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Introduction
This thesis bridges two areas of mathematics, algebra on the one hand with the Milnor-Moore theorem
(also called Cartier-Quillen-Milnor-Moore theorem) as well as the Poincaré-Birkhoff-Witt theorem, and
analysis on the other hand with Shintani zeta functions which generalise multiple zeta functions. This
thesis indeed consists of two main parts: the first one is devoted to an algebraic formulation of the locality
principle in physics and generalisations of classification theorems such as Milnor-Moore and Poincaré-
Birkhooff-Witt theorems to the locality framework. The locality principle roughly says that events that
take place far apart in spacetime do not influence each other. The algebraic formulation of this principle
discussed here is useful when analysing singularities which arise from events located far apart in space,
in order to renormalise them while keeping a memory of the fact that they do not influence each other.
This idea will be developed in further detail in the sequel. A multivariable renormalisation approach à la
Speer, enables a "separation of singularities" compatible with the locality principle, which can be applied
to several mathematical objects presenting singularities. This includes generalisations of multiple zeta
functions, namely Shintani zeta functions which are the object of study of the second part of the thesis.
We describe their polar structure in relation with the geometry of Newton polytopes, an essential step
towards their renormalisation yet to be investigated. Let us now proceed to describe the state of the art
in both the areas of mathematics we touch upon in the thesis.

State of the art
The locality setup

The notion of locality lies at the intersection of physics and mathematics. It can be roughly summarised
in the requirement that an object can only be directly affected by its surroundings. It is then necessary to
specify how objects relate, and how close must they be to interact with each other, or equivalently, when
are two objects distant enough so that they do not interact. In the latter formulation, objects which are
far away from each other form a symmetric relation, and observables measured on pairs of events lying
in such relation should behave "nicely".

Locality naturally arises in several fields. To name a few occurrences of the notion of locality in
mathematics, let us mention local operators [6], localised geometry [81], localised rings [19], and locality
in index theory [95]. On the physics side, in classical field theory for instance, locality is sometimes
understood as the disjointness of supports of test functions on which fields are evaluated. More precisely,
for a classical action A(f) := B(f, f) defined through a bilinear form B : D(U,Ck) × D(U,Ck) → C,
where D(U,Ck) is the space of smooth, compactly supported functions from an open set U ⊂ Rn to Ck,
the locality of A reads:

∀(f1, f2) ∈ (D(U,Ck))2 : supp(f1) ∩ supp(f2) = ∅ =⇒ B(f1, f2) = 0.

The previous implication can be understood in terms of a symmetric relation ⊤ on elements of D(U,Ck),
namely f1⊤f2 :⇔ B(f1, f2) = 0, were we have set f1⊤f :⇔ supp(f1)∩supp(f2) = ∅, which indeed defines
a symmetric binary relation.

Locality serves as a guiding thread when dealing with singularities, in the sense that singularities
that arise from non-interacting events, should be considered and measured separately in accordance with
the locality principle. Such observations led P. Clavier, L. Guo, S. Paycha, and B. Zhang to develop an
algebraic formulation of the locality principle [22], which we shall refer to as the "locality framework". It
was tailored to keep track of the locality principle; its relation with the causality principle in perturbative
algebraic quantum field theory was studied in [83]. P. Clavier, L. Guo, S. Paycha, and B. Zhang enhanced
to the locality framework, commonly used algebraic tools, such as sets, monoids, vector spaces, algebras,
coalgebras and Hopf algebras. A set X is endowed with a symmetric relation ⊤, called the locality
relation — in which case the pair (X,⊤) is called a locality set — whose graph corresponds to the set of
pairs of elements that are locality independent. When the set carries some algebraic structure e.g. if it
is a monoid, resp. a vector space, resp. an algebra, resp. a coalgebra, resp. a Hopf algebra, the locality
relation is required to fulfill some compatibility conditions with the underlying algebraic operations. In
particular, partial products are defined only on those pairs that lie in ⊤, and for every subset U of X,
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the polar set U⊤, namely those elements x in X such that u⊤x for any u in U , should carry the same
algebraic structure as X.

In this locality framework, the authors proved a locality version of the celebrated algebraic Birkhoff
factorisation implemented by A. Connes and D. Kreimer in the context of renormalisation. It yields a
factorisation of a map φ from a commutative, graded, connected, Hopf algebra to the space of meromor-
phic germs as a convolution product of a term involving the holomorphic part φ+ and one involving the
polar part φ− [22, Theorem 5.8]. P. Clavier, L. Guo, S. Paycha, and B. Zhang proved that in the locality
framework, and under an algebraic assumption on the polar part of the meromorphic germs under con-
sideration which should be a locality ideal, the algebraic Birkhoff factorisation is equivalent to a minimal
subtraction scheme in several variables, thereby showing the relevance of the locality framework in the
context of renormalisation.

Various tools entering the algebraic Birkhoff factorisation were then generalised to the locality setup.
A prototype is the locality tensor product, namely the tensor product of two locality vector spaces which
reflects their locality relations, was introduced and used in [22]. This opened the path to the study of
the properties of the locality tensor product, starting with its universal property. It plays an important
role in two fundamental theorems discussed in this thesis in the locality framework, namely the Cartier-
Milnor-Moore and the Poincaré-Birkhoff-Witt theorems. Interestingly, some of the steps of their proofs
in the locality framework turn out to be simpler than in the usual setup.

Shintani zeta functions

Another central protagonist of this thesis is the Riemann zeta function, also called Euler-Riemann zeta
function, which was first introduced and studied by Euler for real values, and later revisited by Riemann
as a function of one complex variable. It is defined as ζ(s) =

∑
n≥1 n

−s and is known to be absolutely
convergent whenever ℜ(s) > 1. Riemann proved [84] that it admits a meromorphic continuation to the
whole complex plane with a simple pole at s = 1. Also in [84], he proved the functional equation of the
zeta function, the relation between its zeros and the distribution of prime numbers, and stated what is
probably the most famous open problem in mathematics: the Riemann hypothesis. Several generalisations
of the famous Riemann zeta function have been proposed and studied, such as the Hurwitz zeta function
[4] defined as ζH(s, a) =

∑
n≥1(n+ a)−s whenever a is not a negative integer.

Multivariable generalisations have also been considered starting from the multiple zeta function (see
(1.27)), also called Euler-Riemann-Zagier zeta function [98],[100] or polyzeta functions [15]. They were
first introduced by Euler in the eighteenth century for two complex variables [31] and much later by
Ecalle [30] in 1981 for n complex variables. Hoffman [49] and Zagier [98] revisited them later during the
last decade of the 20th century, which revived the interest on such objects. Their domain of absolute
convergence was identified, and it was also proven that they admit a meromorphic continuation to the
whole complex space with linear poles in certain hyperplanes [100], [2]. Multiple zeta functions connect
with different areas of mathematics, such as arithmetic geometry, quantum groups, mathematical physics,
renormalisation theory, etc., see for instance [10], [13], [15], [35], [46], [50], [51], [62], [70], [72], [67], [96]. An
interesting property of the multiple zeta functions is that they satisfy polynomial relations known as shuffle
and stuffle relations (also known as double-shuffle relations) [54]. Interestingly, some renormalisation
schemes have been suggested in which the renormalised values of the multiple zeta functions on its
divergences also satisfy the shuffle and stuffle relations, see for instance [46], [67].

Other common and useful multivariable generalisations of the Riemann zeta functions are the conical
zeta functions [42], [99], Mordell-Tornheim zeta functions [69],[68], branched or arborified zeta functions
[23], [25], [26] [66], Schur multiple zeta functions [71], [76], multiple Hurwitz-Lerch zeta functions [58],
[55], some of which will be described in Paragraph 3.2. Meromorphic continuations of such generalisations
have called the attention of numerous mathematicians, as can be seen in [2], [58], [69], [68], and [100].

Shintani zeta functions which are parametrised by matrices, form a class of multivariable generalisa-
tions of the Riemann zeta function, which encompasses multiple zeta functions, conical zeta functions,
Mordell-Tornheim zeta functions, and many others. These functions where first introduced by Shintani
in a series of papers in the 1970s [86], [87], [88], [89], [90], [91] motivated by problems of number theory.
Shintani first built a function of only one complex variable, and determined, among several other things,
the precise domain of absolute convergence of such functions, proving that they admit a meromorphic
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continuation to the whole complex plane C with the same linear poles as the function Γ(rs − n)/Γ(s),
where s is the complex variable, r is a positive real coefficient and n takes values in Z≥0. His work in-
spired some authors (see for instance [3], [18]) to study a multivariable (or multidimensional) version the
Shintani zeta function. We focus on the formulation of Shintani zeta functions presented in the following
series. ∑

m1≥1

· · ·
∑
mr≥1

(a11m1 + · · ·+ a1rmr)
−s1 × · · · × (an1m1 + · · ·+ anrmr)

−sn ,

where the aij are the real, non-negative coefficients of the parametrising matrix, and the sj are the
complex variables. The precise definition is provided in Definition 3.12. In 2003 Matsumoto proved [69]
that the Shintani zeta functions admit a meromorphic continuation to Cn with possible linear poles,
and determined a class of hyperplanes which might carry the poles. An interesting question remains
open, namely as to whether these Shintani zeta functions satisfy some type of polynomial relations which
generalise the double-shuffle relations of the multiple zeta functions. If so, the next step would be to
renormalise these functions at their poles in such a way that the renormalised values still satisfy the
polynomial relations as in the case of the multiple zetas. A first step in this direction is to refine the
description of the polar structure of the Shintani zeta functions.

Objectives
As mentioned previously, this thesis focuses on two different areas geared around precise objectives,
which we now briefly present. Concerning the algebraic formulation of the locality principle, the main
objective is to provide a rigorous algebraic construction and to study the usual algebraic structures
used in renormalisation such as tensor products, tensor algebras, symmetric algebras, Hopf algebras,
and universal enveloping algebras, in the context of locality. A further aim of this work is to prove
a locality version of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems, which are often used in
renormalisation. This extends the results of joint work with P. Clavier, L. Foissy and S. Paycha [21].

For this purpose, we introduce the concepts of locality symmetric algebras, locality Lie algebras, and
locality universal enveloping algebras, which are new with respect to former work from [22], and moreover
endow the existing locality structures, namely locality tensor product, locality tensor algebra, locality
coalgebra, locality bialgebra and locality Hopf algebra with a natural locality relation induced by the
locality relation of the original locality vector space.

A definition of bilinearity in the context of locality is presented (Definition 2.12), different from
the one used in [22], and which is compatible with the construction of the locality tensor product as
is demonstrated in its universal property (Theorem 5.37). In the Appendix A we discussed why the
definition of locality bilinearity presented in [22] is not compatible with the locality tensor product
and propose an alternative locality tensor product for which it works. The universal properties of the
locality tensor algebra, locality symmetric algebra and locality universal enveloping algebra are also
proved in Theorems 5.38, 5.41 and 5.45. They are later used to endow the locality symmetric algebra
and the locality universal enveloping algebra with a structure of locality Hopf algebras (Propositions
6.16 and 6.17). Finally the locality version of the Milnor-Moore theorem (Theorem 6.22) (resp. the
Poincaré-Birkhoff-Witt theorem (Theorem 6.39)) build an isomorphism of locality Hopf algebras between
a graded, connected, cocommutative locality Hopf algebra and the universal enveloping algebra of its
primitive elements (resp. an isomorphism of locality coalgebras between the locality symmetric algebra
and the locality universal enveloping algebra of a locality Lie algebra).

Turning to Shintani zeta functions, our main objective is to refine the description of the polar structure
of the Shintani zeta functions given in [69] to relate it with the matrix underlying the Shintani function
under consideration. It is shown in Theorem 8.7 that the polar structure of the Shintani zeta functions is
determined by normal vectors to the facets of the Newton polytopes corresponding to the product of the
linear forms given by the columns of the parametrising matrix A. This result is an enhancement of that
in [69], in that it indicates the coefficients of the hyperplanes that might carry the poles< and provides a
geometric interpretation of the polar structure. We moreover prove in Theorem 8.18 that the coefficients
in the canonical basis of those vectors, and therefore the coefficients of the hyperplanes carrying the
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poles, are either 0 or 1. The latter implies that the poles of the Shintani zeta functions generalise those
of the generic Feynman amplitudes via analytic regularisation, using what mathematicians call Riesz
regularisation in each variable. More precisely, it was shown in [92], [28] that the poles of the generic
Feynman integrals using analytic regularisation are of the form

sj1(sj1 + sj2) · · · (sj1 + · · ·+ sjr ) = 0 (1)

where the sji are vectors in the canonical basis of Cn. Since the coefficients of the hyperplanes carrying
the poles are 0 or 1, such poles also correspond to those of the Shintani zeta functions. However, the
ones of the Shintani zeta functions are more general in the sense that they do not require the vectors to
be nested as in (1).

Let us illustrate the result of Theorem 8.7 with an example.

Example 0.1. Consider the Shintani zeta associated to the matrix

A =

(
1 0
1 1

)
.

The columns Ci of the matrix A induce linear forms in (R2)∗ given by Ci(ϵ) = ⟨Ci, ϵ⟩ which we denote
also by Ci making use of the identification of R2 with its dual using the canonical basis. In this case the
linear forms induced by the columns are C1(ϵ1, ϵ2) = ϵ1+ϵ2 and C2(ϵ1+ϵ2) = ϵ2. It follows from Theorem
8.7 that in this case the poles of ζA are parallel to the facets of the Newton polytopes of the polynomials
C1, C2 and C1C2 when adding the set R2

+ with the Minkowski sum. In the following figure, the blue area
represents the polyhedron obtained by adding the Newton polynomial of C1 with the positive orthant R2

+

and the dashed lines are the hyperplanes parallel to its facets which carry the poles.

−1 1

−1

1

Our method consists of three main steps: The first step is to express the Shintani zeta function in its
domain of convergence as a multiple integral, namely as the multivariable Mellin transform of a Schwartz
function on Rn+ which, in a neighborhood of zero, can be extended to a meromorphic function with linear
poles at zero. More precisely the integrand is a product of a Schwartz function on Rn≥0 and the inverse
1/CJ of a polynomial where CJ(ϵ) =

∏
j∈J⟨Cj , ϵ⟩, the Cj are the columns of the matrix A, ⟨, ⟩ is the

canonical inner product in Rn, and J ⊂ [r]. The second step borrows ideas from Nilsson and Passare [77]
who determined the domain of convergence and the analytic continuation of the Mellin transform of a
rational function. We adapt their results to the case of a product of a Schwartz function times a rational
function, which we then apply to the Mellin transform obtained in step one. The final step is to prove
that the vectors µk on the inward normal direction of the polyhedra obtained in step 2 are either zero or
one and to provide an easy way to derive them from the columns of the matrix A. For this purpose, we
borrow some tools from graph theory. More precisely, we provide an algorithm to distribute weight over
a graph, such that the weight at each vertex is never lower than an imposed bound.

Structure
This thesis is divided in three chapters and two appendices.

Chapter 1

This first chapter presents the necessary prerequisites for what follows. In Section 1, we recall the algebraic
building blocks in the usual (non-locality) context, for the later study of the universal properties and the

7



proofs of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems in the locality setup. For that purpose,
we review in the Paragraph 1.1 Zorn’s Lemma together with some of its consequences in linear algebra
for infinite dimensional vector spaces. In Paragraph 1.2 we introduce the tensor product and tensor
algebra of a vector space together with their respective universal properties. Paragraph 1.3 deals with the
definition of coalgebras, bialgeras and Hopf algebras with some related concepts as the reduced coproduct,
coideals, the convolution product on linear endomorphisms of a bialgebra and the primitive elements of a
connected Hopf algebra. In paragraph 1.4 we build two quotient algebras of the tensor algebra, namely the
symmetric algebra of a vector space, and the universal enveloping algebra of a Lie algebra. We also prove
their universal properties and use them to endow them with a Hopf algebra structure which is essential
for the formulations of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems. Finally, in paragraph 1.5
we present the Milnor-Moore theorem and two versions of the Poincaré-Birkhoff-Witt theorem, together
with some of their consequences.

In Section 2 we present the basic concepts underlying the locality structures, mostly borrowed from
[22], necessary for our further formulation of the locality versions of the Milnor-Moore and Poincaré-
Birkhoff-Witt theorems in Chapter 2. We stress out that some concepts presented in this thesis are
new such as the concepts of pre-locality vector spaces and (pre-)locality subsets (resp. subspaces, resp.
subalgebras). Those concepts are not introduced in a later chapter since their early introduction provides
a better structure of the topic. Section 3 is devoted to the necessary background tools for our study of
the polar structure of the Shintani zeta functions. We first recall some well known concepts and results
from complex analysis such as meromorphic functions, analytic continuation, and Morera’s theorem.
We also introduce the Gamma function and the multivariable Mellin transform together with some of
their properties. In the second paragraph we review some notions of number theory, more precisely the
Riemann zeta function and some of some of its generalisations, such as the multiple zeta functions (or
Euler-Riemann-Zagier zeta functions) also called poly zeta functions, and conical zeta functions. We
present well known results about their convergence and meromorphic continuation. We also introduce
the mathematical object of our study, namely the Shintani zeta functions. Finally, in the third paragraph
of this section, we review some geometric concepts regarding Newton polytopes and their relation with
the multivariable Mellin transform following the results of Nilsson and Passare [77].

Chapter 2

This chapter, based on [21], enhances to the context of locality the universal properties in the pre-
locality context of the tensor product (Theorem 5.37), the tensor algebra (Theorem 5.38), the universal
enveloping algebra (Theorem 5.38), and the symmetric algebra (Theorem 5.45), together with the locality
versions of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems (Theorems 6.22 and 6.39). For that
purpose, we study in Section 4 the construction and universal properties in the context of pre-locality
of the locality tensor product, locality tensor algebra, locality symmetric algebra, and locality universal
enveloping algebra. The locality tensor product of subspaces of a pre-locality vector space presented here
differs from the one in Section 2 in so far as the former is naturally endowed with a locality relation which
turns it into a pre-locality vector space. Since all of the constructions presented in Section 4 are quotients
of pre-locality vector spaces or of pre-locality algebras, a question which naturally arises is when the
quotient of locality vector spaces is again a locality vector space and not only a pre-locality vector space
(Question 2.15). We devote Section 5 to the study of this question. We provide in Paragraph 5.1 examples
for which the quotient is again a locality vector space and cases in which it is not. In Paragraphs 5.2 and
5.3 we provide two sufficient conditions to have a positive answer. Finally, in Paragraphs 5.4 and 5.5 the
universal properties introduced in Section 4 in the context of pre-locality are upgraded to the context of
locality provided some sufficient conditions are satisfied. In Section 7.2 we introduce locality coalgebras,
locality bialgebras, and locality Hopf algebras together with some techical lemmas which we then use to
state and prove the locality versions of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems. Most of
this chapter is based on [21], and some parts are identical to those in [21], this in agreement with the
other authors of the paper. Nonetheless, to our knowledge, the locality Poincaré-Birkhoff-Witt theorem,
together with all its necessary previous constructions and Lemmas presented in this Ph.D. thesis are. More
specifically, the contents of Paragraphs 4.4 and 6.6 and the parts of Paragraphs 5.5 and 6.3 regarding the
locality symmetric algebra are original results.
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Chapter 3

This third and last chapter based on [64] is dedicated to the meromorphic continuation of the Shintani
zeta functions. In Theorems 7.10 and 7.11 from Section 7, we provide a domain of absolute convergence
and meromorphic continuation of the Mellin transform of some class of functions, Theorems 8.7 and
8.18 in Section 8, describe the polar structure of the Shintani zeta functions which refines the result
from Matsumoto [69] as we mentioned before. In Theorem 9.1 of Section 9, an algorithm is given to
distribute a multidimensional weight over the vertices of a graph such that the weight on each vertex
is larger than a given bound. Although at first glance, the topic of Section 9 might look unrelated to
the rest of the chapter, the results provided there are essential to prove Theorem 8.18. It says that the
possible hyperplanes carrying the Shintani zeta functions have normal vectors with coefficients 0 or 1
when written in terms of the canonical basis with integer and mutually coprime coefficients (Theorem
8.18). This implies that the poles at zero are similar to the ones of generic Feynman amplitudes studied
in [92], [28]. Interestingly, Theorem 9.1 in Section 9 is related to Hall’s marriage theorem [47] and the
theory of optimal transport.

Openings
The first part of the thesis dedicated to enhancing to the locality setup classical algebraic and coalgebraic
results, triggers many open questions, starting with the proof of the conjectures formulated along the way.
They are interesting for their own sake and we saw how they relate to open questions in group theory.
Having proved the locality Milnore-Moore theorem for cocommutative graded connected algebras, now
arises the question how to classify commutative graded connected algebras in the locality setup. This
further raises the question of how to handle the concept of duality in the locality framework.
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Notations
• For a ∈ R, we define

R≥a : = {x ∈ R : x ≥ a},
R≤a : = {x ∈ R : x ≥ a},
R>a : = {x ∈ R : x > a},
R<a : = {x ∈ R : x < a},
R+ : = {x ∈ R : x > 0},
R− : = {x ∈ R : x < 0}.

Analogous for Z instead of R.

• R∞ := ∪n≥1Rn, where we assume for every n ≥ 1 that Rn−1 is embedded in Rn by adding one
rightmost supplementary coordinate and setting it to zero. Analogous for Z∞.

• For n ∈ Z>0, [n] := {1, 2, . . . , n}.

• We assume that the field underlying every algebraic structure (vector space, algebra, coalgebra,
bialgebra, etc), is the same, and it is denoted by K. We assume it has characteristic zero unless it
is otherwise specified.

• {ei}nI=1 is the canonical basis of Rn or Cn, depending on the context.

• For a set S, we use K(S) or ⟨S⟩ in distinctively for the free vector space spanned by S, namely⊕
s∈S K(s). In the case where S is a subset of a vector space V , we use span(S) to denote the span

of S with respect to the space V . Notice that K(S) and span(S) are isomorphic only when S is
linearly independent (see Definition 1.2).

• For n ∈ Z>0, Sn is the symmetric group of order n.

• The symbol ⊂ means contained, not strictly contained.

• For any finite set S, we denote its cardinal as |S|.

• The identity map on a set S is denoted by IdS .

• The unit element of a unital (resp. locality) algebra is denoted by 1A. It must not be confused with
the identity map on A denoted by IdA.

• The symbol ∼ denotes isomorphic. The type of isomorphism is specified each time.

• Given a set S in Rn, we denote by int(S) the interior of S in the usual topology of Rn.

10



Chapter 1

Prerequisites

1 Algebraic prerequisites
The main objective of this first introductory section is to recall the algebraic prerequisites necessary
for our study of the universal properties and the Milnor-Moore and Poincaré-Birkhoff-Witt theorems
in the locality setup. For that purpose, we review in the Paragraph 1.1 Zorn’s Lemma together with
some of its consequences in linear algebra for infinite dimensional vector spaces. In Paragraph 1.2 we
introduce the tensor product and tensor algebra of a vector space together with their respective universal
properties. Paragraph 1.3 deals with the definition of coalgebras, bialgebras and Hopf algebras with some
related concepts as the reduced coproduct, coideals, the convolution product on linear endomorphisms
of a bialgebra and the primitive elements of a connected Hopf algebra. In Paragraph 1.4 we build
two quotient algebras of the tensor algebra, namely the symmetric algebra of a vector space, and the
universal enveloping algebra of a Lie algebra. We also prove their universal properties and use them to
endow them with a Hopf algebra structure which is essential for the formulations of the Milnor-Moore and
Poincaré-Birkhoff-Witt theorems. Finally, in Paragraph 1.5 we present the Milnor-Moore theorem and
two versions of the Poincaré-Birkhoff-Witt theorem, together with some of their consequences. Contrarily
to Paragraphs 1.1 to 1.4, in Paragraph 1.5 we do not provide the proofs of all theorems there presented
since they are particular cases of the ones in the locality setup. However, we provide the reader with a
reference when the proof is omitted. The presentation of Paragraphs 1.2, 1.3, 1.4 and 1.5 are based in
[33], [65], and [17], where a complete presentation of such topics can be found. The results of Paragraph
1.1 can be found in any book about the axiom of choice and linear algebra, for instance [7].

1.1 Vector spaces, Hamel basis and bilinearity
In this first paragraph we recall some basic concepts and results of linear algebra and set theory which
will be of use in all the document. We start by recalling Zorn’s Lemma since it is a very useful tool when
dealing with vector spaces of arbitrary dimension. Zorn’s lemma is equivalent to the axiom of choice, we
refer the reader to [7] for a complete discussion about this topic. The other results in this paragraph can
be found in most books about linear algebra.

Recall that a partially ordered set (poset) (P,≤) is a set P together with a reflexive, transitive and
antisymmetric relation ≤⊂ P×P . Two elements x and y in P are said to be comparable if x ≤ y or y ≤ x.
A totally ordered set (S,≤) is a partially ordered set where every pair of elements are comparable. A
chain C of a partially ordered set (P ≤) is a subset of P in which every pair of elements are comparable,
this means that (C,≤ |C) is a totally ordered set, where ≤C :=≤ ∩(C × C).

Lemma 1.1 (Zorn’s Lemma). Let (P,≤) be a partially ordered set with the property that every chain
C has an upper bound in P . Then the set P contains at least one maximal element.

We now recall the definition of an algebraic or Hamel basis of a vector space.

Definition 1.2. Let V be a K vector space and B a subset of V .
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1. We say that B generates V as a vector space if every element in V is a finite linear combination
of elements in B. This is span(B) = V .

2. We say that B is linearly independent or free if∑
b∈B

αbb = 0

implies that αb = 0 for all b ∈ B. Moreover, the dimension of a vector space V is

max{|B| ∈ Z≥0 : B is linearly independent and finite}.

If the maximum does not exist, we say that the dimension of V is infinite.

3. We say that B is a Hamel or algebraic basis or simply a basis of V , if it generates V and is
linearly independent.

Notice that this is the usual definition of a basis of a vector space when V is of finite dimension. In
the infinite dimension however, it should not be confused with a Hilbert or Schauder basis since we do
not consider any topology, and therefore, convergence of infinite sums is not defined.

Two folklore results from linear algebra are the following.

Lemma 1.3. Let B1 ⊂ · · · ⊂ Bn ⊂ · · · be an infinite nested family of linearly independent sets. Then
B :=

⋃
n≥1Bn is a linearly independent set.

Proof. The proof is by contradiction. Assume that there is a possible choice of coefficients αb such that∑
b∈B

αbb = 0

where only finitely many of them are not zero. Set B := {b ∈ B : αb ̸= 0}, by assumption B is finite
and thus, there is n ∈ Z≥1 such that B ⊂ Bn. However, this contradicts the linearly independence of Bn
which yields the result.

Lemma 1.4. Let S and S′ be subsets of a vector space V . Then

• span(span(S)) = span(S).

• S ⊂ S′ =⇒ span(S) ⊂ span(S′).

Proof. The proof follows directly from the definition of span of a subset of a vector space.

The following useful lemma about bases of vector spaces follows from Zorn’s lemma in the case where
the dimension of the vector space is infinite, as it will be shown in the proof.

Lemma 1.5. Let G be a generating subset of a vector space V . A linearly independent set A ⊂ G can
be extended to a Hamel basis B ⊂ G of V .

Proof. We assume that G is not linearly independent, since otherwise G is the expected basis. If
span(A) ̸= V , there is an element x ∈ G \ span(A), otherwise Lemma 1.4 implies V = span(G) ⊂
span(span(A)) = span(A). Thus B1 := A ∪ {x} is also a linearly independent set. If V is of finite
dimension, repeating the process n times, for some n big enough, yields the existence of a set Bn which
is linearly independent and generates V . Therefore Bn is a basis of V satisfying A ⊂ Bn ⊂ G.

Consider now the case where V is of infinite dimension. Set O := {B ∈ P(V ) : A ⊂ B ⊂
G andB is linearly independent}, and endow it with the relation B ⪯ B′ :⇔ B ⊂ B′. Then (O,⪯)
is a partially ordered set. Moreover, by means of Lemma 1.3, every chain B1 ⪯ · · ·Bn ⪯ · · · of (O,⪯)
has an upper bound in O, namely

⋃
n>0Bn. By means of Zorn’s lemma (Lemma 1.1) there exist a

maximal element B ∈ O with respect to the order ⪯. Since B ∈ O it is linearly independent and such
that A ⊂ B ⊂ G, and since B is maximal, it generates V . Otherwise there would be an element x in
G \ span(B) implying that B ≺ B ∪ {x}, which contradicts the maximality of B.
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A simple consequence of the previous lemma is the following.

Lemma 1.6. If V ̸= {0V } is a vector space, then it has a basis B.

Proof. Let 0 ̸= x ∈ V , then Lemma 1.5 implies the result for A = {x} and G = V .

We proceed to recall a universal property of the freely generated vector space K(X) of a set X and
its relation with bilinear maps.

Lemma 1.7. Given a set X and a vector space G, any map f : X → G uniquely extends to a linear
map f̄ : K(X)→ G as follows

f̄

(∑
x∈X

αx x

)
=
∑
x∈X

αx f(x). (1.1)

This can be seen as the commutativity of the following diagram, where ι stands for the canonical injection.

X KX

G

ι

f
f̄

Proof. It follows from (1.1) that f̄ is linear and extends f . The uniqueness is a consequence of ι(X) being
a Hamel basis of K(X), and thus f̄ is completely determined by its values in ι(X).

For V and W two vector spaces over the same field K, we consider the linear subspace Ibil(V,W ) of
the free linear span K(V ×W ), generated by all elements of the form

(a+ b, x)− (a, x)− (b, x) (1.2)
(a, x+ y)− (a, x)− (a, y) (1.3)

(ka, x)− k(a, x) (1.4)
(a, kx)− k(a, x) (1.5)

with a, b ∈ V , x, y ∈W and k ∈ K. The following lemma follows directly from the definition of bilinearity,
and will be useful for the proof of Theorem 1.11.

Lemma 1.8. Let V , W , and G be vector spaces. A map f : X × Y → G is bilinear if, and only if
f̄(Ibil(V,W )) = {0G}.

We conclude this first paragraph with a well known result of linear algebra which will be central to
many theorems in the sequel.

Proposition 1.9. Let f : V → W be a linear map and S a subset of V such that S ⊂ ker(f). Then
there exists a unique linear map ϕf : V/S → W such that f = ϕf ◦ π where π : V → V/S is the canonical
quotient map. This can be seen as the commutativity of the following diagram.

V V/S

W

π

f
ϕf

Proof. Define ϕf ([x]) := f(x) where [x] ∈ V/S is the equivalence class of x. Let s ∈ S, then

ϕf ([x+ s]) = f(x+ s) = f(x) + f(s) = f(x) = ϕf ([x])

and thus ϕf is well defined. To prove that the uniqueness of ϕf , assume there is another linear map
ϕ′ : V/S → W such that f = ϕ′ ◦ π, then for x ∈ V by assumption ϕf ([x]) = f(x) = ϕ′([x]) which yields
the result.
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1.2 Tensor product and tensor algebra
In this paragraph we focus on the construction of the tensor product between vector spaces and of the
tensor algebra of a vector space. We also present some of its well known properties such as associativity
(Corollary 1.15), distributivity with respect to sums, direct sums and intersections (Proposition 1.17),
and their universal properties (Theorems 1.11, 1.16, and 1.25). This paragraph is based on [33], [65]
where the reader can find a good, complete and understandable presentation of these topics. We recall
the construction of the tensor product of two vector spaces via quotients of vector spaces.

Definition 1.10. The tensor product of V and W is a vector space defined as the following quotient
space:

V ⊗W := K(V ×W )/Ibil(V,W ).

Notice that the map ⊗ := π ◦ ι : V ×W → V ⊗W, built from the canonical inclusion map ι : V ×W →
K(V ×W ) and the canonical quotient map π : K(V ×W )→ V ⊗W makes the following diagram commute.

V ×W K(V ×W )

V ⊗W

ι

⊗
π

It follows from its construction that the map ⊗ is an injective bilinear map, and that ⊗(V × W )
generates V ⊗W as a vector space. Then the tensor product satisfies the following universal property.

Theorem 1.11. Let V , W , and G be vector spaces, and f : V ×W → G a bilinear map. Then, there
exists a unique linear map ϕf : V ⊗W → G which makes the following diagram commute.

V ×W V ⊗W

G

⊗

f
ϕf

Moreover, the pair (V ⊗W,⊗) is the only one (up to isomorphism) which satisfies this property.

Proof. Existence and uniqueness of ϕf : By means of Lemma 1.7 there exists a unique linear map f̄ :
K(V ×W ) → G extending f . Since f is bilinear, it follows from Lemma 1.8 that f̄(Ibil(V,W )) = {0G},
and thus, Proposition 1.9 yields the existence of a unique linear map ϕf : V ⊗W → G satisfying f̄ = ϕf ◦π.
Precomposing both sides with the canonical inclusion ι implies that

f = f̄ ◦ ι = ϕf ◦ π ◦ ι = ϕf ◦ ⊗

as expected. The uniqueness of ϕf follows from the facts that ⊗(V ×W ) generates V ⊗W as a vector
space, and that the values of ⊗(V ×W ) are completely determined by f .

Uniqueness of (V ⊗ W,⊗): Assume that there is another space V ⊗W and another bilinear map
⊗̄ : V × W → V ⊗W which satisfies the property in the first part of the theorem. Let us fix the
notations v ⊗ w := ⊗(v, w) and v ⊗ w := ⊗̄(v, w). Since V ⊗W satisfies the property above, for f = ⊗̄
there exist a unique linear map ϕ : V ⊗W → V ⊗W such that ϕ(v ⊗ w) = v ⊗ w. Conversely, since
V ⊗W also satisfies the condition above, for f = ⊗ there exists a unique linear map ϕ̄ : V ⊗W → V ⊗W
such that ϕ̄(v ⊗ w) = v⊗w, and thus ϕ ◦ ϕ̄

∣∣
⊗(V×W )

= IdV⊗W
∣∣
⊗(V×W )

. We apply once again the property
of the first part of the theorem to the map ⊗ and the space V ⊗W . It follows that ϕ⊗ = IdV⊗W is
the only linear map from V ⊗W to itself that stabilizes ⊗(V ×W ). Thus ϕ ◦ ϕ̄ = IdV⊗W . Analogously
ϕ̄ ◦ ϕ = IdV⊗W implying that ϕ is an isomorphism of vector spaces with inverse ϕ̄.

Given two linear maps fi : Vi → Wi for i ∈ {1, 2}, the map f1 × f2 : V1 × V2 → W1 ⊗W2 defined as
(f1 × f2)(v1, v2) = f1(v1)⊗ f2(v2) is a bilinear map. We will denote by f1 ⊗ f2 the map ϕf1×f2 given in
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the universal property of the tensor product (Theorem 1.11). Another notation which will be useful in
the sequel is the map τ12 : V ⊗ V → V ⊗ V which is the only linear map such that

τ12(v1 ⊗ v2) = v2 ⊗ v1. (1.6)

Its existence and uniqueness can be easily deduced by applying Theorem 1.11 to the bilinear map
f(v1, v2) = v2 ⊗ v1.

We proceed to prove the associativity of the tensor product. For that purpose, we relate first a basis
of V and W with a basis of V ⊗W . This same process will not work on the locality context since bases
do not always behave well with the locality relation as it is mentioned in Chapter 2.

Lemma 1.12. Let BV = {vi}i∈I be an algebraic basis of V and BW = {wj}j∈J be an algebraic basis of
W , then BV ⊗ BW := {vi ⊗ wj : vi ∈ BV andwj ∈ BW } is an algebraic basis of V ⊗W .

Proof. Since the map ⊗ is bilinear, every tensor v ⊗ w can be expressed as a sum of tensors of the form
vi⊗wj , and thus BV ⊗BW generates V ⊗W . Consider now a linear combination

∑
(i,j)∈I×J ki,jvi⊗wj = 0

where ki,j ∈ K and only a finite number of them is different from zero. Fix io ∈ I and jo ∈ J and consider
the bilinear map f : V ×W → K defined as f(v, w) = e∗io(v)f

∗
jo
(w), where e∗io ∈ V

∗ (resp. f∗jo ∈ W
∗)

sends a vector to the coefficient of vio (resp. wjo) when expressed in the basis BV (resp. BW ). Let
ϕf : V ⊗W → K be the unique linear map obtained by means of the universal property of the tensor
product (Theorem 1.11), then

0 = ϕf

( ∑
(i,j)∈I×J

ki,jvi ⊗ wj
)
=

∑
(i,j)∈I×J

ki,je
∗
io(vi)f

∗
jo(wj) = kio,jo .

We conclude that BV ⊗ BW is free.

We present some simple consequences of the previous lemma.

Corollary 1.13. Let V be a K-vector space. Then K ⊗ V and V ⊗ K are isomorphic to V as vector
spaces.

Proof. Let {vi}i∈I be a basis of V , and consider the map f : V → K⊗ V defined by f(vi) = 1⊗ vi. By
means of Lemma 1.12, it is an isomorphism of vector spaces. A similar argument proves that K ∼ V ⊗K
as vector spaces.

Corollary 1.14. Let fi : Vi → Wi be isomorphisms of vector spaces for i ∈ {1, 2}. Then f1 ⊗ f2 :
V1 ⊗ V2 →W1 ⊗W2 is also an isomorphism of vector spaces.

Proof. Consider a basis BVi
of Vi for i ∈ {1, 2}. Since fi is an isomorphism, then fi(BVi

) is also a basis
of Wi. The result follows from Lemma 1.12.

We proceed to prove the associativity of the tensor product.

Corollary 1.15. Let V1, V2, and V3 be three vector spaces. The map

f :(V1 ⊗ V2)⊗ V3 → V1 ⊗ (V2 ⊗ V3)
(v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3)

is an isomorphism of vector spaces.

Proof. Considering basis of the three vector spaces, by means of Lemma 1.12 f sends a basis injectively
into a basis, and therefore it is an isomorphism of vector spaces.

Notice that Corollary 1.15 allows us to extend the tensor product to n vector spaces. Indeed the
tensor product V1 ⊗ · · · ⊗ Vn of n vector spaces can be defined iteratively. Also the universal property of
the tensor product (Theorem 1.11) can be extended to n-linear maps.

Theorem 1.16. Let f : V1 × · · · × Vn → G be an n-linear map. There exists a unique linear map
ϕf : V1 ⊗ · · · ⊗ Vn → G such that ϕf ◦ ⊗ = f .
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Proof. The statement follows from Theorem 1.11 applied n − 1 times to the maps
f
∣∣
V1×···×Vi×{0Vi+1

}×···×{0Vn} for 3 ≤ i ≤ n + 1. This yields the existence of a unique linear map
ϕf : V1 ⊗ · · · ⊗ Vn → G as expected.

It follows from Theorem 1.16, similar as before, that given n linear maps fi : Vi → Wi, the map
f1×· · ·× fn : V1×· · ·×Vn →W1⊗· · ·⊗Wn defined as (f1×· · ·× fn)(v1, . . . , vn) = f1(v1)⊗· · ·⊗ fn(vn)
is an n-linear map. We will denote by f⊗ · · ·⊗fn the map ϕf1×···×fn obtained from the universal property
of the tensor product.

The following proposition presents the behavior of the tensor product with respect to sums, direct
sums and intersections. Such properties rely on the existence of algebraic complements of any subspace
of a vector space, which can be easily shown by completing a basis. On the locality context, however,
bases do not always behave well with the locality relation as it will be discussed in Chapter 2, thus the
locality counterpart of the following proposition and its consequences need some extra assumptions (see
Proposition 4.21 and Corollary 4.22).

Proposition 1.17. Let V1 and V2, be subspaces of a vector space V , and W1 and W2 subspaces of a
vector space W , then:

1. (V1 + V2)⊗ (W1 +W2) = (V1 ⊗W1) + (V1 ⊗W2) + (V2 ⊗W1) + (V2 ⊗W2).

2. (V1 ∩ V2)⊗ (W1 ∩W2) = (V1 ⊗W1) ∩ (V2 ⊗W2).

3. (V1 ⊕ V2)⊗ (W1 ⊕W2) = (V1 ⊗W1)⊕ (V1 ⊗W2)⊕ (V2 ⊗W1)⊕ (V2 ⊗W2).

Proof. [33, Proposition 9]

1. Both sides of the equality are subspaces of V ⊗W generated by the elements v⊗w with v ∈ V1∪V2
and w ∈W1 ∪W2. Therefore they are equal.

2. The inclusion from left to right follows directly from the observation (V1∩V2)⊗(W1∩W2) ⊂ (Vi⊗Wi)
for i ∈ {1, 2}. For the second inclusion, consider a basis {vi}i∈I′ of V1 ∩ V2 (resp. a basis {wj}j∈J′

of W1 ∩W2). Extend it to a basis {vi}i∈I1 of V1 (resp. {wj}j∈J1 of W1) and to a basis {vi}i∈I2 of
V2 (resp. {wj}j∈J2 of W2), such that I ′ = I1 ∩ I2 (resp. J ′ = J1 ∩ J2). Finally, extend the linearly
independent set {vi}i∈I′ ∪ {vi}i∈I1\I′ ∪ {vi}i∈I2\I′ (resp. {wj}j∈J′ ∪ {wj}j∈J1\J′ ∪ {wj}j∈J2\J′) to
a basis {vi}i∈I of V (resp. {wj}j∈J of W ). Let x ∈ (V1 ⊗W1) ∩ (V2 ⊗W2). It can then be written
in a unique way as

x =
∑

(i,j)∈I×J

aijvi ⊗ wj .

where the aij lie in K. Consider io ∈ I \ I1 and e∗io the map on V ∗ which sends an element to the
coefficient of vio when expressed in the basis {vi}i∈I . Since x ∈ V1 ⊗W1, then

0 = (e∗io ⊗ IdW )(x) =
∑
j∈J

aio,jwj .

Since the wjs are linearly independent, then aio,j = 0 for every j. A similar argument proves that
ai,j = 0 for every (i, j) /∈ I ′ × J ′. Thus x ∈ (V1 ∩ V2)⊗ (W1 ∩W2) as expected.

3. From the first item, it follows that (V1 ⊕ V2)⊗ (W1 ⊕W2) = (V1 ⊗W1) + (V1 ⊗W2) + (V2 ⊗W1) +
(V2 ⊗W2). From the second item (V1 ⊗W1) ∩ (V1 ⊗W2) = {0} and similarly for all the other
intersections, which implies the result.

A useful consequence of the previous proposition is the following.

Lemma 1.18. For i ∈ {1, 2}, let fi : Vi → Wi be linear maps from a vector space Vi to a vector space
Wi. We have

ker(f1 ⊗ f2) = ker f1 ⊗ V2 + V1 ⊗ ker f2.
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Proof. Let Ki := ker(fi) ⊂ Vi and let Xi ⊂ Vi be any direct complement space in Vi so that Vi = Ki⊕Xi.
It follows from Proposition 1.17 item (3) that

V1 ⊗ V2 = (K1 ⊗K2)⊕ (X1 ⊗K2)⊕ (K1 ⊗X2)⊕ (X1 ⊗X2).

As a consequence of the first isomorphism theorem for vector spaces there are isomorphisms ϕi : Xi →
Im(fi) from which we build a linear map (ϕ−1

1 ⊗ ϕ
−1
2 ) ◦ (f1 ⊗ f2) from V1 ⊗ V2 onto X1 ⊗X2 which does

not vanish on X1 ⊗X2 outside the null tensor.
Since (K1 ⊗K2)⊕ (X1 ⊗K2)⊕ (K1 ⊗X2) ⊂ ker((ϕ−1

1 ⊗ ϕ
−1
2 ) ◦ (f1 ⊗ f2)) and since by construction

(ϕ−1
1 ⊗ϕ

−1
2 ) ◦ (f1⊗ f2) does not vanish on X1⊗X2 \ {0} (where 0 is the null tensor), we have ker((ϕ−1

1 ⊗
ϕ−1
2 )◦ (f1⊗f2)) = (K1⊗K2)⊕ (X1⊗K2)⊕ (K1⊗X2) = ker f1⊗V2+V1⊗ker f2. By means of Corollary

1.14, ϕ1 ⊗ ϕ2 is an isomorphism of vector spaces which yields the result.

Algebras and the tensor algebra

Throughout this document, unless otherwise stated, algebras refer to associative unitary algebras.

Definition 1.19. 1. An algebra is a triple (A,m, u) where A is a vector space, m : A ⊗ A → A and
u : K→ A are linear maps satisfying:

• Associativity: The following diagram commutes.

A⊗A⊗A A⊗A

A⊗A A

IdA⊗m

m⊗IdA

m

m

or equivalently m ◦ (Idm ⊗m) = m ◦ (m⊗ IdA).

• Unit: The following diagram commutes.

A⊗K A⊗A K⊗A

A

∼

IdA⊗u

m ∼

u⊗IdA

or equivalently m ◦ (IdA ⊗ u) = IdA = m ◦ (u⊗ IdA).

We moreover call an algebra commutative if m = τ12 ◦ m (see (1.6)). We sometimes refer to an
algebra simply as A when the product and unit are clear from the context.

2. A subspace S of A is a subalgebra if m(S ⊗ S) ⊂ S and u(K) ⊂ S.

3. We say that an algebra (A,m, u) is graded if there is a sequence {Ai}i∈Z≥0
of subspaces of A such

that
A =

⊕
n∈Z≥0

An, m(Ap ⊗Aq) ⊂ Ap+q, u(K) ⊂ A0.

4. A filtered algebra is an algebra (A,m, u) together with a sequence of nested vector spaces A0 ⊂
A1 ⊂ · · · ⊂ An ⊂ · · · called the filtration, such that

A =
⋃

n∈Z≥0

An, m(Ap ⊗Aq) ⊂ Ap+q, u(K) ⊂ A0.

5. A graded (resp. filtered) algebra is said to be connected if dim(A0) = 1 (resp. dim(A0) = 1).
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6. We say a linear map f : A → A′, where (A,m, u) and (A′,m′, u′) are algebras, is an algebra
morphism if m′ ◦ (f ⊗ f) = f ◦m.

Notice that a grading {Ai}i∈Z≥0
in an algebra induces naturally a filtration {An}n∈Z≥0 by setting

An :=
⊕n

j=0Aj . Conversely, a filtration {An}n∈Z≥0
induces a grading by setting A0 := A0 and Ai :=

An
/An−1 for i > 0. It follows that A and

⊕
n∈Z≥0

An are isomorphic as vector spaces but not necessarily
as algebras. However, the last identification depends on the choice of isomorphism since, in general, there
is no canonical way of building one.

Remark 1.20. With some abuse of notation we write 1 instead of u(1) or 1A when there is no ambiguity.

The following proposition will be used implicitly in the sequel.

Proposition 1.21. Let A and B be two algebras, then A⊗B has the structure of an algebra with product

mA⊗B
(
(a⊗ b)⊗ (a′ ⊗ b′)

)
:= mA(a⊗ a′)⊗mB(b⊗ b′),

and unit uA⊗B := uA ⊗ uB.

Proof. Notice that mA⊗B = (mA ⊗mB) ◦ τ23, where τ23 : A ⊗ B ⊗ A ⊗ B → A ⊗ A ⊗ B ⊗ B switches
the 2nd and 3rd component of the vector. Then mA⊗B is linear since τ23, mA and mB are linear. The
associativity follows directly from the associativity of mA and mB .

For the unit map, consider a⊗ b ∈ A⊗B and k ∈ K. Then

mA⊗B ◦ (IdA⊗B ⊗ uA⊗B)(a⊗ b⊗ k) = mA⊗B
(
(a⊗ b)⊗ k(1A ⊗ 1B)

)
= k(a⊗ b).

An analogous calculation proves the same result using (uA⊗B ⊗ IdA⊗B) instead of (IdA⊗B ⊗uA⊗B), thus
uA⊗B satisfies the unit axiom.

We proceed to recall the concept of ideal and its relation with quotients of algebras.

Definition 1.22. Let A be an algebra and I ⊂ A a subspace of A.

• We say that I is a left ideal (resp. right ideal) of A if, and only if

m(A⊗ I) ⊂ I (resp. m(I ⊗A) ⊂ I).

• We say that I is an ideal of A if, and only if it is both a right and a left ideal of A.

Proposition 1.23. Let A be an algebra and I and ideal of A, then (A/I, m̄, ū) is an algebra, where
m̄([x]⊗ [y]) := [m(x⊗ y)], and ū(k) = [u(k)].

Proof. By construction ū = π ◦u where π is the canonical quotient map, thus it is well defined and linear.
The fact that it satisfies the unity axiom follows from the same property of u. To show that m̄ is well
defined, consider w and w′ elements of I, then

m̄([x+w]⊗[y+w′]) = [m((x+w)⊗(y+w′))] = [m(x⊗y)]+[m(x⊗w′)]+[m(w⊗y)]+[m(w⊗w′)] = m̄([x]⊗[y])

thus m̄ is well defined. Linearity and associativity of m̄ follow from linearity and associativity of m.

A folklore result which will be useful in the sequel is the following. We omit the proof, since it follows
from its locality version (Lemma 2.29) when considering the trivial locality ⊤ = A×A.

Proposition 1.24. Let f : A → A′ be a morphism of algebras, then ker(f) is an ideal of A, and Im(f)
is a subalgebra of A′.

We proceed to recall the construction and properties of the tensor algebra of a vector space. Recall that
throughout the document we assume that all algebras are unital and associative unless stated otherwise.
Let V be a vector space, its tensor algebra is the vector space defined as

T (V ) :=
⊕
n≥0

V ⊗n, (1.7)
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where V ⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n−times

for n ≥ 2, V ⊗1 = V , and V ⊗0 = K. Notice that as a consequence of Lemma

1.12 and Corollary 1.15, given a basis {vi}i∈I of V , the set {vi1⊗· · ·⊗vik : k ∈ Z≥0 ∧ ij ∈ I for 1 ≤ j ≤ k}
is a basis of T (V ). We define the concatenation productm⊗ on T (V ) asm⊗(v1⊗· · ·⊗vk, vk+1⊗· · ·⊗vn) :=
v1⊗· · ·⊗vk⊗vk+1⊗· · ·⊗vn. It is associative as a consequence of Corollary 1.15. Moreover the canonical
injection u : K → V ⊗0 ⊂ T (V ) is a unit for the concatenation product. Thus (T (V ),m⊗, u) is an
associative, unital algebra which satisfies the following universal property.

Theorem 1.25. Let V be a vector space, A an algebra, and f : V → A a linear map. There is a unique
morphism of algebras ϕf : T (V )→ A such that the following diagram commutes

V T (V )

A,

⊗

f
ϕf

where ⊗ : V → T (V ) is the canonical injection map.

Proof. It is clear that the maps (v1, . . . , vn) 7→ f(v1) · · · f(vn) are n-linear. Thus, by means of the
universal property of the tensor product (Theorem 1.16) there exist linear maps Fn : V ⊗n → A such that
Fn(v1, . . . , vn) = f(v1) · · · f(vn). Consider the linear the map ϕf : T (V ) → A defined as the direct sum
of the maps Fn. It is clearly an algebra morphism which satisfies f = ϕf ◦ ⊗.

The uniqueness follows from the fact that ϕf is completely determined by the values it takes on the
set ⊗(V ) since it generates T (V ) as an algebra.

Analogous to the proof of Theorem 1.11, it can be shown that the pair (T (V ),⊗) is the only pair (up
to isomorphism of algebras) which satisfies the conditions of Theorem 1.25.

1.3 Coalgebras, bialgebras, and Hopf algebras
Other algebraic concepts essential to our study are those of coalgebras, bialgebras and Hopf algebras.
We introduce those concepts, together with some examples and well known properties in this paragraph.
We base this paragraph in [33], [65], and also in the introductory chapters of the Ph.D. thesis of Pierre
Clavier[20]. Another complete introduction to this topic can be found in [17, page 3] for a better intro-
duction.

Definition 1.26. 1. A coalgebra is a triplet (C,∆, ϵ) where C is a vector space, ∆ : C → C ⊗ C
and ϵ : C → K are linear maps satisfying the following conditions:

• Coassociativity: The following diagram commutes.

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗IdC

IdC⊗∆ ∆

∆

or equivalently (IdC ⊗∆) ◦∆ = (∆⊗ IdC) ◦∆.
• Counit: The following diagram commutes.

C ⊗K C ⊗ C K⊗ C

C

IdC⊗ϵ
ϵ⊗IdC

∆
∼

∼

or equivalently (IdC ⊗ ϵ) ◦∆ = IdC = (ϵ ◦ IdC) ◦∆.
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We say moreover that a coalgebra is cocommutative if ∆ = τ12 ◦∆ (see (1.6)). We sometimes write
only C to a coalgebra (C,∆, ϵ) whenever there is no risk of ambiguity.

2. We say a coalgebra (C,∆, ϵ) is graded if there is a sequence {Ci}i∈Z≥0
of subspaces of C such that

C =
⊕
n∈Z≥0

Cn, ∆(Cn) ⊂
∑

p+q=n

Cp ⊗ Cq, ϵ(Cn) = {0} ∀n ≥ 1.

3. A filtered coalgebra is a coalgebra (C,∆, ϵ) together with a sequence of nested vector spaces
C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · called the filtration, such that

C =
⋃

n∈Z≥0

Cn, ∆(Cn) ⊂
∑

p+q=n

Cp ⊗ Cq, (∀x /∈ C0) : ϵ(x) = 0.

4. A graded (resp. filtered) coalgebra is said to be connected if dim(C0) = 1 (resp. dim(C0) = 1).

5. A map f : C → C ′, where (C,∆, ϵ) and (C ′,∆′, ϵ′) are coalgebras, is a coalgebra morphism if
(f ⊗ f) ◦∆ = ∆′ ◦ f , and ϵ′ ◦ f = ϵ.

A notation which is commonly used to simplify the calculations with the coproduct is the Sweedler
notation [94]:

∆(x) =:
∑
x

x(1) ⊗ x(2) ∈ C ⊗ C.

Using Sweedler notation, the coassociativity axiom reads∑
x

∑
x(1)

(
x(1)

)(1)
⊗
(
x(1)

)(2)
⊗ x(2) =

∑
x(2)

x(1) ⊗
(
x(2)

)(1)
⊗
(
x(2)

)(2)
=:
∑
x

x(1) ⊗ x(2) ⊗ x(3),

the counit axiom reads ∑
x

ϵ
(
x(1)

)
x(2) = x =

∑
x

x(1)ϵ
(
x(2)

)
,

and the cocommutativity reads ∑
x

x(1) ⊗ x(2) =
∑
x

x(2) ⊗ x(1).

Analogous to the concept of ideal of an algebra, we can define the concept of coideal in order to
preserve the coalgebraic structure under quotients.

Definition 1.27. Let (C,∆, ϵ) be a coalgebra, and J ⊂ C a subspace. We say J is:

• a sub-coalgebra of C if ∆(J) ⊂ J ⊗ J .

• a right coideal of C if ϵ(J) = {0}, and

∆(J) ⊂ C ⊗ J.

• a left coideal of C if ϵ(J) = {0}, and

∆(J) ⊂ J ⊗ C.

• a coideal of C if ϵ(J) = {0}, and

∆(J) ⊂ J ⊗ C + C ⊗ J.

Proposition 1.28. Let C be a coalgebra and J a coideal, then the quotient space C/J inherits a coalgebra
structure with counit ϵ̄([x]) = ϵ(x), and coproduct ∆̄([x]) =

∑
x[x

(1)]⊗ [x(2)].
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Proof. The coproduct ∆̄ and counit ϵ̄ are well defined as a consequence of Proposition 1.9. Indeed, the
map (π⊗π) ◦∆ (resp. ϵ) vanishes in J , thus the map ∆̄ satisfying (π⊗π) ◦∆ = ∆̄ ◦π (resp. ϵ̄ satisfying
ϵ = ϵ̄ ◦ π) is well defined, linear and unique. It is then straightforward to see that they inherit the
coassociativity and counit properties from ∆ and ϵ respectively.

The following result corresponds to the coalgebraic counterpart of Proposition 1.24.

Proposition 1.29. Let f : C → C ′ be a coalgebra morphism, then kerC is a coideal of C and Im(f) is
a sub-coalgebra of C ′.

Proof. We prove first that Im(f) is a sub-coalgebra of C ′: for any c ∈ C, since f is a coalgebra morphism,
∆′f(c) = (f ⊗ f) ◦∆(c) =

∑
(c) f(c

(1))⊗ f(c(2)) ∈ Im(f)⊗ Im(f), showing that Im(f) is a sub-coalgebra
of C ′.

We prove that ker(f) is a coideal. For c ∈ ker(f), ϵ(c) = ϵ′(f(c)) = 0. Also, since f is a coalgebra
morphism, then 0 = ∆′(f(c)) = (f ⊗ f)∆(f), and thus ker(f) ⊂ ker(f ⊗ f). The result follows from
Lemma 1.18.

Notice that the proof of ker(f) being a coideal relies on Lemma 1.18 which ultimately relies on the
fact that a linearly independent set can be completed to a basis as discussed before Proposition 1.17.
Therefore, the locality counterpart of Proposition 1.29, namely Lemma 6.7 uses some extra assumptions.

The following algebraic structure links the concept of algebra and coalgebra in a same structure.

Definition 1.30. 1. A bialgebra is a quintuple (B,m, u,∆, ϵ) where (B,m, u) is an algebra and
(B,∆, ϵ) is a coalgebra compatible in the sense that ϵ is an algebra morphism, m is a coalgebra
morphism, and ∆ is an algebra morphism (equivalently m is a coalgebra morphism). This means
that

∆◦m|B⊗2 = (m⊗m)︸ ︷︷ ︸
domainB⊗4

◦ (IdB⊗τ23⊗IdB) ◦(∆⊗∆)|B⊗2︸ ︷︷ ︸
range B⊗4

; ϵ◦m = ϵ⊗ϵ; ∆◦u = u⊗u; ϵ◦u = IdK,

where τ23 : B⊗4 → B⊗4 is the map that switches the terms on the second and third position of the
tensor. This can be seen as the commutativity of the following diagrams:

B ⊗B ⊗B ⊗B B ⊗B ⊗B ⊗B

B ⊗B B B ⊗B

IdB⊗τ23⊗IdB

m⊗m

m

∆⊗∆

∆

K B K B K B

K⊗K B ⊗B K⊗K B ⊗B K

u

∼ ∆

ϵ
u

IdK
ϵ

u⊗u

∼

ϵ⊗ϵ

m

2. We say that a bialgebra (B,m, u,∆, ϵ) is graded (resp. filtered) if there is a grading {Bn}n∈Z≥0

(resp. a filtration {Bn}n∈Z≥0
) which makes it graded (resp. filtrated) both as an algebra and as a

coalgebra. We moreover say that it is connected if dim(B0) = 1 (resp. dim(B0) = 1).

3. Let (Bi,mi, ui,∆i, ϵi) (i ∈ {1, 2}) be two bialgebras. A bialgebra morphism from B1 to B2 is a
locality map f : B1 −→ B2 that is a morphism of algebras and of coalgebras.

4. A subspace V of a bialgebra B is a sub-bialgebra if it is both a subalgebra and a sub-coalgebra.
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5. We say that an element x of a bialgebra B is a primitive element if ∆(x) = x ⊗ 1 + 1 ⊗ x.
We denote the set of primitive elements of B as Prim(B) which is actually a subspace of B. If
∆(x) = x⊗ x, we say that x is a group like element.

Remark 1.31. In a filtered connected bialgebra B, ∆(1) ∈ B0⊗B0 which is a space of dimension 1 (see
Lemma 1.12). Then ∆(1) = a(1⊗ 1). It follows from ∆ ◦ u = u⊗ u that a = 1 and thus 1 is a group like
element.

Example 1.32. For a vector space V , its tensor algebra T (V ) can be endowed with a bialgebra structure
using its universal property (Theorem 1.25). Let δ : V → T (V ) ⊗ T (V ) be the linear map defined by
δ(v) := v ⊗ 1 + 1 ⊗ v. Theorem 1.25 yields the existence of a unique algebra morphism ∆ : T (V ) →
T (V )⊗ T (V ) extending δ. This is the so called deshuffle coproduct, namely for vi ∈ V for 1 ≤ i ≤ n,

∆(v1 ⊗ · · · ⊗ vn) =
∑
S⊂[n]

vS ⊗ v[n]\S .

Here vS := vi1 ⊗ · · · ⊗ vi|S| where S = {i1 < · · · < i|S|}, and v∅ = 1. The counit on the other hand
is the unique algebra morphism ϵ : T (V ) → K, the kernel of which is ker(ϵ) =

⊕∞
n=1 V

⊗n. It is
straightforward to check that T (V ) together with the deshuffle coproduct and the counit above mentioned
is a cocommutative, graded, connected bialgebra.

Notice that if a graded bialgebra B is connected, then ker(ϵ) =
⊕

n≥1Bn. If the bialgebra is connected
and filtered, then B = B0 ⊕ ker(ϵ). A well known result which will be of use later is the following.

Lemma 1.33. Let B be a graded (resp. filtered) connected bialgebra, then for every x ∈ Bn (resp.
x ∈ Bn)

∆(x) = x⊗ 1 + 1⊗ x+
∑
x

x′ ⊗ x′′

where x′ and x′′ are of degree less than n and greater than 0.

Proof. Since B is graded (resp. filtered), then

∆(Bn) ⊂
∑

p+q=n

Bp ⊗Bq = B0 ⊗Bn +Bn ⊗B0 +
∑

p+q=n
p ̸=0̸=q

Bp ⊗Bq

(
resp. ∆(Bn) ⊂

∑
p+q=n

Bp ⊗Bq = B0 ⊗Bn +Bn ⊗B0 +
∑

p+q=n
p ̸=0̸=q

Bp ⊗Bq
)
.

Thus ∆(x) = k1(x1 ⊗ 1) + k2(1 ⊗ x2) +
∑
x x

′ ⊗ x′′ where all the x′ and x′′ are of degree lower than
n and greater than 0, x1, x2 lie in Bn (resp. Bn), and k1, k2 ∈ K. The elements 1 appearing i the
previous expression follow from the connectedness of B since every element of B0 (resp. B0) is a multiple
of 1. By means of the counit axiom, and since for every y /∈ B0 (resp. y /∈ B0) ϵ(y) = 0, then
x = (IdC ⊗ ϵ)(∆(x)) = k1x1. A similar argument shows that k2x2 = x as expected.

In lights of the previous lemma, given a connected graded or filtered bialgebra, we may define the
reduced coproduct as a map

∆̃ :C −→ ker(ϵ)⊗ ker(ϵ) (1.8)

x 7→ ∆̃(x) := ∆(x)− 1⊗ x− x⊗ 1. (1.9)

Notice that ∆̃ is coassociative, as a consequence of the coassociativity of ∆, and its kernel is K⊕Prim(B).
Moreover, if ∆ is cocommutative, then ∆̃ is also cocommutative. We may define recursively ∆̃(n) as
∆̃(1) := ∆̃ and

∆̃(n) := (IdB ⊗ · · · ⊗ IdB︸ ︷︷ ︸
n−1 times

⊗∆̃) ◦ ∆̃(n−1).

22



Lemma 1.34. Let B be a filtered connected bialgebra and x and element in Bk with k ≥ 1, then

∆̃(n)(x) = 0

for all n ≥ k.

Proof. For any y ∈ B set |y| := min{n :∈ Z≥0 : y ∈ Bn}. Consider x ∈ Bk, then

∆̃(x)(n) =
∑
x

x(1) ⊗ · · · ⊗ x(n+1)

where
∑n+1
j=1 |x(j)| = |x| ≤ k. Since n + 1 > k, this imposes that at least a |x(j)| = 0 and thus

∆̃(n)(x) = 0.

Apart from the intrinsic beauty of the bialgebras relating the dual concepts of algebra and coalgebra
in the same object, it also leads to a convolution product among linear maps from the bialgebra to itself.

Definition-Proposition 1.35. Let (B,m, u,∆, ϵ) be a bialgebra, and ϕ, ψ : B → B two linear maps.
The convolution product of ϕ and ψ is a linear map B → B defined by

ϕ ⋆ ψ = m(ϕ⊗ ψ)∆.

Moreover, if ϕ and ψ are algebra morphisms and B is commutative, then ϕ⋆ψ is also an algebra morphism.

Proof. The linearity of ϕ ⋆ ψ follows from the linearity of ∆, m, ϕ and ψ. The multiplicativity of ϕ ⋆ ψ
follows also directly from the multiplicativity of ∆, ϕ and ψ.

One can easily deduce from the associativity of m and coassociativity of ∆, that the convolution
product is associative, and that it has a unit e = u ◦ ϵ. Thus (L(B,B), ⋆) is a monoid. It follows from
the linearity of m and ∆ that the convolution product is bilinear. The existence of an inverse however,
is in general not guaranteed, which leads us naturally to the concept of Hopf algebra.

Definition 1.36. 1. A Hopf algebra is a bialgebra (H,m, u,∆, ϵ) together with a linear map S :
H → H such that

S ⋆ IdH = IdH ⋆ S = u◦ϵ.

This can be seen as the commutativity of the following diagram.

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

IdH⊗S

m∆

ϵ

∆

u

S⊗IdH

m

We say that H is commutative if it is commutative as an algebra. We say that H is cocommutative
if it is cocommutative as a coalgebra.

2. A graded (resp. filtered) Hopf algebra is a Hopf algebra together with a grading (resp.
filtration) which makes it a graded (resp. filtered) algebra, and a graded (resp. filtered) coalgebra
and such that

S(Hn) ⊂ Hn (resp. S(Hn) ⊂ Hn).

A connected Hopf algebra is a graded (resp. filtered) algebra such that H0 (resp. H0) has
dimension 1.

3. Let (Hi,mi, ui,∆i, ϵi, Si) for i ∈ {1, 2} be two Hopf algebras. A Hopf algebra morphism between
H1 and H2 is a morphism of locality bialgebras f : H1 −→ H2 which also satisfies f ◦ S1 = S2 ◦ f .
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4. A subspace H ′ of Hopf algebra H is a sub-Hopf algebra of H if, and only if it is a sub-bialgebra
and S(H ′) ⊂ H ′.

Proposition 1.37. [20, Proposition 1.1.3] Let H be a Hopf algebra and G the set of algebra morphisms
from H to itself, then (G, ⋆) is a group. Moreover, the inverse of an element ϕ ∈ G is ϕ ◦ S where S is
the antipode of H.

Proof. The associativity and existence of a unit were discussed after Definition-Proposition 1.35. We are
left to prove that (ϕ ◦ S) ⋆ ϕ = ϕ ⋆ (ϕ ◦ S) = u ◦ ϵ. Notice first that for every algebra morphism ϕ ∈ G,
ϕ ◦ u ◦ ϵ = u ◦ ϵ. Indeed, from the bialgebra axioms u ◦ ϵ(H) = K(1H) and ϕ(1H) = 1H . Then

ϕ ⋆ (ϕ ◦ S)(x) =m ◦ (ϕ⊗ (ϕ ◦ S)) ◦∆(x)

=m ◦ (ϕ⊗ ϕ) ◦ (IdH ◦ S) ◦∆(x)

=ϕ ◦m ◦ (IdH ◦ S) ◦∆(x) sinceϕ is an algebramorphism,

=ϕ ◦ (IdH ⋆ S)(x)

=ϕ ◦ u ◦ ϵ(x) from theHopf algebra axioms,

=u ◦ ϵ(x) from the previous argument.

A similar argument proves that (ϕ ◦ S) ⋆ ϕ = u ◦ ϵ which yields the result.

Notice that the previous proposition also works in the more general case that G is the set of algebra
morphisms from a Hopf algebraH to an algebra A. If the algebra is commutative, such group is commonly
known as the character group, [20, Section 1.1.4] and it plays a central role in the Connes and Kreimer’s
formalism of renormalisation. There is also a similar result for a bigger monoid containing G whenever
H is filtered and connected. We use here the common notation ∆̃(x) =

∑
x x

′ ⊗ x′′.

Proposition 1.38. Let H be a filtered connected Hopf algebra, then the set G = {ϕ ∈ L(H,H) : ϕ(1) = 1}
is a group with respect to the convolution product.

Proof. For ϕ and ψ in G, ϕ ⋆ ψ(1) = ϕ(1)ψ(1) = 1 and thus ⋆ stabilizes G. We are only left to prove the
existence of an inverse ϕ⋆−1 ∈ G for every ϕ ∈ G. We claim that

ψ :=
∑
k∈Z≥0

(u ◦ ϵ− ϕ)⋆k

lies in G and is the desired inverse of ϕ. Here (u ◦ ϵ− ϕ)⋆0 = u ◦ ϵ. We prove that the sum is finite when
evaluated in any x ∈ H. Notice first that (u ◦ ϵ− ϕ)(1) = 0 and thus (u ◦ ϵ− ϕ)⋆k(1) = 0 for k > 0 and
ψ(1) = u ◦ ϵ(1) = 1. For x ∈ ker(ϵ) fix n > 0 such that x ∈ Hn,

(u ◦ ϵ− ϕ)⋆k(x) = m(k−1) ◦ (ϕ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
k−times

) ◦ ∆̃(k−1)(x).

By means of Lemma 1.34 ∆̃(k−1)(x) = 0 for k − 1 ≥ n and thus, when evaluated in some x, the sum is
finite and ψ well defined.

We now show that ϕ⋆−1 = ψ. For x = 1 it follows from the previous computations that ψ(1) = 1 and
thus ψ ⋆ ϕ(1) = 1. For x ∈ ker(ϵ) such that x ∈ Hn, it follows that

ψ ⋆ ϕ(x) =ψ ⋆ (u ◦ ϵ− (u ◦ ϵ− ϕ))(x)
=ψ(x)− ψ ⋆ (u ◦ ϵ− ϕ)(x)

=

n∑
k=0

(u ◦ ϵ− ϕ)⋆k(x)−
n∑
k=0

(u ◦ ϵ− ϕ)⋆k+1(x)

=(u ◦ ϵ− ϕ)⋆0(x)− (u ◦ ϵ− ϕ)⋆n+1(x)

=(u ◦ ϵ)(x)
=0,
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and thus ψ is a left inverse for ϕ. Here we used the bilinearity of ⋆, and the fact that for x ∈ Hn, the
terms of order higher than n in the sum of ψ vanish. A similar computation proves that ψ is also a right
inverse for ϕ which yields the result.

In the same spirit of the previous result, the following proposition states that in a filtered, connected
bialgebra, the antipode comes for free.

Proposition 1.39. Let H be a filtered, connected bialgebra, then H is a Hopf algebra and the antipode
is defined recursively as S(1) = 1, and for x ∈ ker(ϵ)

S(x) = −x−
∑
x

S(x′)x′′ = −x−
∑
x

x′S(x′′).

Proof. The antipode is the inverse of the identity map with respect to the convolution product, then for
x ∈ ker(ϵ), the antipode must satisfy m(S ⊗ IdH)∆(x) = m(IdH ⊗ S)∆(x) = 0. It is easy to see that the
recurrent formulas from the antipode satisfy this condition. Notice moreover that if IdH has a left inverse
S and a right inverse S′ for the convolution product, then S = S ⋆ u ◦ ϵ = S ⋆ IdH ⋆ S′ = u ◦ ϵ ⋆ S′ = S′,
and thus the two formulas for the antipode coincide.

As a consequence of Proposition 1.39, the tensor algebra together with the deshuffle coproduct (see
Example 1.32) is a graded, connected, cocommutative Hopf algebra. We introduce other examples of
Hopf algebras on rooted trees.

Definition 1.40. • A rooted tree T is a finite, non-empty, loopless, connected, oriented graph
which has a minimum vertex called the root. A rooted forest is a commutative concatenation of
trees. We admit the existence of the empty forest ∅ which is the only forest without trees in it. The
free K span of the set of rooted forests is denoted by F . Setting Fn as the free K span of forests
with n vertices, F becomes a graded vector space, namely F =

⊕
n∈Z≥0

Fn.

• An admissible cut of a rooted forest F is a subset c of edges of F such that any path from one of
the roots of F to a leaf of F meet c at most once. We write Adm(F ) the set of admissible cuts of
F . For c ∈ Adm(F ), we write Rc(F ) the subforest of F below the c and Tc(F ) the subforest of F
above the cut c. Notice that we have |V (F )| = |V (Rc(F ))|+ |V (Tc(F ))| where | • | represents the
number of vertices of a tree.

• For F1, F2 and F three rooted forests, we set

n(F1, F2, F ) := |{c ∈ Adm(F )|Rc(F ) = F1 ∧ Tc(F ) = F2}|.

Notice that for F1 and F2 two given rooted forests, n(F1, F2, F ) = 0 except for a finite number of
rooted forests F .

Example 1.41. The Connes-Kreimer [32, 61] Hopf algebra is defined on the free span of rooted forests
F .

• The product of two forests is the commutative concatenation of them, namely

mCK(T1 ⊗ T2) := T1T2.

It is clear that this product respects the grading of F .

• The unit u is the linear application u : K→ F which sends 1 to the empty tree ∅.

• The coproduct is defined in a forest as

∆CK(F ) :=
∑

c∈Adm(F )

Tc(F )⊗Rc(F ),

and extends linearly to all of F . Notice that ∆CK also respects the grading of F .
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• The counit ϵ : F → K sends ϵ(∅) = 1 and all other forests to zero.

One can then show that (F ,mCK , u,∆CK , ϵ) is a graded, connected, commutative bialgebra, and by means
of Proposition 1.39, it is a connected, graded, commutative Hopf algebra.

Example 1.42. We now describe the so called Grossman-Larson Hopf algebra which is isomorphic to the
dual of the Connes-Kreimer Hopf algebra (see [79] with corrections in [49],[32]). The Grossman-Larson
algebra, whose primitive elements are rooted trees, was introduced in [38, 39, 40]. The unit and counit
are the same as in the Connes-Kreimer Hopf algebra.

• We define the product of two rooted forests F1 and F2 by

F1 ∗ F2 =
∑
F∈F

n(F1, F2, F )F.

It is well-defined since the sum contains only finitely many non-zero terms. It moreover respects
the grading of F .

• The coproduct ∆∗ is defined by its action on rooted forests F = T1 · · ·Tn, namely

∆∗(F ) =
∑
I⊆[n]

TI ⊗ T[n]\I

with, for I ⊆ [n], we have TI :=
∏
i∈I Ti.

(F , ∗, u,∆∗, ϵ) is a graded, connected, cocommutative bialgebra, and once again by means of Proposi-
tion 1.39 it is a Hopf algebra.

1.4 Lie algebras, universal enveloping algebra, and symmetric algebra
The purpose of this paragraph is to recall the construction and universal properties of the symmetric
algebra of a vector space and the universal enveloping algebra of a Lie algebra. Making use of such
universal properties, we endow each of these algebras with a Hopf algebra structure. This paragraph is
based in [33], [17] where a complete presentation of such topics can be found.

The following result from basic algebra states under which conditions is the quotient of an algebra
over a subspace again an algebra. Since both the symmetric algebra and the universal enveloping algebra
are quotients of the tensor algebra, it is particularly useful in this paragraph.

Lemma 1.43. Let A and B be two algebras, I an ideal of A and ψ : A → B an algebra morphism
such that ψ(I) = {0B}. Then there exists a unique algebra morphism ϕ : A/I → B which satisfies
ψ = ϕ ◦ π, where π : A → A/I is the canonical quotient map. Here, the algebra structure of A/I is the
one introduced in Proposition 1.23.

Proof. By means of Proposition 1.9, there exists a unique linear map ϕ : A/I → B satisfying ψ = ϕ ◦ π.
We check that it is an algebra morphism: let x and y be elements of A, and w and w′ elements in the
ideal I. Then

ϕ([xy]) =ϕ([x][y]) from the definition of the product onA/I,

=ψ((x+ w)(y + w′)) from the definition of ϕ,

=ψ(x)ψ(y) + ψ(x)ψ(w′) + ψ(w)ψ(y) + ψ(w)ψ(w′) sinceψ is an algebramorphism,

=ϕ([x])ψ([y]).

The last line follows from the definition of ϕ and from the fact that ψ(I) = {0B}.
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Symmetric, antisymmetric tensors and symmetric algebra

The following folklore result about Sn-modules, where Sn is the symmetric group of degree n, will be
useful in the sequel. We provide a proof for completeness.

Proposition 1.44. Let V be a Sn-module and set

SV := {v ∈ V | ∀σ ∈ Sn, σ.v = v},
AV := ⟨{v − σ.v | σ ∈ Sn, v ∈ V }⟩.

Then

1. SV and AV are submodules of V such that V = SV ⊕AV .

2. If W is a submodule of V , then SW = SV ∩W and AW = AV ∩W , where AW and SW are
defined in a similar manner as AV and SV .

3. The quotient V/AV is an Sn-module, and the following map is a well-defined Sn-module morphism:

V/AV −→ SV

[v] 7−→ 1

n!

∑
σ∈Sn

σ.v.

The elements in SV are often referred to as the invariants of the Sn-module, and the elements in
V/AV as the coinvariants.

Proof. Consider the map
πV : V −→ V

v 7−→ 1

n!

∑
σ∈Sn

σ.v.

Notice that for any v ∈ V , and for any τ ∈ Sn,

πV (τ.v) =
1

n!

∑
σ∈Sn

(στ).v =
1

n!

∑
σ′∈Sn

σ′.v = πV (v),

whereas
τ.πV (v) =

1

n!

∑
σ∈Sn

(τσ).v =
1

n!

∑
σ′∈Sn

σ′.v = πV (v).

Therefore πV (τ.v) = τ.πV (v) = πV (v), so πV is a Sn-module endomorphism with values in SV . Moreover,
if v ∈ SV ,

πV (v) =
1

n!

∑
σ∈Sn

σ.v = v,

so πV is a projection on SV . Consequently, SV = Im(πV ), as well as ker(πV ), are submodules of V , and
V = SV ⊕ ker(πV ).

Let us now prove that AV = ker(πV ). If v ∈ V and σ ∈ Sn,

πV (v − σ.v) = πV (v)− πV (σ.v) = πV (v)− πV (v) = 0,

so AV ⊆ ker(πV ). On the other hand, for v ∈ ker(πV )

v = v − π(v) = v − 1

n!

∑
σ∈Sn

σ.v =
1

n!

∑
σ∈Sn

(v − σ.v︸ ︷︷ ︸
∈AV

) ∈ AV,

which proves the first item.
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For the second item, consider W a submodule of V . It is clear from the construction that SW =
SV ∩W , since SW are those elements in W invariant under the action of Sn. Moreover, πW = πV

∣∣
W

, so

AW = ker(πW ) = ker(πV
∣∣
W
) = ker(πV ) ∩W = AV ∩W,

which completes the proof of the second item.
For the third item, notice that V/AV is still a Sn-module where σ.[v] := [σ.v]. Indeed, for any v and

v′ in V , and σ and τ in Sn,

[τ.(v + v′ − σ.v′)] = [τ.v + τ.v′ − (τστ−1).τ.v′] = [τ.v]

and thus the action of Sn is well defined. Finally, it is straightforward to check that the following map is
an isomorphism of Sn-modules:

V/AV = V/ ker(πV ) −→ SV = Im(πV )
v 7−→ πV (v).

We proceed to recall some known properties of the symmetric and antisymmetric tensors. The results
provided here can be found in [17], [29] where the reader can found a deeper presentation of these subjects.

Let V be a vector space, we denote by Ξ the canonical linear action Ξ : Sn × T (V ) → T (V ) of the
elements in the symmetric group Sn in the tensor algebra T (V ) given by

Sn × V ⊗m

∋ (σ, v1 ⊗ · · · ⊗ vm) 7→ Ξ(σ, v1 ⊗ · · · ⊗ vm) :=

{
vσ(1) ⊗ · · · ⊗ vσ(n) ifm = n

0 ifm ̸= n.
(1.10)

The symmetric tensors of V are the elements of T (V ) invariant under the symmetric action Ξ
defined in (1.10). More precisely, for n ≥ 1, (ST (V ))n is the subspace of V ⊗n invariant under the action
of the symmetric group Sn as defined in (1.10), and the set of symmetric tensors of V is the direct sum
ST (V ) :=

⊕
n∈Z≥0

(ST (V ))n, where we have set (ST (V ))0 := V ⊗0 = K. Similarly, we denote by AT (V )

the ideal of T (V ) generated by all elements of the form

v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

where n ∈ Z≥1 and σ is any permutation in Sn. It is clear that the set of antisymmetric tensors is a
graded ideal with (AT (V )n = AT (V ) ∩ V ⊗n.

It is well known (see for instance [17, Section 4.2] or [29, Section 2.4]) that the direct sum of symmetric
and antisymmetric tensors is the whole tensor algebra.

Lemma 1.45. Let V be a vector space, then

T (V ) = AT (V )⊕ ST (V ).

The proof follows directly from Proposition 1.44. The decomposition of a tensor v1⊗ · · ·⊗ vn ∈ T (V )
in symmetric and antisymmetric part is as follows:

v1 ⊗ · · · ⊗ vn =
1

n!

( ∑
Σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n)
)
− 1

n!

∑
σ∈Sn

(
v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

)
.

Definition 1.46. Let V be a vector space, its symmetric algebra is the quotient algebra

S(V ) := T (V )/AT (V ).

The product mS : S(V ) ⊗ S(V ) → S(V ) is defined as the equivalent class of the product of two repre-
sentatives (See Proposition 1.23). We denote by πS : T (V ) → S(V ) the canonical quotient map, and
ιS := πS ◦ ⊗ : V → S(V ) is the canonical map from V to S(V ).

Some properties of the symmetric algebra which follow directly from the previous definition are the
following:
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1. By means of Lemma 1.45, S(V ) is isomorphic as vector space to ST (V ).

2. The symmetric algebra S(V ) inherits a grading from that on T (V ) because AT (V ) is a graded
ideal.

3. Since (ST (V ))0 = K and (AT (V )0 = {0}, then (S(V ))0 = K, thus S(V ) =
⊕

n∈Z≥0
(S(V ))n is a

graded, connected algebra.

4. Similarly, the facts that (ST (V ))1 = V , and (AT (V )1 = {0}, imply that (S(V ))1 = ιS(V ) = V ,
and therefore the canonical map ιS : V → S(V ) is injective. This justifies the following abuse of
notation: for v ∈ V , we denote also by v the element ιS(v) ∈ S(V ). We denote by ⊙ the product
on S(V ), i.e., v1 ⊙ v2 := mS(v1 ⊗ v2) = mS(ιS(v1)⊗ ιS(v2)).

5. The symmetric algebra S(V ) is commutative. Indeed, for any σ ∈ Sn,

v1 ⊙ · · · ⊙ vn =πS(v1 ⊗ · · · ⊗ vn)
=πS(v1 ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ vn + vσ(1) ⊗ · · · ⊗ vσ(n))
=πS(vσ(1) ⊗ · · · ⊗ vσ(n))
=vσ(1) ⊙ · · · ⊙ vσ(n).

6. Given an ordered basis {vi}i∈Z≥1
of V , the set of ordered monomials {vi1 ⊙· · ·⊙vin : i1 ≤ · · · ≤ in}

is a basis of (S(V ))n. This follows from the fact that tensor products of basis elements form a basis
of T (V ) and from item 1.

The symmetric algebra of a vector space satisfies the following universal property.

Theorem 1.47 (Universal property of the symmetric algebra). Let V be a vector space, A a commutative
algebra, and f : V → A a linear map. There is a unique morphism of commutative algebras ϕf : S(V )→
A such that f = ϕf ◦ ιS . This can be seen as the commutativity of the following diagram.

V S(V )

A

ιS

f
ϕf

Proof. By means of the universal property of the tensor algebra (Theorem 1.25), since f is a linear map,
there exists a unique algebra morphism ψ : T (V )→ A such that f = ψ ◦⊗ where ⊗ is the canonical map
from V to T (V ). Since A is a commutative algebra, for every n ∈ Z≥1, every v1 ⊗ · · · ⊗ vn ∈ V ⊗n and σ
in Sn

ψ(v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)) = f(v1) · · · f(vn)− f(vσ(1)) · · · f(vσ(n)) = 0,

and thus ψ(AT (V )) = {0A}. Lemma 1.43 yields the existence of a unique algebra morphism ϕ : U(V )→
A which satisfies ψ = ϕ ◦ πS . From ιS = πS ◦ ⊗, it follows that

f = ψ ◦ ⊗ = ϕ ◦ πS ◦ ⊗ = ϕ ◦ ιS

as expected. The uniqueness of ϕ is granted from the fact that ιS(V ) generates S(V ) as an algebra, and
thus ϕ is completely determined by its values in ιS(V ).

The symmetric algebra S(V ) of a vector space V can be endowed naturally with the structure of a
graded, cocommutative, connected Hopf algebra. So far we have only described it as a graded, connected
algebra. In order to equip it with a coproduct, consider the linear map δ : V → S(V )⊗ S(V ) defined by
δ(x) = ιS(x)⊗ 1+ 1⊗ ιS(x). By means of Theorem 1.47 there exists a unique morphism of commutative
algebras ∆ : S(V ) → S(V ) ⊗ S(V ) which extends δ, this is δ = ∆ ◦ ιS . Notice that by construction the
elements in ιS(V ) are primitive and the coproduct ∆ is cocommutative. For the counit we consider the
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zero map from V to K. This is again a linear map and once again by means of Theorem 1.47, there is
a unique algebra morphism ϵ : S(V )→ K which vanishes identically on ιS(V ). Therefore S(V ) together
with this coproduct and counit is a graded connected bialgebra over K, and thus, by means of Proposition
1.39 S(V ) is a Hopf algbera.

Lie algebras and universal enveloping algebras

The second part of this paragraph is devoted to Lie algebras, the construction of its universal enveloping
algebra, and how it is naturally endowed with a Hopf algebraic structure by means of its universal
property.

Definition 1.48. 1. A Lie algebra is a pair (g, [, ]) where g is a vector space, and [, ] : g× g→ g is
an antisymmetric bilinear map which satisfies the Jacobi identity for every (a, b, c) ∈ V 3:

[[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

The map [, ] is called the Lie bracket.

2. Let (g1, [, ]1) and (g2, [, ]2) be two Lie algebras. A linear map f : g1 → g2 is called a Lie algebra
morphism if f([x, y]1) = [f(x), f(y)]2, for every pair (x, y) ∈ g2.

3. Let (g, [, ]) be a Lie algebra and V ⊆ g a linear subspace. Then V is a Lie subalgebra of g if the
Lie bracket stabilises V , namely [, ](V × V ) ⊂ V . In that case, it follows directly that the inclusion
map ι : V → g is a Lie algebra morphism.

Since a Lie algebra is in particular a vector space, we may consider its tensor algebra. The universal
enveloping algebra is a quotient of the tensor algebra as described in the following definition.

Definition 1.49. Let (g, [, ]) be a Lie algebra. Consider the ideal J(g) of T (g) generated by all terms of
the form a⊗ b− b⊗ a− [a, b] for (a, b) ∈ g2. The universal enveloping algebra of g is defined as

U(g) := T (g)/J(g). (1.11)

The product mU : U(g)⊗U(g)→ U(g) is defined by the product of its representatives of each equivalent
class (see Proposition 1.23). The canonical map ιg : g → U(g) is defined as ιg := πU ◦ ⊗, where
⊗ : g → T (g) is the canonical inclusion of g into its tensor algebra, and πU : T (g) → U(g) is the
canonical quotient map.

The following classical and useful example of Lie algebras can be found for instance in [1, Theorem
2.1.3].

Example 1.50. Let B be a bialgebra, the set of primitive elements of B define a Lie algebra where the
Lie bracket is given by the commutator [x, y] := xy − yx. It is easy to check that the commutator is
antisymmetric and satisfies the Jacobi identity. Moreover, for x and y primitive elements of B

∆[x, y] = ∆(xy − yx)
= ∆(x)∆(y)−∆(y)∆(x)

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)
= xy ⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ xy − yx⊗ 1− x⊗ y − y ⊗ x− 1⊗ yx
= (xy − yx)⊗ 1 + 1⊗ (xy − yx)
= [x, y]⊗ 1 + 1⊗ [x, y],

and thus Prim(B) is closed under the commutator making (Prim(B), [, ]) a Lie algebra.

Remark 1.51. Since the elements that generate the ideal J(g) are not homogeneous with respect to the
natural grading of T (g), J is not a homogeneous ideal. Indeed, a generator of g of the form a⊗ b− b⊗
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a− [a, b] is composed by elements of degree 1 and 2. This implies that the quotient U(g) = T /J(g) does
not inherit a natural grading from that on the tensor algebra. Yet it does inherit a filtration

(U(g))n = (T (g))
n
/J(g) ∩ (T (g))

n,

where (T (g))n =
⊕n

i=0 g
⊗i. It is easy to check that this indeed endows U(g) with a filtered algebra

structure which is moreover connected as T (g) is connected.

The reason behind the name of the universal enveloping algebra is that it satisfies the following
universal property.

Theorem 1.52. Let (g, [, ]) be a Lie algebra, A an algebra, and f : g → A a Lie algebra morphism
where the Lie bracket on A is the commutator defined by the product. Then, there is a unique algebra
morphism ϕ : U(g)→ A such that f = ϕ ◦ ιg where ιg is the canonical map from g to U(g). This can be
seen as the commutativity of the following diagram.

g U(g)

A

ιg

f
ϕ

Proof. By means of the universal property of the tensor algebra (Theorem 1.25), since f is a linear map,
there exists a unique algebra morphism ψ : T (g)→ A such that f = ψ ◦⊗ where ⊗ is the canonical map
from g to T (g). Since f is a Lie algebra morphism, for every a and b in g

ψ(a⊗ b− b⊗ a− [a, b]) = ψ(a⊗ b)− ψ(b⊗ a)− ψ([a, b]) = f(a)f(b)− f(b)f(a)− f([a, b]) = 0,

and thus ψ(J(g)) = {0A}. Lemma 1.43 yields the existence of a unique algebra morphism ϕ : U(g)→ A
which satisfies ψ = ϕ ◦πU where πU is the canonical quotient map from T (g)→ U(g). From ιg = πU ◦⊗,
it follows that

f = ψ ◦ ⊗ = ϕ ◦ πU ◦ ⊗ = ϕ ◦ ιg
as expected. The uniqueness of ϕ is granted from the fact that ιg(g) generates U(g) as an algebra, and
thus ϕ is completely determined by its values in ιg(g).

Analogous to the proof of Theorem 1.11, it can be shown that the pair (U(g), ιg) it the only pair (up
to isomorphism of algebras) which satisfies the conditions of Theorem 1.52.

The universal enveloping algebra of a Lie algebra can be endowed naturally with the structure of a
filtered, cocommutative, connected Hopf algebra. So far we have only described it as a filtered connected
algebra (see Remark 1.51). In order to equip it with a coproduct, consider the Lie algebra morphism
δ : g → U(g) ⊗ U(g) defined by δ(x) := ιg(x) ⊗ 1 + 1 ⊗ ιg(x). By means of Theorem 1.52 there exists a
unique algebra morphism ∆ : U(g) → U(g) ⊗ U(g) which extends δ, this is δ = ∆ ◦ ιg. Notice that by
construction, the elements in ιg(g) are primitive and ∆ is cocommutative. For the counit we consider the
zero map from g to K. This is again a Lie algebra morphism and once again by means of Theorem 1.52,
there is a unique algebra morphism ϵ : U(g) → K which vanishes identically on ιg(g). Therefore U(g)
together with this coproduct and counit is a filtered connected bialgebra over K, and thus, by means of
Proposition 1.39 U(g) is a Hopf algebra. The antipode in this case could be alternatively built using once
again the universal property (Theorem 1.52) as it will be done in Proposition 6.17 for the locality case.

1.5 Milnor-Moore theorem and Poincaré Birkhoff Witt theorem
Since the appearance in 1960 of the book "Lie groups and Lie algebras" of Bourbaki [11], the following
theorem which provides some information about the structure of the universal enveloping algebra of a Lie
algebra is called the Poincaré-Birkhoff-Witt theorem (from now on PBW theorem). It has been largely
studied since then with several generalisations to other contexts of mathematics (see for instance [8], [12],
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[56], [57], and [85]) . We present two equivalent formulations which will be of use in the sequel together
with a simple, yet useful, corollary which is necessary for the proof of the Milnor Moore theorem. For a
historical exposition of the PBW theorem we refer the reader to [37]. For the purpose of not extending
unnecessarily this first chapter, we do not provide in this paragraph the proofs of the aforementioned
theorems but rather refer the reader to one of the many classical references. Also some of the results here
presented are particular cases of the locality counterpart which will be fully demonstrated in the sequel
(Theorem 6.39).

Theorem 1.53 (Poincaré-Birkhoff-Witt theorem). Let {gi}i∈Z>0
be a totally ordered basis of a Lie

algebra g. For every n ∈ Z≥0, the set of ordered monomials of the form ιg(gi1) · · · ιg(gik) where k ≤ n
and 1 ≤ i1 ≤ · · · ≤ ik is a basis of Un(g) (see Remark 1.51). In particular the set

B := {gι1 · · · gιk : 1 ≤ i1 ≤ · · · ≤ ik ∧ k ∈ Z≥0}

is a basis of U(g).

It follows from construction that the set of ordered monomials generates U(g), the difficulty lies in
proving that it is a linearly independent set. A complete proof of this theorem can be found in [53]. Some
of the consequences of Theorem 1.53 which will be of use are the following.

Corollary 1.54. Let g be a Lie algebra, then the canonical map ιg : g→ U(g) is a linear injection.

Proof. The linearity is by construction. By means of Theorem 1.53, any basis of g is maps by ιg to a
linearly independent set which yields the result.

On the basis of Corollary 1.54, we write g instead of ιg(g) for any g ∈ g.

Corollary 1.55. Let g be a Lie algebra and U(g) its universal enveloping algebra. The set of primitive
elements of U(g) is exactly g.

Proof. The inclusion g ⊂ Prim(U(g)) is trivial by the way the coproduct on U(g) is defined. For the other
inclusion, consider an ordered basis {gi}Ni=1 of g and let B be the corresponging basis of U(g) described
in Theorem 1.53. Then y can be expressed in terms of the basis B as

y =
∑
g⃗k⃗∈B

αg⃗k⃗ g⃗
k⃗

where only finitely many αg⃗k⃗ are non zero. Here we are using the compact notation g⃗k⃗ := gk1i1 · · · g
kn
in

where i1 < · · · < in. Let N := max{|⃗k| : αg⃗k⃗ ̸= 0}. If N = 1 we have y ∈ g as required. Let us now
assume that N > 1. Since y is primitive, then ∆̃(N−1)(y) = 0. On the other hand it can be seen that

0 = ∆̃(N−1)(y) =
∑

|⃗k|=N

αg⃗k⃗
∑
σ∈Sn

gσ(1) ⊗ · · · ⊗ gσ(N),

with gσ(1) ⊗ · · · ⊗ gσ(N) ∈ Prim(U(g))⊗N .
Applying the product N − 1 times yields

0 = m(N−1)(∆̃(N−1)(y)) =
∑

|⃗k|=N

αg⃗k⃗
∑
σ∈Sn

gσ(1) · · · gσ(N) ∈ U(g).

Since g = (U(g))1 ∋ [gi, gj ] = gigj − gjgi for every i and j, we may reorder the gi’s to get the original
elements of B at the cost of adding some lower order terms (l.o.t.) with respect to the natural filtration
of U(g) (see Remark 1.51). The resulting products arising in the new linear combination are linearly
independent of the leading term as a consequence of Theorem 1.53. Hence, we have

0 =
∑

|⃗k|=N

αg⃗k⃗

N !
g⃗k⃗ + l.o.t.

Since the elements of the basis B are linearly independent, we may conclude that all αg⃗k⃗ = 0 except if
N = 1. Therefore Prim(U(g)) ⊂ g. Thus Prim(U(g)) = g.
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The formulation of the Poincaré-Birkhoff-Witt theorem presented in Theorem 1.53 is not adequate
when looking for an extension to the locality setup since, as mentioned before, vector space basis do not
always behave well with locality as we will discuss it in Chapter 2. For that purpose, we introduce a
slightly stronger formulation presented by Quillen [82, Appendix B] which not only provides a basis for
U(g) from a basis of g, it moreover provides a coalgebra isomorphism. Another proof for this theorem
can be found in [29].

Theorem 1.56 (Poincaré-Birkhoff-Witt theorem Quillen’s version). Let g be a Lie algebra, the map

Φ : S(g) −→ U(g)

g1 ⊙ · · · ⊙ gn 7→
1

n!

∑
σ∈Sn

(gσ(1) · · · gσ(n))

is an isomorphism of coalgebras.

We proceed to state one of the most known structural theorems of Hopf algebras, namely the Milnor-
Moore theorem also known as Cartier-Quillen-Milnor-Moore theorem. This theorem first appeared in
Cartier’s seminar lectures [14] in 1956 and was later popularized by Milnor and Moore [73] in 1965.
Quillen provided a simple proof of this theorem in [82, Appendix B]. Recall that the set of primitive
elements of any connected bialgebra forms a Lie algebra (see Example 1.50).

Theorem 1.57 (Cartier-Quillen-Milnor-Moore theorem). Let H be a cocommutative, graded, connected
Hopf algebra over a field K of characteristic zero. Then H is isomorphic as a Hopf algebra to the universal
enveloping algebra of its primitive elements, this is

H ∼ U(Prim(H)).

A self contained proof of the Milnoor-Moore Theorem can be found in [33]. That proof is adapted
and generalised in Section 6.4 to the locality case, so fixing the trivial locality relation ⊤ = H ×H, the
original result is recovered.

We generalise the theorem of Milnor-Moore to the locality context in Theorem 6.22. The proof
provided there is an adaption to the locality setup of that one in [33, Section 5.4]. When Theorem 6.22
is applied to the trivial locality relation ⊤ = H ×H Theorem 1.57 is recovered.

Cartier also proved a more general version of this theorem [16], [14] involving unipotent bialgebras, i.e.,
bialgebras in which for every b in the bialgebra, there is a K := K(x) > 0 such that m(K) ◦ ∆̃(K)(x) = 0,
where ∆̃(K) is the reduced coproduct iterated K times, and m(K) is the product iterated K times. A
complete modern proof of this theorem can be found in [17, Section 4.3].

Theorem 1.58 (Cartier’s theorem). Let H be a cocommutative unipotent Hopf algebra over a field K
of characteristic zero. Then its primitive elements Prim(H) form a Lie algebra, the universal enveloping
algebra of which is isomorphic as Hopf algebra to H:

H ∼ U(Prim(H)).

Finally, the following theorem from Loday [63, Theorem 4.1.3] summarizes the relation between the
Poincaré-Birkhoff-Witt theorem and the Milnor-Moore theorem.

Theorem 1.59 (Confront [63] Theorem 4.1.3). For any graded, cocommutative Hopf algebra H over a
filed K of characteristic zero, the following are equivalent.

1. H is connected.

2. There is an isomorphism of Hopf algebras H ∼ U(Prim(H)).

3. There is an isomorphism of connected coalgebras H ∼ S(Prim(H)).

The implication 1. ⇒ 2. is the Milnor-Moore theorem (Theorem 1.57). Implication 2. ⇒ 3. is the
Quillen version of Poincaré-Birkhoff-Witt theorem (Theorem 1.56), and 3.⇒ 1. is straightforward.
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2 Locality
The algebraic formulation of the locality principle in renormalisation was first introduced by Pierre
Clavier, Lie Guo, Sylvie Paycha, and Bin Zhang in [22] in 2018. Since then, various authors have shown
interest in such formulation and continued the development of such theory for instance [23],[24],[83], and
[21]. In this paragraph we present the introductory concepts of such locality structures, mostly from [22],
necessary for our further formulation of the locality versions of the Milnor-Moore and Poincaré-Birkhoff-
Witt theorems in Chapter 2. We point out that some concepts presented here are original from this
Ph.D. thesis as the ideas of pre-locality and (pre-)locality subsets (resp. subspaces, resp. subalgebras).
Those concepts are not introduced in a latter chapter since we think their early introduction provides a
better structure to the topic.

2.1 Locality sets and pre-locality spaces
We begin this section recalling some definitions from the locality context introduced first by P. Clavier,
L. Guo, S. Paycha and B. Zhang in [22], like those of locality sets, locality maps, and locality semigroups.
We also introduce the concept of pre-locality vector spaces which is first appeared during my Ph.D. and
we first wrote it in [21] . Also the concepts we present of locality subset and pre-locality subspace are
original of my Ph.D. since they are more general than the ones used in [22]. Despite being original ideas
of my thesis, they are introduced in the chapter of prerequisites for the purpose of presenting a well
structured introduction to the algebraic formulation of locality.

Definition 2.1. • A locality set is a pair (S,⊤) where S is a set and ⊤ ⊂ S × S is a symmetric
relation on S called the locality relation. We sometimes denote (x, y) ∈ ⊤ as x⊤y and say that
x and y are locality independent.

• Given a locality set (S,⊤), and a subset U ⊂ S, the polar set of U , denoted by U⊤, is defined as

U⊤ := {x ∈ S : (∀u ∈ U)x⊤u}.

• A locality map is a map f : (X,⊤X) −→ (Y,⊤Y ) between locality sets which preserves locality
in the following sense (f × f)(⊤X) ⊂ ⊤Y . In other words, f is a locality map if for every pair
(x1, x2) ∈ X2, x1⊤Xx2 implies that f(x1)⊤Y f(x2).

• Two locality sets (X,⊤X) and (Y,⊤Y ) are said to be isomorphic as locality sets if there exists a
locality bijection f : (X,⊤X) −→ (Y,⊤Y ) such that its inverse function f−1 : (Y,⊤Y ) −→ (X,⊤X)
is also a locality map.

• Two maps f, g : (X,⊤X) −→ (Y,⊤Y ) between locality sets are called locality independent (or
simply independent if there is no risk of ambiguity) if

(f × g)(⊤X) ⊂ ⊤Y .

When X = Y and ⊤X = ⊤Y = ⊤, we sometimes denote f and g being locality independent as
f⊤g.

• Let (S,⊤) and (Q,⊤Q) be two locality sets with Q ⊂ S. We say that (Q,⊤Q) is a locality subset
of (S,⊤) if the injection ι : Q ↪→ S is a locality map.

A type of locality relations that will be particularly useful in the sequel is the subset locality relation
[22, Lema 2.3] built from subsets of a locality set. More precisely, for a locality set (S,⊤) and a subset
U ⊂ S, the subset locality relation on U , denoted by ⊤

∣∣
U

, is the locality relation inherited from that on
S, namely

⊤
∣∣
U
:= ⊤ ∩ (U × U). (1.12)

Notice that (U,⊤
∣∣
U
) is always a locality subset of (S,⊤) since the injection map ι : (U,⊤

∣∣
U
) ↪→ (S,⊤) is

always a locality map.
Let us illustrate the previous definition with some examples.
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Example 2.2. 1. For a set S, consider the following two locality relations on the power set of S.

• ∀(X,Y ) ∈ P(S), X⊤DY :⇔ X ∩ Y = ∅.
• ∀(X,Y ) ∈ P(S), X⊤CY :⇔ X ∪ Y = S.

Then (P(S),⊤D) and (P(S),⊤C) are locality sets. The application c : (P(S),⊤D) → (P(S),⊤C)
which maps a set X to its complement Xc := S \ X is a locality map. Indeed, it follows from
(X ∩ Y )c = Xc ∪ Y c that X ∩ Y = ∅ implies Xc ∪ Y c = S, and conversely c−1 is also a locality
map, thus c is an isomorphism of locality sets. The polar sets of any U ⊂ P(X) are

U⊤D = P(Uc) ⊂ P(S), and U⊤C = {X ∈ P(S) : U ⊂ X}.

Consider moreover a subset ∅ ̸= A ⊂ S and define the function ϕA : (P(Ac),⊤D
∣∣
P(Ac)

)→ (S,⊤D)
as ϕA(X) := X ∪A. It is easy to see that it is not a locality map since in particular

ϕA(∅) ∩ ϕA(∅) = A ∩A = A.

However it is locality independent to the canonical injection ι : (P(Ac),⊤D
∣∣
P(Ac)

)→ (S,⊤D).

2. Consider the set of maps M(S, S) from a locality set (S,⊤) to itself. Then the locality independence
of maps is a locality relation on M(S, S). In particular, a locality map is a map which is locality
independent to itself.

The following proposition states that the composition of locality maps remains locality

Proposition 2.3. Let (S,⊤S), (P,⊤P ), and (U,⊤U ) be locality sets, f : S → P , and g : P → U locality
maps. Then g ◦ f is a locality map.

Proof. The statement follows from the following inclusions(
(g ◦ f)× (g ◦ f)

)
(⊤S) = (g × g)(f × f)(⊤S) ⊂ (g × g)(⊤P ) ⊂ ⊤U .

Definition 2.4. [22, Section 3.1] Let S1, . . . , Sn be subsets of a locality set (S,⊤). We define the locality
Cartesian product of S1 to Sn as

S1 ×⊤ · · · ×⊤ Sn := {(x1, . . . , xn) ∈ S1 × · · · × Sn : (∀(i, j) ∈ [n]2) xi⊤xj}.

In the case where Si = S for every i ∈ [n], we write

S×n
⊤ := S ×⊤ · · · ×⊤ S︸ ︷︷ ︸

n−times

.

We also take the convention S×1
⊤ = S.

Remark 2.5. In particular, for a locality set (S,⊤)

S ×⊤ S = ⊤.

We use the two notations indistinctly depending on whether we emphasize the Cartesian product or the
locality relation.

We extend the locality setup to semigroups, monoids, and groups following [22].

Definition 2.6. • A locality semigroup is a triple (G,⊤,m⊤) where (G,⊤) is a locality set, and
m⊤ is a partial product defined only on G×⊤ G, i.e.

m⊤ : G×⊤ G→ G (1.13)
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compatible with the locality relation in the following sense

∀(U ⊂ G) m⊤(U
⊤ ×⊤ U

⊤) ⊂ U⊤,

and satisfying the locality associativity condition, namely

∀(x, y, z) ∈ G×3
⊤ m⊤(m⊤(x, y), z) = m⊤(x,m⊤(y, z)). (1.14)

Notice that Condition (1.13) ensures that both sides of (1.14) are well defined whenever (x, y, z) ∈
G×3

⊤ .

• A locality monoid is a locality semigroup (G,⊤,m⊤) together with a unit element 1G for the
partial product which satisfies

1G ∈ G⊤, ∀x ∈ G m⊤(x, 1G) = m⊤(1G, x) = x.

• A locality group is a locality monoid (G,⊤,m⊤, 1G) together with a locality map ι : G → G
called the inverse, which is locality independent of the identity map IdG, and such that

∀x ∈ G m⊤(ι(x), x) = m⊤(x, ι(x)) = 1G.

Example 2.7. An example of a locality monoid is given by Z>0, with the locality relation ⊤cop defined
by

x⊤copy ⇔ x and y are coprime,

and the multiplication on coprime elements is the usual multiplication in R.

We proceed to define pre-locality vector spaces. This concept was defined in [21] and is less restrictive
than the concept of locality vector spaces (Definition 2.21). The main reason why it is introduced is
because in general the locality tensor product of locality vector spaces is at least a pre-locality vector
space (see Remark 4.10). However it is not enough to define locality coalgebras, and therefore locality
Hopf algebras as it is discussed in Section 6.1.

Definition 2.8. • A pre-locality K-vector space is a locality set (V,⊤) such that V has the
structure of a K-vector space, and (0V , 0V ) ∈ ⊤.

• Let (V,⊤V ) and (W,⊤W ) be two pre-locality vector spaces. We call a linear map f : V → W a
locality linear morphism if it is also a locality map.
We sometimes write f : (V,⊤V ) → (W,⊤W ) instead of f : V → W to emphasize the locality
relation in each space.

• Let (W,⊤W ) and (V,⊤V ) be two pre-locality vector spaces where W ⊂ V . We call (W,⊤W ) a
pre-locality subspace of (V,⊤V ) if the injection ι :W ↪→ V is a locality linear morphism.

• Let (V,⊤V ) and (W,⊤W ) be two pre-locality K-vector spaces. We say that they are isomorphic as
pre-locality vector spaces if there is a bijective locality linear morphism f : V → W such that f−1

is also a locality linear morphism.

Remark 2.9. The previous definitions of pre-locality vector space, ensures that for (E,⊤), the locality
Cartesian product of two subspaces V and W of E is never empty since in particular 0⊤0.

Remark 2.10. Pre-locality is an hereditary property. We mean by this that for (V,⊤) a pre-locality
vector space and W ⊂ V a subspace, (W,⊤

∣∣
W
) is a pre-locality subspace of (V,⊤), where ⊤

∣∣
W

is the
subset locality (see (1.12)). Indeed, 0W⊤

∣∣
W
0W and the injection ι : (W,⊤

∣∣
W
) → (V,⊤) is a locality

linear morphism.

The following proposition is a generalization of a known result of linear algebra to the pre-locality
setup.

Proposition 2.11. Let (V,⊤V ) and (W,⊤W ) be two pre-locality subspaces, and f : V → W a locality
linear morphism. Then the image of f is a pre-locality subspace of W .

Proof. Since f is linear, f(V ) is a subspace of W . The result follows from Remark 2.10.
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2.2 Bilinearity and the locality tensor product of pre-locality vector spaces
We extend the definition of bilinearity of a map to the pre-locality setup. Namely for (E,⊤) and (G,⊤G)
pre-locality vector spaces and V and W subspaces of (E,⊤), we need a consistent definition of bilinearity
for maps of the form f : V ×⊤W → G. The usual definition of a map being bilinear if it is linear in each
of its components, is not useful in the pre-locality case. Indeed, it makes no sense to require

f(v1 + v2, w) = f(v1, w) + f(v2, w) (1.15)

for every (v1, v2) ∈ V 2 and every w ∈ W since not all terms in (1.15) are necessarily defined. A first
attempt to solve this problem is to require f to satisfy (1.15) whenever all terms are defined in the
locality relation. That is the definition used in [22, Paragraph 3.3]. We provide a new definition which
is compatible with the locality tensor product proposed in [22] and which we use. This definition of
bilinearity in the context of (pre-)locality is original of this Ph.D. thesis. However, it is presented in the
chapter of prerequisites for the purpose of a well structured presentation. The reasons why we do not
follow the definition used in [22] are discussed in Appendix A. The path we follow can be found in [21,
Definition 1.7], and is inspired by Lemma 1.8.

Definition 2.12. Let V and W be subspaces of a pre-locality vector space (E,⊤) and G any vector
space. We call ⊤×-bilinear a map f : V ×⊤ W → G which satisfies the ⊤×-bilinearity condition:

f̄(I
⊤×
bil ) = {0G}, (1.16)

where we have set I⊤×
bil := K(V ×⊤W )∩ Ibil(V,W ), Ibil(V,W ) is defined in Equations (1.2) to (1.5), and

the map f̄ is given by Lemma 1.7.

The following result will be useful in the sequel.

Proposition 2.13. Let f : V ×⊤ W → G be a ⊤×-bilinear map where V and W are subspaces of a pre-
locality vector space (E,⊤), and G is any vector space, and consider (E′,⊤′) a pre-locality subspace of
(E,⊤). Then the restriction f ′ := f

∣∣
(V×⊤W )∩(E′×⊤′E′)

: (V ∩E′)×⊤′ (W ∩E′)→ G is also a ⊤×-bilinear
map.

Proof. Let us set V ′ := V ∩ E′ and W ′ := W ∩ E′ for simplicity. As a consequence of the inclusions
V ′ ⊂ V , W ′ ⊂ W , and ⊤′ ⊂ ⊤, it follows that f̄ ′ = f̄

∣∣
K(V ′×⊤′W ′)

, and Ibil(V
′,W ′) ⊂ Ibil(V,W ).

Therefore, for any x ∈ Ibil(V ′,W ′) ∩K(V ′ ×⊤′ W ′) ⊂ Ibil(V,W ) ∩K(V ×⊤ W ) it follows that

f̄ ′(x) = f̄(x) = 0,

and thus f ′ is ⊤×-bilinear.

The locality tensor product was defined in [22, Section 4.1] for relative locality vector spaces. Following
the same idea, it was defined in [21, Definition 1.8] for pre-locality vector spaces. We follow here the
definition in [21] which is equivalent to the one in [22] for the case of locality vector spaces. Following
Definition 1.10, the tensor product on the in the pre-locality setup is defined as follows.

Definition 2.14. Given V and W subspaces of a pre-locality vector space (E,⊤), the locality tensor
product is the vector space

V ⊗⊤ W := K(V ×⊤ W )/I⊤×
bil , (1.17)

where I⊤×
bil := K(V ×⊤ W ) ∩ Ibil(V,W ) as in (1.16).

Remark 2.15. Since V ×⊤ W ⊂ V ×W and I⊤×
bil := K(V ×⊤ W ) ∩ Ibil, we have an inclusion of vector

spaces V ⊗⊤ W ⊂ V ⊗W . If V ×⊤ W = V ×W , then V ⊗⊤ W = V ⊗W .

V ⊗⊤ W comes with a map

⊗⊤ := π⊤ ◦ ι⊤ : V ×⊤ W → V ⊗⊤ W (1.18)

built from the canonical inclusion ι⊤ : V ×⊤ W → K(V ×⊤ W ) and the canonical quotient map π⊤ :
K(V ×⊤ W )→ V ⊗⊤ W , which makes the following diagram commute:
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V ×⊤ W K(V ×⊤ W )

V ⊗⊤ W

ι⊤

⊗⊤
π⊤

Proposition 2.16. Given V and W subspaces of a pre-locality vector space (E,⊤), the map

⊗⊤ : V ×⊤ W → V ⊗⊤ W

is a ⊤×-bilinear map.

Proof. Let ⊗⊤ be the linear extension of (1.18) to a map K(V ×⊤ W ) → V ⊗⊤ W . By construction,
⊗⊤(I

⊤×
bil ) = π⊤

(
I
⊤×
bil

)
coincides with {0V⊗⊤W }. The map ⊗⊤ therefore satisfies (1.16) and defines a

⊤×-bilinear map .

We now extend Definition 2.14 for several subspaces of a pre-locality vector space. In the rest of this
paragraph, (E,⊤) is a pre-locality vector space over K, and V1, . . . , Vn are linear subspaces of E. Recall
that in the usual (non-locality) tensor product, V1 ⊗ · · · ⊗ Vn is the quotient of K(V1 × · · · × Vn) and its
subspace Imult(V1, . . . , Vn) generated by all elements of the form

(x1, ..., xi−1, ai + bi, xi+1, ..., xn)− (x1, ..., xi−1, ai, xi+1, ..., xn)− (x1, ..., xi−1, bi, xi+1, ..., xn) (1.19)

(x1, ..., kxi, ..., xn)− k(x1, ..., xi, ..., xn) (1.20)

for every i ∈ [n], k ∈ K and ai, bi, xi ∈ Vi. If V1 = · · · = Vn = V , we write Imult,n(V ).

Definition 2.17. [22, Section 4.1] We define the locality tensor product

V1 ⊗⊤ · · · ⊗⊤ Vn := K(V1 ×⊤ · · · ×⊤ Vn)/(Imult(V1, . . . , Vn) ∩ K(V1 ×⊤ · · · ×⊤ Vn)). (1.21)

If Vi = V for any i ∈ [n], we set V ⊗n
⊤ := V1 ⊗⊤ · · · ⊗⊤ Vn.

Remark 2.18. For n = 2 we recover Definition 2.14.

The size of V ⊗n
⊤ ⊂ V ⊗n depends on the locality relation, namely on how many mutually independent

elements it allows as the following example illustrates.

Example 2.19. Consider the pre-locality vector space (Rn,⊥) where ⊥ stands for the canonical orthog-
onality relation: u ⊥ v :⇐⇒ ⟨u, v⟩ = 0 (see [22, Subsetcion 2.2.1]). Then V ×⊤m = {0} for all m > n
since there are no n+ 1 pairwise orthogonal non zero elements in Rn.

On the other hand, if we consider the vector space V := R∞ again with the canonical orthogonality
relation ⊥ as locality relation, one easily checks that there is no integer n in N such that V ⊗⊥n = {0}.

The following result is a characterization of the locality tensor product

Proposition 2.20. Let V1, . . . , Vn be subspaces of a pre-locality vector space (E,⊤), then the locality
tensor product V1⊗⊤ · · ·⊗⊤Vn is the subspace of V1⊗· · ·⊗Vn generated by terms of the form v1⊗· · ·⊗vn
such that (v1, . . . , vn) ∈ V1 ×⊤ · · · ×⊤ Vn.

Proof. Since every element x ∈ V1 ⊗⊤ · · · ⊗⊤ Vn is an equivalence class x = [v] of some v ∈ K(V1 ×⊤
· · · ×⊤ Vn), by means of the canonical quotient map π⊤, x = π⊤(v) is a linear combination of elements
of the form v1 ⊗ · · · ⊗ vn such that (v1, . . . , vn) ∈ V1 ×⊤ · · · ×⊤ Vn. Conversely, an element v1 ⊗ · · · ⊗ vn
such that (v1, . . . , vn) ∈ V1 ×⊤ · · · ×⊤ Vn is clearly the image under π⊤ of (v1, . . . , vn) which completes
the proof.
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2.3 Locality vector spaces and (pre-) locality algebras
In this paragraph we present the notion of locality vector spaces first introduced by [22, Definition 3.8]
and recalled in [21, Definition 1.1]. This notion requires the compatibility of the locality relation with the
linear structure of the vector space, which is sometimes referred to as linear locality. We also present the
definition of pre-locality algebra presented in [21]. Even though the definition of locality algebra was first
introduced by [22], we delay its introduction to a later chapter since it requires some results presented
there for a complete definition.

Definition 2.21. A locality vector space is a pre-locality vector space (V,⊤) such that the polar
set U⊤ of any subset U ⊂ V is a linear subspace of V . Equivalently, the following condition should be
fulfilled

∀(λ, λ′) ∈ K2, ∧∀(u, u′, v) ∈ V 3 u⊤v andu′⊤v =⇒ (λu+ λ′u′)⊤v. (1.22)

We sometimes refer to the previous property as linear locality.

The linear locality condition can be motivated by the following example, and is necessary for the
definition of locality coalgebras and for the proof of the locality Milnor-Moore theorem, more precisely
in Definition 6.1 and Lemma 6.12.

Example 2.22. Let (V, ⟨, ⟩) be a Hilbert space and ⊤ the locality relation given by orthogonality, i.e.,
v⊤w ⇔ ⟨v, w⟩ = 0. Then (V,⊤) is a locality vector space since the polar set U⊤ of any subset U ⊂ V
corresponds to the orthogonal of U which is always a subspace of V .

A more pedestrian example is the one that follows. However, this type of examples should not be
underestimated, since they are the source of many counter-examples, for instance, Counter-examples 4.51
and 5.24.

Example 2.23. Let V = R2, {e1, e2} the canonical basis of R2, and define

⊤ := R2 × {0} ∪ {0} × R2 ∪ ⟨e1⟩ × ⟨e2⟩ ∪ ⟨e2⟩ × ⟨e1⟩ ∪ ⟨e1 + e2⟩ × ⟨e1 + e2⟩.

Then (V,⊤) is a locality vector space.

Since a locality vector space is in particular a pre-locality vector space, the definitions of locality linear
morphism, locality subspace and isomorphism of locality vector spaces are the same as in Definition 2.8
but with V and W locality vector spaces.

Remark 2.24. Similar to pre-locality, locality is a hereditary property. Indeed, any linear subspace W
of a locality vector space (V,⊤) endowed with the subset locality ⊤

∣∣
W

= ⊤∩ (W ×W ) is a locality vector
space. Indeed, for any U ⊂W ,

U
⊤
∣∣
W = U⊤ ∩W

is the intersection of two linear subspaces, and therefore a subspace itself.
Moreover, it is a locality subspace of (V,⊤) since the canonical injection ι : (W,⊤

∣∣
W
) → (V,⊤) is a

locality linear morphism.

Free locality vector spaces

A special type of locality vector spaces are those generated by a locality set, namely the free locality
vector spaces. We recall their construction following [21, Section 2.1].

A locality relation ⊤ on a set S further induces a locality relation (denoted with some abuse of
notation by the same symbol ⊤) on the vector space KS generated by S given by the linear extension of
the locality relation ⊤ on S. Explicitly, two elements a and b in KS are independent if the basis elements
from S appearing in a are independent of the basis elements arising in b. More precisely, the linear span
(KS,⊤) of a locality set (S,⊤) is a pre-locality vector space when equipped with the symmetric binary
relation (

a :=
∑

x∈Xa⊂S
αx x

)
⊤

b := ∑
y∈Yb⊂S

βy y

⇐⇒ ∀(x, y) ∈ Xa × Yb : x⊤y, (1.23)

where the coefficients αx and βy are all different from zero, and Xa and Yb finite subsets of S.
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Lemma 2.25. The linear span (KX,⊤) of a locality set (X,⊤) is a locality (and hence also a pre-locality)
vector space.

Proof. By definition we have(
n∑
i=1

λi ui

)
⊤

 n′∑
j=1

λ′j u
′
j

⇐⇒ ui⊤u′j ∀(i, j) ∈ {1, . . . , n} × {1, . . . , n′}.

In order to check Condition (1.22), we take v :=
∑m
k=1 µk vk, u =

∑n
i=1 λi ui in KX, and u′ =

∑n′

j=1 λ
′
j u

′
j

with u⊤v and u′⊤v. For any (λ, λ′) ∈ K2, the element λu+λ′u′ =
∑n
i=1 λλi ui+

∑n′

j=1 λ
′ λ′j u

′
j is locality

independent of v. Indeed, it follows from the definition of the linearly extended relation ⊤, and from the
ui’s and u′j ’s being locality independent of v for all (i, j) ∈ {1, . . . , n} × {1, . . . , n′}.

Notice also that as a consequence of the last remark, Definitions 2.14 and 2.17 of the locality tensor
product of two and of several subspaces of a pre-locality vector space extend naturally to locality vector
spaces.

We must say at this point that there are two different definitions of the locality Cartesian product
of locality vector spaces in [21, Definition 1.4] and in [22, Sect. 4.1]. Ours coincide with the former
one when applying Definition 2.4 to subspaces V and W of a locality vector space (E,⊤). Indeed
V ×⊤ W = (V ×W ) ∩ ⊤. In the definition from [22], V and W are not required to be subspaces of a
bigger locality vector space (E,⊤). Instead, it is introduced the concept of relative locality vector space.
That is a triple (V,W, V ×⊤ W ) where V and W are vector spaces and V ×⊤ W is a subset of V ×W ,
such that for every X ⊂ V (resp. Y ⊂W ) its relative polar set

X⊤ := {w ∈W : (∀x ∈ X) (x,w) ∈ V ×⊤ W}

(resp. ⊤Y := {v ∈ V : (∀y ∈ Y ) (v, y) ∈ V ×⊤ W})

is a subspace of W (resp. of V ).
Notice however that the two definitions are equivalent up to isomorphism of the vector spaces. Indeed,

if V and W are subspaces of a locality vector space (E,⊤), then (V,W,⊤∩ (V ×W )) is a relative locality
vector space. On the other hand, given a relative locality vector space (V,W, V ×⊤ W ), one can endow
the vector space V ⊕W with the locality relation

⊤ = {((v, 0), (0, w)) ∈ (V ⊕W )2|(v, w) ∈ V ×⊤ W}.

Then (V ⊕W,⊤) is a locality vector space, the canonical injections ιV : V → V ⊕W and ιW :W → V ⊕W
are such that V ∼ ιV (V ) and W ∼ ιW (W ) are isomorphic as locality vector spaces, and (v, w) ∈
V ×⊤W ⇔ (v, 0)⊤(0, w). We stick to Definition 2.4 which is equivalent to the one in [21] since it simplifies
the construction of Cartesian products of several locality vector spaces and therefore the locality tensor
product of higher degrees as it was done in Definition 2.17.

Pre-locality and locality algebras

We finish this section with the concept of pre-locality and locality algebras taken from [22, Definition
3.16] and [21, Definition 4.1].

Definition 2.26. • A non-unital pre-locality algebra is a triple (A,⊤,m), where (A,⊤) is a
pre-locality vector space, equipped with a partially defined product, namely a ⊤×−bilinear map
m : A×⊤ A→ A, which is associative in the following sense

m(m(x, y), z) = m(x,m(y, z)) ∀(x, y, z) ∈ A×⊤3,

whenever m(m(x, y), z) and m(x,m(y, z)) are defined.
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• [22, Definition 3.16 (ii)] We call non-unital locality algebra a non-unital pre-locality algebra
(A,⊤,m), whose underlying vector space is a locality vector space (so that in particular U⊤ is a
vector space for any U ⊂ A), and such that (A,⊤,m) is a locality semigroup. This means that the
partial product m : A×⊤A→ A is compatible with the locality relation in the following sense

m
(
U⊤×⊤U

⊤) ⊂ U⊤ ∀U ⊂ A. (1.24)

• A subspace I of a non-unital pre-locality algebra (A,⊤,m) is called a left, resp. right pre-locality
ideal of A, if

m
(
I × I⊤

)
⊂ I; resp.m

(
I⊤ × I

)
⊂ I. (1.25)

If it is both a left and a right pre-locality ideal, we call it a pre-locality ideal.

If (A,⊤,m) is moreover a non-unital locality algebra, then I⊤ is a linear subspace of A, and we call
I a locality ideal.

• [22, Definition 3.16 (ii)] Given two non-unital (resp. pre-) locality algebras (Ai,⊤i,mi, ui), i = 1, 2,
a locality linear morphism f : A1 → A2 is called a (resp. pre-) locality algebra morphism if

f ◦m1|⊤1
= m2 ◦ (f × f)|⊤1

. (1.26)

• We call (A1,⊤A1
,m1, u1) a non-unital (pre-)locality subalgebra of (A2,⊤A2

,m2, u2) if A1 ⊂ A2,
and the inclusion map ι : A1 ↪→ A2 is also a (pre-)locality algebra morphism.

Similar as Definition 2.8, the concept of (pre)-locality subalgebra here is more general than the one
given in [22] in that, the locality relation on the (pre-)locality subalgebra can be smaller than the one
in the bigger (pre-)locality algebra. This degree of generality is needed for the locality version of the
Milnor-Moore theorem. A case of particular importance is when A1 = A2 and ⊤2 ⊆ ⊤1.

Example 2.27. Let (A,⊤,m) be a non-unital locality algebra, the polar set U⊤ of any non-empty subset
U of A gives rise to a non-unital locality subalgebra (U⊤,⊤

∣∣
U⊤ ,m) of (A,⊤,m). Here ⊤

∣∣
U⊤ stands for

the subset locality (see (1.12)).

Remark 2.28. Notice that for a non-unital locality algebra (A,⊤,m), Condition (1.24) is equivalent to
the product m : (A×⊤ A,⊤A×⊤A)→ (A,⊤) being a locality map, and thus a locality ⊤×-bilinear map.

Lemma 2.29. Let f : A1 −→ A2 be a locality linear morphism between two non-unital (resp. pre-)
locality algebras (Ai,mi,⊤i), i ∈ {1, 2}. Its kernel is a (resp. pre-) locality ideal of A1 and its range is a
(resp. pre-) locality subalgebra of A2.

Proof. We prove that the kernel Ker(f) is a (resp. pre-)locality ideal. Take a ∈ Ker(f) and b ∈ Ker(f)⊤1 ,
then f(m1(a, b)) = m2(f(a), f(b)) = m2(0, f(b)) = 0, hence m1

(
Ker(f)×Ker(f)⊤1

)
⊂ Ker(f). Similarly

we check that m1

(
Ker(f)⊤1 ×Ker(f)

)
⊂ Ker(f).

If A1 is a locality algebra, then Ker(f)⊤ is a linear subspace of A1 and Ker(f) a locality ideal in A1.
We prove that the range Im(f) is a (resp. pre-)locality algebra. Given (f(a), f(b)) ∈ (Im(f)×Im(f))∩

⊤2, by (1.26) we have m2(f(a), f(b)) = f ◦m1(a, b) ∈ Im(f).
If A2 is a locality algebra, then Im(f)⊤ is a linear subspace of A2. Moreover, setting ⊤Im(f) :=

⊤2∩(Im(f)×Im(f)), and given U ⊂ Im(f), we write U⊤Im(f)×⊤Im(f)
U⊤Im(f) := ⊤Im(f)∩(U⊤Im(f)×U⊤Im(f))

and thus

m(U⊤Im(f) ×⊤Im(f)
U⊤Im(f)) = m

(
(U⊤2 ∩ Im(f))×⊤2 (U

⊤2 ∩ Im(f))
)

= m
(
(U⊤2 ×⊤2 U

⊤2) ∩ Im(f)×⊤2
2
)

⊂ U⊤2 ∩ Im(f) = U⊤Im(f) .

The last inclusion is a consequence of Condition (1.24) for A2 and Im(f) being closed under the product
m. Therefore Condition (1.24) is satisfied for Im(f), so that Im(f) a locality subalgebra of A2.
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3 Complex analytic, geometric and number theoretical prerequi-
sites

We devote the following section to set the necessary background tools for our study of the polar structure
of the Shintani zeta functions. We first recall some well known concepts and results from complex
analysis such as meromorphic functions, analytic continuation, and Morera’s theorem. We also introduce
the Gamma function and the multivariable Mellin transform together with some of their properties.
In the second paragraph we review some elements of number theory, more precisely the Riemann zeta
function and some of its generalisations, such as the multiple zeta functions (or Euler-Riemann-Zagier
zeta functions) also called poly zeta functions, and conical zeta functions. We present well known results
about their convergence and meromorphic continuation. We also introduce the mathematical object
of our study, namely the Shintani zeta functions. Finally, in this section’s third paragraph, we review
some geometric concepts regarding Newton polytopes and their relation with the multivariable Mellin
transform following the results of Nilsson and Passare [77].

3.1 The Gamma function and the Mellin transform.
The objective of this paragraph is to recall without proof some well known tools of complex analysis
in one and several variables like Cauchy’s theorem (Theorem 3.2), Morera’s theorem (Theorem 3.3), and
Riemann’s theorem of removable singularities (Theorem 3.5) with some of their consequences. For a
complete introduction to such topics, we refer the reader to one of the many books in complex analysis,
for instance, [93]. We further present the Mellin transform and Gamma functions together with some of
their properties.

Definition 3.1. A function f : C ⊃ O → C is said to be holomorphic at some interior point s of O if
the limit

lim
h→0, h∈C\{0}

f(s+ h)− f(h)
h

exists. We say a function is holomorphic in an open O ⊂ O if it is holomorphic at every point of O.
Moreover a function is called entire if it is holomorphic on C.

It is well known that holomorphic functions are analytic and analytic functions are holomorphic. For
a complete introduction to the beautiful world of complex analysis we refer the reader to [93]. We make
use of some very well known results about holomorphic functions which we now recall. Since a complete
demonstration of them would require a lengthier introduction, we omit their proofs. However, they can
be found in almost every book of complex analysis, for instance [93]. The following is one version of the
famous Cauchy’s Theorem.

Theorem 3.2 (Cauchy’s theorem). Let f : O → C be a holomorphic function and O a simply connected
open set. Then ∫

γ

f(s)ds = 0

for any closed curve γ ⊂ O.

A converse of Cauchy’s theorem (Theorem 3.2) is also true.

Theorem 3.3 (Morera’s theorem [74]). Let f : O → C be a continuous function with O ⊂ C open. If∫
γ
f(s)ds = 0 for any closed path γ ⊂ O, then f is holomorphic in O.

The power of Morera’s theorem lies in the fact that none of its hypotheses involves differentiability,
yet its conclusion is that f is holomorphic (complex differentiable). The two previous theorems have a
simple, yet useful Corollary which contrasts with the usual smooth dominated convergence theorem in
that it requires less assumptions.

Corollary 3.4. LetO be a simply connected open subset of C, and f : R≥0×O → C a continuous function
such that for every ϵ ∈ R≥0 the function s 7→ f(ϵ, s) is holomorphic on O. If s 7→ F (s) :=

∫∞
0
f(ϵ, s)dϵ is

convergent for every s ∈ O, then F is holomorphic on O.
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Proof. By means of Morera’s theorem (Theorem 3.3) it is enough to prove that
∫
γ
F (s)ds = 0 for every

closed path γ ∈ O. By means of Fubini’s theorem∫
γ

F (s)ds =

∫
γ

∫ ∞

0

f(ϵ, s)dϵds =

∫ ∞

0

∫
γ

f(ϵ, s)dsdϵ = 0.

The last equality follows from Cauchy’s theorem (Theorem 3.2) since the function s 7→ f(ϵ, s) is holo-
morphic, and O is simply connected.

We now state another famous result of Complex analysis which we will use in the sequel.

Theorem 3.5. [Riemann’s theorem on removable singularities] Let f : O \ {s0} → C be a holomorphic
function bounded on Os0 \ {s0}, where Os0 is an open set containing s0. Then there is a holomorphic
function g : O → C such that g

∣∣
O\{s0}

= f .

We now recall some notions of complex analysis in several variables. Our object of study are multi-
variable complex functions of the type f : Cn ⊃ O → C where n ∈ Z≥0.

Definition 3.6. 1. A function f : Cn ⊃ O → C is said to be holomorphic at an interior point
z = (z1, . . . , zn) of O ⊂ Cn if it is holomorphic on each of its variables. This means that the map
s 7→ f(z1, . . . , zj−1, s, zj+1, . . . , zn) is holomorphic at s = zj for all j ∈ [n]. We say that a function
is holomorphic in an open O ⊂ O if it is holomorphic at every point of O. Moreover a function is
called entire if it is holomorphic in Cn.

2. Let O ⊂ Cn be an open set and S a set with Lebesgue measure equal to 0. A meromorphic
function on O, is a function f : O \ S → C which locally is the quotient of two holomorphic
functions. More precisely, for every s ∈ O \ S, there is an open neighborhood Os of s where
f
∣∣
Os\S

= hs

gs
, where hs, gs : Os → C are two holomorphic functions such that the zeros of gs lie

inside S. A meromorphic function f = h
g is said to have linear poles if g is a product of linear

polynomials in n complex variables. This is

g =

m∏
i=1

Li,

where Li(s) =
∑n
j=1 αi,jsj + bi for some coefficients αi,j and bi in C.

3. The polar locus of a meromorphic function f : O \ S → C is the set of z ∈ S satisfying that for
every open set O containing z, and every pair of holomorphic functions h, g : O → C such that
f
∣∣
O\S = h

g , then g(z) = 0.

Notice that in the definition of holomorphic function at s ∈ Cn, we only require the function f to be
"separately" holomorphic on each variable at si. It follows from Hartogs theorem [48] that f is actually
continuous as a function from O ⊂ Cn to C at s, and then from Osgood’s Lemma [78] that f is analytic
in n complex variables as one would expect from a holomorphic function in several complex variables.
On this ground, we use the terms analytic and holomorphic interchangeably similar to the one complex
variable case. For a complete discussion of this topic we refer the reader to one of the following books
[41, 60].

Definition 3.7. Let f : Cn ⊃ O → Cn be a holomorphic function and O ⊃ O an open set. A function
g : O → Cn is called an analytic continuation of f to O if it is holomorphic and g

∣∣
O = f .

Analytic continuations are unique also in several complex variables as we recall in the following
proposition. The proof is totally analogous to that in one complex variable. However, several new
phenomena appear in the multivariable approach. We do not deal which such phenomena in this document
and therefore they are not introduced. We refer the reader to [41], [60] for information in this regard.

Proposition 3.8. [59, Theorem 1.5.4] Let O be a connected open set, and f, g : O → Cn two holomorphic
functions such that f − g is identically zero in a non empty open set O ⊂ O. Then f = g in all O.
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Proof. Let h := f − g and define the set

E := {s ∈ O : (∀α ∈ Zn≥0) ∂
(α)h(s) = 0}.

Notice that O ⊂ E. The proof consists of showing that both E and O \ E are open, and since O is
connected and E ̸= ∅, then E = O. Finally since h is analytic, it is determined by its derivatives so h is
identically zero in O.

E is open: Let a in E, since h is analytic, there is a small open set Oa containing a where h(s) is
equal to the Taylor series

∑
∂(α)h(a) (s−a)α

α! . Hence h = 0 throughout Oa.
O \ E is open: Let b in O \ E, then, there is an element β in Zn≥0 such that ∂(β)(b) is non zero. By

continuity of the derivatives, there is an open set Ob of b where ∂(β)(b) is never zero. Thus Ob is a subset
of O \ E.

A function which will be used several times in the sequel is the Gamma function which we now briefly
recall. Consider the integral

Γ(s) =

∫ ∞

0

ϵs−1e−ϵdϵ.

It is easy to see that it converges absolutely if ℜ(s) > 0 and it is nowhere zero. Moreover, it follows from
integration by parts that

Γ(s+ 1) =

∫ ∞

0

ϵse−ϵdϵ

=
[
− ϵse−ϵ

]∞
ϵ=0

+ s

∫ ∞

0

ϵs−1e−ϵdϵ

=sΓ(s),

which yields the recursive formula

Γ(s) =
Γ(s+ n)

s(s+ 1) · · · (s+ n− 1)

for n ∈ Z≥0. Using this recursive formula, we may define an analytic continuation Γ of Γ for any value
of s ∈ C \ Z≤0. Such analytic continuation is the famous Gamma function. Notice that Γ is also
nowhere zero, and it can be written as the quotient of two holomorphic functions, thus it is meromorphic
with linear poles and C \ Z≤0 is its polar locus. With some abuse of notation, and following the usual
convention we denote the Gamma function Γ also by Γ.

We proceed to recall a transformation which will be our main tool for finding meromorphic continu-
ations, namely the multivariable Mellin transform.

Definition 3.9. Let g : Rn+ → R be a measurable function. The Mellin tranform of g is defined as

Cn ⊂ O ∋ s 7→ Mg(s) :=

∫
Rn

+

ϵs−1g(ϵ)dϵ,

where ϵs−1 = ϵs1−1
1 · · · ϵsn−1

n .

The maximal set O ⊂ Cn for which the above integral is defined depends on the function g. The
following lemma will be of use in the sequel, more precisely in Proposition 7.8 and Theorem 7.10.

Lemma 3.10. Let g : Rn+ → R be a measurable function. If the integral defining Mg is convergent for
every s in an open set O ⊂ Cn, then Mg is holomorphic on O.

Proof. Let s = (s1, . . . , sn) ∈ O. Since z 7→ ϵz−1
1 ϵs2−1

2 · · · ϵsn−1
n g(z, s2, . . . , sn) is holomorphic, then

z 7→
∫∞
0
ϵz−1
1 ϵs2−1

2 · · · ϵsn−1
n g(z, s2, . . . , sn)dz is holomorphic at s1 as a consequence of Corollary 3.4. The

same argument used recursively in each coordinate implies that Mg is holomorphic in each coordinate
and thus holomorphic as a multivariable complex function.
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3.2 Zeta functions
The Riemann zeta function, also called Euler-Riemann zeta function is defined as ζ(s) :=

∑
n≥1 n

−s

and is known to be absolutely convergent whenever ℜ(s) > 1. It was first introduced and studied by
Euler for real values of s. Later, Riemann studied the function for complex values of s and proved in
his famous article "Über die Anzahl der Primzahlen unter einer gegebenen Grösse" [84] that ζ admits
a meromorphic continuation to the whole complex plane with a simple pole at s = 1. In the same
article, he proved the functional equation of the zeta function, the relation between its zeros and the
distribution of prime numbers, and stated probably the most famous open problem in mathematics: the
Riemann hypothesis. Very few functions have been so extensively studied in the history of mathematics,
and thus, it is practically impossible to give a complete introduction to the Riemann zeta function.
However, [52] is a very good starting point for the curious reader. Instead, we focus on some of the
multivariable generalisations of ζ, the most famous probably being the multiple zeta functions (or
Euler-Riemann-Zagier zeta function) [98],[100] also called polyzeta functions [15], which are defined as
follows.

Cn ∋ (s1, . . . , sn) 7→ ζ(s1, . . . , sn) :=
∑

0<m1<m2<···<mn

m−s1
1 m−s2

2 · · ·m−sn
n . (1.27)

The values of the multiple zeta functions at positive integers are known as multiple zeta values. Notice
that with the change of variables mi = m1 + · · ·+mi, the right hand side of (1.27) can be rewritten as

Cn ∋ (s1, . . . , sn) 7→ ζ(s1, . . . , sn) =
∑
m1≥1

· · ·
∑
mn≥1

m−s1
1 (m1 +m2)

−s2 · · · (m1 + · · ·+mn)
−sn , (1.28)

an expression that will be useful in the sequel. Multiple zeta values were first introduced by Euler in
the eighteenth century for n = 2 [31], and in 1981 by Ecalle [30] for any n > 2. There was a revival of
their study during the last decade of the 20th century with the works of Hoffman [49] and Zagier [98].
It is known that the sum on the right hand side of (1.28) converges absolutely whenever ℜ(sn) > 1 and∑n
i=1ℜ(si) > n (see for instance [100, Proposition 1].) We skip for the moment the proof of the last

statement since it is a particular case of Corollary 8.6. It was proved by Zhao [100] and later more precisely
by Akiyama, Egami, and Tanigawa [2] that multiple zeta functions admit a meromorphic continuation
to the whole space Cn with simple poles on the hyperplanes sn = 1, sn−1 + sn = 2, 0,−2,−4, · · · , and
for 3 ≤ k ≤ n

k∑
i=1

sn−i+1 = k − l where l ∈ Z≥0.

During the last three decades multiple zeta functions have been the object of study of several authors,
linking them with other areas of mathematics such as arithmetic geometry, quantum groups, mathematical
physics, renormalisation theory, etc. See for instance [10], [13], [15], [35], [46], [50], [51], [62], [70], [72],
[67], [96].

A geometric generalisation of multiple zeta functions introduced by Guo, Paycha and Zhang [42] are
the conical zeta functions. We recall from [34], and [101] some basic concepts about polyhedral cones.

Definition 3.11. • An open convex polyhedral cone in Rn with vertex at zero (or simply cone)
is an open subset C of Rn such that for every λ ∈ R>0

x ∈ C =⇒ λx ∈ C.

• A closed convex polyhedral cone in Rn with vertex at zero (or simply closed cone) is the closure
of an open cone.

• A generating set {v1, . . . ,vk} of a cone C is a set of vectors in Rn such that C =
∑k
i=0 R>0vi.

The dimension of the cone C is the dimension of the subspace spanned by a generating set of it.

• If a cone has a generating set, the vectors of which lie in Qn, it is called a rational cone. Thus a
rational cone is spanned by vectors in Qn and equivalently by vectors in Zn.
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• A smooth cone C is a rational cone together with a generating set which is a basis of Zn. In this
case the generating set is unique and is called the primary generating set of C.

• A face of a cone C is a set of the form C ∩ {u = 0} where C is the closure of C, and u : Rn → R is
a linear function with coefficients in R which is non-negative on C. Notice that a face of a cone is
itself a cone.

• If C is a cone of dimension m, a facet of C is a face of dimension m− 1.

• [42, Definition 2.1] A subdivision of a cone C is a set of cones {C1, . . . , Cr} such that

1. C =
⋃r
i=1 Ci,

2. C1, . . . , Cr have the same dimension as C and

3. intersect along the faces, i.e., Ci ∩ Cj is a face of both Ci and Cj .

In Chapter 3, a cone is always an open polyhedral convex cone with vertex at zero unless stated
otherwise. Given a cone C ⊂ Rn≥0 and s ∈ Cn, Guo, Paycha and Zhang [42, Definition 2.4] defined the
conical zeta function associated to C as

ζ(C; s) :=
∑

m∈C∩Zn
≥0

m−s1
1 · · ·m−sn

n , (1.29)

whenever the sum is convergent. When s is a vector with integer components, ζ(C, s) is called a conical
zeta value. The sum on the right hand side of (1.29) is convergent for s ∈ Zn whenever si ≥ 2 [42, Lemma
2.5]. Consider a smooth cone C, and {v1, . . . ,vn} its primary generating set with vj =

∑n
i=1 vijei. Since

{v1, . . . ,vn} is a basis of Zn, using the change of coordinates mi = vi1m1 + · · · + vinmn we can rewrite
the right hand side of (1.29) as

ζ(C; s) =
∑
m1≥1

· · ·
∑
mn≥1

(v11m1 + · · ·+ v1nmn)
−s1 · · · (vn1m1 + · · ·+ vnnmn)

−sn . (1.30)

Moreover, any cone of maximal dimension can be subdivided in smooth cones [42][Proposition 2.2] and
given subdivision {C1, . . . , Cr} of a cone C

ζ(C; s) =

r∑
i=1

ζ(Ci, s),

whenever both sides of the equation are well defined [42, Lemma 2.7]. This implies that every conical
zeta function can be seen as a linear combination of functions with the form on the right hand side of
(1.30). It was shown in [43] that conical zeta functions admit a meromorphic continuation to the whole
space Cn with linear poles. Renormalised values of conical zeta functions were further studied in [44] and
[22].

Several other multivariable generalisations of the Riemann zeta functions have been made, for instance
Mordell-Tornheim zeta functions [69],[68], branched or arborified zeta functions [23], [25], [26] [66], Schur
multiple zeta functions [71], [76], multiple Hurwitz-Lerch zeta functions [58], [55], etc. Meromorphic
continuations of such generalisations have called the attention of numerous mathematicians [2], [58], [69],
[68], [100].

In Chapter 3, we focus on a particular generalisation which is parametrised by matrices, namely the
Shintani zeta functions. These functions where introduced by Shintani in a series of papers in the 1970s
[86, 87, 88, 89, 90, 91] motivated by some problems of number theory. He considered the one complex
variable function

s 7→
∑
m1≥0

· · ·
∑
mr≥0

(a11m1 + · · ·+ a1rmr + b1)
−s × · · · × (an1m1 + · · ·+ anrmr + bn)

−s (1.31)

where aij > 0 and bi > 0 for all 1 ≤ i ≤ n and all 1 ≤ j ≤ r. Shintani proved, among several other things,
that the sum on the right hand side of (1.31) converges whenever ℜ(s) > r

n , and that this function admits
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a meromorphic continuation to the whole complex plane C with the same linear poles as the function
Γ(rs − n)/Γ(s). In particular, the poles do not depend on the values of the bi’s and of the aij ’s as long
as they are positive. His work inspired some authors (see for instance [3], [18]) to study a multivariable
(or multidimensional) version of (1.31), namely

s 7→
∑
m1≥0

· · ·
∑
mr≥0

(a11m1 + · · ·+ a1rmr + b1)
−s1 × · · · × (an1m1 + · · ·+ anrmr + bn)

−sn . (1.32)

where once again all bi’s and aij ’s are positive. We consider in Chapter 3 a slight generalisation of (1.32),
which was also considered in [42] and [69], and that we introduce now.

Definition 3.12.

• Let Σn×r(R≥0) be the set of n × r matrices with real non-negative arguments, and with at least
one positive argument in each row and in each column.

• Given a matrix A = {aij}1≤i≤n,1≤j≤r ∈ Σn×r(R≥0) the Shintani zeta function associated to A
is given by

ζA(s) :=
∑
m1≥1

· · ·
∑
mr≥1

(a11m1 + · · ·+ a1rmr)
−s1 × · · · × (an1m1 + · · ·+ anrmr)

−sn . (1.33)

Our objective is to give a precise description of the polar loci of the Shintani zeta functions. We point
out in Remark 8.10 that the polar structure of ζA remains the same if we start the sums at zero and
instead add a bi > 0 inside of each parenthesis. Thus, for the sake of simplicity in the notations, we omit
the terms bi and start the sums at 1. The condition that there is at least one non zero element in each
column of the matrix guarantees that every mj has at least one non-zero coefficient, otherwise the sum
on the right hand side of (1.33) would never converge. On the other hand, if there is a row full of zeros,
the term 0−si would cause problems for ℜ(si) > 0. The sum on the right hand side of (1.33) is absolutely
convergent whenever ℜ(si) > r for every 1 ≤ i ≤ n as we recall in Corollary 8.6.

Notice that Shintani zeta functions as we are considering them generalise some of the zeta functions
we previously described. Indeed, the Riemann zeta function corresponds to the case when A is a 1 × 1
matrix, multiple zeta functions correspond to the case when the matrix A is a square lower triangular
matrix with ones on and under the diagonal as it can be seen in (1.28), also the conical zeta function
of a smooth (open) cone is in particular a Shintani zeta function when written in the form of (1.30). It
was moreover shown in [42, Proposition 5.16] that Shintani zeta values, i.e. when s ∈ Zn>r, span the
space of conical zeta values. Shintani zeta functions also generalize Mordell-Tornheim zeta functions and
arborified of tree-like zeta functions (see [26]).

Matsumoto proved in [69, Theorem 3] that (1.33) admits a meromorphic continuation to Cn with
possible linear poles located on the hyperplanes

c1s1 + · · ·+ cnsn = u(c1, . . . , cn)− l, (1.34)

where the ci lie in Z≥0, u(c1, . . . , cn) in Z, and l in Z≥0. His proof uses the Mellin-Barnes integration
formula which involves a contour integral of the product of Gamma functions (See for instance [68]).
The main objective of this chapter is to refine Matsumoto’s result in specifying the coefficients ci in the
equations of the hyperplanes describing the poles (Theorem 8.7). For this purpose we make use of another
ingredient which we introoduce in the next paragraph.

3.3 Newton polytopes and the Mellin transform of rational functions
Newton polytopes provide a geometric tool to study the polar structure of Shintani zeta functions. In
this chapter we briefly recall their definition together with Theorems 3.20 and 3.21 of Nilsson and Passare
regarding the Mellin transform of rational functions using Newton polytopes. We do not provide their
proofs since they are very similar in spirit to those of Theorems 7.10 and 7.11. This paragraph is based
on [77].
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Throughout the rest of this chapter, we consider complex Laurent polynomials in n variables p : Cn →
C of the form

p(ϵ) =
∑
α∈A

aαϵ
α, (1.35)

where A is a finite subset of Zn, and we have set ϵα := ϵα1
1 · · · ϵαn

n . One of the main tools we use to study
Shintani zeta functions are Newton polytopes, the definition of which we recall now.

Definition 3.13. Consider a Laurent polynomial p : Cn → C, the Newton polytope of p, denoted by
∆p, is the convex hull generated by A. Notice that ∆p is a compact subset of Rn since A is finite.

Example 3.14. For p(ϵ) = ϵ1 + ϵ22 + ϵ1ϵ2. A is given by {(1, 0), (0, 2), (1, 1)} and ∆p is pictured below
in blue color.

1

1

2

We recall from [5, Definition 2.1] that a polyhedron in Rn is a set P ⊂ Rn defined by finitely many
linear inequalitites of the form

P := {x ∈ Rn : ℓi(x) ≥ αi, i ∈ I}.

Here I is finite, αi ∈ R and ℓi : Rn → R are linear functions. It is sometimes useful to see a polytope as
a polyhedron. This is always possible as a consequence of the Weyl-Minkowski theorem which we now
recall. We omit the proof, but refer the reader to [5, Theorems 4.4 & 4.7] for a complete proof.

Theorem 3.15 (Weyl-Minkowski theorem). Let P be a subset of Rn. Then P is a polytope if, and only
if, P is a bounded polyhedron.

In particular, Theorem 3.15 implies that any convex polytope in Rn, the vertices of which lie in Zn,
as well as being the convex hull of its vertices, can also be described as the intersection of half spaces
determined by its facets:

N⋂
k=1

{σ ∈ Rn; ⟨µk,σ⟩ ≥ νk}. (1.36)

Here N is the number of facets of the polytope, the νk’s are integers, and the µk’s are vectors in the
lattice Zn on the inward normal direction of the facets with mutually coprime coordinates. Since the
vertices of the polytope are in the lattice Zn, the choice of the vectors µk and ν in (1.36) is unique.

Continuation of Example 3.14: For p(ϵ) = ϵ1 + ϵ22 + ϵ1ϵ2, ∆p can be described as the intersection of
half spaces as follows.

∆p = {σ ∈ R2 : ⟨σ, (2, 1)⟩ ≥ 2} ∩ {σ ∈ R2 : ⟨σ, (−1, 0)⟩ ≥ −1} ∩ {σ ∈ R2 : ⟨σ, (−1,−1)⟩ ≥ −2}. (1.37)

We now recall the definition of the Minkowski sum of two subsets of a vector space.

Definition 3.16. [5, Definition 3.4] Let V be a vector space and A,B ⊂ V not empty. The Minkowski
sum A+B is defined as

A+B := {a+ b ∈ V : a ∈ A ∧ b ∈ B}.
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Example 3.17. For V = R2, the Minkowski sum of the line segments A and B in the following figure is

the blue rhombus on the right.

1 2

−1

1 A

B A+B

The Minkowski sum inherits the associativity and commutativity of those in the sum of the vector
space. A type of sets which will be used in the sequel is of the form ∆+Rn+ where ∆ is a polytope. Notice
that ∆ + Rn+ is not a polytope since it is not bounded, however it is a polyhedron as a consequence of
the following theorem.

Theorem 3.18. [5, Theorem 3.5 (1)] For P1 and P2 two non empty polyhedra in Rn, their Minkowski
sum P1 + P2 ⊂ Rn is also a polyhedron.

We introduce Newton polytopes in order to adapt some work of Nilsson and Passare [77] regarding
the convergence and meromorphic continuation of the Mellin transform of rational functions. We proceed
to recall their results. The following definition is taken from [77], and will be of use in the sequel.

Definition 3.19.

• Let p be a complex Laurent polynomial on n variables and Γ a face of its Newton polytope ∆p.
The truncated polynomial pΓ associated to the face Γ is the sum of the monomials of p whose
exponents lie in Γ.

• We say that a polynomial is completely non-vanishing on a subset O ⊂ Cn if neither it, nor its
truncated polynomials, vanish on O.

Continuation of Example 3.14: Consider p(ϵ) = ϵ1 + ϵ22 + ϵ1ϵ2, and Γ the facet of ∆p lying on the
hyperplane {σ ∈ R2 : ⟨σ, (2, 1)⟩ = 2} (see (1.37)), then the truncated polynomial pΓ is

pΓ(ϵ) = ϵ1 + ϵ22.

The following result by Nilsson and Passare relates the domain of convergence of the Mellin transform
of a function of the type 1/p where p is a Laurent polynomial, with the Newton polytope of p. Since every
rational function can be expressed as a linear combination of such functions, this theorem also determines
the domain of convergence of the Mellin transform of any rational function. The original proof is very
similar to that of Theorem 7.10 and thus, we do not write it here.

Theorem 3.20. [77, Theorem 1] If a polynomial p is completely non-vanishing on Rn+, then the integral

M1/p(s) =

∫
Rn

+

ϵs−1

p(ϵ)
dϵ

converges absolutely and defines an analytic function s 7→ M1/p(s) on the tube domain

D1/p := {s ∈ Cn : ℜ(s) = σ ∈ int(∆p)}.

Furthermore, Nilsson and Passare proved that the Mellin transform of a function of the type 1/p
admits a meromorphic continuation to the whole space Cn with linear poles as stated in the following
theorem. Once again, the proof is very similar to that of Theorem 7.11 and therefore we omit it here.

Theorem 3.21. [77, Theorem 2] Let p be a completely non-vanishing polynomial on the positive orthant
Rn+ such that its Newton polytope ∆p is of full dimension. Then the Mellin transform of 1/p

M1/p(s) :=

∫
Rn

+

ϵs−1

p(ϵ)
dϵ

49



admits a meromorphic continuation of the form

M1/p(s) = Φ(s)

N∏
k=i

Γ(⟨µk, s⟩ − νk),

where Φ is an entire function, and N , µk and νk are as in (1.36).
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Chapter 2

Locality tensor products and locality
Milnor-Moore and
Poincaré-Birkhoff-Witt theorems

In this chapter, we present the principal results on the context of locality, namely the universal properties
of the locality tensor product (Theorem 5.37), the locality tensor algebra (Theorem 5.38), the locality
universal enveloping algebra (Theorem 5.38), and the locality symmetric algebra (Theorem 5.45), together
with the locality versions of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems (Theorems 6.22 and
6.39). For that purpose, we study in Section 4 the construction and universal properties on the context of
pre-locality of the locality tensor product, locality tensor algebra, locality symmetric algebra, and locality
universal enveloping algebra. The main difference between the locality tensor product of subspaces of a
pre-locality vector space presented here and the one in Section 2 is that the one presented here is naturally
endowed with a locality relation which makes it a pre-locality vector space. Since all of the constructions
presented in Section 4 are quotients of pre-locality vector spaces or of pre-locality algebras, a question
that naturally arises is when the quotient of locality vector spaces is again a locality vector space and not
only a pre-locality vector space (Question 2.15). We devote Section 5 to study such question and provide
sufficient conditions to have a positive answer. Also, the universal properties introduced in Section 4 in
the context of pre-locality are upgraded to the context of locality provided some sufficient conditions. In
Section 7.2 we introduce locality coalgebras, locality bialgebras, and locality Hopf algebras together with
some technical lemmas which we then use to state and prove the locality versions of the Milnor-Moore
and Poincaré-Birkhoff-Witt theorems. Most of this chapter is based on [21], and some parts are written
exactly the same with the permission of the other authors of the paper. We stress that the locality
Poincaré-Birkhoff-Witt theorem, together with all its necessary previous constructions and lemmas, are
original from this thesis. Therefore the contents of Paragraphs 4.4 and 6.6 and the parts of Paragraphs
5.5 and 6.3 regarding the locality symmetric algebra are original of this document.

4 Locality relations and universal properties in the context of
pre-locality

In this section we present the complete construction of the locality tensor product, locality algebra, locality
symmetric algebra and locality universal enveloping algebra endowed with natural locality relations which
turn them into pre-locality vector spaces (resp. pre-locality algebras). The main results of this section
are the universal properties of such objects (Theorems 4.14, 4.33, 4.41, and 4.48).

4.1 Locality relations
Similar to topological spaces, a set, a vector space, or an algebra can be endowed with different locality
relations which will have an impact on its properties in the context of (pre-)locality. In this paragraph, we
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study locality relations induced by maps and the possible inclusions among them. Such locality relations
are essential to endow the locality tensor product and locality algebra with a locality relation in order to
have a full fledged (pre-)locality theory, as it will be discussed in 4.2.

Recall that given two topologies τ1, τ2 on some set X, τ1 is said to be coarser (weaker or smaller)
than τ2, or equivalently τ2 finer (stronger or larger) than τ1 if, and only if τ1 ⊂ τ2. Also, given a set
X and (Xi, τi)i∈I a family of topological spaces together with a family of maps fi : Xi → X, the final
topology (or strong, colimit, coinduced, or inductive topology) τ is the finest topology on X
such that all maps fi are continuous. With a small abuse of language, one says that the topology τ is
final with respect to the maps fi.

A typical example is the quotient topology on X/I where I is a subset of a set (X,⊤), defined as the
final topology for the projection map π : X → X/I.

We now transpose this terminology to the locality setup.

Definition 4.1. Let ⊤1 and ⊤2 be two locality relations over a set A. We say ⊤1 is coarser than ⊤2 or
equivalently, that ⊤2 is finer than ⊤1 if, and only if ⊤1 ⊂ ⊤2.

The following example provides a justification of the terminology in our transposition from a topo-
logical to a locality context.

Example 4.2. Let X be a set and P(X) its powerset. Disjointness of sets:

A⊤B ⇐⇒ A ∩B = ∅

defines a locality relation on any subset O of P(X). If (X,O) is a topological space with topology O ⊂
P(X), this disjointness relation gives rise to another locality relation (which with some abuse of notation,
we denote by the same notation) given by the separation of points:

x⊤y ⇐⇒ ∃U, V ∈ O, (U ⊤V ) ∧ (x ∈ U ∧ y ∈ V ) .

The finer (resp. coarser) the topology O, the larger (resp. smaller) the graph {(x, y), x⊤y} of the locality
relation, hence the terminology we have chosen.

Definition 4.3. Let X be a set, (Xi,⊤i)i∈I a family of locality sets, and fi : Xi → X a family of maps.
The final locality relation ⊤ on X is the coarsest locality relation among the locality relations ⊤ on
X for which

fi : (Xi,⊤i) −→ (X,⊤), i ∈ I

are locality maps.
As before, with a slight abuse of language, we shall say that ⊤ is a final locality relation on X for

the maps fi.

Proposition 4.4. Given a locality set (A;⊤) and a surjective map ϕ : A→ B, the locality relation ⊤ on
A induces a locality relation ⊤ on B defined by

b1⊤b2 ⇐⇒ (∃(a1, a2) ∈ A×A : ϕ(ai) = bi and a1⊤a2),

which is the final locality relation for the map ϕ.

Proof. It is clear from the definition of ⊤, that ϕ : (A,⊤) −→ (B,⊤) is a locality map.
Let ⊤B be a locality relation on B such that ϕ : (A,⊤) −→ (B,⊤B) is a locality map. For any

(b1, b2) ∈ B2 we have

b1⊤b2 =⇒
(
∃(a1, a2) ∈ A2|ϕ(ai) = bi ∧ a1⊤a2

)
for i ∈ {1, 2}

=⇒
(
∃(a1, a2) ∈ A2|ϕ(ai) = bi ∧ ϕ(a1)⊤Bϕ(a2)

)
since ϕ is a locality map

=⇒ b1⊤Bb2.

Therefore ⊤ ⊆ ⊤B .
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Example 4.5. The map

ϕ : N −→ 2N
m 7−→ 2m

is surjective. We equip A := N with the locality relation m1⊤m2 ⇐⇒ |m1−m2| = 3. Then n1⊤n2 if and
only if |n1 − n2| = 6.

Applying Proposition 4.4 to the canonical projection map π : V → V/W of a pre-locality vector space
(V,⊤) to its quotient V/W by a linear subspace W , we equip the quotient with the quotient locality
relation.

Definition-Proposition 4.6. For a subspace W of a pre-locality vector space (V,⊤), we call quotient
locality on the quotient V/W , the final locality relation(

[u]⊤[v] ⇐⇒ ∃(u′, v′) ∈ [u]× [v] : u′⊤v′
)

∀([u], [v]) ∈ (V/W )2 (2.1)

for the canonical projection map π : V → V/W . This way, the pre-locality space (V,⊤) gives rise to a
pre-locality vector quotient space (V/W,⊤) and the projection map π : (V,⊤)→ (V/W,⊤) is a morphism
of pre-locality vector spaces.

Proof. The facts that (V/W,⊤) is a pre-locality space and that π : (V,⊤)→ (V/W,⊤) is a morphism of
pre-locality spaces hold by definition of ⊤, since it is the coarsest locality relation such that π is a locality
map.

The following simple examples illustrate this last concept.

Example 4.7. Consider the pre-locality vector space (R3,⊤) where ⊤ is the orthogonality relation, namely
v⊤w ⇔ v ⊥ w. Let W = Ke1 ⊂ R3 be the span of e1 where {ei}3i=1 is the canonical basis of R3. The
quotient locality on R3/W is ⊤ = (R3/W ) × (R3/W ) since for any pair ([q2e2 + q3e3], [k2e2 + k3e3]) ∈
(R3/W )2 there are scalars q1 and k1 in K such that (q1e1 + q2e2 + q3e3) ⊥ (k1e1+k2e2+k3e3), so that
[q2e2 + q3e3]⊤[k2e2 + k3e3].

Example 4.8. Consider the pre-locality vector space (V,⊤) where V = R4 and ⊤ = R4 × {0} ∪ {0} ×
R4 ∪ (⟨{e1, e3}⟩ × ⟨e2 + e4⟩) ∪ (⟨e2 + e4⟩ × ⟨{e1, e3}⟩). For W = K(e4), the quotient locality on V/W is
given by ⊤ = (V/W × {[0]}) ∪ ({[0]} × V/W ) ∪ (⟨[e1 + e3]⟩ × ⟨[e2]⟩) ∪ (⟨[e2]⟩ × ⟨[e1 + e3]⟩).

4.2 Universal property of the locality tensor product
Up to this point, the locality tensor product of subspaces V1, . . . , Vn of a (pre-) locality vector space
(E,⊤), is only a vector space V ⊗⊤ · · ·⊗⊤ Vn. We have not endowed it with any locality relation induced
by ⊤. This paragraph has two objectives: the first one is to define a locality relation ⊤⊗n in the locality
tensor product naturally induced by that on the original space. The second objective is to extend the
universal property of the usual (non-locality) tensor product to the pre-locality set up and to present some
of its direct consequences. For this purpose, and for the rest of the paragraph, V1, . . . , Vn are subspaces
of a pre-locality vector space (E,⊤), where n ≥ 2.

Definition 4.9. • We define the locality relation ⊤V1×⊤···×⊤Vn
on V1 ×⊤ · · · ×⊤ Vn as

⊤V1×⊤···×⊤Vn
:= {

(
(v1, . . . , vn), (v

′
1, . . . , v

′
n)
)
∈ (V1 ×⊤ · · · ×⊤ Vn)

2 : ∀(i, j) ∈ [n]2, vi⊤v′j }. (2.2)

It extends linearly to a locality relation on K(V1 ×⊤ · · · ×⊤ Vn) as in (1.23). In the case V1 = · · · =
Vn = V we write ⊤×n instead of ⊤V×⊤···×⊤V .

• The locality relation ⊤⊗(V1, . . . , Vn) on V1 ⊗⊤ · · · ⊗⊤ Vn is defined as the quotient relation (see
Definition 4.6) for the quotient map π : (K (V1 ×⊤ · · · ×⊤ Vn) ,⊤V1×⊤···×⊤Vn) → V1 ⊗⊤ · · · ⊗⊤ Vn.
For the case V1 = · · · = Vn = V we write ⊤⊗n instead of ⊤⊗(V1, . . . , Vn).

Remark 4.10. Observe that the locality tensor product V1⊗⊤ · · · ⊗⊤ Vn turns into a pre-locality vector
space when endowed with the locality relation ⊤⊗(V1, . . . , Vn).
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The first item of the previous definition provides a canonical locality relation on the locality Cartesian
product of two spaces. This suggests an enhancement of the definition of ⊤×-bilinearity (Definition 2.12).

Definition 4.11. Let V1, . . . , Vn be subspaces of a pre-locality vector space (E,⊤), and (G,⊤G) a pre-
locality vector space.

• We call a ⊤× n-linear a map f : V1×⊤ · · ·×⊤Vn → G which satisfies the ⊤× n-linearity condition:

f̄(I
⊤×
mult,n) = {0G}, (2.3)

where we have set I⊤×
mult,n := K(V1 ×⊤ · · · ×⊤ Vn) ∩ Imult,n(V1, . . . , Vn). When n = 2, we say that f

is ⊤×-bilinear as in Definition 2.12.

• We call a map f : (V1 ×⊤ · · · ×⊤ Vn,⊤V1×⊤···×⊤Vn) → (G,⊤G) locality ⊤× n-linear or locality
multilinear, if it is ⊤× n-linear, and is moreover a locality map, namely

(f × f)(⊤V1×⊤···×⊤Vn
) ⊂ ⊤G, (2.4)

or equivalently

(v1, . . . , vn)⊤V1×⊤···×⊤Vn
(v′1, . . . , v

′
n) =⇒ f(v1, . . . , vn)⊤Gf(v′1, . . . , v′n).

When n = 2 we say that f is locality ⊤×-bilinear, instead of locality ⊤× 2-linear.

Proposition 4.12. The map ⊗⊤ : (V1×⊤ · · · ,×⊤Vn,⊤V1×⊤···×⊤Vn
)→ (V1⊗⊤ · · ·⊗⊤Vn,⊤⊗(V1, . . . , Vn))

is a locality ⊤× n-linear map.

Proof. For n = 2, it was shown in Proposition 2.16 that ⊗⊤ is ⊤×-bilinear. A similar argument proves
that ⊗⊤ is ⊤× n-linear for any n > 2. We therefore only need to show that it is a locality map. Recall
that ⊗⊤ = π⊤ ◦ ι⊤, where ι⊤ : V1×⊤ · · ·×⊤ Vn → K(V1×⊤ · · ·×⊤ Vn) is the canonical inclusion map. The
latter is a locality map since the locality relation⊤V1×⊤···×⊤Vn

on K(V1×⊤ · · ·×⊤ Vn) is a linear extension
of the locality relation in V1 ×⊤ · · · ×⊤ Vn. The map π⊤ : K(V1 ×⊤ · · · ×⊤ Vn)→ V1 ⊗⊤ · · · ⊗⊤ Vn is also
a locality map by construction of the locality relation ⊤⊗(V1, . . . , Vn). The statement then follows from
the fact that the composition of locality maps is again a locality map (see Proposition 2.3).

Before stating and proving the universal property of the locality tensor product, we recall that a
subset B of a vector space V is a (Hamel or algebraic) basis if it satisfies:

1. the linear independence property, i.e., for every finite subset {b1, . . . , bn} of B and every α1, . . . , αn
in K we have

∑n
i=1 αibi = 0 =⇒ α1 = · · · = αn = 0, and

2. the spanning property, i.e., every vector v in V can be written as a finite linear combination
v =

∑n
k=1 αibi in which case there is an isomorphism of vector spaces KB ≃ V .

Recall that, since we do not have a topology, a basis always refer to a Hamel basis (Definition 1.2) and
not a Hilbert basis, even if the space is infinite dimensional.

The following result states that any ⊤× n-linear map can be extended (non uniquely in general) to an
n-linear map. The arguments in the proof follow those in [21, Proposition 1.15] and make use of Zorn’s
lemma 1.1, more precisely Lemma 1.5.

Proposition 4.13. Let V1, . . . , Vn be subspaces of a pre-locality vector space (E,⊤) and G a linear space.
Any ⊤× n-linear map f : V1 ×⊤ · · · ×⊤ Vn → G extends to an n-linear map g : V1 × · · · × Vn → G i.e.,
g|V1×⊤···×⊤Vn

= f .

Proof. Consider the setO := {B ⊂ V1×⊤· · ·×⊤Vn| ⊗(B) is a linearly independent subset of V1⊗· · ·⊗Vn},
where ⊗(B) is the image of B under the canonical map ⊗ : V1×· · ·×Vn → V1⊗· · ·⊗Vn. From (0, . . . , 0︸ ︷︷ ︸

n−times

) ∈

O follows that O is not empty. We equip O with the partial inclusion order B1 ⊂ B2 and consider a chain
C of O. We observe that

⋃
B∈C B ∈ O since ⊗

(⋃
B∈C B

)
=
⋃
B∈C ⊗(B), and the union of nested linearly
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independent sets is a linearly independent set (see Lemma 1.3). Thus, O satisfies the assumption of Zorn’s
Lemma (Lemma 1.1) which ensures the existence of a maximal element B ∈ O and correspondingly a
linearly independent set ⊗(B) ⊂ V1 ⊗ · · · ⊗ Vn. Since ⊗(B) ⊂ ⊗(V1 × · · · × Vn) and ⊗(V1 × · · · × Vn)
generates V1 ⊗ · · · ⊗ Vn, by Lemma 1.5, we can complete ⊗(B) to a basis ⊗(B) ⊂ ⊗(V1 × · · · × Vn) of
V1 ⊗ · · · ⊗ Vn.

Since by construction, ⊗(B) ⊂ ⊗(V1×· · ·×Vn), any element y ∈ ⊗(B)\⊗(B) can be written y = ⊗(xy)
for some xy ∈ V1 × · · · × Vn. We claim that the set B := {xy : y ∈ ⊗(B) \ ⊗(B)} ∪ B fulfills the relation

⊗(B) = ⊗(B).

Indeed, if x ∈ B, either x ∈ B, in which case y := ⊗(x) ∈⊗(B) ⊂ ⊗(B), or y := ⊗(x) ∈ ⊗(B)\⊗(B) ⊂ ⊗(B)
and therefore ⊗(B) ⊂ ⊗(B). Conversely, for y ∈ ⊗(B) either y ∈ ⊗(B) ⊂ ⊗(B) or y ∈ ⊗(B) \ ⊗(B) in
which case xy ∈ B and therefore ⊗(B) ⊂ ⊗(B).

Let g : V1 × · · · × Vn → G be the unique n-linear map defined on B by

g(x1, . . . , xn) :=

{
f(x1, . . . , xn) if (x1, . . . , xn) ∈ B
0 if (x1, . . . , xn) /∈ B

The existence and uniqueness of this map is granted by the universal property of the tensor product
(Theorem 1.16). It remains to show that g|V1×⊤···×⊤Vn

= f . Given p ∈ V1 ×⊤ · · · ×⊤ Vn, the maximality
of B yields the existence of (x1,i, . . . , xn,i) ∈ B with 1 ≤ i ≤ N for some N ∈ N such that

∑N
i=1 αix1,i ⊗

· · ·xn,i = ⊗(p), and thus
∑N
i=1 αi(x1,i, . . . , xn,i) = p+ω which amounts to ω ∈ Imult(V1, . . . , Vn)∩K(V1×⊤

· · · ×⊤ Vn). Using the extensions of f and g to f̄ and ḡ (see (1.1)), and the fact that f̄(ω) = ḡ(ω) = 0,
this implies that

f(p) = f̄
( N∑
i=1

αi(x1,i, . . . , xn,i)− ω
)
=

N∑
i=1

αif(x1,i, . . . , xn,i) =

N∑
i=1

αig(x1,i, . . . , xn,i) = g(p).

It follows that g|V1×⊤···×⊤Vn
= f as expected.

We deduce from the universal property of the usual tensor product (Theorem 1.11), a universal
property for the locality tensor product of subspaces of a pre-locality vector space.

Theorem 4.14 (Universal property of the locality tensor product). Given V1, . . . , Vn subspaces of a
pre-locality vector space (E,⊤), G a linear space and f⊤ : V1×⊤ · · ·×⊤ Vn → G a ⊤× n-linear map, there
is a unique linear map ϕf⊤ : V1 ⊗⊤ · · · ⊗⊤ Vn → G such that the following diagram commutes:

V1 ×⊤ · · · ×⊤ Vn V1 ⊗⊤ · · · ⊗⊤ Vn

G

⊗⊤

f⊤

ϕf⊤

(2.5)

If moreover (G,⊤G) is a pre-locality vector space and f⊤ is a locality ⊤× n-linear map, then the map
ϕf⊤ : (V1 ⊗⊤ · · · ⊗⊤ Vn,⊤⊗(V1, . . . , Vn)) → (G,⊤G) is a locality linear morphism. In particular the
following diagram commutes, and all maps in it are locality maps.

(V1 ×⊤ · · · ×⊤ Vn,⊤V1×⊤···×⊤Vn
) (V1 ⊗⊤ · · · ⊗⊤ Vn,⊤⊗(V1, . . . , Vn))

(G,⊤G)

⊗⊤

f⊤

ϕf⊤
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Remark 4.15. The statement holds for the trivial locality relation ⊤ = E × · · · × E︸ ︷︷ ︸
n−times

as a consequence

of the universal property of the usual (non-locality) tensor product (Theorem 1.16). This fact is used in
the proof to build the map ϕf⊤ for any locality relation ⊤ on E.

Proof. To build ϕf⊤ , we use Proposition 4.13, to extend f⊤ to a multilinear map g : V1 × · · · × Vn → G
such that g|V1×⊤···×⊤Vn = f⊤. The universal property of the usual tensor product yields the existence of
a unique linear map ϕg : V1 ⊗ · · · ⊗ Vn → G such that

g = ϕg ◦ ⊗. (2.6)

Since V1⊗⊤ · · ·⊗⊤Vn ⊂ V1⊗· · ·⊗Vn, we can restrict ϕg to V1⊗⊤ · · ·⊗⊤Vn and set ϕf⊤ := ϕg|V1⊗⊤···⊗⊤Vn .
As a consequence of ⊗|V1×⊤···×⊤Vn = ⊗⊤, we can further restrict (2.6) to V ×⊤ · · · ×⊤ Vn and thus

f⊤ = ϕf⊤ ◦ ⊗⊤

as expected.
For the uniqueness it is useful to make the following observation. Thanks to the universal property of

the usual tensor product (Theorem 1.16), any given map g induces a uniquely defined map ϕg. So is its
restriction ϕf⊤ is uniquely defined. However the construction of the extension g of the map f⊤ by means
of Zorn’s lemma, does not ensure uniqueness. Nonetheless, given g1, g2 : V1 × ⊤ × Vn → G multilinear
maps such that g1|V1×⊤···×⊤Vn

= g2|V1×⊤···×⊤Vn
= f⊤, we have that ϕg1 |V1⊗⊤···⊗⊤Vn

= ϕg2 |V1⊗⊤···⊗⊤Vn
.

Indeed, given an equivalence class [x] ∈ V1 ⊗⊤ · · · ⊗⊤ Vn, a representative of such class x′ ∈ [x] can be
written as x′ =

∑
i∈I αi(v1,i, . . . , vn,i) where I is a finite set, αi ∈ K, and (v1,i, . . . , vn,i) ∈ V1×⊤ · · ·×⊤Vn

for every i ∈ I. Thus, for j ∈ {1, 2}

ϕgj ([x]) =
∑
i∈I

αiϕgj ([(v1,i, . . . , vn,i)])

=
∑
i∈I

αiϕgj (v1,i ⊗ · · · ⊗ vn,i)

=
∑
i∈I

αigj (v1,i, . . . , wn,i)

=
∑
i∈I

αif⊤ (v1,i, . . . , vn,i) .

It follows that the restriction of ϕgj to V1 ⊗⊤ · · · ⊗⊤ Vn is completely determined by f⊤. Hence
ϕg1 |V1⊗⊤···⊗⊤Vn

= ϕg2 |V1⊗⊤···⊗⊤Vn
= ϕf⊤ , implying the uniqueness of ϕf⊤ .

We are only left to show that ϕ is a locality map if f⊤ is locality ⊤× n-linear. Recall that two equiva-
lence classes [a] and [b] in V1⊗⊤ · · ·⊗⊤Vn verify [a]⊤⊗(V1, . . . , Vn)[b] if there are

∑n
i=1 αi(x1,i, . . . , xn,i) ∈

[a] and
∑m
j=1 βj(y1,j , . . . , yn,j) ∈ [b] such that for every (k, i, q, j) ∈ [n] × I × [n] × J , xk,i⊤yq,j . Since

f⊤ is locality ⊤× n-linear, then f⊤(
∑n
i=1 αi(x1,i, . . . , xn,i))⊤Gf(

∑m
j=1 βj(y1,j , . . . , yn,j)) which amounts

to ϕ([a])⊤Gϕ([b]). Therefore ϕ is local as expected.

Corollary 4.16. The universal property of the locality tensor product of subspaces of a pre-locality
vector space (Theorem 4.14) is equivalent to the universal property of the usual (non locality) tensor
product of subspaces of an ordinary vector space (Theorem 1.16).

Proof. It was proven in Theorem 4.14 that the universal property of the locality tensor product of
subspaces of a pre-locality vector space E is implied by Theorem 1.16 (the universal product of the usual
(non-locality) tensor product of subspaces of E).

Conversely, assuming that the universal property of the locality tensor product of subspaces of any
pre-locality vector space (Theorem 4.14) holds, we want to show that it holds for ordinary tensor products.
Given subspaces V1, . . . , Vn of a vector space E. Consider the trivial locality relation ⊤ = E × E. Then
Theorem 1.16 follows from Theorem 4.14.
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As a consequence of the universal property of the locality tensor product, we may now define the
tensor product of locality independent linear maps. Recall that for (E,⊤E) and (F,⊤F ) pre-locality
vector spaces, V1 and V2 subspaces of E, and W1 and W2 subspaces of F , two maps fi : Vi → Wi with
i ∈ {1, 2} are locality independent to each other if, and only if (see Definition 2.1)

(f1 × f2)(V1 ×⊤E
V2) ⊂W1 ×⊤F

W2.

Lemma 4.17. Let (E,⊤E) and (F,⊤F ) be pre-locality vector spaces, V1, . . . , Vn (resp. W1, . . . ,Wn)
subspaces of E (resp. F ), and ⊗W⊤ :W1×⊤, . . . ,×⊤Wn →W1⊗⊤ · · ·⊗⊤Wn the canonical injection map.
If there are linear maps fi : Vi →Wi with i ∈ [n], locality independent two by two, then

⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

: V1 ×⊤ · · · ×⊤ Vn →W1 ⊗⊤ · · · ⊗⊤ Wn

is a ⊤× n-linear map. If moreover every fi is a locality map, then ⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

is a
locality ⊤× n-linear map.

Proof. Observe first that ⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

is well defined since the fi are locality inde-
pendent two by two, and therefore (f1 × · · · × fn)

∣∣
V1×⊤···×⊤Vn

: V1 ×⊤ · · · ×⊤ Vn → W1 ×⊤ · · · ×⊤ Wn.
Define

(f1 × · · · × fn) : K(V1 × · · · × Vn)→ K(W1 × · · · ×Wn)

as the only linear map whose restriction to V1×· · ·×Vn is equal to (f1×· · ·× fn). We denote with some
abuse of notation (f1 × · · · × fn)|⊤ the restriction of (f1 × · · · × fn) to K(V1 ×⊤ · · · ×⊤ Vn). It follows
from the assertion before that

(f1 × · · · × fn)|⊤ : K(V1 ×⊤ · · · ×⊤ Vn)→ K(W1 ×⊤ · · · ×⊤ Wn). (2.7)

We proceed to prove that ⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

= ⊗W⊤ ◦ (f1 × · · · × fn)|⊤. Indeed, for any∑
i∈I αi(v1,i, . . . , vn,i) ∈ K(V1 ×⊤ · · · ×⊤ Vn), with I a finite set,

⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

(∑
i∈I

αi(v1,i, . . . , vn,i)
)
=
∑
i∈I

αi ⊗W⊤ (f1 × · · · × fn)(v1,i, . . . , vn,i)

= ⊗W⊤
(∑
i∈I

αi(f1 × · · · × fn)(v1,i, . . . , vn,i)
)

= ⊗W⊤ ◦ (f1 × · · · × fn)|⊤
(∑
i∈I

αi(v1,i, . . . , vn,i)
)
.

The first and second lines follow from the definition of the maps ⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

and

⊗W⊤ (see (1.1)), and the third one is a consequence of the definition of (f1 × · · · × fn)|⊤.
In order to prove that ⊗W⊤ ◦ (f1 × · · · × fn)

∣∣
V1×⊤···×⊤Vn

is ⊤× n-linear, we must show (see Definition

2.12) that ⊗W⊤ ◦ (f1 × · · · × fn)|⊤
(
K(V1 ×⊤ · · · ×⊤ Vn) ∩ Imult(V1, . . . , Vn)

)
= {0W1⊗⊤···⊗⊤Wn

}. It follows
from the linearity of every fi that (f1 × · · · × fn)(Imult(V1, . . . , Vn)) ⊂ Imult(W1, . . . ,Wn). This assertion
together with (2.7) imply that (f1 × · · · × fn)

(
K(V1×⊤ · · ·×⊤Vn)∩Imult(V1, . . . , Vn)

)
⊂
(
K(W1×⊤ · · ·×⊤

Wn) ∩ Imult(W1, . . . ,Wn)
)
. As a consequence of the ⊤× n-linearity of ⊗W⊤ (see Proposition 2.16), that

⊗W⊤ ◦ (f1 × · · · × fn)|⊤
(
K(V1 ×⊤ · · · ×⊤ Vn)∩ Imult(V1, . . . , Vn)

)
is equal to {0W1⊗⊤···⊗⊤Wn

} as expected,
and thus ⊗W⊤ ◦ (f × · · · × fn)|V1×⊤···×⊤Vn

: V ×⊤ · · · ×⊤ Vn →W1 ⊗⊤ · · · ⊗⊤ Wn is a ⊤× n-linear map.
If moreover the fi are locality linear maps, it is easy to see that (f1 × · · · × fn)(⊤V1×⊤···×⊤Vn

) ⊂
(⊤W1×⊤···×⊤Wn). Since ⊗W⊤ is a locality ⊤× n-linear map (see Proposition 4.12) and the composition of
locality maps is again a locality map (see Proposition 2.3), then ⊗W⊤ ◦ (f1 × · · · × fn)

∣∣
V1×⊤···×⊤Vn

is a
locality ⊤× n-linear map.

Definition-Proposition 4.18. With the hypothesis of Lemma 4.17, the tensor product of the maps fi
for 1 ≤ i ≤ n, is the only linear map f1 ⊗ · · · ⊗ fn : V1 ⊗⊤ · · · ⊗⊤ Vn →W1 ⊗⊤ · · · ⊗⊤ Wn such that

f1 ⊗ · · · ⊗ fn ◦ ⊗V⊤ = ⊗W⊤ ◦ (f1 × · · · × fn)
∣∣
V1×⊤···×⊤Vn

.
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Here ⊗V⊤ is the canonical map from V1 ×⊤ · · · ×⊤ Vn to V1 ⊗⊤ · · · ⊗⊤ Vn.
This can be visualized in the commutativity of the following diagram.

V1 ×⊤ · · · ×⊤ Vn V1 ⊗⊤ · · · ⊗⊤ Vn

W1 ×⊤ · · · ×⊤ Wn W1 ⊗⊤ · · · ⊗⊤ Wn

⊗V
⊤

f1×···×fn f1⊗···⊗fn

⊗W
⊤

If moreover the fi are locality linear maps, then f1 ⊗ · · · ⊗ fn is also a locality linear map.

Proof. The existence and uniqueness of the map f1 ⊗ · · · ⊗ fn in the previous definition is a consequence
of Lemma 4.17 and of the universal property of the locality tensor product (Theorem 4.14). These two
results also imply that if the fi are locality maps, then f1 ⊗ · · · ⊗ fn is also a locality map.

Remark 4.19. Notice that with some abuse of notation, we write f1⊗· · ·⊗fn instead of f1⊗⊤ · · ·⊗⊤ fn.
This is because the map in Definition-Proposition 4.18 is the restriction of the usual tensor product of
the fi maps to V ⊗⊤ W ⊂ V ⊗W , and therefore there is no risk of ambiguity.

Distributivity of the locality tensor product

Two properties of the non-locality tensor product commonly used are the distributivity with respect to
direct sums and with respect to intersections (see Proposition 1.17). These two properties rely on the
existence of a direct complement to every subspace V1 ⊂ V , i.e, the existence of a subspace V2 ⊂ V such
that V1 ⊕ V2 = V . However, for the locality tensor product, distributivity does not always hold as the
following example illustrates.

Counter-example 4.20. Consider R2 with the orthogonality locality. Then

(⟨e1⟩ ⊗⊤ R2)⊕ (⟨e2⟩ ⊗⊤ R2) = ⟨e1 ⊗ e2⟩ ⊕ ⟨e2 ⊗ e1⟩, (2.8)

is different from (⟨e1⟩ ⊕ ⟨e2⟩)⊗⊤ R2 since it does not contain (e1 + e2)⊗ (e1 − e2) ∈ R2 ⊗⊤ R2.

It is therefore necessary to ensure some compatibility of the splitting V = V1 ⊕ V2 with the locality
relation ⊤, in order to accommodate for distributivity properties of the tensor product in the locality
set up. Such properties will be useful in the sequel (Proposition 6.6). The following proposition gives
sufficient conditions to ensure the distributivity of the locality tensor product with respect to the direct
sum.

Proposition 4.21. Let V and W be linear subspaces of a pre-locality vector space (E,⊤), and let V1 and
V2 be subspaces of V such that V1 ⊕ V2 = V .

1. If for {i, j} = {1, 2} the projection maps πi : V → Vi onto Vi along Vj are locally independent of
the identity map IdW on W (i.e., (πi × IdW )(⊤|V×W ) ⊂ ⊤|Vi×W ), then

(V1 ⊗⊤ W )⊕ (V2 ⊗⊤ W ) = V ⊗⊤ W.

2. If (E,⊤) is a locality vector space, and one of the projections πi is locally independent of IdW , then
the other projection is also locally independent of IdW .

Proof. 1. We first prove that (V1 ⊗⊤ W ) ⊕ (V2 ⊗⊤ W ) ⊂ V ⊗⊤ W. Since Vi ⊂ V then Vi ⊗⊤ W ⊂
V ⊗⊤W and the expected inclusion follows. To prove the other direction, without lost of generality
consider a⊗ b in V ⊗⊤W such that (a, b) lies in ⊤|V×W . Since πi and IdW are locally independent
(πi(a), b) ∈ ⊤|Vi×W thus πi(a)⊗ b ∈ Vi ⊗⊤ W , which implies that

a⊗ b = (π1(a) + π2(a))⊗ b = π1(a)⊗ b+ π2(a)⊗ b ∈ (V1 ⊗⊤ W )⊕ (V2 ⊗⊤ W ).
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2. Moreover, if (E,⊤) is a locality vector space and if π1 is independent of IdW , then for any pair
(a, b) ∈ V ×W we have a⊤b =⇒ π1(a)⊤b. Using π2(a) = a − π1(a), it follows that π2(a)⊤b since
{b}⊤ is a vector subspace of E. Thus π2 is independent of IdW as claimed.

We prove a (weak) locality version of the distributivity property w.r. to the intersection (V1∩V2)⊗W =
(V1 ⊗W ) ∩ (V2 ⊗W ).

Corollary 4.22. Let V and W be linear subspaces of a pre-locality vector space (E,⊤), and let V1, V2 be
subspaces of V . Let V ′

2 be a direct complement of the intersection V1 ∩ V2 in V2 i.e. (V1 ∩ V2)⊕ V ′
2 = V2.

1. If the projection maps π : V2 → V1 ∩ V2 onto V1 ∩ V2 along V ′
2 and IdV2 − π are locally independent

of the identity map IdW on W , then

(V1 ∩ V2)⊗⊤ W = (V1 ⊗W ) ∩ (V2 ⊗⊤ W ).

2. In particular, if V1 ⊂ V , and if the projection maps π : V → V1 onto V1 along V ′
2 and IdV2

− π are
locally independent of the identity map IdW on W , then

V1 ⊗⊤ W = (V1 ⊗W ) ∩ (V ⊗⊤ W ).

Proof. 1. Using the distributivity property of the locality tensor product ((V1 ∩ V2)⊗⊤ W )⊕ (V ′
2 ⊗⊤

W ) = V2 ⊗⊤ W which follows from Proposition 4.21, we have

(V1 ⊗W ) ∩ (V2 ⊗⊤ W ) = (V1 ⊗W )
⋂

(((V1 ∩ V2)⊗⊤ W )⊕ (V ′
2 ⊗⊤ W )) . (2.9)

We now make use of a result of elementary linear algebra, namely A ∩ (B ⊕ C) = B whenever
A,B and C are linear subspaces of a linear space E with B ⊂ A and A ∩ C = {0}. Since
(V1 ∩ V2)⊗⊤ W ⊂ V1 ⊗W and (V1 ⊗W ) ∩ (V ′

2 ⊗⊤ W ) = {0}, the right hand side of (2.9) is equal
to (V1 ∩ V2)⊗⊤ W , which yields the result.

2. Setting V2 =: V in the previous item, yields the result since V ′
1 = {0}.

4.3 Locality tensor algebra and its universal property
In the present paragraph we extend the results of Paragraph 4.2 to the locality tensor algebra of a pre-
locality vector spaces. For that purpose, we build a natural locality relation in the tensor algebra induced
from the one in the pre-locality vector space and then state and prove its universal property (Theorem
4.33), together with the equivalence with the usual universal property (Corollary 4.34).

Recall that the tensor algebra of a vector space V is a unital algebra. It is therefore necessary to
extend Definition 2.26 to include unital (pre-) locality algebras (or simply (pre-) locality algebras). This
can be done as a consequence of Definition-Proposition 4.18. The following definition is taken from [22,
Definition 3.16] and [21, Definition 4.1].

Definition 4.23. A non-unital (pre-) locality algebra (A,⊤,m) is called unital (or simply (pre-) locality
algebra) if there is a map u : K→ A such that u(K) ⊆ A⊤, which makes the following diagram commute

K⊗A A⊗⊤ A A⊗K

A

u⊗Id

≃ m

Id⊗u

≃
(2.10)

We set K⊗⊤A := K⊗A and A⊗⊤ K := A⊗K, meaning that every element in A is locality independent
of the unit element.

Recall also from (1.7) that the tensor algebra of a vector space V is defined as

T (V ) :=
⊕
n≥0

V ⊗n,

where we keep the conventions V ⊗0 = K, and V ⊗1 = V . This motivates the following definition
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Definition 4.24. [21, Definition 4.5] The locality tensor algebra over a pre-locality vector space
(V,⊤) is defined as

T⊤(V ) :=
⊕
n≥0

V ⊗⊤n.

So far, the locality tensor algebra of a pre-locality vector space is only a vector space. The following
proposition lays the foundations to build a locality relation on it by expressing T⊤(V ) as a quotient space.
We follow the convention V ×0

⊤ = {0}.

Proposition 4.25. Given a pre-locality vector space (V,⊤), then

T⊤(V ) = K(
⋃∞

k=0 V
×⊤k)/

(I∞mult(V )∩K(
⋃∞

k=0 V
×⊤k))

where we have set I∞mult(V ) :=
⊕∞

k=1 Imult,k(V ).

Proof. Given a direct sum of vector spaces V =
⊕∞

k=0 Vk and Ik a linear subspace of Vk for each k in
Z≥0, it is a standard result of linear algebra that the quotient space V = (

⊕∞
k=0 Vk)/

⊕∞
k=0 Ik inherits the

structure of a direct sum of vector space V = ⊕∞
k=0Vk with Vk = Vk/Ik. Applying this to Vk := K(V ×⊤k)

and Ik := Imult,k ∩ K(V ×⊤k) (we write Imult,k instead of Imult(V, . . . , V︸ ︷︷ ︸
k−times

) to simplify the notation), and

noticing that

∞⊕
k=0

Ik =

∞⊕
k=0

(
Imult,k ∩K(V ×⊤k)

)
=

∞⊕
k=0

Imult,k ∩
∞⊕
k=0

K(V ×⊤k) = I∞mult(V ) ∩K
( ∞⋃
k=0

V ×⊤k
)
.

then yields the result, where we have set Imult,0 := {0}.

We proceed to define a locality relation in the locality tensor algebra in a similar manner as it was
done for locality tensor products.

Definition 4.26. For a pre-locality vector space (V,⊤) we define

• the locality relation ⊤× on
⋃∞
k=0 V

×⊤k as

(v1, . . . , vn)⊤×(w1, . . . , wm)⇐⇒ ∀(i, j) ∈ [n]× [m], vi⊤wj ,

where n and m lie in Z≥1. The relation ⊤× linearly extend to K(
⋃∞
k=0 V

×⊤k) as in (1.23).

• The locality relation ⊤⊗ on T⊤(V ) is defined as the quotient relation for the canonical map ⊗ :(
K(
⋃∞
k=0 V

×⊤k),⊤×

)
→ T⊤(V ).

Remark 4.27. For any (V,⊤) pre-locality vector space, the pair (T⊤(V ),⊤⊗) is trivially a pre-locality
vector space, ⊤⊗ is symmetric by construction and 0⊤⊗0.

Proposition 4.28. The locality relation ⊤× (resp. ⊤⊗) when restricted to V ×n
⊤ × V ×n

⊤ (resp. V ⊗n
⊤ ×

V ⊗n
⊤) is equal to the locality relation ⊤×n (resp. ⊤⊗n) from Definition 4.9, whenever n > 2.

Proof. The first statement, namely that ⊤×
∣∣
V ×n

⊤×V ×n
⊤ = ⊤×n, follows directly from (2.2) and Definition

4.26. The second statement follows from the previous one and from the equalities ⊗(V ×n
⊤) = V ⊗n

⊤ , and
⊗−1(V ⊗n

⊤) = V ×n
⊤ .

Remark 4.29. Notice that (K = V ⊗0
⊤)⊤⊗T⊤(V ). Indeed, since for every k ∈ K and every (v1, . . . , vn) ∈

V ×n
⊤ , we have that k⊤×(v1, . . . , vn), then k⊤⊗ (v1 ⊗ · · · ⊗ vn) for every v1 ⊗ · · · ⊗ vn ∈ V ⊗n

⊤ , and the
claim follows.

The following proves the associativity of the locality tensor product of spaces. Notice that for
V1, . . . , Vm, . . . , Vn subspaces of a pre-locality vector space (E,⊤), the tensor products V1 ⊗⊤ · · · ⊗⊤ Vm
and Vm+1 ⊗⊤ · · · ⊗⊤ Vn are subspaces of the pre-locality vector space (T⊤(E),⊤⊗), and therefore its
locality tensor product is well defined.
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Proposition 4.30. Let V1, . . . , Vm, . . . , Vn be subspaces of a pre-locality vector space (E,⊤), where m < n
are positive integers. Then, there is an isomorphism of pre-locality vector spaces

(V1 ⊗⊤ · · · ⊗⊤ Vm)⊗⊤⊗ (Vm+1 ⊗⊤ · · · ⊗⊤ Vn) ∼ V1 ⊗⊤ · · · ⊗⊤ Vn.

Proof. By means of Proposition 2.20, V1⊗⊤ · · ·⊗⊤Vm (resp. Vm+1⊗⊤ · · ·⊗⊤Vn, resp. V1⊗⊤ · · ·⊗⊤Vn) is
the subspace of V1⊗· · ·⊗Vm (resp. Vm+1⊗· · ·⊗Vn, resp. V1⊗· · ·⊗Vn) generated by all elements of the
form v1⊗· · ·⊗vm (resp. vm+1⊗· · ·⊗vn, resp. v1⊗· · ·⊗vn) such that (v1, . . . , vm) lies in V1×⊤ · · ·×⊤Vm
(resp. (vm+1, . . . , vn) lies in Vm+1 ×⊤ · · · ×⊤ Vn, resp. (v1, . . . , vn) lies in V1 ×⊤ · · · ×⊤ Vn). Moreover
(V1 ⊗⊤ · · · ⊗⊤ Vm) ⊗⊤⊗ (Vm+1 ⊗⊤ · · · ⊗⊤ Vn) is the subspace of (V1 ⊗ · · · ⊗ Vm) ⊗ (Vm+1 ⊗ · · · ⊗ Vn)
generated by all elements of the form (v1 ⊗ · · · ⊗ vm) ⊗ (vm+1 ⊗ · · · ⊗ vn) such that (v1, . . . , vn) lies in
V1×⊤ · · ·×⊤Vn. The isomorphism as vector spaces then follows from the associativity of the usual tensor
product (Corollary 1.15). We are left to check that the locality relations are isomorphic. This follows
directly from the definition of the localities ⊤⊗ in the tensor product as quotient localities (Definition
4.6). Indeed, two elements in either space are locality independent if there is a way of writing them where
each element on the first tensor is locality independent to each element on the second tensor. Thus, the
isomorphism is of pre-locality vector spaces.

So far the locality tensor algebra is only a pre-locality vector space. In order to make it a pre-locality
algebra, we have to endow it with a partial product. For that purpose, notice that for any pre-locality
vector space (V,⊤) the locality tensor algebra T⊤(V ) is a subspace of the usual tensor algebra T (V ).
Indeed, it follows from V ⊗n

⊤ being a subspace of V ⊗n for any n in Z≥0.

Proposition 4.31. [21, Proposition 4.12] Let (V,⊤) be a pre-locality vector space. The usual concate-
nation product m⊗ : T (V ) × T (V ) → T (V ) on the (non-locality) tensor algebra restricts to ⊤⊗ =
T⊤(V )×⊤⊗ T⊤(V ) where it defines a ⊤×-bilinear map (see Definition 2.12) and

(T⊤(V ),⊤⊗,m⊗, u)

defines a pre-locality algebra, where u is the canonical injection u : K→ V ⊗0
⊤ .

Proof. • Let us first check that the restriction is T⊤(V )-valued, namely that m⊗ (⊤⊗) ⊂ T⊤(V ).
For ([a], [b]) ∈ ⊤⊗, we may assume without loss of generality that a = (a1, . . . , am) ∈ V ×⊤m,
b = (b1, . . . , bn) ∈ V ×⊤n and a⊤×b. Therefore ai⊤bj for every i and j implying that ab :=
(a1, . . . , am, b1, . . . , bn) ∈ V ×⊤(m+n) so that m⊗([a], [b]) = [ab] lies in T⊤(V ) as expected.

• The ⊤×-bilinearity follows from the fact that m⊗ is a restriction of the usual concatenation product
on the tensor algebra which is bilinear, and from Proposition 2.13.

• The associativity of the usual concatenation product is preserved when we restrict to ⊤⊗ whenever
it is well defined. Therefore (T⊤(V ),⊤⊗,m⊗, u) is indeed a pre-locality algebra.

The following Proposition states the relation between (pre-)locality subspaces and their respective
locality tensor algebras.

Proposition 4.32. [21, Proposition 4.13] Let (W,⊤′) be a (pre-)locality subspace of (V,⊤) a (pre-)
locality vector space. Then T⊤′(W ) is a (pre-)locality subalgebra of T⊤(V ).

Proof. We prove first that for every n ∈ Z≥0, W⊗n
⊤′ is a subspace of V ⊗n

⊤ . This is trivially true for
n ∈ {0, 1}. For n ≥ 2, notice that

Imult(W, . . . ,W︸ ︷︷ ︸
n−times

) = Imult(V, . . . , V︸ ︷︷ ︸
n−times

) ∩K(W × · · · ×W︸ ︷︷ ︸
n−times

).

Intersecting both sides with K(W ×⊤′ · · · ×⊤′ W︸ ︷︷ ︸
n−times

) it follows that

(
Imult(V, . . . , V︸ ︷︷ ︸

n−times

) ∩K(W × · · · ×W︸ ︷︷ ︸
n−times

)
)
∩K(W ×⊤′ · · · ×⊤′ W︸ ︷︷ ︸

n−times

) = Imult(W, . . . ,W︸ ︷︷ ︸
n−times

) ∩K(W ×⊤′ · · · ×⊤′ W︸ ︷︷ ︸
n−times

).
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Moreover, since K(W ×⊤′ · · · ×⊤′ W ) ⊂ K(W × · · · ×W ) and K(W ×⊤′ · · · ×⊤′ W ) ⊂ K(V ×⊤ · · · ×⊤ V )
then(
Imult(V, . . . , V︸ ︷︷ ︸

n−times

)∩K(V ×⊤ · · · ×⊤ V︸ ︷︷ ︸
n−times

)
)
∩K(W ×⊤′ · · · ×⊤′ W︸ ︷︷ ︸

n−times

) = Imult(W, . . . ,W︸ ︷︷ ︸
n−times

)∩K(W ×⊤′ · · · ×⊤′ W︸ ︷︷ ︸
n−times

)

and hence, using the identity K(W ×⊤′ · · · ×⊤′ W )∩K(V ×⊤ · · · ×⊤ V ) = K(W ×⊤′ · · · ×⊤′ W ) we have

W⊗n
⊤′ = K(W ×⊤′ · · · ×⊤′ W ) / Imult(W, . . . ,W ) ∩K(W ×⊤′ · · · ×⊤′ W )

= K(V ×⊤ · · · ×⊤ V ) ∩K(W ×⊤′ · · · ×⊤′ W ) / Imult(W, . . . ,W ) ∩K(W ×⊤′ · · · ×⊤′ W )

⊂ K(V ×⊤ · · · ×⊤ V ) / Imult(V, . . . , V ) ∩K(V ×⊤ · · · ×⊤ V )

= V ⊗n
⊤ ,

(since (A ∩ C)/(B ∩ C) ⊆ A/B for B ⊆ A). In particular T⊤′(W ) is a subspace of T⊤(V ). We are only
left to prove that the injection map ι : T⊤′(W )→ T⊤(V ) is a locality map. The inclusion ⊤′ ⊂ ⊤ implies
that ⊤′

× ⊂ ⊤× (see Definition 4.26), and therefore

[w1]⊤′
⊗[w2]⇒ (∃w′

1 ∈ [w1])(∃w′
2 ∈ [w2]) : w

′
1⊤′

×w
′
2

⇒ (∃w′
1 ∈ [w1])(∃w′

2 ∈ [w2]) : w
′
1⊤×w

′
2

⇒ [w1]⊤⊗[w2].

Thus ι is a morphism of (pre-)locality vector spaces. One easily checks that it is moreover a morphism
of (pre-)locality algebras which proves the statement of the proposition.

As promised in the title of this paragraph, we proceed to prove the universal property on the locality
tensor algebra of a pre-locality vector space.

Theorem 4.33 (Universal property of locality tensor algebra over a pre-locality vector space). [21,
Theorem 4.14] Let (V,⊤) be a pre-locality vector space, (A,⊤A) a pre-locality algebra whose product
mA : (A ×⊤ A,⊤A×⊤A) → (A,⊤A) is a locality map, and f : V → A a locality linear map. There is a
unique pre-locality algebra morphism ϕ : T⊤(V )→ A such that the following diagram commutes

(V,⊤) (T⊤(V ),⊤⊗)

(A,⊤A)

⊗⊤

f
ϕ

where ⊗⊤ : V → T⊤(V ) is the canonical (locality) injection map.

Proof. Let f : V → A be a locality linear map. We define for every n ∈ Z≥2, the map fn : V ×⊤n → A
as fn(x1, . . . , xn) := mn−1

A (f(x1), . . . , f(xn)). Notice that since the maps f and mA are locality maps, it
follows that fn is well defined. Moreover, from the fact that composition of locality maps is again locality
(Proposition 2.3), it follows that fn is also a locality map. Furthermore, since f is linear and mA is a
⊤×-bilinear map, then fn is ⊤× n-linear, and thus a locality ⊤× n-linear map.

By means of the universal property of the locality tensor product (Theorem 4.14), there are locality
linear maps ϕn : V ⊗⊤n → A such that fn = ϕn ◦ ⊗⊤n where ⊗⊤n is the canonical map from V ×⊤n →
V ⊗⊤n . Set ϕ1 : V ⊗1

⊤ → A as the only map such that

f = ϕ1 ◦ ⊗⊤1,

where ⊗⊤1 : V → V ⊗1
⊤ is the natural isomorphism. Finally set ϕ0 : V ⊗0

⊤ ∼ K → A the only linear map
such that ϕ0(1T⊤(V )) = 1A. We define the map ϕ : T⊤(V ) → A as the direct sum of the maps ϕn for
n ≥ 0, and show that it is a locality algebra morphism such that f = ϕ ◦ ⊗⊤. The latter follows from
⊗⊤(V ) = V ⊗1

⊤ and from the construction of ϕ1. In order to prove that ϕ is a locality algebra morphism

62



consider v1 ⊗ · · · ⊗ vn (resp. w1 ⊗ · · · ⊗ wm) an element of T⊤(V ) with (v1, . . . , vn) lying in V ×n
⊤ (resp.

(w1, . . . , wm) lying in V ×m
⊤ ), and such that (v1, . . . , vn)⊤×(w1, . . . , wm). Since f and mA are locality

maps, it follows that

ϕ(v1 ⊗ · · · ⊗ vn) = fn(v1, . . . , vn)⊤A fm(w1, . . . , wm) = ϕ(w1 ⊗ · · · ⊗ wm),

and thus ϕ is a locality map. Furthermore

ϕ(m⊗(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wm)) = ϕn+m(v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm)

= fn+m(v1, . . . , vn, w1, . . . , wm)

= mn+m−1
A (f(v1), . . . , f(vn), f(w1), . . . , f(wm))

= mA(m
n−1
A (f(v1), . . . , f(vn)),m

m−1
A (f(w1), . . . , f(wm)))

= mA(ϕn(v1 ⊗ · · · ⊗ vn), ϕm(w1 ⊗ · · · ⊗ wm)).

Therefore ϕ is indeed a locality algebra morphism as announced.

Similarly to the universal property of the locality tensor product, this last statement is equivalent to
the universal property of the usual (non-locality) tensor algebra.

Corollary 4.34. The universal property of the locality tensor algebra (Theorem 4.33) is equivalent to
the universal property of the usual (non-locality) tensor algebra (Theorem 1.25).

Proof. Theorem 1.25 is a particular case of Theorem 4.33 when the locality relation is the trivial one
⊤ = V × V .

For the converse: Assuming the universal property of the usual tensor algebra and given a locality
linear map f : V → A, it is in particular a linear map. Applying the usual universal property, we get an
algebra morphism ϕ : T (V )→ A such that f = ϕ ◦ ⊗ where ⊗ is the canonical injection of V into T (V ).
Recall that T⊤(V ) is a linear subspace of T (V ) which contains V , so ⊗ is also the canonical injection of
V into T⊤(V ). The fact that the restriction ϕ|T⊤(V ) is a locality map follows from the locality of f , from
f = ϕ ◦ ⊗, and from the fact that V generates T⊤(V ) as a locality algebra. Thus, the restriction ϕ|T⊤(V )

is a locality algebra morphism such that f = ϕ|T⊤(V ) ◦⊗. We conclude that the usual universal property
implies the locality one.

4.4 Locality symmetric algebra and its universal property
In this brief paragraph we introduce the construction of the locality symmetric algebra and its universal
property on the pre-locality context. For that purpose, we transpose the idea of symmetric and antisym-
metric tensors to the (pre-)locality setup. For a pre-locality vector space (V,⊤), we denote by Ξ⊤ the
restriction to the locality tensor algebra T⊤(V ) of the canonical linear action Ξ : Sn × T (V ) → T (V )
described in (1.10) of the elements in the symmetric group Sn in T⊤(V ), i.e.,

Sn × V ⊗m
⊤ ∋ (σ, v1 ⊗ · · · ⊗ vm) 7→ Ξ(σ, v1 ⊗ · · · ⊗ vm) :=

{
vσ(1) ⊗ · · · ⊗ vσ(n) ifm = n,

0 ifm ̸= n.
(2.11)

As a direct consequence of the symmetry of the locality relation ⊤, if v ∈ T⊤(V ) then Ξ(σ, v) ∈ T⊤(V ),
and thus the action Ξ⊤ stabilises the locality tensor algebra. In particular, for any fixed σ ∈ Sn we denote
Ξσ⊤(v) := Ξ⊤(σ, v). The following lemma is a consequence of the symmetry of ⊤.

Lemma 4.35. The locality relation ⊤⊗ on T⊤(V ) is invariant under the action Ξ⊤. This means that for
any σ ∈ Sn, the map Ξσ⊤ : (V ⊗n

⊤ ,⊤⊗
∣∣
V ⊗n

⊤ ) → (V ⊗n
⊤ ,⊤⊗

∣∣
V ⊗n

⊤ ) is a locality linear map. Moreover it is
locality independent to the identity map in T⊤(V ).

Proof. By definition of the locality relation ⊤×n (Definition 4.9), it is invariant under the canonical action
of Sn in K(V ×n

⊤). Moreover, for any σ ∈ Sn, the action of σ in K(V ×n
⊤) is locality independent of the

identity map in K(V ×n
⊤). Then, the fact that ⊤⊗ is the quotient locality for ⊤× (Definition 4.9) yields

the result.
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The decomposition of the usual (non-locality) tensor algebra in symmetric and antisymmetric vectors
(Lemma 1.45) has a direct counterpart in the locality setup.

Definition-Proposition 4.36. Let (V,⊤) be a pre-locality vector space, and define the space AT⊤(V )
as the ideal of T⊤(V ) generated by all elements of the form

v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

where (v1, . . . , vn) ∈ V ×n
⊤ and σ ∈ Sn. Define also ST⊤(V ) the subspace of T⊤(V ) of symmetric tensors.

Then

1.
ST⊤(V ) = ST (V ) ∩ T⊤(V ), and AT⊤(V ) = AT (V ) ∩ T⊤(V ).

2.
T⊤(V ) = AT⊤(V )⊕ ST⊤(V ).

Moreover, the projection πA : T⊤(V )→ AT⊤(V ) parallel to ST⊤(V ) is locality independent of the
identity map IdT⊤(V ).

Proof. The first item follows from the second property of the Sn-modules in Proposition 1.44, since T⊤(V )
is a subspace of T (V ). The direct sum on the second item follows from the decomposition in Lemma
1.45 and from the distributivity of intersections and direct sums. The fact that πA⊤IdT⊤(V ) follows from
Ξσ⊤⊤IdT⊤(V ) in Lemma 4.35.

For the purpose of building the locality symmetric algebra as a quotient of the locality tensor algebra
over a locality ideal, we prove first the pre-locality version of Proposition 1.23.

Lemma 4.37. Let (A,⊤,m) be a pre-locality algebra and I ⊂ A a locality ideal (see Definition 2.26).
Then (A/I,⊤,m′) is also a pre-locality algebra where ⊤ is the quotient locality relation (see Definition
4.6), and m′ is the product as expected, namely

m′([x], [y]) = [m(x, y)] for x⊤y.

Proof. We prove only what is particular to the locality context, since the rest of the arguments are the
same as in the non-locality case. We see first that m′ is well defined. Let π : A→ A/I be the canonical
quotient map. By the definition of quotient locality it is clear that

(π × π)(A×⊤ A) = A/I ×⊤ A/I, (2.12)

and thus m′ is well defined.
We prove that m′ is a ⊤×-bilinear map. Consider π × π : K(A×A)→ K(A/I ×A/I) the only linear

map which extends π × π. It is easy to check that π × π(Ibil(A,A)) = Ibill(A/I,A/I). Also from (2.12),
it follows that π × π(K(A×⊤ A)) = K(A/I ×⊤ A/I). Therefore

m′
(
Ibil(A/I,A/I)∩K(A/I×⊤A/I)

)
= m′

(
π × π(Ibil(A,A)∩K(A×⊤A))

)
= π × π

(
m(Ibil(A,A)∩K(A×⊤A))

)
where the last equality follows from the definition of m′. The fact that m is a ⊤×-bilinear map yields
the result.

We proceed to build the locality symmetric algebra in a similar manner as the usual (non-locality)
symmetric algebra (Definition 1.46).

Definition 4.38. Let (V,⊤) be a pre-locality vector space. We define the locality symmetric algebra
of V as the quotient

S⊤(V ) := T⊤(V )/AT⊤(V ).

The locality relation ⊤S on S⊤(V ) is the quotient locality relation (Definition 4.6) given by the canonical
quotient map πS : T⊤(V ) → S⊤(V ), and the product mS : S⊤(V )⊗⊤ S⊤(V ) → S⊤(V ) is defined as the
product of the representatives of the equivalent classes whenever it is defined (see Lemma 4.37). With
some abuse of notation, we denote by ιS (as in the non-locality case) the canonical map ιS := πS ◦ ⊗⊤ :
V → S⊤(V ).
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Some direct properties of the locality symmetric algebra are summarized in the following proposition.

Proposition 4.39. Let (V,⊤) be a pre-locality vector space. Then

1. The locality symmetric algebra is isomorphic as a vector space to ST⊤(V ).

2. The locality symmetric algebra S⊤(V ) is a subspace of the usual symmetric algebra. Moreover, the
product mS on S⊤(V ) is a restriction of the usual product on the usual symmetric algebra to S⊤(V ).

3. The locality symmmetric algebra is commutative.

4. The map ιS : V → S⊤(V ) is an injective locality linear map.

Proof. 1. This follows directly from the second item in Definition-Proposition 4.36.

2. The fact that S⊤(V ) = S(V ) follows from its definition and the fact thatAT⊤(V ) = AT (V )∩T⊤(V ).
The fact that the product mS is a restriction of the product on the usual symmetric algebra follows
from the fact that the product on the locality tensor algebra m⊗ is also a restriction of the usual
product on the usual tensor algebra (Proposition 4.31).

3. This follows from the last item and the commutativity of S(V ).

4. The locality and linearity of ιS : πS ◦ ⊗⊤ follow from the locality and linearity of both ⊗⊤ : V →
T⊤(V ) and πS : T⊤(V ) → S⊤(V ). The injectivity follows from the injectivity of ⊗⊤ and from the
fact that (AT⊤(V ))1 = {0}, thus (S⊤(V ))1 = V ⊗1

⊤/{0} ∼ V and therefore πS
∣∣
V

is injective.

By means of the Proposition 4.39 item 4, we identify the elements in V with their images through ιS .
For (v1, . . . , vn) ∈ V ×n

⊤ we use the notation v1 ⊙ · · · ⊙ vn = πS(v1 ⊙ · · · ⊙ vn) to distinguish an element
in S⊤(V ) from that on T⊤(V ).

Much like its non-locality counterpart, the symmetric locality algebra satisfies a universal property
which we now present.

Lemma 4.40. Let (A,⊤A,mA) and (B,⊤B ,mB) be two pre-locality algebras, I ⊂ A a pre-locality ideal
and ψ : A → B a pre-locality algebra morphism such that ψ(I) = {0B}. Then the map ϕ : A/I → B
defined by ϕ([x]) = ψ(x) is also a pre-locality algebra morphism where the pre-locality algebra structure
of A/I is the same as in Lemma 4.37.

Proof. The proof is very similar to the non-locality case, namely the existence and uniqueness of ϕ is
granted by the fact that ψ(I) = {0B}, and the fact that it is multiplicative follows from I being a pre-
locality ideal and ψ also being a pre-locality algebra morphism. The locality of the map ϕ follows from
the locality of ψ and the definition of quotient locality (Definition 4.6).

Theorem 4.41 (Universal Property of the locality symmetric algebra over a pre-locality vector space).
Let (V,⊤) be a pre-locality vector space, (A,⊤A) a commutative pre-locality algebra, and f : V → A a
locality linear map. There is a unique morphism of commutative pre-locality algebras ϕf : S⊤(V ) → A
such that f = ϕf ◦ ιS , i.e., such that the following diagram commutes:

(V,⊤) (S⊤(V ),⊤S)

(A,⊤A)

ιS

f
ϕf

Figure 2.1: Universal property of the locality symmetric tensor algebra.
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Proof. By means of the universal property of the locality tensor algebra (Theorem 4.33) there is a unique
pre-locality algebra morphism ψ : T⊤(V ) → A satisfying f = ψ ◦ ⊗⊤. Since A is commutative, then
ψ(AT (V )) = {0A} and thus, by means of Lemma 4.40, the linear map ϕ : S⊤(V ) → A defined by
ϕ([x]) = ψ(x) is a well defined pre-locality algebra morphism such that ψ = ϕ ◦ πS . Therefore

f = ψ ◦ ⊗⊤ = ϕ ◦ πS ◦ ⊗⊤ = ϕ ◦ ιS .

The uniqueness of ϕ is granted by the fact that it is completely defined by its values on V , and V generates
S⊤(V ) as a locality algebra.

Similar to the tensor algebra, there is an equivalence of the universal properties of the locality and
non-locality symmetric algebras.

Corollary 4.42. The universal property of the locality symmetric algebra (Theorem 4.41) is equivalent
to the universal property of the usual (non-locality) symmetric algebra (Theorem 1.47).

Proof. The fact that the universal property of the locality symmetric algebra implies the usual one follows
from choosing the trivial locality relation ⊤ = V × V .

On the other hand, assuming the universal property of the usual symmetric algebra and given a
locality linear map f : V → A, it is in particular a linear map. Applying Theorem 1.47, we get an
algebra morphism ϕ : S(V )→ A such that f = ϕ ◦ ιS where ιS is the canonical injection of V into S(V ).
Since S⊤(V ) is a linear subspace of S(V ) which contains V , then ιS is also the canonical injection of V
into S⊤(V ). The fact that the restriction ϕ|S⊤(V ) is a locality map follows from the locality of f , from
f = ϕ ◦ ιS , and from the fact that V generates S⊤(V ) as a locality algebra. Thus, the restriction ϕ|S⊤(V )

is the desired morphism of commutative pre-locality algebras such that f = ϕ|S⊤(V ) ◦ ιS . We conclude
that the usual universal property implies the locality one.

The following corollary of Theorem 4.41 shows how the locality symmetric algebra is completely
determined by the structure of the pre-locality vector space.

Corollary 4.43. Let (V,⊤) and (V ′,⊤′) be two isomorphic pre-locality vector spaces, then their locality
symmetric algebras S⊤(V ) and S⊤′(V ′) are isomorphic as pre-locality algebras.

Proof. The proof is very similar to the non-locality case. Let ψ : V → V ′ be an isomorphism of pre-
locality vector spaces, then ιV ′ ◦ ψ : V → SV ′(V ′) is a locality linear map. By means of Theorem 4.41,
there is a unique pre-locality algebra morphism ϕ : S⊤(V )→ S⊤′(V ′) which makes the following diagram
commute.

(V,⊤) (S⊤(V ),⊤S)

(V ′,⊤′) (S⊤′(V ′),⊤′
S)

ιS

ψ ϕ

ιS′

On the other hand, since ψ is an isomorphism, again Theorem 4.41 applied to the locality linear map
ιS ◦ψ−1 : V ′ → S⊤(V ) yields the existence of a pre-locality algebra morphism ϕ′ : S⊤′(V ′)→ S⊤(V ) such
that ιS ◦ ψ−1 = ϕ′ ◦ ιS′ . It follows from the bijectivity of ψ that ϕ′

∣∣
ιS′ (V ′)

= ϕ−1
∣∣
ιS′ (V ′)

, and since ιS(V )

(resp. ιS′(V ′)) generates S⊤(V ) (resp. S⊤′(V ′)) as a pre-locality algebra, then ϕ′ = ϕ−1. Moreover, ϕ
and ϕ′ are locality maps as a consequence of Theorem 4.41, then ϕ is an isomorphism of commutative
pre-locality algebras.

4.5 Pre-locality Lie algebras and their locality universal enveloping algebra
In this paragraph we introduce locality Lie algebras and build their locality universal enveloping algebra
as a quotient of the locality tensor algebra. We also prove the universal property of the locality universal
enveloping algebra (Theorem 4.33) which happens to be essential for the upcoming Locality Milnor-
Moore and Poincaré-Birkhoff-Witt theorems. Finally we prove in Counter-example 4.51 that, contrary to
pre-locality vector spaces and ⊤×-bilinear maps, not all locality Lie algebras can be extended to a usual
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Lie algebra since the extended Lie bracket might not always satisfies the Jacobi identity. We proceed to
introduce the concept of (pre-) locality Lie algebra.

Definition 4.44. [21, Definition 4.16]

• A pre-locality Lie algebra is a triple (g,⊤g, [, ]) where (g,⊤g) is a pre-locality vector space, and
[, ] : (⊤g = g×⊤ g)→ g is a ⊤×-bilinear map antisymmetric which satisfies the following properties:

– For every U ⊂ g, the partial Lie bracket stabilises polar sets, i.e. it maps (U⊤×U⊤)∩⊤g into
U⊤.

– For (a, b, c) ∈ g×⊤3 we have that [[a, b], c] + [[c, a], b] + [[b, c], a] = 0.

• A locality Lie algebra is a pre-locality Lie algebra (g,⊤g, [, ]) such that (g,⊤g) is also a locality
vector space.

• Let (g1,⊤g1
, [, ]1) and (g2,⊤g2

, [, ]2) be two (resp. pre-)locality Lie algebras. A locality linear map
f : g1 → g2 is called a (resp. pre-)locality Lie algebra morphism if f([x, y]1) = [f(x), f(y)]2,
for every independent pair x⊤1y.

• Let (g2,⊤g2
, [, ]2) be a (pre-)locality Lie algebra and g1 ⊆ g2. We call (g1,⊤g1

, [, ]1) a (pre-)
locality Lie subalgebra of (g2,⊤g2

, [, ]2) if the inclusion map ι : g1 ↪→ g2 is a (pre-) locality Lie
algebra morphism.

Remark 4.45. Notice that a the partial Lie bracket [, ] : (g×⊤g,⊤g×⊤g)→ (g,⊤g) is a locality map, and
thus a locality ⊤×-bilinear map. Indeed, for (g1, g2)⊤g×⊤g (g

′
1, g

′
2), or equivalently (g1, g2, g

′
1, g

′
2) ∈ g×

4
⊤ ,

since the bracket [, ] stabilises polar sets, then [g1, g2]⊤g[g
′
1, g

′
2] as expected.

Similar to usual (non-locality) Lie algebras, it is possible to build a universal enveloping algebra from
a locality Lie algebra which satisfies a similar property than the one in Theorem 1.52.

Definition 4.46. Let (g,⊤g, [, ]) be a pre-locality Lie algebra. Consider the pre-locality ideal J⊤(g) of
T⊤(g) generated by all terms of the form a ⊗ b − b ⊗ a − [a, b] for (a, b) ∈ ⊤g. The locality universal
enveloping algebra of g is defined as

U⊤(g) := T⊤(g)/J⊤(g). (2.13)

The locality relation⊤U on U⊤(g) is the quotient locality relation for the quotient map πU : (T⊤(g),⊤⊗)→
U⊤(g) (see Definition 4.6), and the product mU of the equivalence classes is defined by the product of its
representatives whenever defined (see Lemma 4.37). Finally, we denote by ιg the canonical map from g
to U⊤(g) defined as ιg := πU ◦ ⊗.

Notice that the map ιg is a locality map since it is the composition of two locality maps (see Proposition
2.3). Also in the usual (non-locality) case, the injectivity of the map ιg follows from the Poincaré-Birkhoff-
Witt theorem (see Corollary1.54). However, in the locality setup, we cannot assume the injectivity. We
will discuss this fact in more detail in Section 6.6

Similarly to Proposition 4.32, the following proposition compares the universal enveloping algebras of
two locality Lie algebras.

Proposition 4.47. Let (g′,⊤′) be a (pre-)locality Lie subalgebra of (g,⊤) a (pre-)locality Lie algebra.
Then (U⊤′(g′),⊤′

U ) is a (pre-)locality subalgebra of (U⊤(g),⊤U ).

Proof. By Proposition 4.32 T⊤′(g′) ⊂ T⊤(g), and by construction J⊤′(g′) = J⊤(g) ∩ T⊤′(g′). It follows
that U⊤′(g′) is a subspace of U⊤(g). Proposition 4.32 also states that ⊤′

⊗ ⊂ ⊤⊗ and we can show the
inclusion ⊤′

U ⊂ ⊤U in a similar manner. Therefore U⊤′(g′) is (pre-)locality subspace of U⊤(g). It is
straightforward to see that it is moreover a (pre-)locality subalgebra as expected.

We proceed to state and prove the so announced universal property of the locality universal enveloping
algebra.
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Theorem 4.48 (Universal property of the locality universal enveloping algebra). Let (g,⊤g, [, ]) be a
pre-locality Lie algebra, (A,⊤A) a pre-locality algebra whose product mA : (A×⊤A,⊤A×⊤A)→ (A,⊤A)
is a locality map, and f : g → A a pre-locality Lie algebra morphism where the Lie bracket on A is the
commutator defined by the product. There is a unique pre-locality algebra morphism ϕ : U⊤(g) → A
such that f = ϕ ◦ ιg where ιg is the canonical (locality) map from g to U⊤(g).

(g,⊤g) (U⊤(g),⊤U )

(A,⊤A)

ιg

f
ϕ

Proof. By means of the universal property of the locality tensor algebra (Theorem 4.33), since f is
a locality linear map and mA is a locality map, there exists a unique pre-locality algebra morphism
ψ : T⊤(g) → A such that f = ψ ◦ ⊗⊤ where ⊗⊤ is the canonical map from g to T⊤(g). Since f is a
locality Lie algebra morphism, for every a⊤gb

ψ(a⊗ b− b⊗ a− [a, b]) = ψ(a⊗ b)− ψ(b⊗ a)− ψ([a, b]) = f(a)f(b)− f(b)f(a)− f([a, b]) = 0,

and thus ψ(J⊤(g)) = {0A}. By means of Proposition 1.9, the map ϕ : U⊤(g)→ A defined as ϕ([x]) := ψ(x)
for every x ∈ T⊤(g) is the only map which satisfies ψ = ϕ ◦ πU where πU is the canonical quotient map
from T⊤(g)→ U⊤(g). From ιg = πU ◦ ⊗⊤, it follows that

f = ψ ◦ ⊗⊤ = ϕ ◦ πU ◦ ⊗⊤ = ϕ ◦ ιg

as expected. Finally ϕ is a pre-locality algebra morphism as a consequence of Lemma 4.40.

Corollary 4.49. The universal property of the locality universal enveloping algebra U⊤(g) (Theorem
4.48) implies the universal property of the usual universal enveloping algebra U(g) (Theorem 1.52).

Proof. Given a Lie algebra g, an algebra A and a Lie algebra morphism f : g → A, it is enough to
consider the trivial locality relation ⊤ = g× g and this yields the existence and uniqueness of the algebra
morphism ϕ : U(g)→ A required for the universal property of the universal enveloping algebra.

Remark 4.50. Contrarily to Corollaries 4.16 and 4.34, in Corollary 4.49 only universal property of
the locality universal enveloping algebra implies the universal property of the usual universal enveloping
algebra. The reason for this is that a locality Lie algebra does not in general extend to a Lie algebra.
More precisely, one would need to extend the Lie bracket of a pre-locality Lie algebra to the whole Lie
algebra. However this is not always possible as can be seen from Counterexample 4.51 below.

Proposition 4.13 yields a bilinear map which is antisymmetric on g ×⊤ g by construction since ⊤g

is symmetric. Outside of the span of the image of the original (non-extended map), the extended map
vanishes identically so that the extended map is antisymmetric. However, as the next counter-example
shows, it does not in general satisfy Jacobi identity.

Counter-example 4.51. Lie algebras with three generators are known, and there are finitely many
(see Mubarakzyanov’s Classification [75]). We build an infinite family of distinct locality Lie algebras,
which as a consequence, does not correspond to an ordinary Lie algebra equipped with a locality algebra
structure.

Take g = R3, (e1, e2, e3) its canonical basis and the locality relation ⊤g defined by the subset of
R3 × R3 obtained by symmetrising the following set

⟨e1⟩ × ⟨e1⟩
⋃
⟨e2⟩ × ⟨e2⟩

⋃
⟨e3⟩ × ⟨e3⟩

⋃
⟨e1, e2⟩ × ⟨e3⟩.

Let [·, ·] : ⊤g −→ g be the bilinear antisymmetric map defined by

[e1, e3] = λe1 + µe3, [e2, e3] = µ′e3 (2.14)
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with (λ, µ, µ′) ∈ (R∗)3. Notice that since (e1, e2) /∈ ⊤g, [e1, e2] does not need to be defined. We argue
that it cannot be defined such that (g, [·, ·]) is a usual (non-locality) Lie algebra. Indeed, let us write
[e1, e2] = xe1 + ye2 + ze3. Then computing [[e1, e2], e3] and its permutations, we find that the Jacobi
identity is satisfied if, and only if:

−µ′λe1 − λye2 + (xµ+ yµ′ − λz)e3 = 0.

This equation has no solutions since µ′λ ̸= 0.
However, it is easy to see that for any (λ, µ, µ′) ∈ (R∗)3, (g,⊤g, [·, ·]) is a locality Lie algebra. This

follows from the fact that since (e1, e2) /∈ ⊤g, (ei, ej , ek) cannot lie in g×
3
⊤ if i, j and k are all different,

[·, ·] trivially satisfies the locality Jacobi identity.

We conclude this section with a simple corollary of the universal property of the locality universal
enveloping algebra (Theorem 4.48) which is the pre-locality counterpart of a classical result.

Corollary 4.52. Let (g, [, ]g,⊤) and (g′, [, ]g′ ,⊤′) be two isomorphic pre-locality Lie algebras, then their
locality universal enveloping algebras U⊤(g) and U⊤′(g′) are isomorphic as pre-locality algebras.

Proof. The proof is very similar to the non-locality case. Let ψ : g→ g′ be an isomorphism of pre-locality
Lie algebras, then ιg′ ◦ ψ : g → U⊤′(g′) is a morphism of pre-locality Lie algebras (where the bracket in
U⊤′(g′) is the commutator as usual). By means of Theorem 4.48, there is a unique pre-locality algebra
morphism ϕ : U⊤(g)→ U⊤′(g′) which makes the following diagram commute.

(g,⊤) (U⊤(g),⊤U )

(g′,⊤′) (U⊤′(g′),⊤′
U )

ιg

ψ ϕ

ιg′

On the other hand, since ψ is an isomorphism, again Theorem 4.33 applied to the pre-locality Lie algebra
morphism ιg ◦ ψ−1 : g′ → U⊤(g) yields the existence of a pre-locality algebra morphism ϕ′ : U⊤′(g′) →
U⊤(g) such that ιg ◦ ψ−1 = ϕ′ ◦ ιg′ . It follows from the bijectivity of ψ that ϕ′

∣∣
ιg′ (g′)

= ϕ−1
∣∣
ιg′ (g′)

,

and since ιg(g) (resp. ιg′(g′)) generates U⊤(g) (resp. U⊤′(g′)) as a pre-locality algebra, then ϕ′ = ϕ−1.
Moreover, ϕ and ϕ′ are locality maps as a consequence of Theorem 4.33, then ϕ is an isomorphism of
pre-locality algebras.

5 Quotient of locality vector spaces
Up to this point, the main objects studied in the past section are only in the pre-locality setting, namely
the locality tensor product, locality tensor algebra, locality symmetric algebra and locality universal
enveloping algebra. However, it is necessary to enhance those constructions to the locality set up in order
to obtain a locality version of the Milnor-Moore and Poincaré-Birkhoff-Witt theorems, more precisely for
the coalgebraic construction as it is discussed in Section 6.1. Since all the previously named objects are
obtained via quotients, the following natural question arises:

When is the quotient of a locality vector space by a linear subspace, a locality vector space,
if equipped with the quotient locality relation of Definition 4.6 ? (2.15)

Given a locality vector space (V,⊤) and a subspace W , the question can be reformulated as follows:
When does the following implication

∀(v1, v2.v3) ∈ V 3 ∧ ∀w ∈W,
(
v1⊤v2 ∧ (v1 +w)⊤v3

)
=⇒

(
∃(w′, w′′) ∈W 2, (v1 +w′)⊤(v2 + v3 +w′′)

)
,

(2.16)
hold?

This section is devoted to the study and better understanding of Question (2.15). Such study leads to
conjectural statements 5.30 and 5.33 as it will be introduced later. Also, some important consequences
of those conjectural statements are presented in Paragraph 5.5.
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5.1 Examples of locality quotient vector spaces
The answer of Question 2.15 is not absolute, namely there are quotient spaces that, when equipped with
the quotient locality, are locality vector spaces, and there are other which are only pre-locality vector
spaces. We present in this paragraph examples of both types.

The following proposition provides a first class of examples of locality quotient vector spaces for the
quotient locality relation ⊤ induced by the orthogonality relation.

Proposition 5.1. Take V be any Hilbert space with scalar product ⟨, ⟩, and consider the locality relation
⊤ on V given by the orthogonality relation: v⊤v′ :⇐⇒ ⟨v, v′⟩ = 0. Then for any closed linear subspace
W of V different from {0}, the quotient locality ⊤ on V/W induced by ⊤ is the complete locality relation:
⊤ = (V/W )× (V/W ).

In particular, for any closed linear subspace W of V , (V/W,⊤) is a locality vector space.

Proof. We want to show that if W ̸= {0} then for any (v1, v2) ∈ V 2, there exists (w1, w2) ∈ W 2 such
that ⟨v1 + w1, v2 + w2⟩ = 0. Write vi = ui + w̃i for i ∈ {1, 2} with w̃i ∈W and ui ∈W⊥. Then:

⟨v1 + w1, v2 + w2⟩ = 0 ⇐⇒ ⟨v1, v2⟩+ ⟨w̃1, w2⟩+ ⟨w1, w̃2⟩+ ⟨w1, w2⟩ = 0, (2.17)

and we want to find w1, w2 that solve (2.17). Let us consider three different cases:

• If w̃1 ̸= 0, then

(w1, w2) =

(
0,−⟨v1, v2⟩

||w̃1||2
w̃1

)
∈W 2

(with ||w|| :=
√
⟨w,w⟩) solves (2.17).

• If w̃1 = 0 and w̃2 ̸= 0, then we find a solution to (2.17) as in the first item by exchanging the roles
of w1 and w2.

• If w̃1 = w̃2 = 0, we pick w ∈W ̸= {0} and set

(w1, w2) =

(
w

||w||
,−⟨v1, v2⟩
||w||

w

)
∈W 2

which solves (2.17).

We proceed to present an example of a locality vector space with a linear subspace whose quotient is
not a locality vector space for the locality relation ⊤ (see Definition 4.6). It shows that the answer to
Question (2.15) cannot be always positive.

Example 5.2. Consider the vector space V =M(R) of real valued maps on R together with the locality
relation ⊤ given by disjoint supports: f⊤g ⇔ supp(f) ∩ supp(g) = ∅. It is easy to check that (V,⊤) is a
locality vector space. Let W denote the linear subspace of constant functions and consider the functions

x 7→ v(x) :=

{
0 if x ≤ 0

1 if x > 0
, x 7→ u(x) :=

{
0 if x ≤ 1

1 if x > 1
, x 7→ w(x) :=

{
0 if x ≤ 2

1 if x > 2

It follows that [u]⊤[v] since u⊤(v − 1), and [u]⊤[w] since (u− 1)⊤w. However, [u]��⊤[v +w]. Thus V/W
is not a locality vector space for ⊤.

We proceed to give an example which is related to the locality tensor algebra. For this purpose,
we first recall a folklore result which provides a justification for the convention V ⊗1

⊤ = V . We give a
constructive proof for it since it will be of use in Proposition 5.5.

Lemma 5.3. Consider the subspace Ilin(V ) of K(V ) generated by all elements of the form

(a+ b)− (a)− (b), and k(a)− (ka), (2.18)

for a and b in V and k in K. Then V ∼ K(V )/Ilin(V ) are isomorphic as vector spaces. Moreover, the map
ϕ : V → K(V )/Ilin(V ) defined by ϕ(v) = [(v)] is an isomorphism.
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Remark 5.4. We use the notation (a) with rounded brackets to denote elements of K(V ) and to distin-
guish them from elements of V . These brackets should not be confused with the squared one [a] used to
denote equivalence classes.

Notice that by construction of Ilin(V ), the only element a in V such that (a) ∈ Ilin(V ) is a = 0.

Proof. Set ι : V → K(V ) the canonical injection, and π : K(V ) → K(V )/Ilin(V ) the canonical quotient
map. We prove that the linear map π ◦ ι : V → K(V )/Ilin(V ), which takes x 7→ [x] is an isomorphism
of vector spaces. The injectivity follows from the fact that ι(V ) ∩ Ilin(V ) = {(0V )}, then the kernel
of π ◦ ι is {0V }. For the surjectivity, notice that ι(V ) generates K(V ), and since π is surjective, then
(π◦ι)(V ) generates K(V )/Ilin(V ). In other words, K(V )/Ilin(V ) is the smaller vector space containing (π◦ι)(V ).
However, since V is a vector space itself, and π ◦ ι is linear, then (π ◦ ι)(V ) is a vector space, implying
that (π ◦ ι)(V ) = K(V )/Ilin(V ), and the result follows.

If (V,⊤) is a locality vector space, K(V ) can be endowed with the locality relation ⊤×∩(K(V )×K(V ))
(see Definition 4.26), which induces a quotient locality on K(V )/Ilin(V ). The following statement is an
enhancement of the isomorphism of Lemma 5.3, to an isomorphism of locality vector spaces.

Proposition 5.5. Let (V,⊤) be a locality vector space, then (V,⊤) and
(
K(V )/Ilin(V ),⊤

)
are isomorphic

as locality vector spaces:
(V,⊤) ≃

(
K(V )/Ilin(V ),⊤

)
, (2.19)

where ⊤ is the quotient locality (see Definition 4.6).

Proof. We need to show that the isomorphism π ◦ ι : V → K(V )/Ilin(V ) in the proof of Lemma 5.3 is a
locality map as well as its inverse. For x⊤y, it follows that (x)⊤×(y) and thus [x]⊤[y]. This proves that
π ◦ ι is a locality map. Conversely if [x]⊤[y], then there exist

∑
i∈I αi(xi) ∈ [x] and

∑
j∈J βj(yj) ∈ [y],

for I and J finite sets, such that
(∑

i∈I αi(xi),
∑
j∈J βj(yj)

)
∈ ⊤× or equivalently xi⊤yj for every

(i, j) ∈ I × J . Since (V,⊤) is a locality vector space the latter implies that
(∑

i∈I αixi,
∑
j∈J βjyj

)
∈ ⊤.

However, by means of Lemma 5.3,
[∑

i∈I αixi
]
= [x] and

[∑
j∈J βjyj

]
= [y] imply that

∑
i∈I αixi = x

and
∑
j∈J βjyj = y. Thus x⊤y as announced.

Corollary 5.6. For (V,⊤) a locality vector space, the quotient space K(V )/Ilin(V ) endowed with the
quotient locality ⊤ (see Definition 4.6) is a locality vector space.

Proof. The proof follows from Proposition 5.5 and from the fact that (V,⊤) is a locality vector space.

In the proof of Corollary 5.6, the linear locality property of (V,⊤) was used. The following counterex-
ample shows that the isomorphism of vector spaces is not necessarily a locality isomorphism when V is
only a pre-locality vector space.

Counter-example 5.7. Let V = R2 and ⊤ = {(e1, e2), (e1, 3e2), (e2, e1), (3e2, e1)}. Notice that (3e2)−
(e2)⊤×(e1) and thus ([3e2 − e2] = [2e2])⊤[e1]. However 2 e2�⊤e1 proving that in this case (V,⊤) and
(K(V )/Ilin(V ),⊤) are not isomorphic as pre-locality vector spaces.

5.2 Split locality exact sequences
The natural relation between quotient spaces and short exact sequences suggests an approach to tackle
Question (2.15). In this paragraph we study such relation in the context of locality and provide a sufficient
condition so have a positive answer to Question (2.15). Let us first recall a result from linear algebra
which makes precise the aforementioned relation.

Proposition 5.8. For V1, V2 and V three vector spaces, the following statements are equivalent:

1. There is a short exact sequence 0 → V1
ι1→ V

π2→ V2 → 0 i.e., ι1 is an injective linear map, π2 is a
surjective linear map, and Im(ι1) = Ker(π2).

2. There is an injective linear map ι1 : V1 → V such that V/V1 ≃ V2 are isomorphic as vector spaces.
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3. The are injective linear maps ιi : Vi → V for i ∈ {1, 2} such that V splits as V = ι1(V1)⊕ ι2(V2).

In order to give a locality counterpart of the previous result, we must define the locality counterpart
of short exact sequences and split exact sequences first.

Definition 5.9.

• A locality short exact sequence (resp. a pre-locality short exact sequence) is a sequence
0→ (V1,⊤1)

ι1→ (V,⊤) π2→ (V2,⊤2)→ 0 such that

1. (V1,⊤1), (V2,⊤2) and (V,⊤) are locality vector spaces (resp. pre-locality vector spaces),

2. ι1 and π2 are locality maps,

3. 0→ V1
ι1→ V

π2→ V2 → 0 is a short exact sequence.

• A locality short exact sequence 0 → (V1,⊤1)
ι1→ (V,⊤) π2→ (V2,⊤2) → 0 is a split locality exact

sequence if there exists a locality linear map ι2 : V2 → V which is a right inverse for π2, i.e.,
π2 ◦ ι2 = IdV2

, and such that V = ι1(V1)⊕ ι2(V2).

Notice that items 2. and 3. of the definition of locality short exact sequence imply that ι1 and π2 are
locality linear maps. The following statement is the locality counterpart of items 1. and 2. of Proposition
5.8.

Lemma 5.10. Let (V1,⊤1), (V2,⊤2), (V,⊤) be three locality (resp. pre-locality) linear spaces. The
following properties are equivalent:

1. There is a short locality (resp. pre-locality) exact sequence 0→ (V1,⊤1)
ι1→ (V,⊤) π2→ (V2,⊤2)→ 0,

where ⊤2 is the final locality relation for the map π2 (see Definition 4.3).

2. There is an injective locality morphism ι1 : V1 → V such that the canonical isomorphism (V/ι1(V1))
ϕ→

V2 is a locality (resp. pre-locality) isomorphism for the locality relations ⊤ and ⊤2.

Proof. By means of Proposition 5.8, the map π2 in item 1. induces a unique isomorphism of vector spaces
ϕ : (V/ι1(V1)) → V2. Conversely, an isomorphism ϕ : (V/ι1(V1)) → V2 as in item 2. induces a unique
surjective linear map π2 : V → V2. The relation between these two maps is represented in the following
commutative diagram

V V/ι1(V1)

V2

h

π2
ϕ

where h denotes the quotient map.

• 1⇒ 2: We are only left to check the locality of the maps ϕ and ϕ−1. If [v]⊤[v′], there is some
w ∈ [v] and some w′ ∈ [v′] such that w⊤w′. The locality of π2 then implies that π2(w)⊤2π2(w

′) so
that ϕ([v])⊤2ϕ([v

′]) which proves the locality of ϕ.

The inverse map ϕ−1 is defined by ϕ−1(v) = [w] for any w ∈ π−1
2 (v). Since ⊤2 is the final locality

relation for π2, v1⊤2v2 implies that there are w1 ∈ π−1
2 ({v1}) and w2 ∈ π−1

2 ({v2}) such that w1⊤w2.
By definition of the locality ⊤ on the quotient space, [w1]⊤[w2] or equivalently ϕ−1(v1)⊤ϕ−1(v2).

• 2⇒ 1: We only have to show that π2 is a locality map, and that ⊤2 is the final locality relation for π2.
We show the locality of π2. Recall that the surjective map π2 : V → V2 is given by π2(v) := ϕ([v]).
From v⊤v′, it follows that [v]⊤[v′]. The locality of ϕ implies that π2(v) = ϕ([v])⊤2π2(v

′) = ϕ([v′]),
and thus π2 is a locality map. We prove that ⊤2 is the final locality for π2. Let ⊤′

2 be another
locality relation on V2 such that π2 : (V,⊤)→ (V2,⊤′

2) is a locality map, and consider two elements
v and v′ in V2 such that v⊤2v

′. Since ϕ−1 is a locality map ϕ−1(v)⊤ϕ−1(v′). By definition of
⊤, there are elements w ∈ ϕ−1(v) and w′ ∈ ϕ−1(v′) such that w⊤w′. Notice that in particular
π2(w) = v and π2(w

′) = v′. Since ⊤′
2 makes π2 a locality map, then v⊤′

2v
′ which implies that

⊤2 ⊂ ⊤′
2 as expected.
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From the preceding lemma, a simple corollary follows which allows us to rephrase Question (2.15) in
terms of locality exact sequences.

Corollary 5.11. Given two locality vector spaces (V,⊤) and (V1,⊤1) , and an injective locality linear
map ι1 : V1 −→ V , The quotient space (V/ι1(V1),⊤) is a locality vector space if, and only if, there is a
locality vector space (V2,⊤2) and a map π2 : V −→ V2 such that ⊤2 is the final locality relation for π2,
and 0→ (V1,⊤1)

ι1→ (V,⊤) π2→ (V2,⊤2)→ 0 is a locality short exact sequence.

Proof. We prove both implications

• Assuming that there exists such locality vector space (V2,⊤2), by Lemma 5.10, there is an isomor-
phism of locality vector spaces (V/ι1(V1),⊤) ≃ (V2,⊤2). It follows that (V/ι1(V1),⊤) is a locality
vector space.

• On the other hand, if (V/ι1(V1),⊤) is a locality vector space, we set (V2,⊤2) := (V/ι1(V1),⊤) and
π2(v) := [v]. By construction 0 → (V1,⊤1)

ι1→ (V,⊤) π2→ (V2,⊤2) → 0 is a locality short exact
sequence, and by definition of the quotient locality ⊤, ⊤2 is the final locality relation for π2.

This corollary implies that Question (2.15) can be rephrased as follows:
Given a locality vector space (V,⊤) and V1 a subspace of V , when is the pre-locality short exact

sequence 0→ (V1,⊤|V1×V1
)
ι1→ (V,⊤) π2→ (V/V1,⊤)→ 0 a locality short exact sequence?

However, this new formulation does not provide any new hint for an answer. Notice however, that we
have not yet developed the locality counterpart of item 3. from Proposition 5.8. This is nonetheless an
implication and not an equivalence as in the non-locality case.

Proposition 5.12. Let 0 → (V1,⊤1)
ι1→ (V,⊤) π2→ (V2,⊤2) → 0 be a split locality exact sequence, then

⊤2 is the final locality relation for the map π2.

Proof. Let ⊤′ be another locality relation in V2 such that the map π2 : (V,⊤) → (V2,⊤′) is a locality
map and consider x and y in V2. The statement follows form the subsequent implications:

x⊤2y ⇒ ι1(x)⊤ι1(y)
⇒ (π2 ◦ ι1)(x)⊤′(π2 ◦ ι1)(y)
⇔ x⊤′y.

This proposition leads us to a first sufficient condition to answer question (2.15) positively.

Definition 5.13. Let W1 be a subspace of a locality vector space (V,⊤). We say that W1 admits a
locality complement with respect to (V,⊤) if there is another subspace W2 such that V = W1 ⊕W2

and the projection π2 : V →W2 parallel to W1 is a locality map and hence a locality morphism.
In such case we say that W2 is a locality complement of W1.

Example 5.14. Let V = R2 and consider the locality relation ⊤ = R2×{0}∪{0}×R2∪⟨e1⟩×⟨e1⟩∪⟨e2⟩×
⟨e2⟩. The subspace W1 = ⟨e1 + e2⟩ admits a locality complement, namely W2 = ⟨e1⟩ (also W ′

2 = ⟨e2⟩).
Indeed, the projection π2 : R2 →W2 parallel to W1 is a locality map since, in particular, T

∣∣
W2

=W2×W2.
Notice however that W1 is not a locality complement of W2 since the projection π1 : R2 →W1 parallel

to W2 is not a locality map.

Corollary 5.15. LetW be a subspace of a locality vector space (V,⊤). IfW admits a locality complement
with respect to (V,⊤), then (V/W,⊤) is a locality vector space.

Proof. Let W2 be a locality complement of W , then 0 → (W,⊤
∣∣
W
)

ι→ (V,⊤) π2→ (W2,⊤
∣∣
W2

) → 0 is a
split locality exact sequence where ι is the canonical injection and π : V →W2 is the projection parallel
to W . The result follows from Proposition 5.12 and from Corollary 5.11.
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The previous corollary gives a sufficient but not necessary condition to answer Question (2.15) posi-
tively as the following example illustrates.

Example 5.16. Let (V, ⟨, ⟩) be a Hilbert space and consider the locality relation given by the orthogonality
relation. It was shown in Example 5.1 that for any closed subspace W1 of V different from {0V }, the
quotient (V/W1,⊤) is a locality vector space. However, if W1 ̸= V , it does not admit a locality comple-
ment. Indeed, let W2 be another subspace of V such that V = W1 ⊕W2, and consider the projection
π2 : V → W2 parallel to W1. Consider also w1 (resp. w2) a non zero element of W1 (resp. W2), and
define the elements x1 := w2 +

||w2||
||w1||w1 and x2 := w2− ||w2||

||w1||w1. Then x1 and x2 are locality independent
since

⟨x1, x2⟩ = ||w2||2 −
(
||w2||
||w1||

)2

||w1||2 = 0

but their projections are not:

⟨π2(x1), π2(x2)⟩ = ⟨w2, w2⟩ = ||w2||2 ̸= 0.

Therefore W2 is not a locality complement of W1. Since W2 is arbitrary, then W1 does not admit a
locality complement.

Notice that, contrary to the non locality case, the property of "being a locality complement of" is not
symmetric as shown in Example 5.14. To obtain symmetry, we must ask for a slightly stronger condition.

We proceed to define the concept of split locality exact sequences, which indeed provides a first
sufficient condition over the spaces (V,⊤) and V1 in order to give a positive answer to Question (2.15).

Definition 5.17. Let (V,⊤) be a locality vector space, W1 a subspace of it, andW2 a locality complement
of W1. We say that W2 is a strong locality complement of W1 with respect to (V,⊤) if, and only
if, the projection π2 : W → W2 parallel to W1 is locality independent to the identity map on V , i.e.,
π2⊤IdV . Here again the locality relation in W2 is the subset locality ⊤

∣∣
W2

as defined in (1.12).

If W1 is a strong locality complement of W2 with respect to V , we write

V =W1 ⊕⊤ W2.

This notation is justified by the following proposition since the property of being a strong locality com-
plement is symmetric.

Proposition 5.18. Let (V,⊤) be a locality vector space, and W1 and W2 two subspaces of it such that
V =W1 ⊕W2. The following properties are equivalent

1. π1⊤π1 and π1⊤π2;

2. π1⊤IdV (W1 is a strong locality complement of W2);

3. π2⊤π2 and π1⊤π2;

4. π2⊤IdV (W2 is a strong locality complement of W1);

where π1 (resp. π2) is the projection onto W1 (resp. onto W2) parallel to W2 (resp. parallel to W1).

Proof. We prove first two implications which will be useful: If φ,φ1, and φ2 are linear maps from V to
itself, then

(φ⊤φ1 andφ⊤φ2) =⇒ (φ⊤(φ1 ± φ2)) , and (2.20)

φ⊤IdV =⇒ φ⊤φ. (2.21)

Indeed, for x, y ∈ V , by assumption x⊤y ⇒ φ(x)⊤φi(y) for i = 1, 2 and the locality of the vector space
(V,⊤) implies that φ(x)⊤φ1(y)±φ2(y), which shows (2.20). Furthermore, if φ⊤IdV then x⊤y ⇒ φ(x)⊤y
which, using the symmetry of ⊤ implies that φ(y)⊤IdV (φ(x)) which is equivalent to φ(x)⊤φ(y) proving
(2.21).
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• 1) ⇒ 2) follows from (2.20) applied to φ = π1 and φ1 = π2, φ2 = π1, which implies π1⊤IdV since
IdV = π1 + π2.

• 2)⇒ 1) : Follows from (2.21) applied to φ = π1 followed by (2.20) applied to φ = π1 and φ1 = IdV ,
φ2 = π1 using the fact that π2 = IdV − π1.

• 3)⇔ 4) : Analogous to the last two points exchanging the roles of π1 and π2.

• 2)⇒ 4) : Since IdV⊤IdV , it follows from (2.20) applied to φ = IdV , φ1 = IdV , and φ2 = π1.

• 4)⇒ 2) : Analogous to the last point exchanging the roles of π1 and π2.

Notice that any two of the four points of Proposition 5.18 imply that

π1⊤π1 ∧ π2⊤π2.

However, π1⊤π1 ∧ π2⊤π2 is not the fifth point of Proposition 5.18 since it does not imply any of the
four points of the aforementioned proposition as the following enhancement of Example 5.14 shows.

Counter-example 5.19. Let V = R2 and consider the locality relation ⊤ on V defined by

x⊤y ⇔ (∃λ ∈ R) : x = λy.

Set W1 = ⟨e1⟩ and W2 = ⟨e2⟩, then the projection π1 : V → W1 (resp. π2 : V → W2) parallel to W2

(resp. W1) are indeed locality maps. However none of them are independent of the identity map on V
since (e1 + e2)⊤(e1 + e2) but πi(e1 + e2)�⊤(e1 + e2) for i ∈ {1, 2}.

The following proposition is related to the degree 1 component in the locality tensor algebra of a
locality vector space. It provides an example of a subspace of a vector space freely generated by a locality
basis, which admits a strong locality complement.

Proposition 5.20. Let (V,⊤) be a locality vector space, then Ilin(V ) ⊆ K(V ) (see Lemma 5.3) admits a
strong locality complement with respect to (K(V ),⊤×) (see Definition 4.26).

Proof. We prove that the subspace ι(V ) ⊂ K(V ) is a strong locality complement of Ilin(V ), where
ι : V → K(V ) is the canonical inclusion. Since Lemma 5.3 implies that K(V ) = ι(V ) ⊕ Ilin(V ), we are
only left to prove that the projection π : K(V ) → ι(V ) parallel to Ilin(V ) is locality independent to
the identity map on K(V ). Let x =

∑
i∈I αi(xi), and y =

∑
j∈J βj(yj) be elements of K(V ) (where, as

before, we use brackets to distinguish elements of V from elements of K(V )) with x⊤×y, i.e., xi⊤yj for
every (i, j) ∈ I × J . By means of Lemma 5.3 there is xV ∈ V such that [(xV )] = [x] =

∑
i∈I αi[(xi)] (or

equivalently (xV ) = π(x)) where moreover xV =
∑
i∈I αixi. Since (V,⊤) is a locality vector space and

for every j ∈ J we have that xi⊤yj for every i ∈ I, we may conclude that xV⊤yj for every j ∈ J . It
follows from definition of ⊤× that (xV )⊤×y or equivalently π(x)⊤IdK(V )(y), which concludes the proof.

5.3 Locality compatibility
Despite of being rather natural to look into split exact sequences in order to get an answer for Question
(2.15), the condition obtained in the last paragraph, namely for a subspace to have a strong locality
complement, is very strong as Counter-example 5.24 illustrates. In this paragraph we present a weaker
sufficient condition to answer Question (2.15) positively which, even though doesn’t seem very natural
at first sight, it is more computational friendly than the condition given in the previous paragraph.

Definition 5.21. Let (V,⊤) be a locality vector space and W ⊂ V a linear subspace. We say that W is
locality compatible with ⊤ if ∀(x, y, z) ∈ V 3, ∀w ∈W,

x⊤y ∧ (x+ w)⊤z =⇒ (∃w′ ∈W ) : (x+ w′)⊤y ∧ (x+ w′)⊤z. (2.22)
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As we will prove later (Theorem 5.26), if a subspace W is locality compatible with ⊤ then the quotient
V/W is a locality vector space. Let us first illustrate the previous definition with an example.

Example 5.22. Let (V,⊤) be a locality vector space. Then V and {0} are locality compatible with ⊤.
Indeed, to see that V is locality compatible with ⊤ it is enough to consider w′ = −x using the notations
of Definition 5.21. To see that {0} is locality compatible with ⊤, it is enough to notice that w = w′ = 0
and thus x⊤y and x⊤z.

Proposition 5.23. If a subspace W of (V,⊤) admits a strong locality complement, then it is locality
compatible with ⊤.

Proof. Let W2 be a strong locality complement of W and let π2 be the projection onto W2 parallel to
W . With the notations of (2.22), since π2 is locality independent of IdV ,

x⊤y ∧ (x+ w)⊤z =⇒ π2(x)⊤y ∧ π2(x)⊤z.

Setting −w′ := x − π2(x) which lies in W , we have (x + w′ = π2(x))⊤y and (x + w′ = π2(x))⊤z as
expected.

The converse of Proposition 5.23 is not true in general. The following counterexample shows that for
a locality vector space (V,⊤) and a subspace W , the condition of W having a strong locality complement
is stronger than the condition of W being locality compatible with ⊤.

Counter-example 5.24. Consider the vector space R7, its subspace W = ⟨{e1, e2, e3}⟩ where {ei}7i=1

are the elements of the canonical basis, and

⊤ =R7 × {0}
⋃
⟨e1 + e7⟩ × ⟨{e4, e5}⟩

⋃
⟨e2 + e7⟩ × ⟨{e5, e6}⟩

⋃
⟨e3 + e7⟩ × ⟨{e4, e6}⟩⋃

⟨{e1 + e7, e3 + e7}⟩ × ⟨e4⟩
⋃
⟨{e1 + e7, e2 + e7}⟩ × ⟨e5⟩

⋃
⟨{e2 + e7, e3 + e7}⟩ × ⟨e6⟩

⋃
Sym. terms.

Notice that ⊤ is invariant under the natural action of the subgroup Ω := ⟨σ1, σ2⟩ of the symmetric
group S7 generated by σ1 := (1, 2)(4, 6) and σ2 := (1, 3)(5, 6), where (i, j) stands for the transposition
of i and j. Ω has six elements:

Ω = {σ1 := (1, 2)(4, 6), σ2 := (1, 3)(5, 6), σ3 = (2, 3)(4, 5), σ4 = (1, 2, 3)(4, 5, 6), σ5 = (3, 2, 1)(6, 5, 4), Id7}.

This follows from the relations σ3 = σ1 ◦ σ2 ◦ σ1, σ4 = σ1 ◦ σ2, σ5 = σ2 ◦ σ1, σ2
5 = σ4 and σ2

4 = σ5,
combined with the involutivity of the transpositions.

One can see that W is locality compatible with ⊤ by checking all cases. For instance, if k ∈ R,
k(e1 + e7)⊤e4 and k(e1 + e7) + k(e2 − e1) = k(e2 + e7)⊤e6, there is k(e3 + e7) = k(e1 + e7) + k(e3 − e1)
such that k(e3 + e7)⊤e4 and k(e3 + e7)⊤e6. In terms of Equation (2.22), x = k(e1 + e7), w = k(e2 − e1),
y = e4, z = e6, and w′ = k(e3−e1). Another possible case is when x = k(e1+e7)+q(e3+e7) for k, q ∈ K,
then x⊤e4. If w = q(−e3 + e2), then x+ w = k(e1 + e7) + q(e2 + e7)⊤e5. In this case w′ = q(−e3 + e1)
makes x + w′ = (k + q)(e1 + e7) locality independent to both e4 and e5. All other possible cases are
analogous, in the sense that they are obtained from the previous two via the action of a permutation in
Ω on the subindices of the ei’s.

We show that W has no strong locality complement by proving that there is no projection π : R7 →W
such that π⊤IdR7 . Indeed, if there were such projection, then π(e1 + e7)⊤e4, but π(e1 + e7) = e1 + π(e7)
where π(e7) ∈ W . From the construction of ⊤, the only option is π(e7) = −e1. On the other hand,
(e3 + e7)⊤e4 but π(e3 + e7) = e3 − e1 is not locality independent to e4 which yields the contradiction.

Remark 5.25. Notice that the proof of Proposition 5.23 relies on the fact that the locality complement
is strong. The subspace W1 from Counter-example 5.19 is an example of a subspace admitting a locality
complement without being locality compatible with the locality relation.

As a result of the above constructions we get that the quotient by a locality compatible subspace
yields a locality quotient. Moreover, the quotient of a locality algebra by a locality ideal is again a
locality algebra if the ideal is locality compatible. On these two facts will rely most of the forthcoming
constructions.
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Theorem 5.26.

1. Let (V,⊤) be a locality vector space and W ⊂ V a subspace locality compatible with ⊤, then
(V/W,⊤) is a locality vector space, where ⊤ is the quotient locality (see Definition 4.6).

2. Let (A,⊤A,m) be a non-unital locality algebra and I ⊂ A a locality ideal of A which is locality
compatible with ⊤A. Then (A/I,⊤, m̄) is a non-unital locality algebra where ⊤ is the quotient
locality.

Proof. We prove the first item: Given any subset U of V/W , we want to prove that U⊤ is a linear
subspace. For any [x] ∈ U⊤, for every [u] ∈ U , there is an element u′ of [u] and an element x′ of [x],
such that (u′, x′) ∈ ⊤. The fact that V is a linear vector space implies that for λ ∈ K, u′⊤λx′, therefore
λ[x] ∈ U⊤.

On the other hand, for [x] and [y] equivalence classes in U⊤ and for every [u] ∈ U , there are u′ ∈ [u]
and w ∈ W such that x′⊤u′ and y′⊤u′ + w for some x′ ∈ [x] and some y′ ∈ [y]. Since W is locality
compatible with ⊤, there is w′ ∈W such that x′⊤u′+w′ and y′⊤u′+w′. Since (V,⊤) is a locality vector
space, it follows that x′ + y′⊤u′ +w′ and therefore [x] + [y] ∈ U⊤. Hence V/W is a locality vector space.

We prove the second item which is similar in spirit as the last one: By means of item 1. (A/I,⊤) has
the structure of a locality vector space. Analogous to the usual (non locality) set up, the induced product
m̄ : A/I ×⊤ A/I → A/I is an associative ⊤×−bilinear map. We are left to prove that for any U ⊂ A/I,
m̄(U⊤ ×⊤ U⊤) ⊂ U⊤. Given [x]⊤[y] such that both [x] and [y] are in U⊤, consider also [u] ∈ U . Then
there are x′ ∈ [x], y′ ∈ [y], u′ ∈ [u], and (w,w1, w2) ∈ I3 such that

x′⊤Ay′, (2.23)

(x′ + w1)⊤Au′, (2.24)

(y′ + w2)⊤A(u′ + w). (2.25)

Since I is locality compatible with ⊤A, from (2.23) and (2.24) we conclude that there is w′
1 ∈ I such

that
(x′ + w′

1)⊤Ay′, and (2.26)

(x′ + w′
1)⊤Au′. (2.27)

From (2.25) and (2.26), there is w′
2 ∈ I such that

(y′ + w′
2)⊤A(x′ + w′

1), and (2.28)

(y′ + w′
2)⊤A(u′ + w). (2.29)

And finally from (2.27) and (2.29), there is w′ ∈ I such that

(x′ + w′
1)⊤A(u′ + w′), and (2.30)

(y′ + w′
2)⊤A(u′ + w′). (2.31)

By (2.28) m(x′+w′
1, y

′+w′
2) is well defined and the fact that A is a locality algebra together with (2.30)

and (2.31) imply that m(x′ + w′
1, y

′ + w′
2)⊤A(u′ + w′). Hence m̄([x], [y]) ∈ U⊤.

The following counter-example shows that locality compatibility is not necessary to have a local
quotient space (compare with Example 5.1).

Counter-example 5.27. Take V be any Hilbert space with scalar product ⟨, ⟩. We equip V with the
locality relation ⊤ given by the orthogonality relation: v⊤v′ :⇐⇒ ⟨v, v′⟩ = 0. Then a closed linear
subspace {0} ⊊W ⊊ V is not locality compatible with ⊤.

77



Proof. Since W ̸= V and W ̸= {0}, we can choose vectors w⊥ ∈W⊥ \ {0}, w ∈W \ {0} and we set

x :=
w⊥

||w⊥||
, y :=

w

||w||
=: w0 ∈W, z :=

w

||w||
− w⊥

||w⊥||
.

We have ⟨x, y⟩ = ⟨x + w0, z⟩ = 0. However there is no w1 ∈ W such that ⟨x + w1, y⟩ = ⟨x + w1, z⟩ = 0.
Indeed ⟨x + w1, y⟩ = 0 implies ⟨w1, y⟩ = 0. But since z = y − x, then ⟨x + w1, z⟩ = 0 which implies
⟨w⊥, w⊥⟩ = 0 leading to a contradiction.

In the case of a vector space freely generated by a locality set, the locality compatibility property
actually implies a stronger version with N ≥ 2 elements instead of two:

Proposition 5.28. Let (S,⊤) be a locality set, (K(S),⊤) the locality vector space generated by extending
linearly the relation ⊤, and W ⊂ K(S) a subspace locality compatible with ⊤. Let x ∈ K(S), yi ∈ K(S)
such that for every 1 ≤ i ≤ N there exists wi ∈ W such that x+ wi⊤yi. Then there is an element w′ of
W such that x+ w′⊤yi for every 1 ≤ i ≤ N .

Proof. We prove the statement by induction on N . The case N = 2 is immediate since W is locality
compatible with ⊤. Assume it is true for N − 1, and let x ∈ K(S), yi ∈ K(S) and wi ∈W for 1 ≤ i ≤ N ,
such that x+wi⊤yi for every i. By induction there is w′

0 ∈W such that x+w′
0⊤yi for every 1 ≤ i ≤ N−1.

We can write every yi in terms of the basis elements of S as yi =
∑
s∈S αi,ss where only finitely many

αi,s ̸= 0, and define ȳ =
∑
s∈SMss where

Ms =

{
0 if (∀i ∈ [N − 1]) : αi,s = 0,

1 if (∃i ∈ [N − 1]) : αi,s ̸= 0.

Notice that only finitely manyMs ̸= 0 and thus ȳ is well defined. Moreover x+w′
0⊤ȳ and, as a consequence

of the definition of ȳ, for every z ∈ K(S) such that z⊤ȳ then z⊤yi for every i < N .
Since W is locality compatible with ⊤, there is an element w′ in W such that x+w′⊤ȳ and x+w′⊤yN

which implies the expected result.

5.4 Two conjectural statements
We now formulate two conjectural statements which will play an important role in the sequel. The
first one is the conjectural statement 5.30 which gives a sufficient condition for the tensor product of n
subspaces of a locality vector space to be again a locality vector space. The second one is the conjectural
statement 5.33 which enhances the tensor algebra to a locality algebra by giving sufficient conditions for
the filtered components from Definition 4.24 to become locality vector spaces. In the following V1 and V2
are subspaces of a pre-locality vector space (E,⊤). We equip V1 ×⊤ V2 with a locality relation ⊤V1×⊤V2

as in (2.2). We discuss why those conjectural statements are very difficult to prove together with some
reasons and examples why we believe them to be true in Appendix B.

Remark 5.29. If V1 = V2 = V , we have ⊤V1×⊤V2
= V ×⊤4 with the notations of Definition 2.4.

Recall that the locality tensor product of V1 and V2 was defined in Definition 2.14 as the quotient
space

V1 ⊗⊤ V2 = K(V1 ×⊤ V2)/Ibil ∩ K(V1 ×⊤ V2).

The locality relation ⊤V1×⊤V2
in K(V1×⊤ V2) induces a locality relation ⊤⊗ on V1⊗⊤ V2, namely the

quotient locality (see Definition 4.6). Whether or not the subspace of bilinear forms Ibil(V1, V2)∩K(V1×⊤
V2) is locality compatible with ⊤V1×⊤V2 , is a challenging question which we formulate as conjectural
statement. In Appendix B we relate the following conjectural statements with an open problem in group
theory, and provide examples and reasons to believe it is true.

Conjectural statement 5.30. [Pair of locality vector spaces] Given a locality vector space (E,⊤) and
two subspaces from it V1, and V2, the subspace Ibil(V1, V2)∩K(V1 ×⊤ V2) ⊂ K(V1 ×⊤ V2) is locality com-
patible with ⊤V1×⊤V2 .
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Proposition 5.31. Statement 5.30 is equivalent to the following statement:
Let n ≥ 2 and V1, . . . , Vn be linear subspaces of a locality vector space (E,⊤). The space Imult,n(V1, . . . , Vn)∩

K(V1 ×⊤ · · · ×⊤ Vn) ⊂ K(V1 ×⊤ · · · ×⊤ Vn) is locality compatible with the locality relation ⊤V1×⊤···×⊤Vn

(see Definition 4.9) on the space K(V1 ×⊤ · · · ×⊤ Vn).

Proof. We can recover Statement 5.30 from the statement of Proposition 5.31 in the case n = 2. Con-
versely, we now prove that Statement 5.30 implies that of Proposition 5.31.

For n ≥ 3: Let x, y, z and w be elements of K(V1 × · · · × Vn) where w ∈ Imult,n(V1 × · · · × Vn) such
that x⊤×y and (x+ w)⊤×z. Extending linearly the usual bijection between (V1 × · · · × Vn−1)× Vn and
V1×· · ·×Vn, one obtains an isomorphism of vector spaces K((V1×· · ·×Vn−1)×Vn) ≃ K(V1×· · ·×Vn). It is
straightforward to show that the restriction of such an isomorphism to K((V1×⊤ · · ·×⊤Vn−1)×⊤Vn) (resp.
Ibil(V1 × · · · × Vn−1, Vn)) yields an isomorphism with K(V1 ×⊤ · · · ×⊤ Vn) (resp. Imult,n(V1 × · · · × Vn)).
We may therefore see x, y, z and w as elements on K((V1 ×⊤ · · · ×⊤ Vn−1) ×⊤ Vn) as well as view w
as an element of Ibil(V1 × · · · × Vn−1, Vn). Assuming Statement (5.30) holds, it yields the existence of
w′ ∈ Ibil(V1 × · · · × Vn−1, Vn) ∩K((V1 ×⊤ · · · ×⊤ Vn−1)×⊤ Vn) such that (x+w′)⊤×y and (x+w′)⊤×z,
which proves the statement.

The following corollary is important to ensure the stability of locality vector spaces under tensor
products and is the main reason for introducing the conjectural statement 5.30.

Corollary 5.32. Let n ≥ 1 and V1, . . . , Vn be linear subspaces of a locality vector space (V,⊤). Assuming
that statement 5.30 holds true, the locality tensor product (V1⊗⊤ · · ·⊗⊤Vn,⊤⊗) is a locality vector space.

Proof. This statement follows from Proposition 5.31 and Theorem 5.26.

Even though the last statement is essential for the rest of the paper, it is not enough to make the
locality tensor algebra a locality vector space, since it fails to relate the different graded components.
Therefore we formulate the following conjectural statement whose consequences will be used in the sequel
(see for instance Theorems 6.22 and 6.39).

Conjectural statement 5.33. [Locality tensor algebra] Given a locality vector space (V,⊤V ) and any
n ∈ N, the subspace

(
Inmult(V )∩K(

⋃n
k=0 V

×k
⊤)
)
⊂ K(

⋃n
k=0 V

×k
⊤) is locality compatible with ⊤× (see

Definition 4.26).

Each of the statements 5.30 and 5.33 implies the following useful property:

Proposition 5.34. [Locality vector space] (the case V = W ) Given a locality vector space (V,⊤V ) and
assuming that statement 5.30 holds true, the subspace Ibil(V, V ) ⊂ K(V ×⊤ V ) is locality compatible with
⊤V×⊤V .

Even though they might seem rather natural, these conjectural statements turn out to be rather
challenging (see Appendix B). We devote the following paragraphs to getting a better grasp of these
assumptions and their consequences.

5.5 Universal properties in the locality setup
In this section, we show how assuming that statements 5.30 and 5.33 hold true, enables us to enhance
some results in the pre-locality setup to a full-fledged locality setup. In particular, Proposition 4.31 is
enhanced by Proposition 5.36 where we prove that the locality tensor algebra is indeed a locality algebra.
Also the universal properties in Theorems 4.14, 4.33, 4.41 and 4.48 are transposed to the locality context.

The following definition is also presented in [21, Definition 7.2], and is the locality version of Definition
1.19.

Definition 5.35. • A graded locality algebra is a locality algebra together with a sequence of
vector spaces {An}n∈N called the grading, such that

A =
⊕
n∈N

An, m(Ap ⊗⊤ Aq) ⊂ Ap+q, u(K) ⊂ A0.
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• A filtered locality algebra is a locality algebra together with a sequence of nested vector spaces
A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · called the filtration, such that

A =
⋃
n∈N

An, m(Ap ⊗⊤ A
q) ⊂ Ap+q, u(K) ⊂ A0.

A graded (resp. filtered) locality Lie algebra is a locality Lie algebra which is also a graded
(resp. filtered) locality Lie algebra.

Proposition 5.36. Assuming that conjectural statement 5.33 holds true, the locality tensor algebra over
a locality vector space is a graded locality algebra.

Proof. Let (V,⊤V ) be a locality vector space, it is straightforward that the locality vector space
(K(V ×∞

⊤ ),⊤V ), where V ×∞
⊤ :=

⋃
k≥1 V

×⊤k, together with the concatenation product mc between locally
independent elements is a locality algebra. The subspace Imult is moreover a locality ideal. Therefore
Theorem 5.26 implies that (T⊤(V ),⊤⊗,

⊗
) is a locality algebra. Since for any p and q, the concatena-

tion product mc preserves the grading of K(V ×∞
⊤ ), namely mc(V

×p
⊤ ×⊤ V ×q

⊤) ⊂ V ×p+q
⊤ , it follows that⊗

(V ⊗p
⊤ ⊗⊤ V

⊗q
⊤) ⊂ V ⊗p+q

⊤ . Finally, the convention that V 0 = K yields the result.

The following theorem generalises Theorem 4.14.

Theorem 5.37 (Universal property of the locality tensor product). Given V1 · · · , Vn linear subspaces of
a locality vector space (E,⊤), (G,⊤G) a locality vector space and f : (V1 ×⊤ · · · ×⊤ Vn,⊤×)→ (G,⊤G)
a locality ⊤× n-linear map. Assuming that conjectural statement 5.30 holds true for the locality vector
spaces V1, . . . , Vn, there is a unique locality linear map ϕ : V1 ⊗⊤ · · · ⊗⊤ Vn → G such that the following
diagram commutes.

(V1 ×⊤ · · · ×⊤ Vn,⊤×) (V1 ⊗⊤ · · · ⊗⊤ Vn,⊤⊗)

(G,⊤G)

⊗⊤

f⊤

ϕ

Proof. Theorem 4.14 yields the existence and uniqueness of the linear map ϕ. Assuming the statement
5.30 holds true, Proposition 5.31 and Theorem 5.26 imply that V1⊗⊤ · · ·⊗⊤ Vn is a locality vector space.
We are only left to show that ϕ is a locality map. Recall that two equivalence classes [a] and [b] in
V1 ⊗⊤ · · · ⊗⊤ Vn verify [a]⊤⊗[b] if there are

∑N
i=1 αi(x1,i, . . . , xn,i) ∈ [a] and

∑M
j=1 βj(y1,j , . . . , yn,j) ∈ [b]

such that every possible pair taken from the set {xk,i : (k, i) ∈ [n]× [N ]} ∪ {yk,j : (k, j) ∈ [n]× [M ]} lies
in ⊤. Since f is locality ⊤× n-linear, then f(

∑N
i=1 αi(x1,i, . . . , xn,i))⊤Af(

∑M
j=1 βj(y1,j , . . . , yn,j)) which

amounts to ϕ([a])⊤Aϕ([b]). Therefore ϕ is as expected.

Assuming that conjectural statement 5.33 holds true, as a consequence of the previous theorem, we
can state and prove an enhanced universal property Theorem 4.33 for the locality tensor algebra.

Theorem 5.38 (Universal property of locality tensor algebra). Let (V,⊤) be a locality vector space,
(A,⊤A) a locality algebra and f : V → A a locality linear map. Assuming the conjectural statement 5.33
holds for tensor powers of V , there is a unique locality algebra morphism ϕ : T⊤(V ) → A such that the
following diagram commutes.

(V,⊤) (T⊤(V ),⊤⊗)

(A,⊤A)

⊗⊤

f
ϕ

where ⊗ : V → T⊤(V ) is the canonical (locality) injection map.
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Proof. Since we have assumed that conjectural statement 5.33 holds true, the locality tensor algebra is a
locality algebra by Proposition 5.36. By means of Theorem 4.33 and Remark 2.28 the pre-locality algebra
morphism ϕ exists and is unique. Given that T⊤(V ) and A are locality algebras, then ϕ is also a locality
algebra morphism as expected.

In order to extend Theorem 4.48 (the universal property of the locality universal enveloping algebra)
to the locality setup, it is first needed that the locality universal enveloping algebra U⊤(g) of a locality Lie
algebra g is a locality algebra and not only a pre-locality algebra. In the remaining part of the chapter,
assuming that the conjectural statement 5.33 holds true, we make the following further assumption which
is similar in spirit to conjectural statements 5.30 and 5.33.

Conjectural statement 5.39. [Locality universal enveloping algebra] Given a locality Lie algebra
(g,⊤g, [, ]), the ideal J⊤(g) of T⊤(g) introduced in Definition 4.46 is locality compatible with ⊤⊗.

Proposition 5.40. Assuming the conjectural statement 5.39 holds true for a locality Lie algebra (g,⊤g, [, ]),
then U⊤(g) defines a locality algebra.

Proof. This is a direct consequence of Theorem 5.26.

The following theorem is the locality counterpart of Theorem 4.48.

Theorem 5.41. Let (g,⊤g, [, ]) be a locality Lie algebra, (A,⊤A) a locality algebra and f : g → A a
locality Lie algebra morphism where the Lie bracket on A is the commutator defined by the product.
Assuming that the conjectural statements 5.33 and 5.39 hold true for g, there is a unique locality algebra
morphism ϕ : U⊤(g) → A such that the following diagram commutes, and where ιg : g −→ U⊤(g) is the
locality canonical map from g to U⊤(g).

(g,⊤g) (U⊤(g),⊤g)

(A,⊤A)

ιg

f
ϕ

Proof. The proof follows from Theorem 4.48 and the fact that U⊤(g) and A are locality algebras.

The following is the locality counterpart of Proposition 4.52.

Corollary 5.42. Let (g, [, ]g,⊤) and (g′, [, ]g′ ,⊤′) be two isomorphic locality Lie algebras, then their
locality universal enveloping algebras U⊤(g) and U⊤′(g′) are isomorphic as locality algebras.

Proof. By means of Corollary 4.52 U⊤(g) and U⊤′(g′) are isomorphic as pre-locality algebras. The result
follows then from Proposition 5.40.

In order to upgrade Theorem 4.41 (universal property of the locality symmetric algebra of a pre-
locality vector space) to the locality setup, it is first necessary to prove that it is indeed a locality algebra.
Contrary to the previous cases, the decomposition of T⊤(V ) into symmetric and antisymmetric tensors
is enough to do so. This is a consequence of the symmetry of the locality relation which lies in the heart
of the proof of Definition-Proposition 4.36.

Proposition 5.43. Given a locality vector space (V,⊤). If (T⊤(V ),⊤⊗) is a locality algebra, then it
accepts a decomposition of the type

T⊤(V ) = AT⊤(V )⊕⊤ ST⊤(V ),

i.e., AT⊤(V ) is a strong locality complement of ST⊤(V ) with respect to (T⊤(V ),⊤⊗), and thus AT⊤(V )
is locality compatible with ⊤⊗.

Proof. This is a direct consequence of item 2. in Definition-Proposition 4.36 and the fact that strong
locality complement implies locality compatibility (Proposition 5.23).
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In grounds of the previous proposition we can upgrade the locality symmetric algebra in the pre-
locality context to the locality context.

Proposition 5.44. Let (V,⊤) be a locality vector space. If (T⊤(V ),⊤⊗) is a locality algebra, then
(S⊤(V ),⊤S) is a locality graded, connected (unital, associative) algebra.

Proof. The fact that S⊤(V ) is a locality algebra follows from Proposition 5.43 and Theorem 5.26. The
gradedness and connectedness follow from the fact that S⊤(V ) is a subspace of S(V ) (Proposition 4.39)
which is graded and connected (see Paragraph 1.4).

Theorem 5.45 (Universal property of the locality symmetric algebra). Let (V,⊤) be a locality vector
space, (A,⊤A) a commutative locality algebra and f : V → A a locality linear map. If T⊤(V ) is a locality
algebra, then there exists a unique morphism of commutative locality algebras ϕf : S⊤(V ) → A such
that the following diagram commutes:

(V,⊤) (S⊤(V ),⊤S)

(A,⊤A)

ιS

f
ϕf

Proof. The statement follows from Theorem 4.41 and the fact that S⊤(V ) and A are locality algebras
(Proposition 5.44).

6 Locality versions of the Milnor-Moore and Poincaré-Birkhoff-
Witt theorems

The main objective of this section is to state and prove the locality versions of the Milnor-Moore theorem
(Theorem 6.22), also known as Cartier-Quillen-Milnor-Moore, and the Poincaré-Birkhoff-Witt theorem
(Theorem 6.39). The Milnor-Moore theorem first appear in some seminar notes from Cartier [14] in 1957
and was later popularised by Milnor and Moore in 1965 [73] using a rather categorical language. The
idea of the proof we follow stems from Cartier [15] and Patras [80]. We found a nice explanation of this
proof in some lecture notes by Loïc Foissy [33], on which Paragraphs 6.2 and 6.4 are based. However,
that proof uses Corollary 1.55 of the Poincaré-Birkhoff-Witt theorem in its version regarding a basis for
U(g) (Theorem 1.53) and, as we have already mentioned, such version is in general not possible to adapt
to the locality setup since basis and locality are not always compatible, in particular, a basis of a locality
vector space does not always induces a basis of its locality tensor algebra. Therefore, in Proposition 6.20
we present an alternative proof in the locality context of the result of Corollary 1.55 which do not rely
on the Poincaré-Birkhoff-Witt theorem but rather uses Zorn’s lemma (Lemma 1.1). The consequence is
that we present a proof of the locality Milnor-Moore theorem, which also applies to the non-locality case
when considering the trivial locality relation, and that does not use the Poincaré-Birkhoff-Witt theorem
as most of the proofs do.

On the other hand, the Poincaré-Birkhoff-Witt theorem first appeared with this names in Bourbaki’s
book "Lie groups and Lie algebras" in 1960 [11]. The formulation we generalise, which provides a coalgebra
isomorphism between the symmetric algebra and the universal enveloping algebra of a Lie algebra, was
proven by Quillen [82, Appendix B]. We base our proof in that presented in [17, Section 4.2]. However,
that proof relies on the fact that idempotent tensors generate the subalgebra of symmetric tensors of a
tensor algebra which represents a problem for the locality case since, in general, locality relations are not
symmetric and thus idempotent tensors might not lie in the locality tensor algebra. Therefore, we deviate
from their proof in Lemmas 6.33, 6.34, and 6.36 to make up for such situation. We also complete what,
to our opinion, is a gap in the proof by [17, Section 4.2] since the universal enveloping algebra is a filtered
algebra and thus the reduced coproduct, iterated to the degree of the filtration is not well defined. For
that purpose, and inspired by [29, Section 2.1.4], we introduce Lemmas 6.37 and 6.38 to correctly define
the iterated reduced coproduct as a map from the locality universal enveloping algebra to the locality
tensor algebra.
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In Paragraph 6.1 we introduce the necessary concepts to state the theorem, namely those of locality
coagebra, locality bialgebra and locality Hopf algebras. In Paragraph 6.2 we present some Lemmas
necessary for the proofs of the main theorems. In Paragraph 6.3 we endow the locality symmetric algebra
and the locality universal enveloping algebra with the structure of locality Hopf algebras. Paragraph 6.4 is
devoted to the proof of the locality Milnor-Moore theorem and Paragraph 6.5 to some of its consequences.
Finally, Paragraph 6.6 is devoted to the proof of the locality Poincaré-Birkhoff-Witt theorem. Some
paragraphs of this section follow closely [21, Part 3]. In the sequel, we assume that the conjectural
statements 5.33 and 5.39 hold true, and recall that we assume all locality vector spaces (resp. locality
algebras, resp. locality coalgebras, resp. locality bialgebras, resp. locality Hopf algebras) have the same
underlying filed K of characteristic zero.

6.1 Graded connected locality Hopf algebras
In this paragraph we recall the definition of locality coalgebra, locality bialgebra and locality Hopf algebra
introduced in [22]. We discuss after Definition 6.1 why such concepts require the locality and not the
pre-locality context. It is worth mentioning that the concepts of locality coideals, locality sub-coalgebras,
together with most results presented in this paragraph are not in [22] but are original of this research.
Particularly interesting is Lemma 6.7 which, contrarily to the usual (non-locality) setup (Proposition
1.29), it requires stronger conditions for the kernel of a locality coalgebra morphism to be a locality
coideal.

Locality coalgebras

Let us recall some definitions from [22]. Just as a locality algebra was defined as a locality vector space
equipped with a partial product and a unit compatible with the locality relation (see Definition 2.26),
a locality coalgebra is a locality vector space equipped with partial coproduct and a counit compatible
with the locality relation.

Definition 6.1. [22, Definition 4.3]

• A locality K-coalgebra is a quadruple (C,∆, ϵ,⊤) where (C,⊤) is a locality K-vector space, ∆ :
(C,⊤)→ (C ⊗⊤ C,⊤⊗) and ϵ : C → K are linear maps such that

– the coproduct ∆ is coassociative, namely (IdC ⊗∆) ◦∆ = (∆⊗ IdC) ◦∆ on C;
– and compatible with the locality structure i.e., for any U ⊂ C, ∆(U⊤) ⊂ U⊤ ⊗⊤ U

⊤;
– the counit ϵ : C → K satisfies (IdC ⊗ ϵ)∆ = (ϵ⊗ IdC)∆ = IdC .

• A graded locality K-coalgebra is a locality K-coalgebra together with a sequence of vector spaces
{Cn}n∈N called a grading, such that

C =
⊕
n∈N

Cn, ∆(Cn) ⊂
⊕
p+q=n

Cp ⊗⊤ Cq,
⊕
n≥1

Cn ⊂ ker(ϵ).

For x ∈ C, we denote by |x| the degree of x.
Moreover we call a graded locality K-coalgebra connected if C0 has dimension 1 and therefore⊕

n≥1 Cn = ker(ϵ).

• A filtered locality K-coalgebra is a locality K-coalgebra together with a nested sequence of
vector spaces C0 ⊂ C1 ⊂ · · · ⊂ Cn . . . , called a filtration, such that

C =
⋃
n∈N

Cn, ∆(Cn) ⊂
∑

p+q=n

Cp ⊗⊤ C
q,

⊕
n≥1

Cn ⊂ ker(ϵ).

Remark 6.2. The second condition implies that ∆ : (C,⊤) → (C ⊗⊤ C,⊤⊗) is a locality map. Indeed
for a⊤b, Condition 2 implies that there are a1,i ⊗ a2,i ∈ {b}⊤ ⊗⊤ {b}⊤ for 1 ≤ i ≤ N such that
∆(a) =

∑N
i=1 a1,i ⊗ a2,i. Applying Condition 2 once more, there are b1,j ⊗⊤ b2,j ∈ {a1,i, a2,i : 1 ≤ i ≤

N}⊤ ⊗⊤ {a1,i, a2,i : 1 ≤ i ≤ N}⊤ for 1 ≤ j ≤ M such that ∆(b) =
∑M
j=1 b1,j ⊗⊤ b2,j . It follows that

∆(a)⊤⊗∆(b) as expected.
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Notice that the above definition only makes sense in the locality framework, where the polar set
U⊤ of a set is required to be a vector space. In the pre-locality setup, the fact that this condition is
relaxed prevents us from building locality tensor products such as U⊤ ⊗⊤ U⊤. This suggests that the
Milnor-Moore theorem we are about to prove does not hold in the more general pre-locality setup.

Similar to the non-locality case (Proposition 1.28), it is possible to take quotients of locality coalge-
bras which inherits naturally a locality coalgebraic structure. For that purpose, the following definition
provides the coalgebraic counterpart of a locality ideal (see (1.25)) and a locality morphism, (see (1.26)).

Definition 6.3. 1. A locality linear subspace J of a locality coalgebra (C,⊤,∆) is called a left, (resp.
right) locality coideal of C, if

∆(J) ⊂ J ⊗⊤ C; (resp.∆(J) ⊂ C ⊗⊤ J) and ϵ(J) = {0}. (2.32)

We call it a locality coideal if

∆(J) ⊂ J ⊗⊤ C + C ⊗⊤ J and ϵ(J) = {0}. (2.33)

Note that the condition ϵ(J) = {0} does not involve the locality relation.

2. Given two locality coalgebras (Ci,⊤i,∆i, ϵi), i = 1, 2, a locality linear map f : C1 → C2 is called a
locality coalgebra morphism if

(f ⊗ f) ◦∆1 = ∆2 ◦ f, and ϵ1 = ϵ2 ◦ f. (2.34)

In other words, it is a coalgebra morphism which is a locality map. An isomorphism of lo-
cality coalgebras is a bijective morphism of locality coalgebras, the inverse of which is also an
isomorphism of locality coalgebras.

3. Let (C,⊤,∆) be a locality coalgebra. A locality coalgebra (C1,⊤1,∆1) with C1 ⊂ C is a locality
sub-coalgebra of (C,⊤,∆) if the inclusion map ι : (C1,⊤1,∆1) ↪→ (C,⊤,∆) is a coalgebra morphism.

It is convenient to notice that this definition of locality sub-coalgebra is more general than the one
given in [22]. This level of generalisation will be needed later. The following lemma will be of use in the
sequel.

Lemma 6.4. Let (C,⊤,∆, ϵ) and (C ′,⊤′,∆′, ϵ′) be two locality coalgebras and f : C → C ′ a bijective
morphism of locality coalgebras. Then f−1 : C ′ → C is a morphism of coalgebras, but it is not necessarily
a locality map and thus not necessarily an isomorphism of locality coalgebras.

Proof. Since f : C → C ′ is a linear bijective map, then f−1 is a linear map too. Precomposing ϵ = ϵ′ ◦ f
with f−1 follows that ϵ ◦ f−1 = ϵ′. Finally, for any c′ ∈ C ′, set c := f−1(c), then

∆(f−1(c′)) =(f−1 ⊗ f−1) ◦ (f ⊗ f) ◦∆(f−1 ◦ f(c))
=(f−1 ⊗ f−1) ◦∆′ ◦ f(c) (f is a coalgebra morphism)

=(f−1 ⊗ f−1)(∆′(c′)),

and thus ∆ ◦ f−1 = (f−1 ⊗ f−1) ◦∆′ which finishes the proof.

The following example illustrates that the inverse of a bijective coalgebra morphism is not necessarily
a locality map.

Counter-example 6.5. Let V ̸= {0} be a vector space and consider C := V ⊕ K. Consider moreover
as the counit ϵ the projection of C onto K, and the coproduct ∆ : C → K given by ∆(1K) = 1K ⊗ 1K
and ∆(v) = 0 ⊗ 0 for every v ∈ V . Consider finally the locality relations on C, T1 := C × C and
T2 := C×{0}∪{0}×C. It is then straightforward to check that (C,⊤1,∆, ϵ) and (C,⊤2,∆, ϵ) are locality
algebras, and that the identity map IdC : (C,⊤2) → (C,⊤1) is a locality coalgebra morphism making
(C,⊤2,∆, ϵ) a locality sub-coalgebra of (C,⊤1,∆, ϵ). However the inverse map IdC : (C,⊤1) → (C,⊤2)
is not a locality map.
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The following is the locality version of Lemma 1.18. As in Proposition 4.21, we require a compatibility
between the locality relation and direct sums.

Proposition 6.6. Let (E,⊤) and (F,⊤F ) be two locality vector spaces. For i ∈ {1, 2}, let fi : Vi →Wi be
locality linear maps from locality subspaces Vi⊂ E to vector subspaces Wi of F . We moreover assume that
f1 and f2 are mutually locally independent and the existence of surjective projections πi : Vi → ker(fi)
such that πi and IdVj

are locally independent for i ̸= j (see Proposition 4.21). Then

ker(f1 ⊗ f2) ∩ (V1 ⊗⊤ V2) = ker f1 ⊗⊤ V2 + V1 ⊗⊤ ker f2. (2.35)

Proof. We know from Lemma 1.18 that ker(f1 ⊗ f2) = ker f1 ⊗ V2 + V1 ⊗ ker f2. Taking the intersection
with V1 ⊗⊤ V2 yields

ker(f1 ⊗ f2) ∩ (V1 ⊗⊤ V2) = (ker f1 ⊗ V2 + V1 ⊗ ker f2) ∩ (V1 ⊗⊤ V2).

From elementary linear algebra, we obtain V1 = ker(f1) ⊕ ker(π1). Since by hypothesis π1 and IdV2
are

locally independent and since (E,⊤) is a locality vector space, by the second point of Proposition 4.21,
the projection π̃1 : V1 7→ ker(π1) onto ker(π1) along ker(f1) is also independent of IdV2

. Thus we can use
Corollary 4.22 with ker(f1), V1 and V2 respectively playing the roles of V1, V and W in Corollary 4.22.
This yields (ker f1 ⊗ V2)∩(V1⊗⊤V2) = ker(f1)⊗⊤V2. Similarly, (V1 ⊗ ker f2)∩(V1⊗⊤V2) = V1⊗⊤ker(f2)
and hence

ker(f1 ⊗ f2) ∩ (V1 ⊗⊤ V2) = (ker f1 ⊗ V2 + V1 ⊗ ker f2) ∩ (V1 ⊗⊤ V2) = ker f1 ⊗⊤ V2 + V1 ⊗⊤ ker f2.

The following lemma is the coalgebraic counterpart of Lemma 2.29.

Lemma 6.7. Let (Ci,∆i,⊤i), i ∈ {1, 2} be locality coalgebras. The range of a locality coalgebra mor-
phism f : C1 −→ C2 is a locality subcoalgebra of C2. Moreover, if there is a projection π : C1 → ker(f1),
which is locally independent of the identity map IdC1

on C1, then ker(f1) is a locality coideal of C1.

Proof. • We prove that the kernel ker(f) is a locality coideal. Let c ∈ ker(f) ⊂ C1. Since f is
a locality coalgebra morphism, by (2.34), we have (f ⊗ f)(∆1c) = ∆2(f(c)) = 0. Since ∆1 is
a locality coproduct, ∆1(ker(f)) ⊂ (C1 ⊗⊤1 C1) ∩ ker(f ⊗ f). We now apply Proposition 6.6
to fi = f and Vi = C1, with f ⊗ f acting on C1 ⊗⊤1 C1. Since f is a locality morphism, it
follows that ker(f ⊗ f)|C1⊗⊤1

C1
= ker(f) ⊗⊤1

C1 + C1 ⊗⊤1
ker(f). Consequently, ∆1 (ker(f)) ⊂

ker(f) ⊗⊤1
C1 + C1 ⊗⊤1

ker(f). We are left to show that ϵ1(ker(f)) = {0}. This follows from the
fact that ϵ1 = ϵ2 ◦ f , since ϵ2 ◦ f(ker(f)) = {0}. Therefore ker(f1) is a locality coideal of C1.

• To prove that the range Im(f) is a locality coalgebra, for any c ∈ C1 such that ∆1(c) =
∑

(c) c1⊗ c2
and c1⊤1c2, using (2.34) we write ∆2f(c) = (f ⊗f)◦∆1c =

∑
(c) f(c1)⊗f(c2). Since f is a locality

map, f(c1)⊤2f(c2), which proves that ∆2 (Im(f)) ⊂ Im(f) ⊗⊤2 Im(f), showing that Im(f) is a
subcoalgebra of C2.

Locality bialgebras and locality Hopf algebras

We proceed to define the concepts of locality bialgebras and locality Hopf algebras.

Definition 6.8. • [22, Section 5.1] A locality bialgebra is a sextuple (B,⊤,m, u,∆, ϵ) consisting
of a locality algebra (B,m, u,⊤) and a locality coalgebra (B,∆, ϵ,⊤) that are locality compatible
in the sense that ∆ and ϵ are locality algebra morphisms (1.26) and m and u are locality coalgebra
morphisms1 i.e.,

∆◦m|B⊗⊤2 = (m⊗m)︸ ︷︷ ︸
domainB⊗4

⊤

◦ (IdB⊗τ23⊗IdB) ◦(∆⊗∆)|
B⊗2

⊤︸ ︷︷ ︸
range B⊗⊤4

; ϵ◦m = ϵ⊗ϵ; ∆◦u = u⊗u; ϵ◦u = IdK,

where B⊗n
⊤ was defined in (1.21), and τ23 : B⊗4

⊤ → B⊗4
⊤ is the map that switches the terms on the

second and third position of the tensor.
1This condition was missing in [22].
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• Let (Bi,⊤i,mi, ui,∆i, ϵi) (i ∈ {1, 2}) be two locality K-bialgebras. A locality bialgebra mor-
phism from B1 to B2 is a locality map f : B1 −→ B2 that is a morphism of locality algebras and
of locality coalgebras.

• [22, Proposition 4.9] Let (B,⊤,m, u,∆, ϵ) be a locality bialgebra, and ϕ, ψ : B → B two mutually
independent locality linear maps. The locality convolution product of ϕ and ψ is a locality linear
map B → B defined by

(ϕ ⋆ ψ) = m(ϕ⊗ ψ)∆.

Remark. The locality of ϕ⋆ψ follows from the locality of ϕ, ψ, m, and ∆, together with Definition-
Proposition 4.18 and Proposition 2.3.

• [22, Definition 5.3 and Remark 5.4] A locality Hopf algebra is a locality bialgebra (H,⊤,m, u,∆, ϵ)
together with a locality linear map S : H → H such that S and IdH are mutually independent and

S ⋆ IdH = IdH ⋆ S = u◦ϵ.

• Let (Hi,⊤i,mi, ui,∆i, ϵi, Si) for i ∈ {1, 2} be two locality Hopf algebras. A locality Hopf algebra
morphism between H1 and H2 is a morphism of locality bialgebras f : H1 −→ H2 such that
f ◦ S1 = S2 ◦ f .

• A locality Hopf sub-algebra of H of a locality Hopf algebra (H,⊤,m, u,∆, ϵ, S) is a locality
Hopf algebra (H ′,⊤′,m′, u′,∆′, ϵ′, S′) contained in H such that the injection map f : H ↪→ H ′ is a
locality Hopf algebra morphism.

• A graded (resp. filtered) locality Hopf algebra is a locality Hopf algebra together with a
grading (resp. filtration) which makes it a graded (resp. filtered) locality algebra and graded (resp.
filtered) locality coalgebra and such that

S(Hn) ⊂ Hn (resp. S(Hn) ⊂ Hn).

A connected locality Hopf algebra is a graded (resp. filtered) locality algebra such that H0

(resp. H0) has dimension 1.

Notice that, as in the algebra and coalgebra cases, our definition of locality Hopf sub-algebra is more
general than the one used in [22], in that the locality relation on the locality Hopf sub-algebra can be
coarser than the one in the bigger locality Hopf algebra. This fact is proper to the locality setup and has
interesting consequences which will be studied at the end of this section. The following is an illustrative
example of a locality Hopf algebra.

Example 6.9 (The locality tensor algebra as a locality Hopf algebra). For (V,⊤) a locality vector space,
T⊤(V ) is a locality Hopf algebra in the sense of [22, Definition 5.3] when equipped with the tensor product
restricted to pairs in ⊤⊗ and the deschuffle coproduct defined on x ∈ V by ∆⊔⊔(x) = 1 ⊗ x + x ⊗ 1 and
inductively on the degree by

∆⊔⊔(xi1 ⊗ · · · ⊗ xin) =
∑

J⊂(i1,...,in), wJ⊤⊗wJ̄

wJ ⊗ wJ̄ , (2.36)

where we have set wJ := xj1⊗· · ·⊗xjk for J = (j1, . . . , jk) and where J̄ stands for the complement of J in
{i1, . . . , in}. The counit is defined by ϵ(x) = 0 for x ∈ V and the antipode is given by S(xj1 ⊗· · ·⊗xjk) =
(−1)k xjk ⊗ · · · ⊗ xj1 .

It is a connected graded cocommutative locality Hopf algebra of finite type.

The usual result for the existence of an antipode in a graded connected bialgebra also holds in the
locality setup.

Proposition 6.10. [22, Proposition 5.5] Let (B,⊤,m, u,∆, ϵ) be a graded, connected, locality bialgebra.
There exists an antipode S : B → B such that (B,⊤,m, u,∆, ϵ, S) is a locality Hopf algebra.
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We end this paragraph with a transposition to the locality setup of the known Lie algebra structure
of the space Prim(B) of primitive elements of a bialgebra B (see Example 1.50). Recall from Definition
1.30 item 5, that an element x ∈ B is called primitive if, and only if ∆x = x ⊗ 1 + 1 ⊗ x and that a
graded locality Lie algebra is a locality Lie algebra which is also a graded algebra for the Lie bracket
(see Definitions 4.44 and 5.35).

Proposition 6.11. The space (Prim(B),⊤Prim(B), [·; ·]) of a (resp. graded) locality bialgebra (B,⊤)
equipped with ⊤Prim(B) = ⊤

∣∣
Prim(B)

the restriction of the locality relation ⊤ to primitive elements and
the usual commutator [x, y] = xy − yx (resp. [x, y] = xy − (−1)|x|.|y|yx), is a (resp. graded) locality Lie
algebra.

Proof. We carry out the proof for the graded case, since the ungraded case can be obtained by setting
all degrees to zero.

Let m be the locality product of the locality bialgebra (B,⊤). Since for any U ⊆ B, m(U⊤⊗⊤U
⊤) ⊂

U⊤, we have that [[x, y], z] (and its permutations) is well-defined for any triplet (x, y, z) ∈ B×⊤3. The rest
of the proof goes exactly as for the non locality case. In particular, for any (x, y) ∈ Prim(B)×⊤ Prim(B),
since ∆ is a locality algebra morphism, we have:

∆(xy) = (m⊗m) ◦ τ23 ◦ (∆⊗∆)(x, y)

= (m⊗m) ◦ τ23((x⊗ 1 + 1⊗ x)⊗ (y ⊗ 1 + 1⊗ y)) since x and y are primitive elements

= xy ⊗ 1 + (−1)|x||y|y ⊗ x+ x⊗ y + 1⊗ xy.

∆(yx) is obtained by exchanging x and y in the previous computation. Putting everything together we
obtain by linearity of ∆

∆([x, y]) = [x, y]⊗ 1 + 1⊗ [x, y] ∈ B ⊗⊤ B,

and thus [x, y] ∈ Prim(B). This, together with the fact that ∆ is linear, implies that (Prim(B),⊤, [; ]) is
a locality Lie algebra.

6.2 Reduced coproduct and primitive elements
This paragraph reviews preliminary well-known technical results, which we transpose to the locality setup.
As before, the underlying field K of every vector space (or locality algebra, locality coalgebra, locality
bialgebra or locality Hopf algebra) is a commutative field of characteristic zero.

Lemma 6.12. Let H be a graded, connected locality bialgebra. The projection onto ker(ϵ) along K (1H)

ρ : H −→ H
x 7−→ x− ϵ(x)1H

(2.37)

is a locality linear map, which is independent of ∆ in the following sense:

x⊤y =⇒ ρ(x)⊤⊗∆(y) (2.38)

with ⊤⊗ the locality relation on T⊗(H) ⊇ H of Definition 4.26.

Proof. Let x⊤y. Since K ⊂ H⊤ we have ϵ(x)1H⊤y implying by linear locality that (x−ϵ(x)1H)⊤y. Since
ϵ(y)1H⊤(x− ϵ(x)1H), again by linear locality, we deduce that x− ϵ(x)1H⊤y− ϵ(y)1H and conclude that
ρ(x)⊤ρ(y).

To check the mutual independence of ρ and ∆, we consider again x ∈ H and y ∈ H such that x⊤y.
We write ∆y =

∑
yi ⊗ y′i, so that Equation (2.38) amounts to show that ρ(x)⊤yi and ρ(x)⊤y′i. Since

ρ(x) = x − ϵ(x) 1H and K 1H⊤H, by linearity, it suffices to show that x⊤yi and x⊤y′i. But this follows
from the fact that ∆ maps {x}⊤ to {x}⊤ ⊗⊤ {x}⊤.

Similar to the non-locality case (see Lemma 1.33), in a graded, connected, locality bialgebra H, for
every x in H

∆(x) = x⊗ 1 + 1⊗ x+
∑
(x)

x′ ⊗ x′′,
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where x′ ⊗ x′′ ∈ ker(ϵ) ⊗⊤ ker(ϵ). We then consider the coassociative locality linear map ∆̃ : H →
ker(ϵ)⊗⊤ ker(ϵ) defined as ∆̃(1) = 0, and for x ∈ ker(ϵ) as ∆̃(x) = ∆(x)− 1⊗ x− x⊗ 1. Moreover, for
n ≥ 0, we define inductively ∆̃(n) : H → H⊗⊤(n+1) by:

• ∆̃(0) = ρ.

• ∆̃(1) = ∆̃.

• ∆̃(n+1) = (∆̃⊗ Id⊗n) ◦ ∆̃(n).

Since ∆ and ρ are locality linear maps, ∆̃ and ∆̃(n) are also locality maps. Moreover, ρ and ∆ are
mutually independent, and therefore ρ and ∆̃ are also mutually independent in the sense of (2.38).

Proposition 6.13. Let (H,⊤) with H = ⊕k∈Z≥0
Hk, be a graded, connected, locality bialgebra. For every

n ≥ 1
∆̃(n) = (ρ⊗ · · · ⊗ ρ) ◦∆(n).

Proof. Recall that H = u(K) ⊕ ker(ϵ) ≃ K ⊕ ker(ϵ). We proceed by induction over n. For n = 1 we
have (ρ ⊗ ρ) ◦ ∆(1) = ρ(1) ⊗ ρ(1) = 0 = ∆̃(1). By linearity, this extends replacing 1 for any k ∈ K.
Let x ∈ ker(ϵ). Since ∆̃(x) ∈ ker(ϵ)⊗⊤ ker(ϵ) and (ρ ⊗ ρ) ◦ ∆̃ = ∆̃, it follows that (ρ ⊗ ρ) ◦ ∆(x) =
ρ(1)⊗ ρ(x) + ρ(x)⊗ ρ(1) + (ρ⊗ ρ) ◦ ∆̃(x) = ∆̃(x), so that the proposition holds for n = 1.

Suppose now that the proposition holds true for n−1. We note that ∆̃(1) = 0 implies that ∆̃◦ρ = ∆̃.
Hence,

(ρ⊗ · · · ⊗ ρ) ◦∆(n) = ((ρ⊗ ρ) ◦∆⊗ ρ⊗ · · · ⊗ ρ) ◦∆(n−1)

= (∆̃⊗ ρ⊗ · · · ⊗ ρ) ◦∆(n−1)

= (∆̃⊗ Id⊗ · · · ⊗ Id) ◦ (ρ⊗ · · · ⊗ ρ) ◦∆(n−1) by the initial induction step

= (∆̃⊗ Id⊗ · · · ⊗ Id) ◦ ∆̃(n−1) by the induction step

= ∆̃(n).

The subsequent proposition combines elementary known results, which we recall for the sake of com-
pleteness. If H =

⊕
n∈ZHn is a graded algebra, we say |x| = n if x ∈ H is a homogeneous component of

degree n, i.e. x ∈ Hn.

Proposition 6.14. Let (H,⊤) with H = ⊕n∈Z≥0
Hn, be a graded, connected, locality bialgebra, and let

k ≥ 1.

1. For any x ∈ H such that ∆̃(k−1)(x) ̸= 0, we have ∆̃(k)(x) = 0 =⇒ ∆̃(k−1)(x) ∈ Prim(H)⊗⊤k.

2. For every x ∈ H, ∆̃(k)(x) = 0 if k ≥ |x| and ∆̃(k−1)(x) ∈ Prim(H)⊗⊤k if |x| = k.

3. Let n ≥ 2. For any (v1, . . . , vn) ∈ Prim(H)×⊤n, we have ∆̃(k)(v1 · · · vn) = 0 for any k ≥ n and the
following refinement of the first item holds:

∆̃(n−1)(v1 · · · vn) =
∑
σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n) ∈ Prim(H)⊗
n
⊤ , (2.39)

where Sn is the n-th symmetric group.

Proof. 1. The coassociativity of ∆̃ implies that

(Id⊗⊤(i−1) ⊗ ∆̃⊗ Id⊗⊤(k−i)) ◦ ∆̃(k−1)(x) = ∆̃(k)(x) = 0 ∀1 ≤ i ≤ k.

We infer that

∆̃(k−1)(x) ∈ ker(Id⊗⊤(i−1) ⊗ ∆̃⊗ Id⊗⊤(k−i)) = H⊗⊤(i−1) ⊗⊤ (K⊕ Prim(H))⊗⊤ H
⊗⊤(k−i).

Assuming that ∆̃(k−1)(x) ̸= 0, since ∆̃(k−1)(x) ∈ ker(ϵ)⊗⊤k (which is a consequence of Im(ρ) ⊆
ker(ϵ) and Proposition 6.13), it follows that

∆̃(x) ∈ H⊗⊤(i−1) ⊗⊤ Prim(H)⊗⊤ H
⊗⊤(k−i) ∀1 ≤ i ≤ k.

Thus, ∆̃(k−1)(x) lies in the intersection of all such spaces, which yields the statement.
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2. Using the coassociativity of ∆̃, for any x ∈ H with |x| = n, we have (by induction on k) ∆̃(k)(x) =∑
x x

(1) ⊗ · · · ⊗ x(k+1), with (x(1), . . . , x(k+1)) ∈ H×⊤k+1,
∑k+1
j=1 |x(j)| = |x| = n. If k ≥ n, this

imposes that ∆̃(k)(x) = 0. In particular, ∆̃(n)(x) = 0. It then follows from the previous item that
∆̃(n−1)(x) ∈ Prim(H)⊗⊤n.

3. Let (v1, . . . , vn) ∈ Prim(H)×
n
⊤ and x := v1 · · · vn. To compute ∆̃(k)(x) for any k ≤ n−1, we proceed

by induction on k. We prove first that ∆(v1 · · · vn) =
∑
I⊂[n] vI ⊗ vIC by induction over n, setting

v∅ = 1. For n = 1,

∆(v1) = v1 ⊗ 1 + 1⊗ v1 =
∑
I⊂[1]

vI ⊗ vIC ∈ Prim(H)⊗⊤2.

Now assume it is true for n− 1. The compatibility of the product and the coproduct yields

∆(v1 · · · vn−1vn) = ∆(v1 · · · vn−1)∆(vn)

=

 ∑
I⊂[n−1]

vI ⊗ vIC

 (vn ⊗ 1 + 1⊗ vn)

=
∑

I⊂[n−1]

vI ·vn ⊗ vIC +
∑

I⊂[n−1]

vI ⊗ vIC ·vn

=
∑
I⊂[n]

vI ⊗ vIC ∈ Prim(H)⊗
2
⊤ .

It then follows by induction on k that

∆(k)(v1 · · · vn) =
∑

I1⊔···⊔Ik+1=[n]

vI1 ⊗ · · · ⊗ vIk+1
∈ Prim(H)⊗

k+1
⊤ .

Using Proposition 6.13, we then easily derive the expression of ∆̃k(v1 · · · vn) composing with ρ⊗(k+1).
Note that for I = ∅, ρ(vI) = 0, otherwise ρ(vI) = vI . We have

∆̃(k)(v1 · · · vn) =
∑

I1⊔···⊔Ik+1=[n]

I1,...,Ik+1 ̸=∅

v1 ⊗ · · · ⊗ vIk+1
∈ Prim(H)⊗

k+1
⊤ .

For k = n − 1 each of the sets Ij only contains one element so that we get the expected formula.
For k ≥ n this expression vanishes since some of the sets are empty. This ends the proof of the
statement.

The following result will be useful in the sequel.

Proposition 6.15. Let H be a filtered, connected, locality bialgebra and J ̸= {0} a locality left, right or
two-sided coideal of H. Then J contains non zero primitive elements of H.

Proof. Consider the filtration Jn = J ∩ Hn, n ∈ Z≥0 on J induced by the one on H. Since J ̸= {0},
there is some element 0 ̸= x ∈ J of minimum degree k among the elements of J . Explicitly, x ∈ Jk and
Jn = {0} for every n < k. The existence of x is guaranteed. Indeed, let us write

∆(x) = x⊗ 1 + 1⊗ x+
∑

x′ ⊗ x′′

with
∑
x′ ⊗ x′′ ∈ ker(ϵ) ⊗⊤ ker(ϵ). Since ∆ respects the filtration, if x′ and x′′ are non zero, there are

integers 0 < m,n < k such that x′ ∈ Hn and x′′ ∈ Hm with n + m ≤ k. If J is a left, resp. right
coideal, then x′, resp. x′′ lies in J , which contradicts the minimality of k. Therefore at least one of the
two elements x′ or x′′ vanishes, which implies that

∑
x′ ⊗ x′′ = 0, and thus x is primitive.
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6.3 Hopf algebraic structure of the locality symmetric algebra and of the
locality universal enveloping algebra

On the one hand, the Milnor-Moore theorem relates a Hopf algebra H with a Hopf algebra built from
the universal enveloping algebra of the Lie algebra of primitive elements of H. On the other hand,
the Poincaré-Birkhoff-Witt theorem relates the coalgebraic structure of the symmetric algebra with that
on the universal enveloping algebra of a Lie algebra. In order to extend both theorems to the locality
setup, we need to show that the locality symmetric algebra of a locality vector space, and the locality
universal enveloping algebra of a locality Lie algebra indeed admit a locality Hopf algebra structure. Both
constructions are parallel in structure, we make use of the universal property of the locality symmetric
algebra and of the locality universal enveloping algebra to build the coproduct, counit and antipode.

Proposition 6.16. Given a locality vector space (V,⊤) and assuming conjectural statement 5.33 holds
true for (V,⊤), the locality symmetric algebra (S⊤(V ),⊤S ,mS , us) can be endowed with a graded, con-
nected, commutative, cocommutative Hopf algebra structure where V ∼ (S⊤(V ))1 ⊂ Prim(S⊤(V )).

Proof. By means of Proposition 5.44 and if conjectural statement 5.33 holds for
(V,⊤), then (S⊤(V ),⊤S ,mS , uS) is a graded, connected, commutative locality algebra. Consider the
map δ : V → S⊤(V )⊗ S⊤(V ) defined by δ(x) = x⊗ 1 + 1 ⊗ x. Since it is linear and S⊤(V )⊗ S⊤(V ) is
commutative, by means of Theorem 5.45, there is a unique morphism of commutative locality algebras
∆S : S⊤(V )→ S⊤(V )⊗S⊤(V ) which extends δ. This is the so called unshuffle coproduct. Notice that by
construction ∆S is cocommutative. For the counit, consider the function which maps V to 0 ∈ K, then
Theorem 5.45 yields the existence of the map ϵ : S⊤(V )→ K which is the only morphism of commutative
locality algebras vanishing identically in V . We have described how S⊤(V ) is naturally endowed with
the structure of a graded, connected, locality bialgebra. By means of Proposition 6.10, it is a graded,
connected, commutative locality Hopf algebra which moreover happens to be cocommutative.

Proposition 6.17. Given a locality Lie algebra (g,⊤) and assuming the statement 5.39 holds true for
(g,⊤), the universal enveloping algebra U⊤(g) together with the locality relation ⊤U (from Definition 4.46)
can be equipped with a filtered, cocommutative locality Hopf algebra structure where ιg(g) ⊂ Prim(U⊤(g)),
where ιg : g→ U⊤(g) is the canonical map.

Proof. So far, assuming that the conjectural statement 5.39 holds true for (g,⊤), we know from Propo-
sition 5.40, that

(U⊤(g),⊤U ,mU , u)

is an associative unital filtered locality algebra. In order to equip it with a coproduct, we consider
the map δ : g → U⊤(g) ⊗⊤ U⊤(g) defined by δ(x) := ιg(x) ⊗ 1 + 1 ⊗ ιg(x). One can check that it is
locality linear and δ([x, y]) = δ(x)δ(y) − δ(y)δ(x). Hence, Theorem 5.41 (which applies since we have
assumed that the conjectural statement 5.39 holds true for (g,⊤)) gives the existence and uniqueness of
a locality algebra morphism ∆ : U⊤(g) → U⊤(g) ⊗⊤ U⊤(g) which extends δ. Note that by construction
the elements in ιg(g) are primitive and ∆ is cocommutative. For the counit we consider the zero map
from g to K. This is indeed a locality Lie algebra morphism and once again by Theorem 5.41, there is
a unique locality algebra morphism ϵ : U⊤(g)→ K which vanishes identically on ιg(g). Therefore U⊤(g)
with this coproduct and counit is a filtered connected bialgebra over K. Consider the locality Lie algebra
morphism σ : g → U⊤(g) defined by σ(x) = −ιg(x). Once more, Theorem 5.41 gives the existence and
uniqueness of a locality algebra morphism S : U⊤(g) → U⊤(g) which extends σ. To prove that it is an
antipode, for α ∈ K ⊂ U⊤(g), we see that S ⋆ I(α) = α (S(1)I(1)) = α and for xi ∈ ιg(g), we have
S ⋆ I(x1 · · ·xk) =

∑
J⊂[k](−1)|J|x1 · · ·xk = 0 which shows that S ⋆ I = u ◦ ϵ. Similarly, one shows that

I ⋆ S = u ◦ ϵ, so that S is an antipode and U⊤(g) is a locality Hopf algebra.

Proposition 6.18. Let (g,⊤, [, ]⊤) be a locality Lie algebra and (g′,⊤′, [, ]
∣∣
⊤′) a locality Lie sub-algebra

of g. Assuming that the conjectural statement 5.39 holds true for g′ and g, then U⊤′(g′) is a locality Hopf
sub-algebra of U⊤(g).

Proof. By means of Proposition 4.47, U⊤′(g′) is a locality sub-algebra of U⊤(g). The inclusion map
g′ ↪→ g induces an injective map ι : U⊤′(g′) ↪→ U⊤(g). It is easy to see that the counits relate by ϵ′ = ϵ◦ ι.

90



Moreover, since ιg(g) (resp ιg′(g′)) generate U⊤(g) (resp. U⊤′(g′)) as locality algebras and the coproducts
are locality algebra morphisms, it is easy to see that U⊤(g

′) is a locality sub-bialgebra of U⊤(g). Let SU ′

be the antipode on U⊤(g
′), then SU ′ = SU ◦ ι follows from the fact that the antipodes are completely

determined by their action on ιg(g) (resp. ιg′(g′)), and for x ∈ ιg′(g′),

SU ′(x) = −x = −ι(x) = SU (ι(x)).

This proves that U⊤(g
′) is indeed a locality Hopf sub-algebra of U⊤(g).

Corollary 6.19. Let (g,⊤, [, ]⊤) and (g′,⊤′, [, ]′⊤) be two isomorphic locality Lie algebras, then U⊤(g)
and U⊤′(g′) are isomorphic as locality Hopf algebras.

Proof. By means of Corollary 5.42 there is an isomorphism of locality algebras ϕ : U⊤(g) → U⊤′(g′).
Since the coproduct, counit, and antipode are locality algebra morphisms, ϕ(ιg(g)) = ιg′(g′), and ιg(g)
(resp. ιg′(g′)) generate U⊤(g) (resp. U⊤′(g′)) as a locality algebra, then we only need to check that the
counit, coproduct and antipode commute with ϕ on ιg(g). Indeed, it is true by construction, since all
the elements in ιg(g) (resp. ιg′(g′)) are primitive elements of U⊤(g) (resp. U⊤′(g′)); they lie in the kernel
of ϵ (resp. ϵ′); and ϕ(S(ιg(g))) = −ϕ(ιg(g)) = S′(ϕ(ιg(g))). Thus U⊤(g) and U⊤′(g′) are isomorphic as
locality Hopf algebras as expected.

The final ingredient we need before stating and proving the locality version for the Milnor-Moore
theorem is a description of the primitive elements of the universal enveloping algebra, which is often
presented as a corollary of the Poincaré-Birkhof-Witt theorem. However, there is no locality version of
this theorem available yet. We therefore provide an alternative proof using Zorn’s lemma. We must
notice that the following proof works also for the trivial locality relation in g, namely ⊤ = g× g, thus, it
is valid also in the classical setting without the use of the Poincaré-Birkhof-Witt theorem.

Proposition 6.20. Given a locality Lie algebra (g,⊤) over K, if the conjectural statement 5.39 holds
true, the set of primitive elements of the locality universal enveloping algebra U⊤(g) coincides with ιg(g):

Prim(U⊤(g)) = ιg(g),

where ιg is the canonical map from g to U⊤(g).

Proof. By the very construction of the coproduct on U⊤(g), we have ιg(g) ⊂ Prim(U⊤(g)) (See Proposition
6.17). For the other inclusion, for any n ∈ N we consider the set

Gn := {xk11 · · ·xkmm ∈ U⊤(g)| (x1, . . . , xm) ∈ ιg(g)×
m
⊤U ∧ ki ∈ N ∧

∑
i=[m]

ki ≤ n}. (2.40)

which by construction, generates the space (U⊤(g))
n of filtration degree n in the natural filtration of

U⊤(g). Lemma 1.5 applied to G1 = K 1 yields the existence of a vector space basis B1 of (U⊤(g))
1 such

that {1} ⊂ B1 ⊂ G1, so for filtration degree 1. Since B1 ⊂ G2, Lemma 1.5 yields a basis B2 of (U⊤(g))
2

such that B1 ⊂ B2 ⊂ G2. We proceed inductively to build B :=
⋃
n∈NBn which is a Hamel (vector

space) basis of U⊤(g). We use the simplified notation x⃗k⃗ := xk11 · · ·xknn and |⃗k| := k1 + · · · + kn. Note
that for x⃗k⃗ ∈ B with |⃗k| = n, it is linearly independent of Bn−1.

A primitive element y of U⊤(g) can be expressed in terms of the basis B as

y =
∑
x⃗k⃗∈B

αx⃗k⃗ x⃗
k⃗

where only finitely many αx⃗k⃗ are non zero. Let N = max{|⃗k| : αx⃗k⃗ ̸= 0}. If N = 1 we have y ∈ ιg(g) as
required. Let us now assume that N > 1. Then ∆̃(N−1)(y) = 0 since y is primitive. By (2.39), one can
write

0 = ∆̃(N−1)(y) =
∑

|⃗k|=N

αx⃗k⃗

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(N).
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with xσ(1) ⊗ · · · ⊗ xσ(N) ∈ Prim(U(g))⊗
N
⊤ .

Applying the product m yields

0 = m(N−1)(∆̃(N−1)(y)) =
∑

|⃗k|=N

αx⃗k⃗

∑
σ∈Sn

xσ(1) · · ·xσ(N) ∈ U⊤(g).

Since ιg(g) = (U⊤(g))
1 ∋ [xi, xj ] = xixj − xjxi for every i and j, we may reorder the xi’s to get the

original elements of B at the cost of adding some lower order terms (l.o.t.) (with respect to the natural
filtration of U⊤(g) given by the sets (2.40)). The resulting products arising in the new linear combination
are linearly independent of the leading term due to the very manner the basis B was constructed. Hence,
we have

0 =
∑

|⃗k|=N

αx⃗k⃗

N !
x⃗k⃗ + l.o.t.

Since the elements of the basis B are linearly independent, we may conclude that all αx⃗k⃗ = 0 except if
N = 1. Therefore Prim(U⊤(g)) ⊂ ιg(g). Thus Prim(U⊤(g)) = ιg(g).

Remark 6.21. In the non-locality case, the injectivity of the canonical map ιg : g→ U(g), follows from
the Poincaré-Birkhof-Witt theorem. However, this is not necessarily true in the locality setup. In general
ιg(g) is a quotient of g, with the property that U⊤(g) ≃ U⊤(ιg(g)).

A case which will be of particular interest in the following section, is when g is the Lie algebra of
primitive elements of a locality bialgebra (B,⊤). In that case, the universal property of the locality
universal enveloping algebra (Theorem 4.48) yields the existence of a pre-locality algebra morphism
ϕ : U⊤(g) → B which extends the canonical injection ι : g → B. Therefore, the canonical map ιg : g →
U⊤(B) is indeed injective in such cases.

6.4 A locality Cartier-Quillen-Milnor-Moore theorem
Assuming that the conjectural statement 5.33 holds true, we can now prove a locality version of the
Cartier-Quillen-Milnor-Moore theorem.

Theorem 6.22 (Locality Cartier-Quillen-Milnor-Moore theorem). Let (H,⊤) be a graded, connected,
cocommutative locality Hopf algebra such that its primitive elements Prim(H) satisfy the conjectural
statements 5.39 and 5.33. In that case, we have the following isomorphism of locality Hopf algebras:

(H,⊤) ∼ (U⊤(Prim(H)),⊤U ) (2.41)

with ⊤U the locality relation of Definition 4.46 in the case g = Prim(H).

Proof. • We first prove that H is generated by its primitive elements Prim(H) as a locality algebra.
Let H ′ be the locality subalgebra of H generated by Prim(H) ∪ {1} and let 0 ̸= x ∈ H. By
Proposition 6.14, 2, for k big enough, ∆̃(k)(x) = 0. Set degp(x) to be the minimum of all such
integers k. Using induction over degp(x), we show that H ⊂ H ′. If degp(x) = 0, then by definition
of ∆̃(0), ρ(x) = 0. Hence x ∈ K ⊂ H ′. If degp(x) = 1, then x is a primitive element so that x ∈ H ′.
If n = degp(x) > 0, by means of Proposition 6.14, 1. We have

∆̃(n−1)(x) =
∑
i

x
(i)
1 ⊗ · · · ⊗ x(i)n

where all the x(i)j are primitive elements. The cocommutativity of H implies invariance under the
natural action of the symmetric group so we have:

∆̃(n−1)(x) =
1

n!

∑
σ∈Sn

∑
i

x
(i)
σ(1) ⊗ · · · ⊗ x

(i)
σ(n)
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Exchanging the two sums (both over finite sets), we then recognize in the innermost sum the
expression of ∆̃(n−1)(x

(i)
1 · · ·x

(i)
n ) given by Proposition 6.14 3. The linearity of ∆̃(n−1) then yields

∆̃(n−1)(x) = ∆̃(n−1)

(
1

n!

∑
i

x
(i)
1 · · ·x(i)n

)
⇐⇒ ∆̃(n−1)

(
x− 1

n!

∑
i

x
(i)
1 · · ·x(i)n

)
= 0.

Hence, by definition of the degree,

degp

(
x− 1

n!

∑
i

x
(i)
1 · · ·x(i)n

)
< n.

By the induction hypothesis, this element lies in H ′, and so does x ∈ H ′. We infer that H ′ = H,
this means that H is generated by its primitive elements Prim(H) as a locality algebra.

• To build the isomorphism (2.41) we assume that the conjectural statement 5.33 holds true. By
Proposition 6.11, the set Prim(H) of primitive elements of H has a graded locality Lie algebra
structure. We can therefore build its enveloping algebra U⊤(Prim(H)). Assuming that the con-
jectural statement 5.33 holds true, we can apply the universal property (Theorem 5.41) to extend
the locality Lie algebra morphism given by the injection i : Prim(H) → H to a locality algebra
morphism

ϕ : U⊤(Prim(H))→ H,

which stabilizes the elements in Prim(H).

Moreover, since ϕ is a locality algebra morphism, again by Lemma 2.29 the range of ϕ is a locality
subalgebra of H which contains H ′. Hence, by the first part of this proof, ϕ is surjective.

• Let us show that ϕ is a coalgebra morphism. The coproducts ∆U on U⊤(Prim(H)) and ∆ on H
are by definition algebra morphisms. Since they coincide on the set Prim(H), (ϕ⊗ϕ) ◦∆U = ∆ ◦ϕ
on Prim(H). This identity extends everywhere since Prim(H) generates both U⊤(Prim) and H
as locality algebras. We still need to show ϵU = ϵ ◦ ϕ, with ϵU the counit of U⊤(Prim(H)) and ϵ
the counit of H. Again, since Prim(H) generates both U⊤(Prim) and H as locality algebras, it is
enough to show that these maps coincide on Prim(H). On the one hand, by definition of ϵU (see
the proof of Proposition 6.17), ϵU vanishes on Prim(H). On the other hand, for any h ∈ Prim(H),
using the property of ϵ and the canonical identification K⊗H ≃ H, we have:

h = (ϵ⊗ IdH) ◦∆(h) = ϵ(h)⊗ 1H + ϵ(1)⊗ h = ϵ(h)1H + h.

Therefore ϵ vanishes on Prim(H) as required and ϕ is a coalgebra morphism.

• We prove the injectivity of ϕ ad absurdum. The fact that ϕ is a locality coalgebra morphism,
implies by Lemma 6.7, that its kernel ker(ϕ) is a locality coideal of U⊤(Prim(H)). Since ϕ is an
algebra morphism, ϕ(1) = 1 so ker(ϕ) ∩ K 1 = {0}. By Proposition 6.15 applied to J = ker(ϕ),
assuming the latter is non trivial, it must contain a primitive element of U⊤(Prim(H)). However
this leads to a contradiction since, by Proposition 6.20, Prim(U⊤(Prim(H))) = Prim(H) which is
fixed by ϕ, therefore none of them lies in the kernel. Hence ϕ is injective.

• To show that ϕ is a locality isomorphism of Hopf algebras, we still need to prove that ϕ−1 : H −→
U⊤(Prim(H)) is a locality algebra morphism. The previous items give the existence of the inverse
map ϕ−1. By definition of ϕ, on any element h of H, ϕ−1 acts as:

ϕ−1(h) =
∑
i

x
(i)
1 ⊗ · · · ⊗ x(i)n (2.42)

for some n ∈ N∗ and primitive elements x(i)j such that h =
∑
i x

(i)
1 · · ·x

(i)
n . The right-hand-side of

(2.42) actually stands for an equivalence class of tensor products, which we write as a tensor to
simplify notations. We analyise each of the sumands separately, and distinguish two cases.
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If n = 1, then h is a primitive element of H and ϕ−1 restricted to primitive elements is simply the
projection from H to U⊤(Prim(H)). This map is a locality map by definition of the locality on the
quotient space U⊤(Prim(H)).

If n ≥ 2, using Equation (2.39) of Proposition 6.14, we have

∆̃(n−1)(h) = ∆̃(n−1)(x1 · · ·xn) =
∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n) =
1

n!
x1 ⊗ · · · ⊗ xn,

where, same as before, the last equality is a consequence of U⊤(g) and H being cocomutative. The
fact that ϕ−1 is a locality map then follows from combining together the fact that ∆̃(n−1) is a
locality map, and the definitions of the locality relations on T⊤(Prim(H)) and U⊤(Prim(H)).

• Then by Proposition 6.17, U⊤(Prim(H)) is a Hopf algebra, and since ϕ is a morphism of graded
locality bialgebras and an isomorphism, it is an isomorphism of locality Hopf algebras.

6.5 Consequences of the Milnor-Moore theorem
We now present some useful consequences of the locality Milnor-Moore theorem (Theorem 6.22). The
first rather direct consequence is that the locality relation on a graded, connected, cocommutative Hopf
algebra is entirely determined by the locality relation on its primitive elements as the following corollary
states.

Corollary 6.23. Let (H1,m1,∆1,⊤1) and (H2,m2,∆2,⊤2) be two graded, connected, cocommutative
locality Hopf algebras. Then if

(Prim(H1), [, ]1, ⊤̃1) ≃ (Prim(H2), [, ]2, ⊤̃2)

as locality Lie algebras (here [, ]i is the antisymmetrisation of the product mi, and where we have set
⊤̃i := ⊤i

∣∣
Prim(Hi)×Prim(Hi)

)
, then

(H1,m1,∆1,⊤1) ≃ (H2,m2,∆2,⊤2)

as locality Hopf algebras.

Proof. By means of Corollary 6.19 the isomorphism (Prim(H1), [, ]1, ⊤̃1) ≃ (Prim(H2), [, ]2, ⊤̃2) implies
that the universal enveloping algebras of these Lie algebras are isomorphic as locality Hopf algebras. The
result then follows from Theorem 6.22.

This further leads to the observation that locality Hopf algebras are not generally speaking ordi-
nary locality Hopf algebras with an “added” locality relation, and a restricted product. In other words,
whenever the locality Milnor-Moore theorem applies, one cannot simply “turn on” locality.

Corollary 6.24. Let (H,m,∆) be a graded, connected, cocommutative Hopf algebra. The trivial locality
relation ⊤ = H × H is the only locality relation ⊤ on H such that (H,⊤,m|⊤, u,∆, ϵ, S) is a locality
Hopf algebra.

Proof. We proceed by contradiction, assuming such a non-trivial locality relation ⊤ exists. It fol-
lows that there are primitive elements a and b such that a�⊤b. Indeed, if this were not true, then
⊤|Prim(H)×Prim(H) = Prim(H) × Prim(H) would be the trivial locality on Prim(H) and hence on H

thanks to Corollary 6.23. Let a and b be primitive elements such that a�⊤b, then

∆(m(a, b)) = ∆(a)∆(b) = (a⊗1+1⊗a)(b⊗1+1⊗b) = m(a, b)⊗1+a⊗b+b⊗a+1⊗m(a, b) /∈ H⊗⊤H.

However, this contradicts the inclusion ∆(H) ⊂ H ⊗⊤H, which follows from the fact that the coproduct
∆ of the Hopf algebra coincides with the locality coproduct of the locality Hopf algebra.

Theorem 6.22 also allows to describe examples of locality Hopf algebras.
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Example 6.25. With the notations of Example 6.9, let PV be the subspace of primitive elements of
T⊤(V ). Endowed with the locality Lie bracket induced by the commutator, namely [a, b] = a ⊗ b − b ⊗ a
whenever a⊤⊗b, PV is a locality Lie algebra. It then follows from Theorem 6.22 that

(T⊤(V ),⊤⊗) ≃ (U⊤(PV ),⊤U ) ,

this last isomorphism is an isomorphism of locality Hopf algebras.

The locality Milnor-Moore theorem (Theorem 6.22) allows to build locality Hopf sub-algebras from
locality Lie subalgebras.

Corollary 6.26. Let (H,⊤) be a graded, connected, cocommutative locality Hopf algebra whose set
g := Prim(H) of primitive elements obeys the conjectural statements 5.33 and 5.39. There is a one-to-
one correspondence

((H,⊤) ⊃ (H ′,⊤′)) ←→ ((g′,⊤′) ⊂ (g,⊤)) (2.43)

between graded, connected, cocommutative locality Hopf sub-algebras of H and locality Lie sub-algebras
of (g = Prim(H),⊤) where the localities ⊤ and ⊤′ on the right hand side are the restrictions of the ones
of the left hand side.

Proof. Let g′ be a subset of g =Prim(H) with locality ⊤′ ⊂ ⊤ so that (g′,⊤′, [, ]|⊤′) is locality Lie sub-
algebra of (g,⊤, [, ]⊤). Then by Proposition 6.18, U⊤′(g′) is a locality sub-algebra of U⊤(g). It is therefore
isomorphic to a locality Hopf sub-algebra (H ′,⊤′) ≃ U⊤′(g′) of (H,⊤) ≃ U⊤(g).

Conversely, let H ′ be a locality Hopf sub-algebra of H with locality ⊤′ ⊆ ⊤. Then g := Prim(H ′) ⊆
g = Prim(H). By Proposition 6.11, setting ⊤′′ := ⊤′ ∩ (g′ × g′), then (g′,⊤′′, [, ]|⊤′′) is a locality Lie
sub-algebra of g. Thus we have a map from locality Hopf sub-algebras of H and locality Lie sub-algebras
of g.

The two maps built above are inverse of each other by construction, which proves the corollary.

Remark 6.27. It follows from Corollary 6.24 that H = H ′ and g = g′ implies ⊤ = ⊤′. Note that this
statement is trivially satisfied in the usual (non-locality) setup where ⊤ = ⊤′ is the trivial locality. The
subsequent Proposition 6.29 illustrates the case when g = g′ but H ̸= H ′, which is specific to the locality
setup, since it cannot occur in the non-locality setup due to the Milnor-Moore theorem.

We can apply Corollary 6.26 to the Hopf algebra of rooted forests in Example 1.41. In order to
introduce locality, we first decorate the rooted forests. Recall that, for a set Ω, an Ω-decorated forest is
a pair (F, dF ) with F a forest and dF : V (F ) −→ Ω a map. We often omit the dF to lighten the notation.
We also write FΩ for the set of Ω-decorated forests. The notions of Definition 1.40 easily generalise to
decorated forests.

Definition 6.28. [23, Definition 3.1] Let (Ω,⊤) be a locality set. A properly Ω-decorated forest is
a Ω-decorated forest (F, dF ) such that any disjoint pair of vertices of F are decorated by independent
elements of Ω:

∀(v1, v2) ∈ V (F )× V (F ), v1 ̸= v2 =⇒ dF (v1)⊤dF (v2).

We denote by Fprop
Ω the set of finite linear combinations of properly Ω-decorated forests. We endow Fprop

Ω

with a locality relation ⊤FΩ
induced from the relation ⊤ on Ω:

(F1, d1)⊤FΩ
(F2, d2) :⇐⇒ ∀(v1, v2) ∈ V (F1)× V (F2), d1(F1)⊤d2(F2),

and extend it linearly to finite linear combinations of forests.

Since the linear combination of trees are the primitive elements of the Grossman-Larson Hopf algebra,
the locality relation ⊤FΩ restricted to properly Ω-decorated trees induces a locality Hopf algebra structure
on Fprop

Ω :

Proposition 6.29. Given a locality set (Ω,⊤), the quadruple (Fprop
Ω ,⊤FΩ , ∗⊤FΩ

,∆∗) is a graded, con-
nected, cocommutative locality Hopf algebra equipped with the product ∗⊤FΩ

given by the restriction of the
∗ product of Definition 1.40 to the graph ⊤⊤FΩ

of the locality relation.
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Proof. Applying Corollary 6.26 to the locality Lie algebra (g := Prim(Fprop
Ω ),⊤triv) equipped with the

trivial locality relation ⊤triv := g × g and (g′ := Prim(Fprop
Ω ),⊤FΩ

) shows that Fprop
Ω := U⊤FΩ

(g′) is a
locality sub-Hopf algebra of (FΩ = U⊤triv

(g) ,⊤triv).

The locality Milnor-Moore theorem 6.22 also provides refinements of properties in the ordinary setup,
here a decomposition involving mutually independent arguments.

Corollary 6.30. Given a locality set (Ω,⊤), any properly Ω-decorated rooted forest F = T1 · · ·Tn
can be expressed as a linear combination of ∗-products of finitely many pairwise independent properly
Ω-decorated rooted trees t(i)j :

F = T1 · · ·Tn =

N∑
n=1

αnt
(n)
1 ∗ · · · ∗ t(n)pn

for α1, . . . , αN ∈ R.

Proof. For the sake of simplicity, throughout the proof, we set ⊤ := ⊤FΩ . Let ϕ : U⊤(Prim(Fprop
Ω )) −→

Fprop
Ω be the isomorphism of locality Hopf algebra given by Theorem 6.22. Since Prim(U⊤(Prim(Fprop

Ω )))
is the set of Ω-decorated rooted trees, for any such tree T we have ϕ([T ]) = T .

Since the map ϕ is an isomorphism, for any properly Ω-decorated rooted forest F = T1 · · ·Tn there is an
element

∑N
n=1 αnt

(n)
1 ⋆ · · ·⋆ t(n)pn ∈ U⊤(Prim(Fprop

Ω ) (where we write ⋆ for the product of U⊤(Prim(Fprop
Ω ))

such that

F = T1 · · ·Tn = ϕ

(
N∑
n=1

αnt
(n)
1 ⋆ · · · ⋆ t(n)pn

)
=

N∑
n=1

αnϕ([t
(n)
1 ]) ∗ · · · ∗ ϕ([t(n)pn ]) =

N∑
n=1

αnt
(n)
1 ∗ · · · ∗ t(n)pn ,

where we have used that ϕ is a morphism of algebras.

6.6 A locality Poincaré-Birkhoff-Witt theorem
As it was mentioned in the introduction, we prove a locality version of the Poincaré-Birkhoff-Witt theorem
in Quillen’s version, this is, as a morphism of locality coalgebras instead of providing a basis for the
universal enveloping algebra starting from a basis of the locality Lie algebra. This is mainly because
as it was mentioned before, bases of locality vector spaces do not always behave well with the locality
relations. The proof we provide is based mostly in [17, Section 4.2]. However, Cartier and Patras make
use of the fact that idempotent vectors generate the symmetric tensors. Since the locality relation is
not required to be reflexive, then idempotent tensors do not necessarily lie in the locality tensor algebra,
thus the adaption to the locality setup requires some steps to be shown differently. More precisely,
Lemma 6.36 for which we provide a combinatorial proof developed in Lemma 6.34. Also for the proof
of the Poincaré-Birkhoff-Witt theorem itself, we complete what we consider could be a gap in the proof
provided in [17] since the universal enveloping algebra is a priori not graded, but only filtered, and thus
the iterated reduced coproduct based on the filtration is not well defined. For this purpose, we prove
Lemmas 6.37 and 6.38 which are inspired from [29, Section 2.4].

Assumption: From the rest of the paragraph we will consider only locality Lie algebras (g,⊤g) for
which the map ιg : g → U⊤(g) is injective. The existence of such locality Lie algebras is granted by the
universal property of the locality universal enveloping algebra (Theorem 5.41) as shown in the following
proposition.

Proposition 6.31. Let (g,⊤g) be a locality Lie algebra and f : g→ Prim(H) an injective morphism of
locality Lie algebras where H is a connected Hopf algebra. Then, the canonical map ιg : g → U⊤(g) is
injective.

Proof. Setting ι as the injection of Prim(H) into H, the map ι ◦ f : g → H is an injective morphism of
locality Lie algebras, where the Lie bracket in H is the commutator. By means of the universal property
of the locality universal enveloping algebra (Theorem 5.38), there exists a unique morphism of locality
algebras ϕf : U⊤(g)→ H such that f = ϕf ◦ ιg. It follows from the injectivity of f that both ιg and ϕf
are injective.
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In particular, the locality Lie algebras of primitive elements of a connected Hopf algebra is always
injected into its universal enveloping algebra.

For the purpose of distinguishing the elements of S⊤(g), T⊤(g), and U⊤(g), we stick to the conventions
g1 ⊗ · · · ⊗ gn for an element of T⊤(g), g1 ⊙ · · · ⊙ gn := πS(g1 ⊗ · · · ⊗ gn) ∈ S⊤(g), and g1 · · · gn :=
πU (g1⊗· · ·⊗gn) ∈ U⊤(g), where the map πS is the canonical map from V to S⊤(V ) (see Definition 4.38).

Consider for n > 0 the morphism of Sn-modules Θn : (S⊤(V ))n → V ⊗n
⊤ , the existence of which is

granted by Proposition 1.44, and which is described by

x1 ⊙ · · · ⊙ xn 7→ Θ(x1 ⊙ · · · ⊙ xn) :=
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n). (2.44)

The direct sum Θ =
⊕

n∈Z≥0
Θn : S⊤(V )→ T⊤(V ), where Θ0(1K) = 1K, is a graded linear map, and is a

right inverse for πS , namely
πS ◦Θ(x1 ⊙ · · · ⊙ xn) = x1 ⊙ · · · ⊙ xn.

Therefore Θ is injective.

Lemma 6.32. Let (V,⊤) be a locality vector space. If T⊤(V ) is a locality algebra, the map Θ :
(S⊤(V ),⊤S) −→ (T⊤(V ),⊤⊗) is a locality linear map.

Proof. The linearity of Θ is given by construction. For the locality consider x = x1 ⊙ · · · ⊙ xn and
y = y1⊙· · ·⊙ym in S⊤(V ) such that x⊤Sy. By definition of ⊤S , there are σ ∈ Sn and τ ∈ Sm such that
xσ(1)⊗· · ·⊗xσ(n)⊤⊗yτ(1)⊗· · ·⊗yτ(m). By means of Lemma 4.35 xσ′(1)⊗· · ·⊗xσ′(n)⊤⊗yτ ′(1)⊗· · ·⊗yτ ′(m)

for every σ′ ∈ Sn and every τ ′ ∈ Sm. Then, since T⊤(V ) is a locality algebra, then(
Θ(x) =

1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n)
)
⊤⊗

( 1

m!

∑
τ∈Sm

yτ(1) ⊗ · · · ⊗ yτ(m) = Θ(y)
)

which yields the result.

We proceed to introduce the map which will serve as morphism of locality coalgebras between S⊤(g)
and U⊤(g).

Lemma 6.33. The locality linear map Φ := πU ◦ Θ = S⊤(g) → U⊤(g) is surjective and preserves the
filtration, where we are considering the filtration of S⊤(V ) induced by the grading.

Proof. Φ preserves the filtration as a consequence of Θ being a graded map and πU being a filtered map.
For the surjectivity, notice first that Un⊤(g) is generated as vector space by the elements of the form
g1 · · · gk where k ≤ n and gi ∈ g. We then only have to prove that every element of the form g1 · · · gk lies
in Φ(

⊕n
j=0(S⊤(g))j). The statement is true for n = 1 since Φ(g) = g for every g ∈ g. Assume now that

the statement is true for k < n and consider g1 · · · gn ∈ Un⊤(g). Notice that

πU ◦Θ(g1 ⊙ · · · ⊙ gn) = πU

( 1

n!

∑
σ∈Sn

gσ(1) ⊗ · · · ⊗ gσ(n)
)

=
1

n!

∑
σ∈Sn

gσ(1) · · · gσ(n)

= g1 · · · gn + lower order terms.

By induction, all the lower order terms lie in Φ(
⊕n−1

j=0 (S⊤(g))j) ⊂ Φ(
⊕n

j=0(S⊤(g))j), thus g1 · · · gn lies
in Φ(

⊕n
j=0(S⊤(g))j) which proves the result.

We recall that given two positive integers n and m, the set of (n,m)-Shuffles is defined as

(n,m)Sh := {σ ∈ Sn+m : σ(1) < σ(2) < · · · < σ(n), andσ(n+ 1) < σ(n+ 2) < · · · < σ(n+m)}.

It is well known [36] that the cardinality of the set (n,m)Sh is

|(n,m)Sh| =
(
n+m

n

)
=

(n+m)!

n!m!
.
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Lemma 6.34. Let n be a positive integer, and g1, . . . , gn elements in a locality Lie algebra (g,⊤), then
for a fixed integer 0 ≤ k ≤ n it follows that∑

I′⊔J′=[n]
|I′|=k

∑
σ∈Sn

gσ(I′) ⊗ gσ(J′) =
∑

I⊔J=[n]
|I|=k

n!

k!(n− k)!
∑
µ∈Sk
τ∈Sn−k

gµId(I) ⊗ gτId(J).

Here we have set gσ(I′) = gσ(i′1) · · · gσ(i′k) ∈ U⊤(g) where I ′ := {i′1, . . . , i′k}, and i′1 < · · · < i′k, similarly
for gσ(J′). We also use the shortened notations µId(I) := µ12···k(i1 · · · ik), where I := {i1, . . . , ik}, and
i1 < · · · < ik (resp. τId(J) := τ12···(n−k)(j1 · · · jn−k) where J := {j1, . . . , jn−k}, and j1 < · · · < jn−k.)
Finally, we take the convention gσ(∅) = gτId(∅) = gµId(∅) = 1.

We illustrate the previous technical lemma with an example.

Example 6.35. Let n = 3 and k = 1. Then the values that I (resp. I ′) can take are {1}, {2}, and {3}.
Also S3 = {123, 132, 213, 321, 312, 231}, S1 = {1}, and S2 = {12, 21}. Then for I = I ′ = {2}, σ = 231,
µ = 1, and τ = 21, we have

gσ(I′) ⊗ gσ(J′) = g3 ⊗ g2g1, and

gµ(I) ⊗ gτ(J) = g2 ⊗ g3g1.

Then the whole sum of Lemma 6.34 is∑
I′⊔J′=[3]
|I′|=1

∑
σ∈S3

gσ(I′) ⊗ gσ(J′) =g1 ⊗ g2g3 + g1 ⊗ g3g2 + g2 ⊗ g1g3 + g3 ⊗ g2g1 + g3 ⊗ g1g2 + g2 ⊗ g3g1+

+ g2 ⊗ g1g3 + g3 ⊗ g1g2 + g1 ⊗ g2g3 + g2 ⊗ g3g1 + g1 ⊗ g3g2 + g3 ⊗ g2g1+
+ g3 ⊗ g1g2 + g2 ⊗ g1g3 + g3 ⊗ g2g1 + g1 ⊗ g3g2 + g2 ⊗ g3g1 + g1 ⊗ g2g3.

Each line of the previous equation corresponds to each possible choice of I, namely the sets {1}, {2}, and
{3}, together with the six possible permutations 123, 132, 213, 321, 312, and 231. Notice that the three lines
have the same 6 terms in different order, and thus it is easy to see that the whole sum is equal to

3(g1 ⊗ g2g3 + g1 ⊗ g3g2 + g2 ⊗ g1g3 + g2 ⊗ g3g1 + g3 ⊗ g1g2 + g3 ⊗ g2g1).

On the other hand∑
I⊔J=[3]
|I|=1

3!

1!(2)!

∑
µ∈S1
τ∈S2

gµ(I) ⊗ gτ(J) = 3(g1 ⊗ g2g3 + g1 ⊗ g3g2 + g2 ⊗ g1g3 + g2 ⊗ g3g1 + g3 ⊗ g1g2 + g3 ⊗ g2g1).

Proof. Let us first consider (I ′, J ′) be such that I ′ ⊔ J ′ = [n] and |I ′| = k. We put I ′ = {i′1 < . . . < i′k}
and J ′ = {j′1 < . . . < j′n−k}. For any (I, J) such that I ⊔J = [n] and |I| = k, putting I = {i1 < . . . < ik}
and J = {j1 < . . . < jn−k}, let σI,JI′,J′ ∈ Sn be defined by σI,JI′,J′(i′p) = ip and σI,JI′,J′(j′q) = jq for any
suitable p and q. For any permutation σ ∈ Sn, there exists a unique pair (I, J), α ∈ S(I) and β ∈ S(J)

such that σ = (α ⊔ β) ◦ σI,JI′,J′ , where

α ⊔ β(x) =

{
α(x) if x ∈ I,
β(x) if x ∈ J.

In particular, I = σ(I ′) and J = σ(J ′). In other terms, we have a bijection{
{(I, J, α, β) | I ⊔ J = [n], |I| = k, α ∈ S(I), β ∈ S(J)} −→ Sn

(I, J, α, β) 7−→ (α ⊔ β) ◦ σI,JI′,J′ .
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Therefore: ∑
σ∈Sn

gσ(I′) ⊗ gτ(J′) =
∑

I⊔J=[n]
|I|=k

∑
(α,β)∈S(I)×S(J)

gα(I) ⊗ gβ(J)

=
∑

I⊔J=[n]
|I|=k

∑
(µ,τ)∈Sk×Sn−k

gµId(I) ⊗ gτId(J).

Summing over all possible (I ′, J ′), we obtain the result, as there are
(
n
k

)
such pairs.

Lemma 6.36. The map Φ : S⊤(g) → U⊤(g) from Lemma 6.33 is a surjective morphism of locality
coalgebras.

Proof. We denote by ∆S and ϵS (resp. ∆U and ϵU ) the coproduct and the counit on S⊤(V ) (resp. U⊤(V ))
to avoid ambiguity. By means of Lemma 6.33, Φ is a filtered surjective linear map. We are only left to
prove that

∆U ◦ Φ = (Φ⊗ Φ) ◦∆S , (2.45)

and ϵs = ϵU ◦ Φ. Since Φ is filtered, it follows that Φ((S⊤(g))0 = U0
⊤(g), this together with the fact that

both S⊤(g) and U⊤(g) are connected (Propositions 6.16 and 6.17) impliey that ϵs = ϵU ◦ Φ as expected.
Notice that it is enough to prove (2.45) for elements of the form g1 ⊙ · · · ⊙ gn with (g1, . . . , gn) ∈ g×

n
⊤

since they span all S⊤(g). On the one hand, using the notations of Lemma 6.34

∆U ◦ Φ(g1 ⊙ · · · ⊙ gn) =∆U

( 1

n!

∑
σ∈Sn

gσ(1) · · · gσ(n)
)

=
1

n!

∑
I′⊔J′=[n]

gσ(I′) ⊗ gσ(J′). (2.46)

On the other hand

(Φ⊗ Φ) ◦∆S(g1 ⊙ · · · ⊙ gn) =(Φ⊗ Φ)
( ∑
I⊔J=[n]

gI ⊗ gJ
)

=
∑

I⊔J=[n]

( 1

|I|!
∑

µ∈S|I|

gµId(I)

)
⊗
( 1

|J |!
∑

τ∈S|J|

gτId(J)

)
=

n∑
k=0

1

k!(n− k)!
∑

I⊔J=[n]
|I|=k

∑
µ∈Sk
τ∈Sn−k

gµId(I) ⊗ gτId(J). (2.47)

By means of Lemma 6.34, both (2.46) and (2.47) are equal, which proves that Φ is a surjective morphism
of filtered coalgebras as expected.

Lemma 6.37. Let (g,⊤) be a locality Lie algebra, n be a positive integer, and {g1,i ⊗ · · · ⊗ gn,i}Mi=1 a
family of elements in g⊗

n
⊤ . The sum

M∑
i=1

πU (g1,i ⊗ · · · ⊗ gn,i) =
M∑
i=1

g1,i · · · gn,i ∈ Un−1
⊤ (g)

if, and only if there exist permutations σ1, . . . , σM in Sn such that

M∑
i=1

Ξσi

⊤ (g1,i ⊗ · · · ⊗ gn,i) = 0. (2.48)

Here the map Ξσ⊤ is the same as in (2.11).
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Proof. The result follows directly from the definition of the locality ideal J⊤(g) ⊂ T⊤(g). Indeed, when
commuting two consecutive elements gj−1,i and gj,i in g1,i · · · gn,i a term of lower degree in the filtration
arises. Thus, the leading term only vanishes if there is a set of permutations such that the sum on the
left hand side of (2.48) is equal to zero.

Lemma 6.38. Let n ≥ 1 and set (ST⊤(g))n := V ⊗n
⊤ ∩ ST⊤(g) the symmetric n-tensors. Then

Un⊤(g) = πU
(
(ST⊤(g))n

)
⊕⊤ U

n−1
⊤ (g),

i.e., the decomposition is in strong locality complements (see Definition 5.17).

Proof. By means of Definition-Proposition 4.36

g⊗
n
⊤ = (ST⊤(g))n ⊕ (AT⊤(g))n,

where we have set (AT⊤(g))n := AT⊤(g) ∩ g⊗
n
⊤ as before. Then

Un⊤(g) =πU
( n−1⊕
k=0

g⊗
k
⊤ ⊕ g⊗

n
⊤
)

=πU
( n−1⊕
k=0

g⊗
k
⊤ ⊕ (ST⊤(g))n ⊕ (AT⊤(g))n

)
=πU

( n−1⊕
k=0

g⊗
k
⊤
)
+ πU

(
(ST⊤(g))n

)
+ πU

(
(AT⊤(g))n

)
.

It follows from πU being filtered that πU
(⊕n−1

k=0 g
⊗k

⊤
)
⊂ Un−1

⊤ (g), and by means of Lemma 6.37 πU
(
(AT⊤(g))n

)
is a subset of Un−1

⊤ (g), and thus Un⊤(g) = πU
(
(ST⊤(g))n

)
+ Un−1

⊤ (g). We proceed to prove that the sum
is indeed a direct sum, namely that the intersection of both spaces is equal to {0}. This follows also from
Definition-Proposition 4.36 and Lemma 6.37. Indeed, Lemma 6.37 states that the only elements of g⊗

n
⊤

which are mapped by πU to Un−1
⊤ (g) are those in (AT (g))n, which, by means of Definition-Proposition

4.36, is in direct sum with ST⊤(g))n as expected. We are left to prove that the decomposition is in
strong locality complements, i.e., that the projection πn : Un⊤(g) → πU

(
(ST⊤(g))n

)
parallel to Un−1

⊤ (g)
is locality independent of the identity map IdUn

⊤(g). For that purpose consider two elements x and y in
Un⊤(g) such that x⊤Uy. By the definition of ⊤U as a quotient locality (see Definition 4.6) it is possible
to write x =

∑
i∈I xi1 · · ·xin + x′ where x′ ∈ Un−1

⊤ (g) and y =
∑
j∈J yj1 · · · yjnj where nj ≤ n, the xik

and yjl lie in g such that x′⊤Uy and xik⊤gyjl for every i ∈ I, j ∈ J , 1 ≤ k ≤ n, and every 1 ≤ l ≤ nj .
By means of Lemma 4.35, for every σ ∈ Sn,

xiσ(1) ⊗ · · · ⊗ xiσ(n)⊤⊗
∑
j∈J

yj1 ⊗ · · · ⊗ yjnj

and thus
xiσ(1) · · ·xiσ(n)⊤U

∑
j∈J

yj1 · · · yjnj
.

Since x = 1
n!

∑
i∈I
∑
σ∈Sn

xiσ(1) · · ·xiσ(n) + x′ + xl.o.t. where xl.o.t are the terms in Un−1
⊤ (g) which arise

when commuting two successive xij and xil, then πn(x) = 1
n!

∑
i∈I
∑
σ∈Sn

xiσ(1) · · ·xiσ(n) which remains
locality independent of y. Thus, πU is locality independent of IdUn

⊤(g) and the result follows.

Theorem 6.39. [Locality Poincaré-Birkhoff-Witt Theorem.] Let (g,⊤) be a locality Lie algebra which
such that the canonical map ιg : g → U⊤(g) is injective. If T⊤(g) and U⊤(g) are locality algebras, then
the map Φ : S⊤(g)→ U⊤(g) is a filtered isomorphism of locality coalgebras.

Proof. By means of Lemmas 6.36 and 6.4, we are only left to prove that Φ is injective, and Φ−1 is a
locality map. For the injectivity we build a left inverse of Φ. Consider for every n ≥ 1 the map

Ψn := πS ◦ ∆̃n : πU (ST⊤(g))n → (S⊤(g))n
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where ∆̃n is the iterated reduced coproduct introduced in Paragraph 1.5. For g1 ⊙ · · · ⊙ gn ∈ (S⊤(g))

Ψn ◦ Φ(g1 ⊙ · · · ⊙ gn) =Ψn

( 1

n!

∑
σ∈Sn

gσ(1) · · · gσ(n)
)

=πS ◦ ∆̃n
( 1

n!

∑
σ∈Sn

gσ(1) · · · gσ(n)
)

=πS

( ∑
σ∈Sn

gσ(1) ⊗ · · · ⊗ gσ(n)
)

=g1 ⊙ · · · ⊙ gn.

Thus Ψn is a left inverse to Φ
∣∣
(S⊤(g))n

. It follows from Lemma 6.38 that the map Ψ :=
⊕

n≥0 Ψn is well
defined where we set Ψ0 = uS ◦ ϵU

∣∣
U0

⊤(g)
, i.e., it maps the unit of U⊤(g) to the unit of S⊤(g). Since Ψ is

a left inverse for Φ, then Φ is injective as expected.
For the locality of Φ−1, we prove first that Ψ = Φ−1. Indeed given an element x ∈ U⊤(g), x =

∑N
n=1 xn

where N <∞ and xn ∈ πU
(
(ST⊤(g))n

)
, i.e., the xn are of the form

xn =
∑
i∈I

∑
σ∈Sn

xiσ(1) · · ·xiσ(n)

for some finite set I. Then

Φ ◦Ψ(xn) =Φ ◦ πS ◦ ∆̃(n)
(∑
i∈I

∑
σ∈Sn

xiσ(1) · · ·xiσ(n)
)

=Φ ◦ πS
(
n!
∑
i∈I

∑
σ∈Sn

xiσ(1) ⊗ · · · ⊗ xiσ(n)
)

=Φ
(
n!
∑
i∈I

∑
σ∈Sn

xiσ(1) ⊙ · · · ⊙ xiσ(n)
)

=πU ◦Θ
(
n!
∑
i∈I

∑
σ∈Sn

xiσ(1) ⊙ · · · ⊙ xiσ(n)
)

=πU

(∑
i∈I

∑
σ∈Sn

xiσ(1) ⊗ · · · ⊗ xiσ(n)
)

=
∑
i∈I

∑
σ∈Sn

xiσ(1) · · ·xiσ(n)

=xn,

and thus Φ−1 = Ψ. Consider now x =
∑N
n=1 xn and y =

∑M
m=1 ym in U⊤(g) where N,M < ∞,

xn ∈ πU
(
(ST⊤(g))n

)
, and ym ∈ πU

(
(ST⊤(g))m

)
, and such that x⊤Uy. By means of Lemma 6.38, the

projections of U⊤(g) onto each of the subspaces (ST⊤(g))n is locality independent to the identity IdU⊤(g),
and thus xn⊤Uym for every n and m. For fixed m′ ∈ [M ] and n′ ∈ [N ], x′n⊤Uy′m implies that it is
possible to write x′n =

∑
i∈I
∑
σ∈S′

n
xiσ(1) · · ·xiσ(n′) and y′m =

∑
j∈J

∑
τ∈S′

m
yjτ(1) · · · yjτ(m′) such that

xiσ(k)⊤gyjτ(l) for every i, j, k, and l. Therefore(
Φ−1(x′n) = n′!

∑
i∈I

∑
σ∈Sn′

xiσ(1) ⊙ · · · ⊙ xiσ(n′)

)
⊤S
(
m′!

∑
j∈J

∑
τ∈Sm′

xjτ(1) ⊙ · · · ⊙ xjτ(m′) = Φ−1(y′m)
)
.

Since n′ and m′ are arbitrary and S⊤(V ) is a locality vector space, then Φ−1(x)⊤SΦ−1(y) which finishes
the proof.

Similarly to the non-locality case, we can summarize the locality versions of the Milnor-Moore and
Poincaré-Birkhoff-Witt theorems in the following result.

Theorem 6.40. For any locality cocommutative Hopf algebra H over a filed K of characteristic zero,
the following are equivalent.

101



1. H is connected.

2. There is an isomorphism of locality Hopf algebras H ∼ U(Prim(H)).

3. There is an isomorphism of connected locality coalgebras H ∼ S(Prim(H)).

Proof. The implication 1.⇒ 2. is the Milnor-Moore theorem (Theorem 6.22). Implication 2.⇒ 3. is the
Quillen version of Poincaré-Birkhoff-Witt theorem (Theorem 6.39), and 3.⇒ 1. is straightforward.
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Chapter 3

Shintani zeta functions

In this chapter we present the results regarding the meromorphic continuation of the Shintani zeta
functions, namely Theorems 7.10 and 7.11 in Section 7, which provide a domain of absolute convergence
and meromorphic continuation of some class of functions, Theorems 8.7 and 8.18 in Section 8, which
provide the description of the polar structure of the Shintani zeta functions, and Theorem 9.1 in Section
9, the proof of which provides an algorithm to distribute a multidimensional weight over the vertices of
a graph such that the weight on each vertex is always bigger than a given bound. Even though at a
first glance the topic of Section 9 is far away from the rest of the chapter, the results provided there are
essential to prove Theorem 8.18, according to which the possible hyperplanes carrying the Shintani zeta
functions have normal vectors with coefficients 0 or 1 when written in terms of the canonical basis with
integer and mutually coprime coefficients (Theorem 8.18). This implies that the poles at zero are similar
to the ones of generic Feynman amplitudes studied in [92, 28].

7 Mellin transform of rational functions damped by a Schwartz
function

In this first section of the chapter, we introduce the necessary tools in order to build later a meromorphic
continuation of the Shintani zeta functions. In Paragraph 7.1 we build the space of rational functions
damped by a Schwartz function together with the function S which lies in it. This function will be
essential for the merommorphic continuation of the Shintani zeta functions. In Paragraph 7.2 we study
the domain of convergence and meromorphic continuations of some class of functions, in particular of the
rational functions damped by a Schwartz function. The main results of that Paragraph are Theorems
7.10 and 7.11 which are extensions of Theorems 3.20 and 3.21, and that yield the existence of a domain of
absolute convergence and a meromorphic continuation for the function S of Definition-Proposition 7.5.

7.1 The space of rational functions damped by a Schwartz function
In this paragraph we recall the definition of Schwartz functions, and define the space of rational functions
damped by Schwartz functions which will contain the functions, the Mellin transform of which will provide
a meromorphic continuation of the Shintani zeta functions.

We recall what a Schwartz function is: For O an unbounded connected region of Rn, a function
ϕ : O → R is said to be Schwartz, denoted by ϕ ∈ S(O), if it is smooth on O and for every pair
(α,β) ∈ Z2n

≥0 the following is satisfied:

lim
ϵ→∞
ϵ∈O

ϵα∂(β)ϕ(ϵ) = 0.

Notice that in particular ϕ ∈ S(Rn+) is not necessarily bounded while ψ ∈ S(Rn≥0) is. In this paper we
use the space of rational functions damped by a Schwartz function. We make this precise in the following
definition.
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Definition 7.1.

• We say that a function ϕ : Rn+ → R lies in the space C∞b (Rn+) if, and only if there exists a polynomial
p in n real variables such that the product pϕ extends to a bounded smooth function on Rn≥0 with
all its derivatives bounded.

• We say that a function ϕ : Rn+ → R lies in the spaceMS(Rn+) if, and only if there exists a polynomial
p in n real variables such that pϕ extends to a function in S(Rn≥0). In other wordsMS(Rn+) is the
set of rational functions damped by a Schwartz function on Rn+.

In [43] the space of germs of meromorphic functions with linear poles is used. However, the authors
implicitly use a subspace of MS(Rn+), namely functions of the type ϕ∏

Li
where ϕ ∈ S(Rn≥0) is analytic

at zero and the Li’s lie in (Rn)∗. In other words, they use the space of Schwartz functions on Rn+ which
can be extended, in a neighborhood of zero, to a meromorphic function with linear poles.

Proposition 7.2. C∞b (Rn+) (resp. MS(Rn+)) is an R-algebra (resp. non-unital R-algebra) for the point-
wise product of functions.

Proof. We prove first that C∞b (Rn+) is an algebra. Let ϕ and ψ in C∞b (Rn+), i.e, there are polynomials p
and q such that p ϕ and q ψ are bounded smooth functions on Rn≥0 with all their derivatives bounded. The
fact that the space of bounded smooth functions with all its derivatives bounded is an algebra implies
that for (λ, µ) ∈ R2, λ pϕ + µ q ψ remains in this space. Also p q ϕψ remains in this space proving that
C∞b (Rn+) is an algebra. The unit is the function identical to 1.

We prove now that MS(Rn+) is a non unital algebra. Let ϕ and ψ in MS(Rn+), i.e, there are
polynomials p and q such that p ϕ ∈ S(Rn≥0) and q ψ ∈ S(Rn≥0). The fact that S(Rn≥0) is a non-unital
algebra implies that

λ pϕ+ µ q ψ ∈ S(Rn≥0) ∀(λ, µ) ∈ R2,

and
p q ϕψ ∈ S(Rn≥0),

and thus MS(Rn+) is a non-unital algebra, since the function identical to 1 is not inMS(Rn+).

Example 7.3. Let L(ϵ) =
∑n
i=1 aiϵi ∈ (Rn)∗ where every ai > 0. Let moreover h : Rn≥0 → R be a

smooth function which is bounded together with all its derivatives. Then
(
ϵ 7→ h(ϵ) e−L(ϵ)

L(ϵ)

)
∈MS(Rn+).

We prove a lemma which will be useful in the sequel.

Lemma 7.4. The Todd function defined by z 7→ Td(z) = z
ez−1 = ze−z

1−e−z is a Schwartz function when
restricted to R≥0.

Proof. In this proof z represent a complex variable and x a real one. Notice first that 1
ez−1 only has

poles when z = 2πik where k ∈ Z, and moreover these poles are simple. Therefore Td is a meromorphic
function with simple poles at z = 2πik where k ∈ Z \ {0}. In particular it is smooth for every x ∈ R and
all its derivatives are bounded on the closed interval [0, R] for any R > 0. We are only left to prove that
limx→∞ xαTd(β)(x) = 0 where α and β are non negative integers. We see first that, for x ∈ R

lim
x→∞

xpe−qx

(1− e−x)r
= 0 ∀(p, r) ∈ Z2

≥0 and q ≥ 1, (3.1)

which follows from limx→∞
1

1−e−x = 1, and x 7→ e−qx being a Schwartz function on R≥0. We show now
that for every β ∈ Z≥0, |Td(β)| can be expressed as a linear combination with real coefficients of fractions
like the one on the left hand side of (3.1). Indeed, it is true for β = 0 since Td(x) = xe−x

1−e−x . Moreover

d

dx

(
xpe−qx

(1− e−x)r

)
=
pxp−1e−qx

(1− e−x)r
− qxpe−qx

(1− e−x)r
− rxpe−(q+1)x

(1− e−x)r+1

which yields the result by induction.
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Using the column representation of the matrices described in Definition 3.12, consider the set Cn of
column vectors with n non negative arguments, and with at least one of them positive. Recall that, with
some abuse of notation, for C ∈ Cn we denote also by C the linear form defined by C(ϵ) = ⟨C, ϵ⟩.

Definition-Proposition 7.5. The following map defined on Cn takes values in C∞b (Rn+)

S : C 7→

(
Rn+ ∋ ϵ 7→ S(C)(ϵ) :=

∞∑
m=1

e−mC(ϵ) =
e−C(ϵ)

1− e−C(ϵ)

)
. (3.2)

We extend it linearly to RCn which is the real vector space freely generated by Cn. (Notice that the sum
in RCn is NOT the usual sum of vectors. For the latter S is not a linear map.)

Proof. Notice that CS(C) = C
eC−1

= Td ◦ C where Td is the Todd function. Lemma 7.4 yields the
result.

We identify matrices with the tensor product of its columns. Namely, we identify
A = {ai,j}1≤i≤n,1≤j≤r ∈ Σn×r(R≥0) with C1 ⊗ · · · ⊗ Cr, where Cj = {ai,j}1≤i≤n is the j-th column
of A. Notice that this identification does not preserve the structure of vector space, particularly if a ma-
trix is multiplied by a scalar k, the tensor product of the columns should be multiplied by kr. However,
matrices here are only used as parameters and the vector space structure is not considered, therefore this
identification is not problematic.

In order to extend the definition of S for matrices, we recall the definition and universal property of
the tensor algebra. Recall from (1.7) that the tensor algebra of an R-vector space V is defined as the
direct sum of the non-negative integer tensor powers of V , namely

T (V ) :=
⊕
k≥0

V ⊗k, (3.3)

where V ⊗0 = R. The product on T (V ) is the concatenation of vectors, which we denote by ⊗. Notice
that the concatenation product respects the grading in (3.3), making it a graded algebra. The unit is the
inclusion u : R→ V ⊗0 ⊂ T (V ).

By means of the universal property of the tensor algebra (Theorem 1.25), S defined in Equation (3.2)
extends uniquely to an algebra morphism from the tensor algebra T (RCn) to C∞b (Rn+) (see Proposition
7.2). Namely, for C1 ⊗ · · · ⊗ Cr

S(C1 ⊗ · · · ⊗ Cr)(ϵ) =
r∏
j=1

S(Cj)(ϵ) =
∑

m∈Zr
+

e−⟨m,C(ϵ)⟩,

where C(ϵ) = (C1(ϵ), . . . , Cr(ϵ)).

Proposition 7.6. Let A ∈ Σn×r(R≥0), and using the identification a matrix with the tensor product of
its columns, we have that

ϵ 7→ S(A)(ϵ) := S(C1 ⊗ · · · ⊗ Cr)(ϵ) =
∑

m∈Zr
>0

e−⟨Am,ϵ⟩ (3.4)

lies in MS(Rn+).

Proof. Notice that for every column Cj of A, Cj(ϵ)S(Cj)(ϵ) = Td(Cj(ϵ)). Since A ∈ Σn×r(R≥0) there
is at least one non-zero element in each row, and therefore if ϵ → ∞, there is at least one j′ ∈ [r] such
that Cj′ → ∞. By means of Lemma 7.4 ϵ 7→ Cj(ϵ)S(Cj)(ϵ) = Td(Cj′(ϵ)) lies in S(Rn≥0). Definition-
Proposition 7.5 implies that ϵ 7→ Cj(ϵ)S(Cj(ϵ)) is smooth and bounded together with all its derivatives.
Thus ( ∏

j∈[r]

Cj

)
S(A) =

∏
j∈[r]

CjS(Cj) ∈ S(Rn≥0)

which yields the result.
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Recall that a cone {R≥0a1 + · · · + R≥0am : ∀i ∈ [c] ai ∈ Rn} ⊂ Rn is called smooth if m = n and
{ai}i∈[n] is a basis of Zn. Consider a matrix A ∈ Σn×n(R≥0) which also belongs to SLn(Z), then the
rows of A are the edges of a smooth cone C on the lattice Zn≥0, namely the columns of A correspond to
the vectors ai previously mentioned. In that case S(A) amounts to the discrete Laplace transform of the
characteristic function of C ∩ Zn. We refer the reader to [42] for a more complete treatment of smooth
cones and conical zeta values.

7.2 The Mellin transform of classes of rapidly decreasing functions
The Mellin transform (Definition 3.9) will play a central role in the sequel, since it is the main tool we
use to determine meromorphic continuations. In this paragraph we study the domain of convergence and
meromorphic continuation of the Mellin transform of some specific functions. We also adapt Theorems
3.20 and 3.21 to the Mellin transforms of rational functions damped by a Schwartz function.

Domain of convergence of the Mellin transform of rapidly decreasing functions

We introduce a class of functions, whose behavior at infinity ensures a non empty domain of convergence
of its Mellin transform.

Definition 7.7. We call a function ϕ : Rn≥0 → R rapidly decreasing if for every α ∈ Zn,

lim
ϵ→∞

ϵαϕ(ϵ) = 0.

Notice that this definition differs from that of Schwartz functions, in that here it is not required the
function to be smooth and its derivatives to be rapidly decreasing. For the rest of this section we adopt
the notation Cn+ := {s ∈ Cn : ℜ(s) > 0}, where ℜ(s) > 0 means that ℜ(si) > 0 for every i.

Proposition 7.8. Let g : Rn+ → C be a function, the Mellin transform of which

Mg(s) =

∫
Rn

+

ϵs−1g(ϵ)dϵ

is absolutely convergent for values of s in some non-empty set Dg ⊂ Cn. For any given bounded, mea-
surable function ϕ : Rn≥0 → R which is rapidly decreasing, the Mellin transform of gϕ given by

Mgϕ(s) =

∫
Rn

+

ϵs−1g(ϵ)ϕ(ϵ)dϵ

is absolutely convergent on the set Dg + Cn+ where the sum is understood as the usual sum of subsets of
a vector space (Minkowski sum). It is moreover analytic on the interior of Dg + Cn+.

Proof. Let s in Dg + Cn+, then there is s0 ∈ Dg and α ∈ Cn+ such that s = s0 + α. Let B̄R(0) be a
closed ball of Rn≥0 centered at 0 with radius R > 0 and set σ := ℜ(s), σ0 := ℜ(s0), and a = ℜ(α), then
formally

|Mgϕ(s)| ≤
∫
B̄R(0)

ϵσ0+a−1|g(ϵ)ϕ(ϵ)|dϵ+
∫
Rn

+\B̄R(0)

ϵσ0+a−1|g(ϵ)ϕ(ϵ)|dϵ. (3.5)

It is therefore enough to prove the convergence of the two integrals on the right hand side of (3.5) to
prove thatMgϕ(s) is convergent. The facts that ϕ is bounded, a lies in Rn+, and B̄R(0) is compact, imply
that there is Ma > 0 such that for every ϵ ∈ B̄R(0) the inequality ϵa|ϕ(ϵ)| < Ma holds, and therefore∫

B̄R(0)

ϵσ0+a−1|g(ϵ)ϕ(ϵ)|dϵ ≤Ma

∫
B̄R(0)

ϵσ0−1|g(ϵ)|dϵ ≤Ma

∫
Rn

+

ϵσ0−1|g(ϵ)|dϵ

which is convergent by assumption.
For the second integral on the right hand side of (3.5), since ϕ is rapidly decreasing, for R big enough

ϵa|ϕ(ϵ)| < 1 for every ϵ ∈ Rn+ \ B̄R(0) and thus∫
Rn

+\B̄R(0)

ϵσ0+a−1|g(ϵ)ϕ(ϵ)|dϵ ≤
∫
Rn

+\B̄R(0)

ϵσ0−1|g(ϵ)|dϵ ≤
∫
Rn

+

ϵσ0−1|g(ϵ)|dϵ,
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which is again convergent by assumption. Therefore both integrals on the right hand side of (3.5) are
convergent implying the expected result. The analyticity follows from Lemma 3.10.

Remark 7.9. Notice that the case g(ϵ) = 1 is not covered by the former proposition since M1(s) does
not converge for any s ∈ Cn. However it is easy to see that for ϕ bounded, measurable and rapidly
decreasing, Mϕ(s) converges and is analytic for ℜ(s) > 1, by this we mean ℜ(si) > 1 for every i ∈ [n].
Indeed

Mϕ(s) =

∫
B1(0)∩Rn

+

ϵs−1ϕ(ϵ)dϵ+

∫
Rn

+\B1(0)

ϵs−1ϕ(ϵ)dϵ, (3.6)

for ℜ(s) > 1 the first integral on (3.6) converges since the integrand is bounded and B1(0) is compact.
For the second integral it is enough to realize that |ϵs−1ϕ(ϵ)| ≤ C 1

|ϵ|n+1 for some C > 0.

We proceed to adapt Theorem 3.20 [77, Theorem 1] to the Mellin transform of rational functions
damped by rapidly decreasing functions. The proof we provide follows very closely the one in [77].

Theorem 7.10. Let ϕ : Rn≥0 → R be a measurable, bounded, rapidly decreasing function, and p a
polynomial completely non-vanishing on Rn+, then the Mellin transform of ϕ/p

Mϕ/p(s) =

∫
Rn

+

ϵs−1ϕ(ϵ)

p(ϵ)
dϵ,

converges absolutely and defines an analytic function s 7→ Mϕ/p(s) on the tube domain ℜ(s) = σ ∈
∆p + Rn+, where ∆p is the Newton polytope of p (see Definition 3.13).

Proof. Whenever ∆p has no empty interior, the statement is a direct consequence of Theorem 3.20 and
Proposition 7.8. For the case int(∆p) = ∅, we adapt the proof of [77, Theorem 1]. Consider the change
of variable ϵi 7→ exi , then

Mϕ/p(s) =

∫
Rn

e⟨s,x⟩ϕ(ex)

p(ex)
dx.

Similar to Remark 7.9, it is then enough to prove that there is a bounded, measurable rapidly decreasing
function ψ such that

e⟨σ,x⟩|ϕ(ex)|
|p(ex)|

≤ ψ(x) (3.7)

for every x ∈ Rn \K where K is a compact set. We prove this by induction over the dimension n. For
n = 1, since dim(∆p) = 0 then p(ex) = aαe

αx where ∆p = α ∈ Z. Let M > 0 be such that |ϕ(ex)| < M
for every x. For negative values of x

eσx|ϕ(ex)|
|aαeαx|

≤ M

|aα|
e−(σ−α)|x|.

Since e−(σ−α)|x| is bounded, measurable and rapidly decreasing for x ≤ 0, this yields the result. On the
other hand, |e(σ−α)xϕ(ex)| is rapidly decreasing for x > 0, thus our claim is true for n = 1.

For the inductive step assume that inequality (3.7) holds for dimensions smaller than n, and consider
a polynomial in n variables p(ϵ) =

∑
α∈A aαϵ

α, where A ⊂ Zn, and with dim(∆p) < n. Let σ ∈ ∆p+Rn+,
then in particular σ /∈ ∆p (because 0 /∈ R+). We build a family of cones, the union of which covers Rn\K
where K is a compact set. Recall that for a set X ⊂ Rn, conv(X) refers to the convex hull generated by
the elements in X.

• For every face Γ of ∆p + Rn+, choose σΓ ∈ int(Γ). Define ∆Γ = conv((A \ Γ) ∪ {σΓ,σ}). Consider
then the cone

C̃Γ := {x ∈ Rn : (∀ξ ∈ ∆Γ) ⟨ξ − σΓ,x− σΓ⟩ ≤ 0}.

• Consider the polytope ∆σ := conv(A ∪ {σ}). Then define the cone

C̃σ := {x ∈ Rn : (∀ξ ∈ ∆σ) ⟨ξ − σ,x− σ⟩ ≤ 0}.

107



Notice that Rn \
(⋃

Γ C̃Γ ∪ C̃σ

)
is a bounded set, where Γ takes values on the set of faces of ∆p + Rn+.

Even more, consider for every Γ (resp. for σ) a slightly smaller closed, convex cone CΓ (resp. Cσ)
contained in the interior of C̃Γ (resp. C̃σ) with vertex in σΓ (resp. σ) such that Rn \ (

⋃
Γ CΓ ∪ Cσ) is

still a bounded set. It is then enough to prove the estimate (3.7) for every x in CΓ and for every x in Cσ

with norm |x| chosen sufficiently large.
Fix a face Γ of ∆p+Rn and consider x ∈ CΓ. With a slight abuse of notation we call pΓ the sum of the

monomials of p, the exponents of which lie in Γ. Notice that this differs from the truncated polynomials
in Definition 3.19 in that here Γ is not necessarily a face of ∆p but rather one of ∆p+Rn+. Let qΓ = p−pΓ.
Then

e⟨σ,x⟩ϕ(ex)
p(ex)

=
e⟨σ−σΓ,x⟩

(ϕ(ex))−1e−⟨σΓ,x⟩pΓ(ex) + (ϕ(ex))−1e−⟨σΓ,x⟩qΓ(ex)
. (3.8)

Let us now determine adequate bounds for the numerator and for each of the sumands in the denominator
of the fraction on the right hand side of (3.8).

• Bound for e⟨σ−σΓ,x⟩: Set y := x− σΓ and k := min{⟨σΓ − σ,y⟩ : |y| = 1, σΓ + y = x ∈ CΓ}. By
construction of CΓ we have k > 0. Then

e⟨σΓ−σ,x⟩ = e⟨σΓ−σ,σΓ⟩e⟨σΓ−σ, y
|y| ⟩|y|

≥ e⟨σΓ−σ,σΓ⟩ek|y|

≥ e⟨σΓ−σ,σΓ⟩ek(|x|−|σΓ|)

≥ c1ek|x|

where we have set c1 := e⟨σΓ−σ,σΓ⟩e−k|σΓ| > 0. Setting ψ(x) := (c1e
k|x|)−1 implies that |e⟨σ−σΓ,x⟩| <

ψ(x) where ψ is a bounded, measurable, rapidly decreasing function.

We now find a constant c > 0 such that the denominator of (3.8)

(ϕ(ex))−1e−⟨σΓ,x⟩pΓ(e
x) + (ϕ(ex))−1e−⟨σΓ,x⟩qΓ(e

x)) > c

for |x| ∈ CΓ large enough.

• Bound for (ϕ(ex))−1e−⟨σΓ,x⟩pΓ(e
x): Notice that dim(∆pΓ) = m < n. Therefore, a change of

coordinates, the transformation matrix of which has determinant 1 (in dimension 2 and 3 it is
equivalent to a rotation of coordinates) can be made, such that in the new coordinates x′ the
polytope ∆pΓ is in a (possibly affine) subspace parallel to the span of the first m coordinates
x′1, . . . , x

′
m, and the remaining n −m coordinates are orthogonal to ∆pΓ . We write x′ = (x′

1,x
′
2)

where x′
1 are the first m coordinates and x′

2 are the last n−m coordinates, we write similarly σΓ =
(σΓ1,σΓ2). Then pΓ(e

x′
) = e⟨σΓ2,x

′
2⟩pΓ(e

x′
1). Indeed, since all the exponents of the polynomial pΓ

(seen as vectors on Zn) lie in ∆pΓ , then their last n−m components in the coordinates x′ are equal
to σΓ2

, because ∆pΓ is constant in those components. It follows that

|(ϕ(ex))−1e−⟨σΓ,x⟩pΓ(e
x)| = |(ϕ(ex))−1||e−⟨σΓ1,x

′
1⟩pΓ(e

x′
1)|.

Since the right hand side depends on m < n variables, by means of the induction hypothesis, there
is a constant c2 > 0 such that |(ϕ(ex))−1e−⟨σΓ,x⟩pΓ(e

x)| > c2 for |x| large enough.

• Bound for (ϕ(ex))−1e−⟨σΓ,x⟩qΓ(e
x): We now proceed to prove that for |x| large enough

|ϕ−1(ex)e−⟨σΓ,x⟩qΓ(e
x)| < c2/2.

Recall that
qΓ(e

x) =
∑

α∈A\Γ

aαe
⟨α,x⟩.

Since α ∈ ∆Γ and CΓ is closed, the following constant exists and is positive

kα := min{⟨σΓ − α,y⟩ : |y| = 1, x = σΓ + y ∈ CΓ}.
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Hence

|aαe⟨α,x⟩e−⟨σΓ,x⟩| = |aαe⟨α,σΓ⟩−|σΓ|2e−⟨σΓ−α, y
|y| ⟩|y||

≤ |aαe⟨α,σΓ⟩−|σΓ|2e−kα|y||.

The last term tends to zero as |y| tends to infinity. Therefore, for |x| large enough |(ϕ(ex))−1e−⟨σΓ,x⟩qΓ(e
x)| <

c2
2 as expected.

It follows that for x ∈ CΓ with |x| large enough, the estimate (3.7) is satisfied. We are only left to
prove the same estimate for x ∈ Cσ. For that purpose notice that for x with large enough norm, x ∈ Cσ

implies that x /∈ Rn≤0. It follows then that ex 7→ ϕ(ex) is rapidly decreasing for x ∈ Cσ. On the other
hand, since p is a polynomial completely non-vanishing in Rn+, then Cσ ∋ x 7→ |p(ex)| is bounded from
below by a positive constant. Therefore

Cσ ∋ s 7→ e⟨σ,x⟩|ϕ(ex)|
|p(ex)|

is a bounded, measurable rapidly decreasing function, which completes the proof.

Meromorphic continuation of the Mellin transform

In this paragraph we build a meromorphic continuation for the Mellin transform of rational functions
damped by a Schwartz function (see Definition 7.1). For that purpose we need a slightly adapted form of
Theorem 3.21, the proof of which follows closely the one in [77] with a small change to take into account
a Schwartz function.

Similar to (1.36), there are integers νk, and vectors µk which lie in Zn≥0 on the inward normal direction
of the facets of ∆p + Rn+ with mutually coprime coordinates, such that

∆p + Rn+ :=

N⋂
k=1

{σ ∈ Rn; ⟨µk,σ⟩ ≥ νk}. (3.9)

Theorem 7.11. Let p be a completely non-vanishing polynomial on the positive orthant Rn+ and ϕ ∈
S(Rn≥0). Then the Mellin transform

Mϕ/p(s) =

∫
Rn

+

ϵs ϕ(ϵ)

p(ϵ)

dϵ

ϵ
(3.10)

admits a meromorphic continuation of the form

Mϕ/p(s) = Φ(s)

N∏
k=i

Γ(⟨µk, s⟩ − νk),

where Φ is an entire function, and N , µk and νk are as in (3.9).

Proof. This proof closely follows that of Nilsson and Passare. We use here the following notation intro-
duced by them: For a given γ ∈ ZN

∆(γ) :=

N⋂
k=1

{σ ∈ Rn : ⟨µk,σ⟩ ≥ γk},

in particular ∆(ν) = ∆p + Rn+, where ν is a vector, the components of which are the νk as in Equation
(3.9).

We claim that for every m ∈ ZN≥0, there are functions ϕm,i ∈ S(Rn≥0) and polynomials qm,i whose
Newton polytopes satisfy ∆qm,i

⊂ ∆(|m|ν +m), such that

Mϕ/p(s) =
1∏N

j=1 um,j(s)

(
Nm∑
i=1

∫
Rn

+

ϵsqm,i(ϵ) ϕm,i(ϵ)

p(ϵ)1+|m|
dϵ

ϵ

)
(3.11)
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Here Nm ∈ N, |m| = m1+ · · ·+mN , and um,j(s) =
∏mj−1
l=0 (⟨µj , s⟩− νj + l). We prove this by induction

over |m|. Let m = ek, where {ei}Ni=1 is the canonical basis of RN : for λ > 1, introducing the change of
coordinates (ϵ1, . . . , ϵn) 7→ (λµk1ϵ1, . . . , λ

µknϵn) in (3.10) we obtain

Mϕ/p(s) = λ⟨µk,s⟩−νk
∫
Rn

+

ϵs

λ−νkp(λµkϵ)
ϕ(λµkϵ)

dϵ

ϵ
. (3.12)

After differentiating (3.12) with respect to λ and evaluating at λ = 1, it follows that

0 = (⟨µk, s⟩ − νk)Mϕ/p(s)−
∫
Rn

+

ϵsqek(ϵ)

p2(ϵ)
ϕ(ϵ)

dϵ

ϵ
+

∫
Rn

+

ϵs

p(ϵ)

(
n∑
l=1

ϵlµkl
∂ϕ

∂ϵl

∣∣∣
ϵ

)
dϵ

ϵ
,

where we have set
qek(ϵ) =

d

dλ

(
λ−νkp(λµkϵ)

) ∣∣∣
λ=1

.

That implies

Mϕ/p(s) =
1

⟨µk, s⟩ − νk

(∫
Rn

+

ϵsqek(ϵ)

p2(ϵ)
ϕ(ϵ)

dϵ

ϵ
−

n∑
l=1

µkl

∫
Rn

+

ϵsp(ϵ)ϵl
p2(ϵ)

∂ϕ

∂ϵl

∣∣∣
ϵ

dϵ

ϵ

)
.

Since ∂ϕ
∂ϵl
∈ S(Rn≥0), we are only left to prove ∆qek

⊂ ∆(ν + ek) and ∆p ϵl ⊂ ∆(ν + ek). For the
first inclusion, let Γek be the facet of ∆p + Rn+ contained in the hyperplane ⟨µk,σ⟩ = νk. Notice that
qek contains only the monomials from p whose exponents do not lie on the facet Γek , therefore ∆qek

⊂
∆(ν + ek). We prove the second inclusion, namely ∆p ϵl ⊂ ∆(ν + ek): recall that the Newton polytope
of the product of two polynomials is equal to the sum of the Newton polytopes of each polynomial, thus
∆p ϵl is ∆p translated by the vector el. Then if µkl ̸= 0, σ ∈ ∆p ϵl implies that for every j ∈ [N ],
⟨σ− el,µj⟩ ≥ νj or equivalently ⟨σ,µj⟩ ≥ νj + µjl ≥ νj + δj,k where the last inequality is a consequence
of µk ∈ Zn≥0 and µkl ̸= 0. This proves that ∆p(ϵ)ϵi ⊂ ∆(ν + ek) and our claim for the case |m| = 1.

For the inductive step assume that (3.11) holds for a vector m. We prove that it also holds for
m′ := m+ ek. Consider on each of the integrals on the right hand side of (3.11) the change of variables
(ϵ1, . . . , ϵn) 7→ (λµk1ϵ1, . . . , λ

µknϵn). From differentiating with respect to λ and making λ = 1, it follows
that

0 = (⟨µk, s⟩ − νk +mk)

∫
Rn
+

ϵsqm,i(ϵ) ϕm,i(ϵ)

p(ϵ)1+|m|
dϵ

ϵ
−
∫
Rn
+

ϵsqm′,i(ϵ)ϕm,i(ϵ)

p(ϵ)2+|m|
dϵ

ϵ
+

∫
Rn
+

ϵsqm,i(ϵ)

p(ϵ)1+|m|

(
n∑

l=1

ϵlµkl

∂ϕm,i

∂ϵp

∣∣∣
ϵ

)
dϵ

ϵ
,

implying∫
Rn
+

ϵsqm,i(ϵ) ϕm,i(ϵ)

p(ϵ)1+|m|
dϵ

ϵ
=

1

⟨µk, s⟩ − νk +mk

(∫
Rn
+

ϵsqm′,i(ϵ)ϕm,i(ϵ)

p(ϵ)2+|m|
dϵ

ϵ
−

n∑
l=1

µkl

∫
Rn
+

ϵsqm,i(ϵ)p(ϵ)ϵl

p(ϵ)2+|m|
∂ϕm,i

∂ϵl

∣∣∣
ϵ

dϵ

ϵ

)

where qm′,i(ϵ) = (1 + |m|)qek(ϵ)qm,i(ϵ)− p(ϵ)q̃m,i(ϵ), and

q̃m,i(ϵ) =
d

dλ

(
λ−|m|νk−mkqm,i(λ

µkϵ)
) ∣∣∣

λ=1
.

To prove our claim, we are only left to show that ∆qm′,i ⊂ ∆(|m′|ν+m′) and ∆qm,ip ϵl ⊂ ∆(|m′|ν+
m′). For the first inclusion, notice that ∆qekqm,i

⊂ ∆(ν + ek) + ∆(|m|ν +m) ⊂ ∆(|m′|ν +m′) where
we have use the general inclusion ∆(α) + ∆(β) ⊂ ∆(α + β). Moreover, since any of the monomials in
the polynomial q̃m,i has exponents on the hyperplane ⟨µk,σ⟩ = |m|νk +mk, it follows that ∆p q̃m,i ⊂
∆(ν) + ∆(|m|ν +m + ek) ⊂ ∆(|m′|ν +m′). This yields the first inclusion. For the second inclusion,
recall that if µkl ̸= 0, ∆p ϵl ⊂ ∆(ν + ek), then

∆qm,ip ϵl = ∆qm,i
+∆p ϵl ⊂ ∆(|m|ν +m) + ∆(ν + ek)∆(|m′|ν +m′)

proving the second inclusion. Doing the same procedure for each of the integrals on the right hand side
of (3.11) we obtain
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Mϕ/p(s) =
1∏N

j=1 um′,j(s)

Nm′∑
i=1

∫
Rn

+

ϵsqm′,i(ϵ) ϕm′,i(ϵ)

p(ϵ)1+|m′|
dϵ

ϵ

 ,

as expected.
We prove now that each of the domains of convergence of each of the integrals on the right hand

side of (3.11) contains ∆(ν −m). Fix i in [Nm], by means of Theorem 7.10, the i-th integral in (3.11)
converges on ⋂

τ∈∆qm,i

((1 + |m|)∆(ν)− τ ) . (3.13)

We show then that ∆(ν −m) is a subset of (3.13). Indeed, if σ ∈ ∆(ν −m), then for every j in [N ]

⟨σ,µj⟩ ≥ νj −mj ,

moreover, the inclusion ∆qm,i ⊂ ∆(|m|ν +m) yields

⟨τ ,µj⟩ ≥ |m|νj +mj , ∀τ ∈ ∆qm,i .

Both inequalities imply that
⟨σ + τ ,µj⟩ ≥ (1 + |m|)νj ,

and thus σ lies on the intersection (3.13).
Inside the domain {s ∈ Cn : σ ∈ ∆(ν −m) + Rn+} the only poles ofMϕ/p are given by um,j(s) = 0,

and are simple, which coincide with the poles of the product
∏
k Γ(⟨s,µk⟩ − νk). Therefore, by the

theorem of removable singularities 3.5, Φ(s) =Mϕ/p(s)/(
∏
k Γ(⟨s,µk⟩− νk)) is an entire function which

yields the expected result.

8 Polar structure of Shintani zeta functions
The main objective of this section is to prove Theorems 8.7 and 8.18 which provide a better description of
the polar locus of the Shintani zeta functions based on the Newton polytopes of the polynomials induced
by the columns of the parametrising matrix A ∈ Σn×r(R≥0). To that end, we show that the Shintani
zeta functions can be expressed as the quotient of the Mellin transform of some function S introduced
in Paragraph 7.1 over some Gamma functions. We then use Theorems 7.10 and 7.11 to find a domain
of convergence and a meromorphic continuation for the Mellin transform in question and thus for the
Shintani zeta functions. Finally, in Paragraph 8.2 we prove that the possible hyperplanes carrying the
Shintani zeta functions have normal vectors with coefficients 0 or 1 when written in terms of the canonical
basis with integer and mutually coprime coefficients (Theorem 8.18). This proves that the poles at zero
are similar to the ones of generic Feynman amplitudes studied in [92, 28].

8.1 Polar locus and Newton polytopes
In this paragraph we prove the main result of this chapter which gives a precise description of the polar
loci of the Shintani zeta functions ζA associated to a matrix A, as in Definition 3.12 (Theorem 8.7).
For this purpose, we bring together the results of Paragraphs 7.1 and 7.2. We recall that for a matrix
A ∈ Σn×r(R≥0) with columns are C1, . . . , Cr, S(A) = S(C1 ⊗ · · · ⊗ Cr) (see (3.4)). We also recall that
for a given column vector Cj we also denote, with some abuse of notation, by Cj the linear form defined
by Cj(ϵ) := ⟨ϵ, Cj⟩.

Notice that given a matrix A ∈ Σn×r(R≥0) which, under permutations of the rows and columns, can
be expressed as a matrix by blocks of the form

A1

A2

. . .
AM


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the Shintani zeta function ζA is the product of the Shintani zeta functions ζAk
for every k ∈ [M ] as the

following example illustrates.

Example 8.1. Consider the following matrix:

A =

a11 0 a13
0 a22 0
a31 0 a33


The sum in ζA can be expressed as the product

ζA(s) =
∑

m∈Z3
≥1

(a11m1 + a13m3)
−s1(a22m2)

−s2(a31m1 + a33m3)
−s3

=
∑
m1≥1

∑
m3≥1

(a11m1 + a13m3)
−s1(a31m1 + a33m3)

−s3
∑
m2≥1

(a22m2)
−s2

= ζA1(s1, s3)ζA2(s2)

where A1 and A2 are the two blocks of the matrix obtained after exchanging the second row with the third
row, and the second column with the third column. The block matrix obtained after such permutations isa11 a13 0

a31 a33 0
0 0 a22


For the rest of this document, we only consider matrices A ∈ Σn×r(R≥0) which cannot be expressed

as block matrices under permutations of the rows and the columns, since the analysis of such matrices
might lead to several fake poles.

Proposition 8.2. Let A ∈ Σn×r(R≥0), then for s in the domain of convergence of ζA

ζA(s)Γ(s) =MS(A)(s).

Moreover, for every A ∈ Σn×r(R≥0), ζA is absolutely convergent whenever MS(A)(s) is absolutely con-
vergent.

Proof. The statement follows from:

MS(A)(s) =MS(C1⊗···⊗Cr)(s) =

∫
Rn

+

ϵs−1

 r∏
j=1

∑
m∈Zr

≥1

e−mjCj(ϵ)

 dϵ

=

∫
Rn

+

ϵs−1

 ∑
m∈Zr

≥1

e−⟨Atϵ,m⟩

 dϵ

=
∑

m∈Zr
≥1

∫
Rn

+

ϵs−1e−⟨ϵ,Am⟩dϵ

=
∑

m∈Zr
≥1

n∏
i=1

∫
R+

ϵsi−1
i e−Li(m)ϵidϵi

=
∑

m∈Zr
≥1

n∏
i=1

Li(m)−si
∫
R+

tsi−1
i e−tidti = ζA(s)Γ(s).

Here Γ(s) = Γ(s1) · · ·Γ(sn), and the Li’s are the lines of the matrix A. As for the columns, we denote
with some abuse of notation Li(m) = ⟨m, Li⟩. In the third line Fubini’s theorem is used since e−⟨ϵ,Am⟩

is positive. The statement of absolute convergence follows also from Fubini’s theorem.
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We focus on the study of MS(A) in order to build a meromorphic continuation for ζA. For that
purpose we prove two lemmas.

Lemma 8.3. The map x 7→ e−xh(x) lies in S(R≥0), where h : R≥0 → R is defined as h(x) = Td(x)ex−1
x

or equivalently
Td(x)

x
= e−x

(
1

x
]h(x)

)
.

Proof. Indeed, x 7→ e−xh(x) = Td(x)
x − e−x

x , thus it lies in S(R+) as a consequence of Lemma 7.4.
Moreover, in a neighborhood of zero

e−xh(x) =
Td(x)

x
− e−x

x

=

∞∑
n=−1

Bn+1
xn

(n+ 1)!
−

∞∑
n=−1

xn

(n+ 1)!

=

∞∑
n=0

(Bn+1 − 1)
xn

(n+ 1)!
.

Here Bn are the Bernoulli numbers, and we used the fact that B0 = 1. Therefore x 7→ e−xh(x) is analytic
at zero with h(0) = − 3

2 , and in particular x 7→ e−xh(x) ∈ S(R≥0).

For the rest of this paragraph we set ϕ(x) := e−x ∈ S(R≥0) in order to simplify the notation.

Lemma 8.4. For A ∈ Σn×r(R≥0), and J ⊂ [r], we have that ϕ(C[r](ϵ))h(CJ(ϵ)) ∈ S(Rn≥0), where we
used the compact notation h(CJ(ϵ)) :=

∏
j∈J h(Cj(ϵ)) and ϕ(C[r](ϵ)) :=

∏r
j=1 ϕ(Cj(ϵ)). Furthermore,

we have

MS(A)(s) =MS(C1⊗···⊗Cr)(s) =
∑

I⊔J=[r]

∫
Rn

+

ϵs−1ϕ(C[r](ϵ))h(CJ(ϵ))

CI(ϵ)
dϵ.

Proof. Fix J ⊂ [r], we prove that ϕ(C[r](ϵ))h(CJ(ϵ)) ∈ S(Rn≥0). Since A ∈ Σn×r(R≥0), there is at least
a non-zero element in each row. The latter implies that for every path in which ϵ tends to ∞, there is at
least a j ∈ [r] such that Cj(ϵ)→∞. Assume j ∈ J , then Lemma 8.3 implies that ϕ(CJ(ϵ))h(CJ(ϵ))−→0
as ϵ → ∞. Since ϕ(C[r]\J) is bounded, this yields the result. Assume otherwise j ∈ [r] \ J , then
ϕ(C[r]\J(ϵ)) −→ 0 as ϵ→∞. By Lemma 8.3 ϕ(CJ)h(CJ) is bounded and therefore ϕ(C[r](ϵ))h(CJ(ϵ)) ∈
S(Rn≥0).

On the other hand, since S(Cj) =
Td(Cj)
Cj

(see Definition-Proposition 7.5), with the notations of
Lemma 8.3, it follows that:

MS(C1⊗···⊗Cr)(s) =

∫
Rn

+

ϵs−1S(C1 ⊗ · · · ⊗ Cr)(ϵ)dϵ

=

∫
Rn

+

ϵs−1
r∏
j=1

S(Cj(ϵ))dϵ

=

∫
Rn

+

ϵs−1
r∏
j=1

(
e−Cj(ϵ)

Cj(ϵ)
+ e−Cj(ϵ)h(Cj(ϵ))

)
dϵ

=
∑

I⊔J=[r]

∫
Rn

+

ϵs−1ϕ(C[r](ϵ))h(CJ(ϵ))

CI(ϵ)
dϵ,

which proves the statement.

We show what is the domain of convergence for a sum of the type shown in (1.33).
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Proposition 8.5. Let A ∈ Σn×r(R≥0). The sum on the right hand side of the Shintani zeta function ζA
as defined in (1.33) is absolutely convergent for

σ ∈
⋂
I⊂[r]

(
∆CI

+ Rn+
)
, (3.14)

where σ = ℜ(s).

Proof. From Proposition 8.2, it is enough to prove thatMS(A) is absolutely convergent for σ lying in the
intersection on the right hand side of (3.14). The result follows from Lemma 8.4 and Theorem 7.10.

As a corollary, we recall a well known result which we prove for the sake of completeness.

Corollary 8.6. Let A ∈ Σn×r(R≥0), the sum on the right hand side of the Shintani zeta function ζA as
defined in (1.33) is absolutely convergent for ℜsi > r for every 1 ≤ i ≤ r.

Proof. By means of Proposition 8.5, we have to show that any s such that ℜs = σ lies in the interior of
the intersection ⋂

I⊂[r]

(
∆CI

+ Rn+
)
. (3.15)

Since ∆Ci ⊂ {(x1, . . . , xn) ∈ Rn≥0 : x1 + · · ·+ xn = 1}, then for any I ⊂ [r], ∆CI
⊂ {(x1, . . . , xn) ∈ Rn≥0 :

x1 + · · ·+ xn = |I|}. We prove that

∆CI
+ Rn+ ⊃ {(x1, . . . , xn) ∈ Rn+ : ∀i ∈ [n] , xi > |I|}.

Indeed, for any σ ∈ {(x1, . . . , xn) ∈ Rn≥0 : ∀i ∈ [n] , xi > |I|} and every σ0 ∈ {(x1, . . . , xn) ∈ Rn≥0 :
x1+ · · ·+xn = |I|}, it is straightforward to see that σ−σ0 ∈ Rn+. In particular, the set {σ ∈ Rn : σi > r}
is a subset of the intersection in (3.15) which proves the result.

As mentioned in the introduction, our aim is to build a meromorphic continuation of (1.33) to the
whole space Cn and to give a precise description of its poles. In doing so, we refine a result by Matsumoto
[69] that we have recalled in the Paragraph 3.2. Our result follows from Theorem 7.11.

Theorem 8.7. Let A ∈ Σn×r(R≥0) and write CJ(ϵ) =
∏
j∈J Cj(ϵ) where J ⊂ [r] and Cj the j-th column

of A. The Shintani zeta function

ζA(s) =
∑
m1≥1

· · ·
∑
mr≥1

(a11m1 + · · ·+ a1rmr)
−s1 × · · · × (an1m1 + · · ·+ anrmr)

−sn

admits a meromorphic continuation to Cn with possible simple poles located on the hyperplanes

⟨µJk , s⟩ = νJk − l.

Here µJk are the vectors in Zn on the inward normal direction of the facets of ∆CJ
+ Rn+ with mutually

coprime coordinates, νJk are integers as described in (3.9), and l ∈ Z≥0.
Moreover if µJk = ei for some vector of the canonical basis ei, then only the hyperplanes where

0 ≤ l ≤ νJk − 1 carry poles.

Proof. By means of Proposition 8.2 and Lemma 8.4, it is enough to build a meromorphic continuation
and describe the polar locus for the integrals∫

Rn
+

ϵs−1ϕ(C[r](ϵ))h(C[r]\J(ϵ))

CJ(ϵ)
dϵ

for every J ⊂ [r]. It follows from Theorem 7.11 that for J fixed the aforementioned integral admits a
meromorphic continuation to the whole space Cn where the poles are the same as those of the functions
Γ(⟨µJk , s⟩ − νJk ). This proves the first part of the theorem.

Moreover, if there is µJk = ei for any ei by means of the removable singularities theorem, the function
ζA(s) =

1
Γ(s)MS(C1⊗···⊗Cr)(s) has no poles on the hyperplanes ⟨µJk , s⟩ = −l where l ≥ νJk which yields

the result.
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Using the polar description of the Shintani zetas provided in the previous theorem, we can describe
the change of the polar structure under some linear transformations of s. Notice that this amounts to a
transformation of the polyhedra which induce the polar structure.

Corollary 8.8. Let A be a matrix in Σn×r(R≥0) and B an n × n real matrix, then the function s 7→
ζA(Bs) admits a meromorphic continuation to the space Cn with possible simple poles located on the
hyperplanes ⟨BtµJk , s⟩ = νJk − l. Here Bt is the transpose of B, and µJk , νJk and l are as in Theorem 8.7.

Proof. It is immediate from Theorem 8.7.

The following corollary shows how the pole structure of a Shintani zeta function ζA associated to a
matrix A only depends on the positions of the zeros in the matrix. It does not depend on the values
of the other arguments as long as they are positive. In particular, it is enough to consider the matrices
S ∈ Σn×r(R≥0) with arguments 0 or 1 to study all possible configurations of the poles for Shintani zeta
functions. This is in sharp contrast with the convergent case, since the values of ζA outside the poles
depend strongly on the values of the coefficients of A.

Corollary 8.9. Let A ∈ Σn×r(R≥0) and consider a new matrix Ā defined by āij = 0 if aij = 0, and
āij = 1 if aij ̸= 0. Then ζA and ζĀ have the same pole structure.

Proof. Let Cj (resp. C̄j) be the columns of the matrix A (resp. Ā). Once again with some abuse of
notation, we denote by the same symbol the linear forms Cj(ϵ) = ⟨ϵ, Cj⟩ and C̄j(ϵ) = ⟨ϵ, C̄j⟩. Since
Cj(ϵ) =

∑n
i=1 aijϵi and C̄j(ϵ) =

∑n
i=1 āijϵi where aij = 0 if, and only if āij = 0, it follows from

the definition of Newton polytope (Definition 3.13) that ∆Cj = ∆C̄j
. Since the Newton polytope of

the product of polynomials is equal to the Minkowski sum of their Newton polytopes, it follows that
∆CJ

= ∆C̄J
for any J ⊂ [r]. Theorem 8.7 then yields the result.

Remark 8.10. As mentioned in Section 3.2, for b ∈ Rn+, the map

s 7→ ζA,b(s) :=
∑
m1≥0

· · ·
∑
mr≥0

(a11m1 + · · ·+ a1rmr + b1)
−s1 × · · · × (an1m1 + · · ·+ anrmr + bn)

−sn

admits a meromorphic continuation with the same pole structure as ζA. Indeed, for the map

Sb(A) := e−⟨ϵ,b⟩

 r∏
j=1

∑
m∈Zr

≥0

e−mjCj(ϵ)


a similar computation to that in the proof of Proposition 8.2 shows that ζA,b(s)Γ(s) =MSb(A)(s), and
thus ζA,b is absolutely convergent wheneverMSb(A)(s) is absolutely convergent. Moreover, analogous to
Lemma 8.4

MSb(A)(s) =
∑

I⊔J=[r]

∫
Rn

+

ϵs−1 e
−⟨ϵ,b⟩ϕ(C[r](ϵ))h(CJ(ϵ))

CI(ϵ)
dϵ.

Our claim follows from replacing ϕ(C[r](ϵ)) for ϕb(C[r](ϵ)) := e−⟨ϵ,b⟩ϕ(C[r](ϵ)) in the proof of Theorem
8.7.

8.2 Family of meromorphic germs spanned by the Shintani zeta functions
In this paragraph, we study the space of meromorphic germs at zero spanned by the Shintani zeta
functions. For that purpose, we give a better description of the vectors µJK obtained in Theorem 8.7.
The main result of this section is Theorem 8.18 which states that the arguments of the vectors µJK are
either 0 or 1 if represented in the canonical basis of Rn. This proves that the poles at zero are similar to
the ones of generic Feynman amplitudes studied in [92, 28]. However, the family of meromorphic germs
spanned by those containing Shintani zeta functions is bigger that the one spanned by those containing
generic Feynman amplitudes, since the latter are described by singular families (see [92]).
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Proposition 8.11. For every set of vectors S = {µ1 · · ·µm} in {0, 1}n such that each vector µj has
at least two of its arguments different from zero, there is a matrix AS ∈ Σn×r(R≥0) such that the
meromorphic continuation of ζAS

has all its poles located at the hyperplanes ⟨µj , s⟩ = 0 for every 1 ≤
j ≤ m.

Proof. For a set S as in the statement, consider the n× (m+ 1) matrix AS where µj is the j-th column
for 1 ≤ j ≤ m and the last column is full of ones. We claim that ζAS

has poles at ⟨µj , s⟩ = 0 for every j.
Indeed, ∆⟨µj ,ϵ⟩ + Rn+ is the intersection of the half spaces ⟨ei,σ⟩ > 0 and ⟨µj ,σ⟩ > 1, where {ei}ni=1 is
the canonical basis of Rn. The result then follows from Theorem 8.7.

Remark 8.12. Notice that in the previous proposition, the case where µ is an element of the canonical
basis {ei}ni=1 is not considered. This is a consequence of Theorem 8.7 where the hyperplanes of the type
⟨ei, s⟩ = νJk − l can carry poles only when 0 ≤ l ≤ νJk − 1. The reason for this is that ζA =

MS(A)

Γ (see
Proposition 8.2), and therefore the poles of the Gamma functions cancel those of MS(A) lying on the
hyperplanes ⟨ei, s⟩ = l with l ∈ Z≤0.

The following results aim to prove a statement converse to that on Proposition 8.11. For this purpose,
let us introduce some notation first. For any subset I of [n], we denote by πI : Rn → Rn−|I| the projection
orthogonal to the subspace

⊕
i∈I R(ei). We also denote by ιI : Rn−|I| → Rn the injection map such that

Im(ιI) =
⊕

i∈[n]\I R(ei) and
πI ◦ ιI = IdRn−|I| .

Notice also that, when restricted to
⊕

i∈[n]\I R(ei) ⊂ Rn,

ιI ◦ πI |⊕
i∈[n]\I R(ei) = Id⊕

i∈[n]\I R(ei). (3.16)

For example, if n = 4 and I = {2, 4}, then πI((v1, v2, v3, v4)) = (v1, v3), and ιI((w1, w2)) = (w1, 0, w2, 0).

Lemma 8.13. Let D be a subset of Rn+ such that D+Rn+ = ιI(πI(D+Rn+)) +
∑
i∈I R+(ei). If there is

a µ̂ ∈ Rn−|I| such that

πI(D + Rn+) = Rn−|I|
+ ∩ {σ̃ ∈ Rn−|I| : ⟨σ̃, µ̂⟩ > 1},

then
D + Rn+ = Rn+ ∩ {σ ∈ Rn : ⟨σ,µ⟩ > 1}, (3.17)

where µ = ιI(µ̂), i.e, π(µ) = µ̂ and µi = 0 for every i ∈ I.

Proof. We prove the inclusion from left to right in (3.17). For σ ∈ D+Rn+, it clearly implies that σ ∈ Rn+.
Notice that, for σ̃ := πI(σ), we have ⟨σ̃, µ̂⟩ = ⟨σ,µ⟩ since πI(µ) = µ̂ and µi = 0 for every i ∈ I. It
follows that ⟨σ,µ⟩ > 1 which yields the inclusion.

We proceed to prove the inclusion from right to left in (3.17). Let σ ∈ Rn+ be such that ⟨σ,µ⟩ > 1,
we claim σ ∈ ιI(πI(D + Rn+)) +

∑
i∈I R+(ei). Indeed, it follows from ⟨σ̃, µ̂⟩ = ⟨σ,µ⟩, and since σ ∈ Rn+

its i-th coordinate is positive for every i ∈ I. The result follows from the equality D + Rn+ = ιI(πI(D +
Rn+)) +

∑
i∈I R+(ei).

Recall that for a column vector Cj we denote, with some abuse of notation, by the same symbol the
polynomial Cj(ϵ) = ⟨ϵ, Cj⟩, and then its Newton polytope ∆Cj

is well defined.

Lemma 8.14. Let A be a matrix in Σn×r(R≥0), with Cj the columns of A. For each j ∈ [r], consider the
vector µj ∈ {0, 1}n with its i-th coordinate equal to zero if, and only if, the i-th element of the column
Cj is a zero. Then

∆Cj
+ Rn+ =

⋂
i∈[n]

{σ ∈ Rn : ⟨σ, ei⟩ > 0} ∩ {σ ∈ Rn : ⟨σ,µ⟩ > 1} = Rn+ ∩ {σ ∈ Rn : ⟨σ,µj⟩ > 1}. (3.18)

Remark 8.15. Notice that the first set of intersections in the middle term in Equation (3.18) amount
to Rn+, and therefore the middle and last terms are trivially equal. This formulation will be useful for
Lemma 8.16.
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Proof. We analyze two different cases:

1. Assume that Cj(ϵ) =
∑n
i=1 aijϵj is such that aij ̸= 0 for every i. Then

∆Cj
=
{
σ =

∑
i∈[n]

λiei ∈ Rn+ :
∑
i∈n

λi = 1
}

is an n− 1 dimensional simplex. Setting µ = (1, . . . , 1︸ ︷︷ ︸
n−times

), it follows that

∆Cj + Rn+ = Rn+ ∩ {σ ∈ Rn : ⟨σ,µj⟩ > 1},

and the result follows.

2. Consider now the case where aij = 0 for i ∈ Ij where Ij ⊂ [n] and Ij ̸= [n]. It implies that ∆Cj
=

ιIj (πIj (∆Cj
)). In words it means that ∆Cj

is contained in the subspace
⊕

i∈[n]\Ij R+(ei) ⊂ Rn,
and thus

∆Cj
+ Rn+ = ∆Cj

+
∑

i∈[n]\Ij

R+(ei) +
∑
i∈Ij

R+(ei) = ιIj (πIj (∆Cj
+ Rn+)) +

∑
i∈Ij

R+(ei), (3.19)

where we used (3.16) and the fact that
∑
i∈Ij R+(ei) ⊂ ker(πIj ). Notice also that πIj (∆Cj

) is the

Newton polytope of Rn−|Ij | ∋ ϵ 7→ p(ϵ) =
∑n−|Ij |
i=1 ϵi, then the previous case implies that

πIj (∆Cj ) + Rn−|Ij |
+ = Rn−|Ij |

+ ∩ {σ ∈ Rn−|Ij | : ⟨σ, µ̂⟩ > 1} (3.20)

with µ̂ = ( 1, . . . , 1︸ ︷︷ ︸
n−|Ij | times

). The result follows from (3.19), (3.20) and Lemma 8.13 with D = ∆Cj .

The case where all aij = 0 is not considered since A ∈ Σn×r(R≥0) implies that each line and each row
has at least an argument different from zero (Definition 3.12).

We proceed to generalize Lemma 8.14 for ∆CJ
+ Rn+ where |J | > 1. To that end we introduce some

notations: Let µ ∈ {0, 1}n, we call the support of µ, denoted by Supp(µ), the subset of [n] given by

Supp(µ) := {i ∈ [n] : µi ̸= 0}.

Notice that for every subset S of [n] there is a unique vector µ ∈ {0, 1}n such that Supp(µ) = S.
For a matrix A in Σn×r(R≥0), and J ⊂ [r], we denote by µJ the only vector in {0, 1}n which satisfies
Supp(µJ) =

⋃
j∈J Supp(µj). In particular if J = {j}, then µj = µ{j}. We also write Sj short for

Supp(µj) and SJ short for Supp(µJ).
With the notations previously introduced, Lemma 8.14 implies that

σ ∈ ∆Cj
+ Rn+ ⇔ σ ∈ Rn+ ∧

∑
i∈Sj

(σ)i > 1, (3.21)

where (σ)i denotes the i-th coordinate of the vector σ.

Lemma 8.16. Let A be a matrix in Σn×r(R≥0) and J ⊂ [r]. Then

∆CJ
+ Rn+ ⊂

( ⋂
K⊂J |K ̸=∅

{σ ∈ Rn : ⟨σ,µK⟩ > |K|}
)
∩ Rn+,

where CJ(ϵ) =
∏
j∈J⟨ϵ, Cj⟩ as before.
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Proof. Using the fact that the Newton polytope of a product of polynomials is equal to the Minkowski
sum of the Newton polytopes of each of the polynomials, one sees that ∆CJ

=
∑
j∈J ∆Cj

. Furthermore,
since Rn+ = Rn+ + Rn+, we have ∆CJ

+ Rn+ =
∑
j∈J

(
∆Cj + Rn+

)
. We prove then the following inclusion

which is equivalent to the one in the statement of the lemma.∑
j∈J

(
∆Cj

+ Rn+
)
⊂
( ⋂
K⊂J |K ̸=∅

{σ ∈ Rn : ⟨σ,µK⟩ > |K|}
)
∩ Rn+.

For each j ∈ J , consider σj ∈ ∆Cj
+ Rn+. It is clear that

∑
j∈J σj ∈ Rn+ since every ∆Cj

⊂ Rn+. On
the other hand, for K ⊂ J with K ̸= ∅, (3.21) implies that

⟨σj ,µK⟩ =
∑
i∈SK

(σj)i > 1

if j ∈ K. Otherwise
⟨σj ,µK⟩ > 0

since σj ∈ Rn+. The last two inequalities imply that ⟨
∑
j∈J σj ,µK⟩ > |K|, and thus

∑
j∈J σj ∈(⋂

K⊂J,K ̸=∅{σ ∈ Rn : ⟨σ,µK⟩ > |K|}
)
∩ Rn+, which completes the inclusion.

The next proposition states that the inclusion in Lemma 8.16 is actually an equality. Its proof borrows
tools from graph theory which will be discussed in Section 9.

Proposition 8.17. Let A be a matrix in Σn×r(R≥0) and J ⊂ [r]. Then

∆CJ
+ Rn+ =

( ⋂
K⊂J |K ̸=∅

{σ ∈ Rn : ⟨σ,µK⟩ > |K|}
)
∩ Rn+.

Proof. The inclusion from left to right was proven in Lemma 8.16. For the other direction we prove the
equivalent inclusion∑

j∈J

(
∆Cj

+ Rn+
)
⊃
( ⋂
K⊂J |K ̸=∅

{σ ∈ Rn : ⟨σ,µK⟩ > |K|}
)
∩ Rn+, (3.22)

where the µjs are as in Lemma 8.14. Notice also that for an element σ ∈ Rn+ which lies in the set on the
right hand side of (3.22), the equivalence (3.21) implies that for every K ⊂ J with K ̸= ∅∑

i∈SK

(σ)i > |K|.

It follows from Corollary 9.6 below that for every j ∈ [n] there is σj ∈ Rn+, such that∑
i∈Sj

(σj)i > 1,

and σ =
∑
j∈[n] σj . The latter together with (3.21) imply that σ lies in the left hand side of (3.22),

which yields the result.

We now state the main theorem of this section which provides a better description of the type of
vectors µKJ that parametrise the poles of a Shintani zeta function according to Theorem 8.7.

Theorem 8.18. Let A be a matrix in Σn×r(R≥0), with {Cj}j∈[r] the set of columns of A, and write
CJ(ϵ) :=

∏
j∈J⟨ϵ, Cj⟩ for every J ⊂ [r]. Consider also for every J ⊂ [r] \ ∅ the vector µJ ∈ {0, 1}n

which is the only one that satisfies Supp(µJ) =
⋃
j∈J Supp(µj). Then the possible singularities of the

meromorphic extension of ζA are located on the hyperplanes

⟨µJ , s⟩ = |J | − l,

where l ∈ Z≥0. If moreover µJ is a vector of the canonical basis of Rn, then l only takes values on the
set {1, 2, . . . , |J | − 1}.
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Proof. The vectors µJk from Theorem 8.7 are the normal vectors to the facets of the polyhedra ∆CJ
+Rn+

with integer, mutually coprime coefficients. These vectors correspond to the µKs from Proposition 8.17.
The result follows from Proposition 8.17.

We proceed to describe the family of germs of meromorphic functions at zero, spanned by the germs
containing the Shintani zeta functions. Recall that a germ of meromorphic functions at zero is an
equivalence class of meromorphic functions determined by the following relation

f ∼ g ⇔ (∃O open) : 0 ∈ O ∧ f |O = g|O.

Let Mζ,n be the family of germs of meromorphic functions at zero spanned by those containing
Shintani zeta functions of matrices with n rows. In particular the germs in Mζ,n depend on n complex
variables. Using the natural embeddings ιn,m :Mζ,n →Mζ,m whenever n < m, we define the direct limit
Mζ := Lim

−→
Mζ,n.

Using the formalism developed in [45], and given that the germs in Mζ have linear poles as it was
proven by Matsumoto [69] and in Theorem 8.7, we can describe a Laurent expansion of [ζA] ∈ Mζ for
any A ∈ Σn×r(R≥0). Indeed, the germ [ζA] can be written as

[ζA] =
∑
i∈I

Si + h,

where h is a holomorphic germ at zero and the Si are fractions of the form

s 7→ Si(s) =
hi(s)∏
⟨µJk , s⟩

,

where hi are holomorphic germs depending on variables orthogonal to their respective denominator, and
the µJk are as in Theorem 8.7.

As a direct consequence of the previous discussion and of Theorem 8.18, we have the following result.

Proposition 8.19. The germs on Mζ are of the type
∑
i∈I Si + h, where h is a holomorphic germ and

the Si are fractions of the form

s 7→ Si(s) =
hi(s)∏

J∈Ji
(
∑
j∈J sj)

,

where Ji is a finite collection of subsets of [n] with more than one element.

We finally give some examples of how to calculate the domain of absolute convergence and the possible
singularities of a Shintani zeta function ζA from the matrix A. By means of Corollary 8.9 we will only
consider matrices with arguments equal to 0 or 1.

Example 8.20. Consider the matrix

B =

(
1 1
1 1

)
.

We calculate the vectors µ1 = (1, 1) = µ2 from Lemma 8.14 related to the first and second columns of the
matrix A. It follows that µ{1,2} = (1, 1). By means of Propositions 8.5 and 8.17 the sum ζA is absolutely
convergent whenever σ = ℜs satisfies

σ1 + σ2 > 2.

By means of Theorem 8.18 the possible singularities of ζA are located on the hyperplanes

s1 + s2 = 2− l,

where l takes values in Z≥0.

Example 8.21. Consider the matrix

A =

1 0 0
1 1 1
0 1 0

 .
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The vectors µJ are as follows

µ1 = (1, 1, 0), µ2 = (0, 1, 1), µ3 = (0, 1, 0), µ{1,2} = (1, 1, 1),

µ{1,3} = (1, 1, 0), µ{2,3} = (0, 1, 1), and µ{1,2,3} = (1, 1, 1).

It follows from Propositions 8.5 and 8.17 that the sum ζA is absolutely convergent whenever the following
inequalities are satisfied

σ2 > 1, σ1 + σ2 > 2, σ2 + σ3 ≥ 2, and σ1 + σ2 + σ3 ≥ 3.

By means of Theorem 8.18 the possible singularities of ζA are located on the hyperplanes

s2 = 1, s1 + s2 = 2− l, s2 + s3 = 2− l, and s1 + s2 + s3 = 3− l

where l takes values in Z≥0.

9 Distributing weight over a graph
Interestingly the proof of Theorem 8.18, more precisely the proof of Proposition 8.17, borrows tools
from graph theory, which is the reason why in this section we do an excursion to this theory. Our main
objective is to prove Corollary 9.6 which is essential for the proof of Proposition 8.17. For an introduction
to graph theory we refer the reader to one of the many good references in this subject, for instance [73].
The main result of this section is Theorem 9.1, the proof of which provides an algorithm to "distribute"
weight over an intersection graph of a family of sets, such that the weight at each vertex is never lower
than an imposed bound. This algorithm is, to the author’s knowledge, new.

Notation: Throughout this section we use the round brackets to refer to the coordinate of a vector
in the canonical basis of Rn. More precisely, for σ ∈ Rn, (σ)k is the k-th component of σ in the canonical
basis of Rn.

It is easy to check that any real number σ ≥ m, with m ∈ Z≥0, can be expressed as a sum σ =
∑m
j=1 σj

where each σj is greater than or equal to 1. A way of generalizing the previous statement is to consider
σ in R2

≥0, such that (σ)1 ≥ 1, (σ)2 ≥ 1 and (σ)1 + (σ)2 ≥ 3. One can check that σ admits a splitting
of the form σ =

∑3
j=1 σj , with the vectors σj lying in R2

≥0, and such that (σ1)1 ≥ 1, (σ2)2 ≥ 1 and
(σ3)1 + (σ3)2 ≥ 1. Indeed, one possible solution is to set σ1 = (1, 0), σ2 = (0, 1) and σ3 = σ−σ1 −σ2.
The following theorem is a generalization of this fact to any finite dimension n and any number of vectors
m.

For m and n positive integers, consider an application which associates to every j in [m] a set Sj ⊂ [n].

Theorem 9.1. Any σ in Rn≥0, such that for every K ⊂ [m]∑
i∈

⋃
k∈K Sk

(σ)i ≥ |K|,

can be written as a sum σ =
∑
j∈[m] σj , where the vectors σj lie in Rn≥0, and such that∑

i∈Sj

(σj)i ≥ 1. (3.23)

Remark 9.2. Notice that the family of sets Sj used in Theorem 9.1 can be represented by a matrix A
with n rows and m columns, built using the characteristic functions of the sets Sj . More precisely, if χj
is the characteristic function of the set Sj , then the argument on the i-th row and j-th column of A is
χj(i).

In particular, if in Proposition 8.17 J = [r], and the sets Sj are the supports of the vectors µj , then
A would be an n× r matrix with zeros in the same positions than the matrix A, and ones in the rest of
the arguments. It follows from Corollary 8.9 that ζA and ζA have the same polar structure.
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We do the proof of the previous theorem by induction over m, using an algorithm which uses the
intersection graph of the sets Sj . To illustrate how it works, we present an example before giving the
actual proof.

Example 9.3. Set n = 6, m = 5 and consider the sets S1 = {2, 3}, S2 = {1, 4, 6}, S3 = {1, 5}, S4 = {6}
and S5 = {3, 4, 5}. The matrix built with the characteristic functions of the sets Sj as in Remark 9.2 is

A =


0 1 1 0 0
1 0 0 0 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 1 0 1 0


Consider the vector σ = (1.9, 0.6, 0.6, 0.8, 0.2, 1.4). One can check that it satisfies∑

i∈
⋃

k∈K Sk

(σ)i ≥ |K|

for every K ⊂ [5] with K ̸= ∅.
Since our proof is by induction, consider the vectors σ1 = (0, 0.6, 0.6, 0, 0, 0), σ2 = (0.1, 0, 0, 0.8, 0, 0.3),

σ3 = (1.8, 0, 0, 0, 0.2, 0) and σ4 = (0, 0, 0, 0, 0, 1.1), and therefore

σ =

4∑
j=1

σj .

Notice that for every j ∈ [4], the vector σj satisfies
∑
i∈Sj

(σj)i ≥ 1. We proceed to describe an algorithm
to build another vector σ5 out of the current vectors σj with 1 ≤ j ≤ 4 such that it satisfies the conditions
on the statement of Theorem 9.1.

Build the intersection graph G of the family of sets Sj with j ∈ [5] (see for instance [73]), i.e. a non
oriented graph whose set of vertices is [5] and whose set of edges is

E(G) := {(i, j) ∈ [5]2 : Si ∩ Sj ̸= ∅}.

Namely,

4

1 2 3

5

Since at this point, the only coordinates of the vectors σj which are greater than zero are the coordinates
in Sj, this graph represents the way the vectors can "share" some amount to the vector σ5. This is
represented by the arrows, but keep in mind that the graph is not oriented. Take for instance the vertex 1.
It has an edge connecting to the vertex 5. This means S1 ∩ S5 ̸= ∅. Indeed {3} ⊂ S1 ∩ S5, and therefore
we can subtract an amount λ from the third coordinate of σ1 and add it to σ5. This value λ cannot be
bigger than 0.6 since (σ1)3 = 0.6 and then σ1 would leave R6

+. It also cannot be greater than 0.2 since∑
i∈S1

(σ1)i = 0.6 + 0.6 must remain greater than 1. We therefore set λ = 0.2, and set the new vectors

σ1 = (0, 0.6, 0.4, 0, 0, 0)

and
σ5 = (0, 0, 0.2, 0, 0, 0).
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Proceed to the vertex 2, which is still connected by an edge to the vertex 5 since 4 ∈ S2 ∩ S5. By a
similar analysis as before, we realize that we can subtract λ = 0.2 again tho the fourth coordinate of σ2

and add it to σ5, having then
σ2 = (0.1, 0, 0, 0.6, 0, 0.3),

and
σ5 = (0, 0, 0.2, 0.2, 0, 0).

We proceed to the vertex 3 and by the same analysis we subtract λ = 0.2 to the fifth coordinate of σ3 and
add it to the fifth coordinate of σ5 setting

σ3 = (1.8, 0, 0, 0, 0, 0),

and
σ5 = (0, 0, 0.2, 0.2, 0.2, 0).

However this time, even with
∑
i∈S3

(σ3)i = 1.8 the vector σ3 cannot share anything else with σ5 since∑
i∈S3∩S5

(σ3)i = 0. For this reason we cut the vertex between vertices 3 and 5. The new graph G is
therefore

4 3

1 2

5

and vertex 3 is now at least at 2 steps from vertex 5.
We proceed now to analyze vertices which are not direct neighbors of 5. Consider the vertex 4: by a

similar argumentation as before the sixth coordinate of σ4 can share a maximum of 0.1 to σ2, which then
can share 0.1 of its fourth coordinate with σ5. Then the new vectors are

σ4 = (0, 0, 0, 0, 0, 1),

σ2 = (0.1, 0, 0, 0.5, 0, 0.4)

and
σ5 = (0, 0, 0.2, 0.3, 0.2, 0).

We finally revisit vertex 3 but now as an indirect neighbor of the vertex 5. We see now that we may
subtract 0.8 from the first component of σ3 and add it to σ2. Then σ2 can share a maximum of 0.5 from
its fourth component with σ5, and then

σ3 = (1, 0, 0, 0, 0, 0),

σ2 = (0.9, 0, 0, 0, 0, 0.4),

and
σ5 = (0, 0, 0.2, 0.8, 0.2, 0).

Since
∑
i∈S2∩S5

(σ2)i = 0 we cut the edge between the the vertices 2 and 5 and the graph now looks like
this:

4 3

1 2

5
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The vectors we end up with are:

σ1 = (0, 0.6, 0.4, 0, 0, 0)

σ2 = (0.9, 0, 0, 0.5, 0, 0.4)

σ3 = (1, 0, 0, 0, 0, 0)

σ4 = (0, 0, 0, 0, 0, 1)

σ5 = (0, 0, 0.2, 0.8, 0.2, 0),

which clearly satisfy the requirements. Indeed σ ∈ R6
+,
∑
i∈Sj

(σj)i ≥ 1, and σ =
∑5
j=1 σj. Notice also

that the final graph has two separated components. This means, as it can be checked, that the vectors
corresponding to vertices in the components not containing 5 (namely the vertices 2, 3, and 4) have no
intersection in their supports with S5, or the coordinates in the intersection are equal to 0. The latter
implies that they cannot share any more with the vector σ5.

After having illustrated in the example how the algorithm works we shall provide the actual proof of
Theorem 9.1

Proof of Theorem 9.1. The proof is by induction over m. The case m = 1 is trivial setting σ1 = σ. For
the inductive step assume the statement is true for m−1 and consider a vector σ ∈ Rn≥0 which, for every
K ⊂ [m], satisfies ∑

i∈
⋃

k∈K Sk

(σ)i ≥ |K|.

It follows from the induction hypothesis that there exist vectors σj ∈ Rn≥0 for 1 ≤ j ≤ m−1 satisfying
(3.23), and such that σ = σj1 + · · ·+ σjm−1

.
Define the intersection graph G for the sets Sj , namely the graph whose set of vertices is [m] and

whose set of edges is
E(G) := {(i, j) ∈ [m]2 : Supp(µi) ∩ Supp(µj) ̸= ∅}.

Consider then the distance map dm : [m] → Z≥0 ∪ {∞}, where dm(j) is the minimum number of steps
one has to give in the graph G to go from the vertex j to the vertex m. If there is no path from j to m
we set dm(j) =∞. Notice that this distance map does not define an order on the connected component
of the graph containing the vertex m, since the antisymmetry might fail. For every j ∈ [m− 1] such that
dm(j) ̸=∞ define Sj,< := {i ∈ Sj : (∃l ∈ [m]) i ∈ Sl ∧ dm(l) = dm(j)− 1}. In words, Sj,< is the subset
of elements in Sj which are also in some Sl, where l is a vertex closer to m in the the graph G.

Finally set a counter α = 1 which will help us analyze the vertices of G depending on their distance
to the vertex m.

We use the notation :|= to redefine a parameter on the left hand side using its old value on the right
hand side. For instance α :|= α+ 1 means we add 1 to the value of the counter α.

1. Take a vertex j such that dm(j) = α, and let ρ(j) be the set of paths of length α going from j to
m.

2. Choose a path ϱ = (h1, . . . , hα) ∈ ρ(j), this means that h1 = j and hα = m, and set a counter
β = 1.

3. For the vertex hβ , consider

r = min

 ∑
i∈Shβ

(σhβ
)i − 1,

∑
i∈Shβ

∩Shβ+1

(σhβ
)i


and subtract from the coordinates (σhβ

)i with i ∈ Shβ
∩ Shβ+1

a total amount of r, which will be
added to the same coordinates of the vector σhβ+1

. This is, for i ∈ Shβ
∩ Shβ+1

redefine

(σhβ
)i :|= (σhβ

)i − λi, and

(σhβ+1
)i :|= (σhβ+1

)i + λi
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where 0 ≤ λi < (σhβ
)i, and such that

∑
i∈Shβ

∩Shβ+1
λi = r.

Notice at this point that the existence of the λis is granted by the way r is defined. Notice also
that the new vectors σhβ

and σhβ+1
still satisfy (3.23), except if hβ+1 = m.

If β < α− 1, add one to the counter β, namely β :|= β+1 and repeat step 3. If β = α− 1 continue
with the next step.

4. We have three options at this point:

• If
∑
i∈Shβ,<

(σhβ
)i > 0 and β > 1, subtract 1 to the value of β, namely

β :|= β − 1,

and repeat step 4.

• If
∑
i∈Shβ,<

(σhβ
)i = 0, it means that the vector σhβ

has shared everything from the coordi-
nates in Shβ ,< . It implies that it cannot share any more to a vertex closer to m. In this case
remove the edges (hβ , hβ+1) and (hβ+1, hβ) from the set of edges of the graph G, recalculate
the values of the distance map dm for every vertex and go to step 1, without resetting the
value of α.

• If
∑
i∈Shβ,<

(σhβ
)i > 0 and β = 1, proceed to the next step.

5. We have again two options:

• If there is a path ϱ ∈ ρ(j) that we haven’t followed in step 2, choose that path and go back to
step 2.

• If the process from step 2 has been followed for every ϱ ∈ ρ, then proceed to the next step.

6. We have again three options:

• If there is any other vertex j with dm(j) = α that hasn’t been chosen in step 1, choose that
vertex j and go back to step 1.

• If the process in step 1 has been followed for every vertex j such that dm(j) = α, and α is not
maximal yet, namely α < max{dm(j) : j ∈ J ∧ dm(j) <∞}, then add 1 to the value of α

α :|= α+ 1

and go back to step 1.

• If the process from step 1 has been followed for every vertex j such that dm(j) = α, and α is
maximal, proceed to the last step.

7. For every j in [m− 1], consider the coordinates i /∈ Sj and redefine

(σj)i :|= 0, and

(σm)i :|= (σm)i + (σj)i,

and finish the algorithm.

The algorithm is clearly finite since the graph G is finite. We proceed to prove that the vectors σj
obtained after following the algorithm satisfy the requirements

σ =

m∑
j=1

σj , σj ∈ Rn≥0, and
∑
i∈Sj

(σj)i ≥ 1, (3.24)

for every j in [m]. The first condition is satisfied by assumption and the fact that every amount that
was subtracted from a coordinate of a vector, was added to the same coordinate of the other vector. The
second condition is a consequence of having added positive values to the coordinates of the vectors. Only
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in step 3 a positive real number λi is subtracted from the coordinates in the support of the vector σhβ
,

but λi ≤ (σhβ
)i and therefore all coordinates remain non negative. The fact that (3.24) is satisfied for

all l ∈ [m − 1] is also a consequence of the way r is chosen in step 3, since r <
∑
i∈Shβ

(σhβ
)i − 1, then

the vector σhβ
still satisfies (3.24).

Finally we have to check that ∑
i∈Sm

(σm)i ≥ 1.

Notice first that for all vertices j not in the connected component of the graph G containing the vertex
m, the value of their coordinates i ∈ Sm is equal to 0. Let K be the subset of [m] whose vertices
are on the connected component containing m. As a consequence of the algorithm, for every k ∈ K,∑
i∈Sk

(σk)i = 1. Indeed, if it is still connected to the vertex m, step 4 indicates that
∑
i∈Sk,<

(σk)i > 0.
This is only possible if at some point the third step of the algorithm gives r =

∑
i∈Sk

(σk)i − 1, which
means that at the end of the algorithm σk is such that∑

i∈Sk

(σk)i = 1.

On the other hand, by assumption

|K| ≤
∑

i∈
⋃

k∈K Sk

(σ)i

=
∑

k∈K\{m}

( ∑
i∈Sk

(σk)i
)
+
∑
i∈Sm

(σm)i.

The first term in the last line is equal to (|K| − 1), which implies that
∑
i∈Sm

(σjm)i ≥ 1 as expected.
This finishes the proof.

Remark 9.4. Notice that the process described in the proof is not an algorithm in a strict sense since
it is not completely deterministic. For instance, there is some freedom when choosing the order in which
one analyzes the vertices with the same dm in step 1, or the different paths in step 2. Also there might be
a freedom in the way the λis are chosen in step 3. Different choices might lead to different constructions
of the vectors σm, but it doesn’t matter because they all satisfy the requirements of the theorem.

We must also warn that this process is not optimal in computation time since many redundancies may
occur. It is written with the only purpose of demonstrating the existence of a solution to the equation
σ =

∑m
j=1 σj satisfying the conditions

∑
i∈Sj

(σj)i ≥ 1 and σj ∈ Rn≥0, provided that for every K ⊂ [m]∑
i∈

⋃
k∈K Sk

(σ)i ≥ |K|.

Remark 9.5. Theorem 9.1 is related to Hall’s marriage theorem [47] and the theory of optimal transport.
In this direction Thierry Champion could give an alternative proof of the result using von Neumann’s
minmax theorem.

We now prove that Theorem 9.1 is also true if the inequalities in the statement are strict. Recall our
assumption that for m and n positive integers, we fix an application which associates to every j in [m] a
set Sj ⊂ [n].

Corollary 9.6. Any σ in Rn+, such that for every K ⊂ [m]∑
i∈

⋃
k∈K Sk

(σ)i > |K|, (3.25)

can be written as a sum σ =
∑
j∈[m] σj , where the vectors σj lie in Rn+, and such that∑

i∈Sj

(σj)i > 1. (3.26)
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Proof. The result follows from Theorem 9.1 and the fact that the set of σ ∈ Rn+ satisfying (3.25) is an
open set. More precisely, for each i ∈ [n] consider λi > 0 small enough such that σ′ := σ−λ still satisfies
(3.25), and σ′ ∈ Rn+. By means of Theorem 9.1 there are σ′

j ∈ Rn≥0 for 1 ≤ j ≤ m satisfying (3.23), and
such that σ′ =

∑m
j=1 σ

′
j . It follows that the vectors σj := σj +

1
mλ ∈ Rn+ satisfy (3.26) and the result

follows.
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Appendix A

Alternative locality tensor product

In this appendix we explore an alternative definition for the locality tensor product. Such definition was
already suggested in [22] and made more precise in [21, Appendix A], however, both in [22] and in [21] the
locality tensor product from Definition 2.14 is used since the alternative tensor product is in general not
a subspace of the usual (non-locality) tensor product. Notice that this alternative locality tensor product
induces an alternative definition of ⊤×-bilinearity as announced in Paragraph 2.2. This appendix follows
closely [21, Appendix A].

A.I An alternative view of locality bilinearity
Let (E,⊤) be a pre-locality vector space and V and W two linear subspaces of it. Recall Definition
4.11 where we defined a ⊤×-bilinear map f : V ×⊤ W → G as a map, the unique linear extension
f̄ : K(V ×→ W ) → G of which, vanishes at K(V ×⊤ W ) ∩ Ibil(V,W ), where Ibil(V,W ) is defined in
Equations (1.2) to (1.5). Alternatively, we can consider the linear subspace Ibil,⊤(V,W ) ⊆ K(V ×⊤ W )
generated by all elements in V ×⊤ W of the forms (1.2) to (1.5) such that each argument in the linear
combinations (1.2)–(1.5), lies in ⊤. In some cases Ibil,⊤(V,W ) will coincide with Ibil(V,W )∩K(V ×⊤W )
but as we see in the following example, this is not always the case.

Example A.I.1. [21][Example A.1] Consider the locality vector space V = R2, with locality relation

⊤ = R2×{0}∪{0}×R2∪K(e1+e2)×K(e1)∪K(e1+2e2)×K(e2)∪K(e1)×K(e1+e2)∪K(e2)×K(e1+2e2)

and the element of K(V ×⊤ V )

y = (−e1 − e2, e1) + (−e1 − 2e2, e2) + (e1, e1 + e2) + (e2, e1 + 2e2).

Consider the following elements of Ibil(V ):

y1 :=− (e1 + e2, e1)− (−e1 − e2, e1),
y2 :=(e1 + e2, e1)− (e1, e1)− (e2, e1),

y3 :=− (−e1 − 2e2, e2)− (e1 + 2e2, e2),

y4 :=(e1 + 2e2, e2)− (e1, e2)− (2e2, e2)

y5 :=(e1, e1 + e2)− (e1, e1)− (e1, e2)

y6 :=(e2, e1 + 2e2)− (e2, e1)− (e2, 2e2)

y7 :=(e2, 2e2)− (2e2, e2).

We can then write

y =(−e1 − e2, e1) + (−e1 − 2e2, e2) + (e1, e1 + e2) + (e2, e1 + 2e2)

=y1 + y2 − (e1, e1)− (e2, e1) + y3 + y4 − (e1, e2)− (2e2, e2)− y5 + (e1, e1) + (e1, e2)− y6 + (e2, e1)− y7 + (2e2, e2)

=y1 + y2 + y3 + y4 − y5 − y6 − y7.
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Thus y ∈ Ibil ∩ K(V ×⊤ V ). However, y2, y4, y5, y6, and y7 do not lie in K(V ×⊤ V ). Therefore y /∈
Ibil,⊤(V ).

The last example illustrates how the bilinear forms from Equations (1.2) to (1.5) may "leave" the
locality relation (namely K(V ×⊤ W )) and come back afterwards. Thus, in general only the inclusion
Ibil,⊤(V,W ) ⊂ Ibil(V,W ) ∩K(V ×⊤ V ) holds, which suggests another definition of the bilinearity in the
locality setup, and therefore an alternative definition of a locality tensor product.

Definition A.I.2. Let (E,⊤) be a pre-locality vector space, and V and W two subspaces of E, and G
another vector space.

1. A map f : V ×⊤ W → G is called ⊤×-bilinear if f̄(Ibil,⊤) = {0}.

2. The alternative locality tensor product of V and W is defined as

V ⊗⊤ W := K(V ×⊤ W )/Ibil,⊤(V,W ) (A.1)

The definition of ⊤×-bilinear map conicides with locality bilinear maps from [22], i.e., a map f :
V ×⊤ W → G is ⊤times-bilinear if, and only if

f(v1 + v2, w1) = f(v1, w1) + f(v2, w2), f(v1, w1 + w2) = f(v1, w1) + f(v1, w2),

f(kv1, w1) = kf(v1, w1), f(v1, kw1) = kf(v1, w1),

for all v1, v2 ∈ V , w1, w2 ∈W , and k ∈ K such that all above terms are defined.
Notice also that in general the alternative locality tensor product is not a subspace of the usual tensor

product since Ibil,⊤(V,W ) is smaller than Ibil(V,W ) ∩K(V ×⊤ W ), as the following example illustrates.

Example A.I.3. Going back to Example (A.I.1), the alternative locality tensor product is

V ⊗⊤ V = K{(e1 + e2)⊗ e1, (e1 + 2e2)⊗ e2, e1 ⊗ (e1 + e2), e2 ⊗ (e1 + 2e2)} ⊈ V ⊗ V

As a consequence of the computations in Example A.I.1, the 4 terms spanning V ⊗⊤ V are linearly
independent. Thus V ⊗⊤V has dimension 4 like the usual tensor product, but is not the same as the usual
one, because in the usual tensor product those 4 elements mentioned above are not linearly independent.
However, the locality tensor product in this case is

V ⊗⊤ V = K{(e1 + e2)⊗ e1, (e1 + 2e2)⊗ e2, e1 ⊗ (e1 + e2)} ⊂ V ⊗ V.

It has dimension 3 as a consequence of Example A.I.1. Indeed, the element e2⊗ (e1+2e2) can be written
as a linear combination in V ⊗⊤ V of the three elements spanning V ⊗⊤ V .

A.II Associativity of the alternative locality tensor product
Using the same methods as in Chapter 2, one can show that this alternative tensor product also enjoys
universal properties analogous to Theorems 4.14, 4.33, and 4.48 but replacing ⊤×- bilinearity for ⊤×-
bilinearity. However the equivalence between the usual universal properties and those with the locality
tensor product, namely Corollaries 4.16, and 4.34, do not have an analogous with the alternative locality
tensor product since their proof relies in the inclusion V ⊗⊤ V ⊂ V ⊗ V .

Another important result, the proof of which depends on the aforementioned inclusion, is the asso-
ciativity of the locality tensor product, namely Proposition 4.30. We provide here an alternative proof
which is new, but nevertheless closely follows [21, Lemma 3.7 & Theorem 3.9].

Definition A.II.1. • We define the relation ⊤×m,n ⊂ (V1 ×⊤ · · · ×⊤ Vm)× (Vm+1 ×⊤ · · · ×⊤ Vm+n)
as follows

(x1, . . . , xm)⊤×m,n(y1, . . . , yn) :⇐⇒ ∀(i, j) ∈ [m]× [n], xi⊤yj , (A.2)
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extend it linearly to K (V1 ×⊤ · · · ×⊤ Vm)×K (Vm+1 ×⊤ · · · ×⊤ Vm+n) as follows(∑
k∈K

αk xk,
∑
l∈L

βl yl

)
∈K (V1 ×⊤ · · · ×⊤ Vm)×⊤×m,n

K (Vm+1 ×⊤ · · · ×⊤ Vm+n)

:⇐⇒ ∀(k, l) ∈ K × L, xk⊤×m,nyl,

for any K and L finite sets. Here (αk, βl) ∈ (K \ {0K})2 for every k ∈ K and every l ∈ L.

• Finally, we define the relation ⊤⊗m,n ⊂
(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
×
(
Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
induced from

⊤×m,n as follows:

(x, y) ∈ ⊤⊗m,n ⇔ (∃x′ ∈ x) ∧ (∃y′ ∈ y) : (x′, y′) ∈ ⊤×m,n, (A.3)

where x ∈ V1 ⊗⊤ · · · ⊗⊤ Vm and y ∈ Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n (recall that the elements on the locality
tensor product are equivalence classes so that the notation x′ ∈ x makes sense).

Remark A.II.2. Notice that ⊤×m,n and ⊤⊗m,n are not locality relations since they are not in general
subsets of a set of the form S×S. Instead, ⊤×m,n can be seen as a relation between K(V1×⊤ · · · ×⊤ Vm)
and K(Vm+1×⊤ · · ·×⊤Vm+n); and ⊤⊗m,n as a relation between V1⊗⊤ · · ·⊗⊤Vm and Vm+1⊗⊤ · · ·⊗⊤Vm+n.
In contrast, ⊤⊗(V1⊗⊤ · · ·⊗⊤Vn), defined analogously to ⊤⊗(V1⊗⊤ · · ·⊗⊤Vn) (Definition 4.9), is a locality
relation on V1 ⊗⊤ · · · ⊗⊤ Vn.

Lemma A.II.3. The map

Ψm,n :

{
K (V1 ×⊤ · · · ×⊤ Vm)×⊤ K (Vm+1 ×⊤ · · · ×⊤ Vm+n) −→ K (V1 ×⊤ · · · ×⊤ Vm+n)

((x1, . . . , xm), (y1, . . . , yn)) 7−→ (x1, . . . , xm, y1, . . . , yn)
(A.4)

linearly extends to a surjective morphism of pre-locality vector spaces:

Ψm,n :K
(
K
(
V1 ×⊤ · · · ×⊤ Vm

)
×⊤ K (Vm+1 ×⊤ · · · ×⊤ Vm+n)

)
→ K (V1 ×⊤ · · · ×⊤ Vm+n) . (A.5)

Remark A.II.4. Note that Ψm,n is not expected to be an isomorphism. Let us take m = n = 1 to
simplify. A basis of K

(
K(V1)×⊤ K (V2)

)
is given by elements (k1v1 + . . .+ kpvp, l1w1 + . . .+ lqwq), with

p, q in N, (vi, wj) in V1 ×⊤ V2 and ki, lj in K non zero for all indices i, j. A basis of K(V1 ×⊤ V2) is given
by pairs (v1, v2) ∈ V1 ×⊤ V2. Since

Ψ1,1((k1v1 + · · ·+ kpvp, l1w1 + · · ·+ lqwq)) =
∑
i,j

kilj(vi, wj) = Ψ1,1

∑
i,j

kilj(vi, wj)

 ,

Ψ1,1 is not injective.

Proof. The fact that Ψm,n extends to a surjective morphism of vector spaces is a classical result of linear
algebra. To show that Ψm,n is a locality morphism we just need to check that it is a locality map, which
is an easy consequence of the following equivalence: for any x := (x1, . . . , xm) ∈ V1 ×⊤ · · · ×⊤ Vm and
y := (y1, . . . , yn) ∈ Vm+1 ×⊤ · · · ×⊤ Vm+n, we have

(x, y) ∈ ⊤×m,n ⇐⇒ (xi, yj) ∈ ⊤ ∀(i, j) ∈ [m]× [n]

⇐⇒ Ψ(x, y) = (x1, . . . , xm, y1, . . . , yn) ∈ K (V1 ×⊤ · · · ×⊤ Vm+n)

One simply needs to take two independent pairs (x, y) and (x′, y′) and work with these equivalences. We
omit here the detailed proof which is straightforward but rather cumbersome to write.

The locality morphism (A.5) induces a locality morphism between locality tensor products.
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Theorem A.II.5. For any subspaces V1, . . . , Vm+n of the pre-locality space (E,⊤), we set(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
: = K

((
V1 ⊗⊤ · · · ⊗⊤

Vm

)
×⊤⊗m,n

(
Vm+1 ⊗⊤ · · · ⊗⊤

Vm+n

))
/(Ibil,⊤ ((V1 ⊗⊤ · · · ⊗⊤ Vm) , (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n))).

and Definition 4.6 yields a pre-locality relation on this quotient which we denote by ⊤m,n⊗ .
There is an isomorphism of pre-locality vector spaces

Φm,n :
((
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
,⊤m,n⊗

)
(A.6)

∼−→
(
V1 ⊗⊤ · · · ⊗⊤ Vm ⊗⊤ Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n,⊤⊗(m+n)

)
.

Here ⊤⊗(m+n) denotes an analogous to ⊤⊗(V1, . . . , Vm+n) from Definition 4.9 but for the alternative
locality tensor product.

Remark A.II.6. Notice that the locality relation ⊤⊗(m+n) is different from the relation ⊤⊗m,n of
Definition A.II.1, and also different from the newly introduced locality relation ⊤m,n⊗ .

Proof. We build the isomorphism Φm,n from the morphism Ψm,n defined in (A.4).

• An element [y] of
(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
reads

[y] =

∑
i∈I

αi

∑
j∈J

βijv
i
j,1 ⊗ · · · ⊗ vij,m,

∑
k∈K

γikv
i
k,1 ⊗ · · · ⊗ vik,n

 ,
for some vectors vij,r ∈ Vr and vik,s ∈ Vs and scalars αi, βij , γik in K with I, J, K three finite sets, such

that
∑
j∈J

∑
k∈K β

i
jγ
i
k

(
vij,1, . . . , v

i
j,m, v

i
k,1, . . . , v

i
k,n

)
∈ (V1 ×⊤ · · · ×⊤ Vm)×⊤n,m(Vm+1 ×⊤ · · · ×⊤ Vm+n) ≃

(V1 ×⊤ · · · ×⊤ Vm+n).

• The linear map Φm,n :
(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
−→

(
V1 ⊗⊤ · · · ⊗⊤ Vm+n

)
is defined by the following action on an element [y] of

(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤n,m

(
V1 ⊗⊤ · · · ⊗⊤ Vn

)
:

Φm,n([y]) =
∑
i∈I

∑
j∈J

∑
k∈K

αiβ
i
jγ
i
k

(
vij,1 ⊗ · · · ⊗ vij,n ⊗ vik,1 ⊗ · · · ⊗ vik,m

)
.

Notice that
(
vij,1, . . . , v

i
j,n, v

i
k,1, . . . , v

i
k,m

)
is an element of V1 ×⊤ · · · ×⊤ Vm+n by definition of(

V1 ⊗⊤ · · · ⊗⊤ Vm
)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
, and that the difference of two representatives of

[y] lies in Ibil whose image by Φ lies in Imult(V1, . . . , Vm+n). Thus Φm,n is well-defined.

• The injectivity of Φm,n follows from the commutativity of the following diagram in which the vertical
arrows are quotient maps.

K
(
K (V1 ×⊤ · · · ×⊤ Vm)×⊤×m,n K (Vm+1 ×⊤ · · · ×⊤ Vm+n)

)
K(V1 ×⊤ · · · ×⊤ Vm+n)

K
( (
V1 ⊗⊤ · · · ⊗⊤ Vm

)
×⊤⊗m,n

(
Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

) )
(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
V1 ⊗⊤ · · · ⊗⊤ Vm+n

πm×πn

Ψm,n

πm+n

Φm,n

Assume Φm,n([y]) = 0 for some [y] ∈
(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
. Then the

preimage of Φm,n([y]) under the quotient map πm+n in V1×⊤· · ·×⊤Vm+n lies in Imult,⊤(V1, . . . , Vm+n).
This implies that its preimage under πm+n ◦Ψm,n lies in

K(Imult,⊤(V1, . . . , Vm)×⊤m,n Imult,⊤(Vm+1, . . . , Vm+n)) (A.7)

by construction of Ψm,n in Lemma A.II.3. This element of (A.7) is the preimage of [y] under the
two projections on the left column of the previous diagram, and therefore [y] = 0.
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• The surjectivity of Φm,n follows from that of Ψm,n combined with the commutativity of the diagram
above. Indeed, any element y ∈ V1⊗⊤· · ·⊗⊤Vm+n has a preimage ỹ ∈ K(K (V1 ×⊤ · · · ×⊤ Vm)×⊤n,m
K (Vm+1 ×⊤ · · · ×⊤ Vm+n)) under πm+n ◦ Ψm,n since Ψm,n and πm,n are surjections. Taking the
image of ỹ under the two projections of the left column of the diagram above, we obtain a preimage
of y in

(
V1 ⊗⊤ · · · ⊗⊤ Vm

)
⊗⊤ (Vm+1 ⊗⊤ · · · ⊗⊤ Vm+n

)
.

Regarding Conjectural statements 5.30 and 5.34, their analogous versions for the space Ibil,⊤ are
stronger since Ibil,⊤(V,W ) ⊂ Ibil(V,W ) ∩K(V ×⊤ V ). This is another reason why we prefer the locality
tensor product used in Chapter 2. Under those analogous conjectural assumptions, analogous results to
Theorems 5.37, 5.38, 5.41, and 5.45 can be proved.
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Appendix B

Conjectural statements

B.III A group theoretic interpretation
Question (2.15), namely whether or not a quotient of locality vector spaces is a locality vector space, can
be rephrased as whether or not a union of subgroups of a group is again a subgroup, as we will show in
this Appendix. More precisely, when is the union of subgroups of a larger group closed under the group
operation. This question in full generality, is to our knowledge, still an open question. A good description
of the state of the art on the question of when a group is the union of n proper subgroups is given in [9].
An answer was provided in [27] for n ≤ 6 and in [97] for n = 7. To our knowledge, the question for any
n or for infinite unions of groups remains open.

Notation: In this paragraph, given a locality set (S,⊤) we will use the polar map

P⊤ : P(S) −→ P(S) (B.1)
U 7−→ U⊤. (B.2)

By convention, we take P⊤(∅) := S. Furthermore, in a small abuse of notation we write P⊤(u) instead of
P⊤({u}) if U = {u} has only one element. The following elementary result characterizes locality vector
spaces using the notation recently introduced.

Lemma B.III.1. Given a pre-locality vector space (V,⊤), it is a locality vector space if, and only if,
P⊤(u) is a vector subspace of V for any u ∈ V .

Proof. By Definition 2.21, (V,⊤) is a locality vector space if, and only if, P⊤(U) is a vector subspace of
V for any subset U ⊆ V . If this holds, then it is obvious that P⊤(u) is a vector subspace of V for any
u ∈ V .

Conversely, assume P⊤(u) is a linear subspace of V for any u ∈ V . Then for any subset U ⊆ V , we
have

P⊤(U) :=
⋂
u∈U

P⊤(u)

which is an intersection of vector spaces and thus a vector space.

In order to make a precise statement, let us first recall some basic facts. Given a locality vector
space (V,⊤) , W ⊆ V a linear subspace of V and π : V −→ V/W the linear quotient map, we write
[u] := π−1(π(u)) ⊆ V . We have [u] = {ū + w,w ∈ W} = ū +W where ū is any representative in V of
the class π(u). Note that 0V ∈ [u] implies [u] = W . We denote the elements of V/W , as [u] or π(u)
indifferently, as it is more convenient.

We need one other intermediate result:

Lemma B.III.2. Let (V,⊤) be a locality vector space, W ⊆ V a linear subspace of V and π : V −→ V/W
the quotient map. Then

P⊤([u]) =
⋃

u′∈[u]

π(P⊤(u′))

for any u in V (see (B.1)).
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Proof. Let (V,⊤), W and π be as in the statement and let u be any element of V .

• The inclusion from left to right: Let [α] be in V/W such that [α] ∈ P⊤([u]) i.e., such that [α]⊤[u].
Then by definition of ⊤ there is some u′ ∈ [u] and some α′ ∈ [α] such that α′⊤u′ ⇔ α′ ∈ P⊤(u′).
This implies that

[α] = π(α) = π(α′) ∈ π(P⊤(u′)) ⊂
⋃

u′∈[u]

π(P⊤(u′)).

Thus P⊤([u]) ⊆
⋃
u′∈[u] π(P

⊤(u′)).

• The inclusion from right to left: Let [α] be in V/W such that [α] ∈
⋃
u′∈[u] π(P

⊤(u′)). Then

∃u′ ∈ [u] : [α] ∈ π(P⊤(u′)) =⇒ ∃(u′, w) ∈ [u]×W : (α+ w) ∈ P⊤(u′).

In V , we have α′ := (α+ w) ∈ [α] and this in turn implies that

∃(u′, α′) ∈ [u]× [α] : α′⊤u′ =⇒ [α]⊤[u].

Thus [α] ∈ P⊤([u]) and
⋃
u′∈[u] π(P

⊤(u′)) ⊆ P⊤([u]) which proves the statement.

The following theorem relates the situation of a quotient of a locality vector space being again a
locality vector space, with the question of when the union of subgroups of a bigger group is again a
subgroup.

Theorem B.III.3. Let (V,⊤) be a locality vector space, W ⊆ V a linear subspace of V and π : V −→
V/W the quotient map. Then the following statements are equivalent:

1. (V/W,⊤) is a locality vector space,

2. For any u in V , the set
Hu :=

⋃
u′∈[u]

π(P⊤(u′))

is a commutative group for the internal operation + induced on the quotient space by the internal
operation + on V .

3. The set Hu is a commutative semigroup (for the same product) for any u in V .

Remark B.III.4. Notice that P⊤(u′) is a subset of V , thus π(P⊤(u′)) is a subset of V/W , thus the
⋃

notation in the Theorem.

Proof. • 2. ⇔ 3. If Hu is a group, it is in particular a semigroup. Let us show that the converse is
also true. Assume that Hu is a semigroup (i.e. that it is closed under summation) for any u in V

and observe that by Lemma B.III.2 Hu = P⊤([u]). Since (V,⊤) is a locality vector space we have
[0] ∋ 0⊤u ∈ [u] thus [0] = 0V/W ∈ P⊤([u]) = Hu by definition of ⊤ (Definition 4.6). Hence Hu is
a monoid for any u in V . We are left to show that if Hu is stable under addition, it is also stable
under taking the inverse, that is multiplication by the scalar −1.
For any [α] ∈ V/W we have:

[α] ∈ P⊤([u]) =⇒ ∃(α′, u′) ∈ [α]× [u] : α′⊤u′ =⇒ ∃(α′, u′) ∈ [α]× [u] : λα′⊤u′ ∀λ ∈ K

since P⊤(u) is a vector subspace of V . Then since α′ ∈ [α]⇒ λα′ ∈ λ[α] we deduce that

[α] ∈ P⊤([u]) =⇒ λ[α] ∈ P⊤([u]) ∀λ ∈ K

and in particular Hu = P⊤([u]) is a group.

• 1. ⇔ 2. Let V , W and π be as in the statement of the theorem. By Lemma B.III.1, we know that
(V/W,⊤) is a locality vector space if, and only if, P⊤([u]) = Hu is a vector subspace of V/W for
any [u] ∈ V/W .
We have already shown that Hu is stable by scalar multiplication, thus it is a vector space if, and
only if, it is a group for the addition.
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B.IV Attempted algorithmic proof
We devote this last paragraph to present an algorithmic attempt to prove Conjectural statement 5.30,
which we recall now.

Conjectural statement. Given a locality vector space (E,⊤) and two subspaces from it V1, and V2, the
subspace Ibil(V1, V2)∩K(V1 ×⊤ V2) ⊂ K(V1 ×⊤ V2) is locality compatible with ⊤V1×⊤V2

.

Recall from Definition 2.14 that the locality tensor product V1 ⊗⊤ V2 is a quotient space

K(V1 ×⊤ V2)/(Ibil(V1, V2) ∩ K(V1 ×⊤ V2)).

For any (x, y) ∈ V1 ×⊤ V2, in the equivalence class [(x, y)] we consider the following relation

(x′, y′) ⪯ (x′′, y′′)⇔
(
(∀z ∈ K(V1 ×⊤ V2)) : (x

′′, y′′)⊤V1×⊤V2
z ⇒ (x′, y′)⊤V1×⊤V2

z
)
. (B.3)

It is straightforward to see that it defines a preorder (it is reflexive and transitive).
Our claim is that for every pair of elements in the equivalence class [(x, y)] endowed with the preorder

mentioned above, there is at least one element which is smaller than the original two. Notice that
this claim is enough to prove the Conjectural statement 5.30. Indeed, if we denote x := (x′, y′) and
x+w := (x′′, y′′) for somex ∈ K(V1×⊤ V2) and w ∈ Ibil(V1, V2)∩K(V1 ×⊤ V2), such that x⊤y and x+w⊤z,
then the existence of an element (p, q) ∈ [(x′, y′)] which is smaller than (x′, y′) and that (x′′, y′′) implies
that x+ŵ := (p, q) is locality independent to y and to z as expected (see definition of locality compatibility
in 5.21).

We use the following natural notations:

• (x, y) ⪰ (x′, y′) :⇔ (x′, y′) ⪯ (x, y).

• (x, y) ∼ (x′, y′) :⇔ (x′, y′) ⪯ (x, y) ∧ (x, y) ⪯ (x′, y′).

• (x, y) ≺ (x′, y′) :⇔ (x, y) ⪯ (x′, y′) ∧ (x, y)�∼(x′, y′).

• (x, y) ≻ (x′, y′) :⇔ (x, y) ⪰ (x′, y′) ∧ (x, y)�∼(x′, y′).

For an element x ∈ K(V1 ×⊤ V2), we call the support of x, and denote it by supp(x), at the unique
subset of V1 ×⊤ V2 such that

x =
∑

(v,w)∈supp(x)

α(v,w)(v, w)

where all α(v,w) ̸= 0. We call the length of x, denoted by len(x), at |supp(x)|.
Let (x, y, z) ∈ K(V1×⊤V2) and w ∈ Ibil(V1, V2)∩K(V1×⊤V2) such that x⊤V1×⊤V2

y and x+w⊤V1×⊤V2
z.

By definition Ibil(V1, V2) ⊂ K(V1 × V2) is generated by elements of the form

(a1 + a2, b)− (a1, b)− (a2, b) , (a, b1 + b2)− (a, b1)− (a, b2), (B.4)

and
(ka, b)− (a, kb) , k(a, b)− (ka, b) , k(a, b)− (a, kb). (B.5)

We will call a generator of the type described in Equation (B.4) a Q-type generator, and the type
described in Equation (B.5) a P-type generator.

Remark B.IV.1. Notice that if w is a Q-type generator, and {(a1, b), (a2, b)} ⊂ supp(w), then the third
element in the support of w is either (a1 + a2, b), (a1 − a2, b), or (−a1 + a2, b). Moreover since only one
of the three elements on supp(w) has coefficient +1 in w, the three options correspond to the three ways
the coefficients can be arranged. Namely

(a1 + a2, b)− (a1, b)− (a2, b), −(a1 − a2, b) + (a1, b)− (a2, b), and − (−a1 + a2, b)− (a1, b) + (a2, b).

Analogously if {(a, b1), (a, b2)} ⊂ supp(w), then the third element in the support of w is either (a, b1 +
b2), (a, b1 − b2), or (a,−b1 + b2) depending on the position of the +1 coefficient.
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Proposition B.IV.2. Let w1 and w2 two Q-type generators such that |supp(w1) ∩ supp(w2)| = 2 which
we write as supp(w1) = {γ1, γ2, α} and supp(w2) = {γ1, γ2, β}. Then, for any (λ1, λ2) ∈ K2 \ (0, 0), it
follows that either

γi ∈ supp(λ1w1 + λ2w2) for some i ∈ {1, 2},

or
α⊤V1×⊤V2 = β⊤V1×⊤V2 .

Proof. As a consequence of Remark B.IV.1 and the fact that |supp(w1) ∩ supp(w2)| = 2 it follows that
either γ1 or γ2 does not have the same coefficients in w1 and w2. We analise four possible case:

1. In the case that the coefficient of γ1 is different in w1 and in w2 while the coefficient of γ2 is −1 in
both w1 and w2. Then in the sum λ1w1 + λ2w2 at least one of them is not canceled.

2. In the case that the coefficient of γ2 is different in w1 and in w2 while the coefficient of γ1 is −1 in
both w1 and w2. The argument is analogous to the item before.

3. In the case that the coefficient of γ1 is 1 in w1 and −1 in w2, while the coefficient of γ2 is −1 in γ1
and 1 in γ2. By means of Remark B.IV.1, the polar sets of α and β are the same as expected.

4. In the case that the coefficient of γ2 is 1 in w1 and −1 in w2, while the coefficient of γ1 is −1 in γ1
and 1 in γ2. The argument is analogous to the item before.

Since those are all the possible cases where |supp(w1) ∩ supp(w2)| = 2, the proof is complete.

We state some simple results which will useful in the sequel.

Lemma B.IV.3. Let x⊤V1×⊤V2y, and w a generator of Ibil(V1, V2) (i.e., it is an element of the form
(B.4) or (B.5)).

1. If w is a Q-type generator and |supp(x) ∩ supp(w)| ≥ 2, then (x+ λw)⊤V1×⊤V2
y for any λ ∈ K.

2. If w is a P-type generator and |supp(x) ∩ supp(w)| ≥ 1, then (x+ λw)⊤V1×⊤V2
y for any λ ∈ K.

In particular, each of the above cases imply that

(x+ w) ⪯ x,

with the preorder defined in (B.3).

Proof. Let x =
∑N
i=1 αi(vi, wi) where supp(x) = (vi, wi)

N
i=1. Assume without lost of generality that y =

(p, q). Assume for item (1) that w is of the form (a1+a2, b)−(a1, b)−(a2, b). Since |supp(x)∩supp(w)| ≥ 2,
there are i and j such that (vi, wi) and (vj , wj) are in the support of w, for instance (vi, wi) = (a1, b) and
(vj , wj) = (a2, b). This implies that

a1⊤Eb , a2⊤Eb , a1⊤V1p , and b⊤V2q.

Since (E,⊤) is a locality vector space, it follows that (a1 + a2)⊤Eb, and (a1 + a2)⊤V1
p, and hence

x+ w ∈ K(V1 ×⊤ V2) and (x+ y)⊤y. A similar argument applies for any Q-type generator w.
Assume for item (2) that w has the form (ka, b)− (a, kb). Since |supp(x) ∩ supp(w)| ≥ 1, there is at

least one (vi, wi) = (ka, b) or (vi, wi) = (a, kb). Either case, the fact that (E,⊤) is a locality vector space
implies that a⊤Eb, p⊤V1

a and q⊤V2
b, and hence (ka, b) − (a, kb) ∈ K(V1 ×⊤ V2) and (x + w)⊤V1×⊤V2

y.
A similar argument works for every P-type generator w.

Corollary B.IV.4. Let (x+w)⊤V1×⊤V2
y, with w a generator of Ibil(V1, V2) (i.e., it is an element of the

form (B.4) or (B.5)).

1. If w is a Q-type generator and |supp(x) ∩ supp(w)| ≤ 1, then x⊤V1×⊤V2
y.

2. If w is a P-type generator and |supp(x) ∩ supp(w)| ≤ 1, then x⊤V1×⊤V2
y.
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In particular, each of the above cases implies that

x ⪯ (x+ w),

with the preorder defined in (B.3).

Proof. The proof follows from Lemma B.IV.3 writing x′ = x+ w and w′ = −w.

Let x ∈ K(V1 ×⊤ V2) and ω =
∑N
i=1 λiwi ∈ Ibil(V1, V2)∩K(V1 × V2), where every wi is a generator of

Ibil(V1, V2), we say that (λ1w1, . . . , λNwN ) is a path between x and x+ω. Lemma B.IV.3 and Corollary
B.IV.4 imply that given an element ω ∈ Ibil(V1, V2) ∩K(V1 × V2), and a path (λ1w1, . . . , λNwN ) from x
to x+ω, it is possible to follow each step i of the path in the graph of the preorder ⪯ defined in (B.3) by
considering the intersection supp(wi)∩ supp(x+

∑i−1
j=1 λjwj). We say that the step i is descending (resp.

strictly descending, resp. ascending, resp. strictly ascending, resp. flat) if x+
∑i−1
j=1 λiwi ⪯ x+

∑i
j=1 λiwi

(resp. x +
∑i−1
j=1 λiwi ≺ x +

∑i
j=1 λiwi, resp. x +

∑i−1
j=1 λiwi ⪰ x +

∑i
j=1 λiwi, resp. x +

∑i−1
j=1 λiwi ≻

x+
∑i
j=1 λiwi, resp. x+

∑i−1
j=1 λiwi ∼ x+

∑i
j=1 λiwi).

The idea is then to reorganize or change the wis into some w′
is such that ω =

∑N ′

i=1 λ
′
iw

′
i and for which

the path (λ′1w
′
1, . . . , λ

′
N ′w′

N ′) has a minimum element in the preorder ⪯ (not necessarily unique since it
is only a preorder). The first step is to pull to the beginning of the path, whenever it is possible, all
generators wi which satisfy conditions of Lemma B.IV.3, i.e. all generators which make ⪯ descend or at
least don’t ascend. More precisely, consider a counter N̂ = 0 and α = 1. For the generator wα consider
the possible scenarios:

1. If wα doesn’t satisfy the conditions of Lemma B.IV.3 for x = x +
∑α−1
i=1 λiwi and w = λαwα, add

1 to the value of α and start again analyzing the next element in the path.

2. If wα satisfies the conditions of Lemma B.IV.3 for x = x+
∑α−1
i=1 λiwi and w = λαwα, and N̂ = α−1,

then add 1 to the value of N̂ and also to the value of α. Then start again analyzing the next element
in the path.

3. If wα satisfies the conditions of Lemma B.IV.3 for x = x+
∑α−1
i=1 λiwi and w = λαwα, and N̂ < α−1,

consider two possibilities:

(a) If supp(wα) ∩ supp(wα−1) = ∅, then x +
∑α−2
i=1 λiwi and w = λαwα will also satisfy the

conditions of Lemma B.IV.3. Then exchange the indices of λi−1wi−1 and λiwi, subtract 1 to
the value of α, and continue analyzing the new element wα.
In other words, we pull wα 1 step closer to the beginning of the path if its support does not
intersect that of wα−1.

(b) If supp(wα) ∩ supp(wα−1) ̸= ∅, then add 1 to the value of α and continue analyzing the next
element of the path.

The process stops when α = N + 1. Notice that at the end, the first N ′ of the path will be descending,
i.e. x +

∑j
i=1 λiwi ⪰ x +

∑j+1
i=1 λiwi for 1 ≤ j ≤ N̂ , and also that the step N̂ + 1 is strictly increasing,

i.e. x +
∑N̂
i=1 λiwi ≺ x +

∑N̂+1
i=1 λiwi. However, we may not conclude yet that the last N − N̂ steps of

the path are ascending because of the case described in item (3b). Every step of the path which satisfies
the conditions of item 3b represents a "bump" in the ascending path from x+

∑N̂
i=1 λiwi to x+ ω. We

now proceed to analyse some type of "bumps" that can occur and to show how they can be "flattened".

Bumps of length 2

We proceed to consider all "bumps" where the step i − 1 is strictly ascending and the step i is strictly
descending for i−1 > N̂ . Namely x+

∑i−2
j=1 λjwj ≺ x+

∑i−1
j=1 λjwj , and x+

∑i−1
j=1 λjwj ≻ x+

∑i
j=1 λjwj .

Our goal is to prove that x+
∑i−2
j=1 λjwj ⪯ x+

∑i
j=1 λjwj , and thus the bump can be "flattened". Let

us first prove some technical result regarding the behavior of the support of the sum of two generators of
Ibil(V1, V2).
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Lemma B.IV.5. Let w1 and w2 be two generators of Ibil(V1, V2), (λ1, λ2) ∈ (K \ {0})2, and z ∈
K(V1 ×⊤ V2).

1. If both w1 and w2 are Q-type generators with supp(w1) = supp(w2), then w1 = w2.

2. If both w1 and w2 are P-type generators with supp(w1) = supp(w2), then w1 = w2.

3. If both w1 and w2 are Q-type generators with |supp(w1) ∩ supp(w2)| = 2, then at least one of the
following is satisfies:

• there is at least one element γ ∈ supp(w1) ∩ supp(w2) such that γ ∈ supp(λ1w1 + λ2w2), or

•
(
supp(w1) \ (supp(w1) ∩ supp(w2))

)⊤V1×⊤V2 =
(
supp(w2) \ (supp(w1) ∩ supp(w2))

)⊤V1×⊤V2 .

4. If both w1 and w2 are P-type generators with |supp(w1)∩ supp(w2)| = 1, and z⊤V1×⊤V2
γ for some

γ ∈ supp(w1) ∪ supp(w2) then z ∈ (supp(w1) ∪ supp(w2))
⊤V1×⊤V2 . In particular,

z⊤V1×⊤V2
λ1w1 + λ2w2.

5. If w1 is a P-type generator and w2 is a Q-type generator with |supp(w1) ∩ supp(w2)| = 2, then,
there is at least one γ ∈ supp(w1) such that γ ∈ supp(λ1w1 + λ2w2). Even more if for some
β ∈ supp(w1) ∪ supp(w2), z⊤V1×⊤V2

β, then z ∈ (supp(w1) ∪ supp(w2))
⊤V1×⊤V2 . In particular

z⊤V1×⊤V2
λ1w1 + λ2w2.

Proof. The first two items follow from the definition of Q and P -type elements respectively.

3. Call γ1 and γ2 the elements of supp(w1)∩ supp(w2). From Remark B.IV.1 we consider two options:

• The sign of one of the γs (say γ1) is negative in both w1 and w2 while γ2 is positive in one
(say w1) and negative in w2. In this case for every pair (λ1, λ2) ∈ (K \ {0})2 at least one γi
will remain in the sum λ1w1 + λ2w2.

• The sign of γ1 is negative in w1 and positive in w2 while γ2 is positive in w1 and negative
in w2. Using the notations of Remark B.IV.1 we can say that γ1 = (a1, b), and γ2 = (a2, b).
It follows that the other element in supp(w1) is (−a1 + a2, b), while the other element in
supp(w2) is (a1 − a2, b). But from linear locality we conclude that {(a1 − a2, b)}⊤V1×⊤V2 =
{(−a1 + a2, b)}⊤V1×⊤V2 which proves the result. The same analysis applies if the difference
between γ1 and γ2 is in the second coordinate.

4. If both w1 and w2 are P-type generators with |supp(w1) ∩ supp(w2)| = 1, by construction of
the P-type generators it follows that the three elements in supp(w1) ∪ supp(w2) are of the form
γi = (κia, ϑib) for some κi and ϑi in K and some (a, b) ∈ V1 ×⊤ V2. Therefore, if z⊤V1×⊤V2γi for
some i ∈ {1, 2, 3}, then z⊤V1×⊤V2γi for all i ∈ {1, 2, 3}.

5. Let γ1 and γ2 be the elements in supp(w1) and γ3 the only element in supp(w2) \ supp(w1). By
construction of the Q-type generators, only one coordinate varies in all γi, we will assume it is
the first coordinate. The same analysis is valid for the second coordinate. Then w1 is of the
form k(a, b) − (ka, b) for some k ∈ K \ {0, 1}, and thus, by means of Remark B.IV.1, γ3 is either
((k+1)a, b), ((k−1)a, b), or ((−k+1)a, b). In either case, z⊤V1×⊤V2γi for some i ∈ {1, 2, 3} implies
that z⊤V1×⊤V2γi for all i ∈ {1, 2, 3}, and thus

z⊤V1×⊤V2λ1w1 + λ2w2.

On the other hand λ1w1 + λ2w2 = (λ1k+ λ2)(a, b) + (λ1 + λ2)(ka, b) + λ2γ3. Since k /∈ {0, 1}, then
λ1 ̸= 0, (λ1k + λ2) and (λ1 + λ2) are not zero at the same time which implies that at least one
element in supp(w1) is in supp(λ1w1 + λ2w2).
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In the following proposition we flatten all bumps of length 2 where wi−1 and wi are both P-type
generators. Since we consider the step i − 1 to be strictly ascending, it follows from Lemma B.IV.3
and Corollary B.IV.4 that supp(x+

∑i−2
j=1 λjwj) ∩ supp(wi−1) = ∅. Similarly, since the step i is strictly

descending, we also assume that |supp(x+
∑i−1
j=1 λjwj) ∩ supp(wi)| = 2.

Proposition B.IV.6 (P-P). Let wi−1 and wi be two P-type generators in a path (λ1w1, . . . , λNwN ) from
x to x +

∑N
j=1 λjwj, such that supp(x +

∑i−2
j=1 λjwj) ∩ supp(wi−1) = ∅, and |supp(x +

∑i−1
j=1 λjwj) ∩

supp(wi)| = 2.

1. If |supp(wi−1) ∩ supp(wi)| = 2, then
∑i−2
j=1 λjwj ⪯

∑i
j=1 λjwj.

2. If |supp(wi−1) ∩ supp(wi)| = 1, then
∑i−2
j=1 λjwj ∼

∑i
j=1 λjwj. In particular, exchanging the steps

i− 1 and i both steps turn flat.

Proof. 1. By means of Lemma B.IV.5 item (2) wi−1 = wi, and λi−1wi−1 + λiwi = (λi−1 + λi)wi−1.
Since supp(x+

∑i−2
j=1 λjwj) ∩ supp(wi−1) = ∅, Corollary B.IV.4 yields the result.

2. Since supp(x+
∑i−2
j=1 λjwj)∩ supp(wi−1) = ∅, and |supp(x+

∑i−1
j=1 λjwj)∩ supp(wi)| = 2 it follows

that there is at least a γ (resp. β) in supp(wi−1)∪supp(wi) such that γ ∈ supp(x+
∑i−2
j=1 λjwj) (resp.

β ∈ supp(x+
∑i
j=1 λjwj)). Then z⊤V1×⊤V2x+

∑i−2
j=1 λjwj (resp. y⊤V1×⊤V2x+

∑i
j=1 λjwj) implies

that z⊤V1×⊤V2γ (resp. y⊤V1×⊤V2β). By means of Lemma B.IV.5 item (4) z⊤V1×⊤V2x+
∑i
j=1 λjwj

(resp. y⊤V1×⊤V2
x+

∑i−2
j=1 λjwj) which yields the result.

We proceed with the case where wi−1 is a P-type generator, and wi is a Q-type generator. Once again,
since the step i−1 is strictly ascending and the step i is strictly descending, Lemma B.IV.3 and Corollary
B.IV.4 imply that supp(x+

∑i−2
j=1 λjwj) ∩ supp(wi−1) = ∅, and |supp(x+

∑i−1
j=1 λjwj) ∩ supp(wi)| ≥ 2.

Proposition B.IV.7 (P-Q). Let wi−1 be a P-type generator and wi a Q-type generator in a path
(λ1w1, . . . , λNwN ) from x to x +

∑N
j=1 λjwj, such that supp(x +

∑i−2
j=1 λjwj) ∩ supp(wi−1) = ∅, and

|supp(x+
∑i−1
j=1 λjwj) ∩ supp(wi)| ≥ 2.

1. If |supp(wi−1) ∩ supp(wi)| = 2 and |supp(x +
∑i−1
j=1 λjwj) ∩ supp(wi)| = 3, then

∑i−2
j=1 λjwj ∼∑i

j=1 λjwj.

2. If |supp(wi−1) ∩ supp(wi)| = 2 and |supp(x +
∑i−1
j=1 λjwj) ∩ supp(wi)| = 2, then

∑i−2
j=1 λjwj ⪯∑i

j=1 λjwj.

3. If |supp(wi−1) ∩ supp(wi)| = 1 and |supp(x +
∑i−1
j=1 λjwj) ∩ supp(wi)| = 3, then exchanging steps

i− 1 and i, it follows that the new step i− 1 is descending while the step i is flat.

4. If |supp(wi−1) ∩ supp(wi)| = 1 and |supp(x +
∑i−1
j=1 λjwj) ∩ supp(wi)| = 2, then exchanging steps

i− 1 and i, it follows that the new step i− 1 is ascending while the step i is flat.

Proof. 1. Let γ1 and γ2 be the two elements in supp(wi−1) and γ3 the only element in supp(wi) \
supp(wi−1). By means of Lemma B.IV.5 item (5) γ1 or γ2 is in supp(x +

∑i
j=1 λjwj), and thus,

also by means of Lemma B.IV.5 item (5) z⊤V1×⊤V2(x+
∑i
j=1 λjwj) implies that z⊤V1×⊤V2γ3. Since

γ3 is the only element of supp(x+
∑i−2
j=1 λjwj) which might not be in supp(x+

∑i
j=1 λjwj), then

z⊤V1×⊤V2
x+

∑i−2
j=1 λjwj) and

∑i−2
j=1 λjwj ⪯

∑i
j=1 λjwj .

Analogously if y⊤V1×⊤V2
(x +

∑i−2
j=1 λjwj), in particular z⊤V1×⊤V2

γ3, and by means of Lemma
B.IV.5 item (5) y⊤V1×⊤V2

γi for i ∈ {1, 2}. Since γ1 and γ2 are the only elements possibly in
supp(x+

∑i
j=1 λjwj) which are not in supp(x+

∑i−2
j=1 λjwj), then z⊤V1×⊤V2

(x+
∑i
j=1 λjwj) and∑i−2

j=1 λjwj ⪰
∑i
j=1 λjwj as expected.
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2. Since the support of wi−1 has two elements, none of which is in supp(x +
∑i−2
j=1 λjwj), then

|supp(wi−1) ∩ supp(wi)| = 2 and |supp(x +
∑i−1
j=1 λjwj) ∩ supp(wi)| = 2 imply that supp(wi−1) ∩

supp(wi) = supp(wi−1), and thus supp(x+
∑i−2
j=1 λjwj)∩supp(wi) = ∅. Then, supp(x+

∑i−2
j=1 λjwj)

is strictly contained in x+
∑i
j=1 λjwj and the result follows.

3. Let {γ1, γ2} = supp(wi)\ supp(wi−1) and γ3 be the only element in supp(wi)∩ supp(wi−1). Setting
λ′iw

′
i := λi−1wi−1 and λ′i−1w

′
i−1 := λiwi, i.e, exchanging the steps i and i − 1, it follows that

supp(x+
∑i−2
j=1 λjwj)∩ supp(w′

i−1) = {γ1, γ2}, and supp(x+
∑i−2
j=1 λjwj +λ

′
i−1wi−1′)∩ supp(w′

i) =
{γ3}. Lemma B.IV.3 and Corollary B.IV.4 yield the result.

4. Let γ1 be the only element in supp(wi)∩supp(x+
∑i−2
j=1 λjwj) and γ2 the only element in supp(wi)∩

supp(wi−1). Setting λ′iw′
i := λi−1wi−1 and λ′i−1w

′
i−1 := λiwi, i.e, exchanging the steps i and i− 1,

it follows that supp(x+
∑i−2
j=1 λjwj)∩ supp(w′

i−1) = {γ1}, and supp(x+
∑i−2
j=1 λjwj +λ′i−1wi−1′)∩

supp(w′
i) = {γ2}. Lemma B.IV.3 and Corollary B.IV.4 yield the result.

We proceed with the case where wi−1 is a Q-type generator, and wi is a P-type generator. Once again,
since the step i−1 is strictly ascending and the step i is strictly descending, Lemma B.IV.3 and Corollary
B.IV.4 imply that |supp(x+

∑i−2
j=1 λjwj) ∩ supp(wi−1)| ≤ 1, and |supp(x+

∑i−1
j=1 λjwj) ∩ supp(wi)| = 2.

Proposition B.IV.8 (Q-P). Let wi−1 be a Q-type generator and wi a P-type generator in a path
(λ1w1, . . . , λNwN ) from x to x +

∑N
j=1 λjwj, such that |supp(x +

∑i−2
j=1 λjwj) ∩ supp(wi−1)| ≤ 1, and

|supp(x+
∑i−1
j=1 λjwj) ∩ supp(wi)| = 2.

1. If |supp(wi−1) ∩ supp(wi)| = 2 and |supp(x +
∑i−2
j=1 λjwj) ∩ supp(wi−1)| = 0, then

∑i−2
j=1 λjwj ⪯∑i

j=1 λjwj.

2. If |supp(wi−1) ∩ supp(wi)| = 2 and |supp(x +
∑i−2
j=1 λjwj) ∩ supp(wi−1)| = 1, then

∑i−2
j=1 λjwj ∼∑i

j=1 λjwj.

3. If |supp(wi−1)∩ supp(wi)| = 1 and |supp(x+
∑i−2
j=1 λjwj)∩ supp(wi−1)| = 0, then exchanging steps

i− 1 and i, it follows that the new step i− 1 is flat while the step i is ascending.

4. If |supp(wi−1)∩ supp(wi)| = 1 and |supp(x+
∑i−2
j=1 λjwj)∩ supp(wi−1)| = 1, then exchanging steps

i− 1 and i, it follows that the new step i− 1 is flat while the step i is descending. This case might
create a larger bump.

Proof. Items 3. and 4. follow straightforward from the assumptions and from Lemma B.IV.3 and Corol-
lary B.IV.4.

1. In this case, exchanging the steps i and i− 1 we recover the case of Lemma B.IV.7 item (2) which
yields the result.

2. Set {γ1, γ2} = supp(wi−1) ∩ supp(wi) and {γ3} = supp(wi−1) \ supp(wi). If the only element in
supp(x +

∑i−2
j=1 λjwj) ∩ supp(wi−1) is γ1 or γ2 (resp. γ3), then γ3 ∈ supp(x +

∑i
j=1 λjwj) (resp.

γ1 or γ2 in supp(x+
∑i
j=1 λjwj) by means of Lemma B.IV.5 item 5), and thus z⊤V1×⊤V2

supp(x+∑i
j=1 λjwj) implies that z⊤V1×⊤V2

γ3 (resp. z⊤V1×⊤V2
γ1 or z⊤V1×⊤V2

γ2). By means of Lemma
B.IV.5 item (5) z⊤V1×⊤V2γi for all i. Since γ1 or γ2 (resp. γ3) are the only elements that might
be in supp(x+

∑i−2
j=1 λjwj) which might not be in supp(x+

∑i
j=1 λjwj), then z⊤V1×⊤V2

supp(x+∑i−2
j=1 λjwj). On the other hand, if y⊤V1×⊤V2

supp(x +
∑i−2
j=1 λjwj) implies that y⊤V1×⊤V2

γ1 or
y⊤V1×⊤V2

γ2 (resp. γ3). Once again by means of Lemma B.IV.5 item (5) y⊤V1×⊤V2
γi for every i.

Since the γis are the only elements that might be in supp(x +
∑i
j=1 λjwj) which might not be in

x+
∑i−2
j=1 λjwj , then z⊤V1×⊤V2

(x+
∑i
j=1 λjwj) which finishes the proof.
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Finally we deal with the case where wi−1 and wi are Q-type generators. Once again, since the step
i−1 is strictly ascending and the step i is strictly descending, Lemma B.IV.3 and Corollary B.IV.4 imply
that |supp(x+

∑i−2
j=1 λjwj) ∩ supp(wi−1)| ≤ 1, and |supp(x+

∑i−1
j=1 λjwj) ∩ supp(wi)| ≥ 2.

Proposition B.IV.9 (Q-Q). Let wi−1 and wi be Q-type generators in a path (λ1w1, . . . , λNwN ) from x to
x+
∑N
j=1 λjwj, such that |supp(x+

∑i−2
j=1 λjwj)∩supp(wi−1)| ≤ 1, and |supp(x+

∑i−1
j=1 λjwj)∩supp(wi)| ≥

2.

1. If |supp(x+
∑i−2
j=1 λjwj) ∩ supp(wi−1)| ≤ 1 and |supp(wi−1) ∩ supp(wi)| = 3, then wi−1 = wi andx+

i−2∑
j=1

λjwj

 ⪯
x+

i∑
j=1

λjwj

 .

2. If |supp(x+
∑i−2
j=1 λjwj) ∩ supp(wi−1)| = 0 and |supp(wi−1) ∩ supp(wi)| = 2, thenx+

i−2∑
j=1

λjwj

 ⪯
x+

i∑
j=1

λjwj

 .

3. If |supp(x+
∑i−2
j=1 λjwj) ∩ supp(wi−1)| = 0 and |supp(wi−1) ∩ supp(wi)| = 1, exchanging the steps

i− 1 and i follows that the new step i− 1 is descending and the new step i is ascending.

4. If |supp(x+
∑i−2
j=1 λjwj)∩supp(wi−1)| = 1, |supp(x+

∑i−1
j=1 λjwj)∩supp(wi)| = 3 and |supp(wi−1)∩

supp(wi)| = 2, then (x +
∑i−2
j=1 λjwj) and (x +

∑i
j=1 λjwj) are comparable. Namely either (x +∑i−2

j=1 λjwj) ⪰ (x+
∑i
j=1 λjwj) or (x+

∑i−2
j=1 λjwj) ⪯ (x+

∑i
j=1 λjwj).

5. If |supp(x+
∑i−2
j=1 λjwj)∩supp(wi−1)| = 1, |supp(x+

∑i−1
j=1 λjwj)∩supp(wi)| = 3 and |supp(wi−1)∩

supp(wi)| = 1, exchanging the steps i − 1 and i implies that the new steps i − 1 and i are both
descending.

6. If |supp(x+
∑i−2
j=1 λjwj)∩supp(wi−1)| = 1, |supp(x+

∑i−1
j=1 λjwj)∩supp(wi)| = 2 and |supp(wi−1)∩

supp(wi)| = 2, then (x+
∑i−2
j=1 λjwj) ⪰ (x+

∑i
j=1 λjwj).

Proof. 1. The fact that wi−1 = wi follows from Lemma B.IV.5 item (1). Thus λi−1wi−1 + λiwi =
(λi−1 + λi)wi−2 which together with Corollary B.IV.4 yields the result.

2. Set {γ1} = supp(wi) \ supp(wi−1), {β} = supp(wi−1) \ supp(wi) and {γ2, γ3} = supp(wi) ∩
supp(wi−1). Let z⊤V1×⊤V2(x +

∑i
j=1 λjwj), so in particular z⊤V1×⊤V2β. Since γ1 is the only

element of supp(x+
∑i−2
j=1 λjwj) which might not be in supp(x+

∑i
j=1 λjwj), we must prove that

z⊤V1×⊤V2
γ1. By means of Lemma B.IV.5 item (3), either {γ1}⊤V1×⊤V2

= {β}⊤V1×⊤V2
, in which case

the result follows; or γ2 (or γ3) lie in supp(λi−1wi−1+λiwi) which implies γ2 ∈ supp(x+
∑i
j=1 λjwj).

The latter implies that z⊤V1×⊤V2
γ3, then, since z is locality independent of at least two elements

on the support of wi, it is also independent of the third one, namely z⊤V1×⊤V2
γ3. Using the same

argument for wi−1 implies that z⊤V1×⊤V2γ1 as expected.

3. The result follows straightforward from the assumptions, from Lemma B.IV.3, and Corollary B.IV.4.

4. Set {γ1, γ2, γ3} = supp(wi−1) and {γ1, γ2, β} = supp(wi). Either both γ3 and β lie in supp(x +∑i−2
j=1 λjwj), or β and γ1 lie in supp(x +

∑i−2
j=1 λjwj). In the latter case, exchanging the steps

i − 1 and i in the path, leads to two descending steps. For the other case, assume without lost
of generality that γ1 = (a1, b) and γ2 = (a2, b). By means of Remark B.IV.1, γ3 and β are either
(a1 − a2, b), (−a1 + a2, b) or (a1 + a2, b). We consider three cases:
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• In the case γ1 = (a1−a2, b) and β = (−a1+a2, b) and λi−1 = λi, then supp(λi−1wi−1+λiwi) =

{γ3, β}, and thus supp(x+
∑i
j=1 λjwj) ⊃ supp(x+

∑i−2
j=1 λjwj) which implies thatx+

i−2∑
j=1

λjwj

 ⪰
x+

i∑
j=1

λjwj

 .

• In the case γ1 = (a1−a2, b) and β = (−a1+a2, b) and λi−1 ̸= λi, then γ1 and γ2 lie in supp(x+∑i
j=1 λjwj). Thus z⊤V1×⊤V2

(x+
∑i
j=1 λjwj) implies that z⊤V1×⊤V2

γ1 and z⊤V1×⊤V2
γ2, which

moreover implies that z⊤V1×⊤V2γ3 and z⊤V1×⊤V2β. Since β and γ3 are the only elements of
supp(x+

∑i−2
j=1 λjwj) that might not be in supp(x+

∑i
j=1 λjwj), it follows that z⊤V1×⊤V2

(x+∑i−2
j=1 λjwj). Therefore x+

i−2∑
j=1

λjwj

 ⪯
x+

i∑
j=1

λjwj

 .

• For any other possible choice of γ3 and β, z ∈ {γ3, β}⊤V1×⊤V2
, this implies that z⊤V1×⊤V2γ1

and z⊤V1×⊤V2γ2. Therefore, similarly as abovex+

i−2∑
j=1

λjwj

 ⪰
x+

i∑
j=1

λjwj

 .

5. The result follows straightforward from the assumptions and from Lemma B.IV.3 and Corollary
B.IV.4.

6. The result follows from the assumptions and Lemma B.IV.5 item (3) in a similar way to the previous
items.

The previous 4 propositions give us criteria to compare the elements x+
∑i−2
j=1 λjwj and x+

∑i
j=1 λjwj ,

namely before and after the bump. Those cases in which we obtainx+

i−2∑
j=1

λjwj

 ⪯
x+

i∑
j=1

λjwj

 ,

the bump can be considered "flattened" which won’t be problematic to the goal of showing x+
∑N̂
j=1 λjwj) ⪯

(x+ ω). In the cases where the result is (x+
∑i−2
j=1 λjwj) ⪰ (x+

∑i
j=1 λjwj), both steps i− 1 and i can

be pulled to the beginning of the path as described before.
Notice however that there could be bumps of bigger length, namely when the step i is ascending and

the next k steps are descending or flat, and their supports are not disjoint. It is not difficult to see that the
number of cases increases exponentially with the length of the bump, and thus the idea of proving each
of them is hopeless. Nonetheless, the fact that the previous 17 cases in the last 4 Proposition "magically"
work, hint at the fact that there is an algebraic reason behind it. However, this interesting question is
left for a future work.
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