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THE METHOD OF FISCHER-RIESZ EQUATIONS

FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

A. ALSAEDY AND N. TARKHANOV

Abstract. We develop the method of Fischer-Riesz equations for general

boundary value problems elliptic in the sense of Douglis-Nirenberg. To this

end we reduce them to a boundary problem for a (possibly overdetermined)
first order system whose classical symbol has a left inverse. For such a problem

there is a uniquely determined boundary value problem which is adjoint to the

given one with respect to the Green formula. On using a well elaborated the-
ory of approximation by solutions of the adjoint problem, we find the Cauchy

data of solutions of our problem.
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Introduction

The method of Fischer-Riesz equations can be specified within a larger approach
which is usually referred to as the boundary element method. By this latter is
meant a numerical method of solving boundary value problems which have been
formulated as boundary integral equations. It can be applied in many areas of
engineering and science including fluid mechanics, acoustics, electromagnetics, and
fracture mechanics, see [WA02], [Kat02], [Gib08], [BSD08].

The boundary elements method attempts to use the given boundary conditions
and other data of the problem to fit boundary values into the integral equation,
rather than values throughout the space defined by a system of partial differential
equations. Once this is done, the boundary integral equation can be used again

Date: August 28, 2012.

2010 Mathematics Subject Classification. Primary 35F45; Secondary 35J56, 47N20.
Key words and phrases. Boundary value problems for first order systems, Green formula,

Fischer-Riesz equations, regularisation.

1



2 A. ALSAEDY AND N. TARKHANOV

to calculate numerically the solution directly at any desired point in the solution
domain. More precisely, from the Cauchy data of the solution on the whole bound-
ary one calculates readily the solution in the domain provided a left fundamental
solution of the system is available in an explicit form, see for instance Lemma 10.2.3
in [Tar95].

The idea of the method of Fischer-Riesz equations goes back at least as far as
[Pic40]. The paper [PF50] was given by Picone as an invited address before the
Second Austrian Mathematical Congress in Insbruck in 1949. He states in the
introduction that he asked Fichera to write a certain part of the report. It is a
crystallisation in the form of an abstract theory of some of the methods used by
the authors and their associates at the National Institute for Applied Mathematics
in Rome in the solution of problems involving differential and integro-differential
equations. The method is based on some functional interpretation of the relations
of mathematical physics analogous to Green’s formula. The central point of the
method is a construction of a suitable sequence of functions which are complete
in a Lebesgue space L2 on the boundary and satisfy the formal adjoint system in
a neighbourhood of the closure of the domain. In [PF50] there were no indica-
tion to any solution of this problem. In [Kup67] a general process of constructing
a necessary complete sequence of functions was elaborated assuming an explicit
fundamental solution of the system. However, this paper fell short of providing a
function-theoretic description of the method. In [KT93] the second author pub-
lished a proof of a theorem of functional analysis that had already been obtained
at the end of the 1980s. As it became clear later, this theorem was just an abstract
exposition of the Fischer-Riesz equations method mentioned in [Kup67]. In [KT93]
this method was developed for studying the ill-posed Cauchy problem with data
on a piece of the boundary for solutions of overdetermined elliptic systems, see also
Chapter 11 in [Tar95].

The purpose of the present paper is to develop the method of Fischer-Riesz
equations for general boundary value problems for systems of partial differential
equations elliptic in the sense of Douglis-Nirenberg [DN55]. To escape technicalities
related to assigning weights we exploit the result of [Pro88] and reduce the system
to a (possibly overdetermined) first order system whose classical symbol has a left
inverse away from the zero section of the cotangent bundle. In this way we obtain
what is often referred to as the first order system with injective symbol. The
advantage of such systems lies in the fact that the Cauchy data of a solution just
amount to the restriction of the solution to the boundary of the domain. Moreover,
to any first order system there corresponds a unique Green operator which leads
to a canonical Green formula for solutions. Any normal boundary conditions for
solutions of the source system then reduce to an inhomogeneous linear system in
the space of Cauchy data.

In contrast to [KT93] we elaborate the method of Fischer-Riesz equations for
elliptic boundary value problems in Sobolev spaces, for these latter fit well the
Fredholm property. If the boundary value problem is Fredholm then the condi-
tions of solvability obtained by the Fischer-Riesz equations method come to those
obtained from the Fredholm theory, i.e., the orthogonality to solutions of the ho-
mogeneous boundary value problem adjoint relative to the Green formula. The
method of Fischer-Riesz equations may then be developed as a tool to get effective
approximate solutions, cf. [Kup67].
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1. Reduction to a first order system

One of the fundamental problems in the theory of partial differential equations
is the problem of classifying equations and systems by type. A specific problem
associated with the definition of ellipticity is that when a higher-order equation or
system is reduced to a first order system, ellipticity may be destroyed. (We manip-
ulate the concept “elliptic” freely. This concept can be given a strong sense only
in an operator algebra with symbol map, where by the ellipticity of an operator
is meant the invertibility of its symbol.) One approach to this problem was intro-
duced in the paper [DN55] which gave a definition of ellipticity for systems which
involved assigning weights to each of the equations and dependent variables and
then defining the principal part of the system in terms of those weights. This con-
cept can also be interpreted in terms of generalised homogeneity based on certain
group actions in the spaces of preimages and images, see equality (1.4) in [Vol65].
The advantage of the definition of ellipticity given in [DN55] is that ellipticity can
be preserved while a higher-order equation or system is reduced to an equivalent
first order system. The disadvantage is that the definition is not invariant under
nonsingular changes of variables. Therefore, the approach via weights fails to prop-
erly recognise elliptic systems. An alternative approach suggested in [Pro88] is to
reduce the original equation or system to an overdetermined first order system and
then use the classical symbol, which is natural and invariant way for such systems.
In [Cos91] this result is strengthened by showing that any determined or overdeter-
mined system with smooth coefficients and injective Douglis-Nirenberg symbol can
be reduced to an overdetermined first order system with smooth coefficients and
injective classical symbol. This reduction is accomplished by introducing as new
dependent variables the derivatives of some of the original variables, and adjoining
equations describing the relations between the new variables and the old or among
the new variables. Moreover, any overdetermined first order system with smooth
coefficients and injective classical symbol can be converted to a determined second
order systems which is elliptic in the sense of Douglis-Nirenberg, or under any rea-
sonable definition of ellipticity. The conversion is accomplished by operating on the
original system with an appropriately chosen first order operator. The conversion
to a second order system allows the application of the regularity results of [Mor54].
In fact, second order systems are treated in detail in [Mor54]. Note that the systems
of partial differential equations usually still contain hidden integrability conditions.
The process of their explicit construction is called completion (to involution). In
[KST06] it is shown that the completion of any determined or overdetermined sys-
tem with injective Douglis-Nirenberg symbol leads to an equivalent system whose
classical symbol has a left inverse. To formulate the main result of [Cos91] more
precisely, we extend the concept of ellipticity in the sense of Douglis-Nirenberg to
overdetermined systems.

The systems we consider are of the form

A = (Ai,j) i=1,...,l
j=1,...,k

, (1.1)

where Ai,j are scalar partial differential operators of order mi,j on an open set X in
Rn. (We will generally use the convention that our source system has k dependent
variables, l equations and n independent variables.)
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Definition 1.1. Suppose there are weights s1, . . . , sl and t1, . . . , tk in Z, such that
mi,j ≤ si + tj. With this structure, the principal symbol of (1.1) is the matrix

σDN(A)(x, ξ) =
(
σsi+tj (Ai,j)(x, ξ)

)
i=1,...,l
j=1,...,k

for (x, ξ) ∈ T ∗X , where σsi+tj (Ai,j) is the homogeneous component of degree si+tj
of the full symbol of Ai,j.

System (1.1) is said to have injective symbol in the sense of Douglis-Nirenberg
at x0 ∈ X if σDN(A)(x, ξ) has maximal rank (that is, rank k) for x = x0 and all
ξ ∈ Rn \ {0}.

The numbers s1, . . . , sl and t1, . . . , tk are determined uniquely up to an additive
constant. Hence, the weights can be normalised by the condition s1, . . . , sl ≤ 0
and max si = 0. Then tj satisfy automatically t1, . . . , tk ≥ 0, for if tj < 0, then
si + tj < 0 and so all the operators A1,j , . . . , Al,j vanish identically. This amounts
to saying that the j th dependent variable does not enter into the system, which is
impossible.

Let (κλ)λ>0 and (κ̃λ)λ>0 be the group actions in Ck and Cl, respectively, given
by

κλ = λ|t| diag (λ−t1 , . . . , λ−tk),
κ̃λ = λ−|s| diag (λs1 , . . . , λsl),

where |s| = s1 + . . .+ sl and |t| = t1 + . . .+ tk. Then the principal symbol σDN(A)
is homogeneous of degree |s|+ |t| in the sense that

σDN(A)(x, λξ) = λ|s|+|t| κ̃λ σDN(A)(x, ξ)κ−1λ (1.2)

for all λ > 0. For s1 = . . . = sl = 0, one recovers the principal part of A considered
by I. G. Petrovskii. For s1 = . . . = sl = 0 and t1 = . . . = tk = m, one obtains
the classical principal symbol. The so-called twisted homogeneity of type (1.2) is
of great importance in the calculus of pseudodifferential operators with operator-
valued symbols.

The following result is due to [Cos91].

Theorem 1.2. Any system (1.1) with coefficients of class Cs,h and injective symbol
in the sense of Douglis-Nirenberg in X can be converted to an equivalent overdeter-
mined first order system whose coefficients are of class Cs−1,h and whose classical
symbol is injective.

Proof. As is mentioned in [Cos91], the reduction procedure used here is related to
that attributed to Atiyah and Singer. It is probably not optimal in the sense that
it may lead to a first order system which is not the smallest possible representation
of the original system. �

2. Green formula

From what has been proved in Section 1 it follows that there is no restriction
of generality in assuming that A is a (possibly overdetermined) first order partial
differential operator with injective symbol on an open set X ⊂ Rn. Thus, A is of
the form

A(x,D) =

n∑
j=1

Aj(x)Dj +A0(x),
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where A1(x), . . . , An(x) and A0(x) are (l × k) -matrices of smooth functions on X
and Dj = −ı∂xj with ı =

√
−1. We require

σ1(A)(x, ξ) :=

n∑
j=1

Aj(x)ξj

to have maximal rank (that is rank k) for all (x, ξ) away from the zero section of
T ∗X .

In order to get asymptotic results, it is necessary to put some restrictions on
A. Our basic assumption is that A satisfies the uniqueness condition of the local
Cauchy problem in X (condition (U)s, cf. [Tar95, p. 185]). I.e., if u is a solution of
Au = 0 on a connected open set U ⊂ X and u vanishes on a nonempty open subset
of U then u ≡ 0 in U .

Lemma 2.1. If A satisfies the condition (U)s in X , then it has a pseudodifferential
left fundamental solution, i.e., there is an (k × l) -matrix Φ of classical pseudodif-
ferential operators of order −1 on X , such that Φ A = I on compactly supported
distributions in X with values in Ck.

Proof. See Theorem 4.4.3 of [Tar95]. By the very construction, Φ has rational
symbol, i.e., it satisfies the transmission condition with respect to each hypersurface
in X . �

Let D be a relatively compact domain with smooth boundary in X and B any
(k′ × k) -matrix of smooth functions on the boundary ∂D of D, such that the rank
of B(x) is equal to k′ for all x ∈ ∂X . We are interested in the boundary value
problem {

Au = f in D,
Bu = u0 at ∂D (2.1)

with data u0 on ∂D. The most conventional Hilbert space setting of this problem
is H1 := W 1,2, hence we choose u0 in H1/2(∂D,Ck′) and look for a u ∈ H1(D,Ck)
satisfying (2.1).

Lemma 2.2. Let C be a ((k − k′) × k) -matrix of smooth functions on ∂D, such
that

rank
(
B(x)
C(x)

)
= k

for all x ∈ ∂D. Then there are unique matrices B∗ and C∗ of continuous functions
on ∂D with the property that∫

∂D
((Bu,C∗g)x − (Cu,B∗g)x) ds =

∫
D

((Au, g)x − (u,A∗g)x) dx (2.2)

for all u ∈ H1(D,Ck) and g ∈ H1(D,Cl), where ds is the surface measure on the
boundary.

As usual, we write A∗ for the formal adjoint of the differential operator A on the
open set X .

Proof. By assumption, the (k × k) -matrix

T (x) =
(
B(x)
C(x)

)
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is invertible for all x ∈ ∂D. Write (T (x))−1 = (T1(x), T2(x)) where T1 and T2 are
(k× k′) - and (k× (k− k′)) -matrices of smooth functions on ∂D, respectively. The
equalities T−1T = Ek and TT−1 = Ek amount to T1B + T2C = Ek and

BT1 = Ek′ , BT2 = 0,
CT1 = 0, CT2 = Ek−k′ ,

(2.3)

where Ek stands for the unity (k × k) -matrix.
Given any u ∈ H1(D,Ck) and g ∈ H1(D,Cl), the Green formula of [Tar95, 9.2.2]

shows that ∫
∂D

(σ(x)u, g)x ds =

∫
D

((Au, g)x − (u,A∗g)x) dx

where σ(x) is the principal symbol of A evaluated at the point (x,−ıν(x)ξ) of the
complexified cotangent bundle of X , ν(x) being the outward normal unit vector of
the boundary at x ∈ ∂D. Substituting u = (T1B + T2C)u into this formula yields
(2.2) with

C∗ = (σT1)∗,
B∗ = − (σT2)∗,

(2.4)

as desired. �

From (2.4) it follows immediately that the rank of C∗ is equal to k′ and the rank
of B∗ is k − k′.

Elliptic boundary value problems (2.1) require k = l to be even and k′ = k/2, in
which case also the problem{

A∗g = v in D,
B∗g = g0 at ∂D (2.5)

called adjoint to (2.1) with respect to the Green formula is actually elliptic, cf.
[Agr69].

Given any first order partial differential operators A with injective symbol on X ,
the composition ∆ = A∗A is a second order elliptic operator in the classical sense.
This operator is usually referred to as the Laplacian of A. An easy manipulation
of Green formula (2.2) leads to a fairly structural Green formula for the Laplacian
∆.

Theorem 2.3. Under the above notation, any functions u, v ∈ H2(D,Ck) satisfy
the integral equality∫

∂D
((Bu,C∗Av)x − (C∗Au,Bv)x − (Cu,B∗Av)x + (B∗Au,Cv)x) ds

=

∫
D

((∆u, v)x − (u,∆v)x) dx.

Proof. It suffices to apply (2.2) twice to the left-hand side of this equality. Cf.
Corollary 9.2.12 of [Tar95]. �

3. Function spaces

Denote by H1/2(D,Ck) the Slobodetskii space of functions of fractional smooth-
ness 1/2 in D with values in Ck, i.e. the completion of C∞(D,Ck) with respect to
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the norm

‖u‖H1/2(D,Ck) =
(
‖u‖2L2(D,Ck) +

∫∫
D×D

|u(x)− u(y)|2

|x− y|n+1
dxdy

)1/2
.

Obviously, H1/2(D,Ck) is a Hilbert space. We use the continuous embedding
H1/2(D,Cl) ↪→ L2(D,Cl) to specify the dual space of H1/2(D,Cl) via the pair-
ing in L2(D,Cl). Namely, let H−1/2(D,Cl) be the completion of C∞(D,Cl) with
respect to the norm

‖f‖H−1/2(D,Cl) = sup
g∈C∞(D,Cl)

g 6=0

|(f, g)L2(D,Cl)|
‖g‖H1/2(D,Cl)

.

Using these spaces, we are in a position to enlarge the domain of problem (2.1).
To this end, we write H1/2(D,Ck) for the completion of C∞(D,Ck) with respect
to the norm

‖u‖H1/2(D,Ck) =
(
‖u‖2H1/2(D,Ck) + ‖u‖2L2(∂D,Ck)

)1/2
. (3.1)

By the trace theorem, the space H1/2(D,Ck) contains any space Hs(D,Ck)
with s > 1/2. However, the norm of L2(∂D,Ck) is not majorised by the norm of
H1/2(D,Ck).

Suppose u ∈ H1/2(D,Ck) and {uj} is a sequence in C∞(D,Ck) converging to

u in the norm (3.1). Then {uj} is a Cauchy sequence in H1/2(D,Ck), and so it

converges to an element ui ∈ H1/2(D,Ck). Moreover, the restrictions of uj to the
boundary form a Cauchy sequence in L2(∂D,Ck). Hence, the sequence {uj �∂D}
converges in the space L2(∂D,Ck) to an element ub. It follows immediately that
the closure of the mapping u 7→ (u �D, u �∂D) is an isometry of H1/2(D,Ck) onto a
subspace of the Cartesian product H1/2(D,Ck)×L2(∂D,Ck). For this reason, each
element u ∈ H1/2(D,Ck) can be identified with its image (ui, ub) in the Cartesian
product. We call ub ∈ L2(∂D,Ck) the (generalised) trace of ui ∈ H1/2(D,Ck) on
the boundary of D in spite of the fact that the trace ub does not depend continuously
on ui.

Lemma 3.1. There is a constant c > 0 such that

‖Au‖H−1/2(D,Cl) ≤ c ‖u‖H1/2(D,Ck)

for all u ∈ C∞(D,Ck).

Proof. The proof is based on manipulations of Green formula (2.2). See Lemma
2.3.1 in [Roi96]. �

It follows from Lemma 3.1 that the closure A of the mapping u 7→ Au for u ∈
C∞(D,Ck), acts continuously from H1/2(D,Ck) into H−1/2(D,Cl). Indeed, if u ∈
H1/2(D,Ck) and {uj} is a sequence in C∞(D,Ck) converging to u in H1/2(D,Ck),

then {Auj} is, by Lemma 3.1, a Cauchy sequence in H−1/2(D,Cl). Let f be the

limit of {Auj} in H−1/2(D,Cl). It is immaterial which sequence {uj} we choose
to define f , and so we may set Au = f . Substituting uj into the estimate of
Lemma 3.1 and letting j → ∞, we deduce that this estimate actually holds for
all u ∈ H1/2(D,Ck). Thus, for each u = (ui, ub) in H1/2(D,Ck), the element
Au is defined in H−1/2(D,Cl), and the mapping u 7→ Au is continuous in the
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corresponding norms. A passage to the limit similar to the above implies that
Au = f holds for u ∈ H1/2(D,Ck) and f ∈ H−1/2(D,Cl) if and only if the couple
(ui, ub) satisfy the equation∫

D
(ui, A

∗g)xdx+

∫
∂D

((Bub, C
∗g)x − (Cub, B

∗g)x) ds =

∫
D

(f, g)xdx

for all g ∈ C∞(D,Cl). In other words, Green’s formula (2.2) is still valid for
functions u ∈ H1/2(D,Ck).

If u ∈ H1/2(D,Ck) then Au ∈ H−1/2(D,Cl), and so Au can be approximated by
functions of C∞comp(D,Cl) in the H−1/2(D,Cl) -norm. On multiplying Au by the

characteristic function χD of D we get an element of H−1/2(X ,Cl) with support
in D. It follows that Φ(χDAu) is well defined and belongs to the local space

H
1/2
loc (X ,Ck). We now show that any u ∈ H1/2(D,Ck) can be restored through the

data Au and ub = u �∂D.
To shorten notation we use the same letter Φ(x, y) for the Schwartz kernel of

the pseudodifferential operator Φ.

Lemma 3.2. For each u ∈ H1/2(D,Ck), it follows that

−
∫
∂D

((Bu,C∗Φ(x, ·)∗)y − (Cu,B∗Φ(x, ·)∗)y) ds+

∫
D

(Au,Φ(x, ·)∗)y dy

=
{ u(x), if x ∈ D,

0, if x ∈ X \ D. (3.2)

Proof. The proof of Lemma 2.3 shows that formula (3.2) is actually equivalent to
the equality

−Φ ([∂D]σu) + Φ (χDAu) = χDu

in the sense of distributions on X , where [∂D] is the surface layer on ∂D. This
follows in turn from the Green formula and the fact that Φ is a left fundamental
solution of A in X , for

Φ ([∂D]σu) = Φ (χDAu−A(χDu))

= Φ (χDAu)− χDu,
as desired. �

4. Operator-theoretic foundations

The operator-theoretic foundations of the method of Fischer-Riesz equations are
elaborated in [Tar95, 11.1]. It goes back at least as far as [PF50]. In this section we
adapt this method for study of boundary value problem (2.1) in the Hilbert space
H1/2(D,Ck).

Set
H1 = H1/2(D,Ck),

H = H2 ⊕ L2(∂D,Ck−k′),
where H2 = H−1/2(D,Cl)⊕ L2(∂D,Ck′).

Consider the mapping M : H1 → H given by Mu = (Au,Bu,Cu), which cor-
responds to the Cauchy problem for solutions of Au = f in D with Cauchy data
Bu = u0 and Cu = u1 on ∂D. By the above, M is continuous. In Section 5 we will
prove that M has closed range.
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Denote by M∗ : H → H1 the operator that is adjoint to M : H1 → H in the
sense of Hilbert spaces.

Lemma 4.1. The null-space kerM∗ of the operator M∗ is separable in the topology
induced from H.

Proof. This is true by the school fact that any subspace of a separable metric space
is separable. �

By SA∗(D) we denote the space of all infinitely differentiable solutions of the
formal adjoint system A∗g = 0 in a neighbourhood of the closure of D.

Lemma 4.2. Assume that g ∈ SA∗(D). Then the couple (g	C∗g,B∗g) belongs to
kerM∗.

Proof. One has to show that (Mu, (g 	 C∗g,B∗g))H = 0 for all u ∈ H1. By the
Green formula, we get

(Mu, (g 	 C∗g,B∗g))H =

∫
D

(Au, g)xdx−
∫
∂D

((Bu,C∗g)x − (Cu,B∗g)x) ds

=

∫
D

(u,A∗g)xdx

= 0,

as desired. �

The subspace of kerM∗ consisting of all elements of the form (g 	 C∗g,B∗g),
where g ∈ SA∗(D), is separable. Hence, there are many ways to choose a sequence
{gi}i=1,2,... in SA∗(D), such that the system {(gi	C∗gi, B∗gi)} is complete in this
subspace.

In Example 4.5 we will show some explicit sequences {gi} with this property.
For the moment we fix one of such sequences.

Lemma 4.3. As defined above, the system {(gi 	 C∗gi, B∗gi)}i=1,2,... is complete
in kerM∗.

Proof. Let F be a continuous linear functional on kerM∗ vanishing on each element
of the system {(gi	C∗gi, B∗gi)}. Since kerM∗ is a closed subspace of H, the Riesz
representation theorem implies the existence of an element (f, u0, u1) ∈ kerM∗,
such that the action of F on kerM∗ consists in scalar multiplication with the
element (f, u0, u1). In particular,

F(gi 	 C∗gi, B∗gi) =

∫
D

(gi, f)xdx−
∫
∂D

((C∗gi, u0)x − (B∗gi, u1)x) ds

= 0

for all i = 1, 2, . . .. Since the system {(gi 	 C∗gi, B
∗gi)}i=1,2,... is dense in the

subspace of kerM∗ consisting of all elements of the form (g 	 C∗g,B∗g), where
g ∈ SA∗(D), we get∫

∂D
((u0, C

∗g)x − (u1, B
∗g)x) ds =

∫
D

(f, g)xdx
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for all g ∈ SA∗(D). We now use Theorem 5.1 which says that there exists a function
u ∈ H1/2(D,Ck) such that Au = f in D and Bu = u0, Cu = u1 at the boundary of
D. In other words, (f, u0, u1) = Mu. Hence it follows that F(h) = (h,Mu)H = 0
for all h ∈ kerM∗. Thus, F ≡ 0 and the standard application of the Hahn-Banach
theorem completes the proof. �

Write P for the orthogonal projection of H onto its direct summand H2. The
composition PM = (A,B) acting from H1 to H2 just amounts to the operator of
boundary value problem (2.1) in the updated setting. More precisely, given any

f ∈ H−1/2(D,Cl) and u0 ∈ L2(∂D,Ck′), find u ∈ H1/2(D,Ck) satisfying Au = f
in D and Bu = u0 at ∂D. The following lemma expresses the most important
property of system {gi}.

Lemma 4.4. The system {B∗gi}i=1,2,... is complete in L2(∂D,Ck−k′) if and only
if PM is injective.

Proof. By the Hahn-Banach theorem, {B∗gi} is complete in L2(∂D,Ck−k′) if and

only if any continuous linear functional F on L2(∂D,Ck−k′) vanishing on each
element of the system, is zero. Pick such a functional F . By the Riesz representation
theorem there is a function u1 ∈ L2(∂D,Ck−k′) such that F(h) = (h, u1) for all

h ∈ L2(∂D,Ck−k′). So we get

((0, 0, u1), (gi 	 C∗gi, B∗gi))H = (B∗gi, u1)L2(∂D,Ck−k′ )

= F(B∗gi)

= 0

for all i = 1, 2, . . .. Applying Lemma 4.3 we deduce that the element (0, 0, u1)
belongs to the orthogonal complement of the subspace kerM∗ in H. Since the
operator M has closed range, the orthogonal complement of kerM∗ coincides with
the range of M . Hence, there is a function u ∈ H1/2(D,Ck) satisfying Au = 0 in D
and Bu = 0, Cu = u1 at ∂D. If the operator PM is injective, then u = 0 whence
u1 = 0 and F = 0. Conversely, if the functional F = 0 is different from zero,
then u1 is not zero and so PM fails to be injective, which is precisely the desired
conclusion. �

After removing the elements which are linear combinations of the previous ones
from the system {B∗gi}i=1,2,..., we get a sequence {gin} in SA∗(D), such that the
system {B∗gin} is linearly independent. Applying then the Gram-Schmidt or-

thogonalisation to the system {B∗gin} in L2(∂D,Ck−k′), we obtain a new system
{en}n=1,2,... in SA∗(D), such that {B∗en} is an orthonormal system in the space

L2(∂D,Ck−k′). Moreover, {B∗en} is an orthonormal basis in L2(∂D,Ck−k′), pro-
vided that PM is injective. Note that the elements en of the new system have
explicit expressions through the elements {gi1 , . . . , gin} of the old system in the
form of Gram’s determinants.

Example 4.5. Assume that A has real analytic coefficients outside the closure
of D in X . Then a familiar trick with the Laplacian A∗A shows that A has a
left fundamental solution Φ whose Schwartz kernel is real analytic away from the
diagonal of (X \D)×(X \D). Let {xi} be a finite or countable set of points in X \D,
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such that each connected component of X \D contains at least one point xi. Then
the columns of Dα

xΦ(xi, ·)∗ belong to SA∗(D) and the system {B∗Dα
xΦ(xi, ·)∗} is

complete in the subspace of L2(D,Ck−k′) formed by elements of the type {B∗g}
with g ∈ SA∗(D).

The proof of this fact actually repeats the reasoning of Example 11.4.14 in
[Tar95]. Apparently the system of Example 4.5 is most convenient for numerical
simulations.

5. The Cauchy problem

The Green formula (2.2) displays the Cauchy data of u ∈ H1(D, |Ck) at the
boundary of D with respect to the operator A. These are Bu and Cu at ∂D. Hence
we formulate the Cauchy problem as follows: Given any f ∈ H−1/2(D,Cl) and

u0 ∈ L2(∂D,Ck′), u1 ∈ L2(∂D,Ck−k′), find a function u ∈ H1/2(D,Ck), satisfying
Au = f in D and {

Bu = u0,
Cu = u1

(5.1)

at ∂D.
The Cauchy problem for solutions of systems with injective symbol and data on

the whole boundary was intensively studied in the 1960s. This study was motivated
to a certain extent by the paper [Cal63]. For a recent account of the theory we
refer to [VS00], [SS11].

Theorem 5.1. Let f ∈ H−1/2(D,Cl) and u0 ∈ L2(∂D,Ck′), u1 ∈ L2(∂D,Ck−k′)
be given functions. In order that there might exist a solution u ∈ H1/2(D,Ck) to
the system Au = f in D subject to boundary conditions (5.1), it is necessary and
sufficient that ∫

∂D
((u0, C

∗g)x − (u1, B
∗g)x) ds =

∫
D

(f, g)x dx (5.2)

for all g ∈ SA∗(D).

Proof. Necessity. If u ∈ H1/2(D,Ck) is a solution of the Cauchy problem with data
f and u0, u1, then by the Green formula∫

∂D
((u0, C

∗g)x − (u1, B
∗g)x) ds =

∫
∂D

((Bu,C∗g)x − (Cu,B∗g)x) ds

=

∫
D

((Au, g)x − (u,A∗g)x) dx

=

∫
D

(f, g)x dx

for all g ∈ SA∗(D), as required.
Sufficiency. We introduce a function U in X \ ∂D with values in Ck by the

Green-type integral

U(x) = −
∫
∂D

((u0, C
∗Φ(x, ·)∗)y − (u1, B

∗Φ(x, ·)∗)y) ds+

∫
D

(f,Φ(x, ·)∗)y dy,

(5.3)
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where x ∈ X \ ∂D. An easy calculation using (2.4) shows that

(u0, C
∗Φ(x, ·)∗)y − (u1, B

∗Φ(x, ·)∗)y = Φ(x, ·)σub
on ∂D, where

ub = T−1
(
u0
u1

)
.

It is clear that ub is of class L2(∂D,Ck) if and only if u0 ∈ L2(∂D,Ck′) and

u1 ∈ L2(∂D,Ck−k′). Thus, formula (5.3) reduces to

U = −Φ([∂D]σub) + Φ(χDf)

in X \ ∂D.
For each fixed x ∈ X \ D, the columns of the matrix Φ(x, ·)∗ belong to SA∗(D).

Hence, (5.2) implies that U vanishes in the complement of D.
Set u = U �D. We next prove that u is the desired solution of the Cauchy

problem. This is equivalent to saying that u ∈ H1/2(D,Ck) and Au = f in D,
u �∂D= ub at ∂D.

By Lemma 3.2 of [SS11], the double layer potential Φ([∂D]σub) in D belongs to
H1/2(D,Ck). Moreover, the volume potential Φ(χDf) in D is of class H1/2(D,Ck),
which is due to Lemma 3.1 ibid. Hence it follows that u ∈ H1/2(D,Ck). Be the
function f zero, we would be able to deduce the rest of the proof from Theorem
10.3.4 of [Tar95].

In the general case we complete Φ to a fundamental solution at step 0 of a com-
patibility complex of A, cf. Theorem 4.4.3. An easy computation using solvability
condition (5.2) yields

AU = −[∂D]σub + χDf

in the sense of distributions in X . In particular, Au = f in D.
Since ub ∈ L2(∂D,Ck), the jump of the double layer potential Φ([∂D]σub) under

crossing the surface ∂D from X \ D to D just amounts to ub. This is true even for
all distributions ub on ∂D taking their values in Ck, see Theorem 10.1.5 in [Tar95].
For the square integrable densities ub the jump is understood in an appropriate
sense including the L2(∂D,Ck) -norm.

On the other hand, the volume potential Φ(χDf) has no jump at the boundary

of D, for χDf ∈ H−1/2D (X ,Ck). Summarising we conclude that u �∂D= ub, for U

vanishes in X \D. For a thorough treatment of this equality we refer the reader to
Theorem 4.3 of [SS11]. �

6. The Fischer-Riesz equations

Let {gi}i=1,2,... be an arbitrary sequence in SA∗(D) with the property that the
system {(gi 	 C∗gi, B

∗gi)} is complete in kerM∗. Applying the Gram-Schmidt

orthogonalisation to the system {B∗gi} in L2(∂D,Ck−k′), we obtain a new system
{en}n=1,2,... in SA∗(D), such that the system {B∗en} is orthonormal in the space

L2(∂D,Ck−k′).
Given any u1 ∈ L2(∂D,Ck−k′), we denote by kn(u1) the Fourier coefficients of

u1 with respect to the system {B∗en}, i.e.,

kn(u1) =

∫
∂D

(u1, B
∗en)y ds

for n = 1, 2, . . ..
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Lemma 6.1. If u ∈ H1/2(∂D,Ck), then

kn(Cu) =

∫
∂D

(Bu,C∗en)y ds−
∫
D

(Au, en)y dy,

where n = 1, 2, . . ..

Proof. Using Lemma 4.2 we obtain

kn(Cu) =

∫
∂D

(Cu,B∗en)y ds− (Mu, (en 	 C∗en, B∗en))H

=

∫
∂D

(Bu,C∗en)y ds−
∫
D

(Au, en)y dy,

as desired. �

Thus, in order to find the Fourier coefficients of the data Cu on the boundary
with respect to the system {B∗en} in L2(∂D,Ck−k′), it suffices to know only the
data Au and Bu of problem (2.1).

Theorem 6.2. Let f ∈ H−1/2(D,Cl) and u0 ∈ L2(∂D,Ck′). In order that there
be a u ∈ H1/2(D,Ck) such that Au = f in D and Bu = u0 at ∂D, it is necessary
and sufficient that

1)

∞∑
n=1

|cn|2 <∞, where cn =

∫
∂D

(u0, C
∗en)y ds−

∫
D

(f, en)y dy, and

2)

∫
∂D

(u0, C
∗g)y ds−

∫
D

(f, g)y dy = 0 for all g ∈ SA∗(D) satisfying B∗g = 0 at

the boundary.

Proof. Necessity. Suppose there is a function u ∈ H1/2(D,Ck) satisfying Au = f
in D and Bu = u0 at ∂D. Then cn = kn(Cu) for all n = 1, 2, . . ., which is due to
Lemma 6.1. Applying the Bessel inequality yields

∞∑
n=1

|cn|2 =

∞∑
n=1

|kn(Cu)|2 ≤
∫
∂D
|Cu|2 ds <∞,

and 1) is proved. On the other hand, 2) follows immediately from the Green
formula, as desired.

Sufficiency. We now assume that 1) and 2) are satisfied. Condition 1) implies,

by the Fischer-Riesz theorem, that there exists a function u1 ∈ L2(∂D,Ck−k′), such
that {cn}n=1,2,... are the Fourier coefficients of u1 with respect to the orthonormal

system {B∗en} in L2(∂D,Ck−k′). In other words, we get cn = kn(u1) for all
n = 1, 2, . . .. On substituting formulas for cn from 1) to these equalities we arrive
at the orthogonality relations∫

D
(f, en)y dy −

∫
∂D

((u0, C
∗en)y − (u1, B

∗en)y) ds = 0 (6.1)

for n = 1, 2, . . ., cf. (5.2).
Our next goal is to prove that the element (f, u0, u1) ∈ H is actually orthogonal

to all elements of the system {(gi 	 C∗gi, B
∗gi)}i=1,2,... in H, this latter being

complete in kerM∗. To do this, let us recall how the system {en} has been obtained
from the system {gi}.
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Even if the system {(gi 	 C∗gi, B∗gi)} is linearly independent in H, the system
{B∗gi} may have elements which are linear combinations of the previous ones in the

space L2(∂D,Ck−k′). Such elements should be eliminated from the system before
applying the Gram-Schmidt orthogonalisation.

For example, suppose that, for some i, the equality

B∗gi =

i−1∑
j=1

ci,j B
∗gj

is fulfilled with suitable complex numbers ci,j . Consider the function

g′i = gi −
i−1∑
j=1

ci,j gj

which belongs to SA∗(D). Obviously, (g′i 	 C∗g′i, B∗g′i) lies in kerM∗ and satisfies
B∗g′i = 0. It follows that

gi =

i−1∑
j=1

ci,j gj + g′i.

All the other elements (gi 	 C∗gi, B∗gi), except for the eliminated ones, are ex-
pressed, by the contents of Gram-Schmidt orthogonalisation, as linear combina-
tions of the elements {(en	C∗en, B∗en)}n=1,...,i. Thus, any element of the system
{(gi 	 C∗gi, B

∗gi)} has a unique expression through the elements of the system
{(en 	 C∗en, B∗en)}n=1,2,... in the form

gi =

i∑
n=1

ci,n en + g′i, (6.2)

where g′i ∈ SA∗(D) satisfies B∗g′i = 0 at the boundary ∂D.
From equalities (6.1) and (6.2) and condition 2) of the theorem it follows imme-

diately that

((f, u0, u1), (gi 	 C∗gi, B∗gi))H

=

i∑
n=1

ci,n ((f, u0, u1), (en 	 C∗en, B∗en))H + ((f, u0, u1), (g′i 	 C∗g′i, B∗g′i))H

= 0

for all i = 1, 2, . . .. Since the system {(gi	C∗gi, B∗gi)}i=1,2,... is complete in kerM∗,
the element (f, u0, u1) belongs to the orthogonal complement of this subspace in
H. Using the lemma of operator kernel annihilator, we deduce that there exists
a function u ∈ H1/2(D,Ck) satisfying Mu = (f, u0, u1). In particular, Au = f in
D and Bu = u0 at ∂D, i.e., u is the desired solution of boundary value problem
(2.1). �

The convergence of the series in 1) guarantees the stability of boundary value
problem (2.1). Under this condition, the range of the mapping PM is described in
terms of continuous linear functionals on the space H, cf. 2) , which is impossible
in the general case.

Corollary 6.3. Under the hypotheses of Theorem 6.2, if moreover the homogeneous
adjoint boundary value problem (2.5) has no smooth solutions in D different from
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zero, then for problem (2.1) to have a solution u ∈ H1/2(D,Ck) it is necessary and
sufficient that

∞∑
n=1

|cn|2 <∞.

Proof. This follows immediately from Theorem 6.2 since condition 2) is automati-
cally fulfilled. �

7. Regularisation of solutions

Note that the proof of Theorem 6.2 works without the assumption that the oper-
ator PM in H is injective. Our next objective will be to construct an approximate
solution to boundary value problem (2.1). To this end it is natural to assume that
the homogeneous boundary value problem corresponding to (2.1) has only zero so-
lution in the space H1/2(D,Ck), i.e., the mapping PM is injective. In this case the

orthonormal system {B∗en} is actually complete in the space L2(∂D,Ck−k′). The

orthonormal bases in L2(∂D,Ck−k′) of this form are said to be special, cf. [KT93],
[Tar95, 11.3].

For x ∈ X \ ∂D, we denote by kn(B∗Φ(x, ·)∗) the k -row whose entries are the
Fourier coefficients of the columns of the ((k − k′) × k) -matrix B∗Φ(x, ·)∗ with

respect to the orthonormal basis {B∗en}n=1,2,... in L2(∂D,Ck−k′). More precisely,
we set

kn(B∗Φ(x, ·)∗) =

∫
∂D

(B∗Φ(x, ·)∗, B∗en)y ds

for n = 1, 2, . . ..

Lemma 7.1. For n = 1, 2, . . ., the coefficients kn(B∗Φ(x, ·)∗) are infinitely differ-
entiable functions in X \ ∂D with values in (Ck)∗.

Proof. The assertion is obvious, for the fundamental solution Φ(x, y) is C∞ away
from the diagonal of X × X . �

Consider the following (Schwartz) kernels RN defined for x ∈ X \ ∂D and y in a
neighbourhood of D:

RN (x, y) = Φ(x, y)−
N∑
n=1

kn(B∗Φ(x, ·)∗)∗ en(y)∗,

where N = 1, 2, . . ..

Lemma 7.2. As defined above, the kernels RN are C∞ in x ∈ X \ ∂D and y in a
neighbourhood of D except for the diagonal {x = y}, and A∗(y,D)RN (·, y)∗ = 0 on
this set.

Proof. This follows immediately from Lemma 7.1 and the fact that en ∈ SA∗(D),
as desired. �

The sequence {RN} provides a very special approximation of the fundamental
solution Φ.
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Lemma 7.3. The sequence {B∗RN (x, ·)∗}N=1,2,... converges to zero in the norm

of L2(∂D,C(k−k′)×k) uniformly in x on compact subsets of X \ ∂D.

Proof. In fact, we get

B∗RN (x, ·)∗ = B∗Φ(x, ·)∗ −
N∑
n=1

B∗en kn(B∗Φ(x, ·)∗)

=

∞∑
n=N+1

B∗en kn(B∗Φ(x, ·)∗)

for each fixed x ∈ X \ ∂D. The right-hand side of this equality is a remainder of
the Fourier series of the element B∗RN (x, ·)∗ with respect to the orthonormal basis

{B∗en} in L2(∂D,Ck−k′). Hence, it tends to zero in the L2(∂D,C(k−k′)×k) -norm,
as N →∞. This proves the first part of the lemma. The second part follows from
a general remark on Fourier series, for the mapping of X \∂D to L2(∂D,C(k−k′)×k)
given by x 7→ B∗Φ(x, ·)∗ is continuous. �

The convergence of the approximations allows one to reconstruct solutions u of
the class H1/2(D,Ck) through their data Au and Bu.

Theorem 7.4. Every function u ∈ H1/2(D,Ck) can be represented by the integral
formula

u(x) = lim
N→∞

(
−
∫
∂D

(Bu,C∗RN (x, ·)∗)y ds+

∫
D

(Au,RN (x, ·)∗)y dy
)

for all x ∈ D.

Proof. Fix a point x ∈ D. Since RN (x, ·)∗ and Φ(x, ·)∗ differ by a k -row of smooth
solutions of the system A∗g = 0 in a neighbourhood of D, one can write by the
Green formula

u(x) = −
∫
∂D

((Bu,C∗RN (x, ·)∗)y − (Cu,B∗RN (x, ·)∗)y) ds+

∫
D
(Au,RN (x, ·)∗)ydy

(7.1)

for any N = 1, 2, . . .. From u ∈ H1/2(D,Ck) we deduce that Cu ∈ L2(∂D,Ck−k′).
Hence it follows by Lemma 7.3 that

lim
N→∞

∫
∂D

(Cu,B∗RN (x, ·)∗)y ds = 0.

Thus, letting N →∞ in (7.1) establishes the formula. �

As mentioned, for many problems of mathematical physics formulas for approx-
imate solution like that of Theorem 7.4 were earlier obtained by Kupradze and his
colleagues, see [Kup67].

8. Solvability of elliptic boundary value problems

We can now return to the classical setting of boundary value problem (2.1) which
is H1 = H1(D,Ck). Given any u ∈ H1(D,Ck), both Au and Bu are well defined

in L2(D,Cl) and H1/2(∂D,Ck′), respectively. Hence, the analysis does not require
any function spaces of negative smoothness but distributions. More generally, let s
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be a natural number. Given any f ∈ Hs−1(D,Cl) and u0 in Hs−1/2(∂D,Ck′), we
look for a u ∈ Hs(D,Ck) satisfying (2.1). Theorem 6.2 still applies to establish the
existence of a weak solution u ∈ H1/2(D,Ck), provided that the conditions 1) and
2) are fulfilled. To infer the existence of a classical solution, one needs a regularity
theorem for weak solutions in H1/2(D,Ck) saying that any weak solution is actually
a classical one. This is the case if (2.1) is an elliptic boundary value problem, i.e.,
A is elliptic (l = k) and the pair (A,B) satisfies the Shapiro-Lopatinskii condition
at the boundary of D, see Section 10.5 in [Roi96]. For general operators A with
injective symbol the regularity problem may be reduced to a regularity theorem for
weak solutions of A∗Au = A∗f in D with boundary data Bu = u0 and B∗Au = B∗f
at ∂D, see Lemma 2.3.

Corollary 8.1. Suppose a regularity theorem holds for (2.1). Let f ∈ Hs−1(D,Cl)
and u0 ∈ Hs−1/2(∂D,Ck′), where s = 1, 2, . . .. Then, in order that there be a
u ∈ Hs(D,Ck) such that Au = f in D and Bu = u0 at ∂D, it is necessary and
sufficient that

1)

∞∑
n=1

|cn|2 <∞, where cn =

∫
∂D

(u0, C
∗en)y ds−

∫
D

(f, en)y dy, and

2)

∫
∂D

(u0, C
∗g)y ds−

∫
D

(f, g)y dy = 0 for all g ∈ SA∗(D) satisfying B∗g = 0 at

the boundary.

Proof. It sufficient to prove the sufficiency of conditions 1) and 2) . If the con-
ditions 1) and 2) are satisfied, then there exists a function u ∈ H1/2(D,Ck),
such that Au = f in D and Bu = u0 at ∂D. Since Au ∈ Hs−1(D,Cl) and

Bu ∈ Hs−1/2(∂D,Ck′), the regularity theorem implies that u ∈ Hs(D,Ck), as
desired. �

If (2.1) is elliptic then so is the problem (A∗, B∗) adjoint to (2.1) with respect
to the Green formula. By the Fredholm property, the space of all g ∈ SA∗(D)
satisfying B∗g = 0 at ∂D, is finite dimensional. Moreover, the condition 2) alone is
sufficient for the existence of a solution u ∈ Hs(D,Ck) to problem (2.1). Hence it
follows that for elliptic boundary value problems the condition 2) is automatically
fulfilled.

Thus, the regularity problem for weak solutions of (2.1) is still of primary char-
acter in the study of boundary value problems. On the other hand, our approach
demonstrates rather strikingly that Theorem 7.4 is of great importance for numer-
ical simulation.

Corollary 8.1 applies in particular to boundary value problems for generalised
Cauchy-Riemann systems in the space [Ste91, Ste93a, Ste93b], see also [FL65],
[Agr69].
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