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1 Introduction

In this paper we characterize the bridges of a Brownian diffusion as solutions of a
simple integration by parts formula (IBPF for short) on the space of continuous
paths C([0; 1]; Rd), d > 1. More precisely, our object of study is the class of
all probabilities on the path space which have the same bridges as a reference
d-dimensional Brownian diffusion; this class is called the reciprocal class of the
reference diffusion.

Let us briefly describe our framework. The terminology of reciprocal class
comes from reciprocal processes; these are Markovian fields with respect to the
time parameter and therefore a generalization of Markov processes. The inter-
est in these processes was motivated at first by a Conference of Schrödinger [24]
about the most probable dynamics for a Brownian particle whose laws at initial
and final times are given. Actually, Schrödinger was only concerned with Marko-
vian reciprocal processes which have been called since then Schrödinger processes.
His interpretation in terms of (large) deviations from an expected behavior was
further developed by Föllmer, Cattiaux and Léonard, Gantert among others (cf.
references [9], [3] and [10]). Schrödinger processes were also analysed by Zambrini
[28] and Nagasawa [18] for their possible connections with quantum mechanics.
One year after Schrödinger, Bernstein noticed the importance of non-Markovian
processes with given conditional dynamics, where the conditioning is made at two
fixed times. This was the beginning of the study of general reciprocal processes.
Jamison [11] proved that the set of reciprocal processes is partitioned into classes
called reciprocal classes. All the elements of a same class share the same Marko-
vian bridges (or two times conditional probability distributions). Each class is
characterized by two functions (F, G) (defined explicitely in Theorem 2.5 below)
which take values respectively in R

d and R
d⊗d called its Reciprocal Characteristics

([5], [14]) and can be defined starting from a reference Markovian Brownian diffu-
sion. Krener (cf. [14]) raised the question of characterizing a reciprocal class by an
equation involving (F, G). For Gaussian reciprocal processes an answer was given
in [16]: the equation was a p.d.e. for the covariance function. The non Gaussian
case was addressed in [25] by one of us: using the tools of Stochastic Mechanics,
it was proved that the elements of a reciprocal class satisfy a stochastic Newton
equation. In this equation by analogy with the Lorentz law of electromagnetism
G can be interpreted as a magnetic force and F as an electric force (see also [13]).
In [20] Malliavin calculus was introduced as a useful tool for this problem. We ex-
hibited an IBPF which characterizes the elements of a given reciprocal class when
d = 1. Here we turn to vectorial case d > 1, which requires new techniques and
provides broader applications (see Theorem 5.1 and Theorem 5.4).

Our main result in the present paper states that the set of probability mea-
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sures which belong to the reciprocal class of a Brownian diffusion and have finite
entropy, coincides with the set of solutions of a functional equation with coeffi-
cients F and G. Our equation is a perturbation of the duality equation satisfied
by Brownian bridges, duality between the Malliavin derivation operator and the
stochastic integral. The perturbation term in the equation is to be compared with
the vector of Malliavin derivatives of the Hamiltonian function associated to Gibbs
measures ([22]). This term splits into two parts one of them vanishing if and only
if the drift of the reference Brownian diffusion is a gradient. Therefore the tools
developed to reach the above result enable us on the one hand to characterize
the laws of Brownian diffusions which are of gradient type among the reciprocal
processes satisfying some IBPF and on the other hand, to prove a generalization
of Kolmogorov’s theorem: the existence of a reversible law in the reciprocal class
of a Brownian diffusion with drift b can only occur if b is a gradient.

The paper is divided into the following sections.
1. Introduction.
2. Brownian bridges. Reciprocal classes.
3. Integration by parts formula for a Brownian diffusion and its bridges.
4. Characterization of a reciprocal class by an IBPF.
5. Application to gradient diffusions.

2 Brownian bridges. Reciprocal classes.

2.1 Derivation operator

Let Ω = C([0, 1]; Rd) be the canonical - polish - path space of continuous R
d-valued

functions on [0, 1], endowed with F , the canonical σ-field. Let (Xt)t∈[0,1] denote
the family of canonical projections from Ω into R

d. P(Ω) is the set of probability
measures on Ω. We use the notation:

Q(f) =

∫
Ω

f(ω)Q(dω).

Let P ∈ P(Ω) denote a fixed Wiener measure on Ω with initial measure any
probability measure on R

d. We denote by P x the Wiener measure on Ω with
initial condition x ∈ R

d. More generally, for any Q in P(Ω), Qx is the conditional
measure Q(./X0 = x), and Qx,y is the conditional measure Q(./X0 = x, X1 = y)
(bridge between x and y). We will denote by | · | the euclidian norm in R

d and x.y
will denote the scalar product between x and y, two vectors in R

d.

We now define the space of smooth cylindrical functionals on Ω :

S = {Φ; Φ(ω) = ϕ(ωi
tj
, 1 ≤ i ≤ d, 1 ≤ j ≤ n),

ϕ ∈ C∞
b (Rnd; R), 0 ≤ t1 ≤ . . . ≤ tn ≤ 1}.
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where C∞
b (Rnd; R) denotes the set of C∞-functions which are bounded as well as all

their derivatives. Clearly S ⊂ L2(Ω; P ). For 0 ≤ τ ≤ 1, we denote by Sτ the subset
of Fτ -measurable elements of S. On S we denote by Dg the derivation operator in
the direction g = (gi)1≤i≤d ∈ L2([0, 1]; Rd) defined as follows : DgΦ = (DgiΦ)1≤i≤d

where

DgiΦ(ω) =

∫ 1

0

gi(t)Di
tΦ(ω)dt with Di

tΦ(ω) =

n∑
j=1

∂ϕ

∂xi
j

(ω1
t1
, . . . , ωd

tn)1t≤tj

It is clear that DgΦ is also equal to the Gâteaux-derivative of Φ in the direction∫ .

0
g(t)dt, which is a typical element of the Cameron-Martin space. One also defines

the space D1,2 as the closure of S under the norm :

‖Φ‖2
1,2 = P (Φ2) + P

(∫ 1

0

|DtΦ|2dt
)
.

For g = (gi)1≤i≤d ∈ L2([0, 1]; Rd), the vector valued stochastic integral of g
under X is denoted by

δ(g) = (δ(gi))1≤i≤d :=
( ∫ 1

0

gi(t)dX i
t

)
1≤i≤d

.

For a process (ui,j)i,j∈{1,...,d} with values in R
d⊗d we define, whenever it exists,

∫ t

0

ui
sdXs :=

d∑
j=1

∫ t

0

ui,j
s dXj

s

It is well known (see for example [2]) that the operator D (also called Malliavin
derivative) is the dual operator on D1,2 of the Skorokhod integral. When we restrict
ourself to test functions g which are deterministic, the Skorokhod integral of g
reduces to the Wiener integral δ(g) and the following vectorial IBPF is satisfied
on Ω : ∀g ∈ L2([0; 1]; Rd), ∀Φ ∈ S,

P (DgΦ) = P
(
Φ δ(g)

)
. (1)

Furthermore, this IBPF characterizes the Wiener measure P on Ω (cf. [22]).

2.2 IBPF for Brownian bridges.

In the same way as Brownian motion is the reference process in the study of Markov
diffusions, it seems natural to consider Brownian bridges as reference processes in
the study of Markovian bridges. For this reason we review IBPF satisfied by
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Brownian bridges. The subset of the Cameron-Martin space, which will contain
the test functions, is the following set:

E = {g, Rd-valued step function on [0; 1] such that

∫ 1

0

g(t)dt = 0}.

The condition on the integral is of loop type: indeed if we denote by h the function
h :=

∫ ·
0
g(t)dt, we are requiring that h(0) = h(1) = 0. For τ ∈ [0, 1], Eτ denotes the

set of step functions in E whose support is included in [0, τ ]. For step functions
the stochastic integral δ(g) is trivially defined for all ω ∈ Ω, independently of the
underlying probability.

Proposition 2.1 Let (x, y) ∈ R
d × R

d and P x,y ∈ P(Ω) be the law of the d-
dimensional Brownian bridge on [0, 1] from x to y. Then, for all g ∈ E , for any
Φ ∈ S,

P x,y(DgΦ) = P x,y
(
Φ δ(g)

)
. (2)

Proof : The duality formula (2) has been proved by Driver in [6] for the Brownian
bridge on a Riemannian manifold. His proof relies on the absolute continuity
of P x,y with respect to P x on Fτ , with 0 < τ < 1. However for the sake of
completeness, let us sketch an alternative proof of this duality. Let us take Φ(ω) =
φ0(ω0)φ1(ω1)Φ̃(ω) for φ0, φ1 ∈ C∞(Rd), and Φ̃ ∈ S in the IBPF satisfied under P :

P
(
φ0 φ1 Φ̃ δ(g)

)
= P (Dg(φ0 φ1 Φ̃)) (3)

which holds for any g ∈ L2([0; 1]; Rd) and any Φ ∈ S. One obtains from (3)

P
(
φ0(X0)φ1(X1)P (Φ̃δ(gi)/X0, X1)

)
=

P
(
φ0(X0)φ1(X1)P (DgiΦ̃/X0, X1)

)
+ P

(
φ0(X0)∂iφ1(X1)Φ̃

) ∫ 1

0

gi(r) dr

Therefore for g ∈ E and for each i, identity (2) holds for μ-a.e. (x, y) where μ is
the law of (X0, X1) under P . By continuity of the map (x, y) �→ P x,y the duality
formula (2) holds for all (x, y) ∈ R

d × R
d. �

2.3 Reciprocal class and reciprocal characteristics of a Brow-
nian diffusion.

We now introduce the main object we deal with in this paper: the reciprocal
class of some fixed reference diffusion Pb. The data is a d-dimensional Markovian
diffusion solution of the stochastic differential equation:

dXt = dBt + b(t, Xt) dt, X0 = x, (4)
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where B is a d-dimensional Brownian motion, b is the drift function, assumed to be
in C1,2([0; 1] × R

d; Rd) and x ∈ R
d. The law of this Brownian diffusion is denoted

by Pb. It is not a restriction to fix a deterministic value for X0 since in the present
paper one only deals with the bridges of Pb.

We assume there exists a constant k > 0 and an integer N ∈ N
∗ such that for

all t, x ∈ [0, 1] × R
d, for all i, j ∈ {1, . . . , d},

x.b(t, x) ≤ k(1 + |x|2) (5)

|bi(t, x)| + |∂tb
i(t, x)| ≤ k(1 + |x|N) (6)

and |∂jb
i(t, x)| + |∂i∂jb

i(t, x)| ≤ k(1 + |x|N−1). (7)

Since b is locally lipschitz continuous uniformly on time, condition (5) ensures
existence and uniqueness of a strong solution to equation (4) with no explosion on
[0, 1] (see for example p.234 in [4]).
Example : The gradient of a potential with polynomial growth provides a typical
example of drift b satisfying (5), (6) and (7): for any i ∈ {1, . . . , d}, bi(x1, . . . , xd) =
−P′

i(x
i)+

∑d
j=1 aijx

j where the Pi are polynomial functions of the form : Pi(x
i) =∑N+1

k=0 αi,k(x
i)k with αi,N+1 > 0. The corresponding solution of (4) is called a gra-

dient diffusion.

Lemma 2.2 Under assumptions (5), the Brownian diffusion solution of (4) admits
finite moments of any order. In particular,

Pb( sup
t∈[0,1]

|Xt|2N ) < +∞. (8)

A proof of this lemma can be found for example in [4]. Let us notice that Lemma
2.2 and assumption (6) imply that the classical entropy h of Pb w.r.t. the Wiener
measure P x is finite since

h(Pb; P
x) = Pb

(
log(

dPb

dP x
)
)

=
1

2
Pb

(∫ 1

0

|b(t, Xt)|2dt
)

< +∞. (9)

In this paper, we adopt the following definition of entropy on P(Ω) (cf. [7]) and
denote it by H :

H(Q; P ) = Q
(
h(QX0 ; P X0)

)
.

Let us notice that here H(Pb; P ) = h(Pb; P
x) < +∞. Finiteness of entropy will be

a leading assumption through the entire paper, so that we now define the following
set of probability measures :

PH(Ω) = {Q ∈ P(Ω) : H(Q; P ) < +∞}.
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This set is natural in our framework: the most probable path that Schrödinger was
looking for (cf. [24]) turns out to be the unique minimizer of entropy w.r.t. Wiener
measure among a set of reciprocal processes. Finiteness of entropy has been crucial
in subsequent papers ( [9], [27], and [3] for instance). In the present paper two
consequences of the finiteness of entropy assumption will play an important role.
We state these two results in the following proposition and refer the reader to [8].

Proposition 2.3 Let Q be a probability measure in PH(Ω). Then
(i) There exists an adapted process (βt)t∈[0;1] such that the process

(Xt − X0 −
∫ t

0
βsds)t∈[0,1] is a Q-Brownian motion and Q

( ∫ 1

0
|βt|2 dt

)
< +∞

(ii) Let μ0 (resp. μ) denote the law of X0 (resp. (X0, X1)) under Q. Then, for
μ0 (resp. μ) a.e. x (resp. (x, y)), the entropy H(Qx; P x) (resp. H(Qx,y; P x,y)) is
finite.

Furthermore, let us assume that the probability transition density of Pb, de-
noted by p(s, x, t, y), satisfies the following regularity property :

(s, x) �→ p(s, x, t, y) ∈ C1,3([0; 1[×R
d; R). (10)

It is clear that for each 0 ≤ s < t ≤ 1 and x, y ∈ R
d, p(s, x, t, y) > 0 and also that

the law of Xt is absolutely continuous w.r.t. Lebesgue measure on R
d with strictly

positive density. We will also assume that for each 0 ≤ s < t ≤ 1, the map

(x, y) �→ Pb( ./Xs = x, Xt = y)

is continuous on R
d × R

d.

Definition 2.4 The reciprocal class of Pb is the subset R(Pb) of P(Ω) defined by :

R(Pb) = {Q ∈ P(Ω), ∀0 ≤ s < t ≤ 1, Q( ./Fs ∨ F̂t) = Pb( ./Xs, Xt)} (11)

where the forward (resp. backward) filtration (Ft)t∈[0,1]( resp. (F̂t)t∈[0,1]) is given

by Ft = σ(Xs, 0 ≤ s ≤ t), (resp. F̂t = σ(Xs, t ≤ s ≤ 1)).

Let us also mention the alternative definition of R(Pb) (see [11]) :

R(Pb) = {Q ∈ P(Ω) : ∃μ ∈ P(Rd ⊗ R
d),

Q =

∫
Rd×Rd

Pb( /X0 = x, X1 = y)μ(dx, dy)}. (12)

which stresses the fact that any Q in R(Pb) is a mixture of the bridges of Pb or
equivalently, that the bridges of Q coincide with the ones of Pb.

As a consequence of (11), for any Q ∈ R(Pb) and any 0 ≤ s ≤ t ≤ 1, the
filtrations Fs

∨ F̂t and σ(Xr; s ≤ r ≤ t) are independent under Q conditionnally
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to σ(Xs, Xt). Therefore the coordinate process under any element of R(Pb) is a
Markovian field w.r.t. the time index; it is also called a reciprocal process.

It is easy to see that any Markov process is reciprocal. Nevertheless, a reciprocal
process is not necessarily a Markov process; the Markov property may fail to hold
unless the law of (X0, X1) enjoys some product decomposition. More precisely,
Jamison gave in [11] the following description of the subset RM(Pb) containing all
the Markovian processes of R(Pb) ( see [23] for related results):

RM(Pb) = {Q ∈ R(Pb) : ∃ν0, ν1 σ-finite measures on R
d,

Q ◦ (X0, X1)
−1(dx, dy) = p(0, x, 1, y)ν0(dx)ν1(dy)}. (13)

Due to historical reasons recalled in the introduction, the elements of RM(Pb)
are called in the litterature Schrödinger processes. The following theorem gives a
necessary and sufficient condition for a Brownian diffusion to be in the reciprocal
class of Pb. It was first proved by Clark following a conjecture of Krener.

Theorem 2.5 For any b̃ ∈ C1,2([0; 1]×R
d; Rd), let us define the R

d-valued (respec-
tively R

d⊗d-valued) function Fb̃(t, x) = (F i
b̃
(t, x))i (resp. Gb̃(t, x) = (Gi,j

b̃
(t, x))i,j),

as follows

F i
b̃
(t, x) =

(
∂tb̃

i +
1

2
∂i(|b̃|2 + div b̃)

)
(t, x) (14)

Gi,j

b̃
(t, x) =

(
∂j b̃

i − ∂ib̃
j
)
(t, x) (15)

A Brownian diffusion with drift b̃ is in the reciprocal class of Pb if and only if
(Fb, Gb) ≡ (Fb̃, Gb̃).

Proof of Theorem 2.5: We refer the reader to [5]. Let us simply mention that
the identity (Fb, Gb) ≡ (Fb̃, Gb̃) is equivalent to the existence of a function h > 0

such that ∂th+
∑d

i=1 bi∂ih+ 1
2
Δh = 0 and b̃i−bi = ∂i log h, for all 1 ≤ i ≤ d. �

Definition 2.6 The pair of functions (Fb, Gb) is called the Reciprocal Charac-
teristics of Pb.

In the sequel since b is a fixed data we drop the index b for simplicity: (F, G)
denote the reciprocal characteristics of Pb

Proposition 2.7 Under the growth conditions (6) and (7) on the drift function b,
the reciprocal characteristics F and G satisfy the following inequality :
∃K > 0, ∀(t, x) ∈ [0; 1] × R

d, ∀i, j ∈ {1, . . . , d},
|F i(t, x)| ≤ K(1 + |x|2N−1)

|Gi,j(t, x)| + |div Gi(t, x)| ≤ K(1 + |x|N).

Remark 2.8 The reciprocal characteristics associated to the Brownian motion,
i.e. corresponding to the drift b = 0, are obviously F0 ≡ 0 and G0 ≡ 0. A subclass
of R(P0) has been explicitely computed in [1].
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3 Integration by parts formula for a Brownian

diffusion and its bridges.

In the first part of this section we establish two integration by parts formulae
(IBPF) satisfied by the d-dimensional Brownian diffusion Pb. The coefficients of
the first one (identity (16)) are the reciprocal characteristics associated to this
diffusion except for a term involving the value at the terminal time. The form
of his IBPF differs from the one dimensional case by the presence of additional
terms, especially a stochastic integral which admits for integrand the reciprocal
characteristic G. It is easy to see from Theorem 2.5 that G = 0 if and only if b is a
gradient, which is always the case in dimension 1. The second IBPF (identity (18))
is a consequence of Girsanov theorem. The second part of this section contains an
IBPF satisfied by the reciprocal class of Pb.

3.1 IBPF satisfied by a Brownian diffusion.

The following statement will be a key tool both for Theorem 3.4, where we exhibit
an IBPF satisfied by the reciprocal class R(Pb), and in the proof of Theorem 4.1.

Theorem 3.1 Let Pb be the d-dimensional Brownian diffusion solution of (4),
where b satisfies assumptions (5), (6) and (7). Then the following integration by
parts formula is satisfied under Pb : for any τ ∈ [0, 1], for any R

d-valued step
function g on [0; τ ], for any Φ ∈ S and i ∈ {1, . . . , d},

Pb(DgiΦ) = Pb

(
Φ δ(gi)

)
−
∫ τ

0

gi(r)dr Pb

(
Φ bi(τ, Xτ )

)

+ Pb

(
Φ

∫ τ

0

gi(r)
(∫ τ

r

(F i +
1

2
div Gi)(t, Xt) dt +

∫ τ

r

Gi(t, Xt)dXt

)
dr

)
(16)

Proof of Theorem 3.1: The fact that each term of the RHS of (16) is finite
is due to Proposition 2.7 and Lemma 2.2. The procedure that we follow for the
proof of this theorem is close to Lemma 4.2 of [20] for the one-dimensional case.
This is why we refer the reader to [20] for the details of the proof. We prefer to
stress the point where multidimensional and one dimensional cases differ. Since
we want to deduce the IBPF for Pb from the IBPF for P we have to handle the
term Dgi(log Mb). By definition of the Malliavin derivative,

Dgi(log Mb) =

∫ τ

0

gi(r)
(
bi(r, Xr) +

d∑
j=1

∫ τ

r

∂ib
j(t, Xt)dXj

t

−
d∑

j=1

∫ τ

r

bj(t, Xt)∂ib
j(t, Xt)dt

)
dr. (17)
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Let us write∫ τ

r

∂ib
j(t, Xt)dXj

t =

∫ τ

r

(∂ib
j − ∂jb

i)(t, Xt)dXj
t +

∫ τ

r

∂jb
i(t, Xt)dXj

t .

This last stochastic integral appears in the development of bi(τ, Xτ )− bi(r, Xr) by
Ito formula. Using this development and the definition of (F, G) in Theorem 2.5
it is easy to check that

Dgi(log Mb) =

∫ τ

0

gi(r)dr bi(τ, Xτ) −
∫ τ

0

gi(r)
( d∑

j=1

∫ τ

r

Gi,j(t, Xt)dXj
t

)
dr

−
∫ τ

0

gi(r)

∫ τ

r

(
F i +

1

2
div Gi

)
(t, Xt) dt dr.

In dimension 1 the matrix G vanishes and we only have to deal with integrals w.r.t.
Lebesgue measure. When d > 1 G will not vanish in general so we must also take
into account a stochastic integral. �

In the sequel we would like to use the IBPF (16) for Brownian diffusion with a
drift not necessarily of polynomial growth. For example, in the next subsection we
will be interested in the bridges of Pb. If one takes for instance b(t, z) = −λz, which
satisfies conditions (6) and (7) with N = 1, Pb is then the Ornstein-Uhlenbeck
process. The drift b̃ of its bridge between x and y can be explicitely computed :

b̃(t, z) = −λz +
λ

sinh(λ(1 − t))
(y − e−λ(1−t)z).

It is clear that b̃ does not satisfy condition (6). However the conclusion of Theorem
3.1 still holds true under the set of assumptions (A1)-(A3) (which are weaker than
(6)) listed in the following proposition. We leave the proof of this proposition to
the reader.

Proposition 3.2 Let b̃ ∈ C1,2([0; 1] × R
d; Rd) and τ ∈ [0; 1] such that

H(Pb̃|Fτ ; P |Fτ ) < +∞. Let Fb̃ and Gb̃ be the reciprocal characteristics associated
to the Brownian diffusion Pb̃. If the following conditions are satisfied :
(A1) b̃(τ, Xτ ) ∈ L1(Pb̃)

(A2)
∫ τ

0
|Fb̃ + 1

2
div Gb̃|(t, Xt)dt ∈ L1(Pb̃)

(A3)
∫ τ

0
|Gi,j

b̃
(t, Xt)|2dt ∈ L1(Pb̃), ∀i, j ∈ {1, . . . , d}

then the integration by parts formula (16) still holds true under Pb̃ .

Let us now establish another integration by parts formula satisfied under Pb̃ where
the drift b̃ appears instead of the reciprocal characteristics (Fb̃, Gb̃).
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Theorem 3.3 Let Pb̃ ∈ PH(Ω) be, as before, the Brownian diffusion whose drift
b̃ is assumed to belong to C0,1([0; 1] × R

d; Rd). Let τ ∈ [0; 1]. If for i ∈ {1, . . . , d},∫ τ

0
|∂ib̃(t, Xt)|2dt belong to L1(Pb̃), then for any R

d-valued step function g on [0, τ ],
for all Φ ∈ S,

Pb̃(DgiΦ) = Pb̃

(
Φ δ(gi)

)
− Pb̃

(
Φ

∫ τ

0

gi(s)b̃i(s, Xs)ds
)

(18)

−Pb̃

(
Φ

∫ τ

0

gi(s)

∫ τ

s

∑
j

∂ib̃
j(p, Xp)(dXj

p − b̃j(p, Xp)dp)ds

)

Proof We denote by Mb̃ the Girsanov density of Pb̃ w.r.t. P where P = P0 is the
Wiener measure whose initial law is the law of X(0) under Pb̃ :

Mb̃ = exp
( d∑

i=1

∫ τ

0

b̃i(t, Xt)dX i
t −

1

2

∫ τ

0

|b̃(t, Xt)|2dt
)
.

Given a smooth truncation function χn with bounded derivatives on R satisfying{
χn1[−n−1,n+1]c = −(n + 1)1]−∞,−n−1[ + (n + 1)1]n+1,+∞[

χn1[−n,n] = Id.1[−n,n].
(19)

we set Mn
b̃

= exp
(
χn(log Mb̃)

)
. Then 0 ≤ Mn

b̃
≤ Mb̃ + 1 and if P n

b̃
denotes the

positive measure on C([0; T ]×R
d) with Radon Nikodym density Mn

b̃
w.r.t. P , the

integration by parts formula (1) for P yields

P
(
Mn

b̃
DgiΦ

)
= P

(
Φ Mn

b̃
δ(gi)

)
− P

(
ΦDgiMn

b̃

)
= P

(
Φ Mn

b̃
δ(gi)

)
− P

(
ΦMn

b̃
Dgi(log Mn

b̃
)
)
. (20)

It is sufficient to verify that each term of this identity converges by dominated
convergence theorem. �

A duality formula such as (18) has been proved under stronger integrability
assumptions on the drift b̃ in [21], formula (1.8).

3.2 IBPF satisfied by the bridges of a Brownian diffusion.

We now come to an IBPF satisfied by all the elements of R(Pb), the reciprocal class
of Pb. Let us recall that (F, G) denotes the reciprocal characteristics of R(Pb).
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Theorem 3.4 Let Q be a probability measure in PH(Ω). Let us moreover assume
that assumption (A0) holds : supt∈[0;1] |Xt| ∈ L2N (Q).
If Q is in the reciprocal class of Pb, then for any function g ∈ E , ∀Φ ∈ S, for all
i ∈ {1, . . . , d} , the following integration by parts formula is satisfied :

Q(DgiΦ) = Q
(
Φ δ(gi)

)
+ Q

(
Φ

∫ 1

0

gi(r)

∫ 1

r

(F i +
1

2
div Gi)(t, Xt) dt dr

)

+ Q
(
Φ

∫ 1

0

gi(r)

∫ 1

r

Gi(t, Xt)dXt dr
)
. (21)

Remark 3.5 1. As mentioned in Proposition 2.3, H(Q; P ) < +∞ ensures that
X is a Q-semi-martingale; it is therefore meaningful to consider the stochastic
integral

∫ 1

r
Gi(t, Xt)dXt under Q.

2. Formula (21) reads like a perturbation of formula (2) for Brownian bridges.
The perturbation term can also be written as

Q
(
Φ

∫ 1

0

gi(r)

∫ 1

r

F i(t, Xt) dt dr
)

+ Q
(
Φ

∫ 1

0

gi(r)

∫ 1

r

Gi(t, Xt) ◦ dXt dr
)

where in the second term, the stochastic integration is of Stratonovich type; this
expression reflects the symmetry of the reciprocal property under time reversal.

Proof of Theorem 3.4 : Let us denote by μ the law of (X0, X1) under Q. We first
prove the IBPF for μ-a.e.(x, y) and the probability Qx,y := Q(·/X0 = x, X1 = y).
In order to do so we first prove that we can apply Proposition 3.2.
For μ-a.e. (x, y) the integrability condition (A0) still holds true under Qx,y and
H(Qx,y; P x,y) < +∞ (cf. Proposition 2.3); therefore H(Qx,y|Fτ ; P

x,y|Fτ ) < +∞ for
any τ ≤ 1. Let us fix such an (x, y). Since Q belongs to the reciprocal class of Pb,
for any τ ∈ [0; 1[ the restriction of Qx,y to C([0; τ ]; Rd) is the law of the Brownian
diffusion P̃ starting from x with drift

b̃(t, z) = b(t, z) + ∂z log p(t, z, 1, y)

and in particular Fb̃ = F, Gb̃ = G on [0; τ ] × R
d. By assumption (10), b̃ ∈

C1,2([0; 1[×R
d; R). We also have to check assumptions (A1)-(A3) of Proposition

3.2 on b̃, F and G : assumption (A1) has not to be considered here since we test on
functions g ∈ Eτ . Assumptions (A2) and (A3) are satisfied since (A0) is assumed
and F and G satisfy Proposition 2.7. Therefore IBPF (21) holds on [0,τ ] under
Qx,y for μ-a.e. (x, y).
The second part of the proof consists in passing to τ = 1. Let us simply sketch
the argument. Let Φ ∈ S be F1-measurable, and g ∈ E . Since Φ ∈ S, there exists
a function ϕ and a real number τ < 1 such that

Φ(X) = ϕ(x, Xt1 , · · · , Xτ , y), Qx,y-a.s..

12



Let n be large enough so that τ < 1− 1
n

and g is constant on [1− 2
n
; 1[. Let us set

gn = g1[0,1− 2
n

[ + n
( ∫ 1

1− 2
n

g(r)dr
)
1[1− 2

n
,1− 1

n
].

By construction gn is a step function on [0, 1 − 1
n
] and its integral is equal to

zero. We apply the IBPF (21) for Qx,y to the pair (Φ, gn) on [0, 1 − 1
n
]. It is now

straightforward to verify that each term converges when n tends to infinity. By
integrating in (x, y) over μ, we conclude that the desired IBPF also holds true for
Q. �

4 Characterization of a reciprocal class by an

IBPF

Our aim is now to establish the converse statement to Theorem 3.4. More pre-
cisely, we want to show that the integration by parts formula (21) characterizes
the regular reciprocal processes belonging to R(Pb). Actually, since we previously
had to introduce the regularity condition (10) to obtain enough smoothness for
the semi-martingale characteristics of bridges, we also have now to consider prob-
abilities which a priori satisfy some regularity conditions to be able to write down
the IBPF. These conditions are listed below :

(H1) Conditional density : regularity, domination.
(H1.1) ∀0 ≤ t < u < 1, ∀(x, y) ∈ R

d × R
d, there exists a function q s.t.

Q(Xu ∈ dw|Xt = x, X1 = y) = q(t, x, u, w, 1, y)dw

(H1.2) ∀0 < u < 1, ∀(x, y) ∈ R
d × R

d, q(0, x, u, w, 1, y) > 0

(H1.3) ∀0 < u < 1, ∀(w, y) ∈ R
d × R

d, the map (t, z) �→ q(t, z, u, w, 1, y) is in
C1,2([0, 1[×R

d ; R)

(H1.4) for all 0 < τ < 1, ∀(t, z) ∈ [0; τ ] × R
d, there exists a neighborhood V of

(t, z) and a function φV(u, w, 1, y) such that whenever ∂α denotes ∂s, ∂ξk or ∂ξkξl

for k, l ∈ {1, . . . , d} it holds:

sup(s,ξ)∈V |∂αq(s, ξ, u, w, 1, y)| ≤ φV(u, w, 1, y),

and
∫ τ

0

∫
Rd(1 + |w|2N)φV(u, w, 1, y)

(
1 + φV (u,w,1,y)

q(0,x,u,w,1,y)

)
dwdu < +∞.

(H2) Integrability condition on the derivatives of the conditional density.
Let 0 ≤ s ≤ τ < 1.

(H2.1)
∫ τ

s

∫
Rd |∂αq(s, Xs, u, w, 1, X1)|(1+ |w|2N) dwdu ∈ L1(Q) where ∂α denotes

13



∂s or ∂ξkξl for k, l ∈ {1, . . . , d}
(H2.2)

∫ τ

s

∫
Rd |∂ξkq(s, Xs, u, w, 1, X1)|(1 + |w|2N) dwdu ∈ L2(Q)

(H2.3)
∫ τ

s

∫
Rd(1 + |w|2N)∂αq(s,Xs,u,w,1,X1)

2

q(0,x,u,w,1,X1)
dwdu ∈ L1(Q) where ∂α denotes ∂s, ∂ξk

or ∂ξkξl

Theorem 4.1 Let Q be a probability measure in PH(Ω). Let us assume that Q
satisfies assumptions (H1), (H2) and (A0). If the IBPF (21) is satisfied under Q
then Q is in the reciprocal class of Pb.

The proof of this theorem is decomposed into the following four different steps.
Step 1 : Each bridge Qx,y of Q is a Brownian diffusion with drift bxy given by an
expression of the form (22).
Step 2 : Each drift bxy is regular enough to compute the reciprocal characteristics
F x,y and Gx,y of Qx,y.
Step 3 : Qx,y satisfies an IBPF of the type (16) with its own reciprocal character-
istics F x,y and Gx,y as parameters.
Step 4 : Qx,y also satisfies an IBPF of the type (21) but with reciprocal character-
istics F and G as parameters. Therefore F x,y ≡ F and Gx,y ≡ G, which implies
that all the bridges of Q and Pb are equal.

Proof of Theorem 4.1
Step 1: Let μ be the law of (X0, X1) under Q. By Proposition 2.3, X under Q

is a Brownian semi-martingale. Moreover the semi-martingale property is stable
by conditioning and therefore for μ a.e. (x, y), X under Qx,y (resp. under both
probabilities Qx,y(·/Fs) and Qx,y(·/Xs) ) is a Brownian semi-martingale, whose
drift, denoted by bxy, will be now computed.
First, let us prove that Qx,y is Markovian. Notice that, for s fixed in [0, 1[, applying

IBPF (21) to the following functions : Φ Fs-measurable, g = g̃− 1
1−s

∫ 1

s
g̃(r)dr1[s,1],

one obtains easily that the drift of X at time r ∈ [s; 1[ is under Qx,y(·/Fs) (resp.
Qx,y(·/Xs)) given by Qx,y

Fs
(Ur/Fr) (resp. Qx,y

Xs
(Ur/Fr)) where Qx,y

Fs
(resp. Qx,y

Xs
)

denotes Qx,y(·/Fs) (resp. Qx,y(·/Xs)) and

U i
r =

X i
1 − X i

r

1 − r
−
(∫ 1

r

ui
pdp +

∫ 1

r

vi
pdXp

)
+

1

1 − r

∫ 1

r

(∫ 1

p

ui
qdq +

∫ 1

p

vi
qdXq

)
dp

with ui
p := (F i + 1

2
div Gi)(p, Xp) and vi,j

p = Gi,j(p, Xp).
But it is straightforward to check that for any r ≥ s, Qx,y

Fs
(·/Fr) = Qx,y

Xs
(·/Fr).

Thus (Xr, r ∈ [s; 1]) has the same drift under Qx,y
Fs

and Qx,y
Xs

. It is therefore a
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Markovian Brownian diffusion under Qx,y, whose drift at time t is equal to :

bxy,i(t, Xt) =
yi − X i

t

1 − t
− Qx,y

(∫ 1

t

ui(p, Xp)dp +

∫ 1

t

vi(p, Xp)dXp/Xt

)
(22)

+
1

1 − t
Qx,y

(∫ 1

t

(∫ 1

p

ui(q, Xq)dq +

∫ 1

p

vi(q, Xq)dXq

)
dp/Xt

)

with ui(p, Xp) = (F i + 1
2
div Gi)(p, Xp) and vi,j(p, Xp) = Gi,j(p, Xp).

The other steps amount to show that each bridge Qx,y is equal to (Pb)
x,y so that,

once we mix them up under μ to get Q =
∫

Rd×Rd Qx,y μ(dxdy) the probability that
we obtain is indeed the law of a reciprocal process.

Step 2: We now come to an important point: to establish the regularity of bxy,
in such a way that we can compute F xy and Gxy, the reciprocal characteristics
of Qx,y. More precisely, we will show that under the assumptions (H1), for μ
a.e. (x, y), the map (t, z) �→ bxy(t, z) ∈ C1,2([0, 1[×R

d ; R). For this purpose the
relevant expression for bxy is the following (it can be proved by the same argument
as in Step 1 : for any (t, z) ∈ [0; 1[×R

d and τ ∈]t, 1[,

bxy,i(t, z) =
Qx,y(X i

τ − zi/Xt = z)

τ − t
− Qx,y(

∫ τ

t

ui(p, Xp)dp +

∫ τ

t

vi(p, Xp)dXp/Xt)

+
1

τ − t
Qx,y(

∫ τ

t

(

∫ τ

p

ui(q, Xq)dq +

∫ τ

p

vi(q, Xq)dXq)dp/Xt) (23)

Let us first notice that this implies the equality between bxy,i(t, z) and

1

τ − t

(∫
Rd

wiq(t, z, τ, w, 1, y)dw − zi
)
−
∫ τ

t

∫
Rd

Γi(u, w)q(t, z, u, w, 1, y)dwdu

+
1

τ − t

∫ τ

t

∫ τ

s

∫
Rd

Γi(u, w)q(t, z, u, w, 1, y)dwduds (24)

where Γi(u, w) := (F i + 1
2
div Gi + Gi.bxy)(u, w). Indeed, by the same argument

as in Step 1, X is also Markovian under Q.,y := Q(·/X1 = y). Therefore, for any
0 < t < u < 1 and any regular function h,

Qx,y(h(u, Xu)/Xt = z) = Q.,y(h(u, Xu)/Xt = z) =

∫
Rd

h(u, w)q(t, z, u, w, 1, y)dw.

We want to differentiate under the integral signs of (24). Using assumptions (H1.3)
and (H1.4), it is sufficient to check that∫ τ

0

∫
Rd

|Γi(u, w)|φV(u, w, 1, y)dwdu < +∞
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which under (H1.4) reduces to the condition∫ τ

0

∫
Rd

|Gi,j(u, w)||bxy,j(u, w)|φV(u, w, 1, y)dwdu < +∞.

Let us divide and multiply the above integrand by q(0, x, u, w, 1, y); by Cauchy-
Schwarz inequality w.r.t. the finite measure q(0, x, u, w, 1, y)dwdu we obtain the
following upper bound :

d∑
j=1

(∫ τ

0

∫
Rd

|Gi,j(u, w)|2 φV(u, w, 1, y)2

q(0, x, u, w, 1, y)
dwdu

)1
2
I(j)

where I(j)2 =
∫ τ

0

∫
Rd |bxy,j(u, w)|2q(0, x, u, w, 1, y)dwdu = Qx,y

∫ τ

0
|bxy,j(u, Xu)|2du

which is finite since H(Qx,y|Fτ ; P
x,y|Fτ ) < +∞. For any j the coefficient of I(j) is

also finite by assumption (H1.4) and Proposition 2.7.

Step 3: We now assume that Q satisfies the set of assumptions (H1)-(H2) and
(A0). Then ∀τ < 1, for μ a.e. (x, y), Qx,y restricted to the interval [0; τ ] satisfies
the assumptions of Proposition 3.2. The proof of this assertion makes no difficulty
using the same arguments as in Step 2. Details are left to the reader. Therefore the
following IBPF holds true with (F xy, Gxy) denoting the reciprocal characteristics
of Qx,y: for all g ∈ Eτ , ∀Φ ∈ Sτ , ∀1 ≤ i ≤ d,

Qx,y(DgiΦ) = Qx,y
(
Φ δ(gi)

)
+ Qx,y

(
Φ

∫ τ

0

gi(r)

∫ τ

r

(F xy,i +
1

2
div Gxy,i)(t, Xt) dtdr

)

+ Qx,y
(
Φ

∫ τ

0

gi(r)

d∑
j=1

∫ τ

r

Gxy,i(t, Xt)dXtdr
)
. (25)

Step 4: At this stage we have proved that Qx,y satisfies two IBPF. The first
one has been obtained in Step 3; the other one is the conditioned version of the
IBPF (21) for Q:

Qx,y(DgiΦ) = Qx,y
(
Φ δ(gi)

)
+ Qx,y

(
Φ

∫ 1

0

gi(r)

∫ 1

r

(F i +
1

2
div Gi)(t, Xt) dtdr

)

+ Qx,y
(
Φ

∫ 1

0

gi(r)

∫ 1

r

Gi(t, Xt)dXtdr
)
. (26)

Both IBPF hold true for μ-a.e. (x, y), any τ < 1,g ∈ Eτ , ∀Φ ∈ Sτ , ∀1 ≤ i ≤ d.
In this last step of the proof we will conclude that Q belongs to the reciprocal
class of Pb. In order to do so it is sufficient to prove that for μ-a.e.(x, y) the pair
of functions (F xy, Gxy) coincides with (F, G). This will be a consequence of the
following Proposition.
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Proposition 4.2 Let Q̃ be a probability measure on C([0; τ ]; Rd) and B be a d-
dimensional Q̃-Brownian motion. Let u = (ui)i (resp. v = (vij)ij) be a continuous
process on [0; τ ] with values in R

d (resp. R
d⊗d). Let us assume that for all i ∈

{1, . . . , d}, ∫ τ

0
|ui

s|ds + supt∈[0;τ ] |
∫ t

0
vi

sdBs|2 ∈ L1(Q̃) and
∀g ∈ Eτ , ∀Φ ∈ Sτ , for all i ∈ {1, . . . , d},

Q̃

(
Φ

∫ τ

0

gi(r)
(∫ τ

r

ui
sds +

∫ τ

r

d∑
j=1

vij
s dBj

s

)
ds

)
= 0.

Then the two processes u and v are equal Q̃-a.s. to the constant 0 on [0; τ ] .

Proof of Proposition 4.2 Let us denote by D the set of step functions on [0; τ ]
with values in the set of rational numbers whose jump points are all rationals.
D is a countable set. Let g ∈ D and t ≤ τ be a rational. Let us define g̃(r) =(
g(r) − 1

t

∫ t

0
g(s)ds

)
1[0;t](r). By construction g̃ is a step function on [0; t] and

satisfies
∫ t

0
g̃sds = 0. Therefore

Q̃ − a.s.

∫ t

0

g̃i(r)(

∫ t

r

ui
sds +

∫ t

r

d∑
j=1

vij
s dBj

s)dr = 0

By Fubini’s theorem this implies

Q̃ − a.s.

∫ t

0

ui
s(

∫ s

0

g̃i(r)dr)ds +

∫ t

0

d∑
j=1

vij
s (

∫ s

0

g̃i(r)dr)dBj
s = 0.

Ito formula implies that Q̃ a.s. for any g ∈ D and any t rational,
∫ t

0
1
s
(g(s) −

1
s

∫ s

0
g(r)dr)

∫ s

0
rui

rdrds is equal to
∫ t

0
1
s
(g(s)− 1

s

∫ s

0
g(r)dr)

∫ s

0
rvi

rdBrds. These are
two processes continuous w.r.t. t. Thus the identity holds for any t ∈]0; τ [. Dif-
ferentiating w.r.t. t we obtain for any g ∈ D and t ∈]0; τ [,

(gt − 1

t

∫ t

0

grdr)(

∫ t

0

rui
rdr −

d∑
j=1

∫ t

0

rvi,j
r dBj

r) = 0. (27)

Let us now take for 0 < a < t < τ , g := 1[0;a[ + 21[a;τ [. For such a choice

(g(t) − 1
t

∫ t

0
g(r)dr) = a

t
> 0. Therefore the process (

∫ t

0
rui

rdr − ∫ t

0
rvi,j

r dBj
r)t∈[0;τ ]

is a.s. equal to 0 which proves that u ≡ 0 and v ≡ 0 a.s.. �
We must therefore check that Qx,y satisfies the assumptions of this theorem.

Let us set

u(1),i
s ≡ (F xy,i +

1

2
div Gxy,i + Gxy,i.bxy)(s, Xs) , v(1),i,j

s ≡ Gxy,i,j(s, Xs),

u(2),i
s ≡ (F i +

1

2
div Gi + Gi,jbxy,j)(s, Xs) , v(2),i,j

s ≡ Gi,j(s, Xs).
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In accordance with the notations of Proposition 4.2 we also define

ui
s ≡ u(1),i

s − u(2),i
s and vi,j

s ≡ v(1),i,j
s − v(2),i,j

s .

As a result of the work already done in Steps 2 and 3, it is easy to see that Theorem
4.2 applies to (u, v) which are therefore Qx,y-a.s. equal to the constant 0. This is
equivalent to the identity

Qxy a.s. ∀s ∈ [0; 1[ (F xy, Gxy)(s, Xs) ≡ (F, G)(s, Xs). (28)

Since any Xt has a strictly positive density w.r.t Lebesgue measure on R
d, the func-

tions F xy(s, x) (resp. Gxy(s, x)) and F (s, x) (resp. G(s, x)) which are continuous
in (s, x) coincide on [0; 1[×R

d. This ends the proof of Theorem 4.1. �

5 Application to gradient diffusions

In the previous sections our data has been a reference drift function b(t, x). In
the present section we characterize the fact that b is a gradient w.r.t. the space
variable using the tools of IBPF satisfied by reciprocal processes which we have
developed in the preceding sections.

As before the reference drift b belongs to C1,2([0; 1] × R
d; Rd) and satisfies as-

sumptions (5)-(7) and we consider probability measures on the path space satifying
some a priori regularity to make sense to the IBPF. For Q a probability measure
on the path space, we denote by μ0 its projection at time 0 .

(H1) Conditional density; regularity, domination:

(H 1.1) for μ0 a.e .x, ∀0 < t < u ≤ 1, ∀(x, z) ∈ R
d × R

d there exists a strictly
positive function qx such that

Q(Xu ∈ dw|X0 = x, Xt = z) = qx(t, z, u, w)dw

and the map (t, z) �→ qx(t, z, u, w) is in C1,2([0, u] × R
d ; R)

(H 1.2) ∀0 < τ < 1, ∀(t, z) ∈ [0; τ ] × R
d, there exists a neighborhood V of

(t, z) and a function φV(u, w) such that whenever ∂α denotes ∂t, ∂zk or ∂zkzl for
k, l ∈ {1, . . . , d} it holds :

sup
(s,ξ)∈V

|∂αqx(s, ξ, u, w)| ≤ φV(u, w)

∫ 1

0

∫
Rd

φV(u, w)(1 + |w|2N)dwdu < +∞
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(H2) Integrability conditions on the derivatives of the conditional density:

(H 2.1)
∫ 1

0

∫
Rd |∂αqx(t, Xt, u, w)|(1 + |w|2N)dwdu ∈ L1(Qx)

where ∂α denotes ∂t, ∂zkzl for k, l ∈ {1, . . . , d}
(H 2.2)

∫ 1

0

∫
Rd |∂zkqx(t, Xt, u, w)|(1 + |w|2N)dwdu ∈ L2(Qx).

Theorem 5.1 Let Q be a probability measure in PH(Ω) which satisfies the condi-
tions (H1) and (H2) and (A0). If the following IBPF holds under Q : for all g
step function on [0, 1], ∀Φ ∈ S, for all i ∈ {1, . . . , d},

Q(DgiΦ) = Q(Φδ(gi))−Q(Φb(1, X1))

∫ 1

0

gi(r)dr+ Q
(
Φ

∫ 1

0

gi(r)

∫ 1

r

F i(t, Xt)dtdr
)

(29)
then b is a gradient and Q is in fact equal to the law of a gradient Brownian
diffusion with drift b.

Remark 5.2 1.The conclusion of the above theorem is, in other words, that the
canonical process under Q satisfies equation (4) (i.e. dXt = dBt + b(t, Xt)dt) but
its initial condition is not necessarily deterministic.
2. It will be proved below that, due to the “terminal term” or second term in the
RHS of (29), the coordinate process under Q is not only reciprocal but Markovian.
Moreover the fact that there is no term containing the stochastic integral of some
function G as in the general formula (21) will imply the gradient property of the
drift.

Proof of Theorem 5.1 The proof is divided in two steps.
In Step 1, we prove that, for μ0-a.e. x, Qx is a Brownian diffusion, whose drift is
denoted by bx. We also prove that its reciprocal characteristics (F x, Gx) coincide
with (F, 0).
In Step 2 we prove that b is a gradient and conclude that X under Q is a Markov
Brownian diffusion solution of dXt = b(t, Xt)dt + dWt where W is a Brownian
motion.

Step 1. We can adapt Step 1 in the proof of Theorem 4.1 in this simpler
situation (G = 0) and obtain that for μ0-a.e. x, Qx is a Brownian diffusion, whose
drift bx,i(r, Xr) is given, for any r < 1, by

1

1 − r

(
Qx(X i

1−X i
r/Xr)+

∫ 1

r

Qx(

∫ 1

p

F i(q, Xq)dq/Xr)dp
)
−Qx

(∫ 1

r

F i(p, Xp)dp/Xr

)
(30)

Now, the key tool in order to identify (F x, Gx) with (F, 0) will be to apply
Proposition 4.2 to Qx. In order to do so, we must first prove that Qx satisfies at
the same time two IBPF. The first formula is an immediate consequence of identity
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(29) for Q. Indeed, if in (29) we take Φ = ϕ(X0)Φ̃ and g step function on [0; 1],
we obtain for μ0-a.e. x, Qx(DgiΦ) is equal to :

Qx
(
Φδ(gi)

)
− Qx

(
Φb(1, X1)

)∫ 1

0

gi(r)dr + Qx
(
Φ

∫ 1

0

gi(r)

∫ 1

r

F i(t, Xt)dtdr
)
.

(31)
The second formula will be obtained when we have shown that Qx satisfies the
assumptions of Proposition 3.2 on each interval [0; τ ], τ < 1. Let τ < 1 be fixed
and 1 ≤ i ≤ d. Let us recall that bx,i(τ, Xτ ) is equal to

Qx(X i
1 − X i

τ/Xτ )

1 − τ
−Qx

(∫ 1

τ

F i(p, Xp)dp/Xτ

)
+

1

1 − τ

∫ 1

τ

Qx
(∫ 1

p

F i(q, Xq)dq/Xτ

)
dp.

From assumption (A0), which is still true under Qx, we deduce that for μ0 −a.e.x,
Qx(|bx,i(τ, Xτ )|) < +∞. From now on we restrict ourselves to the set of x such that
this holds. In order to satisfy the assumptions of Proposition 3.2 it is sufficient
that for all i, j ∈ {1, . . . , d} :

(i) bx ∈ C1,2([0; τ ] × R
d; Rd)

(ii) the two integrals
∫ τ

0
|F x,i + 1

2
div Gx,i|(t, Xt)dt and

∫ τ

0
|Gx,ij(t, Xt)|2dt belong

to L1(Qx)

All the necessary arguments have already been developped in detail in the proof
of Theorem 4.1, Steps 2 to 4. Here the situation is even simpler since there are
no terms in G in the expression of bx. For this reason we do not write down the
details but refer the reader to the proof of Theorem 4.1. We conclude that for
μ0-a.e. x, any Fτ -measurable Φ in S, and any step function g on [0; τ ],

Qx(DgiΦ) = Qx
(
Φ δ(gi)

)
− Qx

(
Φ bx,i(τ, Xτ )

) ∫ τ

0
gi(r)dr (32)

+Qx

(
Φ
∫ τ

0
gi(r)

( ∫ τ

r
(F x,i 1

2
div Gx,i)(t, Xt) dt +

∑d
j=1

∫ τ

r
Gx,ij(t, Xt)dXj

t

)
dr

)
.

Let us now restrict to step functions g ∈ Eτ . Then comparing expressions (31) and
(32) one obtains :

Qx
(
Φ
∫ τ

0
gi(r)

∫ τ

r
F i(t, Xt) dtdr

)
= Qx

(
Φ
∫ τ

0
gi(r)

∫ τ

r
(F x,i + 1

2
div Gx,i)(t, Xt) dtdr

)
+ Qx

(
Φ
∫ τ

0
gi(r)

∑d
j=1

∫ τ

r
Gx,ij(t, Xt)dXj

t dr
)
.

Since the processes ui
t(X) = (F x,i + 1

2
div Gx,i + Gx,i.bx − F i)(t, Xt) and vij

t (X) =
Gx,ij(t, Xt) satisfy the assumptions of Proposition 4.2, we conclude that they are
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equal to zero dt dQx-a.s. These assumptions are indeed satisfied as a consequence
of conditions (i) and (ii) above and Proposition 2.7 for F . This yields for μ0-a.e.
x:

Qxa.s., ∀t ∈]0; 1[,
(
F x(t, Xt), G

x(t, Xt)
)

=
(
F (t, Xt), 0

)
. (33)

We conclude as in the proof of Theorem 4.1 Step 4 that Gx ≡ 0 and F x ≡ F . This
implies that Qx is a gradient diffusion, but this is not sufficient to conclude the
same for Q, since we do not yet know that Q is a diffusion.

Step 2: In the present step we prove that b is a gradient, that is there exists
a function ϕ defined on [0; 1] × R

d, differentiable in the space variable, such that
for all i ∈ {1, . . . , d}, (t, y) ∈]0; 1[×R

d, bi(t, y) = ∂iϕ(t, y). The key tool will again
be the identification of two IBPF for Qx. Let us fix τ ∈ [0; 1[. The assumption of
finite entropy for Q and assumption (H 2.2) imply that Proposition 3.3 applies to
Qx|Fτ and provides the first of the two IBPF we will consider: for any Φ ∈ Sτ and
any step function g on [0; τ ], Qx(DgiΦ) is equal to

Qx
(
Φ δ(gi)

)
− Qx

(
Φ

∫ τ

0

gi(s)
(
bx,i(s, Xs) +

d∑
j=1

∫ τ

s

∂ib
x,j(p, Xp)dBj

p

)
ds
)

(34)

where B is the Qx-Brownian motion equal to the martingale part of X under Qx.
The second IBPF for Qx is (31). Ito formula for bi under Qx and Theorem 2.5
yield for any s < τ

bi(1, X1) = bi(s, Xs) +
d∑

j=1

∫ 1

s

∂jb
i(p, Xp)dBj

p (35)

+

∫ 1

s

(
F i +

1

2
div Gi + Gi.bx +

d∑
j=1

∂ib
j(bx,j − bj)

)
(p, Xp)dp

We now plug (35) into (31) and look at the difference of the obtained IBPF with
(34): for any Φ ∈ Sτ and g with support in [0; τ ],

Qx

(
Φ

∫ τ

0

gi(s)
(
(bi − bx,i)(s, Xs)

+

∫ 1

s

ui
pdp +

d∑
j=1

∫ τ

s

(∂jb
i − ∂ib

x,j)dBj
p

)
ds

)
= 0 (36)

where ui
p(X) =

(
1
2
div Gi + Gi.bx +

∑d
j=1 ∂ib

j(bx,j − bj)
)
(p, Xp).This implies

(bi − bx,i)(s, Xs) +

∫ 1

s

Qx(ui
p|Fτ )dp +

d∑
j=1

∫ τ

s

(∂jb
i − ∂ib

x,j)dBj
p = 0 (37)
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for any s ∈]0; 1[, Qx-a.s. Taking the expectation w.r.t. Qx and the filtration Fs,
yields

∀i ∈ {1, . . . , d}, (bi − bx,i)(s, Xs) = −
∫ 1

s

Qx
(
ui

p/Fs

)
dp.

We thus conclude that (bi − bx,i) is a bounded variation process. Its martingale
part is therefore equal to zero which is equivalent, using Ito formula, to

∀i, j ∈ {1, . . . , d}, ∂jb
i(s, Xs) = ∂jb

x,i(s, Xs). (38)

Let us fix (i, j). Since bx is a gradient ∂jb
x,i = ∂ib

x,j and therefore, for all s ∈]0, 1[,
∂jb

i(s, Xs) = ∂ib
j(s, Xs) which implies that b is also a gradient. Moreover identity

(38) also implies that the function (bi−bx,i)(t, y) is independent of y. Let us denote
it by ai(t, x). Since b is a gradient, G ≡ 0 and ui

p(X) ≡∑d
j=1 ∂ib

j(bx,j − bj)(p, Xp).

From (37) we then conclude that ai(t, x) solves the following integral equation :

∀s ∈]0, 1[, Qxa.s., ai(s, x) = −
∫ 1

s

Qx(
d∑

j=1

∂ib
j(p, Xp)|Fs)a

j(p, x)dp. (39)

Equivalently we have obtained that for μ0- a.e. x and Qx-a.e.ω, the vector valued
function a(t, x) solves the linear system

d

dt
a(t, x) = M(t, ω)a(t, x), (t, x) ∈]0; 1[×R

d,

where we have denoted by M(t, ω) the matrix with entries
(
∂ib

j(t, Xt(ω))
)
.

This set of conditions is obviously satisfied when each function ai is constant
equal to zero. We now prove that this is the only possible case. This will be a
consequence of the following lemma.

Lemma 5.3 With the above notations, for any τ < 1 and all i ∈ {1, ..., d},

Qx
(
bi(1, X1) −

∫ 1

τ

F i(t, Xt)dt/Fτ

)
= bx,i(τ, Xτ )

Proof of Lemma 5.3: Let g be a step function on [0; τ ]. We do not assume
that

∫ τ

0
g(r)dr = 0. Let Φ ∈ Sτ . Taking into account that (F x, Gx) = (F, 0) and

comparing (31) and (32), for (Φ, g), we obtain the following identity:

Qx

(
Φ
(
bx,i(τ, Xτ ) − (bi(1, X1) −

∫ 1

τ

F i(t, Xt)dt)
))∫ τ

0

gi(r)dr = 0

We immediately conclude since this identity holds for any Φ, g. �
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Lemma 5.3 implies that limτ↗1 bx,i(τ, Xτ ) = bi(1, X1) in L1(Qx). Since ai(t, x) =
(bi − bx,i)(t, Xt) and t �→ b(t, Xt) is continuous at t = 1, we conclude that
limτ↗1 a(τ, x) = 0 and the only solution is a(t, x) ≡ 0. We have now proved that
for μ0-a.e. x, for all t ∈]0, 1[, y ∈ R

d, b(t, y) = bx(t, y). This enables us to conclude
that X under Q is a Markov Brownian diffusion solution of dXt = b(t, Xt)dt+dWt

where W is a Q-Brownian motion. �
Our second application deals with a generalization of a result of Kolmogorov

[17]; this famous result states that a Brownian diffusion with drift b, supposed time-
homogeneous, is reversible if and only if b is a gradient. Here we we only require
that there exists one reversible law in the reciprocal class of Pb. Furthermore the
drift b is not supposed to be time-homogeneous and may depend on time. Let us
recall that a reversible law Q on the path space Ω is a probability measure which is
invariant under the time reversal map R defined on Ω by R(X)t = X1−t, t ∈ [0, 1].

Theorem 5.4 Let us assume that the reciprocal characteristic G of Pb is time-
independent. Furthermore suppose that there exists a probability measure Q in
PH(Ω) in the reciprocal class of Pb which is reversible and satisfies the integrability
condition (A0). Then there exists a function ϕ such that

∀x ∈ R
d, i ∈ {1, . . . , d}, bi(t, x) = −∂iϕ(t, x).

Furthermore, if Q is a Brownian diffusion with drift b, then b is time homogeneous
and Q is equal to

∫
Rd Pb(./X0 = x) exp(−2ϕ(x)) dx up to a renormalizing factor.

Let us notice that the reciprocal characteristic G is time independent whenever the
drift b is time homogeneous but these two properties are not equivalent: choose
for instance, in dimension 2, (b1, b2)(t, x) = (x2 + f1(t, x1),−x1 + f2(t, x2)).
Example Let us consider the particular drift function bλ(x) = −λx ( the gradient
of the potential ϕ(x) = −1

2
λ|x|2). In [20] section 5 (cf. also [12] and [19]), we

considered the law Q ∈ P(Ω) of the solution of the following s.d.e.

dXt = dBt − λXt dt, X0 = X1.

The process Q, called periodic Ornstein-Uhlenbeck process, is reciprocal and we
proved in [20] that it belongs to the reciprocal class of the (Markov) Ornstein-
Uhlenbeck process Pbλ

. Q is a particular Gaussian mixture of periodical bridges
of Pbλ

. The probability Q is reversible since it is a zero mean Gaussian process
with stationary covariance function. So it provides an example of a non Markovian
reversible law in the class of the diffusion Pbλ

. The above example proves therefore
that if b is a gradient there can exist more than one reversible process in the
reciprocal class Pb, one being a Markovian diffusion with drift b and others which
are reciprocal but not Markovian.
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Furthermore, the (Markovian) stationary Ornstein-Uhlenbeck process P bλ
, which

satisfies the same s.d.e. as above but with initial law on R
d the centered Gaussian

one with variance 1
4λ

, is the unique reversible process inside among all Markovian
processes in the reciprocal class of Pbλ

. Indeed, by the definition of RM (Pbλ
) given

in (13), a Markovian reciprocal process in this set is determined by two measures
ν0 and ν1. If it is reversible, ν0 = ν1, therefore its distribution at time 0 determines
it uniquely. Since we have already exhibited one reversible element of RM(Pbλ

),
i.e. P bλ

, it is the unique one in RM(Pbλ
).

Proof of Theorem 5.4 By assumption, Q ∈ R(Pb) and Theorem 3.4 applies.
So IBPF (21) is satisfied under Q. Since Q has a finite entropy, it is a Brownian
semi-martingale and, as indicated in Remark 3.5, IBPF (21) can be rewritten as
follows

Q(DgiΦ) = Q
(
Φ δ(gi)

)
+ Q

(
Φ

∫ 1

0

gi(r)
(∫ 1

r

F i(t, Xt) dt+

∫ 1

r

Gi(Xt) ◦dXt

)
dr
)
.

(40)
for all Φ ∈ S, i ∈ {1, . . . , d} and g ∈ E . Let Q̂ denote the image of Q by
the time reversal mapping R : Q̂ = Q ◦ R−1. Since for all Φ ∈ S and g ∈ E ,
(DgΦ) ◦ R ≡ −Dĝ(Φ ◦ R) where ĝ = g ◦ R, one obtains from (40):

Q̂(DgiΦ) = −Q
(
Dĝi(Φ ◦ R)

)
= −Q

(
(Φ ◦ R) δ(ĝi)

)
− Q

(
(Φ ◦ R)

∫ 1

0

ĝi(r)

∫ 1

r

F i(t, Xt) dt dr
)

− Q
(
(Φ ◦ R)

∫ 1

0

ĝi(r)

∫ 1

r

Gi(Xt) ◦ dXt dr
)

(41)

= Q̂
(
Φ δ(gi)

)
+ Q̂

(
Φ

∫ 1

0

gi(r)
(∫ 1

r

F i(1 − t, Xt) dt−
∫ 1

r

Gi(Xt) ◦ dXt

)
dr
)
.

Now recall that Q is supposed to be reversible, that is Q̂ = Q, which implies that
Q also satisfies equation (41). So, under Q, both equalities (40) and (41) hold,
which implies : ∀Φ ∈ S, for all i ∈ {1, . . . , d} and g ∈ E ,

Q

(
Φ

∫ 1

0

gi(r)(

∫ 1

r

F i(t, Xt)dt +

∫ 1

r

Gi(Xt) ◦ dXt)dr

)

= Q

(
Φ

∫ 1

0

gi(r)(

∫ 1

r

F i(1 − t, Xt)dt −
∫ 1

r

Gi(Xt) ◦ dXt)dr

)
By Proposition 4.2 necessarily G ≡ −G which means that the characteristics G
is equal to 0. This last sentence is equivalent to the fact that the function b is a
gradient : b(t, x) = −∇ϕ(t, x).
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Moreover, if Q is a Brownian diffusion with drift b (with finite entropy), its time
reversal is a Brownian diffusion with drift b̂ (cf. [8]). The reversibility assumption
thus implies that b = b̂ and does not depend on time. Now, it is well known that
the measure with density exp(−2ϕ(x)) with respect to Lebesgue measure, taken
as initial law, makes the Brownian diffusion with drift b = −∇ϕ reversible. It
is furthermore the unique one, up to a multiplicative constant. The conclusion
follows. �

Remark 5.5 1. The identities

∀t ∈]0, 1[, F̂ (t, .) = F (1 − t, .) and Ĝ(t, .) = −G(1 − t, .). (42)

were proved by one of us in [25], Proposition 4.5, using the explicit expression of
F̂ and Ĝ as functionals of the reversed drift. They reflect the symmetry of the
reciprocal characteristics under time reversal. In the Markovian case the drift does
not feature such symmetry (cf. [9]).
2. In the general case, if Q is a probability measure in R(Pb)

⋂PH(Ω), not neces-
sarily reversible, whose time reversal Q̂ is regular enough to define the “reversed
reciprocal characteristics” F̂ and Ĝ, we could also derive identities (42). As in the
proof of Theorem 5.4, the argument would rely on the identification of two IBPF
satisfied by Q̂.

Acknowledgement During the completion of this work the second author bene-
fited from the financial support of the Foundation Alexander von Humboldt and
from the hospitality of the Weierstrass Institute. Both institutions are here grate-
fully acknowledged.

References

[1] I. Benjamini, S. Lee, Conditioned Diffusions which are Brownian Bridges, J.
of Theoretical Probability, Vol. 10, N. 3 (1997) 733-736

[2] J.-M. Bismut, Martingales, the Malliavin Calculus and hypoellipticity under
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[21] S. Roelly and H. Zessin, Une caractérisation des diffusions par le calcul des
variations stochastiques, C. R. Acad. Sci.Paris, t. 313, Série I (1991) 309-312

[22] S. Roelly and H. Zessin, Une caractérisation des mesures de Gibbs sur
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