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0Abstract
In this thesis, we investigate language learning in the formalisation of Gold [Gol67].
Here, a learner, being successively presented all information of a target language,
conjectures which language it believes to be shown. Once these hypotheses con-
verge syntactically to a correct explanation of the target language, the learning
is considered successful. Fittingly, this is termed explanatory learning. To model
learning strategies, we impose restrictions on the hypotheses made, for example
requiring the conjectures to follow a monotonic behaviour. This way, we can study
the impact a certain restriction has on learning.
Recently, the literature shifted towards map charting. Here, various seemingly

unrelated restrictions are contrasted, unveiling interesting relations between them.
The results are then depicted in maps. For explanatory learning, the literature al-
ready provides maps of common restrictions for various forms of data presentation.
In the case of behaviourally correct learning, where the learners are required

to converge semantically instead of syntactically, the same restrictions as in ex-
planatory learning have been investigated. However, a similarly complete picture
regarding their interaction has not been presented yet.
In this thesis, we transfer the map charting approach to behaviourally correct

learning. In particular, we complete the partial results from the literature for
many well-studied restrictions and provide full maps for behaviourally correct
learning with di�erent types of data presentation. We also study properties of
learners assessed important in the literature. We are interested whether learners
are consistent, that is, whether their conjectures include the data they are built on.
While learners cannot be assumed consistent in explanatory learning, the opposite
is the case in behaviourally correct learning. Even further, it is known that learners
following di�erent restrictions may be assumed consistent. We contribute to the
literature by showing that this is the case for all studied restrictions.
We also investigate mathematically interesting properties of learners. In par-

ticular, we are interested in whether learning under a given restriction may be
done with strongly Bc-locking learners. Such learners are of particular value as they
allow to apply simulation arguments when, for example, comparing two learning
paradigms to each other. The literature gives a rich ground on when learners may
be assumed strongly Bc-locking, which we complete for all studied restrictions.
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0Zusammenfassung

In dieser Arbeit untersuchen wir das Sprachenlernen in der Formalisierung von
Gold [Gol67]. Dabei stellt ein Lerner, dem nacheinander die volle Information einer
Zielsprache präsentiert wird, Vermutungen darüber auf, welche Sprache er glaubt,
präsentiert zu bekommen. Sobald diese Hypothesen syntaktisch zu einer korrekten
Erklärung der Zielsprache konvergieren, wird das Lernen als erfolgreich angesehen.
Dies wird passenderweise als erklärendes Lernen bezeichnet. Um Lernstrategien
zu modellieren, werden den aufgestellten Hypothesen Einschränkungen auferlegt,
zum Beispiel, dass die Vermutungen einem monotonen Verhalten folgen müssen.
Auf diese Weise können wir untersuchen, welche Auswirkungen eine bestimmte
Einschränkung auf das Lernen hat.

In letzter Zeit hat sich die Literatur in Richtung Kartographie verlagert. Hier
werden verschiedene, scheinbar nicht zusammenhängende Restriktionen einander
gegenübergestellt, wodurch interessante Beziehungen zwischen ihnen aufgedeckt
werden. Die Ergebnisse werden dann in so genannten Karten dargestellt. Für das
erklärende Lernen gibt es in der Literatur bereits Karten geläu�ger Einschränkungen
für verschiedene Formen der Datenpräsentation.

Im Falle des verhaltenskorrekten Lernens, bei dem die Lerner nicht syntaktisch,
sondern semantisch konvergieren sollen, wurden die gleichen Einschränkungen wie
beim erklärenden Lernen untersucht. Ein ähnlich vollständiges Bild hinsichtlich
ihrer Interaktion wurde jedoch noch nicht präsentiert.

In dieser Arbeit übertragen wir den Kartographie-Ansatz auf das verhaltenskor-
rekte Lernen. Insbesondere vervollständigen wir die Teilergebnisse aus der Literatur
für viele gut untersuchte Restriktionen und liefern Karten für verhaltenskorrektes
Lernen mit verschiedenen Arten der Datenpräsentation. Wir untersuchen auch
Eigenschaften von Lernern, die in der Literatur als wichtig eingestuft werden. Uns
interessiert, ob die Lerner konsistent sind, das heißt ob ihre Vermutungen die Daten
einschließen, auf denen sie aufgebaut sind. Während man beim erklärenden Lernen
nicht davon ausgehen kann, dass die Lerner konsistent sind, ist beim verhaltens-
korrekten Lernen das Gegenteil der Fall. Es ist sogar bekannt, dass Lerner, die
verschiedenen Einschränkungen folgen, als konsistent angenommen werden kön-
nen. Wir tragen zur Literatur bei, indem wir zeigen, dass dies für alle untersuchten
Restriktionen der Fall ist.

Wir untersuchen auch mathematisch interessante Eigenschaften von Lernern.
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Insbesondere interessiert uns, ob das Lernen unter einer gegebenen Restriktion mit
stark Bc-sperrenden Lernern durchgeführt werden kann. Solche Lerner sind von
besonderem Wert, da sie es erlauben, Simulationsargumente anzuwenden, wenn
man zum Beispiel zwei Lernparadigmen miteinander vergleicht. Die Literatur bietet
eine reichhaltige Grundlage dafür, wann Lerner als stark Bc-sperrend angenommen
werden können, die wir auf alle untersuchten Einschränkungen erweitern.
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1 Introduction

Motivation

Humans are usually neither presented all rules of a language nor the complete list
of its words. Yet, they are able to infer and to use the language. Thus, su�cient
information to learn a language must come in an implicit way. To investigate this
learning process, Gold [Gol67] proposes an initial formalism for language learning.
Here, a learner (a computable function) successively receives information of a target
language (a subset of the natural numbers) from a text (a list of all and only the
positive information of the target language). After receiving a new datum, the
learner produces a conjecture (a Gödel number) which language it believes to be
presented. For example, when learning the set of all prime numbers ℙ, a learner
may conjecture a Gödel number of the set of all odd numbers while it is presented
odd elements from ℙ. Once it receives a 2 as input, the learner changes its guess to
a code of the set ℙ.

Once these guesses converge to a single correct explanation of the target language,
we say that the learner successfully learned said target language. Note that this is a
syntactic requirement for convergence as the learner needs to eventually �x a single
correct conjecture. This learning criterion is known as explanatory learning and
denoted as TxtGEx.1 Naturally, each single language may be learnt by a learner
which always suggests a conjecture for this speci�c language. Thus, we consider
classes of languages which can be learnt by a single learner. We refer to the set of
classes of languages TxtGEx-learnable by some learner as the learning power of
TxtGEx-learning or TxtGEx-learners.

We focus on a generalisation of explanatory learning. As each language has
multiple correct explanations, that is, there exist multiple Gödel numbers for the
same language, inference may be considered correct if the learner outputs correct
but possibly di�erent descriptions of the target language. That is, the learner is
required to converge semantically instead of syntactically. This criterion is termed
behaviourally correct learning [CL82; OW82] and, analogously to TxtGEx, denoted
as TxtGBc.

1 In particular, a text (Txt) provides all and only the positive information of the target language,
from which Gold-style (G) learners, which know the order and frequency of the information
presented, then infer their conjectures. Lastly, Ex stands for explanatory learning.
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Chapter 1 Introduction

These learning criteria can be further generalised or altered in order to study
the impact of certain restrictions on the learning power. A�ecting the mode of

data presentation, we limit the amount of data presented to the learner to mimic
memory sensitive learners. For example, in set-driven learning (abbreviated as Sd,
Wexler and Culicover [WC80]), the learner is only presented the set of data and
has to infer the language knowing neither the frequency nor the order of the given
information. Providing the learner with an additional counter results in partially set-
driven learning (Psd, Blum and Blum [BB75] and Schäfer-Richter [Sch84]). These
alterations to the mode of data presentation a�ect Gold-style learning, that is,
G-learning, and are accordingly denoted as TxtSdBc and TxtPsdBc, respectively.
Another approach requires the learners to follow a desired behaviour. On one

hand, this behaviour can be motivated naturally, such as requiring the conjec-
tures to correctly re�ect the information they are built on. In the formalisation of
Gold [Gol67], this is referred to as consistent learning (Cons, Angluin [Ang80]). On
the other hand, the desired behaviour may be inspired by other sciences. To give
an example, psychologists observe that children, upon learning a language [MM69;
RB99], show certain patterns [Mar+92]. When learning to use the third form of
irregular English verbs, children �rst learn the correct use, for example “catch –
caught”. However, they overgeneralise the use of the regular form, where the verbs
end with “-ed”, and start using the incorrect form “catched”, just to correct their
wrong behaviour again. Fittingly, such a learning behaviour is referred to as a
U-shape. To understand whether U-shapes are needed, one can require the learner
in the formalisation of Gold [Gol67] to omit using U-shapes, resulting in non-U-

shaped learning (NU, Baliga et al. [Bal+08]). Both requirements can be attached to
the ones above, resulting in TxtGConsBc- or TxtGNUBc-learning.

Throughout this thesis, we consider further important restrictions. We motivate
them shortly by giving an intuitive description.

• Monotonic variants. Here, we require the output of the learners to follow a
monotonic behaviour [Jan91; LZ93; Wie91]. In the case of strongly monotone

learning (SMon), the guesses have to contain all previously conjectured
elements. For monotone learning (Mon), this requirement only needs to be
ful�lled on correctly inferred elements. Inweakly monotone learning (WMon)
the conjectures have to be strongly monotone while they are consistent.

• Cautious variants. In cautious learning (Caut, Osherson et al. [OSW82]), the
conjectures must not be proper subsets of previous guesses. In the case
of cautiously in�nite (Caut∞, Kötzing and Palenta [KP16]) and cautiously

�nite (CautFin, Kötzing and Palenta [KP16]) learning, this holds true only on
in�nite and �nite instances, respectively. In target-cautious learning (Caut,

2



Introduction Chapter 1

Kötzing and Palenta [KP16]), the conjectures must not overgeneralise the
target language.

• Conservative variants. In semantically conservative learning (SemConv, Kötz-
ing et al. [KSS17]) the learners must not change a hypothesis while it is con-
sistent with the data given. In semantically witness-based learning (SemWb,
Kötzing et al. [KSS17]) the learners must justify each mind change they make.

In this work, we focus on behaviourally correct learning under the mentioned
restrictions. As such, we do not consider explanatory learning. Furthermore,
consistent learning will get special attention. Thus, when referring to all restrictions
considered or, shortly, all restrictions we mean the restrictions above except for Ex
and Cons (if not explicitly stated otherwise).
Often investigated alone or in groups of similar restrictions, the main focus of

study is whether the given restriction reduces the learning power of TxtGEx- or
TxtGBc-learners. For example, based on themodel of Gold [Gol67], Bārzdin, š [Bār77]
unveils that consistency hinders the learning power of TxtGEx-learners, restraining
them from learning certain languages. This contradicts the natural intuition and is
termed the inconsistency phenomenon. Similarly, in the model of Gold [Gol67], non-
U-shaped learning has been studied [Bal+08; CC13; CK10; CK16a; CM08; FJO94]
and found to be restrictive in the case of behaviourally correct learning [Bal+08;
FJO94]. This would indicate that the seemingly ine�cient U-shapes are actually
needed for learning.

While these studies give an insight on particular restrictions, amore global picture
remains undrawn. Recently, Jain et al. [Jai+16], Kötzing and Palenta [KP16] and
Kötzing and Schirneck [KS16] initiated another branch of research where the focus
lies on the thorough comparison of presumably di�erent groups of restrictions,
birthing the so-called map charting. The term is motivated by the core of the
approach. One places the restrictions of interest on a table and arranges them
according to trivial implications regarding their learning power. Starting with
this backbone, one continues to �ll the map by comparing the di�erent learning
powers. The goal is to complete the map and, thus, to understand the relation
between di�erent restrictions and foster new insights. For example, in the case
of Gold-style explanatory learning, cautious, weakly monotone and conservative
[Ang80] learning coincide and monotone learning implies non-U-shaped learning.

Our Contributions

In the case of explanatory learning, di�erent restrictions have been studied under
di�erent modes of data presentation. As such, various maps have been presented

3
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T

SMon

Mon Caut

NU

WMon

SemConv

SemWb

TxtGXBc

TxtPsdXBc

(a) The interplay of various restrictions in Gold-
style and partially set-driven learning.

T

SMon

Mon Caut

NU

WMon

SemConv

SemWb

TxtSdXBc

(b) The interplay of various restrictions in set-
driven learning.

Figure 1.1: A depiction of the relation between the studied restrictions (see Section 2.2 for

the detailed de�nitions) for Gold-style and partially set-driven (see Figure 1.1 (a)) as well as

set-driven learning (see Figure 1.1 (b)). Solid and dashed lines imply trivial and non-trivial

inclusions (both bottom-to-top), respectively. Areas enclosed in a grey border illustrate a

collapse of the enclosed learning criteria. There are no further collapses.

in the literature [Jai+16; KP16; KS16]. However, for behaviourally correct learn-
ing only partial results on the pairwise interaction of di�erent restrictions are
known [Bal+08; FJO94; Jai+99; KSS17]. We continue this work and complete the
literature on behaviourally correct learning of formal languages in the following
ways. In particular, we are not only interested in the pairwise relations but also
present full results regarding interesting properties of the restrictions, fostering
the understanding of the similarities and di�erences between the restrictions even
further.

Behaviourally Correct Map. We compare the various important restrictions
listed above with each other, providing complete maps. With that, in particular,
we observe when certain restrictions can be replaced by others without changing
the learning power. This continues the work of Jain et al. [Jai+16], Kötzing and
Palenta [KP16] and Kötzing and Schirneck [KS16] in the explanatory case and com-
pletes initial results presented in the literature [Bal+08; FJO94; Jai+99; KSS17]. In
particular, we show that cautious, semantically conservative and weakly monotone
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T

CautFin

Caut∞

CautTar

Caut

T

CautFin

Caut∞

CautTar

Caut

T

CautFin

Caut∞

CautTar

Caut

TxtGXBc TxtPsdXBc TxtSdXBc

Figure 1.2: A depiction of the relations between the studied variants of cautious learning

(see Section 2.2 for the detailed de�nitions) for Gold-style, partially set-driven and set-driven

learning in one map. Solid lines imply trivial inclusions (bottom-to-top and right-to-left).

Areas enclosed in a grey border illustrate a collapse of the enclosed learning criteria. There

are no further collapses.

learning coincides for all studied modes of data representation. Furthermore, we
observe that monotone learning implies non-U-shaped learning. The overall picture
is presented in Figure 1.1.

Target-cautious learning is a useful variant of cautious learning as it generalises
many important restrictions, such as weakly monotone, semantically conservative
and cautious learning. Further variants to cautious learning exist [KP16] and
we take a particularly close look at them. By studying di�erent variants of this
restriction, we aim to understand better which kinds of languages hinder learning.
In particular, we �nd that conjectures for �nite languages in�uence the learners
learning abilities. We present the results in Figure 1.2.

Consistent Behaviourally Correct Learning. Consistent learning may be
seen as a natural requirement when learning a language. However, explanatory
learners cannot achieve full learning power when forced to be consistent [Bār77].
On the other hand, the opposite seems to be the case for behaviourally correct
learning. Under plenty of restrictions, behaviourally correct learners are known
to be consistent without loss of generality [Car+06; KSS17]. However, for some
important restrictions similar results are missing. We provide a complete picture by
showing that all restrictions considered in this work allow for consistent learning.
In particular, we answer the open question [KSS17] whether cautious learning may
be done with consistent learners. The result is collected in Corollary 4.11.
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Chapter 1 Introduction

Strongly Bc-Locking Behaviourally Correct Learning. We further focus on
normal forms in inductive inference. These make the learners mathematically
graspable. Bc-locking sequences [BB75; Jai+99] are sequences of elements of the
target language containing su�cient information for a learner to correctly infer the
said language and never change its mind semantically any more. Such Bc-locking
sequences are frequently used in various proofs. Unfortunately, in general, there are
texts which do not contain Bc-locking (sub-)sequences [BB75], making it impossible
to use well-known approaches which build on the existence of such sequences.
Knowing that Bc-locking sequences occur on any text, that is, being strongly Bc-

locking, enables us to use such approaches again. Kötzing et al. [KSS17] provide
general results when strongly Bc-locking learning may be assumed. However, some
important restrictions are not covered. In this work, we complete the literature by
showing that each considered restriction allows for strongly Bc-locking learning.
The result is collected in Corollary 5.2.

Methods. To obtain above results, we use methods from computability theory.
However, since we are dealing with semantic learning, these di�er from themethods
used in the explanatory case [Jai+16; KP16; KS16], where the focus lies on syntactic
learning. In particular, explanatory learning relies on the syntactic output of the
learners, meaning that, if there is an output, one can deduce whether there has been
any syntactic change. On the other hand, in behaviourally correct learning, the set
enumerated by the conjectures is of more importance. As the sets are enumerated,
elements may only occur in the limit. We study ways to approach this issue. First,
we focus on di�erent simulation techniques searching for Bc-locking sequences
and study these for their general properties, see Section 3.1. Throughout the work,
we also provide enumeration techniques which are custom made for the given
problem. In particular, this parallels the work by Case and Kötzing [CK16a], who
provide a general result on separation techniques.

Structure of the Thesis

The remainder of this thesis is structured as follows. In Chapter 2, we discuss
necessary notions and preliminary results used in this thesis. Afterwards, we
collect all results to complete the picture mentioned above. In Chapter 3, we
provide the necessary results for set-driven behaviourally correct learning. We do
the same for partially set-driven learning in Chapter 4 and Gold-style learning in
Chapter 5. We conclude the thesis in Chapter 6, where we also point to possible
future work.

6



2 Preliminaries

In this chapter we discuss the formal notation and important concepts used in this
thesis. In particular, we start with the mathematical notation, see Section 2.1. In
Section 2.2, we discuss the framework for language learning in the limit. This is
followed by useful normal forms observed in this framework, see Section 2.3.

2.1 Mathematical Notation

Regarding mathematical notation, we mainly follow the book by Rogers Jr. [Rog87].
In particular, we denote with ℕ = {0, 1, 2, . . . } the set of all natural numbers and
with ∅ the empty set. Given G ∈ ℕ, we writeℕ>G = {G+1, G+2, . . . }, that is, the set of
all natural numbers greater than G . The setℕ≥G is de�ned analogously. We use ⊆ (⊊)
to denote the (proper) subset relation for two sets. Furthermore, we use \ to denote
the di�erence between two sets. For a set� ⊆ ℕ and = ∈ ℕ, we denote with�≤= the
set of all sequences of elements in � of length at most =. The sets �<=, �≥= and �>=

are de�ned analogously. We write �∗ for the set of all �nite sequences of elements
in �. Given two �nite sequences f, g ∈ ℕ∗, we write f ⊆ g (f ⊊ g ) if f is a (proper)
subsequence of g and f ≤ g (f < g ) if f , interpreted as a natural number, is less than
or equal to (less than but not equal to) g interpreted as a natural number. We choose
the interpretation as natural numbers such that f ⊆ g implies f ≤ g . For a �nite
set � ⊆ ℕ or sequence f ∈ ℕ∗, we write |� | or |f | to denote the cardinality of �
or length of f , respectively. We denote the concatenation of two �nite sequences
f, g ∈ ℕ∗ as f⌢g or (if it is clear from the context) fg . Additionally, for a non-empty,
�nite sequence f ∈ ℕ

∗ we write f− for the sequence f without its last element.
Furthermore, we let P (R) be the set of all (total) computable functions ? : ℕ→ ℕ.
For any function 5 : ℕ→ ℕ, we let dom(5 ) and range(5 ) be the domain and range
of 5 , respectively. We �x an e�ective numbering {i4}4∈ℕ of all partial computable
functions and denote the 4-th computable set as,4 = dom(i4). We refer to 4 as
the program or index of,4 . Additionally, for any step C ∈ ℕ, we write, C

4 for the
set of all elements which the program 4 enumerates in at most C steps. The total
computable function enum(., .) enumerates all elements of a given program, that
is, for all 4 ∈ ℕ we have,4 = range(enum(4, .)).

We learn (formal) languages ! ⊆ ℕ, that is, recursively enumerable sets, using

7



Chapter 2 Preliminaries

learners, that is, (partial) computable functions. We present data to the learners
and write # for the pause symbol, that is, no information. Consequently, for any set
( ⊆ ℕ, we write (# B ( ∪ {#}. A text is then a total function ) : ℕ→ ℕ#. For any
text (or sequence) ) , we de�ne the content of ) as content() ) B range() ) \ {#}
and say that ) is a text of the language ! if content() ) = !. We write Txt for the
set of all texts and we write Txt(!) for the set of all texts of !. Furthermore, for any
= ∈ ℕ and any text ) ∈ Txt, we let ) [=] be the initial sequence of ) of length =,
that is,) [0] B n (the empty string) and, if = > 0,) [=] B () (0),) (1), . . . ,) (=−1)).
Additionally, we call the text (or sequence) listing all elements of a set � ⊆ ℕ in
ascending order and exactly once the canonical text (or canonical sequence) of �.
In case � is �nite, we list the pause symbol after the last element of � occurs in
the text. Lastly, for C, C ′ ∈ ℕ and �nite sets �, �′ ⊆ ℕ, we write (�, C) ⪯ (�′, C ′) if
and only if C ≤ C ′ and there exists a text ) ∈ Txt such that � = content() [C]) and
�′ = content() [C ′]).

2.2 Language Learning in the Limit

In this section, we discuss the language learning in the limit framework and with
it the formalisation of learning criteria we use. For the latter, we follow Kötz-
ing [Köt09]. An interaction operator V provides the learner with the information to
infer its hypotheses from. Formally, the interaction operator V takes a learnerℎ ∈ P
and a text ) ∈ Txt as input and outputs a (possibly partial) function ? . We call the
function ? the sequence of hypotheses. We consider the interaction operator Sd for
set-driven learning [WC80], providing the learners only with the set of elements to
base their conjecture on, Psd for partially set-driven learning [BB75; Sch84], where
the learners additionally get an iteration-counter, and G for Gold-style learning
[Gol67], where the learners receive full information on the order and amount of
elements presented. Formally, we have, for every 8 ∈ ℕ,

G(ℎ,) ) (8) = ℎ() [8]),

Psd(ℎ,) ) (8) = ℎ(content() [8]), 8),

Sd(ℎ,) ) (8) = ℎ(content() [8])).

In the case of Gold-style learning, we call ℎ() [8]) the conjecture, hypothesis or guess
ofℎ on) [8] and interpret it as theℎ() [8])-th computably enumerable set,ℎ() [8]) . As
we are mainly interested in the semantic output, we interchangeably call,ℎ() [8])

the conjecture, hypothesis or guess of ℎ on ) [8]. Analogous de�nitions hold
for ℎ(content() [8]), 8) and ℎ(content() [8])). We may refer to a V-learner ℎ in its
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starred form ℎ∗, that is, the G-learner simulating ℎ. For example, the starred form
of an Sd-learner ℎ is de�ned as, for every 8 ∈ ℕ, ℎ∗() [8]) = ℎ(content() [8])).

We formalise learning criteria as follows. To meet the criterion of explanatory
learning (Ex, Gold [Gol67]) the learner is expected to converge to a single, correct
hypothesis. We focus on a relaxation thereof: We expect the learner to be correct
from some point onwards. This is referred to as behaviourally correct learning
(Bc, Case and Lynes [CL82] and Osherson and Weinstein [OW82]) and allows the
learner to syntactically change its mind while outputting a semantically correct
guess. Formally, a restriction X is a predicate on a sequence of hypotheses ? and a
text ) ∈ Txt. For the mentioned criteria, we have

Ex(?,) ) ⇔ ∃=0 ∈ ℕ∀= ∈ ℕ, = ≥ =0 :,? (=) = content() ) ∧ ? (=) = ? (=0),

Bc(?,) ) ⇔ ∃=0 ∈ ℕ∀= ∈ ℕ, = ≥ =0 :,? (=) = content() ).

In this thesis, we consider further restrictions. In non-U-shaped learning (NU, Baliga
et al. [Bal+08]), learners may never discard a correct guess. Furthermore, for consist-
ent learning (Cons, Angluin [Ang80]), each hypothesis of the learners must contain
the information it is based on. We consider various monotonic restrictions [Jan91;
LZ93; Wie91]. For strongly monotone learning (SMon), the learner may not discard
elements present in previous guesses. Inmonotone learning (Mon), this applies only
to elements correctly inferred, that is, elements belonging to the target language.
For weakly monotone learning (WMon), the learners may not discard any elements
while their guess is consistent with the information provided. In cautious learning
(Caut, Osherson et al. [OSW82]), the learners may never conjecture guesses which
are proper subsets of previous guesses. Several relaxations thereof have been intro-
duced [KP16]. In in�nitely cautious (Caut∞) and �nitely cautious learning (CautFin),
cautiousness is demanded only on in�nite and �nite instances, respectively. An-
other relaxation requires the learners to never conjecture proper supersets of the
target language and is referred to as target-cautious learning (CautTar). For se-
mantically conservative learning (SemConv, Kötzing et al. [KSS17]), the learners
may not change a hypothesis while it is consistent with the data given and for
semantically witness-based learning (SemWb, Kötzing et al. [KSS17]), the learners
must justify each mind change they make. Formally, we have, for any sequence of
hypotheses ? and any text ) ∈ Txt,

NU(?,) ) ⇔ ∀8, 9, : ∈ ℕ :
(
8 ≤ 9 ≤ : ∧,? (8) =,? (:) = content() )

)
⇒

⇒,? (8) =,? ( 9),

Cons(?,) ) ⇔ ∀8 ∈ ℕ : content() [8]) ⊆,? (8),

9
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SMon(?,) ) ⇔ ∀8, 9 ∈ ℕ : 8 ≤ 9 ⇒,? (8) ⊆,? ( 9),

Mon(?,) ) ⇔ ∀8, 9 ∈ ℕ : 8 ≤ 9 ⇒ content() ) ∩,? (8) ⊆ content() ) ∩,? ( 9),

WMon(?,) ) ⇔ ∀8, 9 ∈ ℕ :
(
8 ≤ 9 ∧ content() [ 9]) ⊆,? (8)

)
⇒,? (8) ⊆,? ( 9),

Caut(?,) ) ⇔ ∀8, 9 ∈ ℕ :,? (8) ⊊,? ( 9) ⇒ 8 ≤ 9,

Caut∞(?,) ) ⇔ ∀8, 9 ∈ ℕ :
(
8 < 9 ∧,? ( 9) ⊊,? (8)

)
⇒,? ( 9) is �nite,

CautFin(?,) ) ⇔ ∀8, 9 ∈ ℕ :
(
8 < 9 ∧,? ( 9) ⊊,? (8)

)
⇒,? ( 9) is in�nite,

CautTar(?,) ) ⇔ ∀8 ∈ ℕ : ¬(content() ) ⊊,? (8)),

SemConv(?,) ) ⇔ ∀8, 9 ∈ ℕ :
(
8 ≤ 9 ∧ content() [ 9]) ⊆,? (8)

)
⇒,? (8) =,? ( 9),

SemWb(?,) ) ⇔ ∀8, 9 ∈ ℕ :
(
∃: ∈ ℕ : 8 < : ≤ 9 ∧,? (8) ≠,? (:)

)
⇒

⇒
(
content() [ 9]) ∩,? ( 9)

)
\,? (8) ≠ ∅.

We combine two restrictions X and X′ by intersecting them and denote this using
the juxtaposition XX′. With T we denote the predicate which is always true and
interpret it as absence of a learning restriction. If not stated otherwise, if we refer to
all restrictions, we mean all but Ex and Cons. Furthermore, with cautious variants

we mean Caut,CautTar,CautFin and Caut∞.

Finally, a learning criterion is a tuple (U, C, V, X) consisting of learning restric-
tions U and X , a set of admissible learners C, usually P or R, and an interaction
operator V . We denote this learning criterion as g (U)CTxtVX and omit C if it
equals P and the learning restrictions U or X in case they equal T. We say an
admissible learner ℎ ∈ C g (U)CTxtVX-learns a language ! if, for any text ) ∈ Txt,
we have U (V (ℎ,) ),) ) and, for all ) ∈ Txt(!), we have X (V (ℎ,) ),) ). Intuitively,
we require U to hold on any arbitrary text, while X needs to be true on texts
of the target language. We write g (U)CTxtVX (ℎ) for the class of all languages
the learner ℎ g (U)CTxtVX-learns and [g (U)CTxtVX] for the set containing, for all
ℎ′ ∈ C, all classes g (U)CTxtVX (ℎ′). We refer to [g (U)CTxtVX] as the learning power
of g (U)CTxtVX-learning or g (U)CTxtVX-learners.

We collect the existing results for behaviourally correct learning needed in this
thesis. It is known that partially set-driven learning is no restriction [Car+06; KR88].
On the other hand, set-driven learning is a restriction [Ful90].

▶ Theorem 2.1 ([Car+06; Ful90; KR88]). We have

[TxtSdBc] ⊊ [TxtPsdBc] = [TxtGBc] .

◀

Even stronger separations from set-driven learning hold [KSS17].

10
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▶ Theorem 2.2 ([KSS17]). We have

[TxtPsdNUMonBc] \ [TxtSdBc] ≠ ∅.

◀

In Gold-style behaviourally correct learning, non-U-shaped learning is restrict-
ive [Bal+08]. Due to partially set-driven and Gold-style learning coinciding [Car+06;
KR88], the analogous result holds for partially set-driven learning.

▶ Theorem 2.3 ([Bal+08; Car+06; KR88]). We have, for all V ∈ {G, Psd},

[TxtVNUBc] ⊊ [TxtVBc] .

◀

Furthermore, we know that monotone learning is a proper restriction but strictly
more powerful than strongly monotone learning [Jai+99]. Note that these separ-
ations are topological, that is, they do not rely on arguments from computability
theory [CK16b]. Furthermore, we note that the class of languages not learnable
by any monotone learner [Jai+99] is learnable by a weakly monotone (and non-U-
shaped) one.

▶ Theorem 2.4 ([Jai+99]). We have, for all V ∈ {G, Psd, Sd},

[TxtVSMonBc] ⊊ [TxtVMonBc] ⊊ [TxtVBc],

[TxtVWMonBc] \ [TxtVMonBc] ≠ ∅.

◀

Lastly, for any interaction operator, semantically conservative and semantically
witness-based learning coincide [KSS17]. Furthermore, weakly monotone learning
implies cautious learning [KSS17].

▶ Theorem 2.5 ([KSS17]). We have, for all V ∈ {G, Psd, Sd},

[TxtVSemWbBc] = [TxtVSemConvBc],

[TxtVWMonBc] ⊆ [TxtVCautBc] .

◀

11
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2.3 Normal Forms in Language Learning

Learners may have particular normal forms which are useful when studying them
mathematically. For example, proofs are simpli�ed if the considered learners are
total. However, this property cannot be expected in general. We discuss when it can
be assumed. We call a learning restriction semantic if conjectures may be replaced
with semantically equivalent ones without violating the restriction itself [Köt17;
KSS17]. Formally, a learning restriction X is semantic if, for any text ) ∈ Txt

and any sequences of hypotheses ?, ?′ which satisfy, for any = ∈ ℕ, that ? (=)↓
if and only if ?′(=)↓ and if ? (=)↓ then,? (=) = ,? ′(=) , we have that (?,) ) ∈ X

implies (?′,) ) ∈ X . Note that all restrictions considered in this work except Ex are
semantic. It is known that learning under semantic restrictions may be done with
total learners.

▶ Theorem 2.6 ([KSS17]). Let X be a semantic learning restriction and V an
interaction operator. Then, every TxtVXBc-learner may be assumed total. ◀

We also consider Bc-locking sequences which contain enough information for a
learner to infer the target language correctly and never change its mind semantically
regardless what information from the target language it is presented [Jai+99]. This is
a generalisation of locking sequences in the syntactic counterpart [BB75]. Formally,
for a language ! ⊆ ℕ and a Gold-style learner ℎ ∈ P, a sequence f ∈ !∗# is a
Bc-locking sequence for ℎ on ! if, for any g ∈ !∗# , we have that,ℎ(fg) = !. For
partially set-driven learners ℎ, we call a �nite set � ⊆ ℕ and C ∈ ℕ≥|� | a Bc-

locking information for ℎ on ! if for any (�′, C ′) ⪰ (�, C) with �′ ⊆ !, we have that
,ℎ(� ′,C ′) = !. Analogously, for set-driven learners ℎ, we call a �nite set � ⊆ ℕ a
Bc-locking set for ℎ on ! if, for any �nite �′ ⊆ ℕ, with � ⊆ �′ ⊆ !, we have that
,ℎ(� ′) = !. We use the term Bc-locking data to subsume all three concepts.

While it is known that every Bc-learner has a Bc-locking sequence on every
language it learns [BB75], there are learners and texts where no initial sequence
of the text is a Bc-locking sequence [BB75]. We call a learner ℎ ∈ P strongly

Bc-locking on a language ! if for each text ) ∈ Txt(!) there exists an = ∈ ℕ such
that ) [=] is a Bc-locking sequence for ℎ on !. We call ℎ strongly Bc-locking [KP16;
KS16; KSS17] if it is strongly Bc-locking on every language it learns. The transition
to partially set-driven and set-driven learning is immediate and, thus, omitted.
Synonymously, we say that a restriction g (U)CTxtVX allows for strongly Bc-locking

learning if every g (U)CTxtVX-learner may be assumed strongly Bc-locking. To
collect which learners are known to be strongly Bc-locking, we need the following
concept.

12
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All considered restrictions have in common that they allow for simulation on

equivalent text [KSS17]. Intuitively, a learner ℎ′ ∈ P seeing a text ) ∈ Txt may
simulate a learner ℎ ∈ P on a di�erent text ) ′ ∈ Txt for the same language
in the following way. The learner ℎ′ may use later and later hypotheses of ℎ
on ) ′, but always only hypotheses of ℎ which are based on the same data that is
already presented to ℎ′. Formally, a learning restriction X allows for simulation
on equivalent text if, for all texts ),) ′ ∈ Txt with content() ) = content() ′), all
sequences of hypotheses ? and all unbounded non-decreasing functions A : ℕ→ ℕ,
we have that X (?,) ′) and, for all = ∈ ℕ, content() [=]) = content() ′[A (=)]) implies
X (? ◦ A,) ). We now state which learners are known to be strongly Bc-locking.

▶ Theorem 2.7 ([KSS17]). The following learners are strongly Bc-locking.

1. Every Sd-learner is strongly Bc-locking.

2. Let X be a restriction which allows for simulation on equivalent text. Then,
every class of languages that can be TxtPsdXBc-learned can be learned so by
a strongly Bc-locking learner.

3. Let V be an interaction operator and let X ⊆ NU be a restriction. Then,
every class of languages that can be TxtVXBc-learned can be learned so by a
strongly Bc-locking learner. ◀

The theorem, in particular, states that, except for TxtGMonBc, TxtGCautBc,
TxtGCaut∞Bc, TxtGCautFinBc and TxtGCautTarBc, we may assume the learners
for all learning criteria considered in this work to be strongly Bc-locking. Through-
out this work, we will complete this list.

Consistency is also an important property which many semantic learners seem
to exhibit. We say that a learning restriction X allows for consistent Bc-learning

[KSS17] if, for any interaction operator V ∈ {G, Psd, Sd}, we have

[g (Cons)TxtVXBc] = [TxtVXBc] .

Intuitively, the learningmay be assumed to be consistent on arbitrary text. Note that
some of the discussed restrictions allow for consistent Bc-learning. The remaining
ones will be dealt with throughout this work.

▶ Theorem 2.8 ([KSS17]). The following restrictions allow for consistent Bc-
learning: T,CautTar,Mon, SMon,WMon, SemConv, SemWb. ◀
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3 Set-Driven Learning

In this chapter, we study set-driven behaviourally correct learning. It is based on three

di�erent papers, all of which are joint work with Timo Kötzing. In particular, in Sec-

tion 3.1 we focus on variations of cautious learning. This section includes results from

Doskoč and Kötzing [DK20]. Solely Lemma 3.2 stems from Doskoč and Kötzing [DK22].

Furthermore, in Section 3.2 we study semantically witness-based behaviourally correct

learning. Here, we include all results from Doskoč and Kötzing [DK21b]. Lastly, in

Section 3.3 we connect the results of the previous two sections, that is, Sections 3.1

and 3.2. This section is based on results from Doskoč and Kötzing [DK22].

In set-driven behaviourally correct learning, monotone learning is a restric-
tion, which, in turn, is strictly more powerful than strongly monotone learn-
ing [Jai+99]. Furthermore, it is known that semantically conservative and semantic-
ally witness-based learning coincide [KSS17]. To obtain results separating two
learning paradigms, classes of languages have been provided which can be learnt
respecting one learning paradigm but not the other. To show equalities between
two learning paradigms, one usually takes a learner following one paradigm and
then mimics what it learns while maintaining the other, desired restriction.

Throughout this chapter, we study various ways to mimic learning paradigms
and, in particular, learners. Popular approaches to do so in the setting of explanatory
learning involve searching for locking sequences. These sequences contain enough
information about the target language so that the learner can infer it correctly,
making them a valuable object of interest. In explanatory learning, one can deduce
that a sequence is not locking from the output of the learner. However, in behavi-
ourally correct learning, one cannot rule out a Bc-locking sequence (the semantic
pendant to locking sequences) from the learners (syntactic) output. Rather, one has
to consider the set enumerated by the program output by the learner. This raises
the need for di�erent searching strategies.

In Section 3.1, we study general approaches to do so, starting with the weak
forward veri�cation which we then extend to the strong forward veri�cation. Doing
so, we obtain interesting insights into the learners and learning paradigms. In
particular, we show that set-driven learners may be assumed target-cautious and
non-U-shaped at the same time. Searching for Bc-locking sequences includes look-
ing for future hypotheses. However, plenty of restrictions rather a�ect previous
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hypotheses. For example, in cautious learning, the current hypothesis must not
be a proper subset of any previously made hypothesis. In this case, we conduct a
backwards search and follow previous hypotheses rather than future ones. Com-
bined with properties obtained from the forward veri�cation, we make set-driven
behaviourally correct learners cautious.

In Section 3.2, we apply further variations of forward searches to study set-driven
behaviourally correct learning from the “other side”. We start with the presum-
ably weak semantically witness-based learning and show that it coincides with
(Gold-style) semantically conservative learning. We do so by providing step-wise
generalisations. In each of those, we apply custom search paradigms, combining
forward and backward searches. In contrast to Section 3.1, this is a more direct
approach as the methods chosen �t the problem at hand.

This chapter is concluded by Section 3.3, where we combine the used approaches
and obtained results. In particular, we bridge the gap between (target cautious
and non-U-shaped) set-driven behaviourally correct learning and semantically
witness-based learning. This shows that set-driven behaviourally correct learners
may be assumed semantically witness-based without loss of generality.

3.1 Forward Verification and Backwards Search

In this section, we study various techniques to mimic learning paradigms in be-
haviourally correct learning. In particular, we show that set-driven behaviourally
correct learning may be assumed to be

1. target-cautious and non-U-shaped or

2. cautious

without losing learning power,2 see Lemma 3.2 and Theorem 3.4, respectively. We
do so stepwise. For the further discussion, let ℎ ∈ R be a total learner, let ! ⊆ ℕ be
a target language and let f, g ∈ !∗# be �nite sequences thereof.
In general, searching for locking sequences for ℎ is a fruitful attempt in order

to attain the learning power of ℎ. While in explanatory learning, where syntactic
convergence is required, ℎ(f) ≠ ℎ(fg) implies that f cannot be a locking sequence
for ℎ on !, this does not hold true for the semantic counterpart. We study ways to
search for Bc-locking sequences. By doing so, we show that, amongst other useful
properties, Sd-learning is target-cautious and non-U-shaped in general. The Weak

2 Later, we show that set-driven behaviourally correct learners may be assumed semantically
witness-based, see Theorem 3.5. Note that this result implies all three mentioned restrictions.
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Algorithm 1:Weak Forward Veri�cation (WFV), ℎ| ∈ R

Parameter: An Sd-learner ℎ ∈ R.
Input: A �nite set � ⊆ ℕ.
Semantic Output:,ℎ| (�) =

⋃
8∈ℕ �8 .

Initialisation: �0 ← � .
1 for 8 = 0 to∞ do
2 G8 ← enum(ℎ(�), 8)
3 if G8 ∉ �8 then
4 for �′, � ⊆ �′ ⊆ �8 ∪ {G8} do
5 search for C ∈ ℕ such that �8 ∪ {G8} ⊆,

C
ℎ(� ′)

6 �8+1 ← �8 ∪ {G8}

Forward Veri�cation (WFV), see Algorithm 1, serves as a �rst step to search for
Bc-locking sets.
The intuition is the following. Given a �nite input � ⊆ !, WFV starts by

enumerating � . Now, at step 8 ∈ ℕ, let �8 be whatWFV has enumerated so far and
let G8 be the element newly enumerated by (the program) ℎ(�), see line 2. If � were
a Bc-locking set for ℎ on !, then, for �′ with � ⊆ �′ ⊆ �8 ∪ {G8}, every possible
next hypothesis ℎ(�′) would have to witness at least �8 ∪ {G8}, see lines 4 and 5. If
all of this is witnessed, chances that � is a Bc-locking set are still sustained, thus,
WFV enumerates G8 and continues with step 8 + 1.

As every Sd-learner is strongly Bc-locking, see Kötzing et al. [KSS17], the WFV
algorithm, upon enumerating the whole target language !, also has to enumerate
Bc-locking sets for ℎ on !. These sets, in the checking phase of theWFV, see lines 4
and 5, prevent the algorithm from enumerating more than the target language,
resulting in target-cautious learning.

▶ Lemma 3.1. We have

[g (Cons)TxtSdCautTarBc] = [TxtSdBc] .

◀

Proof. The inclusion [g (Cons)TxtSdCautTarBc] ⊆ [TxtSdBc] follows immediately.
For the other inclusion, let ℎ ∈ R be a Sd-learner. We show that TxtSdBc(ℎ) ⊆
g (Cons)TxtSdCautTarBc(ℎ|) for ℎ| ∈ R from Algorithm 1. Note that, due to the
initialisation, ℎ| is consistent on any input by de�nition. Now, let ! ∈ TxtSdBc(ℎ)
and ) ∈ Txt(!).
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First, we show that ! ∈ TxtSdBc(ℎ|). As ℎ is strongly Bc-locking, see Kötzing
et al. [KSS17], there exists =0 ∈ ℕ such that �0 B content() [=0]) is a Bc-locking
set for ℎ on !. We show that for every = ≥ =0 and � B content() [=]) we have
,ℎ| (�) = !. Since only G ∈,ℎ(�) = ! are considered for the enumeration, see line 2,
we get,ℎ| (�) ⊆ !. For the other direction, we show that the algorithm runs through
every step 8 ∈ ℕ successfully. Let �0 = � , and let 8 be the next step in Algorithm 1.
If G8 ∈ �8 , then step 8 is completed and G8 is enumerated into �8+1 ⊆ ,ℎ| (�) . In
the other case, we have G8 ∉ �8 . Since �8 ∪ {G8} is a �nite subset of,ℎ(�) = !, for
every �′, with (�0 ⊆)� ⊆ �′ ⊆ �8 ∪ {G8}(⊆ !),,ℎ(� ′) = ! will witness �8 ∪ {G8}
eventually, that is, there exists some C ∈ ℕ such that �8 ∪ {G8} ⊆,

C
ℎ(� ′)

. Thus, the

element G8 will be enumerated into �8+1 ⊆,ℎ| (�) , and step 8 is completed in this
case as well. So, every G ∈,ℎ(�) = ! will also be enumerated into,ℎ| (�) , and we
get,ℎ| (�) ⊇ !. Altogether, we have,ℎ| (�) = !, concluding this part of the proof.
To prove that ℎ| learns ! respecting CautTar, assume the opposite, namely the

existence of a �nite set �′′ ⊆ ! such that ! ⊊ ,ℎ| (� ′′) . Let G ∈ ,ℎ| (� ′′) \ ! be a
witness and let �0 be a Bc-locking set for ℎ on ! such that �′′ ⊆ �0 ⊆ !. Let 8 ∈ ℕ
be the step3 where �0 ∪ {G} is enumerated into,ℎ| (� ′′) , that is, �0 ∪ {G} ⊈ �8 and
�0∪{G} ⊆ �8+1. Then, by lines 4 and 5, for �

′
= �0, we have G ∈ �8+1 ⊆,ℎ(� ′) = !,

a contradiction. ■

In fact, we may apply the weak forward veri�cation (Algorithm 1) onto the
resulting learner another time and obtain an equally powerful learner which is both
target-cautious and non-U-shaped.

▶ Lemma 3.2. We have

[g (Cons)TxtSdCautTarNUBc] = [TxtSdBc] .

◀

Proof. The inclusion [g (Cons)TxtSdCautTarNUBc] ⊆ [TxtSdBc] is immediate.
For the other, let ℎ ∈ R be a learner and let L = TxtSdBc(ℎ). Applying a weak
forward search algorithm (Algorithm 1) we may assume ℎ to be target-cautious
and everywhere consistent, see Lemma 3.1. We show that, by applying the same
algorithm again, we get a learner which also NU-learns L.
Let ℎ| ∈ R be given as in Algorithm 1 with parameter ℎ. By Lemma 3.1, the

learner ℎ| TxtSdBc-learns L. We further remark that ℎ| remains target-cautious
and consistent as, in particular, ℎ is a Sd-learner. It remains to be shown that ℎ| is
also non-U-shaped. To that end, let ! ∈ L and assume there exists a �nite � ⊆ !

3 Note that G and G8 may di�er.
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with,ℎ| (�) = !. We show that for all �nite �′′, with � ⊆ �′′ ⊆ !, we have
,ℎ| (� ′′) = !.

We �rst show that � is a Bc-locking set for ℎ on !. For �nite �′ with � ⊆ �′ ⊆ !

and G ∈ ,ℎ| (�) = !, let 8 ∈ ℕ be the step4 in Algorithm 1 such that �′ ∪ {G}
is enumerated into,ℎ| (�) , that is, �

′ ∪ {G} ⊈ �8 and �′ ∪ {G} ⊆ �8+1. Then, as
� ⊆ �′ ⊆ �8+1 we have, by lines 4 and 5,

G ∈ �8+1 ⊆,ℎ(� ′) .

Thus, for each �nite �′ with � ⊆ �′ ⊆ ! we get for all G ∈ ! that G ∈,ℎ(� ′) . So
we have ! ⊆,ℎ(� ′) and, since ℎ is target-cautious, even ! =,ℎ(� ′) . Altogether, the
set � is a Bc-locking set for ℎ on !.
Now we show that for �nite �′′, with � ⊆ �′′ ⊆ !, the algorithm runs through

every step 8 ∈ ℕ successfully. This way, we obtain,ℎ| (� ′′) = ,ℎ(� ′′) = !. Let
�0 = �′′ and let 8 be the next step in Algorithm 1. If G8 ∈ �8 , step 8 is completed
successfully. Otherwise, the algorithm checks whether for each �nite �′, with
�′′ ⊆ �′ ⊆ !, we have some C ∈ ℕ such that �8 ∪ {G8} ⊆,

C
ℎ(� ′)

. As,ℎ(� ′) = ! and

as �8 ∪ {G8} is a �nite subset of !, such C will eventually be found. Thus, G8 will be
enumerated into �8+1 and, hence, into,ℎ| (� ′′) . This concludes the proof. ■

The WFV approach is extendable. While we wait for every possible hypo-
thesis ℎ(�′) to witness at least �8 ∪ {G8}, other elements could be witnessed as well,
that is, for the minimal C ∈ ℕ in line 5 of Algorithm 1 we have �8 ∪ {G8} ⊊,

C
ℎ(� ′)

.

We discuss how to exploit such elements in the search for Bc-locking sets. If � , and
thus every �′ ⊆ �8 ∪ {G8} as well, were Bc-locking sets, all elements in, C

ℎ(� ′)
must

be elements of the target language and, thus, every hypothesis ℎ(�′) also would
have to witness these elements. We capture the idea of extending the check from
Algorithm 1, lines 4 and 5, in the Strong Forward Veri�cation (SFV), see Algorithm 2,
lines 4 to 7. For later usage, we state the algorithm in a generalised form, accepting
any V-learner. Note that we omit using the starred notation of the considered
learners to ease readability.
The extended forward veri�cation yields useful properties. We gather these

in the next proposition, extending some which have been observed already by
Carlucci et al. [Car+06] and providing new ones.

▶ Proposition 3.3. Let V ∈ {G, Psd, Sd}. Given a learner ℎ ∈ R and with it the
learner ℎB ∈ R as built in Algorithm 2, the following properties hold.

(i) If ℎ is a V-learner, then ℎB is a V-learner which is consistent on arbitrary input.

4 Note that G and G8 may di�er.
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Chapter 3 Set-Driven Learning

Algorithm 2: Strong Forward Veri�cation (SFV), ℎB ∈ R

Parameter: A V-learner ℎ ∈ R.
Input: A �nite sequence f ⊆ ℕ

∗.
Semantic Output:,ℎB (f) =

⋃
8∈ℕ �8 .

Initialisation: �0 ← � .
1 for 8 = 0 to∞ do
2 G8 ← enum(ℎ(f), 8)
3 if G8 ∉ �8 then
4 for g′′ ∈ (�8 ∪ {G8})

≤8
# do

5 Bg ′′ ← min
{
B ∈ ℕ : �8 ∪ {G8} ⊆,

B
ℎ(fg ′′)

}
6 for g′ ∈ (�8 ∪ {G8})

≤8
# do

7 search for C ∈ ℕ such that
⋃

g ′′∈(�8∪{G8 })
≤8
#
,

Bg ′′

ℎ(fg ′′)
⊆, C

ℎ(fg ′)

8 �8+1 ← �8 ∪ {G8}

(ii) Let f0 be Bc-locking data for ℎ on some ! ⊆ ℕ. Then f0 is Bc-locking data
for ℎB on !.

(iii) For5 V ≠ G, target-cautious learning is preserved by the learner ℎB , that is,
we have that TxtVCautTarBc(ℎ) ⊆ TxtVCautTarBc(ℎB).

(iv) Let f ∈ ℕ∗ be a �nite sequence. If,ℎB (f) is in�nite, then,ℎB (f) =,ℎ(f) and f
is Bc-locking data for ℎ and ℎB on,ℎB (f) =,ℎ(f) .

(v) Let ! ∈ TxtVCautTarBc(ℎ) and let f0 be Bc-locking data for ℎB on !. Then f0
is Bc-locking data for ℎ on !.

(vi) Let ℎ, and thus ℎB , be Sd-learners. Let �0 be a Bc-locking set for ℎ on some
! ⊆ ℕ. Then, for � with either (a) � ⊆ �0 or (b) �0 ⊆ � ⊆ !, we have

�0 ⊆,ℎB (�) ⇒,ℎB (�) ⊆ !.

◀

Proof. We proceed to prove each of the statements.

(i) Let ℎ be a V-learner. As all inquiries to sequences occur within ℎ in its
starred form, namely ℎ(f) in line 2, ℎ(fg′′) in line 5 and ℎ(fg′′) and ℎ(fg′)

5 In Corollary 4.2 we see that the same holds true for V = G.
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Forward Verification and Backwards Search Section 3.1

in line 7, the learner ℎB requires the same form of information. Furthermore,
by de�nition, ℎB is consistent on arbitrary input. Altogether, ℎB is a V-learner
which is consistent on arbitrary input.

(ii) Let f0 be Bc-locking data for ℎ on some ! ⊆ ℕ and let f ∈ !∗# be such that
f0 ⊆ f . We show that,ℎB (f) = !. By de�nition,,ℎB (f) ⊆ ,ℎ(f) = !. Now,
let 8 ∈ ℕ be the current step in the algorithm and let G8 = enum(ℎ(f), 8).
Either G8 ∈ �8 , then this step is completed and G8 will be enumerated into �8+1.
Otherwise, for every g′′ ∈ (�8 ∪ {G8})

≤8
# , as �8 ∪ {G8} is a �nite subset of

! =,ℎ(fg ′′) , we �nd Bg ′′ ∈ ℕ such that �8 ∪ {G8} ⊆,
Bg ′′

ℎ(fg ′′)
. Then, again, for

every g′ ∈ (�8 ∪ {G8})
≤8
# we �nd C ∈ ℕ such that⋃

g ′′∈�≤8#

,
Bg ′′

ℎ(fg ′′)
⊆, C

ℎ(fg ′),

as the big union is a �nite subset of ! =,ℎ(fg ′) . Thus, G8 will be enumerated
into �8+1. As every G ∈,ℎ(f) = ! will be enumerated into,ℎB (f) , we also get
! =,ℎ(f) ⊆,ℎB (f) , concluding the proof.

(iii) For V ≠ G, let ! ∈ TxtVCautTarBc(ℎ). First, we show thatℎB fromAlgorithm 2
preserves TxtVBc-learning, that is, ! ∈ TxtVBc(ℎB). To do so, let ) ∈ Txt(!).
As ℎ is strongly Bc-locking, see Kötzing et al. [KSS17], there exists =0 ∈ ℕ
such that) [=0] is Bc-locking data for ℎ on !. By Proposition 3.3 (ii), ) [=0] is
also Bc-locking data for ℎB . Thus, TxtVBc(ℎ) ⊆ TxtVBc(ℎB).

To show that ℎB also preserves CautTar while learning !, assume the opposite,
that is, there exists f ∈ !∗# such that ! ⊊ ,ℎB (f) . Then, by de�nition, ! ⊊
,ℎB (f) ⊆,ℎ(f) , contradicting the target cautiousness of ℎ.

(iv) Let,ℎB (f) be in�nite. First, we show that,ℎB (f) = ,ℎ(f) . By de�nition,
,ℎB (f) ⊆,ℎ(f) . Now, assume there exists G ∈,ℎ(f) \,ℎB (f) , and also assume
that G is the �rst such with respect to enum(ℎ(f), .). As G ∉ ,ℎB (f) , the
enumeration must be stuck either at �nding a minimal B ∈ ℕ in lines 4 and 5
or in the check in lines 6 and 7, and thus,ℎB (f) must be �nite, a contradiction.

For the second property, we �rst show that f is Bc-locking data for ℎ on
! B,ℎB (f) . Assume the existence of some g̃ ∈ !∗# such that,ℎ(fg̃) ≠ !. We
distinguish between the following two cases.

1.C.: There exists G ∈ ,ℎ(fg̃) \ !. Let C0 ∈ ℕ be such that G ∈ , C0
ℎ(fg̃)

. Let

80 ∈ ℕ be the step such that |�80 | > |,
C0
ℎ(fg̃)
|, �80 ⊇ content(fg̃) as
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Chapter 3 Set-Driven Learning

well as g̃ ∈ (�80+1)
≤80
# . Such 80 exists as |�8 | increases to in�nity (with

increasing 8) and ! = ,ℎB (f) ⊇ content(fg̃). As the check in lines 6

and 7 must be successful, we have for g′ = Y ∈ (�80+1)
≤80
# that

(G ∈)
⋃

g ′′∈(�80+1)
≤80
#

,
Bg ′′

ℎ(fg ′′)
⊆,ℎ(fg ′) .

The element G is in the union, as |�80 | > |,
C0
ℎ(fg̃)
| implies Bg̃ > C0, and,

thus, we have G ∈, Bg̃
ℎ(fg̃)

. Altogether, we get G ∈,ℎ(f) = !, a contradic-
tion.

2.C.: There exists G ∈ !\,ℎ(fg̃) . Let 80 ∈ ℕ be the step6 such that g̃ ∈ (�80+1)
≤80
#

and content(fg̃) ∪ {G} ⊆ �80+1. Then, by lines 6 and 7 in the SFV, for
g′ = g̃ ∈ (�80+1)

≤80
# we have

(G ∈ �80+1 ⊆)
⋃

g ′′∈(�80+1)
≤80
#

,
Bg ′′

ℎ(fg ′′)
⊆,ℎ(fg ′) .

This yields G ∈,ℎ(fg̃) , a contradiction.

Altogether, we get that f is Bc-locking data for ℎ on,ℎB (f) = ,ℎ(f) . By
Proposition 3.3 (ii), it also is for ℎB .

(v) Let ! ∈ TxtVCautTarBc(ℎ) and let f0 be Bc-locking data for ℎB on !. Assume
that f0 is no Bc-locking data for ℎ on !, that is, there exists some g′ ∈ !∗#
such that,ℎ(fg ′) ≠ !. As ! = ,ℎB (fg ′) ⊆ ,ℎ(fg ′) , we get ! ⊊ ,ℎ(fg ′) , a
contradiction to ℎ being CautTar.

(vi) Let �0 be a Bc-locking set for ℎ on !. For � , with (b) �0 ⊆ � ⊆ !, we
have,ℎB (�) ⊆,ℎ(�) = ! by de�nition. For � , with (a) � ⊆ �0, assume the
existence of some G ∈,ℎB (�) \ !. Let 80 ∈ ℕ be the step6 of Algorithm 2 such
that �0 ∪ {G} ⊈ �80 and �0 ∪ {G} ⊆ �80+1. Then, by lines 6 and 7, for �′ = �0,
we have G ∈

⋃
�⊆� ′′⊆�80+1

,
B� ′′

ℎ(� ′′)
⊆,ℎ(� ′) = !, a contradiction. ■

So far, we have seen various ways to search for Bc-locking sequences. While this
search maintains Bc-learning and provides interesting properties, cautious learning
seems to be unattainable this way. We establish a way to solve this problem. As
in cautious learning preceding hypotheses remain important, we include these
into the enumeration. Recall that ℎ is a learner and � is some �nite input. We

6 Note that G and G80 may di�er.
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Algorithm 3: Backwards Search (BS), ℎ1 ∈ R

Parameter: An Sd-learner ℎ ∈ R.
Input: A �nite set � ⊆ ℕ.
Semantic Output:,ℎ1 (�) =

⋃
8∈ℕ �8 .

Initialisation: �0 ← � .
1 for 8 = 0 to∞ do
2 if ∃�′ ⊆ � :, 8

ℎ(� ′)
⊋ �8 then

3 for the �rst such �′: �8+1 ←, 8
ℎ(� ′)

4 else
5 �8+1 ← �8

start by enumerating �0 = � . At step 8 ∈ ℕ, let �8 be the elements enumerated
so far. It seems like a promising idea to check whether for some �′ ⊆ � the
output of a previous hypothesis ℎ(�′) exceeds what is enumerated so far, that is,
whether we have �8 ⊆,

8
ℎ(� ′)

. If so, for the �rst such occurring hypothesis ℎ(�′),

enumerate, 8
ℎ(� ′)

and proceed with the next step. This idea is captured in the

Backwards Search (BS), see Algorithm 3.

Unfortunately, in general, this approach does not provide cautious learning. This
is due to more information � yielding more possible previous hypotheses ℎ(�′)
which can lead the strategy from Algorithm 3 to wrong hypotheses. However, by
combining the SFV and the BS and by exploiting Proposition 3.3 (iv) and (vi), we
can circumvent this problem.

▶ Theorem 3.4. We have

[g (Cons)TxtSdCautBc] = [TxtSdBc] .

◀

Proof. The inclusion [g (Cons)TxtSdCautBc] ⊆ [TxtSdBc] follows immediately.
For the other direction, let ℎ ∈ R be a total learner and let ! ∈ TxtSdBc(ℎ), that
is, the language ! can be TxtSdBc-learned by ℎ. By Lemma 3.1, we may assume
! ∈ TxtSdCautTarBc(ℎ). By Proposition 3.3 (iii), we may even assume the learning
to be done by ℎB ∈ R from Algorithm 2, that is, ! ∈ TxtSdCautTarBc(ℎB). This
way, we are allowed to exploit Proposition 3.3 further. Now, let ℎ1 ∈ R be as in
Algorithm 3 with ℎB as parameter. We proceed to show ! ∈ TxtSdConsCautBc(ℎ1)

step by step.
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Chapter 3 Set-Driven Learning

First, we show that ! ∈ TxtSdBc(ℎ1). Let ) ∈ Txt(!). For �nite !, let =0 ∈ ℕ

be such that content() [=0]) = !. Then, for all = ≥ =0, we get,ℎ1 (content() [=])) = !

as,ℎ1 (content() [=])) starts by enumerating ! and never enumerates any more ele-
ments as ¬

(
∃�′ ⊆ ! :,ℎB (� ′) ⊋ !

)
due toℎB beingCautTar. For in�nite !, let=0 ∈ ℕ

be such that �0 B content() [=0]) is a Bc-locking set for ℎB on !, see Kötzing et
al. [KSS17]. Let = ≥ =0 and � B content() [=]). We study the candidates for a pos-
sible enumeration, that is, �′ ⊆ � , with,ℎB (� ′) ⊇ � . We may have the following
two situations.

(I) Either,ℎB (� ′) is in�nite and, due to
7 Proposition 3.3 (iv), equal to !, or

(II) ,ℎB (� ′) is �nite and, due to Proposition 3.3 (vi), a subset of !.

Note that, as � ⊇ �0, there exists such �′ ful�lling Condition (I). As these are the
only candidates to be enumerated into,ℎ1 (�) , we observe,ℎ1 (�) ⊆ !.

To prove ! ⊆,ℎ1 (�) , assume the opposite, that is, there exists some G ∈ !\,ℎ1 (�) .
For each �′ ⊆ � with � ⊆,ℎB (� ′) de�ne B� ′ ∈ ℕ in the following way. Either, if G
is enumerated into,ℎB (� ′) , then B� ′ is the last step before that very enumeration.
Or, if G is never to be enumerated into,ℎB (� ′) , then,ℎB (� ′) must be �nite as it
cannot be equal to !, see Condition (I). In this case, B� ′ will be the �rst step where
the enumeration of,ℎB (� ′) is �nished. Formally, we de�ne

B� ′ B



max

{
B ∈ ℕ : G ∉, B

ℎB (� ′)

}
, if G ∈,ℎB (� ′),

min
{
B ∈ ℕ :, B

ℎB (� ′)
=,ℎB (� ′)

}
, otherwise.

So, no later than at step max{B� ′ | �
′ ⊆ �∧� ⊆,ℎB (� ′)} the enumeration of,ℎ1 (�)

has to be �nished, as any further enumeration would result in G being an element
of,ℎ1 (�) . However, then,ℎ1 (�) is a �nite subset of !. Since there exists at least
one �′ ful�lling Condition (I), the enumeration would have to continue, and thus
enumerate G into,ℎ1 (�) , a contradiction. Altogether, we have,ℎ1 (�) = ! and thus
TxtSdCautTarBc(ℎB) ⊆ TxtSdBc(ℎ1).

Next, we show that ℎ1 is Caut when learning !. In order to do so, assume the
opposite, that is, there exist �1, �2 with �1 ⊆ �2 ⊆ ! such that,ℎ1 (�1) ⊋,ℎ1 (�2) .
For �nite,ℎ1 (�2) , let 80 ∈ ℕ be the step where,ℎ1 (�2) is completely enumerated,

that is,, 80
ℎ1 (�2)

=,ℎ1 (�2) . As,ℎ1 (�1) ⊋,ℎ1 (�2) , there also must exist some 81 ≥ 80

such that, 81
ℎ1 (�1)

⊋,
80
ℎ1 (�2)

. Without loss of generality, we may assume that 81 is

7 By Proposition 3.3 (iv), � ′ must be a Bc-locking set for ℎB on,ℎB (�′) . Now, as � ⊇ �0 and
� ⊇ � ′, � must be both a Bc-locking set for ℎB on ! and,ℎB (�′) , respectively. Thus, ! =,ℎB (�′) .
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also the point where, 81
ℎ1 (�1)

got enumerated, that is,, 81
ℎB (� ′)

=, 81
ℎ1 (�1)

for some

�′ ⊆ �1. But now, since �
′ ⊆ �2 and,

81
ℎB (� ′)

=, 81
ℎ1 (�1)

⊋, 81
ℎ1 (�2)

, the enumeration

of,ℎ1 (�2) would have to continue, a contradiction.

If,ℎ1 (�2) is in�nite, then there exists �′′ ⊆ �2 such that,ℎB (� ′′) = ,ℎ1 (�2) is
in�nite and thus, by Proposition 3.3 (iv), �′′ is a Bc-locking set for ℎB on,ℎB (� ′′) .
Analogously, since,ℎ1 (�1) ⊋,ℎ1 (�2) ,,ℎ1 (�1) is in�nite too, and there also exists
some �′ ⊆ �1 such that,ℎB (� ′) = ,ℎ1 (�1) and thus �′ is a Bc-locking set for ℎB
on,ℎB (� ′) . However, �2 ⊆ ,ℎB (� ′′) ⊊ ,ℎB (� ′) and �2 is a superset of both �′

and �′′. Hence, �2 is a Bc-locking set for ℎB on two di�erent languages,ℎB (� ′)

and,ℎB (� ′′) , a contradiction.

Since ℎ1 is g (Cons) by de�nition, we get ! ∈ g (Cons)TxtSdCautBc(ℎ1). Thus,
the proof is concluded. ■

3.2 Semantically Witness-Based Learning

In this section, we consider the problem of generalising set-driven behaviour-
ally correct learners from below. In particular, we study semantically witness-
based learners and show that g (ConsSemWb)TxtSdBc-learners are as powerful as
TxtGSemConvBc ones (Theorem 3.5). We prove this result stepwise. We start by
showing that each TxtGSemConvBc-learner may be assumed semantically conser-
vative on arbitrary text (Theorem 3.6). Afterwards, we prove that such learners
base their guesses solely on the content given (Theorem 3.7). Lastly, we observe
that they remain equally powerful when being globally semantically witness-based
and consistent (Theorem 3.8).

▶ Theorem 3.5. We have

[g (ConsSemWb)TxtSdBc] = [TxtGSemConvBc] .

◀

We make a TxtGSemConvBc-learner ℎ ∈ R globally semantically conservative
�rst.

▶ Theorem 3.6. We have

[g (SemConv)TxtGBc] = [TxtGSemConvBc] .

◀
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Proof. The inclusion [g (SemConv)TxtGBc] ⊆ [TxtGSemConvBc] is immediate.
For the other direction, let ℎ ∈ R be a consistent learner [KSS17] and let L =

TxtGSemConvBc(ℎ). We provide a learner ℎ′ ∈ R which g (SemConv)TxtGBc-
learns L.

We do so with the help of an auxiliary g (SemConv)TxtGBc-learner ℎ̂ ∈ R, which
only operates on sequences without repetitions or pause symbols. For convenience,
we subsume these using the term duplicates. When ℎ′ is given a sequence with
duplicates, say (7, 1, 5, 1, 4, #, 3, 1), it mimics ℎ̂ given the same sequence without
duplicates, that is, ℎ′(7, 1, 5, 1, 4, #, 3, 4) = ℎ̂(7, 1, 5, 4, 3). First, note that this map-
ping of sequences preserves the ⊆-relation on sequences, thus making ℎ′ also a
g (SemConv)-learner. Furthermore, it su�ces to focus on sequences without du-
plicates since consistent, semantically conservative learners cannot change their
mind when presented a datum they have already witnessed (or a pause symbol).
Thus, ℎ̂ will be presented su�cient information for the learning task, which then
again is transferred to ℎ′. With this in mind, we only consider sequences without
duplicates, that is, without repetitions or pause symbols, for the entirety of this
proof. Sequences where duplicates may potentially still occur (for example when
looking at the initial sequence of a text) are also replaced as described above. To
ease notation, given a set�, we write S(�) for the subset of�∗# where the sequences

do not contain duplicates. Now, we de�ne the auxiliary learner ℎ̂.

Consider the learner ℎ̂ as in Algorithm 4 with parameter ℎ. Given some input
sequence f ∈ ℕ∗, the intuition is the following. Once ℎ̂, on any previous sequence
f′ ⊆ f , is consistent with the currently given information content(f), the learner
only enumerates the same as such hypotheses (lines 2 to 4). While no such hypo-
thesis is found, ℎ̂ does a forward search (lines 5 to 9) and only enumerates elements
if all visible future hypotheses also witness these elements. As already discussed, ℎ̂
operates only on sequences without repetitions or pause symbols, thus making it
possible to check all necessary future hypotheses.

First we show that for any ! ∈ L and any ) ∈ Txt(!) we have, for = ∈ ℕ,

,
ℎ̂() [=])

⊆,ℎ() [=]) . (3.1)

Note that by our assumption, while the (in�nite) text ) may contain duplicates,
the (�nite) sequence ) [=] does not. Now, we show Equation (3.1) by induction
on = ∈ ℕ. The case = = 0 follows immediately. Assume Equation (3.1) holds up
to =. As content() [= + 1]) ⊆ ,ℎ() [=+1]) by consistency of ℎ and as, for =′ ≤ =,
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Algorithm 4: The auxiliary g (SemConv)-learner ℎ̂ ∈ R.

Parameter: A TxtGSemConv-learner ℎ ∈ R.
Input: A �nite sequence f ∈ S(ℕ).
Initialisation: C ′← 0, �0 ← content(f) and, for all C > 0, �C ← ∅.

1 for C = 0 to∞ do
2 if ∃f′ ⊊ f : content(f) ⊆, C

ℎ̂(f ′)
then

3 O′C ←
{
f′ ⊊ f : content(f) ⊆, C

ℎ̂(f ′)

}
4 �C+1 ← �C ∪

⋃
f ′∈O ′C

, C

ℎ̂(f ′)

5 else if ∀f′ ⊊ f : content(f) ⊈, C
ℎ(f ′)

then

6 ( (f, C ′) ← S

(
, C ′

ℎ(f)
\ content(f)

)
7 if ∀g ∈ ( (f, C ′) :

⋃
g ′∈( (f,C ′),

C ′

ℎ(fg ′)
⊆, C

ℎ(fg)
then

8 �C+1 ← �C ∪,
C ′

ℎ(f)

9 C ′← C ′ + 1

10 else
11 �C+1 ← �C

,ℎ() [=′]) =,ℎ() [=+1]) whenever content() [= + 1]) ⊆,ℎ() [=′]) , we get

,
ℎ̂() [=+1]) ⊆

⋃
=′≤=,

content() [=+1])⊆,
ℎ̂ () [=′ ])

,
ℎ̂() [=′])

∪,ℎ() [=+1]) ⊆,ℎ() [=+1]) .

The �rst inclusion follows as the big union contains all previous hypotheses found
in the �rst if-clause (lines 2 to 4) and as,ℎ() [=+1]) contains all elements possibly
enumerated by the second if-clause (lines 5 to 9). Note that the latter also contains
content() [= + 1]), thus covering the initialisation. The second inclusion follows
by the induction hypothesis and semantic conservativeness of ℎ.

We continue by showing that ℎ̂ TxtGBc-learns L. To that end, let ! ∈ L and
) ∈ Txt(!). We distinguish the following two cases.

1.C.: ! is �nite. Then there exists=0 ∈ ℕwith content() [=0]) = !. Let= ≥ =0. Asℎ
is SemConv and consistent, we have ! =,ℎ() [=]) . By Equation (3.1), we have

! =,ℎ() [=]) ⊇,ℎ̂() [=])
and, as ℎ̂ is consistent,,

ℎ̂() [=])
⊇ content() [=]) = !.

Altogether we have,
ℎ̂() [=])

= ! as required.
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2.C.: ! is in�nite. Let =0 ∈ ℕ be minimal such that,ℎ() [=0]) = !. Then, as ℎ is
semantically conservative, ) [=0] is a Bc-locking sequence for ℎ on ! and we
have

∀8 < =0 : content() [=0]) ⊈,ℎ() [8]) .

Thus, elements enumerated by,
ℎ̂() [=0])

cannot be enumerated by the �rst
if-clause (lines 2 to 4) but only by the second one (lines 5 to 9). We show
,

ℎ̂() [=0])
= !. The ⊆-direction follows immediately from Equation (3.1). For

the other direction, let C ′ ∈ ℕ be the current step of enumeration and let

( () [=0], C
′) = S

(
, C ′

ℎ() [=0])
\ content() [=0])

)
.

As ) [=0] is a Bc-locking sequence, we have, for all g ∈ ( () [=0], C
′),⋃

g ′∈( () [=0],C ′)

, C ′

ℎ() [=0])⌢g ′ ⊆,ℎ() [=0]⌢g) = !.

Thus, at some step C ∈ ℕ, �C+1 is set to,
C ′

ℎ() [=0])
and then the enumeration

continues with C ′ + 1. In the end we have ! ⊆ ,
ℎ̂() [=0])

and, altogether,
! =,

ℎ̂() [=0])
.

We now show that, for any = > =0, ! = ,
ℎ̂() [=])

holds. Note that at some
point content() [=]) ⊆,

ℎ̂() [=0])
will be witnessed. Thus,,

ℎ̂() [=])
will enu-

merate the same as ,
ℎ̂() [=0])

= !, and it follows that ! ⊆ ,
ℎ̂() [=])

. By
Equation (3.1),,

ℎ̂() [=])
will not enumerate more than,ℎ() [=]) = !, that is,

,
ℎ̂() [=])

⊆,ℎ() [=]) = !, concluding this part of the proof.

It remains to be shown that ℎ̂ is SemConv on arbitrary text) ∈ Txt. The problem
is that, when a previous hypothesis becomes consistent with information currently
given, the learner may have already enumerated incomparable data in its current
hypothesis. This is prevented by closely monitoring the time of enumeration,
namely by waiting until the enumerated data will certainly not cause such problems.
We prove that ℎ̂ is g (SemConv) formally. Let =, =′ ∈ ℕ be such that = < =′ and
content() [=′]) ⊆,

ℎ̂() [=])
. We show that,

ℎ̂() [=])
=,

ℎ̂() [=′])
by separately looking

at each inclusion.

⊆: The inclusion,
ℎ̂() [=])

⊆,
ℎ̂() [=′])

follows immediately since by assumption
content() [=′]) ⊆ ,

ℎ̂() [=])
, meaning that at some point the �rst if-clause

(lines 2 to 4) will �nd ) [=] as a candidate and then,
ℎ̂() [=′])

will enumer-
ate,

ℎ̂() [=])
.
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⊇: Assume there exists G ∈,
ℎ̂() [=′])

\,
ℎ̂() [=])

. Let G be the �rst such enumerated
and let CG ∈ ℕ be the step of enumeration with respect to ℎ() [=′]), that is,
G ∈ , CG

ℎ() [=′])
but G ∉ , CG−1

ℎ() [=′])
. Furthermore, let Ccontent ∈ ℕ be the step

where content() [=′]) ⊆,
ℎ̂() [=])

is witnessed for the �rst time. Now, by the

de�nition of ℎ̂, we have

,
ℎ̂() [=′])

⊆,
Ccontent−1
ℎ() [=′])

∪,
ℎ̂() [=])

,

as,
ℎ̂() [=′])

enumerates at most, Ccontent−1
ℎ() [=′])

until it sees the consistent prior

hypothesis, namely ℎ̂() [=]). This happens exactly at step Ccontent−1, at which
the set,

ℎ̂() [=′])
stops enumerating elements from,

Ccontent−1
ℎ() [=′])

and continues

to follow,
ℎ̂() [=])

. Now, observe that CG < Ccontent since G ∈ ,
ℎ̂() [=′])

but
G ∉,

ℎ̂() [=])
. Let

( () [=], Ccontent) = S

(
,

Ccontent
ℎ() [=])

\ content() [=])
)
.

But then, in order for,
ℎ̂() [=])

to enumerate content() [=′]) via the second
if-clause (lines 5 to 9), that is, to get content() [=′]) ⊆,

ℎ̂() [=])
, we witness

G ∈
⋃

g ′∈( () [=],Ccontent)

,
Ccontent
ℎ() [=]⌢g ′)

⊆,
ℎ̂() [=])

.

This contradicts G ∉,
ℎ̂() [=])

, concluding the proof. ■

This result proves that ℎ may be assumed semantically conservative on arbitrary
text. Next, we show that ℎ does not rely on the order or amount of information
given.

▶ Theorem 3.7. We have

[g (SemConv)TxtSdBc] = [g (SemConv)TxtGBc] .

◀

Proof. Let ℎ ∈ R be a learner and L = g (SemConv)TxtGBc(ℎ). We may assume ℎ
to be globally consistent, see Kötzing et al. [KSS17]. We provide a learner ℎ′ ∈ R
which g (SemConv)TxtSdBc-learns L. To that end, we introduce the following
auxiliary notation used throughout this proof. For each �nite set � ⊆ ℕ and each
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G ∈ ℕ, let f� be the canonical sequence of � and

3 B max(�),

�<G B {~ ∈ � | ~ < G}.

Note that the de�nition of �<G can be extended to ≤, > and ≥ as well as in�nite
sets in a natural way. Now, let ℎ′ ∈ R be such that, for each �nite set � ⊆ ℕ,

,ℎ′(�) = � ∪
(
,ℎ(f� )

)
>3
∪
{
G ∈

(
,ℎ(f� )

)
<3

: � ∪ {G} ⊆,ℎ(f (�<G ) )

}
.

Intuitively, ℎ′(�) simulates ℎ assuming it got the information in the canonical order,
that is, ℎ′(�) simulates ℎ(f�). All elements G ∈ ,ℎ(f� ) such that G > 3 can be
enumerated, as any later, consistent hypothesis will do so as well. If G < 3 , then
we check whether the learner ℎ given the canonical sequence up to G is consistent
with � ∪ {G}, that is, whether � ∪ {G} ⊆,ℎ(f (�<G ) )

. If so, we enumerate G as it will
be done by the previous hypotheses as well. Note that, for each �nite � ⊆ ℕ, we
have

,ℎ′(�) ⊆,ℎ(f� ) . (3.2)

We proceed by proving that ℎ′ g (SemConv)TxtSdBc-learns L. First, we show
the TxtSdBc-convergence. The idea here is to �nd a Bc-locking sequence of the
canonical text. Doing so ensures that even if elements are shown out of order they
will be enumerated as ℎ will not make a mind change and thus the consistency
condition will be observed. To that end, let ! ∈ L. We distinguish whether ! is
�nite or not.

1.C.: ! is �nite. We show that ,ℎ′(!) = !. By de�nition of ℎ′, we have ! ⊆

,ℎ′(!) . For the other inclusion, note that as ℎ is consistent and semantically
conservative (which, in particular, implies it being target-cautious), we have
that ,ℎ(f!) = !. Then, by Equation (3.2), we have ,ℎ′(!) ⊆ ,ℎ(f!) = !,
concluding this case.

2.C.: ! is in�nite. Let )2 be the canonical text of ! and let f0 be a Bc-locking
sequence for ℎ on )2 . Such a Bc-locking sequence exists as ℎ is strongly
Bc-locking, see Kötzing et al. [KSS17, Thm. 7]. Let �0 B content(f0). For
any �nite input � ⊆ ! such that � ⊇ �0, we show that,ℎ′(�) = !. By
Equation (3.2), we get,ℎ′(�) ⊆ ,ℎ(f� ) = !. To show ! ⊆ ,ℎ′(�) , let G ∈ !.
We distinguish the relative position of G and 3 .

G > 3 : In this case we have G ∈,ℎ′(�) by de�nition of ℎ′.
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G ≤ 3 : In this case either G ∈ � and we immediately get G ∈,ℎ′(�) , or we have
to check whether � ∪ {G} ⊆,ℎ(f (�<G ) )

. Since f0 is an initial segment of
the canonical text of !, it holds that G > max(content(f0)) and, thus, we
get f0 ⊆ f(�<G ) . Now,ℎ(f (�<G ) )

= !, meaning that � ∪ {G} ⊆,ℎ(f (�<G ) )

will be observed at some point in the computation. Thus, G ∈,ℎ′(�) .

Altogether, we get,ℎ′(�) = ! and thus TxtSdBc-convergence. It remains to be
shown that ℎ′ is g (SemConv). Let two �nite sets �′, �′′ with �′ ⊆ �′′ and �′′ ⊆

,ℎ′(� ′) be given. The trick here is that, upon checking for consistency with elements
shown out of order, the learner has to check the same, minimal sequence regardless
whether the input is �′ or �′′. We proceed with the formal proof. Therefore, we
expand the initially introduced notation of this proof. For any G ∈ ℕ de�ne

f′ B f� ′,

3′ B max(�′),

f′
<G B f(� ′

<G )
.

Analogously, we use f′′, 3′′ and f′′
<G when �′′ is the underlying set. First, we show

that,ℎ(f ′) =,ℎ(f ′′) . Since,ℎ′(� ′) enumerates �′′, that is, �′′ ⊆,ℎ′(� ′) , we have
for all ~ ∈ (�′′ \ �′)<3 ′ that �

′ ∪ {~} ⊆,ℎ(f ′
<~)

by de�nition of ℎ′. Thus, we have

,ℎ(f ′
<~)

=,ℎ(f ′) . (3.3)

Note that, if (�′′ \ �′)<3 ′ = ∅, then f′
<3 ′+1

= f′. Thus, Equation (3.3) also holds for

< B

{
min(�′′

<3 ′
\ �′), if �′′

<3 ′
\ �′ ≠ ∅,

3′ + 1, otherwise.

Furthermore, it holds true that for any G ≤ < we have

f′
<G = f′′

<G . (3.4)

By Equations (3.2) and (3.3), we have �′′ ⊆ ,ℎ′(� ′) ⊆ ,ℎ(f ′) = ,ℎ(f ′
<<)

. As, by
Equation (3.4), f′

<< = f′′
<< ⊆ f′′ and ℎ is g (SemConv), we get

,ℎ(f ′) =,ℎ(f ′′) . (3.5)

We conclude the proof by showing that ,ℎ′(� ′) = ,ℎ′(� ′′) . We check each
direction separately by checking every possible position of an element, which is a
candidate for enumeration, relative to the given information �′ and �′′.
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⊇: Let G ∈,ℎ′(� ′′) . For G ∈ �
′′ we have G ∈,ℎ′(� ′) by assumption. Otherwise,

by Equations (3.2) and (3.5), we get G ∈,ℎ(f ′) . Thus, G will be considered in
the enumeration of,ℎ′(� ′) . We distinguish the relation between G and 3′.

G >3′: In this case G ∈ (,ℎ(f ′))>3 ′ ⊆,ℎ′(� ′) .

G <3′: As 3′ ≤ 3′′ and since G is enumerated into,ℎ′(� ′′) , we have �
′′ ∪ {G} ⊆

,ℎ(f ′′
<G )

. We, again, distinguish the relative position of G and<.

G <<: We have

�′ ∪ {G} ⊆ �′′ ∪ {G} ⊆,ℎ(f ′′
<G )

Eq. (3.4)
= ,ℎ(f ′

<G )
.

<<G <3′: We use ℎ being g (SemConv) (marked by (∗)) and obtain

�′ ∪ {G} ⊆ �′′ ∪ {G} ⊆,ℎ(f ′′
<G )
(∗)
= ,ℎ(f ′′)

Eq. (3.5)
= ,ℎ(f ′)

Eq. (3.3)
=

Eq. (3.3)
= ,ℎ(f ′

<<)
(∗)
= ,ℎ(f ′

<G )
.

In both cases the checks pass and, thus, G ∈,ℎ′(� ′) .

Altogether, we have,ℎ′(� ′′) ⊆,ℎ′(� ′) .

⊆: Let G ∈,ℎ′(� ′) . For G ∈ �
′′ we have G ∈,ℎ′(� ′′) by de�nition of ℎ′. Other-

wise,

G ∈ �′′ ∪ {G} ⊆,ℎ′(� ′) ⊆,ℎ(f ′)
Eq. (3.5)
= ,ℎ(f ′′) .

Thus, G will be considered in the enumeration of,ℎ′(� ′′) . We now distinguish
between the possible relations of G and 3′′.

G >3′′: In this case G ∈,ℎ′(� ′′) by de�nition of ℎ′.

G <3′′: We show that �′′∪ {G} ⊆,ℎ(f ′′
<G )

and, thus, G is enumerated by,ℎ′(� ′′) .

G < <: We have

�′′ ∪ {G} ⊆,ℎ(f ′
<G )

Eq. (3.4)
= ,ℎ(f ′′

<G )
.

<<G <3′: We use ℎ being g (SemConv) in the steps marked by (∗) and obtain

�′′ ∪ {G} ⊆,ℎ(f ′
<G )
(∗)
= ,ℎ(f ′

<<)
Eq. (3.4)
= ,ℎ(f ′′

<<)
(∗)
= ,ℎ(f ′′

<G )
.
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3′<G <3′′: We have

�′′ ∪ {G} ⊆,ℎ(f ′) =,ℎ(f ′
<<)

=,ℎ(f ′′
<<)

Eq. (3.4)
= ,ℎ(f ′′

<G )
.

As the check passes in each case, we get, in the end, G ∈,ℎ′(� ′′) . ■

Hence, we may assume ℎ to be a g (SemConv)TxtSdBc-learner. Note that the
learner ℎ may be assumed globally consistent, see Kötzing et al. [KSS17, Thm. 8].
Lastly, we observe that ℎ may even be assumed globally semantically witness-based.
This concludes the proof of Theorem 3.5.

▶ Theorem 3.8. We have

[g (ConsSemWb)TxtSdBc] = [g (SemConv)TxtSdBc] .

◀

Proof. Let X ∈ {SemWb, SemConv}. Since X-learners may be assumed to be consist-
ent, see Kötzing et al. [KSS17, Thm. 8], which also holds true when the restrictions
are required globally, we have

[g (ConsX)TxtSdBc] = [g (X)TxtSdBc] .

Then, the theorem holds since Cons ∩ SemWb = Cons ∩ SemConv, see Kötzing
et al. [KSS17, Lem. 11]. ■

3.3 Completing the Set-Driven Map

In Section 3.1, we step-wisely obtain specialisations for set-driven behaviour correct
learners. In Section 3.2 on the other hand, we study behaviourally correct learners
from the “other” side, starting with the presumably weak semantically witness-
based learners. In this section, we show that all of these learners are equal regarding
their learning power.

In particular, we obtain semantically conservative learners (see Theorem 3.9) in
a similar fashion as when making semantically conservative learners so everywhere,
see Theorem 3.6. Using the results from Section 3.1, we may start with target-
cautious and non-U-shaped learners. Then, in particular, we can override wrong
hypotheses of the learners using elements as witnesses (as, by target-cautious
learning, incorrect guesses cannot overgeneralise the target language) and right
hypotheses are never discarded (by non-U-shaped learning).
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▶ Theorem 3.9. We have

[g (ConsSemWb)TxtSdBc] = [TxtSdBc] .

◀

Proof. We immediately get [g (ConsSemWb)TxtSdBc] ⊆ [TxtSdBc]. For the other,
observe that, by Theorem 3.5, we have

[g (ConsSemWb)TxtSdBc] = [TxtGSemWbBc] = [TxtGSemConvBc] .

Furthermore, by Lemma 3.2, we have

[g (Cons)TxtSdCautTarNUBc] = [TxtSdBc] .

Thus, to conclude the proof, it su�ces to be shown that

[TxtGSemConvBc] ⊇ [g (Cons)TxtSdCautTarNUBc] .

Let ℎ ∈ R g (Cons)TxtSdCautTarNUBc-learn L. We now provide a learner ℎ′ ∈ R
which TxtGSemConvBc-learns L, that is, L ⊆ TxtGSemConvBc(ℎ′). To that end,
we use the learner ℎ′ as described in Algorithm 5.

We discuss the learner ℎ′ obtained from Algorithm 5 with parameter ℎ and a
�nite sequence f ∈ ℕ∗ as input. First note that the outer if-clause (starting at line 1)
checks whether the current information f contains a new datum or is empty. If not,
then the learner outputs just the same as when given f−. This way, the learner only
may change its mind when a new datum occurs. Otherwise, ℎ′ checks whether, on
any previous sequence f′ ⊊ f , it is consistent with the currently given information
content(f). If so, the learner only enumerates the same as such hypotheses (lines 3
to 5). While no such hypothesis is found, ℎ′ does a forward search with regard
to ℎ (lines 6 to 11). Then, ℎ′ only enumerates elements which are witnessed by
all visible future hypotheses. Checking all visible future hypotheses is possible to
check as the learner ℎ is set-driven.

Note that this is a similar approach as when making TxtGSemConvBc-learners
everywhere semantically conservative, compare with the proof of Theorem 3.6.
We maintain the monitoring of the time of enumeration for each element (lines 6
to 11) and checking for previous consistent hypotheses (lines 3 to 5) to prevent non-
conservative behaviour. A main observation is that for the learner ℎ′ to converge
correctly, the initial learner ℎ needs not be semantically conservative. It su�ces
that ℎ is target-cautious (so that wrong hypotheses lack elements from the target
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Algorithm 5: The TxtGSemConvBc-learner ℎ′ ∈ R.

Parameter: A consistent, non-U-shaped and target-cautious Sd-learner
ℎ ∈ R.

Input: A �nite sequence f ⊆ ℕ
∗.

Initialisation: C ′← 0, �0 ← content(f) and, for all C > 0, �C ← ∅.
1 if f = n or content(f−) ⊊ content(f) then
2 for C = 0 to∞ do
3 if ∃f′ ⊊ f : content(f) ⊆, C

ℎ′(f ′)
then

4 O′C ←
{
f′ ⊊ f | content(f) ⊆, C

ℎ′(f ′)

}
5 �C+1 ← �C ∪

⋃
f ′∈O ′C

, C
ℎ′(f ′)

6 else
7 �f ← content(f)

8 �f,C ′ ←, C ′

ℎ(�f )

9 if ∀� ⊆ �f,C ′ :
⋃

� ′⊆�f,C ′
, C ′

ℎ(�f∪� ′)
⊆, C

ℎ(�f∪�)
then

10 �C+1 ← �C ∪ �f,C ′

11 C ′← C ′ + 1

12 else
13 ,ℎ′(f) ←,ℎ′(f−)

language which then can be used for mind-changes) and non-U-shaped (so that we
do not “unintentionally” output a correct guess prematurely).

We �rst show that ℎ′ is semantically conservative on arbitrary text ) ∈ Txt, that
is, ℎ′ is g (SemConv). The problem is that when a previous hypothesis becomes con-
sistent with information currently given, the learner may have already enumerated
incomparable data in its current hypothesis. This is prevented by closely monitoring
the time of enumeration, namely by waiting until the enumerated data will certainly
not cause such problems. We prove that ℎ′ is g (SemConv) formally. Let =, =′ ∈ ℕ
be (the lexicographically �rst pair) such that = < =′ and content() [=′]) ⊆,ℎ′() [=]) .
We show that,ℎ′() [=]) =,ℎ′() [=′]) by separately looking at each inclusion.

⊆: We obtain the inclusion,ℎ′() [=]) ⊆,ℎ′() [=′]) as follows. By assumption, we
have content() [=′]) ⊆,ℎ′() [=]) . This implies that at some point during the
enumeration of,ℎ′() [=′]) the �rst if-clause (lines 3 to 5) will �nd ) [=] as a
candidate and then,ℎ′() [=′]) will enumerate,ℎ′() [=]) .

⊇: Assume there exists G ∈ ,ℎ′() [=′]) \,ℎ′() [=]) . Let G be the �rst such ele-
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ment enumerated and let CG ∈ ℕ be the step of enumeration with respect
to ℎ(content() [=′])), that is, G ∈ , CG

ℎ(content() [=′]))
but G ∉ , CG−1

ℎ(content() [=′]))
.

Similarly, let Ccontent ∈ ℕ be the step where content() [=′]) ⊆ ,ℎ′() [=]) is
witnessed for the �rst time. By the de�nition of ℎ′, as,ℎ′() [=′]) sees the
consistent prior hypothesis exactly at step Ccontent, we get

,ℎ′() [=′]) ⊆,
Ccontent−1
ℎ(content() [=′]))

∪,ℎ′() [=]) .

That is,,ℎ′() [=′]) enumerates (at most) elements from,
Ccontent−1
ℎ(content() [=′]))

before,

at step Ccontent, it continues to follow,ℎ′() [=]) . Now, we have G ∈,ℎ′() [=′])

but G ∉,ℎ′() [=]) and, therefore, G ∈,
Ccontent−1
ℎ(content() [=′]))

. Thus, CG < Ccontent. In

particular, G is enumerated via the second if-clause (lines 6 to 11). Furthermore,
since,ℎ′() [=]) also enumerates content() [=′]) via the second if-clause (lines 6
to 11), we have that ⋃

� ′⊆,
Ccontent
ℎ (content() [=]))

,
Ccontent
ℎ(content() [=])∪� ′)

⊆,ℎ′() [=]) .

As �′ = content() [=′]) ⊆, Ccontent
ℎ(content() [=]))

is a candidate in the big union, we

get that

G ∈,
Ccontent−1
ℎ(content() [=′]))

⊆
⋃

� ′⊆,
Ccontent
ℎ (content() [=]))

,
Ccontent
ℎ(content() [=])∪� ′)

⊆,ℎ′() [=]),

contradicting G ∉,ℎ′() [=]) . This concludes this part of the proof.

Now that ℎ′ is shown to be semantically conservative, we show that for any
! ∈ L and any ) ∈ Txt(!) we have, for = ∈ ℕ,

,ℎ′() [=]) ⊆,ℎ(content() [=])) . (3.6)

We show Equation (3.6) by induction on = ∈ ℕ. The case = = 0 follows immediately.
Assume Equation (3.6) holds up to =. Note that, by de�nition of ℎ′, we have

,ℎ′() [=+1]) ⊆
⋃
=′≤=,

content() [=+1])⊆,ℎ′ () [=′ ])

,ℎ′() [=′]) ∪,ℎ(content() [=+1])) . (3.7)

Let =m ∈ ℕ be the minimal =′ ∈ ℕ such that content() [= + 1]) ⊆ ,ℎ′() [=′]) if
such =m exists. If no such =m exists, this part of the proof is concluded. As ℎ′
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is SemConv, for all =′′ ∈ ℕ with =m ≤ =′′ ≤ =, we have

,ℎ′() [=m]) =,ℎ′() [=′′]) .

Furthermore, for=′′ < =m, no previous guess,ℎ′() [=′′]) contains content() [=m]), as
otherwise, by SemConv ofℎ′, if content() [=m]) ⊆,ℎ′() [=′′]) we obtain,ℎ′() [=′′]) =

,ℎ′() [=m]) ⊇ content() [= + 1]), a contradiction to the minimality of =m. Hence,⋃
=′≤=,

content() [=+1])⊆,ℎ′ () [=′ ])

,ℎ′() [=′]) =,ℎ′() [=m]) . (3.8)

In particular, ℎ′ does only a forward search on input ) [=m] (lines 6 to 11). As, by
doing so, it eventually witnesses content() [= + 1]), we get by de�nition of ℎ′ that

,ℎ′() [=m]) ⊆,ℎ(content() [=+1])) . (3.9)

Combining Equations (3.8) and (3.9) with Equation (3.7), we observe

,ℎ′() [=+1]) ⊆
⋃
=′≤=,

content() [=+1])⊆,ℎ′ () [=′ ])

,ℎ′() [=′]) ∪,ℎ(content() [=+1])) =

=,ℎ′() [=m]) ∪,ℎ(content() [=+1])) =,ℎ(content() [=+1])) .

So, we have that Equation (3.6) holds for the induction step and, therefore, for all
= ∈ ℕ.

We close the proof by showing that ℎ′ TxtGBc-learns L. To that end, let ! ∈ L
and ) ∈ Txt(!). As ℎ′ is semantically conservative, it su�ces to show that there
exists = ∈ ℕ such that,ℎ′() [=]) = !. We provide such = by case distinction.

1.C.: ! is �nite. Then there exists =0 ∈ ℕ with content() [=0]) = !. As ℎ is
consistent and target-cautious, we have ! = ,ℎ(content() [=0])) . By Equa-
tion (3.6), we have ! = ,ℎ(content() [=0])) ⊇ ,ℎ′() [=0]) and, by consistency
of ℎ′,,ℎ′() [=0]) ⊇ content() [=]) = !. Altogether we have,ℎ′() [=0]) = ! as
required.

2.C.: ! is in�nite. Let =0 ∈ ℕ be minimal such that,ℎ(content() [=0])) = !. Then, as ℎ
is non-U-shaped, content() [=0]) is a Bc-locking set for ℎ on !. Let =1 ≥ =0
be minimal such that

∀8 < =0 : content() [=1]) ⊈,ℎ′() [8]) . (3.10)
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Chapter 3 Set-Driven Learning

Such=1 exists due to Equation (3.6) andℎ being target-cautious, that is, wrong
hypotheses prior to ℎ(content() [=0])) are either proper subsets of the target
language or incomparable to it. In either case, some elements of the target
language are not contained in these guesses.

Now, we show that Condition (3.10) actually holds for all 8 < =1. If =0 = =1,
this is immediately given. Otherwise, note that there exists some 80 < =0
such that content() [=1 − 1]) ⊆ ,ℎ′() [80]) (by the minimal choice of =1 for
Condition (3.10)) and thus, for all = with 80 ≤ = ≤ =1 − 1,,ℎ′() [80]) =,ℎ′() [=])

(as ℎ′ is SemConv). In particular, we have

∃80 < =0 ∀= ∈ ℕ, =0 ≤ = < =1 :,ℎ′() [80]) =,ℎ′() [=]) .

As content() [=1]) ⊈,ℎ′() [80]) , we have

∀8 < =1 : content() [=1]) ⊈,ℎ′() [8]) . (3.10′)

Hence, elements enumerated by,ℎ′() [=1]) cannot be enumerated by the �rst
if-clause (lines 3 to 5) but only by the second one (lines 6 to 11). Next, we
show,ℎ′() [=1]) = !. As,ℎ′() [=1]) ⊆,ℎ(content() [=1])) (see Equation (3.6)) and
content() [=1]) is a Bc-locking set for ℎ on !, we get,ℎ′() [=1]) ⊆ !. For the
other direction, let C ′ ∈ ℕ be the current step of enumeration. Observe that
Condition (3.10′) implies that,ℎ′() [=1]) enumerates elements only via the
second if-clause (see lines 6 to 11). As content() [=1]) is a Bc-locking set for ℎ
on !, we have, for all � ⊆, C ′

ℎ(content() [=1]))
,

⋃
� ′⊆, C ′

ℎ (content() [=1 ]))

, C ′

ℎ(content() [=1])∪� ′)
⊆,ℎ(content() [=1])∪�) = !.

Thus, at some step C ∈ ℕ, �C+1 is set to,
C ′

ℎ(content() [=1]))
and then the enumer-

ation continues with C ′ + 1. In the end we have ! ⊆,ℎ′() [=1]) and, altogether,
! =,ℎ′() [=1]) . This concludes the proof. ■
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4 Partially Set-Driven Learning

In this chapter, we focus on partially set-driven behaviourally correct learning. It

is based on three di�erent papers which are all joint work with Timo Kötzing. In

Section 4.1, we discuss results from Doskoč and Kötzing [DK20] on variations of

cautious learning. In particular, we show which of the considered learning paradigms

are restrictive and which are not. We furthermore observe that the cautious variants

allow for consistent Bc-learning. In Section 4.2, we extend this result to hold for all
restrictions considered in this work by showing that non-U-shaped learning also allows

for consistent Bc-learning. Please note that this is the only result which has not yet

been published under peer-review. We furthermore observe that for learning under

the considered cautious restrictions the order in which the data is presented is not

important. While such a behaviour is often observed in behaviourally correct learning,

we provide a �rst natural example where it is in Section 4.3. This section is based

on results from Doskoč and Kötzing [DK21a]. Lastly, in Section 4.4, we complete the

partially set-driven behaviourally correct map. This section is based on results from

Doskoč and Kötzing [DK22].

When it comes to partially set-driven behaviourally correct learning, initial
results regarding the pairwise relations between the various restrictions are known.
It is known that monotone learning is a restriction [Jai+99], which is more powerful
than strongly monotone learning [Jai+99]. Furthermore, it is also known that
non-U-shaped learning separates from monotone learning [Jai+99; KSS17]. As
unrestricted partially set-driven learning is as powerful as unrestricted Gold-style
learning [Car+06; Ful90; KR88] and since non-U-shaped learning is known to
restrict the latter [Bal+08; FJO94], it can be deduced that non-U-shaped learning is
a restriction in partially set-driven learning as well.

We complete these initial results to obtain a full picture regarding the pairwise
relation of the learning restrictions in Section 4.1. We start by studying the various
cautious learning paradigms and show which ones are restrictive and which are not.
We observe that hypotheses for �nite languages are troublesome for the learners.
At the same time, we provide a general result with which we show that all of the
considered variants follow a nice general behaviour. Particularly, all of the cautious
variants allow for consistent Bc-learning and the learning can be done with strongly
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Chapter 4 Partially Set-Driven Learning

Bc-locking learners. The former result, in particular, solves an open question stated
by Kötzing et al. [KSS17].

In Section 4.2, we study which restrictions allow for consistent Bc-learning.
Considering the literature [Car+06; KSS17] and the results obtained in Section 4.1,
it only remains to be shown whether non-U-shaped learning allows for consistent
Bc-learning or not. We note that for set-driven and Gold-style learning the answer
is already provided by Lemma 3.2 and Carlucci et al. [Car+06], respectively. We
complete this result by showing that non-U-shaped partially set-driven learning
can be done with consistent learners. Altogether, we show that all considered
restrictions allow for consistent Bc-learning, see Corollary 4.11.

In the literature [Car+06; Ful90; KR88; KSS17], in Chapter 3 and in Section 4.1,
we also observe that partially set-driven learning under some restriction often
coincides with its Gold-style counterpart. While many of the studied restrictions
seem to follow this behaviour, we �nd a �rst natural example where this does not
hold true. For monotone learning, we provide a separating class of languages where
we use prematurely conjectured elements to trick the partially set-driven monotone
learner. This way, we show that monotone learners do rely on the order the data is
given to them in Section 4.3.

Finally, we complete the partially set-driven behaviourally correct map in Sec-
tion 4.4. In particular, the only remaining question to answer is whether monotone
learning implies non-U-shaped learning. We provide a simulation argument where
we take all possible future hypotheses and prove that, in fact, the implication holds.

4.1 Cautious Restrictions

We study the variations of cautious learning in the partially set-driven case and
also provide results for Gold-style learning. We are interested in various aspects
thereof. On one hand, we study which of the variations are, in fact, restrictive and
which are not. On the other hand, we provide a general result (see Theorem 4.1)
for generalisations to target-cautious learning, showing that they coincide with
their Gold-style counterpart. Using Theorem 4.1, we are able to deduce that all
considered variations of cautious learning do not rely on the order the information
is presented to them. This comes in handy when comparing the pairwise relations,
as we can deal with both partially set-driven and Gold-style learning at once.

We start by showing when Gold-style and partially set-driven learners may be
assumed equally powerful, just as Doskoč and Kötzing [DK20] do in the explan-
atory case. Unfortunately, the same approach does not bear fruits, as, although
performing a search for Bc-locking sequences, we do not mimic the learner. Rather,

40



Cautious Restrictions Section 4.1

we enumerate the learner’s output on possible Bc-locking sequences, as discussed
in private communication with Jain [Jai17]. If, for certain languages, the Gold-style
learner refrains from overgeneralising the target language, our enumeration can
maintain this behaviour.

▶ Theorem 4.1. Let % be a predicate on languages. Let X be a learning restriction
such that, for any sequence of hypotheses ? and any text ) ∈ Txt,

X (?,) ) ⇔ (% (content() )) ⇒ CautTar(?,) )) .

Then,

1. the restriction X allows for consistent Bc-learning, that is, for any interaction
operator V ∈ {G, Psd, Sd} we have [g (Cons)TxtVXBc] = [TxtVXBc], and

2. we have [TxtPsdXBc] = [TxtGXBc]. ◀

Proof. We provide a proof for each of the statements.

1. We show that X allows for consistent Bc-learning. We follow the proof of
Kötzing et al. [KSS17]. For a total learner ℎ ∈ R let ! ∈ TxtVXBc(ℎ). We
de�ne 6 ∈ R in its starred form on �nite sequences f ∈ ℕ∗ as

,6∗ (f) = content(f) ∪
⋃
B∈ℕ

{
, B

ℎ∗ (f)
, if content(f) ⊆, B

ℎ∗ (f)
,

∅, otherwise.

By de�nition, the learner 6 is a V-learner and consistent on arbitrary input.
Furthermore, for any f ∈ !∗# , if,ℎ∗ (f) = ! then,6∗ (f) = ,ℎ∗ (f) , meaning
that 6 preserves Bc-learning. To show that 6 obeys the restriction X , assume
the opposite, that is, there exists f ∈ !∗# such that % (!) and ! ⊊ ,6∗ (f) .
Since this cannot be the case if,6∗ (f) = content(f), there must have been
some additional enumerations, that is, content(f) ⊆,ℎ∗ (f) must have been
witnessed at some point. Thus,,6∗ (f) =,ℎ∗ (f) , and now ! ⊊,6∗ (f) =,ℎ∗ (f) ,
a contradiction.

2. To show that [TxtPsdXBc] = [TxtGXBc], �rst, observe that the inclusion
[TxtPsdXBc] ⊆ [TxtGXBc] follows immediately. For the other, we follow
the idea how TxtGBc-learning can be done partially set-driven, as discussed
in private communication with Jain [Jai17]. We expand this idea so that
the restriction X is also preserved. To that end, let ℎ ∈ R be a learner and
! ∈ TxtGXBc(ℎ). Now, de�ne the Psd-learner ℎ′ ∈ R as follows. With the
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Chapter 4 Partially Set-Driven Learning

S-m-n Theorem, we get a total computable function ? ∈ R such that, for
�nite � ⊆ ℕ and C ∈ ℕ≥|� | ,

��,C B,? (�,C) =

⋃
f∈�∗#

©­«
⋂

g∈�≤C#

,ℎ(fg) ∩
⋂

f ′<f,f ′∈�∗#

⋃
g ′∈�∗#

,ℎ(f ′g ′)
ª®¬
, (4.1)

,ℎ′(�,C) =

⋃
B∈ℕ

{
�B
�,C
, if ∃d ∈ �≤C# : �B

�,C
⊆,ℎ(d),

∅, otherwise.

Intuitively, ��,C checks whether the information given is enough to witness
a (minimal) Bc-locking sequence. Then, at every step of the enumeration
of,ℎ′(�,C) , there is a check whether there is a possible hypothesis of ℎ which
would enumerate the same. This ensures that the restriction X is maintained.

We start by proving ! ∈ TxtPsdBc(ℎ′). To that end, let ) ∈ Txt(!). By Blum
and Blum [BB75], there exists a Bc-locking sequence for ℎ on !. Let U ∈ ℕ∗

be the least such Bc-locking sequence with respect to <. By Osherson et
al. [OSW86], for each U′ < U such that content(U′) ⊆ !, there exists gU ′ ∈ !

∗
#

such that U′gU ′ is a Bc-locking sequence for ℎ on !. Now, let =0 ∈ ℕ be large
enough such that

• =0 ≥ |U |,

• content(U) ⊆ content() [=0]) and

• for all U′ < U such that content(U′) ⊆ !, we have content(U′gU ′) ⊆
content() [=0]) and |gU ′ | ≤ =0.

We claim that for C ≥ =0 and � = content() [C]), we have,ℎ′(�,C) = !. In
order to do so, we �rst show ��,C = !.

⊆: To show ��,C ⊆ !, let G ∈ ��,C and let f ∈ ℕ
∗ be the witness of

enumerating G into ��,C . We distinguish between the following two
cases.

f ≤ U : As G is an element of the left hand intersection of Equation (4.1)
and as, for f ≤ U , we have gf ∈ �

≤C
# , we get G ∈,ℎ(fgf ) = !.

f > U : Here, we exploit that G is an element of the right hand intersection
of Equation (4.1). As U < f and U ∈ �≤C# , we have, for any g ∈ �∗# ,
that G ∈,ℎ(Ug) = !.

In both cases we have G ∈ !, thus ��,C ⊆ !.
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Cautious Restrictions Section 4.1

⊇: Next, we show ! ⊆ ��,C . Let G ∈ !. As � and C are chosen su�ciently
large, U is a candidate for the enumeration of ��,C . Since U is a Bc-
locking sequence, we witness, for every g ∈ �≤C# , that G ∈,ℎ(Ug) = !.
Thus, the left hand intersection of Equation (4.1) contains G .

For the right hand intersection of Equation (4.1), observe that for every
f′ < U , with content(f′) ⊆ � , we have gf ′ ∈ �

∗
# . So, the intersection

will contain at least,f ′gf ′ = !, of which G is an element. Thus, we have
! ⊆ ��,C .

Now that we have shown ��,C = !, it remains to be shown that,ℎ′(�,C) =

��,C (= !). By de�nition, we have,ℎ′(�,C) ⊆ ��,C . For the other direction, let
B ∈ ℕ be the next step in the enumeration of,ℎ′(�,C) . We check whether we
can enumerate �B

�,C
. As U ∈ �≤C# and �B

�,C
⊆ ! = ,ℎ(U) , we have a witness

that we can enumerate �B
�,C
. Thus, for all B ∈ ℕ we have �B

�,C
⊆,ℎ′(�,C) and

so we get,ℎ′(�,C) = ��,C . In the end, ! ∈ TxtPsdBc(ℎ′).

Finally, to see ! ∈ TxtPsdXBc(ℎ′), assume there exists a �nite � ⊆ ! and
C ∈ ℕ such that % (!) and ! ⊊,ℎ′(�,C) . By de�nition of,ℎ′(�,C) , there exists
some d ∈ �≤C# such that,ℎ′(�,C) ⊆ ,ℎ(d) . Thus, we have % (!) and ! ⊊

,ℎ′(�,C) ⊆,ℎ(d) , a contradiction to ℎ learning ! according to X . ■

In Theorem 4.1, choosing % as the always-true predicate ⊤ results in target
cautious learning. Together with [TxtSdCautTarBc] = [TxtPsdCautTarBc] [KSS17],
we immediately obtain the following corollary.

▶ Corollary 4.2. We have

[TxtSdCautTarBc] = [TxtPsdCautTarBc] = [TxtGCautTarBc] .

◀

To deal with CautFin, we introduce a slightly less restrictive version on which
we can apply results established throughout this section. In its core, this is a
similar approach to Kötzing and Palenta [KP16] introducing target-cautious learn-
ing (CautTar) in order to deal with cautious learning (Caut).

▶ Theorem 4.3. We have

[TxtSdCautFinBc] = [TxtPsdCautFinBc] = [TxtGCautFinBc] .

◀
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Chapter 4 Partially Set-Driven Learning

Proof. To prove the theorem, we apply the same idea as Kötzing and Palenta [KP16]
when dealing with Caut, that is, we introduce a weaker version of CautFin. For any
sequence of hypotheses ? and any ) ∈ Txt, let

(CautTar)Fin(?,) ) :⇔
(
content() ) < ∞⇒ ∀8 ∈ ℕ : ¬(content() ) ⊊,? (8))

)
.

Intuitively, (CautTar)Fin has to beCautTar only on �nite target languages. It follows
immediately that CautTar as well as CautFin ∩ Bc imply (CautTar)Fin.

By Theorem 4.1, we already have

[TxtPsd(CautTar)FinBc] = [TxtG(CautTar)FinBc] .

To show [TxtSd(CautTar)FinBc] = [TxtPsd(CautTar)FinBc], let ℎ ∈ R be a learner
and let ! ∈ TxtPsd(CautTar)FinBc(ℎ). We �rst observe that, by Theorem 4.1, we
may assume ℎ to be consistent. Now, we follow the idea from Kötzing et al. [KSS17]
and introduce the learner ℎ′ ∈ R which, on any �nite set � ⊆ ℕ, is de�ned as
ℎ′(�) B ℎ(�, |� |). First, we show that ℎ′ TxtSdBc-learns !. If ! is in�nite, then we
get ! ∈ TxtSdBc(ℎ) by Kötzing et al. [KSS17]. For �nite !, let) ∈ Txt(!) and=0 ∈ ℕ
be such that content() [=0]) = !. Now, for = ≥ =0 and � B content() [=]) = !, we
show ! =,ℎ′(�) . Firstly, we have ! ⊆,ℎ(�,|� |) =,ℎ′(�) by consistency of ℎ. By
(CautTar)Fin, we also have ¬(! ⊊,ℎ(�,|� |) =,ℎ′(�)), and thus ! =,ℎ′(�) .

To show that ℎ′ follows the restriction (CautTar)Fin, assume the opposite, that
is, there exist a �nite target language ! ⊆ ℕ and � ⊆ ! such that ! ⊊,ℎ′(�) . As
ℎ′(�) = ℎ(�, |� |), we get ! ⊊,ℎ′(�) =,ℎ(�,|� |) , a contradiction.

Now, with Theorem 3.9, we have the following chain of inclusions.

[TxtSdCautBc] ⊆ [TxtSdCautFinBc] ⊆

⊆ [TxtPsdCautFinBc] ⊆

⊆ [TxtGCautFinBc] ⊆

⊆ [TxtG(CautTar)FinBc] =

= [TxtSd(CautTar)FinBc] =

= [TxtSdCautBc] .

This closes the proof. ■

We combine Corollary 4.2 and Theorem 4.3 with results from Chapter 3 and
observe the following result.
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▶ Corollary 4.4. We have

[TxtSdBc] = [TxtSdCautTarBc] = [TxtGCautTarBc] =

= [TxtSdCautFinBc] = [TxtGCautFinBc] =

= [TxtSdCautBc] = [TxtGCautBc] =

= [TxtSdSemWbBc] = [TxtGSemWbBc] .

◀

Proof. For X ∈ {CautTar,CautFin}, we have

[TxtGXBc]
Cor. 4.2 and Thm. 4.3, respectively

= [TxtSdXBc] =

Thm. 3.9
= [TxtSdSemWbBc] =

Thm. 3.5
= [TxtGSemWbBc] ⊆

⊆ [TxtGXBc] .

For cautious learning we then have

[TxtGCautTarBc]
Cor. 4.2
= [TxtSdCautTarBc]

Thm. 3.9
= [TxtSdCautBc] ⊆

⊆ [TxtGCautBc] ⊆ [TxtGCautTarBc] .

By Theorem 3.5, we have [TxtSdSemWbBc] = [TxtSdBc], providing also the
equality to [TxtSdBc]. ■

To conclude the study on the variations of cautious learning, it remains to be
shown that in�nitely cautious learning, that is, Caut∞, does not restrict the learning
power of Gold-style and partially set-driven learners. We use the same idea as in
the explanatory case [DK20], namely by ensuring that in�nite suggestions only
occur when the underlying information is Bc-locking data. To that end, we employ
the SFV, see Algorithm 2.

▶ Lemma 4.5. We have

[g (Cons)TxtPsdCaut∞Bc] = [TxtPsdBc] .

◀

Proof. By de�nition, we get [g (Cons)TxtPsdCaut∞Bc] ⊆ [TxtPsdBc]. For the
other direction, let ℎ ∈ R be a learner and let ! ∈ TxtPsdBc(ℎ). For the Psd-
learner ℎB ∈ R from Algorithm 2, we show that ! ∈ g (Cons)TxtPsdCaut∞Bc(ℎB).
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By Proposition 3.3 (i), ℎB is consistent on arbitrary input. As in the proof of Pro-
position 3.3 (iii), we get ! ∈ TxtPsdBc(ℎB). To show that ℎB is Caut∞, assume
the opposite, that is, there exists �,�′ ⊆ ! and C, C ′ ∈ ℕ with (�, C) ⪯ (�′, C ′)
such that,ℎB (�,C) ⊋ ,ℎB (� ′,C ′) and,ℎB (� ′,C ′) is in�nite. Then, ,ℎB (�,C) is in�nite,
too. By Proposition 3.3 (iv), �rstly, (�, C) is a Bc-locking information for,ℎB (�,C)

and, secondly, (�′, C ′) is a Bc-locking information both for,ℎB (� ′,C ′) and, since
(�, C) ⪯ (�′, C ′) and (�, C) is a Bc-locking information for,ℎB (�,C) , for,ℎB (�,C) as
well. Since,ℎB (�,C) ≠,ℎB (� ′,C ′) , this yields a contradiction. ■

We sum up the results obtained so far.

▶ Corollary 4.6. For X ∈ {Caut,CautTar,CautFin} and V ∈ {G, Psd, Sd} as well as
X′ ∈ {T,Caut∞} and V′ ∈ {G, Psd}, we have

[g (Cons)TxtSdCautBc] = [TxtSdCaut∞Bc] = [TxtVXBc] = [TxtSdBc],

[g (Cons)TxtPsdCaut∞Bc] = [TxtV
′X′Bc] = [TxtGBc] .

Furthermore, the two blocks do not coincide. ◀

In particular, Corollary 4.6 shows that cautious learning may be assumed con-
sistent in general. This answers an open problem stated by Kötzing et al. [KSS17].
We answer the same question for all considered cautious restrictions.

▶ Corollary 4.7. Let X ∈ {Caut∞,CautTar,CautFin,Caut}. Then, X allows for
consistent Bc-learning, that is, for V ∈ {G, Psd, Sd}, we have

[g (Cons)TxtVXBc] = [TxtVXBc] .

◀

Together with Theorem 3.9, we get that semantically witness-based, semantically
conservative, weakly monotone and cautious learning all coincide. This is the case
not only for set-driven but also for partially set-driven and Gold-style learning.

▶ Corollary 4.8. For X ∈ {CautTar,CautFin,Caut, SemWb, SemConv,WMon}

and V ∈ {G, Psd, Sd}, we have

[g (Cons)TxtVXBc] = [TxtVXBc] = [TxtSdBc] .

◀
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Furthermore, as partially set-driven learners combined with restrictions which
allow for simulation on equivalent text are strongly Bc-locking without loss of
generality, see Kötzing et al. [KSS17], so are all the Gold-style versions. We sum
this up in the following corollary.

▶ Corollary 4.9. For all X ∈ {Caut,CautTar,CautFin,CautTar}, we have that every
TxtGXBc-learner may be assumed strongly Bc-locking. ◀

4.2 Consistent Non-U-Shaped Learning

Whether a certain learning paradigm may be done with consistent learners is
a problem often studied in the literature [Bār77; Car+06; KSS17]. Especially in
behaviourally correct learning, it seems to be a natural property many learners
unveil. While there are initial results on which learners may be assumed consistent,
they do not cover all restrictions studied in this work. In this section, we show that,
indeed, all considered restrictions allow for consistent Bc-learning.

In particular, it only remains to be shown for partially set-driven non-U-shaped
learning. We follow a similar strategy as in the Gold-style case [Car+06]. The idea
is to output a canonical hypothesis if all hypotheses based on the same content
are overgeneralising, that is, containing more than the content. Otherwise, one
outputs the content only. We note that it is imperative to check for proper overgen-
eralisations to allow the learner to fall back to the content if needed. We show that,
despite not knowing the order of the previous hypotheses, this strategy works out.

▶ Theorem 4.10. The restriction NU allows for consistent Bc-learning, that is,
for V ∈ {G, Psd, Sd}, we have

[g (Cons)TxtVNUBc] = [TxtVNUBc] .

◀

Proof. The case V = G has been shown by Carlucci et al. [Car+06],8 while the
case V = Sd follows from Lemma 3.2. We prove the statement for V = Psd. The
inclusion [g (Cons)TxtPsdNUBc] ⊆ [TxtPsdNUBc] follows immediately. For the
other direction, let ℎ ∈ R be a learner and let L = TxtPsdNUBc(ℎ).

8 Note that Carlucci et al. [Car+06] do not explicitly talk about arbitrary texts, however, the
transition of their proof is immediate and, thus, omitted.
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De�ne the learner 6 ∈ R for any �nite set � ⊆ ℕ and C ∈ ℕ≥|� | as

,6(�,C) =

{
,ℎ(�,|� |), if ∀C ′ ∈ {|� |, |� | + 1, . . . , C} : � ⊊,ℎ(�,C ′),

�, otherwise.

Intuitively, the learner 6 checks whether the learner ℎ actually overgeneralises the
given information � on all hypotheses built from the same information, but with
possibly di�erent counters. In that case, it outputs the same hypothesis as ℎ(�, |� |).
If that is not the case, the learner outputs just the content given, that is, the set � .
We note that it is important to check for proper overgeneralisation, that is, to check
for � ⊊,ℎ(�,C ′) . Otherwise, the learner may not be able to return to the set � if
all considered previous hypotheses are consistent. It is immediate to see that 6 is
consistent on arbitrary text. Now let ! ∈ L. We �rst show that 6 is NU on !. To
show Bc-convergence, it then su�ces to show that on each text ) ∈ Txt(!) there
exists some = ∈ ℕ such that,6(content() [=]),=) = !.

We show that 6 is NU when learning !. To that end, let ) ∈ Txt(!), C1, C3 ∈ ℕ,
�1 B content() [C1]) and �3 B content() [C3]) be such that we have

,6(�1,C1) =,6(�3,C3) = !.

Now, we show that for any C2 ∈ {C1, . . . , C3} and �2 B content() [C2]), we have
,6(�2,C2) = !. We conduct a case distinction.

1.C.: We have for all C ′ ∈ {|�1 |, |�1 | + 1, . . . , C1} that �1 ⊊,ℎ(�1,C ′) . Then, we have

,6(�1,C1) =,ℎ(�1,|�1 |) = !.

As (�1, |�1 |) ⪯ (�2, |�2 |) and ℎ is NU, we have that ! = ,ℎ(�2,|�2 |) and,
for all C ′ ∈ {|�2 |, |�2 | + 1, . . . , C2}, that ! = ,ℎ(�2,C ′) . Thus, in case �2 ⊊ !,
we get,6(�2,C2) =,ℎ(�2,|�2 |) = ! by the �rst condition in the de�nition of 6.
Otherwise, we get,6(�2,C2) = �2 = ! by the second condition in the de�nition
of 6 as no proper overgeneralisation is witnessed.

2.C.: There exists C ′ ∈ {|�1 |, |�1 | +1, . . . , C1} such that ¬(�1 ⊊,ℎ(�1,C ′)). Let C
′
0 ∈ ℕ

be the minimal such C ′. Then, by the second condition in the de�nition of 6,
we have

! =,6(�1,C1) = �1.

It follows that�1 = �2 = �3 = !. Nowwe have that C ′0 ∈ {|�1 |, |�1 |+1, . . . , C2}
is such that ¬(�2 ⊊,ℎ(�2,C

′
0)
). Thus,,6(�2,C2) = �2 = !.
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It remains to be shown that there exists = ∈ ℕ such that,6(content() [=]),=) = !.
We distinguish the following cases.

1.C.: The language ! is in�nite. Consider the canonical text )2 ∈ Txt(!) of !
and let =0 ∈ ℕ be such that ()2 [=0], =0) is a Bc-locking information for ℎ
on ! [KSS17]. De�ne �0 B content()2 [=0]). Then, for each �nite set � ⊆ !

and C ∈ ℕ with (�0, =0) ⪯ (�, C) we have,ℎ(�,C) = !. Now, let = ∈ ℕ be such
that �0 ⊆ content() [=]). Then, by the �rst condition of the de�nition of 6
we have

,6(content() [=]),=) =,ℎ(content() [=]),|content() [=]) |) = !.

2.C.: The language ! is �nite. Let =0 ∈ ℕ be minimal such that content() [=0]) = !.
Furthermore, let= ≥ =0 be such that,ℎ(!,=) = !. Note that content() [=]) = !.
Then, by the second condition in the de�nition of 6 we have,6(!,=) = !. ■

With this result, in particular, we have that all restrictions considered in this
work allow for consistent Bc-learning. We state this as a corollary.

▶ Corollary 4.11. All restrictions X ∈ {T,NU,CautTar,Caut∞,CautFin,Caut,

WMon,Mon, SMon, SemConv, SemWb} allow for consistent Bc-learning, that is,
for V ∈ {G, Psd, Sd}, we have

[g (Cons)TxtVXBc] = [TxtVXBc] .

◀

4.3 The Importance of the Order

For Bc-learning, we have seen plenty cases where the order, which the information
comes in, is not important. In this section we provide a natural example where it is
important! In particular, we show this for monotone behaviourally correct learning.
The idea is to construct a class of languages where the learner must keep track
of the order the elements were presented in, in order to deduce possible previous
hypotheses and to be able to safely discard particular elements at a later point
in learning-time. To obtain this result, we apply the technique of self-learning
classes [CK16a] using the Operator Recursion Theorem [Cas74].

▶ Theorem 4.12. We have

[TxtGMonBc] \ [TxtPsdMonBc] ≠ ∅.
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◀

Proof. We provide a class witnessing the separation using self-learning classes, as
seen in Case and Kötzing [CK16a, Thm. 3.6]. Consider the learner which for a �nite
sequence f ∈ ℕ∗ is de�ned as

ℎ(f) =

{
ind(∅), if content(f) = ∅,

imax(content(f)) (f), otherwise.

We show a stronger version, namely the separation from monotone explanat-
ory learners. Let L = TxtGMonEx(ℎ). Assume there exists a TxtPsdMonBc-
learner ℎ′ ∈ R which learns L, that is, L ⊆ TxtPsdMonBc(ℎ′). By the Operator
Recursion Theorem (ORT, Case [Cas74]), there exists a family of strictly mono-
tone increasing, total computable functions (0 9 ) 9∈ℕ with pairwise disjoint range,
a total computable function 5 ∈ R, an index 4 ∈ ℕ and two families of indices
(4 9 ) 9∈ℕ, (4̂:):∈ℕ such that for all �nite sequences f ∈ ℕ∗, where �rst(f) is the �rst
non-pause element in the sequence f , we have

i0 9 (8) (f) =




4 9 , if content(f) ⊆ range(0 9 ),

4̂: , else, if ∃: : 0: (5 (:)) ∈ content(f) ∨

∃: : �rst(f) ∈ range(0:)∧

∧max{ 9 | content(f) ∩ range(0 9 ) ≠ ∅} = :,

4, otherwise.

5 ( 9) . . . returns the �rst 8 found such that 0 9 (8) ∈,ℎ′(content(0 9 [8]),8),

,4 9 = range(0 9 ),

,4̂: =

⋃
9 ′≤:

content(0 9 ′ [5 ( 9
′)]) ∪ {0: (5 (:))},

,4 =

⋃
9

content(0 9 [5 ( 9)]) .

Let L′ = {,4 9 | 9 ∈ ℕ} ∪ {,4̂: | : ∈ ℕ>0} ∪ {,4}. A depiction of the class L′

can be seen in Figure 4.1. We show that L′ can be learned by ℎ, but not by ℎ′,
that is, L′ ⊆ L = TxtGMonEx(ℎ) but also L′ ⊈ TxtPsdMonBc(ℎ′). The in-
tuition is the following. For some 9 ∈ ℕ, as long as only elements from ,4 9

are presented, ℎ will suggest 4 9 as its hypothesis. Thus, ℎ′ needs to learn ,4 9

as well and eventually overgeneralise, that is, at some point 8 ∈ ℕ we have
content(0 9 [8]) ⊊ ,ℎ′(content(0 9 [8]),8) . The function 5 ( 9) �nds such 8 . Once the
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,40 ,41 ,42

,4

,4̂1 ,4̂2

00 (5 (0)) 01 (5 (1)) 02 (5 (2))

Figure 4.1: A depiction of the class L ′. Given 9 ∈ ℕ>0, the dashed line depicts the set,4̂ 9

and the cross indicates the element 0 9 (5 ( 9)).

overgeneralisation happens, elements from, for 9 ′ ≠ 9 , range(0 9 ′) may be presented.
Knowing the order in which the elements were presented, the learner ℎ now either
keeps or discards the element 0 9 (5 ( 9)) in its next hypothesis depending whether
9 ′ < 9 or 9 < 9 ′, respectively. If 9 ′ < 9 , ℎ needs to keep 0 9 (5 ( 9)) in its hypothesis
as it still may be presented the set,4̂ 9 . Otherwise, it suggests the set,4 , only
changing its mind if it sees, for appropriate 8 ∈ ℕ, an element of the form 08 (5 (8)).
Then, ℎ is certain to be presented,4̂8 . So the Gold-style learner ℎ can deal with
this new information and preserve monotonicity, while ℎ′ cannot, as it does not
know which information came �rst.

We proceed with the formal proof that ℎ TxtGMonEx-learns L′. Let !′ ∈ L′ and
) ′ ∈ Txt(!′). We �rst show the Ex-convergence and the monotonicity afterwards.
For the former, we distinguish the following cases.

1.C.: For some 9 ∈ ℕ, we have !′ = ,4 9 . Let =0 ∈ ℕ be such that we have
content() ′[=0]) ≠ ∅. Then, for = ≥ =0, there exists some 8 ∈ ℕ such that
0 9 (8) = max(content() ′[=])). Thus,

ℎ() ′[=]) = imax(content() ′[=])) ()
′[=]) = i0 9 (8) ()

′[=]) = 4 9 .

Hence, ℎ learns,4 9 correctly.

2.C.: We have !′ = ,4 . Let =0 ∈ ℕ be the minimal and let :0 ∈ ℕ be such that
content() ′[=0]) ≠ ∅ and �rst() ′[=0]) ∈ range(0:0). Let =1 ≥ =0 be minimal
such that there exists : > :0 such that content()

′[=1]) also contains elements
from content(0:). Then, for = > =1 we have that ℎ()

′[=]) = 4 , as there exists
no 9 ∈ ℕ with 0 9 (5 ( 9)) ∈ content()

′) and also

max{ 9 | content() ′[=]) ∩ range(0 9 ) ≠ ∅} ≠ :0.
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Thus, ℎ learns,4 correctly.

3.C.: For some : ∈ ℕ>0 we have !
′
=,4̂: . In this case, there exists =0 ∈ ℕ such

that, for some :′ < : , range(0: ′) ∩ content() ′[=0]) ≠ ∅ and 0: (5 (:)) ∈

content() ′[=0]). Then, for = ≥ =0, we have ℎ() ′[=]) = 4̂: . Therefore, ℎ
learns,4̂: correctly.

We show that the learning is monotone. Let = ∈ ℕ. As long as content() ′[=])
is empty, ℎ returns ind(∅). Once content() ′[=]) is not empty anymore and as
long as content() ′[=]) only contains elements from, for some 9 ∈ ℕ, range(0 9 ),
the learner ℎ outputs (a code for) the set ,4 9 . Note that 9 is the index of the
element �rst() ′[=]), that is, �rst() ′[=]) ∈ range(0 9 ). If ever, for some later =,
content() ′[=]) \ range(0 9 ) ≠ ∅, then ℎ only changes its mind if there exists : > 9

such that content() ′[=]) ∩ range(0:) ≠ ∅ (note that in case 9 < : , ℎ does not
change its mind). Depending on whether 0: (5 (:)) ∈ content() ′[=]) or not, ℎ
changes its mind to (a code of) either,4̂: or,4 , respectively. In the former case, the
learner ℎ is surely presented the set,4̂: , making this mind change monotone. In the
latter case, no element of,4 9 \ content(0 9 [5 ( 9)]) is contained the target language.
These are exactly the elements ℎ discards from its hypothesis, keeping a monotone
behaviour. The learner only changes its mind again if it witnesses, for some :′ ≥ : ,
the element 0: ′ (5 (:

′)). It will then output (a code of) the set,4̂: ′ . This is, again,
monotonic behaviour, as ℎ is sure to be presented the set,4̂: ′ . Altogether, ℎ is
monotone on any text of !′.

Thus, ℎ identi�es all languages in L′ correctly. Now, we show that ℎ′ cannot do
so too. We do so by providing a text of,4 where ℎ

′ makes in�nitely many wrong
guesses. To that end, consider the text ) of,4 given as

00 [5 (0)]01 [5 (1)]02 [5 (2)] . . .

For 9 ∈ ℕ>0, since 0 9 (5 ( 9)) ∈,ℎ′(content(0 9 [5 ( 9)]),5 ( 9)) , we have

0 9 (5 ( 9)) ∈,ℎ′(content() [
∑

<≤ 9 5 (<)]),
∑

<≤ 9 5 (<)),

as) [
∑

<≤ 9 5 (<)] is an initial sequence for a text for,4̂ 9 . But, as 0 9 (5 ( 9)) ∉,4 , the
learnerℎ′makes in�nitely many incorrect conjectures and thus does not identify,4

on the text ) correctly, a contradiction. ■
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4.4 Completing the Partially Set-Driven Map

We recall the current situation. Corollary 4.8 already shows that semantically con-
servative, semantically witness-based, weakly monotone and (various variations
of) cautious partially set-driven learning coincide with unrestricted set-driven
learning. However, these restrictions are known to limit partially set-driven learn-
ing [Ful90; Jai+99; KSS17]. Furthermore, they are known to be incomparable to
monotone learning [Jai+99], while both are more powerful than strongly mono-
tone learning [Jai+99]. Non-U-shaped learning separates from the mentioned
restrictions [Jai+99; KSS17]. However, non-U-shaped learning is a restriction
for Gold-style learners [Bal+08; FJO94] and, equivalently, for partially set-driven
learners [Car+06; Ful90; KR88].

We complete this map by showing that monotone learning implies non-U-shaped
learning, see Theorem 4.13. In the simulation argument, we create a new hypothesis
by adding all information obtainable by some future hypothesis generated from the
seen elements. If this generates a correct hypothesis, no future hypotheses may be
wrong, as otherwise the current hypothesis must contain further elements which
are not in the language as well.

▶ Theorem 4.13. We have

[TxtPsdMonBc] ⊆ [TxtPsdNUBc] .

◀

Proof. Let ℎ ∈ R be a TxtPsdMonBc-learner. Note that ℎ is, without loss of gen-
erality, strongly Bc-locking [KSS17]. Let furthermore L = TxtPsdMonBc(ℎ). We
provide a TxtPsdNUBc-learner ℎ′ ∈ R which learns L. For all �nite sets � ⊆ ℕ,
all C ∈ ℕ≥|� | and all B ∈ ℕ>0, de�ne

, 0
ℎ′(�,C) = �,

, B
ℎ′(�,C) =

⋃
(� ′,C ′) with

(�,C)⪯(� ′,C ′)⪯(, B−1
ℎ′ (�,C )

,C+B)

, B−1
ℎ(� ′,C ′) .

Finally,,ℎ′(�,C) =
⋃

B∈ℕ,
B
ℎ′(�,C)

. Intuitively, the learner ℎ′ produces its hypothesis

on (�, C) iteratively. At stage B ∈ ℕ,, B
ℎ′(�,C)

enumerates all elements witnessed by

the learner ℎ on some hypothesis extending (�, C) using elements witnessed so far,
that is, elements in, B−1

ℎ′(�,C)
.
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We show that ℎ′ TxtPsdNUBc-learns L. Let ! ∈ L and ) ∈ Txt(!). We provide
a proof in two parts.

1. We �rst show that there exists an =0 ∈ ℕ such that,ℎ′(content() [=0]),=0) = !.

2. Afterwards, we show that, for all = ∈ ℕ, whenever,ℎ′(content() [=]),=) = ! we
have, for all =′ > =, also,ℎ′(content() [=′]),=′) = !.

For the �rst part, let =0 ∈ ℕ be such that (�, C) B (content() [=0]), =0) is a
Bc-locking information for ℎ on !. Then, by de�nition of ℎ′, we have,ℎ′(�,C) ⊇

,ℎ(�,C) = !. For the other direction, we show that for all B ∈ ℕ we have, B
ℎ′(�,C)

⊆ !

by induction on B . We get the statement for B = 0 immediately. Assuming it holds
for B ∈ ℕ, we show it for B + 1. Since, B

ℎ′(�,C)
⊆ !, we have that (�′, C ′) with

(�, C) ⪯ (�′, C ′) ⪯ (, B
ℎ′(�,C)

, C + B + 1) is also a Bc-locking information for ℎ on !.

In particular, we have,ℎ(� ′,C ′) = !. This results in

, B+1
ℎ′(�,C) =

⋃
(� ′,C ′) with

(�,C)⪯(� ′,C ′)⪯(, B
ℎ′ (�,C )

,C+B+1)

, B
ℎ(� ′,C ′) ⊆ !.

This concludes the induction.
For the second part, let = ∈ ℕ and (�, C) B (content() [=]), =) be such that

,ℎ′(�,C) = !, let =′ ≥ = and (�′′, C ′′) B (content() [=′]), =′). Note that � ⊆ �′′ ⊆ !

and C ′′ ≥ C . We show that,ℎ′(� ′′,C ′′) = !. First, note that (�′′, C ′′) will eventually
be considered when enumerating,ℎ′(�,C) , that is, there exists an B ∈ ℕ such that
(�′′, C ′′) ⪯ (, B−1

ℎ′(�,C)
, C + B). Hence,

,ℎ′(� ′′,C ′′) =

⋃
B∈ℕ

⋃
(� ′,C ′) with

(� ′′,C ′′)⪯(� ′,C ′)⪯(, B−1
ℎ′ (� ′′,C ′′)

,C+B)

, B−1
ℎ(� ′,C ′) ⊆

⊆
⋃
B∈ℕ

⋃
(� ′,C ′) with

(�,C)⪯(� ′,C ′)⪯(, B−1
ℎ′ (�,C )

,C+B)

, B−1
ℎ(� ′,C ′) =,ℎ′(�,C) = !.

Secondly, we show that for each G ∈ ! =,ℎ′(�,C) we also have G ∈,ℎ′(� ′′,C ′′) . We
show (by induction) that for every B ∈ ℕ

, B
ℎ′(�,C) ⊆,ℎ′(� ′′,C ′′) .

For B = 0 we have, B
ℎ′(�,C)

= � ⊆ �′′ =, 0
ℎ′(� ′′,C ′′)

⊆,ℎ′(� ′′,C ′′) . Let the statement

be ful�lled until B . At step B + 1, we distinguish the following cases.

54



Completing the Partially Set-Driven Map Section 4.4

1.C.: If, B
ℎ′(�,C)

=, B+1
ℎ′(�,C)

, that is, no new element is enumerated, the statement of

the induction step is true immediately.

2.C.: If, B
ℎ′(�,C)

⊊, B+1
ℎ′(�,C)

, let G ∈, B+1
ℎ′(�,C)

\, B
ℎ′(�,C)

. Note that G ∈ !. Let (�̃, C̃), with

(�, C) ⪯ (�̃, C̃) ⪯ (, B
ℎ′(�,C)

, C+B), be the information onwhichG waswitnessed,

that is, G ∈,ℎ(�̃,C̃) . By,
B
ℎ′(�,C)

⊆,ℎ′(� ′′,C ′′) (the induction assumption), there

exists B′′ ∈ ℕ such that (�̃, C̃) ⪯ (, B ′′

ℎ′(� ′′,C ′′)
, C ′′ + B′′). Since ℎ is monotone and

G ∈ !, we have

G ∈,ℎ(, B ′′

ℎ′ (� ′′,C ′′)
,C ′′+B ′′)

Def. of ℎ′

⊆ ,ℎ′(� ′′,C ′′) .

Altogether, we get the desired result. ■

55





5 Gold-Style Learning

What remains to be studied is Gold-style behaviourally correct learning. In particular,

it remains to be shown how monotone and non-U-shaped learning interact. In Sec-

tion 5.1, we �rst show that monotone learners may be assumed strongly Bc-locking. In

particular, with this result, learning under any considered restriction may be done with

strongly Bc-locking learners. We use this result then in Section 5.2 to make monotone

learners non-U-shaped. This concludes all three main maps. We note that both sections

are based on Doskoč and Kötzing [DK22].

The overall situation for Gold-style learning is basically analogous to the initial
situation for partially set-driven learning as discussed in Section 4.4, see Corol-
lary 4.8 as well as Baliga et al. [Bal+08], Fulk et al. [FJO94], Jain et al. [Jai+99] and
Kötzing et al. [KSS17]. We complete the map by showing that monotone learning
implies non-U-shaped learning, see Theorem 5.3.

We aim to employ a similar approach as for the partially set-driven case. To that
end, we have to overcome two obstacles. Firstly, we show that monotone Gold-style
learners are strongly Bc-locking, see Theorem 5.1. In particular, this shows that all
restrictions studied in this thesis allow for strongly Bc-locking learning. Secondly,
Gold-style learners infer from sequences, meaning that extensions considered at a
certain step do not necessarily have to be considered in later steps (as opposed to
partially set-driven learning). We circumvent this by also enumerating elements
from previous guesses on which the learner shows a monotone behaviour, as they
are likely part of the target language.

5.1 Strongly Bc-Locking Monotone Learning

To show that any Gold-style monotone behaviourally correct learner may be as-
sumed stronglyBc-locking, we expand the strategy used in the proof of Theorem 4.1.
The idea is to extend the search for Bc-locking sequences. However, this extended
search may cause correct elements to be temporarily discarded. We carefully add
such elements.

▶ Theorem 5.1. Any TxtGMonBc-learner may be assumed strongly Bc-locking
without loss of generality. ◀
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Proof. This proof is inspired by the proof based on private communication with
Jain [Jai17] where the equality of Gold-style and partially set-driven learning is
shown for certain restrictions, see also Theorem 4.1. Let ℎ ∈ R be a learner and
let L = TxtGMonBc(ℎ). We provide a strongly Bc-locking TxtGMonBc-learner ℎ′

for L as follows. For two �nite sequences f, f′ ∈ ℕ∗, de�ne the auxiliary function
6 ∈ R as

,6(f ′,f) =

⋂
g∈content(f)

≤ |f |
#

,ℎ(f ′g) ∩
⋂

f ′′≤f ′,
f ′′∈content(f ′)∗#

⋃
g ′′∈content(f ′)∗#

,ℎ(f ′′g ′′) .

Then, de�ne the learner ℎ′ ∈ R on �nite sequences f ∈ ℕ∗ as

,ℎ′(f) =

⋃
f ′⊆f

,6(f ′,f) .

The intuition is the following. With the function 6, we search for minimal Bc-
locking sequences, see the proof of Theorem 4.1. To ensure that 6 eventually only
contains elements from the target language, we extend the left hand intersection
to be based on f . However, as f contains more and more information, additional
sequences are also considered in the right hand intersection. This may lead to
already enumerated elements being discarded (even if they belong to a target
language). To prevent this, we take the union over all possible,6(f ′,f) .

We formally show that ℎ′ has the desired properties. First, we show that ℎ′ is
monotone. Let ! ∈ L and f1, f2 ∈ !

∗
# with f1 ⊆ f2. We show that, for all G ∈ ℕ, it

holds that
G ∈,ℎ′(f1) ∩ ! ⇒ G ∈,ℎ′(f2) ∩ !.

As G ∈,ℎ′(f1) , there exists f
′
1 ⊆ f1 such that G ∈,6(f ′1,f1)

, that is,

G ∈
⋂

g∈content(f1)
≤ |f1 |
#

,ℎ(f ′1g)
∩

⋂
f ′′≤f ′1,

f ′′∈content(f ′1)
∗
#

⋃
g ′′∈content(f ′1)

∗
#

,ℎ(f ′′g ′′) . (5.1)

In particular, G ∈,ℎ(f ′1)
. We show that G ∈,6(f ′1,f2)

. By monotonicity of ℎ, we have

G ∈
⋂

g∈content(f2)
≤ |f2 |
#

,ℎ(f ′1g)
.

As the right hand intersection in Equation (5.1) (of which G is an element) does not
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depend on f1, we have that

G ∈
⋂

g∈content(f2)
≤ |f2 |
#

,ℎ(f ′1g)
∩

⋂
f ′′≤f ′1,

f ′′∈content(f ′1)
∗
#

⋃
g ′′∈content(f ′1)

∗
#

,ℎ(f ′′g ′′) =,6(f ′1,f2)
.

By de�nition of ℎ′ and since f′1 ⊆ f1 ⊆ f2, we have

,6(f ′1,f2)
⊆

⋃
f ′⊆f2

,6(f ′,f2) =,ℎ′(f2) .

Thus, G ∈,ℎ′(f2) ∩ !.

We now show that ℎ′ is strongly Bc-locking (and thus also Bc-learns L). Let
! ∈ L and ) ∈ Txt(!). Let f0 ∈ !

∗
# be the ≤-minimal Bc-locking sequence for ℎ

on ! [BB75]. For each f′ < f0 with content(f′) ⊆ !, let gf ′ ∈ !
∗
# be such that f′gf ′

is a Bc-locking sequence for ℎ on ! [OSW86]. Let =0 ∈ ℕ be such that ℎ converges
on ) [=0], that is, for all =

′ ≥ =0,,ℎ() [=′]) = !. Let =1 ≥ =0 be such that

• f0 ≤ ) [=1],

• f0 ∈ content() [=1])
∗
# , and

• for all f′ < f0 such that content(f′) ⊆ !, we have that content(f′gf ′) ⊆
content() [=1]) and |gf ′ | ≤ =1.

To show that f1 B ) [=1] is a Bc-locking sequence for ℎ
′ on !, we show that, for

any d ∈ !∗# , ℎ
′(f1d) is a correct guess, that is,,ℎ′(f1d) = !. Let d ∈ !∗# . We prove

each direction of,ℎ′(f1d) = ! separately.

1.C.: We show,ℎ′(f1d) ⊆ !. Let G ∈,ℎ′(f1d) . Then there exists f′ ⊆ f1d such that
G ∈,6(f ′,f1d) . In particular,

G ∈
⋂

g∈content(f1d)
≤ |f1d |
#

,ℎ(f ′g) ∩
⋂

f ′′≤f ′,
f ′′∈content(f ′)∗#

⋃
g ′′∈content(f ′)∗#

,ℎ(f ′′g ′′) . (5.2)

We distinguish based on the relation between f′ and f1.

1.1.C.: If f′ ⊆ f1, then there exists g ∈ content(f1d)
≤|f1d |
# such that f′g = f1.

As ℎ(f1) is a correct guess and,ℎ(f1) is considered in the left hand
intersection of Equation (5.2), we have that G ∈ !.
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1.2.C.: If f′ ⊋ f1, we have f0 ≤ f1 ⊆ f′ and f0 ∈ content(f1)
∗
# ⊆ content(f′)∗# .

Thus, f0 is considered in the right hand intersection of Equation (5.2).
Since, for any g ∈ !∗# , we have,ℎ(f0g) = !, we get G ∈,ℎ(f0g) = !.

2.C.: We show ! ⊆ ,ℎ′(f1d) . Let G ∈ !. We show that G ∈ ,6(f1,f1d) . As ℎ is
monotone, f1 ⊆ f1d and ℎ converges on f1, we have

G ∈
⋂

g∈content(f1)
∗
#

,ℎ(f1⌢g) .

Moreover, by choice of =1, we have, for all f
′′ ≤ f1 with f′′ ∈ content(f1)

∗
# ,

that g′′f ′′ ∈ content(f1)
∗
# . As f

′′g′′f ′′ is a Bc-locking sequence for ℎ on !, we
get G ∈,ℎ(f ′′g ′′

f ′′
) . Hence,

G ∈
⋂

f ′′≤f1,
f ′′∈content(f1)

∗
#

⋃
g ′′∈content(f1)

∗
#

,ℎ(f ′′g ′′) .

Altogether, G ∈,6(f1,f1d) ⊆,ℎ′(f1d) .

In the end, we have,ℎ′(f1d) = !, which concludes the proof. ■

The literature [KSS17] and Corollary 4.9 imply the following corollary.

▶ Corollary 5.2. For any restriction X ∈ {T,NU,CautTar,Caut∞,CautFin,Caut,

WMon,Mon, SMon, SemConv, SemWb} and interaction operator V ∈ {G, Psd, Sd},
we have that any TxtVXBc-learner may be assumed strongly Bc-locking without
loss of generality. ◀

5.2 Completing the Gold-Style Map

Lastly, it remains to be shown that Gold-style monotone behaviourally correct
learning implies non-U-shaped learning. With Theorem 5.1, we may assume the
monotone learner to be strongly Bc-locking and, thus, we may employ a similar
strategy as in the partially set-driven case, see Theorem 4.13. There, we enumerate
the output of all possible future hypotheses. However, Gold-style learners infer
their conjectures from sequences, meaning that extensions considered at a certain
step do not necessarily have to be considered in later steps. To circumvent this
issue, we also enumerate elements from previous guesses on which the learner
shows a monotone behaviour. These elements are likely part of the target language
and, if not, are safe to be discarded eventually.
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▶ Theorem 5.3. We have

[TxtGMonBc] ⊆ [TxtGNUBc] .

◀

Proof. Let ℎ ∈ R be a TxtGMonBc-learner. Without loss of generality, ℎ may be
assumed strongly Bc-locking, see Theorem 5.1. Let L = TxtGMonBc(ℎ). We
provide a learner ℎ′ ∈ R which TxtGNUBc-learns L. Let a �nite sequence f ∈ ℕ∗

be given. In each step B ∈ ℕ, we employ both a forward enumeration strategy (via
the sets �f,B ) as well as a backward search strategy (via the sets �f,B ). The learner ℎ

′

is then de�ned as
,ℎ′(f) =

⋃
B∈ℕ

�f,B ∪ �f,B .

We proceed by de�ning �f,B (forward enumeration sets) and �f,B (backwards search
sets) formally. Let �f,0 = �f,0 = content(f). Furthermore, let

�f,B+1 = �f,B ∪
⋃

g∈(�f,B∪�f,B )
≤B
#

, B
ℎ(fg) .

Intuitively, �f,B+1 contains all elements enumerated by some possible future guess,
that is, for g ∈ (�f,B ∪ �f,B)

≤B
# , elements enumerated by,ℎ(fg) . Note that this is a

similar approach as in the Psd-case, see the proof of Theorem 4.13. However, as
opposed to partially set-driven learning, this alone does not su�ce. In particular, �f,B
may consider f⌢g and f⌢g′, where g ≠ g′, in its enumeration, but, for a hypothesis
building on later information f′ ⊇ f , �f ′,B cannot consider both, as f

′ cannot extend
both f⌢g and f⌢g′ at the same time. To circumvent this, we need the backwards
search set �f,B .

To de�ne �f,B , we introduce the following auxiliary predicate and function. Given
a �nite sequence d ∈ ℕ∗ and an element G ∈ ℕ, we de�ne

MonBeh(G, d, B, f) ⇔ ∀g ∈ content(f)≤B+|f | : G ∈, B
ℎ(d⌢g) .

Intuitively, MonBeh(G, d, B, f) checks whether the learner ℎ, starting on inform-
ation d , exhibits a monotonic behaviour regarding the element G . We further
introduce a function which gives us the newly enumerated element by some hy-
pothesis. In particular, for a �nite sequence f′ ⊆ f , let G̃ B nextEl(f′, f, B) be the
element enumerated next by �f ′,B (and has not yet been dealt with). Furthermore,
let f̃ ⊇ f′ be the (minimal) sequence on which G̃ has been seen for the �rst time
inside �f ′,B . We de�ne the backwards search set as, for �nite sequences f, f′′ ∈ ℕ∗
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with f′′ ⊆ f and B ∈ ℕ,

�f,0,f ′′ = content(f′′),

�f,B+1,f ′′ = �f,B,f ′′ ∪

{
{G̃}, for G̃ = nextEl(f′′, f, B) via f̃ ifMonBeh(G̃, f̃, B, f),

∅, otherwise.

�f,B+1 = �f,B ∪
⋃

f ′′′⊊f

�f,B,f ′′′ .

Note that
⋃

B∈ℕ �f,B,f ′′ ⊆
⋃

B∈ℕ �f ′′,B . The idea behind the backwards search is based
on the following observation. Given two sequences f′ ⊆ f , let G be the �rst
element enumerated by �f ′,B (which is not in content(f′)). If G is an element of
the target language, it will eventually be enumerated in �f,B as well (as it has to
appear in,ℎ(f) by monotonicity of ℎ). However, this may not hold true for another
element enumerated by �f ′,B , as it may use the information f′⌢G , which in general
is no subsequence of f , to obtain the element. With the backwards search, we check
for such elements and enumerate them in case the learner ℎ shows a monotonic
behaviour regarding them.

We show that ℎ′ TxtGNUBc-learns L. Let ! ∈ L and ) ∈ Txt(!). First, we
show that there exists =1 ∈ ℕ such that,ℎ′() [=1]) = ! and afterwards that, for each
=, =′ ∈ ℕ with = ≤ =′, if,ℎ′() [=]) = !, then,ℎ′() [=′]) = !. To that end, let =0 ∈ ℕ be
such that) [=0] is a Bc-locking sequence for ℎ on ! (this exists by Theorem 5.1). For
each = < =0, let G̃= = nextEl() [=],) [=0], B) (via f̃=) be the �rst newly enumerated
element not in ! (if such exists). Then, let =1 ≥ =0 be such that, for all = < =0,

for each associated f̃= there exists g ∈ content() [=1])
≤|) [=1] |
# such that ℎ(f̃⌢

= g) is
a correct guess. Then, for all B ∈ ℕ, MonBeh(G̃, f̃, B,) [=1]) fails. It follows that
no �) [=1],B,) [=] contains elements which are not in !, that is, for all = < =0 and B ∈ ℕ
we have

�) [=1],B,) [=] ⊆ !.

Also, for = ∈ ℕ with =0 ≤ = ≤ =1, �) [=1],B,) [=] only contains elements in !

(as ) [=0] is a Bc-locking sequence). Hence, we have⋃
B∈ℕ

�) [=1],B ⊆ !.

In particular, as ) [=1] is also a Bc-locking sequence, we get⋃
B∈ℕ

�) [=1],B = !.
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Altogether, we get

,ℎ′() [=1]) =

⋃
B∈ℕ

�) [=1],B ∪ �) [=1],B = !.

It remains to be shown that, for each =, =′ ∈ ℕ with = ≤ =′, if,ℎ′() [=]) = !, then
,ℎ′() [=′]) = !. Let = ∈ ℕ be minimal such that,ℎ′() [=]) = !. We show that, for
=′ ≥ =, we have,ℎ′() [=′]) = ! as well. Note that by de�nition of the backwards
search sets, for =̃ ≤ =, we have⋃

B∈ℕ

�) [=],B,) [=̃] ⊇
⋃
B∈ℕ

�) [=′],B,) [=̃] .

Furthermore, we have⋃
B∈ℕ

�) [=],B ⊇
⋃
B∈ℕ

�) [=′],B ∪
⋃
=̃∈ℕ,

=≤=̃≤=′

⋃
B∈ℕ

�) [=′],B,) [=̃],

as, ) [=′] is, for a su�ciently large B ∈ ℕ, a candidate within �) [=],B and the back-
wards search set

⋃
B∈ℕ �) [=′],B,) [=̃] can only enumerate as much as the forward

enumeration set
⋃

B∈ℕ �) [=̃],B . Thus,,ℎ′() [=′]) ⊆,ℎ′() [=]) = !. Next we show that
each element G ∈,ℎ′() [=]) = ! will be enumerated in,ℎ′() [=′]) . We show this by
case distinction depending how G is enumerated in,ℎ′() [=]) .

1.C.: For some B′ ∈ ℕ, the element G is enumerated in �) [=],B ′. Then, we get
G ∈

⋃
B∈ℕ �) [=′],B,) [=]

(
⊆,ℎ′() [=′])

)
as theMonBeh check passes for elements

in !.

2.C.: For some B′ ∈ ℕ and =̃ ≤ =, we have G ∈ �) [=],B ′,) [=̃] . Then, G is enumerated
in

⋃
B∈ℕ �) [=′],B,) [=̃]

(
⊆,ℎ′() [=′])

)
as theMonBeh check passes for elements

in !.

Thus,,ℎ′() [=′]) ⊇ ! and, altogether,,ℎ′() [=′]) = !. ■
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6 Conclusion and Outlook

In this thesis, we investigate behaviourally correct learning in the formalisation of
Gold [Gol67]. We extend the literature by studying the restrictions mentioned in
Chapters 1 and 2 with regards to their relation and properties.

Firstly, we �x a mode of data presentation and study the relations of various
restrictions with each other. This continues the work of Jain et al. [Jai+16], Kötzing
and Palenta [KP16] and Kötzing and Schirneck [KS16], where this is done in the
case of explanatory learning. We provide a full picture for common interaction
operators, namely for Gold-style, partially set-driven and set-driven learning. We
see that many results are similar to the respective explanatory map. Most notably,
we show that monotone learning does imply non-U-shaped learning in the Gold-
style and partially set-driven case. In the case of set-driven learning it does as
well, as non-U-shaped learning is no restriction there. Furthermore, we show that
semantically conservative, weakly monotone and cautious learning coincide for all
the studied modes of data presentation.

We furthermore study the mentioned restrictions with regards to their proper-
ties. In particular, we focus on consistent and strongly Bc-locking learning. The
former models the seemingly natural desire to include all data seen during learning
correctly. The famous inconsistency phenomenon states that in the case of explanat-
ory learning consistency is a restriction [Bār77]. Often, the opposite is observed
in behaviourally correct learning, where many restrictions allow for consistent
Bc-learning. We complete these partial results by showing that all considered
restrictions allow for consistent Bc-learning. This way, we not only answer open
questions from the literature [KSS17] but also provide a full picture.

Furthermore, we study whether learning can be done with strongly Bc-locking
learners. This is more of technical interest as many simulation arguments rely
on the search for Bc-locking data. Thus, it is comfortable to know whether they
exist for the learner at hand. While Kötzing et al. [KSS17] provide many general
results when this behaviour can be expected, we complete this work by including all
considered restrictions. This way, we provide a full picture regarding this property.

While the thesis gives a rounded picture regarding the pairwise relation or
properties of the studied restrictions, there are ways to continue this work. We
discuss possibilities next.
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Decisive Learning. The provided maps can be extended to contain further
important restrictions. In particular, decisive learning [OSW82] has been studied
in the context of map charting in the case of explanatory learning [Jai+16; KP16;
KS16]. In decisive learning, the learners are not allowed to return to a (semantically)
abandoned hypothesis. The importance of this restriction is also displayed by
the fact that it is a natural specialisation to non-U-shaped learning while it is a
generalisation to semantically witness-based learning. As such, it is known to be
restrictive to partially set-driven and Gold-style learning [Bal+08]. In these cases,
it is also strictly less powerful than non-U-shaped learning [Bal+08].

First, note that we extend these results by implicitly showing that decisive learn-
ing is no restriction in the set-driven case, see Theorem 3.9. However, interactions
to many other restrictions elude us. In particular, it is open whether monotone learn-
ing implies decisive learning, as it is the case in the explanatory counterpart [KP16;
KS16]. We state the following open problem.

▶ Open Problem 6.1. In the case of Gold-style and partially set-driven learning,
does monotone behaviourally correct learning imply decisive behaviourally correct
learning? ◀

To get a better understanding of the problem, one could consider variants of
decisive learning [Bal+08; Car+06], similarly to the variations of cautious learning,
see Kötzing and Palenta [KP16] or Sections 3.1 and 4.1. Baliga et al. [Bal+08], for
example, consider second-time decisive learning, where the learners may abandon a
hypothesis at most once. They show that it is no restriction in explanatory learning.
Similarly, Carlucci et al. [Car+06] consider decisiveness on wrong, overinclusive and
overgeneralising conjectures, where the learner may not return to abandoned wrong,
incomparable or overgeneralising conjectures, respectively. They investigate the
relation between these and show that, in particular, neither of the latter two is
restrictive. By studying the mentioned variants further, one could gain valuable
insights in the behaviour of decisive learners.

The Presentation of the Data. Another interesting direction yet to be studied
is the interplay between the maps. Especially in behaviourally correct learning, we
have seen that Gold-style learning often coincides with partially set-driven learning.
However, in Section 4.3, we provide a �rst natural example of where this is not the
case. This raises the question whether there are similarly natural examples where
partially set-driven learning does not su�ce to obtain the full learning power. We
state the question for non-U-shaped and decisive learning.
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▶ Open Problem 6.2. Does it hold, for decisive and non-U-shaped learning, that
Gold-style and partially set-driven learning are equally powerful? ◀

Once this question is solved, the next step is to consider the interplay between
the restrictions with various forms of data presentation. This combines both the
study on the impact of the data presentation and the impact of the restrictions.

Simulation Arguments. Another direction of research lies in the thorough
analysis of di�erent simulation arguments. This would nicely complement the
rich literature on separation arguments, where Case and Kötzing [CK16a] provide
general results using self-learning classes. In this work, we study the weak and
strong forward veri�cation, see Section 3.1, and obtain interesting properties of the
learners and their output. However, such studies may be applied to other strategies
used throughout the literature or this work. For example, the simulation strategy
discussed with Sanjay Jain in a private communication [Jai17] occurs in multiple
proofs, see Theorems 4.1 and 5.1. Thus, it may be fruitful to study such approaches
and extensions thereof to obtain properties of learning.
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