
Technische Berichte Nr. 58

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

MDE Settings in SAP:

A Descriptive Field

Study

Regina Hebig, Holger Giese

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 58

Regina Hebig | Holger Giese

MDE Settings in SAP

A Descriptive Field Study

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/6019/
URN urn:nbn:de:kobv:517-opus-60193
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60193

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-192-9

mailto:verlag@uni-potsdam.de

MDE Settings in SAP:
A Descriptive Field Study

Regina Hebig and Holger Giese

System Analysis and Modeling Group
Hasso-Plattner-Institut at University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam
forename.surname@hpi.uni-potsdam.de

Abstract

MDE techniques are more and more used in praxis. However, there is still a lack of detailed
reports about how different MDE techniques are integrated into the development and combined
with each other. To learn more about such MDE settings, we performed a descriptive and
exploratory field study with SAP, which is a worldwide operating company with around 50.000
employees and builds enterprise software applications. This technical report describes insights
we got during this study. For example, we identified that MDE settings are subject to evolution.
Finally, this report outlines directions for future research to provide practical advises for the
application of MDE settings.

1 Introduction

Today, software is build in various ways, starting with the simplest case, where a single program-
ming language is used and after a compilation step the developed software can be applied. In
more complex cases the developer has to deal with different representations of a system. For
example, in the model-driven engineering (MDE) approach a system is first given in an abstract
representation, which is refined with more and more information during each development step.
Thereby, the language in which the system is represented might change several times. Thus,
not a single programming language, but a whole set of (modeling-) languages, tools and their
interaction have to be considered than talking about productivity in software development.

Within SAP the combination of languages, tools, and development activities is called program-
ming model. However, this name can be misleading, since it is often used as synonym for pro-
gramming paradigm. We will use in this report the following terms: We use the term MDE setting
to describe the used combination of tools, languages, automated activities (transformations, gen-
erations, validations, interpretation, compilations), and manual activities (modeling, programming,
or configuring). We could observe that, automated and manual activities are usually performed
in a certain order (customary praxis), which we call fine granular process. MDE settings together
with the associated fine granular processes are object of study of this survey.

Currently, little is known about how MDE settings look like in practice, and how they influence
the fine granular process, performance of the development or even changeability of software.
However, it is known that MDE settings can also have negative effects [16]. Thus, it is difficult to
ensure in practice that an optimal MDE setting is used.

1

R. Hebig and H. Giese

The goal of this exploratory field study is to learn how MDE settings and the corresponding fine
granular processes look like in industry on the example of SAP. In short term, documenting MDE
settings explicitly, can facilitate discussions and exchanging of experiences between developers.
In future the documentation of MDE settings will help us to better understand how the software
quality attributes are influenced by MDE settings and to develop support for planning MDE set-
tings as well as changes to them. A further long term goal is to identify best practices and to
support the identification of potential for the improvement concrete MDE settings.

1.1 Foundation: influences on productivity

A main motivation in research on software development techniques, technologies, and languages
is the desire to enhance the productivity of a software company. As collected in [2, 3] Balzert’s
Lehrbuch der Softwaretechnik much research was done to understand and define the term pro-
ductivity, exploring its relation to attributes, such as quality and quantity of software, development
effort, and development time.

In [26] Sneed presents his devil’s square (Figure 1) to illustrate that it is hard to enhance produc-
tivity in the short term. Thereby, the devil’s square illustrates productivity as a plane, spanned
by the parameters quality, quantity, costs, and time. Sneed assumes that the expanse of the
plane, does not change easily. E.g. actions applied to enhance quantity of the produced software
within the same time and equal costs will reduce quality of the product. Enhancing quantity of the
software without decreasing quality can, in short term, only be reached by adding costs and/or
time.

�������

�	
�
���

��������

�

��

� �

�

�

�

�

� �

�

��	���������

Figure 1: Sneed’s devil’s square after [26]

Consequently, further work was done, to answer the question how productivity can be enhanced,
i.e. how one of the four parameters can be optimized, while keeping the others stable. As cited
in [3], Maxwell et al. sums up that intensive usage of tools and modern methods can increase
productivity [20]. Further, research was done on the question whether reuse can reduce required
time and resources without reducing quality and quantity of produced software [11]. Boehm
presents several actions to enhance productivity in [4]. Finally, Balzert subsumes that process
improvements might improve productivity [2].

As indicated with Sneed’s devil’s square, productivity is influenced by other factors, which are
presented in [3] on the basis of Basili (see Figure 2). Thereby, productivity is influenced by value
of the produced software (i.e. quality and quantity or the software) and costs of the software

2

1 Introduction R. Hebig and H. Giese

(which is among other things influenced by development time and staff costs). Further, complexity
of the software to be build influences the level of difficulty, which further influences the costs.

��������	��

�����

���������
 �������

�����

����� ����

������
�

����� ���������

��������

���������

�������
�

���������

����������

�����

Figure 2: Influencing factors on productivity after Basili (after Balzert [3]).

The introduction of MDE is associated with many well founded hopes concerning improvement
of quality, quantity, costs, or time and, thus, improvement of productivity. There are different ar-
guments why MDE or MDA should break through the devil’s square, by improving one parameter
without worsen the others.

��������	��

�����

���������
 �������

�����

����� ����

������
�

����� ���������

��������

���������

�������
�

���������

����������

�����

��������������

��������
���������������������

 ���������

!�������������
 ����������

"��������������
�#��$�������

Figure 3: Influencing factors after Basili (after Balzert [3]), extended with software quality param-
eters and MDE concepts: separation of concerns, automation and abstraction.

Therefore, the model-driven engineering comes up with three concepts, which are separation
of concerns, automation, and abstraction. For example, in the OMG’s MDA standard [24] the
concerns separated are business aspects, computational aspects and platform aspects. Separa-
tion of concerns is thereby reached by using different models/artifacts for expressing the different
concerns. Abstraction is often associated with easing the definition of certain aspects. These
three concepts influence so called software quality parameters, e.g. reusability, maintainability,
changeability, portability, and interoperability, which further influence Basili’s influencing factors
(quality, quantity, cost, time, and complexity). Figure 3 summarizes the relation between Basili’s
influencing factors and the discussed MDE concepts.

As McIlroy’s law tells us: ’Software reuse reduces cycle time and increases productivity and qual-
ity’ [9]. Thus, reuse mainly helps to reduce development time, without reducing quality, quantity,

3

R. Hebig and H. Giese

or enhancing costs. Further, reuse can help to improve quality, since faults is reused model or
code parts are more probable to get discovered with each reuse. Consequently, reused model
and code parts are more mature.

Due to the need that software can be used over a long time, main aspects of productivity are
maintainability and changeability. Thus, reducing time and costs for changes and maintenance
is important for productivity. Further, maintenance helps to preserve quality of a software prod-
uct. In addition, customizability, a special form of changeability, helps to enhance the validity of
the software for different customers. Portability enhances productivity, if the same system has
to be build on different platforms, since costs and time can be saved. Automatically achieving
interoperability can save time and costs and, thus, can improve productivity.

1.2 Structure of this report

The rest of this report is structured as following. In the next Section 2 we examine related work
concerning MDE’s influence on productivity. In Section 3 we introduce the design of this study.
The results of the study are summarized in Section 4. Next in Section 5 we discuss the results of
the study with respect to related work. In Section 6 we introduce general insights that we gained
during our study. Finally, we discuss treats to the validity of the studies results in Section 7 and
conclude in Section 8, where we further show up resulting research directions.

2 Related Work

There are two kinds of literature dealing with the question whether and how MDE influences
productivity. First, we want to have a look at literature that comes up with arguments for the
influence of the MDE concepts on software quality attributes, without providing an empirical proof.
Afterwards, we have a look at studies and experience reports that aim to prove positive influences
of MDE on productivity empirically.

2.1 Theoretical explanations of MDE concept’s influence on
software quality goals

In literature theoretical considerations to argue why the MDE concepts separation of concerns,
automation, and abstraction influence software quality parameters can be found.

Stahl et al. [27] argue that reusability can be supported by a meaningful separation of concerns,
as a model that is separated from certain aspects can be reused if these aspects change. For
example, a main motivation of OMG’s MDA [24] is the reuse of the platform independent model
(PIM) for building the software for multiple different platforms, since platform aspects are not
specified in the PIM. They further argue that automation leads to reuse, since implementation
knowledge is reused in automated transformations or generations. Finally, Gruhn [12] argues that
raising the level of abstraction on a domain specific layer leads, in addition to reuse of technical
knowledge, to reuse of domain knowledge.

Also for changeability and maintainability Stahl et al. [27] argues for the supporting role of sep-
aration of concerns. Thereby, separation of concerns ensures that changes do not have to be
applied in all models of the system. As Kelly et al. [17] argues, a setting where platform aspects

4

2 Related Work R. Hebig and H. Giese

are separated and introduced by a fully automated transformation allows reaction to changes
in platform requirements, since only the transformation has to be changed and reapplied to all
build systems. Further, Kleppe et al. [18] and Gruhn et al. [12] argue that abstract models
that are automatically transformed to code, solve the problem of keeping a consistent high level
documentation. A good documentation is necessary to ensure maintainability and changeability.

Portability is one of the main declared goals of OMG’s MDA [24]. Kleppe et al. [18] argue that
separation of concerns and automation enable changes of the underlying platform.

The third declared goal of OMG’s MDA [24] is interoperability. Kleppe et al. [18] argue that
this is addressed in MDA since platform aspects are automatically generated by transformations,
and, thus, automated generation of platform bridges, such as ’PSM bridges’ or ’Code bridges’, is
possible on the same information.

Further, Kleppe et al. [18] and Stahl et al. [27] argue that abstraction directly helps to handle
complexity and they argue that automation has a direct influence on the time required, as each
generated part of code, does not need to be written by hand [18, 27]. Finally, as Kelley et al. [17]
argue, quality is supported, since DSLs reduce through abstraction the possible mistakes that
can be made during implementation.

2.2 Related field studies

There are several studies, dealing with the question how model-driven engineering or model-
driven development influences software development. The results of most of them are summa-
rized in the review paper ’Where is the proof?’ of Mohaghegi et al. [22]. This paper shows that
there is no final proof for most of the common assumptions about MDE’s influence. E.g. there are
studies supporting the assumption that MDE enhances productivity, while other studies state that
MDE reduces productivity. Also a positive influence on software quality is not empirically proven.
Several studies were published after this review paper. E.g. in [13] the influence of model size
and model complexity on effort during development and software quality is examined on the basis
of a case study. However the authors do not focus on the combination of different models or MDE
techniques.

Hutchinson et al. performed several interviews to get a broad view of experiences with MDE
in different domains. In [15] they present excerpts of three of these interviews. However, they
focus mainly on social and organizational factors of MDE. Further this group runs currently a
questionnaire [29] to examine how MDE is used today and to identify factors which influence the
success of MDE. In contrast to our study, this questionnaire, too, does not focus on the process
of applying MDE techniques during development, but of social and organizational aspects.

In [14] the impact of model-driven development on the process is examined on a case study. The
authors identified fourteen factors (mainly social and organizational) that influence the process.

Further, in [21] the usage of modeling techniques, methods and languages is examined on a
case study in automotive domain. In [28] experiences with MDE in Motorola (domain of mobile
devices) are described. They report an improvement of quality and productivity, but also a lack
of modeling skills. A further experience paper is [23], which subsumes experiences made in
different case studies, one of them also within SAP.

In contrast to the study presented in this paper, most existing studies or experience reports do
not focus on the design of MDE settings (i.e. on the interplay of different MDE technologies).
Instead, often social and organizational factors are in focus.

5

R. Hebig and H. Giese

3 Design of the Study

This survey was performed in form of a descriptive field study. Our focus is the usage of MDE
techniques during development. As indicated in Figure 4 a setting of such MDE techniques
(MDE setting) bases on different languages and tools, implementing different transformations,
code generation or supporting the developers. Tools and transformations are provided by tool
developers and used by developers to create software, which is further used by users.

We are interested in the fine granular processes of applying manual and automated activities,
such as model transformation or code generation, during development. In SAP these processes
include many activities and are interwoven with each other. Thus, it was necessary to chose
perspectives to capture manageable parts of these processes. Therefore, we chose one of two
perspectives, respectively. The first perspective is the one of the creation of an important in-
termediate product (e.g. ’creating a business object’), i.e. a part of the software. The second
perspective is the one of a development tool within the MDE setting, supporting specific parts of
an implementation process. An example for the latter case is the perspective of the tool Service
Implementation Workbench (SIW), which supports developers in generating a web service on the
basis of a WSDL file and existing components.

��������

�������������	���������
���

	
������
��

�����	

����

��������	�

��������	�

��������������	�

������� ���� ������� ����

Figure 4: Roles using and creating an MDE setting for the creation of software

As a first step, we had to identify appropriate MDE settings for the study. Therefore, our two
contact persons within SAP provided us with a list of different objects. Thereby, they chose MDE
settings which are known for including the usage of models and MDE techniques.

As a next step, our contact persons introduced us for each MDE setting to one or two interview
partners. Thereby, they either chose persons with experience in development using this object
of study (i.e. this part of the fine granular process). In this case, the interview partners are SAP
developers or consultants preparing SAP software for the customer. Otherwise, for some objects
from the development tool perspective the interview partners are tool developers (or software
architects) that built the corresponding tool.

From the objects chosen by our contact persons, we included each one in the study, where we
could find one or two interview partners that agreed to support us in the survey. Altogether, we
got a set of six objects for this study.

The investigation of each object of study started with an initial telephone interview with the main
interview partner (as illustrated in Figure 5). All telephone interviews lasted between thirty and
sixty minutes. For the initial telephone interviews we used the technique of structured interviews
[1], which was identified to be one of the most effective elicitation techniques in [8]. To provide a
frame, we started the interviews with a short introduction of our goals and interests. As recom-
mended for structured interviews we prepared a set of question groups.These question groups
cover the following key topics (considering artifacts as models or source code):

6

3 Design of the Study R. Hebig and H. Giese

���������	

���������

	
�����

���
��

���
��

���������

�����

��������� ��
����� ��
���

�
�

������

����
����

���
�
��

��
���

�
�

������

���
�����
��

����� ��

!������
��������

�����
������� ��

Figure 5: Design of the study

• Used tools as well as modeling- and programming languages

• Artifacts that are used and created during development

• Existing and created relations between artifacts

• Used activities to change, enrich, translate, generate, merge, compile, or interpret artifacts

• Degree of automation of activities

• Order of activities

• Performed (semi-) automated quality assurance activities on artifacts

• Responsible roles for different activities

For four of the objects of study the interview partners provided us, additionally to the interviews,
with documentation material, such as usage scenarios. In a next step, we analyzed the infor-
mation collected in the initial interview and the documentation material. Thereby, we structured
the collected information and used UML activity diagrams ([25]) to model a process of the cap-
tured activities. We annotated the activities with required input artifacts and produced output
artifacts. In addition, we created a textual description of the results, to capture information about
how relations between artifacts change, degree of automation of the activities, responsible roles,
and which tools and languages are used. Analyzing, structuring, capturing, and modeling the
information took one of us approximately between one and one-and-a-half day of work.

Due to several reasons captured information always contains ambiguities and insufficiencies to
a certain degree. One example reason is that e.g. the role developer in Figure 4 is not for each
object of study an SAP member. E.g. in some cases the tool in the MDE setting is sold as a
product by SAP. Consequently, terms like ’developer’ or ’product’ can be misleading. To handle
such ambiguities and insufficiencies, we provided our findings to the interview partners to get
feedback. Thereby, we performed between four and ten rounds of feedback per object of study.
Each round of feedback required us to formulate appropriate questions to tackle the ambiguities.
Subsuming each round of feedback took one of us approximately one day of work, for formulation
of questions and adoption of the feedback into our findings.

To evaluate our results, we formulated for each project a report that was provided to the interview
partners and discussed our findings in a further telephone interview. In three cases this led to
some further small changes in the models. Preparing the final report together with the interview

7

R. Hebig and H. Giese

took one of us approximately another day of work. Subsuming, we spend in average nine days
of work on the investigation of one object of study.

Inspired by grounded theory [7], we compared the transcripts and models of the different objects
of study. Thereby we identified some more general insights. Finally, we confronted our interview
partners with these general insights to validate them. In addition, we used a small questionnaire
to ask for motivations of the introduction of the different objects of study and for the software
quality parameters that are aspired to be supported.

4 Results of the Study

As mentioned above, we captured six objects of study. During examination of the objects of
study, we also captured the fine granular process associated with the MDE setting. As usual
for processes, the actual executions vary concerning the number of artifacts to be created, the
number of cycles of repetitions or iterations during development and the actual execution order
of parallel activities. Furthermore, for two of the MDE settings and their fine granular processes
(SIW and BRF) we captured variations. We found three reasons for that. First, the activities of
MDE settings and the fine granular process can vary with the system where the product should
be integrated into. Second, the activities and their order can vary with the role performing them
(costumer or developer). Finally, the activities and their order can vary with different available
artifacts (e.g. does a web service description already exist?).

4.1 Objects of study

The six captured objects of study are summarized in Table 1. First, there is the MDE setting
used to develop business objects (an SAP specific type of components that captures functionality
specific to a certain business need) for the feature package 2.0. This object of study (referred to
as BO in the following) describes an old development approach, which was used from 2004 on
ca. 100 times in nine teams. Today BO is substituted by a new development approach, through
substitution of tools. Motivation for the initial introduction of BO was to enhance quality, but also
to reach transparency and a unified procedure for business object development.

The second object of study is the MDE setting for the development of web services with the tool
service implementation workbench (referred to as SIW in the following). Since ca. 2003, the tool
allows development of a service on the basis of a web service description (formulated in web
service description language (WSDL) [6]) and supports reuse of existing functionality. Goal for
the introduction was the prevention of redundant implementations and the corresponding effort
for maintenance. SIW is used throughout the whole SAP Business Suite. By today SIW was
partially redesigned.

Further, objects of study describe the development of user interfaces and there coupling to ser-
vices or business objects. On the one hand, there is the development of a user interface for SAP
Net Weaver applications using the tool visual composer [5]. This object of study is referred to
as VC in the following. VC is used since 2006 ca. four times at the consulting company FIVE1
GmbH & Co. KG. Motivation for its introduction was a faster development as well as the ability to
create prototypes. Between the different versions VC was often extended.

On the other hand, there is the development of a user interface and application based on business
objects using the tool Oberon. This object of study is referred to as Oberon in the following.
Oberon was used since 2008 ca. 120 times. Motivation for the introduction of Oberon was the

8

4 Results of the Study R. Hebig and H. Giese

simplification of user interface technologies that are used in context of By-Design. In addition,
the flexibility was enhanced through usage of similar models at design time and runtime. In this
context, the number of tools was reduced and different areas of development were integrated into
one tools.

The fifth object of study deals with configuration of business processes using the tool business
rule framework (BRF+). This object of study is referred to as BRF in the following. The customer
specific configuration can be seen as part of development of software systems, too. However,
BRF can be applied by experts at the customer’s side. Since 2008, BRF was used at least 70
times within SAP standard applications and adapted multiple times. Motivation for the introduction
was cost reduction, reaching transparency and agility of development.

The last object of study allows the definition of a mapping between data from different tools. The
extraction of data, mapping, and generation of a HTML report is then performed automatically
and periodically during runtime. The tool that supports this definition and automated execution
is Business Warehouse. Therefore, this object of study is referred to as BW in the following.
Since 1996, BW has ca. 19 000 customers. BW was introduced to substitute the predecessor
EIS (Execution Information System), with the motivation to enhance performance and to enable
consolidation of data from multiple systems. By today, BW was changed multiple times, according
to changes of the underlying language (ABAP) or to integrate different transformations.

Object of
Study

Full Name Approximate number of
applications

BO Development of Business Objects for the feature
package 2.0

ca. 100 times in nine
teams

SIW Development of web services using the tool service
implementation workbench

used throughout whole
SAP Business Suite

VC Development of a user interface for SAP Net Weaver
applications using the tool visual composer

ca. 4 times at FIVE1
GmbH & Co. KG

Oberon Development of a user interface and application
based on business objects using the tool Oberon

ca. 120 times

BRF Personalization of business processes using the
tool business rule framework

at least 70 times within
SAP standard applica-
tions

BW Definition and automated execution of reporting with
the tool BW

ca. 19 000 customers

Table 1: Objects of this study

4.2 Artifacts

In the observed MDE settings different types of models and artifacts are used. However, it is
difficult to count the number of used languages for two reasons. First, it is not in each case
easy to determine whether something can be count as language. The main reason is that not
each language has an explicit meta model, such as the rule set definition language of BRF.
One of our interview partners get to the heart of it by asking whether something that is only
supported by a single tool is a language. Another example is a setting were specific artifacts are
called ’models’ explicitly, but interview partner would not call the formal definition of the artifacts
structure a language definition. In consequence, some languages have no explicit name (e.g. the
user interface models in Oberon have no official name).

Second, it is not easy to determine what category a language is of (i.e. general purpose language
(GPL), domain specific language (DSL), textual or graphical modeling language). For example,
one of our interview partners rated Excel as GPL, while another did not. One answer just explicitly

9

R. Hebig and H. Giese

excluded DSL. One language was described as a textual modeling language which is graphically
modeled. WSDL (web service description language) was not rated as belonging to one of the
above mentioned categories (‘WSDL defines messages, not their content (objects)’ (transcription
translated from German)). ABAP was rated as programming language or GPL. In one case the
answer was ‘neither of them [GPL, DSL, or modeling language], programming language; most
likely GPL’ (transcription translated from German) This illustrates that the usually used terms
are not sufficient to express differences that developers experience. Finally, HTML was barely
rated as DSL (‘can be called a DSL (enforcedly)’ (transcription translated from German)) by the
interview partner, who communicated that he rather would call HTML a rendering technology.

The following results base on the rating of our interview partners (shown in Tabel 2). We found
two general purpose languages or programming languages: ABAP and Excel (which in one case
rated as GPL and in one case not). Further, we found five domain specific languages (DSLs):
HTML, status and action models (S&A Models), UI Component Definition Language, MDRS lan-
guage for meta data, and Business Object Definition Language (BODL). We found five modeling
languages: BPMN, Generic Modeling Language (GML), data-flow diagrams, UML Plus, and ESR
specific Business Object Model. Finally, we identified four further artifact types: WSDL artifacts
(web service description language), context variables with DDIC-Reference (Data-Dictionary),
Info Objects (defined in ABAP Dictionary), and rulesets (Regelsprache und Modellierungssprache).

Object of
Study

GPL / Program-
ming language

DSL Modeling language No category assigned

BO • ABAP
• Excel files

• S&A • UML Plus
• ESR specific meta
model for business
objects models

SIW • ABAP • Context variables with
DDIC-Reference
• WSDL

VC • GML
• BPMN

• Excel files

Oberon • UI Component Def-
inition Language
• MDRS
• BODL

BRF • ABAP • BPMN • Regelsprache und
Modellierungssprache

BW • ABAP • HTML • data-flow diagrams • Info Objects (defined in
ABAP Dictionary)

Table 2: Used languages

4.3 Activities

We captured between ten and twenty activities per object of study. During this elicitation we cap-
tured activities of different degrees of detail. Thereby, we differentiate between minimal changes
or transitions and complex changes or transitions. Within a minimal change or transition only one
or a hand full of connected model elements are changed or transcribed to another artifact, re-
spectively. In contrast, within a complex change or transition a potentially big part of the model is
changed or transcribed to another artifact, respectively. Activities that represent minimal changes
and transitions are often described in manuals and tutorials, e.g. for learning to handle a tool.
However, for getting an overview and analyze an MDE setting they might be too fine granular.
An examples for such minimal activities in the study is the creation of a floorplan using Oberon.

10

4 Results of the Study R. Hebig and H. Giese

Here, a standard floorplan is automatically initialized in form of a template that can later be filled
with information. During the study, we captured ca. 28 of such minimal activities.

Considering the more complex activities we captured nine fully automatically supported genera-
tion and transformation activities. This contains automated activities, where a complex change is
performed on a model (or artifact), or automated activities, where on the basis of one or more in-
put models (artifacts) at least one output model (artifact) is created or manipulated with a complex
transition from the input models to the created/manipulated model. Thereby, we count variants
of an automated transformation or generation as one activity in this statistic. Further, we cap-
tured eight complex semiautomated generation or transformation activities, e.g. the generation of
a proxy using the Service Implementation Workbench (SIW), and one complex semiautomated
template instantiation.

In addition, three of the objects of study contain, besides tests, three fully automated and three
semiautomated verification activities. In SIW it is verified that a mapping between service de-
scriptions in different languages is complete. In BO a set of checks is applied on the business
object model. Finally, in BRF certain analysis steps are applied of the rule sets. In addition, the
BRF rule sets can be simulated.

Further, we wanted to know, whether the resulting system implementations are compiled or inter-
preted (results shown in Table 3). Interestingly, the answer was only in two cases clearly ’com-
piled’ (SIW) or ’interpreted’ (Oberon). Within the object of study BO the ABAP code is compiled,
but the additionally used S&A models are interpreted.

For the user interface in VC it depends on the use case, whether interpretation is sufficient or
compilation has to be performed. For BW it was reported that a mix of both, compilation and
interpretation, is used. Thereby, the share of interpretation grows over time, as the dynamic parts
of the underlying ABAP increased. Similarly, for BRF we got the answer that a mix is used for the
created ABAP code as well as for the created rules.

Object of
Study

automated generation and trans-
formation activities

compilation / interpretation

BO 1 ABAP code is compiled ;
S&A models are interpreted

SIW 3 compiled
VC 2 mixed (depends on the use case)
Oberon 0 interpreted
BRF 2 mixed
BW 1 mixed

Table 3: Distribution of automated generation and transformation activities as well as distribution
of compilation and interpretation

4.4 Occurrence of MDE concepts

As described in Section 2.1 MDE comes up with three concepts, which are separation of con-
cerns, automation, and abstraction. We searched for occurrences of separation of concerns,
automation, and abstraction in the captured objects of study. As there is no measurement how
more abstract a language is compared to another language, we could not captured to which de-
gree abstraction is used. Further we have no measures to which share of the resulting artifacts
is generated. Thus, we used very simple criteria to locate the three MDE concepts, based on the
capture artifacts and activities.

11

R. Hebig and H. Giese

Therefore, we first need the notion of an automation boundary, which denotes an automated
activity or set of automated activities that are not followed by any manual activity to retrieve an
executable product and consume artifacts that are not created fully automatically. In classical
code centric development, this automation boundary is e.g. the compilation. However, there
are only some MDE approaches where no automated activities exists ’before’ the automation
boundary.

It becomes clear that all three MDE concepts already influence each other. Intuitively abstraction
might be understood as the difference between artifacts before and after the automation bound-
ary, as information that occurs only in artifacts behind this automation boundary is abstracted
away from the developers perspective. However, generation or transformation steps might oc-
cur in MDE already before the automation boundary (i.e. followed by manual activities that work
on the basis of the automatically produced output). This makes the occurrence of abstraction
more diffuse. Thus, we further considered where content is moved (automatically) between two
artifacts and whether the different roles of developers involved in the MDE setting. We consider
separation of concerns as parallel existence of artifacts that might reference each other, but are
not created on the basis of each other.

4.4.1 Separation of concerns

All object of study contain examples for separation of concerns. In BO behavioral parts of the
business object can be defined separately in S&A models, while the rest of the system in imple-
mented in ABAP code. The separation is used to enable that certain parts of the business object
can be implemented at a higher layer of abstraction (i.e. the parts that can be implemented using
S&A models are separated from the parts that have to be implemented in ABAP).

In both, VC and Oberon the user interface models are separated from the functionality using the
service concept. Additionally, in Oberon the basic UI model is separated from change transac-
tions, that define changes on the UI model. In the SIW the development of a service is sepa-
rated from holding the corresponding web service description consistent in the enterprise service
repository (ESR). Thus, service description is separated from the code. BRF separates the rule
definition from the process definition. Finally, in BW the info source is separated from the trans-
formation description for the data, which is further separated from the layout definition. Here the
separated artifacts reference each other.

4.4.2 Abstraction

In BO several forms of abstraction are used. Initially, ARIS models are used to specify parts of
the system. On these models also some verification activities are performed. Later these ARIS
models are transformed to ESR models, which are automatically generated to the less abstract
ABAP code. Further, S&A models are used to describe parts of behavior more abstract than with
ABAP code. In VC a BPMN model can be used to generate an initial version of a user interface
model, which can be counted as abstraction. In both, VC and Oberon, the user interface models
are quite abstract representations. However, it is difficult to measure on the basis of the given
data how abstract they are.

In the SIW a proxy is generated on the basis of the more abstract WDSL file. Further, in BRF
from the perspective of the user the process definition is abstracted away, as they have only to
deal with the rule definition language. However, this abstraction is to be implemented manually
by the developers that define where in the process the business rule service is called. Finally, in

12

4 Results of the Study R. Hebig and H. Giese

BW the InfoSource might be seen as an abstract view of the technology specific data abstraction.
As in BRF, however, this abstract representation is implemented manually.

4.4.3 Automation

In BW and BRF we captured automated activities. However, these automated activities are
located at or behind the automation boundary. Similarly, in Oberon we captured no automated
activity before the automation boundary. The user interface models there are directly interpreted.
In VC the generation of a UI model on the basis of a BPMN model is located before the automation
boundary. The generation of code as well as the generation of a WSDL file in the SIW are
both located before the automation boundary. Finally, in BO the generation of code and the
instantiation of templates are located before the automation boundary.

4.4.4 Length of activity chains

Finally, we have a short view on the lengths of the activity chains, i.e. the number of activities that
have to be executed when an artifact is changed in order to retrieve an executable system again.
Thereby we count only activities before the automation boundary. In BO there are quite many
activities that have to be performed when the ARIS model is changed (up to eight activities plus
three to four activities for local test and integration test). Also in the SIW the number of activities
that have to be performed again if e.g. a WSDL file changes, is quite high (five to six activities).
In contrast, in BW changes in the most artifacts do not require the execution of many activities
(including the application of the change: one to two activities). Only changes in the container
artifact require more complex changes (up to five activities). The number of activities that have
to be executed if a process is changed in BRF is quite long, too (four to six activities, performed
by different roles). However, again for specific artifacts - in this case for rules and decision tables
- the number of activities that have to be executed again is low (one activity for applying the
change and one to three checking activities). For both, Oberon and VC, changes can be directly
introduced into the system (except for some complex cases), as the user interface models are
directly interpreted or compiled, respectively.

4.5 Software quality parameters

As a longterm goal of this study is also to better understand the influence of MDE settings on
software quality parameters, such as changeability or portability, we further asked our interview
partners whether different software quality parameters hold for the different settings.

Changeability or the ability to easily change certain parts of the system was indicated for all six
objects of study. Thereby, for BO the ease of change was evaluated by our interview partner
as restricted to elements, since many changes lead to additional implementation effort. For
BRF agility was named as motivation, while the corresponding interview partner named decision
tables as artifacts that can be easily changed. For BW the high number of APIs (application
programming interface), was named as a reason for a high changeability.

Maintainability was indicated for four objects of study, which are VC (since version 7.1+), SIW,
BO, and Oberon. Reusability or the ability to easily reuse certain artifacts or parts of the system
was indicated for all six objects of study, too. Thereby, for VC reusablility was named for version
7.1+ or higher. For BW the DataExatractors and InfoSources are named as easily reusable
artifacts. For BRF the reusability is indicated for decision tables.

13

R. Hebig and H. Giese

For four of the objects of study customization or personalization, respectively, were indicated.
Thereby personalization is similar to customizability, but special to single persons instead on
whole customers. These objects of study are Oberon, BW, and BRF. For VC personalization
was named as goal since version 7.1+. For BRF personalization was rated as an underlying
aspect.

Interoperability was named property for VC and SIW. Finally, portability was indicated for BO
as well as for Oberon, where the models were already interpreted for different platforms (e.g.
Blackberry, iPhone, Android, HTML, and Silverlight). The described data are summarized in
Table 4. It has to be noted that this list does not indicated or include information to which degree
positive effects on the different software quality parameters are experienced in practice.

Object of Study: BO SIW VC Oberon BRF BW
Changeability X X X X X X
Maintainability X X X(since version

7.1+)
X

Reuse X X X(since version
7.1+)

X X X

Customization X X X
Personalization - X(since version

7.1+)
X (X)

Interoperability X X
Portability X - X

Table 4: Software quality parameters indicated for the different objects of study. The minus sign
indicates that our interview partners explicitly denied that these properties hold.

4.6 Subsumption

Subsuming, there is a mixture of languages and models used during development and MDE tech-
niques such as generation, transformations, or verification are applied. There are objects of study
where models are compiled to code, while other objects of study contain a direct interpretation
of the models or even a mix of both. Nevertheless, the automated activities are in some objects
of study interwoven strongly with manual activities (i.e. automated activities occur before the au-
tomation boundary). For example, while the business object model (formulated in UML Plus) is
automatically tested in BO, it has to be translated manually to the ESR specific meta model af-
terwards. Other objects of study contain a better separation of activities. E.g. in BW the manual
activities for defining the mappings are applied first and the automated activities (extraction of
data and generation of HTML) are applied afterwards during runtime. In Appendix A the detailed
descriptions for single objects of study can be found.

5 Discussion

In the following we discuss the above presented results with respect to related work. Thereby, we
first discuss whether theoretical explanations for MDE’s influence on productivity are sufficient to
explain our results. Next, we compare our results to some of the findings of related studies.

14

5 Discussion R. Hebig and H. Giese

5.1 Discussion of correlation between occurrence of MDE concepts and
aspired software quality goals

Here we want to discuss, whether the influences between MDE concepts (separation of con-
cerns, abstraction and automation) and the software quality parameters that are described in
related work (Section 2.1) are sufficient to describe how the captured objects of study support
the indicated software quality parameters.

For all objects of study changeability was indicated as an software quality parameter that is pos-
itively influenced. Thereby, in four of the objects of study for the parts of the system that should
be changeable two observations hold. On the one hand, these parts are separated into extra
artifacts. On the other hand the length of the activity chain is very short (i.e. not much activities
have to be reapplied when the change is applied). This holds for BW, where the layout might
be changed easily independent of the data extraction, BRF, where rules and decision tables can
be changes without accessing the rest of the process, as well as for VC and Oberon, where the
models of the user interfaces are separated from the functionality and can be changed directly. In-
terestingly, within SIW the number of activities that have to be applied if e.g. a WSDL file changes
is quite high (the proxy has to be regenerated, than the code has to be regenerated and further
adapted manually). Nonetheless, changeability is claimed as property of the SIW. Looking further
into this discrepancy we learned that the generation steps within the SIW are implemented such
that they support protected regions. Thus, in case of the application of a change, not the whole
manual adaption of the generated code has to be implemented newly. Thus, it seems that SIW
includes mechanisms to reduce potentially negative influences on changeability. In contrast, al-
though changeability was named as property for BO, it was admitted that this only holds for some
element, while other changes require further implementation effort. This fits with the observation
that the length of activity chains to apply a change e.g. to the BO model in ARIS within BO is
quite long.

Maintainability was indicated for Oberon, VC, SIW, and BO. Thereby, maintainability which is a
special case of changeability, seems to manifest in the MDE settings similarly, i.e. mainly by short
lengths of activity chains. As mentioned above this holds for Oberon and VC, while in the SIW
the protected regions help to reduce the effort than applying a change. Again it seems for us that
maintainability is only partially supported for BO.

Customizability and personalization, where named as properties of Oberon, BRF, and BW. In all
three cases, the parts that can be customized or personalized are specified in separate artifacts
which trigger short activity chains. Thus, like maintainability, customizability and personalization
can thereby be seen as special cases of changeability. In BW the layout can be customized,
in BRF the rules and decision tables are separated from the process and in Oberon change
transactions can be defined parallel to the basic user interface model and are consumed by the
interpreter. For VC from version 7.1+ on personalization was indicated as property. Thereby,
changes in the user interface model in VC require a low number of activities to be performed.

It can be seen that customizability, personalization, changeability and maintainability cannot really
be differentiated from the perspective of MDE settings. The difference rather lies in the questions
what parts of the system are implemented in separate artifacts that can be changed without
triggering much changes in other artifacts.

Similar to the argumentation of Stahl et al. [27] all four software quality parameters are influenced
by the separation of system parts over different artifact. However, in addition the length of the
activity chain of changes on different artifacts seems to play an important role. Further, the
effective influence depends on the question whether an artifact will probably change.

In addition, as also Heijstek et al. [14] argue the complexity of the tool chain influences also
maintenance (’Maintainers need to be educated during development to be able to understand

15

R. Hebig and H. Giese

the modeling and generation process’ [14]). That MDE can also lead to problem with change-
ability is known. There are works that address the problematic of overwritten code by reapplied
generations (e.g. generation gap pattern by Fowler [10]).

Similar to changeability the ability to reuse parts of the system was indicated for all objects of
study. In two examples, SIW and BO this can directly be seen in the MDE settings, where we
captured explicit steps for the usage of templates. In the other four cases the system parts
that are listed to be often reused are well separated in own artifacts. In BW Info Sources and
DataExtractors are often reused in practice, in BRF decision tables are reused, in Oberon user
interface components are reused and in VC reuse of services happens.

Reuse, similar to the different forms of changeability, depends on the question how different
concerns of the system specification are separated over different artifacts, which fits to the argu-
mentation in [27].

Interoperability was indicated as property of SIW and VC. Thereby, in both approaches it seems
to the usage of the service concept that enables interoperability. Thus, VC allows accessing
functionality via a couple of protocols. The SIW was initially used to build web service adapters
for functionality provided via BAPI interfaces.

Interestingly, interoperability was in both cases not reached by generation of platform bridges (as
argued in [18]), but through the usage of the service concept.

Finally, portability was indicated for Oberon and BO. In Oberon this is reached as the user inter-
face models abstract over platform details and can be interpreted by different interpreters. This
is conform to the arguments for a positive influence on portability of Kleppe et al. [18]. For BO
it turned out to be difficult to identify a reason for the portability in the MDE setting. Probable
reasons for that might be, that the scope of the parts we captured does not cover how artifacts
might be used prepared, such that the system can run on different platforms.

Subsuming, there are multiple other aspects influencing the software quality parameters, e.g.
the degree of abstraction, the question what changes are required and probable, or the share
of generated code. Thus, the statement of Kelly et al. still holds: ’The exact productivity gain,
however, is often difficult to measure’ [17]. That it is not well understood what abstraction really
is concerning an MDE setting can be seen on the example of automated template instantiations
for reusing models. It is hard to rate whether this is a form of abstraction (is the content of the
template really abstracted away for the developer) or separation of concerns, where the reusable
parts are separated from the non-reusable parts. The same holds for a transformation where the
result is further manipulated manually. Can the automatically created parts be rated as abstracted
away, if the rest of the artifact has to be touched manually? Another example is the generation of
interfaces for existing code. Here the automatic generation is no hint for an abstraction from the
perspective of a developer. Rather automation helps here to get artifacts that represent different
concerns compatible. Finally, in most cases not many artifacts and activities after the automation
boundary are captured in the models. This makes it further difficult to evaluate the degree of
abstraction.

However, as mentioned also in [16], the combined application of two MDE techniques, both lead-
ing to a better abstraction and reuse of code, can lead to disadvantageous situations. Thus,
a future goal is to predict potential negative influence of the MDE setting on changeability and
reuse. For example, in BO this led to the situation that a manual translation of the models be-
tween two languages and tools was necessary. However, such a manual translation is error
prone, which counteracts the original intention of supporting quality. Today BO is substituted
by another MDE setting that reduces this problem. However, BO was used in several projects
before the improvement was performed. This example illustrates that learning more about these
influences is necessary for aiming at optimized MDE settings.

16

6 General Insights R. Hebig and H. Giese

5.2 Discussion of compliance with results from related studies

In [16] Hutchinson et al. present insights into practically applied MDE collected in a large empirical
assessment. Among other things they subsume that ‘a lot of MDE success is hidden’, since often
automation and modeling is used in a pragmatic way (‘much of MDE in industry is the kind of
modeling and/or automation that represents pragmatism in the face of an otherwise tedious or
intractable problem.’). During this study we got a similar impression. None of the captured objects
of study follows standard approaches such as MDA [24]. Even so, all approaches work with far
more abstract views of the system than plain code.

In their review paper [22], Mohaghegi et al. subsume that ’Combining MDE with domain-specific
approaches and in-house developed tools has played a key role in successful adoption of the
approach in several cases.’ The results of our study support this impression. Most objects or our
study, which are successfully used in practice, combine models and domain specific languages
and work with in-house developed tools.

In addition, Mohaghegi et al. [22] show up two lacks in the reviewed reports. First, they state that
portability to multiple platforms has often not been feasible. Here our study reveals an example
that clearly allows portability: the tool Oberon, where the models of the user interfaces can
be interpreted using different interpreters, which allows porting the application to desktop PCs
as well as mobile devices. The second lack identified in [22] is the missing of examples for
executable models. Their development is in [22] discussed to be still a challenge. However,
the above mentioned tool Oberon is also a positive example for executable models. A second
example, our study revealed, is the usage of S&A models, which are interpreted, too. Thus, it
seems that portability and execution of models is possible for use cases with a very clear focus
on a specific domain.

In [23], Mohagheghi et al. state that ’There is no tool chain at the moment and companies must
integrate several tools and perform adaptation themselves.’ This is something we experienced
for the here captured objects of study, too. In none of the examples an external tool chain was
adopted. BW might be seen as a tool chain that is provided by SAP and adopted by the cus-
tomers. However, our interview partner told us, that often only the extraction part of the BW
setting is adopted.

In [21], a situation is reported, where model are used fragmented without a ’controlled sequence
of models and transformations in the process’. In contrast, the objects of our study come along
with a sequence of activities (the fine granular process), which is applied similarly in several
projects. This different result might be explained with the different domain focused by our study.

Finally, Weigert et al. [28] reports that ’MDE encompasses all phases of the software-development
life cycle’. Our study supports this result, as we identified examples where an MDE setting sup-
ports the definition of changes for personalization of software after deployment in Oberon.

6 General Insights

During comparison of transcripts and models of the different objects of study we gained several
more general insights in the usage of MDE techniques within SAP. In this Section we summarize
and discuss these insights (Table 5) and provide examples for them.

17

R. Hebig and H. Giese

Number Hypothesis
1 An MDE setting can strongly constrain the order of activities, e.g. to apply a change to

the system.
2 MDE settings actually do evolve permanently
3 Companies that traditionally work with own languages and tools tend to develop com-

pany specific MDE settings, instead of using standard tool chains.
4 An MDE setting is reused over multiple projects
5 Single MDE techniques are partly used in multiple phases of the software development

life cycle.

Table 5: Insights identified during this study

6.1 An MDE setting can strongly constrain the order of activities, e.g. to
apply a change to the system

A first important insight is that the usage of MDE techniques seems to enforce a certain order of
fine granular activities during development - independent of the underlying software development
process. This happens due to two factors. First, MDE activities, such as model transformations
or code generations create not only new artifacts, but, further, change the relations between ar-
tifacts. In addition, such MDE activities might even require certain artifact relations for a correct
execution. Thus, artifact relations, such as explicit references, but also containment relations,
can enforce the execution of one activity creating a relation that is prerequisite for another ac-
tivity. For example, the MDE setting Oberon allows not only the creation of UI designs that are
later interpreted. In addition, the creation of so called ’change transactions’ is possible. These
define changes in the UI design that can be used during interpretation, to change UI for example
according to the role of specific user. Thereby, the ’change transactions’ has to reference the
part of the UI design that has to be changed. Thus, the creation of such a reference is necessary
before the interpretation can be performed. Another example can be found in the development
of business objects using the tools ARIS and ESR. The business objects are partly implemented
by code (generated on the basis of models) and ’status and action models’ (S&A models), which
are interpreted. In order to enable the execution of the business object it is necessary to create
references between code and S&A models. Each of our objects of study contains examples for
such required references.

The second factor for an enforced order is the flow of content. In MDE parts of the target system
are initially formulated using models. Thereby, the use of abstract modeling languages reduces
complexity for the developer. However, often the model cannot be used to express all aspects
of the system. Thus, it is necessary to move the modeled content to another artifact. This
might happen manually or automatically. The later version naturally should lead to a reduction
of errors that can be made by the developer, but also to time saving and reduction of effort.
Thus, developing software using different artifacts enforces a flow of content between the artifacts
performed by different activities. For example, in BO the business object model formulated in the
language UML Plus using the tool ARIS has to be translated to an ESR model. While the ARIS
model is subject to automated checks, only the ESR model can be generated to code using the
tool BOPF. Examples for content flow can be found in each of the six objects of study of this study.

We asked six interview partners whether they agree with the hypothesis ‘An MDE setting (a
given set of tools, languages, as well as provided transformations, generations and interpretation
activities) can strongly constrain the order of activities, e.g. to apply a change to the system.’.
Four of the interview partners agreed and the other two answered that they can imagine that this
hypothesis is true. Looking at the captured objects of study, all of them seem to support this
hypothesis, as they all contain activities that can only be executed in specific orders.

18

6 General Insights R. Hebig and H. Giese

6.2 MDE settings actually do evolve permanently

The second insight we got during the study is that MDE settings do evolve slowly but permanently.
This topic caught our attention, as some of our interview partners told us stories about happened
evolution steps. Thus, we further tried to find out, why tools were introduced.

Based on the interviews with the developers and the motivations for the creation of the captured
tools, we can identify two basic tendencies for changes. In addition, there are plausible reasons,
why such changes are helpful and will occur in future, too.

The first tendency is that MDE settings and with them the chain of activities performed during
development are step wise changed and enhanced with additional tools, transformations, gener-
ations, and manual activities over time. As an example, the Service Implementation Workbench
(SIW) was build to generate services for about three hundred ABAP application instead of reim-
plementing them. Thereby, new MDE activities such as generation of the proxy are introduced to
the MDE setting.

Another example is the tool BRF+, which was introduced to eases the adaptation of business
processes. Therefore, BRF enables the customers to define rules for the execution of their
business processes. BRF encapsulated the technical integration of the business rules in the
process. However, it leads to a longer chain of activities for business process implementation.
E.g. for business rule application the business process implementation has to be prepared,
such that the rules defined in BRF+ are evaluated at right point in the process. In addition, it is
sometimes necessary to define default rule sets.

The captured version of Business Object development (BO) is an extension of the predecessor
version. Here the tool ARIS was introduced into the MDE setting.

A final example is BW, where the tool Business Warehouse was introduced as a substitution
of the predecessor tool EIS (execution information system). Reason for this substitution was
besides performance the wish to be able to consolidate data from different enterprise systems.
Thus, BW is in contrast to EIS not an inherent part of the SAP enterprise system R3 and allows
to extract and integrate data from different enterprise systems. Therefore, the MDE setting was
extended with activities to define the structure of the data that has to be extracted (info source).

Besides these examples, there are plausible reasons that a growth of an MDE setting happens
in future, too. The main reason is that there will be changes in the requirements on the types of
systems usually build using an MDE setting. An example for such a change is the upcoming need
to build functionality in form of web services, which lead to the creation of the SIW. It is reasonable
to assume that there will be the interest to support the implementation of the new requirements
on a high level of abstraction, providing automated generation of code parts. However, it may be
cheaper and faster to add therefore, a new tool and lightweight language in the MDE setting, than
to change the old ones. Further, integration of new development tools can enforce the introduction
of transformation activities, to translate the models between different languages. Also the need
to ease customization of software can lead to changes in the MDE setting (as with BRF+).

The second tendency for changes in MDE settings is the integration of several tools or automated
activities. Since, the first tendency leads to more and more complex MDE settings, it is necessary
to also reduce complexity. We identified three examples, where practitioners decided that their
MDE setting is too complex and initiated an integration.

The first is the change of the MDE setting BO, as it is described in this study. It is no longer in
use, since it was substituted by a new version, where the tool MDRS was introduced. MDRS
substitutes the tools ARIS and ESR and, thus, shortens the setting and the associated chain

19

R. Hebig and H. Giese

of activities (e.g. the manual translation between ARIS and ESR model is no more necessary).
Also the tool Oberon was introduced to shorten an MDE setting. First, Oberon aims to enhance
flexibility by using the same models for design and runtime. Thus, necessary generation steps
between the different models could be omitted. Second, Oberon was introduced to integrate and
harmonize functionality of different user interface technologies that were applied in the environ-
ment of By-Design development. Finally, for BW it was reported that in some cases different
transformations were joint to resolve inconsistencies between semantics of different translations.

A plausible reason why integration will be necessary and happen in future too is, that growth
will happen in future too. A complex MDE setting might not only affect internal goals such as
performance of the development negatively, but makes the training curve steeper for a new de-
veloper. In addition, a long chain of activities is a threat to changeability of a system, since a new
execution of a simple generation or transformation step might lead to loss of changes that where
applied on the former version of the result.

Both tendencies together illustrate that Lehman’s laws (’A system that is used will be changed’
and ’An evolving system increases its complexity unless work is done to reduce it.’ [19, 9]) seem
to apply to MDE settings, too.

We asked our interview partners whether they already experienced these tendencies and whether
they can imagine motivations for changing an MDE setting. We got answers from three of the
interview partners. All three of them affirmed that they already experienced the change tenden-
cies. Asked for possible motivations to change an MDE setting, they referred to software quality
attributes, such as quality, transparency, usability, reduction of development effort, and omit re-
dundant tasks. One of the interview partners pointed out that changes also happen to extend
the application scope starting from a prototypical project. This last answer illustrates that MDE
settings have to be changed with changing requirements on the produced software.

Finally, we asked our interview partners whether they agree with the statement ’MDE Settings (a
given set of tools, languages, as well as provided transformations, generations and interpretation
activities) change over time.’ We got five answers. Two of them agreed and two can imagine that
this hypothesis is true. The fifth interview partner cannot imagine this hypothesis is true for the
core of the MDE setting, but agreed for detailed changes.

6.3 Companies that traditionally work with own languages and tools tend
to develop company specific MDE settings, instead of using standard
tool chains

Further, we got the insight that companies that traditionally work with own languages and tools
tend to develop company specific MDE settings, instead of using standard tool chains. An ex-
ample for that is the MDE setting BO, which is specific to ABAP. The user interface development
with VC and Oberon are specific to SAP environments, too. Although the interview partners can
imagine conditions for use of both tools outside SAP. Interestingly, the SIW was initially build for
a use case depending on ABAP. However it was build in a way that other use cases allow their
usage outside SAP. In contrast, although BW is build in a way that allows its usage with non-SAP
enterprise systems, it is practically mainly used with SAP enterprise systems. This is due to the
fact that the main value lies in the highly specialized data extraction for the SAP system R3.

One possible reason for company specificness is caused by the above introduced hypothesis that
MDE settings actually do evolve permanently. Thus, an MDE setting can result from evolution of
a development that already bases on a company specific language. Further, in companies that
traditionally work with own languages and tools, there is probably a consciousness for addressing

20

7 Threats to Validity R. Hebig and H. Giese

special needs of the product portfolio with the development environment. However, the reason
for company specific MDE settings might be trivially that there is a lack in the provided standard
tooling [14]. For example, confronted with the hypothesis of company specific MDE settings,
one of our interview partners told us, that they actually evaluated to use a standard meta model
instead of their own one. However, they found that this standard meta model was not detailed
enough for their needs.

When we asked our six interview partners, whether they agree with the statement that ‘Compa-
nies that traditionally work with own languages and tools tend to develop company specific MDE
settings, instead of using standard tool chains’, three of them agreed and one answered that he
can imagine that this hypothesis is true. The remaining two answers were given not in common,
but only relating to the respective objects of study. One of these cases was mentioned above.
There they decided against using a standard meta model. In the other case the interview partner
disagreed for the tool that was focus of the corresponding object of study. As explanation, he
mentioned that users, for cost reasons, often adopt generation templates for these tool as they
stand.

6.4 An MDE setting is reused over multiple projects

Although MDE settings change over time, they are often reused, as illustrated in Section 4. This
holds also for company specific settings. For example, the MDE setting BO was long time a
standard procedure and used in around 100 projects, while the SIW was built to build services
for approximately three hundred BOR/Bapi functionalities. None of the objects of our study was
used only once or even only a hand full of times (note that the usage numbers given for VC are
only the usages attended by the consulting company FIVE1 GmbH & Co. KG).

6.5 Single MDE techniques are partly used in multiple phases of the soft-
ware development life cycle

Our observations in the study go a step further than [28], as we found that that several MDE
techniques are used in multiple phases of the software development life cycle. For example,
models of the user interface design in Oberon are partly already used during design phase,
before the actual implementation starts. Another example is BW, where the interpretation of the
reporting (i.e. the generation of HTML) is performed during runtime. Also change transactions in
Oberon can be defined and added to the system at runtime.

We asked six interview partners, whether they agree with the statement ‘Several activities (such
as changing a model or generating an artifact) are used in multiple phases of the software devel-
opment life cycle.’ Fife of the interview partners agreed. The other one disagreed, whereas this
answer was not given generally, but with the specific object of study in mind.

7 Threats to Validity

Whether the insights we gained in this study are valid for all MDE settings is still an open question.
Although six objects of study are fine to get qualitative insights, they are not enough to build an
empirical basis. In addition, another threat to the overall validity of our insights is that we only

21

R. Hebig and H. Giese

examined SAP projects in this study. Thus, we cannot make statements about MDE settings in
other domains of software or for differently sized companies.

There are some further threats to validity. First, the choice of the objects of study was driven
by our contact persons. Thus, the captured objects of study are more probably considered as
successful and good example in the company. In addition, many of the objects of study are
related to service oriented systems, which can influence e.g. changeability and portability, too.
This has to be considered, when talking about influences of the MDE settings on software quality
parameters.

A further threat is that five of the six objects of study are capture from the perspective of one
development tool, respectively. Thus, the diversity of tools and languages that have to be used
to develop a product is in average probably higher than described in Section 4. This high amount
of tool perspectives also might have influenced the interview partner’s feedback on our hypothe-
sizes. For example, some of the answers were given not for a common situation, but with specific
tools in mind.

8 Conclusion

In this study, we examined and captured six MDE settings within SAP in detail, which gave us
some general insights in the usage of MDE techniques during software development within SAP.
Further, we got insights in the motivation for usage of different MDE techniques.

The study gave us a first idea how an MDE setting influences on a fine granular layer the process
of developing software. We compared addressed internal software quality attributes with the
MDE settings structure to identify whether current theoretical explanations for MDE influences
are sufficient. Thereby, we identified that there is still a lack of knowledge concerning the degree
of the influence of a single MDE technique to internal software quality attributes. Thus, it is even
harder to evaluate the influence of a whole MDE setting where multiple MDE techniques are used
in combination.

The diversity of the captured MDE settings, point out that capturing them explicitly can be crucial
in future. This is not only due to the need to train new developers in MDE settings. Further, MDE
settings might also include critical constellations that decrease productivity, or especially change-
ability. Evolution of MDE settings contains therefore always the risk to lead to disadvantageous
constellations. Capturing MDE setting explicitly, will be the basis for analysis of these risks. This
is especially important if different parts of a setting are applied by different groups or units of
developers, which might otherwise be not aware how changes in their part of the MDE setting
influence parts applied by other groups. In addition, capturing MDE settings explicitly, can help
to identify evolution tendencies early on, which enables planning. Finally, MDE settings present
also how development depends on different technologies, such as tools, or languages. Capturing
how tools are used in combination within an MDE setting, can be important to identify risks such
as technology login early on.

In long term, research should lead to a better understanding how MDE settings influence produc-
tivity. It is a goal to provide techniques that support identification of risks, e.g. for the changeability,
and resolution approaches. This should support strategic decisions concerning evolution of MDE
settings.

22

REFERENCES R. Hebig and H. Giese

Acknowledgments

We are very grateful for the cooperation of our contact persons and interview partners at SAP
AG, namely Andreas Bold, Hilmar Demant, Aalbert de Niet, Mario Herger, Jens Hertweck, Frank
Jentsch, Andreas Krompholz, Stefan Schreck, Florian Stallmann, Cafer Tosun, Axel Uhl, Bertram
Vielsack, and Carsten Ziegler as well as our interview partner Marcel Salein at FIVE1 GmbH &
Co. KG. Further, we thank Gregor Gabrysiak for feedback and discussions on the design of the
study.

References

[1] R. Agarwal and M. R. Tanniru. Knowledge acquisition using structured interviewing: an empirical
investigation. J. Manage. Inf. Syst., 7:123–140, June 1990.

[2] Helmut Balzert. Lehrbuch der Software-Technik: Software-Entwicklung. Spektrum, 1996.

[3] Helmut Balzert. Lehrbuch der Software-Technik: Software-Management, Software-Qualitätssicherung,
Unternehmensmodellierung. Spektrum, Heidelberg, 1998.

[4] Barry W. Boehm. Improving Software Productivity. Computer, 20:43–57, September 1987.

[5] Carsten Bönnen and Mario Herger. SAP NetWeaver Visual Composer. SAP PRESS, 2007.

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services De-
scription Language (WSDL) 1.1. Technical report, World Wide Web Consortium (W3C), 2001.

[7] Juliet M. Corbin and Anselm Strauss. Grounded theory research: Procedures, canons, and evaluative
criteria. Qualitative Sociology, 13:3–21, 1990. 10.1007/BF00988593.

[8] Alan Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana M. Moreno. Effectiveness of require-
ments elicitation techniques: Empirical results derived from a systematic review. In Proceedings of
the 14th IEEE International Requirements Engineering Conference, pages 176–185, Washington, DC,
USA, 2006. IEEE Computer Society.

[9] Albert Endres and Dieter Rombach. A Handbook of Software and Systems Engineering. Empirical
Observations, Laws and Theories. The Fraunhofer IESE series on software engineering. Addison-
Wesley, 1 edition, 2003.

[10] Martin Fowler. Domain-Specific Languages. Addison-Wesley, October 2010.

[11] Robert B. Grady. Practical Software Metrics for Project Management and Process Improvement. Pren-
tice Hall, Englewood Cliffs, NJ, 1992.

[12] Volker Gruhn, Daniel Pieper, and Carsten Röttgers. MDA: Effektives Softwareengineering mit UML2
und Eclipse. Springer, Berlin, 1 edition, 2006.

[13] Werner Heijstek and Michel R. V. Chaudron. Empirical Investigations of Model Size, Complexity and
Effort in a Large Scale, Distributed Model Driven Development Process. In Proceedings of the 2009
35th Euromicro Conference on Software Engineering and Advanced Applications, SEAA ’09, pages
113–120, Washington, DC, USA, 2009. IEEE Computer Society.

[14] Werner Heijstek and Michel R.V. Chaudron. The Impact of Model Driven Development on the Software
Architecture Process. Software Engineering and Advanced Applications, Euromicro Conference, pages
333–341, 2010.

[15] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering practices in industry.
In Proceeding of the 33rd international conference on Software engineering, ICSE ’11, pages 633–642,
Waikiki, Honolulu, HI, USA, 2011. ACM.

[16] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical assessment of
MDE in industry. In Proceeding of the 33rd international conference on Software engineering, ICSE
’11, pages 471–480, New York, NY, USA, 2011. ACM.

[17] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation.
John Wiley & Sons, ”Hoboken, NJ”, 2008.

23

R. Hebig and H. Giese

[18] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Boston, MA, USA, 2003.

[19] M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[20] Katrina D. Maxwell, Luk Van Wassenhove, and Soumitra Dutta. Software Development Productivity of
European Space, Military, and Industrial Applications. IEEE Trans. Softw. Eng., 22:706–718, October
1996.

[21] Niklas Mellegaard and Miroslaw Staron. Characterizing model usage in embedded software engi-
neering: a case study. In Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ECSA ’10, pages 245–252, New York, NY, USA, 2010. ACM.

[22] Parastoo Mohagheghi and Vegard Dehlen. Where Is the Proof? - A Review of Experiences from Ap-
plying MDE in Industry. In Proceedings of the 4th European conference on Model Driven Architecture:
Foundations and Applications, ECMDA-FA ’08, pages 432–443, Berlin, Heidelberg, 2008. Springer-
Verlag.

[23] Parastoo Mohagheghi, Miguel A. Fernandez, Juan A. Martell, Mathias Fritzsche, and Wasif Gilani.
Models in Software Engineering. chapter MDE Adoption in Industry: Challenges and Success Criteria,
pages 54–59. Springer-Verlag, Berlin, Heidelberg, 2009.

[24] Object Management Group. MDA Guide Version 1.0, May 2003. Document omg/2003-05-01.

[25] OMG. UML 2.0 Superstructure Specification, Object Management Group, Version 2.0, formal/05-07-
04, 2005.

[26] Harry M. Sneed. Softwaremanagement. Verlagsgesellschaft Rudolf Müller, 1987.

[27] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase. Modellgetriebene Softwareentwicklung
- Techniken, Engineering, Management. dpunkt Verlag, 2 edition, 2007.

[28] Thomas Weigert, Frank Weil, Kevin Marth, Paul Baker, Clive Jervis, Paul Dietz, Yexuan Gui, Aswin Van
Den Berg, Kim Fleer, David Nelson, Michael Wells, and Brian Mastenbrook. Experiences in deploying
model-driven engineering. In Proceedings of the 13th international SDL Forum conference on Design
for dependable systems, SDL’07, pages 35–53, Berlin, Heidelberg, 2007. Springer-Verlag.

[29] Jon Whittle and John Hutchinson. Empirical Assessment of the Efficacy of MDE.
http://www.comp.lancs.ac.uk/ eamde.

24

A Examined MDE Settings R. Hebig and H. Giese

A Examined MDE Settings

This Appendix includes the MDE settings captured in this study. Beforehand, we give a short
introduction into the notation used in this appendix. The notation bases on UML activity diagrams
[25]. We first use activity diagrams to illustrate the fine granular process. In addition we used
three additional notation elements, illustrated in Figure 6. First, we use organizational units, to
indicate that a specific devision is responsible for certain activities. Further, we use additional
entry and exit points notated as blue initial node respectively final node. These additional entry
and exit points indicate that developers might choose to repeat or redo certain development steps.

����������	

���
������������������

���	�
���������	
��

�
	��	��	������	 ���	�������

�
��	� !���	��

"���#

�	����#	��
���

�
�������������

!���

�����������

	��

������

�����������

	���������

Figure 6: Additional notation elements for activity diagram

In addition to the fine granular process, we illustrate more information about single activities in a
detailed activity view. Therefore we use further notation elements, introduced in Figure 7. These
elements indicate, whether the activity is performed manually, semi-automatically or automatically
(1-3). Further, one or more alternative tools supporting the activity can be annotated (4 and 5).
Artifacts that are input and output of an activity (6 and 7) can be annotated with a multiplicity
indicating how many artifacts are input or output (8). Artifacts can also be part of other artifacts
(9). Further, we sometimes indicated the language of an artifact using a conforms-to relation
(10). We also sometimes indicate a similarity in roles of the artifacts with an ’inheritance’ (11).
Finally, some activities are composed of smaller activities (12).

A.1 Business Object Development at FP 2.0 (BO)

SAP Business ByDesign is build out of deployment units containing different process compo-
nents, that are necessary to implement the desired business processes. The process compo-
nents are the development units in ByDesign. The name spaces are cut along the lines of the
PC’s. Thereby the desired functionality is build in terms of so called business objects, that are
part of process components. If process components have to interact across the borders of the
deployment units, process interaction models are used to describe the interaction. In this report
we do not capture the MDE setting for the current state of development of business objects. In-
stead, this report aims to capture the development of business objects for the product version
FP2.0. This MDE setting contains work with models and generation of code out of models and,
thus, is clearly a model driven approach.

The order of activities of the MDE setting for the business object development at FP2.0 is shown
in Figure 8 in form of a slightly adapted activity diagram. Thereby, the activity diagram is split into

25

R. Hebig and H. Giese

������������

	
��
������������
�

����

�������
����

������������

	
��
������������
�

������������

���
�������
�����
���

����

������������

����

����!"��

�
�#��
��

��
$
���
���

����������

�

 �
%
��� �

���
��& ����

"���������
�

������������

'
�

 �
����
�!�

% ��
�

���
��& ����

������

�����
���

���	

�����&�
��%���

������������

'
�

 �
����
�!�

% ��
�

���
��& ����

% ��
�

���
��& ����

%
��� �

())*

����������

�

 �
%
��� �

����������

������
%�����

���
��& ����

���	���
��

���
��& ����

����

���
��& ����

+ � �

�

���

���
��& ����

�,���
)-)�

��	��

���
��& ����

.�+/��
)-)���	�

"��

�
��
��

���
�

������������

0

�&������ ������&�'
�

 �
�

������������

'
�

 �
�

%
 ��&�
� ����

���
��& ����

%
 ��&�
� �����

���
�

���
��& ����

%
 ��&�
� �������
�

�����
���

���	

�����&�
��%���

������������

�#���
�%
 ��&�
� �����

���
���%���
-
�

 �

���
��& ����

%
 ��&�
� �����

���
�

���
��& ����

%
 ��&�
� �����

���
�

())* ())*

���
��& ����

%
 ��&�
� �������
� ())*

1)�� �� �� �������

2)��
��3 ���� �
��

 �������

4)� ���� �
��

 �������

5)������
���-�

����

6)�
$
�����-�

��

7)�������
��& ��

8)��������
��& ��

9)�������
��& ���

:��#�������������

;)�
��& ���

���� ���
��

11)�<��#

�� ��
<�

�&�
��& ���

1()�� �-� -
�

�&�
��& ��

12)� ��������

�����������

=�� �����>
�

Figure 7: Notation elements for detailed activity view

four parts, which indicates that the activities are applied by different organizational units. Most
activities are applied by the business object development team. However, as the development of
a business object might start on the basis of an integration scenario it is necessary to verify that
the process component containing the business object fits the integration requirements. Thus,
the integration experts apply tests to the process components containing the developed business
objects. Further, the solution management retrieves initially the requirement. Finally, the test
department tests the resulting functionality against the requirements.

In addition, we annotated additional initial nodes and flow final nodes in the diagram (marked in
blue). We use this to indicate that the developers might stop the process, e.g. due to a failed test,
and restart the process at another activity to apply changes or correct something. For example, if
the activity test scenarios uncovers a fault, this might lead to the need for further changes in the
business objects and thus the process might restart with the activity write business object logic.
However, another reasonable reaction might be to repeat the process starting with the activity
adapt business object model.

Further, the second entry point at the activity create ESR model indicates that, e.g. for the
development of prototypes, the developer might directly start the implementation in ESR. Thereby,
they should, however, go back in the development process and apply the modeling activities in
ARIS afterwards. Thereby, it might be necessary to correct the ESR implementation.

Figure 9 shows the activity define requirements with customer in detail. Thereby the solution
management defines with with the help of the customer the requirements. The stick man indicates

26

A Examined MDE Settings R. Hebig and H. Giese

����������	�
������	

���	������	���	

����������	�
������	

��	����	�
�������	�

���	��
������	����	�
�

���	�������
��������	�

��� ������	�
���	�!������
�"���	�����	�"���

#
$���!%�#�

&��	��� ������

�
���

�$��	�� �������

��'��	�#
$��

�����(
���	

�!��#
$��

)�����	��"
$��%

������

#
$���

� ���������'��	�*��+

"���	�

�����	�
�����	
����,�"-����

"
���������!%�!� ���
�	�
���!���
�	

����������	�
������	

�����.��
��������

�$$���

/�
����"
��
���	

"���	���!��#
$��

����������	�
������	

!
� 	�
��#��������	

����,��

��� ������	�

��(������� ������	�

0�	-�" �	
���

��	��$�������	�
/�
'��	�	

���#
$��

Figure 8: BO: Order of activities in MDE setting for the Business Object Development at FP 2.0

Figure 9: BO: Activity ’Define Requirements with Customer’

that the activity is performed manually.

Figure 10 shows the activities analyze requirements, model business object, extend template,
project to BO model, add BO to process component, and adapt business object model more in
detail. Thereby, it is indicated by the stick man that all activities are manual tasks. Further, most
of the activities are supported by the tool ARIS.

The figure shows, which artifacts are input and output of the activities. Thus the activity analyze
requirements starts on the basis of the requirements defined by the solution management. As
result a specification for the business object is built.

27

R. Hebig and H. Giese

����������		

��
����

����

��
����		

�
�����

������������		

����������		
���

����������		

��
����

����������		

���������������

��
����		

�
�����

������������		

���!
����������		

����"���������������

����������		

���#����

���������

����������		

��������$���������

������������

������#��%		

�����

��������&'����(
�)

����������		

��*���������

����������		

���������������

������#��%		

����%���

��*���������

������#��%		

���
����������

$������������������		

��������$��������

����������		

��
����

�+,���
����-+

����������		

����

����������		
���

����������		

��
����

����������		

���������������

��
����		

�
�����

������������		

���!����������		

����"�������

��������

����������		

����������

������#��%		

+.���� ��������

����

����������		

����������		

����������

����������		

��
����

��
����		

�
�����

������������		

������#��%		

���'�������
��
����

����������		

��
����

��
����		

�
�����

������������		
������#��%		

������

��������&'����

����

����

����������		

����������		

����������

���!
���!

Figure 10: BO: Activities of MDE setting for the Business Object Development at FP 2.0

For modeling the business object the developer might use different artifacts, such as BO Models
of business objects that are used by the business object currently modeled. The BO Specification
contains besides the specification of the BO itself, also a data model. Finally, an Integration
Scenario can be input. Thereby, an Integration Scenario describes which process components
interact and via which service interfaces they interact. This is important since the business object
implements a part of a process component and might therefore be responsible for or depend on
the described interactions.

Alternatively, the developers might use a BO Template for the creation of the BO Model. In this
case they have to extend the template first. This happens manually with the activity ’Extend
Template’. Similar to ’Model Business Object’, ’Extend Template’ can be performed on the basis
of BO Specification and Integration Scenario and can lead to links to existing business objects.

After the template was extended the BO Model is created as a projection of the template. This
is done semi-automatically by the activity ’Project to BO Model’. Thereby the developer has to
select the nodes, relations and data types that have to the projected.

The BO Code has to be added manually to the Process Component. For the implementation of a
process component it is further necessary to implement process agents although this is not part
of the MDE setting for the development of a business object.

Finally, the activity ’Adapt Business Object Model’ is used to manipulate the BO Model further. If
a template was used for the creation of the BO Model, this activity can also change the template.

The activities, shown in Figure 11 more in detail, are used to apply checks on the BO Model
in ARIS. Thereby, the used checks are defined commonly for specific business object types.
In addition, the developer can create an exception list that defines how false positives can be
excluded from the test result.

28

A Examined MDE Settings R. Hebig and H. Giese

����������		

��
���� ����

����

��
����		

�����

����������		

�����

����������		

����������

���������� �		

��
����		

�����

����������		

����!��������

���������� �		

��
����		

�����

����������		

����!��������

���������� �		

������"��#		

�����������!�����

����

������"��#		

�!!�#������

��$%

����!!����		

��$%

����!!����		

��
����		

&
�'���

���������� �		

Figure 11: BO: Activities of MDE setting for the Business Object Development at FP 2.0

With the activity ’Apply Checks’ the defined checks can be automatically applied in ARIS on a
given set of business objects. As result an Excel list of check failures is created.

����������		

��
����
����������		

����
��
����

���

����������		
��
����		

�
�����

������������		

��
����		

�������������

�

���������������

������������		

��������� 		

�����������������

����

Figure 12: BO: Activities of MDE setting for the Business Object Development at FP 2.0

After the BO Model is created and checked, the model has to be transported from ARIS to ESR.
It is required to transform the BO Model to an ESR specific model. This is done manually by the
activity ’Transform to ESR Model’. The activity is shown in Figure 12.

������������

	
��
����������

�������
����

����
���

����

�������
����

��������
���

���
�����

����������������

 ����!��"�"���!

���
#�
��!
�� ����

���
�����

$�%&�"!

���
#�
��!
��

�������
����

�'��
���

���
��

���
�����

�'���()�%

���
#�
��!
��

�������
����

��������
��

����

��!"��
��!��

���
�����

*
�
������

���
#�
��!
��

Figure 13: BO: Activity ’Compare ARIS & ESR’

Since the transformation between the BO Model in ARIS and the ESR BO Model in ESR is done
manually, it is necessary to compare the models. The activities necessary for that are shown in
Figure 13. The comparison is done automatically by the activity ’Compare ARIS & ESR’, which is

29

R. Hebig and H. Giese

supported by ARIS. The result of the comparison is written to an Excel/XML file which is further
added to the ARIS Report.

����������		

��
��
�����

��

����������		 �������		

�����������
��

����
����������

������������		

����������		

������

��
�����

����������		

��
�������������
� !

� !
����������		

"���#������

��������

Figure 14: BO: Alternative start activity, for prototype implementations.

The activity ’Create ESR Model’ is applied when the development it for some reason not started
with the modeling in ARIS. Thereby, the developer start with creating the ESR Model. This might
base on the BO Specification and the Integration Scenario, too.

����������		

��
��
�����

����������		

��������
����
�

������

����������		

������

����������		

��
����

����������		

�� !

�������		

��"��������
��

����
����������

��������#���		

����������		

$�
��%�#�

�������		

���

��������#���		

����������		

��
����

�
&'
���
($

����������		
�������		

���

��������#���		

����������		

)����
��������

*�+��

����������		

��
����

�������		

���

��������#���		

�������		

�������������

�����
,����-

����������		

����
�����

��������#���		

����������		

����������

�
&'
���
($

����������		

���������

)���

����������		

Figure 15: BO: Activities of MDE setting for the Business Object Development at FP 2.0

Figure 15 shows the activities deal with the implementation of the business object. With the help
of the tool BOPF the activity ’Generate Code & Tables’ automatically generates, based on the
ESR BO Model, a data base schema, tables and BO Code in ABAP. This code can now be further
implemented. Therefore, the developer can just extend the BO Code manually within the SE80
ABAP IDE. Alternatively, the developer can manually create Status & Action Models (S&AMs)
using MicroSoft Word and reference them by the BO Code using the SE80 ABAP IDE (activity
’Model S&AMs’). An S&AM describes behavior and can be interpreted during the execution.

Figure 16 shows activities that are used to test the developed business object. First, the develop-
ers of the business object test it manually considering the BO Code, the S&AM Models, the DB
schema and the tables (activity ’Test Local Interaction’). If the business objects was developed
considering an integration scenario, the developers hand the responsibility over to the integration
experts. They create manually test cases based on the integration scenario (activity ’Create Test
Case’). Based on that test cases the process components that base on the created business
objects are tested.

Finally, the test department applies manually blackbox tests on the process components to vali-
date the behavior against the requirements (activity ’Test Blackbox Against Requirements’).

30

A Examined MDE Settings R. Hebig and H. Giese

����������		

���
���������������

����������		

��������

��������

����������		

������������������

�����������

����������		

��������

����������		

��������������

����������		

��������

����

����������		

����������������

����

����������		

�������

����������		

��� � ���!

����������		

��"!��

����������		

#����$���
����������		

�����%���!�
����������

����������		

������!��&"�'��
����

(�)*������������������		

�����������������

����������		

��������������

����

���*������		

����

���*������		

����

���*������		

����

���*������		

Figure 16: BO: Activities of MDE setting for the Business Object Development at FP 2.0

A.2 Service Implementation Workbench (SIW)

The Service Implementation Workbench can be used to generate artifacts that provide access to
further functionality. Thereby, SIW is often used to generate a web service that provides access
to ABAP functionality. There are three scenarios for building a web service with the help of the
SIW.

In the Proxy-based case the development starts with a web service description, a proxy and
ABAP code with a BOR/Bapi signature. The result is a web service that fulfills the given web
service signature and provides the functionality that it accesses via the BOR/Bapi interface.

In the API-based case the development starts only with the ABAP code and the corresponding
BOR/Bapi signature.

Finally, it is possible to use the SIW without web service signature and ABAP code with corre-
sponding BOR/Bapi signature (’service independent development’). In that case no service is
created. The created functionality might for example be accessed via RFC (remote function call).
Thereby, it is necessary to use templates that contain much more information than templates for
the Proxy-based or API-based case.

An MDE setting that is also supported by the SIW describes how templates and configurations are
build for the SIW. Finally, this report includes the MDE setting for testing the services created with
the SIW. Although these MDE settings are not directly supported by the SIW they are included
here.

SIW enables the use of templates and the generation of code. Since web service interface
description, templates and code can be seen as artifacts/models we consider MDE settings for
the web service development with the SIW to be MDE approaches.

This section describes the MDE settings that are supported by the service implementation work-
bench. The MDE settings of proxy-based case (Section A.2.1), API-based case (Section A.2.2),
and the case without given signature (Section A.2.3) describe activities that are applied during im-
plementation phase of a software development process, but include partly also quality assurance
activities.

The MDE setting of the configuration creation cannot easily be assigned to a software develop-
ment process activity if the development of the service is considered. However, it might be seen

31

R. Hebig and H. Giese

as a part of the ’tool development’ where it would belong to the implementation phase, too.

The MDE setting for testing the developed service can be assigned, for example to the ’develop
and verify next level product’ phase of a spiral model, the construction and transition phases of
a RUP development process or to the Unit Test phase in a eXtreme Programming development
process.

A.2.1 The proxy-based case

Figure 17 shows order of activities of the MDE setting of the proxy-based case. The Figures
18 and 19 show the activities of the MDE setting of the proxy-based case. In proxy-based case
the development starts with a web service signature (formulated with WSDL) and a proxy. If this
proxy does not exist it might be generated with the help of the tool Transaction SPROXY. Thereby,
the proxy class, the interface of the proxy and types and structures for the data dictionary are
created, based on the service signature and a corresponding XSD. Proxy class and interface
are formulated in ABAP. If the service signature changes during development the proxy can be
regenerated. Thereby, the manually implemented parts of the proxy are preserved.

At the start the developer has to choose an appropriate configuration and with it the templates
that are used during the development. Based on the chosen configuration the SIW project can be
created. The based on the resulting project meta data the developer has to set certain context pa-
rameters that are relevant for the later generation steps. All three activities (choose configuration,
create SIW project and set parameters) are manual tasks.

������

�����	
��
���
��
������
���

������
������

������
�����

��	�����
����������
�������� �������
�������	��

��

������������

��	�����
�����������
���������

����
�

������ �!

Figure 17: SIW: Activity diagram of the order of activities in the MDE setting of building a service
in the proxy-based case

After the configuration is chosen and the context parameters are given by the developer the code
of the service can be generated. Input for this generation are the configuration, templates of the
configuration, context parameters and the proxy class. Results of the fully automated generation
step may be:

• a set of entries in the data dictionary, such as data elements, structures, table types, or
domains

• a set of ABAP objects, such as classes, interfaces, method implementations, programs,
class includes, functions, or modules

32

A Examined MDE Settings R. Hebig and H. Giese

����������		

����
�������

��������		

������

����
�������
�

����������		

����
�������
����

���������

����������		

���

����������		

�����

��� !����

����������		

���������

����������		����������		

����"!#���

����������		

����

��������		

�$$
�$�%�����

����������		

&�����

�����

'���

����������		

�"()��������������

��
������

��&�$��		

����
��������*�%�		

����������		

����������
������

����������		

&�����
����

'���

�����

��� !����

����������		

���������

����������		

��������		

*��%�����������
������

����������		

����������
�����

��&�$��		

���+

��������*�%�		

����������		

�$$�������������*�����,�

��������-�*�������

��&�$��		

.��

��������*�%�		

����������		

����/
����

����������		

��������������/�%/����

��$�����������

���������

�����

���		
%�����������

��(".0

����������		

����������		

����/���������

��������		

1�������

����/

����������		

������

����*�����

�

���������
����������		

���

����������		

��������		

���

����*�����

����������		

���#����

*���$���

����������		

���#����

*���$���

�

���������
����������		

���

����������		

����������		

����
������� ��������		

����������

���#�������������		

����������
�����
����������		

����������
�����

����������		

�$$�������������*�����,�

��������-�*�������

����������		

��������������/�

%/������$�

����������

���������

�����

���		

%�����������

��(".0

����������		

����������		

����/���������

��������		

(�
�������

����/

����������		

����/
����

����������		

&����$

Figure 18: SIW: Activities of the MDE setting of building a service in the proxy-based case

• further, objects, such as table entries, registries, or service groups

• a mapping class that contains static parts but also code slots that should later be filled with
code manually

• and method implementations for the proxy class.

If later in the development process context parameters or parts of the proxy change not all these
artifacts have to be regenerated. Here SIW supports synchronization. That means, only the static
parts of the mapping class and the ABAP objects have to be regenerated. The code slots remain
untouched. Further, SIW is able to only regenerate objects that will change. Therefore, SIW gen-
erates the code temporary and compares it with the old code. Only if there are changes an object
is replaced. This saves performance of development, since a full generation of objects requires
persistence, which means additional effort, such as instantiation and applicaiton of transport jobs.

The generation of the code is not the last step in the MDE setting. There are two further activities.
First, the developer can manually add code to the generated code slot within the ABAP objects.
Second, the developer has to complete the mapping to the BOR/Bapi signature. Based on the
BOR/Bapi signature and the service signature, which was initially used to generate the proxy,
the developer has to implement the mapping by filling the mapping slots within the generated
mapping class. This is a manual activity.

33

R. Hebig and H. Giese

����������		

��
�������		�
���������

��

������������������� ����! ����������� ���"

����������		

#���

����������		

#��������������������		

�����$�����������

����������		

%������� &''(

&''(

����������		

��
�������		�������

�)�*�+��������������%�����)���,��
����-�����������

����#�������+������,��#��.����/�� ���"

&''(

&''(

����������		
#�

��� ������		

����������		

������ ������

����������		

���$,�����

����������		

������

��.��0����	

&''(

����������		

��
�������		-����-��������,���������

�-����)������1�#�� �� ��1�%�����%,��1�

-�����"

&''(

&''(

-�.������

����������		

�������������

����������		

#����������

&''(

&''2

����������		

�������#���
&''(

��������		

/�����������

����������		

�
��������

����������		

�����$�����������

����������		

%�������

&''(

&''(
����������		

#����������

-�.������

���$�� ���		

#�

��� ������		

����������		

������ ������

����������		

���$,�����

����������		

������
��.��0����	

&''(

����������		

��
�������		�������

�)�*�+��������������%�����)���,��
����

-�����������
����#�������+������,��

#��.����/�� ���"

����������		

��
�������		-����-��������,���������

�-����)������1�#�� �� ��1�%�����%,��1�

-�����"

&''(

&''(

����������		

�������������

����������		

#����������

&''2

&''2

��������		

��������������

Figure 19: SIW: ’Generate code’ and ’regenerate code’ activities of the MDE setting of building a
service in the proxy-based case

Within the MDE setting shown in Figure 17 some additional start activities are marked blue.
During development a developer might decide to go back and repeat some of the development
steps (iteration). The additional start activities should imply, where the developer might start
again. For example, after a change in the provided WSDL signature it might be necessary to
generate the proxy again. A developer might also redo the configuration choice or reset the
context parameters. If context parameters change also the code generation might be repeated.
Finally, the developer might always decide to change the implementations in the code slots and
the mapping slots.

34

A Examined MDE Settings R. Hebig and H. Giese

A.2.2 The API-based case

The API-based case differs from the proxy-based case, since no web service interface and proxy
are given. Figure 20 shows the order of activities of the MDE setting of the API-based case. The
Figures 21, 22 and 23 show the activities of the MDE setting of the API-based case.

����������	�
		��	����
��

������������	�

����������	���

�������������������

�������������

����������������������

����
������������

���������� ���!��

������������"

#����"$��������������

��������������"
������������"��

������%�&�%���'� �
������
�&

�()�*(���%����������

Figure 20: SIW: Activity diagram of the order of activities in the MDE setting of building a service
in the API-based case

The first step in this case is to choose the configuration, create the SIW project, and choosing
the API. Then the web service signature and proxy are retrieved. Thereby, first a draft signature
is automatically generated out of the BOR/Bapi signature and the configuration. This is imple-
mented by a populator, which is specified in the configuration. The created signature is not a
WSDL signature but a SXF (Signature Exchange Formate) signature. The SXF signature is used
to handle the mapping information between internal and external signature, as long as the proxy
is not yet generated. The populator might not generate a complete signature. In this case the
user might manually complete the signature.

Then the MDE setting includes an automated verification activity, to ensure a full coverage of the
mapping between service signature and BOR/Bapi signature (action ’verify mapping coverage’).
If this verification fails the signature can be further manipulated. Next the SXF signature is trans-
formed automatically to a WSDL web service signature, which is written to ESR. Parallel to that,
the context parameters can be set. Finally, the proxy (proxy class, proxy interface, and types and
structures for the data dictionary) is created based on the WSDL service signature and the corre-
sponding XSD. This is done semi-automatically. If the signature is changed later in development,
the proxy might be generated again. Parts of the proxy that are filled during the code generation
step are preserved by regenerating the proxy.

The generation of the code is equal to the proxy-based case, but it does not lead to a creation
of a mapping class that has to be filed manually. According to that also a regeneration changes
from the proxy-based case. As in the proxy-based case, slots of ABAP Objects have to be filled
with code manually.

Also the MDE setting in Figure 20 includes additional start activities. In addition there is a flow be-
tween the end of the verification of the mapping coverage and the point where the draft signature
and the mapping can be completed manually. This should indicate that a fail of the verification,
causes the developer to go back to that point in the MDE setting.

35

R. Hebig and H. Giese

����������		

����
��������

����������		

����
������� ����

���������

����������		

���

����������		

��������		

�����������������

����������		

�� !

��
������

����������		

�������!��
�����

��"�#��		

���$

��������%���		

����������		

�##�������!�����%�����&!

���'!��!(�%�������

��"�#��		

���

��������%���		

��������� �����

���		

���

����������		

��������		

'����
����
�������

��������		

)����*"�����

�����
�

����������		

�� !��
������

����������		

+,�-+���!

��������!��
�����

����������		

�������!��
�����

���
����������		

���������

����������		

��������		

�%�������
������
����������		

�� !

��
������

���
����������		

���������

����������		

����������		

.��/���!

%���#���

�

���������
����������		

���

����������		

����������		

����
������� ��������		

�����!���!

.��/�������������		

�������!��
�����

����������		

+,�-+���!

��������!���������

�

���������
����������		

���

����������		

��������		

'�����.�
����������		

.��/���!

%���#���

����������		

����������%������
��������		

���.���%�����

���������

����������		

���

����������		

����������		

.��/���!

%���#���

��"�#��		

��

����������		

�� !

��
������

��������%���		

��������		

0��������������
����������������		

����
�������

����������		

+,�-+���!

��������!��
�����

��"�#��		

�+�.

��������%���		

����������		

.��������

��� ����������		

���������

����������		

Figure 21: SIW: Activities of the MDE setting of building a service in the API-based case

A.2.3 Case of service independent development

Figure 24 shows the order of activities in the MDE setting of the service independent develop-
ment. The Figure 25 shows the activities of the MDE setting of the service independent develop-
ment. In case no signature is given, the MDE setting becomes quite simple, since no proxy and
no mapping between interfaces are required.

Like in the other cases, the developer has to choose a configuration, create the SIW project,
and set context parameters, first. Then it is directly possible to generate code based on the
configuration, the associated templates and the context parameters. In contrast to the API-based
case and the proxy-based case the generation does neither lead to changes in some proxy class
nor to the creation of a mapping class. If context parameters change later, the generation can be
redone, with preservation of the code in the slots of the ABAP objects. The code in the slots of
ABAP objects is added manually after the generation activity.

36

A Examined MDE Settings R. Hebig and H. Giese

�����

����	
��

������������

�������

������������

����

����������

������
������

������������

�
�
���
�

��
�
���
���

������������

�
����
���������

������������

���� �����

������������

�������������� �� �
��

������������
�

������������

���� !��
����

�
�
���
�

�������
����

�!�

������������

����������

"
�
���
�

����
������������

�����������

!����#�����$����
�

���%�#
����
�

������������

�
����
���������

������������

�����������!����#�����$�

���
����%�#
����
�

������������

�������������� �

� �
������

��������
�

�
�
���
�

�������
����

������������

��&'()

������������

������������

���� !��
����

����������

&
�
�
���

����

������������

���� �����

������������

*
�
��

Figure 22: SIW: Activities of the MDE setting of building a service in the API-based case

A.2.4 Creation of a configuration with templates

Figure 26 shows the MDE setting for building a configuration with templates within the SIW. First,
templates have to be created. Thereby, multiple other templates might be used as samples. The
resulting template conforms to a report-include of the ABAP workbench SE38. After the neces-
sary templates are created, the configuration can be created based on the templates. Thereby,
other configurations might be used as samples, too. The additional start activity implies that it is
also possible repeat the creation of a configuration.

Finally, a configuration might include a populator or reader. Like the creation of a template popu-
lators and readers might be created based on already existing populators and readers.

All activities are manual activities and supported by the SIW. In contrast to the service creation
the creation of a configuration is not performed by developers but by architects.

A.2.5 Testing the created service

Figure 27 shows a MDE setting for testing the created services. The SIW supports the developer
in manually creating and storing test files formulated in XML.

There are several alternatives for testing. Using tools like the WSNavigator the developer can
manually test the service. Automatic tests are possible with the tools soapUI and eCATT. The
tool soap UI requires in addition to the service signature and the test XML information about
the port, where the service can be accessed. The tool eCATT can be used to formulate post
conditions for the test and to automatically execute the tests.

37

R. Hebig and H. Giese

����������		

�
���
����

����������		

�����������������

����������		

�������� ����

����
����������		

�����������

����������		

���

����������		

����������		

����� �������

����������		

����!�����

����������		

"��#�$
��%��&����	

����

����������		

�����$���$		�
����'

()�*'+� ���������','��
��')���!,'
�$�'

-���������,'
�$�'������,'+� ����!,'

���%���'.����,'/

����������		

�����$���$		-���'-��������!'��������

(-���')������0'���������0'��
��'

�!��0'-�����/

����

����

-�%������

��������		

�� ���������$�

����������		

�����������������

����������		

��������
����

-�%������

����������		

���

����������		

����������		

����� �������

����������		

����!�����

����������		

"��#�$

��%��&����	

����

����������		

�����$���$		�
���
����'

(�����,'���������,'"��#�$'��������������,'

��� ���,'�����'�����$�,'1�������,'"�$���,/

����

����������		

�����$���$		�
����'

()�*'+� ���������','��
��')���!,'
�$�'-���������,'

�$�'������,'+� ����!,'���%���'.����,'/

����

����

����������		

�����$���$		-���'-��������!'

��������'(-���')������0'���������0'

��
��'�!��0'-�����/

����

����

����������		

����

����������		

�����������

��������		

.���������$�

Figure 23: SIW: Activities of the MDE setting of building a service in the API-based case

������������	

����
	�����

�������
	�����
�����	��������

������

��������
	���
��	�
�
��	������
	����������� 	

Figure 24: SIW: Activity diagram of the activities in the MDE setting in case of service indepen-
dent development

A.3 Visual Composer (VC)

Visual Composer (VC) is a tool for the model based creation of user interfaces for Net-Weaver
applications. Thereby, VC allows the user to define the data flow between UI elements and data
services. Further, the layout of the UI elements can be defined. Thereby, the user defines data
flow and layout completely via models. The resulting models are then compiled and deployed to
the required runtime.

In the following we want to introduce the MDE setting that can be used to create an application
using Visual Composer. Thereby, this report does not contain all possible ways, but a set of
samples.

For the creation of an application using Visual Composer a set of activities is necessary. First,
the deployment component and the model have to be created. Then it is necessary to integrate

38

A Examined MDE Settings R. Hebig and H. Giese

����������		

����
��������

����������		

����
������� ����

���������

����������		
���

����������		

��������		

�����
����
�������

����������		

����������������

����������		

�������� ����

���������

����������		

���

����������		

����������		

����
������� ����������		

����� ��� 		�!�"#$%���&

'
����(&���������(&)���� &��������������(&

"��
���(&
����&����� �(&*�������(&)� ���(+

����

����������		

����� ��� 		#$%���&

',
-&.�
���������&(&��$��&,���/(&

!� �&����������(&!� �&������(&

.�
����/(&�������&0����(&+

����

����

����������		

����� ��� 		����&���������/&��������

'����&,������1&���������1&��$��&

�/��1&������+

����

����

����������		

����

����������		

������"����

��������		

0�������
� �

����������		

�!�"#$%���

����������		

����������������

����������		

��������

����

����
����������		

������"����

��������		

��
�������
� �

����������		
���

����������		

����������		

����
�������

����������		

����� ��� 		#$%���&

',
-&.�
���������&(&��$��&,���/(&!� �&

����������(&!� �&������(&.�
����/(&

�������&0����(&+

����������		

����� ��� 		����&���������/&��������

'����&,������1&���������1&��$��&

�/��1&������+

����

����

���������

�!�"&

���2$����

����������		

���������

����������		

��������		

�
� �������

����������		

�!�"#$%���

����������		

����

����������		

"��%���&

���� ���

�

���������

����������		
���

����������		

����������		

����
������� ��������		

�����&���&

"��%�������������		

�������&

��
�����

����������		

�����������������
��������		

���"���������

���������

����������		

���

����������		

����������		

"��%���&

���� ���

Figure 25: SIW: Activities of the MDE setting in case of service independent development

data services such that application logic and informations can be build into the application. Then
model elements for the UI have to be connected to these data services and further have to be
manipulated to reach a desired layout. Finally, the model has to be deployed. The integration of
data services, the connection to UI elements, and the layout activities do not need to be executed
at once, but can be done for each single data service or artifact, such that the different activities
can occur in mixed order.

Then we show an MDE setting that can be used to create dummy services, so that the UI can
be developed and executed as prototype without the need that the desired services are already
implemented.

Further, this report presents an MDE setting that allows to generate a model on the basis of

39

R. Hebig and H. Giese

����������	��� �������
��
�����

�

�����
������

�
��
�����

�

�

����
����

������������

���

������
�����

�����
������

����	��� ����

�����
������

�
��
�����

�

����

�������
��	��
�

��������� ��

�����

���

�������
��
�����

�
�����
������

����	���
�

����
����

������������

���

������
�����

��!
 �	��

���
��"���	� �#
�#���#

�$��#�
�%&����#�'()

���
��
����
��

�����
������

����	���
����

�����

���

����������	���

�����
������

�
��
�����

�

�����
������

�
��	��
�

�����

���

�������
��	��
�

����
����

������������

���

������
�����

�����
������

�
��	��
�

����

�����
������

�
��
�����

�

�����
������

��� ��

�����

���

��������� ��

����
����

������������

���

������
�����

�����
������

��� ��

����

Figure 26: SIW: MDE setting of building a configuration

a BPM model. The resulting model can already be deployed to get a running application, but
might alternatively be changed further by introduction of new data services or UI elements or by
adaption of the layouts.

A.3.1 Creation of a model

The development of an application with VC starts with the creation of a model. Figure 28 shows
an activity diagram for that. The activities are shown in more detail in Figure 29. Thereby, the
first step create development component is optional. It is a semiautomated activity to create a
development component within a software component. It is not necessary to create a new devel-
opment component for each model, since multiple models might be part of the same development
component.

The second activity is create model, which is semiautomated, too, and like the former activity
supported by the VC. For the creation of a model, a repository, a software component and a
development component are necessary. The resulting VC model is then created into the de-
velopment component that is part of the software component. As indicated by the inheritance
hierarchy shown in Figure 29 a VC model might be a service component, a composite view or
have another type.

A.3.2 Integration of a data service

For the integration of a data service into an existing VC model the manual activity import data
service, which is shown in Figure 30, can be used. Thereby, a representation of the data service
is introduced to the VC model. As indicated by the inheritance hierarchy shown in that Figure, a
data service might be accessible via a BAPI interface, via RFC, might be defined as an WSDL,
an SAP enterprise service, or can even be another VC model.

40

A Examined MDE Settings R. Hebig and H. Giese

���������	
����	���

��
	����	���

���	�������

��	����
���
	��

���	�������

��	��
���

���	�������

��	���
���

���
��������	���

����	��
�	��

���	���

����	�����

��
	����	���

����	��
�	��

���	��� ��
���

����	��
�	��

�������

����
	��

������!��

����

��������"�����

����	��
�	��

���	

#$$%

��������	���

����	�����

���	�������

��	���
���

#$$&
�
���

��������	���

����	�����

���������	
����	���

����	��
�	��

���	
����	���

����	��
�	��

���	���

�
���

��������	���

#$$%

����	��
�	��

���	
����	���

����	��
�	��

�������

����
	��

������!��

����

��������"�����

#$$&

����	�����

���	�������

��	��
���

������!��

���

��������"�����

���
���
	��

��������	���

����	��
�	��

���	���

#$$%

����	�����

���	�������

��	����
���
	��

����	��
�	��

������� ����
	��

������!��

����

��������"�����

Figure 27: SIW: MDE setting for testing the created service

�����������	
���
�

�
��

�
�
��������
��	

������

������
���
�
�

Figure 28: VC: Activity Diagram to create a model

Data services must usually be prepared to be accessible via Net Weaver and , thus, within Visual
Composer. Figure 31 shows the example activity create RFC destination that is used to regis-
ter an RFC. The activity is supported by Net Weaver and creates based on a name, the RFC
destination, which can then be called as a data service within VC.

A.3.3 Manipulation of the data flow

Data services are not visible for the user of the application. The visible elements are here called
VC model elements. They can be connected to data services in order to be filled with informa-
tion or to transmit information to a data service. Figure 32 shows an activity diagram for the
introduction of such a VC model element to a VC model and its connection to data services.

41

R. Hebig and H. Giese

������������

	
����
�����

���
��������

	��������

����

���
��������

��
����

	��������

���

���
��������

�����������

	��������

���
��������

�����������

	��������

���
��������

��������
�

���
��������

������
�

	��������

���
��������

�	
�����

���
��������

�	
�����

���
��������

������
�

	��������

������������

	
����
�����������

	��������

������

	������

�������
����

������

	������

�������
����

���
��������

�	
�����

������������

	
����
���
����

�����

������

	������

�������
����

Figure 29: VC: Activities to create a model

������������

	
��
�������

��
����

���
��������

�����

��
����

���
��������

�����

��
����

���
��������

����������

���	�

���
��������

���������������

� ��
�
�!����
�����

���
��������

"��#�$�%
���
��������

"��#�$�%

"�!&�%�

��
��!�

��!&���
�!��

Figure 30: VC: Activities to integrate a data service into a VC Model

����������

		
���
��
��

		����������

�����������

��
������
�

		����������

����

��
������
�

		����������

������
������
��

����

Figure 31: VC: Activity to prepare an RFC destination for its use via Net Weaver

����������	

������
�����	���

	��
�	���������

���������
�����	���

Figure 32: VC: Activity Diagram to manipulate a data flow

Figure 33 shows the activities more in detail. The activity add element is used to manually create
a VC model element within a VC model. Further, activity define connection to data service is used

42

A Examined MDE Settings R. Hebig and H. Giese

����������		

��
����

����������		

��
�����

�������

����������		

��
����

����������		

��
�����

�������

����������		

�����

�������

����������		

���������

����������		

���������

������

��������

����������		

������

��������

����������		

������

��������

����������		

����������		

�����������

����������		

��������������������

����������		

���������������������

������������

Figure 33: VC: Activities to manipulate a data flow

to define a connection between a VC model element and a data service. Thereby, a connection
is create within the VC model. The activity configure connection is then used to configure the
events that trigger the data flow via the connection, the mapping between the data from the data
service and the VC model element, and further connection properties.

A.3.4 Manipulation of the layout

Besides the data flow to the data services, the layout of the VC model elements has to be defined.
The activity diagram for that is shown in Figure 34. Figure 35 shows the activities more in detail.

���������	
��

�	�	��

����
���
��������

��������	
����

���
�������

�	�	��

��������	
�������

�	�	��

Figure 34: VC: Activity diagram to manipulate the layout

The activity manipulate VC element position can be used to manipulate manually the position of
a VC model element and, thus, changes the VC model. Also the look of a VC model element can
be further manipulated (activity configure look). In addition, control elements can be introduced
(activity add control element) and it can be configured (activity configure control element) when
the control element can be used and what happens.

A.3.5 Remove from model

Figure 36 shows the activity remove from model, which can be used to remove elements from
the VC model.

43

R. Hebig and H. Giese

����������		

��
�����

�������

����������		

��
����

����������		

��
�����

�������

����������		

��
����

����������		

��
�����

���������������

����������		

��
�����

���������������

����������		

��
�����

���������������

��
����		

�
�

������������		

������

��������

����������		

������

��������

����������		

������

��������

����������		

������

��������

����������		

����������		

����������
����������

��������

����������		

������������������� ����������		

������������������

�������

����������		

��������������

Figure 35: VC: Activities to manipulate the layout

����������		

��
����

����������		

��
�����

�������

����������		

������������

����������		

���������

����

����

����������		

��
�����

���������������
����

����

����������		

������������

����

������

��� ����

���� ����		

Figure 36: VC: Activity to remove parts of a VC Model

A.3.6 Deployment

After the layout and data flow is defined it is already possible to deploy the application. Figure
37 shows the two activities necessary for that. First, a runtime environment as for example
WebDynpro has to be chosen (activity select runtime environment). Then activity deploy semi-
automatically takes all VC models of one deployment unit and compiles them into the runtime
environment.

A.3.7 Integration of web dynpro components

Alternatively to a data service a web dynpro component might be integrated in order to reach
more flexibility for the application. Figure 38 shows an activity diagram of activities necessary for
that.

The activities are shown in more detail in Figure 39. First, the web dynpro component has to

44

A Examined MDE Settings R. Hebig and H. Giese

����������		

���
����������������

����������		

��
��

����������		

�������

������
		

���

������������		
����

����

����������		

��
���� !������

"����������

����������		

#�$
�����

����������		

 !������

"����������

���

����������		

 !������

"����������

����������		

 !������

"����������

����������		

 !������

"����������

���� %

���!�
�

��������

���!������		

���!�
�

��������

���!������		

Figure 37: VC: Activities to deploy a VC model

���������	

���
�����������

�
����������

������	�
���
�

������������������

�
����������� ����������������

��������������

�
����������

����������������

�������
���������
����

�������
�

����������

Figure 38: VC: Activity diagram to integrate a web dynpro component into a VC model

be made public via th activity expose web dynpro component. This happens within the tool
web dynpro. In addition, a composite view is required which can be created using the activity
create model that is shown above in Figure 29. The public component can nor be added to the
composite view using the semiautomated activity add web dynpro component to model. Thereby,
a component controller is added to the composite view, which represents the public component.
As indicated by the show inheritance hierarchy, a component controller can be handled as data
service.

In order to access functionality or data from the public component the component controller has
to be extended with methods and events. The activity create method can be used to semi-
automatically create a method within the component controller. Accordingly, an empty method
implementation is added to the public component. Similarly, an event can be created using create
event. This leads to the addition of an event in the component controller and an empty event

45

R. Hebig and H. Giese

����������		

��
����

����������		

����������������

����������		

����������

����������

����������		

����������

����������

����������		

������������������

���������

����������		

���������

���������

����������		

����������		

�������

��������� ����������		

����������
���

����������		

�������

���������

��������������

����������		

����������		

����������

����������

 ����������

����������		

����������		

��!��

����������		

��!���

"�������������

��������������

����������		

����������		

�����

��������������

����������		

����������		

����������������

����������		

��!���

"�������������
����������		

����������������

����������		

������

"�������������

����������		

��!��

#$$%

����������		

������

"�������������

#$$%

����������		

��!���

"�������������

#$$%
��������������

����������		

����������		

��
�����

�������

����������		

"���������
��!��

����������		

�������
��!��

����������		

������������

����������		

���������������

����������&��
����

����������		

������&�������

����������		

��
����

����������		

��
�����

�������
����������		

���������

������

��������

����������		

����������		

����������

����������

����������		

"���������

����������

����������		

���������������������

"�������������������

����������		

����������

����������

����������		

"���������

����������

Figure 39: VC: Activities to integrate a web dynpro component into a VC model

implementation to the public component.

In order to implement the method and, thus, to access the functionality of the public component,
the user has to implement the method in Java manually (activity implement method). Thereby,
the method implementation is manipulated, such that it accesses other method implementations,
original methods of the public component, or event implementations. Finally, the activity apply
template can be used to create an appropriate VC model element for the component controller.
The activities define connection to data service and configure connection can then be used to
connect this VC model element to the component controller, as already described above.

46

A Examined MDE Settings R. Hebig and H. Giese

A.3.8 Usage of a dummy service

It is also possible to create a dummy service and use it instead of real data service, e.g. to create
a prototype of the user interface. Figure 40 shows the activity diagram for this. The activities are
shown in more detail in Figure 41. First, the user might prepare dummy data in excel. In addition,
if necessary a composite view has to be created using the activity create model that is shown
above in Figure 29.

������

����	
���� ������
��
��
��
��
�������

���������
������
���� ����������
����

�

�������
���� ��
�����
���
����

������

����	
����

Figure 40: VC: Activity diagram to create a dummy service

����������		

������

���������

����������		

������

���������

����������		

������
����

�����

����������		

����������		

�����

����

����������		

���������
����

������
��������

����������		
����������		

�����

����

����������		

����

������
��������

����������		

����������		

������

���������

����������		

������
����

����������		

����

����������		

������

���������

����������		

����������

����

����������		

������
����

����������		

����

����������		

����������

����

����������		

�����

����

!""#

������
��������
����������		

������
��������

����������		

������
��������

����������		

����������		

������
����

����������		

����������

����

����������		

������
�����

����

����������		

$� ��

������

���������

����������		

������
����

����������		

����������
����
����������		

� %���&������

����������		

'� ������������

����������		

�����

����������(�		

����������		

�����

����������(�		

Figure 41: VC: Activities to create a dummy service

47

R. Hebig and H. Giese

Then a service component can be created semi-automatically within the composite view. Thereby,
the prepared dummy data can be copied, such that the data for the output port is defined (activity
model service component). In addition, input ports can thereby be created. Then the user can
refine the data structure of the out port (activity define data). Then the data of the service compo-
nent has to be initialized, using the semi-automated activity initialize data. Thereby, the dummy
data used for the creation of the service component is added automatically. Data for the refined
parts of the data structure can be added using the activity add further data. As shown, further
dummy data can be created with create dummy data to give additional input for add further data.

Due to technical constraints, the output port finally has to be redefined, such that it provides the
initialized data. Now the service component can be handled in the data flow description as a data
service, as described above.

A.3.9 Generation of simple UI on the basis of BPM model

The last MDE setting part that we handle in this report enables the generation of a simple VC
model on the basis of a BPM process model. Thereby, as shown in Figure 42 three activities are
necessary. Figure 43 shows these activities in more detail. First the process has to be modeled
(activity model process). Following, it is necessary to generate a process context, which includes
the references on the data services that have to be used. This step is automatic.

���������	�

�

�����
������	�

�������

�����
�����

����

Figure 42: VC: Activity diagram to generate a VC Model on the basis of a BPM model

����������		

����

�

�����

�������		

�
�

���������
��		

����������		

��������������

�

�������

��
����

�����
��

��
������
		

����������		

����

�

�������

����������		

�����

�������

 ��������

!""#����������		

�����

�������

!""#

����������		

��������

����������		

����

�

������� ����������		

���������$%�

&���

��
����

�����
��

��
������
		

����������		

�����

�������

 ��������

����������		

�����

�������
!""#

!""#

����������		

������
����

�

�
��'�����

��
������
		

����������		

����

�

�����

�������		

�
�

���������
��		

Figure 43: VC: Activities to generate a VC Model on the basis of a BPM model

Finally, the automatic activity generate UI form takes this context and generates the VC model.
This generated model can already be deployed to a running application. However, it is also
possible to apply further changes using the activities described in the sections above.

48

A Examined MDE Settings R. Hebig and H. Giese

A.4 Oberon

The Oberon UI-Designer is a tool used to create user interfaces for SAP ByDesign. Thereby,
the UI-Designer provides templates (called floorplans) for user interfaces (called UI-design here).
The UI-designs are models of the user interface, which can be manipulated and enriched with
a data model and behavioral aspects, like navigation between different UI-designs or access to
business objects. Finally, the resulting model can be interpreted by tools like Silverlight or the
Oberon Slim Client.

Through the continuous usage of the model during development UI-Designer allows the developer
to act on a high level of abstraction. Even the resulting model is directly interpreted and the
developer has not to deal with generated code that might have to be adapted further. Thus,
the UI-Designer is an example for a sophisticated MDE that requires the developer only little to
access additional artifacts besides the main model.

First parts of the UI-Designer MDE setting can already used during analysis and design phase,
when the appearance and the usage scenarios of the user interface is planned. Here UI-Designer
can be used to create models for the appearance design. These models can then directly be
reused during implementation phase, where they are further refined and enriched with access to
back end functionality via business objects. Finally, it is not only at implementation time, but also
after deployment time possible to define changes in the user interface for specific users.

We can describe the MDE setting for developing a user interface with Oberon UI-Designer in three
parts. First part concerns the design of the user interface. The activities can be performed during
design but also later at implementation phase. The second part concerns the implementation of
the user interface, e.g. a refinement of the user interface, as well as the assignment of behavior,
such as navigation or access to functionality of the system. The last part describes how the user
interface can be changed - even by a key user - for specific users and how the user interface is
executed. An activity diagram of the whole MDE setting is shown in Figure 44.

A.4.1 Designing the user interface

Figure 45 shows the activities that might already been applied during design. The implementation
or design starts with the choice of an appropriate template for a floorplan. Based on that the
floorplan is automatically created, which can now be manipulated to define the look of the user
interface. As a floorplan represents only one part of the user interface it has to be integrated
into a whole user interface, which is a work-center with work-center views. Thus, the activity
’AddUIDesignToWorkCenterView’ adds the floorplan to a work-center view semi-automatically.

It is possible and in most cases necessary to create more than one floorplan. During design
we can further define how to navigate between different floorplans. Therefore, it is possible to
manually define hard coded navigations directly between the floorplans. This activity is called
’DefineNavigation’. It is one of a couple of activities that can be performed after the floorplan and
the associated data model are created. However, ’DefineNavigation’ can not only be applied to
floorplans, which are a special kind of UI components, but to all kind of UIComponents.

A.4.2 Implementation of the user interface

The other activities that can now be executed to implement UIDesigns are shown in Figures 46
and 47. First of all, the floorplan can be further manipulated (activity ’ManipulateFloorplan’) by

49

R. Hebig and H. Giese

�����������	�
�

��
	�
��

���
��

�����	�
�

�
��	��
��

�����	�
�

���
���
�
�����

��������������������	����

��
	��
�
�����

�����	��������������
���������
���

��
��
�����

���
��������
	�����

���������
	�����

��������	�
�

��
	�����
	������

��������	�
�

����������������

�������
 ��
����

���������
	�����

�������������������

��������������
����

��
���

��������
����

Figure 44: Oberon: Order of activities in the MDE setting for building a user interface using
Oberon

the developer.

Further, additional UIComponents can be created semi-automatically (activity ’CreateUICompo-
nent’) to refine the structure of the floorplan. The components can than be added directly to
the floorplan (activity ’AddUIComponentToFloorplan’), to a work center view (activity ’AddUICom-
ponentToWorkCenterView’) , or to other UIComponents (activity ’Compose Components’). The
composition between UIComponents can be loose via in and out ports or tight via bindings on
elements of the UIComponents data model. As a floorplan is a UIComponent as well, the activity
’AddUIComponentToUIDesign’ is similar to the activity ’ComposeComponents’.

The activity ’CreateDataModel’ can be used to semi-automatically create a data model for the
floorplan or each other UI component. Such a data model can be further adapted (activity ’Adapt-
DataModel’).

Further, the activity ’DefineControllerAspects’ capsules multiple different activities that are nec-
essary to define the behavior of the user interface. Figure 47 shows these refining activities. Two
of the activities are ’CreateQuery’ and ’BindToQuery’, which can be used to create a query and to
bind it semi-automatically to a specific part of the UIComponent. Further, the semi-automated ac-

50

A Examined MDE Settings R. Hebig and H. Giese

����������		

���
�����

����������		

�������������

��
���
���������

����������		

���������

����������		

����������

��������

����������		

���������

��������

���� ����������		

���������

��������

����������		

���������

����������		

���������������

��������

����������		

���
������

����

����������		

�����

���������

����������		

 !�
��������

����������		

"������#���$�����

����������		

 !�
��������

 !%"���$���

���&������		

 !%"���$���

���&������		

 !%"���$���

���&������		

 !%"���$���

���&������		

����������		

 !�
��������

����������		

���������

����������		

'�(������

��������

����������		

)
*

Figure 45: Oberon: Activities of the MDE setting for designing a user interface using Oberon

����������		

��
��������

����������		

���������

����������		

�
��������

����������		

�
�������� ����

�����

����������		

�������

���������

����������		

���������

����������		

���������

����������		

��
��������

������ ���

����������		

����������		

����
��
���������

!�����������

����������		

��������������

����������		

����������

���������

����������		

������
��

��������

����������		

�����

���������

����������		

��
��������

������ ���

����������		

������ ���

����������		

������ ���

����������		

������ ���

����������		

������ ���

����������		

����������		

���������

����������		

"��#
�����$��%

����������		

��
��������

������ ���

����������		

����������		

����
��
���������

!��"��#�
������

$��%

����������		

"��#
�����

����������		

���� �������

������ ���

����������		

����������		

������

���� �������

Figure 46: Oberon: Some activities of the MDE setting for implementing a user interface using
Oberon

51

R. Hebig and H. Giese

tivity ’BindToBusinessObject’ is used to access a business object from the user interface. There-
fore, the corresponding data model is bound to the business object (based on the BO-MetaData)
and the UIComponent references the data model, accordingly.

In addition, the semi-automated activities ’CreateEventHandler’ and ’AddEventHandler’ can be
used to couple the UIComponent to event handlers. Further, it is necessary to create a configu-
ration file (activity ’Define Configuration’).

The last four actions are for definition of OBN-based navigation between UIComponents. There-
fore, ’AddOBNReferenceToModel’ adds references to the source UICOmponent, while ’DefineA-
sOBNTarget’ defines within a UIComponent that it is a target of a specific OBN navigation. Finally,
’RegisterOBNReference’ and ’RegisterOBNTarget’ are automatically executed and store the in-
formation about source and target references within a NavigationRegistry.

������������

	
���

�������
�����
���

������������

���
�����
��

������������

�������������
���

���
��

������������

���
�����
��

������������

��
��������
� ������������

������
���

�����
�

������������

	��� ��
�

������������

��!
��	���

������������

"�
��

������������

"�
��

������������

���
�����
��

������������

���
�����
��

������������

	��� ��
�

������������

��!
��	���

������������

#���$�����%
$�����

������������

	
���

�������
��

���
���

������������

��
��������
�

������������

�
��
���
���

�����
�

������������

���
�����
��

������������

#���$�����%
$�����

������������

#���$�����%
$�����

������������

���
�����
��

������������

�����#%
�
�
��

&� ��
�

������������

%
$���
���#

%
�
�
��

������������

���
�����
��

������������

	
���
��

��#&��$
�
������������

%
$���
���#&��$
�

������������

���
�����
��

��!	
��$�
�

������������

������������

�
��
"�
��

������������

����&�"�
��

Figure 47: Oberon: Some activities of the MDE setting for implementing a user interface using
Oberon

52

A Examined MDE Settings R. Hebig and H. Giese

A.4.3 Defining changes for specific users

After the user interface and its functionality is defined it can be interpreted directly using Sil-
verlight or other tools like the Oberon Slim Client (activity ’InterpreteUIDesign’ shown in Figure
48). In addition, it is possible to semi-autoamtically define so called ChangeTranstions (activity
’DefineChangetransition’) on the floorplans for specific users. This can be done before deploy-
ment by the user interface designer, but also after deployment by the the key user of the system.
For which user a ChangeTransition is defined can be configured (activity ChangeConfiguration).

����������		

���
������

����

����������		

���
�����

�����������

����������		

������������

�����

����������		

����������		

������

�����������

�� ����

���!������		

����������		

"��������

#$%&�������

����������		

����������		

������

�����������

'(()

��������� 		

&������
������

�����������

��������� 		

$����������#$�

&�����

����������		

������������

#$%&�������

����������		

��������� 		

�����

������������

����������		

������

�����������

����������		

������������

Figure 48: Oberon: Activities of the MDE setting for interpreting and changing a user interface
using Oberon

53

R. Hebig and H. Giese

A.5 Business Rule Framework (BRF)

The Business Rule Framework enables customers of SAP to easily define changes in their busi-
ness processes by defining new rules or changing older rules. Thereby, BRF+ can directly be
used by the customer (the user of the business process) for changing the business process.

There are two basic MDE settings for the introduction of rules using BRF+. First, the business
user (i.e. the customer of SAP) can introduce the new rules using BRF+. Alternatively the rules
might be introduces by the SAP process developers. In the first case a preparation of the process
is necessary to enable the later introduction of rule by the user. For SAP processes the process
developers might introduce business rule services into the process. This might alternatively be
done by the business user with the help of BRF+. There is a third MDE setting for the preparation
of non-SAP processes by the process developer.

BRF+ automatically converts the rule descriptions (which can be seen as models) into database
entries, which are later generated to code in form of rule classes. Thus, we can consider the form
to define rules in BRF+ as a domain specific language (DSL) and with it the MDE settings that
are supported by BRF+ as MDE approaches.

This section includes the different MDE settings. The Sections A.5.1, A.5.2, and A.5.3 describe
the MDE settings for the preparation of the process. These MDE settings might be applied during
implementation phase or deployment phase. Parts of the MDE setting for the preparation of the
process by the business user might also be applied at runtime.

The MDE setting for the manipulation of the rules is shown in Section A.5.4. It can be applied at
runtime of the process. Finally, Section A.5.5 shows the MDE setting for the initial introduction of
rules by the process developer. This MDE setting might be applied during deployment phase of
the process.

A.5.1 The preparation of the process by the process developer

Figure 49 shows the MDE setting of the preparation of a SAP process. As result of the preparation
at different points in the process special business rule services are requested. These services
later access the rules. First, the SAP process has to be implemented. As this activity might be
complex and is not in focus of this report, it is not annotated here which tools are used for this
step or if this step is done manually or with automated support.

It is further not captured in which language (e.g. BPML) the process is formulated, as the devel-
opers might even decide to implement the process directly without using a process description
language.

After the process is implemented, the process developers create business rule services that are
accessed by the process.

A.5.2 The preparation of the process by the business user

Figure 50 shows the MDE setting for the preparation of an SAP-process by the business user.
This MDE setting differs from the one presented above, since the business user creates and
manipulates the business rule services. BRF+ supports these activities. They have not to be
performed manually, but are semi-automated.

54

A Examined MDE Settings R. Hebig and H. Giese

����������		

������
��
����������		

�����
�����

����

����
���

�
�
���
�

��
�
���
�		

��
�
���
�		

��
��
��

����
�
������
��

�����
��

����
���

�
�
���
�

����
���

�
�
���
�

��
�
���
�		

��������		

�����
��

��������		

����
�
�������
��
��������		

��
��
��

����������		

������
��

����������		

������
��

����������		

�����
�����

����

����

����������		

����

����������		

Figure 49: BRF: MDE setting of the preparation of an SAP process by the process developers.

����������		

���
��������������

�������
		

�������
���������
����������		

����������

��������

���������
����������		

����������		

����������

���
�������

����������		

���

����������		

�������
		

������
��

����������		

����������

����������		

���
��������������

���
�������

����������		

���

����������		

�������
		

���
 �
��

�������
��������

���
 �
��

������
��

Figure 50: BRF: MDE setting of the preparation of an SAP process by the business users.

55

R. Hebig and H. Giese

A.5.3 The preparation of a non-SAP process by the process developer

Figure 51 shows the third preparation MDE setting, which describes how an existing non-SAP
process can be prepared for the usage with BRF+. Therefore, the process developer has to
create a business rules service and then he has to tie this service to the code of its process. This
can be applied multiple times.

����������		

��
���������

����������		

������������
������

��������		

��������

����������		

��������

���������
����������		

��������

�������������������		

������������
������ ��������		

�����
������

��������
 �����
������

����

����������		

Figure 51: BRF: MDE setting of the preparation of an non-SAP process by the process develop-
ers.

A.5.4 The manipulation of rules

Figure 52 shows the order of activities of the MDE setting for the manipulation of rule by the
business user. The corresponding activities of the MDE setting are shown in Figures 53 and 54.

First, the business user has to create a rule set for the business rule service. This rule set can
then be enriched with decision tables and rules, which might also be changed later on.

����������	�

����������	���
����

����������

����������

����������	���
����

������

�����
�� ������
��������		

����������
�����
��������	�	

������
���

��������	�	

Figure 52: BRF: Order of activities in the MDE setting for the manipulation of rules

If the rules and decision tables are filled, BRF+ supports the user in applying several kinds of

56

A Examined MDE Settings R. Hebig and H. Giese

����������		

��

�����
����
�

��
�
���
�		

��������		

�����

��

�
��

����������		

����������		

��
�
�

����������		

��

�����
����
�

��
�
���
�		

��������		

�
���

��

�
��

����������		

����������		

�
����������

�����
����
�

��
�
���
�		

��������		

�����
�
����������

�
��

����������		

����������		

��
�
�

����������		

�
����������

�����
����
�

��
�
���
�		

��������		

�
���
�
����������

�
��

����������		

����������		

�����
��
��
�
����

�����
����
�

��
�
���
�		

����������		

��
�
�

��������		

�
���

��
�
�

�
��

����������		

Figure 53: BRF: Activities of the MDE setting for the manipulation of rules

analysis activities, such as a gap analysis or an overlap contradiction analysis. The user is also
supported in simulating the decisions based on the rules. All three activities are semi-automated.
If the analysis or simulation shows mistakes in the rules, the business user might go back and
change the rules and decision tables.

Finally, the business user triggers BRF+ to convert the rule set to a data base entry. When the
business rule service is later on called the first time by the process, BRF+ performs the last
step of the MDE setting and generates a rule class which is then accessed by the business rule
service. Both, conversion to the data base and generation of the rule class are fully automated
steps that do not require the user to be active.

The business user might always decide to return to the point where he defined the rule set or
rules and decision tables. However, as the activity generate rule class is not directly influenced
by the business user, there is no additional entry point, that enable to start at this point of the
MDE setting.

A.5.5 The initial introduction of rules by the process developer

Figure 55 shows the order of activities of the MDE setting for the initial introduction of rules by
the process developer. The Figures 56 and 57 show the activities that this MDE setting.

This MDE setting starts with a business user that defines (and might later change) unstructured

57

R. Hebig and H. Giese

����������		

��
��� �������
		

��
��������������
����������		

���������

�������		

����

����
�������		

����������		

��������
����

�� !

����������		

����������		

�� !

����
���"���

���#������		

����������		

�������

����������		

����
����������		

������
��$��

�������
		

%��������

����������		

�� !

����
���"���

���#������		

����������		

�������

����������		

����
����������		

������
��$��

�������
		

&'�������
���������
�
������

����������		

�������

����������		

���� �������
		

��
'�����
��
���

�����((������		

����������		

������
��$��

����������		

�����������
�(���
���$��

����
���"���

����������		

��
���

�� !

����������		

�� !

����������		����
���"���

���#������		

����������		

�������

����������		

����
����������		

������
��$��

�������
		

����
������

Figure 54: BRF: Activities of the MDE setting for the manipulation of rules

���������	
�����
����������������

�����������
��������

���
��������������
���

�����������������������

	����������������������

�������������������� �������

����������

�� �������

Figure 55: BRF: Order of activities in the MDE setting for the initial introduction of rules

rules that should be integrated to the process. For this rules the process developer defines then
business rule services, which he ties to the process code. After the business rule service is
created the process developer can transform the unstructured rules given by the business user
to BRF+ rule sets with rules and decision tables.

The following activities shown in Figure 57 are similar to the last activities of the MDE settings
shown in Section A.5.4. After the rules are transformed they might be analyzed or simulated with

58

A Examined MDE Settings R. Hebig and H. Giese

������������

��	
���
����

�������

��	
���
����

����

��	
���
����

���������
���

����

����

����

���� ����

�������
����

��	
���
����

����
����
��

�����

��	
���
����

������������

��
����

�����!��������

��	�������

�

����
"�����������

����

��	
���
����

����
����
��

�����

������������

�����!��������

��	
���
����

������������

��
����

��	�������

#
�
������

��	
���
����

�	
�����

��	
���
����

������������

��
����

������������

�����!��������

��	�������

��������#���

��	
���
����

����
����
��

�����

�����������
 ������������

��	�������

����������
����
�������
��	
���
����

����
����
��

�����

�����������
 ������������

��	�������

#$
�%�����
����
�������

Figure 56: BRF: Activities of the MDE setting for the initial introduction of rules

the possible consequence of changes in the rules and decision tables. Finally, they are converted
to data base entries and later these entries are the bases for the generation of rule classes. The
difference is that these activities are executed by the process developer and not by the business
user.

59

R. Hebig and H. Giese

����������		

��
��� �������
		

��
��������������
����������		

���������

�������		

����

����
�������		

����������		

��������
����

�� !

����������		

����������		

�� !

�������"
�#������

���$������		

����������		

�������

����������		

����
����������		

������
��%��

�������
		

&��������

����������		

�� !

�������"
�#������

���$������		

����������		

�������

����������		

����
����������		

������
��%��

�������
		

'#�������
���������
�
������

����������		

�������

����������		

���� �������
		

��
#�����
��
���

�����((������		

����������		

������
��%��

����������		

�����������
�(���
���%��

�������"
�#������

����������		

��
���

�� !

����������		

�� !

����������		

�������"
�#������

���$������		

����������		

�������

����������		

����
����������		

������
��%��

�������
		

����
������

Figure 57: BRF: Activities of the MDE setting for the initial introduction of rules

A.6 Business Warehouse (BW)

Business warehouse (BW) is a tool that can be used by a company, to bring the data necessary
for the reporting from different ERP systems to a central data warehouse. Therefore, BW enable
the user to define the structure for the data in the central data warehouse. Further, it can be
defined how the data structure from a source ERP system has to be transformed to the data
structure in the central data warehouse. Finally, the queries on this data for the reporting and
report layout can be defined. All this is then interpreted. For the interpretation some parts of
code have to be generated and are automatically regenerated, the the generation sources are
updates. Thus, changes can also be applied after deployment of the system.

Figure 58 shows a slightly adapted activity diagram of the MDE setting to get a centralized report-
ing using BW. We annotated additional initial nodes and flow final nodes in the diagram (marked
in blue). We use this to indicate that the user stop the process or execute only parts of the
process.

For example, the process might be split into four parts. There are activities for the definition of
the data structure in the central data warehouse. Further, there are activities for the definition of
transformation between the information of a specified ERP system and the defined central data
structure. Then, there are activities to define how the reporting is applied on the data in the central
data structure. Finally, there are the automated activities for the execution of the reporting. The
initial node before the activity create info source indicates for example that the user can define
the translation for a new ERP system. If he does not want to change the way of reporting he
can stop with the process before executing the activity define container subset. The last three
activities are necessary for execution of the reporting and might therefore be executed again and
again although the other activities are not.

Figure 59 shows the activities for the definition of the data structure for the central data warehouse

60

A Examined MDE Settings R. Hebig and H. Giese

��������	�

������
��	����

��������������	

��	�
�
�	���	
��	���

������
��	����
�����	 ���������
� �����������	

��	�
�
�	�����
	���

��	��������
��

�����
�����
!�	���

"
��
�!
�����
!�	���

����������������

#�
���$�	����	�

��%���
�	��

Figure 58: BW: Order of activities in MDE setting for centralization of reporting using BW

more in detail. The activity model data can be used to define a part of the information structure
(info object). However, it is also possible choose from already existing parts (activity choose
info object). If the required parts are created and chosen, the information structure is retrieved
through combining the info objects to a container. All these activities are manually (indicated by
the stick man) and are supported by the tool BW.

For each ERP System that should be integrated into the reporting, the definition of the extraction
has to be done. Thereby, it is assumed that an ERP system contains a data extractor which
extracts the information from the ERP system and provides them for further usage. Since multiple
of the ERP system might provide the data in the same form, they can be associated to the same
info source which represents the source type. An info source is created using the manual activity
create info source. Thereby the info source gets references to the associated data extractors.

61

R. Hebig and H. Giese

����������		

���
�����
����������		

���
�����

����

����������		

���
�����

����������		

���
�����

���� �

����������		

���������

����������

����������		

����������

����������		

����������

����������		

����������		

������
���
�����

����������		

�� �!����������

����������		

�� �!�"���

Figure 59: BW: Activities for definition of central data structure from MDE setting for centralization
of reporting using BW

������������

	
��

������
�����
�

������������

���
�
����
������������

������
�����
��

	
��

������������

��
�����

������
�����
�������������

���
�
����

������������

������
�����
��

�
������

������������

������

������
���

������������

���
�
����

������������

������
���

������������

�
�������

������������

�
�������

��	
��
��

�����

 �

�������

��	
��
��

�!��

���
��
����
��

���
��
����
��

!"��
�����

����##
�����

!"��
�����

����##
�����

!"��
�����

����##
�����

������������

���������
�
����

������������

�����������
�

$%%& ������������

���
�
����

!"��
�����

����##
�����

Figure 60: BW: Activities for definition of data extraction from MDE setting for centralization of
reporting using BW

For each info source it is necessary to define how the information has to be transformed to
the structure of information in the container (i.e. in the central data warehouse). This can be
done in two ways. Using activity model transformation it is possible to model the transformation
using a data-flow diagram. Alternatively, more complex transformations can be programed as a
transformation code exit using activity program transformation. Besides the transformation also
a scheduling has to be defined, which specifies, when the data extractors associated to the info
source have to be used to extract the information (activity define scheduling). Figure 60 shows
the four activities in detail.

Apart from the extraction of information, it is necessary to define how the reporting has to be
applied on the data structure in the central data warehouse (container). Figure 61 shows the
activities necessary for that in detail. First, the user chooses a subset of the container structure
(activity define container subset). Based on this subset he can define queries (activity define
query). Both activities can be applied multiple times, to create multiple queries on multiple con-
tainer subsets.

62

A Examined MDE Settings R. Hebig and H. Giese

������������

	
���

������
�

����
�

������������

������
�

������������

������
��

����
�

������������

	
���
��
��

������������

������
��

����
�

������������

��
��

������������

	
���
������

������������

��
��

���� ������������

������

���
���
��

������������

���
���
��

������������

���
���
��

������������ �����
 ��

!"��

��������#�"���

Figure 61: BW: Activities for definition of reporting from MDE setting for centralization of reporting
using BW

Finally, the layout of the reporting can be defined based on the queries (activity define layout).
Thereby, the layout is a HTML file.

Now all information necessary for the execution of the reporting is created. Thus, transformation
models, the container, transformation code exits, info sources with their scheduling, container
subsets, queries, and layout are transported to the running system.

Before the execution can be performed, it is necessary to ensure that transformation rules, trans-
formation code, and database structures, generated out of the actual transformation models,
transformation code exits and container exists. This is done by the automatic activity verify actu-
ality of generates. It is performed before the extraction of data out of the different ERP systems
and the reporting are performed. This activity can be further decomposed to the six activities
shown in Figure 62.

First, the activity choose transformation models to regenerate compares the creation date of the
transformation rules (if already there) and the transformation models. The the transformation
rules of one transformation model are out of date or do not exists the transformation model
belongs to the set of chosen transformation models. For each of these chosen transformation
models the activity generate transformation is performed to create the actual transformation rules.

Similarly, the activity choose transformation code exits to regenerate, compares transformation
codes and transformation code exits to retrieve the set of transformation code exits that are
transformed to transformation code using the activity generate code exits.

Finally, activity decide whether to regenerate container is used to decide whether the database
structure has to be regenerated. In that case, activity generate database structure generates on
the basis of the container the database structure. All these activities are performed by the tool
BW.

Figure 63 shows the two activities for the execution. For each info source the tool BW decides
based on the associated scheduling whether to trigger the associated data extractors. This is the
activity interpret extraction. Thereby, the info source with the associated scheduling as well as
transformation rules or transformation code are input. Further, the database structure and the
container are input. As result of this activity the container is filled with new information.

When all information is extracted, the user might decide to trigger a reporting tool (such as Excel)
to apply the activity interpret reporting. Thereby, based on the container subsets, the queries,
and the layout are used to create an HTML report.

63

R. Hebig and H. Giese

����������		

�����
�����
��

�
���

����������		

�����
�����
������

����������		

����������������

�����������

����
����

����������		

�
�������

����������		

���� ����

!��������
����������		

�����
�����
��

�
��"#��

����������		

�����
�����
��
��

����

����

����

����

����������		

�����������������������������

����������		

���������

�����
�����
�

����������		

�����
�����
��

�
���

����������		

�����
�����
������

����������		

������������$���

!��������

����������		

�
�������

����������		

���� ����

!��������

���
���		

� �%

���
���		

� �%

���
��
���

		

���
��
���

		

����������		

���������

�
��"#���

����������		

�����
�����
��

�
��"#��

����������		

�����
�����
��
��

���
���		

� �%

���
��
���

		

����������		

�&

���

�����
�����
���
�����

���'�������

����������		

�����
�����
��

�
���

����������		

�����
�����
��

�
���

���� ����

����������		

�&

���

�����
�����
���
���

"#����

���'�������

���� ����

����������		

�����
�����
������

����

����������		

�����
�����
��

�
��"#��

����������		

�����
�����
��

�
��"#��

����������		

�����
�����
��
��

����

����������		

�������(&��&����
�

��'���������
�������

) ���)

���)

����������		

�
�������

����������		

�
�������

����������		

���� ����

!��������

 (��
�����

����**
���		

Figure 62: BW: Activity for execution preparation from MDE setting for centralization of reporting
using BW

����������		

���
�����

����������		

����
�����

���� ����������		

������������������� ����������		

������������������

����������		

����������

��
��

����������		

 ����

����������		

!�����

���"

���"

����������#����

$�����%����&

��'������'		

����������		

(#)!�

������

��)�
��		

(#)!

��������*'#�		

����������		

#���'���*���������'

����������		

+���,�'��

��������

����������		

#���'���*�������
�

����
,-��������

��'������'		

����������		

���������

Figure 63: BW: Activities for execution of reporting from MDE setting for centralization of reporting
using BW

64

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

57 978-3-86956-

191-2
Industrial Case Study on the Integration of
SysML and AUTOSAR with Triple Graph
Grammars

Holger Giese, Stephan
Hildebrandt, Stefan Neumann,
Sebastian Wätzoldt

56 978-3-86956-
171-4

Quantitative Modeling and Analysis of
Service-Oriented Real-Time Systems
using Interval Probabilistic Timed
Automata

Christian Krause, Holger Giese

55 978-3-86956-
169-1

Proceedings of the 4th Many-core
Applications Research Community
(MARC) Symposium

Peter Tröger,
Andreas Polze (Eds.)

54 978-3-86956-
158-5

An Abstraction for Version Control
Systems

Matthias Kleine,
Robert Hirschfeld, Gilad Bracha

53 978-3-86956-
160-8

Web-based Development in the Lively
Kernel

Jens Lincke, Robert Hirschfeld
(Eds.)

52 978-3-86956-
156-1

Einführung von IPv6 in
Unternehmensnetzen: Ein Leitfaden

Wilhelm Boeddinghaus,
Christoph Meinel, Harald Sack

51 978-3-86956-
148-6

Advancing the Discovery of Unique
Column Combinations

Ziawasch Abedjan,
Felix Naumann

50 978-3-86956-
144-8

Data in Business Processes Andreas Meyer, Sergey Smirnov,
Mathias Weske

49 978-3-86956-
143-1

Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann,
Sascha Szott, Oliver Wonneberg

48 978-3-86956-
134-9

CSOM/PL: A Virtual Machine Product Line

Michael Haupt, Stefan Marr,
Robert Hirschfeld

47 978-3-86956-
130-1

State Propagation in Abstracted Business
Processes

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

46 978-3-86956-
129-5

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

45 978-3-86956-
128-8

Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

43 978-3-86956-
110-3

SOA-Security 2010 : Symposium für
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

42 978-3-86956-
114-1

Proceedings of the Fall 2010 Future SOC
Lab Day

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

41 978-3-86956-
108-0

The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

ISBN 978-3-86956-192-9
ISSN 1613-5652

	Titelblatt
	Impressum

	Abstract
	Introduction
	Foundation: influences on productivity
	Structure of this report

	Related Work
	Theoretical explanations of MDE concept's influence on software quality goals
	Related field studies

	Design of the Study
	Results of the Study
	Objects of study
	Artifacts
	Activities
	Occurrence of MDE concepts
	Separation of concerns
	Abstraction
	Automation
	Length of activity chains

	Software quality parameters
	Subsumption

	Discussion
	Discussion of correlation between occurrence of MDE concepts and aspired software quality goals
	Discussion of compliance with results from related studies

	General Insights
	An MDE setting can strongly constrain the order of activities, e.g. to apply a change to the system
	MDE settings actually do evolve permanently
	Companies that traditionally work with own languages and tools tend to develop company specific MDE settings, instead of using standard tool chains
	An MDE setting is reused over multiple projects
	Single MDE techniques are partly used in multiple phases of the software development life cycle

	Threats to Validity
	Conclusion
	References
	Appendix: Examined MDE Settings
	Business Object Development at FP 2.0 (BO)
	Service Implementation Workbench (SIW)
	The proxy-based case
	The API-based case
	Case of service independent development
	Creation of a configuration with templates
	Testing the created service

	Visual Composer (VC)
	Creation of a model
	Integration of a data service
	Manipulation of the data flow
	Manipulation of the layout
	Remove from model
	Deployment
	Integration of web dynpro components
	Usage of a dummy service
	Generation of simple UI on the basis of BPM model

	Oberon
	Designing the user interface
	Implementation of the user interface
	Defining changes for specific users

	Business Rule Framework (BRF)
	The preparation of the process by the process developer
	The preparation of the process by the business user
	The preparation of a non-SAP process by the process developer
	The manipulation of rules
	The initial introduction of rules by the process developer

	Business Warehouse (BW)

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

