
Hasso-Plattner-Institut Für Digital Engineering
Enterprise Platform And Integration Concepts

Unsupervised Database Optimization: Efficient Index
Selection & Data Dependency-Driven Query Optimization

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
in der Wissenschaftsdisziplin Praktische Informatik

eingereicht an der
Digital Engineering Fakultät

der Universität Potsdam

von
Jan Michael Koßmann

Betreuer:
Prof. Dr. h.c. mult. Hasso Plattner
Gutachter:
Prof. Dr. Wolfgang Lehner
Prof. Dr. Gunter Saake

Potsdam, 9. April 2022

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution – NonCommercial – NoDerivatives 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nc-nd/4.0

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-58949
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-589490

Abstract
The amount of data stored in databases and the complexity of database workloads are ever-
increasing. Database management systems (DBMSs) offer many configuration options,
such as index creation or unique constraints, which must be adapted to the specific
instance to efficiently process large volumes of data. Currently, such database optimization
is complicated, manual work performed by highly skilled database administrators (DBAs).
In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the
abilities of the best DBAs due to the enormous number of deployed DBMS instances
(some providers maintain millions of instances), missing domain knowledge resulting from
data privacy requirements, and the complexity of the configuration tasks.

Therefore, we investigate how to automate the configuration of DBMSs efficiently with
the help of unsupervised database optimization. While there are numerous configuration
options, in this thesis, we focus on automatic index selection and the use of data
dependencies, such as functional dependencies, for query optimization. Both aspects
have an extensive performance impact and complement each other by approaching
unsupervised database optimization from different perspectives.

Our contributions are as follows: (1) we survey automated state-of-the-art index
selection algorithms regarding various criteria, e.g., their support for index interaction.
We contribute an extensible platform for evaluating the performance of such algorithms
with industry-standard datasets and workloads. The platform is well-received by the
community and has led to follow-up research. With our platform, we derive the strengths
and weaknesses of the investigated algorithms. We conclude that existing solutions often
have scalability issues and cannot quickly determine (near-)optimal solutions for large
problem instances. (2) To overcome these limitations, we present two new algorithms.
Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the
best index configurations for the evaluated benchmarks. Its selection runtimes are up
to 10 times lower compared with other near-optimal approaches. SWIRL is based on
reinforcement learning and delivers solutions instantly. These solutions perform within 3 %
of the optimal ones. Extend and SWIRL are available as open-source implementations.

(3) Our index selection efforts are complemented by a mechanism that analyzes
workloads to determine data dependencies for query optimization in an unsupervised
fashion. We describe and classify 58 query optimization techniques based on functional,
order, and inclusion dependencies as well as on unique column combinations. The
unsupervised mechanism and three optimization techniques are implemented in our
open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark’s
runtime by 26 % and accelerates some TPC-DS queries by up to 58 times.

Additionally, we have developed a cockpit for unsupervised database optimization that
allows interactive experiments to build confidence in such automated techniques. In
summary, our contributions improve the performance of DBMSs, support DBAs in their
work, and enable them to contribute their time to other, less arduous tasks.

Acknowledgments
Writing a PhD thesis might not seem like a prime example of teamwork at first glance.
While this observation is correct for preparing the manuscript, I cannot imagine how the
preceding years at the Enterprise Platform and Integration Concepts (EPIC) research
group could have been a better example of mutual support and teamwork.

The Hasso Plattner Institute provides an exceptional environment for studying and
researching computer science. I sincerely thank Prof. Hasso Plattner for creating and
funding this institution. Prof. Plattner, his chair representatives, Dr. Matthias Uflacker
and Dr. Michael Perscheid, as well as my co-supervisor, Prof. Felix Naumann, supplied
helpful, liberal guidance for this thesis over the last years.

Additionally, I thank SAP for funding my research. Specifically, I want to thank our
(former) SAP colleagues, in particular, Dr. Alexander Böhm and Dr. Anisoara Nica, for
the collaboration and feedback from an industry perspective.

Besides, the invaluable feedback of Martin Boissier, Markus Dreseler, Christopher Hage-
dorn, Stefan Halfpap, Raphael Jünemann, Lucky Katahanas, Daniel Lindner, Christoph
Matthies, Dr. Michael Perscheid, Keven Richly, Dr. Daniel Ritter, Dr. Rainer Schlosser,
Dr. Ralf Teusner, and Marcel Weisgut improved this thesis significantly. Thank you!

Also, I wish to thank all students who worked as student assistants on Hyrise, my
other research projects, or participated in Develop your own Database. Furthermore, I
thank the students that wrote their master’s thesis or built great demonstrations in the
bachelor’s projects under my supervision.

Research is only half as productive and rewarding without collaboration. I am grate-
ful for excellent collaborators. Query optimizers would still overlook the potential of
data dependencies without Daniel Lindner, Prof. Felix Naumann, and Prof. Thorsten
Papenbrock (and their patience). Index selection algorithms and the answer to “Magic
mirror in my hand, which is the best [index selection algorithm] in the land?”, would
only be half as interesting without Martin Boissier, Stefan Halfpap, Marcel Jankrift,
Alexander Kastius, and especially Dr. Rainer Schlosser. Also, Hyrise would not be such
a well-architected, powerful research database system without Markus Dreseler.

I am glad to not only have found excellent collaborators but also friends in our research
group. Thank you for making the PhD journey a pleasant time. Moreover, I also thank
the normal office as well as Marilena Davis and Matthias Herzog for keeping everything
together from an administrative and hardware perspective.

Finally, I want to thank my friends and my family, Christian, Gerd, Günter, and
Karin, for their enduring and unconditional support as well as for sparking my interest in
technology. Speaking of unconditional support, I am deeply grateful for my partner Lou
and her repeated encouragement, motivation, and advice throughout my PhD journey.

Zusammenfassung

Sowohl die Menge der in Datenbanken gespeicherten Daten als auch die Komplexität
der Datenbank-Workloads steigen stetig an. Datenbankmanagementsysteme bieten viele
Konfigurationsmöglichkeiten, zum Beispiel das Anlegen von Indizes oder die Definition
von Unique Constraints. Diese Konfigurationsmöglichkeiten müssen für die spezifische
Datenbankinstanz angepasst werden, um effizient große Datenmengen verarbeiten zu
können. Heutzutage wird die komplizierte Datenbankoptimierung manuell von hoch-
qualifizierten Datenbankadministratoren vollzogen. In Cloud-Szenarien ist die manuelle
Datenbankoptimierung undenkbar: Die enorme Anzahl der verwalteten Systeme (einige
Anbieter verwalten Millionen von Instanzen), das fehlende Domänenwissen durch Daten-
schutzanforderungen und die Komplexität der Konfigurationsaufgaben übersteigen die
Fähigkeiten der besten Datenbankadministratoren.

Aus diesen Gründen betrachten wir, wie die Konfiguration von Datenbanksystemen
mit der Hilfe von Unsupervised Database Optimization effizient automatisiert werden
kann. Während viele Konfigurationsmöglichkeiten existieren, konzentrieren wir uns
auf die automatische Indexauswahl und die Nutzung von Datenabhängigkeiten, zum
Beispiel Functional Dependencies, für die Anfrageoptimierung. Beide Aspekte haben
großen Einfluss auf die Performanz und ergänzen sich gegenseitig, indem sie Unsupervised
Database Optimization aus verschiedenen Perspektiven betrachten.

Wir leisten folgende Beiträge: (1) Wir untersuchen dem Stand der Technik
entsprechende automatisierte Indexauswahlalgorithmen hinsichtlich verschiedener Krite-
rien, zum Beispiel bezüglich ihrer Berücksichtigung von Indexinteraktionen. Wir stellen
eine erweiterbare Plattform zur Leistungsevaluierung solcher Algorithmen mit Indus-
triestandarddatensätzen und -Workloads zur Verfügung. Diese Plattform wird von der
Forschungsgemeinschaft aktiv verwendet und hat bereits zu weiteren Forschungsarbeiten
geführt. Mit unserer Plattform leiten wir die Stärken und Schwächen der untersuchten
Algorithmen ab. Wir kommen zu dem Schluss, dass bestehende Lösung häufig Skalierungs-
schwierigkeiten haben und nicht in der Lage sind, schnell (nahezu) optimale Lösungen für
große Problemfälle zu ermitteln. (2) Um diese Einschränkungen zu bewältigen, stellen
wir zwei neue Algorithmen vor. Extend ermittelt (nahezu) optimale Lösungen mit einer
iterativen Heuristik. Das Verfahren identifiziert die besten Indexkonfigurationen für die
evaluierten Benchmarks und seine Laufzeit ist bis zu 10-mal geringer als die Laufzeit
anderer nahezu optimaler Ansätze. SWIRL basiert auf Reinforcement Learning und ermit-
telt Lösungen ohne Wartezeit. Diese Lösungen weichen maximal 3 % von den optimalen
Lösungen ab. Extend und SWIRL sind verfügbar als Open-Source-Implementierungen.

(3) Ein Mechanismus, der mittels automatischer Workload-Analyse Datenab-
hängigkeiten für die Anfrageoptimierung bestimmt, ergänzt die vorigen Beiträge. Wir
beschreiben und klassifizieren 58 Techniken, die auf Functional, Order und Inclusion De-
pendencies sowie Unique Column Combinations basieren. Der Analysemechanismus und
drei Optimierungstechniken sind in unserem Open-Source-Forschungsdatenbanksystem
Hyrise implementiert. Der Ansatz reduziert die Laufzeit des Join Order Benchmark um
26 % und erreicht eine bis zu 58-fache Beschleunigung einiger TPC-DS-Anfragen.

Darüber hinaus haben wir ein Cockpit für Unsupervised Database Optimization
entwickelt. Dieses Cockpit ermöglicht interaktive Experimente, um Vertrauen in au-
tomatisierte Techniken zur Datenbankoptimierung zu schaffen. Zusammenfassend lässt
sich festhalten, dass unsere Beiträge die Performanz von Datenbanksystemen verbessern,
Datenbankadministratoren in ihrer Arbeit unterstützen und ihnen ermöglichen, ihre Zeit
anderen, weniger mühsamen, Aufgaben zu widmen.

Contents

1. Introduction 1
1.1. Building Blocks of Autonomous Database Systems 3

1.1.1. System and Integration . 5
1.1.2. Unsupervised Database Optimization 6
1.1.3. Impact Forecasting . 6
1.1.4. Learned Components . 7

1.2. Part I: Efficient Index Selection . 8
1.3. Part II: Data Dependency-Driven Query Optimization 9
1.4. Research Questions and Contributions . 10
1.5. Outline . 14

I. Unsupervised Database Optimization: Efficient Index Selection 15

2. Background: Index Selection 17
2.1. Formalization . 17
2.2. Challenges . 20

2.2.1. Large Solution Space . 20
2.2.2. Index Interaction . 21
2.2.3. Quantifying Index Impact . 22

3. A Survey of Index Selection Algorithms 25
3.1. Investigating Seven Index Selection Algorithms 25

3.1.1. Algorithm Comparison . 26
3.1.2. Drop Heuristic . 28
3.1.3. AutoAdmin . 28
3.1.4. Anytime DTA . 29
3.1.5. DB2Advis . 29

vii

Contents

3.1.6. Relaxation . 30
3.1.7. ILP-based Approaches (CoPhy) . 31
3.1.8. Dexter . 32

3.2. Commercial Index Selection Tools . 33
3.3. Alternative Approaches . 33
3.4. Summary . 34

4. An Experimental Evaluation of Index Selection Approaches 35
4.1. Methodology . 35

4.1.1. Workloads . 35
4.1.2. Query Cost Evaluation . 36
4.1.3. Constraints and Optimization Targets 37
4.1.4. Evaluation Platform . 39
4.1.5. Experimental Setup . 40
4.1.6. Limitations . 41

4.2. Evaluation . 42
4.2.1. TPC-H . 42
4.2.2. TPC-DS . 44
4.2.3. Join Order Benchmark . 46
4.2.4. Cost Breakdown and Cost Requests 47
4.2.5. Algorithm Parameter Influence . 49

4.3. Conclusion . 50
4.3.1. Insights . 50
4.3.2. Summary . 52

5. Two Novel and Efficient Index Selection Approaches 53
5.1. Extend: Index Selections Based on Iterative Index Extensions 54

5.1.1. Algorithm Description . 54
5.1.2. Classification . 57

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning 58
5.2.1. Background: Reinforcement Learning 59
5.2.2. Existing RL-based Index Selection Approaches 60
5.2.3. Algorithm Description . 63
5.2.4. Classification . 75

5.3. Evaluation . 75
5.3.1. Experimental Setup . 76
5.3.2. Algorithm Performance . 77
5.3.3. Specific Evaluations . 80

viii

Contents

5.4. Discussion and Interpretation . 86
5.4.1. SWIRL . 86
5.4.2. Extend . 87

5.5. Summary and Future Work . 87

II. Unsupervised Database Optimization: Data Dependency-Driven
Query Optimization 91

6. Background: Data Dependency-Driven Query Optimization 93
6.1. Query Optimization . 93
6.2. Data Dependencies . 95

6.2.1. Unique Column Combinations (UCCs) 96
6.2.2. Functional Dependencies (FDs) . 97
6.2.3. Order Dependencies (ODs) . 98
6.2.4. Inclusion Dependencies (INDs) . 99
6.2.5. Properties of Data Dependencies 101

7. A Survey of Data Dependency-Driven Query Optimization 103
7.1. Classification of Dependency-Driven Query Optimization Techniques . . . 104
7.2. Unique Column Combinations . 107

7.2.1. UCCs and Joins . 107
7.2.2. UCCs and Grouping . 108
7.2.3. UCCs and Distinctness . 109
7.2.4. UCCs and Subqueries . 109
7.2.5. UCCs and Set Operations . 110
7.2.6. Further Optimization Opportunities with UCCs 111

7.3. Functional Dependencies . 111
7.3.1. FDs and Grouping . 112
7.3.2. FDs and Joins . 112
7.3.3. FDs and Selection . 114
7.3.4. FDs and Sorting . 115
7.3.5. FDs and Cardinality Estimation 115

7.4. Order Dependencies . 116
7.4.1. ODs and Sorting . 116
7.4.2. ODs and Joins . 117
7.4.3. ODs and Grouping . 119
7.4.4. Further Optimization Opportunities with ODs 119

ix

Contents

7.5. Inclusion Dependencies . 120
7.5.1. INDs and Joins . 120
7.5.2. Further Optimization Opportunities with INDs 122

7.6. Additional Optimizations . 124
7.6.1. Semantic Query Optimization . 124
7.6.2. Further Dependency Types . 124

7.7. Summary and Open Challenges . 125

8. Integration and Evaluation of Data Dependency-Driven Query Optimization 127
8.1. Challenges . 127

8.1.1. Dependency Discovery . 128
8.1.2. Dependency Selection . 128
8.1.3. Dependency Mutation . 129

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation of Data De-
pendencies . 129
8.2.1. Background: Hyrise . 129
8.2.2. Data Dependency Discovery and Selection 131
8.2.3. Efficient Data Dependency Mutation 134

8.3. Evaluation . 137
8.3.1. Experimental Setup . 137
8.3.2. Limitations . 138
8.3.3. Optimization Performance . 138
8.3.4. Discovery and Selection Overhead 140

8.4. Related Work . 141
8.5. Conclusion and Future Work . 142

III. Application Scenario of Unsupervised Database Optimization and
Conclusion 145

9. A Cockpit for Unsupervised Database Optimization 147
9.1. Overview . 148

9.1.1. User Interface . 148
9.1.2. Application Scenario . 150

9.2. Cockpit Architecture . 152
9.3. Summary . 153

10.Conclusion 155

x

Contents

A. Appendix 159
A.1. Additional Figures . 159

A.1.1. Additional Figures for Part I . 159
A.1.2. Additional Figures for Part II . 159

A.2. List of URLs . 162
A.3. Publications . 163
A.4. Reuse of Material Published by IEEE . 166

List of Figures 168

List of Tables 169

Acronyms 170

Bibliography 203

xi

1
Introduction

Whenever DBMS vendors are unsure about
the right default values, they empower the
user by introducing new knobs.

Goetz Graefe — Principal Scientist at Google

Data is ubiquitous, with diverse applications for business processes and for our personal
lives. Forecasts state that an unimaginable volume of data — 15 zettabytes (1.5× 1022

bytes) — will be generated in 2022 alone [Sta21]. In many cases, data is organized in
relational databases that are operated by database management systems (DBMSs). These
DBMSs handle the efficient storing and retrieval of the contained data to enable further
processing and the extraction of valuable information. Consequently, such databases are
the foundation of most of today’s business and end-user applications.

At the same time, database systems are complex software systems [Cod90] that offer
a large number of configuration options. Well-chosen configurations can significantly
affect performance and are essential for efficient workload processing [DTB09; Lu+19;
Pav+19]. These configuration options include, inter alia, (i) physical database design
decisions, e.g., index selection or partitioning criteria; (ii) the configuration of knob
settings, e.g., the number of concurrently running threads or the buffer pool size; (iii)
assigned hardware resources, e.g., the available main memory or the number of CPUs;
(iv) schema configurations, e.g., declaring columns as (non-)nullable or defining keys.

According to Chaudhuri and Weikum [CW18], database administration is a “key factor”
of the total cost of ownership (TCO) of database-centric information systems. Typically,
highly skilled database administrators (DBAs) perform the tuning and administration
of database systems manually. However, these tasks are time-consuming and demand-
ing [HSH07; Pav21] because close-to-optimal configurations depend on multiple factors
that influence each other, such as the processed workload, the underlying hardware,
and the DBMS version [Ake+17; Che+08]. Furthermore, the number of configuration
options is steadily increasing [Ake+17; KS20]. Widely deployed DBMSs have hundreds of

1

1. Introduction

knobs [Ake+21] and numerous configuration options for physical database design [Zil+04].
To be more cost-efficient and to identify optimal configurations, we argue that database
systems should utilize their internal knowledge about processed workloads and stored
data in order to handle their configuration in an unsupervised or autonomous fashion.

Cloud DBMS deployments make autonomous or self-driving database systems [Pav+17]
even more desirable [Aba+19; Zha+21] because cloud providers must manage and optimize
thousands of database systems. Two considerations shift the responsibility for effectively
configuring DBMSs to the providers. First, the cloud vendor’s aim of achieving resource
efficiency is motivated by the intent to increase scalability and handle more customers.
Second, the “cloud’s promise of reducing the TCO” [Das+19, p. 667] and improved
flexibility for customers is a major driver. The manual tuning of these systems by DBAs
is impractical1 because of the aforementioned complexity of the configuration tasks, the
missing domain knowledge resulting from the adherence to data privacy and compliance
requirements [Das+19], and the enormous number of systems. In fact, more than 70 %
of 312 interviewed DBAs manage only less than 100 (most of them significantly fewer)
database instances [Que20]. Hence, managing thousands or millions of instances would
require an excessive number of DBAs.

Such considerations regarding cloud DBMS deployments are essential, given that
more than 75 % of all databases are projected to be deployed in cloud scenarios in
2022 [Gar20]. Additionally, more than half of the interviewed organizations currently
manage enterprise data in the cloud [Que20]. The referenced DBA survey [Que20] even
mentions incorporating cloud technologies and automating more tasks associated with
database management as the top two data management infrastructure challenges.

Independent of cloud challenges, workloads of a DBMS may change unpredictably
and vary between customers [Che+08; Ma+18; Sch+13], potentially requiring frequent
reconfigurations. Events such as a global pandemic, Black Friday, or blizzards might cause
workload changes. However, current automated approaches are not sufficient to handle
such situations because they are often too slow, e.g., due to their enumerative modus
operandi, or ineffective, e.g., due to simplifying heuristic assumptions, in determining
beneficial solutions. Even marginal performance deficits can have substantial cost impacts
considering the large number of systems in cloud environments [Das+19].

Advancements in many research areas are necessary for building autonomous database
systems [KS20]. For example, the capabilities of workload forecasting [Ma+18], effi-
cient [HBR20; KKS22a] and robust [SH20; SH21] tuning algorithms, or accurate and
adaptive cost models [MP19] present interesting challenges.

1Note that in our and other researchers’ opinions [Pav+19], autonomous DBMSs should not replace
human DBAs but rather support them in their work and enable them to contribute more time to less
demanding tasks.

2

1.1. Building Blocks of Autonomous Database Systems

As it is impractical to solve all challenges simultaneously, we focus on two aspects in this
thesis to advance further toward fully autonomous DBMSs. First, we consider the storage
perspective by investigating existing approaches for index selection, a typical physical
database design challenge. Based on our findings, we develop new techniques that identify
better index configurations faster. Second, we consider the query perspective and examine
how information inherent to data — so-called data dependencies — can improve query
optimization to obtain query results more rapidly. Moreover, we investigate how database
systems can discover and validate beneficial data dependencies in a workload-driven,
unsupervised fashion. We chose to focus on these two aspects because of their significant
performance impact and their general applicability to relational DBMSs. Despite their
differences, both aspects operate in a workload-driven fashion.

In the following, this introductory chapter first gives an overview of recent work in
the different areas of autonomous database systems focusing on unsupervised database
optimization in Section 1.1. Subsequently, we discuss the motivation for exploring the
two aforementioned topics — efficient index selection and data dependency-driven query
optimization — in Sections 1.2 and 1.3 and contextualize them in the research field.
Finally, we discuss our research questions and contributions in Section 1.4 before we
present the structure of this thesis in Section 1.5.

1.1. Building Blocks of Autonomous Database Systems

Letting DBMSs handle their configuration and optimization autonomously is not a novel
idea: the first approaches to automated index selection date back to the 1970s [HC76;
LL71]. However, as discussed above, autonomous database systems have attracted
research interest recently, and “the field has made several important steps towards this
goal in recent years” [Pav+19, p. 41]. The shift to cloud environments and its associated
challenges are one reason for the increased interest in autonomous DBMSs [Aba+19]. In
addition, advancements in machine learning (ML) support these developments because
ML techniques are often employed in autonomous systems to achieve the desired goals.
Increased interest in autonomous DBMSs can also be observed in the industry, as
vendors of cloud database products provide various automatic tuning capabilities, e.g.,
Microsoft Azure’s automatic tuning [Mic22a], Oracle’s autonomous database [Ora20],
SAP HANA Cockpit’s recommendations [SAP21], and Snowflake’s automatic query
optimization [Sno16]. Furthermore, there are standalone tools for tuning existing database
systems, for example, OtterTune [Ott; Zha+18], PGTune [Vas], or pganalyze [Dub].

As well as the advancements in industry, unsupervised database optimization is an
active research field. To put the topics that we have researched into context, we provide an
overview and divide the broader field of autonomous database systems into research focus

3

1. Introduction

areas in Figure 1.1. We also mention recent exemplary publications that appeared after
Andrew Pavlo’s visionary paper on Self-Driving Database Management Systems [Pav+17]
for all focus areas. Of course, the references included in the figure cannot cover the field
in its entirety, but serve to illustrate the recent, high levels of activity in the field.

The figure presents four focus areas. Three of these areas represent the necessary build-
ing blocks for autonomous DBMSs: (i) System & Integration (bottom), (ii) Unsupervised
Database Optimization (middle), (iii) Impact Forecasting (right). Research in all of these
areas contributes to the aim of achieving autonomous database systems. The last area,
(iv) Learned Components (left), is another building block that complements such systems,
even though it is not necessary for enabling them. In the following subsections, we briefly
discuss the scope and covered functionality of the focus areas.

(iii) Impact
Forecasting

WL Prediction
Resource est. [Das+16]
Query based [Ma+18]
Time Series [Hig+20]

(iv) Learned
Components

Execution &
optimization

Physical DB
design

Settings &
config.

Resource
allocation

U
ni

ve
rs

al
 D

B
O

pt
im

. [
W

TB
21

b]

Index Selection
Extend [SKB19]
Survey [Kos+20d]
SWIRL [KKS22a]
Multi-armed bandit [Per+21]

Compression [Boi22; Cen+21]

Partitioning [HBR20; LLK21]

Replication [HS19]

Robustness [SH20; SH21]

Optimizer
Cardinality Estimation [Kip+19]
Learned [MP18; Mar+19]
Data Dependencies [KPN22]

Operators
Join [Kra+19]
Sort [Kri+20]

Cost Models
Plan-structured [MP19]
Cost & Cardin. [SL19]
Indexes [Din+19]
Calibration [LLK21]

WL Modeling
Query2Vector [Li+19]
Data access [Bre+21]
Bag of operat.   [KKS22a]

Trust & Demo
OtterTune [Zha+18]
Cockpit [Kos+21]

Database Systems
NoisePage [Pav+21]
SageDB [Kra+19]
Hyrise [Dre+19]

Fundamentals
Extern. vs Int. [Pav+19]
DBMS Fitting [Hil+20]
Concepts [KS20]

(i) System & Integration

Data Structures
Learned Index [Kra+18]
Radix Spline [Kip+20]
Bloom Filters [Liu+20]
Multi-dim. Idx [Nat+20]

TX Handling
Abort pred. [She+19]
Concur. Ctrl. [Wan+21]

Assessment &
Prognosis [Kra+21]

Knob Tuning
ML-based [Ake+17]
RL-based [Zha+21]
Real-world inquiry [Ake+21]

Buffer tuning [Tan+19]

Cloud Provisioning
RL-based [Wan+17]
Predict. Provisioning [Taf+18]
Profit maximiz. [DWH19]
Data center bandwidth [Fil+20]

Microservice Provis. [Yan+19]

(ii) Unsupervised Database Optimization

Decompose [Ma+21]

Lazy Dep. Discov. [Kos+22a]

PMem Index [Lu+21]

Scheduling
Dist. Clusters [Mao+19]
OLAP DBMS [SUK22]

Data access II [Dre21]

Figure 1.1.: Research focus areas, contributions, and recent publications in the field
of autonomous database systems. Our main contributions are highlighted
with bold, underlined type; supporting contributions are highlighted with
bold type only. Publications colored in blue are related to Part I and
green -colored ones to Part II of this thesis. WL is short for workload, TX

for transaction, and Demo for demonstration.

4

1.1. Building Blocks of Autonomous Database Systems

1.1.1. System and Integration

This area investigates the challenges and concepts of autonomous database systems
on the system level. Such investigations are important, because the way in which the
optimization techniques (focus area (ii) Unsupervised Database Optimization) interact
with the underlying system can impact the runtime and implementation complexity and
also limit the capabilities of these techniques [Dre+19].

Database Systems. For instance, Pavlo et al. [Pav+17] argue that the architecture of
new DBMSs must consider autonomous capabilities. NoisePage by Pavlo et al. [Pav+21]
is a completely rewritten DBMS that takes such autonomous capabilities into account.
However, developing an entirely new DBMS is complex and cost-intensive. Therefore,
established vendors, e.g., Oracle [Ora20], are more likely to adapt their existing systems
for autonomous operation. This approach raises questions about the integration of such
techniques into existing systems. Integration alternatives are, for example, considered
with the Hyrise plugin concept [Dre+19] and in a discussion of the advantages and
drawbacks of internal and external DBMS tuning agents [Pav+19].

Fundamentals. Further work discusses fundamental ideas and necessary components
for autonomous database systems [KS20]. For instance, Hilprecht et al. [Hil+20] propose
DBMS fitting to overcome the explicability issues of deep learning approaches, which
often appear as a black-box [Rud19]. Such deep learning approaches are often proposed
for autonomous DBMSs [Ma+18; Mao+19; Mar+19; MP19; Zha+19; Zha+21] and learn
the entire behavior of a database component or functionality from scratch. DBMS fitting
presents a fundamentally different approach: In a first step, the general behavior of a
database component, e.g., the outline of an operator’s cost estimation function, is required
to be manually implemented. Subsequently, certain parts of this implementation are fitted
to the concrete scenario with learned parameters during execution. Thereby, existing
knowledge can be incorporated and the explicability issues of deep learning approaches
can be mitigated. Additionally, the utilized simple white-box models outperformed deep
learning approaches in terms of accuracy, generalizability, and data efficiency in the
evaluations.

Trust & Demonstration. Moreover, trust has been identified to be a significant issue
for autonomous systems [Sto08]. Deploying autonomous DBMSs means transferring the
responsibility for efficient workload processing and, in the end, smooth business operations
to an autonomous system. Demonstrations [HS20; Kos+21; Zha+18] of well-performing
autonomous DBMSs and case studies can increase trust in such systems.

5

1. Introduction

1.1.2. Unsupervised Database Optimization

This area comprises the actual optimization techniques that maximize the DBMS’s
performance according to a metric, e.g., throughput or resource utilization. These
optimization tasks are traditionally performed by DBAs. Like Pavlo et al. [Pav+19], we
further divide this focus area into more specific subareas.

Resource Allocation. The work on resource allocation examines the question of how
to assign hardware resources to systems so that costs are minimized, while performance
is guaranteed. Examples include the allocation of network bandwidth and hardware
resources, such as memory or processing units. Such techniques are particularly relevant
in cloud environments, where resource demands fluctuate [Das+16] and cost efficiency is
paramount.

Settings and Configuration. Techniques in this subarea refer to the process of
adjusting the DBMS’s knobs or settings to increase performance. It is not uncommon
for DBMSs to offer hundreds of dependent configuration options [Ake+17]. For example,
well-chosen settings for the number of concurrently running threads or the buffer pool
size have a large performance impact [Tan+19].

Physical Database Design. Furthermore, we consider physical database design, i.e.,
techniques affecting the database’s physical storage layout. Such techniques include, e.g.,
the selection of beneficial (secondary) indexes, partitioning criteria, data compression,
and replication strategies. Again, a reasonable selection of these aspects has a large
performance impact. We will substantiate this claim later when we conduct detailed
evaluations for index selection in Chapter 4. While automated physical database design
has been researched for half a century [LL71], more efficient approaches that consider
additional aspects, such as robustness [SH20; SH21], are necessary to fulfill current
requirements.

Execution and Optimization. Lastly, there are various autonomous techniques that
directly affect the execution and optimization of queries. For instance, data dependencies
and constraints can be utilized to improve query plans for more efficient execution [KPN22].
In addition, all different stages of query optimization and execution are targeted. Car-
dinality estimation, typically based on statistics like histograms or sampling, can be
replaced with neural network-based cardinality estimation [Kip+20]. Even the heavily
engineered optimizer itself can be substituted with learned query optimizers [Mar+19].

1.1.3. Impact Forecasting

The impact of the available configuration options must be evaluated and compared during
the optimization processes in order to eventually identify the best option.

6

1.1. Building Blocks of Autonomous Database Systems

Cost Models. Usually, it is impractical to actually implement different options and
measure their impact [Kos+20d]. Instead, cost models can estimate the impact on
workload processing while avoiding the overhead of actually installing the particular op-
tions. Recently, machine learning-based approaches have been developed to overcome the
inaccuracies [Lei+15] of traditional, often manually tuned, cardinality and cost estimation
approaches. The new techniques focus on, e.g., cost estimation for indexes [Din+19],
combined approaches for learned cardinality and cost estimation [SL19], simple operator
cost models that are automatically calibrated to cover a broad range of operator instances
at runtime [LLK21], or approaches that decompose DBMSs into operating units to predict
costs on a more fine-grained level [Ma+21].
Workload Prediction. In addition, workloads vary significantly over time [Ma+18].
Accurate predictions of these workload changes enable the determination of reasonable
points in time for database optimizations and more suitable configurations, because the
anticipated workload better matches the actual workload. Workload predictions can
be implemented on different abstraction levels: such forecasting techniques can predict
workloads either in terms of resource consumption, such as CPU time or Disk IO [Das+16;
Hig+20] or query arrival rates [Ma+18].
Workload Modeling. Some workload prediction and database optimization techniques
rely on workload models and representations that differ from a simple collection of
SQL queries. In particular, ML-based techniques typically work with numerical vectors
or matrices. For this reason, recent work explores multiple opportunities for work-
load representation, such as query clustering [Ma+18], vectorization [KKS22a; SL19],
decomposition [Ma+21], or data access counters [Bre+21; Dre21].

1.1.4. Learned Components

Data structures and database components were traditionally designed and implemented by
human developers. Kraska et al. [Kra+18] showed that such components can be learned
entirely by presenting learned indexes. Examples include database schedulers [Mao+19;
SUK22], transaction handlers [Wan+21], or different index structures [Kip+20; Kra+18;
Liu+20; Lu+21; Nat+20]. Work in this area does not necessarily aim to automate tasks
that were traditionally manually performed by DBAs. However, since learned database
components are somehow autonomous, they should not be ignored when investigating
autonomous DBMSs. Some topics classified into optimization and execution of focus area
(ii) Unsupervised Database Optimization could also be classified as a Learned Component
(focus area (iv)), e.g., the learned query optimizer [Mar+19]. However, since execution
and, in particular, optimization are of utmost importance for DBMSs [Neu14], we list
such topics as part of focus area (ii) Unsupervised Database Optimization.

7

1. Introduction

1.2. Part I: Efficient Index Selection

In the following, we motivate and contextualize the two topics, efficient index selec-
tion and data dependency-driven query optimization, that we will explore in this thesis.
Well-chosen physical database design can significantly impact the workload processing
costs [ANY04]. Therefore, the relevance of physical database design for database per-
formance is undisputed by DBAs and in the literature [FST88; Lig18; LTN07; Zil+04].
For example, secondary indexes are indispensable for the performance of relational
database systems [BS18]. Furthermore, modern, cloud-based data warehouse systems
apply indexing techniques to process analytical workloads efficiently [Ana; Sno].

For this work, we have selected the index selection problem as a representative for
discussing the complexity and challenges of physical database design. This problem
describes the process of determining the optimal set of performance-enhancing indexes
for a particular workload given certain constraints, such as a storage budget [Pia83].

We chose index selection because it properly represents the challenges common to
physical database design. First, the solution space, i.e., the set of possible index com-
binations, is enormous. It increases with the number of indexable attributes and the
number of attributes per index [SKB19]. Second, indexes interact, i.e., the benefit of
one index may depend on the existence of other indexes [SPG09]. Therefore, benefits
must be recomputed frequently: the benefit associated with an index might change
every time another index is created or dropped. Third, it is challenging to accurately
quantify the expected benefit of index candidates without physically creating indexes
and executing the workload [Din+19]. As a result, index selection approaches must
handle these complications to determine performance-enhancing index sets. At the same
time, solution runtimes and resource utilization must be kept to a minimum, especially if
numerous systems are to be tuned as it is necessary in cloud environments [Das+19].

It is crucial to understand the strengths and weaknesses of the approaches to determine
which of the approaches should be applied in a particular scenario. Furthermore, objective
analyses are the only way to identify opportunities for improving index selection techniques.
Although dozens of index selection solutions have been proposed, such an analysis has
not been conducted [Kos+20d]. Hence, this lack of objective analyses is another reason
for choosing index selection as a representative for physical database design.

We will discuss our analysis of index selection approaches later in Chapters 3 and 4. The
results indicate that, in some problem dimensions, existing approaches have limitations —
as depicted in Figure 1.2. There are various state-of-the-art index selection approaches,
some of them related to commercial DBMS products. Some existing approaches, such
as DTA, produce high-quality solutions for complex workloads or provide low index
selection runtimes, such as DB2Advis and reinforcement learning (RL)-based approaches.

8

1.3. Part II: Data Dependency-Driven Query Optimization

DB2Advis [Val+00]
DTA [CN20]
RL-based [SGL20a]

Solution Quality

Functionality

Preparation TimeScalability (#Candidates)

Selection
Runtime

Figure 1.2.: Schematic comparison of index selection approaches. State-of-the-art index
selection algorithms show weaknesses in different dimensions. Functionality
includes, e.g., support for multi-attribute indexes or budget constraints.
Larger distance to the center is better.

Nevertheless, they fall short of striking the right balance between both metrics and offering
the desired functionality, as displayed in Figure 1.2. We argue that, due to complex and
varying workloads, autonomous DBMSs must employ powerful index selection approaches
that react quickly to workload changes in order to achieve close-to-optimal performance.
In this context, we will survey existing index selection approaches, investigate their
performance, and develop new automated index selection techniques that overcome the
highlighted shortcomings in Part I of this thesis.

1.3. Part II: Data Dependency-Driven Query Optimization

Optimizations based on physical database design can be complemented by optimizations
that utilize properties of the data itself to improve query processing performance. Data
dependencies are such properties; they express relationships between relational attributes.
For example, a functional dependency (FD) expresses that any two records with identical
values in the attributes X also have the same values in the attributes Y [Cod71]; in a
relation with address data, the combination of the attributes street_address and zip_code
could functionally determine the attribute city. Such dependencies can exist due to the
very nature of the underlying data, or be artificially introduced to datasets, e.g., with
surrogate keys. A more formal introduction of FDs and other data dependencies will be
given in Chapter 6 of this thesis.

Data dependencies can be applied during query optimization to achieve more efficient
query processing, e.g., aborting scans early, using binary searches instead of linear scans,

9

1. Introduction

or removing redundant GROUP BY attributes. For example, the following query can be
simplified if we assume the FD mentioned above on the address data relation:

SELECT [...] FROM address_data
GROUP BY street_address, zip_code, city.

The grouping attribute city is unnecessary, because all of the elements that fall into
the same group for street_address, zip_code necessarily also have the same value for city.
Nevertheless, most data dependency-driven techniques are rarely implemented in existing
database systems [KPN22]. Data dependencies are not frequently used in modern query
processing engines because no comprehensive collection of dependency-driven techniques
existed; we present such a collection in Chapter 7. Also, while there are typically many
valid data dependencies on a given dataset [SP22], such dependencies are often unknown.
Some of them, such as order dependencies (ODs), cannot be manually defined in DBMSs.
However, advancements in the field of data profiling [Abe+18] in combination with our
workload-driven discovery approach (Chapter 8) increase the feasibility of discovering
data dependencies and make query optimization based on these dependencies more viable.
We argue that, with ever-increasing data volumes [Que20] and performance demands,
autonomous DBMSs must utilize such data-inherent knowledge in the future to achieve
efficient query processing. Therefore, we examine how data dependencies can be used for
query optimization in Part II of this thesis.

1.4. Research Questions and Contributions

Based on the aforementioned challenges and explanations, we derive three research
questions, which guide our work on unsupervised database optimization. The first
two questions target the storage perspective, in particular, efficient index selection. In
contrast, the third question focuses on the query perspective, i.e., the utilization of data
dependencies for query optimization. We present our contributions in the context of the
research questions below. In addition, we also summarize our research in the area of
autonomous database systems, which is not part of this thesis’ main contributions.

(1) An Experimental Survey of Index Selection Algorithms

Research question: How can we analyze, compare, and classify unsupervised index
selection algorithms and investigate which factors influence their performance regarding
the quality of the identified solutions as well as the required runtime?

Significance: It is crucial to objectively evaluate existing index selection approaches
to identify their differences and limitations. Based on these insights, approaches can be

10

1.4. Research Questions and Contributions

chosen for particular application scenarios. Moreover, such analyses are necessary to
identify challenges that can be addressed by developing new approaches.
Contribution: We classify seven diverse index selection algorithms by their modus
operandi, functionality, strengths, and weaknesses. Furthermore, we develop a platform
for evaluating index selection algorithms for different workloads and datasets to investigate
which factors influence their effectiveness and efficiency. The platform is flexible and
facilitates the extension by other algorithms, workloads, or physical design aspects. Based
on the evaluations conducted with this platform, we deduce insights regarding which
approaches are beneficial to particular situations. In terms of solution quality, approaches
may vary substantially. Regarding the index selection runtime, they may even differ
by orders of magnitude. The community actively uses2 our open-source platform3 and
the generated insights to evaluate and develop new index selection approaches [LZC21;
Per+21; WTB21a]. Contribution (1) is based on the following publication:
[Kos+20d]: Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. “Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation of Index
Selection Algorithms”. In: Proceedings of the VLDB Endowment 13.11 (2020), pp. 2382–
2395.

Note that the detailed contributions of the thesis author to the aforementioned and the
following publications are explained at the beginning of the particular chapters below.

(2) Scalable and Effective Index Selection Algorithms

Research question: How can we scale index selection processes to efficiently determine
near-optimal index sets, even for large problem instances and considering complex effects,
such as index interaction?
Significance: Numerous tunable DBMS instances as well as complex, varying workloads
pose challenges for existing index selection approaches in cloud environments. Therefore,
more scalable, faster, and effective index selections are required to handle such challenges.
Contribution: Based on the previously obtained findings, we propose two new index
selection algorithms that overcome existing limitations. Both algorithms complement
each other by serving various purposes: (i) Extend focuses on identifying (near-)optimal
solutions with a heuristic that iteratively extends index configurations. While its solutions
outperform other approaches for all evaluated benchmarks, it also undercuts its direct
competitors in solution time by up to a factor of 10. (ii) SWIRL targets cloud scenarios
with numerous tunable systems by concentrating on rapid solution times enabled by

2Our platform’s open-source repository has been forked several times and we are being contacted
regularly by fellow researchers regarding index selection evaluation opportunities.

3Index selection evaluation platform on GitHub: https://git.io/index_selection_evaluation

11

https://git.io/index_selection_evaluation

1. Introduction

reinforcement learning, resulting in runtime improvements by orders of magnitude in
many scenarios. Simultaneously, the quality of the solutions is, on average, within 3 % of
the best solutions.

Both approaches are evaluated extensively and compared with the strongest competi-
tors. We detail the design and implementation decisions of Extend and our reinforcement
learning-based approach SWIRL and survey other index selection approaches based on
reinforcement learning. The implementations are provided via open-source reposito-
ries [Kos+20c; KKS22b] for Extend and SWIRL. The material of Contribution (2) is
published in the following papers and patents:
[KKS22a]: Jan Kossmann, Alexander Kastius, and Rainer Schlosser. “SWIRL: Selection
of Workload-aware Indexes using Reinforcement Learning”. In: Proceedings of the
International Conference on Extending Database Technology (EDBT). 2022, pp. 155–168.
[Kos+22b]: Jan Kossmann, Rainer Schlosser, Alexander Kastius, Michael Perscheid,
and Hasso Plattner. Training an Agent for Iterative Multi-Attribute Index Selection.
European Patent Application EP22156399.2. February 2022.
[Sch+20]: Rainer Schlosser, Jan Kossmann, Martin Boissier, Matthias Uflacker, and
Hasso Plattner. Iterative Multi-Attribute Index Selection for Large Database Systems.
European Patent EP3719663B1; US Patent Application 16/838,830. October 2020.
[SKB19]: Rainer Schlosser, Jan Kossmann, and Martin Boissier. “Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies”. In: Proceedings of the
International Conference on Data Engineering (ICDE). 2019, pp. 1238–1249.

(3) Data Dependency-Driven Query Optimization

Research question: How can a DBMS use data dependencies for improved query
optimization, and how can relevant dependencies be identified in an unsupervised fashion?

Significance: Previous research has identified many data dependencies and applications
for query optimization on real-world datasets. However, the potential of data dependencies
for query optimization is not utilized by DBMSs in general. Ever-increasing data volumes
will not allow such data-inherent optimization potential to be ignored in the future.
Contribution: Initially, we compile a collection of 58 data dependency-based query
optimization techniques. We provide brief and intuitive descriptions of all techniques and
classify them by their application area, data dependency type, and query optimization
phase. In addition, we analyze the impact of selected data dependency-driven optimization
techniques on query performance. Furthermore, we present a workload-driven, lazy
mechanism that determines valuable dependencies in an unsupervised fashion. The
resulting runtime benefits outweigh the mechanism’s overhead for the selected techniques,

12

1.4. Research Questions and Contributions

achieving query speed-ups of up to 61× for some TPC-DS queries and an average runtime
reduction for the Join Order Benchmark (JOB) workload of 26 %.

For the impact analysis and evaluation of our approach, both the mechanism and the
exemplarily selected techniques are implemented4 in our research DBMS Hyrise [Dre+19].
This contribution is based on the following previously published material:
[KPN22]: Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. “Data dependencies
for query optimization: a survey”. In: VLDB Journal 31.1 (2022), pp. 1–22.
[Kos+22a]: Jan Kossmann, Felix Naumann, Daniel Lindner, and Thorsten Papenbrock.
“Workload-driven, Lazy Discovery of Data Dependencies for Query Optimization”. In:
Proceedings of the Conference on Innovative Data Systems Research (CIDR). 2022.

Complementary Contributions

In addition to the previously mentioned main contributions, we have contributed to
the field of autonomous database systems with further research. First, we proposed
a component-based framework to facilitate the development and system integration of
autonomous functionality from an architectural point of view. This framework also
includes an integer linear programming (ILP)-based approach to derive optimized tuning
orders for mutually dependent aspects of physical database design, e.g., index selection
and automated compression configuration. This line of work is not part of this thesis but
examined in the following publications:
[KS20]: Jan Kossmann and Rainer Schlosser. “Self-driving database systems: a conceptual
approach”. In: Distributed And Parallel Databases (DAPD) 38.4 (2020), pp. 795–817.
[KS19]: Jan Kossmann and Rainer Schlosser. “A Framework for Self-Managing Database
Systems”. In: Proceedings of the International Conference on Data Engineering (ICDE)
Workshops. 2019, pp. 100–106.
[Kos18]: Jan Kossmann. “Self-Driving: From General Purpose to Specialized DBMSs”.
In: Proceedings of the VLDB PhD Workshop. 2018.

Second, for our research DBMS Hyrise, we developed a plugin concept that enables
the seamless integration of autonomous functionality from a development perspective.
Thereby, we avoid the tight coupling of such functionality with database core elements.
This plugin concept is demonstrated in the Hyrise Cockpit for Unsupervised Database
Optimization, which allows the user — such as a DBA — to interactively evaluate
the plugins’ performance impact, observe their interplay, and comprehend the plugins’
decisions to build trust in unsupervised techniques. The cockpit and the plugin concept
are discussed in this thesis. This line of work is also part of the following publications:

4Source code on GitHub: https://github.com/Bensk1/phd_thesis/releases/tag/source_code

13

https://github.com/Bensk1/phd_thesis/releases/tag/source_code

1. Introduction

[Kos+21]: Jan Kossmann, Martin Boissier, Alexander Dubrawski, Fabian Heseding,
Caterina Mandel, Udo Pigorsch, Max Schneider, Til Schniese, Mona Sobhani, Petr
Tsayun, Katharina Wille, Michael Perscheid, Matthias Uflacker, and Hasso Plattner.
“A Cockpit for the Development and Evaluation of Autonomous Database Systems”.
In: Proceedings of the International Conference on Data Engineering (ICDE). 2021,
pp. 2685–2688
[Dre+19]: Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. “Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management”. In: Proceedings of the
International Conference on Extending Database Technology (EDBT). 2019, pp. 313–324

Third, we have investigated how the unsupervised clustering of database tables improves
a workload’s execution time. In particular, we examined how to accurately predict the
impact of different clustering configurations with learned cost models. Based on these
predictions, the best clustering configuration can be determined without the need for
expensive installation and evaluation. The corresponding findings are not part of this
thesis but presented in the following publication:
[LLK21]: Daniel Lindner, Alexander Löser, and Jan Kossmann. “Learned What-If Cost
Models for Autonomous Clustering”. In: Advances in Databases and Information Systems
(ADBIS). 2021, pp. 3–13

1.5. Outline

The remainder of this thesis consists of three parts: Part I examines automatic index
selection; it comprises Chapters 2 to 5. Chapter 2 introduces the necessary background
information by formalizing the index selection problem; the chapter also highlights the
problem’s challenges to demonstrate the complexity of the problem. In Chapter 3,
we discuss related work by surveying, explaining, and comparing seven existing index
selection algorithms. Afterward, we present an index selection evaluation framework and
conduct an experimental evaluation of the previously presented algorithms in Chapter 4.
Based on the insights generated by the experimental evaluation, we develop two improved
index selection algorithms in Chapter 5 and evaluate their performance.

Part II concerns the usage of data dependencies for query optimization; it comprises
Chapters 6 to 8. We start by giving background information on different data dependency
types, their properties, and query optimization in Chapter 6. In Chapter 7, we explore
related work by surveying 58 query optimization techniques based on data dependencies.
Chapter 8 details and evaluates our workload-driven dependency discovery approach.

Part III completes this thesis by presenting our Cockpit for Unsupervised Database
Optimization (Chapter 9) and our conclusions in Chapter 10.

14

Part I.

Unsupervised Database Optimization:
Efficient Index Selection

15

2
Background: Index Selection

Indexes are auxiliary data structures that can enhance the performance of certain database
operations. Typically, there is a tradeoff between improved performance and elevated
storage consumption caused by these data structures. While performance is essential
for productive systems, storage is also a scarce resource [Zha+16]. Moreover, index
structures do not always accelerate query execution. In fact, additional indexes can even
increase the workload processing time, e.g., because inserts or updates require expensive
maintenance operations on the index structures [Gra06].

The index selection problem is about finding the set of indexes for a given workload
that maximizes the system performance while considering specific constraints, e.g., a
storage budget or the number of indexes to create. In this chapter, we first provide the
theoretical background by formalizing the problem (Section 2.1) before we discuss the
challenges of index selection in Section 2.2.

Parts of this chapter have been published in two research papers [Kos+20d; KKS22a].
The thesis author prepared the majority of the original draft for publication [KKS22a].
The author developed the underlying concept, implemented the approach, and designed and
executed all experiments. Kastius and Schlosser supported the reinforcement learning (RL)
model’s design, improved the material and its presentation, and co-authored the paper.
Publication [Kos+20d] was a collaborative effort. The primary authors, Halfpap and the
thesis author, contributed the majority of the paper’s conceptualization and original draft.
The thesis author conducted most of the experiments and their evaluations. Furthermore,
the primary authors improved, revised, and extended Jankrift’s prototypical version of the
evaluation platform. Jankrift and Schlosser contributed to the paper’s concept, improved
its material and presentation, and co-authored the paper.

2.1. Formalization

In the upcoming chapters of this thesis, we rely on the following notation and formalization
of the index selection problem. The notation is summarized in Table 2.1.

17

2. Background: Index Selection

Table 2.1.: Notation table for index selection.
Pa

ra
m

et
er

s K number of attributes
N number of queries
qn attributes accessed by query n, n = 1, ..., N ,

subset of {1, ..., K}, e.g., q1 = {8, 6, 13, 14}
fn frequency of query n, n = 1, ..., N
I set of index candidates

C
os

t
pa

ra
m

et
er

s

B storage budget (constraint)
L maximum number of selected indexes, |I∗| (constraint)
cn(∅) cost of executing query n without an index
cn(I∗) cost of executing query n with index configuration I∗

C(I∗) total workload costs, sum of all query costs under I∗

mi size (storage consumption) of index i, i ∈ I

Va
ria

bl
es

W index width, number of attributes
Wmax largest width considered during index selection
i index, ordered set i = {i1, ..., iW } with W attributes
iu uth attribute of i, iu ∈ {1, ..., K}, u = 1, ..., W
I∗ index selection or configuration, I∗ ⊆ I
xi index i selected, yes (1) / no (0)
M(I∗) Occupied storage of index selection I∗. Short for M(I∗(x⃗))

Workload. A workload is a set of N query templates or query classes defined over a
set of tables with K attributes or columns. A query n is characterized by the subset
of attributes qn ⊆ {1, ..., K} that are accessed for its evaluation, n = 1, ..., N . Often,
algorithms also assign queries a weight to differentiate their importance or represent the
frequency of the query’s occurrence. Queries of class n occur with frequency fn, fn ≥ 0.
Index. An index i with W attributes is represented by an ordered set of attributes
i = {i1, ..., iW }, where iu ∈ {1, ..., K}, u = 1, ..., W . W is also called the width of an
index and corresponds to the number of contained attributes. Wmax denotes the largest
index width considered during index selection. An index cannot incorporate attributes of
multiple tables but is only created on a single table.
Potential Index. A potential index p with W attributes is any index that could be
generated from an arbitrary combination of attributes (from the same table) that are
part of the workload (⋃n=1,...,N qn), i.e., p = {i1, ..., iW }. Note, in the work of Chaudhuri
and Narasayya discussing index selection, potential indexes are called admissible indexes,
which consist of so-called indexable attributes [CN97].
Index Candidates. Potential indexes that are considered and evaluated by index
selection algorithms are index candidates I. Usually (because of their large number
and combination possibilities), index selection algorithms cannot consider all potential
indexes, e.g., index candidates with many attributes are often discarded. Choosing index

18

2.1. Formalization

candidates from all potential indexes is an essential part of index selection algorithms.
Many algorithms focus on (syntactically) relevant indexes that contain only attributes
that appear together in at least one query. Well-chosen candidates can impact the quality
of the final solution significantly [SKB19].

Index Selection. An index selection or index configuration is a set of indexes, I∗ ⊆ I.
Typically, algorithms evaluate different candidate sets and index configurations during
the selection process. Note, depending on the context, I∗ can refer to any potential index
selection as well as the final selection.

Index Size and Selection Status. The required storage (or memory for in-memory
indexes) for an index i ∈ I is denoted by mi, often denoted as index size. We use the
binary variables xi, which indicate whether an index i ∈ I is part of the selection I∗ (1
yes, 0 no), i.e., I∗(x⃗) := ⋃

i∈I:xi=1 {i}, where x⃗ is a short vector notation for all xi. Then,
the total storage M used by a selection I∗ = I∗(x⃗) amounts to

M(I∗(x⃗)) or simply M(I∗) :=
∑

i∈I
mi · xi. (2.1)

Query and Workload Costs. Query and workload costs are important input parameters
for index selection algorithms. Costs are used to determine the most beneficial indexes.
The costs to execute a query of class n depend on the currently active selection of indexes
I∗ and are denoted by parameters cn(I∗). Note that cn must be defined for arbitrary
I∗ ⊆ I. The total workload costs C are defined as the sum of the cost of all queries
considering their frequencies and the current index selection I∗:

C(I∗) :=
∑

n=1,...,N
fn · cn(I∗). (2.2)

Index Selection Problem — Optimization Target. The target of the index selection
problem is to solve the following optimization problem given a constraint. Most commonly,
as we will discuss in Chapter 3, the constraint is a storage budget, B ≥ 0, that cannot
be exceeded:

minimize
xi∈{0,1},i∈I

C(I∗(x⃗)) subject to M(I∗(x⃗)) ≤ B. (2.3)

Note, some approaches do not consider storage budgets. Instead, they work with
cardinality constraints and restrict the number L of selected indexes, |I∗| = ∑

i∈I xi,
|I∗| ≤ L. Other approaches employ multiple constraints, for instance, a budget B and a
maximum allowed index selection runtime T . The impact of different constraints on the
index selection process is discussed later in Chapter 4.

Hypothetical Index. Hypothetical indexes do not physically exist [CN97]. Their
existence is only simulated to trick the optimizer (what-if optimization [CN97]) into

19

2. Background: Index Selection

generating query plans and cost estimations that would also be created if the index
was actually physically present. In the work of Valentin et al. [Val+00] and IBM’s
Db2 [IBM22a], these hypothetical indexes are called virtual indexes.

2.2. Challenges

Formally, it has been shown that the index selection problem is NP-complete [Pia83].
While it is similar to the also NP-complete Knapsack Problem [Mat96], the index selection
problem is more complex, as we will discuss below. In the following, we further detail the
three main challenges of index selection: (i) the large solution space, (ii) index interaction,
and (iii) the quantification of index impact. We also provide a first overview on how
index selection approaches overcome these challenges and discuss their limitations.

2.2.1. Large Solution Space

For reasonably sized datasets and workloads, numerous — possibly millions of — options
for indexation, i.e., index candidates, exist [DPA11; Kos+20d]. The number of relevant
index candidates depends on the number of attributes accessed by the workload’s queries
and the maximal number of attributes per index. Typically, multi-attribute candidates are
generated by permuting single-attribute candidates. Real-world datasets can even contain
tens of thousands of attributes. For instance, single tables of SAP’s enterprise resource
planning (ERP) system can consist of hundreds of attributes [BSU18]. Furthermore,
Faust et al. [Fau+16] have shown that wide indexes (up to 16 attributes) are relevant for
relational database management systems (DBMSs) in practice.

Table 2.2 depicts the number of index candidates for increasing index widths and other
benchmark metrics for three frequently used database benchmarks: the TPC-H, TPC-DS,
Join Order Benchmark (JOB), and one real-world query set based on a workload sample
of SAP’s ERP system. The benchmarks will be described in more detail in Section 4.1.1.
The table demonstrates that the number of index candidates is not simply a function of
the number of attributes and queries but instead depends on the dataset’s structure and
the queries’ contents. In addition, it indicates that the number of index candidates is
enormous. Given that these candidates are the basis to generate orders of magnitude
more combinations of candidates, the size of the solution space appears tremendous. The
SAP sample shows that this is particularly true for real-world data: the sample contains
a single wide table and some of its queries access many attributes leading to an excessive
number of candidates. In practice, evaluating all candidate combinations is, in general,
impractical as their number exceeds the number of attributes and index candidates by
orders of magnitude [Zil+04]. Hence, enumerating all solutions is infeasible.

20

2.2. Challenges

Table 2.2.: Solution space metrics for four schemata and workloads. The number of
relevant index candidates was determined by generating all permutations of
all syntactically relevant indexes. SAP* refers to a workload sample executed
on SAP’s S/4 HANA ERP system table ACDOCA (universal journal [SAP17]).

Benchmark Relations Attributes Queries Relevant W -attribute candidates
W = 1 W = 2 W = 3 W = 4

JOB 21 108 113 73 218 552 1 080
TPC-H 8 61 22 53 398 3 306 29 088
TPC-DS 24 429 99 248 3 734 68 052 1 339 536
SAP* 1 344 141 344 117 992 40 353 264 ≈ 1.4 ∗ 1010

Existing index selection algorithms approach the challenge of large solution spaces in
multiple ways. Some approaches, e.g., Lan et al.’s solution [LBP20], limit the number
of candidates early in the selection process according to specific rules. Others reduce
the problem’s dimensions by only determining single-attribute indexes, for instance,
Whang’s Drop heuristic [Wha85] (see Section 3.1.2). A different class of approaches, e.g.,
CoPhy [DPA11] (see Section 3.1.7), relies on integer linear programming (ILP) solvers
that prune non-optimal options. Schlosser et al. [SKB19] have demonstrated that early
candidate reduction can harm performance and that efficient solver-based approaches
cannot handle large solution spaces without reducing the candidate set a priori.

2.2.2. Index Interaction

During index selection, the candidates cannot be considered independent because indexes
interact. According to Schnaitter et al., “[...] an index a interacts with an index b if the
benefit of a is affected by the presence of b and vice-versa” [SPG09, p. 1234]. Hence,
the existence of one index can affect the potential performance impact of other indexes.
Thus, during every step of an index selection process, the currently existing indexes must
be considered. This fact requires frequent recomputations of the candidates’ benefits
because every index creation or removal might drastically impact every other index
candidate’s potential benefit. Thereby, the complexity of choosing suitable candidates
and calculating the best selection is significantly increased. At the same time, interaction
is the main differentiator to the classic Knapsack Problem, where the value of items does
not depend on previously chosen items.

There are fundamental differences in how the existing approaches deal with index
interaction. Some simple heuristics do not consider index interaction, resulting in degraded
performance [SKB19]. While many approaches take interaction into account to some
degree, some of them expensively recompute every candidate’s benefit with every step,

21

2. Background: Index Selection

e.g., the approaches Drop or Relaxation [BC05]. We will examine the tradeoff between
the solution’s performance and computation time later in Section 4.2.

2.2.3. Quantifying Index Impact

For comparing index candidates and choosing the most promising ones, their potential
performance impact, C(I∗), must be determined. Thus, index selection algorithms must
quantify the benefit of candidates, i.e., the cost savings when the index is utilized for
executing the workload at hand. Furthermore, the storage consumption, mi, is of interest.
A possibility to quantify these metrics is to create the index physically, execute and
measure each query whose costs are affected by the index, and obtain the size of the index.
Usually, this measurement-based approach produces accurate values. At the same time,
this approach is prohibitively expensive for large workloads, mainly because quantifying
benefits for index interactions would require repeated recreations of the same indexes
and executions of the same queries. Later, in the experimental evaluation (Chapter 4),
we will see that some algorithms would need to physically create thousands of indexes
and determine index benefits via millions of query executions during index selection.

Therefore, most index selection algorithms do not measure but only estimate index
benefits to avoid being thwarted too much by determining query costs. It is common to
use the database system’s optimizer and its cost model for these estimations because the
optimizer chooses the query plan and, in particular, which indexes are used. Furthermore,
to avoid not only the execution of queries but also the creation of indexes, some database
systems support hypothetical indexes. Hypothetical indexes are not (entirely) physically
created but only inexpensively simulated for cost estimations. The DBMS optimizer
considers these hypothetical indexes to generate query plans and cost estimations. This
technique is also denoted as what-if optimization [CN98].

Although the queries are not executed, what-if optimizer calls take a considerable
time because they involve the usual query optimization process. Sometimes, complicated
queries are optimized for hundreds of milliseconds and planning time can even surpass
execution time [Kos+18; SCJ15]. In particular, for large workloads, where millions
of configurations must be evaluated, what-if optimization can become a significant
bottleneck. Papadomanolakis et al. [PDA07] show that index selection algorithms spend,
on average, 90 % of their runtime in the optimizer. Hence, expensive cost estimations
must be kept to a minimum.

While existing work targets the overhead of what-if calls, index selection times are
still significant. For example, Chaudhuri and Narasayya discuss techniques to decrease
the number of optimizer calls by (i) reducing the set of configurations to evaluate and
(ii) deducing costs from simpler configurations [CN97]. Papadomanolakis et al. [PDA07]

22

2.2. Challenges

present a cache-like approach (INUM) to reduce the number of what-if calls. The authors
report calculation time improvements of three orders of magnitude without accuracy
losses. Besides, Bruno and Nehme present another method to speed up what-if-based
cost estimation called C-PQO [BN08]. Instead of issuing many calls for different index
configurations, the authors propose a single, more sophisticated optimizer call per query.
The single call is more expensive than usual but allows evaluating the impact of multiple
configurations afterward without reoptimization.
Cost Estimation Inaccuracies. In general, optimizer-based cost estimations can result
in significant estimation errors due to cardinality misestimations [Lei+15] or inaccurate
cost models [Wu+13]. As a result, index configurations predicted to be beneficial can,
when actually executing queries, result in performance regressions [BAA12; Das+19].
The solution quality of index selection algorithms is, to some extent, bounded by the
accuracy of the cost estimations. However, cost estimations are typically the only feasible
option for determining costs for large workloads and still allow for comparing the power
of different index selection approaches [Kos+20d].

Besides, recent progress in the area of accurate learned cost models could mitigate
cost estimation issues. For instance, Ding et al. [Din+19] demonstrate how machine
learning classification approaches can be leveraged to predict which plan (with or without
index) will be more efficient. The learned cost models based on neural networks of
Marcus and Papaemmanouil [MP19] could be used to mitigate the problems arising from
inaccurate cost models, too. Furthermore, we combined learned cost models with what-if
optimization techniques to improve cost estimations explicitly for physical database
design problems [LLK21].

While the index selection process relies on cost estimations, the algorithms are inde-
pendent of the exact underlying cost model. Hence, improved cost estimation techniques
could be utilized without adapting the index selection approaches. In the remainder of
this work, we consider the further investigation and development of techniques for more
accurate cost estimations out of scope.

23

3
A Survey of Index Selection Algorithms

In this chapter, we survey seven index selection algorithms. We explain our choice of
the investigated algorithms, detail their functioning and parameters, and compare them
in Section 3.1. Afterward, Section 3.2 highlights specifics of commercial index selection
tools, before Section 3.3 discusses alternative index selection techniques.

Parts of this chapter have been published in the paper [Kos+20d]. The thesis author’s
detailed contributions to this paper were discussed at the beginning of Chapter 2.

3.1. Investigating Seven Index Selection Algorithms

Index selection algorithms have been published since 1971 and differ in their underlying
strategies and complexity. Figure 3.1 gives a time-based overview of the examined
publications as well as milestones in the field of index selection algorithms. Before we
give detailed explanations of the different algorithms in Sections 3.1.2 to 3.1.8, we provide
a high-level comparison and justify the selection of algorithms in Section 3.1.1.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Firs
t men

tio
n [Pal7

0]

Firs
t pu

bli
cat

ion
[LL71

]

Opti
mize

d sol
uti

on
[Sc

h7
5]

Add
itiv

e he
uri

sti
c [H

C76
]

Red
uc

e to
Kna

ps
ack

[IS
R83

]

Proo
f NP-C

om
ple

te
[P

ia8
3]

Dro
p

[W
ha

85
]

Gen
eti

c Algo
rit

hm
[FG89

]

Opti
mize

r-b
ase

d [FON92
]

LP-ba
sed

GUFLP
[C

S9
6]

Auto
Admin

[C
N97

]

Ind
ex

merg
ing

[C
N99

]

DB2A
dvis

[Val+
00

]

Con
t.

Ind
ex

Tun
ing

[SG
S0

3]

SQ
L

Se
rve

r DTA
[A

gr+
04

]

Rela
xat

ion
[B

C05
]

Onli
ne

Tun
ing

[B
C07

]

IN
UM

[P
DA07

]

Ind
ex

int
era

cti
on

[SP
G09

]

CoP
hy [D

PA11
]

RL
∗ [B

as+
15

]

Dex
te

r [K
an

17
b]

Exte
nd

[SK
B19

]

DTA
[C

N20
]

SW
IR

L
[K

KS2
2a

]

Figure 3.1.: Timeline of milestones in index selection research. Algorithms that are
described, implemented, and evaluated as part of this thesis are highlighted
with bold type. ∗RL refers to reinforcement learning-based approaches.

25

3. A Survey of Index Selection Algorithms

3.1.1. Algorithm Comparison

We have aimed for a diverse selection of index selection approaches for our survey and the
upcoming evaluation. The differences become apparent when we compare the algorithms
across several dimensions, as depicted in Table 3.1. In the following, the algorithm names
are italicized for clarity.

Table 3.1.: Summary of the compared algorithms in chronological order. † Indicates that
DTA was continuously refined; we consider the latest publication from 2020.
Commercial* indicates whether the algorithm is related to a commercial index
selection tool.

Drop AutoAdmin DB2Advis Relaxation CoPhy Dexter DTA

Year of publication 1985 1997 2000 2005 2011 2017 2020†

Commercial* No Yes Yes No No No Yes
Optimization target Costs Costs Costs

Storage
Costs

Storage
Costs

Storage
Costs Costs

Constraint # Indexes # Indexes Storage Storage Storage Savings (%) Storage
Multi-attribute No Yes Yes Yes (Yes) (Limit 2) Yes
Underlying strategy Reduce Add Add Reduce Declarative Add Add
Index interaction +++ ++ + +++ +++ + ++
Impl. complexity + +++ ++ +++ +++ +/++ +++

Year of Publication and Relation to Commercial Tools. We included one of the
first (Drop), intermediate, and recent (DTA) algorithms. Most algorithms were proposed
in research papers. Some are also related to commercial systems (AutoAdmin, DB2Advis,
DTA). Dexter is an open-source algorithm.

Optimization Target. When selecting indexes, algorithms either aim to minimize
the benefit per storage consumption (CoPhy, DB2Advis, Relaxation) or the pure benefit
(AutoAdmin, Dexter, Drop, DTA). The latter target usually leads to a selection consisting
of a few large indexes with a high absolute benefit. Minimizing the benefit per storage often
selects a larger number of smaller indexes with a better relative benefit. Ultimately, the
proper optimization target depends on the workload: more index structures might require
more individual maintenance operations, which should be considered for transactional
workloads.
Constraint. Algorithms also differ in the considered constraint, cf. Equation (2.3).
Some algorithms allow for specifying an arbitrary upper limit of the total index storage
consumption B. Others limit the number of selected indexes L. While additional
constraints can usually be implemented easily, AutoAdmin is the only algorithm explicitly
mentioning the support of both constraints in the original publication [CN97].

26

3.1. Investigating Seven Index Selection Algorithms

Multi-attribute Indexes. All algorithms except Drop5 support the selection of multi-
attribute indexes. Dexter is limited to two-attribute indexes. In the case of CoPhy, in
particular, considering multi-attribute indexes increases the number of necessary cost
estimations drastically.
Underlying Strategy. Regarding the underlying strategies, we evaluate imperative
algorithms (i) starting with an empty index configuration and iteratively adding indexes
(AutoAdmin, DB2Advis, DTA), and (ii) starting with a large configuration that is reduced
(Drop, Relaxation), as well as declarative approaches based on (iii) linear programming
(CoPhy). Machine learning-based approaches will be considered later in Chapter 5.
Index Interaction. All of the algorithms investigated consider index interaction, but
to a varying extent. The consideration of index interaction in DB2Advis and Dexter is
limited — for DB2Advis, it happens mainly late in the final variation phase — because
both approaches simultaneously create hypothetical indexes for all candidates. Therefore,
interactions cannot be captured on a detailed level.

In contrast, the reductive approaches (Drop and Relaxation) and CoPhy consider index
interaction to a high degree. The former capture interactions by only removing single/few
candidates per step. Due to its integer linear programming (ILP)-based approach and
the multitude of evaluated index configurations, CoPhy can theoretically capture even
more, respectively all, interactions. However, it is impossible to consider all possible
index configurations for capturing all interactions in practice and for realistic workload
sizes due to the number of options.

AutoAdmin and DTA offer an intermediate level of considering interaction. These
approaches neither capture single interactions nor add large sets of candidates at once.
Implementation Complexity. Finally, there are significant differences regarding the
complexity of the algorithms’ implementations, e.g., caused by more (DTA, Relaxation) or
less (Drop) sophisticated candidate selections and transformations to adapt the current in-
dex configuration. Of course, the assessment of this category is, to some extent, subject to
our subjective impressions. However, the algorithms’ descriptions below and their source
code6 give some indication of their complexity. Drop’s implementation is not complex
because it is essentially built around two main loops. While Dexter and DB2Advis are
multistep processes, they are not as sophisticated as the remaining approaches. Both
essentially create all index candidates and check which of these candidates are used by the
what-if optimizer. DB2Advis’ combination of subsumed indexes and random variation
adds complexity. We consider the remaining approaches as the most complex because they

5Drop theoretically supports multi-attribute indexes. However, the index configuration tests (and,
thus, runtime) would significantly increase with the number of candidates. Hence, even for smaller
workloads, e.g., TPC-H, the application of Drop would become infeasible.

6Algorithm implementations on GitHub: https://git.io/IndexSelectionAlgorithms

27

https://git.io/IndexSelectionAlgorithms

3. A Survey of Index Selection Algorithms

either rely on complex index set transformations (Relaxation), multiple recursively called
enumeration modes (AutoAdmin and DTA), or ILP formulations (CoPhy). While the
latter might not be complex by itself, it requires an external solver, is not as debuggable
as the other approaches, and, by being declarative, builds on a different programming
paradigm.

3.1.2. Drop Heuristic

One of the early index selection algorithms is Whang’s Drop heuristic [Wha85]. As
the name implies, this approach successively drops index candidates. First, the initial
candidate index set, S|I| = I, comprises every potential single-attribute index. The
processing costs for the given workload are determined with all index candidates in place,
C(S|I|). In each of the following drop phases d, d = |I|, |I| − 1, ..., every remaining index
candidate i ∈ Sd is removed from the current candidate set and the workload processing
cost is re-evaluated, C(Sd \ {i}). The candidate i∗ whose removal leads to the lowest cost
is permanently removed for the next phase, Sd−1 := Sd \ {i∗}.

The original version drops index candidates until no further cost reduction is achieved.
Furthermore, Whang’s work states that costs are determined by data characteristics, not
by the query optimizer. However, because the cost determination is not tightly coupled
to the algorithm itself, our implementation can rely on optimizer-based costs for a fair
comparison with other approaches.

Parameters. In our implementation of the drop heuristic, the maximum number of
(finally) selected indexes |I| − d can be configured.

3.1.3. AutoAdmin

Chaudhuri and Narasayya propose the AutoAdmin index selection algorithm for Mi-
crosoft SQL Server [CN97]. The iterative algorithm identifies multi-attribute indexes by
incrementing the index width W in each iteration. Iterations consist of two steps: first,
candidates Sn are determined per query n = 1, ..., Q. The union of the candidates of
all queries ⋃

n Sn serves as input for the second step, which considers all queries while
determining the best index configuration. The procedure only differs in the considered
queries and index candidates for both steps. The algorithm combines a complete enumer-
ation of all subsets of index candidates with r elements and a greedy extension to find
t > r indexes. If r = t, the enumeration evaluates all index subsets with t elements to
guarantee an optimal solution. The number of combinations may be prohibitively large
to be evaluated in a reasonable amount of time. If r = 0, a pure greedy approach is used
to decrease the runtime.

28

3.1. Investigating Seven Index Selection Algorithms

Using the single-attribute (r-attribute) indexes of the first (rth) iteration, two-attribute
((r + 1)-attribute) indexes are created and evaluated in the second ((r + 1)th) iteration.
Chaudhuri and Narasayya propose two strategies to create multi-attribute indexes:
selecting more indexes for better results or fewer indexes for faster computation times.
Parameters. While the authors mention that a storage budget or the number of indexes
can serve as possible constraints, the latter is used throughout the original paper. Our
implementation constraints the number of indexes to be as close to the original as possible.
Also, the number of naively enumerated indexes and the index width can be configured.

3.1.4. Anytime DTA

The Anytime algorithm of the Database Engine Tuning Advisor (DTA) for Microsoft
SQL Server [CN20] is a continuously refined [Agr+04; CN99; CN07; Mic21a] version
of the AutoAdmin [CN97] index selection. The core approach to first determine index
candidates per query and then identify an index configuration for the entire workload,
based on the original greedy enumeration, is the same.

The approach uses the following main extensions:

(i) Iterations with increasing index widths are unnecessary since multi-attribute indexes
are considered from the start.

(ii) The candidates and configurations are merged after candidate selection to determine
further candidates that are beneficial for multiple queries.

(iii) Index interactions are considered by identifying seed configurations to avoid complete
enumerations that may evaluate many, certainly suboptimal, configurations.

(iv) As the name suggests, the tuning times can be limited to guarantee solutions in a
reasonable time, even for many candidates and seeds. This property is denoted as
anytime capability in the course of this thesis.

(v) The algorithm can simultaneously tune indexes, materialized views, and partitioning
criteria.

Parameters. The maximum width of index candidates and a limit for the tuning time
can be configured.

3.1.5. DB2Advis

Valentin et al. [Val+00] present the algorithm DB2 Advisor (short DB2Advis) to identify
beneficial indexes for IBM’s Db2. DB2Advis utilizes the optimizer’s what-if capabilities
and follows a three-step approach.

29

3. A Survey of Index Selection Algorithms

In the first step, DB2Advis determines index candidates. For each query n, n = 1, ..., N ,
of the workload, hypothetical indexes are created on attributes that, e.g., appear as
equality or range predicates or in interesting order [Sel+79] lists. In addition, to not miss
any candidate, all potential indexes are added as hypothetical indexes until a certain
number of indexes is reached. Afterward, the best plan for query n is retrieved from the
optimizer. Previously created hypothetical indexes that are utilized in the resulting plan
are added to the set of index candidates (I) used in the next step.

In the second step, all index candidates in I are sorted by their benefit-per-space ratio
in decreasing order. The benefit corresponds to the difference in query processing costs
with and without indexes. Next, index pairs i1 and i2 are combined if i1 has a higher
ratio, and its leading attributes equal i2’s attribute permutation. In this case, the benefit
of i1 is updated, i2 is removed from the list, and I is potentially resorted corresponding
to its updated costs. Then, following the sort order, indexes are added to the final index
configuration (I∗) until the storage budget (B) is exceeded.

Lastly, the current index configuration is randomly modified to improve its benefit
and account for complex effects like index interaction: sets of the previously calculated
solution (I∗) are exchanged with sets of indexes that are not part of the solution (due to
the budget constraint). If the variation leads to lower overall costs, it becomes the new
solution.

Parameters. There are two main parameters: (i) the time for random variations and
(ii) the maximum number of hypothetical indexes that are evaluated in the first step of
the algorithm. Our implementation also allows configuring the maximum index width
and does not limit the number of hypothetical indexes (ii). Such a preselection could be
easily added, also to the other algorithms. We refrained from including it to compare the
performance of the core algorithms without hyperparameter tuning.

3.1.6. Relaxation

Bruno and Chaudhuri propose to derive indexes from a (presumably too large) optimal
index set by repeatedly transforming this set to decrease the storage consumption [BC05].
First, they obtain optimal index configurations for each query. Therefore, they instrument
the optimizer and exploit knowledge about its index usage to avoid a brute force approach.
Second, the optimal index configuration for the entire workload is defined as the union of
all queries’ optimal index sets. Afterward, this configuration is repeatedly relaxed, i.e.,
the index configuration is transformed, to lower its storage consumption while keeping
the configuration’s benefits as high as possible. They use five index transformations: (i)
Merging two indexes into one. (ii) Splitting two indexes, i.e., creating an index with
shared attributes and up to two (one per input index) indexes with the residual attributes.

30

3.1. Investigating Seven Index Selection Algorithms

(iii) Prefixing an index by removing attributes from the end. (iv) Promoting an index to
a clustered index. (v) Removing an index.
Parameters. The maximum width for index candidates can be configured as well as
which of the transformations are permitted. Our tool uses a brute force approach to
obtain the optimal index configuration per query. As clustered indexes are not considered
in this thesis, we did not integrate transformation (iv).

3.1.7. ILP-based Approaches (CoPhy)

Integer linear programming (ILP) is a common approach to solve optimization problems
by specifying an optimization target and constraints with linear equations. Then,
off-the-shelf solvers are used for calculating optimal solutions. Solvers are optimized
to discard invalid and sub-optimal solutions early and, thus, outperform brute force
approaches significantly. Commonly, index selection algorithms are formulated as integer
linear programming problems, which are not scalable. The problem complexity of ILP
formulations for the index selection problem can be reduced by restricting the solution
space, e.g., the number of index candidates by decreasing the allowed index width. Of
course, limited candidate sets might lead to suboptimal solutions for the unrestricted
problem [SKB19].
GUFLP. Caprara and Salazar González derive an ILP formulation [CFM95; CS96]
for the index selection problem from a Generalized Uncapacitated Facility Location
Problem (GUFLP). They reduce the complexity of the ILP formulation with a restriction
of the solution space by allowing the utilization of only a single index per query. Thus,
opportunities that only arise when multiple indexes exist simultaneously are not taken
into account.
CoPhy. Dash et al. [DPA11] propose CoPhy, a more sophisticated ILP formulation for
the index selection problem. In contrast to GUFLP, their approach considers multiple
indexes per query (see also [PA07]) and multiple query plans that are potentially chosen
by the optimizer depending on existing indexes. Below, we describe the essence of
CoPhy’s ILP approach.

The costs of (a fixed query plan and) executing a query using specific indexes have
to be at hand, e.g., based on what-if cost estimations. We consider a set S of different
index combinations. If a subset of index candidates s ⊆ I, called option in the following,
is applied to query n, the costs are cn(s), s ∈ S ∪ {0}, where 0 describes the option that
no index is used for processing n, n = 1, ..., N .

In the ILP, binary variables zsn are used to model whether an index option s is applied
to a query n, which depends on the selection of other index options which might be more
beneficial, cf. index interaction. Binary variables xi indicate whether an index i ∈ I

31

3. A Survey of Index Selection Algorithms

with its corresponding storage consumption mi is selected (as part of at least one chosen
option s). The constraints of the ILP guarantee that a unique index option is used for
each query n and that the used indexes i do not exceed the storage budget B.

The number of variables and constraints characterizes the complexity of the ILP
problem. As ILP formulations require the calculation of all cost coefficients cn(s), the
number of necessary what-if calls can be estimated. In general, ILP approaches do not
scale as the problem complexity sharply increases in the number of queries N and the
number of options |S|. Hence, solver-based approaches are (i) either not applicable for
large problems (see [SKB19, Table I]), or (ii) lead to suboptimal results as the candidate set
sizes, cf. S, need to be reduced a priori (see [SKB19, Figure 3-4]). Heuristic decomposition
approaches can be used to mitigate such solver-based scalability issues [SH20].

Parameters. The maximum width of index candidates and the number of applicable
indexes per query (1 corresponds to GUFLP) can be specified.

3.1.8. Dexter

Dexter is an open-source index selection tool for PostgreSQL [Kan17a; Kan17b] and
was developed by Andrew Kane. The algorithm builds on hypothetical indexes and is
divided into two phases. First, the processed queries, together with information about
their runtime, are gathered from the plan cache. Queries with the same template but
different parameter values are grouped.

The second phase involves multiple sub-steps. (i) The initial costs (of the current
index configuration I∗ where I∗ = ∅ is possible) of the gathered queries are determined
by using the EXPLAIN command. (ii) Hypothetical indexes are created for all potential
single- and multi-attribute indexes (Wmax = 2) that are not yet indexed. (iii) Again, cost
estimations and query plans are retrieved from the query optimizer. The hypothetical
indexes created in step (ii) that are part of these query plans become index candidates
for the corresponding queries. (iv) For all queries, the index candidate with the most
significant cost-savings compared to the costs obtained in step (i) is selected.

Dexter does not consider already existing indexes for deletion. Indexes are created
independent of their storage consumption and cannot contain more than two attributes.

Parameters. The tool offers a couple of parameters. The most important is the minimal
cost-savings percentage (default value 50 %). It defines the minimal cost-savings that
must be achieved by an index candidate to be selected.

32

3.2. Commercial Index Selection Tools

3.2. Commercial Index Selection Tools

While some of the chosen algorithms are related to tools employed in commercial DBMS
products, the reimplemented algorithms do not fully reflect the behavior and performance
of the original tools, which may be continuously enhanced and optimized. Such tools
need to set further focus points, such as robustness, scalability, time-bound tuning,
and integration [Agr+04; CN07]. Microsoft’s DTA [CN20; Mic21a] and IBM’s DB2
Design Advisor [Zil+04] can simultaneously consider multiple physical design aspects,
e.g., indexes, partitioning, and materialized views. Moreover, commercial tools must
be able to tune dynamic workloads in a production environment and support user
interaction [CN07].

3.3. Alternative Approaches

Recently, machine learning-based, and in particular reinforcement learning (RL)-based,
approaches for index selection have been proposed [Bas+15; SGL20b; SSD18]. Even
though the conceptual idea of applying machine learning to index selection is promising,
these approaches make different assumptions and have other limitations, e.g., demanding
long preliminary training times [Lic+20], ignoring index interaction [Bas+15], or only
considering filter operators [SSD18]. Such approaches will be covered separately in
Section 5.2.2.

For techniques like adaptive indexing [Idr+11] or database cracking [IKM07; SJD13;
SJD16], indexing is not a separate task, but happens during normal query processing:
essentially, physical copies of columns are sorted as a by-product of range queries. Even
though adaptive indexing and database cracking are valuable indexing techniques, they
are not considered in this thesis. These techniques typically target the automatic indexing
of column stores, whereas we investigate generally applicable index selection approaches.
Also, Schuhknecht et al.’s [SJD13; SJD16] evaluations demonstrate the dependence of
these approaches on particular query access patterns. In addition, it is unclear whether
the optimizer’s cost models consider adaptive or cracker indexes and if the often highly-
optimized code of database operators would have to be adapted to reflect such data
structures. Furthermore, these techniques are not available for database systems that
offer hypothetical index interfaces, such as PostgreSQL or Microsoft SQL Server, which
would hinder a fair comparison.

In 2018, Kraska et al. [Kra+18] presented the idea to replace traditional index data
structures entirely with learned models. Afterward, this new approach to the traditional
topic of indexing has led to a variety of learned indexing approaches [Din+20; FV20;
Kip+20; Nat+20] that are supposed to outperform state-of-the-art index structures, e.g.,

33

3. A Survey of Index Selection Algorithms

B-trees [Gra11]. However, since learned indexes do not specifically target index selection,
but rather aim to replace the underlying index structures, learned indexes are not of
increased relevance for this survey. As a side note, Crotty [Cro21] demonstrates that
most of the advantage of learned index structures is a result of implicit assumptions,
e.g., presorted data or read-only workloads. The advantage degrades if traditional index
structures make equivalent assumptions.

3.4. Summary

We surveyed and described seven diverse index selection algorithms. The algorithms
were chosen to reflect different underlying strategies and complexities. Based on the
detailed survey, we compared the algorithms across different dimensions, for instance,
the considered constraints or the degree to which index interaction is supported. We
discovered that there are significant differences between the algorithms. For example,
most (six out of seven) algorithms support multi-attribute indexes. The support for index
interaction and the implementation complexities vary to a large extent. Additionally, we
discussed relations to commercial index selection tools and highlighted the differences to
alternative approaches, such as database cracking and learned indexes.

34

4
An Experimental Evaluation of

Index Selection Approaches

This chapter compares the previously surveyed index selection approaches with several
experiments. We start by detailing the underlying methodology of our evaluation in
Section 4.1, where we discuss the evaluated workloads, the experimental setup, and the
implementation of our extensible index selection evaluation platform. The evaluation
presents results on different benchmark workloads (Sections 4.2.1 to 4.2.3) before more
specific aspects, e.g., algorithm cost breakdowns, are targeted (Sections 4.2.4 and 4.2.5).
A list of general and per-algorithm insights as well as a summary of our findings conclude
the chapter in Section 4.3.

Parts of this chapter have been published in the paper [Kos+20d]. The thesis author’s
detailed contributions to this paper were discussed at the beginning of Chapter 2.

4.1. Methodology

An objective comparison of index selection algorithms is challenging because the quality
of an algorithm depends on multiple factors: the input (workload and index benefits),
the algorithm’s configurations or parameters, as well as on the constraints, e.g., the
budget, and optimization targets, e.g., pure benefit, ratio of benefit and storage, and
the granularity of the solutions. In other words, the best algorithm may depend on the
specific evaluation scenario. Thus, we cover a broad range of scenarios for our comparison.
This section describes the methodology we applied for evaluating the index selection
algorithms presented above as well as the limitations of our evaluation.

4.1.1. Workloads

For our comparison, we use three benchmark workloads of different scales and char-
acteristics to investigate the workload’s potential impact on the algorithms’ solution

35

4. An Experimental Evaluation of Index Selection Approaches

quality and runtime. The workloads vary in the number of potential indexes, number
of queries, or whether they are based on synthetic or real-world data. In the following,
we highlight the differences of the TPC-H [PF00], TPC-DS [NP06], and Join Order
Benchmark (JOB) [Lei+15].

Relevant metrics for index selection for the three benchmark workloads and schemata
are displayed in Table 2.2 on page 21. The two used Transaction Processing Performance
Council (TPC)7 benchmarks are standardized analytical benchmarks operating on a
synthetic dataset that can be scaled with a scale factor. The JOB is based on reasonable
queries over the Internet Movie Data Base (IMDB). In contrast to the synthetic datasets,
the IMDB comprises real-world data with realistic cardinalities and dependencies. The
JOB focuses on the processing of joins.

The table demonstrates the different scales of the benchmarks. The TPC-H benchmark
is relatively small and can be utilized for quick evaluations, while the TPC-DS benchmark
represents more realistic scenarios and is more abundant in every dimension. Even though
the JOB consists of the most queries, the number of potential (multi-attributes) indexes
is comparably low. Most JOB queries contain many attributes, but most of them belong
to different tables and indexes are only created over attributes of the same table.

4.1.2. Query Cost Evaluation

All compared algorithms require either a large number of query cost determinations
(given a fixed index configuration) or cost evaluations of large configurations. Although it
is theoretically possible to obtain query costs by physically creating indexes and executing
queries (repeatedly), it would take too much time and restrict feasible algorithm settings,
especially the number of index candidates, by a too large degree. Therefore, we use
hypothetical indexes for cost and index size estimations.

Although these estimates can be inaccurate (see Section 2.2.3), they offer a rea-
sonable combination of speed, accuracy, and accessibility and are consistent for all
algorithms. Note, in this work, instead of assessing cost estimation approaches, we
focus on the evaluation of index selection algorithms. Based on the fact that many
of the index selection algorithms proposed in the literature require what-if calls for
practical application, it is surprising that database systems do usually not expose (a
well-documented) interface to retrieve cost estimates for hypothetical indexes. For in-
stance, the following statement creates a hypothetical index in Microsoft’s SQL Server:
CREATE INDEX HypoIndex ON MyTable(attr) WITH STATISTICS_ONLY = -1. However,
the necessary option that differentiates hypothetical indexes, WITH STATISTICS_ONLY, is
not mentioned in the official, public documentation [Mic22b]. Furthermore, SQL Server

7Transaction Processing Performance Council (TPC) homepage: https://www.tpc.org

36

https://www.tpc.org

4.1. Methodology

does not offer an interface for predicting the size of hypothetical indexes.
Due to the lack of working and well-documented hypothetical index interfaces, database

management system (DBMS) options for the evaluation study are limited. However,
the DBMS serves only as a vehicle for the index selection evaluation and all competing
algorithms are provided with the same interface for hypothetical indexes. Therefore, the
specific DBMS choice is of secondary importance as insights about the index selection
algorithms themselves are of general nature and transferable to other systems.

We chose PostgreSQL and the extension HypoPG [Rou15]. HypoPG8 enables creating,
dropping, and size estimation of hypothetical indexes. Using PostgreSQL’s EXPLAIN
command, query plans with arbitrary hypothetical index configurations can be inspected.
In doing so, we can determine which indexes are used and the estimated total execution
cost for the query plan. By calling ANALYZE before an index selection evaluation process is
initiated, we ensure the existence of up-to-date statistics that are used for cost estimations
and for predicting the storage consumption of hypothetical indexes. Thereby, single-
attribute statistics (PostgreSQL holds histograms and the 100 most common values by
default) are built for all attributes. EXPLAIN reports costs in arbitrary units, which are
based on and can be tuned with parameters, e.g., specifying the relative performance of
processing a row vs. fetching pages sequentially from disk.

We use PostgreSQL planner’s default cost parameters and compared cost estimations
for actual and HypoPG’s hypothetical indexes for the TPC-H and TPC-DS bench-
marks [Kos+20a]. For most of the benchmark queries, the differences are insignificant.
TPC-DS query 24 is the only of the 121 (22 TPC-H + 99 TPC-DS) queries where the
cost difference exceeds ten percentage points and amounts to 23 percentage points. In
addition, we compared the cost estimations of PostgreSQL and the commercial DBMS-X
for different benchmark queries [Kos+20b]. The relative differences between the query
costs estimated by these DBMSs are similar.

Index maintenance and build costs are not part of our analysis. Data-modifying
statements are not differently costed if indexes exist, neither by HypoPG nor by Post-
greSQL’s optimizer, which is not an issue for our evaluation of purely analytical workloads.
However, our evaluation platform is not conceptually limited to analytical workloads.
A manual cost model could complement PostgreSQL’s optimizer to approximate index
maintenance costs for transactional workloads.

4.1.3. Constraints and Optimization Targets

In the following, we discuss the optimization targets and constraints, i.e., the index
selection limit or allowed runtime, that differ for the compared algorithms.

8HypoPG source code and releases on GitHub: https://github.com/HypoPG/hypopg

37

https://github.com/HypoPG/hypopg

4. An Experimental Evaluation of Index Selection Approaches

Optimization Target. Index selection algorithms aim to optimize for different metrics.
Three of the compared algorithms optimize the ratio of index benefit and storage
consumption. In practice, where storage is the limiting factor, it is reasonable to consider
the selected index configuration’s benefit in relation to its storage consumption. Therefore,
we evaluate all algorithms concerning the storage consumption of selected indexes and
the estimated9 workload costs. Drop, DTA, Dexter, and AutoAdmin minimize workload
costs without considering storage consumption. Although it is possible to adapt these
algorithms to consider the ratio of benefit and size, we decided to evaluate their original
implementation that focuses on minimizing workload costs to keep the differences to the
initially published and intended versions as small as possible.

Index Selection Limit. Algorithms differ in the way they constrain the number of
the selected indexes. Drop and AutoAdmin10 limit the absolute number of indexes.
Dexter limits the number of selected indexes by the minimal cost-saving percentage.
Most commonly, algorithms limit the storage budget. We report workload costs with
varying storage consumption for all workloads and algorithms. For Drop, AutoAdmin,
and Dexter, the number of selected indexes and the minimal cost-saving percentage allow
to implicitly control the storage consumption, which is, in general, increasing for both a
higher number of indexes and a lower minimal cost-saving percentage.

We provide increasing storage budgets for the algorithms that terminate when the
determined index combination utilizes a certain amount of storage (DTA, DB2Advis,
Relaxation, CoPhy). For algorithms that constraint the total number of indexes, we
increment the number until the resulting index configuration exceeds the maximum
budget. For Dexter, we vary the minimal cost-saving percentage.

Runtime. For some algorithms, the runtime of the index selection process can amount to
dozens of minutes for complex workloads. Therefore, the runtime is essential to consider
when evaluating index selection algorithms. Only DTA originally supports limiting the
runtime of the selection process. In general, runtimes can be indirectly controlled by
limiting the investigated index candidates, e.g., the index width or naively enumerated
combinations (only for AutoAdmin and CoPhy). The number of cost requests and, thus,
evaluated configurations is the main cost factor for selection algorithms [PDA07].

Moreover, DB2Advis allows specifying the time for random substitutions after a
preliminary index selection was conducted (see Section 3.1.5). We chose algorithm
settings so that runtimes did not become too large. We report runtime details throughout
Section 4.2 and a detailed cost breakdown in Section 4.2.4.

9Note, we do not report actual runtimes for physically created index selections, because they could
arbitrarily differ from the estimated costs. Thus, they are not adequate for assessing the algorithms,
which only consider estimates during selection.

10AutoAdmin also supports storage budgets, see Section 3.1.3 for further details.

38

4.1. Methodology

4.1.4. Evaluation Platform

This section presents the evaluation platform we developed to automate the comparison
of index selection algorithms. Besides enabling the reader to reproduce all results and
retrace the algorithm’s selection steps completely, the platform facilitates the future
integration of additional algorithms, workloads, or database systems.

Implementation

Our implementation’s target is to automate the evaluation of different algorithms, settings,
and workloads. The open-source11 evaluation platform is implemented in Python 3. The
automation includes the setup, i.e., data generation and loading, query generation,
evaluation of different algorithm parameters, and collection and summary of the results.

The centerpieces of the implementation are the compared selection algorithms that are
available as part of the platform’s open-source repository. We implemented all algorithms
mentioned in Chapter 3 (except Dexter), including unit tests, based on the original
descriptions and tried to keep them as close to the original as possible. For Dexter, we
used the publicly available implementation [Kan17a] and embedded it into Python to
offer the same interfaces for all algorithms. We implemented the input generation for
ILP-based approaches with Python, the model in AMPL [FGK03], and used the Gurobi12

solver (v8.1.0) for solving the ILPs.
The CostEvaluation class implements the determination of query costs for given index

configurations. This class can be used transparently by the algorithms, i.e., algorithms
do not have to consider how the costs are determined, e.g., whether hypothetical indexes
are used or not. The CostEvaluation automatically takes care of creating and dropping
(hypothetical) indexes based on the current and demanded index configuration. The
CostEvaluation also handles pruning and caching of cost estimations. Objects of the
Query and Table classes can be accessed to generate index candidates of varying widths
or for specific queries.

The DatabaseConnector builds an abstraction layer for different database systems.
It provides a consistent interface for using what-if capabilities and hides different SQL
dialects. Currently, the platform contains connectors for PostgreSQL and SAP HANA,
while the latter does not support hypothetical indexes. Therefore, the algorithms must
obtain the costs by creating actual indexes and evaluating queries, which is unfeasible for
massive workloads and numerous index candidates.

Configuration options, e.g., dataset scale factors, the utilized database system, pa-
rameter values for the algorithms, and whether and how often the workload is executed
11Index selection evaluation platform on GitHub: https://git.io/index_selection_evaluation
12Gurobi solver: https://www.gurobi.com

39

https://git.io/index_selection_evaluation
https://www.gurobi.com

4. An Experimental Evaluation of Index Selection Approaches

with the calculated index selection, can be controlled via a JSON configuration file. The
platform’s source code repository contains example configuration files as well as the JSON
files for the experiments presented in Section 4.2.

Optimizations for Hypothetical Indexes

Obtaining cost estimates for queries given a particular index configuration makes up
a large part of the total runtime of index selection algorithms because it requires
optimizer invocations as well as inter-process (or network) communication. In the
literature, the reduction of optimizer invocations is often a primary focus, e.g., with
atomic configurations [FST88] as part of the AutoAdmin body of work [CN97, p. 3].

Our CostEvaluation avoids unnecessary optimizer calls and maintains a (cost esti-
mation) cache to facilitate efficient evaluations. If no index of a given configuration is
applicable for a query, the costs without indexes are returned. Additionally, given a query
and all possibly applicable indexes of a requested configuration, the cost estimation cache
stores the retrieved cost estimates. Note that multiple cache entries (with different sets
of possibly applicable indexes) may exist for the same query. We do not limit the cache
size and reset the cache at the beginning of each algorithm evaluation to achieve identical
start conditions for all algorithms. Besides these optimizations, we did not implement
any other techniques to reduce the number of optimizer calls.

4.1.5. Experimental Setup

All index selection experiments are executed on an AMD EPYC 7F72 with 24 cores (base
clock: 3.2 GHz, boost: up to 3.7 GHz) running PostgreSQL 12.5 and Python 3 on Ubuntu
20.04 (Kernel 5.4.0-105). For the vital part of what-if optimization and hypothetical
indexes, we employ HypoPG [Rou15], commit 238cca5. For the following experiments,
we use PostgreSQL’s default index type [Theb], a non-covering B-tree. However, our
evaluation platform is not conceptually limited to non-covering B-tree indexes. For this
chapter’s experiments, fn is set to 1 for all queries. Hence, all benchmark queries have the
same weight. Before the experiments are started, all indexes — including schema-defined
primary keys are removed — such that the algorithms have the chance to determine all
reasonable indexes.
Algorithm Parameters. For the upcoming experiments, we use the following default
parameters. The parameter impact is investigated later in Section 4.2.5. The admissible
index width Wmax was set to 2. Thereby, also the initial index candidate set contains all
syntactically relevant candidates of width 2. The time for DB2Advis’ TRY_VARIATION
step was set to 0. While this step is part of the original algorithm, random exchanges
could be added to all algorithms; we see more value in evaluating the solution quality of

40

4.1. Methodology

the core algorithms instead of solutions affected by chance. For AutoAdmin, the number
of indexes selected by a naive enumeration was set to 1 to prevent large runtimes. The
DTA algorithm is designed to be interruptible at any time and still deliver acceptable
solutions. We granted a maximum runtime of 60 minutes.
Evaluated Metrics. The experiments presented in Section 4.2 focus on and discuss the
following metrics:

• The Relative workload costs (RC) describe to which degree the resulting index
configuration I∗ decreases the costs for processing the workload. The costs are
calculated relative to executing the workload without any indexes or primary keys,
C(I∗)/C(∅). The relative workload costs express the solution quality.

• Storage consumption: the sum of the storage space necessary to accommodate all
indexes of I∗, i.e., M(I∗). We always denote the actual storage consumption, which
may be equal or lower than the provided budget, in the upcoming evaluation.

• Granularity refers to the number of identified solutions in a budget range. For
example, while some algorithms are able to identify solutions I∗ whose storage
consumption almost fully exploits any provided budget, other algorithms might
find only a single solution for storage consumptions between 2 and 5 GB.

• The index selection runtime to determine I∗. Note, this does not include preparation
or learning times.

4.1.6. Limitations

The main limitations of our experimental evaluation are twofold. First, standardized
benchmark workloads cannot fully reproduce the challenges posed by real-world work-
loads [Vog+18]. Our approach to evaluating all index selection algorithms with workloads
derived from three different benchmarks (cf. Section 4.1.1) on three datasets partially
mitigates this limitation. In addition, the queries of the employed JOB are realistic and
operate on the real-world IMDB dataset [Lei+15]. Despite not being real-world datasets,
the utilized workloads are challenging for the investigated index selection algorithms,
as demonstrated in the following section. Thereby, the conducted experiments allow
drawing conclusions and generating insights.

Second, since most of the evaluated algorithms are related to commercial tools, no public
implementations are available. The original publications only explain the procedures
and do not contain (the complete) source code. Thus, we were required to reimplement
six of the seven evaluated index selection algorithms. We followed the specifications
presented in the original publications as close as possible. Besides, we communicated
with the authors of five of the algorithms clarifying implementation details to ensure

41

4. An Experimental Evaluation of Index Selection Approaches

appropriate reimplementations. We conducted twofold code reviews and made all source
code publicly available, allowing other researchers to assess our reimplementations, too.

4.2. Evaluation

Now, we evaluate the seven previously surveyed algorithms for the TPC-H, TPC-DS, and
JOB workloads. We present results for each of the workloads (Sections 4.2.1 to 4.2.3)
separately regarding the quality of the identified solutions and their corresponding runtime.
Both solution quality and runtime are displayed together with the storage consumption
of the identified final index configurations. Based on the solution quality experiments,
the granularity of the identified solutions is discussed, too.

Section 4.2.4 discusses the impact of hypothetical indexes and cost requests on algorithm
runtimes. In the end, Section 4.2.5 sheds light on the influence of different algorithm
parameters, i.e., the index width, DB2Advis’ time for random variations, and AutoAdmin’s
number of naively enumerated indexes.

4.2.1. TPC-H

The TPC-H measurements are based on a scale factor of 10. For Figures 4.1(a) and 4.1(b),
we excluded the queries 2, 17, and 20 because due to subqueries, their estimated costs
are orders of magnitude higher than for TPC-H queries on average in PostgreSQL (see
Figure 4.2 that contains all queries). Without the exclusion, these three queries dominate
the costs of the entire workload, thereby rendering the index selection problem less
complex because an index that decreases the cost of at least one of these queries would
consistently outperform indexes for other queries by orders of magnitude.

Figure 4.1(a) depicts the performance of the solutions identified by the investigated
index selection algorithms for budgets from 0 to 10 GB. Each marker indicates an
index combination identified by an algorithm for a particular storage budget. First, it
becomes apparent that most algorithms (all except for Relaxation) do not fully utilize
the maximum budget of 10GB because they cannot determine indexes that reduce the
workload cost any further and fit the budget. For example, DB2Advis uses only ≈ 9 GB.

Second, there is a structural difference between the algorithms that aim to purely
minimize the costs and use the maximum number of indexes as a constraint and the
budget-based algorithms that aim to minimize costs per storage. While the latter
identify indexes for low budgets, starting with a few hundred megabytes, Drop and
AutoAdmin need roughly 2 GB to add the first index because they start by adding the
index with the largest cost improvement, independent of its size.

Moreover, looking at both the workload cost in Figure 4.1(a) and the runtimes in (b),

42

4.2. Evaluation

AutoAdmin CoPhy DB2Advis DTA Dexter Drop Relaxation

0 2 4 6 8 10
Index Storage Consumption (GB)

70

80

90

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(a) Workload processing costs for index configura-
tions with increasing storage consumption.

0 2 4 6 8 10
Index Storage Consumption (GB)

0

50

100

150

In
de

x
se

le
ct

io
n

ru
nt

im
e

(s
ec

)

(b) Observed runtime for determining index config-
urations with increasing storage consumption.

Figure 4.1.: TPC-H benchmark (SF 10) on PostgreSQL, storage budgets from 0 to 10 GB.
(a): estimated workload processing costs (relative to estimated costs without
indexes), i.e., solution quality. (b): algorithm runtime including cost requests
and index simulations. The queries 2, 17, 20 were excluded.

it is not trivial to determine a winner. For multiple budgets, Relaxation identifies the
best solutions with acceptable runtimes. While the performance for many algorithms in
the range of 2 to 6 GB is close, some algorithms achieve significantly better performance
than others, e.g., DTA vs. DB2Advis at 2 GB. Due to the employed optimization target,
AutoAdmin and Drop need large budgets to find their first index, but this index is a
substantial improvement over all other algorithms.

Note, DTA would still identify usable, possibly equivalent, solutions if its runtime
would be limited more drastically. DTA’s anytime functionality will be investigated
later in Section 5.3. DB2Advis has a constantly low runtime and still finds acceptable
solutions. The low runtime is caused by its modus operandi (see Section 3.1.5). Most other
algorithms generate many combinations and check their impact with what-if optimization
calls. At the same time, DB2Advis only issues a fixed number of 2×N cost requests,
where N refers to the number of queries. Drop shows an almost constant runtime since,
for each round, it starts with the same extensive set of index candidates, drops them one
by one, thereby behaving similarly for every case. Dexter’s runtime is constant because
it does not depend on a budget but the number and complexity of queries. While its
solution quality is close to the best, it cannot produce fine-grained solutions and identifies
only two solutions for all evaluated budgets.

Finally, Figure 4.2 shows the costs that are achieved for all of TPC-H’s queries on a
per-query basis with each algorithm’s best index combination that does not consume more

43

4. An Experimental Evaluation of Index Selection Approaches

4 5 8 9 11 12 18 19 21 22
Query ID

0

2

4

6

Qu
er

y
co

st
 (M

ill.
) Algorithm (|I * |)

AutoAdmin (3)
DB2Advis (16)
DTA (11)

Dexter (6)
Drop (5)

Relaxation (10)
w/o Indexes (0)

(a) Nonexpensive queries.

2 17 20
Query ID

102

105

(b) Expensive queries.

Figure 4.2.: Estimated query processing costs for selected queries of the TPC-H (SF 10)
benchmark on PostgreSQL. Queries 1, 3, 6, 7, 10, 13, 14, 15, and 16 are
omitted as their costs were only marginally affected by indexes for a budget
of 5 GB. Nonexpensive queries depicted with linear, expensive queries with
log scale; y-axis units are identical. I∗ refers to the final index configuration.

than 5 GB13 of storage to better understand the mechanics of the different algorithms.
The figures indicate that most algorithms, except for Dexter and Drop, manage to identify
the most important indexes for the expensive queries shown in Figure 4.2(b). If we
also consider Figure 4.2(a), it becomes apparent that no algorithm’s configuration is
best for all queries, but DTA almost achieves this goal. While Dexter finds the best
index configuration for query 22, its performance differences for the expensive queries
(Figure 4.2(b)) are significant.

The per-query evaluation offers another interesting observation. Now, AutoAdmin,
one of the top performers for a budget of 5 GB in Figure 4.1, shows relatively weak
results for queries 4, 18, and 21. This effect is probably due to the different workloads,
now including queries 2, 17, and 20. This observation is the first indicator that the
performance of index selection algorithms strongly depends on the workload at hand.

4.2.2. TPC-DS

The TPC-DS measurements are also based on a scale factor of 10. For all TPC-DS
experiments, we excluded the queries 4, 6, 9, 10, 11, 32, 35, 41, and 95 because, again,
these queries have the potential to distort a fair assessment of index selection algorithms.
The higher complexity of the TPC-DS benchmark compared to TPC-H emphasizes the
strengths and weaknesses of the algorithms further.

Figure 4.3(a) shows the solution quality of the investigated index selection algorithms
for memory budgets from 0 to 12 GB. In contrast to the TPC-H measurements, the
differences for budgets between 2 and 10 GB are more significant. The solutions identified
by the algorithms vary to a larger degree because there are more (indexable) attributes
and more queries that benefit from indexes. These characteristics open up many more
13Our platform allows generating the corresponding charts for other benchmarks and budgets.

44

4.2. Evaluation

AutoAdmin CoPhy DB2Advis DTA Dexter Drop Relaxation

0 2 4 6 8 10 12
Index Storage Consumption (GB)

70

80

90

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(a) Workload processing costs for index configura-
tions with increasing storage consumption.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

0

20

40

60

In
de

x
se

le
ct

io
n

ru
nt

im
e

(m
in

)

(b) Observed runtime for determining index config-
urations with increasing storage consumption.

Figure 4.3.: TPC-DS benchmark (SF 10) on PostgreSQL, storage budgets from 0 to
12 GB. (a): estimated workload processing costs (relative to estimated costs
without indexes), i.e., solution quality. (b): algorithm runtime including cost
requests and index simulations. The queries 4, 6, 9, 10, 11, 32, 35, 41, and
95 were excluded.

indexing opportunities. Hence, the index selection problem becomes more complex, which
can also be observed by the elevated runtimes depicted in Figure 4.3(b).

Drop and AutoAdmin identified the first indexes for relatively large budgets, around
2 GB, for the TPC-H experiments. For TPC-DS, they identify beneficial solutions much
earlier because there is no single large dominating table, such as the lineitem table for
TPC-H, in the TPC-DS dataset. Thus, impactful indexes do not have to be that large.

Especially for small budgets, the realized cost improvements are close to each other.
For budgets of 2 GB and above, differences start to become pronounced. DTA and
CoPhy take the lead and generate the best solutions with increasing benefits for DTA. In
contrast to Drop, Dexter, and AutoAdmin, they keep adding relatively small indexes to
the solution for a larger budget range. For instance, CoPhy’s modus operandi causes this
behavior: the index with the largest overall benefit-per-space ratio is added for each step.
For budgets larger than approximately 6 GB, Relaxation supersedes DTA and identifies
the best overall solution, too.

In the following, we also consider the runtime dimension for the TPC-DS measurements
with Figure 4.3(b). DB2Advis achieves again an almost constant runtime caused by
its functioning and offers a good tradeoff between runtime and solution quality. While
DB2Advis performs worse than the other algorithms for medium-sized budgets, its
solution quality is comparably good for small and large budgets. The runtime is in

45

4. An Experimental Evaluation of Index Selection Approaches

the range of seconds compared to minutes for Drop, Relaxation, DTA, AutoAdmin, and
CoPhy. Relaxation shows the longest runtime caused by its functioning that requires
many transformations to push the storage consumption below the given budget.

The solution quality of Dexter ’s ready-to-use approach is again not particularly bad
if a solution is identified. However, its lack of fine-grained solutions becomes more
pronounced for the TPC-DS workload for which many, comparably small, indexes can
have a substantial impact.

4.2.3. Join Order Benchmark

The Join Order Benchmark measurements are depicted in Figures 4.4(a) and (b). Clearly,
the achieved relative cost reduction by more than 5 times is significantly higher compared
to the TPC-H and TPC-DS experiments above.

AutoAdmin CoPhy DB2Advis DTA Dexter Drop Relaxation

0 2 4 6 8 10 12
Index Storage Consumption (GB)

20

40

60

80

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t (
%

)

(a) Workload processing costs for index configura-
tions with increasing storage consumption.

0 2 4 6 8 10 12
Index Storage Consumption (GB)

0

10

20

30

40

50

In
de

x
se

le
ct

io
n

ru
nt

im
e

(m
in

)

(b) Observed runtime for determining index config-
urations with increasing storage consumption.

Figure 4.4.: Join Order Benchmark on PostgreSQL, storage budgets from 0 to 12 GB.
(a): estimated workload processing costs (relative to estimated costs without
indexes), i.e., solution quality. (b): algorithm runtime including cost requests
and index simulations.

For TPC-H and TPC-DS, DTA and Relaxation find the solutions with the lowest
workload costs for most of the examined budgets. However, medium-sized budgets (from 2
to 3.5 GB) are not handled well by these two algorithms for the JOB experiment because
fine-grained solutions are missing. Drop identifies many small indexes that decrease the
workload cost significantly for medium-sized budgets while it completely lacks solutions
for small budgets similar to AutoAdmin. Again, this behavior is due to their focus on
pure cost reduction and the utilized constraint, i.e., the number of indexes.

46

4.2. Evaluation

CoPhy, DB2Advis, and DTA find the best solutions for small budgets. Nevertheless,
for larger budgets, the lack of multi-attribute indexes and the limit of two indexes per
query (both limitations due to complexity) become apparent for CoPhy. At ≈ 3.5 GB,
Relaxation starts identifying the best solutions up to the largest evaluated budget. As
for TPC-H and TPC-DS, Dexter ’s solutions are coarse-grained.

Figure 4.4(b) shows similar results compared to the algorithm runtimes for TPC-DS.
However, there are a few interesting aspects to note here. While AutoAdmin multiplies its
runtime, Drop’s almost halves, and Relaxation’s decreases by almost a third. The overall
lower number of attributes (Table 2.2) can explain the last two observations. Thereby,
Drop and Relaxation generate fewer index candidates, resulting in fewer what-if optimizer
calls per step. The increase in algorithm runtime for AutoAdmin can be explained by a
higher number of beneficial single-attribute indexes compared to the TPC-DS.

4.2.4. Cost Breakdown and Cost Requests

Most of the runtime of what-if-based index selection algorithms is usually not spent on
the algorithm logic, but on cost estimation calls to the what-if optimizer [DPA11; PDA07].
Usually, algorithms request a cost estimate for a particular query and a given index
combination from the (what-if) optimizer. These requests are expensive, but the estimated
costs remain the same if neither the query and index combination nor the underlying
data change. Therefore, most algorithms cache cost estimation calls. With the developed
evaluation platform, all algorithms use the same cost estimation implementation, and
hence, the same caching mechanisms. However, the different strategies of the investigated
algorithms result in varying cost request patterns and different cache opportunities, which
is demonstrated in Table 4.1 for a budget of 5 GB for the TPC-DS benchmark. The
platform allows generating this table for further budgets, configurations, and benchmarks.

The runtimes vary significantly, ranging from seconds to more than an hour, caused by
different underlying strategies. Factors — besides the modus operandi of the algorithm

— that influence the runtime include the number of evaluated configurations, simulated
(hypothetical) indexes, cost requests, and cache rates. Table 4.1 indicates that the
interplay of these factors is responsible for the resulting runtime.

Generally, for all algorithms, most of the runtime is spent on cost requests (what-if
optimization calls). Drop is the only exception to this observation. However, most
algorithms achieve high cache rates caused by the fact that they repeatedly evaluate
similar configurations. Note, retrieving costs from the cache does not come for free since
the configuration must be looked up in the cache, and its cost must be obtained.

DB2Advis and Dexter evaluate only two configurations. This behavior leads to few
cost requests and low runtimes. In contrast to other algorithms, the number of evaluated

47

4. An Experimental Evaluation of Index Selection Approaches

Table 4.1.: Algorithm cost breakdown for the TPC-DS (SF 10) benchmark. Storage
budget of 5 GB. Configs are the number of uniquely evaluated configurations.
Index Simulations refer to the number of non-unique created hypothetical
indexes. Simulation and Costing refer to the share of runtime that was
consumed by index simulations or cost requests. Naive-2 relates to AutoAd-
min configured to select two indexes with naive enumeration. Dexter ’s original
implementation does not provide all runtime details.

Algorithm Configs Index Simulations Cost requests Runtime

Total Non-cached Cache rate Total Simulation Costing

AutoAdmin 129 10 991 33 851 11 676 65.5% 2.1m 2.0% 95.9%
Naive-2 816 73 504 240 441 73 440 69.4% 15.3m 2.0% 66.5%
CoPhy 3 983 3 982 394 317 52 177 86.8% 10.1m 0.6% 94.9%
DB2Advis 2 7 179 180 180 0.0% 0.1m 24.0% 58.7%
DTA 1 442 25 812 1 650 510 129 811 92.1% 32.2m 0.4% 87.2%
Dexter 2 3 982 180 180 0.0% 0.4m n/a n/a
Drop 203 29 144 2 601 450 18 348 99.3% 35.0m 0.6% 19.7%
Relaxation 1 898 51 680 2 982 690 170 863 94.3% 60.7m 0.4% 66.6%

configurations does not depend on the number of candidates. For wider indexes, runtimes
can increase dramatically, as discussed below.

Drop and Relaxation diverge in the number of evaluated configurations but generate
the largest number of cost requests. They are the two slowest approaches. In contrast to
all other approaches, they follow the same general concept: they start with an extensive
configuration and reduce it until it fits the given budget. For realistically-sized budgets,
this behavior leads to long runtimes.

Besides, according to Table 4.1, the impact of index simulation is almost negligible.
Naive-2 simulates more than 70 000 indexes, which is only responsible for 2 % of its
runtime. Interestingly, for the TPC-DS benchmark, more than 99 % of Drop’s cost
requests are cached. This fact also explains its constant runtimes in the aforementioned
experiments. Most cost requests have already been sent in the previous round due to its
modus operandi, i.e., dropping all remaining index candidates in each round.

Expensive Cost Requests. Furthermore, it is essential to note that not all cost
requests are equally expensive. Query planning time depends on the query complexity
and the number of available (what-if) indexes. Few available indexes lead to planning
times in the range of milliseconds for our implementation. AutoAdmin, CoPhy, DTA,
and Drop usually request costs for small index sets of a few dozen indexes at maximum.
However, the modi operandi of DB2Advis and Relaxation can lead to large index sets for
the cost requests because costs are evaluated for all possibly applicable indexes per query.
In particular, DB2Advis does not issue many but large, more expensive cost requests.

48

4.2. Evaluation

Table 4.2 shows the cost request time for two complex queries of the TPC-DS benchmark.
Cost estimations for large index combinations can take prohibitively long, which becomes
especially pronounced when wide indexes (Wmax > 3) are searched.

Table 4.2.: Query cost estimation request durations including index simulations for two
TPC-DS queries; DNF: the cost request duration exceeded 30 minutes.

Index width Relevant indexes Time
Query 13 Query 64 Query 13 Query 64

1 attribute 22 49 13ms 12ms
2 attributes 132 287 97ms 44ms
3 attributes 870 1 889 33s 5s
4 attributes 5 910 14 393 DNF 231s

4.2.5. Algorithm Parameter Influence

For the previous experiments, some algorithm parameters were fixed. In this subsection,
we investigate the influence of the allowed index width Wmax, the time for DB2Advis’
TRY_VARIATION step, and AutoAdmin’s number of indexes that are selected by naive
enumeration. The impact of DTA’s runtime limits is evaluated later in Section 5.3.3.
The experiments were conducted with TPC-DS (scale factor 10) for budgets between 4
and 8 GB. Other benchmarks did not yield substantially different results.
Index Width. In our evaluations, a large number of attributes per index does not
significantly influence the investigated workloads on PostgreSQL. The impact could be
higher for real-world workloads, e.g., enterprise systems utilize wide primary keys of up
to 16 attributes [Fau+16]. Additionally, more sophisticated query processors might use
wide indexes more efficiently. The maximum index width selected by algorithms during
our experiments was 6. For example, AutoAdmin’s performance improves by 1 to 3 %
when the index width is increased from 1 to 2 or 3. Improvements by wider indexes are
below 1 %. For DB2Advis, we found an anomaly: the performance improved by about
1 % when the index width was increased from 1 to 3 but dropped by ≈ 5 % when set to 2.

DB2Advis’ runtime is in the range of seconds for Wmax ≤ 3 but is not feasible for larger
numbers due to expensive cost requests for large index combinations as discussed above.
The runtimes of AutoAdmin and DTA increase with wider indexes, e.g., by a factor of 2
- 3 from single- to two-attribute indexes, because for each admissible index width, the
enumeration steps are executed for all queries. The increase in runtime declines over
time because the candidate volume decreases per round since candidates are only drawn
from previously beneficial indexes (Section 3.1.3).

49

4. An Experimental Evaluation of Index Selection Approaches

DB2Advis — Try Variations. The measurable impact of DB2Advis’ TRY_VARIATION
step is often small. According to our experiments, variation achieves improvements of
about 1 % in workload cost, even when the core algorithm ran in approximately 1 and the
variation in 30 seconds. For massive candidate sets, e.g., caused by many permutations
when wide indexes are considered, variations can only be effective with a long runtime
because chances that beneficial candidates are becoming part of the final combination
decrease with a larger population.
AutoAdmin — Naive Enumerations. In our experiments, the number of indexes
selected by naive enumeration affects the approach’s solution quality only marginally.
Sometimes, we even observed better results for smaller numbers. However, the runtime
is significantly affected. For the conducted benchmarks, the runtime increased by factors
between 3 and 10 when the indexes selected by naive enumeration were increased from 1
to 2. More indexes could not be selected via naive enumeration in an acceptable time.

4.3. Conclusion

Our evaluation of index selection algorithms has shown that there is no general answer
to the question of the best algorithm. Instead, it depends on the scenario and multiple
factors, such as the provided budgets, the workloads, and the acceptable runtime.

4.3.1. Insights

In the following, we summarize 10 general and 17 algorithm-specific properties to explain
the performance differences observed in the experimental evaluation. These insights are
generalizable to a certain degree. However, they might not be fully transferable to other
systems that rely on different optimizers and execution engines than PostgreSQL.
General Insights. (i) The algorithms’ performance is not always consistent. For
different workloads or budget restrictions, different algorithms can perform best. (ii) The
algorithm should be chosen based on the user’s needs. Differences in runtime, solution
quality, solution granularity, and multi-attribute index support are significant. (iii) There
are two kinds of approaches: query-based (DB2Advis, Dexter) ones, which evaluate the
benefit of all possible indexes at once, and index combination-based (AutoAdmin, Drop,
CoPhy, DTA, Relaxation) approaches, which evaluate the benefit of comparably small
index sets. Generally, the latter consider index interaction to a higher degree while
query-based ones are orders of magnitude faster as long as the set of evaluated indexes
per query is not too large (see Section 4.2.4). Relaxation combines both approaches. (iv)
The cost of what-if calls or cost requests are not fixed; they depend on the query and
evaluated index combination (see Section 4.2.4).

50

4.3. Conclusion

(v) The granularity of the identified solutions is fundamental, particularly if solutions for
a specific, fixed budget are required. In such cases, the performance of solutions that lack
granularity is suboptimal because such solutions do not adequately utilize the budget (cf.
Figure 4.4(a)). (vi) The choice of the algorithm’s constraint is essential. Algorithms that
halt after a maximum number of indexes usually start with large indexes and do not find
small indexes with a significant relative impact (cf. Figure 4.1(a)). (vii) Ordering index
candidates by benefit per space instead of purely by benefit was efficient, especially for
medium-sized budgets (see Section 4.2.2). This advantage could vanish for transactional
workloads. Usually, benefit-per-space approaches favor configurations with many small
indexes, which could lead to elevated maintenance costs and lock contention. Therefore,
choosing the optimization target accordingly might be beneficial (see Table 3.1). (viii)
Reduction-based approaches, i.e., Drop and Relaxation, become faster with larger budgets.
In general, their runtimes are rather long for budgets that are not multiple factors larger
than the dataset. (ix) Admitting wide indexes, e.g., Wmax > 3, impacts selection runtimes
and is challenging or even infeasible for existing approaches, see Section 4.2.5. (x) There
is no dominating algorithm: none of the evaluated algorithms outperforms its competitors
in terms of selection runtime and solution quality, cf. Section 4.2.

Drop. (i) The repetitive functioning causes a large number of cost requests, while it leads
to the highest cache rates. (ii) An extension to support multi-attribute indexes would
result in an infeasible number of index candidates requiring some kind of preselection.

AutoAdmin. The approach finds reasonable solutions, but three properties weakened
the algorithm in our evaluation. (i) The number of indexes selected by naive enumeration
only had a minor influence on the solution quality. However, the runtime impact was
enormous (3-10×, see Section 4.2.5). (ii) AutoAdmin only optimizes for the pure index
benefit ignoring the index size. Thus, a multi-attribute index with only slightly higher
benefit than a single-attribute index but significantly higher memory consumption is
selected. This behavior acts in opposition to storage efficiency. (iii) The number of
beneficial single-attribute indexes impacts AutoAdmin’s runtime considerably.

DB2Advis. (i) DB2Advis’ solutions are reasonable for high budgets, while the runtime
is low. In such cases, the index combination is optimized for every query. (ii) For wider
indexes, e.g., Wmax > 3, the runtime increases drastically while the solution quality is
not among the best. (iii) Random exchanges by TRY_VARIATION do not prove to be very
effective (see Section 4.2.5). (iv) Due to its functioning, the approach may miss a locally
inferior but globally superior index, e.g., indexes that are beneficial for many queries but
never the best for an individual query.

Relaxation. (i) Large candidate sets and Relaxation’s transformation rules lead to an
enormous number of evaluated configurations and, thereby, to the best consideration of

51

4. An Experimental Evaluation of Index Selection Approaches

index interaction. (ii) Thus, Relaxation performed best in the evaluated benchmarks for
large budgets. (iii) The reductive functioning of the approach causes long runtimes for
reasonable (budget does not exceed the dataset size by multiple factors) budgets.
CoPhy. (i) The solution quality depends on well-chosen initial candidates and suitable
choices of index combinations per query. TPC-H and TPC-DS selections improved
with more candidates (wider indexes), whereas JOB improved with a higher number
of considered indexes per query. (ii) Cost requests dominate the runtime with more
candidates. At the same time, the number of indexes per query impacts the solver
runtime.
Dexter. Dexter identifies suitable index combinations and offers low, constant runtimes.
However, the granularity of solutions is generally too coarse (cf. Figure 4.3(a)).
DTA. (i) The large number of seed configurations guarantees suitable configurations:
DTA’s solutions, especially for small to medium-sized budgets, are usually among the
best. (ii) Its runtime can be on par with most other approaches when the ability to
interrupt the algorithm at any time is considered.

4.3.2. Summary

The seven surveyed and evaluated algorithms and three workloads based on the TPC-H,
TPC-DS, and JOB are part of our evaluation platform. The platform is also used to
evaluate our Extend and SWIRL index selection algorithms in Chapter 5. The platform’s
architecture facilitates its extension by other workloads, algorithms, or DBMSs. To enable
simple reproducibility and traceability, the platform is open source, offers thoroughly
tested algorithm implementations, and handles data and query generation as well as the
setup and execution of experiments.

We compared seven index selection algorithms and evaluated the approaches regarding
solution quality, runtime, and solution granularity with an extensible evaluation platform
that promotes reproducibility. In addition, we evaluated the impact of the algorithms’
parameters and presented a detailed cost breakdown to analyze the often enormous
runtimes of the algorithms. Based on the experiments, we conclude that no existing index
selection algorithm combines good selection runtime with outstanding solution quality.

52

5
Two Novel and Efficient Index Selection Approaches

We have shown in the previous chapters that various sophisticated index selection
approaches exist. For complex workloads, these approaches produce solutions of high
quality or provide low index selection runtimes. However, they fall short of striking the
right balance between both metrics or cannot provide the demanded functionality, e.g.,
support for multi-attribute indexes.

This chapter presents two new efficient index selection approaches to overcome the
limitations mentioned above. These approaches target different use cases and are designed
to complement each other: Extend, presented in Section 5.1, focuses on determining
better or equivalent solutions faster (within a few minutes) than other close-to-optimal
approaches. On the other hand, SWIRL uses reinforcement learning (RL) to identify
reasonable index selections instantaneously. SWIRL, which is explained in Section 5.2,
requires a priori training to achieve rapid solution times. Thus, it is most reasonable to
employ SWIRL in scenarios where many index selections for similar problems must be
obtained. In contrast, Extend can be employed universally without any preparations. Both
approaches are evaluated and compared with state-of-the-art approaches in Section 5.3.

Parts of this chapter have been published in two papers [KKS22a; SKB19]. The
thesis author’s detailed contributions to the first publication [KKS22a] were discussed
at the beginning of Chapter 2. Regarding the second publication [SKB19], Schlosser is
the paper’s primary author. The thesis author supported the conceptualization of the
presented approach. Furthermore, the author investigated and detailed related work,
created a tuned C++ implementation, and co-authored the paper. The paper’s evaluation
was a collaborative effort of all authors.

53

5. Two Novel and Efficient Index Selection Approaches

5.1. Extend: Index Selections Based on Iterative Index
Extensions

This section gives a detailed description of the heuristic multi-attribute index selection
algorithm Extend (Section 5.1.1). Its iterative approach that constructs indexes stepwise
by extension does neither limit index candidates nor index width. This procedure is
a significant differentiator to existing techniques. Afterward, Section 5.1.2 classifies
Extend according to the dimensions presented in Section 3.1.1.

5.1.1. Algorithm Description

Before we describe the details of Extend’s modus operandi, we first differentiate its
candidate generation from other index selection approaches.

Candidate Generation

All of the investigated approaches in Chapter 3 explicitly receive or generate a set of index
candidates as a first step. In a second step, these approaches aim to select a beneficial
subset of these candidates. The size of the candidate set is essential: if candidates are
excluded a priori, the achievable solution quality might be affected [SKB19]. If, on the
other hand, the set of candidates is too large, the index selection runtime might grow
to an unacceptable amount [SKB19], as shown in Section 4.2. Therefore, for reasonably
sized problem instances, it is unrealistic that such approaches consider all potential
candidates in the second step.

For the aforementioned approaches, the candidate set is fixed (and often reduced) for
the second optimization step. In contrast, Extend works with an extension mechanism
that enables new index opportunities with every iteration. The candidate set is not
restricted a priori; it is, to a certain extent, constructed iteratively during index selection.
Thereby, Extend is capable of considering all candidates but not all of them simultaneously.
Instead, they are considered in a context-dependent fashion. This approach keeps the
current candidate set at a reasonable size without potential performance degradations
caused by candidate limits.

Extend’s Modus Operandi

Next, we describe the details of Extend’s modus operandi. Algorithm 5.1 depicts that
Extend adds an attribute from the set of index extension elements (E) to the index
selection (I∗) per iteration. During an iteration, there are two options: (a) the attribute
to be added could extend the current index selection as a new single-attribute index.

54

5.1. Extend: Index Selections Based on Iterative Index Extensions

(b) Alternatively, it could extend an index that is already part of I∗. In this case, the
attribute is appended at the end of the index.

Extend selects the option that achieves the highest relative cost reduction, i.e., addi-
tional cost reduction per additionally required storage for the (a) new or (b) extended
index. In other words, Extend tries to mimic the efficient frontier of the index selection
problem in terms of cost reduction and size [SKB19]. Thereby, index candidates with the
highest benefit-to-storage ratio are chosen first.

Algorithm 5.1 (Extend Algorithm). To determine multi-attribute index selections for a
budget, B, we use the following iterative construction process. The notation for the index
selection problem was introduced in Table 2.1 in Section 2.1.

(1) Let the current index set be I∗ := ∅ and let E be the set of possible index extension

elements that holds all attributes accessed by the workload’s queries, E :=
N⋃

n=1
qn.

(2) For each possible index extension e ∈ E and indexes of the current index configuration
i ∈ I∗ consider the following alternative construction steps:

(a) Add e as a new single-attribute index if I∗ ∩ {e} = ∅ to generate an option I∗
∅,e.

(b) Append e at the end of index i, effectively increasing the index width of i by one.
This generates an option I∗

i,e.

These construction steps described in (a) and (b) produce a set of index configuration
options Ĩ with |Ĩ| ≤ |E| × (|I∗|+ 1). Each of the options in Ĩ are duplicates of I∗

complemented by a single extension based on the construction steps above.
(3) Only keep options that do not exceed the remaining budget: ∀õ ∈ Ĩ : M(õ) ≤ B to

avoid unnecessary evaluations of such options.
(4) Select the option õ∗ ∈ Ĩ that maximizes the ratio of benefit and additional storage

consumption: õ∗ := arg max
õ∈Ĩ

{I(C(I∗)− C(õ))/(M(õ)−M(I∗))} by letting I∗ := õ∗.

(5) Repeat Steps (2) to (4) until no further benefit can be realized, i.e., C(I∗)−C(õ) ≤ 0
for every option õ ∈ Ĩ.

A visual example of the procedure is given in Figure 1 of the original publication [SKB19,
p. 1241]. Algorithm 5.1 defines only the functioning of Extend. Intentionally, it does
not specify implementation details, e.g., the underlying data structures. An open-source
Python implementation of Extend is provided as part of the index selection evaluation
platform [Kos+20c].

Extend’s iterative approach focuses explicitly on index interaction by re-evaluating
the benefit of index candidates for every pass of step (2). This procedure ensures that
interaction is considered to a higher degree compared to other greedy approaches, such

55

5. Two Novel and Efficient Index Selection Approaches

as DB2Advis [Val+00]. At the same time, the similarity of the evaluated configurations
enables high cost request cache rates of over 90 % [Kos+20d]. For subsequent iterations,
the selections of previous iterations are not discarded. Thereby, the number of index
options available in a given iteration is not multiplied but only added up [SKB19].

Step (3)’s purpose is to ensure that the set of index candidates is kept to a minimum:
candidates that would exceed the storage budget are not considered for the selection of
the best configuration in step (4). In contrast to all surveyed approaches (Chapter 3),
there is no general limit for the number of attributes used for multi-attribute indexes.
The reason is that the index candidates are constructed flexibly on demand during the
index selection process. Based on the insights from the previous experiments, this is a
major advantage because the selection runtime of other approaches increases significantly
if wider indexes are admitted. Larger widths, e.g., Wmax ≥ 4, are prohibitively expensive
for competitors, as discussed in Section 4.2.5.

Algorithm Extensions

In the following, we discuss several opportunities to expand the functionality of Algo-
rithm 5.1 and decrease its selection runtime.
Alternative Stop Criteria. First, alternative stop criteria can be implemented for our
approach. For instance, Extend could stop after a certain number of construction steps or
created indexes; see cost parameter L as introduced in Section 2.1. Extend’s approach is
also suitable for adding time constraints similar to DTA. If the time constraint interrupts
the procedure, Extend’s greedy modus operandi ensures that the best possible, in terms
of benefit-to-storage ratio, index candidates have been selected up to the point where the
selection process was interrupted. Additionally, Extend could be adjusted to stop when a
predefined relative cost reduction has been achieved, e.g., if C(I∗)/C(∅) < 1− 0.2 for a
cost reduction of 20 %.
Candidate and Option Exclusions. In general, Extend does not restrict the candidate
set. However, if the selection runtime is required to be decreased, Extend offers the
flexibility to exclude candidates by reducing the number of extension elements (E). If
candidates are removed, fewer options have to be evaluated in the repeated executions of
steps (2) to (4) of Algorithm 5.1. Hence, the index selection process is accelerated.

There are multiple options to exclude candidates. Either, only a fixed number of
heuristically determined candidates could be allowed. For instance, the corresponding
attribute’s cardinality could serve as a heuristic to order the candidates accordingly.
Alternatively, candidates could be excluded based on the relative benefit they provide
in isolation, i.e., ∀i ∈ I : (C(∅)− C({i}))/mi. Note that such exclusions can affect the
achievable solution quality [SKB19].

56

5.1. Extend: Index Selections Based on Iterative Index Extensions

Furthermore, database management system (DBMS)-dependent rules could prune
options (Ĩ) to further reduce the number of evaluations in step (4). For instance, based
on how the particular DBMS utilizes indexes for query processing, certain index options
are not feasible. PostgreSQL 12.5 provides a typical example of that. The system only
uses an index scan if the query accesses its leading attributes: an index (A, B) would
not be utilized if only column B is filtered.
Minimum Cost Improvement. Toward the end of the selection process, only a
small fraction of the initial budget is typically remaining. According to Algorithm 5.1,
Extend will continue to select indexes until no further improvements can be realized
or the budget is exceeded. For small remaining budgets, the selected indexes have a
relatively small storage consumption and benefit. Thus, the selection process continues
while the realized benefits are comparably small. Therefore, Extend can be adjusted
to support a relative minimum cost improvement, minimpr, that must be achieved to
prevent termination. The algorithm terminates if no index configuration Ĩ is able to
improve the cost accordingly: (C(I∗)−C(Ĩ))/C(I∗) ≥ minimpr for every possible Ĩ. This
algorithm extension is implemented in our open-source version of Extend. The extension
prevents the expensive low-return phase at the end of the selection process.

A large value for minimpr can drastically accelerate the runtime but harm the solution’s
quality. In contrast, a small value might not have the desired effect of decreasing the
selection runtime at all. It is not trivial to determine the optimal value as it depends on
multiple factors, e.g., the workload, the budget, and the admitted index widths.

Parameters

Our open-source implementation [Kos+20c] allows configuring the minimum cost improve-
ment and the storage budget for Extend. By default, the minimum cost improvement is
set to 0.3 %, which was experimentally determined to produce a reasonable tradeoff of
speed and performance. Furthermore, the index width can be restricted to simplify the
comparability with other approaches that require such a restriction.

5.1.2. Classification

According to the classifications presented in Section 3.1.1 and, in particular, Table 3.1,
Extend is an imperative algorithm that adds indexes to an empty index configuration.
Extend’s aims to reduce the relative costs, i.e., the optimization target is Costs

Storage . Storage is
the intended constraint for the algorithm, but as discussed before, other constraints could
be easily supported. At the time of writing, Extend is not related to any commercial index
selection tool. In addition, multi-attribute indexes are supported without limitations.
Index interaction is considered to a high degree (+++) because of the iterative re-evaluation

57

5. Two Novel and Efficient Index Selection Approaches

of the candidates’ benefits. Finally, the implementation complexity of Extend is relatively
low (+/++); the open-source implementation amounts to roughly 100 lines of code.

5.2. SWIRL: Selection of Workload-aware Indexes using
Reinforcement Learning

In this section, we describe our index selection approach SWIRL that is based on RL.
SWIRL incorporates knowledge of vast amounts of workloads during a preparatory
training step. Thereby, it is able to match the performance of the best competitors
while its runtime outperforms the fastest (but often not as good) algorithms. The focus
on low index selection runtimes is justified if index configurations must be optimized
for many — in some cases millions [Das+19] — systems, which is valid for cloud
environments. Dynamically changing workloads [Ma+18] that demand quick reactions
by reconfigurations further strengthen the need for fast approaches.

The idea to rely on learning for index selection is based on the insight that — in some
scenarios — index selection problems are similar: for instance, in Software-as-a-Service
(SaaS) scenarios, thousands of customers run similar workloads on similar schemata
because such applications predefine schemata and workloads [Aba+19; Aul+09]. State-
of-the-art index selection approaches do not utilize knowledge about such similarities.

If applied carefully, reinforcement learning-based approaches can effectively exploit these
characteristics and the fact that massive amounts of training data exist [Din+19]: during
training, an agent efficiently learns which indexes are beneficial under what circumstances
for the predefined schemas. After training, and in contrast to state-of-the-art approaches,
it does not need to enumerate possible solutions expensively. Instead, it infers suitable
indexes almost instantaneously based on the previously accumulated knowledge. While
other approaches must account for complex effects, e.g., index interaction, by costly
and iteratively testing multiple configurations, our approach internalizes such effects
during training. Naturally, to gain this knowledge, extensive training is required, which
is justifiable if efficient index configurations can be determined quickly later when the
model is frequently applied.

The remainder of this section is structured as follows. Section 5.2.1 provides the
necessary background in the area of reinforcement learning. Afterward, Section 5.2.2
surveys existing RL-based index selection approaches and discusses their limitations.
Section 5.2.3 describes our approach in detail and explains how its sophisticated workload
model enables SWIRL to generalize to handle workloads that contain unseen queries
and how we reduce training times with invalid action masking. In the end, Section 5.2.4
classifies SWIRL according to the dimensions presented in Section 3.1.1.

58

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

5.2.1. Background: Reinforcement Learning

Reinforcement learning covers a group of algorithms that aim at solving decision problems.
Those problems are characterized by processes that repeatedly allow an agent to perform
an action at from available actions A given a current state st ∈ S [SB98]. The state
describes the properties of the environment the agent is currently observing. Depending
on the problem and the RL algorithm, A and S can be either discrete or continuous
and have arbitrary dimensions. After performing the chosen action, a new state st+1 is
reached, and the process repeats. To provide agents with feedback on whether the action
was chosen well, they receive a feedback signal, the reward rt after each decision. The
simulation might end at some point, leading to episodes of finite length characterized by
the states, the agent’s decisions, and the following rewards. The RL problem consists
of finding the optimal policy, which maps states to actions, concerning the discounted
future long-term reward given a specific starting state at time t:

Gt =
∑

k≥0
γk · rt+k. (5.1)

The long-term reward is discounted to take into account that further progression in
the decision process becomes less predictable. Low values of the discount factor γ ∈ [0, 1)
motivate the agent to act more greedily and consider possible long-term rewards less.

To implement an RL system, the agent needs to estimate the best expected value of
Gt correctly. The Q-value is the expected value of Gt given a particular state st and the
chosen action at, i.e.,

Q(s, a) = E[Gt|st = s, at = a]. (5.2)

Considering (5.2), the Q-value can be reformulated iteratively, as it incorporates the
Q-value of the following state and its long-term reward, Gt+1. This fact allows to learn
an estimator for the Q-value using the Bellman-update, given an observed state st, a
performed action at, the observed reward rt, and the follow-up state st+1:

Q(st, at)← Q(st, at) + η · (rt + max
at+1∈A

Q(st+1, at+1)−Q(st, at)),

where η ∈ (0, 1) is the learning rate. Higher η values increase the update size but decrease
the stability of the estimation. In this setup, the agent keeps a matrix to store and
update the Q-value for each observed combination of st and at. This representation
allows it to derive a policy from the Q-estimation, by greedily choosing the action a that
maximizes Q(s, a) in the current state s. Actions are randomly chosen with a specified
probability ε to ensure that the agent does not always choose the same actions (and
leaves beneficial states unobserved). Moreover, instead of using tabular Q-values, a

59

5. Two Novel and Efficient Index Selection Approaches

generic function approximator, such as an artificial neural network (ANN), can represent
Q. In this setup, the difference between the network’s estimation for the Q-value and the
computed target value rt + maxat+1∈A Q(st+1, at+1) is minimized at each learning step.

This concept can be further expanded with policy gradient methods, which do not derive
a policy from the learned value estimations but keep a parametric policy at = πΦ(st).
By adjusting Φ, the mapping from st to at is changed. In many cases, such a policy can
be non-deterministic; instead of deciding for an action, it yields only the probability of
performing an action: πΦ(a|s). Adjusting Φ usually relies on the policy gradient theorem,
which allows improving expected rewards via Φ only based on past observations. While
SWIRL is not conceptually tied to a specific RL algorithm, we rely on Proximal Policy
Optimization (PPO) [Sch+17] in this thesis. PPO offers the advantage of adjusting the
learning rate automatically. Correctly adjusting the rate stabilizes the learning process
by avoiding drastic changes in the agent’s behavior and improves overall performance.

Action Masking. The index selection problem can cause states in which not all actions
within A are applicable, i.e., not all indexes can be created, for instance, due to budget
constraints. Such invalid actions could be modeled by assigning large negative rewards to
such actions. SWIRL incorporates another feedback mechanism: action masking [HO20].
In this approach, the agent receives the allowed actions as input and is structurally
enforced to select an element within this set. This technique shortens the learning
process, as this decision element does not have to be represented within the agent’s
policy anymore. In addition, peak performance can be increased as well [HO20]. Such
efficiency considerations are essential if the overall action space consists of many actions,
but only a few of these actions are allowed in a given state. If action masking were
omitted, the agent would have to explore many invalid actions to recognize which are
allowed (depending on the state).

5.2.2. Existing RL-based Index Selection Approaches

Several RL-based index selection approaches have been presented as an alternative to
existing rule- and enumeration-based heuristics. In the following, we describe these
existing RL-based approaches, discuss their limitations, and highlight differences to our
solution before we deduce requirements for an RL-based index selection approach that is
competitive to state-of-the-art methods.

Table 5.1 compares the approaches across different dimensions: (i) whether or not
multi-attribute indexes are supported, (ii) the constraint for the index selection process,
(iii) the availability of an open-source implementation for further experiments and
the reproduction of results. Moreover, (iv) we examined how the listed publications
incorporate the representation of the workload at hand. We compare whether or not

60

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

they can (v) generalize to be able to handle unknown workloads that include previously
unseen query classes. Lastly, (vi) we mention how the approaches were evaluated.

Table 5.1.: Comparison of reinforcement learning-based index selection approaches. The
corresponding publications are referenced in the detailed descriptions of the
algorithms. Evaluation: ∗ The queries only filter the LINEITEM table. † 12
randomly chosen query templates. ‡ 14 fixed query templates.

NoDBA DRLinda Lan et al. SMARTIX DRLISA SWIRL

(i) Multi-attribute indexes No No Yes No Unspecified Yes
(ii) Constraint # Indexes # Indexes # Indexes14 # Steps Improvement Budget
(iii) Implementation available Yes No Yes Yes No Yes
(iv) Workload representation Yes Yes No No Unspecified Yes
(v) Generalization + ++ - - Unspecified +++
(vi) Evaluation TPC-H∗ TPC-H† TPC-H‡ TPC-H YCSB TPC-H/DS, JOB

NoDBA. Sharma et al. were the first to present an RL-based index selection approach,
NoDBA, capable of creating single-attribute indexes in 2018 [SSD18]. They evaluate their
ideas with queries that filter TPC-H’s LINEITEM table on multiple attributes. The model
represents the workload as a matrix that contains the selectivity of every attribute for
every query if the query is filtered on this attribute. This model makes the generalization
to handle unknown queries theoretically possible even though it is not discussed in the
publication. Varying frequencies of the queries are not considered. However, they could
be modeled by repeatedly adding the same query to the state matrix, which would
increase the size of the state matrix and potentially be unfeasible for larger workload
sizes. Their approach does not consider other operators (apart from filter predicates)
for index selection. Naturally, this is a significant limitation because other operators,
e.g., joins and aggregates, are responsible for a large amount of the overall runtime in
typical database workloads [Dre+20; Mül+15]. The authors provide an open-source
implementation15 of their work.
DRLinda. Sadri et al. present DRLinda for cluster databases [SGL20a; SGL20b]. While
multi-attribute indexes are not supported, considering multiple instances in a database
cluster sets a different focus, further complicates the problem, and is a differentiator to
all other — including our — approaches. The workload is represented in three ways:
(i) an access matrix that encodes for every attribute whether or not it is accessed in a
query, (ii) an access vector that counts how often every attribute is accessed in total, and
(iii) a selectivity vector that holds selectivity = # unique values

of rows for each attribute. The
workload representation does not differentiate between accesses caused by different types of
14Due to space restrictions, budget results were not reported by the authors. Also, different budgets

cannot be handled dynamically but the agent is trained for a fixed budget.
15Source Code for NoDBA [SSD18] on GitHub: https://github.com/shankur/autoindex

61

https://github.com/shankur/autoindex

5. Two Novel and Efficient Index Selection Approaches

operators. This model could enable the agent to generalize to handle unknown workloads
which is not discussed or evaluated in the original publications. There is neither a public
implementation nor an evaluation that compares with state-of-the-art index selection
approaches available. We have reimplemented DRLinda for our evaluations (Section 5.3)
and included our implementation in SWIRL’s open-source repository [KKS22b].

Lan et al.’s Approach. Lan et al. propose another RL-based solution that allows
identifying multi-attribute indexes [LBP20]. With increasing index widths (W), the
number of candidates increases drastically; for workloads with hundreds of attributes,
thousands of relevant 3-attribute indexes exist, cf. Section 2.2.1. The set of available
actions usually comprises one action per index candidate for RL-based approaches.
The authors propose five heuristic rules that serve as a preselection to reduce the
number of index candidates (and consequently actions) and enable the selection of multi-
attribute indexes. Excluding index candidates in advance may limit the potential solution
quality [SKB19]. The model does not implement workload representation; in fact, the
model is only trained for a single, fixed workload. For this reason, it cannot generalize
and is only suitable for the exact training workload. The evaluation is conducted on 14
TPC-H queries, and the implementation16 is publicly available.

SMARTIX. Licks et al. present SMARTIX: A database indexing agent based on rein-
forcement learning [Lic+20], provide an open-source implementation17, and an extensive
introduction to RL in the context of index selection. Their implementation cannot create
multi-attribute indexes and does not include workload representation. In consequence,
generalization is not possible. While the approach is the only one evaluated with the
complete TPC-H benchmark and compared to a multitude of other approaches, the
best-performing state-of-the-art approaches [Kos+20d] are not included. Their training
procedure trades off long trainings (multiple days) against avoiding inaccuracies of cost
estimations: SMARTIX derives query runtimes from actual query executions instead of
what-if-based estimations.

DRLISA. Yan et al. target NoSQL databases with DRLISA [Yan+21], which is a
differentiator to all other approaches. It is the only approach that stops independently of
the number of indexes or a storage budget. Instead, it terminates if no further performance
improvement can be realized. According to the paper, the RL model takes a workload
representation as input, but we could not find further details regarding the workload
representation. Consequently, generalization may or may not be possible. The authors
do not mention any publicly available implementation and evaluate their approach with
the YCSB (Yahoo! Cloud Serving Benchmark) [Coo+10].

16Implementation of Lan et al. [LBP20] on GitHub: https://github.com/rmitbggroup/IndexAdvisor
17SMARTIX’s [Lic+20] experimental setup: https://doi.org/10.5281/zenodo.3254967

62

https://github.com/rmitbggroup/IndexAdvisor
https://doi.org/10.5281/zenodo.3254967

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

Research Gap: Requirements for Competitive RL-based Index Selection

Based on the motivation regarding fast selection runtimes, the limitations of state-of-
the-art (Chapter 4), and RL-based approaches, we derive the following requirements for
a competitive RL-based index selection approach. In terms of performance indicators,
a potential approach should determine solutions that are competitive (R-I) with the
solutions of the best state-of-the-art algorithms, e.g., DTA, while the computation of
such solutions should be significantly faster (R-II), for instance, comparable to the
computation times of DB2Advis. At the same time, the training duration of the proposed
model should not outweigh (R-III) the advantage gained during application time.

None of the existing RL-based approaches offers all the functionality commonly expected
from index selection approaches, cf. Table 5.1. Multi-attribute indexes are widely deployed
in real-world environments [Fau+16]. Thus, we require a powerful new RL-based solution
to support multi-attribute indexes (R-IV). Besides, the proposed solution should accept
storage budgets (R-V) as a constraint. Supporting storage budgets allows more fine-
grained solutions than targeting a fixed number of indexes, cf. Section 4.3.1. Moreover,
an index selection algorithm based on RL should be able to generalize (R-VI) to handle
unknown workloads, at least to a reasonable extent. Otherwise, retraining the agent
for every workload change would be necessary, which is unrealistic and would make the
approach much less attractive given the training durations for RL approaches.

To the best of our knowledge, there is currently no RL-based index selection approach
that competes with state-of-the-art algorithms in terms of R-I to R-III and that unifies the
functionality demanded by R-IV to R-VI. Lastly, the requirements should be evaluated
on multiple complex analytical workloads against competitive state-of-the-art approaches.
Such an evaluation has not been conducted for existing RL approaches.

5.2.3. Algorithm Description

We detail our approach SWIRL that tackles index selection with RL in the following. We
start with a schematic overview. Afterward, we explain how we model the index selection
problem in an RL-compatible fashion and how we handle the resulting complexity. For
example, we describe how the environment’s state, i.e., the queries, the budget, and the
active indexes, is represented. Afterward, we discuss how the workload is represented,
how changes of the index configuration are modeled as actions of the agent, and how
the agent is rewarded. We detail our implementation and clarify the applied training
procedure that enables efficient training and determining solutions of high quality.

63

5. Two Novel and Efficient Index Selection Approaches

Overview

Figure 5.1 depicts an overview of the entities involved in the RL-based index selection
process and how they interact. The process is divided into three phases: (i) preprocessing:
training and testing workloads are generated, index candidates are determined, and
the workload representation model is prepared; (ii) training: the agent learns which
indexes are valuable for the provided queries and schema as well as how these indexes
interact, and (iii) application: the agent applies the trained model to determine indexes
for provided workloads. During (ii) and (iii), the agent iteratively selects indexes for a
given workload. This process represents the observed Markov decision process.
Preprocessing. 1 The user, e.g., a database administrator (DBA), can specify a set
of representative18 queries. The potential impact of the specified query set is discussed
later under Workload Modeling and Query Representation.

2 Afterward, index candidates are generated based on the input schema’s attributes
and the set of representative queries. Restricting the set of index candidates to relevant
ones is crucial [Kos+20d; LBP20] since index candidates correspond to the agent’s actions,
and too large action spaces complicate the agent’s process of determining reasonable
solutions and can increase training durations. At the same time, candidates should not
be limited too much; otherwise, solutions of high quality cannot be determined [SKB19].
For this reason, not all but most attributes of the schema (and their permutations) should
become index candidates. By default, our system generates all syntactically relevant
index candidates (except for indexes on very small tables, less than 10 000 tuples). More
filters can be added flexibly if the number of candidates should be further reduced.
Permutations are generated according to a user-specified admissible index width (Wmax).
The candidate generation also prepares predictions of the index sizes for every candidate
based on the estimates of a what-if optimizer.

3 Based on the set of representative queries, random workloads are generated as follows.
A workload consists of (a subset of) the representative queries and assigns a random
frequency to each query. Thereby, we create variability and ensure that the agent has to
handle different query-frequency pairs during training. This procedure anticipates a wide
variety of workloads later during application.

The created workloads are split into training and test sets. It is guaranteed that the
test set contains only workloads that are not part of the training set. Besides, it is
possible to specify that a certain number of the representative queries are not part of any
training but only of test workloads to guarantee pure out-of-sample predictions. By doing
so, we can investigate the agent’s capability to generalize to handle unknown workloads.

4 Machine learning models are usually provided with numerical features. The workload
18Relying on representative queries is in accordance with other learned approaches [HBR20].

64

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

Representative
Queries

Query 1
Query 2

Query N

Schema

Workload
Generation

Candidate
Generation

Attributes

Index
Candidates

Index Size
Predictions

What-If
Optimizer

Relevance

Workload Model

Action Space
Restriction

User

State for
valid actions

Workloads

Training

Testing

Index Selection
Agent

Index Selection
Environment

State & Reward

Action

State
Representation

State
Vector

Workload
Representation

Costs &
plans

specifies

Preprocessing

Filter

Permutation

Plan Parsing

Dictionary

Reduction

Training/Application

● ● ●

1

2

3

4

Indexes

5

6
7

8

9

10

11

12

Valid Actions

Plans

Figure 5.1.: Overview of SWIRL, our RL-based index selection approach. The approach
is divided into three phases: preprocessing, training, and application.

model is responsible for creating workload representations, i.e., transforming or featurizing
information about the queries of the current workload to a numerical representation
that can be passed to neural networks. This process is crucial because, without a
representation, unknown queries cannot be handled. Details are presented later under
Workload Modeling and Query Representation.
Training. During training, the agent learns which indexes are beneficial in which
situations by trying out many index configurations for different workloads in an efficient
manner. Thereby, it can also implicitly discover and internalize complex effects like the
relationship between different index candidates, i.e., index interaction, without these
effects being explicitly specified or modeled.

The central components of the RL process are the index selection environment and
the index selection agent. The agent is stateless and provides numerical actions that
correspond to the creation of indexes in the environment. The stateful environment
encapsulates the corresponding DBMS: it translates and implements the agent’s actions
in the DBMS, determines their consequences, rewards the agent, informs it about the
environment’s state, and abstracts other parameters, e.g., the budget.

5 The environment retrieves a new workload (3) for every training episode. Within
one episode, the workload is constant. 6 Subsequently, the costs and plans for every query
of the current workload are requested from the what-if optimizer given the current index
configuration, which is usually empty for the first step of an episode. 7 Then, the agent’s
action space is restricted to contain only actions that are valid for the environment’s
current state. These restrictions are a major factor for converging as quickly as possible
and allowing thousands of index candidates without limiting the candidate set a priori.

65

5. Two Novel and Efficient Index Selection Approaches

Actions can be limited based on the current workload, the remaining budget, or previous
actions; see Actions below for details. This procedure is a significant differentiator to
existing RL-based index selection approaches.

8 For the state representation, the current state of the environment, e.g., the remaining
budget, current costs, and active indexes, is translated to numerical features so that it can
be passed to the agent. This process includes retrieving 9 the workload representation
from the workload model. 10 The environment’s state and, if available, a reward are
passed to the agent. 11 In return, the agent reacts with an action under consideration of
the currently valid actions. 12 Then, the environment implements the agent’s actions by
creating indexes via the what-if utilities. The process continues at step 6 until there
are no valid actions, e.g., if the budget is exceeded or a user-specified maximum number
of iterations has passed. After a configurable number of steps, the ANN is updated to
reflect the observations collected during the past steps.

Application. After training, our model is applied as follows. Instead of training
workloads, at 5 , the actual workload is received. Starting with an empty index set, the
agent repeatedly evaluates the fitted ANN to subsequently select the action at 11 with
the highest estimated reward (the best index) for a state st 10 . Choosing at leads to a
new state st+1 for which at+1 is determined until the budget is exceeded. This procedure
can particularly be applied to any unknown workload. Even for previously unseen st, the
ANN can be evaluated, and at can be efficiently obtained. Note that the application of
our model is fast compared to state-of-the-art non-RL approaches since (i) interactions
with the what-if optimizer are not necessary and (ii) due to the trained ANN, only simple
evaluations remain to be performed.

State Representation

Figure 5.2 shows how we encode the index selection problem with a simplified sample
workload. The sample contains 28 features distributed over 7 vectors enclosed by a dashed
box. The number of necessary features to effectively represent a particular instance of the
index selection problem largely depends on the number of query classes in the workload,
their complexity, and the number of indexable attributes.

The cost and storage information contained in the state representation can be based
on actual measurements or estimates obtained from a what-if optimizer. While the
latter option produces only estimates, it is much faster. State representations must be
updated during training for each of the agent’s steps. Typically, there are thousands
of steps during training. Therefore, we rely on the what-if-based estimations; actual
execution time measurements are impractical. The information contained in the state
representation can be divided into three aspects: the workload, meta-information (e.g.,

66

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

[1, 0, 0, 0.5, 0, 1][94, 17, 10]

Workload

What-If
OptimizerWorkload Model

Meta information

Frequencies

+
Action Status

Encoding
Cost per Query

Indexable Attribute Current Indexes

Storage & Cost

Queries Queries

Query
representations

[0.12, 0.4, 0.0, 0.08]
[0.24, 0.2, 0.0, 0.04]
[0.09, 0.3, 0.2, 0.12]

[4.2M, 2.6M, 8.7M] [5.5, 1.2, 992M, 526M]

Concatenation / Normalization

Feedforward
Artificial Neural Network

l_cdate, l_orderkey,
l_quantity, l_rdate,
l_sdate, o_key

Idx(o_key)
Idx(l_cdate, l_rdate)

Storage Budget: 5.5GB
Storage Consumption: 1.2GB
Cost initial/current: 992M/526M

94x SELECT * FROM litem WHERE l_cdate < l_rdate
17x SELECT * FROM litem WHERE l_sdate > ‘2020-12-27’
10x SELECT * FROM litem, orders WHERE l_orderkey = o_key

Figure 5.2.: State representation for a simplified example workload. The numbers are
example values for demonstration purposes.

the budget), and the current index configuration. These aspects influence which indexes
of all possible indexes are beneficial: for two different workloads, completely different
index configurations might lead to the best performance.

Workload Representation. The workload representation must reflect which query
classes are part of the workload as well as the frequency of these queries. For a workload
with N query classes and a representation width of R (in Figure 5.2, N = 3, R = 4),
the workload representation consists of (i) N numerical vectors of length R representing
the queries’ contents, (ii) a vector of length N with a numerical value for each query’s
frequency, and (iii) a vector that contains the estimated execution cost per query (N
values) given the currently active index configuration. Representing the queries’ contents
is crucial for our approach and a major differentiator to other approaches; without it,
the agent cannot learn about the structure of queries, recognize similarities, and, in the
end, generalize to handle unseen queries.

Even though the ANN’s structure is fixed, a model trained with workload size N

can always be utilized to determine index configurations even if the workload size is
different, e.g., Ñ , during application time. If Ñ < N , padding can be applied, i.e.,
query representation, frequency, and cost are set to 0 for N − Ñ queries. Otherwise, if
Ñ > N , a representative set of the workload with size N must be created. Such a set can
always be found, e.g., by focusing on the most relevant queries and summarizing similar
queries; workload compression [CGN02; Dee+20] has been effectively used for index
selection in the past. Also, query clustering approaches that reduce the total query count
exist [Ma+18]. Choosing N to be sufficiently large in the beginning can avoid the need

67

5. Two Novel and Efficient Index Selection Approaches

for workload compression altogether or, at least, decrease the possible information loss
caused by it. Choosing N sufficiently small allows for controlling the model’s complexity.

The meta-information contains four scalar features regarding storage and workload
cost: (i) a value for the currently specified19 storage budget (B), (ii) the current storage
consumption based on the what-if optimizer’s index size predictions, (iii) the initial
(without any indexes), and (iv) current cost (C) for executing the entire workload.

The current index configuration encodes for every indexable attribute whether an
index is present or not. In the simplest case, with a maximum index width of Wmax = 1,
this information can be represented by a binary vector as every index can exist once
or not at all. Encoding the index configuration is more challenging if multi-attribute
indexes are admitted because there can be millions of index candidates. For example, for
TPC-DS with Wmax = 4, there are approximately 1.3 million index candidates according
to Section 2.2.1. If we used a binary vector as above, we would increase the number
of (very sparsely populated) features by the number of index candidates, which would
be infeasible. Wide indexes occur in real-world systems [Fau+16]. At the same time,
limiting Wmax can harm performance [SKB19]. Thus, decreasing the dimensionality by
limiting the number of candidates is not an option.

For this reason, we encode the information on the current index configuration for each
indexable attribute separately to avoid large feature spaces: the value in the vector is
incremented by 1/pos for every index that contains the corresponding attribute. pos refers
to the position in the index. For instance, for Idx(l_cdate, l_rdate), l_cdate’s pos is
1 and l_rdate’s pos is 1/2. If a further index Idx(c1, c2, c3, l_cdate) would exist,
l_cdate’s vector value would be 1.25 = 1+1/4. Modeling the current index configuration
like that — in contrast to a binary vector — implicates some loss of information: instead
of encoding which exact indexes exist, we encode to which degree attributes are covered
by indexes. However, according to our evaluations (Section 5.3), the agent is able to
handle this encoding. In addition, the index selection environment still maintains the
full information. Such information is, e.g., necessary for applying action masking, which
will be discussed later.

Concatenation and Normalization. The vectors are concatenated and their contents
are normalized before the presented state information is passed to the neural network.
We use StableBaseline’s VecNormalize class for these tasks; it normalizes values X to
X̃ using their moving average X̄ and the variance σ2(·) as follows (ε := 10−8 prevents
possible divisions by zero):

X̃ = (X − X̄)/(σ2(X̄) + ε)0.5.

19Storage budgets are externally specified, e.g., by DBAs or external meta models.

68

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

Normalization is applied to improve the ANN’s learning behavior. For large inputs,
the used activation function tanh suffers from vanishing gradients. This effect can be
avoided by normalization with zero mean and a variance of one [GBC16].
The number of features passed to the model (F), except for the meta-information
(MI), is not fixed. F varies with the problem instance and the configuration at hand. It
amounts to:

F = N ·R + N + N + MI + K. (5.3)

The number of query classes in the workload (N) largely affects the size of the frequency,
cost per query, and query representation vectors. Also, the representation width (R)
is important for large workloads as it is multiplied with N . If the workloads that are
passed to the model contain complex, unlike queries, R must be chosen large enough to
capture different queries and their similarities properly. Lastly, large database schemas
can result in hundreds of thousands of indexable attributes. Hence, we only consider
attributes (cf. K) accessed by at least one query. Otherwise, it could result in too
many features only to represent the current index configuration. For some Join Order
Benchmark (JOB) experiments below, we worked with a workload size of 100 query
classes and a representation width of 50, resulting in 100× 50 + 100 + 100 + 4 + 73 =5 277
features for 73 indexable attributes.

Workload Modeling and Query Representation

One of the main aims of our approach — and a major differentiator to existing approaches
— is to be able to handle query templates that were not part of the training workloads.
Of course, these templates should not differ entirely but be reasonably similar to the
query templates used during training. Thus, the set of training queries should roughly
capture the workload expected at application time.

The desired capability to handle unknown queries requires us to set such queries into
context with known ones. These capabilities add complexity to the model: details of the
queries must be encoded such that the agent can incorporate them into its decision making,
i.e., a detailed representation of the workload respectively of its queries is necessary. This
representation must be compact enough to avoid feature explosion and contain enough
detail to distinguish queries properly. Besides, computing the representation must not be
too complex as it would further increase training durations.

Figure 5.3 depicts how our representation model is built and how representations
are inferred. We build representative plans from the set of representative queries by
utilizing the what-if optimizer and index candidates. The what-if optimizer is repeatedly
invoked for every query to generate various plan alternatives based on different index
configurations. Theoretically, the query representation could be built entirely on the

69

5. Two Novel and Efficient Index Selection Approaches

queries’ SQL strings. However, execution plans contain more details, information about
index usage, and might change with the agent’s actions, i.e., index decisions. The
representative plans are passed to the representation model.

Representative
SQL Queries

What-If
Optimizer

Representative
Plans

Index Candidates

Operator
DictionaryBOO* Corpus

Plan2TextDimensionality
Reduction BOO* Model

 ISTS

<latexit sha1_base64="akO9cK8lIQNgYWhG0YIfuCvjlBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNlJJxkyO7PMzCphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFieDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRqWaYZ0poXQrogYFl1i33ApsJRppHAlsRqPbqd98RG24kg92nGAY04Hkfc6odVKzE6kny7FbKvsVfwayTIKclCFHrVv66vQUS2OUlglqTDvwExtmVFvOBE6KndRgQtmIDrDtqKQxmjCbnTshp07pkb7SrqQlM/X3REZjY8Zx5Dpjaodm0ZuK/3nt1Pavw4zLJLUo2XxRPxXEKjL9nfS4RmbF2BHKNHe3EjakmjLrEiq6EILFl5dJ47wSXFb8+4ty9SaPowDHcAJnEMAVVOEOalAHBiN4hld48xLvxXv3PuatK14+cwR/4H3+AHyIj6o=</latexit>

./

SELECT * FROM TabA a, TabB b
WHERE Col4 < 4 AND ...

0: IdxScan_TabA_Col4_Pred<
...

4: HashJoin_TabD_TabE_Equi_Col...

 ID: 0, 1, 2, 3, 4
Value: 1, 1, 0, 2, 0

[0.231, 0.17, 0.8]

Repr. Model

Result

 ISTS

<latexit sha1_base64="akO9cK8lIQNgYWhG0YIfuCvjlBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNlJJxkyO7PMzCphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFieDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRqWaYZ0poXQrogYFl1i33ApsJRppHAlsRqPbqd98RG24kg92nGAY04Hkfc6odVKzE6kny7FbKvsVfwayTIKclCFHrVv66vQUS2OUlglqTDvwExtmVFvOBE6KndRgQtmIDrDtqKQxmjCbnTshp07pkb7SrqQlM/X3REZjY8Zx5Dpjaodm0ZuK/3nt1Pavw4zLJLUo2XxRPxXEKjL9nfS4RmbF2BHKNHe3EjakmjLrEiq6EILFl5dJ47wSXFb8+4ty9SaPowDHcAJnEMAVVOEOalAHBiN4hld48xLvxXv3PuatK14+cwR/4H3+AHyIj6o=</latexit>

./
IdxScan_TabA_Col4_Pred<
TableScan_TabB_Col1_Pred=

...

Figure 5.3.: Workload representation example. *BOO refers to Bag Of Operators.

The operators of every plan that are relevant20 for index selection are transformed into
a text representation. For example, under the presence of an index on TabA.Col4 a text
representation IdxScan_TabA_Col4_Pred< might be generated. The text representations
for all representative plans are stored in the operator dictionary, which assigns an ID
to every distinct operator’s text representation. These IDs are used in the next step
to construct a Bag Of Operators (BOO) (cf. bag-of-words model [CP18; Har54]), i.e., a
numerical representation of the operators of a query.
Dimensionality Reduction. The BOO could be made part of the state representation
and passed to the neural network. Using the BOO without further processing would
result in many additional, very sparsely populated features per query. For the TPC-DS
benchmark’s query templates, we count 839 distinct relevant operators. We would need to
incorporate these 839 features for every query of the workload, i.e., N times. Consequently,
we apply a dimensionality reduction step. Based on the BOO representations of all
representative plans, we build a latent semantic indexing (LSI) [Dee+90] model to reduce
the feature count.

Choosing the number of features for representing a query (the representation width
R) is a tradeoff decision. Larger values increase the model’s size and training times.
20We focus on operators that are most affected by indexes and particular attributes of these operators.

Source code: https://github.com/hyrise/rl_index_selection/blob/main/swirl/boo.py

70

https://github.com/hyrise/rl_index_selection/blob/main/swirl/boo.py

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

Smaller values can lead to insufficient workload representations. The Gensim library
used for the LSI model indicates the amount of information loss for a particular R. We
experimented with varying values for R and found that for the examined workloads and
R = 50, approximately 10 % of information is discarded, see Figure A.1 in Appendix A.1.1.
Additionally, since the agent’s performance does not improve much when choosing higher
R values, R = 50 seems reasonable.

We refrained from using other Bag-independent approaches for text vectorization,
like Text2Vec [Mik+13], because they require more training data and caused elevated
runtimes in our experiments. These higher runtimes might result from Text2Vec relying
on more complex neural networks.
Alternative Workload Modeling Approaches. In the literature, alternative workload
modeling approaches [Din+19; SL19] exist. The design of such approaches was guided by
different use cases than RL-based index selection. For example, the workload modeling of
Ding et al. [Din+19] builds the input for a classifier that determines which of two query
plan alternatives is cheaper. The modeling approach featurizes query plans based on
physical operators, too. However, the featurization is schema-agnostic without explicitly
referring to accessed tables or attributes. Instead, it encodes and aggregates different
information, e.g., the amount of work done per operator type. Ding et al.’s workload
modeling is reasonable for their use case. In contrast, our approach is specifically
designed for an RL-based index selection agent. Our agent’s actions are directly related
to particular operators and attributes. Therefore, the explicit knowledge of how attributes
and operators occur in the workload is necessary for good index selections.
Simplifications. If unknown queries are not required to be handled, the workload
modeling can be simplified. Some approaches model the workload by only encoding the
frequency share of known queries in the current workload, e.g., Hilprecht et al.’s RL-based
partitioning approach [HBR20]. We argue that even in cloud scenarios, with a predefined
set of standard queries, the assumption that no unknown queries will occur is invalid
because customers usually formulate additional queries. The resulting index configuration
is likely suboptimal without considering such queries for the agent’s decisions.

Actions

The action space determines how the agent can act. In terms of the index selection
problem, this means which indexes the agent can create. Our model employs a discrete
action space A, where every action is a unique (multi-attribute) index candidate: we set
A := I. The index candidates are determined during preprocessing, cf. Overview above.
The existence of thousands of multi-attribute index candidates is not rare for realistic
workloads and datasets [SKB19].

71

5. Two Novel and Efficient Index Selection Approaches

Carefully designing and handling the action space is crucial for two reasons. (i) As
stated in Section 5.2.1, the training efficiency depends on the number of available actions.
More available and dependent actions (index interaction) further complicate the problem
for complex combinatorial problems. Simply limiting the index candidates a priori might
reduce the size of the action space but can also negatively impact the quality of the
determined index configurations, as shown by Schlosser et al. [SKB19]. In addition, (ii)
particular actions might be invalid at particular states. Comparable to chess, where
the rules restrict the allowed movements for every piece, the index selection process
also follows specific rules: we can consider the repeated creation of an existing index or
exceeding the storage budget as breaking the rules. In RL, rules are usually enforced
in an indirect fashion. Large negative rewards teach the agent the invalidity of certain
actions. However, everything that must be learned can potentially increase the training
duration and harm performance.

We utilize invalid action masking [HO20] to (temporarily) disable actions based on
the current state. Thereby, the agent is guided to consider only a subset of all available
actions. Valid actions must be updated before every step, and there are four reasons why
actions could be marked invalid. These reasons are also demonstrated in Figure 5.4.

(1) Index candidate irrelevant for workload. Before the agent’s first step, we check
whether every index candidate is syntactically relevant for the workload at hand, i.e.,
whether all of the index’s attributes occur in the workload.

(2) Index would exceed the budget. Before every step, we calculate for every index
candidate whether its creation would exceed the storage budget, given the current
storage consumption.

(3) Index already existing. After choosing an action a, it is marked invalid such that
it cannot be chosen again. Later, action a can be marked valid again, e.g., due to
choosing actions associated with multi-attribute indexes.

(4) Invalid precondition. Before the first step, all multi-attribute indexes are masked
invalid. Only after the agent chose an index (A), all multi-attribute indexes with A

as the first attribute, e.g., indexes (A, B) and (A, C), are made valid. We follow
the intuition of Chaudhuri et al. “that for a two-column index to be desirable, a
single-column index on its leading column must also be desirable” [CN97, p. 151]. Fur-
thermore, we utilize the extension procedure of the Extend index selection algorithm
presented above. Three- and n-attribute indexes are masked accordingly.

In addition, DBAs might favor preventing the model from handling manually created
indexes based on domain knowledge or indexes that guarantee service-level agreements
(SLAs). Such indexes can be made entirely inaccessible for the model by invalidating

72

5.2. SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning

A (0.4GB) B (0.7GB) C (1.3 GB) D (0.9GB) A, B (1GB) A, C (2GB)

Action Set

A (0.4GB) B (0.7GB) C (1.3 GB) A, B (1GB) A, C (2GB)

Invalid (3)

Invalid (2)Invalid (3)

D (0.9GB)

Index Set

Valid (4) Valid (4)Invalid (3)

A (0.4GB) B (0.7GB) C (1.3 GB) A, B (1GB) A, C (2GB)D (0.9GB)
A

A (0.4GB) B (0.7GB) C (1.3 GB) A, B (1GB) A, C (2GB)D (0.9GB)

Valid (3)

A

C

A, B

C

Invalid (2)

A (0.4GB) B (0.7GB) C (1.3 GB) D (0.9GB) A, B (1GB) A, C (2GB)

Invalid (1) Invalid (4) Invalid (4)

∅

Preparation
Budget: 0.0/2.7GB

Create Idx(A)
Budget: 0.4/2.7GB

Create Idx(C)
Budget: 1.7/2.7GB

Create Idx(A,B)
Budget: 2.3/2.7GB

Figure 5.4.: Example for invalid action masking. Numbers in braces on (in)validation
actions indicate the reasons for the status change. Creating an index (A,B)
drops the index (A).

actions affecting them. The effect of action masking on the number of available actions
is demonstrated later in Section 5.3.3.

Reward

The agent receives a reward, rt, for each action. The reward incentivizes beneficial actions
and guides the learning process. There are multiple options for building reward functions
for index selection. Reward functions could consider relative or absolute cost impacts of
indexes, their storage consumption, and their validity. Absolute cost impacts have the
disadvantage that these might largely differ for similar actions for different workloads
and do not account for the required storage.

We aim to consistently optimize the storage usage for each of the agent’s steps. For the
above reasons and in line with Extend, we chose the additional relative benefit (reduction
of workload costs) of an index selection I∗

t per additional utilized storage as the reward:

rt(I∗
t) = (C(I∗

t−1)− C(I∗
t))/C(∅)

M(I∗
t)−M(I∗

t−1) .

In contrast to other approaches, punishing invalid actions with negative rewards is
unnecessary due to invalid action masking. The RewardCalculator encapsulates the
reward handling to facilitate defining and evaluating alternative reward functions.

73

5. Two Novel and Efficient Index Selection Approaches

Implementation

Our open-source implementation [KKS22b] to train, evaluate, and adapt the presented
approach is written in Python 3. We rely on the index selection evaluation platform
presented in Chapter 4. The platform encapsulates, e.g., the retrieval of query plans and
the handling of hypothetical indexes. Cost estimation requests are responsible for the
majority of the runtime of index selection algorithms [PDA07]. Therefore, the platform’s
cost request caching is indispensable for efficient training procedures. Cache rates are
investigated later in Section 5.3.3.
Model. For implementing the RL algorithm (PPO), we use Stable Baselines [Hil+18]
versions 2 and 3 that rely on Tensorflow, respectively PyTorch. The agent interacts
with a database environment that is implemented according to OpenAi’s gym [Bro+16]
interface. The latent semantic indexing (LSI) model used for workload representation is
built with Gensim [ŘS10].

The model’s hyperparameters that are displayed in Table 5.2 were experimentally
determined. The gamma value appears low compared to other problems that are
traditionally solved via RL. A value in the lower range increases the agent’s greediness.
Simultaneously, it is still chosen high enough to allow long-term considerations in the
relatively short episodes of the index selection problem. We have demonstrated in State
Representation above that the number of features depends mainly on the workload size
and the used representation width. Therefore, it might be necessary to adapt the network
architecture for larger problem instances before training; the displayed size was sufficient
for the scenarios evaluated in Section 5.3.
Flexibility for Adaptations. Our implementation should facilitate further experiments
with RL-based approaches for index selection or physical database design in general.
For this reason, we strictly modularized SWIRL’s implementation. For instance, there
are modules for the reward determination, state representation, or the maintenance of
the action space. Hence, alternative implementations for these modules can be added
easily to evaluate different RL modeling strategies and design decisions experimentally.
As a result, the well-defined interfaces of our modular implementation enabled us to
reimplement DRLinda (cf. Section 5.2.2) in a few hours.

Table 5.2.: Hyperparameters for our PPO reinforcement learning model.
Hyperparam Value Hyperparam Value
Learning rate η 2.5 · 10−4 Discount γ 0.5
Batch size 2 048 Clip Range 0.2
ANN Layer Structure for Q and π 256-256 Policy MLP

74

5.3. Evaluation

Most parameters, e.g., the workload size, maximum index width, or reward function,
can be configured via JSON configuration files. Furthermore, the concept of our approach
is not tailored to index selection. Instead, it could be extended to other physical database
design problems, e.g., automated compression selection [Boi22] or partitioning, as long as
the impact of varying configurations can be determined and transformed to a reward.

Miscellaneous

We monitor the model’s performance with workloads not part of the training and testing
sets at every few thousand steps to prevent overfitting. If the moving average of the
performance stops improving, we record the model’s current state. Also, we employ
extensive caching of cost requests, which largely impacts the training duration, see
Section 5.3.3.

5.2.4. Classification

Based on Section 3.1.1, SWIRL can be classified as a machine learning-based index
selection algorithm that adds indexes to an empty index configuration. While SWIRL’s
reward function can be adapted easily, the function used throughout this thesis aims
to reduce relative costs. Thus, the optimization target is Costs

Storage . Currently, SWIRL is
not related to a commercial system. SWIRL supports multi-attribute indexes without
significantly limiting the candidate set a priori. In contrast to Extend, the index candidate
set must be known in advance to determine the agent’s action space. During the extensive
preparatory training, a multitude of different index configurations is evaluated. Hence,
index interaction is considered to a high degree (+++). The sophisticated state repre-
sentation and workload modeling and the necessary combination of several frameworks
(StableBaselines and OpenAi’s gym) result in our open-source implementation’s high
complexity (+++).

5.3. Evaluation

This section evaluates our two new index selection approaches, Extend and SWIRL, by
comparing their performance to state-of-the-art algorithms. The evaluation is performed
with the index selection evaluation platform presented in Section 4.1.4.

We first describe the experimental setup and discuss the choice of the competing
algorithms in Section 5.3.1. Thereafter, in Section 5.3.2, we evaluate the solution quality
of the identified index configurations and the index selection runtime. Subsequently, we
focus on more specific evaluations, e.g., SWIRL’s training durations and the effectiveness
of the invalid action masking technique in Section 5.3.3.

75

5. Two Novel and Efficient Index Selection Approaches

5.3.1. Experimental Setup

The following experiments are executed on the same machine, with identical Python and
PostgreSQL versions as mentioned in Section 4.1.5. Again, the evaluation covers the TPC-
H, TPC-DS, and JOB. The utilized benchmarks contain complex queries that challenge
index selection approaches and differ in dataset size as well as workload complexity
(number and intricacy of queries), cf. Section 4.1.1. The upcoming experiments differ
from the previous ones in terms of, e.g., the provided budgets, selected query templates,
and assigned frequencies. Since SWIRL is a learned approach, each experiment is repeated
multiple times with different random seeds to ensure stable results.

The experimental evaluation of Section 4.2 aimed at comparing many existing index se-
lection algorithms. This evaluation, in contrast, assesses whether the new approaches meet
the target formulated in Chapter 5, closing the gap between index selection approaches
that produce either fast or close-to-optimal solutions. Furthermore, we investigate
whether SWIRL fulfills the requirements for RL-based index selection approaches stated
in Section 5.2.2. The different aims are reflected in the design of the following experiments
and the choice of competitors.

Experiment Design. For machine learning-based approaches in particular, the experi-
ments need to demonstrate the generalization capabilities of the learned model. For this
reason, we randomize workloads for the following experiments: we create workloads of
size N by randomly choosing query templates from all of the available templates of a
selected benchmark and assigning random frequencies according to a uniform distribution.
In addition, for learned approaches, we define a certain number of query templates that
are withheld during training and the proportion of these withheld queries in the test
workloads used for evaluation. Independent of the unknown templates, we always ensure
that test workloads are not used for training. Thus, all evaluated workloads differ from
training workloads in three dimensions: (i) the evaluated workloads contain the unknown
templates withheld during training. (ii) The exact combination of query templates and
(iii) the exact frequency-template-combination have not been seen during training.

Choice of Competing State-of-the-Art Algorithms. Based on the findings of
Section 4.2, we compare our Extend and SWIRL algorithms with the state-of-the-art
approaches that were performing best in the two critical dimensions: solution quality
and index selection runtime. DB2Advis achieved the lowest index selection runtimes and
DTA is a well-tried [CN20] algorithm with the overall best solution quality.

Choice of Competing RL-Based Algorithms. Additionally, we choose DRLinda for
RL comparisons as it is the only competitive algorithm that also seeks to generalize to
handle unseen workloads [SGL20a; SGL20b]. Even without publicly available source

76

5.3. Evaluation

code21, the descriptions in the publications allow for reimplementation. There are
counter-arguments for the comparison with the other RL-based index selection approaches
discussed in Section 5.2.2. NoDBA [SSD18] has been evaluated for a recent evaluation
study [Kos+20d]. In this study, NoDBA was not competitive with state-of-the-art
approaches. DRLISA [Yan+21] focuses on NoSQL and lacks detail on its workload
modeling approach, preventing reimplementation. SMARTIX [Lic+20] was not considered
because it neither includes workload representation nor supports multi-attribute indexes.
Moreover, its long runtimes of multiple days make an extensive evaluation infeasible. Lan
et al.’s [LBP20] approach is only trained for a single fixed workload and cannot generalize.
Thus, it is not reasonable to evaluate its generalization capabilities.

Note that originally, DRLinda does not support storage budgets but a maximum
number of indexes to create selections of different sizes. To evaluate selections for a
given budget, we subsequently select indexes according to the order associated with
DRLinda’s solutions for increasing numbers of indexes as long as permitted by the
experiment’s budget. To achieve better and more fine-grained solutions, we also check
whether subsequent (potentially smaller) indexes can be added.

5.3.2. Algorithm Performance

We evaluate the performance in terms of solution quality achieved and observed index
selection runtime. For a first, detailed, budget-dependent performance overview, Ex-
tend and SWIRL are compared to the aforementioned competitors, DB2Advis, DTA, and
DRLinda, for a single JOB-based workload for budgets from 0.5 to 10GB. We chose the
JOB because it operates on real-world data, is the largest of the evaluation platform’s
benchmarks, and contains the most complex queries. For the following experiment, we
use a workload size of N=50. Of the JOB’s 113 query templates, 10 are withheld during
training, all of these are included in the workload evaluated in Figure 5.5. Hence, 20 %
of the workload’s query templates are unknown to the learned approaches. The bar
chart depicts the estimated workload processing costs for different budgets and the table
displays the selection runtime.

We obtain three main insights from Figure 5.5. First, the figure demonstrates that a set
of adequately chosen indexes decreases the workload costs significantly. For large budgets,
indexes can reduce the processing cost by more than 20 times. Second, Extend can
determine high-quality solutions: it delivers the best solution in 8 out of 10 cases. It is
always faster than its strongest competitor DTA by multiple factors.

Third, it becomes apparent that SWIRL’s solutions are competitive despite its short
21We contacted the authors to obtain the original source code. The authors were not able to provide the

code but supported our reimplementation by providing answers to our questions.

77

5. Two Novel and Efficient Index Selection Approaches

0.5 GB 1.0 GB 1.5 GB 2.0 GB 2.5 GB 3.5 GB 5.0 GB 6.0 GB 7.5 GB 10.0 GB
DB2Advis 6.00s 5.98s 6.26s 6.08s 6.12s 6.03s 6.30s 6.28s 6.28s 5.96s
DRLinda 2.30s 4.45s 3.10s 5.13s 8.29s 8.38s 8.87s 7.95s 11.28s 11.16s
DTA 305.32s 388.74s 392.46s 369.74s 564.69s 762.97s 1159.51s 1258.30s 1748.24s 2434.70s
Extend 91.49s 60.18s 132.74s 70.86s 143.31s 189.94s 203.51s 256.76s 283.12s 310.09s
SWIRL 0.60s 4.33s 0.39s 2.49s 4.10s 1.00s 3.95s 2.33s 3.89s 3.81s

0

25

50

75

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t
(%

 o
f w

ith
ou

t i
nd

ex
es

)

83
72 71 70

50 49

11 11 11 9

99
92

72 69
61 60

23

61
56

22

80

68
58

44

33

21
11 11 10

5

80
69

53
45

33

13
8 6 4 4

80
71

54 50 50

13 12 8 7 5

DB2Advis DRLinda DTA Extend SWIRL

Figure 5.5.: Performance comparison of state-of-the-art approaches vs SWIRL and Ex-
tend for a Join Order Benchmark workload (N = 50; 20 % of templates are
unknown to SWIRL). Chart: workload cost relative to processing without
indexes; table: index selection runtime.

index selection runtimes. In terms of cost, its performance is always on par with or more
advantageous than its two fast competitors, DRLinda and DB2Advis: it outperforms
DB2Advis in 9 out of 10 cases and DRLinda in every case. Except for a budget of
2.5 GB, its performance is close or equal to DTA’s and Extend’s; between 1.5 GB and
3.5 GB SWIRL’s solutions appear to lack granularity. For large budgets, SWIRL can even
outperform DTA. In terms of selection runtime, SWIRL also excels over all competitors
in all 10 cases. DTA and Extend are often orders of magnitude slower.

Additionally, we can observe that the selection runtimes are not monotonically increas-
ing for most approaches. The reason for this is that, often for increasing budgets, one
large index instead of multiple small indexes might be selected and consume the majority
of the budget, thereby decreasing the number of index selection decisions and terminating
the index selection process earlier. This effect is particularly pronounced for stepwise
approaches, such as Extend and SWIRL. As a side note, the performance of DRLinda is
not consistent. It is worse for 6 GB and 7.5 GB than for 5 GB.

Average Performance for Numerous Workloads. After comprehensively evaluating
one workload, we now evaluate whether our two algorithms show acceptable performance
across many different cases. For each of the three benchmarks, we train RL models
for SWIRL and DRLinda and generate 100 random evaluation workloads with different
frequencies and 20 % of query templates that are withheld during training. In other words,
the upcoming experiments also indicate whether the learned approaches are capable of
generalizing to handle unseen workloads. For each of the 100 evaluation workloads, we
determine index configurations with all competitors for random budgets between 0.25GB
and 12.5GB. Then, we calculate average performances (∅RC), runtimes (∅ t), as well as
the number of evaluation workloads for which an algorithm finds index configurations

78

5.3. Evaluation

that achieve the lowest relative workload cost (# Wins) across all competitors22. The
results are presented in Figure 5.6 and show the relationship between solution quality
and index selection runtime.

Figure 5.6 demonstrates that two different kinds of approaches exist. DB2Advis,
DRLinda, and SWIRL quickly determine solutions of reasonable quality, while DTA and
Extend require more time but achieve better solutions. Our approaches, Extend and
SWIRL, dominate their direct competitors in both dimensions: selection runtime and
solution quality.

101 102 103

Index selection runtime (s)

30

40

50

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t
(%

 o
f w

ith
ou

t i
nd

ex
es

) Join Order Benchmark

101 102 103

Index selection runtime (s)

86

88

90
TPC-DS Benchmark

100

Index selection runtime (s)

72

74

76

78
TPC-H Benchmark

ØRC Ø t #Wins
DB2Advis 42.38% 5.4s 1.00
DRLinda 53.98% 6.2s 0.00
DTA 29.31% 1761.8s 40.00
Extend 29.27% 207.0s 52.00
SWIRL 30.57% 2.4s 7.00

ØRC Ø t #Wins
87.24% 25.3s 3.00
90.19% 2.2s 0.00
85.11% 3365.5s 38.50

84.86% 318.1s 55.50
87.31% 2.1s 3.00

ØRC Ø t #Wins
74.93% 0.7s 14.17
78.50% 0.3s 0.00
72.09% 6.5s 38.67

72.04% 6.8s 45.17
72.47% 0.1s 2.00

DB2Advis DRLinda DTA Extend SWIRL

Figure 5.6.: Performance comparison across 100 random workloads of each of the TPC-H
(SF10), TPC-DS (SF10), and Join Order Benchmark. RC := C(I∗)/C(∅)
denotes the relative workload costs, ∅ the arithmetic mean, t the index
selection runtime, # Wins the number of winning index configurations, see
Footnote 22 for details. The X-axis uses a logarithmic scale.

Extend determines the best solutions across all benchmarks (regarding the # Wins
and the relative total workload costs compared to using no indexes: RC := C(I∗)/C(∅).
In terms of solution quality, the differences to DTA are only marginal. However, with
regards to selection runtime, DTA is approximately ten times slower for the more complex
workloads (JOB and TPC-DS). SWIRL’s solutions are, on average, close to the best
competitors (Extend and DTA) and superior over DRLinda and DB2Advis. For instance,
for the JOB, SWIRL’s performance is, on average, only 1.3 pp worse than Extend’s. The
overall large advantages over DRLinda can be explained by its relatively simple approach
to representing workloads and the fact that only single-attribute indexes are supported.

Regarding the mean selection runtime (∅ t), SWIRL outperforms all four competitors
after training and undercuts DTA and Extend by orders of magnitude. For example,
for the TPC-DS, SWIRL determines index configurations in 2.1 s on average, while
22Note, in draw situations, when multiple approaches achieve the same solution quality (RC), the point

for winning this scenario is split evenly.

79

5. Two Novel and Efficient Index Selection Approaches

DB2Advis takes 12×, Extend 151×, and DTA 1 603× as long. DRLinda is only marginally
slower. The difference might be due to SWIRL’s efficient handling of index candidates
via action masking and the native support for budget constraints, see Section 5.3.1.

5.3.3. Specific Evaluations

In contrast to the above experiments, the following evaluations are of less general nature
and aim to answer specific questions regarding particular index selection algorithms.

Anytime Capabilities

DTA is conceptually built around the promise of being interruptible, cf. Section 3.1.4.
Therefore, DTA should return reasonable index configurations at any time. However, the
results of Figure 5.6 demonstrated a significant runtime difference between DTA and
its competitors. The following experiment investigates DTA’s anytime capability to
determine whether constrained, faster solutions of DTA are comparably good.

Furthermore, we examine how DTA’s solutions compare against Extend’s under time
constraints. For this purpose, we modified Extend23 to offer anytime capabilities, too.
For reference, we also include SWIRL in these experiments.

Figure 5.7 shows the solution quality of identified index configurations for six different
JOB workloads with budgets ranging from 0.5 GB to 10 GB. According to the figure,
both algorithms can keep the anytime promise and identify reasonable solutions under
time constraints. DTA is able to identify solutions much faster than shown in Figure 5.6.
However, the price for faster solutions is, in some cases, a large performance penalty.
These performance penalties are most pronounced for budgets starting from 3.25 GB.

Furthermore, while DTA determines comparable solutions to Extend, the latter identifies
equivalent index configurations significantly faster in the vast majority of cases. After
all, the observations obtained from additionally considering time constraints do not
fundamentally differ from the previous ones discussed above. Therefore, Extend dominates
DTA in terms of selection runtime and solution quality.

Figure 5.7 also emphasizes the differences between learned and imperative approaches:
learned approaches can almost instantly determine solutions for any decision problem, i.e.,
workload-budget-combination. However, learned approaches require extensive preliminary
training to achieve the presented runtimes.

23Anytime version of Extend on GitHub: https://github.com/hyrise/index_selection_evaluation/
blob/master/selection/algorithms/extend_algorithm_anytime.py

80

https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm_anytime.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm_anytime.py

5.3. Evaluation

0 5 10 15 20
Index selection runtime (min)

80

90

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t
(%

 o
f w

ith
ou

t i
nd

ex
es

) Budget: 0.5 GB

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Index selection runtime (min)

80

100
Budget: 1.0 GB

0 5 10 15 20 25 30
Index selection runtime (min)

25

50

75

100
Budget: 3.25 GB

0 10 20 30 40
Index selection runtime (min)

25

50

75

100

Re
la

tiv
e

wo
rk

lo
ad

 c
os

t
(%

 o
f w

ith
ou

t i
nd

ex
es

) Budget: 5.0 GB

0 2 4 6 8
Index selection runtime (min)

50

100
Budget: 7.5 GB

0 5 10 15 20
Index selection runtime (min)

50

100
Budget: 10.0 GB

DTA Extend SWIRL

Figure 5.7.: Evaluation of anytime capabilities. Comparison of time-constrained solutions
for different JOB workloads, N = 100, with varying budgets for DTA and
Extend; SWIRL depicted for reference. Workload cost relative to executing
the workload without indexes, C(I∗)/C(∅). Evaluated time constraints:
T ∈ {0.5, 1, 1.5, 3, 5, 10, 15, 20, 30, 45, 60} minutes. Solutions with equivalent
performance but higher runtime excluded. Best identified solutions depicted
with non-transparent markers, others with transparent markers.

SWIRL: Training Duration and Effort

RL-based index selection approaches pay the price for determining efficient configurations
upfront: short computation times at application time are exchanged for long, a priori
training durations. Table 5.3 shows the training duration and the number of cost requests
that occurred during training, along with the number of features and actions for different
scenarios. All scenarios were trained with 16 parallel index selection environments.

The training duration refers to the time needed for convergence, i.e., until no further
improvements are realized. Obtaining the cost for a query given a particular index
configuration is denoted as a cost request. The number of cost requests is crucial for
assessing index selection approaches because, even though a single request takes only
milli- or microseconds, it is not uncommon that millions of such requests are issued
during selection processes, as discussed in Section 4.2.4. In addition, the training duration
also contains the time required for computing the state representation, applying action
masking, creating and dropping hypothetical indexes, updating the weights of the neural
network, and using it for predictions during training.

Several dimensions influence the problem complexity and, thereby, the training dura-
tions: (i) the workload size N influences the number of features. Large values increase
the time necessary for estimating the workload’s execution costs as more queries have to
be converted to query plans by the optimizer. (ii) The complexity of the queries: more
complex queries cause longer optimization times. (iii) The number of index candidates:

81

5. Two Novel and Efficient Index Selection Approaches

Table 5.3.: Training duration and problem complexity metrics for different benchmark
scenarios. Wmax: admissible index width. t: time. Note, the actions directly
correspond to the index candidates, A = I.

Benchmark N #Features Wmax |A| #Episodes Training duration breakdown

Total Costing #Cost requests (cached) ∅ Episode t

TPC-H 19 468 1 46 2 272 0.07h 20.2% 1 829 088 (95.9%) 0.1s
TPC-H 19 468 3 3 532 768 0.19h 32.6% 1 802 016 (71.2%) 0.9s
TPC-DS 30 1 750 1 186 751 0.42h 22.0% 3 002 850 (92.5%) 2.0s
TPC-DS 30 1 750 2 3 174 512 0.77h 22.4% 2 995 680 (84.6%) 5.4s
TPC-DS 60 3 310 2 3 174 512 1.31h 23.4% 5 991 360 (86.9%) 9.2s
JOB 100 5 265 1 61 1 616 2.58h 37.4% 10 097 600 (83.3%) 5.7s
JOB 100 5 265 3 819 560 5.52h 47.5% 9 990 400 (63.4%) 35.5s

many candidates lead to large action spaces. The agent requires more time to determine
efficient actions, and the existence of more indexes can increase the query optimization
time. For these reasons, the evaluated scenarios cover workloads of different sizes from
the three benchmarks supported by our platform and different admissible index widths.

Table 5.3 shows that training durations increase with the workload and index candidate
complexity and range from multiple minutes to a couple of hours. The training duration
is reasonable even for large workload sizes with 100 query templates and 3-attribute
indexes. According to Figure 5.7, Extend needs ≈ 10 minutes to determine a solution for
a scenario for which SWIRL trains 331 minutes, or 33× as long. As shown in Figure 5.6
and Figure 5.5, SWIRL’s runtimes only amount to a few seconds. Hence, if dozens or
hundreds of systems must be tuned (repeatedly), short runtimes compensate for long
training durations. The training time of our reimplementation of DRLinda is in the
same range. While DRLinda’s model is simpler, the utilized DQN [Mni+15] is, in Stable
Baselines, not as efficient as PPO.

Table 5.3 also demonstrates that a large fraction of the time required for training is
caused by cost requests, even though most of these requests can be cached. This effect
can be observed [PDA07] for most state-of-the-art index selection approaches, too, cf.
Section 4.2.4. Interestingly, training durations can vary significantly for similar numbers
of cost requests, which can be observed for the two JOB experiments: the first experiment
creates slightly more cost requests but requires only 47 % of the training duration. This
effect is probably due to the much higher cost request cache rate, which, in turn, is
caused by fewer index candidates and possible actions (due to a smaller Wmax).
Effectiveness of Action Masking. As explained above, we rely on invalid action
masking to provide state-dependent action sets, thereby assisting the agent during training
by reducing the action space. In the following, we investigate the effectiveness of applying
this technique to index selection. Figure 5.8 indicates the effectiveness by depicting the

82

5.3. Evaluation

share of valid actions at any given point of a single training episode for a JOB scenario.
The figure also shows how many valid actions refer to indexes of widths 1, 2, or 3 and
the fraction of these actions that are invalidated because they do not fit the remaining
budget.

Every bar represents one of the agent's sequential index decisions.0.0

2.5

5.0

7.5

10.0

12.5

Va
lid

 a
ct

io
ns

(%
 o

f a
ll

ac
tio

ns
)

W = 1 W = 1 (too large) W = 2 W = 2 (too large) W = 3 W = 3 (too large)

0

20

40

60

80

100

Re
m

ai
ni

ng
 b

ud
ge

t
(%

 o
f t

ot
al

 b
ud

ge
t)Remaining budget

Figure 5.8.: Impact of invalid action masking on the number of available actions for a
JOB scenario (N = 100, storage budget B = 10 GB, maximum index width
Wmax = 3, and |A| = 819 candidates). Lighter colors indicate the fraction
of actions that are invalid due to the corresponding index’ size given the
remaining budget.

Figure 5.8 demonstrates that in the beginning, only ≈ 7.5 %, and at no point more
than 12 % of all actions are valid; with a decreasing remaining budget, more indexes
are invalidated because they would exceed the budget. Apparently, many actions are
temporarily excluded because their precondition is not met, cf. Figure 5.4 on page 73.
In addition, the majority of valid actions refer to indexes of widths 1 and 2. For these
reasons, invalid action masking appears to be an effective technique to restrict action
spaces and accelerate training procedures.

Consequently, this technique also decreases the required training duration for conver-
gence. According to our experiments, the duration for a non-masking variant increases
by eight times for a TPC-H scenario with a maximum index width, Wmax = 1, to achieve
comparable performance. This effect is even more pronounced for more realistic problems
with larger action spaces: for TPC-H with Wmax = 3, which comes with significantly
more index candidates (|I| = 3 306 vs |I| = 53), the solution quality of the non-masking
version was not close to SWIRL’s, even after training more than ten times as long.
We observe that the overall performance might be worse even with extended training
durations without action masking, which is in line with other work focusing on invalid
action masking for policy gradient algorithms [HO20].

SWIRL: Training Data Influence

The following experiments conduct training data influence studies to answer how SWIRL’s
generalization capabilities depend on the training data. We investigate (i) how the number

83

5. Two Novel and Efficient Index Selection Approaches

of unknown query templates and (ii) if the number of unknown templates is fixed, how
the selection of unknown templates impacts the agent’s performance.
(i) Impact of the Number of Unknown Query Templates. The following ex-
periment is conducted with TPC-H workloads. The TPC-H’s small number of query
templates (19 in accordance with the 3 templates excluded as described in Section 4.2.1)
enables us to easily remove query templates that are essential for generalization. We
trained five models for this experiment. For these five models, the number of randomly
chosen query templates that are unknown during training is successively increased from
0 % to 63 %. All query templates that are unknown to a model are also unknown to the
subsequent models. The first model is trained on all query templates.

After training, the performance of all trained models is evaluated with 50 random
workloads and compared with the strongest (Extend) and fastest (DB2Advis) competitors
from the above experiments. Each workload consists of queries generated from 5 different
query templates, drawn at random from the set of all of the 19 considered TPC-H query
templates. We chose a small workload size so that unknown templates make up a large
proportion of the workload. The frequencies are also assigned randomly per template
and workload. Budgets are chosen at random between 0.5 GB and 7.5 GB.

Table 5.4 depicts the number of unknown query templates and the resulting performance
in relative workload costs compared to using no indexes: RC := C(I∗)/C(∅). Additionally,
it sets the results into context (∆ Extend, ∆ DB2Advis), e.g., +1.2 pp means that the
competitor could reduce the relative workload costs by 1.2 percentage points more.
These results demonstrate that, with an increasing number of unknown queries, the
agent’s performance continuously degrades because it is less capable of generalizing.
These observations are not unexpected and confirm the necessity for detailed workload
representations and representative training data. On the other hand, the experiment
demonstrates that even with a large number of excluded queries, SWIRL is capable of
determining reasonable solutions to some extent.

Table 5.4.: Evaluating the impact of the number of unknown query templates during
training. Performance in terms of relative workload processing costs, RC :=
C(I∗)/C(∅), for models with an increasing number of unknown templates.
Differences to imperative index selection approaches in percentage points (pp)
where positive numbers indicate a disadvantage of the learned models.

Model no. Unknown templates ∆ Extend ∆ DB2Advis ∅ RC RC relative to model no. 1

1 0 / 19 (0 %) +1.2 pp +0.2 pp 77.4 % 100 %
2 3 / 19 (16 %) +3.1 pp +2.1 pp 79.3 % 91.6 %
3 6 / 19 (32 %) +4.2 pp +3.2 pp 80.4 % 86.7 %
4 9 / 19 (47 %) +4.8 pp +3.8 pp 81.0 % 84.1 %
5 12 / 19 (63 %) +9.3 pp +8.3 pp 85.5 % 64.2 %

84

5.3. Evaluation

(ii) Impact of the Selection of Unknown Query Templates. Next, we examine
whether SWIRL’s performance depends on the particular set of query templates that are
unknown during training. The experiment is conducted with workloads based on the
TPC-DS benchmark. We chose this benchmark because its size (99 query templates)
allows for many different exclusions sets and large workloads simultaneously. In contrast
to the JOB, the training and evaluation times are significantly shorter.

For this experiment, we trained ten agents for a workload size of N = 50, while 15 %
of all of the TPC-DS’ query templates were unknown during training. The random
seeds for both the selection of the query templates that are unknown during training
and the initialization of the weights of the ANN are different for each of the ten agents.
Thereby, the set of templates excluded from training is different for each agent, allowing
for observing the impact of different training sets in Table 5.5.

Table 5.5.: Evaluating the impact of the exact selection of unknown query templates
during training. Performance in terms of relative workload processing costs,
RC := C(I∗)/C(∅), for ten models trained with different sets of unknown
(during training) templates based on different random seeds. Differences to
imperative index selection approaches in percentage points (pp) where positive
numbers indicate a disadvantage of the learned models.

Model no. ∆ Extend ∆ DB2Advis ∅ RC IDs of unknown templates

1 −0.9 pp −0.9 pp 84.3 % 26, 28, 36, 37, 39, 40, 42,
48, 52, 53, 57, 60, 82, 87

2 +1.8 pp −0.7 pp 85.7 % 12, 20, 21, 29, 52, 56, 58,
62, 63, 67, 68, 82, 87, 92

3 −1.2 pp −1.1 pp 84.7 % 05, 07, 25, 28, 36, 37, 48,
57, 63, 64, 68, 70, 81, 92

4 +1.0 pp −1.5 pp 86.0 % 05, 22, 29, 34, 36, 43, 52,
60, 65, 68, 82, 86, 87, 97

5 −1.0 pp −2.0 pp 82.0 % 07, 12, 21, 25, 36, 37, 38,
43, 48, 50, 53, 55, 57, 69

6 +0.2 pp −0.1 pp 83.5 % 12, 20, 21, 26, 27, 28, 37,
42, 52, 60, 62, 63, 84, 86

7 +2.0 pp −0.4 pp 85.5 % 07, 21, 36, 48, 51, 62, 63,
70, 73, 82, 84, 87, 96, 97

8 +1.3 pp −0.8 pp 84.6 % 03, 12, 20, 25, 29, 33, 36,
40, 43, 50, 69, 70, 82, 87

9 +1.9 pp −0.3 pp 82.5 % 12, 22, 26, 28, 29, 34, 39,
40, 48, 53, 55, 73, 96, 97

10 +2.1 pp −0.3 pp 84.0 % 01, 05, 12, 21, 25, 28, 30,
37, 52, 53, 57, 67, 96, 99

85

5. Two Novel and Efficient Index Selection Approaches

After training, we evaluate the performance of every differently trained agent with 20
different workloads of size N = 50. The queries are drawn at random from the set of all
of TPC-DS query templates. Also, it is ensured that 20 % of these query templates are
drawn from the set of templates that were unknown during the training of the particular
agent. Query frequencies and budgets are also assigned at random.

Table 5.5 depicts the set of query template IDs that are unknown during training and
the resulting performance in terms of the relative workload costs compared to using no
indexes (RC). The achieved relative costs are compared with DB2Advis and Extend as
above. The results indicate that the performance of the trained agents does not depend on
the exact set of unknown query templates to a large degree. Furthermore, the performance
is consistent and competitive when compared with DB2Advis and Extend. The relative
costs are in the same range for all ten models. They are always better than DB2Advis’s
and sometimes better than Extend’s. The specific selection of query templates excluded
from training appears to be of minor importance if the workload, N , is sufficiently large.

5.4. Discussion and Interpretation

Our two new, efficient index selection algorithms pursue different goals: Extend determines
close-to-optimal solutions that are at least on par with state-of-the-art approaches. At the
same time, Extend finds solutions faster than its direct competitors. On the other hand,
SWIRL fills the gap between the aforementioned algorithms that identify close-to-optimal
configurations and those that determine solutions rapidly. We have shown that both
approaches achieve their goals by comparing SWIRL and Extend to three state-of-the-art
competitors with complex analytical benchmarks. In the following two subsections, we
discuss this result in more detail separately for our two algorithms.

5.4.1. SWIRL

According to the above evaluation, SWIRL fulfills the requirements stated in Section 5.2.2.
It determines comparably good (R-I) (and sometimes better) multi-attribute (R-IV) index
configurations for different budgets (R-V) and for partly unknown workloads (R-VI).
SWIRL’s index selection runtimes are lower than the runtimes of its competitors (R-II)
after a preparatory training phase. Due to its stochastic nature, there is no guarantee for
close-to-optimal solutions. At times, SWIRL performs worse than its competitors. We
argue that this drawback is acceptable given the achieved solution time advantage.

SWIRL featurizes the workload’s query plans to understand which operations of a
query benefit from which index. Naturally, this approach is influenced by the data, i.e.,
query classes, seen during training. If unknown queries contain too many previously

86

5.5. Summary and Future Work

unseen operators, it is more difficult for the agent to associate them with index candidates
and optimize decisions. In such cases, the training data should be improved. However,
our experiments have shown that the exact selection of training queries is of minor
importance if the workload size is sufficiently large.

In addition, invalid action masking has proven to be effective in reducing the number
of applicable actions, thereby enabling acceptable training times (R-III). Compared to
the solution runtimes (for a single problem instance) of state-of-the-art algorithms, the
observed training durations are still significant. Consequently, there is a clear tradeoff
between long, a priori training durations and low runtimes during application. For this
reason, the use of RL-based index selection approaches is not reasonable in all scenarios,
but only where the repeated determination of index configurations in similar scenarios
is necessary, e.g., in SaaS scenarios where many systems process similar workloads, as
motivated in the beginning of this chapter.

5.4.2. Extend

In other scenarios where time-consuming a priori training is not an option or where
workloads vary, our evaluations present evidence that Extend is a reasonable alternative.
Extend dominates all competitors in terms of the quality of the identified solutions.
Furthermore, DTA, which identifies close-to-optimal solutions similar to Extend, is clearly
outperformed in index selection runtime. Additionally, as discussed in Section 5.1.1,
Extend allows for simple modifications and extensions due to the simplicity of its core
algorithm. For instance, anytime capabilities — as proposed by the DTA algorithm —
can be easily added to Extend, as successfully demonstrated above.

In contrast to its competitors, Extend does not require the index candidate set to be
limited to achieve reasonable runtimes. Its constructive approach, which creates index
candidates by extending previously selected indexes, is a flexible alternative. Therefore,
Extend can also determine indexes of arbitrary width without large additional runtime
penalties, while the admissible index width, Wmax, has a significant impact on the index
selection runtime for most of its competitors. Increasing Wmax inflates their candidate
sets, which typically increases index selection runtime, as discussed in Section 4.2.5.

5.5. Summary and Future Work

In this chapter, we have presented two novel algorithms for the fifty-year-old index
selection problem. Both techniques apply new approaches for handling the two main
challenges of index selection: the ample solution space and index interaction, thereby
overcoming the shortcomings of their competitors, as schematically depicted in Figure 5.9.

87

5. Two Novel and Efficient Index Selection Approaches

DB2Advis [Val+00]
DRLinda [SGL20a]
DTA [CN20]
Extend
SWIRL

Solution Quality

Functionality

Preparation TimeScalability (#Candidates)

Selection
Runtime

Figure 5.9.: Schematic comparison of index selection approaches. Our approaches comple-
ment each other and overcome the weaknesses of state-of-the-art approaches.
Functionality includes, e.g., support for multi-attribute indexes or budget
constraints. Larger distance to the center is better.

Instead of working with a fixed — and potentially large — set of index candidates,
Extend constructs index candidates on demand during operation. With this approach,
Extend keeps the solution space small at any given point in time without permanently
limiting it. Thereby, the imperative Extend algorithm identifies index configurations with
better performance than state-of-the-art algorithms.

SWIRL takes an alternative approach to handle the challenge of index interaction. In
general, state-of-the-art approaches re-evaluate the benefit of index candidates every time
a candidate is chosen to incorporate index interaction effects. In contrast, SWIRL inter-
nalizes the knowledge about dependencies between index candidates (index interaction)
during training. At application time, the underlying ANN enables deriving solutions for
arbitrary inputs without costly re-evaluations. Thus, SWIRL identifies solutions orders
of magnitude faster than state-of-the-art approaches.

In contrast to other RL solutions, SWIRL supports multi-attribute indexes and
generalizes for handling (partly) unknown workloads. While invalid action masking
appears to be an effective technique for efficient training, the training procedure can take
up to a few hours and be dozens of times higher than solution times of state-of-the-art
algorithms. Hence, our two new approaches complement each other: it is most reasonable
to apply SWIRL in scenarios where many index selection problems must be solved,
because it trades off fast solution runtimes against elevated training durations. On the
other hand, Extend can be applied flexibly without preparatory training procedures to
identify close-to-optimal solutions.

88

5.5. Summary and Future Work

Future Work. There are interesting directions for future work for index selection in
general and our approaches in particular. Our approaches could be extended to integrate
further aspects of physical database design, such as automatic compression [BJ19] or
partitioning [HBR20] selection, thereby allowing such decision problems to be considered
together, rather than independently [KS20]. This joint optimization [RSB21] could
also profit from investigating how the above insights regarding index selection could be
transferred to other physical design challenges [ACN00].

We also envision specific ideas for future work for SWIRL. Currently, SWIRL is trained
for a specific schema and the training times are significant. Workloads that are highly
different from the training workloads might cause suboptimal results. However, several
techniques could overcome these challenges. For example, transfer learning [PY10] or its
extreme variant zero-shot learning [HB22] could speed up the retraining of existing models
for different schemas. Another idea is to seed the agent with expert decisions [EKM04]
obtained for training workloads to make the training procedure more efficient. Such
expert decisions could originate from state-of-the-art algorithms, such as DTA or Extend.
Additionally, different workload representations, e.g., with word2vec [JH18; Mik+13] or
other encodings [SL19], could lead to more generalization.

For index selection in general, e.g., robustness and risk aversion [SH20] are interesting
aspects. Such aspects are often demanded for the productive use of unsupervised
approaches. In addition, even though there are no conceptual limitations, we have not
evaluated SWIRL for transactional workloads yet. While their queries are usually less
complex [AR18], such workloads might pose different challenges, e.g., index maintenance
costs [Gra06].

89

Part II.

Unsupervised Database Optimization:
Data Dependency-Driven

Query Optimization

91

6
Background: Data Dependency-Driven

Query Optimization

In the first part of this thesis, we investigated unsupervised index selection approaches
that aim to improve system performance. In the following second part, we examine how
data dependencies, which are data-inherent properties, can be used for query optimization.

In this chapter, we provide the common terminology and technical background that
are necessary to understand the techniques and classifications in the context of data
dependency-based query optimization. Related work is presented thereafter as a survey on
data dependency-driven query optimization techniques in Chapter 7. The unsupervised
aspect is reflected in the identification, validation, and application of the required data
dependencies, which will be discussed in Chapter 8.

The following two sections of this chapter summarize the foundations in the area of
query optimization (Section 6.1) and the area of data dependencies (Section 6.2). When
we introduce the four data dependency types considered in this thesis in Section 6.2, we
also discuss automatic discovery and maintenance algorithms of data dependencies, as
these make data dependencies more generally available and, hence, can be seen as an
enabler for the dependency-based query optimization techniques.

Substantial parts of this chapter have been published in a journal paper [KPN22]. The
thesis author conducted the contained literature survey, developed the classification of
optimization techniques, and prepared the majority of the original draft. Papenbrock and
Naumann supported the survey’s design, contributed to the original draft, and improved
the material and its presentation.

6.1. Query Optimization

Relational database management systems (DBMSs) are usually queried with SQL in
a declarative way. The query engine of a DBMS, then, transforms these queries into
physical query execution plans. In this process, query optimization is the task of finding an

93

6. Background: Data Dependency-Driven Query Optimization

optimal (or at least very good) physical execution plan with respect to the plan’s execution
time. It is crucial to find efficient query plans, because the execution times of different
physical plans (that yield identical results) for the same query can vary by orders of
magnitude [Ioa96] and “the runtime system alone could never get that good performance
without an optimizer” [Neu14, p. 1739]. In most systems, the query optimization process
is handled by an interplay of three main activities: (i) cost-independent transformation
(also referred to as query rewriting), (ii) cardinality and cost estimation, (iii) and cost-
based transformation. In the following, we briefly outline how these three components
operate and how the optimization techniques presented in the following survey relate to
them. Later, in Chapter 7, we will use the three optimization activities to classify the
various dependency-driven optimization techniques.

Note that not all systems follow this division explicitly. Cascades-style optimiz-
ers [Gra95], for example, take a combined approach. The data dependency-based query
optimization techniques presented below can still apply to such systems.

Cost-independent transformation describes the process of rewriting a query into
a semantically equivalent but presumably more efficient query via static, rule-based
transformations [PHH92]. The required rules are characterized by being generally
applicable instead of being cost-based, that is, they generally24 produce superior, more
efficient query formulations [Pit18]. Examples for such rewrites are the resolution of views,
the removal of unnecessary DISTINCT clauses and predicate push-downs. For several
rewrites, the presence of certain data dependencies, such as information on keys, is a
prerequisite to produce semantically equivalent plans. Hence, many of the dependency-
based optimization techniques address query cost-independent transformations.

Cardinality and cost estimation serve to estimate the cost of a query plan a priori.
Cost is an indispensable metric to compare different plan alternatives for cost-based trans-
formations. Via cost models, a query optimizer estimates the expected cost for a certain
query plan and its individual operators based on cardinality information, logical operator
complexities, and hardware-specific costs [Man18]. Cardinality information is usually
derived from statistics, e.g., histograms or samples. According to Leis et al. [Lei+15],
estimation errors are often responsible for suboptimal plans. Data dependencies can
be applied during cardinality and cost estimation to obtain more accurate cardinality
estimates or estimates for otherwise missing cardinalities; in this way, data dependencies
serve to mitigate estimation errors.

Cost-based transformation is the process of improving physical query plans via cost-
driven transformations that depend on the database instance at hand [JK84a]. Based

24In theory, downstream cost-based transformations could produce more efficient plans based on the
unmodified version. This behavior is unlikely and depends on the specific system and query.

94

6.2. Data Dependencies

on transformation rules, the optimizer repeatedly generates different plan alternatives,
then requests estimates for the plans’ costs from the aforementioned cost models based
on concrete cardinality information, and finally chooses the most efficient plan based on
these estimated costs. Examples for query plan optimizations are predicate reordering,
the ordering of join operators, and the selection of execution strategies for operators
with different implementations (e.g., hash-, sort-, or index-based joins). It is apparent
that the success of such plan optimizations strongly depends on the underlying data, the
specific query, and the query’s parameter values.

Data dependency information can be applied also in the cost-based transformation
phase to generate more efficient plans. A table scan operation, for instance, usually scans
the entire table sequentially. With the information that the data is sorted and in-memory,
however, the optimizer can instruct the execution engine to execute it as a binary search;
and, with functional dependency information, it can substitute the scan attributes with
other attributes that are potentially more efficient to scan. Please note that some of
the techniques presented in this thesis might require the extension of existing operators
or even the implementation of alternative operators, such as binary scans, joins that
terminate early, or the caching of subquery results.

6.2. Data Dependencies

Data dependencies usually provide information about multiple attributes, sometimes
even across different relations, and how they relate to each other. According to Chapter 7,
the four most popular types of data dependencies for query optimization based on the
number of optimizations that use data dependencies are unique column combinations,
functional dependencies, order dependencies, and inclusion dependencies. In this chapter,
we give a brief overview of these four types of data dependencies and provide their formal
definitions. Afterward, we discuss particular properties of data dependencies that are
relevant for query optimization.

Traditionally, data dependencies stem from data modeling and schema design, e.g.,
3NF synthesis, or BCNF decomposition, but data profiling identifies data dependencies
from the data themselves, independently of such processes. Because the discovery of
data dependencies (of any type) is NP-complete [Abe+18] and sometimes even W[2]- to
W[3]-complete [DFR98], mining data dependencies is challenging. For this reason, we
also provide pointers to the most recent automatic discovery and maintenance algorithms,
which in practice are sufficiently fast to be useful in the context of query optimization on
real-world datasets. An introductory overview of data profiling techniques can be found
in [Abe+18], while a comprehensive survey is given in [AGN15].

95

6. Background: Data Dependency-Driven Query Optimization

6.2.1. Unique Column Combinations (UCCs)

A unique column combination is a set of attributes whose projection on some relational
instance has no duplicate entry — all entries are unique [Hei+13]. Thus, UCCs functionally
determine all other attributes and, hence, are sometimes denoted as candidate keys [SS96].

Examples for UCCs are the combined attributes firstname, lastname, address, date-of-
birth in a person table, or an auto-incremented id column that is by its definition a UCC.
It is worth noting that most relational database management systems recommend the
existence of at least one key per relation, i.e., for such systems, we can expect at least
one UCC in every relational instance that can potentially be utilized to optimize queries.

In query optimization, UCCs serve to avoid unnecessary duplicate eliminations, i.e.,
DISTINCT calls, obtain improved cardinality estimations, and optimize joins. Due to the
relevance of keys in the relational model, unique column combinations are an old and
well-established concept in database theory [LO78].

Definition 1 (Unique column combination). Given a relational instance r over a relation
R, we formally say that a column combination X ⊆ R is unique (UCC) for R, iff ∀ri, rj ∈
R, i ̸= j : ri[X] ̸= rj [X]. A UCC is said to be minimal, if no subset of that UCC exists for
which the above constraint also holds; hence, ∀X ′ ⊂ X : ∃ri, rj ∈ R, i ̸= j : ri[X] = rj [X].

Origin of UCCs. In general, there are four ways to introduce uniqueness in relational
databases: (i) Database users and applications can explicitly produce uniqueness when
processing data by utilizing SQL’s DISTINCT operation; other SQL clauses, such as EXCEPT,
UNION, INTERSECT, or GROUP BY may also create uniqueness during query execution. In
such cases, query optimizers can infer that the data will be unique at a certain point of
the query plan. (ii) Most relational database systems allow specifying unique constraints
via SQL DDL, such as UNIQUE or KEY that automatically enforce uniqueness on certain
attributes or attribute sets. (iii) Columns or column combinations can be unique by their
very nature, such as UUIDs in computer systems or passport_number for the citizens of a
particular country. (iv) UCCs can occur by chance25, especially for column combinations
containing many columns.

Discovery and Maintenance of UCCs. Unique column combinations, especially
minimal ones, are neither obvious nor simple to determine, as UCC discovery is a prob-
lem in O(2m) for datasets with m attributes [Abe+18; Liu+12]. Therefore, efficient,
automatic UCC discovery algorithms exist, which can serve these unique column com-
binations to a query optimizer. Examples of such algorithms are Ducc [Hei+13], and

25In this context, chance means that dependencies do not originate from data modeling or semantics but
occur rather randomly due to a large value codomain.

96

6.2. Data Dependencies

HPIValid [Bir+20]. With the incremental profiling algorithm Swan [AQN14], unique
column combinations can be incrementally maintained.

While UCCs are a special case of functional dependencies, which we discuss below,
specialized UCC discovery algorithms are more efficient. Thus, we discuss the use in
query optimization separately.

6.2.2. Functional Dependencies (FDs)

Real-world data often follow semantics according to which values in certain attributes
functionally determine values in other attributes. Hence, functional dependencies indicate
relationships between database attributes [Cod71]. An FD is a statement X → Y ,
expressing that any two records in a relational instance r that have the same values in
the attributes X ⊆ R also have the same values in the attributes Y ∈ R; the attributes
in X functionally determine the attributes in Y .

For example, for a relation with address data, the functional dependency zip, street_name,
latitude → city should hold; another relation about planets should feature the functional
dependency diameter→ circumference.

Functional dependencies are popular properties, because they serve many use cases,
including schema normalization, consistency checking, and data exploration. In query
optimization, one can use FDs mainly to remove unnecessary attributes in various SQL
operations and to improve cardinality estimates by transferring these estimates via FDs
between sets of attributes.

Definition 2 (Functional dependency). A functional dependency X → A of a relation
R holds in a relational instance r over R, iff ∀s, t ∈ r : s[X] = t[X]⇒ s[A] = t[A]. The
left-hand-side (LHS) attributes X are called determinant and the right-hand-side (RHS)
attribute A is called dependent. Multiple FDs with the same determinant attributes X

can be grouped and written as X → Y , with Y = ⋃
Ai.

Some FDs have special properties. An FD X → A is called minimal if no attribute
B ∈ X exists such that X \ B → A is still a valid FD. An FD is called non-trivial if
A /∈ X. Although minimality and non-triviality play an important role in data profiling,
these two properties have no special meaning for query optimization.

A UCC X ⊆ R induces FDs on all attributes that are not part of the UCC: ∀A ∈
R \X : X → A. Thus, all optimizations that we introduce for functional dependencies
later on in Chapter 7 are also applicable to unique column combinations.
Origin of FDs. In general, functional dependencies exist by the very nature of the un-
derlying data: they represent real-world constraints, semantic relationships, and physical
laws that are reflected in the data. Functional dependencies can also be artificially intro-
duced to datasets, e.g., with surrogate keys, which by definition functionally determine

97

6. Background: Data Dependency-Driven Query Optimization

all other attributes. In addition, after filtering a relation with an equality predicate on A,
the FD X → A holds for every X [Pau00, p. 68]. Paulley explains how scalar functions
can generate FDs and discusses for all relational operators which FDs are valid on their
output, given a set of FDs on their input [Pau00, pp. 71–104]. Very many further FDs
exist coincidentally on a given dataset. While they carry no semantic meaning, they can
nevertheless be exploited by query optimization techniques.
Discovery and Maintenance of FDs. Functional dependencies are usually not
provided with the data and determining them manually is hard. More specifically, the FD
discovery problem is in O(2m · (m

2)2) for datasets with m attributes [Abe+18; Liu+12].
Therefore, a variety of automatic FD discovery algorithms, such as Tane [Huh+99],
Fdep [FS99], and HyFD [PN16] have been proposed. The surveys by Liu et al. [Liu+12]
and Papenbrock et al. [Pap+15a] present and compare different FD profiling techniques
from both a theoretical and a practical perspective, respectively. To discover FDs
incrementally or maintain the FDs of a dynamic dataset over time, various incremental
profiling algorithms exist [Car+19; Sch+19; Wan+03].

6.2.3. Order Dependencies (ODs)

An order dependency (OD) is a statement of the form X 7→ Y 26 specifying that ordering
a relational instance r by the attribute list X ⊂ R also orders r by the attributes Y ⊂ R.
Given an OD, we thus know how order decisions on certain attributes propagate to orders
of other attributes; this knowledge can be used to optimize order decisions.

To give an intuition, in a date table, the OD month 7→ quarter holds, but the inverse
OD quarter 7→ month is not valid. Another typical example is salary 7→ taxrate. One can
find many ODs in real-world datasets [SP22]. Order dependencies play an important role
in query optimization because many relational operators use sorting or exploit already
sorted data for their execution. More specifically, ODs help in selecting suitable operator
implementations and support building efficient query plans. They can also be used to,
for instance, effectively rewrite, remove, or inject ORDER BY clauses.

Ginsburg and Hull were the first to formally introduce the concept of order dependen-
cies [GH83; GH86]. In this thesis, we use the notation of Szlichta et al. [SGG12b].

Definition 3 (Order dependency). For two lists of attributes X and Y of a relation R,
the order dependency (OD) X 7→ Y holds in relation instance r over R, iff ∀s, t ∈ r :
s[X] ⪯ t[X]⇒ s[Y] ⪯ t[Y].

Note that the comparison operator ⪯ compares the X and Y values attribute-wise,
i.e., lexicographically via ≤ with the first attribute in each list being the most significant
26Bold symbols X indicate lists, whereas standard symbols X indicate sets.

98

6.2. Data Dependencies

one. Following SQL semantics, the comparison is data type specific, which means that
it is numerical for numbers and lexicographical for strings. In principle, ODs support
different comparators including ≺, ⪯, =, ⪰, and ≻ as well as combinations of these
comparators. An OD with the comparator =, for example, is equivalent to a functional
dependency [SGG12b] and ∀s, t ∈ r : s[X] ⪯ t[X] ⇒ s[Y] ⪰ t[Y] means that an
ascending X order implies a descending Y order. While the optimizations presented
below are often extendable to other comparator types, we assume the comparator to be
⪯ (⪯7−→), if not stated differently. Please note that ⪯ induces a total ordering.
Origin of ODs. There are three ways to introduce order in relational data: first, users
can explicitly create order by specifying an ORDER BY clause; second, some database
operations produce ordered results as a side-effect of their implementation, e.g., sort-
merge joins or sort-based aggregates; third, data can also be naturally ordered by, for
instance, timestamp or auto-incremented surrogate key attributes during data ingestion.
Discovery and Maintenance of ODs. The discovery problem for ODs (in set-based
notation) is in O(2m) with m being the number of attributes in the dataset [Szl+17].
However, automatic discovery algorithms, such as FastOD by Szlichta et al. [Szl+17]
or DISTOD by Schmidl et al. [SP22], are efficient in practice, because they use clever
search space pruning and most ODs in real-world datasets actually appear relatively early
in the discovery process. Similar to the other types of data dependencies, the incremental
discovery has also been studied for ODs. For example, a recent incremental discovery
algorithm for point-wise ODs is IncPOD [Tan+20].

6.2.4. Inclusion Dependencies (INDs)

If all values in the projection of some attribute combination X also occur in the projection
of some attribute combination Y (of the same or a different relation), then an inclusion
dependency exists between X and Y . If, furthermore, the referenced attribute combination
is a key, i.e., a UCC, for its relation, the inclusion dependency is a foreign-key candidate

— in other words, INDs are prerequisites for a foreign-key relationships. While relational
database keys serve to identify entities within a single table, foreign-keys link entities
across tables to connect tables and indicate join paths. For example, the three inclusion
dependencies

click.website ⊆ website.url
sales.item ⊆ items.id

{ship.lname, ship.bdate} ⊆ {addr.name, addr.dob}

might represent foreign-key relationships. Such inclusion dependencies can be used

99

6. Background: Data Dependency-Driven Query Optimization

in data integration and data linkage scenarios to connect tables across multiple data
sources by suggesting join paths. Inclusion dependencies are, however, also useful if
they do not describe foreign-key relationships. The inclusion dependency nails.supplier
⊆ screws.supplier, for example, asserts that all nail suppliers also supply screws without
supplier being a key in screws. Such general INDs can be used for data exploration and,
as we will show in Section 7.5, query optimization.

Our formal definition of inclusion dependencies follows the syntax of Casanova et
al. [CFP82] and De Marchi [MLP09]:

Definition 4 (Inclusion dependency). An inclusion dependency (IND) Ri[X] ⊆ Rj [Y]
is valid for the two relational instances ri and rj of schemata Ri and Rj and the attribute
lists X and Y with cardinalities n = |X| = |Y | iff ∀ti ∈ ri,∃tj ∈ rj : ti[X] = tj [Y]. We
write X ⊆ Y or Ri.X ⊆ Rj .Y if it is clear from the context that an IND is meant; in
these cases, the projection is implicit.

Note that the dependent (X) and referenced (Y) part denote attribute lists for INDs,
i.e., their attribute order may differ from the order in R and they may contain repeated
attributes. By removing attributes with the same indices from the lists X and Y , we
can derive generalizations X ′ ⊆ Y ′ with X ′ ⊂X and Y ′ ⊂ Y from a valid IND X ⊆ Y

that are also valid. This is important for query optimization, because a query might not
contain all attributes of a known IND but a subset that also forms a valid IND.

Origin of INDs. Relational databases contain INDs, because data models representing
real-world data often rely on relationships between tables, and INDs are a prerequisite
for foreign-key relationships. Most DBMS implementations allow users to specify foreign
keys, e.g., via SQL’s FOREIGN KEY X REFERENCES Y, which can also specify the behavior
if a tuple is NULL in one of the key’s attributes via MATCH (FULL|PARTIAL|SIMPLE).

Discovery and Maintenance of INDs. Inclusion dependencies are different from the
previously mentioned types of dependencies as they can span across multiple relations,
the attribute order in the dependency does matter, and the position of value combinations
within the sets of left- and right-hand-side value combinations does not matter. For this
reason, their discovery is in O(2m ·m!) with m! being a simplification [Abe+18; Liu+12]; it
is even one of only few real-world W [3]-complete problems [BFS17] and, hence, particularly
hard. Nevertheless, many data profiling algorithms, such as BINDER [Pap+15b] or
SINDY [KPN15], are able to discover INDs in most relational datasets, as experimentally
surveyed in [Dür+19]. The maintenance of INDs for dynamic datasets is possible with
incremental discovery algorithms, such as S-INDD [SM17].

100

6.2. Data Dependencies

6.2.5. Properties of Data Dependencies

Dynamic datasets change through inserts, updates, and deletes of records. For this reason,
we have already referenced some incremental and dynamic data profiling algorithms
that are able to maintain the knowledge about valid data dependencies over time. Up-
to-dateness is, however, only one of many properties of data dependencies. We briefly
discuss other properties and their relevance for query optimization.

Minimality and Completeness. All state-of-the-art data profiling algorithms mine
only minimal (or maximal) data dependencies, because the sets of all valid dependencies
are usually extremely large. Query optimizers, however, might require non-minimal
(or non-maximal) dependencies, which is why these dependencies need to be inferred
from discovered dependency sets. In practice, a query optimizer will need to deal
with incomplete data dependency sets. Fortunately, data dependencies follow certain
axiomatizations that enable the simple generation of further dependencies. Functional
dependencies, for example, follow Armstrong’s axioms (reflexivity, augmentation, and
transitivity [Arm74]) that generate additional, also valid FDs from existing FDs. We refer
the interested reader to the survey of data dependencies for query optimization [KPN22]
for more details on minimality and completeness of data dependencies. Later, in Chapter 8
we present our approach on unsupervised data dependency discovery that also focuses on
the challenge of discovering only relevant dependencies.

Approximation. Approximate, partial, and relaxed dependencies are ones that are not
valid for the entire dataset [CDP16; Huh+98]. They are produced by approximate (and
usually more efficient) discovery algorithms and arise from exact dependencies on dynamic
datasets if the exact dependencies are not maintained. When used for query optimization,
approximate dependencies can cause incomplete and incorrect results. Hence, they are in
general not usable for query optimization unless they are implemented in approximate
query processing systems [NK04], other data structures compensate their optimization
mistakes [KBS20], or they are used only for cardinality and cost estimation optimizations.

Conditions. Data dependencies are sometimes tied to conditions that limit their scope.
A conditional dependency [Boh+07] holds on only a particular subset of tuples for which
a specific condition is true. Such dependencies can be used for query optimization
in the same way as unconditional dependencies if the query’s filter condition (WHERE
clause) is at least as strict as the condition of the dependencies. In summary, all query
optimization techniques surveyed in this thesis require a set of exact27 data dependencies
(or constraints) as input, regardless of whether these constraints are given by the schema
or have been discovered from the data.
27Optimizations applied during cardinality and cost estimation can also utilize approximate dependencies.

101

6. Background: Data Dependency-Driven Query Optimization

Null Semantics. Relational database systems often use NULL values to indicate
missing information. The comparison of NULL values, i.e., NULL = NULL evaluates to
unknown [Cod75], which is sometimes effectively treated as TRUE or FALSE in SQL. For in-
stance, DISTINCT, GROUP BY, and ORDER BY statements as well as set operations evaluate
NULL = NULL to TRUE while filters via WHERE and JOIN statements evaluate to unknown
which, in turn, does not satisfy the predicate. So whenever a dataset may contain NULL
values and we use a data dependency for query optimization, then this dependency needs
to be true under the same NULL semantics as the SQL operator that is being optimized.
For example, a DISTINCT can be removed only with a UCC that uses NULL = NULL
semantics and a JOIN-removing IND needs to use NULL ̸= NULL. Because we can configure
the NULL semantics in most data profiling algorithms, both semantics are technically
available, and the optimizer can pick the required ones. Unfortunately, NULL semantics
are hardly considered in the surveyed literature, which is why we add this information
where it is relevant below. To shorten the individual discussions, we define that, if not
stated otherwise, all required data dependencies use the NULL = NULL semantics, which
is not only the most commonly required interpretation but also the default configuration
for most dependency discovery and maintenance algorithms.

Note that both semantics NULL = NULL and NULL != NULL are practical NULL inter-
pretations. While this practical interpretation is very useful for our objective of query
optimization, a more accurate interpretation of NULL values for data dependencies is
actually no information [AM86], so that the validity of a dependency depends on whether
we can find a substitution for all NULL values that makes the dependency true (possible
world) or we find that any substitution of all NULL values makes the dependency true
(certain world) [KL16; KLZ15]. Albeit interesting for schema design, semantic reasoning,
and many other use cases, possible and certain world interpretations are not relevant for
the surveyed query optimization techniques.

102

7
A Survey of Data Dependency-Driven

Query Optimization

Query processing can be accelerated through advancements in different areas, such as
utilizing new hardware technologies, improved implementations of database operators,
unsupervised physical database design techniques (cf. Part I), or sophisticated query plan
modifications as part of the query optimization process. In the following, we consider how
data dependencies can be utilized for more efficient query processing. More specifically,
we provide a comprehensive survey of methods that exploit data dependencies during
query optimization and execution to process relational database queries more efficiently.

Most of the data dependency-driven methods discussed in the following have been
known for years, but many of them are rarely implemented in existing database systems.
One reason for not using data dependencies in modern query processing engines might
be that the required data dependencies of a given dataset are often unknown: they
have never been specified, are challenging to discover, and can be expensive to maintain.
However, the latest developments in data profiling tackle these issues for various types
of data dependencies [AGN15; Bir+20; KPN15; Pap+15b; PN16; SP22]. The fact that
data profiling algorithms usually discover all valid dependencies in a given dataset is
considered later by our workload-driven discovery approach in Chapter 8. Combining
modern data profiling algorithms with our workload-driven discovery approach increases
the availability of data dependencies for query optimization.

In many use cases, it is crucial to distinguish semantically meaningful dependencies from
accidentally valid, i.e., spurious ones. However, for query optimization, the distinction
between genuine and spurious dependencies is irrelevant: if a data dependency is valid,
it can be used for optimization — regardless of its genuineness or future correctness.

In the literature, data dependency-driven query optimization techniques have only
been partially investigated. An extensive examination of order and uniqueness prop-
erties in the context of operators of the relational algebra has been given by Paulley’s
thesis [Pau00]. This chapter incorporates parts of his findings but also further and more

103

7. A Survey of Data Dependency-Driven Query Optimization

recent research: we include numerous additional optimization techniques and additional
types of dependencies. To make the techniques more accessible and facilitate future
implementations, we provide concise, intuitive descriptions and links to detailed material.

Substantial parts of this chapter were published in a journal paper [KPN22]. The thesis
author’s detailed contributions to this paper were discussed at the beginning of Chapter 6.

In this chapter, Section 7.1 provides an overview and classifications for the optimization
techniques presented in Table 7.1. The table summarizes the optimizations for different
data dependency types in different application areas of the query optimization process.
This table also serves as a reference for all of the following descriptions of optimization
techniques. Sections 7.2 to 7.5 subsequently describe the proposed optimizations, including
examples where appropriate, for all four dependency types. Section 7.6 discusses further
optimization opportunities before Section 7.7 provides a short summary of this chapter,
concluding remarks, open research questions, and ideas for future work.

7.1. Classification of Dependency-Driven Query Optimization
Techniques

This section provides an overview of all optimizations that are explained in detail in
the following Sections 7.2 to 7.5. The optimization technique matrix in Table 7.1 shows
which dependencies enable a particular optimization and which query optimization
activity is affected by each optimization. More specifically, the matrix classifies all
dependency-driven query optimization techniques with respect to three dimensions:

i. Dependency type: Dependency-based query optimization techniques are tied to
dependency types because a particular optimization is only enabled if a dependency
of the required type exists. Additionally, the discovery and maintenance approaches
differ significantly for different dependency types. For these reasons, we chose the
dependency type — UCC, FD, OD, or IND — as the main classification dimension.

ii. Relational operator: Every optimization targets a particular operator or set of
operators. For this reason, we use the operators of the relational algebra as second
classification criterion. In practice, most optimizations target only one operator.
For those optimizations that affect multiple operators, we show the most relevant
operator, which is usually the most expensive one.

iii. Query optimization activity: The optimizations are assigned to the query optimization
activity that is mainly affected by it. Hence, we use the three activities discussed in
Section 6.1 — cost-independent transformation, cost-based transformation, as well
as cardinality and cost estimation — as the third classification dimension.

104

7.1. Classification of Dependency-Driven Query Optimization Techniques

Ta
bl

e
7.

1.
:P

os
sib

le
op

tim
iz

at
io

ns
ca

te
go

riz
ed

by
(i)

th
e

ex
am

in
ed

da
ta

de
pe

nd
en

ci
es

,(
ii)

th
e

ar
ea

of
ap

pl
ic

at
io

n,
i.e

.,
op

er
at

or
so

ft
he

re
la

tio
na

la
lg

eb
ra

,
an

d
w

he
re

po
ss

ib
le

(ii
i)

th
e

qu
er

y
op

tim
iz

at
io

n
ac

tiv
ity

th
at

is
aff

ec
te

d
by

th
e

op
tim

iz
at

io
n,

w
hi

ch
is

in
di

ca
te

d
by

ba
ck

gr
ou

nd
co

lo
ra

nd
sy

m
-

bo
l:

co
st

-b
as

ed
pl

an
tr

an
sf

or
m

at
io

ns
(†

),
co

st
-in

de
pe

nd
en

t
tr

an
sf

or
m

at
io

ns
/

re
w

rit
in

g
(∗

),
ca

rd
in

al
ity

an
d

co
st

es
tim

at
io

n
(‡

).
Fo

r
op

tim
iz

at
io

ns
th

at
ha

ve
no

t
be

en
sc

ie
nt

ifi
ca

lly
pu

bl
is

he
d,

w
e

m
en

tio
n

th
e

se
ct

io
n

w
he

re
th

is
op

tim
iz

at
io

n
is

ex
pl

ai
ne

d.
A

pp
lic

at
io

n
ar

ea
U

ni
qu

e
C

ol
um

n
C

om
bi

na
ti

on
s

(S
ec

.
7.

2)
F

un
ct

io
na

l
D

ep
en

de
nc

ie
s

(S
ec

.
7.

3)
O

rd
er

D
ep

en
de

nc
ie

s
(S

ec
.

7.
4)

In
cl

us
io

n
D

ep
en

de
nc

ie
s

(S
ec

.
7.

5)

Jo
in

•
Sp

ur
io

us
-f

re
e

ba
ck

-j
oi

ns
[Y

L
87

]
∗

•
Se

m
ij

oi
n

tr
an

fo
rm

at
io

n
[M

yS
a]

∗
•

P
ip

el
in

e
w

it
h

gr
ou

pi
ng

[D
ay

87
;

Y
an

95
]†

•
In

vi
si

bl
e

jo
in

[A
M

H
08

]
†

•
Si

m
pl

ifi
ca

ti
on

/
av

oi
da

nc
e

[K
Y

83
]

∗
•

C
om

pl
ex

it
y

re
du

ct
io

n
(S

ec
.

7.
3.

2)
∗

•
Se

lf
-j

oi
n

av
oi

da
nc

e
[A

H
V

95
]

∗
•

P
la

n
ge

ne
ra

ti
on

[E
F

M
16

]
†

•
Jo

in
av

oi
da

nc
e

[S
zl

+
11

;
Sz

l+
14

]
∗

•
P

ip
el

in
e

w
it

h
gr

ou
pi

ng
[C

S9
4;

G
ra

93
]

†

•
A

vo
id

so
rt

fo
r

so
rt

-m
er

ge
-j

oi
ns

[G
H

K
92

;
P

au
00

;
SS

M
96

]
†

•
A

tt
ri

bu
te

su
bs

ti
tu

ti
on

(S
ec

.
7.

4.
2)

†
•

P
ip

el
in

e
in

de
x

sc
an

w
it

h
jo

in
[G

ra
93

]
†

•
Jo

in
el

im
in

at
io

n
[C

he
+

99
;

JK
84

b]
∗

•
Su

bs
ti

tu
te

re
la

ti
on

s
[D

P
T

06
]

†

•
A

vo
id

se
m

ij
oi

n
re

du
ct

io
ns

(S
ec

.
7.

5.
1)

†
•

A
cc

ur
at

e
ca

rd
in

al
it

ie
s

[I
B

M
22

b]
‡

Se
le

ct
io

n
•

E
ar

ly
ab

or
t

(S
ec

.
7.

2.
6)

∗
•

A
cc

ur
at

e
ca

rd
in

al
it

ie
s

(S
ec

.
7.

2.
6)

‡
•

E
ar

ly
ab

or
t

(S
ec

.
7.

3.
3)

∗
•

Su
bs

ti
tu

te
at

tr
ib

ut
es

[C
he

+
99

;
K

im
+

09
]†

•
E

st
im

at
io

ns
w

/o
in

de
p

en
de

nc
y

as
su

m
p-

ti
on

[C
G

R
01

;
Il

y+
04

;
SS

Y
98

;
T

he
d]

‡

•
U

se
bi

na
ry

se
ar

ch
[P

au
00

]
†

G
ro

up
in

g
&

A
gg

re
ga

te
fu

nc
ti

on
s

•
G

ro
up

in
g

is
re

du
nd

an
t

[C
S9

4]
∗

•
A

cc
ur

at
e

ca
rd

in
al

it
ie

s
(S

ec
.

7.
2.

6)
‡

•
R

ed
uc

e
at

tr
ib

ut
es

[B
N

E
13

;
SG

G
12

b]
∗

•
Si

m
pl

if
y

MI
N,

MA
X,

ME
DI

AN
[O

N
e9

4;
P

au
00

]∗

•
So

rt
-b

as
ed

gr
ou

pi
ng

[P
au

00
;

SS
M

96
;

Sz
l+

14
;

Y
L

94
;

Y
L

95
]

†

P
ro

je
ct

io
n

&
D

is
ti

nc
tn

es
s

•
A

vo
id

DI
ST

IN
CT

[P
au

00
;

P
L

94
;

P
H

H
92

]
∗

•
D

is
ti

nc
tn

es
s:

se
e

gr
ou

pi
ng

[W
ed

92
]

∗
•

Si
m

pl
ifi

ca
ti

on
[D

D
92

]
∗

•
E

st
im

at
e

pr
oj

ec
ti

on
s

[G
G

82
]

‡

•
D

is
ti

nc
tn

es
s:

se
e

gr
ou

pi
ng

†

So
rt

in
g

•
R

ed
uc

e
at

tr
ib

ut
es

(S
ec

.
7.

2.
6)

∗
•

U
ns

ta
bl

e
so

rt
in

g
(S

ec
.

7.
2.

6)
∗

•
R

ed
uc

e
at

tr
ib

ut
es

[C
he

+
99

;
SS

M
96

;
SG

G
12

b]
∗

•
R

ed
uc

e
at

tr
ib

ut
es

[S
G

G
12

a;
SG

G
12

b;
Sz

l+
14

]
∗

•
A

vo
id

so
rt

[G
ra

93
;

P
au

00
]

∗
•

OR
DE

R
BY

w
it

h
in

de
x

[S
zl

+
14

]
∗

•
M

ai
n-

m
em

or
y

so
rt

s
[S

zl
+

14
]

†
•

Su
bs

ti
tu

te
at

tr
ib

ut
es

[P
au

00
]

†
•

A
cc

ur
at

e
es

ti
m

at
es

(S
ec

.
7.

4.
4)

‡

Se
t

O
pe

ra
ti

on
s

•
EX

CE
PT

to
EX

CE
PT

AL
L

[P
au

00
]

∗
•

IN
TE

RS
EC

T
to

IN
TE

RS
EC

T
AL

L[
P

L
94

]
∗

•
IN

TE
RS

EC
T

to
jo

in
[P

au
00

;
P

L
94

]
†

•
A

cc
ur

at
e

ca
rd

in
al

it
ie

s
(S

ec
.

7.
2.

6)
‡

•
O

rd
er

op
ti

m
iz

at
io

ns
[P

au
00

]
†

•
Si

m
pl

if
y

UN
IO

N
(S

ec
.

7.
5.

2)
∗

•
Si

m
pl

if
y

IN
TE

RS
EC

T
(S

ec
.

7.
5.

2)
∗

•
E

lim
in

at
e

EX
CE

PT
(S

ec
.

7.
5.

2)
∗

•
A

cc
ur

at
e

ca
rd

in
al

it
ie

s(
Se

c.
7.

5.
2)

‡

O
th

er
•

Su
bq

ue
ry

to
jo

in
[P

au
00

;
P

L
94

]
∗

•
Su

bq
ue

ry
so

rt
av

oi
da

nc
e

[S
el

+
79

]
†

•
Sc

al
ar

su
bq

ue
ri

es
[D

D
92

]
•

Su
bq

ue
ry

m
em

oi
za

ti
on

ca
ch

e
[P

au
00

]
‡

•
Sp

ar
se

ov
er

de
ns

e
in

de
xe

s
[D

H
82

]
•

Q
ue

ry
fo

ld
in

g
[D

P
T

06
;

G
ry

98
;

Il
e+

14
]∗

•
E

lim
in

at
e

co
rr

el
at

ed
su

bq
ue

ri
es

[M
ic

04
]

(S
ec

.
7.

5.
2)

∗

105

7. A Survey of Data Dependency-Driven Query Optimization

For some systems, techniques might be classified differently w.r.t. their query optimiza-
tion activity depending on the optimizer’s implementation and degree of sophistication.
For our classification, we place the techniques into the most likely categories. We also
emphasize that some optimizations affect not only the structure of the query plan (e.g.,
operator reordering) or the choice of operator implementations (e.g., sequential vs. index
scan) but also the behavior of operators at runtime. Scan operations, for instance, might
abort early in certain cases. We attribute such optimizations to query optimization
instead of the execution phase: ultimately, the optimizer prepares for such behavior,
decides on the query plan, and instructs the physical operators to act accordingly.

Counting the entries, Table 7.1 shows that more optimizations exist for UCCs (17),
FDs (13), and ODs (18) than for INDs (10): INDs are dependencies between unordered sets
of values (or value combinations); their known optimizations, therefore, support only join
and set operations. Most optimizations influence cost-independent transformations (29),
followed by cost-based transformations (18) and lastly cardinality and cost estimation (9).

We also identify a fourth dimension, in which the presented transformation-based
optimization techniques could be categorized: the optimization method with which the
improvement is achieved. This dimension is not visualized in the table, because it does
not apply to all depicted techniques.

• Simplification: The task that the operator needs to fulfill is simplified, e.g., by
removing attributes from a GROUP BY list or by omitting the sort phase of a sort-
merge join. Avoiding the operator execution altogether is an extreme case of
simplification. Examples can be found in [AMH08; AHV95; BNE13; CS94; Che+99;
DD92; Gra93; KY83; Mic04; MySa; ONe94; Pau00; PL94; PHH92; Sel+79; SGG12a;
SGG12b; Szl+11; Szl+14; Wed92; YL87].

• Algorithm choice: Oftentimes, a specific implementation of an operator can be
selected from different alternatives. The available data dependencies can guide this
decision. For instance, a binary search is usually superior to a sequential scan if
a dependency indicates that the data is sorted. Examples are found in [GHK92;
Pau00; SSM96; Szl+14; YL94; YL95].

• Substitution: Certain data dependencies indicate that an operator can, instead of
processing an attribute A on a relation R, process an attribute B on a relation S

with the same result. This might be beneficial if B offers superior properties, such
as a more compact data type or being indexed. Examples are presented in [Che+99;
DPT06; Gry98; Ile+14; Kim+09; Pau00].

• Pipelining: Some dependencies provide additional guarantees that enable pipelining
between operators in cases where it would usually be infeasible. Examples are
found in [CS94; Day87; Gra93; Yan95].

106

7.2. Unique Column Combinations

In conclusion, Table 7.1 provides an overview of all optimization techniques presented
in this chapter and categorizes them to show which optimizations are enabled by each
dependency type.

7.2. Unique Column Combinations

In the following subsections, we present various query optimization techniques that are
enabled by the existence of UCCs. (Primary) keys are by definition UCCs, which, vice
versa, serve as key candidates [SS96]. For that reason, all presented optimizations can be
applied analogously given either key constraints on the schema or UCCs discovered from
a relational instance. Apart from query optimization and keys, uniqueness is often used
for data integration, indexing, and anomaly detection.

7.2.1. UCCs and Joins

If an SQL query joins two relational instances that both have a UCC, then the resulting
relation contains a (not necessarily minimal) UCC, which is the concatenation of both
UCCs. Furthermore, if the join attributes are UCCs in both relational instances, they are
also unique for the join result. These two properties can be used to track unique column
combinations across joins, so that they may be used for the optimization of downstream
operators and query plans.

Most UCC-based join optimizations require the existence of uniqueness on at least one
of the input relations’ join attributes. For example, Dayal shows that in certain cases,
aggregations and joins can be pipelined if the grouping attributes contain the primary
key, i.e., a UCC of the outer join relation [Day87]. Viable join implementations group
the result by tuples of the outer relation’s join attributes. Consider the query:

SELECT R.A, SUM(S.B) FROM R, S
WHERE R.A = S.A
GROUP BY R.A.

If R.A is a UCC and chosen as outer relation, the join’s results can be streamed directly
to the aggregate function SUM(S.B), because the absence of duplicate values guarantees
that the records are already grouped by R.A. Yan specifically states that this applies to
candidate keys and UCCs if these are the outer relation’s join attributes [Yan95].

An inner join of two relations R and S on the join attributes X can be executed by
potentially more efficient semijoin28 strategies [MySa] if X is a UCC on S, and S does not
need to supply columns to the result. Intuitively, the UCC ensures that any tuple rk ∈ R

from the outer relation can match only one single tuple si ∈ S of the inner relation [CS94],
28The semijoin R⋉S selects tuples of R that would match a tuple of S if joined, i.e., R⋉S ⇔ R ▷◁X πX(S).

107

7. A Survey of Data Dependency-Driven Query Optimization

i.e., rk[X] = si[X] is unique with respect to rk[X]. This is true, because by the definition
of UCCs no second tuple sj ∈ S, i ≠ j exists for which si[X] = sj [X]. If X was not a
UCC in S, the inner join could replicate rows in R’s instance and, hence, produce a
different result than the semijoin. Rewriting inner joins as semijoins is useful, for example,
in distributed query optimization, to send less data over the network [Ber+81; Mul90].
For nested loop join strategies, a UCC on the inner join loop’s attribute enables aborting
the inner loop early and continuing the outer loop as soon as the first match is found.

Yang and Larson illustrated another use case for UCCs when working with derived
relations and so-called back-joins [YL87]: let us assume a derived relation E1 from R

holds all the required tuples to answer a query Q, but misses some attribute A. With a
back-join29, the attribute A can be obtained from another relation E2 that was derived
from R as well. Such a back-join can produce spurious tuples that contain values that
originate from different tuples of the base relation R. Performing this back-join on a UCC
with attributes X, however, prevents the generation of such spurious tuples, because, by
the definition of UCCs, if tuples agree on X, they also agree on all other attributes.

Abadi et al. [AMH08] introduce so-called invisible joins for star schemas in column-
oriented database engines. This technique improves the performance of foreign- to
primary-key joins by, among others, transforming such joins into predicates on fact table
columns. Given the required UCC, i.e., a primary key, the optimizer can choose this
specialized execution technique to improve the performance of the join. Because the
detailed description of this join technique is beyond the scope of this thesis, we refer the
interested reader to [AMH08].

7.2.2. UCCs and Grouping

When grouping on a UCC, it is by the definition of UCCs obvious that the maximum
group size is one. For this reason, the entire grouping step is superfluous to calculate
aggregations on these groups: the data is implicitly grouped already [CS94]. Hence, both
sort- and hash-based aggregation implementations can omit the grouping phase, i.e.,
sorting or hashing, if they are aware of the UCC.

Because UCCs are essentially special forms of functional dependencies, we list further
UCC-based optimizations for grouping and aggregation operations with the FD-based
optimizations in Section 7.3.1.

29A back-join is used when a derived relation holds all necessary tuples to answer a query but requires
additional attributes from other relations.

108

7.2. Unique Column Combinations

7.2.3. UCCs and Distinctness

SQL statements containing the DISTINCT keyword are common in practice [Pau00]. Being
able to optimize duplicate eliminations is, for this reason, very important.

Paulley and Larson explain that query results in certain combinations with UCCs
cannot contain duplicate tuples and, hence, the execution of a DISTINCT operation is
unnecessary [Pau00; PL94]. Given a UCC X on a relation R, they show: if either (i) all
attributes of X are part of the query’s projection list, or (ii) a subset Y ⊂ X is contained
in the projection list and the other attributes X \ Y are selected via equality predicates,
the query result is unique and the DISTINCT operation can be removed. Pirahesh et al.
mention a similar technique, but not as detailed as Paulley and Larson and without
explicitly taking NULL values into account [PHH92]. Since distinctness is usually ensured
by costly sort- or hash-based approaches, the removal of redundant DISTINCT keywords
is a substantial optimization.

7.2.4. UCCs and Subqueries

Paulley and Larson describe how correlated subqueries can be transformed into ordinary
join queries [Pau00; PL94]. Optimizers can then apply all the rules and optimization
techniques that are relevant to joins, e.g., choosing a particular join algorithm with
better performance for that particular case or adjusting the join order to find a more
efficient query plan [PHH92]. While these techniques have been proposed earlier, e.g., by
Kim [Kim82], Ganski et al. [GW87], and Pirahesh et al. [PHH92], Paulley and Larson
explicitly consider duplicate entries and NULL values.

To illustrate the idea,
SELECT R.A, R.B FROM R WHERE EXISTS

(SELECT * FROM S WHERE S.A = R.A)

can safely be rewritten to
SELECT R.A, R.B FROM R, S WHERE S.A = R.A

iff S.A is a UCC; otherwise, the transformed version of the query might result in more
results than the original version. In case a rewrite was possible, also the semijoin strategies
might apply to further optimize the query [NK15]. The UCC ensures that the subquery
cannot provide more than one matching tuple, which enables the transformation. The
rewrite is also possible for a multi-attribute UCC X if the non-join attributes are selected
via equality predicates (see Section 7.2.3).

Sometimes, correlated subqueries cannot be unnested. In such cases, the query
engine can cache results obtained from subquery evaluations to reuse these results for
evaluations with repeated, i.e., the same referenced values. With the cached results,

109

7. A Survey of Data Dependency-Driven Query Optimization

redundant subquery evaluations can be avoided. Selinger et al. develop this idea one
step further and propose to first sort the outer relation by the referenced column and
then execute the subqueries [Sel+79]; in this way, the query engine needs to cache only
one, i.e., the last subquery result. However, if the referenced column is a UCC, both
the caching and the sorting are redundant and should not be applied, because repeated
values do not exist [Sel+79].

7.2.5. UCCs and Set Operations

While the relational algebra is based on set semantics, SQL generally uses bag semantics.
SQL’s set operations, such as INTERSECT, EXCEPT, and UNION, however, provide set
semantics, unless disabled by the ALL keyword [Int92]. By the set definition, sets
cannot contain duplicate values, but relations in database systems typically allow them.
Therefore, implementations of set operations need to ensure that duplicates are removed
before providing the final result.

Because uniqueness plays a central role for set operations, it is apparent that UCCs
can be used to optimize them. For the following examples, we assume two tables R

and S with a UCC on R.A. Paulley and Larson note that “the semantics of INTERSECT
and INTERSECT ALL are equivalent if at least one of the involved tables cannot produce
duplicate rows” [Pau00; PL94]. If this precondition is guaranteed by a UCC, the costly
duplicate elimination of INTERSECT can be avoided by rewriting it as an INTERSECT ALL.
The rational is as follows: according to the SQL standard [Int92, p. 202], the result of an
INTERSECT ALL statement on the tables R, S contains min(m, n) instances of a duplicate
tuple t, where m and n are the numbers of occurrences of t in R and S. Hence, the UCC
guarantees either m or n to be 1 which, in turn, guarantees only a single occurrence of t

in the result. Thus, no duplicate elimination is necessary.
Similarly, R EXCEPT S can be rewritten to R EXCEPT ALL S, simply because a difference

operation cannot introduce duplicates if these are not already present in R [Pau00]. Their
absence is guaranteed by the UCC on R.A.

In addition, some database systems, such as MySQL, do not support INTERSECT
statements [MySb]. Instead, the documentations of these systems often suggested to
express the semantics of INTERSECT (manually) with an inner join:

SELECT DISTINCT(R.A) FROM R, S
WHERE R.A = S.A
OR (R.A IS NULL AND S.A IS NULL).

If a UCC exists not only on R.A but also on S.A, the DISTINCT can be removed and,
hence, INTERSECT can be formulated as a join. The correct handling of NULL values for
such rewrites can be achieved as demonstrated above [Pau00; PL94]. The main advantage

110

7.3. Functional Dependencies

of these transformations is that they help to avoid costly duplicate removals [Jac05] when
these are superfluous.

7.2.6. Further Optimization Opportunities with UCCs

Apart from the main concepts described above, unique column combinations enable some
further potential optimizations.
Selection. If a SELECT clause defines an equality predicate for all attributes of a UCC,
the query can be aborted after the first matching tuple is identified because the UCC
guarantees that no other matches can be found. While such an operation on primary-key
columns would be handled usually by an index lookup, not all UCCs are necessarily
indexed.
Cardinality and Cost Estimation. Uniqueness information can be used for cardinality
and cost estimation of various operators. For example, equality predicates on UCC
attributes can have at maximum one resulting tuple. Non-equal checks result in either
|R| or |R| − 1 results. For equality joins, there is at most a single matching tuple,
cf. Section 7.2.1. Furthermore, uniqueness information can be utilized to determine
the number of groups for GROUP BY operations and to estimate lower bounds for set
operations.
Sorting. The presence of UCCs allows to remove all attributes following that UCC in
the attribute list of an ORDER BY clause. For instance, under the UCC X, the attributes
Y can be removed from ORDER BY X, Y, because sorting by Y would affect only the
order of tuples that agree in X. The UCC guarantees that such tuples do not exist.

Stable sort algorithms keep equal elements in their original order. This guarantee is
usually exchanged for higher runtime complexity or elevated memory consumption. How-
ever, UCCs ensure that no duplicate elements exist so that stable sort algorithms are not
needed. So if the execution engine offers multiple physical sort operator implementations,
UCCs can be used to find the most suitable implementation during optimization.
Embedded Unique Constraints. Embedded unique constraints allow for expressing
the existence of UCCs on fragments of incomplete data, i.e., data containing NULL values.
Wei et al. demonstrate how such embedded unique constraints can be utilized for query
optimization, e.g., to improve the efficiency of joins or scans in queries that handle
incomplete data [WLL19].

7.3. Functional Dependencies

The use cases for functional dependencies are manifold. They were initially used to
normalize database schemata [Cod70], but meanwhile also aid data cleansing, data

111

7. A Survey of Data Dependency-Driven Query Optimization

integration, and data translation tasks. In the remainder of this section, we focus on
their utilization for query optimization.

7.3.1. FDs and Grouping

Grouping operations can be simplified through query rewriting if FDs are present. If
the functional dependency B, C → A holds and a group operation on the combination
B, C, A is to be executed, the grouping attribute A is unnecessary, because all elements
that fall into the same group for B, C necessarily also have the same value for A. Thus,
the grouping attribute A can simply be removed and it is sufficient to group only on
B, C [SGG12b]. The same rule applies if the determinant B, C is (partly) filtered in the
WHERE clause with an equals condition. For example, the GROUP BY clause in the query

SELECT C, SUM(D) FROM R WHERE B = 17
GROUP BY C, A

can be rewritten to GROUP BY C. Since 1999, the SQL standard explicitly allows selecting
columns that are not part of the GROUP BY clause if they are functionally dependent
on grouping columns [Int99]. Date and Darwen [DD92] mentioned this problem earlier
in their work. The presented technique can in fact also be applied to several TPC-H
queries [BNE13]. For example, TPC-H Query 10 contains a grouping operation on
c_custkey, c_name, c_acctbal and further attributes. Because c_custkey is a key, c_cust-
key → c_name, c_acctbal, [...] holds. The grouping statement in TPC-H Query 10 can,
therefore, be simplified to group on c_custkey only.

As the enforcement of distinctness is a special case of grouping [CS94], the above-
described method can also be applied to SQL DISTINCT clauses: DISTINCT X, A reduces
to DISTINCT X if X → A. In the context of duplicate elimination, Weddell also explained
how duplicate eliminating projections (in the sense of the relational algebra) can be
avoided with known functional dependencies [Wed92].

Date and Darwen also partly describe an optimization if a DISTINCT is applied after a
relation has been filtered with an equals predicate [DD92]: consider A→ B to hold and
the query

SELECT DISTINCT B FROM R WHERE A = 4.

In this case, the DISTINCT is necessary, because the selection can possibly yield multiple
results. However, above’s FD ensures that all resulting rows will have the same value in
B, and a costly duplicate elimination can be avoided by just returning the first row.

7.3.2. FDs and Joins

The optimization potential of FDs for joins might appear limited at first glance, because
joins test for value correspondences across potentially different relations, while FDs

112

7.3. Functional Dependencies

test for value dependencies within one relation. There are, however, a few interesting
applications related to joins in query rewriting and join ordering.

First, Eich et al. examine optimizations for eager aggregation that were initially
presented by Yan and Larson [YL95], i.e., group-by operations that are pushed below
joins. The authors show how functional dependencies can be used to prune join trees
during query plan generation and, hence, speed up the plan generation process by orders
of magnitude [EFM16]. For example, consider the question whether a join subtree T1

that is more expensive than a join subtree T2 can be pruned during plan generation. In
T1, attribute A of a relation R is (eagerly) grouped before R is joined with S. In T2,
R ▷◁ S is executed before attributes A, B (B is an attribute of S) are grouped. Now, T1

should only be pruned if at least the same set of FDs holds after executing T2 as after
T1. The intuition is as follows: the execution of a group-by influences which functional
dependencies hold in the subsequent intermediate results; without grouping, the FDs
would be equivalent for all join trees. If the FDs that are necessary to fulfill the specified
query do not hold in the end, a final group-by would have to be added to ensure the
correct result. This final group-by operation could introduce additional costs that, when
taking the aforementioned pruning criteria into account, renders the plan suboptimal.
Note that early partial aggregation could even reduce the overall costs [LG09].

Kambayashi and Yoshikawa [KY83] apply FDs to simplify queries that involve joins.
Assume a natural join R ▷◁ S that joins the relations R and S on the attributes Z with
S[Z] ⊆ R[Z] and vice versa. If the FD X → A holds and X ⊆ Z, then the join attributes
Z can be reduced to Z \A, because matching values in X guarantee matching values in
A. The same reduction also applies to arbitrary self-joins R ▷◁Z R on same attributes Z,
if A, i.e., the removed attribute, does not contain NULL values; such NULL values would
prevent certain result pairs that match on Z \ A and would, therefore, arise after the
reduction. The described rewriting technique improves the join execution, because fewer
join attributes can reduce both computation time and memory consumption.

In combination with selections that are executed prior to the join, FDs can be used for
optimizing these joins. Again, consider the FD X → A to hold on a relation R and a
query that filters R with an equality predicate on X and then joins R with a relation S

on A. The FD ensures that all tuples in R that remain after the filter operation have
the same value in A. Thus, all tuples from S that match the first filtered tuple in R

also match all other remaining tuples in R. This insight can substantially reduce the
complexity of the join operation: after joining the first filtered tuple of R to its matching
tuples in S, we can reuse the same set of S tuples as matching tuples for all other filtered
R tuples by simply duplicating these tuples. In other words, σX(R) ▷◁A S with X → A

can be written as σX(R)× (S ⋉A πA(σX(R))), which is, we calculate the cross-product
of the filtered R tuples with the S tuples filtered by the right-hand-side value A defined

113

7. A Survey of Data Dependency-Driven Query Optimization

by the X value. For performance reasons, the result of σX(R) can be cached to execute
the filter only once. Also note that, under bag semantics, the limit operator must be
applied to obtain only the first matching R tuple for the semijoin with S.

Finally, Abiteboul, Hull, and Vianu show that an equality self-join can be avoided in
cases, where the join attribute functionally determines all other attributes in the distinct
projection of the query [AHV95]. Consider a relational instance r over R with attributes
X, Y and the FD X → Y to hold. Any self-join of r on X is semantically superfluous and
can, therefore, be avoided, because ∀s, t ∈ r : iff s[X, Y] and t[X, Y ′] the aforementioned
FD ensures Y = Y ′. If R contains the attributes X, Y, Z, but X ̸→ Z, the self-join on X

is still unnecessary if only X and Y are in the projection of the query. In both cases,
the self-join adds a redundant column. More specifically, πXY (R) ▷◁X πXY (R) with
X → Y can be rewritten to πXY XY (R). Admittedly, the join also (inefficiently) removes
NULL-valued records if X contains NULL values and it increases the cardinality of the
relation if X is not distinct, i.e., it is not a UCC.

7.3.3. FDs and Selection

The use of FDs with selections offers powerful simplifications. Some of the below
mentioned optimizations might not be efficiently realizable with standard implementations
of physical operators but require alternative implementations.

For an FD X → A on a relational instance r over R, consider a query that filters R

with two equality predicates on X and A. If the filter on X is evaluated first, it then
suffices to check only a single element of A, because the FD guarantees that all other
tuples (that matched X) have the same value in A: the overall result is empty, if the
A value differs from its filter value; otherwise, it is non-empty and no further A value
needs to be checked. In an extreme case, a tuple-at-a-time execution model can abort
the selection process after checking the first tuple of a potentially large table, if its X

value matches but its A value differs.
Furthermore, selections can be shifted to another attribute that is less expensive

to process, for instance because it is indexed or of a less complex data type, such as
int instead of string. This technique is also called predicate introduction30 and was
originally intended to be used with check constraints by Cheng et al. [Che+99]. Kimura
et al. [Kim+09] explicitly mention the application of FDs in such scenarios. Given the
FD A → B for a relational instance r over schema R and a query with the selection
σA=vA

, the system could determine the first tuple s ∈ r with s[A] = vA (for example,
with a partial scan) and, then, find the value vB as s[B] = vB that corresponds to the
30Predicate introduction can be applied not only if FDs are present but also if correlations [Mic08] or

algebraic constraints [BH03] exist, which are not considered in this thesis.

114

7.3. Functional Dependencies

selection value vA. Now, the system replaces σA=vA
with the cheaper selection σB=vB

.
This new query serves only as a prefilter, because not all tuples that match on σB=vB

also
match on σA=vA

. So in the end, the (potentially small) result-set of the adapted query
must be re-evaluated on σA=vA

. This optimization technique requires highly selective
B-predicates and relatively large amounts of data to result in performance advantages.
Furthermore, vB must not be NULL, because NULL comparisons in selections always resolve
to false. The final evaluation of σA=vA

can be omitted if the reverse FD B → A is also
true.

Scalar subqueries are required to return either no or exactly one row. Many systems
throw an exception otherwise [Ora; SAP19]. Date and Darwen [DD92] mention a possible
optimization regarding such queries in combination with FDs. Consider the query

SELECT * FROM R WHERE
R.B > (SELECT B FROM S WHERE S.A = 4).

If the FD A→ B holds, the equality predicate on A in combination with the FD ensures
that B has the same value for all rows. Thus, the result could be computed even though
the subquery returns more than a single row. However, to the best of our knowledge,
this technique is not implemented in any commercial database system.

7.3.4. FDs and Sorting

FDs can be used to simplify operations that introduce order in the involved rela-
tions [Che+99; SGG12b]. We can, in particular, reduce the attribute lists in ORDER BY
clauses with the use of known FDs, which was first shown by Simmen et al. [SSM96]. For
example, the clause ORDER BY X, A can be reduced to ORDER BY X if the FD X → A

holds, because for a certain value of X, there is only one value in A.

7.3.5. FDs and Cardinality Estimation

Query plan optimizers or other database components that estimate the cardinality of
database operators often assume value independence for the different attributes and
uniform value distributions31 [Lei+15; Lei+18; Sel+79]. As the name implies, functional
dependencies indicate the contrary. Known FDs can, therefore, improve cardinality
estimations [CGR01; Ily+04; SSY98] and lead to better query plans. For instance, the
cardinality of the conjunction of two predicates σA=vA

and σB=vB
is usually estimated

as the product of their individual selectivities, which is 1
|A| ·

1
|B| . If, however, A→ B is

true, then only 1
|A| is the appropriate cardinality estimate, because vA always co-occurs

with vB due to the FD [Thed].
31Not all systems assume uniformity for all values. For example, PostgreSQL assumes uniform value

distributions only for all values inside each histogram bucket [Thee].

115

7. A Survey of Data Dependency-Driven Query Optimization

Furthermore, given A → B, we know that |B| ≤ |A| and, given both A → B and
B → A, we know that |B| = |A|. In this way, we can use FDs to let cardinality
information (or estimations) propagate from one attribute to another.

Finally, Gelenbe et al. utilize functional dependencies to estimate the size of projections
(in the duplicate-removing semantics of the relational algebra) [GG82]. They use the
above-described guarantee of |B| ≤ |A| in the presence of A→ B. Following from that,
|ΠA,B| = |ΠA|.

7.4. Order Dependencies

Order information serves a variety of tasks, such as optimizing the physical storage of
records (e.g., for run length encoding in columnar data stores [AMF06]) and improving
readability of query results by ordering them.

Information about order and so-called interesting orders (first introduced by Selinger
et al. [Sel+79]) are a crucial part for query rewriting and query plan optimization; they
can, in particular, further be utilized during the actual operator execution and for cost
estimation. ODs present an important opportunity to make the most use of order-based
optimization techniques, because they help to derive additional order information from
knowledge about currently available orders. As a result, knowing that X

⪯7−→ Y holds
and that X is ordered opens up opportunities to utilize the order information about
both attributes X and Y during query optimization. Operations that generate ordered
data can be explicitly pushed down (closer to the beginning of the query plan, cf. sort-
ahead [SSM96]) to enable order-based optimizations for the subsequent operators. The
more order information is available, the wider is the range of potential plan optimizations.

We compile information on how exactly order and order dependencies can be utilized for
query optimization and to improve the execution of individual operators in the remainder
of this section. Some optimization ideas presented in this section are similar to ideas
presented for FDs, showing interesting relationships between FDs and ODs.

7.4.1. ODs and Sorting

The purpose of sort operations, explicitly expressed by ORDER BY statements in SQL, is to
produce order. Hence, it is not surprising that sorting offers several potential optimizations
regarding ODs. First, the number of attributes in the order clause can be reduced in the
presence of interesting orders [SSM96] and, hence, order dependencies [SGG12a; SGG12b;
Szl+14]. A reduced number of sorting attributes leads to fewer sort operations, which
can decrease the execution time. Additionally, reducing the number of attributes in the
order clause increases the possibility that this operation can be solved with an index.

116

7.4. Order Dependencies

If X
⪯7−→ Y holds on a relation R, the clause ORDER BY X, Y can be reduced to

ORDER BY X, because an ordered X ensures an ordered Y .32 With the aforemen-
tioned OD, Y can furthermore be removed from both clauses ORDER BY W, X, Y and
ORDER BY W, Y, X [SGG12b]. The latter might not be intuitively clear, but if we re-
place Y with X, which is possible because X imposes an order on Y , the resulting
ORDER BY W, X, X still guarantees that the result is ordered by Y following from the
definition of ODs; obviously, one of the consecutive X could be removed. Sorting Y

can be avoided altogether under above’s OD and if other previously executed opera-
tions, such as sort-merge joins, sort-based aggregates, or index scans internally order
X (or Y) [Gra93; Pau00]. In the case of X ≺7−→ Y , ORDER BY Y, X can be reduced to
ORDER BY Y, because X cannot break ties in Y .

Furthermore, ODs can be utilized to substitute sorting attributes [Pau00]. Imagine
the attributes A (integer), B (string), and C (integer) and the OD A

⪯7−→ B to hold.
Hence, a statement ORDER BY B, C could be replaced by ORDER BY A, C because an
ordered A implies B to be ordered. Substitutions are beneficial if they decrease the
cost of the sorting operation: in our example the costly string-sort was replaced by the
cheaper integer-sort. Alternatively, the attribute to be substituted could be replaced by
an indexed attribute that allows efficient ordered retrieval.

Szlichta et al. [Szl+14] also mention that ODs and near-sortedness can be combined to
execute small, on-the-fly main memory sorts instead of external sorts.

7.4.2. ODs and Joins

Order information can be used to simplify joins in the plan optimization phase, to improve
the join operator execution phase, and to better estimate join result-set cardinalities.

Sort-merge join algorithms, as the name implies, are split into two phases: (i) an initial
sort phase that provides ordered input for the (ii) merge phase, where the actual join
takes place by merging two ordered lists. It is evident that sort-merge joins can benefit
from already sorted inputs, by omitting the initial sort phase [GHK92; Pau00; SSM96].
If X ⪯7−→ Y holds and X is ordered, sort-merge joins on either X or Y could both omit
the sort phase on their corresponding relation, and could be a preferred choice.

Another opportunity is the pipelining of grouping and join operators [CS94; Gra93].
In [CS94], the authors present a cost model-based approach to push grouping operators
past joins to find more efficient query plans. Some grouping operator implementations sort
the data to create groups. If X ⪯7−→ Y holds and X constitutes the grouping attributes,
this technique is promising if the later join is either on X or on Y .

32Note, X ≺7−→ Y is insufficient for this optimization, because the comparator ≺ imposes only a partial
order. Thus, Y would still be needed to impose a clear order on tuples with the same X values.

117

7. A Survey of Data Dependency-Driven Query Optimization

Szlichta et al. further describe a data warehouse scenario in which ODs can be used
for query rewriting to avoid expensive joins between fact and dimension tables [Szl+11;
Szl+14]. Consider the SQL query

SELECT [...] FROM sales s, date d WHERE
s.sold_date_sk = d.date_sk AND
d.date BETWEEN '20210819' AND '20210823'.

The insight that there is usually an order dependency in the date dimension table
between a well-constructed surrogate key and natural date values, i.e., datesk

⪯7−→ date,
enables the rewriting of joins on dates, because date attributes of the fact and dimension
table can be replaced with probably cheaper local predicates. The intuition is as follows:
two simple probes find the minimum and maximum33 surrogate keys for the corresponding
dates in the dimension table. These keys are used as local predicates on the fact table:

SELECT [...] FROM sales s,
(SELECT MIN(date_sk) min_d FROM date

WHERE date >= '20210819') d1,
(SELECT MAX(date_sk) max_d FROM date

WHERE date <= '20210823') d2
WHERE s.sold_date_sk BETWEEN d1.min_d

AND d2.max_d.

The combination of dimension table probing and a local fact table predicate effectively
replaces the join. This is possible only because the OD datesk

⪯7−→ date ensures that the
correct surrogate keys are picked for the local predicate via MIN and MAX. This join
replacement optimization, and in particular its knowledge during the query optimization
phase, permits another valuable downstream optimization: introducing a local predicate
on the fact table enables pruning opportunities which often show a significant performance
impact in practice [Dre+20].

Order dependencies can also be used to optimize certain theta joins via query rewriting
if combined with UCCs. For this, assume that the OD X

≺7−→ Y holds on a relation R

and that X is a UCC. Then, consider the example SQL query

SELECT * FROM R Rl, R Rr WHERE
Rl.X < Rr.X

which performs a theta self-join on X. Due to the OD, we can replace the term
Rl.X < Rr.X with the OD’s right-hand-side attribute Y : Rl.Y < Rr.Y. The UCC
ensures that R does not contain tuples with the same value in X and potentially
unordered values in Y . Scenarios with such a combination of UCC and OD occur
naturally if attributes X correlate with, e.g., an incremental surrogate key attribute Y .
33This optimization benefits from an engine supporting the simultaneous computation of MIN and MAX

with a single scan.

118

7.4. Order Dependencies

This technique improves the execution of the query if Y has, e.g., an index, a smaller
domain, or a more join-friendly data type. The same optimization also applies for the
other inequality predicates ≤, >, and ≥ as well as for the OD X

≻7−→ Y .

7.4.3. ODs and Grouping

Similar to joins, there are two approaches for grouping data and aggregating data,
respectively: hashing and sorting [Mül+15]. Both operators profit from preordered
inputs. With the knowledge of ODs, additional inputs are known to be ordered. Hence,
optimizers can choose sort-based operators in more cases. Sort-based implementations
can benefit from preordered inputs, because the sorting step of the operator can —
exactly as for joins — be (partially) omitted [Pau00; SSM96; Szl+14; YL94; YL95].
Hash-based implementations, on the other hand, can exploit ordered inputs to minimize
the number of hash calculations, i.e., they simply avoid repeated rehashing of the same
value by recycling the previous hash until the next new value in the ordered input is
read. The positive effect of ordered data on the performance of hash-based algorithms
was investigated by Memarzia et al. [MRB19].

7.4.4. Further Optimization Opportunities with ODs

Apart from the main concepts described above, order dependencies offer various further
optimizations.

Selection. Selections can benefit from ODs in the following way: if A
⪯7−→ B holds and

their relation is ordered by A, then table scans on data that is held in-memory can be
replaced with binary searches not only for selections on A but also for selections on
B [Pau00], which reduces the complexity from O(n) to O(log n). Range predicates can
analogously use a binary search to determine the starting element of the range.

Aggregate Functions. Some aggregation functions, such as MIN, MAX, and MEDIAN,
allow obvious optimizations on ordered data [Pau00]: if A

⪯7−→ B holds and their relation
is ordered by A, it is not necessary to check all elements of the relation to determine
the result of MIN on either A or B. Instead, it is sufficient to return the first element of
the respective attribute [ONe94, p. 566]. This shortcut works analogously for MAX and
MEDIAN, but instead of the first, the last and middle element, respectively, are selected.

Leveraging Indexes. Indexes can be used to retrieve tuples in order, which is useful to
pipeline index operations with other operators that rely on ordered data. In this way, we
can, for instance, pipeline sort-merge joins with index scans [Gra93]. Also, a clustered
index on salary along with the ODs salary ⪯7−→ taxes and salary ⪯7−→ percent allow a query
that contains an ORDER BY taxes, percent clause to be evaluated directly by retrieving

119

7. A Survey of Data Dependency-Driven Query Optimization

the data from the index, without an additional sort operation [Szl+14]. Another index
optimization based on ODs was proposed by Dong et al., who found that with the
knowledge of ODs sparse indexes can be chosen over dense ones to save space [DH82].
Generating Distinctness. According to Chaudhuri et al. [CS94], distinctness is a
special case of a grouping operation. Hence, optimizations presented in Section 7.4.3,
such as the utilization of already sorted input [Pau00; SSM96], apply here as well.
Set Operations. Set operations, unless explicitly specified, eliminate duplicate rows.
As stated above, the removal of duplicate entries often relies on sorting the input data,
thereby opening up opportunities for order optimizations for set operations [Pau00]: we
consider a UNION statement whose select list consists only of Y and we assume X

⪯7−→ Y

to hold while X has been ordered, for example, by an ORDER BY clause that has been
pushed down. In such a case, the duplicate elimination within the set operation can
avoid an additional sort operation, because the tuples are already sorted with respect to
Y . Similar optimizations are possible for INTERSECT and EXCEPT.
Cost Estimation. While executing subqueries, a query engine might decide to cache
previously computed results of the inner query to reuse them in case the inner query
is executed with the same correlation attribute values again. In the case of ordered
correlation attributes (compare the optimization of Selinger et al. [Sel+79] mentioned in
Section 7.2.4), e.g., by order dependencies, a cache size of 1 is sufficient [Pau00], because
the order guarantees that the subquery will never be executed with the same inputs again
once new inputs are read from the ordered correlation attributes. Again, ODs extend the
applicability of such order-based optimizations to further attributes.

Also, cost predictions, e.g., for operator costing, can take ODs into account to more
accurately estimate execution costs of operators that rely on ordered data.

7.5. Inclusion Dependencies

Inclusion dependencies often serve data linkage and integration scenarios as they may span
multiple data sources. This section presents how they can be used for query optimization.

7.5.1. INDs and Joins

By their definition, INDs are most relevant for join operations. An often-used join variant
are semijoins R⋉X S, which are used to filter R by the tuples that have a matching tuple
in S. Semijoins can be expressed as joins with a post-projection on the attributes of the
R side, which is πR(R ▷◁X S). Given the IND R.X ⊆ S.X with its formal definition
∀tr ∈ R,∃ts ∈ S : tr[X] = ts[X], all tuples from R match tuples in S so that the semijoin
is redundant; hence, it can be removed. Note that this optimization requires all R.X

120

7.5. Inclusion Dependencies

to be NOT NULL or the IND to follow the NULL ̸= NULL semantics. This is because the
semijoin filters out all tuples with NULL values in R.X; the IND R.X ⊆ S.X with NULL
= NULL semantics, on the contrary, might find a matching tuple in S with the same NULL
values as the R tuple.

A popular, yet dependency-independent optimization technique is semijoin reduc-
tion [Ber+81; Sto+01], which reduces the number of tuples considered by join operators
before the actual join is conducted. For this reduction, the matching (non-dangling) tuples
are determined a priori by utilizing semijoins. The semijoin reduction (R⋉πX(S)) ▷◁X S

is equivalent to the plain join operation R ▷◁X S. The rationale is that identifying the
matching tuples in R and joining only these with S is more efficient than joining R and
S directly. This semijoin technique is particularly useful for distributed database setups
that need to minimize expensive data transfers. Dreseler et al. [Dre+19] have shown this
optimization to be beneficial for main memory database systems, too. However, if all
tuples from R match tuples in S, which is the case under an IND, semijoin reductions
are unnecessary but still costly as they effectively perform the join twice. So if the
IND R.X ⊆ S.X is known, semijoin reductions on R.X can be avoided. Because the
semijoins are used only as prefilters in this optimization, it is possible to use INDs based
on NULL = NULL and NULL ≠ NULL semantics in this optimization: by using NULL = NULL
INDs, we might eliminate semijoins that would filter some records with NULLs in the
join attributes, but (i) the following join filters them anyway so that the result remains
correct, (ii) removing such semijoins might not even impact the performance negatively
depending on the number of actually filterable NULL records, because the filtering costs
might outweigh the data transfer overhead, and (iii) adding a default NULL check to all
join tuples before sending them would easily solve the issue.

Johnson and Klug [JK84b] as well as Cheng et al. [Che+99] discuss and evaluate tech-
niques to eliminate joins in the presence of INDs and foreign-key constraints, respectively.
If a foreign key constraint holds, it allows to eliminate certain joins whose result is known
without executing them: given the IND R.X ⊆ S.X and a UCC on S.X on the relations
R and S, then the join R ▷◁X S can be avoided if there are no further selections or
projections on any attributes of S. This is, because the IND guarantees that every tuple
of R joins with a tuple in S, and the UCC ensures the absence of multiple matching
tuples. The described optimization, again, requires that either R.X is free of NULL values
or the IND is valid under NULL ̸= NULL semantics.

The idea of join elimination can be extended to intermediate joins: if there are two
joins R ▷◁X S and S ▷◁X T with the INDs R.X ⊆ S.X and S.X ⊆ T.X and a UCC on
S.X, the two joins can be reduced to a single join R ▷◁X T following from the transitivity
of INDs [CFP82]. The UCC on S.X is necessary because duplicate values in S.X would
cause record duplication that would be ignored in the optimized case. The removal of S

121

7. A Survey of Data Dependency-Driven Query Optimization

also requires that the SQL query neither contains attributes from S in its final projection
nor that it filters S. The authors state that transitive join queries are suboptimal and
could be avoided in the first place. Nevertheless, such transitive joins are often seen
in practice, because applications and object-relational mappers automatically generate
them. In other cases, database users might only have access to specific views that contain
or require such unnecessary joins. For this reason, query optimizers can benefit from
these IND-based optimization techniques.

Deutsch et al. show that in certain cases a join R ▷◁X S can be replaced with a join
R ▷◁X T [DPT06]. This replacement can be beneficial for peer database systems, in
which T might offer faster access or higher availability due to being located at a different
site than S. This rewrite requires the INDs T.X ⊆ S.X and (R ▷◁X S).X ⊆ T.X to
hold. Because the second IND depends on a query result, a practical implementation
would need to check the stricter, but discoverable IND S.X ⊆ T.X.

7.5.2. Further Optimization Opportunities with INDs

Although IND-based query optimizations seem to focus primarily on join operations,
various further optimization opportunities exist.

Query Folding. Query folding is an optimization technique to answer queries by
rewriting them in a way that lets them use certain resources, e.g., cached query results
or materialized views instead of base tables. Jarek Gryz demonstrated in [Gry98] how
INDs enable further scenarios for the application of query folding with views.

Assume a query accessing the attribute combination X of a relation S. If no material-
ized view contains S.X, this query does not have a query folding and cannot be answered
using views. However, assuming that there is an IND R.X ⊆ S.X and a materialized
view on R.X, the query could be rewritten to access R.X instead of S.X so that the
answer to the query can be retrieved via query folding from R.X’s materialized view.
Clearly, the rewrite may return only a subset of the initial query’s actual result, but this
might be acceptable for certain use cases where users are not interested in the entire
result set or need their answers quickly [Gry98].

Deutsch et al. [DPT06] as well as Ileana et al. [Ile+14] explain how INDs (the original
work uses more general tuple-generating dependencies) enable rewritings that utilize
materialized views or result caches if set semantics34 are assumed. For example, a join
S ▷◁X T can be replaced by accessing a view VST if the INDs S ▷◁X T ⊆ VST .X and
VST .X ⊆ S ▷◁X T hold.

34Set semantics occur in SQL-based DBMSs in the presence of keys, set operations, or the DISTINCT
keyword.

122

7.5. Inclusion Dependencies

Exists. Correlated subqueries as part of EXISTS statements can also be simplified with
INDs. Given the IND R.A ⊆ S.A, the query

SELECT * FROM R WHERE EXISTS
(SELECT * FROM S WHERE S.A = R.A)

can be computed without accessing S, because the IND ensures that the subquery
returns TRUE for every value of R.A. For known foreign-key constraints, such EXISTS
optimizations have been adopted by productive query optimizers, e.g., by Microsoft
SQL Server [Mic04]; whether or not they also use INDs is not known. Note that we
require NULL ̸= NULL semantics or an additional NULL check here because joins and select
statements do not match NULL values.
Set Operations. Inclusion dependencies can further be used to simplify the computation
of set operations. A query of the form

SELECT A FROM R
UNION

SELECT A FROM S

could be rewritten to SELECT DISTINCT A FROM S if the IND R.A ⊆ S.A holds. By the
set-based definition of the UNION operation, the result contains all distinct values from
R.A and S.A while the IND guarantees that all values from R.A are already included
in S.A. Here again, the IND must be true under NULL ̸= NULL semantics (or R.A must
not contain NULL values), because the rewrite would otherwise miss the NULL values from
R.A that the UNION would have added. Analogously to the UNION case, this optimization
can be applied to INTERSECT operations, but instead of returning the values of S.A,
the distinct values of R.A need to be returned. For this, the optimization requires an
IND with NULL = NULL semantics (or R.A without NULL values), because the INTERSECT
removes NULL values from R.A if these are also present in S.A. Note that in cases of
INTERSECT ALL, the query optimizer can omit even the DISTINCT operation. Besides
UNION and INTERSECT also difference operations, such as

SELECT A FROM R
EXCEPT

SELECT A FROM S

can be simplified. In the EXCEPT case, the IND guarantees that only an empty result-set
can be returned, allowing the query optimizer to skip the execution of the query altogether
and return an empty set. Note that EXCEPT removals require INDs with NULL = NULL
semantics, because the EXCEPT removes records with NULL values in R.A only if they are
also present in S.A.
Cardinality Estimation. Similar to some of the dependencies discussed before, INDs
also allow for more accurate cardinality estimations. Consider, for example, an IND

123

7. A Survey of Data Dependency-Driven Query Optimization

R.X ⊆ S.X. An equality join on the attribute combination X of these two relations
returns a minimum of |R.X| results, because the IND guarantees for every tuple in R

at least one matching tuple in S. Again, we need the NULL ̸= NULL semantics for this
optimization, because it effectively ensures that the IND is valid only if there are no
NULL values in R.X. In case S.X is a UCC on S.X, the IND basically appears as a
foreign-key constraint and returns exactly |R.X| results. For theta joins with predicate
̸=, i.e., R ▷◁R.X ̸=S.X S, the number of results is exactly |R.X| × (|S.X| − 1) records
given the IND R.X ⊆ S.X and the UCC S.X. Considering implementations of such
cardinality estimation strategies in real products, we found only one example (although
further examples might exist): IBM’s Db2 [IBM22b] database management system uses
foreign key constraints to make cardinality estimations more efficient by reducing the
number of considered statistical views.

7.6. Additional Optimizations

In this section, we discuss opportunities for further optimizations with semantic integrity
constraints and other types of dependencies.

7.6.1. Semantic Query Optimization

The field of semantic query optimization [CGM90; HZ80; Kin80; YS89] offers more
techniques that utilize further constraints and dependencies for query optimization. For
instance, semantic integrity constraints [Sto75] are typically user-defined and encode
knowledge about attributes of a relation. For example, a German citizen relation might
follow the semantic integrity constraint citizen.city = Berlin → citizen.zipcode ∈
[10115, 14199]. While such constraints can also be used for efficient query processing,
they differ from data dependencies that do not necessarily carry any semantic meaning.

7.6.2. Further Dependency Types

A substantial body of work discusses how the combination of the Chase and Backchase
procedures can be used to find minimal, equivalent plans for a particular query [DNR08;
Mei14]. These procedures can reveal opportunities to use certain auxiliary structures, such
as materialized views or indexes, for answering a query [Pop+00]. The dependencies that
are often used in the aforementioned work are so-called equality-generating dependencies
(egds) and tuple-generating dependencies (tgds) [BV84]. Both egds and tgds can be seen
as generalizations of other dependencies [DPT06], including the dependencies covered in
this thesis. As such, we already showed their usefulness when presenting optimizations
based on INDs above. There are, however, no general automatic discovery algorithms for

124

7.7. Summary and Open Challenges

tgds and egds (yet). What is more, they are usually present in integration scenarios where
they span multiple schemata as derived from user-defined schema mappings [FKP05].
Moreover, prior work often assumes set semantics [DPT99; Ile+14], so it is not always
suitable for typical relational database scenarios in which bag semantics prevail.

Although the data dependencies examined in this thesis, namely UCCs, FDs, ODs, and
INDs, are arguably the most important dependencies for query optimization today, many
further types of discoverable data dependencies and data rules exist, such as Multi-Valued
Dependencies (MVDs) [Fag77], Neighborhood Dependencies (NDs) [BW01], Sequential
Dependencies (SDs) [Gol+09], Denial Constraints (DCs) [Ber11], and others. If an SQL
query tests for such a dependency, this test can be avoided if the dependency is already
known to be true. Apart from this general rule, we find hardly any research on the use of
these dependencies for query optimization and, thus, do not cover them in this collection
of dependency-driven query optimization techniques.

7.7. Summary and Open Challenges

In this chapter, we surveyed various core techniques with which database management
systems can use genuine and observed data dependencies, namely uniqueness, functional,
order, and inclusion dependencies, to improve their query optimization capabilities. The
surveyed optimizations are of increasing relevance, because recent advances in the field of
automatic data profiling algorithms now enable the efficient discovery of such metadata
for large and, hence, practically relevant datasets — database systems today have access
not only to user-defined dependencies and constraints but also to much larger corpora of
automatically discovered dependencies. Additionally, due to increasing data volumes and
constantly high performance demands, database management systems (DBMSs) cannot
ignore this data-inherent performance optimization potential.

The compilation of techniques presented in this thesis can serve as a starting point
to equip query optimizers with interesting and potentially powerful optimization capa-
bilities that rely on data dependencies. Furthermore, it supports database engineers of
established systems in identifying additional techniques to further increase the efficiency
of their already advanced execution engines or query optimizers. Finally, we also provide
researchers with an exhaustive collection of related work that facilitates the uncovering
of open research questions and opportunities for future work. Next, we summarize three
major research directions that will also be partially examined in the next chapter.

Efficient Implementation and Integration. While some of the mentioned optimiza-
tion techniques require relatively simple implementations or are already implemented in
some of today’s database systems, other advanced techniques will be much more complex

125

7. A Survey of Data Dependency-Driven Query Optimization

to incorporate in practice and might require broad modifications of existing systems.
Even though many of the surveyed techniques have been evaluated in the respective
research papers, transferring them to practice in commercial database systems is not an
easy undertaking and, therefore, a challenge for future work.
Incremental Discovery and Maintenance. The knowledge of available data depen-
dencies is essential for all dependency-driven optimization techniques. Although we did
reference incremental discovery and maintenance approaches for all of the four considered
dependency types, more efficient approaches that can handle large dynamic datasets
under real-world workloads are necessary to enable the surveyed query optimization
techniques in practice.
Empirical Impact Evaluation. While this thesis collects many optimization tech-
niques, their general effectiveness, relevance, and overhead are still to be evaluated.
A systematic study is needed to measure the effectiveness and quantify the impact of
the various optimizations on query performance. Such impacts are neither obvious nor
straightforward to determine, as they depend on diverse factors, such as the database
system’s implementation, the specific query at hand, and the underlying dataset. To
judge the relevance of each optimization, an empirical study is needed that evaluates how
often and, hence, how likely the presented techniques apply to queries in real-world work-
loads. This study is a challenging task as it requires a representative collection of query
workloads. Finally, another study to quantify the optimization overhead introduced by
the proposed optimization techniques would require specific, well-tuned implementations
to measure potentially elevated optimizer runtimes and assess code complexity.

126

8
Integration and Evaluation of

Data Dependency-Driven Query Optimization

This chapter presents our approach to how the previously presented data dependency-
based query optimization techniques can be applied in a database management system
(DBMS). Thereby, we contribute to solving the challenges mentioned in Section 7.7
regarding an efficient integration of such techniques, their performance impact, and
the challenging maintenance of data dependencies in the context of query optimization.
First, we discuss why most of a dataset’s dependencies are typically unknown to DBMSs
(Section 8.1). Afterward, we propose an automatic, workload-driven approach that
discovers dependencies and enables the unsupervised utilization of data dependencies
for query optimization in Section 8.2. The approach is implemented and evaluated with
our research DBMS Hyrise, offering speed-ups of up to 61× for certain TPC-DS queries
and reducing the Join Order Benchmark (JOB)’s execution time by 26 % as presented in
Section 8.3. Finally, we discuss related work (Section 8.4), before concluding this chapter
and presenting ideas for future work (Section 8.5).

Parts of this chapter have been published in a research paper [Kos+22a], which was
a collaborative effort. The thesis author developed the underlying concept, prepared the
majority of the original draft for publication, created a prototypical implementation, and
designed the conducted experiments. Lindner refined and extended the implementation
and executed the experiments. Lindner, Naumann, and Papenbrock contributed to the
paper’s concept and improved the material and its presentation.

8.1. Challenges

Commonly, many data dependencies [SP22] of different types exist for any given dataset,
due to natural correlations in the data, schema denormalization, and certain data
generation patterns, cf. Section 6.2. In Chapter 7, we have discussed dozens of data
dependency-based query optimization techniques. Despite the existence of a variety of

127

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

such techniques, data dependencies and their query optimization strategies remain largely
underutilized because the database systems are not aware of these dependencies. The
reasons for this unawareness are three challenges, namely dependency discovery, selection,
and mutation, that are still practically unsolved in the context of query optimization for
DBMSs. The following subsections discuss these challenges in detail.

8.1.1. Dependency Discovery

The discovery challenge describes the fact that database systems usually do not have knowl-
edge about available data dependencies and that their discovery is expensive. Considering
the existence of thousands or even millions of dependencies on many datasets [SP22],
it becomes apparent that dependencies derived from manually or schema-defined con-
straints, such as primary or foreign keys, are only responsible for a fraction of all existing
dependencies. In some use cases, no manually defined constraints and keys exist. Many
scientific datasets, for example, are provided as CSV files that may include column
headers but no additional metadata [Abe+18]. Furthermore, some dependencies, such
as order dependencies, cannot even be manually defined as constraints in standard
SQL and established DBMSs. Automatically determining data dependencies via data
profiling algorithms is feasible but expensive and can take hours of processing [Abe+18;
SP22]. For example, for a real-world ERP system’s table of 45 M rows, one of the most
efficient parallelizable functional dependency (FD) profiling algorithms runs 8 hours to
completion with 32 parallel threads [PN16]. Even if the dependency mining is run as an
asynchronous background task, this runtime is extensive and might outweigh potential
dependency-based advantages.

8.1.2. Dependency Selection

The systematically profiled dependencies lead to the second challenge, which is dependency
selection. Data profiling algorithms discover all technically valid dependencies on a given
dataset. Therefore, the result sets can become large enough that even storing and
efficiently accessing them might be unfeasible during query optimization. For instance, a
1 M rows sample of the NCVoter statewide dataset35 contains a remarkable amount of
5 M minimal FDs (and many further dependencies of other types) [PN16]. Suppose the
overhead for storing all discovered dependencies would be acceptable. In that case, it
may still not be possible to find a particular dependency during query optimization fast
enough because their retrieval involves not only dependency lookup but also inference:
discovered dependencies are usually minimal, but the dependencies required for query
35NCVoter dataset: https://www.ncsbe.gov/results-data/voter-registration-data

128

https://www.ncsbe.gov/results-data/voter-registration-data

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation of Data Dependencies

optimization may not be. A strategy to select only dependencies relevant for query
optimization from discovered dependency sets does not exist yet.

8.1.3. Dependency Mutation

Even if dependencies could be efficiently discovered and selected for query optimization, a
third challenge arises. Dependency mutation is still an open issue because every INSERT,
UPDATE, or DELETE statement could invalidate expensively mined dependencies. Such an
invalidation would make them unsafe for query optimization: numerous optimizations
presented in Chapter 7 might produce query plans leading to wrong query results. Also,
new and helpful dependencies might appear, for example, caused by the deletion of
tuples that violate a dependency’s preconditions. In addition, efficiency is another
crucial requirement when handling dependency mutation as the efforts for keeping data
dependencies up-to-date must not outweigh the realized advantages. Thus, dependency
discovery, selection, and mutation need to be focused on improving query processing
performance.

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation
of Data Dependencies

We start this section with a short excursus that provides the necessary background of the
research DBMS Hyrise. Afterward, we first explain our workload-driven data dependency
discovery system. This system determines and validates data dependency candidates for
specific query optimization techniques considering only such dependencies relevant to the
observed workload. We then explain how changes to the data, which potentially mutate
or invalidate dependencies, can be handled by various techniques. While we implemented
our data dependency-based query optimization system in Hyrise [Dre+19], the presented
concepts are based on generic database concepts and are not technically coupled to this
particular DBMS; hence, they are applicable to other DBMSs, too.

8.2.1. Background: Hyrise

To demonstrate our dependency-based query optimization system, we implemented it
into the research DBMS Hyrise36. In the following, we briefly introduce the architecture
and relevant components of Hyrise [Dre+19] since some of its concepts are beneficial to
our approach, as we will discuss later in Section 8.2.3. We refer the interested reader to
the original paper [Dre+19] or Markus Dreseler’s thesis [Dre21] for further details.
36Hyrise source code and documentation on GitHub: https://github.com/hyrise/hyrise

129

https://github.com/hyrise/hyrise

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

Architecture. Hyrise is a main memory, column-oriented database system with an
implicitly horizontally partitioned storage layout. The partitions are called chunks and
have a fixed maximum size (default: 65 535 tuples). The fraction of a column that is
contained in a chunk is called segment. Chunking serves two primary purposes: increased
opportunities for data access avoidance by pruning and fine-granular configuration and
optimization decisions. For instance, decisions upon which encoding to apply or indexes
to create can be taken on segment level and do not have to be made for a complete
column. Thereby, more precise decisions can be made, and the overhead of applying new
configurations is reduced.

The standard configuration of Hyrise applies dictionary encoding [Lan+16] to all
chunks. Furthermore, Hyrise follows an insert-only approach utilizing multiversion
concurrency control (MVCC) [BG83; Sch+14]. With MVCC, deletes and updates do not
physically modify the original rows. Instead, rows are marked invisible and new versions
are appended to the table’s last chunk.
SQL Pipeline. SQL queries are handled by Hyrise’s SQL pipeline, depicted in Figure 8.1.
The SQL pipeline’s components transform a declarative SQL query into an imperative
query plan to produce a query result table. The pipeline comprises five steps.

(i) The SQL parser is the pipeline’s first component and transforms a string-based SQL
query to an abstract syntax tree (AST) representation consisting of C++ structs.
While all of the following components are part of Hyrise’s DBMS core, the SQL
parser37 is also available as a standalone component.

(ii) The SQL translator creates a logical query plan (LQP) based on the statements.
The LQP is a directed acyclic graph whose nodes are logical operators. These
logical operators resemble the operators of the relational algebra.

(iii) Afterward, the optimizer applies a set of rules to the LQP to create an optimized
LQP that is semantically equivalent but potentially more efficient. For instance,
the DependentGroupByReductionRule can reduce the number of attributes in
GROUP BY clauses; this optimization was also described in Section 7.3.1.

(iv) Subsequently, the LQP translator creates a physical query plan (PQP) that consists
of physical operators, i.e., the actual executable implementations of database opera-
tors. For example, a logical JoinNode can be translated to a physical JoinHash,
JoinSortMerge, JoinNestedLoop, or JoinIndex operator. Such choices are guided
by the optimizer or hardcoded in the LQP translator.

(v) These physical operators are executed on the data and produce a query result.

37Hyrise’s standalone SQL Parser on GitHub: https://github.com/hyrise/sql-parser

130

https://github.com/hyrise/sql-parser

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation of Data Dependencies

Parsed
Statement

Logical Query
Plan (LQP) Optimized LQP Physical Query

Plan (PQP)

SQL Query LQP Translator Physical
OperatorsOptimizerSQL TranslatorSQL Parser Query

Result

Figure 8.1.: SQL Pipeline of Hyrise: from SQL query to query result.

In addition, Hyrise caches LQPs and PQPs by default. Thereby, the unnecessary
repetition of the SQL pipeline’s steps is avoided if known queries are executed. The
operators’ performance data is stored along with the PQPs in the cache. Such data
contains, e.g., the operators’ execution time and the number of output rows.
Plugins. Hyrise offers a so-called plugin interface that enables the implementation of
unsupervised components with access to internal resources. Plugins are implemented as
dynamic libraries in C++. Thereby, plugins can be (un)loaded at any time and guarantee
native execution speed. Plugins can read and write internal data structures without
being tightly coupled to the database’s core or requiring specific interfaces (cf. [Dre+19,
p. 321]), which simplified the implementation of our approach.

8.2.2. Data Dependency Discovery and Selection

Data dependencies are usually unknown. Determining all dependencies that exist on a
table or within a dataset without limiting the search space can take minutes or hours for
a few million rows [PN16]. The overall target of our approach is to efficiently provide
data dependencies that can be used for query optimization. For this reason, our approach
focuses only on specifically promising data dependency candidates instead of considering
all possible attribute combinations, which is typical for state-of-the-art data profiling
algorithms [PN16; SP22].

For this purpose, our approach consists of two phases: first, we determine which data
dependency candidates are relevant, i.e., which dependencies could be beneficial for
processing the system’s workload when applied during query optimization. Second, the
previously determined candidates are validated. During the second phase, the candidates
are ranked according to the potential benefit that their application in query optimization
can achieve. In this way, the most promising candidates are promoted to be validated
first. This workload-driven, lazy approach explicitly addresses the discovery and selection
challenges explained above.

The procedure that determines and validates relevant dependency candidates is depicted
in Figure 8.2. The figure contains two main components: (i) A database system (Hyrise
in our case) capable of applying dependency-based optimizations and (ii) the dependency
discovery plugin.

131

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

Queries
Translator &

optimizer
Execution

engine

Plan cache Plan parser

Dependency
validator

Data
dependencies

Rule for O-1
Rule for O-2

Rule for O-n
● ● ●Invalid

candidates

Candidates
Candidate | Importance
OD A → B | 200
FD C,D → B| 182
UCC A,B | 100
UCC B | 17

ScanScan
<latexit sha1_base64="akO9cK8lIQNgYWhG0YIfuCvjlBo=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNlJJxkyO7PMzCphyUd48aCIV7/Hm3/jJNmDJhY0FFXddHdFieDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRqWaYZ0poXQrogYFl1i33ApsJRppHAlsRqPbqd98RG24kg92nGAY04Hkfc6odVKzE6kny7FbKvsVfwayTIKclCFHrVv66vQUS2OUlglqTDvwExtmVFvOBE6KndRgQtmIDrDtqKQxmjCbnTshp07pkb7SrqQlM/X3REZjY8Zx5Dpjaodm0ZuK/3nt1Pavw4zLJLUo2XxRPxXEKjL9nfS4RmbF2BHKNHe3EjakmjLrEiq6EILFl5dJ47wSXFb8+4ty9SaPowDHcAJnEMAVVOEOalAHBiN4hld48xLvxXv3PuatK14+cwR/4H3+AHyIj6o=</latexit>

./

{UCC B, 17}

{OD A→B, 200}

UCC A,B
UCC B

{OD A → B; FD C,D → B}

Query plans

Dependency DiscoveryDatabase System (Hyrise)

3
21

2A

2B

45
6

8
7

8A

8B
QueriesQueries

8C

Data

Developer
or DBA

Figure 8.2.: Schematic overview of our dependency discovery and selection procedure and
its database system interaction. < indicates that the corresponding example
value is passed between the adjacent entities.

Database System. 1 Queries are passed as SQL strings to the database system for
processing. 2 The SQL strings are then translated to logical query plans, optimized, and
finally translated to physical query plans. 2A If a query was already processed in the past,
its plan might be retrievable from the plan cache to avoid unnecessary retranslation and
reoptimization. 2B Also, during optimization, dependencies might be retrieved from the
data dependency store (simply depicted as Data dependencies in Figure 8.2 for brevity)
to create more efficient query plans — this extension enables the application of data
dependency-based optimizations, such as the optimizations discussed in Chapter 7. 3
Afterward, the query plan gets executed and is stored with runtime information in the
query plan cache.

Dependency Discovery. The actual dependency discovery extension is implemented in
C++ as a Hyrise plugin38 to prevent an unnecessary coupling to the database core. The
discovery process is executed periodically with a configurable frequency. 4 The basis for
this procedure is a set of developer-defined rules that provide the logic to derive specific
dependency candidates from queries stored in the plan cache, in particular from executed
physical and their corresponding logical operators.

We decided on this rule-based approach because it provides a flexible and straightfor-
ward mechanism to extend the system’s capabilities to generate dependency candidates
for new optimizations. The rules must inherit from AbstractDependencyCandidateRule
and subscribe to certain operator types, e.g., scans or joins. Then, the rules define under
what circumstances which dependency candidates are created via an apply method. A
simplified example rule that subscribes to joins (Line 1) is shown in Listing 8.1. An
example for the candidate generation logic, as partly contained in Listing 8.1, could be the
following: if two relations are joined, and if the join mode is either Semi or Inner, and

38Source code on GitHub: https://github.com/Bensk1/phd_thesis/releases/tag/source_code

132

https://github.com/Bensk1/phd_thesis/releases/tag/source_code

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation of Data Dependencies

1 JoinToPredicateRule() : AbstractDependencyCandidateRule(LQPNodeType::Join) {}
2
3 vector<DependencyCandidate> apply(
4 const shared_ptr<const AbstractLQPNode>& lqp_node) const {
5 const auto join_node = static_pointer_cast<const JoinNode>(lqp_node);
6
7 // Consider only semi and inner joins
8 if (!(join_node->join_mode == JoinMode::Semi ||
9 join_node->join_mode == JoinMode::Inner)) return {};

10
11 // Disregard multi-predicate joins
12 const auto& predicates = join_node->join_predicates();
13 if (predicates.size() > 1) return {};
14
15 // Check further requirements and calculate importance
16 ...
17 candidates.emplace_back(TableColumnIDs{filter_column},
18 TableColumnIDs{join_column}, DependencyType::
19 Order, importance_score);
20 }
21 // The rule is registered as follows in the Plugin's constructor
22 add_rule(make_unique<JoinToPredicateRule>());

Listing 8.1: Simplified example of a dependency candidate generation rule.

if this relation is filtered with a BETWEEN predicate (not shown in Listing 8.1), then create
an order dependency (OD) candidate. In other words, the rules define which dependencies
would need to exist so that certain optimizations (O-1, O-2, O-n in Figure 8.2) could
become applicable for the corresponding operator.

5 The dependency discovery procedure accesses the database system’s plan cache; the
stored query plans represent the processed workload. The plan parser handles the cache’s
entries, i.e., the physical and logical query plans, in an operator-by-operator fashion. 6
The operators are passed to all rules that subscribed to the particular operator type
(e.g., O-2 and O-n in Figure 8.2). 7 Afterward, the rules, which are active components
in this architecture, are executed to check the developer-defined requirements and return
applicable, operator-specific dependency candidates together with an importance score —
an integer value — for every candidate (e.g., OD and unique column combination (UCC)
candidates in Figure 8.2). The importance score expresses how promising a candidate
is, i.e., how much workload performance improvement can be expected from utilizing it
during query optimization. The most effective dependencies are identified and validated
first by ranking the candidates according to their importance scores.

The importance score is determined by the rule that identifies the candidate. The
currently implemented rules consider the execution time of the processed operator for the

133

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

importance score. More sophisticated cost models could be applied in future extensions,
e.g., following a what-if approach known from physical database design (cf. Section 2.1)
where a particular configuration (data dependency in our case) is only simulated or
assumed to exist to retrieve cost estimates for a hypothetical scenario from a cost model.

8 Next, the dependency candidates are ordered by their score and validated against
the underlying data by the dependency validator. In our case, where the procedure is
implemented into Hyrise, the validation profits from memory-resident data, its columnar
storage layout, and dictionary encoding; Section 8.2.3 provides more details. For some
dependency types, the dependency validator partly resorts to Hyrise’s efficient operator
implementations, for instance, the Sort operator for validating order dependencies.
We also use techniques of existing validation algorithms, such as sampling [PN16], to
eliminate candidates quickly. In a more generic setting, traditional SQL- or position list
index (PLI)-based validation algorithms could be used [Abe+18]. 8A After validation, the
identified data dependencies are stored in the DBMS’ data dependency store to be used
during query optimization. 8B In addition, the plugin also keeps a list of unsuccessfully
validated dependency candidates for efficiency reasons. Both stores are accessed during
validation to avoid repeated unnecessary validations on unchanged underlying data. 8C

Furthermore, the corresponding query plans are removed from the plan cache to enable
reoptimization, and, thereby, the use of the validated dependencies for optimization.

8.2.3. Efficient Data Dependency Mutation

Data changes can invalidate dependencies, e.g., by introducing duplicate values that
invalidate UCCs. Then, the use of invalid dependencies for query optimization can lead
to poor cost and cardinality estimations, inefficient plans, and, in the worst case, faulty
results. While such mistakes might be acceptable in certain cases, such as approximate
query processing [NK04], they are usually not tolerable.

In this section, we go over three techniques that tackle the challenge of dependency
mutation as explained in Section 8.1.3 and keep dependencies up-to-date: (i) workload-
driven discovery, (ii) incremental validation and maintenance, and (iii) the utilization of
column store DBMS concepts. In the following, we discuss each technique in more detail.

Genuine Dependency Candidates Based on Workload-Driven Discovery. A
general observation about data dependencies is that spurious dependencies may change
often, while genuine, i.e., semantically meaningful dependencies that model a real-world
constraint, do not or only rarely change over the lifetime of a dataset [Abe+18]. Because
our system is designed to draw the dependencies from executed SQL queries that operate
on real-world datasets, a large portion of the discovered dependencies is expected to be
genuine. Hence, the workload-driven discovery works as a semantic prefilter, which can

134

8.2. Workload-Driven, Lazy Discovery, Selection, and Mutation of Data Dependencies

significantly reduce the amount of change in the dependency store compared to other
mined dependency collections. Adding to this observation, our evaluations (presented
below) have also revealed that many beneficial dependencies exist on dimension tables,
e.g., date or type tables, which are very rarely updated [KR13, p. 141]. If updates are
actually required, the cost of validating dependencies is low due to the comparably small
size of dimension tables [KR13], as we will observe later in Section 8.3.4.

Incremental Validation and Maintenance. If our dependency-based query optimiza-
tion system is applied in data warehouse scenarios, where the data is updated in specific,
low-frequent cycles [Son18], keeping the dependencies up-to-date could be integrated into
these cycles. Between updates, the dependencies would be guaranteed to be up-to-date.

For more general setups, we focus on more fine-grained updates: given a concrete data
change, it is not necessary to re-evaluate all previously validated dependencies and to
re-evaluate dependencies entirely. Instead, we propose the use of efficient incremental
validation and maintenance approaches that exist for all four previously surveyed data
dependency types (UCCs, FDs, ODs, INDs) as presented in Section 6.2. Note that many
DBMSs, e.g., Microsoft SQL Server [Mic21b], SAP HANA [21], and PostgreSQL [Thea],
provide index-based techniques originally designed for efficiently enforcing uniqueness
constraints that could be adopted for UCC maintenance. Because our system maintains
only a tiny subset of all existing dependencies and does not progressively replace inval-
idated dependencies with new minimal dependencies (as some of the aforementioned
incremental discovery approaches do), the dependency maintenance is more efficient.

Utilization of Column Store DBMS Concepts. Apart from the incremental
validation techniques, certain column store concepts are beneficial for handling data
change in terms of efficient dependency validation and the treatment of potentially
invalid dependencies. Modern column stores, such as DuckDB [RM19], HyPer [KN11], or
Hyrise [Dre+19], often store values in chunks or data blocks, which are implicit horizontal
partitions of a fixed size that are compressed and made immutable when their capacity is
reached [Dre+19; Lan+16]. Also, UPDATE statements are append-only operations that
invalidate the original and insert a new tuple containing the updated values.

This architecture can be exploited in three ways: first, some dependency validation
algorithms benefit directly from the columnar storage layout, similar to some database
operations. Because data dependencies express relationships between attributes, i.e.,
columns, typically, only very few columns need to be read sequentially for their validation.
In contrast to row-oriented systems, where entire tuples — including unwanted attributes

— are read, columnar storage layouts allow accessing the relevant data precisely for
sequential accesses [Pla09]. Therefore, column store systems, such as Hyrise, serve to
(re)validate the dependencies more efficiently.

135

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

The second advantage of such systems is that they often rely on compression techniques,
such as dictionary encoding, which can further improve the validation. For example, our
implementation uses Hyrise’s chunk-wise dictionaries to quickly determine non-unique
column combinations during the validation of UCC candidates.

Finally, due to the combination of the chunk-based storage layout and append-only
approach, data changes will not invalidate data dependencies on the immutable chunks,
which contain the majority of the stored data [Dre+19]. Instead, they might only be
invalid on the chunk where data is appended. On this chunk, dependencies should be,
at least temporarily, considered invalid until this chunk is revalidated. Thereby, even
though a dependency might not be maintained upon insert or update, it will still be valid
on most chunks, which can be utilized for query optimization. To demonstrate how this
observation can be utilized, we consider the UCC-based join-to-semijoin optimization
presented in Section 7.2.1 and an insert or update that might potentially invalidate a
necessary UCC. An example is depicted in Figure 8.3. During query optimization, two
differing branches (originating from Table 1) are introduced in the query plan. For the
first branch that targets the subset of chunks where the UCC is valid (Chunk #1 and #2
of Table 2), dependency-based optimizations, e.g., the more efficient semijoin strategy,
can be considered; for the second branch, such optimizations cannot be utilized. Finally,
both branches are then combined with a UNION operation. Note, for efficiency reasons,
our implementation introduces an additional data-induced [OKC19] filter predicate on
the second branch to try to reduce Table 1 before the InnerJoin. This predicate filters
the join column by the minimum and maximum39 value of Table 2’s Chunk #3.

Table 1 Table 2

Filter

SemiJoin InnerJoin

Union

Chunk #1

Chunk #3
Chunk #2

Chunk #1 - UCC

Chunk #3
Chunk #2 - UCC

Figure 8.3.: Example query plan considering chunks without data dependencies. The
plan consists of two branches: the left one uses a UCC-based optimization
and solely accesses the first two chunks of Table 2 where this UCC is valid.
The right one only accesses the third chunk without optimizations.

39A chunk’s min and max can be retrieved with low overhead if such values are maintained upon insert.

136

8.3. Evaluation

8.3. Evaluation

To evaluate our workload-driven dependency discovery system for query optimization in
combination with some of the dependency-based query optimization techniques themselves,
we implemented the system as a Hyrise plugin; for the source code, see Footnote 38 above.
The plugin analyzes Hyrise’s plan cache to determine and validate beneficial dependency
candidates, as explained in Section 8.2.2.

8.3.1. Experimental Setup

The following experiments were executed on the same machine as used above, an AMD
EPYC 7F72 with 24 cores (base clock: 3.2 GHz, boost: up to 3.7 GHz) with 512 GB
of main memory running Ubuntu 20.04 (Kernel 5.4.0-105). We compile Hyrise with
g++ version 10. For our evaluation, we use the TPC-H, TPC-DS40, and Join Order
Benchmarks (JOB). These benchmarks have been described in detail in Section 4.1.1.
The JOB’s real-world data is particularly interesting to evaluate the effects of dependency-
driven optimizations in practice. For the TPC-H and TPC-DS, we use a scale factor of
10 and, for the JOB, we use the original paper’s dataset41.

In the subsequent experiments, the system automatically identifies and validates
dependency candidates for three optimizations presented in Chapter 7 and implemented
in Hyrise. In addition, the performance impact of these optimizations is investigated.
The optimizations are labeled O-1, O-2, and O-3 and use different data dependencies:
O-1 corresponds to the UCC-based utilization of potentially more efficient semijoin
strategies (Section 7.2.1); O-2 relates to the FD-based reduction of GROUP BY attributes
(Section 7.3.1); O-3 refers to the OD-based join avoidance (Section 7.4.2). Note that O-3
also includes the UCC-based invisible join (Section 7.2.1) due to the similarity of these
two techniques.

To simulate a scenario where the system has to identify all dependency candidates
by itself in an unsupervised fashion, no (foreign) keys or constraints are defined for the
benchmarks. Such scenarios occur, e.g., when data resides in CSV files where definitions
of keys and other metadata are not provided [Abe+18] or if the schema was not adequately
modeled by a database administrator (DBA) or developer. For each benchmark, i.e., the
TPC-H, TPC-DS, and JOB, we first execute the entire workload 100 times and calculate
the average (mean) of the total workload execution time. Then, we invoke the dependency
discovery plugin, which in practice, would run in the background during query processing.
Afterward, the workload is executed another 100 times. This time, dependency-based
optimizations are applied if the plugin has identified dependencies. In this way, the
40Currently, Hyrise supports 47 of the 99 TPC-DS queries. See the source code on GitHub for details.
41Dataset for the Join Order Benchmark: http://homepages.cwi.nl/~boncz/job/imdb.tgz

137

http://homepages.cwi.nl/~boncz/job/imdb.tgz

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

experiment measures the execution times of the plugin and the fully optimized workloads
separately. All experiments are executed in single-threaded mode because single-threaded
experiments are sufficient for demonstrating the impact of dependency-based optimization
techniques. We did not obtain different observations from multi-threaded experiments,
which is expected, given that our techniques do not introduce any interdependencies
interfering with multi-threaded processing.

8.3.2. Limitations

The following evaluation relies on the same workloads as the previous evaluations. Please
refer to Sections 4.1.1 and 4.1.6 for a detailed discussion of these workloads and their
limitations. Additionally, an evaluation with the trace of a single real-world workload
would not allow more robust conclusions for data dependencies. Instead, a large set of real-
world workloads operating on different datasets would have to be evaluated to allow more
general conclusions. However, “the public availability of real-world database workloads
is limited” [Vog+18, p. 1] and the existence of a large number of data dependencies on
numerous real-world datasets has been demonstrated before [PN16; SP22].

Moreover, the data dependency-based optimization techniques are not evaluated in
complete isolation. Disabling all of Hyrise’s other optimization rules would degrade
the performance significantly and distort the measurements. Thus, interactions with
Hyrise’s existing optimization rules cannot be avoided. In fact, if dependency-based
query optimization were integrated into productive DBMSs, such interactions would also
occur. Hence, not evaluating these techniques in pure isolation leads to a more realistic
setting.

8.3.3. Optimization Performance

Table 8.1 shows the latency and throughput performance impact of the three data
dependency-driven query optimization techniques separately and combined. The impact
is compared with a baseline. None of the dependency-based optimizations are utilized for
this baseline because no dependency is known to the DBMS, as explained in the setup
above. Apart from the impact on the execution time, Table 8.1 also shows how many
queries were improved or degraded, the average throughput change, and the maximum
improvement.

As a first observation, the realized benefits are substantial, which is particularly true
for the JOB and TPC-DS, where a combination of all three optimizations reduces the
execution times by 26 % (10.7 s of 40.7 s) and 9 % (2.9 s of 31.6 s), respectively. While
the observed performance benefits do not represent a formal verification of our approach,
they indicate that the proposed selection process promotes useful dependencies. Also,

138

8.3. Evaluation

Table 8.1.: Performance impact (latency and throughput) of optimizations O-1 to O-3.∑ shows the combined execution time of all queries. #↓ indicates the number
of improved queries (with lower execution time), #↑ degraded ones; only
changes larger/smaller than ±5 % were considered for these two metrics. ∅
indicates the average (geometric mean) throughput change across all of the
workload’s queries. max↑ shows the maximum observed speed-up.

JOB (113 Queries) TPC-DS (47 Queries) TPC-H (22 Queries)

Latency Throughput Latency Throughput Latency Throughput∑
#↓ #↑ ∅ max↑

∑
#↓ #↑ ∅ max↑

∑
#↑ #↓ ∅ max↑

Baseline 40.7 s – – – – 31.6 s – – – – 38.9 s – – – –
O-1 -8.5 s 61 20 11 % 2.5 × -1.6 s 26 1 9 % 1.5 × -0.7 s 2 1 1 % 1.1 ×
O-2 0.0 s 0 0 0 % 0 -0.6 s 2 0 1 % 1.1 × -1.5 s 1 0 2 % 1.5 ×
O-3 -7.1 s 65 6 25 % 5.3 × -1.1 s 6 0 30 % 61 × -0.3 s 0 0 1 % 1 ×
All -10.7 s 72 13 29 % 5.5 × -2.9 s 28 1 40 % 61 × -2.1 s 3 1 3 % 1.6 ×

for these two benchmarks, the performance of the vast majority of all queries is affected
positively; more than half of JOB’s 113 queries are improved. The number of improved
queries always outweighs the degraded ones. Also, in the combined TPC-H case, 3 of
22 queries improved while only a single query’s performance declined, resulting in a 5 %
(2.1 s of 38.9 s) execution time reduction overall.

In addition to the summary statistics, we point out that each of the optimizations
causes significant improvements in some queries. Details can be obtained from Figures A.2
to A.4 in Appendix A.1.2. For example, for O-1, we observed a 2.5× speed-up for JOB’s
Query 14c; for O-2, we observed a 1.5× speed-up42 for TPC-H’s Query 10; for O-3, we
observed a 61× speed-up of TPC-DS’ Query 32. Furthermore, the table demonstrates
that the optimizations compete with each other in some cases. For instance, considering
the individual impacts of O-1 and O-3, one could expect to see a larger combined
improvement for the JOB, which is not the case because both optimizations target joins.
Thereby, the optimizations decrease the other optimization’s potential.

Discussion. The magnitude of the query performance impact of dependency-based query
optimization techniques depends on the database schema, the queries, the evaluated
optimizations, and the underlying data. For example, O-1 and O-3 explicitly target
joins, which frequently occur in the JOB and have a more considerable overall impact in
the JOB and TPC-DS than aggregates, which are targeted by O-2. Also, the snowflake
schema-like data models of the TPC-DS and JOB appear to be more suitable for such
optimizations. Finally, it depends on the data itself whether dependencies exist and,
hence, whether optimizations can be applied.
42For the skewed JCC-H [BAK17] dataset the observed speedup was even higher at ≈ 2.6 ×.

139

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

8.3.4. Discovery and Selection Overhead

Using dependencies for query optimization introduces a tradeoff between the realized
performance improvements and the overhead for determining dependencies. Therefore,
while the overhead of the initial dependency discovery and selection process is visible in
some cases, it must be judged considering the achieved performance gains. This overhead
is demonstrated in Table 8.2. The Overhead columns indicate the time necessary to
generate dependency candidates and their validation alongside the number of such
dependencies that are depicted in the Candidates columns.

Table 8.2.: Candidate information and overhead of unsupervised data dependency dis-
covery. Candidates displays the number of candidates divided into the total
number of identified candidates for the workload and the successfully validated
ones. The Overhead time is split into the time taken for candidate generation
(Generate) as well as for validating these candidates (Validate). Size refers to
the memory footprint of the validated dependency data structures in bytes.

JOB (113 Queries) TPC-DS (47 Queries) TPC-H (22 Queries)

Candidates Overhead Candidates Overhead Candidates Overhead

Total Valid Generate Validate Size Total Valid Generate Validate Size Total Valid Generate Validate Size

O-1 10 10 24 ms 152 ms 760 13 11 8 ms 32 ms 836 5 5 1 ms 1.9 s 380
O-2 0 0 1 ms <1 ms 0 53 2 1 ms 2 ms 152 19 5 <1 ms 3.4 s 380
O-3 18 15 20 ms 67 ms 1 140 23 7 8 ms 50 ms 580 12 7 1 ms 1.9 s 532
All 20 17 22 ms 223 ms 1 292 72 14 9 ms 56 ms 1 112 26 9 2 ms 3.4 s 684

According to Table 8.2, our approach determines a manageable number of a few
dozen dependency candidates for all investigated benchmarks. The share of candidates
that are generated from the workload, but that cannot be validated on the datasets, is
larger for the TPC workloads. The largest number of dependencies can be validated
for the combined JOB scenario, 17. Even in this case, the memory size of the validated
dependencies barely exceeds a kilobyte. A list of all dependencies discovered for the three
workloads can be obtained from Daniel Lindner’s master’s thesis [Lin22].

Also, the validation time clearly outweighs the candidate generation time for almost all
cases. The different complexities of the underlying procedures can explain this observation:
for candidate generation, query plans that consist of a few dozen or a few hundred nodes
must be parsed. In contrast, the validation might require analyzing millions of values for
the evaluated datasets.

For the scenario where all three optimizations are applied, the system searches for
beneficial UCCs, FDs, and ODs. The overhead for O-1, O-2, and O-3 does not necessarily
result in the combined overhead as some dependency candidates might be relevant
for multiple optimizations. The necessary time and break-even rate (considering the

140

8.4. Related Work

improvements reported in Table 8.1) varies largely for the three benchmarks: for the
JOB and TPC-DS, only a small fraction of an entire workload run is necessary to break
even. For the JOB, the advantage outweighs the overhead by 44×, for the TPC-DS by
45×. For the TPC-H, all queries must be executed approximately twice; the realized
benefit corresponds to 0.6× of the observed discovery overhead.

There are two main reasons for the large differences in validation runtime. First,
some types of dependency candidates are more challenging to validate than others. For
example, determining uniqueness (for UCCs) is generally simpler than sorting large tables
with dozens of millions of rows (for ODs). On the other hand, invalidating candidates is
often faster than successfully validating candidates because the procedure can be aborted
early. In addition, the table’s size and the nature of the data impact validation costs.
In fact, successfully validating a single UCC on c_address of TPC-H’s customer table
with ≈1.5 m rows takes 0.8 s and is responsible for 24 % of the discovery and selection
runtime. In contrast, the TPC-DS profits from an OD on a small dimension table that
can be validated in only 23 ms. The last observation conforms with the argumentation
presented in Section 8.2.3: there are valuable data dependencies leading to performance
improvements that can be (re)validated quickly.

Discussion. The above experiments have shown that the effort for dependency discovery
is usually amortized quickly, particularly for the more realistic datasets, i.e., JOB and
TPC-DS. More importantly, the discovery process is not tied to query execution and
optimization. Hence, it can be executed as an asynchronous background task whose
runtime is significantly less relevant. The storage or memory size of dependencies is in
the range of a few kilobytes and hence, negligible.

Furthermore, our experiments have shown that beneficial dependencies exist on different
datasets. The ratio of valid and candidate dependencies is high (85 %) for the JOB that is
based on real-world data, compared to the TPC-H (35 %) and TPC-DS (19 %). Moreover,
our approach is scalable: evaluations on larger TPC-H and TPC-DS datasets show that
the performance benefits increase at least as quickly as the validation efforts [Lin22].

8.4. Related Work

In this section, we discuss related work of our workload-driven dependency discovery
approach. Some dependency-based query optimization techniques are used by commercial
database systems, as explained in Chapter 7. However, to the best of our knowledge, such
systems do not determine the necessary dependencies in an unsupervised fashion. Thus,
the utilized optimizations are based on user-defined dependencies. Practical examples
include UCCs and INDs (referential integrity constraints) to reduce the number of

141

8. Integration and Evaluation of Data Dependency-Driven Query Optimization

statistical views [IBM22b] in IBM’s Db2 or FDs (which are only validated if instructed
by the user) for improved selectivity estimates [Thed] in PostgreSQL.

Pena et al. [Pen+18] present a mechanism that automatically incorporates FDs to
rewrite SQL queries. Their system needs to discover all functional dependencies first.
Afterward, they determine which queries might profit from which FDs by comparing
(i) matrices representing the FDs and (ii) matrices consisting of attribute occurrences in
the workload’s queries.

There are a few differences to our approach. The authors do not limit the dependency
discovery process to relevant candidates, leading to higher potential discovery, selection,
and maintenance costs than our approach. Furthermore, the proposed system does
rely on query rewriting-based techniques only. As presented in Section 7.1, numerous
techniques cannot be achieved with pure rewriting and optimization opportunities are
neglected. Additionally, our system includes other dependency types that show a more
considerable optimization potential than FDs. Lastly, the work of Pena et al. does not
discuss dependency mutation challenges, as presented in Section 8.1.3.

The partitioning-based technique for FDs presented by Gianella et al. [Gia+02] is
similar to our idea of utilizing modern column store concepts to handle potentially invalid
dependencies. The authors propose to split a relational table horizontally into two
partitions, one in which an FD is true and one that contains all the violations to the
FD. Then, queries to the partitioned table also need to be split, i.e., rewritten to read
from both partitions. The subquery that reads from the partition, where the FD holds
true, can use FD-based optimizations; the other subquery is executed regularly without
optimizations. In contrast to this technique, we do not explicitly create partitions but
build on chunks that are implicitly created and part of the database system’s storage
layout. In addition, our approach is not limited to FDs but currently works with FDs,
ODs, and UCCs. Also, the motivation for the approaches is different. In general, our
approach assumes the validity status of dependencies to be only temporarily unknown
due to data-modifying statements and not to be permanently violated. Furthermore, we
do not need to rewrite the query itself but can precisely adapt single operators of the
query plan.

8.5. Conclusion and Future Work

We presented an approach that efficiently discovers data dependencies based on concrete,
given workloads and applies them during query optimization to generate more efficient
query plans to improve performance. The three challenges when applying data dependen-
cies for the purpose of query optimization are the discovery, selection, and mutation of
relevant dependencies. We proposed an integrated solution that tackles these challenges

142

8.5. Conclusion and Future Work

with our workload-driven, lazy dependency discovery approach, incremental validation
and maintenance techniques, and concepts of column store DBMSs.

An evaluation performed with the open-source DBMS Hyrise showed promising results
for the analytical benchmarks TPC-H, TPC-DS, and JOB: the observed runtime improve-
ments are substantial with up to 26 % of reduction in workload execution time and up to
61× query speed-up. The overhead for determining and validating dependency candidates
is reasonable: between 2 % and 162 % of the observed execution time reduction. Note
that the discovery efforts can run as asynchronous background tasks and are, therefore,
not a factor that needs to be considered to impact the system performance immediately.
Furthermore, in the conducted experiments, we observed that those dependencies that
turned out to be beneficial for query optimization could also be revalidated quickly, which
mitigates the impact of dependency mutation.

Future Work. Various ideas for future research directions for workload-driven, lazy data
dependency discovery exist. For instance, we have evaluated three dependency-based
query optimization techniques in this thesis. Numerous additional techniques could be
implemented and evaluated based on the survey in Chapter 7. These techniques might
also be based on dependency types that have not been considered, e.g., INDs. In addition,
the implemented techniques could be used to improve the optimizer’s cardinality and
cost estimation instead of enabling plan transformations as above.

Another interesting aspect is the transferability of the obtained results to other
types of database architectures. For example, the impact of dependency-driven query
optimization on the performance of traditional row-oriented, disk-based DBMS, such as
PostgreSQL [SRH90], or of cloud-based data warehouses, such as Snowflake [Dag+16]
could be evaluated. Moreover, the impact on the discovery overhead caused by non-
column-oriented storage layouts could be examined. Lastly, the proposed solutions could
be benchmarked with an extended set of real-world datasets and workloads.

143

Part III.

Application Scenario of
Unsupervised Database Optimization

and Conclusion

145

9
A Cockpit for Unsupervised Database Optimization

The first two parts of this thesis have investigated two aspects of unsupervised database
optimization that are directly related to improving the performance of database man-
agement systems (DBMSs). In this chapter, we present our cockpit for unsupervised
database optimization. The cockpit facilitates the adoption process of such unsupervised
techniques by offering a platform for interactive experiments and building trust in them.

As discussed in Chapter 1, autonomous DBMSs can support database administrators
(DBAs) in complex administration tasks. However, according to interviews with DBAs and
DBMS customers, autonomous solutions are often distrusted [Pav+17]: such solutions are
believed to only work in artificial scenarios and lack the necessary robustness for operating
in real-world environments. An evaluation of the actual benefit on workload performance
and the introduced resource and processing overheads by autonomous techniques is
necessary to build trust and demonstrate their advantages. Additionally, creating an
understanding of the reasoning behind the decisions taken by autonomous systems, i.e.,
achieving explainability [Gun+19], can facilitate the adoption process [Met+19].

Our interactive cockpit aims to create the necessary trust and opportunities for
practical experimentation by directly comparing unsupervised with conventional systems
regarding their performance during operation. For this purpose, workloads and system
configurations can be modified to evaluate database performance in specific situations
and scenarios. This direct comparison approach is in line with a similar technique applied
to SQL databases in Microsoft Azure [Das+19]. Customer workloads are sent to two
systems, system A and B. System A is a conventional system as tuned by the customer.
On the other hand, system B is a duplicate of system A and is used for experiments with
unsupervised optimization techniques. Thereby, the performance of both systems can
be compared in a real-world scenario, while it is guaranteed that the customer system’s
performance is not affected in any way.

In the following, all examples refer to our research database system Hyrise [Dre+19].
However, the cockpit is not conceptually limited to only supporting Hyrise as a host
DBMS. As long as the DBMS provides the necessary metrics and monitoring information

147

9. A Cockpit for Unsupervised Database Optimization

via SQL, the cockpit could be connected with other DBMSs. The remainder of this chapter
provides an overview of our cockpit along with an application scenario in Section 9.1.
Afterward, we discuss the cockpit’s architecture in Section 9.2.

Parts of this chapter have been published in a demonstration paper [Kos+21]. The
cockpit was developed with nine undergraduate students as part of their final project.
The paper’s primary authors, Boissier and the thesis author, developed the cockpit’s
concept and guided the implementation, which was almost entirely handled by the students.
Furthermore, the primary authors prepared the original draft for publication. The co-
authors improved the paper’s material and its presentation.

9.1. Overview

The cockpit should enable database engineers and administrators to experiment with
unsupervised database optimization techniques. For this reason, the cockpit incorporates
the following key concepts, which are also reflected in the design of the user interface:

• Monitoring: metrics to inspect workload performance (e.g., throughput or latency),
system resources (e.g., CPU utilization and memory footprint), and the current
workload (e.g., expensive statements and data access counters) are continuously
monitored, visualized, and stored in a time-series database for convenient analysis.

• Variable workloads and load intensity: Users can provide their own workloads and
datasets or choose from a variety of synthetic ones (e.g., the TPC-H, TPC-DS,
TPC-C, and Join Order Benchmark (JOB)). In terms of parallel queries per second,
they can regulate the pressure that is put on the system.

• Interactivity: users can activate plugins that conduct unsupervised database op-
timization and observe their impact on workload performance as well as on the
system’s resources.

• Explainability: we provide the opportunity to inspect the reasoning behind au-
tonomously taken decisions to facilitate a better comprehension of such decisions.

9.1.1. User Interface

In the following, we explain which information is displayed in the cockpit and how the
cockpit enables user interaction. Note that the cockpit’s functioning is best demonstrated
in an actual usage scenario where its visualization and interaction capabilities can be
experienced. A guided demonstration [Kos+21] of the cockpit that includes a tour of the
user interface can be obtained online43.
43Screencast of Hyrise cockpit demonstration: https://vimeo.com/671073749/ffbf158a86

148

https://vimeo.com/671073749/ffbf158a86

9.1. Overview

The web browser-based cockpit contains three monitoring views and three configuration
panels. The views provide overviews of the current workload and the evaluated database
instances. These views’ charts depict general metrics, such as latency, throughput, or
CPU and memory utilization. Users can choose to either display each instance separately
side by side in the Comparison view, as demonstrated in Figure 9.1. Alternatively, the
metrics for all instances can be displayed in a single graph in the Overview view.

Hyrise A
 1622.48 GB
 224
 972.924 MB
 8
 Hyrise B
 1622.48 GB
 224
 462.756 MB
 8

Database ID
 Memory Capacity
 CPUs
 Data Size
 Workers
 Database ID
 Memory Capacity
 CPUs
 Data Size
 Workers

Throughput
 67 q/s
 Hyrise A
 Throughput
 36 q/s
 Hyrise B

Aggregation: 1 second
 Aggregation: 1 second

80
 80

60
 60

40
 40

20
 20

0
 0

19:30:00
 19:30:05
 19:30:10
 19:30:15
 19:30:20
 19:30:25
 19:30:00
 19:30:05
 19:30:10
 19:30:15
 19:30:20
 19:30:25

N
um

be
r

of
 q

ue
rie

s
/ s

N
um

be
r

of
 q

ue
rie

s
/ s

Figure 9.1.: Screenshot of the throughput and system part of the Comparison view.

Two equivalent Hyrise instances run identical workloads. The left instance
was tuned by the unsupervised clustering plugin and exhibited a higher
throughput. The compression plugin decreased the right instance’s data size.

The Comparison view also allows for showing diagrams that cannot be aggregated, e.g.,
heatmaps (Figure 9.2) displaying access patterns per chunk and attribute or treemaps
(Figure 9.3) depicting per-attribute memory consumption. The Workload Analysis view
displays the most expensive queries per database instance and the runtime share of the
different database operators to enable quick analyses of the currently processed workload.

The cockpit user can adjust the workload and the plugins via two configuration panels.
The Workload Configuration allows (un)loading of table data, starting multiple workloads,
and modifying the number of queries per second. Plugins can be (de)activated with the
Plugin panel. The panel also allows adjusting plugin settings, e.g., the storage budget for
an index selection plugin. Moreover, the panel displays log messages that inform about
the plugins’ actions. These messages are also displayed in the charts above to enable
the user to relate performance changes with plugin activity. The following example log
messages were obtained when the compression plugin [Boi22] optimized a TPC-H dataset.

Compression Plugin [14:54:19]: Compression Plugin initialized.
Compression Plugin [14:55:32]: Encoded 92 of 92 segments of lineitem.l_comment
using LZ4-SIMDBP128: saved 348.85 MB.
Compression Plugin [14:55:49]: Encoded 2 of 3 segments of customer.c_name using
FixedStringDictionary-SIMDBP128: saved 3.48 MB.
Compression Plugin [14:55:52]: Compression optimization finished: memory budget
is feasible (budget: 650 MB, current size of table data: 647.68 MB).

149

9. A Cockpit for Unsupervised Database Optimization

Figure 9.2.: Screenshot of the cockpit’s access heatmap for TPC-H’s lineitem table. Cells
represent segments, i.e., a column’s part of a chunk. Warmer colors indicate
frequent accesses; such information can be utilized for identifying data access
patterns and comprehending unsupervised data clustering decisions.

The flexible interaction with plugins per database instance enables users to experiment
with them and observe their performance implications. Thereby, not only the interplay
of different plugins [KS20] can be evaluated, but also alternative approaches to the same
problem, e.g., various index selection algorithms, can be compared easily.

9.1.2. Application Scenario

In the following, we sketch a possible scenario for using our cockpit in practice. Martine
works as a DBA in a large enterprise. The company uses the relational database system
Hyrise, which relies on various techniques for unsupervised database optimization. These
techniques conduct optimizations, e.g., creating secondary indexes, reducing the main
memory footprint via compression, or clustering the data. Martine is interested in the
advantages of all these approaches. However, she usually refrains from such approaches
as (i) their impacts are hard to predict, (ii) she has experienced devastating performance
impacts when applying heavy compression to database tables, (iii) she fears that these
approaches fail when unexpected events, e.g., load spikes, occur, and (iv) she is afraid
that combining multiple approaches might lead to undesired behavior.

By using our cockpit for unsupervised database optimization, Martine utilizes a recorded
query trace of a production system to replay the workload of last year’s severe blizzard
season to evaluate the impact of the plugins in different highly challenging scenarios.
She learns that reinforcement learning (RL)-based index selection provides beneficial

150

9.1. Overview

configurations instantaneously and that the improved pruning rates caused by automated
table clustering quickly set off the initial reorganization costs.

Simultaneously, Martine gains confidence in applying compression as she realizes how
much the system can be compressed without affecting the performance of the production
system. Her confidence increases when she combines the provided heatmap (cf. Figure 9.2)
that displays access counts with the plugin’s log messages. As the cockpit also allows her
to examine the correlation and interplay of autonomous components, Martine balances
the memory reduced via compression with the memory invested into secondary indexes.

Figure 9.3.: Screenshot of the cockpit’s memory footprint treemap for the TPC-H dataset
(SF 1). This diagram allows to quickly identify the largest tables and
columns. The treemap also offers detailed information about the currently
used encoding schemes, data types, and sizes.

151

9. A Cockpit for Unsupervised Database Optimization

9.2. Cockpit Architecture

In the following, we discuss the cockpit’s architecture and implementation44 details. The
cockpit’s architecture is depicted in Figure 9.4. The components of the cockpit handle
three main tasks: (i) the frontend allows the user to interactively examine and modify
the processed workload as well as current system configuration, displays performance
metrics, and provides access to the plugins that conduct database optimization, (ii) the
cockpit backend handles the communication between the frontend and the investigated
systems (i.e., Hyrise instances) as well as the periodic monitoring and storing of the
displayed metrics. (iii) The workload generator is responsible for creating queries and
putting pressure on the evaluated systems.

Plugin
Repository

Indexing

Compression

Clustering

Backend

DB Object II

DB Object I
DBA Frontend

Workload
Control

Plugins

Workload
Analysis

Performance
Metrics

Queues
Pu

bl
ish

er

Enqueue
Worker

Execution
WorkerWorkload Generator

Workloads

User-def.
TPC-*
JOB

Query
Generator

Periodic Monitoring

Database Control

Enqueue
Worker

Execution
Worker

Queue I
User-def. 17

JOB 11c

TPC-H 6

Queue II
User-def. 17

JOB 11c

TPC-H 7

Hyrise

Hyrise
User-defined

Workload

Queries

Dataset

Figure 9.4.: Architecture of the cockpit for unsupervised database optimization. The
figure’s example workload represents a mixture of a used-provided workload
trace (User-def.), TPC-H- and Join Order Benchmark-based queries.

While the frontend is implemented in Vue.js [You], we use Python 3 throughout all
other components. Hyrise implements the PostgreSQL wire protocol [Thec] so that
queries can be transmitted via widely available clients and libraries. DBMS metrics, for
instance, the CPU utilization, access counts, or the memory footprint of a table, can be
easily obtained via SQL queries, too.

One of the main challenges during the cockpit’s implementation was the harmonization
of the, sometimes contrary, design requirements:

• High load generation: for insightful evaluations, the ability to stress the systems un-
der investigation with high system loads is mandatory because trust in unsupervised
approaches is only achieved if extreme situations can be handled well.

• Fair load distribution: even though it is technically impossible to generate the
same workload — including identical arrival times for queries — for all evaluated
systems, the workload generator must ensure that the workload differences are kept
as small as possible.

44Hyrise cockpit source code on GitHub: https://github.com/hyrise/Cockpit

152

https://github.com/hyrise/Cockpit

9.3. Summary

• Simple workload extension: the cockpit should serve as an evaluation platform for
DBAs and developers. Thus, providing synthetic queries and data is not sufficient.
Instead, users must be able to add their own workloads and data in a simple fashion.

To achieve a fair load distribution, generate a sufficient number of queries, and follow a
clear separation of concerns, we decided to decouple the query generation from the actual
sending to the database instances. Thereby, these tasks can operate independently in
different processes and on different CPU cores to avoid the workload generation becoming
a bottleneck. The query generator implements the logic for creating a configurable
number of queries per second from a predefined query set. By default, all queries of a
workload are chosen with the same probability. The cockpit user can modify the query
distribution to emphasize specific queries and reproduce realistic scenarios.

Afterward, the workload generator passes the queries to the backend database objects,
which maintain query queues (implemented with Python’s multiprocessing library). The
database objects handle the actual query sending with psycopg2 [Var]. We utilize
ZeroMQ’s [Zer] publisher-subscriber pattern for efficient inter-process communication.
Only database control commands that target specific instances, e.g., for loading plugins,
are not published but directly sent to the appropriate node. The task of enqueueing new
queries is also decoupled from the sending procedure. Otherwise, the delayed response of
a poorly performing database instance could affect the fair and even query distribution.
Existing real-world workloads can be replayed by simply providing the necessary table
data and queries as CSV and SQL files.

Flask [Pal] handles the communication between the backend and frontend. Furthermore,
the time series database InfluxDB [Inc19] is used to store the observed metrics permanently.
Thereby, we enable the analysis of historical performance data to comprehend particular
system and plugin behavior in more detail. We facilitate reproducibility and the cockpit’s
setup process by providing a Docker setup for all components.

9.3. Summary

We presented our cockpit for unsupervised database optimization. The cockpit allows
monitoring performance KPIs, analyses, e.g., of data access patterns, and comprehending
the decisions of unsupervised database optimization techniques. The cockpit also serves
as a platform for interactive experiments, including side-by-side comparisons of conven-
tional and unsupervised systems. Confidence in unsupervised systems is established by
investigating how they compare against conventional, manually administrated systems
when both process the same workload. Thereby, the cockpit aims at facilitating the
adoption of systems that act in an unsupervised fashion by demonstration.

153

10
Conclusion

A human with a machine beats both
human and machine.45

Marc-Uwe Kling — Author

Database systems offer a multitude of competing configuration options that must be
adequately balanced for good performance and resource utilization. Currently, highly
skilled human database administrators (DBAs) take care of the administration of database
management systems (DBMSs). Such tasks are time-consuming, expensive, and ardu-
ous [Pav+19]. Even further, the complexity of these configuration tasks is increasing due
to, e.g., more interdependent configuration options, DBAs lacking domain knowledge in
cloud environments, and more complicated as well as flexible workloads. To handle this
complexity and keep up with ever-increasing data and query volumes, DBMSs need to
become more autonomous and apply unsupervised database optimization. For example,
heuristics, linear programming (LP) approaches, or machine learning-based methods can
be used to determine optimized configurations for database administration tasks.

In this context, we researched how new unsupervised database optimization techniques
can efficiently improve the performance of database systems. We focused on two distinct
aspects, efficient index selection (Part I) and the use of data dependencies for query
optimization (Part II). For both, we first established the necessary foundations by
introducing definitions and formalizations. Afterward, we surveyed and analyzed existing
approaches by studying related work. Based on these analyses, we developed new,
improved approaches.

In Part I, based on the analyses of state-of-the-art index selection algorithms, we
presented two novel, improved algorithms that complement each other. In Part II, we
developed a workload-driven approach that enables the utilization of data dependencies for
query optimization. All of our approaches are available as open-source implementations.

45Translated by the author from: Ein Mensch mit Maschine schlägt sowohl Mensch als auch Maschine.

155

10. Conclusion

The approaches for both aspects were evaluated with industry-standard and real-world
data-related DBMS benchmarks. Finally, we presented our cockpit for unsupervised
database optimization that offers an interactive experimentation platform for DBAs and
developers to build trust in autonomous DBMSs and facilitate their adoption. We believe
a combination of the abilities of sophisticated unsupervised approaches and human input
to be most powerful. Examples are given in Chapter 5, where incorporating expert
decisions can accelerate and improve an agent’s training behavior, and in Chapter 8,
where the rules to derive dependency candidates are defined manually.

Responses to the Initial Research Questions. The detailed analyses of existing
techniques and our newly developed approaches allow us to answer the initially posed (in
Section 1.4) research questions:

1. How can we analyze, compare, and classify unsupervised index selection algorithms
and investigate which factors influence their performance regarding the quality of
the identified solutions as well as the required runtime?

We formalized the index selection problem and highlighted its challenges to facilitate
the analysis of existing as well as the development of improved index selection algo-
rithms. Subsequently, significant differences of existing index selection approaches
were illustrated with an extensive survey and the reimplementation of seven ap-
proaches. The survey describes, analyzes, and compares the techniques across
different dimensions, e.g., multi-attribute index support and the consideration of
index interaction. Furthermore, we classified the modus operandi of the approaches
into additive, reductive, and declarative ones.

The reimplementations are the basis for an experimental evaluation. For this
evaluation, we developed a flexible index selection evaluation platform. The platform
allows comparing the quality of the identified solutions and the selection runtime
in different scenarios. Moreover, fine-granular cost breakdowns can be created
for detailed analyses. The observed differences are significant. In particular, the
selection runtimes diverge by orders of magnitude. Besides the seven algorithms
and three analytical benchmarks implemented for this work, the platform is easily
extensible by other algorithms and workloads.

Based on an experimental evaluation with the three benchmarks, we derived 10
general and 17 algorithm-specific insights. These insights build the foundation
for the development of improved index selection algorithms. In particular, our
evaluation indicates that algorithms producing close-to-optimal solutions exist.
However, these approaches come with considerable selection runtimes for large

156

problem instances. Simultaneously, fast approaches often have difficulties identifying
close-to-optimal solutions due to less consideration of index interaction effects.

2. How can we scale index selection processes to efficiently determine near-optimal
index sets, even for large problem instances and considering complex effects, such
as index interaction?

We presented two, new efficient index selection algorithms to overcome the short-
comings of existing solutions. The presented algorithms focus on two different
application scenarios: First, Extend aims for close-to-optimal solutions and general
applicability without preparation. Extend is an additive approach that benefits from
not limiting index widths and candidates. Instead, it works with an extension mech-
anism that opens up new index opportunities with every index decision. Previously
chosen indexes are extended attribute-by-attribute. Thereby, Extend determines
equivalent or better index configurations faster than other close-to-optimal index
selection algorithms.

Second, SWIRL complements Extend by focusing on scenarios where many index
configurations for similar selection problems are required. SWIRL is a reinforce-
ment learning (RL)-based index selection approach that internalizes which index
candidates are beneficial in which situations during a preliminary training phase.
Afterward, index configurations can be obtained almost instantaneously.

Based on our evaluations, we conclude that techniques like RL and the iterative
extension of indexes allow efficient index selection for large problem instances.
Our techniques dominate their direct competitors in both metrics: the solution
quality of the identified index configurations and the selection runtime. Extend’s
solutions have the highest quality on average; it also determines the best solution
of all candidates in the majority of evaluated scenarios. Simultaneously, it is an
order of magnitude faster for large problem instances than direct competitors.
SWIRL dominates its direct competitors, too. After training, SWIRL determines
index configurations faster than all examined approaches; its selection runtime is
within 1–3 seconds for large problem instances, while approaches producing high-
quality solutions take multiple minutes or even hours in such scenarios. The quality
of SWIRL’s solutions is close, on average, not more than 3 % worse compared
to the quality of the best conventional algorithms, e.g., Extend. At the same
time, SWIRL is capable of outperforming other fast index selection algorithms
in terms of solution quality. For instance, for the Join Order Benchmark (JOB),
the solutions of DB2Advis are, on average, more than 10 percentage points (pp),
and for DRLinda, more than 20 pp worse. Based on specific experiments, we also

157

10. Conclusion

conclude that SWIRL can generalize to handle unknown workloads. Moreover,
Extend’s anytime capabilities outperform DTA’s, which was specifically designed
with such capabilities in mind.

3. How can a DBMS use data dependencies for improved query optimization, and how
can relevant dependencies be identified in an unsupervised fashion?

Data dependencies, which exist on most real-world datasets, have various appli-
cations for query optimization, e.g., for query plan simplifications or improved
cardinality estimation. We collected and explained 58 query optimization tech-
niques based on functional, order, and inclusion dependencies as well as on unique
column combinations to demonstrate how DBMSs can utilize dependencies for
query optimization. These techniques were classified according to the necessary
dependency type, the application area, and which query optimization activity is
affected.

Utilizing dependencies in practice is challenging. Typically, dependencies are
unknown; their discovery and maintenance are expensive. We presented a workload-
driven approach that creates promising dependency candidates by analyzing the
processed workload. This analysis is executed as an unsupervised, asynchronous
background procedure. Due to the workload analysis, the number of dependency
candidates remains reasonable — a few dozens for the analyzed analytical workloads

— permitting fast validation. Furthermore, we discussed techniques, e.g., the utiliza-
tion of column store concepts, to mitigate the effects of invalid dependencies. The
conducted evaluations show substantial performance benefits across all evaluated
benchmarks. For instance, the JOB’s runtime can be decreased by 26 % and some
TPC-DS queries can be accelerated by a factor of up to 61. At the same time, the
overhead caused by dependency candidate validation is between 2 % (TPC-DS and
JOB) and 162 % (TPC-H) of the observed execution time reduction. Hence, the
overhead is negligible for the more realistic workloads and datasets (TPC-DS and
JOB). For the TPC-H, it pays off after less than two workload executions.

In view of our work on two aspects of unsupervised database optimization, DBMSs
can improve their performance under consideration of the currently processed workload.
Extend and SWIRL determine better index configurations faster than other index selection
algorithms. Additionally, our workload-driven, lazy data dependency approach enables
more efficient query plans by automatically identifying beneficial data dependencies for
query optimization. Thereby, we take two crucial steps towards autonomous database
systems.

158

A
Appendix

A.1. Additional Figures

This section presents additional supporting figures for some of the above’s experiments.

A.1.1. Additional Figures for Part I

Figure A.1 reports the amount of information loss for different representation widths
when reducing the dimensionality of SWIRL’s workload representation; see Section 5.2.3.

0 10 20 30 40 50 60 70 80 90 100
Representation width (R)

0

10

20

30

40

Di
sc

ar
de

d
en

er
gy

 sp
ec

tru
m

 (%
)

12%

8%

JOB
TPC-DS

Figure A.1.: Discarded energy spectrum (%), i.e., a measure for the information loss,
for increasing representation width (R) values between 5 and 100. Our
implementation of SWIRL uses R = 50.

A.1.2. Additional Figures for Part II

Figures A.2 to A.4 report the per-query performance impact of our data dependency-
driven query optimization approach presented in Chapter 8. The figures show the impact
for the combined case of using all three optimizations, O-1, O-2, and O-3. Only queries
whose runtime was increased or decreased by at least 5 % are shown.

159

A. Appendix

10a 10b 11a 11b 11c 11d 12a 12b 12c 13a 13b 13c 13d 14a 14b 14c 15a 15b 15d 16a 16b

Speedup 2.54x 2.24x 1.13x 1.13x 1.11x 1.15x 0.77x 1.39x 0.90x 3.96x 1.36x 2.46x 2.13x 2.40x 1.70x 2.72x 1.11x 1.13x 0.59x 1.67x 1.39x

W/o (ms) 166.4 122.2 63.2 62.9 26.5 30.0 54.7 70.4 93.1 321.7 120.3 30.8 722.8 470.0 367.4 553.6 37.1 36.9 83.4 2300.5 3471.7

With (ms) 65.4 54.5 55.8 55.7 23.9 26.0 70.9 50.7 103.3 81.3 88.3 12.5 339.8 195.7 216.5 203.9 33.5 32.7 141.8 1375.1 2496.7

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Degraded
Improved

(a) Runtime speedup for the Join Order Benchmark (JOB) queries 10a to 16b.

16c 16d 17a 17b 17c 17e 17f 18a 18c 19a 19b 19c 19d 1a 1b 1c 1d 20a 20b 20c 21a

Speedup 1.62x 1.64x 1.21x 1.33x 1.33x 1.09x 1.18x 2.47x 2.48x 1.05x 1.13x 1.07x 1.37x 1.06x 1.45x 1.67x 1.45x 1.34x 1.07x 1.23x 1.10x

W/o (ms) 2416.7 2389.4 584.0 459.9 434.1 1715.6 989.8 655.1 574.1 422.9 263.2 335.3 993.5 25.2 10.6 12.5 10.6 685.1 578.8 428.6 84.4

With (ms) 1490.9 1459.7 483.7 346.5 326.4 1569.3 840.5 264.9 231.2 402.5 232.9 312.9 725.6 23.8 7.3 7.5 7.3 511.9 539.8 347.4 76.4

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Improved

(b) Runtime speedup for the JOB queries 16c to 21a.

22a 22b 22c 22d 23a 23b 23c 24b 25a 25c 26c 27c 28a 28b 28c 29a 29b 29c 2a 2b 2c

Speedup 0.88x 0.62x 2.10x 2.52x 1.06x 0.76x 0.96x 0.94x 1.15x 2.37x 0.91x 1.08x 1.99x 0.90x 2.37x 1.12x 1.35x 0.91x 1.94x 1.77x 1.99x

W/o (ms) 227.7 151.7 670.9 986.2 43.8 37.1 43.1 238.9 243.4 1034.3 452.6 84.4 380.0 48.4 444.5 230.2 232.4 280.4 53.5 44.3 26.8

With (ms) 258.2 246.3 319.6 391.7 41.5 48.8 45.1 252.9 211.6 436.0 498.0 78.5 190.6 54.0 187.3 205.9 171.7 308.2 27.6 25.0 13.5

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Degraded
Improved

(c) Runtime speedup for the JOB queries 22a to 2c.

2d 30b 30c 31b 32a 32b 3a 3c 4a 4c 5a 5b 5c 7c 8a 8b 8c 8d 9a 9b 9c 9d

Speedup 1.33x 0.93x 1.56x 0.92x 1.80x 1.20x 1.79x 1.97x 1.88x 5.50x 1.32x 1.66x 1.67x 1.12x 1.42x 1.37x 1.13x 1.40x 1.09x 1.28x 1.32x 1.17x

W/o (ms) 74.8 195.9 420.0 210.4 17.6 42.1 127.2 467.0 131.3 145.3 57.4 127.6 175.3 642.5 51.8 50.4 1988.3 362.1 283.6 129.3 305.8 556.2

With (ms) 56.2 211.4 269.2 228.2 9.8 35.0 71.2 236.8 70.0 26.4 43.4 76.7 104.8 572.2 36.6 36.9 1754.6 259.5 260.3 100.7 231.4 477.0

0

1

2

3

4

5

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Degraded
Improved

(d) Runtime speedup for the JOB queries 2d to 9d.

Figure A.2.: Speedup (latency w/o divided by latency with) for JOB queries for optimiza-
tions O-1, O-2, and O-3. With and w/o refer to using data dependency-driven
query optimization. Overall 10.7 s (26 %) faster.

160

A.1. Additional Figures

01 06 13 15 16 17 25 26 29 32 34 37 39a 39b 45
Speedup 0.91x 1.10x 1.06x 1.08x 8.24x 1.20x 1.10x 1.50x 1.26x 61.00x 1.21x 7.96x 1.14x 1.14x 1.08x
W/o (ms) 222.0 174.6 459.8 118.0 240.6 391.4 194.1 176.1 603.1 48.8 187.1 301.5 2023.8 2010.1 127.1
With (ms) 243.3 158.2 433.0 108.9 29.2 326.5 176.5 117.2 477.3 0.8 155.2 37.9 1774.7 1761.5 118.1

100

101

Sp
ee

du
p

[lo
g

sc
al

e]
(la

te
nc

y
w/

o
/ l

at
en

cy
 w

ith
) Degraded

Improved

(a) Runtime speedup for the TPC-DS queries 01 to 45.

48 55 62 65 73 79 82 85 88 91 92 94 97 99
Speedup 1.32x 1.05x 1.09x 1.06x 1.12x 1.16x 4.45x 1.29x 1.10x 1.23x 4.32x 3.99x 1.06x 1.09x
W/o (ms) 1201.1 88.7 619.0 2044.5 96.7 587.1 373.0 326.6 752.1 21.8 65.3 135.9 4131.0 1168.4
With (ms) 909.9 84.5 569.1 1922.4 86.1 505.5 83.8 253.2 684.6 17.7 15.1 34.1 3901.0 1069.4

0

1

2

3

4

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Improved

(b) Runtime speedup for the TPC-DS queries 48 to 99.

Figure A.3.: Speedup (latency w/o divided by latency with) for TPC-DS queries for opti-
mizations O-1, O-2, and O-3. With and w/o refer to using data dependency-
driven query optimization. Overall 2.9 s (9 %) faster.

TPC-H 02 TPC-H 08 TPC-H 09 TPC-H 10

Speedup 0.94x 1.10x 1.08x 1.58x

W/o (ms) 43.8 794.0 6269.6 4099.1

With (ms) 46.4 720.8 5829.2 2588.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sp
ee

du
p

(la
te

nc
y

w/
o

/ l
at

en
cy

 w
ith

) Degraded
Improved

Figure A.4.: Speedup (latency w/o divided by latency with) for TPC-H queries for opti-
mizations O-1, O-2, and O-3. With and w/o refer to using data dependency-
driven query optimization. Overall 2.1 s (5 %) faster.

161

A. Appendix

A.2. List of URLs

Table A.1.: List of URLs mentioned in footnotes of this thesis. Table entries in order of
their appearance. Accessed: April 9, 2022.

Description URL

Index selection evaluation platform on GitHub http://git.io/index_selection_evaluation
Data dependency-driven query optimization on GitHub https://github.com/Bensk1/phd_thesis/

releases/tag/source_code
Index selection algorithm implementations on GitHub https://git.io/IndexSelectionAlgorithms
TPC homepage https://www.tpc.org
HypoPG source code and releases on GitHub https://github.com/HypoPG/hypopg
Gurobi solver https://www.gurobi.com
Source code for NoDBA [SSD18] on GitHub https://github.com/shankur/autoindex
Source code of Lan et al.’s approach [LBP20] on GitHub https://github.com/rmitbggroup/IndexAdvisor
SMARTIX’s [Lic+20] experimental setup https://doi.org/10.5281/zenodo.3254967
SWIRL’s Bag Of Operators implementation on GitHub https://github.com/hyrise/rl_index_

selection/blob/main/swirl/boo.py
Anytime version of Extend on GitHub https://github.com/hyrise/index_selection_

evaluation/blob/master/selection/algorithms/
extend_algorithm_anytime.py

NCVoter dataset https://www.ncsbe.gov/results-data/
voter-registration-data

Hyrise source code and documentation on GitHub https://github.com/hyrise/hyrise
Hyrise’s standalone SQL Parser on GitHub https://github.com/hyrise/sql-parser
Dataset for the Join Order Benchmark http://homepages.cwi.nl/~boncz/job/imdb.tgz
Screencast of Hyrise cockpit demonstration https://vimeo.com/671073749/ffbf158a86
Hyrise cockpit source code on GitHub https://github.com/hyrise/Cockpit

162

http://git.io/index_selection_evaluation
https://github.com/Bensk1/phd_thesis/releases/tag/source_code
https://github.com/Bensk1/phd_thesis/releases/tag/source_code
https://git.io/IndexSelectionAlgorithms
https://www.tpc.org
https://github.com/HypoPG/hypopg
https://www.gurobi.com
https://github.com/shankur/autoindex
https://github.com/rmitbggroup/IndexAdvisor
https://doi.org/10.5281/zenodo.3254967
https://github.com/hyrise/rl_index_selection/blob/main/swirl/boo.py
https://github.com/hyrise/rl_index_selection/blob/main/swirl/boo.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm_anytime.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm_anytime.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm_anytime.py
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://github.com/hyrise/hyrise
https://github.com/hyrise/sql-parser
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://vimeo.com/671073749/ffbf158a86
https://github.com/hyrise/Cockpit

A.3. Publications

A.3. Publications

Our main contributions have been published at international conferences and journals, at
VLDB, ICDE, EDBT, CIDR, and in the VLDB Journal. Furthermore, our work resulted
in two patent applications:

(1) An Experimental Survey of Index Selection Algorithms

• Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. “Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms”. In: Proceedings of the VLDB Endowment
13.11 (2020), pp. 2382–2395.

(2) Scalable and Effective Index Selection Algorithms

• Jan Kossmann, Alexander Kastius, and Rainer Schlosser. “SWIRL: Selection
of Workload-aware Indexes using Reinforcement Learning”. In: Proceedings
of the International Conference on Extending Database Technology (EDBT).
2022, pp. 155–168.
• Jan Kossmann, Rainer Schlosser, Alexander Kastius, Michael Perscheid, and

Hasso Plattner. Training an Agent for Iterative Multi-Attribute Index Selection.
European Patent Application EP22156399.2. February 2022.

• Rainer Schlosser, Jan Kossmann, Martin Boissier, Matthias Uflacker, and
Hasso Plattner. Iterative Multi-Attribute Index Selection for Large Database
Systems. European Patent EP3719663B1; US Patent Application 16/838,830.
October 2020.

• Rainer Schlosser, Jan Kossmann, and Martin Boissier. “Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies”. In: Proceedings
of the International Conference on Data Engineering (ICDE). 2019, pp. 1238–
1249.

(3) Data Dependency-driven Query Optimization

• Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. “Data depen-
dencies for query optimization: a survey”. In: VLDB Journal 31.1 (2022),
pp. 1–22.

• Jan Kossmann, Felix Naumann, Daniel Lindner, and Thorsten Papenbrock.
“Workload-driven, Lazy Discovery of Data Dependencies for Query Optimiza-
tion”. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR). 2022.

163

A. Appendix

Our complementary contributions target further aspects of unsupervised database opti-
mization and have been published at international conferences, journals, and workshops:

Component-based Framework for Autonomous DBMS Functionality

• Jan Kossmann and Rainer Schlosser. “Self-driving database systems: a
conceptual approach”. In: Distributed And Parallel Databases (DAPD) 38.4
(2020), pp. 795–817.
• Jan Kossmann and Rainer Schlosser. “A Framework for Self-Managing

Database Systems”. In: Proceedings of the International Conference on
Data Engineering (ICDE) Workshops. 2019, pp. 100–106.
• Jan Kossmann. “Self-Driving: From General Purpose to Specialized DBMSs”.

In: Proceedings of the VLDB PhD Workshop. 2018.

Plugin Concept for DBMS Integration and Hyrise Cockpit

• Jan Kossmann, Martin Boissier, Alexander Dubrawski, Fabian Heseding,
Caterina Mandel, Udo Pigorsch, Max Schneider, Til Schniese, Mona Sobhani,
Petr Tsayun, Katharina Wille, Michael Perscheid, Matthias Uflacker, and Hasso
Plattner. “A Cockpit for the Development and Evaluation of Autonomous
Database Systems”. In: Proceedings of the International Conference on Data
Engineering (ICDE). 2021, pp. 2685–2688.
• Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias

Uflacker, and Hasso Plattner. “Hyrise Re-engineered: An Extensible Database
System for Research in Relational In-Memory Data Management”. In: Pro-
ceedings of the International Conference on Extending Database Technology
(EDBT). 2019, pp. 313–324.

Unsupervised Table Clustering

• Daniel Lindner, Alexander Löser, and Jan Kossmann. “Learned What-If
Cost Models for Autonomous Clustering”. In: Advances in Databases and
Information Systems (ADBIS). 2021, pp. 3–13.

164

A.3. Publications

Besides, we have researched database management system (DBMS) topics that are only
of minor relevance to this thesis:

• Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker, and
Hasso Plattner. “Fused Table Scans: Combining AVX-512 and JIT to Double
the Performance of Multi-Predicate Scans”. In: Proceedings of the International
Conference on Data Engineering (ICDE) Workshops. 2018, pp. 102–109.
• Jan Kossmann, Markus Dreseler, Timo Gasda, Matthias Uflacker, and Hasso

Plattner. “Visual Evaluation of SQL Plan Cache Algorithms”. In: Proceedings of
the Australasian Database Conference (ADC) — Databases Theory and Applications.
2018, pp. 350–353.
• Markus Dreseler, Timo Gasda, Jan Kossmann, Matthias Uflacker, and Hasso

Plattner. “Adaptive Access Path Selection for Hardware-Accelerated DRAM Loads”.
In: Proceedings of the Australasian Database Conference (ADC) — Databases
Theory and Applications. 2018, pp. 3–14.

165

A. Appendix

A.4. Reuse of Material Published by IEEE

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Hasso Plattner Institute’s or University of Pots-
dam’s products or services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications_standards/publications/rights/
rights_link.html to learn how to obtain a License from RightsLink.

166

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

List of Figures

1.1. Diagram of autonomous DBMS research focus areas. 4
1.2. Schematic comparison of index selection approaches. 9

3.1. Timeline of milestones in index selection research. 25

4.1. Evaluation of index selection algorithms for the TPC-H benchmark. . . . 43
4.2. Per-query performance of index selection algorithms for the TPC-H bench-

mark. 44
4.3. Evaluation of index selection algorithms for the TPC-DS benchmark. . . . 45
4.4. Evaluation of index selection algorithms for the Join Order Benchmark. . 46

5.1. Overview of SWIRL, our RL-based index selection approach. 65
5.2. Exemplary state representation for SWIRL. 67
5.3. Workload representation example for SWIRL. 70
5.4. Example for invalid action masking. 73
5.5. Performance comparison of state-of-the-art index selection approaches and

SWIRL and Extend for a Join Order Benchmark workload. 78
5.6. Performance comparison across 100 random workloads for the TPC-H,

TPC-DS, and Join Order Benchmark. 79
5.7. Evaluation of DTA’s, Extend’s, and SWIRL’s anytime capabilities. 81
5.8. Impact of invalid action masking for a Join Order Benchmark scenario. . . 83
5.9. Schematic comparison of index selection approaches including Extend and

SWIRL. 88

8.1. Hyrise SQL Pipeline. 131
8.2. Schematic overview of our dependency discovery and selection procedure. 132
8.3. Example query plan considering chunks without data dependencies. . . . 136

9.1. Comparison view of the Hyrise cockpit. 149

167

List of Figures

9.2. Access heatmap of the Hyrise cockpit. 150
9.3. Memory footprint treemap of the Hyrise cockpit. 151
9.4. Architecture of the Hyrise cockpit. 152

A.1. SWIRL: information loss when reducing the workload representation width.159
A.2. Impact of data dependency-driven query optimization on the runtime of

Join Order Benchmark queries. 160
A.3. Impact of data dependency-driven query optimization on the runtime of

TPC-DS queries. 161
A.4. Impact of data dependency-driven query optimization on the runtime of

TPC-H queries. 161

168

List of Tables

2.1. Notation table for index selection. 18
2.2. Index selection solution space metrics. 21

3.1. Summary of compared index selection algorithms. 26

4.1. Index selection algorithm cost breakdown for the TPC-DS benchmark. . . 48
4.2. Query cost estimation request durations. 49

5.1. Comparison of reinforcement learning-based index selection approaches. . 61
5.2. Hyperparameters for our PPO reinforcement learning model. 74
5.3. Reinforcement learning training duration and problem complexity metrics

for different benchmark scenarios. 82
5.4. Impact of the number of unknown query templates during training. 84
5.5. Impact of the exact selection of unknown query templates during training. 85

7.1. Classification of data dependency-based query optimization techniques. . 105

8.1. Performance impact of data dependency-based optimizations O-1 to O-3. 139
8.2. Overhead of unsupervised data dependency discovery. 140

A.1. List of URLs mentioned in footnotes of this thesis. 162

169

Acronyms

ANN Artificial neural network

DBA Database administrator

DBMS Database management system

ERP Enterprise resource planning

FD Functional dependency

GUFLP Generalized Uncapacitated Facility Location Problem

ILP Integer linear programming

JOB Join Order Benchmark

LQP Logical query plan

LP Linear programming

LSI Latent semantic indexing

ML Machine learning

OD Order dependency

pp Percentage points

PLI Position list index

PQP Physical query plan

RL Reinforcement learning

TCO Total cost of ownership

TPC Transaction Processing Performance Council

SaaS Software-as-a-Service

UCC Unique column combination

170

Bibliography

[Aba+19] Daniel Abadi, Anastasia Ailamaki, David G. Andersen, Peter Bailis, Mag-
dalena Balazinska, Philip A. Bernstein, Peter A. Boncz, Surajit Chaudhuri,
Alvin Cheung, AnHai Doan, Luna Dong, Michael J. Franklin, Juliana Freire,
Alon Y. Halevy, Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann,
Tim Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey Melnik, Tova
Milo, C. Mohan, Thomas Neumann, Beng Chin Ooi, Fatma Ozcan, Jignesh
Patel, Andrew Pavlo, Raluca A. Popa, Raghu Ramakrishnan, Christopher
Ré, Michael Stonebraker, and Dan Suciu. “The Seattle Report on Database
Research”. In: SIGMOD Record 48.4 (2019), pp. 44–53.

[AMF06] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. “Integrating compres-
sion and execution in column-oriented database systems”. In: Proceedings
of the International Conference on Management of Data (SIGMOD). 2006,
pp. 671–682.

[AMH08] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. “Column-stores vs.
row-stores: how different are they really?” In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2008, pp. 967–980.

[AGN15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Profiling relational
data: a survey”. In: VLDB Journal 24.4 (2015), pp. 557–581.

[Abe+18] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.
Data Profiling. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2018.

[AQN14] Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. “Detect-
ing Unique Column Combinations on Dynamic Data”. In: Proceedings of the
International Conference on Data Engineering (ICDE). 2014, pp. 1036–1047.

[AR18] Alberto Abelló and Oscar Romero. “Online Analytical Processing”. In:
Encyclopedia of Database Systems, Second Edition. Springer, 2018.

171

Bibliography

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[Agr+04] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe,
Vivek R. Narasayya, and Manoj Syamala. “Database Tuning Advisor for
Microsoft SQL Server 2005”. In: Proceedings of the International Conference
on Very Large Databases (VLDB). 2004, pp. 1110–1121.

[ACN00] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. “Automated
Selection of Materialized Views and Indexes in SQL Databases”. In: Pro-
ceedings of the International Conference on Very Large Databases (VLDB).
2000, pp. 496–505.

[ANY04] Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang. “Integrating Vertical
and Horizontal Partitioning Into Automated Physical Database Design”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD). 2004, pp. 359–370.

[Ake+17] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
“Automatic Database Management System Tuning Through Large-scale
Machine Learning”. In: Proceedings of the International Conference on
Management of Data (SIGMOD). 2017, pp. 1009–1024.

[Ake+21] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan
Zhang, Christian Billian, and Andrew Pavlo. “An Inquiry into Machine
Learning-based Automatic Configuration Tuning Services on Real-World
Database Management Systems”. In: Proceedings of the VLDB Endowment
14.7 (2021), pp. 1241–1253.

[Ana] Firebolt Analytics. The Firebolt Cloud Data Warehouse Whitepaper. n.d.
url: https://www.firebolt.io/resources/firebolt- cloud- data-
warehouse-whitepaper#Indexes Accessed: April 9, 2022.

[Arm74] William Ward Armstrong. “Dependency Structures of Data Base Relation-
ships”. In: Information Processing, Proceedings of the IFIP Congress. 1974,
pp. 580–583.

[AM86] Paolo Atzeni and Nicola M. Morfuni. “Functional dependencies and con-
straints on null values in database relations”. In: Information and Control
70.1 (1986), pp. 1–31.

[Aul+09] Stefan Aulbach, Dean Jacobs, Alfons Kemper, and Michael Seibold. “A
comparison of flexible schemas for software as a service”. In: Proceedings
of the International Conference on Management of Data (SIGMOD). 2009,
pp. 881–888.

172

https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper#Indexes
https://www.firebolt.io/resources/firebolt-cloud-data-warehouse-whitepaper#Indexes

Bibliography

[BW01] Renaud Bassée and Jef Wijsen. “Neighborhood Dependencies for Prediction”.
In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD). 2001, pp. 562–567.

[Bas+15] Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan,
Pierre Senellart, and Stéphane Bressan. “Cost-Model Oblivious Database
Tuning with Reinforcement Learning”. In: Proceedings of the International
Conference on Database and Expert Systems Applications (DEXA). 2015,
pp. 253–268.

[BV84] Catriel Beeri and Moshe Y. Vardi. “A Proof Procedure for Data Dependen-
cies”. In: Journal of the ACM 31.4 (1984), pp. 718–741.

[BG83] Philip A. Bernstein and Nathan Goodman. “Multiversion Concurrency
Control — Theory and Algorithms”. In: ACM Transactions on Database
Systems (TODS) 8.4 (1983), pp. 465–483.

[Ber+81] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve,
and James B. Rothnie Jr. “Query Processing in a System for Distributed
Databases (SDD-1)”. In: ACM Transactions on Database Systems (TODS)
6.4 (1981), pp. 602–625.

[Ber11] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers, 2011.

[Bir+20] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten
Papenbrock, and Martin Schirneck. “Hitting Set Enumeration with Partial
Information for Unique Column Combination Discovery”. In: Proceedings of
the VLDB Endowment 13.11 (2020), pp. 2270–2283.

[BFS17] Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. “The Parame-
terized Complexity of Dependency Detection in Relational Databases”. In:
Proceedings of the International Symposium on Parameterized and Exact
Computation (IPEC). 2017, 6:1–6:13.

[Boh+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. “Conditional Functional Dependencies for Data Cleaning”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
2007, pp. 746–755.

[Boi22] Martin Boissier. “Robust and Budget-Constrained Encoding Configurations
for In-Memory Database Systems”. In: Proceedings of the VLDB Endowment
15.4 (2022), pp. 780–793.

173

Bibliography

[BJ19] Martin Boissier and Max Jendruk. “Workload-Driven and Robust Selec-
tion of Compression Schemes for Column Stores”. In: Proceedings of the
International Conference on Extending Database Technology (EDBT). 2019,
pp. 674–677.

[BSU18] Martin Boissier, Rainer Schlosser, and Matthias Uflacker. “Hybrid Data
Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
2018, pp. 209–220.

[BAK17] Peter A. Boncz, Angelos-Christos G. Anadiotis, and Steffen Kläbe. “JCC-H:
Adding Join Crossing Correlations with Skew to TPC-H”. In: Performance
Evaluation and Benchmarking for the Analytics Era — TPC Technology
Conference (TPCTC), Revised Selected Papers. 2017, pp. 103–119.

[BNE13] Peter A. Boncz, Thomas Neumann, and Orri Erling. “TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark”.
In: Performance Characterization and Benchmarking — TPC Technology
Conference (TPCTC). 2013, pp. 61–76.

[BS18] Philippe Bonnet and Dennis E. Shasha. “Index Tuning”. In: Encyclopedia
of Database Systems, Second Edition. Springer, 2018.

[BAA12] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. “Automated
physical designers: what you see is (not) what you get”. In: Proceedings of
the International Workshop on Testing Database Systems (DBTEST). 2012.

[Bre+21] Michael Brendle, Nick Weber, Mahammad Valiyev, Norman May, Robert
Schulze, Alexander Böhm, Guido Moerkotte, and Michael Grossniklaus.
“Precise, Compact, and Fast Data Access Counters for Automated Physical
Database Design”. In: Proceedings of the Conference Datenbanksysteme in
Business, Technologie und Web (BTW). 2021, pp. 79–100.

[Bro+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. “OpenAI Gym”. In: CoRR
abs/1606.01540 (2016). arXiv: 1606.01540.

[BH03] Paul Brown and Peter J. Haas. “BHUNT: Automatic Discovery of Fuzzy Al-
gebraic Constraints in Relational Data”. In: Proceedings of the International
Conference on Very Large Databases (VLDB). 2003, pp. 668–679.

[BC05] Nicolas Bruno and Surajit Chaudhuri. “Automatic Physical Database Tun-
ing: A Relaxation-based Approach”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2005, pp. 227–238.

174

https://arxiv.org/abs/1606.01540

Bibliography

[BC07] Nicolas Bruno and Surajit Chaudhuri. “An Online Approach to Physical
Design Tuning”. In: Proceedings of the International Conference on Data
Engineering (ICDE). 2007, pp. 826–835.

[BN08] Nicolas Bruno and Rimma V. Nehme. “Configuration-parametric query
optimization for physical design tuning”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2008, pp. 941–952.

[CP18] José Camacho-Collados and Mohammad Taher Pilehvar. “From Word To
Sense Embeddings: A Survey on Vector Representations of Meaning”. In:
Journal of Artificial Intelligence Research 63 (2018), pp. 743–788.

[CFM95] Alberto Caprara, Matteo Fischetti, and Dario Maio. “Exact and Approxi-
mate Algorithms for the Index Selection Problem in Physical Database De-
sign”. In: IEEE Transactions on Knowledge and Data Engineering (TKDE)
7.6 (1995), pp. 955–967.

[CS96] Alberto Caprara and Juan José Salazar González. “A Branch-and-Cut
Algorithm for a Generalization of the Uncapacitated Facility Location
Problem”. In: TOP: An Official Journal of the Spanish Society of Statistics
and Operations Research 4 (1996), pp. 135–163.

[Car+19] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese.
“Incremental Discovery of Functional Dependencies with a Bit-vector Al-
gorithm”. In: Proceedings of the Italian Symposium on Advanced Database
Systems. 2019.

[CDP16] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. “Relaxed
Functional Dependencies — A Survey of Approaches”. In: IEEE Transactions
on Knowledge and Data Engineering (TKDE) 28.1 (2016), pp. 147–165.

[CFP82] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. “Inclusion
Dependencies and Their Interaction with Functional Dependencies”. In:
Proceedings of the Symposium on Principles of Database Systems (PODS).
1982, pp. 171–176.

[Cen+21] Lujing Cen, Andreas Kipf, Ryan Marcus, and Tim Kraska. “LEA: A Learned
Encoding Advisor for Column Stores”. In: Proceedings of the Workshop on
Exploiting Artificial Intelligence Techniques for Data Management (aiDM).
2021, pp. 32–35.

[CGM90] Upen S. Chakravarthy, John Grant, and Jack Minker. “Logic-Based Ap-
proach to Semantic Query Optimization”. In: ACM Transactions on Database
Systems (TODS) 15.2 (1990), pp. 162–207.

175

Bibliography

[CGN02] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek R. Narasayya. “Com-
pressing SQL workloads”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 2002, pp. 488–499.

[CN20] Surajit Chaudhuri and Vivek Narasayya. Anytime Algorithm of Database
Tuning Advisor for Microsoft SQL Server. June 2020. url: https://www.
microsoft.com/en- us/research/publication/anytime- algorithm-
of-database-tuning-advisor-for-microsoft-sql-server Accessed:
April 9, 2022.

[CN97] Surajit Chaudhuri and Vivek R. Narasayya. “An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server”. In: Proceedings of the International
Conference on Very Large Databases (VLDB). 1997, pp. 146–155.

[CN98] Surajit Chaudhuri and Vivek R. Narasayya. “AutoAdmin ’What-if’ Index
Analysis Utility”. In: Proceedings of the International Conference on Man-
agement of Data (SIGMOD). 1998, pp. 367–378.

[CN99] Surajit Chaudhuri and Vivek R. Narasayya. “Index Merging”. In: Proceedings
of the International Conference on Data Engineering (ICDE). 1999, pp. 296–
303.

[CN07] Surajit Chaudhuri and Vivek R. Narasayya. “Self-Tuning Database Systems:
A Decade of Progress”. In: Proceedings of the International Conference on
Very Large Databases (VLDB). 2007, pp. 3–14.

[CS94] Surajit Chaudhuri and Kyuseok Shim. “Including Group-By in Query Opti-
mization”. In: Proceedings of the International Conference on Very Large
Databases (VLDB). 1994, pp. 354–366.

[CW18] Surajit Chaudhuri and Gerhard Weikum. “Self-Management Technology in
Databases”. In: Encyclopedia of Database Systems, Second Edition. Springer,
2018.

[Che+08] Su Chen, Beng Chin Ooi, Kian-Lee Tan, and Mario A. Nascimento. “ST2B-
tree: a self-tunable spatio-temporal b+-tree index for moving objects”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD). 2008, pp. 29–42.

[Che+99] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan
Qian, and K. Bernhard Schiefer. “Implementation of Two Semantic Query
Optimization Techniques in DB2 Universal Database”. In: Proceedings of the
International Conference on Very Large Databases (VLDB). 1999, pp. 687–
698.

176

https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server

Bibliography

[CGR01] Paolo Ciaccia, Matteo Golfarelli, and Stefano Rizzi. “On Estimating the Car-
dinality of Aggregate Views”. In: Proceedings of the International Workshop
on Design and Management of Data Warehouses. 2001, pp. 12.1–12.10.

[Cod70] Edgar F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Communications of the ACM 13.6 (1970), pp. 377–387.

[Cod71] Edgar F. Codd. “Further Normalization of the Data Base Relational Model”.
In: IBM Research Report, San Jose, California RJ909 (1971).

[Cod75] Edgar F. Codd. “Understanding Relations (Installment #7)”. In: FDT —
Bulletin of ACM-SIGMOD 7.3 (1975), pp. 23–28.

[Cod90] Edgar F. Codd. The Relational Model for Database Management, Version 2.
Addison-Wesley, 1990.

[Coo+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. “Benchmarking cloud serving systems with YCSB”. In:
Proceedings of the ACM Symposium on Cloud Computing (SoCC). 2010,
pp. 143–154.

[Cro21] Andrew Crotty. “Hist-Tree: Those Who Ignore It Are Doomed to Learn”. In:
Proceedings of the Conference on Innovative Data Systems Research (CIDR).
2021.

[Dag+16] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Un-
terbrunner. “The Snowflake Elastic Data Warehouse”. In: Proceedings of
the International Conference on Management of Data (SIGMOD). 2016,
pp. 215–226.

[Das+19] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and
Surajit Chaudhuri. “Automatically Indexing Millions of Databases in Mi-
crosoft Azure SQL Database”. In: Proceedings of the International Confer-
ence on Management of Data (SIGMOD). 2019, pp. 666–679.

[Das+16] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König.
“Automated Demand-driven Resource Scaling in Relational Database-as-a-
Service”. In: Proceedings of the International Conference on Management
of Data (SIGMOD). 2016, pp. 1923–1934.

177

Bibliography

[DPA11] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. “CoPhy: A
Scalable, Portable, and Interactive Index Advisor for Large Workloads”. In:
Proceedings of the VLDB Endowment 4.6 (2011), pp. 362–372.

[DD92] C. J. Date and Hugh Darwen. In: Relational Database Writings 1989-1991.
Addison-Wesley, 1992. Chap. The Role of functional Dependence in Query
Decomposition, pp. 133–150.

[Day87] Umeshwar Dayal. “Of Nests and Trees: A Unified Approach to Processing
Queries That Contain Nested Subqueries, Aggregates, and Quantifiers”.
In: Proceedings of the International Conference on Very Large Databases
(VLDB). 1987, pp. 197–208.

[Dee+20] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey F. Naughton,
and Stratis Viglas. “Comprehensive and Efficient Workload Compression”.
In: Proceedings of the VLDB Endowment 14.3 (2020), pp. 418–430.

[Dee+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. “Indexing by Latent Semantic Analysis”.
In: Journal of the American Society for Information Science 41.6 (1990),
pp. 391–407.

[DNR08] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. “The chase revisited”. In:
Proceedings of the Symposium on Principles of Database Systems (PODS).
2008, pp. 149–158.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. “Physical Data Independence,
Constraints, and Optimization with Universal Plans”. In: Proceedings of the
International Conference on Very Large Databases (VLDB). 1999, pp. 459–
470.

[DPT06] Alin Deutsch, Lucian Popa, and Val Tannen. “Query reformulation with
constraints”. In: SIGMOD Record 35.1 (2006), pp. 65–73.

[Din+19] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. “AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 2019, pp. 1241–1258.

[Din+20] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. “Tsunami:
A Learned Multi-dimensional Index for Correlated Data and Skewed Work-
loads”. In: Proceedings of the VLDB Endowment 14.2 (2020), pp. 74–86.

178

Bibliography

[DH82] Jirun Dong and Richard Hull. “Applying Approximate Order Dependency
to Reduce Indexing Space”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 1982, pp. 119–127.

[DFR98] Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. “Parame-
terized Circuit Complexity and the W Hierarchy”. In: Theoretical Computer
Science 191.1-2 (1998), pp. 97–115.

[Dre21] Markus Dreseler. “Automatic Tiering for In-Memory Database Systems”.
PhD thesis. Hasso Plattner Institute, University of Potsdam, Germany, 2021.

[Dre+20] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker.
“Quantifying TPC-H Choke Points and Their Optimizations”. In: Proceedings
of the VLDB Endowment 13.8 (2020), pp. 1206–1220.

[Dre+18a] Markus Dreseler, Timo Gasda, Jan Kossmann, Matthias Uflacker, and Hasso
Plattner. “Adaptive Access Path Selection for Hardware-Accelerated DRAM
Loads”. In: Proceedings of the Australasian Database Conference (ADC) —
Databases Theory and Applications. 2018, pp. 3–14.

[Dre+19] Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. “Hyrise Re-engineered: An Extensible Database
System for Research in Relational In-Memory Data Management”. In: Pro-
ceedings of the International Conference on Extending Database Technology
(EDBT). 2019, pp. 313–324.

[Dre+18b] Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker,
and Hasso Plattner. “Fused Table Scans: Combining AVX-512 and JIT to
Double the Performance of Multi-Predicate Scans”. In: Proceedings of the
International Conference on Data Engineering (ICDE) Workshops. 2018,
pp. 102–109.

[DWH19] Bingqian Du, Chuan Wu, and Zhiyi Huang. “Learning Resource Alloca-
tion and Pricing for Cloud Profit Maximization”. In: Proceedings of the
Conference on Artificial Intelligence (AAAI). 2019, pp. 7570–7577.

[DTB09] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. “Tuning Database
Configuration Parameters with iTuned”. In: Proceedings of the VLDB En-
dowment 2.1 (2009), pp. 1246–1257.

[Dub] Duboce Labs. pganalyze — Postgres Performance Optimization. n.d. url: ht
tps://pganalyze.com/postgres-performance-optimization Accessed:
April 9, 2022.

179

https://pganalyze.com/postgres-performance-optimization
https://pganalyze.com/postgres-performance-optimization

Bibliography

[Dür+19] Falco Dürsch, Axel Stebner, Fabian Windheuser, Maxi Fischer, Tim Friedrich,
Nils Strelow, Tobias Bleifuß, Hazar Harmouch, Lan Jiang, Thorsten Papen-
brock, and Felix Naumann. “Inclusion Dependency Discovery: An Experimen-
tal Evaluation of Thirteen Algorithms”. In: Proceedings of the International
Conference on Information and Knowledge Management (CIKM). 2019,
pp. 219–228.

[EFM16] Marius Eich, Pit Fender, and Guido Moerkotte. “Faster Plan Generation
through Consideration of Functional Dependencies and Keys”. In: Proceed-
ings of the VLDB Endowment 9.10 (2016), pp. 756–767.

[EKM04] Eyal Even-Dar, Sham M. Kakade, and Yishay Mansour. “Experts in a
Markov Decision Process”. In: Advances in Neural Information Processing
Systems (NIPS). 2004, pp. 401–408.

[Fag77] Ronald Fagin. “Multivalued Dependencies and a New Normal Form for
Relational Databases”. In: ACM Transactions on Database Systems (TODS)
2.3 (1977), pp. 262–278.

[FKP05] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. “Data Exchange:
Getting to the Core”. In: ACM Transactions on Database Systems (TODS)
30.1 (2005), pp. 174–210.

[Fau+16] Martin Faust, Martin Boissier, Marvin Keller, David Schwalb, Holger
Bischoff, Katrin Eisenreich, Franz Färber, and Hasso Plattner. “Footprint
Reduction and Uniqueness Enforcement with Hash Indices in SAP HANA”.
In: Proceedings of the International Conference on Database and Expert
Systems Applications (DEXA). 2016, pp. 137–151.

[FV20] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds”. In: Proceedings
of the VLDB Endowment 13.8 (2020), pp. 1162–1175.

[Fil+20] Reiner H. Santos Filho, Tadeu N. Ferreira, Diogo M. F. Mattos, and Dianne
S. V. Medeiros. “A Lightweight Reinforcement-Learning-Based Mechanism
for Bandwidth Provisioning on Multitenant Data Center”. In: Proceedings
of the International Conference on Systems, Signals and Image Processing
(IWSSIP). 2020, pp. 331–336.

[FST88] Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. “Physical
Database Design for Relational Databases”. In: ACM Transactions on
Database Systems (TODS) 13.1 (1988), pp. 91–128.

[FS99] Peter A Flach and Iztok Savnik. “Database dependency discovery: a machine
learning approach”. In: AI Communications 12.3 (1999), pp. 139–160.

180

Bibliography

[FG89] Farshad Fotouhi and Carlos E. Galarce. “Genetic Algorithms and the Search
for Optimal Database Index Selection”. In: Proceedings of the Great Lakes
Computer Science Conference. 1989, pp. 249–255.

[FGK03] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Thomson/Brooks/Cole, 2003.

[FON92] Martin R. Frank, Edward Omiecinski, and Shamkant B. Navathe. “Adap-
tive and Automated Index Selection in RDBMS”. In: Proceedings of the
International Conference on Extending Database Technology (EDBT). 1992,
pp. 277–292.

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. “Query Optimiza-
tion for Parallel Execution”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 1992, pp. 9–18.

[GW87] Richard A. Ganski and Harry K. T. Wong. “Optimization of Nested SQL
Queries Revisited”. In: Proceedings of the International Conference on
Management of Data (SIGMOD). 1987, pp. 23–33.

[Gar20] Gartner. Magic Quadrant for Cloud Database Management Systems. By
Donald Feinberg, Merv Adrian, Rick Greenwald, Adam Ronthal, Henry Cook.
November 2020. url: https://www.gartner.com/en/documents/3993398
Accessed: April 9, 2022.

[GG82] Erol Gelenbe and Danièle Gardy. “The Size of Projections of Relations
Satisfying a Functional Dependency”. In: Proceedings of the International
Conference on Very Large Databases (VLDB). 1982, pp. 325–333.

[Gia+02] Chris Giannella, Mehmet M. Dalkilic, Dennis P. Groth, and Edward L.
Robertson. “Improving Query Evaluation with Approximate Functional
Dependency Based Decompositions”. In: Proceedings of British National
Conference on Databases (BNCOD). 2002, pp. 26–41.

[GH83] Seymour Ginsburg and Richard Hull. “Order Dependency in the Relational
Model”. In: Theoretical Computer Science 26 (1983), pp. 149–195.

[GH86] Seymour Ginsburg and Richard Hull. “Sort sets in the relational model”. In:
Journal of the ACM 33.3 (1986), pp. 465–488.

[Gol+09] Lukasz Golab, Howard Karloff, Flip Korn, Avishek Saha, and Divesh Srivas-
tava. “Sequential Dependencies”. In: Proceedings of the VLDB Endowment
2.1 (2009), pp. 574–585.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016.

181

https://www.gartner.com/en/documents/3993398

Bibliography

[Gra93] Goetz Graefe. “Query Evaluation Techniques for Large Databases”. In: ACM
Computing Surveys 25.2 (1993), pp. 73–170.

[Gra95] Goetz Graefe. “The Cascades Framework for Query Optimization”. In: IEEE
Data Engineering Bulletin 18.3 (1995), pp. 19–29.

[Gra06] Goetz Graefe. “B-tree indexes for high update rates”. In: SIGMOD Record
35.1 (2006), pp. 39–44.

[Gra11] Goetz Graefe. “Modern B-Tree Techniques”. In: Foundations and Trends in
Databases 3.4 (2011), pp. 203–402.

[Gry98] Jarek Gryz. “Query Folding with Inclusion Dependencies”. In: Proceedings
of the International Conference on Data Engineering (ICDE). 1998, pp. 126–
133.

[Gun+19] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf,
and Guang-Zhong Yang. “XAI — Explainable artificial intelligence”. In:
Science Robotics 4.37 (2019).

[HS19] Stefan Halfpap and Rainer Schlosser. “Workload-Driven Fragment Alloca-
tion for Partially Replicated Databases Using Linear Programming”. In:
Proceedings of the International Conference on Data Engineering (ICDE).
2019, pp. 1746–1749.

[HS20] Stefan Halfpap and Rainer Schlosser. “Exploration of Dynamic Query-
Based Load Balancing for Partially Replicated Database Systems with Node
Failures”. In: Proceedings of the International Conference on Information
and Knowledge Management (CIKM). 2020, pp. 3409–3412.

[HC76] Michael Hammer and Arvola Chan. “Index Selection in a Self-Adaptive Data
Base Management System”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 1976, pp. 1–8.

[HZ80] Michael Hammer and Stanley B. Zdonik. “Knowledge-Based Query Pro-
cessing”. In: Proceedings of the International Conference on Very Large
Databases (VLDB). 1980, pp. 137–147.

[Har54] Zellig S. Harris. “Distributional Structure”. In: WORD 10.2-3 (1954), pp. 146–
162.

[Hei+13] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch,
and Felix Naumann. “Scalable Discovery of Unique Column Combinations”.
In: Proceedings of the VLDB Endowment 7.4 (2013), pp. 301–312.

182

Bibliography

[HSH07] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. “Ar-
chitecture of a Database System”. In: Foundations and Trends in Databases
1.2 (2007), pp. 141–259.

[Hig+20] Antony S. Higginson, Mihaela Dediu, Octavian Arsene, Norman W. Paton,
and Suzanne M. Embury. “Database Workload Capacity Planning using
Time Series Analysis and Machine Learning”. In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). 2020, pp. 769–
783.

[Hil+18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov,
Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon
Sidor, and Yuhuai Wu. Stable Baselines. August 2018. url: https://
github.com/hill-a/stable-baselines Accessed: April 9, 2022.

[HB22] Benjamin Hilprecht and Carsten Binnig. “One Model to Rule them All: To-
wards Zero-Shot Learning for Databases”. In: Proceedings of the Conference
on Innovative Data Systems Research (CIDR). 2022.

[Hil+20] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad El-Hindi,
Benjamin Hättasch, Aditya Khanna, Robin Rehrmann, Uwe Röhm, Andreas
Schmidt, Lasse Thostrup, and Tobias Ziegler. “DBMS Fitting: Why should
we learn what we already know?” In: Proceedings of the Conference on
Innovative Data Systems Research (CIDR). 2020.

[HBR20] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. “Learning a Parti-
tioning Advisor for Cloud Databases”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2020, pp. 143–157.

[HO20] Shengyi Huang and Santiago Ontañón. “A Closer Look at Invalid Action
Masking in Policy Gradient Algorithms”. In: CoRR abs/2006.14171 (2020).
arXiv: 2006.14171.

[Huh+98] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. “Efficient
Discovery of Functional and Approximate Dependencies Using Partitions”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
1998, pp. 392–401.

[Huh+99] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. “TANE:
An Efficient Algorithm for Discovering Functional and Approximate Depen-
dencies”. In: Computer Journal 42.2 (1999), pp. 100–111.

183

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/2006.14171

Bibliography

[IBM22a] IBM. Db2 for z/OS — DSN_VIRTUAL_INDEXES. March 2022. url:
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-
virtual-indexes Accessed: April 9, 2022.

[IBM22b] IBM. Referential integrity constraints help reduce the number of statistical
views. February 2022. url: https://www.ibm.com/support/knowledgecen
ter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059081.
html Accessed: April 9, 2022.

[IKM07] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. “Database Crack-
ing”. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR). 2007, pp. 68–78.

[Idr+11] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. “Merg-
ing What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
Memory Column-Stores”. In: Proceedings of the VLDB Endowment 4.9
(2011), pp. 585–597.

[Ile+14] Ioana Ileana, Bogdan Cautis, Alin Deutsch, and Yannis Katsis. “Complete
yet practical search for minimal query reformulations under constraints”.
In: Proceedings of the International Conference on Management of Data
(SIGMOD). 2014, pp. 1015–1026.

[Ily+04] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboul-
naga. “CORDS: Automatic Discovery of Correlations and Soft Functional
Dependencies”. In: Proceedings of the International Conference on Manage-
ment of Data (SIGMOD). 2004, pp. 647–658.

[Inc19] InfluxData Inc. Stream Processing with InfluxDB — An Introduction. Septem-
ber 2019. url: https : / / www . influxdata . com / resources / stream -
processing-with-influxdb/ Accessed: April 9, 2022.

[Ioa96] Yannis E. Ioannidis. “Query Optimization”. In: ACM Computing Surveys
28.1 (1996), pp. 121–123.

[ISR83] Maggie Y. L. Ip, Lawrence V. Saxton, and Vijay V. Raghavan. “On the
Selection of an Optimal Set of Indexes”. In: IEEE Transactions on Software
Engineering 9.2 (1983), pp. 135–143.

[Int99] International Organization for Standardization: ISO/IEC 9075-2:1999 (SQL
Standard 1999). Standard. December 1999.

[Int92] International Organization for Standardization: ISO/IEC 9075:1992 (SQL
Standard 1992). Standard. July 1992.

184

https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-virtual-indexes
https://www.ibm.com/docs/en/db2-for-zos/12?topic=tables-dsn-virtual-indexes
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059081.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059081.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0059081.html
https://www.influxdata.com/resources/stream-processing-with-influxdb/
https://www.influxdata.com/resources/stream-processing-with-influxdb/

Bibliography

[Jac05] Jack Klebanoff. Apache Derby — Intersect & Except Design. February 2005.
url: https://db.apache.org/derby/papers/Intersect-design.html
Accessed: April 9, 2022.

[JH18] Shrainik Jain and Bill Howe. “Query2Vec: NLP Meets Databases for Gen-
eralized Workload Analytics”. In: CoRR abs/1801.05613 (2018). arXiv:
1801.05613.

[JK84a] Matthias Jarke and Jürgen Koch. “Query Optimization in Database Sys-
tems”. In: ACM Computing Surveys 16.2 (1984), pp. 111–152.

[JK84b] David S. Johnson and Anthony C. Klug. “Testing Containment of Conjunc-
tive Queries under Functional and Inclusion Dependencies”. In: Journal of
Computer and System Sciences 28.1 (1984), pp. 167–189.

[KY83] Yahiko Kambayashi and Masatoshi Yoshikawa. “Query Processing Utiliz-
ing Dependencies and Horizontal Decomposition”. In: Proceedings of the
International Conference on Management of Data (SIGMOD). 1983, pp. 55–
67.

[Kan17a] Andrew Kane. Dexter — The automatic indexer for Postgres. June 2017.
url: https://github.com/ankane/dexter Accessed: April 9, 2022.

[Kan17b] Andrew Kane. Introducing Dexter, the Automatic Indexer for Postgres.
June 2017. url: https://medium.com/@ankane/introducing-dexter-
the-automatic-indexer-for-postgres-5f8fa8b28f27 Accessed: April 9,
2022.

[KN11] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots”. In:
Proceedings of the International Conference on Data Engineering (ICDE).
2011, pp. 195–206.

[Kim82] Won Kim. “On Optimizing an SQL-like Nested Query”. In: ACM Transac-
tions on Database Systems (TODS) 7.3 (1982), pp. 443–469.

[KR13] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling, 3rd Edition. Wiley, 2013.

[Kim+09] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley
B. Zdonik. “Correlation Maps: A Compressed Access Method for Exploiting
Soft Functional Dependencies”. In: Proceedings of the VLDB Endowment
2.1 (2009), pp. 1222–1233.

185

https://db.apache.org/derby/papers/Intersect-design.html
https://arxiv.org/abs/1801.05613
https://github.com/ankane/dexter
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27
https://medium.com/@ankane/introducing-dexter-the-automatic-indexer-for-postgres-5f8fa8b28f27

Bibliography

[Kin80] Jonathan J. King. “Modelling Concepts for Reasoning About Access to
Knowledge”. In: Proceedings of the Workshop on Data Abstraction, Databases
and Conceptual Modelling. 1980, pp. 138–140.

[Kip+19] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz,
and Alfons Kemper. “Learned Cardinalities: Estimating Correlated Joins
with Deep Learning”. In: Proceedings of the Conference on Innovative Data
Systems Research (CIDR). 2019.

[Kip+20] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. “RadixSpline: a single-pass
learned index”. In: Proceedings of the Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (aiDM). 2020, 5:1–5:5.

[KBS20] Steffen Klaebe, Stephan Baumann, and Kai-Uwe Sattler. “PatchIndex — Ex-
ploiting approximate constraints in self-managing databases”. In: Proceedings
of the International Conference on Data Engineering (ICDE) Workshops.
2020, pp. 139–146.

[KL16] Henning Köhler and Sebastian Link. “SQL Schema Design: Foundations,
Normal Forms, and Normalization”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2016, pp. 267–279.

[KLZ15] Henning Köhler, Sebastian Link, and Xiaofang Zhou. “Possible and Certain
SQL Keys”. In: Proceedings of the VLDB Endowment 8.11 (2015), pp. 1118–
1129.

[Kos18] Jan Kossmann. “Self-Driving: From General Purpose to Specialized DBMSs”.
In: Proceedings of the VLDB PhD Workshop. 2018.

[Kos+21] Jan Kossmann, Martin Boissier, Alexander Dubrawski, Fabian Heseding,
Caterina Mandel, Udo Pigorsch, Max Schneider, Til Schniese, Mona Sob-
hani, Petr Tsayun, Katharina Wille, Michael Perscheid, Matthias Uflacker,
and Hasso Plattner. “A Cockpit for the Development and Evaluation of
Autonomous Database Systems”. In: Proceedings of the International Con-
ference on Data Engineering (ICDE). 2021, pp. 2685–2688.

[Kos+18] Jan Kossmann, Markus Dreseler, Timo Gasda, Matthias Uflacker, and Hasso
Plattner. “Visual Evaluation of SQL Plan Cache Algorithms”. In: Proceedings
of the Australasian Database Conference (ADC) — Databases Theory and
Applications. 2018, pp. 350–353.

186

Bibliography

[Kos+20a] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. Cost
estimations of actual and hypothetical indexes on GitHub. 2020. url: https:
/ / git . io / CostEstimationAccuracyHypoPGIndexes Accessed: April 9,
2022.

[Kos+20b] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. Cost
estimations of PostgreSQL and DBMS-X. 2020. url: https://github.
com/hyrise/index_selection_evaluation/tree/master/benchmark_
results / cost _ estimation _ PostgreSQL _ vs _ DBMSX Accessed: April 9,
2022.

[Kos+20c] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser.
Extend’s source code. 2020. url: https://github.com/hyrise/index_
selection_evaluation/blob/master/selection/algorithms/extend_
algorithm.py Accessed: April 9, 2022.

[Kos+20d] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser.
“Magic mirror in my hand, which is the best in the land? An Experimental
Evaluation of Index Selection Algorithms”. In: Proceedings of the VLDB
Endowment 13.11 (2020), pp. 2382–2395.

[KKS22a] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. “SWIRL: Selection
of Workload-aware Indexes using Reinforcement Learning”. In: Proceedings
of the International Conference on Extending Database Technology (EDBT).
2022, pp. 155–168.

[KKS22b] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. SWIRL’s source
code. 2022. url: https://github.com/hyrise/rl_index_selection
Accessed: April 9, 2022.

[Kos+22a] Jan Kossmann, Felix Naumann, Daniel Lindner, and Thorsten Papenbrock.
“Workload-driven, Lazy Discovery of Data Dependencies for Query Opti-
mization”. In: Proceedings of the Conference on Innovative Data Systems
Research (CIDR). 2022.

[KPN22] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. “Data depen-
dencies for query optimization: a survey”. In: VLDB Journal 31.1 (2022),
pp. 1–22.

[KS19] Jan Kossmann and Rainer Schlosser. “A Framework for Self-Managing
Database Systems”. In: Proceedings of the International Conference on Data
Engineering (ICDE) Workshops. 2019, pp. 100–106.

187

https://git.io/CostEstimationAccuracyHypoPGIndexes
https://git.io/CostEstimationAccuracyHypoPGIndexes
https://github.com/hyrise/index_selection_evaluation/tree/master/benchmark_results/cost_estimation_PostgreSQL_vs_DBMSX
https://github.com/hyrise/index_selection_evaluation/tree/master/benchmark_results/cost_estimation_PostgreSQL_vs_DBMSX
https://github.com/hyrise/index_selection_evaluation/tree/master/benchmark_results/cost_estimation_PostgreSQL_vs_DBMSX
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm.py
https://github.com/hyrise/index_selection_evaluation/blob/master/selection/algorithms/extend_algorithm.py
https://github.com/hyrise/rl_index_selection

Bibliography

[KS20] Jan Kossmann and Rainer Schlosser. “Self-driving database systems: a
conceptual approach”. In: Distributed And Parallel Databases (DAPD) 38.4
(2020), pp. 795–817.

[Kos+22b] Jan Kossmann, Rainer Schlosser, Alexander Kastius, Michael Perscheid,
and Hasso Plattner. Training an Agent for Iterative Multi-Attribute Index
Selection. European Patent Application EP22156399.2. February 2022.

[Kra+19] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan.
“SageDB: A Learned Database System”. In: Proceedings of the Conference
on Innovative Data Systems Research (CIDR). 2019.

[Kra+18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
“The Case for Learned Index Structures”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2018, pp. 489–504.

[Kra+21] Tim Kraska, Umar Farooq Minhas, Thomas Neumann, Olga Papaem-
manouil, Jignesh M. Patel, Christopher Ré, and Michael Stonebraker. “ML-
In-Databases: Assessment and Prognosis”. In: IEEE Data Engineering Bul-
letin 44.1 (2021), pp. 3–10.

[Kri+20] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska.
“The Case for a Learned Sorting Algorithm”. In: Proceedings of the Inter-
national Conference on Management of Data (SIGMOD). 2020, pp. 1001–
1016.

[KPN15] Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. “Scaling Out
the Discovery of Inclusion Dependencies”. In: Proceedings of the Conference
Datenbanksysteme in Business, Technologie und Web Technik (BTW). 2015,
pp. 445–454.

[LBP20] Hai Lan, Zhifeng Bao, and Yuwei Peng. “An Index Advisor Using Deep
Reinforcement Learning”. In: Proceedings of the International Conference
on Information and Knowledge Management (CIKM). 2020, pp. 2105–2108.

[Lan+16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation”. In: Proceed-
ings of the International Conference on Management of Data (SIGMOD).
2016, pp. 311–326.

[LG09] Per-Ake Larson and Cesar A Galindo-Legaria. Partial pre-aggregation in
relational database queries. US Patent 7,593,926. September 2009.

188

Bibliography

[Lei+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons
Kemper, and Thomas Neumann. “How Good Are Query Optimizers, Really?”
In: Proceedings of the VLDB Endowment 9.3 (2015), pp. 204–215.

[Lei+18] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A.
Boncz, Alfons Kemper, and Thomas Neumann. “Query optimization through
the looking glass, and what we found running the Join Order Benchmark”.
In: VLDB Journal 27.5 (2018), pp. 643–668.

[LZC21] Guoliang Li, Xuanhe Zhou, and Lei Cao. “Machine Learning for Databases”.
In: Proceedings of the VLDB Endowment 14.12 (2021), pp. 3190–3193.

[Li+19] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. “QTune: A Query-
Aware Database Tuning System with Deep Reinforcement Learning”. In:
Proceedings of the VLDB Endowment 12.12 (2019), pp. 2118–2130.

[Lic+20] Gabriel Paludo Licks, Júlia Mara Colleoni Couto, Priscilla de Fátima Miehe,
Renata De Paris, Duncan Dubugras A. Ruiz, and Felipe Meneguzzi. “Smar-
tIX: A database indexing agent based on reinforcement learning”. In: Applied
Intelligence 50.8 (2020), pp. 2575–2588.

[Lig18] Sam Lightstone. “Physical Database Design for Relational Databases”. In:
Encyclopedia of Database Systems, Second Edition. Springer, 2018.

[LTN07] Sam Lightstone, Toby J. Teorey, and Thomas P. Nadeau. Physical Database
Design: the database professional’s guide to exploiting indexes, views, storage,
and more. Morgan Kaufmann, 2007.

[Lin22] Daniel Lindner. “Workload-Driven Query Optimization Using Data Depen-
dencies”. Master’s thesis. Hasso Plattner Institute, University of Potsdam,
Germany, 2022.

[LLK21] Daniel Lindner, Alexander Löser, and Jan Kossmann. “Learned What-If
Cost Models for Autonomous Clustering”. In: Advances in Databases and
Information Systems (ADBIS). 2021, pp. 3–13.

[Liu+12] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. “Discover Depen-
dencies from Data — A Review”. In: IEEE Transactions on Knowledge and
Data Engineering (TKDE) 24.2 (2012), pp. 251–264.

[Liu+20] Qiyu Liu, Libin Zheng, Yanyan Shen, and Lei Chen. “Stable Learned Bloom
Filters for Data Streams”. In: Proceedings of the VLDB Endowment 13.11
(2020), pp. 2355–2367.

189

Bibliography

[Lu+21] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng
Wang. “APEX: A High-Performance Learned Index on Persistent Memory”.
In: Proceedings of the VLDB Endowment 15.3 (2021), pp. 597–610.

[Lu+19] Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu.
“Speedup Your Analytics: Automatic Parameter Tuning for Databases and
Big Data Systems”. In: Proceedings of the VLDB Endowment 12.12 (2019),
pp. 1970–1973.

[LO78] Claudio L. Lucchesi and Sylvia L. Osborn. “Candidate keys for relations”.
In: Journal of Computer and System Sciences 17.2 (1978), pp. 270–279.

[LL71] Vincent Y. Lum and Huei Ling. “An Optimization Problem on the Selection
of Secondary Keys”. In: Proceedings of the ACM Annual Conference (ACM
’71). 1971, pp. 349–356.

[Ma+18] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. “Query-based Workload Forecasting for Self-
Driving Database Management Systems”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2018, pp. 631–645.

[Ma+21] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan
Shen Lim, Prashanth Menon, and Andrew Pavlo. “MB2: Decomposed Behav-
ior Modeling for Self-Driving Database Management Systems”. In: Proceed-
ings of the International Conference on Management of Data (SIGMOD).
2021, pp. 1248–1261.

[Man18] Stefan Manegold. “Cost Estimation”. In: Encyclopedia of Database Systems,
Second Edition. Springer, 2018.

[Mao+19] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili
Meng, and Mohammad Alizadeh. “Learning scheduling algorithms for data
processing clusters”. In: Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM). 2019, pp. 270–288.

[MLP09] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. “Unary and n-
ary inclusion dependency discovery in relational databases”. In: Journal of
Intelligent Information Systems 32 (2009), pp. 53–73.

[Mar+19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. “Neo: A
Learned Query Optimizer”. In: Proceedings of the VLDB Endowment 12.11
(2019), pp. 1705–1718.

190

Bibliography

[MP18] Ryan Marcus and Olga Papaemmanouil. “Deep Reinforcement Learning for
Join Order Enumeration”. In: Proceedings of the Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (aiDM). 2018, 3:1–
3:4.

[MP19] Ryan Marcus and Olga Papaemmanouil. “Plan-Structured Deep Neural
Network Models for Query Performance Prediction”. In: Proceedings of the
VLDB Endowment 12.11 (2019), pp. 1733–1746.

[Mat96] G. B. Mathews. “On the Partition of Numbers”. In: Proceedings of the
London Mathematical Society s1-28.1 (November 1896), pp. 486–490.

[Mei14] Michael Meier. “The backchase revisited”. In: VLDB Journal 23.3 (2014),
pp. 495–516.

[MRB19] Puya Memarzia, Suprio Ray, and Virendra C. Bhavsar. “A Six-dimensional
Analysis of In-memory Aggregation”. In: Proceedings of the International
Conference on Extending Database Technology (EDBT). 2019, pp. 289–300.

[Met+19] Quentin Meteier et al. “Workshop on explainable AI in automated driving:
a user-centered interaction approach”. In: Adjunct Proceedings of Automo-
tiveUI. 2019, pp. 32–37.

[Mic04] Microsoft. Foreign Key Constraints (Without NOCHECK) Boost Perfor-
mance and Data Integrity. December 2004. url: https://web.archive.
org / web / 20101219111457 / http : / / www . microsoft . com / technet /
abouttn/flash/tips/tips_122104.mspx Accessed: April 9, 2022.

[Mic08] Microsoft. Optimizing Queries That Access Correlated datetime Columns.
December 2008. url: https://docs.microsoft.com/en-us/previous-
versions/sql/sql-server-2005/ms177416(v=sql.90)?redirectedfro
m=MSDN Accessed: April 9, 2022.

[Mic21a] Microsoft. SQL Server 2019 — Database Engine Tuning Advisor. December
2021. url: https://docs.microsoft.com/en- us/sql/relational-
databases/performance/database-engine-tuning-advisor?view=sql-
server-ver15 Accessed: April 9, 2022.

[Mic21b] Microsoft. SQL Server 2019 — Unique Constraints and Check Constraints.
May 2021. url: https://docs.microsoft.com/en-us/sql/relational-
databases / tables / unique - constraints - and - check - constraints ?
view=sql-server-ver15 Accessed: April 9, 2022.

191

https://web.archive.org/web/20101219111457/http://www.microsoft.com/technet/abouttn/flash/tips/tips_122104.mspx
https://web.archive.org/web/20101219111457/http://www.microsoft.com/technet/abouttn/flash/tips/tips_122104.mspx
https://web.archive.org/web/20101219111457/http://www.microsoft.com/technet/abouttn/flash/tips/tips_122104.mspx
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/ms177416(v=sql.90)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/ms177416(v=sql.90)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/ms177416(v=sql.90)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15

Bibliography

[Mic22a] Microsoft. Automatic tuning in Azure SQL Database and Azure SQL Man-
aged Instance. January 2022. url: https://docs.microsoft.com/en-
us/azure/azure-sql/database/automatic-tuning-overview Accessed:
April 9, 2022.

[Mic22b] Microsoft. SQL Server Linux 2019 — CREATE INDEX (Transact-SQL).
January 2022. url: https://docs.microsoft.com/en-us/sql/t-sql/
statements/create-index- transact-sql?view=sql-server- linux-
ver15 Accessed: April 9, 2022.

[Mik+13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Esti-
mation of Word Representations in Vector Space”. In: CoRR abs/1301.3781
(2013). arXiv: 1301.3781.

[Mni+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), pp. 529–533.

[Mül+15] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz
Färber. “Cache-Efficient Aggregation: Hashing Is Sorting”. In: Proceedings
of the International Conference on Management of Data (SIGMOD). 2015,
pp. 1123–1136.

[Mul90] James K. Mullin. “Optimal Semijoins for Distributed Database Systems”.
In: IEEE Transactions on Software Engineering 16.5 (1990), pp. 558–560.

[MySa] MySQL. MySQL 8.0 Reference Manual — Optimizing IN and EXISTS
Subquery Predicates with Semijoin Transformations. n.d. url: https://dev.
mysql.com/doc/refman/8.0/en/semijoins.html Accessed: April 9, 2022.

[MySb] MySQL. MySQL 8.0 Reference Manual — SELECT Statement. n.d. url:
https://dev.mysql.com/doc/refman/8.0/en/select.html Accessed:
April 9, 2022.

[NP06] Raghunath Othayoth Nambiar and Meikel Poess. “The Making of TPC-DS”.
In: Proceedings of the International Conference on Very Large Databases
(VLDB). 2006, pp. 1049–1058.

[NK04] Ullas Nambiar and Subbarao Kambhampati. “Mining Approximate Func-
tional Dependencies and Concept Similarities to Answer Imprecise Queries”.
In: Proceedings of the Workshop on the Web and Databases (WebDB). 2004,
pp. 73–78.

192

https://docs.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/automatic-tuning-overview
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-linux-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-linux-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-linux-ver15
https://arxiv.org/abs/1301.3781
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Bibliography

[Nat+20] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. “Learn-
ing Multi-Dimensional Indexes”. In: Proceedings of the International Con-
ference on Management of Data (SIGMOD). 2020, pp. 985–1000.

[Neu14] Thomas Neumann. “Engineering High-Performance Database Engines”. In:
Proceedings of the VLDB Endowment 7.13 (2014), pp. 1734–1741.

[NK15] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary Queries”. In:
Proceedings of the Conference Datenbanksysteme in Business, Technologie
und Web Technik (BTW). 2015, pp. 383–402.

[ONe94] Patrick E. O’Neil. Database Principles, Programming, Performance. Morgan
Kaufmann, 1994.

[Ora20] Oracle. Oracle Autonomous Database Technical Overview. White Paper.
July 2020.

[Ora] Oracle. Scalar Subquery Expressions. n.d. url: https://docs.oracle.com/
en/database/oracle/oracle-database/19/sqlrf/Scalar-Subquery-
Expressions.html Accessed: April 9, 2022.

[OKC19] Laurel J. Orr, Srikanth Kandula, and Surajit Chaudhuri. “Pushing Data-
Induced Predicates Through Joins in Big-Data Clusters”. In: Proceedings of
the VLDB Endowment 13.3 (2019), pp. 252–265.

[Ott] OtterTune. OtterTune — Give your database superpowers. n.d. url: https:
//ottertune.com/features Accessed: April 9, 2022.

[Pal70] Frank P. Palermo. “A quantitative approach to the selection of secondary
indexes”. In: IBM Research RJ 730. 1970.

[Pal] Pallets. Flask — web development, one drop at a time. n.d. url: https:
//flask.palletsprojects.com/en/2.0.x/ Accessed: April 9, 2022.

[PY10] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In:
IEEE Transactions on Knowledge and Data Engineering (TKDE) 22.10
(2010), pp. 1345–1359.

[PA07] Stratos Papadomanolakis and Anastassia Ailamaki. “An Integer Linear
Programming Approach to Database Design”. In: Proceedings of the Inter-
national Conference on Data Engineering (ICDE). 2007, pp. 442–449.

[PDA07] Stratos Papadomanolakis, Debabrata Dash, and Anastassia Ailamaki. “Effi-
cient Use of the Query Optimizer for Automated Database Design”. In: Pro-
ceedings of the International Conference on Very Large Databases (VLDB).
2007, pp. 1093–1104.

193

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Scalar-Subquery-Expressions.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Scalar-Subquery-Expressions.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Scalar-Subquery-Expressions.html
https://ottertune.com/features
https://ottertune.com/features
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/

Bibliography

[Pap+15a] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-
Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann.
“Functional Dependency Discovery: An Experimental Evaluation of Seven
Algorithms”. In: Proceedings of the VLDB Endowment 8.10 (2015), pp. 1082–
1093.

[Pap+15b] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and
Felix Naumann. “Divide & Conquer-based Inclusion Dependency Discovery”.
In: Proceedings of the VLDB Endowment 8.7 (2015), pp. 774–785.

[PN16] Thorsten Papenbrock and Felix Naumann. “A Hybrid Approach to Func-
tional Dependency Discovery”. In: Proceedings of the International Confer-
ence on Management of Data (SIGMOD). 2016, pp. 821–833.

[Pau00] Glenn Norman Paulley. “Exploiting Functional Dependence in Query Op-
timization”. PhD thesis. Department of Computer Science, University of
Waterloo, 2000.

[PL94] Glenn Norman Paulley and Per-Åke Larson. “Exploiting Uniqueness in
Query Optimization”. In: Proceedings of the International Conference on
Data Engineering (ICDE). 1994, pp. 68–79.

[Pav21] Andrew Pavlo. Database Deep Dives with Andy Pavlo. Interview by Josh
Mintz (IBM). April 2021. url: https://www.ibm.com/cloud/blog/
database-deep-dives-with-andy-pavlo Accessed: April 9, 2022.

[Pav+17] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Sid-
dharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang,
Yingjun Wu, Ran Xian, and Tieying Zhang. “Self-Driving Database Man-
agement Systems”. In: Proceedings of the Conference on Innovative Data
Systems Research (CIDR). 2017.

[Pav+19] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth
Menon, Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. “External vs.
Internal: An Essay on Machine Learning Agents for Autonomous Database
Management Systems”. In: IEEE Data Engineering Bulletin 42.2 (2019),
pp. 32–46.

[Pav+21] Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen
Lim, Dana Van Aken, and William Zhang. “Make Your Database System
Dream of Electric Sheep: Towards Self-Driving Operation”. In: Proceedings
of the VLDB Endowment 14.12 (2021), pp. 3211–3221.

194

https://www.ibm.com/cloud/blog/database-deep-dives-with-andy-pavlo
https://www.ibm.com/cloud/blog/database-deep-dives-with-andy-pavlo

Bibliography

[Pen+18] Eduardo H. M. Pena, Erik Falk, Jorge Augusto Meira, and Eduardo Cunha
de Almeida. “Mind Your Dependencies for Semantic Query Optimization”.
In: Journal of Information and Data Management 9.1 (2018), pp. 3–19.

[Per+21] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. “DBA bandits: Self-driving index tuning under ad-hoc, ana-
lytical workloads with safety guarantees”. In: Proceedings of the International
Conference on Data Engineering (ICDE). 2021, pp. 600–611.

[Pia83] Gregory Piatetsky-Shapiro. “The Optimal Selection of Secondary Indices is
NP-Complete”. In: SIGMOD Record 13.2 (1983), pp. 72–75.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. “Extensible/Rule
Based Query Rewrite Optimization in Starburst”. In: Proceedings of the
International Conference on Management of Data (SIGMOD). 1992, pp. 39–
48.

[Pit18] Evaggelia Pitoura. “Query Rewriting”. In: Encyclopedia of Database Systems,
Second Edition. Springer, 2018.

[Pla09] Hasso Plattner. “A common database approach for OLTP and OLAP us-
ing an in-memory column database”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2009, pp. 1–2.

[Pop+00] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. “A Chase
Too Far?” In: Proceedings of the International Conference on Management
of Data (SIGMOD). 2000, pp. 273–284.

[PF00] Meikel Pöss and Chris Floyd. “New TPC Benchmarks for Decision Support
and Web Commerce”. In: SIGMOD Record 29.4 (2000), pp. 64–71.

[Que20] Quest. Database Professionals Look To The Future: 2020 Trends in Database
Administration. White Paper. January 2020.

[RM19] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analyti-
cal Database”. In: Proceedings of the International Conference on Manage-
ment of Data (SIGMOD). 2019, pp. 1981–1984.

[ŘS10] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling
with Large Corpora”. In: Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. 2010, pp. 45–50.

[RSB21] Keven Richly, Rainer Schlosser, and Martin Boissier. “Joint Index, Sorting,
and Compression Optimization for Memory-Efficient Spatio-Temporal Data
Management”. In: Proceedings of the International Conference on Data
Engineering (ICDE). 2021, pp. 1901–1906.

195

Bibliography

[Rou15] Julien Rouhaud. HypoPG — Hypothetical Indexes for PostgreSQL. 2015.
url: https://github.com/HypoPG/hypopg Accessed: April 9, 2022.

[Rud19] Cynthia Rudin. “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead”. In: Nature Machine
Intelligence 1.5 (May 2019), pp. 206–215.

[SUK22] Ibrahim Sabek, Tenzin Ukyab, and Tim Kraska. “LSched: A Workload-Aware
Learned Query Scheduler for Analytical Database Systems”. In: Proceedings
of the International Conference on Management of Data (SIGMOD). 2022.
Accepted, to appear.

[SGL20a] Zahra Sadri, Le Gruenwald, and Eleazar Leal. “DRLindex: deep reinforce-
ment learning index advisor for a cluster database”. In: Proceedings of the
International Database Engineering and Applications Symposium (IDEAS).
2020, 11:1–11:8.

[SGL20b] Zahra Sadri, Le Gruenwald, and Eleazar Leal. “Online Index Selection Using
Deep Reinforcement Learning for a Cluster Database”. In: Proceedings of
the International Conference on Data Engineering (ICDE) Workshops. 2020,
pp. 158–161.

[SS96] Hossein Saiedian and Thomas Spencer. “An Efficient Algorithm to Compute
the Candidate Keys of a Relational Database Schema”. In: The Computer
Journal 39.2 (1996), pp. 124–132.

[SAP17] SAP. Understanding the Universal Journal in SAP S/4 HANA. 2017. url:
https://blogs.sap.com/2017/03/01/understanding-the-universal-
journal-in-sap-s4hana/ Accessed: March 19, 2023.

[SAP19] SAP. Expressions — Subqueries in Expressions. October 2019. url: https:
//help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.
04/en-US/20a4389775191014b5a6bf2ccc0df2ed.html Accessed: April 9,
2022.

[SAP21] SAP. SAP HANA Administration with SAP HANA Cockpit — Recommen-
dations. May 2021. url: https://help.sap.com/viewer/afa922439b204e
9caf22c78b6b69e4f2/2.13.0.0/en-US/ce347b55e371480abc1eb27a9d
010f25.html Accessed: April 9, 2022.

[21] SAP HANA SQL Reference Guide for SAP HANA Platform 2.0 SPS 05.
1.1. SAP. 2021.

196

https://github.com/HypoPG/hypopg
https://blogs.sap.com/2017/03/01/understanding-the-universal-journal-in-sap-s4hana/
https://blogs.sap.com/2017/03/01/understanding-the-universal-journal-in-sap-s4hana/
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/20a4389775191014b5a6bf2ccc0df2ed.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/20a4389775191014b5a6bf2ccc0df2ed.html
https://help.sap.com/viewer/4fe29514fd584807ac9f2a04f6754767/2.0.04/en-US/20a4389775191014b5a6bf2ccc0df2ed.html
https://help.sap.com/viewer/afa922439b204e9caf22c78b6b69e4f2/2.13.0.0/en-US/ce347b55e371480abc1eb27a9d010f25.html
https://help.sap.com/viewer/afa922439b204e9caf22c78b6b69e4f2/2.13.0.0/en-US/ce347b55e371480abc1eb27a9d010f25.html
https://help.sap.com/viewer/afa922439b204e9caf22c78b6b69e4f2/2.13.0.0/en-US/ce347b55e371480abc1eb27a9d010f25.html

Bibliography

[SGS03] Kai-Uwe Sattler, Ingolf Geist, and Eike Schallehn. “QUIET: Continuous
Query-driven Index Tuning”. In: Proceedings of the International Conference
on Very Large Databases (VLDB). 2003, pp. 1129–1132.

[Sch+13] Jan Schaffner, Tim Januschowski, Megan Kercher, Tim Kraska, Hasso Plat-
tner, Michael J. Franklin, and Dean Jacobs. “RTP: robust tenant placement
for elastic in-memory database clusters”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2013, pp. 773–784.

[SSY98] Bernhard Schiefer, Lori G Strain, and Weipeng P Yan. Method for estimating
cardinalities for query processing in a relational database management system.
US Patent 5,761,653. June 1998.

[Sch+19] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann,
Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. “DynFD:
Functional Dependency Discovery in Dynamic Datasets”. In: Proceedings of
the International Conference on Extending Database Technology (EDBT).
2019, pp. 253–264.

[Sch75] Mario Schkolnick. “The Optimal Selection of Secondary Indices for Files”.
In: Information Systems (IS) 1.4 (1975), pp. 141–146.

[SH20] Rainer Schlosser and Stefan Halfpap. “A Decomposition Approach for Risk-
Averse Index Selection”. In: Proceedings of the International Conference on
Scientific and Statistical Database Management (SSDBM). 2020, 16:1–16:4.

[SH21] Rainer Schlosser and Stefan Halfpap. “Robust and Memory-Efficient Database
Fragment Allocation for Large and Uncertain Database Workloads”. In: Pro-
ceedings of the International Conference on Extending Database Technology
(EDBT). 2021, pp. 367–372.

[SKB19] Rainer Schlosser, Jan Kossmann, and Martin Boissier. “Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies”. In: Proceedings
of the International Conference on Data Engineering (ICDE). 2019, pp. 1238–
1249.

[Sch+20] Rainer Schlosser, Jan Kossmann, Martin Boissier, Matthias Uflacker, and
Hasso Plattner. Iterative Multi-Attribute Index Selection for Large Database
Systems. European Patent EP3719663B1; US Patent Application 16/838,830.
October 2020.

[SP22] Sebastian Schmidl and Thorsten Papenbrock. “Efficient distributed discovery
of bidirectional order dependencies”. In: VLDB Journal 31.1 (2022), pp. 49–
74.

197

Bibliography

[SPG09] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. “Index Interactions in
Physical Design Tuning: Modeling, Analysis, and Applications”. In: Proceed-
ings of the VLDB Endowment 2.1 (2009), pp. 1234–1245.

[SJD13] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. “The Uncracked
Pieces in Database Cracking”. In: Proceedings of the VLDB Endowment 7.2
(2013), pp. 97–108.

[SJD16] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. “An experimental
evaluation and analysis of database cracking”. In: VLDB Journal 25.1 (2016),
pp. 27–52.

[Sch+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347.

[Sch+14] David Schwalb, Martin Faust, Johannes Wust, Martin Grund, and Hasso
Plattner. “Efficient Transaction Processing for Hyrise in Mixed Workload
Environments”. In: Proceedings of the International Workshop on In-Memory
Data Management and Analytics (IMDM) at VLDB. 2014, pp. 16–29.

[Sel+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. “Access Path Selection in a Relational
Database Management System”. In: Proceedings of the International Con-
ference on Management of Data (SIGMOD). 1979, pp. 23–34.

[SCJ15] Rajkumar Sen, Jack Chen, and Nika Jimsheleishvilli. “Query Optimization
Time: The New Bottleneck in Real-time Analytics”. In: Proceedings of the
International Workshop on In-Memory Data Management and Analytics
(IMDM) at VLDB. 2015, 8:1–8:6.

[SM17] Nuhad Shaabani and Christoph Meinel. “Incremental Discovery of Inclusion
Dependencies”. In: Proceedings of the International Conference on Scientific
and Statistical Database Management (SSDBM). 2017, 2:1–2:12.

[SSD18] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. “The Case for
Automatic Database Administration using Deep Reinforcement Learning”.
In: CoRR abs/1801.05643 (2018). arXiv: 1801.05643.

[She+19] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo.
“Scheduling OLTP transactions via learned abort prediction”. In: Proceedings
of the Workshop on Exploiting Artificial Intelligence Techniques for Data
Management (aiDM). 2019, 1:1–1:8.

198

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1801.05643

Bibliography

[SSM96] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. “Fundamental
Techniques for Order Optimization”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 1996, pp. 57–67.

[Sno16] Snowflake. Automatic Query Optimization. No Tuning! May 2016. url:
https://www.snowflake.com/blog/automatic-query-optimization-
no-tuning/ Accessed: April 9, 2022.

[Sno] Snowflake. Using the Search Optimization Service. n.d. url: https://docs.
snowflake.com/en/user-guide/search-optimization-service.html#
how-does-the-search-optimization-service-work Accessed: April 9,
2022.

[Son18] Il-Yeol Song. “Data Warehousing Systems: Foundations and Architectures”.
In: Encyclopedia of Database Systems, Second Edition. Springer, 2018.

[Sta21] Statista. Volume of data/information created, captured, copied, and con-
sumed worldwide from 2010 to 2025. June 2021. url: https : / / www .
statista.com/statistics/871513/worldwide-data-created/ Accessed:
April 9, 2022.

[Sto+01] Konrad Stocker, Donald Kossmann, Reinhard Braumandl, and Alfons Kem-
per. “Integrating Semi-Join-Reducers into State of the Art Query Processors”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
2001, pp. 575–584.

[Sto75] Michael Stonebraker. “Implementation of Integrity Constraints and Views
by Query Modification”. In: Proceedings of the International Conference on
Management of Data (SIGMOD). 1975, pp. 65–78.

[SRH90] Michael Stonebraker, Lawrence A. Rowe, and Michael Hirohama. “The
Implementation of Postgres”. In: IEEE Transactions on Knowledge and
Data Engineering (TKDE) 2.1 (1990), pp. 125–142.

[Sto08] Daniel P Stormont. “Analyzing human trust of autonomous systems in
hazardous environments”. In: Proceedings of the Human Implications of
Human-Robot Interaction workshop at AAAI. 2008, pp. 27–32.

[SL19] Ji Sun and Guoliang Li. “An End-to-End Learning-based Cost Estimator”.
In: Proceedings of the VLDB Endowment 13.3 (2019), pp. 307–319.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning — an
introduction. Adaptive computation and machine learning. MIT Press, 1998.

199

https://www.snowflake.com/blog/automatic-query-optimization-no-tuning/
https://www.snowflake.com/blog/automatic-query-optimization-no-tuning/
https://docs.snowflake.com/en/user-guide/search-optimization-service.html#how-does-the-search-optimization-service-work
https://docs.snowflake.com/en/user-guide/search-optimization-service.html#how-does-the-search-optimization-service-work
https://docs.snowflake.com/en/user-guide/search-optimization-service.html#how-does-the-search-optimization-service-work
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[Szl+17] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh
Srivastava. “Effective and Complete Discovery of Order Dependencies via
Set-based Axiomatization”. In: Proceedings of the VLDB Endowment 10.7
(2017), pp. 721–732.

[SGG12a] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. “Chasing Polarized
Order Dependencies”. In: Proceedings of the Alberto Mendelzon International
Workshop on Foundations of Data Management. 2012, pp. 168–179.

[SGG12b] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. “Fundamentals of Or-
der Dependencies”. In: Proceedings of the VLDB Endowment 5.11 (2012),
pp. 1220–1231.

[Szl+11] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, Wenbin Ma, Przemyslaw
Pawluk, and Calisto Zuzarte. “Queries on dates: fast yet not blind”. In: Pro-
ceedings of the International Conference on Extending Database Technology
(EDBT). 2011, pp. 497–502.

[Szl+14] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, Wenbin Ma, Weinan Qiu, and
Calisto Zuzarte. “Business-Intelligence Queries with Order Dependencies
in DB2”. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). 2014, pp. 750–761.

[Taf+18] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Jose Andrade.
“P-Store: An Elastic Database System with Predictive Provisioning”. In:
Proceedings of the International Conference on Management of Data (SIG-
MOD). 2018, pp. 205–219.

[Tan+19] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang,
Honglin Qiao, Yue Shi, Wei Cao, and Rui Zhang. “iBTune: Individualized
Buffer Tuning for Large-scale Cloud Databases”. In: Proceedings of the
VLDB Endowment 12.10 (2019), pp. 1221–1234.

[Tan+20] Zijing Tan, Ai Ran, Shuai Ma, and Sheng Qin. “Fast Incremental Discovery
of Pointwise Order Dependencies”. In: Proceedings of the VLDB Endowment
13.10 (2020), pp. 1669–1681.

[Thea] The PostgreSQL Global Development Group. Constraints — Unique Con-
straints. n.d. url: https://www.postgresql.org/docs/14/ddl-constra
ints.html Accessed: April 9, 2022.

[Theb] The PostgreSQL Global Development Group. CREATE INDEX. n.d. url: h
ttps://www.postgresql.org/docs/12/sql-createindex.html Accessed:
April 9, 2022.

200

https://www.postgresql.org/docs/14/ddl-constraints.html
https://www.postgresql.org/docs/14/ddl-constraints.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html

Bibliography

[Thec] The PostgreSQL Global Development Group. Frontend/Backend Protocol.
n.d. url: https : / / www . postgresql . org / docs / 12 / protocol . html
Accessed: April 9, 2022.

[Thed] The PostgreSQL Global Development Group. Statistics Used by the Planner
— Functional Dependencies. n.d. url: https://www.postgresql.org/docs/
14/planner-stats.html Accessed: April 9, 2022.

[Thee] The PostgreSQL Global Development Group: Row Estimation Examples.
n.d. url: https://www.postgresql.org/docs/13/row- estimation-
examples.html Accessed: April 9, 2022.

[Val+00] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. “DB2 Advisor: An Optimizer Smart Enough to Recommend Its
Own Indexes”. In: Proceedings of the International Conference on Data
Engineering (ICDE). 2000, pp. 101–110.

[Var] Daniele Varrazzo. psycopg — PostgreSQL driver for Python. n.d. url:
https://www.psycopg.org Accessed: April 9, 2022.

[Vas] Alexey Vasiliev. PGTune — How it works. n.d. url: https://pgtune.
leopard.in.ua/#/about Accessed: April 9, 2022.

[Vog+18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,
Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. “Get
Real: How Benchmarks Fail to Represent the Real World”. In: Proceedings
of the International Workshop on Testing Database Systems (DBTEST).
2018, 1:1–1:6.

[Wan+21] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo
Wang, Haibo Chen, and Jinyang Li. “Polyjuice: High-Performance Trans-
actions via Learned Concurrency Control”. In: USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 2021, pp. 198–216.

[WTB21a] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. “Demonstrating
UDO: A Unified Approach for Optimizing Transaction Code, Physical Design,
and System Parameters via Reinforcement Learning”. In: Proceedings of
the International Conference on Management of Data (SIGMOD). 2021,
pp. 2794–2797.

[WTB21b] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. “UDO: Universal
Database Optimization using Reinforcement Learning”. In: Proceedings of
the VLDB Endowment 14.13 (2021), pp. 3402–3414.

201

https://www.postgresql.org/docs/12/protocol.html
https://www.postgresql.org/docs/14/planner-stats.html
https://www.postgresql.org/docs/14/planner-stats.html
https://www.postgresql.org/docs/13/row-estimation-examples.html
https://www.postgresql.org/docs/13/row-estimation-examples.html
https://www.psycopg.org
https://pgtune.leopard.in.ua/#/about
https://pgtune.leopard.in.ua/#/about

Bibliography

[Wan+03] Shyue-Liang Wang, Wen-Chieh Tsou, Jiann-Horng Lin, and Tzung-Pei Hong.
“Maintenance of Discovered Functional Dependencies: Incremental Deletion”.
In: Intelligent Systems Design and Applications. Springer, 2003, pp. 579–588.

[Wan+17] Zhiguang Wang, Chul Gwon, Tim Oates, and Adam Iezzi. “Automated
Cloud Provisioning on AWS using Deep Reinforcement Learning”. In: CoRR
abs/1709.04305 (2017). arXiv: 1709.04305.

[Wed92] Grant E. Weddell. “Reasoning about Functional Dependencies Generalized
for Semantic Data Models”. In: ACM Transactions on Database Systems
(TODS) 17.1 (1992), pp. 32–64.

[WLL19] Ziheng Wei, Uwe Leck, and Sebastian Link. “Entity Integrity, Referential
Integrity, and Query Optimization with Embedded Uniqueness Constraints”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
2019, pp. 1694–1697.

[Wha85] Kyu-Young Whang. “Index Selection in Relational Databases”. In: Proceed-
ings of the International Conference on Foundations of Data Organization
(FoDO). 1985, pp. 487–500.

[Wu+13] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton. “Predicting query execution time: Are optimizer
cost models really unusable?” In: Proceedings of the International Conference
on Data Engineering (ICDE). 2013, pp. 1081–1092.

[Yan95] Weipeng P. Yan. “Query Optimization Techniques for Aggregation Queries”.
PhD thesis. Department of Computer Science, University of Waterloo, 1995.

[YL94] Weipeng P. Yan and Per-Åke Larson. “Performing Group-By before Join”.
In: Proceedings of the International Conference on Data Engineering (ICDE).
1994, pp. 89–100.

[YL95] Weipeng P. Yan and Per-Åke Larson. “Eager Aggregation and Lazy Ag-
gregation”. In: Proceedings of the International Conference on Very Large
Databases (VLDB). 1995, pp. 345–357.

[Yan+21] Yu Yan, Shun Yao, Hongzhi Wang, and Meng Gao. “Index selection for
NoSQL database with deep reinforcement learning”. In: Information Sciences
561 (2021), pp. 20–30.

[YL87] H. Z. Yang and Per-Åke Larson. “Query Transformation for PSJ-Queries”.
In: Proceedings of the International Conference on Very Large Databases
(VLDB). 1987, pp. 245–254.

202

https://arxiv.org/abs/1709.04305

Bibliography

[Yan+19] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara Nahrstedt. “MIRAS:
Model-based Reinforcement Learning for Microservice Resource Allocation
over Scientific Workflows”. In: Proceedings of the International Conference
on Distributed Computing Systems (ICDCS). 2019, pp. 122–132.

[You] Evan You. Vue.js — The Progressive JavaScript Framework. n.d. url:
https://vuejs.org Accessed: April 9, 2022.

[YS89] Clement T. Yu and Wei Sun. “Automatic Knowledge Acquisition and Mainte-
nance for Semantic Query Optimization”. In: IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 1.3 (1989), pp. 362–375.

[Zer] ZeroMQ authors. ZeroMQ — An open-source universal messaging library.
n.d. url: https://zeromq.org Accessed: April 9, 2022.

[Zha+18] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. “A Demonstration of
the OtterTune Automatic Database Management System Tuning Service”.
In: Proceedings of the VLDB Endowment 11.12 (2018), pp. 1910–1913.

[Zha+16] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky,
Lin Ma, and Rui Shen. “Reducing the Storage Overhead of Main-Memory
OLTP Databases with Hybrid Indexes”. In: Proceedings of the International
Conference on Management of Data (SIGMOD). 2016, pp. 1567–1581.

[Zha+19] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu
Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li.
“An End-to-End Automatic Cloud Database Tuning System Using Deep
Reinforcement Learning”. In: Proceedings of the International Conference
on Management of Data (SIGMOD). 2019, pp. 415–432.

[Zha+21] Ji Zhang, Ke Zhou, Guoliang Li, Yu Liu, Ming Xie, Bin Cheng, and Jiashu
Xing. “CDBTune+: An efficient deep reinforcement learning-based automatic
cloud database tuning system”. In: VLDB Journal 30.6 (2021), pp. 959–987.

[Zil+04] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J.
Storm, Christian Garcia-Arellano, and Scott Fadden. “DB2 Design Advisor:
Integrated Automatic Physical Database Design”. In: Proceedings of the
International Conference on Very Large Databases (VLDB). 2004, pp. 1087–
1097.

203

https://vuejs.org
https://zeromq.org

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Building Blocks of Autonomous Database Systems
	System and Integration
	Unsupervised Database Optimization
	Impact Forecasting
	Learned Components

	Part I: Efficient Index Selection
	Part II: Data Dependency-Driven Query Optimization
	Research Questions and Contributions
	Outline

	Unsupervised Database Optimization: Efficient Index Selection
	Background: Index Selection
	Formalization
	Challenges
	Large Solution Space
	Index Interaction
	Quantifying Index Impact

	A Survey of Index Selection Algorithms
	Investigating Seven Index Selection Algorithms
	Algorithm Comparison
	Drop Heuristic
	AutoAdmin
	Anytime DTA
	DB2Advis
	Relaxation
	ILP-based Approaches (CoPhy)
	Dexter

	Commercial Index Selection Tools
	Alternative Approaches
	Summary

	An Experimental Evaluation of Index Selection Approaches
	Methodology
	Workloads
	Query Cost Evaluation
	Constraints and Optimization Targets
	Evaluation Platform
	Experimental Setup
	Limitations

	Evaluation
	TPC-H
	TPC-DS
	Join Order Benchmark
	Cost Breakdown and Cost Requests
	Algorithm Parameter Influence

	Conclusion
	Insights
	Summary

	Two Novel and Efficient Index Selection Approaches
	Extend: Index Selections Based on Iterative Index Extensions
	Algorithm Description
	Classification

	SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning
	Background: Reinforcement Learning
	Existing RL-based Index Selection Approaches
	Algorithm Description
	Classification

	Evaluation
	Experimental Setup
	Algorithm Performance
	Specific Evaluations

	Discussion and Interpretation
	SWIRL
	Extend

	Summary and Future Work

	Unsupervised Database Optimization: Data Dependency-Driven Query Optimization
	Background: Data Dependency-Driven Query Optimization
	Query Optimization
	Data Dependencies
	Unique Column Combinations (UCCs)
	Functional Dependencies (FDs)
	Order Dependencies (ODs)
	Inclusion Dependencies (INDs)
	Properties of Data Dependencies

	A Survey of Data Dependency-Driven Query Optimization
	Classification of Dependency-Driven Query Optimization Techniques
	Unique Column Combinations
	UCCs and Joins
	UCCs and Grouping
	UCCs and Distinctness
	UCCs and Subqueries
	UCCs and Set Operations
	Further Optimization Opportunities with UCCs

	Functional Dependencies
	FDs and Grouping
	FDs and Joins
	FDs and Selection
	FDs and Sorting
	FDs and Cardinality Estimation

	Order Dependencies
	ODs and Sorting
	ODs and Joins
	ODs and Grouping
	Further Optimization Opportunities with ODs

	Inclusion Dependencies
	INDs and Joins
	Further Optimization Opportunities with INDs

	Additional Optimizations
	Semantic Query Optimization
	Further Dependency Types

	Summary and Open Challenges

	Integration and Evaluation of Data Dependency-Driven Query Optimization
	Challenges
	Dependency Discovery
	Dependency Selection
	Dependency Mutation

	Workload-Driven, Lazy Discovery, Selection, and Mutation of Data Dependencies
	Background: Hyrise
	Data Dependency Discovery and Selection
	Efficient Data Dependency Mutation

	Evaluation
	Experimental Setup
	Limitations
	Optimization Performance
	Discovery and Selection Overhead

	Related Work
	Conclusion and Future Work

	Application Scenario of Unsupervised Database Optimization and Conclusion
	A Cockpit for Unsupervised Database Optimization
	Overview
	User Interface
	Application Scenario

	Cockpit Architecture
	Summary

	Conclusion
	Appendix
	Additional Figures
	Additional Figures for Part I
	Additional Figures for Part II

	List of URLs
	Publications
	Reuse of Material Published by IEEE

	List of Figures
	List of Tables
	Acronyms
	Bibliography

