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1 Introduction

Let Ω = C(R, R)Zd
be the configuration space, and F be the canonical σ-field in it. For ω ∈ Ω

we write ω = (ωi(t))i∈Zd,t∈R. Suppose we are given the following infinite-dimensional stochastic
differential equation (s.d.e.)

dXi(t) =
(
− 1

2
ϕ′(Xi(t)) + b(θi,tX)

)
dt + dBi(t) , i ∈ Z

d, t ∈ R (1)

where

• ϕ is a suitable self potential, to be chosen in a class that will be defined in Section 2;

• b : C((−∞, 0], R)Zd→R is a measurable bounded local function, say b(ω) = b(ωV0), where
ωV0 = (ωi(t))i∈Λ0,t∈]−T0,0] is the restriction of ω to a bounded subset V0 = Λ0×] − T0, 0] ⊂
Z

d × R of space-time- coordinates, containing the origin;

• θi,t is the space-time translation on Ω given by (θi,tω)j(s) = ωi+j(t + s);

• (Bi)i∈Zd is a sequence of independent real-valued Brownian motions.

Our aim in this paper is to prove the existence of a stationary weak solution of (1) with possibly
non-Markovian and non-gradient drift in an infinite time-interval.

Such diffusions restricted to a finite time-interval (say [0, 1]), with b(ω) = b(ω(0)) (Markovian
drift), and when b is the gradient of a smooth Hamilton function, were described as lattice Gibbs
states on C([0, 1], R)Zd

first by Deuschel in [5, 6] and later in [3]. We will use here the description
of weak solutions of (1) as space-time Gibbs states on Ω. To be more precise, let Q ∈ Ps(Ω) be
a space-time translation invariant probability measure on (Ω,F), and b be a given function as
above. We denote by P the reference measure in Ps(Ω), law of the stationary solution of equation
(1) with b ≡ 0. We make assumptions on ϕ which guarantee existence and uniqueness of such
“free” infinite-dimensional diffusion without interaction P . Under the integrability condition

H(Q) < +∞,

where H denotes the specific entropy of Q with respect to P (see formula (11)), the main result
in [4] was the equivalence of the following assertions:

(i) Q is a stationary weak solution of the stochastic differential equation (1).

(ii) Q is a space-time invariant Gibbs state for a specification which is built on a Hamiltonian
functional H defined on C(R, R)Zd

and given in (10). This specification is defined as a
perturbation of a reference specification, which in this model consists of stochastic bridges
derived from P .

No existence result of solution of equation (1) was proved in [4].
When the drift b(ω) = b(ω(0)) is a regular Markovian one, existence and uniqueness of strong

solutions of (1) were proved in [7] and [26]. But it is not clear whether among the solutions there
is one that is time stationary. Furthermore, not having assumed any smoothness on the drift b
and no Markovianity, it is not known whether the s.d.e. (1) admits any weak solution. Indeed,
we show here that a stationary solution of (1) with general drift b can be constructed by cluster
expansion, provided ‖b‖∞ is sufficiently small.

Gibbs fields on the trajectory space C(R, R) were introduced in the context of Euclidean
quantum field theory as quasi-invariant measures (see Courrège and Renouard [2], Royer and
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Yor [25] and references therein). One of the difficulties in dealing with Gibbs fields on path
spaces comes from the fact that disjoint time regions are not independent under the reference
measure. More recently Betz and Lörinczi [1] used D-L-R approach for constructing P (Φ)1-
processes, and Osada and Spohn [21] used it for constructing a class of Gibbsian non Markovian
real valued stochastic processes. One finds also in [15] and [16] the use of cluster expansion
methods to solve existence problems of Brownian paths under different types of interaction.

In this paper, following the notions introduced by Minlos, Rœlly and Zessin in [19], we deal
with Gibbs fields on C(R, R)Zd

, that are parametrized by space and time Z
d × R. Some of these

fields are related with quantum Gibbs states through the Feynman-Kac-Nelson representation
- cf. [20] for a very clear description of the relation with physical quantum models -. The
originality of the model we present here comes from the generality of the Hamiltonian functional
H, which is neither a quadratic or a polynomial one as in [19] (formula (35) or (74)), nor a
bounded functional. It includes a stochastic integral term, and therefore is highly explosive.

The paper is divided into the following sections.

1. Introduction.

2. Infinite-dimensional diffusion as space-time Gibbs states.

3. Cluster representation and cluster estimates

2 Infinite-dimensional diffusion as space-time Gibbs state

First of all we introduce our one dimensional reference process, whose law on C(R, R) is denoted
by W , as the time-stationary solution of the scalar differential equation

dx(t) = −1
2
ϕ′(x(t))dt + dw(t) (2)

where w is a real valued Brownian motion and the self potential ϕ is a C2(R, R) function satisfying
the following properties :

lim
|x|→+∞

ϕ(x) = +∞, and ∃C0 ∈ R such that ϕ̃ =: ϕ′′ − 1
2
(ϕ′)2 ≤ C0 (3)

e−ϕ ∈ L1(R). (4)

0 < lim inf
|x|→+∞

ϕ′′(x) and ∃M > 0,
∫
|x|>M

1
ϕ′(x)

dx < +∞. (5)

Property (3) guarantees that, for any given initial condition, a unique non-exploding strong
solution of (2) exists (see Theorem 2.2.19 in [24]). Property (4) is in fact a consequence of the
first part of (5) since the assumption lim inf |x|→+∞ ϕ′′(x) > 0 implies that the measure e−ϕ(x)dx
has tails not bigger than Gaussian. It ensures that the measure e−ϕdx, which is invariant, is
normalizable. Let μ(dx) = e−ϕ(x)dx/

∫
e−ϕ(y)dy denote this unique invariant Probability measure

associated to (2). Property (5) ensures that the process x(t) is sufficiently ergodic against μ, in
the sense that its associated semi-group is ultracontractive.
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2.1 The infinite-dimensional diffusion

Let Ω = C(R, R)Zd
be the canonical configuration space, and F be the canonical σ-field. With

P(Ω) we denote the space of probability measures on Ω, and Ps(Ω) is the subset of P(Ω) consisting
of those probabilities that are invariant for the space-time shift maps (θi,t)i∈Zd, t∈R.

In what follows we let P be the law of the reference non-interacting infinite system, i.e.

P = ⊗ZdW ∈ Ps(Ω).

The main object of this paper is an infinite-dimensional diffusion that is obtained by per-
turbing through an interaction a system of independent particles each evolving with dynamics
given by (2): we fix a bounded subset V0 = Λ0×]− T0, 0] ⊂ Z

d × R
−, and assume we are given a

measurable bounded V0-local function b(ω) = b(ωV0) on C([−T0, 0], R)Λ0 , where this path space
is provided with the topology of uniform convergence, and the corresponding Borel σ-field.

We consider the associated stochastic differential system

dXi(t) =
(
− 1

2
ϕ′(Xi(t)) + b(θi,tX)

)
dt + dBi(t) , i ∈ Z

d, t ∈ R
+. (6)

Remark that, in the time-stationary situation, we can also consider the above system for any
time t ∈ R.

We recall that a weak solution of the s.d.e. (6) is a probability measure Q on Ω such that the
scalar processes (

Xi(·) −
∫ ·

0

(
− 1

2
ϕ′(Xi(s)) + b(θi,sX)

)
ds

)
i∈Zd

are Q-independent Brownian motions, where X is the canonical process on Ω: Xi(t, ω) = ωi(t)
for ω ∈ Ω, i ∈ Z

d and t ∈ R.

2.2 Its characteristics as Gibbs field

For Q ∈ P(Ω), and G sub-σ-field of F , we denote by Q(·/G) a regular version of Q conditioned
to G, while Q|G denotes the restriction of Q to G. To define space-time Gibbs fields, we need to
introduce different filtrations on the space-time structure. Let V be the set of space-time volumes
V having the form V = Λ× I where Λ ⊂ Z

d is finite, and I =]a1, a2[ is a bounded open interval.
For a space-volume Λ ⊂ Z

d we define its enlargement Λ+ and its boundary ∂Λ by

Λ+ = {i ∈ Z
d : (Λ0 + i) ∩ Λ �= ∅}, and ∂Λ = (Λ+)+ \ Λ.

For a time-volume I =]a1, a2[⊂ R we define its enlargement I+ by I+ = [a1 − T0, a2].
For V = Λ × I ∈ V the forward σ-field FV and the backward σ-field F̂V are defined by

FV = σ{ωi(t) : i ∈ Λ++, t ∈ I+}, and F̂V = σ{ωi(t) : (i, t) �∈ V }.

The boundary σ-field ∂FV is given by

∂FV = FV ∩ F̂V .

For future use, we also let
BV = σ{ωi(t) : i ∈ Λ, t ∈ I}.
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Now, the reference specification Π0 we consider is the following kernel based on P :

∀V ∈ V, A ∈ FV , Π0
V (A) = P (A/F̂V ) P − a.s. (7)

It is easy to see that, for V = Λ×]a1, a2[, Π0
V is given by

Π0
V (ω, dω′) = ⊗(i,t)�∈V δωi(t))(dω′

i(t)) ⊗ ⊗i∈ΛW
ωi(a1),ωi(a2)
[a1,a2]

(dω′
i) (8)

where W x,y
[a1,a2] is the law of the stochastic bridge on [a1, a2] obtained by conditioning W to be

x at time a1 and y at time a2. That Π0 is a space-time specification in the Gibbsian sense has
been proved in [19], Example 2, Section 1.4.2.

On the path level, the interaction functional is given through a potential Φ = (ΦV )V ∈V which
is defined on a subset Ω′ ⊂ Ω as follows :⎧⎪⎨
⎪⎩

ΦΛ×I ≡ 0 if � ∃i ∈ Z
d : Λ = i + Λ0

Φ(i+Λ0)×I(ω) = − ∫I b(θi,tω)dωi(t) + 1
2

∫
I

[
b(θi,tω)(b(θi,tω) − ϕ′(ωi(t)))

]
dt otherwise

= − ∫I b(θi,tω)dB̃i(t) + 1
2

∫
I b2(θi,tω)dt

(9)
where the process B̃ is defined by

B̃i(t) = ωi(t) +
1
2

∫ t

a1

ϕ′(ωi(s))ds, t ∈]a1, a2[,

and satisfies that B̃i(a1 + .)−B̃i(a1)’s are independent Brownian motions under P . Note that the
potential Φ is not defined a priori on the whole Ω, but only for ω ∈ Ω′ for which the stochastic
integral

∫
I b(θi,tω)dωi(t) makes sense (in particular, P (Ω′) = 1). Anyway Φ(i+Λ0)×I ∈ L2(P ),

and therefore is finite P -almost surely. We make the convention that it is always chosen in such
a way that it does not assume the value −∞.

The associated Hamiltonian is defined on Ω′ for V = Λ × I by

HV (ω) =
∑

Λ′∩Λ �=∅
ΦΛ′×I(ω) = −

∑
i∈Λ+

[∫
I
b(θi,tω)dB̃i(t) − 1

2

∫
I
b2(θi,tω)dt

]
, ω ∈ Ω′. (10)

We observe that Φ and H are space-time translation invariant, and that HV is FV -measurable.
We can now define for V ∈ V, ω ∈ Ω the specification ΠH

V (ω, .) as the following Probability
measure on Ω with support included into Ω′

ΠH
V (ω, dω′) =

{
1

ZH
V (ω)

1Ω′(ω′) exp(−HV (ω′))Π0
V (ω, dω′) if 0 < ZH

V (ω) < +∞
0 otherwise,

where
ZH

V (ω) =
∫

Ω′
exp(−HV (ω′))Π0

V (ω, dω′)

is the (∂FV -measurable) normalization factor.

Definition 1 A probability measure Q on Ω is said to be a space-time Gibbs state with specifi-
cation ΠH if there exists a subset Ω′ ⊂ Ω such that Q(Ω′) = 1, H is well defined on Ω′ and, for
all V ∈ V and A ∈ FV

Q(A/F̂V ) = ΠH
V (A) Q − a.s.
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The set of space-time Gibbs states for ΠH will be denoted by either G(ΠH) or G(H,Π0).
Moreover we let Gs(ΠH) denote the set of space-time invariant Gibbs states, i.e.

Gs(ΠH) = G(ΠH) ∩ Ps(Ω).

For Q ∈ Ps(Ω) we also define its specific entropy with respect to P by

H(Q) =
∫

h(Q(·/B−)|B1
;P (·/B−)|B1

) dQ (11)

where h(·; ·) denotes the relative entropy between two measures,

B1 = B{0}×]0,1[

and
B− = σ{ωi(t) : (t ≤ 0, i ∈ Z

d) or (0 < t ≤ 1 and i < 0)}.
Here we use as order in Z

d (denoted also by ”<”) the lexicographic order.
Let us now enounce the key point on which our existence theorem is based (it is a condensed

version of Proposition 1, Theorems 1 and 2 in [4] ).

Proposition 2 Let Q ∈ Ps(Ω) be a weak solution of the s.d.e. (6). Then Q ∈ Gs(ΠH) where the
Hamiltonian H is given by (10). Reciprocally, if Q ∈ Gs(ΠH) is such that H(Q) < +∞, then Q
is a weak solution of the s.d.e. (6).

2.3 The Existence theorem

We are now able to state our main result.

Theorem 3 If the drift b has a norm ‖b‖∞ sufficiently small, then there exists a stationary
weak solution Q of the s.d.e. (6) . This Probability measure Q admits a cluster expansion and
is invariant with respect to space-time translations. Moreover it satisfies the property of short
range correlations, i.e. for every Λ ⊂ Z

d finite, I bounded interval of R and F,G : Ω → R

FΛ×I-measurable, we have

lim
|i|+|t|→+∞

Q[F (G ◦ θi,t)] = Q(F )Q(G).

The proof of this theorem is based on the following convergence result.

Without loss of generality, we may assume that Λ0 = {i ∈ Z
d : |i| ≤ r0}. Define, recursively,

Λn+1 = Λ+
n . Moreover, let I(n) be an increasing sequence of bounded intervals whose union is

R. Note that Vn = Λn × I(n) ⊂ Z
d ×R is an increasing sequence of bounded sets which tends to

Z
d × R as n tends to infinity. Finally, for η ∈ Ω, we define η(n) by

η
(n)
i (t) =

{
ηi(t) for t ≥ inf I(n)
ηi(inf I(n)) otherwise.

Lemma 4 Let Qn be the Probability measure on Ω defined by :

Qn(dη) = exp
[
−HVn(η(n))

]
P (dη).

If, for each local bounded measurable function F ,

lim
n

Qn(F ) =: Q(F ),

then the weak limit Probability measure Q belongs to G(ΠH).
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Proof : For η ∈ Ω, we write ηV the restriction of η to (i, t) ∈ V . Observe that

Qn(dη) = ΠH
Vn

(η(n)
V c

n
, dη)ZH

Vn
(η(n)

V c
n

)P|BV c
n
(dηV c

n
),

since Π0
Vn

(η(n)
V c

n
, dη) = Π0

Vn
(ηV c

n
, dη). Moreover, by Girsanov Theorem, it is easy to check that∫

ZH
Vn

(η(n)
V c

n
)P|BV c

n
(dηV c

n
) = 1.

Thus, Qn is a mixture of the local specifications ΠH
Vn

(ηV c
n
, dη). The conclusion then follows as in

Proposition 1 in [19]. �

The next section is devoted to the proof of the convergence of Qn which is based on the
method of cluster expansion.

3 Cluster representation and cluster estimates

3.1 The cluster representation of statistical sums

The different steps of the proof to obtain a cluster representation of the measures Qn are the
same as in [19] Section 4. The new difficulty comes in the next subsection for the computation
of the cluster estimates since the Hamiltonian functional is highly non regular.

The main idea is to discretize in time the volume Vn, to have a better understanding of the
local structure of Qn. After having performed the discretization, the typical strategy in cluster
expansion is to expand the partition function

Zn =
∫

exp
[
−HVn(η(n))

]
P (dη),

that in our case equals 1, due to the P -martingale property of exp−HVn(η). The cluster estimates
for the integral above are, however, exactly what is needed for our purposes. Let a > 0 be a real
number which we will choose later and Za ⊂ R the one-dimensional time lattice with step length
a. We let, for j ∈ Z, Ij = [ja, (j + 1)a]. Moreover, we let

Z
d+1
a = Z

d × Za

be the space-time lattice with scale a for the time. We call temporal edge in
Z

d+1
a a pair of the form (i, Ij), i ∈ Z

d, j ∈ Z . The points (i, ja), (i, (j + 1)a) are called the
vertices of the edge.

We call contour on the interval Ij a sequence of Λ0-connected temporal edges γj of the
following type :

γj = {(i1, Ij), . . . , (im, Ij)},
where Λ0-connected means that, for k = 1, . . . ,m−1, (ik+1 +Λ0)∩ (ik +Λ0) �= ∅. If the meaning
is clear, then we write sometimes k ∈ γj instead of (k, Ij) ∈ γj .

For every set B of temporal edges we denote by [B] ⊂ Z
d+1
a the set of vertices of the elements

of B. For example, [{(i, Ij)}] = {(i, j), (i, j + 1)} ⊂ Z
d+1
a .

We now assume that the time interval I(n) which appears in Qn is of the form

I(n) = [−Na,Na] =
N−1⋃

j=−N

Ij,
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where N = pn for some p ∈ Z, p > 0.
We define the transition density qt(x; y) of the one-dimensional reference process x(t) solution

of (2) with respect to its invariant probability measure μ by the following equation :

W (x(t) = dx/x0 = y) = qt(x; y)μ(dx).

Since the process x(t) is Markovian, we have :

W (·/x(ja) = yj, j = −N, . . . ,N) = ⊗N−1
j=−NW

yj ,yj+1

Ij
(·).

Let also denote by yn the (2N + 1)|Λn+2|-dimensional vector (yi,j)(i,j)∈Λn+2×{−N,...,N}, where
|Λn+2| is the number of elements in Λn+2; let also ∂I(n) = {inf(I(n)), sup(I(n))}. With these
notations, and after having noticed that HVn(η(n)) depends only on ηi(t), i ∈ Λn+2, t ∈ I(n), one
can write the partition functions Zn as follows

Zn =:
∫

Ω

∫
Ω

exp
[
−HVn(η(n))

]
Π0

Λn+2×I(n)(ω, dη)P|BΛn+2×∂I(n)
(dω)

=
∫

R
|Λn+2|(2N+1)

Zn(yn)
∏

i∈Λn+2
j=−N,..,N−1

qa(yi,j+1; yi,j) ⊗ i∈Λn+2
j=−N,..,N

μ(dyi,j) (12)

where
Zn(yn) =

∫
Ω

exp
[
−HVn(η(n))

]
⊗ i∈Λn+2

j=−N,..,N

W
yi,j ,yi,j+1

Ij
(dηi). (13)

Since the Hamilton functional HΛ×I is additive with respect to the time interval I,

Zn(yn) =
∫

Ω

j=N−1∏
j=−N

[
−HΛn×Ij(η

(n))
]
⊗ i∈Λn+2

j=−N,..,N

W
yi,j ,yi,j+1

Ij
(dηi).

For a step length of the time-lattice a sufficiently large, I+
j = [ja − T0, (j + 1)a] ⊂ Ij−1 ∪ Ij and

the coefficient Zn(yn) decomposes into the following product of integrals :

Zn(yn) =
j=N−1∏
j=−N

∫
Ω

exp
[
−HΛn×Ij (η

(n))
]
⊗i∈Λn+2 W

yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi)

=
j=N−1∏
j=−N

∫
Ω

∏
k∈Λn+1

exp
[
−Φ(k+Λ0)×Ij

(η(n))
]
⊗i∈Λn+2 W

yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi).(14)

For simplification, let us denote by

Φk,j(η) =: Φ(k+Λ0)×Ij
(η(n)).

We first analyze the product on the space-lattice in the last expression, in order to exchange it
later with the integration on Ω.∏

k∈Λn+1

exp(−Φk,j(η)) =
∏

k∈Λn+1

(
1 + exp(−Φk,j(η)) − 1

)

= 1 +
∑
L

∏
k∈L

(
exp(−Φk,j(η)) − 1

)

= 1 +
∑
s≥1

∑
γj
1 ,...,γj

s

s∏
m=1

∏
k∈γj

m

(
exp(−Φk,j(η)) − 1

)
(15)
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where the summation
∑

L takes into account all non empty subsets of Λn+1, and the summation∑
γj
1 ,...,γj

s
takes into account all maximal “Λ0-connected” components of (L, Ij), id est

(L, Ij) ≡ {(k, Ij), k ∈ L} = γj
1 ∪ · · · ∪ γj

s and this decomposition is the finest one such that
γj

1, . . . , γ
j
s are disjoint sets satisfying for m �= m′,(γj

m + Λ0)∩ (γj
m′ + Λ0) = ∅ - in an obvious way,

γj + Λ0 ≡ {(k, Ij), k = k′ + i where (k′, Ij) ∈ γj and i ∈ Λ0} -. So

Zn(yn) =
j=N−1∏
j=−N

∫
Ω

(
1+
∑
s≥1

∑
γj
1 ,...,γj

s

s∏
m=1

∏
k∈γj

m

(
exp(−Φk,j(η))−1

))
⊗i∈Λn+2W

yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi).

(16)
To avoid an excessively heavy notation, we do not write the condition that the contours γk

appearing in the sum above are formed by temporal edges of the type (i, Ij), with i ∈ Λn+1.
Before inserting the expression (16) into (12), we analyse the time-product :∏

j=−N,...,N−1

qa(yi,j+1; yi,j) =
∏

j=−N,...,N−1

(
1 + qa(yi,j+1; yi,j) − 1

)

= 1 +
∑

τ

∏
Ij∈τ

(
qa(yi,j+1; yi,j) − 1

)

= 1 +
∑
p≥1

∑
τ i
1...,τ i

p

p∏
u=1

∏
Ij∈τ i

u

(
qa(yi,j+1; yi,j) − 1

)
(17)

where the summation
∑

τ is over all non ordered collections of intervals of the type Ij included in
I(n) and the summation

∑
τ i
1...,τ i

u
is over all pairwise non intersecting collections of consecutive

(connected) time intervals τ i
u = (Ij , Ij+1, . . . , Ij+r). The τ i

u’s, called temporal series, are then the
connected components of τ and can also be represented by the following collection of temporal
edges:

τ i
u = {(i, Ij), . . . , (i, Ij+r)}.

Then, inserting expressions (16) and (17) into (12), we obtain

Zn =
∫

R
|Λn+2|(2N+1)

j=N−1∏
j=−N

∫
Ω

(
1 +

∑
s≥1

∑
γj
1 ,...,γj

s

s∏
m=1

∏
k∈γj

m

(
exp(−Φk,j(η)) − 1

))
⊗i∈Λn+2 W

yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi)

∏
i∈Λn+2

(
1 +

∑
p≥1

∑
τ i
1...,τ i

p

p∏
u=1

∏
Ij∈τ i

u

(
qa(yi,j+1; yi,j) − 1

))
⊗ i∈Λn+2

j=−N,..,N

μ(dyi,j).

So,

Zn = 1 +
∑
v≥1

∑
Γ1,...,Γv
Γu∈Bn

v∏
l=1

KΓl
, (18)

where the last summation is taken on all non ordered collections of pairwise non intersecting
aggregates Γl, an aggregate Γ being a non empty collection

Γ = {γj1
1 , . . . , γjs

s ; τ i1
1 , . . . , τ

ip
p }

9



of Λ0-connected contours and temporal series satisfying : for m �= m′, (γj
m +Λ0)∩ (γj

m′ +Λ0) = ∅

and for u �= u′, τ i
u ∩ τ i

u′ = ∅. Moreover, Bn is the set of aggregates corresponding to the volume
Vn, i.e. Γ = {γj1

1 , . . . , γjs
s ; τ i1

1 , . . . , τ
ip
p } ∈ Bn if the temporal edges in the γjh

h are of the form (i, Ij)
with i ∈ Λn+1, Ij ⊂ I(n), and the ones in the τ ik

k are of the form (i, Ij) with i ∈ Λn+2, Ij ⊂ I(n).
The decomposition (18) is called a cluster representation of the statistical sum Zn and the

coefficient KΓ is given by the following expression :

KΓ =
∫ s∏

m=1

∫
Ω

∏
k∈γjm

m

(
exp(−Φk,jm(η)) − 1

)
⊗

i∈γjm
m +Λo

W
yi,jm−1,yi,jm
Ijm−1

(dηi)W
yi,jm ,yi,jm+1

Ijm
(dηi)

p∏
u=1

∏
Ij∈τ iu

u

(
qa(yiu,j+1; yiu,j) − 1

)
⊗(i,j)∈[Γ̄] μ(dyi,j) (19)

where Γ̄ is the set of all temporal edges which compose Γ.

3.2 The cluster estimates

The following proposition is the key point of the convergence proof of the measures Qn .

Proposition 5 Under a suitable choice of the time scale a there exists some constant λ(ε) which
tends to 0 as ε goes to 0 such that, if the norm ‖b‖∞ of the interaction is smaller than ε, the
weight KΓ of the aggregate Γ = {γj1

1 , . . . , γjs
s ; τ i1

1 , . . . , τ
ip
p } satisfies the estimate :∣∣KΓ

∣∣ < λ(ε)|Γ| (20)

where |Γ| = |Γ̄| is the number of temporal edges which compose Γ.

Proof of Proposition 5 : To estimate the coefficient KΓ defined by (19), we need to commute
several times integration and products. To this aim, the following abstract integration lemma,
which generalizes Hölder inequalities, will be very useful. It is proved in [20] Lemma 5.2 :

Lemma 6 Let (μx)x∈X be a family of Probability measures, each one defined on a space Ex,
where the elements x belong to some finite set X . Let us also define a finite family (fi)i of
functions on EX = ×x∈XEx such that each fi is Xi-local for a certain Xi ⊂ X , in the sense that

fi(e) = fi(e|Xi
), for e = (ex)x∈X ∈ EX .

Let ρi > 1 be numbers satisfying the following conditions :

∀x ∈ X ,
∑
Xi
x

1
ρi

≤ 1. (21)

Then ∣∣∣∣
∫
EX

∏
i

fi ⊗x∈X dμx

∣∣∣∣ ≤∏
i

(∫
EXi

|fi|ρi ⊗x∈Xi dμx

)1/ρi

(22)
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Lemma 6 allows us to exchange the second product with the integral over Ω in the expression
(19). Let us define

K(γj
m) =

∫
Ω

∏
k∈γj

m

(
exp(−Φk,j(η)) − 1

)
⊗

i∈γj
m+Λo

W
yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi).

Then, by Lemma 6 applied to X = γj
m+Λo, Xi = i+Λo, Ex = C(R, R), μi = W

yi,j−1

Ij−1
⊗W

yi,j,yi,j+1

Ij
,

fi = exp(−Φi,j) − 1 , we get ∣∣K(γj
m)
∣∣ ≤ ∏

k∈γj
m

kk,j(yn) (23)

where

kk,j(yn) ≡
(∫

Ω

(
exp(−Φk,j(η)) − 1

)ρ1 ⊗i∈k+Λo W
yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi)

)1/ρ1

and ρ1 is an even natural number greater than |Λ0|, in such a way that the condition (21) holds:
for every fixed i

|{k, k + Λ0 � i}| 1
ρ1

=
|Λ0|
ρ1

≤ 1.

So, returning to (19), we obtain

∣∣KΓ

∣∣ =
∣∣∣∫ s∏

m=1

K(γjm
m )

p∏
u=1

∏
Ij∈τ iu

u

(qa(yiu,j+1; yiu,j) − 1) ⊗(i,j)∈[Γ̄] μ(dyi,j)
∣∣∣

≤
∫ s∏

m=1

∏
k∈γjm

m

kk,jm(yn)
p∏

u=1

∏
Ij∈τ iu

u

∣∣qa(yiu,j+1; yiu,j) − 1
∣∣⊗(i,j)∈[Γ̄] μ(dyi,j) (24)

Applying once more Lemma 6, we obtain

∣∣KΓ

∣∣ ≤
s∏

m=1

∏
k∈γjm

m

(∫
kk,jm(yn)ρ1 ⊗(i,j)∈k+Λ0×{jm−1,jm,jm+1} μ(dyi,j)

)1/ρ1

p∏
u=1

∏
Ij∈τ iu

u

(∫ ∣∣qa(yiu,j+1; yiu,j) − 1
∣∣ρ2μ(dyiu,j)μ(dyiu,j+1)

)1/ρ2

(25)

where ρ1 and ρ2 have to satisfy the adapted condition (21) : for every fixed (k, ja)

|{(k′, j′), (k′ + Λ0, Ij′) � (k, ja)}| 1
ρ1

+
2
ρ2

≤ 1,

which is equivalent to
2|Λ0|
ρ1

+
2
ρ2

≤ 1.

The choice (ρ1, ρ2) = (4|Λ0|, 4) is a possible one and we will take it. Then

|KΓ| ≤ M
∑s

m=1 |γjm
m |

1 M
∑p

u=1 |τ iu
u |

2 (26)
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where M
4|Λ0|
1 is an upper bound independent of k and j of∫ ∫

Ω

(
exp(−Φk,j(η)) − 1

)4|Λ0| ⊗i∈k+Λ0 W
yi,j−1,yi,j

Ij−1
(dηi)W

yi,j ,yi,j+1

Ij
(dηi)μ(dyi,j−1)μ(dyi,j)μ(dyi,j+1)

=
∫

Ω

(
exp(−Φk,j(η)) − 1

)4|Λ0|( ∏
i∈k+Λ0

q2a(ηi((j + 1)a); ηi((j − 1)a))
)−1 ⊗i∈k+Λ0 WIj−1∪Ij

(dηi)

=
∫

Ω

(
exp(−Φk,j(η)) − 1

)4|Λ0|( ∏
i∈k+Λ0

q2a(ηi((j + 1)a); ηi((j − 1)a))
)−1

P (dη)

and M2 is an upper –bound of

(∫
(qa(y;x) − 1)4μ(dy)μ(dx)

)1/4

. (27)

Lemma 7 If ‖b‖∞ ≤ ε and for a time unit a sufficiently large, we have

(∫
Ω

(
exp(−Φk,j(η)) − 1

)4|Λ0|( ∏
i∈k+Λ0

q2a(ηi((j + 1)a); ηi((j − 1)a))
)−1

P (dη)

)1/(4|Λ0|)
≤ Cε1/2

where C is a positive constant independent of k, j and n.

Proof of Lemma 7 : First note that under assumption (5) given in section 2 on the interaction
of the one dimensional reference process W , its semi-group is ultracontractive and, in particular,
qt(x; y) converges, when t tends to infinity, towards 1 uniformly in x and y -the precise rate will
be computed later to estimate M2, see (29) -. So, for t large enough, qt(x; y) is bounded from
below uniformly in x and y by some strictly positive constant, that is :

∃A > 0,∃a0 ∈ R
+,∀a > a0,∀x, y, qa(x; y)−1 ≤ A.

We now have to estimate for a large enough the 4|Λ0|-moment of (e−Φk,j−1) under the Probability
P . To simplify, let us use the notation ρ =: 4|Λ0|.∫

Ω

(
e−Φk,j(η) − 1

)ρ( ∏
i∈k+Λ0

q2a(ηi((j + 1)a); ηi((j − 1)a))
)−1

P (dη)

≤ A|Λ0|
∫ (∫ 1

0
Φk,j(η)e−τΦk,j(η)dτ

)ρ
P (dη)

and ∫ ( ∫ 1

0
Φk,j(η)e−τΦk,j(η)dτ

)ρ
P (dη)

=
∫

Ω
Φk,j(η)ρ

∫
[0,1]ρ

e−(τ1+···+τρ)Φk,j(η)dτ1 . . . dτρP (dη)

=
∫

[0,1]ρ

∫
Ω

Φk,j(η)ρe−(τ1+···+τρ)Φk,j(η)P (dη)dτ1 . . . dτρ

=
∫

[0,1]ρ

dρ

dzρ
S(z)|z=τ1+···+τρ

dτ1 . . . dτρ (28)
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where
S(z) =

∫
Ω

e−zΦk,j(η)P (dη)

is the Laplace transform of the r.v. Φk,j. Extending S to complex numbers, we have, for any r
such that S is well defined on B(z, r),

∣∣ dρ

dzρ
S(z)

∣∣ ≤ ρ!
rρ

sup
{ζ∈C,|ζ−z|=r}

∣∣S(ζ)
∣∣.

But, for ζ = x + iy, x, y ∈ R,∣∣S(ζ)
∣∣ ≤ ∫

Ω

∣∣e−ζΦk,j(η)
∣∣P (dη) =

∫
Ω

e−xΦk,j(η)P (dη).

To bound this exponential moment of Φk,j under P , we will use the fundamental property that,

for each Λ ⊂ Z
d finite and a1 ∈ R the process

(
exp(−HΛ×]a1,a2[)

)
a2>a1

is a P -martingale for

the filtration (FΛ×]a1,a2[)a2>a1 . In particular, exp(−Φk,j) is the value at time (j + 1)a of a
P -martingale which equals 1 at time ja. So we have

e−xΦk,j(η) = exp
(
x

∫
Ij

b(θk,tη
(n))dB̃k(t) − x2

2

∫
Ij

b2(θk,tη
(n))dt

)
exp

(x2 − x

2

∫
Ij

b2(θk,tη
(n))dt

)
where the first term in the product of the R.H.S. is the value at time (j + 1)a of a P -martingale
which equals 1 at time ja.
To bound (independently of η) the second term in the product of the above R.H.S. note that,
since x is the real part of a complex number ζ satisfying |ζ − (τ1 + · · · + τρ)| = r, x is bounded
above by ρ + r. So

exp
(x2 − x

2

∫
Ij

b2(θk,tη
(n))dt

)
≤ exp

((ρ + r)2

2
a‖b‖2

∞
)
.

This implies that,

sup
{ζ∈C,|ζ−z|=r}

∣∣S(ζ)
∣∣ ≤ exp

( (ρ + r)2

2
a‖b‖2

∞
)

∫
Ω

exp
(
x

∫
Ij

b(θk,tη
(n))dB̃k(t) − x2

2

∫
Ij

b2(θk,tη
(n))dt

)
P (dη)

≤ exp
( (ρ + r)2

2
a‖b‖2

∞
)
.

Returning to (28), we obtain for r ≥ 0,∫
Ω

(
e−Φk,j(η) − 1

)ρ
P (dη) ≤ ρ!

rρ
exp
( (ρ + r)2

2
a‖b‖2

∞
)

≤ ρ!
rρ

exp
(
2a‖b‖2

∞ r2
)
.

Since this last upper bound holds for any r ≥ ρ, we choose the r which minimizes the R.H.S.,
and obtain ∫

Ω

(
e−Φk,j(η) − 1

)ρ
P (dη) ≤ ρ! exp(ρ/2)

(
4a‖b‖2∞

ρ

)ρ/2

≤ Cρaρ/2‖b‖ρ
∞.
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Taking now the time scale a(ε) = 1/ε and being ρ ≥ 1, we obtain the desired bound of Lemma
7. �

Let us now give a bound called M2(ε) for the expression (27), when the time scale a tends
to infinity with the rate a(ε) = 1/ε. We work under the assumptions (5) given in section 2 on
the interaction of the one dimensional reference process and will now use the ultracontractivity
of x(t). So, to compute the rate of convergence to 0 of∫

(q1/ε(y;x) − 1)4μ(dy)μ(dx)

as a function of ε, we will directly bound |q1/ε(y;x) − 1| uniformly in x and y, using similar
arguments as in the appendix of [4] :

sup
y,x∈R

|qt(y;x) − 1| = sup
y,x∈R

|q1 ∗ (qt−2 − 1) ∗ q1(y;x)|

≤ sup
x∈R

∫
sup
y∈R

q1 ∗ |qt−2 − 1|(y;w)q1(w;x)μ(dw).

where qt ∗ qs is defined by

qt ∗ qs(y;x) =
∫

qt(y;w)qs(w;x)μ(dw).

By Theorem 1.4 in [13] under assumptions (5), the semigroup associated to x(t) is ultracontractive,
i.e. it maps L2(μ) into L∞(μ); so there exists C1 > 0 such that

sup
y∈R

q1 ∗ |qt−2 − 1|(y;w) ≤ C1‖(qt−2 − 1)(·;w)‖L2(μ).

So

sup
y,x∈R

|qt(y;x) − 1| ≤ C1 sup
x∈R

∫
q1(w;x)‖(qt−2 − 1)(·;w)‖L2(μ)μ(dw)

≤ C2
1‖w→‖(qt−2 − 1)(·, w)‖L2(μ)‖L2(μ).

Now, is it known that ultracontractivity implies L2-contractivity. Thus, denoting by α the
spectral gap,

‖(qt−2 − 1)(·;w)‖L2(μ) =
∥∥∥∥qt−2(·;w) −

∫
qt−2(z;w)μ(dw)

∥∥∥∥
L2(μ)

≤ e−(t−3)α‖q1(·;w) − 1‖L2(μ)

which implies

sup
x,y∈R

|qt(y;x) − 1| ≤ C2
1e−(t−3)α

(∫ ∫
(q1(x, y) − 1)2μ(dx)μ(dy)

)1/2

(29)

which converges exponentially to zero as t tends to infinity. Then, there exists a constant C2

such that, for ε small enough,(∫
(q1/ε(y;x) − 1)4μ(dy)μ(dx)

)1/4

≤ C2 e−α/ε ≤ C2 ε1/2.

Introducing this last estimate together with Lemma 7 into inequation (26) we obtain the following
cluster estimate :

|KΓ| ≤ C3 ε1/2|Γ|. (30)

This concludes the proof of Proposition 5 with λ(ε) = ε1/2.
�
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3.3 The cluster expansion of the measures Qn

As usually when techniques of cluster expansions are used (cf. [18]) the representation (18) of Zn

and the estimates (20) allow to obtain in a canonical way an expansion for the measures Qn. In
our particular situation, the expansion of Qn is very similar of that computed in Section 4 of [19]
for polynomial interaction. Nevertheless, by care of completeness, we sketch here the important
steps of this method.

We shall now get a representation for the integral
∫

FBdQn, where FB is a local bounded
measurable function on Ω localized on B, and for n large enough, B is included in the set Bn of
all temporal edges of Vn = Λn × I(n).

First we formulate some important consequence of the cluster representation (18).
Let τ be a finite set of temporal edges and let us introduce the partition function

Zτ = 1 +
∑

Γ1,...,Γv

v∏
l=1

KΓl
,

where the summation is taken over all non ordered non empty collections {Γ1, . . . ,Γv} of pairwise
non intersecting aggregates Γl such that Γ̄l ⊂ τ , and KΓl

is defined by (19).
For any set of temporal edges τ ′ ⊃ τ we define

f τ ′
τ =

Zτ ′\τ̄
Zτ ′

(31)

where τ̄ is the set of edges which have common points with edges from τ .
The following lemma, which can be found in [18], Chapter 3, holds :

Lemma 8 For ε small enough,

i) there exists a constant C4 > 0 independent on τ and τ ′ such that∣∣f τ ′
τ

∣∣ < C4 2|τ | (32)

ii) the following expansion holds :

f τ ′
τ = 1 +

τ∑
Ξ={Γ1,...,Γv},Γ̄i⊂τ ′

Dτ (Ξ)
∏

Γi∈Ξ

KΓi (33)

where the summation is over collections Ξ of aggregates Γi such that Ξ is connected, τ ∩
∪iΓ̄i �= ∅ and ∪iΓ̄i ⊂ τ ′. The coefficients Dτ (Ξ) do not depend on τ ′ and the serie is
absolutely convergent.

iii) there exists a limit for the expansion (33) when τ ′ tends to the set of all temporal edges in
Z

d+1
a :

fτ = lim
τ ′↑Z̄

d+1
a

f τ ′
τ = 1 +

τ∑
Ξ={Γ1,...,Γv}

Dτ (Ξ)
∏

Γi∈Ξ

KΓi (34)

iv) there exists a constant C5 > 0 such that the following estimate holds :

∣∣f τ ′
τ − fτ

∣∣ < C5
2|τ̄ |

2d(τ,τ
′c)

(35)

where d (τ, τ
′c) is the length of the smallest path which goes from τ to the complement of

τ ′ in Z̄
d+1
a .
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v) there exists a constant C6 > 0 such that the following estimate holds : for τ1, τ2 ⊂ τ ′

∣∣f τ ′
τ1∪τ2 − f τ ′

τ1 · f τ ′
τ2

∣∣ < C6 3|τ1|+|τ2|λ(ε)d(τ1 ,τ2)

and (36)∣∣fτ1∪τ2 − fτ1 · fτ2

∣∣ < C6 3|τ1|+|τ2|λ(ε)d(τ1 ,τ2).

We now return to the expansion of the integral of the functional FB . We have∫
FBdQn =

∫
Ω

FB(η) exp
[
−HVn(η(n))

]
P (dη)

=: Zn(FB)

which has the following representation :

Zn(FB) =
∑

Θ={Γl}
Γ̄l⊂Bn

KΘ(FB)

(
1 +

∑
Ξ={Γi}

Γ̄i⊂Bn\(B∪Θ̄)

∏
Γi∈Ξ

KΓi

)
(37)

and, modifying in the right way equation (19),

KΘ(FB) =∫ ∫
Ω

FB(η)
∏
Γl

(
s∏

m=1

∏
k∈γjm

m

(
exp(−Φk,jm(η)) − 1

) p∏
u=1

∏
Ij∈τ iu

u

(
qa(yiu,j+1; yiu,j) − 1

))

⊗
i∈γjm

m +Λo
W

yi,jm−1,yi,jm
Ijm−1

(dηi)W
yi,jm ,yi,jm+1

Ijm
(dηi) ⊗(i,j)∈[Γ̄l]

μ(dyi,j).

From (37) and (33) we find∫
FB dQn =

∑
Θ

KΘ(FB)fBn

B∪Θ̄

=
∑
Θ,Ξ

KΘ(FB)DB∪Θ̄(Ξ)
∏
Γ∈Ξ

KΓ.

Using estimates (32) and (34), we can conclude that for ε small enough (which implies λ(ε) small
enough) the above serie converges absolutely and uniformly in n, so that

lim
Vn↑Zd×R

∫
FB dQn =

∑
Θ

KΘ(FB) fB∪Θ̄

=:
∫

FB dQ.

The functional FB �−→ ∫
FBdQ is linear bounded and positive on the algebra of bounded local

functions. Then there exists a unique probability measure Q such that

Q = lim
Vn↑Zd×R

Qn .

By computing the cluster expansion for
∫

(FB − FB ◦ θi,t) dQn we can also conclude that Q
is space-time shift invariant.
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Furthermore, the fact that Q satisfies the property of short range correlations is a consequence
of a cluster representation for∫

FB1FB2dQn −
∫

FB1dQn

∫
FB2dQn

and (36).
By Lemma 4 and Proposition 2, in order to complete the proof of Theorem 3, we only have

to show that the measure Q we have just constructed has a finite specific entropy with respect
to P . We first note that the map Q→H(Q) is well defined by (11) for all Q ∈ P(Ω), and it is
lower semicontinuous. In particular,

H(Q) ≤ lim inf
n

H(Qn) ≤ sup
n

H(Qn). (38)

Under Qn and for t ∈ I(n), the canonical process is a weak solution of the s.d.e.

dXi(t) =
[−1

2ϕ′(Xi(t)) + b(θi,tX
(n))
]
dt + dBi(t) for i ∈ Λn+1

dXi(t) = −1
2ϕ′(Xi(t))dt + dBi(t) for i �∈ Λn+1.

Consider the σ-field
B̂− = σ{ωi(t) : (t ≤ 0, i = 0) or (t ≤ 1, i �= 0)}.

We may assume that n is large enough so that [0, 1] ⊂ I(n) and ({0}+)+ ⊂ Λn. By the same
argument of Lemma 2 in [4],

dQn(·/B̂−)
dP (·/B̂−)

∣∣∣
B1

=
1

Z(n)
exp

⎡
⎣ ∑

i∈{0}+

[∫ 1

0
b(θi,tω

(n))dB̃i(t) − 1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ ,

where Z(n) is a normalization factor. - Let us remark that P (·/B̂−)|B1
(ω) = W

ω0(0)
[0,1] (·), where

W x
[0,1] is the law on [0, 1] of the one dimensional reference process W defined in (2) conditioned

to be x at time 0.- Define

Ĥ(Qn) =
∫

h(Qn(·/B̂−)|B1
;P (·/B̂−)|B1

) dQn.

It is the local entropy defined by Föllmer et al. in [10] definition 2.1. Since B− ⊂ B̂−, by Jensen’s
inequality, H(Qn) ≤ Ĥ(Qn). Thus, we are left to show that Ĥ(Qn) is bounded in n. But

Ĥ(Qn) =
∫ ⎡⎣ ∑

i∈{0}+

[∫ 1

0
b(θi,tω

(n))dB̃i(t) − 1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dQn −
∫

log Z(n)dQn. (39)

We analyze separately the two summands in (39).
Using the fact that

Bi(t) = B̃i(t) −
∫ t

0
b(θi,sω

(n))ds, i ∈ {0}+,

are independent Brownian motions under Qn, we get

17



∫ ⎡⎣ ∑
i∈{0}+

[∫ 1

0
b(θi,tω

(n))dB̃i(t) − 1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dQn

=
∫ ⎡⎣ ∑

i∈{0}+

[∫ 1

0
b(θi,tω

(n))dBi(t) +
1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dQn

=
∫ ⎡⎣ ∑

i∈{0}+

1
2

∫ 1

0
b2(θi,tω

(n))dt

⎤
⎦ dQn

≤ |Λ0|‖b‖2
∞.

Moreover,

− log Z(n) = − log
∫

exp

⎡
⎣ ∑

i∈{0}+

[∫ 1

0
b(θi,tω

(n))dB̃i(t) − 1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dP (·/B̂−)|B1

≤ −
∫ ⎡⎣ ∑

i∈{0}+

[∫ 1

0
b(θi,tω

(n))dB̃i(t) − 1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dP (·/B̂−)|B1

= −
∫ ⎡⎣ ∑

i∈{0}+\{0}

[∫ 1

0
b(θi,tω

(n))dBi(t) +
1
2

∫ 1

0
b2(θi,tω

(n))dt

]⎤⎦ dP (·/B̂−)|B1

+
1
2

∫ ∫ 1

0
b2(θ0,tω

(n))dt dP (·/B̂−)|B1

≤ −
∫ ⎡⎣ ∑

i∈{0}+\{0}

∫ 1

0
b(θi,tω

(n))dBi(t)

⎤
⎦ dP (·/B̂−)|B1

+
1
2

∫ ∫ 1

0
b2(θ0,tω

(n))dt dP (·/B̂−)|B1

where we have used the fact that B̃0(·) is a Brownian motion under dP (·/B̂−). Thus, proceeding
as above,

−
∫

log Z(n)dQn ≤ −
∫ ∑

i∈{0}+\{0}

[∫ 1

0
b(θi,tω

(n))dBi(t)
]

dP (·/B̂−)|B1
dQn +

1
2
‖b‖2

∞ (40)

=
1
2
‖b‖2

∞.

The last equality is due to the fact that the first term in the R.H.S. of (40) vanishes; indeed :

P (dω/B̂−)|B1
Qn(dω) = W

ω0(0)
[0,1] (dω0) Qn(dω)

= W
ω0(0)
[0,1] (dω0) exp

[
−HVn(ω(n))

]
P (dω)

= W x
[0,1](dω0) exp

[
−HVn(ω(n))

]
W x(dω0)μ(dx) ⊗i�=0 W (dωi)

= exp
[
−HVn(ω(n))

]
W x(dω0)μ(dx) ⊗i�=0 W (dωi)

= Qn(dω) ,

18



which implies that the stochastic integrals under Bi’s have a dP (·/B̂−)|B1
dQn- mean equal to 0.

This completes the proof. �
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