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1 Introduction.

Consider a Random Field Ising Model (RFIM) on Z
d, i.e. a spin system on the lattice

Z
d whose Energy Hamiltonian in each finite volume Λ may be written as

HΛ(s) = −
∑

{i,j}∈Λ∗
sisj −

∑
i∈Λ

hisi, ∀s ∈ {±1}Z
d
,

Λ∗ denoting the set of all bonds in Λ (equipped e.g. with its periodic boundary condi-

tions), and
(
hi
)
i∈Zd being a fixed realisation corresponding to an i.i.d. family of sym-

metric random variables hi having variance σ2 . Such site disordered spin systems

have been studied in the Mathematical Physics litterature since the mid eighties. Us-

ing a rigourous renormalisation method, Bricmont and Kupiainen were able to prove in

[BK88] that the low temperature ground states associated with a 3-dimensional Ising

Model weakly perturbed through a Bernoulli Random Field display ferromagnetic or-

dering, thus (partially) settling a controversy on the lower critical dimension d of such

RFIMs; Aizenman and Wehr brought this controversy to its end shortly afterwards, by

proving in [AW90] that in 2 dimensions an arbitrarily weak disordered external Magnetic

Field leads to a breakdown of the first order Phase Transition occuring in the standard

Ising model on Z
2, so that dc = 2 . Such equilibrium properties were later examined

in a ”soft spin” setting by C. Külske, who considered a 3-dimensional RFIM where the

original discrete spins si = ±1 are being replaced by continuous spin variables xi ∈ R

. The Boltzmann factor corresponding to the inverse temperature parameter β then

becomes

exp

⎧⎨
⎩−

∑
i∈Λ

U(xi) + β
∑

{i,j}∈Λ∗
xixj + β

∑
i∈Λ

hixi

⎫⎬
⎭ (1)

for some ”double well” single site potential U : R −→ R, e.g. U(x) = Cx4 − 2Cx2,

introduced in order to obtain some resemblance with the original discrete spin setting .

In [K00], a new renormalisation method is developped in order to prove the Bricmont-

Kupiainen result in this ”unbounded spin” setting.
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The present paper is concerned with the dynamics corresponding to such contin-

uous spin RFIMs. For a fixed realisation of the external field h =
(
hi
)
i∈Zd (Gaussian or

Bernoulli), the Langevin dynamics associated with the Boltzmann factor (1) consists in

the system of interacting diffusions
(
Sh

Λ

)
given by

(
Sh

Λ

)
⎧⎪⎪⎨
⎪⎪⎩
dxit = dwit − U ′(xit)dt + β

∑
j∼i x

j
tdt + βhidt

(i ∈ Λ, t ≥ 0)

{
(wit)t≥0; i ∈ Z

d
}

denoting here an i.i.d. family of standard Brownian motions, and the

notation j ∼ i indicating that i and j are nearest neighbours in Λ; as for the initial

condition given to this system, one may for example consider any probability measure

μ0 on the real line having finite second moment, and set: Law(x|t=0) = μ⊗Λ
0 .

Fixing a bounded (arbitrarily large) time horizon [0, T ], one may then let Λ ↗ Z
d

and observe that such system of interacting diffusions obeys a Strong Law of Large

Numbers. Indeed, letting Ph
Λ,T denote the probability law corresponding to

(
Sh

Λ

)
consid-

ered during time [0, T ], one may establish that the law under dPh
Λ,T (x) of the empirical

process associated with x =
{
(xit)0≤t≤T ; i ∈ Λ

}
converges towards a Dirac mass con-

centrated at some asymptotic dynamics QT ([BAS02] contains a complete proof in the

Gaussian case, together with quenched and annealed Large Deviations estimates). In

the case of a ”Bernoulli” random field, QT may be characterised as the law of the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxit = dwit − U ′(xit)dt+ β
∑

j∼i x
j
tdt

+σβ tanh{σβ(xit − xi0 +
∫ t
0 (U ′(xiu) − β

∑
j∼i
xju)du)}dt

Law(x|t=0) = μ⊗Z
d

0 (i ∈ Z
d, 0 ≤ t ≤ T )

As may be seen immediately, the diffusions in the above system have a short range

spatial interaction, whereas this interaction is of a long range nature in time, due to the

presence of the functional

tanh{σβ(xit − xi0 +
∫ t

0
(U ′(xiu) − β

∑
j∼i

xju)du)}
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in the drift term associated with xit . Of course, letting

vit = xit − xi0 +
∫ t

0
(U ′(xiu) − β

∑
j∼i

xju)du ,

one may also define QT as the x-marginal corresponding to the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxit = dvit − U ′(xit)dt + β
∑

j∼i x
j
tdt

dvit = dwit + σβ tanh
{
σβvit

}
dt

(i ∈ Z
d, 0 ≤ t ≤ T )

In the setting of a Gaussian random field, the asymptotic dynamics QT may be similarly

characterised as the x-marginal of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxit = dvit − U ′(xit)dt + β
∑

j∼i x
j
tdt

dvit = dwit + γtv
i
tdt

(i ∈ Z
d, 0 ≤ t ≤ T, γt = σ2β2

1+σ2β2t
)

So in this setting, the white noise
{
(wit)t≥0; i ∈ Z

d
}

driving the Langevin dynamics as-

sociated with a standard ferromagnetic spin system has to be replaced by a family{
(vit)t≥0; i ∈ Z

d
}

of Ornstein-Uhlenbeck processes having a time dependent friction co-

efficient, γt = σ2β2

1+σ2β2t
.

Having performed such thermodynamic limit for the empirical process, one may

then let T −→ +∞ and wonder about the large time properties of the corresponding

asymptotic dynamics. At this stage, it should be noted that the costumary methods

relying on coercive inequalities for the associated Markov generator do not seem to be

of much help here, since we are dealing with degenerate Markov processes on
(
R

2
)Zd

,

moreover the second of these processes is also time inhomogeneous.

On the other hand, much work has been invested recently in the Statistical Me-

chanics litterature in order to implement some Cluster Expansion methods both for

interacting diffusions systems (starting with [IMS92], further developped in [MVZ00],
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[MRZ00], [DPR02]) and for some one-dimensional, non-Markovian diffusions viewed as

Gibbs measures on path space (see for example [OS99] or [LM01]). [MVZ00] consid-

ers a particular system of interacting diffusions representing a Quantum Crystal and

establishes the validity of a Cluster Expansion in space-time for this system, in the

”light mass” limit. In [MRZ00], space-time Cluster Expansions are being developped

for certain classes of systems of interacting diffusions considered in a weak interaction

regime. [LM01] establishes the validity of a Cluster Expansion method for some prob-

ability measures on path space C (R; R) which are associated with some ”reasonable”

external potentials (corresponding e.g. to a diffusion evolving in a double well U) and

with a 2 body interaction potential W of the type

W (u, t;xu, xt) = F (t− u;xu, xt)

for some functional F (s;x, y) decaying rapidly when s −→ +∞ . Finally in [DPR02], P.

Dai Pra and the first author consider a general system of interacting diffusions given by⎧⎪⎪⎨
⎪⎪⎩
dxit = dwit − U ′(xit)dt + bε

(
θitx
)
dt

(i ∈ Z
d, t ∈ R)

θit being a space-time shift on C (R; R)Z
d

:

θitx = y =
(
yju
)j∈Z

d

u≤0
, yju = xi+jt+u,

and bε : C (] −∞, 0]; R)Z
d −→ R being simply a measurable adapted functional on

C (] −∞, 0]; R)Z
d

that is both local in space and time, and that satisfies further a uniform

boundedness assumption (‖bε‖∞ ≤ ε). Of course, the (eventual) lack of regularity of bε

and its non Markovian nature show that the mere existence of a weak solution is not

at all obvious for such systems. Dai Pra and Roelly establish the existence of a weak

solution (and some of its asymptotic properties) for such systems by developping a Clus-

ter Expansion in space-time and considering the regime of small interactions (where ε is

”small”). Such method may be carried out by giving a proper reference measure to the
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path space C (R; R)Z
d

, e.g. independent bridges based on the diffusions
{
(xit)t∈R; i ∈ Z

d
}

given by

dxit = dwit − U ′(xit)dt, (2)

and by considering an Energy Hamiltonian
{
Hε

Λ×I ; Λ ⊂
finite

Z
d, I ⊂

interval
R

}
correspond-

ing to the drift term bε . For a fixed space-time window V = Λ × I, this Energy

Hamiltonian is actually given by

Hε
V (x) = −

∑
i∈(Λ∪∂Λ)

[∫
I
bε
(
θitx
)
dBi

t(x) − 1
2

∫
I
bε
(
θitx
)2
dt

]
,

the notation ∂Λ corresponding to a certain locality in space that was assumed for bε,

and the functionals Bi
t(x) being defined by

Bi
t(x) = xit − xi0 +

∫ t

0
U ′(xis)ds

Considering the partition functions Zε
V associated with such reference measure and En-

ergy Hamiltonian on Ω, one is then interested in the asymptotic behaviour of Zε
V for

large V . In [DPR02], the validity of a cluster representation in space-time was estab-

lished in the regime of small interactions (ε ≤ ε0), together with an exponential estimate

for the cluster coefficients appearing in this expansion. This means that the partition

function Zε
V may be decomposed as

Zε
V = 1 +

∑
V

R=(Γ1,...,Γn)

s∏
r=1

KΓr ,

∑
V

R
denoting a sum over all ”clusters” (compatible collection of ”contours”) contained

in the volume V , and KΓr being a coefficient such that

|KΓ| ≤ λ(ε)|Γ| ,

for some λ(ε) = O(ε) and some positive quantity |Γ| measuring the size of each contour

Γ .

Our aim in the present paper is to establish the validity of such a space-time
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cluster expansion for the asymptotic dynamics Q∞ arising in the Bernoulli RFIM (time

being now extended to the whole semi-infinite interval [0;+∞[). The novelty here is that

we have to deal with interacting diffusions (xit)
i∈Z

d

t≥0 which display a local interaction in

space as well as a long range memory (in time); moreover in the present situation, the

influence of xiu over xit does not seem to decay so rapidly for |t−u| −→ +∞ . In the case

of a Bernoulli Random Field, one may still establish the validity of a High Temperature

Cluster Expansion in Space-Time for Q∞, together with an exponential estimation of

the corresponding cluster coefficients; among other consequences, the (space and time)

correlation functions associated with Q∞ may then be shown to decay exponentially

fast in the High Temperature regime (see [MM91], § 3 in chapter 5). On the other

hand, despite various attempts, there does not seem to be any way of establishing such a

Space-Time Cluster Expansion for the asymptotic dynamics Q∞ arising in the Gaussian

setting.

The next section is dedicated to a brief derivation of the Large Deviations es-

timates and Strong Law of Large Numbers leading to the consideration of Q∞ in the

Bernoulli setting. Then in section 3 we show that Q∞ may also be presented as a

Gibbs measure in Space-Time, and establish correspondingly the validity of a Space-

Time Cluster Expansion in the High Temperature regime, together with exponential

estimates for the cluster coefficients. This implies in particular that the non-Markovian

interacting diffusions system under consideration displays exponential ergodicity in the

High Temperature regime.
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2 Spatial Large Deviations and the asymptotic dynamics

Q∞.

2.1 Gibbsian nature of the annealed dynamics.

Recall that for a fixed (Bernoulli) realisation of the random field h =
(
hi
)
i∈Zd , Ph

Λ,T

denotes the law of the interacting diffusions system
(
Sh

Λ,T

)
given through the stochastic

differentials

dxit = dwit − U ′(xit)dt + β
∑
j∼i

xjtdt + βhidt,

where i, j ∈ Λ and j ∼ i means that i and j are nearest neighbours, whereas time

t varies in a bounded interval [0, T ]. (For simplicity, we shall always assume that a

finite box Λ is being equipped with its periodic boundary conditions.) Ph
Λ,T is thus

a probability measure on path space C ([0, T ]; R)Λ, and we then define the averaged

probability measure PΛ,T via the identity

PΛ,T (A) = Eh

(
Ph

Λ,T (A)
)

holding for any Borel set A ⊂ C ([0, T ]; R)Λ (here and in the sequel, Eh denotes an

average taken with respect to the realisations of the random external magnetic field h).

It turns out that the averaged probability measure PΛ,T may also be viewed as the weak

solution associated with a new stochastic differential system.

Proposition 2.1.

For fixed Λ ⊂⊂ Z
d and T > 0,

PΛ,T = Eh

[
Ph

Λ,T

]
may be characterised as the law of the interacting diffusions system (SΛ,T ) given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxit = dwit − U ′(xit)dt+ β
∑

j∼i x
j
tdt

+σβ tanh{σβ(xit − xi0 +
∫ t
0 (U ′(xis) − β

∑
j∼i
xjs)ds)}dt

Law(x|t=0) = μ⊗Λ
0 (i ∈ Λ, 0 ≤ t ≤ T )
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Proof:

we let pT denote the probability law on C ([0, T ]; R) corresponding to the diffusion

dxt = dwt − U ′(xt)dt (2)

having initial condition μ0. We also consider the restriction of pT to the σ-algebra Ft

associated with the time interval [0, t] ⊂ [0, T ] and denote it by pt, whilst PΛ,t similarly

denotes the restriction of PΛ,T to the σ-algebra FΛ
t in C ([0, T ]; R)Λ. Then according to

the Fubini and Girsanov theorems:

PΛ,T � p⊗Λ
T ,

and

MΛ
t =

dPΛ,t

dp⊗Λ
t

is a positive p⊗Λ
T -martingale with mean 1, such that:

MΛ
t (x) = Eh

⎡
⎣exp

⎧⎨
⎩β
∑
i∈Λ

∫ t

0
(
∑
j∼i

xjs + hi)dwis −
β2

2

∑
i∈Λ

∫ t

0
(
∑
j∼i

xjs + hi)2ds

⎫⎬
⎭
⎤
⎦

= exp

⎛
⎝β∑

i∈Λ

∫ t

0
(
∑
j∼i

xjs)dw
i
s −

β2

2

∑
i∈Λ

∫ t

0
(
∑
j∼i

xjs)
2ds

⎞
⎠

× Eh

[
exp
{
β (hΛ;Aβ,t(x)) − β2t

2
(hΛ;hΛ)

}]
,

Aβ,t(x) being the Λ-dimensional vector defined by:

Aiβ,t(x) = wit(x) − β

∫ t

0
(
∑
j∼i

xjs)ds

= xit − xi0 +
∫ t

0
(U ′(xis) − β

∑
j∼i

xjs)ds

Observing that

Eh

[
exp
{
β (hΛ;Aβ,t(x)) − β2t

2
(hΛ;hΛ)

}]
=

(∏
i∈Λ

cosh
(
σβAiβ,t(x)

))
e−

σ2β2t
2

|Λ|,
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and using Ito’s formula, we then obtain:

logMΛ
t (x) =mart

∑
i∈Λ

log cosh
(
σβAiβ,t(x)

)
+ β

∑
i∈Λ

∫ t

0

⎛
⎝∑
j∼i

xjs

⎞
⎠ dwis

=mart

∑
i∈Λ

∫ t

0
σβ tanh

(
σβAiβ,s(x)

)
dAiβ,s(x) + β

∑
i∈Λ

∫ t

0

⎛
⎝∑
j∼i

xjs

⎞
⎠ dwis

=mart

∑
i∈Λ

∫ t

0
σβ tanh

(
σβAiβ,s(x)

)
dwis + β

∑
i∈Λ

∫ t

0

⎛
⎝∑
j∼i

xjs

⎞
⎠ dwis,

the sign =mart. meaning here that the two p⊗Λ
T -semimartingales under consideration (on

the left hand side and on the right hand side of the equality) have the same martingale

part. At this point Girsanov’s theorem may be applied a second time, which yields the

announced characterisation of PΛ,T . �

Naturally, one may also introduce the auxiliary variables

vit(x) = xit − xi0 +
∫ t

0

⎛
⎝U ′(xis) − β

∑
j∼i

xjs

⎞
⎠ ds

and view PΛ,T as the x-marginal of a Markov system of interacting diffusions taking

values in
(
R

2
)Λ, and the classical results of Shiga and Shimizu ([SS80]) may then be

applied to establish that such Markov system of interacting diffusions also has a unique

strong solution when extending the spatial index set to Z
d and letting t vary in [0,+∞[.

But let us first extend the spatial index set to Z
d whilst keeping [0, T ] as our time

horizon, and call QT the x-marginal of the unique strong solution associated with

(ST )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxit = dvit − U ′(xit)dt + β
∑

j∼i x
j
tdt

dvit = dwit + σβ tanh
{
σβvit

}
dt

vi0 ≡ 0, law (x|t=0) = μ⊗Z
d

0 (i ∈ Z
d, 0 ≤ t ≤ T )

QT is a probability measure on C ([0, T ]; R)Z
d

, and just as in [BAS02] we may view QT

as a Gibbs measure corresponding to a certain translation invariant family of interac-

tion functionals on this infinite-dimensional path space. Indeed, for fixed Λ ⊂⊂ Z
d
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the Radon-Nykod́ım derivative MΛ
T = dPΛ,T

dp⊗Λ
T

has a Girsanov exponent which may be

decomposed as
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logMΛ
T (x) =

∑
i∈Λ

∫ T

0
(σβ tanh(σβAiβ,s(x)) + β

∑
j∼i

xjs)dw
i
s

− 1
2

∑
i∈Λ

∫ T

0
(σβ tanh(σβAiβ,s(x)) + β

∑
j∼i

xjs)
2ds

=
∑
i∈Λ

{
∫ T

0
σβ tanh(σβAiβ,s(x))dAiβ,s(x)) − σ2β2

2

∫ T

0
tanh2(σβAiβ,s(x))ds

− β2

2

∫ T

0
(
∑
j∼i

xjs)
2ds+ β

∫ T

0
(
∑
j∼i

xjs)dx
i
s + β

∫ T

0
(
∑
j∼i

xjs)U
′(xis)ds}

=
∑
i∈Λ

{log cosh
(
σβAiβ,T (x)

)
− σ2β2

2

∫ T

0
(tanh2

(
σβAiβ,s(x)

)
+

1
1 + σ2β2Aiβ,s(x)2

)ds

+ β

∫ T

0
(
∑
j∼i

xjs)U
′(xis)ds −

β2

2

∫ T

0
(
∑
j∼i

xjs)
2ds}

+ β
∑
j∼i

[
xiTx

j
T − xi0x

j
0

]
,

which suggests that the projections of QT onto a space C ([0, T ]; R)Λ of finite-volume

configurations satisfy the DLR equations associated with a translation invariant family

Ψ = (ψA)A⊂⊂Zd of interaction functionals defined on C ([0, T ]; R)Z
d

. More precisely,

letting

Δi =
{
j ∈ Z

d : |j − i| = 0 or 1
}
,

one may successively define the translation invariant functionals ψA for each finite subset

A ⊂ Z
d through

ψ{i}(x) = β2d

∫ T

0
(xis)

2ds,

ψ{i,j}(x) = −β
{[
xiTx

j
T − xi0x

j
0

]
+
∫ T

0

(
U ′(xis)x

j
s + U ′(xjs)x

i
s

)
ds

}
when |j − i| = 1,

ψ{i,j}(x) = 2β2

∫ T

0
xisx

j
sds when |j − i| =

√
2,

ψ{i,j}(x) = β2

∫ T

0
xisx

j
sds when |j − i| = 2,

ψΔi(x) = − log cosh
(
σβAiβ,T (x)

)
+
σ2β2

2

∫ T

0
(tanh2

(
σβAiβ,s(x)

)
+

1
1 + σ2β2Aiβ,s(x)2

)ds,

(3)
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letting further ψA ≡ 0 whenever A is not of the preceding type, and the Radon-Nykod́ım

derivative MΛ
T may then be expressed as the exponential of the sum

−
∑
A⊂Λ

ψA(x),

Λ still being equipped with its periodic boundary conditions.

One may check that the infinite volume dynamics QT satisfies the DLR equations

relative to the interaction (ψA)A⊂⊂Zd , and it then remains to show there are no other

Gibbs measures corresponding to (ψA)A⊂⊂Zd and to the reference measure p⊗Z
d

T .

Proposition 2.2.

Let Q be a probability measure on C ([0, T ]; R)Z
d

, and assume that Q is a Gibbs measure

corresponding to the interaction Ψ and to the reference measure p⊗Z
d

T . Then Q is the

x-marginal of an infinite dimensional diffusion (xt,vt)0≤t≤T solving (ST ), consequently:

Q = QT .

Proof:

The identification of any Gibbs measure as a weak solution for an infinite dimensional

system of interacting diffusions follows from an integration by parts formula that was

developped and used in this context by Cattiaux, Roelly and Zessin, see in particular

Théorème 2.11 in [CRZ96]. As for the fact that Q then has to coincide with QT , it follows

from unicity in Shiga and Shimizu’s classical results (see Theorem 4.1 in [SS80]); note

that we have equipped our interacting diffusions system with a product initial condition,

therefore there can be no such phenomena as a phase transition occuring at time t = 0 .�

Since QT is a Gibbs measure corresponding to a translation invariant interac-

tion Ψ, it should be expected to satisfy some spatial Large Deviations estimates for

Λ ↗ Z
d; there are indeed several reference papers establishing Large Deviations esti-

mates for the empirical process of a spin system evolving under a Gibbs measure on the

configuration space XZ
d

(X being a Polish space), see e.g. [Com89] or [Geo93]. The next
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paragraph is devoted to a precise statement of such a spatial Large Deviations Principle

(LDP) for the Gibbs measure QT .

2.2 Large deviations of the empirical process.

For each cubic box Λ ⊂⊂ Z
d and for each configuration x ∈ C ([0, T ]; R)Λ, one may

define a probability measure on C ([0, T ]; R)Z
d

, the empirical process associated with x,

in the following way:

π̂
(Λ)
x =

1
|Λ|
∑
i∈Λ

δ
(per.x)(i)

,

where: y = per.x ∈ C ([0, T ]; R)Z
d

is a Λ-periodic configuration on Z
d whose restriction

to Λ coincides with x, and where
(
y(i)
)j

= yj+i, ∀j ∈ Z
d.

The empirical process π̂(Λ)
x thus defines a shift invariant probability measure on C ([0, T ]; R)Z

d

,

whose 1-site marginal coincides with the empirical measure associated with x. Now in

the case where x is distributed according to a product measure p⊗Λ on C ([0, T ]; R)Λ,

the law of the empirical process obeys a Large Deviation Principle (LDP) on the scale

|Λ| and according to a good rate function

H : Ms

(
C ([0, T ]; R)Z

d
)
−→ [0;+∞]

known as the specific entropy relative to p⊗Z
d

and defined on the set Ms

(
C ([0, T ]; R)Z

d
)

consisting of all shift invariant probability measures on C ([0, T ]; R)Z
d

as the following

limit:

H(π) = lim
Λ↗Zd

1
|Λ|H

(
πΛ

∣∣p⊗Λ
)
,

πΛ denoting here the Λ-marginal of π, and H
(
·
∣∣p⊗Λ

)
: M

(
C ([0, T ]; R)Λ

)
−→ [0;+∞]

being the relative entropy corresponding to p⊗Λ.

As a convenient generalisation of the preceding LDP, one may then consider the

case where x is being distributed according to the projection onto C ([0, T ]; R)Λ (say

with periodic boundary conditions) of a Gibbs measure on C ([0, T ]; R)Z
d

corresponding

to the reference measure p⊗Z
d

and to a translation invariant interaction Ψ = (ψA)A⊂⊂Zd .
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As was shown in several papers (see for example [Com89] or [Geo93]), the law of the

empirical process then also obeys a LDP, at least when the interaction Ψ satisfies an

additional boundedness assumption such as

∑
AO

‖ψA‖∞ < +∞, (4)

and the new rate functional IΨ : Ms

(
C ([0, T ]; R)Z

d
)
−→ [0;+∞] may then be defined

by

IΨ(π) = H(π) −
∫
C([0,T ];R)Zd

UΨ(x)dπ(x),

where: UΨ(x) =
∑
AO

ψA(x)/|A| .

We are in the situation where p = pT and where Ψ coincides with the interaction

(3) defined in the preceding paragraph; in such a situation, (4) does not hold true: our

translation invariant interaction Ψ has a finite range, but the individual functionals ψA

fail to be uniformly bounded. Nevertheless, one may still prove in such a context that

the law of the empirical process satisfies a LDP on the scale |Λ| and according to the

good rate functional IΨ. Of course some verifications are needed in order to make sure

that such LDP still holds true, and some further verifications are needed in order to

prove that the following Variational Principle is indeed valid for Ψ.

Proposition 2.3.

Let Q ∈ Ms

(
C ([0, T ]; R)Z

d
)
. Then: Q is a minimiser associated with the good rate

functional IΨ if and only if Q is a Gibbs measure on C ([0, T ]; R)Z
d

corresponding to the

interaction Ψ and to the reference measure p⊗Z
d

T .

Sketch of proof:

The validity of such a Variational Principle is established in ([Geo88], Chapter 15) for

Gibbs measures satisfying the summability condition (4). As for the present situation,

one may decompose the proof into the following three steps:

1o) Any Q ∈ Ms

(
C ([0, T ]; R)Z

d
)

for which the integral
∫
C([0,T ];R)Zd UΨ(x)dQ(x) is finite

15



satisfies

H(Q) ≥
∫
C([0,T ];R)Zd

UΨ(x)dQ(x)

Indeed, using the L1 version of the multidimensional ergodic theorem enables us to view

the integral in the right hand side above as

lim
Λ

1
|Λ|
∑
i∈Λ

∫
UΨ(x(i))dQ(x),

and the limit above may then be seen to coincide with

lim
Λ

1
|Λ|
∑
i∈Λ

∫
UΨ((per.xΛ)(i))dQΛ(xΛ),

where QΛ stands for the Λ-marginal of Q. Hence:

H(Q)−
∫

UΨ(x)dQ(x) = lim
Λ

1
|Λ|

∫
dQΛ(xΛ)

{∑
i∈Λ

UΨ((per.xΛ)(i)) − ln

(
dQΛ

dp⊗Λ
T

(xΛ)

)}
,

and Jensen’s inequality applied to ln then yields

∫
dQΛ

{∑
i∈Λ

UΨ((per.xΛ)(i)) − ln

(
dQΛ

dp⊗Λ
T

(xΛ)

)}
≤ ln

⎧⎪⎪⎨
⎪⎪⎩
∫
dQΛ

exp
(∑

i∈Λ UΨ((per.xΛ)(i))
)(

dQΛ

dp⊗Λ
T

(xΛ)
)

⎫⎪⎪⎬
⎪⎪⎭ = 0

for each fixed Λ.

2o) QT is such that

H(QT ) =
∫

UΨ(x)dQT (x)

In order to prove this equality, one uses the fact that QT is a Gibbs measure corre-

sponding to Ψ, so that for each finite box Λ ⊂ Z
d:

dQT (xΛ) =
∫
dQT (xΛc)

exp
{
−β
∑

Γ∩Λ �=∅ ψΓ(xΛ ∨ xΛc)
}

ZΨ
Λ (xΛc)

,

where ZΨ
Λ (xΛc) =

∫
dp⊗Λ

T (xΛ)e−β
�

Γ∩Λ�=∅ ψΓ(xΛ∨xΛc ), xΛ ∨ xΛc denoting a combination

of configurations xΛ (in the volume Λ) and xΛc (in Λc).
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Using again the L1 multidimensional ergodic theorem enables us to view both H(Q) and∫
UΨdQ as the following limit:

H(QT ) −
∫

Ω
UΨ(x)dQT (x) = lim

Λ

1
|Λ|

∫
dQT (xΛc) − ln

(
ZΨ

Λ (xΛc)
)
,

and using Jensen’s inequality applied to (− ln) and to the probability measure e−β
�

Γ∩Λ�=∅ ψΓ(x
(Λ)
Λ ) · dp⊗Λ

T (xΛ)

finishes the proof of the fact that

H(QT ) −
∫

UΨ(x)dQT (x) ≤ 0

3o) Any Q ∈ Ms

(
C ([0, T ]; R)Z

d
)

satisfying

∫
Ω
UΨdQ = H(Q) < +∞

is also such that

lim
Λ

1
|Λ|

∫
ln
(
dQΛ

dQT,Λ
(xΛ)

)
dQΛ(xΛ) = 0

(where QT,Λ and QΛ denote the Λ-marginals of QT and Q respectively).

Indeed, for each finite box Λ one has

1
|Λ|

∫
ln
(
dQΛ

dQT,Λ
(xΛ)

)
dQΛ(xΛ)

=
1
|Λ|

∫
ln

(
dQΛ

dp⊗Λ
T

(xΛ)

)
dQΛ(xΛ) − 1

|Λ|

∫
ln

(
dQT,Λ

dp⊗Λ
T

(xΛ)

)
dQΛ(xΛ)

=
1
|Λ|

∫
ln

(
dQΛ

dp⊗Λ
T

(xΛ)

)
dQΛ(xΛ) − 1

|Λ|

∫
dQΛ(xΛ) ln

{∫
dQT,Λc(xΛc)

e−β
�

Γ∩Λ�=∅ ψΓ(xΛ∨xΛc)

ZΨ
Λ (xΛc)

}

≤ 1
|Λ|

∫
ln

(
dQΛ

dp⊗Λ
T

(xΛ)

)
dQΛ(xΛ)

− 1
|Λ|

∫
dQΛ(xΛ)

∫
dQT,Λc(xΛc)

⎧⎨
⎩
⎛
⎝−β

∑
Γ∩Λ �=∅

ψΓ(xΛ ∨ xΛc)

⎞
⎠− ln

(
ZΨ

Λ (xΛc)
)⎫⎬⎭ ,

and in the right hand side of the preceding inequality the first term converges to H(Q),

while the second term has a limit that may easily be seen to coincide with
∫

Ω
UΨdQ,

using once again the multidimensional ergodic theorem.
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In view of 1o), 2o) and 3o), any Q ∈ Ms

(
C ([0, T ]; R)Z

d
)

minimising the good

rate functional IΨ has to coincide with QT . �

Using the unicity of QT as a minimiser for the good rate function IΨ, we may now

state the following Strong Law of Large Numbers (SLLN) as a corollary to the annealed

Large Deviation estimates already available.

Corollary 2.1.

P-a.s. (h), the law of the empirical process p⊗Z
d

T under dPh
Λ,T (x) converges to a Dirac

mass concentrated at QT as Λ ↗ Z
d (Ms

(
C ([0, T ]; R)Z

d
)

being equipped with the topol-

ogy of weak convergence).

Proof:

Consider a metric D on Ms

(
C ([0, T ]; R)Z

d
)

compatible with the topology of weak

convergence, and for fixed ε > 0, let

Aε =
{
Q ∈ Ms

(
C ([0, T ]; R)Z

d
)
|D (Q;QT ) ≥ ε

}
.

IΨ defines a good rate function on Ms

(
C ([0, T ]; R)Z

d
)
, so that it certainly attains its

minimum mε on Aε, and mε is positive since QT /∈ Aε. Applying the Large Deviations

upper bound to Aε enables one to choose a finite cubic box Λ0 ⊂⊂ Z
d such that

PΛ

{
x
∣∣∣π̂(Λ)

x ∈ Aε

}
≤ e−

m
2
|Λ| (5)

whenever Λ ⊃ Λ0.

On the other hand, according to Tchebitcheff’s inequality:

∀δ > 0,P
{

h
∣∣∣Ph

Λ

{
x
∣∣∣π̂(Λ)

x ∈ Aε

}
> δ
}
≤
PΛ

{
x
∣∣∣π̂(Λ)

x ∈ Aε

}
δ

As a consequence of (4), one has

∑
Λ

PΛ

{
x
∣∣∣π̂(Λ)

x ∈ Aε

}
δ

< +∞,
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and making use of the Borel-Cantelli lemma then finishes the proof. �

The preceding SLLN for the empirical process π̂(Λ)
x justifies our interest in the

dynamics QT , which may now be viewed as an asymptotic dynamics obtained by letting

Λ ↗ Z
d and performing spatial averages. As a second step, one may then extend the

time horizon to [0;+∞[ and wonder about the (space and time) decorrelation proper-

ties of the infinite-dimensional dynamics Q∞, given as the x-marginal of the stochastic

differential system

(S∞)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxit = dvit − U ′(xit)dt + β
∑

j∼i x
j
tdt

dvit = dwit + σβ tanh
{
σβvit

}
dt

Law (x|t=0) = μ⊗Z
d

0 (i ∈ Z
d, t ≥ 0)

We are going to consider Q∞ in the High Temperature regime (where β is ”small”)

and prove, among other facts, that the corresponding spin system decorrelates expo-

nentially fast in space and time, using a cluster expansion on the path space Ω =

Ms

(
C ([0,+∞[; R)Z

d
)
. To this end, we first need to present Q∞ as a Gibbs measure on

Ω in a space-time sense, the reference measure being now made of independent bridges

based on the diffusion

dxt = dwt − U ′(xt)dt (2)

3 Cluster expansion in space-time.

3.1 Presentation of Q∞ as a space-time Gibbs measure.

For each finite Λ ⊂ Z
d, let

Λ+ =
{
i ∈ Z

d |(i ∈ Λ) or (i ∼ j for some j ∈ Λ)
}

and ∂Λ = (Λ+)+ \ Λ. For any open interval I =]a1; a2[⊂ R+, define the enlargement

of I by I+ = [0; a2], and let V denote the set consisting of all space-time windows V
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of the form V = Λ × I, where Λ is a finite subset in Z
d and I an open interval in R+.

Following [DPR02], we define a forward (resp. backward) σ-field FV (resp. F̂V ) on path

space Ω = C (R+; R)Z
d

by:

FV = σ
{
ωit; i ∈ Λ++, t ∈ I+

}
,

F̂V = σ
{
ωit; (i; t) /∈ V

}
,

and the boundary σ-field ∂FV is then given by

∂FV = FV ∩ F̂V .

We now need to equip Ω with a reference specification
(
Π0
V

)
V ∈V , i.e. a Markov kernel

on (
Ω; {FV }V ∈V ; {F̂V }V ∈V

)
corresponding to a ”free” situation (where the diffusions

{
(xit)t≥0; i ∈ Z

d
}

do not interact

with each other). In the present setting, Ω may be conveniently equipped with the

reference specification
(
Π0
V

)
V ∈V defined by

∀V ∈ V, ∀A ∈ FV , Π0
V (A) = P

(
A
∣∣∣F̂V ) ,

where P = p⊗Z
d

and p is the stationary weak solution of the S.D.E.

dxt = dwt − U ′(xt)dt (2)

with initial condition dν0(x) proportional to e−2U(x)dx. In order to come to the Gibbsian

specification corresponding to the asymptotic dynamics Q∞, we then let

Λ0 =
{
i ∈ Z

d |i = O or i ∼ O
}

and define the potential Φ = (φV )V ∈V on Ω by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φΛ×I ≡ 0 whenever Λ is not a translate of Λ0

φ(i+Λ0)×I(x) = −
∫
I

(
β
∑
j∼i
xjt + σβ tanhσβB̃i

t(x)

)
dBi

t(x) + 1
2

∫
I

(
β
∑
j∼i
xjt + σβ tanhσβB̃i

t(x)

)2

dt,
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with:

Bi
t(x) = xit − xi0 +

∫ t

0
U ′(xiu)du

and

B̃i
t(x) = xit − xi0 +

∫ t

0

⎛
⎝U ′(xiu) − β

∑
j∼i

xju

⎞
⎠ du = Bi

t(x) − β

∫ t

0

⎛
⎝∑
j∼i

xju

⎞
⎠ du

At this stage, one should remark that φ(i+Λ0)×I ∈ L2(P ), so that φ(i+Λ0)×I(x) is finite

P − a.s.(x), say on Ω′ ⊂ Ω . We then define the Hamiltonian H = (HV )V ∈V on Ω′ by

HV (x) =
∑

Λ′∩Λ �=∅
φΛ′×I(x) = −

∑
i∈Λ+

[∫
I
bit(x)dBi

t(x) − 1
2

∫
I
bit(x)2dt

]
,

where:

bit(x) = β
∑
j∼i

xjt + σβ tanhσβB̃i
t(x)

Observe that Φ and H are both spatially translation invariant, and that HV is FV -

measurable. We finally let
(
ΠH
V

)
V ∈V denote the new specification given by

ΠH
V

(
ω; dω′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
ZH

V (ω)
1Ω′(ω′)e−HV (ω′)Π0

V (ω; dω′)

if 0 < ZH
V (ω) < +∞,

0 else ,

ZH
V (ω) =

∫
Ω′

exp
(
−HV (ω′)

)
Π0
V

(
ω; dω′) being the (∂FV -measurable) normalisation fac-

tor corresponding to the space-time window V and to the boundary condition ω . So

for each ω ∈ Ω, ΠH
V

(
ω; dω′) is a probability measure on Ω whose support is included

in Ω′; one then says that a probability measure Q on Ω is a space-time Gibbs state

corresponding to the specification ΠH
V

(
ω; dω′) whenever the identity

Q
(
A
∣∣∣F̂V ) = ΠH

V (A) , Q− a.s., (6)

holds true for each V ∈ V and all A ∈ FV .

The asymptotic dynamics Q∞ may now be presented as a limit corresponding to
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the finite-dimensional dynamics Q̃n given by

Q̃n (dxn) = exp {−HVn(x)} ⊗
i∈Λ++

n

p|FIn
(dxi),

Vn = Λn × In being here a sequence of bounded space-time windows increasing up to

Z
d×R+ (so that Λn ↗ Z

d , In =]0;Tn[, Tn → +∞), and xn denoting the restriction of a

configuration x to Λ++
n ×I+

n . To be more precise, one may extend each of the probability

measures Q̃n to Ω by letting

Qn(dx) = exp (−HVn(x))P (dx),

and observe that Qn converges weakly to Q∞. On the other hand, each of the probability

measures Qn is actually a mixture of the local specifications ΠH
Vn

, which shows that the

weak limit Q∞ is a Gibbs measure corresponding to ΠH =
(
ΠH
V

)
V ∈V (see Lemma 2

and Proposition 1 in [MRZ00]). Moreover we may now derive a Cluster Expansion in

space-time for some finite-volume approximation Qn, with n arbitrarily large, and look

for some exponential bounds for the corresponding contour coefficients: as long as these

bounds depend only on the small parameter β, such Cluster Expansion will also be valid

for Q∞ itself. The main consequence of interest to us is that one may then establish

that the interacting diffusions
{
(xit)t≥0; i ∈ Z

d
}

driven by Q∞ decorrelate exponentially

fast in space and time.

Theorem 3.1.

There exists an β0 > 0 such that for each 0 < β ≤ β0, one may find positive constants

c, C for which:

∣∣∣∣
∫

Ω
F (x)G (x) dQ∞ (x) −

∫
Ω
FdQ∞ ·

∫
Ω
GdQ∞

∣∣∣∣ ≤ C · e−c·D(V1;V2)

whenever F,G : Ω −→ R are measurable with respect to FV1 , FV2 respectively and such

that

‖F‖∞, ‖G‖∞ ≤ 1 ,
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D(V1;V2) standing for a measure of the distance separating the bounded space-time win-

dows V1 = Λ1 × I1 and V2 = Λ2 × I2 .

Considering bounded functionals F (x) which depend on x only through xΛ
t ={

(xit); i ∈ Λ
}

yields the following exponential ergodicity statement :
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Corollary 3.1.

For each 0 < β < β0, there exist positive constants c, C such that

∣∣∣∣
∫
F
(
xΛ
t

)
F
(
xΛ
t+T

)
dQ∞ −

∫
F
(
xΛ
t

)
dQ∞ ·

∫
F
(
xΛ
t+T

)
dQ∞

∣∣∣∣ ≤ C · e−c·T

whenever F : Ω −→ [0; 1] is a bounded measurable functional of x depending on x only

through xΛ
t =

{
(xit); i ∈ Λ

}
, for some t and some finite box Λ ⊂ Zd (c and C do not

depend on Λ).

In the next subsection, we establish the validity of a cluster expansion in space-time

for Q∞ considered in the High Temperature regime, and give exponential estimates for

the corresponding contour coefficients in Proposition 3.2. . The above theorem may

then be seen to follow from the validity of such exponential estimates, as was established

in a general setting in [MM91] (§3 in Chapter 3).

3.2 Construction of a cluster expansion for Q∞.

For simplicity, we first consider the Markovian case where σ2 = 0 and derive a space-

time Cluster Expansion for some finite-volume approximation Qn following the method

developped by P. Dai Pra and the second author in [DPR02]. In our case some extra

care has to be taken in the exponential estimation of the contour coefficients, since the

interaction term

β

⎛
⎝∑
j∼i

xjt

⎞
⎠ dt

appearing in the drift of our stochastic differential is not a uniformly bounded one.

We then consider the non-Markovian setting where σ2 > 0; in this case the notion of

contour has to be modified, but in the end one may again derive a satisfactory Cluster

Expansion in space-time, where the validity of some exponential estimates for the contour

coefficients may be seen to follow from the uniform boundedness of the original Random

Field variables hi ∈ {±σ}.
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3.2.1 Markovian case (σ2 = 0).

We recall that ν0 denotes the probability measure on R yielding a reversible equilibrium

measure for the diffusion

dxt = dwt − U ′(xt)dt (2)

and equip the stochastic differential system S∞ with the initial condition ν⊗Z
d

0 . For fixed

y, z ∈ R, we further let Wy,z
I (dω) denote a stochastic bridge associated with the diffusion

(2) considered on the interval I . Fixing a > 0, we then let In = [0;na], whereas (Λn)n≥1

is defined recursively through the relations

Λ0 =
{
i ∈ Z

d ||i| = 0 or |i| = 1
}
, Λn+1 = Λ+

n , ∀n ∈ N

In this Markovian context, the partition function Zn associated with Qn

Zn =
∫

Ω
exp {−HVn(x)}P (dx)

may be decomposed as the following integral over yn ∈ R
(n+1)|Λn+2|:

Zn =
∫

R
(n+1)|Λn+2|

Zn(yn)
∏

k∈Λn+2,0≤j≤n−1

qa(ykj+1; y
k
j ) ⊗

k∈Λn+2,0≤j≤n
ν0(dykj ), (7)

qa(ykj+1; y
k
j )dν0(ykj ) denoting a transition probability density on any time interval of

length a for the diffusion (2) considered in its stationary regime, and Zn(yn) being

defined by

Zn(yn) =
∫
Ω exp {−HVn(x)} ⊗

k∈Λn+2,0≤j≤n−1
Wyk

j ,y
k
j+1

Ij
(dxk)

=
∏

0≤j≤n−1

∫
Ω exp

{
−HΛn×Ij(x)

}
⊗

k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk)

=
∏

0≤j≤n−1

∫
Ω

∏
k∈Λn+1

exp
{
−φ(k+Λ0)×Ij (x)

}
⊗

k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk)

(8)

Analysing the spatial product

∏
k∈Λn+1

exp
{
−φ(k+Λ0)×Ij (x)

}
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first, and letting φk;j = φ(k+Λ0)×Ij , one obtains:

∏
k∈Λn+1

exp {−φk;j(x)} =
∏

k∈Λn+1

{1 + (exp {−φk;j(x)} − 1)}

= 1 +
∑
L

∑
k∈L

(exp {−φk;j(x)} − 1)

= 1 +
∑
s≥1

∑
γj
1 ,...,γ

j
s

∏s
m=1

∏
k∈γj

m

(exp {−φk;j(x)} − 1) ,

where
∑
L

denotes a sum over all nonempty subsets of Λn+1, and where
∑

γj
1 ,...,γ

j
s

stands for

a summation over all maximal ”Λ0-connected” components of L× Ij , so that

L× Ij =
(
γj1 × Ij

)
∪ . . . ∪

(
γjs × Ij

)
,

the latter decomposition being the finest one for which

(γjr + Λ0) ∩ (γjr′ + Λ0) = ∅, ∀1 ≤ r �= r′ ≤ s.

Integrating back (and still using the Markov property) we have:

Zn(yn) =
n−1∏
j=0

∫
Ω

⎧⎪⎨
⎪⎩1 +

∑
s≥1

∑
γj
1,...,γ

j
s

s∏
m=1

∏
k∈γj

m

(
e−φk;j(x) − 1

)⎫⎪⎬
⎪⎭ ⊗

k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk)

The time product
n−1∏
j=0

qa(ykj+1; y
k
j )

may also be expanded as

1 +
∑
τ

∑
Ij∈τ

(
qa(ykj+1; y

k
j ) − 1

)
= 1 +

∑
p≥1

∑
τk
1 ,...,τ

k
p

p∏
u=1

∏
Ij∈τk

u

(
qa(ykj+1; y

k
j ) − 1

)
,

where
∑
τ

runs over all non-ordered collections of intervals of the type

Ij = [ja; (j + 1)a] , 0 ≤ j ≤ n− 1,

and where the summation
∑

τk
1 ,...,τ

k
s

is taken over all pairwise non-intersecting collections

of consecutive time intervals τku = {(k; Ij), (k; Ij+1), . . . , (k; Ij+r)} .
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time

Γ

Γ

1

2

Figure 1: Two non-intersecting aggregates Γ1 and Γ2

Inserting both of these expansions in the expression (5) obtained for Zn, one obtains:

Zn =
∫

R
(n+1)|Λn+2|

∏n−1
j=0

∫
Ω

⎧⎨
⎩1 +

∑
s≥1

∑
γj
1 ,...,γ

j
s

∏s
m=1

∏
k∈γj

m

(
e−φk;j(x) − 1

)⎫⎬⎭ ⊗
k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk)

∏
k∈Λn+2

⎛
⎝1 +

∑
p≥1

∑
τk
1 ,...,τ

k
p

∏p
u=1

∏
Ij∈τk

u

(
qa(ykj+1; y

k
j ) − 1

)⎞⎠ ⊗
k∈Λn+2,0≤j≤n

ν0(dykj )

(9)

so that

Zn = 1 +
∑
v≥1

∑
Γ1,...,Γv

v∏
l=1

KΓl , (10)

where

Γl =
{
γj11 , . . . , γ

js
s ; τk11 , . . . , τ

kp
p

}
is a nonempty collection of contours γ and temporal series τ satisfying

(
γjmm + Λ0

)
∩
(
γ
jm′
m′ + Λ0

)
= ∅, τku

u ∩ τku′
u′ = ∅, ∀m �= m′, u �= u′

The coefficient KΓ attached to each aggregate Γ is given as
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KΓ =
∫

R
(n+1)|Λn+2|

∏s
m=1

∫
Ω

∏
k∈γj

m

(
e−φk;j(x) − 1

)
⊗

k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk)

∏p
u=1

∏
Ij∈τk

u

(
qa(yku

j+1; y
ku
j ) − 1

)
⊗

(k;j)∈[Γ]
ν0(dykj ),

(11)

so that

Zn = 1 +
∑
v≥1

∑
Γ1,...,Γv

v∏
l=1

KΓl , (12)

the sum
∑

Γ1,...,Γv

running over arbitrary finite collections of 2 by 2 non intersecting aggre-

gates, and
[
Γ
]

denoting the set of all vertices (k; j) appearing in Γ. Letting further Γ

denote the set consisting of all temporal edges appearing in Γ, one may then establish

the validity of an exponential upper bound of the type

|KΓ| ≤ λ(β)|Γ|,

for some λ(β) = O(β) .

Indeed, using a generalised Hölder inequality (stated and proved as Lemma 5.5 in

[MVZ00]), one may first show that

|KΓ| ≤
∏s
m=1

∏
k∈γjm

m

(∫
F kjm(yn)ρ1 ⊗

l∈(k+Λ0)
ν0(dyljm)ν0(dyljm+1)

)1/ρ1

·
∏p
u=1

∏
Ij∈τku

u

(∫ ∣∣∣qa(yku
j+1; y

ku
j ) − 1

∣∣∣ρ2 ν0(dyku
j )ν0(dyku

j+1)
)1/ρ2

,

the function F kj (yn) being defined on R
(n+1)|Λn+2| by

F kj (yn) =
(∫

Ω
|e−φk;j(x) − 1|ρ1 ⊗

l∈(k+Λ0)
Wyk

j ,y
k
j+1

Ij
(dxk)

)1/ρ1

and the exponents ρ1, ρ2 satisfying

2(1 + 2d)
ρ1

+
2
ρ2

≤ 1.

This enables one to control the spatial interactions and the time interactions separately;

more precisely, one may then prove the existence of upper bounds M1 = M1(a, β),M2 =
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M2(a, β) > 0 depending both on the time scale a and on the inverse temperature para-

meter β, and for which(∫
F kj (yn)ρ1 ⊗

l∈(k+Λ0)
ν0(dylj)ν0(dylj+1)

)1/ρ1

≤M1, (13)

(∫ ∣∣∣qa(ykj+1; y
k
j ) − 1

∣∣∣ρ2 ν0(dykj )ν0(dykj+1)
)1/ρ2

≤M2

(
∀k ∈ Z

d,∀j ∈ N

)
, (14)

whereas

lim
β↘0

M1(a(β), β) = lim
β↘0

M2(a(β), β) = 0 (15)

when the time scale a is chosen properly as a function of the inverse temperature para-

meter β.

More precisely, using ultracontractivity of the reference diffusion (2) enables one

to establish the existence of positive constants a0 and C for which(∫
|qa(y;x) − 1|ν0(dy)ν0(dx)

)1/4

≤ C · a−1/2

as soon as a ≥ a0 (see the end of the proof of Proposition 5 in [DPR02]); as we shall

see, the choice of a time scale a(β) = β−1/2 turns out to be a convenient one (cf proof

of Proposition 3.1), and in this case one obtains an upper M2 of the type C · β−1/4 in

(15). As for (14), it may be seen to follow from the basic estimate derived below.

Lemma 3.1.

Fix U(x) = Cx4 − 2Cx2 for some C > 0, and recall that Ij = [ja; (j + 1)a] ⊂ R+.

There exists a constant K > 0 depending only on C and on the dimension d of

the lattice and for which

∫
Ω
e
α
�
Ij

��
l∼k

xl
t

�2

dt
P (dx) ≤ KeKα

2a2 , ∀α > 0,∀j ∈ N,∀k ∈ Z
d.

Proof:

Let us first observe that

∫
Ω e

α
�
Ij

��
l∼k

xl
t

�2

dt
P (dx) ≤

∫
Ω e

2αd·�
l∼k

�
Ij

(xl
t)

2dt
P (dx)

=
(∫

Ω e
2αd

�
Ij

(xk
t )2dt

P (dx)
)2d

,
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so that: ∫
Ω
e
α
�
Ij

��
l∼k

xl
t

�2

dt
P (dx) ≤ (f(2αd))2d

for f defined through

f(z) =
∫
ez
�

I
ω2

t dtp(dω),

p being the probability distribution associated with the reference stationary diffusion

(2), and I ⊂ R+ being any interval of length a. Observing that

f(z) =
+∞∑
n=0

zn

n!

∫ (∫
I
ω2
t dt

)n
p(dω),

we then obtain:

|f(z)| ≤
+∞∑
n=0

|z|n
n!

∫ (∫
I
ω2
t dt

)n
p(dω)

≤
+∞∑
n=0

|z|n
n!

an−1

∫ ∫
I
ω2n
t dtp(dω)

=
+∞∑
n=0

(a|z|)n
a · n!

(∫
ω2n

0 p(dω)
)
× a

=
+∞∑
n=0

(a|z|)n
n!

∫
R

x2ne−2U(x)dx,

having used Hölder’s inequality for the first inequality and then the stationarity of our

reference diffusion process (2).

Hence:

|f(z)| ≤
∫

R

∑
n

(ax2|z|)n
n!

e−2U(x)dx

=
∫

R

eax
2|z|−2U(x)dx

= e
2C
�
1+ a|z|

4C

�2

·
∫

R

e
−2C

�
x2− a|z|+4C

4C

�2

dx

Setting A = a|z|+4C
4C and taking into account the fact that the two-parameter integral

I(A,C) =
∫

R

e−2C(x2−A)2

dx

satisfies

sup
A≥1

I(A,C) = K1(C) < +∞,
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we then have:

∫
Ω
e
α
�

Ij

��
l∼k

xl
t

�2

dt
P (dx) ≤ |f (2αd)|2d

≤ K1(C)
(
e2C(1+ aαd

2C )2)2d

= K1(C)e4Cd(1+
aαd
2C )2

,

which finishes the proof. �

The proof of inequality (14) may now be seen to follow from the estimate given

in the preceding Lemma, and we give the full details of such a derivation in the non-

Markovian case where σ2 > 0 (see Proposition 3.1 and its proof).

3.2.2 Non-Markovian case (σ2 > 0).

In order to obtain a satisfactory Cluster Expansion in the non-Markovian setting where

σ2 > 0, we shall now take into account the fact that the SLLN characterising Q∞ as an

asymptotic dynamics is of a self-averaging nature.

Lemma 3.2.

For any space-time window V ∈ V and for x ∈ Ω′, the (space-time) Boltzmann weight

e−HV (x) = exp

⎧⎨
⎩
∑
i∈Λ+

[∫
I
bit(x)dBi

t(x) − 1
2

∫
I
bit(x)2dt

]⎫⎬
⎭

may also be presented as

e−HV (x) = Eh

⎡
⎣exp{

∑
i∈Λ+

[∫
I
cit(x;h)dBi

t(x) − 1
2

∫
I
cit(x;h)2dt

]
}

⎤
⎦ ,

where cit(x;h) is given by

cit(x;h) = β

⎛
⎝∑
j∼i

xjt + hi

⎞
⎠ .
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Proof:

The proof is similar to that of Proposition 2.1 . Indeed, considering first the particular

case where V = {i} × [0, t], one may introduce

M i
t (x) = e

� t
0 b

i
u(x)dBi

u(x)− 1
2

� t
0 b

i
u(x)2du

and observe that
(
M i
t (x)

)
t≥0

is a positive martingale with mean 1 under dP (x), such

that

logM i
t (x) =mart.

∫ t

0
biu(x)dBi

u(x)

(using here again the notation introduced in the proof of Proposition 2.1). Remembering

the expressions given for the functionals bit(x), Bi
t(x) and B̃i

t(x), we then have

logM i
t (x) =mart.

∫ t
0

(
β
∑
j∼i
xju

)
dBi

u(x) + σβ
∫ t
0 tanh

(
σβB̃i

u(x)
)
dBi

u(x)

=mart.

∫ t
0

(
β
∑
j∼i
xju

)
dBi

u(x) + σβ
∫ t
0 tanh

(
σβB̃i

u(x)
)
dB̃i

u(x)

=mart.

∫ t
0

(
β
∑
j∼i
xju

)
dBi

u(x) + log cosh
(
σβB̃i

t(x)
)
,

the last equality following from Itô’s formula. Now the second summand in the latter

term may also be presented as

log Eh

[
eβh

iB̃i
t(x)
]

,

which establishes Lemma 2.1 in the particular case where V = {i} × [0, t]. The general

case may be proved along the same lines. �

This representation of the Boltzmann weights turns out to be very convenient for our

purposes, at least in the Bernoulli setting; one may indeed replace the identity (7)

obtained for Zn by an expected value

Zn = Eh

⎡
⎣∫

R
n|Λn+2|

Zh
n (yn)

∏
k∈Λn+2,0≤j≤n−1

qa(ykj+1; y
k
j ) ⊗

k∈Λn+2,0≤j≤n
ν0(dykj )

⎤
⎦ (16)
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where, correspondingly to (8), Zh
n (yn) is now given by

Zh
n (yn) =

∏
0≤j≤n−1

∫
Ω

∏
k∈Λn+1

exp
{
−φh

(k+Λ0)×Ij (x)
}

⊗
k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk. ) , (17)

and where

φh
(k+Λ0)×Ij (x) = −

∫
I

(
β
∑
l∼k

xlt + βhk

)
dBk

t (x) +
1
2

∫
I

(
β
∑
l∼k

xlt + βhk

)2

dt .

Following step by step the development given precedingly in the Markovian case, one

then obtains

Zn = 1 +
∑
v≥1

∑
Γ1,...,Γv

Eh

[
v∏
l=1

Kh
Γl

]
, (18)

the coefficient Kh
Γl being now given by

Kh
Γ =

∫
R

(n+1)|Λn+2|
∏s
m=1

∫
Ω

∏
k∈γj

m

(
e−φ

h
k;j(x) − 1

)
⊗

k∈Λn+2

Wyk
j ,y

k
j+1

Ij
(dxk. )

∏p
u=1

∏
Ij∈τk

u

(
qa(yku

j+1; y
ku
j ) − 1

)
⊗

(k;j)∈[Γ]
ν0(dykj ) ,

(19)

for each aggregate Γ =
{
γj11 , . . . , γ

js
s ; τk11 , . . . , τ

kp
p

}
.

In order to view the average

Eh

[
v∏
l=1

Kh
Γl

]

as a product running over some new aggregates, one should then partition the collection

Γ1, . . . ,Γv into a convenient collection of (two by two disjoint) subsets

Θ1 =
{
Γe1,1, . . . ,Γen1 ,1

}
, . . . ,Θṽ =

{
Γe1,ṽ, . . . ,Γenṽ

,ṽ
}

(ṽ ≤ v)

To be more precise, one may define the ”spatial support” associated with

Γ =
{
γj11 , . . . , γ

js
s ; τk11 , . . . , τ

kp
p

}

as

supp
Zd (Γ) =

{
k ∈ Z

d : ∃1 ≤ m ≤ s, (k; jm) ∈ γjmm

}
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Γ 2

Γ 1

time

Z 2

Figure 2: Two aggregates Γ1 and Γ2 having disjoint supports

and then decompose
{
Γ1, . . . ,Γv

}
into a union

{
Γ1, . . . ,Γv

}
= ∪ṽl=1Θl ,

each of the classes

Θl =
{

Γe1,l, . . . ,Γen,l
}

being maximal among all subsets of
{
Γ1, . . . ,Γv

}
satisfying:

∀1 ≤ n′ ≤ n,∃n′′ �= n′, suppZd (Γen′ ) ∩ suppZd (Γen′′ ) �= ∅

One thus obtains:

Eh

⎡
⎣ v∏
l=1

s∏
m=1

∏
k∈γjm

m

(
e−φ

h
k,jm

(x) − 1
)⎤⎦ =

ṽ∏
l=1

Eh

⎡
⎣ n∏
n′=1

s∏
m=1

∏
k∈supp(γjm

m )

(
e−φ

h
k,jm

(x) − 1
)⎤⎦ ,

so that

Zn = 1 +
∑
ṽ≥1

∑
Θ1,...,Θṽ

ṽ∏
l=1

K̃Θl , (20)
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the new cluster coefficients K̃Θ being now given by

K̃Θ =
∫

R
(n+1)|Λn+2|

∏
(k;Ij)∈Θ

(
qa(ykj+1; y

k
j ) − 1

)
⊗

(k;j)∈[Θ]
ν0(dykj ){∫

Ω Eh

[ ∏
(k;j)∈[Θ]

(
e−φ

h
k,j(x) − 1

)]
⊗

(k;Ij)∈Θ
Wyk

j ,y
k
j+1

Ij
(dxk. )

}

= Eh

[∫
R

(n+1)|Λn+2|
∏

(k;Ij)∈Θ

(
qa(ykj+1; y

k
j ) − 1

)
⊗

(k;j)∈[Θ]
ν0(dykj ){∫

Ω

∏
(k;j)∈[Θ]

(
e−φ

h
k,j(x) − 1

)
⊗

(k;Ij)∈Θ
Wyk

j ,y
k
j+1

Ij
(dxk. )

}]
(21)

For a fixed realisation of h, one may then apply the generalised Hölder inequality stated

as Lemma 5.5 in [MVZ00], first to the integral

∫
Ω

∏
(k;j)∈[Θ]

(
e−φ

h
k,j(x) − 1

)
⊗

(k;Ij)∈Θ
Wyk

j ,y
k
j+1

Ij
(dxk. ),

whose absolute value is bounded from above by the product

∏n
n′=1

∏s
m=1

∏
k∈supp(γjm

m )

(∫
Ω

(
e−φ

h
k,jm

(x) − 1
)ρ

⊗
l∈(k+Λ0)

Wyl
jm
,yl

jm+1

Ijm
(dxl.)

)1/ρ

=
∏n
n′=1

∏s
m=1

∏
k∈supp(γjm

m )

Fh
k,jm

({
ylj

}l∈k+Λ0

j=jm,jm+1

)

for ρ = 4(2d+1) (since each of the edges (k; Ij) cannot appear in more than 2d+1 of the

contours γ or τ pertaining to the collection Θ); one may secondly apply this generalised

Hölder inequality to

∫
R

(n+1)|Λn+2|

n∏
n′=1

⎧⎨
⎩

p∏
u=1

(
qa(yku

j+1; y
ku
j ) − 1

) s∏
m=1

∏
k∈supp(γjm

m )

Fh
k,jm

({
ylj

}l∈k+Λ0

j=jm,jm+1

)⎫⎬
⎭ ⊗

(k;j)∈[Θ]
ν0(dykj ) ,

whose absolute value is bounded from above by

∏n
n′=1

⎧⎨
⎩∏s

m=1

∏
k∈supp(γjm

m )

(∫
R2

∣∣∣qa(yku
j+1; y

ku
j ) − 1

∣∣∣4 dν0(yku
j )dν0(yku

j+1)
)1/4

⎫⎬
⎭⎧⎨

⎩∏s
m=1

∏
k∈supp(γjm

m )

(∫
Fh
k,jm

({
ylj

}l∈(k+Λ0)

j=jm,jm+1

)ρ
⊗

l∈(k+Λ0)
dν0(yljm)dν0(yljm+1)

)1/ρ
⎫⎬
⎭
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(since each of the space-time vertices (k; j) appears at most 2(1 + 2d) times as an ex-

tremity of an edge pertaining to Θ).

Controlling the term(∫
R2

∣∣∣qa(yku
j+1; y

ku
j ) − 1

∣∣∣4 dν0(yku
j )dν0(yku

j+1)
)1/4

(22)

requires of course no new ingredient, and we are left with the control of the expected

value

Eh

⎡
⎣ n∏
n′=1

s∏
m=1

∏
k∈supp(γjm

m )

(∫
Fh
k,jm

({
ylj

}l∈(k+Λ0)

j=jm,jm+1

)ρ
⊗

l∈(k+Λ0)
dν0(yljm)dν0(yljm+1)

)1/ρ
⎤
⎦ ,

where

Fh
k,jm

({
ylj

}l∈(k+Λ0)

j=jm,jm+1

)ρ
=
∫

Ω

(
e−φ

h
k,jm

(x) − 1
)ρ

⊗
l∈(k+Λ0)

Wyl
jm
,yl

jm+1

Ijm
(dxl)

Using the uniform boundedness of the variables hi, one may actually give a satisfactory

upper bound that is valid almost surely in h (having assumed β is small enough).

Proposition 3.1.

There exists a positive constant β0 for which the following holds true: whenever 0 < β ≤

β0, one may choose a time scale a = a(β) > 0 so that for ρ = 4(2d + 1):(∫
Ω
Fh
k,jm

({
ylj

}l∈k+Λ0

j=jm,jm+1

)ρ
⊗

l∈k+Λ0

dν0(yljm)dν0(yljm+1)
)1/ρ

= O(β)

uniformly in k, jm and h.

Proof:

Let us recall that qt(y2; y1) denotes the transition density of the reference diffusion

dxt = dwt − U ′(xt)dt (2)

with respect to its invariant reversible measure ν0: qt may be defined through the equal-

ities

p {xt ∈ dy2 |xt=0 = y1 } = qt(y2; y1)ν0(dy2),
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and since the single-site potential U has been defined as U(x) = Cx4 − 2Cx2, we know

that the diffusion (2) is ultracontractive (cf [KKR93]). Hence: qt(y2; y1) converges to 1

uniformly in y1, y2 ∈ R, and a fortiori

∀A > 1,∃a0 ∈ R+,∀a > a0,∀y1, y2 ∈ R, qa(y2; y1) ≥
1
A
.

Choosing a time-scale a > 0 that is large enough, we may thus replace the integral(∫ (∫
Ω

(
e−φ

h
k,jm

(x) − 1
)ρ

⊗
l∈(k+Λ0)

Wyl
jm
,yl

jm+1

Ijm
(dxl.)

)
⊗

l∈(k+Λ0)
dν0(yljm)dν0(yljm+1)

)1/ρ

by(∫ (∫
Ω

(
e−φ

h
k,jm

(x) − 1
)ρ

⊗
l∈(k+Λ0)

Wyl
jm
,yl

jm+1

Ijm
(dxl.)

)
⊗

l∈(k+Λ0)

dν0(yljm)dν0(yljm+1)

qa(yljm , y
l
jm+1)

)1/ρ

,

thereby loosing only a constant factor A(2d+1)/ρ. But the latter integral coincides with(∫
Ω

(
e−φ

h
k,j(x) − 1

)ρ
P (dx)

)1/ρ

,

and we then have:∫
Ω

(
e−φ

h
k,j(x) − 1

)ρ
P (dx) =

∫
Ω

(∫ 1

0
φh
k,j(x)e−τφ

h
k,j(x)dτ

)ρ
P (dx)

=
∫

[0,1]ρ

∫
Ω
(φh
k,j(x))ρe−(τ1+...+τρ)φh

k,j(x)P (dx)dτ1 . . . dτρ

=
∫

[0,1]ρ

dρ

dzρ
T h(z)

∣∣∣∣
z=τ1+...+τρ

dτ1 . . . dτρ,

where

∀z ∈ C, T h(z) =
∫

Ω
e−zφ

h
k,j(x)P (dx)

According to Cauchy’s formula:∣∣∣∣ dρdzρ T h(z)
∣∣∣∣ ≤ ρ!

rρ
sup

|ζ−z|=r
|T h(ζ)|,

whenever T h is holomorphic on an open domain containing B(z; r), and we also know

that for ζ = ξ1 + ιξ2, ξ1, ξ2 ∈ R,

∣∣∣T h(ζ)
∣∣∣ ≤ ∫

Ω
|e−ζφ

h
k,j(x)|P (dx) =

∫
Ω
e−ξ1φ

h
k,j(x)P (dx)
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Factorising e−ξ1φ
h
k,j(x) into

exp

(
ξ1

∫
Ijm

ckt (x;h)dBk
t (x) − ξ21

∫
Ijm

ckt (x;h)2dt

)
· exp

(
(ξ21 − ξ1

2
)
∫
Ijm

ckt (x;h)2dt

)

and using the Cauchy-Schwarz inequality together with the P -martingale property of

the square of the first factor then yields:∫
Ω

(
e−φ

h
k,j(x) − 1

)ρ
P (dx) ≤ ρ!

rρ

(∫
Ω
e
(2ξ2−ξ) �

Ijm
ckt (x;h)2dt

P (dx)
)1/2

,

ξ > 0 being chosen so that (ξ2 − ξ
2) is larger than any of the (ξ21 −

ξ1
2 )’s appearing when

using an auxiliary parameter ζ such that |ζ − (τ1 + . . . + τρ)| = r .

At this stage the integrand

e
(2ξ2−ξ) �Ijm

ckt (x;h)2dt

may be estimated from above by

e(4ξ
2−2ξ)aσ2β2

e
(4ξ2−2ξ)β2

�
Ijm

��
l∼k

xl
t

�2

dt
,

and replacing further (4ξ2 − 2ξ) by 4(ρ+ r)2, it thus remains to control

ρ!
rρ
e4(ρ+r)

2aσ2β2

⎛
⎝∫

Ω
e
4(ρ+r)2β2

�
Ijm

��
l∼k

xl
t

�2

dt
dP (x)

⎞
⎠

1/2

Taking a(β) = β−1/2 and using Lemma 3.1 enables us to replace the above term by

fβ(r) =
ρ!
rρ
e4(ρ+r)

2σ2β3/2 ·K · e16Kβ(ρ+r)4 ,

and min
r>0

fβ(r) may be seen to decrease to 0 as β ↘ 0 by setting e.g. rβ = β−1/ρ =

β−1/4(2d+1), for which one obtains the existence of K̃ such that

fβ(rβ) ≤ K̃β

for all β small enough. This finishes the proof. �

We are now in a position to give exponential estimates for the cluster coefficients K̃Θ

appearing in the decomposition (20).
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Proposition 3.2.

There exists an β0 > 0 for which the following holds true: whenever 0 < β ≤ β0, one may

choose a time scale a = a(β) > 0 so that each of the cluster coefficients K̃Θ appearing

in the decomposition (20) of the partition function Zn satisfies

∣∣∣K̃Θ

∣∣∣ ≤ C · (λ(β))|Θ| ,

|Θ| denoting the number of temporal edges (k; Ij) appearing in the cluster Θ, and λ being

such that

lim
β↘0

λ(β) = 0

Proof:

This is a simple consequence of inequality (15) and of Proposition 3.1, yielding an ex-

ponential control of the contributions associated with ”time contours” and ”spatial con-

tours” respectively. �

As a consequence of such exponential control of K̃Θ, we may further assert that the

asymptotic dynamics Q∞ is exponentially ergodic in a space-time sense (Theorem 3.1).

The link between such exponential control of the cluster coefficients K̃Θ and an expo-

nential decay of correlations under the Gibbs measure Q∞ may be found in [MM91] (see

Lemma 1 in §2 of Chapter 3).
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