole mRNA is covered by ribosomes and
thus to build a stable polysome [50, 42, 51]. During this period, which may be affected
by the degree of post-transcriptional translation, the stability of the mRNA changes with
time.

3.3.2. Model of endonucleolytic decay

A process known to influence the stability of the mRNA is the size of the polysome
[47, 48, 52, 53]. In the process of translation, ribosomes bind to the initially empty
(or naked) mRNA and start translation, thereby translocating the mRNA one codon at a
time. Only after a transient time tL the first ribosome has reached the stop codon and the
mRNA can be seen as fully covered by ribosomes. Hence, when mRNAs are younger than
tL, the leading part of the mRNA is uncovered by ribosomes. In a first approximation,
this time is determined by the ratio of the sequence length L of the mRNA and the
average elongation rate v of the ribosomes, i.e. tL = L/v. Note that in bacteria it is
possible that ribosomes bind to the mRNA prior to the completion of transcription [54].
In these cases, the time span tL to a full coverage would be reduced. In section 3.3.3 we
will further discuss this possibility (see below).
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Figure 3.7.: Illustration of the shielding effect. The nascent chain is initially not protected
by ribosomes and it is therefore more vulnerable to endonucleases. Once the process of trans-
lation has started, the ribosomes move along the chain and a larger fraction of the mRNA is
(partially) shielded. Only after a transient time the entire chain is covered by ribosomes and
hence less vulnerable to endonucleolytic degradation. The three displayed mRNAs are of age
a1 < a2 < a3, respectively.

The transient ribosomal coverage of an mRNA becomes important when degradation is
primarily determined by endonucleolytic attack, such as for example in many bacteria
[14], because the ribosomes would make it more difficult for the degrading molecules to
bind to the mRNA. In these cases, the degradation rate is not constant during the lifetime
of an mRNA but changes according to its age until the ribosomal coverage has reached
the steady state (see figure 3.7). The reason is that upstream of the leading ribosome the
mRNA is not entirely protected from ribonucleolytic attacks.

To model this phenomenon, we assign a degradation rate ωa to the more vulnerable,
uncovered part in front of the leading ribosome and a rate ωb to the partially covered
part behind the leading ribosome. The effective degradation rate of the mRNA depends
therefore on the relative size of each part and in the time interval tL it evolves from the
rate ωa to a constant rate ωb. Thus, we have mapped the effect of the dynamic shielding
of mRNAs by ribosomes into an age dependent degradation rate

ωdeg (a) =

{

ωa (1− a/tL) + ωb a/tL a < tL

ωb a ≥ tL ,
(3.9)

where a denotes the age of the mRNA.

In chapter 2 we have already demonstrated how such non-constant rates are related to the
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lifetime probability distribution. According to Eq. (2.26) in section 2.3 we can compute

ΦU(a) = 1− exp

(

−

∫ a

0

dτ ωdeg(τ)

)

, (3.10)

which, once inserted in Eq. (3.2), provides the decay pattern of the mRNA.

Confirmation of the mechanism with TASEP simulations

One would expect that the two rates ωa and ωb are interrelated since in both cases
degradation is mediated by the same endonucleolytic enzymes. In a first approximation,
the rate in the covered region ωb is reduced by the fraction ρ of mRNA that is physically
covered by ribosomes, i.e. ωb ∼ ωa(1 − ρ). Experiments suggest that this density is
usually relatively low [55], leading to a reduction of the degradation rate by not more
than 30 per cent due to the physical presence of ribosomes.
There are, however, a number of features that the theory based on the rates given in Eq.
(3.9) implicitly ignores. First, it neglects the dynamics of the translation process and
ignores the interaction between ribosomes as for example the possibility of traffic jams.
Secondly, the size of the degrading enzymes, its interaction with the ribosomes and the
varying distances (i.e. the available cleavage area) between the ribosomes are not properly
considered. To elucidate the role of these effects, we have performed TASEP simulations
[42, 41], where the motion of ribosomes along an mRNA is modeled as a stochastic
stepping on a linear, homogeneous chain (for more details about the simulation technique
see sections 2.5 and A.6). The ribosomes are considered as extended objects occupying 10
codons each and their interaction is governed by a hard core repulsion, i.e. two ribosomes
cannot occupy the same spot.
The simulation of degradation proceeds as follows. At each instant of the simulation,
either a ribosome moves or the mRNA is degraded. Which decision is taken - stepping or
degradation - depends on the random occurrence of events associated to the corresponding
rates. The stepping rate of the ribosome is given by an elongation rate - just as in a
regular TASEP simulation. Furthermore, the degradation rate changes in time and is
proportional to the total available cleavage area. Finally, whenever an mRNA is selected
for degradation, the simulation is stopped. The potential cleavage area is defined by the
part of the mRNA that is not covered by ribosomes. However, only stretches of mRNA of
a certain minimal length contribute to the cleavage area, which we set in the simulations
to 20 codons. This accounts for the size of the degrading enzymes and the steric repulsion
between enzymes and ribosomes.
As pointed out above, in the construction of our mechanistic model via Eqs. (3.9) and
(3.10), we had to ignore some of the dynamic properties of ribosome shielding. The more
detailed approach based on the computer simulations shows that the degradation rate
fluctuates over time with a different time evolution in each realization of this process,
whereas each realization corresponds to one single mRNA molecule (figure 3.8 A). The
average over a large number of realizations yields a time-dependence of the degradation
rate such as in Eq. (3.9), i.e. it decreases linearly until at a time tL it approaches a
constant value (see figure 3.8 A). Furthermore, each realization of the simulation has a
random run length which represents the lifetime of the mRNA. Thus, from a large sample
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Figure 3.8.: Time-dependent degradation rate and corresponding lifetime distribu-

tion. During the lifetime of an mRNA its degradation rate is not constant due to the dynamic
coverage with ribosomes. At each instant of a TASEP simulation, the positions of the ribo-
somes are different and hence the shielding of the mRNA changes with time. Consequently,
panel A shows that in a single realization of the stochastic process the degradation rate fluctu-
ates (green). Moreover, the rate tends to decrease as more ribosomes bind to the mRNA. An
average over 10000 TASEP simulations shows that after a transient time mRNAs reach a steady
state ribosome coverage and attain a constant degradation rate (red). Compared is the time-
dependent degradation rate as given in Eq. (3.9) with ωa = 0.25min−1 and ωb = 0.115min−1

(dashed black line). Both degradation rates are in very good agreement with each other which
allows to conclude that an analytic mean field description according to Eq. (3.9) is suitable to
describe the average dynamic shielding effect as obtained from the simulations. Here, we con-
sider an mRNA with a length of 1000 codons, an initiation frequency ωon = 0.33 s−1, average
ribosome velocity v = 10 codons s−1 and initial degradation rate ωa = 0.25min−1. In Panel B,
we compare the theoretical lifetime distribution as given by Eq. (3.10) (black dashed) with the
random lifetimes obtained from the stochastic simulation (red). For all lifetimes, both curves
completely agree. Moreover, for short lifetimes the distribution is described well by the single
rate constant ωa (cyan) whereas for large lifetimes by the rate constant ωb (magenta).

of realizations we can compute the lifetime probability distribution ΦU(t). Figure 3.8
B shows that the theoretical distribution as given by Eq. (3.10) completely agrees with
the results obtained from simulation. In the same figure, we show that the cumulative
distribution can be approximated by the single rate ωa for short lifetimes and by ωb for
large lifetimes. These model curves are obtained from Eq. (3.10) with constant decay
rates ωa and ωb, respectively. Nevertheless, the distribution for all lifetimes can only be
understood with a time-dependent degradation rate as given in Eq. (3.9).

Hence, the assumptions made in Eq. (3.9) are justified, as it gives the correct average
behavior of the stochastic simulation that was built to mimic the dynamic shielding effect
of ribosomes in more detail. Therefore, in the following we will use the mean-field model
described by Eq. (3.9) to compare our mechanistic model systematically to experimental
data.
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3.3.3. Comparison to experiment

With the functional form of the time dependent degradation rate Eq. (3.9), we are able
to compute the decaying amount of mRNAs after interruption of transcription, Λ(∆t),
via Eqs. (3.2) and (3.10). The function Λ(∆t) is a function of the length of the coding
sequence L, the average elongation rate v and the two unknown degradation rates ωa and
ωb.
We compared the theoretical decay curves arising from our model with experimental data
from E. coli [28] via a nonlinear regression analysis, as described in section 3.2. For the
subsequent analysis, we assume an average elongation rate v = 600 codons per minute
which is a typical value for E. coli [56, 57]. The length of the coding sequence L is obtained
from the genome analysis of E. coli [58]. Similar to the data obtained from yeast, part of
the data bears obvious errors - for some genes transcription seems not to be fully inhibited
since the mRNA levels are rising. Additionally, as we have pointed out already in section
3.1, the decay pattern should exhibit a positive curvature. Therefore, we restrict the
current analysis to data that meet these criteria within a limited margin of error. For
each gene, we minimize the residual sum of squares between the experimental decay data
and the theoretical curve given by Eq. (3.2). Thereby, we obtain the previously unknown
degradation rates ωa and ωb. For comparison, we also perform the same analysis with a
constant degradation rate.
In figure 3.9, we show three exemplary cases of the decay patterns obtained from a fit
to experimental data. Clearly, the model fit based on ribosome shielding, Eqs. (3.9) and
(3.10), (solid lines) is much more accurate than a description with constant rate (dashed
lines). The three examples represent mRNAs of different length. Hence, they need a
different time interval tL until reaching a steady state ribosome coverage. Only for times
larger than tL the decay follows an exponential curve with constant rate ωb.
In figure 3.10 we give an overview of the variety of decay patterns that we have obtained
through the fitting process. From the 220 mRNAs analyzed here, only 74 decay expo-
nentially. In most cases it was found that a steep decay at short times is followed by a
slower decay at later times. Thus, as figure 3.10 reveals, the ribosome shielding model
yields a much larger variety of decay patterns as compared to a model based on a constant
degradation rate. Moreover, our improved model leads to a considerable reduction of the
fitting error. On average, the residual sum of squares decreases by almost one order of
magnitude compared to a model based on a constant decay rate.
Furthermore, since the shape of the decay pattern is more accurately accounted for in our
theoretical description, we observe also changes in the half-life. Figure 3.11 A reveals that
there is a systematic decrease of the half-life if we apply our analysis instead of a simple
exponential fit. Consequently, the average half-life of the entire analyzed data set reduces
from 4.40 min to 3.99 min. This observation becomes intuitive when we consider figure
3.9 again. In all three cases, the fit with a constant rate systematically overestimates the
half-lives.
However, since most decay patterns are not exponential, the half-life of an mRNA alone
is not sufficient to capture the entire detail of its decay. Whereas the average lifetime of
an mRNA is given by Eq. (2.3), its half-life is given implicitly by Eq. (3.3). Only in the
case of a constant decay rate, the average lifetime and half-life are linked via the simple
relation t1/2 = 〈U〉·log(2). The analysis of the experimental data reveals that the shielding
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Figure 3.9.: Three examples of experimental mRNA decay in E. coli . The data
points display the relative mRNA amount after inhibition of transcription (on logarithmic
scale) adapted from [28] (circles). Theoretically, the decay is described by the function Λ(∆t)
given in Eq. (3.2) together with the age-dependent degradation rate defined in Eqs. (3.9) and
(3.10). A nonlinear regression analysis minimizes the deviation between the experimental data
and the theoretical description and determines the previously unknown degradation rates ωa

and ωb. The fitted model curves (solid lines) yield an improved description of the decay data
compared to a simple exponential fit (dashed lines). In all three cases, the residual sum of
squares is reduced by at least one order of magnitude. The curves show the decay of atoS
(blue), fabB (green) and ykgE (red) mRNA. The mRNAs are of different length L (609, 407,
240 codons, respectively) and consequently they remain in the transient period for different
time intervals tL = L/v. Therefore, the shielding effect is more noticeable for longer mRNAs.
For the present example, this leads to a smaller half-lives for longer mRNAs. In the inset, the
corresponding change of the degradation rate ωdeg is shown. Starting from a high value ωa, it
drops to a constant, small ωb at age tL.

model yields much smaller average lifetimes than a model with constant degradation rate
(figure 3.11 B). Indeed, the average of the lifetimes of all mRNAs is 2.6 min, whereas the
estimate in the simple exponential model is 6.3 min. Therefore, although in this case an
exponential decay law might be able to predict a reasonably accurate half-life, it gives a
poor estimate of the average lifetime of an mRNA.
One important result of the fit of the theory to the experimental data is that the uncovered
rate ωa is always larger than the covered rate ωb. In fact, the majority of the rates differ
by at least an order of magnitude. To better appreciate this point, one should recall that
the fitting procedure is made without any bias concerning the values of these two rates. If
the fitting with the data would give two similar or identical rates, i.e. ωa = ωb, one could
infer that the suggested transient phase of ribosomal loading plays no role in the process
of degradation. This would be the case if the ribosomes followed the RNA polymerase
closely during the process of transcription. However, from our analysis we find that only
in the minority of the cases the two rates are similar.
The presence of co-transcriptional translation reduces the time span tL. This time would
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Figure 3.10.: Categories of decay patterns in E. coli . Shown are the theoretical decay
patterns obtained from a systematic fit of the model of ribosomal shielding to experimental data
of E. coli [28]. For clarity, the experimental data points were omitted. We could distinguish four
different categories of decay patterns. For 74 mRNA species one can conclude an exponential
decay (black, top left). All other patterns deviate from an exponential decay and display a
faster decay for shorter times followed by a more moderate, exponential decay at larger t.
In particular, the red patterns have a very short transient followed by a sharp transition to
a moderate decay (top right). The 57 mRNAs of this category are mainly short and need
thus only a short time tL before reaching a stationary ribosome coverage. Conversely, for long
mRNAs this transient is particularly long (bottom left). The 29 mRNAs of this category are
longer than 400 codons. Another typical category of decay patterns is shown in the bottom
right corner (60 in total). Many of the mRNAs in this category are of intermediate and some
of short length. For the current analysis, we considered all experimental decay patterns that
show a nearly bona-fide behavior (see above). Furthermore, we chose those fitted curves that
have a residual sum-of-squares r2 < 0.05, leading to 220 mRNAs. The choice of categories is
by no means unambiguous but should give an overview over different types of patterns. We
have discussed some characteristic examples in more detail in figure 3.9.
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Figure 3.11.: Distribution of half-lives t1/2 and mean lifetimes 〈U〉. Panel A compares
the distribution of the half-lives when fitting the data with a purely exponential model (red)
and the ribosome shielding model (blue). The latter is shifted to smaller times resulting in a
reduced mean half-life. Panel B shows a comparison of the distribution of the average lifetime
for the two models across the 220 decay data. The ribosome shielding model leads to much
smaller average lifetimes because many mRNAs are degraded shortly after their synthesis.

be governed also by the elongation speed of the RNA polymerase and the time delay
between the binding of the polymerase and the first ribosome. We can in principle extend
our theoretical description to account for that - however at the cost of having to introduce
more parameters to the description (see appendix section B.4). When we compare such
a theory to the experimental data, the reduction of tL would essentially lead to a higher
rate ωa. In the extreme case that tL were close to zero, such a description would fail to
reproduce the shape of the experimental decay patterns.

Our theory has important implications for the productivity of mRNAs. It is usually
thought that each mRNA contributes to the synthesis of proteins. However, according to
the discussion outlined above, only mRNAs that live longer than a time tL produce pro-
teins. Indeed, the lifetime probability function ΦU(tL) given in Eq. (3.10) determines the
fraction of mRNAs that are degraded until time tL. With the experimentally determined
rates we find that for many mRNA species a considerable amount of mRNAs produces
no protein at all.

In different experiments and organisms, different correlations between the length of an
mRNA and its stability were found [59, 60, 61]. Our analysis of the data from Ref.
[28] reveals no simple correlation between length and stability. This might not be too
surprising because each mRNA species is regulated individually thus giving rise to the
broad range of lifetimes shown in figure 3.11 B. However, those mRNAs that are regulated
similarly, i.e. they have the same degradation rates ωa and ωb, will have different stability
due to their length. One such example is shown in figure 3.9. The three example mRNAs
vary in length from 240 to 609 codons but have similar degradation rates. Since for longer
mRNAs a full ribosome coverage is reached at a later time point tL, the initial unprotected
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phase is also longer. Hence, in this case, longer mRNAs exhibit a shorter lifetime.

Section conclusion

In this section, we have presented another application of the general formalism that we
derived in chapter 2. We have translated a dynamic property, the shielded part of an
mRNA, to an age-dependent degradation rate, which is linked to the experimentally
accessible decay pattern. The analysis of a decay experiment could be substantially
improved and the empirical finding could be related to a mechanistic model.

3.4. Chapter summary

In this chapter, we have applied our theory to mRNA decay experiments. In a first
part we have formulated some general findings that hold for any particular description
of degradation. Key to a successful description is the formulation of a suitable lifetime
distribution which reflects the molecular mechanisms of degradation. The two main parts
of this chapter deal with degradation in different organisms. The first part is about
degradation in eukaryotic cells such as yeast where various biochemical mechanisms com-
pete. Additionally, the mechanisms typically require multiple modifications of the mRNA
molecule before degradation. Therefore, we have chosen a description based on a Markov
chain that improves the analysis of the experimental data and links the larger variety of
mechanisms to the more complex degradation pathway. A systematic analysis revealed
that our modeling approach greatly enhances the interpretation of an experiment on S.
cerevisiae and furthermore determines the previously unknown rates (see figure 3.4).
In the second part, we investigate degradation in E. coli bacteria where the rate-limiting
step is degradation initiation via endonucleolytic cleavage. Here we have pursued a dif-
ferent approach to refine the description. The process of translation is known to interact
with degradation. The dynamics of this interaction is mapped to an age-dependent degra-
dation rate which in turn fixes the lifetime distribution. We found that also this model
considerably improves the analysis of experimental data (see figure 3.9). The two dif-
ferent modeling approaches are two interpretations of how one can determine a suitable
lifetime distribution. They are both open models that can be adapted to more details of
the biochemistry of degradation. Apart from the experimental data, the entire material
presented in this chapter is original work.



4. Transient mRNA expression after
induction of transcription

In this chapter we will assess the central role of degradation in mRNA expression. We will
see that the transient to a steady-state mRNA number depends critically on the degra-
dation pathway. Therefore, we elucidate the cell’s capability to react to stress or artificial
induction. The foundations for the theoretical description were laid in chapter 2 and we
will use the knowledge gained in chapter 3 about the decay patterns and mRNA lifetime
distributions. In the first section, we will motivate the theoretical studies and review
important findings from chapter 2. It is followed by a discussion of general findings and
an outline of methods to experimentally validate the theoretical description. Throughout
the main part of this chapter, we will compare the effect of different degradation path-
ways via two exemplary cases. On the one hand, we show the effect of different lifetime
distributions on the mRNA number evolution after the induction of transcription. On
the other hand, we discuss how different degradation pathways become manifest in the
molecular aging of mRNAs. Next, we will present an extension of the theory that shows
how the presented results can be generalized to a more typical situation in a cell where
there is a preexisting amount of mRNAs before the induction of transcription. In a final
part, we will use the theoretical concepts introduced here to interpret experiments on S.
cerevisiae cells under stressed conditions.

4.1. Introduction

In cells, the transcription of a gene can be induced due to internal or external signals [2].
It is also common practice to artificially induce transcription of previously untranscribed
genes located on a recombinant plasmid [62]. Furthermore, different environmental con-
ditions can trigger a stress response of the cell which leads to a possible alteration of
the transcription rate. Additionally, also the mRNA stability can change due to external
factors. All these alterations of the transcription process lead to a change in the mRNA
expression. This evolution is governed by the rate of transcription on the one hand and
by the stability of the mRNAs on the other hand.

Starting from zero amount of mRNA of a given gene, after the induction of transcription
there is a growth of the number of mRNA molecules. This process eventually leads to a
stationary state, which reflects the balance between synthesis and degradation of mRNA.
However, even if the average transcription rate per cell ωtc is constant, the patterns of
growth of the number of mRNAs depend on the choice of the lifetime density φU .

We will see in a later part of this chapter how we can formulate our theory for general
initial conditions. In order to learn about the general transition to a steady-state which
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gives the general response kinetics of cells, we will first consider the starting condition of
zero amount of mRNA of a given gene.
As we have shown in chapter 2, according to Eq. (2.9) the distribution of the number of
mRNAs at any time t after the start of transcription is given by

Pr{Y (t) = k | X(0) = 0} =
[ωtcH(t)]k exp [−ωtcH(t)]

k!
,

where in Eq. (2.10) we introduced

H(t) =

∫ t

0

du (1− ΦU(u)) . ((2.10))

and ΦU(u) is the probability distribution of U related to the lifetime density via Eq. (2.2).
Thus, the average number Nr of mRNA molecules per cell can be written as

Nr(t) ≡ N↑
r (t) ≡ ωtc

∫ t

0

du (1− ΦU(u)) . (4.1)

It describes the evolution of the average number of mRNAs in time and depends on the
transcription rate ωtc and the lifetime probability function ΦU(t). The notation N↑

r (t)
should indicate that we consider the growing amount of mRNA after the induction of
transcription.

4.2. General observations

Similar to the analysis for the decaying amount, we can infer directly that the pattern of
mRNA evolution, Eq. (4.1), must obey certain constraints. First, the number of mRNAs
must be continuously increasing and secondly the curvature of the pattern must be concave
(negative).

dNr(t)

dt
≥ 0 and

d2Nr(t)

dt2
≤ 0 . (4.2)

This results directly from the formulation given in Eq. (4.1) and the positivity of probabil-
ity measures. For short times after the induction of transcription, the amount of mRNAs
grows proportionally to the transcription rate, i.e. is not influenced by the degrada-
tion process. However, for all cases where the average lifetime 〈U〉 is finite, a stationary
mRNA amount is always attained. Since (at least in all models assumed here) the life-
time density φU(t) decreases exponentially in the limit of large times, the steady state is
also approached exponentially. As t → ∞, it follows from Eq. (2.10) that the number of
mRNAs reaches a steady state and its probability distribution is given by

pstk =
[ωtc〈U〉]

k exp [−ωtc〈U〉]

k!
, (4.3)

which depends only on the transcription rate ωtc and the average lifetime 〈U〉 which was
defined in Eq. (2.3). Hence, the average mRNA level in steady state reads

N st
r = ωtc 〈U〉 . (4.4)



4.2 General observations 47

In the following we will be interested in the transient to steady state.
There is an interesting symmetry between the growing mRNA number after induction of
transcription and the decay of the mRNA after interruption of transcription. Consider
an experiment where a metabolic label allows distinguishing between mRNAs generated
before and after the incorporation of the label [63]. Since - on average - the number
of mRNAs stays constant, the decay of the old mRNAs, N↓

r (t), is exactly matched by
newly generated mRNAs, N↑

r (t). In our theoretical framework this can be expressed as
N↑

r (t) +N↓
r (t) = N st

r for all times t. Indeed, a closer inspection of Eqs. (2.10) and (2.15)
(with ts → ∞) reveals

H(t)+H2(t) =

∫ t

0

du (1−ΦU (u))+

∫ ∞

t

du (1−ΦU (u)) =

∫ ∞

0

du (1−ΦU (u)) = 〈U〉 . (4.5)

Thus, the two processes of transcription induction and mRNA decay are complimentary.
This symmetry relation is illustrated in figure 4.1 B.

Remark on experimental observation Experimentally, the dynamics following the in-
duction of transcription can be studied in different ways. On the one hand, many experi-
ments are based on biochemical assays where the mRNA expression level in a population
of cells is analyzed via a microarray or RNA-Seq. After an external stimulus or pertur-
bation of the cells, the kinetic response of different genes is revealed by a time-course
analysis [27, 64, 65]. However, one can only measure relative changes of the mRNA ex-
pression, i.e. the fold-change due to the perturbation. Nevertheless, the incorporation of
a metabolic label allows distinguishing mRNAs generated before and after introduction
of the label [66, 67, 63]. Thus one can directly follow the induction kinetics of mRNAs
synthesized after a certain point in time.
On the other hand, optical methods based on fluorescently labeled mRNAs allow a real-
time observation of mRNAs in single-cells [68, 69, 70]. Here, the sequence of an mRNA
is altered such that it provides binding sites for green fluorescent protein (GFP). The in-
duction kinetics can be followed for instance by fluorescence recovery after photobleaching
(FRAP) [71, 68]. However, the attachment of the markers have been found to modify the
stability of the mRNAs [72] - thus it is not an optimal technique to investigate the role
of mRNA degradation in gene expression.
For the comparison of our theoretical model to experimental data in the final part of this
chapter we analyze an experiment that is based on the first technique which reveals the
relative change of the mRNA level after a stimulus. In section 4.6 we will therefore extend
the theoretical apparatus to be able to understand also relative changes of the mRNA
amount.
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4.3. Time evolution of the number of mRNAs

From Eq. (4.1) it is clear that the evolution of the amount of mRNA after induction
depends critically on the stability regulation of the particular mRNA species which be-
comes manifest in its lifetime density φU . In the previous chapter we pointed out that the
complexity of the stability regulation leads generally to a more complex functional form
of φU . It is directly related to the underlying mechanism of degradation of that mRNA
species. In the following, we will consider two different exemplary forms of φU(t), namely
the exponential lifetime density

φ
(exp)
U (t) = ωr exp(−ωrt) , (4.6)

with average lifetime 〈U〉 = ω−1
r . A straightforward extension of Eq. (4.6) is the gamma

density

φ
(Γ)
U (t) =

λ(λt)n−1

(n− 1)!
exp(−λt) , (4.7)

with shape parameter n and average value 〈U〉 = n/λ. Note that for n = 1 the gamma

density reconstitutes the exponential density. Whereas the lifetime density φ
(exp)
U describes

the decay of mRNA species in a simple first-order kinetic model, the density φ
(Γ)
U is related

to a more refined model of mRNA decay where multiple successive biochemical steps
are required for degradation. In the following, to be able to better compare the two
degradation modes, we arbitrarily set n = 5 in Eq. (4.7) and fix λ and ωr such that the
average lifetimes 〈U〉 are identical for both distributions. Furthermore, for simplicity we
will assume ωtc = 1min−1 in most cases. Note however that our results do not depend
on our particular choices of n, 〈U〉 and ωtc. The distributions are shown in figure 4.1 and

we will use the same color code to distinguish mRNAs with φ
(exp)
U (red) and φ

(Γ)
U (blue)

throughout this chapter. Later, in section 4.7 we will consider other forms of φU(t) in
connection to the analysis of experimental data.
In figure 4.2 we see the mRNA number distribution for the two generic mRNAs, φ

(exp)
U

and φ
(Γ)
U , at different times after the start of transcription. The distribution is given by a

Poisson distribution at all times, however, the parameter of the distribution changes with
time and is different for the two exemplary mRNA species. Note that in steady state it
is solely given by the transcription rate ωtc and average lifetime 〈U〉.
In the following, we analyze the evolution of the average number of mRNAs Nr(t) over
time as defined in Eq. (4.1). Figure 4.3 A shows the evolution of mRNAs with a gamma
lifetime distribution as given in Eq. (4.7). The different curves represent mRNAs deter-
mined by ωtc = 1 min−1, 〈U〉 = 4 min (solid), ωtc = 1 min−1, 〈U〉 = 8 min (dotted)
and ωtc = 2 min−1, 〈U〉 = 4 min (dashed), respectively. The assumed transcription
rates and mRNA average lifetimes resemble typical values for organisms such as E. coli
but were chosen without loss of generality. Note that the steady state mRNA number is
given by N st

r = ωtc 〈U〉, i.e. a two-fold increase can be reached either by doubling the
transcription rate (dashed lines) or the mRNA stability (dotted lines). Furthermore, in
this example the transient time to steady state depends critically on the mean lifetime.
Conversely, in figure 4.3 B, we compare mRNAs with different forms of the lifetime distri-
bution, φ

(Γ)
U (blue) and φ

(exp)
U (red), but same ωtc = 1min−1 and average lifetime 〈U〉 = 4
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Figure 4.1.: Model lifetime distributions. Shown are two exemplary lifetime distribu-

tions, φ
(exp)
U (t) (red) and φ

(Γ)
U (t) with n = 5 (blue), as given in Eqs. (4.6) and (4.7). Both

have the same average value 〈U〉 = 4 min but different shape parameters n, giving rise to a
higher variance of the exponential distribution (red) as compared to the gamma-distribution
(blue). In the following, we will frequently use these two distribution to illustrate the effect of
non-exponential distributions in transient phenomena of gene expression. Moreover, we will
distinguish the two cases by using consistently the same color code.
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Figure 4.2.: mRNA number distribution. Shown are the mRNA number distributions,

φ
(exp)
U (t) (red) and φ

(Γ)
U (t), with 〈U〉 = 4 for different times after start of transcription (see

figure legend). At all times, the mRNA number is described by a Poisson distribution - however
with different parameter - as given by Eq. (2.10). Nevertheless, when approaching steady state,
mRNAs with different lifetime distributions but same average lifetime give rise to the same
mRNA number distribution (black bars).



50 Transient mRNA expression after induction of transcription

0 5 10 15 20

0
2

4
6

8

Time [min]

N
u
m

b
e
r 

o
f 
m

R
N

A
s

A

0 5 10 15 20

0
1

2
3

4

Time [min]

N
u
m

b
e
r 

o
f 
m

R
N

A
s

B

0 5 10 15 20

0
1

2
3

4

Figure 4.3.: Time evolution of mRNA number after start of transcription. In the left
panel, we discuss the evolution of mRNAs with a gamma lifetime distribution according to
Eq. (4.7). The curves represent mRNAs determined by ωtc = 1min−1, 〈U〉 = 4 min (solid),
ωtc = 1min−1, 〈U〉 = 8 min (dotted) and ωtc = 2min−1, 〈U〉 = 4 min (dashed), respectively.
Note that the steady state mRNA number is given by N st

r = ωtc 〈U〉, i.e. a two-fold increase
can be reached either by doubling the transcription rate (dashed line) or the mRNA stability
(dotted line). Furthermore, in this example the transient time to steady state depends on
the average lifetime alone. Conversely, in the right panel, mRNAs with different forms of the

lifetime distribution, φ
(Γ)
U (blue) and φ

(exp)
U (red), but same ωtc = 1min−1 and average lifetime

〈U〉 = 4 min are shown. Hence, the length of the transient depends critically on the form of
the lifetime distribution. The inset emphasizes the symmetry between the decay of the mRNA
amount after the stop of transcription (dashed) and the evolution of the mRNA number after
start of transcription (solid). At each time interval after start and stop of transcription, the
average mRNA number of the two processes add up to ωtc 〈U〉, the decrease in the one process
is exactly balanced by the increase in the other as is shown theoretically in Eq. (4.5).

min. The mRNAs with a gamma lifetime distribution have a shorter transient to a steady
state level. This is due to the fact that the gamma distribution (with n = 5) has a smaller
variance than the exponential distribution. Generally, the transient time is large if the
lifetime density is very broad, i.e. has a high variance.
In conclusion, the length of the transient depends on both the form of the lifetime distri-
bution ΦU and the average lifetime 〈U〉. This fact has several implications that will be
investigated in the next sections.
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4.4. Transient evolution of age and residual lifetime

Due to the turnover of mRNA, there is an age distribution which reflects the age com-
position of the mRNA pool. Also the age distribution of the mRNAs expressed after the
induction evolves in time. We consider again a gene that was not transcribed before the
induction.
In chapter 2 we derived a general result for the age probability density φA. Here we are
interested in the limit case where transcription was not stopped, i.e. the limit case of Eq.
(2.17) where ∆t = 0 and t = ts. The age probability density function at time t after the
induction of transcription is given by

φA(a | t) =

[∫ t

0

dτ (1− ΦU(τ))

]−1

(1− ΦU(a)) , (4.8)

for a < t and zero otherwise. In the limit t → ∞ also the age distribution becomes
stationary and its expression is given by

φst
A(a) =

1− ΦU(a)

〈U〉
, (4.9)

which is the stationary distribution of the age of a renewal process [73]. In figure 4.4 A we

compare the stationary age distribution given by a gamma lifetime density φ
(Γ)
U defined in

Eq. (4.7) to the exponential case φ
(exp)
U defined in Eq. (4.6). Clearly, in the former more

young mRNAs are present, whereas in the exponential case there is a higher proportion
of older mRNAs. This follows directly from the fact that the exponential distribution
has a higher variance as was shown in figure 4.1. The inset shows the age distributions
five minutes after the start of transcription. Hence, no mRNAs are older than 5 min -
however the shape of the distribution at smaller ages a < t = 5 min is identical to the
stationary case except for a rescaling due to the renormalization.
The average age of the mRNAs at time t after the induction of transcription is given by

〈A〉t =

∫ t

0

da a φA(a | t) , (4.10)

and its time evolution can be followed in figure 4.4 B. While shortly after the induction
both mRNAs have a similar average age, the effect of the different lifetime densities
becomes more pronounced at larger times. The average age at steady state is lower for
gamma-like mRNAs which follows from the different shape of the age distribution as
shown in figure 4.4 A.
Similarly, one can derive a result for the residual lifetime of a given mRNA species at any
time after the induction. For ∆t = 0 it follows immediately from Eq. (2.18) that

φR(r | t) =

[∫ t

0

du (1− ΦU(u))

]−1

(ΦU(t+ r)− ΦU(r)) . (4.11)

Figure 4.5 A shows the residual lifetime probability density of mRNAs with a gamma
lifetime distribution φ

(Γ)
U according to Eq. (4.7) at different time points after the start of
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Figure 4.4.: Time evolution of the age distribution. The left panel shows the mRNA
age probability density φA(a | t) under steady state conditions for the two exemplary lifetime

distributions, φ
(Γ)
U (blue) and φ

(exp)
U (red) - see figure 4.2 A and Eqs. (4.6) and (4.7). Despite

the fact that the stationary mRNA number distributions are identical (see figure 4.2 B), the
stationary age distributions are different. The inset shows the mRNA age distribution at a
fixed time t = 5 min after the induction of transcription. Clearly, no mRNA can be older
than 5 minutes - for smaller ages the age distributions remain the same as for the stationary
case apart from a rescaling. In the right panel, the evolution of the average age as given in
Eq. (4.10) is plotted versus the time after the start of transcription for 〈U〉 = 4 min. During
the transient to stationarity the two average ages are very similar to each other. On the other
hand, at stationarity the average age under the lifetime density (4.7) is clearly much smaller
than the average age under the exponential distribution (4.6). The inset shows the evolution
for mRNAs with mean lifetime 〈U〉 = 20 min.

transcription. Whereas shortly after the start of transcription the distribution is peaked
around the average lifetime 〈U〉 = 4 min (solid blue), the distribution becomes more
skewed to shorter residual lifetimes at later time points (the dashed-dotted line represents

t = 5 min). In fact, for small values of t, φR(r | t) → φ
(Γ)
U , i.e. the residual lifetime

distribution has the same form as the lifetime distribution. When a steady state of the
mRNA turnover is reached, the residual lifetime distribution is also stationary (black
line). Moreover, for t → ∞ - namely, at steady state - the residual lifetime distribution
φst
R(r) = φst

A(a) for all lifetime distributions ΦU . Conversely, for mRNAs with exponential
lifetime distribution according to Eq. (4.6) the residual lifetime distribution is the same
at all points after the start of transcription and takes the form of Eq. (4.6).
The average residual lifetime of the mRNAs at time t after the induction of transcription
is given by

〈R〉t =

∫ t

0

dr r φR(r | t) (4.12)

and its time evolution can be followed in figure 4.5 B. Also the average residual lifetime
evolves in time and attains a steady state distribution φst

R(r) for t → ∞. As the average
age of gamma regulated mRNAs increases (as we noted figure 4.4 B), the residual lifetime
decreases with time. Note, however, that in the case of an exponential lifetime distribution
φ
(exp)
U , the mRNAs stay forever young, i.e. they have the same life expectancy at all times.

This is due to the Markov property of the exponential distribution as we discussed above
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Figure 4.5.: Time evolution of the residual lifetime distribution. The left panel shows
the residual lifetime probability density φR(r | t) of mRNAs with a gamma lifetime distribution

φ
(Γ)
U according to Eq. (4.7) at different time points after the start of transcription. Whereas

shortly after the start of transcription the distribution is peaked around the average lifetime
〈U〉 = 4 min (solid blue), the distribution becomes more skewed to shorter residual lifetimes
at later time points (the dashed-dotted line represents t = 5 min). When a steady state of
the mRNA turnover is reached, the residual lifetime distribution is also stationary (black line)
and has the same form as the stationary age distribution as shown in figure 4.4 A. In the inset,

the analysis is repeated for mRNAs with exponential lifetime distribution φ
(exp)
U according to

Eq. (4.6). Here, the residual lifetime distribution is the same at all points after the start of
transcription and is described by an exponential distribution. The right panel displays the
temporal evolution of the average residual lifetime. Clearly, mRNAs with exponential lifetime
distributions show no indication of aging, their average residual lifetime is constant no matter
how old the mRNAs are. Conversely, for the mRNAs with a gamma lifetime distribution the
average residual lifetime decreases with the time evolved since the start of transcription until
finally reaching a stationary value. This becomes clear since also the average age increases
over time (see figure 4.4 B) - hence, older chains have a smaller life expectancy.

in chapter 3.
Hence, both the age and the residual lifetime distributions as well as their average values
are important criteria to describe the molecular aging of mRNAs. However, they are
not directly measurable objects. Nevertheless, they indirectly control the processes of
translation and protein synthesis. We will discuss these implications in the next chapter.
Furthermore, we learned that mRNAs with exponentially distributed lifetimes show very
peculiar properties as they show no indication of aging, i.e. they have a constant residual
lifetime independent of the their age.
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4.5. Aging of states

We can also investigate the aging of the mRNA molecules in the framework of the Markov
chain model introduced above. In this description, different states reflect different bio-
chemical states of the mRNA molecule. Depending on its age, each randomly chosen
mRNA can be found in one of its n different states with a certain probability. If K is
the random state of a randomly chosen mRNA, we have to compute the probability to
be in each of the states in a Markov chain conditioned that the mRNA has not yet been
degraded, i.e.

ξk(a) ≡ Pr{K(a) = k | K(0) = 1, K(a) 6= 0} =
Pr{K(a) = k, K(a) 6= 0 | K(0) = 1}

Pr{K(a) 6= 0 | K(0) = 1}
.

(4.13)
Clearly, the probability depends on the age of each mRNA and initially all mRNAs
are in state 1. One can compute the probabilities in the nominator of Eq. (4.13) via
a Master equation. Moreover, the denominator is just the complementary distribution
to the probability lifetime distribution, i.e. the survival probability 1 − ΦU(a). The
probabilities ξk for different ages a are depicted in figure 4.6 A.

Since mRNAs of different age are present at each time of the experiment, we have to
multiply the probabilities ξk(a) with the age distribution φA(a | t) and integrate over all
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Figure 4.6.: Manifestation of aging in Markov chain model. If we interpret the lifetime

distribution φ
(Γ)
U in the framework of the Markov chain model, different states reflect a different

biochemical state of the mRNA molecule. As a molecule becomes older, it is more probable
to be found in an advanced state. In the left panel, we follow the probability ξk(a), defined

in Eq. (4.13), for an mRNA with lifetime distribution φ
(Γ)
U and transition rates λ = 5/4min−1

to be in each of the states k = 1, 2, . . . 5 (see figure legend). Clearly, at large ages the most
advanced state k = 5 is the most populated. In the right panel, the probability ψ(t), given in
Eq. (4.14), of an ensemble of mRNAs with age distribution φA(a | t) for different times t after
the induction of transcription is shown. After a transient time, the probabilities attain all the
same stationary value, ψst

k = 1/5 for ∀ k. Note that this is a particular result for Γ-distributed
lifetimes where all intermediate degradation rates µi ≡ 0 (i < 5) and all transition rates λi as
well as the degradation rate µ5 have the same value. From the population probability of the
individual states, we can infer the average state of a randomly chosen mRNA at any time t
via Eq. (4.15) (see inset). Clearly, the aging is indicated by an increase of the average state.
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possible ages a. Thus, the probability of an ensemble of mRNAs to be in state k in a
Markov chain reads

ψk(t) ≡

∫ ∞

0

da ξk(a)φA(a | t) . (4.14)

Figure 4.6 B shows how the occupation probability ψk(t) for each state k in the Markov
chain evolves with time after the start of transcription. Since the average age increases
with time, more mRNAs are found at later states in the Markov chain at larger t. More-
over, when the age distribution approaches a stationary distribution, also the occupation
probability becomes stationary. The aging can also be observed in the average state of
an mRNA at time t,

〈 k(t) 〉 =
n
∑

k=1

k ψk(t) (4.15)

Figure 4.6 B shows that the average state increases over time and reaches a stationary
value after some time. This is a clear manifestation of aging.
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4.6. Modulation of the transcription rate

In the preceding analysis of the evolution of the number of mRNAs after the induction
of transcription, we always assumed that the initial condition at t = 0 was Nr(0) = 0.
This was a reasonably choice of an initial condition when we reconsider the theoretical
framework developed in chapter 2. We treated the creation of mRNAs as a Poisson
process that starts at a time t and in this formalism there is no knowledge contained
about preexisting mRNAs. In this section we will extent our formalism to describe the
change in the mRNA amount with arbitrary amount of preexisting mRNAs.
Furthermore, we have assumed so far that the transcription rate ωtc stays constant
throughout an experiment. In this section, we will study the effect when the transcrip-
tion rate changes at a distinct time point t = 0 from ω

(1)
tc to ω

(2)
tc . We will see that this

modulation of the transcription rate is related to the consideration of preexisting mRNAs.
We consider a first Poisson process with rate ω

(1)
tc which starts at a time t = t1 < 0. The

number of mRNAs evolves in time as discussed in the previous sections and is visualized
in figure 4.7 A (red curve). At time t = 0 this first Poisson process is interrupted and the
mRNAs subsequently decay according to their lifetime distribution (red dotted curve).

At the same time a second Poisson process is started with rate ω
(2)
tc and the number of

mRNAs evolves again in time (green curve). The two Poisson processes describe the
evolution of mRNAs of the same gene with transcription rates but the same degradation
pathway. Hence, the evolution of the total number of mRNAs is given by the sum of the
two sub-processes (black curve in figure 4.7 A) what we can formally describe as

N tot
r (t) = N (1)

r (t) +N (2)
r (t) . (4.16)

More precisely,

N (1)
r (t) =















ω
(1)
tc

∫ t1

0

dτ (1− ΦU(τ)) t < 0

ω
(1)
tc

∫ t1+t

t

dτ (1− ΦU(τ)) t ≥ 0

(4.17)

and

N (2)
r (t) =







0 t < 0

ω
(2)
tc

∫ t

0

dτ (1− ΦU(τ)) t ≥ 0
(4.18)

For illustrative purposes, we have depicted the evolution of the number of mRNAs in
figure 4.7 A. There, we have chosen t1 = −10 min, ω

(1)
tc = 1min−1, ω

(2)
tc = 2min−1 and

φU(t) = φ
(Γ)
U (t) with n = 5 and 〈U〉 = 4 min. The mRNA number evolves to a first steady

state N
(1),st
r = ω

(1)
tc 〈U〉 until t = 0 and a second steady state N

(2),st
r = ω

(2)
tc 〈U〉. Note

that in both cases the transient to a steady state is solely governed by φU . Moreover, the
arbitrary choice of t1 is made without loss of generality.
In the following, we will assume that the first Poisson process started sufficiently long
before t = 0 to have reached a steady state and focus on the evolution for t > 0. Hence,
using the notation introduced in Eq. (2.16), Eq. (4.16) simplifies to

N tot
r (t) = ω

(1)
tc H

∞
t + ω

(2)
tc H

t
0 . (4.19)
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Figure 4.7.: Modulation of the transcription rate and transient to steady state from

different initial conditions. Left panel: A first process with rate ω
(1)
tc is started at time

t = t1 < 0 and the number of mRNAs evolves according to Eq. (4.1) until t = 0 (red line).
There, the first process is stopped and the remaining mRNAs decay according to Eq. (3.1) (red

dotted line). Furthermore, a second process is started with rate ω
(2)
tc which subsequently also

leads to the evolution of the mRNA number in time (green line). The two Poisson processes
represent the evolution of the same type of mRNAs with different transcription rates. The
evolution of the total amount of mRNA is given by the sum of the two sub-processes (black
line) and can be described via Eq. (4.16). We use this formalism to describe the evolution of
the amount of mRNA for different initial conditions at t = 0 (right panel). We compare the
time evolution to a steady state mRNA number for two mRNA species regulated according

to φ
(exp)
U (t) (red) and φ

(Γ)
U (t) (blue). Moreover, we compare both cases to the corresponding

evolution of mRNAs with no preexisting mRNAs at t = 0 (dashed lines). In the inset, we
estimate the time to steady state for a large variety of initial values.

In this case, the initial number of mRNAs N tot
r (0) can be non-zero - it is determined by

ω
(1)
tc 〈U〉. Thus, Eq. (4.19) extends the formalism and relaxes the restriction on the initial

condition Nr(0).

Figure 4.7 B shows the time evolution of the average mRNA number when the initial
amount is already half the steady state value. We compare the evolution for mRNAs
regulated according to φ

(exp)
U (t) (red) and φ

(Γ)
U (t) (blue). Moreover, we compare both

cases to the corresponding evolution of mRNAs with no preexisting mRNAs at t = 0
(dashed lines). Similar to the discussion in section 4.3, the transient to a steady state
depends critically on the lifetime distribution. Additionally, the time to steady state does
not differ much if there is an initial amount of mRNAs at t = 0.

To investigate the duration of the transient further, we have performed the same analysis
for a wide range of initial values. Therefore, we define implicitly the approximate time
to steady state tst as Nr(t

st)/N st
r ≡ 0.99. In figure 4.7 B we follow the dependency of tst

on the fraction of the initial amount compared to the steady state amount. In particular
for mRNAs regulated by φ

(Γ)
U , the transient time depends only weakly on the initial value

(blue). Also for mRNAs regulated by φ
(exp)
U , an initial fraction of 0.8 reduces the transient

time by less than a factor of two (red). Only when the initial fractions approaches 1, the
transient time decreases substantially.

In this section we have discussed average mRNA numbers. In the same way we can also
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describe the fluctuations of the mRNA amount. The number of mRNAs pertaining to each
of the two transcription phases are described by a Poisson distribution with parameter
N

(1)
r (t) and N

(2)
r (t), respectively. A fundamental property of the Poisson distribution

states that the sum of two Poisson-distributed random variables also follows a Poisson
distribution [30]. Its parameter is given by the sum of the parameters of the two primary
Poisson distributions. Thus, in the case of modulated transcription the random number
of mRNAs also follows a Poisson distribution with parameter N tot

r .
In conclusion, we have found a formalism to describe the evolution of mRNAs for arbitrary
initial conditions. This initial number of mRNAs can represent the preexisting amount
of mRNAs before the induction of a gene. In the subsequent section we will apply this
formalism to see how the transcription rate is altered when yeast cells are put under
stress. Moreover, we will further exploit this formalism in section 5.3 where we turn to
the implications of the transient for the cell cycle.
In this section, we have learned how the mRNA number evolves when the transcription
rate is modulated at a fixed point in time. Certainly, the description can be extended
to include more modulation events. In the appendix, section C.1, we will elaborate a
more detailed theory where the rate of transcription changes gradually from one value
to another. Furthermore, in single cells the transcription rate may vary in complicated
stochastic patterns. This requires a description of transcription via the Cox process. In
the appendix D we will approach this problem by means of Monte-Carlo simulation.
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4.7. Response to stress application in yeast

To show how one can use the theoretical framework describing the evolution of mRNAs
presented in the previous sections, we will apply it to explain experimental data on stress
response in the yeast S. cerevisiae [27]. In the experiment, yeast cells were exposed
to either hydrogen peroxide (H2O2) or methyl methane-sulfonate (MMS ) which induces
DNA damage. For each gene, the time evolution of the relative number of mRNAs after
stress application was followed via a microarray measurement. Additionally, the decay of
the amount of mRNA was measured before and 25 min (40 min for MMS ) after the stress
application, i.e. at a time when one can assume that the stress became fully manifest in
the decay pattern.
The stress induction may result in a change of transcription and mRNA degradation for
each gene and in the following we will apply the formalism of mRNA turnover developed
so far in this thesis to further understand the contribution of each of the two processes.
First, we assume that before stress application, the yeast cells were grown sufficiently long
to attain a steady state mRNA number at t = 0. Hence, a first Poisson process with rate
ω
(1)
tc leads to a steady state mRNA number N

(1),st
r . Following the reasoning of the previous

section, the first Poisson process is stopped at the time of stress application, t = 0, and
the remaining mRNAs decay according to the stressed decay pattern Λ(2)(t). At the same

time, a second Poisson process with rate ω
(2)
tc is started. The experiment measures the

response of the mRNA expression for 180 min and we will consider the case that within
that period of time also for the second process a steady state N

(2),st
r is reached.

In the framework of our general theory, the steady state mRNA amount is related to
the transcription rate and average lifetime via N st = ωtc〈U〉, see Eq. (4.4) in section 4.2.
Thus, the ratio of the transcription rates before and after stress application reads

ω
(2)
tc

ω
(1)
tc

=
〈U (2)〉

〈U (1)〉

N (2),st

N (1),st
(4.20)

Since the experimental expression levels at t = 0 have been normalized, i.e. N (1),st ≡ 1,
we can only infer the relative change of the transcription rate. It is given by the average
lifetimes obtained from the decay experiments and from the (relative) steady state level
of mRNAs, N (2),st, after the stress application.
The total number of mRNAs at each time t is given by the contributions of the mRNAs
originating before and after the application of the stress. The mRNAs originating before
the stress application undergo a change of their lifetime distribution at t = 0. To account
for this, we have to extend the general theoretical description developed in chapter 2.
The fundamental assertion is that for t < 0 the mRNAs have a random lifetime U1 given
by Φ

(1)
U and for t ≥ 0 a random lifetime U2 given by Φ

(2)
U . In the appendix section C.3

we give detailed account for the necessary changes in our theoretical description. As the
final result, Eq. (C.14) describes the evolution of the total mRNA amount for cells that
were exposed to a stress at t = 0,

N tot
r (t) = N (1)

r (t) +N (2)
r (t)

= ω
(1)
tc

∫ ∞

0

du
1− Φ

(1)
U (u)

1− Φ
(2)
U (u)

(

1− Φ
(2)
U (u+ t)

)

+ ω
(2)
tc

∫ t

0

du
(

1− Φ
(2)
U (u)

)

.
(4.21)
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Figure 4.8.: Decay patterns and stress response of HAT2 after stress activation via

exposure to DNA damaging MMS . In the left panel, the experimental decay pattern
before (green circles) and after (blue circles) the stress application are shown [27]. We fit both
patterns according to the Markov chain model developed in section 3.2 (solid lines). We find
that the average lifetime changes from 〈U (1)〉 = 17.8 min to 〈U (2)〉 = 56.8 min and obtain the

corresponding lifetime densities φ
(1)
U and φ

(2)
U . For comparison a fit with a simple exponential

function is shown (dashed lines). For the relative response of the mRNA number (right panel)
we consider two subsequent Poisson processes. Process one is thought to start sufficiently long

before the stress application with rate ω
(1)
tc such that at the time point of stress application at

t = 0 it has reached a steady state value N
(1),st
r . At t = 0 the first process is stopped and the

remaining mRNAs decay according to the stressed degradation pathway Λ(2)(t) (green line).

Furthermore, a second Poisson process starts with rate ω
(2)
tc and the mRNA number evolves to

a new steady state N
(2),st
r (blue line). According to Eq. (4.20) we can obtain the previously

unknown transcription rates from N
(1),st
r , 〈U (1)〉, N

(2),st
r and 〈U (2)〉. Since the experimental

data were normalized to N
(1),st
r ≡ 1, we can only infer the relative change of the transcription

rate, ω
(2)
tc /ω

(1)
tc = 0.498. Thus, for HAT2, the stress results in an increase in the stability of

the mRNAs which is partially balanced by a decrease in the transcription rate. The combined
changes in transcription and degradation lead to a higher mRNA expression level (red circles)
which can be theoretically predicted by the sum of the two Poisson processes given in Eq.
(4.21) (red line).

Note that in the present experiment the expression data were normalized to N (1),st = 1.
Therefore, the transcription rates ω

(1)
tc and ω

(2)
tc in Eq. (4.21) are relative quantities in

respect to the normalization condition.

To probe our theory, we conduct a case study for the response of the expression of gene
HAT2 (Histone Acetyl Transferase 2) to the exposure to MMS. Figure 4.8 A shows the
measured patterns of decay before and after the stress application as well as the change
of the mRNA expression level.

We can fit both decay patterns according to the Markov chain model developed in sec-
tion 3.2 (solid lines). We find that the average lifetime increases from 〈U (1)〉 = 17.8
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min to 〈U (2)〉 = 56.8 min and obtain the corresponding lifetime densities φ
(1)
U and φ

(2)
U .

Furthermore, according to Eq. (4.20), we can infer the ratio of the transcription rates

ω
(2)
tc /ω

(1)
tc = 0.498. Thus, we find that for HAT2 the DNA damage reduces the transcrip-

tion rate almost by a factor of 2.

Hence, all parameters of Eq. (4.21) are derived from experimental data. Figure 4.8 B
demonstrates that our theory approximates the measured evolution of the mRNA amount
after stress application very well. The increase of the average mRNA lifetime and the
decrease of the transcription rate due to DNA damage counteract but lead to an overall
increase of the mRNA expression level for the gene HAT2. Note that for the deduction
of the theoretical stress response curve no fitting needed to be done. With our theory it
is well defined by φ

(1)
U , φ

(2)
U and N

(2),st
r .

We developed a formalism to describe the response of the mRNA expression due to an
external stress. It allows discriminating between altered transcription and degradation in
the experiment. The case study for HAT2 demonstrates the principle scope of our theory.

Nevertheless, a number of assumptions were made in the formulation of Eq. (4.21). First,
we assumed that the stress becomes effective instantly after the stress application. There-
fore, we have considered the possibility of a delayed change of the mRNA transcription
and degradation in a more detailed model (see section C.2 in the appendix). At least for
the present case of the gene HAT2, the more elaborate model does not lead to a more
accurate description of the experimental response pattern (see appendix section C.3).
However, this is not necessarily true for the response of all genes.

Additionally, it is desirable to find a description which considers gradual changes of the
transcription rate. In the appendix section C.1, we have reformulated the theoretical
description to allow for the definition of the change of the transcription rate with an
arbitrary function such as for instance a linear ramp.

Secondly, for mRNAs that were synthesized before and decay after the stress application,
the lifetime distribution changes during the experiment. It is a good example for the
interference of global time scales (the time of stress application) and molecular time
scales (such as the age of an mRNA at stress application). In the light of different possible
biological interpretations, diverse theoretical approaches can be followed to account for
this change of the lifetime distribution. In the appendix, section C.3, we elaborate different
possibilities of a time-dependent lifetime distribution.

4.8. Chapter summary

In this chapter we have elucidated the role of mRNA degradation in the context of tran-
sient phenomena in mRNA expression. The average lifetime determines the steady state
level of the number of mRNAs. However, the form of the mRNA lifetime distribution
determines the time to a steady state mRNA level, even when the average lifetime is held
constant (see figure 4.3). Hence, it sets an important time scale for the response of the cell
to external stimuli. Furthermore, we generalized our theory to arbitrary mRNA initial
conditions. This was particularly useful to interpret experiments in which the response
of the mRNA level to an external stress was measured (see figure 4.8). Thus, we could
differentiate between contributions of altered modes of transcription and degradation un-
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der the stressed conditions. Additionally, we have introduced the effect of aging of the
mRNAs during this transient which we will utilize in the next chapter where we discuss
its implications on translation and protein synthesis. The entire material of this chapter
is original research work. Parts of the results in sections 4.2 4.3 and 4.4 are already
published [74].



5. Effect of mRNA decay on
translation, protein synthesis and
the cell cycle

This chapter aims at setting the concepts learned so far into the broader context of
gene expression. In chapter 3 we have learned that typically mRNA decay cannot be
described with a single decay constant. However, with a more accurate description of
the biochemical degradation mechanisms we could find suitable lifetime distributions.
Moreover, in chapter 4 we found that this leads to more intricate transient phenomena.
On the one hand, the growth of the mRNA amount after induction depends on the
lifetime distribution ΦU . On the other hand, non-exponential decay implies aging of the
mRNA molecules which becomes manifest in the residual lifetime distribution. Since the
efficiency of translation and protein synthesis depends strongly on the stability of mRNAs,
these findings will have important implications on these processes. In sections 5.1 and
5.2 we will assess the role of these findings. In the final two sections we will discuss
some implications when we consider single cells. Therefore, in section 5.3 we envision
how mRNAs evolve in the cell cycle under continuous division and dilution. Besides, all
sections of this chapter are subject to very intense research itself. Therefore, we focus on
aspects that are directly linked to mRNA stability.

5.1. Implications for translation

5.1.1. Interaction of time scales

In section 3.3 we have already discussed the interplay of the timescales of the lifetime of
mRNAs and translation and its implications for the stability of mRNAs in bacteria. Here
we focus on the effect on translation.
On average the time needed for a ribosome to transverse the coding sequence of an
mRNA is given by tL = L/v, i.e. the length of the coding sequence L divided by the
elongation speed v. This elongation time is however a stochastic quantity which can
be considered explicitly in computer simulations. This time determines one of the time
scales of translation. As we pointed out in chapter 4, randomly sampled mRNAs can
be described by an age distribution φA(a). The time scale of translation tL interacts
with the time scale of mRNA turnover if they are of the same order of magnitude. More
precisely, mRNAs younger than tL are not in a steady state ribosome coverage - rather
the coverage changes in time, giving rise to dynamic effects. Thus, the age distribution
φA(a) of an mRNA determines the strength of these dynamic effects. Conversely, if the
time scale tL is much shorter than the typical age, most mRNAs are in a steady state
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Figure 5.1.: Illustration of two polysomes of different age. The upper mRNA transcript
is younger, hence less ribosomes have bound to the mRNA. In any experiment one would
measure a mixed sample of old and young mRNAs of different polysome sizes, respectively.
From a theoretical point of view, one has to sample from the age distribution φA to account
for such a heterogeneous composition. [Adapted from [50]]

ribosome coverage and no transient phenomena occur. If the lifetime of an mRNA were
much shorter than tL, translation would be too slow to yield proteins and is hence rather
unlikely to occur in healthy cells.

Note that the precise definition of the time scales may be different for different organisms.
However, regardless of the organism it will always take a certain time for a ribosome to
translate the entire mRNA.

Figure 5.1 illustrates the role of the age distribution. In every sample obtained from
experiment one would collect mRNAs of different age. However, according to the age of
each mRNA, the transcript is occupied by a different number of ribosomes. Moreover,
we learned in chapter 4 that the age distribution depends critically on the time after the
induction of transcription. Therefore, to fully understand the process of translation, the
underlying age distribution has to be taken into account.

5.1.2. Experimental methods

From centrifugation experiments one can deduce the distribution of the number of ribo-
somes on a given mRNA. The experiments were pioneered by Arava et al. [55]. After
lysing the cells, one can fix the ribosomes on the mRNAs by adding the drug cyclo-
heximide. Next, one can separate mRNAs of different ribosomal coverage by velocity
sedimentation through a sucrose gradient. Hence, one can retrieve a spectrum, i.e. a
mass vs. intensity graph, where the individual peaks correspond to different ribosome
numbers. Furthermore, individual mRNA species can be identified via standard methods
such as northern blotting or qRT-PCR.

This method has been extended to perform ribosomal profiling experiments [75, 76]. Here,
after the fixation of the ribosomes, the mRNA stretches not covered by ribosomes are
removed by adding a ribonuclease. After further purification, the remaining fragments
that were previously covered by ribosomes can be analyzed by RNA-Seq. Thus one can
identify the position of the ribosomes on the mRNA for each gene, i.e. retrieve the
footprints of the ribosomes on the mRNAs.
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5.1.3. Theory of polysome and ribosomal profiles

We have developed a theory that is capable of modeling the two kinds of experiments.
Our theory simplifies the biology since it provides only a sequence-independent mean field
description. To incorporate effects of individual sequences, one would have to consider
more details of the translation process such as codon specific waiting times. This is part
of active research and goes beyond the scope of this analysis. Nevertheless, our theory
is able to predict general trends in profiling experiments that are due to a dynamic age
composition of the mRNAs in the cell. Parts of the theory were already derived in [50].
We extend this description by considering general mRNA lifetimes and non-stationary
age distributions as introduced in chapter 4.

Polysome size distribution In the following, we aim to compute the probability qn
that n ribosomes are bound to an mRNA of a given species, where n can assume any
integer value up to the maximal packing. That means if n ribosomes are engaged in
translating an mRNA, the polysome size is n. In a first approximation, for a length of the
coding sequence L and an average elongation speed v, it takes a time tL for a ribosome
to transverse the mRNA. Hence, on average only mRNAs of an age larger than tL have
full ribosome occupancy. The equation that describes the evolution of the polysome size
with initiation rate ωon is

d qn
d a

= ωon qn−1 − ωon qn for a < tL (5.1)

and qn(a) = qn(tL) for a ≥ tL. The initial condition is that no ribosomes are bound to
the mRNA, thus q0(0) = 1 and qi(0) = 0 for i > 0. Eq. (5.1) describes a Poisson process
which approximates well the polysome dynamics if ωon is sufficiently small (in that case
the ribosome density stays sufficiently low so that interaction between adjacent ribosomes
can be neglected) [50]:

qn(a) =

{

(ωon a)n

n!
exp (−ωon a) a < tL

(ωon tL)
n

n!
exp (−ωon tL) a ≥ tL

(5.2)

Hence, as the age of an mRNA evolves, more ribosomes bind to the chain until reaching
a steady state in this average description. To obtain the polysome size of a population of
mRNAs we have to take into account the corresponding age distribution of the mRNAs
in the cell population. Therefore, we have to multiply Eq. (5.2) with the age distribution
and integrate over all possible ages. However, in chapter 4 we have found that the
age distribution depends on the time after the start of the experiment t (i.e. after the
induction of transcription). Consequently, the polysome size distribution Qn(t) of an
ensemble of mRNAs with age distribution φA(a | t) is time-dependent, i.e.

Qn(t) =

∫ ∞

0

da qn(a)φA(a | t) . (5.3)

Ribosome density From the polysome size distribution, we can easily derive the average
polysome size by summing over all possible values of n. From Eq. (5.2) we find that the
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average polysome size of an mRNA of age a reads

M(a) =

{

ωon a a < tL

ωon tL a ≥ tL
. (5.4)

Similarly, from Eq. (5.3) we obtain the average polysome size of an ensemble of mRNAs
at time t after the induction of transcription, i.e.

〈M〉t =

∫ ∞

0

daM(a)φA(a | t) . (5.5)

Hence, we have obtained the mean ribosome density 〈M〉t/L for a species of mRNAs of
length L at any point in time after the induction of transcription t.
The ribosomes are distributed along the mRNA transcript according to a profile density
m(z). Here, z denotes the codon position on the mRNA. Starting from the initial condition
of no ribosomes bound to the mRNA, ribosomes progress on the mRNA with constant
average elongation speed v. On average, after a time interval a the foremost ribosome
has reached codon position z = a v . Upstream of the first ribosome, the average density
can be assumed to be constant and it is given by the ratio of initiation rate ωon and
elongation speed v. Furthermore, the stretch of mRNA occupied by a single ribosome,
i.e. the ribosomal footprint length l, has to be taken into account. As mentioned earlier,
the size of a footprint is typically around 10 codons [44]. Thus, depending on the age a
of a given mRNA of length L, its density profile along z reads

m(z | a) =
ωon l

v
a > z/v (5.6)

and zero for a ≤ z/v. Moreover, in each cell and at each observation point t after the
induction of transcription, mRNAs of different age are present. Therefore, to obtain the
average mRNA profile density we have to multiply Eq. (5.6) with the age distribution
φA(a | t) and integrate over all possible ages a, i.e.

〈m(z)〉t =

∫ t

0

dam(z | a)φA(a | t) =
ωon l

v

∫ t

z/v

da φA(a | t) . (5.7)

It gives the average profile density along the mRNA for a given species for any age
distribution and corresponds to the average ribosomal profile of that mRNA species.
Note that specific effects such as codon dependent elongation rates are ignored here - Eq.
(5.7) gives the profile of a homogeneous mRNA.

Computer simulations This simple theory of translation does not take into account the
stochastic movement of the ribosomes and interactions between ribosomes. This becomes
important when the ribosome density - which is governed by the translation initiation
rate ωon - is high. To include these effects, we have performed TASEP simulations. The
basic principle of this simulation technique has been introduced in section 2.5. There, the
stepping of each ribosome is a stochastic process that proceeds with a certain stepping
probability. The ribosomes are modeled as finite size objects that have a hard-core re-
pulsion. To account for the different ages of the mRNAs, the simulations have a random
run length drawn from the age distribution φA(a | t). As a result, one can obtain the
polysome and ribosomal profiles at each time t after the induction of transcription.
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5.1.4. Results

In both the analytical description and the simulations, we have considered two different
lifetime densities φ(exp) and φ(Γ) defined in (4.6) and (4.7), respectively, with an average
lifetime 〈U〉 = 4 minutes and an mRNA of L = 1025 codons, corresponding to the length
of the lacZ gene in E. coli, see figure 5.2.

For a translation initiation rate ωon = 1/5 sec−1 [77] and an average velocity v = 10
codons per second [78], we observe that the theoretical description and results obtained
by computer simulations agree very well (see figure 5.2). Hence, at least for the ribosome
densities obtained from experiment, the analytical description is sufficient.

Moreover, we find that the polysome statistics and the profile densities depend only weakly
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Figure 5.2.: Time dependent polysome and ribosomal profiles. Panel A shows the
distribution of the number of ribosomes on an mRNA chain of 1025 codons at two different
points in time, namely after t = 1.5 minutes and after t = 20 minutes. The two curves
correspond to simulations based on the lifetime probability densities φ(exp) (red) and φ(Γ)

(blue), respectively. Apart from the region around small polysome sizes, both distributions lead
to similar polysome profiles. However, at different time points after induction there is a notable
change of the profiles. Thus, this demonstrates that the outcome of such an experiment depends
critically on the time of measurement after the induction of that particular gene. In panel B
we display the profile density of the ribosomes along the mRNA. Shown is the probability that
the corresponding codon is found covered by a ribosome at time t. Similar to the polysome
profiles, the ribosome profile densities depend on the time of measurement t because the age
composition of the sample changes with time during the transient. However, the ribosome
profiles depend only weakly on the form of the underlying lifetime density φU in the present
case. For the simulations, we have used typical parameters determined in experiments on E.

coli . The rate of translation initiation has been fixed to ωon = 1/5 sec−1 [77] and the average
velocity of ribosomes is 10 codons per second [78]. Each curve represents the average over
15000 independent realizations. For all plots shown here we have taken the average lifetime
〈U〉 = 4 minutes. Both plots show also the predictions of the simple theory developed above
(solid lines) that are in remarkably good agreement with the computer simulations. Hence, for
the experimental parameters considered here, the simplifications of our analytical theory do
not matter and give equally good results as the more detailed computer simulations.
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on the underlying lifetime distribution (see figure 5.2). However, both quantities depend
strongly on the time of measurement following the induction of transcription. This is
due to the fact that both quantities depend on the age distribution of the mRNAs in the
sample, which changes with time as we have seen. Therefore, it is important to take into
consideration the time after the start of induction when performing an experiment on
polysome profiles.
An additional effect of the heterogeneous age composition of the samples is given by
the relatively large plateau in the polysome statistics at small polysomes. This plateau
depends on the form of the lifetime densities. This implies that the polysome statistics
and in particular the relative amount of mRNA with small polysomes carries a signature
of the degradation process of the mRNA.
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5.2. Effects of aging on protein synthesis

5.2.1. Rate of protein synthesis

Both the age distribution and the distribution of the amount of mRNA change in time
depending on the shape of the lifetime probability density φU . This finding has implica-
tions on the rate of protein synthesis. The protein synthesis rate in a cell is determined
by the amount of mRNA Nr(t) and the ribosome flux on each mRNA. As pointed out in
the previous section, mRNAs are polysomes on which several ribosomes are engaged in
translation with an average elongation speed v. Thus, at low ribosomal densities, such as
those found in vivo [55, 76], the average ribosome flux is given by the constant density
ρ of ribosomes upstream of the leading ribosome and their average elongation speed v.
However, in the process of translation there is a transient time tL between initiation of
translation and the time until the leading ribosome completes the synthesis of a protein.
In eukaryotic cells and for certain prokaryotic organisms [79, 80], translation can initiate
only after the whole mRNA has been synthesized. In contrast, whenever translation oc-
curs co-transcriptionally [81] translation can initiate during the synthesis of the mRNA.
Therefore, a functional definition of the lifetime of an mRNA is more appropriate here
and the age a = 0 defines the moment when the first ribosomes binds to an mRNA. Con-
sequently, the transient time tL is proportional to the length of the mRNA and inversely
proportional to the average elongation speed v, such that tL = L/v. The consequence of
this transient time tL is that at any time t after the induction of transcription only those
mRNAs that are older than tL can contribute to the rate of protein synthesis. Under this
perspective, tL acts like a delay time that affects the rate of protein synthesis, such that

ωps(t) = v ρNr(t)

∫ t

tL

da φA(a | t) for t > tL (5.8)

and zero otherwise, with φA defined in (4.8). The rate of protein synthesis, thus, depends
both on the average lifetime of the mRNA and on the form of the lifetime density.
Figure 5.3 compares the time-dependence of the rate of protein synthesis for the lifetime
distributions φ

(exp)
U (red) and φ

(Γ)
U (blue), as well as 〈U〉 = 4 min (left panel) and 〈U〉 = 20

min (right panel), respectively. For small average lifetimes, the difference in the age
distribution at a ∼ tL leads to a different stationary protein synthesis rate for different
lifetime distributions. Conversely, for more stable mRNAs the time scale of translation is
less relevant and the two example cases assume very similar stationary rates. Moreover,
the protein synthesis rate per mRNA, ωps(t)/Nr(t), reveals that the different transient of
the synthesis rates is due to the different evolution of the mRNA number Nr(t) (see insets
in figure 5.3).

5.2.2. Protein amount

The turnover of proteins is described by their synthesis rate ωps(t) and the protein degra-
dation rate ωp which we assume to be constant. Moreover, in case of very stable proteins,
the degradation rate is effectively given by the rate of dilution due to cell division. Cur-
rently, it seems not to be feasible to find an analytical expression that accounts for the
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Figure 5.3.: Average protein synthesis rate ωps(t) over time after start of transcrip-

tion. The time evolution of ωps(t) arises from the translation of the average number of mRNAs
Nr(t) at each point in time t, as derived in Eq. (5.8). The red lines represent ωps(t) with a
lifetime density φ(exp) defined in (4.6). The blue lines depict ωps(t) with lifetime density φ(Γ)

defined in (4.7). In both cases we have assumed a ribosome density equal to 20% of the maxi-
mal packing [82], corresponding to ρ = 0.02 ribosomes per codon and a velocity of 10 codons
per second. Panel A shows the average rate of protein synthesis under the two different lifetime
densities when the average lifetime is 〈U〉 = 4 min. For an initial interval of time, the rate of
protein synthesis is smaller if the underlying lifetime density is exponential. At steady state,
the exponential lifetime leads to a larger protein synthesis rate. Eq. (5.8) demonstrates that
the total protein synthesis rate is given by both the number of mRNAs and their lifetime. The
inset shows the evolution of the protein synthesis per mRNA ωps(t)/Nr(t). The different total
synthesis rates shortly after the start of transcription are governed by the different mRNA
numbers of the two mRNA species (see figure 4.3 B) whereas the stationary rate follows from
the different lifetime distributions. In panel B, instead, an average lifetime of 〈U〉 = 20 min
was chosen. Here, the two rates attain similar values only after about two hours. The final
rates are closer than in the left panel because the contribution of tL is smaller with respect to
the average life time. In both plots we have fixed the length of the coding sequence L = 1025
codons, corresponding to the length of the lacZ gene in E. coli .

full stochasticity of both mRNA and protein turnover. However, we can derive the mean
protein number Np resulting from the population protein synthesis rate given in Eq. (5.8).
The corresponding differential equation reads

d

dt
Np = ωps(t)− ωpNp (5.9)

which can be solved by variation of the constant. Hence, the protein amount under the
initial condition Np(0) = 0 evolves in time according to

Np(t) = e−ωpt

∫ t

tL

dτ ωps(τ) e
ωpτ (5.10)

and it remains zero as long as t < tL.
In steady state, the protein number is governed by the equilibrium of synthesis and
degradation. It is given by the limit t→ ∞ and it takes the following form

N st
p =

ωst
ps

ωp

, (5.11)
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where ωst
ps ≡ ωps(t→ ∞) according to Eq. (5.8).

Figure 5.4 A shows the time evolution of the protein amount after start of transcription.
The time to a steady state is mainly governed by the protein degradation rate ωp.
Note that the steady state protein level is partially determined from the lifetime densities
since they give rise to different stationary age distributions as was pointed out in the
previous section. However, this difference is small if the average lifetime is large compared
to tL (inset).
We can compare the result obtained from the time-dependent protein synthesis rate, Eq.
(5.8), with a more simple model with a constant protein synthesis rate throughout the
experiment. It is an effective model for protein synthesis because it ignores the turnover
of mRNA. The evolution of the protein number is given by

Ñp(t) =
ωst
ps

ωp

(1− exp{−ωpt}) , (5.12)

as can be easily deduced from a Master equation. Here, the effective synthesis rate ωst
ps is

just given by the steady state value of Eq. (5.8). Therefore, both models lead to the same
steady state protein level (see figure 5.4 A). Since the transient build-up of the mRNA
level and the delayed protein synthesis is ignored here, this simplified description gives
rise to a faster increase of the protein amount. This effect is more pronounced for longer
mRNA lifetimes (see inset in figure 5.4 A). We can conclude that the mRNA turnover
process becomes only negligible for the description of the average protein number when
the stability of the mRNAs is much smaller than the stability of the proteins. In this
case, the processes of mRNA and protein turnover occur on different time scales.

5.2.3. Protein distribution

It is desirable to also find a theoretical description for the distribution of the number of
proteins. Let P (nR, nP , t) be the probability to have nP proteins and nR mRNAs at time
t. The time evolution is given by

∂P (nR, nP , t)

∂t
= ω̂ps nR [P (nR, nP − 1, t)− P (nR, nP , t)]

+ ωdeg(t) [(nR + 1)P (nR + 1, nP , t)− nR P (nR, nP , t)]

+ ωtc [P (nR − 1, nP , t)− P (nR, nP , t)]

+ ωp [(nP + 1)P (nR, nP + 1, t)− nP P (nR, nP , t)] .

(5.13)

The first line describes the effect of protein synthesis with rate ω̂ps per mRNA, the second
line accounts for mRNA degradation with a time dependent rate ωdeg(t), the third line
the synthesis of mRNAs with rate ωtc and the last line the protein degradation with
rate ωp. Note that ωdeg(t) describes the time-dependence of degradation resulting from
an arbitrary lifetime distribution φU(t). Therefore, as should have become clear from
chapter 2, ωdeg(t) also depends on the age of the mRNAs (for more details see section A.4
in the appendix). It seems not to be possible to find an analytical solution of Eq. (5.13).
However, in ref. [4] the moments of the protein number distribution are computed for
some limit cases. There, the degradation of mRNA was considered with a constant decay
rate.
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Figure 5.4.: Time evolution of the protein amount and protein number distribution.
The left panel shows the temporal evolution of the average protein number as given by the time-
dependent protein synthesis rate, Eq. (5.8), and a protein degradation rate ωp = 1/30min−1.
We compare the evolution of the protein turnover arising from mRNAs with the same average

lifetime 〈U〉 = 4 but different lifetime distributions φ
(exp)
U (red) and φ

(Γ)
U (blue). A stationary

level is not reached before 150 min and the mRNAs with exponentially distributed lifetimes
imply a higher steady state protein number due to their higher stationary synthesis rate, see
figure 5.3. In the inset, the evolution is depicted for mRNAs with the same lifetime distributions
but 〈U〉 = 20 min. Hence, their steady state amount differs less since also their stationary
synthesis rates are close, see figure 5.3. For comparison, the dotted lines show the time evolution
of the average protein amount under the assumption of a constant rate of protein synthesis
and thus ignoring the transient mRNA turnover, see Eq. (5.12). In this case, the evolution of
the protein number is faster. This becomes more pronounced when the mean lifetime of the
mRNAs is 20 min (see inset). In the right panel we depict the stationary distribution of the
protein amount as found in a stochastic simulation of combined mRNA and protein turnover.
We compare the distributions arising from the same exemplary mRNA lifetime distribution
considered before with 〈U〉 = 4 min. The distributions are relatively broad which result in a
Fano factor of 43.1 (red) and 22.1 (blue), respectively. The dotted lines show the distributions
without age effect, i.e. the numerical solution of Eq. (5.13). Here, the width of the distribution
is smaller, giving rise to smaller Fano factors (28.6 and 16.8). Thus, the consideration of a
delayed protein synthesis due to a constant time lag tL leads to an increase of the inherent
noise in gene expression.

We have simulated the protein turnover via a Monte-Carlo simulation (see section 2.5).
The mRNAs are generated according to a Poisson process and each mRNA has a random
lifetime according to a probability distribution (such as Eq. (4.7), with mean lifetime 〈U〉
and shape n fixed). Throughout the lifetime of an mRNA, proteins are synthesized at a
constant rate corresponding to the steady state value of Eq. (5.8) divided by the number of
mRNAs. However, the protein synthesis only starts after a time delay tL which accounts
for the time scale of translation introduced above. Finally, every protein has a random but
finite lifetime which is determined by its degradation rate ωp and at each instant of the
simulation the number of live proteins can be determined. A large number of independent
realizations of this process provide thus the distribution and average value of the amount
of protein.

In figure 5.4 B, the results from the simulation is shown for 〈U〉 = 4 min and n = 1
(red) and n = 5 (blue). The distributions are broad and centered around the mean
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values we obtained from the analytical calculation, Eq. (5.11). We can compare the
simulation results to a numerical solution of Eq. (5.13). In this case, the transient time
tL until the first protein is expressed, is ignored. Figure 5.4 B reveals that in this case
the protein number distributions are more narrow which also results in a smaller Fano
factor - defined as the variance divided by the mean - of the protein distribution. Thus,
the additional incorporation of the time scale tL increases the noisiness of the stochastic
protein turnover.
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5.3. Time evolution of the mRNA amount during the

cell cycle

In most parts of the thesis, we have considered the situation that mRNAs are synthesized
via a Poisson process from an initial amount Nr(0) = 0. We have seen that, depending on
the lifetime distribution and average lifetime of an mRNA, the transient to steady state
can be relatively long, which leads to the question if the mRNA level of a given gene can
reach a steady state at all in the limited period of a cell cycle. In sections 4.6 and 4.7 we
have already discussed how our formalism can be expanded to more realistic situations
where there is a non-vanishing amount of mRNAs present at the time point of induction
or stress applications. Here we want to advance the methodology to consider a simple
model of the cell cycle.
The understanding of the mechanisms of the cell cycle is in itself a non-trivial matter.
Many processes like the growth and division events are of stochastic nature [83, 84, 85,
86, 87]. Furthermore, eukaryotic cells undergo distinct phases and in each of the phases
transcription and degradation of the mRNAs may be differently regulated. Therefore, in
this thesis we can only consider a simple model of cell division. The constituents of each
cell, e.g. its mRNA and protein content, increase during the growth phase of each cell. At
the time of division, the molecules are split between the two daughter cells and the growth
process starts anew. In this section we will first develop a deterministic division model
that is based on our general formalism developed in chapter 2. We will compare these
results with a more realistic model of cell division obtained from computer simulations.
In a final part, we will contemplate the changes of the concentration of the mRNAs.

5.3.1. Deterministic model of cell division

In this model, we consider the evolution of mRNAs as the consequence of continuous
transcription and mRNA degradation. During one cell cycle the conditions that determine
transcription and degradation remain constant. Each cell cycle has a fixed duration tcc
and at division the mRNA content of a cell is equally distributed to its two daughter cells.
At an arbitrary time t = 0, transcription of mRNAs starts and proceeds until the end of
the first cycle at t = tcc. Hence the growth of the amount of mRNA is described by Eq.
(4.1),

N (1)
r (t) = ωtcH

t
0 . (5.14)

Here and in the following we use the notation Ht2
t1 ≡

∫ t2
t1

du (1− ΦU(u)) which we intro-
duced in Eq. (2.16). For a generic example, the growth of the average amount of mRNA
is illustrated in figure 5.5 A (red line). The evolution of the mRNA amount during the
second cycle can by understood as the sum of the contribution of the newly synthesized
mRNAs and the decaying amount of the first cycle,

N (2)
r (t) = ωtcH

t−tcc
0 +

ωtc

2
Ht

t−tcc (5.15)

for tcc ≤ t < 2 tcc. The first term describes the growth of newly transcribed mRNAs
which result from a transcription process started at t = tcc (blue line in figure 5.5 A).
The second term describes the decay of the remaining mRNAs from the first cycle where
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the factor of 1/2 arises from the division at t = tcc (red line in figure 5.5 A). In the third
cycle ranging from 2 tcc < t ≤ 3 tcc, a third transcription process is started (green line).
Moreover, at t = 2 tcc only half of the mRNA amount prior to division is still present.
Hence, the mRNA population generated during the second cycle is halved (blue) while
the mRNAs originating in the first cycle (red) underwent division twice - thus the factor
of 1/4. Consequently, the mRNA amount evolves according to

N (3)
r (t) = ωtcH

t−2 tcc
0 +

ωtc

2
Ht

t−tcc +
ωtc

4
Ht−tcc

t−2 tcc . (5.16)

This scheme can be straightforwardly generalized to the kth cycle which ranges from
(k − 1) tcc < t ≤ k tcc

N (k)
r (t) = ωtcH

t−(k−1) tcc
0 + ωtc

k−2
∑

j=0

2−(j+1)Ht−j tcc
t−(j+1)tcc

. (5.17)

The evolution of the mRNA amount during the first 4 cycles is visualized in figure 5.5
A. Different colors indicate the contribution of mRNAs originating from different cycles.
The sum of the contributions gives the evolution of the total amount (black) as described
by Eq. (5.17).

5.3.2. Stochastic cell cycle simulations

To grasp some more details of the inherent stochasticity of the cell division process,
we have complementarily studied the problem with computer simulations. The general
concept of stochastic simulations has been pointed out in section 2.5 and an algorithm is
given in the appendix (section A.6). First, we extend the description of cell division by
considering a stochastic distribution of the mRNA molecules. At division each mRNAs
goes with probability 1/2 into the first daughter cell whereas with the same probability it
terminates in the second daughter cell. Hence, the number of mRNAs staying in one cell is
binomially distributed. Secondly, the duration of a cell cycle is also random. Therefore, we
have considered a log-normally distributed cell cycle duration with the same mean value
tcc as in the deterministic model. The variance of the cell cycle duration distribution was
set to tcc/2.
In figure 5.5 B we compare results from the deterministic model and the computer simula-
tions. We consider an mRNA with a lifetime distribution φ

(Γ)
U with shape parameter n = 5

and average lifetime 〈U〉 = 30 min. Furthermore, the transcription rate ωtc = 1min−1

and the average cell cycle duration tcc = 30 min. In the deterministic case, the evolution
of the average mRNA number reaches a stable pattern after the second cycle (red). Thus,
in all subsequent cycles the time evolution is identical. One realization of the simulation
leads to strong fluctuations due to the inherent stochasticity (gray). However, an average
over 1000 realizations yields an oscillating pattern of the number of mRNAs with the
period of the average cell cycle duration (blue). After several cycles the oscillation decays
and approaches a constant, stationary mRNA level.
We can understand this value by considering the deterministic model again. During each
cycle the mRNA amount evolves from a minimum to a maximum value according to Eq.
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Figure 5.5.: mRNA evolution and cell division. The left panel shows a scheme how one can
find an analytical expression for the mRNA evolution in a deterministic model of cell division.
Each cycle has a fixed duration tcc and the mRNA population is split in half at each division.
Each color marks the mRNA created within one cell cycle and the black line gives the sum of
all mRNAs at each time. After a few cycles, the maximum amount is reached (as indicated by
the black dashed line). The right panel shows a comparison of the deterministic cell division
model with n = 5, 〈U〉 = 30 min and tcc = 30 min (red), see Eq. (5.17) and results obtained
from Monte-Carlo simulations with stochastic division and random cycle duration. A single
realization is governed by large fluctuations in the mRNA amount due to stochastic division
and varying cycle duration (gray). The average mRNA amount obtained from a large number
of realizations shows only an oscillating behavior which decays to a stationary value when
sufficiently far from the initial configuration (blue). This stationary average value obtained by
computer simulations can be understood with the help of the deterministic model. The green
line gives the average mRNA number over one deterministic cycle, Eq. (5.18), long after the
division process was started. Clearly, the average from many simulations (blue) agrees with
this value.

(5.17). The average mRNA amount during one cycle is given by

〈N (k)
r 〉 =

1

tcc

∫ tcc

0

dτ N (k)
r (τ) . (5.18)

After several cycles, i.e. far from the initial configuration, Eq. (5.18) becomes constant.
Conversely, in a single realization of the stochastic model there is no stationary cell cycle
average. However, the average over many realization leads to the same average cell cycle
duration and to the same average dilution. Indeed, figure 5.5 B reveals that the cell cycle
average as given by Eq. (5.18) (green) agrees with the long term limit of the stochastic
simulation (blue).
Hence we can conclude that although a stationary mRNA level might not be reached
within one cycle, the pattern of mRNA evolution within one cycle does become stationary.
The additional stochastic aspects considered in the simulations prolongs the transient
regime but also eventually reaches a stationary cell cycle average. More stretched mRNA
lifetime distributions and larger average lifetimes increase the number of required cycles,
however the mRNA turnover will always reach a stationary regime. It should be clear
that a similar analysis can also be performed for the evolution of the protein amount.
There, one would expect that even longer lifetimes of the proteins and a non-constant
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Figure 5.6.: Cell to cell variability and mRNA concentrations. In the left panel, the
cell-to-cell variability of the mRNA amount is shown for the stochastic cell division model
introduced above (blue). The corresponding mRNA number distribution is broader than a
Poisson distribution (black) and the Fano factor reads 1.8. Thus, the cell division process is
an additional source of stochasticity in mRNA turnover. In the right panel, we follow the
mRNA concentration, i.e. the number divided by the cell volume, over several cell cycles.
For the calculation of the deterministic cell cycle model, Eq. (5.17), we have assumed a cell
cycle duration tcc = 30 min and linear volume growth. Whereas the green line represents

mRNAs with φ
(Γ)
U and 〈U〉 = 4 min, the red line gives the evolution for 〈U〉 = 30 min. In

both cases, the maximum of the concentration is obtained at an early time in the cell cycle
and the concentration decreases thereafter. This becomes evident once one realizes that the
mRNA amount approaches a steady state depending on the lifetime distribution and average
lifetime whereas in the simple model of volume growth considered here the volume increases
continuously.

synthesis rate would lead to an even longer transient. However, if the number of cycles
is sufficiently large, one will always attain a stationary mRNA and protein expression
pattern.
We can also assess the cell-to-cell variability of the mRNA amount for the present stochas-
tic cell division model (see figure 5.6 A). The corresponding mRNA number distribution is
broader than a Poisson distribution and the Fano factor reads 1.8. Thus, the cell division
process is an additional source of stochasticity in mRNA turnover.

5.3.3. Effects of volume growth and molecule concentrations

In a cell, not only the absolute number of molecules of each kind is important but also
its concentration. The concentration is simply given by the ratio of number vs. cell
volume and both are subject to change during the cell cycle. As long as we consider
cell populations only, the population is in an equilibrium situation with regard to the cell
volume. The average volume is held constant. Hence, the concentration is just the average
molecule number divided by the average volume. However, once one considers single cells,
the volume of the cell increases from an initial value after division to its final value before
division. In a simple deterministic model, one starts with a fixed initial volume V0 which
expands during the cell cycle period tcc to twice its value, i.e. V (tcc) = 2V0. Different
growth models have been considered in the literature [88, 89]. In particular, E. coli
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bacteria elongate in one dimension only and divide somewhere close to the center [86].
In the following, we will investigate the change of concentration during one cell cycle in
a linear growth model,

V (t) = V0

(

1 +
t

tcc

)

(5.19)

Here, the cycle spans from 0 ≤ t ≤ tcc and the volume is divided by two at t = tcc.
It is however straightforward to devise other growth models and follow the change of
concentration in time.
In a more realistic model, the cell volume before and after division as well as the cell
division time are random quantities. One can account for this randomness in Monte-
Carlo simulations similar to those described earlier in this section.
We can follow the change of concentration during the cell cycle (see figure 5.6 B). Both
molecule number and volume increase in time and the concentrations grow to a maximum
value at a specific time during the cell cycle. After some time the mRNA level approaches
a steady state while the cell volume grows continuously. Hence, there is a maximum of the
concentration followed by a decrease. Once the mRNA number has reached its maximal
level, further cycles reveal the same concentration pattern. In a cell such as E. coli, the
DNA duplicates during the cell cycle so that more than one copy of each gene is present.
This can be understood as a doubling of the transcription rate but has not been considered
here.

5.4. Chapter summary

In this chapter, we have elucidated implications of the extended theory of mRNA degra-
dation for the processes of translation and protein synthesis. We developed a theoretical
description for low density ribosome traffic and examined how ribosome profiles depend
on the non-stationary mRNA number and age distribution. Moreover, using simulations
we could validate these results and extend the analysis for any ribosome flux. In addition,
for the rate of protein synthesis and the evolution of the amount of proteins, an analytical
description was found (see section 5.2). Conversely, the corresponding protein number
distributions have been obtained by Monte-Carlo simulations. One of the main finding of
this chapter is that the processes of translation and protein synthesis bear transient phe-
nomena that originate from the turnover of the mRNAs. Furthermore, we have addressed
the question what this non-stationarity implies to the cell cycle. There, we have devel-
oped an analytical and deterministic model of cell division and compared it to stochastic
simulations. We found that after a limited number of cycles the mRNA level approaches
a stationary expression pattern.
Section 5.1 reviews and expands some published results [50], whereas sections 5.2 and 5.3
are largely original research, part of which already published [74].



6. Summary and outlook

6.1. Summary

In this thesis, we have developed a general theoretical formalism of mRNA expression.
Our focus was on an improved description of the mRNA degradation. It extends previ-
ous theoretical approaches by considering general mRNA lifetime distributions. This was
motivated by the failure of existing models to accurately describe mRNA decay experi-
ment. Moreover, it provides a framework to incorporate the knowledge of the underlying
biochemical mechanisms of degradation.
In chapter 2 we have developed most of the theoretical tools required for the remain-
ing part of the thesis. Under relatively general and mild mathematical conditions, we
have found that the number of mRNAs can be described by a Poisson distribution with
time dependent parameter regardless of the lifetime distribution. We could show that
this includes the findings of a simpler theory, where the lifetimes are restricted to be
exponentially distributed, as a limiting case.
In chapter 3 we used the theoretical findings to improve the understanding of mRNA
decay experiments. We find some general results which hold for any decay mechanism.
Thus we can identify experimental decay patterns that are bona-fide. This is important
because most experiments reveal data that are difficult to interpret - presumably because
of the perturbing nature of the decay experiments. Furthermore, we developed two specific
models that describe the degradation in two model organisms, S. cerevisiae and E. coli.
In the first model, we could map the complexity of different decay mechanisms into a
model based on Markov chains. Thus, we could improve the interpretation of experiments
considerably. We find different categories of decay patterns which are strictly related to
the underlying decay mechanism. In a second model, we have pursuit a different strategy
where we modeled the relation of degradation to the state of translation of a given mRNA.
This resembles the situation in bacteria such as E. coli. Again, our approach led to an
improved description of experimental data and to a more accurate evaluation of the
average mRNA lifetimes. Moreover, we could thus devise a strategy to assess the role of
co-transcriptional translation in bacteria.
Chapter 4 dealt with the role of degradation in the expression levels of mRNAs. On the
one hand, we have found that the transient evolution of the mRNA amount after induction
of a gene is governed by the lifetime distribution of an mRNA. Non-exponential lifetime
distributions become manifest in the aging of mRNA molecules. We have found powerful
criteria such as the age and residual lifetime distribution to assess the aging of mRNAs.
On the other hand, we have considered the situation that the rate of transcription changes
during an experiment. This is particularly useful when trying to understand experiments
where cells where subjected to stressed conditions. With the theoretical tools developed
in this chapter, we can understand some aspects of the mRNA expression changes under
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stressed conditions. There, our theory allows to differentiate between effects due to a
changed mode of transcription and degradation, respectively.
In chapter 5 we addressed the implications of our improved description of mRNA turnover
in a larger setting. We have investigated its role for the processes of translation and pro-
tein synthesis. Since all processes in gene expression are tightly coupled, the transient
evolution of the mRNA amount governs the time scales of these processes as well. Fur-
thermore, we have pointed out how the mRNA amount evolves in single cells by devising
an appropriate cell division model.

6.2. Further perspectives

All quantitative experiments in modern biology require a proper model for their inter-
pretation. Since previous models lead to unsatisfactory results, our theory provides an
enlarged toolbox for the interpretation of further experiments. Moreover, our theoretical
description hints how the design of the experiments can be improved by stressing the
fact that only a high temporal resolution can yield an accurate derivation of the lifetime
distribution of an mRNA.
Furthermore, our theory establishes a relation between mRNA decay experiments and the
underlying biochemical mechanisms of decay. In experiments, the role of a specific mech-
anism is often studied by merely looking at mRNA half-lives. Conversely, we provide
a tool how different mechanisms can be validated by the experimental decay patterns.
Therefore, our formalism based on a Markov chain can be readily expanded to the cur-
rent knowledge of the biochemistry of mRNA stability regulation. An advantage of our
description is that it is general and we provide straightforward ideas how mechanisms can
be incorporated into falsifiable models. Furthermore, it should have become clear that
the modeling is open for alternative strategies to obtain a suitable lifetime distribution.
These can be easily incorporated into the general formalism introduced in this thesis.
Hence, our theoretical framework and the strategies related to find the appropriate lifetime
distributions lead to a more complete picture of gene expression. It opens a possibility to
better understand and design experiments on translation and protein synthesis.
A better comprehension of the role of transcription and degradation in the role of gene
expression is mandatory to fully understand the level of mRNA expression. Hence, our
description should be able to enhance the interpretation of many experiments that pursuit
the better understanding of mRNA expression under aberrant conditions.
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3’ UTR
Part of the mRNA sequence following the stop codon

5’ CAP
Protective end on the 5′ side of an mRNA consisting of a methylated guanine nucleotide

5’ UTR
Part of the mRNA sequence upstream of the start codon

B. subtilis
Bacillus subtilis. A bacterium frequently studied in cell biology

Coding sequence
Sequence of nucleotides of an mRNA that codes for a protein

Codon
Triplet of nucleotides that codes for an amino acid (or termination)

Cytosol
Solution that contains all parts of a cell inside the cell membrane

Deadenylation
Process of removing the Poly(A)-tail of an mRNA

Decapping
Process of removal of the phosphate-CAP upstream of the 5′ UTR

Degradosome
Complex of enzymes in E. coli that is responsible for degradation of mRNAs

E. coli
Escherichia coli, the prokaryotic standard model of cell biology

Elongation
Process of elongating the mRNA transcripts in transcription or the polypeptide chains
in translation

Endonuclease
Class of enzymes that cleave an mRNA between two nucleotides

Eukaryote
Domain of organisms that have a cell nucleus

Exonuclease
Class of enzymes that processively degrade mRNA from one of its ends

Exosome
Complex of enzymes in eukaryotes that is responsible for degradation of mRNAs

Footprint
The position of ribosomes on a target mRNA

Homologue
Group of genes, RNAs or proteins with similar or identical function
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Initiation
Start of process of transcription or translation

Northern blot
Experimental method based on gel electrophoreses to quantify mRNA expression in a
cell assay

Metabolic labeling
Experimental method in which nucleotides are labeled via heavy or radioactive isotopes

miRNA
microRNA: Short sequence of nucleotides that binds to complementary parts of mRNAs
resulting in gene silencing

Microarray
Experimental method to quantify the genome wide mRNA expression

mRNA
messenger RNA

Poly(A)
Sequence of adenosine nucleotides following the 3′ UTR

Plasmid
DNA molecules that are separate from the chromosomal DNA. Recombinant plasmids
are used to express artificial genes in an organism

Phosphorylation
The addition of phosphate groups to a protein that can alter the function and activity
of a protein

Polypeptide chain
Sequence of amino acids that makes up a protein

Polysome
A cluster of ribosomes that are attached to an mRNA

Pre-mRNA
Precursor mRNA denotes the transcript in eukaryotes before splicing and UTR addition

Prokaryote
Group of organisms that lack a cell nucleus, i.e. bacteria and archaea

Protease
Enzyme or enzyme complex which degrades proteins

qRT-PCR
Real-time reverse-transcription Polymerase Chain Reaction. A quantitative method
for measuring gene expression

Ribosome
Complex that translates information encoded in mRNA into polypeptide chains

RNA polymerase
Enzyme complex that transcribes DNA to mRNA

RNase E
Primary endonuclease in E. coli

RNA-seq
Experimental high-throughput method to quantify the mRNA expression in a cell assay
- also known as deep sequencing, next-generation sequencing, Whole Transcriptome
Shotgun Sequencing
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S. cerevisiae
Baker’s yeast. One of the simplest eukaryotic organisms

Splicing
A process which modifies RNAs in eukaryotes: Introns are removed and exons are
joined.

Transcription
The process of transcribing the genetic information from DNA to mRNA

Transcription factors
Proteins that can activate or repress the recruitment of RNA polymerases

Translation
The process of translating the genetic information from mRNA into a polypeptide chain

tRNA
transfer RNA
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A. Appendix to chapter 2:
Mathematical background

In this part, we elaborate some more findings related to chapter 2.

A.1. Properties of Poisson process

First we state some properties of a Poisson process. For any 0 < t < T and 0 ≤ k,≤ n,
it holds

Pr{X(t) = k | X(T ) = n} =
n!

k!(n− k)!
(
t

T
)k(1−

t

T
)n−k . (A.1)

The probability of no event occurring in the interval ti+1 − ti reads

Pr{X(ti+1) − X(ti) = 0} = exp(−ωtc (ti+1 − ti)) (A.2)

Furthermore, consider S ≡ ti+1 − ti as the random sojourn time between subsequent
events. Its probability density reads

f(S = s) = ωtc exp(−ωtc s) (A.3)

Thus, the sojourn time is exponentially distributed.

A.1.1. Relation of uniform distribution and Poisson process

In the following, we demonstrate the relation of uniform distribution and Poisson process.
We used the result of this computation in the derivation of our main results from chapter
2, in particular, the distribution of the mRNA number before and after stop of transcripts.
The following derivation proceeds analogous to [30].
Consider a Poisson process where until time t exactly n events are to happen. Each event
i occurs at a random time point Wi in the (infinitesimal) interval wi < Wi < wi + ∆wi.
Hence, no event occurs in (wi + ∆wi, wi+1]. Thus, the events occur in disjoint intervals.
One can distinguish between intervals with no event

Pr{X(wi)−X(wi−1 +∆wi−1) = 0} = e−λ(wi−wi−1−∆wi−1) , (A.4)

which follows directly from the homogeneity of the process and obvious alterations for
i = 1 and i = n.
And intervals where exactly one event occurs

Pr{X(wi +∆wi)−X(wi) = 1} = λ∆wi , (A.5)



100 Appendix to chapter 2: Mathematical background

i.e. they are proportional to the rate of the Poisson process.
Putting the pieces together, the probability density reads

fW1,...,Wn|X(t)=n(w1, . . . , wn)∆w1 . . .∆wn

= Pr{w1 < W1 < w1 +∆w1, . . . , wn < Wn < wn +∆wn | X(t) = n}

= Pr{w1 < W1 < w1 +∆w1, . . . , wn < Wn < wn +∆wn, X(t) = n}/Pr{X(t) = n}

=

n
∏

i=1

(

Pr{X(wi +∆wi)−X(wi) = 1} · Pr{X(wi)−X(wi−1 +∆wi−1) = 0}
)

/Pr{X(t) = n}

=
e−λ tλneλ(∆w1+···+∆wn)

e−λ t(λ t)n/n!
∆w1 . . .∆wn

(A.6)

Thus, dividing both sides by ∆w1 . . .∆wn and taking the limit ∆w1 = · · · = ∆wn = 0
finally leads to

fW1,...,Wn|X(t)=n(w1, . . . , wn) = n! t−n (A.7)

This is exactly the probability distribution of n uniformly distributed events in an interval
(0, t] where the factor of n! arises from the number of possibilities of rearranging the n
individual events.
Thus we can conclude that in the conditional Poisson process the events are uniformly
distributed.
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A.2. Derivation of the age and residual lifetime

distribution

In chapter 2 we have given the results of the distribution of the age A and residual lifetime
R of an mRNA at arbitrary time before and after the interruption of transcription. In
the following, we will give a detailed description of the derivation of these results.

A.2.1. Age distribution

A randomly selected mRNA will also be of a random age. Hence, a large ensemble of
mRNAs at a given (global) time t will reveal an age distribution (see also Fig. 2.1). In
this section, we will derive a general analytical result for the age probability density φA

of an mRNA.

In the following, we will not distinguish between scenarios before and after the interruption
of transcription. Instead we derive the more general formulation directly and certain
limit cases can be easily obtained from the final result. We are interested in the age of a
randomly chosen mRNA at any time point t. Therefore, in the following, we consider a
single mRNA that has been created according to a Poisson process in the interval [0, ts)
and has a random lifetime U distributed according to the density φU . Using the same
notation as before, the given mRNA will be present at an observation time ts +∆t only
if the variable Z = O+U satisfies Z ≥ ts +∆t. Let A be the random variable that gives
the age of a randomly chosen mRNA. Then, the age distribution of the mRNA is given
by the distribution of A = ts + ∆t − O under the condition Z ≥ ts + ∆t (see Fig. 2.1).
In order to compute this quantity we shall first realize that

Pr{A ≤ a | Z ≥ ts +∆t} = 1− Pr{O < ts +∆t− a | Z ≥ ts +∆t} , (A.8)

and thus compute the probability density for O conditional that Z ≥ ts+∆t. To compute
this quantity, recall that, in this case, we condition that the number of transcribed mRNAs
until time ts is just one. Therefore, the random variable O is uniformly distributed in
[0, ts). Since the transcription events are independent from another, we can thus compute
the age distribution of a sample of mRNAs. We obtain

Pr{O < x | Z ≥ ts +∆t} =
Pr{O < x,Z ≥ ts +∆t}

Pr{Z ≥ ts +∆t}

=

∫ ∞

ts+∆t−x

du
Pr{O < x,Z ≥ ts +∆t | U = u}φU(u)

Pr{Z ≥ ts +∆t}

=

∫ ∞

ts+∆t−x

du
Pr{ts +∆t− u ≤ O < x}φU(u)

Pr{Z ≥ ts +∆t}
,

(A.9)

where 0 ≤ x < ts because we implicitly conditioned that the origination time point
is before time ts. We shall now use the fact that the random variable O is uniformly
distributed in [0, ts) (because we have conditioned that there is one mRNA alive at time
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t = ts +∆t) and thus that Pr{Z ≥ ts +∆t} is given by (2.13). This leads to

∫ ∞

ts+∆t−x

du
Pr{ts +∆t− u ≤ O < x}φU(u)

Pr{Z ≥ ts +∆t}

=

[∫ ts+∆t

∆t

dy (1− ΦU(y))

]−1 ∫ ∞

ts+∆t−x

du [x−max(0, ts +∆t− u)]φU(u) ,

(A.10)

from which we can compute the distribution of the age A = ts + ∆t − O under the
condition Z ≥ ts +∆t. This distribution is given by (A.8) and reads

Pr{A ≤ a | Z ≥ ts +∆t} = 1− Pr{O ≤ ts +∆t− a | Z ≥ ts +∆t}

= 1−

[∫ ts+∆t

∆t

dy (1− ΦU(y))

]−1 ∫ ∞

a

du [min(u, ts +∆t)− a]φU(u) ,

(A.11)

which upon differentiation with respect to a finally leads to the probability density func-
tion

φA(a | ts +∆t) =

[∫ ts+∆t

∆t

du (1− ΦU(u))

]−1

(1− ΦU(a)) , (A.12)

for ∆t ≤ a < ts +∆t and zero otherwise.
Note that Eq. (A.12) is the marginal probability density of the age random variable A.
We can consider different scenarios, before and after the stop of transcription, by choosing
t and ∆t accordingly.

A.2.2. Residual lifetime distribution

Similar to its age, a randomly selected mRNA will also have a random residual lifetime.
Hence, a large ensemble of mRNAs at a given (global) time t will reveal a residual lifetime
distribution (see also Fig. 2.1). In this section, we will derive a general analytical result
for the residual lifetime density φR.
The residual (or excess) lifetime R of an mRNA is a statistical quantity complementary
to the age of the mRNA. The derivation of its distribution proceeds in a similar fashion
as for the age distribution. Once again, we consider a single mRNA that is generated
in the interval [0, ts) and at the time ts +∆t a measurement is performed. The residual
lifetime is given by R = Z − (ts + ∆t), i.e. by the difference of the time of degradation
and the observation time point (see Fig. 2.1). Hence, the probability distribution of the
residual lifetime under the condition that the mRNA is still alive at Z ≥ ts +∆t is given
by

Pr{R ≤ r | Z ≥ ts +∆t} = Pr{Z ≤ ts +∆t+ r | Z ≥ ts +∆t}

=
Pr{Z ≥ ts +∆t} − Pr{Z ≥ ts +∆t+ r}

Pr{Z ≥ ts +∆t}
,

(A.13)

where we have used the relation for R and the definition of the conditional probability.
We can proceed by using (2.13) and upon derivation by r we obtain the residual lifetime
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probability density

φR(r | ts +∆t) =

[∫ ts+∆t

∆t

du (1− ΦU(u))

]−1

(ΦU(ts +∆t+ r)− ΦU(∆t+ r)) . (A.14)

It holds for all r ≥ 0. Similarly as for the age distribution, also for the residual lifetime
distributions several limit cases of interest exist and will be further discussed in chapters
3 and 4.
Hence, both the age distribution as well as the residual lifetime distribution depend on
the form of the lifetime probability density φU and on the time after start of transcription
ts as well as the time interval since the interruption of transcription ∆t.
In this section we have performed the central computations used for the remaining parts
of the thesis. We found an analytical expression for the number and distribution of
mRNAs under different experimental conditions as well as for the age and residual lifetime
distributions.
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A.3. mRNA fluctuations in cell populations

Each measurement via a microarray yields the mRNA level of each gene. However, as we
pointed out, the process of mRNA turnover is inherently stochastic. Therefore, a single
measurement only reveals one realization of possible values and to obtain the distribution
and mean value, repeated measurements under the same conditions are necessary.

From a theoretical point of view, each cell in a population has a random mRNA signal
(i.e. mRNA number) M . If we consider unsynchronized cells, these random numbers are
furthermore independent. The fluctuation in the cell population would thus be defined
by the sum of all random numbers pertaining to individual cells. Under the assumptions
that the mRNA fluctuations are Poissonian in each cell, one can compute the sum of
independent, Poisson distributed random variables. A standard calculation reveals that
the sum gives a random number which is also Poisson distribution and the parameter of
the distribution is given by the sum of the single cell parameters [30]. In this scenario, the
distribution for each random variable in a single cell can have different distribution pa-
rameters µ. This would reflect different phases in the cell cycle that become manifest in a
variation of the transcription rate ωtc and mRNA average lifetime 〈U〉. Since experiments
typically assess the mRNA expression in a large number of cells, i.e. more than 109, the
resulting Poisson distribution can be approximated with a normal distribution (according
to the central limit theory in probability theory [90]). Hence, each measurement would
reveal only one possible value according to a normal distribution with mean Ωtc〈U〉 and a
variance equal to the mean (see figure A.1) and need not necessarily reproduce the mean
expression level itself.

Indeed, in a systematic analysis of many data sets, either a normally distributed variation
was found or a multi-normal distribution in cases where cells in different expression states
are present [91]. It has been pointed out in the bioinformatics community that a minimum
of 5 replicate experiments is necessary to be able to estimate the parameters of the
distribution with maximum-likelihood methods [92, 93, 94]. Thus, the lower number of
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Figure A.1.: Gaussian distribution of large population of cells. If one considers a large
number of unsynchronized cells, where the fluctuations in a single cell are described by a
Poisson distribution, the distribution of mRNAs is given by a normal distribution.
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replicas performed in many experiments might explain part of the weak reproducibility,
although this analysis only concerns the systematic, inherent variation and not possible
additional experimental uncertainties. Moreover, if single cell fluctuations cannot be
described by a Poisson distribution as for example in a Cox process (see section D) the
sum of the random mRNA number in each cell is not easy to calculate (in fact, as we
have pointed out above there is no analytical solution for the fluctuations of the mRNA
number available). However, also in this case the fluctuations in single cells would add
up to describe the mRNA fluctuation in cell populations and also here the central limit
theorem would lead to a normal distribution (albeit with larger variance).

A.4. Master equation and phenomenological descriptions

Details of calculation, start and stop of transcription, mean values
Similar to the findings for the fluctuations of the mRNA number for constant rates,
one directly compute the evolution of the mean mRNA number after start and stop of
transcription.
For the first case, the Master equation reads

dNr

dt
= ωtc −Nr(t)ωr , (A.15)

with the solution described by Nr(t) =
ωtc

ωr
(1− exp(−ωrt). If transcription is stopped for

a populations that was previously in a steady state, the Master equation reads

dNr

dt
= −Nr(t)ωr . (A.16)

The decay of the relative number is given by Λ(t) = exp(−ωrt).
It would be interesting to see if a description with a Master equation is also possible for
the more general theory with arbitrary lifetimes discussed in this thesis. However, as we
pointed out in section 2.2 the degradation rate depends on the age of the mRNA, and a
possible formulation would have the following form

dNr

dt
= ωtc −Nr(t)

∫ t

0

daωr(a)φA(a | t) . (A.17)

Clearly, a solution to this equation seems not trivial and the full stochastic formulation
we have pursuit advantageous.

Phenomenological model

The function ΦU(t) denotes the probability that an mRNA has been degraded until a
time ∆t after its transcription. Hence, one can define the survival probability

S(∆t) ≡ 1− ΦU(∆t) (A.18)

that an mRNA is still alive after a time ∆t. However, we are not interested in the survival
probability of a single mRNA with precisely known origin, but the fraction of remaining



106 Appendix to chapter 2: Mathematical background

mRNAs originating from random transcription points in the interval [∆t,∞) before the
interruption of transcription. We can define the average survival probability as

Ŝ(∆t) ≡

∫ ∞

∆t

dτ (1− ΦU(τ)) . (A.19)

It describes the fraction of remaining mRNAs at at time ∆t after the interruption of
transcription. A comparison to Eq. (3.2) reveals that Eq. (A.18) takes the same form as
Λ(∆t). One can extend this description by accounting for non-homogeneous description
with a transcription density term ρ(t), i.e.

Ŝ(∆t) ≡

∫ ∞

∆t

dτ (1− ΦU(τ)) ρ(∆t− τ) . (A.20)

The special cases, ρ(∆t − τ) = δ(∆t − τ) and ρ(∆t − τ) = 1 lead to Eqs. (A.18) and
(A.19), respectively. It would be interesting however to study more variants of ρ(t), e.g.
random spikes of transcription activity or modulated transcription rates.

A.5. Non-linear Markov chains

The general concept of a Markov chain to describe the degradation process as a multi-step
process can also be expanded to non-linear chains with several absorbing states. Here,
degradation from an initially intact mRNA (black) can proceed via miRNA mediated
decay (lower branch) or another, independent pathway (upper branch). In the miRNA
mediated pathway (red), two enzymes are known to trigger deadenylation and degradation
and the sub-pathways can be differentially analyzed. Finally, in this picture degradation
can proceed in at least three different ways resulting in three different absorbing states
(blue). This model is motivated by a study of biochemical degradation mechanisms in
mice [17].

Figure A.2.: Example of non-linear Markov chain.The general concept of a Markov chain
to describe the degradation process as a multi-step process can also be expanded to non-linear
chains with several absorbing states.
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A.6. More details of the computer simulations

In chapter 2 we have outlined possible strategies to model mRNA turnover via stochastic
simulations. Here, we give algorithms for more detailed simulations which we used in this
thesis.

Basic mRNA and protein turnover algorithm The mRNA turnover simulation pro-
ceeds as before, however during the lifetime of each mRNA, proteins are produced with
a constant rate. For each mRNA, protein events are a random time interval da apart.
Counting the total number of proteins as well as the random time points of their gen-
eration and degradation allows retrieving the number of live proteins at any time of the
simulation. A large number of realizations gives furthermore the distribution of proteins.

set t = 0, X = 0
while t < T

generate dt
set t = t+ dt
set X = X + 1, Start(X) = t
generate U , set End(X) = t+ U
while a < U

generate da
set a = a+ da
set p = p+ 1, Start(p) = a
generate Up, set End(p) = a+ Up

Thinning algorithm for simulating the Non-homogeneous Poisson Process (NHPP)
The intensity λ(t) is a randomly varying quantity. However, for each realization we
can determine λ(t) beforehand. Thus, during the simulation of the Poisson process of
generation of mRNA it is a time-dependent but deterministic quantity.

set t = 0, λ = ωtc

while t < T
generate κ
generate r
if r > 0.5

set λ = λ+ χ
else

set λ(t+ κ) = λ(t)− χ
if λ > ωtc + ǫ

set λ = ωtc + ǫ
if λ < ωtc − ǫ

set λ = ωtc − ǫ
set t = t+ κ

Hence, we can obtain the random change of the intensity λ(t). This will be the input for
the non-homogeneous Poisson process
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set t = 0, X = 0
while t < T

generate dt
set t = t+ dt
generate r
if r ≤ λ(t)/λ then

set X = X + 1, Start(X) = t
generate U
set End(X) = t+ U

Simulation of cell division Additionally to the mRNA turnover, at random intervals tcc
(drawn from a log-normal distribution) the cell undergoes cell division and the mRNAs
stay in the mother cell with a probability 0.5.

set t = 0, X = 0
while t < T

generate dt
set t = t+ dt
set X = X + 1, Start(X) = t
generate U , set End(X) = t+ U

determine time of division tcc
for each X Eliminate X with prob. 0.5

TASEP algorithm for protein synthesis In a TASEP simulation, ribosomes bind to an
mRNA with an initiation rate ωon and walk on a homogeneous chain with an elongation
rate v. For each ribosome i on the chain as well as the pool of ribosomes waiting to
initiate translation, one can determine the time of the next event by a random number
generator, i.e. the waiting times of δt(i). An event consists of an attempt of a ribosome
to progress by one codon (or - in the case of initiation - to attach to the first site of an
mRNA). The attempt is, however, only successful if the site is empty, i.e. not occupied
by another ribosome. Finally, after reaching the last codon, the ribosome detaches since
it has completed the synthesis of a polypeptide. Furthermore, the ribosomes are modeled
as extended objects of size l since they typically occupy more than one codon (in fact,
typically 10 codons [44, 45]).

set i = 0, t = 0
while t < T

determine ∀i (δt(i))
find k = min∀i(δt(i))
if position(k − 1)− position(k) < l

set position(k) = position(k) + 1
set t = t+ δt(k)

update i
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In the algorithm, the run length T is given by the lifetime of an mRNA. Since any measure-
ment would reveal mRNAs of different age, one can sample T from the age distribution
φA. We use this algorithm to study polysome and ribosomal profiles (see section 5.1). In
section 3.3 we use a variant were the run length is not determined externally but rather
is an intrinsic quantity (see below).

Degrading TASEP simulations This algorithm proceeds similar to the regular TASEP
except that it has no a priori determined run length T but rather the degradation time is a
stochastic quantity inherent of the simulation. During the simulation, a base degradation
rate ωbase is multiplied by the available cleavage area. The latter is the sum over all
ribosome free mRNA stretches of a certain minimum length δl which accounts for the
size of ribosomes and enzyme and their steric repulsion). In the TASEP simulation the
position of the ribosomes changes randomly and hence also the degradation rate. To
include degradation, at each instant of the simulation a probability criterion which relies
on the time-dependent degradation rate determines if the mRNA is degraded and the
simulation is stopped. We used this algorithm to evaluate the role of fluctuations for our
model of ribosome shielding (see section 3.3).





B. Appendix to chapter 3: Decay
models

B.1. Additional general implications

B.1.1. Decay from non-stationary samples

If in a decay experiment the mRNAs were not in a steady state prior to the interruption
of transcription, we can define the relative remaining mRNA number analogously:

Λ̃(∆t) ≡
ωtcH

ts+∆t
∆t

ωtcH
ts
0

(B.1)

In the case that the function H is determined by an exponential lifetime distribution, the
decay pattern is just the same for any value of ts. For all other lifetime distributions,
this is not exactly the case - however the difference is small and negligible in most cases.
For lifetime distributions given by a sum of exponentials (such as in a Gamma-model or
Markov chain model) the difference scales with exp(−λts). Hence, if there is reason to
assume that the average mRNA amount was not in a steady state prior to the interruption
of transcription, one can analyse the decay pattern with Eq. (B.1). Nevertheless, before
starting the decay experiments, cells are grown for several order of magnitudes longer
than the approximate time to steady state.

B.1.2. Bona-fide criterion in practice

In chapter 3 we found two general bona-fide criteria that hold for any experimental decay
patterns regardless of the organism and degradation mechanism. These criteria followed
directly from the analysis of the first and second derivative of the probability density
function φU . In practice, the experimental decay patterns are given by the mRNA amount
at discrete time points. Therefore, to assess if a given data set is bona-fide, we also have to
reformulate the criteria into a discrete language. Hence, the following inequalities should
hold for any time points t1, t2 and t3:

Nr(t2) < Nr(t1) ∀ t2 > t1 (B.2)

and
Nr(t3)−Nr(t2)

t3 − t2
>
Nr(t2)−Nr(t1)

t2 − t1
∀ t3 > t2 > t1 (B.3)

Given the limited temporal resolution and the intrinsic and experimental noise in mRNA
expression data, for the practical analysis performed in chapter 3, we allowed a certain
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tolerance to this criteria. Therefore, we term a data set nearly bona-fide if the slope
between any two data points does not increase by more than 10% and the curvature
between three subsequent data points is convex within an error of up to 25 %.

B.1.3. Cell cycle dependent degradation rate

Eukaryotic cells undergo different phases in the cell cycle. In principle the mode of
transcription and degradation can vary in different phases. In an experiment on yeast,
one could differentially measure the decay pattern of cells in S and M phase [95]. From
the three native genes analyzed there, two had a changed decay pattern while the third
was approximately unchanged. Moreover, the decay patterns during one cell cycle were
not always exponential. While broader conclusions might be premature at the moment,
it would be interesting to see a genome wide analysis. One might learn that our theory is
more accurate in describing the decay for different phases of the cell cycle and that the
global decay patterns can be described by the sum over cells in different stages of the cell
cycle.
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B.2. Appendix to multi-step degradation

In this section, we will give some more details of the particular lifetime density functions
we obtained from the Markov chain model in section 3.2.

Details of Markov chain model in analysis of yeast data

We have shown two example decay patterns pertaining to different decay pattern cate-
gories in figure 3.4. The fitting functions have been obtained by using the Markov chain
model (see figure 2.2) with n = 5 states and two independent rates, as follows. For the
red curve in figure 3.4 we have set µ1 ≡ µ and all other µi ≡ ν as well as the transition
rate λ = ν which corresponds to a decreasing degradation rate during the lifetime of an
mRNA if µ > ν. We find the lifetime distribution to be

φU(t) =
1

µ

(

e−(ν+µ)t (ν + µ) (µ− ν) + e−νt ν2
)

, (B.4)

i.e. independent of the number of states n. For the blue curve in figure 3.4 we have set
µ5 ≡ ν and µi ≡ 0 otherwise, while the transitions between the states occur with rate λ.
This situation is inspired by the multi-step degradation depicted in figure 1.2C and leads
to

φU(t) = ν

(

λ

λ− ν

)4
[

e−νt − e−λt

(

3
∑

j=0

(λ− ν)jtj

j!

)]

. (B.5)

All unknown rates for the decay patterns can be obtained via a non-linear regression
analysis by minimizing the root mean-square difference r2 between the measured data
and Eq. (3.2). For the analysis of all mRNA decay patterns, we have compared the
fitting results of Eqs. (B.4) (B.5) with different starting values as well a fit based on an
exponential lifetime distribution. For the two example cases in figure 3.4, the rates read
µ = 0.187min−1 and ν = 0.019min−1 (red, MGS1 ), whereas in the latter λ = 0.313min−1

and ν = 0.037min−1 (blue, Pho3 ).

Probability density for arbitrary number of states

In section 3.2 we have used a Markov chain model to obtain the mRNA lifetime probability
density φU(t). We can calculate the probability densities for arbitrary number of states n
and rates λi and µi. However, in absence of the knowledge of the rates, we have restricted
the analysis to 3 independent parameters: λ is the rate between transient states and µ as
well as ν denote rates to the absorbing state.
In a first variant we have set µi ≡ µ ∀ i < n and µn = ν. In this case the lifetime
probability density reads

φU(t) = µ e−µ t Γn−1(λ t)

Γ(n− 1)
+ ν e−ν t

(

λ

λ+ µ− ν

)n−1(

1−
Γn−1((λ+ µ− ν) t)

Γ(n− 1)

)

(B.6)

In some cases, the fitting result was improved if degradation was only possible from last
state n, i.e. µi ≡ 0 ∀ i < n and µn = ν. Then Eq. (B.6) becomes

φU(t) = ν e−t ν

(

λ

λ− ν

)n−1(

1−
Γn−1((λ− ν) t)

Γ(n− 1)

)

.
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The advantage of this equation is that it contains only two independent parameters.
Conversely, we also considered a second variant where all but the first absorption rates
were the same, i.e. µ1 = µ and µi = ν ∀ i > 1. Hence, the absorption probability density
reads

φU(t) =
e−t(λ+µ)

(

(λ+ µ)(µ− ν) + et(λ+µ−ν)λν
)

λ+ µ− ν
(B.7)

In this scenario, the equation is independent of the number of states n (as long as n >
2). In some cases, the fitting result could be improved by reducing the number of free
parameters to 2. Thus, we have set ν ≡ λ.

Comparison to experimental data

As pointed out in the main text, section 3.2, we have inserted the results from Eqs. (B.6)
and (B.7) (for n = 5) into Eq. (3.2) to obtain the theoretical description of the relative
amount of mRNA after interruption of transcription, Λ(∆t). Via a non-linear regression
analysis we could find the optimal parameters that reduce the residual sum of squares
between theoretical prediction and experimental data. We compared the different variants
given above, i.e. Eqs. (B.6) and (B.7), with different initial parameters to an exponentially

distributed lifetime density, φ
(exp)
U . Depending on which function gave the best fitting

result, we could classify the results for mRNA decay in yeast into different categories
(see figure 3.3). For the two example cases in figure 3.4, the rates read λ = 0.313min−1,
µ = 0 and ν = 0.037min−1 (variant 1 from Eq. (B.6) ). and µ = 0.187min−1 and
ν = λ = 0.019min−1 (variant 2 from Eq. (B.7) ).

Note that one can classify the experimental decay patterns also independently from this
concrete model. The two main categories differ characteristically in their slopes. While
the mRNA level in the first case decreases relatively slowly in the beginning and more
rapid at later times, for the second category the decay is fast in the beginning and levels off
after some time. This becomes in particular clear when observing the experimental decay
patterns on a semi-log scale. Even more, one can devise simple algorithms to distinguish
the patterns pertaining to the different categories.

Probability density for independent transition and absorption rates

As mentioned, we can straightforwardly also compute the probability density if all rates
are different One arrives at lengthy expressions that cannot generally be formulated for
arbitrary n. E.g. for n = 3 and all λi and µi different, the probability density reads

φU(t) =

(

µ1 +
−λ1(λ1 + µ1)µ2 + λ1(λ2 + µ2)µ3

(λ1 − λ2 + µ1 − µ2)(λ1 + µ1 − µ3)

)

e−(λ1+µ1) t

+
λ1(λ2 + µ2)(µ2 − µ3)

(λ1 − λ2 + µ1 − µ2)(λ2 + µ2 − µ3)
e−(λ2+µ2) t

+
λ1λ2µ3

(λ1 + µ1 − µ3)(λ2 + µ2 − µ3)
e−µ3 t

(B.8)
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Note however that all lifetime densities are of the form

φU(t) =
n−1
∑

k=1

ck e
−(λk+µk) t + cn e

−µn t (B.9)

That implies that when approaching t → ∞ only one term dominates, namely the one
with the smallest coefficient in the exponent, i.e. min ((λk + µk), µn). Hence in the limit
of large times, the lifetime density decreases like a single exponential function. Therefore,
the evolution of the mRNA number always approaches a stationary level in an exponential
manner.

Aging of states

In the Markov chain model, the mRNAs are in different states according to their age a
(see figure 3.2). After the interruption of transcription, no new mRNAs are synthesized
and thus the typical age of an mRNA increases. Consequently, more mRNAs can be found
in a more advanced state, i.e. more mRNAs have undergone biochemical transformation.
As we have already pointed out in section 2.4, the changing population of states can be
interpreted as a sign of aging of the mRNA molecules.
In section 4.5, we have introduced how one can compute the population of states of an
ensemble of mRNAs at any time t. Moreover, from the population probabilities we can
deduce the average state of an ensemble of mRNAs. It is straightforward to extend this
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Figure B.1.: Aging of decaying mRNAs in Markov chain models. Starting from a

steady state mRNA population given by φ
(Γ)
U where all of the 5 states are equally populated,

the probability to be in each of the 5 states evolves in time after the interruption of tran-
scription. Eventually, mRNAs can be only found in the most advanced state 5. This can also
be understood in terms of the evolution of the average state, i.e. the first moment of these
probabilities (see inset). From an average state 〈k〉 = 3 it evolves to 5. The different states
are denoted with 1 (magenta), 2 (red), 3 (green), 4 (blue), 5 (cyan).
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analysis to mRNA populations after the interruption of transcription. In figure B.1 we
show the time evolution of the probabilities to be in each of the states in a Markov chain
as well as the corresponding average state after stop of transcription.
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B.3. Model of pathway knock-out

We can use the formalism with a Markov chain to study the role of different degrada-
tion pathways when analyzing a detailed experiment of the biochemistry in drosophila
melanogaster [17]. There, the decay of F-luc-Nerfin mRNA was studied under different
conditions. The gene F-luc-Nerfin is not part of the endogenous genome of drosophila
melanogaster but was introduced via a plasmid. A second plasmid was introduced that
expresses miR-9b primary transcripts, a micro RNA that is thought to be important for
the deadenylation of the F-luc-Nerfin mRNAs. Its action consists to form complexes
with enzymes involved in the deadenylation process and through its specific sequence it is
designated to dock to F-luc-Nerfin mRNA. Two deadenylation complexes are known, the
PAN2-PAN3 complex and the CCR4-CAF1-NOT complex. Both are known to lead inde-
pendently to the deadenylation and subsequent degradation of the mRNAs. The authors
suggest that degradation proceeds as a multi-step process consisting of deadenylation by
one of the complexes, decapping via DCPL and 5′ → 3′ degradation via XRN1. The
introduction of the miR-9b vector allows studying the role of miRNA-mediated mRNA
degradation.
In the experiment they compared the decay pattern under the following conditions

1. Control 1: No miR-9b was expressed at all (green)

2. Control 2: miR-9b was expressed but neither the enzyme NOT nor PAN2 was
expressed (black)

3. miR-9b was expressed but only NOT was expressed (knock-down of Pan2 ) (yellow)

4. miR-9b was expressed but only Pan2 was expressed (knock-down of NOT) (blue)

5. miR-9b was expressed as well as Pan2 and NOT (red)

Thus they can study the role of miRNA-mediated mRNA degradation and the contribu-
tion of the complex involving NOT and Pan2. The resulting experimental decay patterns
after the interruption of transcription via incorporation of actinomycin D is shown in
figure B.2 (circles). Clearly, all patterns decay rapidly in the beginning and more moder-
ately at later times - thus they belong to the category 3 described in chapter 3. Moreover,
the slope at later times is similar for all conditions. The most stable mRNAs are un-
der condition (2) and the most unstable under condition (5). Furthermore, Pan2 (blue)
contributes by far more to the destabilization of mRNA than NOT (yellow).
To understand the experiment we apply the Markov chain model introduced above. Here,
we assume 3 different states which denote mRNAs prior to deadenylation (1), prior to
decapping (2) and prior to 5′ → 3′ degradation (3). We also consider the possibility that
the mRNAs are degraded independently of deadenylation and decapping. The biochemical
mechanism of these pathways are not entirely clear but could denote degradation by
endonucleolytic cleavage. Thus, we there are 5 independent rates. On the one hand, the
transition rates λ1 and λ2 that describe the processes of deadenylation and decapping,
respectively. On the other hand, degradation from each of the three different states is
described by the rates µ1,µ2 and µ3. Most of the rates should not be affected from the



118 Appendix to chapter 3: Decay models

0 50 100 150 200 250 300 350

0
.0

1
0

.0
2

0
.0

5
0

.1
0

0
.2

0
0

.5
0

1
.0

0

Time [min]

m
R

N
A

 l
e
ve

l

0 50 100 150 200 250 300 350

0
.0

1
0

.0
2

0
.0

5
0

.1
0

0
.2

0
0

.5
0

1
.0

0

Time [min]
m

R
N

A
 l
e
ve

l

Figure B.2.: Model of pathway knockout in drosophila . The different data points (cir-
cles) denote different experimental conditions of an mRNA decay experiment: No miR-9b was
expressed (green), miR-9b was expressed but none of the deadenylation complexes (black),
all deadenylation complexes were expressed (red), only PAN2 (blue) and only NOT was ex-
pressed (yellow). Data adapted from [17]. The lines correspond to a fit of our theory to the
data. Thereby, we obtain rates of decapping, degradation and deadenylation for each of the
physiological conditions. Left Panel: Model with free parameter µ1, right panel: Model with
µ1 ≡ 0 (see text).

differing conditions in the experiment. Therefore, we focus on a description in which only
the rate λ1 is different across the set of conditions.
We compare our theoretical description to the experimental data via non-linear regression.
First, we compute the lifetime probability function ΦU from the Markov chain model and
hence obtain the theoretical decay pattern Λ(∆t). We find the unchanged rates λ2, µ1,µ2

and µ3 as well as the altering rates under the 5 different conditions λ
(1)
1 , λ

(2)
1 , λ

(3)
1 , λ

(4)
1

and λ
(5)
1 via minimizing the root-mean square difference between the experimental data

points and theoretical prediction at all time points tp of the experiment:

min
5
∑

cond=1

6
∑

tp=1

(

Expcond(tp)− Thcond(tp)
)2

(B.10)

Hence, there are 5 data sets with 6 points each and 9 independent parameters. To find
the global minimum we have used 10000 different initial conditions.
We find the rates to be λ2 = 0.003min−1, µ1 = 0.06min−1, µ2 = 0.015min−1 and µ3 =
0.004min−1. Clearly, degradation is initially dominated by µ1 which exceeds the other
degradation rates. This follows directly from the shape of the experimental decay pattern
(first fast then slow decay). However, the nature of this rapid initial and decapping-
pathway-independent mechanism is unclear. One might speculate that it is related to
degradation of pre-mRNAs in the nucleus or via endonucleolytic decay in the cytoplasm.
The deadenylation rates under the different conditions read λ

(1)
1 = 0.0127min−1, λ

(2)
1 =

0.0238min−1, λ
(3)
1 = 0.0216min−1, λ

(4)
1 = 0.0036min−1, λ

(5)
1 = 0.0016min−1.
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Figure B.2 shows that our model can describe the decay data very accurately. In par-
ticular, the model grasps the non-exponential decay of the mRNAs. However, since we
have found a very large initial degradation rate µ1, the magnitude of the rates for the
transition λ

(i)
1 are in reverse order than expected. In the case when both deadenylation

complexes are present, the deadenylation rate is lowest. Thus, we conclude that we have
to be careful in interpretation of the fitting results.
In an improved attempt we set the degradation rate µ1 ≡ 0 to prevent this artifact.
When we fit each pattern independently, we obtain good fitting results. However, we seek
a description where the rates λ2, µ1, µ2 and µ3 are the same for all decay patterns and
only the λ

(i)
1 vary (i.e. only the rate of deadenylation). A systematic fitting procedure

similar to the one described above (however with µ1 = 0) yields the corresponding rates

λ
(i)
1 . However, the resulting fitted decay patterns show only a relatively poor agreement

with the experimental data points.
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B.4. Appendix to ribosome shielding model

Figure B.3 shows the fitting error of the comparison of the ribosome shielding model to
experimental data, as discussed in section 3.3. Moreover, it displays the distribution of
the degradation rates, ωa and ωb, obtained from the analysis.
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Figure B.3.: Error reduction and degradation rates in the ribosome shielding model.
The left panel displays a histogram of the fitting error (residual sum of squares between model
function and experimental data). It shows that the error pertaining to the ribosome shielding
model (blue) is considerably lower than in a model based on an exponential lifetime distri-
bution (red) - on average by almost an order of magnitude. The right panel shows the fitted
degradation rates in the shielding model, ωa vs ωb. Clearly, the rate describing the unprotected
mRNA, ωa, is much larger than the rate ωb. Nevertheless, the distribution of the rates for
the different genes is widely scattered indicating the individual regulation of each gene. The
different colors denote mRNAs of different length (red L ≤ 250 codons , green 250 ≤ L < 500
codons , blue L > 500 codons). Apparently, longer mRNAs have a smaller initial degradation
rate ωa.

Coupling to transcription

In prokaryotes, there is no cell nucleus. Both, the ribosomes and the RNA polymerase
move in 5′ → 3′ direction. That means that, in principle, mRNAs can be translated even
before transcription has terminated [54, 81]. Electro-graph images of the lacZ gene gave
visual examples of this mechanism [96], although it was also found that at least some
mRNAs in prokaryotes were translated in the vicinity of the membrane [79, 80]. One can
distinguish between a ribosome elongation speed v and a polymerase elongation speed w.
Equivalently, on can define the basic time scale of translation tL = L/v and the basic
time scale of transcription tc = L/w. To avoid that ribosomes clash into the polymerase,
it is reasonable to assume v < w. Experimentally, different relations ranging form v ∼ w
and v ≪ w were found. Additionally, one might think that translation starts only after
a certain lag time t0 corresponding to a minimum transcript length l0 = w t0. This
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corresponds to the length before the mRNA is sufficiently separated from the polymerase
and the average waiting time before the first ribosomes binds to the mRNA. One can now
think of the following extended model for the time-dependence of the degradation rate:

ωdeg(t) =











ωbvt/L+ ωa(wt− vt)/L t < tc

ωbvt/L+ ωa(L− vt)/L tc ≤ t < tL

ωb t ≥ tL

(B.11)

Transcription and translation start at the same time. The part of the mRNA covered by
ribosomes grows with speed v while the total length of the transcript grows with speed
w. At time tc, the transcript reaches its full length L and in the following the uncovered
part decreases linearly proportional to v until time tL the mRNA is fully covered by
ribosomes. Note that we can additionally include the initial lag time t0 where the mRNA
is transcribed but not yet translated.
To explain the experimental data in E. coli with this extended model, we would either
have to assume a higher transcription elongation speed w than translation elongation
speed v or a very high parameter ωa.
Hence, the implications of this model depend critically on the difference between v and
w - however both can be different for each gene under consideration and such detailed
experimental knowledge is currently not available.
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Figure C.1.: Time evolution of mRNA amount after start of transcription for more

exemplary cases. Upper-left Panel: The mRNA lifetime probability densities φU is a gamma
distribution with shape parameters n = 1 (red), n = 5 (blue) and n = 1/5 (green) and average
lifetime 〈U〉 = 4 min. The upper-right panel shows the evolution of the mRNA after the start
of transcription, the lower-left panel the shape of the age distribution and the lower-right panel
the decay pattern for all three example cases. Clearly, the variation of φU determines the shape
of the other curves. One can see these three cases as generic examples for the different lifetime
distributions obtained from experimental decay patterns.
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C.1. Gradual modulation

In section 4.6 we discussed a possibility how we can account for a modulation of the
transcription rate. We proceeded via two subsequent Poisson processes with different
transcription rates. Certainly, one can extend this to an arbitrary number k of transcrip-
tion rates, i.e.

Nk
r (t) =

k−1
∑

j=1

ωjH
t−t

(j)
start

t−t
(j)
stop

+ ωkH
t−t

(k)
start

0 . (C.1)

where t
(j)
start and t

(j)
stop are the time points of start and the stop of each transcription phase

j. However, it is desirable to find a continuous description where the transcription rate
is given by

ω(τ) ≡ ωj for t
(j)
start ≤ τ < t

(j)
stop (C.2)

Hence,

Nk
r (t) =

k−1
∑

j=1

ωj

∫ t−t
(j)
start

t−t
(j)
stop

du (1− ΦU(u)) + ωk

∫ t−t
(k)
start

0

du (1− ΦU(u))

=
k−1
∑

j=1

∫ t−t
(j)
start

t−t
(j)
stop

duω(t− u) (1− ΦU(u)) +

∫ t−t
(k)
start

0

duω(t− u) (1− ΦU(u))

=

∫ t

0

duω(t− u) (1− ΦU(u)) ,

(C.3)

where we have exploited Eq. (C.2), t
(1)
start = 0 and the fact that t

(j+1)
start ≡ t

(j)
stop. If we assume

an instant switching of the rate, i.e.

ω(τ) =

{

ω1 0 < τ ≤ t1

ω2 t1 < τ ≤ t
(C.4)

we find (after transforming τ → t− u)

Nr(t) =

∫ t

t−t1

duω1 (1− ΦU(u)) +

∫ t−t1

0

duω2 (1− ΦU(u)) = ω1 H
t
t−t1

+ ω2 H
t−t1
0 . (C.5)

Thus, we have recapitulated the result from chapter 4 (note the different definition of the
starting point of the time t). We can also find a solution for a gradual, linear change of
the transcription rate from ω1 to ω2 in the interval (t1, t2), i.e.

ω(τ) =















ω1 τ ≤ t1

ω1 +
ω2 − ω1

t2 − t1
(τ − t1) t1 < τ < t2

ω2 τ ≥ t2

(C.6)
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Hence, after transforming τ → t− u we find

Nr(t) =

∫ t

t−t1

duω1 (1− ΦU(u))

+

∫ t−t1

t−t2

du

(

ω1 +
ω2 − ω1

t1
(t− u− t1)

)

(1− ΦU(u))

+

∫ t−t2

0

duω2 (1− ΦU(u)) .

(C.7)

The resulting evolution of the mRNA amount is depicted in figure C.2 A. Finally, we can
also consider the case of an oscillating transcription rate ω(τ) = ω0 sin(τ/t0)

Nr(t) = ω0

∫ t

0

du (1 + sin((t− u)/t0)) (1− ΦU(u)) (C.8)

The resulting fluctuation of the mean mRNA number is given in figure C.2 B.
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Figure C.2.: Temporal evolution of the mRNA amount for a gradual change of the

transcription rate. The left panel shows a linear change of the transcription rate from
ω1 = 1min−1 to ω = 2min−1 in the interval (5, 10] min (black). The colored lines show the
evolution for different discrete approximations and the inset displays the corresponding rate
changes. In the right panel we depict a sinusoidal modulation of the transcription rate, i.e.
ωτ = ω0(1+sin((t−u)/t0)) (red: t0 = 0.5 min, green: t0 = 0.1 min, blue: t0 = 0.05 min). The
evolution is similar to a constant transcription rate (black) - however the oscillations persist
throughout the time evolution.
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C.2. Delayed stress response

The application of a stress such as the exposure of the yeast cells to DNA damaging MMS
does not necessarily mean that it triggers an immediate response. Rather, the complex
network of regulation means that for each gene the altered mode of transcription and
degradation can be delayed by a time constant. Here we consider the possibility that
either one of them or both are delayed by a constant δ. These extension of the theoretical
description allows to describe the stress response patterns with greater flexibility, however
on the cost of introducing a free parameter. Although this parameter has a clear inter-
pretation, it would be more satisfactory to have a better understanding of the origin of
the delay from the perspective of regulation. One can describe the evolution of mRNAs
before and after stress application at t = ts with

Nr(t) ≡















f(ω1,Φ
(1)
U ) t ≤ ts

f(ω1,Φ
(2)
U ) or f(ω2,Φ

(1)
U ) or f(ω1,Φ

(1)
U ) ts < t < ts + δ

f(ω2,Φ
(2)
U ) t ≥ ts + δ

. (C.9)

where for brevity we have used a function f(ω,ΦU) to describe the product of different ωj

and Ht2
t1 . For example, in the first line it reads Nr(t) ≡ ω1 H

ts
0 ≡ ω1

∫ ts
0
dτ (1− ΦU(τ)).

Figure C.3 shows the stress response for two exemplary cases in the experiment on stressed
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Figure C.3.: Delayed stress response. Left panel: Example of stress response of mRNA
expression of HAT2. Additional to the analysis in the main section (red), here we also consider
a possible delay of either the change of transcription (blue), of degradation (green) or both
(black) by 10 min. For the given example, it does not yield an improved description of the
experimental data. Right panel: Example of negative response after stress application. In this
example, a delay of both, transcription and degradation by 20 min improves the description of
the mRNA stress response pattern.
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yeast cells [27]. In the case of HAT2 is does not improve the description of the experimen-
tal stress response pattern, thus indicating that a possible delay would be rather short.
Conversely, for the second example in figure C.3, the mRNA level decreases after the
stress application and without a delay of both, transcription and degradation response,
the resulting pattern cannot be described in a satisfactory manner.

C.3. Interaction of global and molecular time scale

In the description of stress response given in section 4.7, we mentioned that due to the
stress the lifetime distribution of the mRNAs is affected.
In the most simple description, the lifetime distribution changes instantanously from Φ

(1)
U

to Φ
(2)
U at the moment of stress application. Hence, the total number of mRNAs at

each time t is given by the contributions of the mRNAs originating before and after the
application of the stress,

N tot
r = N (1)

r +N (2)
r = ω

(1)
tc

∫ ∞

t

dτ (1− Φ
(2)
U (τ)) + ω

(2)
tc

∫ t

0

dτ (1− Φ
(2)
U (τ)) (C.10)

where Φ
(2)
U denotes the lifetime distribution of the cells under stressed conditions.

In the simplified description given by Eq. (C.10), we made the assumption of a instant

change of the lifetime distribution from Φ
(1)
U to Φ

(2)
U . If we consider figure 2.1 in chapter

2 again, we can assert that such instant change is not clearly defined in our theoretical
framework. The question arises how the lifetime distribution of an mRNA generated
prior to the stress is affected due to the stress application. This is a good example of
the interaction of molecular time scale (the age of each individual mRNA) and a global
time scale (the stress). If the mRNAs had no memory of the past, i.e. if they were
described by an exponential distribution, one could just adapt the degradation rate from
ω
(1)
r to ω

(2)
r . However, for general lifetime distributions ΦU this is not the case and it

is not entirely clear how one can treat this problem exactly (see below). However, also
from the perspective of a biological interpretation, one does not know what a change
of the degradation mechanism means. One could argue that the rates under the two
conditions changed, hence the age (as defined as the time elapsed since the transcription)
of an mRNA would determine the life expectancy. However, the stress could also lead
to a change of the degradation mechanism, e.g. other regulating enzymes are produced.
Therefore, biochemical modifications of the mRNA prior to the stress might not be related
to the degradation pathway under stressed conditions. In this sense, the accumulated age
of an mRNA prior to the stress would not be relevant for its degradation state. Thus it
should be clear that a full solution to this problem is non-trivial from the perspective of
mathematics but also from the point of view of biochemistry.

Improved theory of mRNA fluctuations

In chapter 2, Eq. (2.7), we have found that

Pr{Y (t) = k | X(0) = 0, X(t) = n} =

(

n

k

)

pk(1− p)n−k ,



128 Appendix to chapter 4: Transient mRNA expression

This lead to Eq. (2.8), i.e.

Pr{Y (t) = k | X(0) = 0} =
(p ωtct)

k

k!
e−pωtct ,

where p is the probability of a single mRNA to be still alive at time t = ts + ∆t. Here,
ts denotes the time of the stress addition and ∆t the time elapsed since then. Hence, we
want to compute p in a similar fashion as in Eq. (2.13).

p = Pr{Z ≥ ts +∆t}

=
1

ts

∫ ts

0

ds Pr{Z = O + U ≥ ts +∆t | O = s}

=
1

ts

∫ ts

0

ds Pr{U ≥ ts +∆t− s}

=
1

ts

∫ ts

0

ds Pr{U ≥ ts − s} Pr{U ≥ ts +∆t− s | U ≥ ts − s} .

(C.11)

In the following we want to introduce the stress in our formalism. Therefore, we introduce
two distinct and independent random variables U1 and U2 which denote the mRNA life-
time before and after the stress application, respectively. They represent different modes
of mRNA stability regulation under the different conditions and are described by two
independent lifetime distributions Φ

(1)
U and Φ

(2)
U . Hence, Eq. (C.11) takes the following

form

p =
1

ts

∫ ts

0

ds Pr{U1 ≥ ts − s} Pr{U2 ≥ ts +∆t− s | U2 ≥ ts − s} . (C.12)

The first term dictates that the mRNA is still alive at t = ts, i.e. it has not been degraded
under the unstressed conditions. The second term gives the probability that the mRNA
is still alive an interval ∆t after the stress application - now under the stressed condition.
We can reformulate Eq. (C.12), using the definition of the conditional probability, the

definition of the lifetime probability distributions Φ
(i)
U and a suitable transformation of

the variable s,

p =
1

ts

∫ ts

0

du
1− Φ

(1)
U (u)

1− Φ
(2)
U (u)

(

1− Φ
(2)
U (u+∆t)

)

=
1

ts

∫ ts+∆t

∆t

du
1− Φ

(1)
U (u−∆t)

1− Φ
(2)
U (u−∆t)

(

1− Φ
(2)
U (u)

)

.

(C.13)

The two forms correspond to different substitutions and the form can be chosen for best
convenience. Note that for most cases, the integral in Eq. (C.13) cannot be solved analyt-
ically. Nevertheless, for every lifetime distribution ΦU(t) we can compute the distribution
and average mRNA number after the stress application. Eq. (C.13) together with Eq.
(2.8) gives the contribution of the decaying amount arising from mRNAs generated be-
fore the stress. The increase of the number of mRNAs generated after the stress can be
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computed according to Eqs. (2.9) and (2.10). Hence, we find the time evolution of the
mRNA evolution after the stress application

N tot
r (∆t) = N↓

r (∆t) +N↑
r (∆t)

= ω
(1)
tc

∫ ∞

0

du
1− Φ

(1)
U (u)

1− Φ
(2)
U (u)

(

1− Φ
(2)
U (u+∆t)

)

+ ω
(2)
tc

∫ ∆t

0

du
(

1− Φ
(2)
U (u)

)

.

(C.14)

Thus, we have found an exact description of the number of mRNAs under stressed con-
ditions. The advantage of this approach is that it is fairly general, it holds independent
of the underlying model of ΦU(t). However, this renders the biological interpretation of
the transition at t = ts more difficult. Some examples of the effect of this description are
given in figures C.5 and C.4. Furthermore, in the main text, section 4.7, the experimental
data to stress response were analyzed with this extended description.

Stress response in the framework of the Markov chain model

We have already seen in section 4.5 that the aging of an mRNA becomes manifest in
the population probabilities of the states of a Markov chain (see Eq. (4.14)). Under
the assumption that the mRNA turnover has reached a steady-state before the stress
application we have

ψk =

∫ ∞

0

da ξk(a)φ
st
A(a) .

Here, the ξk(a) denote the probability that an mRNA of age a is in state k of a Markov
chain conditioned that the mRNA has not yet been degraded - as defined in Eq. (4.13).
Thus, at the time of stress application the mRNAs are found in each of the states k =
1, . . . , nmax with probability ψk. Correspondingly, for an mRNA in state k the Markov
chain describing its degradation pathways is reduced to the last nmax − (k − 1) states.
In this interpretation, we assume that the underlying description of degradation, i.e. the
number of states in the Markov chain model, does not change due to the stress application.
Therefore, only the transition and degradation rates are influenced by the stress and their
values can be obtained by a fit of the Markov chain model to the experimental decay data
(as has been done in section 4.7). Consequently, the decaying amount of mRNAs that
have been generated prior to the stress is given by the contributions of the mRNAs in
each state k and their corresponding reduced degradation pathway. It reads

N↓
r (∆t) = Nr(0)

(

nmax
∑

k=1

ψk

∫ ∞

∆t

du
(

1− Φ̃
(n=nmax−(k−1))
U (u)

)

)

. (C.15)

Here, Φ̃
(n)
U denotes the mRNA lifetime probability distribution with n states, i.e. a Markov

chain model where only the last n states of the original model with nmax states are remain-
ing. The tilde in Φ̃U should emphasize that the decay under stressed conditions occurs
with rates λ̃i and µ̃i (obtained from the decay pattern long after the stress application).
The evolution of the newly generated mRNAs after the stress application is just given by
N↑

r (∆t) as outlined in section 4.7.
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Figure C.4.: Stress response with refined models. Shown is the response to stress ap-
plication for the gene HAT2 in S. cerevisiae (circles). We compare different improvements of
the theoretical description to the experimental data (see text). While the theory based on Eq.
(C.14) (dotted) leads to a slight improvement of the description, the model based on aging
of states as given in Eq. (C.15) (dashed) is not more successful than the simple description
(solid).

This approach is limited to the interpretation of ΦU(t) in the framework of a Markov
chain model. It gives exact results with a clear biological interpretation. However, from
the perspective of the biochemistry occurring due to the stress it remains unclear if this
is the correct description. It limits the action of the stress only to a change of the rates
in the Markov model - however the topology of the state network in the Markov chain
remains unchanged. Some examples of the effect of this description are given in figures
C.5 and C.4.

Non-constant degradation rate

A different approach considers the change of the degradation rate. In section 2.2 we
demonstrated how general lifetime distributions ΦU(t) can be mapped to an age dependent
degradation rate ωdeg(a) related to an exponential distribution. Thus, each mRNA has a
degradation given by its current age. If at the time of stress application an mRNA has a
age a and degradation rate ω

(1)
deg(a), we assume that when the stress becomes manifest it

changes to ω
(2)
deg(a). Hence, it carries the memory of its past and takes its age (i.e. state

of modification) into account for its excess lifetime under the stressed conditions.
To further follow this approach, we have performed stochastic simulations. There, at each
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instant of the simulation the life expectancy of an mRNA is determined by its current
degradation rate (via an exponential distribution), however, it is constantly updated
according to the increasing age. The stress is considered in a change of the underlying
function ωdeg(a) given by ΦU . Thus, we can follow the number of mRNAs on time
and observe the changes near the stress application (see figure C.5 A). Furthermore, we
can also determine the time-dependent lifetime probability function ΦU,t(u) for mRNAs
originating in different intervals close before and after the stress application (see figure
C.5 B).

Outlook These are three promising approaches how one can solve the interaction of
global and local timescales mathematically. A broader ansatz consists of defining an time-
dependent age φA(a, t) (or residual lifetime) distribution and derive the time-dependent
lifetime distribution ΦU,t [87]. However, as mentioned earlier, it should be clarified first
from the perspective of biology which idea is best to follow.
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Figure C.5.: Simulation of stress response. mRNAs with lifetime density φ
(Γ)
U and shape

parameter n = 5 are synthesized with transcription rate ωtc = 1 min−1. At t = 30 min the
scaling parameter of the lifetime distribution is changed such that the average lifetime changes
from 4 min to 2 min (top) or from 4 to 12 min (bottom), respectively. In the left panels, we
compare the simple model with sudden change of the lifetime distribution (red dotted), results
from the simulation of the mRNA turnover process (cyan, see text) as well as the two distinct
analytical approaches discussed above (blue and green, respectively). The simulation allows
furthermore to extract the mRNA lifetime distribution near the transition at t = 30 min, i.e.
shortly before the stress application (right panels). Shown are the cumulative distributions
for mRNAs generated 20 (red), 3 (magenta), 2 (green) and 1 (blue) minute before as well as
10 (cyan) min after the stress application (see also figure legend). For comparison, theoretical

curves for Φ
(Γ)
U with 〈U〉4 and 2 min (top) as well as with 〈U〉 = 4 and 12 min are depicted

(black dotted lines). Note that in the first case (top panels), all three different attempts to
find an improved description yield similar results. Conversely, for the second case (bottom),
the results based on the model of aging Markov chains differs from the simulation and the
improved general theory.



D. Different models of transcription

As mentioned earlier, the use of a Poisson process for the transcription of mRNA is well
justified when one considers the description on a level of cell populations. There, the
average population transcription rate is approximately constant. In single cells, some
genes were found to be transcribed according to independent transcription events with a
constant rate [36, 35]. However, from other experiments it was inferred that a bursting
behavior is noticeable [34, 35], i.e. phases with high transcription activity alternate with
phases of low activity.

A more detailed model of the interplay of transcription and mRNA degradation also
includes a varying transcription rate. This variation is linked to different gene activity
by the random binding of various transcription factors. In particular, if the number of
available transcription factors and RNA polymerases is low, this gives rise to an additional
stochasticity of the rate of transcription.

Therefore, a straightforward extension is to consider a non-homogeneous Poisson process
with a time-dependent intensity ω(t). Moreover, since the variation arises due to the
non-trivial stochasticity of the transcription process, the intensity varies in a stochastic
fashion, i.e. it is a Cox process [73]. To extend our analytical formalism that we developed
in chapter 2 to a Cox-process is not trivial but will be the focus of future research. Here,
we will study effects of a randomly fluctuating transcription rate (i.e. intensity) via
Monte-Carlo simulations.

The random fluctuation of ω(t) can be modeled via a continuous-time Markov chain.
Starting from the mean intensity ω(0) = ωtc, we allow random excursions of a fixed
step size χ that occur at random time points according to a rate κ. At each step event
i, the intensity changes to ω(ti+1) = ω(ti) ± χ with probability 0.5 each. Hence, the
intensity parameter performs a symmetric random walk around its mean value ωtc. We are
interested in studying the effect of different variability of the intensity on mRNA turnover.
Therefore, we additionally introduce an upper bound for the excursions of the random
walk. The intensity can vary between ωtc(1 − ǫ) ≤ ω(t) ≤ ωtc(1 + ǫ). The parameter
ǫ can be chosen in the range [0, 1], leading to the limit cases of a homogeneous Poisson
process for ǫ = 0 and the highest possible variation for ǫ = 1. In this case, transcription
can be shut off completely for some time intervals. The temporal fluctuation of ω(t) is
exemplary visualized in figure D.1 A.

To study the effect of a stochastically varying intensity on mRNA turnover, we perform
Monte-Carlo simulations. For each realization, we first determine the time course of ω(t).
This, in turn, serves as input for the time-dependent transcription rate in the simulation
of mRNA turnover (see chapter 2 and section A.6 in the appendix for more details of the
simulation technique).

The parameters χ and κ should reflect the time scale of the fluctuations in complex
transcription process. We have chosen κ = 2min−1 and χ = 0.1 · ωtc which roughly
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Figure D.1.: Cox Process for the description of mRNA turnover. Panel A shows an
illustration of the Cox process for the random variation of the intensity of the Poisson process.
Starting from an initial value ωtc at t = 0 it performs a random walk of fixed step size χ
with step events occurring according to a rate κ. The random walk is bound by maximal
excursions of ±ǫ which determines the variance of ω. According to the intensity parameter
ω(t), mRNAs are generated at random time points and have a random lifetime U which is
given by φU . Panel B shows the evolution of the mRNA Fano factor FRNA vs. the Fano factor
of the intensity F (ω), for different lifetime distributions φU . The red data points arise from

φ
(exp)
U whereas the blue points come from φ

(Γ)
U with n = 5. The mRNAs represented by the

circles have an average lifetime 〈U〉 = 4 min and those shown as triangles 〈U〉 = 20 min. From
F (ω) = 1 follows FRNA = 1, which represents the limit case of a homogeneous Poisson process.
A Fano factor of 1 is unique for the Poisson process and the deviation from the Poisson process
becomes evident in the growth of FRNA with F (ω). The evolution is different for different
values of the shape parameter n and mean lifetime 〈U〉, however the Fano factor value scales
in remarkable good agreement with a linear fit (gray lines).

resembles the time scale of transcription and the order of magnitude of the number of
free transcription factors in a cell. After equilibration of the simulation, the variance
of ω always attains its maximal value determined by ǫ for a large variation of different
parameters χ and κ, i.e. it is robust under variation of χ and κ.
In Fig D.1 B we show the dependence of the mRNA Fano factor FRNA ≡ σNr

/Nr on the
Fano factor of the intensity parameter F (ω) ≡ σω/ωtc. We can control the variance of
ω(t) via the choice of the upper bound ǫ. As F (ω) increases, also FRNA departs steadily
from the value of a Poisson distribution. Moreover, apart from small F (ω), the relation is
approximately linear.
Figure D.2 displays the time evolution of the average number of mRNAs resulting from
non-homogeneous transcription following the induction and interruption of transcription,
respectively. Apart from small fluctuations, simulations with different parameters ǫ com-
pletely agree with the theoretically predicted evolution corresponding to a homogeneous
Poisson process as discussed in chapters 3 and 4. This indicates that our theoretical for-
malism based on a homogeneous Poisson process is also capable to model the evolution
of the average mRNA amount under non-homogeneous transcription conditions.
These simulation results demonstrate how our general theory of mRNA turnover can be
expanded. Moreover, our ansatz seems to provide a valid description for the mean field
behavior of non-homogeneous Cox processes as well. The challenge in a mathematical
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Figure D.2.: Induction and decay in the Cox Process. Panels A and B show the patterns
of mRNA induction and decay according to the simulation of a Cox process, respectively. In

both figures, mRNAs given by φ
(exp)
U (red) and φ

(Γ)
U (blue) but identical mean lifetime 〈U〉 = 4

min are depicted. The simulations have been repeated for different parameters ǫ and yield very
similar results. The dashed black lines show the analytical results as derived in chapters 3 and
4. Apart from small fluctuations the simulation results completely overlap with the theory of a
homogeneous Poisson process. Thus, for the description of the behavior of the average number
of mRNAs our general results obtained for the homogeneous Poisson process are applicable for
non-homogeneous processes as well.

description lies in combining non-homogeneous transcription with arbitrary lifetime dis-
tributions ΦU . In a Cox process, the distance between mRNA generation events is no
longer uniformly distributed which was one of the key assumptions of the derivation in
chapter 2. One possible approach consists of introducing a path integral formalism which
is not tractable analytically for the cases discussed here.
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