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Zusammenfassung

Flussüberschwemmungen sind eine ständige Gefahr für die Gesellschaft und
verursachen jedes Jahr weltweit wirtschaftliche Schäden in der Größenordnung
von 100 Milliarden US-Dollar. Im Zuge des globalen Wandels erhöht sich die Kon-
zentration von Menschen und Vermögenswerten in Überschwemmungsgebieten
kontinuierlich, während der menschengemachte Klimawandel Hochwasserextre-
me verstärkt. Die Überlagerung dieser Prozesse führt zu einer Verschärfung des
Hochwasserrisikos in vielen Weltregionen. Der Hochwasseranapassung kommt
dabei eine Schlüsselrolle bei der Abschwächung von Schäden zu. Allerdings
ist das Verständnis von Hochwasservulnerabilität (d.h., Anfälligkeit gegenüber
Schäden) und damit verbundener Dynamiken noch sehr begrenzt, was die Risiko-
abschätzung und die Entwicklung von Anpassungsstrategien erschwert.

In dieser kumulativen Dissertation werden anhand von drei Studien neue Me-
thoden zur Hochwasserrisikoabschätzung für den gewerblichen Sektor vorgestellt,
der in der Vergangenheit wenig untersucht wurde. Die erste Studie präsentiert
Hochwasserschadensmodelle die auf statistischen Methoden und maschinellem
Lernen basieren und eine Vielzahl von Einflussfaktoren berücksichtigen. In Ver-
bindung mit probabilistischen Vorhersagen führt dies zu einer Verbesserung der
Modellgenauigkeit und -verlässlichkeit. Anschließend wird in einer Pilotstudie
für Dresden, Deutschland, eines der neuen Schadensmodelle in ein ganzheitliches
systemdynamisches Modell integriert, um Veränderungen in Hochwasservulnera-
bilität und -risiko kontinuierlich zu simulieren. Die Methode integriert zusätzliche
Prozessdetails und Kalibrierungsdaten in das Modell und verbessert so die Simu-
lationsleistung. Schließlich werden mit dem systemdynamischen Modell in der
dritten Studie langfristige Projektionsläufe durchgeführt, um die Entwicklung des
Hochwasserrisikos bis zum Ende des Jahrhunderts abzuschätzen. Die Ergebnisse
der Studie unterstreichen das Potential von Hochwasseranpassung - insbesondere
in Zeiten des Klimawandels - und demonstrieren die Fähigkeit ganzheitlicher
Modellierungsansätze, ungünstige Entwicklungen des Risikos frühzeitig aufzu-
decken. Insgesamt verbessert diese Arbeit die Darstellung der Vulnerabilität in
der Hochwasserrisikoabschätzung, indem sie Modellierungslösungen anbietet,
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die der Komplexität der Wechselwirkungen zwischen Mensch und Hochwasser
gerecht werden und Unsicherheiten konsequent quantifizieren.



Summary

River flooding is a constant peril for societies, causing direct economic losses in
the order of $100 billion worldwide each year. Under global change, the prolonged
concentration of people and assets in floodplains is accompanied by an emerging
intensification of flood extremes due to anthropogenic global warming, ultimately
exacerbating flood risk in many regions of the world. Flood adaptation plays a key
role in the mitigation of impacts, but poor understanding of vulnerability and its
dynamics limits the validity of predominant risk assessment methods and impedes
effective adaptation strategies. Therefore, this thesis investigates new methods for
flood risk assessment that embrace the complexity of flood vulnerability, using
the understudied commercial sector as an application example.

Despite its importance for accurate risk evaluation, flood loss modeling has
been based on univariable and deterministic stage-damage functions for a long
time. However, such simplistic methods only insufficiently describe the large
variation in damage processes, which initiated the development of multivariable
and probabilistic loss estimation techniques. The first study of this thesis devel-
oped flood loss models for companies that are based on emerging statistical and
machine learning approaches (i.e., random forest, Bayesian network, Bayesian
regression). In a benchmarking experiment on basis of object-level loss survey
data, the study showed that all proposed models reproduced the heterogeneity in
damage processes and outperformed conventional stage-damage functions with
respect to predictive accuracy. Another advantage of the novel methods is that
they convey probabilistic information in predictions, which communicates the
large remaining uncertainties transparently and, hence, supports well-informed
risk assessment.

Flood risk assessment combines vulnerability assessment (e.g., loss estimation)
with hazard and exposure analyses. Although all of the three risk drivers interact
and change over time, such dependencies and dynamics are usually not explicitly
included in flood risk models. Recently, systemic risk assessment that dissolves the
isolated consideration of risk drivers has gained traction, but the move to holistic
risk assessment comes with limited thoroughness in terms of loss estimation and
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data limitations. In the second study, I augmented a socio-hydrological system
dynamics model for companies in Dresden, Germany, with the multivariable
Bayesian regression loss model from the first study. The additional process-detail
and calibration data improved the loss estimation in the systemic risk assessment
framework and contributed to more accurate and reliable simulations. The model
uses Bayesian inference to quantify uncertainty and learn the model parameters
from a combination of prior knowledge and diverse data.

The third study demonstrates the potential of the socio-hydrological flood
risk model for continuous, long-term risk assessment and management. Using
hydroclimatic ad socioeconomic forcing data, I projected a wide range of possible
risk trajectories until the end of the century, taking into account the adaptive
behavior of companies. The study results underline the necessity of increased
adaptation efforts to counteract the expected intensification of flood risk due to
climate change. A sensitivity analysis of the effectiveness of different adaptation
measures and strategies revealed that optimized adaptation has the potential to
mitigate flood risk by up to 60%, particularly when combining structural and
non-structural measures. Additionally, the application shows that systemic risk
assessment is capable of capturing adverse long-term feedbacks in the human-
flood system such as the levee effect.

Overall, this thesis advances the representation of vulnerability in flood risk
modeling by offering modeling solutions that embrace the complexity of human-
flood interactions and quantify uncertainties consistently using probabilistic mod-
eling. The studies show how scarce information in data and previous experiments
can be integrated in the inference process to provide model predictions and simu-
lations that are reliable and rich in information. Finally, the focus on the flood
vulnerability of companies provides new insights into the heterogeneous damage
processes and distinct flood coping of this sector.
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1 | Introduction

1.1 Flood risk under global change

The Central-European floods in July 2021 were a stark reminder of the devastating
impacts of river floods. The widespread event heavily impacted Belgium, the
Netherlands, and Germany, causing long-lasting disruptions in society in affected
regions and claiming a total of 228 lives (Munich Re 2022a). Economically, the
2021 floods caused a record-breaking $46-54 billion of overall losses, which is the
highest ever documented loss figure of a flood event globally and any natural
disaster in Europe (Bevere and Remondi 2022; Munich Re 2022b; Munich Re 2022c).
While events like the 2021 flood in Europe stand out due to their exceptional
severity in spatial extent, magnitude, and impacts, statistical records underline
that flooding is a constant threat to humans and their assets.
Globally, hydrological perils are the most frequent natural hazard with respect
to the number of relevant loss events (Bevere and Remondi 2022; Munich Re
2018; World Meteorological Organization 2022). In an average year, river floods
are estimated to affect 54-58 million people and cause direct economic damage
of $75-163 billion worldwide (Tanoue et al. 2021; Ward et al. 2017; Alfieri et al.
2017; Dottori et al. 2018; Winsemius et al. 2016). Over the past decades, absolute
flood losses have increased as a result of population growth and accumulating
wealth in flood-prone areas (Tanoue et al. 2016; Paprotny et al. 2018b; Visser et al.
2014). The prospects of future flood impacts are alarming as the growth of wealth
will continue (Hirabayashi et al. 2013; Jongman et al. 2012) and anthropogenic
climate change is projected to intensify flood frequency and magnitude in most
regions of the world (Arias et al. 2021). In its most recent assessment report, the
Intergovernmental Panel on Climate Change (IPCC) concludes that an increase in
both exposed population and direct economic flood damages has to be expected
with high confidence, independent of the level of global warming (Caretta et al.
2022). Projections of global economic flood risk in the 21st century suggest a
potential increase in annual average loss by a factor of 4-25 assuming the most
severe global warming scenarios and different degrees of risk reduction (Tanoue
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et al. 2021; Ward et al. 2017; Alfieri et al. 2017; Dottori et al. 2018; Winsemius et al.
2016). In view of these figures, societies have to increase their efforts to counteract
the exacerbating flood risk and manage adverse consequences. Flood adaptation -
that is, the adjustment of the human system to current or expected risk in order
to moderate the harm or exploit beneficial opportunities (Ara Begum et al. 2022) -
is considered a cornerstone in mitigating the costs of upcoming flood disasters
(Jongman 2018; Kreibich et al. 2017a; Winsemius et al. 2016; Kinoshita et al. 2018;
Willner et al. 2018). For the development of effective adaptation strategies, it is
necessary to understand which drivers control flood risk and how these drivers
change over time.

Flood risk is the potential for adverse consequences for a system (e.g., human,
environmental, infrastructure) due to flooding. Depending on the context and
the scope of the analysis, this can comprise intangible impacts such as loss of life
or ecosystem services or tangible impacts such as physical damage or financial
losses due to business interruption (Merz et al. 2010b; Kreibich et al. 2014). Flood
risk arises from the interaction of three drivers: hazard, exposure, and vulnerability
(Kron 2005). In the context of river flooding, the hazard is the magnitude (e.g.,
river discharge or inundation extent) and occurrence probability of a flood event.
The exposure comprises the population and inventory of assets that are located
in the flood zone and could potentially be impacted by a flood. The vulnerability
describes the susceptibility of these exposed elements to be harmed by the hazard
(e.g., physical flood damage). Vulnerability is determined by physical, social,
economic, and environmental factors and varies across societies, geographic
regions, or sectors (UNDRR 2022). Moreover, each of the three risk drivers can
change over time. Flood hazard has already begun to change as a result of
anthropogenic global warming. The exposure in floodplains has risen due to
population growth or urbanization (Merz et al. 2021). Temporal changes in flood
vulnerability are more difficult to detect but there exists empirical evidence that
societies adapt to recurring flood events or, conversely, forget about the risk in
flood-poor periods (Kreibich et al. 2017a; Di Baldassarre et al. 2015; Fanta et al.
2019). Consequently, humans shape flood risk continuously (Di Baldassarre et al.
2013) and, hence, have the capacity to actively mitigate flood impacts through
flood risk management (Jongman et al. 2015; Winsemius et al. 2016).

Flood risk management aims at the modification of the hazard, exposure, and
vulnerability with the overarching objective of reducing risk (Kreibich et al. 2022;
Merz et al. 2010a). This includes structural measures that control the flood hazard
such as river training, reservoirs, or dykes and increasingly also actions that
concentrate on the reduction of exposure and vulnerability; for instance, early
warning and emergency management, land use planning, awareness raising, and
private precaution. Finally, there exist instruments for risk-transfer that finance the
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residual risk (e.g., insurance) (Jongman 2018; Merz et al. 2021; Dottori et al. 2020).
In order to identify effective and economically feasible risk reduction strategies
(i.e. combinations of measures), decision makers rely on quantitative estimates of
risk.
Flood risk assessment provides a formalized framework for determining risk and
serves as the basis for risk-informed management of flooding. The approach
starts with a flood frequency analysis and inundation modeling (hazard analysis),
which is followed by an identification of objects that are exposed to the flooding
(e.g., through analyses with geographical information systems). Afterwards, flood
loss models estimate the economic damage at affected objects (i.e., vulnerability),
taking into account the hazard intensity (e.g., inundation depth) and assets
characteristics (e.g., building type). Repeating this process for several flood
events with different magnitude and, hence, chance of occurrence (e.g., through
simulation) results in a probability distribution of economic flood losses, that is,
flood risk (Merz and Thieken 2009; de Moel et al. 2015; Falter et al. 2015).

This thesis advances methods for fluvial flood risk assessment in relation to
vulnerability. The focus of the research lies on direct economic losses, that is,
monetary damage to assets that occurs in affected areas as a direct consequence
of a flood. The following section outlines the status quo, recent developments,
and research gaps in this field and looks at the subject from two perspectives:
(i) complexity in vulnerability and risk modeling and (ii) uncertainty and data
analysis.

1.2 Flood risk assessment - recent advancements and
research gaps

1.2.1 Complexity of flood vulnerability

Flood risk systems are complex due to the interactions between hydrological
processes and human activity. People alter floodplains in multiple ways; for
example, for economic benefit, settlement development, flood protection, or
recreation. Often, the overall implications of decisions for such coupled systems
are hard to evaluate and consequences of today’s actions might only emerge
after decades (Gober and Wheater 2015; Sivapalan and Blöschl 2015; Liu et al.
2007). Several factors characterize a coupled human and natural system; that is,
non-linearity (e.g., threshold effects), interdependence and feedback loops, time
lags, non-stationarity, and heterogeneity. These properties are also present in
human-flood systems and the reason, why flood risk is difficult to understand and
manage (Liu et al. 2007; Merz et al. 2015). Together with cognitive biases in human
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perception, complexity is considered a main source of surprising, catastrophic
flood disasters (Merz et al. 2021; Merz et al. 2015). The characteristic factors of
complexity appear at multiple scales in the flood risk system, which impedes the
risk assessment and modeling.

Loss estimation

At the micro-scale, flood damage processes are highly complex. The damage
grade of an object (i.e., buildings, contents, goods) in case of a flood is governed
by a multitude of factors that can be classified as impact variables describing the
flood intensity (e.g., inundation depth, flow velocity, inundation duration) and
resistance variables that are characteristic for the exposed asset (e.g., building type
and material, occupation, precaution, emergency measures) (Merz et al. 2010b;
Thieken et al. 2005).

The intricate interplay of the physical damage processes is poorly understood
and highly variable, so that risk analysts use empirical models to derive loss
estimates. On the basis of damage data that is collected in the aftermath of flood
events or synthetic data derived from what-if analyses so-called stage-damage
functions (or vulnerability functions) are derived that relate the dominant flood
impact variable - usually inundation depth - to the damage grade of the exposed
asset (Merz et al. 2010b). Stage-damage functions are the most prevalent loss
estimation tool in flood risk assessment due to low demands towards input data,
simple model structure, and straightforward transferability. They are often de-
veloped individually for different regions, asset groups, or sectors (Scawthorn
et al. 2006; Alfieri et al. 2016; Huizinga et al. 2017; Penning-Rowsell et al. 2005).
However, such univariable loss models capture the complexity of damage pro-
cesses insufficiently since they neglect relevant mechanisms and interactions
between damage influencing parameters (Middelmann-Fernandes 2010; Kelman
and Spence 2004; Gissing and Blong 2004).

An increasing body of literature proposes the use of multivariable loss models
that include several predictor variables at once and their interdependency. Exam-
ples range from advanced multivariable regression models (Van Ootegem et al.
2015; Rözer et al. 2019), over rule-based models (Kreibich et al. 2010; Thieken et al.
2008), to machine learning methods such as Bayesian networks (Wagenaar et al.
2018; Vogel et al. 2014) or decision trees (Carisi et al. 2018; Merz et al. 2013). The
inclusion of additional factors improved the predictive capacity of the loss models
in the majority of cases (Thieken et al. 2008; Wagenaar et al. 2017; Rözer et al. 2019;
Schröter et al. 2014; Merz et al. 2013; Kreibich et al. 2017b). Another advance-
ment of these state-of-the-art loss models is their capability to capture complex
patterns and non-linearity in the damage data. Loss observations are commonly
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highly dispersed with strongly skewed or bimodal distributions, which arises
from threshold effects such as rounding of reported losses or insurance write-offs.
Machine learning or mixture models (e.g., inflated Beta regression) allow for
more flexibility in the functional model form and, hence, better accommodate the
superposition of different processes in the data generating process (Vogel et al.
2014; Schröter et al. 2014; Van Ootegem et al. 2015; Rözer et al. 2019). Despite
larger requirements towards input data than stage-damage functions, the practical
value of complex loss models has been confirmed in model transferability and
upscaling exercises (Steinhausen et al. 2022; Lüdtke et al. 2019; Wagenaar et al.
2018; Sieg et al. 2019b; Molinari et al. 2020).

However, a review of 47 flood loss models revealed that this new generation of
loss models does not cover all sectors equally well (Gerl et al. 2016). Model devel-
opment has focused on the residential sector for the most part since damage data
for other sectors such as the commercial sector are more scarce and heterogeneous
(Gissing and Blong 2004; Sieg et al. 2017; Merz et al. 2010b). Additionally, the
growing number of diverse modeling approaches makes proper model validation,
comparison, and benchmarking even more important in order to ensure model
validity and facilitate an informed model selection.

Systems-level dynamics

The complexity of flood risk also manifests itself at the systems-scale (e.g., an
entire floodplain). Feedbacks between the risk components can cause unforeseen,
seemingly paradox risk dynamics such as the levee effect. The levee effect oc-
curs when improvements in flood protection (e.g., levee heightening) reduce the
frequency of floods, which eventually leads to a stimulation of urban develop-
ment in the floodplain and a decline in risk awareness. The reduction of flood
hazard through enhanced protection is outweighed by increasing exposure and
vulnerability and causes an overall rise in flood risk (Montz and Tobin 2008).
Another example is the adaptation effect, which describes the phenomenon that
particularly flood-rich (i.e., hazardous) periods are often accompanied by decreas-
ing vulnerability and flood losses. Experiencing repeated flood losses triggers
a learning process in society, which becomes more aware of the flood risk and
improves its preparedness. The levee and adaptation effect are both examples of
feedbacks and non-linearity in flood risk systems and have been supported by
empirical evidence at diverse study sites around the globe (Kreibich et al. 2017a;
Di Baldassarre et al. 2015). Yet, conventional approaches to flood risk assessment
do not account for these factors of complexity and, thus, fall short of replicating
such phenomena (Di Baldassarre et al. 2016).

Commonly, flood risk models consider narrowly defined systems that put large
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emphasis on the representation of hazard processes; for example, by involving
extensive hydrological and hydraulic computations. This also applies to risk
dynamics, where flood hazard is often the only risk component that is considered
non-stationary by accounting for climate change. Changes in the exposure are
increasingly considered (e.g., population, GDP, asset values), but risk assessments
that account for dynamics in vulnerability are still an exception (Metin et al.
2018). In some instances, risk simulations are conducted under the assumption
of different vulnerability scenarios (Jongman et al. 2015; Winsemius et al. 2016;
Metin et al. 2018; Steinhausen et al. 2022), but the majority of the existing flood
risk models lacks the structural complexity to capture and replicate interactions
between hazard, exposure, and vulnerability. That is, the three risk drivers are
treated as isolated and - in the case of vulnerability - often stationary quantities
that do not influence each other. Apart from that, there exists a mismatch between
the temporal range (or legacy) of flood management decisions and the treatment
of time in prevalent risk assessment tools. Processes in human-flood systems differ
in their temporal scale from fast shocks (e.g. flood loss event) to slow transitions
(e.g. climate change or degrading risk awareness in flood-poor periods), where the
individual time scales influence each other (Thompson et al. 2013; Sivapalan and
Blöschl 2015). However, dynamics and feedbacks are often neglected by assuming
stationarity or independence between processes, particularly when looking at
slow-onset, long-term processes (Merz et al. 2014a).

With the recent establishment of socio-hydrology, an interdisciplinary field
that studies the dynamics and co-evolution of coupled human-water systems,
a new generation of holistic flood risk models emerged (Sivapalan et al. 2012;
Sivapalan et al. 2014). Socio-hydrological flood risk models explicitly include
human activity and the interaction between the risk components in their frame-
work (e.g., through causal model links). Their systemic design allows for the
establishment of temporal continuity in simulations and extends the temporal
scope of the analyses (e.g., to centuries). Agent-based models and system dynam-
ics models are the most prevalent socio-hydrological approaches used in flood
risk assessment (Barendrecht et al. 2017; Ross and Chang 2020). Agent-based
models operate on the micro-scale and resolve individual agents (e.g., a private
household) that act according to a set of predefined decision rules on the basis
of theories from social sciences (e.g. behavioural economics) (Blair and Buytaert
2016). The interactions and aggregated decisions of all agents eventually lead to
emerging patterns on the macro-scale (i.e., flood risk dynamics) (Aerts et al. 2018).
Agent-based models have already been used to study the adaptive behavior of
households and governments (Haer et al. 2017; Haer et al. 2019), the levee-effect
(Haer et al. 2020), flood-induced business interruption (Coates et al. 2014; Coates
et al. 2019), flood risk communication (Haer et al. 2016), or early warning (Alonso
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Vicario et al. 2020). In contrast, system dynamics models are lumped and directly
explain the macro-scale system behavior through coupled differential equations
that describe the governing system processes conceptually. Hence, the focus in
system dynamics lies on the overall workings and behaviour of a system rather
than on its sub-scale processes (e.g., physical, economic, psychological) (Blair
and Buytaert 2016; Barendrecht et al. 2017). System dynamics models have been
utilized successfully in simulating floodplain dynamics focusing on questions
such as economic impacts and growth (Di Baldassarre et al. 2013; Di Baldassarre
et al. 2015; Viglione et al. 2014; Grames et al. 2016), risk coping and management
(Ciullo et al. 2017; Yu et al. 2017; Di Baldassarre et al. 2017), or flood perception
and memory (Ridolfi et al. 2020; Ridolfi et al. 2021; Song et al. 2021).

Both approaches are united by the objective of integrating vulnerability and
its dynamics in flood risk assessment frameworks. Studies showed that the
negligence of vulnerability dynamics can lead to an overestimation of flood risk
and biased decision-making (Haer et al. 2016; Aerts et al. 2018). The inclusion
of vulnerability as a variable instead of a constant in systemic risk modeling is
expected to advance simulations and the understanding of vulnerability change,
which is essential for the development and implementation of effective flood
adaptation strategies (UNDRR 2022; Mechler and Bouwer 2015). To date, the
majority of systemic modeling solutions that account for vulnerability dynamics
investigate stylized problems as the assembly of socio-hydrological model data
is difficult (Barendrecht et al. 2017; Troy et al. 2015a). As with loss estimation,
previous studies of flood risk dynamics have largely focused on private households
so that knowledge on changes in vulnerability and risk for the commercial sector
remains scarce.

1.2.2 Uncertainty and data analysis

Flood risk assessment is subject to uncertainty, which arises from a variety of
sources and at different scales and steps of the analysis (Apel et al. 2004; de
Moel et al. 2015). Uncertainty is classified into aleatory and epistemic uncertainty.
While aleatory uncertainty describes the natural variability (i.e., randomness) of
a process and cannot be controlled, epistemic uncertainty originates from a lack
of knowledge and can, in principle, be reduced by gathering additional informa-
tion. For instance, the timing and magnitude of flooding as a natural process is
inherently random (i.e., aleatory), whereas measurement and model uncertainty
emerge from erroneous observations or simplified mathematical descriptions of
reality, which can potentially be improved (i.e., epistemic) (Merz and Thieken
2009; Merz et al. 2010a). Developments such as multivariable loss modeling and
systemic risk assessment successfully diminish epistemic model uncertainty by in-
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cluding additional relevant variables and processes, but considerable uncertainty
in the model outputs remains. Predictive errors of multivariable loss models
are still substantial due to scarce damage data, heterogeneity across assets, and
a restricted understanding of the causal mechanisms of flood damage (Meyer
et al. 2013; Merz et al. 2010b). Similarly, not all processes in a floodplain that
influence risk dynamics can be incorporated in socio-hydrological models because
of lacking knowledge or computational constraints (Di Baldassarre et al. 2016;
Blair and Buytaert 2016). Throughout the individual steps of risk assessment the
uncertainty accumulates, necessitating proper uncertainty quantification. The
disregard of relevant uncertainty sources could provide unreliable information
to decision makers and lead to dysfunctional flood risk management (Apel et al.
2008; Hall and Solomatine 2008).

In order to account for uncertainty, modellers make use of model ensembles,
sensitivity analysis, or forward uncertainty propagation (Figueiredo et al. 2018;
Metin et al. 2018; Haer et al. 2017; de Moel and Aerts 2011; Merz et al. 2015).
Additionally, inverse approaches that use probability theory to quantify uncer-
tainty in a model and its parameters from data are becoming increasingly popular.
In loss estimation, deterministic loss models are still prevalent, but probabilistic
models that return loss distributions instead of point estimates are gaining traction
(Gerl et al. 2016). The prevalence of machine learning and statistical methods
such as random forests (Sieg et al. 2019b; Sieg et al. 2019a), Bayesian networks
(Lüdtke et al. 2019; Vogel et al. 2014; Wagenaar et al. 2018; Paprotny et al. 2020),
or Bayesian regression (Rözer et al. 2019; Sairam et al. 2019a; Mohor et al. 2021)
boosts this trend as these approaches often inherently quantify uncertainty. In
models for flood risk assessment, simulation-based approaches (e.g., Monte Carlo
methods) are common, which propagate the uncertainty in the input variables
through a risk modeling chain (Apel et al. 2008; Falter et al. 2015). Typically,
such analyses are concentrated on the hazard component of the risk system, for
instance, the stochasticity in flood discharge. Methods that estimate and combine
the uncertainties in all determinants of flood risk in a homogeneous way are rare.
Socio-hydrological flood risk models alleviate this shortcoming, as all relevant
risk drivers are fully integrated in one model. For example, Barendrecht et al.
(2019) demonstrated how Bayesian parameter estimation can be used to jointly
quantify uncertainty across the variables of a systemic flood risk model (i.e., expo-
sure, vulnerability, loss). Equally important, the model can combine uncertainties
that originate from different sources (data, parameter, statistical) in a coherent
probabilistic framework.

The combination of socio-hydrological modeling and Bayesian inference for
systemic, long-term risk assessment could create synergies. The inclusion of addi-
tional dynamics and variables in flood loss and risk models commonly enhances



Research objectives and outline 9

the number of model parameters and the demands towards the amount of data
which are required to inform the parameters. In particular, socio-hydrological
models require extensive observational records (i.e., decades to centuries) and
heterogeneous data in order to make inferences about slow feedback loops and
diverse system processes. However, for certain variables data are only available
for the most recent period and at discrete points in time (e.g., loss records) or not
directly but in form of proxy variables (e.g., surveys for vulnerability) (Troy et al.
2015a; Blair and Buytaert 2016). Historical information - such as land use maps or
loss reports - can be useful in estimating the state of a model variable decades ago,
but observations that lie far in the past are commonly more uncertain than recently
collected data (Barendrecht et al. 2019). The Bayesian framework is very flexible in
incorporating all kinds of information such as findings from previous experiments
(e.g., as priors) or data that were gathered with measurement uncertainty (Schoot
et al. 2021). Yet the potential of Bayesian methods in systemic flood risk modeling
requires further investigation.

Altogether, a selective and partial uncertainty analysis in loss and risk estimates
is problematic and could lead to mismanagement and ill-informed decision
making (Pappenberger and Beven 2006; Sayers et al. 2012; Hall and Solomatine
2008). The established treatment of uncertainty in flood risk assessment seeks to
identify probable outcomes rather than all possible alternatives, leaving space for
surprising, potentially devastating events (Merz et al. 2015; Di Baldassarre et al.
2016). While more complexity in flood modeling could widen the scope of risk
estimates, the increased number of parameters and variables in socio-hydrological
and loss modeling exacerbates the challenge of data scarcity. Consequently,
there is a demand for modeling solutions that quantify and analyse uncertainty
comprehensively, optimize the use of available information, and ideally also
reduce the uncertainties in flood analyses.

1.3 Research objectives and outline

Flood loss and risk are the result of a complex interplay of the hydrological
and the human domain. However, the established approaches in loss modeling
and risk assessment neglect most of the complexity due to the lack of relevant
damage-influencing factors, narrow definition of the risk system, and assumptions
of stationarity. Although such oversimplifications introduce substantial bias in the
resulting risk estimates, formalized approaches for a comprehensive exploration
of uncertainty and possible system evolutions are lacking.

Therefore, this thesis aims to improve the representation of vulnerability in
the modeling of economic flood loss and risk. In particular, the research inves-
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tigates and compares methods for object-level loss estimation, seeks to advance
the vulnerability assessment in socio-hydrological risk modeling, and explores
the role of vulnerability change in flood risk dynamics. Since previous model
development in the field predominantly concentrated on the residential sector, the
focus of this work should lie on the commercial sector (i.e., small and medium
sized companies). The overarching research questions of this thesis are:

1. How can flood loss and risk models better account for the complexity
of vulnerability processes?

2. What is required to enhance the scope of uncertainty analysis in flood
risk assessment and to optimize the use of available information?

3. Which new insights into company vulnerability does this model devel-
opment provide?

As shown in Figure 1.1, this cumulative thesis is composed of five chapters.
Chapter 1 explains the relevance of flood risk assessment and provides an overview
of the scientific status quo and recent advancements in the field. Chapters 2-4
present original research on flood loss estimation and risk assessment in form of
three manuscripts. Finally, Chapter 5 synthesises the results and findings of the
three studies and provides recommendations for further research in the field. The
three manuscripts build on each other methodologically, and all contribute with
individual aspects to answering the research questions.

The first study develops multivariable, probabilistic flood loss models for com-
panies on the object-level and evaluates their capacity to improve loss predictions.
The new loss models consider various damage-influencing variables, take into
account heterogeneity, and quantify predictive uncertainty.

The second study integrates one of the multivariable loss models into a socio-
hydrological flood risk model for companies in Dresden, Germany. The model
coupling augments the systemic risk model with process understanding and
additional data sources and provides new insights on flood vulnerability dynamics
in the past.

The third study uses the same augmented socio-hydrological flood risk model
for the long-term projection of flood vulnerability and risk dynamics. It demon-
strates how systemic risk assessment solutions can combine scenario-based and
probabilistic uncertainty analysis to elicit the potential evolutions of future flood
risk. The study also highlights the practical value of holistic risk assessment for
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effective and anticipatory flood adaptation.

Chapter 1
Introduction, Research objectives, and Outline

Model Development and Coupling

Chapter 2
Probabilistic Flood Loss Models 

for Companies

Chapter 3
Augmenting a Socio-hydrological Flood Risk Model 

for Companies with Process-oriented Loss Estimation
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into socio-hydrological system dynamics 

model

Model Application

Chapter 4
Projecting Flood Vulnerability Dynamics for Effective Long-term Adaptation
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12 INTRODUCTION

1.4 Author contributions

The main body of this thesis is composed of three manuscripts, that were pub-
lished in peer-reviewed academic journals or are under review for publication.
The majority of the presented work has been conducted by the author of this
thesis (L.S.). The co-authors of the three studies contributed to the research in the
form of discussions, comments, conceptualization, reviewing of manuscripts, or
joint model development. Following the CRediT taxonomy (Brand et al. 2015), the
author contributions for the individual manuscripts are as follows:

Chapter 2: Conceptualization: L.S., T.S., H.K.; Data curation: L.S., H.K.; For-
mal analysis: L.S.; Funding acquisition: H.K; Investigation: L.S., T.S., K.V.,
G.Z., H.K.; Methodology: L.S., T.S., K.V., H.K.; Project administration: H.K.;
Software: L.S.; Supervision: G.Z., H.K.; Validation: L.S.; Visualization: L.S.;
Writing – original draft: L.S.; Writing – review & editing: L.S., T.S., K.V., G.Z.,
H.K.

Chapter 3: Conceptualization: L.S., M.B., T.S., H.K. Data curation: L.S., M.B.,
H.K. Formal analysis: L.S. Funding acquisition: H.K. Investigation: L.S., M.B.,
T.S., N.S., H.K. Methodology: L.S., M.B., T.S., N.S., H.K.; Project administration:
H.K.; Software: L.S., M.B.; Supervision: H.K.; Validation: L.S.; Visualization:
L.S.; Writing – original draft: L.S.; Writing – review & editing: L.S., M.B., T.S.,
N.S., H.K.

Chapter 4: Conceptualization: L.S., H.K.; Data curation: L.S., D.P., H.K.;
Formal analysis: L.S.; Funding acquisition: H.K.; Investigation: L.S., M.B.,
D.P., T.S., N.S., H.K.; Methodology: L.S., M.B., D.P., T.S., N.S., H.K.; Project
administration: H.K.; Software: L.S., M.B., D.P.; Supervision: H.K.; Validation:
L.S.; Visualization: L.S.; Writing – original draft: L.S.; Writing – review &
editing: L.S., M.B., D.P., T.S., N.S., H.K.
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Additionally, the author contributed to the following publications, which are not
included in this thesis:

Schoppa, L., Disse, M., and Bachmair, S. (2020). Evaluating the performance of
random forest for large-scale flood discharge simulation. Journal of Hydrology,
590, 125531. https://doi.org/10.1016/j.jhydrol.2020.125531

Schoppa L., Kreibich H., Sieg T., Vogel K. and Zöller G. (2021). Developing
multivariable probabilistic flood loss models for companies [Paper presentation].
FLOODrisk 2020 - 4th European Conference on Flood Risk Management, Online-
Conference. https://doi.org/10.3311/floodrisk2020.11.12

Berghäuser, L., Schoppa, L., Ulrich, J., Dillenardt, L., Jurado, O. E., Passow, C.,
Mohor, G. S., Seleem, O., Petrow, T., Thieken, A. H. (2021). Starkregen in Berlin
- Meteorologische Ereignisrekonstruktion und Betroffenenbefragung. Potsdam.
https://doi.org/10.25932/publishup-50056

Caldas-Alvarez, A., Augenstein, M., Ayzel, G., Barfus, K., Cherian, R., Dillenardt,
L., Fauer, F., Feldmann, H., Heistermann, M., Karwat, A., Kaspar, F., Kreibich,
H., Lucio-Eceiza, E. E., Meredith, E. P., Mohr, S., Niermann, D., Pfahl, S., Ruff, F.,
Rust, H. W., Schoppa, L., Schwitalla, T., Steidl, S., Thieken, A. H., Tradowsky, J. S.,
Wulfmeyer, V., Quaas, J. (2022). Meteorological, impact and climate perspectives
of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area.
Natural Hazards., Earth System Sciences, 22(11), 3701-3724. https://doi.org/10.
5194/nhess-22-3701-2022
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Abstract

Flood loss modeling is a central component of flood risk analysis.
Conventionally, this involves univariable and deterministic stage-
damage functions. Recent advancements in the field promote the
use of multivariable and probabilistic loss models, which consider
variables beyond inundation depth and account for prediction un-
certainty. Although companies contribute significantly to total loss
figures, novel modeling approaches for companies are lacking. Scarce
data and the heterogeneity among companies impede the develop-
ment of company flood loss models. We present three multivariable
flood loss models for companies from the manufacturing, commer-
cial, financial, and service sector that intrinsically quantify prediction
uncertainty. Based on object-level loss data (n = 1,306), we com-
paratively evaluate the predictive capacity of Bayesian networks,
Bayesian regression, and random forest in relation to deterministic
and probabilistic stage-damage functions, serving as benchmarks.
The company loss data stem from four post event surveys in Germany
between 2002 and 2013 and include information on flood intensity,
company characteristics, emergency response, private precaution,
and resulting loss to building, equipment, and goods and stock. We
find that the multivariable probabilistic models successfully identify
and reproduce essential relationships of flood damage processes in
the data. The assessment of model skill focuses on the precision of
the probabilistic predictions and reveals that the candidate models
outperform the stage-damage functions, while differences among
the proposed models are negligible. Although the combination of
multivariable and probabilistic loss estimation improves predictive
accuracy over the entire data set, wide predictive distributions stress
the necessity for the quantification of uncertainty.
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2.1 Introduction

Flooding poses immense risk to life and economic goods. Over the past four
decades, 40% of globally recorded natural catastrophes were caused by pluvial
or fluvial flooding and the share of hydrological events is rising (Munich Re
2018). Severe fluvial flooding such as the 2002 event (Ulbrich et al. 2003) or 2013
event (Merz et al. 2014b) in Germany can harm all components of society such as
private households, infrastructure, or economy. Damage to companies constitutes
a high share of total flood losses. For instance, businesses accounted for € 1.4
billion (15.9%) of the total direct flood loss of € 9.1 billion in 2002 (Mechler and
Weichselgartner 2003). In the 2013 flood, companies suffered € 1.3 billion (19%)
of the total € 6.7 billion damage (German Federal Ministry of the Interior 2013;
Thieken et al. 2016). Despite the substantial contribution of companies to overall
damage, previous flood loss research addressed residential damage for the most
part (Gerl et al. 2016; Gissing and Blong 2004).

Flood risk assessment comprises the evaluation of flood hazard, exposure, and
vulnerability (Merz et al. 2010a; Olsen et al. 2015). Vulnerability describes the
susceptibility of exposed assets, such as buildings or contents, to sustain damage
during a flood. The assessment of monetary loss through loss models represents
a cornerstone in flood risk analysis and directly influences flood management
practice, for instance in the cost-benefit analysis of flood management measures
or in the calculation of insurance premiums (Merz et al. 2010b). Conventionally,
flood loss estimation engages univariable stage-damage functions, which relate
the hazard intensity at an asset, that is, inundation depth, to the damage grade
or absolute damage (Alfieri et al. 2016; Grigg and Helweg 1975; Huizinga et al.
2017; White 1945). Most flood loss models feature a variety of distinct stage-
damage functions differentiating between occupancy (e.g., residential, commercial,
and industrial), asset type (e.g., building, contents, and equipment), and asset
characteristics (e.g., building type, building material, and number of stories).
Several models include explicit stage-damage functions for the commercial and
industrial sector, for instance, the Multi-Coloured Manual (Penning-Rowsell et al.
2005), HAZUS-MH (Scawthorn et al. 2006), the stage-damage functions of the
International Commission for the Protection of the Rhine (2016), or the global
data set of stage-damage functions by Huizinga et al. (2017). Still, stage-damage
functions often omit other damage influencing factors such as inundation duration
or preparedness (Kelman and Spence 2004; Middelmann-Fernandes 2010; Thieken
et al. 2005) and, more importantly, cannot account for interactions among the
variables. As a result, stage-damage functions can only partially describe the
damage processes (Gissing and Blong 2004; Merz et al. 2004; Rözer et al. 2019;
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Schröter et al. 2014; Sieg et al. 2019b). The advance of machine learning and
data mining promoted the development of multivariable flood loss models, which
jointly consider a variety of damage influencing factors and their interdependency.
The modeling community proposed ample methods for flood loss estimation
including multivariate generalized regression (Rözer et al. 2019; Van Ootegem
et al. 2015; Zhai et al. 2005), rule-based models (Elmer et al. 2010; Kreibich et al.
2010; Thieken et al. 2008), tree-based approaches (Carisi et al. 2018; Hasanzadeh
Nafari et al. 2016b; Kreibich et al. 2017b; Merz et al. 2013; Sultana et al. 2018),
and Bayesian networks (Lüdtke et al. 2019; Vogel et al. 2012; Vogel et al. 2014;
Wagenaar et al. 2018).

Another advantage of such flood loss models is their ability to quantify the
predictive uncertainty in their loss estimates. By returning predictive distributions
instead of deterministic point estimates, probabilistic models inherently provide
reliability information alongside their predictions (e.g., Lüdtke et al. 2019; Rözer
et al. 2019; Sieg et al. 2019b; Wagenaar et al. 2018). Despite the evidently large
uncertainties governing loss estimation, only a small number of existing models
is probabilistic (Gerl et al. 2016). However, the explicit consideration of predictive
uncertainty bears concrete value for flood risk management practice. For instance,
flood loss estimates are central components of risk-based decision making in flood
protection planning (Merz and Thieken 2009; Wagenaar et al. 2016). Decision-
making frameworks such as expected utility theory or multicriteria analysis regard
uncertainty information as integral for evaluating competing protection strategies
(Brito and Evers 2016; Kreibich et al. 2014; Kunreuther et al. 2013). Probabilistic
loss models inherently provide this uncertainty information and, hence, fit neatly
into different decision support tools (Lüdtke et al. 2019). In this context, they
represent an alternative to multimodel ensembles of deterministic flood models
(see e.g., Figueiredo et al. 2018), where a sufficient number of models is lacking
or the setup of an ensemble is too expensive. Furthermore, Sieg et al. (2019b)
showed that probabilistic loss models can aid in bridging the gap between flood
risk assessment at different scales, as they provide more accurate and informative
loss estimates than deterministic models on the object level and are capable of
propagating predictive uncertainty to aggregated levels, such as municipalities
or states. Since both modelers and decision makers benefit from the transparent
communication of uncertainty in damage estimates, further efforts should aim at
the implementation of probabilistic loss models (Merz et al. 2010b; Meyer et al.
2013).

Company flood loss models that account for variable interactions and predic-
tive uncertainty at the same time are still an exception. Several aspects impede
the development of novel flood loss estimation techniques for companies. First,
the damage processes of companies and residential buildings differ, which, in
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turn, requires the separate setup of company loss models (Merz et al. 2010b).
Second, companies are more heterogeneous than private households, for instance,
with respect to building type, size, or occupancy. Namely, company equipment
ranges from heavy machinery over technical devices to office items depending
on the business sector, whereas the composition of the contents varies less across
private households, and the size of companies ranges from self-employed persons
to production facilities with large numbers of employees, while household sizes
range in the same order of magnitude. This heterogeneity reflects in the loss
data as variance (Gissing and Blong 2004). Third, flood loss data are scarce and
often inaccurate, especially for companies (Merz et al. 2010b; Molinari et al. 2014;
Seifert et al. 2010; Sieg et al. 2017). Examples of multivariable flood loss models
for companies that account for variable interactions are the empirical-synthetic
FLFAcs model (Hasanzadeh Nafari et al. 2016a), the rule-based FLEMOcs model
(Kreibich et al. 2010; Seifert et al. 2010), and the random forest model of Sultana
et al. (2018). Sieg et al. (2017) and Sieg et al. (2019b) explored the capability of
random forests to predict company flood loss for different economic sectors and
spatial scales. Despite the necessity of proper model benchmarking (Gerl et al.
2016), an intercomparison of different multivariable probabilistic company flood
loss models is still missing.

In this study, we present three multivariable probabilistic flood loss models for
companies: Bayesian networks, Bayesian zero-and-one-inflated beta regression,
and random forest. These models performed well in loss prediction exercises
for the residential sector (Rözer et al. 2019; Schröter et al. 2014), where they
outperformed other approaches such as rule-based models, probabilistic Gaussian
regression models, or deterministic stage-damage functions; but except for random
forest they have not been implemented for companies to date. The random forest
model for companies of Sieg et al. (2017) and Sieg et al. (2019b) achieved promising
performance scores but has not yet been tested against equally complex models.
We aim at closing these gaps by implementing the models for the estimation of
company flood loss and conducting a thorough comparison of their predictive
capacity on basis of the same data. Since the three candidate models can deal
with multidimensional, heterogeneously scaled model data and return predictive
distributions of flood loss, they fulfill the requirements of modern flood loss
estimation and match the highly variable company loss data. We benchmark
the proposed models against a probabilistic and a deterministic stage-damage
function, serving as standard reference models. We fit and validate all models
separately for direct tangible loss to the company assets building (BUI), equipment
(EQU), and goods and stock (GNS) on the basis of object-level company loss data
(n = 1,306) collected in postevent surveys in Germany between 2002 and 2013.
The multivariable candidate models use information on flood intensity, company
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characteristics, and private precaution to estimate the flood damage, whereas the
stage-damage functions solely depend on water depth. The objective of this study
is the comparative examination and assessment of

1. the predictive capacity of multivariable models against the established,
univariable stage-damage functions and

2. differences in predictive power among the multivariable probabilistic candi-
date models

with a particularly focus on probabilistic forecasting. The results of this study
offer new insights into flood damage processes of companies, the added value
of complex modeling approaches, and the potential of probabilistic modeling in
flood risk assessment.

2.2 Data and methods

2.2.1 Survey data

The empirical company flood loss data used in this study stem from four in-
dividual postevent surveys after major floods in Germany that occurred in the
period from 2002 to 2013 (Kreibich et al. 2007; Thieken et al. 2016). The survey
questionnaires remained consistent over all four surveys and gathered information
on flood intensity, company characteristics, emergency and private precautionary
measures, flood experience, and flood loss. Large flood events in the Danube
and Elbe river catchments in 2002 and 2013 contribute the largest share (n =
1,014) to the total number of 1,346 completed company interviews. The remaining
company loss data were collected in the aftermath of events in 2005, 2006, and
2010–2012 in the Danube, Elbe, Oder, and Rhine catchments. The data set is
dominated by small- and medium-sized companies with less than 250 employees.
For details on the survey data set and the collection methodology see Kreibich
et al. (2007).

Table 2.1 lists a subset of variables from the survey data set, which we used
for modeling in this study. The selection of the variable subset is primarily based
on the studies of Kreibich et al. (2010) and Sieg et al. (2017), in which the authors
quantitatively investigated variable importance with respect to relative loss on
subsets of the same survey data. Furthermore, the composition of the predictor set
was influenced by existing residential flood loss models (Elmer et al. 2010; Schröter
et al. 2014; Wagenaar et al. 2018). In the following we motivate the predictor set
and reference to studies, where the predictor was identified as influential or used
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Table 2.1: Predictor (n=8) and response (n=1) model variables.

Variable Abbreviation Scalea, unit, range
Predictors

Flood intensity
Water depth wd c: 0-960 cm above ground
Inundation duration dur c: 0-720 h
Return period rp c: 1-909 a

Company characteristics
Size size c: 1-800 employees [-]
Business sector sec n: (1) manufacturing, (2) commercial,

(3) financial, (4) service
Spatial situation spat n: (1) premises with several

buildings,
(2) one entire building,
(3) one or more floors in shared
building,
(4) less than one floor in shared
building

Experience and precaution
Flood experience exp o: zero previous floods to five or

more previous floods (6 classes)
Precaution ratio pre c: 0-1 [-]

Response
Flood loss

Relative loss to building rloss c: 0-1 [-]
Relative loss to equipment rloss c: 0-1 [-]
Relative loss to goods/stock rloss c: 0-1 [-]

Note. The rightmost column provides the observed ranges of each variable in the
survey dataset.

a c: continuous, n: nominal, o: ordinal

in a loss model. Water depth (Kreibich et al. 2010; Penning-Rowsell et al. 2005;
Scawthorn et al. 2006; Sieg et al. 2017) and inundation duration (Kreibich et al.
2010; Merz et al. 2013; Sieg et al. 2017; Vogel et al. 2014; Wagenaar et al. 2017)
describe the intensity of the damaging flood event and are widely used in the
prediction of flood loss. We augmented the surveyed flood intensity information
on water depth and inundation duration by regionalized estimates of flood return
periods (Elmer et al. 2010; Merz et al. 2013; Wagenaar et al. 2017; Wagenaar
et al. 2018). Regional return period estimates provide additional insight on the
general magnitude of the flood independent of spatially volatile inundation depths.
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Table 2.2: Precaution classes and measures. We estimate the degree of precaution for each
company on the basis of the listed measures.

Classification Precautionary measure
Adaptation Adapted use of flood-prone area

Relocation of susceptible equipment
Mitigation Improve flood resilience of building; e.g. basement waterproofing

Installation of water barriers
Emergency Saving equipment / saving goods and stocka

Use of water pumps
Shut-down of machinery and power
Preventing contamination

a Ordered answer with four levels: from 0=’nothing was saved’ to 3=’everything
was saved’; this measure is possible for all companies

Moreover, return periods allow for implications on the flood experience of affected
companies, since severe events might have an impact on infrequently inundated
neighborhoods with low risk awareness (Elmer et al. 2010). The calculation of
the return period estimates involved a statistical extreme value analysis of time
series of annual maximum discharge at river gauges in affected regions and was
carried out in analogy to Elmer et al. (2010). Company characteristics are included
into the model through the business sector in which the company operates, the
company size expressed by the number of employees, and the spatial situation of
the premises at the affected site (Kreibich et al. 2010; Sieg et al. 2017). We assume
that the flood experience of a company is tied to the number of previous floods
that the company experienced (Kreibich et al. 2010; Merz et al. 2013; Schröter
et al. 2014; Wagenaar et al. 2018). In that sense, companies that were flooded once
or several times before the surveyed event exhibit higher flood experience than
companies, which never encountered flooding before.

For the assessment of companies’ flood precaution (Kreibich et al. 2007;
Kreibich et al. 2010; Thieken et al. 2008; Vogel et al. 2018), we computed a
ratio from a set of individual adaptation, mitigation, and emergency measures
similar to Sieg et al. (2017). In contrast to Sieg et al., we combined adaption,
mitigation, and emergency measures in one precaution ratio in order to reduce
the number of predictor variables. The precaution ratio is defined as the number
of precautionary measures that a specific company actually implemented prior
to the damaging flood (nI) divided by the number of relevant measures that this
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company could have possibly implemented (nP)

pre =
nI
nP

. (2.1)

Hence, company precaution is a ratio on the interval [0, 1], where well-prepared
companies are assigned high ratios and poorly prepared companies are assigned
low ratios. The observed values range from 4 to 10 for nP and from 0 to 10 for
nI. The individual measures from which the precaution ratio was calculated are
listed in Table 2.2. Except for the measure “saving equipment/saving goods and
stock”, which allowed for ordered answers depending on the amount of saved
assets, all measures are treated as binary variables meaning that they were either
implemented at the occurrence of the flood or not.

The damage to assets is expressed relative to their replacement value in order
to facilitate the transferability of the derived models in space and time (Merz et al.
2010b). Consequently, losses to building, equipment, and goods and stock are a
ratio on the interval [0, 1], where a relative loss of 0 corresponds to no damage
and a relative loss of one corresponds to the total loss of the asset.

Furthermore, we excluded companies (n = 8) with extraordinary long-lasting
inundation durations (>30 days) since we found evidence for erroneous survey
answers in these cases. Prior to the model derivation, we removed companies
with missing predictor values and subdivided the resulting data set (n = 1,306)
into three asset-specific data sets (nbui = 545, nequ = 829, ngns = 928).

Figure 2.1 shows the distributions of the predictor and response variables for
the three asset-specific data sets in the form of violin plots (Hintze and Nelson
1998). The variable distributions are estimated through kernel density estimation
(Silverman 2018). The response variable, relative loss, contains considerable shares
of no (value: 0) and total (value: 1) loss cases for building (0: 32%, 1: 4%),
equipment (0: 37%, 1: 17%), and goods and stock (0: 51%, 1: 20%). This results in
bimodality of the relative loss distributions, which is particularly pronounced for
equipment and goods and stock.

2.2.2 Development of probabilistic loss estimation models

Random forest

Random forest (RF) is a machine learning technique, which uses ensembles of
decision trees for classification and regression problems (for details see Breiman
2001; Liaw and Wiener 2002). RFs are capable of handling high-dimensional,
nonlinear data and offer large flexibility as they accept discrete and continuous
predictors at the same time (James et al. 2013).
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Figure 2.1: Kernel density estimations of the model variable distributions for the three company
assets building, equipment, and goods and stock. For this plot, we scaled all variables from zero to
one. The lines in the violin plots indicate the quartiles while the dot represents the mean.

RF is a supervised learning algorithm, which fits a large number of individ-
ual decision trees to data. The tree ensemble draws its predictive power from
two techniques: bootstrap aggregation (bagging) and random feature selection.
Bagging generates bootstrap samples of the original data before growing the
trees and aggregates predictions of the individual trees afterward. During tree
construction, random feature selection constrains the set of possible split variables
at each splitting node, introducing additional randomness. The combination
of bagging and random feature selection decreases the correlation among trees,
which prevents overfitting and increases the prediction accuracy of the forest.
Moreover, RFs inherently provide estimates of predictor importance. During tree
construction, the algorithm randomly permutes each predictor and tracks the
resulting mean decrease in prediction accuracy of the RF. A strong deterioration
in prediction accuracy indicates that the respective predictor is more relevant for
the predictive capacity of the RF.

The standard implementation of RF uses the classification and regression tree
algorithm to construct the individual decision trees by recursively partitioning
the training data into homogeneous subsets (Breiman et al. 1984). However,
during recursive partitioning, this algorithm favors predictors with many possible
splits (e.g., continuous variables) over predictors with few splits (e.g., categorical
variables), leading to a variable selection bias (White and Liu 1994). Hothorn
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et al. (2006) developed a recursive partitioning routine based on permutation
tests, termed conditional inference tree algorithm, which overcomes this bias.
Since the company loss data set used in this study consists of continuous, ordinal,
and nominal variables, we used the conditional inference tree algorithm. In
addition, we obtained conditional response distributions of relative loss instead
of mean values by employing the quantile regression forest methodology of
Meinshausen (2006). The majority of previous studies on flood loss modeling
used the conventional classification and regression tree algorithm (e.g., Carisi et al.
2018; Kreibich et al. 2017a; Merz et al. 2013; Schröter et al. 2014), but recent works
increasingly applied the conditional inference tree algorithm (Sieg et al. 2017;
Sultana et al. 2018) or a combination of conditional inference trees and quantile
regression forests (Sieg et al. 2019b; Sieg et al. 2019a), which we also applied in
this study.

Our RF model is controlled by two parameters, the number of trees ntree and
the number of randomly sampled predictors mtry during partitioning. We decided
for a common parameter choice with ntree = 1, 000 and mtry = 3 (Hastie et al. 2009;
Liaw and Wiener 2002). The supporting information (SI) to this paper provide
information on the computational implementation of the RF model (Hothorn and
Zeileis 2015).

Bayesian network

A Bayesian network (BN) is a probabilistic graphical model. It does not distinguish
between predictor and response variable but represents the joint probability
distribution of all variables in form of a directed acyclic graph (for details see
Jensen and Nielsen 2007; Nagarajan et al. 2013; Pearl 2009). BNs encode the
statistical dependence structure of the random variables into a set of nodes and
arcs. Each variable is symbolized by a node, while the conditional dependence
or independence of two variables is expressed by the presence or absence of a
connecting arc between their corresponding nodes. This independence mapping of
a BN facilitates efficient probabilistic computation as the global, joint distribution
of the variable set can be factorized into a product of local, conditional probability
distributions.

In theory, BNs are applicable to continuous and discrete variables. Yet in
practice, continuous BNs are usually restricted to normally distributed variables
in order to maintain closed-form expressions of the associated probability distribu-
tions (Scutari 2010). Since our flood loss data contain both discrete and continuous
variables, which partly have skewed distributions, we implement discrete BNs in
this study. The factorized formulation of the joint probability distribution for a
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discrete BN reads

P(X1, ..., Xn) =
n

∏
i=1

P(Xi | ΠXi), (2.2)

where Xi are all n variables of the BN and ΠXi are the respective parent nodes
of Xi in the directed acyclic graph, that is, nodes whose arcs point toward Xi.
In a discrete BN, all probability distributions are multinomial, and the local
distributions of the nodes are defined in conditional probability tables, which
represent the parameters of the model (Nagarajan et al. 2013; Scutari and Denis
2014).

Consequently, the implementation of a BN requires (1) the definition of the
graph structure and (2) the estimation of the conditional probability table values.
We learned three separate network structures and their corresponding parameters
to receive individual BN models for the company assets building, equipment, and
goods and stock. For prediction we employed Bayesian inference.

The continuous variables in the survey data demanded for adjustments before
we could use them for learning and prediction in a discrete BN. Therefore, we
binned all continuous variables into intervals (Koller and Friedman 2009; Vogel
et al. 2012; Vogel et al. 2014) by means of an equal-frequency discretization scheme
(e.g., Wagenaar et al. 2018). This discretization routine calculates interval bound-
aries in a way that the resulting bins contain an equal amount of observations.
In the interest of model accuracy, we assigned 10 bins to the presumably most
influential predictors water depth and precaution ratio (Kreibich et al. 2010; Sieg
et al. 2017) and to the target variable relative loss. The number of classes for the
other continuous variables inundation duration, company size, and return period
was set to 5. By definition, a discrete BN returns a probability mass function of the
target variable. However, the other two candidate models of this study provide
continuous predictive distributions on the interval [0,1] for the relative loss. For
the purpose of comparability, we derive a continuous probability density for the
binned BN, by fitting a distribution to data that we sampled from the observed
relative loss cases with sampling weights according to the probability that the BN
predicted. For further details on the BNs we refer to the SI (Højsgaard 2012).

Bayesian regression

In the Bayesian regression (BR) (for details see Gelman et al. 2013; McElreath
2018), we model relative loss with a zero-and-one-inflated beta distribution. The
conventional beta distribution is a common choice for modeling fractional data,
which range from 0 to 1 such as relative loss (Ferrari and Cribari-Neto 2004).
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However, the beta distribution is not defined on those boundaries and, hence,
cannot reproduce extreme cases of no (0) or total loss (1), which are abundant in the
study data. The zero-and-one-inflated beta distribution (Ospina and Ferrari 2010)
overcomes this limitation by combining the beta with the Bernoulli distribution,
which accounts for the excess in zeros and ones in the model data. The resulting
mixture distribution has the following cumulative distribution function (CDF):

BEINF (y | λ, γ, µ, ϕ) = λ · FBernoulli (y | γ) + (1 − λ) · FBeta (y | µ, ϕ) (2.3)

where y is the response, relative loss, λ is the zero-and-one-inflation probability
(i.e., the probability that the response is zero or one), FBernoulli (· | γ) is the cumu-
lative distribution function of the Bernoulli distribution with parameter γ, which
is the conditional one-inflation probability (i.e., the probability that the response is
one rather than zero). FBeta (· | µ, ϕ) is the cumulative distribution function of the
reparameterized beta distribution with µ and ϕ as mean and precision parameter
(Ferrari and Cribari-Neto 2004).

We configure the BR as a distributional model, which means that not only the
mean µ of the beta distribution is predicted but also the remaining parameters
λ, γ, and ϕ. We use different sets of predictor variables, Xλ, Xγ, Xµ, Xϕ, for each
parameter, receiving the following functions in the regression model

Yi ∼ BEINF (λi, γi, µi, ϕi) (2.4)
logit (µi) = αµ + βµXµ,i (2.5)

log (ϕi) = αϕ + βϕXϕ,i (2.6)

logit (λi) = αλ + βλXλ,i (2.7)
logit (γi) = αγ + βγXγ,i (2.8)

where Yi denotes the response variable for observation i (i.e., the relative loss
of one company) and Xpar,i the respective values of the predictor variables for
the corresponding parameter. αpar and βpar are the intercept and regression
coefficients of the corresponding parameter in the combined regression model.

We estimate the mean µ of the beta distribution from all available predictors.
In contrast, the inflation parameters λ and γ, and the precision parameter ϕ

are predicted by a selection of the most influential predictor variables for the
respective asset. In this way, we reduce the number of model parameters, which
improves the model convergence during parameter estimation and accounts for
differences in the flood damage processes across the assets. The analysis of Sieg
et al. (2017), which has been conducted on a subset of the data used in this study,
suggests that the spatial situation of a company is a major factor for flood loss
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Table 2.3: Predictor sets of the Zero-and-One-Inflated Beta regression. The predictors vary
over the parameters and over the assets. Differences between the models for building and
equipment/goods and stock are indicated in italics.

Building Equipment/goods and
stock

µ – beta mean all predictors all predictors
ϕ – beta precision water depth, precaution water depth, precaution
λ – zero-and-one-inflation water depth, precaution,

spatial situation
water depth, precaution,
sector

γ – conditional
one-inflation

water depth, precaution,
spatial situation

water depth, precaution,
sector

to buildings. Furthermore, the predictor importance measures for equipment,
and goods and stock vary particularly strong across the economic sectors of the
companies. Water depth and precaution exhibited high predictor importance
across all assets. Table 2.3 shows which variables we used for predicting the zero-
and-one-inflated beta parameters in the individual asset loss models. Before model
fitting, we transformed continuous predictors by a Yeo-Johnson transformation
in order to treat the pronounced skewness in the predictors variables (Yeo 2000).
In addition, we centered and scaled continuous predictors. The regression terms
contain individual coefficients for each level of the categorical predictors, sector
and spatial situation (i.e., dummy encoding; McElreath 2018), and we model the
ordinal variable flood experience as a monotonic effect (Bürkner 2017).

BR models require the definition of priors for model parameters as well as
specifications for Markov chain Monte-Carlo (MCMC) sampling (Gelman et al.
2013; McElreath 2018). Details on the model implementation, including prior
choice and MCMC-settings, are provided in the SI.

Comparison to stage-damage function

We compare the previously presented candidate models to univariable stage-
damage functions (SDF). Stage-damage functions predict flood loss solely from
water depth, wd, and represent the conventional approach to flood loss modeling
(Merz et al. 2010b). Following similar studies (Rözer et al. 2019; Schröter et al. 2014;
Sieg et al. 2019b; Wagenaar et al. 2017), we employ a square root stage-damage
function as a baseline model for comparison. Square root stage-damage functions
outperformed other functional forms (linear, polynomial) before (Elmer et al. 2010)
and are arguably the most common instance of a SDF (Wagenaar et al. 2017). We
implement a deterministic (SDF-D) and a probabilistic version (SDF-P) of the
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square root stage-damage function, in order to differentiate between the added
value of multivariable and probabilistic prediction separately.

The deterministic SDF represents an established standard approach to flood
loss estimation. The model is a simple, least square regression, which is defined
as follows

Yi = α + β
√

wdi + εi, (2.9)

where Yi is the observed relative loss, α and β are the intercept and regression
coefficient, and εi is the error for observation i. During model fitting, the error
sum of squares is minimized.

We implement the probabilistic SDF in a Bayesian framework in order to assure
comparability with the probabilistic candidate models. Like in the BR model, we
assume that relative loss follows a zero-and-one-inflated Beta distribution. The
SDF model formulation reads

Yi ∼ BEINF (λ, γ, µi, ϕ) (2.10)

logit (µi) = α + β
√

wdi. (2.11)

Other than in the BR model, we only predict the mean parameter µ of the beta
distribution. The remaining distribution parameters, λ, γ, and ϕ are assumed to
be constant across observations; that is, we estimate them during the inference
but do not predict them. We estimated the parameters of SDF-P in analogy to the
BR model via MCMC. The SI contains further information on the prior choice for
the SDF-P model.

2.2.3 Model validation

We validate the predictive performance of BN, BR, RF, and SDF individually for
the three assets building, equipment, and goods and stock. This results in 12
asset-model combinations. All candidate models return probabilistic predictions
rather than deterministic loss estimates. However, the models do not provide
analytical predictive distributions but simulated approximations in the form of
samples. For each model, we sampled 1000 values from the conditional response
distribution and evaluated this probabilistic response with respect to accuracy,
sharpness and calibration. Within one asset dataset, we estimated the model
test errors through repeated 10-fold cross-validation in order to receive robust
estimates of true model performance. That is, we initiated 100 independent runs
of 10-fold cross-validation with varying, random data partitioning. In each of the
10-fold cross-validation runs, every company is held out of the training set for
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prediction exactly once. We validate model performance for each cross-validation
fold by means of three performance metrics:

1. The mean absolute error (MAE) for the mean of the predictive dis-
tribution. The MAE evaluates the accuracy of a point forecast and
averages the absolute difference between the observed response
and the predicted point estimate over the number of observations.

2. The mean bias error (MBE), which quantifies model over- and
underestimation in the mean of the predictive distributions.

3. The continuous ranked probability score (CRPS), which is a proper
scoring rule that evaluates the entire continuous distribution of
a probabilistic forecast. It jointly assesses the sharpness and cali-
bration of the predictive distribution and generalizes the absolute
error (Gneiting and Katzfuss 2014; Matheson and Winkler 1976).
Hence, the CRPS can be compared directly to the MAE. The CRPS
for one observation yi is defined as

CRPSi (Fi, yi) =

∞∫
−∞

(Fi(x)− 1 {yi ≤ x})2 dx, (2.12)

where Fi(x) is the cumulative distribution function (CDF) of the
predictive distribution fi(x), and 1 {·} is the indicator function.
We compute the CRPS with an empirical CDF estimated from
samples of fi(x). For details on the numerical implementation of
the CRPS for simulated forecasts, we refer to the corresponding lit-
erature (Jordan et al. 2019; Krüger et al. 2016). For the proportional
response variable, relative loss, the CRPS is defined on the interval
[0,1] with the optimum at zero. Note that the CRPS is calculated
individually for each observation. For the comparison with the
MAE, we computed the mean CRPS value in each cross-validation
fold.

2.3 Results and discussion

2.3.1 Variable importance in multivariable models

We compare the fitted multivariable models with respect to plausibility and
consistency. First, the model fits should be in line with physical principles
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governing flood damage processes; for example, that loss increases with larger
water depths. Secondly, the relative effect and influence of the predictors should
be similar across models, since they are fit to the same training data.

Figure 2.2 compares the learned BN structures, the estimated BR regression
parameters for the mean parameter of the beta distribution (µ), and the RF predic-
tor importance measures for the three study assets. In the BN structures, variables
with the strongest statistical dependence on relative loss are directly connected
to its node. The relative magnitude and sign of the estimated BR regression
coefficients yield information on the effect of the corresponding predictor on
relative loss. The coefficients for the categorical predictors, spatial situation and
sector, express the deviation in flood loss for each variable group individually and
relative to the first group of the respective variable, which acts as a reference (see
‘dummy encoding’ in section 2.2.2). For example, companies that operate in the
second sector group, ‘commercial’, experienced considerably higher building loss
than companies belonging to the first sector group, i.e., ‘manufacturing’, since
the respective coefficient ‘sec[com]’ is positive in the building model. Ultimately,
RF expresses variable importance through the change of model accuracy that
is induced by simulating the absence of a particular variable. The stronger the
decrease in RF accuracy, the more relevant is the withheld predictor.

Water depth is a dominant influencing factor for flood loss to all three assets,
as indicated by direct arc connections to relative loss in all BNs. This is confirmed
by high absolute values of BR regression coefficients and RF predictor importance.
The relevance of water depth deteriorates from building over equipment to goods
and stock. The estimated signs of the BR regression coefficients show that water
depth has a positive effect on relative loss. The high variable importance of
water depth is in accordance with the majority of company flood loss models
(e.g., Hasanzadeh Nafari et al. 2016a; Kreibich et al. 2010; Penning-Rowsell et al.
2005; Sieg et al. 2017), where water depth is the most influential predictor. The
remaining flood intensity variables, return period and duration, predominantly
drive relative loss as well; yet, to a lesser degree than water depth, confirming
findings from similar studies for private households and companies (e.g., Kreibich
et al. 2010; Merz et al. 2013; Sieg et al. 2017; Vogel et al. 2018).

Precaution is a likewise important predictor in the proposed models with
direct arc connections to relative loss in all BNs. BR and RF reveal that the effect of
precaution becomes more important for losses to equipment and, especially, goods
and stock. Precaution was identified as an influential variable before (Kreibich
et al. 2010; Sieg et al. 2017), but it exhibits striking relevance in the presented
models, which might trace back to different approaches to estimating company
precaution. The large negative impact of precaution on relative loss in the BR
models implies that precautionary measures can reduce flood loss effectively.
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Figure 2.2: Comparison of the fitted candidate models. From top to bottom the plots show Bayesian
network structures, estimated regression coefficients for the mean parameter of the beta distribution
in the Bayesian regression, and predictor importance measures of random forest. From left to right,
the columns display the model fits for building (BUI), equipment (EQU), and goods and stock (GNS).
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The spatial situation is more significant for losses to building than to equip-
ment, and goods and stock. In contrast, the economic sector exhibits higher
explanatory power for equipment, and goods and stock as indicated by the direct
arc connections from sector to relative loss in the respective BNs. The effect of the
company size is negative with maximum magnitude for losses to goods and stock.
Sieg et al. (2017) found similar patterns of predictor importance for the spatial
situation and company size. Flood experience plays a minor role for all assets and
seems to reduce relative loss as well. The BN graphs imply that the predictive
power of company size and flood experience is covered by correlated variables in
adjacent nodes that are closer to relative loss (spatial situation, precaution), which
explains their inferior overall importance. Kreibich et al. (2010) also identified
flood experience as a subordinate predictor.

The variation in the predictor effects across the assets suggests that damage
processes differ for losses to building, equipment, and goods and stock. This was
also reported by Sieg et al. (2017), who observed fluctuating predictor importance
across asset types for a subset of the same survey data. In general, building loss is
controlled by variables describing the hazard intensity, precaution, and the spatial
situation. In contrast, variables that describe company characteristics (sector,
size) and precaution bear most information for losses to equipment, and goods
and stock and sometimes even exceed the effect of water depth. Considering
the pronounced variable effect of the sector for these assets, it seems that the
heterogeneity among companies mainly reflects in the damage processes for
equipment, and goods and stock. For instance, company equipment ranges from
heavy machinery over technical devices to office items depending on the business
sector. Conversely, the low RF predictor importance of the sector in the building
loss models suggests that the damage processes for buildings are more alike over
different company types. These findings are in line with the results of Sieg et al.
(2017), where damage processes across sectors diverged more for equipment, and
goods and stock.

We conclude that the fitted candidate models satisfy the criteria of plausibility
because the predictor effects agree with previous findings and match the physical
understanding of damage processes. The dissimilarity in the model fits for
different assets justifies the development of distinct loss models for building,
equipment, and goods and stock and highlights the benefit of multivariable loss
modeling approaches. Overall, the candidate models consistently identify the
same predictors as most relevant (water depth, precaution, sector) and agree
well within one asset. Minor discrepancies occur primarily for predictors with
moderate to weak predictive power such as return period or flood experience.
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2.3.2 Model performance

Model validation

Figure 2.3 shows the results of the repeated cross-validation runs for the three
performance metrics MAE, MBE and mean CRPS. Each boxplot summarizes 100
repetitions of a 10-fold cross-validation for a specific asset (x-axis), metric (plot
panels), and model (color-coded). Comparing MAE, we observe that all models
achieve the lowest errors for building loss. The multivariable models (BN, BR,
RF) perform similarly and exhibit median MAE values of 0.149, 0.158, and 0.150,
respectively. The probabilistic and deterministic SDFs reach slightly higher MAEs
of 0.174 and 0.165 in the median. MAE scores for equipment and goods and stock
deteriorate in comparison to building loss and are in the same range across the
multivariable models with values of approximately 0.27. For the SDFs, however,
MAEs increase stronger for goods and stock (SDF-P: 0.355, SDF-D: 0.348) than for
equipment (SDF-P: 0.329, SDF-D: 0.316). Among the multivariable models, BR
shows slightly higher MAEs than BN and RF.

The cross-validated mean CRPS shows almost the same relative ranking of
the models. Medians of mean CRPS values for the multivariable models are
approximately 0.10 for building, and 0.16 for equipment and goods and stock.
With mean CRPS values of 0.109 (BUI), 0.195 (EQU) and 0.200 (GNS), SDF-P is
outperformed by the complex models, especially for equipment and goods and
stock. RF reaches the best mean CRPS for all three assets, yet the difference
to the other multivariable models is small. CRPS cannot be calculated for the
deterministic stage-damage function, as it requires probabilistic predictions.

The boxplots of the MBE reveal that all models neither under- nor overestimate
relative loss considerably in the median.

As described in section 2.2.3, the CRPS generalizes the MAE, which facilitates
the direct comparison of deterministic and probabilistic forecasts. The larger
values of MAE in comparison to mean CRPS suggest a loss of information about
the observed response, when the predictive distribution is condensed to a single
value, namely the mean. Moreover, in case of the probabilistic models, the MAE
produces biased estimates of model skill, as the mean of the predictive distribution
commonly deviates from the most probable loss. This could also explain why
the deterministic SDF outperforms the probabilistic SDF when considering the
MAE. Yet, computing the MAE on basis of the mode is likewise biased in this
application since the predictive distributions are often bimodal (see Figure 2.4).
We reason that scoring rules that evaluate entire predictive distributions rather
than response means or modes, are more robust estimates of true model skill; at
least for response distributions other than the normal.
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Figure 2.3: Performance metrics mean average error (MAE), mean continuous ranked probability
score (CRPS), and mean bias error (MBE) for the five models (color-coded) and assets (x-axis). Each
boxplot summarizes 100 repetitions of a 10-fold cross-validation with varying data partitioning.

Model performance for individual companies

Figure 2.4 compares the predictive distributions for building loss of the candidate
and benchmark models for nine randomly selected companies. The predictive
distributions are color-coded according to the models, and the actually observed
relative loss is indicated by a vertical, black line. The yellow line shows the
predicted loss of the deterministic stage-damage function (SDF-D). The predictive
distributions of BN, BR, and RF are flexible and vary considerably from company
to company. Conversely, the SDF-P distributions fluctuate less and their medians
rarely exceed 0.10. The deterministic predictions of SDF-D vary the least across
individual companies, as the model lacks a component that explicitly accounts
for extreme losses at zero and one. In contrast to SDF-P, which predicts constant
shares of zero and ones, the multivariable models inflate and deflate the modes
of their predictive densities at zero and one dynamically, reflecting the actual
observations of relative loss (see e.g., IDs: 165 and 136 in Figure 2.4). The invariant
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shape of the SDF-P predictive densities leads to overall higher errors of their
predictions (Figure 2.3). In general, the prediction accuracy and sharpness is
larger for companies with low loss magnitudes as compared to companies with
more severe losses.

Figure 2.5 confirms that the differences in the example predictive distribu-
tions between the multivariable models and the SDF-P also apply to the entire
dataset. Every point represents the CRPS error of the predictive distribution
for one company, while the step-wise, black line indicates the mean CRPS in
the corresponding interval of observed relative loss. The scatter plots show that
the CRPS of the probabilistic predictions changes over different magnitudes of
observed relative loss. The variation in the CRPS is stronger for the multivariable
models than for the SDF-P, for which errors disperse less around the interval
mean.

The steady predictive distributions of the SDF-P, and hence its errors, do not
change significantly across observations. While this generalizing behavior of the
SDF-P is favorable in principle, its mean CRPS values exceed the ones of the
multivariable models. In addition, prediction errors tend to increase with larger
values of relative loss. We encounter this trend for all models and assets and it is
more pronounced for building loss than for losses to equipment, and goods and
stock. The striking difference in the scatter point clouds between buildings on the
one side and equipment, and goods and stock on the other side, traces back to
stronger bimodality for the observed losses to equipment, and goods and stock
(see rloss distributions in Figure 2.1).

2.3.3 Model comparison

Multivariable models and stage-damage functions

The cross-validated performance metrics in Figure 2.3 show that BN, BR, and RF
are superior to the deterministic and probabilistic SDFs with respect to predictive
capacity for all three study assets. In general, the prediction accuracy is higher for
buildings than for equipment and goods and stock. We identify two reasons for the
difference in prediction skill. First, Figure 2.6 shows that the relationship between
water depth and relative loss is volatile for all assets and only insufficiently
discriminates between severe and minor relative loss. BN, BR, and RF have access
to information contained in predictors other than water depth, which fosters a
more accurate determination of the loss magnitude. SDFs base their predictions
solely on water depth and, thus, fail to explain irregular loss cases, for instance,
when low water depth causes high relative loss. Secondly, the multivariable
models exhibit higher structural complexity than the SDFs, which allows for
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Figure 2.4: Examples of predictive densities from the four probabilistic models (color-coded) for the
building loss of nine randomly selected companies (identified by ID). Black and yellow lines display
the observed loss and the predicted loss of the deterministic stage-damage function, respectively. The
panels are sorted according to the observed loss which is indicated by the black, vertical lines. Colored
lines beneath the distributions indicate the quartiles of the respective predictive density. The scaling of
the four y-axes within each panel is consistent, ensuring the comparability of the predictive densities.
The displayed densities originate from a cross-validation run.
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closer fits to the training data. For instance, SDF-P and BR both model relative
loss with an inflated beta distribution. However, while SDF-P assumes constant
inflation and precision parameters, BR predicts these parameters for each company
individually. The increased number of parameters leads to higher flexibility in
the predictive densities for the BR model. The capability to de- and inflate the
modes at zero and one (see Figure 2.4) enables the complex models to capture
both extremes of relative loss at the same time, while the SDFs have to find a
balance between covering no and total loss cases. The boxplots in Figure 2.3 show
that the larger shares of zero and ones in the data for equipment and goods and
stock lead to larger performance difference between the models with complex
(BN, BR, RF) and simple structure (SDFs).

However, the flexibility in the predictive distributions of the multivariable
models propagates to the CRPS, resulting in considerable variance in the errors
for individual companies (Figure 2.5). This observation reflects the bias-variance
tradeoff, a typical phenomenon in predictive statistical modeling (see e.g., James
et al. 2013). It describes that complex, multivariable models, such as BN, BR, and
RF, incur lower bias than models with fewer parameters, such as the SDFs, at the
cost of larger variance in their predictions and errors. While overly flexible models
are at risk of undesirably capturing random noise in the data (i.e., overfitting),
inflexible models might be unable to reproduce essential features of the data
generating process (i.e., underfitting). The required degree of model complexity
depends on the data and the question under consideration. We assume that the
heterogeneity of companies and damage processes demands for a fair amount of
model complexity. Given the results of the validation experiment, we conclude that
it is the combination of multivariable and probabilistic modeling, which causes the
candidate models to outperform the benchmark models, albeit the large variation
in CRPS error. Schröter et al. (2014), who developed and validated multivariable
probabilistic models for the residential sector, also observed that complex models
perform better than simpler modeling approaches. The ability of the proposed
models to account for variable interactions and to capture complicated data-
generating processes (i.e., zero-one-inflation) might even be more useful for
modeling company loss data, where heterogeneity across company types leads to
particularly noisy relationships between predictors and loss.

Further, the notable difference in the values of the mean CRPS and the MAE
within the same models in Figure 2.3 shows that the predictions of the proba-
bilistic models are more informative than the loss forecasts of the deterministic
stage-damage function. This gain in information can be employed for practical
applications in risk analysis or decision making, where estimates of prediction
reliability provide additional decision support.
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Figure 2.5: Scatter plots of observed relative loss versus cross-validated continuous ranked probability
scores (CRPS) for all combinations of assets (rows; symbol-coded) and probabilistic models (columns,
color-coded). Each symbol represents the prediction error incurred by the respective model for one
company. The black, step-wise lines show the average CRPS in different intervals of observed relative
loss. The labels in the top-left corner of each panel contain the mean CRPS over all predictions
(=symbols) of the respective asset-model combination.
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Intercomparison of multivariable models

The intercomparison of the different multivariable models does not reveal clear
performance differences. BN and RF outperform BR slightly. Yet, the magnitude
of the performance differences is small. The high agreement on the aggregated
and company-level performance metrics of BN, BR, and RF implies that the
predictive capacity of the multivariable approaches is rather constrained by the
information content in the training data than by model specific characteristics.
It remains an open question, whether limited knowledge about flood damage
processes hinders the composition of more meaningful predictor sets, or whether
the inherent variation in the flood damage processes restricts the forecasting
capacity of existing models at a certain threshold. Either way, the model choice
should be guided by the study task and data availability. BNs allow for intuitive
inference on the flood damage processes through the graphical dependency
structure and have advantages in the treatment of missing data. The strength of
BR lies in the flexibility of the Bayesian framework, where multilevel modeling
and the definition of strong priors facilitate predictions even with few loss data.
RF provides accurate predictions with relatively small implementation effort and
is tolerant with respect to differently scaled model variables. However, modelers
have less influence on the internal model structure, and the interpretation of the
RF functionality is difficult.

BN, BR, and RF outperform other multivariable company loss models which
have been validated on subsets of the same survey data. For instance, Seifert
et al. (2010) reported MAE values of 0.23 (BUI), 0.30 (EQU), and 0.30 (GNS) for
their FLEMOcs+ model. The random forest model of Sieg et al. (2017) achieved
MAE values of 0.18 (BUI), 0.31 (EQU), and 0.37 (GNS). We assume that the
performance advantages of the presented models are a joint result of different
model configurations, changes in the predictor variables, and a larger data basis
in this study.

Although the multivariable probabilistic models improve the accuracy and
sharpness of the loss estimations over the entire dataset, they incur considerable
CRPS errors for severe losses. This is problematic, since large relative loss cases
can have a strong effect on the total estimates of post-event loss in a flooded
area. The poor performance for severe losses arises from the imbalance between
frequent but small, and infrequent but major damages, which is common in
natural disaster loss datasets (Pisarenko and Rodkin 2010). The number of
high losses provides too few training samples for the algorithms to reliably
identify whether a company experiences severe flood loss or not. The problem
of undersampled extremes might eventually resolve when observational periods
become long enough to contain a sufficient number of severe losses. Yet, in the



40 PROBABILISTIC FLOOD LOSS MODELS

BUI EQU GNS

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.00

0.25

0.50

0.75

1.00

Water Depth [cm]

R
el

at
iv

e 
Lo

ss
 [−

]

Figure 2.6: Scatter plots of water depth versus relative loss. Each plot panel is color coded according
to the three study assets building (BUI), equipment (EQU), and goods and stock (GNS).

analysis of natural hazards the required time horizons quickly exceed decades
(Zöller 2013). Here, the enrichment of loss datasets with severe loss cases from
other regions, as practiced in the modeling of extreme earthquakes (i.e., method
of analogs; see e.g., Holschneider et al. 2011; Wheeler 2009), could represent
an alternative. Additionally, if available in the data, further refinements of the
predictor set could improve the predictive power of the models; for example, by
including variables that describe the structural characteristic of buildings more
accurately (see e.g., Hasanzadeh Nafari et al. 2016a; Scawthorn et al. 2006). In
general, the predictive distributions of the multivariable models are relatively
wide, especially for companies which experienced large relative loss and for the
assets equipment, and goods and stock. Hence, further analysis of the distinct
uncertainty sources and the potential to reduce their contribution to the overall
variance in the loss estimates could improve the reliability of the proposed models.



Conclusions 41

2.4 Conclusions

This study presents three multivariable flood loss models for companies which
return probabilistic loss predictions. Referring to the objectives of this study:

1. Bayesian networks, Bayesian regression and random forest outperform the
deterministic and probabilistic stage-damage functions due to additional
information contained in predictors other than water depth and larger
flexibility in their predictive densities.

2. The predictive capabilities across the multivariable models are very similar
and constrained by the explanatory power of the predictor set rather than
by model choice.

Although the cross-validated performance metrics for the multivariable models
confirm higher predictive skill in comparison to existing company flood loss mod-
els, our analysis identified substantial uncertainty in the predictive distributions
and deteriorating predictive power for large losses.

Since we have to accept the inherent complexity of flood damage processes and
poor coverage of severe losses in the data, we advocate the proper treatment of the
resulting uncertainties. Probabilistic modeling explicitly quantifies the associated
uncertainties and, hence, provides more honest loss estimates than deterministic
approaches. Moreover, the additional uncertainty information could directly
contribute to flood risk management practice. For instance, by providing the
probabilistic foundation for an informed decision making, where the attractiveness
of a certain flood protection measure not only depends on the expected reduction
in damage but also on the confidence in the predicted damage reduction; or by
facilitating the seamless propagation of predictive uncertainty across different
exposure aggregation levels. Therefore, in our opinion, probabilistic models
should become the standard approach in flood loss estimation. Further, this
study underlines that the demand for probabilistic loss estimation is particularly
strong for companies, given the large variation of loss influencing variables across
individual companies and their exposed assets. In conclusion, the combination of
multivariable and probabilistic modeling advances the representation of company
vulnerability in flood risk assessment through improved loss estimations and
transparent communication of their reliability.
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3.1 Introduction

Flood risk is determined by hazard, exposure, and vulnerability, which change
and interact over time, resulting in nonlinear risk dynamics such as the adaptation
effect (Merz et al. 2010a; Di Baldassarre et al. 2015; Merz et al. 2015). The adap-
tation effect describes how societies decrease their vulnerability after repeatedly
being affected by damaging flood events, eventually diminishing overall losses
(Di Baldassarre et al. 2015; Kreibich et al. 2017a). Traditional scenario-based
approaches in flood risk assessment can fall short of capturing such risk dynamics
as they do not account for feedbacks between the hydrological and socioeconomic
domain (Di Baldassarre et al. 2013; Barendrecht et al. 2017; Srinivasan et al. 2017).
The negligence of interactions can produce biased estimates of future flood risk
and, hence, affect risk management negatively. The interplay between society and
floods has been studied with different approaches such as hydro-social theory
(Marks 2019; Devkota et al. 2020; Haeffner and Hellman 2020), socio-ecological
systems (Ishtiaque et al. 2017), coupled human and natural systems (O’Connell
and O’Donnell 2014; Abebe et al. 2019), and socio-hydrology. Socio-hydrology
(Sivapalan et al. 2012; Sivapalan et al. 2014) focuses on quantitative methods and
employs a rich collection of modeling techniques (Blair and Buytaert 2016; Ross
and Chang 2020). The objective of socio-hydrological flood risk assessment is
a more realistic exploration of the possible pathways that a human-flood sys-
tem might traverse in the future (Di Baldassarre et al. 2015; Merz et al. 2015;
Barendrecht et al. 2017).

Stylized, conceptual models are a prevalent type of socio-hydrological models
and describe the interactions between selected state variables through a set of
coupled differential equations, each representing a system process (Blair and
Buytaert 2016). They are commonly lumped and explain the macroscale behavior
of the human-flood system, which promotes the model interpretability. Socio-
hydrological models focus on the understanding of the system, and they are better
suited for the strategic guidance of long-term decision making than for specific
management problems (Sivapalan and Blöschl 2015; Barendrecht et al. 2017).

Di Baldassarre et al. (2013) and Di Baldassarre et al. (2015) introduced a con-
ceptual model that explains how societies and rivers co-evolve within floodplains
and is capable of capturing flood risk dynamics such as the adaptation effect.
The model has been reproduced and refined widely in subsequent works that
explore risk coping cultures (Viglione et al. 2014), flood memory (Ridolfi et al.
2021; Song et al. 2021), flood control and management (Di Baldassarre et al. 2017),
risk perception (Ridolfi et al. 2020), resilience (Ciullo et al. 2017; Yu et al. 2017),
or the relationship between flooding and economic growth (Grames et al. 2016).
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In an effort to develop a fully quantitative parameter estimation procedure for
socio-hydrological models, Barendrecht et al. (2019) used empirical data from
private households to study the human-flood system in Dresden, Germany. The
study of Barendrecht et al. (2019) is a first step towards more rigorous socio-
hydrological models that explore specific case studies and could provide useful
results for practical decision support. As a consequent next step, the informed
inclusion of process-oriented modeling approaches has the potential to improve
socio-hydrological flood risk assessment.

First, the mathematical representation of the flood loss processes in socio-
hydrological models is oversimplified. For example, the model by Di Baldassarre
et al. (2013) and its successor models derive monetary flood loss directly from the
maximum flood discharge by parameterizing the topographic characteristics of
the floodplain. However, from a loss modeling perspective, estimating flood loss
from inundation depth would capture the physical loss processes with more detail,
and empirical analyses confirmed the strong explanatory power of inundation
depth as a predictor variable (Merz et al. 2010b; Hasanzadeh Nafari et al. 2016b;
Wagenaar et al. 2017; Vogel et al. 2018). In addition, other characteristics of flood
loss data such as bimodality (i.e., disproportionally high shares of zero and total
building loss) adds to the complexity (Wing et al. 2020). Barendrecht et al. (2019)
used a prevalent probabilistic beta model for loss estimation, which resulted in the
overestimation of minor and the underestimation of major loss events. Dedicated
probabilistic models that account for the frequent overdispersion in loss data could
improve the accuracy of the estimates and reduce associated uncertainties (Rözer
et al. 2019). Ignoring these advances in loss modeling biases the loss estimates
and consequently the socio-hydrological model as a whole.

Secondly, the heterogeneity within society is a crucial but often neglected
process detail in socio-hydrological models. The majority of conceptual models
treat societies in the floodplain as homogenous entities (Viglione et al. 2014; Ciullo
et al. 2017; Ridolfi et al. 2020). Yet individual societal groups (i.e., households,
companies, institutions, government) follow their own motives, which influence
the relevant damage processes or their decisions regarding flood protection (Haer
et al. 2017; Haer et al. 2019; Bubeck et al. 2018). Song et al. (2021) investigated
collective flood memory with a model that distinguishes between urban and rural
societies in China and found differences in the accumulation of flood memory
between the two groups. The variables that determine flood vulnerability also
differ between private households and companies (Merz et al. 2010b) and even
across economic sectors (Kreibich et al. 2007; Sieg et al. 2017). Therefore, flood loss
models are either developed for specific sectors (e.g., residential, manufacturing,
services) or they include the sector as a predictor in the model (Kreibich et al.
2010; Sieg et al. 2017; Paprotny et al. 2020; Schoppa et al. 2020). To date, methods



46 SOCIO-HYDROLOGICAL FLOOD RISK MODEL

for a sector-specific loss estimation in socio-hydrological modeling are lacking.

Thirdly, previous efforts in model development concentrated on private house-
holds (Haer et al. 2017; Haer et al. 2020; Barendrecht et al. 2019). Companies
have not been addressed extensively in the socio-hydrological literature before,
even though they usually account for large shares of total flood losses (Paprotny
et al. 2020). Earlier works shed light on specific aspects of company flood risk;
for instance, on flood impacts, adaptive behavior, or recovery (Wedawatta and
Ingirige 2012; Wedawatta et al. 2014; Li and Coates 2016; Jehmlich et al. 2020).
(Coates et al. 2014; Coates et al. 2019) coupled an agent-based model to a hydro-
dynamic model to examine the behavior of individual companies in the aftermath
of a flood event. Nevertheless, there are no studies that explore the long-term
dynamics of company flood risk, including feedbacks between the determinants
of risk. In summary, the explicit consideration of new sectors and inter-sectorial
differences could not only improve loss estimation in socio-hydrological models
but also uncover variations in the decisions and behavior within societies.

In this study, we aim to improve the currently available socio-hydrological flood
risk models by addressing these shortcomings (i.e., oversimplified loss estimation,
lack of heterogeneity, scarcity of models for companies). We integrate a process-
oriented, sector-specific regression for loss estimation into a socio-hydrological
model. Additionally, we study the risk dynamics of companies by transferring the
socio-hydrological flood risk model for the residential sector by Barendrecht et al.
(2019) to companies in the city of Dresden, Germany, where recurring flood events
induced the society to reduce its vulnerability (i.e., adaptation effect) (Kreibich
et al. 2005; Thieken et al. 2007; Kreibich and Thieken 2009; Jehmlich et al. 2020).
The research questions of this study are:

1. What is the added value of augmenting the socio-hydrological model with
a process-oriented loss estimation and differentiating between economic
sectors?

2. Can the socio-hydrological flood risk model for companies reproduce the
observed adaptation effect, and do companies behave differently in respect
of flood risk than private households?

In a modeling experiment, we assess the benefits of the process-oriented loss
estimation and the sector differentiation. Figure 3.1(a) displays the study area, the
city of Dresden, Germany, which is located on the banks of the Elbe River.
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3.2 Methods and data

On the basis of the model by Barendrecht et al. (2019) for the residential sector,
we developed a socio-hydrological flood risk model for small and medium-sized
companies from the manufacturing and service sector. Subsequently, we aug-
mented the new company model by a process-oriented loss estimation and a
sector differentiation. In the following, we introduce four model versions with
increasing complexity, which we used in the modeling experiment. Afterwards,
we present the socio-hydrological model and the two augmentations in detail.

3.2.1 Model versions

For the systematic examination of the added value of the process-oriented loss
estimation and the sector differentiation, we configured four model versions,
incrementally adding one augmentation option or both to the company model.
We refer to the four model versions as follows

• Parsimonious model (“pars”): the adaptation of the socio-hydrological model
by Barendrecht et al. (2019) for companies, which acts as the benchmark. It
pools economic sectors and uses a simplistic loss estimation (Equations 3.1
and 3.2).

• Intermediate model with sector differentiation (“int_sd”): distinguishes between
economic sectors but uses the simplistic loss estimation.

• Intermediate model with process-oriented loss estimation (“int_lm”): includes the
process-oriented loss estimation but does not differentiate between economic
sectors.

• Fully augmented model (“aug”): the most complex model as it differentiates
between economic sectors and features the process-oriented loss estimation.

The four model versions enable the isolated and joint assessment of the effect
of the two augmentation options (process-oriented loss estimation and sector
differentiation) on the socio-hydrological simulation. Figure 1(b) presents the
four candidate models in the form of causal loop diagrams including all model
variables, their interrelation, and feedbacks. Additionally, the diagrams highlight
which system processes are affected by the respective augmentation option. First,
we evaluated the fit of the candidate models to the observed socio-hydrological
data - in particular, the accuracy and uncertainty of the loss estimates. Second,
we conducted a leave-one-out cross-validation experiment to test the predictive
capacity of the models for flood loss events out of the training sample. We quantify
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the predictive capacity of the models with the continuous ranked probability score
(Matheson and Winkler 1976; Gneiting and Katzfuss 2014; Krüger et al. 2016;
Jordan et al. 2019), a proper scoring rule that indicates the distance between a
probabilistic forecast and an observation (see Supplementary material, Text B.8).

3.2.2 Socio-hydrological flood risk model for companies

The socio-hydrological model considers the three determinants that affect the
flood risk - hazard, vulnerability, and exposure (Kron 2005) - and focuses on the
adaptive behavior of the companies. We explain the socio-hydrological system
using the example of the parsimonious model (pars) in Figure 3.1(b).

The flood hazard is represented by an annual maxima series of the discharge
W of the Elbe at the Dresden gauge. The public structural flood protection in
Dresden, such as levees, is encoded as a protection level and expressed in the
form of a design discharge H. Since the implementation of public structural flood
protection lies within the authority of the federal state and its institutions, we
consider the protection level exogenous to the socio-hydrological system. Flooding
occurs in the model once the annual maximum discharge W exceeds the current
protection level H. We assume that flooding impacts the company buildings in
the floodplain, which is quantified by the monetary flood loss L.

After a damaging event, the flood risk awareness A of the companies in-
creases. An increase in the awareness leads to higher flood preparedness P. In
this context, the term "preparedness" comprises the implementation of private
precautionary measures by the companies themselves, such as the flood proofing
of buildings. The awareness and preparedness describe the current vulnerability
of the companies and rise instantaneously after a flood event. The degree of the
increase depends on the total flood loss suffered by companies in Dresden (for
awareness) and the resulting increment in the awareness (for preparedness). At
times where the flood protection withstands the annual maximum discharge, the
awareness and preparedness decay since companies forget about the flood risk
and precautionary measures deteriorate.

The exposure dynamics in the floodplain are captured by the economic density
D, which is the share of the floodplain area that is covered by company premises.
On the one hand, the economic density is driven by the economic growth rate U,
which is also an exogenous forcing variable. When the economic growth rate is
positive, more companies settle in the floodplain. On the other hand, high flood
risk awareness motivates companies to move out of the floodplain and settle in
safer places. The causal loop of the socio-hydrological system is closed since the
economic density and the preparedness feed back into the total loss caused by an
event. The area share of companies in the floodplain determines whether and how
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Figure 3.1: (a) The 500-year floodplain of Dresden in Saxony, Germany, with manufacturing and
service company premises (as in 2009). (b) Causal loop diagrams of the four socio-hydrological
candidate models (model abbreviation in the top right of each box). System variables are represented
by words and letters, while internal (solid) and exogenous (dashed) processes are indicated by arcs.
Variables and processes that are augmented by the process-oriented loss estimation (blue) and the
sector differentiation (orange) are highlighted in colour. The dotted orange arc between D and L in
the “aug” model does not have a sign as it visualizes the weighting of sector-specific losses according
to occupied floodplain area (see section 3.2.3).
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many companies are exposed to flooding and can actually incur damages. The
level of preparedness influences the susceptibility of the companies to flood loss
and, hence, the loss magnitude. Consequently, the flood loss and, thus, the flood
risk is the product of the economic density (i.e., exposure) and the relative loss
R, which depends on the flood discharge W (i.e., hazard) and the preparedness
P (i.e., vulnerability). In this context, the relative loss R is the flood loss per unit
area (i.e., e/m2).

The socio-hydrological processes are described mathematically by three differ-
ential equations, which we split up into five equations for readability:

L = RD [e/e] (3.1)

R =

{
Rmax − βR exp

(
−αR (Pmax − P) W

Wmax

)
, W > H

0, W ≤ H
[e/m2

e/m2 ] (3.2)

dA
dt

= αPL
(

1 − A
Amax

)
− µA A [nc/nc] (3.3)

dP
dt

=

{
αP

dA
dt

(
1 − P

Pmax

)
− µPP, R > 0

−µPP, R = 0
[nm/nm] (3.4)

dD
dt

= U (1 − αD A) D
(

1 − D
Dmax

)
[m2/m2] (3.5)

Model variables (capital letters) vary over time t, which we omit in the notation
for brevity. The equations contain a set of model parameters (Greek symbols) that
control the strength of the variable interactions and their decay rate. The model
is spatially lumped so that the parameters and variables describe the average
characteristics and state of the companies in Dresden. These characteristics control
the companies’ behavior and, in turn, the entire dynamic of the coupled human-
flood system.

Table 3.1 provides an overview of all model variables and parameters includ-
ing descriptions. We chose a non-dimensional model formulation by scaling all
socio-hydrological variables (i.e., W, A, P, D, R) from 0 to 1, which reduces the
number of free parameters (Viglione et al. 2014). As a result, the variables Wmax,
Amax, Pmax, Dmax, and Rmax take a value of 1. Since the awareness, preparedness,
and economic density evolve over time according to the three differential equa-
tions, they require the definition of initial values A0, P0, and D0. We simulated
the evolution of the socio-hydrological system with a time step dt of one year,
which is a reasonable time scale for the property-level adaptation through pri-
vate precautionary measures of households or companies (Kreibich et al. 2007;
Kienzler et al. 2015; Bubeck et al. 2020). For a more elaborate explanation of the
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Table 3.1: Variables and parameters of the socio-hydrological model. The units nc and
nm refer to the number of companies in the floodplain and the number of implemented
precautionary measures, respectively.

External
variable

Internal
variable

Parameter Description Unit

W Annual maximum
discharge

[(m3/s)/(m3/s)]

V(*) Return period of
annual maximum
discharge

[a/a]

H Protection level [(m3/s)/(m3/s)]
U Economic growth rate [1/a]

A Awareness [nc/nc]
P Preparedness [nm/nm]
D Economic density [m2/m2]
R(†) Relative loss [(e/m2)/(e/m2)]
L Loss [e/e]
I(*) Inundation depth [cm]
F(*) Flooded area [m2/m2]

Wmax Maximum flood
discharge

[(m3/s)/(m3/s)]

Amax Maximum awareness [nc/nc]
αA Anxiousness [1/(e/e)]
µA Forgetfulness [1/a]
Pmax Maximum

preparedness
[nm/nm]

αP Activeness [(nm/nm)/(nc/nc)]
µP Deterioration rate of

precautionary
measures

[1/a]

Dmax Maximum economic
density

[m2/m2]

αD Risk-taking attitude [1/(nc/nc)]
Rmax Maximum relative loss [(e/m2)/(e/m2)]
αR Effectiveness of

preparedness
[1/(nm/nm)]

βR Discharge to loss
relationship

[(e/m2)/(e/m2)]

(*) only in models with process-oriented loss estimation; (†) only in models
with simplistic loss estimation
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parameter interpretations and the motivation for the individual equations, refer
to Barendrecht et al. (2019).

3.2.3 Model augmentation

Process-oriented loss estimation

The simplistic loss estimation in the parsimonious model infers the flood loss
to buildings directly from the river discharge although monetary flood loss is
commonly estimated from the inundation depth at the building, e.g., through
depth-damage functions (Merz et al. 2010b; Gerl et al. 2016). Further, the simplistic
loss estimation only considers the absolute flood discharge in the loss computa-
tion, although the magnitude by which the protection level is exceeded might
also influence the loss severity (i.e., the difference between W and H). Apart from
structural flood protection, the inundation is controlled by the topographic condi-
tions and the location of the companies in the floodplain. In the parsimonious
model, this inundation process is not modelled explicitly but rather captured
by one parameter, the discharge to loss relationship βR. Here, we substituted
this simplistic loss estimation with dedicated regression models that describe
the inundation and loss processes in the floodplain with more detail. As in the
conceptual socio-hydrological model, these regression models are lumped and
describe the average inundation and loss of companies in the floodplain. As
indicated by the blue arcs in Figure 3.1(b), we fully integrated these regression
models into the overarching conceptual socio-hydrological model as sub-models.

For each event, the inundation regression predicts the share of the total com-
mercial area F that is flooded and the mean inundation depth I in these areas.
The sub-model uses the event return period V and the economic density D in
the floodplain at the time of the flood as predictors. This assumes that the eco-
nomic density in the floodplain influences where new companies can settle. For
instance, companies might have to move closer to the river as safer locations in the
floodplain are already occupied. Previous socio-hydrological studies modelled
this aspect similarly by simulating the distance of settlements to the river (Di
Baldassarre et al. 2013; Viglione et al. 2014; Ridolfi et al. 2021). The inundation and
loss regression, which we present in the following Equations 3.6-3.9, substitute
for Equations (3.1) and (3.2) from the parsimonious socio-hydrological model.
Since the return period, which is derived from the annual maxima series of flood
discharge, and the economic density determine the flood loss via the inundation,
the feedback loop of the socio-hydrological system is maintained (see Figure
3.1(b)).

Given that the observed share of flooded area in the floodplain Fobs can only
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take values between 0 and 1, we modelled it with a beta distribution (Ferrari and
Cribari-Neto 2004). The observed inundation depth Iobs is constrained to positive
values, which is why we modelled it with a gamma distribution (see e.g., Sieg
et al. 2019b). The two linear regression terms of the inundation model read as
follows:

Fobs ∼ Beta (F, ϕF)

logit(F) = αF + βF,DD + βF,VV,
(3.6)

Iobs ∼ Gamma (I, ϕI)

log(I) = αI + β I,DD + β I,VV,
(3.7)

with intercepts α, predictor coefficients β, gamma shape parameter ϕF, and beta
precision parameter ϕI . The variables F and I are the location parameters of the
beta and gamma distribution respectively. The logarithm and the logit function
act as link functions that guarantee plausible parameter values (e.g., I can only
take positive values). Subsequently, F and I are used in the loss regression.

The loss regression is based on the Bayesian regression model by Schoppa
et al. (2020). Here, we adopted a reduced version of this model considering only
the two predictors that exhibited the highest explanatory power with respect to
flood loss: inundation depth and preparedness (termed "precaution" in Schoppa
et al. (2020)). With the predicted mean inundation depth I from the inundation
regression and the preparedness P of the companies from the differential Equation
(3.4), the socio-hydrological model provides two corresponding variables that can
be used as predictors in the loss regression. Flood loss is commonly expressed
relative to the replacement value of the building (Merz et al. 2010b) and, thus,
ranges from 0 to 1. Therefore, the loss sub-model assumes that the observed
building loss to companies in the floodplain Lobs follows a zero-and-one-inflated
beta distribution (BEINF) (Ospina and Ferrari 2010), which is supported on the
entire interval [0, 1]. This distribution mixes a beta distribution with a Bernoulli
distribution and has four distribution parameters, three of which we predicted
with linear predictor terms as follows:

Lobs ∼ BEINF (µL, ϕL, λ, γ)

logit (µL) = αµL + βµL,I I + βµL,PP

logit(λ) = αλ + βλ,I I + βλ,PP
logit(γ) = αγ + βγ,I I + βγ,PP,

(3.8)

where µL is the location parameter of the beta distribution, λ is the zero-and-one-
inflation probability (i.e., the probability that the loss is 0 or 1), γ is the conditional
one-inflation probability (i.e., the probability that the loss is 1 rather than 0),
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and ϕL is the precision of the beta distribution, which was not predicted. The
regression intercepts and predictor coefficients are denoted by α and β. In contrast
to the loss estimation in the parsimonious model, this approach differentiates
between areas in the floodplain that are flooded and those that are not. The loss of
the companies in the floodplain is the product of the share of flooded commercial
area F, which we obtain from the inundation regression, and the mean of the
zero-and-one-inflated beta distribution, which is the weighted mean of the beta
and Bernoulli components of the mixture distribution (term in parentheses):

L = F (λγ + (1 − λµL)). [e/e] (3.9)

As the predicted flood loss L is expressed in relative terms, the object-level loss
model can be used to approximate the aggregated flood loss to all companies
in the floodplain. That is, the loss prediction is the absolute building loss of
the inundated companies divided by the sum of all company building values in
the floodplain. Consequently, the lumped socio-hydrological model treats the
companies in the floodplain as one collective, average entity.

Sector differentiation

The second model augmentation accounts for the heterogeneity among the com-
panies. In this way, we consider differences in the vulnerability (e.g., damage
processes) and exposure (e.g., economic growth) between economic sectors. We
applied a coarse sector split between companies in the industrial and manu-
facturing sector and the service sector, in accordance with the “NACE Rev. 2”
statistical classification of economic activities of the European Union (Eurostat
2008). For instance, the manufacturing sector comprises handicraft, construction,
and fabrication companies (NACE codes: B-F), while the service sector includes
enterprises from commerce, finance, education, or accommodation (NACE codes:
G-U). This split was primarily motivated by the thematic resolution of the avail-
able data, which did not allow for a more detailed sector differentiation. Moreover,
previous findings on sectorial differences in the damage processes of building
values suggest that this is a reasonable separation (Sieg et al. 2017; Schoppa et al.
2020).

We adapted the previously presented sub-models (socio-hydrological, inun-
dation, and loss) so that they capture the differences between the two sectors.
As highlighted with orange color in Figure 3.1(b), the models that include sector
differentiation produce sector-specific estimations of the inundation I/F and flood
loss L and allow the economic density D in the floodplain to develop separately
for manufacturing and service companies. In the sector-differentiating models
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(int_sd, aug), the overall flood loss L is the weighted sum of the sector specific loss
estimates, where the weights correspond to the contribution of each sector to the
total commercial area (represented by the dotted orange arc in the “aug” model
in Figure 3.1(b)). Introducing the sector differentiation required adjustments to
the model structure. Firstly, the models are sector-specific for the parameters
risk-taking attitude, effectiveness of preparedness, and initial economic density
(αD, αR, and D0). For example, the risk-taking attitude became a parameter vector
αD instead of a scalar, with one entry for each sector (i.e., manufacturing and
service). Secondly, we added the economic sector as a discrete predictor variable
in the inundation and loss regressions (in Equations 3.6-3.8), similar to Schoppa
et al. (2020). Finally, we reparametrized the probabilistic model to account for the
presence of multiple sectors.

Limited detail in the historical data for awareness, preparedness, and loss hin-
dered the creation of a full sector-specific model configuration across all variables.
We had to lump the parameters that control the awareness and preparedness so
that the simulations were constrained to the same value for these variables. Simi-
larly, the loss regression could not be calibrated with sector-specific loss reports
since disaggregated estimates were only available for the 2002 flood. However, the
economic density and loss estimation allowed for disparity between the sectors,
which could propagate through the coupled socio-hydrological system and reveal
distinct risk dynamics. The model equations for the sector differentiating models
can be obtained from the Supplementary material (Text B.6).

3.2.4 Bayesian parameter estimation using empirical data

We estimated the parameters of the four socio-hydrological model versions from
empirical data by means of Bayesian inference (Gelman et al. 2013; McElreath
2018; Schoot et al. 2021). The data that inform the models are composed of
hydrological time series, inundation maps, telephone surveys, historical land-use
maps, and economic data. Table 3.2 provides an overview of the model data. We
confined the socio-hydrological system spatially by the area that a flood with a
return period of 500 years would inundate (see Figure 1(a)). Accordingly, the data
describe the average of the model variables within this maximum floodplain area.
While data for the forcing variables (W, V, H, U) are available for the entire study
period, observations for the socio-hydrological system variables (A, P, D, L) are
only available in certain years. The model simulations estimate the state of these
variables in years without data coverage. The introduced model augmentations
enhance the amount of data that is available for parameter learning by time-
invariant observations. The process-oriented loss estimation is informed by
object-level loss data from telephone surveys (n=597) and inundation data (int_lm:
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Table 3.2: Data used for parameter estimation. The temporal coverage indicates for which years
of the simulation period the respective data are available.

Model variable Data Temporal
coverage

References

W/V - flood
discharge &
return period

Annual maxima
discharge series

1900-2017 German Federal Institute
of Hydrology (BfG) (2021)

H - protection
level

Reconstruction
from previous
studies,
historical and
authority
reports

1900-2019 Barendrecht et al. (2019),
Federal Dam Operation
Authority of Saxony
(2013), Kreibich and
Thieken (2009), Pohl
(2004), Weikinn (2000),
and Weikinn (2002)

U - economic
growth rate

Gross domestic
product growth
rate in Dresden

1900-2019 Paprotny et al. (2018a)

A - awareness Telephone
surveys

2002, 2003, 2007,
2014

GFZ (2021), Kreibich et al.
(2007), and Thieken et al.
(2016)

P - preparedness Telephone
surveys

2002, 2003, 2006,
2007, 2013, 2014

GFZ (2021), Kreibich et al.
(2007), and Thieken et al.
(2016)

D - economic
density

Historical land
use maps

1900, 1940, 1953,
1968, 1986, 1998,
2009

Gruner (2012) and Rosina
et al. (2020)

L - loss Data and report
on flood relief,
telephone
surveys, spatial
data on asset
values

2002, 2006, 2013 GFZ (2021), Kreibich et al.
(2007), Paprotny et al.
(2018a), Saxonian Relief
Bank (2007), and Thieken
et al. (2016)

I/F - inundation
depth & flooded
area

Inundation
maps, historical
land use maps

Assumed to be
time-invariant

Gruner (2012), Rosina
et al. (2020), and Saxonian
Environmental Agency
(2012)



Results and discussion 57

n=26; aug: n=56), while the sector differentiation doubles the economic density
data (i.e., one set of observations per sector) in comparison to the aggregated
approach. Bayesian parameter estimation inherently quantifies uncertainties in
the model, parameters, and observations. For the socio-hydrological system
variables, we assessed the observational uncertainty based on the dataset size or
domain knowledge. The Supplementary material (Texts B.3-B.5) provides further
information on data processing and uncertainty (Hosking 1990; Ferrari and Cribari-
Neto 2004; Maier 2014; Delignette-Muller and Dutang 2015; Sennhenn-Reulen
2018).

Bayesian inference allows for the incorporation of information from previous
experiments into the parameter estimation through priors. Here, we adopted the
posterior parameter estimates from the residential model from Barendrecht et al.
(2019) as priors for the socio-hydrological parameters in the new company models.
In doing so, we assumed that the adaptive behavior of companies in Dresden is
to some degree related to the actions of residential households. To ensure that
the adopted, informative priors do not bias the inference, we conducted prior
predictive checks (i.e., checking the plausibility of the prior through simulation)
and tested different priors. Details on the prior distributions, the prior checking,
and the computational implementation of the Bayesian models in the probabilistic
software Stan are contained in the Supplementary material (Texts B.2 and B.7, and
Tables B.1-B.3) (Hoffman and Gelman 2014; Bürkner 2017; Carpenter et al. 2017;
Gelman et al. 2020).

3.3 Results and discussion

3.3.1 Socio-hydrological simulation

Temporal dynamics of flood risk

Using the four candidate models and empirical data, we estimated the model
parameters and simulated the co-evolution of the socio-hydrological flood sys-
tem for companies in Dresden over the period 1900-2019. In the following, we
evaluate whether the models reproduce the observed adaptation effect in Dres-
den successfully. Figure 3.2 shows the fit of the four candidate models to the
socio-hydrological observations. The simulated means of the model variables
are shown with 95% credible intervals against the observations. The candidate
models with the sector differentiation predict the development of the economic
density separately for the manufacturing and service sectors.

The models agree on the evolution of the economic density in the floodplain,
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Figure 3.2: Fit of the candidate models to data. Each plot panel shows one candidate model: pars,
parsimonious; int_lm, intermediate with process-oriented loss estimation; int_sd, intermediate with
sector differentiation; aug, fully augmented.
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and the simulations are generally within the credible intervals of the observations.
In contrast, the candidate models show larger variation in the estimations of flood
loss and the predictions match the reported losses worse than they do for the
economic density. The models with the process-oriented loss estimation (int_lm,
aug) predict larger losses for the 2002 event and lower losses for the 2006 and
2013 events than the models with the simplistic loss estimation (pars, int_sd). We
discuss the performance of the individual models in the loss estimation in more
detail in section 3.3.2. As the awareness directly depends on the loss magnitude,
the awareness time series of the candidate models diverge after the severe 2002
flood. The models with the simplistic loss estimation reproduce the awareness
data better, but at the cost of overestimating the 2006 and 2013 flood losses.
Model differences in the preparedness time series are less pronounced since the
preparedness only indirectly depends on the flood loss via the awareness. Overall,
the preparedness simulations agree with the observations.

The adaptation of the companies after the severe 2002 flood is captured ac-
curately. The increase in awareness and preparedness was also reported in
comparable empirical analyses of the flood event (Kreibich et al. 2007; Jehmlich
et al. 2020). The models do not suggest that damaging flood events substantially
affect the settling or abandonment of the floodplain by the companies. Instead,
other motives such as economic growth seem to govern the development of
the economic density in the Elbe floodplain. Jehmlich et al. (2020) conducted
qualitative interviews with companies in Dresden and reported that emotional
attachment, tradition, and continued benefits of a location in the floodplain (e.g.,
proximity to customers) also induce companies to stay.

The uncertainty in the simulations of the economic density, awareness, and
preparedness is largest in 1900 and decreases towards the present. Overall, the
confidence is particularly low in the case of the awareness, compared to the
other variables. The uncertainties reflect the availability of historical data and
the information content in the prior for the respective variable. Specifically, a
comparably large number of observations is available for the economic density, and
the prior for the initial preparedness P0 is comparably strong (see Figure 3.3). In
contrast, the prior on the initial awareness A0 is relatively weak, and the awareness
data are most uncertain and smallest in number. In addition, awareness takes a
pivotal position in the socio-hydrological system with connections to three other
random variables (see Figure 3.1(b)). This allows for strong variable interaction
and leads to an accumulation of uncertainties in the awareness simulations.

In summary, all tested model structures are capable of reproducing the essential
dynamics of the coupled human-flood system, especially the adaptation effect.
Variations across model simulations mainly affect the loss and awareness estimates
and arise from the difference in the loss estimation.
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Insights on the adaptive behavior of companies

The parameter estimates of the candidate models describe the adaptive behavior
of companies in Dresden with respect to the flood risk. Figure 3.3 shows the
marginal prior and posterior distributions of the socio-hydrological parameters in
the four candidate models. Model parameters with subscripts (i.e., “man” and
“ser”) refer to sector-specific parameters that are included in the candidate models
with the differentiation.

The posteriors reveal whether companies behave differently than private house-
holds, as they can be compared to the model fit of Barendrecht et al. (2019) for the
residential sector in Dresden. Unless otherwise noted, we adopted the posteriors
of this residential model as priors for our company models so that differences
are directly visible in Figure 3.3. The estimated risk-taking attitude (αD) of the
companies is larger in the median than the adopted a priori parameter value. This
indicates that companies in Dresden are less risk-taking than private households
with respect to populating the floodplain. That is, commercially used areas grow
more slowly and disintegrate more rapidly than residential areas. The fits suggest
a slight difference between the economic sectors in the risk-taking attitude, but its
magnitude is small given the level of uncertainty. For the anxiousness (αA), we
assigned a prior that is smaller than the residential posterior because the estimate
for the private households proved to be implausibly high for the company model.
With median values around 4.7 (int_lm, aug) and 7.6 (pars, int_sd), the posterior
company anxiousness is lower than the reported anxiousness of private house-
holds (median: 11). The parameter directly depends on the magnitude of flood
loss and, hence, the estimates differ relatively strongly between the company mod-
els with and without the process-oriented loss estimation. The candidate models
agree on the activeness (αP) and suggest that, given the same level of awareness,
companies implement more precautionary measures than private households
because the posterior estimates exceed the prior. For the effectiveness of the
precautionary measures (αR), we chose a prior that allowed for larger parameter
values and was less informative than the posterior from the residential model. The
comparison of the posteriors points towards larger effectiveness of the prepared-
ness for companies (αR: 0.61, αR,man: 0.65, αR,ser: 0.53) than for private households
in the median (0.16). The forgetfulness (µA) and the decay rate of precautionary
measures (µP) are lower than for the private households, which can be interpreted
more intuitively when expressed as half times (i.e., the time until the awareness
and preparedness are halved). Depending on the candidate model, the median
half time of the awareness lies between 32 and 35 years, which is substantially
longer than the half time for private households (21 years). The median half time
of precautionary measures varies between 46 and 50 years across the company
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Figure 3.3: Marginal posterior distributions (log-scale) of the socio-hydrological parameters in the four
candidate models: pars, parsimonious; int_lm, intermediate with process-oriented loss estimation; int_sd,
intermediate with sector differentiation; aug, fully augmented. The marginal prior distributions are the
adopted posterior distributions from Barendrecht et al.’s (2019) model for the residential sector. The
points show the median, while the bars correspond to 50% and 95% credible intervals.
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models, which is only slightly larger than the value for the residential sector (43
years). The initial values of the economic density (D0) cannot be compared to
the settlement density of private households since the variables describe distinct
quantities. The variation in the simulated awareness time series also reflects in
the initial awareness (A0), which varies comparably strongly across the candidate
models. The initial preparedness (P0), however, is similar for the four company
models. The posteriors indicate that the company awareness and preparedness in
the year 1900 was similar to that of the private households, yet the initial values
of these two variables are relatively uncertain parameters.

In summary, the companies in Dresden are not as anxious as private house-
holds, but they are less risk-taking and less forgetful, and more actively undertake
precautionary measures. The posteriors of the sector differentiating parameters
imply minor differences in behavior between the manufacturing and the service
sector. However, these deviations are small in comparison to the associated uncer-
tainties and do not allow for robust statements. Overall, the parameter estimates
and the simulated time series (section 3.3.1) show that companies reduce their
vulnerability through private precautions, rather than reducing their exposure
through resettling. This is in line with the qualitative interviews of Jehmlich et al.
(2020), where a considerably larger share of companies decided to undertake
precautionary measures instead of dissolving or moving away.

Information content in priors and data

The contraction of the posterior relative to the prior densities in Figure 3.3 shows
that, for most parameters, the data convey additional information that reduces the
a priori parameter uncertainty. The sector specific effectiveness of preparedness
and the initial values of the awareness and preparedness (αR,man, αR,ser, A0, P0),
however, are informed less by the data and, in turn, depend more strongly on
their priors.

The plot also highlights the benefit of using informative priors, especially
for socio-hydrological models where datasets are usually small. The majority
of the posterior parameters in the company models and, thus, the simulated
variable time series exhibit considerably lower uncertainty than the posteriors of
the private model, which act as priors in the company models. Yet the number
of socio-hydrological data points for the inference were comparable in the two
studies. For the residential model, however, no informative a priori knowledge
from previous studies was available, resulting in larger a posteriori parameter
uncertainty. The prior predictive checking during model setup indicated that
the informative priors did not bias the inference (e.g., through underfitting or
underestimating uncertainty) but rather increased the numerical stability of the
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models.
Correlations between model parameters or model overparameterization can

inflate the associated uncertainties. For instance, the intermediate model with the
sector differentiation (int_sd) resolves differences in the effectiveness of prepared-
ness across sectors (αR,man, αR,ser) although no loss data for individual sectors is
available. As a result, the parameters can only be identified indirectly via the
sector-specific economic density data, leading to comparably large parameter
uncertainty. The fully augmented model (aug), which also differentiates between
sectors, does not suffer from this problem as the object-level survey data carry the
necessary information on the inter-sectorial differences of damage processes.

Consequently, the socio-hydrological system processes that are resolved in the
model require sources of information for parameter identification, either directly
or indirectly through connected system variables. Our results show that the use of
informative prior distributions, obtained from previous works, can complement
the information provided by data, ultimately reducing uncertainty. In general,
a deliberated prior choice in consideration of established practices such as prior
predictive checking (Gabry et al. 2019; Gelman et al. 2020) promotes meaningful
socio-hydrological inference.

3.3.2 Flood loss estimation

Predictive accuracy and uncertainty

This work aims at improving the loss estimation in socio-hydrological flood risk
models. Based on the accuracy and the uncertainty of the loss predictions, we
assess the skill of the simplistic and process-oriented loss estimation. Figure 3.4(a)
compares the estimated flood loss distributions of the four candidate models
and the observed loss. The predictive error of each probabilistic loss estimate is
quantified by the continuous ranked probability score (CRPS), where a perfect fit
is indicated by a value of 0. In each plot panel, the best CRPS value is underlined.
The loss estimates differ particularly between the models that feature the process-
oriented loss estimation (int_lm, aug) and those that rely on the simplistic loss
estimation (int_sd, pars). The process-oriented loss estimation predicts all three
loss events more accurately as indicated by consistently lower CRPS values, which
are up to twice (i.e., 2006) as high for the simplistic loss estimation. In general,
the predictions of the process-oriented loss estimation better capture the range
in observed loss magnitudes between the individual events - from the minor
2006 to the severe 2002 loss. Moreover, the loss distributions of the process-
oriented loss estimation are associated with considerably lower uncertainties than
the predictions of the simplistic loss estimation. The parsimonious model (pars)
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Figure 3.4: Comparison of modelled and reported flood losses. (a) Aggregated losses for the three
observed flood events; (b) sector-specific losses of the 2002 flood. The shaded areas under the curves
show 50% and 95% credible intervals. The continuous ranked probability score (crps) quantifies
the error of the loss predictions; the best fit is underlined. Model codes: obs, observation; pars,
parsimonious; int_lm, intermediate with process-oriented loss estimation; int_sd, intermediate with
sector differentiation; aug, fully augmented.

yields the widest predictive distributions across the three observed events whereas
the fully augmented model (aug) produces the narrowest predictive distributions,
with 95% credible intervals up to four times smaller.

The advantages of the process-oriented loss estimation arise from three aspects:
increased detail in the representation of the damage process, greater flexibility of
the probabilistic model, and additional data. First, the simplistic loss estimation is
based on the diffuse relationship between flood discharge and loss. In contrast,
the process-oriented model estimates the flooded area and the inundation depth,
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allowing for a predictor set with higher explanatory power. Secondly, the loss
model augmentation addresses the common overdispersion of loss data with the
dedicated inflation parameters of the zero-and-one-inflated beta distribution (λ
and γ in Equation 3.9). The 2006 event underlines the benefit of this inflation,
where the flood protection level was exceeded and caused a flood, but the resulting
loss was nearly zero due to the small margin between the discharge and the
protection level and the efficacy of the preparedness. The simplistic structure of
the standard loss estimation is not capable of reproducing such threshold effects.
Thirdly, the inundation and loss regression models are jointly informed by the
socio-hydrological loss observations and the survey loss data. Although this
complex loss model estimation comprises more parameters than the standard loss
estimation, it has access to a far larger data pool for parameter inference (n=656
vs. n=3).

Yet even the fully augmented model (aug) underestimates the variation in
the reported loss values. In the case of the 2002 flood, the underestimation can
be explained by the spatial domain of the model, which only covers the Elbe
floodplain. In this event, however, considerable parts of the city were inundated
by the Elbe tributaries Weißeritz and the Lockwitzbach, which also flow through
Dresden (Kreibich and Thieken 2009). As it is difficult to allocate the contribution
to the overall loss in Dresden to the different rivers, we adopted the reported 2002
loss for the entire city. Under these circumstances, we can conclude that the loss
estimates for 2002 are better than suggested by the figures, since the loss that is
caused by the river Elbe must have been lower than the overall loss. While the
confinement of the model domain to the main river is necessary to maintain a
manageable socio-hydrological system, this oversimplification can cause biased
loss estimates in the occurrence of compound events as in 2002.

The variation in the loss distributions due to the sector differentiation is
small compared to the variation between models with different loss estimation ap-
proaches. Candidate models that share the same loss estimation routine (simplistic:
pars, int_sd; process-oriented: int_lm, aug) exhibit similar CRPS values indepen-
dently of how they treat the economic sectors (aggregated or differentiated). Small
differences in CRPS (up to 0.005) occur between the fully augmented (aug) and
the intermediate model with the process-oriented loss estimation (int_lm), with an
advantage of the former (aug) for major and of the latter (int_lm) for minor loss
events. Figure 3.4(b) displays loss predictions of the sector-differentiating models
(int_sd, aug) for the manufacturing and service sectors for the 2002 flood, the only
event for which sector-specific loss reports are available. Again, the model with
the process-oriented loss estimation outperforms the model with the simplistic
loss estimation for both sectors. Both models predict the loss of the manufacturing
sector more accurately than for that of the service sector.
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Reliability of loss estimation

The previously presented loss estimates reflect the training performance of the
models and, hence, overestimate the true predictive capacity of the loss estimations
for unseen data. Therefore, we conducted an LOO-CV experiment, in which we
recursively fitted the models to the data, each time leaving out one of the three
observed loss events in Dresden. The goodness of fit to the held-out loss events
provides insight on the models’ capacities to assess the flood loss of new events
and has implications for the reliability of the candidate models.

Figure 3.5 summarizes the results of the LOO-CV experiment. Again, the
columns of the plot show the estimated and observed company flood loss for
the three reported flood events (2002, 2006, 2013). In each row, another loss
event was held-out of the training dataset. This means that the panels on the
diagonal (background shading) are of special importance because they express
the predictive skill of the models for new data. The loss estimates in the LOO-CV
experiment are indistinguishable from the estimates of the model calibration runs
(Figure 3.4). The CRPS metrics show that the candidate models with the process-
oriented loss estimation assess the three held-out loss events more precisely and
with less uncertainty than the models with the simplistic loss estimation. In
addition, the increase from training to validation error for the simplistic loss
estimation (pars, int_sd; up to 75% increase in CRPS) is larger than that for the
process-oriented loss estimation (int_lm, aug; up to 9% increase in CRPS).

More importantly, the plot reveals that the process-oriented loss estimation
provides more robust predictions than the simplistic loss estimation. When con-
sidering the plot panels within one column, we see that the loss distributions
and predictive errors (i.e., CRPS) of the models with the augmented loss esti-
mation (int_lm, aug) fluctuate less across the different training datasets than the
distributions of the simplistic loss estimation (pars, int_sd). This implies that the
simplistic loss estimation relies more strongly on the available loss data, which
can lead to systematic underestimation when the training dataset does not contain
observations of rare, high magnitude loss events. Since the process-oriented loss
estimation combines the aggregated, large-scale losses from the socio-hydrological
data with the vulnerability information from the object-level flood loss data, it
is capable of extrapolating more reliably to unseen flood magnitudes. This is of
particular advantage in socio-hydrological studies since historical flood loss re-
ports are commonly scarce and short discharge records might not contain extreme
floods.

Overall, the scarcity of loss reports for historical floods only allows for an
evaluation of the predictive model performance for three events. Nevertheless,
the training and validation errors coherently indicate that the process-oriented
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Figure 3.5: Modelled and observed losses (as in Fig. 3.4(a)) for the leave-one-out cross-validation
experiment. Panel rows indicate which flood event was held-out during model training, while in
each column the same loss event is displayed. Plot panels with background shading highlight the
predictions for unseen data. Model codes: obs, observation; pars, parsimonious; int_lm, intermediate
with process-oriented loss estimation; int_sd, intermediate with sector differentiation; aug, fully
augmented.
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loss regression model (int_lm, aug) outperforms the simplistic loss estimation
(pars, int_sd). On the contrary, the sector-specific modeling has a minor influence
on the loss estimates and, given the level of uncertainty, we cannot assess the
performance differences between the aggregated (par, int_lm) and sector specific
candidate models (int_sd, aug) confidently. Possibly, performance differences
might emerge when additional sector-specific loss reports become available for
the validation of the loss estimates.

3.3.3 Potential of augmentations in socio-hydrological modeling

Our results show that the presented augmentations increase the accuracy, con-
fidence, and reliability in the loss estimates of the socio-hydrological flood risk
model. The loss estimation benefits from the inclusion of the inundation and loss
regression, which resemble the physical reality of the damage processes more
closely and feature a refined probabilistic model. The sector differentiation did
not improve the loss estimation conclusively. Since we lumped the awareness,
preparedness, and loss across sectors due to data constraints, more distinctive
risk dynamics between the sectors might have been attenuated. Conceivably,
the influence of the sector differentiation on the loss prediction and the entire
socio-hydrological system could be larger if these variables, conditional on sector-
specific observations, were also allowed to develop individually for each sector or
if the society under consideration involved more distinct actors - for example, in
a model that considers private households and companies. The augmentations
add further complexity to the socio-hydrological flood risk model, and, yet, the
substantial increase in training data outweighs the increase in the number of
parameters, ultimately reducing uncertainty.

As flood loss represents a central component in the coupled human-flood
system (see Figure 3.1(b)), the effect of the improved loss estimation enhances
the validity of the entire socio-hydrological flood risk model. A biased loss
estimation could propagate through the entire socio-hydrological system, leading
to unrealistic system evolutions and misguided conclusions about the behavior of
society. The LOO-CV experiment shows that the process-oriented loss estimation
provides more reliable loss estimates even in the absence of numerous reported
loss events. This characteristic promotes the prospective transferability of the
socio-hydrological flood risk model in space and time. Thus, the object-level
flood loss data, which stem from various regions in Germany, facilitate the model
application at other study sites with comparable socioeconomic conditions (e.g.,
building codes). In addition, credible loss estimates are a prerequisite for sound
projections of the socio-hydrological flood system in Dresden into the future.

While this study focused on the improvement of one specific process in a
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socio-hydrological flood risk model (i.e., loss estimation), the notion of process
augmentation could be extended to other components of the human-flood system.
Socio-hydrological models are modular frameworks that stipulate how the consid-
ered system variables interact and co-evolve. Depending on the required degree of
process detail, we could selectively replace one or several simplistic mathematical
process representations with more informed estimation techniques, conditional
on domain knowledge and additional data. As the targeted enhancement of socio-
hydrological processes increases model complexity, it is only advisable when
suitable and sufficient data are available to inform the additional parameters.
Similarly, model augmentations might hinder the spatial transfer to other case
studies where these additional data requirements cannot be satisfied. Particularly
for variables that map the individuals or entities of society, like awareness or
preparedness, data collection is intricate and expensive because it commonly relies
on interviews or surveys (Barendrecht et al. 2019).

Returning to the human-flood system, next steps could aim at improving the
representation of how households and companies become aware of the flood
risk and what drives them to take action to protect themselves. Protection moti-
vation theory provides a conceptual basis and models that could be added the
socio-hydrological flood risk model in addition to the process-oriented loss model
(Grothmann and Reusswig 2006; Bubeck et al. 2018). In the end, model devel-
opment remains an iterative process, where recursive updates of the employed
data streams or the model structure can improve the capacity of existing mod-
els to reproduce human-water dynamics and reduce the simulation uncertainty
(Thompson et al. 2013; Hipsey et al. 2015; Sivapalan and Blöschl 2015).

3.4 Conclusions

All versions of the developed socio-hydrological flood risk model are capable of
reproducing the adaptation effect for companies in Dresden that was observed over
the past 20 years. The model augmentation, mainly in the form of process-oriented
loss estimation, improves the accuracy and reliability of the loss estimates and
reduces their predictive uncertainty (research question 1). The simulations suggest
that companies settle more cautiously in exposed locations in the floodplain and
prepare themselves more actively against flooding than private households do
(research question 2).

Consequently, the augmented socio-hydrological flood risk model provides
higher reliability for further analyses than the parsimonious model; for example,
for projecting the evolution of the coupled human-flood system in Dresden into
the future. In general, the informed augmentation of socio-hydrological models of
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all kinds (e.g., for drought or water resources management) by process-oriented
model components facilitates the model transfer in space (i.e., to other study sites)
and time (i.e., projections). After the integration of empirical data, the inclusion of
validated, empirical models that reflect current process understanding represents
the next step towards more precise and credible socio-hydrological modeling.
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Abstract

Flood losses have steadily increased in the past and are expected
to grow even further owing to climate and socioeconomic change.
The reduction of flood vulnerability, for example through adaptation,
plays a key role in the mitigation of future flood risk. However, lack-
ing knowledge about vulnerability dynamics, which arise from the
interaction between floods and the ensuing response by society, limits
the scope of current risk projections. We present a socio-hydrological
method for flood risk assessment that simulates the interaction be-
tween society and flooding continuously, including changes in vul-
nerability through collective (structural) and private (non structural)
measures. Our probabilistic approach quantifies uncertainties and
exploits empirical data to chart risk dynamics including how soci-
ety copes with flooding. In a case study for the commercial sector
in Dresden, Germany, we show that increased adaptation is neces-
sary to counteract the expected four-fold growth in flood risk due
to transient hydroclimatic and socioeconomic boundary conditions.
We further use our holistic approach to identify solutions for effec-
tive long-term adaptation, demonstrating that integrated adaptation
strategies (i.e., combined structural and non structural measures) can
reduce the average risk by up to 60% at the study site. Ultimately,
our case study highlights the benefit of the model for robust flood
risk assessment as it can capture unintended, adverse feedbacks of
adaptation measures such as the levee effect. Consequently, our
socio-hydrological method contributes to a more systemic and reli-
able flood risk assessment that can inform adaptation planning by
exploring the possible system evolutions comprehensively including
unlikely futures.
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4.1 Introduction

Global change has sparked an increase in economic river flood losses over the past
decades (Bevere and Remondi 2022; Tanoue et al. 2016; Barthel and Neumayer
2012). The historic rise in flood losses has mostly been attributed to demographic
and economic growth and a concomitant accumulation of exposure in floodplains
(Visser et al. 2014; Kundzewicz et al. 2014; Paprotny et al. 2018b; Jongman et al.
2012). Anthropogenic global warming has not been a dominant control of flood
risk change in the past, but its influence might grow in the future due to emerging
shifts in flood hazard (Merz et al. 2021; Neumayer and Barthel 2011; Bouwer 2011).
Continued exposure growth and climate change are going to propel flood risk
even further in most regions of the world (Merz et al. 2021; Hirabayashi et al. 2013;
Jongman et al. 2012). As a result, global average annual flood loss could grow by
up to a factor of ten until the end of the century compared to today under the
assumption of constant flood vulnerability (Dottori et al. 2018; Winsemius et al.
2016; Alfieri et al. 2018). The reduction of vulnerability through flood adaptation
has proven effective in the past (Tanoue et al. 2016; Jongman et al. 2015; Hudson
et al. 2014; de Moel et al. 2013; Sairam et al. 2019b; Poussin et al. 2015) and, hence,
is a key element in the effort to offset the expected intensification of impacts
(Dottori et al. 2018; Winsemius et al. 2016; Hirabayashi et al. 2013; Jongman 2018;
Kinoshita et al. 2018).

Changes in flood vulnerability are difficult to trace as it is a multidimensional
quantity that is determined by physical, economic, institutional, and social factors
(UNDRR 2022; Merz et al. 2010a), which impedes the collection of continuous
and extensive data. Similarly, adaptation measures differ in type (e.g., structural,
nature-based), scale (country, object-level) and the implementing actor (govern-
ment, individual households) (Jongman 2018; Dottori et al. 2020). Therefore, the
dynamics of vulnerability and their effect on flood risk are understood less in
comparison to hazard and exposure (Kreibich et al. 2017a). This also reflects
in prevalent flood risk assessment, where vulnerability changes are usually not
considered (Metin et al. 2018). Some studies attempted to bridge this gap by
running risk simulations assuming different levels of adaptation (i.e., discrete
and constant vulnerability scenarios) (Metin et al. 2018; Jongman et al. 2015;
Steinhausen et al. 2022). While this approach goes further than most previous risk
analyses, it still cannot capture the continuity of vulnerability change which arises
from the constant interplay between flood events and society at different time
scales (Sivapalan and Blöschl 2015). For instance, damaging floods demonstrably
trigger adaptation response by the affected society in the aftermath of the event
(Di Baldassarre et al. 2015; Kreibich et al. 2017a) and, conversely, flood-poor
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periods might lead to a decay in a societies’ risk awareness (Fanta et al. 2019;
Viglione et al. 2014). Altogether, limited understanding of the causal factors of
vulnerability change and narrowly defined model boundaries do not embrace
the complex reality of floodplains (Merz et al. 2015; Jongman et al. 2015), which
becomes even more relevant in an increasingly globalized and rapidly changing
world. Such knowledge is essential for the reliable projection of future adaptation
and the quantification of its risk reduction potential (Aerts et al. 2018; Dottori
et al. 2018).

Following the call for more systems-thinking in flood risk analysis (UNDRR
2022; Schröter et al. 2021; Barendrecht et al. 2020; Merz et al. 2015; Di Baldassarre
et al. 2016), recent studies integrated vulnerability as an inherent component
in applied flood risk assessment. Haer et al. (2017) developed an agent based
model that incorporates the dynamic flood adaptation by households. It was then
extended to governments to study the future evolution of vulnerability and risk
under different behavioral scenarios (Haer et al. 2019; Haer et al. 2020).

Socio-hydrological system dynamics models are a parsimonious alternative to
agent based models as they only resolve the most essential components and pro-
cesses on the systems-level (e.g., a floodplain) and focus on the overall co-evolution
of human-flood systems (Blair and Buytaert 2016). Having originated from studies
that investigated hypothetical systems (Di Baldassarre et al. 2013; Viglione et al.
2014), these models have recently progressed towards a data-informed solution
for quantitative tracing of vulnerability and risk dynamics (Barendrecht et al.
2019; Schoppa et al. 2022). In such models, small-scale variations are treated
probabilistically (e.g., via Bayesian methods) rather than being resolved explicitly,
which facilitates the efficient exploration of future flood risk projections while
including the numerous sources of uncertainty.

Here, we present an efficient socio-hydrological method for continuous flood
risk assessment that expands the conventional focus on hazard and exposure
changes by explicitly including vulnerability dynamics. The probabilistic approach
is calibrated on empirical data and quantifies uncertainties by means of Bayesian
inference. In a pilot application for the commercial sector, we (1) project flood risk
trajectories until the end of the 21st century accounting for the transient nature of
all three risk drivers (hazard, exposure, vulnerability) and (2) assess the effectivity
and robustness of adaptation strategies against the background of exacerbating
hydroclimatic and socioeconomic boundary conditions. To our knowledge, this
is the first time that a socio-hydrological system dynamics model is used in a
quantitative projection study of flood risk. Our method helps to link the expected
large-scale patterns of change (e.g., in climate, demographics, economy) to the
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still largely unknown local response of human-flood systems (Jongman et al. 2015)
and could contribute to unfolding the full potential of societal flood adaptation.

4.2 Methods and data

4.2.1 Socio-hydrological flood risk projection

At the core of the method is a socio-hydrological model (Barendrecht et al. 2019;
Schoppa et al. 2022) that captures the temporal interactions between hazard, expo-
sure, and vulnerability in a coupled human-flood system of a given floodplain
(Figure 4.1(a)). The model is forced by a time series of annual flood maxima
and a socioeconomic growth indicator such as gross domestic product or pop-
ulation growth rate. The socioeconomic forcing accounts for the fact that the
floodplain development is also shaped by factors other than flooding, such as
social, economic, or political interests. A flood event occurs once the protection
level of the public flood protection infrastructure (e.g., dykes) is exceeded, which
causes monetary damage to the assets in the floodplain and triggers a cascade of
reactions by the resident society. Experiencing losses increases the society’s flood
awareness which, in turn, enhances its preparedness through private precaution
(i.e., reducing vulnerability) or withdraws from the floodplain and settles in safer
locations (i.e., reducing settlement density and, hence, exposure). These choices
affect the exposure and vulnerability in subsequent time steps so that the temporal
dependency between flood events and the actions of society are incorporated.
Eventually, the model continuously traces the evolution of the settlement density
(physical exposure), awareness and preparedness (vulnerability), and flood losses
(risk) conditional on the hydroclimatological flood signal (hazard) over the long
term.

The reaction of the society to flood events is described by socio-hydrological
model parameters (Table 4.1) that characterize the flood coping strategy of the
resident society. We assume the parameters to be constant or change at much
slower rates than the socio-hydrological dynamics (i.e., change in the variables
floodplain exposure, loss, awareness, preparedness) which they control. The
parameters are calibrated on historic observations of settlement density, awareness,
preparedness, and flood loss. We compiled these socio-hydrological training
data from heterogeneous data sources such as historic land use maps, surveys,
published loss reports, and economic and population statistics. The motivation
for the structure of the socio-hydrological model and the calibration process are
explained elaborately in Barendrecht et al. (2019).
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Figure 4.1: Our method for continuous flood risk projection. The socio-hydrological model, which
we previously calibrated to observed data, uses socioeconomic growth and flood forcing data (a) to
project continuous flood risk trajectories (b). In simulation experiments, we explore the influence
of hydroclimatic change and adaptation management scenarios. We consider a set of adaptation
measures (see Table 4.1) and combine them to identify effective risk reduction strategies; for example,
dyke heightening in combination with increasing the longevity of precaution. Depending on the
strength of the hydroclimatic change and the adaptation intervention (e.g., moderate or strong), the
coupled flood risk system evolves differently.

Conditional on previous model calibration and validation on the observed time
period, the historic hydroclimatological and socioeconomic forcing time series can
be substituted by projection data to drive the model for the future period. This
allows for the simulation of continuous trajectories for all system variables into
the future, while maintaining the temporal interdependency of flood events and
human choices. Figure 4.1(b) shows examples of such trajectories. Each trajectory
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represents one possible future of the flood risk system conditional on the forcing
data and the local flood coping characteristic of the society. The model is capable
of generating a large number of these trajectories facilitating the quantitative
exploration of the possibility space; i.e., the set of future outcomes that could
emerge from feedbacks between humans and flooding.

Our workflow uses Bayesian inference to capture uncertainties in the esti-
mation of the socio-hydrological parameters. The modular setup also allows
for a propagation of the uncertainty in the forcing data as hydroclimatological
and socioeconomic projections can be passed to the model in probabilistic form.
Consequently, the method can capture, combine, and communicate the different
systemic and statistical sources of uncertainty of flood risk projections.

4.2.2 Application to the commercial sector in Dresden

We apply the socio-hydrological method for continuous flood risk projection to
the commercial sector in the city of Dresden, Germany, which is situated at the
river Elbe. After a comparably long, flood scarce period in the past century,
Dresden faced a series of floods in the past 20 years. A major flood in 2002 caused
severe losses and induced the society to adapt, which substantially reduced the
losses in subsequent events (2006, 2013). Barendrecht et al. (2019) developed
the socio-hydrological model described in section 4.2.1 to study the historical
flood risk dynamics in Dresden for the residential sector. Schoppa et al. (2022)
transferred the model to the commercial sector and advanced the loss estimation.
For the projection study of this work, we use an updated version of the model by
Schoppa et al. (2022) with an improved parameterization and adapted inundation
estimation (see Text C.2 in supporting information). The model operates on an
annual time step and was calibrated on a socio-hydrological dataset that covers
the period 1900-2019. Moreover, we validated the model for the flood loss events
with available loss reports (i.e., 2002, 2006, and 2013) using leave-one-out cross
validation in the previous study.

For this projection exercise, we force the calibrated socio-hydrological model
with annual time series of maximum flood return periods (hydroclimatic) from the
Elbe and gross domestic product (GDP) growth rate (socioeconomic) in Dresden
for the period 2020-2100. The hydroclimatic forcing data are generated on the
basis of projected changes in flood frequency at the representative concentration
pathways (RCP) 4.5 and 8.5. The data stem from the European Union’s Joint
Research Centre and were computed by an ensemble of coupled regional climate
and hydrological models (Mentaschi et al. 2020). The socioeconomic forcing data
is derived from an Eurostat projection of population growth (Eurostat 2021) and a
Markov Chain Monte Carlo projection of GDP per capita for Dresden (Steinhausen
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et al. 2022). Further, we estimate the uncertainty in population growth from the
probabilistic country level World Population Prospects 2019 of the UN (UNDESA
2019).

Beside the physical floodplain exposure, which is captured in the case study
through the economic density variable (i.e., share of the floodplain area with
commercial occupation), exposure dynamics are also influenced by variations in
wealth (i.e., financial value). The socio-hydrological model expresses flood loss as a
relative loss ratio; that is, the absolute flood loss divided by the replacement value
of the commercial building assets. In this way, the loss estimates are independent
of the wealth and can be compared directly between different time periods. For
an evaluation of the influence of wealth changes on flood losses it is useful to
project the replacement value (i.e., fixed assets) into the future. We assessed the
future fixed assets in commercial buildings in the Dresden floodplain from the
GDP projections, extrapolated wealth-to-income ratios (Paprotny et al. 2018a),
and regional accounts data (Federal and State Statistical Offices of Germany
2021). In this way, we assumed the wealth dynamics to be exogenous to the
socio-hydrological system but still included them in the analysis of the simulation
results. In all calculations that involve monetary units, we used deflated, constant
2015 prices. The supporting information provide further explanation on the raw
datasets and the data processing (Text C.3).

4.2.3 Simulation experiments

We projected 1000 trajectories of commercial flood risk in Dresden until 2100. To
analyze the influence of the flood risk drivers and adaptation measures over time,
we subdivided the projection period into three horizons corresponding to the
time periods of the hydroclimatological forcing dataset: 2020-2040, 2041-2070, and
2071-2100. Moreover, we ran the simulations for RCP4.5 and 8.5 global warming
levels using the respective 25%, 50%, and 75% percentiles of the ensemble predic-
tion as hydroclimatic forcing. The ensemble percentiles reflect the uncertainty in
the climate and hydrological models. For comparison, we also show simulations
for a baseline scenario, which assumes constant hydroclimatic conditions as in
the reference period (1981-2010) and wealth as in 2020. This projection study is
subdivided into two parts:

In the first experiment, we assume that the flood coping characteristics of the
companies in Dresden do not change, which can be considered as a ‘business
as usual’ scenario (section 4.3.1). This means that we keep the calibrated socio-
hydrological model parameters and, hence, the socio-hydrological dynamics fixed
during the projection runs. This allows for an assessment of the influence of
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Table 4.1: Parameters in the socio-hydrological model and their interpretation. In the adaptation
experiments, we incrementally increased the calibrated parameter values from Schoppa et al. (2022) to
evaluate the potential of different adaptation measures to reduce flood risk.

Model
Variable

Model
Parameter

Parameter
interpretation

Calibrated
value
(median)

Adaptation
measures

Parameter
changes

flood
discharge

protection
level return period 90 yr levee

heightening

100, 150,
200, 300,
500 yr

economic
density

risk
aversion

inclination to
develop/abandon
floodplain

2.89 [-] relocation,
building bans

+25%,
+50%,
+100%,
+200%,
+300%

awareness anxiousness
increase in
awareness per
unit of loss

6.91 [-] information
campaigns,
flood drillsflood

memory
half time of
awareness 32 yr

preparedness activeness

increase in
implemented
precautionary
measures
after a flood

1.17 [-] building codes,
subsidization
of precaution

longevity of
precaution

half time of
preparedness 50 yr

hydroclimatic and socioeconomic drivers on flood risk changes for the three
future periods.

In the second experiment, we alter the socio-hydrological model parameters
to quantify the sensitivity of the flood risk system to changes in the companies’
coping characteristics through adaptation (section 4.3.2). The alteration of model
parameters should be interpreted as adaptation measures by the government (e.g.,
increasing protection level, information campaigns) or the companies themselves
(e.g., implementation of private precautionary measures, resettling) with the
objective of flood risk reduction. For instance, measures that aim at sustaining
or increasing the flood awareness of the companies in the floodplain can be
considered in the model by increasing the respective flood memory parameter,
which controls the decay rate of the flood awareness. Since all model variables
have been calibrated to observed data, we can treat the adaptation measures
quantitatively and measure their effectiveness. In this example, an increase of the
flood memory parameter increases the share of companies that are aware that
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they are situated in a flood risk area. Empirical evidence on the awareness of
companies can be obtained using survey campaigns or expert interviews. Based
on the results of the sensitivity analysis, we finally compare the effectivity of a
structural, integrated, and non-structural adaptation strategy in the context of the
expected future flood risk.

Table 4.1 lists the socio-hydrological parameters and provides further details on
the adaptation experiment. Figure 4.1(b) illustrates the two projection experiments
and how hydroclimatic change and adaptation management can lead to different
evolutions of the flood risk system.

Throughout the experiments, we evaluate the flood risk for the individual
projection runs on the basis of risk curves, which are a standard method of quan-
titative risk assessment in science (Merz and Thieken 2009; Metin et al. 2018;
Priestley et al. 2018) and the insurance industry (Khare et al. 2015; Prettenthaler
et al. 2017). Risk curves summarize all projected annual maximum loss events
in the simulation period and assign an occurrence exceedance probability to
each event. Additionally, we derive three risk metrics from the risk curves: the
expected annual damage (EAD), which indicates the average loss in any given
year and, hence, distributes risk evenly over time; the value at risk (VAR) at a
99.5% confidence level corresponding to a loss event with a 200 year return period;
and the tail value at risk (TVAR) at the same confidence level. VAR describes the
maximum annual loss at the specified return period, while TVAR characterizes
the upper tail of the risk curve by integrating losses beyond this return period
(Sairam et al. 2021). The confidence level of 99.5% is the current industry standard
for (re-)insurers as prescribed by the European Union Solvency II legislation
(European Parliament and European Council 2009).

Further, we assess the statistical significance of the investigated effects using the
continuous, Bayesian ’percentage in ROPE’ index. It quantifies by how much the
posterior distribution of a risk metric has shifted away from a Region of Practical
Equivalence (ROPE) due to the effect of hydroclimatic change or adaptation. Here,
we computed the ROPE on basis of the risk metric posteriors under a baseline
or reference scenario. Depending on the percentage of the risk metric posteriors
under the investigated scenario in the ROPE, we classify the scenario effect as:
negligible/undecided significance (≥ 2.5% in ROPE), probably significant (≥ 1%
& < 2.5% in ROPE), or significant (< 1% in ROPE) (see Text C.4 in supporting
information for details).
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4.3 Results and discussion

4.3.1 Projection of future flood risk

Our simulations show that global warming influences the co-evolution of the
socio-hydrological flood risk system for companies in Dresden. The hydroclimatic
model ensemble projects increasing flood hazard until the end of the century,
which propagates through the coupled human-flood system (Figure 4.2). After
an average decline in flood awareness and preparedness until the middle of the
century (i.e., increasing vulnerability), awareness and preparedness rise towards
the year 2100 (see dashed, black lines). The non-linear development of vulnera-
bility can be explained by the relatively high awareness and preparedness levels
at the start of the projection period (shortly after three loss events) and by the
intensification of the flood hazard under global warming, which leads to a gradual
accumulation of the companies’ flood awareness and preparedness. The physical
exposure of companies in the floodplain (i.e., economic density) remains nearly
constant with only small variations in the median between the RCP4.5 simulations.
The exposure is less sensitive to the hydroclimatic forcing than the vulnerability
but is rather dominated by the socioeconomic forcing (i.e., GDP growth), which on
average is projected to remain relatively stable throughout the century. In general,
the projected trajectories across the different ensemble prediction percentiles (25%,
50%, 75%) reveal that stronger shifts in the flood regime cause more pronounced
deviations from the baseline scenario. The development of vulnerability is rela-
tively uncertain and strongly depends on the inherent stochasticity in the flood
discharge series, especially the number and temporal succession of loss events.
Still, the average tendency towards increased flood adaptation under more severe
hydroclimatic forcing is evident. The projected differences in the system evolution
between RCP4.5 and 8.5 are hardly distinguishable (see Figure C.4 in supporting
information). This is due to the pronounced within-pathway variability of the
hydroclimatological forcing data, which masks a possible between-pathway signal
in flood change (Mentaschi et al. 2020).

A closer evaluation of the simulated losses via risk curves reveals that flood
risk is expected to increase towards the end of the century (Figure 4.3). We com-
puted risk curves accounting for hydroclimatic change under RCP4.5 and wealth
growth (red lines). These risk curves clearly exceed the baseline scenario (grey
line) that assumes constant climate and wealth conditions with a growing margin
towards the far future (i.e., from left to right plot panel). The growing difference
is also reflected by the risk metrics, which increase consistently over time and for
all ensemble prediction percentiles. Accounting for changes in climate (RCP4.5
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Figure 4.2: Continuous evolution of the socio-hydrological system for the calibration (1900-2019)
and projection (2020-2100) period. The plot visualizes the influence of different hydroclimatic forcing
scenarios: baseline with present climate and ensemble percentiles under RCP4.5 climate. For the
projections, the colored lines show 200 individual trajectories (median of model uncertainty) and
dashed, black lines show the aggregate evolution across all 1000 simulated trajectories (median and
95% highest density interval of projection uncertainty). The supporting information (Figure C.4)
contains a similar plot for RCP8.5.

50%) and wealth, the median expected annual damage (EAD) is projected to
double (€2.5M) in the near future (2020-2040) and quadruple (€7M) approximately
until the end of the century (2071-2100) relative to the baseline (€1.1M and €1.6M
respectively). The relative change in large loss events (VAR, TVAR) is smaller
but still increases by approximately a factor of three in the far future (2071-2100).
The increase in flood risk in a warmer climate can be explained by more frequent
overtopping of the flood protection (risk curves shift towards the left) and higher
flood magnitudes causing larger losses (risk curves shift towards the top).
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Figure 4.3: Risk curves (median and 90% highest density interval) and metrics for the three projection
horizons considering RCP4.5 climate and wealth growth. For this plot, we multiplied the projected
relative losses from Figure 4.2 with the fixed asset values (i.e. wealth) to receive absolute losses. The
individual risk curves reflect the uncertainty in hydroclimatic forcing, while intervals summarize
the uncertainty in the wealth projection, flood risk model, and stochastic flood series. The baseline
scenario assumes constant hydroclimatic conditions (as in 1981-2010) and wealth (as in 2020). Risk
metrics (median): expected annual damage (EAD), value at risk (VAR), tail value at risk (TVAR).
The supporting information (Figure C.5) contains a similar plot for RCP8.5.

The risk curves show future flood risk considering the superimposed effects
and uncertainties of hydroclimatic (flood forcing) and socioeconomic (GDP growth
forcing and wealth) change, socio-hydrological model (parameter estimation), and
inherent stochasticity (randomness in flood series). A decomposition of the dif-
ferent risk drivers for the individual projection horizons (Figure 4.4) reveals that
the uncertainty in hydroclimatic forcing (across and within RCPs) dominates over
wealth uncertainty in the near future (2020-2040; panels a, d, g). However, towards
the end of the century (2071-2100; panels c, f, i) the growth of fixed assets in
company building stock becomes increasingly influential. Predominantly, this
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applies to the metrics VAR and TVAR (panels d-i) which describe the flood risk for
large loss events and therefore are more sensitive to differences in wealth. On the
contrary, the hydroclimatic forcing remains comparably important for the average
annual risk (EAD; panels a-c) until the end of the century since the frequency of
dyke overtopping and, thus, loss events strongly depends on alterations of the
flood regime. The projected changes in the risk metrics are statistically significant
for the most part although large uncertainties in the wealth forcing and the tail of
the risk curve (TVAR) mask robust signals until the far future.

Even though we kept the socio-hydrological parameters fixed in this experi-
ment, the simulations capture the influence of changing physical exposure and
vulnerability in form of the economic density, awareness, and preparedness tra-
jectories (Figure 4.2). Under the baseline simulation with constant hydroclimatic
and socioeconomic boundary conditions, all three risk metrics increase over time
(Figure 4.4, grey intervals). This increase of flood risk solely traces back to the
internal dynamics of the socio-hydrological system; namely, an average incline
of the economic density and decline of awareness and preparedness across the
individual trajectories. Yet, compared to the changes in the external hydroclimatic
and wealth conditions (red and purple intervals), these socio-hydrological system
dynamics only cause small differences in the resulting flood risk.

In summary, the simulations show that the flood risk of the commercial
sector in Dresden is likely to increase until the end of the 21st century. This
rise is mostly driven by intensifying flood patterns and growing wealth in the
floodplain and is in line with projected large scale trends in flood risk (Jongman
et al. 2012; Winsemius et al. 2016; Kinoshita et al. 2018). Under the assumption
of constant risk coping characteristics of the companies, the influence of socio-
hydrological dynamics on the resulting flood risk is almost negligible. This means
that the adaptive behaviour of companies as in the past century will not suffice to
counteract the expected increase in flood risk due to exacerbating hydroclimatic
and socioeconomic pressure.

4.3.2 Effectiveness of flood adaptation

The projected positive trends in flood risk from section 4.3.1 underline the necessity
of effective and optimized adaptation strategies that alter the risk coping behaviour
(i.e., socio-hydrological parameters) of the commercial sector in Dresden.

Our sensitivity analysis shows that the risk mitigation potential of the different
adaptation measures varies across the projection periods and risk metrics. Changes
in the parameters protection level, risk aversion, activeness, and longevity of
precaution have the largest reduction effect on commercial flood risk in Dresden
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Figure 4.4: Isolated effect of hydroclimatic (RCPs) and socioeconomic (Wealth) changes on the flood
risk metrics relative to the baseline scenario. Each interval plot shows the median, and 50% and 90%
highest density intervals across 1000 simulated trajectories. Statistical effect significance is indicated
by the points’ fill colors: negligible/undecided (white), probably significant (grey), significant (black).
Risk metrics: expected annual damage (EAD), value at risk (VAR), tail value at risk (TVAR).

(Figure 4.5). Increasing the protection level reduces the EAD most quickly and
effectively over the entire projection period (panels a-c). Such structural flood
protection can prevent single, severe loss events entirely until a clear return period
threshold that depends on the protection level (see VAR; panels d-f), but the
risk reduction effect shrinks when considering the entire tail of the risk curve
(see discrepancy between VAR and TVAR; panels d-i). Non-structural measures



Results and discussion 85

that reduce the economic density (risk aversion) and maintain high levels of
preparedness (activeness, longevity of precaution) take until the middle (2041-
2070) or end (2071-2100) of the century to unfold their influence and steadily
become more significant over time. On the long run, increasing the risk aversion,
activeness, or longevity of precaution diminishes flood risk in the tail of the risk
curve more effectively than an increase of the protection level (TVAR; panels h
and i). The influence of the parameters that affect the companies’ flood awareness
(anxiousness, flood memory) on the risk metrics is not clearly significant for any
projection horizon or metric, which potentially traces back to the indirect link
between awareness and loss in the socio-hydrological model (Figure 4.1).

The plot also reveals that adaptation measures might even lead to unintended
feedbacks and increases in risk. For instance, higher flood protection levels reduce
the annual loss expectancy (EAD; panel c) but have the opposite effect on large
loss events (VAR and TVAR; panels f and i). This ’levee effect’ occurs when higher
protection standards lead to reduced flood frequency and, in turn, to declining
vulnerability and increasing exposure (Montz and Tobin 2008; Di Baldassarre et al.
2015). Haer et al. (2020) provided quantitative evidence for this effect, and our
simulations indicate that this phenomenon also emerges in Dresden in the far
future (2071-2100), though the results are only statistically significant in case of
the VAR.

The sensitivity analysis shows that the individual adaptation measures have
different advantages and drawbacks and, in some cases, only lead to significant
risk reduction after strong intervention (i.e., parameter change). Therefore, com-
binations of adaptation measures could combine the strengths to optimize the
risk reduction. We compared the potential of three adaptation strategies to reduce
the projected increase in flood risk due to hydroclimatic and wealth changes
(Figure 4.6). A structural strategy (i) that only focuses on a protection level in-
crease, an integrated strategy (ii) that combines an increase in flood protection
and the longevity of precautionary measures, and a non structural strategy (iii)
that only relies on the reduction of physical floodplain exposure and increased
preparedness through private precaution.

Across the three adaptation strategies, our simulations show a reduction
potential in median EAD of up to 16-60% in the near, 44-63% in the middle, and
50-60% in the long term (panels a-c). The median reduction potential for the VAR
ranges from 100% for the structural and integrated strategy to 63% for the non
structural strategy (panel d-f). While the projected risk reduction for the EAD and
VAR is statistically significant for strong interventions, the effects for TVAR are
insignificant due to large uncertainty in both the wealth projections and the tail
risk.

The results show that an integrated adaptation strategy is an alternative to a
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Figure 4.5: Sensitivity of flood risk metrics towards adaptation measures (i.e., parameter changes).
For each interval, we changed the respective parameter while keeping the other parameters fixed at
their calibrated value. The interval colors allocate the socio-hydrological parameters to the model
variables that they control (pink: protection level, blue: economic density, green: awareness, orange:
preparedness). The simulations are based on RCP4.5 (50% ensemble percentile) and median wealth
projections (i.e., deflated climate and wealth uncertainty). The strength of the intervention (i.e.,
parameter change) through a adaptation measure is visualized by the boxplot chroma. Statistical effect
significance is indicated by the points’ fill colors: negligible/undecided (white), probably significant
(grey), significant (black). Risk metrics: expected annual damage (EAD), value at risk (VAR), tail
value at risk (TVAR). The supporting information (Figure C.6) contains a similar plot for RCP8.5.

purely structural strategy.
While the non structural strategy is less effective than the structural and
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integrated strategy in the near future, it reduces risk more efficiently by the end
of the century. Over time, the structural strategy requires increasing intervention
strength (i.e., parameter change) to counteract the adverse consequences of the
levee effect. On the contrary, this unintended risk increase is attenuated or entirely
avoided under the integrated and structural strategy, especially when considering
the most severe loss events (VAR and TVAR). Consequently, adaptation strategies
that (partially) aim at changing the behaviour of society promise more sustainable
flood risk reduction and are less prone to unintended feedbacks and adverse
consequences.

Eventually, the exact risk figures of this projection are of secondary importance
compared to the overall response of the flood risk system over time, for example,
the direction and relative magnitude of risk change. Our results support the
finding of a study at European scale by Haer et al. (2019) that optimized adaptation
on the governmental and private level carries the potential to outweigh the flood
risk increase due to climate and exposure change (RCP4.5 50% + Wealth). However,
while Haer et al. (2019) report that the risk reduction potential of structural
measures grows over time relative to private adaptation (e.g., precautionary
measures), we observe opposite trends. While this discrepancy might originate
from differences in study scale, model configuration, or considered risk metric,
it highlights that further research on the interplay between governmental and
private adaptation is necessary.

4.3.3 Potential of socio-hydrological flood risk projection

The proposed socio-hydrological method addresses current challenges in flood
risk assessment such as narrowly defined system boundaries (Merz et al. 2015)
or the lack of holistic modeling solutions for small-scales (Jongman et al. 2015).
As shown for the study site Dresden, the method can translate transient, large-
scale hydroclimatic and socioeconomic boundary conditions into a response of
a local, coupled flood risk system (e.g., continuous trajectories, changes in risk
metrics). The approach also expands the system boundary by incorporating
physical exposure (economic density) and vulnerability (awareness, preparedness)
as intrinsic system components capturing potentially adverse non-linearity and
feedbacks such as the levee effect. Additionally, it enhances the temporal scope
(i.e., centuries) and considers temporal dependencies (continuous simulation) in
the analysis, revealing the different time scales at which adaptation measures act.
Ultimately, the parsimonious design of the underlying system dynamics model
makes the approach an efficient solution for the exploration of the possibility
space.
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Figure 4.6: Potential of competing adaptation strategies (structural, integrated, non-structural) to
mitigate the expected increase in flood risk. The baseline scenario assumes fixed climate and wealth
while the ’RCP4.5 50% + Wealth’ scenario assumes hydroclimatic and wealth projections with
uncertainty. The interval colors correspond to the color coding from Figure 4.4 and 4.5 for same
simulation runs (i.e., ’RCP4.5 50% + Wealth’ and ’Structural’). The strength of the intervention (i.e.,
parameter change) through a adaptation measure is visualized by the boxplot chroma. Statistical effect
significance is indicated by the points’ fill colors: negligible/undecided (white), probably significant
(grey), significant (black). Risk metrics: expected annual damage (EAD), value at risk (VAR), tail
value at risk (TVAR). The supporting information (Figure C.7) contains a similar plot for RCP8.5.

A crucial aspect for the added value of the method is its usability in practice,
for instance for adaptation planning. While the applicability of socio-hydrological
methods is often limited due to high demands towards data or a lack of variable
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interpretability (Sivapalan et al. 2012; Troy et al. 2015a), the proposed method re-
lies on a fully quantitative modeling framework, where variables and parameters
are informed by empirical evidence. This enables the monitoring of changes in the
flood risk system with benchmark data that is collected through remote sensing
(e.g., physical floodplain exposure) or surveys (e.g., awareness). Such monitoring
could reveal if flood risk actually develops as projected after the implementa-
tion of adaptation measures or if amendments to the risk reduction strategy are
required. Further, in the Bayesian framework of the proposed method, newly avail-
able observations can be included in the inference facilitating ongoing updates
of the calibrated model parameters and uncertainty estimates (Schoppa et al. 2022).

Nevertheless, the practical value of the adaptation experiment is limited as it
does not consider the tangible and intangible costs and feasibility of the competing
adaptation strategies. Differences in the implementation cost of protective or pre-
ventive measures (e.g., levee heightening, relocation) might make an adaptation
strategy more favorable although its risk reduction potential is inferior, or mea-
sures might fail due to the resistance of the resident society. Thus, the combination
of the presented method with economic instruments such as cost benefit analysis
or expected utility theory (Haer et al. 2019; Dottori et al. 2020), could enhance
the informative value of the simulations. Moreover, given the considerable uncer-
tainties in the projections, it might be necessary to switch the adaptation strategy
at certain points in the future. Risk-based decision making such as dynamic
adaptive policy pathways (Kwakkel et al. 2015; Haasnoot et al. 2013) could be
combined with socio-hydrological flood risk projection to deal with this deep
uncertainty (Merz et al. 2021) and leverage the potential of adaptation even further.
From a modeling perspective, the expansion of the systemic and temporal model
scope comes at the cost of coarse spatial detail. While this simplification allows
for the efficient exploration of the possibility space (Aerts et al. 2018), localized
hydraulic effects or exposure hotspots can affect flood risk substantially and might
be missed by the presented lumped method. An appropriate definition of the
system boundary and detail is not trivial and usually a trade-off between model
accuracy and operability (Sivapalan and Blöschl 2015; Troy et al. 2015b). Here,
iterative model development and comparisons with different holistic modeling
approaches such as agent based models could prove beneficial.
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4.4 Conclusions

Converging global dynamics of flood hazard and exposure are intensifying flood
risk at the local scale and necessitate holistic decision-support tools for flood
adaptation planning. The presented method for socio-hydrological flood risk
assessment represents a systemic and yet efficient solution for the long-term
projection of flood risk dynamics. Our case study for the commercial sector in
Dresden confirmed that greater efforts on flood adaptation are required to offset
the expected four-fold increase in flood risk (i.e., expected annual damage) due
to hydroclimatic change and accumulating wealth. We demonstrated that our
continuous simulation method can identify effective adaptation strategies that
are robust to unintended feedbacks such as the levee effect. According to our
simulations, an integrated adaptation strategy, which combines levee heightening
with an enhancement of private precaution, could reduce the average annual flood
risk by up to 60% at the end of the century. By expanding the system boundary
of conventional risk assessment by vulnerability dynamics, this approach can
explore a wide range of probable outcomes instead of only the most plausible
futures. This raises the chance of detecting risky system states before catastrophes
occur.

Nevertheless, the enhanced perspective and computational efficiency comes
along with process simplifications and spatial aggregation. Therefore, socio-
hydrological flood risk assessment is particularly useful in combination with
established risk assessment practices. We see clear advantages of a flood risk
assessment workflow that combines coarse and holistic with detailed and focused
modeling solutions. For instance, a socio-hydrological flood risk model could
first identify effective and robust adaptation strategies from a large set of possible
adaptation measures, considering potentially adverse consequences or the factor
of surprise. Afterwards, spatially explicit risk assessment, including hydraulic or
object specific loss modeling, could be used for further optimization or a selection
process among the subset of efficient adaptation scenarios.



5 | Discussion, Outlook, and Syn-
thesis

5.1 Summary of findings

Key findings

• Multivariable flood loss models improve loss estimates at the
object and systems-level and reduce predictive uncertainty by
accounting for the complexity of damage processes (Chapters 2
and 3).

• Systemic flood risk models capture vulnerability and risk dy-
namics continuously and facilitate long-term projections (e.g., for
adaptation management). The holistic system definition captures
human-flood feedbacks and, hence, reduces the potential for sur-
prise or maladaptation (e.g., levee effect) (Chapter 4).

• Probabilistic modeling is essential for flood loss and risk assess-
ment since it quantifies the considerable uncertainty, propagates
it through the risk system, and provides a basis for informed
decision making and risk communication (Chapters 2-4).

• Applying Bayesian inference in socio-hydrological modeling al-
lows for an integration of heterogeneous information (i.e., data,
prior knowledge), reducing overall uncertainty in risk assessment
(Chapters 3 and 4).

• Damage processes and vulnerability dynamics of companies differ
across economic sectors and compared to private households,
which calls for tailored modeling solutions and data collection
(Chapters 2 and 3).
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The representation of vulnerability in conventional flood risk assessment is
often oversimplified, stationary, and deterministic. Therefore, this thesis explored
possibilities to improve the process detail and treatment of uncertainty in vul-
nerability modeling. After the development and comparative evaluation of three
multivariable, probabilistic flood loss models, I coupled the Bayesian regression
loss model to a socio-hydrological flood risk model to investigate observed vul-
nerability dynamics. Ultimately, I applied the socio-hydrological model in a
projection exercise to demonstrate the potential of systemic risk modeling for
long-term adaptation management. The main contribution of this research is
a systemic modeling solution for continuous, long-term flood risk assessment
whit a rigorous loss estimation and often neglected simulation of vulnerability
dynamics. By applying the models to the commercial sector, the thesis addition-
ally provides novel insights on the influencing factors and temporal changes of
company flood vulnerability as well as on the challenges of model development
for the commercial sector.

In the following, I use the key findings to answer the three research questions
of this thesis.

How can flood loss and risk models better account for the complexity of
vulnerability processes?

The predictor importance of the model fits in Chapter 2 show that various pre-
dictors (e.g., precaution, sector, spatial situation) influence the damage grade
and not only the inundation depth. Expanding the univariable loss model (i.e.,
inundation depth) by additional predictor variables improved the predictive skill
of the object-level loss models and systemic socio-hydrological models. Similarly,
accommodating the superposition of different data generating processes in the
model proved to enhance the predictive capacity in both studies (i.e., inflated Beta
regression).

Chapters 3 and 4 investigated vulnerability dynamics and revealed that factors
that determine vulnerability such as awareness or preparedness fluctuate consid-
erably at a decadal time scale. The augmentation of the socio-hydrological model
with more process detail enhanced its capability to reproduce the variability in
flood losses. Further, Chapters 3 and 4 demonstrated that holistic models are
capable of capturing non-linear, long-term vulnerability and risk dynamics such
as the adaptation or levee-effect effect.

My findings show that approaches such as multivariable modeling, mixture
models (e.g., inflated Beta distribution), and system dynamics account for
prevalent complexity factors in flood risk assessment such as heterogeneity, non-
linearity, feedbacks, or non-stationarity. Consequently, these modeling solutions
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outperform simpler methods that only focus on dominant explanatory variables
(e.g., inundation depth), falsely assume stationarity (e.g., in vulnerability), or
parameterize crucial processes (e.g., inundation in socio-hydrological flood risk
models).

What is required to enhance the scope of uncertainty analysis in flood risk
assessment and to optimize the use of available information?

This thesis consistently employed probabilistic modeling for uncertainty quan-
tification. In Chapter 3, I coupled the inflated Beta loss model and the socio-
hydrological system dynamics model in a fully integrated Bayesian model , which
propagates uncertainties (e.g., from the loss estimation) seamlessly and without
loss of information through the entire risk system - including often neglected
uncertainty in vulnerability and its change. The projection exercise in Chapter
4 demonstrated that this quantitative risk assessment method is interoperable
with scenario-based approaches that are necessary when probabilities are difficult
to assign - for instance, when considering the hardly quantifiable uncertainty in
future adaptation decisions or hydroclimatic forcing.

Chapters 3 and 4 showed how the Bayesian framework efficiently integrates
information that was collected from diverse sources, at different points in time
and spatial scales, and with varying accuracy. The observations of the socio-
hydrological variables jointly inform the probability distribution across all model
parameters, enabling the flow of information - for example, historic land use maps
reduce uncertainty in the unobserved level of preparedness in 1900, or object-level
damage data inform loss estimates at the floodplain level. Additionally, the inte-
gration of results from a previous study for the residential sector into the model
for the commercial sector via prior distributions diminished uncertainty further.
Ultimately, Bayesian methods can include uncertain observations or forcing vari-
ables directly in the inference; for example, by treating socio-hydrological training
data as random variables (Chapter 3) or driving a socio-hydrological projection
with probabilistic input data (Chapter 4).

Altogether, this thesis highlights that a coherent probabilistic design of all
model components fosters integrated uncertainty estimation and propagation.
Where quantitative uncertainty analysis reaches its limits, scenario-based exper-
iments with a socio-hydrological model enable the exhaustive exploration of
possible system evolutions. Finally, Bayesian inference enables the assimilation
of diverse data sources (via joint parameter estimation) and accumulation of
information across studies (via the prior), which helps easing the problem of
data scarcity in loss and socio-hydrological modeling.
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Which new insights into company vulnerability does this model development
provide?

Chapter 2 underlines that company vulnerability is highly heterogeneous. The
predictor importance in the calibrated loss models points towards large variation
in damage processes across economic sectors and considered assets. In addition,
company flood losses are dispersed widely (e.g., bimodal distributions), with
large loss cases being particularly difficult to predict. The study shows that the
heterogeneity and uncertainty in damage processes is substantial and, hence,
reinforces the necessity for multivariable, probabilistic loss estimation.

On the systems-scale, Chapter 3 revealed that companies at the study site
Dresden cope differently with flood risk than private households. For instance,
the estimated posterior parameters showed that companies forget less quickly
about flood risk in comparison. On the contrary, differences in the flood coping
and system evolution between companies from the manufacturing and the service
sector were very small. Overall, companies preferred to take precautionary
measures rather than retreat to safer locations outside the floodplain to reduce
their risk. Furthermore, the results did not point towards an added value of the
sector differentiation for the accuracy of the loss estimation.

The modeling experiments in this thesis showed that vulnerability processes
and dynamics differ between the commercial and the residential sector. As a
relevant entity within society, the commercial sector actively shapes the overall
flood risk evolution. However, model development for companies is commonly
more challenging as for the residential sector due to poorer availability of damage
and vulnerability data and large intra-sectorial heterogeneity. These characteristics
demand tailored modeling solutions and data collection for flood loss and risk
estimation for companies.
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5.2 Discussion and outlook

This chapter reflects on the methods and findings of this work and summarizes
the lesson learned during conducting the studies. The following sections point
out challenges, give recommendations on how to address them, and suggests
potential directions for upcoming research.

5.2.1 Embracing complexity in vulnerability modeling

The model development and comparisons in Chapters 2 and 3 confirm that
complexity affects both loss estimation and systems-level risk assessment and that
comprehensive modeling solutions improve predictions and simulations.

Loss estimation

Chapter 2 demonstrated the advantages of multivariable probabilistic loss models
that consider heterogeneity over univariable deterministic approaches (see e.g.,
Figure 2.3). The superior predictive performance of complex loss models has also
been reported by other authors (Schröter et al. 2014; Rözer et al. 2019; Kreibich
et al. 2017b; Wagenaar et al. 2017). However, the analysis of model errors also
revealed the current limitations of the presented loss models. The variability
in predictive errors is substantial as a result of enhancing the number of model
variables and parameters (i.e., bias-variance trade-off), particularly for cases with
large relative loss and the asset types equipment and goods and stock (Figure
2.5). Moreover, the different multivariable candidate models achieved relatively
similar predictive performance scores (Figure 2.3) and returned wide, sometimes
bimodal, predictive distributions (Figure 2.4). These results support previous
findings (Sieg 2018; Spekkers et al. 2014; Merz et al. 2010b) that decisive predictors
or processes are missing in the available damage datasets and models. The loss
models developed in this work improved predictive capacity by accounting for
heterogeneity in the flood vulnerability across economic sectors and asset types
(Figure 2.2), but damage processes just as well vary across distinct events, flood
types, or study regions (Mohor et al. 2020; Mohor et al. 2021; Vogel et al. 2018).
Conclusively, additional efforts with respect to the representation of heterogeneity
in models and the gathering of explanatory loss data are necessary.

However, a mere increase in sample size does not improve model skill as
effectively as a deliberate setup of loss models that explicitly address differences in
damage processes (e.g., multivariable and sector-specific) (Sieg et al. 2017). Instead,
a simultaneous and iterative enhancement of the number of data and model
complexity promises better predictive accuracy and could generate synergies
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between model development and data collection; for example, the predictor
importance in complex loss models could be used to tailor survey campaigns
to the distinct governing loss drivers of the sector or region under study (Vogel
et al. 2018; Mohor et al. 2020). Yet in many practical problems flood loss data will
remain sparse, imbalanced (i.e., few severe loss cases), or overly generalized (i.e.,
aggregated). An active research strand tries to make as much use of the available
data records as possible and yielded effective modeling solutions that are mostly
rooted in Bayesian inference (also see section 5.2.2). For example, graphical models
such as Bayesian networks also take into account usually omitted incomplete data
records in the process of model development and prediction (Vogel et al. 2018;
Lüdtke et al. 2019). Multilevel models that account for the fact that data is usually
structured hierarchically in groups (e.g., thematically in sectors or spatially in
regions) allow for the flow of information across sub-samples and offer additional
possibilities for incorporating heterogeneity (Mohor et al. 2021; Sairam et al. 2019a).
Finally, Sairam et al. (2020) proposed to combine the usually competing synthetic
and empirical loss modeling paradigms for problems where empirical data only
becomes available gradually over time.

Systems-level dynamics

Chapters 3 and 4 moved the focus to vulnerability dynamics, which are closely
tied to two additional factors of complexity: non-stationarity and feedbacks. The
proposed socio-hydrological method for continuous flood risk assessment respects
temporal dependencies and legacy effects in its system dynamics framework and
allows for transient external forcing (Figure 4.1).

Nevertheless, in its current form the model makes assumptions that offer
room for improvement. The lumped modeling approach omits spatial processes
within the floodplain which might obscure relevant information. For instance, the
location of company premises and inundation extents within the floodplain are
only considered implicitly in the model functions. Further, the definition of the
system boundary could be reconsidered. In contrast to other studies (Haer et al.
2019; Ridolfi et al. 2020; Di Baldassarre et al. 2013), the model design excludes
the adaptive behavior of the government (i.e., structural flood protection such as
levees) since the protection level is assumed to be an exogenous model variable.
While these choices are justified against the background of unavailable empirical
data for the calibration of more sophisticated sub-models, they contradict the
objective of allowing for more heterogeneity in the simulation. Moreover, the
simulated awareness trajectories (Figure 3.2) deviate noticeably from the observed
values in 2006 and 2013. These results indicate that certain time-lags are at
work in the real-world system which could be represented better in the system
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dynamics model; for instance, by introducing explicit delay functions to the
coupled differential equations (Bala et al. 2017).

Flood risk assessment methods can be sorted along a continuous spectrum
of complexity. Physically and spatially complex model chains (Falter et al. 2015;
Sairam et al. 2021; Ward et al. 2013; Alfieri et al. 2017; Aznar-Siguan and Bresch
2019) link stand-alone models for hazard, exposure, and vulnerability assessment,
but their linear design falls short of capturing risk and vulnerability feedbacks
(Barendrecht et al. 2019). Agent-based models account for such feedbacks and
are spatially flexible since computations are carried out with high granularity on
the level of decision-making entities (e.g., households or companies). However,
empirical data for the calibration of the underlying behavioral models are often not
available so that modellers have to resort to assumptions about model parameters
(e.g., on the basis of interviews) (Haer et al. 2017; Haer et al. 2019; Coates
et al. 2019). The system dynamics approach proposed in this thesis exhibits
the most parsimonious model structure, but the spatial aggregation facilitates
extensive computations and the collection of empirical data for calibration. In
general, there exists no universally valid level of abstraction in the analysis of
flood risk systems. Instead, the appropriate complexity very much depends on
the questions asked and the available resources (process-understanding, data
availability, computational capacity).

Independent of the approach, systemic flood risk modeling faces the problem
that the assumptions about the behavior of society or the temporal evolution of
the human-flood system cannot be validated as rigorously as it is the case for
other elements of the risk analysis (e.g., hydrological or hydraulic models). This is
problematic as vulnerability changes and interactions between risk drivers are un-
derstood most poorly in the flood risk system. While recent studies (Barendrecht
et al. 2019) and the work in Chapter 3 undertook first steps towards the calibration
and validation of human-flood dynamics on the basis of empirical data, further
research in this direction is necessary. In the absence of suitable validation time
series, the mutual benchmarking of systemic modeling paradigms could enhance
the confidence in the simulated system evolution or reveal biases when results
disagree; for example, in a direct comparison of established agent-based and
system dynamics models. Similarly, the application of socio-hydrological models
at multiple study sites would contribute new insights about the transferability
of holistic risk assessment tools. A promising development in the field is the
shift towards longitudinal data collection (i.e., panel data) (Bubeck et al. 2020;
Hudson et al. 2020). Repeated survey campaigns with flood affected households
or companies could promote the tracing of temporal changes of flood vulnerability
and improve the prospects of proper calibration and validation in systemic risk
models.
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Overall, given the large gaps in our understanding of coupled human-flood
systems, data collection and model development also serve the purpose of gaining
new insights into vulnerability and flood risk dynamics (Di Baldassarre et al.
2016). With respect to model development, the iterative fitting and evaluation
of candidate models with varying complexity - as it is common practice in the
Bayesian workflow (Gelman et al. 2020) and was carried out in Chapter 3 - is
useful for identifying the required level of complexity in a system dynamics model
(Chapter 3).

5.2.2 Uncertainty quantification - potential and limitations

Although the enhancement of complexity improved the skill of the flood loss and
risk models in Chapters 2 and 3, the model outputs remain substantially uncertain;
for example, the probabilistic loss estimates (Figure 2.4) or the projected evolution
of the flood risk system (Figure 4.2). These results support the growing consensus
that consequent uncertainty quantification and communication is essential for
well-informed flood loss and risk assessment (e.g., Schröter et al. 2014; Rözer et al.
2019; Apel et al. 2008; Merz and Thieken 2009).

This thesis supplies many arguments in favor of probabilistic modeling and
particularly the use of Bayesian methods. Chapter 2 shows that Bayesian pre-
dictive models are competitive to machine learning methods such as random
forest in loss modeling. Further, the application of the socio-hydrological flood
risk projection method (Chapter 4) showcases how Bayesian inference fosters
the consistent combination, propagation, and communication of uncertainty in a
fully probabilistic modeling framework. Among the already discussed strengths
of the Bayesian framework (i.e., joint parameter estimation, probabilistic predic-
tions, uncertainty propagation, incorporation of many levels of randomness) the
capability to accumulate diverse information - such as prior knowledge from
literature or comparable experiments, expert judgement, or data - presumably
represents the largest benefit for flood risk assessment. The use of informative
priors is sometimes criticized to be subjective. Yet when motivated, verified (e.g.
via prior predictive checks), and communicated transparently, the inclusion of
prior information represents a pragmatic solution for modellers that face the
problem of data scarcity (Schoot et al. 2021; Gelman and Hennig 2017; Smid et al.
2020). Passing on information from previous to subsequent studies can also have
positive effects with respect to uncertainty reduction as information accumulates
over the course of repeated experiments. This ’Bayesian updating’, as applied
in Chapter 3 to make inferences about the vulnerability dynamics of companies,
is not employed much in flood risk research at the moment (for exceptions see
Sairam et al. 2020; Lüdtke et al. 2019) although it could leverage the little available
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evidence more rigorously. The flexibility of Bayesian inference might tempt devel-
opers to construct overly complex models. Nonetheless, the required definition
and verification of generative prior models (i.e., model testing before data is
taken into account) encourages developers to deliberate their modelling choices
deeply (e.g., distributions, parameterization) and inappropriate specifications
quickly lead to computational problems or erroneous outputs. Ultimately, the
results of a Bayesian analysis communicate uncertainty intuitively in the form of
probability statements (in contrast to frequentist statistics), which reduces the risk
of misinterpretation and biased management decisions (McElreath 2018; Gelman
et al. 2013).

In order to support risk management and decision making with reliable infor-
mation, further efforts to reduce the associated uncertainty bounds are necessary.
While the uncertainty in estimates of flood risk can be attributed to all the three
determinants of risk (hazard, exposure, vulnerability), the necessity and poten-
tial to reduce it varies (de Moel et al. 2015; Sieg 2018; Steinhausen 2022) The
physical understanding of flood hazard (i.e., atmospheric, hydrological, hydraulic
drivers) is already far advanced and, hence, represented relatively accurately in
process-based models (e.g., climate or river routing models). Recently proposed
methods for the modeling of dyke failure or spatial dependencies of flood peaks
promise further improvements (Vorogushyn et al. 2012; Metin et al. 2020). In
the assessment of flood exposure, rapid developments in geoinformatics and
remote sensing enhance the accessibility of comprehensive and open data (e.g.,
satellite imagery or crowd-sourced data such as OpenStreetMap), which facilitates
the identification and specification of affected assets with high accuracy (e.g.,
monetary value, building type) (Pittore et al. 2017; Cerri et al. 2021) as well as
the upscaling of loss estimates (Sieg et al. 2019b; Lüdtke et al. 2019). In contrast,
vulnerability assessment represents a large challenge from the object to the (supra-
)national level, especially when temporal dynamics are also taken into account
(de Moel and Aerts 2011; Winter et al. 2018; Merz et al. 2014a). Loss estimates
will underlie large aleatory uncertainty for the foreseeable future (Sieg 2018), and
the simulation of vulnerability change depends heavily on insufficiently verified
hypotheses about system dynamics (e.g., differential equations in Chapter 3)
or behavioral models that are rarely calibrated empirically (e.g., in agent-based
models) (Haer et al. 2017).

Nevertheless, systemic risk models such as the continuous, socio-hydrological
flood risk assessment method (Chapter 4) advance our understanding of the
human-flood system which, in turn, reduces the epistemic uncertainty about
vulnerability dynamics (Di Baldassarre et al. 2016). In addition to quantifiable
uncertainty in form of probability distributions (known probabilities, e.g. occur-
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rence probability of a loss event), the presented approach also takes into account
non-quantifiable uncertainties in form of scenarios (unknown probabilities, e.g.
future adaptation decisions). Moreover, the expansion of the system boundary to
vulnerability dynamics improves the predictability of "known unknowns"; that is,
well-known phenomena that are difficult to capture in risk analyses such as the
adaptation (Figure 3.2) or levee effect (Figure 4.5).

However, even the most accurate systemic risk model is incapable of capturing
so-called "unknown unknowns" or "black swans": unexpected, high-impact events
that are unpredictable because they have not been observed before or originate
from surprising and fundamental shifts in the functioning of the system. Such
deep uncertainty is characteristic for flood risk assessment that usually considers
long planning horizons (e.g., flood adaptation under climate change) and impedes
effective risk management. Under such circumstances, approaches that go beyond
probabilistic or scenario analysis are necessary (Merz et al. 2015; Di Baldassarre et
al. 2016; Hall and Solomatine 2008; Cox 2012). Methods such as info-gap analysis
(Ben-Haim 2019; Hall and Solomatine 2008), dynamic adaptive policy pathways
(Haasnoot et al. 2013; Kwakkel et al. 2015), or resilience-focused strategies (Disse
et al. 2020) aim at identifying management strategies that maintain favorable
conditions (e.g., low flood losses) under a wide range of possible futures. For
instance, Haasnoot et al. (2012) used a simplistic meta-model in a hypothetical
floodplain to simulate storylines of the future as a basis for identifying effective
dynamic adaptive policy pathways. It could be worthwhile to explore if the socio-
hydrological risk assessment method from Chapter 4 would also be applicable
in such an overarching framework for robust decision making. A potential
study design could look as follows: the system dynamics model could generate
reliable flood risk trajectories (similar to the simplistic meta model) that are
grounded in empirical evidence and process-oriented loss estimation and provide
information on the risk reduction potential of adaptation measures (as in Chapter
4). Afterwards, the resulting trajectories could be evaluated using dynamic
adaptive policy pathways to map out viable adaptation strategies. In this way, the
advancements of this thesis in loss and dynamic vulnerability modeling could
feed into practice and support operational flood risk management.
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5.3 Synthesis

This thesis advances the representation of vulnerability in flood risk assessment,
especially with respect to temporal dynamics. Using the example of companies,
this work presents fully probabilistic modeling approaches for loss estimation
and socio-hydrological risk assessment, which embrace the complexity in damage
processes and the human-flood system.

Flood loss estimation is often carried out with univariable and deterministic
stage-damage functions that fall short of describing the multicausality and vari-
ability of damage processes. Multivariable models consider various explanatory
variables, which improves the predictive performance as heterogeneity can be
reflected more accurately. However, even in state-of-the-art loss models, influ-
ential controls of flood damage remain unresolved, which causes considerable
uncertainty. Probabilistic loss models quantify this predictive uncertainty and
offer great structural flexibility to accommodate superimposing data generating
processes (e.g., using mixture models). Probabilistic loss estimation not only
communicates the reliability of loss estimates more transparently but also facilities
the integration of loss models into overarching flood risk assessment frameworks.

Flood risk assessment has adhered to hazard-centric and static approaches in
the past. It is increasingly recognized that a shift towards systems-thinking is
necessary to take into account socioeconomic risk drivers (exposure, vulnerability)
and interactions between flooding and humans more strongly. Yet data con-
straints and limited understanding of human-flood systems prevent that systemic
approaches such as socio-hydrology are applied more widely. The presented
augmentation procedure incorporates process-detail and previously unused data
sources in socio-hydrological flood risk models to enhance the accuracy and
reliability of simulations. In contrast to inconsistent, linear, and computationally
expensive model chains, systemic risk models yield continuous trajectories of
all risk drivers including often neglected vulnerability dynamics. The model
implementation in the Bayesian framework enables the joint evaluation of all
involved uncertainties and the formalized integration of prior knowledge.

Ultimately, this thesis demonstrated possible applications of socio-hydrological
flood risk assessment. Simulation-based experiments with the augmented socio-
hydrological model allow for an efficient and plausible exploration of a wide set of
possible futures and the identification of effective adaptation measures. Addition-
ally, the method facilitates more reliable risk assessment as unintended long-term
feedbacks that might lead to maladaptation can be detected (e.g., levee effect). The
seamless integration of all governing risk drivers in one system dynamics model
enables the comprehensive treatment and propagation of uncertainty. Eventually,
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socio-hydrological flood risk projections could provide an information-rich basis
for decision making under deep uncertainty.

As previous research and model development in the field of flood vulnerability
predominantly addressed private households, I applied the newly developed
models to companies. The model fits provide new insights into company flood
vulnerability. Damage processes of companies vary strongly across economic
sectors and assets types, and companies cope differently with flood risk than
households, which gives rise to distinct vulnerability and risk dynamics. These
findings highlight the need for tailored data collection and modeling solutions for
companies, which take into account the pronounced heterogeneity.

In conclusion, vulnerability remains the most challenging element of flood risk
assessment as it originates from the interplay of natural and human processes,
where causal mechanisms are still poorly understood. Therefore, the value
of comprehensive risk assessment approaches such as the socio-hydrological
method of this thesis is not primarily in prediction, but rather in advancing our
understanding of human-flood systems.
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A.1 Introduction

This Supplementary Information (SI) contains further details on the implemen-
tation of the flood loss models, that is, random forest (A.2), Bayesian networks
(A.3), Bayesian regression (A.4), and the probabilistic stage-damage function (A.5).
Tables A.1 and A.2 provide the prior specification of the Bayesian regression and
the probabilistic stage-damage function.

A.2 Random forest

Following Sieg et al. (2019b) and Sieg et al. (2017) we incorporated recent advance-
ments in tree-based learning in our random forest models. Meinshausen (2006)
response variable but are capable of estimating its entire conditional distribution.
This method is referred to as quantile regression forests and tracks the prediction
of each individual tree in the random forest instead of only the mean prediction.
Hothorn et al. (2006) developed an alternative recursive partitioning algorithm,
called conditional inference trees, which avoids a variable selection bias in the
conventional classification and regression tree algorithm towards continuous
predictors (Breiman et al. 1984). We implemented the random forest models in
the programming-language R using the ‘partykit’-package (Hothorn and Zeileis
2015). The package supports both quantile regression forests and the conditional
inference tree algorithm.

A.3 Bayesian network

We learned the directed acyclic graph structure of the Bayesian networks from
the company loss data with the score-based ‘Tabu Search’ algorithm (Bouckaert
1995). This optimization routine searches the space of candidate Bayesian network
structures for a directed acyclic graph that maximizes a predefined goodness-of-fit
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score. We opted for the Bayesian Dirichlet equivalent score (Heckerman et al.
2013). After obtaining the Bayesian network structure, we learn the conditional
probability tables from the survey dataset through Bayesian parameter estimation.
In order to make predictions with the fitted Bayesian network, we employ exact
Bayesian inference by querying the conditional probability of the target variable,
relative loss, conditioned on the observed predictors. For further details on
Bayesian network theory we refer to the literature (e.g., Jensen and Nielsen 2007;
Koller and Friedman 2009; Nagarajan et al. 2013; Scutari and Denis 2014). We
implemented the proposed Bayesian networks in R using the packages ‘bnlearn’
(Scutari 2010) and ‘gRain’ (Højsgaard 2012).

A.4 Bayesian regression

In Bayesian parameter estimation, we make probability statements about a param-
eter θ conditional on observations y by applying Bayes theorem (Gelman et al.
2013):

p (θ|y) = p(θ)p (y|θ)
p (y)

∝ p(θ)p (y|θ) , (A.1)

where p (θ|y) is the posterior distribution, p(θ) is the prior distribution, p (y|θ)
is the likelihood and p (y) =

∫
p(θ)p (y|θ) dθ is the marginal likelihood. The

marginal likelihood is a normalizing constant which guarantees that the posterior
distribution integrates to one (McElreath 2018).

Priors describe the initial plausibility of each possible value for a parameter,
where each parameter in a Bayesian model requires its own prior. Commonly,
priors are classified as non-informative, weakly informative, or informative de-
pending on how strongly the prior restricts the domain of plausible parameter
values. In general, priors should place the majority of their mass on parameter
values which lead to reasonable model response (Gelman and Hennig 2017; Simp-
son et al. 2017). Further, priors are useful for ruling out unrealistic parameter
estimates such as negative values for a standard deviation (McElreath 2018).

Following recommendations from the literature (Gelman and Hennig 2017),
we assign weakly informative priors for the regression parameters based on
our understanding of damage processes. For instance, for the mean of the beta
distribution, µ, we assigned the prior Normal(1, 1.5) to the regression coefficient
of water depth, since it places most probability mass on positive values. This
reflects our expectation to observe a positive correlation between water depth and
flood loss without ruling out the possibility of obtaining a negative parameter
value. Following Gelman and Hennig (2017), we list and motivate the prior choice
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Table A.1: Prior distributions for the regression coefficients of the zero-and-one-inflated beta
model classified according to distribution parameters and predictors. Each prior contains a
note motivating the prior choice.

Distribution
Parameters Predictors Prior Notes

µ – beta mean
γ – conditional
one-inflation

water depth,
return period,
inundation
duration

Normal(1, 1.5) More severe floods
cause larger flood loss.

precaution, flood
experience Normal(−1, 1.5)

Precaution and flood
experience decrease
vulnerability and, in
turn, attenuate flood
loss.

spatial situation,
sector, size Normal(0, 1.5)

The expected effect of
these predictors is less
clear. Hence, we center
the prior at zero.

λ – zero-and-
one-inflation

water depth Normal(−1, 1.5)
Increasing water depth
reduces the chances to
have no loss.

precaution Normal(1, 1.5)
Increasing precaution
increases the chances to
have no loss.

spatial situation,
sector Normal(0, 1.5)

The expected effect of
these predictors is less
clear. Hence, we center
the prior at zero.

ϕ – beta
precision

water depth,
precaution Normal(0, 1.5)

The expected effect of
predictors on the
precision of the beta
distribution is hard to
assess. Hence, we center
the prior at zero.

for the regression coefficients in Table A.1. Apart from the presented priors, we
adopted the weakly informative default priors for regression intercepts from the
brms-package (see Bürkner 2017). We also tested other, more informative and less
informative, prior settings and found the data to dominate over the priors, which
means that the results of the parameter estimation were affected little by the prior
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Table A.2: Prior distributions for probabilistic square root stage-damage function classified
according to model parameters and predictors. Each prior contains a note motivating the
prior choice.

Model
Parameters Predictors Prior Notes

α – Intercept - Student − t(3, 0, 10)

Weakly informative
standard prior for
intercepts in
brms-package.

β – regression
parameter

√
waterdepth Normal(1, 1.5)

Higher water depth
causes larger flood
loss.

λ – zero-and-
one-inflation - Beta(1, 1)

The parameter
represents a
probability and, hence,
is constrained to the
interval [0,1].

γ – conditional
one-inflation - Beta(1, 1)

The parameter
represents a
probability and, hence,
is constrained to the
interval [0,1].

ϕ – beta
precision - Gamma(0.01, 0.01)

The precision of the
beta distribution has to
be positive.

choice.
In the computation of the posterior, Bayesian inference usually relies on numer-

ical techniques, since analytical solutions to Equation A.1 only rarely exist in real
applications. We employ Markov chain Monte Carlo (MCMC) simulation, which
is the most common way of approximating a posterior by means of sampling. For
an introduction to MCMC in the context of Bayesian modeling we refer to Gelman
et al. (2013) and McElreath (2018). We implemented the proposed zero-and-
one-inflated beta regression model in the statistical programming language Stan
(Carpenter et al. 2017) using the R-package ‘brms’ (Bürkner 2017; Bürkner 2018),
which allows for Bayesian modeling from R. For model fitting and prediction, we
used the ‘No-U-Turn’ sampler (Hoffman and Gelman 2014), which is included in
Stan, to generate 4000 samples from the posterior distribution using two chains.
In each chain, the first 1500 samples were omitted (burn-in phase of the sampler)
resulting in 1000 samples from the posterior predictive distribution of relative loss,
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which we used for model evaluation and comparison. The MCMC diagnostics and
experiments with more samples showed that 1000 samples estimate the posterior
distribution of the model reliably.

A.5 Comparison to stage-damage functions

The theory and computational implementation of the probabilistic stage-damage
function followed the methodology of the Bayesian regression model as described
in the previous paragraph. The MCMC specification remained unchanged, yield-
ing 1000 posterior samples of relative loss for the subsequent analyses. Table A.2
contains the priors for the parameters of the probabilistic stage-damage function.
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B | Appendix to Chapter 3

B.1 Introduction

This Supplementary Information (SI) contains further details on the implementa-
tion of the socio-hydrological flood risk models. Text B.2 introduces the concept
of Bayesian inference. Texts B.3 to B.5 provide details on all model data and
the treatment of observational uncertainty. Text B.6 discusses the reparameter-
ization of the sector differentiating models, while Text B.7 gives insight on the
computational implementation of the candidate models in the probabilistic pro-
gramming language Stan. Text B.8 introduces the continuous ranked probability
score. Tables B.1 to B.3 provide an overview of the prior specifications for the
socio-hydrological parameters and the parameters of the process-oriented loss
estimation (i.e., inundation and loss regression). Finally, Figures B.3 visualizes the
prior and posterior densities of the inundation and loss regression parameters for
the candidate models that contain the process-oriented loss estimation.

B.2 Bayesian parameter estimation

We estimated the parameter values of the four socio-hydrological model versions
by means of Bayesian inference (Gelman et al. 2013; McElreath 2018; Schoot et al.
2021). The objective of Bayesian inference is to learn the posterior distribution
p (θ|Y), which is the distribution of the model parameters θ conditional on the
data Y. The posterior is computed by Bayes’ theorem

p (θ|Y) = p (Y|θ) p(θ)
p(Y)

, (B.1)

where p (Y|θ) is the likelihood, p(θ) is the joint prior distribution over the pa-
rameters, and p(Y) is the marginal likelihood. The likelihood encompasses the
probabilistic model and describes our understanding of the data generating pro-
cess, while the prior encodes the initial plausibility of the parameter values. The
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marginal likelihood serves as a normalizing constant that guarantees that the
posterior is a proper probability distribution. Bayesian parameter estimation
produces an entire posterior parameter distribution and, hence, fully discloses the
uncertainty in the socio-hydrological parameters and the flood loss predictions of
the candidate models.

As described in the main text, we adopted the posteriors from the residential
model of Barendrecht et al. (2019) as priors for the new company model. We
used prior predictive checks (Gelman et al. 2020) to verify that the priors, which
we transferred from the residential model, are also reasonable for the company
model, which resulted in some adjustments to the acquired posteriors. Namely, the
posteriors from the residential model for the anxiousness (αA) and the effectiveness
of the preparedness (αR) proved to have a different magnitude than the respective
company parameter so that they contradicted with the information that the data
provided. See Table B.1 for a full list of the socio-hydrological priors.

Furthermore, we also fitted the candidate models with the weakly informative
priors that Barendrecht et al. (2019) used to ensure that the prior choice does not
bias the Bayesian inference. Figures B.1 and B.2 compare the prior and posterior
distributions of the four candidate models for the two prior configurations (weakly
informative as in Barendrecht et al. (2019) and informative as in this study).
The median posterior parameter estimates are very similar for the two prior
configurations, which indicates that the choice of the prior has small influence on
the inference. The initial awareness and preparedness, A0 and P0, are influenced
most by the prior, i.e., their dispersion is similar to the spread of the prior. Yet,
as there is no mismatch between the median parameter estimates for A0 and P0
between the prior configurations, we conclude that the priors do not contradict
with the information in the company data. The overall observed reduction in
uncertainty for the models with the informative priors is the product of combining
the a-posteriori information from the residential model (through informative
priors) with the new company data (through Bayes theorem).

Apart from that, the informative priors are advantageous from a computational
perspective. Weakly informative priors like the ones in the study from Baren-
drecht et al. (2019) work well for comparably simple model structures like in the
parsimonious model. However, as models become more complex (e.g., through
the presented augmentations), narrower/informative priors are required to obtain
robust inferences and sufficient MCMC sampling efficiency (Gelman et al. 2020).
We also observed this phenomenon and were able to improve the model fitting in
Stan significantly by means of the informative priors (faster sampling and fewer
problems with divergences).

In summary, we intentionally used informative priors to obtain more robust
models and inferences. The ‘sanity checks’ described above, show that the prior
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choice does not bias our findings but rather makes efficient use of the Bayesians
workflow and, hence, facilitates more precise statements about the vulnerability
dynamics of companies.

B.3 Historical socio-hydrological data

In accordance to Barendrecht et al. (2019), we defined the spatial bound of the
model as the area that a flood with a return period of 500 years would inundate.
The corresponding discharge of such a flood at the Elbe river in Dresden is 6255
m³/s, which is, in turn, the value for the model parameter Wmax. We derived the
series of annual discharge maxima from a daily discharge record at the gauge
Dresden covering the period 1853-2017 of the Global Runoff Data Centre (BfG
2021). Based on this annual maxima series, we computed the return periods V
for each annual maximum discharge through the L-moments method (Hosking
1990). For the flood protection level H of the Elbe at Dresden, we employed the
reconstruction of Barendrecht et al. (2019), which was derived from historical
reports of flooding (Weikinn 2000; Weikinn 2002; Pohl 2004), previous studies
(Kreibich and Thieken 2009), and authority reports (Federal Dam Operation
Authority of Saxony 2013). The discharge and the protection level both have the
unit (m³/s)/(m³/s) and were scaled from zero to one by dividing through the
maximum discharge.

The flood awareness and preparedness of the companies in Dresden are fuzzy
variables and their state cannot be measured directly. Therefore, we used survey
data (GFZ 2021) from computer-aided telephone interviews to quantify the state
of the two variables in time. The surveys have been conducted with companies
that were affected by major flood events in Germany in the period 2002-2013 and
contain 1346 completed interviews (Kreibich et al. 2007; Thieken et al. 2016). Out
of these interviews, 111 were conducted with companies that were located in the
500-year floodplain in Dresden during the Elbe floods in 2002 (n=82), 2006 (n=5),
and 2013 (n=24). In the interviews, the companies (i.e., the managing director or
a responsible employee) were asked (i) whether they were affected by flooding
before, (ii) whether they knew that the company premises were situated in the
flood risk area, and (iii) how likely they deemed that the company will incur loss
due to flooding again. The share of companies that answered ‘yes’ to the first and
second question is the awareness A before the observed flood events (i.e., in the
years of their occurrence: 2002, 2006, 2013). The third question collected data on
a categorical scale ranging from one (‘not very likely’) to six (‘very likely’). We
used this question to estimate the awareness after the events (i.e., in 2003, 2007,
2014) and assumed that all companies that answered with values from 4 to 6 were
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aware of the flood risk. Barendrecht et al. (2019) observed that the first and second
question overestimated the flood awareness before the 2006 and 2013 flood events,
and, therefore, only used these questions for the approximation of the awareness
in 2002. We found the same overestimation pattern in the company survey data
and, hence, only used the first and second question for the estimation of the 2002
flood awareness as well.

The preparedness P of the companies is approximated similarly based on a list
of eight private precautionary measures that a company could implement such as
the installation of water barriers or the relocation of vulnerable assets to higher
stories. The interviewers asked the company representative, whether the company
had already implemented the respective measure before the flood, during/after
the flood, or whether it intends to install the measure in the upcoming six months.
We then computed the preparedness before the floods (i.e., in 2002, 2006, 2013)
from the number of previously implemented measures, divided by the number of
possible or relevant measures. In accordance, the preparedness after the floods
(i.e., in 2003, 2007, 2014) was computed from the sum of the measures that were
implemented before, during, and after the flood, divided the total number possible
or relevant measures.

The flood loss L is the relative loss to company building structures in the flood-
plain. The relative loss is calculated from the flood loss to building values divided
by the replacement value of the company buildings and, hence, is expressed in
€/€. For the flood loss in 2002 and 2013, we used loss data from the Saxonian
Relief Bank, which is responsible for the financial compensation of companies that
incurred damages due to flooding. This dataset contains the reported company
flood losses on the municipality level and, in case of the 2002 flood, indicates how
these losses are distributed across economic sectors. The 2006 flood caused minor
losses and no corresponding company flood loss dataset is available. Therefore,
we estimated the company flood loss from the reported compensation of the Saxo-
nian Relief Bank for residential buildings (Saxonian Relief Bank 2007), assuming
that the compensation requirements and the proportion of residential to company
flood loss was the same as in 2002. We derived the replacement value of the
company building structures for the two economic sector in the floodplain from
data on tangible fixed assets, which is contained in the HANZE exposure dataset
(Paprotny et al. 2018a). The fixed asset data are available as grids and cover the
evolution of asset values in five year steps until 2020. We intersected these fixed
asset grids with the areas within the 500-year floodplain that were occupied by
companies at the respective time and computed the area weighted sum of the
corresponding grid cell values. This resulted in aggregated company fixed asset
values within the system boundary with a temporal resolution of five years, which
we interpolated to yearly values. Since the loss and asset values not only comprise
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the building values of the companies but also other assets such as equipment or
goods and stock, we assessed the relative loss specifically to buildings on basis of
the company survey data. The survey data include information on how the flood
loss and asset values are distributed across buildings, equipment, and goods and
stock. By transferring these ratios from the surveys to the aggregated loss and
fixed asset values, we received relative loss values specifically for building values
of companies in the Dresden floodplain. During these calculations we adjusted
for price changes due to inflation, using the deflator time series from the HANZE
dataset so that all monetary values of this study refer to 2011 prices.

The economic density D is the floodplain area that is covered by company
premises and has a unit of m²/m². We obtained historical spatial information on
city areas that were covered by manufacturing and service companies for seven
points in time (1900, 1940, 1953, 1968, 1986, 1998, 2009) from reconstructed land use
maps of Dresden (Gruner 2012). The 2009 land use map did not resolve between
different economic sectors so that we used the dataset of Rosina et al. (2020) to
classify manufacturing and service areas in the floodplain. Then, we computed
the sector specific economic densities by dividing the sum of the company areas
that belong to the respective sector by the total area of the 500-year floodplain. For
the sector aggregated model, the economic density is the sum of the densities of
the two sectors. The economic density in the floodplain is driven by the economic
growth rate U. Here, we used the historic growth rate of the gross domestic
product in Dresden from the HANZE dataset to force the model. For the sector
differentiating candidate models, we calculated individual growth rates for each
sector. In order to obtain annual economic densities and growth rates, we linearly
interpolated between the points in time for which observations were available.

B.4 Inundation and survey loss data

We estimated the regression coefficients of the inundation and loss regressions
from intersections of historical land use maps and inundation maps for the city of
Dresden. The seven available land use maps refer to a certain year and provide
information on the economic density in the floodplain at that time. The inundation
maps (Saxonian Environmental Agency 2012) correspond to flood return periods
(20, 50, 100, 300, 500 years) and account for public flood protection structures
such as levees. In the following, we refer to the intersections of the land use
and inundation maps as inundation scenarios. For each inundation scenario, we
computed the economic area that is flooded and the mean inundation depth in
the flooded economic areas. The inundation model presumes that the flooded
area and the mean inundation depend on the flood return period and the current
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economic density. The flooded area Fobs is the share of the company area in the
500-year flood extent that is inundated given the return period and the economic
density. The mean inundation depth Iobs required more processing because the
inundation maps provide the inundation depths in form of binned water depths
(e.g., 0-0.5 m) instead of continuous values. This binning of inundation depths
censors the underlying inundation data and complicates the calculation of a
mean inundation depth. We estimated the mean inundation on the basis of a
distributional assumption. Namely, we presumed that the inundation depth
is gamma distributed and estimated the mean of the distribution by means of
maximum likelihood estimation using the approach by Delignette-Muller and
Dutang (2015). This resulted in 28 inundation scenarios for the sector aggregated
models (56 for the sector specific models) which we used to estimate the regression
parameters in equation 3.2 of the main text.

The flood loss regression was informed by the same survey data, from which
we obtained the awareness and preparedness data. We used all interviews that
contain information on the relative building loss, the inundation depth at the
company premises, the preparedness before the flood, and the company sector
to inform the parameter estimation. These complete interviews amount to 597
cases. In accordance to Schoppa et al. (2020), we centered and scaled the predictor
variables of the loss regression model before running the model as similar variable
scales improve the efficiency of the MCMC sampling.

B.5 Uncertainty in socio-hydrological data

The definition of a Bayesian model involves the selection of distributional forms for
all model variables, which constitute the likelihood in equation B.1. We already
introduced the gamma and beta likelihoods that we used for the inundation
and loss regressions in section 3.2.3 in the main text. For the socio-hydrological
variables in equations 3.1-3.5 of the main text, we chose beta distributions since
the variables are scaled from zero to one. In the sector differentiating candidate
models, we substituted the beta distribution by a Dirichlet distribution (also see
Text B.6).

We employed a parameterization of the beta and Dirichlet distribution, where
the distributions of the data Y are defined by their mean values µ and a precision
parameter ϕ, which quantifies the dispersion (Ferrari and Cribari-Neto 2004; Maier
2014; Sennhenn-Reulen 2018). The precision parameter relates to the variance of
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the distribution as follows

ϕ =
µ(1 − µ)

var(Y)
− 1. (B.2)

This allowed us to express the uncertainty in the socio-hydrological data in form of
their variance. We either based these variances on domain knowledge (economic
density, loss) or derived it from the data (awareness, preparedness). Experiments
with larger and smaller variance revealed that the assumptions with respect to
the data uncertainty do not affect the findings of this study.

We assumed that recent land use maps are more reliable than those that
correspond to earlier points in time. Starting in the year 1900, we fixed the
variance to 0.005 times the observed mean value and decreased the multiplication
factor linearly to 0.001 in 2020. As a result, the uncertainty in the economic
density data is the largest in the year 1900 and lowest in the year 2009. Reported
flood losses commonly vary, depending on the source of information, so that we
considered the loss data to be more uncertain in comparison to the land use data.
For 2002 and 2013, loss data are available and, therefore, we set the variance to
0.01 times the mean for these events. As the loss value for 2006 is not based on
data but on a report and assumptions, we chose a larger variance for this event
(0.1 times the mean). The observations of awareness and preparedness come
from the survey data and allow for a more informed assessment of uncertainties.
Under the assumption that the binary survey answers on the awareness and
preparedness of the single companies are Bernoulli trials, the overall awareness
and preparedness can be interpreted as the success probability of the trials, which
follows a beta distribution. Since we know the number of interviewed companies
in each year, we were able to determine the variance from the survey answers
analytically. In accordance to the number of surveyed companies in the respective
years, the associated uncertainty is largest in 2006, followed by the events in
2013, and 2002. In general, the confidence in the awareness is lower than in
the preparedness because the preparedness was computed from several survey
questions on different precautionary measures, while the awareness was estimated
from one single question.

We did not fix the uncertainty in the inundation and survey loss data as we
did for the socio-hydrological data. Instead, as more data were available for
the inundation and loss regression, we also estimated the respective precision
parameters (ϕF, ϕI , ϕL) in the Bayesian inference.



116 APPENDIX TO CHAPTER 3

B.6 Parameterization of sector differentiating models

Two candidate models (int_sd, aug) differentiate between companies that operate
in the manufacturing (‘man’) and the service (‘ser’) sector. We reparameterized
these socio-hydrological models so that the economic density is modelled by a
Dirichlet distribution instead of a beta distribution, which we used for the sector
aggregated models. The Dirichlet distribution generalizes the beta distribution
for more than one random variable. Maier (2014) formalized regression models
based on a reparameterized Dirichlet distribution, which Sennhenn-Reulen (2018)
transferred into the framework of Bayesian inference. Based on these two papers,
we adapted the model and replaced equation 3.5 in the main text by the following
expression

Dobs ∼ Dirichlet (so f tmax (η) · ϕD) (B.3)
dηsec

dt
= Usec (1 − αD,secA) . (B.4)

The observed economic density Dobs = (Dman, Dser, (1 − Dman − Dser))
T is a

vector, with one component for each considered economic sector (manufacturing,
service) plus one component for all areas that are covered by other land uses. The
individual components of the vector have to sum to one, corresponding to the total
floodplain area in the non-dimensional model. The economic density is modelled
by a Dirichlet distribution, which can be defined by a vector of expected values ȷ

and a global precision parameter ϕD (i.e., dispersion). The individual expected
values are predicted by the terms ηsec. The softmax function guarantees that the
resulting expected values sum to one. During the parameter estimation, we fixed
the predictor term that corresponds to other land uses, so that the parameters
can be identified properly. As the softmax transformation maps the predictor
terms to the unit interval [0,1], the saturation term of equation 3.5 in the main
text, i.e. D(1 − D/Dmax), becomes redundant. Hence, we dropped it from the
equation. Tests with different parameterizations confirmed that this does not
affect the behavior of the model.

In the inundation and loss regressions, we added the economic sector as
a discrete predictor variable. This predictor is denoted as S and equals one
when a company belongs to the service sector and zero when it operates in the
manufacturing sector. The adapted model formulation of the inundation model
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substitutes equations 3.6 and 3.7 in the main text and reads

Fobs ∼ Beta (F, ϕF) (B.5)
logit(F) = αF + βF,DD + βF,VV + βF,SS, (B.6)

Iobs ∼ Gamma (I, ϕI) (B.7)
log(I) = αI + β I,DD + β I,VV + β I,SS, (B.8)

For the process-oriented loss estimation, we adopted the building loss model
from Schoppa et al. (2020) and only included the sector as a predictor for the mean
of the zero-and-one-inflated beta distribution. This leaves us with the following
regression model

Lobs ∼ BEINF (µL, ϕL, λ, γ) (B.9)
logit (µL) = αµL + βµL,I I + βµL,PP + βµL,SS (B.10)

logit(λ) = αλ + βλ,I I + βλ,PP (B.11)
logit(γ) = αγ + βγ,I I + βγ,PP. (B.12)

The computation of the sector specific loss estimates is carried out according to
equation 4 in the main text. Finally, the sector specific loss estimates are weighted,
based on the contribution of the sector to the overall economic area, and summed
up to determine the total loss of an event

L = ∑
nsec

Lsec

(
Dsec

∑nsec
Dsec

)
. [e/e] (B.13)

B.7 Computational implementation in Stan

We solved the differential equations of the socio-hydrological model numerically
using the forward Euler approach (for details see Barendrecht et al. (2019)). In the
candidate models with the standard loss estimation (pars, int_sd), two parameters
control the relative loss; that is, the effectiveness of preparedness αR and the
discharge to loss relationship βR. In order to avoid non-identifiability of the
model, we fixed the parameter βR to the value one.

In practical problems, the posterior distribution in equation B.1 cannot be
derived analytically so that the parameters are usually obtained through Markov-
Chain Monte Carlo methods (MCMC). These techniques approximate the posterior
distribution by simulating large numbers of randomized samples. Here, we used
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the Bayesian inference software ‘Stan’ (Carpenter et al. 2017), which is compatible
with standard statistical software such as R. For the candidate models that feature
the process-oriented loss estimation, we combined the socio-hydrological and the
loss model component into one Stan model. In this way, the information from the
different data sources is shared, leading to one coupled inference process. Stan
uses an efficient ‘No-U-Turn’ sampler (Hoffman and Gelman 2014) to generate
draws from the posterior distribution. We configured the sampler with four
MCMC-chains with 2000 iterations and a burn-in phase of 1000 iterations. Thus,
each model run yielded 4000 posterior samples. Standard diagnostics measures
(i.e., mixture of chains, effective sample size) that are distributed with Stan,
confirmed the model convergence and that the number of samples was sufficiently
high.

B.8 Continuous ranked probability score

The continuous ranked probability score (CRPS) (Matheson and Winkler 1976;
Gneiting and Katzfuss 2014) is a proper scoring rule and judges the sharpness
and calibration of a predictive distribution with respect to a point observation. It
generalizes the absolute error and can be compared directly to the MAE. That is,
the CRPS has the same unit as the observation and a value of zero indicates a
perfect fit (i.e., no error). The CRPS for one observation yi is

CRPSi (Fi, yi) =
∫ ∞

−∞
(Fi(x)− 1 {yi ≤ x})2 dx (B.14)

where Fi(x) is the cumulative distribution function of the predictive distribution
fi(x), and 1 {·} is the indicator function. In this study, yi are the reported losses of
the three observed floods (i.e., 2002, 2006, 2013) and fi(x) are the corresponding
probabilistic loss estimates. We compute the CRPS with an empirical cumulative
distribution function estimated from the MCMC-samples of fi(x). Details on the
numerical implementation of the CRPS for simulated forecasts are explained in
Jordan et al. (2019) and Krüger et al. (2016).
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Table B.1: Prior distributions of the socio-hydrological model parameters. The majority of the
priors are the adopted posteriors from the residential model of Barendrecht et al. (2019). Each
prior contains a note with further details on the prior choice.

Model
Parameters

Description Prior Notes

αA Anxiousness Lognormal(2, 0.5) Cannot be adopted directly
from residential models as
the parameter value
depends on the magnitude
of economic density (i.e.,
lower than for households).
Compromise between
sector differentiating and
aggregating models.

µA Forgetfulness Lognormal(−3.393, 0.497) Posterior residential model.
αP Activeness Normal(0.871, 0.244) Posterior residential model.
µP Deterioration

rate of
precautionary
measures

Normal(0.016, 0.005) Posterior residential model.

αD Risk-taking
attitude

Lognormal(0.9077, 0.378) Posterior residential model.

αR Effectiveness
of
preparedness

Gamma(1.5, 2.969) Residential posterior was
not in line with the data
and produced too low
losses. Hence, we chose a
wider prior with the same
mode.

A0 Initial
awareness

Beta(6.01, 12.771) Posterior residential model
in the year 1900.

P0 Initial
preparedness

Beta(41.7, 97.3) Posterior residential model
in the year 1900.

D0 Initial
economic
density

Sector aggregated:
Beta(10.916, 125.534)
Sector differentiated:
Dirichlet(6.823, 4.094,
125.534)

We assumed that in the
year 1900 companies
covered less floodplain area
than residential buildings.
Further we expected the
economic density of the
manufacturing sector to be
larger than for the service
sector.
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Table B.2: Prior distributions for the regression coefficients of the inundation model component.
Priors are classified according to the variable (flooded area and mean inundation depth), which
they predict. Each prior contains a note with further details on the prior choice.

Distributional
parameter Predictors Prior Notes

F – flooded
area beta mean

intercept Student− t(3, 0, 2.5)
Adopted from
brms-package (Bürkner
2017).

economic
density Normal(1, 1.5)

In a more populated
floodplain, companies
might have to move to
more exposed areas

flood return
period Normal(1, 1.5)

More intense floods are
associated with larger flood
extent

economic
sector Normal(0, 1.5)

The expected effect of the
sector is less clear. Hence,
we center the prior at zero.

ϕF – flooded
area beta
precision

not predicted Gamma(0.01, 0.01)

Rules out implausible
negative values and covers
a wide range of possible
parameter magnitudes.

I – inundation
depth gamma
mean

intercept Student− t(3, 0, 2.5)
Adopted from
brms-package (Bürkner
2017).

economic
density Normal(0, 1.5)

For inundation depth, the
effect of the density is less
clear. Hence, we center the
prior at zero.

flood return
period Normal(1, 1.5)

More intense floods are
associated with larger
inundation depth.

economic
sector Normal(0, 1.5)

The expected effect of the
sector is less clear. Hence,
we center the prior at zero.

ϕI – inundation
depth gamma
precision

not predicted Gamma(0.01, 0.01)

Rules out implausible
negative values and covers
a wide range of possible
parameter magnitudes.
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Table B.3: Prior distributions for the regression coefficients of the process-oriented loss model
component. Priors are classified according to the distributional parameter of the zero-and-one-
inflated beta distribution which they predict. Each prior contains a note with further details
on the prior choice.

Distribution
Parameters Predictors Prior Notes

µL – loss beta
mean

intercept Student− t(3, 0, 2.5)
Adopted from
brms-package (Bürkner
2017).

inundation
depth Normal(1, 1.5)

Larger inundation depth
causes more severe
damages.

preparedness Normal(−1, 1.5)
Preparedness decreases
vulnerability and attenuates
flood loss.

economic
sector Normal(0, 1.5)

The expected effect of the
sector is less clear. Hence,
we center the prior at zero.

γ – conditional
one-inflation

intercept Logistic(0, 1)
Adopted from
brms-package (Bürkner
2017).

inundation
depth Normal(1, 1.5)

Larger inundation depth
increases probability of
total loss.

preparedness Normal(−1, 1.5)
Larger preparedness
decreases probability of
total loss.

λ – zero-and-
one-inflation

intercept Logistic(0, 1)
Adopted from
brms-package (Bürkner
2017).

inundation
depth Normal(0, 1.5)

Larger inundation depth
reduces probability of zero
loss but increases
probability of total loss.

preparedness Normal(0, 1.5)

Larger preparedness
increases probability of
zero loss but decreases
probability of total loss.

ϕL – loss beta
precision not predicted Gamma(0.01, 0.01)

Rules out implausible
negative values and covers
a wide range of possible
parameter magnitudes.
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Figure B.1: Marginal posterior and prior distributions (log-scale) of the socio-hydrological parameters
in the four candidate models (color coded). Here, the priors are weakly informative and correspond to
the priors that Barendrecht et al. (2019) used in their residential model.
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Figure B.2: Marginal posterior and prior distributions (log-scale) of the socio-hydrological parameters
in the four candidate models (color coded). Here, the priors are informative and correspond to the
posteriors from Barendrecht et al. (2019). Same as Figure 3.3 in the manuscript.
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Figure B.3: Marginal prior (grey) and posterior (color coded) distributions of the inundation and loss
regression parameters in the candidate models with the process-oriented loss estimation (int_lm, aug).
Dots represent medians, while bars show 50%, and 95% confidence intervals.



C | Appendix to Chapter 4

C.1 Introduction

This supporting information presents details on the socio-hydrological flood risk
model and explains and motivates the alterations, which we applied to the original
model by Schoppa et al. 2022 for this projection study. Further, we elaborate on
the construction and processing of the forcing data, which we used to drive the
socio-hydrological model for the future time period. Finally, we demonstrate how
we conducted the Bayesian significance testing and present additional simulation
results for the radiative concentration pathway 8.5.

C.2 Socio-hydrological flood risk model

The socio-hydrological flood risk model is based on the works by Di Baldassarre
et al. (2013) and Viglione et al. (2014) and was developed by Barendrecht et al.
(2019) in the Bayesian probabilistic programming language Stan (Carpenter et al.
2017). In Schoppa et al. (2022) we transferred the model from the residential
to the commercial (i.e., manufacturing and service) sector and augmented the
loss estimation in the model. In this study, we adopted the model by Schoppa
et al. (2022) (i.e., the intermediate candidate model with the process-oriented
loss estimation ’int_lm’) and introduced additional improvements. For a detailed
explanation of the original model, we refer to Schoppa et al. (2022). In the
following, we explain and motivate the alterations to the original model, which
concern the calibration data and the model equations.

With respect to the calibration data, we first substituted the historic GDP
growth rate forcing data for the NUTS3 region of Dresden from the original study
by a new, annual time series from the HANZE v2.0 database by Paprotny and
Mengel (2022) (available from Paprotny (2022)). As the data before year 2000 were
only available in 5- or 10-yearly time steps, we used annual time series of growth
rates for all of Germany (1900-2000) from the Maddison Project Database (Inklaar
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et al. 2018) and modified the growth rates proportionally so that the 5- or 10-yearly
growth rates match Dresden’s, as defined in HANZE. The resulting annual GDP
growth series offers more detail in the simulation and enhances the consistency
between the historic and projected forcing data. Secondly, we replaced the flood
hazard maps that are used to infer the relationship between flood discharge and
average inundation depth at the commercially used areas. That is, we exchange
the official flood hazard maps of the Environmental Agency of Saxony by flood
hazard maps of the Environmental Agency of the city of Dresden (Nuremberg
Institute of Technology 2019). These new inundation maps cover a larger range of
flood return periods (i.e., 2-690 years instead of 20-300 years), facilitating a more
robust estimation of flood inundation at high flood return periods. Thirdly, we
updated the historic time series of the flood protection level, which was composed
by Barendrecht et al. (2019). Here, we used geospatial data on the protection
level of flood protection structures in Dresden (City of Dresden 2018) to assess
the current average protection level in the city (i.e., a 90 year flood). Finally, we
reduced the calibration data point for the commercial flood loss of the 2002 event
based on flood footprints of the event since a considerable share of the city was
inundated by Elbe tributaries rather than the Elbe itself. The remaining raw data
for model calibration data comprise time series of discharge and water level (BfG
2021; WSV 2021), land use maps (Gruner 2012), flood loss reports (Saxonian Relief
Bank 2007), and company survey data (Kreibich et al. 2007; Thieken et al. 2016;
GFZ 2021).

As for the socio-hydrological model, we reparameterized the system dynam-
ics model and introduced a non-linear inundation sub-model to enhance the
model robustness and allow for a more realistic loss estimation for large flood
events. The socio-hydrological model is dimensionless and describes the continu-
ous interactions between society and flooding through four coupled differential
equations:

L = F (λγ + (1 − λµL)) [e/e] (C.1)
dA
dt

= tanh (αAL)
(

1 − A
Amax

)
− µA A [nc/nc] (C.2)

dP
dt

=

{
tanh

(
αP

A
Amax

) (
1 − P

Pmax

)
− µPP, L > 0

−µPP, L = 0
[nm/nm] (C.3)

dD
dt

= U (1 − αD A) D
(

1 − D
Dmax

)
. [m2/m2] (C.4)

Table C.1 provides an explanation of the socio-hydrological model variables
and parameters. The parameters µL, λ, and γ are distributional parameters in the
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loss regression sub-model, and where not affected by the changes in this study. For
meaningful projection results, we introduced a saturation term using the tangens
hyperbolicus in the differential equations for the awareness and preparedness
(Equations C.2 and C.3), which replaced the original linear term. In this way, it
is guaranteed that the simulated awareness and preparedness values stay within
their defined range [0,1] during the projection simulation. This reparameterization
also required an adaptation of the marginal prior distributions for the affected
parameters. We list the priors of the socio-hydrological parameters in Table C.1.
The remaining priors stayed the same as in Schoppa et al. (2022).

The inundation sub-model estimates the average inundation depth I at com-
pany premises in the flooded areas F of the model domain from the flood return
period V and the current economic density D. In the original configuration, the
sub-model consisted of a linear Gamma and Beta regression model, respectively.
We improved the estimation of the flooded area, by accounting for inflation in
the probabilistic beta model (i.e., the presence of the values 0 and 1 in the data).
This accounts for the unlikely but possible case that the floodplain is completely
abandoned by companies and, hence, no premises can be flooded any more. The
regression for the flooded area F is defined as:

Fobs ∼ BEINF(µF, ϕF, λF, γF) (C.5)
logit(µF) = αµF + βµF,DD + βµF,VV (C.6)

logit(λF) = αλF + βλF,DD + βλF,VV (C.7)
logit(γF) = αγF + βγF,DD + βγF,VV, (C.8)

where µF, ϕF, λF, and γF are the distribution parameters (i.e., mean, precision, zero-
one inflation, conditional one-inflation) of the zero-one-inflated Beta distribution
BEINF. The α and β parameters are the regression intercepts and coefficients,
respectively.

Additionally, the new inundation data revealed that the relationship between
flood return period and average inundation depth at exposed commercial areas is
highly non-linear. Therefore, we replaced the original linear inundation regression
sub-model by a more flexible spline regression. A spline model is composed of a
family of basis splines which, in turn, are defined by the order of the basis spline
and a sequence of knots (i.e., the points at which a set of polynomials are joined
together to form a basis splines). We used cubic basis splines with knots at the
data points of the two predictors plus outer knots for extrapolation (i.e., kD and
kV). The spline-based inundation sub-model reads as follows:
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Table C.1: Variables and parameters of the socio-hydrological system dynamics model. For the parameters,
we also list the corresponding marginal prior distributions.

Variable Parameter Description Unit Prior
V flood return period [a]
U economic growth rate [1/a]
A awareness [nc/nc]
P preparedness [nm/nm]
D economic density [m2/m2]
L building loss [e/e]
F flooded area [m2/m2]

αA anxiousness [1/(e/e)] LogNormal(2, 0.2)
αP activeness [(nm/nm)/(nc/nc)] Normal(1.25, 0.5)
αD risk aversion [1/(nc/nc)] LogNormal(1.1, 0.25)
µA flood memory [1/a] LogNormal(−3.3927, 0.3)
µP longevity precaution [1/a] Normal(0.016, 0.005)

Iobs ∼ Normal(I, σI) (C.9)
I = a0,DD + ∑

n=i
ai,DBDi,kD

+ a0,VV + ∑
n=j

aj,V BVj,kV
(C.10)

a0,D ∼ Normal(0, 1) (C.11)
ai,D ∼ Normal(ai−1,D, τ) (C.12)
a0,V ∼ Normal(0, 1) (C.13)
aj,V ∼ Normal(ai−1,V , τ) (C.14)

τ ∼ Normal(0, 0.25) (C.15)
σI ∼ Hal f − Normal(0, 1), (C.16)

where σI is the standard deviation of the Normal distribution, B are the fami-
lies of cubic basis splines (one per predictor), a0 are the spline intercepts, and
ai/j are the spline coefficients. We assigned a random walk smoothing prior
τ on the spline coefficients, which penalizes wiggliness and, hence, prevents
overfitting and reduces the influence of the knot number and location. In the
computational implementation of the model in Stan, we followed Kharratzadeh
(2017) and Simpson (2020). Figure C.1 illustrates the improved fit of the new
inundation sub-model as compared to the original version. In particular, the new
model provides more realistic estimates of inundation for very large flood return
periods (i.e., beyond 500 years). We implemented the socio-hydrological flood
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Figure C.1: Comparison of the original, linear inundation sub-model (blue) as in Schoppa et al.
(2022) and the updated inundation sub-model (orange) that uses a zero-one-inflated (flooded area)
and a spline regression (inundation). The updated model accounts for the non-linearity in the new
calibration data and extrapolates more realistically to large flood return periods (note the logarithmic
x-axis). Calibration data is shown as points while lines show median and 95% credible intervals of
the model fits. For this plot, the second predictor variable, economic density, was fixed to the value
0.15.

risk model in the Bayesian probabilistic programming language Stan (Carpen-
ter et al. 2017), which approximates the posterior distribution via an adaptive
variant of Hamiltonian Monte Carlo sampling (’no-U-turn’ sampler). For this
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study, we ran the sampler with four chains and 2000 samples (burn-in phase:
1500 samples). For computational reasons, we thinned the resulting samples by a
factor of two so that 1000 samples of the calibrated model remained for further
analysis. We extracted the parameter samples from the Stan model and contin-
ued with the simulations for the projection period in the programming language R.

C.3 Hydroclimatic and socioeconomic projection data

For the projection of future flood risk we forced the model with annual maximum
flood return periods (hydroclimatic forcing) and gross domestic product (GDP)
growth rates (socioeconomic forcing).

The hydroclimatic projections were generated by Mentaschi et al. (2020) using
the hydrological model LISFLOOD (Van Der Knijff et al. 2010) under forcing of
11 EURO-CORDEX regional climate models (Jacob et al. 2014). The resulting
gridded, pan-European simulations of future flood discharge were computed for
the radiative concentration pathways (RCPs) 4.5 and 8.5, and feature changes
in flood frequency in form of shifts in return period for three time hoizons -
2011-2040, 2041-2070, and 2071-2100 - relative to the baseline 1980-2010. We
extracted the simulated shifts in flood return period (available for 10, 20, 50, 100,
200, 500 years) for the river Elbe at the gauge Dresden. To generate stochastic
series of annual flood maxima under future climate, we first sampled flood events
according to their occurrence probability (i.e., inverse of the return period) under
the baseline climate and then shifted the return period on basis of the projected
ensemble change under future climate scenarios. In this way, the number and
succession of flood events in a simulated time series is the same across climate
scenarios, isolating the effect of hydroclimatic change on flood risk. Since changes
in flood frequency were only available for selected flood return periods, we
approximated the flood frequency shifts for flood events of other return periods
by linear inter- and extrapolation. The uncertainty in the coupled climate and
hydrological models is reflected by the two RCP scenarios and the 25%, 50%,
75% percentile of the respective ensemble projection. The resulting series of
flood events under different hydroclimatic forcing is then fed into the inundation
regression as a predictor in form of the event return period.

For the GDP growth rates, we combined population projections with simu-
lations of future GDP per capita for the NUTS3 region Dresden (’DED21’) as
described in Steinhausen et al. (2022). The basis for the population projection
is the regional EUROPOP2019 projection for 2019-2100 (Eurostat 2021), which
we augmented with probabilistic country level population projections from the
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Figure C.2: Construction of the socioeconomic forcing data for the socio-hydrological model. We
multiplied population (a) with GDP per capita (b) projections to obtain probabilistic projections of
absolute GDP (c) in Dresden. Then, we derived GDP growth rate trajectories (d) which drove the
socio-hydrological system dynamics model. Panel (e) compares the historic GDP growth rate series
with the projected forcing data. The plot displays 200 out of the 1000 trajectories, which we used for
the experiments. Colored lines shows individual trajectories, while solid and dashed black lines show
the median and 90% confidence intervals.
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United Nations (UNDESA 2019) to obtain estimates about the projection uncer-
tainty. The probabilistic projection of GDP per capita stems from Steinhausen et al.
(2022) and was generated by a Markov Chain Monte Carlo (MCMC) simulation
on basis of observed GDP per capita data. As shown in Figure C.2, we multi-
plied the population and GDP per capita trajectories to obtain estimates of future
absolute GDP. Afterwards, we derived GDP growth rate series, which acted as
socioeconomic forcing for the socio-hydrological system dynamics model. For a
more detailed methodological explanation of the population and GDP per capita
projections, we refer to Steinhausen et al. (2022).

The socio-hydrological flood loss projections are expressed relative to the
current building asset value (as a ratio on the interval [0,1]). To account for
changes in wealth, we also projected the fixed assets in commercial buildings by
using the previously calculated absolute GDP projections and wealth-to-income
ratios. Namely, we extrapolated the historic trend in wealth-to-income ratio of the
commercial sector in Germany (period: 1870-2020) from Paprotny et al. (2018a)
and multiplied it by the absolute GDP trajectories to assess the future wealth of
companies. Subsequently, we estimated the share of company wealth that is fixed
in building structures from national account data of the Federal state of Saxony
for the period 1995-2018 (Federal and State Statistical Offices of Germany 2021).
Since the fixed asset share of buildings remained stable in the analyzed period,
we assumed a constant ratio as in the year 2018. Furthermore, we downscaled the
computed fixed assets in buildings as the preceding computations were carried
out on the NUTS3-level, whereas the socio-hydrological model (and our analysis)
is spatially limited to the 500-yr floodplain of the Elbe river. To this end, we
analyzed the share of commercial building wealth in the floodplain relative to the
entire NUTS3 region from observed spatial data in the period 1990-2020 (Paprotny
et al. 2018a). Since this share also remained constant in the recent past (2005-2020),
we assumed a constant concentration of assets in the floodplain for the projection
study.

In reality, the fixed assets in commercial buildings in the floodplain is in-
fluenced by the physical floodplain exposure. That is, the presence/absence of
companies in the floodplain, which is described by the economic density variable
in the socio-hydrological model. We tried to couple these variables for this study
but did not observe a detectable statistical influence of the economic density
on the share of fixed assets in the floodplain (i.e., close to zero parameter ef-
fects). Therefore, we decided to consider these two dynamics as detached for
simplification. Future efforts could improve this aspect by including dedicated
model components and data that resolve the spatial distribution of wealth in the
floodplain. Similarly, we assumed independence between the hydroclimatic and
socioeconomic forcing data for simplification. The coupling of the hydroclimatic
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and GDP growth projections could lead to more accurate simulations of the flood
risk evolution.

C.4 Bayesian significance testing
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Figure C.3: Example of Bayesian significance
testing for the risk metric expected annual dam-
age (EAD). Significance is evaluated based on
the percentage of the posterior that falls within
the region of practical equivalence (ROPE). For
our application, we define the ROPE as ±0.1
times the standard deviation of the baseline
EAD around its median (blue). The red distri-
butions show two exemplary simulations with
minor and large adaptation intervention. The
risk reduction of the light red simulation is
considered insignificant under our decision cri-
terion (7.1% of posterior in ROPE), whereas
the dark red simulation is evaluated as signifi-
cant (0.1% of posterior in ROPE).

We evaluated the statistical signif-
icance of changes in flood risk (i.e.
the metrics EAD, VAR, TVAR) due
to climate, wealth, and adaptation
by means of Bayesian significance
testing. Bayesian significance test-
ing offers different indices for de-
scribing the existence and signifi-
cance of effects, all of which are
based on the posterior distribution
of a parameter or, as in this case,
the simulated risk metric values
(Makowski et al. 2019b). We used
the ’percentage in ROPE’ index that
quantifies by how much the pos-
terior distribution of a risk met-
ric shifted away from a Region of
Practical Equivalence (ROPE) due
to an effect of interest (i.e., climate,
wealth, adaptation). The ROPE de-
fines the range of risk metric val-
ues in which we considered the
risk reduction effect of the adapta-
tion measure to be negligible and
is the Bayesian equivalent to the
frequentist point null hypothesis
(Kruschke 2015; Makowski et al.
2019b). Figure C.3 shows the con-
cept of Bayesian significance testing
for an example. Based on recom-
mendations from the literature (Kruschke 2018; Makowski et al. 2019a), we
defined the ROPE as ±0.1 times the standard deviation of the risk metric value
under the baseline simulation around its median (i.e., neglecting the effect of
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interest). The amount by which the risk metric distribution under the simulation
with the effect considered shifts away from the baseline simulation is quantified
by the percentage of the posterior samples that fall inside the ROPE. This results
in a continuous index of significance, where a smaller percentage of posterior
samples in the ROPE means that the change in risk is more significant. For the
interpretation of the results, we classify the computed continuous significance
indices according to (Makowski et al. 2019b):

• ≥ 2.5% in ROPE: undecided or negligible significance

• ≥ 1% & < 2.5% in ROPE: probably significant

• < 1% in ROPE: significant

For the computational implementation of the Bayesian significance testing we
used the R-package ’bayestestR’ (Makowski et al. 2019a).
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C.5 Additional figures simulation experiments

On the following pages, we show additional risk curves and system trajectory
plots for simulations under RCP8.5.
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Figure C.4: Continuous evolution of the socio-hydrological system for the calibration (1900-2019)
and projection (2020-2100) period. The plot visualizes the influence of different hydroclimatic forcing
scenarios: baseline with present climate and ensemble percentiles under RCP8.5 climate. For the
projections, the colored lines show 200 individual trajectories (median of model uncertainty) and
dashed, black lines show the aggregate evolution across all 1000 simulated trajectories (median and
95% highest density interval of projection uncertainty). The main text (Figure 4.2) contains a similar
plot for RCP4.5.
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Figure C.6: Sensitivity of flood risk metrics towards adaptation measures (i.e., parameter changes).
For each interval, we changed the respective parameter while keeping the other parameters fixed at
their calibrated value. The interval colors allocate the socio-hydrological parameters to the model
variables that they control (pink: protection level, blue: economic density, green: awareness, orange:
preparedness). The simulations are based on RCP8.5 (50% ensemble percentile) and median wealth
projections (i.e., deflated climate and wealth uncertainty). The strength of the intervention (i.e.,
parameter change) through a adaptation measure is visualized by the boxplot chroma. Statistical effect
significance is indicated by the points’ fill colors: negligible/undecided (white), probably significant
(grey), significant (black). Risk metrics: expected annual damage (EAD), value at risk (VAR), tail
value at risk (TVAR). The main text (Figure 4.5) contains a similar plot for RCP4.5.
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Figure C.7: Potential of competing adaptation strategies (structural, integrated, non-structural)
to mitigate the expected increase in flood risk. The baseline scenario assumes fixed climate and
wealth while the ’RCP8.5 50% + Wealth’ scenario assumes hydroclimatic and wealth projections
with uncertainty. The interval colors correspond to the color coding from Figure 4 and C.6 for same
simulation runs (i.e., ’RCP8.5 50% + Wealth’ and ’Structural’). The strength of the intervention (i.e.,
parameter change) through a adaptation measure is visualized by the boxplot chroma. Statistical effect
significance is indicated by the points’ fill colors: negligible/undecided (white), probably significant
(grey), significant (black). Risk metrics: expected annual damage (EAD), value at risk (VAR), tail
value at risk (TVAR). The main text (Figure 4.6) contains a similar plot for RCP4.5.
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