
Michael Brückner

Prediction Games

Machine Learning in the Presence of an Adversary

U n i v e r s i t ä t P o t s d a m

Universitätsverlag Potsdam

Michael Brückner

Prediction Games
Machine Learning in the Presence of an Adversary

Michael Brückner

Prediction Games

Machine Learning in the Presence of an Adversary

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Zugl.: Potsdam, Univ., Diss., 2012
Gutachter:
Prof. Dr. Karsten Borgwardt, Max-Planck-Institut für Intelligente Systeme
Prof. Dr. Andreas Fischer, Institut für Numerische Mathematik, TU Dresden
Prof. Dr. Tobias Scheffer, Institut für Informatik, Universität Potsdam
Datum der Disputation: 5. Juli 2012

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Unported
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/
Umschlagmotiv: Montage aus einer Grafik des Autors und folgendem Foto:
http://www.flickr.com/photos/hj_barraza/415134620/sizes/z/in/photostream/
Urheber: .hj barraza, CC-License: Attribution - Share Alike 2.0

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URL http://pub.ub.uni-potsdam.de/volltexte/2012/6037/
URN urn:nbn:de:kobv:517-opus-60375
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-60375

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-203-2

mailto:verlag@uni-potsdam.de
http://www.flickr.com/photos/hj_barraza/415134620/sizes/z/in/photostream/

Zusammenfassung

Eine der Aufgabenstellungen des Maschinellen Lernens ist die Konstruktion von Vorher-

sagemodellen basierend auf gegebenen Trainingsdaten. Ein solches Modell beschreibt den

Zusammenhang zwischen einem Eingabedatum, wie beispielsweise einer E-Mail, und einer

Zielgröße – zum Beispiel, ob die E-Mail durch den Empfänger als erwünscht oder uner-

wünscht empfunden wird. Dabei ist entscheidend, dass ein gelerntes Vorhersagemodell

auch die Zielgrößen zuvor unbeobachteter Testdaten korrekt vorhersagt.

Die Mehrzahl existierender Lernverfahren wurde unter der Annahme entwickelt, dass

Trainings- und Testdaten derselben Wahrscheinlichkeitsverteilung unterliegen. Insbeson-

dere in Fällen in welchen zukünftige Daten von der Wahl des Vorhersagemodells abhängen,

ist diese Annahme jedoch verletzt. Ein Beispiel hierfür ist das automatische Filtern von

Spam-E-Mails durch E-Mail-Anbieter. Diese konstruieren Spam-Filter basierend auf zuvor

empfangenen E-Mails. Die Spam-Sender verändern daraufhin den Inhalt und die Gestal-

tung der zukünftigen Spam-E-Mails mit dem Ziel, dass diese durch die Filter möglichst

nicht erkannt werden.

Bisherige Arbeiten zu diesem Thema beschränken sich auf das Lernen robuster Vorher-

sagemodelle welche unempfindlich gegenüber geringen Veränderungen des datengenerieren-

den Prozesses sind. Die Modelle werden dabei unter der Worst-Case-Annahme konstruiert,

dass diese Veränderungen einen maximal negativen Effekt auf die Vorhersagequalität des

Modells haben. Diese Modellierung beschreibt die tatsächliche Wechselwirkung zwischen

der Modellbildung und der Generierung zukünftiger Daten nur ungenügend. Aus diesem

Grund führen wir in dieser Arbeit das Konzept der Prädiktionsspiele ein. Die Modellbildung

wird dabei als mathematisches Spiel zwischen einer lernenden und einer datengenerierenden

Instanz beschrieben. Die spieltheoretische Modellierung ermöglicht es uns, die Interaktion

der beiden Parteien exakt zu beschreiben. Dies umfasst die jeweils verfolgten Ziele, ihre

Handlungsmöglichkeiten, ihr Wissen über einander und die zeitliche Reihenfolge, in der sie

agieren.

Insbesondere die Reihenfolge der Spielzüge hat einen entscheidenden Einfluss auf die

spieltheoretisch optimale Lösung. Wir betrachten zunächst den Fall gleichzeitig agieren-

der Spieler, in welchem sowohl der Lerner als auch der Datengenerierer keine Kenntnis

über die Aktion des jeweils anderen Spielers haben. Wir leiten hinreichende Bedingungen

her, unter welchen dieses Spiel eine Lösung in Form eines eindeutigen Nash-Gleichgewichts

besitzt. Im Anschluss diskutieren wir zwei verschiedene Verfahren zur effizienten Berech-

nung dieses Gleichgewichts. Als zweites betrachten wir den Fall eines Stackelberg-Duopols.

In diesem Prädiktionsspiel wählt der Lerner zunächst das Vorhersagemodell, woraufhin

der Datengenerierer in voller Kenntnis des Modells reagiert. Wir leiten ein relaxiertes

iv

Optimierungsproblem zur Bestimmung des Stackelberg-Gleichgewichts her und stellen ein

mögliches Lösungsverfahren vor. Darüber hinaus diskutieren wir, inwieweit das Stackelberg-

Modell bestehende robuste Lernverfahren verallgemeinert. Abschließend untersuchen wir

einen Lerner, der auf die Aktion des Datengenerierers, d.h. der Wahl der Testdaten,

reagiert. In diesem Fall sind die Testdaten dem Lerner zum Zeitpunkt der Modellbildung

bekannt und können in den Lernprozess einfließen. Allerdings unterliegen die Trainings-

und Testdaten nicht notwendigerweise der gleichen Verteilung. Wir leiten daher ein neues

integriertes sowie ein zweistufiges Lernverfahren her, welche diese Verteilungsverschiebung

bei der Modellbildung berücksichtigen.

In mehreren Fallstudien zur Klassifikation von Spam-E-Mails untersuchen wir alle herge-

leiteten, sowie existierende Verfahren empirisch. Wir zeigen, dass die hergeleiteten spiel-

theoretisch-motivierten Lernverfahren in Summe signifikant bessere Spam-Filter erzeugen

als alle betrachteten Referenzverfahren.

Abstract

In many applications one is faced with the problem of inferring some functional relation

between input and output variables from given data. Consider, for instance, the task of

email spam filtering where one seeks to find a model which automatically assigns new,

previously unseen emails to class spam or non-spam. Building such a predictive model

based on observed training inputs (e.g., emails) with corresponding outputs (e.g., spam

labels) is a major goal of machine learning.

Many learning methods assume that these training data are governed by the same distri-

bution as the test data which the predictive model will be exposed to at application time.

That assumption is violated when the test data are generated in response to the presence

of a predictive model. This becomes apparent, for instance, in the above example of email

spam filtering. Here, email service providers employ spam filters and spam senders engineer

campaign templates such as to achieve a high rate of successful deliveries despite any filters.

Most of the existing work casts such situations as learning robust models which are unsus-

ceptible against small changes of the data generation process. The models are constructed

under the worst-case assumption that these changes are performed such to produce the

highest possible adverse effect on the performance of the predictive model. However, this

approach is not capable to realistically model the true dependency between the model-

building process and the process of generating future data. We therefore establish the

concept of prediction games : We model the interaction between a learner, who builds the

predictive model, and a data generator, who controls the process of data generation, as an

one-shot game. The game-theoretic framework enables us to explicitly model the players’

interests, their possible actions, their level of knowledge about each other, and the order at

which they decide for an action.

We model the players’ interests as minimizing their own cost function which both depend

on both players’ actions. The learner’s action is to choose the model parameters and the

data generator’s action is to perturbate the training data which reflects the modification of

the data generation process with respect to the past data.

We extensively study three instances of prediction games which differ regarding the order

in which the players decide for their action. We first assume that both player choose their

actions simultaneously, that is, without the knowledge of their opponent’s decision. We

identify conditions under which this Nash prediction game has a meaningful solution, that

is, a unique Nash equilibrium, and derive algorithms that find the equilibrial prediction

model. As a second case, we consider a data generator who is potentially fully informed

about the move of the learner. This setting establishes a Stackelberg competition. We derive

a relaxed optimization criterion to determine the solution of this game and show that this

vi

Stackelberg prediction game generalizes existing prediction models. Finally, we study the

setting where the learner observes the data generator’s action, that is, the (unlabeled) test

data, before building the predictive model. As the test data and the training data may

be governed by differing probability distributions, this scenario reduces to learning under

covariate shift. We derive a new integrated as well as a two-stage method to account for

this data set shift.

In case studies on email spam filtering we empirically explore properties of all derived

models as well as several existing baseline methods. We show that spam filters resulting

from the Nash prediction game as well as the Stackelberg prediction game in the majority

of cases outperform other existing baseline methods.

Acknowledgements

I am pleased to take the opportunity to thank many people who supported me in my studies

and in writing this thesis.

First of all, I would like to thank my advisor Tobias Scheffer for giving me the opportunity

to pursue my PhD in his research group. This thesis would not have been possible without

his invaluable support and guidance. I am grateful to STRATO AG, in particular to the

chief information officer René Wienholtz, for financing my studies through a joint research

project on email spam filtering with the University of Potsdam. This cooperation gave me

the chance not only to work on an exciting research topic, but also to translate my findings

into practice.

I would like to thank Christian Kanzow for pointing me to a shortcoming in one of my

publications and for assisting me in developing a revised version. I really enjoyed our fruitful

email discussions. I wish to thank Steffen Bickel, Christoph Sawade, and Niels Landwehr

for the many productive talks, suggestions and ideas, and especially for consistently review-

ing my writings and for proofreading this thesis. It was a great pleasure working together

with Ulf Brefeld, Uwe Dick, Laura Dietz, Isabel Drost, Peter Haider, Paul Prasse, Arvid

Terzibaschian, and Thomas Vanck. They all contributed to a very friendly and stimulat-

ing research atmosphere. Especially our annual winter workshops were always great fun.

Furthermore, I would like to thank the STRATO developer team including Arne Jansen,

Michael Kockelkorn, Jan Schmidt, and Barnim Dzwillo for being patient with me when I

was implementing my algorithms.

Finally, I would like to thank my parents who were always supporting and encouraging

me.

Contents

1 Introduction 1

1.1 Motivating Examples . 2

1.2 An Arms Race Between Learner and Data Generator 4

1.3 Contributions . 5

1.4 Own Previously Published Work . 8

1.5 Outline . 10

2 Learning Predictive Models 11

2.1 Risk Minimization . 12

2.2 Learning in the Bayesian Framework . 14

2.3 Linear Decision Functions . 17

2.4 Loss Functions . 19

2.5 Regularization . 22

2.6 Feature Representation and Kernels . 23

2.7 Parameter Estimation . 26

3 The Prediction Game 29

3.1 An Introduction to Game Theory . 29

3.1.1 Basic Terms and Definitions . 30

3.1.2 Solution Concepts . 32

3.2 Adversarial Prediction Problems . 35

3.2.1 Number of Players . 35

3.2.2 Number of Repetitions . 36

3.3 Modeling the Prediction Game . 37

3.4 Classes of Prediction Games . 39

4 Nash Prediction Games 41

4.1 Nash Solution to Prediction Games . 41

4.1.1 Existence of a Nash Equilibrium . 42

4.1.2 Uniqueness of the Nash Equilibrium 43

4.2 Finding the Unique Nash Equilibrium . 48

4.2.1 An Inexact Linesearch Approach . 48

4.2.2 A Modified Extragradient Approach 50

4.3 Applying Kernels . 50

4.4 Instances of the Nash Prediction Game . 52

4.4.1 Nash Logistic Regression . 53

x

4.4.2 Nash Support Vector Machine . 54

4.5 Related Work . 55

4.6 Empirical Evaluation . 56

4.6.1 Convergence . 57

4.6.2 Regularization Parameters . 58

4.6.3 Evaluation for Nash-Playing Adversary 60

4.6.4 A Case Study on Email Spam Filtering 61

4.6.5 Efficiency versus Effectiveness . 63

4.6.6 Nash-Equilibrial Transformation . 63

5 Stackelberg Prediction Games 67

5.1 Stackelberg Solution to Prediction Games 67

5.2 An SQP Method for Stackelberg Prediction Games 71

5.3 Applying Kernels . 72

5.4 Instances of the Stackelberg Prediction Game 73

5.4.1 Worst-Case Loss . 73

5.4.2 Linear Loss . 74

5.4.3 Logistic Loss . 75

5.5 Related Work . 76

5.6 Empirical Evaluation . 77

5.6.1 A Case Study on Email Spam Filtering 77

5.6.2 Efficiency versus Effectiveness . 79

5.6.3 Transformation . 79

6 Covariate Shift 81

6.1 Learning under Covariate Shift . 82

6.1.1 MAP Estimation under Covariate Shift 83

6.1.2 An Integrated Model . 86

6.2 Logistic Regression Importance Estimation 88

6.3 A Two-Stage Approximation . 91

6.4 Applying Kernels . 92

6.5 Related Work . 93

6.6 Empirical Evaluation . 94

6.6.1 A Case Study on Email Spam Filtering 94

6.6.2 Inspection of the Resampling Weights 96

7 Conclusions 99

Bibliography 105

Appendix 111

Notation 119

1 Introduction

In this thesis we consider the problem of identifying the relation between an object and

the target attribute from some given set of object-target pairs called training data. This

relationship, i.e., a mapping from objects to targets, is referred to as a prediction model.

It can be used to estimate the value of the target attribute for previously unseen objects.

Identifying such a prediction model from a finite amount of data is generally a non-trivial

problem as the model is required to generalize to new objects. To this end, the given

training data are typically assumed to be a representative sample of data points which one

can expect at application time, that is, the test data.

For several applications, however, this assumption is violated and therefore many common

theoretical guarantees and bounds on the models’ predictive performance are no longer

valid. We address a special case where this assumption is violated, called the adversarial

prediction problem. In this setting, the future test data depend on the chosen prediction

model and, consequently, on the training data. Classical learning methods, which disregard

this dependency, are not expected to identify satisfying prediction models.

The adversarial prediction problem establishes a game, where one party—called the

learner—infers a predictive model from the training data. A second party—called the

data generator—controls the data generation process that is used to produce future test

data. Both parties interact with each other. The data generator responds to the learner’s

chosen prediction model by changing the data generation process. In contrast, the learner

adapts the prediction model to explain the relation between objects and targets generated

by this new data generation process.

Such situations frequently occur in practice. Consider, for instance, the following sce-

narios: In computer and network security, scripts that control attacks are engineered with

botnet and intrusion detection systems in mind. Credit card fraudsters adapt their unau-

thorized use of credit cards—in particular, amounts charged per transactions and per day

and the type of businesses that amounts are charged from—such as not to trigger alert-

ing mechanisms, employed by credit card companies. Email spam senders design message

templates that are instantiated by nodes of botnets, where those templates are specifically

designed to produce a low spam score with filtering strategies, that are expected to be

employed by the email service provider.

In all of these applications, the learner and the data generator are aware of each other,

and factor the possible actions of their opponent into their decisions. To find the optimal

action of the learner, that is, the prediction model which is most robust with respect to

the expected action of the data generator, we model this interaction as a mathematical

two-player game.

2 1 Introduction

To the best of our knowledge, we are the first who systematically study the adversarial

prediction problem using concepts from game theory. We formulate this learning problem

as a game, which we call a prediction game. We continue prior research on robust learning

algorithms, which are mainly based on the worst-case assumption that the data generator

desires to impose the highest possible costs on the learner. The worst-case assumption

amounts to a zero-sum game in which the cost of one player is the gain of the other.

However, several applications motivate problem settings in which the goals of the learner

and the data generator, while still conflicting, are not necessarily entirely antagonistic. For

instance, a fraudster’s goal of maximizing the profit made from exploiting phished account

information is not the inverse of an email service provider’s goal of achieving a high spam

recognition rate at close-to-zero false positives. When modeling such settings as a zero-sum

game, one often makes overly pessimistic assumptions about the data generator’s behavior

and may not necessarily obtain an optimal outcome. To this end, we abstain from the worst-

case assumption and derive prediction games where either player is expected to follow their

own interests which may or may not be antagonistic.

To begin with, we present some typical applications in Section 1.1 which motivate the

study of adversarial prediction problems. In Section 1.2, we briefly discuss common prop-

erties of adversarial prediction problems and informally introduce the concept of prediction

games to model such problems. We summarize the main contributions of this thesis in

Section 1.3 and list own, previously published work in Section 1.4. Finally, Section 1.5

provides an overview on the remaining chapters of this thesis.

1.1 Motivating Examples

In a variety of applications, data at application time are partially generated by an adversary

whose interests are in conflict with those of the learner. Consider, for instance, the following

example scenarios.

Drug and Therapy Selection

Estimating the prospect of success of a therapy, for example, a combination of an-

tiviral agents, is important to design new drugs and medications. The goal of a

pharmacologist, i.e., the learner, is to derive a prediction model which estimates the

success of a specific therapy. However, viruses and bacteria, i.e., the adversaries,

frequently mutate and become resistant against drugs. The likelihood of becoming

resistant depends on the specific DNA of the pathogenic agent, the patients’ medi-

cation histories, and the chosen pharmaceutical, which depends on the outcome of

the predictive model. To predict the success of a potential therapy the evolutional

response of the pathogenic agent has to be considered when learning the model.

1.1 Motivating Examples 3

Defending against Denial-of-Service Attacks

Users of online services, such as web hosting, online file storage, community portals,

or bulletin boards, generate data when requesting the service. An attacker aims at

blocking the service as long as possible by sending large amounts of potentially compu-

tationally expensive requests, for instance, repeated requests of a specific CGI script,

which may slow down the server. The task of the service provider is to distinguish be-

tween legitimate and those abusive requests, to defend against denial-of-service (DoS)

attacks. The main challenge for the learner is to identify abnormal usage patterns

while the adversary constantly changes the attack vector.

Intrusion Detection

In computer networks, firewalls, intrusion detection systems, and system integrity

checkers are used to prevent unwanted access by intruders. Similar as for denial-

of-service attacks, the prevention system must differentiate between legitimate and

illegitimate access attempts. Thereby, a typical intrusion scenario might contain the

following steps: First the attacker gathers information on the target, for example,

crawling the website for email addresses, performing a whois lookup, port scans,

ping sweeps, and checking versions of running applications and services. Thereafter,

the intruder may try out different attacks based on the expected vulnerabilities and

misconfigurations. Finally, the intruder gets access to the system, installs their own

backdoor, and covers up their track. The goal in intrusion detection is to identify such

access patterns in order to protect the system from being compromised. However,

the intruders are expected to vary their strategies to remain undetected.

Preventing Credit Card Fraud

Customers of banks paying with credit card generate large amounts of transaction

data. To prevent abuse, e.g., by stolen cards, the financial institutes employ fraud

detection systems. These systems try to identify unusual transaction patterns, such

as repeatedly withdrawing money from locations being far away from each other. In

order to avoid detection, criminals will try to carry out transactions in such a way,

that existing detection systems are not triggered; for instance, by modifying their

strategy of drawing money.

Email Spam Filtering

Email service providers (ESP) are faced with the problem of filtering unsolicited mes-

sages. This is important not only to prevent their customers from spam, but also

to ensure the availability of the service. Each email, which is accepted for delivery

by the ESP, yields processing and storage costs. Since these resources are limited,

receiving too many mainly unwanted emails acts as a denial-of-service attack. More-

over, outgoing spam emails may cause the sending server being blacklisted by other

4 1 Introduction

ESPs, which partially terminates the service, too. Hence, for inbound and, especially,

outbound emails, content-based filtering techniques are employed by ESPs. Unfortu-

nately, spam senders respond to these filters by constantly modifying the spam emails

and the spam-generating software, respectively.

Throughout the thesis we consider the last application of email spam filtering as a running

example. We are exclusively interested in identifying an optimal action for the learner, i.e.,

an adversary-aware prediction model, and do not explicitly solve for an optimal action of

the data generator, that is, a data generation model that minimizes the data generator’s

costs.

1.2 An Arms Race Between Learner and Data Generator

In this section we briefly introduce the concept of prediction games to model the conflicting

interests of the learner and the data generator as a mathematical game. We briefly discuss

our modeling decisions and give a short overview of distinct instances of this type of game.

We use a rather informal language to explain the principal ideas.

An adversarial interaction between a learner and a data generator can be considered a

game in which one player controls the predictive model whereas the other player controls the

process of data generation. Generally, this interaction between both parties is an ongoing

process where the data generator produces some data sample, whereupon the learner builds

a predictive model, whereupon the data generator changes the data generation process and

so on. In each round of the game both players decide for an action, e.g., the parameters of

the predictive model and the data model, respectively. The outcome of such an interaction

can be quantified by costs or gains for both players. Under varying assumptions on the

players, the way they interact, and their cost functions several games can be distinguished.

To give a brief overview about these games, we first consider the case where we are faced

with a setting where both players choose their actions in order to minimize their costs over

a (possibly infinite) period of time. Here, both players decide for their actions with respect

to the expected outcome of the current and all subsequent repetitions of the game. This

setting allows all players to adapt to their opponent’s way of playing and, of course, they

have to consider this when making their decisions. The main drawback of this game model

is not just the complexity of finding a game solution, but also the problem of evaluation

which would require to play against a real data generator for several rounds.

In contrast, we may suppose that the ongoing interactions between the learner and the

data generator results from playing a new one-shot game in each round. In this case,

the players may observe the previous actions of their opponent, but are not assumed to

minimize their costs over several rounds by adapting to the opponents’ style of playing. In

this thesis, we focus on this conceptually simpler model where the players only consider the

current round. We call this kind of game a (one-shot) prediction game.

1.3 Contributions 5

Another important element of a game is the order at which the players interact. We

differentiate between the following three cases.

Both players make their decisions simultaneously

In the first setting we consider simultaneously acting players, that is, both players

have to make their decision before observing the opponent’s move. In this case, the

players have to make an estimate of what the other player is expected to do. This

guess is purely based on previously observed actions and the knowledge about the

game, e.g., the players’ cost functions and their possible moves. We call such games

Nash prediction games and study them in Chapter 4.

The learner moves first and the data generator reacts on the learner’s action

In Stackelberg prediction games, the learner is supposed to act first by choosing the

prediction model. Thereafter, the data generator observes the learner’s move and

responds by deciding for their own action. As for Nash prediction games, the learner

has to consider the opponent’s expected move when making their decision. In con-

trast, the data generator acts in full knowledge of the learner’s decision and only

has to minimize their costs for the learner’s fixed action. In the special case where

both players’ cost functions are antagonistic, this game reduces to a zero-sum game

which is typically used to model a worst-case scenario. This and the more general

Stackelberg prediction game are discussed in Chapter 5.

The learner reacts on the data generator’s move

In this setting, the data generator moves first and produces a sample of data in-

stances which the learner partially observes before making their decision. The term

“partially” means that the learner has full access to the instances chosen by the data

generator, but not to the corresponding target labels. The task of the learner is now

to construct a predictive model based on the data generator’s action—the unlabeled

data, which the predictive model is exposed to—and prior observations. As the un-

derlying probability distribution of the new sample is potentially different to that

of the previously observed data, this game reduces to learning under covariate shift

which we discuss in Chapter 6.

All of these scenarios assume a different level of knowledge of the players which leads to

different games. We formalize and study these games in the subsequent chapters.

1.3 Contributions

In this thesis we cast the adversarial prediction problem as a mathematical game and study

three game settings which differ with respect to the order at which the players make their

decision.

6 1 Introduction

The main contributions of this thesis are as follows:

• We establish the concept of prediction games. We formulate the adversarial prediction

problem as an one-shot game of complete information by characterizing the players—

the learner and the data generator. Therefore, we specify the players’ interests, their

possible actions, and the way they interact with each other.

Prediction games enhance existing approaches on learning models which are robust

against adversarial changes of the data generation process. Prediction games do not

rely on the worst-case assumption that the data generator aims to impose the highest

possible damage on the learner. Instead, the players’ interests are expressed by min-

imizing their own expected prediction costs. These are approximated by regularized

empirical cost functions which depend on both players’ actions. The learner’s actions

is to choose the parameters of the prediction model and the data generator’s action

is modeled as a perturbation of the training data.

To the best of our knowledge, games with data-dependent cost functions have not been

studied before—neither in the mathematical discipline game theory, nor in the area of

machine learning. This class of games enables us to realistically model the interaction

of the players and their knowledge about each other. For instance, the order in

which the player decide for their action establishes three differing game settings. We

study these three settings, characterize the corresponding game solutions, and present

algorithms to solve for the solutions.

• A situation where the learner and the data generator have to decide for an action

before observing their opponent’s move establishes a static game. Existing work

focuses on a minimax strategy where one assumes a maximal malicious data generator.

This is generally a too pessimistic assumption. We therefore introduce the Nash

prediction game to find a Nash-optimal strategy for the learner.

Playing such a Nash-optimal strategy is reasonable if the Nash equilibrium is unique

and both players act rational in the sense of minimizing their own costs. We therefore

derive easily verifiable conditions under which a unique Nash equilibrium is known to

exist.

We derive two instances of the Nash prediction game which base on logistic regression

and the support vector machine (SVM). For the second instance, we derive a newly,

twice-continuously differentiable loss function by embedding a trigonometric function

into the perceptron loss. We show that for both instances, the Nash equilibrium is

unique for sufficiently large regularization parameters.

We propose two distinct algorithms to solve for the solution of the Nash prediction

game and illustrate how to employ kernel functions. We show that the proposed

instances of the Nash prediction game significantly outperform their i.i.d. baselines

as well as a worst-case assuming baseline for the problem of classifying future emails

based on training data from the past.

1.3 Contributions 7

• The more conservative case, where the data generator observes the learner’s move

before deciding for their own action, has not been addressed in the literature be-

fore. This setting establishes a Stackelberg competition that we model as Stackelberg

prediction game.

A Stackelberg competition can be expressed as a bilevel optimization problem which

is NP-hard in general. We relax the original problem and derive a single-stage op-

timization problem. We state sufficient conditions under which this minimization

problem can be locally solved, for instance, by an SQP solver. By making use of the

representer theorem, we show that the proposed optimization criterion can be directly

kernelized.

We reveal that the Stackelberg model generalizes existing prediction models such as

the SVM with uneven margins and the SVM for invariances. We evaluate spam filters

resulting from three instances of the Stackelberg prediction game on several spam-

filtering data sets. We show that the Stackelberg filters outperform other baselines in

most of the cases.

• Finally, the learner may act in full knowledge of the data generator’s action. From

perspective of the learner, this game scenario reduces to learning under covariate shift.

We derive a MAP estimator under covariate shift which is based on an unbiased like-

lihood function. This model equals a regular MAP estimator with resampled training

instances. We show that these resampling weights equal the testing-to-training den-

sity ratio and illustrate how to infer these weights from the data without estimating

the densities of the training and test data separately.

We derive an optimization criterion to jointly estimate the parameters of the pre-

diction model as well as of the model which computes the resampling weights. This

complements the predominant sequential approach of first estimating the covariate

shift between the training and the test data, and then learning a predictive model

based on a resampled version of the training data.

To solve the integrated optimization problem, we propose an inexact linesearch

method and state the gradient of the objective. We show that the objective is generally

non-convex in all parameters and, therefore, derive a convex two-stage approximation.

This method is conceptually simple and can be used to, firstly, find the resampling

weights and, subsequently, learn almost any standard predictive model.

We empirically explore methods for learning under covariate shift including the newly

derived methods as well as existing baseline methods. We observe that, for the task of

filtering email spam, all covariate shift-compensating methods do hardly outperform

the i.i.d. baselines. We empirically verify potential reasons for this negative result

and conclude that for spam filter, certain requirements on the use of covariate shift

models may not be met.

8 1 Introduction

1.4 Own Previously Published Work

This thesis builds on several previously published articles. In this section, we provide a list

of these publications and detail on own contributions.

[14] Brückner, M., Bickel, S., Scheffer, T.: Optimal spamming: Solving a family

of adversarial classification games. In: Proceedings of NIPS Workshop on

Machine Learning in Adversarial Environments for Computer Security (2007)

In this work, I cast the adversarial prediction problem as a game between a learner

and an adversary. I discuss potential game solutions depending on the players’ cost

functions and their level of rationality. Chapter 3 generalizes the problem formulation

of this publication.

[17] Brückner, M., Scheffer, T.: Nash equilibria of static prediction games. In:

Advances in Neural Information Processing Systems (NIPS). MIT Press (2009)

The paper resumes the problem setting of our previous publication [14]. I discuss

static one-shot prediction games where the players are not required to have entirely

antagonistic interests. I derived and implemented a method to solve for the solution

of this game, that is, a Nash equilibrium, and conducted several experiments on email

spam filtering.

[16] Brückner, M., Kanzow, C., Scheffer, T.: Static prediction games for adversarial

learning problems. Journal of Machine Learning Research (JMLR) 13, 2589–

2626 (2012)

Chapter 4 builds on that publication which extends our prior work on Nash prediction

games [17]. Christian Kanzow and I derive sufficient conditions for the existence of a

unique solution, which is an essential requirement to apply static prediction games.

Complementing [17], I derived a second instance of the Nash prediction game, called

Nash support vector machine which is based on a newly proposed loss function. I

empirically studied the convergence, performance, and runtime behavior of the new

as well as existing baseline methods.

[18] Brückner, M., Scheffer, T.: Stackelberg games for adversarial prediction prob-

lems. In: Proceedings of the 17th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), San Diego, CA, USA. ACM

Press (2011)

1.4 Own Previously Published Work 9

In this paper, I extend the Nash model [14, 17] to dynamic prediction games where

the players act non-simultaneously. I formalize the problem as a bilevel optimization

problem and derive a relaxed single-stage minimization problem, which can be solved

with standard tools. I implemented the proposed method and conducted experiments

on several real-world spam data sets. The findings of this work are presented in

Chapter 5.

[7] Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing

training and test distributions. In: Proceedings of International Conference on

Machine Learning (ICML). ACM Press, Oregon, USA (2007)

The paper presents a method for discriminative learning under covariate shift based

on resampling the training instances. Steffen Bickel, Tobias Scheffer, and I derived

an integrated model to jointly estimate models to predict the target concept as well

as the resampling weights. I derived and implemented the Newton gradient descent

method for the integrated logistic regression and the kernelization of the method.

Steffen Bickel conducted the experiments.

[8] Bickel, S., Brückner, M., Scheffer, T.: Dataset Shift in Machine Learning,

chap. Discriminative learning under covariate shift with a single optimization

problem, pp. 161–178. MIT Press (2009)

This article extends our previous work on covariate shift [7] to arbitrary loss

functions—especially the family of exponential loss functions—and provides further

experiments. Steffen Bickel generalized the integrated model of [7], implemented the

extended model, and conducted the new experiments. I derived sufficient conditions

for the convexity of the optimization criterion.

[9] Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate

shift. Journal of Machine Learning Research (JMLR) 10, 2137–2155 (2009)

The paper builds on our previous publications on learning under covariate shift [7,8].

Steffen Bickel and I derived an efficient and flexible two-stage approximation of the

previously published integrated model and reveal its relation to kernel mean matching.

Steffen Bickel implemented this method and conducted new experiments based on

a revised parameter tuning process. Chapter 6 presents and partially extends our

findings of this publication.

[15] Brückner, M., Haider, P., Scheffer, T.: Highly scalable discriminative spam

filtering. In: Proceedings of 15th Text REtrieval Conference (TREC). National

Institute of Standards and Technology (NIST) (2006)

10 1 Introduction

Peter Haider, Tobias Scheffer, and I took part in the spam filtering challenge TREC

Spam Track 2006. The paper briefly presents the concepts underlying our submit-

ted filter. This includes the decoding, preprocessing, and tokenization of emails as

well as the winnow algorithm to infer the filter from millions of training emails. I

implemented the learning algorithm and the parsing routines, and conducted the

experiments of the first task (periodical offline training) whereas Peter Haider con-

ducted the experiments of the second task (active learning). The presented steps of

feature extraction are used in the experiments of this thesis.

1.5 Outline

This thesis relies on concepts from machine learning as well as game theory. To this end,

Chapter 2 gives a brief introduction into some aspects of learning theory to build prediction

models from data. In Chapter 3, we then present principles of game theory. Later in the

chapter, the presented concepts of machine learning and game theory are combined to model

the adversarial prediction problem as a game between a learner and a data generator. We

identify three distinct game settings, depending on the order at which the players make

their decision. The first case, where both player decide simultaneously, is called Nash

prediction game. We study this setting in Chapter 4. Chapter 5 covers the Stackelberg

prediction game which addresses the case where the data generator acts after the learner

and decides on their action in full knowledge on the learner’s move. The final case, where

the data generator moves first and the learner reacts, is discussed in Chapter 6. In this

setting, the game between learner and data generator reduces to learning under covariate

shift. Chapter 7 concludes this thesis.

2 Learning Predictive Models

This thesis centers around the derivation and analysis of methods to build adversary-aware

prediction models. To this end, this chapter gives a brief introduction into some aspects of

learning theory to build prediction models from data.

In practice one is often confronted with the problem of estimating some unknown target

attribute of a given object, for instance, whether an email (the object) belongs to class spam

or not (the target attribute). An object x ∈ X is an element of the input space X which

could be any data domain such as documents, stock prices, images, database records, or

measurements. The target attribute y ∈ Y is typically a categorical or an one-dimensional

numerical value of output space Y.

The task of predicting the target attribute of some given object can be solved by su-

pervised learning. Typically, in the supervised learning problem, one firstly determines a

relationship h : X → Y between objects and targets based on a given sample of n objects

x := (x1, . . . , xn) ∈ X n with corresponding targets y := (y1, . . . , yn) ∈ Yn. In a second step,

one applies this mapping h to new, previously unseen objects ẋj ∈ X , in order to predict the

corresponding (unobserved) target attribute ẏj ∈ Y for j = 1, . . . , l. The desired mapping h

is called a prediction model, the observed object-target pairs D = {(xi, yi)}ni=1 are referred

as training data, and the new object-target pairs form a set of test data Ḋ = {(ẋj , ẏj)}lj=1.

To separate between training and test variables, we use a dot which indicates whether

an object or target is observed in the first step at training time or in the second step at

application time.

The main challenge in supervised learning is to infer a prediction model from the given

data. To this end, an object-target pair (x , y) is typically considered to be the result of

some unknown stochastic data generation process. That is, (x , y) is a realization of the

corresponding joint random variable XY where any object x ∈ X and target y ∈ Y can be

an assignment of the single random variables X and Y, respectively. The probability of a

realization (x , y) is denoted by pXY(x , y) where pXY is some unknown probability density

function (PDF) with corresponding cumulative distribution function (CDF) PXY.

A common assumption in supervised learning is that the training object-target pairs

(xi, yi) are independent and identically distributed (i.i.d.) for i = 1, . . . , n. This means,

that all training objects with corresponding targets are drawn statistically independently

of each other from the same underlying training distribution PXY. Likewise, all test object-

target pairs (ẋj , ẏj) are considered to be i.i.d. according to some test distribution which is

typically assumed to equal the training distribution. Hence, the given training data establish

a representative sample of the training distribution and, under the above assumption, of

the test distribution, too.

12 2 Learning Predictive Models

A straightforward (generative) approach to supervised learning is to estimate the density

of data distribution PXY from this sample and to compute the probability of x being

assigned to target y by using the definition of the conditional probability,

pY|X=x (y) =
pXY(x , y)

pX(x)
=

pXY(x , y)∫
Y pXY(x , y ′) dy ′

. (2.1)

In this case, an optimal prediction is to map x to target y∗ with largest probability

pY|X=x (y
∗), that is,

h∗(x) := argmax
y∈Y

pY|X=x (y). (2.2)

However, estimating the density pXY from a finite sample D is a non-trivial problem. To

see this, consider the empirical estimate of pXY,

pD(x , y) :=
1

n
|{i ∈ {1, ..., n} | xi = x , yi = y}| , (2.3)

and the corresponding cumulative distribution function,

PD(x , y) :=
1

n

n∑
i=1

|{i ∈ {1, ..., n} | xi ≤ x , yi ≤ y}| .

Even though, this estimate is consistent in the sense that PD uniformly converges to PXY if

the sample size gets larger (see, for instance, Theorem 19.1 in [73]), the induced prediction

model would be meaningless, as pD assigns zero probability to all unseen object-target

pairs.

In the following two sections, we will discuss strategies to solve this problem, namely

the principle of risk minimization and the Bayesian approach to learning. We present the

concept of generalized linear decision functions for several learning problems in Section 2.3.

In Section 2.4 and 2.5 we state commonly used loss functions and regularizers for risk

minimization, and in Section 2.6 we introduce the concept of kernel functions. Finally,

we present an exemplary algorithm to estimate the parameters of a predictive model in

Section 2.7.

2.1 Risk Minimization

A common approach to learning is to reformulate the learning problem by introducing a

discriminant decision function f : X × Y → R. This function models the relationship

between x ∈ X and y ∈ Y by

h(x) := argmax
y∈Y

f(x , y) (2.4)

where h(x) is an estimate of y for a given x . In addition, an error functional Δ : F ×X ×
Y → R

+ is introduced to measure the disagreement between label y and prediction h(x).

The error functional enables us to assess the quality of a single decision function f and

2.1 Risk Minimization 13

its corresponding hypothesis h, respectively, by the expected generalization error or risk

θ[f, pXY] given by

θ[f, pXY] := EXY [Δ[f, x , y]] =

∫
X×Y

Δ[f, x , y] pXY(x , y) d(x , y). (2.5)

In case of classification, where Y is finite, when choosing the zero-one error

Δ0/1[f, x , y] :=

{
0 if y = argmaxy ′∈Y f(x , y ′)
1 otherwise

(2.6)

the generalization error equals the probability of mispredicting y .

In risk minimization one seeks to choose one particular decision function f̂ from the

decision function space F which minimizes the generalization error, that is,

f̂ := argmin
f∈F

θ[f, pXY].

Unfortunately, evaluating θ[f, pXY] again requires the knowledge of pXY and, consequently,

the learning task amounts to identifying a proper estimator of this risk based on the observed

training sample D and to minimize it with respect to f ∈ F . An unbiased estimate of

θ[f, pXY] is obtained by replacing pXY in (2.5) by its empirical estimate (2.3) which leads

to the empirical error θ[f, pD] with

θ[f, pD] :=
1

n

n∑
i=1

Δ[f, xi, yi] (2.7)

and θ[f, pD]
a.s.−→ θ[f, pXY]. Minimizing this quantity with respect to f ∈ F generally poses

an ill -posed optimization problem, that is, θ[f, pD] is not continuous in f in general and a

minimizer f∗ of the empirical error might not be unique, or worse, might not exist. This

renders the problem to be potentially NP-hard or even impossible to solve. Moreover,

the empirical error θ[f, pD] is likely to underestimate the generalization error θ[f, pXY] in

practice.

Regularization theory (cf. Section 2.5) addresses these problems by introducing a regu-

larization term Ω : F → R
+, that is,

θ̂[f, pD] := θ[f, pD] + ρΩ[f] =
1

n

n∑
i=1

Δ[f, xi, yi] + ρΩ[f], (2.8)

and constraining the error functional Δ so that θ̂[f, pD] is continuous in f for any fixed D.

The regularizer Ω[f] is chosen so that it implicitly restricts the decision function space F

to a compact set. Here, the predefined parameter ρ controls the amount of regularization,

i.e., a larger value of ρ implies a more restrictive decision function space. For ρ > 0, a

14 2 Learning Predictive Models

minimizer

f̂ERM := argmin
f∈F

θ̂[f, pD] (2.9)

of the regularized empirical error can be obtained efficiently for an appropriately chosen

decision function space F , error functional Δ, and regularizer Ω. Before we discuss these

components in detail, we shall introduce the Bayesian approach to learning.

2.2 Learning in the Bayesian Framework

The Bayesian approach differs from risk minimization such that we are directly addressing

the probability of target y ∈ Y, given any object x ∈ X . We assume that there exist a

true relationship h∗ : X → Y between the objects and the targets, that is, the object-target

pairs are drawn i.i.d. from some unknown distribution

PXY|H=h∗(x , y) = PY|X=x ,H=h∗(y)PX=x (x).

The goal of Bayesian learning is not necessarily to identify h∗, but to estimate the density

of PY|X=x ,H=h∗(y) from the available data. Directly modeling this quantity enables us

not only to predict the most likely target value of a given object x , but also to state the

confidence of the prediction.

The underlying relationship between objects and targets is unknown, however, it is rep-

resented in the training objects x = (x1, . . . , xn) ∈ X n and the corresponding targets

y = (y1, . . . , yn) ∈ Yn. To estimate the density pY|X=x ,H=h∗(y) we consider the conditional

pY|X=x ,Xn=x,Yn=y. By applying the theorem of total probability, it can be expanded as

in (2.10), and (2.11) follows from the chain rule. Equation 2.12 exploits the facts that, be-

cause of the i.i.d. assumption, target y is independent of the other training instances given

the relationship h between the objects and targets, and that h is independent of object x

as long as y is unobserved.

pY|X=x ,Xn=x,Yn=y(y) =

∫
H
pYH|X=x ,Xn=x,Yn=y(y , h) dh (2.10)

=

∫
H
pY|X=x ,Xn=x,Yn=y,H=h(y)pH|Xn=x,Yn=y(h) dh (2.11)

=

∫
H
pY|X=x ,H=h(y)pH|Xn=x,Yn=y(h) dh (2.12)

If we had access to an infinite sample of object-target pairs, only the true relationship h∗

would still be consistent with the data so that pH|Xn=x,Yn=y would become a single-point

distribution which is one for H = h∗ and zero otherwise. Hence, under the assumption that

h∗ is in the set of considered models H, the above conditional pY|X=x ,Xn=x,Yn=y is a con-

sistent estimate of pY|X=x ,H=h∗(y) in the sense that pY|X=x ,Xn=x,Yn=y
n→∞
= pY|X=x ,H=h∗ .

The first term pY|X=x ,H=h(y) in (2.12) specifies the probability of observing target y ∈ Y
for a given object x ∈ X and any fixed model h ∈ H. The second term pH|Xn=x,Yn=y(h)

states the a-posteriori probability of h, that is, the probability of model h, after having

2.2 Learning in the Bayesian Framework 15

observed the training data. According to Bayes’ rule, the posterior of a model can be

stated in terms of its label likelihood, prior, and evidence, that is,

pH|Xn=x,Yn=y(h) =

label likelihood of h︷ ︸︸ ︷
pYn|Xn=x,H=h(y)

prior of h︷ ︸︸ ︷
pH(h)∫

H
pYn|Xn=x,H=h′(y) dh′︸ ︷︷ ︸

evidence of H

. (2.13)

The label likelihood of h states how plausible it is to observe target tuple y = (y1, . . . , yn) if

we are given a tuple of objects x = (x1, . . . , xn). Here, the underlying relationship between

an object x and target y is expressed by model h, that is, this term covers all information

about h which can be obtained from the training data. In contrast, the prior of h contains

all information on the true relationship before having observed the training data. This

term expresses the prior belief or knowledge of h, e.g., an uniform prior presumes that all

mappings h in hypothesis space H are equally plausible whereas all h /∈ H are impossible and

have zero a-priori probability. Finally, the evidence measures the complexity of hypothesis

space H, that is, the flexibility of models h in H. This term is constant for any fixed

hypothesis space, so that (2.12) resolves to

pY|X=x ,Xn=x,Yn=y(y) ∝
∫
H
pY|X=x ,H=h(y)pYn|Xn=x,H=h(y)pH(h) dh. (2.14)

This decomposition leads to a discriminative predictive model, since we are only modeling

the conditional pY|X=x , that is, we solely derive a functional relation which explains the

discriminating properties of objects x ∈ X . In contrast, a generative model involves an

estimate of the complete data density pXY so that, after the training process, we could

generate new object-target pairs (x , y) ∈ X × Y. This intrinsically model-based approach

additionally assess how well h models the distribution of input instances x . As this is

irrelevant for the task of correctly predicting y at hand, we focus on discriminative models

in this thesis.

For several learning problems, for instance, linear regression, all terms of the integral

in (2.14) can be expressed by density functions of a specific functional form so that the

above integral can be solved analytically. However, in the absence of an analytical solution,

this integral poses a crucial problem. Even though, there exist various strategies to solve

integration numerically, this would have to be performed for each new object x and target

y which is generally intractable.

One approach to avoid the difficulty of numerical integration is to assume that the pos-

terior of h concentrates its probability mass around the true relationship h∗. In this case,

pYn|Xn=x,H=h(y)pH(h) can be approximated by a single-point distribution which is one if

H equals some point estimate ĥ and zero otherwise, that is,∫
H
pY|X=x ,H=h(y)pYn|Xn=x,H=h(y)pH(h) dh ≈ pY|X=x ,H=ĥ(y). (2.15)

16 2 Learning Predictive Models

If we again assume that h∗ is inH, this approximation is consistent in the sense that (2.15)

becomes an equation and ĥ equals h∗ for n → ∞. By this approximation, one splits the

prediction task into a training phase to find point estimate ĥ and an inference phase where

the target of a given object is predicted using pY|X=x ,H=ĥ(y).

Common point estimates are the Bayes point and the mean, median, or mode of the

posterior pH|Xn=x,Yn=y(h) ∝ pYn|Xn=x,H=h(y)pH(h). The posterior mode is referred as

maximum-a-posteriori (MAP) estimate or, in case of an uniform prior, as maximum-

likelihood (ML) estimate. All of these estimates are consistent, that is, they converge

to the true relationship h∗ as the training sample gets larger, they are asymptotically un-

biased, and they are efficient. In practice, however, their behavior may differ depending on

the shape of the posterior. For a discussion on Bayesian point estimates see, for instance,

Chapter 10 of [73].

Bayesian learning is conceptually different from risk minimization, however, there exists

a strong link between both approaches. Let us, for instance, consider the MAP estimate of

the decision function,

f̂MAP := argmax
f∈F

pYn|Xn=x,F=f (y)pF(f), (2.16)

with corresponding MAP hypothesis (cf. Equation 2.4)

hMAP(x) := argmax
y∈Y

f̂MAP(x , y).

In addition, let us assume a label likelihood and prior of the exponential family,

pY|X=x ,F=f (y) :=
exp(− 1

nΔ
0/1[f, x , y])∫

Y exp(− 1
nΔ

0/1[f, x , y ′]) dy ′
(2.17)

pF(f) :=
exp(−ρΩ[f])∫

H exp(−ρΩ[f ′]) df ′ (2.18)

where Δ0/1 and Ω are defined as in the previous section. Then, the following remark shows

the equivalence of Bayesian learning and risk minimization.

Remark 2.1. Let the label likelihood and prior of decision function f be defined as in (2.17)

and (2.18) with hypothesis h(x) := argmaxy∈Y f(x , y), then the MAP decision function

f̂MAP equals the regularized empirical error estimate f̂ERM: Starting with (2.19), Equa-

tion 2.20 follows since the logarithmic function is strictly monotonically increasing and,

consequently, the maximizing argument f̂MAP of the posterior is also a minimizing argu-

ment of the negative log-posterior and vice versa. Equation 2.21 exploits the fact that

the training pairs (xi, yi) are drawn i.i.d., so that the label likelihood of f factorizes into

n per-instance label likelihoods pY|X=xi,F=f (yi). Inserting (2.17) and (2.18) gives (2.22).

Finally, (2.23) holds as the logarithmized denominators of the label likelihood and the prior

are constant for any fixed training sample and the zero-one error defined in (2.6).

2.3 Linear Decision Functions 17

f̂MAP = argmax
f∈F

pYn|Xn=x,F=f (y)pF(f) (2.19)

= argmin
f∈F

− log pYn|Xn=x,F=f (y)− log pF(f) (2.20)

= argmin
f∈F

− log

n∏
i=1

pY|X=xi,F=f (yi)− log pF(f) (2.21)

= argmin
f∈F

n∑
i=1

− log
exp(− 1

nΔ
0/1[f, xi, yi])∫

Y exp(− 1
nΔ

0/1[f, xi, y ′]) dy ′
− log

exp(−ρΩ[f])∫
F exp(−ρΩ[f ′]) df ′ (2.22)

= argmin
f∈F

n∑
i=1

1

n
Δ0/1[f, xi, yi] + ρΩ[f] = f̂ERM (2.23)

As the objective in (2.23) equals the regularized empirical error θ̂[f, pD], the corresponding

minimizer f̂ERM equals the MAP estimate f̂MAP as well. �

Having presented the principle ideas on how to reformulate the learning problem from

a Bayesian perspective, we now turn back to the more intuitive framework of risk mini-

mization to study the single components of prediction models. We start with the decision

function space F .

2.3 Linear Decision Functions

A common class of models f are linear decision functions which rely on inner products in

some feature space, also referred as Hilbert spaceH. We consider a finite-dimensional feature

space H := R
m and assume the existence of an m-dimensional numeric representation

φ(x) := [φ1(x), . . . , φm(x)]T of each object x ∈ X . This vector-valued function φ : X → H
is called a feature mapping and φi(x) ∈ R for i = 1, . . . , n are referred as the features of x .

In case of vectorial objects x ∈ X ⊆ R
m, the feature mapping may reduce to the identity

mapping φ(x) := x . Considering only linear mappings f seems overly restrictive. However,

as feature mapping φ can be an arbitrary function, decision function f is generally non-

linear in the input space. Indeed, any smooth function in the input space can be expressed

by a linear mapping f in an appropriate feature space H induced by mapping φ. In

Section 2.6, we discuss how to construct such powerful feature mappings for objects x ∈ X
solely based on a similarity measure over the input space X .

Based on a given feature mapping φ, one can define a decision function space F for each

specific learning task. For instance, in binary classification where Y := {−1,+1}, the deci-

sion function is typically defined by f(x , y) := yg(x) where g(x) := wTφ(x). Consequently,

the resulting hypothesis (2.4) resolves to

h(x) := argmax
y ′∈Y

f(x , y ′) = argmax
y ′∈Y

ywTφ(x) = signwTφ(x)

with corresponding decision function space F := {(x , y) 	→ ywTφ(x) | w ∈ W} and

parameter space W ⊆ R
m.

18 2 Learning Predictive Models

Similarly, for multi-class classification where Y := {1, . . . , k} for some finite k ∈ N, the

decision function can be defined by a combination of k linear mappings gj(x) := wT
j φ(x)

for j = 1, . . . , k, that is, f(x , y) := gy(x) = wT
yφ(x) with corresponding hypothesis

h(x) := argmax
y ′∈Y

f(x , y ′) = argmax
y ′∈Y

wT
y ′φ(x)

and decision function space F := {(x , y) 	→ wT
yφ(x) | wj ∈ W for j = 1, . . . , k}. In

comparison to binary classification, the number of parameters which have to be estimated

from the data increases from m to k ·m.

A final example is linear regression where Y := R. Here, the result of mapping g(x)

is typically used as the prediction of y . This can be expressed by defining mapping

f(x , y) := −(g(x)− y)2 = −(wTφ(x)− y)2 so that

h(x) := argmax
y ′∈Y

f(x , y ′) = argmin
y ′∈Y

(wTφ(x)− y ′)2 = wTφ(x)

and F := {(x , y) 	→ −(wTφ(x)− y)2 | w ∈ W}.
The algorithms presented in this thesis focus on binary classification. They may be

applicable to other learning task by adapting the decision function space accordingly. We

only consider hypotheses of the form1 hw(x) := sign gw(x) with

gw(x) := wTφ(x)

and w ∈ W. For this choice, the error functional is generally considered to be a product of

a loss term �(gw(x), y), which penalizes mispredictions, and an object- and target-specific

weighting term c(x , y), which states the importance of correctly predicting the given in-

stance, that is,

Δ[fw, x , y] := c(x , y)�(gw(x), y). (2.24)

As the decision function fw and the corresponding hypothesis hw are uniquely defined

by weight vector w, in the following we redefine the (regularized) empirical error and the

regularizer to be functions of w ∈ W rather than functionals of decision function fw ∈ F

with fw(x , y) = ygw(x) = ywTφ(x). In addition, we substitute the error functional Δ

by (2.24) so that (2.8) reduces to

θ̂(w, D) :=
1

n

n∑
i=1

c(xi, yi)�(gw(xi), yi) + ρΩ(w). (2.25)

Whereas c(xi, yi) denote fixed weighting factors which do not depend on the parameter

vector w, loss function � and regularization function Ω are chosen such to obtain a good

estimate of the generalization error while restricting the computational complexity of the

learning problem. We discuss popular choices of these functions in the following sections.

1We use subscript w to indicate that a function or operator is parameterized by vector w.

2.4 Loss Functions 19

2.4 Loss Functions

A loss function � : R×Y → R
+ is used to assess the appropriateness of a decision function,

that is, the discrepancy between the true class y of x and the decision function-induced pre-

diction hw(x). In classification, the zero-one loss which is given in the following definition,

is the theoretically optimal choice as, in the limit, it results in a hypothesis with minimal

misprediction probability.

Definition 2.1. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x) and corresponding weight vector w ∈ W, the zero-one loss is given

by

�0/1(gw(x), y) :=

{
0 if ygw(x) > 0

1 if ygw(x) ≤ 0
.

However, minimizing the (regularized) empirical zero-one error poses an NP-hard problem

for which reason other loss functions are employed in practice. In the following, we present

the most commonly used loss functions and a new loss function for binary classification (cf.

Figure 2.1). The proofs of the presented propositions can be found in the appendix.

The choice of a particular loss function mainly depends on the learning task and theoret-

ical implications such as the continuity condition in risk minimization or the normalization

constraint in the Bayesian framework. In addition, to efficiently compute the minimizer

w∗ of the regularized empirical error θ̂(w, D) (cf. Equation 2.25), the loss function is

typically required to be convex and continuously differentiable or even twice-continuously

differentiable with respect to w ∈ W.

One of the most commonly used loss functions for binary classification is the hinge loss

which is a piecewise-linear convex upper bound on the zero-one loss.

Definition 2.2. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x) and corresponding weight vector w ∈ W, the hinge loss is given by

�h(gw(x), y) := max(0, 1− ygw(x)) =

{
0 if ygw(x) > 1

1− ygw(x) if ygw(x) ≤ 1
.

The hinge loss linearly penalizes not only misclassification where fw(x , y) < 0 with

fw(x , y) = ygw(x), but also correct predictions if the corresponding decision value fw(x , y)

is less than 1, that is, if the functional margin between object x and the decision surface

Gw :=
{
φ(x) ∈ R

m | wTφ(x) = 0
}
is small. Minimizing θ̂(w, D) together with the hinge

loss function yields a large margin classifier referred as support vector machine (SVM). The

hinge loss is not continuously differentiable in w ∈ W so that direct gradient-based mini-

mization is not applicable2 and one often considers the dual problem which is a quadratic

program. Alternatively, some variants of the SVM employ the squared hinge loss which is

once-continuously differentiable. Though, one main drawback of the squared hinge loss is

2In practice, the SVM objective can be efficiently minimized in the primal using subgradient or bundle
methods which do not rely on the differentiability condition.

20 2 Learning Predictive Models

−3 −2 −1 0 1 2 3
0

1

2

3

4

decision function value f(x,y)

lo
ss

 fu
nc

tio
n

va
lu

e
l(

x,
y,

f)

zero−one loss
hinge loss
Huber loss
trigonometric loss
exponential loss
logistic loss

Figure 2.1: Loss functions for binary classification with δ = 1 for the Huber loss and δ = 2 for the
trigonometric loss.

its sensitivity to outliers in the data, as misclassified objects are penalized quadratically.

Another approach is to redefine the hinge loss by embedding a differentiable function to

avoid discontinuities. An example of such a loss function is Huber’s classification loss [19].

Definition 2.3. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x), weight vector w ∈ W, and any fixed smoothness parameter δ > 0,

the Huber loss is given by

�H(gw(x), y) :=

⎧⎪⎨
⎪⎩

0 if ygw(x) > 1 + δ
1
4δ (1 + δ − ygw(x))

2 if |1− ygw(x)| ≤ δ

1− ygw(x) if ygw(x) < 1− δ

.

The Huber loss combines the relative robustness of the hinge loss against outliers and

the continuous differentiability of a second-order polynomial.

Proposition 2.2. For any fixed (x , y) ∈ X × Y, the Huber loss �H(gw(x), y) specified in

Definition 2.3, is convex and once-continuously differentiable (but not twice-continuously

differentiable) with respect to gw(x) and, consequently, in w ∈ W.

According to the proposition, the Huber loss is only once-continuously differentiable,

which might be insufficient in some settings. Therefore, we propose a twice-continuously

differentiable loss function which, similar to the Huber loss, linearly penalizes serious mis-

classifications.

2.4 Loss Functions 21

Definition 2.4. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x), weight vector w ∈ W, and any fixed smoothness parameter δ > 0,

the trigonometric loss is given by

�t(gw(x), y) :=

⎧⎪⎨
⎪⎩

0 if ygw(x) > δ
1
2(δ − ygw(x))− δ

π cos
(
π
2δygw(x)

)
if |ygw(x)| ≤ δ

−ygw(x) if ygw(x) < −δ

.

Analogous to the Huber loss, where a polynomial is embedded into the hinge loss, the

trigonometric loss combines the perceptron loss �p(gw(x), y) = max(0,−ygw(x)) with a

trigonometric function. This trigonometrical embedding yields a twice-continuously differ-

entiable function.

Proposition 2.3. For any fixed (x , y) ∈ X×Y, the trigonometric loss �t(gw(x), y) specified

in Definition 2.4 is convex and twice-continuously differentiable with respect to gw(x) and,

consequently, in w ∈ W.

If not stated otherwise, we set δ := 1 for the trigonometric loss. Another convex loss

function is the exponential loss, which is the underlying loss of boosting methods [33].

Definition 2.5. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x) and weight vector w ∈ W, the exponential loss is given by

�e(gw(x), y) := exp(−ygw(x)).

The exponential loss is a smooth function, that is, an infinitely-differentiable function.

But similar as for the squared hinge loss, the exponential loss is highly sensitive to out-

liers. A more robust smooth loss function is the logistic loss which is employed in logistic

regression.

Definition 2.6. For a binary classifier hw : X → {−1,+1} of the form hw(x) = sign gw(x)

with gw(x) = wTφ(x) and corresponding weight vector w ∈ W, the logistic loss is given by

�l(gw(x), y) := log (1 + exp(−ygw(x))) .

Proposition 2.4. For any fixed (x , y) ∈ X × Y, the logistic loss �l(gw(x), y) specified in

Definition 2.6 is strictly convex and infinitely-continuously differentiable with respect to

gw(x) and, consequently, in w ∈ W.

In contrast to all previously discussed loss functions, the logistic loss has a probabilis-

tic interpretation, too. Let us assume, that the partial likelihood of decision function

fw(x , y) = ygw(x) with weight vector w has the form of the logistic function, that is,

pY|X=x ,W=w(+1) :=
1

1 + exp(−gw(x))
,

22 2 Learning Predictive Models

so that

pY|X=x ,W=w(−1) = 1− pY|X=x ,W=w(+1) =
exp(−gw(x))

1 + exp(−gw(x))
=

1

1 + exp(gw(x))
,

and consequently,

pY|X=x ,W=w(y) =
1

1 + exp(−ygw(x))
.

Equation 2.17 specifies the relation between the model likelihood and the loss function

which together with the above expression yields

exp(−�(gw(x), y)) =
1

1 + exp(−ygw(x))
.

Solving this equation for mapping �(gw(x), y) gives the logistic loss as stated in Defini-

tion 2.6. Since maximizing the a-posteriori probability is equivalent to minimizing the

regularized empirical error, the obtained models equal as well. An appealing consequence

of this observation is that the decision values fw(x , y) can be directly used to compute the

conditional probability 1
1+exp(−fw(x ,y)) .

2.5 Regularization

One motivation for regularization is to transfer an ill -posed optimization problem into a

feasible one, that is, to reformulate the problem so that the objective is continuous in its

arguments and a solution exists. Recall, that we aim at minimizing the empirical estimate

θ[fw, pD] (cf. Equation 2.7) of the generalization error with respect to fw. The continuity

condition of this function can be ensured by choosing a continuous loss function. In addition,

we assume that the loss function and, consequently, the empirical error is convex in w.

We now aim at restricting the set of possible solutions to a compact set, since then

at least one solution is known to exist. An obvious way to ensure this condition is to

restrain the set of feasible weight vectors, e.g., by defining W := {w ∈ R
m | Ω(w) ≤ ρ}

for some convex regularization function Ω : Rm → R and a fixed regularization parameter

ρ ∈ R with −∞ < infw Ω(w) < ρ < ∞. However, as this establishes a constrained

optimization problem, a more common approach is to implicitly restrict the feasible set.

This is obtained by augmenting the objective by a regularization term, so that it becomes

uniformly strongly convex, that is, θ̂(w, D) := θ[fw, pD]+ ρΩ(w) (cf. Equation 2.25). This

results in an unconstrained optimization problem with W := R
m. As the first summand

θ[fw, pD] is convex, a sufficient condition for θ̂(w, D) to be strongly convex is to employ a

strongly convex regularizer Ω(w), controlled by some fixed ρ ∈ R with 0 < ρ < ∞.

The most commonly used method to regularize w or fw, respectively, is Tikhonov regu-

larization which implicitly restricts the L2-norm of the gradient of function fw with respect

to φ(x),

‖∇φ(x)fw‖22 :=
∫
X
‖∇φ(x)fw(x , y)‖22 dx .

2.6 Feature Representation and Kernels 23

The Tikhonov regularizer favors smooth functions whereas complex, heavily fluctuating

functions are strongly penalized. Since decision function fw(x , y) is linear in φ(x), the

L2-norm of ∇φ(x)fw corresponds to the l2-norm of weight vector w. Hence, we set

Ω(w) :=
1

2
‖w‖22. (2.26)

A more detailed explanation on Tikhonov regularization in the context of machine learning

can be found, for instance, in [51] and in Chapter 5.5.5 of [11].

Note, that the regularizer in (2.26) has a probabilistic meaning. As discussed before, in

the Bayesian framework the regularizer corresponds to a negative log-prior on w ∈ R
m. If

we choose a Gaussian prior centered at zero and the covariance matrix set to the identity

matrix,

Ω(w) := − logN (w |0, Im) ,

then the regularizer resolves to

Ω(w) =
1

2
wTw +

m

2
log 2π,

which equals the regularizer in Equation 2.26 up to a constant term.

We follow the approach of implicitly restricting the feasible set of weight vectors and, if

not otherwise stated, restrain ourselves to regularizers of the form in (2.26). However, for

most of the presented methods, we only require the regularizer to be uniformly strongly

convex in w ∈ W.

2.6 Feature Representation and Kernels

So far, we assumed the knowledge of some predefined numeric representation

φ(x) := [φ1(x), . . . , φm(x)]T ∈ R
m of objects x ∈ X . However, in many applications

such representations might be hard to identify. For instance, objects such as text docu-

ments, images, biological molecules, or audio sequences can be hardly mapped into a vector

space without running the risk of loosing relevant information. Moreover, constructing such

mappings generally requires much domain knowledge and engineering effort. In this section

we discuss strategies to overcome these difficulties by the use of kernel functions, i.e., the

inner product in some implicitly defined feature space (see, for instance, Part III of [64] for

further reading).

Consider the decision function fw for binary classification where fw(x , y) := ywTφ(x).

The corresponding hyperplane Gw :=
{
φ(x) ∈ R

m | wTφ(x) = 0
}
is assumed to separate

at least one training object φ(xi) form the others and, consequently, lives in the subspace

spanned by all mapped training instances φ(xi) for i = 1, ..., n. Formally, the representer

theorem (see, for instance, [63]) justifies this consideration. It states, that the normal vector

w of any separating hyperplane can be expressed as a linear combination of the separated

24 2 Learning Predictive Models

points, that is, there exists ω ∈ R
n so that

w =
n∑

i=1

ωiφ(xi). (2.27)

The n-dimensional vector ω of weights ωi, which are not necessarily uniquely defined

by (2.27), is called a dual weight vector of w ∈ R
m. This formulation enables us to

substitute w so that

gw(x) = wTφ(x) =
n∑

i=1

ωiφ(xi)
Tφ(x) =

n∑
i=1

ωik(xi, x) = gω(x), (2.28)

where now fω(x , y) := ygω(x) is parameterized by ω ∈ R
n and training instances xi,

i = 1, ..., n. Mapping k : X × X → R with k(x , x ′) = φ(x)Tφ(x ′) is referred as kernel

function which is a similarity measure between any two objects x , x ′ ∈ X . Likewise, we can

define the l2-norm regularizer as a function of the dual weight vector ω,

Ω(w) =
1

2
wTw =

1

2

n∑
i=1

n∑
j=1

ωiωjk(xi, xj) =
1

2
ωTKω = Ω(ω), (2.29)

where K ∈ R
n×n is the (positive semi-definite) kernel matrix with Kij := k(xi, xj), ∀i, j ∈

{1, ..., n}.
Hence, instead of minimizing the regularized empirical error over the primal weight vector

w ∈ R
m for n given mapped training object-class pairs (φ(xi), yi), we can directly employ

a kernel function without the need of an explicitly defined feature mapping. However, for

any valid kernel k, there still has to exist a feature mapping φ : X → H. This function

is assumed to map objects from the input space X into a potentially infinite-dimensional

vector space (i.e., a Hilbert space) H, so that the kernel can be stated as an inner product

in this space, that is, there exists φ so that

k(x , x ′) =
〈
x , x ′〉

H =
〈
φ(x),φ(x ′)

〉
.

According to Mercer’s theorem (cf. for instance, Theorem 2.10 in [64]), this condition is

met if k is a positive semi-definite function, i.e.,∫
X

∫
X
k(x , x ′)u(x)u(x ′) dx dx ′ ≥ 0

for all square-integrable functions u : X → R. For a finite sample of n instances xi, this

requirement reduces to
n∑

i=1

n∑
j=1

k(xi, xj)uiuj = uTKu ≥ 0

for all vectors u ∈ R
n, that is, kernel matrix K must be positive semi-definite. That is,

each mapping k which, for any given finite sample of objects, yields a positive semi-definite

kernel matrix, is a valid kernel function referred as Mercer kernel.

2.6 Feature Representation and Kernels 25

An appealing consequence is that we can state mapped instances φ(xi) ∈ R
n explicitly

solely based on a given symmetric positive semi-definite similarity matrix (or kernel matrix)

K ∈ R
n×n of objects xi ∈ X , i = 1, . . . , n. Consider therefore the eigen-decomposition of

this matrix,

K = VΛVT,

where V is the column matrix of eigenvectors of kernel matrix K and Λ is a diagonal matrix

whose diagonal elements are the corresponding non-negative eigenvalues. Let us define

φPCA : x 	→ Λ
1
2
+
VT [k(x1, x), . . . , k(xn, x)]

T , (2.30)

where Λ
1
2
+

denotes the Moore-Penrose pseudo-inverse of the square root of Λ with Λ =

Λ
1
2Λ

1
2 . This mapping establishes an n-dimensional vectorial representation of objects xi,

that can be constructed for every valid kernel function and finite sample of objects. It is

referred as kernel PCA mapping or Mercer mapping.

Remark 2.5. Notice, that for any positive semi-definite kernel function k : X × X → R

and fixed training instances x1, . . . , xn ∈ X , the kernel PCA mapping is a uniquely defined

real function with φPCA : X → R
n so that k(xi, xj) = φPCA(xi)

TφPCA(xj) for any i, j ∈
{1, . . . , n}: We first show that φPCA is a real mapping from the input space X to the

Euclidean space Rn. As x 	→ [k(x1, x), . . . , k(xn, x)]
T is a real vector-valued function and V

is a real n×n matrix, it remains to show that the pseudo-inverse of Λ
1
2 is real as well. Since

the kernel function is positive semi-definite, all eigenvalues λi of K are non-negative, and

hence, Λ
1
2 is a diagonal matrix with real diagonal entries

√
λi for i = 1, . . . , n. The pseudo-

inverse of this matrix is the uniquely defined diagonal matrix Λ
1
2
+
with real non-negative

diagonal entries 1√
λi

if λi > 0 and zero otherwise. This proves the first claim.

The kernel PCA mapping also satisfies k(xi, xj) = φPCA(xi)
TφPCA(xj) for any pair of

training instances xi and xj , since for all i = 1, . . . , n,

φPCA(xi) = Λ
1
2
+
VT [k(x1, xi), . . . , k(xn, xi)]

T

= Λ
1
2
+
VTKei

= Λ
1
2
+
VTVΛVTei

= Λ
1
2
+
ΛVTei

where ei ∈ {0, 1}n is the i-th unit vector. Hence,

φPCA(xi)
TφPCA(xj) = eTi VΛΛ

1
2
+
Λ

1
2
+
ΛVTej

= eTi VΛΛ+ΛVTej

= eTi VΛVTej

= eTi Kej = Kij = k(xi, xj)

which proves the second claim. �

26 2 Learning Predictive Models

To classify a new instance x ∈ X for a given parameter vector w, we may first map x into

the PCA mapping-induced feature space and apply the linear classifier hw(x) = sign gw(x)

with gw(x) = wTφPCA(x). Alternatively, we can derive a dual representation of w so

that w =
∑n

i=1 ωiφPCA(xi), and consequently gw(x) = gω(x) =
∑n

i=1 ωik(xi, x), where

ω = [ω1, . . . , ωn]
T is a not necessarily uniquely defined dual weight vector of w. Therefore,

we have to identify a solution ω of the linear system

w = Λ
1
2
+
VTKω. (2.31)

A direct calculation shows that

ω := VΛ
1
2
+
w (2.32)

is a solution of (2.31) provided that either all elements λi of the diagonal matrix Λ are

positive or that λi = 0 implies that the same component of the vector w is also equal to

zero (in which case the solution is non-unique). In fact, inserting (2.32) in (2.31) then gives

Λ
1
2
+
VTKω = Λ

1
2
+
VTVΛVTVΛ

1
2
+
w = Λ

1
2
+
Λ

1
2Λ

1
2Λ

1
2
+
w = w.

The advantage of this second approach is that classifying a new instances x ∈ X requires

the computation of the scalar product
∑n

i=1 ωik(xi, x) rather than a matrix multiplication

when mapping x into the kernel PCA mapping-induced feature space (cf. Equation 2.30).

In conclusion, even if the model components cannot be expressed in terms of inner prod-

ucts such as in (2.28) and (2.29), one can still apply kernel functions by constructing an

explicit representation such as defined by the kernel PCA mapping. Likewise, if we are not

given an explicit kernel function but a symmetric positive semi-definite similarity matrix,

we can still construct a vectorial representation of the data to learn a predictive model.

2.7 Parameter Estimation

In the previous sections we have discussed the required components to determine the reg-

ularized empirical error in (2.25) of a particular weight vector w ∈ R
m or a dual weight

vector ω ∈ R
n, respectively, for a given data set D = {(xi, yi)}ni=1. We now turn to the

problem of estimating an optimal parameter vector which minimizes this error,

w∗ = argmin
w∈W

θ̂(w, D) = argmin
w∈W

1

n

n∑
i=1

c(xi, yi)�(gw(xi), yi) + ρΩ(w).

This process is referred to as the training phase.

As discussed before, the regularized empirical error is generally designed so that the

resulting minimization problem is convex and unrestricted, i.e., W = R
m. There exists

a large variety of methods to solve such optimization problems, where most of them are

descent methods such as the method of steepest descent, conjugate gradient, (quasi) New-

ton, cutting plane, and interior point (cf. for instance, [13]). For one of the most recent

distributed optimization methods see [12].

2.7 Parameter Estimation 27

In this section, we exemplarily present the stochastic gradient method also referred as

Robbins-Monro algorithm [68]. Even if this method is a first-order method which generally

attains a low convergence rate, it is very common for regularized empirical error minimiza-

tion as its memory requirement is in general much smaller than that of a second-order or

full gradient-based approach. In addition, stochastic gradient methods can be easily par-

allelized (see, for instance, [77]) which makes them especially applicable to learn from very

large amounts of data.

The principal idea of iterative first-order methods is to construct a sequence of param-

eter vectors w(0),w(1), . . . ,w(k) which converges to a vector w∗ satisfying the first-order

optimality condition. For unrestricted optimization problems, this condition says that the

gradient of θ̂(w, D) attains zero at w∗,

∂θ̂(w, D)

∂w

∣∣∣∣∣
w=w∗

=
1

n

n∑
i=1

(
c(xi, yi)�

′(gw∗(xi), yi)φ(xi) + ρΩ′(w∗)
)
= 0, (2.33)

where �′(z, y) denotes the first derivative of �(z, y) with respect to z and Ω′(w) denotes the

gradient of Ω(w). Finding the root of the continuous function ∂θ̂(w,D)
∂w , which is defined

as expectation on an underlying probability space with the empirical density pD(x , y) (cf.

Equation 2.3),

ED

[
c(x , y)�′(gw∗(x), y)φ(x) + ρΩ′(w∗)

]
,

establishes a stochastic optimization problem. Corollary 2.6, which immediately follows

from the Robbins-Monro theorem (see, e.g., Theorem 1.4.26 in [28]), states a recursively

defined sequence which converges almost surely to a solution of the problem in (2.33).

Corollary 2.6. Let the regularized empirical error θ̂(w, D) be defined as in Equation 2.25

for given training data D = {(xi, yi)}ni=1. Suppose θ̂(w, D) is uniformly strongly convex and

continuously differentiable in w and suppose that inequality

∥∥c(xi, yi)�′(gw(xi), yi)φ(xi) + ρΩ′(w)
∥∥2
2
≤ ς

(
1 + ‖w‖22

)
(2.34)

holds for all i ∈ {1, . . . , n}, w ∈ W, and some constant ς ∈ R. Then, for any α > 0,

w(0) ∈ W, and (x (k), y(k)) randomly drawn from D, sequence

w(k+1) := w(k) − α

k

(
c(x (k), y(k))�′(gw(k)(x (k)), y(k))φ(x (k)) + ρΩ′(w(k))

)
(2.35)

converges almost surely to the minimizer w∗ of θ̂(w, D).

The condition in (2.34) says, that for any fixed (x , y) ∈ X × Y, neither �′(gw∗(x), y) nor

Ω′(w) grow faster than a linear function of ‖w‖2. Notice, that except for the exponential

loss, all discussed loss functions (cf. Section 2.4) and, for instance, the quadratic regularizer

in (2.26), satisfy this requirement.

According to Robbins and Siegmund [58], Corollary 2.6 can also be extended to the case

of constrained optimization where W ⊂ R
m is some non-empty convex set. This is, for

28 2 Learning Predictive Models

instance, attained by replacing w(k+1) in (2.35) by its L2-projection ΠW(w(k+1)) into the

feasible set W, where

ΠA(a) := argmin
a′∈A

∥∥a− a′
∥∥2
2
. (2.36)

In the special case, where W = {w ∈ R
m | ‖w‖2 ≤ r} is the closed l2-ball of radius r > 0

and w(k+1) /∈ W, this projection reduces to rescaling vector w(k+1) to length r.

Finally, we state the pseudo-code of the induced algorithm for regularized empirical risk

minimization (ERM). Note that, for instance, the perceptron [61] and Pegasos [65] are

specific instances of this algorithm.

Algorithm 1 SGD-ERM: Stochastic Gradient Descent for Empirical Risk Minimization

Require: Training data D = {(xi, yi)}ni=1, regularization parameter ρ > 0, and learning
rate α > 0.

1: Select initial w(0) ∈ W and set k := 0.
2: repeat
3: Draw (x , y) randomly from D.

4: Set d(k) := −c(x , y)�′(gw(k)(x), y)φ(x)− ρΩ′(w(k)).

5: Set w(k+1) := ΠW
(
w(k) + α

kd
(k)

)
.

6: Set k := k + 1.

7: until ‖w(k) −w(k−1)‖22 ≤ ε.

3 The Prediction Game

In the previous chapter we presented the principal ideas to build regular predictive models

based on a given sample of object-target pairs. The goal was to find a mapping hw which

generalizes to new unseen data Ḋ = {(ẋj , ẏj)}lj=1 so that it correctly predicts the target

ẏj ∈ Y of the test objects ẋj ∈ X . So far, we have assumed that the training data and test

data are drawn i.i.d. from the same underlying probability space, that is, training sample

D and test sample Ḋ are governed by the same distribution.

However, in adversarial prediction problems, such as the introductive examples in Sec-

tion 1.1, this assumption is often violated. Here, the object-target pairs of the training

data are governed by an unknown distribution PXY|Γ=γ , where γ is the corresponding data

generation model, for instance, the parameter values of a spam template. The test data

distribution PXY|Γ=γ̇ , induced by data generation model γ̇, may significantly differ from

the training data distribution, since γ and γ̇ are not assumed to equal anymore. This dis-

crepancy between the data generation models is assumed to be, at least partially, caused

in response to the predictive model. Such situations where the data generation process

is to some extend influenced by the outcome of the learning process involve a conflict of

interest between the learner, who builds the prediction model hw, and the data generator,

who controls γ̇.

In this chapter we present the conceptual extension of the classical learning setting to

the problem of learning adversary-aware predictive models. To this end, Section 3.1 starts

with a short introduction to game theory which provides techniques to study situations

of potential conflict between two or more individuals called games. We close this section

with a discussion on well known game solution concepts and continue with inspecting the

players’ interaction in the adversarial learning setting in Section 3.2. In Section 3.3 we

formalize this interaction as a game theoretical model and discuss its components, which

are the players of the game, their possible actions, and their cost functions. Finally we

introduce three classes of prediction games in Section 3.4 which we will study in detail in

the subsequent chapters.

3.1 An Introduction to Game Theory

In this section we give a brief overview on game theoretic terms and models used throughout

the thesis, and introduce the well known solution concepts for static and dynamic non-

cooperative games.

30 3 The Prediction Game

3.1.1 Basic Terms and Definitions

The participants of games, which could be individuals or groups of individuals, are referred

as players. Each player’s plan of action is called their strategy and the set of actions available

to a player is referred as their action set. Formally, a strategy is a probabilistic assignment

of a particular action to the observed state of the game. If each player chooses their

action deterministically, then this identical mapping is called a pure strategy, that is, the

probability of choosing this single action is one whereas all other actions are played with zero

probability. In this case, the terms strategy and action are often used interchangeably. The

concept of mixed strategy is more general in the way that each player chooses a probability

density over the whole space of possible actions. When playing a mixed strategy, the player’s

move is to randomly draw an action from the induced probability distribution.

The outcome of a game is one particular combination of actions and the implied costs (or

payoffs) for the players. Each player is aware that this outcome is affected by their and the

others chosen actions and that, consequently, their chosen action has an impact on the other

players’ decisions. In a non-cooperative game, the players are not allowed to communicate

while making their decisions. Hence, the players have only limited information about the

other players’ strategies and they have to make an assumption on what the other players

might do. To make reasonable conjectures, the players are assumed to act rationally in the

sense of securing their highest possible payoff. Under this assumption, the combination of

each player’s best plan of action can be characterized as equilibrium strategies. If all players

commit to one such combination, neither player has an incentive to change their plan of

actions solely. Hence, these game equilibria are combinations of strategies that rational

players are predicted to choose when they interact.

Games are characterized in terms of rules which describe how each player’s behavior

affects their and the other players’ payoffs. Amongst others, the rules cover information

on the participants of the game, their knowledge about each other, their possible actions,

their payoffs, and the order in which they choose their actions. By these rules, the following

classes of games can be distinguished.

Static and Dynamic Games

Games in which all players act simultaneously are referred as static games, Nash

games, or single-stage games (for example, rock-paper-scissors). By contrast, games

where players act in some predefined order and may make more than one move during

the game are called dynamic games, sequential games, or multi-stage games (for

example, poker). A dynamic game decouples into several stages where at each stage

a subset of the players simultaneously decide for their action, in the simplest case,

exactly one player per stage. If, in dynamic games, the move of each player can be

observed by the followers, then the players have perfect information; otherwise it is

a game of imperfect information. The special case of a two-player two-stage game of

perfect information is called a Stackelberg game.

3.1 An Introduction to Game Theory 31

Constant-Sum Games

In case of two players having diametrically opposed interests, the costs of both players

add to a constant for which reason such games are called constant-sum games or zero-

sum games, respectively, if the costs sum up to zero. Zero-sum games are typically

used to model worst-case scenarios where the gain of one player is the loss of the

other. However, most games are not constant-sum games, as there may be mutually

beneficial or mutually harmful outcomes for the players.

One-Shot and Repeated Games

Static as well as dynamic games can be played only once, referred as one-shot games,

or they can be played repeatedly, called repeated games. In the latter case, the players

aim at maximizing their payoffs over all finitely or infinitely many rounds of the game.

Therefore, the players will have to take the impact of their action on the outcome

of the current and future rounds into account. Note, that a repeated game is also

a dynamic game but not necessarily vice versa. For instance, poker is a dynamic

game where several players interact consecutively and each player may make several

moves. However, poker is not a repeated game. Only when participating in a poker

tournament one plays a repeated (dynamic) game.

Bayesian Games

The information of the players about each other (e.g., the players’ interests, their pos-

sible actions, etc.) are often incomplete which implies an additional element of risk.

Typically, this uncertainty is characterized by a probability distribution over the out-

come of the game where initial beliefs are factored in by priors. Such games are called

Bayesian games because of the probabilistic analysis inherent in such games. Notice,

that games of imperfect information can be transformed into dynamic Bayesian games

by using the so called Harsanyi transformation (see, for instance, Section 2.4 in [57]).

Discrete and Continuous Games

Games in which players choose from a finite set of actions are called discrete games. In

contrast, the concept of continuous games allows games to have more general action

sets of possibly uncountably many actions. In the special case where all players’

payoff functions are continuous, the game is called a continuous kernel game.

Games can be formalized in different ways. The two most common definitions are the

normal-form or strategic-form representation and the extensive-form representation. The

normal form of a game is often used to describe static games whereas the extensive form also

allows to capture sequential interactions such as in dynamic games. As we study mainly

static games in this thesis, we make use of the normal-form representation.

32 3 The Prediction Game

Definition 3.1. A game in normal form consists of

1. A finite, totally ordered set V of players v ∈ V , where v < v̄ implies that player v ∈ V

acts before player v̄ ∈ V and v = v̄ says that both players act simultaneously;

2. A non-empty set Av of possible actions av ∈ Av for each player v ∈ V ;

3. A cost function θv : ×v̄∈V Av̄ → R for each v ∈ V that specifies their cost at the

outcome of the game.

The definition given above differs to that used in literature insofar that we assumes an

ordered set of players to capture Stackelberg games as well; for static games, this ordering

amounts to an equality relation.

3.1.2 Solution Concepts

A feasible combination of strategies (or actions, when playing pure strategies) is called a

solution or strategy profile of a game. For static games, the most commonly used solution

concept is that of an Nash equilibrium (NE). An NE describes a steady state of the play

in which each player has a correct expectation about the other players’ behavior and acts

rationally. If all player commit to such a combination of equilibrium strategies, no player

gains a benefit by unilaterally selecting a different strategy. However, the concept of NE

does not attempt to examine the process by which a steady state is reached for which reason

some Nash equilibria may be more plausible then others.

Definition 3.2. A Nash equilibrium in pure strategies of a static game with player set

V = {1, . . . , k}, action sets A1, . . . , Ak, and cost functions θ1, . . . , θk is a combination of

actions (a1, . . . , ak) ∈ A1 × . . .×Ak with the property that for every player v ∈ V we have

θv(a1, . . . , av, . . . , ak) ≤ θv(a1, . . . , a
′
v, . . . , ak) ∀ a′v ∈ Av.

The concept of NE can also be defined in terms of the rational reaction sets A∗
v of the

players v ∈ P . These sets contain all actions that minimize the players’ costs for a given

combination of actions of all other players.

Definition 3.3. Assume we are given a game with player set V = {1, . . . , k}, action sets

A1, . . . , Ak, and cost functions θ1, . . . , θk. Then, the rational reaction set of player v ∈ V

for a given combination of actions a−v := (a1, . . . , av−1, av+1, . . . , ak) is defined by

A∗
v(a−v) :=

{
av ∈ Av

∣∣ θv(a1, . . . , av, . . . , ak) ≤ θv(a1, . . . , a
′
v, . . . , ak) ∀ a′v ∈ Av

} ⊆ Av.

By this definition, a combination of actions (a1, . . . , ak) ∈ A1 × . . .×Ak is an NE if, and

only if, av ∈ A∗
v(a1, . . . , av−1, av+1, . . . , ak) for all v = 1, . . . , k. Before presenting a visual

interpretation of NE with the help of rational reaction sets, we shall discuss a refinement

of this equilibrium to dynamic games called subgame perfect equilibrium (SPE). Similar

to NE, a subgame perfect (Nash) equilibrium is a steady state of a dynamic game where

3.1 An Introduction to Game Theory 33

neither player has an interest in changing their strategy solely. However, the SPE takes

the order at which the players make their decisions into account. Formally, a combination

of strategies is an SPE, if this strategy profile is an NE in each stage of the game, i.e., an

NE in all subgames of the dynamic game. An SPE is commonly identified by backward

induction where one first considers the final stage of the game and determines which actions

the players of this stage are supposed to choose. All of these action combinations are Nash

equilibria with respect to the players of that stage. This set establishes the joint action

space of the players in the second to last stage. Then, we determine the set of all NEs with

respect to the players of the last and the second to last stage which establishes the joint

action set of the players in the third to last stage and so on.

In the following we will illustrate the concept of SPE in pure strategies for Stackelberg

games, one of the simplest dynamic games. As mentioned before, a Stackelberg game is

a two-stage game of perfect information where in the first stage player v1 = 1, called the

leader, decides for an action. In the second stage, player v2 = 2, referred as the follower,

observes the leader’s decision and chooses their own action. Following the idea of backward

induction, an SPE of a Stackelberg game, a Stackelberg equilibrium, can be determined as

follows: We consider the last stage and specify the follower’s rational reaction set

A∗
2(a1) :=

{
a2 ∈ A2

∣∣∣∣ θ2(a1, a2) = min
a′2∈A2

θ2(a1, a
′
2)

}
,

that is, for any fixed action a1 ∈ A1 of the leader, set A
∗
2(a1) contains all actions which raise

minimal costs to the follower. These actions are of course Nash optimal as there is only one

player in the final stage. Considering the second to last stage (i.e., the first stage) of the

play, the rational reaction set A∗
2(a1) now becomes the follower’s action set. Hence, an SPE

of a Stackelberg game is an NE of the subgame with players p1 and p2 and action spaces

A1 and
⋃

a′1∈A1
A∗

2(a
′
1), i.e., a Stackelberg equilibrium is a pair of actions which satisfies

θ1(a1, a2) = min
a′1∈A1

θ1(a
′
1, a2)

θ2(a1, a2) = min
a′2∈A∗

2(a1)
θ2(a1, a

′
2)

where the latter condition is satisfied for all a2 ∈ A∗
2(a1) by definition. Therefore, an SPE

of a Stackelberg game can be specified as follows.

Definition 3.4. A subgame perfect equilibrium (SPE) in pure strategies of a Stackelberg

game with leader v1 = 1 and follower v2 = 2, action sets A1, A2, and cost functions θ1, θ2

is a solution (a1, a2) ∈ A1 ×A2 of the minimization problem

min
a1∈A1,a2∈A2

θ1(a1, a2)

s.t. θ2(a1, a2) = min
a′2∈A2

θ2(a1, a
′
2)

34 3 The Prediction Game

Figure 3.1: Exemplary objectives θ1 and θ2 of two players 1 (blue) and 2 (red) with one-dimensional
action spaces A1 = A2 = [0, 1]. The dashed dark gray curves indicate the players’ optimal response
curves, the solid curves show the corresponding (minimal) costs.

To illustrate the differences between NE and SPE, let us consider a continuous kernel

game with two players V = {1, 2}, action sets A1 = A2 = [0, 1], and continuous cost

functions θ1 and θ2 visualized in Figure 3.1. For the given cost functions, each player’s

rational reaction set A∗
v(a−v) is a singleton for any fixed a−v so that

⋃
a−v

A∗
v(a−v) reduces

to a curve. Hence, a pair of actions (a1, a2) ∈ A1 × A2 is an NE, if a1 = A∗
1(a2) and

a2 = A∗
2(a1). This means that the reaction curves intersect at this point. Figure 3.2 (right)

visualizes the reaction curves of both players and the intersection points, i.e., the Nash

equilibria NE1, NE2, and NE3. If both players act simultaneously, these points are stable

states of the game where both players have no incentive in solely deviating from their

strategy.

To understand the concept of SPE, let us now assume that player 1 acts before player 2.

No matter which action a1 ∈ A1 player 1 decides on, player 2 chooses an action out of their

corresponding rational reaction set A∗
2(a1), which is a singleton in our example. Player 2’s

choice raises costs θ1(a1, A
∗
2(a1)) to player 1. Player 1 is expected to minimize their costs

with respect to a1, that is, the action a1 ∈ A1 with minimal costs along player 2’s reaction

curve. Figure 3.2 shows the subgame perfect equilibrium SPE1; in the right figure, SPE1

is a point on player 2’s reaction curve A∗
2(a1) which is tangential to the contour curves of

player 1 (blue). Note that SPE as well as NE are not necessarily unique in general. If

there are several Nash equilibria, these combinations of actions are generally not equally

preferable (for instance, NE2 imposes higher costs to both players than NE1). In contrast,

if there are several subgame perfect equilibria of a Stackelberg game, each of these points

raise the same costs to the leader.

From Figure 3.2 (right) we can also conclude on the existence of NE. In our simple

example of two players with continuous cost functions and compact and non-empty action

3.2 Adversarial Prediction Problems 35

Figure 3.2: The left figure shows player 2’s objective θ2 (red surface) as in Figure 3.1 (right) and
player 1’s costs θ1(A

∗
1(a2), a2) and θ1(a1, A

∗
2(a1)), respectively, along the reaction curves of both

players. The right figure is a top view of the left plot. The contour curves visualize the players’
objectives and the dashed lines their reaction curves. Crosses mark equilibrium points.

spaces, the reaction curves A∗
1(a2) and A∗

2(a1) intersect at least once as they are continuous

and the image of A∗
1(a2) is a subset of the domain of A∗

2(a1) (and vice versa). Loosely

speaking, A∗
1(a2) is a continuous curve that connects the lower and the upper border of the

box in Figure 3.2 (right). Likewise, A∗
2(a1) is a continuous curve from the box’s left to right

border so that both curves have to intersect. For compact and non-empty action spaces,

A∗
2(a1) is compact and non-empty as well and, hence, there exists at least one minimizing

argument of θ1(a1, A
∗
2(a1)), i.e., an SPE. We discuss the existence and uniqueness of NE

and SPE for prediction games more detailed in Chapters 4.1 and 5.1.

3.2 Adversarial Prediction Problems

Before establishing a game theoretical model, we shall study common properties of adver-

sarial prediction problems. We notice that there are basically two types of players involved:

The first player type v1 = −1 is called the learner and the second v2 = +1 is called the data

generator. A learner selects a predictive model and a data generator chooses test objects

which are presented to the learner. Any combination of prediction model and test data

raises certain costs to the players. To detail on these costs and the rules of the game, let

us make the following considerations.

3.2.1 Number of Players

Prediction games often involve more than two players, that is, the learner and the data

generator generally subsume several individuals. Consider therefore our introductory ex-

36 3 The Prediction Game

amples: When fighting against spam emails, network intrusion, and credit card fraud, the

data are generally generated by several hundreds, thousands, or even millions of human cus-

tomers, computer programs, assailants, etc. Likewise, the generated data are often spread

over many parties, i.e., learners, such as email service providers, web hosters, and banks.

In practice, each of the indefinite number of players is equipped with an own action set

and an own cost function. To study the interaction between those parties, we make the

following simplifying assumption.

Assumption 3.1. All players of a prediction game interact non-cooperative and act rational

with respect to either the learner’s action space and cost function or the data generator’s

action space and cost function, that is, there is no competition among learners or among

data generators.

Based on this assumption, all learners and all data generators can be modeled as two

amalgamated players which we call learner and data generator. In our running example of

email spam filtering, we study the competition between recipient and senders, not compe-

tition among senders or among filter providers. This is reasonable as there is no conflict

between senders who are all interested in the transmission of their emails. This is true

for a legitimate email sender, who experiences costs when a legitimate email is erroneously

filtered out, just like for an abusive sender who experiences costs when their spam messages

are blocked.

3.2.2 Number of Repetitions

Beside the number of players, the way the players interact is of importance to describe the

interaction. In general, the interaction of the learner and the data generator is an ongoing

process: First the data generator chooses a data sample whereupon the learner constructs

a prediction model. In response, the data generator changes the data generation model and

produces a new sample whereupon the learner adapts their prediction model and so on.

As discussed in the previous section, game theory provides us with various game models to

anticipate this interaction.

At the first sight, the players’ interaction can be considered as a repeated game, since

it is an ongoing process. However, this would imply that both players aim at minimizing

their costs over a (possibly infinite) period of time at the expense of accepting high costs in

a single round. In practice, this seems implausible as, for instance, spam senders typically

rent botnets1 to sent batches of spam emails with the goal of maximizing their profit for each

single spam campaign. The same is true for credit card fraudsters who would increase the

risk of getting caught when not focusing on each single “round”. Likewise, the performance

of a spam filter or intrusion detection system must not fall far short just to improve the

prediction quality someday. That is why we believe that the ongoing interaction between

learner and data generator decouples into a sequence of one-shot games.

1A number of mostly home-based computers connect to the Internet that, although their owners are
unaware of it, have been compromised by malicious software to send spam emails, spread viruses, perform
DoS attacks, etc.

3.3 Modeling the Prediction Game 37

Assumption 3.2. The repeating interactions of the learner and the data generator decouple

into a sequence of one-shot prediction games where the players minimize their costs for each

round separately.

Even when considering one-shot games, these games are not independent as, of course,

each player is expected to employ all prior knowledge on their opponent including the

(partially) observed outcome of the previous game. For instance, the learner observes the

true test data of the previous game which may become part of the training data in the next

round. However, the players are not expected to conduct an exploration phase (such as in

repeated games) where the players choose an action just to increase the knowledge about

their opponent and, thereby, disregarding their own costs in this round.

3.3 Modeling the Prediction Game

In this section we formalize the adversarial prediction problem as an one-shot continuous

kernel game of complete information which addresses the previously made considerations.

The goal is to (approximately) anticipate the opponents action with the help of the observed

training data and potential prior knowledge on the players V = {−1,+1}.
In the past, the data generator v1 = +1 produced a sample D = {(xi, yi)}ni=1 of n training

instances xi ∈ X with corresponding class labels yi ∈ Y = {−1,+1} using the unknown data

generation model γ. These object-class pairs are drawn according to a training distribution

with density function pXY|Γ=γ(x , y). By contrast, future object-class pairs, produced by

the data generator at application time with generation model γ̇, are drawn from some test

distribution with density pXY|Γ=γ̇ which may significantly differ from pXY|Γ=γ .

Recall from the previous chapter, that the task of the learner v1 = −1 is to select the

parameter values w ∈ W ⊂ R
m of a predictive model hw(x) = sign gw(x) implemented in

terms of a linear function gw : X → R with gw(x) = wTφ(x) and feature mapping φ :

X → R
m. The learner’s theoretical costs equal the generalization error (cf. Equation 2.5)

at application time which is given by

θ−1(w, pXY|Γ=γ̇) =

∫
X×Y

c−1(x , y)�−1(gw(x), y) pXY|Γ=γ̇(x , y) d(x , y).

Here, weighting function c−1 : X × Y → R
+ and loss function �−1 : R × Y → R

+ detail

the weighted loss c−1(x , y)�−1(gw(x), y) that the learner incurs when the predictive model

classifies instance x as h(x) = sign gw(x) while the true label is y . The positive class-

and instance-specific weighting factors c−1(x , y) with EXY|Γ=γ̇ [c−1(x , y)] = 1 specify the

importance of minimizing the loss �−1(gw(x), y) for the corresponding object-class pair

(x , y). For instance, in spam filtering, the correct classification of non-spam messages can

be business-critical for email service providers while failing to detect spam messages runs

up processing and storage costs, depending on the size of the message.

The data generator v2 = +1 can modify the data generation process from γ to γ̇. For in-

stance, in practice, spam senders update their campaign templates which are disseminated

38 3 The Prediction Game

to the nodes of botnets. This transformation shifts the training distribution with density

pXY|Γ=γ to the test distribution with density pXY|Γ=γ̇ . The data generator incurs trans-

formation costs by modifying the data generation process which is quantified by Ω+1(γ, γ̇).

This term acts as a regularizer on the transformation and may implicitly constrain the

space of possible distribution shifts, depending on the nature of the application that is to

be modeled. For instance, the email sender may not be allowed to alter the training dis-

tribution for non-spam messages, or to modify the nature of the messages by changing the

label from spam to non-spam or vice versa. Additionally, changing the training distribution

for spam messages may run up costs depending on the extent of distortion inflicted on the

informational payload. The theoretical costs of the data generator at application time are

the sum of the expected prediction costs and the transformation costs,

θ+1(w, pXY|Γ=γ̇) =

∫
X×Y

c+1(x , y)�+1(gw(x), y) pXY|Γ=γ̇(x , y) d(x , y) + Ω+1(γ, γ̇),

where, in analogy to the learner’s costs, c+1(x , y)�+1(gw(x), y) quantifies the weighted loss

that the data generator incurs when instance x is labeled as h(x) = sign gw(x) while the

true class is y . The weighting factors c+1(x , y) with EXY|Γ=γ̇ [c+1(x , y)] = 1 express the

significance of (x , y) from the perspective of the data generator. In our example scenario,

this allows to reflect that costs of correctly or incorrectly classified instances may vary

greatly across different physical senders that are aggregated into the amalgamated player.

Since the theoretical costs of both players depend on the unknown data generation models

γ and γ̇, they can, for all practical purposes, not be calculated. We can formulate this

uncertainty about the true theoretical costs as a Bayesian game by explicitly modeling the

distribution PXY|Γ=γ̇ , which yields a generative model. However, this would dramatically

increase the complexity of the model. Moreover, in classification, generative models are

generally less powerful than discriminative predictors. Hence, we abstain from modeling the

joint test distribution and focus on regularized, empirical counterparts (cf. Equation 2.25)

of the theoretical costs based on the training sample D. The empirical estimate Ω+1(D, Ḋ)

of the data generator’s regularizer Ω+1(γ, γ̇) penalizes the divergence between training

sample D = {(xi, yi)}ni=1 and a perturbated training sample Ḋ = {(ẋi, yi)}ni=1 that would

be the outcome of applying the transformation that translates pXY|Γ=γ into pXY|Γ=γ̇ to

sample D. The learner’s cost function, instead of integrating over pXY|Γ=γ̇ , sums over the

elements of the perturbated training sample Ḋ.

The empirical costs incurred by the predictive model hw(x) = sign gw(x) with parameter

vector w and the shift from pXY|Γ=γ to pXY|Γ=γ̇ amount to

θ̂−1(w, Ḋ) =
n∑

i=1

c−1,i�−1(gw(ẋi), yi) + ρ−1Ω−1(w), (3.1)

θ̂+1(w, Ḋ) =
n∑

i=1

c+1,i�+1(gw(ẋi), yi) + ρ+1Ω+1(D, Ḋ), (3.2)

where we have replaced the weighting terms 1
ncv(ẋi, yi) by constant cost factors cv,i > 0

3.4 Classes of Prediction Games 39

with
∑

i cv,i = 1. The trade-off between the empirical loss and the regularizer is controlled

by each player’s regularization parameter ρv > 0 for v ∈ V = {−1,+1}.
Both players’ empirical cost functions can still only be evaluated after the learner has

committed to parameters w and the data generator to a transformation of the data genera-

tion process. However this transformation needs only be represented in terms of the effects

that it will have on the training sample D, that is, Ḋ.

The learner’s regularizer Ω−1(w) in (3.1) accounts for the fact that Ḋ does not constitute

the future test data itself, but is merely a training sample transformed to reflect the test

distribution and then used to learn the model parameters w. Future test instances will be

generated under pXY|Γ=γ̇ at application time after both players have committed to their

actions.

Note, that either player’s empirical costs θ̂v depend on both players’ actions w ∈ W and

Ḋ ∈ (X × Y)n, respectively. Because of the potentially conflicting players’ interests, the

decision process for w and Ḋ becomes a non-cooperative two-player game which we call a

prediction game.

Definition 3.5. A prediction game is a non-cooperative continuous kernel game of complete

information with

1. Player set V := {−1,+1}, where −1 denotes the learner and +1 denotes the data

generator;

2. Non-empty, compact, and convex action sets A−1 := W and A+1 := (X × Y)n;

3. Continuous cost functions θ̂v(w, Ḋ) for v ∈ V as defined in (3.1) and (3.2).

Depending of the order at which the players interact, one can identify distinct classes of

prediction games. We briefly discuss these classes in the next section.

3.4 Classes of Prediction Games

As previously discussed, the order at which the players decide for an action establishes

different game settings. In one-shot games one can distinguish between three cases.

First, the learner and the data generator are assumed to make their decisions simulta-

neously. This setting amounts to a static game in which both players decide for an action

before observing their opponents’ move. We study this kind of interaction, that is, Nash

prediction games, in Chapter 4. The assumption of simultaneously acting players can,

for example, be motivated by outbound spam filtering. Here, the sender has to make an

estimate of the spam filter before sending the emails. When ignoring the filter, the sender’s

email account is likely to be blocked by the email service provider. Hence, there are little

chances for the sender to react on the filter after its release. Likewise, the learner has to

predict the sender’s action in advance, since making a wrong prediction on the class label

of outgoing emails may cause the server to be blocked by other email service providers. As

40 3 The Prediction Game

for the sender, there would be no or only little time to react in order to keep the service

available.

In the second case we consider a learner who moves before the data generator. Here, the

learner first chooses a predictive model. Then, the data generator observes the learner’s

action and reacts by deciding for their own move. To decide on their action, the learner has

to anticipate the move of the data generator in advance, which establishes a Stackelberg

prediction game (cf. Chapter 5). A special kind of a Stackelberg game is the zero-sum

prediction game in which case both players’ interests are antagonistic, i.e., a worst-case

setting. Stackelberg prediction games address, for instance, the problem of client-side spam

filtering where the spam filter is regularly released by some network security provider. Here,

the filter has to be designed so that it anticipates the sender’s move within two release cycles

whereas the sender can somehow optimally react on a released filter.

Finally, we suppose that the learner has to respond on the data generator, that is, the

data generator is expected to move first by producing a sample of (test) data. These data

instances, but not the corresponding target attributes, are then observed by the learner who

builds a predictive model based on the training data and this unlabeled sample. As the

data generator potentially chose their action in response to a previous prediction model,

the underlying distribution of the test and the training sample may significantly differ.

In this setting, which we discuss in Chapter 6, the data generator’s move is fixed before

the learner has to decide for a predictor, so that the learning problem reduces to learning

under covariate shift. In the example of email spam filtering, this model reflects the

scenario of a server-side inbound spam filter. Here, the learner has to make decisions on a

variety of newly incoming emails without or late getting feedback on the class labels by the

users. These emails are assumed to be the data generator’s move, chosen in response to a

previously released spam filter.

In all three cases we only focus on a game-theoretical optimal move of the learner. That

is, we do not answer the question what an optimal change of the data generation process

would be, as we never model the future data generation process but its effect on the training

data.

4 Nash Prediction Games

In this chapter we study static prediction games in which both players act simultaneously.

We call this class of prediction games Nash prediction games.

To identify the learner’s optimal action, we establish the concept of Nash equilibrium

of prediction games in Section 4.1. A Nash equilibrium is a pair of actions chosen so

that no player gains a benefit by unilaterally selecting a different action. If a game has a

unique Nash equilibrium and is played by rational players that aim at maximizing their

optimization criteria, it is reasonable for each player to assume that the opponent will

follow the Nash equilibrium. If one player follows the Nash equilibrium, the optimal move

for the other player is to follow this equilibrium as well. If, however, multiple equilibria

exist and the players choose their action according to distinct ones, then the resulting

combination may be arbitrarily disadvantageous for either player. We therefore study in

Section 4.1.2 whether prediction games have a unique Nash equilibrium. In Section 4.2

we derive two algorithms to identify the unique Nash equilibrium, in case it exists. The

first algorithm computes the minimax solution of the Nikaido-Isoda function which is by

construction a solution of the Nash prediction game, too. In the second algorithm, we

reformulate the Nash prediction game into a variational inequality problem which is then

solved by a modified extragradient method. In Section 4.3 we study the applicability of

general kernel function, and present two instances of Nash prediction games in Section 4.4:

Nash logistic regression and the Nash support vector machine. Related work is discussed

in Section 4.5. Finally, in Section 4.6, we empirically verify the assumptions made in the

modeling process and compare the performance of Nash instances with baseline methods

on several email corpora, including a corpus from an email service provider.

4.1 Nash Solution to Prediction Games

As discussed in Section 3.1, the outcome of a prediction game (cf. Definition 3.5) is one

particular combination of actions (w∗, Ḋ∗) that runs up costs θ̂v(w
∗, Ḋ∗) for the players.

Each player is aware that this outcome is affected by both players’ actions and that, con-

sequently, their potential to choose an action can have an impact on the other player’s

decision.

In this chapter, we model this decision process for w∗ and Ḋ∗ as a static two-player

game with complete information, that is, a game where both players commit to an action

simultaneously and know their opponent’s cost function and action space. In addition, we

assume that both players act rationally in the sense of seeking the greatest possible personal

advantage. This leads to so called equilibrium strategies which form steady states of the

42 4 Nash Prediction Games

game in which neither player has an incentive to unilaterally change their plan of actions.

In static games, equilibrium strategies are called Nash equilibria, which is why we refer to

the resulting predictive model as Nash prediction game (NPG). In a two-player game, a

Nash equilibrium is defined as a pair of actions so that no player can benefit from changing

their action solely, that is,

θ̂−1(w
∗, Ḋ∗) = min

w∈W
θ̂−1(w, Ḋ∗),

θ̂+1(w
∗, Ḋ∗) = min

Ḋ∈(X×Y)n
θ̂+1(w

∗, Ḋ),

where W and (X × Y)n denote the players’ action sets.

However, a static prediction game may not have a Nash equilibrium, or it may possess

multiple equilibria. If (w∗, Ḋ∗) and (w′, Ḋ′) are distinct Nash equilibria and each player

decides to act according to a different one of them, then combinations (w∗, Ḋ′) and (w′, Ḋ∗)
may incur arbitrarily high costs for both players. Hence, one can argue that it is rational

for the players to play a Nash equilibrium only when the following assumption is satisfied.

Assumption 4.1. The following statements hold:

1. Both players choose their actions simultaneously;

2. Both players have full knowledge about both (empirical) cost functions θ̂v(w, Ḋ) de-

fined in (3.1) and (3.2), and both action sets W and (X × Y)n;

3. Both players act rational with respect to their cost function in the sense of securing

their lowest possible costs;

4. A unique Nash equilibrium exists.

Whether Assumptions 4.1.1-4.1.3 are adequate—especially, the assumption of simultane-

ous actions—strongly depends on the application. For example, in some applications the

data generator may unilaterally be able to acquire information about the model parameters

w before committing to Ḋ. Such situations are better modeled as a Stackelberg compe-

tition (cf. Section 5). On the other hand, when the learner is able to treat any executed

action as part of the training data D and update the parameter vector w, the setting is

better modeled as repeated executions of a static game with simultaneous actions. The

adequateness of Assumption 4.1.4, which we discuss in the following sections, depends on

the chosen loss functions, the cost factors, and the regularizers.

4.1.1 Existence of a Nash Equilibrium

In this section we will derive sufficient conditions for the existence of a Nash equilibrium.

To this end, we first define

x :=
[
φ(x1)

T,φ(x2)
T, . . . ,φ(xn)

T
]T ∈ φ(X)n ⊂ R

m·n,

ẋ :=
[
φ(ẋ1)

T,φ(ẋ2)
T, . . . ,φ(ẋn)

T
]T ∈ φ(X)n ⊂ R

m·n,

4.1 Nash Solution to Prediction Games 43

as long, concatenated, column vectors induced by feature mapping φ, training sample

D = {(xi, yi)}ni=1, and transformed training sample Ḋ = {(ẋi, yi)}ni=1, respectively. For ter-

minological harmony, we refer to vector ẋ as the data generator’s action with corresponding

action space φ(X)n, where we assume that the data generator is not allowed to modify the

target attribute of an object.

We make the following assumptions on the action spaces and the cost functions which

enables us to state the main result on the existence of at least one Nash equilibrium in

Lemma 4.1.

Assumption 4.2. The players’ cost functions defined in Equations 3.1 and 3.2, and their

action spaces W and φ(X)n satisfy the properties:

1. Loss functions �v(z, y) with v ∈ {−1,+1} are convex and twice-continuously differen-

tiable with respect to z ∈ R for all fixed y ∈ Y;

2. Regularizers Ωv are uniformly strongly convex and twice-continuously differentiable

with respect to w ∈ W and ẋ ∈ φ(X)n, respectively;

3. Action spaces W and φ(X)n are non-empty, compact, and convex subsets of finite-

dimensional Euclidean spaces R
m and R

m·n, respectively.

Lemma 4.1. Under Assumption 4.2, at least one equilibrium point (w∗, ẋ∗) ∈ W ×φ(X)n

of the Nash prediction game defined by

min
w

θ̂−1(w, ẋ∗) min
ẋ

θ̂+1(w
∗, ẋ)

s.t. w ∈ W s.t. ẋ ∈ φ(X)n
(4.1)

exists.

Proof. Each player v’s cost function is a sum over n loss terms resulting from loss function �v

and regularizer Ωv. By Assumption 4.2, these loss functions are convex and continuous, and

the regularizers are uniformly strongly convex and continuous. Hence, both cost functions

θ̂−1(w, ẋ) and θ̂+1(w, ẋ) are continuous in all arguments and uniformly strongly convex in

w ∈ W and ẋ ∈ φ(X)n, respectively. As both action spaces W and φ(X)n are non-empty,

compact, and convex subsets of finite-dimensional Euclidean spaces, a Nash equilibrium

exists—see Theorem 4.3 of [3].

4.1.2 Uniqueness of the Nash Equilibrium

We will now derive conditions for the uniqueness of an equilibrium of the Nash prediction

game defined in (4.1). We first reformulate the two-player game into an (n + 1)-player

game. In Lemma 4.2 we then present a sufficient condition for the uniqueness of the Nash

equilibrium in this game, and by applying Proposition 4.4 and Lemma 4.5-4.7 we verify

whether this condition is met. Finally, we state the main result in Theorem 4.8: The Nash

equilibrium is unique under certain properties of the loss functions, the regularizers, and

the cost factors which all can be verified easily.

44 4 Nash Prediction Games

Taking into account the Cartesian product structure of the data generator’s action space

φ(X)n, it is not difficult to see that (w∗, ẋ∗) with ẋ∗ =
[
ẋ∗T
1 , . . . , ẋ∗T

n

]T
and ẋ∗

i := φ(ẋ ∗
i) is

a solution of the two-player game if, and only if, (w∗, ẋ∗
1, . . . , ẋ

∗
n) is a Nash equilibrium of

the (n+ 1)-player game defined by

min
w

θ̂−1(w, ẋ) min
ẋ1

θ̂+1(w, ẋ) · · · min
ẋn

θ̂+1(w, ẋ)

s.t. w ∈ W s.t. ẋ1 ∈ φ(X) · · · s.t. ẋn ∈ φ(X)
, (4.2)

which results from (4.1) by repeating n times the cost function θ̂+1 and minimizing this

function with respect to ẋi ∈ φ(X) for i = 1, . . . , n. Then, the pseudo-gradient (in the

sense of Rosen, [59]) of the game in (4.2) is defined by

gr(w, ẋ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

r0∇wθ̂−1(w, ẋ)

r1∇ẋ1 θ̂+1(w, ẋ)

r2∇ẋ2 θ̂+1(w, ẋ)
...

rn∇ẋn θ̂+1(w, ẋ)

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ R

m+m·n, (4.3)

with any fixed vector r = [r0, r1, . . . , rn]
T where ri > 0 for i = 0, . . . , n. The derivative of

gr, that is, the pseudo-Jacobian of (4.2), is given by

Jr(w, ẋ) := D

[
∇2

w,wθ̂−1(w, ẋ) ∇2
w,ẋθ̂−1(w, ẋ)

∇2
ẋ,wθ̂+1(w, ẋ) ∇2

ẋ,ẋθ̂+1(w, ẋ)

]
,

where

D :=

⎡
⎢⎢⎢⎢⎣

r0Im 0 · · · 0

0 r1Im · · · 0
...

...
. . .

...

0 0 · · · rnIm

⎤
⎥⎥⎥⎥⎦ ∈ R

(m+m·n)×(m+m·n).

Notice, that these derivatives, i.e., pseudo-gradient gr and pseudo-Jacobian Jr, exist in

view of Assumption 4.2. The above definition of the pseudo-Jacobian enables us to state

the following result about the uniqueness of a Nash equilibrium.

Lemma 4.2. Let Assumption 4.2 hold and suppose there exists a fixed vector

r = [r0, r1, . . . , rn]
T with ri > 0 for all i = 0, 1, . . . , n so that the corresponding pseudo-

Jacobian Jr(w, ẋ) is positive definite for all (w, ẋ) ∈ W×φ(X)n. Then, the Nash prediction

game in (4.1) has a unique equilibrium.

Proof. The existence of a Nash equilibrium follows from Lemma 4.1. To prove the unique-

ness, recall from our previous discussion, that the original Nash game in (4.1) has a unique

solution if, and only if, the game from (4.2) with one learner and n data generators admits

a unique solution. In view of Theorem 2 of [59], the latter attains a unique solution if the

pseudo-gradient gr is strictly monotone, i.e., for all actions w,w′ ∈ W and ẋ, ẋ′ ∈ φ(X)n

4.1 Nash Solution to Prediction Games 45

inequality

(
gr(w, ẋ)− gr(w

′, ẋ′)
)T ([

w

ẋ

]
−

[
w′

ẋ′

])
> 0

holds. A sufficient condition for this pseudo-gradient being strictly monotone is the positive

definiteness of the pseudo-Jacobian Jr (see e.g., Theorem 7.11 in [34] or Theorem 6 in [59]).

To verify if the condition of Lemma 4.2 is satisfied, we analyze the pseudo-Jacobian

Jr(w, ẋ). Throughout this thesis, we denote by �′v(z, y) and �′′v(z, y) the first and second

derivative of the mapping �v(z, y) with respect to z ∈ R. A direct calculation shows that

the first-order partial derivatives are given by

∇wθ̂−1(w, ẋ) =

n∑
i=1

c−1,i�
′
−1(ẋ

T
i w, yi)ẋi + ρ−1∇wΩ−1(w), (4.4)

∇ẋi θ̂+1(w, ẋ) = c+1,i�
′
+1(ẋ

T
i w, yi)w + ρ+1∇ẋiΩ+1(x, ẋ). (4.5)

This allows us to calculate the entries of the pseudo-Jacobian:

∇2
w,wθ̂−1(w, ẋ) =

n∑
i=1

c−1,i�
′′
−1(ẋ

T
i w, yi)ẋiẋ

T
i + ρ−1∇2

w,wΩ−1(w),

∇2
w,ẋi

θ̂−1(w, ẋ) = c−1,i�
′′
−1(ẋ

T
i w, yi)ẋiw

T + c−1,i�
′
−1(ẋ

T
i w, yi)Im,

∇2
ẋi,wθ̂+1(w, ẋ) = c+1,i�

′′
+1(ẋ

T
i w, yi)wẋT

i + c+1,i�
′
+1(ẋ

T
i w, yi)Im,

∇2
ẋi,ẋj

θ̂+1(w, ẋ) =

{
c+1,i�

′′
+1(ẋ

T
i w, yi)wwT + ρ+1∇2

ẋi,ẋi
Ω+1(x, ẋ) , if i = j,

ρ+1∇2
ẋi,ẋj

Ω+1(x, ẋ) , if i �= j.

Let us define the matrix

Υ(w, ẋ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— ẋT
1— 0 · · · 0
...

...
...

— ẋT
n— 0 · · · 0

0 — wT— 0
...

. . .

0 0 — wT—

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

2n×(m+m·n),

and let us denote the smallest eigenvalues of the Hessians of the regularizers on the corre-

sponding action spaces W and φ(X)n by

λ−1 := inf
w∈W

λmin

(∇2
w,wΩ−1(w)

)
, (4.6)

λ+1 := inf
ẋ∈φ(X)n

λmin

(∇2
ẋ,ẋΩ+1(x, ẋ)

)
, (4.7)

where λmin(A) denotes the smallest eigenvalue of the symmetric matrix A.

46 4 Nash Prediction Games

Remark 4.3. Note that the minimum in (4.6) and (4.7) is attained and is strictly positive:

The mapping λmin : Mk×k → R is concave on the set of symmetric matrices Mk×k of

dimension k × k (cf. Example 3.10 in [13]), and in particular, it therefore follows that this

mapping is continuous. Furthermore, the mappings u−1 : W → Mm×m with u−1(w) :=

∇2
w,wΩ−1(w) and u+1 : φ(X)n → Mm·n×m·n with u+1(ẋ) := ∇2

ẋ,ẋΩ+1(x, ẋ) are continuous

(for any fixed x) by Assumption 4.2. Hence, the mappings w 	→ λmin(u−1(w)) and ẋ 	→
λmin(u+1(ẋ)) are also continuous since each is precisely the composition λmin ◦ uv of the

continuous functions λmin and uv for v ∈ {−1,+1}. Taking into account that a continuous

mapping on a non-empty compact set attains its minimum, it follows that there exist

elements w ∈ W and ẋ ∈ φ(X)n so that

λ−1 = λmin

(∇2
w,wΩ−1(w)

)
,

λ+1 = λmin

(∇2
ẋ,ẋΩ+1(x, ẋ)

)
.

Moreover, since the Hessians of the regularizers are positive definite by Assumption 4.2, we

see that λv > 0 holds for v ∈ {−1,+1}. �

Using the definition of Υ(w, ẋ), λv, and the abbreviations

�′v,i := �′v(ẋ
T
i w, yi) i = 1, . . . , n,

�′′v,i := �′′v(ẋ
T
i w, yi) i = 1, . . . , n,

Gv := diag(cv,1�
′′
v,1, . . . , cv,n�

′′
v,n) ∈ R

n×n

for both players v ∈ {−1,+1}, we can summarize the previous discussion.

Proposition 4.4. The pseudo-Jacobian has the representation

Jr(w, ẋ) = J
(1)
r (w, ẋ) + J

(2)
r (w, ẋ) + J

(3)
r (w, ẋ) (4.8)

where

J
(1)
r (w, ẋ) := DΥ(w, ẋ)T

[
G−1 G−1

G+1 G+1

]
Υ(w, ẋ),

J
(2)
r (w, ẋ) := D

⎡
⎢⎢⎢⎢⎣

ρ−1λ−1Im c−1,1�
′−1,1Im · · · c−1,n�

′−1,nIm

c+1,1�
′
+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c+1,n�
′
+1,nIm 0 · · · ρ+1λ+1Im

⎤
⎥⎥⎥⎥⎦ ,

J
(3)
r (w, ẋ) := D

[
ρ−1∇2

w,wΩ−1(w)− ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ+1(x, ẋ)− ρ+1λ+1Im·n

]
.

Recall, that we want to investigate whether there is some fixed positive vector r so that

Jr(w, ẋ) is positive definite for each pair of actions (w, ẋ) ∈ W×φ(X)n. A sufficient condi-

tion for the pseudo-Jacobian Jr(w, ẋ) to be positive definite is that J
(1)
r (w, ẋ), J

(2)
r (w, ẋ),

4.1 Nash Solution to Prediction Games 47

and J
(3)
r (w, ẋ) are positive semi-definite and at least one of these matrices is positive def-

inite. Before discussing these matrices separately, let us define r0 := 1, ri :=
c−1,i

c+1,i
> 0 for

all i = 1, . . . , n, with corresponding matrix

D :=

⎡
⎢⎢⎢⎢⎣

Im 0 · · · 0

0
c−1,1

c+1,1
Im · · · 0

...
...

. . .
...

0 0 · · · c−1,n

c+1,n
Im

⎤
⎥⎥⎥⎥⎦ , (4.9)

and let us make the following assumption on the loss functions �v and the regularizers Ωv

for v ∈ {−1,+1}. Instances of these functions satisfying Assumptions 4.2 and 4.3 will be

given in Section 4.4.

Assumption 4.3. For all w ∈ W and ẋ ∈ φ(X)n with ẋ =
[
ẋT
1 , . . . , ẋ

T
n

]T
the following

conditions are satisfied:

1. Both players’ loss functions have the same curvature, that is, the second derivatives

of the loss functions are equal for all y ∈ Y and i = 1, . . . , n,

�′′−1(gw(ẋi), y) = �′′+1(gw(ẋi), y),

2. Both players’ regularization parameters satisfy

ρ−1ρ+1 > τ2
1

λ−1λ+1
cT−1c+1,

where λ−1, λ+1 are the smallest eigenvalues of the Hessians of the regularizers specified

in (4.6) and (4.7), cv = [cv,1, cv,2, . . . , cv,n]
T, and

τ = sup
(x,y)∈φ(X)×Y

1

2

∣∣�′−1(gw(x), y) + �′+1(gw(x), y)
∣∣ , (4.10)

3. For all i = 1, . . . , n, either both players have equal instance-specific cost factors,

c−1,i = c+1,i, or the partial derivative ∇ẋiΩ+1(x, ẋ) of the data generator’s regularizer

is independent of ẋj for all j �= i.

Notice, that τ in Equation 4.10 can be chosen finite as the set φ(X) × Y is assumed to

be compact, and consequently, the values of both continuous mappings �′−1(gw(x), y) and

�′+1(gw(x), y) are finite for all (x, y) ∈ φ(X)× Y.

Lemma 4.5. Let (w, ẋ) ∈ W × φ(X)n be arbitrarily given. Under Assumptions 4.2 and

4.3, the matrix J
(1)
r (w, ẋ) is symmetric positive semi-definite (but not positive definite) for

D defined as in Equation 4.9.

Lemma 4.6. Let (w, ẋ) ∈ W × φ(X)n be arbitrarily given. Under Assumptions 4.2 and

4.3, the matrix J
(2)
r (w, ẋ) is positive definite for D defined as in Equation 4.9.

48 4 Nash Prediction Games

Lemma 4.7. Let (w, ẋ) ∈ W × φ(X)n be arbitrarily given. Under Assumptions 4.2 and

4.3, the matrix J
(3)
r (w, ẋ) is positive semi-definite for D defined as in Equation 4.9.

The previous lemmas, whose proofs can be found in the appendix, guarantee the existence

and uniqueness of a Nash equilibrium under the stated assumptions.

Theorem 4.8. Let Assumptions 4.2 and 4.3 hold. Then the Nash prediction game in (4.1)

has a unique equilibrium.

Proof. The existence of an equilibrium of the Nash prediction game in (4.1) follows from

Lemma 4.1. Proposition 4.4 and Lemma 4.5 to 4.7 imply that there is a positive diagonal

matrix D so that Jr(w, ẋ) is positive definite for all (w, ẋ) ∈ W × φ(X)n. Hence, the

uniqueness follows from Lemma 4.2.

4.2 Finding the Unique Nash Equilibrium

According to Theorem 4.8, a unique equilibrium of the Nash prediction game in (4.1) exists

for suitable loss functions and regularizers. To find this equilibrium, we derive and study

two distinct methods: The first is based on the Nikaido-Isoda function that is constructed

so that a minimax solution of this function is an equilibrium of the Nash prediction game

and vice versa. This problem is then solved by inexact linesearch. In the second approach,

we reformulate the Nash prediction game into a variational inequality problem which is

solved by a modified extragradient method.

The data generator’s action of transforming the input distribution manifests in a con-

catenation of transformed training instances ẋ ∈ φ(X)n mapped into the feature space

ẋi := φ(ẋi) for i = 1, . . . , n, and the learner’s action is to choose weight vector w ∈ W of

classifier hw(x) = sign gw(x) with gw(x) = wTφ(x).

4.2.1 An Inexact Linesearch Approach

To solve for a Nash equilibrium, we again consider the game from (4.2) with one learner and

n data generators. A solution of this game can be identified with the help of the weighted

Nikaido-Isoda function (Equation 4.11). For any two combinations of actions (w, ẋ) ∈
W × φ(X)n and (w′, ẋ′) ∈ W × φ(X)n with ẋ =

[
ẋT
1 , . . . , ẋ

T
n

]T
and ẋ′ =

[
ẋ′T
1 , . . . , ẋ′T

n

]T
,

this function is the weighted sum of relative cost savings that the n+1 players can enjoy by

changing from strategy w to w′ and ẋi to ẋ′
i, respectively, while the other players continue

to play according to (w, ẋ), that is,

ϑr(w, ẋ,w′, ẋ′) := r0

(
θ̂−1(w, ẋ)− θ̂−1(w

′, ẋ)
)
+

n∑
i=1

ri

(
θ̂+1(w, ẋ)− θ̂+1(w, ẋ(i))

)
, (4.11)

where ẋ(i) :=
[
ẋT
1 , . . . , ẋ

′T
i , . . . , ẋT

n

]T
. Let us denote the weighted sum of greatest possible

cost savings with respect to any given combination of actions (w, ẋ) ∈ W × φ(X)n by

ϑ̄r(w, ẋ) := max
(w′,ẋ′)∈W×φ(X)n

ϑr(w, ẋ,w′, ẋ′), (4.12)

4.2 Finding the Unique Nash Equilibrium 49

where (w̄(w, ẋ), x̄(w, ẋ)) denotes the corresponding pair of maximizers. Notice, that the

maximum in (4.12) is attained for any (w, ẋ), since W ×φ(X)n is assumed to be compact

and ϑr(w, ẋ,w′, ẋ′) is continuous in (w′, ẋ′).

By these definitions, a combination (w∗, ẋ∗) is an equilibrium of the Nash prediction game

if, and only if, ϑ̄r(w
∗, ẋ∗) is a global minimum of mapping ϑ̄r with ϑ̄r(w

∗, ẋ∗) = 0 for any

fixed weights ri > 0 and i = 0, . . . , n (cf. Proposition 2.1(b) of [43]). Equivalently, a Nash

equilibrium simultaneously satisfies both equations w̄(w∗, ẋ∗) = w∗ and x̄(w∗, ẋ∗) = ẋ∗.

The significance of this observation is that the equilibrium problem in (4.1) can be re-

formulated into a minimization problem of the continuous mapping ϑ̄r(w, ẋ). To solve this

minimization problem, we make use of Corollary 3.4 of [43]. We set the weights r0 := 1 and

ri :=
c−1,i

c+1,i
for all i = 1, . . . , n as in (4.9) which ensures the main condition of Corollary 3.4,

that is, the positive definiteness of the Jacobian Jr(w, ẋ) in (4.8) (cf. proof of Theorem 4.8).

According to this corollary, vectors

d−1(w, ẋ) := w̄(w, ẋ)−w and d+1(w, ẋ) := x̄(w, ẋ)− ẋ

form a descent direction d(w, ẋ) := [d−1(w, ẋ)T,d+1(w, ẋ)T]T of ϑ̄r(w, ẋ) at any posi-

tion (w, ẋ) ∈ W × φ(X)n (except for the Nash equilibrium where d(w∗, ẋ∗) = 0), and

consequently, there exists t ∈ [0, 1] so that

ϑ̄r(w + td−1(w, ẋ), ẋ+ td+1(w, ẋ)) < ϑ̄r(w, ẋ).

Since, (w, ẋ) and (w̄(w, ẋ), w̄(w, ẋ)) are feasible combinations of actions, the convexity of

the action spaces ensures that (w + td−1(w, ẋ), ẋ + td+1(w, ẋ)) is a feasible combination

for any t ∈ [0, 1] as well. Algorithm 2 exploits these properties.

Algorithm 2 ILS: Inexact Linesearch Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (3.1) and (3.2), and action spaces W and φ(X)n.

1: Select initial w(0) ∈ W, set ẋ(0) := x, set k := 0, and select σ ∈ (0, 1) and β ∈ (0, 1).

2: Set r0 := 1 and ri :=
c−1,i

c+1,i
for all i = 1, . . . , n.

3: repeat

4: Set d
(k)
−1 := w̄(k) −w(k) where w̄(k) := argmaxw′∈W ϑr

(
w(k), ẋ(k),w′, ẋ(k)

)
.

5: Set d
(k)
+1 := x̄(k) − ẋ(k) where x̄(k) := argmaxẋ′∈φ(X)n ϑr

(
w(k), ẋ(k),w(k), ẋ′).

6: Find maximal step size t(k) ∈ {
βl | l ∈ N

}
with

ϑ̄r

(
w(k), ẋ(k)

)
− ϑ̄r

(
w(k) + t(k)d

(k)
−1, ẋ

(k) + t(k)d
(k)
+1

)
≥ σ t(k)

(∥∥∥d(k)
−1

∥∥∥2
2
+

∥∥∥d(k)
+1

∥∥∥2
2

)
.

7: Set w(k+1) := w(k) + t(k)d
(k)
−1.

8: Set ẋ(k+1) := ẋ(k) + t(k)d
(k)
+1.

9: Set k := k + 1.

10: until
∥∥w(k) −w(k−1)

∥∥2
2
+

∥∥ẋ(k) − ẋ(k−1)
∥∥2
2
≤ ε.

50 4 Nash Prediction Games

4.2.2 A Modified Extragradient Approach

In Algorithm 2, line 4 and 5, as well as the linesearch in line 6, require to solve a con-

cave maximization problem within each iteration. As this may become computationally

demanding, we derive a second approach based on extragradient descent. Therefore, in-

stead of reformulating the equilibrium problem into a minimax problem, we directly address

the first-order optimality conditions of each players’ minimization problem in (4.2). Under

Assumption 4.2, a combination of actions (w∗, ẋ∗) with ẋ∗ =
[
ẋ∗T
1 , . . . , ẋ∗T

n

]T
satisfies each

player’s first-order optimality conditions if, and only if, for all (w, ẋ) ∈ W × φ(X)n the

following inequalities hold.

∇wθ̂−1(w
∗, ẋ∗)T(w −w∗) ≥ 0

∇ẋi θ̂+1(w
∗, ẋ∗)T(ẋi − ẋ∗

i) ≥ 0 ∀ i = 1, . . . , n

As the joint action space of all players W × φ(X)n is precisely the full Cartesian product

of the learner’s action set W and the n data generators’ action sets φ(X), the (weighted)

sum of those individual optimality conditions is also a sufficient and necessary optimality

condition for the equilibrium problem. Hence, a Nash equilibrium (w∗, ẋ∗) ∈ W × φ(X)n

is a solution of the variational inequality problem,

gr(w
∗, ẋ∗)T

([
w

ẋ

]
−

[
w∗

ẋ∗

])
≥ 0 ∀ (w, ẋ) ∈ W × φ(X)n (4.13)

and vice versa (cf. Proposition 7.1 of [40]). The pseudo-gradient gr in (4.13) is defined

as in (4.3) with fixed vector r = [r0, r1, . . . , rn]
T where r0 := 1 and ri :=

c−1,i

c+1,i
for all

i = 1, . . . , n (cf. Equation 4.9). Under Assumption 4.3, this choice of r ensures that

the mapping gr(w, ẋ) is continuous and strictly monotone (cf. proof of Lemma 4.2 and

Theorem 4.8). Hence, the variational inequality problem in (4.13) can be solved by modified

extragradient descent (see, for instance, Chapter 7.2.3 of [34]).

Algorithm 3 states an iterative extragradient method which—apart from back projection

steps—does not require to solve an optimization problem in each iteration. ΠW×φ(X)n

denotes the L2-projection operator defined in (2.36). It performs a Euclidean projection of

its argument into the joint action space W ×φ(X)n. The proposed algorithm converges to

a solution of the variational inequality problem in 4.13, i.e., the unique equilibrium of the

Nash prediction game, if Assumptions 4.2 and 4.3 hold (cf. Theorem 7.40 of [34]).

4.3 Applying Kernels

So far, we assumed the knowledge of feature mapping φ : X → φ(X) so that we can compute

an explicit feature representation φ(xi) of the training instances xi for all i = 1, . . . , n. We

now turn to a discussion on the applicability of a general kernel function k : X × X → R

which measures the similarity between two instances. As discussed in Section 2.6, kernel

function k is assumed to be a positive semi-definite function so that it can be stated in

4.3 Applying Kernels 51

Algorithm 3 EDS: Extragradient Descent Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (3.1) and (3.2), and action spaces W and φ(X)n.

1: Select initial w(0) ∈ W, set ẋ(0) := x, set k := 0, and select σ ∈ (0, 1) and β ∈ (0, 1).

2: Set r0 := 1 and ri :=
c−1,i

c+1,i
for all i = 1, . . . , n.

3: repeat

4: Set

[
d
(k)
−1

d
(k)
+1

]
:= ΠW×φ(X)n

([
w(k)

ẋ(k)

]
− gr

(
w(k), ẋ(k)

))−
[
w(k)

ẋ(k)

]
.

5: Find maximal step size t(k) ∈ {
βl | l ∈ N

}
with

−gr

(
w(k) + t(k)d

(k)
−1, ẋ

(k) + t(k)d
(k)
+1

)T
[

d
(k)
−1

d
(k)
+1

]
≥ σ

(∥∥∥d(k)
−1

∥∥∥2
2
+

∥∥∥d(k)
+1

∥∥∥2
2

)
.

6: Set

[
w̄(k)

x̄(k)

]
:=

[
w(k)

ẋ(k)

]
+ t(k)

[
d
(k)
−1

d
(k)
+1

]
.

7: Set step size of extragradient

γ(k) := − t(k)∥∥gr (w̄(k), x̄(k)
)∥∥2

2

gr

(
w̄(k), x̄(k)

)T
[

d
(k)
−1

d
(k)
+1

]
.

8: Set

[
w(k+1)

ẋ(k+1)

]
:= ΠW×φ(X)n

([
w(k)

ẋ(k)

]
− γ(k)gr

(
w̄(k), x̄(k)

))
.

9: Set k := k + 1.

10: until
∥∥w(k) −w(k−1)

∥∥2
2
+

∥∥ẋ(k) − ẋ(k−1)
∥∥2
2
≤ ε.

terms of an inner product in the corresponding reproducing kernel Hilbert space, that is,

∃φ with k(x , x ′) = φ(x)Tφ(x ′) for all x , x ′ ∈ X .

To derive a kernelized formulation of the Nash prediction game, we assume that the

transformed instances lie in the span of the mapped training instances. We restrict the

data generator’s action space so that the transformed instances ẋi are mapped into the

same subspace of the reproducing kernel Hilbert space as the unmodified training instances

xi. Under this restriction, the weight vector w ∈ W and the transformed instances φ(ẋi) ∈
φ(X) for i = 1, . . . , n can be expressed as linear combinations of the mapped training

instances, i.e., ∃αi,Ξij , so that

w =

n∑
i=1

ωiφ(xi) and φ(ẋj) =

n∑
i=1

Ξijφ(xi) ∀ j = 1, . . . , n.

Further, let us assume that the action spaces W and φ(X)n can be adequately translated

into dual action spaces A ⊂ R
n and Z ⊂ R

n×n, which is possible, for instance, if W
and φ(X)n are closed l2-balls. Then, a kernelized variant of the Nash prediction game is

obtained by inserting the above equations into the players’ cost functions in (3.1) and (3.2)

52 4 Nash Prediction Games

with regularizers in (4.16) and (4.17),

θ̂−1(ω,B) =
n∑

i=1

c−1,i�−1(ω
TKBei, yi) + ρ−1

1

2
ωTKω, (4.14)

θ̂+1(ω,B) =

n∑
i=1

c+1,i�+1(ω
TKBei, yi) + ρ+1

1

2n
tr

(
(B− In)

TK(B− In)
)
, (4.15)

where ei ∈ {0, 1}n is the i-th unit vector, ω ∈ A is the dual weight vector, B ∈ Z is the

dual transformed data matrix, and K ∈ R
n×n is the kernel matrix with Kij := k(xi, xj). In

the dual Nash prediction game with cost functions (4.14) and (4.15), the learner chooses the

dual weight vector ω = [ω1, . . . , ωn]
T and classifies a new instance x by hω(x) = sign gω(x)

with gω(x) =
∑n

i=1 ωik(xi, x). In contrast, the data generator chooses the dual transformed

data matrix B which implicitly reflects the change of the training distribution. Their

transformation costs are in proportion to the deviation of B from the identity matrix

In, and if B equals In, the learner’s task reduces to standard kernelized empirical risk

minimization. The proposed Algorithms 2 and 3 can be readily applied when replacing w

by ω and ẋi by Bei for all i = 1, . . . , n.

An alternative approach to a kernelization of the Nash prediction game is to first construct

an explicit feature representation, such as discussed in Section 2.6 and then to train the

Nash model by using Algorithms 2 or 3 together with the constructed feature mapping, for

instance, the kernel PCA mapping (cf. Equation 2.30). Here, we again assume that the

transformed instances φ(ẋi) as well as the weight vector w lie in the span of the mapped

training instances φ(x).

4.4 Instances of the Nash Prediction Game

In this section we present two instances of the Nash prediction game and investigate under

which conditions those games possess unique Nash equilibria. We start by specifying both

players’ loss functions and regularizers.

An obvious choice for the loss function of the learner �−1(z, y) is the zero-one loss given

in Definition 2.1. A possible choice for the data generator’s loss is �0/1(z,−1) which pe-

nalizes positive decision values z, independently of the class label. This choice accounts

for the fact, that the data generator experiences costs when the predictive model blocks

an event, that is, assigns an instance to the positive class. For instance, a legitimate email

sender experiences costs when a legitimate email is erroneously blocked just like an abusive

sender, also amalgamated into the data generator, experiences costs when spam messages

are blocked. However, the zero-one loss violates Assumption 4.2 as it is neither convex nor

twice-continuously differentiable. In the following sections, we therefore approximate the

zero-one loss by the logistic loss and the trigonometric loss which both satisfy Assump-

tion 4.2.

4.4 Instances of the Nash Prediction Game 53

To regularize the players’ actions, recall that Ω+1(D, Ḋ) is an estimate of the transfor-

mation cost that the data generator incurs when shifting the training distribution—where

the training instances xi are drawn from—to the test distribution, which is empirically rep-

resented by the transformed training instances ẋi. In our analysis, we approximate these

costs by the average squared l2-distance between xi and ẋi in the feature space induced by

mapping φ, that is,

Ω+1(D, Ḋ) :=
1

n

n∑
i=1

1

2
‖φ(ẋi)− φ(xi)‖22 . (4.16)

Geometrically, this choice assumes an adversarial data generator who is allowed to shift each

single training instance from φ(xi) to φ(ẋi) := φ(xi)+ai. The corresponding transformation

cost induced by the i-th instance are in proportion to the squared length of the offset vector

ai, that is, all points of the surface of a hypersphere of radius ri := ‖ai‖2 centered at φ(xi)

raise identical transformation cost ∝ r2i . The amount of transformation that the data

generator is allowed to perform is implicitly restricted by the regularization parameter ρ+1.

The learner’s regularizer Ω−1(w) penalizes the complexity of the predictive model h(x) =

sign gw(x). As discussed before in Section 2.5, we consider Tikhonov regularization which

reduces to the squared l2-norm

Ω−1(w) :=
1

2
‖w‖22 (4.17)

of weight vector w. The learner’s regularization parameter is denoted by ρ−1.

4.4.1 Nash Logistic Regression

In this section we study the particular instance of the Nash prediction game where each play-

ers’ loss function rests on the negative logarithm of the logistic function σ(a) := 1
1+exp(−a) ,

that is, the logistic loss (cf. Definition 2.6),

�l(z, y) := − log σ(yz) = log (1 + exp(−yz)) . (4.18)

We consider the regularizers in (4.16) and (4.17), respectively, which give rise to the fol-

lowing definition of the Nash logistic regression.

Definition 4.1. The Nash logistic regression (NLR) is an instance of the Nash prediction

game with non-empty, compact, and convex action spaces W ⊂ R
m and φ(X)n ⊂ R

m·n and

cost functions

θ̂l−1(w, ẋ) :=

n∑
i=1

c−1,i�
l(wTẋi, yi) + ρ−1

1

2
‖w‖22

θ̂l+1(w, ẋ) :=

n∑
i=1

c+1,i�
l(wTẋi,−1) + ρ+1

1

n

n∑
i=1

1

2
‖ẋi − xi‖22

where �l is specified in (4.18).

54 4 Nash Prediction Games

In the above definition, column vectors x := [xT
1 , . . . ,x

T
n]

T and ẋ := [ẋT
1 , . . . , ẋ

T
n]

T again

denote the concatenation of the original and the transformed training instances, respec-

tively, which are mapped into the feature space by xi := φ(xi) and ẋi := φ(ẋi).

As in our introductory discussion, the data generator’s loss function �+1(z, y) := �l(z,−1)

penalizes positive decision values independently of the class label y . In contrast, instances

that pass the classifier, i.e., instances with negative decision values, incur little or almost

no costs. By the above definition, the Nash logistic regression obviously satisfies Assump-

tion 4.2, and according to the following corollary, also satisfies Assumption 4.3 for suitable

regularization parameters. The proof of the corollary can be found in the appendix.

Corollary 4.9. Let the Nash logistic regression be specified as in Definition 4.1 with positive

regularization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 ≥ ncT−1c+1, (4.19)

then Assumption 4.2 and 4.3 hold, and consequently, the Nash logistic regression possess a

unique Nash equilibrium.

Recall, that the weighting factors cv,i are strictly positive with
∑n

i=1 cv,i = 1 for both

players v. In particular, it therefore follows that in the unweighted case where cv,i =
1
n for

all i = 1, . . . , n and v ∈ V , a sufficient condition to ensure the existence of a unique Nash

equilibrium is to set the learner’s regularization parameter to ρ−1 ≥ 1
ρ+1

.

4.4.2 Nash Support Vector Machine

The Nash logistic regression tends to non-sparse solutions. This becomes particularly appar-

ent if the Nash equilibrium (w∗, ẋ∗) is an interior point of the joined action set W×φ(X)n

in which case the (partial) gradients in (4.4) and (4.5) are zero at (w∗, ẋ∗). For regular-

izer (4.17), this implies that w∗ is a linear combination of the transformed instances ẋi

where all weighting factors are non-zero, since the first derivative of the logistic loss as

well as the cost factors c−1,i are non-zero for all i = 1, . . . , n. The support vector machine

(SVM), which employs the hinge loss (cf. Definition 2.2), does not suffer from non-sparsity.

However, the hinge loss obviously violates Assumption 4.2 as it is not twice-continuously

differentiable. Therefore, we make use of the trigonometric loss (cf. Definition 2.4),

�t(gw(x), y) :=

⎧⎪⎨
⎪⎩

0 if ygw(x) > δ
1
2(δ − ygw(x))− δ

π cos
(
π
2δygw(x)

)
if |ygw(x)| ≤ δ

−ygw(x) if ygw(x) < −δ

, (4.20)

which is convex and twice-continuously differentiable according to Proposition 2.3. Because

of the similarities of the hinge loss and the trigonometric loss, we call the Nash prediction

game that is based upon the trigonometric loss Nash support vector machine (NSVM) where

we again consider the regularizers in (4.16) and (4.17).

4.5 Related Work 55

Definition 4.2. The Nash support vector machine (NSVM) is an instance of the Nash

prediction game with non-empty, compact, and convex action spaces W ⊂ R
m and φ(X)n ⊂

R
m·n and cost functions

θ̂t−1(w, ẋ) :=
n∑

i=1

c−1,i�
t(wTẋi, yi) + ρ−1

1

2
‖w‖22

θ̂t+1(w, ẋ) :=
n∑

i=1

c+1,i�
t(wTẋi,−1) + ρ+1

1

n

n∑
i=1

1

2
‖ẋi − xi‖22

where �t is specified in (4.20).

The following corollary states sufficient conditions under which the Nash support vector

machine satisfies Assumptions 4.2 and 4.3, and consequently has a unique Nash equilibrium.

Corollary 4.10. Let the Nash support vector machine be specified as in Definition 4.2 with

positive regularization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 > ncT−1c+1, (4.21)

then Assumptions 4.2 and 4.3 hold, and consequently, the Nash support vector machine has

a unique Nash equilibrium.

The proof of the corollary can be found in the appendix. The only difference between

the uniqueness conditions for NLR and NSVM, is that the above bound is strict for the

NSVM.

4.5 Related Work

In this chapter, we formulate the problem of learning an adversary-aware predictive model

from data as a static two-player game. So far, mainly the special case of a zero-sum

prediction game has been investigated. This setting is closely related to a Stackelberg

game for which reason we discuss methods which rest upon zero-sum games in Section 5.5.

The only work [53] which explicitly considers a Nash-optimal model-building focuses on

antagonistic loss functions. As in this case, the Nash game reduces to a minimax problem,

the authors’ proposed model indeed reflects a worst-case setting which is identical to the

problem of the Invar-SVM [71] (cf. Section 5.5).

Few authors study related problems such as repeated games in the context of learning

adversary-aware models. Androutsopoulos et al. [2], for instance, address the problem where

the data instances as well as the predictive model, except for some threshold parameter,

are fixed. The interacting players are the user of the predictive model who decides for

the threshold, and the data generator who has to decide whether to choose a positive or

a negative instance. This model is discussed in the context of email spam filtering where

the spam senders control the ratio of spam and the recipients decide whether to read or

to disregard a message purely based on the prediction of the spam filter. The authors

56 4 Nash Prediction Games

derive the Nash equilibrium for this game, i.e., the spam ratio and threshold value which

is Nash-optimal for both players.

The solution concept of Nash has been applied to many other areas such as power mar-

kets [22], wireless network design [20], network security [62], and telecommunication [1].

All of these applications require efficient methods (see, e.g., [30, 31, 42, 43]) to solve the

(generalized) Nash equilibrium problem. A detailed survey on such methods can be found,

for instance, in [32].

4.6 Empirical Evaluation

The goal of this section is to explore the relative strengths and weaknesses of the discussed

instances of the Nash prediction game and existing baseline methods in the context of email

spam filtering. We compare the regularized empirical risk minimizers logistic regression

(LR) and the support vector machine (SVM), the worst-case solution SVM for invariances

with feature removal (Invar-SVM, cf. [71]), and the proposed Nash prediction games Nash

logistic regression (NLR) and the Nash support vector machine (NSVM).

We use four corpora of chronologically sorted emails detailed in Table 4.1: The first data

set contains emails of an email service provider (ESP) collected between 2007 and 2010.

The second (Mailinglist) is a collection of emails from publicly available IT-related mailing

lists augmented by spam emails from Bruce Guenter’s spam trap1 of the same time period.

The third corpus (Private) contains newsletters as well as spam and non-spam emails of

the authors. The last corpus is the NIST TREC 2007 spam corpus [23]. The rate of spam

emails in the data sets varies between 65% and 77%.

Table 4.1: Data sets used in the experiments.

data set instances features delivery period

ESP 169,612 541,713 01/06/2007 - 27/04/2010
Mailinglist 128,117 266,378 01/04/1999 - 31/05/2006
Private 108,178 582,100 01/08/2005 - 31/03/2010

TREC 2007 75,496 214,839 04/08/2007 - 07/06/2007

The feature mapping φ(x) is defined as follows: Email x ∈ X is first tokenized with

the X-tokenizer [15, 67] and converted into the m-dimensional binary bag-of-word vector

x := [0, 1]m. The value of m is determined by the number of distinct terms in the data set

where we have removed all terms which occur only once. For each experiment and each

repetition, we then construct the PCA mapping (2.30) with respect to the corresponding n

training emails using the linear kernel k(x,x′) := xTx′, resulting in n-dimensional training

instances φPCA(xi) ∈ R
n for i = 1, . . . , n.

1http://untroubled.org/spam/

4.6 Empirical Evaluation 57

To ensure the convexity as well as the compactness requirement in Assumption 4.2, we

notionally restrict the players’ action sets by φ(X) := {φPCA(x) ∈ R
n | ‖φPCA(x)‖22 ≤ κ}

and W := {w ∈ R
n | ‖w‖22 ≤ κ} for some fixed constant κ. Note, that by choosing an

arbitrarily large κ, the players’ action sets become effectively unbounded.

For both proposed algorithms, ILS and EDS, we set σ := 0.001, β := 0.2, and ε := 10−14.

The algorithms are stopped if l exceeds 30 in line 6 of ILS and line 5 of EDS, respectively.

In this case, no convergence is achieved. In all experiments, we use the F-measure—that is,

the harmonic mean of precision and recall with positive class spam—as evaluation measure

and tune all parameters with respect to likelihood. The particular protocol and results of

each experiment are detailed in the following sections.

4.6.1 Convergence

Corollaries 4.9 (for Nash logistic regression) and 4.10 (for the Nash support vector machine)

specify necessary conditions on the regularization parameters ρ−1 and ρ+1 under which a

unique Nash equilibrium exists. When this is the case, both the ILS and EDS algorithms

will converge on that Nash equilibrium. In the first set of experiments, we study whether

repeated restarts of the algorithm converge on the same equilibrium when the bounds in

Equations 4.19 and 4.21 are satisfied, and when they are violated to increasingly large

degrees. To satisfy the condition
∑

i cv,i = 1, we set cv,i :=
1
n for v ∈ V = {−1,+1} and

i = 1, . . . , n. For these cost factors and for ρ−1 > 1
ρ+1

, both bounds (Equations 4.19 and

4.21) are satisfied.

For each value of ρ−1 and ρ+1 and each of 10 repetitions, we randomly draw 400 emails

from the data set and run EDS with a randomly chosen initial solution (w(0), ẋ(0)) until

convergence. We run ILS on the same training set. In each repetition we randomly choose

a distinct initial solution, and after each iteration k we compute the Euclidean distance

between the EDS solution and the current ILS iterate w(k). Figure 4.1 reports on these

average Euclidean distances between distinctly initialized runs. The blue curves (ρ−1 =

2 1
ρ+1

) satisfy Equations 4.19 and 4.21, the yellow curves (ρ−1 = 1
ρ+1

) lie exactly on the

boundary, and all other curves violate the bounds. Dotted lines show the Euclidean distance

between the Nash equilibrium and the solution of logistic regression.

Our findings are as follows. Logistic regression and the regular SVM never coincide with

the Nash equilibrium—the Euclidean distances lie in the range between 10−2 and 2. ILS

and EDS always converge to identical equilibria when (4.19) and (4.21) are satisfied (blue

and yellow curves). The Euclidean distances lie at the threshold of numerical computing

accuracy. When Equations 4.19 and 4.21 are violated by a factor up to 4 (turquoise and

red curves), all repetitions still converge on the same equilibrium, indicating that the equi-

librium is either still unique or a secondary equilibrium is unlikely to be found. When the

bounds are violated by a factor of 8 or 16 (green and purple curves), then some repetitions

of the learning algorithms do not converge or start to converge to distinct equilibria. In the

latter case, learner and data generator may attain distinct equilibria and may experience

an arbitrarily poor outcome when playing a Nash equilibrium.

58 4 Nash Prediction Games

0 10 20 30 40
10

−8

10
−6

10
−4

10
−2

10
0

iterations

d
is
ta
n
ce

to
N
E

ρ+1 = 26

0 10 20 30 40
10

−8

10
−6

10
−4

10
−2

10
0

ρ+1 = 24

iterations

d
is
ta
n
ce

to
N
E

0 10 20 30 40
10

−8

10
−6

10
−4

10
−2

10
0

ρ+1 = 22

iterations

d
is
ta
n
ce

to
N
E

0 10 20 30 40
10

−8

10
−6

10
−4

10
−2

10
0

ρ+1 = 1

iterations

d
is
ta
n
ce

to
N
E

10
−8

ρ−1 = 2 1

ρ+1
ρ−1 =

1
ρ+1

ρ−1 = 2−1 1
ρ+1

ρ−1 = 2−2 1
ρ+1

ρ−1 = 2−4 1
ρ+1

ρ−1 = 2−6 1
ρ+1

Figure 4.1: Average Euclidean distance (solid lines) between the EDS solution and the ILS solution
at iteration k = 0, . . . , 40 for Nash logistic regression on the ESP corpus. The dotted lines show
the distance between the EDS solution and the solution of logistic regression. Error bars indicate
standard deviation.

4.6.2 Regularization Parameters

The regularization parameters ρv of the players v ∈ V = {−1,+1} play a major role in

the prediction game. The learner’s regularizer determines the generalization ability of the

predictive model and the data generator’s regularizer controls the amount of change in the

data generation process. In order to tune these parameters, one would need to have access

to labeled data that are governed by the transformed input distribution. In our second

experiment, we will explore to which extend those parameters can be estimated using a

portion of the newest training data. Intuitively, the latest training data may be more

similar to the test data than older training data.

We split the data set into three parts: The 2,000 oldest emails constitute the training

portion, we use the next 2,000 emails as hold-out portion on which the parameters are

tuned, and the remaining emails are used as test set. We randomly draw 200 spam and

4.6 Empirical Evaluation 59

10
−410

−210
0

10
0

10
2

10
4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ρ+1

Grid over ρ−1 and ρ+1

ρ−1

F
-m

ea
su
re

hold-out data

test data

Figure 4.2a: Performance of NLR on the hold-
out and the test data with respect to regulariza-
tion parameters.

10
−3

10
−2

10
−1

10
00.7

0.8

0.9

1.0
Fixed ρ+1

ρ−1

F
-m

ea
su
re

te (ρ+1 = 1024)
te (ρ+1 = 8)
te (ρ+1 = 4)
ho (ρ+1 = 1024)
ho (ρ+1 = 8)
ho (ρ+1 = 4)

10
0

10
1

10
2

10
30.7

0.8

0.9

1.0
Fixed ρ−1

ρ+1
F
-m

ea
su
re

te (ρ−1 = 0.125)
te (ρ−1 = 0.002)
te (ρ−1 = 0.0001)
ho (ρ−1 = 0.125)
ho (ρ−1 = 0.002)
ho (ρ−1 = 0.0001)

Figure 4.2b: Performance of NLR on the hold-
out data (ho) and the test data (te) for fixed
values of ρv.

200 non-spam messages from the training portion and draw another subset of 400 emails

from the hold-out portion. Both NPG instances are trained on the 400 training emails and

evaluated against all emails of the test portion. To tune the parameters, we conduct a grid

search maximizing the likelihood on the 400 hold-out emails. We repeat this experiment

10 times for all four data sets and report on the found parameters as well as the “optimal”

reference parameters according to the maximal value of F-measure on the test set. Those

optimal regularization parameters are not used in later experiments. The intuition of the

experiment is that the data generation process has already been changed between the oldest

and the latest emails. This change may cause a distribution shift which is reflected in the

hold-out portion. We expect that one can tune each players’ regularization parameter by

tuning with respect to this hold-out set.

In Figure 4.2a we plot the performance of the Nash logistic regression (NLR) on the hold-

out and the test data against the regularization parameters ρ−1 and ρ+1. The dashed line

visualizes the bound in (4.19) on the regularization parameters for which NLR is guaranteed

to possess a unique Nash equilibrium. Figure 4.2b shows sectional views of the plot in

Figure 4.2a along the ρ−1-axis (upper diagram) and the ρ+1-axis (lower diagram) for several

values of ρ+1 and ρ−1, respectively. As expected, the effect of the regularization parameters

on the test data is much stronger than on the hold-out data.

It turns out that the data generator’s ρ+1 has almost no impact on the value of F-

measure on the hold-out data set (see lower diagram of Figure 4.2b). Hence, we conclude

that estimating ρ+1 without access to labeled data from the test distribution or additional

60 4 Nash Prediction Games

knowledge about the data generator is difficult for this application. The latest training

data are still too different from the test data. In all remaining experiments and for all data

sets we set ρ+1 = 8 for NLR and ρ+1 = 2 for NSVM, since for those choices the Nash

models performed generally best on the hold-out set for a large variety of values of ρ−1.

For the Invar-SVM the regularization of the data generator’s transformation is controlled

explicitly by the number K of modifiable attributes per positive instance. We conducted

the same experiment for the Invar-SVM resulting in an optimal value of K = 25, i.e., the

data generator is allowed to remove up to 25 tokens of each spam email of the training data.

From the upper diagram of Figure 4.2b we see that estimating ρ−1 for any fixed ρ+1 seems

possible. Even if we slightly overestimate the learner’s optimal regularization parameter—

to compensate for the distributional difference between the transformed training sample

and the marginal shifted hold-out set—the determined value of ρ−1 is close to the optimum

for all four data sets.

4.6.3 Evaluation for Nash-Playing Adversary

We evaluate both, a regular classifier trained under the i.i.d. assumption, and the Nash-

equilibrial models against an adversary who does not transform the input distribution and

an adversary who executes the Nash-equilibrial transformation on the input distribution.

Since we cannot be certain that actual spam senders play a Nash equilibrium, we use the

following semi-artificial setting.

The learner observes a sample of 200 spam and 200 non-spam emails drawn from the

training portion of the data and estimates the Nash-optimal prediction model with pa-

rameters ẇ. The trivial baseline solution of regularized empirical risk minimization (i.i.d.

baseline) is denoted by w. The data generator observes a distinct sample D of 200 spam

and 200 non-spam messages, also drawn from the training portion, and computes their

Nash-optimal response Ḋ.

We again set cv,i :=
1
n for v ∈ {−1,+1} and i = 1, . . . , n and study the following four

scenarios:

• (w, D) : Both players ignore the presence of an opponent; that is, the learner employs

a regular classifier and the sender does not change the data generation process.

• (w, Ḋ) : The learner ignores the presence of an active data generator who changes

the data generation process so that D evolves to Ḋ by playing a Nash strategy.

• (ẇ, D) : The learner expects a rational data generator and chooses a Nash-equilibrial

prediction model. However, the data generator does not change the input distribution.

• (ẇ, Ḋ) : Both players are aware of the opponent and play a Nash-equilibrial action

to secure lowest costs.

4.6 Empirical Evaluation 61

We repeat this experiment 100 times for all four data sets. Table 4.2 reports on the

average values of F-measure over all repetitions and both NPG instances and corresponding

baselines. The numbers in boldface indicate significant differences (α = 0.05) between the

F-measure values of gw and gẇ for fixed sample D and Ḋ, respectively.

Table 4.2: Nash equilibrium and i.i.d. classifier against passive and Nash-optimal data generator.

NLR
vs.
LR

ESP

w ẇ
D 0.957 0.924

Ḋ 0.912 0.925

Mailinglist

w ẇ
D 0.987 0.984

Ḋ 0.958 0.976

Private

w ẇ
D 0.961 0.944

Ḋ 0.903 0.912

TREC 2007

w ẇ
D 0.980 0.979

Ḋ 0.955 0.961

NSVM
vs.

SVM

ESP

w ẇ
D 0.955 0.939

Ḋ 0.928 0.939

Mailinglist

w ẇ
D 0.987 0.985

Ḋ 0.961 0.976

Private

w ẇ
D 0.961 0.957

Ḋ 0.932 0.936

TREC 2007

w ẇ
D 0.979 0.981

Ḋ 0.960 0.968

As expected, when the data generator does not alter the input distribution, the regular-

ized empirical risk minimization baselines, logistic regression and the SVM, are generally

best. However, the performance of those baselines drops substantially when the data gen-

erator plays the Nash-equilibrial action Ḋ. The Nash-optimal prediction models are more

robust against this transformation of the input distribution and significantly outperform

the reference methods for all four data sets.

4.6.4 A Case Study on Email Spam Filtering

To study the performance of the Nash prediction models and the baselines for email spam

filtering, we evaluate all methods into the future by processing the test set in chronological

order. The test portion of each data set is split into 20 chronologically sorted disjoint

subsets. We average the value of F-measure on each of those subsets over the 20 models

(trained on different samples drawn from the training portion) for each method.

Figure 4.3 shows that, for all data sets, the NPG instances outperform logistic regression

and the SVM that do not explicitly factor the adversary into the optimization criterion.

Especially for the ESP corpus, the Nash logistic regression (NLR) and the Nash support

vector machine (NSVM) are superior. On the TREC 2007 data set, the methods behave

comparably with a slight advantage for the Nash support vector machine. The period over

which the TREC 2007 data have been collected is very short. We believe that the training

and test instances are governed by nearly identical distributions. Consequently, for this data

set, the game-theoretic models do not gain a significant advantage over logistic regression

and the SVM that assume i.i.d. samples.

Table 4.3 shows aggregated results over all four data sets. For each point in each of the

diagrams of Figure 4.3, we conduct a pairwise comparison of all methods based on a paired

62 4 Nash Prediction Games

Dec07 Jul08 Jan09 Aug09
0.76

0.82

0.88

0.94

Performance on ESP corpus

F
-m

ea
su
re

Oct02 Feb04 Jul05
0.88

0.91

0.94

0.97

Performance on Mailinglist corpus

F
-m

ea
su
re

Nov06 Apr08 Aug09
0.70

0.79

0.88

0.97

Performance on Private corpus

F
-m

ea
su
re

Apr07 May07 Jun07 Jun07
0.94

0.95

0.96

0.97

0.98

0.99

Performance on TREC 2007 corpus

F
-m

ea
su
re

SVM LR Invar−SVM NLR (ILS) NSVM (ILS)

Figure 4.3: Value of F-measure of predictive models. Error bars indicate standard errors.

t-test at a confidence level of 1 − α with α = 0.05. When a difference is significant, we

count this as a win for the method that achieves a higher value of F-measure. Each line

of Table 4.3 details the wins and, set in italics, the losses of one method against all other

methods.

Table 4.3: Results of paired t-test over all corpora: Number of trials in which each method (row)
has significantly outperformed each other method (column) vs. number of times it was outperformed.

method vs. method SVM LR Invar-SVM NLR (ILS) NSVM (ILS)

SVM 0:0 40:2 30:20 8:57 2:65
LR 2:40 0:0 19:29 5:59 2:71

Invar-SVM 20:30 29:19 0:0 5:57 3:57
NLR (ILS) 57:8 59:5 57:5 0:0 22:30
NSVM (ILS) 65:2 71:2 57:3 30:22 0:0

The Nash logistic regression and the Nash support vector machine have more wins than

they have losses against each of the other methods. The ranking continues with the Invar-

SVM, the regular SVM, and logistic regression which loses more frequently than it wins

against all other methods.

4.6 Empirical Evaluation 63

50 100 200 400 800 1600 3200
0.75

0.8

0.85

0.9

0.95
Performance on ESP corpus

number of training emails

F
-m

ea
su
re

50 100 200 400 800 1600 3200

10
−1

10
1

10
3

Execution time on ESP corpus

number of training emails

ti
m
e
in

se
c

SVM LR Invar−SVM NLR (ILS) NSVM (ILS) NLR (EDS) NSVM (EDS)

Figure 4.4: Predictive performance (left) and execution time (right) for varying sizes of the training
data set.

4.6.5 Efficiency versus Effectiveness

To assess the predictive performance as well as the execution time as a function of the

sample size, we train the baselines and the two NPG instances for a varying number of

training examples. We report on the results for the ESP data set in Figure 4.4. The game-

theoretic models significantly outperform the trivial baseline methods logistic regression and

the SVM, especially for small data sets. However, this comes at the price of considerably

higher computational cost. The ILS algorithm requires in general only a couple of iterations

to converge; however in each iteration several optimization problems have to be solved so

that the total execution time is up to a factor 150 larger than that of the corresponding

i.i.d. baseline. In contrast to the ILS algorithm, a single iteration of the EDS algorithm

does not require solving nested optimization problems. However, the execution time of

the EDS algorithm is still higher as it often requires several thousand iterations to fully

converge.

For larger data sets, the discrepancy in predictive performance between game-theoretic

models and i.i.d. baseline decreases. Regarding the whether ILS or EDS is faster at solving

the optimization problems that lead to the Nash equilibria our results are not conclusive.

We conclude that the benefit of the NPG prediction models over the classification baseline

is greatest for small to medium sample sizes.

4.6.6 Nash-Equilibrial Transformation

In contrast to the Invar-SVM, the Nash models allow the data generator to modify non-

spam emails. However, in practice most senders of legitimate messages do not deliberately

change their writing behavior in order to bypass spam filters, perhaps with the exception

of senders of newsletters who must be careful not to trigger filtering mechanisms. In a final

experiment, we want to study whether the Nash model reflects this aspect of reality, and

how the data generator’s regularizer effects this transformation.

64 4 Nash Prediction Games

10
0

10
1

10
20

10

20

30

40

50

60

70
Amount of transformation by NLR

ρ
+1

n
u
m
b
er

o
f
m
o
d
ifi
ca
ti
o
n
s

 non−spam additions Δadd

−1

 non−spam deletions Δdel

−1

 spam additions Δadd

+1

 spam deletions Δdel

+1

10
0

10
1

10
20

5

10

15

20

25

30

35
Amount of transformation by NSVM

ρ
+1

n
u
m
b
er

o
f
m
o
d
ifi
ca
ti
o
n
s

 non−spam additions Δadd

−1

 non−spam deletions Δdel

−1

 spam additions Δadd

+1

 spam deletions Δdel

+1

Figure 4.5: Average number of additions and deletions per spam/non-spam email for NLR (left)
and NSVM (right) with respect to the data generator’s regularization parameter ρ+1 for fixed
ρ−1 = n−1.

The training portion contains again n+1 = 200 spam and n−1 = 200 non-spam instances

randomly chosen from the oldest 4, 000 emails. We determine the Nash equilibrium and

measure the number of additions and deletions to spam and non-spam emails in the per-

turbated sample Ḋ,

Δadd−1 := 1
n−1

∑
i:yi=−1

m∑
j=1

max(0, ẋi,j − xi,j) Δadd
+1 := 1

n+1

∑
i:yi=+1

m∑
j=1

max(0, ẋi,j − xi,j)

Δdel−1 := 1
n−1

∑
i:yi=−1

m∑
j=1

max(0,xi,j − ẋi,j) Δdel
+1 := 1

n+1

∑
i:yi=+1

m∑
j=1

max(0,xi,j − ẋi,j)

where xi,j indicates the presence of token j in the i-th training email, that is, Δadd
v and

Δdel
v denote the average number of word additions and deletions per spam and non-spam

email performed by the sender.

Figure 4.5 shows the number of additions and deletions of the Nash-equilibrial transfor-

mation as a function of the adversary’s regularization parameter for the ESP data set. As

expected, there is no conflict of interests between the learner and the senders with respect to

non-spam emails. Hence, the Nash-equilibrial transformation imposes almost no changes on

any non-spam email. In addition, we observe for all data sets that even if the total amount

of modifications differs, both instances NLR and NSVM behave similarly insofar as that the

number of word additions and deletions continues to grow when the adversary’s regularizer

decreases. Table 4.4 reports on the average number of word additions and deletions for all

data sets. For Invar-SVM, we set the number of possible changes to K = 25.

We observe that the number of additions and deletions varies between the distinct data

sets even if the data generator’s regularization parameter is kept fixed. The reason for

this are the differing regularization parameters of the learner which are tuned by cross-

validation.

4.6 Empirical Evaluation 65

Table 4.4: Average number of word additions and deletions per training email.

ESP

game non-spam spam
model add del add del

Invar-SVM 0.0 0.0 0.0 24.8
NLR 0.7 1.0 22.5 31.2
NSVM 0.4 0.5 17.9 23.8

Mailinglist

game non-spam spam
model add del add del

Invar-SVM 0.0 0.0 0.0 23.9
NLR 0.3 0.4 8.6 10.9
NSVM 0.3 0.3 6.9 8.4

Private

game non-spam spam
model add del add del

Invar-SVM 0.0 0.0 0.0 24.2
NLR 0.4 0.2 24.3 11.2
NSVM 0.1 0.1 15.6 7.3

TREC 2007

game non-spam spam
model add del add del

Invar-SVM 0.0 0.0 0.0 24.7
NLR 0.2 0.2 15.0 11.4
NSVM 0.2 0.1 11.1 8.4

5 Stackelberg Prediction Games

In this chapter we study prediction games where the learner acts before the data genera-

tor. We call such games Stackelberg prediction games (SPG). In contrast to (static) Nash

prediction games in which players move simultaneously, an execution of the Stackelberg pre-

diction game is carried out in two steps: At first, the learner commits to a predictive model.

In our example of spam email filtering, the recipient commits to a filter, and discloses it

to the sender. Only then, the data generator gets to move. In our running example, the

sender creates a new sample of messages. The game may be executed repeatedly to model

the course of continuous interaction between the players. However, by Assumption 3.2,

the game is nevertheless an one-shot game where both players attempt to maximize their

benefit for the current round only.

We aim at finding an optimal move of the learner in this setting. Starting with the general

problem formulation in Section 3.3, we will derive the Stackelberg solution of prediction

games. To this end, we consider the previously defined prediction game (cf. Definition 3.5)

with the players’ cost functions θ̂v(w, Ḋ) defined in Equations 3.1 and 3.2, and assume that

the learner acts before the data generator. As in the previous chapter, we define the data

generator’s transformation costs to be the average squared l2-distance between xi and ẋi in

feature space (cf. Equation 4.16), and the learner’s regularizer to be the squared l2-norm

of w (cf. Equation 4.17).

For these choices we derive a relaxed optimization problem to determine the Stackelberg-

optimal solution in Section 5.1. We continue with a brief introduction to sequential

quadratic programming to solve the derived optimization problem and show how to employ

kernel functions in Sections 5.2 and 5.3, respectively. In Section 5.4 we present several

instances of Stackelberg prediction games and discuss their relation to existing prediction

models. We review related learning methods in Section 5.5 and perform an experimental

evaluation of Stackelberg prediction games in Section 5.6.

5.1 Stackelberg Solution to Prediction Games

A Stackelberg game is one of the simplest dynamic games: In the first stage, the leader—in

our case, the learner—decides on a predictive model hw(x) = sign gw(x) with parameter

vector w. In the second stage, the data generator, who plays the part of the follower,

observes the leader’s decision and chooses a transformation that changes the distribution of

past instances into the distribution of future instances. In this scenario, the learner has to

commit to a set of parameters unilaterally whereas the data generator can take the model

parameters w into account when preparing the data transformation.

68 5 Stackelberg Prediction Games

The optimality of a Stackelberg equilibrium, which we will now introduce, rests on the

following assumption.

Assumption 5.1. The following statements hold:

1. The learner acts before the data generator;

2. The learner has full knowledge about both (empirical) cost functions θ̂v(w, Ḋ) defined

in (3.1) and (3.2), and both action spaces W and (X × Y)n;

3. The data generator has full access to the learner’s chosen action w ∈ W;

4. Both players act rational with respect to their cost function in the sense of securing

their lowest possible costs.

To reach minimal costs given w, the data generator has to identify a sample Ḋ that

constitutes a global minimum of the cost function θ̂+1(w, Ḋ). There may be several global

minima with identical values of the cost function. In general, the data generator has to

identify any element Ḋ from their rational reaction set (cf. Definition 3.3), that is, the set

of optimal responses to w,

A∗
+1(w) :=

{
{(ẋi, yi)}ni=1

∣∣∣∣∣ {ẋi}ni=1 ∈ argmin
ẋ ′
1,...,ẋ

′
n∈X

θ̂+1

(
w, {(ẋ ′

i , yi)}ni=1

)}
.

Identifying an element Ḋ ∈ A∗
+1(w) amounts to solving a regular optimization problem

because w can be observed before Ḋ has to be chosen. A Stackelberg equilibrium is now

identified by backward induction. Assuming that the data generator will decide for any

Ḋ ∈ A∗
+1(w), the learner has to choose model parameters w∗ that minimize the learner’s

cost function θ̂−1 for any of the possible reactions Ḋ ∈ A∗
+1(w) that are optimal for the

data generator,

w∗ ∈ argmin
w∈W

max
Ḋ∈A∗

+1(w)
θ̂−1(w, Ḋ). (5.1)

This formulation is similar to the minimax strategy under the worst-case assumption that

the data generator aims at maximizing the learner’s costs. The essential distinction is that

the Stackelberg model restricts the data generator to choose an action from their rational

reaction set rather than from their whole action space.

An action w∗ that minimizes the learner’s costs and a corresponding optimal action

Ḋ ∈ A∗
+1(w) of the data generator are called a Stackelberg equilibrium (cf. Definition 3.4).

Recall that a Stackelberg equilibrium is a special case of a subgame perfect equilibrium

which is an extension of the Nash equilibrium for games that are played non-simultaneously.

Equation 5.1 establishes a hierarchical mathematical program—specifically, a bilevel op-

timization problem—with upper-level objective θ̂−1 and lower-level objective θ̂+1.

min
w∈W

max
∀i : ẋi∈X

θ̂−1(w, {(ẋi, yi)}ni=1) (5.2)

s.t. {ẋi}ni=1 ∈ argmin
ẋ ′
1,...,ẋ

′
n∈X

θ̂+1

(
w, {(ẋ ′

i , yi)}ni=1

)
(5.3)

5.1 Stackelberg Solution to Prediction Games 69

Bilevel programs are intrinsically hard to solve. Even the simplest instance, in which all

constraints and objectives are linear, is known to be NP-hard [46]. The main difficulties

arise from the constraints ẋ ′
i ∈ X of the lower-level optimization problem which generally

render constraint (5.3) of the upper-level optimization problem to be non-differentiable in

w, even if θ̂+1 is continuously differentiable in w and ẋ ′
i for i = 1, . . . , n.

Numerous approaches that address bilevel programs have been studied, for instance,

based on gradient descent, penalty function methods, and trust-region methods (see, for

instance, [21] for a detailed survey). Commonly, these methods reformulate the optimization

problem into a mathematical program with equilibrium constraints. In this, the lower-

level optimization problem is replaced by its Karush-Kuhn-Tucker (KKT) conditions. The

resulting optimization problem with equilibrium constraints can be solved approximately

by relaxing the complementary conditions [74]. However, these methods do not necessarily

converge to a (local) optimum and are applicable to small-size problems only.

That is why we focus on a relaxed version of the above bilevel program: The following

theorem reformulates the lower-level optimization problem into an unconstrained problem,

so that constraint (5.3) becomes continuously differentiable in w. This requires the feature

space induced by mapping φ, but not necessarily the input space X , to be unrestricted, and

the data generator’s loss function �+1(z, y) to be convex and continuously differentiable in

z ∈ R.

Theorem 5.1. Let the leader’s cost function θ̂−1 and the follower’s cost function θ̂+1 be

defined as in (3.1) and (3.2) with regularizers Ω−1 and Ω+1 defined as in (4.17) and (4.16),

respectively. Let feature mapping φ : X → R
m be surjective, and let the data generator’s

loss function �+1(z, y) be convex and continuously differentiable with respect to z ∈ R for

any fixed y ∈ Y. Further, let weight vector w∗ ∈ R
m and factors τ∗1 , . . . , τ∗n ∈ R be a

solution of the optimization problem

min
w,∀i : τi

n∑
i=1

c−1,i�−1

(
gw(xi) + τi‖w‖2, yi

)
+

ρ−1

2
‖w‖22 (5.4)

s.t. 0 = τi +
n

ρ+1
c+1,i�

′
+1

(
gw(xi) + τi‖w‖22, yi

) ∀i = 1, . . . , n.

Then, the Stackelberg prediction game in Equation 5.2 attains an equilibrium at (w∗, Ḋ∗)
with Ḋ∗ = {(ẋ ∗

i , yi)}ni=1 and ẋ ∗
i ∈ {ẋ ∈ X | φ(ẋ) = φ(xi) + τ∗i w

∗}.

Proof. Constraint 5.3 states that {ẋ ∗
i }ni=1 is a solution of the restricted optimization problem

min
∀i : ẋi∈X

n∑
i=1

c+1,i�+1(w
Tφ(ẋi), yi) +

ρ+1

n

n∑
i=1

1

2
‖φ(ẋi)− φ(xi)‖22.

As the objective as well as the constraints are entirely defined in terms of ẋ∗
i = φ(ẋ ∗

i), this

condition is equivalent to enforcing {ẋ∗
i }ni=1 to be a solution of the unrestricted optimization

70 5 Stackelberg Prediction Games

problem

min
∀i : ẋi∈Rm

n∑
i=1

c+1,i�+1(w
Tẋi, yi) +

ρ+1

n

n∑
i=1

1

2
‖ẋi − φ(xi)‖22. (5.5)

This solution is uniquely defined for any fixed w as loss function �+1(z, y) is required to

be convex in z, and consequently in ẋi, and the term ‖ẋi − φ(xi)‖22 is quadratic in ẋi and

therefore strictly convex for any fixed φ(xi). Given w ∈ W and minimizer ẋ∗
i ∈ R

m, the set

Ẋ i
w := {ẋ ∗ ∈ X | φ(ẋ ∗) = ẋ∗

i } contains all instances ẋ ∗ which correspond to the optimally

transformed instance in feature space ẋ∗
i . Since φ is surjective, Ẋ i

w is guaranteed to be non-

empty, and consequently, for any solution {ẋ∗
i }ni=1, there exist at least one corresponding

set of instances {ẋ ∗
i }ni=1. As φ is not required to be a bijective mapping, there may exist

multiple instances ẋ ∈ Ẋ i
w which are optimal in the sense of minimizing the data generator’s

loss. However, since all of these instances share the same feature representation ẋ∗
i , the

inner maximization of the upper-level optimization problem in (5.2) vanishes,

min
w∈W

max
∀i : ẋi∈Ẋ i

w

θ̂−1 (w, {(ẋi, yi)}ni=1) = min
w∈W

n∑
i=1

c−1,i�−1

(
wTẋ∗

i , yi

)
+

ρ−1

2
‖w‖22, (5.6)

where {x∗
i }ni=1 is the solution of the optimization problem in (5.5). Since 5.5 is convex,

this constraint can be replaced by its complementary conditions which are given by

∇ẋi θ̂+1(w, Ḋ) = 0 for i = 1, . . . , n, where

∇ẋi θ̂+1(w, Ḋ) = c+1,i�
′
+1(w

Tẋ∗
i , yi)w +

ρ+1

n
(ẋi − φ(xi)).

The mapped instance ẋ∗
i , that satisfies the i-th complementary condition, is given by

ẋ∗
i = φ(xi) + τiw (5.7)

with

τi = − n

ρ+1
c+1,i�

′
+1

(
wTẋ∗

i , yi

)
= − n

ρ+1
c+1,i�

′
+1

(
wTφ(xi) + τiw

Tw, yi

)
= − n

ρ+1
c+1,i�

′
+1

(
gw(xi) + τi‖w‖22, yi

)
. (5.8)

When replacing ẋ∗
i by (5.7) in the upper-level optimization problem in (5.6) and enforcing

Equation 5.8, the optimization problem in (5.4) follows. Hence, a solution w∗ of (5.4) with

corresponding τ∗1 , . . . , τ∗n is also a solution of (5.2) with ẋ ∗
i ∈ Ẋ i

w∗ := {ẋ ∈ X |φ(ẋ) =

φ(xi) + τ∗i w
∗}.

Theorem 5.1 translates the bilevel problem of finding a Stackelberg equilibrium into a

compact optimization problem which can be solved, for instance, by applying interior point

methods such as Ipopt [75] or by sequential quadratic programming (SQP) methods which

are introduced in the following section.

5.2 An SQP Method for Stackelberg Prediction Games 71

5.2 An SQP Method for Stackelberg Prediction Games

The objective as well as the constraints of the optimization problem in Theorem 5.1 are

generally not jointly convex in w and τ := [τ1, . . . , τn]
T. However, under the assumptions of

the following proposition, a locally optimal solution can still be found efficiently by standard

SQP methods.

Proposition 5.2. Let loss function �−1(z, y) be twice-continuously differentiable and loss

function �+1(z, y) be convex and thrice-continuously differentiable with respect to z ∈ R for

any fixed y ∈ Y. Then, a point satisfying the KKT conditions of the optimization problem

in Equation (5.4) can be obtained by sequential quadratic programming (SQP) methods.

The objective as well as the constraints in (5.4) are twice-continuously differentiable with

respect to w and τi for i = 1, . . . , n. Hence, the corresponding complementary conditions

are continuously differentiable which is a sufficient condition to apply sequential quadratic

programming methods. This proves the proposition.

We shall briefly review sequential quadratic programming methods to solve Stackelberg

prediction games. The basic idea of SQP methods is to search for a point satisfying the

KKT conditions of the original non-linear program (NLP) by applying Newton’s method.

Following this approach, Equation (5.9) states the Lagrangian of the NLP of Equation 5.4,

L(w, τ ,α) := q(w, τ)−
n∑

i=1

αiui(w, τ), (5.9)

where α := [α1, . . . , αn]
T and

q(w, τ) :=
n∑

i=1

c−1,i�−1

(
gw(xi) + τi‖w‖22, yi

)
+

ρ−1

2
‖w‖22,

ui(w, τ) := τi +
n

ρ+1
c+1,i�

′
+1

(
gw(xi) + τi‖w‖22, yi

)
.

The corresponding KKT conditions are given by

∇L(w, τ ,α) =

⎡
⎢⎣ ∇wL(w, τ ,α)

∇τL(w, τ ,α)

∇αL(w, τ ,α)

⎤
⎥⎦

=

⎡
⎢⎣ ∇wq(w, τ) − diag (α1, . . . , αn)Jw(w, τ)T

∇τ q(w, τ) − diag (α1, . . . , αn)Jτ (w, τ)T

−u(w, τ)

⎤
⎥⎦

= 0

where

Jw(w, τ) = [∇wu1(w, τ), . . . ,∇wun(w, τ)]T

Jτ (w, τ) = [∇τu1(w, τ), . . . ,∇τun(w, τ)]T

72 5 Stackelberg Prediction Games

denote the partial Jacobians of the vector-valued function u(w, τ) := [u1(w, τ), . . . ,

un(w, τ)]T with respect to w and τ , respectively. In order to find a solution (w∗, τ ∗)
of the NLP with optimal multipliers α∗

i ∈ R, i = 1, ..., n, Newton’s method is applied to the

non-linear system of equations ∇L(w, τ ,α) = 0. Given an initial estimate (w(0), τ (0),α(0))

of the solution, a sequence {(w(k), τ (k),α(k))} is generated by

(w(k+1), τ (k+1),α(k+1)) := (w(k), τ (k),α(k)) + (d
(k)
w ,d

(k)
τ ,d

(k)
α), (5.10)

which is known to converge to (w∗, τ ∗,α∗) under some mild conditions (see, for instance,

[4]). Thereby, the descent direction (d
(k)
w ,d

(k)
τ ,d

(k)
α) in iteration k is obtained as solution of

the linearization of the KKT conditions, that is,

∇2L(w(k), τ (k),α(k))

⎡
⎢⎣ d

(k)
w

d
(k)
τ

d
(k)
α

⎤
⎥⎦ = −∇L(w(k), τ (k),α(k)), (5.11)

where ∇2L(w(k), τ (k),α(k)) denotes the Hessian of the Lagrangian. It can be shown, that

solving the linear system of equations in (5.11) is equivalent to computing the solution of

a quadratic program in each iteration for which reason these methods are called sequential

quadratic programming methods. There exist a large variety of literature on NLP solvers.

We refer the interested reader, for instance, to [4].

5.3 Applying Kernels

Theorem 5.1 states that a Stackelberg equilibrium with parameter vector w ∈ W can be

obtained by solving the optimization problem in (5.4), which requires an explicit feature

representation φ(xi) of the training instances. However, in some applications, such a feature

mapping is unwieldy or even not existing. Instead, one is often equipped with a kernel

function k : X × X → R which measures the similarity between two instances (see the

discussion on kernel functions in Section 2.6). Generally, kernel function k is a positive

semi-definite mapping, that is, a function that can be stated as an inner product with

k(x , x ′) := φ(x)Tφ(x ′). Making use of the representer theorem [63], we can now express

weight vector w as a linear combination of the mapped training instances, that is,

w =
n∑

i=1

ωiφ(xi) (5.12)

where feature mapping φ is implicitly defined by kernel k. When substituting w in (5.4)

by (5.12), the squared l2-norm of w and function gw can be completely expressed in terms

of the kernel,

‖w‖22 =
n∑

j,k=1

ωjωkk(xj , xk) and gw(xi) =

n∑
j=1

ωjk(xi, xj).

5.4 Instances of the Stackelberg Prediction Game 73

Hence, the optimization problem in (5.4) can be reformulated into an optimization problem

over τ := [τ1, . . . , τn]
T and the dual weights ω := [ω1, . . . , ωn]

T without the need of an

explicit feature mapping φ. However, inferring an optimal transformed sample Ḋ∗ still

requires the knowledge of an explicit mapping φ and its inverse φ−1. Of course, this is not

a restriction, as we are interested in the predictive model gw rather than the transformed

sample Ḋ∗.
Note, that because of computational issues, it may be advisable to firstly construct an

explicit feature mapping from the kernel matrix, and then to train the Stackelberg model

in the primal. To this end, we may use the kernel PCA mapping (cf. Equation 2.30)

as introduced in Section 2.6. Within our experiments on Stackelberg prediction games in

Chapter 5.6 we use the linear kernel and study all three variants: Computing the model in

input space, computing the kernelized version, and computing the kernel PCA map-induced

variant. Even though all variants yield the same solution, using an explicit mapping is

generally fastest for reasonable sample sizes.

5.4 Instances of the Stackelberg Prediction Game

By the choice of �v, distinct instances of the Stackelberg prediction game (SPG) can be

identified which, to some extent, generalize existing prediction models such as the SVM for

invariances [71] and the SVM with uneven margins [50].

5.4.1 Worst-Case Loss

The SPG with worst-case loss is an instance of the Stackelberg prediction game that is

characterized by an antagonicity of the empirical costs of learner and data generator, that

is, the data generator employs the loss function

�wc+1(z, y) := −�−1(z, y)

and cost factors c+1,i := c−1,i. This instance models a worst-case setting, and for the special

case of ρ−1 = ρ+1 = 0, establishes a zero-sum game.

Loss functions �wc+1 and �−1 cannot both be convex at the same time, and so the re-

quirements of either Theorem 5.1 or Proposition 5.2 are violated. As we cannot apply

Theorem 5.1, we consider the original optimization problem (Equations 5.2-5.3). We sub-

stitute �wc+1 and c+1,i in the objective (Equation 3.2) of the lower-level optimization problem

which gives

min
∀i : ẋi∈X

n∑
i=1

c+1,i�
wc
+1 (gw(ẋi), yi) + ρ+1

1

n

n∑
i=1

1

2
‖φ(ẋi)− φ(xi)‖22.

This optimization problem decouples into n maximization problems for i = 1, . . . , n,

max
ẋi∈X

c−1,i�−1(gw(ẋi), yi)− ρ+1
1

2n
‖φ(ẋi)− φ(xi)‖22 (5.13)

74 5 Stackelberg Prediction Games

or equivalently,

max
ẋi∈X ′

i

c−1,i�−1(gw(ẋi), yi) (5.14)

where X ′
i := {ẋ ∈ X | ρ′+1 ≤ 1

2n‖φ(ẋ) − φ(xi)‖22} are feasible sets of transformed instances

for some ρ′+1. The difference between both formulations is that in (5.14), regularization pa-

rameter ρ′+1 explicitly restricts the amount of transformation of each instance xi. However,

from the Lagrangian of (5.14) we observe that for every finite ρ+1 > 0 there exist ρ′+1 > 0

so that a maximizer of (5.14) is also a maximizer of (5.13) and vice versa.

As now the inner maximization of the upper-level optimization problem in (5.2) can be

stated in terms of the solution of the lower-level optimization problem, c−1,i�−1(gw(ẋ
∗
i), yi),

the entire bilevel optimization problem reduces to the following constrained minimization

problem.

min
w,∀i : ξi

n∑
i=1

ξi + ρ−1
1

2
‖w‖22 (5.15)

s.t. ξi ≥ max
ẋi∈X ′

i

c−1,i�−1(gw(ẋi), yi) i = 1, . . . , n (5.16)

If the lower-level maximization problem (5.16) has a unique solution for any fixed w ∈ W,

then the above optimization problem can be solved by gradient descent where in each

iteration the maximization problem in (5.16) has to be solved for the current iterate w(k).

Note, that at the optimum the constrains in (5.16) will become equations and when inserting

those in (5.15), the above problem can be stated as a minimax problem.

In case the learner choses the hinge loss (cf. Definition 2.2), the SPG with worst-case

loss reduces to a variant of the SVM for invariances [71]. Here, the feasible transformed

instances of φ(xi) are assumed to lie within a hypersphere of radius
√
2nρ′+1 centered

at φ(xi), that is, X ′
i := {ẋ ∈ X | ρ′+1 ≤ 1

2n‖φ(ẋ) − φ(xi)‖22}, where the corresponding

costs under the worst-case transformation are proportional to the shift of the instances,∑n
i=1 ‖φ(ẋ)− φ(xi)‖22.

5.4.2 Linear Loss

A second instance of the Stackelberg prediction game is the SPG with linear loss where the

data generator employs a linear loss function,

�lin+1(z, y) := z,

which penalizes high decision values z independently of the target attribute. This choice

is appropriate, for instance, in email spam filtering where the data generator is purely

interested in the delivery of an email x , which becomes unlikely for large values of z,

independently of the corresponding true label y .

5.4 Instances of the Stackelberg Prediction Game 75

For the linear loss, that is continuously differentiable and convex, the constraints in (5.4)

reduce to

τi = − n

ρ+1
c+1,i (5.17)

for i = 1, . . . , n.

When choosing the hinge loss (cf. Definition 2.2) for the learner and replacing τi in (5.4)

by (5.17) we arrive at the following minimization problem.

min
w,∀i : ξi

n∑
i=1

c−1,iξi + ρ−1
1

2
‖w‖22

s.t. ξi ≥ 0, ξi ≥ 1− yi

(
wTφ(xi)− n

ρ+1
c+1,i‖w‖22

)
i = 1, . . . , n

The latter constraints can be reformulated to

yiw
Tφ(xi) ≥ 1 + yiκi − ξi

which amounts to the constraints of the SVM with uneven margins [50]. The only syntactic

distinction is that κi :=
n

ρ+1
c+1,i‖w‖22 is implicitly defined by ρ+1 and c+1,i. However, for

each choice of κi > 0 in the SVM with uneven margins, there exist appropriate parameters

ρ+1 and c+1,i of an equivalent SPG with linear loss and vice versa.

Consider the special case of equal factors c+1,i = c+1,j , and consequently κ = κi = κj , for

all i, j = 1, . . . , n. Then the margin of negative instances becomes 1−κ whereas the margin

of positive instances is 1 + κ. In our example of spam filtering, this goes with the intuition

that the margin of spam instances that vary greatly has to be larger than the margin of

non-spam instances that remain almost unmodified. This effect is stronger when the data

generator’s regularization parameter ρ+1 is small. By contrast, if ρ+1 goes to infinity, and

consequently κ attains zero, then the SPG with linear loss reduces to the regular support

vector machine.

5.4.3 Logistic Loss

Finally, this section introduces the SPG with logistic loss. This instantiation meets the

preconditions of Theorem 5.1 and Proposition 5.2, and the resulting optimization criterion

can be solved with standard tools. The learner may use any loss function that is convex and

twice-continuously differentiable (e.g., the trigonometric loss, the exponential loss, or the

logistic loss, see Definitions 2.4-2.6) while the data generator uses as for the Nash logistic

regression (cf. Section4.4.1), the class-independent logistic loss

�l+1(z, y) := log (1 + exp(z)) .

The rational behind this loss is the same as for the linear loss: Mapping �l+1(z, y) penalizes

large decision values z whereas it approaches zero for small values of z.

76 5 Stackelberg Prediction Games

For this choice, the constraints in (5.4) resolve to ui(w, τi) = 0 for i = 1, . . . , n with

ui(w, τi) := τi
(
1 + exp(−gw(xi)− τi‖w‖22)

)
+

n

ρ+1
c+1,i.

Functions ui(w, τi) are not jointly convex in w and τi. However, as they are smooth

(i.e., infinitely differentiable) in all arguments, their roots can be obtained efficiently and,

consequently, a locally optimal solution of the resulting optimization problem

min
w,∀i : τi

n∑
i=1

c−1,i�−1

(
gw(xi) + τi‖w‖22, yi

)
+

ρ−1

2
‖w‖22

s.t. 0 = ui(w, τi) i = 1, . . . , n

can be identified (see Section 5.2).

5.5 Related Work

Dynamic games, especially Stackelberg games, are commonly used to model economic ap-

plications (for a survey see, for instance, [54]). In the context of machine learning, the

concept of Stackelberg games has rarely been used. For instance, some authors [47, 48, 52]

study the case in which the data generator acts as leader and the learner as follower. This

reflects a setting in which the adversary discloses how the future distribution will differ

from the current distribution before the learner has to commit to a model. Such a model

addresses the problem of finding an optimal data transformation from perspective of a

data generator who has no access to the learner’s chosen prediction model. However, this

model contradicts the intuition of an adversarial model-building problem: If the learner is

assumed to react on the data generator, the data generator’s action is fixed at this time so

that the learner can consider this action, i.e., the (unlabeled) test data, when building the

predictive model. This problem is better modeled as a distribution shift problem which we

address in Chapter 6. In case the learner does not react on the data generator and under

the made assumption that the data generator has no access to the predictive model, the

setting amounts to a game of simultaneously acting players which we study in Chapter 4.

Parameswaran et al. [56] study a setting where an IP blacklist provider aims at finding

an optimal blocking policy which accounts for a spam sender who controls the rate of

outgoing spam messages. As in the Stackelberg prediction game, the adversary is assumed

to react on the provider’s decision by changing their sending behavior with respect to the

amount of sent spam emails per time frame. Similar to our approach, the adversary’s

optimal response is expressed in terms of optimality conditions which are considered in the

learner’s optimization problem.

A special case of a Stackelberg competition is the case where the data generator desires

to impose the highest possible costs on the learner, i.e., the adversarial learning problem

is modeled under the worst-case assumption (cf. Section 5.4.1). In this setting, the Stack-

elberg prediction game can be expressed as a minimax problem. El Ghaoui et al. [35]

5.6 Empirical Evaluation 77

derive a minimax model for input data that are known to lie within some hyper-rectangles

around the training instances. Their solution minimizes the worst-case loss over all possible

choices of the data in these intervals. Similarly, worst-case solutions to classification games

in which the data generator deletes input features [25, 26, 36, 37] or performs an arbitrary

feature transformation [71] have been studied. As discussed in Section 5.4.1, the latter

approach equals the Stackelberg prediction game, if the learner chooses the hinge loss and

data generator chooses the worst-case loss, that is, the negative hinge loss.

5.6 Empirical Evaluation

In this section we empirically evaluate the presented instances of Stackelberg prediction

games: SPG with worst-case loss (SPGwc, cf. Section 5.4.1), SPG with linear loss (SPGlin,

cf. Section 5.4.2), and SPG with logistic loss (SPGlog, cf. Section 5.4.3). We compare the

new models with the existing baseline methods logistic regression (LR), the support vector

machine (SVM), and the worst-case solution SVM for invariances with feature removal

(Invar-SVM, cf. [71]).

For all Stackelberg instances we choose the logistic loss function (cf. Definition 2.6) for

the learner which is convex and smooth, and consequently satisfies Proposition 5.2. We set

again cv,i := 1
n for all v ∈ V = {−1,+1}, i = 1, . . . , n, and use the same data sets and

feature representation as in the previous chapter (cf. Section 4.6).

Our evaluation protocol is as follows. We use the 4,000 oldest emails as training portion

and set the remaining emails aside as test instances. We use the F-measure as evaluation

measure and train all methods 20 times on a stratified subset of 200 spam and 200 non-

spam messages sampled from the training portion. In order to tune the regularization

parameters ρ−1 and ρ+1, we perform a 5-fold cross validation on the training sample within

each repetition of an experiment and for each method separately.

5.6.1 A Case Study on Email Spam Filtering

In the first experiment, we consider the same experiment as in Section 4.6.4, that is, we

evaluate all methods into the future by processing the test set in chronological order. Each

test sample is split into 20 disjoint subsets. We again average the F-measure on each of

those subsets and for each method over all resulting models of the 20 iterations, and perform

a statistical test of significance.

Figure 5.1 shows that, for all data sets, the Stackelberg prediction games with linear

loss and with logistic loss outperform the regular SVM and logistic regression, that do not

explicitly factor the adversarial data generator into the optimization criterion. On the ESP

corpus, the SPG with linear loss is slightly better than the SPG with logistic loss whereas for

the Mailinglist corpus the SPG with logistic loss outperforms the SPG with linear loss. On

the TREC 2007 data set, most of the methods behave comparably with a slight advantage

for the SPG instances with logistic loss and worst-case loss. The period over which the

TREC 2007 data have been collected is very short. Therefore we believe that the training

78 5 Stackelberg Prediction Games

Dec07 Jul08 Jan09 Aug09
0.76

0.82

0.88

0.94

Performance on ESP corpus

F
-m

ea
su
re

Oct02 Feb04 Jul05
0.88

0.91

0.94

0.97

Performance on Mailinglist corpus

F
-m

ea
su
re

Nov06 Apr08 Aug09
0.70

0.79

0.88

0.97

Performance on Private corpus

F
-m

ea
su
re

Apr07 May07 Jun07 Jun07
0.94

0.95

0.96

0.97

0.98

0.99

Performance on TREC 2007 corpus

F
-m

ea
su
re

SVM LR Invar−SVM SPGwc SPGlin SPGlog

Figure 5.1: F-measure of predictive models. Error bars indicate standard errors.

and test instances are governed by nearly identical distributions. Consequently the game-

theoretic models do only gain a slight advantage over logistic regression that assumes i.i.d.

samples.

Table 5.1 shows aggregated results over all four data sets. For each point in each of the

diagrams of Figure 5.1, we conduct a pairwise comparison of all methods based on a paired

t-test at a confidence level of 1 − α with α = 0.05. When a difference is significant, we

count this as a win for the method that achieves a higher F-measure. Each line of Table 5.1

details the wins and, set in italics, the losses of one method against all other methods.

Table 5.1: Results of paired t-test over all corpora: Number of trials in which each method (row)
has significantly outperformed each other method (column) vs. number of times it was outperformed.

method vs. method SVM LR Invar-SVM SPGwc SPGlin SPGlog

SVM 0:0 40:2 30:20 11:26 9:51 5:63
LR 2:40 0:0 19:29 6:36 7:54 5:68

Invar-SVM 20:30 29:19 0:0 24:36 5:40 1:56
SPGwc 26:11 36:6 36:24 0:0 17:46 9:48

SPGlin 51:9 54:7 40:5 46:17 0:0 10:23

SPGlog 63:5 68:5 56:1 48:9 23:10 0:0

5.6 Empirical Evaluation 79

50 100 200 400 800 1600 3200
0.75

0.8

0.85

0.9

0.95
Performance on ESP corpus

number of training emails

F
-m

ea
su
re

50 100 200 400 800 1600 3200

10
−1

10
1

10
3

Execution time on ESP corpus

number of training emails

ti
m
e
in

se
c

SVM LR Invar−SVM SPGwc SPGlin SPGlog

Figure 5.2: Predictive performance (left) and execution time (right) for varying sizes of the training
data set.

The Stackelberg prediction game with logistic loss has more wins than it has losses against

each of the other methods. The Stackelberg prediction game with linear loss has more wins

than losses against each of the other methods except for the SPG with logistic loss. The

ranking continues with the SPG with worst-case loss, the Invar-SVM, the regular support

vector machine, and logistic regression which loses more frequently than it wins against all

other methods.

5.6.2 Efficiency versus Effectiveness

To study the predictive performance as well as running time behavior with respect to the

size of the data set, we train the baselines and the three SPG instances for a varying

number of training examples. We report on the results for the representative ESP data

set in Figure 5.2. Except for SPGwc, the game models significantly outperform the trivial

baseline methods SVM and logistic regression, especially for small corpus sizes. However,

this comes at the price of considerably higher computational cost. For the game models,

the Stackelberg instance SPGlin clearly outperforms all reference methods with respect

to efficiency. Though, the larger the size of the data set, the stronger the computational

differences where at the same time the discrepancy of the predictive performance diminishes.

5.6.3 Transformation

Similar to the experiment in Section 4.6.6, we finally study to which extend the training

instances are transformed by the data generator. As for the Nash models, the Stackelberg

prediction games allow the data generator to modify positive as well as negative instances.

In practice, only positive instances are expected to be modified. We therefore study whether

the Stackelberg model reflects this aspect of reality. Table 5.2 shows the average number of

modifications—i.e., word additions and deletions—performed by the sender per spam and

per non-spam email depending on the sender’s regularization parameter ρ+1 for fixed ρ−1.

80 5 Stackelberg Prediction Games

Table 5.2: Average number of word additions and deletions per instance for SPGlog.

ρ+1 non-spam spam
additions deletions additions deletions

4 1.4 1.6 14.6 17.6
16 0.3 0.3 9.9 11.6
64 0.0 0.0 7.1 8.7
256 0.0 0.0 2.4 2.8
1024 0.0 0.0 0.8 0.9

Like for the Nash models, the number of transformations increases inversely proportional

to the regularization parameter. Since the interests of sender and recipient are coherent for

legitimate emails, these messages are rarely modified, even for equal cost factors cv,i.

6 Covariate Shift

We finally study the setting where the learner acts after the data generator. In this case,

the data generator first modifies the data generation process—potentially, in response to

a previously released predictive model—and produces a sample of test instances. Only

afterwards, the learner builds the predictive model from the past labeled training instances

and the new unlabeled test instances. This model addresses settings where the prediction

is performed with delay. For instance, an email service provider may apply spam blocking

techniques when receiving an email, e.g., IP blacklists. However, the accepted emails need

only be classified when being fetched by the users. Since in practice, emails which are

received over night are typically fetched in the morning, there is often a delay between the

creation of the emails and the application of the predictive model. Hence, the emails which

were received during this time can be used by the learner in the model-building process.

In general, we aim at finding an adversary-aware predictive model, that is, we are only

interested in identifying an optimal move from the perspective of the learner. As the data

generator’s action is fixed when the learner gets to move, the game reduces to a special semi-

supervised learning problem where the underlying probability distributions of the training

and test data, PXY|Γ=γ and PXY|Γ=γ̇ , may differ. This distributional shift is caused by the

change of the data generation process from γ to γ̇.

For simplicity, we only consider the case where the data generator is not in control of

the labeling process. In this case, the conditional distributions of Y are the same in the

training as well as the test distribution. However, the marginal distributions of X may be

different. This difference is called covariate shift. In our running example of email spam

filtering, this restriction accounts for the fact that the class of an email is determined by

the recipient, and not by the sender who generates the email.

In Section 6.1, we contribute a predictive model for learning under covariate shift. The

model directly characterizes the divergence between training and test distribution, without

the intermediate—intrinsically model-based—step of estimating training and test distri-

bution. We formulate the search for all model parameters as an integrated optimization

problem. This complements the predominant procedure of first estimating the bias of the

training sample, and then learning the predictive model on an unbiased version of the train-

ing sample. In Section 6.2, we derive a gradient descent procedure to find a locally optimal

solution of the integrated model, called logistic regression importance estimation. In Sec-

tion 6.3 we state a two-stage approximation of this method which is conceptually simpler

than the integrated model and may have the greatest practical utility. We further derive

kernelized variants in Section 6.4. We review related models for differing training and test

distributions in Section 6.5. Finally, we provide empirical results in Section 6.6.

82 6 Covariate Shift

6.1 Learning under Covariate Shift

As for Nash and Stackelberg prediction games, in the covariate shift problem setting a

training sample D = {(xi, yi)}ni=1 with x := (x1, . . . , xn) ∈ X n and y := (y1, . . . , yn) ∈ Yn is

available to the learner. These object-target pairs are governed by an unknown distribution

PXY|Γ=γ , where γ is the corresponding data generation model. We assume that the labels

are drawn according to an unknown target concept which is not under the control of the

data generator, i.e., the joint training data distribution decomposes into

PXY|Γ=γ(x , y) = PY|X=x (y)PX|Γ=γ(x). (6.1)

In contrast to the settings of the previous chapters, the learner also observes the data

generator’s chosen action, that is, the tuple of instances ẋ := (ẋ1, . . . , ẋl) ∈ X l (but not the

corresponding tuple of target labels ẏ := (ẏ1, . . . , ẏl) ∈ Y l) of test sample Ḋ = {(ẋj , ẏj)}lj=1.

Those pairs of test objects and targets are governed by an unknown test distribution

PXY|Γ=γ̇(ẋ , ẏ) = PY|X=ẋ (ẏ)PX|Γ=γ̇(ẋ). (6.2)

The adversarially modified data generation model γ̇ may differ from γ, so that the train-

ing and test distribution may differ as well. However, there is only one unknown target

distribution PY|X=x .

Hence, we consider the following data generation process: The data are generated either

from the fixed data generation model γ or γ̇, which were determined by the data generator.

The instances x ∈ X are drawn from PX|Γ=γ or PX|Γ=γ̇ , respectively, where we assume

that the training distribution covers the entire support of the test distribution. Finally, the

corresponding targets y ∈ Y are drawn from PY|X=x . The following assumption summarizes

these considerations.

Assumption 6.1. The following statements hold:

1. The learner acts after the data generator;

2. The data generator has committed to action Ḋ = {(ẋj , ẏj)}lj=1, where objects ẋj, but

not the corresponding targets ẏj, are observable by the learner;

3. The training data D are an i.i.d. sample of the training distribution PXY|Γ=γ and the

test data Ḋ are an i.i.d. sample of the test distribution PXY|Γ=γ̇;

4. Training and test distribution factorize as in (6.1) and (6.2), so that there is only

one target distribution PY|X=x and two covariate distributions with PX|Γ=γ̇(x) > 0 ⇒
PX|Γ=γ(x) > 0, ∀x ∈ X .

The goal of the learner is to build a model h : X → Y which has optimal predictive

performance for object-target pairs drawn from the test distribution PXY|Γ=γ̇ . To this end,

we model the problem of covariate shift from a Bayesian perspective (cf. Section 2.2),

that is, we aim at estimating the density pY|X=x ,H=h∗(y) where h∗ is the true underlying

6.1 Learning under Covariate Shift 83

relationship between test objects x and targets y . One typically approximates this quantity

by

pY|X=x ,Xn=x′,Yn=y′(y) ∝
∫
H
pY|X=x ,H=h(y)pYn|Xn=x′,H=h(y

′)pH(h) dh,

where x′ = (x ′
1, . . . , x

′
n) and y′ = (y ′1, . . . , y ′n) form a sample of n object-target pairs drawn

from the same distribution as used to generate new data at application time, that is, test

distribution PXY|Γ=γ̇ . As in (2.15), we again consider a point estimate, precisely the MAP

estimate

hD
′

MAP := argmax
h∈H

pYn|Xn=x′,H=h(y
′)pH(h), (6.3)

to approximate the posterior of h ∈ H by a single-point distribution so that the above

integral reduces to p
Y|X=x ,H=hD′

MAP
(y) (cf. Equation 2.16).

The conditional pYn|Xn=x′,H=h(y
′) in (6.3) denotes the label likelihood of the sample

(x′,y′) ∈ (X ×Y)n which is governed by PXY|Γ=γ̇ . It states the plausibility of model h with

respect to that sample. However, in contrast to the standard setting of identical training

and test distributions, we have not observed such a sample, but a sample (x,y) ∈ (X ×Y)n

governed by PXY|Γ=γ . As training and test distribution may differ, the label likelihood

of any finite sample (x′,y′) will systematically differ from that of sample (x,y) as well,

i.e., substituting (x′,y′) in (6.3) by (x,y) would yield an inconsistent label likelihood.

Since the MAP estimate is the maximizer of the product of label likelihood and prior, this

inconsistency will affect the resulting model.

6.1.1 MAP Estimation under Covariate Shift

To derive a MAP hypothesis based on a consistent label likelihood, we first analyze the

theoretical quantity that the (normalized) label likelihood converges to, i.e., the theoretical

label likelihood. We state a consistent estimate of the theoretical label likelihood under

PXY|Γ=γ̇ based on a resampled data set that is governed by PXY|Γ=γ . Finally, we express

the corresponding resampling weights in terms of the conditional PΓ |X.

Definition 6.1. For any joint data distribution PXY|Γ=γ̇ with density pXY|Γ=γ̇, the theo-

retical label likelihood of model h ∈ H is defined by

L[h, pXY|Γ=γ̇] := expEXY|Γ=γ̇ [log pY|X=x ,H=h(y)]. (6.4)

Lemma 6.1. For any finite sample D′ = {(x ′
i , y

′
i)}ni=1 drawn i.i.d. from PXY|Γ=γ̇ with

corresponding empirical density pD′ (cf. Equation 2.3), the theoretical label likelihood under

pD′ equals the per-instance label likelihood of D′, that is,

L[h, pD′] = pYn|Xn=x′,H=h(y
′)

1
n , (6.5)

where x′ = (x ′
1, . . . , x

′
n) and y′ = (y ′1, . . . , y ′n).

84 6 Covariate Shift

Proof. Starting with (6.4),

L[h, pD′] = expEXY|Γ=γ̇ [log pY|X=x ,H=h(y)]

= exp
n∑

i=1

1

n
log pY|X=x ′

i ,H=h(y
′
i)

=
n∏

i=1

pY|X=x ′
i ,H=h(y

′
i)

1
n

= pYn|Xn=x′,H=h(y
′)

1
n ,

Lemma 6.1 follows.

By this lemma and the strong law of large numbers (cf. Chapter 2 in [73]), the per-

instance label likelihood converges almost surely to the theoretical label likelihood,

L[h, pD′]
a.s.−→ L[h, pXY|Γ=γ̇],

where data sample D′ is governed by PXY|Γ=γ̇ . That is, the per-instance label likelihood

pYn|Xn=x′,H=h(y
′)

1
n for an infinite data sample drawn from PXY|Γ=γ̇ approaches the theo-

retical label likelihood. Apart from normalization, the label likelihood in (6.3) establishes

a consistent estimate of the theoretical label likelihood. Theoretically, we could replace the

label likelihood by its expectation,

hγ̇MAP := argmax
h∈H

L[h, pXY|Γ=γ̇]
npH(h), (6.6)

which would yield an ideal MAP estimate.

Lemma 6.2. For any joint data distributions PXY|Γ=γ and PXY|Γ=γ̇ with density functions

pXY|Γ=γ and pXY|Γ=γ̇, respectively, equation

L[h, pXY|Γ=γ̇] = expEXY|Γ=γ

[
κ(x) log pY|X=x ,H=h(y)

]
(6.7)

holds for

κ(x) :=
pX|Γ=γ̇(x)

pX|Γ=γ(x)
. (6.8)

Proof. By Assumption 6.1.4 and the definition of κ in (6.8),

κ(x) =
pY|X=x (y)pX|Γ=γ̇(x)

pY|X=x (y)pX|Γ=γ(x)
=

pXY|Γ=γ̇(x , y)

pXY|Γ=γ(x , y)

holds for all y ∈ Y. These ratios are well-defined for all training instances, as pX|Γ=γ̇(x) > 0

holds for all training instances, and by Assumption 6.1.4, this implies pX|Γ=γ(x) > 0.

6.1 Learning under Covariate Shift 85

Since

L[h, pXY|Γ=γ̇] = exp

∫
X×Y

pXY|Γ=γ̇(x , y) log pY|X=x ,H=h(y) d(x , y)

= exp

∫
X×Y

pXY|Γ=γ̇(x , y)
pXY|Γ=γ(x , y)

pXY|Γ=γ(x , y)
log pY|X=x ,H=h(y) d(x , y)

= exp

∫
X×Y

pXY|Γ=γ(x , y)κ(x) log pY|X=x ,H=h(y) d(x , y)

= expEXY|Γ=γ

[
κ(x) log pY|X=x ,H=h(y)

]
,

Lemma 6.2 holds.

Lemma 6.2 links the theoretical label likelihood under test distribution PXY|Γ=γ̇ to the

training distribution PXY|Γ=γ . By making again use of the strong law of large numbers,

we can consistently estimate the expectation in (6.7) by the empirical mean with respect

to any sample D = {(xi, yi)}ni=1 governed by PXY|Γ=γ , that is,

1

n

n∑
i=1

κ(xi) log pY|X=xi,H=h(yi)
a.s.−→ EXY|Γ=γ

[
κ(x) log pY|X=x ,H=h(y)

]
,

where mapping κ is defined as in (6.8). By applying Lemma 6.2, we observe that

hDMAP := argmax
h∈H

(
n∏

i=1

pY|X=xi,H=h(yi)
κ(xi)

)
pH(h) (6.9)

is, such as hγ̇MAP, a MAP hypothesis based on a consistent estimate of the label likelihood.

Intuitively, resampling weight κi := κ(xi) dictates how many times, on average, object-

target pair (xi, yi) of sample D should occur in the training sample if it was governed by the

test distribution PXY|Γ=γ̇ . The product
∏n

i=1 pY|X=xi,H=h(yi)
κ(xi) states the label likelihood

of such a resampled data set.

To compute hDMAP, we finally discuss how to estimate the resampling weights κi for

i = 1, . . . , n from the available data. Starting with the definition of κ(x) in (6.8), we apply

Bayes’ rule twice. In (6.11) we use the fact that the data were generated either by model

γ or γ̇, so that pΓ |X=x (γ̇) = 1− pΓ |X=x (γ).

κ(x) =
pΓ |X=x (γ̇)pX(x)

pΓ |X=x (γ)pX(x)

pΓ (γ)

pΓ (γ̇)
(6.10)

=
pΓ (γ)

pΓ (γ̇)

(
1

pΓ |X=x (γ)
− 1

)
(6.11)

In the above equation, ratio pΓ (γ)
pΓ (γ̇)

states the normalization factor which ensures that

EX|Γ=γ [κ(x)] =

∫
X
pX|Γ=γκ(x) dx =

∫
X
pX|Γ=γ̇ dx = 1.

86 6 Covariate Shift

Consequently, for any finite sample the non-negative exponents

κ(xi) ∝ 1

pΓ |X=xi(γ)
− 1 (6.12)

in (6.9) only need to be scaled so that they sum up to n, that is, the empirical mean of

these resampling weights equals 1.

The significance of Equation 6.11 is that it shows how the optimal resampling weights, the

testing-to-training ratio κ(x), can be determined without the knowledge of either training

or test density: The right-hand side of (6.11) can be evaluated based on a model that

discriminates training against test objects and outputs how much more likely an instance

is to occur in the test data than in the training data. Hence, instead of potentially high-

dimensional densities pX|Γ=γ and pX|Γ=γ̇ , a single conditional pΓ |X=x (γ) of the binary

random variable Γ needs to be modeled.

6.1.2 An Integrated Model

In the previous section, we have derived a model for covariate shift which requires the

knowledge of the conditional pΓ |X=x . Hence, besides modeling the label likelihood we need

to formulate this model likelihood. To this end, we introduce the random variable Z which

can take z = −1 and z = +1, and the selector function s∗ with

pZ|X=x ,S=s∗(+1) := pΓ |X=x (γ),

pZ|X=x ,S=s∗(−1) := pΓ |X=x (γ̇).

Similar as hypothesis h∗ : X → Y explains the true relation between objects X and tar-

gets Y, the selector function s∗ : X → {−1,+1} explains the underlying relation between

objects X and the data generation model induced by Z.

This refinement enables us to express data samples D and Ḋ by triple (x,y, z), where

we redefine

• x := (x1, . . . , xn, ẋ1, . . . , ẋl) ∈ X n+l as a concatenation of training and test objects;

• y := (y1, . . . , yn, ẏ1, . . . , ẏl) ∈ Yn+l, where yi are the targets of the training objects

and ẏi are the (unknown) targets of the test objects;

• z := (z1, . . . , zn+l) ∈ {−1,+1}n+l where zi := +1 for i = 1, . . . , n and zi := −1 for

i = n+ 1, . . . , n+ l.

By these definitions, tuple (xi, yi, zi) states a realization of the joint random variable XYZ,

that is, any object xi from the training or test sample, the corresponding target yi which

is observed for i = 1, . . . , n, and the origin zi of that object, that is, whether the instance

is drawn from the training or the test distribution. Vectors xk, yk, and zk denote the first

1 ≤ k ≤ n+ l elements of x, y, and z, respectively.

Having refined the notation, we now seek to estimate h∗ and s∗. In the predominant

two-step procedure for learning under covariate shift (cf. Section 6.5), one typically first

6.1 Learning under Covariate Shift 87

estimates the resampling weights, for instances, by inferring a point estimate ŝ from the

posterior pS|Xn+l=x,Zn+l=z(s) and computing the resampling weights as in (6.12). Only then,

one estimates h∗ from pH|Xn=xn,Y
n=yn,S=ŝ(h) based on the resampled training instances as

discussed in the previous section. We present this sequential estimation approach in detail

in Section 6.3.

However, the sequential estimation amounts to an additional degree of approximation

since s∗ can only be estimated up to a certain amount. This additional error will propagate

to the estimation problem of h∗ for which reason we directly address the conditional

pYZ|X=x ,Xn+l=x,Yn=yn,Z
n+l=z(y , z) (6.13)

=

∫
H×S

pYZ|X=x ,H=h,S=s(y , z)pHS|Xn+l=x,Yn=yn,Z
n+l=z(h, s) d(h, s) (6.14)

to jointly estimate h∗ and s∗. As before, we focus on the MAP estimate

(hMAP, sMAP) := argmax
h∈H,s∈S

pHS|Xn+l=x,Yn=yn,Z
n+l=z(h, s)

to approximate the above integral.

The posterior of (h, s) factorizes as in Equation 6.15. Here, we exploit the facts that h is

independent of the test objects xn+1, . . . , xn+l, since targets yn+1, . . . , yn+l are unobserved, h

is independent of the selector variables zi given s, and by Assumption 6.1.4, s is independent

of the targets. In (6.16) we apply Bayes’ rule twice, and in (6.17) we use the fact that targets

y are independent of s for given x . Equation 6.18 follows as both denominators in (6.17)

are constant for the given data, h is again independent of s and x for unobserved y , and s

is independent of x for unobserved z .

pHS|Xn+l=x,Yn=yn,Z
n+l=z(h, s)

= pH|Xn=xn,Y
n=yn,S=s(h)pS|Xn+l=x,Zn+l=z(s) (6.15)

=
pYn|Xn=xn,H=h,S=s(yn)pXnHS(xn, h, s)

pXnYnS(xn,yn, s)

pZn+l|Xn+l=x,S=s(z)pXn+lS(x, s)

pXn+lZn+l(x, z)
(6.16)

=
pYn|Xn=xn,H=h,S=s(yn)pH|Xn=xn,S=s(h)

pYn|Xn=xn
(yn)

pZn+l|Xn+l=x,S=s(z)pS|Xn+l=x(s)

pZn+l|Xn+l=x(z)
(6.17)

∝ pYn|Xn=xn,H=h,S=s(yn)pH(h)pZn+l|Xn+l=x,S=s(z)pS(s) (6.18)

In the right-hand side of (6.18), the first factor denotes the label likelihood of the resam-

pled data set (cf. Equation 6.9 and 6.12) with

pYn|Xn=xn,H=h,S=s(yn) =

(
n∏

i=1

pY|X=xi,H=h(yi)

(
1

pZ|X=xi,S=s(+1)
−1

))τ(s)

,

where the exponent τ(s) is a normalizer with τ(s)−1 := 1
n

∑n
i=1

(
1

pZ|X=xi,S=s(+1) − 1
)
.

88 6 Covariate Shift

The second and fourth term are the priors of models h and s, respectively, and the third

factor states the model likelihood,

pZn+l|Xn+l=x,S=s(z) =
n+l∏
i=1

pZ|X=xi,S=s(zi).

When inserting those likelihoods in (6.18), we arrive at

pHS|Xn+l=x,Yn=yn,Z
n+l=z(h, s)

∝
(

n∏
i=1

pY|X=xi,H=h(yi)

(
1

pZ|X=xi,S=s(+1)
−1

))τ(s)

pH(h)

(
n+l∏
i=1

pZ|X=xi,S=s(zi)

)
pS(s).

In the next chapter we model h and s in terms of linear decision functions such as discussed

in Chapter 2.3, and consider logistic models for their corresponding likelihood functions.

We derive a gradient descent-based algorithm to infer hMAP and sMAP from the data based

on the above expression of the joint posterior.

6.2 Logistic Regression Importance Estimation

As presented in Chapter 2.3, we use linear decision functions to model the predictive model

h : X → Y with Y = {−1,+1} and the selector model s : X → {−1,+1}. To this end, we

define fh
w(x , y) := ywTφh(x) and f s

v(x , z) := zvTφs(x) with the corresponding hypotheses,

h(x) := argmax
y ′∈{−1,+1}

fh
w(x , y

′) = signwTφh(x),

s(x) := argmax
z ′∈{−1,+1}

f s
v(x , z

′) = sign vTφs(x).

The potentially distinct functions φh(x) and φs(x) map instance x into the corresponding

Hilbert space (cf. Section 2.6). The weight vectors w and v, together with the above

definition, fully define the models h and s, respectively. Consequently, we can state the

joint posterior of (h, s) in terms of those parameter vectors. The corresponding MAP

parameters wMAP and vMAP are the maximizing arguments of

max
w∈W,v∈V

(
n∏

i=1

pY|X=xi,W=w(yi)
κv(xi)

)
pW(w)

(
n+l∏
i=1

pZ|X=xi,V=v(zi)

)
pV(v), (6.19)

with

κv(xi) =

(
1

pZ|X=xi,V=v(+1)
− 1

)
τ(v)

and τ(v)−1 = 1
n

∑n
i=1 (

1
pZ|X=xi,V=v(+1) − 1). To solve for (wMAP,vMAP), we need to specify

the label likelihood, the model likelihood, and the priors in (6.19). For the partial likelihoods

6.2 Logistic Regression Importance Estimation 89

we choose the logistic function, which gives

pY|X=xi,W=w(yi) :=
1

1 + exp(−yiwTφh(xi))
, (6.20)

pZ|X=xi,V=v(zi) :=
1

1 + exp(−zivTφs(xi))
. (6.21)

This choice corresponds to the logistic loss (Definition 2.6) and a label likelihood function

of the exponential family such as in (2.17). By the above definitions, κv resolves to

κv(xi) = exp(−vTφs(xi))τ(v) where τ(v) =
n∑n

i=1 exp(−vTφs(xi))
.

In addition, we use Gaussian priors

pW(w) := N (
w |0, ρ−1

w Imh

)
and pV(v) := N (

v |0, ρ−1
v Ims

)
,

where mh and ms denote the dimensionalities of the weight vectors, and ρw and ρv denote

the regularization parameters. When taking the negative logarithm of the objective in 6.19

and inserting the above choices we arrive at

(wMAP,vMAP) = argmin
w∈W,v∈V

Q(w,v) (6.22)

with

Q(w,v) := τ(v)
n∑

i=1

exp(−vTφs(xi)) log
(
1 + exp(−yiw

Tφh(xi))
)
+

n+l∑
j=1

log
(
1 + exp(−zjv

Tφs(xj))
)
+

ρw
2
wTw +

ρv
2
vTv. (6.23)

In the above expression, normalizer τ(v) balances the trade-off between the weighted la-

bel likelihood (first sum) and the model likelihood (second sum). The impact of the l2-

regularizers is controlled by the corresponding regularization parameters ρw and ρv.

To solve the optimization problem in (6.22), we propose a gradient descent method with

inexact line search. To this end, we state the gradient of the objective in (6.23), that is,

∇Q(w,v)T = [∇wQ(w,v)T,∇vQ(w,v)T]. A straightforward calculation gives the partial

gradients,

∇wQ(w,v) = −
n∑

i=1

κv(xi)
1

1 + exp(yiwTφh(xi))
yiφ

h(xi) + ρww

∇vQ(w,v) = −
n∑

i=1

κv(xi) log
(
1 + exp(−yiw

Tφh(xi))
)
φs
v(xi) +

n+l∑
j=1

1

1 + exp(zjvTφs(xj))
zjφ

s(xj) + ρvv

90 6 Covariate Shift

where κv(xi) is defined as above, and we define φs
v(xi) := φs(xi) − 1

n

∑n
j=1 κv(xj)φ

s(xj).

Based on these partial gradients, we can now state an optimization algorithm to find wMAP

and vMAP.

Algorithm 4 LORIE: Logistic Regression Importance Estimation

Require: Objective Q(w,v) as defined in (6.23).

1: Select initial w(0) := 0, v(0) := 0, set k := 0, and select σ ∈ (0, 1) and β ∈ (0, 1).

2: repeat

3: Set ν
(k)
i := exp

(−yiw
(k)Tφh(xi)

)
for all i = 1, . . . , n.

4: Set μ
(k)
j := exp

(−zjv
(k)Tφs(xj)

)
for all j = 1, . . . , n+ l.

5: Set e(k) :=
∑n

i=1 κv(xi) log(1 + ν
(k)
i).

6: Set d
(k)
w :=

∑n
i=1 κv(xi)

ν
(k)
i

1+ν
(k)
i

yiφ
h(xi)− ρww

(k).

7: Set d
(k)
v :=

∑n
i=1 κv(xi)

(
log(1 + ν

(k)
i)− e(k)

)
φs(xi)−

∑n+l
j=1

μ
(k)
j

1+μ
(k)
j

zjφ
s(xj)− ρvv

(k).

8: Find maximal step size t(k) ∈ {
βl | l ∈ N

}
with

Q
(
w(k),v(k)

)
−Q

(
w(k) + t(k)d

(k)
w ,v(k) + t(k)d

(k)
v

)
≥ σ t(k)

(∥∥∥d(k)
w

∥∥∥2
2
+

∥∥∥d(k)
v

∥∥∥2
2

)
.

9: Set w(k+1) := w(k) + t(k)d
(k)
w .

10: Set v(k+1) := v(k) + t(k)d
(k)
v .

11: Set k := k + 1.

12: until ‖w(k) −w(k−1)‖22 + ‖v(k) − v(k−1)‖22 ≤ ε.

Remark 6.3. In general, mapping 6.23 is not jointly convex in w and v: If Q(w,v) is

convex for arbitrary instances x1, . . . , xn+l ∈ X with targets y1, . . . , yn ∈ Y = {−1,+1} and

selectors z1, . . . , zn+l ∈ {−1,+1}, then Q(w,v) must also be convex in v (with fixed w) for

data sets which contain exactly two labeled instances. As w is assumed to be fixed, the

log-terms of the first sum in 6.23 are constant as well. Hence, a necessary condition for the

general convexity of Q is that the sum

c1
exp(−vTφs(x1))

exp(−vTφs(x1)) + exp(−vTφs(x2))
+ c2

exp(−vTφs(x2))

exp(−vTφs(x1)) + exp(−vTφs(x2))
(6.24)

is convex in v for any fixed x1, x2 ∈ X and c1, c2 > 0. As the inner mapping vTφs(x)

is linear in v, this condition is equal to require that c1
1

1+exp(a) + c2
1

1+exp(−a) is convex in

a ∈ R. The first derivate of this term is (c2 − c1)
1

1+exp(a)
1

1+exp(−a) and the second derivate

is

(c2 − c1)
1

1 + exp(a)

1

1 + exp(−a)

1− exp(a)

1 + exp(a)
, (6.25)

which cannot be non-negative for all a ∈ R and distinct positive constants c1 and c2.

6.3 A Two-Stage Approximation 91

Consequently, Equation 6.24 is non-convex in v and thus Q(w,v) is generally non-convex

in w,v as well. �

The algorithm converges as the objective Q is continuous in allw ∈ R
mh

and v ∈ R
ms

and

lower bounded by zero. However, the method does not necessarily obtain a globally optimal

solution as Q is generally not jointly convex in w and v (cf. Remark 6.3). Thus, the benefit

from jointly estimating all parameters and thereby reducing the level of approximation may

vanish. To this end, we study a two-step approximation of this algorithm in the following

section, where a global optimal solution in each stage can be found efficiently.

6.3 A Two-Stage Approximation

The previous section describes a complete solution to the learning problem under covariate

shift. Unfortunately, as discussed in Remark 6.3, the convexity of the underlying optimiza-

tion criterion cannot be guaranteed and, consequently, the found solution is generally not

globally optimal. Furthermore, the logistic regression classifier is deeply embedded into the

objective so that it would not be easy to replace it by a different type of classifier like, for

instance, a decision tree.

We will now discuss a slight approximation to the integrated model (LORIE) which solves

two consecutive optimization problems. The first optimization problem produces example-

specific weights and the second step generates a classifier from the weighted examples. Both

optimization problems are convex, not only for the logistic model. But most significantly,

the two-stage approximation is conceptually simple: The second optimization step can

be carried out by any learning procedure and, as a result of the decomposition into two

optimization problems, parameter tuning becomes much easier because cross-validation can

be used in the both stages.

The derivation in Section 6.1.2 approximates the integral in (6.13) by simultaneously

selecting a pair of MAP hypotheses (hMAP, sMAP). At a higher degree of approxima-

tion, one may factorize the posterior as in Equation 6.18 and first maximize the posterior

pS|Xn+l=x,Zn+l=z(s) with respect to s. The obtained point estimate is then used to com-

pute the resampling weights. Finally, the posterior over h is maximized given the fixed

resampling weights.

This procedure results in two optimization problems: When using the same likelihood

and prior functions as in Sections 6.2, in the first stage one solves the logistic regression

problem

vMAP := argmin
v∈V

n+l∑
j=1

log
(
1 + exp(−zjv

Tφs(xj))
)
+

ρv
2
vTv (6.26)

and computes the resampling weights κvMAP(xi) for i = 1, . . . , n accordingly. Only then,

in the next stage, one solves a second (weighted) logistic regression problem given in

Equation 6.27. The criterion of the second stage weights the loss terms that each example

92 6 Covariate Shift

incurs so that the sample is matched to the test distribution.

wMAP := argmin
w∈W

n∑
i=1

κvMAP(xi) log
(
1 + exp(−yiw

Tφh(xi))
)
+

ρw
2
wTw (6.27)

This optimization problem can easily be adapted to virtually any type of classification

mechanism. Operationally, an arbitrary classification procedure can be applied to a sample

that is resampled from the training data according to the empirical sampling distribution

induced by κvMAP(xi).

6.4 Applying Kernels

By applying the representer theorem [63], we can directly state a kernelized variant of

Algorithm 4 as well as of its two-stage version. We define w :=
∑n

i=1 ωiφ
h(xi) and v :=∑n+l

j=1 υjφ
s(xj) where ω := [ω1, . . . , ωn]

T and υ := [υ1, . . . , υn+l]
T denote the corresponding

dual weight vectors. Line 3 and 4 of Algorithm 4 can now be expressed in terms of these

dual vectors, that is,

νi = exp

(
−yi

n∑
u=1

ωuk
h(xu, xi)

)
and μj = exp

(
−zj

n+l∑
u=1

υuk
s(xu, xj)

)

where kh(xu, xi) := φh(xu)
Tφh(xi) and ks(xu, xj) := φs(xu)

Tφs(xj) are the kernel functions

induced by mappings φh and φs, respectively. In addition, we can substitute κv(xj) in

Lines 5 by κυ(xj) =
μj∑n
i=1 μi

. Line 6 and 7 are replaced by the dual descent vectors dω :=

[dω1 , . . . , d
ω
n]

T and dυ := [dυ1 , . . . , d
υ
n+l]

T with

dωi = κυ(xi)
νi

1 + νi
yi − ρwωi ∀ i = 1, . . . , n

dυi = κυ(xi) (log(1 + νi)− e)− μi

1 + μi
− ρvυi ∀ i = 1, . . . , n

dυj =
μj

1 + μj
− ρvυj ∀ j = n+ 1, . . . , n+ l

where e is defined in Line 5 of the algorithm. Finally, the line search in Line 8 requires the

computation of the objective,

Q(ω,υ) =

n∑
i=1

κυ(xi)μi log (1 + νi) +

n+l∑
j=1

log (1 + μi) +

ρw
2

n∑
i,j=1

ωiωjk
h(xi, xj) +

ρv
2

n+l∑
i,j=1

υiυjk
s(xi, xj).

As the LORIE algorithm can be fully expressed in terms of dual weight vectors, we can

directly apply kernel functions kh and ks without the need for explicit feature mappings

φh and φs (cf. Section 2.6).

6.5 Related Work 93

6.5 Related Work

Starting with Lemma 6.2, a straightforward approach to compensating for covariate shift is

to compute the resampling weights κ(x) :=
pX|Γ=γ̇(x)

pX|Γ=γ(x)
by first estimating the densities pX|Γ=γ̇

and pX|Γ=γ from the test and training data, respectively, using kernel density estimation

(KDE) [66,69]. In a second step, the estimated density ratio is used to resample the training

instances, or to train with weighted examples. However, this approach requires to estimate

potentially high dimensional densities which is a non-trivial task and only loosely related

to the ultimate goal of accurate classification.

Kernel mean matching (KMM) [44] is a method that first finds weights for the training

instances so that the first momentum of training and test sets—i.e., their mean value—

matches in feature space. This is equal to minimize the maximum mean discrepancy

(MMD) [38] between the resampled training sample and the test sample with respect to

the resampling weights, which are used in the subsequent training step. Gretton et al. [39]

show that matching the means in feature space is equivalent to matching all moments of the

distributions if a characteristic kernel is used. This criterion is satisfied for many common

kernels, such as the RBF kernel. Huang et al. [44] derive a quadratic program to find the

KMM weights that can be solved with standard optimization tools.

The Kullback-Leibler importance estimation procedure (KLIEP) [70] is a third two-step

method which estimates the resampling weights for the training examples by minimizing

the Kullback-Leibler divergence between the test distribution and the resampled training

distribution. Tsuboi et al. [72] derive an extension to KLIEP for large-scale applications

and reveal a close relationship to kernel mean matching. An extensive study of KLIEP,

KMM as well as the presented logistic regression-based methods can be found in [6].

The covariate shift problem is to some extend similar to the problem of sample selection

bias. A line of work on learning under sample selection bias has meandered from the

statistics and econometrics community into machine learning [41,76]. Sample selection bias

relies on the following model of the data generation process: The test data are drawn under

the test distribution PXY|Γ=γ̇ . The training data are drawn by first sampling (x , y) from

the test distribution. Then, a selector variable decides whether (x , y) is moved into the

training set or moved into the rejected set, where the labels of the instances in the rejected

set are unknown. A typical scenario for sample selection bias is credit scoring. The labeled

training sample consists of customers who where given a loan in the past and the rejected

sample are customers that asked for but where not given a loan. New customers asking for

a loan reflect the test distribution.

In contrast to covariate shift, learning under sample selection bias does not assume the

existence of an unlabeled sample of instances drawn from the test distribution, but a labeled

sample of selected instances and a set of unlabeled instances which where rejected. In the

missing at random case of sample selection bias, the selector variable is only dependent

on x , but not on y . In this case, covariate shift models can be applied to learning under

sample selection bias by treating the selected examples as the labeled training sample and

the union of selected and rejected examples as the unlabeled test sample.

94 6 Covariate Shift

Maximum entropy density estimation under sample selection bias has been studied by

Dudik et al. [27]. Bickel and Scheffer [10] impose a Dirichlet process prior on several

learning problems with related sample selection bias. Elkan [29] as well as Japkowicz and

Stephen [45] investigate the case of training data that are only biased with respect to the

class ratio, which can be seen as sample selection bias where the selection only depends on y .

Cortes et al. [24] theoretically analyze the error that gets introduced by estimating sample

selection bias from data. Their analysis also covers the kernel mean matching procedure

and a cluster-based estimation technique.

Propensity scores [55,60] are applied in settings related to sample selection bias. Here, the

training data are again assumed to be drawn from the test distribution PXY|Γ=γ̇ followed

by a selection process. The difference to the setting of sample selection bias is that the

selected and the rejected examples are labeled. Those samples can again be corrected by

resampling, which results in two unbiased samples with respect to the test distribution.

Propensity scoring can precede a variety of analysis steps. This can be the training

of a target model on reweighted data or just a statistical analysis of the two reweighted

samples. A typical application for propensity scores is the analysis of the success of a

medical treatment. Patients are selected to be given the treatment and some other patients

are selected into the control group. If the selector variable is not independent of x (patients

may be chosen for an experimental therapy only if they meet specific requirements), the

outcome (e.g., ratio of cured patients) of the two groups cannot be compared directly and

propensity scores have to be applied.

6.6 Empirical Evaluation

In this section we empirically analyze several methods to compensate for covariate shift.

We compare the proposed integrated method logistic regression importance estimation (LO-

RIE) against two-step methods which estimate the resampling weights in a first step and

subsequently train a weighted logistic regression (cf. Equation 6.27) in the second step.

Hence, for reasons of comparison, all investigated methods use a logistic model to estimate

the parameters of the main predictive model h. We consider the following existing base-

lines to estimate the resampling weights: The trivial choice of i.i.d. weights which all equal

one (iid), the kernel mean matching weights (KMM), and the Kullback-Leibler importance

estimation procedure weights (KLIEP). In addition, we use logistic regression weights (LR)

as a two-stage approximation of LORIE (cf. Equation 6.26). We use the same data sets

and feature representation as in the previous two chapters.

6.6.1 A Case Study on Email Spam Filtering

In the first experiment, we consider a similar experiment as in Sections 4.6.4 and 5.6.1.

We use the 4,000 oldest emails as training portion and set the remaining emails aside as

6.6 Empirical Evaluation 95

test instances. We again use the F-measure as evaluation measure, repeat all experiments

20 times, and perform a paired t-test (α = 0.05). For each repetition, we first draw a

training set of 200 spam and 200 non-spam messages from the training portion. We split

the chronologically sorted test data into 20 disjoint, equally-sized sets and draw another

400 emails from each split. For each pair of training and test sets—each containing 400

emails—we train all methods, where the resulting predictive models are then applied to the

test instances of the corresponding split. Instead of the whole splits, we use only 400 test

instances from each split to keep the computational costs reasonable and to avoid skewed

testing-to-training ratios.

We construct the feature representation of the emails as in the experiments of the pre-

vious chapters. Because of computational issues, for each experiment and each repetition,

we construct the joint kernel PCA mapping (2.30) with respect to the corresponding 400

training and 400 test emails using the linear kernel resulting in 800-dimensional training

and test instances. This procedure is equivalent to use the identity mapping for φh and

φs in LORIE, and to use a linear logistic regression in the second stage of the two-step

methods, respectively.

We use the default parameters of KMM and the internal procedure for parameter tuning

of KLIEP. In order to tune the parameters of the two-stage approximation of LORIE, we

perform a 5-fold cross validation with respect to the regularization parameter of the first

stage within each repetition of an experiment. To tune the regularization parameter of

the i.i.d. baseline and the logistic regression of the second stage of the two-step methods,

we use the resampled training portion to perform a second 5-fold cross validation. This is

again carried out in each repetition of an experiment and for each method.

For LORIE, the regularization parameters ρv and ρw need to be estimated simultaneously

which is generally impossible, as we have no access to a sample of labeled test instances.

We therefore exploit the similarity of LORIE and its two-stage approximation: We use

5-fold cross validation to jointly tune both regularization parameters. However, in contrast

to standard CV, for each of the five foldings we use a resampled test fold, where we use

the logistic regression weights of the two-stage approximation of LORIE. We expect that

this resampled test fold is a reasonable test sample, which is sufficient to tune the hyper-

parameters of LORIE.

Figure 6.1 shows that, except for the Mailinglist data set, all reweighting methods do not

significantly improve the performance in comparison to the unweighted i.i.d. baseline. This

is in contrast to reported results in other domains where KMM, KLIEP, LORIE etc. where

shown to outperform the unweighted logistic regression (see, for instance, [5, 7–9,44,72]).

This negative result in the context of email spam filtering may be caused by a violation

of Assumption 6.1.4, that is, the training distribution may not cover the entire support of

the test distribution. The spam emails used for training reflect certain spam campaigns,

for instance, to advertise watches. As future spam emails may cover completely different

campaign topics such as drugs, the learning algorithm of the second stage will not benefit

from a resampling of the older spam emails.

96 6 Covariate Shift

Dec07 Jul08 Jan09 Aug09
0.72

0.79

0.86

0.93

Performance on ESP corpus

F
-m

ea
su
re

Oct02 Feb04 Jul05
0.86

0.90

0.94

0.98

Performance on Mailinglist corpus

F
-m

ea
su
re

Nov06 Apr08 Aug09
0.68

0.77

0.86

0.95

Performance on Private corpus

F
-m

ea
su
re

Apr07 May07 Jun07 Jun07
0.94

0.95

0.96

0.97

0.98

0.99

Performance on TREC 2007 corpus

F
-m

ea
su
re

iid KMM KLIEP LR LORIE

Figure 6.1: F-measure of predictive models. Error bars indicate standard errors.

6.6.2 Inspection of the Resampling Weights

In the following experiment we aim at investigating the reason for the negative result of

the previous experiment. One potential source is the reduction of the effective sample size

(see, for instance, [49])

n̂ :=
n2∑n
i=1 κ

2
i

, (6.28)

where κi are the positive resampling weights which sum up to n. We compute the effective

sample size for each method and each data set. Figure 6.2 reports on the results.

We observe that, except for the Mailinglist corpus, the effective sample size does not

change a lot for KMM whereas for the other reweighting approaches it reduces typically by

20% to 50%. In LORIE and its two-stage approximation the effective sample size falls even

below 100 for the Private corpus. We may conclude, that the potential improvement induced

by a consistent likelihood may vanish because of the reduction of the effective sample size.

However, LORIE significantly outperforms all baselines for the Mailinglist data set while

still having a reduced effective sample size. Hence, this lowering is not neccesarily the cause

of the previous negative result.

6.6 Empirical Evaluation 97

ESP Mailinglist Private TREC 2007
0

50

100

150

200

250

300

350

400

450
Effect ive sample size

nu
m

b
er

of
em

ai
ls

iid KMM KLIEP LR LORIE

Figure 6.2: Effective sample size induced by the weights of the individual methods.

We finally shall study to which extend the (normalized) resampling weights κi
n can be

estimated from the data. If Assumption 6.1.4 is violated, we will expect this estimation

problem to be nearly impossible to solve. In contrast, if the assumption is satisfied, the

distinct methods should produce to some extend similar weights, that is, the methods

should agree about under and over-represented instances.

In order to compute to which extend the weights differ between the particular methods,

we compute the Kullback-Leibler divergence in (6.29) between the (normalized) weights for

all pairs of methods. We report on the results for all methods and all four data sets in

Table 6.1.

KL(κ(1)||κ(2)) = − 1

n

n∑
i=1

κ
(1)
i log

κ
(2)
i

κ
(1)
i

, (6.29)

With the exception of KMM, we observe a significant KL-divergence between the resulting

weights of the particular methods and the i.i.d. baseline where all weights equal one.

However, the divergence between the individual reweighting methods is, except between

LORIE and LR, of the same order. From this we conclude that the estimated weights

heavily differ between most of the methods. For our experimental setting, it seems to be

hard to derive meaningful weights, which is an indication for our previously made hypothesis

that Assumption 6.1.4 is violated.

Since in the experiment of the previous section the resulting predictive models perform

comparably, the difference of the weights seems to have only little impact on the resulting

model. From this we conclude, that in our running example of email spam filtering, a

resampling of the training data is unlikely to improve the predictive performance of the

resulting classifier, independently of the particular resampling weights.

98 6 Covariate Shift

Table 6.1: Kullback-Leibler divergence (cf. Equation 6.29) between the normalized weights. The

method in the row has produced the weights κ
(1)
i and the method in the column has produced the

weights κ
(2)
i for i = 1, . . . , n and n = 400.

ESP

iid KMM KLIEP LR LORIE
iid 0.000 0.781 2.842 0.304 0.302

KMM 0.102 0.000 2.842 0.304 0.302
KLIEP 1.110 1.110 0.000 0.638 0.654
LR 0.243 0.243 1.656 0.000 0.000

LORIE 0.242 0.242 1.698 0.000 0.000

Mailinglist

iid KMM KLIEP LR LORIE
iid 0.000 3.318 0.226 0.221 0.221

KMM 0.460 0.000 0.303 0.173 0.174
KLIEP 0.129 3.192 0.000 0.130 0.130
LR 0.211 1.960 0.151 0.000 0.091

LORIE 0.320 2.039 0.133 0.090 0.000

Private

iid KMM KLIEP LR LORIE
iid 0.000 0.348 0.702 0.616 0.642

KMM 0.010 0.000 0.724 0.633 0.660
KLIEP 0.344 0.933 0.000 0.368 0.398
LR 0.614 1.087 0.490 0.000 0.002

LORIE 0.676 1.128 0.551 0.002 0.000

TREC 2007

iid KMM KLIEP LR LORIE
iid 0.000 0.009 1.421 0.349 0.349

KMM 0.007 0.000 1.353 0.338 0.338
KLIEP 0.476 0.475 0.000 0.139 0.139
LR 0.307 0.307 0.250 0.000 0.000

LORIE 0.307 0.306 0.250 0.000 0.000

7 Conclusions

In this thesis we addressed the problem of building prediction models from data which are

robust against active adversaries. This problem frequently occurs, for instance, in security

applications where an attacker aims at circumventing detections mechanisms such as spam

filters, firewalls, virus scanners, or intrusion and fraud detection systems. To this end, we

introduced the concept of prediction games which formulates the learning problem as a game

between two parties, a learner who has to commit to a predictive model using past data and

a data generator who may change the process of data generation. We focused on one-shot

games of complete information and studied three distinct scenarios: The case where both

players act simultaneously, the case where the learner moves first and the data generator

reacts, and finally the case where the data generator first changes the data generation

process on which the learner has to respond. We studied all settings from the perspective

of the learner to derive their game-theoretic optimal action and empirically analyzed the

performance of these game solutions. In the following we summarize key results.

Adversarial prediction problems are two-player one-shot games. We ana-

lyzed the common properties of adversarial prediction problems: First, there are two

parties involved—a learner and a data generator—whose interests are in conflict. This

setting establishes a two-player game. Second, each player is expected to minimize

their costs for each round separately so that the ongoing interactions between learner

and data generator generally decouple into a sequence of one-shot games.

Players have not necessarily antagonistic interests. In many applications, the

interests of both players are highly conflicting but not necessarily fully antagonistic.

This means that the data generator’s goal is generally not to explicitly choose an

action which harms the learner most, but to follow their own interests. Existing

methods, which rely on the assumption that the costs are perfectly antagonistic,

could not correctly model this scenario.

Players have complete information. To model the theoretical prediction costs of

the players, we focused on regularized empirical estimates based on the given training

data. This discriminative approach leads to games of complete information.

Simultaneously acting players establish Nash prediction game. In Chapter 4,

we focused on static games in which learner and data generator have to commit

simultaneously to a prediction model and a transformation on the data generation

process, respectively. In the absence of information about the opponent’s move, both

players may choose to play a Nash equilibrium which constitutes a cost-minimizing

move for each player if the other player follows the equilibrium as well.

100 7 Conclusions

Existence of unique Nash equilibrium is easily verifiable. Playing a Nash-

strategy is only advisable if a unique Nash equilibrium exist. In Assumption 4.1 we

summarized sufficient conditions under which it is rational for both parties to play a

Nash equilibrium. We have discussed these requirements in Section 4.1. In particular,

we have studied conditions under which a prediction game can be guaranteed to pos-

sess a unique Nash equilibrium. Lemma 4.1 identifies conditions (cf. Assumption 4.2)

under which at least one equilibrium exists and Theorem 4.8 elaborates on when this

equilibrium is unique (cf. Assumption 4.3).

Nash-optimal prediction models can be computed efficiently. We proposed

an inexact linesearch approach and a modified extragradient approach to identifying

this unique equilibrium. The first method is based on the Nikaido-Isoda function

that is defined so that a minimax solution of this function is an equilibrium of the

Nash prediction game and vice versa. We solved this minimax problem by a descent

method with inexact linesearch. In the second approach, we reformulated the Nash

prediction game into a variational inequality problem which was solved by a modified

extragradient method. Empirically, both approaches turned out to perform quite

similarly. We derived Nash logistic regression and Nash support vector machine

models, and derived kernelized versions of these methods.

Nash-optimal prediction models are empirically effective. Empirically, we

found that both methods identify unique Nash equilibria when the bounds laid out

in Corollaries 4.9 and 4.10 are satisfied or violated by a factor of up to 4. From our

experiment on several email corpora we concluded that Nash logistic regression and

the Nash support vector machine significantly outperform their i.i.d. baselines and

the Invar-SVM for the problem of classifying future emails based on training data

from the past.

Responsive data generator establishes Stackelberg prediction game. In

Chapter 5, we modeled the adversarial prediction problem as a dynamic two-stage

game, that is, a Stackelberg competition. This game assumes a learner who first

commits to a predictive model, whereas the data generator may choose a transfor-

mation of the data generation process after the predictive model has been disclosed.

That model reflects applications such as the detection of network attacks and spam

filtering in which an assailant can probe the filter.

Solution to Stackelberg prediction game always exists. Playing the Stack-

elberg equilibrium instead of a worst-case strategy based on a zero-sum model is

advisable when the data generator can be assumed to behave rational in the sense

of minimizing their own cost function. We stated the conditions for the optimality

of a Stackelberg equilibrium in Assumption 5.1. In contrast to the Nash strategy,

the Stackelberg model does not rely on the existence of a unique equilibrium and the

assumptions that the adversary has no information about the predictive model and

is able to identify and follow the equilibrial strategy.

101

Stackelberg equilibrium can be efficiently estimated. We derived a compact

optimization problem that determines the solution of the Stackelberg prediction game.

An algorithm to solve this optimization problem in the primal as well as a kernelized

version are provided. We showed that the Stackelberg model generalizes existing

prediction models such as SVM with uneven margins and SVM for invariances.

Stackelberg-optimal prediction models are empirically effective. As for the

Nash prediction game, we evaluated spam filters resulting from a regular SVM, logistic

regression, existing game-theoretical models, and three instances of the Stackelberg

prediction game on several spam-filtering data sets. The relative performance of the

distinct game-theoretic models varies, but we observed that, when compared to any

other model, the Stackelberg model with logistic loss has more wins than it has losses

against each of the baseline methods.

Responsive learner establishes covariate shift learning problem. In Chap-

ter 6 we studied the case where the data generator acts before the learner. In this

setting, the data generator moves first by producing a sample of test data (cf. As-

sumption 6.1). These instances, but not the corresponding target attributes, are then

observed by the learner who builds a predictive model based on the training data and

this unlabeled test sample. As the training and test sample originate from potentially

distinct data generation processes, this problem amounts to learning under covariate

shift.

MAP estimate based on an unbiased likelihood. We showed that the classical

approach to learning, which only takes the labeled training data into account, im-

plicitly relies on a biased label likelihood, which may lead to an inaccurate prediction

model. We introduced the theoretical label likelihood which is the theoretical quantity

the (instance) label likelihood converges to. Based on this concept, we derived an

unbiased label likelihood by resampling the training instances. This unbiased label

likelihood gives rise to a discriminative model which accounts for the covariate shift.

We showed that the contribution of each training instance to the induced optimiza-

tion problem ideally needs to be weighted with its testing-to-training density ratio.

We also showed that this ratio can be expressed—without modeling either training

or test density—by a discriminative model that characterizes how much more likely

an instance is to occur in the test sample than it is to occur in the training sample.

Reweighting methods to derive covariate shift-compensating MAP esti-

mate. We derived a primal and a kernelized gradient descent procedure for the joint

optimization problem called logistic regression importance estimation. We showed

that this algorithm converges to a locally but, unfortunately, not necessarily globally

optimal solution, as the objective is generally not jointly convex in all parameters. We

therefore proposed a two-stage method which approximates the integrated method.

The two-stage model is conceptually simpler than the integrated model and may, in

some cases, have the greatest practical utility. Beside the convexity in each stage, the

102 7 Conclusions

main advantage compared to the integrated model is that regularization parameters

can be tuned without prior knowledge by cross-validation. Another advantage of the

two-stage model is that in the second stage, after the example-specific weights have

been derived, virtually any learning mechanism can be employed to produce the final

classifier from a resampled training sample.

Reweighting methods improve spam filters only marginally. We observed

in our experiments, that in the case of email spam filtering, the proposed as well as

existing reweighting methods such as kernel mean matching and the Kullback-Leibler

importance estimation procedure do not outperform the i.i.d. baseline for most of the

data sets. As this finding is in contrast to previously published results, we investigated

possible causes. We identified two potential reasons: First, the reweighting of the

instances reduces the effective sample size dramatically which increases the variance of

the estimation error and may lead to less accurate prediction models. And second, the

made assumption that the training distribution covers the entire support of the test

distribution may be violated such that it becomes impossible to identify meaningful

resampling weights.

In the investigated field of prediction games, many opportunities for future work are

available. First of all, in this thesis we focused on the task of spam filtering where we

had access to real-world data. It may be interesting to study how effective the proposed

methods are in other domains apart from email spam such as network intrusion or credit

card fraud. In these areas, domain experts may provide detailed information about the

likelihood of particular changes of the data generation process. This may give rise to an

application-specific measure of the divergence between the original and the perturbated

training sample.

We mainly studied binary classification. For Stackelberg prediction games and learning

under covariate shift, there are only weak restrictions on the loss functions. These models

can be directly applied to other learning task such as multi-class classification and regres-

sion. However, for the Nash prediction game it may be non-trivial to verify whether the

requirement of Lemma 4.2, that is, the existence of a unique Nash equilibrium, is met in

other learning settings.

We modeled the adversarial prediction problem as a two-player game of complete infor-

mation. In some applications, there may be indeed more than two parties competing with

each other. It is unclear to which extend the presented prediction models can be extended

to three or more players and how this affects the computational costs as well as predictive

performance. In addition, we decided for games of complete information so that we did not

have to explicitly model the test distribution PXY|Γ=γ̇ . In some domains it may be desir-

able to know the optimal move (the optimal test distribution) of the data generator, too.

This would require to make an assumption on the functional form of the test distribution

leading to Bayesian games. It therefore may be worthwhile to extend prediction games to

Bayesian prediction games.

103

Finally, most of the proposed methods are still computationally expensive. Especially

for Nash and Stackelberg prediction games, finding the perturbation which is optimal for

the data generator requires to solve an optimization problems with a very high number of

variables—precisely, the product of the number of instances and attributes. In practice,

for instance, spam filters are derived from millions of emails with hundreds of thousands

attributes, i.e., words and word combinations. In such a setting, not all of the proposed

methods are directly applicable. Techniques to significantly speed up the learning processes

and allowing for large-scale experiments are therefore of great interest.

Bibliography

[1] Altman, E., Boulogne, T., Azouzi, R.E., Jiménez, T., Wynter, L.: A survey on net-

working games in telecommunications. Computers & OR 33, 286–311 (2006)

[2] Androutsopoulos, I., Magirou, E.F., Vassilakis, D.K.: A game theoretic model of spam

e-mailing. In: Proceedings of the Conference on Email and Anti-Spam (2005)

[3] Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Society for Industrial

and Applied Mathematics (1999)

[4] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and

Algorithms. Wiley and Sons, 3th edn. (2006)

[5] Bickel, S., Sawade, C., Scheffer, T.: Transfer learning by distribution matching for

targeted advertising. In: Advances in Neural Information Processing Systems (NIPS).

MIT Press (2009)

[6] Bickel, S.: Learning under Differing Training and Test Distributions. Ph.D. thesis,

Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam (2009)

[7] Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training and

test distributions. In: Proceedings of International Conference on Machine Learning

(ICML). ACM Press, Oregon, USA (2007)

[8] Bickel, S., Brückner, M., Scheffer, T.: Dataset Shift in Machine Learning, chap. Dis-

criminative learning under covariate shift with a single optimization problem, pp. 161–

178. MIT Press (2009)

[9] Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift.

Journal of Machine Learning Research (JMLR) 10, 2137–2155 (2009)

[10] Bickel, S., Scheffer, T.: Dirichlet-enhanced spam filtering based on biased samples. In:

Advances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,

USA (2007)

[11] Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

[12] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations

and Trends in Machine Learning 3(1), 1–122 (2011)

106 Bibliography

[13] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

[14] Brückner, M., Bickel, S., Scheffer, T.: Optimal spamming: Solving a family of adver-

sarial classification games. In: Proceedings of NIPS Workshop on Machine Learning

in Adversarial Environments for Computer Security (2007)

[15] Brückner, M., Haider, P., Scheffer, T.: Highly scalable discriminative spam filtering.

In: Proceedings of 15th Text REtrieval Conference (TREC). National Institute of

Standards and Technology (NIST) (2006)

[16] Brückner, M., Kanzow, C., Scheffer, T.: Static prediction games for adversarial learn-

ing problems. Journal of Machine Learning Research (JMLR) 13, 2589–2626 (2012)

[17] Brückner, M., Scheffer, T.: Nash equilibria of static prediction games. In: Advances

in Neural Information Processing Systems (NIPS). MIT Press (2009)

[18] Brückner, M., Scheffer, T.: Stackelberg games for adversarial prediction problems.

In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), San Diego, CA, USA. ACM Press (2011)

[19] Chapelle, O.: Training a support vector machine in the primal. Neural Computation

19(5), 1155–1178 (2007)

[20] Charilas, D.E., Panagopoulos, A.D.: A survey on game theory applications in wireless

networks. Computer Networks 54(18), 3421–3430 (2010)

[21] Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of

Operations Research 153(1), 235–256 (2007)

[22] Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solutions to Nash-Cournot equi-

libria in coupled constraint electricity markets. IEEE Transaction on Power Systems

19(1), 195–206 (2004)

[23] Cormack, G.V.: TREC 2007 spam track overview. In: Voorhees, E.M., Buckland, L.P.

(eds.) TREC. vol. Special Publication 500-274. National Institute of Standards and

Technology (NIST) (2007)

[24] Cortes, C., Mohri, M., Riley, M., Rostamizadeh, A.: Sample selection bias correc-

tion theory. In: Proceedings of the International Conference on Algorithmic Learning

Theory (2008)

[25] Dekel, O., Shamir, O.: Learning to classify with missing and corrupted features. In:

Proceedings of the International Conference on Machine Learning (ICML). pp. 216–

223. ACM Press (2008)

[26] Dekel, O., Shamir, O., Xiao, L.: Learning to classify with missing and corrupted

features. Machine Learning 81(2), 149–178 (2010)

Bibliography 107

[27] Dudik, M., Schapire, R., Phillips, S.: Correcting sample selection bias in maximum

entropy density estimation. In: Advances in Neural Information Processing Systems

(NIPS). MIT Press (2005)

[28] Duflo, M.: Random Iterative Models. Springer-Verlag New York, Secaucus, NJ, USA

(1997)

[29] Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Interna-

tional Joint Conference on Artificial Intellligence (2001)

[30] Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational

inequalities. Operations Research Letters 35(2), 159–164 (2007)

[31] Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and

Newton methods. Mathematical Programming 117(1-2), 163–194 (2009)

[32] Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210

(2007)

[33] Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view

of boosting. The Annals of Statistics 28(2), 337–374 (2000)

[34] Geiger, C., Kanzow, C.: Theorie und Numerik restringierter Optimierungsaufgaben.

Springer (1999)

[35] Ghaoui, L.E., Lanckriet, G.R.G., Natsoulis, G.: Robust classification with interval

data. Tech. Rep. UCB/CSD-03-1279, EECS Department, University of California,

Berkeley (2003)

[36] Globerson, A., Roweis, S.T.: Nightmare at test time: Robust learning by feature dele-

tion. In: Proceedings of the International Conference on Machine Learning (ICML).

ACM Press (2006)

[37] Globerson, A., Teo, C.H., Smola, A.J., Roweis, S.T.: Dataset Shift in Machine Learn-

ing, chap. An adversarial view of covariate shift and a minimax approach, pp. 179–198.

MIT Press (2009)

[38] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel

method for the two-sample problem. CoRR abs/0805.2368 (2008)

[39] Gretton, A., Fukumizu, K., Harchaoui, Z., Sriperumbudur, B.: A fast, consistent kernel

two-sample test. In: Advances in Neural Information Processing Systems (NIPS). MIT

Press (2009)

[40] Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear com-

plementarity problems: A survey of theory, algorithms and applications. Mathematical

Programming 48(2), 161–220 (1990)

108 Bibliography

[41] Heckman, J.: Sample selection bias as a specification error. Econometrica 47, 153–161

(1979)

[42] von Heusinger, A., Kanzow, C.: Optimization reformulations of the generalized Nash

equilibrium problem using Nikaido-Isoda-type functions. Computational Optimization

and Applications 43(3), 353–377 (2007)

[43] von Heusinger, A., Kanzow, C.: Relaxation methods for generalized Nash equilibrium

problems with inexact line search. Journal of Optimization Theory and Applications

143(1), 159–183 (2009)

[44] Huang, J., Smola, A.J., Gretton, A., Borgwardt, K., Schölkopf, B.: Correcting sam-

ple selection bias by unlabeled data. In: Advances in Neural Information Processing

Systems (NIPS). MIT Press (2007)

[45] Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intelli-

gent Data Analysis 6, 429–449 (2002)

[46] Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis.

Mathematical Programming 32, 146–164 (1985)

[47] Kantarcioglu, M., Xi, B., Clifton, C.: A game theoretical framework for adversarial

learning (2008)

[48] Kantarcioglu, M., Xi, B., Clifton, C.: Classifier evaluation and attribute selection

against active adversaries. Data Mining and Knowledge Discovery 22(1-2), 291–335

(2011)

[49] Kong, A.: A note on importance sampling using standardized weights. Tech. Rep. 348,

University of Chicago, Department of Statistics (1992)

[50] Li, Y., Shawe-Taylor, J.: The SVM with uneven margins and chinese document cate-

gorization. In: Proceedings of the Pacific Asia Conference on Language, Information

and Computation. pp. 216–227 (2003)

[51] Lippert, R.A., Rifkin, R.M.: Infinite-sigma limits for Tikhonov regularization. Journal

of Machine Learning Research (JMLR) 7, 855–876 (2006)

[52] Liu, W., Chawla, S.: A game theoretical model for adversarial learning. In: ICDM

Workshops. pp. 25–30. IEEE Computer Society (2009)

[53] Liu, W., Chawla, S.: Mining adversarial patterns via regularized loss minimization.

Machine Learning 81(1), 69–83 (2010)

[54] Long, N.V.: A Survey of Dynamic Games in Economics, vol. 1. World Scientific Pub-

lishing Co. Pte. Ltd. (2010)

Bibliography 109

[55] Lunceford, J., Davidian, M.: Stratification and weighting via the propensity score in

estimation of causal treatment effects: A comparative study. Statistics in Medicine

23(19), 2937–2960 (2004)

[56] Parameswaran, M., Rui, H., Sayin, S.: A game theoretic model and empirical analysis

of spammer strategies. In: Proceedings of the Collaboration, Electronic messaging,

Anti-Abuse and Spam Conference (2010)

[57] Rasmusen, E.: Games and Information: An Introduction to Game Theory. Wiley-

Blackwell, 4 edn. (2006)

[58] Robbins, H., Siegmund, D.: A convergence theorem for non-negative almost super-

martingales and some applications. In: Optimizing methods in Statistics. pp. 233–257.

Academic Press, New York (1971)

[59] Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica 33(3), 520–534 (1965)

[60] Rosenbaum, P., Rubin, D.: The central role of the propensity score in observational

studies for causal effects. Biometrika 70(1), 41–55 (1983)

[61] Rosenblatt, F.: The perceptron: A probabilistic model for information storage and

organization in the brain. Psych. Rev. 65, 386–407 (1958)

[62] Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of game

theory as applied to network security. In: HICSS. pp. 1–10. IEEE Computer Society

(2010)

[63] Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In:

COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan

Kaufmann Publishers (2001)

[64] Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge, MA (2002)

[65] Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient

SOlver for SVM. In: Proceedings of the 24th International Conference on Machine

Learning (ICML). ACM Press (2007)

[66] Shimodaira, H.: Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of Statistical Planning and Inference 90, 227–244

(2000)

[67] Siefkes, C., Assis, F., Chhabra, S., Yerazunis, W.S.: Combining Winnow and orthogo-

nal sparse bigrams for incremental spam filtering. In: Proceedings of the 8th European

Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD).

Lecture Notes in Artificial Intelligence, vol. 3202, pp. 410–421. Springer (2004)

110 Bibliography

[68] Spall, J.C.: Introduction to Stochastic Search and Optimization. John Wiley & Sons,

Inc., New York, NY, USA (2003)

[69] Sugiyama, M., Müller, K.R.: Input-dependent estimation of generalization error under

covariate shift. Statistics and Decision 23(4), 249–279 (2005)

[70] Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct im-

portance estimation with model selection and its application to covariate shift adap-

tation. In: Advances in Neural Information Processing Systems (NIPS) (2008)

[71] Teo, C.H., Globerson, A., Roweis, S.T., Smola, A.J.: Convex learning with invariances.

In: Advances in Neural Information Processing Systems. MIT Press (2007)

[72] Tsuboi, J., Kashima, H., Hido, S., Bickel, S., Sugiyama, M.: Direct density ratio

estimation for large-scale covariate shift adaptation. In: Proceedings of the SIAM

International Conference on Data Mining (2008)

[73] van der Vaart, A.W.: Asymptotic Statistics. Cambridge Series in Statistical and Prob-

abilistic Mathematics, Cambridge University Press (2000)

[74] Veelken, S.: A New Relaxation Scheme for Mathematical Programs with Equilibrium

Constraints: Theory and Numerical Experience. Ph.D. thesis, Technische Universität

München (2009)

[75] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming. Mathematical Programming

106, 25–57 (2006)

[76] Zadrozny, B.: Learning and evaluating classifiers under sample selection bias. In: Pro-

ceedings of the International Conference on Machine Learning (ICML) (2004)

[77] Zinkevich, M., Weimer, M., Smola, A., Li, L.: Parallelized stochastic gradient descent.

In: Advances in Neural Information Processing Systems (NIPS) (2010)

Appendix

Proofs

Proof of Proposition 2.2. The Huber loss �H(gw(x), y) is a function in z := ygw(x) with

fixed (x , y) ∈ X × Y. Hence, it is sufficient to show that this loss function is convex and

continuously differentiable in z ∈ R. Let �′ and �′′ denote the first and second derivative,

respectively, of loss function �H with respect to z. Then, a direct calculation shows that

�′(gw(x), y) =

⎧⎪⎨
⎪⎩

0 if z > 1 + δ
z−(1+δ)

2δ if |1− z| ≤ δ

−1 if z < 1− δ

(A.1)

and

�′′(gw(x), y) =

⎧⎪⎨
⎪⎩

0 if z > 1 + δ
1
2δ if |1− z| ≤ δ

0 if z < 1− δ

. (A.2)

The Huber loss is continuously differentiable in z ∈ R as it is continuous in z,

lim
z→(1+δ)+

�H(gw(x), y) = 0 = (1+δ−(1+δ))2

4δ = lim
z→(1+δ)−

�H(gw(x), y)

lim
z→(1−δ)+

�H(gw(x), y) = (1+δ−(1−δ))2

4δ = 1− (1− δ) = lim
z→(1−δ)−

�H(gw(x), y)

and its first derivative is continuous in z as well,

lim
z→(1+δ)+

�′(gw(x), y) = 0 = (1+δ)−(1+δ)
2δ = lim

z→(1+δ)−
�′(gw(x), y)

lim
z→(1−δ)+

�′(gw(x), y) = (1−δ)−(1+δ)
2δ = −1 = lim

z→(1−δ)−
�′(gw(x), y)

.

As the second derivative �′′ is a piecewise-constant function, the Huber loss is not twice-

continuously differentiable. However, it is convex in z ∈ R since �′′ is non-negative for all

z ∈ R.

Proof of Proposition 2.3. As in the previous proof, we consider loss function �t(gw(x), y)

as a function in z := ygw(x) with fixed (x , y) ∈ X × Y, and show that �t is convex and

twice-continuously differentiable in z ∈ R. Again, let �′ and �′′ denote the first and second

derivative, respectively, of loss function �t with respect to z given in (A.3) and (A.4).

112 Appendix

�′(gw(x), y) =

⎧⎪⎨
⎪⎩

0 if z > δ

−1
2 + 1

2 sin
(
π
2δz

)
if |z| ≤ δ

−1 if z < −δ

(A.3)

�′′(gw(x), y) =

⎧⎪⎨
⎪⎩

0 if z > δ
π
4δ cos

(
π
2δz

)
if |z| ≤ δ

0 if z < −δ

(A.4)

The trigonometric loss is twice-continuously differentiable in z ∈ R as it is continuous in z,

lim
z→δ+

�t(gw(x), y) = 0 = δ−δ
2 − δ

π cos
(
π
2δ δ

)
= lim

z→δ−
�t(gw(x), y)

lim
z→−δ+

�t(gw(x), y) = δ+δ
2 − δ

π cos
(− π

2δ δ
)
= δ = lim

z→−δ−
�t(gw(x), y)

,

its first derivative is continuous in z,

lim
z→δ+

�′(gw(x), y) = 0 = −1
2 + 1

2 sin
(
π
2δ δ

)
= lim

z→δ−
�′(gw(x), y)

lim
z→−δ+

�′(gw(x), y) = −1
2 + 1

2 sin
(− π

2δ δ
)
= −1 = lim

z→−δ−
�′(gw(x), y)

,

and its second derivative is also continuous in z,

lim
z→δ+

�′′(gw(x), y) = 0 = π
4δ cos

(
π
2δ δ

)
= lim

z→δ−
�′′(gw(x), y)

lim
z→−δ+

�′′(gw(x), y) = π
4δ cos

(− π
2δ δ

)
= 0 = lim

z→−δ−
�′′(gw(x), y)

.

Since the cosine function is positive in the open interval (−π
2 ,

π
2), the second derivative �′′

is positive for all |z| < δ. As, in addition, �′′ equals 0 for all |z| ≥ δ, the trigonometric loss

is also convex in z ∈ R.

Proof of Proposition 2.4. As before, we consider loss function �l(gw(x), y) as a function in

z := ygw(x) with fixed (x , y) ∈ X × Y, and show that �l is convex and twice-continuously

differentiable in z ∈ R. Again, let �′ and �′′ denote the first and second derivative, respec-

tively, of loss function �l with respect to z, where

�′(gw(x), y) = − exp(−z)

1 + exp(−z)
=

1

1 + exp(−z)
− 1 (A.5)

and

�′′(gw(x), y) =
1

1 + exp(−z)

exp(−z)

1 + exp(−z)
= −(�′(gw(x), y) + 1)�′(gw(x), y). (A.6)

The logistic loss is infinitely-continuously differentiable as the second derivative, and conse-

quently all higher order derivatives, can be expressed as a polynomial of the first derivative

which is by itself continuous in z. The logistic loss is strictly convex as the second derivative

is a product of two (strictly) positive terms.

Proofs 113

Proof of Lemma 4.5. The special structure of D and Υ(w, ẋ) gives

J
(1)
r (w, ẋ) = Υ(w, ẋ)T

[
r0G−1 r0G−1

diag(r1, . . . , rn)G+1 diag(r1, . . . , rn)G+1

]
Υ(w, ẋ).

From the assumption �′′−1,i = �′′+1,i and the definition r0 = 1, ri =
c−1,i

c+1,i
> 0 for all i =

1, . . . , n, it follows that G−1 = diag(r1, . . . , rn)G+1, so that

J
(1)
r (w, ẋ) = Υ(w, ẋ)T

[
G−1 G−1

G−1 G−1

]
Υ(w, ẋ),

which is obviously a symmetric matrix. Furthermore, we show that zTJ
(1)
r (w, ẋ)z ≥ 0 holds

for all vectors z ∈ R
m+m·n. To this end, let z be arbitrarily given, and partition this vector

in z =
[
zT0 , z

T
1 , . . . , z

T
n

]T
with zi ∈ R

m for all i = 0, 1, . . . , n. Then, a simple calculation

shows that

zTJ
(1)
r (w, ẋ)z =

n∑
i=1

(
zT0 xi + zTi w

)2
c−1,i�

′′
−1,i ≥ 0,

since �′′−1,i ≥ 0 for all i = 1, . . . , n in view of the assumed convexity of mapping �−1(z, y).

Hence, J
(1)
r (w, ẋ) is positive semi-definite. This matrix cannot be positive definite, since

we have zTJ
(1)
r (w, ẋ)z = 0 for the particular vector z defined by z0 := −w and zi := xi for

all i = 1, . . . , n.

Proof of Lemma 4.6. A sufficient and necessary condition for the (possibly asymmetric)

matrix J
(2)
r (w, ẋ) to be positive definite is that the Hermitian matrix

H(w, ẋ) := J
(2)
r (w, ẋ) + J

(2)
r (w, ẋ)T

is positive definite, that is, all eigenvalues of H(w, ẋ) are positive. Let D
1
2 denote the

square root of D, which is defined in such a way that the diagonal elements of D
1
2 are the

square roots of the corresponding diagonal elements of D. Furthermore, we denote by D− 1
2

the inverse of D
1
2 . Then, by Sylvester’s law of inertia, the matrix

H̄(w, ẋ) = D− 1
2

(
J
(2)
r (w, ẋ) + J

(2)
r (w, ẋ)T

)
D− 1

2 (A.7)

= D− 1
2D

⎡
⎢⎢⎢⎢⎣

ρ−1λ−1Im c−1,1�
′−1,1Im · · · c−1,n�

′−1,nIm

c+1,1�
′
+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c+1,n�
′
+1,nIm 0 · · · ρ+1λ+1Im

⎤
⎥⎥⎥⎥⎦D− 1

2 +

D− 1
2

⎡
⎢⎢⎢⎢⎣

ρ−1λ−1Im c+1,1�
′
+1,1Im · · · c+1,n�

′
+1,nIm

c−1,1�
′−1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...

c−1,n�
′−1,nIm 0 · · · ρ+1λ+1Im

⎤
⎥⎥⎥⎥⎦DD− 1

2 (A.8)

114 Appendix

has the same number of positive, zero, and negative eigenvalues as matrix H(w, ẋ) itself.

Hence, J
(2)
r (w, ẋ) is positive definite if, and only if, all eigenvalues of H̄(w, ẋ) are positive.

By defining c̃i :=
√
c−1,ic+1,i(�

′
−1,i + �′+1,i), (A.8) can be rewritten as

H̄(w, ẋ) =

⎡
⎢⎢⎢⎢⎣

2ρ−1λ−1Im c̃1Im · · · c̃nIm

c̃1Im 2ρ+1λ+1Im · · · 0
...

...
. . .

...

c̃nIm 0 · · · 2ρ+1λ+1Im

⎤
⎥⎥⎥⎥⎦ .

Each eigenvalue λ of this matrix satisfies

(
H̄(w, ẋ)− λIm+m·n

)
v = 0

for the corresponding eigenvector vT =
[
vT
0 ,v

T
1 , . . . ,v

T
n

]
with vi ∈ R

m for i = 0, 1, . . . , n.

This eigenvalue equation can be rewritten block-wise as

(2ρ−1λ−1 − λ)v0 +
n∑

i=1

c̃ivi = 0, (A.9)

(2ρ+1λ+1 − λ)vi + c̃iv0 = 0 ∀ i = 1, . . . , n. (A.10)

To compute all possible eigenvalues, we consider two cases: Firstly, we assume that v0 = 0.

Then, (A.9) and (A.10) reduce to

n∑
i=1

c̃ivi = 0 and (2ρ+1λ+1 − λ)vi = 0 ∀ i = 1, . . . , n.

Since v0 = 0 and eigenvector v �= 0, at least one vi is non-zero. This implies that

λ = 2ρ+1λ+1 is an eigenvalue. Using the fact that the null space of the linear mapping

v 	→ ∑n
i=1 c̃ivi has dimension (n − 1) · m (we have n · m degrees of freedom counting all

components of v1, . . . ,vn and m equations in
∑n

i=1 c̃ivi = 0), it follows that λ = 2ρ+1λ+1

is an eigenvalue of multiplicity (n− 1) ·m.

Now, we consider the second case where v0 �= 0. We may further assume that λ �=
2ρ+1λ+1 (since otherwise we get the same eigenvalue as before, just with a different multi-

plicity). We then get from (A.10) that

vi = − c̃i
2ρ+1λ+1 − λ

v0 ∀ i = 1, . . . , n, (A.11)

and when substituting this expression into (A.9), we obtain(
(2ρ−1λ−1 − λ)−

n∑
i=1

c̃2i
2ρ+1λ+1 − λ

)
v0 = 0. (A.12)

where v0 �= 0.

Proofs 115

Equation A.12 and v0 �= 0 imply

0 = 2ρ−1λ−1 − λ− 1

2ρ+1λ+1 − λ

n∑
i=1

c̃2i

and, therefore,

0 = λ2 − 2(ρ−1λ−1 + ρ+1λ+1)λ+ 4ρ−1ρ+1λ−1λ+1 −
n∑

i=1

c̃2i .

The roots of this quadratic equation are

λ = ρ−1λ−1 + ρ+1λ+1 ±
√√√√(ρ−1λ−1 − ρ+1λ+1)2 +

n∑
i=1

c̃2i , (A.13)

and these are the remaining eigenvalues of H̄(w, ẋ), each of multiplicity m since there are

precisely m linearly independent vectors v0 �= 0 whereas the other vectors vi (i = 1, . . . , n)

are uniquely defined by (A.11) in this case. In particular, this implies that the dimensions

of all three eigenspaces together are (n−1)m+m+m = (n+1)m, hence, other eigenvalues

cannot exist. Since the eigenvalue λ = 2ρ+1λ+1 is positive by Remark 4.3, it remains to

show that the roots in (A.13) are positive as well. By Assumption 4.3, we have

n∑
i=1

c̃2i =
n∑

i=1

c−1,ic+1,i(�
′
−1,i + �′+1,i)

2 ≤ 4τ2cT−1c+1 < 4ρ−1ρ+1λ−1λ+1,

where cv = [cv,1, cv,2, · · · , cv,n]T. This inequality and Equation A.13 give

λ = ρ−1λ−1 + ρ+1λ+1 ±
√√√√(ρ−1λ−1 − ρ+1λ+1)2 +

n∑
i=1

c̃2i

> ρ−1λ−1 + ρ+1λ+1 −
√
(ρ−1λ−1 − ρ+1λ+1)2 + 4ρ−1ρ+1λ−1λ+1 = 0.

As all eigenvalues of H̄(w, ẋ) are positive, matrix H(w, ẋ) and, consequently, also the

matrix J
(2)
r (w, ẋ) are positive definite.

Proof of Lemma 4.7. By Assumption 4.3, either both players have equal instance-specific

costs, or the partial gradient ∇ẋiΩ+1(x, ẋ) of the sender’s regularizer is independent of

ẋj for all j �= i and i = 1, . . . , n. Let us consider the first case where c−1,i = c+1,i, and

consequently ri = 1, for all i = 1, . . . , n, so that

J
(3)
r (w, ẋ) =

[
ρ−1∇2

w,wΩ−1(w)− ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ+1(x, ẋ)− ρ+1λ+1Im·n

]
.

The eigenvalues of this block diagonal matrix are the eigenvalues of the matrix

116 Appendix

ρ−1(∇2
w,wΩ−1(w) − λ−1Im) together with those of ρ+1(∇2

ẋ,ẋΩ+1(x, ẋ) − λ+1Im·n). From

the definition of λv in (4.6) and (4.7) follows that these matrices are positive semi-definite

for v ∈ {−1,+1}. Hence, J
(3)
r (w, ẋ) is positive semi-definite as well.

Now, let us consider the second case where we assume that ∇ẋiΩ+1(x, ẋ) is independent

of ẋj for all j �= i. Hence, ∇2
ẋi,ẋj

Ω+1(x, ẋ) = 0 for all j �= i, so that

J
(3)
r (w, ẋ) =

⎡
⎢⎢⎢⎢⎣

ρ−1Ω̃−1 0 · · · 0

0 ρ+1
c−1,1

c+1,1
Ω̃+1,1 · · · 0

...
...

. . .
...

0 0 · · · ρ+1
c−1,n

c+1,n
Ω̃+1,n

⎤
⎥⎥⎥⎥⎦ ,

where Ω̃−1 := ∇2
w,wΩ−1(w) − λ−1Im and Ω̃+1,i = ∇2

ẋi,ẋi
Ω+1(x, ẋ) − λ+1Im. The eigen-

values of this block diagonal matrix are again the union of the eigenvalues of the single

blocks ρ−1Ω̃−1 and ρ+1
c−1,i

c+1,i
Ω̃+1,i for i = 1, . . . , n. As in the first part of the proof, Ω̃−1 is

positive semi-definite. The eigenvalues of ∇2
ẋ,ẋΩ+1(x, ẋ) are the union of all eigenvalues of

∇2
ẋi,ẋi

Ω+1(x, ẋ). Hence, each of these eigenvalues is larger or equal to λ+1 and thus, each

block Ω̃+1,i is positive semi-definite. The factors ρ−1 > 0 and ρ+1
c−1,i

c+1,i
> 0 are multipliers

that do not affect the definiteness of the blocks, and consequently, J
(3)
r (w, ẋ) is positive

semi-definite as well.

Proof of Corollary 4.9. By Definition 4.1, both players employ the logistic loss with

�−1(z, y) := �l(z, y) and �+1(z, y) := �l(z,−1) and the l2-norm regularizers in (4.16) and

(4.17), respectively. Let

�′−1(z, y) = −y 1
1+exp(yz) �′+1(z, y) = 1

1+exp(−z)

�′′−1(z, y) = 1
1+exp(z)

1
1+exp(−z) �′′+1(z, y) = 1

1+exp(z)
1

1+exp(−z)

(A.14)

denote the first and second derivatives of the players’ loss functions with respect to z ∈ R.

Further, let

∇wΩ−1(w) = w ∇ẋΩ+1(x, ẋ) = 1
n (ẋ− x)

∇2
w,wΩ−1(w) = Im ∇2

ẋ,ẋΩ+1(x, ẋ) = 1
nIm·n

(A.15)

denote the gradients and Hessians of the players’ regularizers. Assumption 4.2 holds as:

1. According to Proposition 2.4, �v(z, y) is convex and twice-continuously differentiable

with respect to z for v ∈ V and fixed y .

2. The Hessians of the players’ regularizers are fixed, positive definite matrices and,

consequently, both regularizers are twice-continuously differentiable and uniformly

strongly convex in w ∈ W and ẋ ∈ φ(X)n (for any fixed x ∈ φ(X)n), respectively.

3. By Definition 4.1, the players’ action sets are non-empty, compact, and convex subsets

of finite-dimensional Euclidean spaces.

Proofs 117

Assumption 4.3 holds as for all z ∈ R and y ∈ Y:

1. The second derivatives of �−1(z, y) and �+1(z, y) in (A.14) are equal.

2. The sum of the first derivatives of the loss functions is bounded,

�′−1(z, y) + �′+1(z, y) = −y
1

1 + exp(yz)
+

1

1 + exp(−z)

=

{
1−exp(−z)
1+exp(−z) , if y = +1

2
1+exp(−z) , if y = −1

∈ (−1, 2),

which together with Equation 4.10 gives

τ = sup
(x,y)∈φ(X)×Y

1

2

∣∣�′−1(gw(x), y) + �′+1(gw(x), y)
∣∣ < 1.

The supremum τ is strictly less than 1, since gw(x) is finite for compact action sets

W and φ(X)n. The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and

λ+1 =
1
n , so that inequalities

ρ−1ρ+1 ≥ ncT−1c+1 > τ2
1

λ−1λ+1
cT−1c+1

hold.

3. The partial gradient ∇ẋiΩ+1(x, ẋ) =
1
n (ẋi − xi) of the data generator’s regularizer is

independent of ẋj for all j �= i and i = 1, . . . , n.

As Assumptions 4.2 and 4.3 are satisfied, the existence of a unique Nash equilibrium follows

immediately from Theorem 4.8.

Proof of Corollary 4.10. By Definition 4.2, both players employ the trigonometric loss with

�−1(z, y) := �t(z, y) and �+1(z, y) := �t(z,−1) and the regularizers in (4.16) and (4.17),

respectively. Assumption 4.2 holds as:

1. According to Proposition 2.3, �t(z, y), and consequently �−1(z, y) and �+1(z, y), are

convex and twice-continuously differentiable with respect to z ∈ R (for any fixed

y ∈ {−1,+1}).

2. The regularizers of the Nash support vector machine are equal to that of the Nash

logistic regression and possess the same properties as in Theorem 4.9.

3. By Definition 4.2, the players’ action sets are non-empty, compact, and convex subsets

of finite-dimensional Euclidean spaces.

118 Appendix

Assumption 4.3 holds:

1. The second derivatives of �−1(z, y) and �+1(z, y) are equal for all z ∈ R since

�t
′′
(z, y) =

{
0 , if |z| > δ

π
4δ cos

(
π
2δz

)
, if |z| ≤ δ

does not dependent on y ∈ Y (cf. proof of Proposition 2.3).

2. The sum of the first derivatives of the loss functions is bounded as for y = −1:

�′−1(z,−1) + �′+1(z,−1) = 2�t
′
(z,−1) =

⎧⎪⎨
⎪⎩

2 , if z > δ

1− sin
(− π

2δz
)

, if |z| ≤ δ

0 , if z < −δ

∈ [0, 2],

and for y = +1:

�′−1(z,+1) + �′+1(z,+1) =

⎧⎪⎨
⎪⎩

1 , if z > δ

sin
(
π
2δz

)
, if |z| ≤ δ

−1 , if z < −δ

∈ [−1, 1].

Together with Equation 4.10, it follows that

τ = sup
(x,y)∈φ(X)×Y

1

2

∣∣�′−1(gw(x), y) + �′+1(gw(x), y)
∣∣ ≤ 1.

The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and λ+1 =
1
n , so that

inequalities

ρ−1ρ+1 > ncT−1c+1 ≥ τ2
1

λ−1λ+1
cT−1c+1

hold.

3. As for Nash logistic regression, the partial gradient ∇ẋiΩ+1(x, ẋ) =
1
n (ẋi − xi) of the

data generator’s regularizer is independent of ẋj for all j �= i and i = 1, . . . , n.

Because Assumptions 4.2 and 4.3 are satisfied, the existence of a unique Nash equilibrium

follows immediately from Theorem 4.8.

Notation

The general ideas underlying the notation are as follows. Spaces, halfspaces, and sets are

denoted by italic capitals like X . Italic lower-case characters such as τ and n denote real

or integer scalar values whereas composed objects such as tuples, vectors, and matrices are

denoted by non-italic bold characters like x and X. Functions of the real Euclidean space

are denoted by non-italic lower case characters such as f(·) and θ(·), and general mappings

and multi-dimensional functions are denoted by bold characters like g(·) and φ(·). The

notions f [·] and φ[·] refer to functionals. Italic bold capitals such as X denote random

variables.

To separate between training and test variables we use a dot such as ẋ , and to indicate

an estimate of a quantity we use the hat symbol, e.g., θ̂ is an estimate of θ. We use (1)

as a short form of Equation 1 and use the Latin abbreviations cf. (confer), et al. (et alii),

etc. (et cetera), e.g. (exempli gratia), and i.e. (id est). The abbreviation i.i.d. stands for

independent and identically distributed.

In the following, we list frequently used functions and variables.

w Parameter vector w := [w1, . . . , wm]T ∈ W of weights wj , page 17

Δ Error functional Δ : F×X×Y → R
+ measures the disagreement between label

y and prediction hw(x) with hw(x) = argmaxy∈Y fw(x , y); for binary classi-

fication we define Δ[fw, x , y] := c(x , y)�(gw(x), y) with gw(x) := φ(x)Tw,

page 12

EX Expectation operator to compute the expected value EX [f(x)] of some func-

tion f under distribution PX with EX [f(x)] =
∫
f(x) pX(x) dx, page 13

� Loss function � : R × Y → R
+ which quantifies the induced loss for a given

decision function value and a target value, page 18

�′ First derivative of the loss function �(z, y) with respect to z ∈ R, page 45

�′′ Second derivative of the loss function �(z, y) with respect to z ∈ R, page 45

γ Data generation model, page 29

θ̂v Player v’s cost function; θ̂−1(w, Ḋ) denotes the learner’s prediction costs and

θ̂+1(w, Ḋ) denotes the data generator’s prediction costs, page 38

H Feature space with φ : X → H; for linear decision functions, H is typically a

Hilbert space such as Rm, page 17

120 Notation

W Parameter space such as Rm, page 17

X Input space, page 11

x Object with x ∈ X , page 11

Y Output space, page 11

y Target variable with y ∈ Y, page 11

z Selector variable with z ∈ {−1,+1} which indicates whether an object was

drawn from the training distribution (z = +1) or the test distribution (z =

−1); only used in Chapter 6, page 86

κ Resampling-weight function κ : X → R
+, page 84

L Theoretical label likelihood, page 83

φ Feature mapping φ : X → H, for instance, φ(x) = [φ1(x), . . . , φm(x)]T where

φi(x) ∈ R are referred as features, page 17

N Set of natural numbers, page 17

∇x Gradient operator to compute the partial gradient of some function with re-

spect to x, page 22

∇2
x,y Hessian operator to compute the partial Hessian of some function with respect

to x and y where ∇2
x,yf = ∇y(∇xf), page 45

Ω Regularizer of model parameters w and data transformation Ḋ, respectively,

page 13

R Set of real numbers, page 12

R
+ Set of positive real numbers, page 12

ρ Regularization parameter ρ ∈ R
+ which determines the amount of regulariza-

tion, page 13

θ Generalization error with θ[f, pXY] = EXY [Δ[f, x , y]], page 12

c Object- and target-specific cost factors c : X × Y → R
+, page 18

D Set of data points (xi, yi) which are pairs of objects xi ∈ X and targets yi ∈ Y,

page 11

F Decision function space, page 13

Notation 121

fw Decision function f : X × Y → R parameterized by weight vector w which

is used to restrict prediction models to hw(x) = argmaxy∈Y fw(x , y); for bi-

nary classification where Y = {−1,+1}, we typically employ a linear decision

function fw(x , y) := ygw(x) with hw(x) = sign gw(x) and gw(x) = wTφ(x),

page 12

H Hypothesis space, page 14

hw Prediction model h : X → Y parameterized by weight vector w, which assigns

any object x ∈ X to target y ∈ Y, page 11

k Positive semi-definite kernel function k : X × X → R which measures the

“similarity” of any two objects from the input space X , page 24

PX(x) Cumulative distribution function (CDF) of random variable X at x ; abbrevi-

ated form of P (X ≤ x), page 11

pX(x) Density of random variable X at x , if X is a continuous random variable,

the term density refers to the probability density function (PDF) which equals

P (x < X < x + dx), whereas otherwise it refers to the probability mass

function (PMF) with P (X = x), page 11

s Selector function s : X → {−1,+1} which assigns object x to selector z ,

page 86

L2 Euclidean norm of a function, page 22

l2 Euclidean norm of a vector, page 23

A main assumption in machine learning is that the data which are used
to build a predictive model are governed by the same distribution as the
data which the predictive model will be exposed to at application time.
This condition is violated when future data are generated in response to
the presence of a predictive model which is the case, for instance, in email
spam filtering.

In this thesis, we establish the concept of prediction games to handle such
tasks: We model the interaction between a learner, who builds the predic-
tive model, and a data generator, who controls the process of data gen-
eration, as an one-shot game. The game-theoretic framework enables us
to explicitly model the players‘ interests, their possible actions, and their
level of knowledge about each other. We study three instances of predic-
tion games which differ regarding the order in which the players decide
for their action.

In case studies on email spam filtering we empirically explore properties
of all derived models. We show that spam filters resulting from predic-
tion games in the majority of cases outperform other existing baseline
methods.

 ISBN 978-3-86956-203-2

9 783869 562032

	Title
	Imprint

	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	1.1 Motivating Examples
	1.2 An Arms Race Between Learner and Data Generator
	1.3 Contributions
	1.4 Own Previously PublishedWork
	1.5 Outline

	2 Learning Predictive Models
	2.1 RiskMinimization
	2.2 Learning in the Bayesian Framework
	2.3 Linear Decision Functions
	2.4 Loss Functions
	2.5 Regularization
	2.6 Feature Representation and Kernels
	2.7 Parameter Estimation

	3 The Prediction Game
	3.1 An Introduction to Game Theory
	3.1.1 Basic Terms and Definitions
	3.1.2 Solution Concepts

	3.2 Adversarial Prediction Problems
	3.2.1 Number of Players
	3.2.2 Number of Repetitions

	3.3 Modeling the Prediction Game
	3.4 Classes of Prediction Games

	4 Nash Prediction Games
	4.1 Nash Solution to Prediction Games
	4.1.1 Existence of a Nash Equilibrium
	4.1.2 Uniqueness of the Nash Equilibrium

	4.2 Finding the Unique Nash Equilibrium
	4.2.1 An Inexact Linesearch Approach
	4.2.2 A Modified Extragradient Approach

	4.3 Applying Kernels
	4.4 Instances of the Nash Prediction Game
	4.4.1 Nash Logistic Regression
	4.4.2 Nash Support Vector Machine

	4.5 Related Work
	4.6 Empirical Evaluation
	4.6.1 Convergence
	4.6.2 Regularization Parameters
	4.6.3 Evaluation for Nash-Playing Adversary
	4.6.4 A Case Study on Email Spam Filtering
	4.6.5 Efficiency versus Effectiveness
	4.6.6 Nash-Equilibrial Transformation

	5 Stackelberg Prediction Games
	5.1 Stackelberg Solution to Prediction Games
	5.2 An SQPMethod for Stackelberg Prediction Games
	5.3 Applying Kernels
	5.4 Instances of the Stackelberg Prediction Game
	5.4.1 Worst-Case Loss
	5.4.2 Linear Loss
	5.4.3 Logistic Loss

	5.5 RelatedWork
	5.6 Empirical Evaluation
	5.6.1 A Case Study on Email Spam Filtering
	5.6.2 Efficiency versus Effectiveness
	5.6.3 Transformation

	6 Covariate Shift
	6.1 Learning under Covariate Shift
	6.1.1 MAP Estimation under Covariate Shift
	6.1.2 An IntegratedModel

	6.2 Logistic Regression Importance Estimation
	6.3 A Two-Stage Approximation
	6.4 Applying Kernels
	6.5 RelatedWork
	6.6 Empirical Evaluation
	6.6.1 A Case Study on Email Spam Filtering
	6.6.2 Inspection of the ResamplingWeights

	7 Conclusions
	Bibliography
	Appendix
	Proofs

	Notation

