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Abstract

Personal data privacy is considered to be a fundamental right. It forms a part
of our highest ethical standards and is anchored in legislation and various best
practices from the technical perspective. Yet, protecting against personal data
exposure is a challenging problem from the perspective of generating privacy-
preserving datasets to support machine learning and data mining operations.
The issue is further compounded by the fact that devices such as consumer
wearables and sensors track user behaviours on such a fine-grained level, thereby
accelerating the formation of multi-attribute and large-scale high-dimensional
datasets.

In recent years, increasing news coverage regarding de-anonymisation incidents,
including but not limited to the telecommunication, transportation, financial
transaction, and healthcare sectors, have resulted in the exposure of sensitive
private information. These incidents indicate that releasing privacy-preserving
datasets requires serious consideration from the pre-processing perspective. A
critical problem that appears in this regard is the time complexity issue in
applying syntactic anonymisation methods, such as k-anonymity, l-diversity, or
t-closeness to generating privacy-preserving data. Previous studies have shown
that this problem is NP-hard.

This thesis focuses on large high-dimensional datasets as an example of a special
case of data that is characteristically challenging to anonymise using syntactic
methods. In essence, large high-dimensional data contains a proportionately
large number of attributes in proportion to the population of attribute val-
ues. Applying standard syntactic data anonymisation approaches to generating
privacy-preserving data based on such methods results in high information-loss,
thereby rendering the data useless for analytics operations or in low privacy due
to inferences based on the data when information loss is minimised.
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We postulate that this problem can be resolved effectively by searching for and
eliminating all the quasi-identifiers present in a high-dimensional dataset. Essen-
tially, we quantify the privacy-preserving data sharing problem as the Find-QID
problem. Further, we show that despite the complex nature of absolute privacy,
the discovery of QID can be achieved reliably for large datasets. The risk of
private data exposure through inferences can be circumvented, and both can be
practicably achieved without the need for high-performance computers.

For this purpose, we present, implement, and empirically assess both mathe-
matical and engineering optimisation methods for a deterministic discovery of
privacy-violating inferences. This includes a greedy search scheme by efficiently
queuing QID candidates based on their tuple characteristics, projecting QIDs
on Bayesian inferences, and countering Bayesian network’s state-space-explosion
with an aggregation strategy taken from multigrid context and vectorised GPU
acceleration. Part of this work showcases magnitudes of processing acceleration,
particularly in high dimensions. We even achieve near real-time runtime for
currently impractical applications. At the same time, we demonstrate how such
contributions could be abused to de-anonymise Kristine A. and Cameron R. in
a public Twitter dataset addressing the US Presidential Election 2020.

Finally, this work contributes, implements, and evaluates an extended and gener-
alised version of the novel syntactic anonymisation methodology, attribute com-
partmentation. Attribute compartmentation promises sanitised datasets with-
out remaining quasi-identifiers while minimising information loss. To prove its
functionality in the real world, we partner with digital health experts to con-
duct a medical use case study. As part of the experiments, we illustrate that
attribute compartmentation is suitable for everyday use and, as a positive side
effect, even circumvents a common domain issue of base rate neglect.
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1

Introduction

The protection of personally identifiable information (PII) is held in high esteem
and is incorporated in our highest professional standards. Legal frameworks
around the world have been implemented to ensure the privacy of private data,
most prominently the EU General Data Protection Regulation [32] or the US
California Consumer Privacy Act [75]. These regulations give consumer data
privacy a more central and important role in their data collection, processing,
and analysis [109]. However, the industry continues to struggle with finding
the right balance for compliance with the legislature and consumer satisfaction
[151].

Typically, data privacy can be achieved by either asking the user for their con-
sent or by eliminating any personally identifiable information. Doing the latter
is known as anonymisation, a technique that is not entirely new as its’ roots
originate in the previous century [33]. However, syntactic data anonymisation
has been acknowledged to be NP-hard and, therefore, complex to solve. At the
same time, we observe an increasing amount of digital information. More data
records become available through enhancements in technology like cheap and
tiny sensors, cumulating a soaring amount of observation points and hence de-
scribing attributes. These dimensions can reach, for instance, in the healthcare
genetics sector, thousands of attributes breaking down human DNA into its or-
ganic molecule components. These data characteristics with a massive amount
of rows and columns are also referred to as high-dimensional datasets.

To counter the determined anonymisation complexity and handle the growing
data size, there has been a shift to probabilistic, use-case sensitive, semantic data
anonymisation methods by the research community [7, 17, 45, 52, 54]. Here,
statistic approaches are designed to reduce the risk of private data exposure
based on query-specific constraints. In the recent years, however, we have also
observed an increasing news footprint of de-anonymisation incidents in various
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industries and sectors like telecommunication [40], transportation [148, 152],
financial transactions [41, 178] and healthcare [10, 39]. Examples include the
re-identification of US Governor William Weld’s medical information [10], the
exposure of tens of thousands of private health records from a large clinical
laboratory network that contained patient names, dates of birth, social security
numbers, lab results, and diagnostics data [39] and the de-anonymisation of
personal search history resulting in a class-action lawsuit against AOL [8].

1.1 Motivation

The possibility of studying large-scale and high-dimensional datasets in terms
of how to generate privacy-preserving data offers the tremendous hope of iden-
tifying, understanding and deriving objective insights in a way that has not
been possible before. Such inferences can unlock new industry sectors [36], offer
novel angles for venues in various research fields like education [76] or bring an
enormous promise for advancing clinical care for the greater public good as a
new era of medicine [77, 159].

Simultaneously, protecting individual privacy must be respected and is cru-
cial but extremely challenging. Applying syntactic data anonymisation seems
impractical or consumes uneconomical resources given its NP-hard nature. Sug-
gested semantic approaches due to their probabilistic character may not suit
strong anonymity guarantees, and numerous privacy experts question practica-
bility in large-scale environments [77, 109].

Radical new perspectives are desired to balance economic and social reasoning
with the risk of private data exposure. To illustrate these, this work relies on
digital health examples like fitness, health, and genomics but finally is not bound
to a specific use case after all.

1.2 Problem Statement

Releasing privacy-preserving datasets has been shown to be fraught with prob-
lems as de-anonymisation incidents are growing [10, 40, 41, 148, 152, 178]. One
rationale for this is that inferences in data are underestimated by their risk of pri-
vate data exposure and often serve as quasi-identifiers for record re-identification
attacks [29, 58, 92, 99, 105] – namely inference- and semantic attacks. Related
work and existing syntactic anonymisation mechanisms strive for minimising
information-loss. Inference attacks exploit low information loss by drawing a
conclusion from observed patterns in the data using auxiliary data to derive
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private information [184, 185]. Semantic attacks extend the same methodology
by exploiting the meaning of information [99, 105, 186].

Modern sensors used, for instance, in consumer wearables, track a variety of ob-
servation points. These data records compose highly sparsely populated, multi-
attribute, high-dimensional datasets in combination and on a fine-grained level.
The search for and elimination of quasi-identifiers (QID) in these datasets is
essential for the privacy-preserving data sharing problem. This occurs since a
large diversity of information fosters data patterns for inferences. Consequently,
a single inference can already lead to the compromise of privacy.

A series of algorithms or methods is needed to realise efficient quasi-identifier
discovery for high-dimensional datasets both to enable effective data transfor-
mation for privacy, and to verify whether or not a given dataset is privacy
preserving.

1.3 Contribution

This work proposes multiple novel methodologies of discovering and eliminat-
ing privacy-violating inferences, namely quasi-identifiers in high-dimensional
datasets. We will discuss their implementation details, offer optimisation options
and demonstrate their efficiency. These new approaches are use case agnostic,
highly effective, and proved in a real-world use case. Further, our contributions
can be summarised as follows:

• We start by demonstrating the privacy problem is even worse than already
perceived by linking the search for quasi-identifiers to the “Unique” prob-
lem. Through this hierarchy, we derive that reliable discovery of all quasi-
identifiers is a fixed-parameter traceable problem (FPT) and W[2]-complete.
FPT allows efficient algorithm for small values of the fixed parameter, but
not in large, high dimensions. Determining all quasi-identifiers in a dataset
leads to superpolynomial runtime.

• Next, we present new approaches of deterministic discovering all quasi-
identifiers that can serve as inferences for de-anonymisation on a large-scale.

• To counter exponential growth, we discuss optimisations for greedy pro-
cessing, mathematical multigrid solver, and massive-parallelisation through
vectorised GPU-acceleration. These options will be algorithmically outlined,
their implementation details discussed and compared empirically. With mag-
nitudes of processing acceleration, we will showcase that currently imprac-
tical applications can be achieved.
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• Furthermore, we demonstrate how such runtime optimisations can be abused
to attack an already published dataset, by exemplarily re-identifying two
individuals, Kristine A. and Cameron R., in a Twitter dataset drawn from
the 2020 US Presidential Election.

• Finally, this work extends, generalises, implements and evaluates the de-
terministic anonymisation methodology, attribute compartmentation [135],
which promises sanitised datasets without remaining quasi-identifiers while
minimising information-loss. To prove its functionality in real-life settings,
we partner with digital health experts to conduct a medical use case study
showcasing that attribute compartmentation is suitable for everyday use
and, as a side effect, even circumvents base rate neglect.

1.4 Thesis Structure

The rest of the work is structured as follows. We summarise, discuss and demar-
cate related work in Chapter 2. Chapter 3 formalises the complexity of detecting
quasi-identifiers as “Find-QID” problem and outlines the similarities to a known
data profiling problem. An exact discovery scheme for the “Find-QID” prob-
lem is presented in Chapter 4. The same Chapter offers different optimisation
techniques, including a greedy approach to discover the attribute combinations
serving as quasi-identifiers and a massive-parallelised method through vectorised
compute. Chapter 5 addresses the venue of utilising Bayesian inferences to tri-
angulate quasi-identifier (QID) in the variety of QID candidates and multigrid
solver as well optimisation methods and massive parallelisation by dint of GPU
acceleration. Chapter 6 covers the improved elimination of QIDs, especially a
novel approach to attribute compartmentation. While each of the previous Chap-
ters has their enclosed assessment section, an overarching empirical comparison
is offered in Chapter 7. Finally, a summary, as well as avenues for future work,
are provided in Chapter 8.
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Related Work

Data anonymisation is not an entirely new field and has been studied extensively
throughout the last decades. Existing privacy models can be generally classified
in two categories of operations: syntactic- and semantic data anonymisation.
In the following, we will detail out each of their limitations on transforming
highly sparsely populated, multi-attribute, high-dimensional data to generate
privacy-preserving datasets.

2.1 Syntactic Data Anonymisation

The family of techniques associated with syntactic data anonymisation relies
on a variety of data transformation methods such as randomisation [82, 104,
147], generalisation [67, 166], suppression [67, 166], and perturbation [104, 147].
While suppression simplified erases data, generalisation typically restructures
the content of a dataset by modifying its values according to a pre-defined term
replacement taxonomy. In hierarchy-based taxonomies, each value progressively
loses uniqueness as one moves upwards in the hierarchy.

The k-anonymity family. One of the first and best known is k-anonymity,
where each tuple in the data set is classified with at least k − 1 similar data
records to limit distinguishability. The k − 1 nearest neighbours are, accord-
ing to Sweeney, selected based on similar describing attributes and enforced by
generalisation and suppression [166]. Generalisation follows the pattern of aggre-
gating data values through a pre-defined hierarchy, for instance, the individual
year 2021 into a year range of 2020-2025. Suppression, on the contrary, removes
the designated data value completely. The toolkit of generalisation is vulnerable
to homogeneity and background knowledge attacks [106]. To counter this, l-
diversity additionally considers the granularity of sensitive data representations
to ensure a diversity of a factor of l for each quasi-identifier within a given equiv-
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alence class (usually a size of k). t-closeness as an extension handles skewness
and background knowledge attacks by considering the relative distributions of
sensitive values both in individual equivalence classes and in the entire dataset
[98].

k-anonymity also serves as a privacy metric known as k-map. A dataset satisfies
the k-map constraint if every combination of attribute values for quasi-identifiers
appears at least k times [166]. Further, k-map applies the assumption that
an attacker has no background knowledge on entities in the given dataset. δ-
presence, introduced by Nergiz et al. [122], builds on both k-anonymity and k-
map to protect against symmetric attacks that exploits the equivalence classes
in a dataset for re-identification. Hidden in the δ-parameter δ-min and δ-max
exist. These two parameters cover the information that someone is not present.

Data transformation techniques. The previous anonymisation algorithms
and their extensions [11, 112] use generalisation and suppression to support
transforming the data [67]. This works well for theoretical showcases but quickly
reaches its limits for larger datasets. As Meyerson et al. [112] and Bayardo et
al. [11, 72] have demonstrated, syntactic data anonymisation algorithms like
k-anonymity [166], l-diversity [106], and t-closeness [98] are NP-hard.

The reason is that the dependent generalisation algorithms in themselves are
NP-hard due to their iterative and incremental nature. Aggrawal et al. [4] have
shown that applying generalisation and suppression to high dimensional data
results in high information loss, thereby rendering the data useless for data
analytics. This effect is particularly true, as for many describing attributes
generalisation’s runtime grows exponentially and hence is impractical. Conse-
quently, suppression remains and radically removes attribute values leading to
large information-loss. Bearing this complexity in mind, all variants of this al-
gorithm can only use heuristics like k-optimize [11] with compute constrains to
achieve better approximations known as suboptimal privacy, not perfect privacy
[10].

As a suitable alternative to generalisation, perturbation has been presented
[104, 147]. Perturbation corresponds to the actual value’s alternation to the
closest similar findable value. This includes the effect of introducing an aggre-
gated value or using a close-by value that is adopted in the way that just one
value needs modification instead of multiple ones to build clusters. Under these
circumstances, finding such a value can take longer due to iteratively rechecking
the newly created value(s), which consequently impacts performance negatively.

Optimal k-anonymity has been shown to be an NP-hard problem [10, 112]. Ap-
plying generalisation and suppression schemes to high-dimensional data results
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in a high-information loss due to their algorithmic nature, thereby rendering the
data almost useless for data analytics. Wong et al. [187] proposed a method to
distribute all tuples non-uniformly the same quasi-identifier (QID) in a partition
for achieving k-anonymity (non-homogeneous generalisation), which promises
to decrease information-loss. Meanwhile, Tassa et al. [168] suggest reducing the
information loss that is caused by generalising the database entries with k-
concealment. Both contributions, however, deteriorate the NP-hardness in the
field of high-dimensional application fields. Additionally, heuristic approxima-
tion methods like k-optimize have been introduced [11], offering an accelerated
computation runtime with the effect of reduced accuracy, and therefore lim-
ited privacy guarantees. An in-depth review, categorisation and guidelines for
selecting generalisation algorithm have been published by Fredj et al. [67].

For syntactic data anonymisation, optimal and holistic approaches guaranteeing
k-anonymity have been proven to be an NP-hard problem [112]. Consequently,
scaling, particularly generalisation and perturbation in high-dimensional, results
in an impractical runtime [137, 140] and high-information loss, thereby rendering
the data useless for data analytics. All variants of k-anonymity algorithms can
only use heuristics to achieve better approximations to perfect privacy, but not
perfect privacy [10].

2.2 Semantic Data Anonymisation & Differential Privacy

In a bid to re-define the notion of privacy not merely as a process of syntacti-
cally transforming datasets but also to consider both the statistical distributions
of data values and the semantic meanings drawn from linking (defining pat-
terns) between data points are summarised as semantic data anonymisation ap-
proaches. By removing strong links between the data and an individual, the data
veracity is altered. This is typically achieved either by noise injection, permuta-
tion, or some statistical shifting [49, 82]. Such algorithms are also known under
the umbrella of differential privacy, and their statistical methods are highly op-
timised for pre-defined use cases and bulk data processing [13, 51, 73, 82, 103].
For instance, in differential privacy, this is done by determining at the runtime
of a query how many noise injections to add to the resulting dataset to en-
sure anonymity in each case [49]. Differential privacy also uses the exponential
mechanism to release statistical information about a dataset without revealing
private details of individual data entries [110]. Furthermore, the Laplace mech-
anism for perturbation supports statistical shifting in differential privacy by
employing controlled random distribution sensitive noise additions [54, 91]. It
is worth noting here that the discretised version [73, 103] is known as a matrix
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mechanism because both sensitive attributes and quasi-identifiers are evalu-
ated on a per-row basis during anonymisation [97]. Since these anonymisation
are runtime and use case-specific, the anonymisation processing is postponed to
query runtime, thereby increases the risk of data leakage. Examples of such data
leaks include the vulnerabilities created by colluding users as depicted by Kifer
et al. [86]. Leoni introduces “non-interactive” differential privacy by applying
the statistical transformations a priori to user queries [96]. A further issue that
differential privacy has come up against is that applying differential privacy to
large datasets is computationally infeasible (impractical). That differential pri-
vacy is also NP-hard [55]. Experts currently still discuss whether approximate
differential privacy algorithms satisfy strong privacy guarantees. Under certain
circumstances, a single data record could be linked back to its owner through
an arbitrary family of attribute sets [61].

These insights lead to an unresolved problem. The anonymisation of a large
dataset as either approximate approaches potentially leaves data inferences that
can be used to de-anonymise individuals or their exact counterparts result in
exponentially increasing runtime due to their complexity.

In addition to the previous summary of very recent contributions, Dwork et al.
[50, 53] and Xiong et al. [189] offer an in-depth survey of the previous work. Also,
Dankbar et al. presented a thorough review of current literature on differential
privacy. They further highlighted significant general limitations, including the
theoretical nature of the privacy parameter constraining the ability to quantify
the level of anonymisation that would be guaranteed to patients [37, 38]. Ji et
al. offered insights into the interplay between machine learning and differential
privacy [83]. Li et al. focus on empirical accuracy performances of algorithms and
semantic meanings of differential privacy to explain both its strong guarantees
and limitations [100].

For large datasets, semantic data anonymisation approaches, including differ-
ential privacy, have been shown to be NP-hard [55]. Applying them to exten-
sive high-dimensional data makes them computationally infeasible (impractical
performance-wise) given their runtime and use case-specific nature.

2.3 Homomorphic Encryption

The field of cryptography addressed privacy concerns as well. Homomorphic
encryption allows actors to perform basic algebraic calculations on encrypted
data without decrypting it first [150]. Fontaine et al. offered an overview of
state-of-the-art homomorphic encryption schemes with an in-depth discussion
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of their parameters, performances and security issues. [65]. Fully homomorphic
encryption (FHE) that improves the efficiency of secure multi-party computa-
tion has been presented by Gentry et al. [71]. Acar et al. picked up demonstrated
performance challenges on fully homomorphic encryption (FHE) for practical
usage and offered further details on important FHE pillars in their survey, in-
cluding well-known Partially Homomorphic Encryption (PHE) and Somewhat
Homomorphic Encryption (SWHE) [3]. Damgård et al. proposed a general multi-
party computation protocol that is secure against an active adversary corrup-
tion and offers a complexity linear to the number of parties [35]. Parmar et al.
conducted a case study on various principles and properties of homomorphic
algorithms [131] using asymmetric key systems (RSA, ElGamal, Paillier, and
more). Tebaa et al. explored the setup of hybrid cluster setups and securely
sharing data between on-premise servers and cloud computing providers with-
out the need of decryption intending to preserve privacy [170]. Naehrig et al. ex-
hibited several real-world applications in the medical, financial and advertising
field and evaluated their optimised homomorphic encryption implementation
[116]. Lehmann recently presented a system, ScrambleDB, that utilises a ho-
momorphic encryption scheme for establishing a pseudonymisation-as-a-service
through multi-party computation [95]. Other examples of homomorphic encryp-
tion scheme include, but are not limited to the sector of medical diagnosis by
Carpov et al. [24], or medical processing by Kocabas et al. [87], anomaly de-
tection by Alabdulatif et al. [5], IoT by Song et al. [161], smart grids by Bos
et al. [19], and energy market by Garcia et al. [70]. Also, homomorphic encryp-
tion has been explored by Barni et al. as possibility for securing private data
in biometric systems [9]. Similar thoughts have been deepened by Salem et al.
to protect biometrical fingerprinting mechanisms as we have in modern smart-
phones against private data exposure [156]. Erkin et al. presented a method to
securely generate recommendations in recommender systems with multiple val-
ues packed in one encryption to protect private data against service providers
while preserving the functionality of the recommender engine [60]. Wang et al.
published a technical patent on how homomorphic encryption can offer privacy-
preserving data aggregation [179]. Yet, Kocabas et al. correctly mentioned the
initial challenges of acquiring data access for any homomorphic scheme and
the implied performance- and storage-related problems like in the use case of
long-term patient ECG-data monitoring [88].

A fully homomorphic scheme offers an interesting perspective of securely sharing
and conducting algebraic operations on data without private data exposure
risk. Yet, the issue of data acquisition and especially performance problems in
applying such cryptographic method to extensive high-dimensional data in very



10 Chapter 2. Related Work

short periods are unresolved. Also, a fully homomorphic scheme currently only
supports essential operation on numeric data or does not guarantee the absence
of a quasi-identifier upon data publishing.

2.4 Unique Column Combinations

In data profiling, unique column combinations (UCC) are attribute combina-
tions that form a unique identifier for the given dataset (table). Discovering
these unique column combinations (UCC) is a fundamental research problem.

Abedjan et al. [2] summarised and formalised in their work the latest advances in
the discovery of UCCs. Building on their contribution, Heise et al. [80] presented
a scalable discovery of unique column combinations based on parallelisation and
the scale-out principle. The same has been done by Feldmann [62]. Han et al.
[78] extend on similar thoughts and utilise Hadoop with its MapReduce tech-
nique [43] for a distributed computing setup. A comparison of different discovery
schemes has been presented by Papenbrock et al. [129]. At the same time, Papen-
brock et al. offered a hybrid combination of fast approximation techniques and
efficient validation techniques for UCCs [129]. Ruiz et al. recently contributed a
patent and summarised various datasets profiling tools, methods, and systems,
including efficient UCC discovery [153]. In our work, we will later formalise that
the search for quasi-identifiers (QID) is a special case for discovering unique
column combinations.

According to Bläsius et al. [16], the search for UCC can be enclosed in a circular
dependency to the Hitting-Set problem as a family of W[2]-complete problems
[16, 47, 48]. In the worst case, this implies at least a super polynomial runtime,
making its applicability to large high-dimensional data currently impractical.

2.5 High-Dimensional Data

Given previous developments in syntactic and semantic data anonymisation,
further work has reverted to hybrid approaches that combine elements from the
initial syntactic data anonymisation and the semantic data anonymisation ap-
proaches and offer abstractions from the raw dataset through aggregations or
separations. In attribute compartmentation [137, 140], for instance, privacy is
guaranteed by drawing on the concept of maximum partial unique column com-
binations (mpUCC) from the data profiling domain to guarantee privacy by sep-
arating attributes that form quasi-identifiers (mpUCCs). Attribute value combi-
nations that uniquely identify individuals in the dataset are also known as quasi-
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identifiers (QID). Eliminating those QIDs also prevents the re-identification at-
tack of combining QIDs with auxiliary data to draw conclusions and derive
private information [184, 185]. Real-world instances of such private data expo-
sure can be found in cases of re-identification of US Governor William Weld’s
medical information [10], the exposure of tens of thousands of private health
records from a large clinical laboratory network included patient names, dates
of birth, social security numbers, lab results, and diagnostics data [39] and the
de-anonymisation of private search history resulting in a class-action lawsuit
against AOL [8]. But discovering quasi-identifiers is not easy.

High-dimensional data are characterised by their large number of rows and
columns. While the increasing number of rows is often not a substantial is-
sue, the large number of columns can quickly lead to state-space explosions
for enumeration problems [15, 160]. As derived from all previous subsections,
the different disciplinary methods like data profiling and mining, anonymisation
processing and differential privacy sooner or later run into NP-hard problems
to achieving privacy. The larger the dataset dimensions are, the quicker a com-
putational infeasibility is reached.

A few instances are addressing high-dimensional data for anonymisation in
detail. Adaptations based on a Secure Multi-party Computing (SMC) proto-
col have been proposed by Kohlmayer et al. as a flexible approach on top
of k-anonymity, l-diversity and t-closeness as well as heuristic optimisation to
anonymise distributed and separated data silos in the medical field [89]. Fur-
thermore, to address scalability challenges of large-scale high-dimensional dis-
tributed anonymisation that emerge in the healthcare industry, Mohammed et
al. [113] propose LKC-privacy to achieve privacy in both centralised and dis-
tributed scenarios promising scalability for anonymising large datasets. LKC-
privacy works on the premise that acquiring background knowledge is nontrivial
and therefore limits the length of quasi-identifier tuples to a pre-defined size.
While one can argue about this approach’s practically, the main concern is that
LKC-privacy does not ensure the complete absence of privacy-violating identi-
fiers due to QID candidate tuple size limitations. Other works use a MapReduce
technique based on the Hadoop distributed file system (HDFS) to boost com-
putation capacity as introduced by Zhang et al. [194]. Yet, the NP-hard nature
quickly outperforms the economic scalability possibilities. Handling large num-
bers of entities describing attributes (hundreds of attributes) in a performance
efficient and privacy-preserving manner remains to be addressed.

Similar to Manolis Terrovitis [171] work, there are two reasons why distin-
guishing between sensitive and non-sensitive attributes is dangerous. First, by
observation of de-anonymisation attacks (homogeneity, similarity, background
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knowledge) we note that sensitive attributes alone are not the only basis for
their success. Second, defining an exhaustive set of sensitive and non-sensitive
attributes is impractical for high dimensional datasets where user behaviours
exhibit unique patterns that increase with the volumes of data collected on the
individual.

To alleviate the complexity of the compartmentation problem [137, 140], Podlesny
et al. proposed modelling the attribute linkage problem for creating privacy-
preserving data silos as a Bayesian network [139, 141]. Training a Bayesian
network is NP-hard as Chickering et al. [28] had demonstrated. The same NP-
hardness applies to the problems of exact inference learning [12, 121] and approx-
imate inference learning [34]. Yet, recent contributions demonstrate that com-
pressing the graph based on attribute linkage heuristics allows a performance-
scalable data processing even on large datasets [141].

Clifton et al. offered a weighted discussion on remaining issues in both syntactic
and semantic data anonymisation algorithms, their advantage, belongings and
summarised critics [31]. As part of their work, Clifton et al. highlight that the
difference in various syntactic and semantic anonymisation origin models is less
dramatic than previously thought. Differential privacy often provides the best
empirical privacy for a fixed (empirical) utility level, but it might be prefer-
able to adopt syntactic anonymity models for more accurate answers. Yet, both
archetypes will suffer issues for large-scale data environments.

Regardless of its origin, data anonymisation has not been successfully applied
to large-scale, multi-attribute, high-dimensional datasets in reasonable runtime
with economic resources. Each approach suffers significant complexity con-
straints for large amounts of describing attributes (columns), leading to either
massive information-loss or computation needs and therefore runtime or suffers
privacy assurances through approximation approaches.

2.6 Quasi-Identifier Discovery

Based on Sweeneys work on the family of k-anonymity techniques [157, 166,
167], Byun et al. addressed the absence of diversity through equivalence classes
and their information-loss by transforming the k-anonymity problem to a k-
member clustering problem [23]. While Byun et al. approach work for numeric
and categorical data with distance and cost functions, it does not guarantee
approximation factors. The projection of quasi-identifier similarity for clustering
purposes remains data-specific.
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Xiao et al. presented anatomy [188], a novel technique that directly releases all
quasi-identifiers and sensitive values in two separate tables. This, in combination
with grouping activities, shall offer the capturing of correlation and minimise
the error of reconstruction. Koot et al. use Kullback-Leibler distance to mea-
sure heterogeneity as the probability for each member of a group to quantify
anonymity by a score outlining group members risk to be uniquely identified us-
ing a quasi-identifier [90]. Zhang et al. explored the scalability opportunities of
horizontal scaling in cloud computing settings, combined with a quasi-identifier
index-based approach to expedite data querying on large datasets. [193]

LeFevre et al. offered an approach utilising group-by-and-count methods to
search for quasi-identifiers [93, 94]. Their experiments show promising results for
small datasets, but relying on the minimal form does only reduce complexity
on average by half, so n − 1. Fung et al. [69] extended the previously men-
tioned LKC-privacy and introduced an interesting architecture utilising multi-
party computation, that works with the assumption of a maximum number of
values that an adversary’s prior knowledge might have. Yet, experiments are
conducted on small n and its practical scalability remains unclear.

A different perspective on transactional, or event-based data is offered by Xu et
al. [190, 191], who differentiate between private and non-private items and offer
first experiments that are limited to very small datasets.

Narayanan et al. [118] demonstrated statistical de-anonymisation attacks on
high-dimensional datasets for re-identifying individuals in the Netflix Prize
dataset with tolerance for some mistakes in the adversary’s background knowl-
edge. Narayanan et al. [119] elaborated on the PII fallacy of the HIPAAs
privacy rule when removing designated attributes against additional person-
ally identifiable information (PII), as the elimination of all quasi-identifiers is
not guaranteed. Soria-Comas et al. summarised the issue of re-linkage through
quasi-identifiers and discussed data governance aspects addressing user consent,
purpose limitation, transparency, individual rights of access, rectification and
erasure [162]. Further, Soria-Comas et al. work raised the need for new privacy
models designed from scratch with big data requirements in mind like continuous
and massive data collected from multiple source systems forming multi-attribute
and high-dimensional datasets.

As parallelisation itself is not completely new, Braghin et al. have contributed
an optimised quasi-identifier scheme that utilises parallelisation for efficient QID
discovery [20]. Given its detailed describing, and promising results, Braghin et
al.’s work will serve as a comparison baseline for our experiments.



14 Chapter 2. Related Work

Previous work has shared insights into the parameterized complexity of the
k-anonymity family. In 2011, Bonizzoni et al. showed that k-anonymity is W[1]-
hard and admits a fixed parameter algorithm [18]. Around the same time, Dondi
et al. presented that l-diversity is W[1]-hard [46]. Also, t-closeness proved to
be FPT as well [101]. A precise classification of the quasi-identifier search as
prerequisite remains open, while the majority of existing quasi-identifier discov-
ery approaches have been demonstrated during experiments mainly on small
datasets.

2.7 Related Fields

Further work on data transformation for anonymity appears in the data mining
field, where a variety of work exists on addressing privacy-related constraints in
publishing anonymised datasets. Some of this work includes but is not limited
to regression models [64], clustering [175], and naive Bayes classification [176].
These methods are strongly focused on data mining tasks in specific application
areas with well-defined privacy models and constraints. This is the case par-
ticularly when merging various distributed data sets to ensure privacy in each
partition [40, 41, 117, 164, 178, 192].

2.8 Demarcation

We note from this discussion that a new perspective on data anonymisation
operations is needed to handle the archetype of highly sparsely populated, multi-
attribute, high-dimensional data.

Statistical and semantic data anonymisation approaches under the umbrella of
differential privacy can offer a precise definition of privacy and a formal frame-
work for determining when privacy is impossible. Yet, these approaches are
bound to use-case sensitive settings, limited in their scope of applicability to
large datasets and are NP-hard [55]. Previous complexity analysis for selected
semantic techniques confirms the same objective [1, 56, 174]. Syntactic data
anonymisation has been proven to be NP-hard as well [10, 112], while recent
work offers perspectives to circumvent the NP-hardness issue and handle large
datasets. Nevertheless, guaranteeing anonymity through the absence of any per-
sonally identifiable information remains an issue [140].

The anonymisation problem’s NP-hard nature is an essential issue in considering
the compliance challenges faced by data privacy and data protection practition-
ers in the face of recent privacy regulations like the EU General Data Protection
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Regulation and the US California Consumer Privacy Act. In essence, the impli-
cation is that based on the current state of the art and the growing data dimen-
sions, achieving perfect privacy is not possible, but rather approximately perfect
privacy is. Given the contemporary legal interpretation of GDPR, self-contained
anonymity postulates guarantees that no family of attribute sets uniquely iden-
tifies one original entity [32, 61, 137].

A new perspective on data anonymisation operations is needed to handle highly
sparsely populated, multi-attribute, high-dimensional data and guarantee the
absence of quasi-identifiers. This work will contribute novel methods and data
processing sequences to transform datasets with the same characteristics for the
problem of finding quasi-identifiers and data inferences that can violate privacy
guarantees.

In the subsequent sections, we derive from the previous partial anonymisation
problems and deduce why data anonymisation is an underestimated problem
[126] by demonstrating its classification as W[2]-complete problem [16] which is
fixed-parameter tractable through its combinatorial nature [84].





3

The Quasi-Identifier Search Problem

The discovery of quasi-identifiers is an integral part of the anonymisation
processing to ensure privacy and, for various attacks, vectors aiming at de-
anonymising published datasets. Hereunto, such processing aims to find a rare
combination of attributes that can identify unique data records.

3.1 Formalising the Nature of Quasi-Identifiers

Unique attribute combinations that we refer to as quasi-identifiers (QID) are
multiple attribute values that combine an indirect identifier. Table 3.1 illus-
trates an example, where the attribute values cortisol and female are unique in
the given data snapshot and therefore identify the second row. Reversing the
meaning, with the knowledge of these two characteristics, we can derive that
the same person has been diagnosed with COVID and received cortisol (see
Table 3.1).

Table 3.1: Sample health dataset

Gender ZIP Drug Disease

male 10001 remdesivir COVID

female 64123 cortisol COVID

male 60617 cortisol COVID

male 60617 remdesivir COVID

To formalise such characteristic, we start by defining a feature:

Definition 1. Feature
A feature f is a function f : E −→ A mapping the set of entities E =
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{e1, . . . , em} to a set A of all possible realisations of an attribute or attribute
combination forming new single attributes. Additionally, F = {f1, ..., fn} de-
notes a feature set.

Individual features, in fact, can be used as standalone identifiers:

Definition 2. Standalone identifiers
Let F be a set of features F = {f1, ..., fn}, where each feature is a function fi :
E −→ A mapping the set of entities E = {e1, ..., em} to a set A of realisations
of fi. A feature fi is called a standalone identifier, if the function fi is injective,
i.e. for all ej , ek ∈ E : fi(ej) = fi(ek) =⇒ ej = ek.

Most prominent examples of standalone identifiers are user IDs, social security
numbers, invoice or document IDs, but also telephone numbers or robust pass-
word selections, which by themselves are unique across a given, large enough
dataset. The US Health Insurance Portability and Accountability Act does spec-
ify a list of attributes that can be used as standalone identifiers in healthcare
settings (HIPAA) [124].

Building on this, the combination of features form candidates for quasi-identifier.
A collection of any (not selective) attributes (columns) that uniquely identifies
at least one entity (row) will be considered as quasi-identifiers (QID). More
formally, we specify:

Definition 3. Quasi-identifier
Let F = {f1, .., fn} be a set of all features and B := P(F ) = {B1, .., Bk} its
power set, i.e. the set of all possible feature combinations.
A set of selected features Bi ∈ B is called a quasi-identifier, if Bi identifies at
least one entity uniquely and all features fj ∈ Bi are not standalone identifiers.

For several reasons, this work, like Manolis Terrovitis et al. [171], does not dif-
ferentiate between sensitive and non-sensitive attributes. First, as one has seen
in previous de-anonymisation attacks (background information, homogeneity,
similarity, etc. ), sensitive attributes will not be the only success factor in these
attacks. Second, for high-dimensional datasets, describing an exhaustive collec-
tion of sensitive and non-sensitive attributes is impractical. User behaviour has
distinct patterns that grow in proportion to the amount of data collected on the
person. For instance, in medical datasets, behaviour patterns like medication
adherence and drug intake patterns increase in uniqueness as the data points
collected grow to several hundred attributes per patient.
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Example 1. Imagine a dataset describing medical records as delineated in Ta-
ble 3.2. While it is self-explanatory that a patient ID or its social security num-
bers (SSN) qualify as a standalone identifier, the combination of gender, birth-
day and ZIP can serve as quasi-identifiers to identify selective patient records
uniquely. The restriction to selective patient records is important in this con-
text since most patient records might be identifiable, while that does not have
to apply to all given records.

Table 3.2: Sample health dataset with (Q)IDs

Patient ID SSN Gender DOB ZIP Drug Disease

1 433-46-1872 male 2020-11-23 60617 remdesivir COVID

2 551-31-8713 female 2020-11-23 64123 cortisol COVID

3 624-20-5414 male 2020-11-23 60617 cortisol COVID

4 513-72-4512 male 2020-11-23 10001 remdesivir COVID

.. .. .. .. .. .. ..

Similar to this given an example, Sweeney et al. demonstrated based on the
US census from 1990 that 87% of the entire US population (216 million out of
248 million) are uniquely identifiable through the combination of their gender,
birthday, and ZIP [165]. We, therefore, draw on the definition of a Feature,
to define Self-Contained Anonymity which captures the idea of anonymity of
individual records or a dataset, as follows:

Definition 4. Self-contained Anonymity
Let E be a set of entities. A snapshot S of E is said to be self-containing anony-
mous or sanitised, if no family F = {F1, .., Fm} of feature sets uniquely identifies
one original entity or row.

For means of realising such self-contained anonymity, all instances of quasi-
identifier must be found and defused or removed. To do so, we define the dis-
covery of quasi-identifiers as follows:

Definition 5. Find QID-problem
Consider a dataset D and its features F = {f1, ..., fn}. For every feature com-
bination Bi ∈ B = P(F ), determine if Bi is a Quasi-identifier.

In practical words, it implies that there remains no combination of attributes
in the sanitised data snapshot that can be used to re-identify an individual
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through cross-linking that potentially exposes private or personally identifiable
information (PII). Following the European Commission’s opinion on anonymis-
ation techniques [61], this definition therefore also satisfies both our highest
ethical standards and current privacy legislation, including EU GDPR [32] and
US California Consumer Privacy Act [75].

3.2 QIDs and their Counterpart of mpUCCs

In the field of data profiling, unique column combinations (UCCs) describe
a similar behaviour to the previous example in Tables 3.1 and 3.2. Here, an
attribute combination serves as unique column combinations (UCC) if these
attributes uniquely identify all records in a table. In the privacy context, it
is already sufficient to link an individual record instead of all. Therefore our
context of cortisol and female in Table 3.1 is a subset of UCCs, also known
as maximal partial unique column combinations (mpUCCs). Maximal partiality
refers to the condition that a UCC serves the minimal subset of records (per
row) and is maximal partial to the entire record population. According to this,
the search for quasi-identifiers is equivalent to the discovery of mpUCCs.

It is also worth looking into these close-by research fields as there are often
synergies in their research activities. From the context of UCCs, we borrow the
findings of the minimal form by formally stating:

Definition 6. Minimal Quasi-Identifier
A quasi-identifier Bi ∈ P(F ) is called minimal if there is no combination of
features Bj ⊂ Bi that is also a quasi-identifier.

The formalised existence of minimal quasi-identifiers (mQIDs) implies that any
superset of an already QID is a QID itself without the need of verifying.

Example 2. Continuing with Table 3.2 previous example, where the attribute
combination of gender, birthday, and ZIP code has been used as a quasi-
identifier. Given a working understanding of minimal quasi-identifiers (mQIDs),
any additional attribute added to gender, birthday, or ZIP will remain a QID
and reveal the same private data. As a result, the patient’s SSN (551-31-8713)
or disease (COVID) will be revealed by {gender, DOB, ZIP, drug}.

Besides the knowledge of the minimal form with UCCs, data profiling offers a
variety of formalism, which we will use in the next section to determine the
(parameterised) complexity of the “Find-QID” problem.
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3.3 The Complexity of the Quasi-Identifier Search

The previous sections outlined the importance of discovering quasi-identifiers
(QID) in a given dataset to avoid private data exposure by all means. These
attribute combinations potentially leaking information about individuals can
adopt any length and any composition of all available describing attributes.

To determine all QIDs, its search is quite complex as all potential candidates
need to be considered. Hence, achieving the creation of those QID candidates,
a potential algorithmic solution needs to generate all attribute combinations.
Generally, the number of combinations equals:

C(n, r) =
(

n

r

)
= n!

(r!(n − r)!) (3.1)

where n is the population of attributes and r the subset of n.

Considering that quasi-identifier tuples can have any length with more than one
element, r must equal all potential lengths of subsets of attributes. We express
this using the following equation:

C2(n) =
n∑

r=1

(
n

r

)
=

n∑
r=1

n!
(r!(n − r)!) = 2n − 1 (3.2)

This implies that for a dataset with n describing attributes, nearly 2n attribute
combinations need to be generated and evaluated to ensure no QID remains.
Any solution which neglects candidates from the search room ultimately risks
exposing private information.

To quantify the complexity and formally state the Find-QID problem, we will
introduce the theorem of parameterised complexity and utilise similarities of the
Find-QID to UCC to state a polynomial reduction.

3.3.1 Theorem of Parameterised Complexity

According to Bläsius et al. [16], if I is an instance of a decision problem and k ∈
N+ is a parameter, the pair (I, k) expresses then an instance of the corresponding
parameterised problem. Further, the running time of an algorithm is calculated,
taking into account both the input size |I| and the parameter k. When a given
instance can be solved in O(f(k) × p(|I|)), where p is a polynomial and f is an
arbitrary computable function, the problem is fixed-parameter tractable (FPT).
Consequently, the problem belongs to the complexity class FPT. In addition,
the algorithm is said to run in FPT-time.
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Let us say there are two parameterised problems, P and P ′. An FPT-time
algorithm that transfers an instance (I, k) of P to an equivalent instance (I ′, k′)
of P ′, with the parameter k′ depending purely on the value of k (rather than
|I|), is known as a parameterised reduction from P to P ′. It’s worth noting
that reducing a (hypothetical) FPT-algorithm for P ′ to an FPT-algorithm for P

yields an FPT-algorithm for P . As a result, when their parameterised complexity
is considered, P is at most as difficult as P ′, which we denote as P ≤F P T P ′. We
assume that P and P ′ are FPT-equivalent problems if P ′ ≤F P T P still holds
[16, 47, 48].

The parameterised reduction produces a hierarchy of complexity groups, known
as the W-hierarchy, with each class defining a complete problem. In propositional
logic, we use Boolean formulas to describe the desired family of problems. Let
φ be an example of such a formula. If exactly k variables are set to true in this
assignment, it is a satisfying truth assignment for φ with Hamming weight k. If
it can be written as repetitive conjunction of disjunctions of literals with t − 1
alternations between conjunction and disjunction, the formula φ is t-normalised.
Observe that a Boolean formula is 2-normalised if it is in conjunctive Normal
Form (CNF) and 3-normalised if it is a conjunction of subformulas in Disjunctive
Normal Form (DNF).

The problem Weighted t-Normalised Satisfiability (WtNS) is to decide for a
given t-normalised formula φ and a positive integer k whether φ has a weight k

satisfying assignment. For any t ≥ 1, a parameterised problem P is said to be
in the complexity class W[t] if P ≤F P T WtNS.

The classes FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] form an ascending hierarchy, with all
inclusions considered to be proper, but this remains unproven [47]. The lower a
problem ranks in the W-hierarchy, the higher we consider the chances of finding
an FPT-algorithm to solve it.

3.3.2 Previous Parameterised Complexity of Unique Column
Combinations

Sets of attributes (columns) that qualify as identifiers for a fixed given data
set are known as unique column combinations (UCCs). Bläsius et al. derived
that detecting key candidates like UCCs or functional dependencies in a given
data set is, in terms of its parameterised complexity, in general, as hard as
finding a Hitting-Set [16]. This holds when the necessary parameters k denote
the upper bound for the size of the key candidate, the functional dependency,
and the Hitting-Set, respectively. In the following, the problem of determining
if a given data set contains a key candidate with a size of no more than k, where
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k is appropriately chosen from the positive natural numbers, is referred to as
“Unique”. Since the Hitting-Set problem and weighted 2-normalised satisfiability
are both NP-complete and W[2]-complete, the following chain was discovered
to be valid: Hitting-Set, Unique, and weighted 2-normalised satisfiability. Thus,
all problems belong to the same equivalence class [16]. The derivation of the
chain above from a sequence of reductions defines all problems as belonging to
the same parameterised complexity equivalence class.

Since data privacy law aims to protect each individual record, i.e. row of a
data set, even column combinations that can only be used to define a single
entry must be pre-processed. As a result, we move on to studying the latter by
formally presenting them as quasi-identifiers.

3.3.3 Parameterised Complexity of the Quasi-Identifier Search

In the previous subsection, we explained that discovering UCCs is a W[2]-
complete problem and that syntactic data anonymisation approaches are NP-
hard. A parameterised complexity classification permits classes beyond para-NP,
especially for multivariate algorithms.

In typical circumstances, the classification is based on the number of input
bits, but additional in- or output parameters necessitate a finer scale. Following
the parametric method, problems can be reduced to propositional satisfiability
(SAT), for which a selection of exceptionally efficient and resilient SAT solutions
are available [14, 30, 74, 107, 108, 155].

Making the loop and attempting to construct an attribute of a database that
violates privacy assurances, we discover that removing quasi-identifiers satisfies
the anonymity criterion (see Definition 4). Contrariwise, the presence of even a
single quasi-identifier in a database allows at least one record to be linked to
its individual, allowing for the achievement of a shared goal in data profiling.
Thus, eliminating quasi-identifiers is both required and sufficient.

To verify if any arbitrary set of features of size r satisfies the QID Definition 5
in a particular context, one can assess all possible attribute combinations of size
r in an exact fashion (not probabilistic). That leads to

C(n, r) =
(

n

r

)
= n!

(r!(n − r)!) (3.3)

tuple candidates where n is the total number of features and r the size of the
subset of features with r to be chosen such that r ∈ [n] := {1, ..., n}. Because
quasi-identifiers can range in size from 1 to n, the total number of feature
combination serving as quasi-identifier candidates sums up to:
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Fig. 3.1: Candidates and mpmUCCs

C2(n) =
n∑

r=1

(
n

r

)
=

n∑
r=1

n!
(r!(n − r)!) = 2n − 1. (3.4)

As there are around 2n conceivable column combinations, the number of at-
tribute combinations grows exponentially in n (see Figure 3.1a & 3.1b), neces-
sitating a determination of whether they serve as quasi-identifiers or not.

By arranging the binomial coefficients into Pascal’s triangle, such quasi-identifier
candidates’ combination distribution and symmetry can be depicted. The ex-
ponent value corresponds to each stage of the triangle (see Figure 3.2). This
Pascal’s triangle shows the exact size of tuples for each hierarchy layer of the
combination tree, provided the number of levels r. For a four-column data set
(r = 4), the first layer has one element, the second layer has four, the third layer
has six, the fourth layer has four, and the final layer has one element. The real
search tree (see Figure 3.2) then delineates this symmetry.

A reduction of layers and combinations, i.e. through their minimal form (see
Definition 6) is possible. This, however, also results in exponential growth.

In Section 3.2, we highlighted equivalence of quasi-identifiers to maximal partial
unique column combinations (mpUCCs) in the field of data profiling. These, in
turn, have minimal forms, known as mpmUCCs. Every attribute combination
that serves as an identifier for any entity remains an identifier when additional
attributes are introduced to it [129], i.e. the attribute tuple of mpmUCCs is
contained in the tuple of mpUCCs:

mpmUCC ⊆ mpUCC. (3.5)

Further, the following inclusion relation exists:

mUCC ⊆ UCC ⊆ mpUCC (3.6)
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Fig. 3.2: Pascal triangle representation of the tuple sizes

A B C D

AC AD AB BC BD CD

ABC ADC ABD BCD

ABCD

Fig. 3.3: Candidate search tree - red lines highlight obsolete UCCs covered by
their minimal sibling (BC and CD)

This is true because every UCC is a mpUCC, but not every mpUCC can qualify
as a UCC. It may only be able to identify a portion of the data set’s entries
uniquely. This concludes with

mUCC ⊆ mpmUCC ⊆ mpUCC (3.7)

for which applies UCC ⊈ mpmUCC and mpmUCC ⊈ UCC. Finally, detecting
and eliminating the minimal forms is sufficient and algorithmically more effi-
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Table 3.3: Examples for inclusion affiliations of UCCs and mpUCCs

(a) for UCC ⊈ mpmUCC

a b

1 1

2 1

3 1

4 1

(b) for mpmUCC ⊈ UCC

a b

1 0

2 1

3 1

4 1

cient, and empirical studies should produce significantly better results than the
worst-case analysis performed.

Assume we have an algorithm that explores all potential column combinations
with a size no larger than k contained in P(F ) for some fixed parameter k as
described previously. Suppose the number of unique entries discovered while
scanning the rows is also computed and saved at each step. In that case, there
is no substantial contribution to the algorithm’s complexity in terms of running
time to account for.

Because the relation UCC ⊆ mpUCC holds, a run of this method would also
allow us to determine if the issue “Unique” examined by Bläsius et al. in [16]
has a negative or positive answer: If and only if there is a mpUCC of size k that
uniquely identifies all rows in the dataset, there is a UCC in the dataset of size
at most k. From this follows that

mpUCC ≥F P T UCC

where the decision problem is associated with the object of concern; mpUCCs
and UCCs, and respectively, the latter relates to the decision problem “Unique”.

As it is known that the “Unique” (UCC) problem can be reduced to the Hitting
Set

HITTING SET ≤F P T UNIQUE ≤F P T FDfixed ≤F P T FD

and Hitting Set, Unique, and FD are W[2]-complete. Further, a mpUCC and
therefore quasi-identifiers (QID) are by definition a Functional Dependency
(FD). We can therefore derive, that the decision problem mpUCC and therefore
“Find-QID” is W[2]-complete as well. As a result, any algorithmic solution that
depends on detecting mpUCCs to eliminate the latter may be solved efficiently
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for small values of the fixed parameter (n), but in large, high dimension it can-
not. Yet, this is required to fulfil the anonymity requirement from Definition 4.

Other W[2]-complete problems include deciding if a given graph includes a dom-
inant set of size k or solving the “short multi-tape Turing machine acceptance”
problem [81, 111]. Techniques for the Find-QID problem that offer a quicker
worst-case runtime than superpolynomial would, through reduction, provide a
solution to the “Unique” problem of UCC as well.





4

Algorithmic Realisation of the Find-QID
Problem

With the knowledge in mind that the “Find-QID” problem is quite complex and
at least W[2]-complete in its complexity classification, we shift our attention
towards algorithmic realisation and optimisation approaches. To do this, we
start by specifying a rudimentary, exact algorithm that will serve as a benchmark
for further optimisations. Afterwards, a greedy approach will be introduced,
discussed and evaluated.

4.1 The Exact Search Schema

We do not distinguish between sensitive and non-sensitive attributes because
classifications of sensitive and non-sensitive attributes are the primary enabler
for de-anonymisation attacks based on the anonymised dataset’s semantics.
However, we do separate standalone identifiers from attribute combinations,
forming a quasi-identifier like behaviour patterns such as medication adherence
or drug intake pattern uniqueness increases with available data points since they
must be processed differently. Hence, the QID search can be split as well into
two parts. The first objective is to determine all standalone identifiers (see Def-
inition 2); all remaining attributes are evaluated in a second step whether their
combination qualifies as quasi-identifier.

4.1.1 Determining Standalone Identifiers

Following Definition 2, any attribute that can uniquely identify individual data
records may serve as a standalone identifier. Removing these standalone iden-
tifiers reduces the number of attribute combinations needed to be processed af-
terwards for the QID search. The treatment of standalone identifiers to achieve
anonymity typically occurs as debarment or exclusion from the original dataset.
This reduces the information loss, time complexity and ensures data anonymity.
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Occasionally, official guidelines of attributes qualifying as standalone identifiers
exist, like included in the US Health Insurance Portability and Accountability
Act (HIPAA)1. Utilising this metadata is a good starting point, yet, the ambition
is not to rely on static lists rather determining on the fly whether attributes
satisfy the Definition 2.

ò
The US Health Insurance Portability and Accountability Act ex-
plicitly list 18 attributes that are required to be removed. These at-
tributes include but are not limited to email addresses, IP addresses,
geographic details, phone or fax numbers, certificate IDs, URLs, bio-
metric identifiers and basically any unique number or characteristics.
Additionally, a constraint is mentioned that “no actual knowledge
residual information can identify individuals” in the remaining data
[66]. While the former is commonly known as a standalone identifier,
the latter will be referred to as a quasi-identifier. Examples of such
are illustrated in Table 3.2.

What might occur to the reader is the fact that attributes serving as identifiers
correlate with high cardinality. Meaning, an attribute like a genome or password
hashes, which in general is not an identifier, could be an identifier in a given
dataset if it includes a unique value across the dataset and therefore identifies
a single entity with some given genome.

Furthermore, we define cardinality and entropy as follows:

Definition 7. Cardinality
The cardinality c ∈ Q of a column or an attribute is:

c = Number of unique entries
Total number of entries

Definition 8. Entropy (Kullback-Leibler Divergence)
Let p and q denote discrete probability distributions. The Kullback-Leibler diver-
gence or relative entropy e of p with respect to q is:

e =
∑

i

p(i) · log(p(i)
q(i) )

With those metrics in mind, the first algorithmic step consists of iterating over
all individual attributes in linear time and calculating their metric value. An

1 http://www.dhcs.ca.gov/dataandstats/data/Pages/ListofHIPAAIdentifiers.
aspx

http://www.dhcs.ca.gov/dataandstats/data/Pages/ListofHIPAAIdentifiers.aspx
http://www.dhcs.ca.gov/dataandstats/data/Pages/ListofHIPAAIdentifiers.aspx
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initial threshold highly depends on data (size) characteristics. Depending on
the threshold specified, information-loss will be balanced against the second
algorithmic part’s runtime for evaluating attribute combinations (detailed in
Subsection 4.1.2).

This originates to the point that fewer remaining attributes will generate fewer
attribute combination candidates that need to be verified. No bijective linkages
from the dataset to the original entities remain by removing these standalone
identifiers with high cardinality. Certainly, it is still possible to combine several
attributes for re-identification. Therefore, we must identify and remove these
attribute combinations in the following section.

ò
The information-loss during syntactic data anonymisation differs
from the application field and industry sector, as these dimensions
influence the consistency of the underlying dataset. The more at-
tribute diversity exists, and the more describing records (rows), the
more algorithmic opportunities are present to remove data infer-
ences while reducing information-loss. With the opposite extreme,
if only a single describing attribute is present, like a phone num-
ber, the algorithm is limited to alternate its value resulting in larger
information-loss. Industry sectors like (car-) insurance, for instance,
suffer larger information-loss than retail on average based on the
same data population.

4.1.2 Assessing Quasi-Identifiers

Assessing quasi-identifier is similar to finding candidates for a primary key or
(maximal partial) unique column combinations (mpUCC) in the data profiling
field. As previously denoted, unique column combinations (UCC) are tuples of
columns that serve as identifiers across the entire dataset. However, maximal
partial UCC can be understood as identifiers for (at least) one specific row.
This means one searches for the UCC for each specific row (maximal partial).
Papenbrock et al. offer an assessment of efficient algorithms developed for func-
tional dependency discovery [130]. Yet, those are not directly applicable to QID
discovery and require adaptions to the special case of UCCs with a larger com-
plexity.

In that first starting point, the population of attribute combinations serving
as QID candidates need to be generated. This can be a list of tuples, or an
iterable, as long as all combinations of any tuples length are included (see Algo-
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rithm 1). The implementation of generating combinations is available in almost
any modern programming language and well explored so far [27, 132].

Algorithm 1: Pseudocode for generating QID candidates
1 generate QID candidates (df);

Input : df as table of data
Output: List of QID candidates

2 listOfCandidates = initialise an empty list;
3 listOfColumns = retrieve all columns from df ;
4 numberOfColumns = count elements in listOfColumns;
5 for for r in range(2, numberOfColumns) do
6 candidatesForR = generate combinations for listOfColumns with

tuple length r;
7 listOfCandidates += append listOfCandidates with candidatesForR

8 end
9 return listOfCandidates

Neglecting any optimisations like candidate sorting, for now, the second step
involves assessing each candidate. Therefore, the algorithm loops through the
list or iterable and checks if each corresponding candidate fulfils the QID Defi-
nition 5. Algorithm 2 details the procedure. In a dataset given for a designated
attribute tuple as QID candidate, all attribute values are being grouped, and
the appearance of the same attribute values is being counted. If there is at least
one instance where this QID candidate uniquely identifies k rows or less, the
candidate satisfies our previous QID Definition 5. This corresponds to Sweeneys
k-anonymity requirement [167], for k = 2 meaning that at all times, there are
at least a group of two individuals sharing the same data characteristics (non-
bijective).

Utilising known grouping and counting activities for aggregation promise sev-
eral advantages. First, the concept and algorithmic implementation is proven
and easy to understand. Second, various research and optimisation approaches
exist, including caching and sorting techniques summarised and demonstrated
by Mueller et al. [115] and Plattner et al. [134]. Most prominently, group by and
count is available in most common frameworks, libraries or database technolo-
gies, making its usage very practicable without the need for sophisticated or
complex implementation efforts.

Implementing this algorithmic approach, Figure 3.1 delineates the candidate
growth of the “Find-QID” search. The reader will quickly acknowledge that the
processing quickly becomes unfeasible due to its exponential growth. Therefore,
optimisation methods will be addressed in the following sections. Improving pro-



4.2. Optimisation Method: Greedy Approach of Sorting Candidate
Queues 33

Algorithm 2: Evaluating quasi-identifier candidates
1 Assess QID candidates (df);

Input : df as table of data
Output: Boolean of QID candidates

2 listOfCandidates = generate QID candidates for df ;
3 listOfQIDs = initialise an empty list;
4 k = define k-anonymity constraint (e.g. 2);
5 for for candidateTuple in listOfCandidates) do
6 exposedRows = SELECT COUNT(*) FROM df GROUP BY

candidateTuple HAVING COUNT(candidateTuple) < k;
7 representativeCount = count number of exposedRows;
8 if representativeCount > 0 then
9 listOfQIDs += remember candidateTuple as QID and append to

list
10 end
11 end
12 return listOfQIDs

cessing can happen in various dimensions. While earlier we elaborated on reduc-
ing the incoming attribute amount with the side effect of higher information-loss,
Section 4.2 offers greedy processing and a smart queuing to minimise practical
runtime (not worst-case). Further, Section 4.4 discusses engineering options for
parallelised execution.

4.2 Optimisation Method: Greedy Approach of Sorting
Candidate Queues

It is being recognised that preventing private data exposure through the ex-
istence of quasi-identifiers (QID) is W[2]-complete. We observed exponential
nature during the exact processing of all QID candidates in the previous sec-
tion. To counter the runtime growth, a greedy approach will be presented in the
following by sorting the candidate queues efficiently for accelerated processing
results.

4.2.1 Minimal Quasi-Identifiers

In Section 3.2, the minimal form has been introduced. As of Definition 6, when
imaging the Find-QID within a tree structure, the discovery in one branch of
the search tree can be stopped as soon as a minimal quasi-identifier is found
(see Figure 3.3). This is similar to Papenbrock et al.’s [129] approach to handling
maximal partial UCCs. Such processing improves computation time dramati-
cally since all super-sets can be neglected from the candidate queue. Dependent
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on the nature of the dataset, yet first testing reveals that most mpmUCCs ap-
pear in the first third of the search tree, at most in the first half. This implies
a reduction of layers and combinations, i.e. by half for their minimal form, is
possible. However, this still leads to exponential growth due to the symmetry of
the binomial coefficient, which results in

2n

2 = 2n−1 (4.1)

combinations to be processed and evaluated. The binomial coefficients’ symme-
try and combination distribution can be delineated by arranging the binomial
coefficients to form Pascal’s triangle, where each Pascal’s triangle level corre-
sponds to an n value. Figure 3.2 depicts this phenomenon, where the Y-axis
answers to r the number of attribute levels and the x-axis to the tuple sizes.
So, for the search tree illustration from Figure 3.3 with four attributes {a,b,c,d}
the first and last tree-level has one tuple, the second four and the middle six
tuples. We still have exponential growth by reducing the layers and number of
combinations by just considering the minimal form.

4.2.2 Utilising QID Tuple Characteristics

Nonetheless, this example conveyed an important observation as there are struc-
tural similarities in the candidate tuples. When utilising the entropy and cardi-
nality metrics generated in Subsection 4.1.1 to determine the standalone iden-
tifiers, more interesting observations can be made.

Figure 4.1 delineates different metric angles on found quasi-identifiers. As met-
rics, cardinality based features like the sum of their cardinality (see Figure 4.1d),
the mean cardinality (see Figure 4.1a), its mean value (see Figure 4.1c) or the
number of elements per tuple (see Figure 4.1b) are generated. Given the ob-
served distribution of tuple sizes regarding their elements expressed, one may
observe: The more tuples exist, the more we can filter given a static threshold.

This knowledge can be used to implement a greedy approach by sorting the can-
didate queue based on their likelihood of success. If no combination candidates
are left for assessment after filtering

• while the tuple length under examination is incomplete concerning the re-
arranging of the binomial coefficients, or

• while not all tree branches are covered by the already found minimal quasi-
identifier,

one may decrease these thresholds successively. Having found a minimal quasi-
identifier (or mpmUCC), it is crucial to review its direct neighbours. Only if
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Fig. 4.1: Characteristics of mpmUCCs serving as optimised starting point

neither the parent nor sibling neighbour is a (minimal) identifier can exit the
inspection for this branch. After each increment of the tuple size, the QID
candidate queue is iteratively sorted, and super-sets of already identified QIDs
are removed from the queue.

A pseudocode structure for this procedure is depicted in Algorithm 3. Here, we
notice the procedure is exact and not heuristic and performs very well against
all existing approaches. We will show in Figure 4.2 that almost 98.5% of all
attribute combinations can be trustworthy skipped due to the sorted QID can-
didate queue. Through this incremental and iterative procedure, the worst-case
runtime remains. Still, the effective runtime drops significantly, allowing us to
process easily datasets of two-digit entities describing attributes in a few seconds
on common hardware.

To reduce the set of combinations a priori, the clustering of similar columns
based on their relative entropy or cardinality by k-means clustering has been
discussed earlier [79]. By evaluating cluster representatives, the intention is to
project results on other cluster members. However, this does not effectively con-
sider all existing representative combinations regarding possible tuple lengths
and, therefore, does not identify even half of the existing quasi-identifiers. Also,
we kindly denote that creating overlapping groups of columns, where the over-
lapping columns are those with a high entropy or cardinality, does not over-
come this issue because combinations of columns are not being represented in
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Algorithm 3: Prioritisation of quasi-identifier candidates based on their
metrics

1 Prioritise quasi-identifier candidate
(combination, quasiIdentifiers, thresholds);

Input : Array quasiIdentifiers as list of already identified quasi
identifiers,
Set combination as a tuple of attributes forming a candidate,
Dictionary thresholds defining the thresholds for selection

Output: True if the quasi-identifier candidate shall be evaluated,
False if the quasi-identifier can be skipped and neglected

2 // check if combination is a superset of already identified quasi-identifier ;
3 for quasiIdentifier in quasiIdentifiers do
4 if set(combination).issuperset(quasiIdentifier) then
5 return False;
6 end
7 end
8 // filter based on configured thresholds;
9 if MeasureSummedCardinality(combination) <

thresholds[’minCardinalityToBeConsidered’] then
10 return False;
11 end
12 if MeasureMeanCardinality(combination) <

thresholds[’overallMinMeanCardinality’] then
13 return False;
14 end
15 if MeasureMeanCardinality(combination) <

thresholds[’minMeanCardinality’] & length(combination) >
thresholds[’minLengthForMinMeanCardinality’] then

16 return False;
17 end
18 return True;

the groups. In sum, we kindly dissuade against any kind of cluster-based result
projection rather expand on the thought to use data characteristic similarities
for efficient queue sorting.

Optimisation through a greedy approach does promise runtime accelerations.
In the following Section 4.4 we will evaluate engineering tweaks to parallelise
execution and improve runtime.

4.3 Optimisation Method: Parallelisation of the Find-QID

Optimisations can be of structural nature as offered in the previous Section 4.2
through a greedy approach, wherefore the QID tuple characteristics are being
exploited to sort the candidate queue by their likelihood of success. As an alter-
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native, engineering opportunities can also accelerate data processing. A common
scheme for this purpose is parallelisation, where multiple tasks are computed
simultaneously in a multi-core environment.

In the “Find-QID” problem, the computation heavy piece is essentially the iter-
ation across all candidates and their assessment of anonymity satisfaction given
the sheer amount of combinations. To verify the anonymity for a candidate, the
same algorithmic steps are applied as presented in Section 4.1.2. The incremen-
tal nature of all computation activities within the layer (same candidate tuple
length) can be parallelised as their calculation does not depend upon each other.
When pointing the reader’s attention towards Figure 3.3 for a second time, the
levels of attribute combination length are clearly represented. Starting at the
top, the first tuple length is none, then one, two, three, and finally four-element
tuples. As there are no dependencies within a given layer, just in-between parent
and siblings, such nature can be utilised for parallelised task execution. In par-
ticular, each QID candidate within the same level can be parallelised in the best
case considering chunking to reduce process spawn efforts. Incrementing levels
(L) should be done sequentially brings two advantages: First, it avoids the ne-
cessity of checking potentially superfluous candidates which siblings might have
already satisfied the QID requirements. Second, processing candidates with the
length of the same tuple maximises cache hits for the underlying dataset. Yet,
the compute-heavy tasks within a specific level can be parallelised without any
risk of dependencies. And after each increment of L, the pre-selection will be
applied again to filter out supersets of minimal QIDs and significantly reduce
candidates in the next iteration.

Algorithm 2 depicts the original pseudocode, wherein line 5, the combinatoric
most challenging iteration, is specified. Parallelising this loop execution by in-
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Algorithm 4: Evaluating quasi-identifier candidates
1 Assess QID candidates (df);

Input : df as table of data
Output: Boolean of QID candidates

2 listOfCandidates = generate QID candidates for df ;
3 candidatesQueue = create queue and fill with listOfCandidates;
4 listOfQIDs = initialise an empty shared list;
5 k = define k-anonymity constraint (e.g. 2);
6 for for process in pool) do
7 candidateTuple = pop candidate from candidatesQueue queue

exposedRows = SELECT COUNT(*) FROM df GROUP BY
candidateTuple HAVING COUNT(candidateTuple) < k;

8 representativeCount = count number of exposedRows;
9 if representativeCount > 0 then

10 listOfQIDs += append candidateTuple to listOfQIDs
11 end
12 end
13 return listOfQIDs

troducing some queue logic and multiprocessing as specified in Algorithm 4
promises quicker results and pretends a shorter runtime. Multiprocessing comes
with the cost of resource management. In the CPU context, this implies pro-
cess management and spawning, forking a process, its context and memory to
n-times for n-tasks [134]. In the process context hence, a common scheme is to
re-use processes in a process pool. Additionally, sufficient chunking of process
tasks can be implemented, offering processing of batched tasks within an indi-
vidual process instance. As efficient multiprocessing is a well-explored field, the
reader is kindly referred to the latest research [6, 63].

The verification of satisfying the QID Definition 5 remains by utilising a GROUP
BY and COUNT (see Section 4.1.2) as aggregation technique. This way, one
can rely on established and well explored caching and sorting optimisations
discussed by Mueller et al. [115] and Plattner et al. [134].

With the parallelised assessment of QID candidates, the effects are visible
through the flattening in the curve growth for the number of columns below
n < 28 (see Figure 4.2). This asymptote can be stretched and tightened based
on the available cores to execute tasks in parallel. It is fair to assume that
the parallelisation mimics an acceleration of runtime yet is highly limited to
the performing cluster’s available hardware specifications and therefore simply
delays the expected exponential runtime growth to some degree. Indeed, the
distribution of workload links to a different field, namely system scaling.
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ò
There are two key concepts for scaling a system, vertically and hor-
izontally. For vertical scaling, effectively, more hardware is com-
bined on the same motherboard bus (scale-up). This has techni-
cal limitations but can currently be scaled to several hundreds TB
of RAM for instances with lightning-fast data transfers [133, 134]
where the motherboard bus becomes the bottleneck. On the other
side, horizontal scaling goes back to some MapReduce approach. The
workload is broken down and distributed to several working nodes,
and their partial results back combined, assembled and consequently
returned. This is also known as a split-apply-combine strategy [182]
and offers almost infinite scaling capabilities (scale-out) but implies
relatively slow network I/O and significant communication overhead.

The parallelised assessment of QID candidates offers temporary relief of the NP-
hard “Find-QID“ problem. Yet, scaling CPU capacity quickly reaches its limits.
In modern enterprise environments, a few hundred CPU cores are available, as
we will mimic in our experiments (see Appendix B). The utilisation of such
capacities goes along with economic aspects, which do extremely differ on a use
case basis. Hence, purely scaling hardware is not a desired or generally feasible
option. As parallelisation itself is not entirely new, Braghin et al. have published
a parallel QID search scheme which will be used as a baseline for comparison in
the following sections [20].

4.4 Optimisation Method: GPU Accelerated Find-QID
through Vectorisation

One perspective on addressing combinatorial problems is to parallelise their ex-
ecution, as previously discussed. In the domain of data anonymisation, such
parallelisation has been essentially restricted to the number of CPU cores avail-
able in the processing node. By combining hyper-threading and algorithmic
multithreading, various threads can be processed simultaneously, resulting in a
performance boost. Particularly for privacy settings, Nayahi et al. [120] explored
options of horizontal scaling to scale-out calculations with a MapReduce prin-
ciple of divide and conquer large process tasks among many processing nodes
[42]. However, when more nodes are added, the network I/O and infrastructure
requirements increase, limiting the system’s realistic scalability.
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4.4.1 Trends & Concept for GPU Compute

Observing the latest developments with GPU acceleration, a similar methodol-
ogy can be applied for the “Find-QID” problem. Traditionally, graphics process-
ing units (GPU) promise high computations per memory access, high compute
density, high throughput, high latency tolerance combined with deep pipelines
(>100 stages). Yet, GPU memory capacities are still limited, unlike CPU archi-
tectures with large L1-L3 caches (see Illustration 4.4). A consistent decrease in
main memory cost can be observed for CPUs while at the same time its capacity
growths.

Individual CPU cores are fast and savvier than the instruction set of a single
GPU core. The immense parallelism and the sheer number of GPU cores more
than make up for the single-core clock speed differential that limits instruction
sets. Yet, the same decreasing pricing evolution can be observed for GPUs as
well, where Figure 4.3 delineates the rapid price decline per transistor over time.
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Fig. 4.3: Price trends for GPU hardware by USD/transistor

These GPU trends combined promise a huge compute potential for a fraction
of a price with similar CPU capacities. Instead of individual scalar-based com-
pute like with CPUs, GPUs execute vector- or even tensor-based calculations.
Figure 4.5 illustrates these compute differences. Yet, these adjustments in ar-
chitecture require different data processing as well. A traditional L1-L3 cache
hierarchy illustrated in Figure 4.4 becomes obsolete, as GPU cores all operate
on the same memory simultaneously, just on different data subsets. There are,
however, limitations currently on the applicability of GPU usage for computing
besides traditional video rendering. GPU chips promise massive-parallelisation,
but currently, their data I/O is extremely restricted on the bus capacity. Shift-
ing datasets exceeding main memory capacity will not effectively utilise a GPU.
Hence, tasks, where most efforts are on iterative compute on the same or sim-
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ilar data, are desired. Besides the video rendering, the hashing and brute force
scenario like for crypto mining has been proven [44, 169] but also enumeration
problems like the “Find-QID” one fulfils these criteria.
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Fig. 4.4: GPU hardware architecture

As one can not simply execute a CPU-like code base on a GPU, several phases
of pre-processing are necessary. These include:

• (pre-)fetching the designated dataset into main memory
• converting the dataset into a suitable format, for instances Apache Arrow

to accelerate unified memory management between CPU L1-L3 and GPU
memory and minimised data transformation steps

• applying some compressed or mapping technique like dictionary encoding
of attribute values to have a numeric representation

• generating combinations of attribute value tuples and compose vectors

For the next step, one can leverage existing CUDA frameworks to massively
perform the vectorised calculation of the probabilistic appearances after loading
the pre-processed dataset in GPU memory. Section 4.4.2 will detail out the
implementation steps.

4.4.2 Vectorising the Find-QID

For the designated “Find-QID” problem, we noticed a significant growth in
candidates and processing time. This increase worsens for data sets with high-
dimensions. Essentially, two computation intense pieces can be summarised as
the iteration across all candidates given the sheer number of combinations and
their assessment of anonymity satisfaction requiring cross-checking of all at-
tribute values groups. Both instances can be vectorised.

For the latter verification of QID candidates, the same algorithmic steps are
applied as presented in Section 4.1.2. Yet, their implementation slightly differs.
Figure 4.5 illustrates the methodology of vectorisation. Instead of individual
scalar-based compute, where single operations are executed, vector-based cal-
culation calculates multiple (non-overlapping) scalar simultaneously. Originally,
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we used SQL alike operations of GROUP BY and COUNT to compute aggre-
gations of attribute values accordingly to the QID candidate tuples and count
their appearances. The desired equivalent class k is found by grouping the at-
tribute combination candidate and counting the matched rows. We can use
out-of-the-box libraries like the open data science framework cuDF2 because
this basic function of grouping and counting is supported in virtually every uni-
verse. cuDF is a RAPIDS Nvidia initiative that enables GPU acceleration out
of the box. By chunking the entire dataset, the grouping activity is rendered as
a vector operation [123, 128, 158] rather than a scalar one, potentially even on
multi-GPU environments. Each CUDA core is allocated a data subset to operate
on, and their partial results are combined afterwards. With the unified mem-
ory schema data, shifting the data on the motherboard bus between CPU and
GPU becomes the actual bottleneck. The same performance gains are depicted
in Figure 4.6 and will be further detailed in the next Section 4.5.

For the other computation heavy task of enumeration processing, we discussed in
the previous Section 4.3 opportunities to parallelise the workload in a multi-core
environment. Task parallelisation, chunking, caching and sorting all promise an
uplift in compute time. Until now, however, such parallelisation has been effec-
tively limited to CPU cores in the field of data anonymisation. The incremental
nature of all computation activities within layers of the same candidate tu-
ple length offers a natural staircase for parallelisation as their calculation does
not depend upon each other. These candidates within the same step of a tuple
length with size L can also be computed in parallel on a GPU chip. Compute
and memory are shared and distributed across blocks inside each chunk, with
many threads running independently and concurrently (see Figure 4.5).

The implication of both vectorisations will be empirically studied and discussed
in the next Section 4.5.

2 https://github.com/rapidsai/cudf

https://github.com/rapidsai/cudf


4.5. Assessment and Limitations 43

e
x
e
c
u
t
i
o
n
t
i
m
e

(
s
)

0 20 40 60 80 100 120
0

20

40

60

80

100

scalar (CPU)

vector (GPU)

number of columns

Fig. 4.6: Compute difference between scalar and vector calculations

4.5 Assessment and Limitations

Previous optimisation approaches, both algorithmic and engineering, promise
runtime uplifts for the “Find-QID” problem. In the following section, an empir-
ical study shall offer more in-depth insights into the practicability and scalability
of those approaches.

4.5.1 The Dataset

A semi-synthetic dataset was compiled to allow for a reproducible assessment
and the disclosure of raw data samples for comparison. Various sources have
been concatenated, including official government websites, public statistical data
and datasets as part of previous publications to assemble a semi-synthetic health
dataset. A complete list of all attributes is publicly available on github.com [136],
while Appendix A depicts details about the used attributes and their data types.
Naturally, this dataset includes various quasi-identifiers (QIDs), which amount
increases over the number of available describing attributes (see Figure 4.7a).

The variability of our k-anonymity requirement does not significantly alter the
QID amount growth in their high-dimensions. Figure 4.7b illustrates this evo-
lution.

4.5.2 Experimental Hardware

The experiments are conducted on a GPU-accelerated high-performance com-
pute cluster, housing 160 CPU cores (E5-2698 v4), 760GB RAM, and 10x Tesla
V100. Each Nvidia Tesla GPU is equipped with 5120 CUDA cores and offers a
combined Tensor performance of 1120 TFlops. The execution environment for
GPU-related experiments will be restricted to one dedicated CPU core and a
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Fig. 4.7: Dataset characteristics for the experiment

single, dedicated Tesla V100 GPU. For CPU-related experiments, the compute
cluster’s runtime environment is restricted to 10x dedicated cores unless speci-
fied otherwise. Further hardware specifications will be available in Appendix B.

4.5.3 Performance Comparison of the Greedy Approach

As previously adumbrated, Braghin et al.’s work will serve as a baseline for the
QID search scheme of our “Find-QID” problem [20]. In the first step, we will
compare the pure original exact search schema from Subsection 4.1.2. It will
not entirely surprise the reader that the latter depicts worse runtime than the
Braghin et al. baseline as delineated in Figure 4.8. Also, utilising the minimal
QID knowledge from Subsection 4.2.1 offers only smaller improvements. When
using the QID tuple characteristics for greedy processing by rearranging the
QID candidate queue by their likelihood of QID satisfaction as presented in
Subsection 4.2.2, Figure 4.2 shows a promising runtime improvement. We ac-
knowledge that worst-case runtime remains W[2]-complete, but the expected
runtime decreases significantly, especially for multi-attribute settings.
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4.5.4 Performance Comparison of the Parallelised Approach

To benchmark the efficiency uplift of different architectures, Figure 4.10 depicts
the increase in execution time as the number of columns grow. The more de-
scribing attributes are available and require processing, the higher its execution
time. Utilising parallelisation, the exponential nature of growth can be delayed
in both architectures. By increasing available CPU cores, the runtime can be
smoothed a bit (see Figure 4.9). However, because of the GPU’s enormous paral-
lelisation capabilities, the boost in runtime may be sustained even for large-scale
applications (see Figure 4.10). Transfer to GPUs might be detrimental in some
cases, especially in smaller dimensions, due to the initial overhead of memory
shifting across the motherboard bus.
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Varying Number of Records. The size of the rows has been changed from
100k to 1M as part of the experiment. The runtime impact was negligible on
both the CPU and GPU since the combinatorial complexity did not change (see
Figure 4.7a). However, the necessary memory allocation was strongly impacted
by the number of records, and GPU RAM is nowadays restricted to 16GB -
32GB without swapping to traditional main memory.

Varying Number of Attributes. Unlike the rows, the number of attributes
had a significant impact on the runtime. As the number of attributes and
columns increases, so do the combination possibilities and, as a result, the pro-
cessed tuples.
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Figure 4.11 depicts the increase in the number of theoretical attribute combina-
tion candidates that required processing in comparison to the actual QIDs dis-
covered. The exponential character of the growth can be noticed by the reader.

Varying Cluster Sizes. The equivalence class with a cluster size of k follows
k-anonymity in the way that k is the least number of identical data records for
the same attribute value. This means, when k = 2 applies, at least two distinct
rows should have the same subset of attribute values. By adjusting this setting,
the balance between information loss and equivalence class can be weighted.
While the k serves as a privacy metric, the equivalence class simultaneously
enforces the minimal information loss and therefore serves as a balance weight
option. This phenomenon is depicted in Figure 4.7b. The larger the equivalence
class k, the higher the obstacle for attribute combination to qualify as quasi-
identifier as more rows are needed to qualify, and therefore the fewer QIDs in
the same dataset.

GPU-Based Greedy QID Discovery. While the worst-case runtime remains
the same, making wise choices on the starting points of a greedy QID discovery
can have a significant impact. This holds as one can eliminate the search of a
branch after the discovery of the minimal QID. When the first selection of a
QID candidate is already the QID itself, no more processing of this branch is
needed (see Section 3.2). To find the optimal entrance points for such greedy
QID discovery, Figure 4.12 delineates the execution time and ratio of both pre-
processoring and QID discovery activities against the increase in the number of
columns. The pre-processing remains almost the same for increasing data dimen-
sions, while the QID discovery grows with large numbers of attributes (100+)
and rows (1M). This ratio illustrates the overhead in shifting the workload to
GPU and outlines the surplus massive-parallelisation via GPU can contribute to
the “Find-QID” problem for large-scale and high-dimensional datasets. Simulta-
neously, Figure 4.12 also delineates the time needed to validate 2100 = 1.2∗1030

attribute combinations as QID candidates.

In sum, this section offered multiple options to realise the discovery of quasi-
identifiers. Suggested optimisation techniques promise runtime performance up-
lifts from a conceptual perspective, and given previous experiments, we con-
firmed the same practically without the risk of compromising privacy guaran-
tees, unlike probabilistic methods do. To better understand the risk of data
inferences, the following Section 5 will address the triage of QID candidates in
high-dimensional settings and their risk in compromising individuals.
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Enhanced Detection of Privacy Violating
Inferences

Unique attribute value combinations proved to be a risk to the anonymity
promise from Definition 4. In the shape of a quasi-identifier specified in Def-
inition 5, those attribute combinations can be used to de-anonymise individuals
and therefore need to be discovered and removed. Another perspective on pri-
vacy guarantees is inferences in datasets, which can also be used to re-identify
individuals. Privacy violating inferences combined with auxiliary data are utili-
ties for an attacker to draw conclusions and derive private information [184, 185].

In the following sections, we will demonstrate how to determine probabilis-
tic linkages between attribute values in a use case agnostic method by using
Bayesian inferences. Further, optimisation approaches will be presented, com-
pared and empirically studied.

5.1 Bayesian Inferences to Determine Candidates

Bayesian networks are a type of probabilistic (directed acyclic) graphical model
that is based on Bayes’ theorem [57]. Commonly, Bayesian networks are used
to develop models using existing data sources or domain experts, and they use
directed acyclic graphs to describe a set of random variables, including their
conditional dependencies.

The Bayes theorem can also be defined as the interdependency of two indepen-
dent events A and X, where A happens knowing that X has already occurred.
This is equivalent to P (A|X), which is the conditional probability or depen-
dency that A occurs when X has previously occurred. The graph is usually
represented by an adjacency matrix or an adjacency list in most libraries. With
a Boolean value in a two-dimensional array, adjacency matrices express whether
a combination of two nodes is nearby in the graph, suggesting that there is a
directed edge between those nodes (see Table 5.1).
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From a theoretical standpoint, constructing a Bayesian network necessitates the
storage of O(n2) edges and double values implementing the assigned probability
with n answering to the number of nodes. In adjacency lists, on the contrary, a
node requires n times the number of edges e (n · e instead of n2) for the same
representation of a Bayesian network. Thence, adjacency lists are more efficient
in storage for sparse graphs than adjacency matrices (i.e. ones with few edges).
Depending on the graph and operation characteristics, however, one or the other
is more suitable. This can apply for instances insofar that adjacency lists are
preferable for returning a node’s neighbours, whereas adjacency matrices make
testing if nodes are adjacent easier.

Neither Naive Bayes classifiers nor Bayesian neural networks are to be confused
with Bayesian networks. A Naive Bayes method assumes a set of conditionally
independent attributes, allowing Bayes’ theorem to be applied to probabilities.
In contrast, the same assumption does not apply to Bayesian networks, which
need all dependencies to be modelled a priori. As a consequence, a Naive Bayes
model is to be considered as a special case of a Bayesian network. Although
nodes and edges in Bayesian networks appear to be similar to those in Bayesian
neural networks, nodes and edges in Bayesian networks have intrinsic meaning.
A node, for example, relates to a state, but an edge deduces a conditional
probability. The same holds not always true for Bayesian neural networks.

In the context of Bayesian networks, the concept of Markov chains or networks
is frequently employed, along with four properties indicating whether the state
space and time are discrete or continuous. Markov networks are made up of undi-
rected arcs that may or may not be cyclic. Yet, an acyclic directed arc constitutes
a factorisation of some joint probability distribution in Bayesian networks. Of-
ten, the terminology of Markov chains or networks is used in the context of
Bayesian networks combined with four characteristics corresponding to whether
its state space and time are either discrete or continuous. While Markov net-
works are composed of undirected arcs, which may be cyclic, Bayesian networks
have directed arcs that are acyclic, representing a factorisation of some joint
probability distribution. Powell et al. offer an illustrative visualisation to sup-
port the differentiation of those concepts [149].

5.1.1 The Concept

Using Bayesian networks to conduct anonymisation promises a number of ben-
efits. First, by augmenting the model with newly obtained datasets, continu-
ous, partial, use case agnostic, and low-cost update of the underlying model is
achievable. Furthermore, by evaluating the conditional probabilities within the
network, data exposure problems can be discovered.
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Various risks can be avoided by using the rounding error and intervening on
attribute value inferences through conditional probability. This way, adjust-
ing the conditional probability will exacerbate homogeneity- and background
knowledge attacks and simultaneously scramble inferential attacks. Because only
meta connections (probabilistic cases) are stored, rather than the actual and
duplicated ones, improved scalability in terms of storing space can also be ac-
complished. This has the drawback of being computation-heavy and, therefore,
time-consuming. The NP-hardness of the exact [28] or even approximate [34]
inference learning may be a bottleneck because nodes in Bayesian networks
generally represent one single state, and a high-dimensional data set with many
attributes holding many possible states results in a massive increase of nodes.

We are used to looking at relational data and traditional table representations,
yet the Bayesian network depicts occurrences of events. As a result, relational
data must be understood as if it were an event. Rather than representing each
data record in a common table representation, as illustrated in the prior example
from Chapter 3 depicted in Table 3.1, we can construct the likelihood of each
data attribute value in relation to the others.

This can be expressed as a network, with each node representing a potential
attribute value and the edges typify the probability of occurring in relation to
the connected nodes. A network like this is shown in Figure 5.1, which was
constructed from the preceding example Table 3.1.
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Fig. 5.1: Net representation of relational data with weights

Two nodes are drawn with edges to surrounding attribute values for both genders
from the same table, similar to their row-based relationship (ZIP, drug, disease).
Non-existing attribute value combinations with a conditional probability of 0,
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such as female and 10001, are not associated with a network edge for the sake
of simplicity.

An adjacency matrix, as shown in Table 5.1, can be produced in accordance
with the network topology, reflecting all edges between node pairs and their
conditional probability. The technical representation of the stated network with
all node combinations of size 2 is an adjacency matrix like this. Data exposure
can now be identified using conditional probability or, more precisely, attribute
value inferences. Only half of the matrix must be filled for bidirectional edges.
However, directed edges, such as the ones in our example, necessitate the use of
the entire matrix.

Table 5.1: Adjacency matrix representation

m f 10001 64123 60617 Cortisol Remdesivir COVID

m 1 0 0.3 0 0.6 0.3 0.6 1

f 0 1 0 1 0 1 0 1

10001 1 0 1 0 0 0 1 1

64123 0 1 0 1 0 1 0 1

60617 1 0 0 0 1 0.5 0.5 1

Cortisol 0.5 0.5 0 0.5 0.5 1 0 1

Remdesivir 1 0 0.5 0 0.5 0 1 1

COVID 0.75 0.25 0.25 0.25 0.5 0.5 0.5 1

5.1.2 Implementation Details

It is possible to create the underlying adjacency matrix in either an accurate or
an approximate way. Tsamardinos et al. introduced the approximation approach
“hill-climbing” to efficiently construct a structure learning algorithm [173], de-
spite the fact that precise Bayesian model learning is NP-hard. Because approx-
imate approaches have been thoroughly investigated, the focus in the following
will be on optimising exact learning techniques. Only an exact approach can
provide sufficient anonymity. The most efficient and precise adjacency matrix
generation we’ve found so far is depicted following.

The Algorithm 5 computes all column permutations with a size of n = 2 tuples:

P (n, r) = n!
(n − r)! (5.1)
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as seen in line 5. A native method for generating permutations with a specific
length is available in most computer languages. This collection of column per-
mutations can be examined in parallel and chunked to reduce inefficient process
spawning and process management overhead (see line 7). The parallel execution
results are first collected as a list, then concatenated as bulk to reduce overhead
once again (see lines 8 and 10). The Algorithm 6 specifies how each adjacency
matrix element is processed. Through a group-by statement, all current attribute
value combinations for each attribute permutation from the original dataset are
determined, such as female for gender and 64123 for ZIP (line 4).

The actual probabilistic calculation is as simple as counting the number of
times an attribute appears in relation to the total number of attribute values
(column size) in the evaluated column tuple (line 7). As a result, this gives
us the conditional probability for each attribute value tuple in the adjacency
matrix we’re building.

Next, both axes are being pre-populated with all relevant attribute values. The
matching conditional probability that has been determined earlier is being in-
jected at the intersection to create a matrix. The column tuple describes each of
these probabilities as an edge value, with the first element marking the edge’s
beginning and the latter marking the edge’s end. For assembling an equivalent
matrix, we pre-populate both axes with all describing attribute values and inject
at the intersection the corresponding conditional probability we have calculated
earlier. Each of these probabilities serves as an edge value directed by the col-
umn tuple setting, where the first element marks the edge’s start and the latter
marks the edge’s end (see Table 5.1).

The exact determination of conditional probabilities is demonstrated in the
following example:

Example 3. Deriving from Table 3.1, 12 attribute permutations exist that need
to be analysed: (ZIP, drug), (gender, ZIP), (gender, drug), (drug, disease),
(ZIP, disease), (gender, disease) and their inverse tuples. For each of these tu-
ples, the likelihood of each value combination occurrences is being calculated:
(M, 60617) = 0.66, (M, 10001) = 0.33, (F, 64123) = 1. To put it another way,
how likely is it that the ZIP code will be 60617 if the gender is M?

When the original dataset is refurbished in such a way that one gains the possi-
bility to quickly generate and persist adjacency matrices like the sample one in
Table 5.1. These matrices, in turn, serve as a model for Bayesian networks (see
Figure 5.1). In the following, we will elaborate on exact optimisation approaches.
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Algorithm 5: Calculate probabilistic linkages
1 Calculate probabilistic linkages (table, settings);

Input : Table table containing the dataset
Object settings with setting values

Output: Array result including all attribute value tuples and their
probability

2 result = initialise a table with columns ["value1","value2","likelihood"]
3 partialTables = initialise an empty list
4 // Prepare the dataset for parallelise its execution;
5 columnCombination = create a list of permutations of table’s columns with

length of 2
6 create a process pool:
7 split columnCombination in chunks and execute

build_probability_for_column for each chunk in the process pool
8 append the outcome from each process to the partialTables
9 close the process pool

10 result = concatenate the partialTables

Algorithm 6: Calculating probabilities for attribute value tuples
1 calculating the probability for a column (columnTuple, table);

Input : Array columnTuple as list of two column names,
Table table containing the dataset

Output: Array result including all attribute value tuples and their
probability

2 // Transform table to adjacency format through GROUP BY method;
3 group = initialise a table with columns ["value1","value2","likelihood"]
4 group = group table by columnTuple and count group appearance
5 columnSize = count the total column length
6 // Calculate their conditional probability;
7 group[’likelihood’] = divide each group size by columnSize
8 return group

5.1.3 Identification of Data Exposure & Ensuring Anonymity

The inferences stated in an adjacency matrix characterise the probabilistic link-
age of attribute representatives across the dataset. A Bayesian network can use
such adjacency as an underlying model. Aside from learning and sampling from
this model, the same inferences can be used to identify data exposure risks.

Utilising these inferences for privacy risk triage, further metrics are needed.
One can be the summed cycle inference (scf), which is constructed by iterating
over the created adjacency matrix and summing up all inferences for each row
(cycle). Therefore, we formally define:



5.1. Bayesian Inferences to Determine Candidates 55

scf =
m∑

i=1
cfi (5.2)

where m answers to the number of columns (length of the adjacency matrix)
and t to the qualifying non-null value amount of the selective row. Similarly, the
mean cycle inference (mcf) describes row wise:

mcf =
∑m

i=1 cfi

t
(5.3)

Both measures provide information on the probability of the respective attribute
combinations occurrences. The higher the summed and mean cycle in-
ference, the greater the risk of data exposure, one can deduce. As an
example, one can consider the following:

Example 4. The adjacency matrix in Table 5.1 addresses high inferences between
female → 64123, female → cortisol and female → COV ID. based on the
data in Table 3.1. This conclusion is marked by the conditional probability of 1,
which means that in 100% of the instances, the attribute values are consistent.
The weighted summed and mean inference is, in essence, the highest in the
matrix. When comparing such an injection function to the original example,
the reader will immediately recognise the row’s uniqueness.

The mean of the accumulated cycle inference and the associated deviation as
a threshold for detecting data exposure in an adjacency matrix proved to be
effective. Experiments in the following Section 5.4 will highlight: The greater
the threshold, the more likely we are to disregard privacy risks. As a result, the
lower the threshold, the more records fall into the analysis, which will increase
the runtime and potentially information loss.

The selection of such a threshold, on the other hand, can be done greedily. As
more combinations become possible, the metric values naturally drop as the
dimensions increase. Figure 5.2 depicts the declining cycle inference trend, with
gaps in the curve caused by standalone identifiers characterised by their high
cardinality. In the following Section 5.4, similar patterns will be explored further
as part of the experiments.

After successfully identifying a risky inference, one can adjust the appropri-
ate conditional probability in a way that the mean summed cycle inference
approaches average values again, effectively eliminating any data exposure.

Definition 9. Anonymity Assurances
Given an involved column ci, let t = {c1, ..., cn} describe a cycle. To quantify
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Fig. 5.2: Evolution of summed cycle inference over increasing data attributes

the data exposure risk of any cycle t, let µ(t) be a suitable measure. Further,
the set of cycles with length n containing the column c is denoted by Tn(c). Any
cycle t that deviates strongly from the statistics of Tn(c), c ∈ t is likely to be a
quasi-identifier and thus poses a potential anonymity risk. Therefore applies:

|E [µ(Tn(c))] − µ(t)| ≤ θ σ(µ(Tn(c))), (5.4)

with θ answering to a threshold parameter, E the expected value and σ the stan-
dard deviation.

Anonymity is ensured only when no unique column combinations remain, and
hence no individual record can be traced back to its original data owner.

Following data profiling research, a unique column (combination) that fulfils
the requirements of a maximal partial (minimal) unique column combinations
(mpmUCC) can be determined to encompass all quasi-identifiers [138]. This
holds true for quasi-identifiers of every length and combination in a data set
without the need of separating sensitive and non-sensitive data. Next, the col-
lection of high-risk cycle inferences can be compared against the mpmUCCs to
see whether there is a delta in the overlap. To counter the risk of data expo-
sure, the candidates shall be altered to aggravate the re-identification of the
data owner. The punctual deviation of selected conditional probabilities, as well
as the overall summed cycle inference, may be used to achieve the necessary
aggravation. Because this adjustment is a simple subtraction procedure, its al-
gorithmic realisation should be easy to implement. Finally, there is no way to
recreate any linkable unique column combinations using a Bayes model. The
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outcome may be called anonymous if it is not possible to re-identify individuals
using the composed data.

Example 5. In the previous example of the adjacency matrix in Table 5.1,
high inferences between female → 64123, female → cortisol and female →
COV ID are identified. A quick sight on the original Table 3.1 confirms the
unique column combination. Data exposure risks can be aggravated by lowering
the relevant inferences towards the mean cycle inference in a greedy manner.
When converging to the average conditional probability, the sample group of,
for instance, female → 64123 increases and consequently the risk of exposure.

5.1.4 Projection on Data Streams

The demand for data anonymisation technologies in data streams has increased
in recent years. Data inputs from various sensors are increasingly being used to
track the number of characteristics. Belt speed, acceleration, and rotations are
examples of these in manufacturing. Sensors have also been used in healthcare
to measure patients’ vital signs such as heart rate and oxygen saturation. Most
notably, fitness sensors as consumer hardware have become practical for regular
usage, resulting in large data flows, including often highly sensitive information
(movement patterns, health or vital status).

While structured data had to be handled in the past to give privacy-aware repli-
cas of a static data repository, new domains such as mobile health apps now
necessitate proper processing on continuous data flows. However, there is a con-
siderable difference between static and stream content, which has implications
for the anonymisation process. With a static environment, the dataset may be
easily viewed and analysed as a comprehensive snapshot of as it is, however in
stream processing, only a small sample of the entire stream is available and is
being processed at the same time. This snapshot could be a single data record
or a (micro-) batch of data.

To avoid the linking of distributed quasi-identifiers among distinct separated yet
related events, the previous data stream events must be considered when anony-
mising this standalone sample. Extending the previous example from Table 3.1,
this causality may be demonstrated:

Example 6. The reader is referred to the previous data from Table 3.1 with four
initial patient records, including ZIP code, patient gender, disease diagnosis and
medication prescription. With the addition of two more records, {F, 10002, hy-
droxychloroquine, COVID} and {F, 10001, remdesivir, COVID}, it is difficult
to assess their private data exposure risk without the previous context. With
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knowledge of the full existing Table 5.2, it is evident that the second record
stands out due to its new ZIP code and a new medicine prescription. On the
contrary, whereas the first added row blends in from an anonymisation perspec-
tive.

Table 5.2: Extended sample health dataset through stream data snapshot

Gender ZIP Drug Disease

M 10001 remdesivir COVID

F 64123 cortisol COVID

M 60617 cortisol COVID

M 60617 remdesivir COVID

F 10001 remdesivir COVID

F 10002 hydroxychloroquine COVID

When assessing privacy risks, the transparency of having references is crucial.
We acknowledge that re-evaluating the entire table on a wide scale with state-
of-the-art for each snapshot is impossible. The reader may observe a balance be-
tween batching incoming information and updating the reference table against
which to compare. The larger a batch, the less incremental and iterative data
stream processing is required to be. A huge batch, on the other hand, signifies
a high level of information loss due to the lack of granularity. One of the ex-
perimental objectives for the empirical study in Section 5.4 will be to achieve
this equilibrium. An increase in the processing speed of typical syntactic data
anonymisation algorithms is required to achieve near real-time anonymisation
of a continuous data stream. Solving this computational problem also eliminates
existing anonymisation limitations in data stream processing.

There are now two possibilities for practically discovering quasi-identifier using a
Bayes theorem. The first is to use a greedy mathematical solver, and the second
is to rely on massive-parallelisation. Both will be presented in the following,
discussed, and finally empirical studied.

5.2 Optimisation Methods: Vertex (Node) Aggregation

The concept of utilising Bayesian networks to discover inferences, potentially
exposing private data, is promising. Yet, simultaneously it suffers NP-hardness
of the exact [28], and even approximate [34] inference calculation as previously
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outlined. Since our motivation is to process large and high-dimensional datasets,
we looked into reducing the given complexity.

Multigrid solver, which incarnates the concept of coarsening the state space, may
be transferable to this problem space. The problem space of complexity Bayesian
network calculations can be addressed with a multigrid solution, which captures
the concept of coarsening the growing state space. Multigrid methods are used
in the field of numerical analysis and answer to a family of effective algorithms
for approximating answers to equation systems formed from partial differential
equations discretisation [21, 163]. In the case of a symmetric adjacency matrix
using unidirectional arcs instead of directed arcs, multigrid can be applied to
address the vertex growth.

For this purpose, our multigrid solver approach operates in an exact manner
by aggregating nodes of the Bayesian network representation that are in all
probability. The conditional probability for each edge, or the inferences in the
adjacency matrix, determines this probability. The aggregate is solely dependent
on the conditional probability along the edges that emerge across all attribute
values, and it only reflects the nodes of disjunctive attribute subsets. A new
node is formed as a result of this aggregation, which replaces existing nodes
with new edges.

When being in all probability, the vertex of an exact training approach can
be aggregated to accelerate computation time. This can be done by defining a
threshold for the likelihood of appearances. Simultaneously it implies a higher
information loss given the shift from exact determination towards approximated
probabilistic linkages. Our first experiments encourage a threshold of >95% for
the conditional probability (see Section 5.4). To ensure the anonymity require-
ment (see Definition 4), such a threshold should be determined in a greedy
manner. Decreasing the threshold significantly, like in the case of 95%, increases
the number of nodes under aggregation, but it may result in the loss of 5To
achieve an equilibrated result between computation time and information loss,
one can greedily adjust the threshold as the characteristics of the dataset may
alter.

In this work, however, the focus shall remain on leveraging the exact multigrid
solver approach. The strategy to aggregating nodes is illustrated in the following
example:

Example 7. Continuing with the previous example from Figure 3.1, in case of
f → 12160 being in all probability, f_12160 is derived as a new state. At
the same time, the original states and transitions are being conflated. This
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transformation is being depicted in Figure 5.3a where the two nodes f and
12160 are condensed. In analogue Ibuprofin → Flu being in all probability, the
new node Ibuprofin_Flu is being added (see Figure 5.3b).

(a) Combining exact dependencies: f + 12160

(b) Combining high probabilistic dependencies: drug + disease

Fig. 5.3: Complex reduction through manifolds and multigrid

The exploding complexity of large, high-dimensional datasets can be captured in
this way. Because fewer node combinations and, thus, edges must be evaluated,
the runtime for sampling and analysing drops dramatically as the number of
nodes is reduced in exponential space. First experiments have demonstrated
promising results.

As a reference and to understand the potential of the multigrid approaches, the
reader is kindly referred to the security research field. In this case, multigrid
techniques offer a solution to the Poisson-Equation for elliptic curves in O(n)
rather than O(n2.5) [68, 177].
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Manifold learning, in addition to multigrid, can be leveraged to aggregate those
Bayesian network nodes. Manifolds as a topological space have their origins in
mathematical physics, where they have been used to decompose complex geo-
metric patterns into simpler topological properties by approximating Euclidean
space around the observation point.

Likewise, the number of nodes can be efficiently aggregated to reduce process-
ing complexity by treating the dimensionality reduction problem as a classical
problem in Riemannian geometry [25, 102]. Figure 5.3 illustrates the runtime
gains. Several optimisations, such as Wang et al.’s adaptive manifold learning
[180], are employed in various geometric research domains and could be used as
a foundation for future state aggregation in Bayesian networks.

The algebraic multigrid (AMG) solver library, for instance, was created by Luke
Olson and Jacob Schroder [127], and it implements a "multilevel approach for
solving large-scale linear problems with optimal or near-optimal efficiency."

AMG, unlike geometric multigrid, requires little to no geometric knowledge of
the underlying problem and generates a coarser grids sequence directly from the
input matrix. For problems discretised on unstructured meshes and irregular
grids, this aspect is important.

Those algebraic solvers serve as a basis to combine and subsume nodes and
corresponding edges within our network to reduce its complexity, especially
during sampling.

Algebraic solver to aggregate vertex promise to reduce nodes, runtime and there-
fore complexity, as we have learned. As another optimisation methodology, par-
allelisation offers various improvements in other data processing fields. Hence, we
will outline an algorithmic breakdown and implementation of massive paralleli-
sation through GPU accelerated Bayesian inference detection in the following.

5.3 Optimisation Methods: Vectorised GPU Acceleration

Parallelising the execution of combinatorial problems is a different way of ap-
proaching the problem. The quantity of CPU cores usable in the processing
environment has effectively limited parallelisation so far. With hyper-threading
enabled, multiple simultaneous computing threads can be processed. Yet, their
performance is still limited to the CPU capacity. Nayahi et al. examined scaling-
out approaches using a horizontal scaling technique following the MapReduce
concept of dividing and conquering huge process workloads across many servers
[42, 120]. However, when more processing nodes are added, the network I/O
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and infrastructure needs increase, which in turn limits the system’s realistic
scalability.

5.3.1 Prerequisite for Massive Parallelisation

A similar concept can be employed here as well, based on recent improvements in
GPU acceleration. Graphics processing units (GPUs) have traditionally offered
high compute density, high computations per memory access, deep pipelines,
fast throughput, and low latency tolerance. However, because they lack a huge
L1-L3 cache like CPU design, their memory capacity is still restricted. CPU cores
are, in general, faster and smarter than individual GPU core instruction sets,
but the sheer quantity of GPU cores and the tremendous amount of parallelism
they provide more than compensate for the single-core clock speed disparity and
limited instruction sets (see Illustration 5.4).
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Fig. 5.4: Motherboard architecture with periphery GPU hardware

Established libraries and algorithms are not immediately transferable to run on
GPUs as they require a few additional processing steps. First, the designated
dataset needs to be (pre-)fetched and preferable converted in a unified mem-
ory format like Apache Arrow. This step enables unified memory management
between CPU L1-L3 and GPU memory to reduce data transformation efforts
when shifting data between the different hardware components. Additionally,
by applying some dictionary encoding or similar encoding of attribute values
to a numeric representation, the dataset is reduced in size and becomes handy.
As the final step, the attribute value combinations need to be generated and
composed in a vectorised format to unfold the full processing capacity of GPUs.

After completing these steps, the pre-processed dataset is available for GPU
acceleration, and existing CUDA frameworks can be leveraged to execute the
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vectorised computation of the probabilistic appearances massively. The following
Section 5.3.2 will deep dive on the exact implementation steps.

Two choices remain for the discovery of quasi-identifier and data inferences
using the Bayesian network model. The first one is to use some mathematical
solver following a greedy methodology. The second method is to utilise massive-
parallelisation. While the former has been discussed in depth in [139, 141], we
will focus on the latter of massive-parallelisation in the next sections and provide
thorough benchmarking results, runtime, and resource allocation.

5.3.2 Vectorised QID Search Scheme

Most of the current implementations of computing Bayesian inferences, as out-
lined by Podlesny et al. [139, 141], is currently purely CPU based and therefore
scalar oriented. On the CPU instruction set, single operations are then trans-
lated and executed. As outlined earlier, the GPU instruction set is more limited
and optimised for vector-based calculations. Hence, to fully exploit GPU capac-
ities, this paradigm needs to be algorithmically adjusted.

To take use of this computing opportunity, the difficulty is to convert workload
from a scalar to a vector-based calculation. The objective at hand in Bayesian
inferences is to compute the likelihood of occurrences as an interdependency
between events A and X, where A occurs knowing that X has already occurred:
P (A|X). These events, as detailed in Section 5.1, technically respond to each at-
tribute value in the chosen dataset. One counts how many times A and X appear
together in a record over the total appearances of A to generate P (AvertX), the
inter-dependency. Simple mathematical functions such as counting and group-
ing have previously been vectorised and made accessible in open source libraries
such as RAPIDS’3 cuDF4 as a NVIDIA initiative. CuDF provides an interface
similar to the known python pandas5, but it already runs on vectorised CUDA6.
CUDA is a parallel computing API for Nvidia GPU devices that includes fea-
tures such as scattered reads, shared and unified memory management, and
integer and bit-wise operations that are fully supported. CuDF, on top of these
functionalities, provides a well-known interface, which we use for Algorithm 7 to
generate Bayesian inferences. Pre-fetching the original dataset, converting it to
Apache Arrow format for unified memory management, and creating attribute
value combinations to assemble the vectors were all covered in Section 5.2. In
the pseudo-code, the same process is reflected (see Algorithm 7).

3 https://rapids.ai/
4 https://github.com/rapidsai/cudf
5 https://pandas.pydata.org/
6 https://developer.nvidia.com/cuda-zone

https://rapids.ai/
https://github.com/rapidsai/cudf
https://pandas.pydata.org/
https://developer.nvidia.com/cuda-zone
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Algorithm 7: Vectorised computation of Bayesian inferences
1 Calculate probabilistic linkages (self, table);

Input : Object self including the CUDA runtime environment
Table table as Apache Arrow table containing the dataset

Output: Array result including all attribute value tuples and their
probability

2 // Prepare the data table;
3 columnNames = extract attribute names as columns from table
4 candidates = generate all permutations of columnNames as set
5 tableEncoded = apply dictionary encoding of the table to replace varchar

with integer
6 result = initialise result a table with columns

["fromValue","toValue","likelihood"]
7 // Parallelise execution;
8 for candidate in candidates:
9 fromAttribute = get first set element of candidate

10 toAttribute = get last set element of candidate
11 countVector = group table by candidate set and count attribute value

pairs
12 weightedCountVector = divide attribute value occurrences in

countV ector by their individual occurrences
13 append results with weightedCountV ector where the fromAttribute

value answers to the fromV alue and toAttribute value to toV alue
and its weightedCount as likelihood

14 return result

The group by and count operations are disassembled and delivered to each GPU
core and GPU RAM as device instructions and variables (see CUDA docs7).

1 cudaMemcpy ( destination , source , bitwidth ,

cudaMemcpyHostToDevice );

Each CUDA core calculates the algorithms on its designated data chunk on
shared memory, then returns the computed results to the CPU and main mem-
ory for assembly (see CUDA docs8).

1 cudaMemcpy ( destination , source , bitwidth ,

cudaMemcpyDeviceToHost );

7 https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.
html

8 https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.
html

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html
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As a result, the vector computation can be executed with 5120 operations on a
single Tesla V100 or 51200 operations for 10x Tesla V100s at the same time.

To ensure that the algorithm is sound, we compare the expected number of
QIDs with the reference implementation on CPUs, as well as all CPU-based
detected QIDs with the GPU implementation. Given that this is not a proba-
bilistic implementation, it’s no surprise that both sets of results are identical. It
is noteworthy to grant the fact that the optimisation approach to aggregate the
state-space through multigrid and manifolds outlined in Section 5.2 generates
more false positives and may result in a somewhat higher information loss in ex-
change for reducing runtime complexity. An empirical study will examine both
runtime uplifts and type I / II errors in greater depth in the following Section.

5.4 Empirical Analysis and Discussion

To prevent private data exposure, the reliable discovery of quasi-identifiers or
any other unique attribute value combination is essential to initiate counter-
measures. The same applies to any venue of data inference that can be used
to uniquely identify data records. Yet, building Bayesian networks on high-
dimensional data quickly results in a state-space explosion. Both algebraic and
engineering optimising promise astonishing improvement to counter the expo-
nential compute growth during the search of data inferences. To quantify these
contributions, we will empirically study their effects in the following.

Hardware. Our examination runs on a GPU-accelerated high-performance
compute cluster, housing 160 CPU cores (E5-2698 v4), 760GB RAM, and 10x
Tesla V100 with 5120 CUDA cores each and a combined Tensor performance of
1120 TFlops. The execution environment for GPU related experiments will be
restricted to one dedicated CPU core and a single, dedicated Tesla V100 GPU9.
For CPU related experiments, the runtime environment on the compute cluster
is restricted to 10x dedicated cores.

Data sets. To allow a reproducible assessment and the disclosure of raw data
samples for comparison, a semi-synthetic dataset was compiled. Similar to the
evaluation dataset in Chapter 4, various sources have been concatenated, includ-
ing official government websites, public statistical data and datasets as part of
previous publications to assemble a semi-synthetic health dataset. A complete
list of all attributes is publicly available on Github [136]. Naturally, this dataset
includes data inferences and various quasi-identifiers (QIDs). Correspondingly,

9 https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-
datasheet-update-us-1165301-r5.pdf

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
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the QID amount increases over the number of available describing attributes
(see Figure 5.9a), as well as the number of edges (see Figure 5.5b).
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Fig. 5.5: Data characteristics for Bayesian experiments

5.4.1 Inference Detection in Bayesian Networks

To preserve privacy, all inferences and, therefore, quasi-identifiers must be dis-
covered. As a baseline, we employ the “Find-QID” search scheme from Chapter 4
to determine all available quasi-identifiers as reference. Regardless of applied op-
timisation, Figure 5.6a delineates the precision of the inference detection based
on the cycle metrics introduced in Section 5.1.3.

Different thresholds in the summed or mean cycle inference metric minimise
compute efforts to determine QIDs. The closer the green and orange dots are
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Fig. 5.6: Bayesian experiments results on precision and runtime

to the blue ones representing the actual number of QIDs, the less overhead
in additional compute to be completed. In every instance, all QIDs have been
determined with the 100% true positive rate and 0% false negative. Yet, false
positives can differ based on the applied threshold, which again highly depends
on the underlying data characteristics.

Figure 5.6b depicts the runtime without any optimisation applied, which sup-
ports the need for runtime improvements, especially for high-dimensional datasets.
In the following empirical study, the surplus through optimisation approaches
of mathematical nature and GPU acceleration will be quantitatively assessed to
verify their performance gain promises of the underlying enumeration complex-
ity.
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5.4.2 Performance Comparison of Vertex Aggregations

The pure and original creation of a Bayesian network and its inference discovery,
particularly in high-dimensional datasets, is extremely challenging and does not
scale well without further action. Aggregating vertex through combining nodes
as attribute values being in all probability offers a mathematical improvement.
Multigrid solver has been well explored, but as their usage for state-space gen-
eralisation in Bayesian networks is light, we will outline their improvements.
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Fig. 5.7: Statistical evolution of Bayesian’s vertex aggregation

Figure 5.7a delineates the increasing runtime over growing columns in the
dataset. Once plotted against the number of edges, once against the permu-
tation under assessment for inferences. It becomes evident that the runtime is
directly linked to edges and permutations.

Aggregating states reduces the complexity of a Bayesian network, and therefore,
the compute needed to create or sample from it. Figure 5.8 compares the original,
traditional network against the optimised one with aggregated vertex. Especially
for larger n of describing attributes, an improved runtime of 20% for n = 100
can be observed.

5.4.3 Performance Comparison of the Parallelised Approach

The most prominent performance difference between running the native scalar-
based Bayesian inference implementation, the vector-based GPU acceleration
and the state aggregation optimisation is the uplift in execution time. Fig-
ure 5.9b delineates again the runtime in seconds over the increasing number of
attributes. This time including massive-parallelisation through vectorised GPU
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compute. Multigrid reduces the state-space explosion as part of the Bayesian
network creation through aggregations by some factors. Yet, a vector-based im-
plementation outperforms both previous solutions by magnitudes.
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Varying Number of Records. The dimension of records (rows) does not
really significantly impact the performance of already large datasets. This is
not the case with smaller datasets. Additional rows usually represent alternative
compositions of the same attribute values or increase their tuple count rather
than introducing new attribute values. As a result, the binomial coefficient and
its temporal complexity stay the same. This is expected to be different for much
smaller datasets.

Varying Number of Attributes. As the number of columns grows, so does the
number of descriptive attributes and the number of attribute combinations that
can be used as QID candidates. Consequently, with an exponentially growing
number of candidates, the processing time increase as well. This is shown in Fig-
ure 5.9b. This trajectory has been slowed by the degree of massive-parallelisation
in the GPU implementation. For very large n currently out-of-scope, however,
we do expect an increase as well. With any dataset, both semi-synthetic and
real-world, we have not reached this theoretical point yet.

Varying Cluster Sizes. Recognising the potential of simultaneously conduct-
ing calculations on 5120 CUDA cores per hardware component, the question of
scaling limitations also emerges with GPU resources. Currently, not all libraries
support multi-GPU setups, yet their implementation is still worth it.

With the ability to run calculations on 5120 CUDA cores per hardware com-
ponent, the subject of scaling limits also arises with GPU resources. Although
not all libraries currently provide multi-GPU arrangements, they are neverthe-
less desirable. Figure 5.10a delineates the original scalar based implementation
running on common CPUs against a vectorised algorithm on one and ten GPU
nodes. Only a small variation in the vectorised approaches is evident due to
the axis size. Converting the same to a log scale Figure 5.10b illustration high-
lights more details. A slight overhead, in the beginning, is visible that represents
the divide and conquer preprocessing. After the workload is distributed across
multiple nodes by the CPU and a potential overhead in bus I/O between main
memory and GPU memories is bridged, the break-even point of the scaling be-
comes transparent. The anticipated execution time for n attributes bigger than
our experiments, in particular, appears to be highly promising.

Resource Utilisation For monitoring the utilisation of the GPU nodes during
the experiments, every second a data points is measured and further aggregated
to 5-second intervals for visibility reasons. Figure 5.11a depicts compute con-
sumption over time, whereas Figure 5.11b summarises the memory usage. Both
figures highlight that there are still enough resources available, indicating that
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Fig. 5.10: Runtime comparison by resources for Bayesian inference calculations

there are various chances to expand data sizes. Further optimisation modifica-
tions are left for future work. Simultaneously, we like to draw attention to the
20% underutilised compute capacity and 70% spare memory space. In fact, in
all of the conducted experiments, not a single GPU node exceeded the whole
available capacity of the system.

In sum, these experiments and its observation highlight that we can determine
data inferences and quasi-identifiers that can expose private data. The search
and its NP-hard complexity can be improved by mathematical optimising by
20% on 2n for n = 100, and introducing the latest technological enhancement
in the shape of vectorised GPU compute by 99.9% to a few seconds almost
near-real time. For larger n, which are currently impractical to perform, these
optimisations still offer a magnitude of runtime improvement.

Therefore, being able to discover inferences and quasi-identifier in a blink of
an eye, we will pivot our attention towards eliminating such privacy-violating
attribute combinations in the following chapter.
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Improving the Quasi-Identifier Elimination

To achieve the privacy guarantees advertised in previous Definition 4, we have
thoroughly completed the search for quasi-identifiers and privacy-violating in-
ferences in the previous chapters. Knowing what attribute values can be used in
re-identification attacks is the first step to prohibiting private data exposure. In
the second step, these attribute values need to be alienated or removed in a way
that their risk of exposure is averted. We could remove all involved data records,
yet this leads to a high information-loss as well. The removal can range from fine-
grain individual values to excluding the entire attribute (or column). A proper
balance of removal and the information-loss are desired, as the elimination of
attribute (values) can usually reduce the corresponding dataset’s meaningful-
ness. Related work has explored various algorithms for such alienation of data
values, either by some kind of aggregation through syntactic data anonymis-
ation techniques or through randomisation with semantic data anonymisation
approaches (see Chapter 2).

In the following, we extend and generalise an algorithm that does not alienate
the data values themselves, rather their relations of forming privacy-violating
tuples in a syntactic manner row-wise.

6.1 Syntactic Data Anonymisation Methods

The family of syntactic data anonymisation algorithms build on data transfor-
mation techniques that somehow generalises the underlying data values through
some generalisation [67, 166], suppression [67, 166], or perturbation [104, 147].
In essence, these approaches try to achieve some k-anonymity schema, where
each tuple in the data set is classified with at least k − 1 similar data records to
limit distinguishability. The k −1 nearest neighbours are, according to Sweeney,
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selected based on similar describing attributes and enforced by functions that
manipulate the designated attribute values composing a quasi-identifier [166].

As we will detail in the following section, the extended and generalised attribute
compartmentation aims at the same goal of achieving k-anonymity but rather
than modifying the attribute values instead of the possible association of at-
tributes being shaped. This targets the objective to prevent the formation of
attributes forming quasi-identifiers through any foreign key pair or functional
dependency.

The following section will describe the attribute compartmentation concept in-
depth, exemplary showcase its functionality, and demonstrate its performance
against established syntactic data anonymisation algorithms.

6.2 Attribute Compartmentation

As a novel syntactic data anonymisation technique, attribute compartmentation
has been initially introduced for a specific health data setting [135]. By extending
and generalising this methodology, the aim is to break the data value relations
forming quasi-identifiers (QID) instead of alienating or appending the attribute
values themselves. This can be realised row-wise, per data record, instead of
generically for all rows of a describing attribute.

To do so, after identifying the quasi-identifiers that violate the definition of
anonymity 3.1, we classify the identifiers that adhere to anonymity. Existing
research focuses on sophisticated statistical approaches which are highly use-
case sensitive [181]. Standard use-case agnostic data transformations measure
such as local suppression, global generalisation, and perturbation [166] can be
used to complement attribute compartmentation. Formally, we define:

Definition 10. Compartmentation as an admissible family of feature sets
Let Q = {Q1, .., Qn} be a set of quasi-identifiers and denote with F ⊂ Q a
feature set (a set of quasi-identifiers). A family F = {F1, .., Fm} of feature sets,
Fi ⊂ Q, 1 ≤ i ≤ m, is called admissible, if:
∀ Fi, Fj ∈ F , i ̸= j : Q̄ = Fi ∪ Fj is k-anonymous set of features for given data
(k < 1)

Basically, compartmentation separates attributes forming quasi-identifiers in dif-
ferent pools. Without the ability to rejoin the original dataset, all additional at-
tributes from the original dataset are duplicated and included in the split com-
partments. Because partitions are intuitively disjoint (disjoint and distinct) and
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compartments are intended to overlap, it’s helpful to separate compartmenta-
tion from partitioning. Finding the best compartment with the fewest partitions
possible is part of compartmentation. This holds as every supplemental compart-
ment adds to the original dataset’s partial redundancy. To counter redundancy,
the following process is desired: All column combinations (mpmUCCs) will be
projected to a graph (see Figure 6.1a). This graph now represents all attribute
tuples that should be combined. Next, the graph representation will be inverted
to describe all desired attribute combinations like delineated in Figure 6.1b.
The outcome of discovering maximal cliques in this network will reveal to us all
potential and best-compressed compartments that can split the original dataset
into parts while adhering to the previously established anonymisation criteria
(see Figure 6.1c). After separating the original dataset into compartments based
on the needs of each row, the separations can be preserved as separate datasets
or merged using a FULL OUTER JOIN.

6.3 Experiments

To evaluate attribute compartmentation, we study its impact on data anony-
misation using several common precision metrics that we briefly outline in the
evaluation setup, followed by a discussion of our results and an in-depth use
case study.

For the comparison, we selected established anonymisation techniques like global
generalisation [67, 166], local suppression [67, 166], and perturbation [104, 147]
that are of syntactic and not semantic, heuristic nature similar to the novel
approach. A summary of global generalisation and local suppression is available
in Section 2 and more details are available in Latanya Sweeney [166], N. Li et
al. [98], and Ashwin Machanavajjhala et al. [106] work.

Setup & Metrics. The data quality is determined based on three factors il-
lustrated in Table 6.1. Unique values are awarded by one point, duplicates, less
than one point depending on the number of duplicates. Falsified values, which
include any alternation from the original value, are penalised by some function
measuring their distance from the original value.

Hardware. The experiments were conducted on a machine equipped with 16x
Intel Xeon E5-2697 v3 @ 2.60GHz and 32GB RAM using an enriched dataset
with 109 attributes and 1M rows. We have taken real-world data from multi-
ple sources and enriched those with fake profile data in close adjustment with
real-world data distributions to ensure a fair evaluation set that can be un-
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Fig. 6.1: Steps for creating attribute compartments

anonymously published for reasons of confirmability and traceability without
endangering single entities through their personally identifiable information.

Dataset. As an experimental dataset, we re-used the previous semi-synthetic
dataset to facilitate a repeatable evaluation and provided raw data for a side-
by-side comparison. It has been created from various sources, including govern-
ment websites, statistical data sets, and datasets that have already been made
available to synthesise a semi-theoretical health dataset. An exhaustive list of
all-inclusive list of attributes can be found on Github [136]. In contrast, a more
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Table 6.1: Weighting of values for the data score

Condition (attribute value) Score Comment

unique +1 point rewarding diversity of values

duplicated + tanh(1/x) points x = number of duplicates (x)

falsified − distance
original value points only for numeric values

condensed list depicting the used attributes can be found in Appendix A. This
dataset contains quasi-identifiers (QIDs), which grow as one adds more describ-
ing data attributes (see Figure 6.2).
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Evaluation. Figure 6.5 depicts the number of values that must be changed for
each transformation to ensure anonymity, divided by the number of columns.
The percentage of modifications made in terms of changing the original dataset
can be calculated using the distortion rate depicted in Figure 6.6. However, be-
cause attribute compartmentation does not change individual values, the default
distortion rate remains 0. Also, established means to measure information-loss
will give attribute compartmentation an unfair advantage as these rely on some
means to calculate alienation of attribute values (ie., from an exact age to an
age range). In fact, the information-loss metrics would certify an almost per-
fect ratio, which is not the case because attribute compartmentation does suffer
information-loss, not in the attribute value but their relationships. Hence, we
will adapt established metrics by awarding and penalising duplication to some
extent (following tanh curve that can be customised per dataset with individ-
ual characteristics). The more individual values that must be transformed, the
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longer the technique will usually take and the lower the data score can be. Fig-
ure 6.3 illustrates this concept. The more quickly a higher data score is achieved,
the less data quality loss can be achieved.
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Finally, Figure 6.4 shows the temporal complexity of each individual therapy.
Because of its repetitive design, generalisation describes exponential growth.
Figure 6.7a illustrates the uncompressed data sizes of the sanitised datasets,
with compartmentation increasing significantly faster than the other designated
methods. This is dependent on the number of compartments required for effec-
tively segregating attributes in quasi-identifiers in order to prevent their use as
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techniques

an identifier. According to John W Moon and Leo Moser, there are 3n/3 maxi-
mum cliques for every n-vertex graph [114]. This can be explained through the
growing possibilities of assembling (maximal) cliques as compartments in such a
manner that their number does not have to grow. The Bron–Kerbosch method
was developed by Coen Bron and Joep Kerbosch [22] to discover maximal cliques
in O(3n/3) [172]. As a result, the time complexity of compartmentation can be
likewise equated to O(3n/3) = O(1.4422n). Furthermore, it has been observed
that the practical time complexity is quicker [26, 59]. On the execution runtime
for attribute compartmentation, Figure 6.9 depicts the increase of dimensions
(number of rows and columns). In the case of an in-memory application that
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uses dictionary encoding, such as SAP HANA, a redundancy of factor 20 or 30
can be obliviously overlooked, as shown in Figure 6.7b.
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Local suppression noticeably prevails in terms of time complexity, whereas com-
partmentation still surpasses generalisation (see Figure 6.4). However, it should
be highlighted that suppression causes significant information loss, which shall
be prevented. Linear growth is given by perturbation and suppression, whereas
an exponential increase applies to generalisation and compartmentation. This is
unsurprising given that suppression, perturbation, and compartmentation tech-
niques do not require re-evaluation. Yet, due to its recursive nature, generali-
sation results in a considerable increase in execution time. The overall quantity
of modified attribute values grows exponentially with the size of columns in
Figure 6.5, whereas the number of modified data for generalisation, suppres-
sion, and perturbation grows linearly with the number of columns per modi-
fied value. Compartmentation does not affect attribute values; thus, it is not
shown. Although the linkage between some of the attributes is abolished during
compartmentation, the sanitised dataset retains the majority of its cardinality,
resulting in a significant improvement in the data score (see Table 6.1). A high
data score implies desired data quality depicted in Figure 6.3. The evolution
of the data quality metric for each method portrays a similar picture in high-
dimensions, yet on a different magnitude level. For a smaller number of columns,
noise in the data affects especially suppression and slightly perturbation. How-
ever, we cannot compare the findings over the entire length of available columns
due to the exponential increase in computing time. Generalisation quickly ex-
ceeds manageable run time, wherefore its data scores for large n can only be
adumbrated. The data sizes of most syntactic data anonymisation procedures
are similar after their transformations (see Figure 6.7a), but compartmentation
stands out. This originates from the deliberate introduction of column redun-
dancy in various compartments. The same redundancy can be effectively reduced
by implementing dictionary encoding (see Figure 6.7b). In fact, initial testing



82 Chapter 6. Improving the Quasi-Identifier Elimination

suggests a redundancy factor of 30 compartments for 70 supplied attributes,
implying that one actual data value can have up to 30 indices, which has no
bearing on the compressed data size. The number of compartments does not
expand exponentially because, as more quasi-identifiers are introduced, other
combinations of maximal cliques become feasible, avoiding the need to increase
the number of existing cliques in proportion (see Figure 6.8).

6.4 Real World Implication of Anonymisation on Digital
Health Disease Triage

While the former benchmark serves as a generic and use case-independent eval-
uation of the introduced algorithms, this section will provide an exemplary ex-
ercise of orchestrated transformation approaches for a predefined real-world use
case given the dataset and benchmark setup from Section 6.3.

We learned from a multinational pharmaceutical and life sciences company that
a typical research use case is to find drug-to-drug, gene-to-drug, disease-to-
disease, or drug-to-disease relationships. This can be typically achieved through
a regression approach or by using the Bayes Theorem. Following Hayden Wim-
mer and Loreen Powell’s approach to investigate the effects of k-anonymity on
common machine learning algorithms [183], we use the same methodology to
investigate the effects of different treatments and especially their composition
to this use case.

Table 6.2: Combining anonymisation algorithms (c answers to the column’s car-
dinality threshold)

Approach Data type
condition

Composition
A

Composition
B

Composition
C

Perturbation numeric c < 50 c < 75 c < 90

Suppression categoric 90 < c < 100 80 < c < 100 95 < c < 100

Generalisation numeric 50 < c < 100 75 < c < 100 90 < c < 100

Compart-
mentation

categoric c < 90 c < 80 c < 95

The composition of transformations and their application thresholds was created
by interpreting the benchmark results of Section 6.2 in combination with a
weighted brute force approach where the time complexity is represented through
an exponential interval. At the same time, the decision criterion is the achieved
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data score of the sanitised dataset. Multiple different treatment compositions
have been evaluated (see Table 6.2) and finally decided on the favoured one
depicted in Table 6.3.

Table 6.3: Optimal composition of syntactic data anonymisation techniques

Numerical Coverage10 Treatment

yes >15 generalisation

yes <50 perturbation

no <50 suppression

* >=50 compartmentation

Using this setup of thresholds and transformations, a sanitised dataset is cre-
ated. Figure 6.6 illustrates this data transformation as a partial selection of the
available feature set. For comparison, the same logistic regression function is
applied to the original dataset as well as a sanitised dataset that has only been
converted using one of the data transformation methods. The transformation
time for anonymising the underlying dataset with 73 attributes based on the
transformation composition configuration takes roughly 168s resulting in a data
quality score of 15983644.28 and a size of 52800080 bytes (uncompressed).

As a hypothesis, the following analysis provides influencing factors for DOID:3393,
namely “coronary artery disease”, where plaque conglomerates along the inner
walls of an artery reducing the blood supply to cardiac muscles [125]. As part
of the feature selection, we determine centimetres (height), age, blood type,
kilograms (weight), as well as several single-nucleotide polymorphisms (SNPs)
markers and the patient’s drug intake as interesting features for the logistic
regression. The attribute coefficients are given as weights in Table 6.4 to in-
fluence the likelihood of coronary artery disease. Given the initial information,
the reader will quickly notice that the patients’ age, weight, and height are sig-
nificant predictors of DOID:3393. A link between blood type, drug usage, and
coronary artery disease can also be discovered.

While only depending on perturbation or suppression for anonymisation, the
coefficients shift toward one feature, which is not surprising given these methods’
nature. Compartmentation keeps most of the features. However, re-weights them
slightly differently. The composition of weights performs the best with deviations
10 The coverage corresponds to the percentage of rows needed to be transformed for

the present quasi-identifier.
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Table 6.4: Logistic regression coefficients as scaled weights for the given at-
tributes as features

Attribute Original
coeffi-
cients

Compo-
sition
coeffi-
cients

Compart-
mentation
coeffi-
cients

Pertur-
bation
coeffi-
cients

Suppression
coeffi-
cients

Age 100.00 100 32.99 0 0.05

Centimeters 49.44 37.48 100 100 6.8

drug_0 63.38 0 4.3 0 100

BloodType 33.96 8.82 45.06 0 0.05

Kilograms 50.53 62.29 24.25 0 0

snp_0 0 0 0 0 0

drug_1 0 0 0 0 0

drug_2 0 0 6.4 0 0

of 10% to 20%. Table 6.5 delineates the type I and type II errors for predicting
coronary artery disease.

Table 6.5: Type I and type II errors for predicting coronary artery disease

False Positives False Negatives

Original 0.05 0.01

Composition A 0.08 0.021

Compartmentation 0.11 0.025

Perturbation 0.23 0.15

Suppression 0.21 0.14

Generalisation 0.10 0.072

This proves the previous results of the use-case agnostic evaluation that com-
partmentation introduces much better data quality. Also, in composition with
existing approaches, the best possible anonymisation results can be achieved.

Besides publishing the data basis, we also make the anonymised dataset pub-
licly available, engaging the community to review the results [136]. Since there
remain no unique tuples from the original dataset, homogeneity and background
knowledge attacks are significantly exacerbated.
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Table 6.6: Data transformation sample for disease and SNP being combined a
quasi-identifier

(a) Before processing

City Disease SNP ..

.. .. ..

Bad Sülze DOID:12361 rs104894270 ..

Bad Sülze DOID:12361 * ..

Bad Sülze DOID:1024 rs104894503 ..

.. .. ..
(b) After processing

City Disease SNP ..

.. .. ..

Bad Sülze DOID:12361 n/a ..

Bad Sülze n/a rs104894503 ..

Bad Sülze n/a rs104894270 ..

Bad Sülze DOID:1024 n/a ..

.. .. ..





7

Overarching Evaluations

As each chapter’s evaluation focuses on comparing the new contribution and
its specific comparison to related work, the overarching evaluation provides an
overview and delineate the consortium of contributions among shared metric. As
some of the contributions originate in different processing steps or methodology,
not all angles can be compared.

7.1 Experimental Hardware

The experiments performed in the following utilised a large compute cluster,
which is equipped with the latest Intel Xeon E5-2698 v4 (160 CPU cores),
760GB RAM, and ten Nvidia Tesla V100. Each of these GPU units has 5120
CUDA cores and a combined Tensor performance of 1120 TFlops. The execution
environment is limited to a single dedicated Tesla V100 and ten CPU cores unless
classified otherwise. Hardware requirements, including the CPU cache hierarchy,
are detailed in Appendix B.

7.2 The Dataset

For algorithmic measurements, a reproducible semi-synthetic dataset has been
assembled. Similar to the evaluation dataset in Sections 4.5, 5.4 and 6.3 various
sources have been explored and concatenated. These data repositories includ-
ing official government websites, public statistical data and datasets as part
of previous publications to extract raw data and mimic their attribute distri-
bution. A full list of all attributes is accessible on the Github website. [136].
Given its nature, the publicly available dataset includes inferences and various
quasi-identifiers (QIDs), which increase over the number of available describing
attributes highlighted in Figure 7.1.
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Fig. 7.1: QID quantity evolution over growing describing attributes

7.3 Experiments

For the final and overarching evaluation, there are three main objectives to mon-
itor. First, the novel approaches shall demonstrate their soundness to discover
all quasi-identifiers. Second, involved data processing activities on a larger scale
shall be practical with reasonable efforts. Third, after data anonymisation, no
unique attribute patterns that allow a unique re-identification shall remain.

7.3.1 Anonymity Constraint

The precision of the novel approaches will be measured by the number of dis-
covered quasi-identifiers and compared against the total number of QIDs. Each
remaining unique attribute combination that serves as QID may lead to a suc-
cessful re-identification of its data owner, and therefore answers to the risk of
private data exposure.

Figure 7.2 depicts the total number of QIDs that are actually present in the
dataset as formalised in Chapter 3. Using the approaches from Chapter 4 sum-
marised as mp(m)UCC guarantees to find all of these actual QIDs. The Bayes
approach from Chapter 5 achieves similar results dependent on the designated
threshold, yet they carry the burden of additional false positives as visualised
in Figure 7.2.

However, the important observation that can be derived is that all new ap-
proaches guarantee the correct identification of QIDs in the sample dataset and
therefore reliably level the next steps for their necessary removal or fracturing.
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7.3.2 Algorithmic Complexity & Runtime

The next observation angle addresses the runtime implications of algorithmic
complexity. As part of the detailed comparison within each chapter, the reader
gained advanced insights into the novel methodology against its specific base-
lines. Figure 7.3 offers a summarised perspective for various introduced contribu-
tions. While the exact mpUCC search scales similar to the baseline by Braghin
et al. [20], the vectorised optimisations clearly outperform previous work by
magnitudes also in high-dimensions.
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Fig. 7.3: Run time comparison for QID search

Changing the angle from pure quasi-identifier candidate processing to the anon-
ymisation compute step removes the same attribute combinations identified as
QIDs. Figure 7.4 delineates a comparison between established syntactic data an-
onymisation techniques and the new ones. For a fair comparison, all algorithms
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ran on exactly the same hardware resources. Both attribute compartmentation
and Bayesian network achieve good results when comparing to well-proven gen-
eralisation. Given the nature of the Bayesian network’s state-space explosion,
its runtime decreases for a large column amount. Yet, reminding the reader
on Bayesian GPU acceleration contribution that significantly accelerates model
training, particularly in high-dimensions (see Section 5.4).
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Fig. 7.4: Run time comparison of designated syntactic data anonymisation tech-
niques

From an algorithmic complexity, estimating the worst-case runtime essentially
confirms the original NP-hard nature of the “Find-QID” problem (see Chap-
ter 3). This can be expressed in the following manner:

Definition 11. Big O Notation:
Let f, g : Ω −→ R be functions on a subset Ω ⊂ R of real numbers. Asymptot-
ically, we write f(x) = O(g(x)) as x → ∞, if there are constants c > 0 and
x0 ∈ Ω, such that |f(x)| ≤ c · |g(x)| for all x ≥ x0. This indicates, that f grows
slower than g and g bounds f from above for all sufficiently large x.

For instance, O(n) represents an algorithmic approach with a linear complexity,
while T (n) = O(n2) denotes a quadratic one.

For the given approaches, the exact discovery of QIDs takes nearly O(2n) which
is indicated in Figure 7.3 also. As previously discussed, reducing the search to the
minimal QIDs as mpmUCCs, a complexity of roughly O(2n/2) = O(2n−1) can
be assumed. For optimisation approaches, the same worst-case remains, yet the
actual compute runtime is significantly accelerated through the contributions
described in Chapter 4 and Chapter 5.
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With the identification of attribute-value combinations serving as QIDs, the
anonymisation approaches for mitigation become interesting. As the best in
class mechanism for time complexity remains suppression. Along with the lin-
ear runtime, suppression also introduces the highest possible information-loss
through removing the designated information. The algorithmic opposite would
be a generalisation, which suffers an exponential runtime due to the iterative and
incremental processing nature of aggregating and re-evaluating new group sizes
for compliance. As a consequence of the additional compute effort, the lowest
information-loss can be achieved (see Figure 7.4). The novel attribute compart-
mentation mitigates same compute complexity to the well-known problem of
searching for max cliques in a graph structure. Moon et al. showed that for every
n-vertex graph 3n/3 maximal cliques exist [114]. The Bron–Kerbosch algorithm
introduced by [22] can be used to find the maximal cliques in O(3n/3) [172],
wherefore the time complexity of compartmentation is O(3n/3) ≈ O(1.4422n)
as delineated in Figure 7.4. Still, the time complexity has been reported to be
faster in practice [26, 59].

In sum, the runtime results indicate quite impressive compute speedups. These
acceleration combine to reduce data processing efforts from original hours and
minutes to a few seconds compute in total as depicted in Figure 7.3. Running
anonymisation queries in short time windows while guaranteeing the absence of
QID and therefore making re-identification impractical is one of the targeted
key objectives.

7.3.3 Data Quality (Information Loss)

Information loss is one of the most important criteria for anonymisation tech-
niques next to their privacy guarantees and runtime. The more an approach
alters the origin dataset, the higher the information loss can be expected. That
information-loss can be measured and monitored either through some data qual-
ity scores or through the number of attribute-value alternations. Often, the latter
of attribute value alternations correlates to the runtime since the more often an
algorithm has to adjust designated attributes values, the slower its runtime is.
Particular with iterative and incremental characteristics of algorithms like in
the case of generalisation, attribute value alterations are visible.

To calculate the data score itself, we orient ourselves towards common proce-
dures and create a data score based on three factors. The first indicator is the
number of unique values – the more, the better. Since duplicate values are better
than none, each duplicated data value is scored with
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tanh(1/x) = sinh(1/x)
cosh(1/x) (7.1)

where x is the number of duplicates per unique value. A falsified (not aggregated)
value is penalised by considering the distance to the original one according to

1 − distance
original value (7.2)
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Fig. 7.5: Data score comparison

Figure 7.5 demonstrates this as data score over the increasing number of columns
and describing attributes. In this chart, the quicker an evolution reaches higher
data scores, the better the approach is suitable. Suppression represents a pretty
radical approach and therefore suffers the most information loss represented
through low score values. While Figure 7.5 offers a comparison to established
syntactic data anonymisation methods, Figure 7.6 delineates a selection of the
novel methodologies against the best case of the original, untreated dataset.

Guaranteeing privacy, as we know, is a balance to losing information, yet this
ratio differs quite intensively between available algorithms. Suppression as a
methodology is more radical and therefore suffers higher information-loss while
compartmentation maintains more information value (see Figure 7.5). Conse-
quently, the drawbacks rest in data redundancy given the described nature from
Chapter 6.

However, the search for quasi-identifier is not only an integral part of data
anonymisation but also for de-anonymisation or re-identification attacks. The
next section will showcase the usage of described optimisations and approaches
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Fig. 7.6: Data score comparison of novel approaches

to re-identify individuals in a social media dataset about the US Presidential
Election 2020 tweets to demonstrate our contributions’ efficiency.

7.4 Re-Identification of Individuals Tweets in US
Presidential Election 2020 Dataset

The previous evaluation results indicate a novel opportunity to ensure pri-
vacy while minimising information-loss. Yet, the same methodology can be
flipped and used to attack existing, published datasets to re-identify individ-
uals if not processed correctly in the first place. Particularly against proba-
bilistic approaches, the sheer compute power can be used to easily brute-force
de-anonymisation by try-and-error linkage guessing. Two examples should illus-
trate the successful utilisation of the accelerated QID discovery as a basis for
de-anonymisation.

Figure 5.10a shows how the latest contributions make it possible to process 2100

attribute combinations for QID discovery at the touch of a finger. As a first
sample, we looked at a publicly available social media dataset with more than
20 million entries about the 2020 US Presidential Election [154]. The hashtags
“#USAelection” or “#NovemberElection”, as well as at least one of the following
parties keywords, were used as selection criteria:

• Democratic Party: @DNC OR @TheDemocrats OR Biden OR @JoeBiden
OR “Our best days still lie ahead” OR “No Malarkey!”

• Republican Party: #MAGA2020 OR @GOP OR Trump OR @POTUS
OR @realDonaldTrump OR Pence OR @Mike_Pence OR @VP OR “Keep
America Great”
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Table 7.1: US Presidential Election 2020 tweet dataset characteristics [154]

Attribute Description

Created-At Exact creation time of the tweet

From-User-Id Unique ID of the user that sent the tweet

To-User-Id Unique ID of the user that tweet sent to

Language Language of tweets that are coded in ISO 639-1

Retweet-Count number of retweets

PartyName The Label showing which party the tweeting is about.
[Democrats] or [Republicans] if the tweet contains any key-
word

Id Unique ID of the tweet

Score The sentiment score of the tweets. A positive (negative)
score means positive (negative) emotion.

Scoring String Nominal attribute with all words taking part in the scoring

Negativity The sum of negative components

Positivity The sum of positive components

• Green Party: @GreenPartyUS OR @TheGreenParty OR “Howie Hawkins”
OR @HowieHawkins OR “Angela Walker” OR @AngelaNWalker

• Libertarian Party: @LPNational OR “Jo Jorgensen” OR @Jorgensen4POTUS
OR “Spike Cohen” OR @RealSpikeCohen

This dataset consists of 11 describing attributes that specify roughly 20 million
data records (see Table 7.1). As we have learned, the search for quasi-identifiers
can be applied to re-identify individuals as well, wherefore we use the exact
search algorithm from Chapter 4 in this instance. The full algorithmic execution
takes approximately 2.315s on the same experimental hardware cluster described
earlier. As a result, we can re-identify individuals based on unique attribute
combinations like their posting day, time, keywords and retweet count.

The following record is one of those outliers discovered in the available dataset
(see Table 7.2). Using the unique attribute value tuples that form a quasi-
identifier, one can link those to a single Twitter account that identifies Kristine
A. from southern California.

We have removed the full last name for privacy reasons. Another demonstrating
reference is Cameron R. from Mount Vernon, NY. Cameron completed Boston
College as an undergrad in 2019 with a major in Computer Science and a minor
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Table 7.2: Quasi-identifiers in Kristine’s tweet data

Attribute Value

Created-At 9/15/20 7:05 AM

From-User-Id 929777987892928514

To-User-Id -1

Language en

Retweet-Count 2578.0

PartyName Democrats

Id 1305719270572085249

Score -0.6410256410256411

Scoring String destroy (-0.64)

Negativity 0.6410256410256411

Positivity 0

in Art History, as his profile states. He frequently uses his Twitter’s Android
app or the mobile website version as it appears.

There are more re-identification instances, but we keep it to the sample as it
already proves the power of the contributed quasi-identifier search and incorpo-
rated optimisations.

Table 7.3: Quasi-identifiers in Cameron’s tweet data

Attribute Value

Created-At 7/1/20 7:44 PM

From-User-Id 950208325244870656

To-User-Id -1

Language en

Retweet-Count 2347.0

PartyName Republicans

Id 1278368973134999552

Score 0.025641025641025644

Scoring String matter (0.03)

Negativity 0.0

Positivity 0.025641025641025644
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7.5 Discussion

This work formalises the “Find-QID” problem and discusses methods to resolve
the same data anonymisation challenge for high-dimensional datasets. Simul-
taneously, a variety of optimisation approaches have been introduced and in-
dividually evaluated against established algorithms. As part of the overarching
evaluation, we compared the different archetypes of finding quasi-identifiers and
eliminating them in a second step. Each of the methods has different weights
on runtime complexity and information-loss. Yet, all contributions guarantee
the absence of QIDs and, therefore, can offer anonymity constraints in high-
dimensions, which have been impractical before.

For quasi-identifier discovery, the runtime has been reduced from minutes and
hours to a few seconds without compromising privacy. The same methodologies
might not accelerate execution time on small datasets due to their nature but
scale very well, as shown in the previous experiments.

While all analysed anonymisation approaches have their individual advantages
and disadvantages, they can be differentiated in terms of time complexity,
storage needs and data quality. Based on the previous findings, optimal pri-
vacy treatment methods can be chosen based on the number of affected rows
within each quasi-identifier tuple. Suppression performs well on data with minor
amounts of outliers where values cannot be generalised effectively. In contrast,
compartmentation suffers higher information-loss than generalisation yet out-
performs the same on its time complexity. Perturbation and generalisation only
work for numeric values and not categorical attributes, while compartmentation
and suppression are flexible regarding the data type. Perturbation falsifies the
data values, and its execution time behaves similarly to suppression, but with a
significant offset, albeit producing a slightly better data score. Unlike compart-
mentation and generalisation, both perturbation and suppression achieved data
scores that constitute a dramatic loss of data quality. While a generalisation
scheme’s runtime increases impractically fast with the number of attributes,
compartmentation presents an excellent trade-off between time complexity and
data quality.

To get there, quasi-identifiers have to be discovered reliably and efficiently.
We introduced, analysed and discussed different techniques and optimisation
schemes to evaluate QID candidates and ensure their detection. Benchmarked
against the latest contribution patented by Braghin et al. [20], the exact search
scheme performs worse and the mp(m)UCC equivalent in respect to runtime.
Finally, the GPU accelerated approach outperforms state-of-the-art by magni-
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tudes and enables a whole new privacy attack vector on previously published
datasets as demonstrated in Section 7.4.

In sum, the “Find-QID” problem remains an NP-hard, W[2]-complete prob-
lem that is fixed-parameter tractable. Presented and discussed optimisation
schemes alleviate the runtime symptoms for the current understanding of high-
dimensions. Yet, as data sizes are continuously rising, the problem might surface
in the future again.





8

Conclusions

In this work, we addressed the problem of publishing highly sparsely popu-
lated, multi-attribute, high-dimensional data in a privacy-preserving manner. As
data-gathering techniques evolve, more and more describing attributes become
available, forming datasets with many rows and columns. Data anonymisation
processing to avoid privacy-violating inferences in such datasets is complicated
and selected anonymisation methods are NP-hard.

As part of our work, we formalised the complexity of discovering quasi-identifiers
(QID) as “Find-QID” problem due to the immense diversity of information. A
sequence of reductions to the Hitting-Set-Problem indicates that the complete
absence of QIDs and inferences is W[2]-complete or worse. This classification for-
tifies previous testimonies that achieving data anonymisation in certain settings
like genome sequencing due to their high-dimensions is currently impractical.
To solve this, we will summarise our contributions in the following.

8.1 Summarised Contributions

With the newly W[2]-complete classification of the “Find-QID” problem and
its labelling as fixed-parameter tractable (FPT), we know that the first step of
privacy-preserving data sharing leads to a superpolynomial runtime. FPT al-
lows efficient algorithm for small values of the fixed parameter, but not in large,
high dimensions. For high-dimensional datasets, we showed that this runtime
quickly becomes impractical to process due to the high combinatorial count of
QID candidates under verification. To compensate for such compute issue, we
discussed the method of reducing the search space to minimal quasi-identifiers
that bisects the candidate’s amount. Additionally, we introduced greedy sorting
of the candidate queue based on tuple characteristics to accelerate processing by
quicker finding quasi-identifiers in the search tree and therefore eliminating the
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entire tree branch. For both approaches, experiments confirmed their usability
and theoretical improvements. The most significant advancement yet is achieved
by vectorising the search algorithm and utilising massive-parallelisation through
GPU hardware which outperforms previous optimisations by magnitudes. De-
spite this complexity, we showed that the discovery of QID can be achieved
reliably for large data.

For privacy-preserving data sharing, one risk relies upon the presence of data
inferences. Attackers can use data inferences combined with auxiliary data to
draw conclusions and derive private information for de-anonymisation and re-
identification attacks. Quasi-identifiers (QID) can serve as such inferences as
well. To find data inferences reliably, we presented a model of utilising Bayesian
inferences. Yet, generating Bayesian networks and sampling them is NP-hard.
Even approximate approaches require much computation as Bayesian networks
generate a new node for each unique attribute value, resulting in a state-space
explosion for high-dimensional datasets. For this purpose, we proposed multiple
novel methodologies of discovering and eliminating privacy-violating inferences
in high-dimensional datasets. To aggregate such a state-space explosion, we
have presented and evaluated the aggregation strategy from multigrid context
to aggregate nodes or inferences being in all probability, reducing the Bayesian
network in size. As a second venue, we have contributed a vectorised algorithm
to calculate Bayesian inferences. While experiments confirm the acceleration due
to the mathematical aggregation of nodes, the vectorisation and its massive par-
allelisation through GPU hardware outperform previous optimisations. In fact,
inferences can be practicably achieved even for large, high-dimensional datasets
without the need for supercomputers. As the evaluation and experiments show-
cased, even near real-time runtime for currently impractical applications can be
achieved.

At the same time, we demonstrated how such runtime optimisation could be
abused to attack an already published dataset. To illustrate this potential, we
exemplary re-identified two individuals, Kristine A. and Cameron R., in a Twit-
ter dataset published on the US Presidential Election 2020.

Finally, this work extended, generalised, implemented, and evaluated the deter-
ministic anonymisation methodology, attribute compartmentation. While estab-
lished syntactic data anonymisation approaches alter the data value itself, at-
tribute compartmentation promises sanitised datasets without remaining quasi-
identifiers while minimising information-loss. This is being realised by breaking
the linkage in attribute combinations forming quasi-identifiers in overlapping
partitions without the possibility of directly re-joining. Ultimately, the attribute
values remain untouched and the information-loss is minimised. The conducted
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experiments proved its functionality in real-life settings. We further showcased
a medical use case study jointly with digital health experts to demonstrate that
attribute compartmentation is suitable for everyday use and, as a side effect,
even thwarts base rate neglect.

8.2 Open Problems

Reflecting on the past contributions of this work, three venues for future activ-
ities can be derived.

One approach that promised significant compute uplift has been vectorised or
tensorised GPU-calculations. As we have briefly experimented with a multi-GPU
setup, an in-depth benchmarking of certain hardware limitations would be in-
teresting, especially as shifting data across the motherboard bus and VRAM for
a large dataset is still limited. Horizontal scaling of GPUs remains restricted to
the motherboard bus I/O. Therefore, a first venue can quantify these restrictions
and elaborate on initiatives similar to utilising dictionary encoding for L1-L2
CPU cache optimisations to maximise direct GPU memory capacity. Appreci-
ating that the experiments in this work have not nearly utilised available GPU
memory by 50%, we expect the trajectory for large memory will quickly fortify.

A second venue for future activities may address extending practical insights on
real-world scenarios similar to the previous digital health experiments we have
provided. Kessler et al. [85] have contributed to implementing research from the
privacy community in enterprise systems. Yet, there is still a significant gap from
theory to practice resulting in an actual struggle to realise privacy standards
for organisations. A detailed, quantitative survey on industry perspectives and
implementation hurtles may be desired to start bridging the gap and overcome
these implementation issues.

The third and final open opportunity is the perspective of additional side ef-
fects due to data anonymisation. We discussed if syntactic data anonymisation
may foster base rate neglects in a digital health setting as part of this work.
Expanding these insights on other application fields and further quantifying an-
onymisation effects on analytic queries would be interesting, especially towards
causal inference and other fallacies.
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A

Dataset Characteristics

Table A.1: Exemplary list of the 5 distinct countries by count

Country Amount

DE 850000

NO 50000

FR 50000

IT 50000

Other 19

Fig. A.1: Data characteristics: Distribution of countries
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Table A.2: Exemplary list of the 9 distinct blood types by count

BloodType Amount

O+ 365101

A+ 263196

B+ 225406

AB+ 50263

O- 43200

A- 34516

B- 13881

AB- 4437

Other 19

Fig. A.2: Data characteristics: Distribution of bloodtypes
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Table A.3: Sampled list of the 83 distinct heights by count

Height Amount

... ...

154 3523

165 27051

158 3598

177 18480

184 17448

171 34850

183 3475

161 19465

156 3616

... ...

Fig. A.3: Data characteristics: Distribution of heights
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Table A.4: Sampled list of the 1487 distinct weights by count

Weight Amount

... ...

102.8 268

73.9 297

64.1 303

116.4 12

79.0 308

65.0 292

94.1 317

105.7 866

78.9 278

54.2 823

76.5 1626

... ...

Fig. A.4: Data characteristics: Distribution of weights
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Table A.5: Sampled list of the 14184 distinct available firstnames by count

Firstname Amount

... ...

Robert 3755

Emin 58

Sabrien 5

Gayle 32

Deidre 2

Lincoln 201

Aletta 4

Davita 1

Maeve 56

Ishak 9

Andy 68

Erdal 4

Lodewijk 8

Thorben 3

Martine 384

... ...
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Table A.6: Sampled list of the 31409 distinct available surnames by count

Surname Amount

... ...

Koval 2

Main 7

Ølmheim 1

McNatt 4

Hindman 2

Wynyard 11

Røkenes 8

de Best 6

Mucha 2

Bischof 9

Laboissonnière 209

Knepp 1

Vervuurt 5

Domhof 7

Beyer 726

Troup 9

de Schipper 11

Terwilliger 2

Baert 4

... ...
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Table A.7: Sampled list of the 23560 distinct available cities by count

City Amount

... ...

Podresca 3

Scomigo 3

Sant’Elpidio Morico 5

Beano 5

Barbata 7

Attenkirchen 103

Munningen 69

San Giorgio Scarampi 3

Emmerting 59

Bühlertal 59

Pergine Valdarno 6

Vestenanova 2

Mörlen 50

Neulehe 64

Bidingen 50

Penzing 47

Capece Bax 4

Veppo 1

Fratta 4

... ...
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Table A.8: Sampled list of the 156 distinct states by count

State Amount

... ...

Como 665

Languedoc-Roussillon 1460

Ascoli Piceno 388

Picardie 896

Bretagne 1011

Biella 333

Trento 1170

Verona 765

Guadeloupe 714

Saarland 4801

Aosta 367

Genova 668

Piacenza 369

Hessen 22552

Nordrhein-Westfalen 69915

Crotone 125

Cremona 447

Gorizia 164

Limousin 540

Campobasso 312

Udine 690

Ragusa 99

Brindisi 115

Caserta 624

... ...
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Table A.9: Sampled list of the 1031 distinct companies by count

Company Amount

... ...

Block Distributors 955

Sunny Real Estate Investments 943

Buena Vista Garden Maintenance 936

Noodle Kidoodle 910

Sportswest 1006

The Network Chef 975

Liberty Wealth Planners 942

American Appliance 914

Wickes Furniture 987

The Flying Hippo 937

Paul Harris 1001

Earthworks Yard Maintenance 993

AJ Bayless 981

Liberty Wealth Planner 986

Endicott Johnson 935

Warner Brothers Studio Store 998

Matrix Architectural Service 974

... ...
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Table A.10: Sampled list of the 113 distinct diseases by count

Disease Amount

... ...

DOID:3121 6150

DOID:635 4315

DOID:2994 7073

DOID:12995 2987

DOID:10941 3615

DOID:175 6525

DOID:10534 11147

DOID:11239 28

DOID:1612 4309

DOID:11476 4366

DOID:13241 8092

DOID:0050156 6459

DOID:12930 7917

DOID:11949 1502

DOID:2596 6817

DOID:3083 13093

DOID:2174 2866

DOID:4606 5656

DOID:1192 812

DOID:1312 6419

DOID:4989 14179

... ...



131

Table A.11: Sampled list of the 1802 distinct SNPs by count

SNP Amount

... ...

rs104894725 1323

rs10512437 23

rs104886099 195

rs104894664 434

rs104894488 563

rs104886415 385

rs104894757 342

rs10505128 26

rs10519774 3

rs104893692 482

rs104893683 516

rs104886112 224

rs10455872 649

rs104895085 197

rs104895472 313

rs104894810 254

rs104886235 256

rs10490924 12770

rs104886381 367

rs104893924 1973

rs104886300 311

rs104894229 6887

rs104893775 4139

rs10499271 101

... ...
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Experimental Hardware Specifications

1 # cat /proc/ cpuinfo

2 processor : 159

3 vendor_id : GenuineIntel

4 cpu family : 6

5 model : 85

6 model name : Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz

7 stepping : 4

8 microcode : 0 x2006a08

9 cpu MHz : 1296.240

10 cache size : 28160 KB

11 physical id : 3

12 siblings : 40

13 core id : 26

14 cpu cores : 20

15 apicid : 245

16 initial apicid : 245

17 fpu : yes

18 fpu_exception : yes

19 cpuid level : 22

20 wp : yes

21 flags : fpu vme de pse tsc msr pae mce cx8 apic

sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr

sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm

constant_tsc art arch_perfmon pebs bts rep_good nopl

xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq

dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16

xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt

tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm

3 dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_ppin

intel_pt ssbd mba ibrs ibpb stibp tpr_shadow vnmi

flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2

smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq

rdseed adx smap clflushopt clwb avx512cd avx512bw

avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc

cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku

ospke md_clear spec_ctrl intel_stibp flush_l1d
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1 # cat /proc/ meminfo

2 MemTotal : 790944916 kB

3 MemFree : 317023780 kB

4 MemAvailable : 571409388 kB

5 Buffers : 5364 kB

6 Cached : 234214360 kB

7 SwapCached : 18072 kB

8 Active : 251551836 kB

9 Inactive : 167219424 kB

10 Active (anon): 183220292 kB

11 Inactive (anon): 1650304 kB

12 Active (file): 68331544 kB

13 Inactive (file): 165569120 kB

14 Unevictable : 8220 kB

15 Mlocked : 8244 kB

16 SwapTotal : 33411064 kB

17 SwapFree : 33352184 kB

18 Dirty: 2316 kB

19 Writeback : 0 kB

20 AnonPages : 184536632 kB

21 Mapped : 3919356 kB

22 Shmem: 312700 kB

23 Slab: 28574828 kB

24 SReclaimable : 21803960 kB

25 SUnreclaim : 6770868 kB

26 KernelStack : 310496 kB

27 PageTables : 869416 kB

28 CommitLimit : 428883520 kB

29 Committed_AS : 206315436 kB

30 VmallocTotal : 34359738367 kB

31 VmallocUsed : 4005912 kB

32 VmallocChunk : 33752440564 kB

33 Percpu : 1072128 kB

34 HardwareCorrupted : 0 kB

35 AnonHugePages : 156755968 kB

36 Hugepagesize : 2048 kB

37 DirectMap4k : 14077896 kB

38 DirectMap2M : 416495616 kB

39 DirectMap1G : 375390208 kB
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1 # lscpu

2 Architecture : x86_64

3 CPU op -mode(s): 32-bit , 64- bit

4 Byte Order: Little Endian

5 CPU(s): 160

6 On -line CPU(s) list: 0 -159

7 Thread (s) per core: 2

8 Core(s) per socket : 20

9 Socket (s): 4

10 NUMA node(s): 4

11 Vendor ID: GenuineIntel

12 CPU family : 6

13 Model: 85

14 Model name: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40

GHz

15 Stepping : 4

16 CPU MHz: 1491.943

17 CPU max MHz: 3700.0000

18 CPU min MHz: 1000.0000

19 BogoMIPS : 4807.22

20 Virtualization : VT -x

21 L1d cache: 32K

22 L1i cache: 32K

23 L2 cache: 1024K

24 L3 cache: 28160K
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1 # hwinfo --short

2 cpu:

3 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz , 2400 MHz

4 graphics card:

5 nVidia 3D controller

6 Matrox VGA compatible controller

7 storage :

8 Intel Lewisburg SSATA Controller [AHCI mode]

9 Intel Lewisburg SATA Controller [AHCI mode]

10 Dell PERC H730P Adapter

11 Marvell 88 SE9230 PCIe SATA 6Gb/s Controller

12 QLogic Fibre Channel

13 network :

14 QLogic Ethernet controller

15 Dell iDRAC Virtual NIC USB Device

16 network interface :

17 eth0 Ethernet network interface

18 lo Loopback network interface

19 disk:

20 /dev/sda DELL PERC H730P Adp

21 /dev/sdb DELLBOSS VD

22 /dev/sdc Linux Virtual Floppy

(removed duplicate entries)

1 # cat /proc/ version

2 Linux version 3.10.0 -1127.19.1. el7. x86_64 (

mockbuild@kbuilder .bsys. centos .org) (gcc version 4.8.5

20150623 (Red Hat 4.8.5 -39) (GCC) ) #1 SMP Tue Aug 25

17:23:54 UTC 2020

1 # n v i d i a −s m i
2 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
3 | NVIDIA−SMI 4 5 5 . 4 5 . 0 1 D r i v e r V e r s i o n : 4 5 5 . 4 5 . 0 1 CUDA V e r s i o n : 1 1 . 1 |
4 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
5 | GPU Name P e r s i s t e n c e −M| Bus−Id Disp .A | V o l a t i l e Uncorr . ECC |
6 | Fan Temp P e r f Pwr : Usage /Cap | Memory−Usage | GPU−U t i l Compute M. |
7 | | | MIG M. |
8 |===============================+======================+======================|
9 | 0 T e s l a V100−PCIE . . . Off | 0 0 0 0 0 0 0 0 : 9B : 0 0 . 0 Off | 0 |

10 | N/A 31C P0 26W / 250W | 0MiB / 32510MiB | 0% D e f a u l t |
11 | | | N/A |
12 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
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1 # sudo lshw -C display

2 *- display

3 description : VGA compatible controller

4 product : Integrated Matrox G200eW3 Graphics

Controller

5 vendor : Matrox Electronics Systems Ltd.

6 physical id: 0

7 bus info: pci@0000 :03:00.0

8 version : 04

9 width: 32 bits

10 clock: 66 MHz

11 capabilities : vga_controller bus_master cap_list rom

12 configuration : driver = mgag200 latency =64 maxlatency

=32 mingnt =16

13 resources : irq :16 memory :91000000 -91 ffffff memory

:92808000 -9280 bfff memory :92000000 -927 fffff

14 *- display

15 description : 3D controller

16 product : GV100GL [Tesla V100 PCIe 32GB]

17 vendor : NVIDIA Corporation

18 physical id: 0

19 bus info: pci@0000 :25:00.0

20 version : a1

21 width: 64 bits

22 clock: 33 MHz

23 capabilities : bus_master cap_list

24 configuration : driver = nvidia latency =0

25 resources : iomemory :38200 -381 ff iomemory :38280 -3827 f

irq :723 memory :9 e000000 -9 effffff memory

:382000000000 -3827 ffffffff memory

:382800000000 -382801 ffffff

(removed duplicate entries)
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