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To my grandmother

"Dripping water hollows out stone,
not through force

but through persistence."
Ovid





Abstract
Our ability to predict the state of a system relies on its tendency to recur to states it has
visited before. Recurrence also pervades common intuitions about the systems we are most fa-
miliar with: daily routines, social rituals and the return of the seasons are just a few relatable
examples. To this end, recurrence plots (RP) provide a systematic framework to quantify the
recurrence of states. Despite their conceptual simplicity, they are a versatile tool in the study
of observational data. The global climate is a complex system for which an understanding
based on observational data is not only of academical relevance, but vital for the predurance
of human societies within the planetary boundaries. Contextualizing current global climate
change, however, requires observational data far beyond the instrumental period. The palaeo-
climate record offers a valuable archive of proxy data but demands methodological approaches
that adequately address its complexities. In this regard, the following dissertation aims at
devising novel and further developing existing methods in the framework of recurrence anal-
ysis (RA). The proposed research questions focus on using RA to capture scale-dependent
properties in nonlinear time series and tailoring recurrence quantification analysis (RQA) to
characterize seasonal variability in palaeoclimate records (‘Palaeoseasonality’).

In the first part of this thesis, we focus on the methodological development of novel
approaches in RA. The predictability of nonlinear (palaeo)climate time series is limited by
abrupt transitions between regimes that exhibit entirely different dynamical complexity (e.g.
crossing of ‘tipping points’). These possibly depend on characteristic time scales. RPs are
well-established for detecting transitions and capture scale-dependencies, yet few approaches
have combined both aspects. We apply existing concepts from the study of self-similar tex-
tures to RPs to detect abrupt transitions, considering the most relevant time scales. This
combination of methods further results in the definition of a novel recurrence based nonlinear
dependence measure. Quantifying lagged interactions between multiple variables is a com-
mon problem, especially in the characterization of high-dimensional complex systems. The
proposed ‘recurrence flow’ measure of nonlinear dependence offers an elegant way to char-
acterize such couplings. For spatially extended complex systems, the coupled dynamics of
local variables result in the emergence of spatial patterns. These patterns tend to recur in
time. Based on this observation, we propose a novel method that entails dynamically distinct
regimes of atmospheric circulation based on their recurrent spatial patterns. Bridging the
two parts of this dissertation, we next turn to methodological advances of RA for the study
of Palaeoseasonality. Observational series of palaeoclimate ‘proxy’ records involve inherent
limitations, such as irregular temporal sampling. We reveal biases in the RQA of time series
with a non-stationary sampling rate and propose a correction scheme.

In the second part of this thesis, we proceed with applications in Palaeoseasonality. A
review of common and promising time series analysis methods shows that numerous valuable
tools exist, but their sound application requires adaptions to archive-specific limitations and
consolidating transdisciplinary knowledge. Next, we study stalagmite proxy records from the
Central Pacific as sensitive recorders of mid-Holocene El Niño-Southern Oscillation (ENSO)
dynamics. The records’ remarkably high temporal resolution allows to draw links between
ENSO and seasonal dynamics, quantified by RA. The final study presented here examines how
seasonal predictability could play a role for the stability of agricultural societies. The Classic
Maya underwent a period of sociopolitical disintegration that has been linked to drought
events. Based on seasonally resolved stable isotope records from Yok Balum cave in Belize, we
propose a measure of seasonal predictability. It unveils the potential role declining seasonal
predictability could have played in destabilizing agricultural and sociopolitical systems of
Classic Maya populations.

The methodological approaches and applications presented in this work reveal multiple
exciting future research avenues, both for RA and the study of Palaeoseasonality.
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Zusammenfassung
Unsere Fähigkeit, den Zustand eines Systems vorherzusagen, hängt grundlegend von der Ten-
denz des Systems ab, zu früheren Zuständen zurückzukehren. Solche "Rekurrenzen" sind sogar
Bestandteil unserer Intuition und alltäglichen Erfahrungswelt: regelmäßige Routinen, soziale
Zusammentreffen and die Wiederkehr der Jahreszeiten sind hierfür nur vereinzelte Beispiele.
Rekurrenzplots (RPs) stellen uns in diesem Kontext eine systematische Methode zur Ver-
fügung, um die Wiederkehreigenschaften von Systemzuständen quantitativ zu untersuchen.
Obwohl RPs konzeptionell vergleichsweise simpel sind, stellen sie eine vielseitige Methode zur
Analyse von gemessenen Beobachtungsdaten dar. Das globale Klimasystem ist ein komplexes
System, bei dem ein datenbasiertes Verständnis nicht lediglich von rein akademischen Wert
ist – es ist viel mehr relevant für das Fortbestehen der Gesellschaft innerhalb der natürlichen
planetaren Grenzen. Um die heute beobachteten Klimaveränderungen allerdings in einen
langfristigen Kontext einzuordnen, benötigen wir empirische Daten, die weit über die Periode
hinaus gehen, für die instrumentelle Daten verfügbar sind. Paläoklimatologische Datenreihen
repräsentieren hier ein wertvolles Archiv, dessen Auswertung jedoch Analysemethoden er-
fordert, die an die Komplexitäten von paläoklimatologischen ‘Proxydaten’ angepasst sind. Um
einen wissenschaftlichen Beitrag zu dieser Problemstellung zu leisten, befasst sich diese Dok-
torarbeit mit der Konzeptionierung neuer Methoden und der problemstellungsbezogenen An-
passung bewährter Methoden in der Rekurrenzanalyse (RA). Die hier formulierten zentralen
Forschungsfragen konzentrieren sich auf den Nachweis zeitskalen-abhängiger Eigenschaften in
nichtlinearen Zeitreihen und, insbesondere, der Anpassung von quantitativen Maßen in der
RA, um paläosaisonale Proxydaten zu charakterisieren (‘Paläosaisonalität’).

Im ersten Teil dieser Arbeit liegt der Schwerpunkt auf der Entwicklung neuer methodischer
Ansätze in der RA. Die Vorhersagbarkeit nichtlinearer (paläo)klimatologischer Zeitreihen ist
durch abrupte Übergänge zwischen dynamisch grundlegend verschiedenen Zuständen erschw-
ert (so zum Beispiel das Übertreten sogenannter ‘Kipppunkte’). Solche Zustandsübergänge
zeigen oft charakteristische Zeitskalen-Abhängigkeiten. RPs haben sich als Methode zum
Nachweis von Zustandsübergängen bewährt und sind darüber hinaus geeignet, Skalenab-
hängigkeiten zu identifizieren. Dennoch wurden beide Aspekte bislang selten methodisch
zusammengeführt. Wir kombinieren hier bestehende Konzepte aus der Analyse selbstähn-
licher Strukturen und RPs, um abrupte Zustandsübergänge unter Einbezug der relevantesten
Zeitskalen zu identifizieren. Diese Kombination von Konzepten führt uns ferner dazu, ein
neues rekurrenzbasiertes, nichtlineares Abhängigkeitsmaß einzuführen. Die quantitative Un-
tersuchung zeitversetzter Abhängigkeiten zwischen zahlreichen Variablen ist ein zentrales
Problem, das insbesondere in der Analyse hochdimensionaler komplexer Systeme auftritt.
Das hier definierte ‘Rekurrenzfluß’-Abhängigkeitsmaß ermöglicht es auf elegante Weise, der-
artige Abhängigkeiten zu charakterisieren. Bei räumlich ausgedehnten komplexen Systemen
führen Interaktionen zwischen lokalen Variablen zu der Entstehung räumlicher Muster. Diese
räumlichen Muster zeigen zeitliche Rekurrenzen. In einer auf dieser Beobachtung aufbauenden
Publikation stellen wir eine neue Methode vor, mit deren Hilfe differenzierbare, makroskopis-
che Zustände untersucht werden können, die zu zentralen, zeitlich wiederkehrenden räumlichen
Mustern korrespondieren. Folgend leiten wir über zum zweiten Teil dieser Arbeit, indem wir
uns Anpassungen von Methoden zur Untersuchung von Paläosaisonalität zuwenden. Messrei-
hen paläoklimatologischer Proxydaten geben uns nur indirekt Informationen über die ihnen
zugrunde liegenden Klimavariablen und weisen inhärente Limitationen auf, wie zum Beispiel
unregelmäßige Zeitabstände zwischen Datenpunkten. Wir zeigen statistische Verzerrungsef-
fekte auf, die in der quantitativen RA auftreten, wenn Signale mit nichtstationärer Abtastrate
untersucht werden. Eine Methode zur Korrektur wird vorgestellt und anhand von Messdaten
validiert.

Der zweite Teil dieser Dissertation befasst sich mit angewandten Analysen von paläo-

vi



saisonalen Zeitreihen. Eine Literaturauswertung verbreiteter und potentiell vielversprechen-
der Zeitreihenanalysemethoden zeigt auf, dass es eine Vielzahl solcher Methoden gibt, deren
adäquate Anwendung aber Anpassungen an Klimaarchiv-spezifische Grenzen und Probleme
sowie eine Zusammenführung interdisziplinärer Fähigkeiten erfordert. Daraufhin untersuchen
wir an einem Stalagmiten gemessene Proxydaten aus der zentralen Pazifikregion als ein natür-
liches Archiv für potentielle Veränderungen der El Niño-Southern Oscillation (ENSO) während
des mittleren Holozäns. Die bemerkenswert hohe zeitliche Auflösung der Proxy-Zeitreihen
erlaubt es uns, Verbindungen zwischen der Ausprägung der ENSO und saisonalen Zyklen
herzustellen, wobei wir erneut Gebrauch von der RA machen. Die letzte Publikation in dieser
Arbeit untersucht, in wie fern die Vorhersagbarkeit saisonaler Veränderungen eine Rolle für die
Stabilität von Gesellschaften spielen könnte, deren Nahrungsversorgung auf Landwirtschaft
beruht. Die klassische Maya-Zivilisation erlitt zwischen 750-950 CE eine drastische Frag-
mentierung urbaner Zentren, die mit regionalen Dürren in Verbindung gebracht werden. Auf
Grundlage von saisonal-aufgelösten Proxydaten aus der Yok Balum Höhle in Belize, definieren
wir ein quantitatives Maß für saisonale Vorhersagbarkeit. Dies erlaubt Schlussfolgerungen
über die potentielle Rolle, die ein Verlust saisonaler Vorhersagbarkeit für die sich destab-
lisierenden agrarwirtschaftlichen und soziopolitischen Systeme der Maya gehabt haben kön-
nte.

Die methodischen Ansätze und Anwendungen in dieser Arbeit zeigen vielseitige, spannende
Forschungsfragen für zukünftige Untersuchungen in der RA und Paläosaisonalität auf.

vii





List of Publications

This dissertation is based on the following publications:

Main publications

(P1) Braun, T., Unni, V. R., Sujith, R. I., Kurths, J., & Marwan, N. (2021). Detection of
dynamical regime transitions with lacunarity as a multiscale recurrence quantification
measure. Nonlinear Dynamics, 104(4), 3955-3973. [1]

(P2) Braun, T., Kraemer, K. H., & Marwan, N. (2022). Recurrence flow measure of non-
linear dependence. accepted for EPJ ST

(P3) Mukhin, D., Hannachi, A., Braun, T., & Marwan, N. (2022). Revealing recurrent
regimes of mid-latitude atmospheric variability using novel machine learning method.
under review for Chaos

(P4) Braun, T., Fernandez, C. N., Eroglu, D., Hartland, A., Breitenbach, S. F., & Marwan,
N. (2022). Sampling rate-corrected analysis of irregularly sampled time series. Physical
Review E, 105(2), 024206. [2]

(P5) Kwiecien, O., Braun, T., Brunello, C. F., Faulkner, P., Hausmann, N., Helle, G.,
Hoggarth, J. A., Ionita, M., Jazwa, C., Kelmelis, S., Marwan, N., Fernandez, C. N.,
Nehme, C., Opel, T., Oster J. L., Perşoiu, A., Petrie, C., Prufer, K., Saarni, S. M.,
Wolf, A., Breitenbach, S. F. M. (2022). What we talk about when we talk about
seasonality–A transdisciplinary review. Earth-Science Reviews, 225, 103843. [3]

(P6) Fernandez, C. N., Braun, T., Fox, B., Hartland, A., Kwiecien, O., Pederson, C. L.,
Hoepker, S., Bernasconi, S., Hellstrom, J., Gázquez, F., French, A., Marwan, N., Im-
menhauser, A., Breitenbach, S. F. M. (2022). Mid-Holocene rainfall changes in the
southwestern Pacific. [4] in prep

(P7) Braun, T., Breitenbach, S. F. M., Skiba, V., Lechleitner, F., Ray, E., Baldini, L. M.,
Polyak, V. J., Baldini, J. U. L., Kennett, D. J., Prufer, K. M., & Marwan, N. (2022).
Decline in seasonal predictability potentially destabilized Classic Maya societies. under
review for Communications Earth & Environment

The following publications haven also been written in the process of this dissertation but will
not be considered in the following:

Other publications

(P8) Wolf, A., Ersek, V., Braun, T., French, A., McGee, D., Bernasconi, S., Skiba, V.,
Griffiths, M. L., Johnson, K. R., Fohlmeister, J., Breitenbach, S. F. M., Pausata, F. S. R.,
Tabor, C., Longman, J., Roberts, W. H. G., Chandan, D., Peltier, W. R., Salzmann,
U., Limbert, D., Trinh, D. A. (2022). Drivers of Holocene Southeast Asian monsoon
variability. submitted to Nature Communications

(P9) Haselhoff, T., Braun, T., Hornberg, J., Lawrence, B., Ahmed, S., Gruehn, D., Moebus,
S. (2022). Analysing interlinked frequency dynamics of the urban acoustic environment.
under review for Journal of Sound and Vibration

(P10) Haselhoff, T., Hornberg, J., Lawrence, B., Ahmed, S., Gruehn, D., Marwan, N., Moebus,
S., Braun, T. (2022). Complex frequency networks of the urban acoustic environment.
in prep

ix



Author contributions

In the following, I will list the contributions of all authors for each work discussed in this
thesis. Whenever an author has contributed to the writing of the original draft (‘Writing
(original draft)’), this automatically implies that the respective author has contributed to the
revisions of the manuscript, too. For co-authored publications, I add a short explicit summary
of my contribution.

(P1) T. Braun: Conceptualization, Method Development, Software, Analysis, Visualiza-
tions, Writing (original draft); V. R. Unni: Experiments and Data Retrieval, Visual-
izations, Writing (revision); R. I. Sujith: Experiments and Data Retrieval, Supervision,
Writing (revision); J. Kurths: Supervision, Writing (revision); N. Marwan: Conceptu-
alization, Method Development, Funding, Supervision, Writing (revision)

(P2) T. Braun: Conceptualization, Method Development, Software, Analysis, Visualiza-
tions, Writing (original draft); K. H. Kraemer: Conceptualization, Writing (revision);
N. Marwan: Conceptualization, Method Development, Funding, Supervision, Writing
(revision)

(P3) D. Mukhin: Conceptualization, Method Development, Software, Analysis, Funding,
Visualizations, Writing (original draft); A. Hannachi: Conceptualization, Method De-
velopment, Analysis, Visualizations, Writing (original draft); T. Braun: Analysis, Vi-
sualizations, Writing (original draft); N. Marwan: Funding, Visualizations, Supervision,
Writing (revision)

Explicit author contribution:
I have conducted the recurrence quantification analysis to obtain a well-interpretable
distinction of the atmospheric regimes based on their dynamical properties and designed
the corresponding hypothesis tests. I have generated the respective figures and written
the respective parts of the manuscript in the original draft. I have contributed to the
discussion and interpretation of results and revision of all versions of the manuscript.

(P4) T. Braun: Conceptualization, Method Development, Software, Analysis, Visualiza-
tions, Writing (original draft); C. N. Fernandez: Fieldwork and Data Retrieval, Analy-
sis, Visualizations, Writing (revision); D. Eroglu: Conceptualization, Analysis, Writing
(revision); A. Hartland: Fieldwork and Data Retrieval, Writing (revision); S. F. M. Bre-
itenbach: Fieldwork and Data Retrieval, Writing (revision), Supervision; N. Marwan:
Conceptualization, Method Development, Funding, Writing (revision), Supervision

(P5) Authors worked chapter-wise and revision/synthesis of the full manuscript was carried
out in plenum. I have written chapter 9 (Numerical tools for extracting seasonality
changes from palaeoenvironmental time series) and contributed ideas to the Introduction
and Discussion. Here, all authors are listed that contributed in particular to chapter 9
with their contributions to this chapter alone:
O. Kwiecien: Supervision, Writing (revision); T. Braun: Review of articles, Concep-
tualization, Software, Visualizations, Writing (original draft); N. Marwan: Conceptu-
alization, Funding, Supervision, Writing (revision); S. F. M. Breitenbach: Supervision,
Writing (original draft);

Explicit author contribution:
I have carried out an extensive literature review of methods and tools for extracting sea-
sonality from all archives covered in the review and wrote the corresponding chapter 9,
including figures and computations. Ideas from this process were also partly introduced
in the introduction and discussion.

x



(P6) C. N. Fernandez: Fieldwork and Data Retrieval, Conceptualization, Analysis, Visualiza-
tions, Writing (original draft); T. Braun: Method Development, Analysis, Visualiza-
tions, Writing (original draft); B. Fox: Conceptualization, Analysis, Writing (revision);
A. Hartland: Fieldwork and Data Retrieval, Writing (revision); O. Kwiecien: Field-
work and Data Retrieval, Supervision, Writing (original draft); C. Pederson: Writing
(revision); S. Bernasconi: Fieldwork, Experiments and Data Retrieval, Writing (revi-
sion); J. Hellstrom: Experiments and Data Retrieval, Writing (revision); F. Gázquez:
Experiments and Data Retrieval, Writing (revision); A. French: Experiments and Data
Retrieval, Writing (revision); N. Marwan: Method Development, Writing (revision); A.
Immenhauser: Writing (revision); S. F. M. Breitenbach: Fieldwork and Data Retrieval,
Conceptualization, Analysis, Supervision, Writing (original draft);

Explicit author contribution:
I have conceptualized and computed the (re-calibrated) seasonality proxy from the
greyscale record, performed the corresponding RA, generated the respective figures and
written the respective parts of the manuscript in the original draft. Furthermore, I
have actively contributed to the wavelet analysis and PCA. In particular, I modified
the hypothesis test for the wavelet analysis to account for irregular sampling. I have
contributed to the discussion and interpretation of results and revision of all versions of
the manuscript.

(P7) T. Braun: Conceptualization, Method Development, Software, Analysis, Visualizations,
Writing (original draft); S. F. M. Breitenbach: Conceptualization, Analysis, Visual-
izations, Supervision, Writing (revision); V. Skiba: Conceptualization, Analysis, Writ-
ing (revision); F. Lechleitner: Conceptualization, Analysis, Writing (revision) E. Ray:
Writing (revision) L. M. Baldini: Writing (revision) V. Polyak: Experiments and Data
Retrieval, Writing (revision); J. U. L. Baldini: Analysis, Writing (revision); D. Kennett:
Analysis, Writing (revision); K. M. Prufer: Conceptualization, Analysis, Writing (origi-
nal draft); N. Marwan: Conceptualization, Method Development, Funding, Supervision,
Writing (revision)

xi



Acknowledgements

No full justice can be done to this dissertation if it is regarded as the sole outcome of a
lonesome physicist sitting in his barred room, plagued by pandemic boredom and isolation.
Fortunetaly so! I need to pay credit to the great people – mentors, colleagues, friends, family
– who I have met along the way or who have accompanied me far beyond the very challenging
past three years. It was a time as turbulent and strenuous as it was exciting and enriching,
and I would not have made it all the way without these people who kept me sane.

First and foremost, I am deeply grateful to my advisor Dr. Norbert Marwan who has not
only helped me grow professionally but has always been supportive with his calm, compassion-
ate words even when crises beyond academia came crashing in. With the faith he put in me,
I learnt that scientific creativity does thrive on freedom, even under difficult circumstances.
I will not forget the caves in Sägistal and hope to return with you! I would further like to
thank Prof. Jürgen Kurths both for his long-sighted suggestions and the casual chats over a
cup of coffee. Thank you for welcoming me as a part of your multifaceted and fascinating
research group.

It is not an overstatement to say that if I had not met Dr. Seb Breitenbach, my doctoral
work would have neither been as insightful nor as fun. He became both a mentor and a
friend over the past three years and I would like to thank him for introducing me to the
world of speleothems, persuading me to join for the expedition to Siberia and countless other
opportunities and inspiring ideas. I also owe gratitude to him and Dr. Ola Kwiecien for
inviting me to the seasonality work shop in Bochum when I just started with my thesis. I
would not have met so many great new friends and colleagues if it were not for you!

Meeting new people (or, as the scientists call it, ‘networking’) and keeping in touch was
generally rather difficult in these troubled pandemic years. Thus, I am deeply grateful for all
those regular (semi-scientific) video calls that truly were silver linings in the pandemic routine.
In this context, I would like to thank Dr. Annabel Wolf, Dr. Cinthya Nava-Fernandez and
Vanessa Skiba for the fun and insightful, sometimes even paper-related, discussions. Another
thank you goes to my fellow Duisburger physicists, Dr. Tim Vranken, Henrik Bette and Lukas
Martinez, for the many virtual cups of coffee we shared. Here, I undoubtedly owe a special
thanks to Tim, since if it were not for you teaming up with me in our studies, I would probably
still be stuck solving obscure analytical math exercises today instead of submitting this thesis.

Luckily, there were even some terrific people I met along the way outside the virtual world.
I would like to thank Dr. Abhirup Banerjee, both a lab mate and a friend, for countless
intriguing and fun conversations. Many thanks to my office neighbour Shraddha Gupta for
always helping out with her great expertise – be it complex network or paperwork-related
– and many witty in-between-doors chats. At a time when the offices and hallways of PIK
felt particularly empy and inanimate, Vanessa Skiba suddenly showed up and somehow made
working a lot of fun again! Thank you very much for the engaging scientific discussions and
being the outspoken and fun colleague and friend you are.

Visiting different fascinating places should be a central part of anyone’s PhD experience.
I was blessed with some opportunities to do so, thanks to the people who invited me. I
would like to thank Prof. Alexander Feigin for welcoming me in his research group in Nizhny
Novogorod for two very enjoyable visits. These stays would not have been as insightful and
enriching if I had not met Dr. Dmitry Mukhin, Dr. Evgeny Loskutov, Dr. Andrey Gavrilov and
Aleksei Seleznev. Thank you for your hospitality, scientific discussions and shared beers. The
field trip to Botovskaya cave in Siberia was truly a highlight of my doctoral work. However,
it was the мощность of Dr. Stuart Umbo, Jade Robinson and Julia Homann that made this
experience so special. Thank you for flipping those logs with me.

I am deeply indebted to the Deutsche Forschungsgesellschaft (German Research Founda-

xii



tion) that founded my research (MA4759/11-1). I would also like to express my gratitude
to the Potsdam Institute for Climate Impact Research (PIK) for providing a motivating and
scientifically excellent working environment with its lush campus that has inspired many of
my research ideas. Not to be forgotten are Till Hollmann, Sophia Kostial and Gabriele Pilz
for always helping out with sometimes arduous administrative obstacles.

For the challenging task of proofreading this thesis, I have gathered a group of exception-
ally smart people, who I would like to thank here for their helpful suggestions: a big thanks
to Timo Haselhoff, Dr. Tim Vranken, Matheus Palmero, Dr. Stuart Umbo, Vanessa Skiba,
Max Brüggemann and Henrik Bette.

Mentioned last, but only to give special emphasis, I would like to express my deepest
gratitude to my friends and family. I will not go through all of your names, but having an
old and fantastic group of friends like you I share so much with has supported me far beyond
finishing this dissertation. Some of you who were exposed to an exceptional amount of my
scientific gibberish should, however, not go unmentioned: thank you Timo, Tjark, Camilla
and Max for listening to my countless drivels on recurrence plots. The importance of having
a relaxed chat and sometimes just letting work be work must not be overlooked: thanks a lot
to Malte for always being up for that. It is hard to tell if if I would have made it to this point
without Ines. You have accompanied and supported me on my journeys beyond measure and
for that, I am deeply grateful. Even though she will not be able to read this, I would like to
thank my grandmother. She showed me that curiosity is something that goes beyond age. At
last, my parents are the ones who always believe in me and have never ceased to encourage
me to surpass myself. Thank you.

xiii





Contents

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

I Introduction 1

1 Motivation 2

2 Main concepts 7

3 Research objectives 14

4 Organization of thesis 15

II Novel approaches in recurrence analysis 19

5 Detection of dynamical regime transitions with lacunarity as a multiscale
recurrence quantification measure 23
Tobias Braun, Vishnu R. Unni, R. I. Sujith, Norbert Marwan, Juergen Kurths
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Recurrence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Recurrence Lacunarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Dynamical Transitions in Synthetic Data . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Roessler System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Bistable Noise-Driven System . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Application to Thermoacoustic Instability Time Series . . . . . . . . . . . . . 36
5.4.1 Experimental Setup and Data Acquisition . . . . . . . . . . . . . . . . 37
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Recurrence flow measure of nonlinear dependence 43
Tobias Braun, K. Hauke Kraemer, Norbert Marwan
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Recurrence Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Application to Model Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Nonlinear Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.2 Uniform Time Delay Embedding . . . . . . . . . . . . . . . . . . . . . 47

xv



6.3.3 Non-uniform Time Delay Embedding . . . . . . . . . . . . . . . . . . . 52
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Revealing recurrent regimes of mid-latitude atmospheric variability using
novel machine learning method 55
Dmitry Mukhin, Abdel Hannachi, Tobias Braun, Norbert Marwan
7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Kernel principal component analysis . . . . . . . . . . . . . . . . . . . 57
7.1.2 Recurrence network partitioning . . . . . . . . . . . . . . . . . . . . . 59
7.1.3 Studying dynamical properties of the regimes . . . . . . . . . . . . . . 61
7.1.4 Method summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Data and calculation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.1 QG3 model time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.2 Reanalysis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.3 Distance metric, kernel and recurrence matrices . . . . . . . . . . . . . 64
7.2.4 Data weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.1 QG3 model time series . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Reanalysis data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Sampling rate-corrected analysis of irregularly sampled time series 77
Tobias Braun, Cinthya N. Fernandez, Deniz Eroglu, Adam Hartland, Sebastian F. M. Bre-

itenbach, Norbert Marwan
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 The (m)Edit-distance measure . . . . . . . . . . . . . . . . . . . . . . 80
8.2.2 Recurrence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 Segment size dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4 Sampling rate constrained surrogates . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.1 Constrained randomization . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4.2 Recurrence analysis of an AR(1)-process . . . . . . . . . . . . . . . . . 88

8.5 Real-world application: rainfall seasonality in the central Pacific . . . . . . . . 88
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

III Palaeoseasonality 95

9 What we talk about when we talk about seasonality – A transdisciplinary
review 99
Ola Kwiecien, Tobias Braun, Camilla Francesca Brunello, Patrick Faulkner, Niklas Haus-

mann, Gerd Helle, Julie A. Hoggarth, Monica Ionita, Chris Jazwa, Saige Kelmelis, Norbert
Marwan, Cinthya Nava-Fernandez, Carole Nehme, Thomas Opel, Jessica L. Oster, Aurel
Perşoiu, Cameron Petrie, Keith Prufer, Saija M. Saarni, Annabel Wolf, Sebastian F.M. Bre-
itenbach

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1.1 What we talk about when we talk about seasonality? . . . . . . . . . . 100

9.2 Numerical tools for extracting seasonality changes from palaeoenvironmental
time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2.1 Statistical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvi



9.2.3 Nonlinear time series analysis . . . . . . . . . . . . . . . . . . . . . . . 117
9.2.4 Methodological challenges and strategies . . . . . . . . . . . . . . . . . 119

9.3 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3.1 Compositional make-up of climate seasonality . . . . . . . . . . . . . . 120
9.3.2 Relevance of trans- and multidisciplinary approaches . . . . . . . . . . 121
9.3.3 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10 Mid-Holocene rainfall changes in the southwestern Pacific 123
Cinthya Nava-Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien,

Chelsea L. Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom,
Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, Sebastian F. M.
Breitenbach

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.2 Geographic and climatic setting . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.3.1 Stalagmite C132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3.2 Sampling for geochemical analyses . . . . . . . . . . . . . . . . . . . . 127
10.3.3 U-Th dating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3.4 Greyscale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3.5 Age-depth modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.3.6 Speleothem oxygen and carbon isotope analyses . . . . . . . . . . . . . 127
10.3.7 Isotope analysis of rain and dripwater . . . . . . . . . . . . . . . . . . 128
10.3.8 Trace element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.4.1 U-Th dating and age modelling . . . . . . . . . . . . . . . . . . . . . . 129
10.4.2 Greyscale record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.4.3 Oxygen and carbon isotopes record . . . . . . . . . . . . . . . . . . . . 130
10.4.4 Trace elements records . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.5.1 Principal component analysis (PCA) . . . . . . . . . . . . . . . . . . . 132
10.5.2 Seasonality determination . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.5.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.5.4 Recurrence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.6.1 Interpretation of environmental proxies . . . . . . . . . . . . . . . . . . 136
10.6.2 Climatic interpretation of the proxy time series . . . . . . . . . . . . . 138
10.6.3 Climatic interpretation of the proxy time series . . . . . . . . . . . . . 138

10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11 Decline in seasonal predictability potentially destabilized Classic Maya so-
cieties 143
Tobias Braun, Sebastian F. M. Breitenbach, Vanessa Skiba, Fanziska Lechleitner, Erin

Ray, Lisa M. Baldini, Victor J. Polyak, James U. L. Baldini, Douglas J. Kennett, Keith M.
Prufer, Norbert Marwan

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

11.2.1 Background climate and seasonal cycle . . . . . . . . . . . . . . . . . . 146
11.2.2 Seasonal rainfall predictability . . . . . . . . . . . . . . . . . . . . . . 147
11.2.3 Classic Collapse and rainfall seasonality . . . . . . . . . . . . . . . . . 147
11.2.4 Multidecadal rainfall variability, ITCZ dynamics and the tropical North

Atlantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xvii



11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IV Discussion 159

12 Conclusion 161

13 Synthesis 164

14 Outlook 168

Appendix 173

A Code implementations 175

B Supplementary material for Chapter 7: Recurrence flow measure of non-
linear dependence 177

C Supplementary material for Chapter 6: Revealing recurrent regimes of mid-
latitude atmospheric variability using novel machine learning method 179

D Supplementary material for Chapter 11: Sampling rate-corrected analysis
of irregularly sampled time series 185

E Supplementary material for Chapter 10: Mid-Holocene rainfall changes in
the southwestern Pacific 191

F Supplementary material for Chapter 12: Decline in seasonal predictability
as potential trigger of Terminal Classic Maya Collapse 197

Bibliography 211
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xviii



List of Acronyms

ACF . . . . . . . . . autocorrelation function
AO . . . . . . . . . . Arctic oscillation
AR(1) . . . . . . . . autoregressive process of first order
BP . . . . . . . . . . before present
CE . . . . . . . . . . Common Era
CWS . . . . . . . . continuous wavelet spectrum
COPRA . . . . . . COnstructing Proxy Records from Age models
CRP . . . . . . . . . Cross-Recurrence Plot
DLE . . . . . . . . . diagonal line artifacts
ENSO . . . . . . . . El Niño-Southern Oscillation
EOF . . . . . . . . . empirical orthogonal function
FNN . . . . . . . . . false nearest neighbours
HGT . . . . . . . . . geopotential height
IS . . . . . . . . . . Initial Series
ITCZ . . . . . . . . Intertropical Convergence Zone
JRRF . . . . . . . . joint recurrence rate fraction (accordance between two RPs)
KDE . . . . . . . . . Kernel Density Estimate
LFV . . . . . . . . . low frequency variability
LIA . . . . . . . . . Little Ice Age
LS . . . . . . . . . . Lomb Scargle
MHD . . . . . . . . Maya Hieroglyphic Database
MC . . . . . . . . . Monte Carlo
MCR . . . . . . . . most central realization
MI . . . . . . . . . . mutual information
(m)edit . . . . . . . modified edit distance measure
NAO . . . . . . . . . North Atlantic oscillation
NUTDE . . . . . . non-uniform time delay embedding
NTSA . . . . . . . . nonlinear time series analysis
PCA . . . . . . . . . principal component analysis
PC . . . . . . . . . . principal component
PCP . . . . . . . . . prior carbonate precipitation
PDF . . . . . . . . . probability density function
QG3 . . . . . . . . . three-level QG atmospheric model
RA . . . . . . . . . . Recurrence Analysis
RL . . . . . . . . . . Recurrence Lacunarity
RMSE . . . . . . . . root-mean-square errors
RP . . . . . . . . . . recurrence plot
RQA . . . . . . . . . recurrence quantification analysis
SFA . . . . . . . . . stream function anomalies
SNR . . . . . . . . . Signal to Noise Ratio
SRC . . . . . . . . . sampling-rate constrained
SSA . . . . . . . . . Singular Spectrum Aanalysis
SST . . . . . . . . . sea surface temperature
TC . . . . . . . . . . Tropical Cyclone

xix



TCC . . . . . . . . . Terminal Classic Collapse
TDE . . . . . . . . . time-delay embedding
TSA . . . . . . . . . time series analysis
UTDE . . . . . . . . uniform time delay embedding
U/Th . . . . . . . . ratio between thorium-230 and its radioactive parent uranium-234, used
for dating

xx



List of Symbols

α . . . . . . . . . . . significance level, or in the context of power laws, the scaling exponent
γ . . . . . . . . . . . threshold for binarization of kernel matrix
Γ . . . . . . . . . . . skewness of a distribution
D . . . . . . . . . . . (metric) distance
d . . . . . . . . . . . dimension
δ13C . . . . . . . . . isotopic signature, ratio between stable isotopes 13C and 12C, reported in

parts per thousand [%� ]
δ18O . . . . . . . . . isotopic signature, ratio between stable isotopes 18O and 16O, reported in

parts per thousand [%� ]
∆, ∆t . . . . . . . . sampling interval
DET . . . . . . . . . recurrence quantification measure: determinism
ε . . . . . . . . . . . vicinity threshold (used to generate a recurrence plot from a distance matrix)
〈ε∗〉(τ) . . . . . . . . continuity statistic
ζ . . . . . . . . . . . delay variable for delay differential ENSO model
η(t, σ), ξ(t) . . . . . . white noise process
n . . . . . . . . . . . length of time series (as the number of samples)
θ . . . . . . . . . . . recurrence flow measure of redundance
Θ . . . . . . . . . . . Heaviside function, or in the context of the sampling interval distribution, a

scale parameter
Θ . . . . . . . . . . . diagonal matrix containing eigenvalues of a decomposed matrix
K . . . . . . . . . . . kernel matrix
κ . . . . . . . . . . . order parameter in delay differential ENSO model
lmin . . . . . . . . . . minimum (diagonal/vertical) line length
LAM . . . . . . . . . recurrence quantification measure: laminarity
λ . . . . . . . . . . . Lyapunov exponent, or in the context of irregular sampling, the sampling rate
λ . . . . . . . . . . . a weighting matrix
Λ . . . . . . . . . . . recurrence lacunarity, or in the context of the edit distance, a cost parameter
m . . . . . . . . . . . embedding dimension
P (X) . . . . . . . . . probability distribution of a random variable X
ϕ . . . . . . . . . . . high-dimensional multivariate mapping between original state space and a

feature space
φi,j . . . . . . . . . . recurrence flow matrix
φ . . . . . . . . . . . equivalence ratio
Φ . . . . . . . . . . . recurrence flow
Q . . . . . . . . . . . Modularity of a network
Ri,j . . . . . . . . . . recurrence matrix
ρ . . . . . . . . . . . probability density function
S . . . . . . . . . . . time series segment
σ . . . . . . . . . . . standard deviation, or in the context of noise contamination, noise strength
t . . . . . . . . . . . time
T . . . . . . . . . . . length of a time period, e.g., covered by a time series
Tpred . . . . . . . . . seasonal predictability (not corrected for sampling rate dependence)
τ . . . . . . . . . . . time delay, or in the context of the modified edit distance, a location parameter

of the logistic function
τpred . . . . . . . . . seasonal predictability (corrected for sampling rate dependence)

xxi



~v . . . . . . . . . . . embedding vector
w . . . . . . . . . . . box (or window) size
X . . . . . . . . . . . dynamical regime
ω . . . . . . . . . . . frequency, or in the context of SRC-surrogate technique, β-distributed weights

xxii



List of Figures

1.1 Schematic overview of the links between observational data from complex sys-
tems, the theory of dynamical systems and nonlinear time series analysis. . . 3

2.1 A sketch for the definition of recurrence plots. . . . . . . . . . . . . . . . . . . 8
2.2 A sketch of textures that resemble some degree of self-similarity. . . . . . . . . 9
2.3 Schematic illustration of alternative definitions of recurrences relevant to this

dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Schematic illustration of the reconstruction problem in Palaeoclimatology. . . 12

4.1 Organization of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Recurrence plots for time series of different deterministic and stochastic systems. 29
5.2 Recurrence lacunarity curves Λ(w) in double-logarithmic plot. . . . . . . . . . 30
5.3 Schematic illustration of the relation between box-counting on RPs and dy-

namics in phase space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Bifurcation diagram of Logistic Map and corresponding RL curves. . . . . . . 32
5.5 Robustness of RL to varying noise intensity and time series length for the

logistic map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Bifurcations of the Roessler System and and corresponding RL curves. . . . . 34
5.7 Regime shift detection for bistable noise-driven system with RL. . . . . . . . . 36
5.8 Schematic illustration of the combustion chamber employed in the experimental

setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.9 Application of RL to acoustic pressure fluctuation time series from a thermoa-

coustic combustor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 Recurrence flow for a noisy sinusoidal. . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Detection of lagged, nonlinear dependence between nonlinearly coupled sinu-

soidals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Uniform delay selection for numerical insolation model. . . . . . . . . . . . . . 50
6.4 Sensitivity of recurrence flow against measurement noise, compared to other

dependence measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 Non-uniform delay selection for delay-differential ENSO model with periodic

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6 Non-uniform delay selection for delay-differential ENSO model with irregular

oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 Schematic representation of the proposed procedure. . . . . . . . . . . . . . . 63
7.2 Representation of the distance defined by Eq. 7.8. . . . . . . . . . . . . . . . . 64
7.3 Modularity increment after first division of recurrence network into two com-

munities vs. the threshold γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Dependence of the weight given by Eq. (7.9) on latitude. . . . . . . . . . . . . 66
7.5 Regimes of the QG3 model behavior in the space of the leading two KPCs. . . 67

xxiii



7.6 Composite patterns of the QG3 model SFA corresponding to the obtained
regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.7 Recurrence plots of atmospheric patterns obtained from the QG3 model data
for the three different time series. . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.8 Results of recurrence quantification analysis for the atmospheric regimes ob-
tained in the QG3 model data set for one of the three time series. . . . . . . . 70

7.9 Partitioning of HGT states into atmospheric regimes. . . . . . . . . . . . . . . 71
7.10 Composite patterns of HGT corresponding to the obtained regimes . . . . . . 72
7.11 Composite patterns of surface air temperatures (SAT) corresponding to the

obtained HGT regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.12 Results of recurrence quantification analysis for the atmospheric regimes ob-

tained in the reanalysis data set. . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 Schematic illustration of how irregularly sampled segments of varying lengths
are transformed with the (m)Edit-distance method. . . . . . . . . . . . . . . . 84

8.2 Cost matrices C(Na, Nb) for the transformation of segments with different lengths. 85
8.3 Schematic illustration of the constrained randomization procedure that gen-

erates SRC-surrogates for an exemplary irregularly sampled time series with
non-stationary sampling rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.4 Application of SRC-surrogate correction method to an irregularly sampled
AR(1)-process with non-stationary sampling rate and linearly increasing au-
tocorrelation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.5 Greyscale record extracted from a high resolution scan of the surface of the
stalagmite C132 from Niue Island. . . . . . . . . . . . . . . . . . . . . . . . . 90

8.6 Application of SRC-surrogate correction method to an irregularly sampled
greyscale proxy-record from the central Pacific. . . . . . . . . . . . . . . . . . 92

9.1 Schematic illustration of different seasonal features based on Yok-G record. . 112
9.2 Schematic illustration of how seasonality can be extracted from a palaeoenvi-

ronmental archive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.1 Austral summer daily precipitation across the Pacific with the position of the
South Pacific Convergence Zone and Niue Island. . . . . . . . . . . . . . . . . 126

10.2 Age-depth model of the Holocene section of stalagmite C132. . . . . . . . . . 129
10.3 Proxy time series obtained from stalagmite C132. . . . . . . . . . . . . . . . . 131
10.4 Detailed view of a 10 mm section of stalagmite C132 with proxy records super-

imposed on the stalagmite image. . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.5 Results of the principal component analyses for stalagmite C132. . . . . . . . 134
10.6 Wavelet spectral analysis of C132 greyscale and seasonality records. . . . . . . 135
10.7 Analysis of different signals encoded in proxy records from C132, as well as

seasonal and ENSO variability and seasonal predictability. . . . . . . . . . . . 139

11.1 Long-term variability of YOK-G δ13C record and indications of annual extreme
hydroclimate conditions, along with regional drought events infered from other
regional records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11.2 Seasonal predictability of YOK-G δ13C record and archaeological indicators of
population size in the Maya lowlands. . . . . . . . . . . . . . . . . . . . . . . 150

11.3 Relationship between long-term dry/wet states in background hydroclimate
and seasonal predictability τpred. . . . . . . . . . . . . . . . . . . . . . . . . . 152

xxiv



11.4 Summer SST reconstruction from the Cariaco Basin, local rainfall coherency
index (YOK-G) and deviations of seasonal predictability τpred from its long-
term mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12.1 Overview of how the presented works contribute to answering the overarching
research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.1 Analysis of time series of the three-well model based on the simple Euclidean
distance between state vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 The same analysis as in Fig. C.1, but based on Euclidean distance between
normalized vectors defined by Eq. 7.8. . . . . . . . . . . . . . . . . . . . . . . 180

C.3 Comparison of results of recurrence quantification analysis for the atmospheric
regimes obtained in the QG3 model data set between the three different time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.4 Time series of the leading three KPCs of the reanalysis data. . . . . . . . . . 182
C.5 Recurrence plot of atmospheric patterns obtained from the reanalysis data. . 183

D.1 Subcosts for adding/deleting and shifting operations for exponentially dis-
tributed sampling intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.2 Zoomed section of synthetic AR(1)-time series (black) and five exemplar SRC-
surrogate realizations (gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.3 Zoomed section of grayscale anomaly time series (black) and five exemplar
SRC-surrogate realizations (gray). . . . . . . . . . . . . . . . . . . . . . . . . 190

E.1 Stalagmite C132 oxygen and carbon isotope ratios correlate in both, high and
low resolution data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

E.2 Results of principal component analyses of stalagmite C132. . . . . . . . . . . 192
E.3 Seasonality derived from the difference between the wet and dry season averages

of stalagmite C132 greyscale time series. . . . . . . . . . . . . . . . . . . . . . 192
E.4 Wavelet analysis of the principal components extracted from PCA-2 of the

annually resolved C132 proxy records. . . . . . . . . . . . . . . . . . . . . . . 193
E.5 Two exemplary recurrence plots of the C132 greyscale time series that yield

distinct determinism parameter DET values for the respective time periods. . 194
E.6 Relationship between δ18O and δD of Niue rain and dripwater collected in

February 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

F.1 Evolution of 2σ age uncertainty after application of COPRA age model (50
U/Th-dated depths). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

F.2 Long-term variability of YOK-G proxy records. . . . . . . . . . . . . . . . . . 198
F.3 Detrending of YOK-G age model medians and most central realizations using

Singular Spectrum analysis (SSA). . . . . . . . . . . . . . . . . . . . . . . . . 199
F.4 Most central realizations of YOK-G δ13C and δ18O for the full covered time

period (after detrending). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
F.5 Sliding window correlation between YOK-G stable isotope seasonal variations. 201
F.6 Sliding window correlation between YOK-G stable isotope multidecadal varia-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
F.7 Optimization of sampling interval ∆t for linear interpolation, used in YOK-G

wavelet analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
F.8 Time-frequency analysis of YOK-G stable isotope records. . . . . . . . . . . . 204
F.9 Continuous wavelet spectra for most central realizations of YOK-G δ13C age

model ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xxv



F.10 Continuous wavelet spectra for most central realizations of YOK-G δ18O age
model ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

F.11 Illustration of aliasing effect that occurs when sampling resolution falls below
the Nyquist frequency of 2 samples/year based on a synthetic sinusoidal model. 205

F.12 Exemplary recurrence plots from the sliding window recurrence analysis of
YOK-G proxy records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

F.13 Predictability of sub-annual rainfall distribution, given by relative mean pre-
dictability times τpred of 20 detrended YOK-G proxy realizations for each stable
isotope record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

xxvi



List of Tables

5.1 Overview of studied systems for detecting dynamical regime shifts. . . . . . . 31

7.1 Parameters of the communities extracted from three analyzed time series of
the QG3 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 The same as in Table 7.1, but for the regimes obtained from the reanalysis
HGT data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.1 Results of the 230Th/U dating. . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.2 Descriptive statistics for the trace element ratios determined along the growth

axis of stalagmite C132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.3 Resolution and time span of the C132 proxy records. . . . . . . . . . . . . . . 133
10.4 PCA groups and time span for stalagmite C132. . . . . . . . . . . . . . . . . . 133

xxvii



xxviii



I

Introduction



1 | Motivation

The so called ‘collapse’ of the Classic Maya civilization around 1200 years ago is among the
most popular and intensively researched societal responses to changing climate conditions. It
is thus an example for what can be termed the study of the ‘history of climate and society’ [5], a
subject that is expected to have significant implications for the rapid transformation processes
we experience today due to anthropogenic climate change [6]. To gain an understanding of
how a society adapts (or fails to adapt) to its changing environment, we must accept the
interwoven nature of these systems. Neither society nor climate are closed systems. Neither
of them, by itself, offers reliable predictability of its dynamics by knowing only the dynamics of
its subcomponents. For the analysis of such complex systems, we have to surpass the confined
perspective offered by reductionist, Newtonian physics and instead accept the paradigm of
complexity science: most real-world systems consist of an astounding variety of components
that interact via nonlinear feedbacks and respond sensitively to perturbations that invoke
abrupt shifts between fundamentally different dynamical states. Nonlinear time series analysis
(NTSA) provides tools to transfer this paradigm into the analysis of empirical data, aiding
us in the study of systems as complex as a society evolving in its changing environment, such
as the disintegrating Maya civilization.

Complexity science examines the universal properties that govern a broad range of sys-
tems, such as ecology [7], socio-political systems [8], stock markets [9], epidemiology [10] and
climate [11]. While it has originated from many different disciplines, the study of chaos and
nonlinearity represents one of its most fundamental roots. Chaos theory, by some regarded as
one of the three big ideas of the 20th century [12], provides a formal description of the rich and
surprising results entailed by the observation that seemingly random, disordered processes do
in fact follow a complex underlying order. A chaotic system is by definition deterministic
and thus in principle predictable. However, an extreme sensitivity to initial conditions and
exponential growth of perturbations renders any prediction beyond a certain Lyapunov time
infeasible. This key feature of chaotic systems leaves us unable to, e.g. reliably forecast the
weather more than a few days in advance. For finite-dimensional dynamical systems, chaotic
motion results from nonlinearity in its underlying mechanics, i.e. cause and response are not
proportional. Nonlinearity hurts the fundamental principle of superposition, challenging our
common intuition: eating your two favorite foods at the same time will unlikely result in a
taste experience twice as good [13]. Embodied in the insight that ‘more is different’ [14, 15],
these ‘emergent’ properties are just one of the intriguing universal findings offered by the study
of complex nonlinear systems. In fact, the phenomena implied by nonlinear characteristics of
a system are plentiful and motivate us to explore tools to empirically study such features in
the systems surrounding us.

When we study a complex system, we usually carry out measurements in such a way that
we capture as many of the system’s independent variables as is technically feasible. However,
instrumental as well as financial limitations constrain this procedure and inevitably result
in a lower-dimensional representation of the system (Fig. 1.1). Time series, i.e. sequences of
observations ordered in time, are of finite length and rarely recorded in a controlled ensem-
ble fashion which could in principle offer realizations of the underlying process with varying
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Figure 1.1: Schematic overview of the links between real-world complex systems, the theory of dy-
namical systems (abstract realm) and nonlinear time series analysis (applied realm). Many systems
follow a high-dimensional state space trajectory (yellow). Since most of the observations we make
are limited, the theory of dynamical systems tries to understand both the topology and stability of
high-dimensional systems as well as their lower-dimensional projections based on paradigmatic mod-
els and mathematical concepts. Measurements introduce additional problems, e.g. noise, irregularly
spaced measurements et cetera. Nonlinear time series analysis, supported by methods from statistics,
statistical physics and newer disciplines like data science, attempts to provide tools for the study of
empirical nonlinear time series, based on the concepts developed in the theory of dynamical systems.
This enables us to study a plethora of nonlinear properties of complex systems (blue bubbles).

initial and boundary conditions. The theory of dynamical systems enables us to transfer the
properties observed from recorded time series into an abstract representation of the system,
giving rise to paradigmatic models and mathematical descriptions of the idealized dynamics
of the system. We can use these models and concepts to conduct numerical experiments that
evaluate the usefulness and validity of time series analysis (TSA) methods. Nonlinear time
series analysis transfers ideas and insights from the abstract domain into practise. It requires a
process of creative and parsimonious conceptualization to propose effective, problem-oriented
and numerically tractable tools that uncover the most significant features of a nonlinear sys-
tem (blue bubbles in Fig. 1.1). Modifications of existing methods tailor them to the specific
time series at hand (see below). In this respect, Occam’s razor deprecates excessiveness in
the process of conceptualization, suggesting method design to be as complex as neccessary,
yet, as simple as possible.

A particularly versatile framework in the analysis of nonlinear time series is recurrence
analysis (RA). Systems that lose some fraction of their energy to their environment (‘dissipa-
tive systems’) tend to recur to states they have visited before after sufficiently long time. This
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observation has been formalized by Poincaré for certain dynamical systems in 1890 [16] and
is surprisingly compatible with our every day notion of recurrence. We as individuals comfort
ourselves with routines that encompass the recurrence of, e.g. social interactions (meeting
friends or colleagues) or rituals (celebrating anniversaries or attending music festivals) and,
in turn, constitute patterns of recurrence for the larger complex systems we are embedded in
(political elections, harvest of crops, fashion trends). Recurrence even affects our conception
of aesthetics [17] and has inspired culturally distant schools of philosopy in their metaphysics
[18]. For the systematic study of recurrences in nonlinear systems, the recurrence plot (RP)
was first introduced by Eckman in 1987 [19]. An RP encodes recurrences between pairwise
states of a system in a binary matrix: 1s denote states that have returned close to a state the
system has visited before, 0s indicate the absence of recurrence. Any one- or high-dimensional
time series representation of a system can be transformed into an RP without presuming any
intricate mathematical conditions. The notion of closeness however requires a thoughtful
idea of how it could be best defined for the individual system under study. RA further offers
various ways to quantify the recurrence patterns encoded in an RP by means of recurrence
quantification analysis (RQA) [20]. Over the course of the past 35 years, RA has pervaded
the whole range of systems studied in complexity science, comprising studies in the Life Sci-
ences [21] and Neuroscience [22] as well as applications in Finance [23] and Engineering [1]
to the Earth Sciences [20], including Palaeoclimatology [24]. It provides methods to study
a plethora of problems, including couplings between variables, classifying systems with re-
spect to their dynamical complexity, detecting transitions and predicting a system’s future
dynamics. Nevertheless, many questions remain unanswered as of now. They motivate future
investigations, such as those I pursue in this thesis. In particular, three key properties of
nonlinear observational time series that are within the scope of RA are of high relevance here:
the self-similarity and multi-scale properties of a system, the analysis of couplings and the
detection of regime shifts.

Self-similarity is a ubiquitous property found in many natural systems. Originally in-
troduced by Benoît Mandelbrot in his groundbreaking work ‘The fractal geometry of nature’
[25], self-similarity has been defined based on mathematical objects that show similar pat-
terns under different degrees of magnification, so called ‘fractals’. Since the scale-independence
property of fractals results in non-integer dimensionality, they might be mistaken for a rather
obscure, abstract concept. However, self-similar patterns can not only be found in nature
(leafs, romanesco, coastlines) but have also attracted great interest in the study of complex
systems, e.g. in the Geosciences [26]. This success derives from the fact that the complex-
ity of many geoscientifc systems can only be adequately captured if the multitude of their
interacting spatio-temporal scales is considered.

Couplings generally comprise any sort of interaction or feedback between the components
of a complex system, including time-delayed couplings to itself (‘serial dependence’). As
illustrated above, couplings can entail counter-intuitive behaviour at the macroscopic level and
give rise to complex behaviour of systems that are made up of supposedly simple microscopic
entities, e.g. interacting agents that follow a simple set of rules. In the Earth Sciences,
correlations between spatially displaced measurements of climate or environmental variables
are of particular importance. This is complicated by the nonlinearity and multi-scale nature of
many coupled systems we encounter in nature – for example, atmospheric pressure variations
at locations thousands kilometres distant from each other are linked by teleconnection patterns
and result in synchronized extreme weather events that can threaten the livelihood of millions
of people around the globe.

Regime shifts (or critical transitions) epitomize a notoriously challenging characteristic
of nonlinear systems as we currently learn in our ‘experiments’ with the natural limitations
of the Earth system. Several components of the global climate system are believed to show
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abrupt and interlinked ‘tipping’ behaviour [27] if certain threshold values of the climate’s order
parameters are crossed, e.g. permafrost thawing or ‘Savannification’ of the Amazon rainforest
[28]. Generally, regime shifts bear on the notion of bifurcations in dynamical systems, i.e. a
change in stability of local or global attracting sets in the system’s state space. For the iden-
tification of dynamical transitions from time series data, recent research has focused on how
different quantifications of a system’s predictability, resilience or stability can be used with a
focus on detecting abrupt regime shifts and uncovering precursors.

A methodology that captures any of these specific nonlinear features may still not cap-
ture all the peculiarities and challenges associated with a particular observational time series
(Fig. 1.1). Returning to the example raised at the beginning, we would need to tailor our
method to the particular properties of a climate reconstruction that covers the period of the
Maya civilization’s cultural disintegration and link it to demographic reconstructions. In fact,
we would have to familiarize ourselves with the ways in which climate signals are recorded
over the course of hundreds to thousands of years, that is, we need to study Palaeoclimatology.
For most of the applications in this dissertation, the latter is the challenge we are faced with.
The study of palaeoclimate records is based on different natural archives (for example, tree
rings, ice cores, lake sediments, speleothems) that do not directly capture a climatological
signal but provide ‘proxies’. A proxy mixes the desired signal (e.g. temperature) with other
environmental (e.g. salinity) and/or archive-specific signals (e.g. smoothing in a sediment core
due to bioturbation). For instance, speleothems are an archive of seasonal to orbital scale cli-
mate that are formed by mineral deposits accumulated in a cave. This accumulation process
relies on infiltrating water (for instance, rainfall, snow, meltwater) that is transported along
potentially complicated flow paths in the ground layers above the cave. The decay process
of uranium-234, which is incorporated in these deposits, into thorium-230 allows for precise
dating (U/Th-dating), far back into the Earth’s climates hundreds of thousands years ago.
The incorporation of stable carbon and oxygen isotopes as well as trace elements in the stalag-
mite’s mineral layers act as the proxies, reflecting valuable information on climate parameters,
such as rainfall. However, none of these geochemical processes are easily understood. While
U/Th-dating indeed yields highly precise dates for measured isotopic concentrations, dating
errors are not negligible and may alter or hinder interpretations of proxy time series variabil-
ity. These uncertainties further impede direct application of common time series techniques
as time intervals between consecutive measurements vary, resulting in irregular sampling. The
time scales that are most informative for processes that shape and determine the existence of
societies (e.g. the Maya) require seasonal to multi-annual resolution of records. Only at these
scales can we really learn how potential changes may have affected human-environmental sys-
tems such as agriculture. Even if our method is adapted to consider these uncertainties, we
need to tread carefully when interpreting the mixed signals encoded in proxy records as it is
hard to estimate and disentangle the relative contributions of the desired and the undesired
signals. Nonlinear time series analysis has established itself as a versatile framework into
which these complexities can be integrated effectively [29].

Faced with these intriguing challenges, the study of the dynamical properties mentioned
above, their links with recurrence analysis and their empirical detection raise a multitude
of research questions that are as exciting as they are diverse, some of which are:

• How can we use RA to characterize multi-scale properties, quantify nonlinear couplings
and detect regime shifts in nonlinear time series? How can we extend RA to deepen our
understanding of these properties for the study of complex systems?

• Can we modify the tools provided by RA as well as other time series analysis techniques
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such that they account for data-specific limitations, e.g. uncertainties and sampling-
related issues?

• Combining RA with other suitable time series analysis techniques, can we carry out
feasible analyses of past climates, in particular with respect to if and how seasonal
variability has changed over the past hundreds to tens of thousands of years in different
regional climates?

These questions guide the thematically broad research spectrum I am collating in this dis-
sertation. A methodological inspection of the concepts (Chapter 2) that I use will enable us
to refine these general questions (Chapter 3) and provide an overview of the research I have
conducted (Chapter 4).
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2 | Main concepts

Recurrence analysis

Recurrence analysis provides a versatile framework for studying many central problems of
nonlinear time series analysis1 [20]. Recurrences between pairs of states ~xi, ~xj are recorded
in a recurrence plot:

Rij = Θ (ε−D(~xi − ~xj)) =

{
1 if D (~xi, ~xj) ≤ ε
0 if D (~xi, ~xj) > ε.

(2.1)

Any pair of states ~xi, ~xj at times i, j generates a 1 in the RP if they are close by means of
their dissimilarity D (~xi, ~xj) and the vicinity threshold ε (Fig. 2.1A). The notion of closeness
between states is problem-dependent. In many applications, the states ~xi are time series of
d-dimensional vectors, ~xi = ~x(ti), i = 1, . . . , N . We then measure dissimilarity by means of a
standard metric distance measure, e.g. the Euclidean norm D (~xi, ~xj) = ‖~xi − ~xj‖. In other
applications, e.g. where the sequence of observed states is irregularly sampled, we need to
define a different suitable metric distance. As we are interested in the similarity between all
states of a system, we obtain a (symmetric) distance matrix D = (Di,j). We are now able to
define which states are close by means of the vicinity threshold ε, the only parameter that
needs to be selected for the computation of an RP. Depending on the data at hand, different
criteria can be used to make an informed estimate on the ‘best’ value for ε. A robust method
that entails a globally fixed fraction of recurrences (e.g. a recurrence rate (RR) of 10%) in
the RP is to use a quantile of the distribution of distance values (Di,j) [30]. If ε is chosen too
small, informative recurrence patterns might be missed. On the other hand, large values result
in a merging of structures in the RP and might blur the most significant information. The
Heaviside step function Θ(·) ensures that only those states are registered as recurrences whose
metric distance falls below (or is equal to) the vicinity threshold ε. In many applications, the
evolution of states of a system is actually given by a d-dimensional sequence of vectors but
we may only be able to obtain lower-dimensional, perhaps univariate measurements. In such
cases, we can use a method called time-delay embedding (TDE) to reconstruct the higher-
dimensional characteristics of a system that are hidden from us [31]. A reconstructed version
of the system’s phase space conserves some of the topological properties of the original phase
space and can be used to identify recurrences between phase space vectors.

An RP is a square, symmetric and binary matrix. It contains a rich diversity of geometric
recurrence patterns that can be exploited for quantification. Most recurrence quantification
measures are computed based on the statistical distribution of line structures in an RP. The
presence and absence of certain patterns will depend on the dynamical properties of the
studied system:

• Long, uninterrupted diagonal lines encode periodic behaviour and occur if two closeby
1A comprehensive literature overview of studies that use or develop RA can be found here: http://

www.recurrence-plot.tk/bibliography.php. Software implementations are collected here: http://www.
recurrence-plot.tk/programmes.php
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segments of a time series/trajectory evolve in parallel (Fig. 2.1B). Their separation in
the RP ideally corresponds to the period of the periodic signal.

• Interrupted diagonal lines indicate chaotic dynamics. The average diagonal line length
can be regarded as a proxy for the mean prediction time of a system.

• Isolated recurrences suggest random, uncorrelated dynamics (‘recurrence by chance’).

• Vertical line (or box-like) structures represent ‘laminar’ states, i.e. the system remains
trapped close to a certain state.

• White vertical gaps can be interpreted as recurrence times and may relate to
(quasi-)periodicities.

x(t)

y(
t)

t

x(
t)

recurrence

no recurrence

z(
t)

Recurrence Plot

A

B

Figure 2.1: The sketch displays, A: the notion of a recurrence between two vectors ~xi and ~xj based
on the vicinity threshold ε and a distance metric D (~xi, ~xj), B: the emergence of diagonal lines in an
RP from closeby segments of a univariate time series or phase space trajectory evolving in parallel.

Diagonal line structures will be of particular importance in parts of this work as they
imply a notion of predictability: as closeby segments of a time series evolve in parallel, one
could have in principle predicted one segment from the other. If the dynamics of a system
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change significantly, this will often entail corresponding changes in the predictability of the
system’s states.

Several effects can disturb recurrence patterns and entail biased estimators in RQA. For
instance, perpendicular diagonal lines can arise from including an erroneous time scale or
redundant information on the system’s state in the generation of an RP and an inadequate
choice for ε will artificially conflate line structures.

Self-similarity

The variability of many real-world complex systems is distributed among a broad band of time
scales. With their ability to capture recurrence and prediction times, RPs are an effective
method to detect and untangle scale-specific variability. More generally, patterns in nature
that exhibit similar behaviour at any time scale s are usually well described by a power law
p(s) ∝ s−α. Put differently, the frequency p of how often a given scale s occurs is inversely
proportional to some power α of the scale. Systems for which a power law holds exhibit self-
similarity [25]. While only mathematical objects called fractals (Fig. 2.2, left) exhibit perfect
self-similarity, the general concept can be transfered to real textures (Fig. 2.2, center) using
a box-counting procedure: we cover the texture with boxes of width s and count the number
of boxes p required to fully cover the texture. By selecting a broad range of different scales
s that cover several orders of magnitude, the exponent α can be estimated and corresponds
to the box-counting dimension, a common estimator for the fractal dimension (or Hausdorff
dimension) of a texture. Interestingly, α does not need to be an integer value. A fractal with
α = 1.8 fills space more ‘roughly’ than a smooth 2-dimensional texture. If more than one
suitable value of α is required for a sufficient description of a texture, one usually refers to such
textures as ‘multifractals’. Box-counting based statistics go beyond merely characterizing the
dimensionality of patterns but for instance, also capture their scale-dependent heterogeneity
(‘lacunarity’, see (P1)) and permeability (‘succolarity’, see (P2)). Generally, this can prove
helpful for distinguishing between self-similar patterns of equal fractal dimension.

Figure 2.2: A sketch of textures that resemble some degree of self-similarity: the Koch curve, a
section of the British coastline and line structures in an RP generated from a fractional Brownian
Motion process (from left to right).

In practise, significant deviations from power law behaviour at some scales indicate that
these scales might be of particular relevance to understand the underlying processes. Dimen-
sionality estimators similar to the box-counting dimension can help to classify dynamically
distinct complex systems, for example based on their attractors. In the analysis of climate
time series (for instance, rainfall or temperature), understanding scale-dependent variability
is arguably one of the most crucial challenges whereas tools like Fourier power spectra and
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wavelet analysis are among the most popular methods. Even recurrence patterns can show
self-similar properties (Fig. 2.2, right) which will inspire some of the methods introduced in
this dissertation (see (P1) and (P2)).

Couplings

For the detection of couplings between multiple variables, identifying the most relevant time
scales is once more of great relevance: for some pairs of variables X ↔ Y that exert an
influence on each other, the effect of variable X on variable Y is simultaneous. Other systems
predominately exhibit delayed relationships with specific delays τ1, . . . , τm between their m
variables. A standard measure to capture such contemporaneous and delayed relationships
between two time series x(t) and y(t) is the linear correlation coefficient (Pearson’s r), given by
the ratio between their covariance and their standard deviations. If the covariation between
variables is, however, not limited to a linear relation, r will yield limited information and
nonlinear dependence measures (e.g. mutual information) must be considered. Once more,
RPs can be of great utility as they also capture nonlinear features. Cross-RPs (CRPs) are
computed from a set of time series that can represent the variables of a system by regarding
each time series as one time-dependent coordinate of a composite system. Relevant time
delays between the variables are included here by shifting each time series against the others.

A

B

...

...

Figure 2.3: Schematic illustration of alternative definitions of recurrences relevant to this disserta-
tion. A: recurrence between spatial patterns of a climate field, B: recurrence between segments of
non-uniform size of an irregularly sampled cyclical time series. The dots represent a possible irregular
sampling of the underlying signal (black).

We sometimes need to account for a high number of interlinked variables. In such cases,
it is instructive to list all pairwise linear correlations in a correlation matrix and compute
the most relevant modes of variability (in terms of explained variance) using a singular value
decomposition of the correlation (or covariance) matrix. This yields a new set of variables,
the principal components (PCs), and the corresponding eigenvectors (often called empirical
orthogonal functions (EOFs)) that can be interpreted as the ‘loadings’ of the PCs onto the
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original variables. The PCs are linear combinations of the original variables and can be
regarded as a new, more informative coordinate system for the observed data. For normally
distributed data, all EOFs will be uncorrelated. For spatial data, i.e. sequences of observations
at different locations (for example, geopotential height or sea surface temperature), principal
component analysis (PCA) can be used to inform on the most relevant spatial modes of
a system. The EOFs are projected onto a map based on their geographical coordinates
and give rise to often well-interpretable spatial patterns. If nonlinear relationships between
the variables exist, modes will not be independent and extensions like kernel PCA (kPCA)
should be employed. Often, the spatial patterns exhibited by spatially extended systems (for
example, an evolving climate field like the one displayed in Fig. 2.3A), recur in time. While
usually, the (univariate) recurrences of the single climate variables are studied, the recurrence
of the emerging spatial patterns are not considered. For a complex system, however, we
cannot expect that the recurrence properties of the sub-components will fully determine the
recurrences of the emerging spatial patterns. This will motivate a novel definition of recurrence
(Fig. 2.3A) discussed in (P3).

Regime shifts

Couplings and the variability at distinct time scales can vary in time. Many parts of this work
focus on detecting regime shifts in nonlinear time series, i.e. abrupt changes in the underyling
system’s dynamics. Regime shifts, or ‘critical transitions’ [32] can denote several different
changes in the behaviour of a dynamical system, all of which are more or less based on the
theory of bifurcations or ideas from multi-stability in chaotic systems. For instance, a time
series can exhibit an abrupt shift in its amplitude or undergo transitions between regimes of
different dynamical complexity, e.g. shift from a chaotic regime X1 to a periodic regime X2.
Irrespective of the transition’s nature, the detection in practise often relies on some measure
of complexity, resilience or predictability. For the detection of ‘tipping points’, increasing
lag-1 autocorrelation and variance of a signal have recently gained popularity as precursors
to record a critical slowing down (i.e. the system recurs to equilibrium more slowly) that
precedes the actual transition. RA supplies a whole toolkit of measures to detect abrupt or
continuous variations in a system’s dynamical behaviour. In order to tell apart significant
and non-significant transitions, we additionally need hypothesis tests specifically tailored to
the nonlinear time series under study, deeming traditional hypothesis tests with their severe
constrains insufficient. However, bootstrap procedures [33] and surrogate testing [34] can
provide flexible testbeds for studying regime shifts without the above mentioned limitations.
When the variability of a system is distributed among a multitude of time scales (as discussed
above), transitions might only be detectable at certain time scales. This raises the need for
scale-sensitive regime shift detection measures, as I will discuss in more detail in (P1).

Methodological challenges in Palaeoclimate

Many of the described methods prove effective in the analysis of palaeoclimate proxy records
[29], a goal I have pursued for most parts of this thesis. Reconstructions of past climates
enable us to contextualize current climate changes but come along with a range of challenges.
Here, a special focus lies on the analysis of proxy records derived from speleothems [35]. The
‘reconstruction problem’ results from limitations in the measurement procedure (Fig. 2.4)
as well as from the complexity of cave-environmental processes that are notoriously difficult
to unravel. To obtain a proxy time series with an ‘error-free’ time axis, we carry out two
measurement procedures in concert: along the growth axis of a stalagmite, we take a uranium-
series to obtain precise U/Th-dated samples, a method that is considerably more precise (and
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expensive) than radiocarbon dating. Alongside these measurements, we take samples at each
dated sample and many positions in between to examine ratios of stable isotopes deposited
in the mineral layers of the stalagmite. Usually, rainfall feeds the karst systems above the
cave and eventually forms drops that drip from the cave’s ceiling or a stalactite, growing the
stalagmite in height and diameter. Here, we mostly study stable oxygen (δ18O) and carbon
(δ13C) ratios. Drip-water δ18O in the cave predominately reflects rainfall δ18O but is also
affected by a multitude of other complex processes, e.g. evaporative processes potentially far
from the cave site. δ13C tracks local hydroclimate conditions that often include changes in
effective infiltration above the cave and prior carbonate precipitation dynamics in the epikarst.
However, additional cave-environmental processes can affect stable isotope records and need
to be well investigated for each cave based on cave monitoring studies as well as comparison
to other independent regional proxies and archives. To obtain a proxy time series from the
U/Th dates and stable isotope ratios, the last missing piece of the puzzle is the construction
of an age model: based on the U/Th-dating errors, some age models (e.g. COPRA [36])
sample different possible time axes from the error distribution in a Monte Carlo fashion. For
the unknown dates of stable isotope ratios in between two U/Th dates, (linear) interpolation
is used. This procedure yields an ensemble of time axis that aligns with the isotope series.
Some age models now allow to transfer the dating uncertainty into uncertainty of the proxy
mangitudes, finally resulting in an ensemble of proxy time series that can be used to propagate
dating uncertainties.
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Figure 2.4: Schematic illustration of the reconstruction problem: a stalagmite is sampled at a limited
number of depths (dashed lines). Each sample is precisely dated by evaluating U/Th concentrations,
yet leaving a non-negligible dating error (shaded band/error bars). Dating errors increase with age.
Construction of an age model yields a distribution of possible ages for each sample. At the same time,
a high number of proxy values (e.g. stable isotope ratios, yellow) is sampled, at and in between the
few dated samples. For these values, dates are the result of interpolation between available U/Th
dates. The sampling rate of the resulting proxy time series generally varies, with episodes of low and
high resolution (black).

For any of the above mentioned methods, application to palaeoclimate proxy records
requires a propagation strategy of uncertainties. Otherwise, scale-dependent variability might
be overestimated, some couplings could be detected spuriously or regime shifts could be
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mislocated in time. Furthermore, the sampling procedure entails an irregularly sampled time
axis, i.e. sampling intervals are not uniform (Fig. 2.4, black time series). For proxy records
from stalagmites, the non-uniform sampling rate is related to the stalagmite’s growth rate and
is thus rooted in a correlated, climate-related process. We have to ensure that the application
of any nonlinear time series analysis tool does not entail significant biases for irregularly
sampled data, both with respect to the non-uniformity of sampling intervals and potential
drastic changes of sampling resolution arising from the non-stationarity of the underlying
processes. If neglected, time-scale dependent variability (e.g. based on Fourier spectra) might
be assigned to the wrong time scale, assessing correlations will fail due to lacking alignment
of time series, and shifts in the sampling rate might be mistaken for real regime shifts.

For RA, this implies that we need to implement a different notion of dissimilarity as,
e.g. the Euclidean metric fails to account for non-uniform sampling intervals and would mix
time scales encoded in line structures. The edit distance measure [37] was proposed as a
solution for this problem. An irregularly sampled time series is segmented into windows
whereas each may cover a different number of values and two segments are found to be
recurring if their transformation cost falls below ε. Four basic operations – shifting in time,
shifting/scaling of amplitudes, deletion, adding – are defined and assigned with heuristic cost
parameters. The minimum cost of transforming segment SA into segment SB is computed
and represents the dissimilarity measure. For the study of Palaeoseasonality by means of
RA, we will regard seasonal patterns as the segments (Fig. 2.3B). This will put additional
emphasis on the non-stationarity problem of irregular sampling whereby we need to account
for variations in the sampling rate of a proxy (P4).
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3 | Research objectives

Based on the main concepts and methods outlined in Chapter 2, I formulate the following
research questions to guide the investigations in this thesis:

(Q1) Can we transfer concepts from the study of self-similar patterns to RA in order to define
a scale-sensitive measure for the identification of regime shifts, exploiting multi-scale
features in the recurrence patterns of a dynamical system? Can we use this measure to
provide a recurrence based tool to characterize the time-frequency content of a (poten-
tially high-dimensional) signal?

(Q2) Are there any universal links between the self-similar properties of recurrence patterns
of a signal and the self-similar properties of the signal itself, given by a time series or
its phase space trajectory?

(Q3) How could RA be used to characterize transitions between regimes of spatially-extended
systems, e.g. spatial patterns in atmospheric circulation? Can we classify such regimes
based on their dynamical properties as reflected by recurrence quantification measures?

(Q4) Can we adopt tools from RA to reliably detect significant transitions in Palaeosea-
sonality over time periods of hundreds to thousands of years, based on palaeoclimate
reconstructions from speleothems? How do these tools provide interpretable measures
for specific applications, also considering societal repercussions?

(Q5) In the context of this analysis, can we adequately account for data-specific challenges and
limitations, most crucially irregular sampling and dating uncertainties? In particular,
can we correct recurrence analysis for biasing effects imposed by growth rate variations
of a stalagmite? Can other time series analysis methods be modified analogously?
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4 | Organization of thesis

The formulated research questions give rise to a natural way to organize this dissertation
into two parts (Fig. 4.1): the first part focuses on the development of novel and modification
of existing methods in recurrence analysis (Q1-Q3). The second part deals with specific
applications of recurrence based (and other) time series analysis methods to characterize
Palaeoseasonality based on reconstructions of the hydroclimate at different regions and during
different episodes of the Holocene (Q4 & Q5).
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Figure 4.1: Organization of this thesis into two parts: first, conceptualization and validation of
novel recurrence based methods (‘Novel approaches in recurrence analysis’) and second, applications
to palaeoclimate time series with a focus on reconstructing seasonality from stalagmite proxy records
(’Palaeoseasonality’).
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The first part is composed of four and the second part is composed of three research
papers. Six research papers are articles and one is a review. Four articles are first author
contributions. At the time of submission of this thesis, three works are published, one is
accepted, two are in review and one will be re-submitted soon. Each research paper is pre-
sented in its original, independent form, including appendices and supplements. A single joint
bibliography has been compiled. For the sake of brevity, the review paper (P5) is not fully
included and I instead focus on my contribution. Research article (P6) has been reviewed
as a discussion paper (Climate of the Past Journal) but not found suitable for publication.
The respective preprint is included in this dissertation and a modified manuscript will be
re-submitted to a different journal soon.

Part one is predominately devoted to the development of novel approaches in RA and is
an attempt to find answers to questions (Q1-Q3). Inspired by the ideas of B. Mandelbrot for
characterizing fractals and self-similar textures in nature, Chapter 5 and 6 transfer concepts
from this domain into RA. Recurrence quantification analysis is more and more becoming an
established framework for the detection of regime shifts. However, an ample amount of infor-
mation so far remained unutilized as existing approaches concentrated on line-based measures
and have not fully exploited the time scale-sensitivity of RPs. In Chapter 5, we propose a
novel recurrence quantification measure based on B. Mandelbrot’s ‘lacunarity’ measure. Ap-
plied to a binary texture, lacunarity quantifies its scale-dependent heterogeneity. This enables
us to resolve the complexity of recurrence patterns at multiple time scales and put forward
a tool that is both sensitive to the spectral content of a signal and detects transitions in em-
pirical time series of acoustic pressure fluctuations from a turbulent combustor. In Chapter
6, yet another of B. Mandelbrot’s fascinating concepts, called ‘succolarity’, inspires the def-
inition of a novel recurrence based nonlinear dependence measure. Succolarity characterizes
the permeability of a texture. We simplify this approach, transfer it to RA and show that
the formation of diagonal line artifacts can be exploited to characterize delayed couplings
in potentially high-dimensional systems. The ‘recurrence flow’ appears especially useful in
the delay selection problem for state space reconstruction of a dynamical system. Chapter 7
tackles the problem of identifying recurrent dynamical regimes from atmospheric circulation
patterns raised in (Q3). For future climate change, regionally heterogenuous and complex re-
sponses of large scale atmospheric teleconnection patterns are expected while their dynamics
and implications for resulting extreme weather events are subject of current research [38]. I
identify recurring regimes of atmospheric teleconnection patterns in the mid-latitudes based
on model and empirical data. The identified regimes can be classified based on their dynam-
ical complexity whereby ‘recurrence lacunarity’ and other recurrence quantification measures
prove informative. Next, I turn to a methodological challenge that is encountered in RA
of irregularly sampled palaeoclimate time series: in many cases, sampling intervals are not
only non-uniform but undergo considerable variations in time, biasing recurrence quantifiers.
Chapter 8 explores how this bias can be corrected based on a constrained randomization
procedure. I generate synthetic ensembles of surrogate time axes that share the undesired
property of variable sampling resolution to control for this effect and show that this approach
helps to tell apart real from spurious regime shifts of palaeoseasonal variability, refering to
(Q5).

In part two of this thesis, different palaeoclimate proxy records from different regions are
studied with respect to a common question – how can we reconstruct and quantify changes
in seasonality (Q4 & Q5)? I initiate the study of Palaeoseasonality with an overview of how
seasonality can be defined in the context of Palaeoclimatology in Chapter 9. I review which
numerical tools are most established and promising for the analysis of palaeoseasonal records.
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Accounting for archive-specific challenges and limitations is of vital importance. This and
other insights are highlighted and collated to express goals for future studies of palaeoseason-
ality.

Chapter 10 demonstrates a more specific application of how seasonal rainfall has been
recorded in a stalagmite from Niue Island in the Central Pacific that covers a 1000-year
period in the mid-Holocene. PCA reveals how different geochemical proxies encode seasonal
variations. Scans of annual stalagmite layers allow a high-resolution reconstruction of seasonal
amplitude from greyscale values of deposited calcite laminae. With its strategic location in the
central Pacific, links between seasonal variations and El-Niño-Southern-Oscillation (ENSO)
dynamics can be explored using wavelet analysis and RA, contributing to the answer of (Q4
& Q5).

Finally, Chapter 11 is dedicated to the intriguing question raised in the very beginning
of this thesis: could changes in seasonal rainfall predictability have adversely affected Maya
agricultural yield and, in turn, contributed to the abandonment of population centers? While
most works agree on the role that drought events have played, seasonal rainfall variability
undoubtedly constituted the most vital factor in securing reliable surplus crop yield for Maya
farmers. In the context of research objectives (Q4 & Q5), I define a robust recurrence based
measure of seasonal rainfall predictability and apply it to a precisely dated speleothem record
from the Maya lowlands. A decline in seasonal rainfall predictability that aligns with the
period of sociopolitical disintegration suggests that adverse changes in year-to-year rainfall
availability might have played a so far underestimated role in the ‘collapse’ of Classic Maya
civilization.

In the end, a discussion with emphasis on the synthesis of the presented works and con-
ceivable future research avenues is given. Appendix A presents an overview of the software
that I have implemented in this thesis and links to the respective online resources where it
can be downloaded (open access). Appendices B-F contain appendices and supplements to
the research papers (in order of appearance).
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II

Novel approaches in recurrence anal-
ysis





A glimpse of the Great Barrier Reef, the largest coral reef on the planet. After several
devastating bleaching events, the reef has recently been recurring to a more healthy state,
showing resilience in spite of incessantly increasing ocean temperatures. A full recovery

under prevailing stress, however, remains questionable. (Australia, 2018)
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Abstract

We propose lacunarity as a novel recurrence quantification measure and illus-
trate its efficacy to detect dynamical regime transitions which are exhibited by
many complex real-world systems. We carry out a recurrence plot based analysis
for different paradigmatic systems and nonlinear empirical data in order to demon-
strate the ability of our method to detect dynamical transitions ranging across
different temporal scales. It succeeds to distinguish states of varying dynami-
cal complexity in the presence of noise and non-stationarity, even when the time
series is of short length. In contrast to traditional recurrence quantifiers, no spec-
ification of minimal line lengths is required and rather geometric features beyond
linear structures in the recurrence plot can be accounted for. This makes lacunar-
ity more broadly applicable as a recurrence quantification measure. Lacunarity
is usually interpreted as a measure of heterogeneity or translational invariance of
an arbitrary spatial pattern. In application to recurrence plots, it quantifies the
degree of heterogeneity in the temporal recurrence patterns at all relevant time
scales. We demonstrate the potential of the proposed method when applied to em-
pirical data, namely time series of acoustic pressure fluctuations from a turbulent
combustor. Recurrence lacunarity captures both the rich variability in dynamical
complexity of acoustic pressure fluctuations and shifting time scales encoded in
the recurrence plots. Furthermore, it contributes to a better distinction between
stable operation and near blowout states of combustors.

23



5.1 Introduction

Many efforts in nonlinear time series analysis have been dedicated to the challenge of detecting
transitions between different dynamical states of a system [39, 40, 41]. A broad range of real–
world systems undergo such shifts between distinct regimes and their identification provides
a better understanding of the complex dynamics under study [42, 43, 44, 45, 46, 45, 47, 48,
49]. The universality of transitions between different dynamical states for a broad spectrum
of different systems elucidates why applications have been widely dispersed among many
disciplines. For instance, time series in earth sciences usually require sophisticated approaches
to determine abrupt changes in the complex dynamics [43, 50, 51]. Regime shift detection has
also gained popularity in analysis of EEG data [52], neuroscientific time series [53, 54] and
other medical research fields [55] where the identification of pathological regimes is crucial.
Due to their complexity, financial and social time series offer interesting applications as well
[56, 57, 58].

Major challenges in detecing regime shifts in real-world data are often data related, e.g.
by means of unevenly sampled [50], nonstationarity, noisy or short time series. In convenient
cases, transitions are visible to the eye but usually, the exact localization of the occuring
dynamic transition and, in particular, the identification of precursors poses a challenge. Seg-
ments of a time series may appear qualitatively similar at first glance but could turn out to
show significantly different dynamical features. With respect to climate systems, multiple
spatial and temporal scales can also hamper clear distinctions between variations in com-
plexity of a time series. Even though regime transitions occur in a broad class of systems,
data related peculiarities raise the need of a comprehensive box of tools rather than a single
universal method.

In contrast to linear methods such as autocorrelation or power spectrum analysis, nonlinear
techniques are able to uncover more subtle transitions in complex time series data. Multiple
different approaches constitute the state-of-the-arts toolbox, ranging from complex networks
[59], entropies [40], detrended fluctuation analysis [60] or symbolic dynamics [61]. Since
many empirical time series are univariate and no prior knowledge is accessible about the true
dimensionality of the system, phase space reconstruction is a powerful approach to study the
system’s dynamics [40]. Approaches based on the phase space trajectory are closely related
to the well-known Lyapunov exponents and have proven to be effective in classifying different
dynamical states [45, 58].

Another technique with relatively low numerial effort is the analysis of nonlinear time
series by recurrence plots (RPs) [19]. The basic idea behind this method relates back to the
perspective that dynamical systems recur to states they have visited before [16]. As a repre-
sentation of such recurrences, the binary recurrence matrix Rij of a phase space trajectory
xi ∈ Rd indicates times where the system recurs to formerly visited states by 1s and all
other times by 0s. It is widely used as a graphical tool but also allows for quantification of
various dynamical aspects of the system under study. Since its first conception the method
was successfully extended and applied to various real-world systems [62]. The detection of
regime transitions has become a prototypical field of application for RPs since it enables us to
analyse complex temporal patterns of nonlinear time series in a simplified fashion [20]. The
majority of measures in recurrence quantification analysis (RQA) are based on black or white
line structures in an RP. For instance, diagonal lines resemble parallel segments of the phase
space trajectory and thus entail a degree of predictability. Approaches to capture more com-
plex features in RPs beyond the reductionist approach of measuring line lengths have been
conceived [63, 47], e.g. by allowing for the entirety of possible permutations of recurrences
in small submatrices. This leads to the observation that the variety of distinct microstates
in deterministic and stochastic systems occupies only a fraction of the possible permutations,
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yielding lower entropy values. Even though this technique generally shows good robustness
and does not require specification of minimum line lengths, such an approach is limited to the
information captured by small submatrices on a restricted local level. We propose a method
where recurrences are also evaluated regardless of their exact orientation in the recurrence
matrix, but with a surplus quantification of the scaling from the smallest to the largest possi-
ble submatrices. This can be achieved by not analysing the permutations of recurrences but
by the statistics of their locally determined count.

To this extent, we make use of a measure called lacunarity [25, 64]. Traditionally, it has
been applied to quantify complex spatial patterns. Perhaps, the clearest interpretation of
lacunarity is that it quantifies the degree of heterogeneity of the studied pattern. Often, it is
applied in the context of distinguishing fractal patterns [65] because objects of same fractal
dimensionality can still exhibit different degrees of heterogeneity. As a rule of thumb, patterns
with larger gaps yield higher values of lacunarity. Beyond this straight-forward interpretation,
it classifies patterns with respect to their deviation from translational invariance [65]. This
highlights its applicability as a measure of heterogeneity. Characterizing the heterogeneity
of RPs on different temporal scales using lacunarity yields meaningful information about the
complexity of the underlying time series. Besides, heterogeneity has already been considered
as a quantifier to analyse recurrence networks [66]. Lacunarity has succesfully been applied
to various systems ranging from characterizations of the scaling properties of the Amazon
rainforest [67] and urban areas [68] to heterogenous patterns in bone structures [69] and stellar
mass distributions [70]. It is also a popular tool in Neuroscience [71]. To our best knowledge,
it has not yet been applied to RPs. Combining both approaches as a powerful tool to detect
dynamical regime shifts is the main contribution of this work. In order to demonstrate the
scope of the developed methodology, we showcase applications to both paradigmatic systems
and nonlinear empirical time series.

This work is organized as follows: in Sect. 5.2 we introduce our methodology by briefly
summarizing the RP technique and describing the computation of lacunarity by a box-
counting algorithm. In this context, we give a brief dynamical interpretation of our method.
Subsequently, we study results for synthetic data from three paradigmatic systems in Sect. 5.3,
namely the Logistic Map, the Roessler system and a bistable noise-driven system. The ro-
bustness of our method against noise and short time series length is examined. Finally, we
provide first evidence that the proposed method is capable of detecting regime transitions in
complex empirical time series. In Sect. 5.4, we identify known dynamical states in time series
of acoustic pressure in a turbulent combustor [72] and attempt to illustrate the distinction
between two dynamically similar but practically contrary regimes. We conclude our findings
in Sect. 5.5.

5.2 Methodology

First, we introduce recurrence plots in Sect. 5.2.1 and briefly revise traditional recurrence
quantification analysis. Afterwards, we define lacunarity and present detailed information for
its application to RPs in Sect. 5.2.2. To gain a more profound understanding of the proposed
method, we discuss its dynamical interpretation for the phase space trajectory.

5.2.1 Recurrence Analysis

Many real-world systems show a tendency to recur to states they have visited before. Such
information can be captured by a two-dimensional visualization that may yield striking pat-
terns which resemble the recurrences at all time instances of the time series. By studying
regularities in such recurrence patterns, rich information can be obtained on the dynamics of

25



the underlying system that go beyond the scope of linear statistical methods of time series
analysis such as autocorrelation functions. In particular, different quantification measures of
the visual representation prove powerful in classifying differing systems, detecting non-linear
correlations and identifying dynamical regime transitions. The basic concept can be outlined
by defining the recurrence matrix

Rij =

{
1 if ||xi − xj || ≤ ε
0 if ||xi − xj || > ε

(5.1)

with a time series x at two arbitrary times i and j and a suitable norm ‖ · ‖ . The vicinity
threshold ε needs to be fixed with respect to the distances of time series values such that a
meaningful expression of recurrences is obtained. A popular approach to do so is, for example,
to choose a value which entails a fixed recurrence rate for the RP [20]. The resulting visual
representation of a recurrence matrix is a binary image of black and white dots from which
temporal patterns can be inspected. For higher dimensional systems, recurrence analysis needs
to be based on a phase space representation of the time series as a trajectory in d -dimensional
space. Despite the fact that the dimension of the regarded system is often unknown, Takens’
theorem [73] ensures that a time–delay embedding can be found that gives an appropriate
phase space reconstruction. To this extent, an embedding delay is often specified prior to
fixing the optimal embedding dimension for the system. We will apply the broadly used
mutual information criterion and the False Nearest Neighbours (FNN) method [74, 75] to
estimate both parameters.

For many systems, RPs have been successfully applied to reveal a high degree of complex-
ity both in terms of nonlinear dynamics and stochastic fluctuations [20]. In the detection of
regime transitions, a reliable quantifier that yields an unambiguous distinction of dynamical
regimes is generally required. Traditional complexity indicators such as Lyapunov Exponents
[76] are not always robust against noise and require rather long time series. They are also
often not able to capture the relevant time scales of the system’s shifting dynamics which is
particularly important for systems with multiple characteristic time scales. Yet, such infor-
mation is contained in RPs and can be uncovered using recurrence quantification measures
[77]. Most of them are based on the statistical distribution of line structures in RPs. For
instance, diagonal lines of certain length indicate a similar evolution of different segments of
a time series. A popular quantification of an RP based on diagonal lines is defined as the
fraction of lines that exceed some specified minimal line length. As it quantifies the degree of
determinism in a time series, it is refered to as DET. Vertical lines indicate that the system
is trapped in a certain phase space region for subsequent times. White vertical gaps indicate
transitions between different phase space regions while black square-like structures point at
time intervals in which the system remains confined in a small region of the phase space. If
such patterns reoccur with statistical significance, they uncover regularities of the time series
and may yield characteristic recurrence time scales. Line–based recurrence measures have
been applied to a diversity of complex real–world systems as complexity measures to uncover
transitions [20]. Yet, different embedding parameters can yield varying results and edge ef-
fects as well as high sampling rates might result in spurious quantifications [78], thus requiring
corrections [79]. On top of that, the application of line-based RQA measures is limited to
systems that do not show more complex recurring patterns which are refered to as microstates
of an RP [63]. Related complexity measures that go beyond this scope have shown that they
can have superior performance [58, 47]. In this work, will put forward a novel RQA measure
that characterizes the heterogeneity of an RP and is not based on certain microstructures.
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5.2.2 Recurrence Lacunarity

Lacunarity is often illustrated as a measure of ‘gappiness’ or as a property that can characterize
the heterogeneity of a spatial pattern. It was introduced to distinguish between different
fractal patterns of equivalent fractal dimensionality. However, its scope goes beyond the
distinction of fractal structures. More formally, we can regard it as a measure of deviance of a
pattern from translational homogenity [64, 80]. As lacunarity is usually derived for different
spatial scales, it is possible to identify a certain scale above which a pattern is translational
invariant and below which it is too heterogenous to be regarded as such.

Even though box-counting algorithms can also be modified so that an analysis of grayscale-
[81] or RGB–encoded [82] patterns is possible, in application to RPs a basic algorithm for
binary patterns suffices. The quantity that enables us to analyse scaling properties of a
complex pattern is the size of boxes on the applied grid. Given an RP as a T ×T –matrix and
a fixed box size w, the mass M of each box is obtained by counting the black pixels inside
the box. This results in a mass distribution Pw(M) for all N boxes. From this distribution,
we compute the moments

Z(q)(w) =
∑
M

M qPw(M) . (5.2)

In the definition of lacunarity Λ, only the first and the second moments Z(1,2) are considered:

Λ̃(w) =
Z(2)(w)[
Z(1)(w)

]2 = 1 +
σ2(w)

µ2(w)
(5.3)

with mean µ and standard deviation σ. To have a measure in [0, 1], we normalize lacunarity
by also computing the lacunarity Λ̃† of the complement of the set (1s replaced by 0s and vice
versa). Consequently, we define it as

Λ(w) = 2−
(

1

Λ̃(w)
+

1

Λ̃†(w)

)
. (5.4)

This refined definition of lacunarity also enhances the detection of significant gap sizes com-
pared to eq. (3) and is thus prefered [69]. Various box–counting methods beyond the basic
approach employed in this work are known (e.g. gliding box-counting [83]) and generalized
versions exist (e.g. for multifractal data [84]). The often used standard gliding box approach
results in a higher number of boxes but is also known to cause biased values due to edge
effects [85]. Note that in any case, minimum and maximum box size have to be chosen based
on the time series length.

In view of RPs, black pixels are equivalent to recurrences of a trajectory in reconstructed
phase space. Thus, we are effectively carrying out an analysis of local (in a temporal sense)
recurrence statistics and quantification of local variations. This is essentially implemented
via the computation of variance of recurrence points contained in boxes which are located at
different positions in the RP. An extension to higher statistical moments is also conceivable
[86]. Our approach circumvents the necessity of defining any sort of microstate and is not
restricted to the usual statistical analysis of line structures in the RP. The scaling (sucessive
increasing of time intervals) is expected to pinpoint relevant temporal scales related to aver-
age recurrence times and quasi–periodicities. This is confirmed by the displayed recurrence
lacunarity curves in Fig. 5.2 from which some will be studied in more detail in Sect. 5.3.
Figure 5.1 shows examples of RPs of systems that show fundamentally different dynamics.
While a white noise process entails an RP with randomly distributed black dots, a Logistic
Map in the chaotic regime (r = 3.9) still results in some local structures such that RL is
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Algorithm 1 Recurrence Lacunarity
1: if embedding required then
2: Choose d, τ and embedd time series
3: end if
4: Compute RP R with specified vicinity threshold ε
5: for box widthw = 2, 3 . . . � T do
6: Split (T × T )-matrix R into N = bT/wc × bT/wc disjunct boxes
7: for each box b(i,j)w do
8: Count recurrences: M =

∑i,j
i′,j′ δ(Ri′j′ − 1)

9: end for
10: Compute normalized lacunarity Λ for fixed w from eq. (2-4)
11: Apply bootstrap by randomly drawing sufficient number of boxes b(i,j)w for significance

testing
12: if T%w 6= 0 then
13: repeat iteration with varied grid position
14: until robustness ensured
15: end if
16: end for

higher for almost all w, resembling higher complexity. A Roessler system in the periodic
regime generates well pronounced lines corresponding to deterministic periodic dynamics. As
expected, the characteristic width between the lines is captured in the variation of RL as a
local minimum (left dotted circle) since for boxes of the same size, homogenity is enhanced.
The second visible minimum (right dotted circle) is located at twice the period of the time
series. Stochastic signals such as an AR(2)–process and Multifractal Gaussian Noise (MFGN)
[87] yield a higher degree of complexity in terms of low translational invariance of the corre-
sponding RPs. Both the MFGN and the bistable noise-driven system (see Sect. 5.3.3) time
series have a visible periodic modulation which is resembled by the distinct gap sizes in the
respective RPs. For the former time series, RL sharply drops when w reaches the gap size.
For the latter, the stochastic component results in slight variations of the gap size but still,
RL captures them as a local minimum at w ≈ 102.

Dynamical Interpretation

As standard RQA measures are based on line structures in the RP, they have clear interpre-
tations in terms of the phase space trajectory and their relationships to dynamical invariants
(such as Lyapunov exponents and Renyi entropy) are well established [20]. These questions
also arise for RL. Picking a box within an RP and deriving some related statistics can be
interpreted as sampling two segments of a phase space trajectory. If we denote the starting
point of the first trajectory by i and the second by j, the lower left corner of the box is located
at (i, j) and its upper right corner at (i + w, j + w). The number Mi,j of recurrences con-
tained in the box characterizes the similarity between the two trajectory segments by means
of their recurrences. For fixed ε, these are equivalent to the number of contained phase space
vectors that are nearest neighbours by means of a low distance in phase space. Figure 5.3
illustrates the relation between box-counting of recurrences and the phase space trajectory
based on the Roessler attractor as a paradigmatic example (see Sect. 5.3.2 ). RL quantifies
the heterogeneity of recurrent temporal patterns representing different segments of the phase
space trajectory. For increasing length of trajectory segments (from right to left in Fig. 5.3),
their recurrence as well as their divergence can be captured by means of recurrence patterns

28



0 500 1000
0

1
y

0 500 1000

t

0

500

1000

t

(a) White noise

0 500 1000
0.0

0.5

1.0

y
0 500 1000

t

0

500

1000

t

(b) Logistic Map
(r = 3.9)

0 500 1000
−5

0

5

y

0 500 1000

t

0

500

1000

t

(c) Roessler system (periodic,
a = 0.2, b = 0.2, c = 3)

0 500 1000
−5

0

5

y

0 500 1000

t

0

500

1000

t

(d) AR(2)–process
(µ1 = 1, µ2 = −1, θ = 0.5)

0 500 1000

−0.5

0.0

0.5

y

0 500 1000

t

0

500

1000

t

(e) MFGN–process with sinu-
soidally tuned Hurst Exponent
between [0.25, 0.75]

0 500 1000
−25

0

25

y

0 500 1000

t

0

500

1000

t
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10, D = 45)

Figure 5.1: Recurrence plots for time series of different deterministic and stochastic systems.

encoded in the RP. Apart from the dynamical interpretation, it is an open question how frac-
tality of RPs is related to self-similarity in the underlying time series or the attractor [88].
As a general conception, the very basic structures of RPs such as diagonal lines, vertical lines
and blocks show some resemblance to typical 1- and 2-dimensional fractals like the Cantor set
or the Sierpinski carpet [89]. Self–similarity by definition arises from the spatial recurrence of
patterns [90]. Even though ideal monofractal patterns can not be expected to occur in a pure
fashion in RPs, some degree of self–similarity appears intuitive: small-scale recurring patterns
often constitute the correlations on longer time scales which resembles what is displayed in an
RP. Self–similarity over some range of box sizes applied to an RP could thus be interpreted as
a similar tendency to recur to formerly visited states regardless of the respective time scale.
On top of that, it is known that geometrical quantities computed from recurrence networks
show relations to the phase space dimension and exhibit fractal scaling properties [91]. This
ultimately raises the question whether there is a direct relation of RPs fractality to the degree
of fractality of the time series and the attractor. This should be explored in more detail in a
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Figure 5.3: Schematic illustration of the relation between box-counting on RPs and the underlying
phase space trajectory for the Roessler attractor (a = 0.1, b = 0.1, c = 14). The full RP is displayed
on the left with two exemplary boxes (blue and red). Above, the box counts Mw0

(i, j) of all boxes
(although not indicated) located at grid positions (i, j) are shown with the average box count (vertical
line) whereas their index is chosen as a y-coordinate for better visibility. From left to right, boxes
of decreasing width w are zoomed in and additional boxes are indicated. The segments of the phase
space trajectory that correspond to the boxes are color coded respectively. The scatter plots illustrate
that for decreasing box widths, heterogeneity by means of dispersion of the box counts increases.
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future study and is beyond the scope of this work.

5.3 Dynamical Transitions in Synthetic Data

We demonstrate the ability of RL to capture different kinds of regime shifts by its application
to model data from different dynamical systems (Table 5.1). These systems cover some of the
important aspects that need to be accounted for if transitions in real data should be identified.
In Sect. 5.3.1, we study transitions between chaotic and periodic dynamics for the Logistic
Map. In Sect. 5.3.2, transitions in the Roessler System as a three-dimensional continuous
system are analysed. A bistable noise-driven stochastic process is examined in Sect. 5.3.3 in
order to demonstrate the ability of our approach to uncover rather subtle transitions. Finally,
we examine an experimental dynamical systems in Sect. 5.4.

Table 5.1: Overview of studied systems for detecting dynamical regime shifts. The systems are
distinguished based on their exhibited dynamical regimes, underlying equations, transition parameters
and delay-embedding parameters.

Moreover, we characterize the scaling of RL curves by computing the slope α of logΛ
against logw by linear regression. Note that if multiple scaling regions coexist for one RP,
a single slope will yield ambiguous results and other indicators should be chosen (e.g. the
regression error).

Complexity measures indicate transitions by changing to significantly high or low values.
In order to assess significance, we apply the following bootstrapping method that entails con-
fidence intervals: we draw a random sample (with repetitions) from all boxes the RP was
divided into and derive RL only from this sample (see Algorithm 1). This resampling pro-
cedure is repeated N times to obtain a distribution of RL values that jitter around the true
value. The 5%/95% – quantiles characterize the width of this distribution and are used as
confidence bounds. Similar approches are usually employed with other complexity measures
[92, 34, 93]. In most applications, confidence bounds should reflect significance equally suffi-
cient for all values obtained for the respective complexity measure (i.e. for each configuration
of the parameters that control regime transitions). In our case, this consequently raises the
question whether to sample from the global or local distribution of box counts. In the local
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case, box counts for a single window are used to compute confidence bounds whereas in the
global case, box counts from all windows are joined. In both cases, the calculation of quan-
tiles is performed such that only a single parameter-independent value is obtained, yielding
horizontal lines that indicate the separation between ‘regular’ dynamics and dynamical tran-
sitions. Extensive comparative analysis of the resulting confidence bounds indicates that the
latter approach yields more convincing results for the studied systems. Bootstrapping from
the global box-count distribution generally yields more narrow bounds that seem to overes-
timate the true number of regime shifts. Consequently, for an underlying series of length T ,
we obtain T locally bootstrapped RL distributions of size N from which we compute 95% –
confidence bounds.

5.3.1 Logistic Map

As a first paradigmatic example, we employ the Logistic Map [94] as a system that is well-
known to produce pronounced transitions between periodic, chaotic and laminar behaviour.
The variation of the parameter r introduces bifurcations between regimes of different com-
plexity as displayed in Fig. 5.3. While increasing r entails a tendency of less predictability,
windows of periodic dynamics arise in between. For each parameter value r ∈ [3.5, 3.95] with
δr = 0.00045 we generate a time series of suitable length such that after discarding transients,
we have T = 1000 points in time. For each such time series xr(t), we calculate an RP. We
choose the threshold ε = 0.1σts with σts being the standard deviation of xr(t). From each
RP, we compute RL for a number of k = 70 different box sizes w ∈ [2, T/4]. This results in
a single RL curve like in Fig. 5.2. A standard measure to detect regime transitions for such
paradigmatic systems is the largest Lyapunov exponent λ1 [40]. We use it as a reference for
our results to evaluate the detection of transitions.

Figure 5.4: Bifurcation diagram of Logistic Map and RL curves for varying r ∈ [3.5, 3.95] with
n = 2000. Dashed vertical lines indicate chaos-chaos transitions. Each time series has T = 1000 values
after discarding transients. For the RL curves, w –axis and color coding are scaled logarithmically.
The black curve illustrates the variation of λ1.

Below the bifurcation diagram in Fig. 5.4, RL is displayed using color coding. Each RL
curve is plotted in double-logarithmic coordinates. Periodic windows are clearly detected as
the corresponding RPs are homogenuous at all time scales. Furthermore, it appears that e.g.
around r ≈ 3.68 (red vertical line) it identifies a transition to a regime not well captured by
λ1 which is known to arise from the intersection of the supertrack functions [52]. At these,
an unstable singularity results in laminar behaviour i.e. the time series becoming ‘trapped’
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Figure 5.5: Robustness of RL to varying noise intensity and time series length for the logistic map.

in a certain range of values for some time intervals. RL is able to detect such chaos–chaos
transitions.

Figure 5.5a shows bifurcations for varying noise strength. We plot both DET and the
slope α of the RL curve for r ∈ [3.5, 3.95]. RPs are generated as described above but for time
series that are contaminated by uncorrelated white noise of different strength. The largest
Lyapunov exponent λ1 shows that for σn = 0.0005, only few of the chaos-periodic transitions
are detected. For σn = 0.0001, some transitions are still well depicted by both measures while
others become less prominent already. We evaluate the performance of detecting transitions
for σn = 0.0005 by calculating confidence intervals for the noise-free case as a rather strict
bound. Both measures perform with similar success. Yet we point out that RL seems to
resolve transitions close to strongly periodic dynamics more clearly in presence of noise, e.g.
at around r ≈ 3.55 and r ≈ 3.83. Analogously to this analysis, we plot results for different
time series lengths in Fig. 5.5a. As expected, it appears that the number of false detections
increases for both measures for shorter time series. However, both still succeed to pinpoint
chaos–order transitions even for very short time series with T = 100. Beyond that, the laminar
parameter range is also still identified. Anyway, α indicates more false shifts than DET which
may be due to the rather basic box-counting approach that limits the computation of RL to
a few boxes in case of very short time series.

5.3.2 Roessler System

We further explore the ability of RL to detect regime transitions for continuous dynamical
systems with the Roessler system as a standard example (see Tab. 5.1). We vary c ∈ [2, 10]
with n = 2000 different values. Increasingly dominant chaotic behaviour is expected whereas
the average distance between unstable periodic orbits decreases for increasing c. The non-
linearly coupled x –component is embedded with parameters given in Tab. 5.1. The vicinity
threshold is fixed as ε = 0.5σts.

Instead of α, we analyse single scale-specific values of Λ(w) since in general, multiple
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scaling regions can be identified that are not well represented by a single scaling exponent
(see Fig. 5.2).

Figure 5.6: DET, single scale-specific lacunarities Λ(w) and RL curves for varying c ∈ [2, 10] with
n = 2000 for the Roessler system. 95% – confidence bounds are obtained via boostrapping and
excursions outside the indicated horizontals are indicated. Each time series has T = 1000 values after
discarding transients. In the lower panel, w –axis and color coding are scaled logarithmically. Black
(cyan) curves display the first (second) Lyapunov exponent normalized to their maximum absolute
values for better visibility.

In the lower panel of Fig. 5.6 λ1 (black) and the second Lyapunov exponent λ2 (white) serve
as a reference and enable us to localize periodic windows in the regarded parameter range.
The color coded RL curves display rich information on various characteristic scales underlying
the chaotic and periodic dynamics. Note that RL detects bifurcations only captured by both
of the displayed Lyapunov exponents. For instance, this can be seen in the range c ∈ [2, 4]
where RL corresponds well to λ2 for larger box sizes whereas pronounced variations are neither
captured by λ1 nor by determinism. Above c = 5, the transitions captured by RL match those
indicated by DET. Particularly for the smaller box sizes, a trend in overall complexity for
increasing c is present. We subtract this quadratic trend from three lacunarities for fixed box
sizes w in the upper panel of of Fig. 5.6 and compute confidence bounds via the introduced
bootstrapping procedure. Almost all of the occuring transitions are detected as indicated
by the colored vertical lines. Interestingly, certain periodic windows are most prominently
captured by distinct box sizes such as at c ≈ 3.7 or c ≈ 6.4. This is due to the fact that as
soon as a box size that corresonds to a characteristic scale is reached, the RP becomes more
homogenuous on this scale and entails low RL. From this perspective, RL may additionally
provide similar spectral information on the time series as usually obtained from Wavelet
analysis [95] in some cases.

5.3.3 Bistable Noise-Driven System

Finally, we demonstrate that RL can also uncover subtle transitions in the time evolution of a
nonstationary, stochastic system. To this extent, we study a bistable system which is driven
by uncorrelated noise ξ(t) and a periodic component. Such a system is often illustrated as

34



a Brownian particle trapped in a double-well potential with a periodic driving force [96]. It
can be described by the Langevin equation given in Tab. 5.1 where K controls the shape of
the deterministic potential function, A yields the strength of the periodic component with
its frequency ω and D controls the noise strength. ξ(t) is chosen as Gaussian white noise.
Equation 5.2.2 is solved using the Euler–Maruyama method with a sampling interval of ∆t =
0.002 and subsequent downsampling to ∆t = 0.006. The interplay of the noise strength and
the periodic force determines the transition dynamics between the two stable fixed points as
described by the general phenomenon of stochastic resonance [97]. For fixed A, an optimal D
exists such that the signal-to-noise ratio (SNR) is maximized.

There are several notions of how different regime shifts can be classified [98]. A basic
differentiation may be made between transitions which are induced by a stochastic or a de-
terministic component of the respective system. We vary both the frequency ω of the driving
force and noise strength D to test whether RL is able to detect these two different types of
transitions. Both increasing ω and decreasing D result in a lower SNR since it triggers more
high-frequency variability and impedes regular switching. We generate time series of total
length T = 1.5 · 104 whereas the frequency ω is first abruptly decreased from ω = 20 to ω = 8
at t1 = T/3 while noise strength remains constant at D = 36. At t2 = 2T/3, noise strength σ
is decreased from D = 36 to D = 28 while retaining ω = 8. 100 realizations xi(t) with random
initial conditions are generated. The height of the potential barrier is h = K2/4 = 2500� A,
therefore jumps between the potential minima can not be solely caused by the periodic forc-
ing. However, both noise strengths can result in purely noise-driven jumps. RL is computed
for RPs with a fixed recurrence rate of 10% on sliding windows of width 2000 with a 90%
overlap for each sample. In total, the following two shifts are studied:

X1 → X2 → X3|K=100,A=320 :

(ω = 20, D = 36)
t1−→ (ω = 8, D = 36)

t2−→ (ω = 8, D = 28)

between states X1, X2 and X3. The upper panel of Fig. 5.7 shows an example of a sampled
time series. We can observe the subtlety of the two parameter shifts which can not be
solely localized through visual inspection. In the lower panel, the variation of color-coded RL
curves is displayed whereas the average over all generated samples is shown. As expected, the
transitions are most striking for the largest considered box sizes w since these have the same
order of magnitude as the switching time scales between the two fixed points. Such switches
are encoded as gaps in the RPs and can thus be well identified by RL. The decrease of ω after
X1 → X2 results in more homogenuous RPs on these time scales since the system on average
resides for shorter time periods within one potential minimum. Within the X2 regime, SNR
is enhanced yielding a more regular switching behaviour. This regularity further stands out
as an almost stable switching period as indicated by RL at w ≈ 100. Recurrences within this
regime can consequently be regarded as less complex for time periods exceeding this switching
cycle. A similar increase in large-scale RL can be observed for the decrease in noise intensity
X2 → X3 : as noise-driven transitions are less likely, the RPs are more ‘gappy’ on longer time
scales.
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Figure 5.7: Single time series realization and averaged RL curves on sliding windows for bistable
noise-driven system. Sample averaged SNR (gray) is indicated in the upper panel, sample averaged
DET (purple) and α (cyan) are compared in the center panel. Vertical dashed lines mark the two
transitions X1 → X2 and X2 → X3. For the RL curves, w –axis and color coding are scaled logarith-
mically.

Both states X1 and X3 thus share the feature that lower frequency variability is more
complex in terms of more diverse recurrent patterns. Anyway, they differ with respect to
their high–frequency variability. For small box sizes (mostly reflecting intra-well dynamics),
RL is higher in the X3 regime as indicated by the gray contours.

When both the driving frequency and noise intensity are low, recurrences are less erati-
cally clustered, yielding more coherent, variable recurrent periods for short durations. The
semi-stable period is preserved in X3 but less pronounced than in X2 since lower noise strength
results in a weakened SNR through the mechanism of stochastic resonance. Finally, we com-
pute three regime-specific RL curves for each of the 100 samples and calculate the sample
averaged slopes α for the different regimes. With αX1 = −1.09 ± 0.17 , αX2 = −1.38 ± 0.18
and αX3 = −1.00 ± 0.18 , the two regimes X1 and X2 can be well distinguished from X2 but
are similar to each other in the range of their respective standard errors. Anyway, the middle
panel in Fig. 5.7 shows that α still captures both transitions more clearly compared to DET.
While DET performed superior for short time series (see 5.5b), RL gives more convincing
results for these rather subtle shifts.

5.4 Application to Thermoacoustic Instability Time Series

In order to evaluate the performance of RL as a complexity indicator for empirical data, we
apply it to acoustic pressure time series from a laboratory combustor with turbulent flow,
operating at atmospheric pressure. The univariate time series was measured with a 10kHz
resolution and is known to undergo a rich variety of transitions between chaotic, intermittent
and periodic dynamics [49]. Practical relevance arises e.g. from the use of gas turbine engines
for propulsion and power generation. The two main acting subsystems are the unsteady heat
release and the acoustic field. Positive feedbacks between both may lead into a state called
thermoacoustic instability, enhancing heat transfer to the walls of the combustion chamber
and resulting in increased mechanical stress. This can cause severe damages to an aircraft’s
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engine or shutdown in the case of a power plant [99]. The parameter which can drive the
turbulent system into an unstable state is the fuel/air ratio. If it falls below a critical threshold,
flame blowout can be the result which leads to an abrupt drop of thrust for an aircraft. This
raises the need of effective monitoring to detect impending instabilities and thermoacoustic
transitions such including thermoacoustic instability and blowout. In the following, we will
apply RL analysis to RPs of the system in order to idenfity the different regimes and localize
the shifts between them. Several studies have been carried out in this context, classifying
dynamical states with fractal measures [48], employing complex networks [100, 59] and RPs
[101, 102, 49, 103]. Special emphasis will be given to the distinction of normal operating
conditions (combustion noise) and an impending blowout situation. We first introduce the
experimental setup in Sect. 5.4.1. In Sect. 5.4.2, we investigate regime shifts in the system in
terms of varying RL of acoustic pressure time series.

5.4.1 Experimental Setup and Data Acquisition

The acoustic pressure (p′) data used for the study was obtained from a turbulent combustor
with a bluff body stabilized flame. The combustor consists of a rectangular chamber (length =
140 cm, cross section= 9 cm×9 cm) that houses a circular disk (bluff body, diameter = 4.7 cm,
thickness = 1 cm) aligned along the axis of the combustion chamber. The bluff body produces
stagnation points and recirculation zone in the flow where the flame can be stabilized. The
flame is unsteady due to the turbulent fluctuations in the flow. The unsteady fluctuations of
the flame and the fluctuations in the acoustic field of the combustion chamber is in feedback
with each other. At certain conditions, the feed back is positive causing growth of amplitude
of periodic acoustic pressure oscillations inside the combustion. The amplitude of oscillations
eventually saturates as the losses (damping) due to the nonlinearities in the system increase
with the increase in the amplitude of acoustic pressure oscillations. Such pressure oscillations
are known as thermoacoustic instability.

The acoustic pressure fluctuations in the combustion chamber is measured using a pressure
transducer (PCB103B02) at 1× 104 samples per second. The fuel used is LPG (40% Butane,
60% Propane). The flow rate of partially premixed air-fuel mixture is varied in a quasi steady
manner by increasing the air flow rate for a fixed fuel flow rate (1.04 g/s). This also reduces the
equivalence ratio, φ, of the fuel-air mixture defined as the ratio of actual fuel-air mass flow rate
ratio to the stoichiometric fuel-air mass flow rate ratio. As φ reduces by increasing the airflow
rate, initially the pressure fluctuations change from aperiodic oscillations to thermoacoustic
instability via intermittency. On further reduction of φ, the pressure oscillations exhibits
intermittency post thermoacoustic instability. When φ is reduced further, we approach flame
blowout. Flame blowout is a phenomena where the flame loses its ability to stabilize inside
a combustion chamber and hence undergoes extinction. Prior to flame blowout, the pressure
oscillations have low amplitude and are aperiodic. Further details of the experimental setup
(Fig. 5.8) and different dynamic regimes are detailed in [48].

Pressure sensor

Bluff body

Combustion chamber

Air-fuel mixture

Figure 5.8: Schematic illustration of the combustion chamber employed in the experimental setup.
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5.4.2 Results

The different operating conditions of a thermoacoustic combustor have been extensively stud-
ied in the literature both in laboratory conditions and model system data [99]. Measures
based both on RPs and recurrence networks have been successfully applied to detect dynam-
ical transitions between different regimes [102, 49]. Prior to our analysis, we can already
give a brief classification of the different dynamical states based on these insights. Figure
5.9 shows the full time series in the bottom panel and enlarged segments with normalized
amplitude of it in the top panel. The first segment shows combustion noise (X1) which is
the general term for stable operating conditions. It is comprised of low amplitude aperiodic
pressure fluctuations which can be classified as chaotic dynamics. Every dotted gray line
in the lower panel marks a decrease in φ. In this sense, each three second sub–time series
should be regarded as a separate experiment with constant parameters and will be evaluated
as such in the following. As φ is discontinuously increased along the time axis, we observe
a dynamical state characterized by aperiodic oscillations interrupted by large amplitude har-
monic oscillations. This state is generally refered to as intermittency(X2) and is observed as
a transition state betweeen aperiodic oscillations and thermoacoustic instability. The third
zoomed segment shows thermoacoustic instability (X3) which is constituted by periodic large
amplitude pressure fluctuations. As φ is increased further, the periodic oscillations subside
and a different state of intermittency (X4) is observed which we will refer to as intermittency
after instability (in contrast to intermittency prior to instability). The last segment again
shows aperiodic oscillations of low amplitude which are a precursor of an impending blowout
situation where the flame can not longer be sustained (X5).

In order to carry out our analysis, an adequate phase space embedding is required for the
measured time series as the underlying system should be regarded as high-dimensional. We
apply the mentioned standard methods to fix a suitable embedding delay and dimension. Since
we aim at analysing the dynamics of the combustor for a range of parameters, we estimate
common embedding parameters appropiate for all different dynamical states. To also evaluate
significance of our results for RL, we apply a sliding window analysis to the time series. We
choose a window size of 900 ms with 95% overlap between consecutive windows while no
overlap is allowed between the different sub-time series with fixed φ. We ensured that all of the
following results are robust in a reasonable range of window and overlap widths. A sufficient
tradeoff for all time series segments is obtained by analysing how strongly both embedding
parameters fluctuate for the different regimes in time. Embedding delay is maximum for
combustion noise and it decreases towards enhanced periodic oscillations. Highest average
embedding dimensions are estimated for intermittency prior to instability. We conclude that
our global parameter choice of d = 5 , τ = 23 is suitable for further analysis.

Based on this choice, we compute RPs on sliding windows based on the delay-embedded
phase space trajectory of the system. We choose a threshold ε such that it yields constant
recurrence rate of 10% for all RPs. All results are qualitatively sustained for reasonable
variations of ε. For a visual impression of RPs of a similar system, the reader is pointed to
[101, 102]. The procedure is now carried out as follows: we first calculate a RL curve for each
obtained RP which refers to a certain time instance for fixed φ. We concatenate the entire
set of RL curves to illustrate them in the same fashion as for the synthetic data examples
to display variations of complexity on all time scales. Additionally, we classify the different
dynamical regimes by scale-averages of the RL curves. In order to estimate scale averages
of RL, we first average all RL curves for fixed φ obtained from the sliding window analysis.
Next, we average RL values for time scales w ≤ 1 ms, 1 ms < w < 100 ms and w ≥ 100 ms
separately. Note that these groups cover different numbers of RL values. The results are
shown in Fig. 5.9.

In the lower panel, we observe a gradual descent of RL at all time scales w from combustion
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noise into the impending instability, interrupted by spikes of varying amplitude. The over-
arching trend until about 51s shows a reduction in dynamic complexity from the aperiodic,
chaotic oscillations during stable operation into periodic oscillations during thermoacoustic
instability. By means of RL, we can interpret this decrease as weakened heterogeneity of
recurrences, entailing that the system shows temporal patterns with less strong variability as
it approaches the instability regime. The intermittency route into instability becomes well
visible by the shape of the RL curves: the cut-off value of the truncated power law decay is
continuously reduced, displaying a significant shift of characteristic time scales in the pressure
fluctuations of the combustor. Cut-off values can be infered approximately from the graph by
tracking sudden color switches. In the range between 24− 38s, intermittency manifests itself
in the episodic reduction of large scale heterogeneity in the RPs. The system jumps between
harmonic and aperiodic oscillations and thus shifts its characteristic time scale discontinuously
until multiple coexisting periods (horizontal yellow lines) are reduced to a single dominant
period. A sharp rise of RL at all scales marks the slow intermittency regime prior to the near
blowout situation. The average level of complexity during this lean blowout state appears
close to that observed for combustion noise at the beginning of the measurement series. In
the upper panel, the scale-averages yet uncover a difference in sub-ms RL between combustion
noise and lean blowout state: the aperiodic oscillations in the former regime seemingly occur
in a more heterogenous fashion than for the latter. The two other scales-averages do not
indicate a remarkable difference between these two regimes. Note that the scale averages are
rescaled to [0, 1] for better comparison. Consequently, RL enables us to detect five distinct
regimes and to track respective variations in the characteristic time scale of the system. These
findings generally corroborate those from earlier studies. Furthermore, it detects a subtle dif-
ference in the complexity between the dynamically similar combustion noise state and the
near blow out situation.

5.5 Conclusion

We have put forward a novel recurrence quantification measure to quantify the degree of com-
plexity of nonlinear time series, namely recurrence lacunarity. The identification of different
dynamical regimes in multiple real–world applications has attracted a lot of interest in the
literature. The method we propose contributes to this toolbox of complexity indicators by
representing a time series as a recurrence plot and characterizing its heterogeneity on all time
scales relevant to the system. Even though both recurrence plots and lacunarity are broadly
acknowledged as powerful stand-alone tools, we have demonstrated that their combination
can yield valuable insights in the context of regime shift detection.

The method’s main advantage is that it is able to capture multiscale features of the
recurrence plot while traditional measures are based on line structures which can always only
encode a certain aspect of the dynamics. Our approach does not require specification of
minimum line lengths. It naturally yields information both on the heterogeneity of recurrence
plots and their scaling properties, opening up a new perspective of analysing point statistics in
partitioned RPs rather than constricted structures. We have shown that the applicability of
lacunarity to general nonlinear dynamical systems by means of the well established recurrence
plot approach can be fruitful.

As this work’s main focus was on the identification of dynamical regime shifts, we have
studied three different paradigmatic systems in detail to showcase the potentials of the
method. We have found that the proposed method is able to uncover transitions of different
origin even in presence of noise and for short time series which makes it broadly applicable to
many real–world phenomena. We have further demonstrated that recurrence lacunarity may
also be useful in characterizing subtle transitions of different nature.
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(b) Scale-averaged lacunarities Λw and RL curves for full time series com-
puted on sliding windows of 900 ms width. In the upper panel, green and
red shading indicate combustion noise (X1) and near blowout oscillations
(X5) respectively. Air flow rate is increased in a quasi-static manner after
maintaining it steady for a duration of 3 seconds. In the lower panel, w –axis
and color coding are scaled logarithmically.

Figure 5.9: Application of RL to acoustic pressure fluctuation time series from a thermoacoustic
combustor.
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In comparison to DET as a traditional recurrence quantifier, it showed comparable well
performance for noisy time series. Even though the results were less convincing for a short
time series, RL performed superior for subtle transitions in the bistable system.

Finally, we have employed a system exhibiting thermoacoustic instability to study whether
our approach enables us to detect regime shifts in an (experimental) real world system. Our
method has enabled us to identify the different dynamical transitions that the system un-
dergoes. We found that the intermittency route from stable operation into thermoacoustic
instability manifests itself as a continuous transition from aperiodic to harmonic oscillations.
We have ultimately addressed the challenge of differentiating between the dynamically similar
but practically different states of stable operation and a near blowout situation. It appeared
that short-term acoustic pressure fluctuations show less variable temporal recurrent patterns
during a near-blowout situation than during regular operating mode. How this can be inter-
preted and whether it can also be captured in terms of (nonlinear) serial dependence should
be addressed in future work.

Furthermore, it appears as a promising direction for future work to investigate in more
detail the relations between the fractal scaling of RPs and fractality of the underlying time
series and the attractor dimension. Including RL in feature selection approaches may also
improve the performance of machine learning techniques that classify nonlinear data [104].
Another line of research should be concerned with the robustness of the proposed method
against spurious effects introduced by erroneous embedding and RP related pitfalls when
compared to traditional RQA measures [78, 79].
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Abstract

Couplings in complex real-world systems are often nonlinear and scale-dependent.
In many cases, it is crucial to consider a multitude of interlinked variables and
the strengths of their correlations to adequately fathom the dynamics of a high-
dimensional nonlinear system. We propose a recurrence based dependence mea-
sure that quantifies the relationship between multiple time series based on the
predictability of their joint evolution. The statistical analysis of recurrence plots
(RPs) is a powerful framework in nonlinear time series analysis that has proven
to be effective in addressing many fundamental problems, e.g., regime shift detec-
tion and identification of couplings. The recurrence flow through an RP exploits
artifacts in the formation of diagonal lines, a structure in RPs that reflects peri-
ods of predictable dynamics. By using time-delayed variables of a deterministic
uni-/multivariate system, lagged dependencies with potentially many time scales
can be captured by the recurrence flow measure. Given an RP, no parameters are
required for its computation. We showcase the scope of the method for quantify-
ing lagged nonlinear correlations and put a focus on the delay selection problem
in time-delay embedding which is often used for attractor reconstruction. The
recurrence flow measure of dependence helps to identify non-uniform delays and
appears as a promising foundation for a recurrence based state space reconstruc-
tion algorithm.

6.1 Introduction

Measures of statistical dependence represent one of the cornerstones in the analysis of em-
pirical data. The study of time series measured from complex real-world systems poses a
broad variety of challenges in quantifying uni- and multivariate data sets, e.g., lagged depen-
dencies, non-stationarity, noise contamination, uncertainties and the limited length of time
series. The set of tools to detect and quantify statistical dependencies ranges from stan-
dard correlation analysis techniques [105] over graph theoretical approaches, such as complex
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networks [106, 107], towards causal discovery algorithms [108, 109, 110], and detecting crit-
ical transitions [111, 112, 113]. A notoriously challenging problem is to adequately quan-
tify non-monotonous and nonlinear relationships in stochastic and deterministic systems.
In this context, information theoretic measures have established as an effective framework
[114, 115, 116]. However, popular methods, such as the mutual information (MI), are not
designed to treat higher-dimensional data appropriately (even though extensions have been
suggested [117, 118]). The nature and strength of links in complex systems additionally of-
ten exhibits scale-dependence, i.e., multi-scale behaviour [119]. This motivates the need of
methods that are capable of unravelling dependencies at a broad range of scales, e.g., wavelet
based methods [120, 121, 1]. Few methods succeed to combine both capabilities of capturing
nonlinear dependencies at multiple time scales [122, 75].

A powerful method that captures both nonlinear and multi-scale properties of a high-
dimensional dynamical system is the recurrence plot (RP) [19]. An RP is a mathematically
simple yet effective tool that encodes the tendency of a time series to recur to formerly visited
states [20]. An RP is based on a binary recurrence matrix in which recurrences are marked
by value one, giving rise to intriguing and well-interpretable structures in the RP. Various
quantification measures can be applied to a recurrence matrix and prove powerful in classi-
fying differing systems [123, 124, 125, 126], identifying dynamical regime transitions [21, 29],
and detecting non-linear correlations as well as synchronization [110, 127, 22]. Recurrence
quantification analysis (RQA) based on diagonal lines in the RP not only allows identification
of periodic behaviour [128, 1], but also helps to identify unstable periodic orbits in high-
dimensional chaotic systems [129]. The conceptual simplicity of RPs allows for a broad range
of real-world applications, also for challenging data that is event-like or unevenly sampled in
time [130, 131]. Recurrence measures of dependence have not only facilitated the study of syn-
chronization in dynamical systems [132, 133, 134, 22] but have also been extended to account
for lagged and conditional dependencies [127, 135, 136, 110]. Further concepts, including sym-
bolic analyses of relationships, have been conceived more recently [137]. Recurrence based
quantification of statistical dependencies, thus, bares high potential to meet the combination
of above mentioned challenges. Here, we propose a novel recurrence based measure of depen-
dence that uses delay coordinates from a given observational time series. Since the measure is
based on RPs, nonlinear dependencies with multiple time lags can be quantified which makes
the measure applicable to the problem of non-uniform delay selection [122, 75]. The proposed
dependence measure, thus, contributes to the challenge of characterizing complex real-world
interactions using RPs.

This work is structured as follows: in Sect. 6.2, we introduce the recurrence flow as a
measure of dependence along with a brief review of the RP method. We showcase its scope in
different numerical experiments in Sect. 6.3, covering the characterization of lagged nonlinear
dependence and delay selection for uniform and non-uniform TDE. We conclude our findings
in Sect. 6.4.

6.2 Recurrence Flow

We are interested in characterizing nonlinear dependencies in a deterministic, high-
dimensional system that is represented byM observational time series {sn(t) |n = 1, . . . ,M}.
In general, the relationships between the different time series sn(t) and their coordinates
do not need to be instantaneous but are often associated with time delays τ1, τ2, . . . , τm.
Consequently, we define the recurrence flow measure of redundance to capture such lagged
dependencies.

The key idea of the proposed measure is based on the existence of diagonal lines in RPs.
An RP is a two-dimensional matrix that encodes how a system recurs to formerly visited
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states ~vi, i = 1, . . . , N . In general, this representation can be computed for systems of any
dimension d and is formally given by

Ri,j(τ) = Θ (ε− ‖~vi(τ)− ~vj(τ)‖) =

{
1 if ‖~vi(τ)− ~vj(τ)‖ ≤ ε
0 if ‖~vi(τ)− ~vj(τ)‖ > ε

. (6.1)

with two arbitrary times i and j, the vicinity threshold ε and a suitable norm ‖ ·‖. The states
denoted by ~v are either given by the available components (state variables) of the system or,
in case of only limited access to the state variables, by delayed copies of the one (or multiple)
observational time series sn(t) of the studied system. In particular, ~v is then obtained by
stacking these copies on top of each other as it is common practise in time delay embedding
(TDE).

Diagonal lines of length Ld in an RP resemble periods of enhanced predictability as two
trajectory segments at times i and j evolve in parallel in an ε -tube for Ld time instances. For a
given system, this may reveal time periods of continuously high determinism or uncover abrupt
regime shifts [24]. Properties of the diagonal line length distribution of an RP are linked to
dynamical invariants of paradigmatic dynamical systems [138]. However, spurious artifacts
are known to disrupt, lengthen or thicken diagonal lines due to erroneous computation of an
RP [78]. An inadequate choice of the vicinity threshold ε will disrupt diagonal lines, thus,
underestimating the system’s predictability. On the other hand, too high values will artificially
merge fundamentally distinct regions of phase space. Sampling can also alter diagonal line
structures: if the system is undersampled, diagonal lines might not emerge continuously as
deterministic time intervals are not resolved sufficiently. On the other hand, oversampling
results in artificially thickened diagonal lines (tangential motion) [79]. Erroneous time delay
embedding of uni-/multivariate time series can have several undesired effects on the formation
of diagonal lines; if the embedding dimension is chosen too high, diagonal lines are artificially
lengthened and can even emerge in absence of determinism for an uncorrelated stochastic
process due to correlations in the underlying distance matrix [139]. A non-optimal choice
for the embedding delay will result in diagonal lines that are perpendicular to the line of
identity (i = j, LOI). This indicates inclusion of erroneous time scales [78]. The formation of
perpendicular lines is caused by the ambiguity in the reconstruction that is introduced by not
eliminating the full serial dependence; this results in close evolution of states both forward
and backward in time: ‖~vi − ~vj‖ < ε, ‖~vi+1 − ~vj−1‖ < ε, i.e., the trajectory segments closely
evolve in parallel, but with opposite time directions. On top of that, additional deformations
to a diagonal line can occur, e.g., in form of bowed diagonal lines indicating that the evolution
of states at different time intervals is similar but occurs with different velocity or temporal
resolution [140].

We utilize the formation of such diagonal line artifacts (DLA) to identify time scales of
the system that result in well-expressed diagonal lines. The proposed method is, thus, based
on the assumption that the studied system exhibits (at least to some degree) deterministic
dynamics which will result in meaningful diagonal lines in an RP. An effective way of retrieving
information on the formation of DLA is given by scanning an RP diagonal-wise. We can
identify an index for each diagonal at which the first recurrence pixel is located. It appears
intuitive to regard these pixels as ‘obstacles’ to an imaginary fluid that flows along each
diagonal into the RP and is not allowed to turn (Fig. 6.1C/E). The formation of DLA blocks
the flow. As a basic example, we consider a noisy sinusoidal time series (Fig. 6.1A) with n =
5, 000 and a period of T = 100. Formation of perpendicular diagonal lines for τ = µT , µ ∈ N
(Fig. 6.1B) reduces the flow through the RP compared to τ = T/4 (Fig. 6.1D). We use
the symmetry of the RP by only flooding the upper triangular matrix to save computation
time. The recurrence flow Φ(τ) can be computed for varying delays τ and encodes similar
information as an inverse autocorrelation function, yielding a continuous representation of

45



the redundancy between the time series and its delayed version (Fig. 6.1F). For continuous
variations of τ from τ = 0 to τ = T/4 , the perpendicular diagonal lines are progressively
eliminated. This reproduces the well-known result that a sinusoidal signal needs to be shifted
by (odd multiples of) a quarter of its period against itself to minimize redundancy.

To quantify the flow through the RP, we define the recurrence flow matrix φ (Fig. 6.1C/E)

φi,j(τ) =
(

1−Θ
(
ε− ‖~vi(τ)− ~vj(τ)‖

))
Θ (`j − i) , i, j = 1, . . . , N (6.2)

with the time delay τ and the length `j of the jth flooded diagonal, i.e., the number of
subsequent zeros up to the first one. A flooded diagonal `j has to be distinguished from a
diagonal line Ld: it denotes a diagonal of the RP (parallel to the LOI) starting at time instance
j that is flooded with a fictive fluid, regardless of whether any diagonal lines exist on this
diagonal. Accordingly, the factor Θ (`j − i) in eq. (6.2) ensures that the flooding of the jth

diagonal stops at the first recurrence on this diagonal. φi,j depends on the vicinity threshold
ε, i.e., the fraction of recurrences. We fix ε at some reasonable value that corresponds to a
fixed recurrence rate (RR).

We study the dependence on the time delay τ contained in the vector ~v(τ) similar as it is
done in TDE where the delays τ1, τ2, . . . , τm for the different coordinates are free parameters
and need to be chosen with respect to some notion of optimality [141]. The recurrence flow
Φ(τ) is computed by summing over the recurrence flow matrix φi,j at given τ and dividing
by the number of non-recurrences (i.e., zeros in the RP):

Φ(τ) =

∑N
i,j=1 φi,j(τ)∑N

i,j=1

(
1−Ri,j(τ)

) . (6.3)

(A)

(B)

(C)

(D)

Figure 6.1: Recurrence flow for a noisy sinusoidal. (A) Time series of the noisy sinusoidal and
(B/C) RPs for two different embedding vectors ~v(t): ~v(t) = [y(t), y(t+ T )] and ~v(t) = [y(t), y(t+ T

4 )]
(left) and flooded RPs/recurrence flow matrices (right). (D) Recurrence flow Φ(τ) through the RP
for varying delay τ . The red dot marks the period T . Φ(τ) is maximized for delays that are odd
multiples of T/4.

In a multivariate application, ~v can encompass time series from different systems to study
their cross-dependencies. In such a scenario, it is more instructive to define the recurrence flow
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as a direct measure of correlation/redundance. We, thus, define the recurrence flow measure
of redundance (RFMR) θ(τ) as

θ(τ) = 1− Φ(τ). (6.4)

The significance of recurrence flow values can be tested against a random null model based
on uncorrelated white noise (App. B). Finally, it needs to be noted that the idea of using
RPs to identify optimal embedding parameters has been considered before, but to our best
knowledge has not been performed systematically [142, 143].

6.3 Application to Model Examples

We now demonstrate the scope of the proposed method by highlighting two different potential
applications: the quantification of nonlinear correlations (Sect. 6.3.1) and the identification
of uniform embedding delays for TDE of nonlinear signals (Sect. 6.3.2).

6.3.1 Nonlinear Dependence

We exemplify the efficacy of θ(τ) as a nonlinear dependence measure for deterministic systems
with a simple bivariate system:

x(t) = sin(2πt/ω) + η(t, σ1)

y(t) = ax(t− τ̃)2 + η(t, σ2)
(6.5)

with frequency ω = 2π/T , period T , time lag τ̃ = 20, and normal-distributed white noise
processes η(t, σ) with standard deviations σ1 and σ2. This system exhibits a sinusoidal cycle
with frequency ω in its x-component. The y-component is nonlinearly coupled to x(t) and
exhibits a cycle with half of the period of x(t). y(t) follows x(t) with a fixed time lag τ̃ .
Both components are superimposed by measurement noise η(t). We consider time series with
n = 5, 000 samples (Fig. 6.2A). Due to the specific coupling, the relationship between x and
y is nonlinear (Fig. 6.2B).

We test whether we can detect the coupling and the corresponding time lag τ̃ by computing
θ(τ) for delays in the range τ ∈ [−200, 200] (Fig. 6.2C). In fact, we find that θ(τ) reaches
local maxima at integer multiples of τ̃ , including τ = τ̃ (red dashed line). Similar results are
obtained if the mutual information is used (Fig. 6.2C, black curve), confirming that nonlinear
relationships between deterministic time series can be captured by recurrence flow in presence
of measurement noise. In this case, the MI yields sharper peaks than the recurrence flow.
However, the suggested recurrence flow measure provides advantages for high-dimensional
data as discussed below.

6.3.2 Uniform Time Delay Embedding

The ability of the recurrence flow to detect delayed dependencies between multiple variables
motivates its use in the delay selection problem faced in TDE. Proficient delay selection must
be based on a measure that captures the redundancy in a (potentially large) set of correlated
time series.
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θ
(τ
)

Figure 6.2: Detection of lagged, nonlinear dependence between nonlinearly coupled sinusoidals. (A)
The y(t) time series (black) results from squaring x(t) (blue) and shifting it by a fixed time delay.
(B) Nonlinear relationship between x(t) and y(t). (C) Recurrence flow measure of redundance θ(τ)
(blue) detecting the time delay between x(t) and y(t) (red dashed line), confirmed by the cross-mutual
information (black).

A popular solution is to use mutual information (MI). However, characterizing the re-
quired joint probability density function p(s1, s2, . . . , sm) becomes cumbersome for a large
number of variables m and is rendered infeasible for many high-dimensional real-world sys-
tems. Compared to nonlinear correlation measures like standard MI that are based on binning,
recurrence flow offers the advantage that computation times increase less rapidly: given km
bins, an increase in dimensionality m→ m+ 1 results in (km − 1)km additional bins while in
the computation of Φ, a k-d-tree nearest neighbour search based RP computation increases
only linearly with the dimensionality of the system. It has yet to be noted that more so-
phisticated nearest neighbour based approaches for MI computation do not suffer from this
drawback [118].

Due to the popularity of this problem, other nonlinear correlation measures that do not
suffer from the curse of dimensionality have been conceived [144, 75]. In order to validate
the effectiveness of the measure proposed here for selecting embedding delays, we do not only
compare it to the linear autocorrelation function (ACF) and the auto-mutual information
(MI), but also to the delay selection method proposed in [75]: the continuity statistic is based
on a hypothesis test of whether a component, added to an existing m-dimensional recon-
struction vector, is functionally independent of all existing m components. This is tested by
first defining a set of fiducial points and their k-nearest neighbours from the m-dimensional
reconstruction vector. These are mapped onto the one-dimensional number line. The conti-
nuity statistic 〈ε∗〉(τ) denotes the smallest scale at which the number of observed neighbours
mapped onto this line is larger than the number expected from a binomial distribution, im-

48



plying a functional relationship. For further details the reader is refered to [75, 145]. For the
estimation of the optimal embedding dimension, we employ Cao’s method with a threshold
of ∆afn = 0.2 for the change of the number of averaged false neighbors from m → m + 1
[74]. For the selection of embedding delays using the proposed recurrence flow measure, we
identify all peaks of Φ(τ) at different delays τ and choose the highest of these to obtain the
corresponding embedding delay τ (Φ). In case there is several peaks of identical height, we
choose the one for the smallest τ (i.e., the first one).

To illustrate the procedure, we consider a time series of the past 1 million years of inso-
lation on Earth at 52.39◦ latitude (see App. B) [146]. The insolation depends on the Earth
orbit and the Earth axis tilt and precession, thus, varies in specific cycles (Milankovich cy-
cles). Cao’s method suggests an embedding dimension m = 4. We present results for the
second and third component of the embedding vector. By using first-crossing of ACF and
first minimum of MI, both measures suggest a delay of τ (ACF)

1 = τ
(MI)
1 = 6 ka (Fig. 6.3A).

Since none of both measures is capable of selecting different embedding delays for higher
components of the embedding vector, this yields the three-dimensional embedding vector
~v(t) = [y(t), y(t− 6 ka), y(t− 12 ka)]. Next, we compute Φ(τ) to check if the estimate of
~v(t) based on the traditional TDE metrics is confirmed: we find τ (Φ)

1 = 5 ka in close agree-
ment with the ACF and MI-criteria (Fig. 6.3C). Moreover, the continuity statistic 〈ε∗〉(τ)
suggests the same embedding delay for the first component as the auto-correlation and MI
(first local maximum). It does not indicate a global maximum at this delay, yielding a more
ambiguous choice of the optimal embedding delay than Φ(τ). Finally, we examine if both
multi-dimensional measures suggest τ2 = 2τ1 for the second embedding delay as expected for
a traditional uniform time delay embedding (UTDE). Interestingly, 〈ε∗〉(τ) offers only lim-
ited information on an optimal embedding delay for the third component of ~v(t) (Fig. 6.3D).
Multiple local maxima offer a variety of choices with no clear optimal value. We choose the
global maximum (marked by star). Conversely, Φ(τ) once more provides a clear choice for
the second embedding delay with globally maximized flow for τ (Φ)

2 = 2τ
(Φ)
1 .

We visually evaluate the quality of the resulting embeddings by comparing the line struc-
tures in the corresponding RPs (Fig. 6.3E). The enlarged details of the RPs illustrate how well
deterministic intervals in the evolution of insolation are resolved based on the phase space re-
constructions yielded by the ACF, continuity statistic, and recurrence flow. While the uniform
embedding vectors obtained from the ACF and Φ(τ) result in well-separated, undisturbed di-
agonal lines, multiple diagonal lines and the related cycles are poorly expressed in the phase
space suggested by 〈ε∗〉(τ). The reconstructed phase space based on the embedding vector
obtained from the recurrence flow criterion reveals several unstable periodic orbits (Fig. 6.3F),
constituting a concentric spiral-like phase space trajectory in three dimensions.

Many real-world systems allow taking only a relatively short series of measurements for
a single variable with high levels of superimposed measurement noise. We study how well
a known phase space of a paradigmatic system can be reconstructed based on the four dif-
ferent measures considered above with increasing noise strength. In particular, we generate
n = 2, 000 samples of a Rössler system (see App. B) such that the resulting trajectory only
covers relatively few unstable periodic orbits. We reconstruct the known three-dimensional
phase space from the y(t)-component (Fig. 6.4A) with superimposed uncorrelated white noise
realizations (Fig. 6.4B).
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(A)

(B)

(C)

(D)

Figure 6.3: Uniform delay selection for numerical insolation model. (A) Insolation time series y(t)
in W m−2. (B) Serial dependence of y(t), measured in terms of ACF (red/blue) and auto-MI (black)
for the univariate time series, (C/D) as well as by the continuity statistic 〈ε∗〉(τ) (gray) and the
recurrence flow Φ(τ) (dark blue) for (C) two- and (D) three-dimensional embedding vectors ~v(t).
The optimal delay is marked by a circle(/cross/star/vertical green line) for the ACF(/MI/continuity
statistic/recurrence flow), respectively. (E) Zoomed RPs for the ACF, 〈ε∗〉(τ) and Φ(τ) (from left to
right). (F) Three-dimensional phase space reconstruction based on recurrence flow shows a spiral-like
trajectory.

The noise strength (standard deviation of the noise) is varied in multiples of the standard
deviation σRoe of the undisturbed y(t). Even with only 10% measurement noise, the original
attractor is already significantly less smooth (Fig. 6.4B). We compare the ACF, MI, continuity
statistic, and recurrence flow as delay selection measures while only uniform time delays are
considered, i.e., the optimal embedding delay is selected only once for the step from a one-
to a two-dimensional embedding. This ensures that the two high-dimensional measures (Φ(τ)
and 〈ε∗〉(τ)) can be compared adequately to the traditional measures.

To quantitatively evaluate the dependence of the reconstruction on noise strength, we
generate an RP for each reconstruction and for each of the four delay selection methods. For
each RP, we compute the joint recurrence rate fraction (JRRF):

JRRF =

∑N
i,j JRi,j∑N
i,j=1R

ref
i,j

, JRRF ∈ [0, 1]

with

JR = Rref ◦Rrec

from the RP of the (real) reference system Rref and the RP of the respective reconstruction
Rrec. We use it to quantify the accordance of the real RP of the corresponding noisy Rössler
system to the reconstructions with respect to its recurrence structure (the higher JRRF, the
better the reconstruction).

We generate 50 individual noise realizations for each noise strength between 0% and
100% of the original standard deviation σRoe and average the corresponding JRRF values
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(Fig. 6.4C). As expected, with increasing noise level, the quality of the reconstruction de-
creases.

(A) (B)

(C)

Figure 6.4: Sensitivity of recurrence flow against measurement noise, compared to other dependence
measures. (A) y(t)-component and reference phase space of Rössler system without noise contamina-
tion; (B) the same, but with 10% measurement noise. (C) Performance of ACF, auto-MI, continuity
statistic 〈ε∗〉(τ) and recurrence flow Φ(τ) in terms of JRRF for noise strengths from 0% to 30% (and
100% inset).

For noise strengths between 10% and 30%, the linear ACF performs worst in terms of
JRRF while the MI and continuity statistic perform equally well. The almost perfect align-
ment of both might seem surprising but is due to the discreteness immanent in the delay
selection. While their agreement might be interpreted in the way that this has to be the
optimal delay (i.e., the reconstructed system preserves most of the recurrence structure), the
recurrence flow Φ(τ) shows superior performance with noise strengths up to 30%, i.e., three
times the noise level illustrated in Fig. 6.4B. Beyond 30%, all four measures yield approxi-
mately the same performance (Fig. 6.4C inset), as for JRRF< 0.5, the alignment could be
explained by random joint recurrences.
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6.3.3 Non-uniform Time Delay Embedding

For many real-world dynamical systems, it is not sufficient to consider only a single char-
acteristic time scale. Instead, multi-scale systems are governed by a multitude of processes
that imprint (quasi)-periodic cycles of various lengths onto the measured time series. The
selection of delays must account for this complexity by considering non-uniform embedding
delays (non-uniform time delay embedding, NUTD). One of the most studied systems that
exhibits multi-scale dynamics is the El Niño-Southern Oscillation (ENSO). ENSO represents
a quasi-periodic climate pattern that is associated with spatio-temporal variations of sea sur-
face temperatures in the central and eastern Pacific Ocean, oscillating between El Niño and
La Niña events. We use the delay differential ENSO model proposed in [147] to examine
if the recurrence flow can unveil distinct delays for a three-dimensional state space recon-
struction of model time series. The model is based on a nonlinear delay differential equation
and reproduces an abundance of key features of ENSO (see App. B). We study two different
solution types that are associated with distinct dynamical regimes, i.e., a seasonal oscillation
with superimposed faster low-amplitude oscillations prior to a period-doubling and irregular
oscillations that are reminiscent of El Niño and La Niña events of random magnitudes. A
more detailed discussion of these solution types can be found in [147].

The first solution type exhibits well-pronounced seasonal cycle and fast, amplitude-modulated
wiggles on top (Fig. 6.5A). Cao’s method suggests that this solution type can be embedded
in a m = 3-dimensional embedding space. We find that MI does not yield an unambiguous
choice for an embedding delay while the ACF suggests τ (ACF)

1 = 0.25 years, i.e., the expected
value of a quarter of the seasonal cycle (Fig. 6.5B). The same delay is identified with Φ(τ)
whereby 〈ε∗〉(τ) yields a slightly higher optimal embedding delay (Fig. 6.5C). While tradi-
tional UTDE now suggests τ (ACF)

2 = 2τ
(ACF)
1 for a three-dimensional embedding, both Φ(τ)

and 〈ε∗〉(τ) instead show that a different choice yields a superior phase space reconstruction
in terms of minimized redundancy (Fig. 6.5C/D). Both 〈ε∗〉(τ) and Φ(τ) effectively uncover
the faster cycle by means of local maxima. However, both also detect a delay that is the sum
of the seasonal and the fast cycle as a promising candidate. The fact that the estimate of
this conjoint cycle differs for both measures can be explained by the different estimates on τ1.
Since for Φ(τ) both local maxima have the same height, we pick the first. The zoomed RPs
clearly express that both NUTD selection methods entail more coherent diagonal lines with
less perpendicular distortions (Fig. 6.5E). Despite the different embedding vectors ~v(Φ) and
~v(ε∗), both reconstructions give a convincing representation of the seasonal cycle in the RP,
respectively. The reconstructed phase space based on the delays selected from the recurrence
flow yields a clear visualization of the system’s periodic oscillations (Fig. 6.5F).

In the same manner, we study the second solution type of irregular ENSO-like oscillations
(Fig. 6.6). Cao’s method yields a 4-dimensional TDE. Both the ACF and MI identify different
but similar delays slightly larger than τ1 = 0.35 years (Fig. 6.6B). 〈ε∗〉(τ) and Φ(τ) agree on
an embedding delay of τ (Φ)

1 = τ
(ε∗)
1 = 0.33 years which is slightly smaller than both τ (ACF)

1 and
τ

(MI)
1 (Fig. 6.6C). Again, the estimates τ (Φ)

2 and τ (ε∗)
2 differ from the choice that would result

from UTDE and indicate that describing the dominant variability in the observed irregular
oscillations requires a multi-scale approach (Fig. 6.6D). Slight deviations in both estimates
give rise to minor discrepancies between the emerging diagonal lines in the respective RPs
(Fig. 6.6E). For none of the three reconstructions, DLA are entirely removed which hints at
an optimal embedding dimension m > 3 as identified by Cao’s method. This is supported
by the displayed attractor reconstruction that has a two-winged structure reminiscent of the
famous Lorenz attractor but potentially be unfolded further (Fig. 6.6F). However, both NUTD
selection measures once more provide a more convincing result in terms of sparse, continuous
diagonal lines than the ACF and, thus, capture the system’s predictability more adequately.
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(F)

(E)

Figure 6.5: Non-uniform delay selection for delay-differential ENSO model with (A) periodic dy-
namics, analogously to Fig. 6.3. Serial dependence of y(t), measured in terms of (B) ACF (red/blue)
and auto-MI (black) for the univariate time series, as well as by (C/D) the continuity statistic 〈ε∗〉(τ)
(gray) and the recurrence flow Φ(τ) (dark blue) for (C) two- and (D) three-dimensional embed-
ding vectors ~v(t). The optimal delay is marked by a circle(/cross/star/vertical green line) for the
ACF(/MI/continuity statistic/recurrence flow), respectively. (E) Zoomed RPs for the ACF, 〈ε∗〉(τ)
and Φ(τ) (from left to right). (F) Three-dimensional phase space reconstruction based on recurrence
flow.

6.4 Conclusion

The nonlinearity and scale-dependence of relationships observed in high-dimensional empiri-
cal data calls for appropriate and easily applicable methods. Recurrence plots offer a math-
ematically simple yet effective framework for the study of dependencies in high-dimensional
dynamical systems and are an established tool in applied nonlinear time series analysis. For
deterministic systems, diagonal lines in an RP yield valuable information on the evolution
of a system’s trajectory. We propose a novel recurrence based dependence measure, called
recurrence flow. It builds on the fact that an RP can be computed from delayed copies of
one (or multiple) time series that are stacked on top of each other as it is common practise
in time delay embedding. The absence of spurious structures perpendicular to diagonal lines
hints at a correct choice of (embedding) delays between the embedding vector’s coordinates.
We exploit the emergence of these structures to characterize the serial dependence in uni-
and cross-dependence of multi-variate, high-dimensional systems. We demonstrated that the
recurrence flow Φ(τ) captures nonlinear, lagged dependencies in presence of observational
noise. Due to its conceptual proximity to time delay embedding, we put a focus on the delay
selection problem that underlies attractor reconstruction.
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(A)

(B)

(C)

(D)

(E)

(F)

Figure 6.6: Non-uniform delay selection for delay-differential ENSO model with (A) irregular oscil-
lations, analogously to Fig. 6.3. Serial dependence of y(t), measured in terms of (B) ACF (red/blue)
and auto-MI (black) for the univariate time series, as well as by (C/D) the continuity statistic 〈ε∗〉(τ)
(gray) and the recurrence flow Φ(τ) (dark blue) for (C) two- and (D) three-dimensional embed-
ding vectors ~v(t). The optimal delay is marked by a circle(/cross/star/vertical green line) for the
ACF(/MI/continuity statistic/recurrence flow), respectively. (E) Zoomed RPs for the ACF, 〈ε∗〉(τ)
and Φ(τ) (from left to right). (F) Three-dimensional phase space reconstruction based on recurrence
flow.
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Abstract

The low frequency variability of the extratropical atmosphere involves hemi-
spheric-scale recurring, often persistent, states known as teleconnection patterns
or regimes, which can have profound impact on predictability on intra-seasonal
and longer timescales. However, reliable data-driven identification and dynamical
representation of such states are still challenging problems in modeling dynamics
of the atmosphere. We present a new method, which allows both to detect recur-
ring regimes of atmospheric variability, and to obtain dynamical variables serving
as an embedding for these regimes. The method combines two approaches from
nonlinear data analysis: partitioning a network of recurrent states with studying
its properties by the recurrence quantification analysis and the kernel principal
component analysis. We apply the method to study teleconnection patterns in a
quasi-geostrophical model of atmospheric circulation over the extratropical hemi-
sphere as well as to reanalysis data of geopotential height anomalies in the mid-
latitudes of the Northern Hemisphere atmosphere in the winter seasons from 1981
to the present. It is shown that the detected regimes as well as the obtained set
of dynamical variables explain large-scale weather patterns, which are associated,
in particular, with severe winters over Eurasia and North America. The method
presented opens prospects for improving empirical modeling and long-term fore-
casting of large-scale atmospheric circulation regimes.

Behavior of weather systems over the mid-latitudes is well-known as
strongly chaotic and having a very limited horizon of reliable forecast-
ing. While movements of synoptic-scale structures like cyclones and
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anticyclones are predicted well within 1-2 weeks, larger structures of
atmospheric circulation with longer time scales are still poorly investi-
gated. As it is shown by models and data analysis, dynamics on these
time scales, also called the low-frequency variability, is characterized
by recurrent global patterns, or regimes, which can strongly impact
long-term weather conditions in different regions. However, both iden-
tification and dynamical representation of such regimes based on data is
a controversial problem due to the lack of robust and reliable methods of
data analysis/data analysis methods. Here we suggest a method which
allows to detect the regimes and, simultaneously, to obtain dynami-
cal variables representing their dynamics. The method involves and
join together/combines several approaches from nonlinear data anal-
ysis: partitioning a network of recurrent states, recurrence quantifi-
cation analysis and nonlinear principal component analysis. Studying
winter low frequency variability (LFV) in the Northern Hemisphere
mid-latitudes by the suggested method allows us to reveal and inves-
tigate dynamical properties of large-scale weather patterns, which are
associated, in particular, with severe winters over Eurasia and North
America. The results presented open prospects for improving data-
driven modeling and long-term forecasting of large-scale atmosphere
circulation regimes.

Many non-linear multidimensional systems exhibit chaotic behavior with a continuum of
time scales, are poorly predictable, and are generally difficult to distinguish from a random
process. However, in the state space of the system there may be sets of states in which
the system is found more often than others. Such intermittently recurrent states can have
varying lifetimes (or persistence) and regularity of occurrence. Their study is important from
a practical point of view, because in the space of observables they correspond to the most
typical regimes of the system dynamics. However, both the identification and analysis of
their dynamical properties based on the observations are still challenging, especially when the
observations live in a high-dimensional space, such as our weather and climate system [148].

Studies of atmospheric variability often distinguish between synoptic scales which embed
day-to-day variability steered by baroclinic instability in the storm track region, and low-
frequency variability with longer time scales. Compared to baroclinic processes, low-frequency
variability is still not entirely well understood and is known to be challenging to model and
predict [149]. Low-frequency variability embeds, in particular, tropospheric planetary waves
and coherent large-scale structures including blocking and different phases of teleconnections,
such as the North Atlantic Oscillation (NAO). A proper understanding of low-frequency vari-
ability proves invaluable in improving weather/climate prediction on intraseasonal and/or
seasonal timescales, in addition to many other applications not least subgrid parametrization,
climate change feedback, downscaling etc, see, e.g., the review [150] and references therein.

The atmospheric system is a highly nonlinear dynamical system per excellence with com-
plex interactions between very many degrees-of-freedom involving different temporal and spa-
tial scales. As far as large scale flow is concerned there is evidence of the existence of preferred
recurrent and persistent circulation patterns [150]. For example, it is well known that north-
ern hemisphere (NH) low-frequency variability is partly manifested by several teleconnection
patterns [151, 152, 153, 154, 155], which can have profound impact in improving predictability
on intra-seasonal and longer, such as subseasonal to seasonal timescales [156].

Compared to the tropics, extratropical dynamics involves a great variety of wave-wave
and wave-mean flow interactions, highlighting, hence, more involved nonlinearity, in particu-
lar, preferred intra-seasonal large scale structures of nonlinear flow regimes. The persistence
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timescale of these patterns is normally much longer than synoptic baroclinic timescales but
smaller than typical intra-seasonal variability timescales of radiative fluxes and bottom bound-
ary conditions, such as sea surface temperature anomalies [152, 157, 158].

The extratropical persistent and quasi-stationary states are associated with teleconnection
patterns and states/positions of the jet stream [159, 160]. An extensive number of studies
has analysed and identified these nonlinear flow regimes ranging from various cluster analysis
methods, bump hunting of the probability density function (pdf) to hidden Markov models
and self-organizing maps. The number of these structures, however, is a matter of debate
between researchers, and depends on the location and extension of the geographical region
and season. An extensive discussion with more details can be found in the review [150], and
references therein.

One of the challenging issues in the identification of the above extratropical nonlinear
structures is the choice of the low-dimensional space, which allows appropriate reduction
of weather-related noise and efficient separation of these states. The space spanned by the
leading empirical orthogonal functions (EOF) is conventionally used as reduced space. EOFs
have, however, a number of weaknesses putting limits on what can be achieved [161, 162]. To
overcome those weaknesses and, in consistency with the nonlinear nature of the dynamics,
these authors applied kernel EOFs as a low-order state space to identify the nonlinear flow
structures. In particular, those structures are interpreted as quasi-stationary states based on
the flow tendency within the same space. This flow tendency can only be applied with very
long time series, as is possible with the quasi-geostrophic model of potential vorticity on the
sphere but is not appropriate for data from reanalysis.

Many problems in the real world, such as physical, computer, and social sciences, can be
formulated and solved using the concept of networks or graph theory. A network is a collection
of objects or nodes that are connected by edges. These connections can be defined based on
a chosen metric in the system state space [163]. An example of such graphs can be found
in the Isomap method [164] and an application to the Asian monsoon can be found in [165].
Many networks allow a natural splitting of the system into groups or communities/modules
[166]. To complement the analysis of the low frequency variability system within the low-
dimensional kernel EOF space, we adopt and apply here for the first time the concept of
network modularity to study the nonlinear dynamical feature of the mid-latitude atmosphere.

In this manuscript we revisit and extend the analysis of Hannachi and Iqbal [161] by us-
ing kernel EOFs combined with a recurrence network partitioning method [166, 167]. The
recurrence network analysis allows an elegant and easy partitioning of the state space into
communities in a natural way, providing an efficient way to identify the nonlinear flow struc-
ture within the low-dimensional kernel EOF space. Moreover, this makes it possible to use the
tools of recurrence quantification analysis (RQA) [20] to study important dynamical features
of the detected structures.

The manuscript is organised as follows. Sect. 7.1 describes the methodology, the data and
calculation procedure are given in Sect. 7.2, Sect. 7.3 presents the results, and a summary
and conclusion are provided in the last section.

7.1 Methods

7.1.1 Kernel principal component analysis

Detecting the regimes of a given (dynamical) system’s variability can be formulated as the
problem of separating structures of related states in the phase space. Typically, when studying
the atmospheric dynamics, we have at our disposal multivariate time series of some physical
variables, such as temperature, pressure, geopotential height, etc., on a spatial grid, xt, t =
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1, . . . N , and hence, the structures of interest are embedded in a high-dimensional space.
The nonlinearity of the system makes traditional linear data decomposition methods, such
as empirical orthogonal function (EOF) analysis, inefficient and sometimes inadequate in
disentangling these structures. The reason is that they are not necessarily oriented along linear
directions, but are possibly lying on complex manifolds, and may be embedded in a very large
number of principal components (PCs). A suitable approach to overcome this complexity is to
construct a nonlinear embedding of the state space, through a high-dimensional multivariate
mapping ϕ(·), from the original state space into a new feature space, so that the structures
would be captured and could be well-separated by a few PCs in the new feature space. In this
setting, the problem is reduced to linear PCA applied to the transformed time series ϕ(xt) of
the original multivariate d-dimensional time series xt with t = 1, . . . N . A straightforward way
to solve this problem – via explicit assignment of the functions ϕ – is in most cases impractical,
because it is difficult to guess both the functional form and its dimension, which are optimal for
detecting the regimes. The kernel trick can solve this problem in an elegant way. The kernel
function K(·, ·) can be defined as a scalar product in such a way that K(x,y) = ϕ(x)Tϕ(y),
and can be chosen from a large family such as polynomials or Gaussian functions. The choice
of K(·, ·) then defines implicitly the mapping ϕ, i.e., without an explicit expression of it, which
is generally very high (and may be even infinite) dimensional. Then, all we need to know for
calculating PCs in the new feature space is the matrix of inner productsKij = ϕ(xi)

Tϕ(xj) :=∑
l

ϕl(xi)ϕl(xj). Hence specifying the mapping ϕ(·) is not needed to perform PCA; we can

just introduce the kernel function K(·, ·) that defines the dot products Kij = K(xi,xj),
i, j = 1, . . . N . Such an implicit kernel-based nonlinear transformation of the original space
is the core idea of the kernel PCA (KPCA) approach [168, 169, 148], which was shown to
be effective, e.g., in identifying the LFV regimes in the extratropical atmosphere [162]. The
kernel function can be selected based on some general assumptions reflecting the similarity of
states within the state space. According to the spectral decomposition theorem, the kernel
function may be decomposed into an infinite series as K(x,y) =

∑
l

λlfl(x)fl(y), where fl(·),
l = 1, 2, . . ., are the eigenfunctions of the integral operator with kernel K(·, ·). Accordingly,
the mapping ϕl(·), l = 1, 2, . . ., are then given by ϕl(x) :=

√
λlfl(x), as mentioned in Ref.

[162]. Thus, the approach makes it possible to consider infinite-dimensional embedding to
achieve optimal separation of distinct states. Technically, in kernel PCA, the N ×N matrix
K is decomposed as follows

K = K + Kc = K +
N−1∑
i=1

ui · uTi . (7.1)

where the mutually orthogonal vectors ui, i = 1, . . . N−1, are the kernel principal components
(KPCs), and K is

K = K−Kc =
1

N
(1 ·K + K · 1)− 1

N2
1 ·K · 1, (7.2)

representing the deviation of K from the centered matrix Kc = C ·K ·C, with C being the
N × N centering matrix C = I − 1

N 1, and I and 1 are respectively the identity matrix and
the matrix of the same size filled with ones. The centering of the kernel matrix excludes the
temporal mean of the features (or states) in the feature space from the decomposition, which
could result in a distortion of the decomposition as the leading KPC gets attracted towards the
main diagonal. This allows us to treat Kc as the matrix of covariances between the states at
different times (temporal covariances) yielding, in particular, zero-mean of the KPCs. Thus,
the KPC vectors ui, i = 1, . . . N − 1, can be obtained from the eigendecomposition of the
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centered array Kc:

Kc = V ·D ·VT ,

ui = D
1/2
ii vi, i = 1, . . . N − 1 (7.3)

where vi is the ith eigenvector, forming the matrix V, and Dii is the corresponding eigenvalue
– the variance of the ith KPC.

Following the work [162], here we use kernels that are Gaussian function of a distance
d(·, ·) between state vectors at different times, i.e.,

Kij = K(xi,xj) = exp
(
−d2(xi,xj)/2σ

2
)
. (7.4)

Such a distance-based Gaussian kernel accounts for local similarity between the states, which is
a useful property for capturing nonlinear manifolds in the phase space. The only generalization
allowed in Eq. (7.4), compared to the kernels used in Ref. [162], is the use of an arbitrary
metric (not necessarily Euclidean) determined by the specific problem. However, using some
metric d(·, ·), we should ensure that the kernel function Eq. (7.4), and, hence, the matrix K,
are positive semi definite, since they are designed to define an inner product. This requirement
is fulfilled with those metrics for which the metric space can be embedded in the Euclidean
space [170]. In case of other metrics, when negative eigenvalues of the kernel matrix are
possible1, we may consider using an approximation of K by a positive semi definite matrix
instead.

By applying KPCA to multidimensional time series we can expect clustering of the states
in a space with low- to moderate number of KPCs, so that each cluster can be associated
with certain circulation regime of variability. The problem here is that neither the number of
clusters, nor the dimension of the subspace in which the clusters are embedded, are a priori
known. This means that these parameters should be optimized for obtaining statistically
justified clustering. However, reliable optimization of the clustering procedure is difficult in
real climate applications, due to insufficient statistics from the limited observed time series.
Moreover, the clusters can have substantially non-Gaussian shapes, thus making such robust
methods as, e.g., Gaussian mixture models [171] or kernel density estimate [172], inefficient.
Below we describe a method providing the detection of significant regimes that avoids such
difficulties.

7.1.2 Recurrence network partitioning

Conventional recurrence networks are based on neighborhood thresholding using a Euclidean
metric between pairs of states [163]. Given a set of multivariate states xt, t = 1, . . . N , and a
recurrence threshold ε, the recurrence matrix R = (Rij) is defined by Rij = 1‖xi−xj‖<ε, that
is 1 if ‖xi − xj‖ < ε, and zero otherwise [20]. In this regard the kernel matrix K can be used
to produce a recurrence matrix through binarization using the metric d(·, ·) and threshold γ
as:

Rij(γ) =

{
1, K(xi,xj) > γ

0, otherwise.
(7.5)

This matrix can be visualized as a recurrence plot (RP), by plotting Rij = 1 as a black
pixel (and blank elsewhere). A line is then defined as a sequence of successive black pixels.
A recurrence network is a graph using R as the adjacency matrix. The nodes of the graph
correspond to the observed states xt, and if two states xi and xj are neighbors with respect to
the metric d(·, ·), then the corresponding nodes are connected by an edge, i.e., Rij = 1. The

1 This situation is out of scope in this article.
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number ki =
∑N

j=1Rij is the degree of node i and represents the number of nodes connected
to it (i.e., the number of recurrences of the state at time i). With this conceptual framework,
the problem of regime detection can be formulated as recognizing communities of nodes,
such that there are significantly more connections within communities than between them – a
situation akin to k-means clustering concerning between- and within-variances. Actually, each
community joins the related states of the system based on the similarity measure Eq. (7.4).
Therefore, dividing the network into communities allows matching each state to a certain type
of behavior.

To detect the communities we use an approach suggested by Newman [173], in which the
best division of the network maximizes a special cost-function called modularity. For a given
division, the modularity measures the difference between the fraction of edges falling within
the communities and the same fraction expected from a network with randomly distributed
connections, regardless of the division. This random network is assumed to have the same
number and degrees of nodes as in the analyzed network. Since elements of the matrix R
can only take 0 or 1, the expected value of Rij in a network with random connections equals
to the probability to find an edge between nodes i and j. This probability is estimated as

kikj/2m, where m = 1
2

N∑
i=1

ki, and represents the total number of edges in the network. The

modularity is then expressed as

Q =
1

2m

∑
i,j

(
Rij −

kikj
2m

)
gij =

1

2m

∑
i,j

Rijgij , (7.6)

with gij = 1 if nodes i and j belong to the same community and 0 otherwise. Here the matrix
Rij represents the deviation of R from the expected adjacency matrix of a random network.

An elegant way to find the communities maximizing Eq. (7.6) was proposed in Ref. [166].
The approach is based on iteratively splitting each community into two communities so that
each split must provide the maximal positive increment of the whole network modularity, until
indivisible communities are obtained. Let us consider a particular community H – a subset
of nodes of our network – which we wish to split. If we are, for example, at the starting point
of the algorithm, then H is the whole set of nodes indexed by i = 1, . . . , N . Splitting H into
two groups can be represented by a vector s (classifier or indicator), whose elements si = −1
for the first group and si = 1 for the second. Note that the dimension of s is the size iH of
H. It can be shown that the increment ∆Q of the whole network modularity, after this split,
takes the form:

∆Q =
1

4m
sTBs =

1

4m
sTWΘWT s, (7.7)

B = (Bij), with Bij = R
(H)
ij − δij

∑
k∈H

R
(H)
ik ,

where R
(H) is the submatrix of R = (Rij) obtained by selecting the elements of R with

the indices i, j ∈ H, δij is the Kronecker delta, and WΘWT is the eigendecomposition of
the matrix B, with Θ = diag(θ0, . . . , θiH−1). Accordingly, the problem of splitting H boils
down to finding the classifier (or indicator) vector s consisting of numbers 1 and −1 that
maximizes the quadratic form, Eq. (7.7), which is equivalent to maximizing the dot product
of s with the eigenvector w0 of the matrix B corresponding to its largest eigenvalue θ0. The
exact solution is the vector s with components si having the same sign as the corresponding
components w0i of the leading eigenvector w0 of B. If the matrix B has positive eigenvalues,
two new communities defined by the vector s will emerge, provided that ∆Q > 0. Otherwise,
if there are no positive eigenvalues in B, its largest eigenvalue is always zero, since one of the
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properties of this matrix is the zero sum over each row or column. In this case, all components
of the leading eigenvector have the same value, which means that all si are also the same,
i.e. H is no longer divisible. The described splitting process of the network communities can
continue until the ∆Q > 0 condition is violated for each current community2.

Besides the indicator or classifier vector s, useful information about the structure of the
resulting communities is also provided by the leading eigenvector w0. As it can be seen from
Eq. (7.7), the absolute value of w0i measures the contribution of the ith element to the modu-
larity of the network, i.e., the gain in modularity from the inclusion of the corresponding node
in the community. The number |w0i| is referred to as the centrality of the corresponding node
in the resulting community, and therefore for each community we get a vector of centralities.
In terms of interpretation in connection to the atmospheric circulation regime detection, large
centrality of some node k of the network indicates that the corresponding spatial pattern xk is
similar to a large number of other patterns belonging to the same community, and represents
therefore a typical pattern for the regime associated with this community.

The main advantage of Newman’s method described above is that it provides an efficient
and elegant way to cluster the network into communities without any prior information on
their size and number using simple matrix calculations. This is particularly convenient in
climate data analysis where the set of regimes is not known in advance and the problem of the
data-driven identification comes to the forefront. The suggested method of decomposing the
analyzed time series allows us to label the states of the system in the space of the leading kernel
PCs in accordance with the detected communities. As a result, looking at the labelled/marked
states in the KPC space, we can easily select a number of leading KPCs that provides clear
separation of the communities (see the results below). Further, the selected KPCs can play
the role of dynamical variables that describe the sporadic switching of the system trajectory
between the dynamical circulation regimes.

7.1.3 Studying dynamical properties of the regimes

The adjacency (recurrence) matrices of the partitioned recurrence networks can be analysed
using RQA [20]. Each regime-specific recurrence plot (RP) can be regarded as a particular
subset of the full RP constrained by the community labels. In order to compare the dynamical
properties of the different regimes, RQA is carried out separately for each regime-specific RP.

A simple quantifier for the overall intrinsic similarity of an atmospheric regime can be
defined by the ratio of total recurrences in the regime-specific RP relative to the (squared)
time that is spent in the respective regime, i.e., recurrence rate RR, RR =

∑
i,j Rij/N

2. In
traditional RQA, the statistics of diagonal and vertical line structures are studied to charac-
terize the predictability and intermittency of a system. Diagonal lines in an RP reflect time
periods during which two segments of the phase space trajectory evolve in parallel, indicat-
ing deterministic and well-predictable dynamics. By counting the number of diagonal lines
that exceed a specific length for the regime-specific RPs, we study if the evolution of spatial
patterns during different time periods is similar. Predictability of atmospheric patterns in
each regime is quantified by the determinism DET of the RP which is given as the fraction
of diagonal lines that exceed a minimum line length of lmin = 5 days to all diagonal lines, i.e.
DET =

∑
l≥lmin

lP (l)/
∑
lP (l), where P (l) is the distribution of diagonal line lengths l. Ver-

tical lines in an RP identify periods in which the dynamics are ‘slowed down’. Consequently,
we interpret them as corresponding to quasi-stationary patterns potentially associated with
atmospheric blocking and possibly zonal flow. Persistence of atmospheric patterns in each
regime is quantified by laminarity LAM which is computed as the fraction of the total vertical

2In practice, however, we may consider using a threshold slightly above zero to avoid “too thin” separation,
if, for example, further splitting gives much less modularity increment as compared with the previous splits
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lines with lmin = 5 days to all vertical lines: LAM =
∑

v≥vmin
vP (v)/

∑
vP (v), where P (v) is

the distribution of vertical line lengths v. Recently, an approach using recurrence lacunarity
(RL) was proposed to characterize features of an RP that are distributed among multiple
time scales and are not neccessarily expressed in line structures [1]. RL generally reflects
the heterogeneity of an RP. Thus, we interpret it as the diversity of the regime behaviour.
While regular RL informs about the general heterogeneity of recurrences, its extension to
diagonal/vertical line structures is straight-forward and is introduced here. For the computa-
tion of diagonal/vertical line RL (dRL/vRL), the number of diagonal/vertical lines exceeding
lmin = 5 days in each box is counted and reflects how strongly predictability/persistence of
atmospheric patterns varies throughout different time periods. The box width is fixed to one
year, highlighting interannual variability. High values indicate that, e.g., high persistence
during one time period only has limited implications for other time periods. Thus, we always
show these three different RL-based measures of diversity.

Significance testing allows to test the dynamical properties of atmospheric regimes against
different null hypotheses. We test for two different hypothesis: (i) we check whether the
recurrence network partitioning yields regimes that are significantly different from random
regimes with respect to above mentioned recurrence quantifiers and (ii) we test which regime
yields significantly high values for a given recurrence quantifier.

The first test is done by random deletion of recurrences from the full RP. In particular, for
the ith regime-specific RP with ni recurrences, we randomly delete m = N − ni recurrences
from the full RP that contains N > ni recurrences while also reproducing the column-wise
recurrence rate of the ith regime-specific RP. We generate 200 random samples for each RP and
compute the 99%-quantile for each RQA measure from this ensemble as an upper confidence
level to test for significance.

For the second test, we apply a bootstrapping procedure with nB = 2, 000 runs [93]: we
first collect all diagonal lines(/vertical lines/counts) from the distributions obtained from each
regime-specific RP separately. In a single bootstrap run, we drawM times (with replacement)
from the unification of these length(/count) distributions and compute the measure of interest,
yielding a single value. M is given by the number of lines/the total count in the ith regime-
specific RP. By repeating this procedure nB times, an empirical test distribution for this
measure is obtained from which we compute the upper 99%-confidence level. This method is
applied for all measures except the recurrence rate; in this case, we test against the hypothesis
that recurrences are distributed among the regimes with respect to the time spent in each
regime. Consequently, we obtain each regime-specific significance level by dividing the total
number of recurrences (from all regimes) by the individual (squared) time spent in a regime.

7.1.4 Method summary

The whole procedure described in the above subsections 7.1.1-7.1.3 is represented schemati-
cally in Fig. 7.1. The main goal of the KPCA is to obtain a few number of variables (leading
KPCs) which are suitable for differentiating the obtained regimes. The same kernel matrix
as in KPCA is used for building the recurrence network which is partitioned to yield a set of
regimes. As a result, we obtain a state space in which the regimes are well separated as well
as a representation of the regimes in physical space via composites. This enables us to study
properties of the regimes by the RQA methodology.
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Figure 7.1: Schematic representation of the proposed procedure.

7.2 Data and calculation setup

7.2.1 QG3 model time series

Quasi-geostrophic (QG) models of the atmosphere are popular polygons for testing algo-
rithms concerning weather/climate dynamics. Being simplified representations of atmospheric
dynamics, QG models demonstrate a rich spectrum of variability at different time scales
and are competitive to intermediate and full general circulation models regarding complexity
and dynamical features/processes. Here we use time series generated by a three-level QG
model (QG3) on the sphere [174] with realistic orography and surface boundary condition.
Based on the potential vorticity equations at three (200, 500, and 800 hPa) pressure levels
[174, 175, 176], the model is tuned to simulate winter atmospheric circulation over the extrat-
ropical hemisphere. The model exhibits highly nonlinear behavior with a chaotic attractor in
its phase space with more than 100 positive Lyapunov exponents [175]. The LFV behaviour
of the model regimes was studied in a number of works, based on different kinds of cluster-
ing in a truncated phase space. In particular, the authors of the work [177] identified four
clusters in the space of three leading PCs calculated from a very long (54,000 days) time
series of the mid-level stream function anomalies (SFA). These clusters are associated with
the well-documented atmospheric modes or teleconnections, namely, Arctic oscillations (AO)
and North Atlantic oscillation (NAO). Similar results were obtained in Ref. [178] based on
reduced data-driven models, but using a much shorter sample of 5,000 days. Hannachi and
Iqbal [162] used KPCs as a space for a PDF-based cluster detection; however, only two clus-
ters related to the AO were detected. Here we present results of our analysis applied to three
10,000-day time series of the mid-level stream function anomalies, distributed over latitudes
36°N to 90°N with approximately 5.5 × 5.5 degree resolution. These non-overlapping time
series are randomly taken from a very long (300,000 days) QG3-model run. Then the analysis
is performed to each time series independently.

7.2.2 Reanalysis data

To study the circulation regimes of the real atmosphere, we use daily geopotential height
(HGT) time series at the 500 hPa pressure level from the NCEP/NCAR reanalysis dataset
[179]. The time series is provided on a 2.5 × 2.5 degree latitude-longitude resolution, north
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of 30°N covering the period 1980 to 2020. The data are de-seasonalized by removing the
daily seasonal mean signal over the whole period smoothed in time with a Gaussian window
with the standard deviation of 15 days. Such smoothing suppresses the day-to-day noise in
the resulting annual cycle, while re-taining the intra-annual seasonal structure. Only winter
(December-January-February) values are taken from the obtained time series of daily HGT
anomalies, yielding a sample of 3,579 days.
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Figure 7.2: Representation of the distance defined by Eq. 7.8.

7.2.3 Distance metric, kernel and recurrence matrices

Since our goal is to separate sets of states, each of which joins spatial patterns yielding
similar atmospheric conditions, we focus on the pattern’s structure/shape rather than their
amplitudes. Accordingly, we define a distance given by the sine of the angle αij between pairs
of patterns:

d(xi,xj) =

∥∥∥∥ xi
‖xi‖

− xj
‖xj‖

∥∥∥∥ = 2
∣∣∣sin αij

2

∣∣∣ , (7.8)

where ‖x‖ = (xTΛx)
1
2 is the metric using a d× d diagonal weighting matrix Λ reflecting the

non-uniformity of the spatial grid (see below). Clearly, this metric inherits all properties of
the Euclidean metric, as it is nothing more than the Euclidean distance between the weighted
vectors Λ

1
2 x normalized to unit norm (see Fig. 7.2). This always yields a positive semi-definite

kernel matrix Eq. (7.4). A very important parameter that determines the recurrence network
structure and strongly impacts the splitting of the network into communities is the threshold γ
in the definition of the recurrence matrix, Eq. (7.5) [78]. If it is too large (remember that here
the thresholding is opposite to the classical recurrence definition), the network degenerates
into many communities yielding high modularity. Such a network may eventually not help to
reveal any connections between patterns except those close in time.
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Figure 7.3: Modularity increment after first division of the network into two communities vs. the
threshold γ. Curves obtained from the three time series of the QG3 model and the HGT reanalysis
time series are plotted in the left and right panels, respectively.

If, on the contrary, γ is too small, we end up with a poorly divisible network, in which each
node is connected to most of the remaining nodes. Hence, this calls for the need to optimize
the threshold parameter. Here we select γ to provide the best division of the network into
two basic communities at the initial splitting of the whole network. Under this requirement,
the resulting value of γ maximizes the modularity increment ∆Q(γ) at the first iteration of
the algorithm. Such a choice is justified in the case of mid-latitude atmospheric dynamics,
since two opposite types of circulation associated with the strength of the polar vortex are
known to be the dominant modes in this region [180], and the network should distinguish
them well at the most basic level. It is obtained (see Fig. 7.3) that there are pronounced
maxima of this dependence for both datasets considered here. By adjusting γ we do not need
to care too much about the precise value of σ in the kernel function, Eq. (7.4). We find that
setting σ = 2 min

i,j
d(xi,xj) in all examples below provides quite robust results, which is close

to assumptions from the work [162].

7.2.4 Data weighting

The data considered here is defined on a grid that is uniform in polar coordinates, so its cells
cover unequal areas. In line with the traditional approach, we had to distribute the weights of
the grid nodes in the distances d(xi,xj), Eq. (7.8), according to the area fractions around each
grid node. This corresponds to weights Λmm ∝ cos θm, where θm is the latitude (in radians) of
themth component xm (ormth grid point)m = 1, . . . d, of the state vector x. A main problem
with such weighting in our case is related to the resulting larger magnitude of anomalies at
the southern bound of the considered latitude band. This moves the focus of analysis from
the mid-latitudes – the region of interest – to the subtropics. No weighting, on the other
hand, yields dramatic increase of polar latitudes contribution, thus shifting focus on the Polar
vortex region rather than the mid-latitude circulation. The problem of proper weighting was
stated, e.g., in the works [181, 182]. Here, we take into account the latitudinal dependence
of the characteristic spatial scale of atmospheric anomalies responsible for planetary-scale
circulation regimes.
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Figure 7.4: Dependence of the weight given by Eq. (7.9) on latitude.

In the extratropics, this scale is proportional to the Rossby deformation radius [183], which
depends on the latitude as 1

sin θ . Therefore, normalization of the grid cell areas through scaling
by the characteristic areas of anomalies (∝ 1

sin2 θ
) allows us to better capture the peculiarities

and typical features of the atmospheric circulation using a given spatial grid. As a result, we
use weights in the distance measure that focus on the midlatitudes expressed as

Λmm = cos θm sin2 θm, (7.9)

or, equivalently, multiply the signal at each grid point by sin θm
√

cos θm. Such weighting
distinguishes mid-latitudinal and subpolar nodes of the grid, reaching the maximum at ap-
proximately 55°N (Fig. 7.4).

7.3 Results

7.3.1 QG3 model time series

We apply the methodology described above to each of the three SFA time series separately. For
all time series the recurrence network division method gives the same number of communities,
or regimes, equal to three. To illustrate clustering of the communities in the KPC-space, we
plot elements of each community in the plane of the two leading KPCs (see Fig. 7.5). The most
typical (i.e., having large centralities in their communities) states from different communities
are well-separated in this plane, and hence, these two variables can serve well as an embedding
for the three identified regimes.
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Figure 7.5: Regimes of the QG3 model behavior in the space of the leading two KPCs. The three
columns correspond to the three analyzed time series. In upper panels states of each regime (mode)
are shown in the KPC1-KPC2 plane (see the text). States belonging to different regimes are marked
by different colors; color saturation corresponds to the centrality of a state in its community. Time
series of the KPC1 and KPC2 variables are plotted in the lower panels.

Unlike in EOF decomposition or some of its nonlinear generalizations (see, e.g., Refs.
[184, 185]), there is no explicit mapping of the KPCs to the data space. A coarse geograph-
ical structure of SFA relating to a specified regime can be obtained via composite analysis,
i.e., the spatial field of SFA averaged over the most central states of the regime (as shown
in Fig. 7.5, top). The resulting composites are clearly related to the three well-known atmo-
spheric teleconnection patterns (Fig. 7.6). The first two are the positive and negative phases
of AO, connected with an anomalous pressure difference between the polar region and the
mid-latitude belt, and, respectively, stronger or weaker (zonal) westerly flow. The third one
resembles the negative Pacific North American (PNA) pattern characterized in winter sea-
sons by dominating tripol structure with positive anomalies over the North Pacific and near
southeastern United States and negative anomalies over central Canada. We note that we
have not obtained a separate regime corresponding to NAO, but NAO-related anomalies are
captured by mode 1, which encompasses the negative NAO phase, whereas modes 2 and 3
feature of the positive NAO phase. Studying the nature of, and the relation between the
various teleconnection patterns, including PNA, NAO and AO/NAM (Northern Hemisphere
Annular Mode), has a long history (e.g. Refs. [151] and [152]). The nonlinearity and/or non-
distinguishability between the NAO and AO teleconnection has been discussed thouroughly
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in the literature (e.g. Refs. [180] and [186]).
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Figure 7.6: Composite patterns of the QG3 model SFA corresponding to the obtained regimes.
Columns correspond to different time series, rows to different regimes. The composites are calculated
as SFA averaged over 20% most typical states of each of the obtained regimes (see the text). Only
values that are significantly different from zero by Student’s t-test with a critical value of 0.01 are
shown.

Linear EOF analysis, and even nonlinear cluster analysis cannot categorically distinguish
between NAO and AO. For example, [187] examined, based on composite analysis, the null
hypothesis that the NAO and AO/NAM persistent events are not distinguishable. They found
that the null hypothesis cannot be rejected even at 20% significance level. In another analysis,
[188] examined the nature of AO through SOM (Self Organizing Map) analysis. They found
that AO, derived from the 250-hPa geopotential height anomalies, can be interpreted in terms
of a continuum that can be approximated by five discrete AO-like patterns, which overlap
with the discrete NAO-like pattern. These findings explain why no separate NAO and AO
regimes are identified in this analysis.

The negative AO regime is the most distinguishable mode of the QG3 model dynamics
(Tab. 7.1): its contribution to the network modularity is substantially greater than the con-
tribution of the other two modes, although with a small frequency of occurrence. For this
reason, the most central states of this mode are separated stronger from other states, moving
into the area of large negative values of the first leading KPC. Conse- quently, the transitions
to this regime look like rare irregular outliers in the time series of the first leading KPC (see
Fig. 7.5, bottom). Indeed, this KPC1 can be considered as an index describing joint AO and
NAO dynamics. At the same time, the second variable (KPC2) helps differentiate between
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the positive AO and negative PNA states (Fig. 7.5 top), both of which contribute to the
positive NAO.
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Figure 7.7: Recurrence plots of atmospheric patterns obtained from the QG3 model data for the
three different time series. Recurrences within a given regime are color coded accordingly. A specific
rendering is used to make the RP appear less sparse.

Let us now turn to the dynamical properties by considering the RPs separately for each
regime (Fig. 7.7, see. also Sect. 7.1.3), along with the RQA (Fig. 7.8). The RQA reveals
distinct dynamical properties of the identified regimes (Fig. 7.8 and supplementary Fig. C.3).
The negative AO regime stands out as the most similar, persistent and predictable regime.
This suggests that it encompasses periods of atmospheric blocking as these are characterized
by atmospheric patterns that persistently reside for relatively long time periods without sig-
nificant spatial variations. During a blocking event, atmospheric conditions are consequently
more similar and predictable. On the other hand, the negative AO regime is characterised by
a high degree of intermittency, reflecting the low predictability of blocking events on interan-
nual and decadal time scales. These findings are fostered by the corresponding regime-specific
RP (Fig. 7.7); on longer time scales, the RP appears heterogeneous while block-structures re-
flect periods of atmospheric blocking. The positive AO regime is associated with stronger
westerly zonal flow which appears to result in transient, short-lived atmospheric patterns that
do neither exhibit a significant degree of persistence nor allow for reliable short-term predic-
tions. Low-frequency variability of atmospheric patterns in this regime is relatively low as
indicated by low values in the different RL measures. Time periods, during which atmospheric
conditions are characterized best by the negative PNA regime are identified with moderately
predictable and persistent dynamics. Given the total time this regime is detected, the number
of recurrences is relatively low, representing low similarity. Both diagonal and vertical line
structures in the regime-specific RP exhibit strong heterogeneity, suggesting that the tem-
poral variations in this regime run through both well-predictable, persistent and stochastic,
volatile periods. This could be interpreted as a high degree of non-stationarity of the dynam-
ical properties of this regime. Finally, results between the three different time series show
good general correspondence (supplementary Fig. C.4), supporting the given interpretation
of regimes. The most significant deviation is found for the first time series compared to the
second and the third with respect to the similarity of all three regimes.

Overall, the results (Figs. 7.5, 7.6, Tab. 7.1 and supplementary Fig. C.4) confirm that the
suggested methodology gives a fairly stable solution: the number of regimes, their spatial and
temporal structures, the embedding spaces, as well as the modularity rates, show coherency
between the three different, independently analyzed time series.
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Table 7.1: Parameters of the communities extracted from three analyzed time series of the QG3
model (the time series are referred to as TS1, TS2 and TS3). First row: contribution of a community
to the network modularity. Second row: the number of SFA states (number of days) belonging to a
community. Third row: mean contribution of a state to the modularity of its community.

Figure 7.8: Results of recurrence quantification analysis for the atmospheric regimes obtained in the
QG3 model data set for one of the three time series. The four different RQA measures are labelled
with their respective interpretation. Significant (insignificant) values are printed in white (black)
numbers. Color coding illustrates the ordering of the RQA values (ascending column-ranking) for
better comparability.

7.3.2 Reanalysis data

For the HGT reanalysis data we detect four regimes (Fig. 7.9, Tab. 7.2). These communities
are embedded well in the space of three leading KPCs, organized into a loop/ring (Fig. 7.9).
The composites form typical HGT patterns in each community (Fig. 7.10). Additionally, in
order to study weather impacts of the detected circulation regimes, we take the same dates
as used for the HGT composites to calculate the composites of near-surface air temperature
anomalies3 (Fig. 7.11).

The composites (Fig. 7.10) demonstrate qualitatively different structures of atmospheric
anomalies related to the detected regimes. The first regime is characterized by anticyclonic
anomalies south of Greenland, projecting onto negative AO and NAO. This pattern blocks
the transport of warm air from the Atlantic to Europe, while increasing the advection of
subtropical air to the northeast of North America, and advecting warm/humid air into North
Africa (Fig. 7.11). The second regime features a positive NAO and PNA, manifested by a

3We use air temperature data at 0.995 sigma level taken from the NCEP/NCAR reanalysis [179]. The
anomalies were produced by deseasonalizing in the same way as with the HGT data (see Sec. 7.2, 7.2.2).
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lowering pressure over the North Atlantic and increasing pressure in the northeastern Pacific
Ocean. Anticyclonic anomalies in the Pacific Ocean block zonal airflow and lead to cooling in
northern USA and Canada and warming in eastern Russia and Arctic. The third regime with
a high pressure center over northwest Russia and Scandinavia slows down zonal air transport
in the Euro-Atlantic region, leading to extremely cold winters in Europe and heating the
Arctic Ocean area north of central Russia. Simultaneously, stable zonal flow over the north
Pacific induces warm conditions in Canada (Fig. 7.11). Finally, the fourth flow pattern relates
to positive AO and NAO; it is characterized by increased zonal airflow in the north Atlantic,
providing warmer than normal winters in Europe and Russia (Fig. 7.11).
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Figure 7.9: Partitioning of HGT states into regimes. Left panel: 50% of the most typical states of
each regime (mode) in the space of three leading KPCs. Color saturation corresponds to the centrality
value of a state in its community. Right panel: number of days per winter related to different regimes.
The years of January of each winter are shown (e.g., 2001 corresponds to the winter 2000-2001).

The number of days in each winter corresponding to a given flow regime (Fig. 7.9), as well
as in the KPC time series (not shown), we observe pronounced strong inter-annual variability
of dominating types of behavior of the winter atmospheric circulation. In particular, we see
that regimes 1 and 3, leading to cold weather in Europe, can be correlated on a large scale.
The amplitude of the inter-annual variability is not regular; e.g., there are sets of extreme
winters with strong domination of a single regime (see, for example, the abnormal winters
2009-10 and 2019-20 showing domination of regimes 1 and 4, respectively). Regimes 1 and 2
occur less often than 3 and 4 (Fig. 7.9, Tab. 7.2), although they have larger modularity per
state, i.e., the HGT states belonging to them are more distinguishable. Atmospheric patterns

Community 1 Community 2 Community 3 Community 4
Modularity 0.109 0.122 0.115 0.13
Number of states 777 890 940 1062
Modularity per state, (·10−4) 1.4 1.37 1.22 1.22

Table 7.2: The same as in Table 7.1, but for the regimes obtained from the reanalysis HGT data
set.

characteristic for the first regime are rendered persistent and predictable at intra-seasonal time
scales (Fig. 7.12). However, this regime exhibits high diversity, indicating strong variability
at longer (inter-annual and decadal) time scales. This corroborates the general finding that
atmospheric blocking structures entail stationary winter atmospheric circulation while their
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prediction at inter-annual to decadal time scales is cumbersome. We find significantly high
similarity for the second regime, implying that the spatial anticyclonic anomaly patterns
characteristic for this regime are comparable between different years. Note that high similarity
obtained for the first and second regimes is likely the source of large values of the modularity
per state within these regimes (see Tab. 7.2). Conversely, we find that atmospheric conditions
as identified in the third regime which, e.g., often result in extremely cold European winters
are poorly predictable at inter-annual time scales. Finally, positive AO and NAO phases
as represented by the fourth regime are dynamically opposite to the atmospheric blocking
structures (negative AO and NAO) captured by the first regime.

This is in agreement with Ref. [159], and references therein, who investigated characteristic
NAO time scales. They found that the two phases of the NAO have intrinsically different
decay characteristics, with the negative NAO events showing enhanced persistence associated
with blocking, see als [189]. Ref. [159] investigate the jet positions over the North Atlantic
region. They found that the southern jet position, associated with the negative NAO phase
(and Greenland blocking) has smaller tendency, and therefore more persistent (see [150]) than
the northern position, associated with the positive NAO phase.
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Figure 7.10: Composite patterns of HGT corresponding to the obtained regimes. The composites
are calculated as HGT averaged over 20% most typical states of each of the regimes. Only values that
are significantly different from zero by Student’s t-test with a critical value of 0.01 are shown.

72



Mode 1

8

4

0

4

8

12

Te
m

pe
ra

tu
re

 (K
)

Mode 2

6

3

0

3

6

Te
m

pe
ra

tu
re

 (K
)

Mode 3

6

3

0

3

6

9

Te
m

pe
ra

tu
re

 (K
)

Mode 4

7.5

6.0

4.5

3.0

1.5

0.0

1.5

3.0

4.5

6.0

Te
m

pe
ra

tu
re

 (K
)

Figure 7.11: Composite patterns of surface air temperatures (SAT) corresponding to the obtained
HGT regimes. The composites are calculated as SAT averaged over 20% most typical states of each
of the regimes. Only values that are significantly different from zero by Student’s t-test with a critical
value of 0.01 are shown.

7.4 Summary and conclusions

The proposed method allows us to (1) reveal recurrent regimes of atmospheric circulation from
spatially distributed observations, and, simultaneously, (2) obtain a set of dynamical variables
serving as an embedding for the regimes. A combination of the two nonlinear data-driven
approaches – KPCA and recurrence analysis – provides comprehensive investigation of the
mode content of the observed dynamics, including the regime identification, their dynamical
representation and characteristics, and analyzing the dynamical properties of inter-regime
evolution. Both parts of the method are based on constructing the same kernel matrix that
consists of pairwise similarities between atmospheric states at different dates. In the first
part this matrix produces the recurrence network, which when partitioned yields separation
of all observed states into the regimes. RQA applied to the obtained submatrices relating to
different regimes (or communities), helps to study important properties of temporal evolution
of the regimes, e.g., predictability, persistence, similarity, and intermittency. In the second
part, the principal components of the kernel matrix (KPCs) are used to construct a space in
which the states belonging to different regimes are well-separated.

It is worth noting that the KPCA with Gaussian kernels is very close to the diffusion map
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method [190], based on decomposition of a diffusion operator reconstructed from the data.
More precisely, the 1-step diffusion maps should give the same, up to a transformation, basis
of principal compo- nents as Gaussian KPCA. Thus, we can expect a clear separation of the
regimes in the diffusion space too. Moreover, the use of an n-step diffusion map space as an
embedding for the regimes may be more effective, since many paths between network’s nodes
rende rit more robust again noise. In this work, we demonstrate that even the basic Gaussian
KPCA represents the recurrence network communities well due to the same distance matrix
used in both the RP definition and Gaussian kernels. In future, diffusion maps could be
adopted for this purpose.
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Figure 7.12: Results of recurrence quantification analysis for the atmospheric regimes obtained in the
reanalysis data set. The four different RQA measures are labelled with their respective interpretation.
Values that significantly exceed the values corresponding to randomly obtained partitions (see the
text) are printed in white; other values are printed in black. Color coding illustrates the ordering of
the RQA values (ascending column-ranking) for better comparability.

We demonstrate, using both model and observation data, that the detected regimes of the
Northern Hemisphere mid-latitude winter atmosphere correspond to qualitatively different
states, which cover the well-known modes NAO, AO, and PNA. We show that typically only
a few leading KPCs are sufficient for the embedding of the regimes. Thus, these KPCs can
be used as dynamical variables describing the alternation of the obtained regimes, and future
works can aim at predictive data-driven models of their dynamics (see, e.g., Refs. [191, 192]).
Moreover, having the dynamical variables representing the atmospheric modes, we can state a
problem of finding long-term climatic predictors (e.g., ENSO, QBO, solar cycle, etc.) making
it possible to elaborate a scheme for inter-annual forecast of dominating weather patterns.

The kernels Eq. (7.4), based on the distance Eq. (7.8), reflect similarity between two
short-term patterns, each realized within one day. This leads to extracting the recurrent
but not necessary persistent patterns (the persistence is separately studied by the RQA),
which are distributed over the whole mid-latitude belt. However, we can change the distance
definition, adapting it to the desired properties of regimes to extract. For example, we can
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target the method to long-living (persistent) regimes via time-lag extension of states, or use
other weightings, Eq. (7.9), to emphasize some geographical regions. Those topics are left for
future research.
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Abstract

The analysis of irregularly sampled time series remains a challenging task re-
quiring methods that account for continuous and abrupt changes of sampling res-
olution without introducing additional biases. The edit–distance is an effective
metric to quantitatively compare time series segments of unequal length by com-
puting the cost of transforming one segment into the other. We show that trans-
formation costs generally exhibit a non-trivial relationship with local sampling
rate. If the sampling resolution undergoes strong variations, this effect impedes
unbiased comparison between different time episodes. We study the impact of
this effect on recurrence quantification analysis, a framework that is well-suited
for identifying regime shifts in nonlinear time series. A constrained randomiza-
tion approach is put forward to correct for the biased recurrence quantification
measures. This strategy involves the generation of a novel type of time series and
time axis surrogates which we call sampling rate constrained (SRC) surrogates.
We demonstrate the effectiveness of the proposed approach with a synthetic ex-
ample and an irregularly sampled speleothem proxy record from Niue island in the
central tropical Pacific. Application of the proposed correction scheme identifies
a spurious transition that is solely imposed by an abrupt shift in sampling rate
and uncovers periods of reduced seasonal rainfall predictability associated with
enhanced ENSO and tropical cyclone activity.
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8.1 Introduction

The analysis of time series from complex systems calls for numerical methods that capture the
most relevant features in the observed variability. At the same time, the impact of various fre-
quently encountered data-related intricacies such as low signal-to-noise ratio, nonstationarity,
and limited time series length must be accounted for. A major challenge is posed by irregular
sampling, i.e., variations in the interval ∆i = ti − ti−1 between consecutive measurement
times ti−1 and ti. Irregular sampling is observed in many complex real-world systems. The
underlying mechanisms that render the temporal sampling irregular may differ: sampling can
be inherently irregular due to an additional process that controls the sampling interval (e.g.,
financial or cardiac time series [193, 194]); a mixture of various external processes can result
in ‘missing values’, i.e., multiple interacting processes result in the non-availability of mea-
surements (e.g., sociological or psychological survey data [195]) or cause failures of the system
(e.g., mechanical/electronical systems [196]); finally, the measurement process often results in
irregularly sampled time series (e.g., astronomical [197] or geophysical systems [198]). Proxy
time series obtained from palaeoclimate archives are a particularly challenging example since
irregularity in the temporal sampling can itself contain valuable information on the processes
of interest [199]. The growth rate of a stalagmite for example depends on variable environ-
mental factors, including temperature in the cave and drip rate [200], among others. Since
these factors and their variability are strongly coupled to the environmental conditions outside
the cave, growth rate must be regarded as a dynamical indicator for example, hydrological
conditions which in turn determine variations in the temporal sampling of the proxy time
series.

Across many research communities, resampling based on interpolation techniques and
imputation approaches are popular methods for making irregularly sampled time series com-
patible with standard time series analysis tools [201, 202]. Artefacts and statistical biases
caused by interpolation techniques are well-known and may result in misinterpretation of the
extracted time series properties, an issue further aggravated by the fact that biases intro-
duced by interpolation may vary among different systems [203]. The robustness of results
arising from different interpolation techniques for the same data set is rarely examined. For
instance, linear interpolation will not compensate for the effect of lower variability during
sparesely sampled episodes in a time series compared to more densely sampled periods. In
fact, linear interpolation and mean imputation decrease variance to a hardly quantifiable,
data-related degree [204]. Finally, more complex imputation models may account for such
finite (sampling) size effects but may not represent the ‘natural’ variability of a time series
adequately. For data not-missing-at-random, the assignment of a sufficient imputation model
can be challenging and must account for nonstationarity in the underlying non-random effects
(e.g., for the palaeoclimate example mentioned above). Similar biases are known from the
problem of imbalanced data, i.e., given two populations that should be compared based on
a statistical model, a majority class exists that contains significantly more samples than the
minority class and thus, oversampling techniques are applied to compensate for the resulting
bias [205, 206].

Geophysical time series frequently exhibit nonlinear features such as nonlinear oscillations
and critical regime transitions, e.g., tipping points [207]. Dynamical system theory regards
observations from such systems as embedded in a higher-dimensional phase space and offers
a range of tools to quantify gradual or abrupt changes in these dynamics [40, 29]. The power
of these methods relies on their ability to uncover features that regular techniques, such as
autocorrelations or variance estimation, fail to uncover [41]. Aiming for higher applicability
of nonlinear time series analysis methods in the Earth sciences, irregular sampling approaches
have been proposed [208, 209, 210]. One of these approaches is based on the idea of transform-
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ing sub-sequences of unequal lengths in a time series into each other and comparing the costs
of these transformations for all sub-sequences [23]. More generally, the definition of a metric
distance between states at different instances of time can entail dynamical information on the
evolution of the phase space trajectory of the studied system. While standard metrics (such
as Euclidean distance) fail to account for irregular sampling, the TrAnsformation-Cost Time-
Series (TACTS) [211] includes the temporal information for distinct time series segments.
The TACTS method is based on the edit distance measure, which was originally introduced
to measure the similarity between marked point processes [23]. Similar approaches based
on the edit or Levenshtein distance have been used in natural language processing [212] and
metric analyses of point processes [130], among many others.

In this work, we focus on the application of the (m)Edit-distance [130], which is a modified
edit distance measure using a nonlinear transformation function instead of a scaler factor for
measuring a cost operation. The modification helps to evaluate temporal patterns in sparse
datasets such as paleoclimate proxies or extreme events. The time sampling regularization by
(m)Edit-distance preprocesses irregularly sampled time series for the computation of recur-
rence plots (RPs) [20]. The (m)Edit-distance approach can potentially be employed in any
methodological framework that includes computation of a distance (or similarity) measure.
The RP technique represents one particular application that has proven to be a powerful
approach, tackling many of the fundamental problems in time series analysis, such as time
series classification [213], the study of synchronization between multiple time series [214],
and detection of regime transitions [93]. Recurrence quantification analysis (RQA) provides
a means of quantifying the tendency of a time series to revisit previously visited states and
has grown in its scope from basic predictability quantification towards more ambitious mea-
sures that, e.g., capture the multiscale nature of transitions [63, 215, 1]. The identification of
shifts stands out as a particularly interesting application since critical transitions can often be
linked to the vulnerability of the respective regional climate system towards external shocks
or feedback mechanisms. The combination of the (m)Edit-distance approach and RPs offers
a promising approach to identify regime transitions in irregularly sampled records, which may
otherwise be impeded without an adequate technique designed to account for sampling varia-
tions [37, 50, 216]. In following this approach, special care must be taken if irregular sampling
intervals undergo strong variations, i.e., where the process(es) that control the sampling rate
are rendered non-stationary. In some applications, segments can be chosen such that they do
not cover the same time period but the same number of values on average. Other applications
require fixing a particular time period to be covered by each segment since this time period
corresponds to the time scale under investigation, e.g., a year for seasonal time series. Even
if such an approach is not motivated by the research question, splitting the time series into
segments that correspond to non-equal time periods will result in mixing of time scales in
the resulting distance matrix if the sampling rate is highly non-stationary. Here, we focus on
segments that cover equal time periods but varying numbers of values, refered to as segment
size. We will show that in such cases, the resulting strong variations in segment size entail a
non-trivial sampling bias of the (m)Edit-distance.

We introduce the (m)Edit-distance methodology in Sect. 8.2.1 followed by a short summary
of recurrence analysis in Sect. 8.2.2. Sect. 8.3 illustrates the problem of strong variations in
the sampling rate whereas model time series are studied to elucidate the sample size effects. A
correction scheme based on constrained randomization is proposed in Sect. 8.4. In Sect. 8.5,
we demonstrate the importance to correct for the identified sample-size dependence in an
application to a palaeoclimate record from Niue island in the central Pacific where we identify
variations in seasonal predictability. We conclude our findings in Sect. 8.6.
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8.2 Methodology

8.2.1 The (m)Edit-distance measure

Many approaches in nonlinear time series analysis are based on some notion of a (dis)similarity
measure. For deterministic systems, embedding the univariate time series into anm-dimensional
phase space offers a multitude of quantitative approaches to analyse the variability of its tra-
jectory [145]. Yet appropriate techniques to extract the embedding dimension and delay from
empirical data are needed. These approaches can be cumbersome. In this work we focus on
univariate time series wherein the most widespread dissimilarity measure between distinct
segments Sa, Sb is the Euclidean distance. It is a metric distance, i.e., its value is always
positive D(Sa, Sb) ≥ 0, it is symmetric D(Sa, Sb) = D(Sb, Sa), and the triangle inequality
holds D(Sa, Sc) ≤ D(Sa, Sb)+D(Sb, Sc). If the time series is characterized by missing values
or the sampling interval ∆i is irregular (e.g., due to irregularities in the measurement pro-
cess), no straight-forward application of Euclidean distance or comparable metrics is possible:
dissimilarity of values at unequal time scales would be computed without accounting for their
non-equality. Linear interpolation as a means of resampling the time series values onto a
regular time axis is among the most popular approaches to regularize sampling [217]. Yet,
hardly controllable artefacts arise from linear interpolation, ranging from difficulties related
to altered absolute timing to underestimation of variance or overestimation of persistence
[203, 33].

Originally proposed for natural language processing, the edit distance measure [218] is
designed to compare sequences of variable length. Shifting and adding & deleting of strings
were proposed as two elementary operations to quantify dissimilarities between words, an
objective also pursued by other methods such as dynamic time warping [219]. The resulting
costs are calculated by identifying a minimum cost path to transform one sequence into the
other. Taking the next step towards an application to empirical time series, the edit distance
was applied to point process data whereby cost parameters for the elementary operations
remained arbitrary [23, 220]. By equipping the technique with data-driven cost parameter es-
timates, it was then applied to irregularly sampled palaeoclimate time series [211]. A further
modification ((m)Edit distance) with an application to extreme events was proposed to con-
sider the saturation of shifting costs when a certain time scale τ , separating the two compared
segments, is exceeded [130]. The main difference between applying the edit distance to series
of events/spike trains and irregularly sampled time series is that for the latter, amplitudes of
time series values must be considered. In the following, whenever no assumptions are made
about the amplitudes of a signal, we refer to ‘events’. The edit distance between two segments
Sa, Sb of an irregularly sampled time series is computed by minimizing the transformation
costs by:

D(Sa, Sb) = min


∑
α,β∈C

fΛ0 (t(α), t(β); τ)︸ ︷︷ ︸
shifting

+ Λk

∥∥La(α)− Lb(β)
∥∥︸ ︷︷ ︸

amplitude change

 + ΛS (|I|+ |J | − 2|C|)︸ ︷︷ ︸
adding and deleting


(8.1)

with a norm ‖ · ‖ (e.g., the Euclidean norm), the α -th/β -th amplitudes La(α), Lb(β) of the
segments Sa, Sb and the cardinalities | · | of the sets I, J and C. While the latter are a set of
indices of the time series values, C denotes the values that are shifted. D(Sa, Sb) is a metric
distance. The cost parameters Λ0, Λk , and ΛS need to be fixed prior to cost optimization.
We choose the cost parameter for amplitudes changes Λk as suggested in [211]:

Λk =
M − 1∑M−1

i=1 ‖xi − xi+1‖
(8.2)
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The cost parameter ΛS for deleting & adding has to be chosen such that deletions are neither
‘too cheap’ nor ‘too expensive’. For a set of time series values with a large temporal distance
or very distinct amplitudes, a deletion and addition should be favorable while a too low value
of ΛS will result in a transformation of sequences solely by deletion and adding operations
even for very close time series values. We follow the scheme proposed in [37] by assuming
normality for the distance values between all segments of the time series and optimize ΛS

within a specified range using a Kolmogorov-Smirnov (KS)-test to ensure that the normality
assumption holds as close as possible. Following the modification proposed in [130], costs
associated with shifting of time instances between two time series values are controlled by the
logistic function

fΛ0 (t(α), t(β); τ) =
Λ0

1 + e−(‖ta(α)−tb(β)‖−τ)
(8.3)

where τ is the location parameter of the logistic function, reflecting a characteristic time
scale that separates exponentially increasing from saturating/bounded exponentially increas-
ing costs for shifting. We choose τ as the average sampling interval of the time series;
τ = T/M with the total time period T and the number of samples M . Interpreting τ
as a ‘temporal tolerance’, this choice ensures that shifting exponentially fast becomes less
favorable if time instances are separated by several standard deviations of the sampling in-
terval distribution. Finally, a value for the maximum costs associated with shifting Λ0 needs
to be set. The ratio ΛK/Λ0 reflects the relative importance of temporal and magnitudinal
separation; in the limiting case ΛK/Λ0 � 1 , irregular sampling is no longer accounted for
and the resulting distance between two segments solely reflects the norm ||La(α) − Lb(β)||
for all amplitudes La(α), Lb(β) of both segments Sa, Sb. In the opposite case ΛK/Λ0 � 1 ,
the time series can be regarded as a series of events since cost optimization is independent of
their amplitudes. We choose ΛK = Λ0 = 1. It must be stressed that this rate depends on the
research question and the data under study.

In the following, we discuss the finite-sample effects bias (m)Edit-distance valuesD(Sa, Sb)
and give a summary of the RP methodology. This facilitates the presentation of finite-sample
effects discussed in Sect. 8.3 alongside an illustration of the (m)Edit-distance methodology
(Fig. 8.1).

8.2.2 Recurrence analysis

The tendency to recur to previously visited states is a ubiquitous feature shared by time
series from many different complex systems. Recurrence plots encode this information in a
2-dimensional binary matrix, indicating a recurrence between two states ~xi and ~xj at times i
and j if the respective states are similar with respect to a given norm D(~xi, ~xj) [19]:

Rij =

{
1 if D (~xi, ~xj) ≤ ε
0 if D (~xi, ~xj) > ε.

(8.4)

The norm D(~xi, ~xj) yields a symmetric, real-valued distance matrix D between states at all
time instances i, j. By thresholding D with the vicinity threshold ε, a notion of similar and
dissimilar states is implemented and defines the recurrence between each pair of states. The
underlying idea is based on the Poincaré recurrence theorem that states the recurrence of a
dynamical system’s trajectory ~x(t) to an ε-neighborhood of any perviously visited state after
sufficiently long time [16]. For the main diagonal of the RP, it always holds that Rij ≡ 1. If no
phase space reconstruction is applied, states ~xi and ~xj correspond to time series amplitudes
xi and xj . The threshold ε can be chosen based on different data-dependent criteria. In many
applications, the recurrence rate is fixed to a certain percentage (e.g., 10 % recurrences [30])
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or set to a multiple of the standard deviation of the distance matrix D [124]. The geomet-
ric recurrence patterns encoded in a RP can be exploited to distinguish between stochastic
and deterministic systems [20]; while a purely random white noise process will result in iso-
lated dots in the recurrence matrix, time series from deterministic systems are known to yield
diagonal line structures [20]. Long diagonal lines are characteristic for periodic systems; in-
terrupted diagonal lines indicate chaotic dynamics. Recurrence quantification analysis (RQA)
which evaluates the statistical properties of a RP has proven a versatile tool for diverse real-
world applications, such as time series classification [221], study of causal relations [110] or
regime shift detection [24].

Recurrence analysis overcomes some of the flaws of other statistical analysis tools when
applied to geophysical time series, such as the Lyapunov exponent or correlation dimension [76,
222]. It is less sensitive to noise and can be applied to short time series. In combination with
the (m)Edit-distance approach, first applications demonstrated its ability to detect regime
transitions in palaeoclimate proxy records [223, 211]. In order to compute a RP for irregularly
sampled time series, D(~xi, ~xj) in Eq. (8.4) is identified with the modified edit distance from
Eq. (8.1). In contrast to regular computation of metric distances, segments of the time series
are required to obtain a distance value between two states. Genereally speaking, segment size
should be chosen sufficiently small to ensure that no aliasing effects arise due to interference
between the segment width and the characteristic time scale of a time series (e.g., characteristic
period of a periodic time series). For some applications the segments can be chosen such that
all are equally sized |Sa| = |Sb| = · · · = N . If this is not possible, the variance of segment
widths can still be minimized and for each pair of segments with differing widths; deletion
& adding operations will contribute to the resulting transformation cost. If time series are
short, we can allow for an overlap between segments, although caution is advised since this
introduces a serial dependence in the resulting edit distances of overlapping segments and
violates the normality assumption used in the estimation of ΛS. Here, we focus on the most
general case of unequal segment sizes. Apart from cases where segment size deviations can
hardly be minimized, this is relevant in some real-world applications where we are interested
in the recurrences between segments that correspond to a particular time scale, or where
sampling rate is highly non-stationary and selecting a constant segment size would result in
mixing of distinct time scales. The application to palaeoclimate data (Sect. 8.5) will illustrate
such a case. There, the focus lies on the comparison of seasonal sequences in an irregularly
sampled proxy time series.

Predictability is a feature of time series that can help to identify and classify different
dynamical regimes in the evolution of the studied system. Since the lengths of diagonal lines
in a RP reflect the predictability of a system, the number of diagonal lines which exceed a
specified minimum line length lmin can be used as a predictiability measure:

DET =

∑N
l=lmin

P (l)∑N
l=1 P (l)

(8.5)

with the number P (l) lines of length l. Determinism (DET) can be linked to the correlation
dimension of a dynamical system [224] and has successfully been used in diverse empirical
analyses [37, 50, 24] to detect transitions between regimes of varying predictability. We use
DET as a recurrence quantifier to test the impact of the sampling-based correction scheme
introduced below.

8.3 Segment size dependence

Finite-sample effects are known to entail statistical biases in various time series analysis
methods. Linear or spline interpolation is often employed as a pre-processing technique to
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enable the application of standard time series analysis tools to irregularly sampled time series.
Interpolation techniques do not account for basic finite-sample biases. For instance, statistical
location and scale measures (such as the median or volatility indicators) are known to be biased
for small sample sizes [225, 226]. Given two segments Sa, Sb with |Sa| � |Sb|, estimating their
variance (e.g., as a volatility indicator or in order to compute a continuous wavelet spectrum)
can result in underestimation of the variance for the shorter segment. Similarly, persistence
estimators are generally biased due to finite-sample effects, even for Markovian stationary
stochastic processes [227]. Whenever a sliding-window analysis for nonstationary, irregularly
sampled time series is carried out, variations in the sampling rate will inevitably result in a
mixture between the actual variability of the statistical indicator and purely sampling-related
variations. As interpolation techniques are usually limited to resampling values such that
sampling intervals are equal, this effect is not compensated. Similar intricacies need to be
considered in short time series, e.g., when computing correlations between multiple time series
(of varying length) [228].

While not designed to compensate such effects, the (m)Edit-distance methodology does not
introduce any known additional biases. The computation of transformation costs is demon-
strated with two exemplary pairs of segments Sa, Sb and Sc, Sd (Fig.8.1). The segments
Sa, Sb all display distinct operations for transforming a segment into another: in the first
step, a shift of amplitude and time are applied to transform the time instance ta(1) and am-
plitude La(1) of the first segment into time instance tb(2) and amplitude Lb(2) of the second
segment. The cost C1 associated with this operation is the sum of shifting both time and
amplitude. After shifting the third value of Sa to match the third value of Sb, both a deletion
and an adding operation are performed in step 3 with twice the cost ΛS for a adding/deleting
operation. The same transformation could have been achieved with an additional shifting
operation. The prefered operation is determined by the particular choice of cost parameters.
As |Sa| = 3 and |Sb| = 4, the first value of Sb is added in step 4. The resulting cost is the
sum of all costs for each step. While different transformation paths are possible, the algorith-
mic implementation ensures that C is minimized with respect to all possible combinations.
Another example is displayed in the right column of Fig.8.1. The setup differs in that the
indicated segments Sc, Sd are longer than Sa, Sb (|Sc| = 8, |Sd| = 7). Despite a similar set
of transformations, the resulting costs C̃ are significantly higher for the exemplary choice of
parameters.

A systematic derivation of transformation costs on segment size/sampling rate for expo-
nentially distributed sampling intervals is given in appendix D. Note that the identified effect
is not due to an immanent misconception in the edit distance computation. It solely arises
from the fact that the edit distance is applied in a setting where the time axis is not only
irriations in its sampling rate. In particular, abrupt transitions in the sampling rate between
a time period T1 with low sampling rate λ1 and T2 with high sampling rate λ2 will imprint
a non-trivial λ1, λ2-dependence on the transformation cost D(Sa Sb) between any two seg-
ments. In a recurrence analysis of time series, the focus lies on the similarity of states based
on the amplitudes of the time series. Hence, we argue that the identified dependencies coun-
teract the goal of recurrence analysis of irregularly sampled time series and thus need to be
corrected such that recurrence quantification measures reflect the dynamical behaviour of the
underlying system rather than mere shifts in the sampling rate.

We numerically examine the dependence of transformation costs between segments Sa, Sb
on their sizes Na, Nb for simple synthetic time series. We test irregularly sampled time series
from three different model systems: uncorrelated uniform noise, an AR(1)-process (τ = 5),
and a sinusoidal (ν = 1/25) with superimposed low-amplitude white noise. Segments of
specified sizes from each of these systems are drawn to compute segment size-specific costs.
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Figure 8.1: Schematic illustration of how irregularly sampled segments of varying lengths are trans-
formed with the (m)Edit-distance method. Two exemplary pairs of segments Sa, Sb (A: red, blue) and
Sc, Sd (B: green, orange) of an irregularly sampled synthetic AR(1)-time series are displayed. Each
row shows an operation applied to the respective segment (shift: purple, deletion/adding: cyan). Final
costs C and C̃ result from a specific choice of cost parameters as described in Sect. 8.2.1. Please note
that the higher total cost in B showcase the dependence on segment length.

Irregular time axes are generated from a γ(∆; k,Θ)-distribution with scale Θ and shape
k =

√
2/Γ , where Γ denotes the skewness of the distribution. This choice is motivated by

the observation that sampling intervals in palaeoclimate proxy time series are often γ- rather
than exponentially-distributed. For each system, we generate a ‘superpopulation’ (K = 100)
of time series and time axes. Fixing a different skewness Γ of the γ -distribution of each of
the time axes between Γ ∈ [1, 8] ensures that for T = 10, 000, segment sizes range between
N ∈ [1, 20]. The modified edit-distance is used, Eq. (8.1) and deletions are included as a
competing operation to shifting. The optimal ΛS is estimated for each system according to
the procedure outlined in Sect. 8.2.1: the KS-statistic is minimized for each systems, yielding
Λ(unif)

S = 1.5, Λ(AR1)

S = 1.5, Λ(sin)

S = 3.5.
Figure 8.2a displays the obtained transformation costs in the cost matrices C(Na, Nb)

and C̃shift(Na, Nb) after averaging over K = 100 different realizations. Regardless of the
irregularity of the time axis and the respective system, a tendency of increasing total costs for
larger segment sizes is observed (upper row). For the AR(1)-system, this increase is slower for
fixed Nb and increasing Na composed to the uncorrelated noise and the sinusoidal examples.
More generally, the rate of increase differs between the considered systems but follows the
same trend. In total, |Na−Nb| ‘basic deletions’ (or adding operations) need to be carried out
for each pair of segments with Na 6= Nb. If costs for these basic deletions are subtracted and
computed per shifting step, a similar dependency on Na, Nb as observed in Fig. D.1c for the
more simple case can be observed in the cost matrices C̃shift(Na, Nb) in Fig. 8.2b :
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(a) Cost matrices C(Na, Nb) (including basic deletions, total costs).
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(b) Cost matrices C̃shift(Na, Nb) (excluding basic deletions, average costs per operation).

Figure 8.2: Cost matrices C(Na, Nb) for the transformation of segments with different lengths,
including basic deletions (a) and excluding basic deletions (b). Costs are shown for uncorrelated
uniform-distributed noise (left), an AR(1)-process (center) and a sinusoidal with superimposed white
noise (right). Sampling intervals are γ -distributed.

the cost of an average shift from a segment with N = Na increases towards Nb = Na

and decays if segment size increases further. Consequently, the leading effect results from
the basic deletions that are directly linked to the difference in segment sizes |Nb −Na|. Yet,
transformation costs still depend on segment size even after aligning both segment sizes by
means of basic deletions; this effect likely results from having a higher probability of finding
closely spaced values on the time axis as the sampling rate of one segment increases, yielding
an increasing trend for average costs per operation (in fig. 8.2b).

8.4 Sampling rate constrained surrogates

Irregularly sampled time series with constant sampling rate can be studied with the (m)Edit-
distance to obtain dissimilarity estimates between different time series segments. The resulting
distance matrix can be used to perform a recurrence analysis. Moreover, other analysis tech-
niques such as complex networks, clustering, or correlation analysis are based on (dis)similarity
measures and could use the (m)Edit-distance as a metric to account for irregular sampling
or to characterize event-like data. In section 8.3 we showed that in case of a non-constant
sampling rate, an estimation of the (m)Edit-distance matrix is biased by significant differences
in the segment sizes.

In the following, we propose a numerical correction-technique for recurrence analysis. We
generate an ensemble of time series and time axis surrogates that reproduces the sampling
properties of the real irregularly sampled time series. This surrogate ensemble is used for
bias-correction of recurrence quantification measures, exemplified by the determinism DET.
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8.4.1 Constrained randomization

When studying a system’s dynamics with time series analysis tools, a null-hypothesis is for-
mulated which can be be tested. In case of recurrence analysis, this hypothesis could for
example be non-stationarity of a dynamical property of the system (predictability, serial/cross-
dependence, . . . ) expressed by a particular recurrence quantification measure. In the used
example, the null-hypothesis tests whether the observed dynamics could be solely caused by
variations in the sampling rate.

Parametric hypothesis testing for time series analysis often poses severe constraints on the
statistical properties of the underlying probability distribution, e.g., normality. Surrogate tests
represent a non-parametric and flexible method to test for a range of properties in a system,
including nonlinearity or periodicity, among others [229, 230, 34]. Time series surrogates are
altered copies of a real, underlying time series that only preserve a specified set of properties
of the real time series. The general technique to generate surrogate realizations of a time
series is constrained randomization [231]. After defining a set of constraints that state which
properties of the real time series should be preserved, the time series is randomized such that
these constraints are still fullfilled. Here, randomization will be carried out on the sampling
interval ∆i with the constraint that for each segment Si of the real time series, segment
size Ni is preserved. This is achieved by drawing sampling intervals ∆i (with replacement)
from the empirical sampling interval distribution p(∆, λ(t)). For a given segment Si with size
Ni, Ni sampling intervals are drawn from p(∆, λ(t)) and cumulated to generate a surrogate
realization of the particular time axis segment:

t̃
(0)
Si = t

(0)
Si , t̃

(j+1)
Si = t̃

(0)
Si +

j∑
m=0

∆
(m)
i (8.6)

Let w be the time period covered by each segment. For any randomly sampled set of sampling
intervals, the constraint of preserved segment size requires that

t̃
(Ni)
Si

!
≤ w, (8.7)

otherwise the random sampling of sampling intervals ∆i has to be repeated. If the distribution
of segment sizes is short-tailed, i.e., no segments with size N � E[k] exist, this simple ran-
domization procedure converges rapidly for each segment. If segments of relatively large size
are present – which is likely the case for non-stationary sampling rates – only a small subset
of sampling intervals from the left tail of p(∆, λ(t)) will fulfill the condition (8.7). In order to
ensure convergence of the algorithm for large segments, a weight-function can be introduced
for all sampling intervals to increase the likelihood of drawing short sampling intervals when
a segment with large size is generated. We suggest the use of β-distributed weights ω:

ω(X; α, β) =
1

B(α, β)
xα−1(1− x)β−1 (8.8)

with the β-function B(α, β). This choice is motivated by the fact that for α = β = 1,
ω(X; α, β) becomes a uniform distribution. In our application, we choose α = β = 1 when
the first iteration of sampling Ni sampling intervals ∆i is carried out. The population of sam-
pling intervals is ordered from shortest to largest and each xi ↔ ∆i is assigned a β-distributed
weight ωi, i.e., for the first iteration, every sampling interval is drawn with equal probability.
If the iteration fails

(
t̃
(Ni)
Si > w

)
, α is increased by a small number ∆α, reshaping the beta-

distribution and increasing the probability of drawing small sampling intervals. Thus, we
perform a weighted sampling from the empirical distribution p(∆, λ(t)) of sampling intervals
with β-distributed weights. In the l-th iteration, we use ω(X; αl, β = 1), αl = 1 + l∆α as the
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weight function for each segment. Finally, we can identify an amplitude difference ∆yi of the
time series with each sampling interval ∆i. This correspondence is exploited by also drawing
the respective amplitude difference for each drawn sampling interval. After the procedure is
finalized and a surrogate has been generated, amplitude differences are cumulated, that yields
both a time axis and time series surrogate. Both are denoted as sampling rate constrained
surrogate (SRC-surrogates). The full randomization procedure thus preserves segment sizes
in the correct temporal order and by definition approximately reproduces the distribution of
amplitude differences and sampling intervals. It also preserves the correspondance between
sampling intervals and amplitude differences, ensuring that if periods with high local sampling
rate entail larger variance/strong amplitude changes in a real time series, this property is also
included in the SRC-surrogates. The full procedure is outlined in Fig. 8.3 for an exemplary
time series. Other randomization schemes are conceivable, e.g., varying the sampling weights
after drawing each single sampling interval based on the size of the latter, or stratified ran-
domization, i.e., performing the randomization differently for strata that correspond to the
different segment sizes. However, the proposed scheme has proven to be effective within the
scope of this work.

surrogates

real time series

sampling density
sampling intervals &

surrogate

segments

weighted sampling

amplitude differences

population of

time series segments

weights

real time series

surrogate ensemble

...

Figure 8.3: Schematic illustration of the constrained randomization procedure that generates SRC-
surrogates for an exemplary irregularly sampled time series with non-stationary sampling rate. The
left column shows the segmentation of the time series into segments of constant time period s but
of variable size Ni. The center column illustrates the weighted sampling of sampling intervals and
amplitude differences. Each sampling interval is assigned a β -distributed weight whereby the α-
parameter of the weight distribution is increased with each l-th failed iteration to favor short sampling
intervals. The resulting surrogates preserve the empirical distributions and segment sizes. Since
amplitude differences are sampled jointly with the respective sampling intervals, increased volatility
simply due to a higher local sampling rate is reproduced by the SRC-surrogates.

With the presented scheme of generating SRC-surrogates, an ensemble of surrogates can be
generated and (m)Edit-distance matrices D computed for each SRC-surrogate. Any measure
that is based on D can consequently be computed for each surrogate separately, yielding a
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distribution that can be used for testing the null-hypothesis formulated above based on the
desired α-confidence level.

8.4.2 Recurrence analysis of an AR(1)-process

In the example below, the proposed correction scheme is applied to an irregularly sampled
AR(1)-process (Fig. 8.4a). We consider an autocorrelation increasing with time, visible by au-
tocorrelation time τ (Fig. 8.4b). A recurrence analysis is used to characterize the predictability
of the time series in a sliding window analysis. Predictability is computed by means of de-
terminism, DET, as defined in Eq. (8.5). In particular, we study how an abrupt shift of the
sampling rate (represented by the skewness of γ-distributed sampling intervals) affects DET
and if a continuous increase of predictability can be recovered despite this shift by using the
proposed SRC-surrogate method. The shift appears at t = 1250 (visible by variation of the
segment size, Fig. 8.4b). We expect DET to reproduce the linear increase in autocorrelation
time, because increased serial dependence implies longer and more diagonal lines in the RP.
For the computation of the (m)Edit-distance measure, segments are picked such that each
covers a constant time interval of w = 1 which could correspond to a year in a real-world
application. 200 SRC-surrogates are generated (see appendix D) with α0 = 1, β = 1 and a
step size for the shape parameter α of the beta-distribution ∆α = 0.15. We set an upper limit
of N (max)

it = 1000 for the number of iterations in the generation of each segment which is never
exceeded in the performed simulations. The deletion/adding cost parameter ΛS is estimated
separately for the real time series and the surrogate realizations, yielding Λ

(real)
S = 5.3 and

Λ
(SRC)
S = 2.6. Recurrence plots are computed on sliding windows of size s = 200∆ with 75%

overlap (time series length: T = 5000). We fix a recurrence rate of 15% and do not apply
any time-delay embedding. For each window, two DET values are obtained (Fig. 8.4c): the
DET value of the real time series and the α(= 95%)-confidence level of DET values calcu-
lated from the SRC-surrogate ensemble. The DET measure indicates a spurious transition of
predictability induced by the abrupt shift in sampling rate (Fig. 8.4c, grey shading). Both
the real time series and the surrogate ensemble indicate this shift, demonstrating that the
proposed SRC-surrogates effectively reproduce the sampling bias. The SRC-based correction
is applied to DET values by dividing the real DET-series by the 95%-confidence level for
each window (Fig. 8.4d). The resulting predictability estimates reproduce the expected linear
increase in serial dependence whilst eliminating the spurious shift due to the jump of the
sampling rate.

8.5 Real-world application: rainfall seasonality in the central
Pacific

Many real-world proxy time series are characterized by irregular sampling or missing data and
stationarity of the underlying process that controls the sampling rate cannot be guaranteed.
This perspective even goes beyond uneven time axes as for some systems, it might be desirable
to apply an adaptive windowing in order to obtain segments with segment sizes depending on
specific parameters of the system. For instance, when analyzing cardiac time series it might be
reasonable to choose the segment size adaptively to capture one heart-beat cycle within each
segment. The length of every cycle is controlled by a variety of other physical, non-stationary
parameters. Below, we focus on an irregularly sampled palaeoclimate proxy time series with
a non-stationary temporal sampling rate. We demonstrate the effectiveness of the proposed
approach by carrying out a sliding window recurrence analysis.

The palaeoclimate record analysed here is a seasonally resolved stalagmite proxy record
from Niue Island in the southwestern Pacific (19◦S, 169◦W). It covers 1000 years in the mid-
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Figure 8.4: Application of SRC-surrogate correction method to (a) an irregularly sampled AR(1)-
process with (b) non-stationary sampling rate (blue) and linearly increasing autocorrelation time
(red). Gray shading indicates the abrupt shift in sampling rate. (c) A sliding window RQA using
determinism (DET) as a predictability measure is carried out. Real DET values are displayed in dark
blue, the 95%-confidence level computed from 200 SRC-surrogates is shown in yellow. (d) The ratio
DETreal by DETsurr provides a sampling-bias corrected predictability measure that reproduces the
linear increase in serial dependence.

Holocene (6.4-5.4 thousand years before present (ka BP)). Niue island has a tropical climate,
receiving an average of 2000 mm of precipitation annually with a pronounced wet season
from November to April. Rainfall is most strongly controlled by seasonal displacement of the
South Pacific Convergence Zone but also reacts sensitively to atmospheric circulation changes
associated with the El Niño-Southern Oscillation. Here, we analyse seasonal rainfall variability
on Niue recorded in greyscale changes that arise from crystallographic variations caused by
changes in the stalagmite growth rate (Fig. 8.5). Greyscale values are obtained from high
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resolution scans of the stalagmite surface along its growth axis subsequently extracted with
ImageJ [232]. During the dry season, low drip rates promote the deposition of layers with
compact and dark crystals, yielding low greyscale values. In the wet season, the drip rates are
higher and crystal growth is enhanced as dissolved inorganic carbon is supplied to a greater
extent. (see Fig. 8.5). The inferred link between dark layers and dry season is supported by
earlier studies [233, 4].

Prior to the recurrence analysis of the greyscale time series, we subtracted a centennial-
scale trend using a Gaussian kernel filter in order tp focus on the high-frequency variability
in the record (Fig. 8.6a, black line). Next, we downsampled the time series uniformly by
only storing every 10th value due to computational constraints. This downsampling does
not alter the relative changes in the sampling rate (Fig. 8.6b). The number of samples per
year (i.e., the segment size) undergoes an abrupt shift at ≈ 6.15 ka BP. The period with the
highest average segment size (≈ 6.4 to 6.15 ka BP) coincides with the wettest period covered
by the record, indicated by high greyscale values. This suggests that during this wet period,
stalagmite growth was enhanced which resulted in thicker crystal laminae and a higher number
of samples per layer. This observation reflects the complex nature of irregular sampling of
palaeoclimate-proxy data. If spatial sampling on the stalagmite is performed such that the
number of samples is as high as possible, it will inevitably be linked to its growth rate and
thus to other environmental parameters and their non-stationary characteristics. Finally, we

Figure 8.5: Greyscale record (in black) extracted from a high resolution scan of the surface of the
stalagmite C132 from Niue island. Lower grey values are associated with dense microcrystalline calcite
layers that form during drier periods.

perform the recurrence analysis (Fig. 8.6c). In order to characterize seasonal features, the
period covered by one segment is fixed as one year. Optimization of deletion/adding costs
yields Λs = 2. A window size of s = 200 years is chosen with 90% overlap. A recurrence plot
with fixed recurrence rate of 15% is obtained for each window and analyzed with DET. DET
reveals variations in seasonal-scale predictability for the real greyscale record (Fig. 8.6c, blue
line). The effect of the varying sampling size is obtained by the 95% -quantile of the DET
distribution from 200 SRC-surrogates (Fig. 8.6c, yellow line). Five exemplar SRC-surrogate
realizations are shown in appendix D. Both DET time series indicate an increase of seasonal-
scale predictability during the wet period between 6.35 to 6.2 ka BP, potentially caused by
the simultaneously increased sampling rate. The predictability estimate is corrected for the
identified sampling bias by considering the ratio DETr/DETsurr (Fig. 8.6d). Two periods (6.4
and 6.2 ka BP, and between 5.9 and 5.72 ka BP) show relatively low segment size-corrected
seasonal predictability DETr/DETsurr < 1. While the latter is not significantly affected
by the correction, the former can only be identified as less predictable when the variations
in sampling rate are taken into account. This result corroborates previous findings that
suggested that both of these identified periods were more irregular, i.e. showing less steady
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seasonal fluctuations [4]. However, it was not possible to characterize all sub-annual values
as a proxy for sub-annual rainfall distribution rather extracting only the contrast between
wet and dry season. The (m)Edit-distance approach employed here in combination with
the proposed correction technique allows for a more reliable interpretation of mid-Holocene
seasonal variations in the west Pacific.

In particular, an enhanced control of the seasonal cycle by ENSO-scale variability was
found in [4] for the periods of reduced predictability (6.4 and 6.2 ka BP, and between 5.9 and
5.72 ka BP). High tropical cyclone activity between 6.4-6.2 ka BP could have been triggered
by increased ENSO activity, yielding a more irregular sub-annual distribution of rainfall.
Our results indicate that not only contrast between both seasons is rendered less predictable
during this period but also the seasonal rainfall distribution appears less stable from one year
to another. Reconstructing past climate variability at seasonal scale plays a critical role in
the context of human adaption to continuous and abrupt climate variations and therefore our
approach has direct relevance for teasing out the seasonal-scale signals.

8.6 Conclusion

The characterization of time series from complex nonlinear systems is a challenging task.
Irregular sampling, i.e., variations in the sampling interval between consecutive values, addi-
tionally impedes typical research objectives such as spectral analysis, persistence estimation
or quantifying the predictability of a system. Even though interpolation techniques offer a
seemingly efficient way of pre-processing a time series to allow application of standard time
series analysis tools, these entail various biases which are difficult to control. A different per-
spective is pursued by the (m)Edit-distance method. Many analysis methods are based on an
estimate of (dis)similarity. With the (m)Edit-distance, a suitable distance measure between
states of a system at different times i and j is defined by computing the transformation cost
of segments centered at these time instances. First analyses demonstrated its scope in the
context of recurrence analysis, enabling researchers to examine predictability variations of
irregularly sampled palaeoclimate time series. Applications to other complex systems (also
for time series with ‘missing values’) and other methodological frameworks (e.g., complex
networks, clustering, correlation analysis, . . . ) are possible and should be attempted in the
near future.

For some real-world systems, it is instructive to quantitatively compare sequences corre-
sponding to a specific time scale in order to analyse the scale-specific variability. In such cases,
segment sizes will vary in the presence of irregular sampling. Furthermore, splitting time se-
ries with a non-stationary sampling rate into segments that do not cover the same time period
will result in a mixing of time scales. We have shown that (m)Edit-distance-based recurrence
analyses are affected by variations in segment sizes, resulting in a non-trivial sampling bias
if episodes with variable sampling rate are included in a single RP. The (m)Edit distance
regards pairs of longer segments to be generally more dissimilar than shorter segments due to
higher deletion costs. Shifting costs conversely decrease for increasing segment size, resulting
in a non-trivial dependence of costs on local sampling rates. When including amplitudes of
a signal into the (m)Edit-distance computation, similar general tendencies were observed but
the strength of the segment size-dependencies varied for different systems. A more detailed
examination of how dissimilar amplitude segments of different paradigmatic systems depend
on their time scale will be investigated in a future study.

We introduced a numerical technique based on constrained randomization to address and
correct the issue of segment-size dependence in recurrence analysis. This method involves
generating an ensemble of sampling rate constrained surrogate realizations (SRC-surrogates).
Each SRC-surrogate reproduces the real variations of sampling rate and its assignment to
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Figure 8.6: Application of SRC-surrogate correction method to an irregularly sampled greyscale
proxy-record from the central Pacific (a) with non-stationary sampling rate (blue) (b). A sliding
window RQA using determinism (DET) as a predictability measure is carried out (c). Real DET
values are displayed in dark blue, the 95% -confidence level computed from 200 SRC-surrogates is
shown in yellow. Dividing DETreal by DETsurr yields a sampling-bias corrected predictability series
(d) that indicate mid-Holocene variations in seasonal-scale predictability. Gray shading indicates two
periods with low seasonal predictability.
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the corresponding amplitude differences, allowing the ensemble to be used for correcting
the undesired segment size-dependence. The effectiveness of the proposed correction was
applied to a synthetic AR(1)-time series and real palaeo-proxy data. In both applications, a
recurrence analysis successfully recovered variations in the scale-specific predictability of the
system whilst discarding spurious effects imprinted by sampling rate variations. We found
that seasonal-scale predictability varied significantly during the mid-Holocene in the West
Pacific, corroborating and extending the results from a recent study. The reasons for these
changes in predictability warrant further investigation.

The identified sampling bias is a specific case of a more general problem in time series
analysis; sliding window analyses (or the study of short time series) often suffer from finite-
sampling biases which may introduce artificial variability into any statistical indicator that
is computed. As pointed out in Section 8.5, finite-sampling biases are also not limited to
irregular temporal sampling but are likely to also occur in settings where other parameter axes
determine suitable window sizes or adaptive windowing is required. In future, the proposed
method could also be applied in such settings to test its effectiveness beyond the examples
considered in this study.

Code availability

Python code for the generation of SRC-surrogates is available at https://github.com/
ToBraun/SRC-surrogates.
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An aspiring cave researcher crawls his way out of Botovskaya cave (eastern Siberia) with a
bag full of samples, a head full of experiences and an impressive collection of bruises (photo

by Seb Breitenbach, February 2022).
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This review paper has ten sections from which only the three sections (Introduction, Numer-
ical tools for extracting seasonality changes from palaeoenvironmental time series, Summary
and outlook) the author has actively contributed to, are included in the following.

Abstract

The role of seasonality is indisputable in climate and ecosystem dynamics.
Seasonal temperature and precipitation variability are of vital importance for the
availability of food, water, shelter, migration routes, and raw materials. Thus, un-
derstanding past climatic and environmental changes at seasonal scale is equally
important for unearthing the history and for predicting the future of human soci-
eties under global warming scenarios. Alas, in palaeoenvironmental research, the
term ‘seasonality change’ is often used liberally without scrutiny or explanation
as to which seasonal parameter has changed and how.

Here we provide fundamentals of climate seasonality and break it down into
external (insolation changes) and internal (atmospheric CO2 concentration) forc-
ing, and regional and local and modulating factors (continentality, altitude, large-
scale atmospheric circulation patterns). Further, we present a brief overview of the
archives with potentially annual/seasonal resolution (historical and instrumental
records, marine invertebrate growth increments, stalagmites, tree rings, lake sedi-
ments, permafrost, cave ice, and ice cores) and discuss archive-specific challenges
and opportunities, and how these limit or foster the use of specific archives in
archaeological research.

Next, we address the need for adequate data-quality checks, involving both
archive-specific nature (e.g., limited sampling resolution or seasonal sampling bias)
and analytical uncertainties. To this end, we present a broad spectrum of care-
fully selected statistical methods which can be applied to analyze annually- and
seasonally-resolved time series. We close the manuscript by proposing a frame-
work for transparent communication of seasonality-related research across different
communities.

9.1 Introduction

9.1.1 What we talk about when we talk about seasonality?

Seasonality is a common denominator for several academic disciplines and its accurate re-
construction is highly relevant across both the natural and human sciences. At a basic level,
climate seasonality is expressed intuitively as the cyclical changes in temperature and/or
rainfall over the course of the year, which in turn determines both the composition and the
dynamics of ecosystems. Overall, climate seasonality plays a critical role in influencing the
persistence of all living organisms. For example, the seasonal changes in precipitation and
temperature affect different components of the climate system (e.g., soil moisture, snow cover,
evaporation rates, river flows and lake levels). The changes in these variables lead further to
changes in vegetation and ecologic requirements of plants and animals, which in turn influence
the type and amount of food available for humans and other organisms. For the majority
of multicellular organisms, the diurnal and seasonal cycles are the most important pacemak-
ers of biological functions. For humans, the influence of seasonality affects the biological
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world they interact with and extends across the cultural domain, including construction of
niches, subsistence, religious, and economic activities. Studying past changes in seasonality
is of great interest and importance for palaeoclimatology, palaeoecology, anthropology and
archaeology, and, last but not least, modern climate science, conservation and phenology,
all of which face the uncertain future of global warming [234]. Palaeoclimatology aims at
documenting how seasonal changes affect the climate system through time [235, 236], and
the amplitude of seasonal changes [237, 238, 239, 240, 241]. Palaeoecology deals with the
effect of seasonality changes on the ecosystem [242, 243], while anthropology and archaeology
document the effect of seasonality and changes in seasonality on human evolution, residency,
subsistence strategies, and the adaptation of those strategies (the latter two involving human-
ecosystem interaction; [244], and references therein). Recent work by [245] emphasized pitfalls
of integrating data and knowledge between academic disciplines with different practices and
standards of evidence. Increasing scientific interest in what the authors termed ’history of cli-
mate and society’ warrants proposing frameworks which facilitate interdisciplinary research.
Thus, this review proposes a framework for addressing past climate seasonality changes.

An opinion piece by [246] echoes the seminal work by [247] and outlines the most im-
portant, but often overlooked, aspects of seasonality in palaeoenvironmental studies. Firstly,
climate is defined not by annual means of temperature or precipitation, but by the annual cy-
cles of these climate variables (see Box 1). Annual mean values, so often extracted from proxy
records, while important, do not fully capture past climate variability. Secondly, relatively
small changes in natural processes acting on a seasonal timescale are the drivers that foster
large climate shifts. Not detailed by [246] are the often simplified or overlooked aspects of
spatial heterogeneity of environments and human actions, including the seasonality and tim-
ing of subsistence activities, which further influence the rhythms of other cultural behavior(s).

Box 1 : Definitions

‘Seasonality’ is widely used in many disciplines of palaeo-research, yet it is lacking a
clear definition. In the scientific literature, references to changes in seasonality are as
frequent as they are ambiguous. A survey of this literature raises many questions:
what does ‘increased’ or ‘decreased seasonality’ actually mean? Can we quantify this
change? And is the amplitude all that matters? What about temporal distribution?
Does temperature and precipitation always respond symmetrically and harmonically?
[248] highlighted that one should refer to the annual cycle rather than the seasonal
cycle since the period is one year, not one season, and we endorse this approach. Here
we define key concepts related to seasonality and how they will be used throughout
this review.

Annual cycle of temperature – can be symmetric, sinusoidal, and is defined
by maxima and minima. Seasonality of temperature refers to an amplitude
between maxima and minima. In theory, the annual budget reaches zero, meaning
that colder winters are counterbalanced by warmer summers.

Annual cycle of precipitation – is defined by magnitude (amount) and tem-
poral distribution (timing – when: duration – for how long). Seasonality of rainfall
should take all three of these components into consideration, which, in case of
palaeoenvironmental archives and their limitations in resolution, is rarely feasible. In
modern climatology the beginning of the hydrological year differs from the beginning
of the calendar year.
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Seasonality of temperature and seasonality of rainfall together make climate
seasonality.

Annual cycle of human activities (e.g., foraging, farming, migration) –
strongly related to natural temperature and precipitation cycles, which influence the
growing season and availability of static resources and the movement patterns of mobile
resources (see Box 5). The availability and sustainability of these resources influence
human subsistence strategies, which in turn inform other types of cultural behavior.
Seasonality of an activity refers to its timing and duration.

The two aspects of seasonality reiterated by [246], namely: 1) the fact that it defines cli-
mate and 2) that the small changes accumulate in large-scale oscillations (e.g., glacial/interglacial
cycles), constituting a challenge for scientists working with archives that often lack seasonal
resolution and/or are biased towards one season only. Alternatively, archives record seasonal
changes but are discrete in nature and represent only snapshots of time rather than a con-
tinuous interval. Consequently, regional palaeoclimate syntheses frequently suggest different
responses to seasonality changes to account for discrepancies between different archives and
proxies covering the same time span, or between data-based reconstructions and climate model
output. The classical example comes from the Mediterranean region where [249] reconciled
glacial lake levels, where high levels suggested increased humidity, with contemporary pollen
records that indicate drier conditions, by proposing an increased seasonality in precipitation
with wetter winters and drier summers. Yet, the term ‘seasonality’, while so often used by
the palaeo-community, lacks formal definition, and the phrase ‘seasonality change’ is often
used to refer to a bundle of processes encompassing changes in both the external forcing and
internal conditions modulating the local response. The external forcing is prescribed by the
orbital parameters (see Box 2).

Box 2 : Orbital influences on annual and diurnal cycles

The diurnal (Earth rotation around its axis, 24 h) and annual (Earth rotation around
the Sun, 1 year) cycles can be observed and experienced during a human lifetime. On
longer, multi-millennial time scales, these cycles are influenced by changes in Earth’s
orbital parameters, obliquity, eccentricity, and precession. Changes in orbital parame-
ters have been calculated theoretically [250] and their persistence on Earth climate has
been documented in geological record ([251] and more). Fundamentally, seasonal vari-
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ability is controlled by the amount of incoming solar radiation (insolation), arriving
at different latitudes at different angles as Earth orbits the sun. Below we consider four
different scenarios to illustrate how changes in orbital parameters influence the annual
insolation distribution and the length of day.

1. If the Earth’s rotational axis was perpendicular to the orbital plane, the insolation
angle for each latitude would be constant throughout the year. Insolation gradients
would exist between the latitudes, but there would be no seasonal changes. Daytime
would have the same length at each latitude.

2. Increasing the tilt (obliquity) changes the insolation angle during Earth’s
rotation around the sun. The hemisphere tilted towards the sun experiences warmer
temperatures (summer), and longer days. The amplitude of seasonal differences
increases with the tilt. The length of the obliquity cycle is ca 42 ka. At the equator,
the length of the daytime is roughly constant throughout the year, it gets longer (24
h) towards the ‘summer’ pole and shorter (0 h) towards ‘winter’ pole. Summer and
winter are of equal length in both hemispheres.

3. Changing the shape of the orbit (eccentricity) influences the distance of
the Earth to the sun and the length of the seasons. Eccentricity of the orbit mod-
ulates the effect of the obliquity. The seasons at aphelion are colder (the Earth
is further away from the sun) and longer (further away from the sun it’s gravitational
pull is weaker, so the Earth moves slower) than at perihelion. Eccentricity has two
cycles, a short one, ca. 100 ka, and a long one, ca. 400 ka. In the presented scenario
(corresponding to modern day conditions) the gradient between summer and winter
insolation (here, translated into temperature) is steeper in the southern hemisphere
(SH) compared to the northern hemisphere (NH).
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4. The wobble of Earth’s rotational axis (precession) changes the direction of
the tilt and determines which hemisphere is tilted towards the sun at perihelion
(summer). The same hemisphere will be tilted away from the sun at aphelion (winter).
Precession thus determines on which hemisphere the amplitude of annual
change in insolation is larger. The overall length of the precessional cycle is ca 23 ka.

While systematic changes in insolation are, next to atmospheric CO2 concentra-
tion, the most important driver for seasonal temperature variations, other factors can
modify temperature variations (see Box 3).

The amount of insolation received at any point on the planet is a function of season
and latitude. It can be theoretically calculated for the past and the future and broadly
translated into relative temperature changes, with flat seasonal gradients in the tropics and
steep gradients at the poles (see Box 3).

Box 3 : External and internal forcing, and internal feedbacks

The energy received from the sun per unit area (insolation) is kept in check by Earth’s
atmospheric CO2 concentration. Insolation changes (external forcing) are periodic
and fixed for a given season and latitude (see Box 2) and as such are predictable.
In pre-industrial times CO2 concentration (internal forcing) varied little between the
hemispheres, following the respective vegetation season, and large variations in CO2
level were global [252, 253].

At the low latitudes the total amount of the insolation received is larger than
that received at the high latitudes and the poles, but the amplitude of annual change
is very small. Hence in low latitudes annual cycle is expressed in precipitation changes
(wet and dry season). The amplitude of annual insolation change increases with
distance from the equator and manifests itself in temperature and daylight duration
changes.

Still, the Earth unit area receiving insolation is rarely homogeneous and the
surface properties can modulate (dampen, amplify, or delay) the local response.
Internal feedbacks are semi-stochastic.

A novel (in a geological sense) element of internal feedback, referred to as an-
thropogenic climate variability, combines greenhouse gas emission, deforestation
and land use change. The sensitivity of a given archive can further influence the
palaeoenvironmental record.

• Continentality: a measure of the difference in the annual temperature maxima
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and minima that occurs over land compared to water. The oceans capacity for
storing heat (thermal inertia) is greater than that of the continents which means
it warms slower but also cools slower than land masses. Further, the upper ocean
layer can distribute heat both, vertically and horizontally. By storing heat in
summer and releasing it in winter oceans considerably dampen the annual cycle
of temperature. In contrast, the continental interiors experience much larger an-
nual temperature differences. The large thermal inertia of the oceans shifts the
annual temperature maxima and minima of surface water and coastal regions in
relation to temperature over continental interiors. The land-ocean distribution is
also important in moderating the insolation-prescribed hemispheric seasonality
contrast: under modern day conditions the gradient between summer and winter
insolation is steeper in the SH compared to the NH; however, the SH ocean/land
ratio counteracts the large temperature gradients. Size and distribution of the
continents have also impact on the seasonal precipitation patterns, with conti-
nental interior receiving less rainfall than coastal regions.

• Land cover: differences in surface properties represented by vegetation changes
(e.g.: forest vs steppe vs bare rock), snow cover, or surface water distribution
affect the albedo and the heat capacity of the surface. The effect of these differ-
ences on the overlying atmosphere is analogous to the ocean surface temperature
anomalies, but on a much smaller spatial scale.

• Altitude: temperature in the troposphere (lowest layer of atmosphere) decreases
with increasing altitude. The rate (lapse rate) is approximately 1°C for every 100
m.

• Atmospheric circulation patterns: seasonal variability of precipitation and
temperature is modulated by the large-scale atmospheric circulation patterns
and by the ocean circulation, operating on interannual to multidecadal time
scales (e.g., El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation
(NAO), the Pacific North American pattern (PNA), the Pacific Decadal Oscil-
lation (PDO) and the Atlantic Multidecadal Oscillation (AMO), among others).
These atmospheric and ocean modes of variability can influence the precipitation
and temperature in different ways. For example, NAO exerts a strong influence
on the hydroclimate variability of Europe, while the PNA strongly influences the
hydroclimate of the U.S.

• Volcanic activity: volcanic eruptions inject large quantities of aerosols into the
atmosphere, and stratospheric circulation distributes them across the planet. In
general, aerosols have a cooling effect. However, the scale of this effect depends
on where (hemisphere and latitude), when (season), how much (the volume), and
for how long (single or multiple eruption events) the material was injected.

The internal forcing – atmospheric CO2 concentration – is a global feature, and its changes
are relatively well documented for the course of the Pleistocene and Holocene [254, 253]. The
local conditions, however, are inherently heterogenic, and factors like continentality (land-
mass and ocean distribution), altitude, land cover, and atmospheric circulation patterns and
volcanic activity play an important role in modulating insolation- and CO2-prescribed local
temperature (see Box 3). Thus, the resulting local expression of climate seasonality varies
between sites along the same or similar latitude (see Box 4). Further, the natural archives
exposed to seasonal changes might display a bias or an offset in recording the local signal
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(see Box 4). Last but not least, if the natural archives might be influenced by, or are the
direct outcomes of human activity, considering anthropogenic aspects is essential. Depending
on the nature of their adaptations, resilience and sustainability, humans developed different
strategies to cope with and/or take advantage of seasonal changes (e.g., choosing migratory
or stationary lifestyles, hunting and foraging or farming). Importantly, the degrees to which
particular strategies are successful are likely to change through time, based on environmental
circumstances, population size, and technology (see Box 6 in the original manuscript). Con-
sequently, the archaeological archives related to human occupation sites constitute a special
case, i.e., a confluence of natural changes and developing human adaptations (e.g., [255]).

Box 4 : Combined influence of latitude, continentality, and altitude

Köppen’s [256] classification of climate divides climate zones into 5 main groups (trop-
ical - A, dry - B, temperate - C, continental - D and polar - E), based on seasonal
temperature and precipitation patterns. This grouping takes into consideration not
only latitude but also continentality and altitude. Köppen’s climate zones are the
best example of differences in amplitude of seasonal change along the same latitude
(the theoretical line subjected to the same insolation forcing). We have chosen 7
examples of archaeologically relevant sites from around the globe to illustrate the
possible range of local seasonal temperature and precipitation (modern data from
https://en.climate-data.org). Tropical and temperate climates are characterized
by larger amplitude of precipitation changes, dry and continental climate by larger
amplitude of temperature. In case of tropical site in the Andes, the altitude is respon-
sible for low temperature values. Note that the plot does not account for potential
evapotranspiration.
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This review answers the call by [246] for a reevaluation of the scientific focus and method-
ological habits of the scientific community. It is time to scrutinize ‘seasonality changes’ and
address individually different components which together produce the climate- and human
history records we work with. Considering the breadth of the audience, first we take a step
back and take up the issue of climate seasonality (see Box 1) at a fundamental level of exter-
nal forcing (see Box 2) internal, regional and local changes (see boxes 3 and 4). Further, we
summarize how seasonality is reflected in different archives and explore advantages and po-
tential limitations of each archive. The next chapter demonstrates statistical methods useful
in extracting and analyzing seasonal information from high-resolution but often irregularly
sampled archives. Finally, we suggest a framework for discussing scientific observations in
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order to avoid confusion and promote transparency in multi- and transdisciplinary research.

Box 5 : Relevance of seasonal bias recognition and adapting sampling strategy

Treating seasonally biased records as representing annual means might lead to flawed
interpretations. The opposite is also true: records reflecting annual means should be
treated with caution when interpreting seasonal changes in temperature or rainfall.
In our conceptual example here, some archives record the full range of annual tem-
peratures, while others only a portion. The correct recognition of the recorded inter-
val is crucial for further interpretation, regional or global synthesis, and comparison
[257, 258]. Adequate sampling is an additional challenge, in particular when the sed-
imentation/growth rate of the archive is low. [259] discuss in depth how sampling
strategy might influence obtained results and propose a schematic guide for choosing
the optimal approach. Depending on archive sensitivity and sampling strategy, the
shift of the baseline without change in the amplitude might be inaccurately perceived
as an increase or decrease in seasonality of respective parameter. Further, comparing
the same proxies (e.g., δ18O) from different archives, or the same, but geographically
distant, archive does not guarantee that they record the same season.
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The beauty of seasonally-resolved archives, whether continuous or discrete, lays in their
capacity of recording the baseline of seasonal variation. Deviation from this baseline can
inform on frequency and magnitude of events (e.g., floods or droughts), while stepwise change
suggests the reorganization of the large-scale atmospheric and/or oceanic circulation (e.g.,
glacial termination). Anchoring seasonal changes in a wider palaeoenvironmental narrative
allows for insight into the complex dynamics of Earth’s system’s and human response to
external climate forcing.

Not all palaeoenvironmental archives have the potential of recording seasonal variability.
Of those which can, not all can be dated with annual resolution. Here, we first focus on
instrumental and historical data as these have natural and direct connection to the Present.
Next, we move to archaeological records as an overarching subject discussing relevance of
seasonal changes for humanity’s past, beyond instrumental and historical reach. This chapter
alludes to natural archives which are often found either directly at sites of human occupation
or in close vicinity and have the potential to record seasonal changes. The different archives
(i.e., marine biogenic carbonates, stalagmites, tree rings, laminated lake sediments, glacier
ice, cave ice, and permafrost ground ice) are highlighted in the following chapters.

The element conspicuous by its absence is pollen. When calibrated, pollen records indis-
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putably provide information on temperature and precipitation ranges in physical units (°C
and ml) and as such can be related to specific seasons [260]. Applying transfer functions to
pollen assemblages is a powerful tool for quantifying past environmental change. Alas, the
temporal resolution of this proxy is inherently coupled with the sedimentation rate of the
media it resides in and this review addresses seasonally resolved archives rather than proxies.

9.2 Numerical tools for extracting seasonality changes from
palaeoenvironmental time series

As the previous chapters show, seasonality expresses itself in different fashions in each envi-
ronmental archive, and is accompanied with individual challenges and limitations. Seasonality
reconstruction is concerned with the extraction of prominent features which closely link to
the respective notion of seasonality, such as periodicity, seasonal amplitude, timing/duration
or complexity (see Box 7) of seasonal patterns (Fig. 9.1). In order to characterize seasonal
variability, quantitative time series analysis methods allow extraction of various features re-
lated to seasonality and to gain confidence in their statistical significance. Here we give an
overview of how systematic application of numerical tools can help to extract and substantiate
the reconstruction of seasonality in presence of data-related obstacles.

While well-dated proxy records allow for direct assessment of subannual or seasonal vari-
ations [261, 262], lower resolved time series may contain valuable information on variability
that is linked to seasonal variability. Some records reflect information related to different
seasons, others only yield a specific response to a single season ([263], see Chapters 5 and 8
in the original manuscript) (see Box 7). In some records, the most prominent and valuable
information on seasonality might be found in extreme excursions from the baseline [264, 265].
In all these cases, nonstationarity (see Box 7) in the underlying geophysical and geochemical
processes can render the recorded seasonal features highly variable over time. Numerically
extractable information goes beyond detecting changes in an annual cycle; even in the pres-
ence of a stable annual cycle throughout a time series. Not only can the ‘seasonal amplitude’
vary significantly, but also timing and duration of seasons are distinct features that become
detectable (see Box 1), e.g., as phase shifts (Fig. 9.1). Where the underlying forcing mecha-
nisms are well understood, proxy data can be linked to a specific season even in lower resolved
time series [263].

Obstacles for retrieving seasonality include (among others) limited temporal resolution
and lacking reproducibility [259]. Frequently, standard methods (e.g., periodograms) must be
adapted before they can be used to extract seasonality from irregularly sampled time series
[266]. Further, the sampling integration (i.e., the time integrated in each discrete sample)
is vitally important when assessing the suitability of a time series for seasonality analysis.
Unambiguous differentiation between an actual seasonal cycle and noise can be challeng-
ing even in well-dated records, with remaining age uncertainty obscuring the significance of
a present seasonal fingerprint. Archives with lower-than-annual resolution can only yield
seasonality-related information when a clear mechanism links proxies to environmental pa-
rameters, and/or to a specific season (see chapter 8 in the original manuscript) (see Box 5).
Therefore, the mechanism that embeds seasonal signals in an archive decides upon which
method is ultimately best suited to extract them.

This chapter is intended as overview of statistical methods to extract information on sea-
sonality from palaeoenvironmental archives. We first summarize methods frequently used in
palaeoclimatology, then we briefly discuss recently developed tools that help scrutinizing di-
verse seasonality archives across disciplines.
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Box 7 : Glossary for statistical terms

• Boostrapping is a nonparametric statistical technique that allows to estimate
confidence bounds or prediction errors for a signal through resampling. Based on
an empirical estimate of a system’s probability distribution, n values from this
distribution are randomly drawn with replacement in each of Nb bootstrap runs.

• Complexity of a signal comprises a range of features that are typically en-
countered in the study of nonlinear and nonstationary systems. Measuring the
complexity of a signal complements and exceeds characterization of strictly lin-
ear signals, e.g. by reflecting their tendency to exponentially deviate from a
given value or the degree of irregularity in their variability. Even systems which
predominately exhibit regular, periodic behaviour may show episodic bursts of
irregular, chaotic dynamics that can be best captured by complexity measures.
In seasonal climate signals, this can be expressed as a superposition of variations
in periodicity, amplitude, and timing as well as in abrupt shifts from predictable
to stochastic or intermittent dynamics (e.g., caused by a changing influence of
semi-stochastic large scale atmospheric patterns).

• Continuous Wavelet Transform (CWT) is a signal decomposition into small
oscillations with specific frequency. Each oscillation is represented by a shifted
and scaled version of a Mother Wavelet. CWT is a powerful tool to track signal
cycle changes through time (e.g., the annual cycle). They are similar to a time
series power spectrum but allow for better reconstruction of the signal in time.

• Dynamic Time Warping allows matching signals of varying length and with
distinct sampling. Its application to proxy records can be interesting for com-
paring signals with very different temporal resolution. It can inform on optimal
signal alignment and provides a (dis)similarity measure.

• Entropy is a universal concept in thermodynamics that can be interpreted as the
amount of information that is associated with state of a system. In applications to
(nonlinear) time series, it is commonly utilized as a complexity measure. Many
different definitions are possible (Shannon entropy, permutation entropy, . . . )
while each of them requires the empirical estimation of a probability distribution.
It is often also loosely interpreted as an indicator of how ‘disordered’ a system
behaves.

• Exceedence times are time instances at which a time series x(t) has a larger
than pre-specified value a: x(t) > a. For palaeoseasonality, a characteristic value
(e.g., mean wet season rainfall, see fig. 15 in main text) can be computed in order
to study at which time ti this value is first exceeded in an given year. Decreasing
exceedance times would then indicate a trend towards an earlier wet season onset.

• Granger causality is a prediction-based concept of statistical causality. If a sig-
nal X1 causes a signal X2, then past values of X1 should allow to predict future
X2 values beyond the information contained in past X2 values alone. The math-
ematical formulation of Granger causality is based on linear regression modelling
of stochastic processes [267].

• Hilbert-Huang analysis, Empirical mode decomposition and Singular
Spectrum Analysis are distinct methods that are used to decompose a sig-
nal into intrinsic modes. If a signal contains significant variability at multiple
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timescales, each mode may represent this scale-specific variability. In contrast to
CWT, decomposition does not rely on a specific type of function.

• Hilbert-transformation (HT) is a mathematical transformation of a signal
that allows to extract its instantaneous frequency and phase. It is related to the
Fourier transform. When studying an annual cycle, the instantaneous phase of a
signal reflects how much is cycle is shifted forwards and backwards for different
episodes in time.

• Independence of a signal is a common prerequisite for applying statistical anal-
yses and means that the studied signal does not exhibit any serial dependence,
implying an absence of trends, cycles or stochastic long-range dependence.

• Kolmogorov-Smirnov distancemeasures similarity between probability distri-
bution functions (PDF). It is used to test whether an empirical PDF is compatible
with a known reference distribution (e.g. a normal distribution) or if two empiri-
cally estimated PDFs could be generated from the same reference distribution. It
may yield spurious results if many extreme values are included in the empirical
sample.

• Least-squares based wavelet approach allows extraction of cycles through
time. Least-squares optimization aims at minimizing the squared deviation be-
tween a result and the optimal result. When applied to wavelets, this approach
can obtain a near-optimal wavelet representation of a cycle through time, despite
uneven sampling.

• Nonstationarity in a signal can indicate that an external process affects the
studied system such that it, e.g., results in a continuous change of the mean in
a time series. Other nonstationary signal variations include shifts in variance,
extreme events, or continuous variations in dominant cycles.

• Non-rectangular, smooth kernel function apply weights to neighboring ob-
served data in a time series. Often used in sliding-window analyses, e.g. moving
averages. A window function is chosen that decays smoothly towards the edges of
the time window of specified width h. Smooth kernel windows allow better tem-
poral localization of the covered time series segment, thereby limiting spurious
artefacts in spectral analysis compared to sliding window analyses. A popular
example are normal-weighed Gaussian kernel windows.

• Normality refers to the notion that the empirical estimate of a signal’s proba-
bility density function can be well approximated by a normal distribution.

• Quantiles are statistical values that characterize a PD. For empirical data a
quantile is a specific value that splits the sample of all values into one fraction p
that is smaller and one fraction 1− p that is larger than the quantile. This value
is referred to as the (empirical) p-quantile of the sample. Quantiles are often used
to report confidence intervals.

• Return periods are periods in which a time series returns to a similar or equiv-
alent magnitude it has visited before. In extreme value analysis, a certain ex-
tremely high (low) magnitude is specified as return level. The return time corre-
sponding to this return level denotes the time interval typically passed between
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two events above (below) this return level. It is estimated from a model descrip-
tion of the time series called generalized extreme value distribution.

• Seasonality indicators are standardized, quantified characterizations of one or
more seasonal features. They allow to enhance comparability between different
expressions of seasonality in distinct archives and help multi-proxy palaeoseason-
ality studies. Often focussed on quantifying a single feature of seasonal change.

9.2.1 Statistical tools

The broad spectrum of methods that can be subsumed under the term statistical tools ranges
from simple seasonal averaging to extreme value analysis and linear correlations. A suitable
combination of these tools can help to tackle some of the challenges related to seasonality
detection and move towards quantitative analysis.

Descriptive statistics. A first step towards quantifying seasonality is related to estimat-
ing statistical properties of a record’s frequency distribution. The frequencies can be found
by binning histograms or by estimating kernel density representations. For sufficiently long
records, histograms for distinct episodes or (non)overlapping time windows can give a statis-
tical estimate of temporal seasonality evolution [268]. Empirical distributions may then be
compared, e.g., between different study sites or time periods by means of suitable similarity
measure, such as Kolmogorov-Smirnov distance [269].

The estimation of statistical properties, like sample average, variance or quantiles, re-
veal tendencies (trends) if computed for time periods that characterize distinct seasons. For
instance, analyzing the δ18O signal of limpet shells, [270] detected a cooling trend in the
seasonal temperature for the Late Holocene from 3300–2500 BP to the Roman Warm Period
(2500–1600 BP) by means of varying seasonal averages. Computing statistical properties on
sliding windows can help tracking seasonality changes [271], and the use of basic statistics
can substantiate the interpretation of seasonality dynamics beyond qualitative analysis [272].
Testing seasonal amplitude or seasonal vs. non-seasonal patterns can also be carried out with
more sophisticated measures like conditional entropy. Entropy generally quantifies the ‘infor-
mativeness’ of a distribution (e.g., a subannual rainfall distribution), resulting in higher values
in case of more complex and more contrasted distributions [273]. Although specifically de-
signed statistical tests can characterize a record’s seasonality [274, 275, 276, 277], they remain
rarely applied because they often do not account for the full complexity in proxy time series.
Restrictions like independence or normality often pose significant limitations to the scope of
basic hypothesis tests. Yet, meaningful seasonality-related properties can be extracted by
combining multiple suitable tests and careful, case-specific definition of the null-hypothesis.
Bootstrapping techniques [278, 33] offer a parameter-free approach to compute confidence
limits by resampling a time series, without the need to make assumptions with respect to the
data.

Seasonality indicators are often based on basic statistical measures to make specific state-
ments about seasonality, e.g., to compare seasonality at different geographical locations [279]
or between modeled and empirical proxy data [280]. A popular definition is established by
the contrast of temperature or rainfall between seasons, expressed by differences or ratios
[268, 262] (‘seasonal amplitude’, Fig. 9.1C). For example, rainfall seasonality has been char-
acterised by dividing values for strong by such for low rainfall season [281], whereas — for
instance — the difference between maximum and minimum monthly coral Sr/Ca and δ18O
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Figure 9.1: Four features of seasonal variations with schematic illustrations on the left and examples
for their analysis on the right, i.e. periodicity, amplitude, timing and complexity. The δ13C variability
measured on stalagmite Yok-G from Yok Balum cave, Belize, offers very high resolution and a layer-
counted chronology [261]. The detrended record (using a Gaussian kernel filter) confines the analysis
to seasonal-scale changes (upper right panel). Annual periodicity is extracted via a Lomb-Scargle
periodogram (A) and studied over time by means of a continuous wavelet scale average around the
annual period (dark blue) and sliding Gaussian kernel window variance analysis (bright blue) (B).
Seasonal amplitude is computed as difference between annual maxima and minima (C) and an event
series of extreme dry/wet seasons is obtained by a peaks-over-threshold approach with a 99%-quantile
threshold (D). Timing of the wet season is extracted as the centroid of subannual patterns (upper
panel) and exceedance times of the average wet season δ13C value for each individual year (center
panel). Average recurrence times between δ13C values of distinct wet (dry) seasons are shown in the
bottom panel in blue (brown) (E). Seasonal patterns are encoded as ordinal patterns (l = 4). The blue
shading indicates their frequency in the (linear interpolated) record (F). Complexity of irregularly
sampled seasonal patterns are characterized by a recurrence plot/recurrence network, based on a
computation of the edit distance measure.
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values has been used to quantify seasonality in temperature the Caribbean at the end of the
last interglacial [262]. Figure 9.1C shows an example of variations in the seasonal amplitude
derived from δ13C variations measured at very high resolution on annually laminated sta-
lagmite Yok-G over the last 400 years. In this case, it is defined as the difference between
maximum and minimum proxy values for a given year and reflects seasonality of local rainfall.
Such a characterization is yet not able to define the timing of seasons, e.g., how the subannual
rainfall distribution changes from year to year (see Fig. 9.1E). If subannual resolution can be
assessed, seasonality indicators should always account for the different manifestations of sea-
sonality in the data and not be limited to a single seasonal property. For example, variable
approaches have been considered to quantify variability of seasonal timing [282]. Annually
laminated archives are particularly useful to extract information on seasonal timing, e.g., as
shown in Fig. 9.1E: here, timing of the wet season was extracted by deriving centroids (‘cen-
ter of mass’) from the subannual rainfall distributions and computing exceedance times of a
pre-defined value for each year (upper and center panel). Recurrence times between dry/wet
seasons of distinct years can also unveil intriguing information on the seasonal cycle (lower
panel).

The definition of a seasonality indicator benefits from such diverse approaches. [283] define
a seasonality index using multiple regression on fossil records and distinguish summer and
winter rainfall regimes in South Africa. [273] give a spatial characterization of distinct seasonal
rainfall regimes across the tropics based on how complex subannual rainfall distributions
are rendered in terms of their seasonal amplitude, timing and duration. Also indicators of
extreme weather have been used to characterize seasonality dynamics [265, 284, 264] (see
below). Consequent application of seasonality indicators across disciplines could improve
inter-comparability of independent proxy archives. Combining multiple methods enhances
the interpretational value of seasonality reconstructions.

Nonstationary extreme value analysis can characterize events found in palaeoclimate
proxy records, like floods, droughts, extreme precipitation, which can be season-specific
[285, 286]. Extreme events have significant repercussions for agricultural, social and ecological
dynamics [287], making their analysis particularly worthwhile when studied along with his-
torical proxy archives (see also chapter 3 in the original manuscript). As climate is inherently
nonstationary, suitable methods and implementations are employed [288], whereby two basic
approaches can be distinguished, i.e., the computation of block maxima/minima, and the so
called peak-over-threshold approach [285].

The block maxima/minima approach splits time series into consecutive blocks and com-
putes maxima and minima, e.g., seasonal maxima in proxy data. For instance, an extensive
analysis of 26 bivalve shell surfaces from the North Atlantic revealed that seasonal climatic
extremes had an impact on the evolution of Norse colonies during warm and cold periods
[289]. Time series with lower than seasonal resolution may be split into larger blocks. Since
droughts for example occur within a specific season, some trends regarding the intensity (i.e.,
number of extreme events) of that season can be estimated. Using estimates of extreme
value distribution (or their parameters) in a multi-proxy framework can give insights into
spatio-temporal recurrence of extreme climate conditions [287].

The peak-over-threshold approach analyses the frequency of amplitudes above or below a
threshold (often a quantile of the dataset). The frequency of threshold exceedances and return
periods are useful to understand the temporal variability in the occurrence of season-related
extreme conditions [290]. Fig. 9.1D shows series of season-specific extreme events extracted
from δ13C values based on the 99%-quantile of the full time series. The same approach
also helped to identify phases of stationary and nonstationary hydroclimatic changes in the
Western Mediterranean in a 2800 year long seasonally-resolved lake record [291]. Evaluating
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exceedance and recurrence probabilities of extreme precipitation events, this study found
that the modern frequency of heavy rainfall events is normal in a historical perspective, but
likely to increase under future warming conditions. If an event time series is suspected to
contain periodicities, these can be identified, e.g., by computing the Rayleigh measure: for
example, [292] test a time series characterized by Dansgaard–Oeschger cycles for periodicity
in a Bayesian framework which also helps evaluation of seasonal-scale dynamics. Individual
proxy time series can be embedded in larger proxy ensembles from different locations and
the co-occurrence of extreme events can be studied using synchronization measures between
events [293, 37] while accounting for proxy-specific uncertainties. Some proxy time series may
entail immediate implications linked to seasonal extreme weather, like droughts in Spain since
1506 C.E. that are identified in accounts of religious ceremonies [294].

Detrending and frequency filtering is a standard pre-processing step when focusing on
variability on single timescales in a proxy record [295]. After subtracting a trend from the
original time series, the effectiveness of this decomposition should be evaluated, e.g., using
spectral analysis and signal-to-noise ratio. As a basic approach, moving averages yield trends
of intrinsic variability of time series. However, the degree of smoothing is only controlled
by the applied window width. Importantly, moving averages can result in spurious trend
characterizations and their frequency response makes them vulnerable to erroneous high-
frequency variations [296]. Non-rectangular, smooth kernel functions are more appropriate
for sliding window statistics and have been used in an uncertainty-aware regression approach
to estimate trends in proxy time series. Local or global polynomial and spline regression can
be employed to extract trends of varying complexity and can also be combined with kernel
functions.

Another widely used technique is band-pass filtering, or applying a filter-bank to a time
series. For example, [297] low-pass filtered a stalagmite-based isotope record and extracted
seasonal strength that they were able to link to multi-decadal summer NAO variability. These
approaches should be used carefully, since band-pass filters are neither designed for irregu-
larly spaced or chronologically ‘uncertain’ data, nor accounting for above-mentioned intricacies
surrounding moving averages. Seasonal and Trend decomposition using LOESS (STL decom-
position) extracts smooth components of a time series by using local regression [298] which
has, for example, been applied to extract smooth long-term trends from palaeoclimate records
[24].

Mode decomposition approaches such as Singular Spectrum Analysis (SSA) and Empirical
Mode Decomposition (EMD) capture nonlinear oscillatory modes and trends [299, 300, 301].
Modifications for time series with missing data exist [302, 266] and some applications to
palaeoclimate data have been carried out [303]. These approaches offer the advantage that
they capture the intrinsic variability of the time series, can yield higher modes of variability,
and account for nonlinear oscillations. In summary, every detrending approach involves the
risk of eliminating variability so that the remainder is spuriously interpreted as a seasonal
component despite of its actual insignificance or that seasonal variability is unintentionally
eliminated.

Linear correlations are a popular tool in time series analysis to characterize relations be-
tween multiple time series or the serial dependence of a time series when the data is normally
distributed. Being limited to detecting linear relations, linear correlations do not account
for more complex or causal relationships often found in (palaeo)climate data. (Non-)linear
correlations can greatly improve significance of statements compared to simple visual inspec-
tion (‘wiggle-matching’), which is still popular [304]. With regard to seasonality extraction,
correlations are applied to confirm seasonal proxy interpretation [305, 306, 307], to test model
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validity between empirical and simulated seasonal signals [308], or studying lead-lag effects.
Multiple approaches allow the computation of correlations for irregularly sampled proxy time
series [198, 309]. Statistical testing for significant correlations can also be designed such that
it includes the dating uncertainties of a record [310]. Each of these is preferable against
aggregating or interpolating the time series on a regular time axis without accounting for
uncertainty since this introduces statistical biases that can hardly be controlled [204]. A
kernel-based approach [198] together with an estimate for confidence limits [311] can be con-
sidered a robust method to detect linear correlations in irregularly sampled records. Finally,
causality (directionality) between irregularly sampled, age uncertain proxy records can also
be tested based on measures that are conceptually inspired by Granger causality [267, 312].
These methods might help identify drivers of seasonally variable strength.

With multiple and spatially distributed proxies that are known to record the same cli-
matological parameter, seasonality can generally be detected beyond a regional scale and be
compared between single proxies [313]. In this context, spatio-temporal mode decomposition
approaches allow for extraction of a limited number of dominant modes that encompass a
certain part of the variability from such spatial data. The most popular approach in this
range is the Empirical Orthogonal Functions technique which is also frequently employed in
climate field reconstructions [314] and is effectively applied to instrumental climate data [315]
and proxy data with uncertainties [316]. Some applications show that the climate field per-
spective unveiled by mode decomposition approaches allows for detection of season-specific
reconstructions on (pan-)regional scales [317, 318, 319]. [320] reconstruct the May–September
precipitation field of China for the past 500 years using a dataset comprising 479 proxy
records and identify three dominant modes with different spatio-temporal dynamics by means
of ensemble empirical mode decomposition.

Regression techniques help to determine how multiple proxies or spatially distinct archives
depend on each other by regarding them as a set of a dependent and multiple independent
variables. They can be flexibly adapted to many problems and can help to detect seasonality.
If a suitable measure for seasonality can be established, a linear regression can be computed to
quantify the dependence of seasonality on the variability at other timescales or links to other
proxy records. For example, [268] employed a linear regression on a multi-proxy, multi-site
coral and mollusc dataset while accounting for uncertainties. Contrasting standard assump-
tions presumed in PMIP3 models, they uncover a positive relation between ENSO variance
and seasonality. Linear regression is also used to validate proxy interpretation. For exam-
ple, [321] use uncertainty-aware linear regression against instrumental data to support their
interpretation of the chlorophyll content in a sediment core as proxy for regional summer
temperature.

Uncertainty propagation in statistical analysis significantly enhances confidence in ex-
tracted (seasonal) characteristics. Accounting for dating uncertainties is particularly impor-
tant when the significance of an annual period (see Sect. 9.2.2) or seasonal timing is evaluated.
Many frameworks allow for such a characterization of age uncertainty that can be propagated
through period estimation techniques for stalagmite proxy records, ranging from Bayesian
approaches [322, 323, 324, 325] to Monte Carlo sampling-based techniques [326, 36, 327].
Whenever seasonality in high resolution records is to be aligned with records from other lo-
cations that are characterised by different climatic conditions, integrating multiple proxies
with variable temporal resolution in presence of uncertainties arises as significant issue. [328]
combined multiple proxies to reconstruct temperature using a Bayesian hierarchical model, ac-
counting for uncertainty and coherently integrating multiple proxies despite distinct temporal
resolutions.
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9.2.2 Spectral analysis

Spectral analysis is a powerful tool to find seasonal cycles in temporally sufficiently resolved
proxy records, and to test their significance. Even if a record does not allow the detection
of annual or subannual cyclicities due to sparse temporal sampling, spectral analysis can
provide valuable insights into the modulation of signals related to seasons or longer periods
that can affect seasonal patterns, e.g., ENSO. Periodogram approaches are probably the most
popular technique to study which periods are present [329, 330, 331, 332, 333, 334]. Based
on the Fourier transform of the studied time series, regular periodogram-based methods are
somewhat limited: straight-forward application is only viable for constantly sampled records
without related uncertainty since irregular sampling intervals result in a loss of structure in
Fourier peaks [335, 336]. Intricacies like high-frequency noise, dating uncertainties, limited
record length, and measurement artefacts need to be considered when interpreting identified
periods (see below). In the following, methods that are designed to estimate periods in such
records are discussed. Subsequently, we give an overview of how this can be achieved in
presence of nonstationarity.

Period estimation techniques are of increasing interest in seasonality studies. Unfortu-
nately, no automated or optimal strategy for estimating periods in proxy records exists and
each method requires a systematic evaluation of significance.

A prominent method to estimate periods in unevenly sampled records with dating uncer-
tainties is the Lomb–Scargle (LS) periodogram [197, 337]. Similar to the classical periodogram,
it can be understood as a least squares fit of sinusoids at each frequency which uses a X 2–
expression to minimize the residuals. It can account for dating uncertainties by including
Gaussian errors around each proxy value [337]. Often the LS periodogram is applied together
with the estimation of AR(1)-spectra to assess significance (REDFIT, [338, 339]), although
the robustness of this approach has recently been questioned [340]. Figure 9.1A shows a LS
periodogram for the Yok-G δ13C record using the REDFIT algorithm to evaluate the signifi-
cance of the identified annual spectral peak. In order to integrate uncertainties, periodograms
can be computed for different realizations of an age-modelled proxy whereas each realization is
compatible with the dating uncertainties [341]. When tasked with detecting seasonal periods,
potential aliasing must be considered: if the sampling frequency of an irregularly sampled
record episodically falls below half the annual frequency, seasonality can no longer be reliably
extracted (Nyquist theorem). Specifying a frequency grid to prevent aliasing may thus be
impeded [33].

Although still relatively rare, spectral estimates are used in seasonality studies. For ex-
ample, [342] have reconstructed late Cretaceous annual cycles using high resolution isotope
and trace element records from fossil shells. Others studies have used LS periodograms to
relate wet/dry cycles in varved lake sediments to Indian summer monsoon changes even in
the absence of sub-annual resolution of the proxy record [331]. LS periodograms have also
helped to identify the influence of orbital forcing on seasonal strength [343]. To generalize
classical LS periodograms and improve frequency detection or significance testing, spectral
density can be combined with other methods [344, 345]. For highly resolved records, Welch
overlapping segment averaging [346] might be particularly useful, as smoother periodograms
can be estimated. Another approach that is based on a windowed representation of a time
series is the Multitaper method [347, 348]. Methods specifically designed to estimate periods
in irregularly sampled records furthermore include Gaussian kernel-based spectra [198], phase-
folding techniques and Bayesian approaches [349, 350, 351, 335]; depending on the specific
application, these are sometimes superior to classic methods.

In multiple proxy records, cross-spectral analysis allows identification of shared spectral
power within the same frequency band, similar to LS periodograms [352] or Gaussian kernel
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approaches [198]. Cross-power spectra have successfully been use to test the influence of solar
forcing on droughts [353], or to study Holocene rainfall seasonality [354].

Time-frequency (TF) analysis extends classic period estimation techniques and evalu-
ates the presence of periodicities through time [355]. As an arbitrarily accurate determination
of both frequency and time is impossible, respective methods need to offer a compromise. on-
tinuous Wavelet Transform (CWT) [356] does so while yielding a clear graphical output and
standardized significance testing [357]. It is efficient in retrieving low and high frequencies as
well as nonstationary features of a time series (such as frequency variations). Instantaneous
phase estimates can be made by the Hilbert-transformation (HT) of a time series. By track-
ing the mutual spectral power between multiple time series through time via cross-wavelet
or wavelet coherence analysis [358], significant periods of different intertwined processes can
also be extracted (e.g., from instrumental records [301, 359, 360]). The increasingly frequent
application of CWT on bivalves, speleothems, and tree rings highlights the popularity of this
method for seasonality studies [361, 362, 363, 364]. For instance, the authors of [364] support
their hypothesis that a strategically located speleothem reflects dry rather than monsoon sea-
son infiltration as an often overlooked interpretation by applying CWT to the proxy record.
Still, irregular sampling remains rarely addressed. Often, spline or polynomial interpolation
methods are used that are known to introduce artefacts, especially in the high-frequency
bands. Figure 9.1B displays variance in the annual band of a CWT (Wavelet scale average)
for the Yok-G stable isotope record (dark blue), whereby linear interpolation was used to reg-
ularize the time axis. In comparison, a Gaussian kernel variance estimate [198] with suitable
bandwidth that naturally accounts for irregular sampling is shown (bright blue), showcasing
how distinctiveness of the seasonal cycle can be tracked through time.

Several approaches have addressed a solution to account for irregular sampling in CWT:
Foster’s Morlet Weighted Wavelet Z-Transform method [365] has contributed to the defini-
tion of Wavelets for irregularly sampled astronomical time series. It has also found some
application in the palaeoclimate literature [366] whereas some studies take uncertainty into
account as well [367]. Using this method, [368] found evidence for seasonality changes in
varved sediments from Lake Holzmaar, including winter cooling, summer rainfall intensity,
and changes in season onsets/offsets during the 8.2 ka event. An extension to cross wavelet
analysis is available and was, e.g., employed to capture how spatial coherence of periodic com-
ponents in proxy time series is restructured throughout the Holocene by analysis of a global
multiproxy data set [369]. Inspired by the LS periodogram, a least-squares based wavelet
approach has also been put forward [370]. Another direction has been approached using pro-
jection methods where first applications remain to be carried out as of now [371]. Work on
related TF-analysis techniques has also partially been directed towards treatment of irregular
sampling [372]. Significance testing (see Sect. 9.2.3) can be applied by randomization of
wavelet coefficients, retaining wavelet-related properties of the underlying time series [373].
Finally, alternative techniques like Hilbert-Huang and Singular Spectrum Analysis remain
less frequently used in palaeoclimatological contexts, likely due to a more intricate math-
ematical background [299, 374, 301]. Effectiveness in application to both seasonal climate
data [375, 376] and palaeoclimate records [377] has been demonstrated, yielding performance
comparable to CWT analysis [377].

9.2.3 Nonlinear time series analysis

The fundamental processes that constitute seasonal proxy signals are often highly nonlin-
ear, comprising nonlinear feedbacks, non-Gaussian distributions and nonlinear interrelations.
For instance, abrupt transitions result from nonlinear threshold responses of interconnected
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climate subsystems [378]. Rather than representing simple sinusoidal signals, seasonal vari-
ability and cycles with higher periods in broadband records consist of nonlinear oscillations.
A comprehensive description of such systems requires application of well-established nonlin-
ear time series analysis methods. Several techniques allow to test time series for nonlinear
features [379]. If the seasonal signal in a proxy record is modulated by a range of frequencies,
we can test if nonlinear oscillations can adequately describe these dynamics [380]. Surrogate
testing is a powerful, non-parametric approach where ‘surrogate’ realizations of a time series
are generated to test for certain features, e.g., nonlinearity. An ensemble of random realiza-
tions mimics the scrutinized signal with respect to some of its specific features by preserving
them in a constrained randomization procedure [229]. For instance, simple random shuffling
can be performed with the goal of significance testing, either on the time series itself (with
the null-hypothesis of absent serial dependence) or on estimated phases to preserve power
spectral density (e.g. with the null-hypothesis of different TF characteristics) [381].

Nonlinear correlation measures are often better suited to study interdependencies be-
tween multiple records, like mutual information or event synchronization [198, 382, 110, 383],
rather than relying on linear correlations. Dynamic Time Warping (DTW) [384] helps in
estimating similarities between records of different length. For example, [385] use DTW to
demonstrate a significant correlation between the Mg/Ca record and water temperatures in
molluscs and highlight their importance as archives of seasonality. [386] employ a recurrence
plot based technique with the similar goal of matching unaligned rock magnetic data of two
different sediment cores.

Recurrence analysis is a very flexible technique and can be applied to irregularly sampled
and age-uncertain records [37, 50, 51]. Where seasonal changes can be linked to abrupt
transitions, their detection is often based on some measure of complexity or anomaly detection
[201, 387]. Recurrence plots stand out as a simple-to-implement albeit powerful tool [20],
as they cannot only detect rapid shifts, but can also estimate periods, provide information
on the underlying dynamics, and identify nonlinear relationships in multivariate data sets
[388, 389, 128, 110]. Figure 9.1G shows a recurrence plot based on the edit distance approach
proposed in [37] and illustrates the possibility to transform it into a complex (recurrence)
network.

Symbolic dynamics represents an additional means to detect abrupt shifts and charac-
terize recurring patterns in nonlinear time series. By encoding a time series as a sequence of
symbols (motifs or ‘words’), it is well applicable to data with relatively high levels of noise
and can deal with irregular or low sampled nonlinear time series [210, 209]. A possible choice
for such symbols are ordinal patterns as displayed in Fig. 9.1F: given a pattern length of 4, 24
distinct patterns can be distinguished and the computation of their frequency in the (linearly
interpolated) Yok-G δ13C record allows for statements on the seasonal-scale complexity.

Information theoretical methods exhibit yet another perspective on seasonality extrac-
tion, often facilitating estimation of periods in nonlinear time series that are noisy and ir-
regularly sampled [390, 387]. While many applications to irregularly sampled astronomical
records exist [391], palaeoclimate studies that often address similar objectives remain to be
carried out with such methods.

Complex time series networks (Fig. 9.1G) and (palaeo-)climate spatial networks [392]
can finally provide quantitative frameworks that improve confidence in the fidelity of proxy
records as reflectors of regional seasonality and its teleconnectivity [393, 223].
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9.2.4 Methodological challenges and strategies

Despite the availability of a range of tools, sole visual inspection of proxy records is still a
common strategy. It appears that many studies focus on the challenging task of reconstructing
climate variability from proxy evidence, thereby limiting their efforts of additional, more
complex, analyses.
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Many recent studies highlight the great potential of effective collaboration between re-
searchers from both the proxy and methodological domains. Innovation on both fronts -
proxy development and calibration, and statistical approaches to high-resolution irregularly
sampled data - is essential for accurate reconstruction of seasonal dynamics. We highlight
several challenges in this endeavor: (a) Shortness of records limits the applicability of
most standard time series analysis methods. (b) Uncertainties – both related to proxy
values and dating – need to be propagated in thorough statistical analyses; accounting for
uncertainties is vital for palaeoseasonality studies as they are often on the same order of mag-
nitude as the proxy value or sampling frequency. (c) Irregular sampling poses a major
challenge for extracting seasonal information. Only a few methods beyond spectral analysis
account for non-uniform sampling intervals. Statistical biases may dominate records resolved
at sub-annual timescale, especially when the number of samples per year undergoes significant
variations. (d) Signal-to-noise ratios are critical for highly-resolved proxy data as very few
archives record an unambiguous climate signal. Figure 9.2 summarizes how these challenges
can be approached when palaeoseasonality is targeted using numerical methods.

One suggestion which might facilitate methodological soundness of analyses and trans-
disciplinary collaboration, is supplementing innovative methods with well-documented and
easily accessible open-source software.

Including local seasonal records from different, and spatially dispersed, archives will im-
prove the understanding of regional climate dynamics, but only under the premise that uncer-
tainties at both, the data/results and the interpretational level are taken into consideration
[394]. Such scrutiny is feasible only if adequate assumptions and statistical methods are in
place. On the other hand, the application of transdisciplinary multi-archive and multi-proxy
approaches harbors enormous potential to refine seasonality detection across archives and en-
vironments; related phenomena often encompass a broad range of semi-stochastic phenomena
(see Box 3) [313].

Consequently, combining different archives in palaeoseasonality studies will encourage
more universal definitions of seasonality indicators that account for a broader set of ubiq-
uitous seasonal features (see Fig. 9.1). Variations in palaeoseasonality are best represented
by standardized indicators which consider more than one seasonal feature, are designed to
compare seasonality across archives, and are based on a mathematically sound definition that
effectively tackles above listed technical challenges.

9.3 Summary and outlook

9.3.1 Compositional make-up of climate seasonality

Seasonal changes in our environment are periodic and global, happening at the temporal scale
of human behavior. This, and the fact that seasonal dynamics are perceptible over human
live spans, makes the reconstruction of past changes in seasonality of paramount importance
for the study of past human-environment interactions.

The concept of seasonality is rooted in the annual march of the Earth around the Sun,
and the nonlinear response of the physical climate system (and human adaptation) to regular
changes in solar forcing. The regional and local expression of seasonal changes is always
a consequence of (semi-)stochastic internal feedbacks that are superimposed on predictable
external solar forcing. Accordingly, the range of annual temperature and precipitation changes
varies notably even along the same latitude. The most important factors modulating the
seasonal signal are continentality and altitude, both (relatively) constant over longer time
scales, and large-scale atmospheric circulation patterns that vary periodically but not regularly
(semi-stochastically). Further, archive-specific sensitivity and sampling approaches have the
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potential to modulate proxy signals.

9.3.2 Relevance of trans- and multidisciplinary approaches

Recent years revealed the importance of close collaboration between disciplines, including
(palaeo-)climatology, (palaeo-)ecology, history, physics, archaeology, and anthropology, when
tackling pressing questions in Earth Sciences. Finding a common language in such trans-
disciplinary studies is a vital, but often challenging, prerequisite for communicating results
and ideas across scientific communities, and the public. Similarly, acknowledging archive-
and proxy-specific limitations and analytical uncertainties allows for assessing data quality
and provides robust input for statistical approaches, which often reveal and quantify hidden
information better than the naked eye. Choosing adequate statistical method(s) is challeng-
ing, and providing scrupulous interpretations and relevant outcomes calls for informed, close
collaboration between palaeoenvironmental scientists and statisticians.

Recurring, archive-independent challenges relate to a) precise high-resolution sampling of
often fragile, not linearly-grown or -accumulated, and size-limited material to capture the full
range of seasonal variability, b) establishing the environment-proxy relationship that is con-
stant over time and related to only one variable (e.g., only temperature, or only precipitation),
c) quantifying seasonal change in terms of physical units (°C, mm, number of days, etc.).

Continuous instrumental developments, and detailed monitoring and calibration efforts
allow for addressing these challenges at least at a local scale. At regional or global scales, the
most inconvenient issue is a deficiency of long, radiometrically-dated and seasonally-resolved
records whose spatial and temporal coverage permits broader-scale inferences. The compila-
tion and compare & contrast approach across different archives is essential in overcoming this
inconvenience. At the same time a stringent quality assessment of each individual archive
in its own merit and with its own limitations – age uncertainty, recorded season, qualitative
or quantitative information and analytical error propagation – is critical. Simple, or more
sophisticated statistical methods help in extracting the seasonal signal, assuring data quality,
and juxtaposing seasonally resolved data in their own domain(s).

9.3.3 Proposed framework

Misconceptions and challenges in interpreting true or purported seasonal signals often origi-
nate from integrating data that were not/poorly quality-checked, or produced using different
scientific practices and uncertainty propagation strategies. Below, we propose a framework
that might be beneficial when targeting seasonal signals in palaeoenvironmental archives:

• examine the archive(s) critically, including sampling resolution, age control (both layer-
counted and, if available, radiometric), proxy sensitivity or bias towards a certain season,
and adapt the most adequate sampling strategy.

• try to identify climate variable (temperature, precipitation) that has changed, and the
direction of this change (increase or decrease in annual amplitude) rather than refer to
‘change in seasonality’. Note that if the sampling is not continuous or sequential, but
‘bulk’, a change in baseline might appear as a ‘change in amplitude’.

• keep in mind that environmental archives only rarely can inform on the timing and
duration of seasonal precipitation. Over longer timescales, the amount of precipitation
might stay constant but its distribution may change.

• compare the direction of the documented change(s) with the one predicted by insolation
forcing. Discrepancies in the expected direction of change might reveal more details and
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a deeper insight into environmental evolution and response to insolation forcing than a
simple admission that such a change has happened.

• in some cases, particularly when talking about rainfall or the combination of tempera-
ture and rainfall changes, several scenarios might be possible. Clearly articulating and
justifying these (often contradictory) scenarios provides an explicit step in disentangling
external forcing factors and internal feedbacks, and help completing the mosaic of past
environments and human societies.

• while comparing seasonal signals from different archives keep in mind individual archive-
specific limitations.

The transparency of communicating results gains in importance in trans-disciplinary
projects. Different environments, and human societies within them, might react differently
to the same forcing, the former depending on their natural architecture, the latter on their
societal structure, vulnerability, conditioning, and resilience. Yet, admitting the heterogeneity
of possible responses is as important as identifying the factors dictating this heterogeneity.
A careful approach involving quality-controlled data and in-depth consideration of internal
feedbacks operating in a given natural or anthropogenic environment will provide profound
insights into how regional and local conditions adjusted to external forcing. Such insights are
of critical importance as they inform the predictions of the effects of anthropogenic climate
change on local to regional environments.
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Abstract

A better understanding of ENSO dynamics is essential for modelling future
climate change and its impacts on the ecosystems and lives of the inhabitants
of the tropical Pacific islands, which face considerable environmental risk in the
coming decades. This study reconstructs past ENSO dynamics using a multi-
proxy approach applied to a stalagmite from Niue Island that covers the period
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6.4-5.4 ka BP. δ18O and δ13C, trace-element concentrations and image analysis
are linked to an age-depth model constrained by eight U/Th dates and a com-
plete lamina count. Principal component analysis of the proxy time series reveals
hydrological changes at seasonal scale that are expressed in differential stalag-
mite lamina growth and geochemical characteristics. Increased concentrations of
host-rock derived elements (Mg/Ca and U/Ca) and higher δ18O and δ13C val-
ues are observed in the dark, dense calcite laminae that are deposited during the
dry season, whereas during the wet season higher concentrations of soil derived
elements (Zn/Ca, Mn/Ca) and higher δ18O and δ13C values are found in pale,
porous calcite laminae. Greyscale intensity values measured along the stalagmite
growth axis are used here as an indicator of colour and density changes of the
alternating laminae, allowing for the construction of a further seasonality record
which expresses the contrast between wet and dry seasons. The multi-proxy record
from Niue shows seasonal cycles associated with hydrological changes controlled
by the South Pacific convergence zone. Wavelet analysis of the greyscale record
reveals that ENSO was continuously active during the depositional period, with
two weaker intervals at 6-5.9 and 5.6-5.5 ka BP. ENSO activity is also observed
in the seasonality record, but muted periods are more prolonged, and intervals of
significant ENSO-band power are more episodic. Recurrence analysis of nonlinear
behaviour shows the influence that ENSO activity exerts on seasonality patterns
and allows us to quantify the predictability of the climate system. Our results sug-
gest that recurrence in the seasonal cycle of rainfall was reduced during periods
when ENSO activity was stronger, pushing the system towards stochastic condi-
tions. The tipping points from stochastic to predictable conditions may represent
transitions in the Tropical Pacific mean state.

10.1 Introduction

Tropical Pacific dynamics play a key role in global climate. The South Pacific Convergence
Zone (SPCZ) is the major climate feature that channels convective rainfall in the south Pacific
at a seasonal scale [395]. At interannual scales, the coupled ocean-atmosphere phenomenon El
Nino-Southern Oscillation (ENSO) controls climate variability [396]. These climate features
modulate rainfall amount as well as the frequency and intensity of extreme climate events
(e.g., tropical cyclones and droughts), and therefore these modes of climate variability greatly
impact the ecosystems and the lives of the inhabitants of Pacific islands and the east and
west coasts of the Pacific basin [397]. A range of projections resulting from climate models
have forecasted the high vulnerability of the tropical Pacific islands to the impacts of anthro-
pogenically driven warming [397]. Accurately dated, high-resolution and long-term records
of climate and ENSO variability are essential for evaluating the robustness of climate models
and of forecasts of regional and global climate changes [398, 399, 268]

Diverse studies across the Pacific have reconstructed ENSO during the Holocene using climatic
archives such as marine sediments [400], corals [401, 402], clastic lake sediments [403, 404],
and speleothems [405]. The resolution of these records ranges from multi-decadal to monthly,
but they often represent discrete points in time rather than continuous intervals. Several
studies from the Pacific have concluded that ENSO variability was reduced in terms of in-
tensity and frequency during the mid-Holocene. These include eastern Pacific records such
as lake sediments from Ecuador and the Galapagos [403, 406] and foraminifera from deep-sea
sediments [407], as well as western Pacific records such as pollen from Australasia [408] and
corals from Papua New Guinea [402]. According to a numerical model [409], this reduction
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in ENSO strength during the mid-Holocene (3-5 ka) was a response to orbitally driven sea-
sonality changes. Other authors whose records showed a reduction in ENSO variance during
the mid-Holocene suggested that the driver was a change in the equatorial Pacific mean state
[405, 401, 410].

Speleothems (secondary cave carbonates) offer a variety of environmentally sensitive proxy
records and accurate age control. They have near-global distribution [411] and temporal res-
olution ranging from intra-seasonal [261] to orbital [412]. Stable oxygen isotope ratios (δ18O)
of speleothems can provide information about regional moisture (e.g., rainfall amount and
water vapor source) [413, 414], whereas the interaction of soil CO2 and local infiltration pro-
cesses inherent to the karst system are reflected by variations in stable carbon isotopes (δ13C)
[415, 416] and trace-element ratios (e.g., Mg/Ca and Sr/Ca) [411]. Less-used indicators of
environmental conditions include the variations in physical features of speleothems such as
density, colour, and lamina thickness, which are a function of hydrology, karst conditions,
drip rate, and drip water chemistry [417]. These processes are reflected in the speleothem
lamina growth rate and seasonal depositional changes (dry/wet) and can be observed by using
high resolution imaging [418]. Accounting for these features can improve the interpretation
of geochemical data.

Here we present a seasonally resolved mid-Holocene multi-proxy stalagmite record from Niue
Island in the southwestern Pacific. This multi-proxy approach integrates an array of stable
isotopes, trace elements, and physical properties measurements. The research objectives of
this study include a) characterization of the nature of the speleothem laminae; b) identifica-
tion of the environmental controls on the physical and geochemical proxies; c) establishing
a chronology for the proxy records; d) extraction the fundamental periodicities from the ob-
served proxy variability; and e) exploration of interactions between and possible controls on
the main modes of climate variability in the region. We used traditional statistical analysis
such as principal component analysis and wavelet analysis to extract the governing mech-
anisms of the climatic variability and advanced statistical tools such as recurrence plots to
identify predictable, recurring features within the time series and detect transitions in climate
system dynamics.

We present the first continuous, sub-annually resolved record of past hydrological changes
associated withthe south/north movements of the SPCZ between 6.4 ka and 5.4 ka BP and
show that ENSO was active during this period. In addition, these findings provide evidence
on the interaction of ENSO and rainfall seasonality in the tropical Pacific and insights into
the effect of El Niño and La Niña events on the predictability of the climate system.

10.2 Geographic and climatic setting

Niue Island is a carbonate edifice located in the southwestern tropical Pacific (19◦ 03 S /
169◦ 55 W) (Fig. 10.1). The island reaches a maximum altitude of ca. 60 m a.s.l. and
hosts numerous caves, particularly in the Mutulau reefal limestone and the coastal cliffs [419].
The natural vegetation cover is characterized by dense tropical forest. Located ca. 490 km
north of the Tropic of Capricorn, Niue is characterised by a tropical (Af) climate [420], with
a mean annual air temperature of 24◦C (Tmin = 20◦C in July, Tmin = 29◦C in January).
Niue receives ca. 2000 mm of rainfall per year, mostly from November to April, while the
period from May to October is cooler and relatively dry [397]. Rainfall variability is controlled
by the seasonal movement of the South Pacific Convergence Zone (SPCZ) (Fig. 10.1). The
southward-positioned SPCZ brings convective rainfall during the warm wet season, while
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Figure 10.1: Austral summer (December-February) daily precipitation across the Pacific. Position
of the South Pacific Convergence Zone (yellow lines) during two strong ENSO events: a) El Niño 1998;
and b) La Niña 2011. The yellow diamond indicates the location of Niue Island. NOAA Climate Data
Record (CDR) of GPCP Satellite-Gauge Combined Precipitation.

the northward shift of the SPCZ results in cool and drier conditions. Due to its location
near the southwestern margin of the SPCZ, Niue is sensitive to sea surface temperature and
atmospheric circulation changes linked to interannual El Niño-Southern Oscillation (ENSO)
dynamics [421]. El Niño events are associated with a northeastward displacement of the SPCZ
and hence drier conditions in Niue, particularly during the normally wet austral summer
season (Fig. 10.1a). During La Niña events, the SPCZ inclination shifts ca. 1-3◦ towards the
south-east resulting in increased rainfall in Niue (Fig. 10.1b) [395, 422]. Between 1969 and
2010, at least one or two TCs have hit Niue each wet season [397]. During El Niño years,
above-average sea surface temperatures (SSTs) in the central and western equatorial Pacific
enforce positive cyclonic vorticity [423], resulting in an increase of frequency of TCs [397].

10.3 Material and Methods

10.3.1 Stalagmite C132

Stalagmite C132 was collected from Mataga Cave, between the villages of Tuapa and Hio on
the West coast of Niue Island. The stalagmite was found broken, with the top segment of the
stalagmite missing, in a small grotto at the end of the cave. The collected segment is 43.4 cm
long (Fig. 10.2) with visible layers of milky-white/pale porous calcite (PPC) and dark dense
calcite (DDC) [424].
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10.3.2 Sampling for geochemical analyses

Powder samples were obtained for geochemical analyses using a Sherline microdrill with a
1 mm diameter tungsten-carbide drill and a digital read-out. Eleven powder samples of
∼ 200 mg were collected for U/Th dating. Stable isotope samples were drilled every 3 mm
(low-resolution, n = 144), and milled every 50 µm (high-resolution, n = 5102) following the
procedure outlined in [199]. Fig. 10.2 shows the sampling tracks.

10.3.3 U-Th dating

The U-Th ages were determined using a Nu Instruments Plasma MC-ICP-MS at the University
of Melbourne. Sample powders were dissolved and equilibrated with a 229Th/233U mixed
spike solution before U and Th were separated from the matrix using Eichrom TRU-Spec
resin. The purified U/Th fraction was introduced to the MC-ICP-MS via a Cetac Aridus
membrane desolvator, giving total system efficiencies of ca. 0.3% for both elements. See [425]
for detailed description of the protocol.

10.3.4 Greyscale analysis

Greyscale values were extracted from high resolution (2400 dpi) scans of the stalagmite surface
along the growth axis using the image analysis software ImageJ version 1.51k (https://
imagej.nih.gov/ij/index.html) [426]. This analysis provides a record of intensity values
between zero (black) and 255 (white), with a spatial resolution of 10.6 µm.

10.3.5 Age-depth modelling

The age-depth model of stalagmite C132 was initially constrained using eight U-Th ages as
input to the COPRA age-modelling software [36]. This U-series-based age-depth model was
then further constrained by comparison with the layer counting chronology. The series of
counted layers vs. stalagmite depth was anchored to the depth of the topmost U/Th date.
This layer chronology fell within the 2σ-uncertainties of the older U/Th dates. This procedure
leaves an overall error margin of ±20 years. The final age model is the median record based
on ensembles of 2000 Monte Carlo age-depth realisations derived using the COPRA routine
[36].

10.3.6 Speleothem oxygen and carbon isotope analyses

Every fourth high-resolution sample was analysed, resulting in an actual resolution of 200 µm.
First set (n = 607) of samples covering the depth ranges 4-16.25 mm and 46.85-92.26 mm was
measured at Ruhr University Bochum. Between 90 and 110 µg of sample powder was acidi-
fied with orthophosphoric acid at 70◦C and reacted for 60 min before analysis. The released
CO2 gas was dried and measured in continuous flow mode on a ThermoFisher MAT253 gas
source isotope ratio mass spectrometer coupled to a GasBench II (ThermoScientific, Bremen,
Germany). Results are presented in delta notation with δ-values reported as parts per thou-
sand (%� ) relative to the international Vienna PeeDee Belemnite (VPDB) standard. Results
are corrected using a two-point calibration using the international standards IAEA-603 and
NBS18. The long-term 1σ reproducibility of the internal standard is 0.06 %� for δ13C and
0.09 %� for δ18O. A second set (n = 740) of isotope measurements, covering the depth ranges
of 92.35-205.26 mm and 16.84-47.16 mm, was performed at ETH Zurich using a ThermoFinni-
gan Delta V Plus isotope ratio mass spectrometer coupled to a ThermoScientific Gasbench
II. See technical details in the supplementary material E.
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10.3.7 Isotope analysis of rain and dripwater

Rain and drip water samples from four Niue caves were collected in a fieldwork campaign in
February 2020. The oxygen and hydrogen isotope (δ18O and δD) composition of samples was
measured using cavity ring-down spectroscopy (CRDS; [427]) at the Universidad de Almería,
Spain. The CRDS device wasinterfaced with an A0211 high-precision vaporiser. The internal
standards were JRW, BOTTY and SPIT. The results were normalised to the VSMOW (Vi-
enna Standard Mean Ocean Water). Typical long-term instrumental precisions (±1σ) were
±0.06%� for δ18O and ±0.06%� for δD, based on the repeated analysis of an internal standard
every 6 samples.

Table 10.1: Results of the 230Th/U dating.

10.3.8 Trace element analysis

Concentrations of a suite of 15 elements were measured along the growth axis of C132, fol-
lowing the greyscale track. Measurements were performed at the University of Waikato (New
Zealand) by laser ablation-inductively coupled mass spectrometry (LA-ICP-MS) using a RES-
Olution SE 193 nm excimer laser ablation system equipped with a Laurin Technic S155 laser
ablation cell coupled to an Agilent 8900 QQQ-ICP-MS. See technical specifications at the
supplementary material E.
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Figure 10.2: Age-depth model of the Holocene section of stalagmite C132. Blue circles indicate
230Th/U-ages with their ±2◦ errors. The purple line indicates the layer counting profile. The image of
sample C132 shows the U-Th sampling locations (black bars), LA-ICP-MS tracks and greyscale (black
lines), the sampling trench for high-resolution stable isotopes (green shading), and low-resolution stable
isotope sample locations (dots).

10.4 Results

10.4.1 U-Th dating and age modelling

The age model of stalagmite C132 is confined by eight U/Th ages. Two out of the eleven
U/Th measurements were discarded due to large uncertainties, one due to likely hiatus (Table
10.1). The latter (69.3 ka) in the lowermost part of the stalagmite, was measured on a sample
taken below a visible crystal fabric change (Fig. 10.2). Radiometric dating indicates that the
stalagmite grew continuously from 6.428 to 5.411 ka BP (with present referring to 1950 CE).
The Holocene portion of the record is the focus here. The Holocene U-series chronology is
further refined by layer-counting based on greyscale data. The layer count indicates that the
Holocene part of the record spans 1019 years.

10.4.2 Greyscale record

The greyscale intensity values vary between 93.5 and 273.3 (Fig. 10.3a), with a mean of
179.4. Pale porous calcite (PPC) laminae have higher values than adjacent dark dense calcite
(DDC) laminae. The greyscale record has the highest resolution of all C132 proxy records and
exhibits variability from seasonal to multi-decadal time scales. The growth rate record reveals
a notable change in average growth rate at 6.1 ka BP, with faster growth prior to 6.1 ka BP
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(0.57 mm/yr), and slowergrowth (0.34 mm/yr) between 6.1 ka and 5.4 ka BP (Fig. 10.3f).

10.4.3 Oxygen and carbon isotopes record

In total, 144 samples were measured at interannual resolution (6.39-6.002 ka BP), and 1347
samples were measured at sub-annual resolution (6.002-5.422 ka BP). Over the analysed inter-
val, δ18O varied between -7.19%� and -3.47%� , with a mean of -5.5%� (Fig. 10.3d). The δ13C
values ranged from -13.74%� to -6.5%� , with a mean of -9.62%� (Fig. 10.3e). The δ18O and
δ13C time series record sub-annual to centennial-scale changes. The δ18O and δ13C values are
positively correlated (r = 0.58, p < 0.001), with both isotope systems varying synchronously
throughout the record (suppl. Fig. E.1). The stable isotope values fluctuate within ±1.5σ of
the mean. The highest δ18O values of the record occur between 5.50 and 5.46 ka BP, where
a decadal-scale positive excursion of ca. 1.3%� is followed by a rapid decrease towards the
mean (Fig. 10.5e). A similar trend is observed in δ13C, although in this case the values are
much closer to the mean.

10.4.4 Trace elements records

High-resolution LA-ICP-MS analysis showed distinct variations in a suite of 14 elements.
The results are reported as metal/Ca ratios and summarised in Table 10.2. This section
focuses on variations of Mg and Zn, which represent contributions from the host rock and the
soil, respectively (Fig. 10.3b and c) [419, 428]. The resolution of the LA-ICP-MS analyses
allows the detection of sub-annual variability in the trace element record (Tables 3 and 4).
Mg/Ca concentrations vary between 2.95 and 36.07 mmol/mol with a mean value of 11.92
mmol/mol (Fig. 10.3b). The Zn/Ca ratios ranges from 0.1 to 420 µmol/mol with a mean
value of 17.95 µmol/mol (Fig. 10.3c). Higher Zn/Ca values generally coincide with PPC
laminae (Fig. 10.4e). Technical difficulties resulted in a gap in the trace element data at
276.225-281.662 mm (6.219-6.213 ka BP).

Table 10.2: Descriptive statistics for the trace element ratios determined along the growth axis of
stalagmite C132.
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Figure 10.3: Proxy time series obtained from stalagmite C132. Note the different temporal res-
olutions achieved for carbon (d) and oxygen (e) isotope analyses for the periods 6.002-5.422 ka BP
(high-resolution) and 6.39-6.002 ka BP (low-resolution).
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10.5 Statistical analysis

10.5.1 Principal component analysis (PCA)

Principal component analysis (PCA) allows the identification of associations which might be
interpreted as common forcing in the proxy time series.
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Figure 10.4: Detailed view of a 10 mm section of stalagmite C132 with proxy records superimposed
on the stalagmite image, showing the relationship of the proxies with the alternation between pale
porous calcite (PPC) and dark dense calcite (DDC) laminae. For the explanation of the arrows on
the right-hand side, see the discussion section.

We carried out several PCAs on different groupings of datasets derived from stalagmite
C132. All records included in each PCA were standardised to the lowest resolution in the group
by averaging the data corresponding to each lowest-resolution time interval to accommodate
the differences in temporal resolution (Table 10.3). Table 10.4 summarises the different PCA
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groupings and temporal resolution. Data preparation prior to principal component analyses
included imputing missing values using the iterative PCA algorithm from the missMDA
library in the software R and log transformation of the data series. PCAs were performed in
R software using the PCAshiny algorithm from the Factorshiny (v.2.2) package.

Three PCAs were performed: PCA-1, PCA-2, and PCA-3 (Table 10.4). Technical difficul-
ties resulted in a gap in the trace element data at 276.225-281.662 mm (6.219-6.213 kaBP).
Below this gap, several of the trace element series have a substantially higher variance com-
pared to those above the gap. To avoid potential instrumental biasing, the trace element time
series data was split into two sets and PCAs were performed separately on the uppermost
and lowermost sections (PCA-1a and PCA-1b). PCA-3, including only trace elements, is
presented in suppl. Fig. E.2. Fig. 10.5 displays the PCA results, where each dot signifies
the loading of the respective record onto principal components (PCs) 1 and 2. For PCA-1a,
the first two principal components (PCs) explain 56.48% of the variance in the original data
(Fig. 10.5a). Zn, Mn, Fe, Pb, and Al show a strong positive correlation with PC1 (loadings >
0.7) and a moderately positive correlation with PC2 (loadings < 0.6). Mg, U, Sr, and P define
a group which is moderately negatively correlated with PC2 (loadings < 0.6) and weakly to
moderately positively correlated with PC1 (loadings < 0.5).

Table 10.3: Resolution and time span of the C132 proxy records.

Table 10.4: PCA groups and time span. GS = greyscale, GR = growth rate.

The first two components of PCA-1b explain 61.64% of the total variance and show similar
associations of elements (with Br added to the second group) and similar correlations to
the two PCs as in PCA-1a. PCA-2 produces similar groupings to PCAs 1a and 1b but
also indicates a third group that includes Ba, Na, and Br (green circle, Fig. 10.5c) and is
moderately positively correlated to both PC1 and PC2 (loadings < 0.6).The stable isotopes
do not contribute to PC1 and PC2; instead, they present high loadings for PC4. In both PCA-
1 and PCA-2 the greyscale record is projected onto the lower left quadrant of the coordinate
system spanned by the PCs, indicating an inverse relationship to the group of elements Sr, Mg,
U, and P. Full-resolution PCAs of trace element data (PCA-3a and b) were also performed
with similar results (suppl. Fig. E.2).
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10.5.2 Seasonality determination

For the study of mid-Holocene rainfall seasonality, we performed a minor recalibration on the
monthly-scale dating of the greyscale record. Based on the fact that mean rainfall is higher
during the wet season (November to April) than in the dry season (May to October), the
greyscale record was anchored on its time axis such that wet season averages are higher than
dry season averages in the maximum possible number of years. This yielded a (constant) shift
of +5 months. Rainfall seasonality was afterwards calculated for each year as the difference
between average greyscale values in the wet and the dry season (Fig. 10.7a/b and suppl.
Fig. E.3).

10.5.3 Spectral analysis

To investigate which processes drive the variability recorded in the C132 dataset, we ap-
plied the biwavelet package in R to perform wavelet power spectrum analyses using Morlet
wavelets [356] on the suite of annually resolved proxy data, the seasonality record and the
two first principal components (PCs) derived from PCA-2.
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Figure 10.5: Results of the principal component analyses. a) PCA-1a, b) PCA-1b, c) PCA-2. All
PCAs reveal two prominent groups: group 1 (blue shaded area) is formed by Zn, Mn, Fe, Pb, and Al,
and group 2 (orange shaded area) that includes Sr, Mg, U, and P (except for PCA-2 where P is not
included in this group). For all PCAs the data were pre-treated assuming normal distributions after
a log-transformation (see Section 10.5.1). For details of the interval and resolution of the datasets for
each PCA, see Table 10.4. Note that in PCA-1a (a), the algorithm assigned the opposite sign to the
PC2 axis compared to PCA-1b and PCA-2. This axis is thus reversed for easier comparison.

The wavelet spectrum of the greyscale record displays significant power (>95% confidence
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Figure 10.6: Wavelet spectral analysis of C132. a) Annually resolved greyscale record and b)
Constructed seasonality record. Significant (> 95%) power is delineated by black contours. The
ENSO band (2-8 years) is outlined in red.

level) in the ENSO band (2 to 8 years) continuously through the recorded period (Fig. 10.7a).
The seasonality record exhibits episodic ENSO-scale variability with two periods of muted
ENSO activity, the first from 6030 to 5900 y BP and the second from 5600 to 5500 (Fig. 10.7b).
The wavelet spectra of PC1 and PC2 of PCA-2 show irregular patches of significant period-
icities associated with ENSO-band variability at 6000-5950, 5700-5650, and 5500-5400 years
BP (suppl. Fig. E.4).

10.5.4 Recurrence analysis

Recurrence analysis is used to test if a time series revisits formerly visited states in a regular or
erratic fashion. The predictability of rainfall seasonality was computed based on a recurrence
plot (RP) analysis [20, 24]. RPs with a fixed recurrence rate of 15% were computed on 200-
year sliding windows after embedding each time series segment with an embedding dimension
of 3 and an embedding delay of 2; the selection of these parameters is explained in suppl.
Fig. E.5.
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10.6 Discussion

10.6.1 Interpretation of environmental proxies

Greyscale values

The greyscale variability of stalagmite C132 is a measure of the alternation between PPC
and DDC laminae, which are related to crystal growth and matrix-density variations. Higher
greyscale values represent porous crystal growth arrangements, whereas lower greyscale values
reflect denser calcite crystal patterns (Fig. 10.4a). Factors such as drip water saturation, drip
water pH, drip rate, and CO2 degassing promoted by cave ventilation govern the formation
of distinctive crystal fabrics depending on the seasonal environment [429, 430]. We interpret
the variation in crystal growth style (and thus greyscale values) as a function of the dissolved
carbonate supply. During the wet season, the supply of drip water (and with it dissolved
inorganic carbon, DIC) is high, allowing for rapid CaCO3 deposition. In the dry season,
water supply is more restricted, drip rates are lower, and thinner, denser, and darker carbonate
laminae form. Consequently, as previously observed in other coastal Niuean caves [419, 421],
long crystals form in the wet season and micritic carbonate (i.e., micro-crystalline, nearly
glassy) layers form during the dry season. We suggest that the mechanism that promotes
the preservation of seasonal signals in the C132 proxy records is the seasonal cycle in drip
water supersaturation, leading to sub-annual changes in stalagmite growth rate. These factors
produce seasonal variation in geochemical proxyrecords in fast-growing speleothems [431, 424].

Oxygen isotope values of rain, drip water and speleothem calcite

We attribute the sub-annual δ18O variability observed in the C132 record to changes in amount
of rainfall delivered to Niue Island over the depositional period. Due to the small size of the
island and its geographical location, the source of Niue’s rainfall is entirely oceanic. The
summerly southward movement of the SPCZ and tropical cyclones bring strong vertical con-
vective rainfall with a depleted δ18O signature (see for example suppl. Fig. E.6). Rain
and drip water from Niue Island fall on the South Pacific Meteoric Water Line (SPMWL:
δD = 7.7 · δ18O + 9.3, r2 = 0.96) derived from Samoa and Rarotonga rainfall databases [432],
as well as on the GMWL (suppl. Fig. E.5). These results are consistent with monitoring
studies of two other Niuean caves that suggest seasonal variability in the isotopic composition
of drip waters, with higher δ18O values in the dry season and lower δ18O values during the
wet season [428, 421, 433]. Changes in stalagmite δ18O thus provide information about the
location of the SPCZ and/or the prevalence of tropical cyclones in the Central Pacific during
the mid-Holocene. Lower stalagmite δ18O values are found in the PPC laminae indicating the
intensity of the wet season and higher δ18O values found in the DDC that represent the dry
season.

Carbon isotopes of speleothem calcite

The δ13C values of stalagmite C132 have a similar range to those of a stalagmite record from
the nearby Avaiki Cave [428]. In both records, the δ13C values are lower in PPC laminae
deposited during the wet season and higher in the DDC laminae formed during the dry
season (Fig. 10.4f). As with the greyscale changes discussed above, the variations in the
isotopic composition of the alternating laminae can be explained by seasonal changes in water
and dissolved inorganic carbon (DIC) supply. It has been shown that δ13C values in drip
waters in Niue caves represent a mixed signal from both soil CO2(−29.4 ± 0.09%� ; 91%)
and carbonate bedrock (−0.4 ± 0.09%� ; 9 %) [419]. The δ13C variations in C132 are likely
caused by changes in the proportions of these two carbon sources. Lower drip rates during
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the dry season allow for prolonged CO2 degassing from the dripping water, enhancing kinetic
fractionation and resulting in higher speleothem δ13C values. During the wet season, increased
moisture supply promotes microbial and vegetation activity in the soil [434, 416], decreasing
the pH of the infiltrating water and intensifies water-rock interaction [435] while reducing
prior calcite precipitation (PCP), resulting in lower speleothem δ13C values.

Trace elements

A series of PCAs were used to investigate the processes controlling trace element variations
in stalagmite C132 at annual and sub-annual scale. All PCAs consistently reveal two main
groups based on their loadings on PC1 and PC2: Zn, Fe, Cu, Pb, Al, and Mn (Group 1)
and U, Sr, Mg, and P (Group 2) (Fig. 10.5). Group 1 includes the soil-derived elements
which are transported into the epikarst via high infiltration events [436, 437, 438]. Group 2
comprises elements that are derived from the host-rock as well as variable inputs of marine
aerosol. This includes Mg and Sr, which are incorporated into the speleothem calcite by water-
rock interaction (WRI) and/or modified by prior calcite precipitation (PCP) and are often
interpreted as a proxy for local hydrology, with high Mg and Sr indicating drier conditions
[417]. It is likely that in this cave system, the incorporation of U and P into the calcite
follows a similar mechanism as observed for Mg, i.e., substitution for CO32-in the crystal
lattice. Dry periods induce less host-rock dissolution, leading to lower CO32-activity and
increased U and P partitioning [439], allowing higher incorporation of U and P in the slower-
growing DDC laminae. In contrast, supersaturation in the wet season promotes a higher
growth rate through enhanced degassing and increased competition for U and P ions to replace
carbonate in the lattice of the PPC laminae [440]. Group 2 (host-rock) elements are strongly
positively correlated with PC2, which explains ca. 26% of the total variance. Importantly,
the greyscale record is moderately to strongly negatively correlated with PC2, while Group
1 (soil-derived) elements are weakly to moderately negatively correlated with PC2. Since
greyscale values are primarily controlled by drip water (and thus rainfall) amount, PC2 likely
represents the variation between wetter and drier years, with the positive direction indicating
dry and the negative direction indicating wet (see note to Fig. 10.5). Wetter conditions would
result in more soil-derived elements being transferred to the cave, leading to the negative
correlation with PC2, while host-rock elements are concentrated in the calcite during drier
conditions due to lower drip rates. The same control (i.e., drier conditions) would also serve
to concentrate Mg derived from marine aerosols within the epikarst water store, leading to
higher Mg/Ca and other element/Ca ratios that are highly concentrated in seawater (e.g.,
Na, Sr, Ba). It is notable that these elements are separated from the soil-derived elements
by PC2 and distributed toward the host-rock-derived elements. Thus, while increases in
host-rock-derived elements (e.g., U, Mg) support an interpretation of drier climate states, the
similar result would be found if a small contribution of marine aerosol were present. Although
this study does not draw on drip water monitoring, it is highly probable that marine aerosol
also contributed to the elemental composition of C132, similar to earlier findings [433]. This
reasoning does not affect the general interpretation of the elemental data. PC1 explains 28-
35% of the variance in the datasets. Soil-derived elements are strongly positively correlated
with this axis, whilehost-rock/marine elements show a weakly positive to no correlation, and
greyscale shows weakly negative to no correlation. Soil-derived elements are transfered to the
cave by the flow of water through the epikarst. However, overall wet/dry conditions would
affect greyscale and host-rock derived elements to a greater and more predictable extent, as
discussed above. A major transfer of soil-derived elements may occur through flushing of
the epikarst during extreme rainfall events [437], such as tropical cyclones. These events are
short-lived and would be unlikely to have a major effect on the style or rate of (longer-term)
calcite crystallisation, thus having a limited effect on greyscale and host-rock elements. We
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thus interpret PC1 as controlled by the prevalence of extreme rainfall events in the tropical
Pacific. With loadings of comparable magnitude on both PC1 and PC2, Na and Br are located
between the host-rock and the soil-derived trace metal groups. As previously noted, Na and
Br are concentrated in sea water, and previous studies estimated a sea water contribution of
89% for Na and Br in the drip water of Niuean coastal caves [433]. Following this finding, we
interpret these elements as being mostly derived from marine aerosols.

10.6.2 Climatic interpretation of the proxy time series

The term ‘rainfall seasonality’ is used here to refer only to the difference in the amount of
rain between the wet and dry seasons within one annual cycle, as measured by the difference
in the greyscale values between a PPC lamina and the adjacent DDC lamina. We developed
a seasonality time series based on the difference between the PPC lamina peaks (wet season
maximum) and the DDC lamina troughs (dry season maximum) from the greyscale record
(suppl. Fig. E.3). Low rainfall seasonality values refer to low contrast between the wet and
dry seasons, while high rainfall seasonality values represent higher contrast between wet and
dry seasons. Changes in the consistency of seasonal oscillations are defined by the DET
parameter, which allows us to quantify seasonal predictability in the system and to identify
transition points from predictable to random conditions and vice versa (Fig. 10.7g). Periods of
more predictable seasonality are distinguishable from those with irregular seasonal variations
based on the 95%-confidence level obtained from a bootstrapping procedure (dotted grey
line, Fig. 10.7g). Whenever this confidence level is exceeded, seasonal rainfall variations have
significantly shifted towards a regime of greater or lower predictability.

10.6.3 Climatic interpretation of the proxy time series

Our 1019-year hydrological reconstruction from Niue Island reveals five main stages delineated
by multi-centennial (200-300 yrs) oscillations between generally increased and decreased pre-
dictability of rainfall seasonality during the mid-Holocene. Phase 1, from 6.4 ka to 6.2 ka BP,
is characterized by wetter conditions as indicated by a high mean growth rate and greyscale
(Fig. 10.3a,f). PC2 (background rainfall) is relatively high during this period, while PC1
(indicating extreme events, possibly driven by strong ENSO) is moderate to low, though with
some high peaks. During this period the wavelet spectrum of the greyscale record (overall
rainfall) shows significant continued ENSO band variability, and the wavelet spectrum of the
seasonality record present also periods of significant ENSO band variability but sparse on
time (Figs. 10.6 and 10.7f). In Phase 2 (6.2-5.9 ka BP), the variability in background rainfall
is reduced below the mean, and heavy rainfall/high infiltration events increased in frequency
(Fig. 10.7a, b). During most of this period seasonality values are moderate to low, with in-
creased predictability of rainfall seasonality (Fig. 10.7e,g). This suggests that during Phase
2 rainfall more evenly spread out over the year, presumably due to high infiltration events
in the dry season linked to TCs. Phase 3 (5.9 to 5.72 ka BP) starts with the lowest PC2
values (background rainfall), occurring after a notable decrease at 5.85 ka BP. After ca. 5.8
ka BP the PC2 returns to higher values again, suggestive of "normal" background rainfall.
Concurrently, the low PC1 signal suggests few high infiltration events. Two peaks in δ18O
and δ13C records coincide to the "normal" background rainfall conditions reveal two decadal-
scale maxima. It seems that Phase 3 was generally wet, with superimposed decadal-scale dry
episodes. We interpret these signals as indication for pronounced seasonality and low rain-
fall predictability due to significant influence of ENSO on atmospheric conditions over Niue.
Phase 4 (5.72 to 5.5 ka BP) is characterised by multi-decadal oscillations between wet/dry
periods, represented by background rainfall (PC2), the high infiltration events record (PC1),
as well as the δ18O and δ13C records. The most pronounced drying signal in the δ18O record
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Figure 10.7: a) Background rainfall (PC2). b) High infiltration events (PC1). c) δ13C record. d)
δ18O record. e) Seasonality record extracted from the greyscale record. f) ENSO-scale variance com-
puted as 2–8-year wavelet scale average (see Fig. 10.6) from greyscale record (green) and seasonality
index (yellow); darker-shaded peaks are above 95% significance. g) Seasonal predictability computed
as DET from sliding recurrence plots; green shading indicates more predictable/regular seasonality
and red shading indicates less predictable/random seasonality. See Sections 10.5.2 and 10.5.4 for
calculation of (e)-(g). P1-P5 indicate different predictability phases.
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occurs around 5.5 ka BP at the same time there is a low in background rainfall, this could
be indicating a northward displacement of the SPCZ. Seasonality is quite stable except for
a decades-long maximum at ca. 5.65 ka that coincides with a decrease in the background
rainfall and high infiltration events. This peak also corresponds to a shift from consistently
significant ENSO power in the greyscale record to ENSO-band peaks in the seasonality record.
Phase 4 thus was characterized by predictable seasonal rainfall, except for the short interlude
at 5.65 ka BP. In the final Phase 5 of our record (5.5 to 5.4 ka), the background rainfall
rapidly increases while the high infiltration events record shows a more subdued and grad-
ual rise. This increase toward wetter conditions is supported by low δ18O values. During
this period, ENSO variance is only marginally significant in the greyscale record, while it is
muted in the seasonality record. Predictability of rainfall seasonality is low and decreasing.
Significant ENSO-band variability in the greyscale record occurs at different times than in
the seasonality record (green and yellow peaks, respectively, in Fig. 10.7f), which suggests
different controls. Since the seasonality record reflects the wet/dry season contrast, whereas
the greyscale record reflects mostly the wet season, we suggest that the ENSO-band vari-
ability in seasonality is controlled by changes in the amount of rain during the dry season,
which would increase or reduce the contrast between seasons. El Niño conditions are char-
acterised by drier conditions than normal; however, TCs are more frequent in El Niño years
[441]. Given that dry season rainfall is generally relatively low, overall background reduc-
tion in dry season rainfall during El Niño years may be counter balanced by an increase in
TC occurrence. This would lead to a reduced seasonality (drier wet season and wetter dry
season) during El Niño years and decrease predictability. In Niue Island the most impor-
tant controls on rainfall seasonal variability are the location of the SPCZ, followed by ENSO.
During El Niño events, the wet season is drier, thereby reducing the contrast between the
wet and dry seasons (i.e., reduced rainfall seasonality). La Niña events bring wetter rainy
seasons, thus increasing the seasonal contrast (i.e., amplified rainfall seasonality). On a visual
basis, the C132 record shows a consistent positive correlation between greyscale/seasonality
ENSO band variability and rainfall seasonality predictability. In general, when ENSO band
variance is significant, there is a decrease in the predictability of seasonality, i.e., the system
turns into a more stochastic conditions, whereas when ENSO band variance is reduced/muted
the seasonality predictability is increased, and particular dips in predictability often corre-
late with significant ENSO band power in seasonality (e.g., at 6.3, 6.03, 5.88, 5.75, and 5.6
ka BP). Assuming that La Niña events bring wetter conditions only during the wet season,
because December typically aligns with the peak of La Niña events [396], this stretches the
seasonal cycle above normal. It would be very unlikely that La Niña events result in wetter
dry season because usually dry season months (June-August) correspond to either El Niño
to La Niña transition or early growth El Niño stages; hence the relationship between ENSO
activity and rainfall seasonality in Niue can be confirmed. A similar positive relationship
between the seasonal cycle amplitude of near-equatorial sea surface temperatures (SSTs) and
ENSO band variance was observed in Holocene coral records from the central Pacific [442].
The initial oceanic conditions for the development of a La Niña events depend of multiple
factors such as spatial-temporal heat dynamics in the equator, the precedent El Niño flavour
(East Pacific or Central Pacific El Niño events) [443]. These changing conditions reduce the
predictability of La Niña events, although this conclusion is based in an analysis that assesses
the forecasting skills of La Niña events and not the seasonal cycle [396]. It is similar to our
findings in the way that La Niña events result from destabilization of the atmosphere-climate
system and therefore less predictable conditions. Our findings suggest that ENSO variability
modulates the amplitude of the seasonal rainfall cycle not only at an inter-annual scale, but
also multi-decadal and centennial scales. These lower-frequency oscillations could in turn be
modulated by long-term stationary states of the location of the SPCZ as well as its spatial
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configuration, which is controlled by the feedback of internal variability factors [395]. This
ENSO and tropical Pacific mean state connection at decadal and centennial scales has been
detected in other highly resolved mid-Holocene ENSO records from the central Pacific [401]
and Borneo [405]. Niue record contribute with new evidence of the interaction between SPCZ,
ENSO and the mean state of the tropical Pacific throughout the identification of predictable
and non-predictable stages in the climate system.

10.7 Conclusion

Investigated stalagmite from Niue Island in the southwestern Pacific offers a seasonally re-
solved multi-proxy reconstruction of mid-Holocene (6.4 to 5.4 ka BP) rainfall changes associ-
ated with dynamics of the South Pacific Convergence Zone (SPCZ). The combination of U-Th
dating and layer counting allows for constructing an accurate chronology for the multi-proxy
record, while the use of the non-destructive greyscale analysis supports and strengthens the
interpretation of the geochemical proxies. Wet/dry conditions controlled by seasonal shifts
of the SPCZ are recorded in the petrography, trace element distribution, and isotopic com-
position (δ13C and δ18O) of the calcite laminae couplets of stalagmite C132. The wet season
is reflected in pale porous calcite (PPC) laminae which are characterised by lower Mg/Ca,
Sr/Ca, and U/Ca ratios as well as lower δ13C and δ18O values. In contrast, the dry season
is reflected by higher Mg/Ca, Sr/Ca, and U/Ca ratios and higher δ13C and δ18O values in
dark dense calcite (DDC) laminae. We suggest that the physicochemical variations in the
stalagmite laminae are modulated by kinetic fractionation forced by differences in drip rate
and thus stalagmite growth rate between the wet and dry seasons, which in turn depend
on local climatic dynamics. Within the range of elements studied in sample C132, we have
identified two groups due to their source and mechanism of incorporation into calcite show
high climatic sensitivity. Group 1 comprises soil-derived elements (Zn, Mn, Fe, Al, and Pb)
indicative of high infiltration events resulting from extreme but short-lived rainfall events
(e.g., from tropical cyclones) that lead to significant soil flushing. The second group includes
host-rock derived elements (Mg, Sr, U, and P) that are incorporated into the speleothem via
water-rock interaction, with further contributions by marine aerosols. These elements are
also sensitive to prior calcite precipitation during periods of reduced infiltration and record
hydrological changes at a seasonal scale. This group also records lower baseline rainfall during
El Niño events and higher baseline rainfall during La Niña events. In-depth time series and
wavelet analyses of our 1000-year record not only reveals SPCZ changes but provides impor-
tant insights into ENSO activity during the mid-Holocene. The wavelet analysis suggests
that ENSO was continuously active over the covered period from 6.4 to 5.4 ka BP. However,
ENSO affects dry season background rainfall and seasonal rainfall contrast in different ways.
We suggest the main effect to be changes in the overall background rainfall, with La Niña
years leading to wetter conditions and El Niño years to drier. A secondary effect, related to
increased tropical cyclone activity in the dry season during El Niño years, is superimposed on
these general dynamics and results in reduced seasonality (wetter dry season and drier wet
season). Importantly, tropical cyclone activity linked to El Niño links seasonal predictabil-
ity with ENSO-band variability in overall background rainfall, with increased ENSO-band
variability corresponding to lower seasonal predictability.
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Abstract

Despite intense study of the potential impact of decadal to centennial-scale cli-
matic changes on the demise of Terminal Classic Maya sociopolitical institutions
(750-950 CE), its direct importance remains debated. Classic Maya populations
living in peri-urban states were highly dependent on seasonally distributed rainfall
for reliable surplus crop yields. We provide a detailed analysis of a precisely dated
speleothem record from Yok Balum cave, Belize, that reflects local hydroclimatic
changes at seasonal scale over the past 1600 years. We find a pronounced decline
in the predictability of seasonal rainfall starting prior to the onset of previously
documented protracted drought conditions in the neotropical Maya lowlands. The
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failure of Classic Maya societies to successfully adapt to volatile seasonal rainfall
dynamics likely contributed to gradual but widespread processes of sociopolitical
disintegration. We propose that the complex abandonment of Classic Maya pop-
ulation centers was not solely driven by protracted drought but also aggravated
by year-to-year rainfall predictability decreases, potentially caused by a reduction
in coherent Intertropical Convergence Zone-driven rainfall in the region.

11.1 Introduction

Seasonal hydroclimate variability has defined the environmental context for tropical agricul-
tural societies for at least seven millennia [444]. The success or failure of Late Holocene
urban societies reliant on rainfed agriculture was contingent on their ability to anticipate and
adapt to the seasonal distribution of rainfall from one year to the next [445]. Today, shifting
rainfall seasonality due to anthropogenic climate change poses a threat to both traditional
agricultural practices and food security in regions practicing rainfall dependent agriculture
[446]. Studying the predictability of seasonal rainfall beyond the instrumental period using
exceptionally well-dated long-term palaeoclimate archives allows us to contextualize scenarios
of future dynamics due to anthropogenic climate change [3, 273, 447].

In Central America, Maya urban states emerged by 900 BCE [448] following the adoption
of maize as a staple grain [449] and the development of surplus agricultural production. After
Maya societies underwent 1650 years of cyclical expansion and fragmentation, the period of
largest demographic expansion (600-750 CE) was followed by dramatic contractions between
750-950 CE [450, 451] and the abandonment of large population centers led by despotically
oriented dynastic lineages [452]. Maya leaders were heavily invested in wealth accumulation,
kin selection, and costly ceremonial signaling that inhibited flexible and resilient responses to
environmental change [453]. The inability of complex Maya socieities that formed the Classic
Period social and political systems to successfully respond to changing climate contributed to
the geopolitical disintegration of dozens of urban centers [454] and a return to more decentral-
ized low density agrarian villages [455]. The 200-year Terminal Classic Collapse (TCC) was
a cultural process driven by increased warfare, population pressures and landscape degrada-
tion [456]. Whereas political centers in the southern Maya lowlands underwent an inexorable
process of fragmentation that was not followed by emergence of new urban settlements, popu-
lations in the northern lowlands recovered and ultimately built the Maya capital of Mayapan
[457, 458].

During the periods of population decline, conflicts between competing factions correlate
with decadal scale episodes of reduced rainfall [459, 460, 305, 451, 306]. However, the general
palaeoclimate record suggests that the worst of these droughts occured after 850 CE when
collapse processes were well underway [454]. Previous palaeoclimate studies in the Maya
lowlands lacked temporal controls or sampling resolution to quantitatively assess variability
in rainfall seasonality. Today, the seasonal distribution and rainfall onset date are among
the most critical controls for Maya farmers, who are generally small land holders producing
seed and root crops for home use, animal feed and limited cash-crop surplus [461]. Modern
subsistence farmers face considerable uncertainty caused by a global warming-induced decline
in predictability of seasonal rainfall in recent decades. These changes are forcing adaptations
in traditional agricultural practices to maximize soil moisture and hedge against increasing
uncertainty in the timing of the summer monsoons [462]. Many of the staple seed and tree
crops consumed by both modern and Classic Maya populations are highly vulnerable to
drought conditions. Additional vulnerability may arise from specialization of diets, impairing
resilience of food systems against unpredictable year-to-year hydroclimatic conditions [463].
This suggests that instability in the seasonal distribution of rainfall, including recurring severe

144



drought events, significantly decreases productivity in growing most staple crops consumed by
pre- and post-colonial Maya populations [464], considering the severe constraints in long-term
grain storage [465]. In contrast to these modern analogs for small scale communities, the
consequences of unpredictable seasonal rainfall distributions on large geopolitical formations,
with high degrees of social inequity, economic specialization, and dependence on surplus food
production to feed large non-producer segments of society have not previously been addressed
for the Classic Maya. Our data support the proposition that declining ability to predict the
seasonal distribution of rainfall may have had profound impacts on agricultural production
and, in turn, geopolitical stability of Maya population centers [445]. Most crops grown in the
Maya Lowlands, including maize, are not drought resistant and even short duration droughts
are sufficient to disrupt agricultural production causing food shortages. During a moderate
drought of one year without seasonal summer rainfall the number of edible plant parts available
would decline by 69% including maize, beans, and squash, while in a severe multiyear period
without normal summer rainfall the number of available crop foods would decline by 87%
[464].

Here, we investigate rainfall seasonality in Central America over the past 1600 years us-
ing statistical analysis on a previously published, precisely dated and sub-annually resolved
speleothem record from Yok Balum Cave, southern Belize (16◦ 12’0 30.780” N, 89◦ 4’ 24.420”
W; 336 metres above sea level) [362]. Southern Belize has some of the highest rainfall and
seasonality contrasts in the Neotropics [261, 199]. Due to its location near several Classic
Maya centers in the southern Lowlands, Yok Balum Cave is strategically placed to explore
linkages between local climate variability and cultural response. Stalagmite YOK-G has a high
growth rate, low age uncertainty (based on U-Th dating) and is fed by an exceptionally steady
and rapid drip, allowing us to examine hydroclimate conditions during the TCC and their
potential impacts on Classic Maya agricultural practises at seasonal time scales [440, 199].
The speleothem stable carbon isotope ratio (δ13C) from Yok Balum Cave reflects local hy-
droclimate conditions, encompassing changes in effective infiltration above the cave and prior
carbonate precipitation dynamics in the epikarst [466, 467]. Additionally, stalagmite δ13C
is affected by soil pCO2, water residence time and host rock dissolution, and CO2 degassing
from dripwater in the cave [468]. At our study site, all factors impacting δ13C follow local
hydroclimate in the same direction, thereby enhancing the link between hydrology and δ13C
in the stalagmite. We focus on speleothem δ13C as a proxy for local hydroclimate at seasonal
scale near Maya sociopolitical centers whereas the oxygen isotope signal integrates more dis-
tal dynamics, reflecting convective activity strength, source moisture location, moisture path
length, and local rainfall amount.

Modern seasonal rainfall variability in the region is primarily controlled by the dynamics
of the Intertropical Convergence Zone (ITCZ) [469, 470]. Sub-annual rainfall distribution
is distinctly seasonal, with 480-1120 mm in the wet season (June-September) due to the
northward displacement of the ITCZ during boreal summer, and 120-280 mm in the dry
season (February-April) when the ITCZ shifts southward. The spatio-temporal variability of
the ITCZ is not limited to latitudinal migrations but can exhibit contractions/expansions and
changes in seasonal residence times at its boundaries [471, 362]. Changes in the position and
latitudinal extent of the ITCZ are coupled to large-scale patterns of sea-surface temperature
variability in the tropical North Atlantic [472, 473, 474] and the tropical Pacific [475]. The
seasonal amplitude of rainfall in the Maya lowlands is additionally affected by tropical cyclones
(TCs, July-October) and northerly winter storms (Nov-Feb) [476, 477]. Several hypotheses for
the climatological origins of the Terminal Classic drought have been proposed [478], including
the latitudinal migration of the ITCZ [479, 454], significant changes of tropical Northern
Atlantic sea-surface temperatures [472, 480, 473, 474], persistent El Niño conditions and
potential interactions with TCs [476] as well as an interplay of some of these processes [473].
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It has also been suggested that the ITCZ was entirely absent from the region across the Classic
Maya interval, opening the door to alternative interpretations [362]. Regardless, Classic Period
Maya farming systems would have been dependent on rainfall to support populations that may
have grown to as large as 11 million people across the lowlands by 700 CE [481] and changes
in the predictability of rainfall patterns may have negatively impacted surplus agricultural
production.

The expression of such changes in climatological conditions at seasonal time scales and
its repercussions on Classic Maya agriculture, however, have not yet been unraveled. Here
we expand on the dynamics of local rainfall, and characterise its seasonality, year-to-year
predictability of subannual rainfall distribution, and climate volatility due to extreme events.
This allows unprecedented insights on potential links between rainfall seasonality and the
TCC.

11.2 Results

11.2.1 Background climate and seasonal cycle

We use advanced statistical analysis to evaluate if and how the seasonal distribution of rainfall
changed over the past 1600 years in southern Belize. Dating uncertainties (2σ ≈ 5 years, see
suppl. Fig. F.1) are propagated through the entire analysis by studying a full ensemble of
COPRA age model realizations that are compatible with dating errors [36] (see methods).

The YOK-G δ13C record suggests a pronounced dry period between ca. 550-900 CE, with
the wettest conditions occuring during the Little Ice Age (LIA: 1400-1800 CE) (Fig. 11.1A),
consistent with our previous study [362]. These multi-centennial trends are generally cor-
roborated by both stable oxygen isotope (δ18O) and trace element records from the same
stalagmite (see suppl. Fig. F.2). Other regional records [454, 473] that indicate pronounced
multi-annual droughts exhibit heterogeneity in the timing of Terminal Classic Drought (TCD)
events (Fig. 11.1A), but predominately indicate that the most severe drought events occured
between 700-900 CE.

Fluctuations around the long-term trends of the YOK-G δ13C record (Fig. 11.1A, suppl.
Fig. F.3/F.4) allow for the identification of volatile periods with strong (multi-)annual de-
viations from the mean climate state in contrast to periods of low variability. We use a
Monte Carlo-based framework to extract indications of hydrological extreme events, i.e., ex-
ceptionally wet or dry years that reflect enhanced volatility, from the YOK-G δ13C record
(Fig. 11.1B) (see methods). A period with fewer extreme events between 550-700 CE was fol-
lowed by an episode of more frequent extreme events between 700 and 900 CE, aligning with
the period of most severe drought events recorded in other proxy reconstructions from the
Neotropics, and tracking demographic contraction across the Maya Lowlands starting around
700 CE (Fig. 11.2B-D) [456]. Enhanced extreme event frequency suggests more volatile, and
thus less predictable, seasonal variations on interannual timescales, beginning at a time of
maximal population, increasing warfare, and high levels of social inequality [450, 454]. We
find two additional periods of relatively high extreme event frequency, one partly intersecting
with the Medieval Climate anomaly (1100-1300 CE) and the other during the second half of
the LIA (1600-1900 CE). Some indications of drought events after 1500 CE align with known
historical multi-annual droughts (e.g., 1535 CE and 1765 CE [482]).

A significant positive correlation at seasonal time scales between δ13C and δ18O is indica-
tive of prior calcite precipitation and/or kinetic fractionation dominating these proxies (suppl.
Fig. F.5). We examine whether a seasonal cycle in the YOK-G record can be detected over the
last 1600 years when dating uncertainties, irregular sampling intervals and potential aliasing
are taken into account, using Lomb-Scargle periodograms and continuous Wavelet analysis
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(suppl. Fig. F.7-F.11). Averaging wavelet spectral power within the 0.5-1.5 year band for
each δ13C age model realisation we identify age model realisations with a significant expres-
sion of seasonality (Fig. 11.1C). Age model realisations that indicate a significant seasonal
cycle for both δ13C and δ18O increase markedly post-1400 CE, whereas before 1400 CE, only
a muted seasonal signal is detected (further supported by Lomb-Scargle periodograms, see
Fig. S8A/C), corroborating the results in [362].

11.2.2 Seasonal rainfall predictability

From the perspective of Maya farmers, a regular and well-pronounced seasonal rainfall cycle
allows for reliable projections of crop yield on a year-to-year basis. This entails several sets
of decision making on the part of farmers. First, they need to know when to clear and pre-
pare fields for planting. Today, this coincides with the end of the annual dry season when
vegetation can be burned [458]. In much of the Maya lowlands preparation for the wet season
involves clearing of vegetation, burning biomass for nutrients, and planting crops in anticipa-
tion of the arrival of the summer monsoons [461]. Delayed or failed arrival of the summer rains
significantly increases the risk for crop failures. Classic Period farmers developed methods
for continuous surplus agricultural production that was locally adapted for the diversity of
environmental zones found in the lowlands [483]. This was accomplished through modifica-
tions of landscapes and the use of fire to clear land, with increasing productivity accomplished
through intensification involving terracing of slopes, management of wetlands, and creation of
raised beds [484, 485]. However, all of these strategies relied on seasonally distributed rainfall,
a dependency that increased with population size [456].

We use recurrence plots (RPs) on annually split, detrended segments of the δ13C realisa-
tions to characterize the predictability of the seasonal rainfall cycle [20]. Recurrences between
two annual stalagmite δ13C segments signify that seasonal distribution of rainfall was similar
in the respective years, indicating enhanced predictability. The recurrence-based indicator of
seasonal predictability τpred employed here can be interpreted as a mean prediction time of
seasonal rainfall distribution: it encodes the predictability of a year’s seasonal rainfall profile
based on information from the previous year’s hydrological cycle. Low average τpred values
indicate a more erratic seasonal hydroclimate, requiring farmers to adapt their strategies from
year to year. Sudden occurrence of a hydrological extreme event (be it drought or flood) rep-
resents one potential cause of a less predictable seasonal cycle. Most periods of low stalagmite
growth also entail a less pronounced seasonal cycle in stalagmite δ13C (see Fig. 11.1C). The
used recurrence-based approach partly eliminates biasing effects on seasonal predictability
imposed by non-constant stalagmite growth, using the method proposed in [2] (see methods).

11.2.3 Classic Collapse and rainfall seasonality

The potential changes in local and regional hydroclimate discussed above may have had
significant societal repercussions over the period covering the Early, Late and Terminal Classic.
We find that seasonal predictability τpred declines below the significance value of τpred = 1
between 800-1000 CE (Fig. 11.2A). Such low prediction times could be generated by a random
null model that simply replicates the growth rate of the stalagmite with random seasonal
variation. Thus, irregularities at seasonal time scale are so large during this period that
accounting for past seasonal rainfall does not significantly enhance the forecast for upcoming
years.
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Figure 11.1: (A) Long-term variability of YOK-G δ13C record, highlighting wet (blue) and dry
(red) periods in the Maya lowlands. Two insets show examples of seasonal variability. All age model
realizations are detrended individually (Singular Spectrum Analysis with w ≈ 10yr, trends for 50
realizations displayed as thick lines). The shown age model realization is the most central realization.
Regional drought events from other regional records (1: Yok-I (Yok Balum cave) [454], 2: Punta
Laguna, 3: Tecoh cave, 4: Juxtlahuaca Cave, 5: Chilibrillo Cave) are indicated by red bars. Drought
indications of records 2-5 are displayed according to intense dry intervals as given in [473]. (B)
Indications of annual extreme hydroclimate conditions. From the full ensemble of detrended δ13C
time series, the fraction that indicates an annual drought/flood event is computed by counting how
many realizations exceed the 95% quantile in each year, divided by the total number of realizations.
(C) The number of samples per year represents changes in the stalagmite’s growth rate. An indicator
of sesonal cyclicity based on the seasonal band-average of continuous Wavelet spectra for all proxy
realizations (suppl. Fig. F.8) shows that episodic cyclicity is given for most segments of the record.
Years with less than three samples are marked by red lines. A period of slow growth is indicated by
brown shading.
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Societal processes of disintegration (increased warfare and site abandonments) were al-
ready underway between 750-830 CE in the heartland of Peten, Guatemala and Belize (Fig. 11.2B-
C) prior to the most severe drought events after 830 CE, culminating in regional depopulation
by 950 CE (Fig. 11.2C).

Our results reveal a highly complex, nonlinear dependency structure between background
hydroclimate and seasonal predictability (Fig. 11.3). This relationship is also clearly different
from the relationship returned from the null-model and is thus not caused by variations
in temporal sampling (suppl. Fig. F.13C/D, gray dots). The most favorable conditions (i.e.,
highest predictable seasonal rainfall) are identified at moderately wet conditions (δ13C ' 8%�,
Fig. 11.3), but no monotonous relation (e.g., ‘the drier, the more stable’) exists between
average proxy values and seasonal predictability. Whenever the local or regional hydroclimate
is shifting towards progressively wet conditions, either less or more seasonally predictable
conditions may occur. When relating seasonal predictability, mean hydroclimate and Maya
TCC, we find that, although moderately dry, the Early and Late Classic (400-750 CE) were
characterized by persistently high predictability, and that predictability significantly decreased
after 700 CE (Fig. 11.2a).

We hypothesize that climate volatility reduced the ability of farmers to predict the onset
of rainfall, leading to reduced crop yields and surpluses. This in turn would have impacted
the ability of urban dwelling non-farmers to engage in economic activies and ensuing declines
in food security may have intensified stress on political and economic institutions that ulti-
mately led to their destabilization. Quantitative proxies for Maya population change during
Early to Terminal Classic and dated stone monuments, a proxy for Classic Period governing
institutions, support this interpretation (Fig. 11.2D). At Uxbenká region, an urban center
close to Yok Balum cave, this decline began around 680 CE when seasonal predictability had
already deteriorated for several decades, while the final dated stone monument was erected
in 780 CE, just 30 years before the site was abandoned [456]. This depopulation event aligns
with demographic decline across the entire Maya lowlands starting after 700 CE and corre-
sponds with the sharpest decline of seasonal predictability initiated shortly before 800 CE
(Fig. 11.2B).

Our results suggest that a loss in seasonal predictability of rainfall may have destabilized
Maya society even before the onset of severe drought conditions as indicated by the majority
of palaeoclimate records from the Yucatán [473]. Moreover, due to the continuously low pre-
dictability after 800 CE, any recovery or adaptation to new climatic states were muted. This
scenario is compatible with an observed increase in the number of dated urban monuments
between 700 and 800 CE as a likely response to volatile seasonal conditions. Elites, confronted
with reduced surplus to finance capital projects and prestige goods likely sought to enhance
their status and legitimacy as divine rulers by increasing production of carved monuments.
These attested to their roles as intermediaries with important ancestors and deities deemed
responsible for rainfall, social well-being, and general health [486] and were demonstrated
through public ceremony, likely in lieu of more effective adaptive strategies.

Reduced food security led to subordinate populations losing faith in those rulers as war-
related events increased between 700-800 CE (Fig. 11.2B), reducing investment in urban and
agricultural infrastructure. We suggest that the impacts of a sustained decline in seasonal
predictability combined with multiple annual to decadal length droughts led to further emi-
gration from urban areas, and an overall population decline, as well as the disintegration of
more than 63% of urban polities with dated monuments by 835 CE [450].
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Figure 11.2: (A) Predictability of seasonal rainfall distribution, given by relative mean predictability
times τpred of 20 detrended proxy realizations for each isotope. The reference value of τ (ref)pred = 1 (dashed
line) indicates transitions between predictable states and states with a predictability that is not larger
than expected from a random proxy-surrogate with the same sampling resolution. (B) A zoomed
segment shows τpred, indications of inter-polity war events and the evolution of Maya population
size during the TCC, represented by (C) summed probability distributions of dated material in the
Maya lowlands (gray) and the Uxbenká region (yellow) as well as (D) the total count of dated urban
monuments. (E) Long-term drying is indicated by higher δ13C values between ca. 600 and 800 CE.

11.2.4 Multidecadal rainfall variability, ITCZ dynamics and the tropical
North Atlantic

What are the potential climatic drivers that modulate seasonal rainfall predictability and
the frequency of droughts or floods at multidecadal time scales in the Maya region? – The
multidecadal variability of Atlantic Sea surface temperatures (SST) plays a major regulatory
role on seasonal rainfall variability in the Neotropics. SST changes that result in signifi-
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cant interhemispheric thermal disparities shift the ITCZ’s mean position towards the warmer
hemisphere [487]. Lower SSTs across the (sub)tropical North Atlantic are less conducive to
large-scale evaporation and the building of convective clouds along the ITCZ, resulting in
a less coherent formation and reduced migration of the ITCZ into the northern hemisphere
(NH), whereas higher SSTs have been found to increase summer precipitation in the northern
Neotropics [488].

In order to assess the influence of tropical Atlantic multidecadal variability on rainfall
frequency and intensity at Yok Balum Cave, we compare our seasonal rainfall predictability
record with foraminifera Mg/Ca-based summer SST reconstruction from a sediment core
drilled in the Cariaco basin [489] (Fig. 11.4A). The Cariaco basin is a very sensitive location
for recording expansion/contraction or latitudinal shifts in the ITCZ as it is located in the
North Atlantic beneath its northward extent [490].

We compute correlations between both YOK-G stable isotope records (δ13C and δ18O)
at seasonal (based on the most central realization (MCR) of the age model, suppl. Fig. F.5)
and multi-decadal time scales (based on age model medians, suppl. Fig. F.6) by extraction of
suitable trends (Singular Spectrum analysis, suppl. Fig. F.3). At seasonal time scales, YOK-
G δ13C and δ18O remain significantly positively correlated throughout most of the Common
Era, whereas at multidecadal timescales both periods of significantly positive, as well as
periods with no relationship or significantly negative correlation exist (Fig. 11.4B). Periods
of enhanced summer SSTs in the Cariaco basin align well with significantly positive proxy
correlation in the YOK-G record and vice versa for lower SSTs, indicating a link between North
Atlantic conditions and the nature of the isotope response in the stalagmite. The Medieval
Climate Anomaly is marked by above average tropical Atlantic SSTs and significant proxy
correlations in YOK-G. Periods of low SST and YOK-G proxy correlation occur episodically
during the LIA and dominate between 1800-2000 CE. During the initial decline of the Terminal
Classic Maya population (700-900 CE), insignificant/negative proxy correlations coincide with
a period of low summer SSTs.

Previously, YOK-G δ13C (reflecting rainfall amount) and YOK-G δ18O (reflecting the
combined influence of rainfall amount and characteristically low δ18O of tropical cyclone rain-
fall) have been combined to isolate the tropical cyclone signal since 1550 CE [477]. Both
isotope records are therefore responding to hydroclimate variability, but δ18O is arguably
more directly linked to North Atlantic SSTs and regional circulation patterns. Consequently,
positive correlation between δ18O and δ13C at multidecadal time scales suggests that local
hydrological conditions are in line with (pan)regional dynamics, i.e., the ITCZ and tropical
Atlantic SSTs. Conversely, absence of correlation or a negative relation between both sta-
ble isotope ratios implies a control on δ18O which supersedes rainfall amount, revealing the
dominant influence of different (non-local) control mechanisms. Modified moisture source,
trajectory, or intensity of convection along the moisture mass trajectory are likely influencing
factors. Correlations between YOK-G δ18O and δ13C can thus be interpreted as an index for
local rainfall coherency.

The ITCZ sensitively tracks changes in the interhemispheric temperature gradient. At
multi-decadal time scales, changes in the ITCZ’s mean position, its meridional range and its
strength are all possible but remain debated for the Common Era, as argued by Asmerom
et al. using the YOK-G record [362, 491, 492]. Most rainfall reconstructions from the Maya
lowlands suggest considerable ITCZ-induced regional drying during the LIA [473]. Records
from the NH do not provide convincing evidence of a large-scale latitudinal shift of the ITCZ
during the Terminal Classic period [487, 493, 494, 479, 491]. A sound attribution of regional
rainfall changes to latitudinal shifts of the ITCZ requires proxy records that cover its entire
basin of influence, a spatially vast region that extends from South America to the northern
Neotropics [495, 492]. Compiling a sufficient number of well-dated, highly resolved records
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from this spatial range renders reconstructing the TCC interval challenging. However, am-
biguity in TCC ITCZ reconstructions may also suggest more complexity exists above and
beyond the popoular hypothesis that drying is solely driven by latitudinal shifts of the ITCZ.
In fact, recent studies favor scenarios of regionally heterogeneous ITCZ responses and chal-
lenge prevailing latitudinal shift hypotheses. A compilation of regionally disparate records
suggests that it is crucial to take into account additional modes of ITCZ dynamics, including
expansion/contraction and region-specific weakening/intensification [492]. In particular, cor-
relations between additional records from the Neotropics and the YOK-G δ13C record studied
here indicate that the ITCZ’s control on the study region was considerably less dominant be-
fore 1400 CE than it is today due to ITCZ expansion/contraction [362]. Thus, whereas a
cooling of North Atlantic SSTs may have triggered a southward shift of the ITCZ during the
TCC, evidence for such a shift remains ambiguous.
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Based on the alignments between tropical North Atlantic SSTs, YOK-G proxy correlations,
and seasonal predictability, (particularly for the TCC period (Fig. 11.4)), we argue that low
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tropical Atlantic SSTs between 700-900 CE resulted in declining seasonal rainfall predictability
due to less coherent formation of the ITCZ over the study region. A more ‘patchy’ emergence
of rain-producing convective activity, enhanced year-to-year variability in ITCZ residence time
over the region (e.g., shortening of wet season), and stronger fluctuations in ITCZ strength
would render local hydroclimate more sensitive to transient perturbations such as Caribbean
TCs [477, 496].

Due to extensive fractionation of uplifted water vapor, YOK-G δ18O exhibits strongly
depleted values during a TC [477] which could explain the observed periods of negative proxy
correlations: whereas local lack of rainfall during a period of low SSTs increases both δ13C
and δ18O values, low rainfall combined with a larger proportion of TC rainfall would result in
an anticorrelation. The strength of this anticorrelation could be further accentuated by wild-
fires that are more likely during drier episodes and following hurricane-induced deforestation
leaving dead biomass behind as fuel. The resulting reduced biomass and soil bioproductivity
above the cave would increase δ13C, whilst TC rainfall would drive δ18O strongly negative.
The scenario described here would also explain an overall higher degree of volatility, reflected
not only by reduced seasonal predictability τpred but also increased frequencies in annual
dry/wet extremes as observed in Fig. 11.1B.
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11.3 Discussion

After the establishment of densely populated urban centers, the Maya population grew to
a point where economic inequality, population growth, and increasing conflict would have
created vulnerabilities to efforts mitigating the effects of climate change, including significant
changes in the seasonal distribution of precipitation. It has long been argued that early in
the Classic peak (700 CE), the population began to push the environment towards its carry-
ing capacity [479, 460]. Multiple dry events have been identified as triggers for the cultural
disintegration that followed the peak Classic populations as lowland Maya societies failed to
produce enough food. Our results suggest that the loss of seasonal rainfall predictability was
initiated before the onset of drought conditions. Complex societies are able to thrive despite
aridity, provided that the climate is predictable, and it is possible to put successful mitigation
measures in place [445, 497]. We argue that the disintegration of Classic Maya was partially
catalysed by reduced predictability in climate; the institution of divine kingship simply did
not have measures in place to deal with irregular year-on-year changes in rainfall, sparking
social unrest and inflicting societal conflicts. Based on our results, we suggest that the TCC
was a period of destabilized regional climate control with reduced coherence of ITCZ-driven
rainfall, giving rise to high hydroclimate volatility and reduced seasonal predictability. Today,
conditions for smallholder farmers in Central America have already deteriorated significantly
[498] while current projections suggest that climate change will further increase seasonal cli-
mate volatility [499]. The climate-induced disintegration of lowland Classic Maya civilization
underscores the sensitivity of human-environment systems to climatological changes, stress-
ing the severity of drastic current global climatic changes and the urgent need to implement
effective strategies that maintain food security in societies with low adaptive capacity.

Methods
YOK-G record
The ca. 94 cm long stalagmite YOK-G from Yok Balum Cave in southern Belize (see [466]) is composed of
aragonite. The YOK-G stalagmite proxy record is based on 7151 δ13C and δ18O analyses, covering the last
ca. 1600 years, as previously reported in [362]. The chronology of the YOK-G record is based on 52 U/Th
dates (ca. 0.54 per cm of growth). Although the carbon isotope record is affected by several factors (includ-
ing prior carbonate precipitation (PCP) in the epikarst, CO2 degassing from incoming dripwater, vegetation
composition and activity, soil microbial dynamics, and temperature-induced isotope fractionation) it can be
interpreted as a proxy for local effective rainfall [362, 466]. The various influencing factors generally act in
concert such that higher δ13C values indicate drier conditions above the cave. The interpretation of the δ13C
profile was confirmed by uranium concentration measurements [362]. Similar to the carbon isotope ratios, the
YOK-G δ18O are influenced by multiple environmental processes, including moisture source and transport
dynamics, rainfall amount, PCP, tropical cyclone activity, and (potentially) temperature changes [477]. How-
ever, previous studies [362, 261] indicate that YOK-G δ18O does reflect longer-term hydroclimate conditions
above Yok Balum Cave. YOK-G δ18O thus acts as proxy for (pan-)regional hydroclimate variability, with
lower δ18O values indicating generally wetter conditions.

Summed probability distributions
Summed distributions of radiocarbon dates are powerful techniques widely used on large datasets that cover
long time periods to assess the impacts of climate on cultural data [500]. While some archaeologists have
suggested minimum sample size for these estimates [501], others suggest that sample size thresholds should be
dependent on the scale, granularity, and magnitude of specific variations of concern [502]. These distributions
can be used to reconstruct relative changes in population sizes, generally under the assumptions that (1)
changes in past populations were proportional to the amount of anthropogenic carbon accumulated and (2)
the dates are distributed randomly. In this study, we employ a Kernel Density Estimate (KDE) using the
KDE_model function in OxCal4.3 for both the Uxbenká [452] and Maya Lowland [503] radiocarbon datasets
using methods outlined in [504] which also employ the Intcal20 calibration curve [505]. This Bayesian method
uses a uniform prior for the bandwidth size, h, with an upper limit based on Silverman’s rule, which provides
a criterion for identifying h when the underlying distribution is Gaussian [504]. This is a reasonable way to
deal with densities of events for which there is little or no prior knowledge [506]. We use the KDE visualization
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as a simple proxy both for population changes and investment in the built environment at Uxbenká, and, by
comparison, for the Maya Lowlands (Fig. 11.2).

Historical Maya Texts
From the Early to the Terminal Classic periods Maya rulers recorded specific types of historical information,
including elite political alliances, and wars, on stone monuments (stela, altar stones, and other types of ded-
icatory objects). Long count calendrical dates contemporaneous with the carving have been deciphered and
these stone monuments can be correlated with the Gregorian calendar. Events recorded on monuments are
also associated with specific long count dates. Taken together, historical records and precise dates inscribed
on monuments provide an empirical foundation upon which to examine patterns of social change [507].

Following [454] we use data originally generated from the Maya Hieroglyphic Database (MHD) [508] to
estimate the frequency of monument production during the Classic Period ca. 400-1000 CE. The MHD,
collates monuments recording long count dates. Initial Series (IS) long count dates and calendar round dates
that could be confidently correlated with the long count were only considered since they are believed to be
concurrent with the original time of dedication. Focusing on the Classic Period, 882 dedicatory monuments
and objects record dedicatory long count dates concurrent with time of erection from 115 sites throughout
the Maya Lowlands (Fig. 11.2D). These monuments document more than 1900 events over the course of the
Classic Period.

Our assessment of the frequency of warfare-related events during the Classic Period was based on keywords
that relate directly to war or were commonly used by the ancient Maya describing instances of warfare, for
example explicit references to captives, warriors, destructive burning events, polity collapses; and subordinate
vassalage after a defeat (terms summarized in [509]).

Some mentions of war-related words that did not relate specifically to a specific warfare event that took
place during the Classic Period were removed from the dataset. These included names (e.g., “He of 12
captives”), mythical events, and war-related glyphs without context. The final war-related event dataset
(Fig. 11.2b) contained only those events involving warfare between two Maya sites or rulers, occurrences of
vassalage, and other events that could be temporally grounded [454]. An index of number of warfare events
to number of total events was then calculated. These datasets are plotted in Fig. 11.2B.

Monte Carlo-based time series analysis
A prerequisite to extracting seasonality from a proxy record is that it exhibits significant variability at sub-
and interannual time scales. This is affected by both sampling resolution and age uncertainty; whereas the
former must be high enough to assess seasonal variations (with respect to the corresponding Nyquist frequency
of 2 samples/year), the latter can obscure this variability. In this work, COPRA (COnstructing Proxy Records
from Age models) is used to obtain a reconstruction of δ13C and δ18O time series. It uses a Monte Carlo
simulation scheme to generate distinct realizations of proxy values for each given value on an error-free time
axis. These realizations are compatible with the limits imposed by age uncertainty and can be thought of as
squeezed, stretched and translated versions of the underlying ‘true’ proxy time series which cannot be assessed.

COPRA transfers dating uncertainties into uncertainties in the time series magnitude [36]. The age model
median time series represents a central estimate of proxy values with age uncertainty included, but much of
the variability at time scales below the dating uncertainties is averaged out. We employ a simple yet effective
framework to assess such time scales whereas age uncertainty is still propagated. To this extent, each of the N
single MC-realizations returned by the COPRA algorithm is analyzed separately by means of the statistics of
interest. This technique yields N values for the respective statistics which subsequently can be averaged and
tested for significance with a suitable hypothesis test. In particular, we pursue this framework for identification
of extreme hydroclimate conditions (Fig. 11.1B) and the spectral/time-frequency analysis (see Fig 11.1C and
suppl. Fig. F.7- F.11), all discussed in detail below. Whenever a single MC-realization is needed as a reference,
we use the realization that has the highest average correlation to all other realizations and refer to it as the
most central realization (MCR). Both (detrended) stable isotope MCRs are shown in suppl. Fig. F.4, providing
an overview of the seasonal- and decadal-scale variability.

Similar ensemble-based procedures for propagating dating uncertainties in palaeoclimate proxy time series
have been carried out in other works and it is argued that this approach can reveal more information than
the usual ‘average age-model approach’ [510]. With the focus on intra- and interannual-scale variability in
this work, the individual multi-centennial trend is first extracted from each realization (see Fig. 11.1A) using
Singular Spectrum Analysis [300] with w = 50 (≈ 10yr). At this time scale, impact by irregular sampling is
small. For each of the detrended realizations, the respective statistics are computed and a null-hypothesis is
defined. Significance testing is carried out to test whether the obtained values are significantly different from
the null model for each MC-realization.

Identification of annual extreme events
For the identification of extreme hydroclimate conditions (Fig. 11.1B), we define an upper and lower thresh-
old based on the 95% (5% )-quantile of all detrended proxy amplitudes. Next, we check for each year how
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many proxy realizations exceed/fall below this threshold, indicating extreme hydroclimate conditions. As
this is carried out separately for the 2000 MC-realizations of both stable isotope records, this extreme event
indicator ranges between [0, 2000] and is normalized to [0, 1] by dividing by N = 2000. It has to be noted
that in this analysis, no correction is applied for controlling for the variations in sampling resolution (see below).

Time-frequency analysis
We carry out a time-frequency analysis to examine whether a seasonal cycle can be reliably detected through-
out the full stable isotope records in presence of dating uncertainties, irregular sampling and aliasing effects.
Despite the very high resolution of YOK-G proxy records, age uncertainty in the range of 2-12 years (see
suppl. Fig. F.1) obscures spectral peaks for both δ13C and δ18O time series. Hence, we apply time-frequency
analysis for each age model realization separately first and then tested for significance jointly to ensure that
the identified cycles do not depend on a specific age model realization.

A continuous Wavelet analysis is applied to study the significance of different cycles continuously through-
out the Common Era (using the PyCWT package) [356]. Since continuous Wavelet spectra (CWS) cannot
deal with irregularly sampled data, linear interpolation is applied to the proxy time series with an optimized
interpolation sampling time of ∆t = 0.30 years that still allows for extracting a seasonal cycle. Optimization
is carried out based on Lomb-Scargle (LS) periodograms (suppl Fig. F.8A/C). Significance testing is based
on irregularly sampled AR(1)-surrogates (estimated from non-interpolated data) and consequently includes
the variations in spectral power due to changes in the sampling resolution that are expected from an AR(1)-
process. A total of 2000 CWS are computed based on each proxy realization. This yields a single ’Monte-Carlo
Wavelet Spectrum’ (MC-Wavelet Spectrum, suppl. Fig. F.8B/D) that displays the number of proxy realiza-
tions indicating significant spectral power for a given time and frequency. Potential aliasing effects during
time periods where sampling resolution in the original records falls below the Nyquist frequency (red crosses,
Fig. 11.1C) is tested for with a simple sinusoidal model (see suppl. Fig. F.11). The seasonal cycle indicator
in Fig. 11.1C is computed from the spectral band averages (0.5-1.5 years) of all Wavelet spectra obtained
from the ensemble of δ13C realizations. It ranges between 0 (no proxy realization indicates significant Wavelet
power around the annual band) and 1 (all 2000 proxy realizations indicate significant Wavelet power around
the annual band). We test how adequately the CW-analysis – despite its limitations for irregularly sampled
time series – captures the relevant cycles in the record using LS periodograms [335] (suppl. Fig. F.8A/C)
with a Welch-overlapping sequences approach for more robust spectral estimates. We assess the significance
of spectral peaks by an implementation of the REDFIT algorithm in Python 3.7 [338].

Recurrence analysis
We perform recurrence analyses to characterize the varying degree of predictability of the sub-annual rainfall
distribution. Recurrence analysis is based on the computation of a (binary) recurrence matrix R that indicates
the recurrence between two states at times i and j by a value of 1 while 0 represents no recurrence between
those values. Recurrence plots are a powerful tool in the analysis of nonlinear time series that, for example,
provide quantitative measures to detect regime shifts or identify couplings [20, 29].

Two time series values are regarded as ‘recurrent‘ if their distance Dij falls below a certain threshold ε. In
this work, ε was chosen such that R is always filled with 15 % of recurrences. Diagonal lines in an RP signify
periods in which two segments of the time series show similar variations, i.e., one segment is predictable from
the other. We choose the mean diagonal line length of an RP as a quantifier of seasonal predictability. It
can be interpreted as a mean predictability time, quantifying for how many subsequent years (on average) a
sub-annual rainfall distribution could be predicted from other years.

The major obstacle of comparing the sub-annual distribution of different years is imposed by irregular
sampling. Standard procedures to compute the distance matrixD (e.g., Euclidean distance) cannot be utilized.
Moreover, the number of samples per year is correlated to the growth rate of the stalagmite and thus represents
additional meaningful information on the hydrological conditions. We employ the edit-distance method to
compute distances between sub-annual segments to account for the irregular sampling [211]. The fundamental
idea of this method is to estimate the distance between two segments by means of a transformation cost, i.e., a
sum of basic operations that need to be applied to the one segment to transform it into the other. Time series
values can only be shifted (both in time and amplitude), deleted or added whereas a certain cost needs to be
specified for each of these operations. The costs associated with shifting must both include a cost related to
the magnitudes and the time instances. In [130], a modification was introduced to account for the fact that
the costs of shifting in time should saturate beyond a certain time scale τe. The (m)edit distance between two
segments Sa and Sb resulting from these added costs should be minimized over all possible combinations of
operations and is given by

D(Sa, Sb) = min
C


∑
α,β∈C

fΛ0 (t(α), t(β); τe)︸ ︷︷ ︸
shifting

+ Λk||La(α)− Lb(β)||︸ ︷︷ ︸
amplitude change

 + ΛS (|I|+ |J | − 2|C|)︸ ︷︷ ︸
adding and deleting


with the α -th/β -th amplitudes La(α), Lb(β) of the segments Sa, Sb and the cardinalities |·| of the sets I, J

156



and C. D(Sa, Sb) is a metric distance. The cost parameters Λ0, Λk and ΛS need to be fixed prior to cost
optimization. The sigmoid function fΛ0 (t(α), t(β); τe) introduced in [130] controls the costs of time shifting.
We follow the empirical estimation procedures proposed in [211] to fix all parameters.

The (m)edit-distance method is applied to annual time series segments (w(m)edit = 1 year) on 200 years-
sliding windows (25% overlap). Due to irregular sampling, the length of sub-annual segments (i.e., values per
year) changes (see Fig. 11.1C). In [2], a systematic effect of such variations on the resulting (m)edit-distance
was identified and examined. In context of a recurrence analysis, this effect needs to be corrected which is
carried out following the proposed correction scheme: we generate 20 sampling rate-constrained surrogates
(SRC-surrogates) for each proxy realization and the time axis returned from the COPRA age model. Each
SRC-surrogate reproduces the numbers of samples per year while sampling intervals and proxy amplitude
differences are drawn randomly, yielding a new set of synthetic time axis and time series. This way, the
systematic sampling rate bias and its relation to variance in the amplitudes are conserved. A recurrence plot
is computed for each SRC-surrogate following the procedure outlined above (examples: suppl. Fig. F.12). For
each RP, we compute a mean diagonal line length Tpred that represents the mean prediction time of the given
time window (in years). We account for the effect of nonstationary sampling rate by defining the relative
prediction time:

τpred =
Tpred

T
(surr)
pred

with T
(surr)
pred as the 95%-quantile of the mean prediction time distribution obtained from the SRC-surrogate

distribution. Whenever τpred > 1, sub-annual proxy variations can be interpreted as predictable for longer time
periods than expected solely from variations of the sampling resolution. Age uncertainty is partly included by
repeating the analysis for 20 randomly selected, distinct proxy realizations due to computational constraints.
Additional effects that result from stalagmite growth rate variations but are untreated by this method are
conceivable, such as a wet season bias.
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IV

Discussion





12 | Conclusion

In this dissertation, I worked towards advancing several approaches in RA with a focus on their
applicability, in particular in the context of palaeoseasonal records. With research questions
(Q1) & (Q2), I wondered whether concepts from the analysis of self-similar textures can be
effectively applied to RPs and if conceptual links between both concepts can be revealed.
(Q3) links RA and recurring spatial patterns. (Q4) & (Q5) focus on Palaeoseasonality and
the related technical challenges. We can now recapitulate to which extent these initially raised
research questions were answered. Following, I will draw links between the broad range of
research presented in this dissertation and compile a synthesis. Finally, open questions and
limitations provide opportunities for future research which I will outline briefly.

The evaluation of how each work presented in this dissertation contributes to answering
the overarching research questions is best summarized in a point-by-point manner, supported
by a visual summary (Fig. 12.1):

(P1) In this work, I proposed RL as a multiscale recurrence quanitifcation measure. Its most
obvious advantage is that it does not rely on the presence of line structures in an RP,
avoiding many of the related pitfalls [78, 79]. RL opens new perspectives on the analysis
of RPs based on recurrence statistics in partitioned RPs rather than constricted struc-
tures. Moreover, its sensitivity to transitions at different time scales offers a promising
recurrence based approach for one of the most frequent and vital problems in time series
analysis: the characterization of a signal’s time-frequency content. Its definition and ap-
plications were a first step to answer (Q1). RL captures features similar to, and perhaps
beyond, e.g. a continuous wavelet transform, as RPs also recover nonlinear oscillations,
unstable periodic orbits and can be computed from high-dimensional systems.

(P2) The recurrence flow measure defined in this work draws its strengths from the same gen-
erality of RPs: it provides a nonlinear dependence measure even for high-dimensional
systems. It is thus more versatile and readily applicable to such systems than conven-
tional measures, such as mutual information. It captures non-uniform delays in the
dependence structure between several variables that are linked at multiple time scales
(Q1) and is thus well-suited as a measure for selecting non-uniform delays in the state
space reconstruction problem. It appears to be promising and worthy further develop-
ment, as I will discuss in chapter 14.

(P3) Spatially-extended systems, such as large-scale atmospheric circulation, constitute re-
curring macroscopic regimes that can only be sufficiently understood from their full
spatial representation. To define recurrences in such systems, new formalisms need to
be considered (Q3). I undertook first efforts to define recurring regimes in mid-latitude
atmospheric circulation patterns based on partitioned recurrence networks. The identi-
fied regimes prove meaningful, a) in terms of their dynamical properties (reflected by the
considered RQA measures), b) in the state space constructed by kPCA, and c) by means
of their climatic origins (e.g. identification with known climate patterns like the AO by
composite patterns). Thus, the desired classification of regimes was successful, but a
better understanding of transitions (as desired in (Q3)) will need further investigations.
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(P4) This work represents the strongest progress in answering (Q5). When I was working
on proxy records derived from speleothems in (P6) & (P7), I encountered a common
problem: sampling rates of, e.g. stable isotope time series are not only non-uniform
but also are also non-stationary. This non-stationarity is by itself often the result of
a complex process, for example, growth of a stalagmite. To reliably detect regime
shifts in the magnitudes of the records, i.e. the time series, I designed a constrained
randomization scheme with a novel kind of surrogate (‘SRC-surrogates’) to control for
the effect of shifts in the sampling, i.e. the time axis. While the edit distance method
provides an effective framework to carry out RA with irregularly sampled time series
with respect to the non-uniformity problem, this contribution explored the specific
biases in RQA that result from systematic dependencies of transformation costs on the
local sampling rate. Specifically for detecting shifts in seasonal-scale predictability – as
exemplified with the Niue record – this method helps to gain confidence in the identified
transitions, undoubtedly building a supporting case for (Q5).

(P5) This work provides a foundation for the applied studies on Palaeoseasonality carried
out in this thesis, and hopefully beyond. Concerning (Q4) & (Q5), it informs on the
methodological challenges not only for speleothem proxy records but for a broad range
of palaeoclimate archives. A reliable quantitative analysis of changes in seasonality
requires a profound understanding of the information encoded in a proxy, low dating
uncertainties and very high sampling resolution. While I believe that technological
advances will spawn more such records in the near future, I found that still a majority
of palaeoclimate studies limit investigations to a qualitative level (‘wiggle matching’)
and do not adequately propagate uncertainties. I collated tools to elevate future studies
of palaeoseasonality beyond a qualitative understanding and encourage stronger cross-
disciplinary collaborations between the ‘palaeo-experts’ and ‘method-experts’.

(P6) In a first application of RA to a palaeoseasonal record that fulfills the requirements
stated above, I focused on the ‘seasonal amplitude’ of the record and potential links
with ENSO dynamics. The 1000-year, mid-Holocene record from Niue Island in the
Central Pacific offers remarkable temporal resolution, especially for the greyscale time
series compiled from scans of the stalagmite surface along its growth axis. After gaining
a general understanding of how we can interpret this and other proxy time series using
PCA, I conducted continuous wavelet and recurrence analysis. In the wavelet analysis,
I used a modified version of the standard AR(1)-hypothesis test to assess significance in
the presence of the non-stationary sampling rate. Significant variability in the 2-8 yrs.-
band throughout the record indicates that ENSO was active over the whole observation
period (contributing to (Q4)). RA of the seasonal amplitude corroborates the findings
from (P4), even though I used different approaches in both analyses. The identified
phases of low and high seasonal-scale predictability yield interpretable insights beyond
variations in the stalagmite’s growth rate, responding to (Q5).

(P7) This final transdisciplinary work encompasses four fasinating scientific disciplines alto-
gether: Climate Research, Palaeoclimate, Archaeology and nonlinear time series analy-
sis. After a period of demographic expansion (600-750 CE), the urban states formed by
Classic Maya underwent dramatic contractions between 750-950 CE. The YOK-G record
offers the three conditions outlined above for seasonality reconstruction: interpretable
proxy variability, low dating uncertainties and very high sampling resolution. Method-
ologically, I implemented a notion of recurrence that considers the research question (Q4)
and technical challenges (Q5) alike. This notion is based on splitting stable isotope time
series into annual segments and comparing pairs of segments by means of their trans-
formation costs. Two annual segments with sufficiently low transformation costs give
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a recurrence. The mean diagonal line length Tpred in the resulting sliding RPs informs
on the average prediction time of seasonal rainfall conditions. By correcting Tpred for
biases due to non-stationary sampling (based on SRC-surrogates as proposed in (P4)),
I detect significant shifts in seasonal predictability potentially relevant to Maya farmers
and, in turn, societal stability. I identified a continuous decline in seasonal predictability
that aligns well with the period of strongest population decline. My coauthors and I
argue that the complex disintegration of Classic Maya was at least partially triggered or
amplified by this reduced predictability and provide a potential climatological scenario
that aligns with the observed dynamics, providing a multi-faceted contribution to (Q4
& Q5).

Novel approaches in
recurrence analysis

Palaeoseasonality
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Figure 12.1: Overview of how the presented works contribute to answering the overarching research
questions. Links between questions (Q) and papers (P) signify that the corresponding works have
contributed to answer the respective question. Dashed lines indicate that question and paper are
linked, but that the work did not help to answer the research question considerably. Arrows mark
works that use concepts from other works.
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13 | Synthesis

In this chapter I aim to reconcile all findings. I have started this dissertation by introducing
nonlinear time series analysis as a research discipline that assembles concepts from the the-
ory of dynamical systems and puts them into practise. This procedure entails methodologies
that need to be tailored to the studied data with its individual complexities and technical
challenges. The main focus of this thesis was the conceptualization and progression of such
(nonlinear) TSA methods, especially in RA. Several applications have substantiated this pro-
cess of conceptualization and enabled us to validate the efficacy of the proposed approaches.
Altogether, this has helped to answer some of the overarching research questions, as will be
shown now, and has left some partly unanswered.

Research questions (Q1) and (Q2) are tightly interwoven as both resulted from a curious
intuition I expressed during the beginning of my doctoral research: does the apparent resem-
blance of patterns in an RP to self-similar textures bear any deeper implications and, if so,
can we utilize this? Fractals – the mathematically pure instantiation of self-similarity – are
generated by recurrent procedures, as I was not the first one to notice [90]. While I found that
in fact, RPs yield non-integer box-counting dimensions in most interesting cases (supported
by [88]), this does not by itself entail any conceptual link to, for example, the self-similarity in
other properties of the system. The attractors of many chaotic systems are known to exhibit
strangeness, meaning that their box-counting dimension is fractional. This results from the
‘stretching & folding’ of phase space vectors, a transformation that, after some number of
iterations, will recur to its original state (an experience everyone who has ever baked a pizza
from scratch has had before). As expressed in (Q2), one would expect that given the interwo-
ven nature of recurrence and self-similarity, this would entail immediate links between both
concepts. For instance, I briefly tested if Multiplicative Binomial Cascades [511], a class of
iterative random processes, could serve as a potential generator of simplified, ‘surrogate’ RPs
(another open problem of RA). These cascade processes in essence reverse the conventional
box-counting approach to generate (multi)fractal patterns and depend on a few parameters
which could in turn imply links to phase space dynamics. However, I did not find any formal
correspondence between the two instances of self-similarity over the course of my doctoral
work. Nor were any informative and robust links between self-similar properties of time series
(e.g. Hurst exponent) and self-similar properties in their RP identified. Consequently, (Q2)
remains an open question and will likely require a more rigorous, mathematical examination.

I have focused my efforts on defining and understanding utilizable tools based on ideas
from the characterization of self-similar patterns that would be valuable additions to the al-
ready broad toolbox of recurrence quantification measures. This resulted in (P1) and (P2).
RL proved to be of great utility in detecting transitions of different origins with a easily inter-
pretable scale-sensitivity [1], and is a straight-forward application of the original concept to
RPs. Furthermore, RL also enabled us to reveal a difference between the dynamically similar
but practically opposing regimes of ‘combustion noise’ and ‘near blowout oscillations’ in pres-
sure time series from a thermoacoustic combustor for the first time. Succolarity, originally
proposed by B. Mandelbrot and formally defined for 2D binary textures afterwards [512], did
not turn out to be of great additional utility for the detection of regime shifts beyond what is
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already provided by RL. Succolarity is known not to exhibit any noteworthy scale-sensitivity
[512]. However, additional contemplations resulted in the definition of the recurrence flow in
(P2) with a different methodological focus: the characterization of nonlinear dependencies for
high-dimensional time series data. Even though it is merely a by-product of the efforts under-
taken based on (Q1 & Q2), it proved a multifaceted tool, for example, in the reconstruction of
a system’s state space. A recent work [141] on this problem has regarded the ‘optimal’ state
space reconstruction problem less traditionally (i.e. as it was originally proposed by Whitney,
Mañé and Takens) but more problem-oriented: from a practitioner’s point of view, optimality
depends on the research question. The recurrence flow selects optimal, non-redundant embed-
ding delays based on the clear expression of diagonal line structures in an RP. The resulting
notion of optimality is ubiquitous in TSA, that is, enhancing the system’s predictability. The
recurrence flow consequently suggests a (potentially non-uniform) TDE that a) is based on
non-redundant TDE vector components and b) yields an overall high-dimensional dynamics
of the system that is predictable from the cross-dynamics of its subcomponents. Compared
to other generalized dependence measures such as the continuity statistic by Pecora [75], the
recurrence flow offers a more accentuated representation of the global maximum, that is, the
optimal delay value. In applications where TDE is followed up by RA, the recurrence flow
appears a natural choice as it has clearer implications for the obtained RPs than all other
conventional methods for selecting embedding delays.

Only (P3) addresses how we can use RA to identify recurrent regimes in spatially extended
data (Q3). Here, the novel idea is to investigate recurrences between evolving ‘spatial patterns’
of a physical property, in this case given by geopotential height anomalies. The atmospheric
teleconnection patterns that emerge from spatially distant, albeit synchronized atmospheric
pressure variations are known to result in recurring, often persistent regimes. The use of
recurrence networks, a graph representation of a recurrence matrix, gives rise to a generalizable
way to capture these regimes as communities in the network. The resulting regimes are well-
separated in the space spanned by kernel principal components. The RA of these regimes not
only substantiated the interpretation of how these regimes can be understood – it also offered
another opportunity to test the scope of RL as a classifier of dynamical complexity. In this
context, I have interpreted RL as a measure of diversity of recurrence patterns at decadal
time scales. It was shown that RL provides additional information beyond the traditional
recurrence quantifiers. Moreover, I extended RL to diagonal and vertical lines, showcasing its
versatility. Other measures such as DET confirmed the persistence of atmospheric patterns
associated with blocking events – the root cause of synchronized extreme weather events that
are expressed more and more severely lately.

While all these works focus on developing or transfering novel methods to broaden the
scope of RA, (Q5) calls for the modification of existing tools to render them suitable for
data-specific challenges. This has been tackled in (P4). After reviewing a broad body of
palaeoclimate literature with a focus on extracting seasonality from various archives (see (P5)
[3]), I tried to introduce my insights into applications (P6 & P7). In the analysis of stable
isotope time series from speleothems, two technical challenges stand out: the propagation
of uncertainties and consideration of irregular sampling. While the first problem gained
particular relevance in (P7), the latter is usually treated in RA by using the edit distance as
the metric distance. My research question (Q4) however suggested a rather specific notion
of a recurrence as implemented in (P4 & P7): a system recurs to its ‘seasonal state’ if two
seasonal cycles align closely enough. Several ways to define a cycle are possible (e.g. based on
local maxima [513]) but I decided to limit its definition to whatever evolution of the system is
covered within one year. This, in turn, implies that temporal windows are equally sized but,
given a non-stationary sampling rate, the number of values is strongly non-uniform. For proxy
records, this is a common problem as non-stationarity is imposed by the stalagmite’s growth
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rate (reflecting cave-environmental parameters) and sampling strategies of the experimentalist
in the laboratory. Similar problems yet arise with different data if the evolution of a system
(for example, pressure in a combustion engine or a stock price) is partitioned/stratified into
segments according to a relevant order parameter (for example, air flow or traded order
volume). While now we control for the order parameter and thus only compare pressure/price
changes for the same unit of air flow/order volume, the segment size becomes a free parameter
that needs to be corrected for. Biases are expected to arise not only for the dissimilarity
between segments but also for some other statistical properties, for example variance. It
needs to be stressed that this was found to be of considerable relevance only in cases when
segment sizes are small, covering less than about 50 values, as it is the case for the problems
studied here. The larger segments get, the less pronounced the finite-size bias becomes.
The proposed correction approach, based on generation of SRC-surrogates, offers a remedy
without the need to understand the exact statistical law of how the property of interest (edit
distance, variance, etc.) scales with segment size. Attempts to do so did not turn out to be
fruitful. I expect this relationship to differ significantly between different systems, depending
on their serial dependence, the strength of stochastic components in the signal, and higher
order properties. With respect to (Q5), the proposed method represents an expedient step
towards equipping RA with adequate tools to study Palaeoseasonality, but it does not yet
provide the solution to the more general problem (discussed in Chapter 14). It did, however,
enable me to study regime shifts in the records from Mataga Cave (P6) and Yok Balum Cave
(P7).

In the extraction of seasonality from stalagmite C132 (Mataga Cave, Niue Island), I was
able to explore two different approaches to assess seasonal predictability at the same phase in
my doctoral research: in (P6), I limited the definition of seasonality to the expression of sea-
sonal amplitude, i.e. contrast between wet and dry season. Based on the assumptions that a)
calcite layers were deposited annually, b) dark (bright) layers represent denser (more porous)
calcite crystal patterns and thus drier (wetter) conditions, and c) the wet season is on average
wetter than the dry season, I recalibrated the greyscale record to (pseudo-)monthly precision.
The RA of this highly-resolved record revealed a period of low predictability (quantified by
DET) prior to 6.2 ka BP and another one between 5.9 - 5.7 ka BP. Similar periods of low
seasonal predictability were identified with the more comprehensive framework in (P4) where
I used the edit distance to account for the full seasonal rainfall proxy profiles and applied the
proposed sampling rate correction, demonstrating a satisfactory robustness of the identified
shifts. Potential links between seasonality and ENSO dynamics in this understudied region
were another interesting outcome of this study, contributing to both research question (Q4 &
Q5).

A similar RA framework was used in (P7). The study of Palaeoseasonality and its poten-
tial links to the disintegration of Classic Maya urban centers was undoubtedly one of the most
intriguing, yet challenging research problems that accompanied me over the entire course of
my doctoral research. Methodological advancements, especially the sampling rate correction
in (P4) and modifications of existing TSA methods to propagate uncertainties in (P7), were
motivated by this exciting application. I have already discussed how the irregular sampling
problem was considered here. The propagation of uncertainties must be regarded as an equally
vital consideration for studying Palaeoseasonality. Measurements of isotope ratios on stalag-
mites yield negligible errors, and thus dating errors are the main source of uncertainty. Most
state-of-the-art age models (e.g. OxCal or BChron) offer the opportunity to study a time
series in an ensemble fashion where each realization of the ensemble represents one possible
candidate for the ‘real’ series of observations. COPRA, the age modelling software used here,
does so too. However, COPRA users (as well as users of other comparable age modelling
products) have rarely exploited this option. In spite of more sophisticated approaches to
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uncertainty propagation for time series [51], I have explored the potential of COPRA age
model ensembles for a MC-based uncertainty propagation for several TSA methods (continu-
ous wavelet analysis, LS periodograms, extreme event analysis, RA, etc.). This decision was
mainly a result from the striking simplicity of the approach. Put briefly, a TSA method of
choice just needs to be repeated for each MC-realization, with each one exhibiting variability
at the highest assessible time scales without any variability being ‘canceled-out’ as it is the
case for the common age model medians/averages. From (P7), the MCR, as an alternative
representative realization of an age model ensemble, appears to be a solid solution whenever
only a single realization is needed. Hypothesis testing (e.g. as carried out for the MC-wavelets
in (P7)) is straight-forward and entails intuitive visual representations that incorporate un-
certainties. Over the past three years, I have noticed that more and more researchers use
comparable schemes which I believe to be a promising development.

For the study of seasonal properties and regime shifts in the YOK-G proxy records, I
assembled a plethora of TSA methods. This exploration of how changes in seasonality can
generally be expressed (partly reflected in (Q5), see Fig. 9.1), and which of these expressions
can be identified in speleothem records revealed a) different sensitivies of methods that quan-
tify seasonal amplitude (e.g. variance, interquartile range, median absolute deviation, extreme
events) against irregular sampling, b) pitfalls of standard methods to quantify seasonal pe-
riodicity (in particular, wavelets) in presence of varying sampling rates, c) severe limitations
for quantifications of seasonal timing (e.g. centroid of seasonal cycle) with respect to dating
uncertainties, and d) variable robustness of NTSA methods that characterize seasonal com-
plexity (e.g. RA, permutation entropy, visibility graphs). The characterization of seasonal
predictability based on the sampling rate corrected mean diagonal line length τpred of an (edit
distance-based) RP that was finally employed in manuscript (P7) is the outcome of this se-
lection process. One could wonder why I did not take the opportunity to use the recurrence
quantification measure proposed by myself here, namely RL (P1). As mentioned in Chapter
1, TSA requires parsimony (Occam’s infamous razor). In this sense, the already established
mean diagonal line length sufficed and revealed valuable insights on the predictability of sea-
sonal rainfall. The method development sparked by (P7) and the findings that resulted from
application of these methods probably represent the most consequential contribution to (Q4
& Q5). Moreover, it gave rise to numerous additional questions and challenges for future
research that will be discussed in the following chapter.
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14 | Outlook

According to Friedrich Nietzsche, "Every philosophy is the philosophy of some stage of life".
I believe that this also touches on the progression of scientific knowledge. In the near future,
many of the insights in this dissertation may be rapidly progressed into different directions
or surpassed, either by myself or others (which I genuinely hope for). I will summarize some
of these prospects and research avenues here.

Novel approaches in recurrence analysis

The works that deal with (Q1) suggest several potential pathways for future research. The in-
troduction of RL as novel recurrence quantification measure in (P1) for instance reveals several
straight-forward modifications and further applications. Firstly, computation of lacunarity by
the proposed static grid approach offers lower sensitivity to significant structures than a glid-
ing box approach. The latter, however, requires higher computational costs. Implementation
of efficient gliding box algorithms for RL could enhance its scale-sensitivity to more subtle
structures with low expenses in computational complexity [514, 515]. Generally, the idea of a
box-counting based RQA could prove benficial for some systems that encode their complexity
not in regular line structures. A transfer of the RL concept to recurrence networks is also
straight-forward and could reveal the relation of scale-dependent heterogeneity in recurrence
patterns to other properties of the topology of recurrences. Furthermore, application of RL
to palaeoclimate records could unveil additional advantages of the method. Potential use of
non-uniform boxes could account for irregular sampling in proxy records. Lacunarity is in
general also definable for ‘colored’ textures, i.e. grayscale matrices. Hence, an application to
weighted or unthresholded RPs is conceivable and could be useful in application to RPs that
involve uncertain recurrences. This is not straight-forward using traditional recurrence quan-
tifiers. From the studied examples, the identified difference between combustion noise and
near blowout states in a laboratory thermoacoustic combustor was a satisfactory validation of
the method and should be studied further. If fast-scale oscillations in acoustic pressure fluctu-
ations robustly distinguish between both regimes, this should be also detectable in additional
similar experiments with potential utility for industry use. On a different note, it has recently
been showcased that RPs bear great potential for the analysis of a signal’s spectral proper-
ties [516]. A strongly related problem is the analysis of signals with non-stationary spectral
properties, e.g. transient cycles. Here, RL represents a vantage point for a first approach of a
recurrence based time-frequency analysis method. This could particularly shed light on cases
where traditional methods cannot yield robust results, such as cycles in high-dimensional dy-
namical systems, identification of transient quasi-periodic oscillations and unstable periodic
orbits. A suitable approach for ‘RP-surrogates’ would be of great value here to equip this
approach with a hypothesis test, as it has already been pointed out elsewhere in more detail
[145].

While (Q2) remains an open question for now, it should nevertheless motivate further
studies on the links between self-similarity and recurrence. This work has shown that from
an applied perspective, their synthesis can be prolific. First ideas on how one could instead
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explore conceptual links between self-similarity and recurrence more effectively using Hamil-
tonian systems were discussed towards the end of my doctoral work and will hopefully bear
fruit in future works.

The idea that the rich information on dynamical properties of a system encoded in an RP
appears useful for selecting parameters of an ‘optimal’ state space reconstruction is now 30
years old [142]. Yet, a systematic recurrence based TDE framework is still missing. The re-
curence flow approach proposed in (P2) seems promising as a foundation for such a framework
and I have undertaken considerable efforts in this direction in the final phase of my doctoral
work. In particular, defining a both effective and parsimonous measure of irrelevance based
on RPs would be the logical next step. Classical methods, such as the FNN approach, are
effective but come along with some shortcomings, for example, when analysing map-like time
series as they are often found in the Geosciences [517]. Here, RPs prove generally effective
which could render a recurrence based estimator for the optimal embedding dimension more
robust in such cases. State spaces reconstructions obtained with this approach could prove
effective in predicting the dynamics of high-dimensional systems since the notion of optimality
aims towards well-expressed diagonal lines in the RP. The resulting approach could also be
transfered to closely related problems, for instance the selection of a sub-set of informative
(non-redundant) explanatory variables for the prediction of a response variable from a large
dataset that comprises potential confounders. What is more, I have briefly tested the utility
of the recurrence flow measure of dependence in identifying regime shifts and found it to be
potentially helpful for systems in which a critical transition is preceded by an increase in serial
dependence.

In (P4), I proposed an approach tackling the problem of irregular sampling as outlined
in (Q5). In RA, the introduction of the edit distance method was arguably a very fruitful
development. From my experience, it yet requires heuristic calibration of several parameters
(e.g. various cost parameters and the window size) which sensitively affect the validity of the
transformation costs and, in turn, alter the representation of recurrences. Here, a sufficient
understanding of the method and some experience is required. In the palaeoclimate commu-
nity, sophisticated methods like edit distance-based RA are not very widespread yet, raising
the need for cross-disciplinary collaboration if such methods are to be applied adequately. In
an attempt to come up with a more simple approach for defining recurrences in irregularly
sampled time series, I became convinced that, indeed, the edit distance is a very effective
choice compared to other similar measures (e.g. Dynamic Time Warping, Fréchet distance,
Nearest neighbour distance) which are used in other disciplines that face comparable problems
(e.g. astrophysics or ecology [518]). One conceptually intuitive approach that could poten-
tially be used as an alternative ansatz are kernel based (dis)similarity measures, underlined
by their effectiveness in assessing correlations for irregularly sampled proxy time series [217].
Nevertheless, the edit distance itself should be further developed, applied to different settings
(e.g. similarity of time series that are naturally ‘short’) and rethought, for instance as a pos-
sible measure for characterizing scale-dependent variability in time series (as initiated here:
[131]).

Palaeoseasonality

The problems associated with irregularly sampled proxy records (partly raised in (Q5)) are
plentiful and have been discussed several times in this dissertation. After working on this chal-
lenge for the past three years, novel definitions and modifications of existing TSA tools still
appear as the most obvious and immediate way to tackle this problem, yet they do not nec-
cessarily represent the only relevant way forward. A research avenue that deserves additional
attention is the systematic investigation of sensitivities of existing methods to irregular sam-
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pling and other sampling-related intricacies (e.g. signal smoothing). This should be based on
simple proxy toy models, more sophisticated process-based (e.g. cave-environmental processes
for speleothems) proxy system models and finally, large data sets of real palaeoclimate records
(e.g. PAGES2k or SISAL). A natural focus should be put on the most frequently used meth-
ods for palaeoclimate archives, for instance correlations, power spectra and PCA from which
each will exhibit time-scale dependent biases due to irregular sampling [217, 519, 520, 521].
Effects of common data treatment strategies such as linear interpolation need to be accounted
for. While most studies in this direction currently focus on stationary sampling rates, the rel-
evance of non-stationarity in the sampling rate has been emphasized here (see P4) and should
motivate more realistic modelling of irregular time axes for proxy records. Determining the
relevance of identified biases for the discrepancies observed in some systematic model-proxy
comparisons would likely improve utilisation for data-model comparison. All of this applies
in particular to the study of highly resolved proxy records, e.g. for studying Palaeseasonality.

In the review process of (P6), one reviewer raised the problem that in the provided RA, the
notion of predictability is difficult to understand and deviates from the notion of most climate
scientists, i.e. predictable dynamics from some underlying model. While I am convinced that
the notion of predictability based on diagonal lines in RPs is in fact very informative and
more versatile than most metrics that are based on models (these usually come with a set
of preliminary assumptions), the concern is valid and could motivate a comparative study of
model-based predictability metrics and the ones provided by RQA.

Finally, no other study presented here has probably inspired as many prospects on possible
future research as (P7) and the associated research question (Q4). While some of them have
already been mentioned, I will list the remaining ones here for brevity:

• Some highly resolved proxy records that reflect hydroclimate allow for extracting ‘short-
lived ’ extreme events (Fig. 11.1), going beyond the notion of ‘droughts’ and ‘floods’ as
continuous longer intervals of anomalous hydroclimate conditions common in Palaeo-
climate. However, associated uncertainties with such short-lived extreme events due to
proxy-specific issues (e.g. the ones mentioned above related to irregular sampling) need
to be studied in more detail.

• Another highly resolved record from Yok Balum cave (YOK-I) is available and has been
extensively studied before [454]. In the analysis of Yok-G stable isotope records, a range
of discrepancies in δ13C and δ18O measured on YOK-G and YOK-I stood out that are
expressed in unaligned prominent dry/wet periods. These different expressions need
to be examined in detail and can hopefully be resolved based on cave-environmental
considerations (e.g. different drip rates and flow paths) and statistical analysis (e.g. cor-
relations and mode decomposition).

• Sensitivity of Classic Maya populations to regional droughts has been explored using
conceptual modelling [478]. Our results on their potential vulnerability to variations
in seasonal predictability could be incorporated in a conceptual modelling approach
to potentially reveal additional socio-hydrological feedbacks and reflect on agricultural
responses.

• The hypothesis on less coherent ITCZ dynamics during the TCC put forward in (P7)
will require further investigations. These would benefit from both adequate proxy re-
constructions of ITCZ dynamics for the past approx. 2000 years (comparable to the
comprehensive 1000 year-reconstruction and methodological approach in [492]) and sup-
plementing this analysis with atmospheric model results (e.g. ECHAM5 [522]) to test for
different scenarios. While this is undoubtedly a challenging enterprise, it would likely
provide further insights in the ongoing debate of Common Era ITCZ dynamics.
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Summary

Let us finally summarize the key findings once more, responding to all research questions and
including some future prospects:

(Q1) Yes, concepts from the study of self-similar patterns bear great potential for the use in
RA. In particular, RL allows for the identification of regime shifts in different nonlinear
time series and provides a first potential approach for a recurrence based time-frequency
analysis. Moreover, the recurrence flow of an RP offers a recurrence based framework
to study couplings in high-dimensional systems where multiple time delays play a role
and could be used for a recurrence based state space reconstruction approach as well as
related problems, for example for variable selection.

(Q2) No robust and meaningful universal links between the self-similar properties of recur-
rence patterns of a signal and the self-similar properties of the signal itself could be
identified in this dissertation. While there is a striking intrinsic link between recurrence
and self-similarity in general, I believe that a more conceptual, mathematical exploration
with suitable paradigmatic systems needs to be undertaken to reveal new insights on
this fascinating problem.

(Q3) One way RA can be used to characterize transitions between regimes of spatially-
extended systems is to identify communities in the recurrence network associated with
RPs. Conceptually, recurrence relations are established between spatial patterns of a
climate field. This was shown for patterns of geopotential height that characterize at-
mospheric circulation. A classification of their dynamical properties was achieved based
on traditional and novel recurrence quantification measures. Additional applications
to other climate fields or complex systems that exhibit distinct spatial patterns and
stuyding transitions between regimes will help to further develop this approach.

(Q4) Yes, RA provides effective tools to reliably detect significant transitions in Palaeoseason-
ality for different palaeoclimate reconstructions from speleothems. I explored different
ways in which seasonality and seasonal predictability can (and cannot) be quantified
in different settings. Diagonal line based measures are well-established and implement
a notion of ‘predictability’ that is easily transferable to applications in Palaeoseasonal-
ity. In particular, using the (sampling rate corrected) mean diagonal line length as a
proxy for seasonal prediction times offered valuable insights on how changing seasonal
rainfall conditions could have affected Maya agriculture, implying a chain of events that
potentially contributed to the observed fragmentation of Classic Maya urban centers.

(Q5) Accounting for data-specific challenges and limitations in the study of Palaeoseasonality
using TSA tools in general still has a long path ahead. While many recent contributions
in this field are very promising, their widespread use needs to be promoted by easy-to-
use software and cross-disciplinary collaborations. The particular problem studied here,
i.e. biasing effects imposed by growth rate variations of a stalagmite, could be treated
by a novel constrained randomization procedure. However, a more general treatment
of sampling effects and uncertainty propagation call for more general methodological
frameworks and numerical experiments on pseudo-proxies, universally enclosing several
prominent (N)TSA methods.
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Appendix





A | Code implementations

For all first-authored works, comprehensively commented scripts and brief examples on how
to use them were generated and uploaded to Github or public repositories. I provide a short
summary of these online repositories here as an overview to facilitate the download. Every
code was implemented in Python (Version 3.7). Package requirements are specified in the
respective repositories.

I distinguish between three different ways the source code is provided: (A) ‘loosely’ com-
posed scripts and examples that should enable a researcher to reproduce figures and results
from the corresponding manuscripts with some additional effort and are readily applicable to
other data as well, (AA) scripts that have been implemented in a way that allows straight-
forward replication of all main figures of the respective manuscript and are readily applicable
to other data as well, and (AAA) code that is given as an extensively documented Python
package in an object-oriented fashion, including illustrated examples and tutorials.

(Q1) Recurrence Lacunarity (RECLAC):
The RECLAC Python package provides functions to compute recurrence lacunarity as
described in [1] (Open Source). Its functionality is basic at the current stage and will
probably be extended in the near future. It also offers a basic implementation of tradi-
tional recurrence quantification measures and computation of box-counting dimensions.
(AAA) https://github.com/ToBraun/RECLAC

(Q2) Recurrence Flow (RECFLOW):
Code accompanying the paper T. Braun et al: ’Recurrence flow measure of nonlinear
dependence’, 2022 (EPJ ST). A collection of functions is provided that enable the re-
searcher to compute the recurrence flow from time series or an RP, use it for TDE (with
known embedding dimension) or quantify lagged nonlinear relationships between two
variables. A short tutorial is provided as a Jupyter Notebook.
(A) https://github.com/ToBraun/RECFLOW

(Q4) SRC-surrogates:
Code accompanying the paper T. Braun et al: ’Sampling rate-corrected analysis of
irregularly sampled time series’, 2022 (Physical Review E). A collection of functions is
provided that enable the researcher to generate SRC-surrogates for a given time series
and time axis. A short tutorial is provided as a Jupyter Notebook. No implementation
for the edit distance is provided. However, a comprehensive implementation has been
put forward by Celik Ozdes and coauthors, based on the paper [131]1.
(A) https://github.com/ToBraun/SRC-surrogates

(Q7) YOK-G:
Code accompanying the paper T. Braun et al: ’Decline in seasonal predictability po-
tentially destabilized Classic Maya societies’, 2022 (under review for Communications
Earth & Environment). A collection of functions and scripts is provided that enable the

1https://zenodo.org/record/6038896#.YyHYyOqxVhE
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researcher to replicate the manuscript’s main figures. However, some computations were
originally performed on a high performance cluster and will require high computational
times. Extensive documentation is provided in a readme file.
(AA) 10.5281/zenodo.7104976
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B | Supplementary material for Chapter 7:
Recurrence flow measure of nonlinear
dependence

Appendix A: Example Systems

To assess the performance of Φ(τ) as a measure to select embedding delays, the following
systems are considered:

Numerical Insolation Model

The complex superposition of gravitational forces between the earth and the other planetary
bodies in the solar system perturbs the earth’s rotation on an elliptic orbit around the sun
and its axial rotation. The cycles that manifest due to these variations control the earth’s
climate at time scales of millions of years and are called Milankovich cycles. The nature
of the underlying perturbation renders the variations in insolation chaotic. The model pro-
posed in [146] considers all nine planets in the solar system and describes the orbit of the
moon separately. A Hamiltonian, consisting of an integrable and perturbation component,
is numerically integrated with a symplectic integrator scheme (SABAC4). Several dissipative
effects (tides, core-mantle friction, climate friction) are included. The model returns time
series for the earth’s orbit’s eccentricity, climatic precession, obliquity, and insolation, from
which we study only the latter with n = 1, 000 samples. For the computation of RPs, we fix
the recurrence rate to 5%.

Rössler System

The Rössler system is a three-dimensional, continuous dynamical system that generates a
strange attractor:

ẋ = −y − z,
ẏ = x+ ay,

ż = b+ z(x− c).
The time series only covers a few unstable periodic orbits with 3, 000 samples from which we
discard 1, 000 as transients, resulting in N = 2, 000. Uniform sampling intervals are fixed as
∆t = 0.10. We set a = 0.02925, b = 0.1 and c = 8.5, ensuring chaotic dynamics. Independent
realizations of uncorrelated white noise with different noise strengths between 0% and 100%
are superimposed on the y(t)-component to mimic measurement noise. For the computation
of RPs, we fix the recurrence rate to 8% regardless of the noise strength.

Delay Differential ENSO Model

As an example for a system with multiple characteristic time scales, we examine a delay
differential model of ENSO. On top of the seasonal mode, ENSO represents the predomi-
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nant mode of sea surface temperature (SST) variability in the tropical Pacific. The SSTs
exhibit recurring variations with time scales between 2 and 7 years between two regimes of
well-distinguishable SST anomalies: El Niño (warming phase) and La Niña (cooling phase).
These variations disturb large-scale air transport in the tropics and induce a multitude of
global climatic impacts, e.g., droughts and floods in Australia or South America. Several
conceptual models have reproduced key features of this oscillation by including hypotheses on
the mechanistic origins of ENSO, including negative and positive feedbacks of temperature
anomalies and atmospheric circulation and potential resonance phenomena with the seasonal
forcing. The model studied here is taken from [147] and mimics ENSO dynamics based on
two key mechanisms, i.e., delayed negative feedback and seasonal forcing

dy(t)

dt
= −tanh

(
κy(t− ζ)

)
+ b cos (2πωt) .

We set the frequency of the periodic forcing to seasonal forcing (ω = 1) and fix b = 1.
Variations in the delay ζ and the parameter κ give rise to dynamically distinct time series.
We study two solution types: a regular solution with a seasonal cycle and fast, amplitude-
modulated wiggles (κ = 100, ζ = 0.025) and a solution of irregular ENSO-like oscillations
with stochastic amplitude variations (κ = 50, ζ = 0.42). For both solution types, we generate
n = 10, 000 values. For the computation of RPs, we fix the recurrence rate to 5%.

Appendix B: Statistical Significance

For an uncorrelated white noise time series of infinite length, the presence of recurrences
along a diagonal can be described by a binomial distribution. The flow along each diagonal
can consequently be regarded as an idealized sequence of Bernoulli trials for which a success
is equivalent to a recurrence, i.e., a black pixel. The probability of having X unsuccessful
Bernoulli trials (no recurrences) until a trial succeeds is given by the geometric distribution

P (X = n) = (1− p)k−1p (B.1)

with expectation value 1/p . The probability of success p for each Bernoulli trial is given by
the recurrence rate and depends on ε. It follows that we can derive the recurrence flow for an
idealized uncorrelated white noise time series of length n as

θ(ε) = 1− n

p(ε)
. (B.2)

Given an observational time series of length n and a suitable choice for the vicinity threshold
ε, p(ε) can be identified with the recurrence rate and eq. (7) can be used to test whether the
recurrence flow of the real signal can be distinguished from an uncorrelated random process.
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C | Supplementary material for Chapter 6:
Revealing recurrent regimes of mid-latitude
atmospheric variability using novel ma-
chine learning method

This section demonstrates the ability of the proposed method to detect and separate recurrent
states in a simple situation, when the true solution is known. To this end, we use a toy two-
dimensional stochastic model with three-well potential, which was suggested in the work [523]
for testing clustering methods and then also used in the work [524]:

ddX = −∇V (X) + εdWt

V (X) = u(X−A1) + u(X−A2) + u(X−A3)

+b |X−Ac|2 ,

(C.1)

where Wt is the Wiener process, points A1 = (0, 0), A2 = (2a, 0) and A3 = (a, a
√

3) are the
centers of profiles u(·) which takes the form

u(X) = −α exp

[
1

|X|2 − a2

]
. (C.2)

The potential function V (X) has three minima placed in the vertices of a isosceles triangle
centered in Ac =

(
a, a√

3

)
. Here we use the same values of parameters as in Ref. [523]:

α = 21, a = 0, 87, b = 0, 12 and ε = 0.05. This model produces random walks around
the local minima of the potential function, provided that the phase trajectory spends more
time near the centers of the potential than anywhere else. Thereby, the model simulates the
situation with three regimes, or recurrent states in the phase space.

We integrate this model by Euler method with the time step 0.01. To exclude from
consideration the points which are close to each other due to the temporal ordering, we take
only each 100th point during the integration. For analysis we use 10,000-point time series
(Fig. C.1 and C.2) taken after 20,000-step spin-up period.

We applied the presented method to this data, based on two different distances: (i) simple
Euclidean distance dij = |Xi −Xj | and (ii) Euclidean distance between normalized vectors
given by Eq. 7.8. In both cases we detect three regimes, central points of which are separated
well in the plane of leading two KPCs (see Fig. C.1 and C.2). In the projections of the
phase trajectory to this plane, states that belong to different regimes fall on different linear
manifolds. At the same time, the time series of KPCs describe transitions between areas of
the regimes. However, distribution of the centralities substantially depends on the distance
choice: if in the first case it emphasizes the maxima of the probability density in 2d-space,
in the second case it captures rather the density of angles of centered states vectors, because
the normalization in Eq. 7.8 attaches all vectors to the unit sphere. The latter is especially
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Figure C.1: Analysis of time series of the three-well model (Eq. C.1-C.2) based on the simple
Euclidean distance between state vectors. Upper panels (from left to right): analyzed time series
presented in original variables; the same, but with states marked according with the regimes they
belong to; analyzed time series presented on the plain of leading two KPCs. Yellow dots mark
“theoretical” centers of the potential function V (·). Color intensity corresponds to centrality of a state
in its community. Low panels: time series of original variables (left) and leading two KPCs (right).

important in climate applications above, where we are interested in capturing the shapes of
spatial patterns rather than their amplitudes.
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Figure C.2: The same analysis as in Fig. C.1, but based on Euclidean distance between normalized
vectors defined by Eq. 7.8.
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Figure C.3: Comparison of results of recurrence quantification analysis for the atmospheric regimes
obtained in the QG3 model data set between the three different time series. The four different RQA
measures are labelled with their respective interpretation. Significant (insignificant) values are printed
in white (black). Color coding illustrates the ordering of the RQA values (ascending column-ranking)
for better comparability.
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Figure C.4: Time series of the leading three KPCs of the reanalysis data. Different colors correspond
to the obtained regimes. Since only the winter months are considered, the time series are split into
segments separated by equidistant gaps.
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Figure C.5: Recurrence plot of atmospheric patterns obtained from the reanalysis data. Recurrences
within a given regime are color coded accordingly. Since only the winter months are considered, the
RP is split into sub-RPs separated by equidistant gaps.

183





D | Supplementary material for Chapter 11:
Sampling rate-corrected analysis of ir-
regularly sampled time series

Appendix A: analytical and numerical segment size relations

In the following, we elaborate on the systematic dependence of the (m)Edit distance on
segment lengths Na = |Sa|, Nb = |Sb| in the most simple application: we study events (i.e.,
no assumptions about the amplitude of the signal) which are unevenly spaced by exponentially
distributed sampling intervals ∆ with a sampling rate λ:

p(∆, λ) = λe−λ∆ (D.1)

Consequently, the number of samples per unit interval k is Poisson-distributed

ρ(k, λ) =
λke−k

k!
(D.2)

with λ being equivalent to the expected number of samples per unit interval; E(X) = λ.
Furthermore, the n-th time step is Erlang-distributed with the rate parameter λ:

f(t;n, λ) =
λntn−1e−λt

(n− 1)!
(D.3)

which is a general result for a sum of n independent exponential random variables with
equivalent rate parameters λ [525].

We are interested in the segment size-dependence of deletion(/adding) and shifting costs
for the edit distance. This can be evaluated by considering M exponential random variables
where each is drawn from a distribution p(∆, λm) with distinct λm, m = 1, 2, . . . ,M . When
applied, this setting can be considered equivalent to a scenario where a time axis changes its
local sampling rate λm at M points and segments from these should be compared via the
edit-distance. For a specific pair of segments with sizes Na, Nb, the minimum deletion cost
(no deletions as competing to shifts included) for their transformation is

Cdel(Na, Nb) = ΛS|Na −Nb| (D.4)

Consequently, for two segments of average sizes E[Na] = λ1, E[Nb] = λ2 we obtain a minimum
deletion cost of Cdel (E(Na),E(Nb)) = ΛS|λ1−λ2|. A cost matrix Cdel(λ1, λ2) is exemplified in
Fig. D.1a. The expected minimum deletion cost for two randomly selected segments from time
periods with different rates λ1, λ2 can be computed by using the the Skellam distribution

ρs(k = |z|;λ1, λ2) =

{
e−λ1−λ2

(
(λ1
λ2

)
k
2 Ik(2

√
λ1λ2) + (λ2

λ1
)
k
2 I−k(2

√
λ1λ2)

)
if k > 0

e−λ1−λ2I0(2
√
λ1λ2) if k = 0

(D.5)
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for the difference Z = X−Y where X, Y are Poisson-distributed random variables with rates
λ1, λ2, Eq. (D.2). Ik(a) denotes the modified Bessel function of the first kind. For k > 0, the
moment-generating function is consequently given by

M(t;λ1, λ2) = e−λ1−λ2

( ∞∑
k=0

etkIk(2
√
λ1λ2)[(

λ1

λ2

k/2
)

+

(
λ2

λ2

k/2
)]
− I0(2

√
λ1λ2)

) (D.6)

With ‘Marcum’s Q’

Q(
√

2λ1,
√

2λ2) = e−λ1−λ2

∞∑
k=0

(
λ1

λ2

) k
2

Ik(2
√
λ1λ2) (D.7)

and its derivative

d

dt
Q(
√

2λ1,
√

2λ2) = e−λ1et−λ2e−t
(
λ2e−tI0(2

√
λ1λ2)+√

λ1λ2I1(2
√
λ1λ2)

) (D.8)

this can be written as

M(t;λ1, λ2) = e−λ1−λ2

[
Q
(√

2λ2e−t,
√

2λ1et
)

eλ1et+λ2e−t

Q
(√

2λ1e−t,
√

2λ2et
)

eλ2et+λ1e−tI0(2
√
λ1λ2)

] (D.9)

Differentiating this moment-generating function (using eq. D.8) around t = 0 with Leibniz
rule yields the expected value:

E[k;λ1, λ2] = 2e−λ1−λ2

(
λ2I0(2

√
λ1λ2) +

√
λ1λ2I1(2

√
λ1λ2)

)
+
(
λ2 − λ1)(1− 2Q(

√
2λ1,

√
2λ2)

) (D.10)

Hence, E[Cdel(λ1, λ2)] = ΛSE[k;λ1, λ2] (Fig. D.1a (middle)). In the right line plot of Fig. D.1a,
two columns with λ1 fixed at 3.1 are shown to illustrate the scaling of deletion costs with the
rate λ more clearly. While Cdel (E(Na),E(Nb)) shows a sharp minimum at the rate λ2 = λ1,
E[k;λ1, λ2] decreases more smoothly with increasing λ2, and increases afterwards. The latter
becomes minimal for a value λ < λ2 instead of λ = λ2 since Poisson-distributions ρ(k, λ) are
right-skewed, having higher cumulated probability mass for all values k > λ. Note that all
said above holds in the same way for adding operations.

For the analysis of shifting costs, we focus on the simple case of linear shifting costs

f̃Λ0 (t(α), t(β)) = |t(α)− t(β)| (D.11)

between the α-th event in segment Sa and the β-th event in segment Sb as proposed in the
original, unmodified edit-distance measure. To exclude effects caused by absolute timing of
events, timing of events within each segment is always transformed into the interval I = [0, 1].
The sum of all shifting costs for a pair of segments is denoted as dab = Λ0

∑
α,β fΛ0 (t(α), t(β))

with Λ0 = 1. Note that Na = Nb as |Na−Nb| deletions/addings have already been carried out.
A closed-form solution for the shifting costs between two time instances drawn randomly from
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the distributions f(x;m1, λ1), f(y;m2, λ2) most likely exists, at least for the case m1 = m2

but its computation is beyond this study. We examine shifting costs for this case numerically,
while we explicitly exclude any deletions as an alternative operation to shifting after the
neccessary |Na − Nb| deletions (‘basic deletions’) (Fig. D.1b). We fix w = 1 as the unit
interval (arbitrary units). The numerical estimate of the average cost for transforming a
segment sampled with rate λ1 into a segment sampled with rate λ2 is based on generating
time axes for a fixed time period T = 10, 000 (but varying number of events). Given a fixed
combination of λ1, λ2, a total of K = 10, 000 segment pairs are randomly sampled (with
replacement) from both corresponding time axes. The edit-distance is computed for each pair
of segments and averaged over all pairs to obtain a single value d(λ1, λ2) that is characteristic
for the combination of rates λ1, λ2. This is shown as a cost matrix Cshift(λ1, λ2) of averaged
total shifting costs between randomly drawn segments (Fig. D.1b, left). The total number of
shifts performed after deleting |Na−Nb| events generally differs for distinct pairs of segments
Sa,Sb at fixed λ1, λ2. However, when averaged over all randomly drawn segment pairs, an
increasing trend along the diagonals is observed. Furthermore, average total shifting costs
d(λ1, λ2) increase for fixed λ1 and increasing λ2 (Fig. D.1b, right) which is to be expected as
a higher number of shifts will entail higher summed costs. On the other hand, no monotonous
relation between the average shifting costs per shifting operation

C̃shift(λ1, λ2) =
K∑
k=1

d(S(λ1)
a,k , S

(λ2)
b,k )

/
max{Na, Nb} (D.12)

and sampling rate is observed (Fig. D.1b, center and bold black line on the right). With
increasing sampling rates, the cost of an average single shifting operation decreases (diagonals
of the matrix). For fixed λ1, it is maximized at a value λ2 < λ1 for the same reason as above,
i.e. the Erlang distribution being right-skewed.

If we instead examine the dependence of shifting costs on the actual segment size C̃shift(Na, Nb)
rather than the rates (Fig. D.1c), a sharp maximum at Nb = λ1 is found (black line, right
plot). Total shifting costs increase for Nb < λ1 and continue to increase more slowly for
Nb > λ1. For fixed Na, an increasing number Nb of events per unit interval increases the
likelihood that some events are placed close to the events in segment Sa, resulting in lower
distances dab(Na, Nb).
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a b

d e

Figure D.1: Subcosts for adding/deleting (a-c) and shifting (d-i) operations for exponentially dis-
tributed sampling intervals. Only necessary deleting/adding operations are regarded (‘no competing
operations’). The sampling rate-dependence of deletion costs is given as difference between expected
number of samples per unit interval (left matrix and grey dashed line) and as expected costs given two
rates λ1, λ2 (right matrix and black line, eq. (D.10)). Shifting costs are studied (b) numerically with
respect to their dependence on the sampling rates λ1, λ2 and (c) on the actual number of samples per
unit interval Na, Nb. The left matrices shows shifting costs for the full transformation of segments,
the center matrices show shifting costs per operation. Exemplary columns are displayed in the line
plots whereas the red dashed line marks the respective rate λ1/segment size Nb.
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Appendix B: sampling rate-constrained surrogates

The proposed sampling-rate correction approach involves a constrained randomization pro-
cedure, in which sampling rate-constrained surrogates (SRC-surrogates) are generated. To
illustrate the resulting time series, we show five SRC-surrogate realizations of the irregularly
sampled AR(1)-process from Sect. 8.4.2 in Fig. D.2. The transition in sampling rate (dotted
red line) is well visible from the different surrgate realizations.

We can also identify the rapid increase in sampling rate for the grayscale proxy time series
in the real-world example from Sect. 8.5 (Fig. D.3). Visually, it is expressed as an increase of
variance which is reproduced by the SRC-surrogate realizations.
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Figure D.2: Zoomed section of synthetic AR(1)-time series (black) and five exemplar SRC-surrogate
realizations (gray). The red dotted line indicates the transition of the sampling rate towards more
dense sampling. Sampling intervals are γ -distributed.
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Figure D.3: Zoomed section of grayscale anomaly time series (black) and five exemplar SRC-
surrogate realizations (gray). The red dotted line indicates the transition of the sampling rate towards
more dense sampling.
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E | Supplementary material for Chapter 10:
Mid-Holocene rainfall changes in the south-
western Pacific

Supplement 1: Correlation of oxygen and carbon isotopes in stalagmite C132.
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Figure E.1: Stalagmite C132 oxygen and carbon isotope ratios correlate in both, high and low
resolution data sets.

Supplement 2: PCAs of the trace elements records at high resolution (30µm).
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Figure E.2: Results of principal component analyses. a) PCA-3a, and b) PCA-3b. Two clusters are
evident: group 1 is formed by Zn, Mn, Fe, Pb, and Al (blue shaded area), and group 2 comprises Sr,
Mg, U and P (orange shaded area).

Supplement 3: Seasonality reconstruction.
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Figure E.3: a) seasonality (grey area) derived from the difference between the wet (blue line) and
dry season (red line). b) seasonality record (grey line) and its running average (black line).

Supplement 4: Wavelet spectral analysis of the PCA-2.
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Figure E.4: Wavelet analysis of the principal components extracted from PCA-2 of the annually
resolved C132 proxy records for the period of 5422 to 6002 y BP (a) PC1 and b) PC2). Significant
periods are outlined in black.

Supplement 5: Recurrence plots.
Recurrence plots (RPs) are a powerful nonlinear time series analysis tool. In several applica-
tions, RPs have been effectively applied for the detection of abrupt transitions in palaeoclimate
records [24]. An RP is represented by a symmetric 2-dimensional binary matrix in which each
black dot denotes a recurrence between the states of the system at two times i and j while
white dots mark no recurrences. The notion of recurrence is based on a distance measure
(e.g., Euclidean distance) between the amplitudes of the studied time series at times i and j.
In the study of nonlinear dynamical systems, a univariate time series often has to be regarded
as a series of 1-dimensional observations of an underlying (but unknown) higher dimensional
system, represented by a phase space trajectory. In order to obtain an RP that is based on
this phase space representation of the system, time-delay embedding is the most common
method to reconstruct the unknown phase space. To obtain RPs for the different segments
of the seasonality time series, we estimated the embedding delay as the first zero-crossing
of the autocorrelation (τ = 2) and the embedding dimension by the false nearest neighbour-
algorithm (m = 3) [526]. Using these embedding parameters, the time series was split into 200
yrs.-windows and an RP was computed for each embedded time series segment with a fixed
recurrence rate of 15%. RPs exhibit different line structures that can be interpreted in context
of the variability of the time series and which are often used to obtain quantitative measures
of recurrence characteristics [42]. Diagonal lines reflect predictable dynamics whereas their
length can be interpreted as a proxy for the predictability time of the system. To obtain an
indicator of seasonal predictability, we analysed the occurrence of diagonal lines ineach RP
by the determinism measure DET which is defined as the fraction of diagonal lines exceeding
a specified minimum length (l = 2). Significance was assessed by bootstrap resampling of
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Figure E.5: Two exemplary recurrence plots that yield distinct determinism parameter DET values
for the respective time periods, i.e., DET = 0.28 (left) and DET = 0.23 (right). Both axes are time
axes. Black dots mark recurrences between similar states. DET quantifies the number of diagonal
lines that exceed a certain minimum line length (min = 2 years). An exemplary diagonal line of length
min = 6 years is highlighted by a red box and reflects six years of predictable seasonal variations.

diagonal lines as described in [42]. Two exemplary RPs are shown in suppl. Fig. E.5.
Supplement 6: Correlation of rain and drip water oxygen and hydrogen isotope ratios.
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Figure E.6: Relationship between δ18O and δD of Niue rain and dripwater collected in February 2020.
Dripwaters were collected from Anapala Cave (inland), Palaha Cave (sea cave), Ulupaka Cave (inland)
and Avaiki Cave (sea cave). The collected samples plot along the SPMWL (δD = 7.7 · δ18O + 9.3)
derived from rainfall data of neighboring Western Samoa and Rarotonga stations (IAEA/WMO, 2001)
and show no signs of secondary evaporation.

Technical details of the methods

Speleothem stable isotope analyses at ETH Zurich

Between 90 and 140 µg of sample powder was reacted with orthophosphoric at 70◦C for 60
min. The resulting CO2 was then sampled and transported in a helium stream to the mass
spectrometer. Details on the methods can be found in [527]. Reference materials include the
international standards NBS19 and NBS18. The long-term 1σ reproducibility of the internal
standard is 0.05 %¸ for δ13C and 0.08%� for δ18O.
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LA-ICP-MS device specifications

Analyses were conducted using a laser repetition rate of 20 Hz with a 60 µm diameter ablation
spot and scanning the sample at 29.55 µm/sec with a beam energy density of 5 J/cm2, yielding
a spatial resolution of 30 µm. Signals for 23Na, 24Mg, 27Al, 29Si, 31P, 34S, 44Ca, 55Mn, 56Fe,
60Ni, 63Cu, 66Zn, 88Sr, 137Ba, 208Pb, and 238U were monitored during analysis in a single
track. The ICP-MS was optimised daily for maximum sensitivity. The ICP-MS operating
settings are: forward power of 1350 watts, plasma gas flow rate of 15 L/min (Ar), carrier
gas flow of 0.99 mL/min (nebuliser), sampling depth of 4 mm, pulse counting detector and
peak hopping sweep mode, 0.01-0.1 s dwell time and one point per peak 1. Calcium was
used as internal standard, assuming a concentration of 40.04 wt%. Background counts (He
gas background, measured with the laser off) were collected for 45 seconds between samples.
NIST (National Institute of Standards and Technology) glass standards 612 and 610 were
analysed after every sample track (ca. 3 cm long) to account for any drift. Raw data were
processed using Iolite v3.32 [528]. Background counts were subtracted from the raw data and
all data were standardised to NIST 612. NIST 610 was utilised as a secondary standard. The
GeoReM database [529] was used for NIST glass reference values.

Spectral analysis

The continuous wavelet analysis of the greyscale record (Fig.10.6a), utilised linear interpo-
lation with a sampling time of one year. Irregular sampling in the time dimension results
in variations in the number of samples per year, biasing estimates of mean season-specific
rainfall, a problem that is not resolved by interpolation. Significance testing of wavelet power
was thus based on Monte-Carlo sampling of AR(1)-realisations computed by the REDFIT al-
gorithm [338] to obtain an individual 95% confidence level for each time instance and period.
The same procedure was applied to the seasonality time series (Fig. 10.6b) by transforming
each AR(1)-surrogate into a ‘seasonality-surrogate’.

Recurrence analysis

Diagonal lines in a RP reflect deterministic variations in a time series which can be charac-
terised by the determinism parameter DET (see above). We characterised the seasonal-scale
predictability by computing a DET value for each RP (Fig. 10.7g), and tested the hypothesis
that no significant shift in DET has occurred over the covered period following the bootstrap-
ping approach proposed by [42].

196



F | Supplementary material for Chapter 12:
Decline in seasonal predictability as po-
tential trigger of Terminal Classic Maya
Collapse

Proxy records

The age model of the studied record is shown in [362]. We use the 2σ age uncertainty from
the distribution of COPRA modelled ages given at each sampled depth as an estimate for the
95% confidence bounds (Fig. SF.1). Sampling resolution and long-term evolution of stable
isotope records and trace element records (Ba/Ca, Sr/Ca, U/Ca) is shown in Fig. SF.2. Prior
to spectral analysis, the computation of proxy correlations and the recurrence analysis, we
apply a detrending based on Singular Spectrum analysis (SSA) [300] (Fig. SF.3.). Using
SSA, a non-stationary time series can be decomposed into a sum of components that capture
time scale-specific modes of variability, i.e., trends, periodic cycles and fast variations/noise.
First, a trajectory matrix is generated from time-shifted copies of the time series by chosing a
window length w. Next, a singular value decomposition of the trajectory matrix and grouping
of eigenvalues yields the SSA components.
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Figure F.1: Evolution of 2σ age uncertainty after application of COPRA age model (50 U/Th-dated
depths).

We only use the first component to detrend the age model medians and most central proxy
realizations. Multi-decadal correlations between δ13C and δ18O (as discussed in Fig. 4 of the
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main manuscript) are computed based on the residuals that result after extracting the first
SSA component (w ≈ 35yr) (Fig. SF.3 A/B). Both the spectral and recurrence analysis are
based on the full ensemble of age model realizations from which each is individually detrended
with the first SSA component (w ≈ 10yr, (Fig. SF.3 C/D).

Figure F.2: Long-term variability of YOK-G proxy records. (A) Sampling resolution (samples/year)
in the age-modelled stable isotope records. (B) z-scores of trace elements (Ba/Ca, Sr/Ca, U/Ca) to
substantiate interpretation of stable isotope records. δ18O (C) and δ13C (D) long-term trends are
individually estimated for all δ18O and δ13C proxy realizations as the first component of a Singular
Spectrum Analysis (w ≈ 10yr, trends for 50 realizations displayed). The maximum-correlated age
model realizations for both isotope records (gray) additionally exhibit fluctuations at seasonal time
scales.

Figure SF.4 allows a detailed inspection of variability at seasonal time scales as retrieved
after detrending of both stable isotope record’s most central realization (MCR, see methods
in the main manuscript). Their correlation at seasonal time scales is continuously positive
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A B

DC

Figure F.3: Detrending of age model medians and most central realizations using Singular Spectrum
analysis (SSA). (A) Detrending of δ13C age model median with the first component returned by SSA
(cyan). The residual is shown below, including the next three leading SSA components (red, yellow,
blue). (B) same as (A), but for δ18O. (C) Detrending of δ13C most central realization with the first
component returned by SSA (cyan). The residual is shown below, no additional components displayed
for the sake of visibility. (D) same as (C), but for δ18O.

(and mostly significant tested against AR(1)-surrogates) throughout the Common Era (Fig.
SF.5). At multi-decadal time scales, periods of insignificant and significantly negative proxy
correlation stand out (Fig. SF.6).
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Figure F.4: Most central realizations of δ13C (left) and δ18O (right) for the full covered time period
(after detrending). They act as a representation for the full ensemble of age model realizations as they
have the highest average correlation to all other realizations.

Time-frequency analysis

We use Lomb-Scargle (LS) periodograms along with Continuous Wavelet Spectra (CWS) to
examine the significance of the seasonal cycle and ENSO–multi-decadal-scale cycles through-
out the Common Era for both stable isotope records. Both proxy records are split into five
segments (430 - 650 CE, 650 - 950CE, 950 - 1400 CE, 1400 - 1800 CE and 1800 - 2005 CE)
and Lomb–Scargle periodograms are computed for each segment separately. Welch spectra
are computed to obtain robust estimates of spectral power with reduced noise intensity. We
choose the number of sub-segments nseg for each segment such that each sub-segment approx-
imately covers 500 samples, corresponding to approximately 60− 300 yrs. Each sub-segment
is weighted with a Blackman-window to limit the effect of spectral leakage. We choose twice
the average Nyquist frequency 2fNyq = 1

/
∆t as an upper limit for the frequency range. Each

frequency is spaced with ∆f = (nseg + 1)
/

2σT∆t whereas T is the length of a time series
segment, ∆t is the average sampling interval and σ = 2 is the oversampling factor. We repeat
the computation of LS-periodograms for a given time period for each MC-realization and
averaged afterwards. Significance of spectral peaks is assessed by means of AR(1)-surrogates
[530]. AR(1)-surrogates are frequently used for hypothesis testing in the paleoclimate lit-
erature [338]. The underlying idea is that in a low-order approximation, proxy time series
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Figure F.5: (A) Most central realization z-scores of δ13C and δ18O after extraction of individual
trends using SSA. (B) Averaged seasonal-scale correlation between 2000 pairs of δ13C and δ18O age
model realization z-scores. Correlations are computed on 50 year-sliding windows and tested against
1000 (irregularly sampled) AR(1)-surrogates (gray shading).

A

B

Figure F.6: (A) Age model median δ13C and δ18O z-scores after extraction of trends (shaded) using
SSA. (B) Multidecadal correlations are computed on 50 year-sliding windows and tested against 1000
(irregularly sampled) AR(1)-surrogates (gray shading) (B).
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exhibit deterministic (e.g. seasonal) variability superimposed on a background of correlated
noise. By sampling Ns surrogate time series that resemble the correlated noise, it is tested
whether the observed value for a statistic can occur just ‘by chance’ or if its occurrence is
significantly different from the modelled noise time series. It is important to note that all
AR(1)-surrogates are generated on the real unevenly spaced time axis and thus also recover
the features which are affected by sampling biases. An α-confidence level is obtained for each
MC-realization separately and subsequently averaged.

For the computation of CWS for both stable isotope time series, we account for age-
uncertainty following the scheme described in the methods to test whether the results obtained
in [362] can be confirmed when uncertainties are included. In a first step, linear interpolation
is applied to obtain a regular time axis with even spacing. The choice of the sampling
interval ∆t requires caution; if it is chosen too high, spurious serial dependence is imposed
on the time series and will result in erroneous spectral peaks. In an attempt to limit the
impact of spurious serial dependence, the root-mean-square error (RMSE) between the real
LS-periodograms and LS-periodograms computed from interpolated time series is minimized.
This optimization is displayed in Fig. SF.7 and yields a value of ∆t = 0.30, averaged over the
distinct optimal values obtained for δ13C and δ18O. This sampling interval is still low enough
to assess seasonal variability (∆t < 0.50). Continuous Wavelet transformation (as described
in [356]) is carried out using the PyCWT package in Python with a Morlet mother Wavelet.
Significance of spectral power is tested for each realization by generating 100 irregularly
sampled AR(1)-surrogates, applying the same interpolation procedure to each and computing
the resulting 90%-confidence level. The respective 90%-quantiles are computed for each time
instance since variations in the sampling density entail variations in the significance of spectral
peaks. A ‘MC-Wavelet spectrum’ is obtained by counting the number of realizations which
indicate significant spectral power for a given period and time instance. If more than half
of all realizations indicate significant spectral power, the corresponding cycle at a given time
instance is considered significant within the given age uncertainty.

The resulting MC-Wavelet spectrum (Fig. SF.8) shows less spectral background noise than
a regular Wavelet spectrum (see Fig. SF.9/SF.10 for comparison). Throughout some episodes,
both proxy time series are not sufficiently resolved to reliably detect an annual cycle (see Fig.
SF.2A, e.g. 700 CE) as the sampling frequency drops below the Nyquist frequency. It is
well known that in such cases, aliasing can occur and may introduce spurious lower frequency
cycles in spectral estimates. We perform a basic MC-sampling test to identify which aliased
cycles might occur just due to a masked annual cycle. To this extent, a sinusoidal with annual
periodicity is generated on the original irregular time axis and linear interpolation is applied
as described above. Age uncertainty is mimicked by generating 2000 sinusoidals with random
phases which are drawn from a N (0, σa)-distribution with the real standard deviation of ages
σa obtained from COPRA. An example of the interpolated and non-interpolated sinusoidal
time series is shown in Fig. SF.11 for a time period where aliasing effects can be observed.
Ten MC-Wavelets are computed (with different random seeds for the phase distribution) and
averaged, resulting in a single MC-Wavelet spectrum for the sinusoidals. The white hatching
in Fig. SF.8B/D indicates regions of masked seasonal variability caused by aliasing. Thus,
any overlap between significant spectral power and the hatched spectral aliasing patches could
actually reflect an annual cycle that can not be resolved rather than the indicated period.

Figure SF.9/SF.10 shows Wavelet spectra of the MCR of both stable isotope records.
Comparing them to the MC-Wavelet spectra shown in Fig. SF.8B/D, it becomes clear that
the latter recover most of the significant cycles that are found for the MCR, demonstrating
that these cycles are significant also when age uncertainty is taken into account. This adds
confidence to the findings from the LS-spectra and suggests that especially after 1400 CE,
the seasonal cycle remains relatively stable. These observations align with the results in [362]
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where the same δ13C record was studied but without computing MC-Wavelet spectra based
on single proxy realizations. The finding of a strengthened, more pronounced seasonal cycle
in the post-1400 CE period is further bolstered by the MC-Wavelet spectrum of all δ18O
realizations in Fig. SF.8D where a high number of realizations indicate relatively high power
in the annual band. These results complement and corroborate the transition in rainfall
seasonality detected in the YOK-G δ13C record [362].

Between 435-950 CE, several years have less than two samples and do consequently not
allow for reliable extraction of a seasonal cycle (f < fNyq = 2/year). Some overlap of real
spectral power and white hatched regions hints at the possibility that during these periods, a
muted seasonal cycle could have also been present but can not be extracted realiably due too
the low growth rate of the stalagmite during persistent drought conditions.

Beyond the observed variations in seasonal variability, distinctiveness of inter-annual and
(multi-)decadal-scale cycles are also found to vary throughout the records. Both proxy records
suggest that ENSO- (2-8 years) and (multi-)decadal-scale variability were more pronounced
in the pre-1400 CE period. The presence of ENSO-scale variability is particularly strong in
the δ13C record.

We show the LS spectra after averaging single-realization based spectra over all 2000 (de-
trended) realizations of δ13C and δ18O for the five time intervals in Fig. SF.8A/C. The (cyan
and purple) triangles yield a less conservative estimate of significant cycles without account-
ing for age uncertainty and indicate that for the MCR, a seasonal cycle can be identified for
each time interval and both proxies with 95% confidence. Yet, only between 950-2005 CE
a robust seasonal cycle is identified in the δ13C record when accounting for age uncertainty
(cyan shading).
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Figure F.7: Optimization of sampling interval ∆t for linear interpolation (used exclusively in Wavelet
analysis). Root-mean-square errors (RMSE) between Lomb-Scargle spectra for interpolated and non-
interpolated time series are shown for all realizations of both stable isotope records. The trade-off
value of ∆t = 0.30 years for which the sum of both RMSEs is minimized is indicated in red.
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D

Figure F.8: Time-frequency analysis of stable isotope records: LS spectra for five segments of the
δ13C (A) and δ18O (C) record respectively. Median spectral power, computed from 2000 detrended
proxy realizations (black) is tested for significance using irregularly sampled AR(1)-surrogates (red).
Significant cycles in the MCR are indicated by triangles. Computation of an individual continuous
wavelet spectrum for each (linear interpolated & detrended) proxy realization results in a single MC-
wavelet spectrum, shown for δ13C (B) and δ18O (D) respectively. Color coding denotes the number
of proxy realizations that indicate a significant cycle. Black contours mark cycles for which more than
half of all realizations indicate significant spectral pwoer. White hatching marks regions of potential
aliasing.
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Figure F.9: Continuous wavelet spectra for most central realizations of δ13C age model ensembles.
Spectral power is tested against a red noise background spectrum, generated from 2000 irregularly
sampled and interpolated AR(1)-surrogates (90% confidence level).
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Figure F.10: Continuous wavelet spectra for most central realizations of δ18O age model ensembles.
Spectral power is tested against a red noise background spectrum, generated from 2000 irregularly
sampled and interpolated AR(1)-surrogates (90% confidence level).
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Figure F.11: Illustration of aliasing effect that occurs when sampling resolution falls below the
Nyquist frequency of 2 samples/year based on a synthetic sinusoidal time series with a period of one
year and the real proxy time axis (blue). Higher periods are appearing as an artefact due low sampling
resolution and are not eliminated by linear interpolation (red). 1000 sinusoidals with random phases
are generated to inform about the resulting spurious but significant longer cycles in the Wavelet
spectrum (suppl. fig. 8).
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Recurrence analysis

The recurrence analysis described in the methods of the main manuscript results in a total of 69
recurrence matrices on sliding windows for each proxy-realization. Six exemplary recurrence
plots are shown in Fig. SF.12 for both stable isotope records. In the recurrence quantification
analysis, the mean diagonal line length was used to describe changes in the predictability
time of hydroclimate variability. In some of the examples (e.g. third row from top), striking
block structures can be seen that solely arise from a finite-sampling effect of the (m)edit-
distance discussed in [2]. Thus, sampling-rate constrained (SRC)-surrogates that reproduce
this spurious effect and mimic the resulting recurrence properties are generated (displayed in
the right columns). While the general structure (including the macroscopic block structures)
are conserved by the surrogates, the microstructures (e.g. diagonal lines) differ between the
real and the surrogate-based RPs.

In Fig. 2-4 of the main manuscript, the mean diagonal line length (denoted by Tpred)
is corrected for this effect based on the mean diagonal line lengths T (surr)

pred of the surrogate
RPs for each window, yielding τpred. We conduct the same analysis for the δ18O record (Fig.
SF.13B/D). The mean predictability time τpred computed from δ18O declines more rapidly
but supports low seasonal rainfall predictability during the Terminal Classic period. After
an increase towards 1200 CE that aligns well with the mean predictability time suggested by
δ13C, seasonal rainfall amount appears well predictable during the LIA around 1600 CE (Fig.
SF.13B). Both stable isotope records indicate declining seasonal predictability towards the
modern period. Linking seasonal predictability to the hydroclimatic background state, both
stable isotope records show significantly different relationships between seasonal predictability
and long-term isotopic averages than expected from the random null model (gray dots, Fig.
SF.13C/D). Furthermore, both stable isotope records showcase that a simple linear relation-
ship in the sense ‘the drier, the less predictable’ would not suffice to capture the complexity
of how seasonality and long term aridity are intertwined in the Maya lowlands.
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A B

Figure F.12: Exemplary recurrence plots from the sliding window recurrence analysis (A: δ13C, B:
δ18O). Real RPs are shown in the left column and SRC-surrogate RPs are shown in the right column,
respectively. Each RP covers a time window that correspond to 200 years and is computed with the
(m)edit distance method.
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C D

Figure F.13: (A/B) Predictability of sub-annual rainfall distribution, given by relative mean pre-
dictability times τpred of 20 detrended proxy realizations for each stable isotope record. τpred(t) with
reference value of τ (ref)pred = 1 (red dashed line) is displayed for δ13C (cyan) and δ18O (purple) to display
transitions in time. (C/D) Scatter plots show relation between dry/wet episodes to predictability of
the sub-annual rainfall distribution. Values on the x-axis indicate general hydroclimatic conditions
during the respective period (average of non-detrended isotope values) while τpred is computed from
detrended proxy realizations. Gray shading(/dashed red line) indicates predictability times τpred < 1
that are not larger than expected from a random proxy-surrogate with the same sampling resolution.
The dependency structure that results from the null model is indicated by gray dots.
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