
Hasso-Plattner-Institut für Digital Engineering
Enterprise Platforms and Integration Concepts

Parallel Execution of Causal Structure
Learning on Graphics Processing Units

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

in der Wissenschaftsdisziplin Praktische Informatik

eingereicht an der
Digital Engineering Fakultät
der Universität Potsdam

von

Christopher Hagedorn geb. Schmidt

Betreuer:
Prof. Dr. h.c. mult. Hasso Plattner

Gutachter:
Prof. Dr. Jakob Runge
Prof. Thuc Le, PhD

Potsdam, 19. Dezember 2022

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution –
NonCommercial – NoDerivatives 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nc-nd/4.0

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-59758
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-597582

Abstract

Learning the causal structures from observational data is an omnipresent chal-
lenge in data science. The amount of observational data available to Causal
Structure Learning (CSL) algorithms is increasing as data is collected at high
frequency from many data sources nowadays. While processing more data gen-
erally yields higher accuracy in CSL, the concomitant increase in the runtime of
CSL algorithms hinders their widespread adoption in practice. CSL is a paral-
lelizable problem. Existing parallel CSL algorithms address execution on multi-
core Central Processing Units (CPUs) with dozens of compute cores. However,
modern computing systems are often heterogeneous and equipped with Graphics
Processing Units (GPUs) to accelerate computations. Typically, these GPUs
provide several thousand compute cores for massively parallel data processing.

To shorten the runtime of CSL algorithms, we design efficient execution
strategies that leverage the parallel processing power of GPUs. Particularly, we
derive GPU-accelerated variants of a well-known constraint-based CSL method,
the PC algorithm, as it allows choosing a statistical Conditional Independence
test (CI test) appropriate to the observational data characteristics.

Our two main contributions are: (1) to reflect differences in the CI tests, we
design three GPU-based variants of the PC algorithm tailored to CI tests that
handle data with the following characteristics. We develop one variant for data
assuming the Gaussian distribution model, one for discrete data, and another
for mixed discrete-continuous data and data with non-linear relationships. Each
variant is optimized for the appropriate CI test leveraging GPU hardware prop-
erties, such as shared or thread-local memory. Our GPU-accelerated variants
outperform state-of-the-art parallel CPU-based algorithms by factors of up to
93.4× for data assuming the Gaussian distribution model, up to 54.3× for dis-
crete data, up to 240× for continuous data with non-linear relationships and up
to 655× for mixed discrete-continuous data. However, the proposed GPU-based
variants are limited to datasets that fit into a single GPU’s memory. (2) To over-
come this shortcoming, we develop approaches to scale our GPU-based variants
beyond a single GPU’s memory capacity. For example, we design an out-of-core
GPU variant that employs explicit memory management to process arbitrary-
sized datasets. Runtime measurements on a large gene expression dataset reveal
that our out-of-core GPU variant is 364 times faster than a parallel CPU-based
CSL algorithm. Overall, our proposed GPU-accelerated variants speed up CSL
in numerous settings to foster CSL’s adoption in practice and research.

Acknowledgements

I am truly grateful for my time at the Enterprise Platform and Integration
Concepts (EPIC) research group where I was able to gain valuable experience,
pursue my research interests, and become part of an exceptional team.

I want to sincerely thank my supervisor Prof. Hasso Plattner for supporting
me to do research in a field of my interest. Prof. Plattner and his chair repre-
sentatives, Dr. Matthias Uflacker and Dr. Michael Perscheid provided helpful
guidance and support for this thesis and throughout my time at the Hasso Plat-
tner Institute. My sincere thanks also go to SAP for funding my research.

I want to thank all students who worked under my supervision on the topic
of causal structures learning as part of their master’s theses, research seminars,
and master’s projects, or as student assistants.

My colleagues from the EPIC research group, especially Dr. Markus Dreseler,
Johannes Huegle, Dr. Jan Kossmann, Keven Richly, and Dr. Rainer Schlosser
provided critical feedback and were available for open discussions and always
motivated me to accept challenges and explore new ideas. Thank you for the
collaboration and friendship!

I would like to thank my family, especially Manfred, Petra, Gunhilde, Alexan-
der, and Thomas, for their everlasting support and for sparking my interest in
technology at a young age. Finally, I am deeply grateful for the unconditional
support from my wife Christiane, her encouragement and advice, as well as the
motivation I experienced from her.

Zusammenfassung

Das Lernen von kausalen Strukturen aus Beobachtungsdatensätzen ist eine all-
gegenwärtige Herausforderung im Data Science-Bereich. Die für die Algorith-
men des kausalen Strukturlernens (CSL) zur Verfügung stehende Menge von
Beobachtungsdaten nimmt zu, da heutzutage mit hoher Frequenz Daten aus
vielen Datenquellen gesammelt werden. Während die Verarbeitung von höheren
Datenmengen im Allgemeinen zu einer höheren Genauigkeit bei CSL führt, hin-
dert die damit einhergehende Erhöhung der Laufzeit von CSL-Algorithmen
deren breite Anwendung in der Praxis. CSL ist ein parallelisierbares Prob-
lem. Bestehende parallele CSL-Algorithmen eignen sich für die Ausführung
auf Mehrkern-Hauptprozessoren (CPUs) mit Dutzenden von Rechenkernen.
Moderne Computersysteme sind jedoch häufig heterogen. Um notwendige
Berechnungen zu beschleunigen, sind die Computersysteme typischerweise mit
Grafikprozessoren (GPUs) ausgestattet, wobei diese GPUs mehrere tausend
Rechenkerne für eine massive parallele Datenverarbeitung bereitstellen.

Um die Laufzeit von Algorithmen für das kausale Strukturler-
nen zu verkürzen, entwickeln wir im Rahmen dieser Arbeit effiziente
Ausführungsstrategien, die die parallele Verarbeitungsleistung von GPUs
nutzen. Dabei entwerfen wir insbesondere GPU-beschleunigte Varianten
des PC-Algorithmus, der eine bekannte Constraint-basierte CSL-Methode
ist. Dieser Algorithmus ermöglicht die Auswahl eines – den Eigenschaften
der Beobachtungsdaten entsprechenden – statistischen Tests auf bedingte
Unabhängigkeit (CI-Test).

Wir leisten in dieser Doktorarbeit zwei wissenschaftliche Hauptbeiträge: (1)
Um den Unterschieden in den CI-Tests Rechnung zu tragen, entwickeln wir
drei GPU-basierte, auf CI-Tests zugeschnittene Varianten des PC-Algorithmus.
Dadurch können Daten mit den folgenden Merkmalen verarbeitet werden: eine
Variante fokussiert sich auf Daten, die das Gaußsche Verteilungsmodell an-
nehmen, eine weitere auf diskrete Daten und die dritte Variante setzt den Fokus
auf gemischte diskret-kontinuierliche Daten sowie Daten mit nicht-linearen funk-
tionalen Beziehungen. Jede Variante ist für den entsprechenden CI-Test opti-
miert und nutzt Eigenschaften der GPU-Hardware wie beispielsweise ”Shared
Memory” oder ”Thread-local Memory” aus. Unsere GPU-beschleunigten Vari-
anten übertreffen die modernsten parallelen CPU-basierten Algorithmen um
Faktoren von bis zu 93,4× für Daten, die das Gaußsche Verteilungsmodell
annehmen, bis zu 54,3× für diskrete Daten, bis zu 240× für kontinuierliche

6

Daten mit nichtlinearen Beziehungen und bis zu 655× für gemischte diskret-
kontinuierliche Daten. Die vorgeschlagenen GPU-basierten Varianten sind dabei
jedoch auf Datensätze beschränkt, die in den Speicher einer einzelnen GPU
passen. (2) Um diese Schwachstelle zu beseitigen, entwickeln wir Ansätze zur
Skalierung unserer GPU-basierten Varianten über die Speicherkapazität einer
einzelnen GPU hinaus. So entwerfen wir beispielsweise eine auf einer expliziten
Speicherverwaltung aufbauenden Out-of-Core-Variante für eine einzelne GPU,
um Datensätze beliebiger Größe zu verarbeiten. Laufzeitmessungen auf einem
großen Genexpressionsdatensatz zeigen, dass unsere Out-of-Core GPU-Variante
364-mal schneller ist als ein paralleler CPU-basierter CSL-Algorithmus.

Insgesamt beschleunigen unsere vorgestellten GPU-basierten Varianten das
kausale Strukturlernen in zahlreichen Situationen und unterstützen dadurch die
breite Anwendung des kausalen Strukturlernens in Praxis und Forschung.

Contents

1 Introduction . 1
1.1 Learning Cause and Effect Relationships . 2
1.2 GPUs in Modern Heterogeneous Computing Systems. 3
1.3 Research Questions . 4
1.4 Contributions . 5
1.5 Outline . 9

2 Background . 11
2.1 Causal Graphical Models (CGMs) . 12
2.2 Causal Structure Learning (CSL) . 13
2.3 Path Consistency (PC) Algorithm . 17
2.4 Conditional Independence Testing . 19
2.5 Graphics Processing Units . 24
2.6 Summary . 28

3 Related Work . 29
3.1 Parallel Constraint-Based CSL . 29
3.2 GPU Acceleration Beyond a Single GPU’s Memory Capacity . . . 43
3.3 Summary . 49

4 GPU-Accelerated CSL on a Single GPU . 51
4.1 Execution Strategies for a GPU-Accelerated Adjacency Search

in PC-Stable . 51
4.2 GPU-Accelerated Adjacency Search in PC-Stable for the

Gaussian Distribution Model . 64
4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete

Data . 80
4.4 GPU-Accelerated Adjacency Search in PC-Stable with an

Information-Theoretic GPU-Based CI Test 95
4.5 Summary . 109

5 GPU-Based CSL Beyond a Single GPU’s Memory Capacity 111
5.1 Unified Memory (UM)-Based GPU-Accelerated Adjacency

Search in PC-Stable . 112
5.2 Explicit Memory-Managed GPU-Accelerated Adjacency Search

in PC-Stable . 113

8 Contents

5.3 Summary . 118

6 Evaluation . 119
6.1 Experimental Setup . 119
6.2 Experiments on GPU-Accelerated CSL Using a Single GPU. . . . 128
6.3 Experiments on GPU-Based CSL Beyond a Single GPU’s

Memory Capacity . 153
6.4 Discussion . 158
6.5 Summary . 160

7 Final Remarks . 161
7.1 Limitations . 161
7.2 Future Work . 162
7.3 Conclusion . 163

Appendix . 165
A.1 List of URLs . 165
A.2 List of Publications . 166
A.3 Permission for Reuse of Published Material 168

List of Figures . 168

List of Tables . 169

Acronyms . 171

References . 173

1

Introduction

Data have become an essential resource and driver for economic success [50],
while advances in digital technology have led to a higher volume of data [270].
This is, on the one hand, due to data from existing systems being emitted at
a higher frequency, and on the other hand, due to the technological progress
in incorporating data from additional data sources to map the complex system
from the real world in greater detail.

For example, driven by the Internet of Things (IoT) in modern manufactur-
ing, data are collected from robots, sensors, and other smart devices. These data
are emitted at a high frequency and in fine granularity, resulting in hundreds of
gigabytes of data. Thus, the captured data make it possible to monitor every
step of today’s highly complex and automatized production line [261].

A further example is genetic research, where modern RNA sequencing meth-
ods [255] enable the collection of comprehensive gene expression data. The large-
sized gene expression data help address biomedical challenges, such as drug
design [54]. Summarizing, we observe the following two trends:

• Trend (T1) amount of data: Higher data emission rates, more fine-
grained data, and additional data emitting devices increase the entire
amount of data collected.

• Trend (T2) complexity of systems: Additional data-emitting devices,
e.g., sensors in production lines, lead to an increasing number of individual
data sources. While this allows for detailed models of the observed systems,
considering each data source as a separate variable increases the complexity
of the models.

As a result of these two trends, existing computational methods for knowl-
edge discovery, e.g., data analysis or data-driven decision support, stemming,
for example, from the fields of Machine Learning (ML) [164], or Deep Learn-
ing (DL) [127] must process extensive amounts of raw data to derive meaningful
information. Processing more data generally increases the runtime of computa-
tional methods for knowledge discovery. The increased runtime gives rise to
research in efficiently processing algorithms for data analysis using modern het-
erogeneous computing systems, particularly leveraging the parallel computing
power of GPUs [11, 57, 105, 127, 138, 205].

Besides quickly processing extensive amounts of raw data, the quality of de-
rived information and the interpretability of learned models [209] are important
for value creation from the raw data [270]. Methods from the domain of ML or

2 1 Introduction

DL focus on learning patterns in the raw data. The detected patterns are used to
solve a number of tasks, such as classifications [24, 103] or predictions [141]. In
contrast, methods from the field of Causal Structure Learning (CSL) [91] go be-
yond correlation-based analysis and focus on discovering the causal mechanisms
of the system. The discovery of causal mechanisms enables an understanding
of cause and effect relationships between variables in a system based on the
observed raw data [188]. Therefore, CSL enables a deeper understanding of the
data, particularly its data-generating process.

1.1 Learning Cause and Effect Relationships

In a broader sense, methods of CSL belong to the field of knowledge discovery.
Knowledge discovery can be defined as the task of extracting information from
data [62]. The extracted information represents knowledge, which is deduced
through knowledge discovery methods. Further, the extracted knowledge is gen-
erally assumed to be more implicit, practical, as well as simpler than the data
itself [62]. Methods from the field of CSL concentrate on discovering the causal
mechanisms of the system, i.e., the true Causal Graphical Model (CGM), which
produced the raw data. Knowing the causal relationships, at least partially,
allows for identifying causal effects or applying causal inference [74, 149, 196].

CSL is based on the theoretical framework of causality as introduced by
Pearl [188]. The theoretical framework of causality builds upon the Markov
condition, which connects graphical models representing a set of variables with
the joint probability distribution over the variables [251]. Hence, if—given a set
of variables—the graphical model is compatible with the joint probability dis-
tribution, the statistical independence information coincides with the graphical
d-separation [272]. In this context, methods of CSL infer the CGM based upon
statistical concepts, e.g., statistical Conditional Independence tests (CI tests) or
scoring functions [142]. Methods using CI tests belong to the class of constraint-
based methods of CSL. While widely used in practice, constraint-based meth-
ods, such as the well-known PC algorithm [251], struggle with significantly long
execution times in the two following settings:

• Setting (S1) high-dimensional data: The computational complexity of
constraint-based algorithms, such as the PC algorithm, is exponential to the
number of variables within the CGM in the worst case [251]. Additional data
characteristics such as the number of data samples, or in the case of discrete
data, the number of classes within the variables, impact the execution time
of CI tests [190].

• Setting (S2) complex distributional characteristics: The choice for
the appropriate CI test is directly determined by the joint probability distri-
bution of the variables within the raw data [42]. Hence, a higher complexity
within the raw data, e.g., due to non-linear relationships or mixed discrete-
continuous data, yields choices of computationally expensive CI tests.

In these settings, the computational demand results in extensive runtimes of
hours or days, e.g., for gene expression data [123], which hinder the application
of CSL in practice [150]. However, research publications show the value of CSL
in different domains [74, 82, 101, 117, 151].

1.2 GPUs in Modern Heterogeneous Computing Systems 3

For example, in the field of genetic research, CSL provides a method for infer-
ence of Gene Regulatory Networks (GRNs) based on gene expression data [65].
Thus, the learned CGM provides a graphical representation of the GRN [74]
and supports drug design or diagnostics [54, 206]. However, gene expression
data is often high-dimensional, resulting in long runtimes of hours or days [123]
or requiring feature selection techniques to reduce the number of variables at
the risk of information loss.

As a second example, CSL can be used in the manufacturing industry
to determine the root causes of failures during production by understanding
the causal relationships between sensor readings obtained along the assembly
lines [82, 151]. Integrating the learned causal structures within production mon-
itoring tools provides data-driven decision support for effective troubleshoot-
ing [101]. In this domain, the data have complex distributional characteristics.
Sensor readings are often continuous, while fault and status messages or con-
figuration parameters are discrete. These complex distributional characteristics
require appropriate CI tests that cause long runtimes [214, 260], or the data
must be transformed, potentially yielding wrong independence decisions [150]
to apply fast CI tests.

Thus, tackling the challenge of learning the causal relationships from high-
dimensional (S1) and complex (S2) raw data in acceptable runtime is of utmost
relevance, given the two current trends to collect more data (T1) from increas-
ingly complex systems (T2).

1.2 The Role of GPUs in Modern Heterogeneous
Computing Systems

Modern computing systems shift from purely CPU-centric computing to het-
erogeneous computing [93]. Traditionally, CPUs served the computational de-
mand in computing systems. While computational demand increased over the
years, advances in CPU hardware led to improved performance of CPUs that
could fulfill the computational demand [47, 165]. However, the power wall and
thermal dissipation power are limiting factors in single-core [92] and multi-core
CPUs [93]. To stay within the thermal dissipation power limits, multi-core CPUs
would turn off idle cores, giving rise to the term dark silicon [55]. To overcome
the limitation of dark silicon, processor architects focus on energy-efficient cores
that target specific applications [58].

With heterogeneous computing in mind, a series of application-specific pro-
cessing chips have been devised; for example, data processing chips in the domain
of processing analytical workloads of databases [1, 281], Field-Programmable
Gate Arrays (FPGAs) for accelerating cloud search [197], Tensor Processing
Units (TPUs) for ML and DL [107], or GPUs for image processing [113]. From a
system’s architecture point of view, these processing chips are seen as accelerator
devices, i.e., co-processors, with application-tailored processing units and sep-
arate on-chip memory. In heterogeneous computing systems, GPUs are of par-
ticular interest, as they have been increasingly adopted into applications other
than image processing, e.g., DL [127], database management systems [17], min-
ing cryptocurrencies [9], or graph processing [276]. This development gave rise to
the term General-Purpose Graphics Processing Unit (GPGPU) [220]. One major
driver for the GPU’s adoption in these applications is the device’s efficiency for

4 1 Introduction

compute-intensive and data-parallel processing concerning the energy consump-
tion and the achievable Floating Point Operations per Second (FLOPS) [113].
Typically, GPUs provide several thousand compute cores for parallel process-
ing compared to CPUs, which have up to dozens of compute cores. However,
GPUs have several restrictions that stem from their design as a co-processor
with dedicated on-chip memory and their focus on parallel processing. Hence,
for the efficient use of GPUs the following three challenges must be addressed:

• Challenge (C1) on-chip memory size: GPUs require data to reside in
their on-chip memory for processing. Commonly, the on-chip memory has
a capacity of several dozens of GBs compared to the system’s Dynamic
Random Access Memory (DRAM), which can store multiple TBs of data.

• Challenge (C2) data transfer: In heterogeneous computing systems,
GPUs are commonly considered as separate hardware accelerators, i.e., co-
processors. Thus, data must be transferred between a GPU and a CPU on
a dedicated interconnect. This indirection poses a potential bottleneck, e.g.,
due to low data transfer rates of the interconnect.

• Challenge (C3) execution model: The GPU follows the Single Instruc-
tion Multiple Threads (SIMT) execution model [136]. Algorithms executed
on the GPU need to adhere to the execution model and define tasks for
parallel execution accordingly to exploit the GPU’s full potential.

Existing research shows that if these challenges are addressed when designing
algorithms for execution on GPUs, a speedup is achievable over CPU-based
algorithms [127, 138]. Therefore, we argue that leveraging the parallel computing
capabilities of GPUs for data-parallel processing of CSL algorithms is of high
interest to address the CSL algorithms’ computational demand.

1.3 Research Questions

Current methods for discovering the causal relationships within observational
data struggle with long execution times given high-dimensional data (P1) and
complex distributional characteristics within the data (P2) [123, 214]. Across in-
dustries, enterprises collect high amounts of data (T1) from increasingly complex
systems (T2) [270]. Thus, applying constraint-based CSL becomes more chal-
lenging for these companies due to increased execution times, of hours, days, or
even weeks. Parallel execution of algorithms for constraint-based CSL, notably
the PC algorithm, on multi-core CPUs helps to reduce the long execution times
by factors linearly related to the number of CPU cores used [123, 224, 234].
However, physical hardware constraints limit the number of cores on a CPU,
and thus the achievable speedup. In contrast to dozens of cores on a CPU, GPUs
are typically equipped with several thousand computational cores for massively
parallel data processing. Further, compared to other co-processors such as TPUs
or FPGAs, GPUs are common in many modern heterogeneous computing sys-
tems, e.g., see the adoption of GPUs in supercomputers1. Hence, we investi-
gate the utilization of GPUs to achieve additional speedup for constraint-based
CSL in real-world settings (P1 & P2). While GPUs are suited to providing

1 https://www.top500.org/

1.4 Contributions 5

additional speedup when solving data-parallel problems, employing GPUs in-
troduces unique challenges (C1, C2 & C3). Therefore, in this thesis we focus on
the following research goal and in that context two distinct research questions:

Research Goal: Design efficient execution strategies for constraint-based CSL
algorithms that leverage the parallel processing power of GPUs to provide fast

runtimes in case of high-dimensional data.

• Research Question 1 (RQ1): How can we improve the runtime of
constraint-based CSL on a GPU?
Given their availability in modern heterogeneous computing systems and
massively parallel data processing power, we argue that GPUs are well suited
to improve the runtime of constraint-based CSL. In this context, a paral-
lel execution strategy and a definition of tasks for parallel execution within
constraint-based CSL are required, which map to the unique GPU hardware
and its SIMT execution model (C3). Thereby, the definition of tasks must re-
flect the characteristics of different CI tests for complex relationships within
the data and different data distributions. Foremost, this requires the design
of new algorithms of constraint-based CSL with different CI tests tailored
for execution on a GPU and efficient implementations of these algorithms.

• Research Question 2 (RQ2): How can we scale GPU-accelerated
constraint-based CSL to arbitrarily large datasets?
We argue that high-dimensional datasets can exceed the memory capacity of
a single GPU, either as the memory size of the dataset itself or as the mem-
ory demand of auxiliary data structures of the CSL algorithm is too high.
In this context, a problem decomposition is required that can cope with
the limited on-chip memory capacity of a single GPU (C1) while retaining
efficient execution on a single or multiple GPUs. Hence, the problem decom-
position must result in tasks that expose enough parallelism to saturate all
GPUs’ compute units while not exceeding the on-chip memory capacity of
each GPU. Further, data transfer costs must be minimized (C2), and com-
munication via interconnects with different bandwidth or latency properties
should be reflected.

1.4 Contributions

The following section describes the contributions made to reach our research
goal and answer the research questions listed (RQ1 & RQ2). This thesis focuses
on the PC algorithm, a well-known constraint-based CSL method widely used
in practice [150]. Many extensions of the PC algorithm exist to which the results
of this thesis can be applied. The individual contributions are detailed below.

1.4.1 Deriving Tasks for Parallel Execution Within the PC
Algorithm

As a first contribution, we derive tasks for parallel execution within the context
of the PC algorithm using Foster’s methodology [61] (Section 4.1). The tasks
for parallel execution have different granularities to manage key characteris-
tics stemming from various CI tests. The theoretical considerations address the
research question (RQ1) and have influenced several of our publications.

6 1 Introduction

1.4.2 GPU-Accelerated PC Algorithm Covering a Variety of Data
Distributions

We contribute three GPU-accelerated algorithms and their implementation for
constraint-based CSL to support CI tests with different characteristics, covering
a range of data distributions (see Sections 4.2, 4.3, 4.4). We aim to reach our re-
search goal with the introduced algorithms, particularly by addressing the first
research question RQ1. In particular, we introduce a GPU-accelerated algorithm
for data following the Gaussian distribution model [226] (Section 4.2). This algo-
rithm leverages the GPU’s shared memory to synchronize results within thread
blocks allowing for early termination. Also, the algorithm relies upon a pre-
computed correlation data structure to reduce data access. In an experimental
evaluation using gene expression datasets, our GPU-accelerated algorithm can
outperform existing CPU-based implementations by factors of up to 93.4×.

Further, we present our GPU-accelerated algorithm for discrete data [81]
(Section 4.3) that calculates the marginals over contingency tables within
units of threads, managing the corresponding auxiliary data structures in GPU
global memory. Measuring the execution time on well-known discrete benchmark
datasets, we find that our algorithm is up to 6.5 times faster than a naive GPU-
based algorithm and up to 54.3 times faster than a CPU-based implementation
running in parallel on 40 CPU cores.

Additionally, we propose a GPU-accelerated algorithm for mixed discrete-
continuous data and data with non-linear relationships [83] (Section 4.4). The
proposed algorithm computes the mutual information based on the nearest
neighbors using a pipeline approach mapping each data sample to an individ-
ual GPU thread. Furthermore, the algorithm leverages the undefined order of
thread block execution to realize a GPU kernel computing local permutations.
In an experimental evaluation on synthetic data, we find that depending on
the parameter setting, our algorithm is up to 240 times faster for continuous
data with non-linear relationships and up to 655 times faster for mixed discrete-
continuous data than a parallel CPU-based algorithm running on 8 cores. The
material addresses the first research question RQ1 and was published in the
following papers:

[81] Hagedorn, C.; Huegle, J.: GPU-Accelerated Constraint-Based Causal
Structure Learning for Discrete Data. In Proceedings of the 2021 SIAM Inter-
national Conference on Data Mining (SDM). SIAM, 2021, pp. 37–45.

[83] Hagedorn, C.; Lange, C.; Huegle, J.; Schlosser, R.: GPU Acceler-
ation for Information-theoretic Constraint-based Causal Discovery . In Proceed-
ings of The KDD’22 Workshop on Causal Discovery . PMLR, 2022, pp. 30–60.

[226] Schmidt, C.;Huegle, J.;Uflacker, M.:Order-independent Constraint-
based Causal Structure Learning for Gaussian Distribution Models Using GPUs.
In Proceedings of the 30th International Conference on Scientific and Statistical
Database Management (SSDBM). ACM, 2018, pp. 19:1–19:10.

The author of this thesis is the first author of the three publications. Johannes
Huegle contributed several ideas and detailed sections regarding the theoretical
background of causal graphical models and causal structure learning. Constantin

1.4 Contributions 7

Lange supported the baseline implementation of the paper [83]. Further, the co-
authors improved the material and its presentation.

1.4.3 Scaling the GPU-Accelerated PC Algorithm Beyond a Single
GPU’s Memory Capacity

Furthermore, we contribute concepts and implementations for the execution of
constraint-based CSL when the memory capacity of a single GPU is exceeded
given large problem sizes (see Chapter 5). The devised concepts and imple-
mentations help to reach our research goal, mainly as they address the second
research question RQ2. In systems with only one GPU, we propose to split the
problem into small-sized blocks, which fit into GPU global memory [225]. This
block-based approach with explicit memory management employs a technique
to overlap data transfer and GPU kernel execution. In the case of predomi-
nantly random data access, we avoid costly stalls due to page faults in a naive
Unified Memory (UM)-based version that implicitly manages memory. A high-
dimensional gene expression dataset for which data structures exceed a single
GPU’s memory capacity is used for an experimental evaluation. Under the sim-
plifying assumption that this data follows the Gaussian distribution model, we
find that our approach is a factor of 29.6× faster than a naive UM-based GPU
approach and is faster than a parallel CPU-based algorithm by a factor of 364×.

For multi-GPU systems, we extend the block-based approach to perform CSL
on multiple GPUs [80]. We demonstrate that the proposed multi-GPU approach
remains unaffected by differences in the underlying inter-GPU interconnect per-
formance, which can affect a naive, implicitly memory-managed version. In an
experimental evaluation, we find that in the multi-GPU setting, our explicit
memory-managed approach is a factor of 2.17× faster than the naive UM-based
approach. Both approaches address the second research question RQ2. The work
was published in the following two papers:

[80] Hagedorn, C.; Huegle, J.: Constraint-Based Causal Structure Learning
in Multi-GPU Environments. In Proceedings of the LWDA 2021 Workshops:
FGWM, KDML, FGWI-BIA, and FGIR. CEUR-WS.org, 2021, pp. 106–118.

[225] Schmidt, C.; Huegle, J.; Horschig, S.; Uflacker, M.: Out-of-Core
GPU-Accelerated Causal Structure Learning . In Algorithms and Architectures
for Parallel Processing (ICA3PP). Springer, 2020, pp. 89–104.

The thesis author is the first author of both papers. In the first paper, the
thesis author implemented the implicitly memory-managed approach. Siegfried
Horschig contributed ideas to the block-based approach, which he supported
implementing. Johannes Huegle detailed the background section on constraint-
based CSL. The co-authors improved the material and its presentation. In the
second paper, the thesis author extended the block-based approach to a multi-
GPU system and implemented this approach. Johannes Huegle improved the
material and its presentation.

8 1 Introduction

1.4.4 Complementary Contributions

In addition to the main contributions covered within this thesis, the thesis au-
thor conducted further research in the field of hardware acceleration for CSL.

First, the thesis author proposed a parallel variant of the PC algorithm, which
incorporates a load-balancing algorithm using dynamic task mapping at run-
time. The work focuses on multi-core CPU systems and effectively mitigates
load imbalances faced by existing parallel variants of the PC algorithm with
static task distribution. Compared to the existing parallel variants of the PC
algorithm, the introduced load-balanced variant achieves a speedup of up to
factor 2.4× on a range of gene expression datasets. The material was published
in the following paper:

[224] Schmidt, C.; Huegle, J.; Bode, P.; Uflacker, M.: Load-Balanced
Parallel Constraint-Based Causal Structure Learning on Multi-Core Systems for
High-Dimensional Data. In Proceedings of The 2019 KDD Workshop on Causal
Discovery . PMLR, 2019, pp. 59–77.

Second, the thesis author proposed an improved GPU-accelerated correlation
coefficient computation, leveraging shared memory, which shows execution time
gains of up to 58% over variants not using shared memory. The calculation of
correlation coefficients is a commonly applied preprocessing step for constraint-
based CSL under the assumption that data follows the Gaussian distribution
model. With this preprocessing step, each CI test can directly access its required
correlation coefficients and skip processing the observational data. The material
was published in the following technical report:

[223] Schmidt, C.; Huegle, J.: Towards a GPU-Accelerated Causal Inference.
In HPI Future SOC Lab – Proceedings 2017 . Universitätsverlag Potsdam, 2020,
pp. 187–194.

Furthermore, the thesis author contributed to the following research in CSL.
One research work focuses on implementing a python package containing the
thesis author’s GPU-accelerated CSL algorithms [16]. Other research publica-
tions address the benchmarking of CSL algorithms [98, 99], the application of
CSL in the manufacturing domain [82, 101, 102], and causal discovery from
mixed data using an information-theoretic approach [100].

[16] Braun, T.; Hurdelhey, B.; Meier, D.; Tsayun, P.; Hagedorn, C.;
Huegle, J.; Schlosser, R.: GPUCSL: GPU-Based Library for Causal Struc-
ture Learning . In 2022 International Conference on Data Mining, ICDM 2022
– Workshops. IEEE, 2022, pp. 1228–1231.

[82] Hagedorn, C.; Huegle, J.; Schlosser, R.: Understanding Unfore-
seen Production Downtimes in Manufacturing Processes Using Log Data-Driven
Causal Reasoning . In Journal of Intelligent Manufacturing 33(7), 2022: pp.
2027–2043.

1.5 Outline 9

[98] Huegle, J.; Hagedorn, C.; Böhme, L.; Pörschke, M.; Umland, J.;
Schlosser, R.: MANM-CS: Data Generation for Benchmarking Causal Struc-
ture Learning from Mixed Discrete-Continuous and Nonlinear Data. InWHY-21
@ NeurIPS . WHY-21, 2021, pp. 1–15.

[99] Huegle, J.; Hagedorn, C.; Perscheid, M.; Plattner, H.: MPCSL
– A Modular Pipeline for Causal Structure Learning . In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD).
ACM, 2021, pp. 3068–3076.

[100]Huegle, J.;Hagedorn, C.; Schlosser, R.:A kNN-based Non-Parametric
Conditional Independence Test for Mixed Data and Application in Causal Dis-
covery . In ECML-PKDD 2023, accepted . 2023.

[101] Huegle, J.; Hagedorn, C.; Uflacker, M.: How Causal Structural
Knowledge Adds Decision-Support in Monitoring of Automotive Body Shop As-
sembly Lines. In Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence (ICJAI). IJCAI, 2020, pp. 5246–5248.

[102] Huegle, J.; Hagedorn, C.; Uflacker, M.: Unterstützte Fehlerbehe-
bung durch kausales Strukturwissen in Überwachungssystemen der Automobil-
fertigung . In Software Engineering 2021 Satellite Events, Lecture Notes in In-
formatics (LNI). Gesellschaft für Informatik, 2021, pp. 1–2.

Beyond the topic of CSL, the thesis author also published and contributed to
research on hardware acceleration in other domains, such as database manage-
ment systems, or business applications.

[222] Schmidt, C.; Dreseler, M.; Akin, B.; Roy, A.: A Case for Hardware-
Supported Sub-Cache Line Accesses. In Proceedings of the 14th International
Workshop on Data Management on New Hardware (DaMoN). ACM, 2018, pp.
1–3.

[227] Schmidt, C.; Uflacker, M.: Workload-Driven Data Placement for
GPU-Accelerated Database Management Systems. In BTW 2019 – Workshop-
band . Gesellschaft für Informatik, 2019, pp. 91–94.

[230] Schwarz, C.; Schmidt, C.; Hopstock, M.; Sinzig, W.; Plattner,
H.: Efficient Calculation and Simulation of Product Cost Leveraging In-Memory
Technology and Coprocessors. In The Sixth International Conference on Busi-
ness Intelligence and Technology . IARIA, 2016, pp. 12–18.

1.5 Outline

This thesis is organized as follows: Chapter 2 provides the theoretical and tech-
nical background that lays the foundation for this thesis. This chapter includes
a formal description of causality in the context of CSL and an introduction to
GPU hardware and programming. We discuss related literature on parallel CSL,

10 1 Introduction

on overcoming a single GPU’s memory limit, and multi-GPU computing in het-
erogeneous computing systems in Chapter 3. Chapter 4 presents the contributed
algorithms for GPU-accelerated constraint-based CSL for data following differ-
ent distribution models. This chapter includes a formal deduction of parallel
tasks within the PC algorithm. The parallel tasks are used to derive variants of
the PC algorithm tailored to the characteristics of different CI tests considering
the GPU hardware. For the proposed variants of the PC algorithm, we include
implementation details. In Chapter 5, we propose algorithms that cope with
the limited memory capacity of a single GPU and execute on multiple GPUs.
Chapter 6 presents an experimental evaluation of the previously described al-
gorithms. The experimental evaluation covers data from real-world use cases
to illustrate the applicability in practice. Additionally, we use synthetic data
to demonstrate our proposed algorithms’ performance gains, scalability, and
limitations in a broader range of settings. Lastly, we discuss the results of our
experimental evaluation. Chapter 7 describes the limitations of our proposed
GPU-accelerated CSL algorithms and their experimental evaluation. Further,
we detail opportunities for future work before we conclude this thesis.

2

Background

This chapter provides the necessary theoretical and technical background for
the remainder of this thesis.

In Section 2.1, we explain the fundamental concept of Causal Graphical
Models (CGMs). CGMs provide a graphical representation to describe causal
relationships between a given number of variables, using Direct Acyclic Graphs
(DAGs) [90, 188, 194, 251]. Provided with data for a given set of variables,
Causal Structure Learning (CSL) enables the derivation of the causal relation-
ships between these variables and consolidates the learned causal relationships
to the CGM. In Section 2.2, we introduce CSL and the main techniques to learn
the causal structures, respectively constraint-based CSL (see Section 2.2.1),
score-based CSL (see Section 2.2.2), hybrid CSL (see Section 2.2.3) and dis-
cuss differences in the techniques (see Section 2.2.4). Note that the data used
for CSL is often assumed to be observational data only. Yet, extensions of CSL
for mixtures of observational and interventional data also exist [110].

We detail one representative algorithm, the PC algorithm [251], which is the
main subject of this thesis, in Section 2.3. The PC algorithm is a well-known rep-
resentative of the class of constraint-based CSL methods, which has attracted
numerous extensions or variations in research, e.g., incorporating algorithmic
improvements regarding the accuracy, stability, or the relaxation of assump-
tions [19, 22, 35, 148, 201, 203, 207, 246, 251, 258], focusing on fast execution
leveraging hardware for parallel execution [80, 81, 83, 106, 123, 146, 147, 169,
224, 225, 226, 287, 290], or considering different data distributions [39, 87].

In Section 2.4, we elaborate on conditional independence testing. Notably, we
detail CI tests for data with the following characteristics. We consider CI tests
for data assuming the Gaussian distribution model, for discrete data, and mixed
discrete-continuous data and data with non-linear relationships.

Lastly, in Section 2.5, we explain Graphics Processing Units (GPUs) with a
focus on unique hardware aspects (see Section 2.5.1) and the corresponding pro-
gramming techniques (see Section 2.5.2). In recent years, GPUs have changed
from being a processor solely for video and graphics processing to an accelerator
for many compute-intensive workloads, e.g., in the High-Performance Comput-
ing (HPC) domain [56], in enterprise computing [17, 68, 230], or for Machine
Learning (ML) tasks [127].

12 2 Background

2.1 Causal Graphical Models (CGMs)

CGMs are a recognized formalization for the concept of causality [90, 142, 187,
188, 189, 251]. Let a CGM be defined as a pair < G,P >, where G is a DAG
over a set of variables V and P is a joint distribution over V [251].

Graph G, Variables V and Edges E

Further, let G be defined as a pair G = (V,E), with a finite set of N variables
V = {V1, . . . , VN} and a set of edges E ⊆ V×V. Note, in graphical terminology,
the variables are represented as vertices, and the terms are used synonymously
throughout this thesis. An edge (Vi, Vj) ∈ E is called directed, i.e., Vi → Vj , if
(Vi, Vj) ∈ E but (Vj , Vi) /∈ E. If both (Vi, Vj) ∈ E and (Vj , Vi) ∈ E the edge is
called undirected, i.e., Vi − Vj , with i, j = 1, . . . , N and i ̸= j.

Skeleton C and Adjacency Set adj(G, Vi)

Suppose undirected edges replace all directed edges in G. In that case, the re-
sulting graph is called the skeleton C of G. Based on the skeleton C of G, we call
a pair of vertices (Vi, Vj) adjacent, if there exists an edge Vi−Vj in C. Thus, the
adjacency set adj(G, Vi) of the vertex Vi ∈ V in G contains all vertices Vj ∈ V
that are adjacent to Vi in C, with i, j = 1, . . . , N and i ̸= j.

V-Structure and Completed Partially Directed Acyclic Graph (CPDAG)

Further, let a v-structure be defined as an ordered triple (Vi, Vj , Vk), i, j, k =
1, . . . , N, i ̸= j, i ̸= k, j ̸= k with directed edges Vi → Vj and Vk → Vj in G
and Vk /∈ adj(G, Vi) [26]. In this case, two DAGs are equivalent if they share the
same skeleton C and the same v-structures [189]. The corresponding equivalence
class of a DAG can be described by a CPDAG [26]. A CPDAG is defined as a
completed partially directed acyclic graph containing directed and undirected
edges. Furthermore, the CPDAG and all DAGs in the equivalence class share the
same skeleton C and v-structures. Additionally, there exist two DAGs for each
undirected edge Vi − Vj in the equivalence class, one for each directed version
of the undirected edge Vi − Vj [6].

Graph Concepts: Path, Descendants, Ancestors and Parents

A path in G of length m from Vi to Vj , denoted by Vi 7→ Vj , is defined as
a sequence Vi = V1, . . . , Vm = Vj of unique vertices, with Vk → Vk+1 for all
k = 1, . . . ,m − 1 [122]. Based upon the path definition, the descendants of a
vertex Vi, denoted by desc(Vi), are all vertices Vj ∈ V \ Vi for which there
exists a path Vi 7→ Vj [121]. The non-descendants of a vertex Vi, denoted by
nondesc(Vi), are defined as nondesc(Vi) = V \ {Vi ∪ desc(Vi)} [121]. Further,
let the ancestors of a vertex Vi, denoted by an(Vi), be defined as all vertices
Vj ∈ V\Vi for which there exists a path Vj 7→ Vi [121]. In that case, the parents
of Vi, denoted by pa(Vi), are defined as vertices Vj ∈ an(Vi) with a direct edge
to Vi [49].

2.2 Causal Structure Learning (CSL) 13

D-Separation

Furthermore, let the concept of d-separation be defined as follows: Two variables
Vi, Vj ∈ V are d-separated by a conditioning set of variables Si,j ⊆ V\{Vi, Vj},
if for each path between Vi and Vj either there exists a chain Vi → Z → Vj or
a fork Vi ← Z → Vj with Z ∈ Si,j or there exists a collider Vi →W ← Vj with
W /∈ Si,j and any desc(W) /∈ Si,j .

Causal Sufficiency and Global Markov Condition

For a DAG G, a directed edge Vi → Vj represents a causal relationship from Vi

to Vj . In this context, if V contains all direct causal relationships of any variable
in V, G is causally sufficient, i.e., there are no unmeasured confounders [251].
Further, the global Markov condition defines that, for a causally sufficient DAG
G of a CGM, every variable Vi in V is independent of its non-descendants in G
conditioning on its direct causes, i.e., its parents pa(Vi) in G [247].

Causal Faithfulness

In addition to the information on direct causal relationships, the DAG G implies
information on the conditional independencies regarding the joint distribution
P and the d-separation criterion on the vertices V of G [121, 142, 188, 251]. If
Vi, Vj , with i, j = 1, . . . , N and i ̸= j, are d-separated by Si,j and the Markov
condition is satisfied, then Vi is independent of Vj conditioning on Si,j , which we
denote by Vi ⊥⊥ Vj | Si,j . Further, we denote the matrix of conditioning sets of
all pairs of variables (Vi, Vj) by Sep. Note that in the literature and throughout
this thesis, the conditioning set is also referred to as a separation set. If a joint
distribution entails only the conditional independencies that are implied by the
d-separation condition, P over V is called faithful [142].

2.2 Causal Structure Learning (CSL)

Causal Structure Learning (CSL) is the task of deriving as many of the edges
in the DAG G of a CGM as possible, given a set of data D, with 1, . . . , n
data samples sampled from P. In this thesis, we consider D to be observa-
tional data, meaning that the data stems from sources other than randomized
experiments [279]. For example:

• In social sciences, observational data is obtained through surveys, censuses,
or administrative records [279].

• In manufacturing, observational data is generated by sensors and process
messages [82, 101, 102, 134, 151].

• In genetics, gene expression samples or transcriptomic data represent obser-
vational data [125, 206].

Note there also exist methods of CSL for interventional data [282] or mixtures
of observational and interventional data [89].

In order to apply CSL [251], generally, the following assumptions are made
to relate the DAG G to the given set of observational data D with variables
V. First, the observational data is assumed to be independent and identically

14 2 Background

distributed (i.i.d) [91]. In other terms, the stable unit treatment value assump-
tion, explained as follows, holds. The stable unit treatment value assumption
defines that the variables of one unit in the population do not causally interact
with the variables of another unit of the population [212]. Further, we assume
that G is causally sufficient and faithful and that it fulfills the global Markov
condition, as defined in Section 2.1. Based on the global Markov condition and
the faithfulness assumption, Vi and Vj are independent given Si,j if and only if
Vi and Vj are d-separated by Si,j in G [142].

Following these assumptions, several techniques have been developed to learn
the DAG G of a CGM from observational data D. A major challenge for many
structure learning methods is the non-identifiability of G from the joint distribu-
tion P [49], beyond the equivalence class of G [251]. Therefore, methods of CSL
learn a CPDAG describing the equivalence class of G [6, 26]. The most common
techniques to CSL can be classified into the following three groups, constraint-
based methods, score-based methods, and hybrid methods. For an exhaustive
overview of methods for CSL, beyond the three mentioned groups, we refer the
reader to the survey by Vowels et al. [275]. Constraint-based methods require
the satisfaction of constraints, often considering Conditional Independence (CI)
and conditional dependence constraints to hold for the observational data [142].
In this case, these methods apply statistical independence tests to determine
the CI relationships in G. Note, there also exist non-parametric constraints
or constraints for specific parametric settings [118, 242, 248]. In contrast to
constraint-based methods, score-based methods search for G, given the data D,
by maximizing or minimizing a score, such as the Bayesian Information Crite-
rion (BIC) [231]. Hybrid methods combine elements from score-based methods
with CI tests to learn G [142].

2.2.1 Constraint-Based CSL

Based on the Markov condition and the faithfulness assumption, constraint-
based CSL assumes that when the CI and conditional dependence constraints
of a DAG G hold, P entails only the CI relationships that are induced by the
underlying true DAG [142]. Constraint-based CSL utilizes CI tests to determine
the CI relationships between the set of variables V from observational data D.

Algorithms for constraint-based CSL, for example, SGS [250], IC [273], or
PC [249], provide the flexibility to execute different CI tests [142]. The appro-
priate selection is directly determined through the underlying distribution P of
the observational data D [42]. Choices for CI tests are, for example, the Fisher’s
z-test [59] for linear Gaussian distribution models, the Pearson’s χ2 test [190]
in the multinomial case, or non-parametric tests [100, 157, 214, 286, 289] in the
case of mixed discrete-continuous data or data with non-linear functions. Upon
executing a CI test, independence for a given pair of variables is determined
based on a provided significance value α. As many CI tests are conducted dur-
ing constraint-based CSL, α can be seen as a tuning parameter [35]. Note that
smaller values of α tend to derive sparser graphs.

The application of CI tests introduces the potential for statistical errors,
such as type I errors due to calculating approximate CI or limitations in the
power of the CI test [142]. While standard approaches do not consider statistical
errors, extensions handling statistical errors have been proposed [33, 35, 135,
203, 252, 259, 265].

2.2 Causal Structure Learning (CSL) 15

Besides statistical errors, constraint-based CSL also faces a computational
challenge, as the number of CI tests grows exponentially with the number of
variables N in G. Under the assumption of a sparse underlying true DAG, com-
mon for real-world scenarios, the computational complexity is reduced to be
polynomial [109]. Yet, execution times remain a challenge [123].

Note that in this thesis, we focus on global-search constraint-based CSL
algorithms. Thus, we do not elaborate on any local-to-global constraint-based
approaches [154, 267], which build upon the concept of Markov blankets [186].

2.2.2 Score-Based CSL

Methods of score-based CSL learn the DAG G or the equivalence class described
by the CPDAG of the CGM by optimizing a specified score [49]. Often, these
methods use a penalized likelihood score, such as the Bayesian Information
Criterion (BIC) [231], to determine the DAG with an optimal score [27].

Finding the DAG is an NP-hard problem for properly defined scores [25, 28],
given that the number of DAGs increases super-exponential with the number of
variables [208]. Thus, methods to determine the exact DAG, e.g., using partial
order covers [184], bounded treewidth [43, 53], or dynamic programming [114,
243], are feasible for up to 30 variables [49]. For larger graphs, exact searches
over all possible DAGs are infeasible, and methods using heuristics, searching
the CPDAG representing the equivalence class of the DAG G, are proposed.

A well-known example is the Greedy Equivalent Search (GES) [27], a two-
phase search procedure. In the forward phase, new edges are added to an empty
DAG, and in the backward phase, edges are removed. Both addition and removal
of edges are executed to optimize the score. Based on the greedy approach, this
method may not yield the global optimum of the score for a limited number of
data samples n from data D. Yet, if the score has certain properties, it is shown
that for n → ∞ the method finds the global optimum with a probability con-
verging to 1 [27]. The number of score evaluations is exponential to the number
of variables N in G. Yet, under the assumption of a sparse underlying true DAG,
it is shown that the backward phase can have polynomial complexity [29].

Several extensions have been introduced to the GES algorithm, e.g., to im-
prove its performance [171, 202], to extend its applicability to incorporate in-
terventional data [89] or to allow for latent variables [181]. Like the tuning
parameter α in constraint-based methods, score-based methods use a penalty
discount parameter, which penalizes the inclusion of edges and thus influences
the sparseness of the learned equivalence class of the CPDAG [199].

Notably, recent research reformulates the traditional score-based combina-
torial problem into a continuous optimization problem [293]. The continuous
optimization problem is efficiently solved using standard numerical algorithms
and outperforms traditional methods.

2.2.3 Hybrid CSL

Hybrid CSL methods combine score-based approaches with elements from
constraint-based approaches, i.e., conditional independence testing, to lever-
age the advantages of the individual techniques [142]. Most hybrid meth-
ods [3, 167, 228, 229, 245, 269] reduce the search space over all possible DAGs

16 2 Background

of a score-based approach by first applying CI tests or variable selection meth-
ods [167]. Therefore, the first step of these hybrid methods produces an esti-
mated skeleton graph C or an estimated conditional independence graph CIG, a
supergraph of C. In the next step, a score-based method, such as GES [27], takes
C or CIG as input and outputs the estimated DAG G or CPDAG of the CGM.

2.2.4 Comparing CSL Approaches

Several studies and surveys compare CSL approaches from the three main
groups, constraint-based, hybrid, and score-based methods [49, 74, 79, 91, 110,
199, 234, 235, 244]. Scutari et al. [235] run a set of experiments on synthetic
and real-world climate data focusing on CSL without latent or missing variables.
They aim to empirically determine whether any method, respectively group of
methods, has a clear advantage over the others. They find that a score-based ap-
proach using a tabu-search outperforms other considered methods in most cases.
However, there is no general pattern on the most suitable approach, which is in
line with another empirical study [91].

The simulation study by Heinze-Deml et al. [91] shows that algorithms from
the same group tend to behave similarly, forming clusters. Besides algorithms
from the three main groups, the study also considers an approach based on
structural equation models with additional restrictions, i.e., the LiNGAM algo-
rithm [241] and a technique that exploits invariance properties, i.e., the backShift
algorithm [211]. Further, the study includes extensions of CSL, which allow for
hidden variables, handle interventional data, and cope with cycles. The empir-
ical evaluation underlines that both constraint-based and score-based methods
have unique advantages and disadvantages.

In particular constraint-based methods, such as the PC algorithm [251], have
the following advantages. The algorithm allows the exchange of the applied
CI test making it widely applicable given the faithfulness assumption holds [74].
The appropriate CI test for given observational dataD is directly determined by
the underlying distribution P [42]. Additionally, numerous extensions exist, for
example, to handle hidden variables [36] or interventional data [143, 144, 256]
or to address the parallel execution on modern multi-core CPU architectures for
faster execution times [126, 146, 147, 224, 234, 254]. Yet, in the finite sample
case, the application of CI tests can introduce statistical errors,and constraint-
based methods determine the CPDAG of the CGM, as they cannot orient all
edges in G [74, 79]. Despite parallel extensions targeting modern multi-core
CPU architectures, long execution times remain a challenge for the application
in practice, particularly for high-dimensional settings [126].

In contrast, score-based methods are less prone to propagate statistical er-
rors than constraint-based methods [142] as they consider the entire graphical
structure at once [115]. Further, applying heuristics to search for the equiva-
lence class of the true underlying DAG as in the GES algorithm [27], score-based
methods are often faster than constraint-based methods [235]. Yet, exact score-
based methods are known to be NP-hard or NP-complete [25, 28]. In addition,
it is known that greedy algorithms are P-complete [5] and thus cannot benefit
significantly from parallel execution [75].

2.3 Path Consistency (PC) Algorithm 17

2.3 Path Consistency (PC) Algorithm

In the following, we explain the PC algorithm [249], a well-known representative
of the constraint-based CSL methods. We focus on the order-independent vari-
ant, called PC-stable [35] (see Section 2.3.1), which is the foundation for parallel
extensions of the PC algorithm [123, 234] (see Section 2.3.2). The PC algorithm
executes two steps to determine the CPDAG describing the equivalence class of
G, given observational data D with N variables V [35].

In the first and most time-consuming step [169], the algorithm conducts an
adjacency search utilizing CI tests to determine the skeleton C of the CPDAG.
In addition, the first step outputs the matrix of separation sets Sep. The matrix
of separation sets Sep contains a separation set Si,j for all independent pairs
of variables (Vi, Vj) with i, j = 1, . . . , N and i ̸= j, such that the pair (Vi, Vj)
is d-separated by Si,j . Note, in literature, the adjacency search is sometimes
referred to as skeleton discovery.

In the second step, the edges within skeleton C are oriented. Therefore, at
first, the unshielded triples, defined as a triple (Vi, Vj , Vk), with i, j, k = 1, . . . , N
and i ̸= j, i ̸= k, j ̸= k, for which the pairs (Vi, Vj) and (Vj , Vk) are adjacent
and (Vi, Vk) is not adjacent in C, are oriented as v-structures if and only if
Vj /∈ Si,k [251]. Next, further orientation rules, e.g., cf. [36, 109, 251], are applied
to orient as many edges as possible.

2.3.1 PC-Stable

The PC-stable is an extension by Colombo et al. [35], introducing an order-
independent variant of the PC algorithm’s adjacency search as outlined in Al-
gorithm 1 (see p. 18). The adjacency search of the PC-stable takes as input a
vertex set V representing the N variables V = {V1, . . . , VN} (see Section 2.1),
a significance level for each CI test α, a function for the CI test CI(. . .), and

symbol description

G DAG of a CGM (see Section 2.1)
C skeleton graph, i.e., undirected version of G

V
set of vertices representing
N variables V = {V1, . . . , VN}

D observational data with n data samples
l integer of current level within PC-stable
α significance level
p p-value
Si,j single separation set of two variables Vi,Vj

Si,j,l list of all possible separation sets for Vi,Vj in level l

Sep
matrix of separation sets of dimension N ×N
containing Si,j that determined (Vi,Vj) independent

a(Vi) set containing the adjacent variables of Vi

adj(C, Vi) adjacency set of Vi given C
CI(. . .) function of the CI test

maxi=1,...,N{|adj(G, Vi)|} − 1
maximum level l reachable
within PC algorithm given G

Table 2.1: Notation table for CGM and PC-stable.

18 2 Background

Algorithm 1 Adjacency search of PC-stable algorithm according to [35]
Input: Vertex set V, significance level α, CI test CI(. . .), observational data
D
Output: Estimated skeleton C, matrix of separation sets Sep

1: Start with fully connected skeleton C given V and l← −1
2: repeat
3: l← l + 1
4: for all Vertices Vi in C do
5: Let a(Vi)← adj(C, Vi);
6: end for
7: repeat
8: Select adjacent pair (Vi, Vj) in C with |a(Vi) \ {Vj}| ≥ l
9: repeat
10: Choose separation set Si,j ⊆ a(Vi) \ {Vj} with |Si,j | = l.
11: Let p(Vi, Vj |Si,j)← CI(Vi, Vj , S

i,j , D)
12: if p(Vi, Vj |Si,j) ≥ α then
13: Delete edge Vi − Vj from C;
14: Set Sepi,j ← Si,j ;
15: end if
16: until edge Vi − Vj is deleted in C
17: or all Si,j ⊆ a(Vi) \ {Vj} with |Si,j | = l were chosen
18: until all adjacent vertices Vi, and Vj in C such that
19: |a(Vi) \ {Vj}| ≥ l were considered
20: until each adjacent pair (Vi, Vj) in C satisfies |a(Vi) \ {Vj}| ≥ l
21: return C, Sep

observational data D. After execution, the algorithm outputs the estimated
skeleton C of G, and a matrix of the corresponding separation sets Sep.

In brief, the algorithm applies CI tests to every pair of variables (Vi, Vj)
in C given all possible separation sets Si,j , with the size of the current level
l, constructed from adjacent variables of Vi without Vj (see Algorithm 1 lines
2–20). We denote the list of all possible separation sets for a pair of variables
(Vi, Vj) in the specific level l with Si,j,l. If the CI test determines independence
for the pair of variables (Vi, Vj) given a separation set Si,j , the correspond-
ing edge Vi − Vj is removed from the skeleton C and the separation set Si,j

stored (see lines 12–15). Thus, the adjacency search of the PC-stable, as well as,
the original PC algorithm, only conducts CI tests for pairs of variables (Vi, Vj)
given separation sets Si,j with a size of l = 0 up to the maximum size of the
adjacency sets of the variables in the underlying true DAG of the CGM, i.e.,
up to maxi=1,...,N{|adj(G, Vi)|} − 1. Hence, under the assumption of a sparse
underlying true DAG, the algorithm’s complexity becomes polynomial [109].

In detail, the algorithm starts with a fully connected skeleton C (see line
1 of Algorithm 1). For every level l = 0, . . . ,maxi=1,...,N{|adj(G, Vi)|} − 1 the
adjacency sets a(Vi) = adj(C, Vi) are computed for each variable Vi with respect
to the current skeleton C. The adjacency sets are stored in a separate data
structure to ensure the order-independence of the PC-stable [36] (see lines 4–6).

Next, each pair of variables (Vi, Vj) adjacent in C, and for which there ex-
ist enough adjacent variables to construct a separation set Si,j of size l, i.e.,
|a(Vi) \ {Vj}| ≥ l is considered for independence testing. Subsequently, for the
pairs of variables (Vi, Vj), fulfilling the above criteria, CI tests are conducted

2.4 Conditional Independence Testing 19

repeatedly with a changing separation set Si,j . The CI tests are conducted un-
til all possible separation sets Si,j drawn from Si,j,l in the current level l have
been considered, or the pair of variables was determined independent. The pair
of variables is determined independent in the case that the p-value p(Vi, Vj |Si,j)
calculated within the CI test is larger or equal to the given significance level α
(see line 12 of Algorithm 1). In this case, the corresponding edge is deleted from
the skeleton C, and the separation set Si,j is stored in the matrix of separation
sets at the corresponding position Sepi,j (see lines 13–14). Note, for l = 0, no
separation set, i.e., Si,j = ∅, is considered in the CI test, and an indicating flag
is stored accordingly. Once, all pairs of adjacent variables (Vi, Vj) in the current
version of the skeleton C have been considered, the algorithm increases l by one.

This procedure continues until l reaches the maximum size of the adja-
cency sets of the variables in the underlying true DAG of the CGM, i.e.,
l = maxi=1,...,N{|adj(G, Vi)|} − 1. Then, the adjacency search returns the es-
timated skeleton C and a matrix of separation sets Sep, which are the basis
for the second phase of the PC algorithm, respectively the PC-stable, the edge
orientation. For detail, on the edge orientation, we refer the reader to Spirtes et
al. [251] or others [36, 109].

2.3.2 Parallel Extensions of the PC Algorithm

Several extensions to the order-independent variant of the PC algorithm address
parallel execution on multi-core CPUs [123, 146, 169, 224, 234]. In general, par-
allel execution requires synchronization and communication between parallel
execution units [61], which introduces overhead that limits speedup. Thus, min-
imizing this overhead is a goal when designing parallel algorithms. In the case of
parallel extensions of the PC algorithm, this is achieved by defining a parallel ex-
ecution strategy, which executes each pair of variables (Vi, Vj), respectively each
edge, in parallel, on an individual execution unit, e.g., a CPU core [146, 234].

For example, the parallelPC algorithm [123] executes the loop iterating the
adjacent pairs of variables (see lines 7 – 18 of Algorithm 1) in parallel in the
following way. First, the pairs of variables are split into batches equal to the
number of parallel execution units. Next, these batches are distributed to the
parallel execution units. Then, each execution unit processes its batch, executing
lines 7 – 18 of Algorithm 1. Upon completion, the results from each batch are
merged in a synchronization step before the subsequent level is executed.

Beyond the parallel execution of the adjacency search, the framework for
parallel constraint-based structure learning [234] proposes processing the less
time-consuming orientation of unshielded triples to v-structures in parallel.

2.4 Conditional Independence Testing

Conditional independence testing is at the core of methods for constraint-based
CSL [251]. Considering the PC algorithm’s adjacency search (see Algorithm 1),
CI tests contribute most of the computation time [123]. The suitable CI test
for given data D is directly determined by the underlying data distribution [42]
and plugged into the PC algorithm. Common choices of CI tests are Fisher’s
z-test [59] for data distributed according to the Gaussian distribution model or
Pearson’s χ2 test [190] for data following the discrete distribution model. Note

20 2 Background

that in practice, data is oftentimes transformed to fit one of the two distribution
models [150]. Yet, there exists a wide range of CI tests for mixed data [100, 157,
266, 286], non-linear settings [200, 291] or other distributions [87, 195, 236, 238,
288], or using non-parametric approaches [48, 67, 96, 214, 237, 260, 289].

2.4.1 Gaussian Distribution Model

In the Gaussian case, we assume that the set of variables V = {V1, . . . , VN} is
multivariate normal distributed. In this case, standard statistical theory, e.g.,
cf. [46], defines a pair of variables (Vi, Vj) with Vi, Vj ∈ V and i ̸= j as indepen-
dent if and only if the correlation coefficient ρ(Vi, Vj) is equal to zero. Whereas,
conditional independence for a pair of variables (Vi, Vj) given a conditioning
set Si,j ⊂ V \ {Vi, Vj} holds if and only if the partial correlation coefficient
ρ(Vi, Vj |Si,j) is equal to zero [121, 277]. Thus, testing a pair of variables for in-
dependence requires to calculate either ρ(Vi, Vj) if no conditioning set is given,
or ρ(Vi, Vj |Si,j) if a conditioning set is considered.

Based on observational data D with n data samples, the sample correlation
ρ̂(Vi, Vj) for the pair of variables (Vi, Vj), with i, j = 1, . . . , N and i ̸= j, is
defined by

ρ̂(Vi, Vj) =

n∑
q=1

(
V

(q)
i − Vi

)(
V

(q)
j − Vj

)
√

n∑
t=1

(
V

(t)
i − Vi

)2
√

n∑
u=1

(
V

(u)
j − Vj

)2
(2.1)

with Vi, with i = 1, . . . , N , defined by

Vi =

n∑
q=1

V
(q)
i ,

where V
(q)
i denotes the q-th entry, i.e., data sample, of the corresponding vari-

able [129]. The partial correlation coefficient ρ(Vi, Vj |Si,j) is efficiently esti-
mated using the inverse of the corresponding correlation matrix Cor(Vi, Vj , S

i,j)
that is described as follows. The correlation matrix Cor(Vi, Vj , S

i,j) has a
dimension of (2 + |Si,j)| × (2 + |Si,j |). An entry of the correlation matrix
Cor(Vi, Vj , S

i,j)a,b contains the sample partial correlation coefficients ρ̂(Va, Vb)
for all Va, Vb ∈ Si,j ∪ {Vi, Vj} [277]. Accordingly, the sample partial correlation
coefficient is defined by

ρ̂(Vi, Vj |Si,j) =
−ri,j√
ri,irj,j

, (2.2)

with ri,j = Cor(Vi, Vj , S
i,j)−1

i,j . In case the determinant of the correlation matrix
is equal to zero, the pseudo-inverse can be computed using the Moore-Penrose
generalized matrix inverse [192].

Standard statistical hypothesis testing theory is applied to test whether
the correlation coefficient or partial correlation coefficient is equal to zero or
not [130]. In the following, we assume that ρ̂(Vi, Vj |Si,j) = ρ̂(Vi, Vj) for S

i,j = ∅
and refer to the partial correlation coefficient only. According to Fisher’s z-
test [59], the Fisher z-transformation is applied to the sample partial corre-
lation coefficient to test the significance of the difference between two partial
correlation coefficients:

2.4 Conditional Independence Testing 21

Z(Vi, Vj |Si,j) =
1

2
log

(
1 + ρ̂(Vi, Vj |Si,j)

1− ρ̂(Vi, Vj |Si,j)

)
. (2.3)

Based on the z-transformation, the p-value is calculated using

p(Vi, Vj |Si,j) = 2
(
1− Φ

(√
n− |Si,j | − 3

∣∣Z(Vi, Vj |Si,j)
∣∣)) , (2.4)

where Φ(·) denotes the cumulative distribution function of a standard normal
distribution. Thus, the null-hypothesis ρ̂(Vi, Vj |Si,j) = 0 is rejected against the
two-sided alternative ρ̂(Vi, Vj |Si,j) ̸= 0 if given the significance level α for the
p-value it holds that p(Vi, Vj |Si,j) < α.

2.4.2 Discrete Distribution Model

For discrete data, we assume that the set of variables V = {V1, . . . , VN}
has the corresponding discrete domains {V1, . . . ,VN}. Hence, when ex-
amining the hypothesis on conditional independence for a pair of vari-
ables (Vi, Vj) with Vi, Vj ∈ V given conditioning set Si,j , we take the
corresponding discrete domains Vi,Vj , and Si,j into account. Indepen-
dence Vi ⊥⊥ Vj | Si,j holds if for all realization values or vectors of
values vi, vj , and si,j with (vi, vj , s

i,j) ∈ Vi × Vj × Si,j holds that
P (Vi = vi, Vj = vj |Si,j = si,j) = P (Vi = vi|Si,j = si,j) · P (Vj = vj |Si,j = si,j).
Within the context of the discrete distribution model, the properties of
marginals over contingency tables are a common choice in statistical hypothesis
testing for conditional independence [2, 153].

For example, consider the well-known Pearson’s χ2 test [190]. The CI test
builds upon examining an overall discrepancy between the expected frequency
and the actual frequency. In this context, the expected frequency is given by

Evivjsi,j =
fvi+si,j · f+vjsi,j

f++si,j
, (2.5)

where Vi = vi, Vj = vj , and Si,j = si,j , and the actual frequency is fvivjsi,j .
Note that fvivjsi,j represents the corresponding entry in the contingency table.
Further, let the marginal with respect to Vi be denoted by,

f+vjsi,j =
∑
Vi

fvivjsi,j , (2.6)

the marginal with respect to Vj be denoted by

fvi+si,j =
∑
Vj

fvivjsi,j , (2.7)

and the marginal with respect to Vi, Vj be denoted by,

f++si,j =
∑
Vi

∑
Vj

fvivjsi,j , (2.8)

such that f+++ is equal to the total data sample size n. Moreover, let the size of
the domains of Vi, Vj , and Si,j be denoted by |Vi|, |Vj |, and |Si,j |, respectively.
Accordingly, the test statistic of Pearson’s χ2 test is:

22 2 Background

χ2
(
Vi, Vj |Si,j

)
=

∑
Vi=̂Vi,Vj=̂Vj ,Si,j=̂Si,j

(
Nvivjsi,j − Evivjsi,j

)2
Evivjsi,j

, (2.9)

which equals zero whenever Evivjsi,j equals zero.

Under the null hypothesis of conditional independence, i.e., Vi ⊥⊥ Vj | Si,j ,
the test statistic χ2

(
Vi, Vj |Si,j

)
is asymptotically distributed as χ2

df with the
degrees of freedom df defined by

df = (|Vi| − 1)(|Vj | − 1) · |Si,j |. (2.10)

Consequently, the p-value is calculated by

p(Vi, Vj |Si,j) = 1− F(χ̂2), (2.11)

with F defined as the cumulative distribution function of χ2
df and χ̂2 defined as

the calculated statistic derived from the marginals over the observed frequencies
in the corresponding contingency table.

Thus, the null-hypothesis ρ̂(Vi, Vj |Si,j) = 0 is rejected against the two-sided
alternative ρ̂(Vi, Vj |Si,j) ̸= 0 if, given the significance level α, for the p-value it
holds that p(Vi, Vj |Si,j) < α.

Apart from Pearson’s χ2 test [190], other CI tests also build upon examin-
ing the difference between the marginals over contingency tables [2, 153]. For
example, a permutation test [268] or a test based on stochastic complexity [156].

2.4.3 Mixed Discrete-Continuous Data and Data with Non-Linear
Relationships

In the case of mixed discrete-continuous data, we assume that the set of variables
V = {V1, . . . , VN} follows the idea of the mixed additive noise model [98]. Thus,
V contains continuous variables V Con and discrete variables V Dis and it holds
that V Con, V Dis ⊂ V, V Con ∪ V Dis = V and V Con ∩ V Con = ∅. Furthermore,
we assume that the functional relationships between continuous variables can
be linear and non-linear.

While there exists a range of CI tests that cover either non-linear continu-
ous [48, 67, 214, 260, 289, 291] or linear mixed discrete-continuous [266] data,
only few recent works cover mixed discrete-continuous data with non-linear re-
lationships [97, 100, 157, 286]. The CI tests employ kernel-based techniques,
following the reproducing kernel Hilbert spaces [66], e.g., [48, 260, 289, 291],
likelihood-ratio tests, e.g., [266] or information theory [67, 97, 100, 157, 214, 286].

For mixed discrete-continuous data or data with non-linear relationships,
this thesis focuses on information-theoretic CI tests, particularly [97, 100, 214].
These CI tests consider information-theoretic measures, e.g., the Conditional
Mutual Information (CMI) that characterizes the information flow between sys-
tems [94], to test for independence between a pair of variables (Vi, Vj | Si,j) [14].
The estimation of the CMI from data D depends on the underlying data dis-
tribution [71]. CMI estimators have been developed for the continuous case [63,
116, 271] and extended to the mixed discrete-continuous case [71, 161, 210].
However, CMI estimation lacks theory on finite sample behavior, and therefore
for application in CI tests, the null distribution must be determined, for example
using permutation-based schemes [48, 97, 100, 214].

2.4 Conditional Independence Testing 23

Algorithm 2 CI test using a local nearest-neighbor permutation scheme [214]
Input: number of permutations perm, k-nearest neighbors within permutation
kperm, k-nearest neighbors within CMI estimation kCMI , observational data
D, variables Vi, Vj , separation set Si,j , number of data samples n, estimator
function estimatorknn(. . .)
Output: p-value p, test statistic cmi

1: for all a ∈ {1, . . . , n} do
2: knn[a]← k nearest neighbors(kperm, a,D[Si,j], n)
3: end for
4: for all m ∈ {1, . . . , perm} do
5: for all a ∈ {1, . . . , n} do
6: Shuffle list knn[a]
7: end for
8: Initialize empty set used
9: D̂ ← {}
10: ord← create random order({1, . . . , n})
11: for all a ∈ ord do
12: x← knn[a][0]
13: y ← 0
14: while x ∈ used & y < kperm − 1 do
15: y ← y + 1
16: x← knn[a][y]
17: end while
18: D̂[a]← D[Vi][x]
19: used.add(x)
20: end for
21: ˆcmi[m]← estimatorknn(D̂,D[Vj], D[Si,j], kCMI)
22: end for
23: cmi← estimatorknn(D[Vi], D[Vj], D[Si,j], kCMI)

24: p← 1
perm

perm∑
m=1

1(cmi ≤ ˆcmi[m])

25: return p, cmi

In this case, CI tests based on information-theoretic measures combine an
appropriate CMI estimator with a permutation scheme to determine the null
distribution. For example, the information-theoretic CI test for time series with
non-linear multivariate normal distributed data CMIknn [214] builds upon the
CMI estimator by Frenzel and Pompe [63]. The information-theoretic CI tests
for mixed discrete-continuous data with non-linear relationships [97, 100] build
upon the CMI estimators by Gao et al. [71] or Mesner and Shalizi [161]. The
three CI tests utilize a local nearest-neighbor permutation schema. Furthermore,
the employed CMI estimators also build upon nearest-neighbor approaches in
all three cases.

Algorithm 2 outlines the CI test based on a local nearest-neighbor permuta-
tion scheme for data with non-linear relationships by Runge [214]. The algorithm
starts by computing for each data sample a with a ∈ {1, . . . , n} a list of nearest
neighbors knn[a] of size kperm with 0 < kperm < n. The nearest neighbors are
determined according to the distance in the dimension of the separation set Si,j

of the current data sample to all other data samples (see Algorithm 2 lines 1–3).

24 2 Background

Next, for each permutation m with m ∈ {1, . . . , perm} the values of Vi

are locally permuted according to the lists of nearest neighbors knn[a] with
a ∈ {1, . . . , n}. In this step, first, each list of nearest neighbors knn[a] is shuf-
fled, an empty set for used elements used is initialized, a vector of size n for the
permuted values D̂ is initialized, and a random order is created for the n data
samples (see lines 5–10). Next, the data samples are iterated in the previously
determined order (see lines 11–18). For each data sample, one of its nearest
neighbors is drawn from the list and placed at the data sample’s position in the
local permutation D̂. The drawing mechanism chooses the nearest neighbor of
the current data sample that a previous data sample has not drawn unless it
is the kthperm-nearest neighbor. This restriction is achieved as drawn neighbors
are added to the set for used elements used. Once the local permutation of Vi

is generated, it is used to compute the CMI based on the estimator function
estimatorknn(. . .) (see Algorithm 2 line 21). In the case of the two CI tests for
mixed discrete-continuous data with non-linear relationships [97, 100], the esti-
mator function is exchanged with the CMI estimator by Gao et al. [71] or Mesner
and Shalizi [161]. The calculated CMI value is stored for each permutation in a
list ˆcmi.

After the CMI values for all permutations are estimated, the CMI value cmi
is computed from the original non-permuted data samples (see line 23). Finally,
the p-value p is computed as the average of the indicator function, evaluating if
cmi is less or equal to the permuted CMI values ˆcmi[m] over all permutations
m ∈ {1, . . . , perm}. The algorithm returns the p-value p and the value of cmi
as the test statistic.

2.5 Graphics Processing Units

In recent years, the advancement in GPU hardware has fueled the adoption
of GPUs as an accelerator in many domains beyond its classical purpose for
graphics and video processing [17, 56, 127, 220]. Given its original purpose,
the GPU has a hardware layout (see Section 2.5.1) tailored for parallel and
throughput-oriented processing [113]. Efficient execution of code on a GPU re-
quires reflecting these unique hardware characteristics. Therefore, programming
frameworks [4, 170, 257], such as CUDA [170] targeting NVIDIA GPUs (see Sec-
tion 2.5.2), have been designed to support development tailored for the device-
specific execution model, i.e., Single Instruction Multiple Threads (SIMT) [136].

2.5.1 GPU Hardware in Heterogeneous Systems

Figure 2.1 (see p. 25) shows a simplified heterogeneous system architecture with
a host system and multiple graphics cards, referred to as devices. The illustrated
graphics cards depict the Ampere architecture of NVIDIA’s A100 GPU [31].

The host system consists of one or more CPUs and provides a large amount
of DRAM, often referred to as main memory or host memory. Nowadays, each
CPU has multiple cores [92]. While the CPU is connected to DRAM via the
memory bus, CPUs are connected with each other through a separate intercon-
nect, e.g., Intel Ultra Path Interconnect (UPI) [166] or X-Bus 4B [32] (see Fig-
ure 2.1 Interconnect I). Within the heterogeneous system, the host is connected
to one or more graphics cards via a dedicated interconnect, e.g., PCI-E [18],

2.5 Graphics Processing Units 25

Graphics Card

Device Memory (HBM2 / GDDR6)

GPU
Streaming Multiprocessor108

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache
64 Cuda Cores

Streaming Multiprocessor1

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache

Streaming Multiprocessor1

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache
64 Cuda Cores

● ●
 ●

● ●
 ●

Graphics Card

Device Memory (HBM2 / GDDR6)

GPU
Streaming Multiprocessor108

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache
64 Cuda Cores

Streaming Multiprocessor1

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache

Streaming Multiprocessor1

In
st

ru
ct

io
n

U
ni

t

M
em

or
y

C
on

tro
lle

r

Shared Memory / L1 Cache
64 Cuda Cores

● ●
 ●

● ●
 ●

Host System
CPU

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core

Core

Core

Core

CPU

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core

Core

Core

Core

M
ai

n
M

em
or

y
/ D

R
AM

Interconnect III

In
te

rc
on

ne
ct

 II
In

te
rc

on
ne

ct
 IIM

em
or

y
Bu

s

Interconnect I

Fig. 2.1: Exemplary system architecture of a heterogeneous hardware
setup with a Host System (left) containing multiple CPUs and multiple
Graphics Cards (right) as so-called devices with a GPU each. Throughout
this thesis, we use the term GPU synonymous with the term graphics card.

NVLink [60], or Infinity Fabric [131] (see Figure 2.1 Interconnect II). The inter-
connect is used for all data transfer between the host system and any device. If
the system contains multiple graphics cards, the graphics cards can have sep-
arate interconnects for dedicated inter-graphics card communication (see Fig-
ure 2.1 Interconnect III). In this case, not all data transfer necessarily goes
through the host system. Note different interconnect technologies can be used
for any of the mentioned interconnects.

Each graphics card has a GPU and dedicated device memory, e.g., based
on High Bandwidth Memory (HBM) version 2 or GDDR6, referred to as global
memory. The global memory is accessible by all processing units within the
GPU. The GPU contains multiple Streaming Multiprocessors (SMs), e.g., 108
SMs in the A100. Each SM consists of multiple CUDA cores, e.g., 64 for the A100,
has a dedicated instruction unit, a memory controller, and contains a separate
memory. The memory within the SM is fast to access by the CUDA cores, yet,
it is limited in size, with a capacity between 64kB to 192kB. This memory is
used jointly as L1 cache and shared memory. In contrast to the L1 cache, shared
memory allows for explicit data allocation by the developer.

26 2 Background

In the architectural diagram (see Figure 2.1), the CUDA cores represent the
actual processing units that execute operations of scheduled threads. For sim-
plicity, further hardware details such as underlying integer or floating-point pro-
cessing units, other functional units, and registers per CUDA core are omitted.
While we illustrate the difference between the graphics card containing both de-
vice memory and the GPU (see Figure 2.1), we use the term GPU synonymous
with the term graphics card in the remainder of the thesis.

The depicted heterogeneous hardware setup contains multiple memories in
different locations. From a GPU perspective, access to the host system’s DRAM
has the highest latency and low throughput due to explicit data transfer to the
device via Interconnect II. Yet, DRAM provides the largest capacity within the
system. The device memory has the largest capacity within the device, e.g.,
up to 80 GB, and offers faster access to data than the host system’s DRAM.
Other memories on the device are considerably smaller in capacity but have
higher latency and throughput. For example, the L2 cache, the L1 cache, shared
memory, or registers. The L2 cache, which is not depicted in Figure 2.1, is visible
for the entire device and has the second-largest capacity on the device. L1 cache
and shared memory share the same physical memory, which is smaller than the
L2 cache, and they exist per SM. Hence, the L1 cache and shared memory are
only visible to its corresponding SM. The smallest units to keep data are the
registers per CUDA core, which provide the fastest access to data.

Execution on a GPU follows the SIMT execution model. Meaning that multi-
ple CUDA cores, commonly 32, process the same scheduled instruction in lockstep.
As a GPU is a throughput-oriented device [113], each CUDA core executes the
instruction on different data loaded to the CUDA core’s register with a previous
load instruction.

2.5.2 CUDA Programming Framework

Specific frameworks and languages are developed for simplified development
in heterogeneous environments with GPUs. The CUDA programming framework
and the CUDA C language are developed for development and code execution on
NVIDIA GPUs [170]. CUDA follows the general GPU programming pattern that
combines host code, executed by the host system’s CPU, specific instructions for
memory management of the device’s global memory, and GPU kernel code [220].

Host code contains any computation executed on the CPU, memory man-
agement instructions and also the GPU kernel launch operation. Instructions for
memory management are instructions for explicit data allocations on the GPU,
explicit data transfer instructions between host and device, or instructions for
Unified Memory (UM) [217]. Note, data explicitly allocated on and transferred
to one GPU is only accessible on that particular device. In contrast, data allo-
cated using UM can be accessed by CPU and any GPU, as data is migrated on
a page-level granularity to the accessing device transparently by the Memory
Management Unit (MMU) [217]. Further, explicit data allocations on a GPU
are limited by the device’s memory size. In contrast, using UM larger amounts
of memory can be allocated. But, the amount of data present at the same time
remains limited by the device memory’s capacity, requiring the MMU to handle
data evictions.

2.5 Graphics Processing Units 27

Grid with 2 x 2 Thread Blocks
Thread Block (0,0)

● ●
 ● T31T0 T1 …

Warp31

T31T0 T1 …

Warp0 ● ●
 ●

Sh
ar

ed
 M

em
or

y

Registers Registers … Registers

Thread Block (0,1)

● ●
 ● T31T0 T1 …

Warp31

T31T0 T1 …

Warp0 ● ●
 ●

Sh
ar

ed
 M

em
or

y

Registers Registers … Registers

Thread Block (1,0)

● ●
 ● T31T0 T1 …

Warp31

T31T0 T1 …

Warp0 ● ●
 ●

Sh
ar

ed
 M

em
or

y

Registers Registers … Registers

Thread Block (1,1)

● ●
 ● T31T0 T1 …

Warp31

T31T0 T1 …

Warp0 ● ●
 ●

Sh
ar

ed
 M

em
or

y

Registers Registers … Registers

Device Memory

Fig. 2.2: Organization of GPU threads (T) within a GPU kernel in the
CUDA framework. Each GPU kernel is launched with a grid of thread blocks
summarizing GPU threads within warps. Note, some hardware memory
(marked in grey) is mapped to illustrate the visibility of memory locations
within threads and thread blocks. Device memory is available to all GPU
threads, whereas shared memory is only visible to threads within the same
thread block. Data in registers is thread-local.

GPU kernels contain the operations executed on the GPU. Upon GPU kernel
launch parameters are set, e.g., to specify how the parallel execution is organized,
or to define the amount of available shared memory used.

The organization of the parallel execution of a GPU kernel is depicted in
Figure 2.2. A GPU kernel is launched with a number of thread blocks TB
specified by a three-dimensional grid. In the presented example (see Figure 2.2),
a GPU kernel is launched with a 2×2-sized grid. Each thread block can contain
up to 1 024 threads T , also organized in a three-dimensional manner. Internally
the threads are mapped to warps with 32 threads each. The number of threads
per thread block TTB defines the thread block size TBS. Hence, the total number
of threads for a GPU kernel Tkernel is calculated by

Tkernel = TB × TTB . (2.12)

When programming, each thread block TB is identified through a three-
dimensional id (bx, by, bz) within the grid. Similarly, each thread T is identified
within its thread block through a three-dimensional id (tx, ty, tz). These ids
map tasks and data to the executing thread blocks and threads.

28 2 Background

During GPU kernel execution, threads, warps, and thread blocks are mapped
onto the GPU hardware in the following way. Each thread block and its threads
are mapped onto one SM. This mapping ensures that the shared memory of
the SM is efficiently accessible by all threads within the same thread block.
The device memory acts as a global memory accessible by all threads across all
thread blocks. Further, each thread has its own register space to store thread-
local variables (see Figure 2.2, p. 27). If threads require more private memory,
e.g., for local arrays or due to register spilling [162], each thread receives a local
share within the device memory. Note, this can impact the performance due to
the higher latency when accessing device memory [160].

The threads are executed following the SIMT execution model. This execu-
tion model leads to the organization of 32 threads in dedicated warps. Each warp
is scheduled on the SM according to its thread block, and the warp’s threads
process the same instruction. In the case of branching if-statements, the warp
will execute both conditional branches. Within each branch, the threads that
do not follow this branch are disabled [92].

2.6 Summary

In this chapter, we defined the concepts of Causal Graphical Models (CGMs)
and Causal Structure Learning (CSL). We detailed the PC-stable algorithm [35],
the order-independent variant of the well-known PC algorithm [249], which is
the basis for parallel variants of the PC algorithm. PC-stable is a constraint-
based method for CSL that builds upon the application of CI tests to learn the
CGM. Accordingly, we introduced three different CI tests that cover data with
different distributional assumptions and characteristics. This thesis targets to
accelerate the PC-stable algorithm in the context of the three CI tests through
parallel execution on GPUs. Hence, we described the unique features of GPU
hardware that need to be reflected when designing algorithms for execution on
a GPU. Further, we introduced the CUDA programming framework [170] with
its abstraction to define and map tasks for parallel execution to the GPU.

3

Related Work

This chapter provides an overview of related literature on the parallel execution
of algorithms for constraint-based CSL in Section 3.1. Further, this chapter
discusses work on GPU processing beyond the memory capacity of a single
GPU relevant to our research question (RQ2) in Section 3.2.

In Section 3.1, we review the existing work on algorithms for the parallel
execution of constraint-based CSL (see Section 3.1.1). In particular, we distin-
guish between algorithms that address parallel execution of the PC algorithm
on multi-core CPUs (see Section 3.1.2) and algorithms that employ GPUs as
an accelerator to achieve fast runtimes (see Section 3.1.3). Further, we con-
sider parallel algorithms for constraint-based CSL that use FPGAs, scale to
distributed systems, or employ partitioning schemes (see Section 3.1.4). Note
that at the beginning of this thesis, to the best of our knowledge, no published
work on co-processor acceleration for constraint-based CSL, e.g., using FPGAs
or GPUs existed. Given the focus of this thesis, we do not cover works on
parallel execution for techniques to CSL other than constraint-based methods,
such as parallel score-based approaches [128, 202], a parallel GPU-accelerated
variant of the LiNGAM algorithm [241], called ParaLiNGAM [239], or parallel
local-to-global constraint-based CSL algorithms [172, 254].

In Section 3.2, we discuss approaches for out-of-core GPU computing (see Sec-
tion 3.2.1) and for executing algorithms on multiple GPUs (see Section 3.2.2).
Note we use the term out-of-core to refer to operations that exceed the GPU’s
global memory and spill data to the system’s DRAM. The out-of-core ap-
proaches are relevant to scale CSL to arbitrary-sized datasets independent of the
available amount of GPU global memory. To achieve fast runtimes by utilizing
more than one GPU, approaches to execution on multiple GPUs are important.

3.1 Parallel Constraint-Based CSL

Research on parallel execution of constraint-based CSL algorithms is a fairly
young field, with few publications [106, 123, 126, 146, 147, 224, 234, 287, 290].
The majority of research in constraint-based causal discovery focuses on qualita-
tive improvements regarding the accuracy, stability, or the relaxation of assump-
tions [19, 22, 35, 39, 87, 201, 203, 207, 246, 251, 258, 266] or its applicability
in specific domains [82, 101, 124, 134, 148, 151, 215, 216]. Often, these exten-
sions build upon the same core algorithms also considered for parallel execution,

30 3 Related Work

strengthening the importance of the parallel constraint-based CSL algorithms.
Further, parallel execution of algorithms for constraint-based CSL is a valuable
approach to address the algorithms’ long runtimes, which hinder their applica-
tion in practice [123]. In the following, we provide an overview of the existing
parallel constraint-based CSL algorithms and discuss each algorithm in detail.

3.1.1 Overview of Existing Parallel Constraint-Based CSL
Algorithms

algorithm
execution

environment
parallelized

part
task

granularity
task

distribution

vertical parallel
PC [146, 147]

multi-core CPU
adjacency
search

edge,
block of
variables

static,
dynamic

horizontal parallel
PC [147]

multi-core CPU,
distributed system

adjacency
search

subset of
data samples

static,
dynamic

bnlearn [234] multi-core CPU

Markov blanket
discovery,
adjacency
search,

v-structures

variable,
edge

static

parallel-PC [123, 126] multi-core CPU
adjacency
search

edge static

load-balanced
parallel PC [224]

multi-core CPU
adjacency
search

edge dynamic

Fast-BNS [106] multi-core CPU
adjacency
search

CI tests dynamic

cupc-E [287] single GPU
adjacency
search

CI tests static

cupc-S [287] single GPU
adjacency
search

CI tests static

reversed-order
PC [290]

single GPU
adjacency
search

CI tests static

FPGA-CDCSF [78] FPGA
conditioning
set filtering

sub-score static

MrPC [169] distributed system
adjacency
search

edge dynamic

PCA & PCB [44] distributed system
adjacency
search

edge,
data sample

static,
dynamic

PEF [77]
multi-core CPU,
distributed system

adjacency
search

cluster of
variables

static

pPC [95]
multi-core CPU,
distributed system

adjacency
search

cluster of
variables

static

Table 3.1: Overview of existing parallel constraint-based CSL algorithms.

Table 3.1 provides an overview of existing parallel constraint-based CSL algo-
rithms. We organize the algorithms into three groups, i.e., multi-core CPU-based

3.1 Parallel Constraint-Based CSL 31

algorithms, GPU-based algorithms, and further algorithms (top to bottom), sep-
arated by horizontal lines, and characterize the algorithms along four dimensions
relevant to the context of parallel execution.

Groups of Parallel Constraint-Based CSL Algorithms

We group the algorithms for parallel constraint-based CSL according to their
primary targeted execution environment. In particular, we consider algorithms
that target multi-core CPUs, algorithms for execution on the GPU, and further
algorithms that target other co-processors, are designed for distributed systems,
or apply partition-based techniques.

Multi-Core CPU-Based Algorithms

The first group, shown at the top in Table 3.1, contains the majority of existing
algorithms for parallel constraint-based CSL. These algorithms target multi-core
CPUs for parallel execution [106, 123, 126, 146, 147, 224, 234]. We describe each
algorithm in detail in Section 3.1.2.

GPU-Based Algorithms

The second group, shown in the middle of Table 3.1, refers to algorithms that ap-
ply GPU acceleration to constraint-based CSL [287, 290]. Besides the approaches
presented in this thesis, to the best of our knowledge, only three GPU-based
constraint-based CSL algorithms exist. We detail the algorithms in Section 3.1.3.

Further Algorithms

The third group, shown at the bottom of Table 3.1, refers to further approaches
for parallel execution of constraint-based CSL. These algorithms use other
co-processors for acceleration, are designed for distributed systems, or apply
partition-based techniques, which are also suited for distributed systems. Each
approach is explained in Section 3.1.4.

Dimensions of Parallel Constraint-Based CSL Algorithms

We characterize each algorithm according to the following dimensions; the tar-
geted (i) execution environment, the (ii) parallelized part of the algorithm, the
(iii) task granularity, and the (iv) task distribution strategy.

(i) Execution Environment

Each algorithm is designed to take advantage of the parallel computing capabili-
ties of a distinct execution environment. In particular, we distinguish algorithms
that leverage a system with a multi-core CPU, algorithms that target execution
on a single GPU, algorithms that utilize an FPGA, or algorithms that perform
computations in parallel in a distributed system.

32 3 Related Work

(ii) Parallelized Part

The majority of algorithms execute the adjacency search (see Algorithm 1 in
Section 2.3.1) in parallel. Additional parts considered for parallel execution are
the Markov blanket discovery, the calculation of v-structures, or conditioning set
filtering. The Markov blanket discovery is an optional step performed prior to
the adjacency search to limit the search space [234]. This step is often performed
in local-to-global constraint-based CSL approaches [172, 254]. The calculation
of v-structures is a common step that is performed on the estimated skeleton
and executed prior to the application of rules for edge orientation. For detail
see [36, 109, 251]. Conditioning set filtering is a technique applied prior to the
adjacency search to obtain scored conditioning sets for each edge and perform
CI tests only with high-scored conditioning sets [78].

(iii) Task Granularity

The granularity of a task for parallel execution generally impacts the degree of
parallelism and the demand for communication. In the context of algorithms for
parallel constraint-based CSL, coarse-grained tasks, such as a block of variables,
an individual edge, or a cluster of variables, require little communication but
offer only a limited degree of parallelism. In contrast, fine-grained tasks, e.g., a
subset of data samples, multiple CI tests, or a sub-score, expose a high degree of
parallelism at increased communication cost. Note that the fine granular task
sub-score refers to the score calculation during the conditioning set filtering.

(iv) Task Distribution

In the context of constraint-based CSL, tasks for parallel execution are either
distributed to the Processing Units (PUs) using a static mapping or a dynamic
distribution strategy. Static task distribution maps tasks to the PUs before ex-
ecution [158]. For example, a naive static mapping distributes the same number
of tasks to each PU. Such static mapping introduces low overhead and is well
suited under the assumption of equal-sized tasks. However, in the case of non-
uniformly-sized tasks, such a static task distribution suffers from load imbalance.
Dynamic task distribution strategies address these load imbalances at runtime,
incurring computational overhead. For example, a simple dynamic distribution
strategy places tasks on idle PUs at runtime [15].

3.1.2 Multi-Core CPU-Based Parallel Variants of the PC Algorithm

According to the dimensions presented in Table 3.1, all constraint-based CSL
algorithms designed for multi-core CPUs consider the parallelization of the ad-
jacency search. Only bnlearn [234] addresses the Markov blanket discovery and
computation of the v-structures, also. Most of the approaches consider an edge
as a task for parallel execution [123, 126, 146, 147, 224, 234]. Only one algo-
rithm [146, 147] considers a more coarse-grained task for parallel execution, i.e.,
a block of variables. Two approaches [106, 147] explore more fine-grained tasks
for parallel execution using CI tests or groups of data samples. The impact of
selected task granularities on the runtime of constraint-based CSL is explored in
the context of Fast-BNS [106]. The tasks for parallel execution are statically dis-
tributed to the CPU cores in the majority of algorithms [123, 126, 146, 147, 234].

3.1 Parallel Constraint-Based CSL 33

Only two approaches use dynamic task distribution [106, 224]. To the best
of our knowledge, all parallel algorithms are evaluated under the assumption
of datasets following either the Gaussian distribution model or consider dis-
crete data, thus applying common CI tests, such as the well-known Pearsons χ2

test [190] or Fisher’s z-test [59]. Next, we introduce and discuss each algorithm.

Vertical Parallel PC [146, 147]

The vertical parallel PC [146, 147] is designed for discrete data and applies
three steps during the parallel adjacency search. At first, the algorithm performs
tests for marginal independence, i.e., with separation set S = ∅, using Balanced
Incomplete Block (BIB) designs [145]. The BIB designs are used to define the
tasks for parallel execution as blocks of variables. The blocks of variables get
assigned to the processing CPU threads in a static manner. Within each block
of variables, the processing CPU thread computes the contingency table once
over all variables. Based on this contingency table, the processing CPU thread
performs all CI tests, with S = ∅, for all pairs of variables constructed from
its assigned block of variables. Next, the algorithm performs promising CI tests
based on a heuristic before all remaining higher-order CI tests are executed. For
detail on the heuristic, we refer the reader to the original work [146]. Concerning
parallel execution, in these two steps, the task for parallel execution is defined
as an edge. The edges are distributed to the processing threads dynamically.
Thus, synchronization of the processing threads is required when picking the
edge to process to ensure that one edge is only processed by one CPU thread.

Discussion

The optimizations applied by the vertical parallel PC algorithm assume the
application of a CI test that builds upon computing marginals over the contin-
gency table. In particular, the reuse of the contingency table computed for a
block of variables is a promising optimization to save memory access and compu-
tation. Yet, computing the contingency table for a block of variables increases its
memory footprint, which makes the adoption of this optimization in the context
of a GPU-accelerated variant of the PC algorithm impractical. Further, the use
of BIB designs for distributing tasks to PUs introduces a computational chal-
lenge, as finding a BIB design is NP-complete [38]. The authors of the vertical
parallel PC algorithm address this computational challenge by pre-calculating
a set of BIB designs, which they use at runtime [147]. Nevertheless, this set of
pre-calculated BIB designs may not suffice to cover all possible dataset sizes.

Horizontal Parallel PC [147]

The horizontal parallel PC algorithm [147] is a variation of the vertical

parallel PC algorithm [147] and is designed to also run in a distributed sys-
tem. The horizontal parallel PC algorithm performs the same three steps
as described for the vertical parallel PC algorithm. In contrast to vertical
parallel PC, the task for parallel execution is defined as a subset of data sam-
ples. A master process sends the subsets of data samples to worker processes
that compute their share of the contingency table. Next, the master process col-
lects and joins the contingency tables from the worker processes and performs

34 3 Related Work

the CI tests based on the contingency table. Note if the data is incomplete, BIB
designs and the optimization based on BIB designs cannot be used. In that case,
only a single CI test is performed per contingency table.

Discussion

The authors [147] argue that the horizontal parallel PC algorithm is suited
for CSL when the number of data samples n is large, e.g., n ≈ 500 000. In these
settings, it is assumed that the additional time to communicate contingency ta-
bles between the worker processes and the master during CI test calculation re-
mains low compared to the overall runtime. In the context of GPU-acceleration,
we see the potential to adopt this fine-grained task definition, even in cases with
a smaller number of data samples n ≈ 1 000. In particular, we see the potential
to benefit from coalesced memory access [41, 173] when GPU threads process
consecutively stored data samples to compute contingency tables. Further, the
GPU’s shared memory can keep introduced communication locally and mitigate
the impact on the runtime.

Bnlearn [234]

The bnlearn library [234], written in the R language [198] with C extensions,
implements a variety of CSL algorithms. The library uses the parallel library
in R to realize parallel implementations of constraint-based CSL algorithms,
such as the PC algorithm. The author of the bnlearn library [234] proposes
to parallelize the Markov blanket discovery, which is applied in local-to-global
constraint-based CSL algorithms to reduce the search space in the subsequent
adjacency search. Further, he proposes to parallelize the adjacency search and
the computation of the v-structures. In the context of the Markov blanket dis-
covery, the task for parallel execution is defined as a variable. Otherwise, for
the adjacency search and the v-structure detection, pairs of adjacent variables,
i.e., edges, are used as tasks for parallel execution. The bnlearn library uses a
master process to statically distribute the tasks in all three parallelized parts to
a user-defined number of worker processes.

In an experimental evaluation on discrete datasets, the authors find that
the number of CI tests performed by each worker varies, as it depends on the
topology of the underlying true Direct Acyclic Graph (DAG) of the CGM [234].
Furthermore, they find that communication and synchronization costs impede
optimal scaling with the number of workers.

Discussion

The bnlearn library proposes a general framework for parallel constraint-based
CSL. The parallel execution of the Markov blanket discovery is relevant for local-
to-global constraint-based CSL algorithms, e.g., see [172, 254]. Also, we find that
in comparison to the adjacency search, the v-structure computation has little
impact on the runtime of constraint-based CSL algorithms, which is why we
do not consider it for GPU acceleration in our work. In our work, we focus
on the PC algorithm, which is a global constraint-based CSL algorithm that
builds upon an adjacency search. For parallel execution of the adjacency search,
bnlearn defines edges as tasks for parallel execution. With a static distribution

3.1 Parallel Constraint-Based CSL 35

of edges to workers, load imbalance is introduced, but the authors of the bnlearn
library argue that dynamic task distribution could benefit in specific settings,
e.g., for gene regulatory datasets [234]. In the context of GPU acceleration,
static task distribution is well suited to the device’s Single Instruction Multiple
Threads (SIMT) execution model. Thus, GPU-accelerated constraint-based CSL
algorithms must cope with the mentioned load imbalance. To address the load
imbalance in our work, we propose more fine-grained tasks, such as groups of
CI tests that are related to the same edge. Further, if such groups of CI tests
are mapped to GPU threads within the same warp, local communication via
shared memory is ensured, which keeps communication costs low.

Parallel-PC [123, 126]

The parallel-PC algorithm [123] is a parallel variant of the PC algorithm,
which is implemented in the R-package ParallelPC [126]. The parallel-PC al-
gorithm utilizes CPU cores to process the CI tests within the adjacency search
in parallel. Within each level l of the adjacency search, the parallel-PC al-
gorithm statically distributes the CI tests for the remaining edges to the CPU
cores. Thereby, the algorithm ensures that CI tests related to the same edge get
assigned to the same CPU core. Further, this mapping ensures that once one
CI test signals independence for a given edge, the remaining CI tests for that
edge can be skipped without communication between processing CPU cores. At
the end of each level l the processing cores synchronize and communicate the
deleted edges. In addition to the parallelization approach, the parallel-PC algo-
rithm provides a memory-efficient option. The memory-efficient option batches
processing of the edges to ensure that the available DRAM of the system is
not exceeded and does not become a bottleneck. In the case of running the
memory-efficient option, the batches are processed sequentially, and the edges
within each batch are processed in parallel.

The authors of the parallel-PC algorithm [123, 126] evaluate their parallel
adjacency search for a series of gene expression data, assuming the Gaussian dis-
tribution model. The parallel-PC algorithm reduces the runtime for a dataset
from the DREAM 5 challenge with 1 643 variables [152] from more than 24
hours running single-threaded to less than 6 hours running on 8 CPU cores.
Further, the parallel adjacency search also achieves speedup when applied to
other constraint-based CSL methods [126], e.g., FCI and RFCI [36], causal in-
ference methods such as IDA [144] and Joint-IDA [168], and PC-Simple [19].
Thus, the parallel-PC algorithm highlights the broad applicability of a fast
adjacency search.

Discussion

The parallel execution of the adjacency search in the parallel-PC algorithm
works similarly to the one implemented in the bnlearn library. Thus, the
parallel-PC algorithm also suffers from load imbalance, and the same im-
plications, as discussed above, apply to our GPU-accelerated variants of the
PC algorithm. In addition, the memory-efficient option implemented by the
parallel-PC algorithm provides a mechanism that we build upon in our block-
based out-of-core GPU-accelerated approach to handle datasets that exceed the
GPU’s memory capacity.

36 3 Related Work

Load-Balanced Parallel PC [224]

In the context of parallel execution on multi-core CPUs, we propose the
load-balanced parallel PC [224], which is designed to address the load imbal-
ance of the adjacency search of the parallel-PC algorithm and of the bnlearn
library. Load-balanced parallel PC implements a dynamic task scheduling
mechanism using a task producer and multiple workers consuming the tasks.
The tasks are defined for each level and consist of one edge, respectively per-
forming all CI tests of that edge. In each level l, the task producer fills a central
queue with tasks for each of the remaining edges. Next, each worker takes one
task and processes the corresponding edge by performing all necessary CI tests.
Once a task is finished, the worker pulls the next task from the central queue
until the queue is empty and the current level l is processed. Note that if an
edge is found as independent, the worker removes the corresponding edge from
a global data structure accessible by all workers. Based on the task definition,
we argue that dynamic task scheduling is only required for levels l ≥ 1. In level
l = 0, the task’s size is uniform, as each task comprises exactly one CI test.

In an experimental evaluation using gene expression data that are assumed
to follow the Gaussian distribution model, we find that speedups of factors of
up to 2.4× can be achieved using load-balanced parallel PC over a parallel
adjacency search with static task distribution.

Discussion

Our work confirms the assumptions from previous work on parallel execution of
the PC algorithm [123, 234] that addressing load imbalance can speed up the
execution. However, we only showed this effect for high-dimensional datasets
following the Gaussian distribution model. Furthermore, the speedup gained
over approaches using static task distribution is only small and highly depends
on the structure of the underlying true DAG of the CGM. We assume that
in the context of our GPU-accelerated constraint-based CSL algorithms, the
communication and synchronization costs of dynamic task distribution exceed
the achievable performance benefits. Therefore, we do not consider dynamic
task distribution following a task producer and worker model for our proposed
GPU-accelerated algorithms.

Fast-BNS [106]

The Fast-BNS [106] algorithm focuses on the parallel execution of the adjacency
search within the PC algorithm under the assumption of discrete data. For the
adjacency search in level l = 0, the algorithm considers each edge as a task
for parallel execution and distributes the edges equally to the processing CPU
threads in a static manner. For level l ≥ 1, Fast-BNS defines the task for par-
allel execution as a fixed number of CI tests related to one edge. Note that the
authors experimentally determine that a suitable number of CI tests is between
6 to 8 [106]. The distribution of tasks is dynamic, using a central queue. Thus,
each edge gets placed into the central queue. Next, the processing CPU threads
take one edge at a time and perform a fixed number of CI tests. After execution,
the edge is added back to the queue in case the edge is not found independent,
and further CI tests can be performed. The processing CPU threads continue

3.1 Parallel Constraint-Based CSL 37

performing CI tests for the subsequent edges until all tasks in the current level
l have been processed. In addition to the dynamic CI test-level parallel execu-
tion, the Fast-BNS algorithm proposes three additional optimizations. First, the
algorithm considers the undirected edges, i.e., Vi − Vj with i, j = 1, . . . , N and
i ̸= j, for performing CI tests. Thus, in case an edge Vi − Vj was determined
as independent based on the adjacency of Vi, the algorithm does not perform
CI tests based on the adjacency of Vj for the same edge. Second, the Fast-BNS
algorithm assumes that all data is stored in column-major order, e.g., the data
samples related to one variable Vi are stored consecutively in memory. Thus,
Fast-BNS reduces the number of cache misses over variants that assume data is
stored in row-major order. Note that the algorithm transposes the input data
matrix to achieve column-major order. Lastly, the Fast-BNS algorithm com-
putes the separation sets for the fixed number of CI tests performed by one
processing CPU thread on the fly to keep the memory footprint low.

In an experimental evaluation, the authors of Fast-BNS find that their pro-
posed approach is 4.8 to 24.5 times faster than existing parallel solutions [106].
Further, they find that their CI test-level parallel approach outperforms data-
sample-level and edge-level parallel approaches.

Discussion

The first optimization applied by the Fast-BNS algorithm, i.e., considering undi-
rected edges Vi − Vj , is often implicitly performed but not explicitly mentioned
by existing algorithms, e.g., see the PC-stable implementation of the pcalg

package [111]. In our GPU-accelerated CSL algorithms, we apply the same opti-
mization. Also, in our GPU-accelerated CSL algorithm addressing the discrete
data, we assume that observational data is in column-major order [81] (see Sec-
tion 4.3.1). Lastly, in our GPU-accelerated CSL algorithms, we also apply the
third optimization to compute the separation set for each CI test on the fly,
as avoiding a large memory footprint is crucial in the context of GPUs, given
the limited size of the GPU global memory. The same optimization is also im-
plemented in two other GPU-accelerated algorithms for CSL [287]. Similarly
to Fast-BNS, we also use fine-grained tasks for parallel execution in our GPU-
accelerated CSL algorithms. In the context of the Gaussian distribution model,
we apply CI test-level parallelism. Whereas, in the context of the discrete dis-
tribution model, we argue that more fine-grained tasks based on data samples
are better suited for GPU acceleration. In particular, if GPU threads within the
same warp jointly process data samples of a CI test, we can achieve efficient
coalesced memory accesses.

3.1.3 GPU-Based Variants of the PC Algorithm

As presented in Table 3.1, existing GPU-based approaches are designed for
execution on a single GPU. The approaches found in related literature [287, 290]
focus on GPU acceleration of the PC algorithm’s adjacency search and consider
CI tests as tasks for parallel execution. The task distribution is static, mapping
each task to one GPU thread, e.g., using the abstraction via CUDA threads.
The approaches are evaluated under the assumption of datasets following the
Gaussian distribution model and apply Fisher’s z-test [59]. While all three GPU-
accelerated algorithms from related literature are categorized in the same way

38 3 Related Work

according to Table 3.1, each algorithm implements a different optimization for
performing the CI tests. We describe and discuss each algorithm in more detail
in the following.

Cupc-E [287]

The cupc-E algorithm [287] performs the adjacency search of the PC algorithm
on a single GPU. The algorithm processes all levels l sequentially, launching a
separate GPU kernel for each level. Note that cupc-E provides unique imple-
mentations for the GPU kernel in each level, up to level l = 14. In the GPU
kernel for level l = 0, each GPU thread is responsible for performing the CI test
for one edge. The mapping of tasks for parallel execution to GPU threads occurs
statically, building upon the CUDA threading model [170]. In subsequent levels
l ≥ 1, the cupc-E algorithm defines the task for parallel execution as multiple
CI tests of an edge. The GPU kernels for each level l ≥ 1 are launched so that
the GPU threads process multiple CI tests of multiple edges in parallel, achiev-
ing two degrees of parallelism [287]. While processing higher levels l ≥ 1, the
cupc-E algorithm applies the following four optimizations.

• (i) The GPU threads within each thread block use shared memory to store
frequently accessed elements from the adjacency sets of the processed edges.

• (ii) The cupc-E algorithm monitors the edge removals and stops GPU
threads that perform CI tests on edges removed by other GPU threads.

• (iii) Each GPU thread computes the separation set required for performing
its CI test on the fly to avoid up-front computation of all possible separation
sets, which requires additional memory.

• (iv) The cupc-E algorithm adds a compacting step before launching any
GPU kernel in levels l ≥ 1.

The compacting step (iv) ensures that the information on adjacent variables is
stored consecutively in memory to achieve coalesced memory access and improve
the cache performance [287]. Thus, instead of using one-hot encoding in an
adjacency matrix to signal that variables are adjacent, the compacted version
uses adjacency lists storing indices to the adjacent variables.

In an experimental evaluation using gene expression datasets, cupc-E out-
performs a serial CPU-based algorithm on average by factors of 525×.

Discussion

The cupc-E algorithm is similar to our proposed GPU-accelerated CSL algo-
rithm for data following the Gaussian distribution model (see Section 4.2). In
detail, our algorithm also applies two degrees of parallelism and performs mul-
tiple CI tests of multiple edges in parallel. Further, we adapted the on-the-fly
calculation of the separation sets in higher levels l ≥ 2 (iii) from cupc-E. In con-
trast, to cupc-E, our approach maps CI tests of the same edge to GPU threads
within the same thread block and uses the shared memory to communicate the
CI test’s decisions locally. Thus, we reduce global communication. Furthermore,
our approach does not include a compacting step, as it adds computational over-
head and does not reduce the required amount of GPU global memory.

3.1 Parallel Constraint-Based CSL 39

Cupc-S [287]

The cupc-S algorithm is an extension of the cupc-E proposed by the same
authors [287]. cupc-S accelerates the adjacency search of the PC algorithm using
a GPU. The algorithm applies a similar parallel execution strategy as cupc-E
resulting in two degrees of parallelism and incorporates the same optimization
(i-iv). The key difference in cupc-S is an optimization to share and reuse one
computed pseudo-inverse based on a separation set S in multiple CI tests. In
detail, each GPU thread computes a separation set Si for a given variable Vi,
with i = 1, . . . , N , first. Next, the GPU thread computes the pseudo-inverse
based on Si and performs multiple CI tests for Vi and multiple neighbors of
Vi using the pseudo-inverse based on Si. Thus, cupc-S still processes multiple
CI tests of multiple edges in parallel.

In the experimental evaluation, the applied optimization in cupc-S results
in an average speedup by a factor of 1 296× over a serial CPU-based algorithm
and more than a factor of 2× speedup over cupc-E [287].

Discussion

The proposed optimization in cupc-S is tailored to data following the Gaussian
distribution model and the application of Fisher’s z-test [59]. Yet, we find that
sharing and reusing intermediate results is an efficient way to reduce the over-
all computational demand of the PC algorithm. We adopt the idea of reusing
computations based on one separation set S for multiple CI tests in our GPU-
accelerated information-theoretic CSL algorithm (see Section 4.4). Furthermore,
we find that sharing the pseudo-inverse computation is a promising optimization
to be included in our proposed GPU-accelerated CSL algorithm targeting data
following the Gaussian distribution model in future work.

Reversed-Order PC [290]

The reversed-order PC algorithm parallelizes the adjacency search and uses
tensor operations to perform Fisher’s z-test [59]. The tensor operations can be
executed on a GPU. In contrast to the PC algorithm, the reversed-order

PC algorithm performs CI tests level-wise in a decreasing order concerning the
size of separation sets. Thus, the algorithm starts by performing CI tests with
separation sets of size l = N − 2, where N is the number of variables and
decreases l by one within each level. The authors argue that their reversed-order
approach reduces the total number of CI tests under the assumption of dense
DAGs of CGMs. Further, the authors base their idea on the observation that a
separation set that contains redundant nodes does not sacrifice the quality of the
results [290]. Concerning the parallel execution, the reversed-order PC applies
two degrees of parallelism. On a higher abstraction level, the reversed-order

PC considers a CI test as a task for parallel execution and batches multiple
CI tests together. Assuming that data follows the Gaussian distribution model
and the application of Fisher’s z-test [59] tensors are used to estimate the partial
correlation coefficient. The tensor-based computations are parallelized, too.

In a reference implementation, the authors use the PyTorch library [185] to
apply the tensor operations based on a batch of CI tests. The authors of the
reversed-order PC algorithm provide a runtime experiment on a CGM with a

40 3 Related Work

dense DAG that contains 95 nodes, in which the GPU-based reversed-order

PC algorithm is 825 times faster than the original PC algorithm.

Discussion

While the authors of the reversed-order PC algorithm show speedup in the
case of a CGM with a dense DAG, the evaluation is limited to CGMs with DAGs
that contain up to N = 100 variables. Thus, it remains open to examining the
performance in high-dimensional settings. Further, note that at the time of
writing, the published work on reversed-order PC [290] is not peer-reviewed.
The idea of the reversed-order PC algorithm results in performing a high
number of CI tests with large separation sets. This can become a significant
challenge for data that follows other distributions, e.g., discrete data, where the
memory demand for a CI test increases with the size of the separation set. Thus,
transferring the idea of the reversed-order PC algorithm becomes impractical
in these settings. Furthermore, the optimization using tensors is tailored to
Fisher’s z-test [59]. Nevertheless, we believe that mapping other CI tests to
tensor operations could be beneficial, as tensor operations are highly optimized
for performance. In the context of our GPU-accelerated algorithms, we find that
the batching of tensors operations could be a relevant improvement to one of our
early ideas for processing levels l ≥ 2 using CUDA-X libraries for data following
the Gaussian distribution model (see Section 4.2.5).

3.1.4 Further Approaches for Parallel Constraint-Based CSL

Apart from algorithms targeting GPUs and multi-core CPUs, we consider six
additional approaches (see Table 3.1). The algorithm FPGA-CDCSF [78] employs
an FPGA to achieve speedup. MrPC [169], PCA and PCB [44] are extensions of the
PC algorithm that implement MapReduce-based approaches to target compu-
tation in distributed systems. The algorithms pPC [95] and PEF [77] build upon
divide-and-conquer strategies suited for execution in distributed systems.

While the FPGA-based approach filters conditioning sets in parallel, the
other five algorithms parallelize the adjacency search. The FPGA-based ap-
proach and PCA consider fine granular tasks, i.e., the computation of a sub-score
or processing data samples, as the tasks for parallel execution. In contrast, the
other algorithms assume a coarse-grained task, e.g., using an edge or a cluster
of variables. The algorithms MrPC [169], PCA and PCB [44] distribute their tasks
dynamically, whereas the other approaches use a static task distribution. Next,
we elaborate on and discuss each algorithm individually.

FPGA-Based Constraint-Based CSL: FPGA-CDCSF [78]

The algorithm FPGA-CDCSF [78] shifts the computationally expensive step of per-
forming all CI tests within the adjacency search by introducing a method for
Conditioning Set Filtering (CSF). The CSF method precedes the CI test execu-
tion with the goal of scoring and ranking all conditioning sets. Only conditioning
sets with high scores are considered for CI tests in the subsequent steps. Thus,
the algorithm FPGA-CDCSF [78] reduces the number of performed CI tests. Yet,
the authors of FPGA-CDCSF argue that the introduced CSF method is computa-
tionally demanding, too. Therefore, they offload the score computation to the

3.1 Parallel Constraint-Based CSL 41

FPGA. FPGA-CDCSF uses an FPGA design with multiple sub-score evaluation
modules to compute sub-scores for each conditioning set in parallel. We assume
that the fine-grained parallel tasks of computing sub-scores are distributed to
the sub-score evaluation modules in a static manner. Apart from the score com-
putation, any other calculation is performed on the CPU, e.g., performing the
CI tests. The FPGA-CDCSF algorithm implements a residual-based CI test [288],
which they optimize by caching and reusing calculated residuals.

In an experimental evaluation, the authors of FPGA-CDCSF [78] find that their
algorithm is superior to CPU-based algorithms [111, 126, 234] and the GPU-
based algorithm cupc-E [287] concerning runtime and quality of learned CGMs
measured by the Structural Hamming Distance (SHD) [269].

Discussion

The authors of the FPGA-CDCSF algorithm argue that the applied score compu-
tation, which solves small least-square problems, is better suited for execution
on FPGA than on GPU. Foremost, the authors argue that GPUs lack load bal-
ancing methods for fine-grained parallelism and may not be efficient for solving
low-dimensional least-square problems. Based on their judgment, we did not
consider integrating CSF into our proposed GPU-accelerated variants of the
PC algorithm. Furthermore, the FPGA-CDCSF algorithm focuses on applying a
residual-based CI test. In contrast, our proposed GPU-accelerated algorithms
for constraint-based CSL focus on two CI tests commonly used in practice un-
der the assumption that data follows the Gaussian distribution model (see Sec-
tion 2.4.1) or data is discrete (see Section 2.4.2). Additionally, we consider GPU
acceleration for an information-theoretic CI test for mixed discrete-continuous
data and data with non-linear relationships (see Section 2.4.3).

Distributed Constraint-Based CSL: MrPC [169], PCA & PCB [44]

The MrPC algorithm is an adaptation of the PC algorithm to perform the adja-
cency search in a distributed system. MrPC builds upon the well-known MapRe-
duce framework [45], and within each level l, considers each edge as a task for
parallel execution. Within each level, a driver distributes all edges to all execu-
tors, i.e., PUs, within the distributed systems, first. Note that each executor
requires all edges to compute the correct adjacency sets in the subsequent step.
Next, the executors perform all required CI tests for all edges. To avoid re-
dundancy, we assume that each executor communicates the edge it is currently
processing. Once an edge is processed, the executor communicates the result
back to the driver. Upon receiving a result, the driver updates a global data
structure storing the estimated skeleton. After completion of the final level l,
the estimated skeleton is returned by the driver.

In an experimental evaluation, the authors of MrPC [169] find that the
speedup over a sequential implementation varies between factors of 2.75× to
7.35×. Higher speedup is achieved on larger datasets concerning the number
of variables N and the number of data samples n. The authors argue that for
smaller datasets, the overhead of the MapReduce framework [45] implemented
in Spark [285] limits the speedup.

These results are in line with previous work on MapReduce-based variants
of the PC algorithm under the assumption of discrete data, namely PCA and

42 3 Related Work

PCB [44]. PCB, which considers edges as tasks for parallel execution, outperforms
a PC algorithm implementation running on a single system only for a larger
number of variables with N ≥ 500 [44]. In the case of PCA, which uses fine gran-
ular tasks based on data samples, the overhead of the MapReduce framework is
higher. Hence, PCA is slower than a PC algorithm running on a single system.

Discussion

In our work on GPU-accelerated algorithms for constraint-based CSL, we do
not consider distributed systems. Thus, in the context of a single heterogeneous
system, the proposed approach by MrPC is of limited applicability. Yet, in future
work, we could envision extending our GPU-accelerated algorithms to operate in
distributed GPU-based systems. In that case, the MapReduce-based approach
sets a basis for distributing parallel tasks. To achieve high utilization of the
GPUs in each executor of the distributed system, we must redefine the task for
parallel execution as a block of edges instead of a single edge. It is subject to
future research to determine a suitable size for the block of edges, depending on
the performed CI test.

Partition-Based Algorithms: PEF [77] & pPC [95]

The partition-based algorithms for CSL, PEF [77], and pPC [95] apply a divide-
and-conquer approach to large-sized input with thousands of variables. The
algorithms split the input into K partitions, apply CSL on these partitions
to learn subgraphs, and eventually merge the subgraphs. The partition-based
algorithms are not primarily designed for parallel execution, yet, given their
nature, Gu & Zhou [77] propose to run the chosen CSL algorithm for each of
the K partitions in parallel on a multi-core CPU system.

Huang & Zhou [95] argue that the benefit of parallel execution for partition-
based algorithms is limited by the number of partitions K. They propose a
partitioned PC algorithm, called pPC, which allows benefiting from parallel exe-
cution of existing parallel variants of PC algorithm. pPC partitions the variables
into K clusters by computing the Mutual Information (MI) and reuses the MI
to perform the CI tests in level l = 0. Following the adjacency search of the PC
algorithm, a skeleton graph is computed for each cluster. In a subsequent cluster
screening step, the pPC algorithm merges the K-estimated skeleton graphs into
a single estimated skeleton.

Discussion

The partition-based algorithms define tasks for parallel execution as clusters of
variables. It is suggested that the number of clusters K remains small [88], which
results in very coarse-grained tasks. These coarse-grained tasks are suited for dis-
tributed learning [77] but improper for GPU acceleration. However, suppose the
clusters contain sufficient variables. In that case, applying a GPU-accelerated
adjacency search to discover the skeleton graph or determine a subgraph could
be applied on each cluster to achieve speedup. In the context of multi-GPU-
based CSL, the partitioning scheme could be adapted to determine a cluster of
variables to be processed on each GPU. Yet, in our proposed multi-GPU-based
constraint-based CSL algorithm, we do not apply the partitioning approach, as
it does not guarantee the exact same results as the original PC stable algorithm.

3.2 GPU Acceleration Beyond a Single GPU’s Memory Capacity 43

3.2 GPU Acceleration Beyond a Single GPU’s Memory
Capacity

With the rising interest in GPGPU [220], a variety of algorithms have been
designed to leverage the GPU’s computing power [11, 57, 105]. Using the GPU
to accelerate computation introduced new issues, for example, the transfer bot-
tleneck [76] or the restricted amount of GPU global memory [292]. In the basic
execution model, GPU-accelerated algorithms require all input data to be stored
in GPU global memory before execution and GPU global memory to be reserved
for the results [220]. The basic execution model limits the GPU-accelerated al-
gorithms to process data that fits entirely in GPU global memory. To overcome
this restriction out-of-core, also referred to as out-of-memory, GPU solutions
have been devised.

We discuss several out-of-core solutions in Section 3.2.1. Beyond out-of-core
GPU solutions, extending GPU-accelerated algorithms to operate on multiple
GPUs also helps to overcome the memory capacity limits of a single GPU.
Furthermore, execution on multiple GPUs provides more compute resources
to achieve higher speedup compared to a single GPU. We detail multi-GPU
solutions in Section 3.2.2.

Note, in the following, we focus on related work that influenced or inspired, is
relevant to, or could be used to extend our work on scaling the GPU-accelerated
adjacency search of PC-stable beyond a single GPU. Therefore, we neither claim
that the following list of considered work is complete nor most up-to-date.

3.2.1 Out-of-Core GPU Computing

Out-of-core GPU-accelerated algorithms are designed to cope with large
datasets that exceed the GPU’s memory capacity. Generally, we can categorize
out-of-core approaches for GPU-accelerated algorithms into two main groups,
application-specific approaches, and application-agnostic approaches.

Application-specific approaches utilize application characteristics to split
and stream the workload using explicit data transfers. For example see [108, 163,
280]. In contrast, application-agnostic approaches provide frameworks to hide
explicit data management, particularly data movement between the host sys-
tem’s DRAM and the GPU global memory, e.g., see [69, 70, 112, 133, 217, 292].

Nowadays, GPU vendors provide technology, such as Unified Memory
(UM) [217] or NVLink 2.0 [30], which allow for application-agnostic approaches.
For example, UM enables demand paging and page eviction for efficient, trans-
parent data migration. As another example, NVLink 2.0 enables the GPU to
directly access DRAM, using the hardware-based address translation services
and cache-coherence.

However, these technologies introduce new performance bottlenecks [69, 120,
133, 284]. Therefore, new application-specific [139, 140] optimizations are pro-
posed. We discuss selected approaches from the two groups, including optimiza-
tions based on the concepts of UM and NVLink 2.0’s coherence, in the following.

Application-Specific Approaches to Out-of-Core GPU Computing

Application-specific approaches to out-of-core GPU computing commonly split
data that exceeds the GPU’s memory capacity into smaller-sized consumable
chunks [280] that are processed minimizing communication between tasks [108].

44 3 Related Work

In the case of a GPU-accelerated out-of-core general matrix multiplica-
tion [280], the matrix is split into blocks with a size that saturates the PCI-E
bandwidth and allows storing multiple blocks in GPU global memory at the
same time. CUDA streams [137] are used to overlap data transfer and GPU ker-
nel execution to optimize performance. Furthermore, the blocks of the matrix
multiplication are processed in an order that enables to use results of one block
as input to the subsequent block to reduce data transfer.

Kabir et al. [108] propose an algorithm for Singular Value Decomposi-
tion (SVD) that operates in out-of-memory situations. The authors design the
algorithm independent of the particular PU so that it can be applied in the
context of GPU-based SVD but also for CPU-based SVD with problem sizes
that exceed DRAM. The proposed SVD algorithm minimizes global communi-
cation between different memory layers, e.g., between the system’s DRAM and
the GPU’s global memory, by caching tiles of the matrix in each algorithm’s
step. Furthermore, the proposed SVD algorithm overlaps the remaining com-
munication with computation [108], e.g., using CUDA streams [137].

Both approaches above explicitly manage the data allocation on the GPU,
the data transfer to and from the GPU, and the orchestration of GPU kernel
launches to overlap data transfer and kernel execution [108, 280].

Another application-specific approach, called EMOGI, targets graph-traversal
algorithms in GPUs [163]. EMOGI builds upon the concept of zero-copy mem-
ory [218]. Zero-copy memory is resident on the system’s DRAM but allows for
direct access by GPU threads. Thus, performance depends highly on efficient
memory access that reduces the number of data transfers via PCI-E. EMOGI em-
ploys aligned and coalesced memory access to minimize the number of PCI-E-
based data transfers. Therefore, the EMOGI approach adapts the graph traversal
algorithms so that GPU threads of one warp work on the same edgelist.

Recent application-specific approaches build upon vendor-specific
application-agnostic concepts to overcome the GPU’s memory capacity
limits. In this context, the application-specific approaches leverage application
characteristics to optimize performance. In the context of database query
processing, Lutz et al. [139] build upon the coherence feature of NVLink 2.0 to
implement a no-partitioning hash join that scales to arbitrarily join build sizes.
The no-partitioning hash join uses a hybrid hash table that allocates memory
on the GPU and spills to the CPU’s DRAM closest to the GPU if the GPU’s
memory capacity is exceeded. Further, the hybrid hash table is stored in a
contiguous array in virtual memory that abstracts the physical location of the
GPU and CPU memory pages. Thus, the runtime performance of the hybrid
hash table gracefully degrades when increasing the hash table’s size [139].

The Triton join [140] is another out-of-core GPU-based join in the context
of database query processing that also builds upon the coherence feature of
the fast NVLink 2.0 interconnect. The algorithm implements a novel GPU-
partitioned join strategy that caches a working set in GPU global memory to
reduce data transfer. The memory pages of the cached working set are mapped
into a single contiguous array in virtual memory, which also maps all memory
pages spilled to the CPU’s DRAM. In the contiguous array in virtual memory,
the GPU and CPU pages are interleaved with the goal of keeping the fast
interconnect busy at all times.

3.2 GPU Acceleration Beyond a Single GPU’s Memory Capacity 45

Implications Concerning our Proposed GPU-Accelerated CSL Algorithms for
Scaling Beyond a Single GPU’s Memory Capacity

In Section 5.2, we propose a GPU-accelerated adjacency search for PC-stable
that scales beyond a single GPU’s memory capacity. Our block-based algorithm
employs explicit data management and handles all data allocations and trans-
fers, similar to the out-of-core general matrix multiplication [280] or the out-
of-memory SVD algorithm [108]. Inspired by these works, our algorithm splits
the input dataset into smaller blocks with a size that saturates the interconnect,
and our algorithm keeps multiple blocks in GPU global memory simultaneously.
Furthermore, we redesign the original PC-stable algorithm to allow for caching
of blocks to reduce data transfer. Lastly, we incorporate pipeline parallelism to
overlap data transfer and GPU kernel execution, which aligns with ideas from
the out-of-memory SVD algorithm [108] or the Triton join [140].

In future work, we see the potential for performance improvement of our
UM-based algorithm (see Section 5.1) by utilizing fast interconnects such as
NVLink 2.0 with cache coherence following the ideas of Lutz et al. [139] and
the Triton join [140]. In particular, we could also map the GPU and CPU
pages of small blocks of data in an interleaved manner into a single contiguous
array in virtual memory to achieve high interconnect utilization. Following the
performance gains achieved by the EMOGI algorithm [163], we should revisit
our proposed algorithm to ensure that the GPU threads within the same warp
perform coalesced memory access whenever possible.

Application-Agnostic Approaches to Out-of-Core GPU Computing

Application-agnostic approaches provide general frameworks to realize out-of-
core GPU computing. The frameworks handle data allocation and data trans-
fer transparently and optimize the data allocation and data transfer strategies
for the dominant memory access patterns. Further, modern GPUs provide a
dedicated page migration engine integrated into the MMU, which allows the
implementation of out-of-core GPU-accelerated algorithms using the concept of
UM [217]. However, UM and on-demand page migration introduce overhead.
This overhead makes page faults a performance bottleneck for out-of-core sce-
narios when GPU global memory is oversubscribed [284]. Several solutions are
proposed to address this new performance bottleneck [69, 70, 112, 133, 155, 284,
292].

One of the first solutions to address performance overhead by on-demand
page migration proposes incorporating a compute unit agnostic page fault
handling mechanism that enables the PU to continue computation under a
page fault [292]. Additionally, the solution incorporates a simple software-based
prefetcher that batches transfers for on-demand pages every 20µs and fills the
batch with speculative prefetched pages [292]. In an experimental evaluation,
the proposed solution efficiently addresses the overhead of paging GPU global
memory in settings where the data fit into the GPU global memory. However,
the overhead can still impact an application’s runtime in out-of-core settings.

The ETC framework [133] addresses the performance loss in out-of-core set-
tings with three different techniques. First, the framework uses proactive evic-
tion, which creates space for on-demand page migration. Second, ETC employs
memory-aware throttling to address thrashing costs by reducing parallelism in

46 3 Related Work

case of high numbers of page faults. Third, ETC utilizes linearly compressed
pages to increase the effective memory capacity of a GPU. The authors of the
ETC framework [133] find that the ideal combination of the three techniques
depends on the application. Therefore, ETC uses memory coalescing statistics to
classify applications and apply the appropriate techniques.

Ganguly et al. [69] propose a locality-aware pre-eviction policy to address
shortcomings of commonly used pre-eviction policies that struggle with perfor-
mance slowdown due to page faults in out-of-core situations. In particular, they
design a tree-based neighborhood eviction strategy that incorporates well with
the hardware prefetching mechanism incurring no overhead. Depending on the
page size, the locality-aware pre-eviction strategy achieves a speedup of up to
93% compared to commonly applied, least recently used replacement strategies.
The authors further observe that pre-eviction and prefetching benefit applica-
tions with regular access patterns but can be counter-productive for applications
with irregular access patterns [69]. Based on these observations, a programmer-
agnostic runtime is proposed that automatically uses the most suitable access
technique, switching between remote zero-copy access and on-demand page mi-
gration [70]. Remote zero-copy is used for applications with an irregular access
pattern, whereas on-demand page migration upon page faults is used for appli-
cations with a regular access pattern. To decide on the most suitable memory
access technique, consequently, memory allocation strategy, the programmer-
agnostic runtime tracks hardware access counters that determine the access
pattern and access frequency. Compared to state-of-the-art techniques, the pro-
posed programmer-agnostic runtime achieves performance improvements for ap-
plications with irregular access patterns of 22% to 78% [70].

Another approach to address the high costs of GPU page faults for ap-
plications with irregular access patterns handles page faults in large-sized
batches [112]. While page faults are commonly processed in small-sized batches
already, the authors employ a thread oversubscription technique increasing the
thread concurrency to achieve larger batch sizes. The thread oversubscription
builds upon an extension of the virtual thread [283] to overcome scheduling lim-
its and address costly context switching. Additionally, the proposed approach
takes page eviction off the critical path using bidirectional transfers within the
DMA engine to overlap page eviction with on-demand page migration. In an
evaluation, the authors show that using the two proposed optimizations results
in an average speedup of factor 2× over state-of-the-art solutions [112].

Based on a quantitative evaluation, Yu et al. [284] find that page eviction
policies are often inappropriate for resolving the performance bottleneck caused
by page faults. Based on their observations, the authors find optimization op-
portunities to improve a least recently used policy. In the case of applications
with regular access patterns, proactive eviction and adaptive prefetching are
suited to address the performance bottleneck. In contrast, the authors find that
memory-aware throttling and capacity compression work well for applications
with irregular access patterns. Thus, the observations by Yu et al. [284] are in
line with previous results [69] and support the idea of the ETC framework [133]
to utilize a combination of techniques suited to the application.

Another approach is proposed with the DRAGON framework [155]. The DRAGON
framework extends the GPU addressable memory space to Non-Volatile Mem-
ory (NVM) devices to process extremely large datasets, which even exceed
the DRAM capacity of the host system. The framework utilizes Linux’s page-

3.2 GPU Acceleration Beyond a Single GPU’s Memory Capacity 47

caching mechanism and read-ahead operations. In an experimental evaluation,
the DRAGON framework outperforms UM-based executions by factors of up to
2.3× in out-of-core settings, where data fits into the host’s DRAM.

Implications Concerning our Proposed GPU-Accelerated CSL Algorithms for
Scaling Beyond a Single GPU’s Memory Capacity

Section 5.1 proposes a GPU-accelerated adjacency search for PC-stable that
scales beyond a single GPU’s memory capacity by utilizing UM. While the al-
gorithm’s implementation has little overhead from a programmer’s perspective,
it encounters performance issues due to page faults and on-demand page migra-
tion in out-of-core situations. In this thesis, we use the UM-based algorithm as a
naive baseline that is compared to our block-based algorithm with explicit mem-
ory management. Thus, we did not optimize our UM-based algorithm beyond
the use of common best practices [219].

However, in future work, we can further optimize our UM-based algorithm
using the frameworks described above to address performance issues caused by
page faults and on-demand page migration. In particular, our algorithm’s mem-
ory access pattern highly depends on the CI test characteristics. For example,
the Pearson χ2 CI test [190], which processes data samples sequentially, exhibits
regular memory access patterns. In contrast, Fisher’s z-test [59] exhibits more
irregular memory access, when retrieving entries from the correlation data struc-
ture. Therefore, following the observations by Yu et al. [284], we could employ a
proactive eviction strategy [69, 133] for CI tests that exhibit regular memory ac-
cess. In cases of CI tests where irregular accesses dominate, we could use remote
zero-copy [70], large-size page fault batches [112], or memory-aware throttling in
combination with capacity compression [133]. Based on the experimental eval-
uations from the related literature [69, 70, 112, 133, 284], we think integrating
any of these optimizations results in, at most, two times faster runtimes.

3.2.2 Multi-GPU Computing

Algorithms are designed to run on multiple GPUs for two reasons. First, the
algorithms leverage the additional computing power to process a given workload
faster. Or second, the algorithms take advantage of the additional memory ca-
pacity available on multiple GPUs to overcome the memory capacity limit of a
single GPU. Algorithms designed to run on multiple GPUs must deal with sim-
ilar problems as out-of-core GPU algorithms (see Section 3.2.1). Additionally,
algorithms running on multiple GPUs must deal with load balancing and inter-
GPU communication. These two issues add to the communication challenge of
out-of-core GPU algorithms, i.e., the data transfer between the host system’s
DRAM and GPU and dealing with resulting page faults and on-demand page
migration. Also, the algorithms must operate correctly in a multi-GPU setting.

The Navier-Stokes solver is an early example of a multi-GPU-aware algo-
rithm [263]. The authors propose to divide the data into subdomains distributed
to the individual GPUs. Each GPU performs computations on its assigned sub-
domain, including operations on so-called ghost cells. Ghost cells are used to
communicate overlapping boundaries that have been computed in the subdo-
mains of the other GPUs. The algorithm handles all data transfer and GPU
kernel execution explicitly. The algorithm assigns one CPU thread per GPU to

48 3 Related Work

have separate CUDA contexts and uses a Posix barrier to synchronize between the
CPU threads, and thus implicitly synchronizing between the GPUs. Splitting
the data into subdomains, which have little to no overlap, and relying on explicit
data management, allows for easy scaling of multi-GPU algorithms beyond one
system to clusters of GPU servers, too [34].

Due to the increasing adoption of multi-GPU systems and the demand to
develop multi-GPU algorithms, frameworks have been designed to ease devel-
opment [12, 20]. The MAPS-Multi multi-GPU framework [12] provides auto-
matic GPU kernel partitioning and memory allocation based upon a classi-
fication of the application’s input and output memory access patterns. Fur-
thermore, MAPS-Multi takes care of GPU kernel scheduling and boundary ex-
change between GPUs. The AMGE framework [20] provides similar capabilities as
MAPS-Multi but exploits GPU features for peer-to-peer memory access between
GPUs. Furthermore, the AMGE framework partitions the GPU kernels at thread
block boundaries and uses memory access pattern information to minimize the
number of remote memory accesses.

With the introduction of UM [217] and its associated on-demand page mi-
gration mechanism, GPU vendors provide easy-to-use functionality for imple-
menting multi-GPU algorithms. Similar to out-of-core settings, using UM, with
its on-demand page migration mechanism, causes new performance bottlenecks.
In particular, an imbalance in the page distribution across GPUs and the in-
ability to move pages between GPUs majorly impact the performance [8]. The
Griffin hardware-software solution [8] addresses these issues by introducing
a dedicated runtime that migrates pages based on locality and uses a delayed
first-touch migration policy to achieve even page distribution across multiple
GPUs. Further, the advent of modern interconnects, such as NVLink, allow for
faster inter-GPU and host-to-GPU communication. Li et al. [132] study the
impact of the GPU topology, focusing on different interconnect technologies.
The authors find that depending on the topology, the choice of GPUs used in a
multi-GPU environment has a measurable impact on communication efficiency
and an application’s overall performance.

Even though application-agnostic frameworks for eased development in
multi-GPU environments, such as UM [217] or Griffin [8], exist, optimizations
tailored for the specific application yield higher performance. Lutz et al. [139]
extend their proposed hash join to operate on multiple GPUs. Therefore, the
algorithm distributes the hybrid hash table across the GPUs by interleaving the
pages. Thus, they reduce the communication between the host system and the
GPUs while leveraging the fast bi-directional inter-GPU interconnect for com-
munication. Similarly, Ran et al. [213] tailor multiple database join operations to
multi-GPU systems. The authors leverage unique algorithm characteristics for
each join operation to minimize communication when data exchange is needed.
For example, the authors propose to exchange blocks between GPUs using a
ring exchange plan for their block-based nested-loop join.

Discussion

This thesis proposes two different algorithms for a multi-GPU-accelerated ad-
jacency search of the PC-stable (see Chapter 5). The block-based algorithm
builds upon explicit management of memory allocations and data transfer, sim-
ilar to the multi-GPU Navier-Stokes solver [263]. We also use one CPU thread

3.3 Summary 49

per GPU, which handles the communication and GPU kernel orchestration for
the assigned GPU. Concerning load balance, we find that the task granularity
used by the AMGE framework [20] may be too fine-granular. However, we define
relatively small-sized tasks using the same granularity used for our out-of-core
GPU algorithm that targets a single GPU.

Our proposed UM-based algorithm serves as an easy-to-implement baseline
for comparison. Therefore, we only apply well-known best practices [219]. In
particular, we advise the page migration engine to move pages to specific GPUs
based on locality information, following the idea of Griffin [8]. Therefore, we
tailor our algorithm for the adjacency search so that within each level l the same
subpart of data is processed by the same GPU. Note that we are aware that such
a strategy considering data locality can cause load imbalance. Further, in our
experimental evaluation, we select different combinations of available GPUs for
execution and confirm the observation of Li et al. [132] that the selected combi-
nation of GPUs has a measurable impact on an algorithm’s runtime. However,
tailoring our algorithm to automatically select the most suitable combination
of GPUs based on the interconnect topology is left for future work.

3.3 Summary

In this chapter, we discussed existing literature on the parallel execution of
constraint-based CSL. We found that most parallel CSL algorithms target multi-
core CPUs as execution devices. Therefore the acceleration potential by parallel
execution on the CPU is largely exhausted. Existing GPU-based CSL algo-
rithms, which to the best of our knowledge, did not exist at the start of this
thesis, are tailored to CI tests for data that follows the Gaussian distribution
model. Accordingly, we have a GPU baseline to compare our GPU-accelerated
algorithm for data following the Gaussian distribution model and contribute
novel GPU-accelerated algorithms for CI tests targeting data with other distri-
bution assumptions or characteristics. Furthermore, we provided an overview of
methods for out-of-core GPU computing and execution on multiple GPUs and
discussed the implications for our GPU-accelerated algorithms. We identified
that the performance of application-agnostic solutions, such as UM, depends
upon the dominating memory access pattern.

4

GPU-Accelerated CSL on a Single GPU

This chapter presents our approaches for GPU-accelerated CSL, focusing on
the well-known PC algorithm [249], particularly the order-independent variant
PC-stable [35] (see Algorithm 1, p. 18). The PC-stable algorithm learns the
Completed Partially Directed Acyclic Graph (CPDAG) describing the equiva-
lence class of the Direct Acyclic Graph (DAG) G of a CGM for a given dataset
in two steps (see Section 2.3.1). In the first step, the algorithm performs an
adjacency search to discover the skeleton C of the CPDAG. In the second step,
the algorithm performs a rule-based edge orientation on the remaining edges
in C. In the adjacency search, i.e., the first step of the algorithm, numerous
CI tests are performed. In the worst case, the number of CI tests is exponential
to the number of variables in the dataset. Hence, the adjacency search domi-
nates the overall runtime of the algorithm [169]. This first step yields potential
for performance improvement through parallel execution, e.g., on multi-core
CPUs [123, 224, 234]. We argue that further acceleration is possible through
parallel execution on GPUs. Thus, this thesis’ subject is developing and imple-
menting an efficient parallel adjacency search leveraging the parallel processing
power of GPUs to improve the runtime of constraint-based CSL (see (RQ1)).

Therefore, in Section 4.1, we deduce parallel execution strategies for a GPU-
accelerated adjacency search within the PC-stable algorithm with varying task
granularity. The deduction follows Foster’s methodology for parallel algorithm
design [61], and the developed parallel execution strategies reflect GPU-specific
hardware characteristics. Based upon the derived parallel execution strategies,
we introduce three algorithms for a GPU-accelerated adjacency search within
the PC-stable. Each algorithm is designed for CI tests following specific data
characteristics. Section 4.2 describes the first algorithm that is designed for data
following the Gaussian distribution model. Section 4.3 explains the second algo-
rithm that targets discrete data. The third algorithm presented in Section 4.4 fo-
cuses on mixed discrete-continuous data and data with non-linear relationships.
Parts of this chapter have been published in three research papers [81, 83, 226].

4.1 Execution Strategies for a GPU-Accelerated
Adjacency Search in PC-Stable

An algorithm that targets the GPU needs to harness the massively parallel com-
puting capabilities of the device [220]. Therefore, an adequate parallel execution

52 4 GPU-Accelerated CSL on a Single GPU

strategy is required. Generally, parallel execution strategies are derived using
frameworks for designing parallel programs, such as Foster’s Design Methodol-
ogy [61], a well-known guide for developing parallel programs. Foster’s Design
Methodology is a four-step process that consists of the steps of Partitioning,
Communication, Agglomeration, and Mapping described as follows: (1) The
Partitioning step divides the problem into small-sized tasks for parallel pro-
cessing. (2) The Communication step determines the communication pattern
of the small-sized tasks and detects whether these tasks communicate locally
or globally. (3) The Agglomeration step groups small tasks into larger tasks
to improve performance, considering communication costs and hardware char-
acteristics. (4) The Mapping step assigns the agglomerated tasks to physical
processing units. This step is essential in load balancing and task scheduling in
shared-nothing systems. However, in a uniprocessor or shared memory system,
the operating system’s task scheduling is often sufficient [61].

The partitioning step and the communication step consider algorithmic as-
pects only. Thus, the PC-stable algorithm and aspects of the data distribution
models and corresponding CI tests (see Section 2.4) are relevant in these steps.
GPU-specific hardware characteristics and resulting constraints (see Section 2.5)
are considered in the last two steps. In the following sections, we describe the
step-by-step application of Foster’s Design Methodology to derive suitable par-
allel execution strategies within PC-stable. For reference within the steps, we
first define tasks within PC-stable at different levels of granularity.

4.1.1 Definition of Tasks Within PC-Stable

Within the PC-stable, results from each level l strongly depend on each other.
Pairs of variables (Vi, Vj), with i, j = 1, . . . , N and i ̸= j, determined as in-
dependent in one level are removed from the adjacency adj(C, Vi). Thus, they
are irrelevant in subsequent levels. Therefore the PC-stable processes the lev-
els l with l = 0, . . . ,maxi=1,...,N{|adj(G, Vi)|} − 1 sequentially and defines the
tasks in the context of a level. Note that the same applies to the original PC
algorithm [249]. The PC-stable is a candidate for functional decomposition. In
contrast to domain decomposition, where a given problem is divided based on
the processed data, functional decomposition separates the given problem based
on the computation performed [61]. According to a functional decomposition,
four possible tasks within PC-stable are identified and defined as follows:

(I) A task is defined as the adjacency of a variable adj(Cl, Vi) given the skeleton
Cl within the current level l.

(II) A task is defined as the individual pair of variables (Vi, Vj), synonymously
denoted by the edge Ei,j , with i < j.

(III) A task is defined as the CI test for the edge Ei,j given a distinct separation

set Si,j
o with o = 1, . . . ,

(|adj(Cl,Vi)|−1
l

)
.

(IV) A task is defined as the individual data sample for a distinct CI test, i.e.,
Dm(Vi, Vj , S

i,j) indexed with m = 1, . . . , n, where n is the total number of
data samples available in the given data D.

To get an intuition of these four tasks, we illustrate each task definition in
one of the Figures 4.1 – 4.4 (see pp. 53–54). Each figure shows the same set of
computations represented by rectangles. Note that a single rectangle refers to the

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 53

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆!
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆!
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆"
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆"
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆#
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆#
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆%
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆%
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆%
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆%
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆%
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆(
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆(
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆(
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆(
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆(
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

… … … … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆)

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆)
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆)
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆)
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆)
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆)
&'!,&)

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)𝐴𝑑𝑗(𝑉!) 𝐴𝑑𝑗(𝑉") 𝐴𝑑𝑗(𝑉#$!)

Fig. 4.1: Illustration of task (I) defined as adjacencies adj(Cl, Vi). Each
colored set of columns refers to the task of processing one adjacency.

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆!
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆!
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆"
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆"
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆#
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆#
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆%
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆%
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆%
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆%
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆%
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆(
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆(
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆(
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆(
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆(
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

… … … … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆)

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆)
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆)
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆)
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆)
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆)
&'!,&)

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)

Fig. 4.2: Illustration of task (II) defined as edges Ei,j . Each colored column
of stacked rectangles refers to the task of processing one edge.

processing of one data sample. In each figure, colors show how the computations
are grouped to form the defined tasks (I) – (IV).

A task defined as the adjacency of a variable adj(Cl, Vi) (I), shown in Fig-
ure 4.1, presents the most coarse-grained task. The task consists of multiple
edges Ei,j , related CI tests, and all required data samples. In contrast, a task
defined as the edge Ei,j (II), shown in Figure 4.2, is more fine-grained. The task
contains only those CI tests and respective data samples, related to the edge
Ei,j . Figure 4.3 (see p. 54) illustrates tasks defined as one CI test of an edge
(III). In this case, each task contains only the required data samples for the
particular CI test. A task that is defined as a data sample of a distinct CI test
(I), as shown in Figure 4.4 (see p. 54), is the most fine-grained task.

Comparing the figures, it becomes visible that depending on the task defi-
nition, the task size ts and the total number of tasks tn vary. Both parameters
are relevant for the design of an effective parallel execution strategy. For the

54 4 GPU-Accelerated CSL on a Single GPU

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆!
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆!
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆"
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆"
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆#
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆#
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆%
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆%
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆%
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆%
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆%
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆(
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆(
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆(
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆(
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆(
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

… … … … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆)

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆)
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆)
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆)
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆)
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆)
&'!,&)

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)

Fig. 4.3: Illustration of task (III) defined as CI tests. Each colored stack
of rectangles corresponds to the task of processing one CI test.

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆!
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆!
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆"
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆"
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆#
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆#
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆%
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆%
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆%
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆%
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆%
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆(
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆(
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆(
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆(
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆(
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

… … … … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆)

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆)
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆)
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆)
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆)
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆)
&'!,&)

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)

Fig. 4.4: Illustration of task (IV) defined as data samplesDm. Each colored
rectangle refers to the task of processing a single data sample.

PC-stable algorithm, we know that the current level l and the assumption on
the underlying true DAG of the CGM impact both parameters for any of the
task definitions. In particular, we have three different cases: A fully connected
CGM for levels l ≥ 1, a sparse CGM for levels l ≥ 1 and any CGM in level
l = 0. In the following, we consider each case separately and determine the two
parameters ts and tn for each of the four task definitions.

A) Fully Connected CGM for Levels l ≥ 1

First, we present the case of a fully connected CGM in any level l ≥ 1, as shown
in Figure 4.5 (see p. 55). The assumption of a fully connected CGM presents
the computational worst-case, as all CI tests for all edges must be performed.
In this case, the task size ts and the total number of tasks tn are computed for
each task definition in the following ways:

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 55

(I) If the task is defined as an adjacency adj(Cl, Vi), then:

ts = (N − 1)×
(
N − 2

l

)
× n

tn = N.

(4.1)

(II) If the task is defined as an edge Ei,j , then:

ts =

(
N − 2

l

)
× n

tn = N × (N − 1).

(4.2)

(III) If the task is defined as a CI test, then:

ts = n

tn = N × (N − 1)×
(
N − 2

l

)
.

(4.3)

(IV) If the task is defined as an individual data sample Dm, then:

ts = 1

tn = (N − 1)×
(
N − 2

l

)
× n.

(4.4)

Considering the four different task definitions, we find an increasing amount
of tasks for parallel execution from task definition (I) to task definition (IV).
At the same time, the size of the tasks decreases from task definition (I) to
task definition (IV). We consider task definition (IV), i.e., processing one data
sample Dm, as an atomic task. Thus, we set the size ts = 1.

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆!
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆!
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆"
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆"
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆#
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆#
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆%
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆%
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆%
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆%
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆%
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆(
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆(
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆(
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆(
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆(
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆!
&'!,&)

1…
𝑛

… … … … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆)

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆)
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉#, 𝑆)
!,#)

1…
𝑛

𝐷!(𝑉", 𝑉%, 𝑆)
",%)

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆)
!,%)

1…
𝑛

𝐷!(𝑉&'!, 𝑉&, 𝑆)
&'!,&)

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)

Fig. 4.5: Illustration of tasks within the adjacency search of the PC-stable
algorithm for parallel execution assuming a fully connected CGM for any
level l ≥ 1. Depicted are undirected edges Ei,j (x-dimension), CI tests
(y-dimension), and data samples D (z-dimension).

56 4 GPU-Accelerated CSL on a Single GPU

𝐷!(𝑉", 𝑉#, 𝑆!
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆!
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆!
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆!
",&)

1…
𝑛

𝐷!(𝑉!, 𝑉', 𝑆!
!,')

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆"
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆"
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆"
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆"
",&)

1…
𝑛

𝐷!(𝑉!, 𝑉', 𝑆"
!,')

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆#
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆#
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆#
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆#
",&)

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆&
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆&
!,")

1…
𝑛

𝐷!(𝑉!, 𝑉%, 𝑆&
!,%)

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆&
",&)

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆!
()!,()

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆!
()!,()

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆!
()!,()

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆!
()!,()

1…
𝑛

𝐷!(𝑉", 𝑉#, 𝑆*
",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆*
!,")

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆*
",&)

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆!
()!,()

1…
𝑛

… … … …

…

…

…

…

…

…

…

…

…

…

…

…

S 1
S 2

S 3
S 4

S 5
S o 𝐷!(𝑉", 𝑉#, 𝑆+

",#)

1…
𝑛

𝐷!(𝑉!, 𝑉", 𝑆+
!,")

1…
𝑛

𝐷!(𝑉", 𝑉&, 𝑆+
",&)

1…
𝑛

𝐷!(𝑉()!, 𝑉(, 𝑆+
()!,()

1…
𝑛

C
I-t

es
ts

 w
ith

 s
ep

ar
at

io
n

se
ts

 𝑆
!",$
⋯
𝑆 %",$

Edges Ei,j for pairs of variables (Vi,Vj) from 𝐸!,&⋯𝐸'(!,'

E1,2 E1,6 E1,9 EN-1,NE2,4E2,3

Sa
m

pl
es
	𝐷
!
⋯
𝐷)
	fo

r (
𝑉 "
,𝑉
$,
𝑆 %",$

)

Fig. 4.6: Illustration of tasks within the adjacency search of the PC-stable
algorithm for parallel execution assuming a sparse connected CGM for any
level l ≥ 1. Depicted are undirected edges Ei,j (x-dimension), CI tests
(y-dimension), and data samples D (z-dimension).

B) Sparse CGM for Levels l ≥ 1

Second, we consider the case of a sparse CGM in any level l ≥ 1, as shown in
Figure 4.6. Here, the values for the task size ts and the total number of tasks tn
are relative to the structure of the skeleton Cl within the current level l and the
underlying true DAG of the CGM. The structure of the skeleton Cl determines
the number of remaining edges. The underlying true DAG of the CGM influ-
ences the number of conducted CI tests per edge. Once one CI test determines
the pair of variables for a given edge as independent, all remaining CI tests for
that edge can be skipped. Hence, depending on the task definition, either exact
values are computed or upper bounds are estimated for the task size ts and the
total number of tasks tn as follows:

(I) If the task is defined as an adjacency adj(Cl, Vi), then:

ts ≤ (N − 1)× |Si,j,l| × n

tn = N,
(4.5)

where |Si,j,l| denotes the list of all possible separation sets for a pair of variables
(Vi, Vj) in level l and is calculated as:

|Si,j,l| =
(
|adj(Cl, Vi)| − 1

l

)
. (4.6)

(II) If the task is defined as an edge Ei,j , then:

ts ≤ |Si,j,l| × n

tn = N × (N − 1).
(4.7)

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 57

(III) If the task is defined as a CI test, then:

ts = n

tn ≤ N × (N − 1)× |Si,j,l|.
(4.8)

(IV) If the task is defined as an individual data sample Dm, then

ts = 1

tn = N × (N − 1)× |Si,j,l| × n.
(4.9)

Similar to a fully connected CGM (see A)), the number of tasks tn increases
from task definition (I) to (IV), while the size of the tasks ts decreases. However,
in contrast to a fully connected CGM, we cannot always compute an exact value
for tn and ts. In some cases, it is only possible to estimate an upper bound.

C) Any CGM in l = 0

𝐷!(𝑉", 𝑉#)

1…
𝑛

𝐷!(𝑉!, 𝑉")

1…
𝑛

𝐷!(𝑉!, 𝑉#)

1…
𝑛

𝐷!(𝑉", 𝑉$)
1…
𝑛

𝐷!(𝑉!, 𝑉$)

1…
𝑛

𝐷!(𝑉%&!, 𝑉%)

1…
𝑛

… …

E1,2 E1,3 E1,4 EN-1,NE2,4E2,3

Fig. 4.7: Illustration of tasks within the adjacency search of the PC-stable
algorithm for parallel execution for any CGM in level l = 0. Depicted are
undirected edges Ei,j (x-dimension) and data samples D (z-dimension). We
do not illustrate the CI tests explicitly, as the task based on a CI test is
equivalent to the task based on an edge.

Third, we explain the special case for level l = 0 that applies to any CGM, as
shown in Figure 4.7. Level l = 0 represents a special case, as only one CI test
per edge Ei,j needs to be performed. Thus, the task definitions based on an
edge Ei,j (II) and based on one CI test (III) are equivalent. Further, under the
assumption that no background knowledge is provided, the skeleton C0 is fully
connected. Therefore, the task size ts and the total number of tasks tn for each
task definition are computed as follows:

(I) If the task is defined as an adjacency adj(Cl, Vi), then:

ts = (N − 1)× n

tn = N.
(4.10)

(II & III) If the task is defined as an edge Ei,j or as a CI test, then:

ts = n

tn = N × (N − 1).
(4.11)

(IV) If the task is defined as an individual data sample Dm, then

ts = 1

tn = N × (N − 1)× n.
(4.12)

Again, the number of tasks increases from task definition (I) to task definition
(IV), while the size of the tasks decreases. Similar to a fully connected CGM ex-
act values of tn and ts can be computed. Thus, determining a parallel execution
strategy for this case should be straightforward.

58 4 GPU-Accelerated CSL on a Single GPU

4.1.2 Application of Foster’s Methodology: Step (1) Partitioning

The functional decomposition (see Section 4.1.1) results in four definitions of
tasks (I) – (IV). According to Foster’s Design Methodology [61], the partition-
ing step favors the smallest possible task. For the PC-stable, regardless of the
underlying true DAG of the CGM and the current level l, this task is defined
as the individual data sample for a distinct CI test, i.e., Dm(Vi, Vj , S

i,j).
Based on a data sample Dm(Vi, Vj , S

i,j), the task’s computations contribute
to processing one CI test. For its computations, the task accesses the associated
memory locations of the data sample for Vi, Vj , and Si,j . Further, the task’s
actual computations concerning Dm depend on the chosen CI test. Thus, in
the case of the Gaussian distribution model (see Section 2.4.1), each task com-
putes part of the correlation coefficient. In the case of discrete data (see Sec-
tion 2.4.2), each task increments an entry of the contingency table, marginals,
and total. For mixed discrete-continuous data and data with non-linear rela-
tionships (see Section 2.4.3), a task computes a partial value of the Conditional
Mutual Information (CMI) estimate.

The total number of tasks tn following task definition (IV) is computed
using (4.4), (4.9), or (4.12). The choice of computation depends on the struc-
ture of the underlying true DAG of the CGM and the current level l. Thus,
the total number of tasks tn ranges from N × (N − 1) × n for level l = 0 to
N × (N − 1)×

(
N−2

l

)
× n for a fully connected CGM in any level l ≥ 1. There-

fore, this task definition exposes a massive amount of parallelism in any setting.

4.1.3 Application of Foster’s Methodology: Step (2) Communication

According to the partition design, which identifies Dm as the smallest task,
three communications are identified within the PC-stable. The first communi-
cation occurs while performing a CI test. The second communication is needed
to communicate CI test results’ while processing an edge Ei,j . And the third
identified communication happens during the update of the skeleton C. Note
that the computations based on Dm are independent of any other task and
require no additional communication.

Performing a CI Test

Generally, the p-value is computed and returned when a CI test is performed.
To calculate the p-value, all tasks related to a single CI test must share their
local result computed based on Dm. This communication involves n tasks and
can be realized in different ways. For example, all tasks can broadcast their local
result leading to n×n communications. Further, at the cost of synchronization,
the tasks’ local result can be stored in a central memory location. Yet another
approach is to employ a parallel summation algorithm, which allows for con-
current communication. Regardless of the approach, this communication step
yields one p-value for each CI test.

Processing an Edge Ei,j

The results of all CI tests related to an edge Ei,j need to be communicated to
decide on the independence of Ei,j . Therefore, this communication involves up
to

(
N−2

l

)
×n tasks. Ideally, the results of each CI test have been aggregated over

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 59

the associated tasks upfront. Such an aggregation step could reduce the number
of tasks involved with the communication to

(
N−2

l

)
. Note that the number of

communications depends on the number of separation sets |Si,j,l| for Ei,j in l.
Again different ways exist to realize communication. Given that the adjacency
search of the PC-stable provides an early termination criterion (see line 16 of
Algorithm 1 in Section 2.3.1), we suggest a centralized communication. An early
termination occurs if Ei,j is determined as independent based on one CI test’s
p-value. In that case, all remaining communications and computations for that
edge become obsolete.

Updating the Estimated Skeleton C

Another step in PC-stable’s adjacency search updates the skeleton C. Therefore
the independence decision for each edge Ei,j is communicated globally. The
independence decision of each edge Ei,j is an aggregated result across all CI tests
related to that edge Ei,j . Hence, updating the skeleton involves communication
between up to N×(N−1)×

(
N−2

l

)
×n tasks. Aggregation of the result per edge

Ei,j can limit the number of tasks required for communication to N × (N − 1).
Further, the independence decision of an edge is stored at distinct locations
within the skeleton C. Therefore, communications can occur concurrently.

4.1.4 Application of Foster’s Methodology: Step (3) Agglomeration

The partitioning determined the individual data sample for a distinct CI test
(IV), i.e., Dm(Vi, Vj , S

i,j) as the smallest possible task that provides ample par-
allelism. Building upon that task definition, the communication step identified
three relevant communications within a single level l of the adjacency search in
PC-stable. The agglomeration step aims to agglomerate tasks to design an effi-
cient algorithm for particular hardware, in the present case, a GPU. Therefore,
the definition of the agglomerated task should aim to reduce communication
while retaining enough opportunity for parallel execution. At the same time,
the agglomeration must take into account GPU-specific hardware characteris-
tics, e.g., the size of shared memory, the grouping of GPU threads into thread
blocks, and their execution in warps. In the following, we, therefore, discuss how
the agglomeration of tasks addresses the identified communications.

Addressing Communication While Performing a CI Test

The communication required while performing one CI test cannot occur entirely
concurrently. Hence, we suggest agglomerating the n tasks that perform one
CI test to reduce the needed communication. Therefore, the computations over
r data samples, i.e., r tasks, are grouped to form an agglomerated task. Note
that 1 < r ≤ n holds. Thus, the number of tasks that need to communicate while
performing one CI test is reduced by a factor of 1

r . The number of necessary
communications is reduced respectively. Unless we set r = n, the choice of r
should reflect the GPU hardware characteristics, as discussed below.

If r = n, the communication is removed. The agglomerated task is a unique
CI test, as depicted in Figure 4.3 (see p. 54). According to (4.8), this task
definition results in up to N × (N − 1) × |Si,j,l| unique tasks, which provides
ample parallelism. If r < n, the number of agglomerated tasks ta related to one
CI test is impacted by the chosen value of r as follows:

60 4 GPU-Accelerated CSL on a Single GPU

ta =
⌈n
r

⌉
. (4.13)

To reflect the GPU hardware characteristics, a value of ta should satisfy:

ws ≤ |ta| ≤ TTBmax with ta mod ws ≡ 0, (4.14)

where ws is the warp size of the GPU, and TTBmax refers to the GPU’s maximum
number of threads per thread block. Thus, the choice of r should lead to a
number of agglomerated tasks ta that is a multiple of the warp size. Having a
multiple of the warp size ensures that all GPU threads within a warp operate on
the same CI test’s computations. Furthermore, this improves data locality and
enables coalesced memory access [41, 173]. Additionally, the choice of r should
result in a number of agglomerated tasks ta that does not exceed TTBmax . Not
exceeding TTBmax ensures that GPU threads can process all agglomerated tasks
related to the same CI test within the same thread block. Thereby the GPU
threads can use shared memory for communication.

Addressing Communication During Edge Processing

Generally, concurrent communication of the CI test results for one edge Ei,j is
possible. Yet, once the edge Ei,j was found independent based on one CI test,
performing the remaining CI tests for the edge Ei,j and consequently commu-
nicating their results becomes unnecessary overhead. To address this overhead,
we suggest agglomerating q tasks belonging to the computation of CI tests of
an edge Ei,j . An appropriate value of q is chosen as follows:

n ≤ q ≤ |Si,j,l| × n with q mod n ≡ 0. (4.15)

Note, q is chosen as a multiple of n to assure that all tasks belonging to one
CI test are agglomerated to the same task. In the following, we discuss the
implications of the choice of the value of q to the agglomerated task.

In the case of q = |Si,j,l|×n, the agglomeration combines all tasks required to
process the entire edge Ei,j , as shown in Figure 4.2 (see p. 53). Thus, all commu-
nication of CI test results is removed, enabling early termination and removing
unnecessary computations. At the same time, combining all tasks concerning the
CI tests for an edge Ei,j can result in highly imbalanced tasks. The imbalance
results from the current skeleton Cl and the influence of the underlying true
DAG of the CGM on the number of CI tests per edge (see Figure 4.6, p. 56).
Furthermore, this agglomeration results in N × (N −1) aggregated tasks, which
provides enough parallelism on multi-core CPUs [123, 224, 234]. However, on a
GPU, a small number of tasks can limit exploitation of the parallel hardware,
e.g., if N ≤ 100.

Therefore, for execution on the GPU, a smaller value of q, which exposes
more parallel tasks, is better suited. In this case, the chosen value of q must
compensate for the communication overhead of smaller aggregated tasks with
their improved load balance over large aggregated tasks.

Further Considerations

The communication during the update of the skeleton Cl can occur concurrently.
Therefore, an agglomeration addressing this communication is not necessary.

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 61

Furthermore, a more coarse-grained task definition, according to the adjacency
adj(Cl, Vi) (I) (see Figure 4.1, p. 53), exposes only up toN aggregated tasks. Yet,
for efficient execution on a GPU, thousands to millions of tasks are generally
encouraged [220]. Thus, considering an agglomeration up to processing an entire
adjacency adj(Cl, Vi) seems unsuited.

Note that the computational demand of processing a single data sample Dm

varies depending on the applied CI test. Therefore, the agglomeration step does
not yield a single most-suitable task definition for parallel execution of the PC-
stable on a GPU across all existing CI tests. Rather, the previously derived task
definitions form a set of possible abstractions that can be applied depending on
the characteristics of the CI test. In the remainder of this thesis, the following
two task definitions are particularly relevant: A task is defined as r data samples
Dm within a CI test or a task is defined as q CI tests of an edge Ei,j .

4.1.5 Application of Foster’s Methodology: Step (4) Mapping

The mapping step assigns the tasks resulting from the agglomeration to the
physical processing unit. Note this step is often skipped in a uniprocessor or
shared memory system. In the case of a GPU, the actual assignment of tasks to
Streaming Multiprocessors (SMs) is done via a dedicated hardware thread block
scheduler. Yet, it is worth considering mapping tasks to the abstractions within
the CUDA framework, i.e., to GPU threads and thread blocks, while considering
warps and the Single Instruction Multiple Threads (SIMT) execution model.
Such a mapping ensures that associated tasks are mapped to GPU threads
within the same thread block enabling local communication via shared memory.
Further, tasks associated with co-located data in GPU global memory can be
mapped to GPU threads within the same warp to ensure coalesced memory
access. Based on the two agglomerated tasks from the previous step, we define
three mappings of tasks to the GPU’s processing units (M1-M3). The first map-
ping (M1) is applied to tasks consisting of r data samples from a CI test. The
second mapping (M2) considers tasks concerning multiple CI tests of an edge
Ei,j . The third mapping (M3) is a combination of the mappings (M1) and (M2).
The following paragraphs detail each mapping (M1-M3).

(M1) Tasks Consisting of r Data Samples From a CI Test

In the case of a task that processes r data samples from one CI test, the map-
ping as shown in Figure 4.8 (see p. 62) is applied. A task is mapped to one GPU
thread. Each task gets assigned r data samples in a stride of the warp size,
and GPU threads within a warp process consecutive tasks related to the same
CI test. Thereby, the mapping ensures coalesced memory access within a warp.
Further, all tasks associated with one CI test are mapped to the same thread
block. Hence, these tasks can utilize shared memory for fast local communica-
tion, e.g., when computing the p-value. Suppose the number of tasks associated
with one CI test is larger than TTBmax

. In that case, each GPU thread in the
same thread block gets assigned multiple tasks to avoid global communication,
e.g., via GPU global memory. Assigning multiple tasks to one GPU thread has
a similar effect as increasing the value of r. The number of required thread
blocks TB within a grid for this mapping equals the number of CI tests, i.e.,
TB = N × (N − 1)× |Si,j,l|.

62 4 GPU-Accelerated CSL on a Single GPU

Grid with		𝑁× 𝑁 − 1 × 𝑺!,#,$ thread blocks, each having 32	×	𝑊 threads organized in 𝑊 warps

𝑇𝐵%× %'(×|𝑺!,#,$|

CI-test(𝑉%'(, 𝑉%, 𝑆+
%'(,%)

W0 T0

D0 D32

T31

D31 D63
…

W𝑤 T0

… …

T31

Dn-32 Dn
…

…

𝑇𝐵(

CI-test(𝑉(, 𝑉,, 𝑆(
(,,)

W0 T0

D0 D32

T31

D31 D63
…

W𝑤 T0

… …

T31

Dn-32 Dn
…

…

…

Fig. 4.8: Mapping of tasks that contain r data samples of D (small grey
boxes) related to one CI test (large grey box) concerning the abstraction of
execution units within CUDA (white boxes). TB denotes thread blocks. In
each thread block W represents the warps and T the GPU threads.

Grid with		𝑁× 𝑁 − 1 thread blocks, each having 32	×	𝑊 threads organized in 𝑊 warps

…

𝑇𝐵!

Edge 𝐸!,#

W0 T31T0

CI-test(𝐸!,#, 𝑆!
!,#) CI-test(𝐸!,#, 𝑆$!

!,#)
…

W𝑤 T31T0

... CI-test(𝐸!,#, 𝑆%
!,#)

…

…

𝑇𝐵&×(&)!)

Edge 𝐸&)!,&

W0 T31T0

CI-test(𝐸&)!,&, 𝑆!
&)!,&) CI-test(𝐸&)!,&, 𝑆$#

&)!,&)
…

W𝑤 T31T0

... CI-test(𝐸&)!,&, 𝑆%
&)!,&)

…

…

Fig. 4.9: Mapping of tasks that contain multiple CI tests (small grey boxes)
related to one edge Ei,j (large grey box) concerning the abstractions of
execution units within CUDA (white boxes). TB denotes thread blocks. In
each thread block W represents the warps and T the GPU threads.

(M2) Tasks Consisting of Multiple CI Tests of an Edge Ei,j

If tasks process multiple CI tests of a given edge Ei,j , the mapping shown in
Figure 4.9 is applied. Each task is mapped to one GPU thread, which becomes
responsible for processing all data samples of the associated CI tests. All tasks
concerning the same edge Ei,j are mapped to the same thread block. Thus,
the CI tests’ independence decisions can be communicated locally via shared
memory, which also allows realizing the early termination criterion.

Suppose the number of tasks associated with one edge Ei,j is larger than
TTBmax . In that case, each GPU thread in the same thread block gets assigned
multiple tasks to keep the communication of CI test results locally. Again, in-
creasing the value of q, i.e., assigning more CI test to the same task, has a
similar effect. The number of required thread blocks TB within a grid for this
mapping equals the number of edges, i.e., TB = N × (N − 1).

4.1 Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable 63

Grid with		𝑁× 𝑁 − 1 thread blocks, each having 32	×	𝑊 threads organized in 𝑊 warps

…

𝑇𝐵!×(!$%)

Edge 𝐸!$%,!

…

W0
CI-test(𝐸!$%,!, 𝑆%

!$%,!)

T0

D0 D32

T31

Dn-32 Dn
…

W𝑤
CI-test(𝐸!$%,!, 𝑆(

!$%,!)

T0

D0 D32

T31

Dn-32 Dn
…

𝑇𝐵%

Edge 𝐸%,)

…

W0
CI-test(𝐸%,), 𝑆%

%,))

T0

D0 D32

T31

Dn-32 Dn
…

W𝑤
CI-test(𝐸%,), 𝑆(

%,))

T0

D0 D32

T31

Dn-32 Dn
…

Fig. 4.10: Fused tasks that contain r data samples (smallest grey boxes)
from multiple CI tests (mid-sized grey boxes) related to one edge Ei,j (large
grey box) mapped to the abstractions of execution units within CUDA (white
boxes). TB denotes thread blocks. In each thread block W represents the
warps and T the GPU threads.

(M3) Fused Mapping of r Data Samples of Multiple CI Tests of One Edge Ei,j

The mapping of r data samples from a CI test (see (M1)) leverages data lo-
cality to enable coalesced memory access. Yet, it does not address the global
communication of CI test results and the early termination criterion. The map-
ping of multiple CI tests of an edge Ei,j (see (M2)) uses local communication to
exchange CI test results but lacks any improved data access mechanism. There-
fore, we consider a combination of the two mappings (M1) and (M2). Fusing the
two mappings (M1, M2) creates the potential to benefit from coalesced memory
access and local communication when exchanging results from CI tests of an
edge Ei,j . Figure 4.10 presents the fused mapping.

The tasks processing r data samples of multiple CI tests concerning the same
edge Ei,j are mapped to GPU threads within the same thread block. In case
the number of tasks exceeds the number of GPU threads in that thread block,
multiple tasks are grouped to each of the GPU threads. According to mapping
(M1), the r data samples are assigned to each task in a warp-sized stride to
enable coalesced memory access. Further, by assigning all tasks concerning the
same edge Ei,j to the same thread block, CI test results can be communicated
locally within shared memory, as mapping (M2) suggested. Therefore, the num-
ber of required thread blocks TB within a grid is the same as for mapping (M2),
i.e., TB = N × (N − 1).

The derived tasks, identified communication patterns, agglomerated tasks,
and deduced mappings are the building blocks for the efficient parallel execution
strategies of the PC-stable. In the subsequent sections, we apply these building
blocks to develop efficient GPU-accelerated algorithms for multiple CI tests with
different characteristics.

64 4 GPU-Accelerated CSL on a Single GPU

4.2 GPU-Accelerated Adjacency Search in PC-Stable for
the Gaussian Distribution Model

This section details our algorithm for a GPU-accelerated adjacency search
in PC-stable under the assumption that data follows the Gaussian distribu-
tion model (see Section 2.4.1). First, a runtime analysis of the original CPU-
based PC-stable algorithm on several real-world gene expression datasets re-
veals a large potential for performance improvements in levels l = 0, 1 (see Sec-
tion 4.2.1). Section 4.2.2 outlines our proposed GPU-accelerated algorithm that
addresses the potential for performance improvement. The outline of the algo-
rithm mainly focuses on data transfer and GPU kernel orchestration. The GPU
kernel implementations for level l = 0 and level l = 1, which constitute the
performance improvement, are presented in Sections 4.2.3 and 4.2.4. Finally,
Section 4.2.5 introduces two variants to process levels l ≥ 2. One variant lever-
ages functionality from CUDA-X1 libraries, whereas the second variant follows the
ideas of Zarebavani et al. [287] but differs in the use of GPU shared memory.
Parts of this section have been published in a research paper [226].

4.2.1 Determining Compute Intensive Parts of the Adjacency
Search of PC-Stable - A Runtime Analysis on Selected Gene
Expression Datasets

In this section, we analyze the runtime of the PC-stable algorithm to determine
the most compute-intensive parts that can benefit from GPU acceleration. First,
we consider the computational demand from a theoretical point of view. Next,
we introduce a selection of gene expression datasets we use for experimental
runtime analysis. Finally, we assess the results from the experimental runtime
analysis to reveal the potential for performance improvement, which we can
address with our GPU-accelerated adjacency search in PC-stable considering
the Gaussian distribution model.

Theoretical Consideration Concerning the Computational Demand

The adjacency search of the PC-stable algorithm [35] learns the skeleton C of
the CPDAG of the CGM in an iterative level-wise process, starting with level
l = 0 (see Section 2.3). Within each level l, all remaining edges, Ei,j with
i, j = 1, . . . , N , are tested for conditional independence. Therefore, CI tests are
performed with separation sets of size l, which are constructed from the adjacent
variables of Vi. Thus, the number of CI tests per level increases up to a certain
level l, which depends on the underlying true DAG of the CGM. Therefore, the
worst-case computational complexity of the PC-stable algorithm is exponential
to the number of variables N [251].

Similarly, the computational complexity of an individual CI test appropri-
ate for data following the Gaussian distribution model, i.e., Fisher’s z-test [59]
(see Section 2.4.1), increases with a higher level l. In the case of Fisher’s z-test,
the computation of the pseudo-inverse constitutes the majority of the computa-
tional demand. Matrix inversion using the well-known Gauss-Jordan algorithm

1 https://developer.nvidia.com/gpu-accelerated-libraries

https://developer.nvidia.com/gpu-accelerated-libraries

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 65

has a computational complexity concerning the dimension of a matrix dim as
follows:

O
(
dim3

)
[240], (4.16)

which in the case of Fisher’s z-test leads to a complexity of

O
(∣∣{Vi, Vj} ∪ Si,j

∣∣3) . (4.17)

Following these theoretical considerations, the most compute-intensive parts of
the adjacency search are in very high levels l, which require computing a large
number of CI tests with a high computational complexity each.

In contrast, it is well known that the statistical power of CI tests suffers
from the curse of dimensionality, i.e., with larger-sized separation sets [142].
In theory, assuming n → ∞, the statistical power of CI tests is not an issue.
Yet, in real-world settings, such as genetics, low data sample sizes are common
and restrict the statistical power of the CI test with larger-sized separation sets.
Furthermore, under the assumption of sparse CGMs, often the case in real-world
settings [150], the overall complexity of the PC-stable algorithm is polynomial
to the number of variables [109]. In fact, the number of CI tests in any level
l is bounded by the size of the adjacency sets of each variable. Similarly, the
maximum reachable level ml is bounded by the size of the adjacency sets. Once
no separation set of size l can be constructed from any remaining adjacency set,
the maximum level is reached. Thus, very high levels l are often not considered
in real-world settings, and the number of CI tests might be reasonably small.

Experiments Concerning the Computational Demand

In the following, we conduct runtime measurements of the PC algorithm’s adja-
cency search using real-world gene expression datasets. The measurements aim
to understand the implications of the prior mentioned characteristics on the
number of conducted CI tests and the runtime within each level l. These results
are then used to determine computationally intensive levels l best suited for
parallel execution on the GPU.

Selected Gene Expression Datasets

We consider a selection of real-world gene expression datasets [125, 143, 152],
which have been used in literature to evaluate parallel variants of the PC algo-
rithm [123, 226, 287]. Table 4.1 summarizes the characteristics of the selected

dataset N - number of variables n - number of data samples

NCI-60 [125] 1 190 47
MCC [125] 1 380 88
BR51 [125] 1 592 50

S.aureus [152] 2 810 160
S.cerevisiae [143] 5 361 63

Table 4.1: Characteristics of selected real-world gene expression datasets
used in research on the inference of regulatory relationships. The first three
datasets contain microRNA and mRNA information, whereas the last two
datasets contain transcription factors.

66 4 GPU-Accelerated CSL on a Single GPU

gene expression datasets. The datasets have a high dimensionality with N in
the range from 1 190 to 5 361. However, the number of observed data samples n
is low and ranges from 47 to 160.

Runtime Measurements on Selected Gene Expression Datasets

For the runtime analysis, we execute the single-threaded implementation of the
PC-stable, available in the pcalg package [111]. We follow existing literature
and set the significance level α = 0.01 [109]. As the parameter α impacts the
CI decision, changes of the parameter will result in differences in the number of
conducted CI tests, respectively runtimes. Note that larger values of α tend to
result in a higher density in the learned skeleton C. The results of the measure-
ments are shown in Tables 4.2 and 4.3.

dataset total number percentage of CI tests in
of CI tests level l = 0 level l = 1 levels l ≥ 2

NCI-60 4 017 475 17.61% 82.16% 0.23%
MCC 21 950 296 4.34% 93.00% 2.66%
BR51 29 696 242 4.26% 95.61% 0.13%

S.aureus 170 430 911 2.32% 95.48% 2.20%
S.cerevisiae 69 321 855 20.73% 78.76% 0.51%

Table 4.2: Number of performed CI tests in the adjacency search of PC-
stable, and their distribution to individual levels, for selected gene expres-
sion datasets, setting the tuning parameter α = 0.01.

Table 4.2 depicts the percentages of CI tests conducted within each level com-
pared to the total number of CI tests. The results indicate that most CI tests
are performed in level l = 1 across all datasets. The second-largest number of
CI tests is conducted in level l = 0. At most, 2.66% of all CI tests are carried
out in higher levels l ≥ 2, e.g., in the case of the MCC dataset. For all datasets,
the adjacency search terminated after level l = 4, which we account for an in-
sufficient statistical power in any higher level given the low data sample sizes of
the gene expression datasets. For the dataset with the largest number of vari-
ables, S.cerevisiae, 14 367 480 CI tests are performed in level l = 0, 54 598 391
CI tests are computed in level l = 1, and the remaining levels l ≥ 2 account for
355 984 CI tests.

Given the increasing computational complexity of CI tests in higher levels,
only considering the number of conducted CI tests is insufficient to conclude
on the levels l that are particularly interesting for acceleration. Therefore, we
present the distribution of the total runtimes concerning individual levels in
Table 4.3 (see p. 67). The impact of the CI tests in level l = 0 on the overall
runtime of the adjacency search is negligible for all datasets. Looking at the
S.cerevisiae dataset, level l = 0 accounts for only 0.09% of the runtime,
although 20.73% of all CI tests are performed in this level. Level l = 1 dominates
the overall runtime for all investigated gene expression datasets. The levels l ≥ 2
have a minor influence on the total runtime. However, it is noteworthy that the
impact on the total runtime in percent is greater than the percentage share in
performed CI tests.

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 67

dataset total runtime percentage of runtime in
level l = 0 level l = 1 levels l ≥ 2

NCI-60 8.06 s 0.27% 98.96% 0.77%
MCC 59.39 s 0.05% 94.57% 5.38%
BR51 67.57 s 0.05% 99.57% 0.38%

S.aureus 1 037.23 s 0.01% 98.03% 1.96%
S.cerevisiae 479.59 s 0.09% 99.28% 0.63%

Table 4.3: Runtimes of the adjacency search of PC-stable in seconds, and
its distribution to individual levels, for selected gene expression datasets,
setting the tuning parameter α = 0.01

Discussion

From a theoretical point of view, we find that the higher levels l expose more
CI tests, thus more parallel tasks. In contrast, the runtime measurements reveal
that in real-world settings, the adjacency search in levels l = 0, 1 can benefit the
most from parallel execution on a GPU. However, it remains open to investigate
other settings, for example, when datasets contain more data samples n or the
CGMs are dense. In these cases, we think that higher levels l ≥ 2 also benefit
from GPU acceleration. Thus, we do not generally disregard these levels for
GPU acceleration.

4.2.2 Outline of the GPU-Accelerated Adjacency Search

Based on the observations from the runtime assessment on real-world gene ex-
pression datasets, we develop GPU kernels to accelerate computations in levels
l = 0, 1. But, we also present GPU-accelerated variants for higher levels l ≥ 2.
We develop an algorithm for a parallel adjacency search that leverages these
GPU kernels and GPU-accelerated variants for runtime performance. We tailor
the algorithm and the GPU kernels to the Gaussian distribution model. Algo-
rithm 3 (see p. 68) outlines our proposed algorithm and shows the necessary
operations, data structures, and interactions between the host system and the
GPU. Details on the implemented GPU kernels and the GPU-accelerated vari-
ants are discussed separately in the subsequent Sections 4.2.3, 4.2.4, and 4.2.5.

Input

Algorithm 3 (see p. 68) receives as input the vertex set V = {V1, . . . , VN} rep-
resenting the dataset’s N variables (see Section 2.1) and the correlation matrix
sCor of size N ×N . Further, the algorithm takes the parameters α as the sig-
nificance level, ml as the maximum level, and n as the number of data samples
as input. The correlation matrix sCor contains the sample correlation ρ̂(Vi, Vj)
(see (2.1), p. 20) for all pairs of variables (Vi, Vj) with i, j = 1, . . . , N and i ̸= j.
The significance level α serves as a threshold for the CI tests. The maximum
level ml restricts the levels l considered during the adjacency search.

Suppose there is no restriction based on ml. In this case, the adjacency
search could reach a level l = N − 2 under the assumption of a fully connected
CGM. Implicitly the value of ml also sets the maximum size of any separation

68 4 GPU-Accelerated CSL on a Single GPU

Algorithm 3 GPU-based adjacency search for the Gaussian distribution model
Input: Vertex set V, correlation matrix sCor, significance level α, maximum
level ml, number of data samples n
Output: Estimated skeleton matrix C, separation sets matrix Sep

1: l← 0
2: Let C and Ĉ be |V| × |V| matrices with all entries set to 1
3: Let Sep be an |V| × |V| ×ml matrix with all entries set to −1
4: transferToGPU(V, sCor, C, Ĉ, Sep)
5: launchGPUKernel(level0, {V, sCor, C, Sep, α, n})
6: update(ml)
7: while ml > l do
8: l← l + 1
9: copyTo(Ĉ, C)
10: if l = 1 then
11: launchGPUKernel(level1, {V, sCor, C, Ĉ, Sep, α, n})
12: else
13: launchGPUVariant(levelL, {V, sCor, C, Ĉ, Sep, α, n, l})
14: end if
15: update(ml)
16: end while
17: transferFromGPU(C, Sep)
18: return C, Sep

set, which is needed to pre-allocate GPU global memory for the data structure
holding all separation sets Sep. To avoid out-of-GPU-memory situations, we
recommend a value of ml that is calculated as follows:

ml =

⌊
GPUmem − 3×N ×N × sizeof(dt)

N ×N × sizeof(dt)

⌋
, (4.18)

where GPUmem is the capacity of the GPU’s global memory and sizeof(dt)
returns the bytes required for the data type dt.

Output

After completion, the adjacency search returns two matrices. The first matrix
of dimension N ×N stores the estimated skeleton C. The second matrix Sep of
dimension N × N × ml contains all separation sets Si,j corresponding to the
pairs of variables (Vi, Vj) estimated to be independent.

Description of the Procedure

The algorithm starts with the initialization of required data structures and
parameters. Thus, it sets the level to l = 0. Further, it initializes three data
matrices. The first two matrices of dimension N×N store the estimated skeleton
C and the copy of the skeleton Ĉ, which is necessary to ensure order independence
within the PC-stable. All entries within these two matrices are set to 1. The
third matrix Sep of dimension N × N ×ml stores the separation sets Si,j for
independent pairs of variables (Vi, Vj). All entries of this matrix are set to −1.

Next, the algorithm transfers all data structures required within the GPU
kernels to the GPU global memory (see line 4). Note that the data structures
remain in GPU global memory until the operations in all levels have finished.

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 69

After these preparation steps, the actual calculations are performed. There-
fore, the GPU kernel for level l = 0 is launched. The GPU kernel launch occurs
synchronously, meaning that the CPU thread blocks until the GPU kernel is
processed. The synchronous kernel launch ensures that level l = 0 has been fin-
ished before the next level is processed. Likewise, all subsequent kernel launches
are also synchronous, if not otherwise stated.

The GPU kernel for level l = 0 is provided the vertex set V, the correlation
matrix sCor, the matrices for the estimated skeleton C and the separation sets
Sep, and the significance level α. For a detailed description of the operations
within the GPU kernel for level l = 0 and the applied mapping of tasks to the
GPU execution units (see Section 4.2.3, p. 70).

Once the GPU kernel for level l = 0 is finished, the update(. . .) function
checks if the maximum level ml needs adjustment. Therefore, the size of the
most extensive adjacency set of any variable Vi in the current skeleton Cl is
computed, which we denote with maxi=1,...,N{|adj(Cl, Vi)|}. The maximum level
ml is updated as follows:

ml =

{
maxi=1,...,N{|adj(Cl, Vi)|} − 1, if maxi=1,...,N{|adj(Cl, Vi)|} − 1 < ml

ml, otherwise.

(4.19)
This update(. . .) function is implemented as a separate GPU kernel, and only
the parameter ml is transferred.

After updating ml, subsequent levels are processed in a loop (see lines 7 –
16 of Algorithm 3), as long as the condition ml > l holds. Within this loop, the
algorithm first increments the level l by one. Next, the copyTo(. . .) function
is called, which copies the content from the data structure of the current version
of C to the placeholder data structure Ĉ to ensure order independence. Suppose
l = 1, the GPU kernel for level l = 1 is launched with the following parameters; a
vertex set V, the correlation matrix sCor, the data structures for the estimated
skeleton C, the copy of the estimated skeleton Ĉ, separation sets Sep, and the
significance level α. The performed operations and the applied mapping of the
GPU kernel for level l = 1 are described in Section 4.2.4. Otherwise, if level l ≥ 2,
the GPU variants for any higher level are executed, as described in Section 4.2.5.
Depending on the variant, either a separate procedure with multiple CPU and
GPU functions is called, or a GPU kernel is directly launched. Once all levels l up
to ml are processed, the estimated skeleton C and the corresponding separation
sets Sep are copied from the GPU to the host system’s DRAM (see line 17 of
Algorithm 3). Afterward, the algorithm returns these two data structures.

Additional Notes

For simplification, we left out calculating, maintaining, and returning additional
data structures, such as the list of maximum p-values pMax. Further note that
at the time of writing this thesis, a further optimized version of a GPU-based
adjacency search for data following the Gaussian distribution model has been
published [287], as discussed in Section 3.1.3. While both versions follow the
same general outline, the optimized version [287] adds an adjacency compacting
step after each level, e.g., added between lines 15–16.

70 4 GPU-Accelerated CSL on a Single GPU

Algorithm 4 GPU Kernel for level l = 0 for the Gaussian distribution model
Input: Vertex set V, correlation matrix sCor, estimated skeleton matrix C,
separation sets matrix Sep, significance level α, number of data samples n
of blocks: N ×

⌈
N
δ

⌉
of threads per block: δ

1: row ← bx, col← by × tx,N ← |V|
2: if row < col & col ≤ N then
3: if C[row][col] = 1 then

4: z ←
√

(n− 3)× 0.5×log1p(2×sCor[row][col]
1−sCor[row][col]

)

5: p← 2× (1−normcdf(z))
6: if p ≥ α then
7: C[row][col]← 0
8: C[col][row]← 0
9: Sep[row][col][0]← 0
10: end if
11: end if
12: end if

4.2.3 GPU Kernel for Level 0

In the following, we describe the GPU kernel for level l = 0 for data that follows
the Gaussian distribution model. First, we present the chosen parallel execution
strategy, according to Section 4.1. Further, we describe the input, the output,
the GPU kernel launch parameters and detail the operations executed within
the GPU kernel.

Execution Strategy: Mapping of Tasks to Execution Units

In level l = 0, the separation set for each pair of variables (Vi, Vj) is the empty
set, i.e., Si,j = ∅ with i, j = 1, . . . , N and i ̸= j. Thus, only a single CI test is
conducted per edge Ei,j , and the problem becomes embarrassingly parallel [234].
Note that we stick to the term CI test for simplicity, even though the term
direct independence test is more precise in the case of an empty separation
set. Further, in the Gaussian distribution model, each CI test processes the
sample correlation values instead of entire observations. Therefore, the mapping
(M2) is applied, and each task processes the sample correlation values for one
CI test. Since each task effectively corresponds to processing a single edge Ei,j ,
no communication of CI test decisions is required. Thus, only the concurrent
communication to update the skeleton C remains. According to the mapping
(M2), each task is mapped to an individual GPU thread with the following
constraint. GPU threads within the same warp process edges that are stored
consecutively in each data structure. Thus, coalesced memory access of the GPU
threads in the same warp is achieved [41, 173]. Following these considerations,
we implement the GPU kernel for level l = 0 as outlined in Algorithm 4.

Input and Output

The GPU kernel receives the vertex set V, the correlation matrix sCor, the
estimated skeleton matrix C with dimension N ×N , the separation sets matrix
Sep of dimension N ×N ×ml, the significance level α, and the number of data

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 71

samples n as input. The GPU kernel has no explicit output but manipulates the
data structures C and Sep during execution. Note that no copy of the skeleton
C is required in level l = 0, as the level is, per definition, order-independent.

GPU Kernel Launch Parameters

The GPU kernel is launched with N ×
⌈
N
δ

⌉
thread blocks and δ threads per

block. An appropriate number of thread blocks is chosen as follows:

ws ≤ δ ≤ TTBmax
and δ mod ws ≡ 0, (4.20)

where ws denotes the warp size of the GPU, and TTBmax represents the max-
imum number of threads per thread block supported by the GPU. Choosing δ
according to (4.20) ensures that the number of threads per block follows the
hardware constraints. The maximum number of supported threads per block is
not exceeded, and enough GPU threads are used to utilize entire warps. The
problem of processing the CI tests in level l = 0 is embarrassingly parallel and
further, GPU threads within the same thread block do not use shared memory.
Therefore, there is little difference in selecting small or large values of δ.

Description of the Operations Within the GPU Kernel

After the GPU kernel launch, each GPU thread computes the indices row and
col based on its internal thread and block ids (see line 1 of Algorithm 4, p. 70).
These indices refer to positions within the skeleton matrix C. The algorithm
only considers elements in the upper triangular of the skeleton matrix, as the
CI test is direction-independent. This simple optimization reduces the number
of performed CI tests by half. Therefore, in line 2, GPU threads accessing the
lower triangular are disregarded. At the same time, an out-of-bounds check is
performed. The check for the existence of an edge (see line 3 of Algorithm 4) is
only needed if an extension of the PC algorithm that allows for prior knowledge
in the form of exclusion lists is applied [159]. Suppose all checks are passed.
In this case, the p-value is calculated according to the mathematical model
introduced in Section 2.4.1 (see lines 4–5 of Algorithm 4). In the GPU kernel
implementation, we use the functions log1p(. . .) and normcdf(. . .) provided
by the CUDA Math API [177].

If the p-value is greater than or equal to the significance level α, the corre-
sponding edge Erow,col is deleted in C, i.e., the fields C[row][col] and C[col][row]
in the skeleton matrix are set to 0. Note, we set the fields in both upper and lower
triangular for technical reasons and use in subsequent levels. In contrast, the
entry in the separation sets matrix Sep is only marked in the upper triangular
matrix (see line 9). This step concludes the operations of one GPU thread. Once
all GPU threads have performed their computation, the GPU kernel terminates.

4.2.4 GPU Kernel for Level 1

In the following, we describe the GPU kernel for level l = 1 in the case that data
follows the Gaussian distribution model. We first describe the chosen parallel
execution strategy, according to Section 4.1. Afterward, we describe the input,
the output, the GPU kernel launch parameters and elucidate the operations
executed within the GPU kernel.

72 4 GPU-Accelerated CSL on a Single GPU

Execution Strategy: Mapping of Tasks to Execution Units

In level l = 1, the parallel execution strategy must handle a varying number of
CI tests per edge Ei,j with i, j = 1, . . . , N and i ̸= j and should allow for early
termination when processing multiple CI tests per edge Ei,j . In level l = 1,
each separation set for any pair of variables (Vi, Vj) has a size of 1. Thus, the
set of separation set candidates Si,j,1 contains the adjacency sets adj(Cl, Vi)
and adj(Cl, Vj) based on the current version of the skeleton Cl. As a result, the
number of CI tests for any edge Ei,j varies between 0 and N − 2. Depending
on the structure of the underlying true DAG of the CGM, it is unpredictable
if CI tests based on all separation sets of an edge Ei,j need to be performed
before the edge is found independent.

Based on these requirements, we apply mapping (M2), and each task pro-
cesses the sample correlations related to multiple CI tests. The resulting number
of tasks per edge Ei,j , denoted by u, should reflect GPU hardware characteris-
tics, such as the warp size ws or the maximum number of threads per thread
block TTBmax

. Therefore, we specify u as follows:

ws ≤ u ≤ TTBmax
and u mod ws ≡ 0. (4.21)

Setting u according to (4.21) ensures that all tasks related to the same edge Ei,j

can be mapped to GPU threads within the same thread block. Thus, the CI test
results are communicated locally via shared memory. The shared memory is
also used to realize the early termination. Further, the number of tasks per Ei,j

ensures that GPU threads working on the edge Ei,j can be grouped in entire
warps. Note that choosing a large value for u, e.g., u = TTBmax , results in using
higher amounts of shared memory, potentially limiting the number of thread
blocks executed on the same SM. Also, more CI tests are performed before
the early termination criterion is checked, potentially performing unnecessary
CI tests. To avoid unnecessary CI tests, we suggest choosing smaller values of
u, e.g., u = 32, 64 or 128. Building upon these considerations, we outline the
GPU kernel for level l = 1 in Algorithm 5 (see p. 73).

Input and Output

The GPU kernel takes the vertex set V, the correlation matrix sCor, the es-
timated skeleton matrix C, and the copy of the estimated skeleton matrix Ĉ
with dimension N × N each, and the separation sets matrix Sep of dimension
N×N×ml, the significance level α, and the number of data samples n as input.
Like the kernel for level l = 0, the kernel for level l = 1 has no explicit output but
manipulates the data structures C and Sep during execution. Note that using
the data structure Ĉ ensures order independence according to PC-stable [35].

GPU Kernel Launch Parameters

The GPU kernel is launched with N ×N thread blocks and δ threads per block.
We set δ = u following (4.21). Thereby, we ensure that all GPU threads working
on tasks stemming from the same edge Ei,j belong to the same thread block.

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 73

Algorithm 5 GPU kernel for level l = 1 for the Gaussian distribution model
Input: Vertex set V, correlation matrix sCor, estimated skeleton matrix C,
copy of estimated skeleton matrix Ĉ, separation sets matrix Sep, significance
level α, number of data samples n
of blocks: N ×N
of threads per block: δ

1: row ← bx, col← by,N ← |V|
2: if row < col & C[row][col] ̸= 0 then
3: Initialize list pV als of length δ in shared memory
4: for a← tx; a < N ; a← a+ δ do ▷ Iterate separation sets of each task
5: pV als[tx]← −1
6: if row ̸= a& col ̸= a& (Ĉ[row][a] ̸= 0 or Ĉ[col][a] ̸= 0) then

7: r ← sCor[row][col]−sCor[row][a]×sCor[col][a]√
((1.0−sCor[col][a]2)×(1.0−sCor[row][a]2))

8: z ←
√

(n− 1− 3)× 0.5×log1p(2×r
1−r

)
9: pvals[tx]← 2× (1−normcdf(z))
10: end if
11: syncthreads()
12: if tx = 0 then
13: for b← 0; b < δ; b← b+ 1 do
14: if pV als[b] ≥ α then
15: C[row][col]← 0
16: C[col][row]← 0
17: Sep[row][col][0]← a+ b
18: break
19: end if
20: end for
21: end if
22: syncthreads()
23: if C[row][col] = 0 then
24: break ▷ Early return
25: end if
26: end for
27: end if

Description of the Operations Within the GPU Kernel

At first, each GPU thread sets indices row and col according to its block ids
(see line 1 of Algorithm 5). These indices identify the edge Erow,col that a GPU
thread processes. Under the same assumption as kernel l = 0, the algorithm
considers only the upper triangular of the estimated skeleton matrix. The ful-
fillment of this criterion is checked in line 2. At the same time, the GPU thread
checks if its corresponding edge Erow,col exists. Suppose both checks evaluate
true. Then the GPU thread starts processing its assigned task. Therefore, as a
next step, the list pV als of size δ is initialized in shared memory. This list is used
for local communication of the computed p-values between GPU threads within
the same thread block, i.e., GPU threads processing the same edge Erow,col.

All tasks belonging to one edge Erow,col are processed in parallel by δ GPU
threads. The GPU threads iterate the separation sets, i.e., CI tests, belonging
to their task (see lines 4–27). Within each iteration, each GPU thread considers
one separation set indexed by a (see line 4). Next, each GPU thread sets the

74 4 GPU-Accelerated CSL on a Single GPU

entry in pV als at the position of its thread index to −1 and checks the validity of
the current separation set at index a. A separation set is valid if the edge indices
row and col differ from the separation set index a, i.e., Vrow ̸= Va, Vcol ̸= Va, and
if there exists an entry in the copy of the estimated skeleton matrix for either
one of the edges Erow,a or Ecol,a. Suppose that the separation set is valid.
Then, the p-value is computed based on Fisher’s z-transform of the inverted
three×three correlation matrix, constructed from the sample correlation entries
sCor[row][col], sCor[row][a], sCor[col][a]. The computed p-value is stored in the
list pV als at the position of the GPU thread’s index (see lines 8–10). Note that
the calculation follows the mathematical model introduced in Section 2.4.1.
In our CUDA-based implementation, the GPU kernel for level l = 1 uses the
functions log1p(. . .) and normcdf(. . .) provided by the CUDAMath API [177].

After synchronizing the GPU threads within the same thread block, one
primary GPU thread, i.e., tx = 0, compares each p-value in pV als against the
significance level α. If one p-value is greater than or equal to α, the corresponding
edge Erow,col is deleted in C, i.e., the fields C[row][col] and C[col][row] in the
estimated skeleton matrix are set to 0. Again, we set the fields in both upper
and lower triangular for technical reasons and use in subsequent levels. Further,
the index of the separation set that determined edge Erow,col as independent is
stored in the upper triangular of the separation sets matrix Sep (see line 19).

Once the primary GPU thread finished iterating the list pV als, all GPU
threads within the same thread block are synchronized (see line 24). Further,
if the primary GPU thread marked the edge Erow,col as independent, the GPU
threads within a thread block return early from the outer loop (see lines 25–27).
Otherwise, the GPU threads continue with the subsequent separation set belong-
ing to their tasks. The GPU kernel terminates once all launched GPU threads
have finished their computation.

4.2.5 GPU Acceleration for Levels 2 and Higher

In contrast to the first two levels, l = 0, 1, processing of levels l ≥ 2 introduces
two challenges, namely the computation of separation sets and the increased
complexity of calculating a pseudo-inverse matrix for the p-value computation.

A separation set for an edge Ei,j with i, j = 1, . . . , N and i ̸= j in any
level l ≥ 2 is constructed as a combination of variables of size l drawn from the
adjacency set adj(Cl, Vi). Thus, a combination function combinations(. . .) is
needed, which computes the set of all possible separation sets Si,j,l for an edge
Ei,j . In contrast, in level l = 0, the separation set is empty; in level l = 1, the
possible separation sets of size 1 are obtained from the adjacency set adj(Cl, Vi).

In levels l = 0, 1, the calculation of the matrix inverse for the p-value compu-
tation is based upon a two×two or a three×three matrix. Hence, implementing
the matrix inverse is straightforward (see Algorithms 4 and 5). Yet, for levels
l ≥ 2, the matrix inverse for the p-value computation is based upon a matrix of
dimension (l+2)× (l+2). Thus, calculating the pseudo-inverse matrix requires
more computing steps, e.g., using the Moore-Penrose algorithm [165].

In the following, we present two variants for GPU-accelerated processing
of levels l ≥ 2. The first variant leverages functionality provided by existing
CUDA-X libraries that build upon the CUDA framework. The second variant uses
a customized GPU kernel and adopts functions from cupc [287] to compute the
pseudo-inverse and the separation set candidates on the GPU.

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 75

Algorithm 6 CUDA-X library-based variant for levels l ≥ 2
Input: Vertex set V, correlation matrix sCor, estimated skeleton matrix C,
copy of estimated skeleton matrix Ĉ, separation sets matrix Sep, significance
level α, number of data samples n, level l

1: for row ← 0; row < |V|; row ← row + 1 do
2: for col← row; col < |V|; col← col + 1 do
3: if Ĉ[row][col] = 0 then
4: continue
5: end if
6: Srow,col,l ←combinations(row, col, Ĉ, l)
7: for Srow,col ∈ Srow,col,l do
8: tCor ←constructAuxCorMatrix(sCor, row, col, Srow,col)
9: allocateOnGPU(({U, V T, S−1, iCor}, (l + 2)2), ({SV }, l + 2))
10: cusolverDnGesvd(U, V T, SV, tCor)
11: inverseDiagonal(S−1, SV)
12: cublasSgemm(U, V T, S−1, iCor)
13: transferFromGPU(iCor)

14: r ← −1×iCor[1]√
(iCor[0]×iCor[l+2+1])

15: z ←
√

(n− 1− 3)× 0.5×log1p(2×r
1−r

)
16: p← 2× (1−normcdf(z))
17: if p ≥ α then
18: C[row][col]← 0
19: C[col][row]← 0
20: for a← 0; a < l; a← a+ 1 do
21: Sep[row][col][a]← Srow,col[a]
22: end for
23: break
24: end if
25: end for
26: end for
27: end for

CUDA-X Library-Based Variant

In the following, we describe an algorithm for processing levels l ≥ 2 in the
case of the Gaussian distribution model. The algorithm utilizes functions from
CUDA-X libraries to realize the required matrix pseudo-inverse calculation. To
the best of our knowledge, CUDA-X libraries do not ship a function for ma-
trix pseudo-inverse computation. But the CUDA-X libraries cuBLAS [176] and
cuSOLVER [179] provide functions for singular value decomposition [119] and
matrix multiplication, which are building blocks to compute the pseudo-inverse
matrix. The pseudo-inverse is needed to compute the p-value. Therefore the
CUDA-X library functions need to be called in the context of each CI test. As a
result, we assume sequential processing of the CI tests and cannot apply any of
the previously introduced mappings from Section 4.1.

Next, we describe the input, the output, and the operations performed by
our proposed algorithm, which we outline in Algorithm 6. Afterward, we discuss
the poor GPU utilization as a key limitation of the algorithm and present two
strategies to achieve a higher GPU utilization for better performance.

76 4 GPU-Accelerated CSL on a Single GPU

Input and Output

The algorithm receives the vertex set V, the correlation matrix sCor, the es-
timated skeleton matrix C, the copy of the estimated skeleton matrix Ĉ, the
separation sets matrix Sep, the significance level α, the number of data samples
n, and the current level l as input. The algorithm has no explicit output. During
execution, the data structures storing the estimated skeleton matrix C and the
separation sets matrix Sep are directly manipulated.

Description of the Operations of the CUDA-X Library-Based Algorithm

The described algorithm is executed for each level l ≥ 2 individually. At the
start, a CPU thread iterates over the upper triangular of the estimated skeleton
matrix copy Ĉ using the row and column indices row, col to access elements.
Then, it skips all deleted edges (see lines 3–5 of Algorithm 6, p. 75).

For the existing edges (see lines 6–23), the algorithm first computes the set
of all possible separation sets Srow,col,l of size l using the function combina-
tions(row, col, Ĉ, l) (see line 6). The function combinations(. . .) extracts the
adjacency sets adj(Cl, Vrow) and adj(Cl, Vcol) from Ĉ to compute all possible
separation sets of size l, which are returned.

Next, for each separation set Srow,col ∈ Srow,col,l, the p-value is calculated
(see lines 8–16). Therefore, an auxiliary correlation matrix tCor of dimension
(l+2)×(l+2) is constructed. It is filled with values from the sample correlation
matrix sCor at positions according to combinations of the variables Vrow, Vcol

and Srow,col (see line 8). Additional auxiliary matrices U, V T, S−1, iCor of di-
mension (l+2)×(l+2) and a vector SV of size l+2 are allocated in GPU global
memory (see line 9). The matrices U, V T , and the vector SV are needed for sin-
gular value decomposition. The matrix iCor will store the inverse of the auxiliary
correlation matrix. After these steps, the function cusolverDnGesvd(. . .)
from the library cuSOLVER is called to perform singular value decomposition.
Next, the diagonal matrix S−1 is computed based on SV as follows:

S(i, j)−1 =

{
1

SV (i) , if i = j;

0, otherwise, with i,j = 0, . . . , l+1.
. (4.22)

To conclude the inverse calculation, the function cublasSgemm(. . .) from the
library cuBLAS performs matrix multiplication. The inverted correlation matrix
iCor is copied from the GPU to the host system’s DRAM. Lastly, to compute
the p-value, the same operations used in the GPU kernel for level l = 1 are
performed on the CPU (see lines 14–16). Only the procedures in lines 8–13 are
performed on the GPU or interact with it.

If p ≥ α evaluates true, the edge is removed from the skeleton matrix C,
the corresponding separation set Srow,col is stored in Sep (see lines 17 – 22)
and the algorithm proceeds with the subsequent edge. Otherwise, the algorithm
processes the next separation set.

Limitation of the Algorithm

The outlined algorithm makes use of existing functionality to compute the p-
value. Yet, the utilization of functions from the CUDA-X library restricts the use
of the GPU to the distinct function calls in lines 10–12 of Algorithm 6. Further,

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 77

the GPU operations are performed on small-sized matrices with dimensions
starting at four × four in level l = 2. Thus, few GPU threads are launched,
resulting in high underutilization of the GPU compute resources.

To the best of our knowledge, functions from cuBLAS or cuSOLVER can only
be called from the CPU and are not available in GPU device code. Therefore, the
algorithm only conducts a single CI test at a time. Thus, effectively processing
all edges and CI tests of edges sequentially. The following two strategies are
considered to overcome this limitation and achieve higher GPU utilization.

Strategies to Achieve a Higher GPU Utilization

The first strategy to achieve higher GPU utilization employs CUDA streams [137]
to perform multiple CI tests in parallel. CUDA streams allow the concurrent ex-
ecution of multiple operations on the GPU. Thus, we let multiple CPU threads
process separate edges simultaneously. These CPU threads launch the GPU
operations in separate CUDA streams to achieve parallel execution.

The second strategy to achieve higher GPU utilization builds upon the idea
of fusing the computations for multiple CI tests into the same GPU operations.
Therefore, the auxiliary data matrix tCor is enlarged to store the values of the
sample correlation matrix, referring to multiple CI tests along its diagonal. For
example, consider fusing two 4× 4 auxiliary correlation matrices tCor1, tCor2.
The resulting fused auxiliary correlation matrix tCorfused of dimension 8 × 8
stores tCor1 in the upper left block and tCor2 in the lower right block. Hence,
this strategy trades-off GPU compute resource utilization with an increased
memory demand of tCorfused and iCorfused.

Both strategies address higher GPU utilization. Yet, they also come with
strong restrictions. For the CUDA stream-based strategy, the number of possible
CUDA streams, limited to several dozens [137], becomes a restriction. Further, this
strategy performs many steps on the CPU. The matrix fusion strategy is lim-
ited by its memory demand. Also, it is not guaranteed that the utilized CUDA-X
libraries efficiently handle many fused CI tests, as the data structure’s size in-
creases quadratically to the number of fused CI tests. Therefore, we consider a
GPU kernel-based variant, too.

GPU Kernel-Based Variant

In the following, we describe an algorithm for processing levels l ≥ 2 that uses
a customized GPU kernel in the case of the Gaussian distribution model. We
first discuss the chosen parallel execution strategy according to Section 4.1.
Afterward, we describe the input, the output, and the GPU kernel launch pa-
rameters. Lastly, we elucidate the operations performed within the GPU kernel
and highlight differences in related work [287].

Execution Strategy: Mapping of Tasks to Execution Units

The GPU kernel for levels l ≥ 2 presents a generalized case of the GPU kernel
for level l = 1. Thus, in levels l ≥ 2, we apply the same task definition and task
mapping as for the GPU kernel for level l = 1 (see Section 4.2.4). Note that
the range of the number of CI tests per edge Ei,j increases with higher levels l,
up to a limit. Therefore, the choice of an appropriate value for the parameter
u according to (4.21) is vital to achieving a balanced load. In Algorithm 7
(see p. 78), we outline the GPU kernel algorithm for any level l ≥ 2.

78 4 GPU-Accelerated CSL on a Single GPU

Algorithm 7 GPU kernel for levels l ≥ 2 for the Gaussian Distribution Model
Input: Vertex set V, correlation matrix sCor, estimated skeleton matrix C,
copy of estimated skeleton matrix Ĉ, separation sets matrix Sep, significance
level α, number of data samples n, level l
of blocks: N ×N
of threads per block: δ

1: row ← bx, col← by,N ← |V|
2: if row < col & C[row][col] ̸= 0 then
3: Initialize list pV als of length δ in shared memory
4: Initialize lists w, r1 of length (l + 2) in thread-local memory
5: Initialize matrices tCor, iCor, v, r2 of size (l+2)×(l+2) in thread-local memory
6: finished← false
7: for y ← 0; y < 2; y ← y + 1 do

8: for a← tx; a <
(|adj(Ĉ,Vrow)|−1

l

)
; a← a+ δ do

9: pV als[tx]← −1
10: Srow,col ←parallel comb(|adj(Ĉ, Vrow)| − 1, l, a)
11: setAuxCorMatrix(tCor, sCor, row, col, Srow,col)
12: pseudoInverse(iCor, tCor, v, r1, w, r2)

13: r ← −1×iCor[1]√
(iCor[0]×iCor[l+2+1])

14: z ←
√

(n− 1− 3)× 0.5×log1p(2×r
1−r

)
15: pvals[tx]← 2× (1−normcdf(z))
16: syncthreads()
17: if tx = 0 then
18: for b← 0; b < δ; b← b+ 1 do
19: if pV als[b] ≥ α then
20: C[row][col]← 0
21: C[col][row]← 0
22: Srow,col ←parallel comb(|adj(Ĉ, Vrow)| − 1, l, a+ b)
23: for c← 0; c < l; c← c+ 1 do
24: Sep[row][col][c]← Srow,col[c]
25: end for
26: break
27: end if
28: end for
29: end if
30: syncthreads()
31: if C[row][col] = 0 then
32: finished← true
33: break ▷ Early return
34: end if
35: end for
36: if finished ̸= true then
37: row ← by; col← bx;
38: else
39: break
40: end if
41: end for
42: end if

Input and Output

The GPU kernel receives the same input parameters as the GPU kernel for level
l = 1 (see Algorithm 5) with the addition of the current level l. Like the GPU

4.2 GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model 79

kernel for level l = 1, the GPU kernel for any level l ≥ 2 has no output but
directly changes entries in the data matrices C and Sep in GPU global memory.

GPU Kernel Launch Parameters

The GPU kernel is launched with N ×N thread blocks and δ threads per block.
Like the GPU kernel for level l = 1, we set δ = u following (4.21).

Description of the Operations Within the GPU Kernel

Once the GPU kernel is launched, each GPU thread sets indices row and col
according to its block ids (see line 1 of Algorithm 7, p. 78). These indices identify
the edge Erow,col that all GPU threads within the same thread block process.
In line 2, the algorithm checks if the edge Erow,col is in the upper triangular
of the estimated skeleton matrix and whether the edge is still present. If both
checks hold, the GPU threads start processing the edge Erow,col.

At first, several auxiliary data structures are initialized. These data struc-
tures include a list for the p-values pV als of length δ allocated in shared memory
and auxiliary lists and matrices allocated in GPU thread-local memory needed
for the pseudo-inverse calculation. In the CUDA-based implementation of the
GPU kernel, these data structures are initialized as fixed-size arrays at compile
time, using templated GPU kernels. Using fixed-size arrays avoids explicit mem-
ory allocations via malloc(. . .), which presents a performance bottleneck. As
a final preparation step, we set the flag finished = false, indicating that the
edge Erow,col was not yet processed. The flag indicates early termination at a
later stage of the algorithm (see line 39).

The following outer loop (see lines 7 – 41) is added for technical reasons. It
is used to process the separation sets constructed from the neighborhoods of the
variables Vrow, Vcol separately. The algorithm starts with the neighborhood of
Vrow. Next, the tasks belonging to the edge Erow,col are processed in parallel by
δ GPU threads. Therefore the GPU threads iterate all possible separation sets
belonging to their task concerning the neighborhood of Vrow first (see lines 8–40).
Within each iteration, each GPU thread considers one separation set indexed
by a. Based on the index a, the current level l, and the size of the neighborhood
of Vrow, each GPU thread determines its corresponding separation set using
the parallel combination function, parallel comb(. . .). Note this function is
adapted based on related work [287].

Next, the function setAuxCorMatrix(. . .) sets the entries of an auxiliary
correlation matrix tCor. The values for tCor are extracted from the sample
correlation matrix sCor at positions related to the variables Vrow, Vcol, and the
GPU thread’s current separation set Srow,col. The auxiliary correlation matrix is
inverted using an implementation of the Moore-Penrose algorithm [165] within
the function pseudoInverse(. . .) (see line 12). Afterward, the p-value is com-
puted using the inverted correlation matrix tCor according to the equations
defined in Section 2.4.1. Each GPU thread stores its computed p-value in the
list pV als at the position corresponding to the GPU thread’s thread id.

After synchronizing the GPU threads within the same thread block, one
primary GPU thread, i.e., tx = 0, compares each p-value in pV als against the
significance level α. If one p-value is greater than or equal to α, the according
entries in the estimated skeleton matrix C are set to zero, i.e., C[row][col] = 0,
C[col][row] = 0. Further, the corresponding separation set Srow,col is computed

80 4 GPU-Accelerated CSL on a Single GPU

and stored in the separation set matrix Sep. Once all entries of pV als are
processed, the GPU threads within the same thread block are synchronized.

If the primary GPU thread removed the edge Erow,col, the GPU threads
set the flag for early termination finished = true and exit early from both
loops. Otherwise, if all possible separation sets constructed from the neighbor-
hood of Vrow have been processed, then the indices row and col are exchanged
(see line 37). Hence, in the second iteration of the outer loop, all separation sets
computed from the neighborhood of Vcol are processed. Once all GPU threads
have terminated early or finished the second iteration of the outer loop, the
GPU kernel terminates.

Additional Notes

Generally, the GPU kernel-based variant for higher levels l ≥ 2 follows similar
ideas as the cuPC-E algorithm proposed by Zarabavani et al. [287]. In contrast
to our proposed GPU kernel, cuPC-E operates on a compacted version of the
adjacency structure (see Section 3.1.3 for more detail). Further, the cuPC-E

algorithm uses shared memory to improve access to the current row of the com-
pacted adjacency structure. In contrast, our proposed algorithm uses shared
memory for local communication of computed p-values. Thus, cuPC-E and its
optimized version cuPC-S require atomic operations to communicate the cal-
culated p-values, i.e., the results from CI tests, via GPU global memory. As
our proposed GPU kernel operates on the uncondensed adjacency structure, we
launch several threads blocks that do not perform p-value calculations. These
thread blocks exit the algorithm at line 2, as their indices refer to edges removed
in previous levels.

4.3 GPU-Accelerated Adjacency Search in PC-Stable for
Discrete Data

This section details our algorithm for a GPU-accelerated adjacency search in
PC-stable for discrete data (see Section 2.4.2). First, we outline the overall
idea of our proposed algorithm in Section 4.3.1 and emphasize GPU memory
management of auxiliary data structures. Afterward, we present the developed
GPU kernels for level l = 0 (see Section 4.3.2) and for any level l ≥ 1 (see Sec-
tion 4.3.3). For each of the GPU kernels, we describe the execution strategy
employed according to our definitions from Section 4.1. Further, we explain the
operations performed by each GPU thread and mention implementation detail
based on the CUDA framework [170]. Parts of this section have been published in
a research paper [81].

4.3.1 Outline of the GPU-Accelerated Adjacency Search

Our proposed GPU-accelerated adjacency search for discrete data applies Pear-
son’s χ2 test [190] as a CI test. The CI test builds upon the computation of
marginals over the contingency table, which requires auxiliary data structures.
We discuss different strategies to handle these auxiliary data structures on the
GPU. Afterward, we describe our proposed GPU-accelerated adjacency search
algorithm in detail.

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 81

Handling the Memory Demand of Auxiliary Data Structures
Needed for the Pearson χ2 Test

The Pearson χ2 test builds upon the computation of marginals over the contin-
gency table to decide on conditional independence [190]. Thus, in the context
of each performed CI test, a contingency table is constructed from the observa-
tional data D of the respective variables Vi,Vj , and Si,j , with Vi, Vj ∈ V, i ̸= j
and Si,j ⊂ V\{Vi, Vj} (for detail see Section 2.4.2). The computed contingency
table and the marginals are stored temporarily while performing the correspond-
ing CI test. Therefore, auxiliary data structures are required. In the following,
we present the memory demand of the auxiliary data structures with respect to
relevant parameters. We discuss which memory in the GPU memory hierarchy
to use for storing the auxiliary data structures and weigh different allocation
strategies when using the GPU global memory.

Memory Demand of the Auxiliary Data Structures

The memory demand of the auxiliary data structures storing the contingency
table and marginals during a CI test depends on the size of the domains Vi, Vj ,
and Si,j of the corresponding variables Vi,Vj , and Si,j . Each of the auxiliary data
structures stores several integer values. The number of entries of the contingency
table sct and marginals {s+vjsi,j , svi+si,j , s++si,j} are computed as follows:

sct = |Vi| × |Vj | × |Si,j |,
s+vjsi,j = |Vi| × |Si,j |,
svi+si,j = |Vj | × |Si,j |,
s++si,j = |Si,j |.

(4.23)

According to (4.23), the memory demand of one CI test increases drastically
with the size of the separation set Si,j , i.e., the level l in the adjacency search.
Note that |Si,j | is computed as the product from the discrete domains Vk for
each variable Vk ∈ Si,j . Moreover, the memory demand of a CI test increases
polynomially with the size of the variables’ domains. Table 4.4 (see p. 82) ex-
emplifies these two dependencies showing the number of entries needed in the
auxiliary data structures for increasing the variables’ domains and level l, i.e.,
the size of the separation set Si,j , for one CI test. Assuming 4-byte integers for
each entry results in a memory demand, for the illustrated examples, that ranges
from 32 B to 1 296 kB. Thus, depending on the level l and size of the variables’
domains, the auxiliary data structures of one CI test fit in GPU thread-local
memory, in shared memory, or require GPU global memory. Generally, the run-
time performance of the adjacency search benefits from storing the auxiliary
data structures closer to the actual processing units. However, these types of
memory are often limited in capacity. We discuss the applicability of the three
memory options for storing the auxiliary data structures below. In this con-
text, we need to consider the execution of hundreds to thousands of CI tests
in parallel, which increases the memory demand for storing the auxiliary data
structures by a corresponding factor.

82 4 GPU-Accelerated CSL on a Single GPU

level l 0 2 4
|Vi| = |Vj | = |Si,j | 2 4 8 2 4 8 2 4 8

number of entries 8 24 80 36 400 5 184 144 6 400 331 776

Table 4.4: Exemplary sizes of auxiliary data structures. The number of
entries in the auxiliary data structures is computed based on level l and the
size of the variables’ domains. Showing the impact of increasing the level l
and the size of the variables’ domains |Vi|, |Vj |, |Si,j |.

Use of GPU Thread-Local Memory

In the case that GPU thread-local memory is mapped to SM registers, its size
is limited. Thus, GPU thread-local memory is only relevant in edge cases. For
example if level l = 0 and |Vi| = |Vj | = |Si,j | = 2 is considered. For cases
requiring more memory, GPU thread-local memory regresses to GPU global
memory, increasing overhead and making tracking of the utilized GPU global
memory difficult. For our GPU-accelerated adjacency search, we refrain from
using GPU thread-local memory to store the auxiliary data structures.

Use of Shared Memory

The amount of shared memory is limited to several KB per SM. If multiple
thread blocks are concurrently scheduled on the same SM, the available shared
memory is split between the thread blocks. Thus, it is realistic to store the
auxiliary data structures in shared memory in most cases of level l = 0, which
we consider in our algorithm. In higher levels l, the auxiliary data structures
could be stored in shared memory for selected cases with low-sized domains.
As these present few cases, we do not cover storing auxiliary data structures in
shared memory in our GPU-accelerated adjacency search for levels l ≥ 1.

Use of GPU Global Memory

GPU global memory has a capacity of dozens of GB, allowing it to store the
auxiliary data structures while processing hundreds of CI tests in parallel in
higher levels l with large-sized domains of variables. Therefore, GPU global
memory is a compelling option for storing the auxiliary data structures during
the GPU-accelerated adjacency search. Below, we discuss three options for allo-
cating auxiliary data structures in GPU global memory. The three options must
consider that the memory demand of CI tests increases with higher levels l and
that the memory demand of individual CI tests also differs within a level.

Further, note that even the amount of available GPU global memory can
be exceeded. In that case, the number of CI tests executed in parallel can be
restricted to a certain degree. Yet, there exist cases in which GPU execution
should no longer be considered. For example, if the memory demand of a single
CI test’s auxiliary data structures exceeds the available GPU global memory, or
if the number of CI tests executed in parallel becomes so low, the GPU compute
resources are underutilized.

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 83

Memory Allocation Within the GPU Kernel

As a first option, we discuss memory allocation of the auxiliary data struc-
tures within the GPU kernel. Each GPU thread allocates the required GPU
global memory calling the function malloc(. . .) during GPU kernel execu-
tion. The GPU thread computes the exact size of the auxiliary data structures
and allocates only the necessary amount of memory. Thus, this option poses
high flexibility and allocates only the required memory. Yet, memory alloca-
tion from inside a GPU kernel degrades the overall performance of an executed
GPU kernel [278]. Further, this option requires explicit error handling inside the
GPU kernel in cases where the GPU global memory is exceeded upon a call of
malloc(. . .) in any GPU thread. Despite its high flexibility, we do not consider
the option to allocate the memory for the auxiliary data structure within the
GPU kernel due to its impact on performance and overhead in error handling.

Allocation of Required GPU Memory Before GPU Kernel Launch

As a second option, we discuss allocating GPU global memory for the auxil-
iary data structures before launching the GPU kernel for a distinct level l. In
particular, this option assumes that data for all possible CI tests in the current
level l is allocated before the GPU kernel launch. When performing the CI tests,
each GPU thread then computes the CI test’s index to access a unique memory
location. While this option avoids costly GPU global memory allocations from
within the GPU kernel, it introduces multiple drawbacks. First, a computational
effort is added to determine the memory demand for all CI tests in the current
level l. This step requires building the set of separation set combinations Si,j,l

for all edges Ei,j , which accumulates runtime. Second, GPU global memory al-
location for auxiliary data structures for all possible CI tests results in a high
memory footprint. Note that GPU global memory is reserved even for those
CI tests that are never performed due to early termination. Lastly, GPU global
memory reallocation is needed after each level l, given that the required memory
for each CI test increases with each subsequent level. The reallocation results in
fragmented GPU global memory, which incurs overhead or causes memory allo-
cation errors [253]. Due to these drawbacks, we avoid this option when designing
our GPU-accelerated adjacency search.

Allocation of a Fixed-Size Memory Block Before GPU Kernel Launch

As a third option, we consider allocating a fixed-size GPU global memory block
to store the auxiliary data structure before the first GPU kernel launch. The
algorithm reuses the same GPU global memory block for performing CI tests
across multiple levels to avoid memory fragmentation. Thus, the algorithm sets
all values within the GPU global memory block to zero at the start of each level l.
Note that GPU programming frameworks commonly support such functionality,
e.g., see CUDA’s function cudaMemset(. . .).

We use a conservative approximation to determine the size of the fixed-size
GPU global memory block. First, we compute the required maximum amount
of memory for the auxiliary data of a single CI test in the maximum level ml,
denoted by memci. To avoid overhead computing the exact memory demand for
each CI test, we take memci, which presents an upper bound on the memory
demand for all CI tests. Using the value ofmemci, we then calculate the memory

84 4 GPU-Accelerated CSL on a Single GPU

size of the fixed-size block that stores the auxiliary data structures. We denote
this memory size by memaux.

The value of memci is computed using (4.24), where maxi=1,...,N{|Vi|} de-
notes the largest domain within the set of variables, and sizeof(dt) provides
the size of the used data type in bytes. Note that the value of ml according to
the underlying true DAG of the CGM is not known in advance. Hence, either
a value for ml is provided as an input parameter, which restricts the search, or
ml is assumed according to the worst case, i.e., a fully connected CGM, and set
as ml = N − 2.

memci = sizeof(dt)× (maxi=1,...,N{|Vi|})ml+2 (4.24)

Afterward, the memory size of the fixed-size GPU global memory block for the
auxiliary data structures memaux is calculated as follows:

memaux =

memci ×N ×N × γ if memci ×N ×N × γ ≤ memfree

memfree if memfree < memci ×N ×N × γ

and memci ≤ memfree

0 otherwise.

(4.25)
The parameter memfree denotes the available GPU global memory after allo-
cating all input and output data structures. The parameter γ is a factor that
represents the number of CI tests per edge that are conducted in parallel.

The first case in (4.25) shows that enough GPU global memory is available to
store the auxiliary data structures for γ CI tests for all edges. In the second case,
the free GPU global memory is exceeded if γ CI tests for all edges are executed
in parallel. However, the amount of available GPU global memory still allows
processing at least one CI test. Thus, execution on GPU is still possible, but
the degree of parallelism must be restricted. In the last case, i.e., memaux = 0,
the amount of GPU global memory is insufficient to conduct a single CI test
on the GPU, and the algorithm is aborted. In our GPU-accelerated adjacency
search, described in the following, we employ this option to manage the GPU
global memory for the auxiliary data structures.

Description of the GPU-Accelerated Adjacency Search

In Algorithm 8 (see p. 85), we outline our GPU-accelerated adjacency search
tailored to discrete data. The algorithm builds upon the considerations men-
tioned above to manage GPU global memory for the auxiliary data structures.
Algorithm 8 focuses on the necessary operations, data structures, and interac-
tions between the host system and the GPU. The launched GPU kernels are
detailed in the subsequent Sections 4.3.2 and 4.3.3.

Input

The algorithm receives as input the vertex set V = {V1, . . . , VN} representing
the dataset’s N variables (see Section 2.1) and the observational data matrix
D of dimension N × n. Further, the algorithm gets the significance level α, the
maximum level ml, and the number of data samples n as input. For technical

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 85

Algorithm 8 GPU-accelerated adjacency search for discrete data
Input: Vertex set V, observational data matrix D, significance level α, maxi-
mum level ml, number of data samples n
Output: Estimated skeleton matrix C, separation sets matrix Sep

1: Let dom be a vector of size |V|
2: for Vi ∈ V do
3: dom[Vi]← |Vi|
4: end for
5: mdom←max(dom)
6: memfree ←estimateFreeGPUMemory(|V|, n,ml)
7: memci ←estimateAuxiliaryDataMemoryDemand(mdom,ml)
8: while memci > memfree &ml ≥ 0 do
9: ml← ml − 1
10: memfree ←estimateFreeGPUMemory(|V|, n,ml)
11: memci ←estimateAuxiliaryDataMemoryDemand(mdom,ml)
12: end while
13: if ml < 0 then
14: Return with error: Not enough global memory available on the GPU
15: end if
16: allocateOnGPU(({maux},computeMemBlockSize(memci,memfree, N)))
17: l← 0
18: Let C and Ĉ be |V| × |V| matrices with all entries set to 1
19: Let Sep be an |V| × |V| ×ml matrix with all entries set to −1
20: transferToGPU(V, D, C, Ĉ, Sep)
21: if hasEnoughSharedMemory(. . .) then
22: launchGPUKernel(level0Shared, {V, D, C, Sep, α, n, dom,mdom})
23: else
24: launchGPUKernel(level0, {V, D, C, Sep, α, n, dom,mdom,maux})
25: end if
26: update(ml)
27: while ml > l do
28: l = l + 1
29: compact(Ĉ, C)
30: adjustKernelLaunchDimensions(l,memaux)
31: launchGPUKernel(levelL, {V, D, C, Ĉ, Sep, α, n, dom,mdom,maux})
32: update(ml)
33: end while
34: transferFromGPU(C, Sep)
35: return C, Sep

reasons, we assume that the observational dataD has been pre-processed so that
for each variable Vi ∈ V, its corresponding domain Vi ranges from integer values
{0, . . . , |Vi|}. Further, we assume that the observational data D is stored in a
column-major format, where each column represents one variable and each row
refers to one data sample. The significance level α serves as a threshold while
performing the CI tests. The maximum level ml is an optional parameter that
restricts the levels l considered during the adjacency search, i.e., the maximum
size of any separation set.

86 4 GPU-Accelerated CSL on a Single GPU

Output

Upon successful completion, the adjacency search outputs two matrices. The
first matrix of dimension N × N stores the estimated skeleton C. The second
matrix, denoted Sep, of dimension N×N×ml, contains the separation sets Si,j

corresponding to the pairs of variables (Vi, Vj) estimated to be independent.

Description of the Procedure

The algorithm starts initializing necessary data structures, computing the mem-
ory demand of the auxiliary data structures, and setting parameters. First,
it initializes a vector dom of size N , storing the sizes of the domains |Vi| of
each variable Vi ∈ V (see lines 2–4 of Algorithm 8, p. 85). Note this op-
eration is implemented in a dedicated GPU kernel, which counts the unique
values of all variables V in parallel. Next, the size of the largest domain
mdom is determined. This value is required in the subsequent steps to com-
pute the size of the fixed-size GPU global memory block for storing the aux-
iliary data structures. Therefore, the available GPU global memory memfree

is estimated in function estimateFreeGPUMemory(. . .), which considers
the memory demand for the input and output data structures. The function
estimateAuxiliaryDataMemoryDemand(. . .) computes the memory de-
mand for one CI test memci based on the values of mdom and ml according
to (4.24). The algorithm reduces the maximum level ml = ml − 1 and recal-
culates memfree and memci if the available GPU global memory memfree is
smaller than the memory required for one CI test memci. This operation is re-
peated until either memci is smaller than memfree or the maximum level ml is
smaller than zero. Suppose that the maximum level is smaller than zero. Then
the algorithm terminates with an out of GPU memory error. Otherwise, the
fixed-size GPU memory block maux for the auxiliary data structures is allo-
cated on the GPU (see line 16). This operation concludes the preparation steps
for the memory management of the auxiliary data structures.

Next, in lines 17–34, the proposed algorithm for discrete data follows similar
steps as the GPU-accelerated algorithm for the Gaussian distribution model.
First, the level l is set to 0. Then, the data matrices for the estimated skeleton
C and its compacted version Ĉ of dimension N × N and the matrix Sep of
dimension N ×N ×ml are allocated and initialized with values of 1 or −1. The
algorithm transfers all data structures to the GPU required when executing the
GPU kernels (see line 20).

Now, the algorithm starts processing level l = 0. There exist two variants for
the GPU kernel for level l = 0. The first variant of the GPU kernel that utilizes
shared memory to store the auxiliary data structures is used if the maximum
domain mdom is not large, i.e., the auxiliary data structures fit into shared
memory. Otherwise, the second variant of the GPU kernel is called. This GPU
kernel usesmaux to store the auxiliary data structures. Hence, it does not benefit
from faster access to shared memory but can process arbitrarily-sized maximum
domains. For detail on the GPU kernel using shared memory, see Section 4.3.2.

After successfully processing level l = 0, the update(. . .) function checks if
the maximum levelml can be reduced, according to (4.19). The subsequent levels
are processed iterative, increasing the level l by one within each iteration, as long
as the condition ml > l holds (see lines 27 – 33). In this loop, the compact(. . .)

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 87

procedure that builds upon related work [287] compacts the estimated skeleton
matrix C and stores the result in Ĉ. In the compacted version, each row stores
the indices to the remaining adjacent variables consecutive in memory. Next, the
procedure adjustKernelLaunchDimensions(. . .) adjusts the dimensions of
the GPU kernel launch parameter according to the current level l and the fixed-
size GPU global memory block. The GPU kernel launch parameters are adjusted
to cover the second case of (4.25), i.e., to restrict the number of CI tests per-
formed in parallel if GPU global memory is exceeded otherwise. The GPU kernel
for the current level l is launched with the adjusted launch parameters. For de-
tail on the GPU kernel for levels l ≥ 1, see Section 4.3.3. Once the GPU kernel
has completed its computation, the update(. . .) function is called, and the
algorithm proceeds with the subsequent level.

In the case that ml ≤ l, the estimated skeleton matrix C and the separa-
tion sets matrix Sep are copied from the GPU to the host system’s DRAM.
Afterward, both data structures are returned, and the algorithm finishes.

CUDA-Based Implementation Detail

Our reference implementation of Algorithm 8 (see p. 85) targets NVIDIA GPUs.
Therefore, the GPU kernels are implemented using CUDA [170]. The implementa-
tion utilizes the following CUDA-based procedures to manage GPU global mem-
ory. In the procedure estimateFreeGPUMemory(. . .), the total amount of
GPU global memory is queried using cudaMemGetInfo(. . .). Data structures
required on the GPU are allocated using cudaMalloc(. . .), and transfers are
initiated via cudaMemcpy(. . .). If needed, cudaMemSet(. . .) is used to set
all data structure entries to a given value, e.g., in lines 18–19.

The CUDA-based implementation of Algorithm 8 handles datasets, which ex-
ceed the GPU’s memory capacity, by reducing the number of CI tests performed
in parallel. As a result, the allocated GPU global memory for the auxiliary data
structures is reduced to remain within the GPU’s memory capacity limits.

4.3.2 GPU Kernel for Level 0

In the following, we describe the GPU kernel for level l = 0, assuming that
the observational data D is discrete. In particular, we detail the variant of
the GPU kernel for level l = 0 that uses shared memory to store the auxiliary
data structures. Apart from keeping the auxiliary data structures in GPU global
memory, the variant relying on GPU global memory behaves similarly to the one
using shared memory. First, we present the chosen parallel execution strategy,
according to Section 4.1. Further, we describe the input, the output, and the
GPU kernel launch parameters. Lastly, we specify the operations performed
within the GPU kernel.

Execution Strategy: Mapping of Tasks to Execution Units

In level l = 0, the separation set for any pair of variables (Vi, Vj) with
i, j = 1, . . . , N and i ̸= j is empty, i.e., Si,j = ∅, and only a single CI test
is performed. Further, in the case of the Pearson χ2 test [190], all observational
data samples related to a pair of variables (Vi, Vj) need to be accessed. Thus, in
contrast to existing GPU-accelerated adjacency searches for the Gaussian distri-
bution model that apply the mapping (M2), e.g., see [226, 287], in the discrete

88 4 GPU-Accelerated CSL on a Single GPU

case for level l = 0, we use mapping (M1) (see p. 61). In this context, we define
a task for parallel execution as processing r data samples of one CI test of an
edge Ei,j . Following mapping (M1), each task is mapped to one GPU thread.
All tasks belonging to the same CI test are grouped in the same thread block
to enable local communication via shared memory while computing the auxil-
iary data structures of the CI test. Further, the r data samples are assigned to
each task in a manner that fosters coalesced memory access of the GPU threads
within the same warp [41, 173]. For example, having each GPU thread in the
same warp access data samples in a stride of the warp size. Following these con-
siderations, we implement the GPU kernel for level l = 0 using shared memory,
assuming discrete data as outlined in Algorithm 9 (see p. 89).

Input and Output

The GPU kernel receives the vertex set V, the observational data matrix D with
dimension N × n, the estimated skeleton matrix C with dimension N ×N , the
separation sets matrix Sep of dimension N×N×ml, the significance level α, the
number of data samples n, the vector of domain sizes dom, and the maximum
domain mdom as input. The GPU kernel has no explicit output, as the GPU
kernel stores its results directly in the data structures C and Sep. The level
l = 0 is, per definition, order-independent. Therefore, no copy of the estimated
skeleton matrix Ĉ is required.

GPU Kernel Launch Parameters

The GPU kernel is launched with N ×N thread blocks and δ threads per block.
The value of the parameter δ must take GPU-specific hardware characteristics
into account. Therefore, we suggest setting δ according to the GPU’s warp size
ws, where ws is a positive integer that commonly equals 32, and the maximum
number of supported GPU threads per thread block TTBmax

, as follows:

ws ≤ δ ≤ TTBmax
and δ mod ws ≡ 0 if ws < n

δ = ws otherwise.
(4.26)

Following (4.26), ensures that the number of supported GPU threads per thread
block is not exceeded. At the same time, the number of GPU threads is always
set as a multiple of the GPU’s warp size to fill the entire warps, if possible. Note
that if the number of data samples n is not a multiple of the warp size ws, for
example, in the case that ws > n, some GPU threads in one warp perform no
operations. The parameter δ influences the number of data samples processed in
parallel. Thus, large values of δ, e.g., u = TTBmax , provide the most paralleliza-
tion while using shared memory for local communication. However, the local
communication, e.g., via atomic operations, becomes a potential performance
bottleneck when choosing large values of δ. Hence, we suggest choosing smaller
values of δ that retain a certain degree of parallelism, e.g., δ = {64, 128}.

Description of the Operations Within the GPU Kernel

At the start of Algorithm 9 (see p. 89), each GPU thread sets its indices row and
col that refer to the position of the edge Erow,col to process within the estimated
skeleton matrix C. The indices are based on the thread block dimensions bx and

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 89

Algorithm 9 GPU kernel for level l = 0 for discrete data using shared memory
Input: Vertex set V, observational data D, estimated skeleton matrix C, sep-
aration sets matrix Sep, significance level α, number of data samples n, vector
of domain sizes dom, maximum domain mdom
of blocks: N ×N
of threads per block: δ
Shared memory: (mdom2 + 2×mdom)×sizeof(int)
1: row ← bx, col← by
2: if row < col then
3: Initialize fvrowvcol of size mdom2 in shared memory and set entries to 0
4: Initialize f+vcol ,fvrow+ of size mdom in shared memory and set entries to 0
5: for a← tx; a < n; a← a+ δ do
6: atomicAdd(fvrowvcol [D[Vrow][a]× dom[Vrow] +D[Vcol][a]], 1)
7: end for
8: syncthreads()
9: for a← tx; a < dom[Vrow]× dom[Vcol]; a← a+ δ do
10: atomicAdd(fvrow+[

a
dom[Vcol]

], fvrowvcol [a])

11: atomicAdd(f+vcol [a mod dom[Vcol]], fvrowvcol [a])
12: end for
13: syncthreads()
14: if tx = 0 then
15: χ← 0
16: for a← 0; a < dom[Vrow]; a← a+ 1 do
17: for b← 0; b < dom[Vcol]; b← b+ 1 do

18: exp← fvrow+[a]×f+vcol
[b]

n

19: if exp ̸= 0 then
20: o← fvrowvcol [a× dom[Vcol] + b]

21: χ← χ+ (o−exp)2

exp

22: end if
23: end for
24: end for
25: p←pchisq(χ, (dom[Vrow]− 1)× (dom[Vcol]− 1))
26: if p ≥ α then
27: C[row][col]← 0
28: C[col][row]← 0
29: Sep[row][col][0]← 0
30: end if
31: end if
32: end if

by, see line 1. Thus, δ GPU threads jointly process the edge Erow,col. The
algorithm considers elements in the upper triangular of the estimated skeleton
matrix C only, as the performed CI test is direction-independent.

In the following, the auxiliary data structures for the contingency table and
marginals are initialized in shared memory, and all entries are set to 0 (see lines
3–4 of Algorithm 9). Note that this step is skipped for the variant of the GPU
kernel that uses a fixed-size GPU global memory block for the auxiliary data
structures that is reserved before GPU kernel launch.

90 4 GPU-Accelerated CSL on a Single GPU

Afterward, the contingency table is computed jointly by the δ GPU threads
within the same thread block. Therefore, the δ GPU threads iterate the n data
samples in a stride of size δ (see lines 5–7). Each GPU thread increments one
entry in the contingency table in each iteration using an atomicAdd(. . .). The
entry’s location in the contingency table is computed based on the considered
data sample’s values concerning variables Vrow, Vcol.

The GPU threads within the same thread block are synchronized, before
these GPU threads jointly calculate the marginals based on the contingency
table (see lines 8–12). Again, the GPU threads apply an atomicAdd(. . .) to
avoid any conflicts while writing to the data structures of the marginals.

Upon completion of the marginal calculation, the GPU threads within the
same thread block are synchronized and one main GPU thread, i.e., tx = 0,
finalizes the computations of the CI test (see lines 14–31). Therefore, the main
GPU thread computes the statistics derived from the marginals over the ob-
served frequencies of the corresponding contingency table entry. Further, the
main GPU thread computes the p-value using the function pchisq(. . .) [264]
and compares the p-value with the significance level α. If p ≥ α, the correspond-
ing edge Erow,col is deleted in C, i.e., the fields C[row][col] and C[col][row] in
the estimated skeleton matrix are set to 0. As a final step, the separation set is
marked at the corresponding index in the upper triangular matrix (see line 29).
The GPU kernel terminates once all GPU threads have finished.

4.3.3 GPU Kernel for Levels 1 and Higher

In the following, we describe the GPU kernel for any level l ≥ 1, assuming that
the observational data D is discrete. We first describe the applied parallel execu-
tion strategy according to Section 4.1. Next, we mention the input, the output,
and the GPU kernel launch parameters. Finally, we elucidate the operations
performed by each GPU thread during GPU kernel execution.

Execution Strategy: Mapping of Tasks to Execution Units

For the GPU kernel for any level l ≥ 1, the execution strategy must handle a
variable number of CI tests per edge Ei,j with i, j = 1, . . . , N and i ̸= j. The
number of performed CI tests for any edge Ei,j varies between 0 and |Si,j,l|, de-
pending on the structure of the CGM’s underlying true DAG and the adjacency
set adj(Cl, Vi). Consequently, we require a mapping of tasks to the execution
units that addresses communication while processing multiple CI tests per edge
Ei,j . Further, each CI test for the discrete data accesses all n data samples of D
for Vi, Vj , S

i,j . Therefore, the task mapping must reflect efficient memory access.
These two requirements are best addressed using mapping (M3). Hence,

each task processes r data samples from u CI tests related to the same edge
Ei,j . Thus, the total number of tasks ttot of an edge Ei,j is computed as follows:

ttot =
⌈n
r

⌉
×

⌈
|Si,j,l|

u

⌉
. (4.27)

According to mapping (M3), the total number of tasks ttot is restricted by the
maximum number of GPU threads per thread block TTBmax

to ensure local
communication of the CI test results for early termination. Further, the value
of r is chosen to fulfill the following:

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 91

ws ≤
⌈n
r

⌉
≤ TTBmax and

⌈n
r

⌉
mod ws ≡ 0, (4.28)

to facilitate efficient memory access by coalescing. According to (4.27)
and (4.28), the choice of r and u is a balance between processing more data
samples or CI tests in one task, respectively, in parallel by multiple tasks sched-
uled to GPU threads within the same thread block. Therefore, we suggest setting

r =
⌈

n
ws

⌉
or

⌈
n

2×ws

⌉
, which allows processing multiple data samples in the same

task. At the same time, we suggest setting u =
⌈
|Si,j,l|

2

⌉
or

⌈
|Si,j,l|

4

⌉
to map

multiple CI tests to the same task. Thus, a balance between processing data
samples and CI tests in parallel in the same task is achieved. Based on these
considerations, we outline the GPU kernel for levels l ≥ 1 under the assumption
that the observational data D is discrete in Algorithm 10 (see p. 92).

Input and Output

The GPU kernel gets the same input parameters as the GPU kernel for level
l = 0 (see Section 4.3.2) with the addition of the compacted estimated skeleton
matrix Ĉ, the fixed-size GPU global memory block maux for the auxiliary data
structures, and the current level l. The compacted estimated skeleton matrix Ĉ
enables more efficient data access and ensures the order independence of PC-
stable [35]. The GPU kernel manipulates the data structures C and Sep, which
contain the results of the computation required in the subsequent levels.

GPU Kernel Launch Parameters

The GPU kernel is launched with N × N
β thread blocks and δ × γ × β threads

per block. The value of δ is set to δ =
⌈
n
r

⌉
with a choice for the parameter r

fulfilling the requirements defined in (4.28). Following (4.27), the value of γ is set

to γ =
⌈
|Si,j,l|

u

⌉
with an appropriate choice for the parameter u. Note that the

parameter β represents an extension beyond the applied execution strategy and
mapping (M3), which allows for additional parallelism by processing multiple
edges within the same thread block [81]. In this work, we generally assume β = 1.
Further, the GPU kernel reserves shared memory of size δ×γ×β×sizeof(float)
to store and share the local statistics computed by each GPU thread. To keep the
amount of shared memory used by each thread block small, to allow for multiple
thread blocks per SM, we suggest choosing smaller values for the parameters

δ, γ, β, e.g., by setting r =
⌈

n
ws

⌉
and u =

⌈
|Si,j,l|

2

⌉
.

Description of the Operations within the GPU Kernel

Upon GPU kernel launch, each GPU thread sets the index row corresponding
to the block dimension bx. Next, the indices of variables in the adjacency set
adj(Cl, Vrow) are loaded from the compacted estimated skeleton matrix Ĉ into
shared memory by GPU threads from the same thread block (see line 2 of
Algorithm 10, p. 92). Using shared memory allows for fast access to adjacent
variables, e.g., during the computation of the separation sets in lines 6–7.

In lines five and following, γ GPU threads jointly iterate all possible separa-
tion sets for the edge Erow,col, i.e., the pair of variables (Vrow, Vcol), in a stride
of γ. Thus, δ × γ GPU threads from the same thread block process γ CI tests

92 4 GPU-Accelerated CSL on a Single GPU

Algorithm 10 GPU kernel for arbitrary levels l ≥ 1 for discrete data.
Input: Vertex set V, observational data D, estimated skeleton matrix C, com-
pacted estimated skeleton matrix Ĉ, separation sets matrix Sep, significance
level α, number of data samples n, level l, vector of domain sizes dom, max-
imum domain mdom, fixed-size GPU global memory block maux for auxiliary
data structures
of blocks: N × N

β
of threads per block: δ × γ × β
Shared memory: δ × γ × β×sizeof(float)
1: row ← bx
2: Let as(Vrow)← adj(Ĉ, Vrow) in shared memory
3: syncthreads()
4: col← as(Vrow)[by × β + tz]
5: for c← ty; c <

(|as(Vrow)|−1
l

)
; c← c+ γ do

6: Pos1..l ←parallel comb(|as(Vrow)| − 1, l, c)
7: Srow,col ← as(Vrow)[Pos1..l]
8: if tx = 0 then
9: In maux set mdoml+2 entries of fvrowvcols

row,col , mdoml+1 entries of

f+vcols
row,col and fvrow+srow,col , and mdoml entries of f++srow,col to 0

10: end if
11: syncthreads()
12: computeContingencyTable(fvrowvcols

row,col)
13: syncthreads()
14: computeMarginals(f+vcols

row,col , fvrow+srow,col , f++srow,col)
15: syncthreads()
16: computeLocalStatistic(χ)
17: syncthreads()
18: if tx = 0 then
19: χ0 ← 0
20: for g ← tz × γ × δ + ty; g < tz × γ × δ + ty × δ; g ← g + 1 do
21: χ0 ← χ0 + χ[g]
22: end for
23: p←pchisq(χ0, (dom[Vrow]− 1)× (dom[Vcol]− 1)×

∏
Vz∈Srow,col dom[Vz])

24: if p ≥ α then
25: if acquireMutex(tz) then
26: C[row][col]← 0
27: C[col][row]← 0
28: for d← 0; d < l; d← d+ 1 do
29: Sep[row][col][d]← Srow,col[d]
30: end for
31: end if
32: end if
33: end if
34: syncthreads()
35: if C[row][col] = 0 then
36: break ▷ Early return
37: end if
38: end for

in parallel. Within this loop, each GPU thread determines the separation set
corresponding to the current iteration c (see lines 6–7). Next, for each of the

4.3 GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data 93

γ CI tests, one main GPU thread, i.e., tx = 0, sets all entries within the cor-
responding auxiliary data structure fvrowvcolsrow,col ,f+vcolsrow,col , fvrow+srow,col

and f++srow,col to 0.
Afterward, the δ GPU threads jointly compute the contingency table based

on the observational data D in procedure computeContingencyTable(. . .)
(see line 12). Once the contingency table is calculated and the GPU threads
are synchronized, the δ GPU threads jointly compute the marginals over the
contingency table in the procedure computeMarginals(. . .) (see line 14).
Finally, the δ GPU threads determine a part of the statistics in the procedure
computeLocalStatistic(. . .) (see line 16 of Algorithm 10, p. 92). Details of
these three procedures are shown separately in Algorithm 11 (see p. 94).

In particular, in the procedure computeContingencyTable(. . .)
(see lines 1–10 of Algorithm 11), the γ GPU threads iterate the n data samples
of the observational data D. In each iteration, each GPU thread increments the
location in the contingency table according to the values stored at the data sam-
ple’s entries in D related to Srow,col, Vrow, and Vcol. Using an atomic operation
for the increment avoids any write conflicts of multiple GPU threads.

In the procedure computeMarginals(. . .) (see lines 11–17 of Algo-
rithm 11), the γ GPU threads jointly compute the marginals f+vcolsrow,col ,
fvrow+srow,col and f++srow,col . Therefore, the GPU threads iterate over the con-
tingency table fvrowvcolsrow,col in a stride of size γ. Within each iteration, each
GPU thread increments the marginals with the value from the current position
of the contingency table. Again, atomic operations for the increment avoid any
write conflicts if the γ GPU threads.

In the procedure computeLocalStatistic(. . .) (see lines 18–33 of Algo-
rithm 11), each of the γ GPU threads computes one part of the statistics. At
first, each GPU thread sets the value at its position in vector χ in shared mem-
ory to 0. Next, each GPU thread processes a share of the contingency table and
calculates the expected frequency (see line 24) to compute the statistics (see line
27). Afterward, each GPU thread stores its computed statistics in the vector χ
at the position corresponding to the GPU’s thread id.

After the δ GPU threads have finished the computations of the proce-
dure computeLocalStatistic(. . .), one main GPU thread for each of the
γ CI tests, i.e., tx = 0, performs the final operations for the CI test. The main
GPU thread computes the sum over the local statistics in lines 19–22 of Algo-
rithm 10 (see p. 92) and stores the sum in χ0. Next, the procedure pchisq(. . .)
is called to calculate the p-value based upon χ0 and the degrees of freedom df .
Note df is calculated according to (2.10). If the p-value is larger than or equal
to α, the entries in the estimated skeleton C corresponding to the edge Erow,col

are set to 0, and the separation set is stored in Sep (see lines 24–32 of Algo-
rithm 10). Note that a lock is acquired in line 25 to avoid any write conflict
between the γ main threads. If, the edge is marked as independent, the loop
over the CI tests is terminated early (see lines 35 – 37 of Algorithm 10). Once
all launched GPU threads have finished, the GPU kernel call terminates.

Additional Notes

The described GPU kernel launch parameters and operations refer to the stan-
dard case for the GPU kernel for arbitrary levels l ≥ 1. Yet, if data is high-
dimensional, the required memory for the auxiliary data structures can exceed

94 4 GPU-Accelerated CSL on a Single GPU

Algorithm 11 Procedures called within Algorithm 10.
The procedures assume access to all variables defined in Algorithm 10.
Input to functions refers to the data computed within the function added for
better readability.

1: procedure computeContingencyTable(fvrowvcols
row,col)

2: for g ← tx; g < n; g ← g + δ do
3: sumS ← 0, levS ← 1
4: for all Vz ∈ Srow,col do
5: sumS ← sumS + (D[Vz][g]× levS)
6: levS ← levS × dom[Vz]
7: end for
8: atomicAdd(fvrowvcols

row,col [sumS × dom[Vrow]× dom[Vcol]+
D[Vrow][g]× dom[Vcol] +D[Vcol][g]], 1)

9: end for
10: end procedure

11: procedure computeMarginals(f+vcols
row,col , fvrow+srow,col ,

f++srow,col)
12: for g ← tx; g < dom[Vrow]× dom[Vcol]×

∏
Vz∈Srow,col dom[Vz]; g ← g + δ do

13: atomicAdd(f+vcols
row,col [g

dom[Vcol]
], fvrowvcols

row,col [g])

14: atomicAdd(fvrow+srow,col [g
dom[Vrow]×dom[Vcol]

×dom[Vcol]+g mod dom[Vcol]],

fvrowvcols
row,col [g])

15: atomicAdd(f++srow,col [g
dom[Vrow]×dom[Vcol]

], fvrowvcols
row,col [g])

16: end for
17: end procedure

18: procedure computeLocalStatistic(χ)
19: χ[tz × γ × δ + ty × δ + tx] = 0
20: for g ← tx; g <

∏
Vz∈Srow,col dom[Vz]; g ← g + δ do

21: for a← 0; a < dom[Vrow]; a← a+ 1 do
22: for b← 0; b < dom[Vcol]; b← b+ 1 do
23: if fvrowvcols

row,col [g] ̸= 0 then

24: exp←
f
+vcols

row,col [g×dom[Vrow]+a]×f
vrow+srow,col [g×dom[Vcol]+b]

f
++srow,col [u]

25: if exp ̸= 0 then
26: o← fvrowvcols

row,col [(g×dom[Vrow]×dom[Vcol])+(a×dom[Vcol])+b]

27: χ[tz × γ × δ + ty × δ + tx] = χ[tz × γ × δ + ty × δ + tx] + (o−exp)2

exp

28: end if
29: end if
30: end for
31: end for
32: end for
33: end procedure

the reserved fixed-size GPU global memory block. In this case, the procedure
adjustKernelLaunchDimensions(. . .) shown in Algorithm 8 determines a
factor 𭟋 that limits the parallel execution of the GPU kernel to constrain the
memory demand. As a result, only N

𭟋 ×
N
β thread blocks are launched, and

each thread block processes 𭟋 edges sequentially. Hence, Algorithm 10 needs an
additional loop over 𭟋 elements, which covers all illustrated steps and sets the
index row (see line 1) according to the current iteration.

4.4 GPU-Accelerated Information-Theoretic CSL 95

4.4 GPU-Accelerated Adjacency Search in PC-Stable
with an Information-Theoretic GPU-Based CI Test

This section details our GPU-based CI test, GPUCMIknn, and an algorithm for a
GPU-accelerated adjacency search in PC-stable that employs an extended ver-
sion of GPUCMIknn. The GPU-based CI test and the GPU-accelerated adjacency
search are designed for information-theoretic CI tests that build upon Condi-
tional Mutual Information (CMI) estimation using k-Nearest Neighbor (k-NN)-
based approaches, e.g., [97, 100, 214].

In the following, we describe our two algorithms under the assumption of
mixed discrete-continuous data with non-linear relationships (see Section 2.4.3)
and the application of the CI test by Huegle et al. [100]. In our original pub-
lication of GPUCMIknn [83], we outlined the algorithms for continuous data with
non-linear relationships, following the CI test developed by Runge [214].

First, we discuss options to implement the k-NN searches required for the
CI test given GPU hardware constraints and the demand to conduct many dif-
ferent k-NN searches in parallel (see Section 4.4.1). In particular, we consider a
K-D tree-based k-NN search and a brute-force-based k-NN search.

Based upon these considerations, we present GPUCMIknn, our GPU-based
information-theoretic CI test, in Section 4.4.2. In this part, we first focus on
the overall idea of the algorithm and describe data transfer between host and
GPU memory and the GPU kernel orchestration. Further, we detail the GPU
kernels for computing the local permutations and the CMI estimates. Lastly,
we mention the simplified implementation for the case of unconditioned inde-
pendence tests, i.e., calculating the Mutual Information (MI) given an empty
separation set Si,j = ∅.

GPUCMIknn is a stand-alone CI test and can be plugged into the adjacency
search of the standard PC-stable algorithm. Throughout this thesis, we denote
this approach as GPUCMIknn-Single. Yet, to fully utilize the compute capabilities
of the underlying GPU hardware, we propose a tailored algorithm for a GPU-
accelerated adjacency search in PC-stable that employs an extended version of
GPUCMIknn. We call this approach GPUCMIknn-Parallel and detail the algorithm
in Section 4.4.3. GPUCMIknn-Parallel applies two optimizations. First, the algo-
rithm computes multiple CI tests in parallel to fully utilize the GPU parallel
compute units. Second, GPUCMIknn-Parallel partially reuses the computed local
permutations when performing multiple CI tests. Parts of this section have been
published in a research paper [83].

4.4.1 Approaches to Parallel k-NN Searches on GPU

In the context of information-theoretic CI tests, k-NN searches are used for den-
sity estimation [214]. The density p(Dm) with m = 1, . . . , n for any data sample
Dm is estimated by constructing a sphere around Dm that contains k nearest
data samples [14]. Within CI tests, the k-NN search processes the entire set of
n data samples, which results in costly computation for large datasets [14]. Two
common approaches exist to realize k-NN searches, namely brute-force searches
and tree-based searches [13, 183]. For brute-force and tree-based searches, effi-
cient implementations exist on CPU [191] and GPU [72, 73, 204].

96 4 GPU-Accelerated CSL on a Single GPU

Brute-Force Search

The brute-force search is a naive solution that compares all data samples Dm

with each other to compute the k nearest neighbors. While the brute-force search
has a high computational complexity of O(n2), it requires no additional memory,
except for storing the resulting k nearest neighbors for each data sample Dm.

Tree-Based Search

During a search, tree-based searches address the high computational demand
by querying efficient tree-based structures, such as a k-d tree [13, 64] or a ball-
tree [183]. Applying the k-d tree reduces the computational complexity of the
k-NN search over all data samples n to O(n× log(n)) on average. Yet, the tree-
based search structure must be constructed first, which adds a one-time com-
putational effort of O(n× log(n)). Furthermore, the tree-based search structure
either requires additional space in memory of size O(n), or the tree-based search
must manipulate the order of the n data samples in place. Note that the ball-
tree is designed for high-dimensional data samples. In this setting, a k-d tree
becomes inefficient due to the curse of dimensionality [64, 183]. In the context
of CSL, settings suited for a balltree, e.g., due to extensive separation sets, are
uncommon due to the low statistical power of CI tests in real-world settings
with low sample sizes.

GPU-Based Brute-Force-Based k-NN Search

Garcia et al. [72] propose two GPU-accelerated implementations of the brute-
force search that outperform CPU-based algorithms by up to two orders of
magnitude. Their first implementation uses two separate CUDA kernels. The first
CUDA kernel computes a distance matrix between all data samples. All distance
computations are independent of each other. Therefore, the GPU threads com-
pute one distance each in parallel. The second CUDA kernel sorts the distances.
Within the sort kernel, the distances of a single data sample are sorted in par-
allel by one GPU thread each. The second implementation proposed by Garcia
et al. [72] reformulates the brute-force k-NN search as matrix additions and
multiplications to leverage highly optimized matrix operations available in the
cuBLAS library [176]. A more recent GPU-accelerated implementation of the
brute-force k-NN search is provided in RAPIDS [204], based on the cuML li-
brary [205]. The implementation follows the general idea of Garcia et al. [72].
Both works argue that brute-force search is well suited for execution on GPU.

GPU-Based K-D Tree-Based k-NN Search

Performing k-NN searches using standard k-d tree implementations on the GPU
may result in poor performance due to branching and memory access inapt for
GPU hardware. The buffer k-d tree addresses these shortcomings [73]. The buffer
k-d tree consists of one top tree, leaf structures, and buffers for each leaf from
the top tree. The top tree has a small height of, e.g., h = 8, and points to the
leaf structures. The authors of the buffer k-d tree argue that the small height
alleviates the high cost for execution on GPU during tree traversal [73]. When
querying the buffer k-d tree, the buffers are filled with query indices that get
processed once a threshold is reached. During buffer processing, the k-nearest

4.4 GPU-Accelerated Information-Theoretic CSL 97

neighbors are determined for each query index in each buffer in parallel by one
GPU thread each. The GPU threads perform a brute-force search within the
leaf structure corresponding to the query index’s buffer. Note that the initial
construction of the k-d tree and orchestration tasks are performed on the CPU.
The buffer k-d tree provides an efficient GPU-based approach to the k-NN search
for vast amounts of queries [73].

Implications for a GPU-Accelerated Adjacency Search in PC-Stable With
Information-Theoretic CI Tests

The k-NN search is one building block of the information-theoretic CI test
(see Section 2.4.3). The number of k-NN searches for a CI test is computed
as follows:

#knnsearches = 2 + perm, (4.29)

where perm is the number of permutations of Vi. Each k-NN search is performed
for all n data samples from the variables Vi, Vj and Si,j with i, j = 1, . . . , N and
i ̸= j, respectively, the perm random permutations of Vi associated with a
CI test. Within the adjacency search of PC-stable, thousands of CI tests are
conducted. Remember that the number of CI tests increases polynomial with
the number of variables N under the assumption of sparse graphs [109]. Thus,
the efficient execution of the k-NN searches is crucial for fast runtimes. The k-NN
search itself [72, 73] and the execution of multiple k-NN searches simultaneously
provide ample opportunity for parallel execution on a GPU.

While the k-d tree-based k-NN search provides a better computational com-
plexity over the brute-force approach, it introduces the following drawbacks.
First, the number of queries to the k-d tree is limited to the number of data
samples n. Thus, we cannot assume that the k-d tree construction time is amor-
tized. Second, the k-d tree requires additional space to store at least n × d
elements, where d is dimensionality, corresponding to the number of variables
considered in a given CI test. The memory demand quickly exceeds the capacity
of thread-local register space or shared memory. Thus, the k-d tree data struc-
ture must be stored in GPU global memory. At the same time, as the GPU’s
memory capacity is limited, the memory demand for the k-d tree data struc-
tures restricts the number of k-NN searches; consequently, CI tests, executed in
parallel. Lastly, the construction of the k-d tree and the search within the k-d
tree introduce branching of GPU threads as these operations are not well-suited
for the SIMT execution model.

Considering these drawbacks, we apply the brute-force search to compute
the k-nearest neighbors. Despite the higher computational complexity, we see
the potential for faster runtimes due to the higher degree of parallelism for mul-
tiple reasons. First, the brute-force search is well-suited for the SIMT execu-
tion model of GPUs. Thus, the brute-force search avoids branching and ensures
coalesced memory access [41, 173]. Second, the brute-force search requires no
additional data structures in GPU global memory and avoids restricting the
parallel execution. Furthermore, the brute-force search allows the application
of a pipeline approach [68] while performing multiple CI tests in parallel. The
pipeline approach aims to fuse operations applied to the same data to avoid stor-
ing large-sized intermediate results. Thus, for the brute-force search, we aim to
compute the k-nearest neighbors for each data sample in a single pass. Hence, we
only store the k-nearest neighbors, which may fit in GPU thread-local memory.

98 4 GPU-Accelerated CSL on a Single GPU

Algorithm 12 Outline of GPUCMIknn
Input: Observational data D, variables Vi, Vj , separation set Si,j , number of
permutations perm, k-nearest neighbors within permutation kperm, k-nearest
neighbors within CMI estimation kCMI , number of data samples n
Output: p-value p

1: transferToGPU(D[Vi], D[Vj], D[Si,j])
2: allocateOnGPU(({V̂i, used}, perm× n), ({partialcmi}, perm+ 1))
3: launchOnGPU(localPermutation, {D[Si,j], D[Vi], V̂i, used, n, perm, kperm})
4: launchOnGPU(estimateCMIknn, {D[Vi], D[Vj], D[Si,j], V̂i, partialcmi, n, kCMI})
5: transferFromGPU(partialcmi)

6: basecmi ← partialcmi[0]
n

7: c← 0
8: for all a ∈ {1, . . . , perm} do
9: if partialcmi[a]

n
≥ basecmi then

10: c← c+ 1
11: end if
12: end for
13: p← c

perm

14: return p

4.4.2 GPUCMIknn: A GPU-Accelerated Information-Theoretic CI Test

This section presents, GPUCMIknn, our GPU-accelerated information-theoretic
CI test designed to handle mixed discrete-continuous data and data with non-
linear relationships (see Section 2.4.3). We first outline the algorithm of our
proposed CI test with a focus on the CPU-based tasks, such as GPU kernel
orchestration, data transfer, and final computations. Next, we present the GPU
kernel for computing the local permutation and the GPU kernel for estimating
the CMI. At the end of this section, we sketch the procedure for independence
testing if the separation set is empty.

Outline of GPUCMIknn

In Algorithm 12, we outline the procedure of our proposed CI test GPUCMIknn. The
procedure presented in this thesis is a GPU-based version of our CI test [100].
The same GPU acceleration concepts can be applied to other CMI estimation-
based CI tests that build upon k-NN searches, e.g., see [97, 214]. In these cases,
adaptations are needed for the operations in lines 6–13 and in the GPU kernel
estimateCMIknn, e.g., see our corresponding publication [83] using CMIknn [214].

Input and Output

GPUCMIknn takes as input the observational data D and indices of the variables
Vi,Vj , and Si,j , with i, j = 1, . . . , N and i ̸= j, that point to the corresponding
data samples within D. Further, GPUCMIknn requires the input parameters: perm,
the number of permutations, kperm, the number of k-nearest neighbors during
local permutation, kCMI , the number of k-nearest neighbors during CMI esti-
mation, and n, the number of data samples. Upon completion, the procedure
returns the computed p-value.

4.4 GPU-Accelerated Information-Theoretic CSL 99

Description of the Procedure of GPUCMIknn

The algorithm starts with data preparation for the GPU. Therefore, the algo-
rithm transfers the observational data of the variables Vi,Vj , and Si,j to the

GPU and allocates GPU global memory for the permutations of Vi, denoted V̂i,
the intermediate CMI values, denoted partialcmi, and an auxiliary data struc-
ture, denoted used, (see lines 1–2 of Algorithm 12). The auxiliary data structure
used stores flags for each data sample that help avoid the reuse of that data
sample during local permutation computation.

Next, the localPermutation GPU kernel is launched on the GPU to com-
pute V̂i. We split the computation of the local permutations V̂i and the CMI
estimation into separate GPU kernels for two reasons. First and foremost, the
CMI estimation builds upon the result of the local permutations V̂i, requiring
global synchronization. Using separate synchronous GPU kernel launches re-
alizes the global synchronization. Second, separate GPU kernel launches allow
GPU kernel launch parameters appropriate to each task.

After the localPermutation GPU kernel is completed, the
estimateCMIknn GPU kernel is launched, which calculates perm + 1 in-
termediate values for the CMI stored in partialcmi. The partialcmi values
are transferred from the GPU (see line 5) to finalize the CMI computation.
Therefore, calculations align with the operations of the estimateCMIknn GPU
kernel. In our case, we follow the approach of Huegle et al. [100], which builds
upon a CMI estimator for mixed discrete-continuous data [161]. Thus, the
calculation builds upon the following equation:

cmi =
partialcmi

n
, (4.30)

where partialcmi is computed as follows:

partialcmi =

n∑
a=1

𭟋(Ca
ViVjSi,j)−𭟋(Ca

ViSi,j)−𭟋(Ca
VjSi,j) +𭟋(Ca

Si,j). (4.31)

The partialcmi is based upon the counts C of points within the space Vi⊗Vj ⊗
Si,j and the subspaces Vi ⊗ Si,j , Vj ⊗ Si,j and Si,j , with i, j = 1, . . . , N and
i ̸= j, that are within the distance of the k-nearest neighbor taken from the
joint space Vi ⊗ Vj ⊗ Si,j (cf. Equations 20,21 in Mesner and Shalizi [161]).

In line 6 of Algorithm 12, the baseCMI is computed based on the non-
permuted case Vi,Vj ,S

i,j . For each of the perm permutations, the algorithm
computes the CMI value. Furthermore, the algorithm checks if that CMI value
is larger than or equal to the baseCMI and accordingly increments a counter c.

Finally, the algorithm computes the p-value as the sum of the indicator
function, i.e., the counter c, over the number of permutations (see line 13) and
returns the result.

Local Permutation GPU Kernel

In the following, we describe the GPU kernel for computing the local permuta-
tions. The GPU kernel computes perm local permutations of n data samples.
First, we mention the input and output of the GPU kernel. Next, we define tasks
for parallel execution and explain the GPU kernel launch parameters. Lastly,
we describe the operations performed within the local permutation GPU kernel.

100 4 GPU-Accelerated CSL on a Single GPU

Algorithm 13 Local permutation GPU kernel in GPUCMIknn
Input: Data samples D[Si,j] and D[Vi], data structure for permutations V̂i,
auxiliary data structure used, number of data samples n, number of permuta-
tions perm, k-nearest neighbors within permutation kperm

of blocks:
⌈
n
β

⌉
of threads per block: β
Shared memory: β×dimension(Si,j)×sizeof(float)
1: Initialize sDist[kperm] with BIG FLOAT , sPos[kperm] with 0 in thread-local

memory
2: Initialize Slocal of size dimension(Si,j) in thread-local memory
3: Set Slocal ← D[Si,j][bx× β + tx]

4: for all a ∈ {0, . . . ,
⌈

n
β

⌉
− 1} do

5: Sshared[tx]← D[Si,j][a× β + tx] in shared memory
6: syncthreads()
7: for all b ∈ {0, . . . , β − 1} do
8: if a× β + b = bx× β + tx then
9: continue
10: end if
11: dist←distMetric(Slocal, Sshared[b])
12: if dist is smaller than any c ∈ sDist then
13: Insert dist in sorted order into sDist
14: Insert position a× β + b in sorted order into sPos
15: end if
16: end for
17: end for
18: curand init()
19: for all c ∈ {0, . . . , perm− 1)} do
20: for all d ∈ {kperm − 1, . . . , 1} do
21: posshuffled ← curand() mod(d+ 1)
22: swap(sPos[d], sPos[posshuffled])
23: end for
24: u← 0
25: while atomicCAS(used[c× n+ sPos[u]], 0, 1) ̸= 0 and u < kperm − 1 do
26: u← u+ 1
27: end while
28: V̂i[c× n+ bx× β + tx]← D[Vi][sPos[u]]
29: end for

Input and Output

The localPermutation GPU kernel (see Algorithm 13) takes the observa-
tional data D for the variable Vi, and the separation set Si,j , the data structure
to store the permutations V̂i and the auxiliary data structure used as input.
Additionally, the localPermutation GPU kernel receives the parameters for
the number of data samples n, the number of permutations perm, and the num-
ber of k-nearest neighbors during local permutation kperm. The GPU kernel

stores Vi’s computed perm local permutations in the data structure V̂i. The
data structure remains on GPU for further processing.

4.4 GPU-Accelerated Information-Theoretic CSL 101

Defining Tasks for Parallel Execution and GPU Kernel Launch Parameters

Based on Foster’s methodology [61], we define a parallel task as the processing
of one individual data sample. The task agglomerates the operations performed
for the perm permutations based on one data sample. Each task is mapped to a
unique GPU thread. The GPU threads are grouped in thread blocks at a warp-
size granularity. Thus, the GPU kernel is launched with β GPU threads per

thread block and
⌈
n
β

⌉
thread blocks. The parameter β is chosen as a multiple

of the warp size and does not exceed the maximum number of GPU threads per
thread block, according to the GPU hardware characteristics. We encourage
choosing a small value for β, i.e., β = 32, to allow for sufficient shared memory
within one thread block. Further, the GPU kernel reserves shared memory of
size β×dimension(Si,j)×sizeof(float) bytes for each thread block. Note the
function dimension(. . .) returns the size of the separation set, i.e., the number
of variables contained within Si,j . The function sizeof(. . .) returns the size of
the input data type in bytes.

Description of the Operations Within the Local Permutation Kernel

Once the GPU kernel is launched, each GPU thread processes lines 1–29 of
Algorithm 13 (see p. 100). Each GPU thread is responsible for processing one
of the n data samples and computing the corresponding local permutations.

At first, two arrays of size kperm named sDist and sPos are allocated and
initialized in GPU thread-local memory. The array sDist stores the distances
and sPos the positions of the k-nearest neighbors. Further, each GPU thread
loads the values from D[Si,j] corresponding to its thread and block index into
the GPU thread-local memory Slocal.

Next, each GPU thread iterates the n data samples in a stride of size β. In
each iteration, one stride of values from D[Si,j] is loaded into shared memory
Sshared (see line 5 of Algorithm 13). After synchronizing the GPU threads in the
same thread block, the stride is now stored in Sshared, and it is processed itera-
tively (see lines 7 – 16). If a value selected from the current stride corresponds
to the data sample in Slocal, the GPU thread skips this iteration.

Otherwise, the distance dist is computed between Slocal and Sshared[b], i.e.,
the data sample from the current iteration within the current stride. A distance
function distMetric(. . .) is applied to calculate the distance value dist. As
a default, GPUCMIknn computes the Chebyshev distance [23]. The GPU thread
updates the local arrays sDist and sPos with the computed distance dist. If
the value of dist is smaller than any element in sDist, dist is inserted into sDist
at the position that keeps sDist in order. The remaining elements are shifted
accordingly, and the entry with the largest distance is removed from sDist. The
GPU thread updates the array sPos, storing the positions of the corresponding
data samples in D[Si,j], accordingly. After both loops have been executed, the
kperm-nearest neighbors are determined, and their positions are stored in sPos.

Next, the permutations V̂i are computed. This step uses a random number
generator, e.g., from NVIDIA’s cuRAND library [178]. After initializing the
random number generator, each GPU thread computes the permutations corre-
sponding to its data sample (see lines 19–29). Thus, for each permutation, the
following steps are executed.

102 4 GPU-Accelerated CSL on a Single GPU

First, the positions within sPos are randomly shuffled (see lines 20–23).
Next, positions from sPos are drawn until no other GPU thread has drawn
the same data sample corresponding to the position before, or it is the last
position in sPos. GPU threads use an atomic compare and swap operation
atomicCAS(. . .) on the data structure used to ensure that no other GPU
thread drew that position before (see line 25). Finally, the GPU thread uses the
selected position from sPos to retrieve the value from D[Vi], which is set to the
GPU thread’s corresponding position in the current permutation (see line 28).

In contrast to CPU-based information-theoretic CI tests [100, 214], we omit
the explicit creation of a random permutation to process the n data samples.

Instead, we process the n data samples over
⌈
n
β

⌉
thread blocks in parallel and

rely on a non-fixed execution order of thread blocks by the GPU thread block
scheduler [92]. Once all GPU threads have terminated, the data structure V̂i

contains the local permutations of Vi according to the kperm-nearest neighbors
within the subspace Si,j .

CMI Estimation GPU Kernel

In the following, we describe the GPU kernel for Conditional Mutual Information
(CMI) estimation. The GPU kernel computes partial CMI values for each of the
perm permutations and the base CMI from the original data samples. First,
we report the input and output of the GPU kernel. Next, we define tasks for
parallel execution and explain the GPU kernel launch parameters. Lastly, we
describe the operations performed within the CMI estimation GPU kernel.

Input and Output

The estimateCMIknn GPU kernel takes the observational data D for the vari-
ables Vi,Vj and the separation set Si,j , the data structure for the permutations

V̂i, and the data structure to store the partial CMI values partialcmi as input.
Additionally, the estimateCMIknn GPU kernel receives the parameters for the
number of data samples n and the number of k-nearest neighbors within CMI
estimation kCMI . The GPU kernel stores the computed partial CMI values in
the list partialcmi in GPU global memory upon termination. The list partialcmi

must be transferred to the host system for further processing.

Defining Tasks for Parallel Execution and GPU Kernel Launch Parameters

Following Foster’s methodology [61], we define a parallel task as processing one
individual data sample in the context of a local permutation V̂i or the original
data D[Vi]. Each task is mapped to a unique GPU thread. If possible, GPU
threads that process tasks related to the same local permutation or the original
data are grouped in the same thread block at a warp-size granularity.

The GPU kernel is launched with γ threads per thread block and

(perm+ 1)×
⌈
n
γ

⌉
thread blocks. The parameter γ is chosen as a multiple of

the warp size and does not exceed the maximum number of GPU threads per
thread block, according to the GPU hardware characteristics. We encourage
choosing a small value for γ, i.e., γ = 32, to allow for sufficient shared memory
within one thread block. Further, the GPU kernel reserves shared memory of
size 2× γ × (dimension(Si,j) + 2)× sizeof(float) bytes for each thread block.

4.4 GPU-Accelerated Information-Theoretic CSL 103

Algorithm 14 CMI estimation GPU kernel in GPUCMIknn
Input: Data samples D[Vi], D[Vj] and D[Si,j], data structure for permutations

V̂i, data structure for partial cmi values partialcmi, number of data samples n,
k-nearest neighbors within CMI estimation kCMI

of blocks: (perm+ 1)×
⌈
n
γ

⌉
of threads per block: γ
Shared memory: 2× γ × (dimension(Si,j) + 2)×sizeof(float)
1: Initialize sDist[kCMI] with BIG FLOAT in thread-local memory
2: pos← by × γ + tx
3: loadIntoShared(Dshared[tx], bx, pos, V̂i, D[Vi], D[Vj], D[Si,j])
4: syncthreads()

5: for all a ∈ {0, . . . ,
⌈

n
γ

⌉
− 1} do

6: pos2 ← a× γ + tx
7: loadIntoShared(Dshared[γ + tx], bx, pos2, V̂i, D[Vi], D[Vj], D[Si,j])
8: syncthreads()
9: for all b ∈ {0, . . . , γ − 1} do
10: dist←distMetric(Dshared[tx], Dshared[γ + b])
11: if dist is smaller than any c ∈ sDist then
12: Insert dist in sorted order into sDist
13: end if
14: end for
15: end for
16: Init counter CViVjSi,j , CViSi,j , CVjSi,j , CSi,j = 0

17: for all a ∈ {0, . . . ,
⌈

n
γ

⌉
− 1} do

18: pos2 ← a× γ + tx
19: loadIntoShared(Dshared[γ + tx], bx, pos2, V̂i, D[Vi], D[Vj], D[Si,j])
20: syncthreads()
21: for all b ∈ {0, . . . , γ − 1} do
22: for all c ∈ {{Vi, Vj , S

i,j}, {Vi, S
i,j}, {Vj , S

i,j}, {Si,j}} do
23: dist←distMetric(Dshared[tx][c], Dshared[γ + b][c])
24: updateCounter(dist, sDist[kCMI], CViVjSi,j , CViSi,j , CVjSi,j , CSi,j)
25: end for
26: end for
27: end for
28: atomicAdd(partialcmi[bx],𭟋(CViVjSi,j)−𭟋(CViSi,j)−𭟋(CVjSi,j) +𭟋(CSi,j)))

Description of the Operations Within the CMI Estimation Kernel

Once the GPU kernel is launched, each GPU thread processes lines 1–28 of
Algorithm 14. Each GPU thread processes one of the n data samples related to
one local permutation and adds its local result to the appropriate partial CMI
value. Note that we include the calculation of the base CMI estimate from the
non-permuted values D[Vi] by launching one extra thread block, i.e., bx = 0.

At first, the array sDist of size kCMI is allocated and initialized in GPU
thread-local memory. The array sDist stores the kCMI -nearest neighbors. Each
GPU thread computes an index pos, which refers to the position of the GPU
thread’s data sample. Next, the GPU thread loads the values of its data sam-
ple into shared memory (see function loadIntoShared(. . .) at line 3 of Al-
gorithm 14). Apart from the values D[Vj][pos] and D[Si,j][pos], the function

104 4 GPU-Accelerated CSL on a Single GPU

loadIntoShared(. . .) either loads original value from D[Vi][pos] if bx = 0, or
the local permutation from V̂i[bx× n+ pos] into shared memory Dshared[tx].

Each GPU thread iterates all n data samples in a stride of size γ. In each
iteration, values of one stride of data samples are loaded into shared mem-
ory Dshared[γ + tx] using the function loadIntoShared(. . .). Internally, the
function loadIntoShared(. . .) distinguishes loading values from D[Vi] or its
permutations V̂i depending on the thread block id bx. After synchronizing the
GPU threads within the same thread block, each GPU thread iterates the cur-
rent stride’s data samples stored in Dshared. In each iteration, the GPU thread
computes the distance dist between its data sample Dshared[tx] and one data
sample from the current stride Dshared[γ+ b], where b ∈ {0, . . . , γ−1}. The dis-
tance function distMetric(. . .) is applied to compute the distance dist, which
defaults to the Chebyshev distance [23]. If the distance dist is smaller than any
value stored in sDist, then the distance dist is inserted into sDist at the po-
sition that keeps sDist sorted. This operation removes the last element from
sDist. After all n elements have been processed, sDist contains the distances of
the kCMI -nearest neighbors in sorted order, and the entry in sDist at position
kCMI refers to the kCMI -nearest neighbor.

Next, the partial CMI values are computed. This step requires count-
ing the number of points within the distance of the kCMI -nearest neigh-
bor, i.e., within sDist[kCMI], for the space Vi ⊗ Vj ⊗ Si,j and the subspaces
Vi⊗Si,j , Vj ⊗Si,j and Si,j . Consequently, the algorithm initializes the counters
CViVjSi,j , CViSi,j , CVjSi,j and CSi,j for the spaces (see line 16). Again, each GPU
thread iterates all n data samples in a stride of size γ, loading data samples into
shared memory using the loadIntoShared(. . .) function.

The GPU thread computes the distance dist in each required subspace for
each element within the current stride. In the updateCounter(. . .) function,
the GPU thread checks if dist is within sDist[kCMI] and increments the re-
spective counter if the check evaluates true. Finally, after n data samples are
processed, each GPU thread computes its partial result based on its correspond-
ing data sample, i.e., 𭟋(CViVjSi,j) − 𭟋(CViSi,j) − 𭟋(CVjSi,j) + 𭟋(CSi,j). Next,
the GPU thread adds the partial result to the partial CMI value partialcmi[bx]
corresponding to one permutation or the original CMI estimate, i.e., if bx = 0
(see line 28). This summation requires an atomic operation to synchronize be-
tween GPU threads from multiple thread blocks. Once all GPU threads have
finished, the data structure partialcmi contains all partial CMI values for the
perm permutations and the non-permuted case.

The Case of Unconditioned Independence Testing

The version of GPUCMIknn presented in Algorithm 12 (see p. 98) assumes testing
for statistical independence based on a non-empty separation set, i.e., Si,j ̸= ∅.
For applying GPUCMIknn within the context of CSL, we need to consider uncon-
ditioned independence testing, i.e., Si,j = ∅, too. To cover the unconditioned
case, we adjust the algorithm of GPUCMIknn in the following ways. First, only
observational data for the variables Vi and Vj is needed. Second, the local per-
mutation calculation uses a permutation scheme based on shuffling equal-width
bins [214]. Hence, the computational demand of the local permutation calcula-
tion reduces, and parallel execution on a GPU yields slower runtimes. Therefore,
the local permutation is computed on the CPU. Thus, solely the computation

4.4 GPU-Accelerated Information-Theoretic CSL 105

of the partial CMI values, partialcmi, is accelerated on the GPU. Third, the
estimateCMIknn GPU kernel shown in Algorithm 14 (see p. 103) is adapted.

The estimateCMIknn GPU kernel operates on the equal-width binned local
permutations for the unconditioned case. Further, the estimateCMIknn kernel
computes the partial CMI values based upon the counts of points CVi , and
CVj

within the distance of the kCMI -nearest neighbor for the corresponding
subspaces Vi and Vj . For brevity, we omit a more detailed description of this
specialized case of GPUCMIknn and refer the interested reader to our reference
implementation available on GitHub2.

4.4.3 A GPU-Accelerated Adjacency Search Using GPUCMIknn

We propose two options to incorporate GPUCMIknn into the adjacency search of PC-
stable. The first option is straightforward. PC-stable is designed independently
of any CI test [35]. Thus, GPUCMIknn can be applied without any alternations.
We refer to this option as GPUCMIknn-Single. The second option introduces a
tailored GPU-accelerated adjacency search for the PC-stable algorithm, which
uses an extended version of GPUCMIknn. The extended version of GPUCMIknn pro-
cesses multiple CI tests in parallel to improve the GPU hardware utilization
and speed-up. Furthermore, we optimize the computation by reusing computed
local permutations. We refer to this option as GPUCMIknn-Parallel.

In the following, we detail GPUCMIknn-Parallel. Therefore, we first discuss the
parallel execution strategy according to the definitions from Section 4.1. Second,
we describe the adjacency search GPUCMIknn-Parallel in depth, highlighting the
applied adaptations to the original adjacency search of PC-stable [35].

Parallel Execution Strategy

GPUCMIknn-Parallel aims to perform multiple CI tests using GPUCMIknn in parallel.
For the previously defined GPU-accelerated adjacency searches, we applied one
of the mappings defined in Section 4.1. Yet, in the case of GPUCMIknn-Parallel,
direct application of these mappings is not possible, as the performed CI test,
GPUCMIknn, uses two separate GPU kernels. Additionally, keeping the intermedi-
ate results, i.e., the local permutations, for all edges in GPU global memory
simultaneously quickly exceeds the GPU’s memory capacity.

Therefore, we propose a different parallel execution strategy, which builds
upon processing the adjacency of each variable adj(C, Vi) with i = 1, . . . , N
separately. Processing one adjacency at a time ensures that multiple CI tests
are performed in parallel while the required amount of GPU global memory is
constrained. Still, the algorithm can reuse computed local permutations in the
context of one adjacency.

Thus, we propose to compute the local permutations for all separation sets
Si ∈ Si based on adj(C, Vi) in a single GPU kernel. For this parallel version
of the localPermutation GPU kernel, we define a parallel task as processing
one observational data sample, i.e., Dm(Vi, S

i), for m = 1, . . . , n. As the GPU
kernel processes all separation sets Si in parallel, the GPU kernel handles n×|Si|
of these tasks. Each task gets mapped to one GPU thread. The GPU threads
are organized in multiple thread blocks for each separation set Si. We do not

2 https://github.com/ChristopherSchmidt89/gpucmiknn

106 4 GPU-Accelerated CSL on a Single GPU

apply task agglomeration but rely on global communication to check the used
positions (see line 25 of Algorithm 13).

For the CMI calculation, we suggest using one GPU kernel to estimate the
partial CMI values for all adjacent variables Vj ∈ adj(C, Vi) based on one sep-
aration set Si at a time. For this parallel version of the estimateCMIknn ker-
nel, we define a parallel task as processing one observational data sample, i.e.,
Dm(Vi, Vj , S

i), for the base CMI or Dm(V̂i[p], Vj , S
i), for a permuted sample

with p ∈ {1, . . . , perm}. The GPU kernel computes the partial CMI values for
all edges (Vi, Vj) for one separation set Si ∈ Si in parallel. Therefore, the GPU
kernel processes a total of n× (perm+ 1)× adj(Cl, Vi) tasks. Again, each task
is mapped to exactly one GPU thread, organized into multiple thread blocks
for any given edge (Vi, Vj). We do not agglomerate tasks to address global
communication, which is needed to share the paritalcmi values (see line 28 of
Algorithm 14) between GPU threads from multiple thread blocks.

Algorithmic Outline of GPUCMIknn-Parallel

In the following, we present the algorithmic outline of GPUCMIknn-Parallel that
builds upon the parallel execution strategy discussed above. First, we highlight
differences in GPUCMIknn-Parallel compared to existing GPU-accelerated and
parallel CPU-based adjacency searches for PC-stable. Next, we describe the
input and output of GPUCMIknn-Parallel and elucidate the procedure in detail.

Differences to Existing Parallel Adjacency Searches Within PC-Stable

In contrast to existing GPU-based variants, which launch one GPU kernel per
level [81, 226, 287], GPUCMIknn-Parallel launches multiple GPU kernels for each
variable Vi in any level. One GPU kernel computes the local permutations con-
cerning the variable’s adjacency adj(C, Vi). Depending on the size of the vari-
able’s adjacency, multiple GPU kernels are launched to calculate the CMI values.

In contrast to parallel CPU-based algorithms, which parallelize over
edges [123, 224, 234], GPUCMIknn-Parallel adopts a fine-grained nested parallel
execution strategy. The fine-grained nested parallel execution strategy ensures
that computed local permutations are reused to reduce the overall computa-
tional demand. Reusing the local permutations is achieved by defining tasks
for parallel execution in the context of the adjacency of one variable. At the
same time, mapping these tasks to GPU threads ensures that each GPU thread
processes individual data samples over multiple CI tests in parallel.

Input and Output

Algorithm 15 (see p. 107) receives the standard input parameters of PC-stable,
such as observational data D, the number of data samples n, the vertex set
V representing the N variables V = {V1, . . . , VN} (see Section 2.1), or the
significance level α. Further, the algorithm takes input parameters specific to
GPUCMIknn, such as the number of permutations perm, the k-nearest neighbors
within permutation kperm, and the k-nearest neighbors within CMI estimation
kCMI . GPUCMIknn-Parallel outputs the estimated skeleton matrix C and the
corresponding separation sets matrix Sep.

4.4 GPU-Accelerated Information-Theoretic CSL 107

Algorithm 15 GPUCMIknn-Parallel: GPU-based adjacency search of PC-stable
Input: Observational data D with n samples of N variables V = {V1, . . . , VN},
significance level α, number of permutations perm, k-nearest neighbors within
permutation kperm, k-nearest neighbors within CMI estimation kCMI

Output: Estimated skeleton matrix C, separation sets matrix Sep

1: Start with fully connected skeleton C and l← −1
2: repeat
3: l← l + 1
4: if l = 0 then
5: On GPU: Process all pairs of variables (Vi, Vj) ∈ C in parallel
6: else
7: for all variables Vi in C do
8: Let a(Vi)← adj(C, Vi);
9: end for
10: for all variables Vi in C with |a(Vi)| > l do
11: Compute all possible separation sets Si from a(Vi)
12: Launch kernel localPermutationExt on GPU to compute

localPerm[Si] for all Si ∈ Si with D, perm and kperm
13: repeat
14: Choose Si from Si

15: Launch kernel estimateCMIknnExt on GPU to estimate
CMI for all Vj ∈ a(Vi) \ {Si} with
D, Si, perm, kCMI and localPerm[Si]

16: for all Vj ∈ a(Vi) \ {Si} do
17: Compute p based on computed CMI values
18: if p ≥ α then
19: Delete edge Vi − Vj from C
20: Store Si in Sep
21: Remove Vj from a(Vi)
22: end if
23: end for
24: until all computed Si were chosen or |a(Vi)| = 0
25: end for
26: end if
27: until each Vi in C satisfies |a(Vi)| < l
28: return C, Sep

Description of the Procedure of GPUCMIknn-Parallel

The algorithm starts with a fully connected skeleton C in level l = 0. In level
l = 0, the separation sets are empty, i.e., Si,j = ∅, and the algorithm applies the
version of GPUCMIknn developed for unconditioned independence testing. Thus,
GPUCMIknn-Parallel processes all edges in parallel, according to existing GPU-
accelerated algorithms (see lines 4–6 of Algorithm 15). We omit detail on level
l = 0 for brevity, as the procedure is straightforward.

In levels l ≥ 1, GPUCMIknn-Parallel performs the following steps. First, for
each variable Vi ∈ C, the algorithm obtains an adjacency set from the current
skeleton C (see lines 7–9). Next, the algorithm iterates over all variables Vi ∈ C
whose adjacency’s size |a(Vi)| is larger than the current level l (see lines 10–25).

The algorithm computes all possible separation sets Si for Vi in each it-
eration. Next, the GPU kernel localPermutationExt calculates the local

108 4 GPU-Accelerated CSL on a Single GPU

permutations of Vi and all possible separation sets Si in parallel. Upon termina-
tion of the GPU kernel localPermutationExt, the data structure localPerm
contains the local permutations. Note that the GPU kernel localPermuta-
tionExt is the extended version of the GPU kernel localPermutation (see
Algorithm 13), which computes local permutations for multiple separation sets
at once. Therefore, GPU kernel localPermutationExt is launched with ad-
ditional thread blocks, setting δ in the second grid dimension. The value for δ
is chosen according to the number of possible separation sets, i.e., δ = |Si|.

In the subsequent step, GPUCMIknn-Parallel iterates the possible separation
sets Si ∈ Si (see lines 13–24 of Algorithm 15). In each iteration, the algorithm
computes the partial CMI values for Vi and all Vj ∈ a(Vi)\{Si} given the current
separation set Si. During this operation, the local permutations of Vi and Si are
reused to calculate the partial CMI values for Vi and all Vj . The corresponding
partial CMI values get computed in the estimateCMIknnExt GPU kernel. The
estimateCMIknnExt GPU kernel is an extension of the estimateCMIknn GPU
kernel (see Algorithm 14) that estimates the partial CMI values for multiple
edges at once. Therefore, the GPU kernel is launched with additional δ thread
blocks in the third grid dimension. The value for δ is chosen according to the
remaining adjacent variables a(Vi), i.e., δ = |a(Vi) \ {Si}|.

Afterward, the algorithm computes the p-value using the corresponding par-
tial CMI values for each Vj ∈ a(Vi) \ {Si}. If p ≥ α, the edge Ei,j is removed
from the current skeleton C, the separation set Si is stored in Sep at the position
of Ei,j , and Vj is removed from a(Vi) (see lines 18–22 of Algorithm 15). Vj is
removed from a(Vi) to avoid unnecessary computations in subsequent iterations.
Once all possible Si ∈ Si have been chosen, or there is no adjacent variable left
in a(Vi), the inner loop is finished.

After all variables Vi ∈ C have been considered in the current level l, the
subsequent level l = l + 1 is processed. All previous steps are repeated until no
more separation sets with the size of the current level l can be constructed from
the adjacency a(Vi) for any variable Vi ∈ C. At this point, the algorithm returns
the current skeleton C and the corresponding separation sets stored in Sep.

Additional Notes

The outlined approach of GPUCMIknn-Parallel introduces two additional reasons
for exceeding the GPU’s memory capacity. In high-dimensional or dense CGMs,
the number of possible separation sets |Si| and the number of adjacent variables
|a(Vi)| can become too large to process them simultaneously, within the same
GPU kernel. For both cases, GPUCMIknn-Parallel provides a blocked version to
avoid exceeding GPU global memory. If too many separation sets are processed
at once, the blocked version splits the separation sets for a variable Vi into small-
sized blocks. The small-sized blocks are processed in an additional loop, which
performs all steps in lines 12–24 of Algorithm 15 for each block of separation
sets. Similarly, to address computing partial CMI values for too many adjacent
variables Vj ∈ a(Vi) in parallel, the blocked version splits the adjacent variables
into small-sized blocks. The blocks of adjacent variables are processed in an
additional loop, which performs the steps shown in lines 15–23 in each iteration.

4.5 Summary 109

4.5 Summary

This chapter presented our three GPU-based variants of the PC algorithm’s
adjacency search designed for CI tests that are common in practice and cover a
wide range of data characteristics. Therefore, we first deduced parallel execution
strategies for a GPU-accelerated adjacency search within the PC-stable algo-
rithm with varying task granularity, according to Foster’s methodology for par-
allel algorithm design [61]. Using the deduced parallel execution strategies, we
introduced one GPU-accelerated adjacency search for the case that data follows
the Gaussian distribution model. We argued that, in this case, GPU acceleration
is most beneficial in levels l = 0, 1 and developed GPU kernels for both levels.
Additionally, we proposed two approaches to process higher levels l ≥ 2. Fur-
ther, we described a GPU-accelerated adjacency search for discrete data. In this
context, we discussed different strategies to handle the required auxiliary data
structures when units of GPU threads, i.e., warps, jointly compute marginals
over contingency tables. We argued that allocating a fixed-size memory block in
GPU global memory before the GPU kernel launch is a suitable solution. Finally,
we proposed GPUCMIknn, a GPU-accelerated CI test for mixed discrete-continuous
data and data with non-linear relationships, and GPUCMIknn-Parallel, a GPU-
based adjacency search tailored to the use of GPUCMIknn. GPUCMIknn requires the
execution of k-NN searches during local permutation computation and CMI es-
timation. The implementation uses a pipelined parallel brute-force-based k-NN
search that avoids intermediate results and leverages GPU thread-local mem-
ory. The GPUCMIknn-Parallel algorithm reuses the computed local permutations
while executing multiple CI tests in parallel.

5

GPU-Based CSL Beyond a Single GPU’s
Memory Capacity

The GPU-accelerated adjacency search algorithms for data that follows the
Gaussian distribution model, for discrete or mixed discrete-continuous data,
and data with non-linear relationships proposed in Chapter 4 have a fundamen-
tal restriction. The algorithms terminate in error if high-dimensional datasets
exceed the GPU’s memory capacity. Such high-dimensional data has various
reasons. Most notably, high-dimensional data occurs when models containing
tens of thousands of variables or millions of observational data samples are con-
sidered. Also, intermediate results due to large domains in discrete variables,
thousands of permutations, or considering many k-nearest neighbors lead to
GPU memory capacity overruns.

Erroneous execution due to exceeding GPU memory is a common short-
coming in GPU-accelerated algorithms, which gave rise to both, application-
agnostic [155, 292] and application-specific solutions [34, 108, 263, 280] (see Sec-
tion 3.2). Possible application-specific solutions include extending algorithms to
operate on multiple GPUs [34, 80, 263] or applying out-of-core approaches [108,
225, 280], e.g., splitting the problem into consumable-sized blocks, which are
processed in a streaming fashion. Note that out-of-core commonly refers to ap-
proaches exceeding the system’s DRAM. Within this thesis, we use the term
out-of-core in the context of exceeding the GPU’s global memory.

In this chapter, we introduce approaches to scale GPU-accelerated constraint-
based CSL to arbitrarily large datasets (see (RQ2)). We focus on multi-GPU and
out-of-core GPU execution as solutions to overcome the limitation of our pro-
posed GPU-accelerated adjacency search algorithms when exceeding the mem-
ory capacity of a single GPU. In particular, we discuss two separate approaches
for each solution.

The first approach builds upon the concept of Unified Memory (UM), which
uses the Memory Management Unit (MMU) of modern NVIDIA GPUs to trans-
parently migrate page-sized memory as required by the GPU kernels (see Sec-
tion 5.1). Generally, the concept of UM simplifies memory management in het-
erogeneous GPU-based systems from a development perspective but introduces
overhead resulting in up to 2.2× slower runtimes [120].

The second approach is based on explicit memory management. In our con-
text, we define explicit memory management in the following way: The algorithm
using explicit memory management is responsible for the data management to
avoid exceeding the GPU’s memory capacity while processing arbitrarily sized

112 5 GPU-Based CSL Beyond a Single GPU’s Memory Capacity

datasets. The data management comprises splitting data into consumable-sized
blocks, moving these blocks to and results from the GPU, and orchestrating the
GPU kernel execution concerning the blocks of data. In our work, we propose
a block-based approach that processes blocks of data that fit into GPU global
memory in a stream-like manner (see Section 5.2). Parts of this section have
been published in two research papers [80, 225].

5.1 Unified Memory (UM)-Based GPU-Accelerated
Adjacency Search in PC-Stable

The concept of UM introduces a single memory space that is accessible by CPU
and GPU [85]. Whenever any of the processing units access data, an integrated
page migration engine within the MMU of the GPU ensures that the data is
moved to the accessing device at a page-sized granularity. In contrast to direct
memory access over the interconnect, the migration of pages ensures that data
processing on the GPU benefits from the integrated caches and the bandwidth of
the device’s memory [218]. Within modern GPUs, dedicated hardware features
provide page fault mechanisms and support large address spaces beyond the
GPU’s memory capacity, which extends the capabilities of UM [86]. Thus, in
modern GPUs, UM provides demand paging and allows for GPU global memory
oversubscription [217]. These capabilities enable processing datasets that exceed
the GPU’s memory capacity, without explicitly managing parts of the dataset
as the active working set in GPU global memory. Building upon the capabilities
of UM in modern GPUs, we propose an out-of-core and a multi-GPU approach
to our GPU-accelerated adjacency search algorithms for the PC-stable.

5.1.1 A UM-Based Out-of-Core GPU Approach

Extending the existing GPU-accelerated adjacency search algorithms to an out-
of-core-based processing model that overcomes the limitation of the GPU’s
memory capacity is straightforward. Under the assumption that the GPU hard-
ware supports UM with demand paging and GPU global memory oversubscrip-
tion, only the allocation of data structures is changed. In particular, all data
structures required during the adjacency search are allocated within the virtual
memory address space provided by UM. CUDA, for example, provides the func-
tion cudaMallocManaged(. . .), which allocates data structures in UM [170].
The data is transferred automatically through the page migration engine for
data structures allocated in this manner. Thus, steps for explicit data trans-
fer between the host system and the GPU in the adjacency search algorithms
(see Algorithms 3, 8, 15) are omitted. Furthermore, in the case of discrete or
mixed data, handling the auxiliary data structures (e.g., see lines 5–16 of Algo-
rithm 8, p. 85) is simplified by allocating these data structures using UM.

5.1.2 A UM-Based Multi-GPU Approach

The UM-based multi-GPU approach builds upon the same extension to allo-
cate all data structures within UM as described above. We make the following
conceptual change to extend the single GPU adjacency search algorithms to
operate on multiple GPUs.

5.2 Explicit Memory-Managed GPU-Accelerated Adjacency Search in PC-Stable 113

For data that follows the Gaussian distribution model and discrete data, a
separate GPU kernel is launched for each level l in the single GPU case. This
GPU kernel processes all edges in the current skeleton Cl in parallel. In the
multi-GPU case, the processing of the edges within one level is split equally
among the GPUs available for processing. Thus, within each level l, one GPU
kernel is launched on each GPU, processing a dedicated share of edges. Once the
GPU kernels for the current level finished on each GPU, the next level starts.

In the case of the information-theoretic CI test, GPUCMIknn, we consider two
different execution strategies. For GPUCMIknn-Single, each GPU processes mul-
tiple edges within each level l. For GPUCMIknn-Parallel, each GPU operates on
multiple adjacencies within each level l.

In all cases, we follow a static task distribution to the GPUs to ensure data
locality [158], where tasks are either edges or adjacencies. Thus, each GPU op-
erates on the same set of edges or adjacencies within each level, and migration
of data between GPUs due to page faults is kept low. However, this static distri-
bution of edges or adjacencies to GPUs may cause load imbalance. Techniques
to address load imbalance, e.g., work stealing [15], are left for future work.

Besides the described conceptual change, the multi-GPU approach intro-
duces two more minor adaptations. First, different GPU memory advices are
used to guide the UM-based memory-managed data structures, following com-
mon best practices [219]. GPU memory advices are used, for example, to set
preferred locations of data structures, to allow for prefetching of data, or to
indicate that data is mostly read. In CUDA, GPU memory advices are set using
cudaMemAdvise(. . .). Second, the multi-GPU approach launches a dedicated
CPU thread for each GPU, which handles the GPU memory advices and GPU
kernel launches per GPU.

5.2 Explicit Memory-Managed GPU-Accelerated
Adjacency Search in PC-Stable

In high-dimensional settings, where input data exceeds the GPU’s memory ca-
pacity, explicit memory management for a GPU-accelerated adjacency search
splits the input data into consumable-sized blocks that fit into GPU global mem-
ory. Further, the GPU-accelerated adjacency search needs to orchestrate data
transfer between the host system and GPU and GPU kernel execution concern-
ing the data block present in GPU global memory. At the cost of this additional
implementation effort, the explicit memory-managed approach is independent
of modern GPU hardware features required for UM. Furthermore, any run-
time overhead introduced by UM is avoided [120]. Based upon explicit memory
management, we propose a block-based out-of-core GPU adjacency search for a
single GPU and extend the approach to a multi-GPU setting. In the following,
we describe both algorithms in detail.

5.2.1 A Block-Based Out-of-Core GPU Adjacency Search

The block-based out-of-core GPU adjacency search extends our aforementioned
GPU-accelerated algorithms (see Section 4.2 and Section 4.3) to operate on
high-dimensional data, exceeding a single GPU’s memory capacity. The pro-
posed block-based algorithm (see Algorithm 16, p. 115) splits the input data

114 5 GPU-Based CSL Beyond a Single GPU’s Memory Capacity

V2 V3 V4 V5 V6 … VNV1

…
V 6

V 5
V 4

V 3
V 2

V 1
V N

b1,1 b1,2 …

b2,1 b2,2 ...

...... ...

(a) {b1,1, b1,2, b2,1, b2,2} are example
blocks of block size bs = 3 extracted
from the estimated skeleton matrix C.

(b) C struct of a block, showing the
included data structures.

Fig. 5.1: Illustration of data split into blocks (left) and an overview of the
data structures included in each block (right).

into consumable-sized blocks, which are described next. Note that the GPU-
accelerated adjacency search GPUCMIknn-Parallel (see Section 4.4.3) provides a
similar block-based execution model.

Description of Blocks

In the context of the block-based out-of-core GPU adjacency search, a block is
defined as an excerpt of the estimated skeleton matrix C with dimensions bs×bs
(see Figure 5.1a). The block contains the corresponding data structures required
for processing (see Figure 5.1b). The parameter bs denotes the block size, which
is provided as an input to the algorithm. The choice of the value for bs fol-
lows two considerations. First, bs should be large enough for ample parallelism
within each block to utilize the GPU hardware efficiently. Second, bs should be
small enough to allow storing multiple blocks in GPU global memory. Multiple
blocks are needed for constructing all possible separation sets and efficient exe-
cution through overlapping GPU kernel execution and data transfer. The data
structures within each block are excerpts of the matrices storing the estimated
skeleton C, Ĉ, the matrix storing the correlations sCor or observational data
samples D, and the matrix storing the separation sets Sep and any required
auxiliary data. Further, each block contains a mapping of its position within
the original, non-blocked estimated skeleton data structures.

Input and Output

The block-based out-of-core GPU adjacency search receives the same input pa-
rameters as the single GPU Algorithms 3, 8 and produces the same output,
namely the estimated skeleton matrix C and the separation set matrix Sep. Ad-
ditionally, the block-based out-of-core GPU algorithm takes the block size bs,
which determines the size of the blocks, as an input parameter.

5.2 Explicit Memory-Managed GPU-Accelerated Adjacency Search in PC-Stable 115

Algorithm 16 Block-based out-of-core GPU adjacency search
Input: Vertex set V, correlation matrix sCor or observational data matrix D,
significance level α, maximum level ml, number of data samples n, block size bs
Output: Estimated skeleton matrix C, separation sets matrix Sep

1: l← 0
2: Let C and Ĉ be |V| × |V| matrices with all entries set to 1
3: Let Sep be an |V| × |V| ×ml matrix with all entries set to −1
4: blocks←split(C, Ĉ, Sep, sCor,D, bs)
5: while ml > l do
6: for all b in blocks do
7: transferToGPU(b)
8: if l = 0 then
9: launchGPUKernel(CITest0, {b, α, n})
10: else
11: sepsetblocks← sepSetCombination(b, l, blocks)
12: for all s in sepsetblocks do
13: transferToGPU(s)
14: launchGPUKernel(CITestL, {b, s, α, n})
15: end for
16: end if
17: transferFromGPU(b)
18: end for
19: l← l + 1
20: update(ml)
21: end while
22: merge(blocks)
23: return C, Sep

Description of the Procedure

At first, the algorithm initializes the required data structures (see lines 1–3 of
Algorithm 16). Next, all blocks B of dimension bs × bs are extracted based on
the input data. These blocks are stored in a list called blocks. Note that all
blocks b ∈ B are disjunct subsets of the input data. If the dimension of the
input data N is not a multiple of bs, zero-padding is applied to ensure that all
blocks b ∈ B are of dimension bs× bs.

After the data preparation, the algorithm processes all levels l sequentially
as long as the condition ml > l holds (see lines 5–21). All blocks b in blocks
are iterated within each level, and each block b is processed. First, all data
structures in b are transferred to the GPU (see line 8). If the algorithm operates
on level l = 0, the GPU kernel to process the current block b is launched
directly (see line 9). Depending on the underlying data distribution CITest0
either implements the CI test for the Gaussian distribution model or discrete
data according to the algorithms mentioned above (see Algorithms 3 and 8).

Additional blocks to construct all possible separation sets are loaded to the
GPU, for all other levels l ≥ 1 Therefore, the list of sepsetblocks containing
all combinations of sets of blocks of size l for the current block b is deter-
mined by calling the function sepSetCombination(. . .) (see line 11 of Algo-
rithm 16). Next, each set of blocks s in sepsetblocks is processed sequentially
(see lines 12–15). The blocks within s are transferred to the GPU and a GPU
kernel processing the CI tests for block b considering the set of separation set

116 5 GPU-Based CSL Beyond a Single GPU’s Memory Capacity

Extract (b1) Merge (b2)
CPU

CUDAStream0

CUDAStream1

Extract (b2)

HtoD (b1)

HtoD (b2)

DtoH (b1) HtoD (b3)

Merge (b1) Extract (b3)

DtoH (b2)

Kernel

Kernel

Kernel

Time

Fig. 5.2: Overlapping operations on CPU with data transfers (host to
GPU, denoted HtoD, or GPU to host, denoted DtoH) and GPU kernel
execution in two separate CUDA streams to reduce the overall runtime of
the block-based out-of-core GPU adjacency search.

blocks s is launched. The GPU kernel implementation of CITestL is set ac-
cording to the CI test appropriate to the underlying data distribution (see Al-
gorithms 3, 8).Once block b is processed in the current level l, the data of block
b is transferred from the GPU to the host system (see line 17 of Algorithm 16).

If all blocks B have been processed, the level l is incremented, the maximum
level ml is updated, and the algorithm continues with the subsequent level. In
case ml ≤ l, all possible CI tests are conducted, and the result data structures
from all blocks b ∈ B are merged (see line 22 of Algorithm 16). Afterward, the
estimated skeleton C and the matrix containing the corresponding separation
sets Sep are returned.

CUDA-Based Implementation

In a CUDA-based implementation of Algorithm 16, we apply the concept of CUDA
streams to overlap data transfer and GPU kernel execution to reduce the overall
runtime. In detail, we use two separate CUDA streams and one orchestrating CPU
thread, as depicted in Figure 5.2. While the GPU kernel processing a given block
b1 operates in the first CUDA stream, the second CUDA stream is used to transfer
data for the next block b2. Once the operations in both CUDA streams are finished,
the GPU kernel processing block b2 is launched in the second CUDA stream, while
the result of b1 is transferred to the host system’s DRAM, and the next block
b3 is transferred to the GPU in the first CUDA stream. Thus, the operations in
the CUDA streams alternate between data transfer and GPU kernel execution.
Only the first and last block’s data transfer is not overlapped with GPU kernel
execution. The CPU thread is responsible for extracting and storing the next
block, initiating the data transfer, and asynchronous GPU kernel execution.
Note, the same concept to overlap data transfer and kernel execution applies to
the separation set blocks.

5.2.2 A Block-Based Multi-GPU Adjacency Search

For use in a multi-GPU system, the block-based out-of-core approach is ex-
tended. In particular, the block-based multi-GPU approach uses multiple CPU
threads and a central task queue, as outlined in Algorithm 17 (see p. 117).
The introduction of a central task queue enables load balancing across multiple
GPUs. In this context, each block is defined as a separate task. Furthermore,
for each GPU in use, exactly one CPU thread is started and responsible for
communicating with that GPU. Having dedicated CPU threads for each GPU
prevents the CPU from becoming the performance bottleneck.

5.2 Explicit Memory-Managed GPU-Accelerated Adjacency Search in PC-Stable 117

Algorithm 17 Block-based multi-GPU adjacency search
Input: Vertex set V, correlation matrix sCor or observational data matrix D,
significance level α, maximum level ml, number of data samples n, block size
bs, GPU count g
Output: Estimated skeleton matrix C, separation sets matrix Sep

1: threadList←createThreads(g)
2: l← 0
3: Let C and Ĉ be |V| × |V| matrices with all entries set to 1
4: Let Sep be an |V| × |V| ×ml matrix with all entries set to −1
5: blocks←split(C, Ĉ, Sep, sCor,D, bs)
6: while ml > l do
7: queue←fillQueue(blocks)
8: for all t in threadList do
9: repeat
10: b←queue.pop()
11: transferToGPU(b,GPUt)
12: if l = 0 then
13: launchGPUKernel(CITest0, {b, α, n}, GPUt)
14: else
15: sepsetblocks←sepSetCombination(b, l, blocks)
16: for all s in sepsetblocks do
17: transferToGPU(s,GPUt)
18: launchGPUKernel(CITestL, {b, s, α, n}, GPUt)
19: end for
20: end if
21: transferFromGPU(b,GPUt)
22: until queue is empty
23: end for
24: l← l + 1
25: update(ml)
26: end while
27: merge(blocks)
28: return C, Sep

Input and Output

The number of GPUs used for processing is passed to the algorithm as an ad-
ditional parameter, denoted by g. Otherwise, the algorithm receives the same
input parameters as the block-based out-of-core GPU adjacency search (see In-
put of Algorithm 16). Further, the same output is returned.

Description of the Procedure

According to the parameter for the number of GPUs, g, multiple CPU threads
are created and managed in a list (see line 1 of Algorithm 17, p. 117). In the
following, the data preparation steps for the single-GPU case are performed (see
lines 2–5). At the beginning of each level l, the central task queue queue is filled
with all blocks to be processed in the multi-GPU case (see line 7). Then, each
of the created CPU threads performs the following steps until all blocks in the
central task queue have been processed (see lines 8–22).

118 5 GPU-Based CSL Beyond a Single GPU’s Memory Capacity

First, the CPU thread t takes a block from the task queue. Then the data of
the current block is transferred to the GPU GPUt assigned to the CPU thread.
In the case of level l = 0, the GPU kernel to process the block is started directly.
Otherwise, the possible sets of separation set blocks are calculated and processed
in a loop. In each iteration, the data of one separation set block is transferred
to the corresponding GPU GPUt before the GPU kernel is launched. Once all
possible sets of separation set blocks have been processed, the results of the
current block are transferred from GPUt to the host system. The subsequent
level is started when the central task queue queue contains no more elements.
Once all levels have been processed, i.e., ml ≤ l, the blocks are merged, and the
algorithm returns a matrix containing the estimated skeleton C, and a matrix
of the corresponding separation sets Sep.

Note that the operations performed by each CPU thread are realized analo-
gously to the single-GPU case (see Figure 5.2, p. 116). Thus, each CPU thread
uses CUDA streams mapped to its assigned GPU to overlap data transfer and
GPU kernel execution.

5.3 Summary

In this chapter, we presented two approaches to scaling GPU-accelerated
constraint-based CSL to arbitrarily large datasets, i.e., datasets which exceed
the GPU memory capacity. The first out-of-core approach builds upon the con-
cept of UM. UM allows GPU global memory oversubscription and uses the MMU
to migrate memory pages on demand to the requesting PU. This approach re-
quires few adaptations but introduces overhead at runtime [120], despite the use
of best practices [219]. The second out-of-core approach relies on explicit mem-
ory management. Therefore, the proposed algorithm splits the input dataset
into consumable-sized blocks that fit into GPU global memory. Further, the
algorithm orchestrates data transfer and GPU kernel execution to ensure that
the required data resides in GPU global memory. This block-based out-of-core
approach overlaps data transfer and GPU kernel execution to minimize over-
head. We extended both approaches to operate on multiple GPUs to benefit
from modern multi-GPU computing systems.

6

Evaluation

In this chapter, we present results from our experimental evaluation of the algo-
rithms for GPU-accelerated CSL that we proposed in this thesis, as described
in Chapters 4 and 5.

First, we describe the experimental setup in Section 6.1. Particularly, we
detail the datasets with their associated CGMs and the hardware of heteroge-
neous systems used for the experiments. Additionally, we describe state-of-the-
art implementations for constraint-based CSL and naive baseline implementa-
tions used for comparison in our evaluation.

Second, we present the results of our experiments for our GPU-accelerated
algorithms for data with different distributions in Section 6.2, which address our
first research question (RQ1). Concerning our second research question (RQ2),
we cover experiment results for our GPU-based approaches that scale beyond a
single GPU’s memory capacity in Section 6.3. Our experiments cover our algo-
rithms as introduced in Chapters 4 and 5, measure their runtimes to illustrate
the possible performance gains over state-of-the-art CSL algorithms, and show
the limitations of our approaches.

Finally, we discuss the results of our experimental evaluation in Section 6.4.
Particularly, we argue for cases in which GPU acceleration for constraint-based
CSL is well-suited and discuss settings in which GPU acceleration introduces too
much overhead. We close this chapter with a summary in Section 6.5. Parts of
this chapter have been published in six research papers [16, 80, 81, 83, 225, 226].

6.1 Experimental Setup

In this section, we describe the experimental setup used for our evaluation.
At first, we elucidate the datasets with their associated CGMs used to com-

pare the runtimes of our proposed algorithms (see Section 6.1.1). We cover
a range of real-world gene expression datasets and well-known benchmark
Bayesian networks that provide an underlying CGM. We also describe synthetic
data that can be used to examine settings beyond the abovementioned datasets.

Second, we detail the characteristics of different heterogeneous hardware
systems used to execute our experiments (see Section 6.1.2). Our proposed al-
gorithms have been evaluated at the time of publication on the system with the
most recent hardware available to us. Therefore, we used three systems with
different GPU generations and one additional multi-core CPU-only system.

120 6 Evaluation

Lastly, we elaborate on state-of-the-art implementations stemming from mul-
tiple well-known libraries used to compare to our proposed algorithms (see Sec-
tion 6.1.3). If applicable, we also cover naive baseline implementations that we
use for comparisons.

6.1.1 Description of the Datasets Used for Experimental Evaluation

In our experiments, we measure the runtimes of our proposed algorithms on
multiple real-world datasets and well-known benchmark Bayesian networks.
These datasets and networks are commonly used to compare approaches of
CSL [78, 106, 123, 126, 169, 234, 287]. Accordingly, we obtain comparability to
existing experimental evaluations. Furthermore, we show the applicability of our
proposed algorithms in realistic settings. Additionally, we measure the runtime
of our algorithms on synthetic data to illustrate settings that are not covered by
the selection of real-world datasets. Using synthetic data allows us to investigate
a broader range of cases to generalize our findings and pinpoint shortcomings.
Furthermore, we rely on synthetic data in the case of mixed discrete-continuous
data and continuous data with non-linear relationships, as, to the best of our
knowledge, there are no suitable publicly available real-world datasets. Here-
inafter, we first elucidate the real-world datasets and benchmark Bayesian net-
works. Second, we detail the synthetically generated data used for evaluating
our proposed algorithm.

Real-World Datasets and Benchmark Bayesian Networks

Table 6.1 (see p. 121) summarizes the real-world gene expression datasets and
the benchmark Bayesian networks used in the evaluation of this thesis. In partic-
ular, for each dataset, the table states, which distribution model the associated
data is assumed to follow, the number of variablesN , the number of data samples
n, and the maximum size of the domain maxi=1,...,N{|Vi|}, with Vi representing
the corresponding discrete domain of the variable Vi and i = 1, . . . , N . For all
gene expression datasets, the data is assumed to follow the Gaussian distribu-
tion model. The datasets NCI-60, MCC, BR51, DREAM5-INSILICO, S.AUREUS, and
S.CEREVISIAE, were downloaded from [123], and the dataset TCGA was down-
loaded from [193]. Concerning the number of variables, the datasets downloaded
from [123] are high-dimensional, ranging from 1 190 variables for NCI-60 to 5 361
variables for S.CEREVISIAE. Except for DREAM5-INSILICO, which has 850 data
samples, the number of data samples of these gene expression datasets is small,
ranging from 47 data samples for NCI-60 up to 160 data samples for S.AUREUS.

In contrast, the TCGA dataset [193], which is not considered in any other work
on CSL, has 55 572 variables and 3 189 data samples. We use TCGA as a repre-
sentative of a high-dimensional dataset that exceeds a single GPU’s memory
capacity to evaluate our out-of-core GPU and multi-GPU algorithms.

The benchmark Bayesian networks, ALARM, ANDES, LINK, and MUNIN, down-
loaded from the bnlearn repository [233], assume a discrete distribution model.
For each benchmark Bayesian network, the underlying CGM is provided. Ac-
cordingly, any number of data samples that follow the associated distribution
can be generated. In our case, we choose to generate 10 000, 20 000, or 200 000
data samples to cover small-sized and large-sized datasets. Furthermore, for the

6.1 Experimental Setup 121

real-world
gene expression
dataset/benchmark
Bayesian network

distribution
model

N - number
of variables

n - number
of data
samples

maxi=1,...,N{|Vi|} -
maximum size
of the discrete

domain

NCI-60 [125] Gaussian 1 190 47 -
MCC [125] Gaussian 1 380 88 -
BR51 [125] Gaussian 1 592 50 -
DREAM5-INSILICO [152] Gaussian 1 643 850 -
S.AUREUS [152] Gaussian 2 810 160 -
S.CEREVISIAE [143] Gaussian 5 361 63 -
TCGA [21, 193] Gaussian 55 572 3 189 -

ALARM [10] Discrete 37
10 000

/ 200 000
4

ANDES [37] Discrete 223 20 000 2
LINK [104] Discrete 724 20 000 4
MUNIN [7] Discrete 1 041 20 000 21

Table 6.1: Characteristics of gene expression datasets (top) commonly
used to evaluate CSL algorithms and benchmark Bayesian networks (bot-
tom) downloaded from the bnlearn repository [233]. For the gene expression
datasets, the distribution model refers to the commonly assumed one, and
the maximum size of the domain only applies to discrete data. To the best
of our knowledge, there is no suitable publicly available real-world mixed
discrete-continuous dataset.

discrete datasets, the table states the maximum size of the domain, which is 2
for ANDES, 4 for ALARM and LINK, and 21 for MUNIN. Note that the maximum
size of the domain has implications on the memory demand for the contingency
table and marginals constructed during the execution of a CI test. Concerning
the number of variables, the four considered Bayesian networks cover small-
dimensional datasets, e.g., ALARM and ANDES, with 37 and 223 variables, and
high-dimensional datasets, e.g., LINK and MUNIN, with 724 and 1041 variables.

Synthetic Data

In the experimental evaluation of our proposed algorithms, we use synthetic
data to investigate settings not covered by real-world datasets and benchmark
Bayesian networks. To generate synthetic data, we employ two different options.

The first option builds upon data generation frameworks, e.g., as provided
by the pcalg library [111] or the MANM-CS library [98]. These frameworks take
parameters that characterize a CGM. Based on these parameters, the frame-
works randomly generate CGMs and sample data accordingly. To the best of our
knowledge, the data generation tool within the pcalg library [111] is restricted
to generating data following a linear Gaussian distribution model. Therefore, we
employ the MANM-CS library [98], which allows for generating CGMs with mixed
discrete-continuous variables and non-linear relationships.

The second option we use to obtain synthetic data abstracts from any under-
lying CGM and causal mechanism and randomly generates numeric or discrete
values. We employ this data generation approach to study the proposed algo-

122 6 Evaluation

rithms’ behavior in isolated settings. In these settings, we are interested in the
impact of a specific algorithm parameter. Such settings occur, for example, when
we investigate the scalability concerning the number of CI tests of our imple-
mented GPU kernel for a certain level l. A second example is when we measure
the impact of increased maximum sizes of the domain maxi=1,...,N{|Vi|}.

In the following, we describe the synthetically generated data assuming the
different distribution models considered in this thesis.

Gaussian Distribution Model

For the experimental evaluation of our proposed GPU-accelerated adjacency
search for the Gaussian distribution model and its extension to scale beyond a
single GPU’s memory capacity, we generate synthetic data to understand the
algorithms’ scalability. Therefore, the synthetic datasets contain an increasing
number of variables. Consequently, the number of CI tests that must be per-
formed increases. Under the assumption that the utilized CI test, i.e., Fisher’s
z-test [59], works on a pre-computed square correlation matrix, the synthetic
data comprises randomly generated correlation matrices. The data generation
method sets the diagonal of the correlation matrix to 1. It also sets each entry
in the upper matrix and its mirrored value in the lower triangular to a randomly
drawn numeric value between 0 and 1.

To study our GPU-accelerated approaches to scale beyond a single GPU’s
memory capacity, we generate correlation matrices with an increasing number of
variables ranging from N = 5000 to N = 80 000 in steps of 5 000 or 10 000. Sim-
ilarly, for our GPU-accelerated adjacency search on a single GPU, we generate
random correlation matrices with dimensions of 10 × 10 up to 25 000 × 25 000
to investigate the behavior with an increasing number of performed CI tests.
As a result, in level l = 0, between 45 to 312 487 500 CI tests are performed.
Moreover, in level l = 1, considering the worst case of performing all possible
CI tests, 360 to approximately 7.8 · 1012 CI tests are conducted.

Discrete Distribution Model

In the case of our proposed GPU-accelerated adjacency search for discrete data,
we consider five isolated settings. In particular, we want to study the impact of
the number of variables N , the number of data samples n, the maximum size
of the dimension maxi=1,...,N{|Vi|}, the number of CI tests conducted per edge,
which we denote with CIedge, and the impact of a decay factor df . The decay
factor df describes the percentage of edges removed equally distributed from
skeleton C within each level l of the adjacency search. We see df as a proxy
for the density of underlying CGMs, but use a fixed deletion rate and strategy
for better interpretability. The parameter CIedge allows us to investigate the
impact of load imbalance due to changing numbers of CI tests per edge [224].
To generate data according to these settings, we create datasets of dimension
N × n and sample discrete values from {0, . . . ,maxi=1,...,N{|Vi|}}. Generating
data according to the parameters CIedge and df is challenging. Therefore, we
manually set the current skeleton C after each level l to guarantee to fulfil the
parameter df , Furthermore, to ensure that parameter CIedge is followed, we
manipulate the function that determines the separation set for a given variable
Vi to return a set of separation sets with a size equal to CIedge.

6.1 Experimental Setup 123

Mixed Discrete-Continuous Data and Data with Non-Linear Relationships

Under the assumption of mixed discrete-continuous data or data with non-linear
relationships, we utilize the MANM-CS library [98] to generate synthetic CGMs
with associated data. We set the number of data samples n and the number
of variables N according to the specification of each experiment. For each such
parameter setting, we generate CGMs that contain a mix of discrete and con-
tinuous variables with selected ratios from {0.0, . . . , 1.0}. The CGMs have an
edge density randomly chosen from {0.1, . . . , 0.5}. For edges between contin-
uous variables, we randomly select functions from the following set: {linear,
quadratic, tanh}. We use the library’s defaults for the remaining data genera-
tion parameters of MANM-CS. Note that we use the same data generation method
for experiments evaluating our CI test GPUCMIknn independent of its application
within the PC-stable algorithm.

6.1.2 Heterogeneous Hardware Systems Used in Experiments

characteristics Galileo Titan X Delos A40

CPU

4×
Intel® Xeon®

E7-4850 v4

1×
Intel®

i7-6700K

2×
Intel® Xeon®

Gold 6148

1×
AMD EPYC

7343

number of
cores

16 4 20 16

size of DRAM 2 TB 64 GB 1.5 TB 96 GB
interconnect
between CPU

QPI - UPI -

interconnect
between

host & GPU
- PCI-E 3.0 PCI-E 3.0 PCI-E 4.0

GPU -
1× NVIDIA
Geforce GTX

Titan X

4× NVIDIA
Tesla V100

SMX2

1× NVIDIA
A40

size of GPU
on-chip memory

-
12 GB
GDDR5

32 GB
HBM2

48 GB
GDDR6

memory bandwidth
on GPU

- 336GB
s

900GB
s

696GB
s

number of SMs - 24 80 84
interconnect

between GPUs
- - NVLink 2.0 -

operating system:
version of Ubuntu

18.04 16.04 18.04 21.04

CUDA version - 9.0
9.1,
11.2,
11.3

11.4

Table 6.2: Selected characteristics of the hardware systems used for our
evaluation. The top parts refer to the hardware features of the CPUs and
the GPUs. The bottom part mentions software specifications.

124 6 Evaluation

Table 6.2 (see p. 123) presents selected characteristics of the heterogeneous
hardware systems used for our experimental evaluation. In particular, we report
the number and type of CPUs together with the number of CPU cores. Further,
we mention the size of the system’s DRAM, the interconnect technology to con-
nect CPUs, and the interconnect technology to link the host system with the
GPUs, if applicable. We mention the number and type of GPUs, the size of the
GPU on-chip memory with its bandwidth, and the number of Streaming Mul-
tiprocessors (SMs). We also state the interconnect technology used to connect
multiple GPUs, if applicable. Lastly, we report the operating system and the
CUDA version installed when the systems were used for experiments. All these
features are listed for four different hardware systems. We use one multi-core
CPU system with four CPUs called Galileo. Further, we run experiments on
two heterogeneous systems equipped with one multi-core CPU and one GPU,
named Titan X and A40. Lastly, we conduct experiments on a heterogeneous
multi-GPU system with two multi-core CPUs and four GPUs called Delos.

Multi-Core CPU System: Galileo

Galileo is a CPU-only system with four Intel CPUs, each with 16 physical cores
and hyperthreading. The CPUs are connected via Intel’s QuickPath Intercon-
nect (QPI). The system has a DRAM capacity of 2 TB. We use the Galileo

system in one experiment measuring runtimes using a high-dimensional dataset
that exceeds a single GPU’s memory capacity. This high-dimensional dataset
has a large memory footprint requiring a system with enough DRAM capacity.

Heterogeneous Single-GPU System: Titan X

Titan X is a single-GPU system with one four-core Intel CPU and 64 GB of
DRAM. The host system has one attached GPU that is connected via PCI-E 3.0.
The attached GPU is an NVIDIA Geforce GTX Titan X [262] with 24 SMs. The
GPU has 12 GB of GDDR5 on-chip memory with a bandwidth of 336GB

s . At
the time we performed the experiments on Titan X, the operating system was
Ubuntu version 16.4, and CUDA version 9.0 was installed.

Heterogeneous Multi-GPU System: Delos

Delos is a multi-GPU system with two 20-core Intel CPUs and 1.5 TB of DRAM.
The host system has four attached GPUs that are connected via PCI-E 3.0 to
the host system. The attached GPUs are NVIDIA Tesla V100 [174] with 80 SMs
each. The GPUs have 32 GB of HBM2 on-chip memory with a bandwidth of
900GB

s . The GPUs are connected via NVLink 2.0 [60] to each other.
Figure 6.1 (see p. 125) provides an overview of the Delos system’s inter-

connect topology. The two CPUs are connected via Intel Ultra Path Intercon-
nect (UPI). Each CPU is connected via a PCI-E Switch to two of the GPUs.
The GPUs are connected in a ring topology via NVLink 2.0, either using two
lanes, e.g., between GPUs 0−1, 0−2, 2−3, or using a single lane, e.g., between
GPUs 1−3. There is no direct link between GPUs 0−3 and 1−2. In our exper-
iments, we refer to these three groups of GPUs as direct two lanes, direct one
lane, and indirect, respectively. The theoretical one-directional bandwidth is 25
GB/s for one NVLink 2.0 lane and 16 GB/s for PCI-E version 3. The Delos

operating system is Ubuntu version 18.4. The CUDA versions were 9.1, 11.2 or
11.3 depending on the time the experiments were performed.

6.1 Experimental Setup 125

NVLink single lane

NVLink double lane

UPI

PCI-E

CPU 0 CPU 1

GPU 2GPU 0

GPU 3GPU 1

PCI-E
Switch

PCI-E
Switch

Fig. 6.1: Interconnect topology of the heterogeneous system Delos

equipped with multi-core Intel CPUs and multiple NVIDIA GPUs. Blue
connections refer to UPI, black connections refer to PCI-E 3.0, and green
connections refer to NVLink 2.0, either single or double lanes.

Heterogeneous Single-GPU System: A40

A40 is a single-GPU system with one 16-core AMD CPU and 96 GB of DRAM.
The host system has one attached GPU that is connected via PCI-E 4.0. The
attached GPU is an NVIDIA A40 [180] with 84 SMs. The GPU has 48 GB of
GDDR6 on-chip memory with a bandwidth of 696GB

s . The operating system
of A40 is Ubuntu version 21.4 and CUDA version 11.4 was installed at the time
experiments were performed.

6.1.3 Implementations from State-of-the-Art Libraries & Naive
Baselines Used for Comparison

In the following, we describe the state-of-the-art libraries supporting constraint-
based CSL, which are used in our experimental evaluation for comparison to our
proposed GPU-accelerated algorithms. Furthermore, we detail naive baseline
implementations and adaptations from existing libraries that we include for a
more comprehensive experimental evaluation.

Overview of Implementations from State-of-the-Art Libraries

Table 6.3 (see p. 126) provides an overview of the state-of-the-art CSL libraries
used in our evaluation. For each library, we report the function call used, the
programming language, and the framework for parallel execution, as these at-
tributes may impact the runtime performance. Furthermore, we state if the
library employs GPU acceleration. We utilize four different libraries for com-
parison with our adjacency search algorithms. Under the assumption that the
data follow the Gaussian distribution model, we compare with pcalg [111] and
cupc [287]. If the observational data samples are discrete, we compare our algo-
rithms to bnlearn [232] and parallelPC [126]. We choose the combination of li-
braries for comparison based on a previous runtime performance evaluation [99].
Although bnlearn and parallelPC support CI tests for the Gaussian distribu-
tion model, their runtime is slower than pcalg’s runtime. Similarly, pcalg can
process discrete data samples, but the other two libraries are faster.

126 6 Evaluation

library
function
called

programming
language

framework for
parallel execution

GPU
acceleration

pcalg [111]
pc(. . .) with
stable.fast

R, C++ openMP [40] -

parallelPC [126]
pc parallel(. . .)
with stable.fast

R parallel [198] -

bnlearn [232] pc.stable(. . .) R, C parallel [198] -
cupc [287] cu pc(. . .) CUDA, R, C CUDA [170] yes

tigramite [214]
CMIknn.run
test raw(. . .)

python via SciPy [274] -

Table 6.3: Overview of implementations from state-of-the-art libraries and
study relevant characteristics. Libraries in the upper part are used for com-
parison with our adjacency search algorithms. tigramite is used for com-
parison with our GPU-accelerated information-theoretic CI test GPUCMIknn.

Furthermore, we use the CMIknn CI test from the tigramite package [214] for
comparison with our GPU-accelerated information-theoretic CI test GPUCMIknn
and its application within the adjacency search in PC-stable.

pcalg

pcalg [111] is a well-known library that supports constraint-based CSL using
the PC algorithm and its stable variant, PC-stable [35]. The library is written
using the R framework [198] and supports efficient implementations of CI tests in
C++ using Rcpp [51]. For example, for data that follows the Gaussian distribution
model, the implementation relies on RcppArmadillo [52] to leverage the efficient
linear algebra implementation of the Armadillo library [221]. Further, the C++

implementation uses openMP [40] for parallel execution of the adjacency search
employing a static task distribution.

parallelPC

parallelPC [126] is a parallel variant of the PC-stable algorithm. The library
is written entirely in R and extends the original R-based serial implementation
of pcalg. The function pc parallel(. . .) in parallelPC uses the R library
parallel for static distribution of tasks for parallel execution to the CPU cores.

bnlearn

bnlearn [232] is a library that supports score-based, constraint-based and hybrid
methods for CSL. The library implements the PC-stable algorithm, which is
executed by calling the function pc.stable(. . .). The library is called from
the R environment but implements core functionality concerning CI tests in C

for efficiency. To perform the CI tests on a system with multi-core CPUs the
adjacency search is performed in parallel using the R library parallel. In this
context, the tasks, i.e., edges, are statically distributed to the CPU cores.

6.1 Experimental Setup 127

cupc

To the best of our knowledge cupc [287] is the only GPU-accelerated library
that supports constraint-based CSL. The library implements the PC-stable al-
gorithm with a CI test for data that follows the Gaussian distribution model.
The PC-stable algorithm is called from the R environment invoking the function
cu pc(. . .). Internally, the adjacency search is implemented in C and CUDA [170].
In particular, each level l of the adjacency search with the associated CI test
is implemented in a separate CUDA kernel. Thus, for parallel execution on GPU
hardware cupc builds upon the CUDA framework. Note that the code orchestrat-
ing the CUDA kernels is written in C.

tigramite

tigramite [214] is a python library for causal inference and causal discovery
in time series data. The library implements the information-theoretic CI test
CMIknn [214], which is called using the function CMIknn.run test raw(. . .).
The CI test uses a KD-tree implementation from the SciPy library [274] to per-
form k-Nearest Neighbor (k-NN) searches. The SciPy library allows for parallel
execution of the k-NN search queries on a multi-core CPU.

Naive Baseline Implementations

Implementations from the selected state-of-the-art libraries cover many cases
targeted by our proposed algorithms. Nevertheless, in two experiments, we in-
clude naive baseline implementations. These implementations build upon the
libraries mentioned above.

In particular, we add one GPU baseline implementation discrete data. This
GPU baseline uses the same parallel execution strategy proposed in the cupc-E
algorithm. Thus, each GPU thread processes an individual CI test. To realize
this baseline, we adapt the cupc-E algorithm from the cupc library [287] and
replace its CI test with the version of the Pearson χ2 CI test implemented in our
GPU-accelerated algorithm. In the experiments, we denote this implementation
by disc-cupc.

In the second case, we add a python-based parallel adjacency search using
the CMIknn [214] CI test that targets the CPU as an execution device. We use a
python-based parallel adjacency search to have a single entry point for runtime
comparison of the CPU-based CMIknn [214] CI test and our proposed GPU-
accelerated algorithm. Thus, we incorporate our GPU-accelerated algorithm into
the same python-based adjacency search. In our GPU-accelerated algorithn, we
use a single CPU thread and realize the parallel execution within CUDA-based
GPU kernels. The CUDA-based GPU kernels are integrated into the python code
via NumPy’s C-API [84].

128 6 Evaluation

6.2 Experiments on GPU-Accelerated CSL Using a Single
GPU

This section covers the experiments to address our first research question (RQ1).
Thus, the measurements of our experimental evaluation examine the runtime
performance of our GPU-accelerated CSL algorithms that execute on a single
GPU, as described in Chapter 4. First, Section 6.2.1 provides measurement re-
sults for our proposed algorithms targeting the Gaussian distribution model (see
Section 4.2). Next, Section 6.2.2 contains the experiment results concerning our
introduced algorithm for discrete data (see Section 4.3). Section 6.2.3 describes
the measurement results for our GPU-accelerated information-theoretic CI test,
GPUCMIknn (see Section 4.4.2). Finally, Section 6.2.4 details the experiment results
for GPUCMIknn-Parallel, our proposed GPU-accelerated adjacency search build-
ing upon GPUCMIknn (see Section 4.4.3). Parts of this section have been published
in four research papers [16, 81, 83, 226].

6.2.1 Experiments for a GPU-Accelerated Adjacency Search
Assuming Data That Follows the Gaussian Distribution Model

This section describes the experiments for our proposed GPU-accelerated ad-
jacency search algorithm, assuming that data follows the Gaussian distribution
model. According to observations when performing the adjacency search of the
PC algorithm on several real-world gene expression data, we argue that most
CI tests are performed in levels l = 0, 1 (see Section 4.2.1 and [226]).

Therefore, our first measurements focus on these two levels only. In partic-
ular, we investigate the scalability of the corresponding GPU kernel implemen-
tations concerning an increasing number of CI tests using synthetic data. Fur-
ther, we examine the runtimes on multiple real-world gene expression datasets,
which we compare to a CPU baseline. Afterward, we present measurements on
the proposed CUDA-X library-based variant to process levels l ≥ 2. We focus on
strategies to achieve high GPU utilization. Lastly, we elucidate measurements on
the end-to-end performance on real-world gene expression datasets utilizing the
GPU kernel-based variant for higher levels l ≥ 2. In that experiment, we utilize
the publicly available version of our GPU-accelerated algorithm implemented in
our python package gpucsl1 [16].

Experiment on Scalability using Synthetic Data for Levels l = 0, 1

In the first experiment, we examine the scalability of our CUDA-based imple-
mentations of the GPU kernels for levels l = 0, 1 with an increasing number of
CI tests. With the experiment, we aim to determine if the selected paralleliza-
tion strategies work for low- and high-dimensional datasets.

For the experiment, we generate synthetic data following the Gaussian dis-
tribution model as described in Section 6.1.1. We generate datasets with the
number of variables N ranging from 10 to 25 000. We chose 25 000 as the upper
limit, as datasets with a higher number of variables would exceed the GPU’s
memory capacity of the Titan X system (see Section 6.1.2 for detail) utilized
in this experiment. Note that we assume a fully connected CGM; thus we can

1 https://github.com/hpi-epic/gpucsl

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 129

use the number of variables as a proxy for the number of CI tests that must
be performed. We measure the GPU kernel execution time including and ex-
cluding data transfers. Hence, to measure the GPU kernel execution time, we
take the current time prior to the GPU kernel launch and compute the differ-
ence to the time after a call of the function cudaDeviceSynchronize(. . .).
For the measurements with data transfer, we include the time spent for data
transfers, i.e., via a call of the function cudaMemcpy(. . .) but also add the
times spent for GPU global memory allocation, i.e., via a call of the function
cudaMalloc(. . .) and the freeing of GPU global memory by calling the func-
tion cudaFree(. . .). We use the C++ chrono library2 for time measurements.
The same setup is used for the measurements of both GPU kernels.

For the GPU kernel for level l = 0, a dataset with N = 10 results in per-
forming 45 CI tests, and a dataset with N = 25 000 requires 312 487 500 CI tests
to be computed. In Figure 6.2a (see p. 130), we present the measured runtimes
of the GPU kernel for level l = 0, excluding and including the data transfers
between the host and GPU. In this isolated setting, we observe that the mea-
sured runtime, including data transfer, is up to an order of magnitude higher
than the runtime of the GPU kernel without data transfer. The data transfers
dominate the runtime, which poses a significant slowdown if only level l = 0 is
processed. However, in the context of the adjacency search within PC-stable, the
data structures transferred to GPU global memory can be reused by the GPU
kernel for level l = 1 and in higher levels l ≥ 2, too. In addition, we observe that
our parallel CUDA-based implementation scales linearly concerning the number
of CI tests for high-dimensional datasets. For low-dimensional datasets that re-
quire fewer than 100 000 CI tests, see the fourth data point in Figure 6.2a, we
discover negligible differences in the runtimes. An in-depth investigation of the
GPU kernel execution with the nvprof profiling tool [175] reveals that for the
low-dimensional datasets, the SM utilization remains low. The corresponding
performance metric sm efficiency obtained from nvprof ranges from 15% for
ten variables, see the first data point in Figure 6.2a, to 70% when slightly less
than 100 000 CI tests are required. For the remaining high-dimensional datasets,
which require more than 100 000 CI tests, the sm efficiency reaches over 90%.

For the GPU kernel for level l = 1, the number of CI tests increases drasti-
cally. We assume the worst case, i.e., a fully connected CGM. Thus all edges are
present in the current skeleton graph C, and no edge is removed after any CI test.
We construct this case by setting the significance level α = 1.0. Hence, for a
dataset withN = 10, the GPU kernel computes 360 CI tests, and for the dataset,
with N = 25 000, the GPU kernel performs approximately 7.8 · 1012 CI tests.
Figure 6.2b (see p. 130) presents the measured runtimes for the GPU kernel
for level l = 1, again showing the pure GPU kernel execution and the runtime,
including data transfer. Similar to the GPU kernel in level l = 0, we observe
a linear increase in the runtime with an increase in the number of performed
CI tests. In contrast to the GPU kernel in level l = 0, the data transfer over-
head is small for low-dimensional datasets and neglectable for high-dimensional
datasets. The nvprof profiling tool [175] reveals a low sm efficiency for the
first two data points and a value of close to 100% for any dataset with N ≥ 100.
In the case of datasets with N ≥ 100, 485 100 CI tests are performed, which

2 http://en.cppreference.com/w/cpp/header/chrono

130 6 Evaluation

(a) Median runtimes (10 runs) in milliseconds of the CUDA-based GPU
kernel for level l = 0 with and without data transfer.

(b) Median runtimes (10 runs) in milliseconds of the CUDA-based
GPU kernel for level l = 1 with and without data transfer.

Fig. 6.2: Runtimes in milliseconds of the CUDA-based implementations of
the GPU kernels for levels l = 0 (a) and l = 1 (b) with an increasing
number of CI tests. Note that both axes are in log scale.

saturates the available SMs. In contrast, lower-dimensional datasets expose an
insufficient number of tasks for parallel execution to utilize all available SMs.

Considering both experiments, we find that the GPU of the Titan X system
can process up to approximately 500 000 CI tests in parallel without significantly
increasing the runtime. Once the GPU’s SMs are fully utilized, the runtime
increases linearly with an increasing number of CI tests.

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 131

Experiment on the Application to Real-World Gene Expression
Data for Levels l = 0, 1

With the following experiment, we aim to investigate the performance gain when
performing the CI tests in levels l = 0, 1 on the GPU over the execution on the
CPU. Therefore, we measure the runtimes of the adjacency search up to level
l = 1 on selected real-world gene expression datasets for our GPU-accelerated
algorithm and a CPU-based implementation from a state-of-the-art library.

The gene expression datasets used in this experiment are BR51, MCC, NCI-60,
S.AUREUS, and S.CEREVISIAE (see Section 6.1.1 for detail). For the CPU-based
implementation, we choose pcalg [111] (version 2.5). The choice of pcalg has
two reasons. First, pcalg is written using the R framework [198], a widely ac-
cepted environment for statistical computation providing a rich toolset and al-
lowing integration of other languages to execute performance-critical parts of
the code, for example, in C++. Second, pcalg leverages the language integra-
tion and implements the performance-critical adjacency search for data that
follows the Gaussian distribution model in C++. Note that at the time of experi-
ment execution, we made the following observation when running the adjacency
search of pcalg in parallel on a multi-core CPU. In level l = 0, we found that
running the adjacency search on multiple cores leads to faster runtimes than
serial execution. In contrast, in level l = 1 and higher, we observed similar or
slower runtimes when running the adjacency search on multiple cores compared
to serial execution. We assume that synchronization overhead accounts for the
slowdown. As a result of this observation, we use the parallel version of the

Fig. 6.3: Factors of speedup of the adjacency search up to level l = 1
when performing all CI tests on the GPU using the GPU kernels for levels
l = 0, 1 compared to executing the adjacency search up to level l = 1 on
the CPU using the implementation from pcalg (version 2.5). Note that we
include data transfer between the host and GPU and that pcalg runs on
four CPU cores in level l = 0 and single-threaded mode in level l = 1.

132 6 Evaluation

adjacency search provided by pcalg only in level l = 0. Note, we also consid-
ered parallelPC for comparison but experienced slower runtimes compared to
pcalg, despite parallel execution in level l = 1, which we account for the more
efficient C++ implementation of pcalg. The runtime measurements are executed
on the Titan X system (see Section 6.1.2 for detail) and include data transfers
between the host and GPU. Further, we set the significance level to α = 0.01.

Figure 6.3 (see p.131) depicts the factors of speedup of our GPU-accelerated
adjacency search over the CPU-based adjacency search of pcalg when executed
up to level l = 1. Further, the figure presents the number of performed CI tests
for both levels l = 0, 1. We obtain this number from the CPU-based algorithm,
which stops iterating through the set of possible separation sets for an edge once
one CI test signals the independence of that particular edge. Note that for the
GPU-based adjacency search, the number of performed CI tests can be higher
in level l = 1 as CI tests are performed in parallel by warps on the GPU.

We observe that our GPU-accelerated adjacency search outperforms the
CPU-based algorithm for all datasets. The factors of speedup range from 64×
for the S.CEREVISIAE dataset to 729× for the S.AUREUS dataset. It is note-
worthy that a larger number of performed CI tests does not directly result in
higher factors of speedup. For example, consider the two datasets, MCC and
BR51, which have similar numbers of variables (MCC: N = 1380, BR: N = 1592).
Roughly 8 million more CI tests are performed to process the dataset BR51,
but a higher speedup is achieved for the dataset MCC. Even more CI tests are
performed for the dataset S.CEREVISIAE, yet the factor of speedup achieved is
smaller compared to any other dataset. In contrast, for the dataset S.AUREUS,
the largest factor of speedup is achieved, and most CI tests are processed. Nei-
ther more variables nor more data samples are directly related to higher factors
of speedup. To understand this matter further, we look at the speedup for each
level individually in Figure 6.4 (see p. 133). Note that we exclude the data
transfers between the host and GPU in both cases.

Figure 6.4a (see p. 133) focuses on the factors of speedup achieved in level
l = 0. As expected, we observe that the number of conducted CI tests increases
quadratically to the number of variables N . Note that in level l = 0, the number
of performed CI tests is the same for the CPU-based and GPU-based adjacency
searches. Furthermore, we observe that the factor of speedup increases as the
number of performed CI tests increases. This observation supports our idea of
GPU acceleration for constraint-based CSL for high-dimensional data. However,
level l = 0 only accounts for a fraction of the overall runtime (see Table 4.3).

Figure 6.4b (see p. 133) shows the factors of speedup achieved in level l = 1,
which accounts for most of the overall runtime (see Table 4.3). In level l = 1,
we observe similar factors of speedup as presented in Figure 6.3, as the impact
of level l = 0 and data transfer are small. Profiling the GPU execution with
nvprof [175] did not reveal significant differences in the GPU kernel execution
across the different datasets. Thus, we assume that the speedup factor achieved
in level l = 1, in addition to the number of variables, respectively CI tests, is
also influenced by the structure of the underlying true DAG of the CGM and
the parallel execution strategy used in our GPU-accelerated algorithm.

In particular, the GPU kernel for level l = 1 uses GPU kernel launch pa-
rameters independent of the current version of the skeleton C obtained after the
execution of level l = 0. As a result, the GPU kernel is launched with unnec-
essary thread blocks as the corresponding edges have already been removed in

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 133

(a) Factors of speedup for level l = 0.

(b) Factors of speedup for level l = 1.

Fig. 6.4: Factors of speedup per level for levels l = 0 (a) and l = 1 (b) in
the case that all CI tests are performed on the GPU using the GPU kernel
for the respective level compared to using the CPU-based implementation
of pcalg. In level l = 0, pcalg uses four CPU cores, whereas, in level
l = 1, pcalg runs serially. Note that the speedups do not account for data
transfers between the host and GPU.

the previous level l = 0. Furthermore, our parallel execution strategy for the
GPU kernel in level l = 1 can lead to performing unnecessary CI tests. For ex-
ample, consider the case that the first CI test for an edge signals independence
due to the underlying CGM. The CPU-based implementation, which processes
CI tests of an edge sequentially, stops after this first CI test. In contrast, in our
GPU-based implementation, the GPU threads of one thread block perform the
CI tests of an edge in parallel. Hence, our algorithm performs at least as many
CI tests as GPU threads are launched per thread block before edge removal.

We think that this overhead in our GPU-based implementation explains the
lower factors of speedup for datasets with a higher number of CI tests and a

134 6 Evaluation

number of CI tests
fused into one operation

1 2 8 64 512 4 096

sm efficiency 5.6% 7.7% 16.4% 26.8% 77.3% 94.8%
warp efficiency 32.7% 34% 39.4% 47.2% 88.9% 96.6%

achieved occupancy 4.2% 4.3% 4.7% 13.6% 59% 84%

Table 6.4: nvprof metrics measured for the CUDA-X library-based variant
for level l = 2 using varying numbers of fused CI tests. Generally, higher
percentages are better.

larger number of variables, e.g., compare runtimes for BR51 with MCC, or com-
pare runtimes for S.CEREVISIAE to any other dataset. Nevertheless, in high-
dimensional real-world datasets, our GPU-accelerated adjacency search with
the GPU kernels for levels l = 0, 1 assuming that the data follows the Gaus-
sian distribution model provides a large speedup compared to a commonly used
CPU-based implementation.

Experiment on CUDA-X Library-Based Variant for Levels l ≥ 2

With the following experiment, we aim to determine if our two proposed strate-
gies to achieve a higher GPU utilization for our CUDA-X library-based variant for
levels l ≥ 2 result in runtimes that are comparable to runtimes of CPU-based
algorithms. Synthetic data is used in the experiment, and the measurements are
taken on the Titan X system (see Section 6.1.2 for detail).

We first consider the strategy to perform multiple CI tests concurrently in
separate CUDA streams. For the measurements, the algorithm performed 4 096
CI tests with a separation set size of two, i.e., CI tests performed in level l = 2
of the adjacency search of PC-stable. Further, we varied the number of CUDA

streams from 1 to 32, and the algorithm launched a dedicated CPU thread for
each CUDA stream. In the case of one CUDA stream, the algorithm launches no
additional CPU thread, but the current CPU thread handles the processing of
the CI tests in the default CUDA stream. We observed an increase in the overall
runtime when the number of CUDA streams increased. Using the nvprof profiler,
we verified that the GPU kernels are performed concurrently but found that
the runtime of the individual GPU kernels increased with more CUDA streams.
Thus, the strategy building on CUDA streams for efficient execution of the CUDA-X
library-based variant in levels l ≥ 2 is not suited to achieve faster runtimes.

Second, we consider the strategy to fuse the computations for multiple
CI tests into the same GPU operations. In Table 6.4, we present the profil-
ing results using nvprof [175] for executions with different numbers of fused
CI tests. We focus on the following metrics sm efficiency, warp efficiency,
and achieved occupancy3, as they are indicators for the GPU utilization. Since
performing a single CI test in levels l ≥ 2 invokes multiple different GPU kernels,
we report the metrics weighted according to the separate GPU kernel runtimes.
Further note that a number of fused CI tests equal to one represents an execu-
tion without fusion. The profiling results show that the strategy achieves higher

3 For detail see https://docs.nvidia.com/cuda/profiler-users-guide/index.

html#metrics-reference-7x

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 135

number of
CI tests
fused into

one operation

1 2 4 8 16 32 64 128 256 512 1 024 2 048 4 096

average
runtime in s

11.5 9.6 7.7 7.2 6.9 6.5 6.6 6.7 9.9 22.6 74.3 291 1 149

Table 6.5: Average runtime of ten runs in seconds while processing 4 096
CI tests varying the number of CI tests fused into one operation. Fastest
runtimes, i.e., below seven seconds, are highlighted in bold.

GPU utilization by fusing multiple CI tests. For example, the sm efficiency

reaches 77.3% when 512 CI tests are fused and processed within the same GPU
kernel operations. For 4 096 fused CI tests, the SMs of the GPU are almost fully
saturated. Generally, higher GPU utilization should also yield faster runtimes.

To verify if the higher GPU utilization yields faster runtimes, we measure the
runtime of the fusion-based strategy when processing a total of 4 096 CI tests,
assuming a separation set size of two, i.e., performing CI tests in level l = 2.
The average runtimes of 10 runs are shown in Table 6.5. The fastest runtime is
achieved by fusing 32 CI tests into a single operation. In that case, a speedup
of a factor of 1.77× is achieved compared to performing the CI tests without
fusion. Similar runtimes are achieved when fusing between 16 to 128 CI tests
into one operation. Once 512 or more CI tests are fused into one operation,
we observe an increase in runtime compared to sequentially processing the 4 096
CI tests. We observe that using a single GPU operation with 4 096 fused CI tests
is approximately two orders of magnitude slower than processing the CI tests
without fusion. We attribute this slowdown to a large increase in memory foot-
print. For example, for 32 fused CI tests in level l = 2, the algorithm creates
the auxiliary data matrix tCorfused of size 128 × 128, requiring several kBs of
GPU global memory. For 512 fused CI tests, the algorithm creates the auxiliary
data matrix tCorfused of size 2 048× 2 048, which already requires several MBs
of GPU global memory. Lastly, in the case of 4 096 fused CI tests, the auxiliary
data matrix requires hundreds of MBs of GPU global memory. As a result of a
larger auxiliary data matrix, data transfer times are increased, and GPU caches
cannot be used as efficiently as with small-sized matrices. Although the profiling
metrics show the highest GPU utilization for large numbers of fused CI tests,
a speedup is only achieved if fusing is limited to a few CI tests. Overall, fusing
multiple CI tests achieves speedup below a factor of 2× compared to no fusing.

Despite this slight improvement in runtimes, the overall runtime of the
CUDA-X library-based variant for levels l ≥ 2 remains slower than the serial
CPU-based implementation from pcalg (version 2.5) by more than two orders
of magnitude. Thus, we conclude that using CUDA-X libraries, as proposed in
Algorithm 6 (see Section 4.2.5), to perform many CI tests on the GPU is not
suited to outperform CPU-based algorithms.

136 6 Evaluation

Experiment on End-to-End Performance of the PC Algorithm using
Real-World Gene Expression Datasets

In this experiment, we focus on the end-to-end performance of the entire PC
algorithm for datasets following the Gaussian distribution model. Therefore,
we compare our GPU-accelerated adjacency search using the GPU-kernel-based
variant for levels l ≥ 2, as implemented in our python-based library gpucsl [16]
to pcalg [111] (version 2.7.5) executed on the CPU, and the GPU-accelerated
PC algorithm from cupc [287]. For each of the six datasets following the
Gaussian distribution model, namely, BR51, DREAM5-INSILICO, MCC, NCI-60,
S.AUREUS, and S.CEREVISIAE (see Section 6.1.1 for detail), we report the me-
dian end-to-end runtime from 10 runs and the runtimes for subparts of the
algorithm. The subparts are the adjacency search, the edge orientation, the
GPU kernel execution, and the GPU kernel compilation. Note that the time of
the GPU kernel execution is included within the time spent for the adjacency
search. Further, the GPU kernel compilation time is only measured for gpucsl.
The gpucsl library builds upon cupy [182] to compile the GPU kernels for
each level during runtime as required. This compilation time is included in the
reported end-to-end time. In contrast, the GPU kernels in cupc are compiled
during the compilation of the library and thus not reported. All experiment
runs are performed on the Delos system (see Section 6.1.2 for detail) with CUDA

version 11.2, and the significance level is set to α = 0.05.
The measurement results are shown in Table 6.6 (see p. 137). In an end-to-

end comparison, gpucsl has an average speedup of factor 9.5× over pcalg and
outperforms cupc on average by a factor of 4.22×. For the DREAM5-INSILICO

dataset, cupc is faster than gpucsl concerning the end-to-end performance by a
factor of 2.94× and also faster in the GPU kernel execution by a factor of 4.54×.
In the case of the DREAM5-INSILICO dataset, higher levels l are reached, and
more CI tests are performed in these higher levels. Thus, gpucsl spends more
time on the GPU kernel compilation. Furthermore, the cupc-S algorithm allows
for sharing intermediate results while performing higher-order CI tests. Thus, it
outperforms gpucsl. More detailed runtime analysis reveals that gpucsl spends
most of its time on GPU kernel compilation. The adjacency search makes up be-
tween 7.65% to 33.3%, and from 4.2% to 14.9% is spent on the edge orientation.
The actual GPU kernel execution dominates the adjacency search time for large
datasets, e.g., S.AUREUS, S.CEREVISIAE, or DREAM5-INSILICO. To mitigate the
GPU kernel compilation gpucsl offers an option to provide cached GPU ker-
nels, which we did not consider in these measurements. In contrast, cupc has
no on-the-fly GPU kernel compilation. Thus, the adjacency search constitutes
56.1% to 87.9% of the end-to-end runtime. The remaining 12.1% to 43.9% of
the runtime is spent on the edge orientation. The actual GPU kernel execution
makes up between 7.7% to 19.9% of the adjacency search. Thus, CPU-based
data manipulation majorly impacts the end-to-end performance of cupc. As
cupc shares the edge orientation implementation of pcalg, the higher end-to-
end runtimes of pcalg stem from the adjacency search, despite being executed
in parallel on 40 CPU cores.

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 137

dataset library
end-to-
end

adjacency
search

edge
orientation

GPU kernel
execution

GPU kernel
compilation

NCI-60

gpucsl 1.83 s 0.14 s 0.09 s 0.03 s 1.6 s
cupc 2.51 s 2.05 s 0.46 s 0.37 s N/A
pcalg 2.75 s 2.3 s 0.45 s N/A N/A

MCC

gpucsl 2.17 s 0.17 s 0.11 s 0.05 s 1.89 s
cupc 3.29 s 2.64 s 0.65 s 0.4 s N/A
pcalg 4.8 s 4.15 s 0.65 s N/A N/A

BR51

gpucsl 1.91 s 0.19 s 0.08 s 0.05 s 1.64 s
cupc 6.51 s 5.72 s 0.79 s 0.44 s N/A
pcalg 6.23 s 5.45 s 0.78 s N/A N/A

S.AUREUS

gpucsl 2.82 s 0.47 s 0.42 s 0.26 s 1.93 s
cupc 15.67 s 11.10 s 4.57 s 1.17 s N/A
pcalg 35.54 s 30.97 s 4.57 s N/A N/A

S.CEREVISIAE

gpucsl 3.0 s 1.0 s 0.23 s 0.51 s 1.77 s
cupc 39.46 s 26.42 s 13.04 s 5.27 s N/A
pcalg 60.16 s 47.13 s 13.03 s N/A N/A

DREAM5- gpucsl 18.53 s 3.36 s 0.98 s 3.18 s 14.19 s
INSILICO cupc 6.31 s 3.54 s 2.77 s 0.70 s N/A

pcalg 316.60 s 313.84 s 2.76 s N/A N/A

Table 6.6: Runtimes in seconds measured on datasets following the Gaus-
sian distribution model: End-to-end measurements show median wall clock
times of 10 runs. Breakdowns of the measurements into adjacency search,
edge orientation, and GPU kernel compilation are included. The GPU ker-
nel execution time is included within the adjacency search time. For each
dataset, the fastest runtimes are highlighted in bold. The CPU-based imple-
mentation from pcalg (version 2.7.5) is executed on 40 CPU cores. GPU-
specific measures do not apply (N/A) to pcalg. Note that gpucsl is our
proposed algorithm.

Summary

Our first measurements concerning GPU acceleration for constraint-based CSL
under the assumption of data following the Gaussian distribution model focus
on levels l = 0, 1 of the adjacency search within PC-stable. The results indicate
that execution of the adjacency search is a promising option to reduce the long
runtimes of a CPU-based adjacency search. Concerning higher levels l ≥ 2,
our experiments reveal that using available CUDA-X libraries, as suggested in
Section 4.2.5, results in significantly slower runtimes than serial execution on the
CPU. Thus, custom GPU kernels are required, as introduced in Section 4.2.5 and
in cupc [287]. In an end-to-end evaluation on high-dimensional gene expression
datasets, we find that the GPU-accelerated adjacency search, as implemented
in our library gpucsl, is between 1.5 to 20 times faster than the CPU-based
implementation found in pcalg [111] executed on 40 CPU cores. More speedup
is possible by incorporating an optimization of cupc-S to share intermediate
results, e.g., see the GPU kernel execution times for dataset DREAM5-INSILICO
in Table 6.6. Further, we could include caching of compiled GPU kernels within
gpucsl to eliminate the compilation overhead at runtime.

138 6 Evaluation

In conclusion, assuming that data follows the Gaussian distribution model,
GPU acceleration is suited to address the long runtimes of the PC algorithm
for high-dimensional datasets when executed on multi-core CPU systems.

6.2.2 Experiments for a GPU-Accelerated Adjacency Search
Assuming Discrete Data

This section describes the experiments for our proposed GPU-accelerated adja-
cency search algorithm for discrete data. At first, we examine the scalability of
our algorithm concerning selected characteristics of CGMs with discrete data.
We compare our algorithm with a baseline implementation. Second, we present
adjacency search runtime measurements on benchmark Bayesian networks. We
compare our GPU-based algorithm to a GPU baseline and state-of-the-art par-
allel implementations for multi-core CPUs. Lastly, we compare the end-to-end
runtime performance of our proposed GPU-accelerated algorithm to the end-to-
end runtime performance of a state-of-the-art parallel CPU-based algorithm.

Experiment on Scalability using Synthetic Data

In this experiment, we compare the runtime of our proposed GPU-accelerated
adjacency search for discrete data to the runtime of the GPU baseline imple-
mentation disc-cupc (see Section 6.1.3).

The two implementations differ in their parallel execution strategy. In par-
ticular, our implementation, which we call gpuPC in the following, uses GPU
threads within the same warp to jointly compute the marginals over contin-
gency tables. Thus, CI tests are processed on a warp granularity. In contrast,
disc-cupc applies the parallel execution strategy of cupc-E, such that γ × β
GPU threads within a thread block process γ CI tests for β edges. As a result of
the different parallel execution strategies, the two GPU-based algorithms han-
dle the GPU global memory for the auxiliary data structures differently. While
gpuPC allocates GPU global memory for the auxiliary data structures as de-
scribed in Section 4.3, disc-cupc lets each GPU thread allocate GPU global
memory for the auxiliary data structures inside the GPU kernel.

For the measurement runs, we set the parameters of disc-cupc following the
suggestions of the original cupc-E algorithm, i.e., γ = 32 and β = 2 [287]. The
parameters for gpuPC are set to δ = 64, γ = 2 and β = 1, which were determined
through micro experiments. Further, we set the significance level α = 0.01,
following common practice [35] and perform the measurements on the Delos

system (see Section 6.1.2 for detail) with CUDA version 9.1. The measurements
are performed on synthetic data, and each run is executed at least 10 times.

We report the median factor of speedup of gpuPC over the baseline
disc-cupc in Table 6.7 (see p. 139). In particular, we investigate the develop-
ment of the factor of speedup while scaling dimensions relevant to the PC-stable,
considering the characteristics of a CI test for discrete data and its execution
on a GPU. Therefore, we examine the number of variables N , the number of
data samples n, the maximum size of the discrete domain maxi=1,...,N{|Vi|},
with Vi representing the corresponding discrete domain of the variable Vi with
i = 1, . . . , N , the number of CI tests per edge, which we denote with CIedge, and
a decay factor df . The decay factor df describes the percentage of edges removed

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 139

dimension value of dimension

factor of speedup

N - number of 1 000 2 000 4 000 8 000

variables 4.2× 4.38× 4.1× 2.97×

maxi=1,...,N{|Vi|} - maximum 2 4 8 10 20

size of the discrete domain 3.6× 7.67× 7.5× 6.4× ∞

n - number of 10 000 50 000 100 000 500 000 1 000 000

data samples 8.4× 29.1× 37.7× 45.5× 45.6×

CIedge - number of 1 4 16 32 128

CI tests per edge 9.4× 9.7× 6.25× 4.25× 4.36×

df - decay factor 0.9 0.75 0.5

8.2× 12.0× ∞

Table 6.7: Factors of speedup of gpuPC (our) over disc-cupc, based on
median runtimes of 10 runs. For each experiment all dimensions except the
one of interest are fixed, with the following values maxi=1,...,N{|Vi|} = 4,
N = 1000, n = 10 000, CIedge = 32, df = 0.9. Note that ∞ indicates that
disc-cupc terminated in error as the algorithm ran out of memory.

equally distributed from skeleton C within each level l of the adjacency search.
We consider CIedge and df as a proxy for the impact of edge deletions from the
skeleton C to ensure the comparability of experiments across different levels l.
Furthermore, varying CIedge allows for examing how the implementations cope
with load imbalance due to a different number of CI tests per edge [224].

In our experiment, we make the following observations concerning the differ-
ent dimensions. In the dimension of N , which corresponds to a different number
of conducted CI tests, i.e., larger N imply more CI tests, the performance differ-
ence remains fairly constant. As the number of variablesN doubles, the runtimes
quadruple, following the adjacency search’s polynomial complexity [109].

In the dimension of maxi=1,...,N{|Vi|}, we know that larger values lead to
higher memory demand for the auxiliary data structures. Consequently, the
measured runtimes increase with larger values of maxi=1,...,N{|Vi|}. As the in-
crease in runtime is observed for gpuPC and disc-cupc, the speedup remains
similar, except for maxi=1,...,N{|Vi|} = 2, where we see a small speedup. For
maxi=1,...,N{|Vi|} > 10, disc-cupc fails to execute, as it exceeds the available
GPU global memory while gpuPC continues to operate. However, the measured
runtimes of gpuPC degrade; due to a limited degree of parallel execution and
poorer caching behavior caused by massive auxiliary data structures.

In the dimension of n, the difference in the parallel execution strategies yields
the most extensive performance gap between the two algorithms. gpuPC is up
to 45 times faster than the disc-cupc for n ≥ 500 000, while it is only 8.4 times
faster for n = 10 000. The measured runtimes for gpuPC increase linear with
n, and we observe that the slope of the linear function between the measured
runtime and n is smaller for n < 500 000 compared to n ≥ 500 000.

140 6 Evaluation

In the dimension of CIedge, which reflects settings of load imbalance, the
speedup is fairly constant for CIedge ≥ 32. For CIedge < 32, the speedup is
higher for smaller values of CIedge. The different behavior concerning CIedge
results from the fine-granular execution strategy of gpuPC, which handles load
imbalance in the discrete case better than the parallel execution strategy of
disc-cupc, respectively, cupc-E [287]. In particular, in disc-cupc, at least 32
CI tests per edge are conducted in parallel due to the chosen value of γ and the
GPU’s warp size of 32, which explains the overhead for CIedge < 32.

In the dimension of df , a small decay factor df indicates more remaining
edges after each level, i.e., a dense underlying CGM. Hence, more CI tests are
performed in each level. Also, higher levels may be reached with a small decay
factor df , which leads to larger separation sets with higher memory demand for
the auxiliary data structures. Therefore, disc-cupc fails for df = 0.5. Further,
we observe that the performance gap increases with smaller df , as the parallel
execution strategy in gpuPC handles larger numbers of CI tests and higher-order
CI tests better than the parallel execution strategy in disc-cupc.

In summary, we observe that gpuPC is faster than the baseline disc-cupc

in all considered dimensions relevant for the GPU-accelerated adjacency search
in PC-stable under the assumption of discrete data. Particularly concerning the
number of data samples n, gpuPC is over an order of magnitude faster. Further-
more, gpuPC scales for datasets with high memory demand for auxiliary data
structures, while disc-cupc runs out of GPU global memory and terminates
with an error. However, to handle datasets with a high memory demand for
auxiliary data structures, e.g., with maxi=1,...,N{|Vi|} = 20, gpuPC restricts the
degree of parallelism, resulting in slower runtimes. Note that the mechanism to
restrict the degree of parallelism is triggered when GPU global memory becomes
scarce. Thus, the occurrence of this effect depends on dataset characteristics and
the GPU hardware, i.e., the GPU’s memory capacity.

Experiment on the Application to Benchmark Bayesian Networks

In the following experiment, we compare the runtimes of the adjacency search
on four benchmark Bayesian networks, ALARM (with n = 200 000), ANDES, LINK,
and MUNIN (see Section 6.1.1 for detail). We compare our algorithm, gpuPC, to
the GPU baseline disc-cupc and to two state-of-the-art CPU-based libraries
that allow for parallel execution, bnlearn, and parallelPC.

For the two GPU-based implementations, we set the parameters as follows.
For disc-cupc, we set γ = 32 and β = 2 following the suggestion of the original
cupc-E algorithm [287]. For gpuPC we set δ = 64, γ = 2 and β = 1. Further,
we set the significance level α = 0.01. The measurement runs are executed on
the Delos system (see Section 6.1.2 for detail) with CUDA version 9.1. We set
the number of CPU cores used by bnlearn and parallelPC to 40 correspond-
ing to the number of available CPU cores. All measurements of the GPU-based
algorithms include data transfer between the host and GPU. Further, all imple-
mentations are called from their R interface. Thus, measurements include times
for data copies from R to C or CUDA, respectively.

We report median runtimes in seconds over 10 runs in Table 6.8 (see p. 141).
Comparing the two CPU-based implementations, we observe a significant differ-
ence in runtimes. The implementation from bnlearn is faster by up to a factor of
400 compared to parallelPC. We assume that the difference in runtime results

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 141

dataset parallelPC bnlearn disc-cupc gpuPC

ALARM 579.54 s 14.71 s 0.95 s 0.26 s
ANDES 187.24 s 20.78 s 1.41 s 0.38 s
LINK 16 510.31 s 141.65 s 12.93 s 2.28 s
MUNIN 110 740.50 s 273.79 s 97.45 s 14.99 s

Table 6.8: Median runtimes (over 10 runs) of the adjacency search in
seconds for four discrete benchmark Bayesian networks. The adjacency
searches in parallelPC and bnlearn run on 40 CPU cores. The adjacency
searches of disc-cupc and gpuPC (our) are accelerated on the GPU.

from the efficient implementation in the C language in bnlearn and overhead in
the implementation of parallelPC written entirely in R. Both GPU-accelerated
adjacency searches are faster than the CPU-based adjacency searches. The GPU
baseline disc-cupc is between 2.8 to 15.5 times faster than bnlearn. Our pro-
posed GPU-accelerated adjacency search gpuPC has the fastest runtimes on all
datasets and achieves speedup of factors of 18.3× to 62.1× over bnlearn and is
up to 6.5 times faster than disc-cupc. Further, we do not find any difference
in the observed pattern of the measured runtimes for small-dimensional, e.g.,
ALARM or ANDES, or high-dimensional data, e.g., LINK or MUNIN concerning the
number of variables N . The same holds for datasets with small or large numbers
of data samples n.

Experiment on End-to-End Performance of the PC Algorithm using
Benchmark Bayesian Networks

In contrast to the previous experiments, which focus on the adjacency search,
we now consider the end-to-end performance of the PC algorithm on discrete
datasets. In this experiment, we use our GPU-accelerated adjacency search im-
plementation from our python-based library gpucsl [16]. Note that the imple-
mentation uses the same GPU-kernel-based approach as used in gpuPC.

We use the Delos system (see Section 6.1.2 for detail) with CUDA version
11.2 to execute the measurement runs and the set significance level of the PC
algorithm to α = 0.05. We compare the end-to-end performance with the imple-
mentation from bnlearn in R executed in parallel on 40 CPU cores, according
to the available CPU cores on the Delos system. Other implementations of the
PC algorithm for discrete data, such as parallelPC or the python version of
bnlearn, showed slower runtimes. Thus, they are not included in our compari-
son. We report the median end-to-end runtime from 10 runs and the runtime of
subparts of the PC algorithm for three discrete datasets, namely, Alarm (with
n = 10 000), Link, and Munin (see Section 6.1.1 for detail). The subparts are the
adjacency search, the edge orientation, the GPU kernel execution, and the GPU
kernel compilation. Note that the time of the GPU kernel execution is included
within the time spent for the adjacency search, and the GPU kernel compilation
time is only measured for gpucsl. As gpucsl builds upon cupy [182] to compile
the GPU kernel for each required level during runtime, we include the GPU
kernel compilation time in the reported end-to-end time.

The measurement results are shown in Table 6.9 (see p. 142). Concerning
the end-to-end runtime for the small-dimensional dataset Alarm, which has 37

142 6 Evaluation

dataset library
end-to-
end

adjacency
search

edge
orientation

GPU kernel
execution

GPU kernel
compilation

Alarm
gpucsl 2.59 s 0.07 s 0.01 s 0.01 s 2.51 s
bnlearn 2.51 s 1.74 s 0.77 s N/A N/A

Link
gpucsl 9.16 s 5.56 s 0.09 s 4.83 s 3.51 s
bnlearn 497.95 s 190.14 s 307.81 s N/A N/A

Munin
gpucsl 114.68 s 111.81 s 0.09 s 111.06 s 2.78 s
bnlearn 454.70 s 339.55 s 115.15 s N/A N/A

Table 6.9: Runtimes in seconds measured on discrete datasets: End-to-
end measurements show median wall clock times of 10 runs. Breakdowns
of the measurements into adjacency search, edge orientation, and GPU
kernel compilation are included. The GPU kernel execution time is included
within the adjacency search time. For each dataset, the fastest runtimes are
highlighted in bold. The CPU-based implementation from bnlearn runs on
40 CPU cores. GPU-specific measures do not apply (N/A) to bnlearn. Note
that gpucsl is our proposed algorithm.

variables, bnlearn is faster by approximately 3%. In contrast, for the two higher-
dimensional datasets Link and Munin, gpucsl outperforms bnlearn by factors
of 54.3× or 3.96×. For the Alarm dataset, gpucsl spends 96.9% of the runtime
for the GPU kernel compilation, as the adjacency search and edge orientation
require only 0.1 seconds combined. Otherwise, the GPU kernel compilation time
accounts for 2.4% to 38.3% of the end-to-end runtime. For all datasets, the
edge orientation constitutes less than 1% of the runtime of gpucsl. In contrast,
for bnlearn, the edge orientation makes up 25.3% to 61.8% of the runtime.
The python-based edge orientation is orders of magnitude faster than the R-
based edge orientation of bnlearn. For the adjacency search, gpucsl is faster
by factors ranging from 3.04× to 34.2× than bnlearn.

The GPU-accelerated implementation from our library gpucsl achieves
speedup over parallel CPU-based implementations for high-dimensional datasets.
For small dimensional datasets, gpucsl’s on-the-fly GPU kernel compilation be-
comes a performance bottleneck. The compiled GPU kernels could be cached to
address long GPU kernel compilation times. Note that the measured runtimes of
the adjacency search presented in Table 6.9 are higher than those presented in
the previous experiment in Table 6.8 due to a larger significance level α = 0.05
compared to α = 0.01. As a result, the intermediate skeletons Cl in each level
l remain denser, as fewer CI tests signal independence. Thus, more CI tests are
performed in each level, leading to an increase in the runtime.

Summary

In our experimental evaluation of our proposed GPU-accelerated adjacency
search for discrete data, we find that execution of the adjacency search on the
GPU results in faster runtimes than execution on multi-core CPUs. For the adja-
cency search, we observe factors of speedup ranging from 3.04× to 62.1×. In end-
to-end measurements of the PC-stable algorithm, using the GPU-accelerated
adjacency search results in up to 54.3 times faster runtimes than using a par-
allel CPU-based adjacency search. Further, we show that the chosen parallel

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 143

execution strategy, i.e., using GPU threads to jointly compute the marginals
over the contingency table for a CI test, outperforms existing parallel execution
strategies, using each GPU thread to perform an entire CI test [287].

However, the impact of a change in the significance level α is larger on the
runtime of the GPU-accelerated adjacency search than on the runtime of the
CPU-based implementation from bnlearn. For example, for the dataset MUNIN,
the measured runtime for the GPU-accelerated algorithm increases by a fac-
tor of 7.46 when α = 0.05 versus α = 0.01. In contrast, the runtime of the
CPU-based implementation of bnlearn increases only by a factor of 1.24. We
account for this effect to an increased density of the learned Completed Par-
tially Directed Acyclic Graph (CPDAG) of the CGM due to the increase of α.
An increased value of α potentially leads to more higher-order CI tests requir-
ing larger amounts of GPU global memory for the auxiliary data structures.
Auxiliary data structures with a higher footprint are less cache efficient, caus-
ing runtime performance degradation. Furthermore, in the last experiment for
the dataset MUNIN, we restricted the maximum level reached in the adjacency
search to l = 3. The restriction is needed, as our implementation of the GPU-
accelerated adjacency search in gpucsl cannot automatically reduce the degree
of parallelism if the auxiliary data structures exceed the GPU’s memory capac-
ity, as suggested in Paragraph ”Additional Notes” of Section 4.3.3.

6.2.3 Experiments for an Information-Theoretic GPU-Based CI Test

This section describes the experiments for our proposed information-theoretic
GPU-based CI test, GPUCMIknn (see Section 4.4.2). We focus our evaluation on
continuous data with non-linear relationships as it allows for comparison to
the CPU-based CI test CMIknn [214]. Therefore, we adjust the employed Condi-
tional Mutual Information (CMI) estimator in GPUCMIknn and make adaptations
accordingly (see ”Outline of GPUCMIknn” in Section 4.4.2 or our corresponding
publication [83]). Thus, we utilize the same CMI estimator as CMIknn.

In the experiments, we particularly focus on the impact on the runtime
when scaling one of several parameters relevant to the CI test. In detail, we
consider the number of kCMI -nearest neighbors, the number of data samples
n, the number of permutations perm, and the size of the separation set |Si,j |
with i, j = 1, . . . , N and i ̸= j. We do not evaluate the runtime performance
concerning changes in the number of kperm, i.e., the number of k-NN during
local permutation computation as kperm does not impact runtime much [214]. If
not stated differently, we chose the following default values for the parameters
for the examined implementations of GPUCMIknn and CMIknn. We set kperm = 15,
which is slightly above the suggested range for CMIknn [214], and use perm = 100
to avoid excessive experiment runtimes. Note that the runtime increases linearly
with the number of permutations perm. Also, we set n = 1000 and |Si,j | = 1.
Further, for GPUCMIknn, we use the GPU kernel parameters β = 32 and γ = 32.
Therefore, each GPU thread block is launched with a number of GPU threads
filling an entire warp. At the same time, we keep the amount of shared memory
required for each GPU thread block low. All measurements are performed on the
A40 system (see Section 6.1.2 for detail). When comparing the GPU-accelerated
CI test GPUCMIknn to the CPU-based CI test CMIknn, the runtime measurements
are influenced by two fundamental differences. First, the comparison focuses
on executing on two different PUs with implementations tailored to the device,

144 6 Evaluation

i.e., running on a single CPU core in the case of CMIknn or performing the
operations in parallel on a GPU. Second, the comparison considers two different
k-NN estimation approaches. CMIknn uses a computationally efficient k-d tree
search suited for execution on a CPU. In contrast, GPUCMIknn builds upon brute-
force searches, which are computationally less efficient but better suited for the
parallel execution model of the GPU.

Experiment on the Impact of the Value of kCMI During CMI
Estimation

According to Runge [214], the parameter for the kCMI -nearest neighbors should
be set to kCMI ≈ {0.1, . . . , 0.2}×n to yield good statistical power. In the context
of GPUCMIknn, the parameter kCMI determines the size of arrays stored in GPU
thread-local memory. GPU thread-local memory can yield high performance if
the data is placed in registers, which are highly restricted in size. Otherwise,
performance degrades due to register spilling [162], as data structures within
GPU thread-local memory are now placed within GPU global memory. Thus, we
assume that the runtime performance of GPUCMIknn drops while kCMI is increased.

method
kCMI - number of nearest neighbors during CMI estimation

7 10 20 30 40 50 75 100 250 500

CMIknn 1.76 s 1.79 s 1.84 s 1.85 s 1.9 s 1.96 s 1.94 s 2.02 s 2.31 s 2.69 s
GPUCMIknn 0.005 s 0.01 s 0.01 s 0.01 s 0.02 s 0.02 s 0.07 s 0.13 s 0.52 s 1.15 s

Table 6.10: Median runtimes in seconds over 20 CI tests, scaling kCMI

for CI tests with fixed parameters: n = 1000, perm = 100, |Si,j | = 1.

Table 6.10 shows the median runtimes in seconds over the execution of 20
CI tests with n = 1000 data samples, perm = 100 permutations and a sep-
aration set of size |Si,j | = 1, when scaling kCMI from kCMI = 7 to kCMI = 500.
For the CPU-based baseline CMIknn that implements k-d search trees to esti-
mate the k-NN, we find that the runtime increases by approximately 53%. In
contrast, for the GPU-based version GPUCMIknn, which implements a brute-force
approach to estimate the k-NN, we see a runtime increase by a factor of 230×.
Particularly for kCMI > 50, the runtime performance of GPUCMIknn drops, which
we account to register spilling. The observation confirms our assumption that
the runtime performance of GPUCMIknn drops while kCMI increases. Comparing
the runtime of CMIknn and GPUCMIknn, we find that for small values of kCMI ,
e.g., up to kCMI = 50, GPUCMIknn is up to a factor of 352 faster than CMIknn

and remains faster by a factor of 2.3× even for kCMI = 500. However, for these
large values of kCMI , one should note that GPUCMIknn operates in parallel while
CMIknn runs on a single CPU core. As the parameter kCMI significantly impacts
the runtime of GPUCMIknn, we report measurements with several values of kCMI

in the following experiments.

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 145

Experiment on the Impact of the Number of Permutations perm

The number of permutations perm impacts the runtime of the local permutation
computation and the CMI estimation. For both steps, the number of required
compute operations increases linearly to the number of permutations perm.
Within the estimateCMIknn GPU kernel, a larger number of permutations perm
results in launching the GPU kernel with additional thread blocks. In contrast,
the launch parameters for the localPermutation GPU kernel remain unaffected.

method kCMI
perm - number of permutations

50 100 250 500 1 000

CMIknn 200 1.18 s 2.39 s 5.98 s 12.47 s 24.61 s

GPUCMIknn

7 0.004 s 0.01 s 0.01 s 0.02 s 0.04 s
20 0.01 s 0.01 s 0.01 s 0.03 s 0.05 s
200 0.2 s 0.39 s 0.93 s 1.83 s 3.65 s

Table 6.11: Median runtimes in seconds over 20 CI tests, scaling perm for
CI tests with fixed parameters: n = 1000, |Si,j | = 1.

In Table 6.11, we report the median runtimes in seconds over the execution of 20
CI tests with n = 1000 data samples and a separation set of size |Si,j | = 1 for
several settings of kCMI when scaling perm from perm = 50 to perm = 1000.
For CMIknn, we find that the runtime increases by a factor of 20.8 from perm =
50 to perm = 1000, which confirms the linear increase in runtime, as perm is
increased by a factor of 20. For GPUCMIknn, we observe an increase in the runtime
from perm = 50 to perm = 1000, below a factor of 20×. For small values of
kCMI , i.e., kCMI = {7, 20}, the runtime increases by a factor of up to 10×. For
kCMI = 200, the runtime increases by up to a factor of 18.25×. We assume
that the slightly lower increase in runtime compared to CMIknn is due to better
utilization of the parallel computing capabilities of the GPU, given that more
GPU threads are launched during CMI estimation. However, for kCMI = 200,
the accesses to GPU global memory, due to register spilling, seem to dominate
the performance. In that case, we observe a similar increase in runtime compared
to CMIknn.

Experiment on the Impact of the Separation Set Size |Si,j|

The size of the separation set |Si,j | directly increases the number of dimensions
within the k-NN searches during local permutation computation and CMI esti-
mation. Higher dimensions impact the runtime of the k-d tree approach and the
brute-force approach. K-d trees generally suffer under the curse of dimensional-
ity [13]. Thus we assume that the performance will drop with a larger separation
set |Si,j | for CMIknn. Generally, we assume a similar behavior for GPUCMIknn.

In Table 6.12 (see p. 146), we present the median runtimes in seconds over
the execution of 20 CI tests with n = 1000 data samples and perm = 100
permutations for several settings of kCMI when scaling the size of the separation
set |Si,j | from |Si,j | = 1 to |Si,j | = 5. For CMIknn we find that the runtime
increases by 65% from |Si,j | = 1 to |Si,j | = 5, which confirms our assumption.

146 6 Evaluation

method kCMI
|Si,j | - separation set size

1 2 3 4 5

CMIknn 200 2.43 s 2.9 s 3.28 s 3.56 s 4.02 s

GPUCMIknn

7 0.005 s 0.01 s 0.01 s 0.01 s 0.01 s
20 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s
200 0.39 s 0.39 s 0.39 s 0.38 s 0.38 s

Table 6.12: Median runtimes in seconds over 20 CI tests, scaling |Si,j | for
CI tests with fixed parameters: n = 1000, perm = 100.

For GPUCMIknn, we observe that the runtime remains unaffected by the size of the
separation set |Si,j | for all three chosen parameters of kCMI = {7, 20, 200}. We
find that loading the additional dimensions into the GPU thread-local or GPU
shared memory does not add any measurable costs.

Experiment on the Impact of the Number of Data Samples n

The number of data samples n significantly impacts the runtime of k-NN-
estimation approaches (see Section 4.4.1). Thus, we assume that the runtime
of GPUCMIknn increases quadratic with an increasing number of data samples n,
whereas the runtime of CMIknn increases approximately logarithmic concerning
an increase of n. Furthermore, according to Runge [214], the parameter kCMI ,
which has a significant impact on the runtime of GPUCMIknn, should be chosen
in correspondence to the number of data samples n. Therefore, we consider a
choice of the value for kCMI in correspondence to the number of data samples
n in the following measurements, which we denote by kCMI = adaptive. In this
case, we set kCMI = 0.2× n.

method kCMI
n - number of data samples

100 250 500 1 000 2 500 5 000 10 000

CMIknn

7 0.43 s 0.65 s 1.02 s 1.79 s 4.76 s 9.82 s 20.62 s
20 0.43 s 0.67 s 1.05 s 1.85 s 4.89 s 10.19 s 21.64 s
adaptive 0.46 s 0.67 s 1.12 s 2.31 s 6.86 s 17.96 s 55.07 s

GPUCMIknn

7 0.002 s 0.002 s 0.003 s 0.005 s 0.01 s 0.04 s 0.13 s
20 0.002 s 0.002 s 0.004 s 0.01 s 0.02 s 0.05 s 0.17 s
adaptive 0.002 s 0.004 s 0.04 s 0.39 s 5.7 s 44.88 s 355.77 s

Table 6.13: Median runtimes in seconds over 20 CI tests, scaling n for
CI tests with fixed parameters: |Si,j | = 1, perm = 100. Note that kCMI =
adaptive refers to a value dependent on the number of data samples n, i.e.,
kCMI = 0.2× n.

In Table 6.13, we report the median runtimes in seconds over the execution of 20
CI tests with a separation set size of |Si,j | = 1, and perm = 100 permutations
for several settings of kCMI when scaling the number of data samples n from
n = 100 to n = 10 000. For CMIknn, we confirm that the runtime increases
logarithmically with the number of data samples n independent of the chosen

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 147

value of kCMI . Similarly, our measurements confirm a quadratic increase in
runtime for GPUCMIknn, when kCMI = adaptive. However, for small values of
kCMI = {7, 20}, we observe that the increase in runtime is less drastic. Again,
we assume that for kCMI = adaptive, access to GPU global memory is the
main bottleneck within the GPU kernel execution for large numbers of data
samples n. In contrast, for the smaller values of kCMI , the additional GPU
threads launched due to an increase of n hide some of the assumed performance
degradations. However, for a certain number of data samples n, the number of
launched GPU threads exceeds the capabilities of the GPU hardware, and we
observe the quadratic increase, e.g., for n ≥ 2 500. Comparing the GPUCMIknn to
CMIknn, we find a large gain in runtime performance for data sample sizes of
up to n = 1000 when performing the CI test on the GPU. We observe that the
performance gain depends on the parameter kCMI but is within the range of
factors of 5.9× to 358×. For larger values of n, i.e., n ≥ 2 500, GPUCMIknn only
remains faster if the parameter kCMI is fixed to a small value, e.g., kCMI =
{7, 20}. In this case, GPUCMIknn is up to a factor of 476 faster than CMIknn. In
contrast, for the case that kCMI = adaptive, CMIknn is faster by a factor of up
to 6.5× than GPUCMIknn for large n.

Summary

In the experiments, we show the runtime performance of the GPU-accelerated
information-theoretic CI test GPUCMIknn. We find that the parameter kCMI has
the largest impact on the runtime of GPUCMIknn. For small values of kCMI ,
e.g., kCMI = 7, GPUCMIknn is up to a factor 352 faster than its single-threaded
CPU-based counterpart. However, for large values of kCMI , e.g., kCMI = 500,
GPUCMIknn only remains faster by a factor of 2.3× than the single-threaded CPU-
based execution. Thus, if the CPU-based CI test runs in parallel on multiple
CPU cores, we assume that GPUCMIknn has a slower runtime for large values of
kCMI . Other parameters, such as the number of permutations perm, the size
of the separation set |Si,j |, or the number of data samples n, with n ≤ 2500,
have little impact on GPUCMIknn’s runtime. In conclusion, we find that employing
our proposed GPU-accelerated CI test GPUCMIknn results in large speedups unless
large values of kCMI are required or millions of data samples n are processed.

6.2.4 Experiments for a GPU-Accelerated Adjacency Search with
an Information-Theoretic GPU-Based CI Test

This section describes the experiments for our two proposed GPU-accelerated
adjacency searches using the information-theoretic GPU-based CI test GPUCMIknn.
The first version GPUCMIknn-Single refers to the case that the CI test GPUCMIknn
is directly plugged into the adjacency search of PC-stable. The second version
GPUCMIknn-Parallel refers to our adapted adjacency search as described in Sec-
tion 4.4.2. We compare the two versions in the following experiments to a serial
and a parallel CPU-based adjacency search.

In the first three experiments, we utilize the CI test CMIknn [214], thus fo-
cusing on continuous data with non-linear relationships and adjusting the GPU-
based versions accordingly. In the last experiment, we consider the case of mixed
discrete-continuous data with non-linear relationships and use the appropriate

148 6 Evaluation

CMI estimator, as described in Section 4.4.2 (see Algorithm 12). All measure-
ments are performed on the A40 system (see Section 6.1.2 for detail), and the
parallel CPU-based adjacency searches run on 8 CPU cores.

Further, we set the following parameters as defaults. All CGMs are gener-
ated with the number of observations fixed to n = 1000. The adjacency search
algorithms are launched with the number of k-NN during local permutation
computation as kperm = 15, the number of permutations set to perm = 100,
and the significance level fixed to α = 0.01. We set the launch parameters for
the GPU kernels as follows β = 32 and γ = 32.

The first set of experiments compares the runtime of the algorithms when
the number of variables N increases under the assumption of different values
of kCMI . The choice of parameter kCMI impacts the quality of the learned
CGM [214]. Thus, in the third experiment, we examine the influence of chang-
ing the value of kCMI on the quality of the learned CGM using the Structural
Hamming Distance (SHD) [269] as an evaluation metric. The SHD is a common
measure to compare the quality of learned CGMs’ CPDAG. In the last exper-
iment, we consider the case of mixed discrete-continuous data with non-linear
relationships and study the algorithms’ runtime performance with different ra-
tios of discrete variables in V, denoted by dr, with dr = {0.0, . . . , 1.0}. A value
of dr = 0 corresponds to a CGM that contains only continuous variables, i.e.,
V = V Con and consequently, dr = 1, refers to a CGM that has only discrete
variables, i.e.,V = V Dis. In line with the experiments from Section 6.2.3, we will
also observe the influences of the different PUs and k-NN estimation approaches
in all experiments.

Experiments on the Scalability with the Number of Variables N

In the following, we describe results from two experiments concerning the run-
time when the number of variables N increases. First, we consider synthetic
CGMs with up to N = 50 variables and densities between {0.1, . . . , 0.5}. Second,
we examine the runtime for high-dimensional sparse synthetic CGMs, with up
to N = 1000 variables, and selected high-dimensional gene expression datasets.

Generally, the number of variables N directly impacts the number of CI tests
to be performed, and thus larger values of N yield higher runtimes of the adja-
cency search of PC-stable. Remember that the computational complexity con-
cerning N is exponential in the worst case and remains polynomial for sparse
CGMs [109]. We assume that the difference in speedups relative to a serial execu-
tion on the CPU should remain fairly constant once the parallel computational
units of a Processing Unit (PU) are saturated.

In Table 6.14 (see p. 149), we present the measurements based on synthetic
generated CGMs with a density randomly drawn from {0.1, . . . , 0.5}, increasing
the number of variables N within the CGMs. We report the median speedup
over 10 CGMs for GPUCMIknn-Single, GPUCMIknn-Parallel, and CPU-8 over the
serial CPU-based adjacency search. CPU-8 is the parallel CPU-based adjacency
search running on 8 CPU cores.

The measurements show that the CPU-based parallel version, CPU-8,
achieves a speedup of roughly a factor of 4× over the serial version, even
though it utilizes 8 CPU cores. For kCMI = 200, we observe slightly less
speedup than for small values of kCMI . This effect is explained given that
a single CI test’s runtime is higher for kCMI = 200, which amplifies the

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 149

method kCMI

synthetic CGMs
N - number of variables

10 20 30 40 50

CPU-8

7 3.43× 4.34× 3.95× 4.12× 4.16×
20 3.33× 4.21× 3.91× 4.03× 3.97×

200 2.36× 2.81× 3.44× 3.35× 3.88×

GPUCMIknn-Single

7 280.73× 267.46× 320.71× 342.39× 342.19×
20 190.55× 176.50× 216.87× 258.3× 234.09×

200 3.62× 3.15× 4.94× 4.39× 5.17×

GPUCMIknn-Parallel

7 469.07× 458.64× 844.69× 985.83× 1 002.00×
20 274.15× 265.17× 466.63× 522.87× 489.25×

200 3.70× 3.48× 5.09× 4.68× 5.59×

Table 6.14: Factors of speedup over the serial CPU-based adjacency
search, as the median of the runtimes over 10 different CGMs, with
n = 1000, perm = 100, and kperm = 15 for selected values of kCMI when
increasing the number of variables N . The significance level of the adja-
cency search is set to α = 0.01. CPU-8 refers to the parallel CPU-based
adjacency search executed on 8 CPU cores.

impact of load imbalance in parallel execution of the PC algorithm’s ad-
jacency search [224]. For the GPU-based versions of the adjacency search,
GPUCMIknn-Single, and GPUCMIknn-Parallel, we observe a high speedup for small
values of kCMI = {7, 20}. However, for kCMI = 200, the achieved speedup is
similar to that of the parallel CPU-based version CPU-8. Furthermore, we find
that for smaller values of N , e.g., N ≤ 40, the speedup of GPUCMIknn-Parallel
over the serial CPU-based version increases as N increases. We account for the
additional speedup to the implementation of GPUCMIknn-Parallel, which allows
for the parallel processing of multiple CI tests in the same GPU kernel. For
larger N , i.e., N ≥ 50, the SMs of the GPU are saturated, and no additional
speedup is achieved.

Comparing GPUCMIknn-Single with GPUCMIknn-Parallel, we observe that for
kCMI = {7, 20} GPUCMIknn-Parallel is between 1.44 to 2.93 times faster than
GPUCMIknn-Single. In the case of kCMI = 200, we observe similar speedups over
the serial CPU-based adjacency search for both GPU-based versions.

Overall, we confirm the performance gain of GPUCMIknn in the context of the
PC algorithm’s adjacency search over the existing CPU-based version CMIknn

for small values of kCMI , e.g., kCMI = {7, 20}, as already observed in the
experiments of the previous Section 6.2.3. In these settings, our proposed version
GPUCMIknn-Parallel outperforms CPU-8 by factors of up to 240. However, for
large kCMI , i.e., kCMI = 200, CPU-8 and both GPU-based versions of the PC
algorithm’s adjacency search have similar runtimes. Thus, if a fast runtime is a
primary goal, we recommend choosing a small value for kCMI . Although, this
contradicts the recommendation for choosing kCMI by Runge [214].

In Table 6.15 (see p. 150), we present the measured runtime in seconds for
higher-dimensional sparse synthetic CGMs or selected gene expression datasets,
which have purely continuous data. These measurements extend the previ-
ous results but focus on high-dimensional sparse CGMs. Due to the longer
runtimes, we did not measure the serial CPU-based runtime and terminated

150 6 Evaluation

method
synthetic CGMs NCI-60 MCC BR51

N - number of variables
100 250 500 1 000 1 190 1 380 1 592

CPU-8 1 399 s 5 425 s 17 586 s 62 967 s 82 287 s DNF DNF
GPUCMIknn-Single 25.5 s 122 s 446 s 1 715 s 1 867 s 7 545 s 4 677 s
GPUCMIknn-Parallel 14.4 s 74.7 s 281 s 1 088 s 764 s 1 653 s 1 680 s

Table 6.15: Runtimes measured in seconds for high-dimensional sparse
synthetic CGMs and selected gene expression datasets used in previous
work [226]. The sparse synthetic CGM are generated with n = 1000 and an
edge density that results in DAGs with an average degree of approximately
1.5. The algorithms’ parameters are set as follows: perm = 100, kCMI = 7,
kperm = 15, β = 32, γ = 32, α = 0.01. Note that experiment runs longer
than 24 hours were terminated and marked with did not finish (DNF).

measurement runs that did not finish (DNF) within 24 hours. For the higher-
dimensional sparse synthetic CGMs, we observe almost two orders of magnitude
faster runtimes for GPUCMIknn-Parallel compared to CPU-8. At the same time,
GPUCMIknn-Parallel is faster than GPUCMIknn-Single by factors between 1.58×
and 1.77×. With increasing numbers of variables N , we do not observe signif-
icant differences in the measured speedup, which aligns with the observation
from the first experiment (see Table 6.14). However, the achieved speedup is
less for the high-dimensional sparse CGMs than the achieved speedup for lower-
dimensional denser CGMs. We account for the performance degradation to the
higher load imbalance in sparse settings [224], which have a higher impact on
the performance of the GPU-based versions.

Experiment on the Quality of the Learned CGM Concerning the
Parameter kCMI

The proposed GPU-accelerated adjacency search achieves a substantial speedup
for small values of kCMI , regardless of other parameters. However, according to
Runge [214], the value of kCMI should be chosen according to the number of data
samples n, e.g., kCMI = n×{0.1, . . . , 0.2}, to achieve high quality in the learned
CGMs. Thus, in the following, we examine the impact of the parameter kCMI on
the Structural Hamming Distance (SHD) [269] when learning a CGM’s CPDAG.
The SHD is a measure that compares two graphs and counts edge insertions,
deletions or flips required to transform one graph into the other. In our case, we
compute the SHD from the learned CPDAG of the CGM and the underlying true
DAG of the CGM. For the experiment, we randomly generate 50 CGMs with
N = 20, n = 1000 and execute GPUCMIknn-Parallel with perm = 100, α = 0.01
and values for kCMI from {7, . . . , 200}. We set the computed SHD for kCMI = 7
as a baseline, as it results in the highest measured speedup. Then, we calculate
the difference between the baseline SHD and the SHD computed for the other
values of kCMI , denoted by ∆ SHD. Hence, values of ∆ SHD below 0 indicate a
quality improvement of the learned CPDAG of the CGM compared to the base
case kCMI = 7.

In Figure 6.5 (see p. 151), we report the minimum, median and maximum
∆ SHD from 50 randomly generated CGMs. We observe that the median∆ SHD

6.2 Experiments on GPU-Accelerated CSL Using a Single GPU 151

10 15 20 30 40 50 75 100 200
kCMI

10

0

10

20

30

40

Di
ffe

re
nc

e
in

 S
tru

ct
ur

al
Ha

m
m

in
g

Di
st

an
ce

 (
 S

HD
)

co
m

pa
re

d
to

 k
CM

I=
7

Fig. 6.5: Development of the SHD with increasing kCMI as the difference
regarding a baseline SHD with kCMI = 7, computed for 50 randomly gener-
ated CGMs with N = 20, n = 1000. We execute GPUCMIknn-Parallel with
parameters perm = 100 and α = 0.01. Note that ∆ SHD < 0 describes
an improved quality of the learned CPDAG of the CGM compared to the
baseline with kCMI = 7.

improves for up to kCMI = 30, remains similar for up to kCMI = 75, and de-
teriorates for kCMI ≥ 100, compared to the SHD calculated for kCMI = 7.
Based on this observation, we could conclude that small values of kCMI are
sufficient to learn the CGM’s CPDAG, which favors the runtime improvement
of our GPU-accelerated approach. However, for several CGMs, there is an im-
provement of the SHD observable for large values of kCMI . Thus, a trade-off
remains between runtime and the quality of the learned CGM’s CPDAG based
on the parameter kCMI . Extended experiments on the impact of kCMI on the
quality of the learned CPDAG of the CGM are left for future work.

Experiment on the Scalability With Different Ratios of Discrete
Variables Using the CMI Estimator by Mesner & Shalizi [161]

In the following experiment, we consider the case of mixed discrete-continuous
data with non-linear relationships and study the adjacency search’s run-
time with different ratios of discrete variables in V, denoted by dr, with
dr = {0.0, . . . , 1.0}. Thus, we consider the adjacency search with a CMI estima-
tor appropriate for the data, as described in Section 4.4.2 (see Algorithm 12).
Note that for the CPU-based adjacency search, we adapt the CMIknn [214]
CI test accordingly and implement the CMI estimator by Mesner [161].

We assume that the number of discrete variables has little impact on the
runtime of the GPU-based adjacency search, as the CI test GPUCMIknn utilizes
a brute force-based k-NN search. In contrast, the CPU-based CI test relies on
k-d trees for an efficient k-NN search. In the case of increasing the number of
discrete variables, we assume that the performance of the k-d tree-based k-NN
search degrades due to larger leaf sizes given an increased density of data.

In Table 6.16 (see p. 152), we report the median speedups over
10 CGMs for GPUCMIknn-Single, GPUCMIknn-Parallel, and CPU-8 over the single-

152 6 Evaluation

method
dr - ratio of discrete variables

0.0 0.2 0.4 0.6 0.8 1.0

CPU-8 5.38× 5.13× 5.09× 5.6× 5.37× 5.35×
GPU-Single 1 039.12× 1 025.18× 1 215.02× 1 552.99× 1 663.28× 2 083.88×
GPU-Parallel 1 629.81× 1 595.59× 1 892.23× 2 565.19× 2 740.0× 3 508.89×

Table 6.16: Factors of speedup over serial a CPU-based adjacency search,
as the median of the runtimes of 10 different CGMs, with n = 1000,N = 20,
perm = 100 and kperm = 15 when increasing the ratio of discrete variables
dr from dr = 0.0 to dr = 1.0. The significance level of the adjacency search
is set to α = 0.01. CPU-8 refers to the parallel CPU-based adjacency search
executed on 8 CPU cores.

threaded CPU-based adjacency search with varying ratios of discrete variables
dr = {0.0, . . . , 1.0}. For the parallel CPU-based adjacency search CPU-8, we
observe a similar speedup over the serial CPU-based version for all values of
dr. This result is expected, as the implementation of the k-NN search is the
same in both adjacency searches. In contrast, we observe that the speedup for
both GPU-based adjacency searches increases for larger values of dr, i.e., more
discrete variables within the CGM. In detail, the measured runtimes of the
GPU-based adjacency searches remain steady, whereas, for the CPU-based ad-
jacency searches relying on k-d trees, the runtimes deteriorate. As a result, the
speedups of GPUCMIknn-Single and GPUCMIknn-Parallel over the serial CPU ver-
sion increase by a factor of 2× from dr = 0.0, i.e., purely continuous CGMs, to
dr = 1.0, purely discrete CGMs. For dr = 1.0, GPUCMIknn-Parallel achieves a
speedup of a factor of 3 508× over the serial CPU-based adjacency search and
a speedup of a factor of 655× CPU-8.

Summary

In the aforementioned four experiments, we demonstrate the runtime per-
formance of our GPU-accelerated adjacency search using the information-
theoretic GPU-based CI test GPUCMIknn. In particular, we find that the runtime
of GPUCMIknn-Parallel mainly depends on the chosen value for the parameter
kCMI . For small values of kCMI , e.g., kCMI = 7, GPUCMIknn-Parallel outper-
forms a parallel CPU-based version running on 8 cores by up to a factor of
240×. However, for large values of kCMI , e.g., kCMI = 200, we observe that
GPUCMIknn-Parallel has similar runtimes than the parallel CPU-based version. It
is known that the chosen value of kCMI impacts the quality of the CI test [214],
consequently, the quality of a learned CGM’s CPDAG. However, our evaluation
indicates that the impact of a smaller value for kCMI on the quality of the
learned CGM is not as strong as expected. Nevertheless, future work requires
more research on kCMI ’s impact on the quality of the learned CGM’s CPDAG.

Further, we observe that the number of variables N does not impact the
achieved speedup. However, the density of the underlying CGM impacts the
achieved speedup. Notably, for sparser high-dimensional CGMs, we observe
lower factors of speedup, which we account for higher load imbalance that the
GPU-accelerated adjacency search cannot handle efficiently. Lastly, concerning
the ratio of discrete variables within the CGM, we observe higher speedups in the

6.3 Experiments on GPU-Based CSL Beyond a Single GPU’s Memory Capacity 153

runtime for CGMs with more discrete variables. For a purely discrete CGM, i.e.,
dr = 1.0, GPUCMIknn-Parallel outperforms the CPU-based adjacency search ex-
ecuted on 8 CPU cores by a factor of up to 655×. This observation highlights the
potential of GPUCMIknn-Parallel to speed up CSL for mixed discrete-continuous
data but also data with non-linear relationships.

6.3 Experiments on GPU-Based CSL Beyond a Single
GPU’s Memory Capacity

This section describes the experiments that address our second research ques-
tion (RQ2). Thus, the measurements of our experimental evaluation examine
the scalability and performance of our proposed Unified Memory (UM)-based
and explicit memory-managed approaches to execute our GPU-accelerated adja-
cency search algorithms in out-of-core and multi-GPU settings (see Chapter 5).
We focus on executing the adjacency search under the assumption of data that
follows the Gaussian distribution model, i.e., using the GPU kernels described
in Section 4.2. Further, we restrict the execution of the algorithms to levels
l = 0, 1, as higher levels l ≥ 2 rely on a similar memory access pattern as level
l = 1. In level l = 1, random memory access is dominant, whereas, in level l = 0,
most memory access is sequential. Parts of this section have been published in
two research papers [80, 225].

In the first set of experiments, we examine the runtime and scalability of
our approaches using synthetic data with increasing numbers of variables N .
Increasing the number of variables N corresponds to an increase in the required
GPU global memory. Thus, we can consider datasets that exceed the GPU
memory capacity of a single GPU or of multiple GPUs. Furthermore, we per-
form runtime measurements of our approaches using the TCGA dataset, which
stems from research in integrative gene selection approaches [193]. With this
measurement, we aim to demonstrate the applicability of our out-of-core and
multi-GPU adjacency search algorithms in a realistic setting and compare the
runtimes to parallel execution on a multi-core CPU. If not stated differently, all
experiments are performed on the Delos system (see Section 6.1.2 for detail)
with CUDA version 11.3, and we set the significance level α = 0.01. Further, we
set the GPU kernel launch parameter δ = 64 and the block size bs = 2048. The
choice of parameters was determined through micro experiments.

6.3.1 Experiments for Levels l = 0, 1 Using Synthetic Data

For the experiments using synthetic data, we first examine the impact of the
interconnects in the Delos system on the runtime when performing our GPU-
accelerated adjacency searches on multiple GPUs. We use the best-performing
combination of GPUs in the subsequent experiments. In these experiments,
we consider the scalability of our approaches when the number of variables N
increases. First, we consider the runtime in levels l = 0, 1 separately. In that
experiment, we aim to understand the implications of the dominant memory
access pattern, i.e., sequential in level l = 0 and random in level l = 1, on the
runtime of the UM-based approaches compared to the explicit memory managed,
i.e., block-based approaches. Finally, we examine the combined runtimes when
executing the adjacency search up to level l = 1.

154 6 Evaluation

Experiment on the Impact of the GPU Interconnects on the
Runtime of the Multi-GPU Adjacency Search Algorithms

We perform the measurements on the Delos system, which is equipped with
four GPUs. As detailed in Section 6.1.2, the Delos system connects the GPUs
in a ring topology using different numbers of interconnect lanes to connect
pairs of GPUs. To understand the impact of the number of lanes used by the
interconnect, i.e., none, one, or two, we select one pair of GPUs from each
group and measure the adjacency search’s runtime for synthetic datasets with
N = 5000 to N = 45 000 variables.

For the UM-based multi-GPU adjacency search, non-surprisingly, we find
that the fastest runtime is achieved if the pair of GPUs belong to the group
direct two lanes, which has the highest bandwidth. The runtime is, on average,
12% faster than execution on GPUs from the direct one lane group and 345%
faster than using GPUs from the indirect group. Note that these results align
with observations found in related work [132]. As a result, for the subsequent
experiments, we use combinations of GPUs that stem from the direct two lanes
group. For example, when using two GPUs, we select GPU 0, 1, or if three GPUs
are used, we select GPU 0, 1, 2 (see Figure 6.1 in Section 6.1.2).

We do not observe any measurable difference in the runtime when performing
the same experiment using the block-based multi-GPU adjacency search algo-
rithm. This result is expected as data transfer only occurs between the CPU and
each GPU separately in the block-based multi-GPU adjacency search algorithm.

Experiment Measuring the Runtimes of the UM-Based and
Block-Based GPU-Accelerated Adjacency Search Algorithms on
Levels l = 0, 1 Separately

The GPU kernels for levels l = 0 and l ≥ 1 have different memory access
patterns. Due to empty separation sets S0 = ∅ in level l = 0, the calculation of
the p-value requires only a single access to the correlation matrix Cor. Therefore,
conducting multiple CI tests in parallel results in sequential and thus predictable
memory access. In contrast, in levels l ≥ 1 (we exemplary consider l = 1 in the
following), the calculation of the p-value requires access to multiple locations
within the correlation matrix Cor, according to the pair of variables (Vi, Vj)
and the respective separation set Si,j , with i, j = 1, . . . , N and i ̸= j. Thus,
processing multiple pairs of variables and corresponding CI tests in parallel
causes random memory access. To understand the implications for the UM-
based and block-based GPU-accelerated adjacency searches, we measure the
runtimes on synthetic CGMs with different numbers of variables N . Also, we
execute the algorithms on different numbers of GPUs g. In the case that g = 1,
we perform the out-of-core GPU approaches, whereas we execute the multi-GPU
approaches for cases with g ≥ 2.

In Table 6.17 (see p. 155), we report the factors of speedup of the block-based
GPU-accelerated adjacency searches over the UM-based GPU-accelerated ad-
jacency searches for levels l = 0, 1 separately. For level l = 0, the UM-based
algorithms are faster than the block-based algorithms in almost all cases. The
following two effects explain this result. First, the UM-based algorithms lever-
age the page migration engine with prefetching mechanisms that are well-suited

6.3 Experiments on GPU-Based CSL Beyond a Single GPU’s Memory Capacity 155

l
g

N
5 000 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

0

1 0.3× 0.3× 0.2× 0.3× 0.4× 0.4× 0.4× 0.4× 0.5×
2 0.6× 0.4× 0.3× 0.3× 0.3× 0.2× 0.3× 0.4× 0.4×
3 1.0× 0.9× 0.7× 0.6× 0.6× 0.6× 0.4× 0.7× 0.8×
4 1.0× 1.1× 0.8× 0.7× 0.7× 0.6× 0.6× 0.6× 0.9×

1

1 0.6× 0.6× 0.6× 0.7× 0.7× 20.2× 43.8× 60.0× 73.8×
2 0.8× 0.6× 0.9× 0.7× 0.7× 1.4× 25.0× 53.2× 75.7×
3 2.6× 1.9× 1.8× 2.3× 2.6× 3.0× 15.4× 45.7× 70.8×
4 1.8× 2.0× 1.6× 1.4× 1.6× 2.3× 9.9× 40.0× 66.7×

Table 6.17: Factors of speedup of the block-based GPU-accelerated ad-
jacency search over the UM-based GPU-accelerated adjacency search for
level l = 0 (top) and level l = 1 (bottom). The approaches are executed
with different numbers of GPUs g and varying numbers of variables N .

to handle sequential memory access. Second, the block-based algorithms’ per-
formance suffers from the non-negligible overhead introduced through a central
queue and the splitting of data into small-sized blocks.

For level l = 1, the UM-based algorithms are faster when executed on one
or two GPUs for datasets with up to N = 40 000 variables. The block-based
multi-GPU algorithm is faster by factors of up to 2.6× for datasets with up to
N = 40 000 variables when three or four GPUs are utilized. For large datasets,
with N ≥ 50 000, the block-based multi-GPU algorithm is faster by factors of up
to 75.7×, and the block-based out-of-core GPU algorithm is faster by a factor
of up to 73.8× compared to the UM-based approaches. We explain the observed
speedup in level l = 1 as follows. First, for the UM-based multi-GPU approach,
the GPU interconnect topology becomes a performance bottleneck when three
or four GPUs are utilized due to remote data accesses and data migrations.
Second, for the UM-based out-of-core approach, the data structures for large
datasets with N > 40 000 exceed the available GPU global memory. As a result,
the runtime degrades due to a drastic increase in page faults. Similar effects are
visible when running on more than one GPU for higher numbers of variables
N . Note that the block-based approach is not facing these performance drops,
as it is independent of the inter-GPU communication, the GPU interconnect
topology and GPU page faults.

Runtimes of the UM-Based and Block-Based GPU-Accelerated
Adjacency Search up to Level l = 1

In Figure 6.6 (see p. 156), we report the runtimes of the UM-based GPU-
accelerated adjacency search and the block-based GPU-accelerated adjacency
search executed on up to four GPUs g while processing CGMs with increasing
numbers of variables N . Note that the out-of-core GPU approaches are executed
in the case that g = 1, whereas for g ≥ 2, the multi-GPU approaches are used.
The vertical lines mark the number of variables for which the data structures
exceed the GPU memory capacity on the Delos system of one to four GPUs
from left to right.

156 6 Evaluation

10 20 30 40 50 60 70 80
Number of Variables in Thousand

100

101

102

103

104

105

Ru
nt

im
e

in
 s

UM 1 GPU
UM 2 GPU
UM 3 GPU
UM 4 GPU
EM 1 GPU
EM 2 GPU
EM 3 GPU
EM 4 GPU

Fig. 6.6: Runtimes of the UM-based (UM) GPU-accelerated adjacency
search and the block-based (EM) GPU-accelerated adjacency search up to
level l = 1. The algorithms are executed on up to four GPUs and process
CGMs with increasing numbers of variables N . The red dotted vertical lines
mark the number of variables for which the CGM’s data structures exceed
the GPU’s memory capacity of one to four GPUs (left to right).

Our measurements illustrate that the UM-based adjacency searches face a strong
increase in runtime for specific numbers of variables. The observed behavior
results from page faults occurring once the GPU global memory is exceeded by
several GB, e.g., see the measurements for the UM-based approach executed
on a single GPU (UM 1 GPU). When executed on multiple GPUs, drops in
performance are also observed for the UM-based multi-GPU adjacency search.
However, the performance drops are not as severe as in the single GPU case
and occur for larger numbers of variables, e.g., N ≥ 60 000. When performing
the UM-based adjacency search on three or four GPUs, we observe a drop in
performance once the GPU memory capacity of the first two GPUs is exceeded.
We assume this behavior results from costs for inter-GPU communication, page
faults, and page migrations between the GPUs. For the block-based approach,
we observe that the runtime scales quadratic to the number of variables N , as
expected. For smaller numbers of variables, such that the GPU global memory
suffices, e.g., N < 40 000, the UM-based multi-GPU adjacency search is faster
when running on two GPUs, whereas the block-based approach is faster when
running on three or four GPUs. We also attribute this observation to inter-GPU
communication cost, which degrades the runtime.

6.3.2 Experiment on the Application to Real-World Gene
Expression Data up to Level l = 1

In the following, we compare the runtime of the UM-based and block-based
GPU-accelerated adjacency searches with the parallel CPU-based implementa-
tion from pcalg [111] on the real-world gene expression dataset TCGA [193]. The

6.3 Experiments on GPU-Based CSL Beyond a Single GPU’s Memory Capacity 157

TCGA dataset contains 55 572 variables. Thus the corresponding data structures
exceed a single GPU’ global memory. We perform the GPU measurements on
the Delos system and run the CPU-based algorithm on the Galileo system.
Hence, the CPU-based adjacency search is executed on 32 cores in parallel.

device CPU GPU
approach/library pcalg UM-based block-based
number of PUs 32 cores g = 1 g = 4 g = 1 g = 4

block size bs = 2048 bs = 2048

runtime in s 387 360 31 456 670 1 063 309

Table 6.18: Runtimes in seconds of the CPU-based adjacency search from
pcalg [111] executed in parallel on 32 cores, the UM-based GPU-accelerated
adjacency search, and the block-based GPU-accelerated adjacency. For the
GPU-based adjacency searches, we set the number of GPUs to g = {1, 4},
e.g., either using the out-of-core GPU approaches or the multi-GPU ap-
proaches. We restrict the adjacency search to a maximum level of l = 1 to
limit the experiment’s runtime.

In Table 6.18, we report the runtime measurements. The CPU-based algorithm
runs for over four days, whereas all GPU-based approaches finish in less than
one hour. Using a single GPU leads to a speedup of a factor of 364× compared
to execution on a multi-core CPU system. Furthermore, the block-based out-of-
core GPU approach is faster by a factor of 29.6× compared to the UM-based
out-of-core GPU approach. Extending the execution to four GPUs, we observe a
speedup of up to a factor of 1 253× compared to execution on a multi-core CPU
system. In that setting, the block-based multi-GPU approach is the fastest, with
a runtime of 309 seconds, and is 2.17 times faster than the UM-based multi-GPU
approach. Comparing the two UM-based approaches, we observe that the multi-
GPU approach running on four GPUs is 46.6 times faster than the out-of-core
GPU approach executed on a single GPU. Profiling with the nvprof profiler
reveals that the UM-based out-of-core GPU algorithm faces many page faults
due to the memory demand of the data structures for TCGA, which exceeds the
single GPU’s memory capacity.

6.3.3 Summary

Our approaches to scale the GPU-accelerated adjacency search beyond a sin-
gle GPU’s memory capacity can process high-dimensional real-world datasets
that exceed a single GPU’s memory capacity. In detail, leveraging the parallel
computational power of four GPUs, we achieve a factor of speedup of 1 253×
compared to a parallel CPU-based implementation running on 32 CPU cores.
Also, we observe that our block-based approaches that rely on explicit mem-
ory management outperform UM-based approaches in settings where the data
structures exceed the GPU’s memory capacity. Particularly as our block-based
approaches are not impacted by the GPU interconnect topology and do not
require handling of page faults and page migrations between GPUs.

158 6 Evaluation

However, our experimental evaluation has two limitations. First, we restrict
the execution of the adjacency search to a maximum level of l = 1. While this
restriction suffices to examine the different behavior due to different memory
access patterns, we cannot conclude on the runtime in higher levels l ≥ 2.
Particularly as the block-based approach requires additional optimizations in
higher levels l ≥ 2 to handle the number of possible combinations of the blocks
required to allow for all possible separation sets. Second, we focus our evaluation
on the assumption that all data follows the Gaussian distribution model. It is
subject to future work to examine our approaches under the assumption of other
data characteristics, e.g., considering discrete data.

6.4 Discussion

In this section, we discuss the evaluation results of our algorithms for GPU-
accelerated adjacency searches in PC-stable. In most settings examined in our
experiments, our proposed GPU-accelerated algorithms achieve faster runtimes
than state-of-the-art parallel CPU-based implementations. However, we are
aware that some settings are unfavorable for our GPU-accelerated algorithms,
which we mention separately for each of our algorithms below.

GPU-Accelerated Adjacency Search for Data Following the Gaussian
Distribution Model

For data that follows the Gaussian distribution model, we observe a speedup
of up to a factor of 93.4×, comparing our GPU-based adjacency search to the
parallel CPU-based variant from pcalg [111]. When executing the entire PC-
stable, our GPU-based algorithm, as implemented in gpucsl [16], is up to 20
times faster than pcalg. The cupc-S algorithm [287] that incorporates optimiza-
tions specific to data following the Gaussian distribution model has a 4.54 times
faster GPU kernel runtime in a selected setting than our GPU-based algorithm.

Despite the achieved speedup, our evaluation focused on high-dimensional
datasets. Thus, we cannot generalize to data of any size. We assume that for
small-dimensional datasets, the overhead in GPU processing, i.e., costs for data
transfer or GPU kernel launches, outweigh the performance gains. This is par-
ticularly the case for datasets that expose insufficient parallelism to saturate
the GPU’s SMs.

GPU-Accelerated Adjacency Search for Discrete Data

For discrete data, our GPU-accelerated adjacency search achieves a speedup
of up to a factor of 34.2× compared to the parallel CPU-based implementa-
tion from bnlearn [233]. Considering the execution of the entire PC-stable al-
gorithm, our GPU-based algorithm, as implemented in gpucsl [16], is up to
54.3 times faster than bnlearn. Furthermore, our GPU-based adjacency search,
which builds upon a parallel execution strategy tailored to the CI test for dis-
crete data, outperforms a GPU-based variant that utilizes the parallel execution
strategy from the cupc-E algorithm [287] by up to a factor of 6.5×.

However, in the end-to-end measurement, we observe that our GPU-based
adjacency search has a longer runtime than bnlearn for datasets with few vari-
ables N and data samples n. Furthermore, we observe that the gap in runtime

6.4 Discussion 159

between our GPU-based variant and the parallel CPU-based implementation
decreases if the density of the CGM increases. Lastly, a large maximum size of
the discrete domain maxi=1,...,N{|Vi|}, with Vi representing the corresponding
discrete domain of the variable Vi with i = 1, . . . , N , can cause high demand
for GPU global memory, which exceeds the GPU’s memory capacity. In this
case, our GPU-based algorithm restricts the degree of parallelism at the cost
of increased runtimes, which in the worst case, results in slower runtimes than
CPU-based execution.

GPU-Accelerated Adjacency Search with an Information-Theoretic GPU-Based
CI Test

In the context of mixed discrete-continuous data or data with non-linear rela-
tionships, we examine the runtimes of our GPU-accelerated CI test GPUCMIknn
and the corresponding GPU-based adjacency search GPUCMIknn-Parallel. For
continuous data with non-linear relationships, GPUCMIknn is 352 times faster than
the CPU-based CI test CMIknn [214]. Similarly, GPUCMIknn-Parallel is faster by
factors of up to 240× than a parallel CPU-based adjacency search using CMIknn.
For mixed discrete-continuous data, GPUCMIknn-Parallel outperforms a parallel
CPU-based adjacency search using CMIknn by factors of up to 655×.

However, the achieved speedup requires that the parameter kCMI during
the k-NN search is chosen considerably small, i.e., kCMI < 50. A small value
of kCMI impacts the quality of CI decisions, respectively, the learned CPDAG
of the CGM. For larger values of kCMI , the runtime performance between the
parallel CPU-based adjacency search and GPUCMIknn-Parallel decreases. Even-
tually, GPUCMIknn-Parallel is slower than CPU-based execution. Furthermore, in
our evaluation of the CI test’s runtime, the CPU-based implementation runs on
a single CPU core. A parallel CPU-based CI test implementation could reduce
the gap in runtime.

GPU-Accelerated Adjacency Search Algorithms Beyond a Single GPU’s
Memory Capacity

Using synthetic data, we experimentally show that our out-of-core GPU-
accelerated and multi-GPU-based adjacency searches scale to high-dimensional
datasets that exceed the memory capacity of a single GPU. For a real-world
gene expression dataset that exceeds the GPU’s memory capacity, our block-
based out-of-core GPU algorithm executed outperforms a parallel CPU-based
implementation by a factor of 364×. On the same dataset, our block-based
multi-GPU approach is 1 253 times faster than execution on a multi-core CPU.
Further, our UM-based GPU-accelerated approaches are slower than the corre-
sponding block-based approaches, using explicitly managed memory.

Despite these promising results, our evaluation only focuses on executing lev-
els l = 0, 1. In higher levels l ≥ 2, the block-based GPU-accelerated algorithms
face a combinatorial challenge, as they must ensure that all possible separation
set candidates can be constructed. We assume that this combinatorial challenge
causes runtime overhead, making the UM-based GPU-accelerated algorithms
or parallel CPU-based implementations favorable. Furthermore, our evaluation
is based only on data that follows the Gaussian distribution model. Since our
other GPU-accelerated adjacency search algorithms are tailored to CI tests for
different data characteristics, we cannot conclude the direct transferability of
the evaluation results.

160 6 Evaluation

6.5 Summary

This chapter presented our experimental evaluation of our proposed GPU-based
CSL algorithms tailored to the GPU’s Single Instruction Multiple Threads
(SIMT) execution model. The results demonstrated that our GPU-based CSL
algorithms outperform state-of-the-art parallel CPU-based implementations for
selected CI tests. Thus, addressing our first research question (RQ1), appro-
priate parallel execution strategies and optimizations for the execution of
constraint-based CSL on GPUs (see Sections 4.2, 4.3, and 4.4) yield improve-
ments in the runtime. In detail, the experimental evaluation demonstrated that
our GPU-based algorithms outperform state-of-the-art parallel CPU-based im-
plementations by factors of up to 54.3× for discrete data, up to 93.4× for data
assuming the Gaussian distribution model, up to 240× for continuous data with
non-linear relationships, and up to 655× for mixed discrete-continuous data.
Furthermore, we experimentally evaluated our proposed adjacency search ap-
proaches for out-of-core and multi-GPU settings. The results showed that our
GPU-based approaches scale to arbitrarily large datasets, i.e., datasets that ex-
ceed the GPU’s on-chip memory, while still achieving speedups over parallel
CPU-based implementations. For example, on a large gene expression dataset
that exceeds the GPU’s memory capacity, we observed that our out-of-core ap-
proach is 364 times faster than a parallel CPU-based CSL algorithm. Thus,
concerning our second research question (RQ2), our out-of-core and multi-GPU
approaches allow scaling constraint-based CSL to arbitrarily large datasets, e.g.,
high-dimensional datasets, which exceed the GPU’s on-chip memory.

In our experimental evaluation and throughout this thesis, we focused on
applying our GPU-accelerated adjacency search algorithms in the context of
PC-stable [35]. However, the adjacency search is a substantial part of other
constraint-based methods, such as FCI [36], RFCI [36], PC-Simple [19], pPC [95],
and more. In related work [126], it is shown that parallel execution of the adja-
cency search yields speedup for several of these methods, too. For these meth-
ods, we also see the potential that incorporating our GPU-accelerated adjacency
search algorithms results in faster runtimes, which underlines the importance of
our work and shows additional application areas.

7

Final Remarks

In this chapter, we first discuss the limitations of this thesis concerning the pro-
posed GPU-accelerated CSL algorithms and their evaluation. Next, we describe
opportunities for future work that address optimizations for additional speedup
and extent the applicability to other CI tests. Finally, we conclude this thesis
by answering our research questions through our contributions.

7.1 Limitations

This section discusses the limitations of this thesis, particularly concerning the
evaluation and their implication on the generalizability of our contributions.

In our evaluation, we use a set of real-world gene expression datasets, bench-
mark Bayesian networks, as well as synthetic data. However, several of our ex-
periments (see Sections 6.2.1, 6.2.2, or 6.3) are performed on a limited number
of these datasets, particularly when comparing our GPU-accelerated algorithms
to CPU-based algorithms. Thus, even though our measurements reveal that our
GPU-accelerated algorithms achieve speedup over the execution on the CPU,
we cannot claim that this observation generalizes to all possible datasets.

Further, we measure runtimes on different CPU and GPU hardware. How-
ever, for each experiment, we chose one specific hardware system for executing
our GPU-accelerated algorithms and the CPU-based implementation if appli-
cable. We did not examine the performance of our GPU-accelerated algorithms
across systems with different GPU hardware, i.e., with different numbers of
SMs or different sizes and technology of the GPU global memory. Thus, based
on our current evaluation, it remains open to infer our algorithms’ behavior on
new GPU generations with changed hardware characteristics.

Additionally, in our experiments, we compare our GPU-based algorithms to
parallel CPU-based implementations that execute on as many CPU cores as the
hardware system provides. We select the best-performing implementation for the
CPU-based implementation from a set of well-known libraries that implement
the PC-stable algorithm. To the best of our knowledge, we chose the fastest
existing implementation. Despite choosing implementations from well-known li-
braries, we cannot ensure that these implementations are highly optimized for
execution on the CPU. Further, our choice to execute the algorithm on all avail-
able CPU cores does not necessarily yield the fastest runtime [123]. Hence, the

162 7 Final Remarks

measured speedup of our GPU-accelerated algorithms over the CPU-based im-
plementations is specific to the corresponding implementation. Thus, optimized
CPU-based algorithms that yield faster runtimes than those selected for our
evaluation may exist and can result in a smaller performance gap compared to
our GPU-based algorithms.

Lastly, concerning our measurement setup, we cannot rule out an impact
on the runtime measurements by operating system processes or other loads on
the system. However, we aimed to reduce measurement inaccuracies through
repetitive measurement execution while having exclusive access to the selected
hardware system.

In this thesis, we focus on the PC algorithm [249], particularly the PC-
stable [35], as it is a common choice for constraint-based CSL. However, we ex-
clude a comparison to other approaches to CSL, such as the score-based method
fGES [202] or a continuous optimization-based approach [293]. Thus, while our
improved runtimes apply to the PC-stable, its variants and extensions, and
further constraint-based methods building upon adjacency searches, other CSL
methods may yield faster or higher-quality results in specific settings.

7.2 Future Work

As a result of the limitations mentioned in the previous section, we see an in-
depth evaluation of our algorithms with respect to their applicability beyond
the PC-stable algorithm as future work. Likewise, an in-depth evaluation of the
influence of parameter kCMI on the quality of CI decisions for our information-
theoretic GPU-based approaches is necessary to ensure extensive applicability
in real-world scenarios. Furthermore, an extended evaluation of our approaches
to scale beyond a single GPU’s memory capacity is needed to show its general
utility. Particularly focusing on data with other characteristics than assuming
that data follows the Gaussian distribution model.

Based on related work, we see further optimization potential of our algo-
rithms. Specifically, the approach from cupc-S [287] to reuse the computed
pseudo-inverse while using our parallel execution strategy needs to be explored.
Further, examining how our Unified Memory (UM)-based approaches can ben-
efit from current fast interconnects, frameworks to reduce page faults, or the
introduction of load balancing mechanisms remains open.

Our work uses GPUs to accelerate the adjacency search of PC-stable in a
heterogeneous system. We show that the causal structures can be learned in
an acceptable time, even on high-dimensional datasets that exceed the mem-
ory capacity of a single GPU. However, based on heterogeneous systems, our
approaches’ scalability is limited by the number of available GPUs. Extending
our work to distributed GPU-accelerated systems could become relevant when
the computational demand increases due to increased dataset sizes or the ap-
plication of more complex CI tests. Distributed CPU-based algorithms such as
MrPC [169] or PCB [44] can serve as a basis.

Modern heterogeneous systems have other co-processors or at least multi-
core CPUs in addition to GPUs. Our proposed GPU-based algorithms only
require a few CPU threads for orchestration, e.g., launching the GPU kernels.
Accordingly, other CPU cores remain unused. In order to use all available PUs in
a system, idle CPU cores can be included in the adjacency search computation.

7.3 Conclusion 163

First investigations in the context of a master thesis supervised by the author
of this thesis have shown a potential of several percent speedups compared to
pure GPU-based execution. However, further investigations are necessary. In
this context, the use of additional co-processors should also be examined.

This thesis considers parallel execution strategies for GPU-based adjacency
searches concerning specific CI tests. However, many other CI tests [67, 96, 200,
236, 237, 238, 260, 288, 289] can also be plugged into the PC-stable algorithm.
To avoid the development of tailored GPU-accelerated adjacency searches for
each of these CI tests, we suggest developing a general framework for GPU
acceleration of constraint-based CSL. As a first step, classifying existing CI tests
according to their memory access patterns and computational steps helps to
match them to the appropriate parallel execution strategy suggested in this
thesis. For example, the k-NN-based CI tests [100, 214] share similar concepts,
allowing GPU processing as described in Algorithm 12 (see Section 4.4).

7.3 Conclusion

Knowledge about the causal structures between variables of a system supports
data-driven decision-making in many domains. Today, large amounts of observa-
tional data are collected from increasingly complex systems, which CSL methods
process to discover the underlying causal structures. However, when processing
observational data that are high-dimensional or contain complex non-linear re-
lationships, CSL algorithms struggle with long runtimes of hours or days, which
hinders their wide application in practice [123, 150]. Existing CSL algorithms
have focused on the parallel execution on multi-core CPUs. We argue that this
does not leverage the full potential of modern computing systems, which are of-
ten heterogeneous and equipped with co-processors, such as GPUs, to accelerate
computations. GPUs typically provide several thousand computational cores for
massively parallel data processing.

In this thesis, we examine how CSL algorithms can benefit from the parallel
computational power of GPUs to achieve fast runtimes. Particularly, we focus on
a widely accepted constraint-based CSL method, the PC algorithm, as it allows
choosing a statistical CI test appropriate to the observational data’s character-
istics. We design parallel execution strategies for the PC algorithm that reflect
GPU hardware characteristics and algorithmic details of selected CI tests. We
choose three CI tests that are common in practice and cover a wide range of
data characteristics. Consequently, we develop three GPU-accelerated variants
of the PC algorithm that are tailored to these CI tests. Further, we propose
GPU-based approaches to scale beyond a single GPU’s memory capacity to
allow the processing of arbitrarily large datasets. Our developed GPU-based
algorithms allow us to answer our two research questions as follows:

• RQ1: How can we improve the runtime of constraint-based CSL on a
GPU We argue that GPUs are well suited to accelerate constraint-based
CSL, given their availability in modern heterogeneous computing systems
and massively parallel data processing power. To develop GPU-accelerated
constraint-based CSL algorithms, we apply a framework for designing paral-
lel programs and derive parallel execution strategies that consider the GPU’s

164 7 Final Remarks

Single Instruction Multiple Threads (SIMT) execution model and favor lo-
cal communication patterns that are realized using the GPU’s shared mem-
ory. Further, we define tasks for parallel execution with different levels of
granularity to reflect the algorithmic details of CI tests. For example, our
algorithm that targets a CI test for discrete data defines processing of indi-
vidual data samples as the task for parallel execution and uses units of GPU
threads, i.e., warps, to jointly compute marginals over contingency tables.
In an experimental evaluation, we compare our GPU-based algorithms to
state-of-the-art parallel CPU-based implementations and observe factors of
speedup of up to 54.3× for discrete data, up to 93.4× for data assuming
the Gaussian distribution model, up to 240× for continuous data with non-
linear relationships, and up to 655× for mixed discrete-continuous data.

• RQ2: How can we scale GPU-accelerated constraint-based CSL to arbitrarily
large datasets?
We explore two techniques for extending our GPU-accelerated variants of
the PC algorithm, tailored to specific CI tests, to process arbitrarily large
datasets. First, we employ the concept of UM, which allows for GPU global
memory oversubscription and uses the GPU’s Memory Management Unit
(MMU) for on-demand page migrations and page evictions in GPU global
memory. Second, we implement a block-based approach that splits the input
dataset into multiple small-sized blocks, which fit into GPU global memory.
In the block-based approach, data transfers and GPU kernel execution are
explicitly managed to avoid page faults that occur in the UM-based vari-
ant. Furthermore, we extend both approaches to operate on multiple GPUs
for faster runtimes. Using a large gene expression dataset that exceeds the
GPU’s memory capacity, we observe that our block-based approach is 364
times faster than a parallel CPU-based CSL algorithm and 29.6 times faster
than our UM-based approach.

Based on the answers to our research questions, we contribute to our research
goal of designing efficient execution strategies for constraint-based CSL algo-
rithms that leverage the parallel processing power of GPUs to provide fast run-
times in case of high-dimensional data. By accelerating the learning of causal
structures from datasets that are high-dimensional or contain complex non-
linear relationships, we foster the adoption of CSL in practice.

A

Appendix

A.1 List of URLs

description URL

Homepage of the top 500 supercomputer list https://www.top500.org/
Homepage of NVIDIA’s CUDA-X libraries https://developer.nvidia.com/gpu-

accelerated-libraries
Implementation of GPUCMIknn and
GPUCMIknn-Parallel on GitHub

https://github.com/ChristopherSchmidt89/
gpucmiknn

Implementation of our GPU-accelerated python
library gpucsl on GitHub

https://github.com/hpi-epic/gpucsl

Documentation of the chrono library http://en.cppreference.com/w/cpp/header/
chrono

Documentation of the nvprof profiling metrics https://docs.nvidia.com/cuda/profiler-
users-guide/index.html#metrics-reference-7x

Table A.1: List of URLs mentioned in footnotes of this thesis. Last Ac-
cessed: December 15, 2022.

https://www.top500.org/
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://github.com/ChristopherSchmidt89/gpucmiknn
https://github.com/ChristopherSchmidt89/gpucmiknn
https://github.com/hpi-epic/gpucsl
http://en.cppreference.com/w/cpp/header/chrono
http://en.cppreference.com/w/cpp/header/chrono
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

166 A Appendix

A.2 List of Publications

Our main contributions1 concerning GPU-accelerated constraint-based CSL
have been published at international conferences and workshops, e.g., KDD,
ICDM, SDM, and SSDBM:

• Hagedorn, C.; Lange, C.; Huegle, J.; Schlosser, R.: GPU Acceler-
ation for Information-theoretic Constraint-based Causal Discovery . In Pro-
ceedings of The KDD’22 Workshop on Causal Discovery . PMLR, 2022, pp.
30–60.

• Braun, T.; Hurdelhey, B.; Meier, D.; Tsayun, P.; Hagedorn, C.;
Huegle, J.; Schlosser, R.: GPUCSL: GPU-Based Library for Causal
Structure Learning . In 2022 International Conference on Data Mining,
ICDM 2022 – Workshops. IEEE, 2022, pp. 1228–1231.

• Hagedorn, C.; Huegle, J.: GPU-Accelerated Constraint-Based Causal
Structure Learning for Discrete Data. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM). SIAM, 2021, pp. 37–45.

• Hagedorn, C.; Huegle, J.: Constraint-Based Causal Structure Learning
in Multi-GPU Environments. In Proceedings of the LWDA 2021 Workshops:
FGWM, KDML, FGWI-BIA, and FGIR. CEUR-WS.org, 2021, pp. 106–118.

• Schmidt, C.; Huegle, J.; Horschig, S.; Uflacker, M.: Out-of-Core
GPU-Accelerated Causal Structure Learning . In Algorithms and Architec-
tures for Parallel Processing (ICA3PP). Springer, 2020, pp. 89–104.

• Schmidt, C.; Huegle, J.; Uflacker, M.: Order-independent Constraint-
based Causal Structure Learning for Gaussian Distribution Models Using
GPUs. In Proceedings of the 30th International Conference on Scientific and
Statistical Database Management (SSDBM). ACM, 2018, pp. 19:1–19:10.

Our complementary contributions1 to hardware acceleration for CSL, bench-
marking of CSL algorithms, and the application of CSL in the manufacturing
domain have been published at international conferences, journals, workshops,
and technical reports:

• Hagedorn, C.; Huegle, J.; Schlosser, R.: Understanding Unforeseen
Production Downtimes in Manufacturing Processes Using Log Data-Driven
Causal Reasoning . In Journal of Intelligent Manufacturing 33(7), 2022: pp.
2027–2043.

• Huegle, J.;Hagedorn, C.; Schlosser, R.:A kNN-based Non-Parametric
Conditional Independence Test for Mixed Data and Application in Causal
Discovery . In ECML-PKDD 2023, accepted . 2023.

• Huegle, J.; Hagedorn, C.; Perscheid, M.; Plattner, H.: MPCSL –
A Modular Pipeline for Causal Structure Learning . In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(KDD). ACM, 2021, pp. 3068–3076.

• Huegle, J.; Hagedorn, C.; Böhme, L.; Pörschke, M.; Umland, J.;
Schlosser, R.: MANM-CS: Data Generation for Benchmarking Causal
Structure Learning from Mixed Discrete-Continuous and Nonlinear Data.
In WHY-21 @ NeurIPS . WHY-21, 2021, pp. 1–15.

1 Note that the author published several contributions under his birth name Schmidt.

A.2 List of Publications 167

• Huegle, J.; Hagedorn, C.; Uflacker, M.: Unterstützte Fehlerbehebung
durch kausales Strukturwissen in Überwachungssystemen der Automobilfer-
tigung . In Software Engineering 2021 Satellite Events, Lecture Notes in
Informatics (LNI). Gesellschaft für Informatik, 2021, pp. 1–2.

• Huegle, J.; Hagedorn, C.; Uflacker, M.: How Causal Structural
Knowledge Adds Decision-Support in Monitoring of Automotive Body Shop
Assembly Lines. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (ICJAI). IJCAI, 2020, pp. 5246–5248.

• Schmidt, C.; Huegle, J.; Bode, P.; Uflacker, M.: Load-Balanced Par-
allel Constraint-Based Causal Structure Learning on Multi-Core Systems for
High-Dimensional Data. In Proceedings of The 2019 KDD Workshop on
Causal Discovery . PMLR, 2019, pp. 59–77.

• Schmidt, C.; Huegle, J.: Towards a GPU-Accelerated Causal Inference.
In HPI Future SOC Lab – Proceedings 2017 . Universitätsverlag Potsdam,
2020, pp. 187–194.

Furthermore, our complementary contributions2 that address hardware accel-
eration in other domains, such as database management systems or business
applications, have been published at international conferences and workshops:

• Schmidt, C.; Uflacker, M.: Workload-Driven Data Placement for GPU-
Accelerated Database Management Systems. In BTW 2019 – Workshopband .
Gesellschaft für Informatik, 2019, pp. 91–94.

• Schmidt, C.; Dreseler, M.; Akin, B.; Roy, A.: A Case for Hardware-
Supported Sub-Cache Line Accesses. In Proceedings of the 14th International
Workshop on Data Management on New Hardware (DaMoN). ACM, 2018,
pp. 1–3.

• Schwarz, C.; Schmidt, C.; Hopstock, M.; Sinzig, W.; Plattner, H.:
Efficient Calculation and Simulation of Product Cost Leveraging In-Memory
Technology and Coprocessors. In The Sixth International Conference on
Business Intelligence and Technology . IARIA, 2016, pp. 12–18.

2 Note that the author published several contributions under his birth name Schmidt.

168 A Appendix

A.3 Permission for Reuse of Published Material

A.3.1 Reuse of Material Published by ACM

Authors can reuse any portion of their own work in a new work of their own
(and no fee is expected) as long as a citation and DOI pointer to the Version of
Record in the ACM Digital Library are included.
Contributing complete papers to any edited collection of reprints for which the
author is not the editor, requires permission and usually a republication fee.
Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the Versions
of Record in the ACM Digital Library are included. Authors can use any portion
of their own work in presentations and in the classroom (and no fee is expected).

A.3.2 Reuse of Material Published by IEEE

In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Hasso Plattner Institute’s prod-
ucts or services. Internal or personal use of this material is permitted. If in-
terested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for creating new collective works for resale or re-
distribution, please go to http://www.ieee.org/publications_standards/

publications/rights/right_link.html to learn how to obtain a License from
RightsLink.

A.3.3 Reuse of Material Published by SIAM

SIAM has sole use for distribution in all forms and media, such as microfilm
and anthologies, except that the author(s) or, in the case of a ”work made for
hire” the employer will retain: The right to use all or part of the content of the
paper in future works of the author(s), including the author’s teaching, techni-
cal collaborations, conference presentations, lectures, other scholarly works and
professional activities, or any other activity falling under the fair use provisions
of the U.S. Copyright Act. If the copyright is granted to SIAM, then proper
notice of SIAM’s copyright should be provided.

A.3.4 Reuse of Material Published by Springer

Authors have the right to reuse their article’s Version of Record, in whole or in
part, in their own thesis. Additionally, they may reproduce and make available
their thesis, including Springer Nature content, as required by their awarding
academic institution. Authors must properly cite the published article in their
thesis according to current citation standards.

http://www.ieee.org/publications_standards/publications/rights/right_link.html
http://www.ieee.org/publications_standards/publications/rights/right_link.html

List of Figures

2.1 System architecture of heterogeneous hardware setup with GPUs. 25
2.2 Organization of GPU threads within a GPU kernel in CUDA. . . . 27

4.1 Illustration of task (I) defined as adjacencies adj(Cl, Vi). 53
4.2 Illustration of task (II) defined as edges Ei,j 53
4.3 Illustration of task (III) defined as CI tests. 54
4.4 Illustration of task (IV) defined as data samples Dm. 54
4.5 Illustration of tasks of the PC-stable algorithm’s adjacency

search on a fully connected CGM in levels l ≥ 1. 55
4.6 Illustration of tasks of the PC-stable algorithm’s adjacency

search on a sparse CGM in levels l ≥ 1. 56
4.7 Illustration of tasks of the PC-stable algorithm’s adjacency

search on any CGM in level l = 0. 57
4.8 Mapping of tasks as r data samples to CUDA execution units. . . 62
4.9 Mapping of tasks as CI tests of Ei,j to CUDA execution units. . . 62
4.10 Mapping of fused tasks as r data samples from multiple CI tests

of Ei,j to CUDA execution units. 63

5.1 Illustration of the block concept with associated data structures. 114
5.2 Use of CUDA streams to overlap data transfer and computation. 116

6.1 Interconnect topology of the multi-GPU system Delos. 125
6.2 Runtime evaluation of the GPU kernels for levels l = 0, 1. 130
6.3 Speedup of our GPU-accelerated algorithm over CPU-based

execution on real-world gene expression data up to level l = 1. . . 131
6.4 Speedup of our GPU-accelerated algorithm over CPU-based

execution on real-world gene expression data in levels l = 0, 1. . . . 133
6.5 Evaluation of the impact of kCMI on the quality of a learned

CGM using GPUCMIknn-Parallel. 151
6.6 Runtimes of the UM-based and block-based approaches to scale

the GPU-accelerated adjacency search beyond a single GPU’s
memory capacity. 156

List of Tables

2.1 Notation table for CGM and PC-stable. 17

3.1 Overview of existing parallel constraint-based CSL algorithms. . . 30

4.1 Characteristics of selected real-world gene expression datasets. . . 65
4.2 Number of performed CI tests in the adjacency search of

PC-stable. 66
4.3 Runtime measurements of the adjacency search of PC-stable. . . . 67
4.4 Exemplary sizes of auxiliary data structures. 82

6.1 Characteristics of real-world gene expression datasets and
benchmark Bayesian networks . 121

6.2 Characteristics of the hardware systems used in the evaluation. . 123
6.3 Overview of libraries used in the evaluation. 126
6.4 nvprof metrics measured for the CUDA-X library-based variant. . . 134
6.5 Runtimes for the CUDA-X library-based variant. 135
6.6 End-to-end runtimes on datasets following the Gaussian

distribution model. 137
6.7 Comparison of GPU-accelerated algorithms for the adjacency

search on discrete datasets. 139
6.8 Runtimes of the adjacency search on discrete datasets. 141
6.9 End-to-end runtimes on discrete datasets. 142
6.10 Runtimes with different values of kCMI during CMI estimation. . 144
6.11 Runtimes with different numbers of permutations perm. 145
6.12 Runtimes with different separation set sizes |Si,j |. 146
6.13 Runtimes with varying numbers of data samples n. 146
6.14 Runtimes with different numbers of variables N up to N = 50. . . 149
6.15 Runtimes with large numbers of variables N with N ≥ 100. 150
6.16 Runtimes with varying ratios of discrete variables dr. 152
6.17 Runtime measurements comparing the UM-based and

block-based GPU-accelerated adjacency search. 155
6.18 Runtimes of gene expression data exceeding a single GPU’s

memory capacity. 157

A.1 List of URLs mentioned in footnotes of this thesis. 165

List of Abbreviations

BIB Balanced Incomplete Block
CGM Causal Graphical Model
CI Conditional Independence
CI test Conditional Independence test
CMI Conditional Mutual Information
CPDAG Completed Partially Directed Acyclic Graph
CPU Central Processing Unit
CSF Conditioning Set Filtering
CSL Causal Structure Learning
DAG Direct Acyclic Graph
DL Deep Learning
DRAM Dynamic Random Access Memory
FLOPS Floating Point Operations per Second
FPGA Field-Programmable Gate Array
GPGPU General-Purpose Graphics Processing Unit
GPU Graphics Processing Unit
GRN Gene Regulatory Network
HBM High Bandwidth Memory
HPC High-Performance Computing
IoT Internet of Things
k-NN k-Nearest Neighbor
MI Mutual Information
ML Machine Learning
MMU Memory Management Unit
NVM Non-Volatile Memory
PU Processing Unit
QPI QuickPath Interconnect
SHD Structural Hamming Distance
SIMT Single Instruction Multiple Threads
SM Streaming Multiprocessor
SVD Singular Value Decomposition
TPU Tensor Processing Unit
UM Unified Memory
UPI Intel Ultra Path Interconnect

References

[1] Agrawal, S. R.; Idicula, S.; Raghavan, A.; Vlachos, E.; Govin-
daraju, V.; Varadarajan, V.; Balkesen, C.; Giannikis, G.; Roth,
C.;Agarwal, N.; Sedlar, E.: A Many-Core Architecture for in-Memory
Data Processing . In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). ACM, 2017, pp. 245–
258

[2] Agresti, A.: A Survey of Exact Inference for Contingency Tables. In
Statistical Science 7(1), 1992: pp. 131–153

[3] Alonso-Barba, J. I.; de la Ossa, L.; Gámez, J. A.; Puerta, J. M.:
Scaling up the Greedy Equivalence Search Algorithm by Constraining the
Search Space of Equivalence Classes. In International Journal of Approx-
imate Reasoning 54(4), 2013: pp. 429–451

[4] AMD Corporation: ROCm, a New Era in Open GPU Computing .
https://rocm.github.io/, 2016. Accessed: June 15, 2021

[5] Anderson, R.; Mayr, E.: Parallelism and Greedy Algorithms. Technical
report, Stanford University, 1984

[6] Andersson, S. A.; Madigan, D.; Perlman, M. D.: A Characteriza-
tion of Markov Equivalence Classes for Acyclic Digraphs. In Annals of
Statistics 25(2), 1997: pp. 505–541

[7] Andreassen, S.; Jensen, F.; Andersen, S.; Falck, B.; Kjærulff,
U.; Woldbye, M.; Sørensen, A.; Rosenfalck, A.; Jensen, F.:
MUNIN: An Expert EMG Assistant . In Computer-Aided Electromyog-
raphy and Expert Systems, Pergamon Press. 1989, pp. 255–277

[8] Baruah, T.; Sun, Y.; Dinçer, A. T.; Mojumder, S. A.; Abellán,
J. L.; Ukidave, Y.; Joshi, A.; Rubin, N.; Kim, J.; Kaeli, D.: Griffin:
Hardware-Software Support for Efficient Page Migration in Multi-GPU
Systems. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 596–609

[9] Bedford Taylor, M.: The Evolution of Bitcoin Hardware. In Computer
50(9), 2017: pp. 58–66

[10] Beinlich, I. A.; Suermondt, H. J.; Chavez, R. M.; Cooper, G. F.:
The ALARM Monitoring System: A Case Study with two Probabilistic
Inference Techniques for Belief Networks. In AIME 89 . Springer, 1989,
pp. 247–256

https://rocm.github.io/

174 References

[11] Bell, N.; Garland, M.: Implementing Sparse Matrix-Vector Multiplica-
tion on Throughput-Oriented Processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis (SC).
ACM, 2009, p. 11

[12] Ben-Nun, T.; Levy, E.; Barak, A.; Rubin, E.: Memory Access Pat-
terns: The Missing Piece of the Multi-GPU Puzzle. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). ACM, 2015, pp. 1–12

[13] Bentley, J. L.: Multidimensional Binary Search Trees Used for Associa-
tive Searching . In Communications of the ACM 18(9), 1975: pp. 509–517

[14] Bishop, C. M.: Pattern Recognition and Machine Learning . Springer,
2006

[15] Blumofe, R. D.; Leiserson, C. E.: Scheduling Multithreaded Computa-
tions by Work Stealing . In Journal of the ACM 46(5), 1999: pp. 720–748

[16] Braun, T.; Hurdelhey, B.; Meier, D.; Tsayun, P.; Hagedorn, C.;
Huegle, J.; Schlosser, R.: GPUCSL: GPU-Based Library for Causal
Structure Learning . In 2022 International Conference on Data Mining,
ICDM 2022 – Workshops. IEEE, 2022, pp. 1228–1231

[17] Breß, S.: The Design and Implementation of CoGaDB: A Column-
oriented GPU-accelerated DBMS . In Datenbank-Spektrum 14(3), 2014:
pp. 199–209

[18] Budruk, R.; Anderson, D.; Shanley, T.: PCI Express System Archi-
tecture. Pearson Education, 2003

[19] Bühlmann, P.; Kalisch, M.; Maathuis, M. H.: Variable Selection in
High-Dimensional Linear Models: Partially Faithful Distributions and the
PC-Simple Algorithm. In Biometrika 97(2), 2010: pp. 261–278

[20] Cabezas, J.; Vilanova, L.; Gelado, I.; Jablin, T. B.; Navarro, N.;
Hwu, W. W.: Automatic Parallelization of Kernels in Shared-Memory
Multi-GPU Nodes. In Proceedings of the 29th ACM on International Con-
ference on Supercomputing (ICS). ACM, 2015, pp. 3–13

[21] Cancer Genome Atlas Research Network; Weinstein, J. N.;
Collisson, E. A.; Mills, G. B.; Shaw, K. R.; Ozenberger, B. A.;
Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J. M.: The Cancer
Genome Atlas Pan-Cancer analysis project . In Nature Genetics 45(10),
2013: pp. 1113–1120

[22] Cano, A.; Gómez-Olmedo, M.; Moral, S.: A Score Based Ranking of
the Edges for the PC Algorithm. In Proceedings of the Fourth European
Workshop on Probabilistic Graphical Models (PGM). 2008, pp. 41–48

[23] Cantrell, C. D.: Modern Mathematical Methods for Physicists and En-
gineers. Cambridge University Press, 2000

[24] Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y.: Deep Learning-Based
Classification of Hyperspectral Data. In IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 7(6), 2014: pp. 2094–
2107

[25] Chickering, D. M.: Learning Bayesian Networks is NP-Complete. In
Learning from Data: Artificial Intelligence and Statistics V . Springer,
1996, pp. 121–130

[26] Chickering, D. M.: Learning Equivalence Classes of Bayesian-Network
Structures. In Journal of Machine Learning Research 2(3), 2002: pp. 445–
498

References 175

[27] Chickering, D. M.:Optimal Structure Identification with Greedy Search.
In Journal of Machine Learning Research 3(11), 2003: pp. 507–554

[28] Chickering, D. M.; Heckerman, D.; Meek, C.: Large-Sample Learn-
ing of Bayesian Networks is NP-Hard . In Journal of Machine Learning
Research 5(10), 2004: pp. 1287–1330

[29] Chickering, D. M.; Meek, C.: Selective Greedy Equivalence Search:
Finding Optimal Bayesian Networks Using a Polynomial Number of Score
Evaluations. In Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence (UAI). AUAI Press, 2015, pp. 211–219

[30] Choquette, J.; Giroux, O.; Foley, D.: Volta: Performance and Pro-
grammability . In IEEE Micro 38(2), 2018: pp. 42–52

[31] Choquette, J.; Lee, E.; Krashinsky, R.; Balan, V.; Khailany, B.:
3.2 The A100 Datacenter GPU and Ampere Architecture. In 2021 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE, 2021, pp.
48–50

[32] Chun, S.; Becker, W. D.; Casey, J.;Ostrander, S.;Dreps, D.;He-
jase, J. A.; Nett, R. M.; Beaman, B.; Eagle, J. R.: IBM POWER9
Package Technology and Design. In IBM Journal of Research and Devel-
opment 62(4/5), 2018: pp. 12:1–12:10

[33] Claassen, T.; Mooij, J. M.; Heskes, T.: Learning Sparse Causal Mod-
els is Not NP-Hard . In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence (UAI). AUAI Press, 2013, pp. 172–
181

[34] Coates, A.; Huval, B.; Wang, T.; Wu, D. J.; Ng, A. Y.; Catan-
zaro, B.: Deep Learning with COTS HPC Systems. In Proceedings of the
30th International Conference on International Conference on Machine
Learning (ICML). JMLR.org, 2013, pp. 1337–1345

[35] Colombo, D.; Maathuis, M. H.: Order-Independent Constraint-Based
Causal Structure Learning . In Journal of Machine Learning Research
15(116), 2014: pp. 3921–3962

[36] Colombo, D.; Maathuis, M. H.; Kalisch, M.; Richardson, T. S.:
Learning High-dimensional Directed Acyclic Graphs with Latent and Se-
lection Variables. In The Annals of Statistics 40(1), 2012: pp. 294–321

[37] Conati, C.;Gertner, A. S.;VanLehn, K.;Druzdzel, M. J.:On-Line
Student Modeling for Coached Problem Solving Using Bayesian Networks.
In Proceedings of the Sixth International Conference on User Modeling .
Springer, 1997, pp. 231–242

[38] Corneil, D.; Mathon, R.: Algorithmic Techniques for the Generation
and Analysis of Strongly Regular Graphs and other Combinatorial Config-
urations* . In Algorithmic Aspects of Combinatorics, Annals of Discrete
Mathematics 2, Elsevier. 1978, pp. 1–32

[39] Cui, R.; Groot, P.; Heskes, T.: Copula PC Algorithm for Causal
Discovery from Mixed Data (ECML PKDD). In Machine Learning and
Knowledge Discovery in Databases. Springer, 2016, pp. 377–392

[40] Dagum, L.; Menon, R.: OpenMP: An Industry-Standard API for
Shared-Memory Programming . In IEEE Computational Science and En-
gineering 5(1), 1998: pp. 46–55

[41] Davidson, J. W.; Jinturkar, S.: Memory Access Coalescing: A Tech-
nique for Eliminating Redundant Memory Accesses. In Proceedings of the

176 References

ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation (PLDI). ACM, 1994, pp. 186–195

[42] Dawid, A. P.: Conditional Independence in Statistical Theory . In Journal
of the Royal Statistical Society: Series B (Methodological) 41(1), 1979: pp.
1–31

[43] de Campos, C. P.; Zeng, Z.; Ji, Q.: Structure Learning of Bayesian
Networks Using Constraints. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ICML). ACM, 2009, pp. 113–120

[44] de Jongh, M.: Algorithms for Constraint-Based Learning of Bayesian
Network Structures with Large Numbers of Variables. Dissertation, Uni-
versity of Pittsburgh, 2014

[45] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Processing on
Large Clusters. In Communications of the ACM 51(1), 2008: pp. 107–113

[46] Dempster, A. P.: Elements of Continuous Multivariate Analysis.
Addison-Wesley, 1969

[47] Dennard, R.; Gaensslen, F.; Yu, H.-N.; Rideout, V.; Bassous,
E.; LeBlanc, A.: Design of Ion-Implanted MOSFET’s with Very Small
Physical Dimensions. In IEEE Journal of Solid-State Circuits 9(5), 1974:
pp. 256–268

[48] Doran, G.; Muandet, K.; Zhang, K.; Schölkopf, B.: A
Permutation-Based Kernel Conditional Independence Test . In Proceed-
ings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
(UAI). AUAI Press, 2014, pp. 132–141

[49] Drton, M.; Maathuis, M. H.: Structure Learning in Graphical Model-
ing . In Annual Review of Statistics and Its Application 4(1), 2017: pp.
365–393

[50] Economist, T.: The World’s Most Valuable Resource Is No Longer Oil,
But Data.. https://www.economist.com/leaders/2017/05/06/the-

worlds-most-valuable-resource-is-no-longer-oil-but-data,
2017. Accessed: June 29, 2021

[51] Eddelbuettel, D.; Francois, R.: Rcpp: Seamless R and C++ Inte-
gration. In Journal of Statistical Software 40(8), 2011: pp. 1–18

[52] Eddelbuettel, D.; Sanderson, C.: RcppArmadillo: Accelerating R
with High-performance C++ Linear Algebra. In Computational Statis-
tics & Data Analysis 71, 2014: pp. 1054–1063

[53] Elidan, G.; Gould, S.: Learning Bounded Treewidth Bayesian Net-
works. In Journal of Machine Learning Research 9(91), 2008: pp. 2699–
2731

[54] Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B.: Gene Regulatory
Networks and Their Applications: Understanding Biological and Medical
Problems in Terms of Networks. In Frontiers in Cell and Developmental
Biology 2(38), 2014: pp. 1–7

[55] Esmaeilzadeh, H.; Blem, E.; St. Amant, R.; Sankaralingam, K.;
Burger, D.: Dark Silicon and the End of Multicore Scaling . In Proceed-
ings of the 38th Annual International Symposium on Computer Architec-
ture (ISCA). ACM, 2011, pp. 365–376

[56] Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S.: GPU Cluster
for High Performance Computing . In Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing (SC). IEEE, 2004, pp. 47–47

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

References 177

[57] Fang, W.; Lu, M.; Xiao, X.; He, B.; Luo, Q.: Frequent Itemset Mining
on Graphics Processors. In Proceedings of the Fifth International Work-
shop on Data Management on New Hardware (DaMoN). ACM, 2009, pp.
34–42

[58] Ferdman, M.; Hardavellas, N.; Ailamaki, A.; Falsafi, B.: Toward
Dark Silicon in Servers. In IEEE Micro 31(04), 2011: pp. 6–15

[59] Fisher, R. A.: Frequency Distribution of the Values of the Correla-
tion Coefficient in Samples from an Indefinitely Large Population. In
Biometrika 10(4), 1915: pp. 507–521

[60] Foley, D.; Danskin, J.: Ultra-performance Pascal GPU and NVLink
Interconnect . In IEEE Micro 37(2), 2017: pp. 7–17

[61] Foster, I. T.: Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering . Addison-Wesley, 1995

[62] Frawley, W. J.; Piatetsky-Shapiro, G.; Matheus, C. J.: Knowl-
edge Discovery in Databases: An Overview . In AI Magazine 13(3), 1992:
p. 57

[63] Frenzel, S.; Pompe, B.: Partial Mutual Information for Coupling Anal-
ysis of Multivariate Time Series. In Physical Review Letters 99(20), 2007:
pp. 1–4

[64] Friedman, J. H.; Bentley, J. L.; Finkel, R. A.: An Algorithm for
Finding Best Matches in Logarithmic Expected Time. In ACM Transac-
tions on Mathematical Software 3(3), 1977: pp. 209–226

[65] Friedman, N.; Linial, M.; Nachman, I.; Pe’er, D.: Using Bayesian
Networks to Analyze Expression Data. In Journal of Computational Bi-
ology 7(3-4), 2000: pp. 601–620

[66] Fukumizu, K.; Bach, F. R.; Jordan, M. I.: Dimensionality Reduc-
tion for Supervised Learning with Reproducing Kernel Hilbert Spaces. In
Journal of Machine Learning Research 5, 2004: pp. 73–99

[67] Fukumizu, K.; Gretton, A.; Sun, X.; Schölkopf, B.: Kernel Mea-
sures of Conditional Dependence. In Proceedings of the 20th International
Conference on Neural Information Processing Systems (NIPS). Curran,
2007, pp. 489–496

[68] Funke, H.; Breß, S.; Noll, S.; Markl, V.; Teubner, J.: Pipelined
Query Processing in Coprocessor Environments. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD).
ACM, 2018, pp. 1603–1618

[69] Ganguly, D.; Zhang, Z.; Yang, J.; Melhem, R.: Interplay between
Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Vir-
tual Memory . In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2019, pp. 224–235

[70] Ganguly, D.; Zhang, Z.;Yang, J.;Melhem, R.: Adaptive Page Migra-
tion for Irregular Data-intensive Applications under GPU Memory Over-
subscription. In 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). IEEE, 2020, pp. 451–461

[71] Gao, W.; Kannan, S.; Oh, S.; Viswanath, P.: Estimating Mutual
Information for Discrete-Continuous Mixtures. In Advances in Neural
Information Processing Systems 30, 2017: pp. 1–12

[72] Garcia, V.; Debreuve, E.; Nielsen, F.; Barlaud, M.: K-nearest
Neighbor Search: Fast GPU-Based Implementations and Application to

178 References

High-Dimensional Feature Matching . In Proceedings of the International
Conference on Image Processing, (ICIP). IEEE, 2010, pp. 3757–3760

[73] Gieseke, F.;Heinermann, J.;Oancea, C.; Igel, C.: Buffer K-d Trees:
Processing Massive Nearest Neighbor Queries on GPUs. In Proceedings
of the 31st International Conference on International Conference on Ma-
chine Learning (ICML). 2014, pp. 172–180

[74] Glymour, C.; Zhang, K.; Spirtes, P.: Review of Causal Discovery
Methods Based on Graphical Models. In Frontiers in Genetics 10(524),
2019: pp. 1–15

[75] Greenlaw, R.; Hoover, H. J.; Ruzzo, W. L.: Limits to Parallel Com-
putation: P-Completeness Theory . Oxford University Press, 1995

[76] Gregg, C.; Hazelwood, K.: Where is the Data? Why You Cannot De-
bate CPU vs. GPU Performance Without the Answer . In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2011, pp. 134–144

[77] Gu, J.; Zhou, Q.: Learning Big Gaussian Bayesian Networks: Partition,
Estimation and Fusion. In Journal of Machine Learning Research 21(158),
2020: pp. 1–31

[78] Guo, C.; Luk, W.: Accelerating Constraint-Based Causal Discovery by
Shifting Speed Bottleneck . In Proceedings of the 2022 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA). ACM,
2022, pp. 169–179

[79] Guo, R.; Cheng, L.; Li, J.; Hahn, P. R.; Liu, H.: A Survey of Learning
Causality with Data: Problems and Methods. In ACM Computing Surveys
53(4), 2020: pp. 1–37

[80] Hagedorn, C.; Huegle, J.: Constraint-Based Causal Structure Learn-
ing in Multi-GPU Environments. In Proceedings of the LWDA 2021 Work-
shops: FGWM, KDML, FGWI-BIA, and FGIR. CEUR-WS.org, 2021, pp.
106–118

[81] Hagedorn, C.; Huegle, J.: GPU-Accelerated Constraint-Based Causal
Structure Learning for Discrete Data. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM). SIAM, 2021, pp. 37–45

[82] Hagedorn, C.; Huegle, J.; Schlosser, R.: Understanding Unfore-
seen Production Downtimes in Manufacturing Processes Using Log Data-
Driven Causal Reasoning . In Journal of Intelligent Manufacturing 33(7),
2022: pp. 2027–2043

[83] Hagedorn, C.; Lange, C.; Huegle, J.; Schlosser, R.: GPU Accel-
eration for Information-theoretic Constraint-based Causal Discovery . In
Proceedings of The KDD’22 Workshop on Causal Discovery . PMLR, 2022,
pp. 30–60

[84] Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers,
R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg,
S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk,
M. H.; Brett, M.; Haldane, A.; Fernández del Ŕıo, J.; Wiebe,
M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy,
T.;Weckesser, W.;Abbasi, H.;Gohlke, C.;Oliphant, T. E.: Array
Programming with NumPy . In Nature 585, 2020: pp. 357–362

[85] Harris, M.: Unified Memory in CUDA 6 . https://developer.nvidia.
com/blog/unified-memory-in-cuda-6/, 2013. Accessed: June 24, 2022

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/

References 179

[86] Harris, M.: Inside Pascal: NVIDIA’s Newest Computing Platform.
https://developer.nvidia.com/blog/inside-pascal/, 2016. Ac-
cessed: June 24, 2022

[87] Harris, N.; Drton, M.: PC Algorithm for Nonparanormal Graphical
Models. In Journal of Machine Learning Research 14(69), 2013: pp. 3365–
3383

[88] Hartigan, J. A.: Consistency of Single Linkage for High-Density Clus-
ters. In Journal of the American Statistical Association 76(374), 1981:
pp. 388–394

[89] Hauser, A.; Bühlmann, P.: Characterization and Greedy Learning of
Interventional Markov Equivalence Classes of Directed Acyclic Graphs. In
Journal of Machine Learning Research 13(1), 2012: pp. 2409–2464

[90] Heckerman, D.; Geiger, D.; Chickering, D. M.: Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data. In Ma-
chine Learning 20(3), 1995: pp. 197–243

[91] Heinze-Deml, C.; Maathuis, M. H.; Meinshausen, N.: Causal Struc-
ture Learning . In Annual Review of Statistics and Its Application 5(1),
2018: pp. 371–391

[92] Hennessy, J. L.; Patterson, D. A.: Computer Architecture, Sixth Edi-
tion: A Quantitative Approach. Morgan Kaufmann, 6. Edition, 2017

[93] Hennessy, J. L.; Patterson, D. A.: A New Golden Age for Computer
Architecture. In Communications of the ACM 62(2), 2019: pp. 48–60

[94] Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhat-
tacharya, J.: Causality Detection Based on Information-Theoretic Ap-
proaches in Time Series Analysis. In Physics Reports 441(1), 2007: pp.
1–46

[95] Huang, J.; Zhou, Q.: Partitioned Hybrid Learning of Bayesian Network
Structures. In Machine Learning 111(5), 2022: pp. 1695–1738

[96] Huang, T.-M.: Testing Conditional Independence using Maximal Non-
linear Conditional Correlation. In The Annals of Statistics 38(4), 2010:
pp. 2047–2091

[97] Huegle, J.: An Information-Theoretic Approach on Causal Structure
Learning for Heterogeneous Data Characteristics of Real-World Scenarios.
In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI). IJCAI, 2021, pp. 4891–4892. Doctoral Consortium

[98] Huegle, J.; Hagedorn, C.; Böhme, L.; Pörschke, M.; Umland, J.;
Schlosser, R.: MANM-CS: Data Generation for Benchmarking Causal
Structure Learning from Mixed Discrete-Continuous and Nonlinear Data.
In WHY-21 @ NeurIPS . WHY-21, 2021, pp. 1–15

[99] Huegle, J.; Hagedorn, C.; Perscheid, M.; Plattner, H.: MPCSL
– A Modular Pipeline for Causal Structure Learning . In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(KDD). ACM, 2021, pp. 3068–3076

[100] Huegle, J.; Hagedorn, C.; Schlosser, R.: A kNN-based Non-
Parametric Conditional Independence Test for Mixed Data and Applica-
tion in Causal Discovery . In ECML-PKDD 2023, accepted . 2023

[101] Huegle, J.; Hagedorn, C.; Uflacker, M.: How Causal Structural
Knowledge Adds Decision-Support in Monitoring of Automotive Body
Shop Assembly Lines. In Proceedings of the Twenty-Ninth International

https://developer.nvidia.com/blog/inside-pascal/

180 References

Joint Conference on Artificial Intelligence (ICJAI). IJCAI, 2020, pp.
5246–5248

[102] Huegle, J.; Hagedorn, C.; Uflacker, M.: Unterstützte Fehlerbehe-
bung durch kausales Strukturwissen in Überwachungssystemen der Auto-
mobilfertigung . In Software Engineering 2021 Satellite Events, Lecture
Notes in Informatics (LNI). Gesellschaft für Informatik, 2021, pp. 1–2

[103] Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.;
Muller, P.-A.: Deep Learning for Time Series Classification: A Review .
In Data Mining and Knowledge Discovery 33(4), 2019: pp. 917–963

[104] Jensen, C. S.; Kong, A.: Blocking Gibbs Sampling for Linkage Analysis
in Large Pedigrees with Many Loops. In The American Journal of Human
Genetics 65(3), 1999: pp. 885–901

[105] Jian, L.; Wang, C.; Liu, Y.; Liang, S.; Yi, W.; Shi, Y.: Parallel Data
Mining Techniques on Graphics Processing Unit with Compute Unified
Device Architecture (CUDA). In The Journal of Supercomputing 64(3),
2013: pp. 942–967

[106] Jiang, J.; Wen, Z.; Mian, A.: Fast Parallel Bayesian Network Structure
Learning . In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2022, pp. 617–627

[107] Jouppi, N. P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.;
Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; Boyle,
R.; Cantin, P.-l.; Chao, C.; Clark, C.; Coriell, J.; Daley, M.;
Dau, M.; Dean, J.; Gelb, B.; ...; Yoon, D. H.: In-Datacenter Per-
formance Analysis of a Tensor Processing Unit . In Proceedings of the
44th Annual International Symposium on Computer Architecture (ISCA).
ACM, 2017, pp. 1–12

[108] Kabir, K.; Haidar, A.; Tomov, S.; Bouteiller, A.; Dongarra, J.:
A Framework for Out of Memory SVD Algorithms. In High Performance
Computing (ISC). Springer, 2017, pp. 158–178

[109] Kalisch, M.; Bühlmann, P.: Estimating High-Dimensional Directed
Acyclic Graphs with the PC-Algorithm. In Journal of Machine Learn-
ing Research 8, 2007: pp. 613–636

[110] Kalisch, M.; Bühlmann, P.: Causal Structure Learning and Inference:
A Selective Review . In Quality Technology & Quantitative Management
11(1), 2014: pp. 3–21

[111] Kalisch, M.; Mächler, M.; Colombo, D.; Maathuis, M. H.;
Bühlmann, P.: Causal Inference Using Graphical Models with the R
Package pcalg . In Journal of Statistical Software, Articles 47(11), 2012:
pp. 1–26

[112] Kim, H.; Sim, J.; Gera, P.; Hadidi, R.; Kim, H.: Batch-Aware Unified
Memory Management in GPUs for Irregular Workloads. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2020,
pp. 1357–1370

[113] Kirk, D. B.; Hwu, W.-m. W.: Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann, 2. Edition, 2013

[114] Koivisto, M.; Sood, K.: Exact Bayesian Structure Discovery in
Bayesian Networks. In Journal of Machine Learning Resesarch 5(5), 2004:
pp. 549–573

References 181

[115] Koller, D.; Friedman, N.: Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009

[116] Kraskov, A.; Stögbauer, H.; Grassberger, P.: Estimating Mutual
Information. In Physical Review E 69(066138), 2004: pp. 1–16

[117] Kühnert, C.; Beyerer, J.: Data-Driven Methods for the Detection of
Causal Structures in Process Technology . In Machines 2(4), 2014: pp.
255–274

[118] Kummerfeld, E.; Ramsey, J.; Yang, R.; Spirtes, P.; Scheines, R.:
Causal Clustering for 2-Factor Measurement Models. InMachine Learning
and Knowledge Discovery in Databases (ECML PKDD). Springer, 2014,
pp. 34–49

[119] Lahabar, S.;Narayanan, P. J.: Singular Value Decomposition on GPU
Using CUDA. In Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing (IPDPS). IEEE, 2009, pp. 1–10

[120] Landaverde, R.;Tiansheng Zhang;Coskun, A. K.;Herbordt, M.:
An Investigation of Unified Memory Access Performance in CUDA. In
2014 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2014, pp. 1–6

[121] Lauritzen, S. L.: Graphical Models, Volume 17. Clarendon Press Ox-
ford, 1996

[122] Lauritzen, S. L.; Dawid, A. P.; Larsen, B. N.; Leimer, H.-G.: Inde-
pendence Properties of Directed Markov Fields. In Networks 20(5), 1990:
pp. 491–505

[123] Le, T. D.; Hoang, T.; Li, J.; Liu, L.; Liu, H.; Hu, S.: A Fast PC Al-
gorithm for High Dimensional Causal Discovery with Multi-Core PCs. In
IEEE/ACM Transactions on Computational Biology and Bioinformatics
16(5), 2019: pp. 1483–1495

[124] Le, T. D.; Liu, L.; Tsykin, A.; Goodall, G. J.; Liu, B.; Sun, B.-Y.;
Li, J.: Inferring MicroRNA–mRNA Causal Regulatory Relationships from
Expression Data. In Bioinformatics 29(6), 2013: pp. 765–771

[125] Le, T. D.; Liu, L.; Zhang, J.; Liu, B.; Li, J.: From miRNA Regulation
to miRNA-TF Co-regulation: Computational Approaches and Challenges.
In Briefings in Bioinformatics 16(3), 2015: pp. 475–496

[126] Le, T. D.; Xu, T.; Liu, L.; Shu, H.; Hoang, T.; Li, J.: ParallelPC: An
R Package for Efficient Causal Exploration in Genomic Data. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
Springer, 2018, pp. 207–218

[127] LeCun, Y.; Bengio, Y.; Hinton, G.: Deep Learning . In Nature 521,
2015: pp. 436–444

[128] Lee, S.; Kim, S. B.: Parallel Simulated Annealing with a Greedy Algo-
rithm for Bayesian Network Structure Learning . In IEEE Transactions
on Knowledge and Data Engineering 32(6), 2019: pp. 1157–1166

[129] Lee Rodgers, J.; Nicewander, W. A.: Thirteen Ways to Look at the
Correlation Coefficient . In The American Statistician 42(1), 1988: pp.
59–66

[130] Lehmann, E. L.; Romano, J. P.: Testing Statistical Hypotheses.
Springer, 2006

[131] Lepak, K.; Talbot, G.; White, S.; Beck, N.; Naffziger, S.: The
Next Generation AMD Enterprise Server Product Architecture. In IEEE
Hot Chips 29, 2017

182 References

[132] Li, A.; Song, S. L.; Chen, J.; Li, J.; Liu, X.; Tallent, N. R.;
Barker, K. J.: Evaluating Modern GPU Interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect . In IEEE Transactions on Parallel
and Distributed Systems 31(1), 2020: pp. 94–110

[133] Li, C.; Ausavarungnirun, R.; Rossbach, C. J.; Zhang, Y.; Mutlu,
O.;Guo, Y.;Yang, J.: A Framework for Memory Oversubscription Man-
agement in Graphics Processing Units. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2019, pp. 49–
63

[134] Li, J.; Shi, J.: Knowledge Discovery from Observational Data for Pro-
cess Control using Causal Bayesian Networks. In Institute of Industrial
Engineers Transactions 39(6), 2007: pp. 681–690

[135] Li, J.; Wang, Z. J.: Controlling the False Discovery Rate of the Associ-
ation/Causality Structure Learned with the PC Algorithm. In Journal of
Machine Learning Research 10(17), 2009: pp. 475–514

[136] Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J.: NVIDIA
Tesla: A Unified Graphics and Computing Architecture. In IEEE Micro
28(2), 2008: pp. 39–55

[137] Luitjens, J.: CUDA Streams: Best Practices and Common Pitfalls. In
GPU Techonology Conference 2015

[138] Lutz, C.; Breß, S.; Rabl, T.; Zeuch, S.; Markl, V.: Efficient K-
Means on GPUs. In Proceedings of the 14th International Workshop on
Data Management on New Hardware (DaMoN). ACM, 2018, pp. 1–3

[139] Lutz, C.; Breß, S.; Zeuch, S.; Rabl, T.; Markl, V.: Pump Up the
Volume: Processing Large Data on GPUs with Fast Interconnects. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD). ACM, 2020, pp. 1633–1649

[140] Lutz, C.; Breß, S.; Zeuch, S.; Rabl, T.; Markl, V.: Triton Join:
Efficiently Scaling to a Large Join State on GPUs with Fast Interconnects.
In Proceedings of the 2022 International Conference on Management of
Data (SIGMOD). ACM, 2022, pp. 1017–1032

[141] Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y.: Traffic Flow Pre-
diction With Big Data: A Deep Learning Approach. In IEEE Transactions
on Intelligent Transportation Systems 16(2), 2015: pp. 865–873

[142] Maathuis, M.; Drton, M.; Lauritzen, S.; Wainwright, M.: Hand-
book of Graphical Models. CRC Press, 1. Edition, 2018

[143] Maathuis, M. H.; Colombo, D.; Kalisch, M.; Bühlmann, P.: Pre-
dicting Causal Effects in Large-Scale Systems from Observational Data.
In Nature Methods 7(4), 2010: pp. 247–248

[144] Maathuis, M. H.; Kalisch, M.; Bühlmann, P.: Estimating High-
Dimensional Intervention Effects from Observational Data. In The Annals
of Statistics 37(6A), 2009: pp. 3133–3164

[145] Madsen, A. L.; Jensen, F.; Salmerón, A.; Karlsen, M.; Langseth,
H.; Nielsen, T. D.: A New Method for Vertical Parallelisation of TAN
Learning Based on Balanced Incomplete Block Designs. In Probabilistic
Graphical Models (PGM). Springer, 2014, pp. 302–317

[146] Madsen, A. L.; Jensen, F.; Salmerón, A.; Langseth, H.; Nielsen,
T. D.: Parallelisation of the PC Algorithm. In Advances in Artificial
Intelligence (CAEPIA). Springer, 2015, pp. 14–24

References 183

[147] Madsen, A. L.; Jensen, F.; Salmerón, A.; Langseth, H.; Nielsen,
T. D.: A Parallel Algorithm for Bayesian Network Structure Learning
from Large Data Sets. In Knowledge-Based Systems 117, 2017: pp. 46–55

[148] Maier, M.; Taylor, B.;Oktay, H.; Jensen, D.: Learning Causal Mod-
els of Relational Domains. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI). AAAI Press, 2010, pp. 531–
538

[149] Maldonado, G.; Greenland, S.: Estimating Causal Effects. In Inter-
national Journal of Epidemiology 31(2), 2002: pp. 422–429

[150] Malinsky, D.; Danks, D.: Causal Discovery Algorithms: A Practical
Guide. In Philosophy Compass 13(1), 2018: pp. 1–11

[151] Marazopoulou, K.; Ghosh, R.; Lade, P.; Jensen, D. D.: Causal
Discovery for Manufacturing Domains. In ArXiv abs/1605.04056, 2016

[152] Marbach, D.; Costello, J.; Küffner, R.; Vega, N.; Prill, R.;
Camacho, D.; Allison, K.; Kellis, M.; Collins, J.; Aderhold, A.;
Stolovitzky, G.; et al.: Wisdom of Crowds for Robust Gene Network
Inference. In Nature Methods 9(8), 2012: pp. 796–804

[153] Margaritis, D.: Learning Bayesian Network Model Structure From
Data. Dissertation, School of Computer Science, Carnegie-Mellon Uni-
versity, 2003

[154] Margaritis, D.; Thrun, S.: Bayesian Network Induction via Local
Neighborhoods. In Advances in Neural Information Processing Systems.
MIT Press, 1999, pp. 505–511

[155] Markthub, P.; Belviranli, M. E.; Lee, S.; Vetter, J. S.; Mat-
suoka, S.: DRAGON: Breaking GPU Memory Capacity Limits with Di-
rect NVM Access. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC). IEEE,
2018, pp. 1–13

[156] Marx, A.; Vreeken, J.: Testing Conditional Independence on Discrete
Data using Stochastic Complexity . In The 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS). PMLR, 2019, pp. 496–
505

[157] Marx, A.;Yang, L.; van Leeuwen, M.: Estimating Conditional Mutual
Information for Discrete-Continuous Mixtures Using Multi-Dimensional
Adaptive Histograms. In Proceedings of the 2021 SIAM International Con-
ference on Data Mining (SDM). 2021, pp. 387–395

[158] Mattson, T.; Sanders, B.; Massingill, B.: Patterns for Parallel Pro-
gramming . Addison-Wesley Professional, 1. Edition, 2004

[159] Meek, C.: Causal Inference and Causal Explanation with Background
Knowledge. In Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI). Morgan Kaufmann, 1995, pp. 403–410

[160] Mei, X.; Chu, X.: Dissecting GPU Memory Hierarchy Through Mi-
crobenchmarking . In IEEE Transactions on Parallel and Distributed Sys-
tems 28(1), 2017: pp. 72–86

[161] Mesner, O. C.; Shalizi, C. R.: Conditional Mutual Information Esti-
mation for Mixed, Discrete and Continuous Data. In IEEE Transactions
on Information Theory 67(1), 2021: pp. 464–484

[162] Micikevicius, P.: Local Memory and Register Spilling . http:

//developer.download.nvidia.com/CUDA/training/register_

spilling.pdf, 2011. Accessed: August 13, 2021

http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

184 References

[163] Min, S. W.; Mailthody, V. S.; Qureshi, Z.; Xiong, J.; Ebrahimi,
E.; Hwu, W.-m.: EMOGI: Efficient Memory-Access for out-of-Memory
Graph-Traversal in GPUs. In Proceedings of the VLDB Endowment 14(2),
2020: pp. 114–127

[164] Mohri, M.; Rostamizadeh, A.; Talwalkar, A.: Foundations of Ma-
chine Learning . MIT Press, 2. Edition, 2018

[165] Moore, G. E.: Cramming More Components onto Integrated Circuits.
In Electronics 38(8), 1965: pp. 114–117

[166] Mulnix, D. L.: Intel® Xeon® Processor Scalable Family Tech-
nical Overview . https://software.intel.com/content/www/us/

en/develop/articles/intel-xeon-processor-scalable-family-

technical-overview.html, 2019. Accessed: August 13, 2021
[167] Nandy, P.; Hauser, A.; Maathuis, M. H.: High-Dimensional Consis-

tency in Score-Based and Hybrid Structure Learning . In The Annals of
Statistics 46(6A), 2018: pp. 3151–3183

[168] Nandy, P.; Maathuis, M. H.; Richardson, T. S.: Estimating the
Effect of Joint Interventions from Observational Data in Sparse High-
Dimensional Settings. In The Annals of Statistics 45(2), 2017: pp. 647–
674

[169] Nguyen, T.;Nguyen, D. T.; Le, T. D.;Venkatesh, S.:MrPC: Causal
Structure Learning in Distributed Systems (ICONIP). In Neural Informa-
tion Processing . Springer, 2020, pp. 87–94

[170] Nickolls, J.; Buck, I.; Garland, M.; Skadron, K.: Scalable Parallel
Programming with CUDA. In ACM SIGGRAPH 2008 Classes. ACM,
2008, pp. 1–14

[171] Nielsen, J. D.; Kocka, T.; Peña, J. M.: On Local Optima in Learning
Bayesian Networks. In Proceedings of the 19th Conference in Uncertainty
in Artificial Intelligence (UAI). Morgan Kaufmann, 2003, pp. 435–442

[172] Nikolova, O.; Aluru, S.: Parallel Discovery of Direct Causal Relations
and Markov Boundaries with Applications to Gene Networks. In 2011
International Conference on Parallel Processing (ICPP). IEEE, 2011, pp.
512–521

[173] Nordquist, B. S.; Lew, S. D.: Apparatus, System, and Method for
Coalescing Parallel Memory Requests, 2009. Patent No. US7492368B1,
Filed Jan. 24th, 2006, Issued Feb. 17th, 2009

[174] NVIDIA Corporation: NVIDIA TESLA V100 GPU ACCELERA-
TOR. http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf,
2017. Accessed: February 12, 2018

[175] NVIDIA Corporation: Profiler User’s Guide. http://docs.

nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf, 2018. Ac-
cessed: March 10, 2018

[176] NVIDIA Corporation: cuBLAS Library . https://docs.nvidia.com/
cuda/pdf/CUBLAS_Library.pdf, 2022. Accessed: February 10, 2022

[177] NVIDIA Corporation: CUDA Math API . http://docs.nvidia.com/
cuda/pdf/CUDA_Math_API.pdf, 2022. Accessed: February 07, 2022

[178] NVIDIA Corporation: cuRAND Library . https://docs.nvidia.

com/cuda/pdf/CURAND_Library.pdf, 2022. Accessed: June 06, 2022
[179] NVIDIA Corporation: cuSOLVER Library . https://docs.nvidia.

com/cuda/pdf/CUSOLVER_Library.pdf, 2022. Accessed: February 10,
2022

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Math_API.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf

References 185

[180] NVIDIA Corporation: NVIDIA A40 Powerful Data Center GPU For
Visual Computing . https://images.nvidia.com/content/Solutions/

data-center/a40/nvidia-a40-datasheet.pdf, 2022. Accessed:
September 22, 2022

[181] Ogarrio, J. M.; Spirtes, P.; Ramsey, J.: A Hybrid Causal Search Al-
gorithm for Latent Variable Models. In Conference on Probabilistic Graph-
ical Models (PGM). PMLR, 2016, pp. 368–379

[182] Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C.: CuPy: A
NumPy-Compatible Library for NVIDIA GPU Calculations. In Proceed-
ings of Workshop on Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information Processing Systems
(NIPS). 2017

[183] Omohundro, S. M.: Five Balltree Construction Algorithms. Technical
report, International Computer Science Institute Berkeley, 1989

[184] Parviainen, P.; Koivisto, M.: Bayesian Structure Discovery in
Bayesian Networks with Less Space. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AIS-
TATS). PMLR, 2010, pp. 589–596

[185] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Des-
maison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani,
A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library .
In Advances in Neural Information Processing Systems 32 , Curran. 2019,
pp. 8024–8035

[186] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988

[187] Pearl, J.: Causal Diagrams for Empirical Research. In Biometrika 82(4),
1995: pp. 669–688

[188] Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press, 2. Edition, 2009

[189] Pearl, J.; Verma, T.: A Theory of Inferred Causation. In Proceedings
of the Second International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR). Morgan Kaufmann, 1991, pp. 441–452

[190] Pearson, K. F.: X. On the Criterion That a Given System of Devia-
tions from the Probable in the Case of a Correlated System of Variables Is
Such That It Can Be Reasonably Supposed to Have Arisen from Random
Sampling . In The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 50(302), 1900: pp. 157–175

[191] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; Édouard Duchesnay: Scikit-learn: Ma-
chine Learning in Python. In Journal of Machine Learning Research
12(85), 2011: pp. 2825–2830

[192] Penrose, R.: A Generalized Inverse for Matrices. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society . Cambridge University
Press, 1955, pp. 406–413

[193] Perscheid, C.; Grasnick, B.; Uflacker, M.: Integrative Gene Selec-
tion on Gene Expression Data: Providing Biological Context to Traditional

https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf

186 References

Approaches. In Journal of Integrative Bioinformatics 16(1), 2018: pp. 1–
17

[194] Peters, J.; Janzing, D.; Schölkopf, B.: Elements of Causal Inference
– Foundations and Learning Algorithms. MIT Press, 2017

[195] Peters, J.; Mooij, J. M.; Janzing, D.; Bernhard, S.: Causal Dis-
covery with Continuous Additive Noise Models. In Journal of Machine
Learning Research 15(58), 2014: pp. 2009–2053

[196] Petersen, M. L.; van der Laan, M. J.: Causal Models and Learning
from Data: Integrating Causal Modeling and Statistical Estimation. In
Epidemiology 25(3), 2014: pp. 418–426

[197] Putnam, A.; Caulfield, A. M.; Chung, E. S.; Chiou, D.; Con-
stantinides, K.; Demme, J.; Esmaeilzadeh, H.; Fowers, J.; Gopal,
G. P.; Gray, J.; Haselman, M.; Hauck, S.; Heil, S.; Hormati, A.;
Kim, J.-Y.; Lanka, S.; Larus, J.; Peterson, E.; Pope, S.; Smith, A.;
Thong, J.; Xiao, P. Y.; Burger, D.: A Reconfigurable Fabric for Ac-
celerating Large-Scale Datacenter Services. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (ISCA). IEEE,
2014, pp. 13–24

[198] R Core Team: R: A Language and Environment for Statistical Com-
puting . R Foundation for Statistical Computing, 2020. http://www.R-

project.org/ Accessed: November 16, 2022
[199] Raghu, V. K.; Poon, A.; Benos, P. V.: Evaluation of Causal Structure

Learning Methods on Mixed Data Types. In Proceedings of 2018 ACM
SIGKDD Workshop on Causal Disocvery . PMLR, 2018, pp. 48–65

[200] Ramsey, J.: A Scalable Conditional Independence Test for Nonlinear,
Non-Gaussian Data. In ArXiv abs/1401.5031, 2014

[201] Ramsey, J.: Improving Accuracy and Scalability of the PC Algorithm by
Maximizing P-value. In ArXiv abs/1610.00378, 2016

[202] Ramsey, J.; Glymour, M.; Sanchez-Romero, R.; Glymour, C.: A
Million Variables and More: The Fast Greedy Equivalence Search Algo-
rithm for Learning High-Dimensional Graphical Causal Models, with an
Application to Functional Magnetic Resonance Images. In International
Journal of Data Science and Analytics 3(2), 2017: pp. 121–129

[203] Ramsey, J. D.; Zhang, J.; Spirtes, P.: Adjacency-Faithfulness and
Conservative Causal Inference. In Proceedings of the 22nd Conference in
Uncertainty in Artificial Intelligence (UAI). AUAI Press, 2006, pp. 401–
408

[204] RAPIDS Development Team: RAPIDS: Collection of Libraries for
End to End GPU Data Science, 2018. https://rapids.ai Accessed:
November 16, 2022

[205] Raschka, S.; Patterson, J.; Nolet, C.: Machine Learning in Python:
Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence. In Information 11(4), 2020: pp. 1–44

[206] Rau, A.; Jaffrézic, F.; Nuel, G.: Joint Estimation of Causal Effects
from Observational and Intervention Gene Expression Data. In BMC
Systems Biology 7(1), 2013: pp. 1–12

[207] Richardson, T.: A Discovery Algorithm for Directed Cyclic Graphs. In
Proceedings of the Twelfth International Conference on Uncertainty in
Artificial Intelligence (UAI). Morgan Kaufmann, 1996, pp. 454–461

http://www.R-project.org/
http://www.R-project.org/
https://rapids.ai

References 187

[208] Robinson, R. W.: Counting Unlabeled Acyclic Digraphs. In Combinato-
rial Mathematics V . Springer, 1977, pp. 28–43

[209] Roscher, R.; Bohn, B.; Duarte, M. F.; Garcke, J.: Explainable
Machine Learning for Scientific Insights and Discoveries. In IEEE Access
8, 2020: pp. 42200–42216

[210] Ross, B. C.: Mutual Information between Discrete and Continuous Data
Sets. In PloS one 9(2), 2014: pp. 1–5

[211] Rothenhäusler, D.; Heinze, C.; Peters, J.; Meinshausen, N.:
BACKSHIFT: Learning Causal Cyclic Graphs from Unknown Shift In-
terventions. In Advances in Neural Information Processing Systems 28,
2016: pp. 1–9

[212] Rubin, D. B.: Randomization Analysis of Experimental Data: The Fisher
Randomization Test Comment . In Journal of the American Statistical
Association 75(371), 1980: pp. 591–593

[213] Rui, R.; Li, H.; Tu, Y.-C.: Efficient Join Algorithms for Large Database
Tables in a Multi-GPU Environment . In Proceedings of the VLDB En-
dowment 14(4), 2020: pp. 708–720

[214] Runge, J.: Conditional Independence Testing based on a Nearest-
Neighbor Estimator of Conditional Mutual Information. In Proceedings of
the Twenty-First International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2018, Volume 84, pp. 938–947

[215] Runge, J.: Discovering Contemporaneous and Lagged Causal Relations
in Autocorrelated Nonlinear Time Series Datasets. In Proceedings of the
36th Conference on Uncertainty in Artificial Intelligence (UAI). PMLR,
2020, Volume 124, pp. 1388–1397

[216] Runge, J.;Nowack, P.;Kretschmer, M.; Flaxman, S.; Sejdinovic,
D.: Detecting and Quantifying Causal Associations in Large Nonlinear
Time Series Datasets. In Science Advances 5(11), 2019: pp. 1–15

[217] Sakharnykh, N.: Beyond GPU Memory Limits with Unified Memory on
Pascal . https://devblogs.nvidia.com/beyond-gpu-memory-limits-

unified-memory-pascal/, 2016. Accessed: August 13, 2021
[218] Sakharnykh, N.: Maximizing Unified Memory Performance in

CUDA. https://developer.nvidia.com/blog/maximizing-unified-

memory-performance-cuda/, 2017. Accessed: July 29, 2022
[219] Sakharnykh, N.: Memory Management on Modern GPU Architec-

tures. https://developer.nvidia.com/gtc/2019/video/s9727, 2019.
Accessed: June 04, 2021

[220] Sanders, J.; Kandrot, E.: CUDA by Example: An Introduction to
General-Purpose GPU Programming . Addison-Wesley, 2010

[221] Sanderson, C.; Curtin, R.: Armadillo: A Template-Based C Library
for Linear Algebra. In Journal of Open Source Software 1(2), 2016: pp.
1–26

[222] Schmidt, C.; Dreseler, M.; Akin, B.; Roy, A.: A Case for Hardware-
Supported Sub-Cache Line Accesses. In Proceedings of the 14th Inter-
national Workshop on Data Management on New Hardware (DaMoN).
ACM, 2018, pp. 1–3

[223] Schmidt, C.; Huegle, J.: Towards a GPU-Accelerated Causal Inference.
In HPI Future SOC Lab – Proceedings 2017 . Universitätsverlag Potsdam,
2020, pp. 187–194

https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/gtc/2019/video/s9727

188 References

[224] Schmidt, C.; Huegle, J.; Bode, P.; Uflacker, M.: Load-Balanced
Parallel Constraint-Based Causal Structure Learning on Multi-Core Sys-
tems for High-Dimensional Data. In Proceedings of The 2019 KDD Work-
shop on Causal Discovery . PMLR, 2019, pp. 59–77

[225] Schmidt, C.; Huegle, J.; Horschig, S.; Uflacker, M.: Out-of-Core
GPU-Accelerated Causal Structure Learning . In Algorithms and Architec-
tures for Parallel Processing (ICA3PP). Springer, 2020, pp. 89–104

[226] Schmidt, C.; Huegle, J.; Uflacker, M.: Order-independent
Constraint-based Causal Structure Learning for Gaussian Distribution
Models Using GPUs. In Proceedings of the 30th International Confer-
ence on Scientific and Statistical Database Management (SSDBM). ACM,
2018, pp. 19:1–19:10

[227] Schmidt, C.; Uflacker, M.: Workload-Driven Data Placement for
GPU-Accelerated Database Management Systems. In BTW 2019 – Work-
shopband . Gesellschaft für Informatik, 2019, pp. 91–94

[228] Schmidt, M.; Niculescu-Mizil, A.; Murphy, K.: Learning Graphical
Model Structure Using L1-Regularization Paths. In Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI). AAAI Press,
2007, pp. 1278–1283

[229] Schulte, O.; Frigo, G.; Greiner, R.; Khosravi, H.: The IMAP Hy-
brid Method for Learning Gaussian Bayes Nets. In Advances in Artificial
Intelligence. Springer, 2010, pp. 123–134

[230] Schwarz, C.; Schmidt, C.; Hopstock, M.; Sinzig, W.; Plattner,
H.: Efficient Calculation and Simulation of Product Cost Leveraging In-
Memory Technology and Coprocessors. In The Sixth International Con-
ference on Business Intelligence and Technology . IARIA, 2016, pp. 12–18

[231] Schwarz, G.: Estimating the Dimension of a Model . In The Annals of
Statistics 6(2), 1978: pp. 461–464

[232] Scutari, M.: Learning Bayesian Networks with the bnlearn R Package.
In Journal of Statistical Software 35(3), 2010: pp. 1–22

[233] Scutari, M.: Bayesian Network Repository . http://www.bnlearn.com/
bnrepository, 2012. Accessed: September 22, 2022

[234] Scutari, M.: Bayesian Network Constraint-Based Structure Learning Al-
gorithms: Parallel and Optimized Implementations in the bnlearn R Pack-
age. In Journal of Statistical Software, Articles 77(2), 2017: pp. 1–20

[235] Scutari, M.; Graafland, C. E.; Gutiérrez, J. M.: Who Learns Bet-
ter Bayesian Network Structures: Constraint-Based, Score-based or Hy-
brid Algorithms? . In Proceedings of the Ninth International Conference
on Probabilistic Graphical Models (PGM). PMLR, 2018, pp. 416–427

[236] Sejdinovic, D.; Sriperumbudur, B.; Gretton, A.; Fukumizu, K.:
Equivalence of Distance-Based and RKHS-Based Statistics in Hypothesis
Testing . In The Annals of Statistics 41(5), 2013: pp. 2263–2291

[237] Sen, R.; Suresh, A. T.; Shanmugam, K.; Dimakis, A. G.; Shakket-
tai, S.: Model-Powered Conditional Independence Test . In Proceedings
of the 31st International Conference on Neural Information Processing
Systems (NIPS). Curran, 2017, pp. 2955–2965

[238] Shah, R. D.; Peters, J.: The Hardness of Conditional Independence
Testing and the Generalised Covariance Measure. In The Annals of Statis-
tics 48(3), 2020: pp. 1514–1538

http://www.bnlearn.com/bnrepository
http://www.bnlearn.com/bnrepository

References 189

[239] Shahbazinia, A.; Salehkaleybar, S.; Hashemi, M.: ParaLiNGAM:
Parallel Causal Structure Learning for Linear non-Gaussian Acyclic Mod-
els. In Journal of Parallel and Distributed Computing 176, 2023: pp. 114–
127

[240] Sharma, G.; Agarwala, A.; Bhattacharya, B.: A Fast Parallel
Gauss Jordan Algorithm for Matrix Inversion Using CUDA. In Com-
puters & Structures 128, 2013: pp. 31–37

[241] Shimizu, S.; Hoyer, P. O.; Hyvärinen, A.; Kerminen, A.: A Linear
Non-Gaussian Acyclic Model for Causal Discovery . In Journal of Machine
Learning Research 7, 2006: pp. 2003–2030

[242] Shpitser, I.; Evans, R. J.; Richardson, T. S.; Robins, J. M.: Sparse
Nested Markov Models with Log-Linear Parameters. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI).
AUAI Press, 2013, pp. 576–585

[243] Silander, T.;Myllymäki, P.: A Simple Approach for Finding the Glob-
ally Optimal Bayesian Network Structure. In Proceedings of the Twenty-
Second Conference on Uncertainty in Artificial Intelligence (UAI). AUAI
Press, 2006, pp. 445–452

[244] Singh, K.; Gupta, G.; Tewari, V.; Shroff, G.: Comparative Bench-
marking of Causal Discovery Algorithms. In Proceedings of the ACM India
Joint International Conference on Data Science and Management of Data
(CoDS-COMAD). ACM, 2018, pp. 46–56

[245] Singh, M.; Valtorta, M.: Construction of Bayesian Network Structures
from Data: A Brief Survey and an Efficient Algorithm. In International
Journal of Approximate Reasoning 12(2), 1995: pp. 111–131

[246] Sondhi, A.; Shojaie, A.: The Reduced PC-Algorithm: Improved Causal
Structure Learning in Large Random Networks. In Journal of Machine
Learning Research 20(164), 2019: pp. 1–31

[247] Spirtes, P.: Introduction to Causal Inference. In Journal of Machine
Learning Research 11(54), 2010: pp. 1643–1662

[248] Spirtes, P.: Calculation of Entailed Rank Constraints in Partially Non-
Linear and Cyclic Models. In Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence (UAI). AUAI Press, 2013, pp.
606–615

[249] Spirtes, P.; Glymour, C.: An Algorithm for Fast Recovery of Sparse
Causal Graphs. In Social Science Computer Review 9(1), 1991: pp. 62–72

[250] Spirtes, P.;Glymour, C.; Scheines, R.: From Probability to Causality .
In Philosophical Studies 64(1), 1991: pp. 1–36

[251] Spirtes, P.; Glymour, C.; Scheines, R.: Causation, Prediction, and
Search. MIT Press, 2. Edition, 2000

[252] Spirtes, P.; Zhang, J.: A Uniformly Consistent Estimator of Causal Ef-
fects under the k-Triangle-Faithfulness Assumption. In Statistical Science
29(4), 2014: pp. 662–678

[253] Springer, M.; Masuhara, H.: Massively Parallel GPU Memory Com-
paction. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on Memory Management (ISMM). ACM, 2019, pp. 14–26

[254] Srivastava, A.; Chockalingam, S. P.; Aluru, S.: A Parallel Frame-
work for Constraint-Based Bayesian Network Learning via Markov Blan-
ket Discovery . In Proceedings of the International Conference for High

190 References

Performance Computing, Networking, Storage and Analysis (SC). IEEE,
2020, pp. 1–15

[255] Stark, R.; Grzelak, M.; Hadfield, J.: RNA Sequencing: The Teenage
Years. In Nature Reviews Genetics 20(11), 2019: pp. 631–656

[256] Stekhoven, D. J.; Moraes, I.; Sveinbjörnsson, G.; Hennig, L.;
Maathuis, M. H.; Bühlmann, P.: Causal Stability Ranking . In Bioin-
formatics 28(21), 2012: pp. 2819–2823

[257] Stone, J. E.; Gohara, D.; Shi, G.: OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. In Computing in Science
Engineering 12(3), 2010: pp. 66–73

[258] Strobl, E. V.: A Constraint-Based Algorithm for Causal Discovery with
Cycles, Latent Variables and Selection Bias. In International Journal of
Data Science and Analytics 8(1), 2019: pp. 33–56

[259] Strobl, E. V.; Spirtes, P. L.; Visweswaran, S.: Estimating and Con-
trolling the False Discovery Rate of the PC Algorithm Using Edge-Specific
P-Values. In ACM Transactions on Intelligent Systems and Technology
10(5), 2019: pp. 1–37

[260] Strobl, E. V.; Zhang, K.; Visweswaran, S.: Approximate Kernel-
Based Conditional Independence Tests for Fast Non-Parametric Causal
Discovery . In Journal of Causal Inference 7(1), 2019: pp. 1–24

[261] Tao, F.; Qi, Q.; Liu, A.; Kusiak, A.: Data-Driven Smart Manufactur-
ing . In Journal of Manufacturing Systems 48, 2018: pp. 157–169

[262] techpowerup: NVIDIA GeForce GTX TITAN X . https://www.

techpowerup.com/gpu-specs/geforce-gtx-titan-x.c2632, 2016. Ac-
cessed: September 22, 2022

[263] Thibault, J.; Senocak, I.: CUDA Implementation of a Navier-Stokes
Solver on Multi-GPU Desktop Platforms for Incompressible Flows. In 47th

AIAA Aerospace Sciences Meeting including The New Horizons Forum
and Aerospace Exposition. 2009, pp. 1–15

[264] Thornton, T.; McPeek, M. S.: Case-Control Association Testing with
Related Individuals: A More Powerful Quasi-Likelihood Score Test . In The
American Journal of Human Genetics 81(2), 2007: pp. 321–337

[265] Triantafillou, S.; Tsamardinos, I.: Constraint-Based Causal Discov-
ery from Multiple Interventions over Overlapping Variable Sets. In Jour-
nal of Machine Learning Research 16(1), 2015: pp. 2147–2205

[266] Tsagris, M.; Borboudakis, G.; Lagani, V.; Tsamardinos, I.:
Constraint-Based Causal Discovery with Mixed Data. In International
Journal of Data Science and Analytics 6(1), 2018: pp. 19–30

[267] Tsamardinos, I.; Aliferis, C. F.; Statnikov, A. R.: Algorithms for
Large Scale Markov Blanket Discovery . In FLAIRS conference. AAAI
Press, 2003, pp. 376–380

[268] Tsamardinos, I.; Borboudakis, G.: Permutation Testing Improves
Bayesian Network Learning . In Proceedings of the 2010 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases: Part
III (ECML PKDD). Springer, 2010, pp. 322–337

[269] Tsamardinos, I.; Brown, L. E.; Aliferis, C. F.: The Max-Min Hill-
Climbing Bayesian Network Structure Learning Algorithm. In Machine
Learning 65(1), 2006: pp. 31–78

[270] van der Aalst, W.: Data Science in Action. In Process Mining ,
Springer. 2016, pp. 3–23

https://www.techpowerup.com/gpu-specs/geforce-gtx-titan-x.c2632
https://www.techpowerup.com/gpu-specs/geforce-gtx-titan-x.c2632

References 191

[271] Vejmelka, M.; Paluš, M.: Inferring the Directionality of Coupling with
Conditional Mutual Information. In Physical Review E 77(2), 2008: pp.
1–12

[272] Verma, T.; Pearl, J.: Causal Networks: Semantics and Expressiveness.
In Proceedings of the Fourth Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI). 1988, pp. 69–78

[273] Verma, T.; Pearl, J.: Equivalence and Synthesis of Causal Models. In
Proceedings of the Sixth Annual Conference on Uncertainty in Artificial
Intelligence (UAI). Elsevier, 1990, pp. 255–270

[274] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wil-
son, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.;
Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore,
E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.;
Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.;
Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Con-
tributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. In Nature Methods 17, 2020: pp. 261–272

[275] Vowels, M. J.; Camgoz, N. C.; Bowden, R.: D’ya Like DAGs? A
Survey on Structure Learning and Causal Discovery . In ACM Computing
Surveys 55(4), 2022: pp. 1–36

[276] Wang, Y.;Davidson, A.; Pan, Y.;Wu, Y.;Riffel, A.;Owens, J. D.:
Gunrock: A High-Performance Graph Processing Library on the GPU . In
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, 2016, pp. 1–12

[277] Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wi-
ley Publishing, 2009

[278] Widmer, S.; Wodniok, D.; Weber, N.; Goesele, M.: Fast Dynamic
Memory Allocator for Massively Parallel Architectures. In Proceedings of
the 6th Workshop on General Purpose Processor Using Graphics Process-
ing Units (GPGPU). ACM, 2013, pp. 120–126

[279] Winship, C.; Morgan, S. L.: The Estimation of Causal Effects from
Observational Data. In Annual Review of Sociology 25(1), 1999: pp. 659–
706

[280] Wu, J.; JáJá, J.: Achieving Native GPU Performance for Out-of-Card
Large Dense Matrix Multiplication. In Parallel Processing Letters 26(2),
2016: pp. 1–17

[281] Wu, L.; Lottarini, A.; Paine, T. K.; Kim, M. A.; Ross, K. A.:
Q100: The Architecture and Design of a Database Processing Unit . In
Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM,
2014, pp. 255–268

[282] Yin, X.; Hong, L.: The Identification and Estimation of Direct and Indi-
rect Effects in A/B Tests through Causal Mediation Analysis. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD). ACM, 2019, pp. 2989–2999

[283] Yoon, M. K.; Kim, K.; Lee, S.; Ro, W. W.; Annavaram, M.: Vir-
tual Thread: Maximizing Thread-Level Parallelism beyond GPU Schedul-

192 References

ing Limit . In SIGARCH Computer Architecture News 44(3), 2016: pp.
609–621

[284] Yu, Q.; Childers, B.; Huang, L.; Qian, C.; Wang, Z.: A Quantitative
Evaluation of Unified Memory in GPUs. In Journal of Supercomputing
76(4), 2020: pp. 2958–2985

[285] Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.;
Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin,
M. J.; et al.: Apache Spark: A Unified Engine for Big Data Process-
ing . In Communications of the ACM 59(11), 2016: pp. 56–65

[286] Zan, L.; Meynaoui, A.; Assaad, C. K.; Devijver, E.; Gaussier,
E.: A Conditional Mutual Information Estimator for Mixed Data and an
Associated Conditional Independence Test . In Entropy 24(9), 2022: pp.
1–23

[287] Zarebavani, B.; Jafarinejad, F.; Hashemi, M.; Salehkaleybar, S.:
cuPC: CUDA-Based Parallel PC Algorithm for Causal Structure Learn-
ing on GPU . In IEEE Transactions on Parallel and Distributed Systems
31(3), 2020: pp. 530–542

[288] Zhang, H.; Zhou, S.; Guan, J.; Huan, J. L.: Measuring Conditional
Independence by Independent Residuals for Causal Discovery . In ACM
Transactions on Intelligent Systems Technology 10(5), 2019: pp. 1–19

[289] Zhang, K.; Peters, J.; Janzing, D.; Schölkopf, B.: Kernel-Based
Conditional Independence Test and Application in Causal Discovery . In
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence (UAI). AUAI Press, 2011, pp. 804–813

[290] Zhang, K.; Tian, C.; Zhang, K.; Johnson, T.; Jiang, X.: A Fast PC
Algorithm with Reversed-order Pruning and A Parallelization Strategy . In
ArXiv abs/2109.04626, 2021

[291] Zhang, Q.; Filippi, S.; Flaxman, S. R.; Sejdinovic, D.: Feature-to-
Feature Regression for a Two-Step Conditional Independence Test . In
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial
Intelligence (UAI). AUAI Press, 2017, pp. 1–10

[292] Zheng, T.; Nellans, D. W.; Zulfiqar, A.; Stephenson, M.; Keck-
ler, S. W.: Towards High Performance Paged Memory for GPUs. In
2016 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). IEEE, 2016, pp. 345–357

[293] Zheng, X.; Aragam, B.; Ravikumar, P.; Xing, E. P.: DAGs with NO
TEARS: Continuous Optimization for Structure Learning . In Proceedings
of the 32nd International Conference on Neural Information Processing
Systems (NIPS). Curran, 2018, pp. 9492–9503

Eigenständigkeitserklärung
Declaration of Authorship

Hiermit versichere ich an Eides statt, dass die vorliegende Arbeit bisher
an keiner anderen Hochschule eingereicht worden ist sowie selbständig und
ausschließlich mit den angegebenen Mitteln angefertigt worden ist. Die Stellen
der Arbeit, die anderen Werken im Wortlaut oder dem Sinn nach entnommen
sind, sind durch Angaben und Quellen kenntlich gemacht.

Potsdam, 19. Dezember 2022

Christopher Hagedorn geb. Schmidt

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Learning Cause and Effect Relationships
	GPUs in Modern Heterogeneous Computing Systems
	Research Questions
	Contributions
	Deriving Tasks for Parallel Execution Within the PC Algorithm
	GPU-Accelerated PC Algorithm Covering a Variety of Data Distributions
	Scaling the GPU-Accelerated PC Algorithm Beyond a Single GPU’s Memory Capacity
	Complementary Contributions

	Outline

	Background
	Causal Graphical Models (CGMs)
	Causal Structure Learning (CSL)
	Constraint-Based CSL
	Score-Based CSL
	Hybrid CSL
	Comparing CSL Approaches

	Path Consistency (PC) Algorithm
	PC-Stable
	Parallel Extensions of the PC Algorithm

	Conditional Independence Testing
	Gaussian Distribution Model
	Discrete Distribution Model
	Mixed Discrete-Continuous Data and Data with Non-Linear Relationships

	Graphics Processing Units
	GPU Hardware in Heterogeneous Systems
	CUDA Programming Framework

	Summary

	Related Work
	Parallel Constraint-Based CSL
	Overview of Existing Parallel Constraint-Based CSL Algorithms
	Multi-Core CPU-Based Parallel Variants of the PC Algorithm
	GPU-Based Variants of the PC Algorithm
	Further Approaches for Parallel Constraint-Based CSL

	GPU Acceleration Beyond a Single GPU's Memory Capacity
	Out-of-Core GPU Computing
	Multi-GPU Computing

	Summary

	GPU-Accelerated CSL on a Single GPU
	Execution Strategies for a GPU-Accelerated Adjacency Search in PC-Stable
	Definition of Tasks Within PC-Stable
	Application of Foster’s Methodology: Step (1) Partitioning
	Application of Foster’s Methodology: Step (2) Communication
	Application of Foster’s Methodology: Step (3) Agglomeration
	Application of Foster’s Methodology: Step (4) Mapping

	GPU-Accelerated Adjacency Search in PC-Stable for the Gaussian Distribution Model
	Determining Compute Intensive Parts of the Adjacency Search of PC-Stable - A Runtime Analysis on Selected Gene Expression Datasets
	Outline of the GPU-Accelerated Adjacency Search
	GPU Kernel for Level 0
	GPU Kernel for Level 1
	GPU Acceleration for Levels 2 and Higher

	GPU-Accelerated Adjacency Search in PC-Stable for Discrete Data
	Outline of the GPU-Accelerated Adjacency Search
	GPU Kernel for Level 0
	GPU Kernel for Levels 1 and Higher

	GPU-Accelerated Adjacency Search in PC-Stable with an Information-Theoretic GPU-Based CI Test
	Approaches to Parallel k-NN Searches on GPU
	GPUCMIknn: A GPU-Accelerated Information-Theoretic CI Test
	A GPU-Accelerated Adjacency Search Using GPUCMIknn

	Summary

	GPU-Based CSL Beyond a Single GPU's Memory Capacity
	Unified Memory (UM)-Based GPU-Accelerated Adjacency Search in PC-Stable
	A UM-Based Out-of-Core GPU Approach
	A UM-Based Multi-GPU Approach

	Explicit Memory-Managed GPU-Accelerated Adjacency Search in PC-Stable
	A Block-Based Out-of-Core GPU Adjacency Search
	A Block-Based Multi-GPU Adjacency Search

	Summary

	Evaluation
	Experimental Setup
	Description of the Datasets Used for Experimental Evaluation
	Heterogeneous Hardware Systems Used in Experiments
	Implementations from State-of-the-Art Libraries & Naive Baselines Used for Comparison

	Experiments on GPU-Accelerated CSL Using a Single GPU
	Experiments for a GPU-Accelerated Adjacency Search Assuming Data That Follows the Gaussian Distribution Model
	Experiments for a GPU-Accelerated Adjacency Search Assuming Discrete Data
	Experiments for an Information-Theoretic GPU-Based CI Test
	Experiments for a GPU-Accelerated Adjacency Search with an Information-Theoretic GPU-Based CI Test

	Experiments on GPU-Based CSL Beyond a Single GPU's Memory Capacity
	Experiments for Levels l = 0, 1 Using Synthetic Data
	Experiment on the Application to Real-World Gene Expression Data up to Level l = 1
	Summary

	Discussion
	Summary

	Final Remarks
	Limitations
	Future Work
	Conclusion

	Appendix
	List of URLs
	List of Publications
	Permission for Reuse of Published Material
	Reuse of Material Published by ACM
	Reuse of Material Published by IEEE
	Reuse of Material Published by SIAM
	Reuse of Material Published by Springer

	List of Figures
	List of Tables
	Acronyms
	References

