
i 
 

 

 

 

CUMULATIVE DISSERTATION 

  

 

Towards unifying approaches in exposure modelling 

for scenario-based multi-hazard risk assessments 

 

 

 

by 

Juan Camilo Gómez Zapata  

 

 

 

Univ.-Diss. 

 

zur Erlangung des akademischen Grades 

"doctor rerum naturalium" 

(Dr. rer. nat.) 

in der Wissenschaftsdisziplin "Georisks" 

 

 

 

 

eingereicht an der 

Mathematisch-Naturwissenschaftlichen Fakultät 

Institut für Geowissenschaften 

der Universität Potsdam 

und 

vorbereiten in der Sektion Erdbebengefährdung und dynamische Risiken der Helmholtz-Zentrum Potsdam 

Deutsches GeoForshungsZentrum GFZ 

 



This work is protected by copyright and/or related rights. You are free to use this work in any way that is permitted 
by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission 
from the rights-holder(s). 
https://rightsstatements.org/page/InC/1.0/?language=en 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Submitted on August 26, 2022  
 
Ort und Tag der Disputation:  
Campus Golm, Building 27, Room 1.10, Universität Potsdam; Monday, 23 January 2023, 2 p.m.  
 
Supervisors:  
Prof. Dr. Fabrice COTTON  
Dr. Massimiliano PITTORE  
 
External Reviewer:  
Prof. Dr. Carmine GALASSO  
 
Examination Board:  
Prof. Dr. Fabrice COTTON  
Prof. Dr. Carmine GALASSO  
PD Dr. Heidi KREIBICH  
Prof. Dr. Frank KRÜGER  
Prof. Dr. Bruno MERZ 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-58614 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-586140 



iii 
 

 

 

Declaration of Authorship 

I, Juan Camilo Gomez Zapata, hereby declare that this thesis titled, ‘Towards unifying approaches in exposure 

modelling for scenario-based multi-hazard risk assessments and the work presented in it are my own. I confirm 

that: 

 I have fully acknowledged and referenced the ideas and work of others, whether published or unpublished, in my 

thesis. 

 This dissertation was not submitted for the award of any other degree or diploma in any other institution. 

Signed: 

Place, Date:





i 
 

 

 

Abstract 

This cumulative thesis presents a stepwise investigation of the exposure modelling process for risk assessment due to 

natural hazards while highlighting its, to date, not much-discussed importance and associated uncertainties. Although 

“exposure” refers to a very broad concept of everything (and everyone) that is susceptible to damage, in this thesis it 

is narrowed down to the modelling of large-area residential building stocks. Classical building exposure models for 

risk applications have been constructed fully relying on unverified expert elicitation over data sources (e.g., outdated 

census datasets), and hence have been implicitly assumed to be static in time and in space. Moreover, their spatial 

representation has also typically been simplified by geographically aggregating the inferred composition onto coarse 

administrative units whose boundaries do not always capture the spatial variability of the hazard intensities required 

for accurate risk assessments. These two shortcomings and the related epistemic uncertainties embedded within 

exposure models are tackled in the first three chapters of the thesis. The exposure composition of large-area residential 

building stocks is studied on the scope of scenario-based earthquake loss models. Then, the proposal of optimal spatial 

aggregation areas of exposure models for various hazard-related vulnerabilities is presented, focusing on ground-

shaking and tsunami risks. Subsequently, once the experience is gained in the study of the composition and spatial 

aggregation of exposure for various hazards, this thesis moves towards a multi-hazard context while addressing 

cumulative damage and losses due to consecutive hazard scenarios. This is achieved by proposing a novel method to 

account for the pre-existing damage descriptions on building portfolios as a key input to account for scenario-based 

multi-risk assessment. Finally, this thesis shows how the integration of the aforementioned elements can be used in 

risk communication practices. This is done through a modular architecture based on the exploration of quantitative 

risk scenarios that are contrasted with social risk perceptions of the directly exposed communities to natural hazards. 

In Chapter 1, a Bayesian approach is proposed to update the prior assumptions on such composition (i.e., proportions 

per building typology). This is achieved by integrating high-quality real observations and then capturing the intrinsic 

probabilistic nature of the exposure model. Such observations are accounted as real evidence from both: field 

inspections (Chapter 2) and freely available data sources to update existing (but outdated) exposure models (Chapter 

3). In these two chapters, earthquake scenarios with parametrised ground motion fields were transversally used to 

investigate the role of such epistemic uncertainties related to the exposure composition through sensitivity analyses. 

Parametrised scenarios of seismic ground shaking were the hazard input utilised to study the physical vulnerability of 

building portfolios. The second issue that was investigated, which refers to the spatial aggregation of building exposure 

models, was investigated within two decoupled vulnerability contexts: due to seismic ground shaking through the 

integration of remote sensing techniques (Chapter 3); and within a multi-hazard context by integrating the occurrence 

of associated tsunamis (Chapter 4). Therein, a careful selection of the spatial aggregation entities while pursuing 

computational efficiency and accuracy in the risk estimates due to such independent hazard scenarios (i.e., earthquake 

and tsunami) are discussed. Therefore, in this thesis, the physical vulnerability of large-area building portfolios due to 

tsunamis is considered through two main frames: considering and disregarding the interaction at the vulnerability level, 

through consecutive and decoupled hazard scenarios respectively, which were then contrasted. 

Contrary to Chapter 4, where no cumulative damages are addressed, in Chapter 5, data and approaches, which were 

already generated in former sections, are integrated with a novel modular method to ultimately study the likely 

interactions at the vulnerability level on building portfolios. This is tested by evaluating cumulative damages and losses 

after earthquakes with increasing magnitude followed by their respective tsunamis. Such a novel method is grounded 

on the possibility of re-using existing fragility models within a probabilistic framework. The same approach is followed 

in Chapter 6 to forecast the likely cumulative damages to be experienced by a building stock located in a volcanic 

multi-hazard setting (ash-fall and lahars). In that section, special focus was made on the manner the forecasted loss 

metrics are communicated to locally exposed communities. Co-existing quantitative scientific approaches (i.e., 

comprehensive exposure models; explorative risk scenarios involving single and multiple hazards) and semi-qualitative 

social risk perception (i.e., level of understanding that the exposed communities have about their own risk) were jointly 

considered. Such an integration ultimately allowed this thesis to also contribute to enhancing preparedness, science 

divulgation at the local level as well as technology transfer initiatives.  

Finally, a synthesis of this thesis along with some perspectives for improvement and future work are presented.   
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Zusammenfassung 

Diese kumulative Diplomarbeit stellt eine schrittweise Untersuchung des Expositionsmodellierungsprozesses für die 

Risikobewertung durch Naturgefahren dar und weist auf seine bisher wenig diskutierte Bedeutung und die damit 

verbundenen Unsicherheiten hin. Obwohl sich „Exposition“ auf einen sehr weiten Begriff von allem (und jedem) 

bezieht, der für Schäden anfällig ist, wird er in dieser Arbeit auf die Modellierung von großräumigen 

Wohngebäudebeständen eingeengt. Klassische Gebäudeexpositionsmodelle für Risikoanwendungen wurden 

vollständig auf der Grundlage unbestätigter Expertenerhebungen über Datenquellen (z. B. veraltete 

Volkszählungsdatensätze) erstellt und wurden daher implizit als zeitlich und räumlich statisch angenommen. Darüber 

hinaus wurde ihre räumliche Darstellung typischerweise auch vereinfacht, indem die abgeleitete Zusammensetzung 

geografisch auf grobe Verwaltungseinheiten aggregiert wurde, deren Grenzen nicht immer die räumliche Variabilität 

der Gefahrenintensitäten erfassen, die für genaue Risikobewertungen erforderlich sind. Diese beiden Mängel und die 

damit verbundenen epistemischen Unsicherheiten, die in Expositionsmodellen eingebettet sind, werden in den ersten 

drei Kapiteln der Dissertation verfolgt. Die Exposure-Zusammensetzung von großflächigen Wohngebäudebeständen 

wird im Rahmen szenariobasierter Erdbebenschadenmodelle untersucht. Anschließend wird der Vorschlag optimaler 

räumlicher Aggregationsbereiche von Expositionsmodellen für verschiedene gefahrenbezogene Anfälligkeiten 

präsentiert, wobei der Schwerpunkt auf Bodenerschütterungs- und Tsunami-Risiken liegt. Anschließend, sobald die 

Erfahrung in der Untersuchung der Zusammensetzung und räumlichen Aggregation der Exposition für verschiedene 

Gefahren gesammelt wurde, bewegt sich diese Arbeit in Richtung eines Kontextes mit mehreren Gefahren, während 

sie sich mit kumulativen Schäden und Verlusten aufgrund aufeinanderfolgender Gefahrenszenarien befasst. Dies wird 

erreicht, indem eine neuartige Methode vorgeschlagen wird, um die bereits bestehenden Schadensbeschreibungen an 

Gebäudeportfolios als Schlüsseleingabe für die Berücksichtigung einer szenariobasierten Multi-Risiko-Bewertung zu 

berücksichtigen. Abschließend zeigt diese Arbeit, wie die Integration der oben genannten Elemente in der 

Risikokommunikation genutzt werden kann. Dies erfolgt durch eine modulare Architektur, die auf der Untersuchung 

quantitativer Risikoszenarien basiert, die mit der sozialen Risikowahrnehmung der direkt von Naturgefahren 

betroffenen Gemeinschaften kontrastiert werden. 

In Kapitel 1 wird ein bayesianischer Ansatz vorgeschlagen, um die früheren Annahmen zu einer solchen 

Zusammensetzung (d. h. Anteile pro Gebäudetypologie) zu aktualisieren. Dies wird erreicht, indem hochwertige reale 

Beobachtungen integriert und dann die intrinsische Wahrscheinlichkeitsnatur des Expositionsmodells erfasst wird. 

Solche Beobachtungen werden sowohl aus Feldbegehungen (Kapitel 2) als auch aus frei verfügbaren Datenquellen 

zur Aktualisierung bestehender (aber veralteter) Expositionsmodelle (Kapitel 3) als echte Beweise gewertet. In diesen 

beiden Kapiteln wurden Erdbebenszenarien mit parametrisierten Bodenbewegungsfeldern transversal verwendet, um 

die Rolle solcher epistemischen Unsicherheiten in Bezug auf die Expositionszusammensetzung durch 

Sensitivitätsanalysen zu untersuchen. Parametrisierte Szenarien seismischer Bodenerschütterungen waren der 

Gefahreneingang, der verwendet wurde, um die physische Anfälligkeit von Gebäudeportfolios zu untersuchen. Das 

zweite untersuchte Problem, das sich auf die räumliche Aggregation von Gebäudeexpositionsmodellen bezieht, wurde 

in zwei entkoppelten Vulnerabilitätskontexten untersucht: durch seismische Bodenerschütterungen durch die 

Integration von Fernerkundungstechniken (Kapitel 3); und innerhalb eines Multi-Hazard-Kontextes durch 

Einbeziehung des Auftretens assoziierter Tsunamis (Kapitel 4). Darin wird eine sorgfältige Auswahl der räumlichen 

Aggregationseinheiten bei gleichzeitigem Streben nach Recheneffizienz und Genauigkeit bei den Risikoschätzungen 

aufgrund solcher unabhängiger Gefahrenszenarien (d. h. Erdbeben und Tsunami) diskutiert. Daher wird in dieser 

Arbeit die physische Vulnerabilität von großen Gebäudeportfolios durch Tsunamis durch zwei Hauptrahmen 

betrachtet: Berücksichtigung und Nichtberücksichtigung der Wechselwirkung auf der Vulnerabilitätsebene, durch 

aufeinanderfolgende bzw. entkoppelte Gefahrenszenarien, die dann gegenübergestellt wurden. 

Im Gegensatz zu Kapitel 4, wo keine kumulativen Schäden angesprochen werden, werden in Kapitel 5 Daten und 

Ansätze, die bereits in früheren Abschnitten generiert wurden, mit einer neuartigen modularen Methode integriert, 

um letztendlich die wahrscheinlichen Wechselwirkungen auf der Schwachstellenebene beim Aufbau von Portfolios 

zu untersuchen. Dies wird getestet, indem kumulative Schäden und Verluste nach Erdbeben mit zunehmender 

Magnitude gefolgt von den jeweiligen Tsunamis bewertet werden. Eine solche neuartige Methode basiert auf der 

Möglichkeit, bestehende Fragilitätsmodelle innerhalb eines probabilistischen Rahmens wiederzuverwenden. Derselbe 

Ansatz wird in Kapitel 6 verfolgt, um die wahrscheinlichen kumulativen Schäden zu prognostizieren, denen ein 

Gebäudebestand ausgesetzt sein wird, der sich in einer vulkanischen Umgebung mit mehreren Gefahren (Aschefall 

und Lahare) befindet. In diesem Abschnitt wurde besonderes Augenmerk auf die Art und Weise gelegt, wie die 

prognostizierten Verlustmetriken an lokal exponierte Gemeinden kommuniziert werden. Koexistierende quantitative 

wissenschaftliche Ansätze (d. h. umfassende Expositionsmodelle; explorative Risikoszenarien mit Einzel- und 
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Mehrfachgefahren) und semiqualitative soziale Risikowahrnehmung (d. h. Grad des Verständnisses, das die 

exponierten Gemeinschaften über ihr eigenes Risiko haben) wurden gemeinsam berücksichtigt. Eine solche 

Integration ermöglichte es dieser Arbeit schließlich auch, zur Verbesserung der Bereitschaft, der wissenschaftlichen 

Verbreitung auf lokaler Ebene sowie zu Technologietransferinitiativen beizutragen. 

Abschließend wird eine Zusammenfassung dieser These zusammen mit einigen Perspektiven für Verbesserungen und 

zukünftige Arbeiten präsentiert.  
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Chapter 1 

 

1. Introduction 
 

The risk of communities being exposed to single 

and multiple natural hazards has been increasing in 

the last decades. Although the occurrence of 

independent hazards has not changed much during 

human history, there are nowadays more complex 

interactions between hazards, either acting 

simultaneously or in close succession, that have 

been affecting more communities around the world 

with sometimes devastating effects. Moreover, 

urban areas with susceptible infrastructure and 

rapidly growing populations have been expanding 

to territories where they are nowadays more 

exposed to hazardous events than ever before. To 

anticipate the likely consequences that these 

hazards might cause to the exposed assets and 

people, practitioners, engineers, and scientists have 

proposed several types of risk assessment over the 

years (i.e., index-based, probabilistic methods, and 

scenario-based models). 

 

Classical probabilistic and scenario-based risk 

models for large-area residential building portfolios 

comprise three components (i.e., hazard, exposure, 

and vulnerability). While some researchers have 

made significant efforts to study the causes, and 

likely spatial distribution of the potential hazards to 

occur in specific regions, others have focused on 

studying the different physical vulnerability of 

various types of assets subjected to hazard 

intensities that are usually addressed independently. 

Notably, within these three components, the 

exposure module has comparatively received less 

research attention. Conventional exposure models 

localise assets of interest within a region (e.g., large-

area residential building portfolios) over 

administrative areas that are beforehand 

categorised as a function of their susceptibility to 

single or multiple hazards into mutually exclusive 

and collectively exhaustive building typologies. For 

risk assessment, these classes are assigned to 

vulnerability models which comprise fragility 

functions and the so-called consequence model 

(e.g., replacement costs). These predefined classes 

are the so-called “risk-oriented taxonomies” 

(Pittore et al., 2018) and are not always 

unequivocally used to classify heterogeneous 

building stocks and are often linked to vulnerability 

functions calibrated elsewhere (not for the specific 

area of application).  

Therefore, there can be several epistemic 

uncertainties associated with the exposure 

definition (composition and spatial aggregation), 

that are in turn correlated with the variance in the 

risk estimates. As the degree of knowledge of the 

building portfolio increases, i.e., through high-

quality observation; through the integration of 

freely available crowdsourced data and statistical 

analysis; or through the careful selection of the 

spatial aggregation entities, these epistemic 

uncertainties on risk models can be successively 

explored and reduced. A logical pathway is to first 

evaluate how tuning these exposure sub-

components may modify the risk outcomes if one 

considers only the action of single hazards, and 

then, increase the complexity by performing such 

an investigation in a multi-hazard context.  

Methodological shortcomings and uncertainties 

entailed by the exposure subcomponents can be 

more pronounced in a multi-hazard context. 

Classical multi-hazard risk models for buildings that 

make use of empirical fragility models derived from 

field reconnaissance after a sequence of hazards, 

implicitly comprised the observation of the damage 

caused by compound or cascading events. 

However, they are usually local models designed for 

specific construction practices and geographical 

settings. Likewise, these fragility functions mostly 

depend upon a single observed hazard intensity 

measure (typically the lastly acting one during the 

sequence of hazards). Hence, their extrapolation in 

other geographical contexts is not straightforward 

nor always trustful for risk assessment. Besides, in 

multi-hazard risk, there is still the necessity of 

standardizing the descriptions of observable 

damage features after the occurrence of any type of 
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hazardous event through harmonising scales. This 

standardisation is relevant because it can allow to 

include and update the information related to the 

damage within the exposure modelling process. If a 

probabilistically-sound method can be proposed 

for such a harmonisation, alternative methods that 

allow reusing existing vulnerability models (that 

were individually calibrated by experts) can be 

proposed for a multi-risk context. This setting 

could also contribute to assessing the cumulative 

damage on the exposed assets from various hazards 

intensities of different nature acting in close 

succession and pave the way towards the 

disaggregation of the losses per hazard scenario. 

Thereby, this thesis contributes to filling out some 

of the gaps in the state of the art related to three 

subcomponents entailed to the exposure 

modelling, i.e., (1) composition (proportions 

assigned to each typology); (2) spatial aggregation 

(selection of boundaries to represent building 

stocks); (3) and pre-existing damage (observable 

damage onto buildings before the occurrence of a 

hazardous event). This is done to understanding 

their respective and individual roles in scenario-

based risk assessment of single and multiple 

hazards. The study of these subcomponents has 

been done through the adoption of fixed risk 

scenarios. A risk scenario, as stated in Li et al., 

(2016), is considered a situation picture in which a 

hazardous event with a certain probability would 

occur and cause some damage. Such an adoption 

allows isolating the study of the exposure sub-

component of interest while reducing the degrees 

of freedom and investigating how their individual 

uncertainties are propagated throughout the risk 

chain. Thus, optimally designed exposure models 

can contribute to obtaining comprehensive 

outcomes from scenario-based risk models. In this 

sense, risk scenarios are not only important for 

research and insurance purposes, but also for risk 

communication practices. The use of risk scenarios 

has been increasingly shown to be beneficial for risk 

communication initiatives due to its more intuitive 

presentation to stakeholders in comparison with 

probabilistic hazard approaches. Thereby, the 

related outcomes of the risk models due to single 

and multiple natural hazards might be of interest to 

stakeholders for decision making, i.e., to propose 

mitigation strategies, landscape planning, response 

planning, design of evacuation routes, and 

enhancing overall preparedness to future hazardous 

events. 

1.1. Scope of the thesis 

Deterministic scenarios (either single or multi-

hazard) were used throughout the development of 

this thesis. First, the importance of constraining 

various subcomponents of the exposure modelling 

process into a single scenario-based hazard 

vulnerability (i.e., ground shaking) is presented. 

Then, this thesis moves towards its application to 

multi-hazard risk and risk communication activities. 

Reducible epistemic and thematic uncertainties 

linked to those modelling processes are implicitly 

addressed throughout such a piece-wise analysis. 

 

Several research questions are tackled through the 

development of this thesis: 

• Can we identify the sources of epistemic 

uncertainties embedded within probabilistic 

exposure models and propagate them to assess 

their role in earthquake loss models? 

• Can we make use of freely open data from 

volunteering geo-information activities to 

probabilistically update and continuously refine 

the composition and resolution of exposure? 

• Can we find optimal geographical units for 

exposure aggregation and risk assessment that 

are compatible with the spatial variability of the 

hazard intensities or exposure proxies (e.g. 

population)? 

• Can single-hazard vulnerability models that 

have been already individually calibrated be 

harmonised and reused within a holistic 

framework that allows multi-hazard risk 

assessment in residential building portfolios? 

• Can we assess the cumulated damage and losses 

that are expected from residential building 

stocks affected by cascading hazards? 

• Can we contribute improving the forecasting of 

direct economic losses induced by hazard 

scenarios on real important urban areas 

exposed to single and multiple (sometimes 

consecutive) hazards? 

• Can we effectively communicate risk to directly 

exposed communities while considering their 

own risk perception? 

• Can we work on an interdisciplinary and 

modular approach that facilitates risk 

communication and enhances the 

preparedness of communities? 
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1.2. Presentation of the study 

Having in mind the aforementioned shortcomings and 

the need of improving the current practices entailed in 

exposure modelling activities, Chapter 2 contributes 

to the implementation of a Bayesian approach to 

probabilistically model stochastic building portfolios 

and update its composition through the integration of 

prior distributions with field observations. The 

adoption of this approach allowed the investigation of 

various epistemic uncertainties embedded in exposure 

models as well as their differential impact on scenario-

based seismic risk models. The description of 

buildings in terms of taxonomic attributes is remarked 

herein to classify portfolios into other sets of classes 

as well as for transparent data collection. 

Although field inspections of building attributes are 

great input to constrain the composition of 

probabilistic building exposure models, it could be the 

case, that the number of sampled assets is not 

statistically representative of the total number of 

buildings within the area of interest. Completing the 

visual inspection of such a sample, especially for large 

urban areas, might be unfeasible. To tackle that 

shortcoming, Chapter 3 shows how the increasing 

availability of Volunteered Geo-Information (VGI) 

data can be useful to generate and update probabilistic 

building exposure models. Through a simple land-use 

land-cover classification from remote sensing imagery, 

this chapter also highlights the importance of 

accurately constraining the spatial aggregation areas of 

the exposure models.  

Traditional exposure models for building portfolios 

for risk estimations have been spatially aggregated 

onto coarse administrative areas that are not correctly 

capturing the spatial variability of the hazard intensity 

of interest. If the same building stock is exposed to 

multiple hazards (often with contrasting spatial 

variabilities), one can realise that finding an optimal 

exposure aggregation area that can be simultaneously 

compatible with such hazard intensities is a problem 

with increasing complexity. To track that objective, 

Chapter 4 presents and compares decoupled 

estimations of the scenario-based earthquake and 

tsunami loss assessment while raising awareness about 

the efficiency and uncertainties related to the selection 

of spatial aggregation entities for the mapping of the 

risk metric. Two sets of tsunami-oriented sets of 

building classes with existing empirical tsunami 

fragility models (constructed by others after in-situ 

damage reconnaissance) are used during the loss 

estimates. This chapter concludes that as the 

earthquake magnitude increases, the expected losses 

might be controlled by ground shaking. This result is 

not particularly surprising because empirical tsunami 

fragility models were derived from buildings that 

suffered cumulative damage due to the joint effect of 

the tsunami-generating earthquake and the tsunami 

itself.  

To calculate the cumulative damage and losses that a 

building stock exposed to cascading hazards may 

experience, Chapter 5 presents a novel and integrative 

method that reuses and probabilistically harmonise 

existing fragility/ vulnerability models available in the 

literature. A set of analytically derived state-dependent 

tsunami fragility functions that capture the previous 

damage due to ground shaking replace the traditional 

empirical ones. Taxonomic building attributes are an 

important input to characterise the observable damage 

across the different hazard-related vulnerabilities. This 

aspect relies on some of the ideas presented in Chapter 

1 about the importance of standardized vulnerability-

independent taxonomies, which combined with sound 

probabilistic modelling are instrumental for more 

robust risk assessment practices. 

Chapter 6 presents the integration between exposure 

models constructed for another multi-hazard setting 

(i.e., a volcanic environment) and carefully chosen 

multi-hazard risk scenarios into an explorative tool 

designed for risk communication initiatives. This is a 

proven application that was presented to a directly 

exposed community while studying their own risk 

perception. 
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https://doi.org/10.3390/su13041714 

Conceptualization, J.C.G.Z., M.P., C.P.; 

methodology, M.P., C.P., E.S., F.B-O., H.S.; 

software, M.L.; validation, T.F., C.Z.-T., C.P.; 

formal analysis, J.C.G.Z., F. B-O., C.P.; 

investigation, T.F., F.B., K.B., M.K.; resources, 

C.Z.-T.; data curation, J.C.G.Z., M.L, H.R.; 

writing—original draft preparation, J.C.G.Z., 

M.L., C.P.; writing—review and editing, T.F., 

F.B., J.C.G.Z.; visualization, T.F., F.B-O., M.L.; 

supervision, H.S.; project management, E.S. 

 

1.3.2. Publications not associated with the 

thesis 

1. Aristizábal, C., Bard, P.-Y., Beauval, C., Gómez, 

J.C., 2018. Integration of Site Effects into 

Probabilistic Seismic Hazard Assessment 

(PSHA): A Comparison between Two Fully 

Probabilistic Methods on the Euroseistest Site. 

Geosciences 8. 

https://doi.org/10.3390/geosciences8080285 

 

2. Feliciano, D., Arroyo, O., Cabrera, T., 

Contreras, D., Valcárcel Torres, J.A., Gómez 

Zapata, J.C., 2022. Seismic risk scenarios for the 

residential buildings in the Sabana Centro 

province in Colombia. Natural Hazards and Earth 

System Sciences Discussions 2022, 1–33. [preprint],  

https://doi.org/10.5194/nhess-2022-73 

 

3. Geiß, C., Aravena Pelizari, P., Calderon, A.R.S., 

Schöpfer, E., Langbein, M., Riedlinger, T., Villar 

Vega, M., Santa María, H., Gómez Zapata, J.C., 

Pittore, M., So, E., Fekete, A., Taubenböck, H., 

2022. Benefits of Global Earth Observation 

Missions for Exposure Estimation and 

Earthquake Loss Modelling – Evidence from 

https://doi.org/10.3390/ijgi11020113
https://doi.org/10.5194/nhess-21-3599-2021
https://doi.org/10.5194/nhess-2022-183
https://doi.org/10.5194/nhess-2022-183
https://doi.org/10.3390/su13041714
https://doi.org/10.3390/geosciences8080285
https://doi.org/10.5194/nhess-2022-73


5 
 

 

 

Santiago de Chile, Chile. Natural Hazards. 

https://doi.org/10.1007/s11069-022-05672-6 

 

4. Nicodemo, G., Digrisolo, A., Masi, A., Gómez 

Zapata, J.C., An integrated approach for 

collecting exposure data of residential buildings. 

An application for Calvello (Southern Italy) (in 

preparation). 

 

5. Öztürk, U., Gómez Zapata, J.C., Wagener, T., 

Aristizabal Giraldo, E.V., Motivating urban 

poor to live on landslide-prone areas. (In 

preparation). 

 

6. Rosero-Velásquez, H., Gómez Zapata, J.C., 

Monsalve M., Ferrario E., Straub, D., 

Determining representative seismic Hazard 

scenarios, with application to Valparaiso, Chile. 

(In preparation). 

 

1.3.3. Contributions to open software  

1. Brinckmann, N., Gomez-Zapata, J.C., Pittore, 

M., Rüster, M., 2021. DEUS: Damage-

Exposure-Update-Service. V. 1.0. GFZ Data 

Services. 

https://doi.org/10.5880/riesgos.2021.011 

 

2. Gómez Zapata, J.C., Shinde, S., Pittore, M., 

Merino-Peña, Y., 2021. Scripts to generate (1) 

attribute-based fuzzy scores for SARA and 

HAZUS building classes, and (2) probabilistic 

inter-scheme compatibility matrices. An 

application on the residential building stock of 

Valparaiso (Chile) for seismic risk applications. 

GFZ Data Services. 

https://doi.org/10.5880/riesgos.2021.002 

 

3. Pittore, M., Gomez-Zapata, J.C., Brinckmann, 

N., Rüster, M., 2021. Assetmaster and 

Modelprop: web services to serve building 

exposure models and fragility functions for 

physical vulnerability to natural-hazards. V. 1.0. 

GFZ Data Services. 

https://doi.org/10.5880/riesgos.2021.005 

 

4. Pittore, M., Haas, M., Gomez-Zapata, J.C., 

Brinckmann, N., Rüster, M., Proß, B., 2021. 

Quakeledger: a web service to serve earthquake 

scenarios. V. 1.0. GFZ Data Services. GFZ Data 

Services. 

https://doi.org/10.5880/riesgos.2021.003 

 

5. Weatherill, G., Pittore, M., Haas, M., 

Brinckmann, N., Rüster, M., Gomez-Zapata, 

J.C., 2021. Shakyground: a web service to serve 

GMPE-based ground motion fields. V. 1.0. 

GFZ Data Services. 

https://doi.org/10.5880/riesgos.2021.004 

 

1.3.4. Contributions to data repositories:  

1. Gómez Zapata, J. C., Zafrir, R., Harig, S., and 

Pittore, M., 2021. Customised focus maps and 

resultant CVT-based aggregation entities for 

Lima and Callao (Peru). V. 1.0., GFZ Data Serv., 

https://doi.org/10.5880/riesgos.2021.006/ 

 

2. Gómez Zapata, J. C., Zafrir, R., Brinckmann, 

N., and Pittore, M., 2021. Residential building 

exposure and physical vulnerability models for 

ground-shaking and tsunami risk in Lima and 

Callao (Peru). V. 1.0., GFZ Data Serv., 

https://doi.org/10.5880/riesgos.2021.007/ 

 

3. Gómez Zapata, J. C., Brinckmann, N., Pittore, 

M., and Cotton, F.: 2021. Seismic ground 

motion fields for six deterministic earthquake 

scenarios (Mw 8.5-9.0) for Lima (Peru), GFZ 

Data Serv., 

https://doi.org/10.5880/riesgos.2021.008/ 

 

4. Gómez Zapata, J. C., Brinckmann, N., Pittore, 

M., and Cotton, F. 2021. Spatial representation 

of direct loss estimates on the residential 

building stock of Lima (Peru) from decoupled 

earthquake and tsunami scenarios on variable 

resolutions exposure models., GFZ Data Serv., 

https://doi.org/10.5880/riesgos.2021.009/ 

 

5. Gómez Zapata, J. C., Medina, S., and Lizarazo-

Marriaga, J.: Creation of simplified state-

dependent fragility functions through ad-hoc 

scaling factors to account for previous damage 

in a multi-hazard risk context. An application to 

flow-depth-based analytical tsunami fragility 

functions for the Pacific coast of South 

America, GFZ Data Serv. 

https://doi.org/10.5880/riesgos.2022.002/ 

Review link: https://dataservices.gfz-

potsdam.de/panmetaworks/review/b1e611344

f04b57fa73d31e48f5b482cda74afa8254c5685ad

0fe4f97d3f8c6c/ 

 

6. Gómez Zapata, J. C., Pittore, M., Probabilistic 

inter-scheme compatibility matrices for multi-

https://doi.org/10.1007/s11069-022-05672-6
https://doi.org/10.5880/riesgos.2021.011
https://doi.org/10.5880/riesgos.2021.002
https://doi.org/10.5880/riesgos.2021.005
https://doi.org/10.5880/riesgos.2021.003
https://doi.org/10.5880/riesgos.2021.004
https://doi.org/10.5880/riesgos.2021.006/
https://doi.org/10.5880/riesgos.2021.007/
https://doi.org/10.5880/riesgos.2021.008/
https://doi.org/10.5880/riesgos.2021.009/
https://doi.org/10.5880/riesgos.2022.002/
https://dataservices.gfz-potsdam.de/panmetaworks/review/b1e611344f04b57fa73d31e48f5b482cda74afa8254c5685ad0fe4f97d3f8c6c/
https://dataservices.gfz-potsdam.de/panmetaworks/review/b1e611344f04b57fa73d31e48f5b482cda74afa8254c5685ad0fe4f97d3f8c6c/
https://dataservices.gfz-potsdam.de/panmetaworks/review/b1e611344f04b57fa73d31e48f5b482cda74afa8254c5685ad0fe4f97d3f8c6c/
https://dataservices.gfz-potsdam.de/panmetaworks/review/b1e611344f04b57fa73d31e48f5b482cda74afa8254c5685ad0fe4f97d3f8c6c/


6 
 

 

 

hazard exposure modeling. An application using 

existing vulnerability models for earthquakes 

and tsunami from synthetic datasets constructed 

using the AeDEs form through expert-based 

heuristics, GFZ Data Serv., 

https://doi.org/10.5880/riesgos.2022.003/ 

Review link https://dataservices.gfz-

potsdam.de/panmetaworks/review/6355f1be6

0969620c71b09b4ff4595d9f3d2247b30260a49c

ce816c9f5f41e0d/ 

 

7. Arroyo, O., Feliciano, D., Gomez Zapata, J.C., 

Shinde, S., Brinckmann, N., 2022. RRVS 

Building survey for building exposure modelling 

in Chua (Colombia) Status. GFZ Data Services. 

https://doi.org/10.5880/riesgos.2022.001 

 

8. Merino-Peña, Y., Pittore, M., Gomez-Zapata, 

J.C., 2021. RRVS Building survey for building 

exposure modelling in Valparaiso and Viña del 

Mar (Chile). V. 1.0. GFZ Data Services. 

https://doi.org/10.5880/riesgos.2021.001 

 

 

 

 

  

https://doi.org/10.5880/riesgos.2022.003/
https://dataservices.gfz-potsdam.de/panmetaworks/review/6355f1be60969620c71b09b4ff4595d9f3d2247b30260a49cce816c9f5f41e0d/
https://dataservices.gfz-potsdam.de/panmetaworks/review/6355f1be60969620c71b09b4ff4595d9f3d2247b30260a49cce816c9f5f41e0d/
https://dataservices.gfz-potsdam.de/panmetaworks/review/6355f1be60969620c71b09b4ff4595d9f3d2247b30260a49cce816c9f5f41e0d/
https://dataservices.gfz-potsdam.de/panmetaworks/review/6355f1be60969620c71b09b4ff4595d9f3d2247b30260a49cce816c9f5f41e0d/
https://doi.org/10.5880/riesgos.2022.001
https://doi.org/10.5880/riesgos.2021.001


7 
 

 

 

 

 

Chapter 2 

 

2. Epistemic uncertainty of probabilistic building exposure 

compositions in scenario-based earthquake loss models 

 

Abstract 

In seismic risk assessment, the sources of uncertainty associated with building exposure modelling have not 

received as much attention as other components related to hazard and vulnerability. Conventional practices 

such as assuming absolute portfolio compositions (i.e., proportions per building class) from expert-based 

assumptions over aggregated data crudely disregard the contribution of uncertainty of the exposure upon 

earthquake loss models. In this work, we introduce the concept that the degree of knowledge of a building 

stock can be described within a Bayesian probabilistic approach that integrates both expert-based prior 

distributions and data collection on individual buildings. We investigate the impact of the epistemic 

uncertainty in the portfolio composition on scenario-based earthquake loss models through an exposure-

oriented logic tree arrangement based on synthetic building portfolios. For illustrative purposes, we 

consider the residential building stock of Valparaíso (Chile) subjected to seismic ground-shaking from one 

subduction earthquake. We have found that building class reconnaissance, either from prior assumptions 

by desktop studies with aggregated data (top-down approach), or from building-by-building data collection 

(bottom-up approach), plays a fundamental role in the statistical modelling of exposure. To model the 

vulnerability of such a heterogeneous building stock, we require that their associated set of structural 

fragility functions handle multiple spectral periods. Thereby, we also discuss the relevance and specific 

uncertainty upon generating either uncorrelated or spatially cross-correlated ground motion fields within 

this framework. We successively show how various epistemic uncertainties embedded within these 

probabilistic exposure models are differently propagated throughout the computed direct financial losses. 

This work calls for further efforts to redesign desktop exposure studies, while also highlighting the 

importance of exposure data collection with standardized and iterative approaches a. 

a published as: Gómez Zapata, J.C., Pittore, M., Cotton, F., Lilienkamp, H., Simantini, S., Aguirre, P., Santa Maria H., 

2022. Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss 

models. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-021-01312-9 

 

  

https://doi.org/10.1007/s10518-021-01312-9
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2.1. Introduction 

Epistemic uncertainties stem from the incomplete 

knowledge of the actual problem and its parameters, 

or simply from, often unavoidable, modelling and 

methodology errors (e.g., Vamvatsikos et al. 2010). 

The performance of earthquake loss models for large-

scale residential building portfolios under the 

influence of such epistemic uncertainties, which are 

related to the lack of data describing the exposure 

composition, is the central aspect of this work. 

Exposure refers to the number, type, and monetary 

value of the elements (e.g., buildings) that are under 

threat from natural hazards and are subjected to 

potential loss (e.g., UNISDR, 2009). Together with the 

hazard and vulnerability components, the exposure 

contributes to most quantitative risk assessment 

applications. In such studies, the degree of knowledge 

of the hazard and exposure components plays a 

fundamental role since their associated uncertainties 

are propagated to the final loss estimates. Therefore, 

accurate estimates of the expected spatial distribution 

of seismic ground-shaking intensities for an 

earthquake scenario, together with increasingly 

consistent classifications of the building stock into 

suitable building vulnerability classes, will provide 

more accurate central metrics and minimize the 

variance of the final loss estimates over an area of 

interest. Being able to track and disaggregate the 

influence of the hazard and exposure is a crucial factor 

for decision making, urban planning, and finance (e.g., 

the insurance industry). In the latter, the smaller the 

variation in the mean loss values, the lower the risk is 

perceived (Wesson and Perkins, 2001). 

In exposure modelling, the buildings are classified into 

vulnerability classes which ultimately describe their 

expected susceptibility to damage. The vulnerability-

class definition, therefore, links the hazard intensities 

to the expected damage based on a clear 

understanding of the building’s structural and non-

structural characteristics (e.g., Calvi et al. 2006). Porter 

et al. (2002) showed that the influence of uncertainties 

in ground shaking on the overall uncertainty in the 

seismic performance of individual buildings (repair 

cost) is similar to the influence of uncertainty in the 

capacity of a building to resist the damage. However, 

for large-scale seismic risk, it has been conventionally 

assumed that the relative uncertainty associated with 

the definition of building classes and their relative 

proportions contributes much less to the final loss 

estimates than the aleatory components of the risk 

processing chain (i.e., ground motion variability in 

seismic hazard). This has led to the general practice of 

assuming that the collection of building exposure data 

is not as worthwhile compared to the more detailed 

assessment of the hazard component (Crowley and 

Bommer, 2006). This practice implies further 

community-accepted assumptions, such as supposing 

fixed proportions over aggregated data (i.e., census-

based desktop studies), without exploring their 

underlying uncertainties. Only in recent times have a 

few studies pointed out the exposure uncertainty is an 

area that would particularly benefit from further 

assessment (Crowley, 2014; Corbane et al. 2017; Silva 

et al. 2019). Under this framework, there are several 

components of epistemic uncertainty that need 

further exploration, such as the basic reconnaissance 

of the building classes and their location while 

gathering their attributes, as well as exploring 

sensitivities in loss outcomes if more than a single set 

of building classes is used. Therefore, the assessment 

of a selected set of taxonomic attributes within a 

statistical exposure model while investigating the 

uncertainty in the class assignment and their effects on 

the loss estimates is a pathway worth exploring within 

a seismic risk framework. 

 

This work describes how the epistemic uncertainty 

associated with defining a building exposure model is 

correlated with the variance in the loss estimates in 

earthquake scenarios. First, we briefly describe the 

current practices and limitations in the current state of 

the art in building exposure modelling for seismic risk 

(Sect. 2.2). Subsequently, we present a method for 

exploring the epistemic uncertainty of the building 

exposure models in earthquake loss models (Sect. 2.3). 

As a premise, in this work the building exposure 

model is visualized under the scope of compositional 

theory within a Bayesian framework in three stages: (1) 

statistical modelling based on the collection of data 

about a building’s attributes and the configuration of 

synthetic building portfolios; (2) a novel method for 

obtaining the probabilistic compatibility-levels 

between two sets of building classifications; (3) the 

novel proposal of an exposure-oriented logic-tree that 

propagates and disaggregates some of the components 

that contribute to uncertainty in the loss estimates. 

These steps are exemplified for the residential building 

stock of Valparaíso, Chile (Sect. 2.4), to investigate 

how their associated variability impacts upon 

estimates of direct financial losses arising from a 

subduction earthquake scenario, while also 

considering both uncorrelated and spatially cross-

correlated ground motion fields (GMF). 
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2.2. Current state of the art in building- 

exposure modelling for seismic risk 

assessment 

In classical exposure models for large-scale seismic 

risk assessment, only some basic attributes are used to 

classify a building stock (e.g., the material of the lateral 

load resistance system (LLRS), height, and age). To 

date, few efforts to explore the associated 

uncertainties in the exposure composition have been 

made. For instance, Crowley and Pinho (2004) 

considered the spatial variation in the individual 

attributes as being random and less than the 

uncertainty induced by grouping different individual 

buildings into a single typology. Crowley et al. (2005) 

later showed that there is a great variability in the 

damage loss ratios imposed by grouping certain 

typologies in terms of storey ranges over a portfolio, 

even when the buildings are assumed to have other 

homogenous attributes (e.g., in terms of material of 

the LLRS). These simplifications have led to the 

practice of representing the epistemic uncertainty in 

the classification of buildings into predefined 

typologies as aleatory uncertainty. However, the same 

study also pointed out that detailed inspections to 

collect attributes of all the buildings in a study area 

would allow this uncertainty to be treated as epistemic. 

This is relevant considering that the location of 

specific building attributes are, in reality, not aleatory 

within a building stock (e.g., Dell’Acqua, et al. 2013; 

Martínez-Cuevas et al. 2017) and can affect their 

seismic vulnerability (Lagomarsino and Giovinazzi, 

2006). Unfortunately, considering the extent and the 

evolution of the built environment, a full enumeration 

of the taxonomic features of the assets is a highly time 

and resource-intensive task, and often simply 

unfeasible (Pittore et al. 2017). Furthermore, the 

associated complexity in the building classification 

would increase and will lead to a more extensive set of 

classes in comparison to the available set of fragility 

functions (Haas, 2018; Martins and Silva, 2020). 

However, if only a sample of the building structures 

within the entire stock is inspected, the epistemic 

uncertainly associated with the class assignment in 

exposure models could be accounted for, allowing 

then the investigation of their impact upon earthquake 

loss models. For this aim, the use of taxonomies is a 

conventional practice to describe the built 

environment.  

2.2.1. The use of taxonomies for building 

exposure modelling 

2.2.1.1. Risk-oriented taxonomies: Schemes 

Buildings are grouped into categories with expected 

similar performance when subjected to ground 

shaking. These categories are actually risk-oriented 

taxonomies which describe vulnerability classes with 

respect to a specific natural hazard and are described 

by a set of mutually exclusive, collectively exhaustive, 

building classes. To refer to such a set of building 

classes, we will be using the word “scheme”. Some of 

the most common schemes include the European 

Macroseismic Scale 1998 (EMS-98, Grünthal, 1998), 

the USA specific HAZUS model (FEMA, 2003), and 

PAGER-STR (Jaiswal et al. 2010). These schemes 

classify large-scale exposure models often based on 

census information and are spatially aggregated over 

specific administrative units. Given the lack of local 

models, these taxonomies have been applied outside 

their original geographical scope. This is the case for 

HAZUS, which has been used to classify building 

stocks and to estimate losses in other geographical 

contexts (e.g., in Chile, Aguirre et al. 2018). Similar 

practices have been reported using the EMS-98 risk-

oriented taxonomy in Central Asia (e.g., Bindi et al. 

2011; Pilz et al. 2013). 

2.2.1.2. Faceted taxonomies: taxonomic attributes 

Faceted taxonomies, by contrast, provide an exhaustive 

and structured sets of mutually exclusive and well-

described attributes. These taxonomies allow the 

description of individual structures in a standard way 

and are largely independent of specific fragility or 

vulnerability models. The most widely used and well-

established example is the GEM Building Taxonomy 

(GEM v.2.0, Brzev et al. 2013). This taxonomy has 

been adapted for a multi-hazard-risk initiative 

(GED4ALL, Silva et al. 2018) and for classifying 

structures with special occupancies, such as schools, 

to assess their seismic vulnerability within the Global 

Library of School Infrastructure project (GLOSI) 

outlined in D’Ayala et al. (2020). Every building class 

within a given risk-oriented taxonomy can be 

disaggregated into attributes within a faceted taxonomy. 

This has been described in (Pittore et al., 2018b) and 

has been noted in Pavić et al. (2020). 



10 
 

 

 

2.2.2.  Exposure modelling methods for 

large area spatially distributed buildings 

Regardless of the type of taxonomy (either risk-

oriented or faceted), there are two conventional 

methods for the exposure modelling of large-scale 

spatially distributed buildings: (1) a top-down approach, 

which involves the analysis of aggregated data (e.g., 

census data) through expert elicitation, and (2) a 

bottom-up approach, which uses individual 

observations. These two approaches classify the 

building stock by addressing a double expert elicitation 

process: 

(1) To classify the building inventory into assumed 

building classes within a given study area. 

(2) To obtain the building exposure composition 

(i.e., proportions in every building class). 

These approaches are briefly explained hereafter. An 

innovative approach that dynamically combines these 

through statistical analyses will be introduced and 

discussed later in this work. 

2.2.2.1. Top-down approach: building class from the analysis 

of aggregated data. 

Recently, the implementation of the GEM “mapping 

schemes” for the analysis of aggregated data has been 

outlined in Yepes-Estrada et al. (2017) and further 

implemented in the European exposure model 

(Crowley et al. 2020) and the Global Seismic Risk 

model (Silva et al. 2020). These mapping schemes 

classify a building stock through desktop studies and 

expert elicitation with respect to earthquake 

vulnerability classes. Each class is described by 

selected attributes from the GEM v2.0 faceted 

taxonomy. They rely on available regionally aggregated 

data (e.g., region-specific census data) while 

addressing socioeconomic characteristics for dwellings 

and not at the building level (Crowley, 2014). Since 

there might be only a few very useful attributes for 

physical vulnerability assessment, these mapping-

schemas have been customized to include other 

attributes by defining covariate relations between 

census descriptors and expected proportions per 

building class to ultimately use a single set of 

typologies to represent a building stock (e.g., Acevedo 

et al., 2020; Dabbeek and Silva, 2020). Therefore, the 

variation of taxonomic attributes is still being treated 

as being random within an aleatory uncertainty 

framework instead of a reducible and trackable 

epistemic uncertainty. Moreover, exposure models 

derived from purely top-down desktop studies neglect 

the temporal evolution of the ancillary data. Since 

census data are neither standard across regions nor in 

time (including possible changing data formats), once 

the mapping schema is used, the resultant exposure 

model would remain static until new census 

information is generated (Silva et al. 2019). Recent 

discussions about epistemic uncertainties in regional 

exposure models have been presented by Kalakonas 

et al. (2020). These authors observed negligible 

differences in the loss estimates when alternative 

exposure compositions were compared within a 

sensitivity analysis for probabilistic risk assessment. 

Notably, recent studies have highlighted the 

importance of the statistical nature of the exposure 

models by forecasting its dynamic spatiotemporal 

evolution (Rivera et al., 2020; Calderón and Silva, 

2021) as well as counting with efficient techniques for 

their spatial aggregation (Dabbeek et al., 2021). 

2.2.2.2.  Bottom-up approach: individual building 

observations 

When the composition of the portfolio is expected to 

be heterogeneous, data collection of attributes over a 

selected sample of individual buildings is required to 

constrain and validate the underlying assumptions 

imposed by a top-down vision. Freely available data 

products such as OpenStreetMap (OSM) may offer 

some descriptors (occupancy or footprint shape) that 

have been proved to be useful for constructing large 

scale exposure models with particular occupancies 

(e.g., Sousa et al. 2017). However, due to the lack of 

standardized data formats, including vulnerability 

drivers’ attributes within harmonized data formats is 

still required by volunteer mapping initiatives to 

describe more robust schemes. This harmonization 

has been addressed by data standards with taxonomic 

attributes. This is the case for FEMA 154, (2002), the 

SASPARM 2.0 project (Grigoratos et al. 2016), 

CARTIS (Polese et al. 2020); and initiatives for data 

collection of post-earthquake damage such as AeDES 

(Baggio et al. 2007; Nicodemo et al. 2020). Recently, 

Kechidi et al. (2021) presented a comprehensive 

comparison between census-based (using mapping 

schemes) and survey-based (inspecting a sample) 

exposure models for risk assessment. The authors 

highlighted that the accuracy of the risk estimates is 

directly correlated with the number of surveys within 

a given region. 

2.2.2.3.  Dynamic building exposure modelling based on data 

collection and statistical analyses 

Some studies have proposed the association between 

building characteristics (dynamically collected) and 
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their related vulnerability classes through statistical 

modelling. These type of approaches were first 

exemplified by Pittore and Wieland (2013) who 

employed Bayesian networks, and by Riedel et al. 

(2015) who made use of machine learning techniques. 

Moreover, a dynamic building exposure modelling 

method with a probabilistic nature has been recently 

suggested by Pittore et al. (2020), where it was 

proposed to define the portfolio’s vulnerability classes 

in a top-down manner, while the expected frequency 

of the related classes was constrained through a 

bottom-up approach by integrating attribute-based 

data collection. To the best of the authors’ knowledge, 

these statistical models have not yet been exploited to 

investigate the epistemic uncertainties in building 

exposure model composition, nor its impact on loss 

estimates. A detailed exploration of the epistemic 

uncertainty carried by statistical building exposure 

models upon scenario-based loss estimates is 

introduced hereafter.  

2.3. Methodology 

2.3.1. Probabilistic - exposure models: a 

Bayesian formulation 

 

The building portfolio configuration is conceptualized 

by compositional theory within a fully probabilistic 

Bayesian framework, as initially suggested by Pittore et 

al. (2020). First, we introduce the concept of the 

likelihood function, followed by the assumptions on 

the prior and the posterior distributions within this 

context. This formulation considers risk-oriented 

schemes that contain a finite set of building classes and 

their associated fragility functions. 

2.3.1.1.  The definition of the likelihood function: The intra-

scheme compatibility levels 

A suitable scheme containing 𝑘 risk-oriented building 

classes is selected for the area of interest, where we 

assume some data has also been collected through 

surveying (evidence). Following the proposal of 

Pittore et al. (2020), we assume that a sample of 𝑛 =

{𝑛1, … , 𝑛𝑘}, ∑ 𝑛𝑖 = 𝑁𝑘  building types are observed, 

where 𝑛𝑖 is the number of specimens of building type 

𝑖. We assume that the statistical population of 

buildings from which the observed sample is drawn is 

characterized by k typologies, whose frequencies are 

characterised by a proportion 𝜃 = {𝜃1, … , 𝜃𝑘}, 𝜃𝑖> 0 

∀𝑖 and ∑ 𝜃𝑘 = 1𝑘 . Assuming a Multinomial sampling 

model, the probability of observing 𝑛 conditionals on 

𝜃 is given by: 

 

We assume that the set of observations given their 

proportions is the likelihood distribution of the 

Bayesian formulation for building exposure 

modelling. This emerges naturally considering the 

bottom-up data collection of individual attributes. 

Subsequently, every risk-oriented building class (𝑘 

within a given scheme (e.g.,𝑇𝑘
𝐴) is translated into basic 

taxonomic attribute values {𝐹}𝑚 offered by a faceted 

building taxonomy. This is expressed by Eq.  2-2. 

 

∑
𝑚

𝑝(𝑇𝑘
𝐴|{𝐹}𝑚) Eq.  2-2 

Triangular fuzzy values are assigned through expert 

criteria to score the compatibility degree between the 

observed attribute values and every building class, as 

formulated in (Pittore et al., 2018b), to constrain the 

actual proportion of every class within the exposure 

model. Subsequently, the data collection over 

individual buildings are used in the class assignment. 

Every attribute type 𝑗 has an associated numerical 

weight, 𝑤𝑗 , that acknowledges their relevance to the 

vulnerability assessment as well as their ability to be 

satisfactorily identified during the survey. By 

evaluating the compatibility degree between the 

observed building attributes and the building class, a 

transparent assignment of the most likely class within 

a fully probabilistic framework is achieved. 

2.3.1.2. Prior and posterior distributions 

As formulated in Pittore et al. (2020), the expected 

proportion 𝜃𝑖 for every building class is treated as a 

Dirichlet-distributed random variable: 

where 𝛼 = {𝛼1, … , 𝛼𝑘}, 𝛼𝑖> 0 ∀𝑖 with 𝛼0=∑ 𝛼𝑖
𝑘
𝑖=1  

being termed the concentration factor. The Dirichlet 

hyperparameter 𝛼𝑖 is factorized as a product of a 

proportion (𝜃𝑘) and a common concentration factor 

such as: 

𝛼𝑖 =  𝜃𝑘𝛼𝑜 Eq.  2-4 

where 𝛼0 increases the virtual counts for the category 

𝑘. By Bayes theorem, and since the prior Dirichlet is 

the conjugate prior for the Multinomial likelihood, the 

posterior probability distribution of 𝜃𝑖 will also be a 

𝑝(𝑛|𝜃) = 𝑀𝑢𝑙(𝑛|𝜃)
𝑁!

∏ 𝑛𝑖!
𝑘
𝑖=1

∏ 𝜃𝑘
𝑛𝑖

𝑘

𝑖=1

 

 

Eq.  2-1 

𝐷𝑖𝑟(𝛼) =
Γ(∑ 𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏ 𝜃𝑖
𝛼𝑖−1

𝑘

𝑖=1

 

Eq.  2-3 
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Dirichlet distribution that can be described in terms of 

the likelihood 𝑝(𝒏|𝜽) and prior 𝑝(𝜽): 

(𝜃|𝑛) ∝ 𝑝(𝑛|𝜃)𝑝(𝜃) Eq.  2-5 

When the number of observations increases, the 

probability estimate is dominated by the Multinomial 

likelihood. Therefore, the expert-based priors will be 

increasingly superseded by real data as it is 

continuously captured during surveys. 

2.3.1.3. Synthetic building portfolios for a logic tree 

construction and spatial allocation 

We propose to further characterise the prior and 

likelihood terms to obtain customized posterior 

distributions with proportions that represent the 

building stock composition. This is done through a 

logic tree. A similar approach was suggested by Riga 

et al. (2017) to highlight the uncertainties at the 

vulnerability level. Within our scope, we propose it as 

a tool for exploring the epistemic uncertainty in the 

portfolio composition. It has four complexity levels, 

namely: 

(1) The selection of the building class scheme (group 

of building classes). 

(2) The selection of the numerical weight, 𝑤𝑗 (per 

attribute type j), which scores and ranks the 

relevance of every attribute type in the 

vulnerability assessment and their ability for 

assessment during surveys. The set of 𝑤𝑗 is called 

the ‘weighting arrangement” (W.A). 

(3) The definition of a prior distribution which 

describes the initial guess about the composition 

of the building portfolio in the form of a Dirichlet 

distribution. This composition describes the 

representability of every building class in the area 

and is driven by data collection, expert criteria, or 

aggregated data (e.g., census). 

(4) The selection of the hyper-parameter 𝛼0 

(concentration factor(s)) of the conjugate 

posterior Dirichlet distribution obtained from 

Eq.  2-5. This selection acknowledges the degree 

of trust in the former assumptions. Larger values 

(𝛼0 ~ 50) represents a higher level of knowledge 

give similar compositions (almost unanimous 

consensus) whilst smaller ones (𝛼0 ~ 1) means 

low information content and hence low 

knowledge of the portfolio composition that 

result in sparser distributions (Hastie et al. 2015). 

For each selected 𝛼0, a number of samples must 

be selected to represent stochastic compositions 

within synthetic building portfolios. 

 

With this formulation, we retain the statistical nature 

of the exposure modelling while overcoming the top-

down vision of having a fixed composition. To 

spatially distribute every synthetic building portfolio, a 

dasymetric disaggregation from population counts is 

followed as proposed in Pittore et al. (2020). This 

approach is suitable for a differential spatial allocation 

of the synthetic building portfolios whose 

composition is being reconfigured with every sample. 

Population counts reported in any aggregated data 

source (e.g., LandScan; WorldPop; GPWv4) can be 

used. 

It should be noted that the former steps regard the use 

of a single group of building classes (scheme 𝑇𝑘
𝐴). 

However, for the exposure modeller, there might be 

more than one suitable scheme to describe the 

building stock of a given area (e.g., 𝑇𝑗
𝐵). Although 

subjective compatibility relations between building 

classes contained in two different schemes have been 

already proposed (e.g., between HAZUS and EMS-98 

in Hancilar et al. 2010), there is still the question of 

how to obtain some of the basic metrics for this 

alternative exposure model 𝑇𝑗
𝐵 (i.e., their proportions, 

average night-time residents, and replacement costs). 

This is not a trivial task since this information might 

be only available in terms of one reference scheme. 

Thereby, we propose to obtain these metrics for other 

suitable schemes through the formulation of 

probabilistic inter-scheme compatibility matrices. This 

method is described in the following. 

2.3.2. Probabilistic inter-scheme 

compatibility matrix 

As presented in Eq.  2-2, we assume that each building 

class k within a given scheme (𝑇𝑘
𝐴) can be 

disaggregated into observable taxonomic features of a 

faceted taxonomy {𝐹}𝑚. This procedure is also 

followed for the target scheme (𝑇𝑗
𝐵) of interest. A 

straightforward application of the total probability 

theorem and a probabilistic description of the building 

type in taxonomic features allow us to define Eq. 2-6. 

This formulation allows us to obtain their probabilistic 

compatibility degree 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) as a matrix. 

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) = ∑
𝑚

𝑝(𝑇𝑘
𝐴|{𝐹}𝑚 ∩ 𝑇𝑗

𝐵)𝑝({𝐹}𝑚|𝑇𝑗
𝐵) Eq. 2-6 
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Since we assume that the representations of a building 

within the two considered schemes are conditionally 

independent (⫫) given the information on 

taxonomical features, we can describe the source 

scheme (𝑇𝑘
𝐴) as being modelled in terms of the 

taxonomic attributes that also compose the target-

scheme (𝑇𝑗
𝐵: 𝑇𝑘

𝐴) ⫫ 𝑇𝑗
𝐵|{𝐹}𝑚, the former equation 

can also be expressed as a product, as expressed in Eq. 

2-7. 

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) =  ∑
𝑚

𝑝(𝑇𝑘
𝐴|{𝐹}𝑚)𝑝(𝑇𝑗

𝐵|{𝐹}𝑚)
𝑝({𝐹}𝑚)

𝑝(𝑇𝑗
𝐵)

 

(𝑠𝑖𝑛𝑐𝑒 𝑇𝑘
𝐴 ⫫ 𝑇𝑗

𝐵|{𝐹}𝑚) 

 

Eq. 2-7 

We obtain a probabilistic representation of the 

compatibility degree across the two considered 

building classes in an alternative Bayesian formulation, 

as presented in Eq. 2-8. 

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵)

= ∑
𝑚

𝑝(𝑇𝑘
𝐴|{𝐹}𝑚)𝑝(𝑇𝑗

𝐵|{𝐹}𝑚)
𝑝({𝐹}𝑚)

𝑝(𝑇𝑗
𝐵)

 

Eq. 2-8 

 

Synthetic surveys based on the possible combinations 

of attributes that may describe every building class are 

input to solve the compatibility scores and are 

integrated through the selection of the weighting 

arrangement for every commonly considered 

attribute. (𝑤𝑗 , see Sect. 2.3.1.1). Using this matrix, we 

can obtain the missing normalized values (i.e., 

distribution of prior proportions) of the target scheme 

({𝑅}𝑇𝑗
𝐵) by simply applying a dot product between the 

obtained matrix and the equivalent quantities of the 

source scheme ({𝑅}𝑇𝑘
𝐴), as per Eq. 2-9. 

{𝑅}𝑇𝑗
𝐵 = 𝑝(𝑇𝑘

𝐴|𝑇𝑗
𝐵) . {𝑅}𝑇𝑘

𝐴 Eq. 2-9 

For non-normalized metrics (e.g., average night-time 

residents and replacement cost of every class), the 

associated value with the most compatible class of the 

source scheme (𝑇𝑘
𝐴) is proposed to be selected. 

Examples of this procedure have been recently 

reported in Gomez-Zapata et al. (2021a, 2021c). Once 

we have the number of residents and prior 

compositions of the alternative portfolio, we can once 

again perform the formerly described dasymetric 

disaggregation procedure from population counts 

(end of Sect. 2.3.1.3 ) to obtain an exposure model for 

𝑇𝑗
𝐵. 

2.3.3. Scenario-based earthquake risk 

assessment with spatially distributed ground 

motion fields 

An earthquake scenario is selected for the 

construction of a seismic rupture and the simulation 

of spatially distributed ground motion from suitable 

ground motion prediction equation(s) (GMPE). At 

least 1,000 ground motion simulations must be 

computed for the considered earthquake rupture 

scenario to address its aleatory uncertainty (Silva 

2016). Each realisation generates a spatially and inter-

period cross-correlated GMF that is estimated based 

upon the GMPE-based intra-event variance. The 

actual selection of the cross-correlation model (among 

the currently available ones) is naturally also subject to 

epistemic uncertainties and its study is beyond the 

scope of this work. It is important to generate spatially 

cross-correlated ground motion fields for the same 

intensity measures that are required by the fragility 

functions and its use is transversal to all the logic tree 

levels (Sect. 2.3.1.3). To complement the vulnerability 

analysis, a consequence model that includes the total 

replacement cost for the building class and their loss 

ratios for every damage state must be selected. 

2.3.4.  Epistemic uncertainty of the 

building exposure definition in earthquake 

loss models 

Once all of the aforementioned components are 

gathered, each synthetic portfolio customised within 

the logic tree (Sect. section 2.3.1.3) is used to 

investigate the impact of the differential building 

exposure composition on scenario-based earthquake 

loss models through Monte Carlo simulations. This 

allows us to differentially propagate and disaggregate 

the influence of each of the four components listed in 

Sect. section 2.3.1.3. Sensitivity analyses are done to 

compare their respective loss estimates (replacement 

cost values) with each other and to explore their 

related individual uncertainties. 

2.4.  Application 

2.4.1. Context of the study area: Valparaíso 

The study area comprises the communes of 

Valparaíso and Viña del Mar in Chile (see Figure 2-1). 

Hereafter, for simplicity, both communes will be 

called ‘Valparaíso’. It is the second-largest Chilean 

urban centre, with its port being the main container 
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and passenger port in Chile and hence, is vital for the 

country’s economy. As described by Indirli et al. 

(2011), Valparaíso shows a very heterogeneous 

building inventory, with its historic district being 

declared a World Heritage Site by UNESCO in 2003 

after recognizing its diverse urban layout and 

architecture (Jiménez, et al. 2018). Geiß et al. (2017) 

investigated the usefulness of training segments from 

OSM data for exposure data modelling from satellite 

imagery for Valparaíso. 

The Central Chile area, and in particular Valparaíso, 

have been hit by powerful historical earthquakes. One 

of the few with a description is the 1906 earthquake, 

with an inferred magnitude of Mw 8.0 - 8.2 (Carvajal 

et al. 2017), which caused widespread damage 

(Montessus de Ballore, 1914). In 1985, a Mw 8.0 event 

with an epicentre located just 120 km west of the city 

destroyed 70.000 houses and damaged an additional 

140,000 dwellings, leaving 950,000 persons homeless, 

and caused losses of about $1.8 billion (Comte et al. 

1986). The 2010 Mw 8.8 earthquake caused structural 

damage to some buildings in Viña del Mar (de la Llera 

et al. 2017) and impacted the labour market recovery 

and the overall economy (Jiménez Martínez et al. 

2020). Furthermore, recent seismic activity was 

noticed in the region during the 2017 Mw 6.9 event, 

which was triggered by a slow slip event and led to an 

important clustered aftershock sequence (Ruiz et al. 

2017). It is notable that the MARVASTO project 

(Indirli et al. 2011) developed earthquake scenarios to 

obtain the expected seismic ground motions and the 

structural performance of three churches in the city. 

To the best of the authors’ knowledge, no scenario 

describing seismic risk for the residential building 

stock of Valparaíso has been reported in the scientific 

literature. 

2.4.2.  Probabilistic exposure model 

construction for Valparaíso 

2.4.2.1. The definition of the likelihood function: The intra-

scheme compatibility levels 

Two earthquake-oriented schemes, namely SARA and 

HAZUS, have been considered to represent the 

building portfolio in Valparaíso. Both schemes have 

already been proposed for exposure modelling at the 

third administrative division, “commune”, in Chile in 

earlier works. SARA constitutes an effort to 

harmonize and define all the building types in the 

South American Andes region (GEM, 2014), through 

expert judgment that carefully designed local 

mapping-schemas at the country level (Yepes-Estrada 

et al. 2017). Thus, on the one hand, we can infer 17 

SARA building classes for Valparaíso, combining the 

storey ranges when it was possible (Table 2-1). On the 

other hand, according to Aguirre et al. (2018), HAZUS 

addresses 11 residential classes for another Chilean 

city with similar construction practices as Valparaíso 

(see Table 2-2). Short descriptions of the typologies 

enclosed in both schemes are provided in these two 

tables. Notably, SARA implies the assumption that the 

residential buildings in Chile can only comprise up to 

19 storeys, does not include steel types, and only 

considers wall structure for reinforced concrete 

structures.  

604 randomly distributed buildings in the urban area 

of Valparaíso (Figure 2-1) were inspected by local 

structural engineers from the Chilean Research Centre 

for Integrated Disaster Risk Management 

(CIGIDEN) to test the actual plausibility of the 

selected schemes in the study area. To construct the 

customized likelihood terms that regard the building 

proportions of the surveyed sample, as presented in 

Sec. 2.3.1.1, the building stock is assumed to follow a 

Multinomial distribution. This data collection of their 

attribute values was done in terms of the GEM v.2.0 

taxonomy through the RRVS web-platform (Haas et 

al. 2016) and is available in Merino-Peña et al. (2021). 

Every building class in the two schemes is 

disaggregated into attribute types and values of the 

GEM v.2.0 taxonomy. The corresponding fuzzy 

compatibility levels between the attribute values and 

building classes are assigned through expert elicitation 

(see Sect. 2.3.1.1as proposed in Pittore et al., 2018b). 

Their graphical representation is depicted in Figure 

2-2. The complete description of these taxonomic 

attributes can be found in the web version of the 

Glossary for GEM taxonomy 

(https://taxonomy.openquake.org/). A python code 

to generate these schemes in JSON format along with 

these figures has been made available in Gomez-

Zapata et al. (2021b). 

The observed attribute values are classified using the 

two selected weighting arrangements. This process 

leads to different building typology distributions, as 

shown in Figure 2-4. This is because the LLRS 

ductility was, in most of the cases, not correctly 

assigned during the surveys (i.e. unreinforced (W.A-1) 

and reinforced structures (W.A-2). 
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Figure 2-1. Location of the study area within (a) Chile, (b) the communes of Valparaíso and Viña del Mar (red) within the 

Valparaíso Region, and (c) the locations of the 604 surveyed buildings. Map data: ©Google Earth 2021. 

 
Table 2-1. Building classes in terms of  the SARA scheme proposed for Valparaíso with the respective intensity measure of  their 

associated fragility functions (as reported in Villar-Vega et al. 2017). Prior proportions per building class, average night-time 

residents (Res. /bdg), and replacement cost (Repl. Cost (USD/bdg)) are reported as in Yepes-Estrada et al. (2017). 

SARA building class Description IM Prior 

Prop 

Res. 

/bdg 

Repl. Cost 

USD/bdg 

CR-PC-LWAL-H1-3 Precast (PC), reinforced concrete (RC) wall system 

(LWAL), height (H) between 1–3 stories 

PGA 0.005 18 360,000 

CR-LWAL-DNO-H1-3 RC wall system, non-ductile (DNO), 1–3 stories PGA 0.032 14 288,000 

CR-LWAL-DNO-H4-7 RC wall system, non-ductile, 4–7 stories S.A at 1.0s 0.010 54 1080,000 

CR-LWAL-DUC-H1-3 RC wall system, ductile (DUC), 1–3 stories PGA 0.011 15 336,000 

CR-LWAL-DUC-H4-7 RC wall system, ductile, 4–7 stories S.A at 1.0s 0.006 54 1,260,000 

CR-LWAL-DUC-H8-19 RC wall system, ductile, 8–19 stories S.A at 1.0s 0.002 173 4,032,000 

ER-ETR-H1-2 Reinforced (ETR) rammed earth (ER), 1–2 stories PGA 0.029 4 43,750 

MCF-DNO-H1-3 Confined masonry (MCF), non-ductile, 1–3 stories PGA 0.152 5 94,500 

MCF-DUC-H1-3 Confined masonry, ductile, 1–3 stories PGA 0.034 14 288,000 

MR-DNO-H1-3 Reinforced masonry (MR), non-ductile, 1–3 stories PGA 0.029 18 360,000 

MR-DUC-H1-3 Reinforced masonry, ductile, 1–3 stories PGA 0.012 18 360,000 

MUR-ADO-H1-2 Unreinforced masonry with adobe, 1–2 stories PGA 0.111 4 43,750 

MUR-STDRE-H1-2 Dressed stone (STDRE) unreinforced masonry, 1–2 

stories 

PGA 0.006 5 43,750 

MUR-H1-3 Unreinforced masonry, between 1–3 stories PGA 0.060 6 52,500 

UNK Unknown S.A at 0.3s 0.108 4 35,000 

W-WLI-H1-3 Wood (W), LLRS: Light wood (WLI), 1–3 stories S.A at 0.3s 0.273 5 108,000 

W-WS-H1-2 Wood, LLRS: Solid wood (WS), 1–2 stories S.A at 0.3s 0.121 4 43,750 

   ∑ 1.0   

Table 2-2. Building classes and short description of  the HAZUS scheme (FEMA, 2012) proposed for Valparaíso. 

HAZUS building class Description 

W1 Wood, light frame < 5000 sq. ft2. (~ 465 m2), between 1–2 stories 

S2L Steel braced frame, between 1–3 stories 

S3 Steel light frame. Does not specify a storey range 

S5H Steel frame, unreinforced masonry infill walls, high rise 

C2L RC shear walls, between 1–3 stories 

C2M RC shear walls, between 4–7 stories 

C2H RC shear walls, high rise 

C3L RC frame buildings, unreinforced masonry infill walls, between 1–3 stories 

RM1L Reinforced masonry walls; wood or metal deck diaphragms, 1–3 stories 

RM1M Reinforced masonry walls; wood or metal deck diaphragms, 4–7 stories 

URML Unreinforced masonry bearing walls, between 1–3 stories 



16 
 

 

 

 
(a) 

 
(b) 

Figure 2-2. Graphical representation of the (a) SARA and (b) HAZUS building classes. The colours encode the compatibility 

value with extremes in red and blue, representing high and low compatibilities, respectively. Grey indicates neutral and white 

refers to no explicit compatibility value being assigned. 

 

Table 2-3. Sets of weighting arrangements that score the common attribute types of the SARA and HAZUS schemes. 

Taxonomic Attribute W.A-1 W.A-2 

Material type 0.40 0.30 

Material technology 0.10 0.10 

LLRS (lateral load resistance system) 0.15 0.20 

LLRS ductility 0.25 0.10 

Storey range 0.10 0.30 
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Figure 2-3. Pictures of some selected buildings’ façades surveyed in Valparaíso. Their classifications in terms of the SARA and 

HAZUS schemes are displayed considering the two weighting arrangements presented in Table 2-3. ©Google Street View, 2021. 

 
Figure 2-4. Distributions of the most likely vulnerability classes of the 604 buildings surveyed in Valparaíso. This was achieved 

by evaluating the compatibility levels between the observed taxonomic building attributes and the typologies within each scheme: 

(a) SARA and (b) HAZUS. For each scheme we consider the two weighting arrangements (W.A-1, W.A-2) shown in Table 2-3. 

2.4.2.2. Prior and posterior distributions 

Priors have been considered as (1) informative if  the 

portfolio composition is derived from expert 

elicitation (GEM, 2014) and (2) uninformative if  the 

portfolio has equal proportions per class. Since 

informative prior proportions, average night-time 

occupancy, and replacement costs are only known for 

the source scheme SARA (Table 2-1), we follow the 

method presented in Section 2.3.2 (inter-scheme 

compatibility matrix) to obtain these quantities for 

HAZUS (target scheme). This is obtained by 

generating all possible combinations of  attribute 

values per scheme (see the horizontal axis of  Figure 

2-2). The two sets of  weights reported in Table 2-3 are 

used to obtain the inter-scheme compatibility matrices 

presented in Figure 2-5. The scripts and related inputs 

to produce these two matrices are provided in Gómez 

Zapata et al., (2021d). The application of  Eq. 2-9 

allows us to obtain the two sets of  informative priors’ 

proportions for the HAZUS building classes that are 

reported in Table 2-4. 

 
(a) 

 
 

 

 

 

(b) 

 1 
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Figure 2-5. Inter-scheme compatibility matrices for SARA (source) and HAZUS (target) for the residential building stock of 

Valparaíso. They are obtained from the weighting arrangements (a) W.A-1 and (b) W.A-2 for their common attributes (Table 

2-3). 

Table 2-4. HAZUS Building classes for Valparaíso together with two sets of their prior proportions, average night-time residents 

(Res /bdg.) and replacement cost (Repl. Cost (USD/bdg.). They are assumed to be the same as the highest compatibility score 

with respect to a class of SARA from every inter-scheme compatibility matrix displayed in Figure 2-5. 

 W.A-1 W.A-2 

HAZUS building class Prior 

prop. 

Res. 

/bdg. 

Repl. Cost 

(USD/bdg) 

Prior 

prop. 

Res. 

/bdg. 

Repl. Cost 

(USD/bdg.) 

W1 0.384 4 43,750 0.204 4 43,750 

S2L 0.039 15 336,000 0.091 15 336,000 

S3 0.044 54 1,260,000 0.061 54 1,260,000 

S5H 0.033 173 4032000 0.026 173 4,032,000 

C2L 0.046 18 336,000 0.114 18 336,000 

C2M 0.028 54 1,260,000 0.022 54 1,260,000 

C2H 0.027 173 4,032,000 0.021 173 4,032,000 

C3L 0.033 14 288,000 0.100 15 336,000 

RM1L 0.112 18 360,000 0.120 18 420,000 

RM1M 0.094 18 360,000 0.046 54 1,080,000 

URML 0.160 5 43,750 0.196 6 52,500 

 ∑ 1.0   ∑ 1.0   

Table 2-4 also reports the replacement costs and 

night-time residents for each of  the HAZUS target 

classes. These quantities are assigned from the SARA 

source class with the largest compatibility in the inter-

scheme compatibility matrices. Therefore, identical 

values of  replacement costs and night-time residents 

are obtained across the HAZUS scheme for both W.A-

1 and W.A-2, except for the classes C3L, RM1L, 

RM1M, and URML. Once we have obtained the prior 

and likelihood terms for every building class, the 

posterior distributions are constructed following Eq.  

2-5 and are shown in Figure 2-6. Since the assignment 

of  priors through expert elicitation has been at the 

commune level (GEM, 2014), the obtained posterior 

distributions are up-scaled to represent different 

exposure models with various building compositions 

in Valparaíso. 
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(a) Posterior distributions for the SARA scheme (b) Posterior distributions for the HAZUS scheme 

 
Figure 2-6. Posterior distributions obtained for the (a) SARA and (b) HAZUS schemes for the 604 inspected building surveyed 

in Valparaíso while considering different weighting arrangements (W.A.) and flat and informative priors. 

 

2.4.2.3. Synthetic building portfolios for a logic tree construction and spatial allocation 

 

Each of the four types of posterior distributions per 

considered scheme are explored by considering three 

concentration factors (𝛼𝑜), namely: 𝛼01
= 1.0; 𝛼02

= 

15, and 𝛼03
= 50 (see Eq.  2-4). They describe three 

different degrees of confidence in the assumptions 

beneath the construction of the posterior distribution: 

very low, moderate, and very high, respectively. Since 

we assume conjugacy (Eq.  2-5), we generate 300 

random samples from the twelve Dirichlet posterior 

distributions per scheme. Each of these samples 

represents a synthetic building portfolio. They can also 

be interpreted as 300 different criteria (e.g., a pool of 

virtual experts) regarding the portfolio composition: 

very divergent opinions, moderately similar, and very 

similar, with respect to the average proportions in the 

posteriors. A logic tree with four branches was 

ultimately constructed, as shown in Figure 2-7. 

Dasymetric disaggregation of the gridded population 

product GPWv4, with a 30 arc-second grid resolution 

model and population projections for 2020 (CIESIN, 

2018) was carried out to obtain the spatial distribution 

of the building counts per synthetic buildings 

portfolio. For this process, we have used the 

occupancy (residents per building class) of the SARA 

(Table 2-1) and HAZUS schemes (Table 2-4).  

The corresponding expected total building counts in 

terms of  SARA and HAZUS schemes assuming 

equally composed portfolios, as well as expert-based 

are shown in the first column of  Figure 2-8. Since the 

number of  residents in every HAZUS building class is 

different for W.A-1 and W.A-2, the building counts 

vary accordingly. It can be seen that in the top-down 

approach, the total building counts in Valparaíso are 

almost identical, regardless of  the scheme 

implemented. The plots in the other four columns of  

Figure 2-8 display the associated variabilities in the 

estimations of  the total number of  buildings for the 

synthetic portfolios constructed from the 300 

samples. Regardless of  the scheme used, it is evident 

that the total building counts from synthetic portfolios 

obtained from posterior distributions with flat priors 

present a much lower variability than their 

counterparts with informative priors. Of  course, 

results assuming equally composed portfolios from 

prior distributions are not realistic for the study area. 

These related subplots are only shown to raise 

awareness that a careful first assumption on the prior 

is vital, otherwise the next step (defining 𝛼0) may lead 

to very different building proportions with respect to 

the ones based on informative assumptions (e.g., 

expert-based). 

 

 

 

 (a) Customized posterior distributions for the SARA 

scheme 

 

 

 

 

(b) Customized posterior distributions for  the HAZUS 

scheme 
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Figure 2-7. Logic tree with four levels constructed to explore the impact of the building exposure composition modelling in 

Valparaíso. The twelve branches result from every considered scheme. The entire one is shown only for SARA, however, the 

same procedure has been carried out for HAZUS. 

 

Moreover, it is interesting that when both informative 

priors and 𝛼0 = 50 (high degree of  confidence) are 

jointly addressed, the resultant variability in the 

building counts provide a range that contains the value 

of  the unique composition that was assigned by the 

top-down approach. This type of  similarity is more 

evident in the HAZUS scheme, whilst a larger 

variability appears in the SARA scheme. This might be 

due to the comparatively larger sensitivity of  SARA to 

the individual building assessment during the surveys 

(in terms of  the weighting arrangement, see Figure 

2-4) which also impacted upon the construction of  

their respective likelihood distributions. Also, for both 

schemes, we observe that the selection of  W.A-2 

imposes a larger number of  observations of  ductile 

buildings (with a larger number of  residents, see Table 

2-1 and Table 2-4). Therefore, there is a consequent 

reduction in the variance of  building counts when 

these distributions are obtained from W.A-2 in 

comparison to when they are generated using W.A-1. 

The reduction in this variability does not necessarily 

mean that the third boxplot in Figure 2-8-j better 

represents the entire building counts for the exposure 

model of  Valparaíso than its counterpart in Figure 

2-8-h. Rather, it is pointing to the underlying 

assumptions in deriving total building counts from 

dasymetric disaggregation, fully relying on top-down 

approaches (without integrating any evidence). 

Instead of  having a fixed total buildings count (Figure 

2-8-a, f), we are obtaining a range of  total building 

count values whose variation is consistent with prior 

assumptions and observations (third boxplots in 

Figure 2-8- c, e, j, and h). These ranges are also 

consistent with the variations observed in Geiß et al. 

(2017), that assessed the likely range of  building 

counts for Valparaíso (i.e., 64,803 – 72,412 building 

units) by combining remote sensing data products and 

OpenStreetMap building footprints. 
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Figure 2-8. Dependency between the portfolio composition and the estimated total building counts (from dasymetric 

disaggregation of the population and occupancy). The subplots on the first column (top-down approach) comprises a single value 

of expected building counts either equally composed (i.e., with equal proportions) or as defined by the SARA model (GEM, 

2014) and the respective weightings. The distributions in the other subplots correspond to every case of the logic tree of Figure 

2-7. 

 

2.4.2.4. Scenario-based earthquake risk assessment with spatially distributed ground motion fields  

An earthquake scenario with a magnitude Mw 8.2, 

similar to the 1906 Valparaíso event, is used 

throughout this example. Given the lack of 

instrumentation at that time, its exact location and 

other parameters are uncertain. A finite fault model 

was generated making use of the OpenQuake Engine 

(Pagani et al. 2014). The basic parameters used in the 

simulations are: hypocentral location (longitude = -

72.25°; latitude = -33.88°; depth = 28 km), strike = 9°, 

dip = 18°, and rake = 90°. The ground motion values 

were modelled using the Montalva et al. (2017) GMPE 

developed for the Chilean inter-plate subduction area. 

This GMPE considers in the “site” term the shear 

wave velocity in the uppermost 30 meters depth 

(Vs30). We used the topography-based Vs30 values 

(Allen and Wald, 2007) and replaced them when 

possible with the seismic microzonation study 

reported in Mendoza et al. (2018). The final Vs30 

gridded values are displayed in Figure 2-9. 

As a first step, we generate the GMPE-based median 

ground motion fields (GMF) for PGA; S.A. (0.3 s); 

S.A. (1.0 s) for the selected earthquake scenario. They 

are shown in Figure 2-10 a-c, respectively. To account 

for spatial variability, we follow two approaches where 

we generate these fields: (1) uncorrelated random 

fields (No Corr) and (2) spatially and inter-period 

cross-correlated random fields using the Markhvida et 

al. (2018) cross-correlation model (Corr). The aleatory 

uncertainty in the simulated ground motion has been 

addressed by generating 1,000 realisations in every 

case. Figure 2-10d-f shows single realisations of cross-

correlated GMF per spectral acceleration for the study 

area.



22 
 

 

 

 

Figure 2-9. Left: distribution of the slope-based Vs30 values in Central Chile (Allen and Wald, 2007) as provided by the USGS. 

Right: refined values within the study area using the former and the seismic microzonation reported in Mendoza et al. (2018). 

 

 
Figure 2-10. First row: median values of the Mw 8.2 earthquake rupture for three IMs (a) PGA, (b) S.A. (0.3 s), and (c) S.A. (1.0 

s) using the Montalva et al. (2017) GMPE. The earthquake hypocentre is depicted by a white square. The rupture plane is 

displayed by a green rectangle. The study area is shown by a yellow square. Second row: details of the study area with a single 

realisation of the cross-correlated seismic GMF for their corresponding spectral periods using the Markhvida et al. 

(2018) model. 

 

The selection of the aforementioned GMFs is related 

to the IM required by the SARA fragility functions 

(Villar-Vega et al. (2017). It should be noted that, 

although HAZUS (FEMA, 2012) provides fragility 

functions at the fundamental period of the structure, 

using PGA as the only IM for the entire set of curves. 

The seismic design standard for moderate-code (MC) 

is selected for the HAZUS classes for which this 

category is available (i.e., 8 types out of 11) and low-

code (LC) is assumed for the remaining 3 types (S5H, 

C3L, and URML). This decision stems from the fact 

that the construction of most of the currently 

inhabitable residential buildings in Valparaíso took 

place between the establishment of two major Chilean 

seismic codes (NCh433 Of.72, INITN, 1972, and 

NCh433 Of.96, INN, 1996). Their development was 

motivated by the 1960 Mw 9.5 Valdivia earthquake 

and the 1985 Mw 8.0 Valparaíso earthquake 

 

 

 

 

 1 

 
(a) PGA 

 
(d) PGA 

 
(b) S.a (0.3 s) 

 
(e) S.a (0.3 s) 

 
(c) S.a (1.0 s) 

 
(f) S.a (1.0 s) 
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respectively. The consequence model for vulnerability 

assessment is complemented with the selection of loss 

ratios. For the four damage states considered by these 

two sets of fragility models, we assume ratios of 2%, 

10%, 50%, and 100% of their replacement costs 

(Table 2-1, Table 2-4). Similar loss ratios were recently 

suggested (e.g., Martins and Silva, 2020).  

2.4.3. Results: epistemic uncertainty of 

exposure compositions in seismic risk scenario 

The influence of the epistemic uncertainty in the 

residential building portfolio composition of 

Valparaíso to loss assessment is carried out while 

performing a sensitivity analysis for the selected 

earthquake scenario (Mw 8.2) and the various 

exposure compositions considered. Two comparisons 

are presented: 

(1) The direct financial losses are computed only for 

the portfolios whose composition is given by the 

posterior distributions (Figure 2-6), and whose 

median building counts are given by the value in 

red on the boxplots when 𝛼0~ 50 in Figure 2-8). 

These results are reported in Figure 2-11. 

(2) The direct financial losses for every complete 

distribution of Figure 2-8 are computed, and their 

results are presented in the form of normalized 

loss exceedance curves (LEC). 

 
Figure 2-11. Comparison of the scenario-based direct financial losses (USD) on the residential building stock in Valparaíso 

considering SARA and HAZUS (moderate code) using the 1,000 GMF for each case: with a spatially cross-correlation model 

(Corr.) and spatially uncorrelated (No Corr.). Different portfolio compositions are considered: top-down vision and expert 

elicitation (first column), equally composed portfolios (second one), and the customized posterior distributions of Figure 2-6. 

 

 

Figure 2-11 shows the overall variability in the losses 

imposed by the epistemic uncertainty related to the 

consideration of using or not spatially cross-correlated 

GMF. There is a very low variability in the resulting 

losses when 1,000 uncorrelated GMF were generated 

(No Corr). In fact, for such a dense, spatially 

aggregated building portfolio, the effect of spatially 

uncorrelated variations in the ground motion will 

eventually average out, leading to very little dispersion 

in the loss estimates. Similar evidence on the impact 

of correlation models and the size of the building 

portfolios have been noted by others (i.e., Bazzurro 

and Luco, 2005; Sousa et al. 2018; Silva, 2019).  

Figure 2-11 also shows that, for a single composition, 

using either cross-correlated GMF (for SARA) or only 

spatially correlated GMF (for HAZUS), similar 

uncertainty ranges are expected. A similar feature was 

noted by Michel et al. (2017) performing sensitivity 

analyses to the IM of the fragility functions for various 
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spatially correlated GMF. Subsequently, we present 

loss exceedance curves (LEC) from the earthquake 

scenario considering the SARA and HAZUS schemes 

for the complete distribution of building counts 

presented in Figure 2-8. They are illustrated in Figure 

2-12 and Figure 2-13, respectively. They are obtained 

considering the 300 synthetic portfolios for each of 

the 12 posteriors distributions as presented in Figure 

2-7. LEC are displayed in blue if cross-correlated 

GMF were addressed and in yellow considering 

spatially uncorrelated GMF. There are another three 

sets of LEC included in each subplot: 

(1) A pair of curves that represent the direct losses 

obtained from a unique composition according to 

the joint expert elicitation at the Commune level 

(GEM, 2014) and the use of mapping-schemas 

over census data (Yepes-Estrada et al. 2017). 

They are coloured in purple when cross-

correlated GMF are accounted for and in red 

when spatially uncorrelated GMFs were not 

addressed. 

(2) A pair of curves generated considering the 

portfolio composition, as described by the 

posterior distributions (Figure 2-6), are 

represented by non-continuous white curves. 

(3) A pair of curves while foreseeing the portfolio 

with equally composed proportions are shown by 

black curves. 

 

The white and black curves have not been 

distinguished by colours on whether spatially cross-

correlated GMF are or not included. Nonetheless, 

when they were addressed, these two sets of curves are 

always within the range of the blue and the purple 

curves (i.e., smoother shape and shorter initial 

plateau). Similarly, when spatially uncorrelated GMF 

are accounted for, they fall within the range of the 

yellow and red curves (sharper shapes). A decision to 

normalise the direct financial losses (repair cost) in all 

LEC results with respect to the maximum loss values 

obtained from the use of GMF with spatially 

uncorrelated residuals has been taken. Then, the 

metric in these two plots is the “normalized number 

of losses”. This decision is supported by Vamvatsikos 

et al. (2010) who argued that, due to continuously 

evolving exposure over time and location, erroneous 

physical damage predictions can arise if the losses are 

shown as absolute instead of normalized. This 

procedure is useful to compare the uncertainties that 

arise from the different synthetic building portfolios. 

The axes are not identical for the SARA (Figure 2-12) 

and HAZUS (Figure 2-13) results. For the latter, the 

horizontal axis starts at 0.7 to graphically highlight 

some differences. These curves are the joint result of 

the epistemic uncertainty in the selection of the basic 

scheme (set of buildings), its degree of confidence, the 

IM of the fragility functions and whether using a 

correlation model or not. The role of these involved 

components is discussed separately hereafter. 

2.4.3.1. The role of the concentration factor α0  

The plots in the first column of Figure 2-12 (SARA) 

and Figure 2-13 (HAZUS) show a greater dispersion 

(and therefore uncertainty in the results) when 

𝛼01
=1.0 is addressed. This represents a lower degree 

of confidence in the portfolio compositions which is 

perceived as an “increased spread” around the mean 

value. This variability decreases for 𝛼02
= 15 

(intermediate degree of confidence) in the second 

column, being the lowest when 𝛼03
= 50 is 

considered (third column), which simulates an almost 

unanimous consensus on the portfolio composition as 

defined by the posterior distributions. 

2.4.3.2. The role of the identification of buildings attributes 

(evidence) in the likelihood term. 

The selection of  the numerical weight, 𝑤𝑗 , which 

score and integrate the taxonomic attribute types, and 

that together with the collected data evidence 

construct the likelihood term (see Sect. 2.3.1.1), does 

not show a relatively large impact on the resultant LEC 

for the SARA scheme. This could be inferred from 

Figure 2-6 where the weighting arrangement did not 

impose such a large difference upon the construction 

of  posterior distributions as the prior definition did. 

Nonetheless, these weights did heavily impact upon 

the construction of  the inter-scheme compatibility 

matrices for HAZUS (Figure 2-5). The former ones 

are used to obtain the informative prior and 

replacement costs for HAZUS (see Table 2-4), and 

hence also impacted upon their respective loss 

estimates. This feature is evident in the different 

importance assigned to the ductility level (Table 2-3) 

which led to the assignment of  a larger proportion of  

non-ductile building classes for W.A-1 (Figure 2-4). 

This is also linked to the fact that the fragility 

functions of  W.A-1 driven classes (non-ductile: 

DNO), require lower acceleration values to reach the 

same damage state than the W.A-2 driven classes 

(ductile: DUC) (e.g., MCF-DNO-H1-3 vs. MCF-

DUC-H1-3 in SARA; and URML vs. RM1L in 

HAZUS). 
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Figure 2-12. Normalized loss exceedance curves (LEC) for different exposure compositions as depicted in the logic tree (Figure 

2-7) for the SARA scheme. Curves are displayed in blue if the ground motion cross-correlation model was addressed and in 

yellow with spatially uncorrelated ground motions. LEC from their respective customized posterior distributions are displayed in 

non-continuous white curves. The single composition vision as informative priors (as defined by GEM) are depicted in purple 

when the spatially cross-correlated GMF were addressed and in red with spatially uncorrelated GMF. Black curves represent the 

losses of a portfolio whose composition is assumed to have equal proportions. 

 

2.4.3.3. The role of the selection of the prior distribution type 

LEC obtained from posterior distributions which 

were constrained using a flat prior (non-continuous 

white curves in the first and third rows) always led to 

lower values than assuming equally composed 

portfolios (respective black curves) and assuming 

unique top-down vision using the GEM mapping-

schemes (purple and red curves). Posteriors created 

with flat priors tend to concentrate lower loss values 

at the lowest probabilities of  exceedance (p.o.e). The 

opposite is observed when informative priors are 

addressed. Since for both types of  posteriors there 

was an incorporation of  evidence (surveys) into the 

construction of  the likelihood term, these differences 

come from the selection of  the type of  prior 

(uninformative vs. informative). Similar features could 

be observed in Figure 2-6 where flat priors largely 
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impacted upon the creation of  the posterior 

distributions. We recall once again that flat priors are 

only introduced herein for illustrative purposes and 

their use is never recommended. The greater 

dispersion in SARA’s LEC might be due to the joint 

effect of  the prior definition and the variability 

induced by using the cross-correlation model for the 

GMF generated for the three spectral periods required 

by SARA. This aspect is discussed hereafter. 

 
Figure 2-13. Normalized loss exceedance curves (LEC) for different exposure compositions as depicted in the logic tree (Figure 

2-7) for the HAZUS scheme. Curves are displayed in blue if the ground motion cross-correlation model was addressed and in 

yellow with spatially uncorrelated ground motions. LEC from their respective customized posterior distributions are displayed in 

non-continuous white curves. The single composition vision as informative priors (from the inter-scheme conversion matrices in 

Figure 2-5) are depicted in purple when the spatially cross-correlated GMF were addressed and in red with spatially uncorrelated 

GMF. In every plot, the LEC values from their respective posterior distributions are displayed in non-continuous white curves. 

Black curves represent the losses of a portfolio whose class composition is assumed to have equal proportions. 

2.4.3.4. The role of the spatially cross-correlated ground 

motion residuals 

Regardless of the building portfolio composition, 

when the cross-correlation model is considered, their 

corresponding LEC shows a greater variability. 

Moreover, considering that the spatial correlation of 

ground motion IMs decreases rapidly with distance 

(e.g., Schiappapietra and Douglas, 2020), its effect on 

loss-estimations is maximized when it is applied to a 

dense and large exposure model such as ours 

(aggregated building portfolio on a 1 km x 1 km grid), 

since buildings within a grid cell are treated as if the 

inter-station distance was zero. Additionally, because 

we have utilised the HAZUS fragility functions only 

using PGA, the spatially cross-correlated GMFs are 

not needed. This leads to a lower variability in the 

HAZUS’ LEC that only starts to be perceptible, for 
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greater p.o.e, at larger values of their normalized 

metric (i.e., 0.7). Interestingly, whether we decide to 

use spatially uncorrelated or cross-correlated GMF, 

when we employ a single IM in the vulnerability 

analyses, as assumed for HAZUS, we observe that as 

the level of knowledge in the exposure composition 

increases (with increasing 𝛼0), the bias in the LEC 

(made up of the stochastic portfolios) is accordingly 

reduced. Contrary, this point of convergence with 

respect to the composition of each posterior 

distribution is never reached by the SARA’s LEC. 

Considering that PGA alone is not a sufficient IM to 

model the various structural fragility functions that a 

real heterogeneous building portfolio requires (Luco 

and Cornell, 2007), when we decide to use more 

realistic fragility functions for the heterogeneous 

portfolio, the spatial variation in the ground motion 

places a lower limit on the uncertainty in the loss 

estimates that cannot be entirely reduced (Bal et al. 

2010; Michel et al. 2017). This remaining embedded 

uncertainty in the loss estimations will be present even 

when the composition of the building portfolio is well 

known (i.e., 𝛼03
= 50). 

Complementary, in Figure 2-14 we present normalized 

loss curves using the results obtained from the top-

down assumption (single exposure composition) and 

without correlation per scheme. Only posterior 

distributions designed with informative priors and 

with W.A-2 (ductile structures in the surveys) are used 

and are shown by purple lines. Blue lines represent the 

stochastic portfolios either with 𝛼02
= 15 or 𝛼03

=

50. As expected, it can also be seen that as 𝛼0 

increases, there is a continuous reduction in the biases. 

For similar 𝛼0, we see the larger variability in the 

normalized loss given by the posterior proportions of 

SARA in comparison with HAZUS. This once again 

shows the impact of the cross-correlated GMF. 

 

  

  

Figure 2-14. Normalized losses (a, b) SARA and (c, d) HAZUS schemes for the exposure compositions in Valparaíso for two 

selected 𝛼0 values. The loss curve from the top-down assumption (from expert-based priors) is used as benchmark. 

 
 

Figure 2-15-a displays the sensitivity resulting from the 

selection of the weighting arrangement (𝑤𝑗) for both 

schemes. Its benchmark is the HAZUS loss curve 

which was obtained by assuming the portfolio 

composition as the posterior proportion for W.A-1 

(Figure 2-6) and with spatially cross-correlated GMF. 

Similarly, as shown in Figure 2-11, the largest values 

are obtained for HAZUS with W.A-2. Figure 2-15-b 

shows the impact of foreseeing the portfolio 

composition either exclusively from a top-down 

vision (Prior) or when the evidence from surveys is 

included (Post.). Its benchmark is the HAZUS loss 

curve assuming a portfolio that is entirely composed 

as the prior proportion for W.A-1 (Table 2-4) and with 

spatially cross-correlated GMF. Although the 

posterior always led to larger losses, it is noted that 



28 
 

 

 

such differences are comparative lower for SARA than 

for HAZUS. Interestingly, in both figures, we observe 

that for the HAZUS model, the spatially correlated 

GMF for PGA used by its fragility functions led to 

certain variations around the same value with respect 

to the benchmark, but still considerably lower than 

using uncorrelated random residuals. 

  

Figure 2-15. Normalized losses for the earthquake scenario in Valparaiso for SARA and HAZUS schemes. Plots show sensitivity 

on (a) the selection of the weighting arrangement (𝑤𝑗), and (b) the portfolio composition, either from a top-down vision (Prior) or 

including surveyed evidence (Post.). The normalization nomenclature (i.e., || ||) is used to distinguish the benchmarks 

 

2.5.  Discussion and future outlook 

In this study we have considered that, within a 

Bayesian approach for exposure modelling, the 

Dirichlet distribution is suitable for representing the 

composition (i.e., the relative proportions) of spatially 

distributed residential building portfolios. To consider 

the integration of empirical (e.g., field-based) 

observations into the model, we have assumed the 

likelihood term to follow a multinomial distribution. 

Due to conjugacy of multinomial and Dirichlet 

distributions, prior and posterior are both Dirichlet 

distributions that differ only by the empirical 

contribution inferred from the frequency observed in 

the field. It is also worth noting that this data 

collection does not need to be exclusively derived 

from surveys, but complementary exploiting remote 

sensing and image reconnaissance (e.g., (Liuzzi et al., 

2019). Furthermore, we have proposed to factorize 

the Dirichlet hyperparameter 𝛼𝑖 through the so-called 

concentration factor, 𝛼0, that “weights” and adjusts 

the prior proportions to the observed frequencies. 

This parameter is useful for describing the extent of 

confidence in the building portfolio’s initial 

assumptions while still lacking a consistent number of 

empirical observations. With the increase of 

observations, the influence of the concentration factor 

on the posterior distribution will promptly decrease. 

We have proposed to arrange the components 

involved into a logic tree approach (Figure 7). It has 

allowed us to explore individually how the related 

uncertainty to their individual components are 

propagated throughout scenario-based seismic risk 

and ultimately be reflected in the biases of the direct 

loss estimates (replacement cost). For the sake of 

simplicity in illustrating the proposed approach, we 

have considered only some uncertainties in the 

parameters employed throughout its development. 

Thus, the application part of this work has several 

limitations that are beyond its scope. However, they 

could be addressed in future research. We list some of 

them hereafter. 
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• The fixed number of population counts projected 

for 2020 reported by GPWv4 (CIESIN, 2018) 

was spatially disaggregated to estimate the 

distribution of total building counts per stochastic 

exposure model (Figure 2-8). This was based on 

the average number of night-time residents (for 

each building class) that we have assumed to be 

statistical values. However, accounting 

population projections as well as the number of 

inhabitants per building as random variables that 

may follow local distributions (e.g., Calderón and 

Silva, 2021). 

• A larger set of prior distributions could also be 

obtained in future studies by knowledge-

elicitation. This process could be done more 

rigorously to constrain the prior assumptions for 

smaller sectors within a large study area. 

• The choice of GMPE(s) influences the resulting 

cross-correlated ground motion fields for 

earthquake scenarios. This comes from the 

manner in which the residuals and soil 

nonlinearity are accounted for in the functional 

form of the selected attenuation model 

(Weatherill et al. 2015). Hence, it is worth 

conducting sensitivity analyses in the future that 

provide us a more complete picture about their 

differential impact within the proposed method 

(e.g., Kotha et al. 2018). However, for the 

subduction regime upon which Valparaíso is 

located, there are few adequate GMPE models 

available (i.e., Abrahamson et al. 2016; Montalva 

et al. 2017). In fact, Hussain et al. (2020) found 

negligible differences in direct loss estimates for 

the residential building stock of another Chilean 

city after using these GMPE to simulate 

associated GMF from subduction earthquake 

scenarios. 

• The subjective selection of the type of spatial 

cross-correlation model used to generate the 

GMF carries epistemic uncertainties (Weatherill 

et al. 2015). Although the selected model 

proposed by Markhvida et al. (2018) has been 

already implemented for subduction earthquakes 

for the South American context by Markhvida et 

al. (2017), more rigorous practices could include 

the incorporation of a locally constrained spatial 

correlation model (Candia et al. 2020, study 

published after the elaboration of our work). 

Furthermore, it is important to have in mind the 

simplifications induced by applying generic 

correlation models. These assumptions might 

induce overestimations in the risk estimates as 

observed in Abbasnejadfard et al., (2021). 

We emphasize that the test site we have selected 

(Valparaíso, Chile) has been only presented to discuss 

the role of uncertainty in the exposure model 

definition on scenario-based earthquake loss models 

using the methodology herein presented. Likewise, it 

should be noted that the resulting direct loss estimates 

that we obtained from flat-prior, as well as those from 

spatially uncorrelated GMF, are unrealistic and have 

been presented only as a part of the sensitivity analyses 

included in the methodology. The study presented 

does not argue whether one scheme (SARA or 

HAZUS) is better suited for representing the 

residential building stock of the city. Although the use 

of the set of SARA building classes is not completely 

validated from the surveyed data (Figure 2-3) and is 

more sensitive to the non-identification of certain 

attributes (Figure 2-4), their associated fragility 

functions (Villar-Vega et al. 2017), unlike HAZUS 

(FEMA, 2012), provide some advantages for risk 

assessment. For instance, they were derived from the 

analysis of some regional records within the tectonic 

setting of the study area and also provided a clearer 

link between GMF with spatially and inter-period 

cross-correlated IM required to model the seismic 

vulnerability of heterogeneous building stocks.  

Furthermore, the differences in the loss estimates after 

using the two schemas call for caution when using 

exposure and vulnerability models originally 

developed for other regions (e.g., HAZUS for the US), 

rather than choosing more local ones (SARA). 

However, considering that that set of fragility 

functions was derived using a regional database of 

records, they lack hazard-consistent ground motions 

records as recently discussed by Hoyos and 

Hernández, (2021). Interestingly, these authors also 

agreed on the possibility of implementing logic trees 

for various stages within the derivation of vulnerability 

functions. Such advice emerged as a justification after 

they found large differences in the risk metrics for a 

local (city-scale) building portfolio imposed by using 

the regionally derived SARA fragility functions 

compared to their subsequent parametrisation (i.e., 

accounting for local structural characteristics and a 

locally-consistent record selection).  

2.6. Conclusions and 

recommendations 

This study argues that most large-area portfolios 

within an exposure model are affected by epistemic 

uncertainties, resulting in a range of possible total 

building counts and class compositions. Expert-
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elicited models used by top-down approaches, even 

when carefully crafted may often provide only a partial 

perspective of the real composition of the building 

stock, while bottom-up approaches based on field-

surveys are usually resource-intensive and are seldom 

carried out systematically.  

To tackle these limitations, an exploratory Bayesian 

framework to study the epistemic uncertainty in 

seismic risk estimates associated with the probabilistic 

nature of the building exposure model has been 

presented. This approach allows the seamless 

integration of desktop-based and expert-elicited 

approaches (Sect. 2.2.1.1) with empirical field-based 

(and remote) observations 2.2.1.2). In the proposed 

Bayesian formulation, these uncertainties can decrease 

by improving the number of observations and the 

quality of prior assumptions. The influence of the 

epistemic uncertainties to the resulting loss estimation 

has been explored through a logic tree approach with 

four hierarchical components: 

(1) Considering the selection of risk-oriented building 

class schemes with associated sets of seismic 

fragility functions. 

(2) The selection of the weighting arrangement (𝑤𝑗) 

that rank relevance of taxonomic building 

attributes upon vulnerability assessment, as well 

as their ability of reconnaissance by the surveyor. 

They are used to probabilistically assign the 

building classes (Figure 2-4) and to configure the 

likelihood terms to update the proportions of 

building compositions. 

(3) The selection of prior distributions about the 

composition of the building portfolio from 

expert-based knowledge (e.g., conventional top-

down desktop studies). This is assumed to follow 

a Dirichlet distribution. 

(4) The selection of the concentration factor 𝛼0 of 

the resultant posterior Dirichlet distribution. This 

parameter represents the degree of confidence in 

the underlying assumptions when little empirical 

evidence is available.  

While valuable information can be retrieved from 

aggregated data sources (e.g., census data) and 

mapping schemes in order to gather expert-based 

priors, they should not be used to represent a given 

building stock (Sect. 2.2.2.1) without exploring the 

underlying uncertainties. Moreover, such top-down 

approaches, including the expert-based elicitation of 

the prior distributions, should be integrated by 

empirical observations whenever possible. Within this 

framework, the expert-based priors will be 

increasingly superseded by real data in the statistical 

exposure models. An iterative process can thus be 

envisaged which aims at continuously updating the 

model rather than employing static modelling.  

The description of building classes in terms of 

taxonomic attribute types has been shown to be 

instrumental in identifying the most likely classes of a 

selected observed sample (within a predefined 

scheme). Considering the presence of certain 

taxonomic attributes within a probabilistic exposure 

model as part of a reducible epistemic uncertainty 

framework allows better links between the observed 

structural features of buildings with their most likely 

vulnerability classes. Such data collections, in terms of 

a faceted taxonomy, allows us to assess the degree of 

compatibility of each surveyed building with respect 

to a set of risk-oriented building classes (Sect. 2.3.1.1). 

Furthermore, this description is also an input for a 

novel probabilistic inter-scheme conversion (Sect. 

2.3.2). That approach is useful for obtaining exposure 

descriptors (i.e., number of buildings belonging to a 

certain class, night-time residents, and replacement 

costs) under another reference (target) scheme in 

large-area exposure modelling applications. This can 

be done in terms of vulnerability descriptors for other 

hazard-reference schemes (e.g., Gomez-Zapata et al. 

2021a), thus extending its application beyond the field 

of seismic risk. 

The findings suggest that the direct losses (repair 

costs) for the residential building stock of Valparaíso 

subjected to the considered earthquake scenario (Mw 

8.2) largely depend upon the decisions made when 

modelling the building stock under one preferred 

scheme, as well as upon the range of variation in the 

total buildings count. This is then a reducible 

uncertainty that is still accordingly propagated 

throughout the vulnerability assessment. The blue 

LEC (accounting spatially cross-correlated GMF) 

shown in subplots Figure 2-12f,l and Figure 2-13f,l 

display the ideal, yet hypothetical results, that might be 

obtained in the case of high quality expert-based priors 

assumptions, along with taxonomic data collection (at 

the individual building level) embedded within the 

proposed statistical modelling approach. Finally, well-

structured standards for continuous exposure data 

collection, based on vulnerability-independent 

standard taxonomies, combined with sound 

probabilistic modelling, are instrumental for more 

robust risk assessment practices.  
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Chapter 3 

 

3. Towards a Sensitivity Analysis in Seismic Risk with 

Probabilistic Building Exposure Models:  An Application in 

Valparaíso, Chile Using Ancillary Open-Source Data and 

Parametric Ground Motion 

 

Abstract 

Efforts have been made in the past to enhance building exposure models on a regional scale with increasing 

spatial resolutions by integrating different data sources. This work follows a similar path and focuses on 

the downscaling of the existing SARA exposure model that was proposed for the residential building stock 

of the communes of Valparaíso and Viña del Mar (Chile). Although this model allowed great progress in 

harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, 

and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider 

the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. 

For such a purpose, we propose updating this existing model through a Bayesian approach by integrating 

ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) 

activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the 

inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is 

presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure 

models in comparison with other parameters used to generate the seismic ground motions within a 

sensitivity analysis. This example study shows the great potential of using increasingly available VGI to 

update worldwide building exposure models as well as its importance in scenario-based seismic risk 

assessment b. 

b published as:  Gómez Zapata, J.C.; Zafrir, R.; Pittore, M.; Merino, Y. Towards a Sensitivity Analysis in Seismic Risk 

with Probabilistic Building Exposure Models: An Application in Valparaíso, Chile Using Ancillary Open-Source Data 

and Parametric Ground Motions. ISPRS Int. J. Geo-Inf. 2022, 11, 113. https://doi.org/10.3390/ijgi11020113 
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3.1. Introduction 

Exposure refers to the presence of people, livelihoods, 

species or ecosystems, services, infrastructure, or 

economic and social assets in places and settings that 

could be adversely affected by a hazardous events 

(UNISDR, 2009). Therefore, to describe their 

differential levels of propensity or predisposition to be 

affected, various methodologies are used to assess 

specific types of vulnerabilities (i.e., social, physical, 

systemic, etc.). In the case of evaluating the physical 

vulnerability of a building stock exposed to 

earthquakes (i.e., forecasting the likely distributions of 

damages and direct financial losses), it is necessary, 

among other actions, to investigate the expected 

seismic ground motions as well as the composition of 

the building portfolio. The latter involves classifying 

buildings into mutually exclusive collective-exhaustive 

building classes to form the so-called building 

exposure model. Each class describes a distinctive 

physical vulnerability to ground-shaking depending on 

its physical properties or attributes (Calvi et al., 2006). 

Typically, the uncertainty in the exposure component 

has received less attention than other parts of the 

seismic risk chain (i.e., hazard, vulnerability) (Crowley 

and Bommer, 2006). Notably, only a few recent 

studies have indicated that its investigation would 

benefit from increased research (Crowley, 2014; 

Corbane et al., 2017). In this context, the concepts of 

intra-building and inter-building-variabilities were 

formally introduced by Silva et al., (2019). The first 

involves the variations at the individual level, whilst 

the second refers to the differences between various 

units belonging to the same class. Both types of 

variabilities are embedded in the problem of 

classifying a building stock (sometimes very 

heterogeneous) into a limited set of subjectively 

proposed typologies. Nonetheless, it is important to 

consider that, due to the scope of using the exposure 

model as input for risk estimations, the complexity in 

the classification of buildings should not increase 

beyond the available set of fragility functions for 

generic typologies designed for specific areas (Haas, 

2018; Martins and Silva, 2021). 

Top-down studies (i.e., desktop studies) that rely on 

expert-based assumptions and census data analyses are 

to date the most widely used approaches to represent 

the composition of large-scale exposure models over 

administrative boundaries. These activities foresee the 

exposure model as it was a screenshot for a fixed time 

and with a unique composition while establishing 

both: the classes and their respective proportions. 

Following that approach, global exposure models 

have been proposed (Jaiswal et al., 2010; Gunasekera 

et al., 2015; Silva et al., 2020). Some of them have 

made use of census co-variants to infer building 

classes through so-called “mapping-schemes” (e.g. 

Rao et al., 2020). However, since census data are 

available for dwellings and not buildings, further 

assumptions on the dwelling-to-buildings ratios are 

employed by that method (e.g. Crowley et al., 2020). 

Consequently, distinct expert-based assumptions can 

lead to contrasting models for the same study area (e.g. 

Ma et al., 2021; Xin et al., 2021). Furthermore, recent 

paradigms in exposure modelling have increasingly 

demonstrated the relevance of counting with spatial 

and temporal projections to track the evolution and 

dynamics of the built environment (e.g. Rivera et al., 

2020; Calderón and Silva, 2021b) as well as counting 

with efficient spatial aggregation techniques (Dabbeek 

et al., 2021).  

In order to validate the assumptions of the 

aforementioned top-down approaches about the 

portfolio composition and to identify zones with 

similar or contrasting physical vulnerabilities, it is 

required to consider with bottom-up perspectives (i.e., 

in-situ or remote data collection) (Wieland and Pittore, 

2017). This is especially relevant when some building 

attributes that drive their seismic vulnerability, such as 

structural irregularities (Lagomarsino and Giovinazzi, 

2006) are neither randomly nor homogenously 

spatially distributed throughout the area of interest 

(Wieland et al., 2012). In this framework, emerging 

technologies have been proved to be useful to classify 

large-scale building stocks. For instance, we can 

mention the use of machine learning techniques over 

local datasets (Riedel et al., 2015); feature extraction 

from remote sensing (e.g. Liuzzi et al., 2019; Torres et 

al., 2019); façade image reconnaissance analyses (e.g. 

Aravena Pelizari et al., 2021; Rueda-Plata et al., 2021); 

integrating multi-source information from remote 

sensing and surveys (Geiß et al., 2017b); and 

downscaling existing models based on remote sensing 

products being used as ancillary data (e.g., Zafrir et al., 

2020; Geiß et al., 2021). Moreover, methods to design 

focused surveys for data collection were also proposed 

(e.g., Pittore et al., 2015). These types of survey 

designs are useful when the full enumeration of entire 

building stocks is a highly resource-intensive task 

(Pittore et al. 2017). During such inspections, instead 

of “labelling” buildings as certain typologies, their 

attributes can also be collected in terms of well-known 
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taxonomies (e.g., Brzev et al., 2013). Based on the 

former idea, (Pittore et al., 2018b) proposed to assess 

the degree of compatibility between predefined 

building classes and inspected building attributes. This 

procedure offered not only a more transparent 

classification system (e.g. Nicodemo et al., 2020), but 

also the ability to configure other hazard-oriented 

vulnerability schemes (i.e., they are applied not only to 

earthquakes, e.g. Shinde et al., 2020). 

Some recent studies have shown that carefully 

inspecting a smaller sample (representative subset) is 

instrumental to inferring the seismic vulnerability of a 

larger area (e.g., Polese et al., 2019; Kechidi et al., 2021; 

Tocchi et al., 2021). However, the integration of such 

bottom-up data collection within a robust statistical 

framework is a relatively new type of approach that 

was first considered in (Pittore et al., 2020b). That 

study proposed a Bayesian method to probabilistically 

forecast the composition of the building stock of a 

given area through expert-based priors (about the 

expected proportions per class) that are increasingly 

superseded by the real data that is continuously 

captured during surveys and used to configure the 

likelihood term. Then, the resulting posterior 

distribution was assumed to provide the exposure 

composition (i.e., proportions per class). It is worth 

exploring the capabilities of integrating freely available 

crowdsourcing data-sources (e.g., OpenStreetMap, 

OSM) into such probabilistic exposure models. 

Although this type of volunteer-acquired data lacks 

standardised formats and completeness (Hecht et al., 

2013; Wang et al., 2020), they offer valuable 

information on the spatial location of certain 

attributes without necessary performing time 

consuming in-situ data collection. They have proved 

useful to get socio-economic indicators (Feldmeyer et 

al., 2020); assessing the physical vulnerability of local 

buildings to earthquakes (e.g., Sousa et al., 2017; 

Tumurbaatar et al., 2022; Nievas et al., 2022) and 

floods (e.g., Figueiredo and Martina, 2016; Cerri et al., 

2021); and in global exposure initiatives (Soman et al., 

2020; Schorlemmer et al., 2020).  

Throughout this work, we rely on the results first 

outlined in Zafrir, 2020; Zafrir et al., (2020) that 

formally presented a Bayesian approach for building 

exposure modelling to then achieve the following 

specific objectives: 

• Presenting the capabilities of integrating a freely 

available dataset gathered from VGI (without 

having to inspect individual buildings) to derive a 

probabilistic exposure model for residential 

buildings in Valparaíso and Viña del Mar (Chile) 

based on the inferred building footprint area for 

certain typologies. 

• In addition to better characterising the building 

composition, this approach has improved its 

spatial representation by downscaling a coarser 

existing exposure model onto higher resolution 

regular grids. Define a large magnitude 

earthquake scenario and construct a related set of 

exhaustive seismic ground motion fields through 

the variation of some of its driving parameters.  

• Use the former set of ground motions along with 

the three exposure models as inputs to 

independently calculate the direct economic 

losses that are expected from the building 

portfolio subjected to such a worst-case 

earthquake scenario. This vulnerability 

assessment allows us to propagate and compare 

the uncertainties embedded in the exposure 

models with respect the parameters used to 

constrain the seismic ground motions. 

3.2. Context of the study area.  

The study area includes the communes of Valparaíso 

and Viña del Mar (Chile) which have 295,113 and 

326,759 inhabitants respectively (2017) (INE, 2018), 

forming the second-largest urban area of the country 

after Santiago de Chile. The area also houses the main 

port of the country, and therefore its physical security 

is vital for the national economy. For simplicity, both 

communes are referred to as ‘Valparaíso’ hereafter. In 

Figure 3-1 we show the location of the study area 

within central Chile, as well as within the first, second, 

and third administrative divisions (i.e., region, 

province, and communes, respectively).  

Valparaíso has been afflicted by powerful historical 

earthquakes. The 1730 event with an inferred 

magnitude of Mw 9.1 - 9.3 is recognised as one of the 

largest earthquakes occurred in Chile in written history 

(Carvajal et al., 2017). Another destructive earthquake 

with an inferred moment magnitude Mw 8.0 - 8.2 

occurred in 1906 and caused significant damage 

(Montessus de Ballore, 1914). Since then, 12 

earthquakes with a macroseismic intensity greater than 

VII (Mercalli scale) have affected this area (Indirli et 

al., 2011). It is remarkable the 1985 Mw 7.8 event that 

destroyed 140.000 dwellings, left 950.000 persons 

homeless, and caused losses of about $1.8 billion 

(Comte et al., 1986). The last one out of those 12 

events was the 2010 Mw 8.8 earthquake, which caused 

structural damages to buildings in Viña del Mar (de la 
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Llera et al., 2017) and impacted upon labour markets 

(Jiménez Martínez et al., 2020). More recently, the 

2017 Mw 6.9 event was felt in the city, although with 

a lower intensity (Nealy et al., 2017). To forecast the 

expected damage distributions and losses resulting 

from future earthquake scenarios affecting the area of 

interest, in addition to investigating the likely seismic 

ground motions, it is also necessary to constrain the 

spatial distribution and composition of the exposed 

building stock and their associated physical 

vulnerabilities. 

 

 
Figure 3-1. Location of the study area within (a) Chile, (b) Valparaíso Region (grey) and Valparaíso Province (red) (c) Communes 

of Valparaíso and Viña del Mar, (d) a detail of the two communes showing Sentinel-2 images for September 21st, 2019 

(downloaded from the Copernicus Open Access Hub of the European Space Agency (ESA). Map data: ©Google Earth 2019. 

Edited from Zafrir, (2020) and Gómez Zapata et al., (2022b). 

Valparaíso has a very diverse building portfolio (Indirli 

et al., 2011) and notably, its historic quarter was 

declared World Heritage Site by UNESCO in 2003 

after distinguishing its varied urban fabric (Jiménez et 

al., 2018). Few studies have reported on building 

exposure models for Valparaíso. The South American 

Risk Assessment (SARA) project harmonized the 

residential building through a top-down approach 

(GEM, 2014). It reached its highest spatial resolution 

at their third administrative division (i.e., commune in 

Chile). This means that, for the area of our interest, 

this dataset was aggregated onto two large geocells. 

On the other hand, (Geiß et al., 2017a) investigated 

the use of bottom-up approaches, such as the 

integration between OSM training segments and 

remote sensing satellite imagery for exposure 

modelling in Valparaíso. That study provided a land-

use map and a possible range of building units.  

More recently, and following the Bayesian method 

outlined by Pittore et al., (2020b), residential building 

exposure models of Valparaíso were modelled in 

Gómez Zapata et al., (2022b). These authors made use 

of existing expert-based prior assumptions along with 

only a few (~600) remote building-by-building surveys 

to ultimately create various posterior distributions that 

emulated synthetic building portfolios whose variable 

composition depended on the relative degree of 

knowledge of the true proportions associated with 

each class. Thereby, the 2020-based population counts 

from remote sensing data (Documentation for the 

Gridded Population of the World, Version 4 

(GPWv4), Revision 11 Data Sets) were used to 

spatially allocate each synthetic portfolio according to 

the night-time residents assumed for each class. The 

latter was done over the same resolution (i.e., ~ 1 km 

regular grid) through dasymetric disaggregation. The 

latter study did not provide a unique or better estimate 

of the exposure composition, but it rather presented 

how the range of variations of building counts and 

class proportions can be successfully diminished to 

consequently reduce the epistemic uncertainty in 

scenario-based loss estimates. 

3.3. Materials and Methods 

We first present the derivation of a land-use map 

recently available for the study area. Later, we 

introduce some generalities of the building exposure 

model along with certain assumptions over the 

composition of the residential building stock of 

Valparaíso. We then recall a Bayesian method to 
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update the initial assumptions through the integration 

of the available OSM building footprints to ultimately 

derive a probabilistic exposure model along with two 

intermediate exposure models. Finally, the physical 

vulnerability of the residential building stock and its 

associated direct economic losses stock are calculated 

for a selected earthquake scenario. This allows us to 

explore some differences and epistemic uncertainties 

imposed by the exposure models available for 

Valparaíso in earthquake loss models. 

 
Figure 3-2. Flowchart outlining the input data gathered, the processes and the three resulting residential building exposure 

model for Valparaíso (Chile) we will be presenting. These exposure models, together with the parametric ground motions, are 

used as inputs for the sensitivity scenario-based seismic risk in the last stage of this study. 

 

3.3.1. Delimitation of the urban area and 

some initial features 

A supervised classification using Sentinel-2 imagery 

(September 21, 2019 (Figure 3-1d) at level tier C1 

(ESA, 2018)) was carried out in Zafrir, (2020) for the 

study area. It derived a land-use classification making 

use of the ERDAS software (ERDAS, 2014) to have a 

clearer delimitation of the built-up area in Valparaíso. 

The resultant land use classification is presented in 

Figure 3-17 (Appendix A). Although this product has 

not had as many signatures as other more exhaustive 

models (e.g., (Mohammadi et al., 2020)), it has still 

allowed us to better relate the built-up area for a 

continuous urban extent to meaningful geographical 

entities. 

3.3.2. Building exposure and vulnerability 

models for Valparaíso 

Three exposure models for residential buildings are 

presented hereafter along with a brief description of 

some available ancillary data used to constrain the 

third (Bayesian) one. 

3.3.2.1. The initial commune-based SARA exposure model 

with merged classes 

We assume that the residential building stock of 

Valparaíso and Viña del Mar can be fully represented 

in terms of the typologies originally proposed by the 

SARA project Yepes-Estrada et al. (2017). That 

project established the composition of the residential 

building stocks of the Andean countries based on 

expert elicitation to design “mapping-schemes”. 
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These schemes define the relationship between a few 

country-specific census descriptors (i.e., façades and 

floor material) and certain vulnerability classes for 

dwellings. Notably, the Chilean census employed by 

the authors dates from 2002 (INE, 2002). Therefore, 

the original SARA exposure model presented the 

composition of the residential building stock of 

Valparaíso for that year. Although the typologies 

might not drastically change, it is highly likely that their 

associated building counts will considerably differ 

from the current context of the city. 

 

The SARA building classes are described in terms of 

certain attributes contained in the GEM v.2.0 building 

taxonomy (Brzev et al., 2013), i.e., type and material of 

the lateral load-resisting system (LLRS), height, and 

rarely, ductility type and material technology. 

Descriptions of these attributes are provided in 

https://taxonomy.openquake.org/. For each dwelling 

class, the authors proposed “dwelling fractions” (i.e., 

dwellings per building type) to obtain the number of 

buildings. For Valparaíso, the SARA project proposed 

22 classes (Yepes-Estrada et al. 2017) while we have 

reduced this to 16. The assumptions considered to 

reduce the number of typologies are: 

• We do not consider the class “UNK” 

(unknown) because it lacks observable 

attributes. Its proportion (~10%) was 

redistributed to the other classes.   

• We have combined five pairs of classes into a 

more generic enclosing typology that have a 

similar taxonomic description and only differ in 

their storey range. These are: ER-ETR-H1 

within ER-ETR-H1-2, MCF-DNO-H1 within 

MCF-DNO-H1-3, MUR-ADO-H1 within 

MUR-ADO-H1-2, W-WLI-H1 within W-WLI-

H1-3, W-WS-H1 within W-WS-H1-2. 

The 16 resulting classes have differential seismic 

vulnerabilities as expressed by their corresponding 

fragility functions reported by Villar-Vega et al., (2017) 

(Figure 3-4). Table 3-1 provides further information 

per typology. The average footprint areas per class 

(Ft./bdg. (m2)) were derived from the “reference 

average area per dwelling” values as a function of the 

construction quality reported in Yepes-Estrada et al., 

(2017) for Chile. They are: 70 m2, 80 m2, and 70 m2 for 

upper, middle, and lower construction quality 

respectively. Aligned with the construction practices 

in Valparaíso and with the last two Chilean seismic 

codes (NCh433 Of.72, (INITN, 1972), and NCh433 

Of.96,(INN, 1996), earthen, masonry and non-ductile 

(excluding RC) types were assumed to have a lower 

construction quality; wooden and non-ductile RC 

classes to have a middle one; and ductile RC classes to 

have an upper quality. The values of such 

categorization are multiplied by the number of 

dwellings per class; and then divided by their 

respective average number of storeys. Finally, they are 

divided by the number of buildings per class to obtain 

the inferred building footprint area per typology. This 

procedure is illustrated in Table 3-4. 

 

Table 3-1 also reports a new categorization (i.e., A, B, 

C, D, E, F) of the SARA classes as a function of the 

similarities between their average footprint areas that 

was conceived initially by Zafrir, (2020). Although this 

assemblage is consistent with the number of storeys 

for the lowest (A: 1-2 storeys) and largest values (E: 4-

7; and F: 8-19), the grouping for the classes ranging 

from 1 to 3 storeys (B, C, D) was made in terms of the 

similarities in their average footprint area values and 

not any other attribute (e.g. material type). This new 

categorization, along with the footprint, is used later 

in this study. A summary of the average height and 

footprint area (m2) values of the reclassified typologies 

are reported in Table 3-2. 

It is worth noting that the building counts of the 

original SARA model over administrative spatial 

boundaries were obtained through the dasymetric 

disaggregation of population counts reported in 

remote-sensing products over resolutions of ~ 1 km2. 

This type of procedure is comprehensively described 

in Dell’Acqua et al., (2013). The disaggregation 

assumed a fixed number of night-time residents per 

building typology. The highest spatial resolution of the 

aggregated exposure model of the original SARA 

model was made available at the third administrative 

division of Chile (commune). This means that our area 

of interest (Valparaíso and Viña del Mar) is only 

composed of two large geocells (Figure 3-3). Hence, 

one of the shortcomings of the SARA model is that 

the spatial distribution of buildings is unknown 

because all of the exposure information is provided at 

the centroid of each geocell. Thus, this assumption 

disregards the outcomes from land-use classifications, 

which is particularly relevant for Valparaíso as can be 

seen from Figure 3-17. Although this resolution could 

be sufficient regional seismic risk estimates (Bal et al., 

2010), it will not be adequate for more detailed analysis 

using local ground motions, nor when aiming for 

future urban requalification (e.g. Senouci et al., 2018). 

Thus, a direct downscaling of such information into a 

more detailed resolution was needed. It was initially 

carried out by Zafrir, (2020). This process is explained 

in the following section. 
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Table 3-1. SARA building classes proposed for the study area along with short descriptions. Average number of dwellings 

(Dwel./ bdg), night-time residents (Res. /bdg) and replacement cost (Repl. Cost (USD)) are reported as in Yepes-Estrada et al., 

(2017). Average footprint area (Ft./bdg m2) values are derived from the construction quality categories per dwelling as suggested 

by Yepes-Estrada et al. (2017) and the mean range of storeys and dwellings per class (see Table 3-4). A new typology in the range 

A- F is proposed in terms of the similarities of their footprint areas. 

Typologies Description 
Dwel 

/ bdg. 

Ft/ 

bdg. 

(m2) 

Res/ 

bdg. 

 

Repl. 

Cost 

(USD) 

New 

type 

ER+ETR/H:1,2 Rammed earth, 1-2 stories 1.25 78.79 4 43,750 

A 

MUR+ADO/H:1,2 
Unreinforced masonry with adobe blocks, 1-

2 stories 
1.25 66.84 4 43,750 

MUR+STDRE/H:1,2 
Unreinforced masonry, dressed stone, 1-3 

stories 
1.25 65.32 5 43,750 

W+WS/H:1,2 Solid wood, between 1-2 stories 1.25 80.00 4 108,000 

MCF/DNO/H:1,3 Confined masonry non ductile, 1-3 stories 4 46.67 5 94,500 

B MUR/H:1,3 Unreinforced masonry, 1-3 stories 1.5 70.00 6 52,500 

W+WLI/H:1,3 Light wood members, 1-3 stories 1.5 80.00 5 108,000 

CR/LWAL/DNO/H:1,3 
Reinforced Concrete wall system, non-

ductile, 1-3 stories 
4 160.00 14 288,000 

C 
CR/LWAL/DUC/H:1,3 

Reinforced concrete wall system, ductile, 1-3 

stories 
4 140.00 15 336,000 

MCF/DUC/H:1,3 Confined masonry ductile, 1-3 stories 4 160.00 5 288,000 

CR+PC/LWAL/H:1,3 
Precast reinforced concrete wall system, 1-3 

stories 
5 160.00 18 360,000 

D 
MR/DNO/H:1,3 Reinforced masonry non ductile, 1-3 stories 5 160.00 18 360,000 

MR/DUC/H:1,3 Reinforced masonry ductile, 1-3 stories 5 140.00 18 360,000 

CR/LWAL/DNO/H:4,7 
Reinforced concrete wall system, non-

ductile, 4-7 stories 
15 240.00 54 1,080,000 

E 

CR/LWAL/DUC/H:4,7 
Reinforced concrete wall system, ductile, 4-7 

stories 
15 210.00 54 1,260,000 

CR/LWAL/DUC/H:8,19 
Reinforced concrete wall system, ductile, 8-

19 stories 
48 218.15 173 4,032,000 F 

 

Table 3-2. Average footprint areas and heights derived for the six subcategories in the range A-F for Viña del Mar and 
Valparaíso 

Typology 
Average 

height (m) 

In Viña del Mar In Valparaíso 

Average 

footprint area 

(m2) 

Proportion 

Average 

footprint area 

(m2) 

Proportion 

A 3.75 67.5 21% 73 38% 

B 4.5 71 59% 66 50% 

C 6 153 11% 153 7% 

D 7.5 115 5% 153 3% 

E 15 225 3% 225 1% 

F 36 280 1% 280 1% 
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Figure 3-3. Building counts at the commune level. For 15 SARA building classes (after having combined similar typologies (Sect. 

3.3.2.1)). the colour scale represents the material type (green: wooden; orange: masonry; blue: reinforced concrete). 
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Figure 3-4. Fragility functions for 15 SARA building classes as reported by Villar-Vega et al., (2017) describing their differential 

seismic vulnerabilities. The curves are presented in a similar order as in Figure 3-3. 
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3.3.2.2. Preliminary model: a simple downscaling using 

spatial disaggregation of population  

This model constitutes a downscaling of the model at 

the commune level that spatially aggregates the 

building counts over a regular 500 x 500m resolution 

grid. It was originally reported in Zafrir, (2020). 

Achieving higher resolutions was discarded because 

that would require further assumptions that would 

increase the uncertainties of such models. Moreover, 

since the resulting exposure models are input for 

seismic risk analyses, the use of higher resolution 

models would lead to important and unnecessary 

computational problems (e.g. Scheingraber and Käser, 

2020; Gómez Zapata et al., 2021a) that we prefer to 

reduce at this stage. This stems from the need to 

address the aleatory uncertainties implicit in a 

stochastic process, such as by generating thousands of 

realisations of spatially correlated ground motion 

fields (Gómez Zapata et al., 2021f). 

 

Contrary to the original SARA model that derived the 

number of buildings for Chile while using large-scale 

aggregated population counts and a nationwide 

mapping scheme based on the 2002 census, such 

metrics were rather obtained only for the specific 

study area. First, the urban area mapped from the 

land-use land cover analysis (Sect. 3.3.1, Figure 3-17) 

was used as the external boundary of the grid. Then, 

the population reported in the official 2017 census 

data (INE, 2018) was used to obtain the number of 

buildings of every typology based on their associated 

night-time residents. This census data provides this 

type of information for various aggregation 

boundaries, ranging from small urban blocks up to 

large rural areas with few structures and inhabitants. 

Such population counts were redistributed throughout 

the 384 geo-cells cells that make up the 500 x 500m 

resolution grid. This redistribution was done 

according to the ratio of enclosed urban blocks with a 

residential occupancy. Then, the number of buildings 

for each grid cell was estimated through the 

disaggregation of the redistributed population. This 

was done employing equation Eq.  3-1 in Appendix B 

as proposed by Pittore et al., (2020b). Figure 3-5 

shows the resulting ranges of building counts obtained 

for this model. 

 

 
Figure 3-5. Inferred ranges of residential building counts in the study area. This outcome is obtained from the spatial 

disaggregation of night-time residents at the block level as reported by the official 2017 Chilean census. 

 

Considering the relations proposed in Table 3-1 and 

Table 3-2, for the subcategories in the range A-F and 

the SARA typologies, their spatial distributions was 

obtained as displayed in Figure 3-6 and Figure 3-7 

respectively. Note that in these three figures, the 

background areas (that is not subdivided into regular 

grids) have intermediate values of buildings counts. 

That feature corresponds to the spatial redistribution 

of the UNK class throughout the entire study area 

(Sect. 3.3.2.1) as well as a contribution of some 

residential blocks of the census dataset that were not 

contained within the grid. 
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Figure 3-6. Spatial distributions of the building counts for the six subcategories in the range A-F obtained from the preliminary 

model. The latter involves a simple downscaling using the dasymetric disaggregation of the population based on of use of night-

time residents at the block level as reported by the official 2017 Chilean census. 



43 
 

 

 

 

Figure 3-7. Spatial distributions of the building counts for the SARA typologies obtained from the preliminary downscaled 

model. The colour scale reflects the material type (green: wooden; orange: masonry; blue: reinforced concrete). 
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3.3.2.3. Ancillary data available for Valparaíso 

3.3.2.3.1. OpenStreetMap (OSM) 

A large collection of building geometries for the study 

area has been available since the Humanitarian 

OpenStreetMap team task mapped the affected and 

surrounding areas by the Great 2014 Valparaíso Fire 

to support damage assessment and first response 

(OSM Task Manager, 2014a, b). That event destroyed 

over 2,900 homes and burned over 1,000 ha. in 5 days 

(Reszka and Fuentes, 2015). Since then, the availability 

of this type of crowdsourcing data has been on the 

rise. Examples of the OSM building footprints for a 

selected area of Valparaíso are shown in Figure 3-8. 

The types of available input data for the 384 grid cells 

that contain residential buildings in the study area are 

displayed in Figure 3-18 (Appendix A). 

 
 

Figure 3-8. Building footprints for a certain area in Valparaíso (© OpenStreetMap contributors 2021. Distributed under the 

Open Data Commons Open Database License (ODbL) v1.0). Map data: ©Google Earth 2020. Figure reprinted from Zafrir, 

(2020). 

3.3.2.3.2. Data collection of taxonomic attributes in 

Valparaíso and building classification  

604 randomly distributed buildings throughout the 

study area (see Appendix C) were inspected by expert 

civil engineers from the Pontificia Universidad 

Católica de Chile (Merino-Peña et al., (2021). Their 

attributes were collected in terms of the GEM V.2.0 

taxonomy (Brzev et al., 2013) while making use of the 

RRVS (Rapid Remote Visual Screening) web-platform 

(DEMO: Remote Rapid Visual Screening (RRVS)). 

This tool makes use of Google Street View and OSM 

footprints. The resulting dataset is available in Merino-

Peña et al., (2021). A summary of some of the 

observed taxonomic features as well as the method 

utilised in the classification of this building sample are 

provided in Appendix C. It is worth noting that, 

contrary to the approach of Gómez Zapata et al., 

(2022b), the data collection from the RRVS surveys 

was not directly integrate within the Bayesian model. 

Instead, this information is used to compare the 

plausibility of the generated exposure model, as will be 

presented afterward. 

3.3.2.4. Bayesian exposure model for Valparaíso 

The theoretical conceptualisation and assumptions of 

this model initially proposed in Zafrir, (2020) that 

relied on former approaches (Pittore et al., 2020b; 

Gómez Zapata et al., 2022b) is presented in the 

Appendix D. Out of a total of 384 grid cells, 294 grid 

cells, for which OSM footprint area was available 

Figure 3-18 were updated using the Bayesian 

approach. The resultant probabilistic exposure model 

gives to each geo-cell the total number of buildings 

classified into the six subcategories in the range from 

A to F. In order to complete the exposure information 

for the remaining 90 grid cells (~23% of the model), a 

hybrid model was generated by combining the 

generated information from the Bayesian approach 
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along with the preliminary model that comprised a 

simple spatial downscaling (Sect. 3.3.2.1). During this 

procedure, the individually surveyed buildings using 

the RRVS platform and their classifications (Appendix 

C) were used to cross-check the spatial distributions 

of the predominant building classes for seismic 

vulnerability within the grid cells. Figure 3-9 displays 

the spatial distributions of the building counts for such 

subcategories in the range from A to F. Once the 

posterior distributions for the six subcategories in the 

range A-F were obtained for each grid cell, the 

resulting quantities are expanded to the corresponding 

set of 16 SARA building classes using their relative 

proportions (Table 3-1, Table 3-2). Figure 3-10 does 

the same for 15 selected SARA building classes. 

 

3.3.2.5. Comparison of exposure models available for 

Valparaíso 

Figure 3-11 and Table 3-3 illustrate the number of 

buildings obtained from the three exposure models 

considered. Bearing in mind that the simplest model 

(initial commune-based) was generated using the 

oldest data, it is not surprising that it gives the lowest 

building counts. The preliminary model (simple 

downscaling) which was generated inferring the 

building counts from the population at the block level 

produces only slightly larger counts. However, the 

results obtained from the probabilistic approach leads 

to important differences for the four most common 

types, as well as for CR-LWAL-DNO/ (DUC)-H4-7. 

Although the respective proportions per type do not 

significantly vary, the Bayesian approach leads to an 

increase of ~34% and ~40% in the total number of 

buildings in comparison with the commune-based and 

the simple downscaling models, respectively.  

 

 
Figure 3-9. Spatial distributions of the building counts for the subcategories in the range A-F obtained from the probabilistic 

model in Valparaíso. 
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Figure 3-10. Spatial distributions of the building counts for the SARA typologies obtained from the probabilistic model in 

Valparaíso. The colour scale is selected in terms of the material type (green: wooden; orange: masonry; blue: reinforced concrete). 
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Figure 3-11. Comparison of the building counts per SARA typology for the three exposure models considered for Valparaíso: 

Initial commune-based model with merged classes, the preliminary model (simple downscaling), and the Bayesian model. 

 

Table 3-3. Comparison between the counts and frequencies for each building typology of the three considered exposure models. 

 

Initial model 

(Commune-based with 

merged classes, 

Sect. 3.3.2.1) 

Freq. 

(%) 

Preliminary model 

(Simple 

downscaling,  

Sect. 3.3.2.2) 

Freq. 

(%) 

Probabilistic 

model (Bayesian 

downscaling, Sect. 

3.3.2.4) 

Freq. 

(%) 

W-WLI-H1-3 21631 27.29 23374 26.22 33695 24.97 

MCF-DNO-H1-3 20617 26.01 23146 25.97 31244 23.15 

W-WS-H1-2 9610 12.12 10619 11.91 14835 10.99 

MUR-ADO-H1-2 8793 11.09 9013 10.11 14298 10.59 

MUR-H1-3 4723 5.96 5494 6.16 7128 5.28 

MCF-DUC-H1-3 2712 3.42 3216 3.61 4111 3.05 

CR-LWAL-DNO-H1-3 2537 3.2 3006 3.37 3854 2.86 

ER-ETR-H1-2 2335 2.95 2542 2.85 3801 2.82 

MR-DNO-H1-3 2274 2.87 2728 3.06 3449 2.56 

MR-DUC-H1-3 924 1.17 1222 1.37 1407 1.04 

CR-LWAL-DUC-H1-3 865 1.09 1166 1.31 1311 0.97 

CR-LWAL-DNO-H4-7 775 0.98 1065 1.19 8293 6.14 

CR-LWAL-DUC-H4-7 502 0.63 792 0.89 4980 3.69 

MUR-STDRE-H1-2 452 0.57 723 0.81 689 0.51 

CR-PC-LWAL-H1-3 388 0.49 633 0.71 603 0.45 

CR-LWAL-DUC-H8-19 129 0.16 398 0.45 1265 0.94 

∑ total 79267 100 89137 100 134963 100 
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We remark some of the particularities obtained for the 

two intermediate and more simplified exposure 

models for the study area: 

• The first model (Sect. 3.3.2.1) is quite similar to 

such original SARA model since it maintains its 

spatial representation over administrative units. 

Its composition is made from the combination of 

similar classes in terms of their height.  

• The second one (preliminary downscaled model, 

Sect. 3.3.2.2) constitutes the spatial disaggregation 

of the former onto higher resolutions regular grid 

cells (500m x 500m). The total number of 

buildings was estimated by disaggregating the 

population at the block-level from the 2017 

official Chilean census.  

The former two models consider that all the geo-cells 

have the same proportions for the six subcategories 

A-F within Viña del Mar and Valparaíso (Table 3-2)  

as proposed by the original exposure model SARA. 

Conversely, as formerly stated, the third and definitive 

model (Sect. 3.3.2.4) was derived using a Bayesian 

approach. It estimated the building counts directly 

from the existing OSM footprints of residential 

buildings (Sect. 3.3.2.3.1). The exposure composition 

within every geo-cell was modelled as a posterior 

Dirichlet distribution which is assumed to be 

proportional to the maximum likelihood estimation of 

the inferred footprint areas per building typology 

(Equations Eq.  3-8 and Eq.  3-11). Moreover, it has 

the same spatial resolution adopted by the second 

model. 

Regarding the composition of the three 

aforementioned models, we can observe a general 

trend of transversally maintaining similar proportions 

in their building classes (Table 3-3). This might mean 

that the construction practices for residential buildings 

along the study area have been maintained at least 

from 2002 until 2020. However, certain differences 

can be highlighted within that general trend. 

Interestingly, the Bayesian-derived model led to much 

larger quantities for two typologies: CR-LWAL-

DNO/ (DUC)-H4-7 (Figure 3-11) that are mostly 

grouped in Viña del Mar and in the vicinity of the 

coastline. This feature might either reflect the 

increasing tendency of constructing higher building 

rises, or possible artifacts which could have been 

induced by incorrectly associating relatively larger 

building footprints to these types of moderate rise 

buildings. Considering the recent practices of 

incrementally constructing higher-rise buildings, the 

first hypothesis might be plausible. 

The comparison of the spatial distribution of the 

building classes for the second (preliminary 

downscaling) against the third (Bayesian-based), either 

for the A-F subcategories (Figure 3-6 and Figure 3-9) 

or for the SARA classes (Figure 3-7 and Figure 3-10), 

allow us to identify some differences. As formerly 

described, the maps of the second model show non-

zero values on the background area. Notably, these 

quantities are larger for earthen building and 

unreinforced masonry types (the most common types 

in the study area according to the original SARA 

model as well as to the three models herein presented). 

Both typologies could represent the presence of more 

informally constructed buildings outside the urban 

perimeter. A clearer spatial delimitation of these 

typologies is still pending and relevant since they can 

be especially vulnerable to seismic actions (Acevedo et 

al., 2017).  

Furthermore, it is interesting to see that the second 

model displays quite small and unrealistic counts for 

the buildings characterised as walled reinforced 

concrete and moderate to high rise (blue colours in 

Figure 3-7). This contrasts with the Bayesian model 

that reported larger and well-focused areas where the 

presence of these typologies is expected. The presence 

of comparatively larger building footprints for which 

we associate these building types occurs in focused 

zones close to the coast and in Viña del Mar. These 

areas are typically characterised to host medium- and 

high-rise buildings (Jiménez et al., 2018), thus, 

confirming the predictive Bayesian model. However, 

in the absence of robust alternatives to validate these 

results, the epistemic uncertainty of the estimated 

proportions for these walled reinforced concrete and 

moderate to high rise classes would be comparatively 

higher. It is worth noting that better constraining the 

spatial distribution of these types of structures is still 

necessary because, besides the differences in the 

expected counts, their associated uncertainties in the 

reconnaissance of their ductility levels and 

construction quality could significantly and 

differentially drive their seismic vulnerabilities (Arroyo 

et al., 2021; Vásquez et al., 2021). 

3.3.3. Generation of seismic ground 

motion fields for an earthquake scenario 

A worst-case mega-thrust earthquake scenario with a 

moment magnitude of Mw 9.1, similar to the one that 

hit Valparaíso in 1730 is considered (Carvajal et al., 

2017). We simulate a finite fault model and obtain 

their respective spatially distributed spectral 

accelerations using Shakyground 1.0 (Weatherill et al., 



49 
 

 

 

2021), a script that relies on the OpenQuake Engine 

(Pagani et al., 2014). The basic parameters used in the 

simulations are: hypocentre location (longitude = 

−71.5◦; latitude = −32.5◦; depth = 25 km), strike = 3◦, 

dip = 15◦, and rake = 117◦. Seismic ground motion 

fields are generated following a sensitivity analysis 

selecting various alternative parameters, namely: (1) 

the GMPE selection, (2) the Vs30 model, (3) the spatial 

correlation model.  

3.3.3.1. Ground motion prediction equation (GMPE) 

The selection of the GMPE has been proved to be 

largely relevant in probabilistic seismic risk (e.g. 

Kalakonas et al., 2020; Kotha et al., 2018) as well as in 

scenario-based risk (e.g. Hussain et al., 2020) for 

building stocks. We make use of three ground motion 

prediction equations (GMPE) formerly proposed for 

inter-plate subduction tectonic regions to generate 

seismic ground motion fields for PGA, S.A(0.3 s), and 

S.A(1.0 s). They are namely:  

• Ghofrani & Atkinsonm, (2014) (Ghofrani and 

Atkinson, 2014) 

• Abrahamson et al, (2015) (Abrahamson et al., 

2016) ("BC Hydro" Model) 

• Montalva et al. (2017) (Montalva et al., 2017): 

adaptation of the former GMPE, calibrated to 

Chile. 

3.3.3.2. Site term (spatial distribution of Vs30) 

Local site conditions, such as soft soils can heavily 

impact direct loss estimates for building stocks 

exposed to earthquakes (Peyghaleh et al., 2018). The 

“site” term of the selected GMPE considers the shear 

wave velocity for the 30 uppermost meters (Vs30 

values) as the only proxy. Sensitivity on this term was 

performed considering three Vs30 conditions: 

• Assuming Vs30 values of 600 m/s uniformly 

distributed throughout the study area. This 

emulates the presence of a moderately 

homogenous weathered rock with similar values 

assumed for the seabed rocks (Figure 3-12-a). 

• Derived from slope-proxy as proposed by the 

USGS (Heath et al., 2020). (Figure 3-12-b). 

• The combination between the former model and, 

when available, the derived values from a local 

seismic microzonation reported in Mendoza et 

al., (2018) (Figure 3-12-c). 

 

3.3.3.3. Spatial correlation model  

The impact of either accounting spatial uncorrelated, 

correlated or cross-correlated ground motion fields in 

earthquake loss models for large-scale building 

portfolios has been found to be highly relevant in 

former studies (e.g. Weatherill et al., 2015). We present 

as an example a single realisation of the ground 

motion field while considering the Vs30 values from 

microzonation (Figure 3-12-c) and the Montalva et al. 

(2017) GMPE for three considered conditions: 

• Uncorrelated ground motion fields (Figure 3-14-

a) 

• A spatial correlation model (Jayaram and Baker, 

2009) (Jayaram and Baker, 2009) (Figure 3-14-

b,c,d). 

• The cross-correlation model proposed by 

Markhvida et al. (2018) (Markhvida et al., 2018) 

(Figure 3-14-e,f,g). It is useful when various 

intensity measures (IM), such as spectral 

accelerations at different periods are used by the 

set of fragility functions. 

In order to account for the aleatoric uncertainty of the 

GMPE-based ground motions, we follow the advice 

of (Silva, 2016) and compute 1,000 realisations per 

each configuration of GMPE, Vs30, and spatial 

correlation. The three exposure models formerly 

presented are addressed as the fourth element within 

this sensitivity analysis to calculate their seismic 

vulnerability. These models along with their fragility 

functions are assembled in order to fulfil the data 

formats required by the software Assetmaster and 

Modelprop (Pittore et al., 2021). They produce inputs, 

that together with the ground motions provided by 

Shakyground are used by the engine DEUS 

(Brinckmann et al., 2021) to estimate the damage and 

losses. The replacement cost values suggested in 

Villar-Vega et al., (2017) and loss ratios per damage 

state (i.e., 2%, 10%, 50%, and 100%) are used. 

Therefore, 81 parametric combinations for risk 

assessment are generated per ground motion 

realisation.  



   

Figure 3-12. Distribution of the Vs30 values in Valparaíso and Viña del Mar (a) considering 600 m/s uniformly distributed all 

through; (b) as proposed by the USGS (Heath et al., 2020); and (c) its combination with the seismic microzonation (Mendoza et 

al., 2018). 

 
(a) 

 
(b) 

 
(c) 

Figure 3-13. Median values of the Mw 9.1 earthquake for three IMs (a) PGA, (b) S.A. (0.3 s) and (c) S.A. (1.0 s) using the 
(Montalva et al., 2017) GMPE. The earthquake hypocentre is shown as a white dot. The rupture plane is represented as a green 

rectangle. 
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Figure 3-14. Single realisation of a GMF with these conditions:(a) PGA uncorrelated; spatially correlated (JB) (Jayaram and 

Baker, 2009) for (b) PGA, (c) S.a(0.3 s), (d) S.a(1.0 s); and cross-correlated (MK) (Markhvida et al., 2018) for (e) PGA, (f) S.a(0.3 

s), (g) S.a(1.0 s).   



3.4. Sensitivity analyses on scenario-based 

seismic risk assessment 

This systematic investigation describes a condition tree 

that allows us to compare the impact of individual 

parameters on the risk estimates and their epistemic 

uncertainties (Beven et al., 2018). To avoid possible 

misinterpretations of absolute economic loss values, we 

have made the decision of providing these results in 

terms of normalised loss values. They were normalised 

with respect to the maximum loss value (among the 

1000 realisations) obtained for the initial commune-

based model along with the assemblage of uncorrelated 

ground motion fields, slope-based Vs30 values, and the 

Abrahamson et al, (2015) GMPE. This decision of 

providing normalised results is supported by the 

suggestions made by Gomez-Zapata et al., (2022); 

Vamvatsikos et al., (2010) who discussed that, because 

of the continuously spatio-temporal changing exposure, 

erroneous damage forecasts can appear if the losses are 

shown as absolute. Moreover, normalised values allow 

us to easily highlight the scale in the differences between 

the various models. Because of the differences in the 

buildings counts of the three exposure models, we have 

also added a second normalisation coefficient to the 

normalisation of the building counts across all the 

models to account for the role of the exposure 

composition. 

Figure 3-15 displays the comparison between the 

normalised losses obtained for the three building 

exposure model subjected to the assembled ground 

motion fields shown in the vertical axis per GMPE. 

Figure 3-16 reports the same information in a collapsed 

and hierarchical manner for the three exposure models. 

 

 

Figure 3-15. Normalised loss for the earthquake scenario in Valparaíso for the three exposure models (in each 

subplot) and 27 ground motions assemblages using the set of uncorrelated ground motions with Vs30 (Topogr.), and 

the Abrahams, 2015 GMPE as benchmark 

 

Figure 3-15 and Figure 3-16 show the comparative lower 

impact that carries the selection of the GMPE upon the 

normalised losses across all of the evaluated cases. This 

might be due to the fact that they follow very similar 

functional forms (Montalva et al., 2017). We still can 

identify that generally, the GMPE proposed by 

Abrahamson et al, 2015 induced the lowest estimates 

whilst the Montalva et al, 2017 one induced the largest 

variability. As reported in Weatherill et al., (2015), the 

implementation of an inter-period cross-correlation 

model imposes the largest variations regardless of the 

exposure model used. This condition, combined with 

the unrealistic case of having homogenous Vs30 values 

imposes the largest values. The normalised metric is 

diminished when the simpler spatial correlation model 

and the uncorrelated ground motions are adopted. This 

is especially evident for the commune-based model 

(Figure 3-15-b) for which, the use of spatially 

uncorrelated ground motions led to a general 

underestimation of the results (values < 1.0 with respect 

to the normalising model). This low-resolution model 

along with having neglected the inter-period 

dependency of the fragility functions and correlated 

ground motions lead to unrealistic underestimations. 

This feature was already noted by Stafford, (2012). 

Notably, the differences between the preliminary 

downscaled model and the commune-based one are 

very low for the case of using uncorrelated GMF 

regardless the GMPE and Vs30 parametrisations. 

Moreover, the arrangement of the normalised risk 

metrics of the preliminary downscaled model (Figure 

3-15-b) presents a smoother shape in contrast with the 
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other two exposure models. This feature is a 

contribution of having a more spread-out aggregation 

(Figure 3-7) made of unrealistic portfolio composition 

(very few walled high-rise reinforced concrete 

buildings). Finally, the Bayesian-derived exposure model 

(Figure 3-15-c) produces the highest estimated losses 

due to its comparative larger building counts. It might 

appear that the difference in these counts induced a 

linear increment of the losses with respect to the 

preliminary exposure model. However, this trend is not 

entirely linear. This is due to the different spatial 

distribution of the buildings (Figure 3-10) and having 

larger proportions of walled medium-rise RC buildings 

(Figure 3-11) which despite being are more resistant to 

ground shaking (Figure 3-4), have higher replacement 

costs (Table 3-1).

 

Figure 3-16. Similar information as shown in Figure 3-15 showing the normalised loss differences between each 

exposure model. 

 

3.5.  Discussion 

This work is based on the assumption that the 

residential building stock of Valparaíso and Viña del Mar 

(Chile) can be entirely characterised by a set of 

typologies proposed by the SARA project Yepes-

Estrada et al. (2017). However, exposure models could 

have been designed for other schemes, as proposed by 

Aguirre et al., (2018) for the Chilean context. The SARA 

typologies were constrained by expert-elicitation over 

the official 2002 Chilean census while being spatially 

aggregated onto two large-size administrative units. 

Some classes were merged to present the initial model 

(Sect. 3.3.2.1). Thereafter, in order to refine the spatial 

representation, another preliminary exposure model was 

also presented employing data from 2017 (Sect. 3.3.2.2). 

Then, a probabilistic model that was initially presented 

in Zafrir, (2020) through a Bayesian approach is recalled. 

Its development comprised the exploitation of recent 

and freely available datasets while updating its 

composition based on up-to-date observations. 

Due to the various data sources with contrasting 

vintages used in deriving these three exposure models, 

their total building counts vary. The Bayesian model led 

to quantities that are ~34% and ~40% larger with 

respect to the first and second models respectively 

(Table 3-3). Complementarily, the building counts 

obtained for the three models can be compared with the 

study of (Geiß et al., 2017a) that, after integrating remote 

sensing data products with OpenStreetMap footprints, 
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reported a range between 64,803 – 72,412 building units 

for the Valparaíso commune (excluding Viña del Mar). 

The mean value of that range is ~40% larger than the 

41,722 building counts reported by the first commune-

based SARA model (Figure 3-3) whilst the values 

obtained by the second and third models are consistent 

and within the cited range. 

Among the three exposure models presented, we 

consider that the probabilistic model provides a better 

representation of the updated composition of the 

residential building portfolio in the study area. However, 

this approach has several limitations and uncertainties. 

For instance, the posterior distribution that represents 

the proportions of each class was configured making use 

of uninformative priors (Appendix D). Informative 

priors could have been obtained either if we counted 

with more complete OSM data about other building 

attributes or if we counted with expert-based prior 

assumptions for similar spatial units used to aggregate 

the model. Hence, although in Gomez-Zapata et al., 

(2022) expert-based priors at the commune level were 

utilised to derive probabilistic exposure models, their 

resulting model was still generated at the same 

resolution. Therefore, it would not be wise generalising 

prior distributions that were initially assumed for coarser 

resolutions than the one we aimed for.  

It is worth testing in future studies how the increasing 

availability of ancillary data from OSM (that might also 

provide other taxonomic attributes) or from other 

sources (i.e. surveys, feature extraction from remote 

sensing) could be integrated within probabilistic 

exposure models. In this regard, recently reported 

exposure models constructed with ancillary data (e.g. 

Aravena Pelizari et al., 2021; Cerri et al., 2021) are worth 

being continuously updated with Bayesian approaches 

to acknowledge their statistical nature and forecast their 

spatiotemporal dynamics. 

Although probabilistic exposure models could have 

been satisfactorily obtained for higher resolutions, we 

have considered since an early stage that such resulting 

models are input for seismic risk assessment. Therefore, 

the selected resolution for the exposure models satisfies 

that the heterogeneities of the building stock are 

identifiable, while at the same time ensuring that risk 

estimates from earthquake scenarios maintain a 

meaningful mapping resolution in concordance with the 

spatial variation of the intensities of the seismic ground 

motions (Zuccaro et al., 2018). Moreover, this 

resolution avoids unnecessarily computational efforts 

when thousands of seismic ground motion fields 

(stochastically constructed) are used to assess the 

physical vulnerability of the exposed buildings (Bal et al., 

2010; Gómez Zapata et al., 2021f).  

The three aforementioned exposure models are utilised 

to perform a sensitivity analysis in scenario-based 

seismic risk along with other three components that 

partly parametrise the seismic ground motion fields for 

a single megathrust earthquake. They are the selection 

of the types of GMPE, Vs30 proxy, and spatial 

correlation model. We have observed the significant and 

higher importance of the exposure model than these 

evaluated parameters. This sensitivity study relies on the 

vague and generalised assumption of using of Vs30 

proxy to address seismic site effects (Pilz and Cotton, 

2019). Thus, addressing wave propagation studies that 

were out of the scope of our work would in the future 

profit the quality of the resultant loss estimates herein 

presented. Complementary, but also out of our scope, it 

is worth recognising, that even if we had used local 

correlation models for the Chilean subduction zone (i.e., 

Candia et al., 2020) published after this study), the use 

of generic and isotropic correlation models without 

having performed local wave-form analyses in the 

vicinity of the study area might anyway induce 

overestimations in the risk estimates (Abbasnejadfard et 

al., 2021).  

It is worth noting that we are not claiming that the 

scenario-based economic losses for the residential 

building stock of Valparaíso and Viña del Mar are 

exhaustive. Instead, this sensitivity analysis allowed us to 

explore certain epistemic and aleatoric uncertainties 

embedded in the exposure and ground motion models. 

Therefore, the aforementioned observations should 

neither be generalised for any type of probabilistic risk 

assessment nor for other earthquake scenarios. 

Although Kalakonas et al., (2020) recently reported 

negligible differences between two alternative country-

sized exposure models in sensitivity analyses for 

probabilistic risk, their composition was defined 

through top-down approaches and not integrating 

ancillary data into probabilistic models as herein 

presented. Moreover, it is worth noting that there are 

other components within the seismic risk chain that we 

did not address in this sensitivity study. For instance, it 

is worth exploring in future studies the role of other 

parameters on the final loss estimates, such as the 

definition of replacement costs, loss ratios per damage, 

the method used in deriving more local vulnerability 

functions explicitly for the Chilean context (e.g. Cabrera 

et al., 2020) as well as their dependency with hazard 

intensities (Sousa et al., 2018). Consequently, more 
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rigorous analyses, but also beyond our scope, would 

comprise feature importance assessment through 

machine learning techniques along with macroseismic 

intensities calibrated through Bayesian approaches (e.g. 

Pittore et al., 2018a) and available datasets of damage 

reconnaissance after real earthquakes (Contreras et al., 

2021). 

3.6. Conclusions  

A method to spatially downscale the residential building 

exposure model of Valparaíso and Viña del Mar (Chile) 

is recalled relying on a Bayesian formulation. As a result, 

a probabilistic model is generated through the 

integration of recent OSM data. Other two intermediate 

exposure models are generated making use of out-of-

date ancillary data. When we compare the three models 

we observe important differences with respect to their 

composition and spatial distributions. The current 

construction practices in the study area as well as 

observations from surveys confirm that the probabilistic 

model provides a better representation of the 

composition of the residential building portfolio of 

interest. This type of probabilistic exposure modelling 

highlights the dynamic spatiotemporal evolution of the 

built environment. Depending on the ancillary data 

utilised, building exposure models may have different 

building counts and uncertain compositions. In order to 

minimise such uncertainties, high-quality data should be 

continuously integrated into probabilistic models. 

This study has provided a partial understanding of the 

importance of counting with incrementally updated 

exposure models (i.e. when their composition is 

probabilistically constructed) and their crucial role in 

earthquake loss models. Through a sensitivity analysis in 

scenario-based seismic risk, we remark the importance 

of constantly constraining the seismic ground motions 

along with a good level of knowledge of the building 

stock. Although we do not provide absolute numbers of 

direct economic losses, the presented results can be used 

to improve the knowledge of individual parts of the 

seismic risk chain through future studies. 
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Appendix A: Spatial delimitation of the urban area and available data sources for building 

exposure modelling 

 

Figure 3-17. Land use classification for the study area. Map data: ©Google Earth 2020. Figure modified from Zafrir, (2020) . 

 

Figure 3-18. Categories according to the available input data in the study area. 136 grid cells represented by green colour have 

information of build-up height according to Zafrir, (2020) as well as the OSM footprint area (Sect. 3.3.2.3.1), 51 grid cells 

represented with blue colour have information about the build-up height and density from remote sensing data products (as 

studied by Zafrir, (2020)), 158 grid cells represented by orange colour have a complete information only about the footprint area 

from OSM, and 39 grid cells represented by pink colour have no input information. Map data: ©Google Earth 2020. Figure 

modified from Zafrir, (2020).  
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Appendix C: Data collection of building attributes in Valparaíso and their classification 

Out of the entire sample made up of 604 buildings (Merino-Peña et al., 2021) we present in Table 3-5 some of the 

observed attributes values found during the survey for the building depicted in Figure 3-19. The distributions of the 

observed values of four selected attribute types are shown in Figure 3-20. Short descriptions of these attributes are 

presented in  
 

 

 

Figure 3-19. Building façade of an 

inspected building, with ID=599 in 

Merino-Peña et al., (2021). 

 

 

Table 3-5. Data collection for the building in Figure 3-19. 

 Attribute type 
Attribute 

value 

Material type MCF 

Material technology CL99 

Material property MO99 

Lateral load-resisting system 

(LLRS) 
LWAL 

Non-structural exterior walls EWMA 

Roof shape RSH2 

Roof coverage material RMT6 

Roof system material RWO 

Roof system type RWO1 

Floor material  FC 

Floor type FC99 

Floor connections FWCP 

Number of storeys 2 

Ductility of the LRRS DU99 
 

 

 

(a) Material type 

 

(b) Material technology 

 

(c) Non- structural exterior walls 

 

(d) Lateral load-resisting system (LLRS) 

 

Figure 3-20. Distribution of attributes values within the GEM V.2.0 taxonomy for 604 inspected buildings in 

Valparaíso for: (a) material type, (b) material technology, (c) non- structural exterior walls, and (d) lateral load-resisting 

system. 
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Table 3-6. Short description of observed attribute values incorporated into the four attribute types in Figure 3-20. 

(a) Material type 

SRC: Concrete, composite with steel section 

C99: Concrete, unknown reinforcement 

EU: Earth, unreinforced 

ME: Metal (except steel) 

E99: Earth, unknown reinforcement 

MUR: Masonry, unreinforced [MUR] 

S: Steel 

MR: Masonry, reinforced 

MAT99: Unknown material 

CR: Concrete, reinforced 

W: Wood 

M99: Masonry, unknown reinforcement 

MCF: Masonry, confined [MCF] 

 

(b) Material technology 

ET99: Unknown earth technology 

ST99: Stone, unknown technology 

WO: Wood, other 

WS: Solid wood 

MEIR: Iron 

ME99: Metal, Unknown 

CB99: Concrete blocks, unknown type 

S99: Steel, unknown 

CBS: Concrete blocks, solid 

ETC: Cob or wet construction 

MUN99: Masonry unit, unknown 

CLBLH: Fired clay hollow blocks or tiles 

CLBRS: Fired clay solid bricks 

CIP: Cast-in-place concrete 

MATT99: Unknown material 

WLI: Light wood members 

CL99: Fired clay unit, unknown type 

(c) Non- structural exterior walls 

EWPL: Plastic/vinyl exterior walls, various 

EWO: Material of exterior walls, other 

EWE: Earthen exterior walls 

EWG: Glass exterior walls 

EWCB: Cement-based boards for exterior walls 

EWC: Concrete exterior walls 

EW99: Unknown material of exterior walls 

EWME: Metal exterior walls 

EWMA: Masonry exterior walls 

EWW: Wooden exterior walls 

EWSL: Stucco finish on light framing for exterior walls 

(d) Lateral load resisting system 

LH: Hybrid lateral load-resisting system 

LFM: Moment frame 

LFBR: Braced frame 

LFINF: Infilled frame 

LPB: Post and beam 

L99: Unknown lateral load-resisting system 

LWAL: Wall 

 

 

 

To classify the surveyed building sample, we follow 

the method proposed in (Pittore et al., 2018b). 𝑣𝑖𝑘 is 

an attribute value belonging to the taxonomic 

description {𝐹(𝑏)}𝑚 of the considered building 𝑏 and 

𝑠𝑖𝑘
𝑐  is the fuzzy score measuring the level of 

compatibility of the attribute values 𝑣𝑖𝑘 with respect 

to a given class 𝑇𝑘
𝐴 in the reference Schema 𝐴 for 

every category value {𝑣𝑖𝑘, 𝑘 = 1, … , 𝑚𝑖} that the 

attribute type 𝑎𝑖 can take. A set of triangular fuzzy 

numbers (TFN) that comprise seven increasing levels 

of compatibility, from “- - -”, “- -”, “-“, “+”, “+ +”, 

“+ + +” are assigned through expert elicitation. Every 

𝑎𝑖 within the schema 𝐴 has an associated weight, 𝑤𝑖 

(i.e., a crisp (non-fuzzy) number) which rank and 

integrate the different attribute types within the local 

schema.  

∑ 𝑤𝑖

𝑛

𝑖=1

∑ 𝛿𝑖𝑘(𝑏)𝑠𝑖𝑘

𝑇𝑘
𝐴

𝑚𝑖

𝑖=1

 

 

Eq.  3-2 

 

with 
𝛿𝑖𝑘(𝑏) = {1 𝑖𝑓 𝑣𝑖𝑘  ∈   𝑇𝑘

𝐴

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq.  3-3 

 

 

The assignment of the most likely class is carried out 

in a post-processing stage and within a fully 

probabilistic framework by evaluating the level of 

compatibility between the observed building 

attributes and the classes available within the 

considered schema. Making use of the former 

method, we classified the surveyed buildings while 

reusing the dataset provided in Gomez-Zapata et al., 

(2021a) which comprises the disaggregation of the 

SARA scheme into the attributes comprised in the 
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GEM v.2.0 taxonomy along with their associated 

fuzzy compatibility scores with a single weighting 

scheme. After the evaluation of their degree of 

belonging, we obtained the differential compatibility 

levels for each building. Figure 3-21 shows the 

differential compatibilities of the building displayed in 

Figure 3-19 to be categorised as one of the 16 SARA 

typologies. Since its ductility was not identified (Table 

3-5), the highest scores are obtained for the two types 

MCF-DNO-H1-3 and MCF-DUC-H1-3. Under such 

circumstance, the non-ductile option is chosen. After 

performing this classification for the entire sample, we 

obtain the distribution of typologies for the building 

sample shown in Figure 3-22. Notably, 11 building 

classes out of the 16 proposed were observed.  

 

 

Figure 3-21. Resulting fuzzy compatibility scores for the 

building in Figure 3-19 with respect to the SARA typologies. 

The solid and dashed segment represent the equivalent 

defuzzified values according to the mode, median or mean 

value of the triangular fuzzy numbers. 

 

Figure 3-22. Distribution of the SARA 

typologies for the sample constituted by 604 

surveyed buildings randomly distributed 

throughout Valparaíso. 

Appendix D: Basic Overview of the Probabilistic Exposure Modelling Approach 

In the following, we recall a Bayesian approach for 

exposure modelling that was initially presented in the 

master thesis of Zafrir, (2020). This is first performed 

based on the probabilistic evaluation of the likelihood 

of observing and classifying the set of OSM footprints 

as one of the six building subcategories from A to F 

(Table 3-1). The obtained quantities for their enclosed 

SARA building classes can be obtained while keeping 

their underlying relation. 

As in any Bayesian method, we obtained a posterior 

distribution that represented the composition of the 

building stock based on the configurations of prior 

and likelihood distributions. The probabilistic 

exposure model for the residential building stock of 

Valparaíso based on the OSM building footprints is 

given by the relation in Eq.  3-4. 

(Model|buildingfootprint) =
P(building footprint|Model) ∗ P(Model)

P(building footprint)
 Eq.  3-4 
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where P(Model|buildingfootprint) is the posterior 

distribution of the model given by the OSM building 

footprints, P(buildingfootprint|Model) is the 

likelihood function, P(Model) is the prior 

distribution, and P(Building footprint) is the 

observable data. 

This formulation relies on the method initially 

suggested by Pittore et al. (2020) [39], which is 

grounded in statistical inference. A brief overview is 

presented below. 

Let us consider n = {n1, … , nk} and ∑ nk i
= N 

building types are observed, where ni is the number of 

buildings per typology i. The building stock can be 

categorised into k categories or typologies, whose 

frequencies are represented by a proportion θ =

{θ1, … , θk}, θi ≥ 0 and ∑ θk k
= 1. A multinomial 

sampling model is assumed to represent the 

probability of observing n, depending on θ:  

p(n|θ) = Mul(n|θ)
N!

∏ ni!
k
i=1

∏ θk
ni

k

i=1

 
Eq.  3-5 

 

Since the true proportion is unknown, 𝜃𝑖 are random 

variables, where it is assumed that they follow a 

probability distribution function in the form of a 

Dirichlet distribution: 

Dir(α) =
Γ(∑ αi)

k
i=1

∏ Γ(αi)
k
i=1

∏ θi
αi−1

k

i=1

 
Eq.  3-6 

 

The Dirichlet distribution is parameterised by the 

vector α, and it has the same number of elements (k) 

as the multinomial parameter θ. Thus, P(θ∣α) is the 

interpretation of the question “what is the probability 

distribution function in a multinomial distribution θ 

with a Dirichlet distribution parameter α.” As a result, 

it can be determined how Dir(α) varies over the values 

of θ for a given value of α. By the Bayes theorem, and 

since the prior Dirichlet is the conjugate prior to the 

multinomial likelihood, the posterior probability 

distribution of θi is also a Dirichlet distribution that is 

defined by the likelihood p(𝐧|𝛉) and prior p(𝛉): 

p(θ|n) ∝ p(n|θ)p(θ) Eq.  3-7 

Since both the multinomial and Dirichlet are 

conjugated distributions, the prior and posterior are 

both Dirichlet distributions that differ only by the 

empirical contribution of the observed data, which 

corresponds to the integration of OSM footprint area 

values. Therefore, we assumed that the observation of 

the OSM building footprints could be characterised 

through a multinomial sampling Eq.  3-5 which, when 

complemented with a prior composition that followed 

a Dirichlet distribution (Eq.  3-6), could together 

characterise the posterior distribution. Since Dirichlet 

and multinomial are conjugated distributions, both the 

prior and posterior distributions followed a Dirichlet 

distribution. To apply Bayes’ theorem, the mean 

footprint area in each grid-cell was used for the 

construction of the likelihood function P(building 

footprint│Model) from Eq.  3-4. We defined the 

function for the mean footprint model as expressed in 

Eq.  3-8. 

∑ Nb ∗ θi ∗ fbi
k
i=1

Nb
 Eq.  3-8 

where Nb is the total number of buildings in the geo-

cells, θi is the proportion of buildings per typology, 

and fbi is the footprint area per building typology. 

From the former expression, Eq.  3-9 can be derived: 

∑ θi ∗ fbi

k

i=1

 
Eq.  3-9 

Since θ was expected to vary from one grid cell to 

another, the mathematical characterisation of this 

variability was performed using the Dirichlet 

probability distribution to stochastically sample the 

distribution of θ in the likelihood function. Similar to 

what was proposed in Gómez Zapata et al., (2022b), 

the Dirichlet hyperparameters α (Eq.  3-6) were 

factorised as the product of a proportion (θk) and a 

common (constant) concentration factor αo. This was 

expressed as α = θk ∗ αo, where αo increased the 

virtual counts for the category k and thus acted as a 

prior term. The larger the values of αo, the more 

uniform the distributions are, whilst smaller values 

result in sparser distributions (Xing, 2014). Due to the 

lack of a reliable estimate about the portfolio 

composition, we set a low αo value equal to 1.0. This 

was aligned with the decision to use uninformative 

priors (i.e., equal proportions for all building classes). 

This type of selection can be justified when there is 

either no particular hypothesis about the parameters 

that make up a given real distribution or when we have 

a full inventory description where all building types are 

equally represented (Pittore and Wieland, 2013). It is 

important to note that the compositions of these types 

of priors will be updated after the integration of the 

observed data within the likelihood term (e.g., Pittore 

et al. 2020; Gómez Zapata et al., 2022b). These data 
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are represented by the growing data availability of 

OSM footprints, their observation, and their 

subsequent integration into the Bayesian model. 

This likelihood function was used as the joint function 

between the observable data and the model. It 

computed the probability of obtaining the mean 

footprint area observed in the geo-cells in the 

calculated mean footprint area. This was equivalent to 

calculating the θ that maximised Eq.  3-4, which is 

given by Eq.  3-10. 

θ = argmax
θ

(P(θ|obs)

= argmax
θ

(
P(obs|θ)P(θ)

P(obs)
) 

Eq.  3-10 

 

Due to the assumption of using an uninformative 

prior, the posterior distribution would be proportional 

to a maximum likelihood estimation (Lynch, 2007). 

Hence, the posterior distribution of the model 

corresponded to the maximum likelihood estimation, 

which is given by: 

θ = argmax
θ

(P(θ|obs)

= argmax
θ

(P(obs|θ)) 

Eq.  3-11 

where argmax over 𝜃 returns the θ value that 

maximises the functions in Bayes’ theorem. This 

corresponds to asking the question “how likely will it 

be to observe the mean footprint area (from the geo-

cell) given the θ low-rise buildings model?” The 

process of maximizing the likelihood function defines 

how probable the mean footprint area is under 

different values of θ. Therefore, θ is a vector with 

values from 0 to 1. The θ value was chosen once the 

likelihood was maximised. Figure 3-23 presents an 

example of this procedure. For example, as explained 

by Zafrir, (2020), we can ask “what is the probability 

to find observed data with a mean footprint of 81m2 

(mean value in Figure 3-23) in the given model?” 

From Figure 3-23b, it is possible to observe that once 

the likelihood term was solved for that value, it was 

maximised at 94%. That area value was within the type 

of low-rise buildings, which was the value selected for 

such a category. Therefore, the chosen percentages for 

all of the observed buildings were the ones for which 

the likelihood function was maximised, as defined by 

Eq.  3-11. 

 

(a) 

 

(b) 

Figure 3-23. (a) Footprint area distribution for a given grid cell, with a mean ~81 m2. (b) The posterior 

distribution obtained for that grid cell after having maximised the likelihood function which, in this case, was 

for low rise buildings. Adapted from Zafrir et al., (2020).  
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Chapter 4 

 

4. Variable-resolution building exposure modelling for 

earthquake and tsunami scenario-based risk assessment. An 

application case in Lima, Peru 

 

Abstract 

We propose the use of variable resolution boundaries based on Central Voronoi Tessellations (CVT) to 

spatially aggregate building exposure models for risk assessment to various natural hazards. Such a 

framework is especially beneficial when the spatial distribution of the considered hazards present intensity 

measures with contrasting footprints and spatial correlations, such as in coastal environments. This work 

avoids the incorrect assumption that a single intensity value from hazards with low spatial correlation (e.g., 

tsunami) can be considered to be representative within large-sized geocells for physical vulnerability 

assessment, without, at the same time, increasing the complexity of the overall model. We present 

decoupled earthquake and tsunami scenario-based risk estimates for the residential building stock of Lima 

(Peru). We observe that earthquake loss models for far-field subduction sources are practically insensitive 

to the exposure resolution. Conversely, tsunami loss models and associated uncertainties depend on the 

spatial correlations of the hazard intensities as well as on the resolution of the exposure models. We note 

that for the portfolio located in the coastal area exposed to both perils in Lima, the ground-shaking 

dominates the losses for lower magnitude earthquakes, whilst tsunamis cause the most damage for larger 

magnitude events. For the latter, two sets of existing empirical flow-depth fragility models are used, resulting 

in large differences in the calculated losses. This study, therefore, raises awareness about the uncertainties 

associated with the selection of fragility models and spatial aggregation entities for exposure modelling and 

loss mapping c 

c published as: Gómez Zapata, J.C., Brinckmann, N., Harig, S., Zafrir, R., Pittore, M., Cotton, F., Babeyko, A., 2021. 

Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment. An 

application case in Lima, Peru. Natural Hazards and Earth System Sciences 21, 3599–3628. 

https://doi.org/10.5194/nhess-21-3599-2021 
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4.1.  Introduction 

The spatial distribution of damage and/or losses 

expected to be incurred by an extensive building 

portfolio from a natural hazardous event can be 

quantified and mapped once a physical vulnerability 

analysis is performed. For such a purpose, a set of 

fragility functions per building class is conventionally 

used. Fragility functions describe the probability of 

exceeding a certain damage limit state for a given 

intensity measure (IM) associated with a natural 

hazard, such as spectral acceleration at the yield period 

(e.g., Fäh et al., 2001) for earthquakes, or tsunami 

inundation height for tsunamis (Koshimura et al., 

2009). These vulnerability calculations are performed 

at the centroid of every aggregation unit of a building 

exposure model with some level of uncertainty 

associated with them (Bazzurro and Luco, 2005), or 

over weighted locations (e.g., Weatherill et al., 2015; 

Kappos et al., 2008). These aggregation entities can be 

very diverse, ranging from administrative units such as 

district/communes (e.g., Dunand and Gueguen, 

2012), urban blocks (e.g., Papathoma and Dominey-

Howes, 2003; Kappos et al., 2008; Figueiredo et al., 

2018; Kohrangi et al., 2021), regular grids (e.g., Erdik 

and Fahjan, 2008; Figueiredo and Martina, 2016) or 

variable-resolution CVT (Central Voronoi 

Tessellation) geocells (Pittore et al., 2020). 

Throughout the physical vulnerability assessment, it is 

implicitly assumed that the intensity observed or 

estimated at that location (i.e., centroid or weighted 

points) is representative for the entire aggregation 

area. Depending on the considered hazard footprint 

and IM attenuation, this assumption might not be 

valid if the aggregation area is too coarse compared to 

the correlation length of a highly varying IM. In 

addition to the aggregation of the building exposure 

itself, the importance of these geographical 

aggregation entities in natural hazard risk assessment 

is that they are ultimately used to calculate and map 

the expected damage and loss metrics (e.g., building 

replacement/repair costs, human casualties). The 

diverse types of visualisation and interpretations of 

this kind of geospatial data define the so-called 

thematic uncertainties (Smith Mason et al., 2017) that 

can heavily impact upon the decision making 

processes (Viard et al., 2011). It is, therefore, 

important to find a compromise between the intrinsic 

resolution of the hazard IM, on the one hand, and the 

cartographic representation of the exposure models 

and risk metrics on the other. 

When a geographically distributed hazard IM presents 

no significant spatial variability within distances of the 

order of tens of kilometres, they are said to be highly 

spatially correlated (e.g., Gill and Malamud, 2014; 

Merz et al., 2020). This is the case of hazards with 

relatively low attenuation and wide-spread footprints, 

such as ash-falls and earthquakes (de Ruiter et al., 

2021). For the latter case, when seismic site conditions 

(e.g., soil amplification) and path effects (e.g., seismic 

directivity) are insignificant, seismic ground motion 

correlation lengths between 10 km and 25 km are 

typical (e.g., Esposito and Iervolino, 2012; 

Schiappapietra and Douglas, 2020). On the other 

hand, hazards are described as being low-spatially 

correlated if their IM are highly prone to be modified 

by specific features of the propagation medium. For 

instance, the modelling of inland IMs from a tsunami 

(i.e., inundation depth, flow velocity, momentum flux) 

are highly dependent on the nature and resolution of 

the bathymetry and digital elevation models (e.g., Tang 

et al., 2009), coastal topography (e.g., Goda et al., 

2015), coastal morphology (e.g., Song and Goda, 

2019), and even the nature of the built-up areas that 

have the potential to interact with and modify the 

inundation footprint and flow velocities (e.g., Kaiser 

et al., 2011; Lynett, 2016). Moreover, in the case of 

earthquake-triggered tsunamis, the maximum tsunami 

IMs also depend on the properties of the triggering 

mechanism, for example, the earthquake’s magnitude 

(e.g., Goda et al., 2014), slip distribution (Miyashita et 

al., 2020), and directivity of the radiated energy (e.g., 

Kajiura, 1972). Thus, the spatial correlation of inland 

IMs from tsunamis is very low and remarkably non-

linear compared to the much more uniform and highly 

spatially correlated seismic ground motion. Efforts to 

visualize uncertainties in the tsunami hazard and risk 

mapping that address some of the aforementioned 

modifiers have been reported in a few studies (e.g., 

Goda and Song, 2016; Goda et al., 2020). 

Usually, the resolution of exposure models is 

constrained independently of the hazard, and to a 

certain extent, also independently of the exposure 

distribution. That might lead to poor exposure 

resolutions where it really matters, i.e., in areas where 

buildings are densely distributed and/or hazard 

intensities vary over short distances. Or, by contrast, 

to the unnecessary computation demands for loss 

assessment in areas with few exposed assets. If 

aggregation areas of the exposure model are coarser in 

resolution than the typical correlation lengths of low 
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spatially correlated hazard intensities, then local 

variations in these intensities would remain hidden in 

the vulnerability analysis, propagating the associated 

uncertainties up to the loss estimates. This 

dependency between exposure resolution and spatial 

correlation of hazard intensities has been usually 

disregarded, although some examples can be found in 

soil liquefaction risk assessment. Despite the hazard 

component can be spatially downscaled (e.g. Bozzoni 

et al., 2020), thematic uncertainties related to 

visualisation and the interpretation of risk metrics can 

arise if they are mapped over larger regional 

administrative units (e.g., Yilmaz et al., 2021) instead 

of being represented at more hazard-compliant 

resolutions (e.g., Bozzoni et al., 2021). Similarly, 

despite building exposure models for flood and 

earthquake vulnerabilities being able to be aggregated 

at moderate resolutions (e.g., 4x4 km grid in Dabbeek 

and Silva, 2019), similar thematic uncertainties can 

evolve due to the profound differences between both 

spatially correlated hazard intensities, and when the 

calculated losses are mapped over regional 

administrative units (Dabbeek et al., 2020). 

To the best of the authors’ knowledge, consideration 

of different hazard footprints and the spatial 

correlation of their intensity measures for the 

construction of aggregation entities for exposure 

modelling has been seldomly discussed in the 

literature. For instance, Chen et al. (2004) described 

the importance of ensuring a consistent delimitation 

of the resolution of exposure models along with the 

spatial variation of their two considered hazards, 

earthquakes and hailstorms, which impose damage 

footprints of very different extents. Meanwhile, 

Douglas (2007) and Ordaz et al. (2019) highlighted the 

importance of the geographical scale to represent the 

building exposure models that are affected differently, 

depending on variable hazard footprints. The study 

reported in Zuccaro et al. (2018) is perhaps the most 

advanced framework in the state of the art for the 

construction of a common aggregation entity for 

multi-hazard risk assessment, referred to as the 

minimum reference unit (MRU). This geographical 

unit coincides with the minimum resolution of analysis 

of input (i.e., hazard intensities and exposure model) 

and output elements (i.e., damage and loss estimates) 

and remarks that despite high-resolution hazard 

models, one would achieve neither an accurate risk 

assessment nor meaningful loss mapping if there is no 

compatibility between the cartographic representation 

of the building exposure model, the hazard footprints, 

and their IM correlation. 

A denser set of geocells in the same area occupied by 

a coarser regular-sized cell or administrative units 

provides a denser arrangement of hazard intensity 

values (when there are local IM variations) to the set 

of fragility functions per considered hazard. When 

local IM variations are not sufficiently represented 

into finer aggregation entities during the vulnerability 

analysis, thematic uncertainties might appear in the 

mapping, visualisation, and interpretation of the loss 

estimates. Therefore, besides the conventional 

epistemic and aleatory uncertainties linked to the 

hazard, exposure, and vulnerability components, 

thematic uncertainties are also present in the risk chain 

when the loss metrics are mapped. Awareness of the 

thematic uncertainties as well as clear and meaningful 

vulnerability/loss mappings towards the most relevant 

hazards a community is exposed to is necessary to 

improve urban planning, mitigation strategies, and 

emergency response actions (e.g., Pang, 2008; Aguirre-

Ayerbe et al., 2018). 

We can distinguish two types of approaches formerly 

proposed in the literature to investigate the exposure 

aggregation for natural hazard risk applications. 

(1) To independently represent the building portfolio 

over a series of aggregation entities such as 

administrative units, or equidimensional regular grids, 

and explore their individual contribution to the 

uncertainty in the losses imposed by certain hazard(s) 

to ultimately select a representative aggregation model. 

This option has been explored in Bal et al. (2010), 

Frolova et al. (2017), Senouci et al. (2018), and 

Kalakonas et al. (2020) for seismic vulnerability 

applications, and in Figueiredo and Martina (2016) for 

flood vulnerability. These studies discuss the weakness 

of physical vulnerability mapping at the individual 

building scale and over coarse aggregation areas and 

highlight the importance of finding an optimal 

resolution for building exposure modelling while 

minimizing the uncertainties in the loss estimates. 

However, these attempts did not explicitly address the 

spatial correlation or attenuation of the hazard 

intensity onto the predefined aggregation areas and 

focused on the vulnerability towards individual 

hazards rather than on multi-hazard risk applications. 

(2) Aggregating the exposure models over variably 

resolved entities that are not necessarily administrative 

boundaries. This has been done in fewer studies. For 

instance, Muis et al. (2016) assessed the global 

population exposure to coastal flooding (from storm 

surges and extreme sea levels) through the application 

of a hydrodynamical model based on unstructured 

grids to ensure sufficient resolution in shallow coastal 
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areas. Scheingraber and Käser (2019) explored the 

uncertainty in regional building portfolio locations for 

seismic risk through the use of weighted irregular 

grids. This weighting was carried out as a function of 

the population density and did not use any hazard IM 

or footprints. Scheingraber and Käser (2020) 

described the advantages of the former procedure in 

terms of computational efficiency and the treatment 

and communication of uncertainties in probabilistic 

seismic risk assessment on a regional scale. 

Alternatively, aggregating the building portfolio into 

anisotropic CVT-based geocells (Central Voronoidal 

Tessellations) is suggested by Pittore et al. (2020).  

In this study, we employ anisotropic CVTs to 

aggregate the residential building exposure models. 

Voronoi regions have proved to be useful in 

geographical partitioning (e.g., political districting, 

Ricca et al., 2013), as well in other hazard-related 

applications, such as climatological modelling (e.g., 

Zarzycki and Jablonowski, 2014). We present for the 

first time how CVT can be constructed using 

underlying combinations of geospatial distributions to 

achieve a larger resolution of spatially aggregated 

building portfolios where it matters for risk 

assessment. We adapt and customize their derivation 

to explicitly account for the combination of a low-

correlated hazard intensity (tsunami inundation) and 

one exposure proxy (population density) to generate 

the Voronoi regions. 

The aggregated building portfolios are used for 

earthquake and tsunami scenario-based risk 

applications. We have systematically investigated six 

megathrust subduction earthquakes and their 

respective tsunamis with moment magnitudes ranging 

between 8.5 and 9.0. We consider the residential 

building stock of Metropolitan Lima (Peru) classified 

in terms of one set of earthquake vulnerability classes 

and two sets of tsunami vulnerability classes. These 

building portfolios have been aggregated within six 

customized CVT models and administrative units at 

the highest resolution available (i.e., the block level). 

By using the respective set of fragility functions, we 

have independently calculated the direct losses from 

scenario-based physical vulnerability analyses (seismic 

ground-shaking and tsunami inundation). We show 

that the implementation of this approach is beneficial 

not only in finding a balance between accuracy and 

computational demand, but also in the efficient 

representation of the loss estimates while reducing 

bias generated in the loss mapping. The role of the 

spatial correlation of both hazard intensities in the 

efficiency and accuracy of the CVT-based exposure 

models is also discussed. Since the main scope of this 

work is to investigate an efficient manner to aggregate 

the building exposure for risk applications considering 

multiple hazards, we have not investigated the 

conditional probabilities related to cascading events 

(e.g., Goda et al., 2018). Instead, we have assumed that 

every seismic rupture produces a tsunami. Hence, we 

are not accounting for cumulative damage on 

buildings due to consecutive ground shaking and 

tsunami (e.g., Park et al., 2019; Negulescu et al., 2020; 

Goda et al., 2021) nor the risk to other seismically 

induced hazards (i.e., earthquake-triggered landslides, 

liquefaction, ground failure, etc., e.g., see Daniell et al., 

2017).  

4.2. Methodology 

The proposed methodology is composed of the 

following steps: 

(1) Simulation of scenario-based hazards (i.e., 

earthquakes and tsunamis) with the same spatially 

distributed intensities required by each fragility 

assessment. 

(2) Construction of one (or a set of) representative 

underlying spatial distributions (i.e., focus map(s) 

See Sect. 4.2.2). This implies the selection and 

ranking (with numerical weights) of the hazard 

intensities or exposure proxies. 

(3) Generation of CVT-based aggregation entities 

employing the focus map as an underlying 

distribution and with different numbers of 

seeding points. 

(4) Classification of the exposed building stock of 

interest into vulnerability classes per considered 

hazard and their aggregation into the CVT-based 

geographical entities. 

(5) Scenario-based risk assessment independently per 

hazard type and discussion of their associated 

thematic uncertainties in the loss mapping and 

visualisation.  

The uncertainties arising from steps 3 and 5 are 

explored through the formulation of a condition tree. 

4.2.1. Simulation of scenario-based hazards 

with spatially distributed intensities 

We employ numerical earthquake and tsunami 

scenarios to replicate historical or hypothetical future 

events to simulate spatially distributed hazard 

intensities. For earthquakes, we simulate ground 

motions from suitable GMPE (ground motion 

prediction equations). Cross-correlated ground 

motions are generated for the spectral-periods that 

serve the fragility functions as intensity measures (IM). 

For tsunamis, we employ the physical generation and 
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propagation model TsunAWI (Harig et al., 2008) and 

simulate coastal inundation as the IM for tsunamis. 

The spatially distributed tsunami intensity values 

(inundation flow depth) are compatible with the IM of 

the fragility functions required in the vulnerability 

analysis. 

4.2.2. Construction of focus maps 

The focus map drives the construction of a variable-

resolution exposure model for aggregating building 

portfolios. Focus maps were first introduced by 

Pittore (2015) based on the work of Dilley (2005), who 

proposed the spatial representation of composite 

indicators in hot-spots. Eq.  4-1 recalls the definition 

of a focus map, 𝑆(𝐷𝑖), that represents the probability 

of each location to be highlighted, given the actual 

values of certain indicators 𝐷𝑖 . 

𝑆(𝐷𝑖) = 𝑃(𝑆|𝐷𝑖) ∈ [0,1] Eq.  4-1 

By using a pooling operator, a focus map highlights 

areas where a weighted combination of various 

normalized spatially distributed indicators (𝐷𝑖 jointly 

assume the larger values. We propose to obtain a focus 

map that drives the aggregation entities for earthquake 

and tsunami exposure modelling through the 

combination of two indicators. (1) Population density 

(𝐷0 (from aggregated data sources e.g., WorldPop; 

GPWv4 (Documentation for the Gridded Population 

of the World, Version 4 (GPWv4), Revision 11 Data 

Sets))). This indicator is an exposure proxy about the 

location of residential buildings for which their 

ground-shaking vulnerability should be addressed. 

The use of the latter can be a useful indicator when 

other seismic risk components such as soil 

amplification conditions are poorly known, come 

from proxies with coarse resolutions (e.g., 

topography-based), or when strong seismic site effects 

are not expected. (2) The tsunami component is 

constrained through the expected tsunami inundation 

height (𝐷1 obtained from a “worst-case scenario” 

approach (i.e., largest feasible intensities) among a 

series of deterministic scenarios (e.g., Omira et al., 

2009; Wronna et al., 2015). For the combination of the 

two aforementioned normalized input layers, we use a 

log-linear pooling operator 𝑃𝐺 , as outlined in Eq.  4-2. 

This algorithm assigns a higher sampling probability 

to spatial locations where both indicators are relevant 

while penalizing the locations where at least one of the 

indicators (i.e., tsunami) is negligible. 

𝑙𝑛𝑃𝐺(𝑃(𝑆|𝐷0), 𝑃(𝑆|𝐷1), . . 𝑃(𝑆|𝐷𝑛)) = 
 

= 𝑙𝑛𝑍 + ∑ 𝑤𝑖𝑙𝑛𝑃(𝑆|𝐷𝑖)

𝑛

𝑖=0

 
Eq.  4-2 

 where 𝑍 is a normalizing constant and 𝑤𝑖 represents 

the respective weight assigned to score the relevance 

of each input layer, and ∑ 𝑤𝑖 = 1, 𝑤𝑖 > 0∀𝑖. Thus, 

the construction of a focus map entails the selection 

of the weights that rank the importance of every layer, 

as such carries its own epistemic uncertainties.  

4.2.3. Generation of CVT-based exposure 

models 

Selectively increasing the spatial resolution of 

aggregated areas is beneficial for capturing low 

spatially correlated hazard intensity values such as 

tsunami inundation heights. This is achieved by the 

construction of geocells with variable resolution in the 

form of CVT. During this construction, the focus 

maps are used as underlying spatial intensities and are 

sampled using a Poisson point process (Cox and 

Isham, 1980) to generate a number of seeding points. 

These points are used as centroids of the Voronoi 

geocells and through an iterative relaxation process 

will converge to the final CVT geocells. The number 

of seeding points therefore defines the number of 

geocells of the resulting tessellation. CVTs are 

computed in various iteration steps using the simple 

relaxation method originally proposed by Lloyd (1982) 

until the distance between the geometrical centroid of 

the geocell and the weighted mass centroid generated 

by the raster distribution falls below a defined 

threshold, or after a given maximum number of 

iterations. Since the relaxation process is based on the 

underlying focus maps as generating distribution, 

CVT cell sizes are inversely proportional to the 

intensity of the focus map. Each CVT geocell in fact 

becomes a minimum resolution unit, as proposed in 

Zuccaro et al., (2018), and the resulting tessellation 

sets the basis for a variable-resolution exposure model. 

Voronoi regions inherently fulfil spatial properties 

such as compactness and contiguity (without holes or 

isolated parts) (Ricca et al., 2008). 

 

4.2.4. Condition tree for multi-hazard 

exposure modelling 

Epistemic uncertainties underlying the two steps 

discussed above are explored by a condition tree with 

hierarchical levels: 

I. Selection of a suitable scheme (sets of building 

classes and their associated fragility functions) to 

describe the building inventory in the study area. 
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II. Weight arrangement values (𝑤𝑖that rank every 

input layer (low spatially correlated hazard 

intensities or spatial proxies related to the 

exposure component) in the focus map 

construction. 

III. Determination of the number of seeding points 

sampling the Poisson Point Process driven by a 

focus map that drives the generation of CVT-

based geocells. 

The condition tree presents a summary of 

assumptions for uncertainty treatment (Beven et al., 

2018). Through the construction of alternative multi-

resolution exposure models, the impact of every level 

of the condition tree is systematically investigated 

once the vulnerability assessment is performed. 

 

4.2.5. The classification of the building 

stock into vulnerability classes and 

aggregation 

The building stock of  interest is classified in terms of  

several sets of  mutually exclusive, collectively 

exhaustive vulnerability classes, whose aggrupation 

describe a set of  classes (scheme) specific to the 

considered hazard (i.e., earthquake and tsunami). A 

top-down approach is used to make use of  aggregated 

census data and ancillary data for the seismic-oriented 

building classes. Subsequently, the proportions 

assigned to each seismic-oriented building classes are 

reassigned to tsunami oriented classes through the use 

of  inter-scheme compatibility matrices as presented in 

Gomez-Zapata et al., (2021). Interestingly, besides the 

application of  the taxonomic disaggregation of  

building types for seismic vulnerability applications 

(e.g.. Pittore et al., 2018b), it was suggested by Charvet 

et al., (2017) for the definition of  tsunami-oriented 

building classes. Then, the classified building stocks 

are aggregated into every CVT model obtained in the 

former step. 

4.2.6. Scenario-based risk assessment 

The fragility of the building portfolio to the 

considered earthquakes and tsunami scenarios is 

calculated separately over every aggregation exposure 

model (see Sect. 4.2.1). This decision is based on the 

recent findings of Petrone et al., (2020) who found 

fundamentally different structural responses to both 

perils. Consequently, the authors argued that the 

intensity of the seismic ground motion does not play 

a significant role in the building’s structural tsunami 

response unless it induces structural yield. The latter is 

assumed for the vulnerability analysis, considering the 

objective of this study of evaluating an optimal 

exposure model for risk assessment from the 

considered hazards. The scenario-based risk 

assessment makes use of a set fragility function 

associated with each building class and whose IMs are 

compatible with the hazard intensities modelled in 

Sect. 4.2.1. Every damage states has an assigned loss 

ratio to total replacement cost. 

4.3. Application example 

4.3.1. Context of the study area: 

Metropolitan Lima, Peru 

According to Petersen et al., (2018), Peru, among all 

the South American countries, has the largest number 

of inhabitants, and considering a 10% probability of 

exceedance in 50 years, may experience a ground-

shaking greater than VIII (modified Mercalli intensity 

scale, MMI). This makes Peru the country in which the 

largest average annual fatalities from earthquakes are 

expected in South America. In the same study, Lima, 

with nearly 10 million inhabitants, representing 

around 1/3 of the total country’s population, has been 

identified as the capital city exposed to the highest 

seismic hazard in the region. Moreover, by 2022, 

nearly 58% of the Peruvian population lives in coastal 

communities. Løvholt et al., (2014) stated that Peru 

has the largest population exposed to tsunamis in the 

American continent. In Schelske et al., (2014), Lima 

was ranked as the second metropolitan area in the 

world in terms of the value of working days lost 

relative to the national economy due to earthquakes. 

This highlights the relevance of integrated 

vulnerability studies in this study area. 

This city has suffered devastating disasters in the past. 

For instance, in 1586 and 1724 earthquakes triggered 

tsunami run-ups over 24 m (Kulikov et al., 2005). The 

1746 earthquake, with an estimated magnitude of Mw 

8.8 (Jimenez et al., 2013), produced a tsunami with 

local height of 15 to 20 m (Dorbath et al., 1990) and 

destroyed the city. In 1974, a Mw. 8.1 event produced 

widespread damage and caused losses of ~ 7.5 billion 

dollars. Since then, the city has been experiencing 

continuous urbanization with generally poor structural 

design of its residential building stock (Tarque et al., 

2019) as well as of critical facilities such as hospitals 

(Liguori et al., 2019; Ceferino et al., 2020). 

Local authorities have conducted studies for 

emergency management and recovery planning 

considering tsunami and earthquake scenarios (e.g., 

PREDES, 2009), including qualitative risk 
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estimations. The Japanese SATREPS project 

contributed to the improvement of the exposure 

model of Lima using satellite imagery and census data 

(Matsuoka et al., 2013). On the seismic vulnerability 

side, and similarly as presented in the previous 

chapter, the SARA project, led by the Global 

Earthquake Model (GEM), contributed to classifying 

the residential building stock of Peru (Yepes-Estrada 

et al., 2017). More specific models for confined 

masonry were reported in Lovon et al., (2018). On the 

tsunami vulnerability side, Adriano et al., (2014) 

estimated tsunami damage probabilities for two 

tsunami scenarios over the residential building 

portfolio classified into four building classes 

employing the empirical tsunami fragility functions 

developed by Suppasri et al., (2013) for other study 

area. Ordaz et al., (2019) developed earthquake and 

tsunami risk forecasts for Callao. However, that study 

did not describe the models used, nor the method 

employed to address the non-linear damage 

accumulation. 

4.3.2. Construction of earthquake and 

tsunami scenarios for Lima 

We have simulated six earthquakes and tsunami 

scenarios offshore of Peru with moment magnitudes 

between Mw 8.5 to 9.0. Finite fault ruptures are 

modelled using the OpenQuake engine (Pagani et al., 

2014) emulating the historical earthquake that 

occurred in 1746, in line with previous studies (e.g., 

Mas et al., 2014; Pulido et al., 2015; Ceferino et al., 

2018a). The basic parameters used in the simulations 

are hypocentre location (longitude = -77.93°; latitude 

= -12.19°; depth = 8 km), strike = 329°, dip = 20°, 

and rake = 90°. Spatially distributed ground motion 

fields (GMF) were generated using the GMPE 

proposed by Montalva et al. (2017). Its site term is 

based on the shear wave velocity in the uppermost 30 

meters depth (Vs30) as reported in Ceferino et al. 

(2018b) in which the slope-based Vs30 values (Allen 

and Wald, 2007) and seismic microzonation (Aguilar 

et al., 2013) were compiled and merged to the same 

resolution (30 arc-seconds ~ 1 km). The aleatory 

uncertainty in the ground motions was addressed by 

generating 1,000 realisations per event, as advised in 

Silva (2016), with uncorrelated and cross-correlated 

ground motion residuals. For the latter case, we used 

the Markhvida et al. (2018) model for PGA, and 

spectral acceleration for periods 0.3 s and 1.0 s. 

Examples considering three magnitudes (Mw 8.6, 8.8, 

and 9.0) and the respective tsunami scenarios are 

shown in Figure 4-1.  

Although a sensitivity analysis on the GMPE(s) 

selection is outside the scope of this study, such a 

choice may influence the resulting cross-correlated 

ground motion fields. This comes from the manner in 

which the residuals and soil nonlinearity are accounted 

for in the functional form of the selected attenuation 

model (Weatherill et al., 2015). Although the Montalva 

et al. (2017) GMPE uses Vs30 as the site exploratory 

variable and includes nonlinear site response, the 

spatial resolution of the geo-dataset we have used 

might be too coarse to capture local variability in 

ground motion. These features could only be 

approximated through site-response analyses that 

account for the local geotechnical soil properties of 

site-specific soil profiles, as for instance performed by 

Aguilar et al., (2019) after applying the equivalent-

linear methodology. 

Tsunami simulations are based on the source 

parameters suggested by Jimenez et al., (2013). All 

earthquake parameters except for the slip value were 

fixed, specifying a Mw range from 8.5 to 9.0. This 

simplifies the simulation process and allows for a more 

systematic study of the contribution of the event´s 

magnitude and the corresponding tsunami footprint 

upon the loss assessment for the aggregated building 

exposure models. The wave propagation and tsunami 

inundations are obtained through numerical 

simulations using the finite element model TsunAWI 

which employs a triangular mesh with variable 

resolution, allowing for a flexible way to discretize the 

model domain with good representation of coastline 

and bathymetric features. The mean mesh resolution 

given by the triangle edge length amounts to around 

20m in the coastal area of Lima and Callao. TsunAWI 

is based on the nonlinear shallow water equations 

including parameterisations for bottom friction and 

viscosity.    

Table 4 1 summarizes some of the most important 

model quantities. The wetting and drying scheme is 

based on an extrapolation method projecting model 

quantities between the ocean part and the dry land part 

of the model domain, with the resulting simulations 

included in Harig and Rakowsky, (2021). 

 
Table 4-1. Summary of TsunAWI model parameters used in the tsunami simulations. 

Numerical 

approach 

Time step/ 

Integration time 

Resolution range 

(Triangle edge length) 

Bottom friction 

parameterization 

Viscosity 

parameterization 

Finite Elements 0.1sec / 4 hrs From 6km (deep ocean) to 7m 

(coastal pilot areas) 

Manning (n=0.02 

constant value) 

Smagorinsky 
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Figure 4-1. Median seismic ground motion for a single realisation using the Montalva et al., (2017) GMPE for peak ground 

acceleration (PGA) and spectral acceleration (SA) for periods 0.3 s and 1.0 s, and for three scenarios (Mw 8.6, 8.8 and 9.0) along 

the Peruvian subduction zone. Green rectangles represent the rupture planes. Hypocentres are shown by white dots. The study 

area (Metropolitan Lima) is enclosed within a yellow rectangle. For this area, and for the Mw 8.8 scenario, there is shown one 

realisation of spatially cross-correlated ground motion field per spectral acceleration. Tsunami inundation heights for the three 

selected scenarios are displayed for the study area. The northern “La Punta” sector (Callao district) and the southern Chorrillos 

district are indicated by white rectangles. Map data: ©Google Earth 2021. 
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Figure 4-2 displays a small section of the model 

domain and shows the resolution of the triangular 

mesh which is directly connected to the water depth 

and bathymetry gradient in the ocean, whereas the 

edge lengths are shortest in the coastal part of the 

study area, where tsunami inundation is expected. The 

model bathymetry and topography were built from 

several data sets. The ocean part is based on the 

GEBCO bathymetry (General bathymetric chart of 

the ocean, GEBCO_08 Grid, version 20090202, see 

http://www.gebco.net). The coastal topography is 

from the SRTM topographic model (Shuttle radar 

topography mission, 30m resolution, see 

https://www2.jpl.nasa.gov/srtm/), whereas in the 

study, results from the TanDEM-X mission (Krieger 

et al., 2007) with a spatial resolution of 12 m were 

used. All these data were bilinearly interpolated to the 

triangular mesh and slightly smoothed to allow for 

stable simulations. The raw model output in the 

triangular mesh as shown in Figure 4-2 contains all 

information at the model’s resolution. Considering the 

mean resolution of the triangular mesh, a raster with 

grid cell dimensions of 10 x 10 m was chosen. An 

example of the resulting mesh and data product is 

shown in Figure 4-3. Details of this method are 

reported in Harig et al., (2020). Tsunami inundation 

heights from the six scenarios over the two most 

tsunami-prone areas in Lima city and the La Punta and 

Chorrillos districts (see the white square in the tsunami 

maps of Figure 4-1) are shown in Figure 4-4. 

Conversely, significant tsunami inundation is not 

expected in the central Lima area due to the presence 

of sizable cliffs. 

 

 

◄ 

Figure 4-2. Section of the triangular 

mesh used for the TsunAWI 

simulations in the La Punta sector 

(Callao district). The mean 

resolution in the pilot area is 

approximately 20 m, whereas the 

shortest edge length measures about 

7 m. The basemap and data are from 

© OpenStreetMap 2021. Distributed 

under the Open Data Commons 

Open Database License (ODbL) 

v1.0). 

 
 

◄ 
Figure 4-3. Section of the 

triangular mesh together with the 
inundation data product (10 m 
raster) for the tsunami scenario 

involving a magnitude 8.8 event in 
the Callao Harbour area. The 

basemap is from © 
OpenStreetMap contributors 
2021. Distributed under the 

ODbL v1.0 License. 
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Figure 4-4. Expected tsunami inundation height (m) for two local areas within Lima for six tsunami scenarios (with locations in 

Figure 4-1). Map data: ©Google Earth 2021. 

 

4.3.3. Construction of focus maps for Lima 

Focus maps have been constructed as inputs to 

generate CVT-based aggregation boundaries for the 

building exposure model for seismic and tsunami risk 

assessment. The spatial population density (PD) in 

Lima at the block level (INEI, 2017) has been 

combined with a “worst-case” scenario of tsunami 

inundation height (TI) obtained from a Mw 9.0 

tsunami scenario. The distribution of the GMPE-

based ground motion has not been used due to the 

reasons outlined in Sect. 4.3.2 (i.e., absence of site-

response analyses). Both map layers have been linearly 

normalized and combined using the log-linear pooling 

expressed in Eq.  4-2 in order to assign a higher 

probability to the spatial locations where both 

indicators are relevant. Two sets of weights that rank 

and combine the layers have been selected to perform 

a sensitivity analysis at this step. In both sets, tsunami 

intensities were ranked higher as population density 

due to their lower spatial correlation. The following 

weights were accepted for the construction of the two 

focus maps: set (1) PD = 30%, TI = 70% and set (2) 

PD = 40%, TI = 60%. The resulting focus map for 

the first set is shown in Figure 4-5. These models are 

available in Gómez Zapata et al., (2021e). 
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4.3.4. Generation of CVT-based exposure 

aggregation boundaries. 

Three seeding sets have been generated by sampling 

the heterogeneous Poisson point processes defined by 

the two focus maps including 5,000, 10,000 and 50,000 

initial points. We obtained six CVT aggregation 

entities for residential building exposure modelling by 

applying the Lloyd relaxation method as described in 

Pittore et al., (2020) and recalled in Sect. 4.2.3. As an 

example, the resultant CVT-based model obtained 

from the focus map from set (1) and the 5, 000 seeding 

points (model PD30_TI70_5,000) is depicted in 

Figure 4-5. The area jointly exposed to the 

earthquakes’ ground motion and the largest tsunami 

footprint (Mw 9.0) is highlighted in pink colour. Due 

to the contribution of the population density layer 

(PD), for every Vs30 value at each location, there is a 

higher density of IM values that are computed where 

the exposed assets are expected to be concentrated 

rather than in the locations less densely populated, in 

contrast with what would occur using a regular grid. 

 

 

 
Figure 4-5. Example of the construction of focus maps for Lima. (a) 5,000 weighted seeding points sample a focus map through 

a Poisson point process. The normalised focus map is constructed from a log-linear pooling algorithm of the combined layers 

(population density (PD) and tsunami inundation height (TI) with a selection of 30% and 70% weights respectively). Map data: 

©Google Earth 2021. 
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Figure 4-6. The resultant CVT geocells from the focus maps shown above. The common exposed area to a Mw 9.0 earthquake 

and tsunami is coloured in pink whilst the area only exposed to seismic risk is coloured in grey. Map data: ©Google Earth 2021. 

 

 
Figure 4-7. Spatial distribution of Vs30 values in Lima/Callao as reported by Ceferino et al. (2018b) enclosed within the CVT-

based model PD30_TI70_5,000. 
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4.3.5. Classification of the building stock of 

Lima into vulnerability classes and 

aggregation 

The residential building stock of Metropolitan Lima 

(Peru) has been classified in terms of one scheme 

oriented towards seismic vulnerability and two 

tsunami-related schemes with related building classes. 

They have been constructed following Sect. 4.2.5. The 

logical steps are depicted in the flowchart shown in 

Figure 4-8. The initial input is the official census 

dataset for Lima compiled by the Peruvian statistics 

institution (INEI, 2017) at the block level. It provides 

the number of buildings for each block and a few 

exposure attributes regarding the type of dwelling, 

floor, and façade predominant materials at the 

dwelling level. The mapping-scheme proposed 

through expert elicitation in the SARA project (GEM, 

2014; Yepes-Estrada et al. 2017) for Peru has been 

used to relate the census attributes with the 

proportions expected for 21 building classes. 

Subsequently, the dwelling fractions (per building 

unit) proposed in the same study have been used to 

obtain the building counts for every urban block. The 

building portfolio is therefore spatially distributed into 

every CVT-based model through a simple 

disaggregation procedure addressing their mutual 

intersections with the block-based model. 

Two tsunami reference schemes are selected to 

classify the building stock of Metropolitan Lima, 

namely Suppasri et al. (2013) and De Risi et al. (2017) 

to explore the epistemic uncertainty in their 

classification. While the first one addresses ten 

building classes in terms of predominant material and 

number of stories, the second only accounts for four 

classes based solely in terms of building material. Steel 

classes are not included since they have not been 

deemed representative in Lima (Yepes-Estrada et al. 

2017). Thus, we retain seven and three classes, 

respectively. Considering SARA as the source scheme, 

the approach presented in Gomez-Zapata et al. (2021) 

was used to obtain the SARA - Suppasri et al. (2013) 

and SARA - De Risi et al. (2017) inter-scheme 

compatibility matrices shown in Figure 4-9. Through 

their use, the building stock is represented in terms of 

the building classes of the target tsunami schemes. An 

example of how to calculate these matrices can be 

consulted in Gomez-Zapata et al., (2021c). 

  

Figure 4-8. Flowchart outlining the process for constructing the building exposure model for Metropolitan Lima, including the 

condition tree used for the construction of CVT-based exposure models for the aggregation of earthquake and tsunami 

vulnerability building classes. (*District-based aggregation entities are only used for seismic risk to compare absolute loss values). 
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Figure 4-9. Inter-scheme compatibility matrices for Lima showing the compatibility level between the seismic-oriented reference 

scheme SARA and the tsunami-oriented target schemes: Left: Suppasri et al., (2013) and Right: De Risi et al., (2017). 

 

Every building portfolio for the two considered hazards is aggregated upon the block-based aggregation entities: the 

six CVT-based and, for the seismic risk (using SARA), over the Peruvian third administrative level division (districts). 

The building class frequency distribution in the “La Punta” sector (Callao) is depicted in Figure 4-10a,b in terms of 

the seismic oriented- SARA scheme and in Figure 4-10c,d in terms of the two selected tsunami schemes. These models 

are available in Gomez-Zapata et al., (2021d). 

 

 
(a) 
 

(Cont.) 
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(b) (c) (d) 

Figure 4-10. Example of the building class frequency distribution in “La Punta” (Callao) mapped using the seismic oriented- 

SARA scheme (Yepes-Estrada et al., 2017) (a) At the block level, (b) at the CVT based model PD30_TI70_5,000. The latter 

model is used to aggregate the tsunami vulnerability oriented building classes: (c) Suppasri et al. (2013) and (d) De Risi et al. 

(2017). Map data: ©Google Earth 2021. 

 

4.3.6. Comparisons of the obtained 

aggregation areas for exposure modelling 

As suggested by Petrone et al., (2020), due to the 

fundamentally different structural responses to both 

perils, the direct economic losses of the aggregated 

building portfolios for the six scenario earthquakes 

and the corresponding tsunamis have been separately 

estimated. The variability of the aggregation areas that 

form every residential building exposure model of the 

entire Lima/Callao is depicted in Figure 4-11 and 

listed in Table 4-2a. Conversely, if we narrow down 

the exposed area to the largest tsunami footprint (Mw 

9.0), we see that the variability in the aggregation areas 

differs greatly (Figure 4-11b). The CVT-based models 

with higher resolution geo-cells (50,000) can reach 

very small areas when the focus map considers the 

weights PD = 30%, TI = 70%, whilst the block model 

can reach the largest area values. The model 

PD30_TI70_50,000 provides a larger number of geo-

cells and has a similar representation area with respect 

to the non-contiguous block-based model (see Table 

4-2b). Furthermore, from Table 4-2 we can see that 

the computational effort (in terms of file size) required 

to construct the various exposure models is heavily 

dependent upon the resolution and, hence, the 

number of geocells.  

 
Figure 4-11. Variability in the area (in meters square) of the geocells of every aggregation area for exposure modelling, for (a) the 

entire urban area of Lima, and (b) for the area for which tsunami-induced loss values were obtained for the Mw 9.0 scenario. 

Seven models are evaluated: the administrative block-based model and six CVT. The percentages assigned to the two focus maps’ 

components (PD= Population density, and TI= tsunami inundation height) are written, and are followed by the sampling seeding 

points. 
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Table 4-2. Variability of area (km2) and file-size (MB) across the exposure models proposed for (a) the entire urban area of 

Metropolitan Lima, and (b) for the area exposed to the tsunami from the Mw 9.0 scenario event. Only geocells with an urban 

land use are considered. 

 (a) Configuration in the entire urban area of 

Metropolitan Lima 

(b) Mapped as having suffered tsunami- induced 

loss from the Mw 9.0 scenario 

Exposure model Number of 

geocells 

~Area mapped 

(km2) 

Input size file 

(MB) 

Number of 

geocells 

~Area mapped (km2) Output size file 

(MB) 

PD30_TI70_5,000 4,544 1,500.19 5.3 513 54.19 0.220 

PD40_TI60_5,000 4,722 1,695.82 6.0 416 57.45 0.227 

PD30_TI70_10,000 9,124 1,559.96 11 906 47.49 0.431 

PD40_TI60_10,000 9,182 1,554.14 10.5 728 51.49 0.302 

PD30_TI70_50,000 42,509 1,194.38 45.9 3,044 32.50 1.100 

PD40_TI60_50,000 46,217 1,537.82 53.7 2,034 28.42 1.010 

Block-based 69,786 468.88 118.6 2,203 29.66 1.700 

4.3.7. Results: scenario-based risk 

assessment  

Tsunami and seismic risk assessments on classified 

residential building portfolios are carried out using the 

software DEUS (Brinckmann et al., 2021). 

4.3.7.1. Seismic risk 

Seismic losses for the entire study area are initially 

presented for a Mw 8.8 earthquake scenario so as to 

discuss the implications of the resolution of the 

exposure model in the economic loss estimates as well 

as on their associated mapping and visualisation. A 

comparison for the other five earthquake scenarios is 

provided in section 0 for the commonly exposed area 

to ground shaking and tsunami inundation. As 

described, the residential building stock of Lima is 

classified in terms of the SARA scheme and 

aggregated considering eight different geographical 

models (six CVT-based, one block, and one district-

based model). Each building class has an associated 

analytically derived fragility function provided in 

Villar-Vega et al. (2017) as well as their respective 

economical replacement cost reported in Yepes-

Estrada et al. (2017). We have assumed loss ratios of 

2%, 10%, 50%, and 100% as suggested by FEMA 

(2003) for each of the four damage states considered 

in the vulnerability model. Similar values have been 

recently proposed for seismic risk applications (e.g., 

Martins and Silva, 2020). 

The seismic vulnerability analysis is performed at 

every geocell-centroid, where the buildings are 

aggregated. We consider each IM value resulting from 

1,000 realisations of spatially cross-correlated and 

uncorrelated ground motion fields. The resultant 

distributions for the Mw 8.8 scenario are displayed in 

Figure 4-12. Uncorrelated ground motion fields led to 

very homogeneous distributions, except at the district 

level. This finding is aligned with the recent study 

presented by Scheingraber and Käser (2020). 

Moreover, the latter confirms that if the dimension of 

the geocells in the exposure model is larger than a 

typical seismic ground motion correlation length (i.e., 

20 km), an artificial bias in the ground motion 

correlation has to be expected as described in Stafford 

(2012). We obtain larger median loss values from 

uncorrelated ground motions. We observe that for the 

considered scenario, the median loss values are 

insensitive to the aggregation of the exposure model 

at varying resolutions. This feature was already 

described in Bal et al. (2010) for a crustal earthquake 

damaging a building portfolio in Istanbul while 

neglecting the cross-correlation model. We thus 

confirm this finding while expanding it to when a 

ground motion cross-correlation model is considered.  

The financial loss results that we have obtained are 

similar to the loss distribution estimated by Markhvida 

et al., (2017), investigated the possible losses of the 

residential building stock of Lima/Callao (aggregated 

into a regular grid (~ 1 km2)) expected from a similar 

Mw 8.8 scenario, who reported mean loss values of 

around 7 and maxima of around 35 billion USD. 

Although the authors employed a different GMPE 

from the one we adopted, the ground motion cross-

correlation model, as well as the set of building classes 

and fragility functions, are the same as what we have 

implemented.  

Despite the remarkable differences between the area 

distributions of the models (Figure 4-11, Table 4-2), 



78 
 

 

 

we do not observe significant differences in the 

absolute seismic-induced losses, which might be 

explained by the high special correlation of seismic 

ground motion and the resolution of the Vs30 geo-

dataset implemented. However, large differences arise 

when the normalised losses are mapped. It can be 

noted that for the same realisation, regardless of the 

use of correlated or uncorrelated ground motions, the 

seismically vulnerable areas are still identifiable, albeit 

with considerable differences. The use of cross-

correlated ground motion fields results in smoother 

mappings. However, the component which imposes 

the largest impact on the loss estimated from scenario 

earthquakes is the simulation of the seismic process, 

as remarked in other studies (e.g., Silva, 2016). This 

further highlights the importance of using quantile 

analysis in mapping seismic risk estimates for better 

visualisation and communication of the uncertainties 

in an inherently stochastic process (Geller, 2015). 

 

 
Figure 4-12. Computed loss distributions from a Mw 8.8 scenario for the residential building stock of Lima classified in terms of 

the SARA vulnerability classes aggregated into eight geographical entities. Two ground motion field conditions are analysed in 

every case, namely with the selected cross-correlation model (Corr.) and with uncorrelated ground motion fields (No Corr.). 

4.3.7.2. Tsunami risk 

To constrain the economical consequence model used 

in the tsunami risk assessment, the inter-scheme 

conversion matrices depicted in Figure 4-9 are used to 

obtain the replacement cost values per building class 

from the corresponding maximum scoring class in 

SARA. We have assumed loss ratios 5%, 15%, 45%, 

65%, 85%, and 100% for each of the six damage states 

proposed by Suppasri et al. (2013) and similarly, but 

starting with 15%, for the five ones proposed in De 

Risi et al. (2017). A similar approach has been recently 

adopted by Antoncecchi et al. (2020). The impact of 

using more exhaustive approaches (e.g., Suppasri et al., 

2019) is worth exploring, but out of the scope of this 

paper. Both tsunami-vulnerability schemes have been 

associated with a set of empirical fragility functions 

with tsunami inundation height in meters as the IM. 

They were derived from the same building damage 

dataset collected after the great 2011 Mw 9.1 Japan 

earthquake and tsunami with damage state definitions 

that implicitly accounted for the combined effect of 

both hazardous events. Thus, despite the extensive use 

of empirically derived fragility functions from that 

specific near-field event, care should be taken when 

using them, not only because they also account for the 

ground-shaking induced damage, but also because a 

submarine landslide could have contributed to the 

tsunami (Tappin et al., 2014). Nevertheless, there is a 

profound difference in the way the mean intensity 

values were obtained. Whilst in Suppasri et al. (2013) 

a linear least squares regression fitting was carried out, 

in De Risi et al. (2017), a multinomial logistic 

regression was performed for material-based classes. 

The latter found similar regression values to the case 

when an average simulated flow velocity of 1.84 ms-1 

for masonry and wooden buildings classes 

(predominant in Lima) is integrated into a hybrid 

fragility model. Making use of these two schemes, we 

have correspondingly estimated the tsunami-induced 

losses for the six scenarios and for the seven exposure 

models. Tsunami loss estimates normalised to the 

losses by the block-model are presented in Figure 11. 

Independent of the reference scheme, the two CVT 

models with the largest number of geocells (50,000) 

show the closest similarity to the block model 

(normalized ratio ~1). However, for all the CVT 

models, this ratio dramatically drops for scenarios with 

lower magnitudes (8.5, 8.6, and 8.7) which can 

probably be explained by a smaller tsunami footprint 

and lower IM spatial correlation. 
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Figure 4-14. Losses induced by six tsunamis for the six CVT models normalised with respect to the ones at the block level. 

Tsunami vulnerability has been computed using the set of building classes proposed in (a) Suppasri et al. (2013) and (b) De Risi et 

al. (2017). 

 

The absolute loss values expected after the six tsunami 

scenarios are reported in Figure 4-15 at the block level 

for the two vulnerability reference schemes. The 

fragility models of Suppasri et al. (2013) predict larger 

values with respect to the model proposed by De Risi 

et al. (2017) whose functional values were found 

within the range as if flow velocity was accounted for. 

These findings are in line with the observations of 

Park et al. (2017); and Song et al. (2017). These studies 

concluded that flow-depth models predict higher 

probabilities of complete damage for buildings than 

models that employed tsunami velocity in their 

derivation. Nevertheless, the aggregation of various 

building classes into less diversified schemes (e.g., only 

in terms of construction material in De Risi et al., 

2017) might also have influenced the results due to the 

simplifications involved in the assigning of the 

financial consequence models. Crowley et al., (2005) 

described a similar effect for seismic risk applications. 

We have computed the discrepancy in the tsunami loss 

estimations obtained for each CVT model with 

respect to the block-based model (Figure 4-16). This 

is minimised for the larger magnitudes and higher 

resolution models (50,000 geocells). This analysis 

shows that the Suppasri et al. (2013) fragility model 

leads to slightly larger differences (with respect to the 

block-based model) for the three lower magnitudes, 

whereas De Risi et al. (2017) shows larger differences 

for the three larger ones. These differences are 

minimised for the largest resolution model. 

 

 

Figure 4-15. Absolute losses (USD) for six tsunami 

scenarios for the residential building portfolio of Lima 

classified in terms of two reference schemes and 

aggregated at the block-based model. 

 

Figure 4-16. Discrepancy between the tsunami-induced 

losses between each CVT-based model and the block 

model for the six scenarios. The values obtained from the 

Suppasri et al., (2013) and De Risi et al., (2017) schemes are 

denoted by stars and circles respectively. 
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Tsunami loss outcomes for the Mw. 8.8 scenario are 

mapped and discussed hereafter for the residential 

building stock in “La Punta” (Figure 4-17) and 

Chorrillos district (Figure 4-18). Only geocells with 

loss values larger than zero are colour mapped. Due to 

the normalised metric used, no significant differences 

in the tsunami vulnerability mapping induced by the 

independent building classification schemas are 

noticeable. The CVT models at the coarser resolutions 

(first two rows in every figure) show the largest values, 

and hence overestimations compared to the block 

level and other finer CVT- models. Overestimation of 

losses decreases with the increase in resolution. Due 

to the adjacency and compactness of the highest 

resolution CTV model (fourth row), for “La Punta” 

we identify at least four zones with a comparatively 

higher tsunami vulnerability. 

Considering Figure 4-18 it can be noted that the 

overall mapped area is increasingly reduced as the 

resolution of the CVT models increases. This is due to 

the lack of residential buildings within the three large 

parcels, namely “Country Club de Villa”, “Reserva Laguna 

de Villa”, and “Refugio de Vida Salvaje Pantanos de Villa” 

that occupy most of the exposed area in the block-

based model. These zones represent the largest area 

values in Figure 4-11b. This model assigns the largest 

loss values in the Chorrillos district to these three large 

blocks due to the assumption of using a single tsunami 

intensity as being representative of the entire enclosed 

area. Therefore, if the block polygons are too coarse 

compared to the hazard footprint and IM spatial 

correlation, biases in the loss assessment are expected. 

This is highlighting the importance of hazard-driven 

entities for exposure spatial aggregation. 

 

Figure 4-17. Spatial distribution of tsunami-induced normalized losses (Mw 8.8 scenario) for the La Punta sector (Callao district). 

Map data: ©Google Earth 2021. 

(a) Suppasri et al., 2013 scheme

 

(b) De Risi et al., 2017 scheme
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(a) Suppasri et al., 2013 scheme

 

(b) De Risi et al., 2017 scheme 
 

 

(b) De Risi et al., 2017 scheme 

 

Figure 4-18. Spatial distribution of tsunami-induced normalized losses (Mw 8.8 scenario) for the Chorrillos district (Lima) using 

two tsunami reference schemes (a) Suppasri et al., 2013 and (b). De Risi et al., 2017. Map data: ©Google Earth 2021. 

4.3.8. Comparison between earthquake and tsunami scenario-based induced losses 

In Figure 4-19 we compare the absolute losses induced 

by each hazard scenario onto the building portfolio 

exposed to both perils (e.g., Mw 9.0 in Figure 4-5-b). 

The CVT-based PD30_TI70_5,000 is used to 

represent the earthquake-induced losses. The latter 

was compiled for the cases with and without the 

ground motion cross-correlation model, each sampled 

with 1,000 realisations. Due to the lack of stochastic 

realisations in the tsunami case, the respective loss 

distributions were constructed for both reference 

schemes with the seven values obtained from the 

various aggregation entities (6 CVT- and 1 block-

based models). Even though the distributions for 

seismic and tsunami losses have been obtained 

independently, the median values are nevertheless 

illustrative for comparative purposes.  

We observe that in our estimations for the commonly 

exposed area to both perils in Lima, the earthquake 

event dominates the median losses at lower 

magnitudes (Mw 8.5, 8.6) whilst the tsunami prevails 

in the larger ones. The tsunami-induced median losses 

start to be larger than the earthquake-related ones for 

the Mw 8.7 scenario, although the latter still present 

high volatility in the extreme values due to the 

variability in the seismic realisations. From Mw 8.8 on, 

the tsunami-induced losses are always larger regardless 

of the tsunami reference scheme implemented. Our 

findings regarding the role of the earthquake 

magnitude in the disaggregation of financial loss 

estimates for every hazard scenario are in line with the 

results of Goda and De Risi (2018) obtained for a 

coastal town in Japan exposed to two decoupled 

earthquakes and tsunamis risk scenarios (Mw 8.0, 9.0).  
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Figure 4-19. Comparison of the independent earthquake-induced losses (EQ) for two conditions (using the 1,000 GMF for each 

case: with a spatially cross-correlation model (Corr.) and spatially uncorrelated (No Corr.); and the tsunami-induced losses (TS) 

under two TS reference schemes for six magnitude scenarios over every common area exposed to both perils. 

 

4.4. Discussion 

The derivation of CVT-based aggregation entities for 

building exposure modelling is subject to epistemic 

uncertainties, namely the selection of weights for the 

pooling of geospatial layers into the focus map and the 

selection of seeding points that provide the initial 

seeding set and control the overall number of geocells. 

Through the application of a condition tree, we have 

selected different sets of these two components to 

investigate the impact of customised CVT-based 

geographical entities to aggregate building portfolios 

as well as through the reconnaissance of thematic 

uncertainties in the loss mapping and visualisation. 

Voronoi regions inherently fulfil spatial properties 

such as compactness and contiguity which are useful 

to identify areas with comparatively homogeneous 

physical vulnerabilities.  

CVT-based aggregation entities for building exposure 

modelling can be further customized. For instance, the 

underlying focus map can be modified in order to 

integrate other components such as seismic 

microzonations with higher resolutions than the one 

we have employed in this work; the spatial presence of 

certain building taxonomic attributes that may drive 

the physical vulnerability towards a given hazard (e.g., 

soft-storey in seismic vulnerability and openings / 

building foundation in tsunami vulnerability (Alam et 

al., 2018)); high-resolution DEM (digital elevation 

model). However, caution should be taken not to 

double count their contribution if the hazard 

simulations have already been performed using these 

input data (e.g., DEM in landslide susceptibility and 

tsunami inundation) as well as a wise selection of their 

respective weights in the focus map construction. 

Furthermore, CVT model generation would benefit 

from further improvements such as outlining an 

iterative approach that can seek a minimum geocell 

size from a convergence criterion imposed by spatially 

correlated hazard-IM-lengths. 

Several of the limitations in this study could be 

addressed in further studies. For instance, it is worth 

conducting sensitivity analyses that address the 

differential impact of the selection of other GMPE(s), 

as well as their combination in logic trees (Scherbaum 

et al., 2005). In addition, it is relevant to include the 

calculation of an exhaustive set of stochastic tsunami 

flood scenarios (with respect to the considered 

magnitudes) for the evaluation of losses. Likewise, 

having a higher resolution digital surface model with 

spatially distributed roughness values is likely to allow 

the generation of more accurate results. Physics-based 

tsunami fragility functions based on intensities more 

relevant to the building failure mechanisms such as 

momentum flux (e.g., Macabuag et al., 2016; Attary et 

al., 2017) would benefit future risk simulations. 

However, this is subject to their actual availability for 

typical Peruvian building classes. More comprehensive 

approaches to adapt such as “foreign” empirical 

fragility models (e.g., Suppasri et al., 2019; Paez-

Ramirez et al., 2020), as well as the need of future 

development of analytical functions for the South 

American context (e.g., Medina et al., 2019) would 

benefit future risk assessment studies for Lima. 

Another area that would benefit from future research 

is the differential selection of loss ratios with 

dependencies on the building classes, as for instance 

recently investigated by Kalakonas et al. (2020) for 

seismic risk applications. This might be also relevant 

for tsunami-induced losses that are strongly 

influenced by the presence and cost of non-structural 



84 
 

 
 

building elements. Accordingly, more refined financial 

tsunami consequence models such as the one 

proposed by Suppasri et al. (2019) and/or 

Triantafyllou et al. (2019) are worth exploring when 

detailed information about prices and built-up areas at 

the individual building level are available for the study 

area. In the presented example case, we make use of 

the concept of inter-scheme conversion matrices to 

further prove their usefulness to derive exposure 

models (i.e. spatial distribution of building classes and 

replacement costs). This is novel because, if we can 

know these characteristics for a single exposure 

scheme (e.g. seismic vulnerability oriented), we could 

get the same descriptors for another vulnerability 

scheme (e.g. tsunami). This procedure ensures the 

comparability across the different schemes and this 

compatibility had not been considered so far in the 

related scientific literature for multi-hazard exposure 

modelling. This aspect also outlines that various 

exposure models existing in the literature can actually 

be complemented and compared in a probabilistic 

manner. On the one hand, the latter ensures that the 

exposed residential assets classified under various 

schemes have approximate replacement costs, and 

thus, the hazard-dependent risk estimates can be 

comparable with each other. On the other hand, 

caution should be taken when interpreting the 

presented results. Neither the damages induced by 

debris impacts nor scour, relevant for a clearer 

tsunami vulnerability assessment (Charvet et al., 2015), 

are included in our modelling. Moreover, it is worth 

mentioning that larger indirect losses can be expected 

from buildings with other occupancies (e.g., Chen et 

al., 2018) that we have not considered herein. 

CVT-based models can be beneficial to define 

efficient, multi-hazard aggregation entities for 

earthquake and tsunami risk assessment, not only in 

Lima, but also in other coastal cities exposed to similar 

hazards. Furthermore, it is worth investigating the 

usefulness of mapping cumulative damage and losses 

in hazard sequences, i.e., when a first hazardous event 

modifies the fragility of buildings that are then 

affected by a successive event, e.g., an earthquake 

affecting and area that is then struck by a tsunami. 

 

4.5. Conclusions  

This work has introduced a novel contribution to 

derive spatial aggregation entities with variable 

resolution for large-scale building portfolios for 

physical risk assessment applications. To this aim, we 

have presented a workflow to find an adequate 

resolution of the exposure model where it really 

matters, i.e., in areas where buildings are densely 

distributed and/or hazard intensities vary over short 

distances. This contrasts with the current state of the 

art related to building exposure modelling 

(aggregation) that uses regular grids or purely 

administrative boundaries for exposure aggregation.  

In the context of earthquake and tsunami risk, we take 

advantage of the focus map concept to integrate 

spatially correlated hazard intensity measures (IMs) 

with exposure proxies (i.e., population density) in 

order to spatially identify hot-spot areas where higher 

values from both spatial distributions are expected. 

These resultant focus maps can then be sampled by a 

heterogeneous Poisson point process, as proposed by 

Pittore et al., (2020) in order to generate variable-

resolution aggregation entities in the form of Central 

Voronoi Tessellations (CVT). Each CVT geocell 

becomes a minimum resolution of risk computational 

analysis, handling the inputs (i.e., hazard intensities 

and exposure model) and output elements (i.e., 

damage and loss estimates).  

Variable-resolution CVT-based exposure models 

proposed in this work have proved their efficiency in 

integrating large-area building portfolios for combined 

earthquake and tsunami loss estimations. Several 

advantages over conventional models based on 

administrative aggregation entities are: 

• CVT-based models provide alternative an 

approach to aggregate an extensive building 

portfolio constructed from ancillary data (i.e., 

population) in the case when existing 

administrative aggregation areas are not suitable 

(either not publicly available, or too coarse in 

resolution) for a certain area of interest, as well as 

to perform scenario-based risk assessments for 

various hazards. 

• We have observed that CVT-based models 

correct some bias in the spatial aggregation of 

buildings due to the smaller, more compact areas 

in high-resolution CVT geocells with respect to a 

coarser block-based cell. This correction is 

further propagated to the loss estimates due to 

the higher density of IM values employed by the 

respective fragility functions during the loss 

assessment. This is especially observed in areas of 

the largest concentration of exposed assets 

located within the hazard footprint area and 

where local spatial variations of the IM are 

expected, leading to more accurate estimates. 

• They are computationally more efficient than the 

block-based models in earthquake and tsunami 

vulnerability assessments. This is advantageous 

when thousands of stochastic realisations of 

hazard scenarios are calculated over the 
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aggregation boundaries that are used to model 

building portfolios. 

• They have shown to be beneficial for mapping 

loss estimates in continuous space with adjacent 

and compact geocells. These features allow the 

spatial identification of zones with similar 

vulnerability to the hazards considered and within 

the area of interest. They contribute to a more 

intuitive visualisation and interpretation of the 

loss mapping and hence contribute to raising 

awareness about epistemic and thematic 

uncertainties in the loss mapping. 

For the portfolio exposed to both perils in Lima, we 

have found that the expected median loss values 

induced by seismic ground-shaking are insensitive to 

the representation of the exposure model over varying 

resolutions. Thus, we confirm the findings of Bal et al. 

(2010) and expand them to the case when cross-

correlated ground motion fields are considered. 

However, this contrasts with the tsunami loss results, 

whose differences with respect to a high-resolution 

model (i.e., block-based) decrease as the resolution of 

the CVT geocells increases. Similarly, these 

differences are remarkably minimised for 

incrementally correlated tsunami-intensities from the 

large magnitude tsunami scenarios (i.e., Mw 8.8, 8.9, 

9.0). According to our observations, the adopted 

tsunami fragility model based solely on flow-depth as 

the IM and linear square fitting (Suppasri et al., 2013) 

predicts much larger tsunami-induced losses on the 

residential buildings portfolios in Lima than the model 

of De Risi et al. (2017), which was derived through 

multinomial logistic regression and with similar values 

as if the flow velocity was accounted for. For the 

residential building portfolio exposed to both perils, 

we have found that the earthquake scenarios dominate 

the losses at lower magnitudes (Mw 8.5, 8.6) whilst the 

contribution of the tsunami is dominant for larger 

magnitude events. 

Bearing in mind the scope of this study, but also the 

limitations presented in the discussion section, we are 

not claiming that the economic losses we have 

obtained for the residential building stock of Lima are 

exhaustive. Instead, through the adoption of the 

condition tree, we have drawn a branched 

methodological workflow to explore the differential 

impact of the exposure aggregation models, and the 

selection of building schemes on the epistemic and 

thematic uncertainties that are embedded in scenario-

based risk applications. As described by Beven et al. 

(2018), condition trees facilitate the communication of 

the meaning of the resulting uncertainties while 

providing a clear audit trail for their analysis that can 

be reviewed and evaluated by others (e.g., local experts 

and stakeholders) at a later date. This study also 

highlights the relevance of hazard-based aggregation 

entities for exposure modelling, risk computations, 

and loss mapping. Thus, the continuous 

understanding of those uncertainty sources will 

contribute to enhancing future risk communications, 

mitigation, and disaster management activities by local 

decision-makers. 
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Chapter 5  

 

5. Scenario-based multi-risk assessment from existing single-

hazard building fragility-models. An application for consecutive 

earthquakes and tsunamis in Lima, Peru 

 

Abstract  

Multi-hazard risk assessments for building portfolios exposed to earthquake shaking followed by a tsunami 

are usually based on empirical vulnerability models calibrated on post-events surveys of damaged buildings. 

The applicability of these models cannot easily be extrapolated to other region of larger/smaller events. 

Moreover, the quantitative evaluation of the damages related to each of the hazards type (disaggregation) 

is impossible. To investigate cumulative damage on extended building portfolios, this study proposes an 

alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that 

are being constantly developed and calibrated by experts from various research fields to be used within a 

multi-risk context. This method is based on the proposal of state-dependent fragility functions for the 

triggered hazard to account for the pre-existing damage, and the harmonisation of building classes and 

damage states through their taxonomic characterization, which is transversal to any hazard-dependent 

vulnerability. This modular assemblage also allows us to separate the economic losses expected for each 

scenario on building portfolios subjected to cascading hazards. We demonstrate its application by assessing 

the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly 

exposed to consecutive earthquake and tsunami scenarios. We show the importance of accounting for 

damage accumulation on extended building portfolios while observing a dependency between the 

earthquake magnitude and the direct economic losses derived for each hazard scenario. For the commonly 

exposed residential building stock of Lima exposed to both perils, we find that classical tsunami empirical 

fragility functions leads to underestimations of predicted losses for lower magnitudes (Mw) and large 

overestimations for larger Mw events in comparison to our state-dependent models and cumulative damage 

methodd. 

d published as: Gómez Zapata, J.C., Pittore, M., Brinckmann, N., Lizarazo, J.M., Medina, S., Tarque, N., Cotton, F., 

2022. Scenario-based multi-risk assessment from existing single-hazard building fragility-models. An application for 

consecutive earthquakes and tsunamis in Lima, Peru. Natural Hazards and Earth System Sciences. Discuss. [preprint], 

https://doi.org/10.5194/nhess-2022-183 
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5.1. Introduction 

Cascading natural events, commonly defined as a 

primary hazard triggering a secondary one, have jointly 

induced large disasters (Gill and Malamud, 2016). In 

the case of earthquakes, between 25 and 40% of 

economic losses and deaths have been reported to 

result as a consequence of secondary effects, i.e., 

tsunamis, landslides, liquefaction, fire, and others 

(Daniell et al., 2017). Well-known examples are the 

submarine earthquakes and the subsequent tsunamis 

occurred in 2004 in the Indian Ocean, in 2011 in 

Japan, and in 2018 in Palu Bay in Indonesia (Goda et 

al., 2019). These events not only induced cumulative 

physical damage on the exposed infrastructure, but 

also brought drastic socioeconomic cascading effects 

that are still perceptible today (de Ruiter et al., 2020; 

Suppasri et al., 2021). Despite the magnitude of such 

events, multi-hazard risk assessment remains a 

relatively new research field with still not unified 

terminologies and approaches (Pescaroli and 

Alexander, 2018; Tilloy et al., 2019). Nonetheless, a 

number of studies (e.g., Kappes et al., 2012; 

Komendantova et al., 2014; Gallina et al., 2016; Julià 

and Ferreira, 2021; De Angeli et al., 2022; Cremen et 

al., 2022) have unanimously agreed that more realistic 

multi-risk evaluations can only be conducted if both 

(1) multi-hazard (e.g., Marzocchi et al., 2012; Liu et al., 

2016) and (2) multi-vulnerability interactions (e.g., 

Zuccaro et al., 2008; Gehl et al., 2013) are considered 

altogether. While the former comprises the study of 

the conditional probabilities of the occurrences of 

these hazards and their combination, the study of the 

latter involves reviewing the many classes of 

vulnerabilities that are associated with an exposed 

territory. 

Therefore, this study narrows down the scope of 

scenario-based multi-hazard risk by assuming that a 

second hazardous event is always triggered after the 

occurrence of the first one, thus eliminating the need 

to quantify the probability of this occurring. Thus, we 

will only focus on the dynamic physical vulnerability 

and related cumulative damage that a building stock 

exposed to a close succession of hazardous events 

might suffer. As a premise, this study contributes to 

the field by proposing a modular method to 

probabilistically integrate sets of single-hazard 

vulnerability models that are being constantly 

developed and calibrated by experts from various 

research fields to be used within a multi-risk context. 

The rest of this introduction will discuss the state of 

the art in exposure modelling for large-scale building 

portfolios for multi-hazard risk assessment, focusing 

on the underlying assumptions to propose generalised 

building typologies with associated fragility functions 

used to assess their physical vulnerabilities to 

earthquake and tsunami. Having done that, the last 

part of the introduction summarises the general scope 

and capabilities of the original method that will be 

described in detail afterward.  

In exposure modelling for multi-hazard risk purposes, 

we can distinguish between two main approaches: 

1. Using a single set of building classes, each 

employing as many fragility/vulnerability 

models as the natural hazards considered, for 

example, the HAZUS-MH (FEMA, 2003, 

2017); Dabbeek and Silva, (2020); and 

Dabbeek et al., (2020). They have typically 

associated sets of fragility functions with 

equivalent damage states regardless of the 

hazard. Aligned with this philosophy, the 

EMS-98 vulnerability classes (Grünthal, 

1998) were used by some authors to not only 

describe the likely damage due to seismic 

action, but also to classify likely ranges of 

vulnerabilities to other hazards based on the 

building’s material types (Schwarz et al., 

2019; Maiwald and Schwarz, 2019).  

2. Jointly applying a number of different 

building classifications per individual hazard 

to the same exposed buildings (e.g., Gómez 

Zapata et al., 2021e; Arrighi et al., 2022). 

Their associated fragility functions may have 

different sets of damage states (differing in 

number and description). Notably, these 

models are constantly developed and 

individually validated by experts of each 

research field. 

Although the first type might be useful in the 

assessment of risk arising from independent hazards, 

their related sets of fragility models lack multi-hazard 

calibration and validation and, therefore, do not offer 

sufficient inputs for assessing the increasing damage 

from cascading events (Ward et al., 2020).  

Moreover, the definition of the damage scale depends 

on the building type (Hill and Rossetto, 2008) and the 

likely failure mechanisms that it can experience under 

the action of specific hazard intensity measures (IM) 

(Vamvatsikos et al., 2010; Selva, 2013). Therefore, the 

observable damage features on individual structural or 

non-structural components that jointly describe a 

certain damage state can have contrasting descriptions 

across various hazard-dependent vulnerability types 

(Gehl and D’Ayala, 2018; Figueiredo et al., 2021) and 

there is often not a 1:1 relation between them, i.e., for 
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the case of earthquakes and tsunamis (Bonacho and 

Oliveira, 2018; Lahcene et al., 2021). The reasons 

behind such a mismatching between the definitions of 

damage states may arise from the absence of standard 

formats for damage data collection across regions and 

across the several vulnerability types of interest (Mas 

et al., 2020; Frucht et al., 2021). Notably, the study of 

Negulescu et al., (2020) found this aspect to be 

particularly significant for the multi-hazard risk 

context, stating that the damage states of earthquake 

and tsunami fragility models can have variable levels 

of compatibility. This assumption led to contrasting 

loss estimates with respect the U.S HAZUS approach, 

which is based on the complete equivalence between 

damage grades. This background portrays the need to 

standardise the description of the physical damage 

through harmonizing scales across several hazard-

dependent vulnerabilities, which are inputs for unified 

methods in multi-hazard risk (Ward et al., 2022). 

The earthquake engineering community has 

investigated the cumulative damage expected during 

seismic sequences (e.g. Papadopoulos and Bazzurro, 

2021; Karapetrou et al., 2016; Trevlopoulos et al., 

2020), but this concept is rarely considered in other 

research disciplines. For instance, the physical 

vulnerability of building portfolios to tsunamis has 

been typically evaluated through empirical fragility 

functions derived from post-near-field tsunami 

surveys. A drawback of these functions is that they 

have been presented solely as tsunami fragility 

functions in terms of the inundation depth when in 

reality these surveys encompassed assets that 

experienced cumulative damage due to the joint effect 

of the tsunami-generating earthquake and the tsunami 

itself (Charvet et al., 2017). Due to this limitation, 

analytical fragility functions were recently proposed 

for individual structures (e.g., Attary et al., 2017; 

Petrone et al., 2017) and for large-scale building stocks 

with generalised typologies (Belliazzi et al., 2021). 

However, as remarked by Attary et al., (2019), using 

these functions for loss estimation should only be 

valid for far-field tsunamis, and for near-field events 

the damage induced by shaking before the tsunami 

strikes must still be addressed. 

To the best of the authors’ knowledge, only a few 

studies have investigated the performance of 

heterogeneous and large-scale building portfolios for 

risk estimates subjected to consecutive ground 

shaking and tsunamis. Hereby, we summarize some of 

them. In Goda and De Risi, (2018) a rationale was 

proposed for adopting the larger value of the damage 

ratios from independent earthquake and tsunami risk 

computations. In Park et al., (2019) a probabilistic 

multi-risk approach was presented for a building stock 

in the USA subjected to spatially uncorrelated seismic 

ground motions and subsequent tsunamis. This study 

showed the disaggregation of losses per hazard and 

per material-based building type across several return 

periods while assuming statistical independence 

between their respective damage states. As a common 

denominator of the aforementioned studies, the 

cumulative damage and losses from a building 

portfolio were not assessed. Since these metrics 

cannot be obtained as the sum of the effects from each 

individual hazardous event (Bernal et al., 2017; Terzi 

et al., 2019), it is rather necessary to address the 

nonlinear damage accumulation on the same exposed 

assets during the multi-hazard sequences (Merz et al., 

2020). 

This study proposes a modular method to 

probabilistically integrate existing sets of single-hazard 

vulnerability models (or “reference schemes”). For 

this aim, this method comprises four main modules. 

The first two ones refer to sets of compatibilities 

between the vulnerability models selected for each 

single-hazard vulnerability (e.g., between existing 

seismic and tsunami building classification schemes). 

The first probabilistic compatibility set are obtained 

between (1) building classes (as presented in Sect. 

5.2.1) whilst the second is obtained between (2) 

damage states (Sect. 5.2.2). These two conversions are 

done through the use of taxonomic attributes that are 

independent to the definition of the reference 

schemes. This is done with the purpose of 

representing the damage distribution resulting after 

the first hazard (i.e., earthquake) through a damage-

updated exposure model whose damage scale is 

dependent on the classification scheme required for 

assessing the vulnerability to a triggered event (i.e., 

tsunami). The third module results from the need to 

perform risk assessment for the triggered hazard using 

the damage-updated exposure model that is now 

represented in terms of the second vulnerability 

scheme (e.g., building classes and damage states for 

tsunami fragility). Hence, this module comprises the 

proposal of (3) sets of state-dependent fragility 

functions for the second hazard (e.g., tsunami), as 

presented in Sect. 5.2.3. These three modules are 

valuable inputs for ultimately assessing the expected 

cumulative damage. They are later complemented by 

a last fourth module: (4) a consequence model to 

assess the incremental direct economic losses (Sect 

5.2.4) that are expected from consecutive hazard 

scenarios. 

In the application chapter of this paper (Sect. 5.3), we 

demonstrate the application of this method by 
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investigating the likely cumulative damage on the 

residential buildings of Lima (Peru) by considering this 

city’s exposure to six mega-thrust earthquake 

scenarios (main shock) and subsequent tsunamis. This 

is done using existing vulnerability models per hazard, 

and addressing the probabilistic compatibilities 

between building classes and damage states. 

Complementarily, a set of tsunami state-dependent 

fragility functions that are obtained through the use of 

simple ad-hoc scaling factors are proposed. 

Nonetheless, as it will be discussed, these functions 

can and should be replaced by other sets of state-

dependent tsunami fragility functions derived from 

more sophisticated methods when they become 

available. Every damage distribution is translated into 

direct economic losses to gain a comparative risk 

metric and disaggregate the contribution of each 

hazard scenario. 

5.2. Proposed Method 

To assess the cumulative damage that is expected to 

be experienced by a building portfolio during 

hazardous event sequences, we rely on the principle 

that its related exposure model is represented by 

jointly applying existing building classification 

schemes, one per each individual hazardous scenario 

of the cascading sequence. For example, one building 

that is expected to be affected by a first hazard 

intensity measure 𝐼𝑀𝐴 (here A refers to an IM used to 

model ground-shaking (e.g. PGA in g)) and a second 

one 𝐼𝑀𝐵 (B refers to an IM used to model inland 

tsunami inundation (e.g. inundation depth in m)) is 

actually classified under two exposure classification 

schemes (𝑇𝑘
𝐴 and 𝑇𝑗

𝐵), respectively, which have 

attached their related vulnerability models a). Each 

scheme contains a set of mutually exclusive, 

collectively exhaustive building classes 𝑘 =

{𝑘1, … , 𝑘𝑛} and 𝑗 = {𝑗1, … , 𝑗𝑛} correspondingly. 

To assess the expected damage state after the first 

hazardous event (e.g., ground-shaking), we apply their 

fragility function ∑
𝑧

𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴), which give us the 

probability that a building 𝑘, typically assumed to be 

in an undamaged state 0, (𝐷𝑘0
𝐴 ), changes to a 

progressive state 𝑧 due to a hazard intensity 𝐼𝑀𝐴 

(green part in Figure 5-1b. For risk assessment, this is 

completed by the consequence model, 𝑝(𝐿|𝐷𝑘𝑧
𝐴 ), 

which assigns a loss ratio 𝐿 of the total replacement 

cost of building class 𝑘 given the occurrence of a 

damage state. Thus, the expected loss given a hazard 

intensity 𝐼𝑀𝐴 is calculated considering the 

contributions from all possible damage states and their 

probabilities, as per Eq. 3. 

If this damaged building portfolio is subjected to the 

action of a second scenario with a hazard 

intensity 𝐼𝑀𝐵, it would experience cumulative damage 

moving from a damage state 𝑧, (𝐷𝑘𝑧
𝐴 ) to a damage 

state 𝑤 (but in the domain of the second vulnerability 

scheme: 𝐷𝑗𝑤
𝐵 ). Due to this differential scheme 

classification, their respective set of damage states may 

not have trivial equivalences because they can also 

have different observable damage features. Therefore, 

we propose integrating a set of modular components, 

namely:  

(1) Inter-scheme compatibilities between each 

hazard-dependent exposure classification scheme 

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) (i.e., purple part/ doubled line box in 

Figure 5-1b). Its derivation follows the method 

originally proposed in Gómez Zapata et al., 

(2022b), and it is summarised herein in Sect. 5.2.1. 

By reusing this approach, a building stock 

formerly that was initially classified for a first 

hazard vulnerability (i.e., earthquake-oriented 

typologies) can now be probabilistically 

represented by other predefined classes (e.g., 

tsunami-oriented typologies).  

(2) The related compatibility levels between inter-

scheme damage states 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) (i.e., red part/ 

dashed box in Figure 5-1b, explained in Sect. 

5.2.2) that is needed when the fragility models 

attached to such schemes have different numbers 

of damage states and descriptions. 

The two aforementioned conversions are represented 

through two sets “compatibility matrices” that are 

probabilistically generated. The advantage of using 

these matrices is that through these conversions, the 

damaged updated exposure model resulting from the 

action of 𝐼𝑀𝐴 can be represented in the domain of the 

reference scheme attached to the second vulnerability 

to be analysed. Once this change of reference scheme 

is obtained, the damage-updated exposure model can 

be directly used for a second risk computation (e.g. for 

tsunami risk, addressing cumulative when the 

buildings experienced previous damage due to seismic 

ground shaking). This second risk calculation is 

performed by using a third module that refers to: 

(3) Generic state-dependent tsunami fragility 

functions (i.e. with non-zero initial damage states 

made of new curves that represent the 

permissible damage progression). Since the 

𝑝(𝐿|𝐼𝑀𝐴) = ∑
𝑧

𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴)𝑝(𝐿|𝐷𝑘𝑧

𝐴 ) Eq. 3 
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resultant earthquake–induced damages are 

formerly expressed in the tsunami vulnerability 

domain (step 2), the non-zero damage limit states 

of this set of state-dependent tsunami fragility 

functions will implicitly account for such pre-

existing damage. The joint ensemble of these 

three components can be ultimately used to 

calculate the cumulative expected damages after 

the triggered event with 𝐼𝑀𝐵, while accounting 

for the preceding induced by 𝐼𝑀𝐴 (i.e., green 

part/ dotted box Figure 5-1b, developed in Sect. 

5.2.3). 

(4) For multi-risk assessment a fourth module that 

represents the incremental loss obtained from the 

economic consequence model attached to the 

classification scheme 𝑇𝑗
𝐵 (i.e., replacement costs 

and related loss ratios per damage state of the 

second scheme, 𝐷𝑗𝑦
𝐵 ) is integrated. This is 

represented by the last box made of continues 

(blue) lines in Figure 5-1b, explained in Sect. 

5.2.4.  

These four modules are described hereafter. 

 
Figure 5-1. (a) Example of the principle proposed for classifying the same building class into two hazard-dependent reference 

schemes with associated fragility models. (b) Schematic representation of the proposed method to calculate cumulative 

damage from the case of earthquake-tsunami that is developed afterward. 

5.2.1. Exposure modelling: taxonomic 

description, inter-scheme conversion and 

spatial aggregation of building classes 

The classified building stock under the first hazard-

dependent classification scheme 𝑇𝑘
𝐴 is spatially 

aggregated into a set of geocells that capture the local 

spatial variations of the hazards’ IM of interest across 

the study area. For such a purpose, we recommend 

using variable resolution exposure models in the form 

of Central Voronoi Tessellations (CVT). Besides 

spatially representing the building portfolio, they also 

provide a representative IM per geocell for reliable and 

computationally efficient vulnerability estimations 

(Pittore et al., 2020b; Gómez Zapata et al., 2021f). 

They also implicitly serve as common minimum 

reference units (MRU) aggregation entities between 

exposure and hazard (Zuccaro et al., 2018). This is 

because for their derivation, one can consider the 

combination of local variations of the hazard intensity 

measures (IM) and certain exposure proxies (e.g., 

population density) across the same area. CVT-based 

models may be useful in a multi-hazard risk context 

where the spatial correlation of various IM can differ 

(e.g., ground-shaking and tsunami inundation). 

As shown in Pittore et al., (2018), every building class 

k that belongs to one scheme 𝐴 (in this case, 

earthquake); and every building class j that belongs to 
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one scheme 𝐵 (in this case, tsunami) can be described 

in terms of basic observable features {𝐹}𝑚 within a 

faceted taxonomy, that is, a building classification 

schema in which building classes result from the 

characterisation of individual attributes, or facets 

(Brzev et al., 2013; Silva et al., 2018, 2022). This 

disaggregation is the common underlying vocabulary 

to obtain the probability that a building class within 

the source scheme (𝑇𝑘
𝐴) corresponds to another class 

within the target scheme (𝑇𝑗
𝐵). As proposed in 

Gómez Zapata et al., (2022b), the degree of 

compatibility between the buildings classes belonging 

to both schemes can be represented by a compatibility 

matrix 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) to account for the uncertainties 

when there is not a trivial (one-to-one) mapping. 

Knowing in advance certain exposure metrics of the 

source scheme {𝑅}𝑇𝑘
𝐴 (i.e., building counts), the 

respective values of the target scheme {𝑅}𝑇𝑗
𝐵 can be 

obtained by applying the dot product (Eq.  5-4). 

{𝑅}𝑇𝑗
𝐵 = 𝑝(𝑇𝑘

𝐴|𝑇𝑗
𝐵). {𝑅}𝑇𝑘

𝐴 Eq.  5-4 

 

5.2.2. The probabilistic description and 

compatibility of inter-scheme damage states  

We consider how the fragility functions associated 

with 𝑇𝑘
𝐴 (earthquake) and 𝑇𝑗

𝐵 (tsunami) may have 

diverse numbers and descriptions of damage states per 

considered hazard-dependent vulnerability scheme 

(𝐷𝑘𝑧
𝐴 , 𝑧 = 𝑧1, … , 𝑧𝑁𝐴

 and 𝐷𝑗𝑦
𝐵 , 𝑦 = 𝑦1, … , 𝑦𝑁𝐵

). To 

harmonise their equivalence, we propose obtaining 

their probabilistic inter-scheme compatibility as a set 

of matrices 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ). This is achieved after having 

evaluated how the likely observable characteristics 

linked to each damage state within 𝐷𝑘𝑧
𝐴  and 𝐷𝑗𝑦

𝐵  can be 

expressed in terms of another one. For this aim, we 

first propose the use of the AeDES form (Agibilità E 

Danno in Emergenza Sismica (usability and damage in 

seismic emergency)) of the Italian Civil Protection 

(Baggio et al., 2007) as a standard scoring system to 

create a synthetic dataset based on the likely 

observable damage on individual building 

components. Although it was originally proposed for 

post-earthquake damage data collection, we propose 

to transversally use it to describe every damage state 𝑧 

and 𝑦 of 𝐷𝑘𝑧
𝐴  (due to seismic ground shaking) and 𝐷𝑗𝑦

𝐵  

(due to tsunami inundation) respectively. Expert 

elicitation is used on the AeDES form to create 

heuristics evaluating the expected damage extension 

per building type and each of the damage-limit-states 

defined within their respective fragility functions. For 

this aim, we make use of its implicit scale within a 

range of 0=L to 9=A over the building components 

𝑛, (low-level taxonomic attributes) as shown in Figure 

5-2. We decided to only include four out of these six 

components that can be found in any building type as 

listed in Eq. 5-5 as stairs and pre-existing damage are 

not always present in all buildings. The importance of 

such building components for assessing their physical 

vulnerability has been documented in previous studies 

to ground-shaking (e.g. Lagomarsino et al., 2021) and 

tsunamis (e.g. Del Zoppo et al., 2021). 

𝑛 = {𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑉𝑆); 𝑓𝑙𝑜𝑜𝑟 (𝐹𝐿); 𝑟𝑜𝑜𝑓 (𝑅𝐹); 𝑖𝑛𝑓𝑖𝑙𝑙𝑠 𝑎𝑛𝑑 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝐼𝑃)} Eq. 5-5 

 
Figure 5-2. Scale to assess the damage level on buildings as proposed by the AeDES form. Reprinted from Baggio et al, (2007). 

 

A heuristic is generated by scoring the four 

components in Eq. 5-5 per damage state, per fragility 

function, per building class of both exposure 

classification schemes. This is done through expert 

elicitation and establishes a training dataset of the 

possible observable damage extent {𝑂𝐷}𝑛 in a 

harmonized manner. For instance, one set of {𝑂𝐷}𝑛 

(for a given damage state and building type) is made 



92 

 
 

up by a set of four numbers from 0 to 9, e.g., n = {1, 

2, 1, 3}, meaning level I for VS and RF, level H for FL 

and level G for IP (Eq. 5-5). Thereafter, using the total 

probability theorem, the probability that the damage 

state z of a building class j in a scheme A corresponds 

to damage state y of building class j in scheme B can 

be calculated by Eq. 5-6. 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛 ∩ 𝐷𝑗𝑦

𝐵 )𝑝({𝑂𝐷}𝑛|𝐷𝑗𝑦
𝐵 ) 

Eq. 5-6 

We assume that the representations of damage states 

within the two considered schemes are conditionally 

independent (⫫). Thereby, given the information of 

the scored observable damage on the individual 

components {𝑂𝐷}𝑛, we can describe the source 

damage scheme 𝐷𝑘𝑧
𝐴  to be modelled in terms of {𝑂𝐷}𝑛 

that jointly compose the target scheme 𝐷𝑗𝑦
𝐵 : 𝐷𝑗𝑧

𝐴 ⫫

𝐷𝑗𝑦
𝐵 |{𝑂𝐷}𝑛.Thus, Eq. 5-6 can be expressed as a 

product, given by Eq. 5-7. 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛)𝑝({𝑂𝐷}𝑛|𝐷𝑗𝑦

𝐵 )      𝑠𝑖𝑛𝑐𝑒 𝐷𝑘𝑧
𝐴 ⫫ 𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛 

 
Eq. 5-7 

We obtain a probabilistic compatibility degree 

between damage states (𝐷𝑘𝑧
𝐴 , 𝑧 = 𝑧1, … , 𝑧𝑁𝐴

 

and 𝐷𝑗𝑦
𝐵 , 𝑦 = 𝑦1, … , 𝑦𝑁𝐵

) for every pair of 

combination of building classes 𝑇𝑘
𝐴, and 𝑇𝑗

𝐵 through a 

Bayesian formulation as presented in Eq. 5-8. 

𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) = ∑
𝑛

𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛)𝑝(𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛)
𝑝({𝑂𝐷}𝑛)

𝑝(𝐷𝑗𝑦
𝐵 )

 
Eq. 5-8 

The terms 𝑝(𝐷𝑘𝑧
𝐴 |{𝑂𝐷}𝑛) and 𝑝(𝐷𝑗𝑦

𝐵 |{𝑂𝐷}𝑛) in Eq. 

5-8 can be solved through supervised machine 

learning techniques for classification (e.g., logistic 

regression, naive Bayes, decision trees) to predict the 

probabilities between the training sets and a synthetic 

testing dataset. The selection of the machine learning 

technique, naturally, carries epistemic uncertainties 

(Mangalathu et al., 2020) whose investigation is 

beyond the scope of this study. The testing dataset is 

obtained after generating random numbers of all the 

possible combinations of the AeDES-based scores. 

With this dataset we express the conditional 

probabilities of having damage states 𝐷𝑘𝑧
𝐴 , 𝑧 and 𝐷𝑗𝑦

𝐵 , 𝑦 

(for each building class within schemes A and B given 

{𝑂𝐷}𝑛. The term 𝑝({𝑂𝐷}𝑛) is a marginal probability 

that can be assumed to represent the proportion of 

one observation out of exhaustive combinations of 

{𝑂𝐷}𝑛. Lastly, 𝑝(𝐷𝑗𝑦
𝐵 ) describes the proportion of 

each damage state 𝑦 within each building class 𝑘 in the 

training dataset for scheme B. Once Eq. 5-8 is solved, 

the expression 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) is obtained, which stems 

from the probabilistic inter-scheme damage 

compatibility matrix for each possible pair of buildings 

within schemes A and B. Subsequently, a special set of 

fragility functions is needed to follow the damage 

progression inflicted by the second hazard. They are 

explained hereafter. 

5.2.3. State-dependent fragility functions 

The next steps of the method are carried out within 

the reference vulnerability scheme of the second 

hazard (i.e. tsunami). Let us suppose that the fragility 

functions 𝐹𝑇𝑟
𝑖,𝑞𝑁𝑖

 (for a set of building types 𝑇𝑟 , and 

composed by a set of 𝑞𝑁𝑖
 damage limite states) are 

assumed to be modelled by cumulative lognormal 

distributions. They are defined by their respective 

logarithmic means 𝜇𝑞0
(𝑇𝑟

𝑖) and their logarithmic 

standard deviations, for which we assume that their 

initial damage states 𝑞𝑁𝑖
 are all represented by a zero 

𝑞0 (for a pristine, intact structure). For a set of damage 

states 𝑞𝑁𝑖
 in pristine structures, there is a 

corresponding set of values 𝜆𝑞0
= 

[𝜆𝑞01
, 𝜆𝑞𝑦

, 𝜆𝑞𝑤
, … 𝜆𝑞0𝑖

]. With this, let us assume that 

the damage state 𝑤 belongs to 𝐷𝑗𝑦
𝐵 , 𝑦 =

𝑦1, … 𝑤 … , 𝑦𝑁𝐵
. Eq. 5-9 represents the conditional 

probability that the building 𝑗 (of the scheme B) can 

move to a progressive state 𝑤 given the action of 𝐼𝑀𝐵 

when it already presented a damage state 𝑦 due to the 

action of 𝐼𝑀𝐴. For such a process, please note that it 

was already classified in terms of scheme B, thanks to 

the compatibilities between damage states. 

𝑝(𝐷𝑗𝑤
𝐵 |𝐷𝑗𝑦

𝐵 , 𝐼𝑀𝐵) Eq. 5-9 
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The former expression defines a probabilistic state-

dependent fragility function composed of transition 

probabilities between increasing damage states (for 

instance, for the scheme B, this description follows: 

𝑦𝑁𝐵
− 𝑦𝑁𝐵−(𝑁𝐵−1); 𝑦𝑁𝐵

− 𝑦𝑁𝐵−(𝑁𝐵−2) … ). For a 

fragility model 𝐷𝑇𝑟
𝑖 designed for a set of  building types 

𝑇𝑟 , and composed of 𝑞𝑁𝑖
 damage states (for any 

hazard of interest i), the required set of transition 

probabilities for a given range of hazard intensities are 

completely defined by a triangular number 𝐺𝑓 as 

expressed in Eq. 5-10.   

 

𝐺𝑓 = ∑ 𝐷𝑇𝑟
𝑖

𝑞𝑁𝑖

𝐷
𝑇𝑟

𝑖 =1

=
(1 + 𝑞𝑁𝑖

)𝑞𝑁𝑖

2
 Eq. 5-10 

A visual example of such transition probabilities within fragility functions for several hazard-dependent models (also 

including 𝑇𝑘
𝐴; 𝑇𝑗

𝐵 and their respective sets of damage states 𝑧𝑁𝐴
; 𝑦𝑁𝐵

) is presented in Figure 5-3. 

 
Figure 5-3. Example of a set of damage state-dependent fragility functions for several single hazard fragility functions 

comprising progressive transition probabilities. Figure modified from Gómez Zapata et al., (2020). 

 

Only for the overall scope of this paper, we propose 

that state-dependent fragility functions can be 

simplified by using ad-hoc calibration parameters to 

modify these logarithmic mean values. For such a 

modification, we propose applying to them the 

exponential operator to obtain the physically 

accountable mean IM (hazard intensity measures). I.e., 

𝜆𝑞0
(𝑇𝑟

𝐼) defines each damage state as:  𝜆𝑞0
(𝑇𝑟

𝑖) =

𝑒𝜇𝑞0(𝑇𝑟
𝑖). Subsequently we propose to obtain their 

respective differences Δ𝜆𝑞0
. For example, if a fragility 

function is composed of 𝑞𝑁𝑖
= 4 damage states 

(excluding damage state 0, equivalent to no damage), 

there will be a set of damage states 𝜆𝑞0
= 

[𝜆𝑞01
, 𝜆𝑞02

, 𝜆𝑞03
, … 𝜆𝑞0𝑖

] for which we should obtain 

the differences between all the possible top and 

bottom damage states and we must obtain six values: 

Δ𝜆𝑞0
=  [𝛥𝜆𝑞01,2

, 𝛥𝜆𝑞01,3
, 𝛥𝜆𝑞01,4

, 𝛥𝜆𝑞02,3
, 𝛥𝜆𝑞02,4

, 

𝛥𝜆𝑞03,4
].  

 In this example, these six state-dependent transition 

values are included within the  𝐺𝑓 = 10 triangular 

number (i.e. 4 from 0; 3 from 1; 2 from 2; 1 from 3) 

given by Eq. 5-10. Thereby, for each 𝑇𝑟
𝑖, it is still 

necessary to determine the probabilistic 

representation (log mean and log standard deviation) 

of every damage state transitions Δ𝜆𝑞0
.To do so, the 

𝜆𝑞0
(𝑇𝑟

𝑖) values are proposed to be multiplied by the 

Δ𝜆𝑞0
 factors, and reframing this quantity to a natural 

logarithm in order to approximate it back again to 

lognormal mean values. This is expressed as given by 

Eq. 11. 

𝛿𝑤|𝑦 =  𝑙𝑛(𝛥𝜆𝑞0
×  𝜆𝑞0

) Eq. 11 
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The reader should note that in this approach, the 

𝛥𝜆𝑞0
values are a set of ad-hoc calibration parameters 

or scaling factors that are applied directly to the 𝜆𝑞0
for 

which each damage limit state was originally derived. 

These values form the lognormal mean of the state-

dependent fragility functions. A similar approach was 

followed by Rao et al., (2017). The fragility functions 

used to constrain the state-dependent fragility 

functions should have been derived only for the actual 

second acting hazard (i.e., far-field tsunamis). Thus, 

the use of those derived analytically is advised over 

empirical ones (which had implicit the damaged 

induced by ground-shaking in their derivation). 

Further details about this approach and model 

assumptions to find the ad-hoc calibration parameters 

are provided for the example case in the data 

repository in Gómez Zapata et al., (2022a). 

5.2.4. Loss assessment for sequences of cascading 

hazards scenarios 

We propose a simple economical consequence model 

that assigns the replacement cost ratios to every 

damage state of the building classes 𝑇𝑗
𝐵. The 

incremental economic loss, defined as the difference 

in the expected loss resultant from the initial damage 

state and final damage state, is calculated in terms of 

the reference scheme 𝐵 as: 

𝑝(𝐿|𝐷𝑗𝑤
𝐵 ) − 𝑝(𝐿|𝐷𝑗𝑧

𝐵 ) Eq. 5-12 

Combining the two inter-scheme compatibility 

matrices, (𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) and (𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ), along with Eq. 

5-9 and Eq. 5-12, we obtain the formulation in Eq. 

5-13, which is identical to the one in Figure 5-1b. This 

allows us to calculate the probability of observing an 

incremental loss due to the cumulative damage during 

the sequence of hazard-scenarios. Eq. 5-13 represents 

the disaggregated loss caused by the triggered event 

upon the buildings with a pre-existing damage (due to 

𝐼𝑀𝐴). Finally, the likely loss for the entire sequence 

can be obtained by summing up Eq. 3 and Eq. 5-13. 

𝑝(𝐿|𝐼𝑀𝐵 ∩ 𝐼𝑀𝐴) = ∑
𝑘,𝑦,𝑧,𝑤

𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵)𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 )𝑝(𝐷𝑘𝑧
𝐴 |𝐼𝑀𝐴)𝑝(𝐷𝑗𝑤

𝐵 |𝐷𝑗𝑦
𝐵 , 𝐼𝑀𝐵)[𝑝(𝐿|𝐷𝑗𝑤

𝐵 ) − 𝑝(𝐿|𝐷𝑗𝑧
𝐵 )] Eq. 5-13 

5.3. Application example 

5.3.1. Context of the study area: 
Metropolitan Lima, Peru 

In 2022, Peru had a population of around 33 million 

people, with nearly 58% of this living in coastal 

communities. In Løvholt et al., (2014) it was stated 

that this country has the largest population exposed to 

tsunamis in the American continent. Lima, its capital, 

with nearly 10 million inhabitants (around one third of 

the country’s population) is home to the most 

important political, industrial, and economic activities 

of the country. Lima ranks as the capital city exposed 

to the highest seismic hazard in South America 

(Petersen et al., 2018), and as the second city in the 

world in terms of the value of working days lost 

relative to the national economy due to earthquakes 

(Schelske et al., 2014). This city has suffered 

devastating disasters in the past. For instance, in 1586 

and 1724 earthquakes triggered tsunami run-ups over 

24 m (Kulikov et al., 2005). The 1746 earthquake, with 

an estimated magnitude of Mw 8.8 (Jimenez et al., 

2013), produced a tsunami with local height of 15 to 

20 m (Dorbath et al., 1990) and destroyed the city. In 

1974, a Mw. 8.1 event produced widespread damage 

and caused losses of ~ 7.5 billion dollars. Since then, 

the city has been experiencing continuous 

urbanization with generally poor structural design 

(Tarque et al., 2019). 

The 1746 earthquake for scenario for earthquake and 

tsunami modelling was also used in Adriano et al., 

(2014) to estimate the damage probabilities of the 

residential building stock of Callao (part of the 

Metropolitan area of Lima) using the empirical 

tsunami fragility functions of (Suppasri et al., 2013) for 

four building types. More recently, Ordaz et al., (2019) 

developed probabilistic earthquake and tsunami risk 

forecasts for Callao. However, that study did not 

describe the vulnerability models used, nor the 

method employed to address the non-linear damage 

accumulation. To the authors’ best knowledge, neither 

cumulative damages due to earthquake and tsunami 

scenarios nor the use of analytical tsunami fragility 

functions for Lima have been reported in the scientific 

literature. 

5.3.2. Scenarios of earthquake and tsunami 
for Lima 

We use the dataset compiled by Gómez Zapata et al., 

(2021e) which is composed of six earthquakes with 

moment magnitudes ranging from 8.5 to 9.0 Mw, 

which were made available in Gómez Zapata et al., 



95 

 
 

2021c). In that dataset, each event is represented by an 

associated 1,000 realisations of cross-correlated 

ground motion fields (GMF) for peak ground 

acceleration (PGA) and spectral accelerations at 0.3 

and 1.0 seconds. The selection of these spectral 

periods depends upon the fragility function’s IM 

associated with the building classes of the exposure 

model (Sect. 5.3.1). The simulated GMF were 

obtained making use of the ground motion prediction 

equation (GMPE) proposed in Montalva et al., (2017) 

and the spatially cross-correlation model of Markhvida 

et al., (2018) employing the OpenQuake Engine 

(Pagani et al., 2014). For the site term of the GMPE, 

the dataset reported in Ceferino et al., (2018), which 

combined the slope-based Vs30 values of Allen and 

Wald, (2007) and a seismic microzonation (Aguilar et 

al., 2013) was used. On the tsunami modelling side, we 

reuse the data repository Harig and Rakowsky, (2021) 

that compiles tsunami inundations for each of the 

mentioned six earthquakes using the finite element 

model TsunAWI. Similarly as performed by Harig et 

al., (2020), the inundation values were interpolated to 

a raster file with grid cell dimensions of 10×10 m. 

Figure 5-4 shows three of the tsunami inundation 

scenarios for the study area. 

Figure 5-4. Expected tsunami inundation heights for three out of the six considered scenarios per moment magnitude (Mw). 

These raster products are available from Harig and Rakowsky, (2021). Two densely populated areas are depicted by white 

rectangles: in the north the “La Punta” (Callao) and Chorrillos in the south. Updated figure from Gómez Zapata et al., (2021e). 

Map data: ©Google Earth 2021. 

5.3.3. Exposure modelling: taxonomic description, inter-scheme conversion and spatial 

aggregation of building classes for Lima 

We make use of the existing building exposure models 

that represent the residential building stock of 

Metropolitan Lima for ground shaking vulnerability 

that were developed by Gómez Zapata et al., (2021e) 

and are available from Gómez Zapata et al., (2021b). 

Such a building classification was defined by relating 

some covariates included within the last official 

Peruvian census from 2017 (INEI, 2017) at the block-

level with respect to 21 classes proposed by the South 

American Risk Assessment (SARA) project (Yepes-

Estrada et al. 2017) through a mapping scheme 

proposed from expert-elicitation (GEM, 2014). Since 

that information was provided for dwellings, the so-

called “dwelling ratios” proposed by SARA were also 

implemented to obtain the building counts per class. 

A description of these building classes is presented in 

Table 5-1. 

It is worth noting that although these typologies are 

similar to those of the SARA exposure model, there 

are differences between the building counts reported 

by that project and our model. This might be due to 

the vintage of the input census datasets (2007 vs. 2017, 

respectively), the thematic detail induced by the spatial 

aggregation entities (districts/ blocks/ CVT), having 

merged some building classes in terms of similar 

heights, and having reduced the number of unknown 

(UNK) type (~91% with respect the SARA model). 

The resultant exposure model is made up of 

~1,657,635 residential buildings, a 25% increase with 

respect the SAA model. However, as observed in 

Gómez Zapata et al., (2022b), this scheme does not 

properly capture the presence of high-rise buildings, 

underestimating their presence while overestimating 

the wooden types. 

(a) Mw 8.6 

 

(b) Mw 8.8 

 

(c) Mw 9.0 
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Table 5-1. SARA building classes proposed for the residential building stock of Metropolitan Lima and Callao, with their 

respective replacement costs per building unit (Repl. Cost (USD/bdg.) as reported in Yepes-Estrada et al., (2017) in the frame of 

the SARA model released by GEM (Global Earthquake Model) in 2015, which was based on official census data reported by 

INEI, (2007). The intensity measures (IM) of the associated seismic fragility functions to each building class, as reported in Villar-

Vega et al., (2017), are also provided. 

  Description IM Repl. Cost 

(USD/bdg.) 

Building 

counts 

MUR-H1-3 Unreinforced masonry (MUR), 1–3 stories (H1-3) PGA 18,000 248799 

MUR-ADO-H1-2 Unreinforced masonry, with adobe (ADO), 1–2 

stories (H1-2) 

PGA 15,000 209837 

MUR-STDRE-H1-2 Unreinforced masonry, with dressed stone (STDRE), 

1–2 stories 

PGA 15,000 209837 

W-WBB-H1 Wood (W), bamboo (WBB), 1 story (H1) S.A at 0.3s 12,000 187355 

W-WWD-H1-2 Wood, bahareque and Quincha (i.e., wattle and daub 

construction): WWD, 1–2 stories (H1-2) 

S.A at 0.3s 15,000 149884 

W-WS-H1-2 Wood, solid wood (WS), 1–2 stories S.A at 0.3s 12,000 127401 

W-WLI-H1-3 Wood, light wood (WLI), 1–3 stories S.A at 0.3s 31,500 123654 

ER-ETR-H1-2 Rammed earth (ER), reinforced earth system (ETR), 

1–2 stories 

PGA 15,000 89931 

MUR-STRUB-H1-2 Unreinforced masonry, with rubble (field stone) or 

semi-dressed stone (STRUB), 1–2 stories 

PGA 15,000 89931 

W-WHE-H1-3 Wood (W), Heavy wood (WHE), 1–3 stories S.A at 0.3s 12,000 82436 

MCF-DNO-H1-3 Confined masonry (MCF), non-ductile (DNO), 1–3 

stories 

PGA 40,500 66749 

MCF-DUC-H1-3 Confined masonry, ductile, 1–3 stories PGA 126,000 66749 

MR-DUC-H1-3 Reinforced masonry (MR), ductile (DUC), 1–3 

stories 

PGA 360,000 16745 

CR-LFINF-DNO-H1-3 Reinforced concrete (CR) with infilled frame 

(LFINF), non-ductile, 1–3 stories 

PGA 126,000 13925 

UNK Unknown S.A at 0.3s 12,000 8432 

CR-LFINF-DUC-H1-3 CR, with infilled frame, ductile, 1–3 stories PGA 288,000 7519 

CR-LDUAL-DUC-H4-7 CR, with dual wall system (LDUAL), ductile, 4–7 

stories (H4-7) 

S.A at 1.0s 1,080,000 125 

CR-LWAL-DNO-H4-7 CR, with wall system (LWAL), non-ductile, 4–7 

stories 

S.A at 1.0s 472,500 76 

CR-LWAL-DUC-H4-7 CR, with wall system, ductile, 4–7 stories S.A at 1.0s 1,080,000 76 

CR-LWAL-DUC-H8-19 CR, wall system, ductile, 8–19 stories (H8-19) S.A at 1.0s 3,456,000 34 

CR-LDUAL-DUC-H8-19 CR, with dual wall system, ductile, 8–19 stories S.A at 1.0s 3,456,000 32 

These SARA buildings are spatially aggregated onto 

Central Voronoi Tessellations (CVT) to form seismic-

oriented exposure models. It is worth noting that the 

construction of such heterogeneous aggregation units 

was based on the selection of an underlying 

distribution that spatially combined and normalised 

two weighted map layers, namely: (1) a tsunami 

inundation depth from a Mw 9.0 scenario (70% 

weight), and (2) the population density at the block 

level (30%). The resulting model provides higher 

resolution cells where both conditions are maximised 

whilst coarser geocells occur when one can expect 

their absence. Further details about these models are 

available in Gómez Zapata et al., (2021a, b). Figure 5-5 

shows the percentage of building typologies grouped 

by their main structural materials expected within each 

geocell.  

The analytically derived set of seismic fragility 

functions by Villar-Vega et al., (2017) are assigned to 

every SARA class. They will be used to obtain the 

damage distribution for the cross-correlated ground 

motions per earthquake scenario (Sect. 5.3.2). For this 

vulnerability assessment, we use the replacement cost 

as given by Yepes-Estrada et al. (2017) presented in 

Table 5-1. For their damage states, we assumed loss 

ratios of 2%, 10%, 50%, and 100%, respectively. 
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Figure 5-5. Spatial distribution of the percentage of the main structural material of the residential buildings in Metropolitan Lima 

in each CVT (Central Voronoi Tessellation) geocell using the dataset of Gómez Zapata et al., (2021b). The colour scale 

represents the material type: (a) masonry and earthen (red); (b) reinforced concrete, RC and Unknown, UNK (blue); (c) wooden 

types (green). Only CVT that intersected the census-based blocks (INEI, 2017) are shown. 

 

On the tsunami vulnerability side, we represent the 

commonly exposed residential building stock to 

earthquakes and tsunamis in terms of two 

classification schemes, namely the Suppasri et al., 

(2013) and Medina, (2019) schemes which provide sets 

of empirical and analytical fragility curves, 

respectively. The former one was made available for 

Lima in Gómez Zapata et al., (2021b) and is 

comprised of six typologies. Notably, its 

corresponding set of empirical tsunami fragility 

functions (with six damage states) was derived by 

implicitly addressing the damage induced by the 

ground-shaking after the Mw 9.1 2011 Japan 

earthquake and tsunami. Due to this reason, the steps 

outlined in Sections 5.2.1 and 5.2.3 are not developed 

for the Suppasri et al. (2013) scheme. Their related 

direct scenario-based loss estimates were reported in 

Gómez Zapata et al., (2021e) from the variations 

obtained from seven geographical entities used to 

spatially aggregate the residential building portfolio of 

Lima, and presented in Sect. 5.4 for comparative 

purposes in contrast with the offered method applied 

to the Medina (2019) scheme. This second type of 

classification is to the authors’ knowledge the only 

available model that provides analytical far-field 

tsunami fragility functions for the South American 

Pacific Coast. It includes six typical buildings located 

in Tumaco (Colombia) initially defined in Medina, 

(2019), which are generalized in this study. They are 

M-PN (wooden), M-MP (masonry), M-PCP1-T1 

(framed RC, one storey with similar length-width 

ratio), M-PCP1-T2 (framed RC, one storey, with a 

higher length to width ratio), M-PCP2 (framed RC, 2 

storeys), and M-PCP3 (framed RC, 3 or more storeys). 

Their associated set of fragility functions was 

developed following the method proposed in Medina 

et al., (2019) to define the structural fragility due to 

tsunami forces. A summary that regards the structural 

characteristics of these building types and the method 

adopted in deriving these models are provided in the 

data repository Gómez Zapata et al., (2022a). 

As explained in Sect. 5.2.1, every building class within 

the three schemes of interest is disaggregated into 

attributes within the GEM v.2.0 faceted taxonomy. As 

done in Gómez Zapata et al., (2022b), fuzzy 

compatibility levels between the attribute values and 

building classes are assigned through expert elicitation. 

Thereby, synthetic surveys based on the possible 

combinations of attributes that every building class 

may describe are employed to solve the compatibility 

scores and obtain the probabilistic inter-scheme 

compatibility matrices in the form of 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵). 

Subsequently, we can obtain the building counts under 

the tsunami classification scheme. This is done 

considering the SARA classification (Figure 5-6a), as 

the source scheme {𝑅}𝑇𝑘
𝐴 and the inter-scheme 

conversion matrix (Figure 5-6b). Then, the 

corresponding counts under the tsunami scheme of 

Medina (2019) {𝑅}𝑇𝑗
𝐵 (Figure 5-6c) are obtained by 

applying a dot product (Eq.  5-4). 
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Figure 5-6. Classification of the buildings in the maximum exposed area to both perils (Mw 9.0 scenario) in terms of the (a) 

seismic-vulnerability oriented SARA classes (used as a source scheme) and (b) the inter-scheme conversion matrix. The former 

two models are used as inputs to obtain the (c) proportions for the tsunami-oriented building classes of Medina (2019). 

 

The inter-scheme conversion between SARA and the 

Suppasri et al., (2013) classes for Lima was reported in 

Gómez Zapata et al., (2021f). The replacement costs 

values of the building classes within the Medina (2019) 

scheme are assumed to be the same as the SARA class 

for which the largest compatibility value was obtained 

from the inter-scheme compatibility matrix (Figure 

5-6b). We have adopted identical loss ratios per limit 

damage state as the ones assumed for earthquake 

vulnerability. This decision is aligned with previous 

related studies, i.e., similar loss ratios were also 

adopted in Antoncecchi et al., (2020) to assess the 

vulnerability of buildings to tsunamis using empirical 

fragility functions. It is worth noting that only the 

commonly exposed buildings to each pair of hazard 

scenarios (i.e., intersection between the IM of Figure 

5-4 and Figure 5-5) are considered for the assessment 

of cumulative damage after the cascading sequence.  

5.3.4. Inter-scheme damage states for the 

models adopted for Lima 

We obtain the inter-scheme damage compatibility 

matrices, 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ), following the method 

presented in Sect. to probabilistically harmonise the 

damage states that define the fragility functions of 𝐴 

(SARA) and 𝐵 (Medina). It is worth noting that 

although 𝐴 and 𝐵 comprise four damage states they 

do not have a trivial equivalence. 𝐴 defines a single 

damage criterion for the entire set of building classes 

closely following the proposal by Lagomarsino and 

Giovinazzi, (2006) as a function of the yielding and 

ultimate spectral displacements. Conversely, 𝐵 uses a 

building class-dependent parametrization based on the 

HAZUS inter-storey drift ratios to define the 

structural damage levels on pre-code structures. First, 

we use the AeDES scale to score the admissible 

observable damage extension on individual building 

components (𝑛 in Eq. 5-5) through expert elicitation, 

which can jointly describe each building-specific 

damage states of every scheme’s fragility functions 

(𝐷𝑘𝑧
𝐴 , 𝐷𝑗𝑦

𝐵 ). Some examples of this procedure are 

displayed in Figure 7. These heuristics configure the 

training datasets. Subsequently, we have configured 

the testing datasets. They are composed of a synthetic 

dataset of 10,000 exhaustive possible combinations of 

the observable AeDES score-based damage 

extension {𝑂𝐷}𝑛. Thereby, the likelihood terms and 

𝑝(𝐷𝑗𝑦
𝐵 |{𝑂𝐷}𝑛) in Eq. 5-8 represent the probability of 

classifying each damage state 𝐷𝑘𝑧
𝐴  and 𝐷𝑗𝑦

𝐵  given the 

set of scored building components {𝑂𝐷}𝑛. 

To obtain the likelihood terms of in Eq. 5-8, we have 

decided to use the Gaussian Naïve Bayes supervised 

machine-learning classification-algorithm. It is 

available in the free software library Scikit-learn for the 

Python programming language (Buitinck et al., 2013). 

This selection is suitable for our classification problem 

because the observable damage heuristics can be 

assumed as normally distributed continuous data. This 

can be observed from the heuristic shown in Figure 7 

where the central damage states (i.e., moderate and 

extensive) show wider ranges of combinations of 

observable damage with respect to the lowest (slight) 

and largest (collapse) states. For illustrative purposes, 

in Figure 5-8 we show one of the possible sets for the 

likelihood probabilities predicted for each damage 

state described in terms of observable damage 

extension with respect to the AeDES scale upon two 

building components (VS, IP) for two material-based 
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typologies in the commonly exposed area to both 

perils, i.e., masonry and wooden structures (see Figure 

5-6a,c).  

 
Figure 5-7. Examples of the AeDES-based heuristics (see original AeDES form (Baggio et al., (2007) on Figure 5-2)) that 

describe the expected observable damage onto the four selected building components listed in Eq. 5-5 (vertical structure (VS); 

floor (FL); roof (RF); infills and partitions (IP)) using the scale from I-A (i.e., I=0 (null) to A=9 (>2/3 extension within the “very 

heavy” damage level). This is done per damage state per building class within two hazard-dependent vulnerability schemes. 

 

The marginal probability in Eq. 5-8, 𝑝({𝑂𝐷}𝑛), is 

assumed to be the proportion between one 

observation and the exhaustive combinations 

(1/10,000). Thereafter, we have obtained the 

probabilistic inter-scheme damage matrix 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) 

for each combination of building types from the two 

schemas (i.e., 21 SARA classes by 6 Medina classes = 

126 conversion matrices). Examples of the inter-

scheme damage matrices are shown in Figure 5-9 for 

three pairs of building types that had the highest inter-

scheme compatibility values in Figure 5-6b. Each of 

the 126 matrices that relates the damage states for each 

possible combination of building classes from the two 

schemas is subsequently weighted by the 

corresponding value of 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵), that is, by the 

probability of the building classes of the two schemas 

actually being descriptive of the same actual building 

(i.e., Figure 5-6b). When considered in Eq. 5-13, the 

damage related matrices are maximized by the most 

compatible pairs of inter-schema building matrices 

(Figure 5-6b). The scripts, heuristics, the final set of 

likelihoods, and the compatibility matrices are 

provided in Gómez Zapata et al., (2022c).  

5.3.5. Tsunami state-dependent fragility functions 

for Lima 

We have followed the method presented in section 

5.2.3 to configure the state-dependent fragility 

functions based on Scheme 𝐵 (Medina) with 

associated analytical far-field tsunami fragility 

functions. The parameters that define the lognormal 

cumulative distributions for the four original damage 

states (assuming an initial undamaged state), and well 

as for the set of 𝐺𝑓 = 10 transitions probabilities 

(from Eq. 5-10) are provided in the data repository 

(Gómez Zapata et al., 2022a). Figure 5-10 shows the 

analytical tsunami fragility functions (continuous lines) 

and state-dependent fragility curves with their 

respective damage-transitions (non-continuous lines) 

for the six building classes. 

From Figure 5-10 it is possible to observe some 

features of the tsunami damage-state fragility 

functions based on ad- hoc calibration parameters 

(Sect. 5.2.3). For example, the masonry buildings class 

is the one most fragile to tsunami forces when in an 

undamaged state. Consequently, their associated state-

dependent fragilities are shifted towards the left side 
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of the plot in quite an extreme fashion (Figure 5-10a). 

This means that for that building type there is a higher 

probability for it to follow a longer damage 

progression after having been strongly affected by the 

seismic ground-shaking (dotted and dashed lines). 

Conversely, for the wooden buildings (Figure 5-10-b) 

these are more likely to follow a damage progression 

than other classes if they were slightly affected by the 

shaking (see dashed lines). For the two one-storey RC 

building types assessed (M-PCP1-T1 & M-PCP1-T2) 

there are negligible differences between the transition 

probabilities D2-D3 and D3-D4, as well as between D1-

D3 and D2-D4. Notably, the inter-distances between 

these pairs of sets (of damage states) are of a similar 

order as the ones comprised by one and two damage 

state(s) respectively. This feature is not present for the 

other RC buildings with increasing heights nor the 

wooden types. This observation is dependent on the 

specific analytical fragility models used and the 

assumptions adopted to derive them (Eq. 10) and no 

generalization should be done until it can be further 

validated through other means. 
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Figure 5-8. Predicted likelihood probabilities of classifying each damage state of two building types that belong to the earthquake-

oriented (EQ) vulnerability scheme SARA (𝐷𝑘𝑧
𝐴  (with building types k and sets of damage states z)) and two building types that belong 

to the tsunami-oriented (TS) scheme Medina (𝐷𝑗𝑦
𝐵 , with building types j and sets of damage states y). These features comes from having 

scored the likely observable damage {𝑂𝐷}𝑛 onto the building components listed in Eq. 5-5 in terms of the AeDES scale (i.e., 0=L - 

9=A (e.g., as shown in Figure 7). The predicted likelihood probabilities on the figure are only shown for the building components VS 

(vertical structure) and IP (infills and partitions) for masonry buildings (subplots a, c) and wooden buildings (subplots b, d).
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(a) Masonry classes 

 

(b) Wooden classes 

 

(c) RC classes 

 

Figure 5-9. Probabilistic inter-scheme damage compatibility matrices for three pairs of building classes: (a) Masonry, (b) Wooden, 

and (c) Reinforced concrete (RC). The pairs of building typologies shown had the greatest compatibility in Figure 5-6b. Their 

respective fragility functions are comprised within the source earthquake-oriented (EQ) vulnerability scheme SARA (𝐷𝑘𝑧
𝐴 , with 

building types k and sets of damage states z) and the target tsunami-oriented (TS) scheme Medina (𝐷𝑗𝑦
𝐵 , with building types j and 

sets of damage states y). 

 

  

  

  

Figure 5-10. Analytical tsunami fragility functions with initial undamaged state as proposed by Medina, (2019) (continuous lines) 

and derived state-dependent fragility curves (non-continuous lines) in terms of flow depth (m) as IM for six building classes: (a) 

M-MP (masonry), (b) M-PN (wooden), (c) M-PCP1-T1 (framed reinforced concrete (RC), one storey with similar length-width 

ratio), (d) M-PCP1-T2 (framed RC, one storey, with a higher length to width ratio), (e) M-PCP2 (framed RC, 2 storeys, (f) M-

PCP3 (framed RC, 3 or more storeys). 
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5.3.6. Cumulative damage from 

consecutive ground shaking and tsunami 

scenarios in Lima 

The spatially cross-correlated ground motion fields 

(Sect. 5.3.2, Fig. 11-a, b), along with the exposure 

model for seismic vulnerability and their 

corresponding fragility functions (Sect. 5.3.1, Fig. 11-

d, e) are the first set of inputs required by the engine 

DEUS (Brinckmann et al., 2021) to estimate the 

damage distribution and direct economic losses for 

the residential building stock of Lima after each 

earthquake scenario. DEUS is a software designed to 

compute scenario-based risk from any type of natural 

hazard over spatially aggregated building portfolios. 

This version of DEUS is an open-source Python 

program whose number of executions are 

proportional to the consecutive risk scenarios. 

As shown in f, g, the resulting damaged exposure 

model (after ground-shaking) is used as input for a 

second execution to account for the cumulative 

damage induced by the tsunami scenarios. DEUS 

makes use of the two sets of inter-scheme 

compatibility matrices for buildings (Sect. 5.3.1) and 

damage states (Sect.5.3.4) to change from the source 

earthquake reference scheme to the target tsunami 

reference scheme (see Fig. 11-g). These are inputs 

together with the tsunami inundation heights (Sect. 

5.3.2, Fig. 11--c), and state-dependent tsunami fragility 

functions (Sect. 5.3.5, Fig. 11-h) for the second run of 

DEUS. This time, the damage states are updated in the 

building exposure model, delivering only the 

disaggregated damage and losses expected from the 

tsunami. Finally, the cumulative distribution of losses 

is obtained by adding the latter disaggregated tsunami 

losses with the initial results derived from the 

earthquake ground-shaking.  

5.4. Results 

Since we have addressed the aleatory uncertainty in the 

cross-correlated ground motion fields by generating 

1,000 realisations, the procedure described in Sect. 

5.2.4 was carried out the same number of times. The 

generated results are, therefore, presented in the form 

of loss exceedance curves in Figure 5-12. This figure 

reports the probability of exceeding the selected loss 

metric (replacement cost in USD) for the six 

earthquake and tsunami scenarios that might impact 

the portion of the residential building stock of Lima 

that is commonly exposed to each pair of hazard 

scenarios (buildings for which the action from one of 

the two hazards was negligible were excluded from the 

comparison). This figure shows five sets of curves, 

described as follows: 

1. Earthquake ground-shaking-induced loss (blue 

curves). They represent the direct losses due only 

to seismic ground shaking using the SARA 

scheme (Villar-Vega et al., 2017). They are 

obtained through 1,000 realisations of cross-

correlated seismic ground motion fields using the 

models described in section 5.3.2. 

2. Losses obtained from the sole use of empirical 

fragility functions as simulating a near field 

tsunami (red curves). These curves represent the 

losses from the cumulative effects of the shaking 

and the tsunami (without any possibility to 

separate both effects). Such losses prediction may 

be biased since the empirical fragility functions of 

(Suppasri et al., 2013) assuming an initial 

undamaged state (𝐷𝑘0
𝐴 ) has not been validated for 

smaller or larger events. Similarly as it was 

concluded in Gómez Zapata et al., (2021), we 

have also observed that as the earthquake 

magnitude increases, the differences between the 

two largest loss values in the curve (from the two 

finest resolution entities) are reduced 

3. Losses obtained from the sole use of analytical 

fragility functions as simulating a far-field tsunami 

(purple curves. They represent the direct losses 

obtained solely through the implementation of 

the analytical tsunami fragility tsunami (Medina), 

while assuming an initial undamaged state (𝐷𝑘0
𝐴 ), 

thus, neglecting seismic ground-shaking. 

Similarly, as done for the former case (empirical 

functions), the reduced variability of these results 

was accounted for through computations using 

seven exposure models, with variable spatial 

resolutions obtained from a recent study (Gómez 

Zapata et al., 2021f). This is a result of the lack of 

variability in the seismogenic parameters to vary 

only the Mw, and not having assumed 

distributions for slip-rates, but single values 

(Gómez Zapata et al., 2021f). 
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Figure 5-12.  Five loss exceedance curves for the residential building portfolio of Lima are presented in six subplots per 

earthquake magnitude scenario (Mw (8.5-9.0). Three out of the five curves represent the disaggregated losses per hazard event: 

shaking-induced losses only (blue); far-field tsunami-induced losses (initial undamaged state, purple); state-dependent tsunami-

induced losses (with pre-existing shaking induced damage, orange). The green curves represent the losses expected from the 

cascading sequence. The red ones show the losses derived solely using empirical tsunami fragility functions (implying that they 

have an implicit contribution by the earthquake phase) 

4. Disaggregated losses of the tsunami event 

obtained after using state-dependent fragility 

functions (orange curves). They represent the 

direct losses which were only derived from the 

updated exposure model (i.e., with non-zero 

damage states)). This means that these curves 

only represent the disaggregated tsunami-induced 

losses for buildings that have already experienced 

earthquake-related damage. These loss 

exceedance curves are constructed using Eq. 

5-13. Thus, this procedure implied the inter-

scheme building conversion 𝑝(𝑇𝑘
𝐴|𝑇𝑗

𝐵) derived 

in section 5.3.1, the inter-scheme damage state 

conversion 𝑝(𝐷𝑘𝑧
𝐴 |𝐷𝑗𝑦

𝐵 ) obtained in Sect. 5.3.4, as 

well as the state-dependent tsunami fragility 

functions constrained in Sect. 5.3.5. 

5. Cumulative losses induced by the ground-shaking 

and tsunami sequence (green curves). They 

represent the losses obtained by adding the 

shaking-induced losses (blue curves) with the 

aforementioned disaggregated tsunami-induced 

losses (orange curves), that is, the outcome of the 

method proposed in this paper. These green 

curves represent, according to our approach, the 

likely losses that would be expected from each 

magnitude-dependent scenario-based cascading 

sequence over the considered building stock. 

Hereafter we describe some observations that arise 

from Figure 5-12: 

1. The resultant losses obtained after having 

used the two sets (empirical or analytical) of 

tsunami fragility functions (while assuming 

initial undamaged states) are profoundly 

different. As expected, the use of the 

empirical tsunami fragility model (red 

curves) is, for all the magnitudes, leads to 
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larger values in comparison with the values 

obtained from the analytically derived 

fragility functions (purple). These differences 

increase with magnitude. This feature might 

arise, not only from the fact that empirical 

fragility functions consider both earthquake 

and tsunami actions while the purple curves 

consider only the effects of the tsunami, but 

also because empirical fragility functions 

only account for flow depth as the IM. 

Conversely, the analytical fragility functions 

implemented were derived using the 

theoretical forces associated with the flow 

velocity tsunami waves as input in the 

generating numerical model. Similar 

observations regarding the reduction in the 

loss estimations when flow velocity is 

included have been drawn by other studies 

(e.g., Attary et al., 2019; Park et al., 2017). 

2. We observe that the ground-shaking 

dominates the losses at lower magnitudes 

(Mw 8.5, 8.6), whilst the tsunami, either from 

analytical (emulating far-field tsunamis) or 

empirical fragility functions (near-field 

tsunamis), controls the losses for the rest of 

the scenarios with larger magnitudes. The 

former is aligned with the observations of 

Goda and De Risi, (2018) and (Gómez 

Zapata et al., 2021f) for the case of empirical 

tsunami models. Moreover, a similar trend is 

observed for the disaggregated tsunami-

induced losses (assuming initial non-zero 

damage) whose respective loss values 

(orange curves) are larger than the shaking-

induced losses for Mw 8.8, 8.9, and 9.0. 

Hence, these features highlight that as the 

magnitude increases, there is an increasing 

comparative importance of the tsunami risk 

within the considered sequence of hazards. 

3. Expected loss values from cumulative 

damages based on single-hazard vulnerability 

models (our method, green curves) are 

clearly different from the one produced by 

classical empirical tsunami models. Classical 

empirical tsunami fragility functions lead to 

considerable lower losses estimations for the 

low magnitudes earthquakes and substantial 

larger estimations for the larger ones. 

4. The differences between the loss exceedance 

curves derived from both sets of analytical 

fragility models (either from undamaged or 

with pre-existing damage) are larger for the 

lower magnitudes (Mw 8.5, 8.6) and decrease 

with increasing magnitude. As the magnitude 

increases, there is an increasing tendency of 

convergence between these two loss curves 

(Mw 8.9, 9.0). 

5. Consequently, since tsunami-induced losses 

either from analytical fragilities (initial 

undamaged states) or from state-dependent 

and inter-scheme models converge for the 

larger magnitudes (Mw 8.9, 9.0), their 

respective summations with the shaking-

induced losses would be approximately 

similar at the largest probabilities of 

exceedance. Nevertheless, this observation 

needs to be better investigated through more 

exhaustive simulations of tsunami 

inundation per considered scenario. 

6. Conversely, considering observation 3, (i.e., 

as the magnitude decreases, the differences 

between purple curves and orange curves 

increases), their respective summations with 

the shaking-induced losses will lead to very 

different results. Hence, this observation 

suggests that, although earthquake and 

tsunami structural responses can be 

separately approximated for very large 

magnitudes, it is still required to address 

cumulative damages from the vulnerability 

interactions that are expected on the lower 

magnitudes earthquakes we have considered 

(i.e., Mw. 8.5, 8.6). 

When we consider analytical fragility functions with 

𝐷𝑘0
𝐴  that only emulate the damaging actions of far-field 

tsunamis (without any ground shaking), we observe 

that as the magnitude increases, their respective loss 

exceedance curves converge with the ones that 

assumed state-dependency (𝐷𝑘𝑧
𝐴 ). This is because, for 

the larger magnitude events, the damaging actions due 

to seismic ground shaking will correspondingly 

increase. Hence, the available probabilistic damage 

transitions from the damage states within the 

earthquake (source) to tsunami (target) schemes will 

be consequently reduced. Therefore, we observe that 

if far-field analytical tsunami fragility functions are 

used, their corresponding results will be very much 

alike, regardless of whether they are considered as 

being undamaged (𝐷𝑘0
𝐴 ) or with pre-existing 

damage (𝐷𝑘𝑧
𝐴 ). Therefore, for these larger magnitude 

events, regardless of which curve is summed up with 

the shaking-induced losses, the resulting loss 

distributions for the hazard sequence would lead to 
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quite similar results. Thus, the implementation of 

state-dependency on tsunami fragility may not be fully 

necessary to be addressed for very large earthquake 

magnitudes (Mw 8.9, 9.0). This observation is aligned 

with studies (i.e., Petrone et al., 2020; Rossetto et al., 

2018) that suggest that earthquake and tsunami 

structural responses can be separately approximated. 

However, the former statement would not apply to the 

low magnitude earthquakes investigated in Lima for 

which the pre-existing damage due to earthquakes 

must be addressed. No generalizations should 

therefore be done in this regard, with sensitivity 

analyses needing to be carried out in the future.  

5.5. Discussion 

This study has proposed a modular method to 

disaggregate the direct losses expected for building 

portfolios exposed to consecutive hazardous scenarios 

of different natures in which their individual 

components could be individually improved. 

Therefore, future sensitivity analyses on some of the 

modules related to damage-state would benefit the 

understanding of how their embedded uncertainties 

would impact their corresponding results. We can 

mention: 

1. The disaggregation of building classes into 

taxonomic attributes as presented in Sect. 

5.2.1 is an important input to obtain the 

probabilistic inter-scheme compatibility 

matrices based on (Gómez Zapata et al., 

2022b). However, it is worth noting the 

shortcoming described by Charvet et al., 

(2017) referring to the generalised poor 

taxonomic building characterizations of the 

currently available tsunami fragility models. 

They are, most of the time, only based on 

their main construction material, although 

sometimes they include the number of 

storeys, and rarely do they include other 

attributes such as the date of construction 

(e.g., Suppasri et al., (2015). When more 

enriched descriptions for tsunami 

vulnerability get available in the future, this 

approach will remain useful for similar 

purposes. 

2. When/if local high quality empirical data 

collection and analytical models), become 

available, they could be used to constrain 

the relationships between the failure 

mechanisms and attribute relevance for 

hazard-related susceptibilities. This might 

contribute to enhance the construction of 

heuristics that characterise the likely 

observable damage extent (per damage limit 

state, building type and hazard-dependent 

fragility model), that could be obtained 

through more refined approaches such as 

unsupervised machine learning. Its use 

applied on real datasets that document 

observations on building components 

(even different from the ones presented in 

Eq. 5-5) could contribute to refine state-

dependent tsunami fragility functions and 

to restrict the heuristics on the likely 

observable damage (Sect. 5.2.1) and thus, 

minimizing subjective expert judgment. In 

this sense, it is worth noting that the set of 

predicted likelihood probabilities in the 

probabilistic compatibility degree between 

damage states from different hazard 

fragility functions that we derived from the 

synthetic datasets created through the 

heuristics and the AeDES scoring system 

are not unique, as they depend on the 

choice of machine learning technique and 

on the heuristics derived through expert 

elicitation. In this sense, we have 

documented a preliminary sensitivity 

analysis on such parametrization in Gómez 

Zapata et al., (2022c). However, further 

investigation of the impact of such 

parametrization is still advised. 

3. As described by Hill and Rossetto, (2008), 

we have observed that, when characterising 

damage states due to the impacts of natural 

hazards on buildings, there is still the need 

for standardisation in describing observable 

physical damage after any kind of 

hazardous event through the harmonisation 

of damage scales for data collection, not 

only on entire building units but also 

regarding the particular damage (and 

extent) experienced by certain individual 

components. In this regard, although we 

have used the AeDES scale, other damage 

scales could be more suitable to describe 

the observable damage to some building 

classes than for others (Hill and Rossetto, 

2008; Turchi et al., 2022). Nonetheless, the 

choice of a standard scale to transversally 

describe any observable set of damage on 
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buildings will benefit the research in multi-

hazard vulnerabilities. 

4. The integration of economic consequence 

models for physical vulnerability based on 

the replacement costs as a function of the 

buildings’ area, as for instance presented in 

Triantafyllou et al., (2019) for tsunami 

vulnerability is worth testing. This also 

depend on the available data and it is out of 

the scope of this paper, but it would be 

worth exploring their contribution once 

more refined estimations about 

replacement cost are available for Lima. 

Nevertheless, one should be aware on the 

uncertainties involved for large scale 

building exposure models.  

5. The derivation of the hazard intensities 

could also benefit from future 

enhancements. For instance, the GMPE-

based seismic accelerations derived on a 

simplified Vs30 site-grid of ~1 km might be 

too coarse to capture local site effects in the 

expected ground motions. However, the 

performance of site-response analyses that 

account for the local geotechnical soil 

properties of site-specific soil profiles, as 

for instance reported by Aguilar et al., 

(2019), is a computationally demanding task 

that is out of the scope of this study, but 

when integrated it could benefit the overall 

quality of seismic risk calculations for the 

study area. Complementary, we strongly 

advise the physical to generate exhaustive 

sets of cross-correlated-ground motion 

fields (at the required spectral periods by 

the buildings classes) to address their 

aleatory uncertainty. The selection of this 

model, among the available ones, carries 

epistemic uncertainties. 

It is worth noting that the variability of the loss 

exceedance curves obtained for the cumulative 

damage (due to tsunamis) was derived from the 

damaged exposure models subjected to each 

realisation of cross-correlated ground motion fields 

(i.e., orange curves in Figure 5-12). Therefore, 

investigating the impact of other tsunami vulnerability 

and hazard data products (Behrens et al., 2021), which 

was beyond the scope of this paper, are nonetheless 

worth exploring. When such parametrisation in the 

tsunami data products becomes available for Lima, 

future studies could provide dimensionality of the 

contribution of the tsunami hazard upon the outlined 

method for scenario multi-risk estimates. 

For the commonly exposed residential building stock 

of Lima exposed to both perils, we have observed that 

assuming initial undamaged states in the selected 

tsunami empirical fragility functions leads to large 

underestimations for lower magnitudes (Mw) and large 

overestimations for larger Mw events in comparison to 

when state-dependent models were used. Hence, the 

initial “undamaged state” assumption used to assess 

the tsunami vulnerability in former studies (e.g., 

Adriano et al., 2014; Gómez Zapata et al., 2021e) may 

not be completely accurate to represent the losses 

expected after this type of cascading sequence. This is 

because such an assumption misses the calculation of 

earthquake-related damage which is an important 

input needed to assess cumulative damage and losses 

through state-dependent analytical fragility models. 

On the other hand, adopting the larger value between 

independent earthquake and tsunami risk 

computations proposed by Goda and De Risi, (2018) 

may lead to better correspondence with our model 

(mostly for the lower Mw events) than the sole use of 

the selected non-state dependent analytical fragility 

functions.  

To give a perspective on the importance of addressing 

cumulative damage and losses for building stocks, let 

us recall some of the findings that the available studies 

of Gómez Zapata et al., (2021e) and Markhvida et al., 

(2017) found. They investigated the likely economic 

losses of the entire residential building portfolio Lima 

and Callao solely after seismic ground motion from a 

Mw 8.8 scenario addressing the variability induced by 

the same cross-correlation model we have 

implemented herein. In the first study, ~1,657,635 

residential buildings were considered and both studies 

considered the SARA building classes and fragility 

functions, similar to what we have done. Both studies 

reported mean loss values of around 7 and a maximum 

of around USD 35 billion (among a stochastic sample 

of events). It is then interesting to compare such a 

range of values with the mean loss values reported for 

a similar Mw (Fig 11-d). Notably, the forecasted losses 

per event (shaking and tsunami) and inferred from 

cumulative damage were derived from the much 

smaller commonly exposed building stock to each pair 

of hazard scenarios (see Fig 8-c), which constitute ~ 

21,209 buildings. This means that the building count 

for the entire residential stock of Lima (Fig 6-a) is 

around 78 times larger than the commonly exposed to 

both perils (Fig 6-b). Hence, can note the important 
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role of tsunami-induced losses in the study area. The 

mean losses expected from the cascading sequence of 

that Mw 8.8 (i.e. value for the 50th percentile on the 

green curve in Fig. 11b) is ~ USD 0.75 billion and a 

maximum of around USD 0.94 billion. Therefore, 

given the difference between the size of both building 

portfolios, finding out that the losses for the entire city 

are expected to be only 9 times larger than the ones 

forecasted after the action of both earthquake and 

tsunami, tells us that the crucial importance of 

carefully addressing the cumulative damage due to 

tsunami in the study area. Moreover, this tell us that, 

besides all of the secondary effects of the tsunami, 

these types of future scenarios in Lima will constitute 

a huge driving source of direct economic losses for 

building portfolios, but also uncertainties due to the 

lack of data to calibrate or validate these types of risk 

assessment after the action of cascading hazards.  

5.6. Conclusions  

We have proposed a modular method that allows us 

to consistently re-use existing single hazard fragility 

models that are being developed by experts in various 

research fields and integrate each other for multi-

hazard risk assessment for extended building 

portfolios. This integration aims for the probabilistic 

harmonisation of diverse hazard-dependent building 

classes and damage states which are included in their 

associated fragility functions. Through this 

integration, we aim to provide an alternative approach 

to conventional ones (e.g., HAZUS-MH (FEMA, 

2003, 2017)) that consider a single building class with 

sets of fragility functions for a variety of hazards. In 

this sense, the method we have developed can be 

particularly useful to assess the cumulative damage in 

hazard sequences of different natures and forces that 

might induce various failure mechanisms upon the 

exposed buildings. Thereby, the presented integrative 

method contributes to reducing the existing gaps due 

to the typical lack of collective calibration and 

validation of multi-hazard risk methods. This is due, 

for instance, when triggered events act on damaged 

assets right after the first hazard or even 

simultaneously experiencing compound hazards with 

no time for damage reconnaissance or disaggregation 

of the damage features induced by the individual 

hazards. 

We have proposed a modular method composed of 

the following components: 

1. The selection of existing hazard-dependent 

vulnerability schemes to model the building 

portfolio under each hazard-dependent 

vulnerability scheme of interest. They contain 

sets of building classes and associated fragility 

functions. To model the physical vulnerability of 

the building portfolio towards the triggering 

event (in this case, earthquake), no preference on 

whether empirical or analytical fragility functions 

should be used.  

2. On the other hand, to model the physical 

vulnerability of the building stock towards the 

triggered event, sets of state-dependent fragility 

functions must be derived for each building type 

within the selected scheme. For this purpose, it 

is important to use models that do not involve 

the damaging effects of the triggered event as the 

starting point. (i.e., avoiding empirical models 

and using analytical ones). This proposal 

overcomes the assumption of initial undamaged 

states for the structures exposed to the triggered 

event and allows to account for the differential 

cumulative damage between hazards.  

3. The characterisation of building classes through 

their disaggregation into building taxonomic 

attributes. This description allows the 

harmonisation between the building classes 

belonging to different hazard-dependent 

vulnerability schemes through the probabilistic 

inter-scheme compatibility matrix proposed in 

Gómez Zapata et al., (2022b).  

4. The exposure models are spatially aggregated 

into optimal geographic entities (i.e. CVT-based 

models) that account for the spatial variability of 

low-correlated hazard IM in their derivation 

(Gómez Zapata et al., 2021f). This selection was 

taken due to performance purposes only, but a 

more refined block-based model could also have 

been used.  

5. A generalized description of the damage states 

based on a set of observable damage types on 

individual building components. This is done 

through a scoring system based on an underlying 

common scale (employing, for example, the 

AeDES form) that ultimately allows us to get the 

damage-state inter-scheme conversion. We use 

the total probability theorem, a Bayesian 

formulation, and machine learning techniques. 

6. The vulnerability assessment for sequences of 

cascading hazards scenarios through the 

proposal of consistent economical consequence 

models across hazard-dependent vulnerability 
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schemes. They must define replacement cost 

ratios per damage state and per fragility function 

associated with each vulnerability scheme. 

The joint combination of these components creates a 

method to update the damage states throughout the 

multi-hazard sequence while allowing us to exploit 

existing hazard-specific risk-oriented taxonomies (i.e., 

building classifications with corresponding fragility 

functions and defined damage states) available in the 

literature for a wide range of natural hazards. This is a 

modular method in which each one of their individual 

components can be separately customized when 

seeking future improvements. 

When applying this method on the residential building 

stock of Lima (Peru), we have observed, on the one 

hand, that considering the risk metrics from tsunami 

vulnerability only from the selected set of empirical 

fragility functions (derived from near-field tsunamis) 

as representative of the shaking and tsunami 

sequences leads to underestimations for the lower 

magnitudes. On the other hand, we have observed 

overestimations for the larger magnitude scenarios in 

comparison with the state-dependent method that 

accounts for the accumulated damage due to the 

former earthquake solicitations. We have observed 

that the use of the proposed method to assess the 

cumulative damage is more relevant for the lower 

magnitude scenarios than we have considered (Mw 8.5 

and 8.6). This might be due to the greater damage 

extension on the exposed buildings that is expected 

from the seismic demands in comparison with those 

imposed by their corresponding tsunamis, and thus, 

there is greater chance to obtain cumulative damage. 

On the contrary, for larger magnitudes, the use of 

state-dependent fragilities and analytical functions 

assuming no pre-existing damage are converging, and 

thus, the importance of assessing state-dependency is 

reduced. 

Considering the limitations and simplifications 

assumed in this study, we are not claiming that the 

resulting economic losses we have calculated for the 

residential building stock of Lima from multi-hazard 

scenario-based risk computations are totally 

exhaustive. Thus, caution should be taken with the 

interpretation and extrapolation of these conclusions 

to other study areas and combinations of models. 

Nevertheless, awareness of these uncertainties for the 

reliable quantification of risk towards these cascading 

hazards is increasingly important to enhance 

mitigation strategies for disaster risk reduction 

(Imamura et al., 2019). Furthermore, it is worth 

recalling that the method herein proposed has been 

exclusively designed for spatially extended residential 

building buildings as a proof of concept for integrating 

existing fragility models. We do not provide an\ 

complete validation of multi-vulnerabilities 

approaches, but rather we offer a holistic and novel 

harmonising method to track such dynamics in a 

consistent manner. Hence, our method is not meant 

to replace more detailed analytical analyses required to 

determine the structural response of individual 

buildings subjected to seismic and tsunami loading 

(e.g., Petrone et al., 2017; Rossetto et al., 2019). 

Code and data availability. The data used in the 

elaboration of this study are available in open repositories. 

The scenario-based ground motions and tsunami inundation 

maps are available in Gómez Zapata et al., (2021c); Harig 

and Rakowsky, (2021), respectively. The first set was 

calculated making use of the Shakyground script (Weatherill 

et al., 2021) which relies on the OpenQuake Engine (Pagani 

et al., 2014), whilst the second set was calculated using the 

TsunAWI software. The exposure and fragility models for 

both hazard-vulnerability schemes (earthquake and tsunami) 

are available in Gómez Zapata et al., (2021a, b) and were 

adapted to fulfil the data formats required by the scripts 

provided by Assetmaster and Modelprop (Pittore et al., 

2021). They were used as inputs for the scenario-based 

seismic risk assessment (Sect. 1.2.1) using the DEUS 

software (Brinckmann et al., 2021). The scenario-based risk 

estimates for earthquakes and tsunami using analytical and 

empirical fragility functions respectively are provided in 

Gómez Zapata et al., (2021d). State-dependent analytical 

tsunami fragility functions used in this study are available in 

Gómez Zapata et al., (2022a). The set of inter-scheme 

damage compatibility matrices used in this study are 

provided in Gómez Zapata et al., (2022c). 
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Chapter 6 

 

6. Community Perception and Communication of Volcanic Risk 

from the Cotopaxi Volcano in Latacunga, Ecuador 

 

Abstract 

The inhabitants of Latacunga living in the surrounding of the Cotopaxi volcano (Ecuador) are exposed to 

several hazards and related disasters. After the last 2015 volcanic eruption, it became evident once again 

how important it is for the exposed population to understand their own social, physical, and systemic 

vulnerability. Effective risk communication is essential before the occurrence of a volcanic crisis. This study 

integrates quantitative risk and semi-quantitative social risk perceptions, aiming for risk-informed 

communities. We present the use of the RIESGOS demonstrator for interactive exploration and 

visualisation of risk scenarios. The development of this demonstrator through an iterative process with the 

local experts and potential end-users increases both the quality of the technical tool as well as its practical 

applicability. Moreover, the community risk perception in a focused area was investigated through online 

and field surveys. Geo-located interviews are used to map the social perception of volcanic risk factors. 

Scenario-based outcomes from quantitative risk assessment obtained by the RIESGOS demonstrator are 

compared with the semi-quantitative risk perceptions. We have found that further efforts are required to 

provide the exposed communities with a better understanding of the concepts of hazard scenario and 

intensity e 

e published as: Gómez Zapata, J.C; Parrado, C.; Frimberger, T.; Barragán-Ochoa, F.; Brill, F.; Büche, K.; Krautblatter, 

M.; Langbein, M.; Pittore, M.; Rosero-Velásquez, H.; Schoepfer, E.; Spahn, H.; Zapata-Tapia, C. 2021, Community 

Perception and Communication of Volcanic Risk from the Cotopaxi Volcano in Latacunga, Ecuador. Sustainability, 

13, 1714. https://doi.org/10.3390/su13041714 
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6.1. Introduction 

An active volcanic environment is prone to produce 

cascading and compound natural hazards. Cascading 

hazards comprise a primary hazard triggering a 

secondary one (Gill and Malamud, 2016), whilst 

compound hazards refer to events (not necessary 

interdependent) events whose spatiotemporal 

footprints overlap (i.e., they occur almost 

simultaneously and affect the same -or neighbouring- 

locations) (Pescaroli and Alexander, 2015). For 

instance, increasing volcanic activity can occur in 

company with seismic activity and continuous gas 

emissions, lightning, and ultimately trigger lava flow, 

pyroclastic density currents, tephra (including volcanic 

ash and ballistics), debris avalanches (sector collapse), 

tsunami (for submarine volcanoes or at the seaside), 

and lahars (Ward et al., 2020). Syneruptive lahars (also 

called primary lahars) can happen due to glacier 

melting during a volcanic eruption, whilst secondary 

lahars are commonly triggered by heavy rainfalls 

(Cando-Jácome and Martínez-Graña, 2019; Mothes 

and Vallance, 2015). The forecast of cascading and/ 

or compound volcanic hazards is very diverse and 

with time dependencies. Models are heavily tailored 

towards the specific volcanic system (Merz et al., 

2020). To explore the possible consequences before 

the actual occurrence of the events, risk scenarios are 

instrumental for risk communication practises. A risk 

scenario, as stated in Li et al., (2016), is considered as 

a situation picture in which a hazardous event with a 

certain probability would occur and cause some 

damage. The appropriate communication of risk 

scenarios, can ultimately contribute to territory 

planning, response planning, design of evacuation 

routes, and enhance overall preparedness. 

Consequences of volcanic events can be severe, 

especially when the affected community is not well 

prepared. One of the most widely-known examples of 

physical damage on assets and human losses due to a 

lack of effective risk communication occurred during 

the 1985 eruption of Nevado del Ruiz volcano in 

Colombia, during which 25,000 people died due to 

primary lahars (Lowe et al., 1986; García and Mendez-

Fajury, 2018; Pierson et al., 1990). However, 

volcanoes do not only affect the communities in their 

proximities but have also generated systemic 

infrastructure failures and cascading effects on a large-

scale. A clear example of this type of effects occurred 

during the eruption of the Eyjafjallajökull volcano in 

Iceland. During two months in 2010, about 100,000 

flights between Europe and North America were 

cancelled due to the sustained ash emission, causing 

more than $1.7 billion losses in lost revenues for 

airlines (Bolić and Sivčev, 2011). A further example of 

volcanic multi-hazard risk is the 2018 eruption of the 

Anak Krakatau volcano in Indonesia, which induced 

its own flank collapse, triggering a tsunami that 

resulted in the death of 430 people mostly in the 

western area of Java Island (Walter et al., 2019). A 

tsunami threat from the Krakatau volcano was not 

unknown since a similar historical event happened in 

1883. However, it was not taken up in a broader 

discussion on how to deal with such a risk scenario 

(Tsunami hazard and its challenges for preparedness). 

Monitoring of volcanic activity has been significantly 

improved in recent years through denser and 

widespread networks (Poland and Anderson, 2020; 

Biass et al., 2014). Moreover, there have been 

increasing research activities on the interaction 

between volcanic hazards (e.g. Zuccaro et al., 2008). 

However, the impacts caused by volcanic hazards are 

rarely assessed in a comprehensive manner due to the 

lack of worldwide unified exposure models (Pittore et 

al. 2017) and the scarce damage data collection on the 

exposed assets needed to constrain vulnerability 

models (Merz et al., 2020). These difficulties are even 

more pronounced in a multi-risk context, where there 

is still a gap in the investigation of the interactions at 

the vulnerability level (Gallina et al., 2016). Hence, 

only a few examples of quantitative damage 

assessment have been reported in the scientific 

literature (e.g. Gehl et al., 2013; Zuccaro and De 

Gregorio, 2013). Furthermore, there is a lack of tools 

for simulating representative volcanic scenarios in 

order to analyse the extent and spatial distribution of 

the expected consequences, needed for decision 

making and planning. Therefore, scenario-based 

approaches for a volcanic multi-hazard risk 

environment are not always available or might not be 

effectively communicated to the exposed 

communities before the occurrence of a volcanic crisis 

(Doyle et al., 2014b). On the one hand, setting up 

these methods in a consistent scenario-based 

approach is a challenging task in its own. On the other 

hand, effectively communicating the potential direct 

damages and losses and the associated likely 

disruptions of critical infrastructure is also a daunting 

task which depends on the availability of scenario-

based risk outcomes. 
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Rural communities of economically developing 

countries are particularly prone to encounter more 

difficulties throughout every single step of the multi-

hazard risk chain (e.g. Li et al., 2020; Ran et al., 2020). 

The social vulnerability perception of rural inhabitants 

might not be always taken into consideration by the 

local planners, partially due to their remoteness, i.e. 

typical large distances from the main urban centres 

(Papathoma-Koehle et al., 2020), or socio-economic 

factors such as their alphabetization level (Parham et 

al., 2020), poor access to information systems or even 

the basic lack of knowledge of what potential hazards 

may impact their communities (Papathoma-Köhle et 

al., 2019). These characteristics are common in areas 

exposed to volcanic hazards. In 2015 roughly 415 

million people, most of them located in rural areas, 

lived within a 100 km radius from the 220 active 

volcanoes listed in the ‘NOAA Significant Volcanic 

Eruption Database’ (NCEI/WDS Global Significant 

Volcanic Eruptions Database. NOAA National 

Centers for Environmental Information. 

doi:10.7289/V5JW8BSH., 2020). Hence, rural 

communities worldwide are more prone to suffer 

damaging effects from volcanic eruptions (Pesaresi et 

al., 2017). These consequences are not only expected 

to impact individual components such as buildings 

(Jenkins et al., 2014) and agricultural fields (Craig et al., 

2016), but also critical infrastructure (e.g. power 

networks, roads, and water supply systems) for which 

the evaluation of systemic vulnerability is also required 

(Wilson et al., 2017, 2014). 

Cascading effects may further drastically change the 

health quality, as well as economic and social activities 

of the exposed communities (Terzi et al., 2019). For 

example, the continuous emissions of volcanic ashes 

can interrupt agro-industrial activities, which are the 

most typical source of income of rural communities 

(Thompson et al., 2017). These communities may also 

experience low serviceability of lifeline networks 

(Deligne et al., 2017) and/or suffer from physical 

isolation from neighbouring communities, e.g. due to 

damaged bridges. Only in a few cases, the cascading 

effects due to volcanic eruptions have been analysed 

in a systematic manner (Scaini et al., 2014). Therefore 

there is an urgent need to effectively communicate the 

scientific results of a volcanic risk assessment while 

simultaneously addressing the social perception and 

understandings, by the exposed communities, of 

different risk factors (Doyle et al., 2014a). As stated in 

Thomalla et al., (2018), clear risk communication in all 

the components of a multi-risk chain (i.e. hazards, 

exposure, physical and systemic vulnerabilities) with 

the directly exposed communities, local decision-

makers and planners is fundamental to construct more 

resilient communities. 

Although community participation is considered an 

essential component of effective resilience planning to 

natural hazard-risks (Horney et al., 2016; Kwok et al., 

2018), only in recent years some studies have 

integrated scientific approaches with the active 

participation of the community, local planners, 

decision-makers and actors of the civil society (e.g. 

Lévy, 2014; Pescaroli, 2018; Heinzlef et al., 2020a; Gill 

et al., 2020; Fleming et al., 2020). The specific 

community perceptions of vulnerability and risk 

related to volcanic hazards have been investigated in 

former works (e.g. Bronfman et al., 2016; 

Jóhannesdóttir and Gísladóttir, 2010; Leonard et al., 

2014; Paton et al., 2008) through “top-down” 

approaches. In Pierson et al., (2014) it was suggested 

that scientists should have a transversal role and a 

stronger presence in the communication of volcanic 

hazards and risks from “bottom-up” approaches. To 

the best authors’ knowledge, these practices have been 

documented in a few works for rural communities (i.e. 

Armijos et al., 2017; Hicks et al., 2017). Hence, we can 

realise that there is still significant work to be carried 

out to strengthen the risk-informed communities 

exposed to volcanic hazards. With this background, 

we present throughout this work an integrative 

framework between scientific approaches that study 

the possible damaging effects from volcanic scenarios 

with the local knowledge and social risk perceptions. 

The study area of Latacunga, capital of the Cotopaxi 

province in Ecuador, with mainly rurally composed 

communities, and exposed to the Cotopaxi volcano 

has been investigated in order to enhance a risk-

informed community, awareness, and contribute to 

increasing their resilience. 

 

6.2. Framework and objectives 

Volcanic eruptions pose an enormous risk to Ecuador 

because most of the exposed human settlements in the 

central and northern highlands are situated less than 

25 km from an active volcano. Cities previously 

affected by volcanic eruptions include Quito, 

Latacunga, Salcedo, Cayambe, Ibarra-Otavalo, 

Ambato, Riobamba and Baños (Lupiano et al., 2020). 

Lahars have been among the deadliest volcanic 

hazards, but the emission of volcanic ash has been 

more frequent in the Ecuadorian Andes (Bernard et 
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al., 2016). Ash falls do not only have direct 

consequences on the inhabitants’ health and on the 

exposed infrastructure, but also on agriculture and 

animal husbandry which is particularly important for 

the rural communities in Ecuador. Ash falls have hit 

the rural communities settled in the vicinity of the 

most active Ecuadorian volcanoes (i.e. Tungurahua, 

Reventador, Sangay and Cotopaxi). Moreover, 

poverty, marginality and high inequality of the 

exposed communities coexist with their physical and 

systemic vulnerabilities (Frontuto et al., 2020). 

6.2.1. Description of the study area 

The Cotopaxi volcano is an active stratovolcano (5897 

m.a.s.l) located in the Cordillera Real of the 

Ecuadorian Andes (Figure 6-1) and is covered by an 

extensive, but diminishing glacier cap. Cotopaxi is one 

of the most dangerous volcanoes worldwide 

(Rodriguez et al., 2017) with average recurrence 

intervals for eruptions between 117-147 years (Barberi 

et al., 1995). It can produce syneruptive lahars 

triggered by explosive eruptions which can travel 

hundreds of kilometres (Hall and Mothes, 2008). 

Three drainage systems originate on Cotopaxi (Figure 

6-3) which have all been inundated by lahars in 

prehistoric times (Sierra et al., 2019). However, only 

the northern and southern drainage are densely 

populated: The largest urban agglomeration 

encountered by the northern system is “El Valle de 

Los Chillos” (with about 400,000 inhabitants) in the 

vicinity of southern Quito; whilst the southern 

drainage system encounters the Latacunga canton 

(with about 300,000 inhabitants). The last major 

eruption of the Cotopaxi volcano in the historical 

records occurred in 1877. It induced syneruptive 

lahars that severely affected the proximal rural 

communities (Aguilera et al., 2004), with more than 

1,000 deaths registered, and caused a severe economic 

crisis (Doocy et al., 2013). If a similar scenario 

occurred nowadays, the social and economic 

consequences would be far more catastrophic due to 

the high population density and the central 

importance of Latacunga and the Cotopaxi region for 

the economic development of the country (Rodriguez 

et al., 2017).  

 

 

Figure 6-1. Location of the main volcanic systems in the Ecuadorian Andes highlighting the location of the Cotopaxi volcano 

and Latacunga. Modified after Andrade et al., (2005). 

 

Latacunga is the largest city of the Latacunga canton 

(2nd Ecuadorian administrative division) and it is the 

capital of the Cotopaxi province (1st division). It is 

located at a 14 km distance from the Cotopaxi 
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volcano. For the year 2020, and based on the 

population projections of the National Institute of 

Statistics and Censuses (INEC, 2010), the city has an 

inferred population of approximately 205,600 

inhabitants, with a major rural composition (59.8%). 

The last peak of volcanic activity of the Cotopaxi 

volcano occurred in mid-April 2015 and lead to a crisis 

in risk management in Latacunga and neighbouring 

municipalities (Czerny and Czerny, 2020). Firstly, an 

increase in the seismic activity of the volcano was 

accompanied by the emission of sulphur dioxide and 

ash fall for some weeks (Bernard et al., 2016). 

Subsequently, authorities and local press 

communicated to the inhabitants of the communities 

in the vicinity of the Cotopaxi volcano that it was 

necessary to evacuate their homes promptly due to the 

imminent occurrence of lahars (Czerny and Czerny, 

2020). This generated social chaos due to the 

ignorance of the evacuation routes, the uncontrolled 

behaviour of the citizens (due to generalised fear of 

looting) as well as a very low level of trust in 

government representatives (Christie et al., 2015). 

Eventually, the 2015 activity never surpassed a 

magnitude VEI 2 and no large syneruptive lahar flows 

occurred (Mothes et al., 2019). The lesson learned 

from this experience was the need for adequate 

evacuation protocols and local authorities with an 

understanding of the complexity of the risk in the area. 

Moreover, it was realized how important it is for 

citizens to understand their own social, physical, and 

systemic vulnerability (Mothes et al., 2019).  

 

Latacunga is settled on ancient and recent geological 

materials formed by volcanic material. Some of the 

most representative and better-exposed stratigraphic 

formations of ancient ashes and lahar deposits 

originated from the previous volcanic activity of the 

Cotopaxi volcano were visited (Figure 6-2) with the 

guidance of experts from the Geophysical Institute of 

the National Polytechnic School, IG-EPN) and the 

Decentralized Autonomous Government of the 

Province of Cotopaxi (GADPC, Gobierno Autónomo 

Descentralizado Provincial de Cotopaxi, Latacunga, 

Ecuador, GADPC). Some of these deposits are from 

pre-historical times whilst the shallower ones date 

from the 1877 event which destroyed Latacunga 

(Pistolesi et al., 2013). Official maps of the Geological 

and Energy Research Institute (IIGE) and IG-EPN 

(Mothes et al., 2016) were used during the field 

reconnaissance. This field trip was relevant to visualize 

the geological characteristics of the study area, as well 

as to strengthen the cooperation and idea exchanges 

with the local experts.  

Latacunga is not only exposed to the natural hazards 

imposed by the Cotopaxi volcano, but also to other 

geodynamic (e.g. landslides and earthquakes) and 

hydro-climatologic hazards (e.g. frosts and droughts). 

As reported by Heifer Fundation, (2018), there has 

been an intensification in the variability of 

precipitations, droughts, and frosts in Latacunga. This 

has been evidenced in the period between the years 

1981-2014, during which the average air temperature 

has increased about 0.8°C. These ongoing phenomena 

related to climate change have generated negative 

consequences mainly in the rural area and in 

agriculture areas (Heifer Fundation, 2018).  

         

Figure 6-2. Left picture: Channel of the Cutuchi River in the city centre of Latacunga. An old textile factory is visible, which has 

been buried up to the fourth story by the 1877 lahar. Right picture: Thick sequence of lahar deposits, scoria flow deposits and 

tephra beds exposed in a quarry along the Rio Saquimala close to Mulalo. (Photos: Theresa Frimberger, 2018) 
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(a) 

 
(b) 

 
(c) 

Figure 6-3. (a) Location of the Cotopaxi volcano and the main drainages and populated centres. (b) Estimated lahar footprints in 

the southern drainage system from three scenarios as function of the VEI (Volcanic Explosivity Index). (c) Brief description of 

the eruption scenarios expected at Cotopaxi in terms of the VEI. Modified after (Andrade et al., 2005; Frimberger et al., 2020). 

 

 

6.2.2. Objectives 

The understanding of disaster risk based on the 

independent investigation of their dimensions: 

hazards, exposure, vulnerability, guided by a multi-

hazard risk approach with risk-informed decision-

makers are key advice of the Sendai Framework for 

Disaster Risk reduction (2015-2030) (UNISDR, 2015). 

Having in mind the aforementioned limitations on 

volcanic risk assessment as well as the lack of 

exploration tools for risk communication, two 

initiatives, namely the programme “Sustainable 

Intermediate Cities – CIS”, and the research project 

“Multi-Risk Analysis and Information System Components for 

the Andes Region – RIESGOS” have been working in 

Latacunga, Ecuador with the aim of increasing 

awareness, preparedness, and enhance the coping 

capacities of the communities exposed to the 

Cotopaxi volcano. The particular objectives of this 

integrative study are: 

1. To present a comprehensive risk 

communication process, from scenario-based 

volcanic risk analysis along with active 

participation of the exposed communities, while 
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also investigating the risk perception of the 

exposed communities.  

2. Providing a recent measurement of spatially 

distributed risk perception in the Cotopaxi area 

(results from the CIS questionnaire) 

3. Testing the applicability of the RIESGOS 

demonstrator, a decentralized web-service 

architecture that allows for integrating local 

expert knowledge and locally designed models in 

a scenario-based multi-risk analysis, for the 

purpose of interactive communication 

4. Merging the results of 2 and 3 to investigate how 

well the simulated quantitative risk matches the 

subjectively perceived risk in a common area. 

6.3. Materials and Methods  

An integrative framework between scientific 

approaches and risk communication practices with the 

exposed society has been set up in Latacunga 

(Ecuador) by two different initiatives, (1) the CIS 

(Sustainable Intermediate Cities) programme and (2) the 

RIESGOS project (Multi-risk analysis and information 

system components for the Andes region).   

6.3.1. The CIS programme: the creation of 

a local laboratory to evaluate the social 

perception of risk and resilience 

“The Latacunga Laboratory: Risk management, resilience, and 

adaptation to climate change1” has been created within the 

CIS programme, as part of the joint initiatives of GIZ2 

and Grupo FARO3. The creation of so-called 

resilience observatories for exposed communities to 

natural hazards is a relatively new trend (Heinzlef et 

al., 2020a, b). Similarly, the Latacunga Laboratory 

seeks to contribute of the risk management to natural 

hazards that are likely to occur in the territory while 

aiming to contribute in the long-term to the 

development of the city embracing its urban-rural ties. 

With that goal, initial contributions related to social 

risk perceptions have been documented in Grupo 

FARO et al., (2020) as a joint effort between the 

Latacunga Laboratory, the local government, 

academic institutions, and local actors. 

                                                           
1 Laboratorio Urbano de Latacunga: Gestión de riesgos, 

resiliencia y adaptación al cambio climático. 
2 “Deutsche Gesellschaft für Internationale 

Zusammenarbeit”. 

6.3.1.1. Comparative analysis of the social risk perception 

factors to natural hazards and the spatial distribution of 

volcanic-related risk factors 

We conducted a survey by means of a custom-

designed questionnaires, a fundamental tool for 

acquiring information on public knowledge of the 

community (Bird, 2009). It is composed of a series of 

multiple-choice questions in Spanish. The survey was 

carried out in the field and online to collect data about 

the individual knowledge, attitudes, and risk 

perceptions of the inhabitants of Latacunga. The 

online survey was promoted on social media and was 

available on the official website of the CIS Latacunga 

Laboratory4 for a month. In the meantime, the field 

survey was carried out only in the urban agglomeration 

of Latacunga. The collected data is used for two main 

objectives: (1) As input to perform the semi-

quantitative method proposed in Carreño et al., (2005) 

that ranks the social perception of volcanic risk factors 

(i.e. hazard recurrence, exposure, vulnerability, and 

resilience) among other natural hazards likely to occur 

in the study area (i.e. earthquakes, drought, frost, 

floods, and landslides). (2) Map the spatial distribution 

of volcano-related risk perception into comprehensive 

categories (i.e., easily understandable by the exposed 

communities).  

A design of the field surveying site was carried out. 

According to the last official census available (INEC, 

2010) and population projections by the survey 

elaboration date (September 2019), 50,442 inhabitants 

over the age of 18 years were considered as qualified 

informants. In order to get a statistically representative 

sample, a confidence level of 95% and a margin of 

error of 5% were selected. On this basis, we estimated 

that a sample for the field surveys not smaller than 380 

inhabitants had to be selected. Considering 10% 

additional surveys, a final sample size of 420 people 

was chosen. The population density (Figure 6-4-a) was 

used to constrain the spatial distribution of the field 

surveys within the urban blocks with a residential 

occupancy (Figure 6-4-b). The surveys were carried 

out by 55 students of the ISTC (Instituto Superior 

Tecnológico Cotopaxi) in September 2019.  

3 Ecuadorian NGO (https://grupofaro.org/). 
4 https://latacungaresiliente.com/ 
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(a) 

 
(b) 

Figure 6-4. (a) Population qualified for the survey to evaluate the social risk perception in the urban centre of Latacunga (b) Sites 

to survey within the residential buildings. Modified after (Grupo FARO et al., 2020). 

 

It is worth to mention that, on the one hand, some 

drawbacks have been found when the community 

perception of exposure, vulnerability, and resilience 

are independently addressed for large-scale studies 

(Kelman, 2018; Shaw, 2012). On the other hand, there 

have been also reported benefits of this separation for 

mapping the social risk perception to natural hazards 

(e.g. Weichselgartner and Kelman, 2014; Sajjad et al., 

2020) when bottom-up approaches are carried out. 

Therefore, we have decided to independently 

investigate the social perceptions towards these 

components through separated questions. The Likert 

scale is used in this context to obtain a quantifiable 

level of perception of each risk factor. An integer 

numerical score (1, 2, or 3) is assigned to every 

possible answer. Although the passage from a 

qualitative perception to an index can be questioned, 

several recent studies have shown the usefulness of 

the Likert scale (Oláh et al., 2019; Frazier et al., 2020; 

Wuni et al., 2020; Marín-Monroy et al., 2020; Moreno 

Cano et al., 2020). Notably, in Pescaroli et al., (2020) 

it was found to provide a good compromise between 

the quality of the information collected, the 

accessibility to respondents, while the bias in 

responses decreases, and there is consistency across 

different measurements and research domains of 

disaster risk reduction.  

Subsequently, the average is computed for every 

question to obtain the perception of every 

component. These values are inputs to the 

computation of the risk perception pre-index through 

the use of equation 1, where 𝑃 stands for 

“perception”. An example subset of the questions is 

presented in Table 6-2 (Appendix). The questions and 

answers were validated by local risk management 

experts from the Association of Risk Management 

Professionals of Ecuador (Asociación de 

Profesionales de Gestión de Riesgos de Ecuador, 

APGR). 

𝑃(𝑅𝑖𝑠𝑘) = (
𝑃(𝐻𝑎𝑧𝑎𝑟𝑑)  ×  𝑃(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒) × 𝑃(𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑃(𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒)
)  

 

Eq.  6-1 

The numerator of equation Eq.  6-1 can have a 

maximum possible value of 27 whilst the minimum for 

the resilience term in the denominator is 1. Therefore 

the maximum risk perception value that this method 

admits is 27. The values in the range from 1-27 form 

a “pre-index”. To obtain a more comprehensive 
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numerical value, a “reduced index” in the 0-3 range is 

obtained through the application of equation 2. 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑜𝑔3(𝑝𝑟𝑒𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒)  Eq.  6-2 

The relations between the “pre-index” and the 

“reduced index” is shown in Figure 6-5. For mapping 

purposes an “equal interval” classification for the 

reduced index scale is introduced with five classes of 

length 0.6 for finally presenting the spatialized 

perception of every risk factor in a compressive 

manner to the community. The calculated results for 

every answered question at each survey location 

(Figure 6-4-b) are used to map the spatial distribution 

of the perception of hazard recurrence, exposure, 

vulnerability and resilience, and the risk index 

(computed with equation 1). Subsequently, they were 

interpolated through the use of the ordinary kriging 

geostatistical algorithm (Issaks and Srivastava, 1989).  

 

 

Figure 6-5. Graphical scale and correspondence between the pre-index value and the reduced index. 

 

6.3.2. The RIESGOS project: iterative 

simulation improvement and enhanced 

communication 

The idea of constructing a web-tool, the RIESGOS 

demonstrator, as a decentralised and intraoperative 

environment for the exploration of the consequences 

in Latacunga from different volcanic hazard scenarios 

was proposed to the local stakeholders who 

participated in four participative workshops. Two of 

them were held in Latacunga (December 7th, 2018; 

November 25th, 2019) in the headquarters of GADPC 

(Decentralized Autonomous Government of the Cotopaxi 

Province) and two workshops took place in Quito on 

December 11th, 2018, and on November 27th, 2019, 

respectively. The participants ranged from research 

partners, representatives of the rural municipalities 

(parishes) of the Cotopaxi province, public authorities, 

environment secretaries, actors of the civil society 

such as local representatives of agriculture associations 

and urban and rural leaders. Similarly, as recently 

presented in Gill et al., (2020), the workshops were 

used as a means to implement a user-centered iterative 

approach seeking a continuous redesign of the 

RIESGOS demonstrator has been guided by the 

needs of potential users and practical applicability. 

This has been ensured by a comprehensive analysis of 

user requirements (e.g. open-source, user-friendly 

graphical user interface, and transferability). 

6.3.2.1. The RIESGOS demonstrator tool for quantitative 

multi-risk analysis 

The iteratively constructed RIESGOS demonstrator 

for a multi-risk information system is based on a 

modular and scalable concept in which the different 

hazards, the related exposure models and vulnerability 

schemas are each represented by one individual web 

service. These independent and distributed web-

services (managed and maintained by individual 

research institutions) are based on the quantitative 

methodologies developed within the RIESGOS 

framework for multi-risk analysis (i.e. Frimberger et 

al., 2020; Rosero-Velásquez and Straub, 2019; 

Langbein et al., 2020; Brill et al., 2020; Gómez Zapata 

et al., 2020; Pittore et al., 2020a; Brinckmann et al., 

2020). Therefore, their integration into the RIESGOS 

demonstrator simulates the multi-risk environment of 

Latacunga. This modular approach offers the 

possibility to integrate different web services into 

already existing system environments.  

Currently, the graphical user interface of the 

demonstrator can be accessed from a web browser 

only by users with special rights. The main screen of 

the graphical user interface is divided into three main 

display areas: the central map window, the 

configuration wizard for the control of each web 

service to the left, and the results panel to the right 

(e.g. see Figure 6-6). The code of the graphical user 

Pre-index value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Reduced index 0.00 0.63 1.00 1.26 1.46 1.63 1.77 1.89 2.00 2.10 2.18 2.26 2.33 2.40 2.46 2.52 2.58 2.63 2.68 2.73 2.77 2.81 2.85 2.89 2.93 2.97 3.00

Very low

Low

Moderate

High

Very high
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interface (RIESGOS frontend) is published on 

GitHub (https://github.com/riesgos/dlr-riesgos-

frontend). The use of standardized web services such 

as geospatial web services defined by the Open 

Geospatial Consortium (OGC) allows users accessing 

open and flexible multi-risk information and data 

products. Web-services and exposed data resources 

can be accessed using a variety of means from a simple 

command-line tool, over a web browser, to existing 

graphical user interfaces of public authorities and 

companies which are equipped with a map user. OGC 

web services allow all kinds of geospatial functionality 

out-of-the-box including data access, data display, 

styling, and processing. Web services can easily be 

integrated into existing clients. The providers of web 

services define their products, display options, and 

configuration items. More details of this integrative 

process are reported in Brinckmann et al., (2020). 

Through the clear separation in competencies 

between web services and user-interface, modularity 

and scalability are increased.  

Precomputed hazard models of ash-falls and lahars are 

displayed by the RIESGOS demonstrator after the 

selection of a scenario in terms of the expected for an 

eruption of the Cotopaxi volcano. Local probabilistic 

ashfall models for the Cotopaxi volcano generated by 

the IG-EPN (following the method of Tadini et al., 

(2020) with 20 years-observation of wind flow 

directions) are currently integrated as twelve 

explorative scenarios. They are represented by isolines 

(Figure 6-8). The lahar models described in 

Frimberger et al., (2020) are incorporated showing the 

maximum possible values of five physical properties 

(i.e. flow velocity, flow depth, pressure, erosion, and 

deposition (see Appendix- Figure 6-9). 

The exposure model provides the input to calculate 

the direct losses over residential building portfolios 

classified in specific building classes for every hazard. 

An example for lahar-building classes is depicted in 

Figure 6-9. These models were constrained through 

the use of taxonomic characteristics available in the 

official cadastral dataset of the GADPC, such as roof 

and wall materials, and the proportions of the 

predominant building materials suggested for 

Latacunga in Yepes-Estrada et al. (2017). No further 

details are provided in the manner the building 

exposure models were constructed since this is out of 

the scope of this paper.  

The vulnerability analysis of the typical residential 

buildings is performed using representative building 

exposure models with their respective fragility 

functions and suitable economical consequence 

models. Specifically, this approach is an extension of 

the Performance-Based Earthquake-Engineering 

(PBEE) method developed by Cornell and 

Krawinkler, (2000), which has more recently been 

adapted to other kinds of natural hazards. The fragility 

model proposed in Mavrouli et al., (2014) is used in 

lahar fragility, whilst the one in Torres-Corredor et al., 

(2017) is used in ash fall fragility for typical residential 

buildings that can be encountered in the study area. 

The demonstrator ultimately obtains the spatial 

distribution of damage and losses per individual 

hazard, plus the option of obtaining the cumulative 

damage and losses due to the action of both hazardous 

events using the novel method outlined in Langbein et 

al., (2020) that was based on (Gómez Zapata et al., 

2020). Some examples are depicted in Figure 6-6 and 

Figure 6-10. No further technical details are provided 

because it is out of the scope of this work. 

Furthermore, the demonstrator enables to visualize 

the areas that might potentially get disconnected from 

different networks, and thus identify cascading effects 

on the economic activity. The method of implemented 

in the systemic vulnerability analysis applied in this 

case is similar to the one proposed in Crucitti et al., 

(2004). This information can be related with census 

data for estimating the population that might be 

affected by a blackout (Poljanšek et al., 2012). One 

example of this process is depicted in Figure 6-12 for 

the interruption probabilities of the electrical power 

network due to the impact of a lahar. 
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Figure 6-6. Example of the graphical representation of loss distribution due to ash fall scenario in the RIESGOS demonstrator 

(as of December 2020) from a previously selected VEI. Reddish and greenish aggregation areas representing higher and lower 

values respectively. On top of these results, the lahar model (with the same VEI) is displayed as input to calculate the cumulative 

damage over the same geo-cells exposed to both perils. 

 

6.4. Results 

6.4.1. The recognition of the Latacunga 

local laboratory by the local actors of the 

community 

“The Latacunga Laboratory: Risk management, resilience, and 

adaptation to climate change” has strengthened its 

presence in the territory through several continuous 

participative activities that are aligned with the 

objectives mentioned in title 6.3.1. For instance, the 

Laboratory has been recently working in materialising 

initiatives that were proposed by local entrepreneurs. 

One of them is currently working on the recovery on 

“Relatos de una erupcion” (Tales of an eruption) which 

works on rescuing the historical memory of what 

happened in the eruption of the Cotopaxi volcano in 

1877. This has been carried out through audio-visual 

stories that are told by direct descendants who 

survived this event. This initiative enhances co-

responsibility and respect for historical memory. The 

oral transmission of this information is an important 

input to generate awareness. Details about these 

                                                           
5 https://latacungaresiliente.com/rescate-de-la-memoria-

historica-de-la-erupcion-del-volcan-cotopaxi/ 

initiatives can be found in the Latacunga Laboratory 

website5. 

6.4.1.1. Comparative analysis of the social risk 

perception factors to natural hazards and the 

spatial distribution of volcanic-related risk factors 

The method described in chapter 6.3.1.1 was applied 

to rank the volcanic risk perception for the most 

densely populated area in Latacunga conurbation. 

Making use of the 420 processed surveys as input data, 

the social perception to the recurrence of hazards, 

exposure, vulnerability and resilience for six natural 

hazards likely to occur in Latacunga (i.e. earthquakes, 

volcanic eruptions, droughts, frosts, landslides, 

floods) has been investigated. This is presented in the 

form of the comparative matrix shown in Table 6-1 

which reports the mean values (for all the surveys) 

related to the perception of every component, as well 

as the computed risk index for every considered 

hazard. The higher the value, the greater the 

perception of risk. In the case of resilience, the 

interpretation is the opposite: the higher the value, the 

higher perception of resilience after a hazardous event. 
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Table 6-1. Hazard matrix and perception of risk factors towards natural hazards in the urban area of Latacunga. 

Risk factors Perception of 

hazard recurrence 

Perception of 

exposure 

Perception of 

vulnerability 

Perception of 

resilience 

Perception of 

risk 

Scale: 0-3 Scale: 1-27 

N
a
tu

ra
l 

H
a
z
a
rd

 Volcanoes 2.61 2.73 2.83 1.93 10.45 

Earthquakes 2.58 2.75 2.77 1.98 9.93 

Frost 2.62 2.27 2.14 2.38 5.35 

Drought 2.33 2.27 2.23 2.32 5.08 

Floods 2.00 2.05 2.04 2.27 3.68 

Landslides 1.99 2.05 2.08 2.29 3.71 

The greatest concern among the inhabitants of 

Latacunga is their own perceived vulnerability to 

volcanic hazards. Remarkably, their resilience after a 

volcanic event scores the lowest value. This implies 

the community is aware that they would have great 

difficulty (or impossibility) to recover from the related 

damages. It is worth noticing that despite that in the 

questionnaires there was no distinction made in terms 

of the type of volcanic hazards (lahar, ash fall/ tephra 

fall, ballistics) neither on its intensity, the collective 

imaginary always tended to associate the occurrence of 

a destructive lahar as “the volcanic hazard”. Most likely, 

the oral transmission of the experiences of the 

survivors from the 1877 event has permeated the 

mental construction of their descendants. 

 

The mean results in terms of the percentage for the 

answered questionnaire that makes up the field and 

online surveys are depicted in Table 6-3. Contrary to 

the field survey, the online survey score large values in 

the basic knowledge and reconnaissance of their 

exposed environment (i.e. evacuation routes, 

emergency committee, the existence of initiatives for 

risk reduction). The field surveys express that 64% of 

the inhabitants consider the volcanic related hazards 

as events that are likely to happen in the city within 

their lifetimes. 86% answered that they believe an 

eventual eruption of the Cotopaxi volcano would 

cause very serious damaging effects to the city. 

Likewise, 75% considered they will have very serious 

impacts directly on their families and themselves. 25% 

of the population considers that recovery from a serious 

volcanic event would be impossible whilst 57% think it 

would be difficult to overcome. Regarding knowledge, 

67% of the population know safe places in the event 

of a possible disaster, while 61% know evacuation 

routes. However, only 34% ensure there are 

emergency plans in their neighbourhood. Half of the 

respondents do not even know if they live in a volcanic 

hazard zone. 56% of the field-surveyed inhabitants 

and 69% of the online-respondents consider they 

would have rapid reaction capacities. Finally, ~42% of 

the population talks about how to act in case of emergency 

with their families. 

Every answer of the 420 field surveys was spatially 

distributed onto the survey locations (Figure 6-4). 

Their associated numerical values of the Likert scale 

were interpolated through the use of the ordinary 

kriging geostatistical algorithm (Issaks and Srivastava, 

1989). Subsequently, every numerical value is 

converted to the equivalent categories presented in 

Figure 6-5. The spatially-explicit categories represent 

the social perception of volcanic hazard recurrence, 

exposure, vulnerability, and resilience in the study 

area. They are respectively depicted in Figure 6-7-a, b, 

c, d. The former factors are integrated through 

equation 1 to generate Figure 6-7-e which represents 

the semi-quantitative volcanic risk perception index 

proposed in Carreño et al., (2005). In general terms, 

the perceptions of hazard recurrence, exposure and 

vulnerability are quite similar. However, in the central-

easternmost and northernmost zones, there is a high 

perception of hazard recurrence, a very low 

perception of resilience, and a moderate perception of 

vulnerability. Whilst in the southernmost part (where 

the Cutuchi River flows) the four assessed factors 

show high and very high values that ultimately lead to 

a generalized “very high” category in the volcanic risk 

index. This is contrary to what is observed in the 

central-western and northern parts. Due to the 

increasing distances from the main drainages, there is 

a strong anti-correlation between the higher resilience 

levels (reddish areas) and the other risk factors. Hence, 

that despite the last volcanic crisis in 2015, there is still 

a generalised very low perception among the 

inhabitants that they cannot suffer any direct impact 

or damaging effect after increasing volcanic activity 

because they consider the occurrence of lahars (within 
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their lifetimes) is impossible. Clearly, the inhabitants 

of that sector, are not aware of the large intensities the 

Cotopaxi volcano can achieve (e.g. a Plinian activity 

(VEI >4) in Figure 6-3).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

(Cont.) 
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(e)  

Figure 6-7. Spatial representation of the perception of volcanic hazards in the urban centre of Latacunga in terms of (a) 

recurrence; (b) exposure level; (c) vulnerability; (d) resilience; (e) subjective risk; (f) risk index calculated using the former 

components as inputs. Modified after (Grupo FARO et al., 2020). 

6.4.2. The communication of the scenario-

based risk assessment concept with local 

stakeholders 

During the four RIESGOS participative workshops, 

the invited stakeholders expressed the interest in 

understanding the impacts of an extreme volcanic 

eruptions on the exposed elements such as buildings 

and critical infrastructure. Brainstorming exercises 

were carried out during the two first workshops. The 

participants were invited to imagine a future potential 

eruption with the emission of ash fall and occurrence 

of lahars. Thereafter, based on their perspectives and 

local knowledge, it was asked to which physical, 

systemic and cascading damaging effects they would 

expect on their built environment, infrastructure 

systems, and socioeconomic activities.  

Some basic concepts of the probabilistic method that, 

as an open-source web-service assesses the 

vulnerability of the exposed residential buildings (see 

title 6.3.2.1), were presented to the local stakeholders. 

Due to the iterative approach used in constructing the 

demonstrator, some of the details that have been 

presented in this work as methods are actually the 

initial outputs of the first participative workshops. In 

this regard, the adaptability of “foreign” lahar 

vulnerability models (i.e. not developed for Ecuador) 

in the study area (e.g. Jenkins et al., 2014; Thouret et 

al., 2020; Zuccaro and De Gregorio, 2013) was initially 

discussed with the representatives of the scientific 

local institutions. Due to the absence of locally 

developed ash fall vulnerability models for the 

residential buildings in the surroundings of the 

Cotopaxi volcano, the use of vulnerability models for 

the southern Colombian Galeras volcano (Torres-

Corredor et al., 2017) was perceived suitable to be 

implemented in the risk calculations rather than the 

fragility functions frequently developed for other areas 

(e.g. Italy (Jenkins et al., 2015)). With this feedback the 

web-tool was redesigned. This is an example of how 

the engagement of local participants can improve both 

the technical development of quantitative methods (by 

agreeing on a proper model) as well as the 

understanding of such methods by the community. 

Possible cascading effects that would occur in the case 

of critical infrastructure failure were debated. For 

instance, the participants realised that assessing the 

vulnerability of electric networks to ash falls and lahars 
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is fundamental because of the further consequences 

on daily social and economic activities. However, the 

most debated topic was the reliability of the road 

system that, in the case of failure, may induce physical 

disruption and affect evacuation and emergency 

response during a volcanic crisis. Other public 

infrastructures that would be affected by Cotopaxi’s 

lahars include the Army headquarters “Brigada 

Patria”, Latacunga hospital and the new penitentiary 

(Rodriguez et al., 2017). The interest in relocating 

some of the exposed assets was discussed. 

“Hands-on” sessions took place during the two last 

workshops. The participants could experience on their 

own the use of the RIESGOS demonstrator. They 

selected different scenarios to visually compare every 

hazard footprint and intensity (i.e., for ash fall and 

lahars) as well as their associated risk outcomes on 

residential buildings and electric power networks. This 

was done through the selection of individual and 

successive hazard scenarios addressing cumulative 

damage. During the “hands-on” session the 

participants recognized the potential of the 

demonstrator as an exploration tool for risk 

communication. 

 

6.5. Discussion 

The CIS and RIESGOS projects have independently 

addressed the domain of risk communication in 

Latacunga (Ecuador) at different geographical scales. 

The investigation and mapping of the perception of 

volcanic risk factors led by the Latacunga Laboratory 

(created by CIS) was carried out in a focused area 

(urban area) due to the necessity of having control 

points (where field-surveys were carried out) for a 

further geostatistical interpolation process. Whilst, in 

the framework of the RIESGOS project, the 

construction of the hazard, exposure and vulnerability 

approaches for scenario-based multi-risk calculations 

have been carried out at the canton level. Despite that, 

the community perceptions of the entire canton and 

province can be assessed in the future through field 

surveys for other urban centres (e.g. Pujili, Saquisili, 

and Salcedo), a meaningful spatially explicit perception 

of volcanic risk factors could only be mapped for the 

urban centres. This is because, due to the scattered 

location of the residential buildings in the rural areas, 

conventional geostatistical interpolation algorithms 

would carry significant bias in the results. For the 

commonly investigated area by RIESGOS and CIS, 

we can see that the exposed community recognise to 

be under a variable level of risk towards volcanic 

events depending on their location. These perceptions 

match the lahar footprints from the scenarios with 

higher probabilities of occurrence (VEI < 3). 

However for larger intensities, (e.g. lahar footprints 

from a VEI > 4 scenario, see Figure 6-3-b), we 

observe a mismatch with the spatially-explicit 

community perceptions of volcanic risk factors 

(Figure 6-7). For instance, the easternmost areas of the 

urban centre of Latacunga show low and very low 

reconnaissance of volcanic risk factors due to their 

increasing distance respect to the main drainages. The 

inhabitants of that particular sector have perceived as 

impossible the occurrence and to suffer consequences 

from lahars. The ignorance of the lahar footprints 

expected from these large intensity scenarios makes 

that the concepts of “safe place” and evacuation 

routes are not applicable for either. These results 

should not be interpreted as fixed or permanent but 

they rather constitute a temporal reading of the 

collective mental construction of the inhabitants at the 

time the surveys were carried out. Nevertheless, 

considering that the community is emplaced in ancient 

lahar deposits, as well as the relatively short time since 

the last 2015 volcanic crisis, one can realise the 

comparison of the respective outcomes arises the need 

to prioritize some zones where further divulgation 

activities should be made in the future regarding the 

possible scenarios and intensities that the Cotopaxi 

volcano can actually produce.  

The formulated questions comprised in the survey 

forms are locally revised by experts from the APGR 

while paying attention to the use of collectively known 

terminology and the cultural characteristics of the 

community. In this work, we have implemented a 

simple numerical expression (equation 1) that equally 

ranks the risks factors of the different volcanic risk 

factors. This selection carries epistemic uncertainties. 

For instance, a customisation weighting schema to 

each factor, the selection of the median or mode 

instead of the mean value (herein adopted), together 

with a broader range in the Likert scale (e.g. 1 to 7 as 

explored in Croasmun and Ostrom, (2011)) could be 

alternative approaches to be compared or even 

integrating each other into condition trees as proposed 

in Beven et al., (2018). The selection of the Likert scale 

to rank the answers and to ultimately mapping the 

community perceptions implied an ordinal scale that 

was further converted into a nominal one based on the 

“equal-scale” (equation 2). This decision was made 

because, since the methods and results are aimed to be 
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divulged, the categories have been found to be 

comprehensive, easily understandable, and culturally 

accepted by the community. Although the Likert scale 

has been extensively and recently used to successfully 

assess the community perception (e.g. Oláh et al., 

2019; Frazier et al., 2020; Wuni et al., 2020; Marín-

Monroy et al., 2020; Moreno Cano et al., 2020), there 

are several limitations in its adoption. For instance, as 

stated in Pescaroli et al., (2020), this kind of scale, 

despite that maximizes the reliability of answers, it also 

sacrifices the level of detail. However, it should be 

noted that through the simple possible answers related 

to the vulnerability perception and the nominal 

categories we are only proposing a very simple 

categorization. More robust approaches that have 

addressed spatial multi-criteria analysis (as presented 

in Armaș and Gavriș, (2013)) have shown the impact 

of addressing diverse socioeconomic variables that we 

have not addressed in in our approach. A similar 

situation occurs with the resilience perception, which 

as discussed in Ran et al., (2020), it can be decomposed 

into very heterogeneous variables in economically 

developed countries.  

Therefore, we are not claiming that our results related 

to the community perception of risk factors are 

exhaustive, but instead, they should be used as a basis 

for developing in future stages more complex 

analyses. For instance, even though we have already 

observed clear behaviour differences between the 

responses from online and field surveys, with explicitly 

designed survey and accounting variables such as work 

location, alphabetisation level, economic activity, we 

could in the future classify the population into 

different social groups, and find similarities and 

differences in their behaviour within a social 

environment to carry out more sophisticated methods 

as proposed in Moscato et al., (2020). Thereby, for 

each group, we could expect different reactions to a 

future volcanic crisis and then propose particular 

resilience practices. However, these kinds of 

approaches will largely depend on the data availability 

which is particularly difficult in the rural tropics 

(Frontuto et al., 2020; Li et al., 2020). 

As described in recent participative experiences to 

assess the community perception to natural hazards 

(e.g. Heinzlef et al., 2020a; Fleming et al., 2020), we 

have also experienced that the workshops carried out 

allowed to go beyond a simple exchange of 

information. They paved the way for a better 

divulgation of concepts such as triggering and 

cascading hazards, dynamic vulnerability, cumulative 

damage, and cascading effects. These understandings 

in turn facilitated the knowledge flows and feedback 

acquisition to continuously design the RIESGOS 

demonstrator guided by increasingly risk-informed 

decision-makers. With this bottom-up iterative 

approach in the web-tool design, we are following the 

suggestions of the Sendai Framework for Disaster 

Risk reduction (2015-2030) (UNISDR, 2015). The 

outcomes of the demonstrator are not static hazard 

maps that are delivered to the exposed population 

from top-down approaches (e.g. Bronfman et al., 

2016; Jóhannesdóttir and Gísladóttir, 2010; Paton et 

al., 2008), but rather, scenario-based online 

computations that can dynamically change based upon 

the continuous integration of local datasets and 

models.  

During the “hands-on” sessions the potential users 

perceived the RIESGOS demonstrator to intended 

prompt risk communication processes. For the study 

area, only hazard models have been typically available 

and the few risk outcomes obtained in the past have 

been reported in tables and not in a spatially-explicit 

manner (Rodriguez et al., 2017). Therefore, this work 

is providing the community with the availability of 

scenario-based risk models based on the vulnerability 

of the exposed elements in graphical and user-friendly 

interphase is an added value for the local community. 

The integrated scenario-based lahar footprints per 

VEI (Frimberger et al., 2020) and the locally 

developed probabilistic ash falls models (Tadini et al., 

2020) are themselves useful outcomes for civil 

protection and local-planners. They can be used to 

identify which human settlements and agricultural 

plantations might be affected or even discuss the 

relocation of some of the exposed components of 

critical infrastructure. Although we have not 

accounted for the conditional probabilities between 

triggering and cascading hazards as proposed in 

Zuccaro et al., (2008), we have instead presented fixed 

risk scenarios. For such a purpose the demonstrator is 

served by a novel method that calculates and 

disaggregates the cumulative damage when there are 

interactions at the vulnerability level. In the specific 

volcanic context, although the concept of dynamic 

vulnerability had been already theoretically sketched in 

the work of Zuccaro et al., (2018), to the best authors’ 

knowledge, we have first presented an example case of 

cumulative damage for risk-informed communities 

exposed to compound and cascading volcanic 

hazards. This is an innovative approach that not only 
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contributes to reducing the generalized gap in the 

interactions at the vulnerability level (Terzi et al., 

2019), but also to communicate the results to the local 

stakeholders. With these contributions, the potential 

users could identify the most vulnerable areas for 

further mitigation strategies. It is worth to mention 

that, since the RIESGOS demonstrator is currently 

not an operational tool, but rather shows the scientific 

and technological capabilities, the economic loss 

estimations for every exposure geo-cell (where 

residential buildings are aggregated) should not be 

used as definitive results. Therefore, due to the 

underlying uncertainties in these results, there is still 

the permanent necessity pointed out in Doyle et al., 

(2014); Pierson et al., (2014) of having expert local 

users and scientists who can analyse and effectively 

communicate this information.  

The technology transfer of the activities included in 

the CIS and RIESGOS programmes is highly relevant. 

The modular software architecture is particularly 

relevant for this aspect, for which the databases and 

methodologies of local Ecuadorian institutions may be 

ultimately integrated. However, the applicability of the 

demonstrator in the long-term will depend on how the 

local authorities will “give life” to the initiative 

considering the local legal aspects. For future 

communication initiatives, due to the intrinsic 

interoperative sequence of inputs and outputs, the 

demonstrator can be a pedagogic tool to divulge multi-

risk situations as similarly carried out by audio-visual 

approaches (e.g. Hicks et al., 2017; Mercorio et al., 

2019). Nevertheless, these kinds of local actors should 

be the first ones to understand the aforementioned 

concepts of “scenario” and “intensity” within the 

multi-risk chain. And most importantly, that they can 

be further contrasted with future and continuous 

spatially-explicit social risk perceptions monitoring 

initiative.  

6.6. Conclusion 

We have presented an integrative framework of 

qualitative community risk perceptions (carried out by 

the CIS Latacunga Laboratory), and scenario-based 

quantitative multi-hazard risk assessment (developed 

by the RIESGOS project). These initiatives have 

jointly worked on comprehensive volcanic risk 

communication processes in Latacunga, a city with a 

mainly rurally composed population, exposed to 

volcanic hazards from the Cotopaxi volcano.  

Online and field surveys were carried out to rank the 

volcanic risk factors to investigate the individual 

knowledge and attitudes in Latacunga. Only the geo-

located interviews in the field were used to map the 

community risk perceptions and to calculate a 

spatially-explicit risk perception index through a semi-

quantitative approach.  

The participative workshops allowed the potentially 

affected communities to identify how their exposed 

assets, depending on their physical and systemic 

vulnerabilities would be differently affected by several 

volcanic hazard scenarios. The iteratively customised 

RIESGOS demonstrator proved to be a useful tool 

for the communication of quantitative risk scenarios, 

raising the awareness of potentially affected 

population for the concept of scenarios and intensity. 

Its outcomes facilitate discussions among the 

participants on topics such as relocation of critical 

infrastructure elements. The demonstrator is not only 

enhancing the awareness of the communities but also 

the user involvement in its development is improving 

the quality of the software. Although the development 

of the CIS and RIESGOS methodologies started 

independently, the respective outcomes of this collaborative 

work has allowed identifying areas where risk perception and 

scenario-based risk models are in disagreement. Thus, it is 

highlighted the need to continue assessing the social risk 

perception along with future risk communication efforts in 

the Cotopaxi region. 
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6.7. Appendix A 

Table 6-2. Example of the procedure for calculating the risk perception pre-index. 
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Table 6-3. Questionnaire within the survey to assess the social risk perception to volcanic risk in the urban area of Latacunga. 
The mean values of the entire survey are reported. Adapted after Grupo FARO et al., (2020). 

Questions Possible 

answer 

Type of survey (%) 

Online Field Aggregated 

% 𝐏(𝐇𝐚𝐳𝐚𝐫𝐝). Perception of volcanic hazards 

recurrence. Do you think a volcanic eruption 

(from the Cotopaxi) can occur? 

Certainly yes 54.43 63.61 62.04 

It might occur 44.30 34.29 36.01 

Impossible 1.27 2.09 1.95 

% 𝐏(𝐕𝐮𝐥𝐧𝐞𝐫𝐚𝐛𝐢𝐥𝐢𝐭𝐲). How do you consider the 

effects after a volcanic eruption would be? 

Very serious 91.36 85.56 86.56 

Moderate 8.64 12.86 12.12 

No effects 0.00 1.57 1.30 

% 𝐏(𝐄𝐱𝐩𝐨𝐬𝐮𝐫𝐞). How do you consider the effects 

after a volcanic eruption would impact your 

family and yourself? 

Very serious 81.48 75.39 76.46 

Moderate 17.28 22.51 21.60 

No effects 1.23 2.09 1.94 

% 𝐏(𝐫𝐞𝐬𝐢𝐥𝐢𝐞𝐧𝐜𝐞). How do you consider the 

recovery process from the effects after a volcanic 

eruption? 

Impossible 11.11 24.87 22.46 

Difficult 58.02 57.33 57.45 

Likely 30.86 17.80 20.09 

Do you know if your home is in a volcanic hazard 

zone? 

Yes 69.70 45.80 49.70 

No 32.1 54.2 50.3 

Are there emergency plans in your 

neighbourhood? 

Yes 19.75 36.65 33.69 

No 38.27 39.27 39.09 

Do not know 41.98 24.08 27.21 

Are there safe places in the vicinity where you 

live? (in case of a volcanic eruption) 

Yes 69.14 66.49 66.95 

No 16.05 18.85 18.36 

Do not know 14.81 14.66 14.69 

Are there evacuation routes to safe sites? Yes 70.37 60.47 62.20 

No 8.64 21.47 19.22 

Do not know 20.99 18.06 18.57 

Is there an emergency committee in your 

neighbourhood? 

Yes 9.88 32.98 28.94 

No 46.91 35.34 37.37 

Do not know 43.21 31.68 33.69 

Do you know if there are initiatives, actions or 

works to reduce the risks from volcanic eruptions 

in Latacunga? 

Yes 66.70 56.30 58.10 

No 33.30 43.70 41.90 

Do you think you are capable of having a fast 

react during a volcanic eruptions? 

Yes 69.10 53.10 55.90 

No 30.90 46.90 44.10 

 

How often do you talk to your family about how 

to behave in the event of an emergency? 

Never 0.00 17.63 14.66 

Rarely 23.38 41.05 38.07 

Sometimes 50.65 22.89 27.57 

Usually 25.97 18.42 19.69 
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Figure 6-8. Example of the graphical representation of the spatially distributed ash fall intensities as isolines in the RIESGOS 

demonstrator (as of December 2020) from a previously selected VEI. The thickness values are displayed. Once a point within the 

isolines is clicked, the expected load (kPa) value is also shown.  

 

 

Figure 6-9. Example of the graphical representation of the footprint and intensities of the lahars in the RIESGOS demonstrator 

(as of December 2020) from a previously selected VEI. On the top-right side of the window, the outputs of the lahar simulation 

are listed (i.e. lahar flow velocity, flow depth, pressure, erosion and deposition) 
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Figure 6-10. Example of the graphical representation of the residential building exposure model in the RIESGOS demonstrator 

(as of December 2020). It is represented into aggregation areas based on the official rural and urban administrative divisions of 

Latacunga. There are displayed the quantities of every ash fall risk oriented building class proposed in Torres-Corredor et al., 

(2017) within a selected area. 

 

Figure 6-11. Example of the graphical representation of damage state distribution due to the combined effect of ash falls and 

lahar scenarios in the RIESGOS demonstrator (as of December 2020) calculated using the method proposed in Gómez Zapata et 

al., 2020; Langbein et al., (2020).  
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Figure 6-12. Example of the visualization of the expected interruption probabilities in the RIESGOS demonstrator (as of 

December 2020) of the electrical power network due to the action of a lahar scenario. 
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7. Synthesis 

Among the three inputs required (i.e., exposure, 

hazard and vulnerability) to assess the physical 

vulnerability of city-scale building portfolios due to 

any natural hazard intensity, the exposure modelling 

process has received comparably less research 

attention. We, members of the scientific community, 

practitioners and the insurance industry do not know 

enough about the composition, location, pre-existing 

damage, or financial value of the assets contained in 

building exposure models. Conventional exposure 

models for residential building stocks that are used in 

risk applications have been derived from top-down 

approaches i.e., expert elicitation over static 

aggregated data sources (e.g., census-based desktop 

studies) without exploring the underlying 

uncertainties. Thus, the absolute majority of the 

worldwide built-up areas that have been modelled for 

risk assessment are implicitly assumed to have static 

compositions in time and no spatial evolution. 

Moreover, classical exposure models for residential 

buildings have been typically spatially aggregated onto 

coarse administrative areas, and no efforts had been 

devoted to explore manners to efficiently aggregate 

them onto meaningful spatial entities that are useable 

for multi-hazard risk applications. 

Only in the last few years have some studies 

highlighted that exposure uncertainty is an area that 

would benefit from the further investigation (e.g., 

Silva et al. 2019). For instance, the composition of 

building exposure models derived from statistical 

projections about the population dynamics has been 

identified as a research area worth exploring (Calderón 

and Silva, 2021). Likewise, the uncertainties related to 

the location of some exposed assets are now being 

reduced due to the new increasing availability of data 

products, which are derived from remote sensing and 

volunteering geographical initiatives (e.g., Aravena 

Pelizari et al., 2021). Nevertheless, in most cases, only 

a few features (i.e., geometry, roof, and occupancy) 

can be successfully derived from such sources, whilst 

the main relevant descriptors to assess their physical 

vulnerability have remained hidden. Besides, only in 

recent times, the importance of counting with optimal 

geographical representations of exposure models for 

risk assessment has been recently discussed (e.g., 

Dabbeek et al., 2021). However, there has been not 

much research interest in addressing how the spatial 

variability of the hazard intensities can be used to 

derive new aggregation boundaries that can represent 

a compromise between computational efficiency and 

accuracy in the risk estimates. Furthermore, classical 

exposure models for residential building portfolios 

typically assume the presence of pristine or intact 

structures without including any pre-existing damage. 

This latter issue has started to be investigated by non-

conventional and recent methods to account for the 

cumulative damage expected during seismic sequences 

(e.g., Papadopoulos and Bazzurro, 2021). As a general 

feature, all of the aforementioned shortcomings of 

exposure models for risk assessment have been mostly 

tackled in the field of earthquake loss models, and 

their exploration is rare for other hazard-related 

vulnerabilities (e.g., using openly available data for 

flood vulnerability in Cerri et al., 2021). Yet, in multi-

hazard risk contexts, similar investigations had 

remained to date as open research questions. 

Four main pillars have been the basis and inspiration 

for this stepwise arranged thesis: 

(1) The first pillar is related to the study of the role 

and uncertainties related to the modelling of the 

subcomponents: composition, spatial 

aggregation, and pre-existing damage of 

residential building exposure models upon single 

and multi-hazard risk assessment.  

(2) The second pillar is related to the development, 

and implementation of risk scenarios. Sensitivity 

analyses on the aforementioned exposure 

subcomponents were carried out through risk 

scenarios that were transversally used 

throughout the entire development of this thesis 

to forecast the direct economic losses expected 

from the action of single and multiple hazard 

intensities. The selection of scenarios naturally 

arises from the need to work on the 

understanding of the role of the aforementioned 

exposure subcomponents on risk due to 

cascading hazards. As these events are very 

complex to be included in a probabilistic 

framework, scenarios allowed up to a certain 

extent, to isolate their individual contributions, in 

such a fashion that their related uncertainties 

could be individually propagated up to the final 

loss estimates in single and multi-hazard risk 

contexts.  

(3) The third pillar arises as a result of the necessity 

of harmonising newly available data together and 

existing fragility models. Many experts from 

various research fields have already generated 

new fragility/vulnerability models for specific 

regions with non-standardized metrics or scales 
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(i.e., local building classes; various number and 

descriptions of damage limit states). Thus, this 

third pillar constitutes a careful piece-wisely 

integration of the three formerly developed 

concepts (composition, spatial aggregation and 

pre-existing damage) within an original method 

herein proposed to assess damage accumulation 

on building stocks exposed to consecutive 

hazards (Chapter 5). This is a holistic 

methodology that allows the reutilisation of 

existing models into a consistent probabilistic 

approach and that relies on two levels of 

taxonomic building attributes:  

a. “A high level”: it is the result of the 

disaggregation of building classes (per 

hazard of interest) into such taxonomic 

attributes. This allows to obtain the 

probabilistic compatibility levels across 

hazard-dependent vulnerability 

schemes (sets of building classes). 

b. “A low level”; it is made out of simpler 

set of building components that are 

used to score the likely observable 

damage (features and extension) that 

are expected per building type, per 

damage state, per vulnerability type. 

For this aim, an attempt to harmonise 

various damage scales was made. 

Thereby, classification machine 

learning and Bayesian models were 

used to obtain their corresponding 

probabilistic compatibility levels.  

(4) Lastly, the fourth pillar is related to the proposal 

of a decentralised and interoperative web 

environment for the exploration of the 

consequences of an area exposed to various 

multi-hazard risk scenarios. It was constructed 

through an iterative process with local experts 

and potential end-users increasing both the 

quality of the technical tool as well as its practical 

applicability. Risk communication activities (i.e., 

participative workshops using this web tool) 

were proven to contribute to a clearer 

understanding of the scenario-based multi-risk 

chain by the exposed communities, as well as to 

contrast partial understandings with their own 

risk perception.  

In the frame of the four aforementioned pillars, some 

contributions of this work are summarised as follows: 

(1) This thesis has comprehensively discussed the 

limitations of the current practices in exposure 

modelling that rely on top-down approaches, i.e., 

expert elicitation over usually outdated and 

insufficient data sources to assess the 

vulnerability of the exposed structures. Thereby, 

it has been herein reinforced the proposal that 

exposure is not static but dynamic and has a 

probabilistic nature that can be constrained 

through careful data collection and statistical 

analyses in the form of Bayesian models (Chap. 

2). Although this data collection was obtained 

from the visual inspection of building façade 

imagery, other emerging technologies (e.g., 

automatic façade reconnaissance) could be used 

in the future. It was ultimately proven the 

usefulness of this approach to probabilistically 

update the proportions assigned to building 

typologies while careful data collection is 

gathered.  

(2) The integration between simple (but so far 

unexplored) assumptions such as representing 

the composition of the building portfolio 

through various sets of building classes, along 

with more refined approaches such as Bayesian 

exposure models that are useful to integrate 

observations and expert-based assumptions was 

proven to be useful to investigate the role and 

uncertainties of some exposure subcomponents 

through sensitivity analyses. With this, it was 

possible to ultimately propagate their individual 

contributions on scenario-based earthquake loss 

models through careful sensitivity analyses 

(Chap. 2-3). 

(3) This thesis has shown the advantages of making 

use of freely open datasets that are continuously 

derived from volunteering geo-information 

initiatives to probabilistically update and 

continuously refine the composition of existing 

exposure models (Chap. 3). Although the lack of 

data formats standards is an important 

shortcoming that is still to be solved by these 

open-source initiatives, it was herein observed 

that the derivation of building attributes that are 

likely to be associated with other specific ones is 

a promising pathway to keep exploring in future 

studies through new techniques. Furthermore, it 

was also proved that the refinement of the spatial 

extent of exposure models by integrating remote 

sensing data products is compatible with such a 

probabilistic framework.  

(4) This thesis has shown the importance of deriving 

optimal spatial aggregation entities for exposure 

modelling from the new integration of exposure 
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proxies and the spatial variability and correlation 

of the hazard intensities of interest. For such a 

purpose, geocells in the form of Central Voronoi 

Tessellations were proposed to accurately and 

efficiently estimate the physical vulnerability of 

large-area building stocks to various independent 

and cascading hazards (Chap. 4). It was proven 

their advantages in computation efficiency while 

preserving accuracy and reducing thematic 

uncertainties in their visualisation. Although this 

approach was applied for the punctual case of a 

coastal city exposed to seismic ground-shaking 

(spatially cross-correlated ground motion fields) 

and tsunami inundation, the proposed method 

could be adapted and further applied in future 

studies for other contexts (other areas and sets 

of hazards).  

Subsequently, this thesis moved to a multi-hazard risk 

environment accounting for the interactions at the 

vulnerability level. Such risk scenarios were developed 

accounting for the damaging actions of various 

intensity measures on building portfolios, either due 

to individual hazards (i.e., earthquake ground 

motions, far-field tsunamis) or to include pre-existing 

damage in the exposure model to assess the likely 

cumulative damage during consecutive sequences 

(e.g., ground shaking followed by a tsunami in 

Chapter 5).  

(5) This thesis has proposed a novel method to 

harmonise and integrate existing fragility models 

(that were already individually calibrated by 

experts) into a consistent approach for scenario-

based multi-hazard risk assessment including 

state-dependent models. This is a modular 

method that allows estimating the dynamic 

physical vulnerability (i.e., cumulative damage 

and direct economic losses) of a large-city-scale 

residential building stock exposed to cascading 

hazard scenarios. With the proposal of this 

method, this thesis sets the precedent for the 

need to visualise the exposure component from 

a different perspective: not anymore as a fixed 

and pristine representation of assets, but how it 

can be linked to the vulnerability component to 

include pre-existing damage descriptions, a vital 

input to address cumulative damage and losses in 

a multi-hazard risk setting. 

(6) The aforementioned method was herein 

exemplified by evaluating the likely damage 

distribution and respective direct financial losses 

of the residential building stock of Lima 

subjected to various consecutive earthquakes 

and tsunamis scenarios (i.e., seismic ground-

shaking and tsunami inundation respectively). 

Having proposed scenario-based multi-risk 

assessment for this city is itself a particular 

achievement of this thesis. Lima is today an 

important and highly vulnerable mega-city (with 

nearly 10 million people) and hosts most of the 

important economic activities of the country. Its 

relevance stems from the fact that, although this 

city was devastated in the past by earthquakes 

and tsunamis, no research studies of this nature 

(addressing cumulative damage and losses) had 

not been reported in the scientific literature. The 

outcomes related to this original method differ 

from the ones obtained from classical tsunami 

empirical fragility functions, for which 

underestimation of predicted losses for lower 

magnitudes (Mw) and large overestimations for 

larger Mw events were observed. 

Lastly, this thesis also documents how the 

developments related to exposure, risk scenarios, and 

their related uncertainties can be successfully 

integrated into a user-friendly interactive tool for the 

exploration of risk scenarios. The establishment of 

this framework has contributed to risk 

communication initiatives with practical societal 

applications. This activity has also enhanced the 

divulgation of results or linked with multi-risk 

scenarios in a transparent manner to the interested 

stakeholders, and to the scientific community 

through the creation of open source software and 

freely available data repositories. These aspects can be 

summarised as explained in the next two items. 

(7) The research outcomes obtained in the former 

items related to exposure and multi-hazard risk 

investigations were designed to be ultimately 

integrated into a set of interoperative 

webservices that jointly configure a decentralised 

processing architecture. Such a joint integration 

ultimately allowed the construction of a tool for 

scenario exploration, which was divulgated to 

decision-makers and representatives of 

communities through risk communication 

activities (Chapter 6). Through such risk 

communication activities, it was proven how the 

web tool can also be used to transfer scenario-

based risk outcomes to the directly exposed 

communities. Moreover, based on the 

understanding of the outcomes of risk scenarios 

and their uncertainties, decision-makers could in 
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the future advocate for local strategies for risk 

management and disaster risk prevention.  

(8) Five open source and registered software were 

generated in the frame of this thesis (Sect. 1.3.3). 

Four of these codes can also work as inter-

operable web-services. Seven data papers were 

created gathering the produced input and 

outputs for either exposure modelling or (multi) 

risk assessment (Sect. 1.3.4). Significant efforts 

were made to ensure that such products can 

constitute interoperable solutions. Hence, this 

collection of data and software is also an 

important and transparent outcome of this 

thesis, as be consulted, reused, and even 

improved by others.  

Although several punctual pathways to improve the 

individual components were already examined in 

detail in every “discussion” section of Chapters 2 to 6, 

I do believe that regardless of the type of hazard-

related vulnerability, there are a few cross-cutting 

aspects that are worth exploring in future studies.  

i. The first one is grounded to the way risk 

modellers establish the link between fragility and 

the building typologies of the exposure model. 

Such a building categorization can be achieved in 

two distinctive directions: 

a) “reality -> model”, i.e., through visual 

inspections of existing buildings or the 

use of co-variants to infer certain 

attributes contained in the predefined 

set of building classes). 

b) “model -> reality”, i.e., when analytical 

models oversimplify the reality (i.e., the 

assets that are actually built largely 

differ to what was originally designed. 

Although the consideration of visual 

characteristics (taxonomic attributes) 

was significantly important in this 

thesis, it is important to consider that 

the increasing instrumentation of 

existing buildings (e.g., through seismic 

sensors that to measure their behaviour 

under the action of a variety of hazard 

intensities) is and will be more relevant. 

The shortcoming of this, is that the data 

obtained from such monitoring 

activities will be anyway dependent 

upon the occurrence of real hazardous 

events. Although this creates 

opportunities for the vulnerability 

assessment to certain hazards that are 

expected to occur more frequently in 

the future, there will be a bottleneck for 

very rare events (with low probabilities 

but likely high consequences) such as 

large tsunamis or high magnitude 

volcanic eruptions. Constraining the 

physical vulnerability of the exposed 

infrastructure to those events, will 

require yet undefined sophisticated 

approaches that should go beyond the 

expert-based frames. For this setting, 

the need of standardising damage scales 

across hazards will still be an important 

aspect for the scientific community to 

devote efforts. 

ii. The second one is related to the improvement of 

two components entailed in the multi-hazard 

framework here proposed in Chapter 5, i.e., (1) 

the harmonisation of several damage scales into 

a transversal one; and (2) the derivation of state-

dependent analytical fragility. Both components 

deserve more research attention to be optimised 

in the future through more refined approaches. 

Hopefully, that will involve the integration of real 

damage data to calibrate hybrid models (joint of 

empirical and analytical fragility models). This 

setting is likely to be compatible with other 

factors that also induce cumulative damage such 

as aging effects on existing structures. 

This cumulative thesis has contributed to the 

advancement of the state of the art in exposure 

modelling for scenario-based (single and multi-hazard) 

risk assessment. It collects a significant amount of 

work in the proposal of new methodological 

approaches which were exemplified on real residential 

building stocks. For such a purpose, this thesis depicts 

the work devoted in the development of original, 

versatile and efficient computer codes, which later 

allowed to perform the heavy computations herein 

documented. Likewise, this thesis has paved the way 

for others to propose other research questions and 

manners of improving the methods herein presented 

within the context of risk assessment due to natural 

hazards for extended building portfolios. 
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