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Abstract

During the overall development of complex engineering systems different modeling
notations are employed. For example, in the domain of automotive systems system
engineering models are employed quite early to capture the requirements and basic
structuring of the entire system, while software engineering models are used later on to
describe the concrete software architecture. Each model helps in addressing the specific
design issue with appropriate notations and at a suitable level of abstraction. However,
when we step forward from system design to the software design, the engineers have to
ensure that all decisions captured in the system design model are correctly transferred
to the software engineering model. Even worse, when changes occur later on in either
model, today the consistency has to be reestablished in a cumbersome manual step.

In this report, we present in an extended version of [19] how model synchronization
and consistency rules can be applied to automate this task and ensure that the different
models are kept consistent. We also introduce a general approach for model synchro-
nization. Besides synchronization, the approach consists of tool adapters as well as con-
sistency rules covering the overlap between the synchronized parts of a model and the
rest. We present the model synchronization algorithm based on triple graph grammars in
detail and further exemplify the general approach by means of a model synchronization
solution between system engineering models in SysML and software engineering mod-
els in AUTOSAR which has been developed for an industrial partner. In the appendix as
extension to [19] the meta-models and all TGG rules for the SysML to AUTOSAR model
synchronization are documented.
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1 Introduction

The development of complex engineering systems involves different modeling notations from
different disciplines. Taking the domain of automotive systems as an example, SysML (Sys-
tem Modeling Language) [2] models are employed quite early to capture the requirements
and basic structuring of the whole system by system engineers, while AUTOSAR (Automotive
Open System ARchitecture)1 models are used later in the software development process to
describe the concrete software architecture and its deployment. Using these different mod-
els helps in addressing each specific design issue with an appropriate notation and at a
suitable level of abstraction.

For example, when going from the system design with SysML to the software design stage
with AUTOSAR, today the engineers have to ensure manually that all relevant decisions cap-
tured in the SysML model are correctly transferred to the AUTOSAR model. When changes
occur later on either in the AUTOSAR or SysML model, the situation is even worse: The con-
sistency has to be reestablished in a cumbersome manual step that inspects both models
and transfers all detected changes. Otherwise, the integration of the different system parts
as captured by the SysML model and refined in the AUTOSAR model may fail.

Model-Driven Engineering (MDE) with its support for model transformation and model con-
sistency checking is a promising direction to approach the sketched model consistency prob-
lems, which result as the models describe the system under development from different view-
points and on different levels of abstraction capturing only partially overlapping information
(cf. [37]).

Triple graph grammars (TGGs) are a formalism to declaratively describe correspondence re-
lationships between two types of models. They were introduced in [30] and are one option to
specify the required model transformations using a declarative transformation specification.
In several contexts, different variants of TGGs have already been employed for model syn-
chronization such as the integration of SysML models with Modelica simulation models [23],
keeping models from the domain of chemical engineering consistent [5] and transformations
from SDL models to UML models and vice versa [8].

In this paper, we report about our approach to tackle the outlined model synchronization
problem. Built on top of techniques from model-driven engineering such as meta-models,
consistency rules, and bidirectional model transformations resp. model synchronizations
specified by TGGs, a general architecture has been developed, which allows to automate
the task of keeping models consistent. We only require that the TGG rule set is deterministic
and that only one of the models is changed at a time. Like described in [13], in many cases
managing and tolerating inconsistencies (e.g., by allowing to manipulate different models
concurrently) instead of directly removing them is desirable. In the case of the automotive
domain, consistency plays a crucial role, e.g., caused by the reason that inconsistencies be-
tween previously defined requirements and the later implementation can lead to catastrophic
failures. Thus, a more rigorous handling of inconsistencies like requested in [13] is adequate
for our application example.

1http://www.autosar.org
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2 CONTENTS

In a project with the automotive industry, we could demonstrate that our approach can be em-
ployed for model synchronization between the SysML tool TOPCASED and the AUTOSAR
tool SystemDesk[1]. Firstly, the model transformation derived from TGGs permits to automat-
ically generate the initial AUTOSAR model from the SysML model. Secondly, consistency
between both models in case of changes in one of them can be maintained by a TGG-
based model synchronization system[20]. Thus, we can synchronize both models such that
changes within one are automatically transferred to the other.2

By making manual transformation and synchronization steps obsolete, the automatic syn-
chronization of models reduces costs and time. This applies to the initial transitions, for
example, from the SysML model to the AUTOSAR model, as well as the re-establishment
of consistency in case of changes in one model. In addition, such automated synchroniza-
tion steps are less error prone than manual steps as employed today. They further enable
employing iterative and more flexible development processes as the costs for iterations or
changes are dramatically reduced as long as parallel changes do not occur.

The structure of the paper is as follows: The current state of the art and its limitations com-
pared to our outlined new approach are discussed in Section 2. The considered application
example for our approach for synchronizing SysML and AUTOSAR models is introduced
in Section 3. The new approach, its architecture, and its components are first sketched
in Section 4. Then the constituent parts are presented in detail. The technique for model
synchronization is explained in Section 5. The tool adapter and the techniques for consis-
tency checks follow in Section 6 and Section 7. At the end, we discuss the suitability of our
approach by looking into several typical usage scenarios, such as the initial transfer of infor-
mation or change propagation, and close the paper with a final conclusion and an outlook
on planned future work.

2It has to be noted that the required restriction concerning no parallel changes in the models does not result in
any additional limitations in the considered application domain, as the processes currently try to exclude changes
at all to avoid the cumbersome manual step to reestablish consistency.
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2 State of the Art

In this section, we discuss related approaches for model transformation and synchroniza-
tion, and related work in the context of Model-Driven Engineering, that make use of model
transformations.

2.1 Model Synchronization

An overview of model transformation and synchronization systems can be found in [10]. The
paper categorizes existing approaches and briefly explains them.

As outlined in the introduction, MDE requires a bidirectional solution, which preserves model
contents when synchronizing as much as possible. However, many available model transfor-
mation approaches only support classical one-way batch-oriented transformations [16]. The
QVT implementations [7] and [15], and some graph transformation-based approaches such
as VIATRA [35, 6], the GREAT model transformation system [36], AGG [12], the core PRO-
GRES tool [29] or the core FUJABA tool [34] are only unidirectional but partly incremental.
The available relational QVT implementations [22, 32] as well as BOTL [26] are bidirectional
but only support a batch-oriented processing and, thus, fail to be scalable.

Other existing TGG-based approaches also do not provide a comparable automatic and
computational incremental solution (for a detailed discussion see [20]): The TGG transfor-
mation algorithm based on the PROGRES environment [5] is also incremental, but operates
interactively, and is therefore inappropriate for the transformation of large models. In the
incremental TGG transformation approach supported by ATOM3 [21], updates are triggered
by user actions like creating, editing or deleting elements and the specification of updates
for all possible user actions is required. Thus, the consistency of the approach is difficult
to guarantee and initial complete model transformations are not supported. Another TGG
realization based on [34] is MOFLON [33]. It focuses on model integration and transformation
for the MOF 2.0 standard [27] rather than incremental model synchronization.

Incremental model synchronization can also be seen as an inconsistency resolution problem.
[11] describes an incremental solution for the related problem of inconsistency checking. The
presented system allows a check to be made to quickly determine whether a modification has
caused inconsistencies, and proposes solutions to the user. For a more detailed discussion
of such solutions for model synchronization we refer to [20].

2.2 Model Integration

Model-Driven Engineering is a development paradigm, where models are the primary de-
velopment artifacts. In [24] this idea is described. Models are used to describe the system
under development from different viewpoints and on different levels of abstraction. During
the development process, models are refined and ultimately source code is generated from
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these models. The use of different kinds of models leads to the problem of keeping those
models consistent to each other. At this point, model transformation systems play a cen-
tral role. In practice an additional challenge is that different kinds of models are normally
supported by different tools and these tools use diverse technologies for representing these
models. So at first models need to be accessed in an appropriate way to be able to apply
model transformation techniques.

In the MATE project [31] an adapter has been realized to access MATLAB/Simulink models
in such a way that model transformation rules can be applied, e.g., for checking guidelines
while model consistency like in case of model synchronization is not the main focus.

In the ModelBus project [3] a framework has been developed, which is able to integrate
different model-based development tools into a service-oriented middleware. The purpose
of the ModelBus project is to provide a framework allowing several tools to be connected
within a single environment. Model transformation and synchronization techniques can be
potentially applied using this framework. When access to the different models is provided
in an adequate form, the integration of different models using model transformation and
synchronization techniques can be realized.

An approach for the integration of SysML models with Modelica simulation models has been
described in [23]. The approach is also based on triple graph grammars but uses VIATRA
[9] to implement the transformation. In contrast to the system presented in this paper, syn-
chronization of models is not supported.
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3 Application Example

We have evaluated the approach presented in this work within a project organized with our
industrial partner, dSPACE GmbH. dSPACE provides, besides other products, several tools
for the development of embedded systems, especially for the automotive domain. Within this
project we used two different modeling languages commonly used for the development of
automotive embedded systems, namely the System Modeling Language (SysML) and the
AUTomotive Open System ARchitecture (AUTOSAR). We used the tool SystemDesk, a pro-
fessional tool for the development of complex automotive embedded systems according to
the AUTOSAR standard, and TOPCASED, an open-source toolkit for supporting the model-
ing of SysML models. Both modeling languages (AUTOSAR and SysML) are subsequently
described in more detail.

3.1 SysML

A widely used language for system engineering is SysML (System Modeling Language),
which is currently available in version 1.1 (see [2]). SysML supports the design and analysis
of complex systems including hardware (HW), software (SW), processes and more. SysML
reuses a subset of the UML and adds some additional parts (e.g., the Requirement and
Parametric Diagram) to facilitate the engineering process by providing several improvements
compared to UML concerning system engineering. UML itself tends to be more software-
centric while the topic of SysML is clearly set to the analysis and design of complex systems
(not only SW).

In our application example the existing SysML profile provided by the OMG has been used,
which utilizes the generic extension mechanisms of UML to customize UML elements using
the concept of stereotypes. Such stereotypes can be applied to UML elements3 and extend
as well as define constraints on these elements. For expressing constraints also the Object
Constraint Language (OCL) can be used, which not only allows the description of structural
properties, but also the specification of additional constraints on the values and/or types of
attributes and so on. For more information about OCL see [28]. Instances of the stereotyped
UML elements must fulfill the properties defined by the applied stereotypes. The SysML
profile (like any other UML profile) contains a set of stereotypes, which are applied to a
UML model. In the following we explain relevant SysML stereotypes for a small application
example.

In SysML, system blocks are used to specify the structure of the system4. For this purpose
the UML meta model element Class is extended by the stereotype <<block>>. A block
describes a logical or physical part of the system (e.g., SW or HW). Multiple of these blocks
can be used for representing the structure of a system. An example for the additional ca-
pabilities of SysML is the possibility to model the flow of objects between different system
elements (which are specified in form of SysML blocks) by using <<flow ports>>. <<flow

3Elements of the UML meta model.
4A block describes a part of the structure of an interconnected system.
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port>> is a stereotype for the UML element Port and allows the modeling of an object flow
between SysML blocks. For the specification of objects and data, which flow over a flow port,
the stereotype <<flow specification>> is applied to the UML element Interface in SysML.
Ports can be connected via connectors provided by the UML meta model. The elements re-
quired to connect different ports (the UML Connector and ConnectorEnd) as well as a part
of the SysML meta model describing blocks, flow ports and flow specifications are shown in
Figure 1 in a simplified way.

Figure 1: Extract of the SysML metamodel

When analyzing and designing automotive systems, the HW/SW-structure can be described
using SysML blocks, ports (e.g., flow ports) and appropriate interfaces (e.g., flow specifica-
tions). In this paper, we use a simplified version of the structural constituents taken from
an application example of an engine-fuel control system consisting of actuators and sensors
for the throttle position and the control software. The control software evaluates the sensor
values, computes appropriate throttle position values and sends them to the actuator of the
throttle.

Figure 2: Application example of an SysML model created in Topcased

The system structure including HW and SW parts has been modeled using the tool TOP-
CASED5 and the resulting SysML model of the engine fuel control system is shown in Fig-
ure 2. The example consists of six different types of blocks, three of them represent hardware
parts like the engine, a HW actuator and a HW sensor for setting and measuring the throttle

5http://www.topcased.org/
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position of the engine. The HW sensor (HWSensor8Bit) is connected to a SW block (ASWC-
Sensor ), which reads data from the HW (e.g., by using driver functionality) and sends these
measured values to a SW block, which realizes the control functionality (ASWCThrottleCon-
trol) and computes an output signal. This output signal is send to a SW block (HWActuator ),
which realizes the access to the HW actuator, which is represented through the block HWAc-
tuator8Bit. The HWActuator interacts with the representation of the physical engine.

When such a system is designed, several restrictions have to be considered concerning
the used HW sensor blocks in combination with the software blocks. A typical restriction is
that a connector can only connect ports, which implement the same interface. In the shown
example, e.g., the flow ports of the blocks ASWCSensor and HWSensor8Bit, over which
these two blocks are connected, have to implement the same interface. Such a constraint
can be expressed in the form of the following OCL constraint for the type connector:

context Connector inv:

self.end->forAll(e:self.end->get(0).role.type = e.role.type)

Only three of the blocks (ASWCThrottleControl, ASWCSensor and ASWCActuator ) de-
scribed above are relevant for the SW architecture. In our implementation, stereotypes are
defined for identifying, e.g., the definition of SW blocks (<<atomicSoftwareComponent>>)
as well as for the usage of the defined SW blocks (<<componentPrototype>>) like shown
in Figure 2. In the following section, we show how these constituents can be represented in
AUTOSAR.

3.2 AUTOSAR

AUTOSAR (Automotive Open System ARchitecture) is a framework for the development of
complex electronic automotive systems. The purpose of AUTOSAR is to improve the de-
velopment process for ECUs (Electronic Control Units) and whole systems by defining stan-
dards for the system and software architecture. The AUTOSAR standard defines a meta
model, which describes a DSL for the development of automotive embedded systems. The
part of the meta model relevant for the present work is described in [4] in the form of a UML
profile. We use a stand-alone meta model for AUTOSAR, which is realized accordingly.

As defined by the AUTOSAR meta model (an excerpt is shown in Figure 3), the software
architecture is built from components (e.g., AtomicSoftwareComponents (ASWC)). These
ASWC are derived from the type ComponentType and can communicate using two differ-
ent categories of ports: required and provided ports (represented through RPortPrototype
and PPortPrototype). Both types are derived from the same abstract class PortPrototype. An
RPortPrototype only uses data or events, which are provided by other ports of type PPortPro-
totype. A port of type RPortPrototype or PPortPrototype can implement an interface of type
PortInterface. This PortInterface is refined by ClientServerInterface and SenderReceiverIn-
terface.

The SW blocks (ASWCSensor, ASWCActuator and ASWCThrottleControl) defined within



8 CONTENTS

the SysML model described above can also be specified within an AUTOSAR model. The
blocks shown in Figure 2 can also be described using ASWCs, ports and interfaces, which
are defined within the extract of the AUTOSAR meta model shown in Figure 3. Figure 4
shows the same SWCs modeled with the tool SystemDesk6

In case of the SysML example, the SW blocks, ports and connectors can be described
directly within such an AUTOSAR model in the form of ASWCs. In case of the blocks de-
scribing HW, such a mapping is not desired by our industrial partner. HW components
in AUTOSAR are represented on completely different levels of abstraction than in SysML.
Therefore, the blocks, ports and connectors concerning HW in the SysML model have not
been reflected in the AUTOSAR model in our application example. Also the connectors,
which exist in the SysML model between the ports of a SW block and a HW block have not
been transformed to AUTOSAR.

3.3 Common Constituents

The elements in Figure 2 are tagged with stereotypes, e.g., <<senderPort>> and <<receiverPort>>.
This is necessary because there are different types of ports in AUTOSAR but only one type
in SysML. Another example are software components. AUTOSAR supports atomic and com-
posite software components. Both are represented as blocks in SysML. To distinguish both
types, the stereotypes <<atomicSoftwareComponentType>> and <<compositionType>>
have to be used. These stereotypes have been defined in a small profile for SysML, which
we created for this purpose. In the remainder of this work we describe how to support con-
sistency of such semantically identical elements in different models using transformation and
synchronization techniques.

6http://www.dspace.com/ww/en/pub/home/products/sw/system architecture software/systemdesk.cfm

Figure 3: Extract of the AUTOSAR meta model
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Figure 4: AUTOSAR model derived from the SysML model

4 Approach

4.1 General Architecture

Figure 5: General Architecture

The generic architecture to integrate model transformation and synchronization with exist-
ing modeling tools is shown in Figure 5. The transformation system only supports EMF-
compatible (Eclipse Modeling Framework 7) models. Therefore, the source and target mod-
els need to be provided in that format. This is done by tool adapters, which translate the
models from and to EMF if necessary. If the modeling tool itself is based on EMF, such an
adapter can be realized easily. If the modeling tool is not based on EMF, the tool adapter has
to provide an EMF representation on the fly that the transformation system can modify, and
has to synchronize it with the actual model in the modeling tool. More information on how
such an adapter could be realized can be found in Section 6.

4.2 Architecture Example

In the project realized with our industrial partners, we have established an architecture like
described above, which integrates the tools TOPCASED and SystemDesk. For each tool

7http://www.eclipse.org/modeling/emf/
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an adapter has been realized, that provides an EMF representation of the model to the
transformation system. Figure 6 shows the concrete architecture developed in that project.

Figure 6: Integration architecture for TOPCASED-SystemDesk integration

The transformation system, the tool adapters, and TOPCASED are based on the Eclipse
platform. TOPCASED already uses EMF as its underlying modeling infrastructure. There-
fore, access to these models from the transformation system can be realized without great
effort. SystemDesk is a stand-alone Windows application that provides a COM interface
for access to its models. Accessing SystemDesk’s models is more difficult, because the
technology gap between Eclipse/EMF and SystemDesk/COM must be bridged. For this pur-
pose, we have developed a dedicated adapter. While the transformation system creates and
modifies an AUTOSAR model in EMF representation, the SystemDesk adapter takes care
of reading and writing the model to and from SystemDesk. For more details concerning the
realization of the SystemDesk adapter see Section 6.
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5 Model Synchronization System based on Triple Graph
Grammars

The model transformation system is based on triple graph grammars [30]. It is able to perform
model transformations in both directions, i.e. create a target model from a source model and
vice versa. Furthermore, it can synchronize both models after modifications have occurred.
In the following sections, triple graph grammars are briefly introduced and the transformation
and synchronization algorithm is explained.

5.1 Triple Graph Grammars

Figure 7: TGG rule for the transformation of a block to an atomic software component

Triple graph grammars combine three conventional graph grammars to describe the corre-
spondence relationships between elements of two types of models. Two graph grammars
describe the two models and a third grammar describes a correspondence model. Figure 7
shows a TGG rule for the transformation of a SysML block to an atomic software compo-
nent in AUTOSAR. This illustration also combines the left-hand side (LHS) and right-hand
side (RHS) of the rule. The black elements belong to the LHS and the RHS of the rule, i.e.
they form the application context. The elements marked with ++ (and printed green) belong
only to the RHS and are created when the rule is applied. Rules that delete elements are not
used in the context of model transformation with TGGs (cf. [30]). The correspondence model
is used to explicitly store correspondence relationships between corresponding source and
target elements. It allows the target model elements corresponding to a given source model
element to be found quickly. The correspondence nodes are connected to each other and
form a directed acyclic graph. Although, there is no link visible in Figure 7 between Cor-
rPackage and CorrASWC, that link is created implicitly and is not shown in the TGG rule to
ease modeling of TGG rules.

Figure 8: Axiom of the triple graph grammar for the transformation from SysML to AUTOSAR

Like every other graph grammar, a triple graph grammar has a start graph which serves as
the starting point of the transformation. In the context of TGGs it is called axiom. Figure
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8 shows the axiom for the transformation from SysML to AUTOSAR. The whole grammar
for this transformation contains many more rules, which are not shown here due to space
limitations.

5.2 Model Transformation

TGG rules are declarative by nature. To execute them they can be either interpreted by a
dedicated TGG interpreter like presented in [25], or other executable artifacts can be derived.
In our case, Story Diagrams [14]8 are generated, which are executed by a Story Diagram
interpreter [18].

Figure 9: Operational rule for the forward transformation of a block to an atomic software
component

The transformation system consists of two major parts, the transformation engine and the
operational transformation rules. The engine is independent from specific source or target
models and invokes the rules. The transformation system supports both transformation di-
rections, i.e. creating the right model from the left model and vice versa. Furthermore,
synchronization of models is also supported. This is explained in Section 5.3. Therefore,
separate operational rules for each direction are required. Conceptually, the operational
rules are derived by adding all elements on the source model side to the rule’s application
context. Figure 9 shows the conceptual forward transformation rule derived from the rule in
Figure 7. In practice, the operational rules have to do much more. Therefore, four separate
operations are generated for each rule and for each direction, that perform

1. transformation of elements (transformation())

2. synchronization of elements (synchronization())

3. synchronization of attributes (synchronizeAttributes(), called by 2)

4. reconstruction of broken structures (repairStructure(), called by 2)

The overall operation principle of the transformation engine and the transformation() opera-
tion is explained in the following, the others are described in the next section.

The operation principle of the transformation engine is depicted in Figure 10. To execute a
model transformation, the engine is started with the root elements of the source and target

8Story Diagrams combine UML activity diagrams with graph transformation rules to describe behavior.
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Figure 10: Operation principle of the model transformation engine

models as parameters, as well as the desired transformation direction (i.e. forward or back-
ward). First, the axiom is executed to transform the root node (1). The correspondence node
that was created by the axiom is put into the transformation queue of the engine (2). This
step is done by the axiom itself. The transformation queue contains the correspondence
nodes that need to be processed. After that, the first correspondence node in the queue is
removed (3) and all transformation rules are executed that expect such a correspondence
node in their application contexts (4). If a rule has successfully transformed an element, the
associated correspondence node is put into the transformation queue (5). Steps 3 to 5 are
repeated until the transformation queue runs empty. Then the transformation is complete.

Figure 11: Operation principle of the transformation() operation

Figure 11 shows the operation principle of the transformation operation9. The operation’s
parameter is the parent correspondence node (in case of the rule in Figure 9, the CorrPack-
age node). This node is the starting point of the search for other elements of the application
context of the rule (PackageSYSML, ARPackage and Block in Figure 9). If these elements
can be found and if they were not transformed before (1), the correspondence node and
target elements are created according to the TGG rule (2). After that the newly created cor-
respondence node is added to the transformation queue of the transformation engine (3).
This process is repeated as long as new matches for the rule’s application context can be
found. After that, the control flow returns to the transformation engine as described above.

9Axioms are only special kinds of rules. Therefore, the operation principle of axioms is virtually the same.
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5.3 Model Synchronization

The model transformation system can also perform a synchronization between the models
after an initial transformation. For efficiency, the system only visits those nodes that were
actually modified. To detect modifications, an event listener is registered at each element
of the source and target models. If an element is modified, its associated correspondence
node is put into the transformation queue. There is an additional flag associated with each
node in the queue10, that marks whether the consistency of a correspondence node should
be checked (flag is true), or new elements should be transformed (flag is false) when this
correspondence node is processed by the engine. The notification listener always sets this
flag to true. The transformation rules (see Section 5.2, step 3) always set it to false.

Therefore, the actual operation principle of the transformation engine is slightly more compli-
cated than described in Figure 10. In step 4 of Figure 10, first the flag is checked. If the flag is
false, the transformation operations are executed. If the flag is true, only the synchronization
operation (see below) is executed that belongs to the rule that created the current correspon-
dence node. The synchronization rule is responsible for re-establishing consistency between
the associated source and target model elements. Furthermore, in case of synchronization,
the axiom is not executed beforehand because the root model elements already exist.

The synchronization operations are used in an attempt to preserve existing target elements
as far as possible. Many modifications, like moving elements, can be synchronized by ad-
justing some links in the target model instead of deleting and retransforming elements. This
reduces the number of necessary modifications in the target model and allows even large
models to be synchronized very quickly in many cases.

Figure 12 depicts the operation principle of a synchronization rule. First, the rule checks if
the structure of the source, target and correspondence elements complies with the rule. If
the structure is valid, the synchronizeAttributes() operation is called (1). This operation com-
pares the attribute values, synchronizes them if necessary, and returns whether attribute
synchronizations were performed. If attribute values were actually modified, the subsequent
correspondence nodes are put into the queue with their flags set to true to check their con-
sistency as well (2). If no attribute synchronizations were necessary, the subsequent corre-
spondence nodes do not need to be checked. In any case, the current correspondence node
is also added to the transformation queue with its flag set to false to search for new elements
to transform (3).

In case the rule pattern does not match, a check is made to determine whether all source
elements of the correspondence node were deleted from the model. Then the correspon-
dence node and the target model elements are obsolete and can be deleted, as well (4).
Note that this implies that all subsequent correspondence nodes and their target elements
have to be deleted, too. If at least one of the source elements is still part of the model, a
repair is attempted. First, the repairStructure() operation (see below) belonging to the same
rule is executed (5). In case the repair is successful, the operation is finished. If it fails,
the repair operations of the other rules are tried (6). As soon as one of them succeeds, the

10For simplicity, this has been omitted in Section 5.2.
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Figure 12: Operation principle of the synchronization() operation

operation terminates. Note that the repairStructure() operation adds correspondence nodes
to the transformation queue if necessary. Should all repair attempts fail, the correspondence
and target elements are deleted (7). The modified source element cannot be synchronized
with the available transformation rules.

The repairStructure() operation is the key to minimizing the number of write operations on
the target model to re-establish consistency. Its general operation principle is shown in
Figure 13. Prerequisites for a successful repair are that the source model and application
context elements exist (1) and that the source model elements are not connected to any
other correspondence nodes (2).11 If these conditions are met, the target element pattern
is checked (3). If it complies with this rule, consistency can be re-established easily by
re-adjusting the links to the elements of the application context of the rule (4). For the
rule in Figure 7 this means to delete the existing link between aswc and the ARPackage
it is currently linked to, and create a new link between aswc and the ARPackage that was
matched in step 1. Moved elements can be synchronized mostly with this simple repair
action.

More complex modifications can lead to the applicability of a different rule. In this case, the
target elements do not meet the expected pattern because they were created by another rule.
Then the correspondence node and target elements have to be created according to that
rule (5). The links to subsequent correspondence nodes are rerouted to the newly created

11If connected, this means that these elements were already transformed by a different rule.
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Figure 13: Operation principle of the repairStructure() operation

correspondence node (6), and the obsolete correspondence node and target elements are
deleted (7). Finally, the current (or newly created) correspondence node is added to the
transformation queue with its flag set to false to search for new elements to transform. Also
the subsequent correspondence nodes are added to the transformation queue with their
flags set to true to check their consistency. Depending on whether the structure could be
repaired or not, true or false is returned by this operation.

This synchronization algorithm has some major advantages. First, the repair of broken struc-
tures minimizes the number of required write operations on the target model to synchronize
modifications. While the previous version of our algorithm ([20]) would discard the target
elements and retransform them, additional details that are not reflected in the source model
would be discarded, as well. By preserving target elements, those details are preserved,
too. This is important if the connected models have different levels of detail. Of course, also
the performance is much higher if only links are changed and elements are not recreated.
Second, the synchronization starts directly at those correspondence nodes where a modifi-
cation took place. Those parts of the models that were not changed are not checked by the
system. In addition, the synchronization stops checking correspondence nodes if a modifi-
cation does not have any effects on them. For example, moving an element in the model
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usually does not influence its child elements. The algorithm first synchronizes the movement
of the parent element. Then, its direct children are checked. If they have not been affected
by the modification, the remaining indirect children are not checked. All in all, these opti-
mizations make synchronization effort mostly independent from the overall model sizes. The
size of the modifications (number and severity of modifications) has the largest impact on
synchronization performance.
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6 Tool Adapter

The tool adapter already mentioned in Section 4 is responsible for providing access to a
modeling tool’s in-memory model to the transformation system. Of course, the modeling tool
has to provide a means to access its model, e.g. a COM interface. This allows models to be
synchronized without indirection via files.

The transformation system works only on EMF-based models. Therefore, the tool adapter
has to provide an EMF-based model. If the modeling tool is also based on EMF, like TOP-
CASED, such an adapter is quite simple. It only has to get the model’s root element from
the model editor and provide it to the transformation system (left side of Figure 6). The
transformation and synchronization take place directly on the model.

If the modeling tool is not based on EMF or not even on the Eclipse platform, a tool adapter
becomes much more complicated. It has to provide an EMF-based version of the model to
the transformation system in addition to the model of the modeling tool. Before and after the
transformation system reads or writes the EMF-based model, the adapter has to synchronize
it with the model in the external modeling tool. This problem is explained in the following
using dSPACE SystemDesk as an example.

Figure 14: Structure of the SystemDesk adapter

dSPACE SystemDesk is a proprietary modeling tool for AUTOSAR modeling. It offers a
COM/.NET interface to access the model that is currently loaded in SystemDesk. Therefore,
a special Java/COM adapter is required to connect the Java-based transformation system
to SystemDesk. The architecture of the SystemDesk adapter is shown in Figure 14. An-
other problem is SystemDesk’s meta model, which is different from the AUTOSAR meta
model. For example, SystemDesk provides a Project Library that contains the types of soft-
ware components, ports, etc. Instances of these types can be used in the system model.
However, it is also possible to create a type directly in the system model. Furthermore, a Sys-
temDesk model contains several predefined root packages for the software, hardware and
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system configurations. These correspond to ordinary compositions in AUTOSAR which are
not contained in any other composition. This problem is aggravated because SystemDesk’s
meta model was not available to us, and had to be reconstructed from the COM interface
specification.

The tool adapter has to handle these SystemDesk specific issues and produce a standard-
conformant EMF-based AUTOSAR model. First, we have tried to do the translation directly
in the adapter code [17]. However, this has led to a very complex and hardly maintain-
able adapter code. While this transformation is essentially a model transformation from a
SystemDesk to an AUTOSAR model, we have now used the model transformation system
a second time to perform this transformation. The COM interface is used to synchronize
SystemDesk’s model with a corresponding EMF-based model. The model transformation
system synchronizes this model with the AUTOSAR model that the adapter provides to the
transformation system. This solution makes maintenance of the adapter much easier. Most
of the adapter’s logic is encoded in model transformation rules that can easily be adapted
and extended. Maintainability is an important issue due to the enormous complexity of the
AUTOSAR meta model and its constant advancement.

We have encountered another problem, which regards object identity. It is not possible to di-
rectly reference an object in SystemDesk’s memory. Instead a corresponding Java object has
to be created. In an earlier version, SystemDesk did not support UUIDs. Therefore, it was
hard to match Java objects to SystemDesk objects. This problem has been circumvented by
always creating a second EMF-based copy of the current SystemDesk model, comparing it
to the first copy, and merging the differences into the first copy using EMF Compare12. How-
ever, EMF Compare does not work very reliably without UUIDs. Now, SystemDesk supports
UUIDs and matching corresponding objects in Java and SystemDesk is easy.

12http://www.eclipse.org/modeling/emft/



20 CONTENTS

7 Model Consistency

Model consistency plays an important role, not only regarding consistency between different
models or model elements of different models, but also between the elements of one model.
In the following, we describe why model consistency is a crucial aspect, especially when
model synchronization techniques are applied.

When model synchronization techniques are used, normally several model elements of two
different synchronized models describe the same thing. These model elements can be syn-
chronized using model synchronization techniques like TGGs. Model consistency concern-
ing these semantically identical elements of different modeling languages is supported by
the synchronization itself, as changes of model elements included in one model are carried
over to the other model.

In most cases where synchronization techniques are used, the property holds that not all
elements of a model are also reflected in a corresponding synchronized model. Normally,
this is the case because different modeling languages, and consequently also different types
of models, are synchronized. Such modeling languages have a specific purpose and, thus,
different properties with different semantics are expressed by different languages. Therefore,
dependencies or other properties can exist within the same model between synchronized
and non-synchronized elements, which are not reflected by the synchronization mechanism
itself.

In Figure 15, the two big circles on the left and right side represent two different models. In
each model, a subset (represented through a cloud) is synchronized via a model synchro-
nization system with the semantically identical elements of the corresponding model. Thus,
consistency between elements from the cloud of the left side and on the right side is main-
tained by the synchronization system itself. Like denoted by the arrow with the exclamation
mark on top, dependencies can also exist within the same model between synchronized and
non-synchronized elements. Such properties can be invalidated when a model element is
updated by a synchronization activity.

An example of such a situation, where additional properties need to be checked is described

Figure 15: Synchronization of parts of the models can lead to inconsistencies with other
parts.
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subsequently. The SysML model shown in Figure 2 consists of six SysML blocks, but only the
three lower blocks represent software. In Figure 4, these three SysML blocks are reflected in
the form of semantically identical elements of an AUTOSAR model. The other three SysML
blocks, which represent hardware, are not present in the AUTOSAR model. In case these
two models are synchronized, only the constituents representing software are synchronized
between the SysML and AUTOSAR model. Changing the bit width of the IO port of the
ASWCSensor of Figure 4 is a valid operation in the AUTOSAR model, but applying these
changes via the synchronization to the corresponding SysML model leads to a violation of
a property of the SysML model. This is the case, because connectors in SysML are only
allowed to connect ports with the same bit width. Changing the bit width of the IO port of
the SysML block ASWCSensor to 16 bits, e.g. by a synchronization, without changing the
bit width of the corresponding port of the block HWSensor8Bit leads to a violation of this
property while the AUTOSAR model is still consistent.

Ideally, the modeling tool should provide a mechanism to check models for syntactical and
semantical correctness, not only to check models after synchronizations, but also to aid the
user. TOPCASED, respectively EMF, provides such a validation mechanism. Validating the
situation described above results in an error message like shown in Figure 16.

Currently, these constraint checks are not invoked automatically, but only on the user’s re-
quest. The reason is that constraint evaluation in TOPCASED can take a very long time,
because it always analyzes the whole model. Of course, it is desirable to check a model
immediately after a synchronization for better usability.

Figure 16: Screenshot of the OCL validation dialog in TOPCASED
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8 Usage Scenarios

The described architecture supports several scenarios where, e.g., an initial AUTOSAR
model is derived from an existing SysML model.

Additionally, the described architecture allows the synchronization of existing models by up-
dating only changed model elements in the target model without overwriting the whole model
each time changes occur. Such a synchronization can be executed in both directions. In
the following, we describe different usage scenarios in which the shown architecture allows
an enhanced development process using model transformation and synchronization tech-
niques.

8.1 Transformation from SysML to AUTOSAR

After the SysML model has been constructed, it needs to be transformed into an AUTOSAR
model to get from the system design to an initial model for the software design. Design
decisions concerning the software defined in the SysML model have to be taken over to the
AUTOSAR model. With the presented system such an initial AUTOSAR model can be auto-
matically derived by a forward transformation. The automatic transformation is much faster
than a manual transformation and there is less risk of introducing errors into the AUTOSAR
model. A transformation in the other direction is also possible (backward transformation).

8.2 Repeated Forward Synchronization from SysML to AUTOSAR

After the AUTOSAR model has been derived from the SysML model, modifications can still
be made to the SysML model. These modifications have to be transferred to the AUTOSAR
model, too. While the AUTOSAR model already exists, a complete retransformation is un-
necessary. Therefore, only the modifications are synchronized. Furthermore, the AUTOSAR
model might also have been modified, e.g., by changing the type of the IO port of the ASWC
ASWCSensor as described in Section 7. A complete retransformation would discard these
modifications.

8.3 Backward Synchronization from AUTOSAR to SysML

However, modifications may also be made to the AUTOSAR model in order to adjust the
structure during refinement of the software architecture, e.g., to reuse an already existing
component. Therefore, modifications also have to be propagated back to the SysML model.
While many model transformation approaches only permit unidirectional transformations, our
approach works bidirectionally and incrementally. Additional details in the SysML model are
preserved which would otherwise be lost.
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How such a propagation of changes using bidirectional transformation techniques supports
the development process is demonstrated by the following scenario. When the type of the IO
port of the ASWC ASCWSensor from Figure 4 is changed in the AUTOSAR model, the trans-
formation system updates the corresponding SysML IO port shown in Figure 2 accordingly
without overwriting the whole SysML model. When the SysML model is updated, the OCL
constraint described in Section 3.1 is violated (see Figure 16) because the SysML connector
is connected to ports, that have different types.

When elements have been added to the AUTOSAR model that are not relevant for the SysML
model (e.g., on a more detailed abstraction level), these elements are ignored by the trans-
formation system. This is the case, because no transformation rules have been defined for
these elements.

8.4 Iterative and Flexible Processes

The usage scenarios outlined in Sections 8.1, 8.2 and 8.3 demonstrate that our approach can
handle changes occurring in either model in any order. Therefore, the approach enables not
only a strict sequential ordering, i.e. the SysML model is specified first and the AUTOSAR
model is derived from it (Section 8.1). It also allows, that changes in the SysML model
are propagated to an already existing AUTOSAR model (Section 8.2) and that necessary
changes in the AUTOSAR model are also accordingly adjusted in the SysML model (see 8.3).
Therefore, instead of a rigid sequential process, also iterative and more flexible processes
can be supported. Later changes of the AUTOSAR model will be reflected back to the
SysML model after a synchronization. Such changes in an AUTOSAR model can lead to the
violation of constraints of the SysML model like described before.
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9 Conclusion & Future Work

During the development of complex engineering solutions, several models are employed to
capture the design decisions of different disciplines. We have presented an approach that
supports synchronizing these models when they overlap with regard to the captured informa-
tion. The solution enables that the interplay between the different development activities in
different disciplines and the overarching system engineering can be kept consistent at mini-
mal costs even though we do not forbid changes in the different models, which might impact
each other or could lead to inconsistencies. The only limitation is that parallel changes in
the different models are not supported. Although the underlying transformation system can
only synchronize two models, chains of transformations can be built to connect more than
two models.13

We have further demonstrated that SysML models employed early on by system engineers
and AUTOSAR models employed later on in the software development process can be kept
consistent using our approach thanks to the use of model synchronization techniques and
additional consistency rules. It has been further outlined that flexible usage scenarios, and
in particular iterative development, become manageable when employing our approach.

As future work, we plan to further extend the coverage and also address other development
artifacts than models. We also want to investigate how multiple models connected via model
synchronization and consistency rules can be efficiently managed as a whole.
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A SysML Meta-Model

The presented model transformation rules are based on the SysML metamodel provided by
Topcased 3.214. This is an implementation of the SysML 1.0 specification15. Figure 17 shows
an excerpt of the SysML metamodel. Only those classes, references, and attributes used in
the transformation rules presented in Section C are shown along with their superclasses.

14http://www.topcased.org
15http://www.omg.org/cgi-bin/doc?formal/07-09-01

http://www.topcased.org
http://www.omg.org/cgi-bin/doc?formal/07-09-01
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Figure 17: Excerpt of the SysML metamodel showing all classes covered by the transforma-
tion.
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B AUTOSAR Meta-Model

The presented model transformation rules are based on the AUTOSAR 2.0 metamodel16.
Figures 18 and 19 show excerpts of the AUTOSAR metamodel. Only those classes, ref-
erences, and attributes used in the transformation rules presented in Section C are shown
along with their superclasses.

16http://autosar.org/index.php?p=3&up=5&uup=0

http://autosar.org/index.php?p=3&up=5&uup=0
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Figure 18: Excerpt of the AUTOSAR metamodel showing all classes related to software
modeling covered by the transformation.
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Figure 19: Excerpt of the AUTOSAR metamodel showing all classes related to hardware
modeling covered by the transformation.
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C SysML-to-AUTOSAR Transformation Rules

The rules that transform and synchronize SysML to AUTOSAR models are contained in the
plugin de.hpi.sam.mote.sysml2autosar.

Figure 20: TGG rule realizing the transformation and synchronization of the axiom.

Figure 21: Rule responsible for the transformation and synchronization of elements of type
Package, resp. ARPackage.

Following the different TGG rules for the transformation of an EMF object graph of SysML
objects to an EMF AUTOSAR instance graph are shown. Because of the nature of TGG rules
both transformation directions from SysML to AUTOSAR and back again are supported by
the TGG rules. The rule that is always applied at first is the axiom depicted in Figure 20.
This rule is responsible for creating the root objects. If a transformation from SysML to
AUTOSAR is desired the autosar object with the corresponding top level package has to
be created and for the opposite direction the SysML element model need to be created.
When synchronizing a SysML and an AUTOSAR model the properties of these elements are
updated accordingly instead of creating or overwriting existing elements.

In addition to the root object a SysML as well as an AUTOSAR model is required to hold
a package. In case of SysML this package is simply of the type Package and in case of
AUTOSAR of the type ARPackage. The TGG rule responsible for the transformation and
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synchronization is shown in Figure 21.

The next TGG depicted in Figure 22 is responsible for transforming, resp. synchronizing
a SysML Block with an AtomicSoftwareComponentType. To avoid that another subtype of
AtomicSoftwareComponentType is processed by the rule, the following shown constraints
need to be specified:

self.getAppliedStereotype(’AUTOSAR::atomicSoftwareComponentType’) <> null

self.oclIsTypeOf(M2::AUTOSARTemplates::SWComponentTemplate::Components::Atomic-

SoftwareComponentType)

Subtypes of an AtomicSoftwareComponent (e.g., SensorActuatorSoftwareComponents) are
processed by another rule that also requires, resp. applies a different stereotype.

Figure 22: Rule for the transformation/synchronization of AUTOSAR elements of type Atom-
icSoftwareComponentType and SysML Blocks.

For the transformation/synchronization of AUTOSAR elements of type CompositionType
and SysML Blocks the TGG rule shown in Figure 23 is required. Again, if a SysML Block
should be transformed an appropriate stereotype (<<compositionType>>) need to be ap-
plied.

block.getAppliedStereotype(’AUTOSAR::compositionType’) <> null

The next rule shown in Figure 24 processes elements representing instances of an AU-
TOSAR ComponentType and corresponding SysML Blocks. One precondition for the ap-
plication of this TGG rule is that such an instance is contained within a surrounding SysML
Block, resp. an AUTOSAR composition.

property.getAppliedStereotype(’AUTOSAR::componentPrototype’) <> null
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Figure 23: TGG rule for the mapping of AUTOSAR elements of type CompositionType and
SysML Blocks.

Figure 24: Rule for the transformation and synchronization of instances of type Component-
Type (e.g., an instance of a softwarecomponent).
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The next rule (Figure 25) is responsible for processing AUTOSAR elements representing
Client-ServerInterfaces and appropriate model elements in SysML. ClientServerInterfaces
are mapped to SysML model elements of type FlowSpecification. Again, one precondition
for a FlowSpecification to be transformed or synchronized is that the appropriate stereotype
(<<clientServer-Interface>>) has been applied.

Figure 25: TGG rule processing AUTOSAR elements of type ClientServerInterface and
SysML elements of type FlowSpecification.

flowSpec.getAppliedStereotype(’AUTOSAR::clientServerInterface’) <> null

Figure 26 shows a similar rule like depicted in Figure 25. The only difference is that the AU-
TOSAR element of type SencerRecieverInterface is used and accordingly also a different
stereotype for the SysML element.

Figure 26: TGG rule transforming/synchronizing SenderReceiverInterfaces.

flowSpec.getAppliedStereotype(’AUTOSAR::senderReceiverInterface’) <> null
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In addition to the interfaces also the rules for the transformation and synchronization of ports
are required. Figure 27 and Figure 28 show the corresponding rules. For the identification
of SysML FlowPorts the stereotype <<autosarPort>> is used. For the distinction between
a provided and a required port the direction (in or out) is used.

Figure 27: Rule for provided ports.

flowPort.getAppliedStereotype(’AUTOSAR::autosarPort’) <> null

self.direction = sysml::FlowDirection::out

flowPort.getAppliedStereotype(’AUTOSAR::autosarPort’) <> null

self.direction = sysml::FlowDirection::_in

For the transformation and synchronization of an assembly connector the rule shown in Fig-
ure 29 has been created. The stereotype <<assemblyConnectorPrototype>> is provided
for the SysML model to be able to identfy an AUTOSAR assembly connector represented in
SysML by a normal connector.

The rule shown in Figure 30 has been created for the particular case that an assembly
connector connects one or two instances of software components of the same type.

Figure 31 shows the rule for the support of delegation connectors. Such a delegation con-
necter connects two ports while the first is owned by a component within a composition and
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Figure 28: Rule for required ports.

the second port is owened by the composition itself. The stereotype <<delegationConnectorPrototype>>
is provided by the SysML profile for identifying such a connector within a SysML model.

While also hardware constituents are provided by AUTOSAR, also for these elements ap-
propriate rules are required for the transformation and synchronization. Figure 32 shows the
rule responsible for handling ECUs. A stereotype <<ECU>> is provided within the SysML
profile for identying such elements.

The next rule is responsible for hardware ports. In addition to the stereotype (<<HWPort>>),
which is provided by the SysML profile, also the direction of such ports is accordingly up-
dated, resp. created when the rule is applied.

block.getAppliedStereotype(’AUTOSAR::ECU’) <> null

flowPort.getAppliedStereotype(’AUTOSAR::HWPort’) <> null

The system-topologie-type, which can be specified in AUTOSAR describing HW constituents,
is processed by the rule shown in Figure 34. The stereotype <<systemTopologyType>> is
provide by the SysML profile for the identification of the appropriate SysML element.

self.getAppliedStereotype(’AUTOSAR::systemTopologyType’) <> null
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Figure 29: Rule for handling assembly connectors.
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Figure 30: Rule allowing to transform and synchronize an assembly connector connecting
components of the same type.
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Figure 31: Rule for the delegation connector.

Figure 32: Rule for the transformation and synchronization of ECUs.
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Figure 33: Rule supporting hardware ports.

Figure 34: Rule for the transformation/synchronization of the system-topology-type.
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To also allow the tansformation and synchronization of the internal behavior of SWCs the
rule C.16 shown in Figure 35 has been created. This rule supports the association of a UML
state machine with the internal behavior of a SWC.

Figure 35: Rule for transformation and synchronization of UML state machines with the
internal behavior of a SWCs.

stateMachine.getAppliedStereotype(’AUTOSAR::internalBehavior’) <> null

Not only for the definition of ECU types but also for the usage of an ECU a TGG rule is
required. The responsible rule is shown in Figure 36. This rule is remarkable due to the fact
that an ECU instances is represented by two elements within the SysML model. The reason
for doing so is that in AUTOSAR a ECU instance has the characteristics of a type as well as
of an instance. The SysML simply does not provide a single modeling artifact providing both
characteristics. Accordingly two elements are used.

ecuInstanceTypeBlock.getAppliedStereotype(’AUTOSAR::ECUInstanceType’) <> null

property.getAppliedStereotype(’AUTOSAR::ECUInstance’) <> null

The mentioned characteristic of the ECU instances is also reflected within the rule shown in
Figure 37. The rule is responsible for handling a ECUCommunicationPortInstance. While in
the AUTOSAR model the port is owned by the ECUInstance, creating a model with the same
semantic is rarely possible using SysML, caused by the fact that ports can not be owned by
instances (Properties) in SysML. Accordingly, additional elements are matched on the left
side of the rule (the SysML Block in combination with the Porperty representing the instance
of the ECU).
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Figure 36: Rule for the transformation/synchronization of an ECU instance.
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Figure 37: Rule for the synchronization/transformation of an ECUCommunicationPortIn-
stance.
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flowPort.getAppliedStereotype(’AUTOSAR::ECUCommunicationPortInstance’) <> null

The next rule (Figure 38) supports the transformation/synchronization of an unspecified con-
nection, which represents some abstract form of a communication bus. Again, the unspec-
ified connection in AUTOSAR has some characteristics related to a type as well as to an
instance.

Figure 38: Rule for the transformation/synchronizatio of an unspecified connection.

connectionBlock.getAppliedStereotype(’AUTOSAR::unspecifiedConnectionType’) <> null

connectionProperty.getAppliedStereotype(’AUTOSAR::unspecifiedConnection’) <> null

The TGG rule shown in Figure 39 is responsible for transforming and synchronizing the
element of type System. Such a system in AUTOSAR is a combination of HW and SW.

systemBlock.getAppliedStereotype(’AUTOSAR::system’) <> null

While a SystemTopologyType describes how a HW topology can look like, such a type can
be used within a System in form of a SystemTopologyInstance. The associated rule is
depicted in Figure 40.
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Figure 39: TGG rule for the transformation/synchronization of an AUTOSAR System.

Figure 40: Rule for the transformation/synchronization of an AUTOSAR SystemTopologyIn-
stance.
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systemTopologyInstanceProperty.

getAppliedStereotype(’AUTOSAR::systemTopologyInstance’) <> null

The next rule (Figure 41) is responsible for transforming and synchronizing an AUTOSAR
SoftwareComposition. Such a SoftwareComposition is included inside a System.

Figure 41: Rule for the transformation/synchronization of an AUTOSAR SoftwareComposi-
tion.

AUTOSAR also provides the possebility of specifying a ModuleConfiguration. In such con-
figuration some information, e.g., about OS-Tasks can then be specified. The TGG for the
mapping of such elements is shown in Figure 42.

self.getAppliedStereotype(’AUTOSAR::softwareComposition’) <> null

self.getAppliedStereotype(’AUTOSAR::moduleConfiguration’) <> null

Like mentioned before within a ModuleConfiguration information about the OS can be
stored. To be able to store such information inside a ModuleConfiguration a container
is provided by the AUTOSAR meta model. The rule supporting containers is shown in Fig-
ure 43.

self.getAppliedStereotype(’AUTOSAR::container’) <> null
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Figure 42: TGG rule for the transformation/synchronization of an AUTOSAR ModuleConfig-
uration.

Figure 43: TGG rule for the transformation/synchronization of a Container.
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The ECUConfiguration is the ancor point of the ECU configuration description. The associ-
ated TGG rule is shown in Figure 44.

Figure 44: TGG rule for the transformation/synchronization of an ECUConfiguration.

self.getAppliedStereotype(’AUTOSAR::ecuConfigurationType’) <> null

self.getAppliedStereotype(’AUTOSAR::ecuConfiguration’) <> null

In AUTOSAR there exist different types of SWCs. One of these is the type ServiceCom-
ponentType. The rule for supporting the transformation and synchronization is shown in
Figure 45.

self.getAppliedStereotype(’AUTOSAR::serviceComponentType’) <> null
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Figure 45: TGG rule for the transformation/synchronization of a ServiceComponentType.



 



Aktuelle Technische Berichte  
des Hasso-Plattner-Instituts 

 
 
Band ISBN Titel Autoren / Redaktion 

    
56 978-3-86956-

171-4 
Quantitative Modeling and Analysis of 
Service-Oriented Real-Time Systems 
using Interval Probabilistic Timed 
Automata 
 

Christian Krause, Holger Giese 

55 978-3-86956-
169-1 

Proceedings of the 4th Many-core 
Applications Research Community 
(MARC) Symposium 
 

Peter Tröger,  
Andreas Polze (Eds.) 

54 978-3-86956-
158-5 

An Abstraction for Version Control 
Systems 
 

Matthias Kleine,  
Robert Hirschfeld, Gilad Bracha 

53 978-3-86956-
160-8 

Web-based Development in the Lively 
Kernel 
 

Jens Lincke, Robert Hirschfeld 
(Eds.) 

52 978-3-86956-
156-1 

Einführung von IPv6 in 
Unternehmensnetzen: Ein Leitfaden 
 

Wilhelm Boeddinghaus,  
Christoph Meinel, Harald Sack 

51 978-3-86956-
148-6 

Advancing the Discovery of Unique 
Column Combinations 
 

Ziawasch Abedjan,  
Felix Naumann 

50 978-3-86956-
144-8 

Data in Business Processes Andreas Meyer, Sergey Smirnov, 
Mathias Weske 
 

49 978-3-86956-
143-1 

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann, 
Sascha Szott, Oliver Wonneberg 
 

48 978-3-86956-
134-9 

CSOM/PL: A Virtual Machine Product Line 
 

Michael Haupt, Stefan Marr, 
Robert Hirschfeld 
 

47 978-3-86956-
130-1 

State Propagation in Abstracted Business 
Processes 
 

Sergey Smirnov, Armin Zamani 
Farahani, Mathias Weske 

46 978-3-86956-
129-5 

Proceedings of the 5th Ph.D. Retreat of 
the HPI Research School on Service-
oriented Systems Engineering 
 

Hrsg. von den Professoren  
des HPI 

45 978-3-86956-
128-8 

Survey on Healthcare IT systems: 
Standards, Regulations and Security 

Christian Neuhaus,  
Andreas Polze,  
Mohammad M. R. Chowdhuryy 
 

44 978-3-86956-
113-4 

Virtualisierung und Cloud Computing: 
Konzepte, Technologiestudie, 
Marktübersicht 

Christoph Meinel, Christian 
Willems, Sebastian Roschke, 
Maxim Schnjakin 
 

43 978-3-86956-
110-3 

SOA-Security 2010 : Symposium für 
Sicherheit in Service-orientierten 
Architekturen ; 28. / 29. Oktober 2010 am 
Hasso-Plattner-Institut 
 

Christoph Meinel,  
Ivonne Thomas,  
Robert Warschofsky et al. 

42 978-3-86956-
114-1 

Proceedings of the Fall 2010 Future SOC 
Lab Day 
 

Hrsg. von Christoph Meinel, 
Andreas Polze, Alexander Zeier 
et al. 
 

41 978-3-86956-
108-0 

The effect of tangible media on 
individuals in business process modeling: 
A controlled experiment 
 

Alexander Lübbe 

40 978-3-86956-
106-6 

Selected Papers of the International 
Workshop on Smalltalk Technologies 
(IWST’10) 
 

Hrsg. von Michael Haupt,  
Robert Hirschfeld 



ISBN 978-3-86956-191-2
ISSN 1613-5652


	Titelblatt
	Impressum

	Abstract
	Contents
	1 Introduction
	2 State of the Art
	2.1 Model Synchronization
	2.2 Model Integration

	3 Application Example
	3.1 SysML
	3.2 AUTOSAR
	3.3 Common Constituents

	4 Approach
	4.1 General Architecture
	4.2 Architecture Example

	5 Model Synchronization System based on Triple Graph Grammars
	5.1 Triple Graph Grammars
	5.2 Model Transformation
	5.3 Model Synchronization

	6 Tool Adapter
	7 Model Consistency
	8 Usage Scenarios
	8.1 Transformation from SysML to AUTOSAR
	8.2 Repeated Forward Synchronization from SysML to AUTOSAR
	8.3 Backward Synchronization from AUTOSAR to SysML
	8.4 Iterative and Flexible Processes

	9 Conclusion & Future Work
	References
	Appendix
	A SysML Meta-Model
	B AUTOSAR Meta-Model
	C SysML-to-AUTOSAR Transformation Rules


