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CUBCO+: prediction of protein complexes 
based on min‑cut network partitioning 
into biclique spanned subgraphs
Sara Omranian1,2,3,4,5 and Zoran Nikoloski4,5* 

Introduction
Proteins are essential components of all living organisms and participate in almost every 
biological process. However, most proteins do not function as a single entity; instead, 
they often interact with other proteins to form large macromolecules, i.e. protein com-
plexes, that are involved in different cellular functions. Identifying protein complexes 
allows assigning functions to proteins of yet unknown roles by using the known function 
of their interacting partners, following the principle of guilt-by-association (Tian et al. 
2008). Moreover, due to the protein structures, proteins are often involved in more than 
one complex in different subcellular compartments and biological processes. Therefore, 
studying protein complexes is important to understand the functional principles of the 
cell system, from signaling to metabolism (Pawson and Nash 2000; Maslov and Sneppen 
2002; Reyes-Turcu et al. 2009; Sweetlove and Fernie 2018), and provide a better under-
standing hierarchy of intra- and inter-cellular activities (Bauer and Kuster 2003).
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complexes. However, PPI networks contain false-positive as well as false-negative 
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One way to obtain data on protein–protein interactions (PPIs) relies on high-through-
put profiling techniques (Ho et al. 2002; Gavin et al. 2002). The advances in experimen-
tal techniques (Fields and Sternglanz 1994; Bauer and Kuster 2003; Fujikawa and Kato 
2007; Lin and Lai 2017; McBride et al. 2019) provide us with a plethora of resulting PPI 
networks from several model organisms (Gavin et al. 2006; Szklarczyk et al. 2014; Babu 
et al. 2017; McWhite et al. 2020). In a protein–protein interaction (PPI) network, nodes 
correspond to proteins and edges represent physical interaction between two proteins. 
However, due to the noisiness of experimental techniques, the resulting PPI networks 
contain spurious interactions, which result in false-positive and false-negative interac-
tions (Berger et al. 2013).

Computational approaches based on graph clustering algorithms are often used to 
complement the experimental approaches in the identification of protein complexes. 
Several studies (Li et  al. 2010; Srihari and Leong 2013; Bhowmick and Seah 2016; 
Wu et  al. 2019; Omranian et  al. 2022) have categorized the existing computational 
approaches for protein complex prediction in multiple groups, such as (i) supervised 
(Qi et al. 2008; Shi et al. 2011) versus unsupervised (Spirin and Mirny 2003; Bader and 
Hogue 2003), (ii) using only the topological structure of PPI network (Enright 2002; 
Nepusz et al. 2012) versus integrating additional knowledge or data, such as gene expres-
sion (Feng et al. 2011), functional and evolutionary information (King et al. 2004; Sharan 
et al. 2005; Dost et al. 2008). Further, several protein complex gold standards of differ-
ent species such as EcoCyc for Escherichia coli (Keseler et  al. 2016), MIPS, SGD, and 
CYC2008 for Saccharomyces cerevisiae (Mewes 2004; Hong et al. 2007; Pu et al. 2008), 
and CORUM for Homo sapiens (Giurgiu et al. 2018), have been assembled to facilitate 
the comparison and evaluation of predicted complexes from different approaches.

Due to the incompleteness and noisiness of interactions data, a variety of computa-
tional approaches have been proposed as an alternative to experimental tools to predict 
protein interactions (Zeng 2016; Kovács et al. 2019; Wang et al. 2020). For instance, link 
prediction algorithms enable us to overcome some of the disadvantages of experimental 
approaches by identifying false-negative interactions in the PPI network. Therefore, the 
link prediction and graph clustering algorithms are jointly used to improve the perfor-
mance of approaches for the prediction of protein complexes. One can employ a link 
prediction algorithm as a pre-processing step to tune the PPI network and then predict 
more accurate protein complexes. Alternatively, one can first employ a graph clustering 
algorithm to group the proteins that are more likely to interact together, and then apply 
a variety of local or global structure-based similarity measures to compute the possibility 
of protein interactions in the same cluster (Hu et al. 2021).

Although the performance of existing computational approaches has gradually increased 
over time, they still have some notable disadvantages. Overall, the existing computational 
approaches to solve this problem are based on the idea that protein complexes corre-
spond to highly connected or near-cliques clusters in the PPI network. Therefore, it is most 
likely that they predict only large and dense protein complexes, while they are incapable 
of finding sparse and small ones (Srihari and Leong 2013; Wu et al. 2019). If an approach 
solely depends on the PPI network, as mentioned earlier, its performance is expected to 
be affected by errors and missing interactions in PPI networks. Although the additional 
biological information might help in identifying protein complexes, this requires wet-lab 
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experiments that are time-consuming, labor-intensive, and the functional annotations of a 
protein might be outdated or unverified (Li et al. 2010).

Moreover, the computational approaches for protein complex prediction are parameter-
dependent, which renders it difficult to interpret the resulting protein complexes (Omra-
nian et  al. 2021a; b). Finally, the performance of existing computational approaches is 
mostly evaluated with the PPI network of S. cerevisiae, and few of the existing methods 
conducted experiments to assess their results across other species, such as bacteria, plants, 
and humans (Sharma et al. 2018; Omranian et al. 2021a, b; Omranian and Nikoloski 2022).

In contrast to the existing computational approaches, PC2P, GCC-v, and CUBCO (Omra-
nian et  al. 2021a; b; Omranian and Nikoloski 2022) represent parameter-free algorithms 
and compare the performance of their results with several state-of-the-art approaches 
across different species. These approaches detect a protein complex based on partitioning 
the network into biclique spanned subgraphs, which is also known as coherent network 
partition (CNP) (Angeleska and Nikoloski 2019; Angeleska et al. 2021). PC2P and GCC-v 
rely on local properties of the network by finding the minimum cut in complement of the 
second neighborhood of a node (Omranian et al. 2021a; b) and computing the clustering 
coefficient for each node to partition the network into biclique spanned subgraphs (Omra-
nian et al. 2021a; b), respectively. Alternatively, CUBCO (Omranian and Nikoloski 2022) is 
based on the global properties of the network and utilizes global minimum cut to partition 
the network into biclique spanned subgraphs. Moreover, to overcome the incompleteness 
of PPI networks, CUBCO integrates link prediction (Kovács et al. 2019) as a pre-process-
ing step to cluster more probable interacting proteins together. The three approaches show 
consistent performance across different species, in contrast to other approaches that obtain 
different ranking scores for different combinations of species and the corresponding gold 
standards.

Here we introduce a new approach, referred to as CUBCO+ , that predicts protein 
complexes based on the same concept as the PC2P, GCC-v, and CUBCO algorithms, i.e. 
biclique spanned subgraphs. However, CUBCO+ not only considers the effect of false-
negative interactions, like CUBCO but also evaluates the false-positive interactions by 
weighing the interactions with Gene Ontology (GO) semantic similarity. To the best of 
our knowledge, CUBCO+ is the first algorithm to take the effect of both false-positive and 
false-negative interactions into account, while providing predictions of protein complexes 
with improved performance over the contenders. The rest of the paper is organized as fol-
lows: “Results” section presents the proposed complex prediction algorithm followed by 
comparing the performance of CUBCO+ with 17 other state-of-the-art methods based on 
12 performance measures; “Method” section contains the related works, the introduction 
of PPI networks, gold standards, and well-established performance measures that are used 
in this study; finally, the conclusion of this study with a future scope is presented in “Discus-
sion” section.

Results
CUBCO+ algorithm predicts protein complexes by considering both false‑negative 

and false‑positive interactions

In a simple graph G = (V ,E,w) , a set of nodes V  corresponds to proteins, a set of edges 
E denotes PPIs, and w(e) corresponds to the weight of edge e that indicates the reliability 
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of the interaction based on experimental and computational approaches. The graph 
denoted by G = (V , {(u, v)|(u, v) /∈ E}) is a complement of the simple graph G.

We model a protein complex as a biclique spanned graph, that is a graph G = (V ,E) , 
with a node-set that can be partitioned into two subsets, V1(G) and V2(G) , in which 
V1(G) ∩ V2(G) = ∅ and V1(G) ∪ V2(G) = V (G) . Its edge set contains all possible edges 
between the two node sets, V1(G) and V2(G) , as well as additional edges between the 
nodes in each of the two partitions. A biclique spanned graph has two properties: 1. 
Its complement, G , is disconnected (i.e. it contains more than one connected compo-
nent) (Akiyama and Harary 1981); 2. the distance between any two nodes in a biclique 
spanned graph is at most two. Hence, these properties provide a natural formation of a 
network cluster based on connectedness, since the complement of a cluster, intuitively 
speaking, is disconnected. Moreover, since stars, bicliques, and cliques are special graph 
classes of biclique spanned subgraph the identified protein complexes will be sparse as 
well as dense regardless of their size. Thereby, the problem of protein complex predic-
tion is cast to partition graph G , C = {C1,C2, . . . ,Ck} , such that each Ci is a biclique 
spanned subgraph (Angeleska and Nikoloski 2019) by removing a minimum number 
of edges. It has been shown that the problem of finding an optimal coherent network 
partition is NP-hard (Angeleska and Nikoloski 2019), while a graph transformation has 
also been proposed to obtain a O(logn)-approximation algorithm on a bipartite graph 
(Angeleska et al. 2021). Thus, greedy approximation algorithms, including PC2P, GCC-v, 
and CUBCO, have been proposed for solving this optimization problem. CUBCO+ is 
an updated version of CUBCO exploring the whole network at once by using global net-
work properties to define the partition into biclique spanned subgraphs.

Since the complement of the biclique spanned subgraph is disconnected, CUBCO 
and CUBCO+ employ a global minimum cut algorithm to render the complement of 
the original graph disconnected. Given an undirected graph with non-negative edge 
weights, the minimum cut problem (i.e. min-cut) is to partition the node-set into two 
subsets so that the sum of edge weights between the two subsets is minimized (Stoer 
and Wagner 1994).

In the following, we present CUBCO+ that iteratively finds the biclique spanned sub-
graph in a given simple graph G based on identifying the minimum cut in the weighted 
G . The procedure of CUBCO+ is similar to CUBCO and predicts protein complexes in 
four main steps: (i) construct initial PPI network, (ii) determine the complement of a 
graph G , i.e., G , (iii) assign weights to the edges in G based on the degree-normalized 
number of the path of length three between the endpoint nodes of an edge in original 
graph G ; (iv) iteratively find the minimum cut of the edge-weighted graph G (Algorithms 
1 and 2) until all resulting components are biclique spanned.

In contrast to CUBCO, the updated version, CUBCO+ , considers the effect of 
false-positive edges by computing GO semantic similarity for every interaction in 
the network as an edge-weight. The steps that are the same between CUBCO and 
CUBCO+ are marked with * in Algorithms 1 and 2. GO is hierarchical controlled bio-
logical vocabularies that estimate the functional similarity of gene products, relating 
to three categories: (i) Molecular Function (MF), (ii) Biological Process (BP), and (iii) 
Cellular Component (CC). Hence, GO semantic similarity (Cho et  al. 2007) deter-
mines the functional similarity of two given proteins. For this purpose, we applied 
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GOSim R package 4.1 (Fröhlich et al. 2007). To calculate the contribution of all GO 
semantic similarity domains in the edge weight, first, the geometric average of three 
categories of GO is calculated. Next, these values are normalized, concerning the 
maximum value. Last, a set of interactions with weights greater and equal to 0.3 is 
selected for constructing the initial PPI network. By increasing the threshold value on 
the edge weight, more edges will be removed from the network, which increases the 
number of connected components of the network. We opted for the value of 0.3 to 
retain more topological information while ensuring that biologically relevant interac-
tions are included in the network.

The complement of the graph, G , contains edges that are not present in the origi-
nal graph G . From a biological perspective, E(G) corresponds to PPIs that are not 
included in the original graph G (i.e., false-negative/true-negative interactions). Sev-
eral studies have predicted the missing edges in PPI networks based on different con-
cepts (Zeng 2016; Kovács et al. 2019; Wang et al. 2020). Among those, (Kovács et al. 
2019) proposed a network-based prediction of PPIs that relies on network walks of 
length 3. This approach has been shown to significantly outperform all existing link 
prediction approaches. Here, we use the advantage of this approach, but rely on paths 
of length three, to avoid the effects of direct neighbor consideration, and weigh the 
edges of G based on a normalized number of path length 3, Eq. (1):

where Pu,i = 1 if proteins (i.e. nodes) u and i interact, and zero otherwise, and ki denotes 
the degree of node i.

Next, Stoer-Wagner’s algorithm (Stoer and Wagner 1994), which is a determinis-
tic, efficient algorithm that considers positive edge weight in determining min-cuts, is 
applied to obtain the global min-cut of the graph G.

(1)w(u, v) =

i,j

Pu,iPi,jPj,v

kikj
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The min-cut algorithm returns two node-subsets, S1 and S2 , such that 
S1 ∪ S2 = V (G) and an edge cut set (i.e. Ecut ) that connects S1 to S2 , 
Ecut =

{

(ui, vi)
∣

∣ui ∈ S1 and vi ∈ S2, 1 ≤ i ≤ k
}

 where k = |Ecut | . To make G discon-
nected and achieve the biclique spanned subgraph, Ci , one of the node sets, ui or vi , 
1 ≤ i ≤ k , must be removed from G ; therefore, the final biclique spanned subgraph 
is either Ci = {(S1 ∪ S2)/

⋃k
i=1ui} or Ci = {(S1 ∪ S2)/

⋃k
i=1vi} . Finally, a score, which 

exhibits the cohesiveness of the two node-set in graph G , is calculated as follows:
The selection of the set is guided by a score, Eq. (2), that shows the cohesiveness of 

the induced subgraph of the corresponding node-set in graph G:

where |Ein| counts the edges inside the subgraph, and |Eout | indicates the number of edges 
connecting the subgraph to the rest of the network. CUBCO+ then selects a node-set, 
Ci , with the highest score and removes it from the graph G . The procedure is continued 
until there is no connected component left in G.

The complexity of CUBCO+ is the same as the first version, CUBCO, which is 
O
(

max
(

O
(

Algorithm1
)

,O
(

Algorithm2
)))

 . In Algorithm 1, the complexity of finding a 
complement of a graph on n nodes is in O(n2) . While the complexity of finding all 
paths of length three between two nodes is in O(n+m) , where m is the number of 
edges in the graph and is calculated for every edge in E

(

G
)

 . Therefore, the complexity 
of Algorithm  1 is in O

(

max
(

O
(

n2
)

,O(m(n+m))
))

= O(m(n+m)) . The complexity 
of Algorithm 2 is that of Stoer-Wagner’s algorithm which is in O(n

(

m+ nlogn
)

) . If we 
assume that in a worst-case scenario, in each iteration, we remove a node with mini-
mum degree ( d ) and its neighbors from the graph, then the procedure will end after 
n

d+1 iterations. Therefore, the complexity of Algorithm  2 is in O
(

n2

d+1

(

m+ nlogn
)

)

 . 

Altogether, the complexity of CUBCO+ is dominated by the complexity of 
Algorithm 2.

(2)s(Ci) =
|Ein|

|Eout |
,
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The comparative analysis of CUBCO+ and all the other approaches were performed 
on an Intel(R) Xeon(R) CPU E5-2670 v2 with 2.50 GHz. Moreover, CUBCO+ is freely 
available on GitHub at https:// github. com/ SaraO mrani an/ CUBCO Plus.

Comparative analyses of CUBCO+ and other contenders across combinations of PPI 

networks and gold standards

We compared the predicted protein complexes from 18 contenders including 
CUBCO+ with the protein complexes from two E. coli, two S. cerevisiae, and one H. 
sapiens gold standards based on twelve performance measures (see Evaluation met-
rics, Additional file 1). The range of each of the twelve scores, including Sensitivity 
(SN), positive predictive value (PPV), accuracy (ACC), recall, precision, F-measure, 
 recall+,  precision+, F-measure+, separation (SEP), fraction match (FRM), and maxi-
mum matching ratio (MMR), is between 0 and 1. Larger values for a score indicate 
better performance. We further calculated a composite score to summarize these 
twelve performance measures. The composite score is a sum of four main perfor-
mance measures: MMR, FRM, ACC, and F-measure (Nepusz et al. 2012; Cao et al. 
2018; Wang et al. 2018; Omranian et al. 2021a, b; Omranian and Nikoloski 2022).

In the case of E. coli, CUBCO+ obtains the highest FRM and ranked second after 
CUBCO in MMR, recall, F-measure for Babu PPI networks, and Ecocyc gold stand-
ard. Consequently, it obtained the second best composite score for this combination 
(Fig. 1A, Additional file 1: Table S3 and Figure S1). For the combinations of the Cong 
PPI network and the two gold standards of E. coli, CUBCO+ obtained a composite 
score higher than half of the other contenders. (Additional file 1: Table S3 and Figure 
S1).

The same analysis was carried out on all combinations of PPI networks and gold 
standards in S. cerevisiae. CUBCO+ demonstrated the highest composite score in 
62.5% of cases, preceded by GCC-v and PC2P approaches that also modeled a pro-
tein complex as a biclique spanned subgraph. While in other cases, the composite 
score of CUBCO+ is higher than half of the compared approaches. To be precise, 
the composite score of CUBCO+ is, on average, only ~ 7% smaller than the compos-
ite score of the contenders ranked higher than CUBCO+ (Fig. 1B, Additional file 1: 
Table S3 and Figure S1).

Likewise, the composite score is calculated for the two combinations of H. sapiens 
PPI networks and one gold standard. CUBCO+ obtains composite scores on aver-
age ~ 22% smaller than the other contenders achieving higher scores (Fig. 1C, Addi-
tional file 1: Table 3 and Figure S1).

Altogether, these findings demonstrated that CUBCO+ obtains a higher composite 
score in ~ 36% of the cases in comparison with CUBCO, and it ranked exactly after 
CUBCO in other cases across all combinations of PPI networks and gold standards 
of the three species. Therefore, CUBCO+ illustrates almost similar performance 
with CUBCO. In addition, we concluded that partitioning the graph into biclique 
spanned subgraphs based on local properties, such as PC2P and GCC-v, resulting in 
better performance across all species in comparison to CUBCO and CUBCO+ that 
incorporates global properties in predicting protein complexes.

https://github.com/SaraOmranian/CUBCOPlus
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Method
Contending protein complex prediction approaches

To compare the performance of CUBCO+ with other algorithms in this field, we 
selected seventeen state-of-the-art approaches, including minimum CUt to detect 
Biclique spanned subgraphs as protein COmplexes (CUBCO) (Omranian and Niko-
loski 2022), a family of greedy algorithms based on clustering coefficient (GCC-
v) (Omranian et  al. 2021a, b), Protein Complexes from Coherent Partition (PC2P) 
(Omranian et al. 2021a, b), Inter Module Hub Removal Clustering (IMHRC) (Maddi 
and Eslahchi 2017), Core&Peel (Pellegrini et  al. 2016), Discovering Protein Com-
plexes based on Neighbor Affinity and Dynamic Protein Interaction Network (DPC-
NADPIN) (Shen et al. 2016),  Prorank+ (Hanna and Zaki 2014), PEWCC (Zaki et al. 
2013), Clustering with Overlapping Neighbourhood Extension (ClusterOne) (Nepusz 
et al. 2012), Clustering-based on Maximal Cliques (CMC) (Liu et al. 2009), CFinder 
(Adamcsek et al. 2006), Molecular Complex Detection (MCODE) (Bader and Hogue 
2003), and Markov Clustering (MCL) (Enright 2002). To conduct a fair comparison, 
we selected the approaches that first, their implementation is publicly available, and 
second, do not rely on any additional data and/or knowledge such as ontologies or 
gene expression data (Additional file 1: Table S2).

Fig. 1 Comparative analysis of predicted protein complexes from different approaches across PPI networks 
of different organisms. PPI networks of A E. coli, B S. cerevisiae, and C H. sapiens are considered. The 
comparative analyses are based on a composite score that is a sum of ACC, F-measure, FRM, and MMR (see 
Evaluation metrics). Eighteen approaches are compared on three combinations of PPI networks and the 
gold standard. CUBCO+ performs on par with the other best-performing approaches that model a protein 
complex as biclique spanned subgraph, PC2P, GCC-v (CC, WCC, OCC, and OWCC), and outperforms all other 
approaches based on the composite score
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All the contending algorithms depend on multiple parameters, except PC2P, GCC-
v, and CUBCO. To optimize the parameters and obtain the best performance for each 
contender based on different performance measures and combinations of PPI networks 
and gold standards is challenging. Finding the best parameters, by optimization of vari-
ous performance measures, yields divergent predicted protein complexes. Therefore, it is 
impossible to do meaningful interpretation and combination of the findings. Hence, the 
default value of parameters is used as suggested in corresponding studies.

PPI networks and gold standards of protein complexes

All experiments are carried out on eight PPI networks and five gold standards of three 
model organisms: E. coli., S. cerevisiae, and H. sapiens. All the PPI networks, exclud-
ing one from E. coli, are edge-weighted. Babu and Cong (Babu et al. 2017; Cong et al. 
2019) are the two PPI networks of E. coli. that are used in this study, and for simplic-
ity, we named the PPI networks the same as the corresponding first author throughout 
the paper. The two gold standards are generated by manually curated protein complexes 
from Ecocyc (Keseler et  al. 2016) and protein complexes based on the genome-scale 
metabolic network of E. coli (King et al. 2015).

We used four PPI networks of S. cerevisiae, including Gavin (Gavin et al. 2006), Kro-
gan core (edge-weight ≥ 0.273), Krogan extended (edge-weight ≥ 0.101) (Krogan et  al. 
2006), and Collins (Collins et al. 2007). The two gold standards were retrieved from com-
plexes derived from the Saccharomyces Genome Database (SGD) (Hong et al. 2007) and 
CYC2008 (Pu et al. 2008).

For H. sapiens, we selected two PPI networks, STRING (edge-weight ≥ 999) (Szklarc-
zyk et  al. 2014) and PIPs (edge-weight ≥ 25) (McDowall et  al. 2009). Moreover, we 
employed CORUM as the gold standard for human protein complexes (Giurgiu et  al. 
2018). Additional file 1: Table S1 summarizes all the properties of the used PPI networks 
and gold standards such as the number of proteins as well as interactions, and their 
intersections employed in the analyses.

Evaluation metrics

Twelve metrics are commonly used to evaluate the predicted protein complexes 
from the contending algorithms, including maximum matching ratio, fraction match 
(Nepusz et al. 2012), sensitivity, positive predictive value, accuracy, and separation from 
(Brohée and van Helden 2006), precision, recall, and F-measure from (Liu et al. 2009), 
and  precision+,  recall+, and F-measure+ from (Maddi et  al. 2019). Therefore, the pre-
dicted protein complexes are compared with complexes from gold standards across all 
organisms based on mentioned twelve metrics. Moreover, these metrics were selected 
since they have been employed in seminal studies (i.e. prediction of protein complexes) 
(Adamcsek et al. 2006; Liu et al. 2009; Nepusz et al. 2012; Wang et al. 2018). The twelve 
metrics are summarized into a composite score, which is the sum over MMR, FRM, 
ACC, and F-measure (Nepusz et al. 2012; Cao et al. 2018; Wang et al. 2018; Omranian 
et al. 2021a, b; Omranian and Nikoloski 2022). The definition and notations of evalua-
tion metrics are comprehensively explained in the Additional file 1.
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Discussion
In this study, we propose a new method called CUBCO+ to identify protein com-
plexes from PPI networks. The available large-scaled PPI networks, as well as gold 
standards of several model organisms, are obtained from different high-throughput 
technologies. However, these PPI networks have low quality and contain false-posi-
tive along with false-negative protein interactions. CUBCO+ disputes the noisiness 
and incompleteness of available PPI networks by first assigning weight to the protein 
interactions by utilizing GO semantic similarity to remove less biologically relevant 
interactions (i.e. false-positive), and second, employing network properties to rank 
the false-negative interactions, which are independent of biological data but capture 
the biological principles. To the best of our knowledge, CUBCO+ is the first algo-
rithm that considers the effect of both false-positive and false-negative interactions.

Since we have shown that partitioning a PPI network into biclique spanned sub-
graphs provides the best performing approach to identify protein complexes to date 
(Omranian et al. 2021a, b; Omranian and Nikoloski 2022), CUBCO+ also adopted the 
same concept to define a protein complex. Therefore, CUBCO+ can identify protein 
complexes from sparse to dense graphs, since the class of biclique spanned graphs 
includes stars, bicliques as well as cliques as special subclasses. Hence, this feature 
leads to improvement of recall over the existing solutions.

We conducted thorough analyses with PPI networks from three model organisms, 
namely, E. coli, S. cerevisiae, and H. sapiens, while previous studies only evaluated 
their methods on at least one or two model organisms. As a result, based on twelve 
performance measures, CUBCO+ outperformed other approaches that are not based 
on biclique-spanned partitioning in ~ 64% of the cases, while in the other instances 
with a slight decrease in its composite score, it ranked after PC2P, GCC-v, and 
CUBCO. Furthermore, CUBCO+ is a parameter-free algorithm and showed consist-
ency in its performance across all organisms.

In the future, for further improvement of the CUBCO+ algorithm, we will focus on 
integrating gene expression and protein abundance data into PPI networks to bring 
time points and dynamics to PPI networks to predict both protein complexes and 
functional modules.
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