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METHODOLOGY Open Access

Locally structured correlation (LSC) plots
describe inhomogeneity in normally
distributed correlated bivariate variables
Rebekka Mumm1* , Christiane Scheffler1 and Michael Hermanussen2

Abstract

Background: The association between bivariate variables may not necessarily be homogeneous throughout the
whole range of the variables. We present a new technique to describe inhomogeneity in the association of
bivariate variables.

Methods: We consider the correlation of two normally distributed random variables. The 45° diagonal through the
origin of coordinates represents the line on which all points would lie if the two variables completely agreed. If the
two variables do not completely agree, the points will scatter on both sides of the diagonal and form a cloud. In
case of a high association between the variables, the band width of this cloud will be narrow, in case of a low
association, the band width will be wide. The band width directly relates to the magnitude of the correlation
coefficient. We then determine the Euclidean distances between the diagonal and each point of the bivariate
correlation, and rotate the coordinate system clockwise by 45°. The standard deviation of all Euclidean distances,
named “global standard deviation”, reflects the band width of all points along the former diagonal. Calculating
moving averages of the standard deviation along the former diagonal results in “locally structured standard
deviations” and reflect patterns of “locally structured correlations (LSC)”. LSC highlight inhomogeneity of bivariate
correlations. We exemplify this technique by analyzing the association between body mass index (BMI) and hip
circumference (HC) in 6313 healthy East German adults aged 18 to 70 years.

Results: The correlation between BMI and HC in healthy adults is not homogeneous. LSC is able to identify regions
where the predictive power of the bivariate correlation between BMI and HC increases or decreases, and highlights
in our example that slim people have a higher association between BMI and HC than obese people.

Conclusion: Locally structured correlations (LSC) identify regions of higher or lower than average correlation
between two normally distributed variables.
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Background
The association between bivariate variables may not ne-
cessarily be homogeneous throughout the whole range
of the variables so that the independent variable predicts
the criterion variable with different predictive power
along the abscissa. This is an old problem, relevant for
anthropology, public health, and many other disciplines.
We give a public health example: Slim people have

both low body mass index (body weight divided by
height square, BMI) and narrow hip circumference
(HC). Obese people have both high BMI and a much
wider HC. Yet, the strength of this correlation varies
along the X- and the Y-axis. The correlation appears
much better in the slim than in the obese people. We
say, the correlation is not homogeneous. Yet, ap-
proaching this phenomenon statistically is difficult.
When we restrict the range of either one of the variables
(i.e. when we either look at only the slim, or only the
obese) to better focus on either one group, the resulting
correlation coefficient within the restricted range will be
reduced [1].
We present a new technique to better describe in-

homogeneity in the association of bivariate variables.

Sample
We exemplify the new technique by analyzing data on
body mass index (BMI) and hip circumference (HC) in
6313 healthy adults aged 18 to 70 years from former
East Germany. Information on height, weight, age, sex
and several other anthropometric variables e.g. hip and
waist circumference, sitting height, etc. are available. De-
tails of these data and available variables were published
elsewhere [2]. Height, weight and HC had been mea-
sured following standard procedure [3]. BMI was calcu-
lated in the usual way (kg/m2). Sex-specific z-scores for
BMI and HC were calculated:

z−score ¼ measured value of individual−mean of group
standard deviation ðSDÞ of group

Methods
Consider X and Y two normally distributed random vari-
ables with X~N(0, 1) and Y~N(0, 1), x and y the arith-
metic mean and sx2 and sy2 the corrected sample
variance. If variables X and Y do not have standard nor-
mal distribution (e.g. this is the case for BMI and HC in
our example of 6,313 healthy adults), z-transformation
has to be used first for both variables. The Pearson cor-
relation r between X and Y can be written as

r ¼ Cor X;Yð Þ
¼
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If the two variables completely agreed (which is
not the case in measures of BMI and HC), all mea-
surements would lie on the 45° diagonal through
the origin of the coordinates. If the two variables
do not completely agree (as this is the case in mea-
sures of BMI and HC), the measurement points
scatter on both sides of the diagonal forming a
cloud of measurements. In case of a high associ-
ation between the variables, the band width of this
cloud will be narrow, in case of a low association,
the band width will be wide. The band width dir-
ectly relates to the magnitude of the correlation co-
efficient. We discuss the case that the two variables
do not completely agree, i.e. r > 0. The diagonal can

be written as g : x!¼ a!þ t∙ b
!
; t ϵ ℝ with a!¼ 0

0

� �
;

b
!¼ 1

1

� �
. Therefore

g : x!¼ 0
0

� �
þ t∙

1
1

� �
; t ϵ ℝ ð2Þ

We determine the Euclidean distance d between the
diagonal g and any point P(xi| yi) ϵ ℝ2 with xi ϵ X and
yi ϵ Y. With Eq. (2) we get

d g; Pð Þ ¼
1
1

� �
� xi

yi

� �
−

0
0

� �� �����
����

1
1

� �����
����

¼ yi−xij jffiffiffi
2

p ð3Þ

We calculated the mean squared error (MSE) as the
sum of the distance d for all random points P(xi| yi) ϵ ℝ2

with xi ϵ X and yi ϵ Y.
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The observed (corrected) dispersion ŝ2 , or band width

of the cloud of points alongside of the diagonal is
equivalent to what is commonly considered the variance.
With (4), the observed (corrected) dispersion ŝ2 can be
described by

ŝ2 ¼ 1−r; for r > 0: ð5Þ
Similar for r < 0 the dispersion ŝ2 can be described

using the same arguments as

ŝ2 ¼ 1þ r; for r < 0: ð6Þ
With (5) and (6) we get for each r ϵ ℝ, r ≠ 0

ŝ2 ¼ 1þ r; r < 0
1−r; r > 0

	

¼ 1− rj j
ð7Þ

In summary, the band width of the scattered points
along both sides of the 45° diagonal is directly related to
the bivariate Pearson correlation coefficient (Fig. 1.1).
The observed dispersion ŝ2 of a sample derived from

the Euclidean distances between the diagonal g and each
point (Eqs. 3 and 7), also called “global variance” s2g re-

flects the average scattering of all points along the diag-
onal of the original correlation plot, i.e. the “global
correlation” rg as given by Pearson correlation between X
and Y and the “global standard deviation” sg

s2g ¼ 1−rg

In order to identify inhomogeneity in the band width
of all points along the former diagonal and therefore to
describe the magnitude of the association separately for
the slim, for the normal, and for the obese, we compute
“locally structured standard deviations” ŝlsc by the fol-
lowing two steps. First, we calculate moving averages [5]
of standard deviations to better describe the local magni-
tude of scattering along the new abscissa. In a second
step, the moving averages are smoothed e.g. by using
LOESS (Locally Estimated Scatterplot Smoothing) tech-
nique [6]. Other smoothing techniques e.g. LOWESS
(Locally Weighted Scatterplot Smoothing) or GAM
(Generalized Additive Modelling) might be applicable as
well.
The resulting smoothed moving averages of the stand-

ard deviation is now called “locally structured standard
deviations” ŝlsc . The pattern of “locally structured stand-
ard deviations” ŝlsc reflects the “locally structured corre-
lations” r̂lsc, written as

r̂lsc ¼ 1−ŝlsc
2 ð8Þ

“Locally structured correlations” depict the “local” as-
sociation between BMI and HC within the full range
from slim to normal, and to obese persons.
For all analyses the statistical software R [4] was used.

Results
We exemplify this approach. Figure 1.1 and 1.2 depict
the correlation plot for BMI z-scores (zBMI) and HC z-
scores (zHC) in 6313 healthy East German adults. The
correlation is not homogeneous, though this may not be
immediately visible.
For visualization, we rotate the coordinate system

clockwise by 45° (Fig. 1.3 and 1.4) and define two new
Cartesian axes. The former diagonal line has now turned
into the new abscissa described by zBMIþzHC

2 . The new or-

dinate is given by zBMI−zHC
2 . The “global standard devia-

tions” sg between zBMI and zHC of slim, normal and
obese people combined are presented as horizontal lines
in Fig. 1.5. Figure 1.6 illustrates the “locally structured
standard deviations” ŝlsc of zBMI and zHC after smooth-
ing the moving averages of the standard deviation (=
local pattern of scattering). In our example, the standard
technique for scatterplot smoothing LOESS was used.
Figure 1.7 magnifies the pattern of ŝlsc . Rotating the co-
ordinate system back by 45° (counter-clockwise) (Fig. 1.8
and 1.9) shows the locally structured correlations (LSC)
plot and highlights the inhomogeneity of the bivariate
correlation between BMI and HC. LSC-plots identify re-
gions within correlation plots where the predictive
power increases or decreases (increasing or decreasing
“locally structured standard deviations” ŝlsc ). Predictive
power is highest around BMI and HC z-values between
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-1 and 0 (low locally structured standard deviations ŝlsc )
and decreases with increasing BMI and/or HC (high lo-
cally structured standard deviations ŝlsc ).
Figure 2 illustrates the reciprocal dynamics of locally

structured ŝlsc and the locally structured correlation r̂lsc .
Locally structured correlations r̂lsc indicate regions of
higher or lower than average (global) correlation be-
tween BMI and HC. Correlation is highest for zBMI- or
zHC-values of -1. The correlation decreases for z-values
above 0 indicating an increase of variability in zBMI and
zHC and thereby demonstrates a weaker association
than average between the two variables. I.e. slim people
have a higher association between BMI and HC than
obese people.
Negative associations of bivariate variables that are

also common in public health can be analyzed in
analogy.

Discussion
In public health the interaction between bivariate vari-
ables is often described by using the Pearson correlation
between these variables. The Pearson correlation

assumes homogenous linear relationships but this may
not necessarily be the case as we have seen in the ex-
ample of BMI and HC. Localizing particular areas within
which the strength of the interaction between two bi-
variate variables may be greater or smaller, is not trivial,
and also estimating the magnitude of this phenomenon
is difficult. Restricting the range of one of the variables
(e.g. assessing the association between BMI and HC only
in the slim or only the obese) is not an appropriate stat-
istical method.
Restrictions of range reduce the power of an experi-

ment, because correlations are attenuated by reduced
variability, a problem well known. The problem of re-
stricted ranges in correlation was first exemplified in the
classical study by Thorndike in 1949 [7]. Bland and Alt-
man [1] further discussed this issue and defined re-
stricted ranges of variables on the x-axis but state that a
detailed analysis of subgroups within a variable is not
appropriate and refer to using regression instead of cor-
relation. Several additional methods exist for correcting
correlations for range restriction [8]. Wiberg and Sund-
ström [8] tested two approaches for correcting restricted

Fig. 1 Locally structured standard deviation ŝlsc , and locally structured correlation r̂ lsc between BMI and HC (details provided in the text)
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correlations, but concluded that further studies are ne-
cessary – a final solution for the problem is still un-
known but widely needed for public health.
Figure 2 illustrates the inhomogeneity of the correl-

ation between zBMI and zHC in our example. In slim
people the correlation between zBMI and zHC with r
close to 0.9, has a high predictive power, indicating that
adults with low BMI are very likely to also have a low
HC. The pattern of “locally structured correlation” illus-
trates the magnitude at which the association between
BMI and HC depends on the body’s fat depots.
Many variables such as physical activity, child growth,

adult height, income, the association of socio-economic
status and risk of infectious diseases etc. are highly inter-
related and usually far from being homogenous [9, 10].

Conclusion
In public health, complex interactions between social,
economic and anthropological variables are common.
Inhomogeneity in the association of these variables may
further jeopardize the understanding of these
interactions.
We present a new method for studying local variability

within correlation plots of bivariate variables by creating
locally structured correlations (LSC). LSC identify re-
gions of higher or lower than average association within
the correlation of two normally distributed variables. In
contrast to existing statistical methods, locally structured

correlations are not based on range restriction, but dir-
ectly analyze local inhomogeneity along the 45° diagonal
axis crossing the origin of coordinates. The new method
helps to improve the understanding of complex interac-
tions of variables in public health studies.
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correlation; zBMI: z-scores for BMI; zHC: z-scores for hip circumference;
SD: standard deviation
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