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A B S T R A C T

In the last two decades, process mining has developed from a niche
discipline to a significant research area with considerable impact on
academia and industry. Process mining enables organisations to iden-
tify the running business processes from historical execution data. The
first requirement of any process mining technique is an event log, an ar-
tifact that represents concrete business process executions in the form of
sequence of events. These logs can be extracted from the organization’s
information systems and are used by process experts to retrieve deep
insights from the organization’s running processes. Considering the
events pertaining to such logs, the process models can be automatically
discovered and enhanced or annotated with performance-related infor-
mation. Besides behavioral information, event logs contain domain spe-
cific data, albeit implicitly. However, such data are usually overlooked
and, thus, not utilized to their full potential.

Within the process mining area, we address in this thesis the research
gap of discovering, from event logs, the contextual information that can-
not be captured by applying existing process mining techniques. Within
this research gap, we identify four key problems and tackle them by
looking at an event log from different angles. First, we address the
problem of deriving an event log in the absence of a proper database
access and domain knowledge. The second problem is related to the
under-utilization of the implicit domain knowledge present in an event
log that can increase the understandability of the discovered process
model. Next, there is a lack of a holistic representation of the historical
data manipulation at the process model level of abstraction. Last but
not least, each process model presumes to be independent of other pro-
cess models when discovered from an event log, thus, ignoring possible
data dependencies between processes within an organization.

For each of the problems mentioned above, this thesis proposes a
dedicated method. The first method provides a solution to extract an
event log only from the transactions performed on the database that
are stored in the form of redo logs. The second method deals with
discovering the underlying data model that is implicitly embedded in
the event log, thus, complementing the discovered process model with
important domain knowledge information. The third method captures,
on the process model level, how the data affects the running process in-
stances. Lastly, the fourth method is about the discovery of the relations
between business processes (i.e., how they exchange data) from a set of
event logs and explicitly representing such complex interdependencies
in a business process architecture.
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All the methods introduced in this thesis are implemented as a pro-
totype and their feasibility is proven by being applied on real-life event
logs.
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Z U S A M M E N FA S S U N G

In den letzten zwei Jahrzehnten hat sich Process Mining von einer
Nischendisziplin zu einem bedeutenden Forschungsgebiet mit erheb-
lichen Auswirkungen auf Wissenschaft und Industrie entwickelt. Pro-
cess Mining ermöglicht es Unternehmen, die laufenden Geschäftspro-
zesse anhand historischer Ausführungsdaten zu identifizieren. Die ers-
te Voraussetzung für jede Process-Mining-Technik ist ein Ereignispro-
tokoll (Event Log), ein Artefakt, das konkrete Geschäftsprozessausfüh-
rungen in Form einer Abfolge von Ereignissen darstellt. Diese Proto-
kolle (Logs) können aus den Informationssystemen der Unternehmen
extrahiert werden und ermöglichen es Prozessexperten, tiefe Einblicke
in die laufenden Unternehmensprozesse zu gewinnen. Unter Berück-
sichtigung der Abfolge der Ereignisse in diesen Protokollen (Logs) kön-
nen Prozessmodelle automatisch entdeckt und mit leistungsbezogenen
Informationen erweitert werden. Neben verhaltensbezogenen Informa-
tionen enthalten Ereignisprotokolle (Event Logs) auch domänenspezi-
fische Daten, wenn auch nur implizit. Solche Daten werden jedoch in
der Regel nicht in vollem Umfang genutzt. Diese Arbeit befasst sich
im Bereich Process Mining mit der Forschungslücke der Extraktion von
Kontextinformationen aus Ereignisprotokollen (Event Logs), die von be-
stehenden Process Mining-Techniken nicht erfasst werden.

Innerhalb dieser Forschungslücke identifizieren wir vier Schlüssel-
probleme, bei denen wir die Ereignisprotokolle (Event Logs) aus ver-
schiedenen Perspektiven betrachten. Zunächst befassen wir uns mit
dem Problem der Erfassung eines Ereignisprotokolls (Event Logs) oh-
ne hinreichenden Datenbankzugang. Das zweite Problem ist die unzu-
reichende Nutzung des in Ereignisprotokollen (Event Logs) enthalte-
nen Domänenwissens, das zum besseren Verständnis der generierten
Prozessmodelle beitragen kann. Außerdem mangelt es an einer ganz-
heitlichen Darstellung der historischen Datenmanipulation auf Prozess-
modellebene. Nicht zuletzt werden Prozessmodelle häufig unabhängig
von anderen Prozessmodellen betrachtet, wenn sie aus Ereignisproto-
kollen (Event Logs) ermittelt wurden. Dadurch können mögliche Daten-
abhängigkeiten zwischen Prozessen innerhalb einer Organisation über-
sehen werden.

Für jedes der oben genannten Probleme schlägt diese Arbeit eine ei-
gene Methode vor. Die erste Methode ermöglicht es, ein Ereignispro-
tokoll (Event Log) ausschließlich anhand der Historie der auf einer
Datenbank durchgeführten Transaktionen zu extrahieren, die in Form
von Redo-Logs gespeichert ist. Die zweite Methode befasst sich mit der
Entdeckung des zugrundeliegenden Datenmodells, das implizit in dem
jeweiligen Ereignisprotokoll (Event Log) eingebettet ist, und ergänzt so-
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mit das entdeckte Prozessmodell mit wichtigen, domänenspezifischen
Informationen. Bei der dritten Methode wird auf der Ebene des Prozess-
modells erfasst, wie sich die Daten auf die laufenden Prozessinstanzen
auswirken. Die vierte Methode befasst sich schließlich mit der Entde-
ckung der Beziehungen zwischen Geschäftsprozessen (d.h. deren Da-
tenaustausch) auf Basis der jeweiligen Ereignisprotokolle (Event Logs),
sowie mit der expliziten Darstellung solcher komplexen Abhängigkei-
ten in einer Geschäftsprozessarchitektur.

Alle in dieser Arbeit vorgestellten Methoden sind als Prototyp imple-
mentiert und ihre Anwendbarkeit wird anhand ihrer Anwendung auf
reale Ereignisprotokolle (Event Logs) nachgewiesen.
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1
I N T R O D U C T I O N

Business Process Management (BPM) plays an important role in design-
ing, implementing, controlling and improving the business processes of
an organization [139]. The main artifact of BPM is the process model,
which captures the main steps performed within an organization that
achieve a certain business goal [124, 139]. One option to extract process-
related information is to rely on the event data of the running informa-
tion systems [128] and apply process mining.

In the last two decades, process mining has developed from a niche
discipline to a significant research area with considerable impact on the
industry [98]. Organizations can gain deep insights about their running
business processes by applying different process mining techniques like
discovery [76], conformance checking [107, 138], and performance anal-
ysis [130]. All these techniques require as input an event log — a list
of timestamped events that mark meaningful happenings in an orga-
nization [128]. These events are created from the organization’s run-
ning information systems and are usually extracted from the respective
databases beforehand.

The extraction of an event log usually requires access to the whole
database [18], specific knowledge about its structure [35] and domain
expertise [44]. This becomes challenging in a real-world setting be-
cause holistic domain expertise is hard to find [101] and organization
databases are very large and complex [34]. Once these challenges are
overcome, the extracted event logs are very valuable, in that, besides
capturing the sequences of events, they are a rich source of domain-
specific knowledge. However, this knowledge is only implicitly cap-
tured in the data manipulated by the events. Extracting this knowledge
from the event logs is usually overlooked, especially when the underly-
ing databases are too large and complex to understand from a process
perspective.

Process experts can use the event logs to discover the process model,
i.e., by applying any process mining discovery algorithms like the Al-
pha Miner [96] or the Heuristic Miner [116]. However, the discovered
process model is not sufficient to be able to understand how the process
affects its contextual environment and the impact of the environment
on the process. In the context of this thesis, the environment can be
data or other processes that are intertwined with the process at hand.
There are two formal ways to represent data and process dependencies
within a single organization, respectively: data models and business
process architectures.
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2 introduction

Data models provide key information about the main entities in-
volved in the process and the relation between these entities. The
standard language for capturing data models is Unified Modeling Lan-
guage UML [108]. Data models can be linked to data objects in a pro-
cess model, which complements the control-flow with data-flow [94].
However, there is a research gap in understanding the underlying data
model that is implicitly embedded in an event log, even more specific,
when it comes to understanding and visualizing how this data affects
the running process instances on the process model level.

Nevertheless, the data within one organization can not always be iso-
lated in that different processes can access to common data. This means
that having a narrow view of the data each process accesses or modifies
is not sufficient to understand how data changes and, most importantly,
how these business processes are interconnected. This is where Busi-
ness Process Architectures (BPA) prove to be useful [46]. They provide
a holistic view of all the processes in an organization’s process repos-
itory and the relation between these processes. However, the state-of-
the-art research on designing Business Process Architecture relies only
on information found at the process model level of abstraction, thus
neglecting processes execution information like event logs [49, 50]. The
information store in these logs can reveal complex relations that are
otherwise not discoverable only by looking at the process model. For
example, a process model can trigger 1-to-n instances of another pro-
cess model or, depending on certain decision within a process models,
information can flow to different target process models.

1.1 story

To make the problems in this thesis more tangible, we present the fol-
lowing story, which we will repeatedly visit to showcase our solution.
Suppose that John is a process expert within an organization. One of
the tasks assigned to him has to answer a set of questions related to the
organization’s running business processes. Assuming that no business
process model is captured in the corresponding organization implies
the need to apply process mining discovery techniques to discover such
models. The first requirement of any process mining technique is an
event log. If these logs are unavailable, John has to extract them from
the organization’s database. The premise is that John does not have
direct access to or holistic knowledge of the database but only access to
the Redo Logs. Redo logs are used within an organization to store the
data operations and bring the database into a consistent state in case of
system failure (e.g., power failure).

Once John can derive an event log from the Redo log (see Figure 1), he
can apply any process mining discovery algorithm to discover the pro-
cess model and start answering his process-related questions. Deriving
a process model alone is not sufficient for John to understand how the



1.1 story 3

process model affects its environment and, in addition, the impact of
the process model on the environment. The environment can be data or
other processes that are connected with the process at hand. This step
is proven to be time-consuming [140] and the complexity increases on
the size of the event log in terms of the number of cases, attributes and
activities. Hence, John requires a method that can aid him in identify-
ing the underlying data model and how the running process is affected
by the data (see Figure 1).

Figure 1: Methods provided to John to support him during his daily work

However, this data is not always isolated in that other processes can
access it. John should not have a narrow view of the relation between a
single process and its data because it limits his visibility of the overall
data dependency between different business processes. It is possible
for John to 1) extract several event logs, each pertaining to a different
business goal, 2) discover a process model for each event log, and 3)
derive the business process architecture (BPA) directly from the process
models. However, the derivation of the BPA would solely be based on
the activity labels’ matching between the process models [56]. To re-
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ally understand the dependencies between these process models, John
needs to consider historical execution data, which can be found only by
looking at all corresponding event logs together.

This thesis aims to support John in deriving an event log in the ab-
sence of a proper database, extract the underlying data model from an
event log and, finally, understand how the data impacts the process
not only in isolation but also how it manifests dependencies between
co-existing business processes.

1.2 contributions

This thesis mainly focuses on the automated analysis of the event log
attributes to derive context-aware information that can not be captured
by solely considering the discovered process model. As a foundation,
we shed light on the way how the organization’s data are obtained
and manipulated by the running processes. Based on this data, a set
of methods are designed and provided to the process expert allowing
her/him to exploit the event logs to their full capacity even when the
access to the original database system and the domain knowledge is
limited or unavailable. These methods help the process experts to bet-
ter understand the discovered business processes by having a holistic
view of the data involved with an organization and its business process
models.

As it is illustrated in Figure 2, each method captures specific data
aspects while involving different artifacts. These methods touch on five
main artifacts: redo log, event log, data model, data object and business
process architecture. Redo logs are used by several Data Base Manage-
ment Systems (DBMSs), like Oracle RDBMS 1, to bring the database into
a consistent state in case of system failure. In this thesis, we provide a
method that considers as input this type of log and extracts an event log
as a set of cases, each representing one business process execution in-
stance. The event logs are considered as a starting point of any process
mining technique and are de facto standard for capturing process infor-
mation [122]. By applying any process mining technique to an event
log, the process model representing the real execution of the running
information system can be obtained as a set of activities executed in a
specific order to achieve a certain business goal [48, 139]. Aside from
the control-flow perspective, the process model can represent other per-
spectives captured as the data objects or data models. Data objects
are defined as entities that are processed during the process execution
and are annotated with states. Data models are used to group similar
data into data model classes, which are connected together via relations.
Within an organization, the process repository might contain hundreds
or thousands of process modes. To handle the relations between these

1 https://www.oracle.com/database/technologies/
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processes, the business process architecture defines what information
these process exchanges or how they instantiate each other.

Figure 2: Overview of the contributions presented in this thesis

The insights about the processes and data within an organization and
the presented methods lead to several contributions related to the event
log extraction, process enhancement and process relation. We identify
one contribution related to event log extraction from the insights ob-
tained from the transactions made upon the running information sys-
tem and stored as redo logs. Whereas, three other contributions are
responsible for capturing the data perspective from an event log and
enhancing the process model with complementary information, which
is useful to better understand the process. Specifically, the four main
contributions of this thesis are summarized below.

• A method that extracts an event log from the redo logs
In their running information systems, organizations configure the
database management systems to store their transactions in so-
called redo logs, which brings the database into a consistent state
in case of an instance failure. We argue that these types of logs
contain useful information to derive the process instances stored
in the form of event logs, which are considered the main artifact in
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the process mining area. As part of Chapter 3, we provide insights
into why sometimes it is necessary to use this type of log for
event log extraction and not data structured in the organization’s
database, which is a commonly known source of information for
extracting an event log. The extracted event log can be tailored to
the process mining experts for applying different process mining
techniques, e.g., process discovery and conformance checking.

• A method that discovers a data model from the event log
The organization uses data models as a common understanding
language between different database designers or data modelers.
They are defined as a fundamental concept within an organization
and contain information about the data structure in the form of
classes, which are associated together via relations. As part of
Chapter 4, we are aiming to discover such data models from the
historical data of the given organization stored as event logs. The
event logs do not contain explicit information about the context
and the data they are extracted from. Despite the fact that event
logs capture behavior information captured by the event log cases,
we argue that they are also a rich source of domain-specific infor-
mation, albeit not explicit.

• A method that discovers the data objects lifecycles from an event log
During the business process execution, the activities read and
write to different data objects. Therefore, these activities change
the data object states during each process instance. Enhancing the
process model with the data objects means providing additional
information about the data-flow perspective, which can not be
captured by the process model itself. (i.e., the process model pro-
vides information about the control-flow). Therefore, they play
an important role in process model understandability. As part of
Chapter 5, we are providing a method that can be used by any
process expert to discover the data-flow perspective based on the
information stored in the event log. This is realized by tracking
how the event log activities write or modify the event log attribute
values, propagating how the business process activities manipu-
late the data objects during the process execution. Connecting
these two perspectives together and providing a holistic view in-
creases the information which can be gained by solely analyzing
the event log and the discovered process model.

• A method that discovers business process architecture from event logs
Business process repositories within an organization capture hun-
dreds or even thousands of business processes. Having a holistic
view of the interrelationship between these processes helps the
organizations to organize, manage and better understand their
processes. Typically, these relations are designed by process ex-
perts and usually involve manual tasks and extensive domain
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knowledge [74] making the whole designing process not scalable.
Chapter 6 shows the potential of automating this step using the
event logs extracted from the organization’s database to derive
such relations. This is achieved by analyzing the causality re-
lationships between the events pertaining to two different event
logs but having access to common data.

Each method is totally independent from each other and can be used
as standalone anytime the requirements are fulfilled.

1.3 structure of the thesis

In this thesis, we provide a set of methods that any process mining
expert can use (e.g., John based on the story presented in Section 1.1)
to discover not only the business process model from an event log but
also context-aware information pertained to the event log attributes and
activities. The structure of the thesis is illustrated in Figure 3 and ex-
plained in more details below.

´

• Chapter 2 (Preliminaries).

Recalls the basic notions that are necessary to set the stage for pre-
senting the main contributions of this thesis. The main concepts
are elaborated through the lens of process mining and business
process management as fundamental areas of this thesis.

• Chapter 3 (Event Log Extraction from Redo Logs).

Presents a two-step method for obtaining a reliable event log
by considering as input only the transactions made upon the
database of the running information system and stored in the
form of Redo Logs. In the first step, the data model, which serves
as a substitute for the database schema, is discovered directly
from a redo log. In the second step, the redo entries are corre-
lated with the event log cases. By using the proposed method,
it is possible to extract an event log from a different source of
information besides the one generally used in the process mining,
i.e., database

• Chapter 4 (Discovering Data Models from Event Logs).

Describes a two steps method that takes as input and event log
and discovers the data model. In the first step, an intermediate
representation called the Attribute-Access relationship diagram is
obtained based on the access relation defined between the event
log attributes and activities. In the second step, a set of rules are
applied to the obtained diagram and the data model is discovered.
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The discovered data model can be used as complementary infor-
mation to the process model by increasing its understandability.

• Chapter 5 (Discovering Data Object Lifecycles from Event Logs).

Describes a method that takes as input and event log and discov-
ers the data objects and their lifecycles by tracking how the event
log attributes are manipulated within a case. The discovered in-
formation enhances the process model (i.e., which is upfront dis-
covered from the same event log by applying any process mining
discovery algorithm) with a data-flow perspective revealing how
the process activities manipulate the data during the execution.

• Chapter 6 (Discovering Business Process Architectures from Event
Logs).

Describes a method to discover the relations between several busi-
ness processes, each of them discovered from an event log by hav-
ing in mind a different business goal. This is realized by discover-
ing considering two types of relationships defined in the scope of
the BPA area, called trigger flow and information flow.

• Chapter 7 (Conclusions).

Finally, the thesis is concluded in the last chapter. The contribu-
tions are summarized, and further research directions to improve
or extend the presented methods are provided in the last chapter
as well.
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Figure 3: The structure of the thesis





2
P R E L I M I N A R I E S

This chapter recalls the basic notions that are necessary to set the stage
for introducing the main contributions of this thesis in the consecutive
chapters. It elaborates the main concepts through the lens of business
process management and process mining, as the fundamental fields of
this thesis.

2.1 business process management and modeling

Business Process Management (BPM) has been the focus of research at
the intersection of computer science, information systems engineering
and information system management since the early 1990 [36, 60]. BPM
is defined as a discipline for studying business processes, which are
determined as a set of activities performed in a particular order while
considering a specific business goal [139]. A business process can be
managed based on several aspects of a so-called BPM lifecycle. Many
BPM model lifecycles exist in the literature [48, 61, 91, 139, 142] but
in this thesis, we are mainly focused on the model defined by Weske
in [139]. The lifecycle model covers four fundamental phases: design
and analysis, configuration, enactment and evaluation of business pro-
cesses (see Figure 4). Although there is a logical dependency between
these phases, an independent visit is also possible. A detailed explana-
tion of each phase is provided below.

• Design and Analysis

As the name implies, the processes are identified within an or-
ganization and designed as a process models during this phase.
Therefore, business process modeling is considered a core method
during this phase. Process stakeholders are equipped with the
designed process models and use them to communicate among
each other. Analyzing the designed process models helps the
stakeholders to shed light on deadlocks’ existence, performance
analyses (e.g., related to the execution time of the activity) or
unreachable activities. Different types of analysis, like structure
or behavior analysis, require different efforts to retrieve insights
about the process improvements (e.g., considering cost, efficiency,
effectiveness). During the re-design phase of the process model,
the learned information is taken into account.

• Configuration

Once the process model is designed, it needs to be configured
before being enacted. Depending on the Business Process Man-

11
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Figure 4: The BPM lifecycle [139]

agement Systems (BPMS), it might be necessary to enrich the pro-
cess model with technical details that allow its deployment and
execution. Setting up the wrong configuration might lead to bed
deployment and execution even though a well-designed process
model is considered as an input.

• Enactment

Once the systems support the designed processes, the enactment
phase starts. This phase executes the business processes to achieve
the designed business goal. Depending on the BPMS features, dif-
ferent stakeholders might be involved during this phase to mon-
itor the execution of the business process instances as defined in
the business process model. The execution data are gathered in
so-called log files, which typically track the start and end time of
the business process activities.

• Evaluation

The business process evaluation mainly considers the information
stored in the execution logs, which is output from the previous
phase. Business process experts use this information to evaluate
the process quality based on predefined metrics. Different pro-
cess mining techniques (see Figure 4) can be applied to the execu-
tion logs and different outcomes related to the process quality can
be derived, e.g., process performance, bottle necks and decision
paths.

Several behavior aspects of an organization can be captured in a so-
called process model. These aspects are described and graphically illus-
trated based on a specific modeling language. Several process mod-
eling languages are defined in the literature and each of them has its
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own semantics and syntax. For example, Petri net, as one of the old-
est and most well-structured modeling languages, is determined as a
state-based language rather than an event-based [121]. The standard
modeling language, which is also widely used in both academia and
industry (e.g., in e-commerce) is Business Process Model and Notation
(BPMN) [27, 139]. In BPMN, processes are treated as a core element and
all operations happening within an organization are viewed through
the lens of processes. A BPMN process model contains events, activities
and gateways. In addition, control-flows are used to define the causal
dependencies between the elements. Aside from the control-flow, the
process model can represent other aspects such as data-flow and data
objects (a detailed explanation of them is provided in the next section).
As an imperative modeling language, BPMN is our language of choice
in this thesis to model and illustrate the process models. A tiny subset
of BPMN notions that are covered in this thesis is illustrated in Figure 5.

Figure 5: A subset of the BPM notions covered in this thesis

Formally, the definition of the process model is presented as follows:

Definition 2.1.
(Process Model) A process model is defined as the tuple
PM = (A,G,E, F) where

• A is a finite set of activities
• G = Gx ∪ Ga is a finite set of exclusive and parallel gateways

respectively, where Gx and Ga are disjoint
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• E = Es ∪ Ei ∪ Ee is a finite set of start events, intermediate events
and end events. Es, Ei and Ee are pairwise disjoint.

• F ⊆ (A∪G∪E)× (A∪G∪E) is a set of sequence flows, which are
ordered pairs of activities, gateways and events.

◀

The process models within an organization are stored in a so-called
process model repository, which often captures hundreds or thousands
of models. These processes require changes in a perpetual repetition in
order to accommodate the ever-changing business requirements [139].
The more process models are stored in such repositories, the more chal-
lenging it is to manage them over time. The BPM area addressing such
a challenge is called Business Process Architecture (BPA) [46]. Typically,
BPAs are designed using the relationships between process models in
a given repository, i.e., BPA design is purely based on process models
rather than execution logs of processes. BPAs provide an abstract view
of all business process models happening in one organization. Authors
in [50] emphasize that different types of patterns are identified to ex-
press the relations between two different business processes. However,
the following patterns are widely used throughout the literature:

Figure 6: BPA representing trigger and information flow patterns [50]

• decomposition - a business process model is decomposed into
other business process models each representing a sub process

• specialization - a business process model is a specialized version
of another business process model
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• trigger flow - an event of a business process models triggers the
instantiation of another business process model

• information flow - an event of a processes model passes informa-
tion to another event of a different process model.

This thesis focuses only on the trigger and information flow between
two or more process models. To illustrate these patterns we use the
graphical representation presented in [50] and depicted in Figure 6. The
upper part of the Figure illustrates the trigger flow pattern, in which the
throwing end event e1 of process p1 instantiates the process p2 through
the catching start event s2. The process can also be instantiated from an
intermediate event t1. In contrast, the lower part of the Figure 6 illus-
trates the information flow patterns, which represents the case where
process p2 receives information from an intermediate t1 or end event e1
of process p1. The trigger flow relations are designed as a normal line
connecting two different processes, while the information flow relations
are designed with dashed lines.

Since the BPA is defined between at least two process models, it is
necessary first to recognize the throwing and catching event in the cor-
responding models. The throwing event model is considered as active
because it sends a signal to the other process. It can be an intermediate
or end event model (see Figure 7). In contrast, the catching event model
is considered as passive because it waits for the signal to arrive. It can
be a start or intermediate event model (see Figure 7).

Figure 7: The visual notations of catching (start/intermediate event) and
throwing events (intermediate/end event) in a BPA

Below is the formal definition of a BPA as used in this thesis:

Definition 2.2.
(Business Process Architecture) A business process architecture is a
tuple BPA = (P,E, element, F) in which:

• P is a set of processes
• E is a set of events defined as E = Ee ∪ Es ∪ Ei, where Ee is the

set of end events, Es is the set of start events and Ei is the set of
intermediate events and they are pair wise disjoint



16 preliminaries

• element: P → 2E assigns events to processes
• F ⊆ (Ei ∪ Ee) × (Es ∪ Ei) is a set of flows between two events.

In addition, we distinguish between two type of distinct flows:
F = Fi ∪ Ft. Ft ⊆ (Ei ∪ Ee)× Es is the set of trigger flows (they
target only start events); Fi = F \ Ft ⊆ (Ei ∪ Ee)× Ei is the set of
information flows (they target only intermediate events).

◀

2.2 data in business processes

This section shortly summarize the notions related to data in the busi-
ness processes.

2.2.1 Database’s Redo Logs

Information Systems stores their execution data in a so-called Database.
Several Data Base Management Systems (DBMSs), like Oracle DBMSs,
provide redo logs to store conducted data operations and use them to
bring the database into a consistent state in case of system failure (e.g.,
power failure). The redo log stores all database changes as they occur
and is used to establish the database history for a certain period of time.
Each redo log is overflowing with redo entries and each entry in a redo
log corresponds to a transaction executed by the database system. For
example, if we change a certain value of an attribute in the database
(e.g., patient marital status), a redo entry is recorded in the redo log
describing precisely the changes made in this table. These systems, like
Oracle RDBMS enable redo logs to store the historical view of what has
happened in the system.

1 insert into "SYSTEM"."PATIENTS"("ID","GENDER") values ( ’86 ’, ’
M’) AAAT; 08-JAN-2021 12:46:15

update "SYSTEM"."DIAGNOSES" set "ID" = ’584 ’ where "
ADMISSION_ID" = ’101 ’ and ICD_CODE= ’P599 ’ and ROWID = ’
BADR’; 08-JAN-2021 12:45:33

delete from "SYSTEM"."ADMISSIONS" where "ID" = ’32 ’ and "
PATIENT_ID" = ’34 ’ and ROWID = ’SABD’; 08-JAN-2021
12:46:27 �

Listing 1: Redo log fragment: each statement corresponds to an transaction
made on the database and it is called a redo entry

Each transaction in the redo log is represented as an SQL statement
(called redo entry) and consist of:

• the operation made upon a certain database table i.e., insert, delete,
and update

• the affected attributes and the corresponding values

• the row id on which the statement must be applied
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• the timestamp of the statement occurrence

Some examples of the redo entries corresponding to patients, admis-
sions and diagnoses are illustrated in Listing 1.

2.2.2 Data Model

In conceptual modeling [57, 108] and especially in process modeling [62],
the data are considered to belong to a set of objects, which might be
linked together through associations. Data models as a language to
design conceptual models are defined as fundamental concepts within
an organization and widely used to represent their data and used as
a common understanding language between the database designers or
data modelers. Similar data objects are grouped in so-called data model
classes, containing a name and typed attributes. The connection be-
tween data model classes is handled via relations characterized by the
lower and upper bound values and can be defined as one-to-one, one-
to-many, many-to-many, zero-to-one, or zero-to-many relations. Differ-
ent types of relations can be defined between two data model classes.
For example, if there is an instance of a class in order to complete its
task requires the information about the other, then an association (e.g.,
graphically represented as a simple line) is defined between these two
classes.

Generally, the whole data structure of an organization can be de-
scribed via a data model. Prominent modeling techniques for data
models include Entity-Relationship (ER) models [26] and Unified Mod-
eling Language (UML) class diagram [108]. In this thesis, the standard
Unified Modeling Language (UML) is our language of choice. When a
data model is instantiated, any instance must comply with the model.
In addition, the instances might change over time (i.e., new objects are
created, existing ones are updated) and these changes do not require
changes in the data model. Below is given a succinct definition of the
data model:

Definition 2.3.
(Data Model) A data model D is a tuple
D = (C,Att,Aso,member,attrmulti,asomulti) where:

• C is a non-empty finite set of classes
• Att is a set of attributes
• Aso ⊆ C×C is the set of associations between classes
• member : C → 2Att assigns attributes to classes
• attrmulti : Att → N0 × {∗} defines the multiplicity of any at-

tribute in a class where * stands for arbitrarily many and we as-
sume that ∗ ∈ N
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• asomulti : Aso → N0 × {∗} defines the multiplicity of any associ-
ation in the data model

◀

An example of the data model illustrated as a UML class diagram is
depicted in Figure 8. It consists of two classes: Class A and Class B and
each of them has two attributes (attribute1 and attribute2 pertain to Class
A, while attribute3 and attribute4 pertain to Class B). There is only one
relation defined between these classes with a multiplicity from 1 (Class
A) to many (Class B).

Figure 8: An example of the data model illustrated as a UML class diagram

2.2.3 Data Object

Aside from the control-flow, process model can represent another as-
pect, that of the data-flow, i.e., the data created and modified by pro-
cess activities as well as exchanged between them. In BPMN, the data
created and used by process activities are represented through data
objects, which are defined as entities that are processed during the busi-
ness process execution. They are connected with activities via directed
data associations, represented as directed edges. Based on the data-
flow edge direction, read/write access are defined. An edge from the
data object to the process model activity represents a read access to the
data object. Alternatively, an edge from an activity to the data object
represents a write access. Write access defines the creation of a new
data object or the modification of an existing one [94].

Data objects in the process can be annotated with their state and each
data object can be only in one state at one point in time. During the
process execution, the data object state can change. The execution of a
certain process activity could require the data object to be available in
a particular state. Once the activity is completed and the data object is
consumed, it might lead to a data object state update. The combination
of different data object states and the possible transitions between them
can be captured in a data object lifecycle (OLC), which represent the
behavior aspect of the data objects.

A representation of the the data object in BPMN is illustrated in Fig-
ure 9. Data Object X has state low and is written by the first activity
(A) happening in the process. If activity C occurs then it reads the data
object written by activity A. In contrast, if B occurs then a write access
to the database (DB) takes place. A repository/database access is used
in BPMN to persists the manipulation of the data by the process.
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Figure 9: An example of a process model (represented as BPMN) and the data
object/repository associated with its activities

2.3 process mining

In this section, we provide the basic notions related to the process min-
ing field. First, we describe how this research area is positioned in the
real world and afterwards explain the main techniques covered within
this area. We conclude the section with a short event log excerpt, which
is the main subject of these techniques.

2.3.1 Process Mining Position

The process mining area establishes links between the business pro-
cess management and the data mining area [124]. The former mainly
focuses on the process-based data analysis techniques, where the pro-
cess is the main artifact. In contrast, the latter considers data-oriented
analysis techniques, where the statistical analyzes are the main opera-
tions performed upon the data. Process mining links these two areas
to answer the questions related not only to the behavior and execution
order of a certain business process activities but also provides outcomes
related to the performance and conformance analysis of the processes.

Process models serve as a blueprint for process execution, which de-
fines the order under which the process activities have to be executed
within an organization. All the process instances conducted during
the business process execution are happening in the Process Execution
Environment (see Figure 10). However, there are cases within an or-
ganization in which the process instances behavior is not the same as
it is defined in the model. To capture such behavior, it is necessary
to discover the process model from real-life data generated during the
business process execution. In addition, the data generated during the
business process execution might have a different format, for example,
text files, database files, and spreadsheet documents. To discover the
process model from this type of data, first, an event log has to be ex-
tracted, which is defined as the first requirement for any process mining
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technique. The event log is a set of execution cases, where each of them
represents an instance of the process execution. Once the event log is
extracted, different process mining techniques can be applied: process
discovery, conformance checking, and process enhancement [122]. A
detailed explanation of each technique is provided below.

Figure 10: Process Mining position [72]

• Process discovery

This technique aims to discover a process model from an event log
after applying a process discovery algorithm. Different discovery
perspectives are identified in the literature, like process, organi-
zation or case perspective [133]. The main goal of the discovery
algorithm that focuses on the process perspective is to discover
the control-flow, which covers the behavior found in the event log.
The majority of the discovery algorithm found in the literature
supports this perspective, like Alpha Miner [96], Heuristic Miner
[116], Inductive Visual Miner[76]. The organizational perspective
covers the classification of people in terms of roles, departments
or organization units. The outcomes of the organizational discov-
ery algorithms are plotted in the social network. In contrast, the
case perspective is mainly focused on the process instance char-
acteristics. The data elements, roles and persons contributing to
the business process instance are some characteristics that can be
analyzed within this perspective.

• Conformance checking

Conformance checking is another process mining technique that
deals with the comparison of an existing process model with an
event log of the same process [3, 129]. The main question that
needs to be answered from the comparison is whether the real
execution cases conform to the model and whether the model can
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represent a portion of the cases. There are different approaches
towards conformance checking discussed in the literature, like
in [66, 107, 110].

• Process enhancement

The third process mining technique is called process enhance-
ment, which deals with the enhancement of the process model
based on the data captured in the event log. The process model
can be repaired to represent the reality better or extended by
adding an additional perspective and by cross-correlating the pro-
cess model with the event log [130].

2.3.2 Event Log

Since all process mining techniques require as input an event log, there
is a need to provide the fundamental concepts related to the event log
structure [124]. Each event log consists of a set of cases, each represent-
ing an execution of a business process instance. Each case consists of a
sequence of events, where each event captures the execution of specific
business activity within a case. The de facto standard format for storing,
exchanging and analyzing an event log is the eXtensible Event Stream
(XES)1 [1]. This format is supported by many process mining tools like
Disco2, ProM3 and implemented by OpenXES, which is an open-source
java library for operating in the XES logs. The event log is structured
as a table where rows represent the events and columns represent the
event log attributes. The association between events and attributes in
the event log is defined via the attribute values. Each event log contains
three mandatory attributes [127]:

• the case identifier, which correlates several events into a single
case i.e., a process instance

• the activity name, which identifies well defined execution steps
of the process instance

• the timestamp, which indicates when the event occurred

Depending on the business goal, events can be associated with ad-
ditional attributes, such as the resource, describing the person or the
device responsible for executing a specific activity, or the department,
defining where the activity has been executed.

Within the same case, attributes can be associated with a single event
or refer to a case as a whole. The former ones are called event attributes
and their value can vary based on the process step (event) being ex-
ecuted. The later ones are called case attributes and are invariant, i.e.,
they do not change as the events of the case occur.

1 www.xesstandard.org
2 https://fluxicon.com/disco/
3 https://www.promtools.org/doku.php



22 preliminaries

Let us denote a set of mandatory attributes with
Matt = {Case,Act, Time}. The following definitions are based on [124].

Definition 2.4.
(Event) An event e over a set of attributes Att is defined as
e = (#att1 , #att2 , #att3 , ..., #attn) where #atti is the value of attribute
atti ∈ Att for i = 1...n. If an event e is not associated with an attribute
Att, then #att(e) = ⊥ (null value). Otherwise, an event e accesses an
attribute Att, if #att(e)��=⊥ ◀

Definition 2.5.
(Case) A case c is defined as a finite sequence of events σ such that each
event appears only once, i.e., 1 ⩽ i < j ⩽ |σ| : σ(i)��=σ(j) where σ(i) is
the i-th element in the sequence σ ◀

Definition 2.6.
(Event Log) An event log El is defined as El = {e1, e2, e3, ..., em} where
m ∈ N is the entire number of events. In this thesis, for each event
e ∈ El it is assumed that all mandatory attributes are present, thus
∀ e ∈ El : #case(e)��=⊥∧ #act(e)��=⊥∧ #time(e)��=⊥ ◀

En event log example is illustrated in Figure 11 and formally can be
defined as: El = {e1, e2, e3, ..., e10} where:
e1 = {1,A, 1},
e2 = {1,B, 2},
e3 = {1,D, 3},
e4 = {1,E, 4},
e5 = {1, F, 5},
e6 = {2,A, 6}...
are defined over the attribute set
Att = {Case identifier,Activitiy name, Timestamp}

As you can see, the event log contains a lot of information on top
of business processes in the form of attributes where the data model
is implicitly and partially contained. In the absence of direct access
to the databases, the event log can be a rich source of contextual data
surrounding business processes.

In this thesis we are assuming that the event log contains the follow-
ing information:

• In the process mining area, an event log beside the mandatory
attributes (i.e., in this thesis, referred to as meta-attribute) can also
contain a set of optional attributes. In order to apply the methods
introduced in this thesis to an event log, it is necessary first that
the event log contains sufficient non-static optional attributes.

• The association between the event log activities and attributes is
handled via the attribute values. We assume that the attribute
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Figure 11: An event log example, its cases and the discovered process model

write access is explicitly represented in the event log, in that for
each event it is clear which attributes are written by which activ-
ities. For simplicity purpose, we will refer to “write access” as
simply “access” for the rest of this thesis. For example, in the
Road Traffic Fine Management event log [87] presented in 4.6, the
access is represented by concrete values in the accessed attributes
and empty values for the rest of attributes that are not accessed.
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Figure 12: Event log extraction from redo log through the data model

This chapter provides a method to extract event logs from redo logs
— components that are used to bring the database into a consistent state
in case of a system failure. As depicted in Figure 12, this chapter shows
how a data model, which serves as a substitute for the database schema,
is discovered directly from a redo log. Such a model is necessary to
correlate the redo log entries with the event log cases.

This chapter is mainly based on the previous work presented in [7].
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3.1 motivation

Applying process mining in an organization requires as input an event
log. Usually such logs are extracted from the organization’s databases
[44, 119]. Therefore, access to the database supporting the correspond-
ing information system is necessary to complete the event log extraction
process [18, 101]. In a real-life scenario, direct access to the database
system is not always possible due to restrictions related to the security
and privacy of the data stored under these systems. On top of that,
the organization’s data might be stored in a distribution setting, which
might mean that different parts/modules of the application store their
data in different databases. Extracting an event log from these systems
implies the need to configure privileges to all organization’s databases.
However, granting access to the sensitive data stored in these systems
(e.g., user’s credentials) is not always possible nor preferable by the
organization.

The database structures come with different complexity and diversity
(e.g., star schema, snowflake schema) making extraction step consid-
erably time-consuming [34, 44] and complicated [59, 65]. Navigating
through the right data scattered among different tables and correlating
them into the event log cases requires knowledge about the structure
under which these data are organized into the database tables [64]. For
several reasons, the required knowledge to perform such a task might
not always be available. Therefore, several assumptions must be made
or some explorative methods must be applied, mostly covering manual-
driven tasks. In a real-life scenario, where the databases contain hun-
dreds or thousands of tables, the event log extraction task becomes
intractable. Applying explorative methods is not always feasible within
certain time constraints and, in particular, some important information
might be overlooked during the manual extraction process.

Besides all of the above, the data stored in such systems is not al-
ways process-aware [34, 41] in that the data is not always recorded at
the application level even though they are available in the data storage.
Extracting an event log from such data implies a need to design an inter-
mediate layer, which transforms the data into a specific structure [123].
This comes with the limitation that during the transformation process,
some data which might be important for the event log are excluded
before the extraction process takes place.

Considering all the aforementioned limitations, the authors empha-
size that in many data analysis projects, 80% of the time is spent on
data extraction and preparation, taking around 50% of the project’s to-
tal cost [11, 42].

To overcome these limitations, other sources of information, such as
Redo Logs, can be considered for the event log extraction. Several Data
Base Management Systems (DBMSs), like Oracle RDBMS1, use redo

1 https://www.oracle.com/database/technologies/
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logs to store the conducted data operations and ensure consistency and
fault tolerance in case of system failure (e.g., power failure). Redo logs
make it possible to bring the database into a consistent state and re-
store it to a previous point in time by rolling back the latest operations
performed on it. They are an attractive choice for event log extrac-
tion since they do not only hold the values stored in the database but
also preserve the temporal ordering of the modifications applied to the
data [40, 41, 123].

The approaches proposed in the literature that leverage the extraction
of an event log from the redo logs (like the work in [123] and [40]) are
applicable in both process and non-process aware information systems
and do not require direct access to the database. However, the state-
of-the-art related work holds the knowledge about the whole database
schema as a necessary condition for the event log extraction process,
which does not solve all of the abovementioned limitations.

To overcome such limitations, in this chapter, we show that the event
log extraction process from a redo log can be performed without re-
quiring direct access to the whole database. Concretely, we propose a
method that considers as input only a redo log for extracting the event
log without the presence of a schema upfront. We argue that the redo
log per se can be sufficient, in terms of information, for deriving the
database structure required to extract the event log. Even better, the ex-
traction process can be carried out in a semi-automatic way, requiring
domain knowledge, which is ultimately needed to correlate the redo
log entries to specific cases in the event log. We prove the feasibility
of the proposed method by testing it on redo logs from two different
domains, healthcare and traveling.

3.2 extraction of event logs from redo logs

This section describes the method of obtaining reliable event logs by
considering as input only the entries performed on the database stored
in the form of redo logs.

3.2.1 Overview of the Approach and Assumptions

To extract an event log from the redo log we propose a two-step semi-
automatic approach. In the first step the database schema is automat-
ically discovered from the redo logs. Afterwards, a domain expert is
needed to look at the discovered schema and pick the case notion based
on the questions that he/she aims at answering from the process model
(discovered from the event log). In the second step, the database schema
and the redo log are used as input to correlate the redo log entries with
the event log cases. An overview of the approach is provided in Fig-
ure 13 while a detailed explanation of each step is provided in the next
section.
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Figure 13: Overview of the event log extraction method

Before explaining the approach in more details, let us first state the
assumptions.

• First, to record the redo logs, an explicit configuration2 is neces-
sary to be present in the running database management system.

• Second, to be able to read the content of such logs special database
privileges are necessary to be activated.

• Third, this method requires sufficient information to be included
in the redo logs. The larger the redo log size and the more nu-
anced (high number of unique tables and attributes), the closer to
the reality the extracted event log is.

In this method, we are assuming that the configuration has taken
place and the redo logs are available and accessible. In addition, we are
assuming that their content is sufficiently rich to represent the running
processes in the corresponding organization.

3.2.2 Discovering the Data Model from Redo Logs

We argue that the redo log entries of the running information sys-
tems contain sufficient implicit domain information for deducting the
database schema, here represented as a data model. In order to discover
the data model, we look in the redo log (see Figure 13) for the presence
of: (1) the database table and their attributes; (2) the primary key of

2 information regarding the Redo Logs configuration: https :

//docs.oracle.com/cd/B1930601/server.102/b14231/onlineredo.htm
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each table; and (3), the foreign keys(needed to establish the relation-
ship between two or more tables). A detailed explanation of each step
is provided below.

• Database tables and attribute detection

To identify the database tables, we look at each redo log entry
and filter out the table names. For each operation made upon a
certain table in the redo log entry, a new database schema table
is constructed. If the table name already exists in the database
schema then we move forward to the next redo log entry. This
step requires only one iteration over all redo log entries because
each entry represents only an operation made upon a single ta-
ble. For example, considering the redo log entries illustrated in
Figure 14 three tables can be extracted: PATIENTS, DIAGNOSES
and ADMISSIONS, each of them pertaining to a different redo log
entry.

Once the database tables are constructed, we have to discover the
attributes pertaining to each table. Following the same idea, we
iterate through each redo log entry and extract for each table the
mentioned attribute names. If a new attribute is detected, it is
added to the corresponding table. Considering the example de-
picted in Figure 14, we can see that the ID and GENDER attributes
belong to the PATIENTS tables (i.e., represented with A in Fig-
ure 14), while the ID and PATIENT_ID attributes belong to the
ADMISSIONS table, if we consider the third redo entry depicted
in Figure 14.

After the database tables and the attributes of each table are dis-
covered, we have to identify the relation between these tables in
the next step. In each database schema the relation between ta-
bles are guided by the use of primary and foreign keys. Since the
redo log entries does not contain explicit information about these
types of keys there is a need to identify them just by taking in
consideration from their attribute values.

• Primary key detection

Primary keys are defined as an important constraint indicating the
attributes relations that hold on a database [2]. For discovering the
primary and foreign keys we focus on the attribute values (repre-
sented with Av in Figure 14) that are involved in each redo log
entry. By definition a primary key attribute contains unique val-
ues [69]. Therefore, we check whether there are attributes whose
values are unique. Likewise, if duplicate values appear for the
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Figure 14: Extraction of tables, attributes and values in each redo log entry

same attribute then this attribute is not any longer a primary key
candidate.

Nevertheless, checking for unique value is necessary but not suffi-
cient to detect the primary keys. It might happen that a certain at-
tribute value appears only once in the log (e.g., an attribute which
stores the value of an account balance can be easily misinterpreted
as a primary key). To solve for this, we check if the attribute
values appear in ascending order throughout the redo log entries.
The order can be defined by looking at the time of each redo entry.
If this not a case, the attributes are not considered as a primary
key even if they appear to have unique values.

Finally, to increase the accuracy of the primary key identification
step, we are also considering the attribute name’s suffix. This
is a common practice to understand and maintain the organisa-
tion’s database, for example, the primary keys contain a suffix
like: ’key’, ’id’, ’nr’ [104].
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• Foreign key detection

The foreign keys are used to set the relations between database
tables [141]. In contrast to the primary keys, in a single database
table we can have multiple foreign keys, which in turn require the
existence of primary keys to reference to [105].

To identify the foreign keys between the previously extracted ta-
bles and primary keys we rely on the inclusion dependency no-
tion, which means that all the values of the referencing attribute
must be contained in the referenced attribute. For example, if we
have two attributes called X and Y respectively, each pertaining in
two different database tables, we can say that all attribute values
of foreign key Y must be presents in the attribute values of the
primary key X. This condition is enough if it is satisfied unidirec-
tionally in that the primary key attribute can contain additional
values that do not necessarily reference a foreign key. In the same
fashion as for the primary key discovery step we consider also
the suffix attribute name to judge if a certain attribute is a good
foreign key candidate.

The foreign key detection concludes the database schema discov-
ery step. Before starting the event log extraction the domain ex-
pert comes into play to evaluate the discovered schema. She/he
has two tasks: evaluate the discovered schema and select the case
notion. Once the case notion is selected based on the discovered
database schema the redo log entries are correlated to the event
log cases. A detailed explanation of this correlation is provided
in the next section.

3.2.3 Event Log Extraction

The event log extraction step starts with the case notion selection, which
is performed by the domain expert based on the desired view of the
process. Specifically, the selected case notion denotes which database
tables are used to determine the case in the event log. The extraction is
achieved based on two steps. The entity relation generation step relates
all pairs of tables in a foreign key relation to a so-called entity relation
table. The second step, entity-based case collection, collects the event
log cases based on the entity relations constructed in the previous step.
A detailed explanation of each step is provided below.

• Entity Relation Generation

For each pair of tables discovered in the database schema that
are involved in a foreign key relation, the following method is ap-
plied: for each entity on the left-hand side of the referenced table,
it is checked whether one or more entities exist on the right-hand
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side of the dependent table (i.e., the one that contains foreign key
attribute). If this is the case, then the Row Id of the dependent
table, together with the Row Id of the referenced table, are added
to an additional table called Entity Relation Table. This is done
until all entities on the left-hand side tables are considered. We
will repeat the same method for all tables that pertain to a foreign
key relation. Therefore, the number of entity relation tables will
be the same as the number of relations defined between a pairs of
table.

Figure 15: Example of an entity relation generation table extracted from the
Patients and Admissions table, which are in a foreign key relation

However, it might happen that several rows in the database might
have the same Row Id. This occurs if a delete operation has hap-
pened on that row before. If a certain row is deleted from the
database, its Row Id can be reassigned to another row via an
upcoming insert operation. Therefore, a pre-processing step is
needed to ensure that all Row Id are unique for each redo en-
try. Before constructing the entity relation table, the redo log is
parsed and whenever a redo entry that contains a delete operation
occurs, its Row Id is tracked. If another insert operation occurs
and it occupies one of the tracked Row Id, then a unique suffix
is appended to that row. This is repeated until the next delete
operation for that Row Id is encountered. In this way, we make
sure that each Row Id of the parsed redo log belongs exactly to
one redo entry.

Figure 15 provides an example of how an entity relation table
can be derived between two tables being in a foreign key relation.
Suppose that there are two tables in our schema called Patients
and Admissions. Suppose that for each table an attribute called
Id is discovered. In addition, the Patient_Id attribute of the Ad-
missions table (right-hand side) is assigned as a foreign key of the
Patients table (left-hand side). Starting from the Patients table, the
entity with Id equal to 1 is checked to determine whether all en-
tities in the Admissions table have the same foreign key attribute
value (i.e., Patient_Id). In our example, three entities satisfy this
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condition (highlighted with a rectangle). Consequently, the corre-
sponding Row Ids of both tables are added to the entity relation
table (i.e., the three first entities in the entity relation table with
the Patients (Row Id) equal to A).

The same logic is followed for the next entity of the Patients tables.
The entity with Id equal to 2 (highlighted with a circle) is checked
if there are some entities in the Admissions table that have the
same Patient_Id value. If this holds, the corresponding Row Id
values are appended to the entity relation table. Considering our
example illustrated in Figure 15, the entity with Id equal to 2,
which belongs to the Patients table, is in a foreign key relation (i.e.,
consider Patient_Id) with the two other entities in the Admissions
table. Therefore, the entity relation table is extended with two
more entries, where each column stores the corresponding Row
Id of both tables in relation. The same logic is followed for all
entities that belong to the Patients table.

Since the Row Id in the Patients table are unique values (i.e., after
the pre-processing step is sure that each redo entry has a unique
Row Id), we argue that the entity relation table can not contain
duplicate tuples of Row Id values. Once the entity relation table
is constructed for each pair of tables in a foreign key relation, the
event log cases are constructed in the next step.

• Entity-based Case Collection

This step aims to construct the event log cases by considering as
input the entity relation table and redo log entries. Before starting
this step, the domain expert has picked the root class, represent-
ing the case identifier attribute in the resulting event log. For
each Row Id in the root class (from now on referred to as RCID),
all corresponding Row Id that are related to it are constructing in
an event log case. This implies that the number of event log cases
in the final event log will be the same as the number of RCID
pertaining to the root class.

To discover all Row Ids in relation to RCID the entity relation
table comes into play. Starting from the first RCID, the entity
relation table is checked whether some entities are in relation with
the selected RCID. Let us call all entities related to RCID target
entities relations. Each target entity relation corresponds to one
or more Row Ids of another table. Therefore, the same step is
followed to find all Row Ids in relation to the second table. In the
same way, we iterate through all tables for which a predefined
entity relation table exists. For each RCID, an event log case is
created as a list of all discovered Row Ids relating to it. Each
event in a case has a case identifier equal to the RCID entity value.
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Depending on the scope of the to-be-discovered business process
model, several optional attributes can be appended to the event
log. All the cases defined through this method construct an event
log, which can be tailored to the process experts for applying
different process mining techniques.

Figure 16: An example of extracting the event log cases after applying the
entity-based case collection step on the discovered database schema.
The Patients table is picked as a root class by the domain expert

Figure 16 illustrates an example of the entity-based case collection.
Suppose that the discovered schema for this scenario has three ta-
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bles Patients, Admissions, and Diagnoses. The Admissions table
is in a foreign key relation with the Patients table and Diagnoses is
in a foreign key relation with Admissions. For each pair of tables
in a foreign key relation, the corresponding entity relation table
is derived and illustrated in Figure 16. Let us assume that the
domain expert has picked as a root class the Patients tables. For
the RCID equal to A the entity relation table is checked to identify
the target entity relation of the corresponding RCID. Considering
our example, there are two target entities, N and O in the entity
relation table, which at the same time define the Row Ids of the
related table. In the same fashion, we go further and check the
related Row Ids of N and O by considering the entity relation
table derived between the Admissions and Diagnosis table.

We iterate through all RCID defined in the root class and, in the
end, construct a set of Row_Ids that are in relation to RCID. There-
fore, the number of cases in the event log is the same as the num-
ber of RCID in the root class. Considering the example illustrated
in Figure 16, two cases are discovered. The first one contains <A,
N, O, X, Z> events, each defined by one Row Id. At the same
time, the second event log case contains <B, M, X, Z> events. As
the last step, the redo log is queried, and for each Row Id in the
discovered cases, the activity names and timestamps are retrieved.
The case identifier of the first event log case will have the values
of the Row Id equal to A in the Patients table. At the same time,
the second event log case will have a case identifier equal to the
Row Ids value of B in the Patients table.

3.3 related work

Discovering an event log from the redo log is recently subject to re-
search work. Murillas et al. [40] propose three steps approach to extract
an event log from the redo entries of the given organization. In the first
step, called event extraction, the redo log entries are transformed into
the specific structure feasible for manipulation in the upcoming steps
of the approach. Once the events are extracted for each redo log entry
in the next step, the data model is obtained and used to correlate these
events in the event log cases. Data model extraction involves queries on
the database tables, columns, primary keys and foreign keys as defined
in the corresponding database schema. The last step includes process
instance identification, which delineates the case notion selection (i.e.,
the goal or desired view to obtain the process) and decisions about
which events will belong to which event log case. This is made possible
through the trace id pattern, which is used to find the common set of
attributes between different classes while considering the primary key
and foreign key relations.
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In [41] Murillas et al. apply the same approach (i.e., like the one
introduced in [40]) to the real-life information system, called OTRS
process-aware ticked system, responsible for managing the incidents
of the IT departments (i.e., customer reporting issue platform). From
the same information system, traditional process mining event log ap-
proach is applied to extract an event log from the database. Extensive
information about the approach used to obtain an event log from the
database is outside the scope of this thesis. This study was conducted
to provide a comparison on a theoretical and practical level between the
traditional process mining approaches for event log extraction (i.e., the
event log is extracted from the database) and approaches related to the
redo logs (i.e., the event log is extracted from the redo logs). Besides
several aspects considered for comparison, the control-flow between
the process obtained from the redo log and the process extracted by the
traditional approach was one aspect. Authors emphasize that the pro-
cess model discovered by both approaches mostly represent the same
control-flow.

Another approach that deals with the event log extraction from the
redo logs is introduced by van der Aalst [123]. The approach assumes
that the class model, which is defined as a set of classes connected
through relationships (e.g., UML class diagram) is known upfront. The
proposed approach is constructed in three steps. The first one scopes
the relevant event for the event log extraction. The main question that
needs to be answered during this step is: which of the events are rel-
evant to define the case notion and answer the questions one aims to
answer? The event selection steps is based on different aspects. One
aspect can be focused on a specific time period (e.g., from June 2020 to
June 2022). Once the scope is determined in the next step, the correla-
tion of these events to the process instance (event log cases) takes place.
During the last step, called classify, the defined process instances from
the previous steps are related to processes.

To the best of our knowledge, none of these approaches is able to ex-
tract an event log without knowing the class model upfront. This thesis
provides a method that considers as input a single source of informa-
tion - transactions made in the database of the running information
system, store in the form of redo logs.

3.4 evaluation

The feasibility of the method presented in this chapter is realized based
on two synthetic redo logs from two different domain, healthcare and
traveling. The method is implemented as a Scala-based CLI tool3 and

3 https://scala-cli.virtuslab.org/docs/commands/basics/
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can be found on the GitHub repository4. To archive and export the redo
logs the Oracle LogMiner5 is used.

3.4.1 Evaluation Setup

The first redo log is simulated from the MIMIC_III [71] real-life database
and it contains redo entries related to the healthcare domain. More spe-
cific, the data pertained in this database contain Electronic Healthcare
Records (EHRs) related to the patients admitted to the Critical Care
Unit (CCU) at the Beth Israel Deaconess Medical center (BIDMC) in
Boston, USA. Once the Redo log is obtained, the first step of our method
is applied and the database schema is discovered. Afterwards, based
on the discovered schema, the redo log entries are correlated with the
event log cases (i.e., following the second step of our approach).

The second redo log is extracted from the literature [40] and contains
events regarding a Ticket Selling system. It stores information related
to concerts, concert halls, available seats, tickets, brands, and booking.
In [40] the authors assume that the database schema is known before
the event log extraction step takes place (see Figure 17, represented with
a gray rectangle). We apply the first step of our method to discover the
schema and consequently extract the event log.

In both use cases, the method’s feasibility presented in this thesis
is proven on the database perspective and not on the process model
perspective. For the redo logs related to the healthcare, the discovered
database schema is compared with the original database schema illus-
trated in the MIMIC specification document (the comparison is graph-
ically illustrated with a dashed line in Figure 17). As for the travel-
ing redo log, the discovered database schema is compared with the
database schema presented and illustrated in the work [40, p.5].

There are two main reasons why the comparison is performed on the
database schema and not at the process model level.

• The event log extraction approach used in the literature is differ-
ent to our approach. There is not enough details in the literature
to replicate the same exact event log extraction. Different event
logs would yield different process models, making the compari-
son futile.

• However, even when the event logs are very similar, the presented
process models in [40] are result of several post-processing steps
and filtering activities. On top, the process model are discovered
for a small subset of activities. Therefore, we compare directly the
database schemas.

The main findings of these comparisons are presented below.

4 https://github.com/fyndalf/redo-log-parser (implemented by Finn Klessascheck and
Tom Lichtenstein in the scope of master seminar)

5 https://docs.oracle.com/en/database/oracle/oracle-database/18/sutil/oracle-
logminer-utility.html
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Figure 17: Evaluation setup based on two synthetic redo logs (MIMIC and
Ticket Selling). The dashed lines annotate the compared artifacts

3.4.2 Evaluation Results

After applying the first step of our approach on the MIMIC redo log
the database schema is discovered and the result is illustrated in Fig-
ure 18. The schema contain five classes called: Patients, Admissions,
Diagnoses, Pharmacy and Prescription. Patients class contains informa-
tion about the patient and has two attributes Id and Gender, where Id is
assigned as a primary key. Admissions table contain information about
the patients admission into the hospital and has also two attribute, Id
which serves as primary key of this table and Patient_Id, which stores
the patient identification number. It is possible that the same patient is
admitted several times into the hospital. Therefore, a relation between
these two classes is discovered, which is handled via the primary key
Id of the Patients table and Patient_Id attribute of the Admissions table.
Besides that, the Admissions table is in relation with two other tables,
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called Diagnoses and Pharmacy. The former contains three attributes
(Id, Admission_Id and ICD_Code) and the latter contains the same
amount of attributes (Id, Admission_Id and Frequency). The relation
between these three tables is handled via the Id attribute in the Admis-
sions table and the corresponding Admission_Id of two other classes
respectively. In addition, the Pharmacy table is in relation with the Pre-
scription table, which contain five attributes; Id, Pharmacy_Id, Name,
Dose_Amount and Dose_Unit. The relation is established through the
Id attribute of the Pharmacy table and the Pharmacy_Id attribute of the
Prescription table.

Figure 18: The discovered database schema after applying the first step of our
approach. The redo logs are extracted from the MIMIC database

After manually comparing the discovered schema with the original
one illustrated in the MIMIC specification document6, we come to the
conclusion that all the classes and attributes in the discovered schema
match all the classes and attributes pertaining to the MIMIC specifi-
cation document. Note that for our experiment we considered only a
subset of classes from the MIMIC database (due to its large size) and
the redo log was simulated for the same subset.

6 https://mit-lcp.github.io/mimic-schema-spy/relationships.html
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Figure 19: The discovered process model from the extracted event log after
applying the method presented in this chapter

After applying the second step of our method (i.e., Event Log Extrac-
tion) the event log is extracted based on the database schema discovered
in the previous step. Under the assumption that the Patients table is
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selected as a root class (i.e., case notion) by the process expert the pro-
cess model is discovered. We are using the Inductive Visual Miner [76]
discovery algorithm to derive the process model from the event log.

From the discovered process model, illustrated in Figure 19 we can
observe that the process starts by registering the patient7, which is rea-
sonable because we are assuming that the Patients table is selected as a
case notion by the domain expert. Afterwards, the patient is admitted
into the hospital, which is marked as optional. Next, the patient is
diagnosed and the Prescriptions or Pharmacy are added but are not
mandatory. The table creation process is followed by either updating
the frequency of the pharmacy table or by updating the dose amount
of the prescription table, which also marks the end of the illustrated
process.

Considering the Ticket Selling redo logs, the database schema is dis-
covered and illustrated in Figure 20, which is self explanatory. We
compared the discovered schema with the one presented in [40, p.5]
and concluded that we discovered only one extra relation between the
Price attribute in the Ticket table and No8 attribute in the Seat table. To
investigate the reason behind this difference, we went one step further
and checked the data in the redo log files. We concluded that there
might be an inconsistency in the original data because every ticket in
the redo logs has a price equal to 35, and no seat has a seat number
equal to 35. Therefore, we are assuming that this is a mistake in the
data simulation process and does not reflect the reality.

7 Subjects table in the MIMIC database represents Patients
8 based on the description provided in [40] No attribute refers to seat number
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Figure 20: The discovered database schema after applying the first step of our
approach. The redo logs are taken from the provided data in the
literature
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3.5 summary

This chapter proposes a method to extract an event log from the trans-
actions made by a running information system. Considering our story,
we enable John to extract an event log from such transactions without
accessing the whole database or having extensive knowledge about its
schema. To achieve this, we present a two-step semi-automatic method.
First, the database schema is discovered solely from the redo log. Then,
the event log extraction is achieved by considering both the discovered
schema and redo log as inputs. The assistance of the domain expert,
like John, is only required in between the steps to evaluate the discov-
ered schema and select the case notion based on the targeted process
model.

The method’s feasibility is proven by developing a prototype, which
is applied on two synthetic redo logs. The discovered database schemas
are shown to be similar to the original one proving the effectiveness of
our method. The discovered event log conforms to the XES standard
and can be used by process mining experts to apply different process
mining techniques based on their needs.
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Figure 21: Discovering a data model from event log

This chapter provides a method to discover a data model by just
considering as input an event log. Considering our story, we enable
John to use the resulting data model as complementary information of
the discovered process model (i.e., the process model is discovered from
the same event log). This chapter is mainly based on the previous work
presented in [6] while an application scenario is achieved in the scope
of Tom Lichtenstein’s master thesis [79]. In addition, in another [10]
we provide another application scenario of the data model, which is
upfront discovered from an event log.

45
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4.1 motivation

In many real-world scenarios, the event logs are extracted from the
databases of a given organization [44]. After the extraction process
takes place, the event logs are made available to the process mining
experts. Being involved in process mining projects these experts are
challenged with tasks related to the discovery or improvement of the
operational business processes, which always considers an event log
as a starting point. Most often, event logs do not explicitly provide
information about the context of the data they are extracted from. The
data perspective is overlooked and not clearly visible to the process ex-
perts [55, 100, 114]. Despite the fact that event logs capture behavioral
information, we argue that they are also a rich source of domain-specific
information, albeit not explicit. The data perspective is an essential as-
pect that complements the process mining procedure with useful infor-
mation. It plays an important role in the understandability of the event
log and, in consequence, the process model. To this end, we propose in
this chapter a semi-automatic method for discovering a complementary
UML data model [108] from an event log. We prove the feasibility of
the proposed method by applying it to a real-life event log.

4.2 overview of the data model discovery method

Deriving a data model from an event log implies systematically de-
riving the individual UML language [95] (our language of choice as
it is widely used as standard for modeling data relations) constructs:
classes, class attributes and the associations between classes. To this
end, we are using a two-step semi-automatic method as depicted in
Figure 22. The first step is automatic and introduces an intermedi-
ate representation that captures the access relations between all activ-
ities and attributes pertaining to the event log. This representation is
called Activity-Attribute relationship diagram (A2A), which is inspired
by [125]. In the second step, a set of rules are applied to the A2A

diagram to cluster attributes into classes and identify the relationships
between these classes, which ultimately constitute the discovered data
model. A detailed explanation of each step is given below.

Figure 22: Overview of the data model discovery method
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Before explaining in more details the method for discovering a data
model from an event log, let us first formal define the notion of an
access relation between an activity and attribute pertaining to an event
log.

Definition 4.1.
(Activity-attribute access relation) Let El be an event log, A the set of
all unique activities, Att the set of all attributes and Matt = {Case,Act, Time}

a set of mandatory attributes. We define #att(e), where att ∈ Att, as
the value of attribute att for event e ∈ El. We say an activity a ∈ A

accesses an optional attribute att ∈ Att \Matt iff ∃ e ∈ El | #act(e) =
a∧ #att(e)��=⊥. Let us denote r = (a,att,n) the access relation between
an activity a ∈ A and an attribute att ∈ Att in the event log, where
n ∈ N is the occurrences of the relation in a log. The set of all access
relations in the event log is defined as R. ◀

4.3 derivation of the activity attribute relationship di-
agram

The most prominent information about the attributes that we have from
an event log is their relations with the activities. To put this information
to the forefront, the A2A diagram is derived. It serves the role of an
intermediate representation that acts as input for discovering the data
model.

Figure 23: Derivation process of the activity attribute relationship diagram

Figure 23 illustrates the derivation process. The starting point for con-
structing such a diagram is to identify the activities and attributes per-
taining to an event log. Therefore, at the model level we first derive the
set of all activities. Secondly, all attributes, except the meta-attributes
(i.e., case identifier, activity name and timestamp) are identified. Once
the set of activities and the set of attributes are established we have to
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derive their relations. To this end, we look at the access relationships
between activities and attributes based on the Definition 4.1. In the
event log, this relationship is detected inside a single event in that there
is a common event where activity A and a new value of attribute Att1

appear. The number of times an access relation between an activity and
attribute takes place in the entire event log, independently of the case,
is called the access occurrence number and it is graphically represented
over the access arrow connecting an activity and attribute in the A2A

diagram.

Figure 24: An example of the A2A diagram derived from the event log

To give an example, let us extend the event log illustrated in Sec-
tion 2.3.2 (cf. Figure 11) with a set of optional attributes Att1,Att2 and
Att3. The extended event log and the A2A diagram derived from it,
following the steps introduced above, are depicted in Figure 24. We see
that, at the process model level, there are five activities (activity models)
(A,B,C,D,E) and three optional attributes (Att1,Att2,Att3). The rela-
tions between activities and attributes are derived based on the write
operations (i.e., access) performed between them, while how often these
operations take place is captured by the access occurrence number next
to each access arrow. In this example, the activity A accesses the Att3

three times while attribute Att1 only one time. This diagram clearly
shows which activity access which attributes, at what frequency, and
more importantly, which attributes are accessed by multiple activities
and which share common activities. As we will see next, the latter is
very important for discovering the data model.

The algorithm for deriving the A2A diagram from an event log is
described in Algorithm 1.
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Algorithm 1 A2A diagram derivation from an event log
input : Event log El

output :A2A = (A,Att \Matt,R)
Activity-Attribute access relation diagram

initialization A: empty set of activities, Att \Matt: set of attributes
without the meta-attributes, R ⊆ A×Att \Matt × N: empty set of
access relations

// create a unique set of activities

for e in El do
if #act(e) /∈ A then

add #act(e) to A

end
end
// populate the set R

for a in A do
for att in Att \Matt do

int n = 0 // n represents the access relation occurrence

for e in El do
if #act(e) = a∧ #att(e)��=⊥ then

n = n+ 1

end
end
add r = (a,att,n) in R

end
end
print(A,Att \Matt,R)

4.4 data model discovery

Discovering the data model implies the need to discover the data model
classes with their attributes and the associations between the classes. To
achieve this, we look at the relations between two or more attributes in
the A2A diagram and consider whether they belong to the same data
model class. After exhaustively going through all the attributes and
grouping them into the UML classes, we identify the UML associations
between those classes. Defining the UML associations entails specifying
their multiplicity.

Below we provide a set of rules that are applied to the A2A diagram
to group the event log attributes into the data model classes. These
rules are organized based on two aspects: non/isolated attributes and
non/isolated activities, which are defined as:

• An attribute is called isolated if all activities that access it do not
access other attributes.

• Likewise, an activity is called isolated if all the attributes it ac-
cesses are not accessed by any other activity.
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A detailed explanation of each rule is provided below.

• Rule 1: isolated attributes, isolated activities

We identify the isolated access relations in the A2A diagram, in
that an attribute is accessed only by a single activity and the ac-
tivity accesses only the said attribute. In this case, the rule is to
assign all isolated attributes to separate independent UML classes.
At this stage, there is no other information in the A2A diagram
that can give insights about how the generated UML classes could
be related.

Figure 25: Rules organized based on two aspects (non/isolated attributes and
non/isolated activities) for deriving the data model classes



4.4 data model discovery 51

An example is illustrated in Figure 25 (R1) where activity A and
attribute Att1 are isolated because A accesses only Att1 and Att1
is accessed by said activity. The same holds for activity B and
Att2. The Att1 and Att2 are assigned to a separate UML classes
(represented in Figure 25 by a dashed-line rectangle).

Last, the isolated attributes assigned to the UML class together
with their accessing activities are removed from the A2A diagram.
This action takes place at the end of each rule.

• Rule 2: isolated attributes, non-isolated activities

In this case, we search the A2A diagram for isolated attributes
that are accessed by non-isolated activities. Similar to rule R1, the
attributes are isolated and, thus, there is no additional informa-
tion on how they can be grouped into classes. Hence, the isolated
attributes will be each assigned to a separated class.

As it is illustrated in Figure 25 (R2) activity A, B and C are ac-
cessing Att1 with the different cardinalities. The same holds for
Att2, which is accessed by activity D and E. Based on this rule,
Att1 and Att2 are placed in two independent UML classes (repre-
sented with dashed lines in Figure 25).

• Rule 3: non-isolated activities, isolated attributes

If at least one common activity accesses two or more attributes,
then the attributes are said to be related. We are looking specifi-
cally for related attributes that may belong to the same class. We
argue that if an activity accesses two or more attributes with the
same occurrence then these attributes are highly likely to be con-
tained in a single class. Therefore, we group these attributes based
on common occurrences. However, we cannot deduce from the
A2A diagram alone whether the attributes are accessed simulta-
neously by the activity. It may happen that in total these attributes
are accessed the same amount of time by the activity but never in
the same event. This means that the attributes are highly likely to
not belong to the same class as they seem to be accessed indepen-
dently. To counter this problem we offer the following solution.

Let EA1 be a set of events from the event log where activity A

accesses attribute Att1. | EA1 | denotes the access occurrence.
Similarly, we define EA2 as the set of all events where the activity
A accesses attribute Att2 with occurrence | EA2 |, where | EA2 |⩾|

EA1 |. The decision of whether attribute Att1 and Att2 belong to
the same class is made based on the following function:
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rel(EA1,EA2) =


one class , if EA1 ∩ EA2 = EA1

independent classes , if EA1 ∩ EA2 = ∅
dependent classes , if 0 <| EA1 ∩ EA2 |<| EA1 |

(1)

Attribute 1 and 2 belong to the same class if set EA1 is a subset
of EA2 because anytime the activity A accesses attribute 1 it also
accesses attribute 2. Both attributes define a new UML class, how-
ever, attribute 1 is marked as optional because it is not always
accessed when attribute 2 is accessed.

If the two sets are disjoint (i.e., EA1 ∩ EA2 = ∅), then attribute 1

and 2 are not in the same class and, moreover, these classes have
no association between them. This is due to attributes 1 and 2

happening independently of each other.

Finally, there are events in which attribute 1 and attribute 2 are
accessed simultaneously, except the first case. This means that
there are some events where the attributes 1 and 2 are accessed
by the same activity A but this number of events is not the same
as | EA1 |. In this case, the attributes are placed in different classes,
but the classes are still related via a bidirectional association. The
multiplicity of the association is 0..1 to ∗ from the class containing
attribute 1 to the class containing attribute 2.

In a more general case, where the number of attributes that share
the same activity with the same occurrence is more than two, we
apply the above function to every pair of attributes to determine
the resulting classes.

This rule is illustrated in Figure 25 (R3). Activity A accesses Att1
and Att2 with the occurrence x, Att3 and Att4 with the occurrence
y and Att5 with occurrence z. The decision of Att1 and Att2 be-
longing to the same UML class or not depends on whether the
events where the activity A accesses the Att1 are the same events
where the same activity accesses Att2. The same holds for the
Att3 and Att4 accessed with cardinality y by the same activity.

At last, the attributes assigned to the corresponding classes are
removed from the A2A diagram. If their accessing activities do
not access other non-isolated attributes, they are removed as well.

• Rule 4: non-isolated activities, non-isolated activities

Every relation that cannot be expressed by the previous rules is
captured by this rule. In this case, activities and attributes are
non-isolated, which means that an attribute is accessed by several
activities and each activity accesses several attributes.
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Figure 26: Decomposed A2A diagram into three fragments after applying the
fourth rule

After removing the attributes and activities that satisfied the pre-
vious three rules we are left with an A2A diagram that contains
one or more disconnected subgraphs (i.e., interconnected activ-
ities and attributes), which we are referring to as islands. In
Figure 25 (R4), there is only one island, but it can happen that
another set of non-isolated activities and attributes, which has no
relation to the first set, can be left in the A2A diagram. That is
why we call these sets islands.

To group the attributes into UML classes, each island is decom-
posed into smaller A2A diagram fragments for each activity. This
means that the number of fragments is the same as the number
of activities on an island. The attributes that are accessed by the
activity are represented in the respective fragment. Hence, an
attribute may appear in one or more fragments (see Figure 26).

The resulting fragments can satisfy either rule 1 or rule 3 but not
rule 2 because the fragments contain only isolated activities. The
grouping of the attributes, then, follows the rule 1 or 3. However,
since attributes may belong to two or more distinct fragments,
there is a conflict that needs to be resolved. For example, it might
happen that the same attribute is grouped either in a standalone
UML class or in a class with some other attributes depending on
the grouping results from each fragment. In this case, we leave
the choice to the user of the method to make a decision that better
fits the overall result.

Figure 26 shows an island fragmentation example. Activity A
accesses attributes Att1 and Att2 with occurrence x. The same
holds for activity B except the occurrence, which is y. Last, activity
C accesses attribute Att2 with occurrence z. Based on this rule the
A2A diagram is decomposed in three other A2A fragments, one
for each activity.

In the first and the second fragment, we are dealing with non-
isolated attributes and isolated activities. Therefore, rule 3 is ap-
plied to derive the classes. In the third fragment, rule 1 is applied
because activity C and attribute Att2 are both isolated.
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After all the classes are created, the classes can be named based
on the activity they were generated from. Finally, we have to con-
sider the associations between the remaining independent classes.
To this end, we will consider the most frequently accessed class
as the root class, which has the highest potential to represent the
business process case notion. Then, we introduce an association
between the remaining classes and the root class. Their multiplic-
ities are set based on the occurrences from the A2A diagram.

4.5 related work

Discovering a data model from the event log is a relatively new de-
velopment in the process mining area. However, the aggregation of
information spanned over a set of business process models into one
data model is widely researched in the literature [32, 33].

Cruz et al. [32] present an approach to derive a data model from a
private process model, which is then used in the software development
process. The authors argue that the data model can be easily used as a
language between different roles within the organization (e.g., between
business process analysts and software developers), increasing the par-
ticipants’ understandability. The authors use a three-step approach:
first, the entities are defined by considering the data stores and the roles
played by the participants; second, the relationship between entities is
deducted based on the way the participants and activities manipulate
the data stores; third, the attributes related to the participants and data
stores are determined. Since the input information of the presented
approach is a process model, the generation of the data models is man-
ually performed and mainly focused on the elements of the process
modeling language, such as BPMN. Therefore, data stores and process
participants in the business process model are used as a starting point
to identify the data model entities. The relationship between those en-
tities is determined based on the information exchanged between par-
ticipants and activities connected to the data stores. Nonetheless, if
this type of information is not captured in the process model, then the
identification of these entity relations will be missing in the data model.
One of the most significant limitations of this approach is that it only
deals with one business process model. However, a software applica-
tion can support more than one business process in real organization
settings. Therefore, the approach is further extended in [33] to support
the aggregation of information spanning over a set of related business
process models into one data model. In contrast to [32], the proposed
approach is conducted in a semi-automatic fashion.

In this thesis, we propose a semi-automatic method that takes as in-
put an event log rather than a business process model. We argue that
discovering a business process model from an event log comes with
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losses in valuable attribute and occurrence information that the process
model cannot always capture.

Breitmayer et al. [23] discovered a data model as an intermediate step
for discovering object-aware processes. Each table in the database be-
longs to an object in the data model, whereas the database columns rep-
resent object attributes. The relation between data model objects is con-
structed by considering the primary keys defined in the database. The
resulting data model is a crucial step for object-aware process model
discovery because it is the foundation for both lifecycles and object
coordination. In contrast, our method relies only on the event log to
discover the data model and use it as a complementary artifact to un-
derstand the process model.

Brdjanin et al. [21, 22] present an online platform that automatically
generates a data model (represented as the UML class diagram) from
the business process models represented as BPMN. The authors intro-
duce a two-phase approach where a simple domain-specific language,
called extractor, is introduced as an intermediate representation in the
first phase. During this phase, only specific concepts are extracted from
the source model. Different source notions require different extractors,
making the approach bound to the business process model notions. In
the second phase, the data model is generated based on the interme-
diate representation of the extracted concepts, which is achieved by a
single transformation called generator1. In contrast, the method pre-
sented in this thesis is not bound to the process model notion since our
input information is an event log and not a process model. Therefore
our approach can also support the undesirability of a process model
discovered not only as BPMN but also e.g., as Petri Nets [81].

In [78], the authors provide a richer event log, compared to XES,
called eXtensible Object-Centric (XOC) by considering multiple objects,
which are an abstraction of the data elements like records in the database
table of a given information system. This implies that the object-centric
systems records the transactions which belong to the same category
(e.g., patient) in the same table (e.g., patient table). Each event may
refer to any number of objects in contrast to the traditional XES format
where a single case notion is considered, and every event belongs to
exactly one case. Constructing a data model from an XES event log is
more complicated than deriving it from the XOC format because of the
single case notion perspective of XES. We argue that XOC holds more
information about the data model because the object relations can be
derived from the global perspective (rather than the case perspective)
of the events.

Comparison based on different aspects of the main approaches pre-
sented in this section, which deal with the data model generation, is
shown Table 1. Obviously, there is no similar work that tries to infer a
data model by considering the historical data extracted in the form of

1 the generator used in [21] is based on ATLAS Transformation Language (ATL)
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an event log. In addition, such generation aims to support the process
experts in understanding the discovered process rather than support-
ing the software products manager during the software development
process.

Table 1: An overview of the related work dealing with the data model genera-
tion

Ref. Input Purpose Approach Manner

Cruz

et. al [32]
Single BP

During the software

development process
BPMN manual

Cruz

et. al [33]
Set of BP

During the software

development process
BPMN

semi

automatic

Breitmayer

et. al [23]
Database

During the discovery of

object-aware processes
Database

not

specified

Brdjanin

et. al [21, 22]
Set of BP

During the software

development process

and database designers

Domain

specific

language

automatic

Our

method
Event Log

Complement the

discovered process model

with data model

Based on

A2A

diagram

semi

automatic

4.6 evaluation

The feasibility of the method presented in this chapter is evaluated
based on the Road Traffic Fine Management (RTFM) event log [87].The
RTFM event log is taken from the information system of the Italian
police. The event log contains information regarding the road-traffic
fines and includes 150.370 cases (561.470 events) processed by the mu-
nicipality over three years (January 2010 - June 2013). An explanation of
all attributes pertaining to this log is provided in Table 2. To provide a
behavioral overview of the event log, we show in Figure 27 the process
model (represented as BPMN [139]) that is discovered by applying the
Inductive Miner algorithm [76]. Some activities that do not access any
attribute are excluded from the process model without undermining its
meaning.

As it is depicted in Figure 27, the process starts with Create Fine ac-
tivity. After the fine is created, it can be sent to the offender via Send
Fine. The offender has the option to pay the fine immediately after it is
handed over to him (Payment). If this is not the case, the date when the
offender receives the fine is registered (Insert Fine Notification). If the
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Table 2: The description of the RTFM event log attributes

Attribute Description

Resource Fine creator

Amount
Fine amount that has to be paid by

the offender

Article
The law article based on which the

fine is created

Dismissal
The reason why the fine

is dismissed

Expense Additional payment

Last Sent Fine sent type e.g., by post

Matricola Offender’s matriculation number

Notification Type
The way how the offender is noti-

fied for the fine

Payment Amount
Paying amount when the payment

of done in installments

Points
The number of points deducted from

the driving license

Total Payment Amount
The total payment amount paid by

the offender

Vehicle Class The type of the automotive vehicle

payment will not take place (i.e., within 60 days), then a penalty (Add
Penalty) is added to the fine. The offender has the option to appeal
against the fine through the Judge (Appeal to Judge) or Prefecture (Send
Appeal to Prefecture). If the appeal is successful, then the process ends.
Otherwise, the fine is sent for credit collection (Send for Credit Collection),
marking the process terminations.

Before generating the A2A diagram, the RTFM event log is cleaned
from the activity-attribute access relations with the value 0 (i.e., the
activity always access the attribute with the value 0). For example,
Create Fine activity accesses the Total Payment Amount always with the
value 0. The same holds for Matricola and Resource attributes accessed
by Appeal to Judge activity.

Applying the first step of our approach to the event log generates
the A2A diagram illustrated in Figure 28. The activities that do not
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Figure 27: Process model discovered by the Inductive Miner algorithm [76]
from the RTFM event log [87]

Figure 28: The A2A diagram generated from the RTFM event log after apply-
ing Algorithm 1 presented in Section 4.3

access any attribute and all access relations discarded from the clean-
up phase are not shown in the A2A diagram. For example, Matricola
is represented as a stand-alone attribute in Figure 28 as it is always
accessed with value 0.
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Figure 29: The rules applied to the A2A diagram of the RTFM event log and
the resulting data model classes

In the second step, the A2A diagram is used as an input for discover-
ing the data model. Figure 29 depicts the application of the rules from
the second step of the approach to the generated A2A diagram. The
rules are applied following the defined order (R1 to R4). If a rule is
satisfied, all activities and attributes related to that rule are excluded
from the A2A diagram and the attributes are assigned to the respec-
tive classes. This is repeated until all attributes are grouped into UML
classes and there are no attributes left in the A2A diagram.

As it is shown in Figure 29, rule R1 is fulfilled by Send Fine activity
and Expense attribute, where both are represented as isolated in the
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Figure 30: Resulting data model discovered from the RTFM event log

A2A diagram. Therefore, Expense attribute is assigned to separate in-
dependent UML classes. Since there is no case of isolated attributes
and not-isolated activities in the A2A diagram, rule number two does
not apply to the remaining A2A diagram. Subsequently, we check for
isolated activities and non-isolated attributes (i.e., rule number 3). Two
activities satisfy rule R3. First, Insert Fine Notification accesses the Last
Sent and Notification Type with different occurrences. In this case, Func-
tion 1 is applied to check whether Insert Fine Notification activity is ac-
cessing both attributes simultaneously. This happens to be the case in
the given log, i.e., in all events where Insert Fine Notification accesses
the Last Sent it also accesses Notification Type. Therefore, both attributes
are stored in one UML class, where Last Sent attribute is marked as
optional (based on Function 1). The same holds for paymentAmount
and totalPaymentAmount attributes. Both are simultaneously accessed
by the Payment activity. Therefore, they are grouped in the same data
model class.

Lastly, based on rule R4 we check for the non-isolated activities and
non-isolated attributes in the derived islands. By applying this rule the
A2A diagram is decomposed into four fragments (see Figure 29, rule
4). Considering the relations between the activities and attributes in
each island, rule R1 can be applied to the first three fragments, while in
the last one rule R3 can be applied. In this case, the user’s choice is to
group the attributes in a single class. As the most frequent class, Fine
is assigned as a root class. The discovered classes are named based
on the activity they were generated from. After the associations be-
tween classes are constructed, the multiplicities are set based on the
occurrences from the A2A diagram. The resulting RTFM data model is
depicted in Figure 30.
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4.7 application scenarios

This section briefly summarizes the application of the data model dis-
covery method in other configuration settings. In [79] by using the
method presented in this chapter we discovered the data model from
an unlabeled event log that lack the notion of the case identifier. The
discovered model is used as a structure to correlate those events (i.e.,
pertaining to the unlabeled event log) into the event log cases (see Fig-
ure 31, AS1 annotation). While in [10], we applied the method pre-
sented in this chapter to discover the data model from an event log (i.e.,
beforehand extracted from the sensor data) and used the discovered
data model for code generation in order to automate the construction
of a process-aware digital twin (see Figure 31, AS2 annotation). An
overview of both scenarios is depicted in Figure 31, while a detailed
explanation of them is provided below.

4.7.1 Towards Case Notion Identification from Unlabeled Event Logs

The approach presented in this thesis for discovering the data model
from an event log is not bound to the event log cases. Therefore, it
neglects the case identifier of the event log and it can be easily ap-
plied to an event log that misses the case identifier - called unlabeled
event log [14]. Within an organization, these types of event logs are
generated from the information systems that do not record events in
a process-aware manner or by humans involved in manually driven
tasks [4]. However, it is interesting to capture the behavior information
related to the process hidden in this type of data. To discover the case
identifier and use this data as input for any process mining technique,
it is necessary first to correlate them with the process instance notion
based on domain knowledge or other techniques like payload data [15].

Several approaches in the literature address the challenge of cor-
relating the unlabeled events into the event log cases. Bayomie et
al. [13, 14] discuss the case identifier derivation notion based on de-
cision tree learning approach. While Burratin et al. [24] considers avail-
able optional attributes pertained to an event log. In contrast, Ferreira et
al. [54] propose an iterative expectation-maximization procedure based
on Markov chain. However, most of the approaches require additional
information (e.g., process models, heuristic data describing the behav-
ior of the process) and most of them fail to discover the cyclic process
models.

To overcome these limitations in [79] we propose a method, which
discovers a case notion from an unlabeled event log. Indeed, in the
first step (see Figure 31) the data model is discovered (i.e., based on
the approach introduced in this chapter) from an unlabeled event log,
which is used in the next step to correlate the events pertaining to the
unlabeled event log into the event log cases. Based on the data model
classes, the unlabeled event log is divided into the event log chunks
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Figure 31: Two data model application scenarios. In the first scenario (anno-
tated with AS1) the data model is discovered from an unlabeled
event log and used to correlate such events with the event log cases.
In the second scenario (annotated with AS2) the data model dis-
covered from an event log (extracted from the sensor data) is used
to automate the process-aware digital twin generation through the
model-to-code transformation approach
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and the number of chucks is equal to the number of data model classes
(one data model class defines one event log chuck). In the next step,
the events pertaining to the unlabeled event log are assigned to the
data model classes by considering the access relations handled between
the unlabeled event log attributes and activities. In consequence, the
transition probability [54] is computed, which identifies class instance
candidates with the highest transition probability. In addition, the at-
tribute value similarity is computed, which takes as input a set of avail-
able class instances and an unlabeled event and computes the degree of
affiliation between them. Based on the similarity score and transition
probability, the unlabeled events are correlated with the event log cases,
resulting in an event log.

The approach is fully implemented2 and its feasibility if proven based
on two real-life unlabeled event logs (MIMIC [71] and Road Traffic Fine
Management [87] event log).

4.7.2 Towards Process Aware Digital Twin Generation from the Sensor Data

Another application scenario of the data model discovery method is
presented in [10]. The event log is extracted from the sensor data and
after applying the method presented in this chapter, the data model is
discovered from that log (see Figure 31, UC2 annotation). At the same
time, based on a process mining discovery technique, a process model
is discovered from the same event log. The discovered data model is
used to automate the construction of the digital twins via the model-to-
code generation technique. At the same time, the discovered process
model is used to enrich the generated digital twin with the behavior
information.

Creating a digital twin3 requires the existence of the observable ele-
ments in the physical world that can be monitored and controlled. The
creation process of a digital twin is challenging [19] due to the system’s
complexity and the need for collecting information from different disci-
plines (e.g., domain knowledge (civil engineering [68], healthcare [80]),
IT systems and databases, business processes or people knowledgeable
of the software engineering of digital twins). Hence, it is important to
simplify this process by considering already existing data, called event
logs. Using such data during the engineering process of the digital twin
enables the application of a low-code development approach, which
aims to reduce the hand-written code and shift more responsibilities to
the domain experts.

Current research in the engineering process of the digital twin is
moving towards the automation process. Therefore, in [10] we propose
an approach that aims to automate the engineering of Process-Aware

2 the approach is implemented in the scope of Tom Lichtenstein’s master thesis and
can be found in the GitHub repository: https://github.com/t-lichtenstein/attribute-
driven-case-notion-discovery

3 The definition of digital twin can be found in [10]
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Digital Twin Cockpits (PADTCs). A PADTC is a digital twin’s user
interaction part and provides a Graphical User Interface (GUI) for vi-
sualizing the data. In addition, it can handle the business process of
the physical objects and their context. To ensure such processes, one
option is to discover them from an event log after applying process
mining discovery techniques. While, the extraction of such event logs
is usually performed using information systems as a source, which in
the case of digital twin represents the software systems accompany-
ing the physical object. Another option to extract such log is sensor
data [112, 135], which are defined as a rich source of information re-
lated to the physical object [67]. An event log extracted from the sensor
data can provide insights regarding the activities of people, machines,
and how they behave in a specific environment.

The pipeline of engineering a digital twin in [10] from the sensor
data is defined as follows (main steps illustrated in Figure 24): first,
the sensor are data gathered and based on this data, the event log is
extracted. The method presented in this chapter is applied to discover
a data model from this event log. The discover model is used to scratch
the data structure of the PADTC, capable of storing and manipulat-
ing the data. Based on this data structure, low-code development ap-
proaches are applied to automate the generation process of the PADTC
and reduce the amount of the hand-written.

4.8 summary

In this chapter, we have presented a two-step semi-automatic method,
which discovers a UML data model from an event log that is purposely
designed for process mining. The proposed method is useful for discov-
ering a data model that complements and increases the understandabil-
ity of the discovered process model. The data model contains classes
with their attributes, representing the main entities involved in the pro-
cess model, and the associations between classes, representing the re-
lationships between those entities. To achieve this, we consider the
relations between the activities and attributes pertaining to an event
log and represent them via an activity-attribute relationship diagram
(A2A diagram), which is an interim artifact of our approach.

We argue that the discovered data model provides additional insights
(e.g., to John, if we consider our story) regarding the context and the
domain of the event log under consideration. In addition, the data
model provides complementary information about the entities that are
subject to and can not be captured by the discovered process model.

In addition, two application scenarios are presented to show the ap-
plicability of the proposed method. In the first scenario, a data model is
discovered from an unlabeled event log and used as the main structure
to correlate the unlabeled events with the event log cases. The second
scenario aims to use the discovered data model (discovered from an
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event log, which is upfront extracted from the sensor data) to auto-
mate the generation process of a digital twin via low code development
methods.

The proposed method is implemented and the feasibility is proven
based on real-life event log.





5
D I S C O V E R I N G D ATA O B J E C T L I F E C Y C L E S F R O M
E V E N T L O G S

Figure 32: Discovering data objects from event log

This chapter provides a method to discover the data objects and their
lifecycle by considering only an event log as input. Considering our
story, John can use the discovered information to enhance the process
model with a data-flow perspective revealing how the process activities
manipulate the data during the execution.

This chapter is mainly based on the previous work presented in [9].
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5.1 motivation

Process discovery is an important area in the field of process mining. It
enables the discovering of a process model from an event log [58, 76,
116]. However, most of the discovery algorithms focus on the process
control-flow, giving little attention to the data-flow perspective [37, 63],
i.e., the data associated with events. As a result, the discovered process
models lack information about data dependencies, which data is read
or written by process activities, or how many process instances require
a certain data object to be manipulated. Manually enriching the dis-
covered process models with such dependencies by the process experts
requires domain knowledge, is error-prone and not scalable.

We argue that the data-flow perspective is crucial to understanding
the actual execution of processes and, in consequence, the discovered
process model. Indeed, a holistic view that combines control and data-
flows can support process experts in making decisions, e.g., decisions
related to the extracted process execution data [44] or reasoning about
data dependencies [28, 94] and their consistency [25, 29, 117]. Besides
that, knowing which activity modifies which data objects or which ac-
tivity requires a certain data object to be in a specific state can help
the process experts with post-discovery analyses, for example, focusing
on a specific path, pointing out the deviations and reason about root
causes.

Research on data-aware process discovery introduces approaches that
discover the data-flow perspective from event logs to, for example, iden-
tify rules that explain why a certain process path is executed [37, 111] or
to discover infrequent paths [90]. However, these approaches mainly fo-
cus on deriving data-based conditions that affect the control-flow rather
than discovering and enriching the final process model with data-flow
information.

In this thesis, we propose a method that leverages existing process
discovery algorithms to discover not only the process model but also
the data objects and their lifecycles. The approach considers only an
event log as a single source of information. To achieve this, we analyze
how the attribute values change within each case reflecting how the
business process activities modify data on the model level.

We argue that the business process can be understood much better
when the process expert is equipped with the discovered process model
and the data object lifecycles attached to the process. The feasibility of
the proposed approach is evaluated with two real-life event logs: Road
Traffic Fine Management and Hospital Billing.

5.2 scenario

This section introduces a small scenario inspired by a real-world run-
ning process in a healthcare system. We further use this example to
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help explain the discovery of the data objects and the process model
enhancement.

Figure 33: Process model excerpt represented as BPMN inspired by the pro-
cess management system within a hospital

A simplified process model represented as a BPMN model is illus-
trated in Figure 33. For this example, the data attributes modified by
the process activities are listed as text annotation. The primary care
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provider starts the physical examination with the basic check-up called
Airway, Breathing, Circulation (ABC). Examples of the collected infor-
mation within this step are the patient’s name, age, gender, day of birth
(dob) and information related to the current treatment in case the pa-
tient is under another treatment process. Afterward, the examination
related to the blood test (Check Blood activity) takes place, which col-
lects information regarding the red and white cells, hemoglobin, glu-
cose, calcium and risk. Based on the blood test findings, the primary
care provider determines whether it is necessary to diagnose the pa-
tient further or discharge him. If the blood results turn out to be not
good, then further laboratory (Urine Test) or imaging diagnoses (Radio-
graphy) take place. Then, based on blood analysis results, urine tests
or imaging diagnoses, the primary care provider needs to determine
the diagnosis (Differential Diagnoses). In the case of uncomplicated
disease, the patient can be treated with an antibiotic (Antibiotic Ther-
apy) and information related to the treatment is gathered. Otherwise,
the surgery activity (Surgery) takes place. The process ends with the
discharge (Discharge), which means that the patient no longer needs to
receive inpatient care.

During the execution, the process creates and modifies data attributes.
For example, the event attribute body_temp is modified by the first
activity (Airway, Breathing, Circulation) and the Surgery activity. If
we reflect this information in the process model, the body temperature
would be part of the data object, connected to the activities mentioned
above through data associations and showing a particular state based
on the process activity modifying it. However, on the one hand, by just
looking at the process model it is not easy to understand how many
process instances require access to a particular data object, for exam-
ple, in how many instances the Surgery activity writes the data object
containing body_temp attribute. On the other hand, by just looking at
the corresponding input event log it is not trivial to understand how
the event log attributes can be grouped into data objects and how these
data objects evolve during the business process execution.

We reason that the information provided by an event log is valuable
to derive the data object behavior. To this end, we present a method that
aims to close this gap by discovering the data objects and their lifecycles
directly from an event log. Subsequently, the discovered data objects are
used to enrich and provide a holistic view of the process model, which
is upfront discovered from the same event log. In addition, the process
model is complemented with historical information about the number
of activity/process instances accessing a particular data object.
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5.3 enhancing the process model with data object life-
cycles

The discovered process model from an event log does not contain ex-
plicit information on how the process activities manipulate the data dur-
ing the process execution. This chapter presents a method that captures
such information from an event log to later enhance the discovered pro-
cess model. More specifically, we track how the event log attribute val-
ues change within a case. The main steps of the proposed method are
illustrated in Figure 34. In the first step, we track the behavior of each
event log attribute by extracting first an event log called the Attribute-
Access event log. For each Attribute-Access event log, the behavior is
discovered based on the traditional process mining discovery algorithm
(i.e., Alpha Miner [96]). The Attribute-Change matrix is created in the
next step, which stores the information regarding the number of times
a certain activity accesses an event log attribute. The Attribute-Access
behavior, together with the Attribute-Change matrix, are used as input
to discover the data objects’ lifecycle. In the last step, the discovered
data objects are mapped to the business process activities revealing
information on the data-flow. A detailed explanation of each step is
provided below.

Figure 34: An overview of the approach used to discover the data object lifecy-
cles and enhance the discovered process model with such informa-
tion
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5.3.1 Attribute-Access Event-Log Creation

In this section we present how the event log data is transformed into an-
other representation as an intermediate step to discover the data objects
and their lifecycles.

• Attribute-Access Event Log Extraction We consider an event log
as a single source of information for our approach. The associa-
tion between the activities and the event log attributes is explicitly
defined based on the attribute values. Within the same event log
case, the attribute value can be invariant or modified by another
upcoming activity. Therefore, to understand the behavior of data
attributes within an event log, we first split the event log into
event log chunks, each pertaining data of one event log attribute.
Activities (i.e., events) that do not write or modify the values of
any attributes are left out as they do not play a role in determining
the behavior of the chosen attribute. Hence, the number of event
log chunks will be the same as the number of event log attributes
that are modified by at least one activity. All other activities, to-
gether with the case identifier, timestamp, and the corresponding
attribute values, are kept in such an event log hereinafter called
Attribute-Access event log (AAEL).

• Attribute-Access Behavior Discovery After having obtained the
AAEL for each attribute pertaining to the original event log, we
apply a traditional process mining discovery algorithm, such as
Inductive Visual Miner [76], to discover the Attribute-Access be-
havior. Our language of choice to represent the discovered pro-
cess model is BPMN, as it allows us to discover the complex
behavior (i.e., exclusive and parallel gateways) - a feature that
will turn useful when representing the data objects in the process
model (see Section 5.3.4). A design alternative would be to use the
Directly-Follows Graph (DFG) [126] (since it captures how many
events or cases have write access to a specific attribute) instead of
BPMN, but our goal is to capture the generalized behavior of the
data attributes, including exclusive and parallel behavior.

If the discovered process models contain activities with very low
frequency (i.e., activities that are executed a low number of times
across cases) compared with other activities, a threshold might be
introduced to filter them out.

5.3.2 Attribute Change Matrix Creation

The BPMN process models discovered in the previous step capture the
Attribute-Access behavior showing how process activities are writing
or modifying a specific event log attribute (i.e., (over)write a particular
attribute). However, they do not provide any information regarding
the number of cases in which a certain activity accesses the attribute.
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Indeed, considering only the Attribute-Access behavior to group the
event log attributes into data objects is necessary but not sufficient as
two attributes might have the same access behavior, but the number
of discovered cases for each attribute can be different. To additionally
capture this type of information, we construct an Attribute-Change ma-
trix. This matrix is used together with the Attribute-Access behavior to
group the event log attributes into data objects (see Figure 35).

The method grouping the event log attributes into the data model
classes presented in the previous chapter (Chapter 4) relies only on the
access relation between the event log attributes and activities, which is
not bound to the event log cases. In addition, the order of activities
within the case is not considered. In contrast, the method presented in
this chapter strongly relies on the order of activities. It is worth noting
that the data objects and data model classes do not necessarily have a
1-to-1 correspondence.

Figure 35: An example of Attribute-Change matrix based on the running ex-
ample. The numbers in the matrix indicates how many times each
activity (over)writes a specific event log attribute

The matrix is structured as a two-dimensional table where rows rep-
resent all activities and columns represent all attributes pertaining to
an event log. The number of columns in the matrix is the same as
the number of AAELs. Each row in the matrix is populated with the
frequencies that represent how often the respective activity accesses the
attribute (i.e., the number of times a certain activity writes/modifies an
attribute in each AAEL).

Considering the scenario illustrated in Figure 33, Section 5.2, an ex-
cerpt of the corresponding Attribute-Change matrix is illustrated in Fig-
ure 35. The rows represent some of the activities, while the columns
represent some of the data attributes modified by the corresponding
process model activities. As shown in Figure 35, the Check Airway,
Breathing, Circulation activity is (over)writing the value of the age at-
tribute 20 times in the AAEL. The same activity, for the same number of
times, is (over)writing the gender attribute. This indicates that these two
attributes might belong to the same data object. However, we cannot
guarantee that this is true without looking at their individual behavior.
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This is why the matrix complements the behavior with the ultimate
goal of grouping the attributes into data objects.

5.3.3 Discover Data Object Lifecycles

This step aims to aggregate the event log attributes into the data objects
by considering the Attribute-Access behavior and Attribute-Change ma-
trix obtained in the previous steps (see Figure 34). The discovery of
data objects starts by taking into consideration the case attributes (i.e.,
their value does not change as the events of the case occur). To identify
them in the matrix, we search for all attributes that are written only
once per case. It might happen that the attribute value is overwrit-
ten by the same activity within the same case and this information is
not explicitly captured by the Attribute-Change matrix. Therefore, the
Attribute-Access behavior has to be taken into account and checked if
the discovered process model activity contains a self-loop. If this is the
case, the attribute is not considered as a case attribute because within a
case its value is overwritten by the same activity name.

For the identified case attributes, we consider grouping them into
one data object if the frequency of the activities that are accessing these
attributes is the same. In some cases, it might happen that the fre-
quency is not exactly the same but varies by a few units. For example,
one activity is accessing one attribute with frequency 2.743 and another
attribute with frequency 2.741. This might happen due to incomplete
cases being extracted in the original event log (e.g., if some cases were
still open when the database was dumped [39]) or it can be the result of
data quality issues [20]. Therefore, whenever we compare the activity
frequencies, we suggest considering a reasonable threshold, which can
be set by the process expert.

As the last step, we check the event timestamps to ensure that the
attribute values are written roughly simultaneously within one process
instance. If this is true, then the case attributes under consideration are
assigned to the same data object.

For example, if we consider the Attribute-Change matrix illustrated
in Figure 35, we can see that the case attributes age and gender are both
accessed by the same activity (i.e., Check Airway, Breathing, Circula-
tion). If we are sure that the Attribute-Access behavior is the same
and after checking the timestamps we see that they are also accessed
simultaneously by the same activity, then we can group them into one
data object.

Once all case attributes are grouped into the respective data objects,
the next step is to look at the event attributes (i.e., their value can
vary based on the process step (event) being executed). Unlike case
attributes, event attributes are accessed by more than one activity or
multiple times by the same activity (within the same case). Therefore,
besides the absolute frequency, the order under which these attributes
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are modified is essential for determining the data objects. To capture
such information, we compare the discovered Attribute-Access behav-
iors with each other and distinguish the following two cases.

• Same activities, same behavior.

From the Attribute-Change matrix, we can group the attributes
that are accessed by exactly the same activities with the same fre-
quency. Afterward, their access behavior is compared to deter-
mine their similarity in terms of activities and control-flow. Based
on the similarity result, the Attribute-Change matrix is updated
to store such information as follows: an additional column rep-
resenting the group of attributes with similar behavior is added.
Considering the matrix illustrated in Figure 35 (gray column), we
can understand that the bodyTemp and risk attributes have similar
behavior. The total number of added columns equals the number
of attribute groups with similar behavior.

As the last step, for each group, we check if the same activities
are accessing the group attributes simultaneously (i.e., within the
same case). If that holds, then most likely, these attributes will
belong to the same data object. Otherwise, the attribute groups
will be further divided until the above holds. Finally, each group
defines one data object, even when the group size is equal to one
(the data object is created due to one event attribute).

An example of two Attribute-Access behaviors which involve the
same activities but different behavior is illustrated in the first col-
umn of Figure 36. The discovered behavior for both attributes
contains the same activities (i.e., named A, B, C, D) but differ-
ent behavior. For the first attribute, A occurs, and after that, a
parallel gateway is discovered, which implies that B and C will be
executed without a particular order, and the process will end with
the execution of activity D. In contrast, the discovered Attribute-
Access behavior for Attribute 2 implies that after activity A is exe-
cuted, either B or C will be executed and the process ends with the
execution of activity D. In this example, Attribute 1 and Attribute 2
are assigned to different data objects. If the Attribute-Access be-
havior for these two attributes would have been the same (i.e.,
they would have both included either an exclusive or parallel gate-
way), then these two attributes would have been assigned to the
same data object.

• Similar activities, one common behavior subgraph.

In this step, we look for attributes accessed by a similar set of
activities; they share some common activities but do not have ex-
actly the same Attribute-Access behavior. For example, the first
attribute is accessed by five activities, and the second attribute
is accessed by three of those five activities and three additional



76 discovering data object lifecycles from event logs

Figure 36: Two cases of discovered Attribute-Access behavior

ones that are not accessing the first attribute. This implies that
the behavior of these two attributes cannot be identical.

However, we can still look for a common sub-behavior and argue
whether these attributes can be part of the same data object. It is
essential to check if we can identify a common subgraph between
these two Attribute-Access behaviors. More specifically, we are
looking for a subgraph that contains at least two activities and
at the most the same number of activities of the smallest behav-
ior. For simple graphs representing Attribute-Access behavior, the
comparison can be visually performed. However, if the graphs are
complex, approaches based on causal footprints [134] or refined
process structure trees [118] may be used.

Once the subgraph is computed, the matrix is updated to capture
such a group of attributes to ensure that the subgraph also rep-
resents the concurrent access of these attributes in the event logs.
This means that all activities of the subgraph are accessing the at-
tributes simultaneously within the same case. The process expert,
who is equipped with the common subgraph and the matrix, can
decide whether to create a new data object from these groups of
attributes. If so, the attribute that is not always accessed from
an activity of the common subgraph is marked with * sign in the
corresponding data object. That is because these attributes are not
always accessed every time the data object is accessed. Otherwise,
the process expert can decide not to put these attributes as part of
the same data object.

Since the data object might be a composition of several event/case
attributes, coming up with a representative data object name is
left to the process expert. However, an NLP approach can be used
to support the process expert, for example, the one in [77]. In the
simplest case, the data object with a single attribute can share the
same name with the attribute.

Figure 36 depicts an example of two Attribute-Access behaviors
which have similar activities and share one common subgraph



5.3 enhancing the process model with data object lifecycles 77

(second column in Figure 36). Activities A, B and C are discovered
in both Attribute-Access behaviors. First, the activity A occurs.
Afterwards, a parallel gateway is discovered, which implies that
B and C will be executed. For the first attribute, the behavior has
another activity called D. It is important to point out that both the
discovered behaviors share a common subgraph, which contain
activities A,B, and C. Since activities A, B and C are accessing
Attribute1 and Attribute2 simultaneously within the same case (i.e.,
our assumption for this example), then these attributes can be
assigned to one data object. Since Attribute1 is not always accessed
from an activity of the common subgraph then it is marked with
* sign in the corresponding data object.

Once the data objects are discovered, their lifecycles are identified.
The data object lifecycle captures the data object states and the state
changes, representing how the data object is being transformed during
process execution. We rely on the Attribute-Access behavior of each
attribute involved in a single data object to derive its lifecycle.

The data object state constitutes the collective values of its compos-
ing attributes after each activity that manipulates any of these values.
Specifically, for each activity discovered in the Attribute-Access behav-
ior, a new data object state is created and named after the activity label.
This implies that if the data object is created as a result of grouping
only case attributes, then its lifecycle consists of a single state.

Otherwise, when the data object is defined as a set of event attributes,
excluding the event attributes modified by the same activity within the
same case, then any data object lifecycle has at least two states. For
each activity involved in the Attribute-Access behavior, a new state is
created. For the data objects that involve optional attributes, the num-
ber of states is the same as the number of activities of the largest (i.e.,
in terms of the number of activities) Attribute-Access behavior.

The name of the data object state is based on the activity accessing
the data objects (i.e., discovered in the Attribute-Access behavior). If
the activity name follows an action-business object pattern [93], we rec-
ommend using the past tense form of the action as a data object state
name. Once the data object lifecycles are discovered in the next step, we
explain how they can be mapped with the business process activities
revealing information on the data-flow.

5.3.4 Data Object Assignments in the Process Model

To represent the discovered data objects, first on the process model, it is
necessary to discover the latter from the original event log. To achieve
this, we are applying a traditional process mining discovery algorithm
to the event log.

Once the data objects and the process model are discovered, the next
step is to combine these two models together, which implies assigning
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each data object to the corresponding process model activity. To achieve
this, the data object lifecycle is used as a basic input to derive the data-
flow behavior on top of the control-flow. Two cases are considered and
explained in more detail below:

1. Mapping the data objects derived from case attributes

To establish the connection between the single activity that ac-
cesses the data object and the data object itself, a data output edge
is used with the activity as its source and the data object as its tar-
get. This is because the data object is only written once by this
activity and never updated for the rest of the process execution.

2. Mapping the data objects derived from event attributes

To map these types of data objects to the process model, we dis-
tinguish three behavioral patterns:

• Sequential access: If the data object lifecycle manifests a se-
quential behavioral pattern between pairwise of two states
(i.e., one state follows another state but not vice versa), then
the data object is output from the first respective activity (the
activity from which the state is derived) and it is read from
the second respective activity before it is output by it in a
new state. That is because the second activity has to read
the state of the data object before updating it. For the read
access, the data input edge is used in the model, which has
the data object as a source and the second activity as a target.

• Exclusive access: If the data object lifecycle manifests an exclu-
sive behavioral pattern between pairwise of two states (i.e.,
if a state is reached, then the other state is never reached and
vice-versa), then each activity outputs the data object with
the corresponding state. The activities do not read the state
of the data object that is output from each of them. It may
happen that these activities are manifested in a conflicting
behavioral pattern in the process model, e.g., they are in par-
allel. It is exactly in this case where our approach helps the
process experts to understand the process’s behavior beyond
what is initially captured in the process model and perhaps
even update the process model in order to be consistent with
the data-flow.

• Parallel access: If the data object lifecycle manifests a paral-
lel behavioral pattern between pairwise two states (i.e., one
state is reached from another state and vice versa), then we
distinguish two cases:

– Parallel activities: If two activities are in parallel in the
process model, then this is not desirable because whichever
activity updates the data object last overwrites the previ-
ous state that is output by the other activity. Therefore,
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the first state of the data object is permanently lost. This
is an anti-pattern, which is desirable to be avoided.

– Exclusive to sequential activities: If, however, there is an
exclusive gateway in the process model that leads to two
different paths, where one includes a sequence of the ac-
tivities and the other one contains the opposite sequence,
then each path is considered as a sequential behavior pat-
tern, and it is treated like shown above (i.e., parallel ac-
tivities). For example, a decision is made upfront based
on the customer to a) retrieve the payment and then send
the shipment or b) send the shipment and then retrieve
the payment.

• Self loops: If the discovered Attribute-Access behavior con-
tains self-loops associated with activities, then, from a data-
flow perspective, they can represent two different situations:

– The activity is executed multiple times, modifying the
data attribute at every execution. This corresponds to a
loop in the control-flow of the original process model.

– The activity is executed once but modifies several in-
stances of the same data attribute, e.g., writing different
values in a batch. This corresponds to several rows in the
original event log that refers to the same activity, have
consequent yet close timestamps and write different val-
ues. To represent this behavior in the original discovered
process model, a multi-instance data object can be used.

5.3.5 Holistic View Generation

In the discovered process model from the original event log, besides
discovering the data objects and their lifecycle, we aim to provide some
statistics. More specifically, for each data object state, we capture the
access ratio in percentage — the number of times a business process
activity accesses the output data object over the total number of times
that this activity occurs in the original event log. If the data object
contains an optional attribute, then this information is provided for the
attribute with the highest frequency. This information can be taken
from the Attribute-Change matrix. The access percentage is appended
to the data output edge connecting the activity with the data object.
This information is helpful for the process expert to understand the in-
volvement of activities in the data object manipulation during business
process execution and the importance of the data in the overall process
execution.
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5.4 related work

Much research in business process management is conducted consider-
ing both perspectives of the process model, the data-flow and control-
flow perspective [115, 120]. The relation between these two perspec-
tives is defined as bidirectional. There already exist work that tries
to discover the process model based on the predefined object lifecy-
cles [75, 99] and there is also work which discovers the data object life-
cycles from the process models [52]. Besides that, Meyer and Weske [94]
also discuss on the conceptual level the relation between the process
model and object lifecycle. In contrast to our method, none of these
these related work address the discovery of the data object lifecycles
from the event log.

Rozinat et al. [106] consider the process model, which is upfront
discovered by a conventional process mining discovery algorithm and
analyze how the data attribute impacts the choices performed in the
process model. The main goal of this information is to understand how
the data dependency affects the process instance execution. To achieve
this, first, the decision points in the process model are identified, then,
it is determined whether this decision point is influenced by the case
data. Therefore, every decision point is categorized into a classification
problem. In order to solve such a classification problem, decision trees
are used together with all case attributes pertaining to an event log. The
implemented algorithm is called the Decision Miner [106] and is part
of a ProM plug-in [133]. The proposed approach presented in [106]
has several limitations, as it can not deal with process models that do
not fully conform to the event log. In real-life scenarios, most of the
discovered process models discard the less frequent behavior and con-
sider them as noise. Hence, the discovered process model does not
fully conform to the event log under consideration. Even if the pro-
cess model is manually designed, it rarely covers all observed behavior.
Therefore, to overcome such limitations, Leoni et al. [38] discover a
process model from an event log (after applying any traditional process
mining discovery algorithm) and align them (i.e, process model and the
event log) both together to mitigate the non-conformance effect between
them. Once the alignment takes place, the data-flow perspective is dis-
covered, which also covers read and write operations. In the same way
as in [106] by looking at each decision point as a classification model,
machine learning techniques are used to derive guards. The proposed
approach is also implemented as ProM plug-in [136]. Discovering the
process model first and then identifying the decision points makes these
approaches strongly depend on the process model. In contrast, our ap-
proach initially is independent from the process model as it aims to
discover the data objects by just considering as input the event log. In
addition, rather than providing a meaning to the decision points in the
discovered process model, we aim to discover the data object lifecycles,
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enhance the overall process model with such information and provide
a clearer meaning to the overall process model.

In contrast to the approach presented in [38], in which the control-
flow is the most important perspective for identifying deviations, Mannhardt
et al. [88] emphasize that balancing the perspectives in a customizable
manner (i.e., taking into account the cost function) delivers more mean-
ingful results. Therefore, they do not treat the data-flow as second-
class citizen, meaning that the control-flow perspective is discovered
first and based on that, other perspectives take place, for example, the
data-flow perspective. The authors argue that treating the data-flow
perspective as second-class citizen might lead to wrong conformance
checking results because, if a data attribute confirms that a certain ac-
tivity was executed wrong, these approaches will diagnose a deviation
in the data-flow instead of control-flow. Therefore, they propose in [88]
an algorithm that balances these deviations by considering all perspec-
tives and not prioritizing the control-flow perspective over the others.
Similar to our approach, the data object discovery method does not
rely on the discovered process model but it is used to enhance such a
model. In addition, our approach is independent from the language
(e.g., BPMN, Petri nets) used to model the corresponding process. An-
other similarity compared to our approach is that the number of event
log attributes plays an important role in the accuracy of the findings.
Different from our approach, the authors consider the attribute values
to generate rules on how attributes affect the control-flow (in the same
vein as in [16]). In our approach, we focus on how the control-flow
affects the collective behavior of the attributes (i.e., the data objects’
behavior).

The same authors as in [88] propose the Data-Aware Heuristic Miner
algorithm in [89], which uses the data attributes to distinguish process
instances with very low frequency from the so called noise (i.e., record-
ing errors) by using classification techniques. The authors argue that
some process instance might have low frequency because specified con-
ditions are not often satisfied and if only the control-flow is considered,
such instances might be filtered as noise and excluded from the process
model. However, they might contain useful information for the process
analysts and should not always be set aside as noise. Similar to our
approach, the data is leveraged to full potential, i.e., the control and
the data-flow are discovered together. Another similarity compared to
our approach is that the discovered process model reveals information
about the control and data-flows but this information is discovered and
presented to the process expert in a different way. In contrast to our
approach, the authors are more focused on the actual attribute values
in the event log rather than considering the relation between activities
and attributes regarding the write/update access.

Fahland [53] focuses on artifact-centric process mining, which is de-
fined as an extension of the traditional process mining [124] because
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it is able to analyze event logs with more than one case identifier (i.e.,
case notion). The approach takes as input an event log or a relational
database and outputs a data model of objects together with their rela-
tions and a process model called artifact-centric process model. The
process model describes the behavior of each data object and the de-
pendencies between them. The approach assumes the association of
each event to one data object and from the behavior relations between
all events pertaining to one data object, the artifact lifecycle is discov-
ered. Afterwards, the behavior dependencies between different artifacts
are defined. In this way, the complete artifact-centric process model
provides not only the lifecycle model of each artifact but also the de-
pendencies and their cardinalities between different artifacts. Different
from our approach, which requires as input an event log, artifact-centric
process discovery requires an event log with multiple case identifiers
(multiple case notion event log). In addition, the data model is re-
quired as input and assumes that each event is assigned to one data
object. This is a strong assumption because event logs, in the classical
process mining sense, are unaware of data objects. They, rather, contain
information about certain attributes. It is the focus of this chapter to
categorize event log attributes into data objects, not just based on static
information (see [6]), but on the behavior aspects of the attributes.

5.5 evaluation

To evaluate our approach, we are using two real-life event logs, namely
the Hospital Billing event log [85] and the Road Traffic Fine Manage-
ment event log [87].

The Hospital Billing event log contains events regarding the billing
of hospital services and includes 100.000 cases (451.359 events) that are
processed over three years. It contains 17 attributes and a description
of them is provided in Table 3. Following the first step of our approach,
the Attribute-Access event logs (AAELs) are generated for all optional
attributes except resource and activity lifecycle attributes because they
describe respectively who executes the activity and the activity states.
This step is implemented in the PM4Py framework [17] and is available
in the GitHub1 repository. In total, there are 17 AAELs extracted (equal
to the number of event log attributes), which overall involve 6 activities
out of the 18 happening in the original event log.

For each AAEL the Inductive Visual Miner [76] algorithm is applied
and the Attribute-Access behavior is discovered. For understandability
reasons, the activities that do not access any attribute are removed from
the process model without affecting its behavior. Following the next
step of our approach (explained in Section 5.3.2), the Attribute-Change
matrix is created and depicted in Figure 37.

1 https://github.com/DorinaBano/dataObjectDiscovery.git
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Table 3: The description of the Hospital Billing event log attributes [86]

Attribute Description

actOrg
a flag indicating that the service might be

covered by a standard health insurance

actRed
a flag indicating that the service might not be

covered by a standard health insurance

blocked
a flag indicating that the billing process

is blocked

caseType the type of the billing package

closeCode the code used to close the billing package

diagnosis diagnosis code used in the billing package

flag A, B, C, D anonymized flags

isCancelled indicated the cancellation of billing package

isClosed indicated the the closing of billing package

msgCode output of the Code Nok activity

msgCount
the number of messages outputs by the

Code Nok activity

state the state of the billing package

version rule code

speciality medical code

Then, the data object discovery step takes place (see Figure 38) and
there are six data objects discovered in total for the Hospital Billing
event log. One data object pertains only case attributes and the rest
are created based on the event attributes. There is only one data object
which contains a single optional attribute. Specifically, diagnoses and
caseType attributes are assigned to the same data object (see Figure 38)
where the diagnoses attribute is marked as optional because it is not
accessed the same number of time as the caseType attribute. In addition,
there is a common subgraph between the discovered Attribute-Access
behavior of these attributes and the discovered process activities are ac-
cessing these two attributes subsequently. As shown in Figure 38, there
is also a common subgraph discovered between the data objects con-
taining the msgType and msgCode attributes and the data objects created
as a result of actRed, actOrange and flagC attributes but in the common
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Figure 37: Attribute-change matrix created for the Hospital Billing event log
(the color figure is available online)

subgraphs activities are not accessing these attributes simultaneously.
Therefore, they are stored in two different data objects.

Subsequently, the process model is discovered from the original event
log, which is illustrated in Figure 39. The discovered process model
reveals that many of the activities can be skipped, i.e., they have an
exclusive gateway upfront. The lifecycles of the data objects are dis-
covered and represented in the original process model, as depicted in
Figure 39.
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Figure 38: Discovered data objects and their Attribute-Access behavior for the
Hospital Billing event log (the color figure is available online)

Each data output edge shows the number of instances that the activ-
ity has written the data object over the number of instances the activity
occurs, represented in percentage. For example, the data objects discov-
ered from the case attributes are written in 100% of the times when the
respective activity (New) is executed.

We argue that enriching the process model with data objects and their
lifecycles helps the process experts to understand the process execution
better. For example, the Hospital Billing process model illustrated in
Figure 39 contains a parallel gateway. Focusing on the data object that
contains the msgCount and version attribute, it can be observed that the
Code Error and the Code Ok activities access the data object in parallel to
the Code Nok activity. However, judging from the data object lifecycle
(see Figure 39), these activities should all be in a sequential relation. In
this specific case, we investigate this discrepancy between the process
model, the data object lifecycle and the original event log. The following
is observed:

• there are only 8 cases out of 100.000 in the event log where the
Code Ok activity is eventually followed by the Code Error activity.
This is due to the presence of a loop in the discovered process
model (not shown in Figure 39 due to the low frequency), where
the Code Error activity happens a second time. However, the
second time the Code Error activity does not access the data object
again. Hence, the data object lifecycle manifests only a sequential
state change.
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• there are 13 cases where the Code Ok activity is eventually fol-
lowed by the Code Nok activity, but in none of these cases, the
data object is overwritten by the latter.

Figure 39: Process model (discovered by the Inductive Visual Miner), data ob-
jects and their lifecycles for the Hospital Billing event log (the color
figure is available online)

While the RTFM event log involves events regarding the road traf-
fic fines issued by the Italian police, it includes 150.370 cases (561.470
events) that the municipality has processed over thirteen years. The
event log contains 11 activities and only 7 of them are accessing (writ-
ing or modifying) an event log attribute. The attributes of RTFM event
log are described in details in Section 5.5, Table 2. The discovered data
objects and their Attribute-Access behavior are illustrated in Figure 40,
which are used to enhance the process model discovered from the orig-
inal event log (illustrated in Figure 41).

Compared to the Hospital Billing event log, the RTFM log contains
more static data objects (i.e., their states do not change during process
execution). That is why there are no activities that read something from
the previous data objects and later change their state. In addition, 5 out
of 8 discovered data objects are created as a result of case attributes. An-
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Figure 40: Discovered data objects and their Attribute-Access behavior for the
Road Traffic Fine Management event log (the color figure is avail-
able online)
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other difference compared to the Hospital billing event log is that there
are more activities that manifest a 100% writing ratio, which means that
always when an event occurs, it writes a value to the event log attribute.

Figure 41: Process model (discovered by the Inductive Visual Miner), data ob-
jects and their lifecycles for the Road Traffic Management event log
(the color figure is available online)
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5.6 summary

This chapter presents a method to discover the data objects and their
lifecycles from an event log that is tailored for process mining. To
achieve this, we analyze how the event log attribute values change for
each case and group these attributes into data objects, which reflect how
the business process activities consume the data during the process ex-
ecution. The process model is enhanced with data object lifecycles and
execution heuristics stemming from the event log.

Enriching the discovered process model with data objects helps the
process experts (e.g., to John, considering our story) to understand how
data is manipulated through the business process execution. The dis-
crepancies between the process model and the data object lifecycles,
together with the access rates, can shed light on how the data-flow
matches the control-flow. This is due to the fact that the relation be-
tween the business process activities and data objects are clearly de-
fined.

The feasibility of our method is proven based on two real-life event
logs, called Hospital Billing and Road Traffic Management event log.
Our evaluation shows that the discovered process model can reveal
more behavioral information to the process expert when it is enhanced
with data objects and their lifecycles. Thus, the enhanced process model
is closer to the real-world execution of the process in terms of semantics.
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Figure 42: Discovering business process architectures from a set of event logs

This chapter provides a method (see Figure 42) to discover the re-
lations between a set of business process models, which are upfront
discovered from their respective event logs. Considering our story, John
has applied the method to the event logs that are all extracted from the
same organization’s database considering a specific business goal.

This chapter is mainly based on the previous work presented in [8].

91
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6.1 motivation

The business process management lifecycle [139] deals with the design,
configuration, enactment and evaluation of business processes in a per-
petual repetition in order to accommodate the ever-changing business
requirements. An important artifact in this context is a process model
repository, which often captures hundreds or even thousands of pro-
cess models [103]. For example, SAP contains around 600 reference
models (i.e., models used as a core to design additional models) [102].
While Suncorp, which is an Australian finance, insurance, and banking
corporation holds around 6,000 process models in their process reposi-
tories [137]. With the increase in size and complexity of process model
repositories, it gets harder to manage them. The area of BPM address-
ing such a challenge is called Business Process Architecture (BPA) [46].
BPA is an important vehicle for organizing business process models
within an organization since they provide a holistic view of the interre-
lationships between business process models [56].

Typically, BPAs are designed by process experts by identifying the
relationships between process models in a given repository (i.e., BPA
design is purely based on process models). This step involves manual-
driven tasks [74], and in most cases, explorative methods are applied
based on the activity labels and domain knowledge [56]. To overcome
such limitations and use additional information besides the activity la-
bels and domain knowledge, this thesis provides a method that consid-
ers the historical execution data such as an event log.

In the process mining area, event logs are usually extracted from the
given organization’s database based on a specific case notion that de-
termines one’s perspective from which an event log can be extracted
or the questions one aims to answer (see Figure 43). It is possible
to extract more than one event log from a single database, each per-
taining to a different case notion. For each extracted event log, the
process model is discovered by applying any process mining discovery
algorithm. To define the relations between these processes, we reason
that the information stored in the event logs is rich enough to indicate
relations between two ore more processes. The relations defined be-
tween processes purely on the model level might not always reflect the
real-world ones that actually occur during business process executions
which are captured, in part of fully, in an event log.

Therefore, in this thesis, we propose a method for automatically dis-
covering a business process architecture from an organization’s histor-
ical data that is captured in several event logs. The method focuses
on defining two types of process relations — trigger flow and informa-
tion flow. Trigger flow represents situations when a business process
triggers the instantiation of another business process. In contrast, infor-
mation flow captures data exchange between business processes. The
resulting method can discover such complex process interdependencies
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that we needed to design, in addition, an extension of an existing BPA
graphical representation [50] to accommodate these relationships prop-
erly.

Figure 43: The overall approach that discovers the business process relations
(represented by dashed lines) in the form of a BPA by just consid-
ering a set of event logs as input. Each event log is beforehand
extracted from the organization’s database by having in mind a dif-
ferent business goal

6.2 business process architecture and event log meta-
models

Before describing the approach of deriving a business process architec-
ture from a set of event logs, let us first define the relationships between
these artifacts on the meta-model level (see Figure 44). At a conceptual
level, BPA is defined as a composition of the Process Models and Infor-
mation/Trigger Flow models. In its simplest form, a Process Model is a
composition of Sequence Flow models and Flow Node models, which can
be Activity Models or Event Models that correspond to some Events from
the Event Log (illustrated on the right-hand side). An Event Log, one
of the many in an organization’s Event Log Repository, is a collection of
events that are grouped into cases. One Event Log corresponds exactly
to one Process Model. This chapter aims to discover the relationship
between a set of event logs at a BPA level of abstraction, defined by
the Trigger or Information Flow relation (illustrated by the discover arrow
from the Event Log self relation to the Trigger/Information Flow).

Given a set of event logs derived from a single organization’s database,
we show how to discover the business process architecture of that or-
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Figure 44: The meta-model for describing the relation between the business
process architecture and the event log

ganization. The focus here is on the discovery of the trigger and in-
formation flow between processes1, which implies the need to identify
the throwing and catching event models inside a process model. The
throwing event model is considered as active because it sends a signal,
and it can be an intermediate or an end event model. In contrast, the catch-
ing event model is considered as passive because it waits for the signal
to arrive, and it can be either a start or intermediate event model (the
concepts are illustrated and explained in more details in Section 2.1).
The method of how to discover these dependencies between processes
based on the data generated during the business process execution in
the form of event logs is provided in the upcoming sections.

6.3 event log awareness

To discover the trigger and information flow relations between a set of
event logs, we exhaustively investigate all unique pairs of event logs in
the repository and draw the final BPA. As a prerequisite, for a trigger
or information flow to exist between two event logs, at least one event
log has to be aware of the other. With awareness we mean here that
a significant number (decided by the process mining expert) of cases
of a given event log contain explicit information about the existence of
cases pertaining to the other event log. In short, an event log is aware
of another if a significant number of its cases are aware of the other.
Formally we have:

1 Other types of relations can exist between business processes (see Section 2.1), but in
this thesis, we are considering only trigger and information flow relations
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Definition 6.1.
(Aware Cases) A cases c from event log El (i.e, ∃ e ∈ El | #case(e) = c)

is aware of a case c ′ from event log El ′ (i.e, ∃ e ∈ El ′ | #case(e) = c ′) if
at least one event in case c contains information that refers to the case
id of case c ′. Let us denote CawEl,El ′ as the set of all ordered pair of
cases (c, c ′) where c is aware of c ′. ◀

Subsequently, we define the event log awareness:

Definition 6.2.
(Aware Event Logs) An event log El is aware of another event log El ′

if its awareness is not less than a threshold τ, where 0% ⩽ τ ⩽ 100% is
specified by the process mining expert. The awareness of event log El

for the event log El ′ is defined as AwEl,El ′ =
|CawEl,El ′ |

|El| .
◀

As one may notice, the awareness is not symmetric, in that CawEl,El ′

may be different from CawEl ′,El. Moreover, a case c from El can be
aware of more than a single case from event log El ′ as shown later in
Section 6.7, where a case triggers two cases of the opposite log.

Figure 45: Example of a case from event log Eli being aware of another case
pertaining to the event log Elj

An example of case awareness between two event logs Eli and Elj
is depicted in Figure 45. Specifically, the case with identifier number
123 in the event log Eli is aware of the opposite case pertained to the
event log Elj because its attribute value (i.e., A_100) is equal to the case
identifier of the event log Elj.

Given two event logs, we have to first check whether one of the event
logs is aware of the other. If none of the event logs are aware then there
cannot be a trigger or information flow to speak of. Otherwise, we
have to analyze all the aware cases of the respective event logs. Specif-
ically, we need to decide on a case basis whether there is a trigger or
information flow. Only then we can discover the generalized trigger or
information flow at the BPA model abstraction level. The discovery part
is very crucial because the trigger or information flow might depend
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on a case to case basis. For example, in half of the cases the trigger or
information flow source is a throwing activity A and in the other half is
a throwing activity B. To capture this kind of behavior, we provide an
extension of the BPA modeling language (see Section 6.5).

Event logs usually do not contain explicit information whether cer-
tain events in them are catching or throwing. Therefore, we have to
deduce this information via other means. Specifically, in order to de-
tect whether there is an information or trigger flow between two events
where at least one case is aware of the other (see Definition 6.1) we have
to analyze:

1. the causality relationships between these events

2. and, in case of information flow, the information contained in
these events, i.e, the event attributes.

6.4 discovering the business process architecture

This section provides a detailed method for deriving the trigger and
information flow from a pair of event logs. In addition, the algorithm
used to derive such information is presented for each method.

6.4.1 Trigger Flow

To discover the trigger flow behavior between two event logs, we have
to detect the trigger flow instance for each case, then use process mining
discovery techniques to arrive at a general representation at the BPA
level. The overall approach for discovering the trigger flow between
two event logs is depicted in Figure 46.

For simplicity purposes, every pair of aware cases from the opposite
event logs (from hereon referring to cases belonging to two different
event logs respectively) are merged into one joined case where the new
case identifier is the cross product of the original case ids. Considering
the example illustrated in Figure 45, the case identifier for the joined
case is equal to 123×A_100. Each event is annotated accordingly in
order to specify which event log it originates from. Considering the
same example, all events pertaining to the event log Eli are suffixed
with a 123 token. The same applies to the event log Elj, in which all
events are suffixed with A_100. All the merged cases are put together
in a joined event log Elij.

For each pair of opposite cases, where one is aware of the other, we
have to detect the source and the target of the trigger flow instance. The
target of a trigger flow is always a start event. While the source it can
be an end or intermediate event. On a case level, the target of the trigger
flow instance must always be the first event of the case. Therefore, the
only candidate for the target of the trigger flow instance between the
two start events is the one that occurs second.
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Figure 46: The overall method for discovering the trigger flow patterns be-
tween two pairs of event logs

Once the candidate target of the trigger flow instance is fixed, we
have to detect its source, which is a throwing event (i.e., it can be an end
or intermediate event) from the opposite event log that happens before
the target event. From all the possible events, we choose the latest event
as the source of the trigger flow instance among those that refer to the
case identifier of the target case. We argue that this is very important
because the trigger flow source event is responsible for passing all the
important information (at least the case identifier) required to start a new
instance on the target process model. The exact algorithm for detecting
the trigger flow instances for each pair of aware cases is provided in
Listing 2.

If a trigger flow is detected between two cases, then its source and
target events are added to an auxiliary event log. This event log has
as a case identifier the combination of the source and target case id
(the same as in event log Elij). Once it is completed with all possible
source and target events, it is mined to discover the final behavior of the
trigger flow. We argue that this information is very important because
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the trigger flow between two business process models in a BPA might
not always be static, in that the trigger flow might have more than one
source and as well as more than one target. In addition, not always the
same source might be related (i.e., send information) to the same target.
We show in Section 6.7 that it is very important to capture this behavior
on the BPA level to enable comprehensive analyses.

input: merged event log Elij
output: auxiliary event log (Elaux)
# i _ e v e n t and j _ e v e n t r e f e r to e v e n t s that o r i g i n a t e

r e s p e c t i v e l y from Eli and Elj

for case in Elij
5 {

start_event_i = first_i_event(case)
start_event_j = first_j_event(case)
if start_event_i.index < start_event_j.index
target_event = start_event_j

10 else
continue # jump to the next case

for event_index = target_event.index - 1 to 0 step -1
{

15 candidate_event = case.get_event_with_index(event_index)
if candidate_event is i_event
{
source_event = candidate_event
add source_event to Elaux

20 add target_event to Elaux
break

}
}
} �

Listing 2: The trigger-flow instance detection algorithm

6.4.2 Information Flow

Similar to the way we discover trigger flows between two event logs,
we have to consider on a case basis about the existence of data flowing
between events of opposite event logs. The method overview is pre-
sented in Figure 47. An information flow instance between two aware
cases assumes the existence of a throwing and a catching event from
opposite cases that manifest a data-flow, i.e., the information contained
in the throwing event is passed to the catching event. In other words,
we look for new information appearing in one event that stems from an
event of the opposite event log.

Differently from trigger flows where we consider only the start events
of the processes, here we have to consider all the possible events with
few exceptions, e.g., start events cannot be throwing and end events can-
not be catching.
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A joint event log Elij is created in the same manner as described
above for the discovering of the trigger flows. What is slightly different
is that all the common attributes between two event logs have to be
identified first. If two event logs share no common attributes other
than the case identifier (which is given since at least one event log is
aware of the other), then there is no information flow to consider. It
is worth pointing out that the attribute name may not be sufficient to
check whether two attributes from different logs have the same domain
and value ranges or, in short, refer to a common entity. That is why this
step might require a process expert to create a mapping of attributes
that are believed to represent the same information.

Figure 47: The overall method for discovering the information flow patterns
between two pairs of event logs

Once the common attributes are identified, the search space for the
data-flowing from one event log to another is reduced just to these
attributes. From this point on, we consider one attribute at a time for
determining whether there is a information flow that concerns the at-
tribute at hand.
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1 input: merged event log Elij
output: auxiliary event log (Elaux)
# i _ e v e n t and j _ e v e n t r e f e r to e v e n t s that o r i g i n a t e

r e s p e c t i v e l y from Eli and Elj

for case in Elij
{

6 checked_event = first_i_event(case)
if checked_event == Null

continue # jump to the next case

last_found_index = -1
for event in case

11 {
if event is i_event
{
if event.attribute.value <> checked_event.attribute.

value
{

16 target_index = event.index
source_found = False
for s=last_found_index to target_index-1
{
if event_with_index(s) is j_event and

event_with_index(s).attribute.value == event.
attribute.value

21 {
source_event = event_with_index(s)
target_event = event
source_found = True
last_found_index = s

26 break
}

}
if source_found
{

31 intermediate_event = new event
intermediate_event.case = source_event.case
intermediate_event.name = source_event.name+

target_event.name+attribute.name
intermediate_event.timestamp = mean_value(source.

event.timestamp, target.event.timestamp)
add source_event to Elaux

36 add intermediate_event to Elaux
add target_event to Elaux

}
}
checked_event=event

41 }
}

} �
Listing 3: Information-flow instance discovery algorithm

Considering a single common attribute between two event logs, we
cycle through all the pair of cases where one is aware of the other. For
each pair of cases we consider only the events that access the attribute.
Anytime a new attribute value appears in an event, i.e., the attribute
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value is not present in all preceding events from the same case, we look
at the opposing case to determine whether this value appears in any
of the events that happened prior to the original one. If yes, we take
the latest event where that occurs as the source of the information flow
instance and the event with the new value as its target.

The source and the target event of the information instance is added
to an auxiliary event log similar to the one used for the trigger flow.
However, here we add one more event (between source and target) that
is labeled as the composition of the source and target label plus the
attribute at hand. As a timestamp, it takes the median time of the
original events. This step is added because:

• a) there might exist more than one information flow between two
cases related to the same attribute and

• b) information flows for different attributes need to be distinguish-
able from each other.

The algorithm for discovering the information flow is illustrated in List-
ing 3.

Once the auxiliary event log is completed, we apply any process min-
ing discovery technique to discover the behavior of the information
flow. The output is a behavioral model, usually represented as Petri
net, that captures the behavior of the information flow for one common
attribute. This model is then translated into a BPA. If two or more infor-
mation flows overlap, i.e., they have the same source and target, they
can be represented as one information flow that represent the passing
of composed information.

Since the behavior of the trigger and information flow is a new con-
cept, we extend the BPA representation from [50] with some new light-
weight notions to capture exclusive or parallel patterns between trigger
and information flows in the section below.

6.5 the extension of the bpa’s graphical representation

The state-of-the-art research on BPA does not suffice in capturing behav-
ior of the trigger and information flow that we observed by analyzing
a set of real-life event logs (see Section 6.7). In this section we address
this gap by introducing an extension of the graphical representation of
BPA (presented in Figure 48).

For representing the complex behavior of the trigger and information
flow, we borrow the concept of gateways from BPMN 2.0 [62], specifi-
cally the XOR and AND gateway. Figure 48 shows how these gateways
are used given a set of specific scenarios.

Figure 48 a) represents the case when there exists more than one start
event in an event log, i.e., that cases do not always start with the same
event instance. In contrast, Figure 48 b) represent the case where there
is more than one event in the first event log that triggers the process
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Figure 48: Complex behaviour of trigger and information flow

instantiation of the second event log. The same can be observed for the
information flow in Figure 48 c) and d).

Despite the gateways being represented in the space between the pro-
cesses, they represent the behavior of either the source events (for join
gateways) or target events (for split gateways) of the respective trig-
ger/information flow. For example, the difference between the trigger
flow’s XOR and AND splits in Figure 48 a) consists in that, in the for-
mer, s2 and s2 ′ start events are in an exclusive relation between each
other, while in the latter, they are in parallel relation. Obviously, this
information is found in the event log of process p2. This information is
required in addition to the auxiliary logs to determine whether we use
an XOR or AND gateway.

As it is illustrated in Figure 48, the orchestration of these gateways
happens inside the processes. However, there might be more complex
cases were, for example, a process is triggered only after two or more
processes have been executed or, after a process is executed, there is a
decision on which following process to trigger. Such cases are not cov-
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ered in this thesis and require analyzing of more than two processes at
once across the process repository. The gateways in those cases would
lay outside the processes, similar to a process choreography setting,
where enforcing gateways becomes much more complicated [97].

Depending on the process discovery approach applied to the auxil-
iary event log a behavior model is obtained. The majority of algorithms
output a Petri Net model. Known techniques, like in [81], can be used
to derive the process gateways from a Petri Net model.

6.6 related work

Business process architecture is subject to extensive research work. The
existing literature focuses mainly on organizing the process reposito-
ries within an organization by involving the domain experts. They are
mostly used to ease the process classification and set up the hierarchical
relations between processes.

Dijkman at al. [45] provide an overview of the prevailing approaches
related to the business process architecture design process. The main
goal was to investigate the state-of-the-art of the existing business pro-
cess architecture design approaches and estimate their usefulness in
practice. Through a literature study, they have proposed five classes
of approaches: goal-based, action-based, object-based, reference model-
based and function-based. For each class, first, the structure was de-
fined (e.g., goal-based structure) and afterward, the business process
architecture was subsequently designed based on that structure. Dif-
ferent types of goals were identified (e.g., realization, influence [73]),
and focusing on a different goal, leads to a different goal structure,
which potentially leads to a different business process architecture [5].
Approaches related to action-based defines first an action structure con-
sisting of business process activities and their relations (i.e., so-called
business action). Unlike business processes, the business action lies
therein that business action assumes that all humans and, consequently,
business actions follow a certain pattern and phases. A pattern helps to
identify the (sub)processes, while the phases determine when a certain
(sub)process ends and another one begins, considering the transitions
between phases. The main relations identified within the action-based
approaches are [70]: decomposition, trigger flow and phasing relation.

In contrast, in the object-based approach, a business process object is
designed first, for example, as a UML class diagram and then the busi-
ness process architecture is derived by looking at the business objects
and their relations in the class diagram. The types of relations identified
within this class are: decomposition, state transition and generalization.
To speed up the process of designing a business process architecture,
one could start from an existing business process architecture (called
reference model) and adapt it to design a new one. Decomposition
and generalization are two types of relations considered within this
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type of approach. Considering the function-based approach, a function
hierarchy is designed first, representing the decomposition of business
functions into more detailed business functions. The functions hierar-
chy and business process architecture can be combined in two ways: 1)
the business process architecture is organized based on the functions
hierarchy and 2) the structure hierarchies are created by combining
process and functions through decomposition relations. Each design
approach was evaluated in terms of use and usefulness by considering
39 practitioners active in the BPM area.

Eid-Sabbagh and Weske in [49, 50] consider an action-based approach
and focus on the formal conceptualization of the BPA. They introduce
a set of patterns to analyze the interactions among several business pro-
cesses within an organization, including anti-patterns (i.e., dead events,
deadlocks) used to represent erroneous relations between business pro-
cesses. Our work extends on their work for discovering the trigger
and information flow patterns not by analyzing the process models but
rather by discovering them directly from the event logs.

Conforti et al. [30, 31] address the composition relation between pro-
cesses by providing an approach that discoverers BPMN models, which
contains sub-processes together with their interrupting and non-
interrupting events from an event log. Afterward, traditional process
mining techniques are applied to the event data belonging to both the
sub-process and the original process. Similar to our approach, authors
consider event log attributes to identify the events that are more likely
to be part of the sub-process. Different from their solution, we con-
sider a set of event logs to determine the trigger and information flow
relations and represent them on a higher level like BPA.

Dumas et al. [47] propose an approach to support the detection of
the clones of big business process repositories. Each process model
within one repository is indexed to identify duplicate fragments, which
can later be refactored into shared sub-processes. Other approaches
dealing with the clone detection are recently researched in the process
mining area [12, 51, 118]. Unlike our approach, the refactoring is based
only on the activity labels since the process model is considered as a
single source of information.

Hierarchical process models are discovered from the event log by Lu
et al. in [82]. The processes are represented as multi-level interleaved
sub-processes. The activity trees are used to define the hierarchical
relations between the process model activities. The proposed approach
can be fully automated or fully supervised by a process expert. While
our approach can be fully automated given that the attribute labels are
consistent across the event log repository.

Mendling et al. [92] argue that most of the approaches applied to a
collection of business processes deal with the verification techniques
based on the decomposition. Their goal is mostly focused on represent-
ing the hierarchical relations between a set of business processes [81].
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That being said, the relations between a collection of business processes
are ignored.

Malinova et al. [83, 84] evaluate the use of business process architec-
ture in practice. The authors use the term process map which is defined
as a synonym of the business process architecture. They interviewed 11

companies and evaluated 15 process maps in practice and observe that
a fine-granular process is related to exactly one process model activity.
This type of relation is captured by: the Hierarchical Process Archi-
tecture, the Pipeline Process Architecture and the Divisional Process
Architecture. The Hierarchical Process Architecture is similar to the
decomposition relation defined in [50] in which the business process
model is decomposed into other business process models, each repre-
senting a sub process. They observed that organizations include at least
three decomposition levels. The Pipeline Process Architecture is consid-
ered as a specialization of the previous relation. While the Divisional
Process Architecture is defined as an extension of the two previously ex-
plained relations, where the processes are divided into units and each
unit is further decomposed based on the previous types of relation.
The authors emphasize that the business process architecture does not
only helps the organizations to understand their processes better, but
also improves the performance analysis. In addition, they argue that
the organization’s structure is an important artifact for designing the
business process architecture. In this thesis, rather than discovering
the decomposition relations between a pair of business process model,
we are focused more on discovering the trigger and information flow
relations between these processes.

To the best of our knowledge, none of these approaches focuses on
identifying the business process architecture in term of trigger and in-
formation flow from a set of event logs that are extracted from the
organization’s database with the original purpose of discovering the
designated process models.

6.7 evaluation

To evaluate the effectiveness of our approach, we are using the real-life
event logs provided in the scope of the BPI Challenge 2017 [131] and
BPI Challenge 2020 [132]. To evaluate the feasibility of our algorithms
(presented in Section 6.4), we implemented them in Python using the
PM4PY framework [17]. The implemented algorithms are available on
GitHub repository2.

The BPI challenge 2017 deals with loan applications. There are two
event logs provided in the scope of this challenge: 1) the Application
event log is about customer applications for obtaining a bank credit
and it contains 1.160.405 events and 31.509 cases; 2) the Offer event log
is about credit offers proposed by the financial institution as a response

2 GitHub: https://github.com/DorinaBano/BPA_from_event_log

https://github.com/DorinaBano/BPA_from_event_log
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Figure 49: The discovered trigger flow (simple representation) of the BPI Chal-
lenge 2017

Figure 50: The discovered trigger flow (detailed representation) of the BPI
Challenge 2017

to the customer’s application and it contains 93.846 events and 42.995
cases. Both event logs contain events from January 2016 to February
2017. Before applying the BPA discovery approach, we first clean the
Application log of any event that is also found in the Offer log. This step
is performed because we are only interested in discovering the BPA’s
trigger and information flow patterns instead of the composition or spe-
cialization patterns where common events are of the most importance.

Following our approach, we first check whether these events logs
are aware of each other according to Definition 6.1. Indeed that is
the case: The ApplicationID attribute of the Offer event log refers to
the CaseID attribute of the Application event log in all cases, hence
AwOffer,Application = 1.

After determining the awareness, the event logs are joined into one
event log, which is subject to the two algorithms presented in sec-
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tion 6.4. The output auxiliary event log is mined using the Inductive
Visual Miner algorithm [76]. The resulting process architecture model
representing the trigger flow is obtained and illustrated in Figures 49

and 50.
We discovered that the application process has a 1− to− n trigger

relation with the offer process in that each application process instance
can trigger more than one offer process instance. Specifically, there
are three intermediate events in the application process as sources of
the trigger flow: A_Accepted,A_Complete and A_Incomplete which
triggers the offer process through the O_CreateOffer start event (see
Figure 49). Looking at the internal behavior of the application pro-
cess, represented in 50, we can observe that the offer process is always
instantiated by the A_Accepted event. In addition, within the same ap-
plication process instance, the offer process can be instantiated again by
either A_Complete or A_Incomplete events. Looking only at the activ-
ity labels (A_Incomplete,A_Complete) of the events which instantiate
the offer process might be confusing because they contradict each other.
However, this is happening due to the fact that the application process
can trigger more than one offer process (offer process depicted as a
multi-instance in Figure 50).

With respect to information flow, the only common attribute that is
shared between the event logs and is not static is the user associated
with the activity being performed. In this sense, Figures 51 depicts the
implicit information carried by particular employees when they switch
to performing different tasks between the two processes. From the BPA
depicted in Figure 51 we can understand in the positive case of the
application getting accepted:

• the user who returns the offer (O_Returned) was also involved in
validating the application (A_Validate)

• the user who cancels the offer (O_Cancelled) is previously in-
volved with canceling (A_Cancelled) the application

• the user who successfully ends the application processes A_Pending
(i.e., is always at the end of a positive application process) is the
same one who accepted the offer (O_Accepted)

A detailed representation of the BPA is illustrated in Figure 52.
The BPI Challenge 2020 is concerned with five event logs and it con-

tains information about travel expense claims from the Eindhoven Uni-
versity of Technology (TU/e) located in the Netherlands. Two types of
trips are distinguished in the provided event logs: 1) domestic trips - the
employee applies for reimbursement after the trip has taken place and
2) international declaration trips - the permission has to be approved
by the supervisor before the trip take place.

Three out of five provided event logs are aware of each other (based
on Definition 6.2): 1) PrePaidTravelCost which contains 2, 099 cases and
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Figure 51: The discovered information flow (simple representation) of the BPI
Challenge 2017

Figure 52: The discovered information flow (detailed representation) of the
BPI Challenge 2017

18, 246 events; 2) InternationalDeclaration with 6, 449 cases, 72151 events;
3) Permit which holds 7, 065 cases, 86, 581 events. The Permit id attribute
of the PrePaidTravelCost event log refers to the CaseID attribute of the
Permit event log. In addition, the Permit id2 attribute of the Internation-
alDeclaration event log refers to the CaseID attribute of the Permit event
log. This implies that PrePaidTravelCost and InternationalDeclaration are
both aware of Permit event log. Again, we cleaned the duplicate events
for each pair of event logs under consideration.
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Figure 53: The discovered trigger flows of the BPI Challenge 2020

The BPI Challenge 2020 does not exhibit any information flow pattern
as most of the attributes in the event logs are static, in that they do not
change inside a case.

The resulting BPA with respect to the trigger flow for the aware event
logs is illustrated in the Figure 53. The start event Start Trip of the Per-
mit log is triggered either by the Payment Handled event of the PrePaid-
TravelCost event log or by the same event of the InternationalDeclaration
event log. This means that whenever the last event Payment Handled
occurs in both event logs (i.e., Prepaid Travel Cost and International Dec-
laration) the start event Start Trip of the Permit log is triggered. This
can be explained by the fact that there are cases in the Permit event log
where there no payments being handled. For those cases, the payment
is handled in the previous processes. After the payment is handled the
trip can start.

Looking at the discovered BPAs from these real-life event logs, we
can conclude that the new insights, coming from the BPA’s trigger and
information flow, cannot be obtain by individually analyzing the event
logs or, even better, just analyzing the process models. Therefore, by ap-
plying our method is not only possible to derive the relations between
different business processes, each discovered from a different log, but it
also possible to involve exclusive and parallel behavior between trigger
and information flows.

6.8 summary

In this chapter, we provide an approach for discovering a business pro-
cess architecture from a set of event logs that are extracted from the
execution of processes within the same organization. The business pro-
cess architecture provides a high-level perspective on an enterprise’s
running processes and the relation between these processes. It aids
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in identifying and understanding the complex interdependencies and
relationships between the processes.

Our method focuses on two such interdependencies: the trigger flow
and the information flow between two or more given processes. For
each pair of aware cases pertaining to two different event logs we detect
the source and the target of the trigger/information flow instance. The
target of the trigger flow instance is always the start event, while the
source can be an end or intermediate event. In contrast, the target of
the information flow it can be an intermediate event.

The discovered trigger and information flow relation between two
process models provide useful insights (e.g., to John, considering our
story) as how information is shared between these processes and how
the instantiation of a process depends on the execution of another pro-
cess. The approach is not only able to identify such relations but also
their complex behavior like, for example, a single process that spawns
multiple instances of another process. To graphically visualize such
complex behavior we have provided an extension of a BPA notion.

The approach’s feasibility and effectiveness is evaluated by being
applied to two real-life event logs. Looking at the discovered BPAs
from these real-life event logs, we can conclude that the new insights,
coming from the BPA’s trigger and information flow, cannot be obtain
by individually analyzing the event logs or, even better, just analyzing
the process models. We show that the business process architecture
provides an holistic view of the whole system and reveals process in-
terdependencies that otherwise are not captured while organizing the
business process models.



7
C O N C L U S I O N S

In this chapter we summarize the main contributions of this thesis, and
briefly discuss limitations before providing an outlook of future work.

7.1 contribution summary

This thesis deals with the utilization of the event log data in the area
of process mining with a focus on the event log generation, process dis-
covery and process enhancement (see Figure 10). Thus, considering the
more general business process management lifecycle [139], this thesis
touches upon the analysis and evaluation phase, to which the process
mining field belongs to.

This thesis aims to equip the process expert with a set of methods
that allows her/him to exploit the event logs to their full capacity even
when the access to the original database system and the domain knowl-
edge is limited or unavailable. First, we raise the question of whether
it is possible to generate an event log in the lack of a classical database
system access. We show how that is indeed the case by introducing a
method that generates an event log only from a redo log, which stores
the data operations and ensures consistency and fault tolerance in case
of system failure (e.g., power failure). Then we show how a data model
that is implicitly contained in an event log can be extracted from it and
put in the hands of the process expert to understand the underlying
data perspective in the context of the running process. Even further,
we show how this data is manipulated by deriving the data objects
that are affected and impact the running process. Indeed the impact
of the data spans across processes. To that end, for the first time, we
show the process interdependencies (based on the data dependencies)
in an organization by mining the organization’s business process archi-
tecture. Each contribution of this thesis is depicted in Figure 54 and
summarized below in particular:

1. The first introduced contribution (annotated with 1 in Figure 54)
in this thesis is a method that enables event log extraction from
the transactions made by the running information system with-
out directly accessing the whole database system. This method
does not require extensive domain knowledge. The data model
representing the database schema is discovered by just consider-
ing the information stored in the form of redo log entries. This
includes the discovery of the data model classes, attributes and
the relations between them. The intervention of the domain ex-
pert is required after the data model is discovered and before the

111
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event log extraction step takes place. The domain expert selects
the root class in the discovered data model that represents the
case notion in the to-be-discovered process model. Based on the
discovered data model and the selected case notion, the event log
is extracted by correlating the redo log entries with the event log
cases. The extracted event log conforms to the XES standard and
can be tailored to the process mining experts for applying tra-
ditional process mining techniques (e.g., discovery, conformance
checking).

The feasibility of the proposed method is evaluated based on two
synthetic redo logs: the MIMIC and Ticket Selling redo logs. To
realize this, we focus on the database schema comparison. The
discovered database schema by our method is compared to the
original one showing their similarity hence proving our method’s
effectiveness.

2. In the following contribution, we introduce a method that dis-
covers a data model from an event log (annotated with 2 in Fig-
ure 54), which constitutes a reverse-engineering method that aims
to discover the original data structure from which the event log
data is originally derived. The proposed method complements
the discovered process model and increases its understandability.
It shows how the event log attributes can be grouped into data
model classes and how these classes are related to each other.
Specifically, we look at the relation between the event log and
attributes and activities, i.e., which activity writes which attribute.
To realize this, first, an intermediate representation called Attribute-
Access relationship diagram (A2A diagram) is extracted from the
original event log capturing how the event log activities (on the
process model level) access the event log attributes and how many
times this access relation holds. Based on the information stored
in the A2A diagram, a set of rules are applied in order to group
the event log attributes into data model classes. These rules are or-
ganized based on two aspects: non/isolated attributes and non/iso-
lated activities. An attribute is called isolated if all activities that
access it (i.e., write a value) do not access other attributes. Like-
wise, an activity is called isolated if all the attributes it accesses
are not accessed by any other activity. The discovered data model
serves the role of a complementary artifact that provides domain
context to the discovered process model, thus improving the over-
all understandability of the organization’s running process. We
argue that this type of information is neither explicitly captured
by the process model nor by the event log, hence such a method
is useful to unearth the valuable information implicitly found in
event logs.
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The feasibility of the proposed method is illustrated based on
two real-life event logs: the Road Traffic Fine Management and
MIMIC event log. It is shown that the discovered data model is
similar to the original data structure provided by the specification
document of the MIMIC dataset.

To show the applicability of the introduced method, two applica-
tion scenarios are presented. In the first scenario, the data model
is discovered from an unlabeled event log and used as the main
structure to map the unlabeled events to the event log cases. The
second scenario relies on discovering a data model that facilitates
the automation and generation of a process-aware digital twin via
a low-code development paradigm.

3. The next contribution consists of a method that is able to discover
the data objects lifecycles by considering as sole input an event
log (annotated with 3 in Figure 54). Different from the previous
method in which we track how the event log activities access the
event log attributes, in this method, we track how the event log ac-
tivities modify (i.e., change the value) the event log attributes for
each case (this method is case aware) reflecting how the business
process activities, on the model level of abstraction, modify the
data during the process execution. The behavior of each singular
event log attribute is discovered and plays an important role in
grouping the event log attributes into data objects. Subsequently,
the discovered data objects are used to enrich the process model
with a data-flow perspective complementing the control perspec-
tive. In addition, we enrich the process model with statistical
information that reveals how often activity instances manipulate
the data objects in the historical execution. This helps the process
expert to understand the importance and the impact of certain
data objects during the process execution. All in all, the data
objects accompanying the process model are an intrinsic part of
process discovery in that they improve the understating of the
process model to accurately represent what has happened in the
real world.

The method’s feasibility is checked based on two real-life event
logs: the Road Traffic Fine Management and Hospital Billing
event log. It is shown that enriching the process model with the
data objects and their flow delivers information that proves to be
useful when it comes to the process model understandability.

4. Last but not least, the final contribution of this paper is a method
that automatically discovers on a higher level of abstraction how
an organization’s business processes ultimately affect each other,
sometimes even depending on the well execution of each other.
Concretely, our method discovers the relations between a pair of
business processes that are beforehand discovered from different
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event logs extracted from the same database (annotated with 4 in
Figure 54). These process model relations/dependencies are rep-
resented as trigger flow (i.e., a process triggers the instantiation of
another process) and information flow (i.e., a process exchanges
data with another process). These relations are discovered be-
tween a pair of event logs that are aware, i.e., there exist a signif-
icant number of event log cases that contain explicit information
about the existence of certain cases pertaining the opposite event
log. Since these flows are directional, we detect the target and the
source of each relation. The target of a trigger flow is always a
start event and the source can be an end or an intermediate event
from the opposite event log. In contrast, the target of the informa-
tion flow can not be an end event and the source can not be a start
event. We analyze the causality relationship between these events
for discovering the trigger flow relation, and the information con-
tained in the event attributes for discovering the information flow
relation. The trigger and the information flow are captured in a
business process architecture modeling language.

Process architectures are usually modeled top-down by interview-
ing process experts. In this thesis, for the first time, we introduce
a method that discovers such process architecture from the his-
torical execution of an organization’s business processes. Besides
the trigger and information flow, the proposed method is able
to capture the behavior inside the processes involved in a trig-
ger or information flow relation, e.g., a process instance might be
triggered by two mutually exclusive throwing events. With such
information, it is possible to understand when a certain activity is
always instantiating or sending information to another process or
if this holds only for a subset of cases. To graphically represent
and visualize such behavior, the business process architecture is
extended with additional notions borrowed from BPMN, specifi-
cally the XOR and AND split/join gateways.

To evaluate the feasibility of our method, we are using two real-
life event logs provided in the scope of the BPI Challenge 2017

and BPI Challenge 2020. It is shown that the relations between
processes are not always defined as 1-to-1 but there are also cases
in which two processes are in a 1-to-n trigger flow relation, mean-
ing that one process instance can instantiate more than one in-
stance from the opposite process. In addition, it is shown that
some events are always involved in a relation between two pairs
of processes and some others only for a subset of cases. To accom-
modate this kind of complex behavior we extended the business
process architecture’s graphical representation.

Each method is totally independent from each other and can be used
as standalone anytime the requirements are fulfilled. They are all im-
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plemented as a prototype in Python except the one for the event log
extraction from the Redo Logs, which is implemented in Scala.

Figure 54: The overall contributions of this thesis

7.2 limitations

The method presented in this thesis for discovering a data model from
an event log considers as input a single event log. However, within
an organization, it is possible to extract more than one event log, each
serving a different business goal. Applying our method to a set of
event logs would lead to discovering a dedicated data model for each
log. Since the event logs are extracted from the same database, it might
happen that several logs contain information about the same database’s
attributes, but they might cover different time periods. Therefore, the
discovered data models might lead to inconsistent information regard-
ing the common attributes, which might not fully represent the original
database schema. This is due to a single event log having a narrow and
limited view of the overall behavior inside an organization. Discovering



116 conclusions

dependencies between several process models that are extracted from
the same organization’s database is considered in Chapter 6. However,
it covers only the information exchanges between the corresponding
processes and not a global data model that represents the holistic data
perspective affected by these processes.

In addition, the method for discovering the data model from an event
log is able to discover the association relations between a pair of data
model classes based on the information pertained in the A2A diagram.
However, languages like UML [108] support other types of relations
such as inheritance or composition. Discovering such types of relations
might be helpful for the process expert to understand better the discov-
ered processes and the data dependency pertaining to the event log. For
example, if an association with a parent class is discovered, the same
association with the child classes would have been missed.

A similar limitation holds for the relations discovered between a pair
of business processes, defined via the trigger and information flow re-
lations. In the literature, other types of relations can be discovered in
the scope of BPA. For example, specialization implies that one process
is a specialized version of another process. Discovering other types
of relations between business processes might draw a more accurate
picture of the overall architecture and better support the process expert
with a holistic view of the running processes.

In addition, the relations between processes can be handled in a
synchronous or asynchronous environment. Decker and Weske [43]
assume that two processes exchange synchronous messages in a chore-
ography setting. However, the trigger and information flow relations
discovered by our method are assumed to be asynchronous. Our meth-
ods need to be extended accordingly to capture this property.

7.3 future work

This section briefly explains some directions for future work that can
extend the contributions presented in this thesis.

• Applying all the methods presented in this thesis in a real-life
setting. Since the event log in reality might contain more cases,
attributes and events it is interesting to measure the performance
of these methods and apply some optimization techniques where
it is necessary. In addition, it would be interesting to track what
concrete issues might appear which is currently not foreseen by
these methods.

• Introducing our methods to a few process experts to observe and
measure how they apply them to real-life data can reveal impor-
tant insights. It would be interesting to know what challenges
the process experts might face during the application process. In
addition, we want to know how much the information discovered
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from these methods can support the process experts in better un-
derstanding the process model and the event log. One option to
achieve this is to equip them with the process model, the event
log and a list of questions related to them. Two scenarios might
be useful to consider:

– In the first scenario, the process experts are asked to answer
the corresponding question by just considering as input the
event log and the discovered process model.

– In the second scenario, besides the event log and the process
model, the process experts are also equipped with the data
model, the data objects enhanced on top of the discovered
process model, and the relations between the processes rep-
resented as business process architecture.

For both scenarios, we would like to check the time required by
the process experts to run both experiments. It might also be
worth discussing the challenges they faced in each setting in a
similar way as in [140].

• Currently, the method for discovering a data model from an event
log is limited to support only the classes related to the association
relations. However, other types of relations exist, such as compo-
sition, aggregation and inheritance [108]. The discovery of such
UML constructs can yield a data model which is closer to reality.

• Next, one can try to apply the methods for discovering the data
model and data object lifecycles not to a single event log but to
a set of logs that are all extracted from the same database but
represent different case notions, thus yielding different process
models. Extracting a global data model from a set of event logs
might deliver a data model that is more closely related to reality
and, consequently, represents better the organization’s data struc-
ture. Usually, the event logs are characterized by their flattened
structure and when a single event log is extracted from the organi-
zation’s database, it is likely that important data is not captured.
Even the data which is captured is seen only from a single per-
spective. One solution to achieve this is to apply the proposed
method to each event log and then extend the method to cover
the schema matching like the one presented in [109, 113].

• Future work includes investigating other types of relations be-
tween processes in a BPA, namely, the specialization and com-
position relations. These would require the investigation of exact
same events that appear across multiple event logs to determine
whether a process is a composition of another one or a detailed
process of a more general one.
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• It might also be interesting to discover the trigger and informa-
tion flow by also considering a global data model, which is up-
front discovered from the same set of event logs all extracted from
the same database. The business process architecture is derived
based on the data model structure. In literature, these types of
derivations are called goal-based approaches [45] since each class
in the data model defines a goal, which has to be reflected in the
business process architecture. It might also be interesting to in-
vestigate and analyze the results of the architecture derived from
the data model structure and compare it with the BPA output by
the method introduced in this thesis.

To conclude, this thesis equips John with a set of methods which aims
to derive an event log in the absence of a proper database access, extract
the underlying data model from an event log and, finally, understand
how the data impacts the process not only in isolation but also how it
manifests dependencies between co-existing business processes.
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