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Abstract

Accurately solving classification problems nowadays is likely to be the most relevant
machine learning task. Binary classification separating two classes only is algorith-
mically simpler but has fewer potential applications as many real-world problems are
multi-class. On the reverse, separating only a subset of classes simplifies the classi-
fication task. Even though existing multi-class machine learning algorithms are very
flexible regarding the number of classes, they assume that the target set Y is fixed
and cannot be restricted once the training is finished. On the other hand, existing
state-of-the-art production environments are becoming increasingly interconnected
with the advance of Industry 4.0 and related technologies such that additional infor-
mation can simplify the respective classification problems. In light of this, the main
aim of this thesis is to introduce dynamic classification that generalizes multi-class
classification such that the target class set can be restricted arbitrarily to a non-empty
class subsetM of Y at any time between two consecutive predictions.

This task is solved by a combination of two algorithmic approaches. First, clas-
sifier calibration, which transforms predictions into posterior probability estimates
that are intended to be well calibrated. The analysis provided focuses on monotonic
calibration and in particular corrects wrong statements that appeared in the liter-
ature. It also reveals that bin-based evaluation metrics, which became popular in
recent years, are unjustified and should not be used at all. Next, the validity of Platt
scaling, which is the most relevant parametric calibration approach, is analyzed in
depth. In particular, its optimality for classifier predictions distributed according to
four different families of probability distributions as well its equivalence with Beta
calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibra-
tion, extended variants on kernel density estimation and the ensemble method EKDE
are introduced. Finally, the calibration techniques are evaluated using a simulation
study with complete information as well as on a selection of 46 real-world data sets.

Building on this, classifier calibration is applied as part of decomposition-based
classification that aims to reduce multi-class problems to simpler (usually binary)
prediction tasks. For the involved fusing step performed at prediction time, a new
approach based on evidence theory is presented that uses classifier calibration to
model mass functions. This allows the analysis of decomposition-based classification
against a strictly formal background and to prove closed-form equations for the overall
combinations. Furthermore, the same formalism leads to a consistent integration
of dynamic class information, yielding a theoretically justified and computationally
tractable dynamic classification model. The insights gained from this modeling are
combined with pairwise coupling, which is one of the most relevant reduction-based
classification approaches, such that all individual predictions are combined with a
weight. This not only generalizes existing works on pairwise coupling but also enables
the integration of dynamic class information.

Lastly, a thorough empirical study is performed that compares all newly intro-
duced approaches to existing state-of-the-art techniques. For this, evaluation metrics
for dynamic classification are introduced that depend on corresponding sampling
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strategies. Thereafter, these are applied during a three-part evaluation. First, sup-
port vector machines and random forests are applied on 26 data sets from the UCI
Machine Learning Repository. Second, two state-of-the-art deep neural networks are
evaluated on five benchmark data sets from a relatively recent reference work. Here,
computationally feasible strategies to apply the presented algorithms in combination
with large-scale models are particularly relevant because a naive application is com-
putationally intractable. Finally, reference data from a real-world process allowing
the inclusion of dynamic class information are collected and evaluated. The results
show that in combination with support vector machines and random forests, pairwise
coupling approaches yield the best results, while in combination with deep neural
networks, differences between the different approaches are mostly small to negligible.
Most importantly, all results empirically confirm that dynamic classification succeeds
in improving the respective prediction accuracies. Therefore, it is crucial to pass
dynamic class information in respective applications, which requires an appropriate
digital infrastructure.
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Chapter 1

Introduction

The advancing progress in digital manufacturing and processing environments offers
many benefits, but nevertheless simultaneously includes new requirements for both,
human as well as non-human entities involved. Often, this involves a trade-off between
predominant standards and new recommendations based on research. For example,
classical production planning and control is centrally organized, while decentralized
organization of cyber-physical production systems is part of ongoing research and
development on Industry 4.0 for more than a decade [Leitão & Restivo 2006; Qin
& Lu 2021]. Similarly, a production environment where all systems are directly
interconnected rarely exists in practice.

Generally, cyber-physical systems in real-world processing environments are par-
ticularly relevant for automatization. On the one hand for obvious reasons as effi-
ciency increases, but, on the other hand, different reasons as for example increasing
skill shortage might necessitate automatization solutions in existing processes. Here,
artificial intelligence and in particular machine learning became increasingly relevant
in recent years. This is particularly noticeable by the presence of terms like artificial
intelligence and deep learning even in non-scientific literature and media. There-
fore, the main aim of this thesis is to transfer classification algorithms into contexts
where the production processes allow simplifications of the decision problems based
on additionally or externally supplied dynamic information.

Existing Machine Learning Approaches

In fact, nowadays there is a large variety of possible applications of data mining and
machine learning algorithms in real-world problems. Existing examples throughout
different domains cover decision analysis [Naeini et al. 2014], decision making sys-
tems [Guo et al. 2017], resource planning [Witt et al. 2019] and customer expenditure
prediction [Bella et al. 2014]. Further applications of business-related predictive an-
alytics tasks cover credit scoring [Cruz et al. 2018; Fonseca & Lopes 2017; Lessmann
et al. 2015; Xiao et al. 2016], credit risk analysis [Bella et al. 2009a; Bequé et al. 2017]
or investment management [Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018;
Naeini et al. 2015b] as well as failure prediction in business processes [Borkowski et al.
2019] and fraud or phishing detection [Arruti et al. 2014; Sun et al. 2018]. Possible
use-cases also include automatic classification of internet contents [Joachims 1998;
Montañés et al. 2013; Morales-Ramirez et al. 2019], traffic management [Zhao et al.
2016] or different kinds of security-related tasks like fingerprint detection [Hong et al.
2008] or face recognition [Jafri & Arabnia 2009; Yang et al. 2013]. Especially the
latter also is an example from the large field of computer and machine vision tasks.
Further interesting applications of cost-sensitive learning exist in medical contexts
[Connolly et al. 2017; Jiang et al. 2012; Kim & Simon 2011].
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Most of aforementioned applications can jointly be described as a prediction task
between a given n-dimensional input domain or feature space X and a target space
Y that seeks a function f : X → Y mapping input instances x ∈ X to their respective
target values y ∈ Y. Here, X ⊆ Rn holds in most cases and is always assumed as a
standard Borel space, while the characteristics of the target space are more important.
The scope of this thesis particularly lies at classification problems, i.e. the target
set consists of discrete, mutual-exclusive labels that can be assumed without loss of
generality as Y = {1, 2, . . . k}. In the binary case, Y = {0, 1} and Y = {1,−1} are
also often used for convenience instead. The target labels are also widely specified as
classes and the prediction mapping f as a classifier. Still, the task-specific meaning
of a class can vary arbitrarily: success or failure, category, state or event.

Machine Learning in Existing Processes

With respect to real-time processing environments, rare incorrect automatic predic-
tions can result in substantial costs and, consequently, significantly decrease the effi-
ciency of an automatization solution. For example, mistaking a lower worth product
A as a higher worth article B can result in a reclamation of A such that at least
additional costs equal to the difference between the respective worths result from
the incorrect decision. What is more are follow-up costs where wrong products are
supplied to further production processes such that a correction can be arbitrarily
complicated or complex. As a matter of fact, incorrect decisions should be reduced
as much as possible such that the accuracy both in manual and automatic decision
processes should be as high as possible. This means that each option to increase the
latter can significantly improve the profitability of the whole system.

On the other hand as previously discussed, production processes became increas-
ingly interconnected in recent years and therefore have access to additional knowledge
or at least are expected to have in the near future. This information can influence
the characteristic of the classification task underlying the respective automatization
solution by supplying additional information about ordered / produced units or goods
such that certain ones are impossible to observe. For example, additionally supply-
ing the information to the automatization solution that product A is currently not
produced can be used to avoid mistaking of any product B as A: a detection of A is
impossible, therefore any mistake with corresponding costs can be avoided.

A particular relevant and more concrete example application is the identification
and classification of raw meat products in dissection factories. First, because the
identification and classification of organic and therefore non-standardized material is
more challenging than the one of artificial or more standardized goods. Currently,
this is performed manually by human experts that identify the product inside a trans-
portation unit (crate, box, etc.) such that this can be matched to an identification
tag (barcode, QR code, RFID transponder, etc.). By joining this information and
supplying it through digital process management solutions, identifying the product
thereafter is possible by scanning the identification tag only.

Furthermore, this is also a good example of additional knowledge that allows a
simplification of the decision problem. The process is often organized into differ-
ent lines on which the products are put into the transportation units. Because the
identification usually is performed centrally for multiple lines, while the preceding
production processes are more specialized, backtracking the transportation unit by
its identifier allows a restriction of the identification task: Only articles or products
produced on the production lines on which the transportation unit was before are
possible. Still, this information is fixed inside a factory because its production line
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architecture does not change. This information is static, and it is relatively straight-
forward to explicitly address each possible combination as an independent decision
problem.

Most importantly, this production process is often controlled by dissection lists
that define the set of possible products that are currently produced. This information
can easily change over time but interconnecting a classification solution with it, for
example using an ERP system that has online information about the possible articles,
allows a restriction of the target set while identifying the products.

Similar applications are possible wherever order or production lists are available by
a planning or controlling instance (i.e. an ERP system) that defines which articles or
goods are to be identified in a production process. In the general case, this additional
dynamic class information can be modeled as a restriction of the target set Y to a
subset M ⊆ Y resulting from excluding all classes in MC = Y \ M such that the
underlying prediction function fM has to restrict its target set toM, i.e. fM(x) ∈M
has to hold.

Even though machine learning and in particular deep learning led to many in-
teresting to groundbreaking results in recent years, it is interesting to observe that
most state-of-the-art data mining and machine learning algorithms can only use this
dynamic information in a relatively restricted manner. This is caused from the respec-
tive training processes. Once these procedures are finished, the resulting statistical
models are by design relatively inflexible as the target set Y is assumed to be fixed.
As a result, any intended modification can easily require a retraining of the model and
thus is prohibitive once the additional information is supplied during a production
process due to its large effort. Similarly, an explicit training for each possible target
set is also prohibitive as it causes an exponential complexity: If there are k possible
classes, there are 2k − (k + 1) subsets that contain at least two elements for which a
training would be required.

Another strategy requires the prediction function f to compute an estimate of the
posterior probability f(x) ≈ P (y | x) such that the class prediction is induced by selec-
tion the class with maximum probability: arg maxi fi(x). In this case, the additional
information allows the conclusion that f ≡ 0 holds onMC, i.e. the estimated proba-
bilities can be post-processed but simultaneously require a renormalization. Still, the
posterior probability estimate in general will still depend on data from all classes,
even though the additional knowledge obtained by the dynamic class information
allows the conclusion that some are impossible to observe.

Dynamic Classification

In light of this, the main aim of this thesis is to introduce dynamic classification,
which at first is a generalization of multi-class classification into a context supplying
dynamic information such that the prediction function adapts to a given dynamic
setM ⊆ Y of possible classes that can change at any time between two consecutive
predictions. SinceM can also equal the set of all classes Y, it is a strict generalization
of multi-class classification. For discussed reasoning, it is similarly interesting from
both, the process management as well as the algorithmic-theoretical point of view,
but not directly discussed in the literature to date.

As there are no direct reference works aiming at this particular setting, the pro-
posed strategy of this work is a combination of two related techniques. The first
one focuses on post-processing of classifier outputs into well-calibrated, probabilistic
predictions. The relevance of accurate posterior probability estimates and dynamic
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classification on the one hand is relatively straightforward, as the latter enforces poste-
rior probability estimates to become non-zero only on the given dynamic class subset
M ⊆ Y. Here, reliable estimations require an adaption of the estimation process
using the dynamic information. For comprehensive models, this is hardly possible at
all. Therefore, the second set of techniques reduces a multi-class classification prob-
lem to a set of simpler, usually binary problems that are, thereafter, independently
solved. During prediction, all individual predictions are computed and combined into
an overall solution, such that this allows the extension of the fusing process with
supplying additional, dynamic class information.

Thesis Structure

The remaining work is structured as follows. First, the subsequent chapter 2 presents
both relevant algorithmic areas – classifier calibration and decomposition-based classi-
fication – in full detail, summarizes current research results and presents several open
issues in sections 2.2 and 2.3, respectively. Thereafter, chapter 3 focuses on classifier
calibration and contributes both, theoretical as well as empirical results that partly
criticize and even contradict existing ones.

Based on the results of chapters 2 and 3, the following chapter 4 combines clas-
sifier calibration and decomposition-based classification into an evidence-theoretic
modeling. Even though this results in a substantial theoretic formalism, it allows
the analysis of decomposition-based classification in a formal framework that offers
several advantages over existing approaches, which are – as will be presented in full
detail in the summary in chapter 2 – often heuristically or empirically motivated
but lack theoretical justification. Most importantly, evidence theory allows a con-
sistent integration of the dynamic class information into the fusing process to yield
both, a theoretically justified and a computationally tractable approach to dynamic
classification.

Using the insights gained from the presented evidence-theoretic approach to dy-
namic classification, existing pairwise coupling algorithms are extended into gener-
alized pairwise coupling in chapter 5 that in particular is designed to support the
integration of dynamic class information. Additionally, a particular relevant aim are
computationally tractable strategies to apply the presented algorithms in combination
with large-scale classification models like deep neural networks. Here, traditional ap-
plications of the respective algorithms are easily computationally intractable, as they
require to train and deploy multiple complex and large models.

Thereafter, a thorough empirical evaluation is performed in chapter 6. In par-
ticular, several data sets are evaluated to compare the introduced algorithms with
existing reference methods. Especially relevant are the capabilities of the respective
techniques to improve from integrating dynamic class information. This also requires
to develop respective loss functions and corresponding evaluation metrics. Besides
this, applying the algorithms on a real-world task that supplies dynamic context in-
formation and analyzing the respective improvements is a second main aim. Finally,
all results are summarized in chapter 7, where additionally several open issues are
discussed.
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Chapter 2

State of the Research

2.1 Introduction
The main aim of realizing dynamic classification in real-world production environ-
ments requires a sufficiently interconnected infrastructure that supplies the respec-
tive dynamic class information – formally described by the target set M – to the
corresponding automatization solution. Even though there is ongoing research on
the right infrastructure management as discussed before – i.e. the right way how to
solve these tasks – the actual way is not directly relevant for using this information in
automatization solutions. Therefore, the focus of this thesis lies on extending existing
data mining and machine learning algorithms to optimally adapt to these dynamic
contexts.

2.1.1 Decision Rules on Data

Depending on the domain, the used classification function f can either be constructed
explicitly, which necessarily requires task-specific knowledge about the relationship
between the input features and the target classes, or implicitly by data. The former
rule-based approach is advantageous if the relationship can uniquely be described by
a feasible set of explicit decision rules. However, this unluckily is impossible in many
applications. For example, humans often can solve certain recognition tasks (e.g.
computer vision) very well, but they do not precisely know how they do it. Thus,
the implicit approach is the only possible option in these particular cases. Here, it is
assumed that a training data set

D = {(xi, yi) : i = 1, . . . , r} ⊂ X × Y (2.1)

is given, where the xi form the n-dimensional input vectors whose outputs are the
yi. Since the training data are also assumed to contain the class labels yi, the task is
restricted to be a supervised learning problem. Other problems like unsupervised or
semi-supervised ones lie beyond of the scope of this work.

2.1.2 Loss and Risk

Formally, this setting means that the given training data setD forms an independently
generated sample from an unknown distribution P over X ×Y, and the task is to infer
the classification function f from D. In practice, there is a straightforward demand
for classifiers that perform as good as possible, which requires to compare the results
of different ones. Formally, this can be achieved using a loss function, which is a
mapping L : Y × Y → R≥0 that given an instance (x, y), compares the predicted
class f(x) to the true one y. The most commonly used loss function for classification
problems is the 0-1 or binary loss Lbin(f(x), y) = 1(f(x) 6= y) that equals 0 for a correct
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and 1 for an incorrect prediction. A given predictor’s expected loss

R(f) = RL,P (f) = EP [L | f] =
∫
X×Y

L(f(x), y) dP (x, y) (2.2)

with respect to L and P defines the risk of f and expresses the overall expected loss.
Thus, it is a natural quantity to compare different classifiers. The best possible predic-
tor f∗ minimizing (2.2) over all measurable predictors1 is the Bayes-optimal one and
the corresponding risk the Bayes risk R∗. In case of the 0-1 loss, the risk equals the
overall error probability and consequently, the Bayes risk is identical to the minimal
error probability. In particular, the Bayes-optimal predictor here by definition maps x
to the class with maximum posterior probability: f∗(x) = arg maxi=1,...,k P (y = i | x).

It is important to emphasize that in general, neither the Bayes risk nor the Bayes-
optimal predictor can be computed because both depend on the unknown distribution
P . Still, these insights show the strong relation between well performing predictors
and posterior probability estimation. A possible surrogate for the risk is the empirical
risk

Remp(f) = 1
r
·
r∑
i=1

L(f(xi), yi) (2.3)

that can be computed using the given data D. Often in real-world applications that
use the binary loss, the minimization of the empirical risk is replaced by the equivalent
maximization of the accuracy or classification rate

Acc(f) = 1
r
·
r∑
i=1

1(f(x) = y) (2.4)

which is why in combination with the binary loss, both terms are used interchangeably.
Still from the theoretical point of view, the minimization of the loss is often preferred.
By the law of large numbers, the empirical risk converges to the risk for r →∞ and, as
a result, forms a Monte-Carlo approximation of it. This justifies to compare predictors
using their empiric risks, which, however, should be estimated on independent data
that were not previously used during predictor training.

2.1.3 Predictor Training

It is relatively straightforward to replace the risk with its empirical counterpart,
however there is no similar equivalent replacement of the Bayes-optimal predictor.
Therefore, one of the main aims of data mining and machine learning algorithms ap-
plied to these problems is to compute well performing (with respect to the respective
loss function) predictors f.

Here, usually a statistical model is created that depends on a set of parame-
ters. Thereafter, these are explicitly optimized over the training data set D. This
is mostly performed using a maximum likelihood approach that in almost all cases
requires iterative estimators, as closed-form solutions rarely exist in practice (linear
regression forms an exception here). These iterative optimizations require at least
partially differentiable dependencies between the problem’s objective function and its
parameters.

For this reason, a discontinuous loss like the 0-1 loss cannot be used during pa-
rameter fitting and is replaced by a continuous surrogate loss function. Popular
alternatives are the L1(p, q) = ‖p − q‖1 and L2(p, q) = ‖p − q‖22 loss as well as the

1Formally, the minimizer is not guaranteed to exist and thus the Bayes risk only is an infimum.
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Kullback-Leibler divergence KL(p, q) = ∑k
i=1 pi log pi

qi
, which is sometimes also called

cross-entropy error. The training procedure to adapt a specific algorithm to mini-
mize the respective (eventually also regularized) loss for a concrete problem can be
resource and time consuming, but yields a trained predictor that can be used to
classify newly observed instances x whose true class value y is unknown. This works
surprisingly well throughout different applications. However, even well-performing
predictors often have a small but still existing remaining error.

2.1.4 Probabilistic Predictions

Even though direct reference works focusing on dynamic classification are not avail-
able, accurate posterior probability estimation techniques are particularly relevant.
Besides directly depending on any form of dynamic class information, there is a natu-
ral demand for predictors whose accuracies are as good as possible throughout afore-
mentioned applications. Clearly, the best option is to predict the true but unknown
posterior probabilities P (y | x), an oracle accurately estimating the latter could re-
place any other machine learning algorithm. Still, accurate probabilistic predictions
are interesting besides purely optimizing the predictor’s recognition performance.

First, probabilities can be used to extend predictions by a measure of trust or
confidence to point to insecure classifications, for example by sorting multiple ones by
their confidences. Besides this, there is also a straightforward demand for accurate
probabilities in many aforementioned tasks where the risks of incorrect decisions
require a reasonable trade-off against their chances of being correct, for example
investment managements or all kinds of cost-sensitive [Elkan 2001b] classification
tasks in general. Thus, they are a relevant research aim for many different reasons.

The first challenge in estimating posterior probabilities is that training data sets in
practice never directly contain any information about the true posterior probabilities.
The most that can be assumed is that all class labels are correct – which is also not
guaranteed to hold in every application. Thus, it is explainable that the classical way
of estimating the posterior probabilities is based on a generative approach to infer the
class-conditional likelihoods p(x | y = i) by applying probability density estimation
techniques on the training data, and to convert them into a posterior probability
using Bayes’ theorem:

P (y = i | x) = P (y = i) · p(x | y = i)∑k
j=1 P (y = j) · p(x | y = j)

(2.5)

The required prior probabilities P (y = i) describe the respective class’ probability
without observing any data and can be estimated by using the respective fraction
from the training data. Alternatively, the priors might be supplied from optional
domain-specific knowledge. As a result, any posterior probability estimation problem
and thus, also any classification problem, can in theory be solved using n-dimensional
density estimation techniques. From a purely theoretical point of view, it additionally
yields a direct way to integrate dynamic information. Restricting the target set here
can be modeled by defining the prior probabilities P (y = i) = 0 for all i /∈ M
and renormalize them on M, therefore the remaining task is the estimation of the
class-conditional likelihoods p(x | y).

There are various options to solve density estimation. Among the most popular
ones are model-free approaches like nearest neighbor, kernel density estimation or his-
togram binning and parametric ones, where a certain parametric model is assumed
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whose parameters are fitted, usually using a maximum likelihood approach. Com-
mon examples for the latter are Gaussian distributions or Gaussian mixture models
fitted using the expectation maximization (EM) algorithm, however in general any
parametric model can be used in the same way if there is some evidence available
why the respective distribution is sufficiently suited for the corresponding task, but
this is highly problem-dependent.

From the purely theoretical point of view, there exist solid statistical justifications
why the respective approaches are well suited to solve the density estimation problem.
It is well known that the empirical distribution function converges almost surely to
the respective density function as well as it is proven that histogram and kernel
density estimators asymptotically converge to the true distribution under relative
mild assumptions [Wasserman 2006], which give rise to using model-free approaches.
Similar theoretical approximation guarantees also exist for parametric models. For
example, any probability density function can be approximated arbitrarily well by
using a Gaussian mixture model with a sufficiently large number of components with
properly selected parameters [Plataniotis & Hatzinakos 2000; Rossi 2014].

Even though these properties are positively remarkable, they can easily become
less relevant in practice. The model-free density estimation techniques usually tend to
work pretty well for low dimensional data, but as soon as there are more than a couple
of dimensions, it is well known that they can suffer from different problems related to
the input dimension [Liu et al. 2007; Scott & Sain 2005; Walt & Barnard 2017]. Error
bounds usually are exponential in the input dimension and, consequently, require an
exponential amount of data for accurate results, which is infeasible for large input
dimensions. This fact is also known as the curse of dimensionality. Further common
problems in the practical application of model-free approaches are the selection of
the involved parameters, for example bin sizes of histograms or bandwidths of kernel
density estimators, which is either performed heuristically or via cross validation
techniques.

2.1.5 Simplifying Assumptions

To circumvent these problems, some kind of simplifying assumption is usually made in
practice. Pretty common examples are assumptions over the number and form of in-
dividual distributions used for mixture models, for example as Gaussian distributions
with equal variance and / or zero covariance, which reduces the number of parameters
that have to be estimated. A relatively strong assumption even assumes fully inde-
pendent distributions of the individual dimensions, such that the class-conditional
likelihood factorizes into one-dimensional densities:

p(x | y = i) = p(x1, ..., xn | y = i) !=
n∏
j=1

p(xj | y = i) (2.6)

If this holds, the full density estimation (and consequently the posterior estimation as
well, even in contexts with dynamic class information) is reduced to one-dimensional
density estimation, which often can accurately be solved using any of the aforemen-
tioned techniques. This is also the core of the naive Bayes classifier. Obviously, in
practice these assumptions can be highly doubtful, but interestingly this does not
render the approaches as practically useless. For example, data mining competitions
were won by naive Bayes classifiers outperforming much more sophisticated tech-
niques including decision trees, support vector machines and neural networks in the
past [Elkan 2001a].
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However, the aim of this work is not to completely review model-free or parametric
density estimation techniques, which can be found in specific literature [Kruppa et al.
2014a,b; Malley et al. 2012; Simon 2014; Xu & Wang 2012]. These results should only
demonstrate why generally, density and posterior probability estimation for more than
a few dimensions is usually a challenging to very hard problem [Kim & Simon 2011;
Simon 2014] and consequently, some kind of simplifying assumption is practically
unavoidable.

Interestingly, neither for classification nor for posterior estimation, the class-
conditional likelihoods are directly necessary at all, even if an estimate of the posterior
distribution is required. Thus, a particularly interesting and much more common al-
ternative in practice [Bella et al. 2014] is to use discriminative algorithms. From
the theoretical point of view, there exist similar results justifying their application
in practice. For example, a sufficiently large two-layer neural network can approxi-
mate any continuous function on a compact input set to arbitrary accuracy [Bishop
2009; Gebel 2009]. Similarly, there are predictors that are proven to be universally
consistent [Devroye et al. 2008], i.e. for sample sizes |D| → ∞, their losses converge
to the Bayes loss for any data-generating distribution. However, these asymptotic
properties can be less relevant in practice as well.

From the practical point of view, this means that there are different options to
estimate posterior probabilities by using discriminative models that are theoretically
justified. Interestingly, their estimated posterior probabilities commonly tend to be
skewed and biased, i.e. they often differ from the true but unknown ones: the pre-
dictions are uncalibrated, as discussed in full detail in the next section 2.2. This is
a remarkable observation because the algorithms still often succeed in discriminat-
ing the classes well. Thus, at least the maximum index in the posterior distribution
is reasonably well estimated such that it is an interesting problem whether, and, if
so, how the distorted posterior estimation can be post-processed into more accurate
calibrated estimates.

Besides the direct application of posterior probability estimation in aforemen-
tioned contexts, accurately estimated probabilities are useful for model interpretabil-
ity [Guo et al. 2017] and have important applications at techniques that combine
different classifiers. Most importantly, it has a strong impact in classifier systems,
where individual predictions from multiple classifiers are combined into an overall
prediction [Bella et al. 2013; Bennett 2006; Xu et al. 2016], but is also applied as
part of more complex algorithms like casual Bayesian networks [Jabbari et al. 2017]
and probability calibration trees [Leathart et al. 2017]. Furthermore, particularly in-
teresting are its applications in reduction- and decomposition-based approaches like
multi-class support vector machines [Chang & Lin 2011; Wu et al. 2004] whose aim
is to reduce a multi-class classification problem to a larger set of simpler, usually
binary individual problems. In most cases, the latter are independently solved, and,
thereafter, their solutions are aggregated into an overall prediction. Thus, they allow
the application of binary-only classifiers like the support vector machine or AdaBoost
in multi-class settings.

The key strategy to realize dynamic classification models will be the combination
of both algorithmic techniques, classifier calibration as well as decomposition-based
classification, and extending the final decision making aggregation step by using the
respective dynamic class information. Therefore, the next two sections 2.2 and 2.3 at
first present both research lines in full detail before summarizing the existing methods
to formulate the research aims in section 2.4.
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2.2 Classifier Calibration
The previous part summarized that even though there is a solid theoretical justifica-
tion for the generative approach to classification to compute posterior probabilities,
it is infeasible for many real-world applications without further simplifying assump-
tions. On the other hand, applying a discriminative model often tends to yield more
accurate results with respect to accuracy or error statistics. However, the respective
posterior probability estimates are often uncalibrated, i.e. do not well correlate with
the true but unknown ones [Bella et al. 2009b; Cohen & Goldszmidt 2004; Flach
2016; Guo et al. 2017; Kull et al. 2017; Naeini & Cooper 2016, 2018; Naeini et al.
2014]. In particular, this observation is specifically discussed for different models
like naive Bayesian classifiers [Bennett 2000; Domingos & Pazzani 1996] and decision
trees [Zadrozny & Elkan 2001a,b, 2002], random forests [Dankowski & Ziegler 2016]
as well as logistic regression models [Jiang et al. 2012]. Even the introduction of deep
neural networks significantly increased the recognition performance, but interestingly
also resulted in uncalibrated probabilistic outputs [Guo et al. 2017].

With respect to generative techniques modeling the likelihood distributions, these
observations are explainable by the underlying simplifications that distort the results
and thus, also the posterior estimates. For the discriminative models, it means that
the training procedures succeed at approximating arg maxi P (y = i | x) without well
approximating P (y | x) itself. To remedy this issue, it may be possible to design other
prediction algorithms that even approximate the true posterior probabilities P (y | x)
reasonably well. At least from practical requirements, it is well explainable that these
do not exist in the same way as there are well-performing classification algorithms.
Even if posterior probability estimates are required as well, it might still be more
important to discriminant the classes well [Naeini et al. 2014], while the demand
for probabilities is mostly an extension, at least historically as the requirement for
accurate posterior probability estimation has not been that present when these algo-
rithms were actually introduced [Bella et al. 2009b]. As a consequence, today there is
no algorithm available that efficiently computes accurate posterior probabilities from
sample data of computationally tractable size. Thus, posterior probabilities can only
approximately be estimated and directly computing them remains infeasible without
any simplifying assumption.

Therefore, this section summarizes classifier calibration that aims at transferring
classifier predictions into posterior probabilities by an explicit postprocessing step.
First, subsections 2.2.1 and 2.2.2 introduce calibration in full detail and present re-
spective techniques. Thereafter, several open issues are summarized in subsection
2.2.3 that will be analyzed in chapter 3.

2.2.1 Problem Definition

The step of transferring a classifier’s output into probability estimates that are in-
tended to be well calibrated is generally known as classifier calibration. Besides the
demand for accurate probabilistic predictions, this is also an interesting issue from
the theoretical point of view. Discriminative algorithms infer the decision boundaries
between the classes using all data simultaneously, while in the generative approach,
each likelihood is only inferred using data from one class, ignoring the remaining
ones. Thus, inferring (or approximating) the Bayes-optimal decision border using a
classification algorithm is also quite interesting from the statistical point of view be-
sides maximizing its predictive performance because the potential approximation of
the Bayes-optimal prediction is completely captured in the decision function. Hence,
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it is especially interesting to analyze how the classification algorithm’s ability to infer
the decision boundary might be generalized to infer further details of the posterior
distribution while maintaining the underlying classifier’s discriminative power.

As a basis for all further analysis, an arbitrary classifier f is needed as a first step.
In practice, there is an obvious strong bias towards maximum accuracy while the
challenging task is to transfer the corresponding outputs into calibrated probability
estimates. It is necessary that the classification mapping is assumed as a vector-valued
function f : X → Rk consisting of components f(x) = (f1(x), f2(x), . . . , fk(x))> instead
of a class prediction only. The latter is simply induced by arg maxi fi(x). This is not
a restriction as most classifiers compute some kind of scoring function that is used to
resolve the class index. The special case of a probabilistic classifier, i.e. the function’s
target space already is restricted as [0, 1]k and each prediction is normalized to sum
one, is explicitly included but not assumed. In the binary case of k = 2 classes, this
almost always results in a one-dimensional mapping f : X → R that is thresholded
at 0, or a probability estimation function f : X → [0, 1] intended to approximate
P (y = 1 | x). The vector-valued, two-dimensional equivalents are recovered by (f,−f)
or (f, 1 − f), respectively. Notably by applying classifier calibration, also algorithms
that initially do not allow probabilistic interpretations like support vector machines
become applicable in settings that require them.

For several reasons, the binary case is of primary interest. First, even here accu-
rate posterior probability estimation is already a very hard problem. Second, many
of aforementioned applications are binary classification problems, thus accurately es-
timating them only in two-class scenarios has many potential benefits. Third, the
problem is analytically and implementation-wise simpler if numeric values are pro-
cessed instead of vector-valued ones. Finally and most importantly, decomposition
strategies exist to reduce multi-class problems to binary ones. As will be shown in
section 2.3, these in theory even allow the complete solving of the general, multi-class
posterior estimation problem by using binary calibration techniques only.

From the practical point of view, this approach is advantageous as the calibration
step is independent of the underlying classification algorithm. Despite that its main
idea seems to be a straightforward generalization of discriminant methods, it is still
relatively rarely studied in data mining and machine learning research [Hüllermeier
& Vanderlooy 2010; Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018; Naeini
et al. 2015b], and even a strictly formal definition is not available in the literature.
However, there exists the definition of a well calibrated classifier [Murphy & Winkler
1977; Zadrozny & Elkan 2002] to formalize the main aim of calibration.

In particular, a probabilistic classifier f is well calibrated if the empirical class
distribution of samples P (y | f(x) = p) with predicted probabilities p ∈ [0, 1]k con-
verges to p if the number of instances go to infinity [DeGroot & Fienberg 1983; Kim
& Simon 2011; Zadrozny & Elkan 2002]. Despite being a frequentist concept, this
can also be interpreted from the Bayesian point of view [Bennett 2006]. A further
restriction into perfect calibration [Bella et al. 2013; Guo et al. 2017; Kull et al. 2017]
requires P (y | f(x)) = f(x) to hold for all predictions f(x) ∈ [0, 1]k.

Even though these definitions reflect the rationale behind a probability, they are
not directly helpful in practice because they impose a trade-off between accuracy and
calibrateness [DeGroot & Fienberg 1983; Kull & Flach 2015]. Taking an arbitrary
binary classification problem with known class priors, for example a balanced one with
class priors equal to 0.5 [Bella et al. 2013; Flach 2016], in combination with a constant
predictor f ≡ P (y = 1) is perfectly calibrated but practically fails in separating the
classes. Also the very reverse is possible [Jiang et al. 2012]: Using a well performing
classifier together with arbitrary probabilities obviously is badly calibrated but highly
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discriminative. Further, perfect calibration can never be achieved using a finite data
set only [Guo et al. 2017] as well as there is no quantity like a calibrateness degree
available. Instead, the definitions are strictly binary and only formalize the main aim
but are not directly helpful or useful in achieving it.

Common definitions of classifier calibration are based on slightly informal terms
like “transforming the classifier outputs into probabilities” [Azami et al. 2016; Bennett
2006; Connolly et al. 2017; Gebel 2009; Kull et al. 2017; Naeini & Cooper 2015, 2016,
2018; Xu et al. 2016]. Even though this accordance exists, it still allows different
interpretations. Sometimes [Bequé et al. 2017] it is defined as the converting to
calibrated probabilities. Formally, a well calibrated probability is hardly computable,
thus it can at most be interpreted as the conversion into better calibrated probabilities.
Paradoxically, these are not formally defined as the definition is strictly binary and
defining them requires an accordingly selected error measure. Interestingly, these are
not straightforward as the ground truth posterior probability is unknown, such that
selecting a calibration error metric is also a highly non-trivial task. In this regard,
the next part presents existing state-of-the-art classifier calibration techniques.

2.2.2 Existing Techniques

As a basis for any calibration technique, an arbitrary existing classifier f is needed.
To fit the calibration function, it is assumed that together with the data set D, also
the set of predictions {fi = f(xi) : i = 1, . . . , r} is given. The aim is to estimate
a calibration mapping that can be used to compute probabilities of newly observed
instances x that are intended to approximate the unknown posterior probabilities
P (y | x). In fact, almost all existing techniques are designed for binary predictors
such that in the following part, the prediction mapping can be identified with a real-
valued function f : X → R and hence, the calibration mapping as an approximation
of P (y = 1 | x).

The first calibration technique is Platt scaling [Platt 1999, 2000] that assumes
a parametric relationship between real-valued scores f(x) and posterior probabilities
P (y = 1 | f). To calibrate f, a parametric sigmoid function of the form

P (y = 1 | f(x)) = σa,b(f(x)) = 1
1 + exp(a · f(x) + b) (2.7)

with a, b ∈ R, a < 0 is fitted using a maximum likelihood approach. Hence, Platt
scaling is equivalent to a one-dimensional logistic regression of y by f. Sometimes
[Bennett 2006] minor implementation issues are used to differ between Platt scaling
and logistic regression, however throughout this work, Platt scaling generally refers
to any parametric model of the form (2.7). The different ways how the parameters
are estimated is a subsequent implementation detail.

Once the two parameters a and b were estimated, the additional time requirement
at prediction time is negligible as only a few additional computations are required to
obtain the probability, which makes Platt scaling extremely efficient. It is straight-
forward to see that the transformation is both differentiable and strictly monotonic,
i.e. for all predictions z1 and z2 with z1 < z2 holds σa,b(z1) < σa,b(z2), and therefore
also continuous as well as invertible.

An alternative to Platt scaling is histogram binning [Zadrozny & Elkan 2001b],
whose application is relatively straightforward. The range of all predictions is parti-
tioned into b bins

[fmin, fmax] = [z0, z1] ·∪ (z1, z2] ·∪ (z2, z3] ·∪ · · · ·∪ (zb−1, zb] (2.8)
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and for each bin, the empirical probability distributions are computed using the data
set D. In particular, for the predictions of a newly observed instance x, at first the
respective bin satisfying f(x) ∈ (zi0 , zi0+1] is found such that the respective posterior
probability is obtained as the bin’s empirical one. Thus, after the binning model is
computed, it serves as a lookup table for the posterior probability and only requires to
project each prediction to the respective bin. Moreover, the estimation is model-free
and non-monotonic but also discontinuous.

To circumvent the relatively arbitrary selection of the bin size, the same authors
introduced isotonic regression [Zadrozny & Elkan 2002] as a calibration technique.
Here, the selection of the bin size is replaced with the constraint of a monotonically
increasing transformation [Guo et al. 2017; Xu et al. 2016] ρ : R → [0, 1] that mini-
mizes the mean squared errors ∑r

i=1(ρ(f(xi))− yi)2 between the predicted probability
and the respective true class value in {0, 1}, which can be efficiently computed using
the pair-adjacent violators (PAV) algorithm [Gebel 2009; Niculescu-Mizil & Caruana
2005a,b]. The optimal solution is a piecewise constant binning model and thus, can
be interpreted as a hybrid method between Platt scaling and binning. Generally, this
approach could also be extended to higher order than squared differences, but solu-
tions cannot be computed efficiently anymore [Jiang et al. 2012]. In a similar way,
also relatively recent modifications exist that transform the piecewise constant pre-
dictions into a smooth monotonic function using cubic Hermite interpolating splines
[Jiang et al. 2011] as well as monotonic higher-degree polynomials [Wang et al. 2019].

Following work on classifier calibration applied asymmetric distributions like the
asymmetric Gaussian or asymmetric Laplace [Bennett 2006, 2003; Zhang & Yang
2004] to calibrate asymmetrically-shaped scores that empirically were observed at
text classification. However besides the introducing works, these techniques were not
used in more recent studies.

A different work [Bella et al. 2009b] combined the approach of histogram binning
with the K-nearest neighbor algorithm into the calibration technique of similarity-
binning averaging (SBA). In particular, the authors criticized that existing approaches
are based on the classifier outputs f(x) only and discard the input instance x itself.
Therefore, they dynamically compute the K-nearest neighbors of the combined vector
(x, f(x)) in the training data set and compute the empirical class probabilities inside
this local neighborhood. Consequently, SBA suffers from the same drawbacks as the
K-nearest neighbor algorithm [Naeini 2016]: The selection ofK is arbitrary or at least
unclear, each prediction requires a dynamic search in the training data and distance-
based comparisons can be problematic in large dimensions. Furthermore, exhaustive
neighbor searches require the whole training data to be kept in memory and thus, can
be too resource- and time-consuming if they have to be performed at each prediction.
Finally, if the input dimension n is large, the neighbor search will be dominated by the
input features themselves, such that the whole procedure is likely to become nearest
neighbor-based posterior estimation. Instead, the key concept of classifier calibration
should be to approximate the posterior probabilities using a classification function
that approximates the optimal decision boundary and thus, circumvents the problems
that are usually caused by the large input dimension that make a direct estimation
infeasible. So criticizing calibration techniques for ignoring the original input features
is not really reasonable at all – they are designed for exactly this purpose.

A completely different approach called adaptive calibration of predictions (ACP)
is based on confidence intervals [Jiang et al. 2012]. Here, the core idea differs from
any of the previously presented approaches. Instead, it is assumed that besides the
estimate of the predictor f(x) also a 95 % confidence interval is available from which
the calibrated probability is computed. This has two critical drawbacks. First, it
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is only applicable for classification algorithms that allow the computation of such a
confidence interval like for example logistic regression that is used in the introducing
work, which conflicts with the modular design of calibration techniques. The second
issue is even more problematic. The computation of valid confidence intervals requires
the classifier outputs to be distributed according to a sufficiently selected distribution.
If this assumption is violated, the confidence interval itself is not valid and thus, the
calibrated probability can also be biased. On the contrary, if these assumptions are
valid, they can directly be used to compute a calibrated probability.

Bin-based Ensemble Methods

All of the presented techniques construct a single calibration model. A more recent
research line [Naeini 2016; Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018;
Naeini et al. 2014, 2015b] extended this by developing several bin-based techniques
that are based on ensembles of different, individual ones. Clearly, this requires to
define a set of possible models as well as a criterion how to assess their predictive
performances. The former is accomplished by constraining an arbitrary binning model
such that the bin borders only lie in the set of all predictions {f(xi) : i = 1, . . . , r}.
Formally, this yields to defining2 a binning model as a tupel M = (B,Θ), where
B = {(z0, z1], (z1, z2], . . . , (zm−1, zm]} is the set of bins and Θ = (θ1, θ2, . . . , θm) their
respective parameters such that the posterior probability P (y = 1 | f(x) ∈ bi) of the
i-th bin bi = (zi−1, zi] follows a binomial distribution parametrized by θi.

Furthermore, a given binning model M is scored by the posterior probability
P (M | D), which is proportional to P (D | M) · P (M). The likelihood P (D | M)
implicitly depends on the parameterization θ and thus, is in fact a marginal likelihood.
Marginalizing out yields

P (D |M) =
∫
Θ

P (D |M, θ) · P (θ |M) dθ, (2.9)

which has a closed-form solution if all data are independently sampled from the same
distribution, the bin-wise class posterior distributions are binomially distributed and
pairwise independent to each other as well as that the data-independent prior distri-
butions P (θ | M) follow a beta distribution parameterized by α and β [Heckerman
et al. 1995; Naeini et al. 2015a, 2014, 2015b].

If the parameters α and β as well as the prior distribution P (M) are chosen, a
binning model can be respectively scored. The currently introduced techniques differ
in how these degrees of freedom are defined. In the first works [Naeini et al. 2014,
2015b], α and β are both set to one (i.e. P (θ |M) ≡ 1) such that the closed-form of
the likelihood takes the form

P (D |M) =
∏
b∈B

r0(b)! · r1(b)!
(r(b) + 1)! (2.10)

where r0(b) and r1(b) denote the number of samples inside bin b with class 0 or 1,
respectively, as well as r(b) = r0(b) + r1(b) their sum. The prior distribution P (M)
is constructed such that the probability of creating a bin border at z is modeled
using a Poisson distribution. In particular, without loss of generality the samples
are increasingly sorted, i.e. f(xi) ≤ f(xj) holds for all i and j with i < j, such that
the probability q(i) of creating a bin border at f(xi) follows a Poisson distribution

2For completeness it should be added that the definitions in the original works differed slightly
from this definition by using three and four elements, respectively.
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parameterized by λ

q(i) = 1− exp
(
−λ · f(xi+1)− f(xi)

f(x1)− f(xr)

)
(2.11)

for all inner indices i = 2, . . . , r−1, as well as q(1) = q(r) = 1 forcing a bin boundary
at the extreme points. Further, let `(b) and u(b) denote the lower and upper bound
indices, respectively, i.e. b = (f(x`(b)), f(xu(b))]. Under the assumption of independence
between the different possible boundaries, the binning model’s prior probability takes
the form of

P (M) =
∏
b∈B

q(u(b)) ·
u(b)−1∏
j=`(b)

(1− q(j)), (2.12)

which yields the overall binning score as:

P (D |M) · P (M) =
∏
b∈B

r0(b)! · r1(b)!
(r(b) + 1)! · q(u(b)) ·

u(b)−1∏
j=`(b)

(1− q(j))

 (2.13)

Equation (2.13) can be used to select the optimal binning model M0 to estimate the
posterior probability P (y = 1 | x) ≈ p(f(x);M0) in the same way as the previously
presented binning model. Consequently, this calibration technique is called selection
over Bayesian binnings (SBB) [Naeini et al. 2014, 2015b]. Since the number of differ-
ent possible models is exponential in r, a dynamic programming procedure has been
presented by the authors in advance. Still, it has complexity O(r2).

In a slightly modified way, the same approach can also be used to compute a
weighted average over all t different binning models, where the weighting is performed
by the respective score P (D |M) · P (M):

P (y = 1 | f(x)) =
t∑
i=1

P (D |Mi) · P (Mi)∑t
j=1 P (D |Mj) · P (Mj)

· P (y = 1 | f(x),Mi) (2.14)

Here, P (y = 1 | f(x),Mi) simply refers to the i-th binning model’s posterior probability
and yields the calibration technique averaging over Bayesian binnings (ABB). The
result can also be computed using dynamic programming techniques that require a
runtime of O(r2). As the dynamic programming technique depends on the instance x
whose posterior class probabilities are to be estimated, this runtime is required during
each prediction in both SBB and ABB. The authors discuss possibilities to alleviate
this problem by binning the unit interval into a fixed number of bins and to compute
the ABB predictions only for these, which exposes the same problem as binning itself
and thus, the problems why SBB and ABB were introduced at all.

Instead of fixing α and β to one, essentially the same approach has also been
applied with bin-specific parameter values αb and βb as well as a uniform prior P (M)
over the models [Naeini et al. 2015a]. In particular, the b-th bin’s parameters are
set to αb = 2

m · cb and βb = 2
m · (1 − cb), respectively, where cb is the bin’s center

point. Under this assumptions, the likelihood and thus the binning score itself takes
the form of

P (D |M) · P (M) =
∏
b∈B

Γ( 2
m)

Γ(r(b) + 2
m)
· Γ(r1(b) + αb)

Γ(αb)
· Γ(r0(b) + βb)

Γ(βb)
(2.15)

where Γ refers to the Gamma function. The overall posterior probabilities p(f(x))
are obtained in the same way as in case of ABB in (2.14), the only difference lies in
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the way how the scoring is performed, yielding the calibration technique Bayesian
binning into quantiles (BBQ).

Similarly to the single histogram’s bin size in regular histogram binning, the num-
ber of models and their bin sizes have to be selected. The authors present some heuris-
tic strategies for doing so, but especially introduced a further improvement of BBQ
such that the bin boundaries as well as the number of models can be computed from
an optimization problem [Naeini & Cooper 2015, 2018]. In fact, isotonic regression is
recovered for λ→∞ in the following, generalized optimization problem

ρ∗λ = arg min
ρ∈Rr

r∑
i=1

(ρi − yi)2 + λ
r−1∑
i=1

(ρi − ρi+1) · 1(ρi > ρi+1) (2.16)

if the respective solution is interpreted as a piecewise constant prediction mapping
ρ : R → [0, 1] that maps f(x) to the respective bin’s i0 probability ρi0 . Interest-
ingly, even the whole solution path can efficiently be computed using the modified
pair-adjacent violators algorithm, such that different binning models M1,M2, . . .Mt

together with the respective values λ1, λ2, . . . , λt are estimated. These are similarly
combined using the Bayesian information criterion (BIC) as before to yield the overall
posterior probabilities as

P (y = 1 | f(x)) =
t∑
i=1

BIC(Mi)∑t
j=1 BIC(Mj)

· P (y = 1 | f(x),Mi) (2.17)

which is exactly the same as the combination in BBQ and ABB in (2.14), respec-
tively, the only difference is that the BIC scoring is used instead. As the posterior
probabilities are computed using an ensemble of near isotonic regression models, this
calibration technique is called ENIR.

The previously presented technique ENIR and its predecessors BBQ, ABB and
SBB as well as binning and isotonic regression all compute piecewise constant and
thus discontinuous transformation mappings. This drawback is improved in a further
extension called ensemble of linear trend estimation (ELiTE) [Naeini & Cooper 2016,
2018]. Similar to the optimization problem involved in ENIR to compute an ensemble
of piecewise constant calibration functions, ELiTE solves the following optimization
problem

ρ∗λ = arg min
ρ∈Rr

1
2 ·

r∑
i=1

(ρi − yi)2 + λ ·
r−2∑
i=1

∣∣∣∣∣ρi+2 − ρi+1
yi+2 − yi+1

− ρi+1 − ρi
yi+1 − yi

∣∣∣∣∣ (2.18)

where f(x) is constrained to lie in the unit interval [0, 1], and otherwise requires
an according preprocessing. It can be shown that for each value of λ, the result-
ing solution defines a continuous, piecewise linear function whose non-differentiable
points (i.e. these where the slope changes) lie into the set of training data points
{f(x1), . . . , f(xr)}.

Similarly to ENIR, the optimization problem is solved simultaneously for differ-
ent values of the regularization parameter λ such that different calibration models
M1, . . . ,Mt are obtained and combined at prediction time. However, instead of the
BIC scoring function used at ENIR, the corrected Akaike information criterion (AICc)
is applied

P (y = 1 | f(x)) =
t∑
i=1

AICc(Mi)∑t
j=1 AICc(Mj)

· P (y = 1 | f(x),Mi) (2.19)
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to combine the individual models. Finally, it is important to emphasize that the
sorting of the instances by their predictions is crucial for the construction of the
optimization problems (2.16) and (2.18) since they do not depend on the predictions
despite their ordering.

Extended Parametric Approaches

All of the presented, more recently introduced techniques are model-free, as they
do not assume a certain parametric relationship between predictions f and posterior
probabilities P (y | f). The only exception is Platt scaling and, at least to some
degree, isotonic regression because it assumes a monotonic relationship. However
besides these, also two other parametric calibration techniques exist.

Platt scaling assumes a real-valued prediction function f : X → R that is analyt-
ically transformed into a closed-form posterior probability. Despite that any binary
classifier can be interpreted as a real-valued decision function and thus, this setting
can be assumed as the most general one in binary classification, it still remains unrea-
sonable to apply calibration techniques that are designed for unbounded, real-valued
predictions on probabilistic classifiers.

A relatively recently introduced technique for probabilistic classifiers is beta cali-
bration [Kull et al. 2017]. The authors show that Platt scaling is provably optimal for
Gaussian-distributed class-conditional likelihoods p(f | y) with equal variance, which
is an inappropriate model for probabilistic classifiers. Instead, they motivate to model
the likelihoods using beta distributions

p(f(x) | y = i) = (f(x))ui−1 · (1− f(x))vi−1

B(ui, vi)
, (2.20)

parameterized by real-valued parameters ui, vi > 0 for each class i ∈ Y and the
normalizing beta function B. Substituting the likelihoods from (2.20) into Bayes’
theorem yields the posterior probabilities as:

P (y = 1 | f(x)) = τa,b(f(x)) =

1 + 1
exp(b) · (f(x))a

(1−f(x))a

−1

(2.21)

Thus, the two parameters a and b are estimated and the posterior estimation at
prediction time is straightforward.

Since the multinomial distribution generalizes the binomial one analogous to the
way how the Dirichlet distribution generalizes the beta distribution for k > 2 out-
come states, also the Dirichlet distribution has been applied to introduce Dirichlet
calibration [Gebel 2009]. Consequently, Dirichlet calibration is designed for multi-
class classifiers predicting posterior class distributions, i.e. non-negative vectors that
sum to one, over k > 2 classes. To apply Dirichlet calibration for general, non-
probabilistic multi-class classifiers f : X → Rk, a preprocessing with the softmax
function

σsoftmax : Rk → (0, 1)k, z 7→
(

exp(z1)∑k
i=1 exp(zi)

, . . . ,
exp(zk)∑k
i=1 exp(zi)

)>
(2.22)

can be applied. Dirichlet calibration transforms Dirichlet-distributed, k-dimensional
predictions f into a new Dirichlet-distributed random variable whose expected value
equals the prior probabilities P (y) estimated on the training data. In particular, a
series a of different transformations is applied to move the distribution’s expected
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value accordingly. However, since the binary case has much more relevance for the
remaining work, Dirichlet calibration is mainly mentioned for completeness. Still, it
is interesting to note that Dirichlet calibration has been introduced roughly a decade
before beta calibration.

2.2.3 Existing Results and Open Issues

The aim of this thesis is to apply classifier calibration in an extended variant of
decomposition-based classification to realize a computationally feasible approach to
dynamic classification. Therefore, evaluating calibration as part of decomposition-
based strategies is particularly relevant. However, corresponding reference results do
not directly focus on the actual calibration but only do so implicitly because the
overall evaluation metrics depend on the calibrated probabilities of the involved base
classifiers. Further details will be presented in subsection 2.3.3 after presenting the
corresponding decomposition-based approaches in subsections 2.3.1 and 2.3.2, respec-
tively. Therefore, at first the focus lies on the results of the calibration techniques
themselves, which are relevant as they are the basis of all approaches that will be
developed in chapters 4 and 5.

Here, it is interesting to observe that classifier calibration is still relatively rarely
studied in the data mining and machine learning literature. The three first techniques
Platt scaling, binning and isotonic regression are at least mentioned in almost any
work on classifier calibration, while the more recently introduced approaches in most
cases are only applied in the introducing or follow-up works of the same authors.
Consequently, there are more results available for the three standard techniques than
for the remaining, more recent ones.

Binning

First, histogram binning is model-free and non-monotonic in general. Thus, it does
not assume a fixed parametric model, but this also includes certain drawbacks. The
number of bins has to be selected, which remains arbitrary as the optimal number
of bins is unclear [Connolly et al. 2017; Jiang et al. 2012; Naeini & Cooper 2015,
2016, 2018; Naeini et al. 2015b]. This can be alleviated by applying cross validation
techniques to estimate the bin count [Zadrozny & Elkan 2002], however this requires to
score a binning model [Naeini et al. 2015a, 2014, 2015b], which by itself is complicated
since evaluating a calibration model is.

Even if the number of bins has been estimated, the size of each as well as their
positions and thus, the breaks between them remain arbitrary and fixed [Zadrozny
& Elkan 2002]. As a consequence, even instances might be forced to the same value
whose probability should better be different [Zadrozny & Elkan 2002], i.e. nothing
besides the empirical fractions of samples remains from the respective distributions
[Jiang et al. 2012]. Even after the binning model has been computed, it defines a
piecewise constant, discontinuous transformation, which can be counterintuitive as
often continuous modelings are preferred [Eck et al. 2017]. Furthermore, the number
of different calibrated probabilities is bounded by the number of bins [Zadrozny &
Elkan 2001a], which itself should not be too high to control the variance [Bella et al.
2009a] and is often arbitrarily fixed to ten.

Besides these relatively strong disadvantages, binning is still efficient [Bella et
al. 2013], easy to implement as well as applied without handling its drawbacks in
other works [Bella et al. 2009b; Drish 2001; Guo et al. 2017; Kruppa et al. 2014a].
Furthermore, it can be applied for multi-class predictors f : X → Rk as well, however
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as soon as k is not relatively small, this is prone to the same problems as general
density estimation.

Isotonic Regression

In this regard, there exists accordance that the construction of the bins themselves
is the major drawback of binning. This also justifies to replace the arbitrary bin
selection with a monotonicity constraint yielding isotonic regression and giving rise
to the question whether it is reasonable to construct binary calibration techniques
monotonically.

Besides this, the isotonic regression transformation mapping can still be efficiently
computed but remains discontinuous and piecewise constant. Evaluations report good
or at least comparable results [Bella et al. 2009b; Fonseca & Lopes 2017; Jiang et al.
2012; Naeini et al. 2015a, 2014; Niculescu-Mizil & Caruana 2005a,b; Zadrozny &
Elkan 2002], while other works also mention (highly) varying [Gebel 2009; Naeini &
Cooper 2015, 2016, 2018] to worse results [Bequé et al. 2017; Likhomanenko et al.
2016] in comparison with other calibration techniques.

Especially overfitting is a present problem in isotonic regression (or more precisely
in the PAV algorithm used to compute the prediction model) [Bella et al. 2009a, 2013;
Xu et al. 2016], but if many data are available, it is still possible to obtain better re-
sults with it [Bennett 2006]. Some of the authors of the aforementioned, recent results
even state that isotonic regression is the “most commonly used non-parametric classi-
fier calibration method” in the same way as they criticize the problematic monotonic
assumption [Naeini & Cooper 2015, 2016, 2018]. However, this at least emphasizes
the relevance of isotonic regression to date at classifier calibration in practice.

Platt Scaling

It is an interesting fact that the monotonic assumption is also one of the biggest
criticisms brought against Platt scaling, which is even more controversially discussed
in the data mining and machine learning literature. Usually good results are reported
[Connolly et al. 2017; Platt 1999; Xu et al. 2016], while other authors even present it
as a standard technique for probabilistic support vector predictions [Cai et al. 2016;
Flach 2016] and “as the most highly approved approach” [Gebel 2009].

Clearly, these results directly depend on the underlying model assumptions. Since
Platt scaling assumes a sigmoid-shaped relationship between predictions and proba-
bilities, its predictive performance depends on the validity of this assumption [Bella
et al. 2009a; Niculescu-Mizil & Caruana 2005a,b], which does not always hold. In-
terestingly, it has been empirically observed to hold for boosted decision trees and
for support vector machines, while other classifiers like the naive Bayes showed non-
sigmoid-shaped relations [Kull et al. 2017; Niculescu-Mizil & Caruana 2005a,b; Xu
et al. 2016; Zadrozny & Elkan 2002].

Yet, there are also different opinions. First, the monotonic assumption can be
generally criticized, as previously mentioned. But since Platt scaling is even strictly
monotonic, this discussion is slightly more focused on Platt scaling than on other
approaches. Furthermore, the sigmoid-shaped assumption of the transformation can
be criticized as too restrictive in general [Grandvalet et al. 2005; Jiang et al. 2012;
Kruppa et al. 2014a; Naeini 2016; Naeini et al. 2015a; Naeini & Cooper 2015, 2016,
2018; Naeini et al. 2014, 2015b], which especially can bias probability estimates whose
predictions are close to the decision boundary [Wang et al. 2019]. In other works
[Franc et al. 2011; Wang et al. 2008] the good empirical results are emphasized in the
same way as the lack of statistical evidence explaining or justifying it.
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While some of these claims are sometimes neither proven nor empirically validated,
a more recent work [Kull et al. 2017] at least tries to explain why Platt scaling can fail.
A quantity used in the respective analysis is the likelihood ratio p(f(x)|y=1)

p(f(x)|y=−1) , which in
the binary case is, together with the class priors, sufficient to express the posterior
probabilities. The authors show that if Gaussian distributions with equal variance are
assumed for the two likelihoods p(f(x) | y = i), their ratio simplifies to exp(a · f(x)+b),
yielding a closed-form posterior equation of the form (2.7). On the reverse, they
show that for a given posterior distribution in form of (2.7), it is straightforward to
construct corresponding equal-variance Gaussian-distributed likelihoods. Moreover,
it is also important to emphasize that equal-variance Gaussian-distributed likelihoods
are not an assumption of Platt scaling. Even Platt himself observed explicitly non-
Gaussian distributions in his introductory work [Platt 1999]. Furthermore, he showed
that Platt scaling is not valid for general Gaussian-distributed likelihoods with non-
equal variances. However, there are no results available that clarify its true parametric
assumptions.

Because any family of likelihood distributions that is valid for Platt scaling espe-
cially is valid for a monotonic calibration mapping, these two questions are strongly
related. Here, different relatively recent works even base their criticisms on wrong
statements [Bella et al. 2013; Naeini 2016; Naeini & Cooper 2015, 2016, 2018] that
will be discussed and corrected in subsection 3.1.2. Some of these works explicitly
exclude Platt scaling from their evaluations because it should perform inferior to
isotonic regression and BBQ [Naeini & Cooper 2015, 2018].

Comparative Studies

Presumably the most important question related to classifier calibration, at least from
the practical point of view, is which one out of the set of different techniques should
be used or preferred in practice. This point is strongly related to the question which
one is actually the best possible option, but not necessarily equivalent as different
factors like computational effort and efficiency might also be relevant in practice and
might be traded-off against the bare quality of the results.

Even though there are various comparisons of the three standard techniques in the
aforementioned works, unluckily there are much less results for the more recent ones.
Usually, the respective introductory works contain evaluations and discussions about
the results, but general comparative studies are rare. Techniques like ACP, SBA or
asymmetric distribution-based ones are not applied in more recent works, SBB and
ABB are mentioned but not applied in the follow-up works introducing BBQ, ENIR
and ELiTE even by the same authors due to their impractical runtime requirements3.
Possible reasons might be the lack of confidence intervals that make the application of
ACP relatively restricted, nearest-neighbor searches can be too unreliable in general
to apply SBA in practice or asymmetric distributions might be too task-specific.

On the other hand, there are a few promising techniques like beta calibration,
ENIR and ELiTE that simply might be too new to the communities to already gain
much further interest, especially since classifier calibration is rarely studied in general.
BBQ showed improved accuracy in comparison with the three standard techniques
that were both improved by ENIR and ELiTE on mostly the same benchmark data
sets [Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018]. The differences be-
tween ENIR and ELiTE are relatively small, while an approximately eight times larger
computational time of ELiTE is reported.

3It should be added that the authors at least state that ABB performs comparable to BBQ on
smaller data sets [Naeini & Cooper 2015, 2016, 2018].
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Furthermore, there are a few comparative works that apply one of the more re-
cently introduced techniques. In one particular example, BBQ is applied in a medical
context [Connolly et al. 2017] as well as a different work [Wang et al. 2019] applies
the three standard techniques as well as ACP, BBQ, ENIR and ELiTE. The latter work
additionally analyzes their presented extension to isotonic regression as well as the
existing one based on spline interpolation [Jiang et al. 2011] besides single models
from the ENIR and ELiTE ensembles. Their evaluations were performed on one artifi-
cial as well as two real-world data sets and showed that their introduced extension to
isotonic regression outperformed all other approaches, while BBQ performed superior
to ENIR and ELiTE. However, it should be emphasized that the authors used a rel-
atively unusual evaluation strategy. Instead of cross-validating the whole data sets,
they randomly generated 100 training instances per class in case of the artificially
data set and randomly selected 200 or 500 samples from 45000 overall ones in case of
the real-world data sets. Thereafter, they generated 2 · 200000 test instances or used
all remaining ones as test data, respectively. Using only about one percent of the
overall data for training is hardly reasonable at all. A potential explanation might be
that they iterated this procedure 50 times on the real-world data sets and kept the
training data sizes small to maintain a feasible runtime of the training procedures.

However, none of these studies applied beta calibration such that the only exist-
ing comparative study is the one found in the introductory work of if. In particular,
the authors showed that beta calibration outperformed Platt scaling and isotonic
regression in a comparison based on 41 data sets, while the other, non-parametric
techniques were not applied. Furthermore, they used probabilistic classifiers, which
strongly conflicts with Platt scaling’s assumption of a real-valued prediction func-
tion. Thus, it is questionable if this comparison is really representative for real-world
applications at all.

A general observation in all previously mentioned, existing studies is that they
either focus on carefully analyzing a few, potentially large data sets only [Guo et al.
2017; Naeini et al. 2014, 2015b; Wang et al. 2019; Zadrozny & Elkan 2001b, 2002]
or if they analyze 10 to 20 or more data sets, these are often relatively small. In
respective reference works [Bella et al. 2013, 2009b; Gebel 2009; Kull et al. 2017;
Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018], most data sets consist only
of a few one hundred instances, while only some of them contain more than 10000
instances. A comparative study that analyzes many large-scale data sets unluckily is
not available at all and the main reason for the comprehensive empirical part in the
following chapter 3.

Still, there are also a few more interesting issues that motivate a representative
study on large data sets. The first one refers to possible evaluation metrics. It is
interesting to observe that there is no well-accepted standard for classifier calibration
error metrics. Earlier works as the ones introducing binning, Platt scaling and isotonic
regression evaluated the probabilistic predictions using the Brier score and log-loss,
while in the recent studies, bin-based evaluation metrics gained popularity instead.
Since the true probabilities cannot be used as a reference, this is a highly non-trivial
question. In full detail this will be reviewed in section 3.3.

Fitted or Predicted Calibration?

A further, less obvious issue refers to the way how classifier calibration should cor-
rectly be applied. The calibration function has to be optimized based on a data set
{(f1, y1), (f2, y2), . . . , (fr, yr)} consisting of predictions fi = f(xi) and true class values
yi. To generate the predictions fi, the prediction function has to be trained at first.
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Thereafter, it can be used to predict the instances xi. However, if the same samples
xi were already used to generate f, the predictions form a biased sample of the score
distribution on independent data. Reusing the training data’s fitted values directly
is referred to as fitted calibration, while alternatively using an independent hold-out
set (for example by applying cross validation) is referred to as predicted calibration
throughout this work.

Both approaches are commonly used in reference studies. One existing work states
that generally for binning, predicted calibration should be preferred, but for naive
Bayes classifiers it is not required [Zadrozny & Elkan 2001b] and thus not applied. In
a different work [Zadrozny & Elkan 2002] the same authors apply fitted calibration
as well since this should be valid whenever the classifier does not overfit its training
data. For support vector machines, predicted calibration should be preferred, at
least for non-linear kernels [Platt 1999]. Following these reasoning, other empirical
evaluations [Bella et al. 2013; Kull et al. 2017; Naeini et al. 2014; Niculescu-Mizil
& Caruana 2005a,b] apply predicted calibration where a single work [Naeini et al.
2014] states that based on the performed experiments, this should not be necessary
at all. Similarly, in different relatively recent publications predicted calibration is
applied [Bequé et al. 2017; Fonseca & Lopes 2017] and sometimes even formulated
as an assumption [Connolly et al. 2017; Flach 2016; Guo et al. 2017; Leathart et al.
2017]. Moreover, it is emphasized that the additional data set can be reused for
parameter optimization [Guo et al. 2017], which was also noted earlier by different
authors [Niculescu-Mizil & Caruana 2005b].

In contrast to this, there are also particularly recent works of different authors that
prefer fitted calibration. The whole series of works introducing BBQ, ENIR and ELiTE
only apply fitted calibration, the same holds for the recently presented extension to
isotonic regression [Wang et al. 2019]. However, there are some additional works that
at least explicitly mention both strategies as possible options [Bella et al. 2009a],
but only two also apply both and compare them. The first one [Bella et al. 2009b]
applies four different calibration techniques on 20 relatively small data sets with at
maximum 8124 instances, while 15 of them consist of less than 1000. Additionally, a
second work [Drish 2001] compares both for support vector machines using binning
calibration on a single but challenging classification task.

In summary, a comprehensive in-depth comparison of both approaches is a mainly
unanswered question and also has been explicitly formulated as an open research
question [Naeini 2016]. Therefore, it will be analyzed as well in the following chapter
3. In fact, this is a special case of the lack of general guidelines on how to ideally
reuse data for different stages of learning, validation and model selection [Duin &
Pekalska 2005].

2.3 Decomposition-based Classification
The previous section 2.2 presented different classifier calibration methods and sum-
marized the respective current research results. As the main intention in applying
calibration is its application in combination with decomposition-based classification,
the next section summarizes the respective research of decomposition- or reduction-
based classification.

Here, the key idea is to reduce the task of solving a k-class classification problem
by computing a classifier f : X → Y to a set of multiple, but simpler (usually binary)
classification problems that can be solved independently. In case of the reduction to
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binary problems only, the respective approaches are also known as class binarization
techniques.

Historically, these have a strong relation to the demand to apply binary-only
classification algrorithms like the support vector machine or AdaBoost on multi-class
problems, where a direct application of them – in contrast to alternatives like decision
trees, random forests or neural networks – is impossible. Still throughout this work,
these algorithmic techniques are explicitly discussed per se without aiming or re-
stricting to particular classification algorithms. In the following chapters 4 and 5, the
existing decomposition-based strategies will be combined with calibration techniques
to integrate the dynamic class information. As a basis for any reduction, the training
data are assumed as D = {(xi, yi) : i = 1, . . . , r} ⊂ X × Y where Y = {1, 2, . . . k}
refers to the set of k classes.

2.3.1 Standard Decompositions

The existing decompositions differ in the way how they, on the one hand, create a set
of binary classification problems from the given task, and, on the other hand, how
the respective individual predictions are combined. Consequently, they offer different
advantages in the same way as they expose different drawbacks.

One-vs-All Decomposition

A straightforward way to decompose the problem is to construct k independent binary
classification problems, where each class i (as positive class) is separated from the set
of remaining classes {1, ..., i−1, i+1, ...k} (as negative class). This approach is known
as one-vs-all multi-class decomposition [Crammer & Singer 2001; Doǧan et al. 2016;
Lee et al. 2004; Maass 2000; Rifkin & Klautau 2004; Rifkin 2002] and probably the
first technique that has been used to construct multi-class support vector machines
[Lei & Govindaraju 2005]. Alternative names are one-of-k or one-hot encoding as
well as winner-takes-all scheme.

After training, there are k classifiers fi available, and to predict a newly ob-
served input sample x, most commonly the overall prediction f(x) is computed as
f(x) := arg maxi fi(x). The rationale behind this prediction approach is relatively
straightforward. Ideally, only the individual classifier corresponding to the true but
unknown class y outputs a positive, while all others output a negative prediction.
Still, the maximum rule also enables to resolve conflicts. This could be tackled by
using more sophisticated approaches than to simply find the maximum value [Galar
et al. 2011], however is still the accepted or predominant standard.

To obtain a probabilistic interpretation, the one-vs-all decision functions can be
combined with a softmax transformation (2.22), which can also be used to train the
decision functions simultaneously as commonly done at neural network training.

One-vs-One Decomposition

The second popular class binarization technique besides the one-vs-all decomposition
is the one-vs-one reduction. Here, for each pair of classes the task of separating i and
j is formulated, resulting in

(k
2
)

= k·(k−1)
2 individual classifiers fi,j , 1 ≤ i < j ≤ k.

Consequently, to predict a newly observed instance, there are as many individual
predictions fi,j(x). Combining them into an overall prediction is a less obvious task as
in the one-vs-all case. A default option that does not require anything else besides the
pairwise binary predictions is to perform a voting, where each individual prediction
is interpreted as a vote for the respective class [Alam et al. 2003; Angulo & Català
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2000; Fernandez et al. 2015; Friedman 1996; Fürnkranz 2002a,b, 2003; Jelonek &
Stefanowski 1998; Moreira & Mayoraz 1998; Ou & Murphey 2007; Sáez et al. 2014;
Weston & Watkins 1998]. Consequently, the overall prediction is obtained as the class
receiving the maximum number of votes. Normalizing the votes vector additionally
allows the interpretation as a posterior probability estimate, even though this is
highly likely to be miscalibrated. However, it is possible that a prediction cannot
be uniquely resolved if an instance receives an equal number of votes for different
classes. The respective parts of the feature space are known as unclassifiable regions
and require extended tie-breaking techniques [Liu et al. 2008, 2006; Qin et al. 2017;
Wu et al. 2014]. Another alternative is to arrange the binary predictors in a tree-
based structure, whose main advantage besides avoiding of ties is that not always
all binary predictions have to be computed [Platt et al. 1999; Rahman & Fairhurst
1997].

More sophisticated approaches besides binary voting exist, however in the vast
majority these require a probabilistic output φi,j(x) ∈ [0, 1] of fi,j that is interpreted
as an estimator of the posterior probability φi,j(x) ≈ P (y = i | x, y ∈ {i, j}). Es-
timating these is a challenging problem, as discussed before, and their demand in
decomposition-based classification approaches shows the strong connection between
classifier calibration and decomposition-based classification. Using any of the meth-
ods from section 2.2 or chapter 3, all pairwise predictions are assumed as calibrated
probabilities satisfying φi,j(x) + φj,i(x) = 1 for all 1 ≤ i, j ≤ k with i 6= j. Conse-
quently, they can be arranged into a pairwise probabilities matrix

Φ =



• φ1,2 φ1,3 · · · φ1,k−1 φ1,k
φ2,1 • φ2,3 · · · φ2,k−1 φ2,k
φ3,1 φ3,2 • · · · φ3,k−1 φ3,k
...

...
... . . . ...

...
φk−1,1 φk−1,2 φk−1,3 · · · • φk−1,k
φk,1 φk,2 φk,3 · · · φk,k−1 •


(2.23)

where the diagonal is completely irrelevant and two entries at transposed positions
(i, j) and (j, i) always sum to one. Clearly, the matrix Φ depends on the input instance
x ∈ X and therefore can be interpreted as a function Φ ≡ Φ(x). However, this depen-
dency is not directly important for any algorithm processing it and usually omitted
for increased readability. Still, it is important to emphasize that all techniques have
to be applied at prediction time, i.e. after observing instance x such that real-time
performance is usually required. The following fusing, aggregation or combination
step refers to the task that transforms the set of pairwise probabilities into a k-class
vector p = p(x), which approximates the unknown posterior probabilities P (y | x).
Even though there is no general agreement about this terminus in the literature, all
respective approaches will be referred to as pairwise coupling techniques throughout
this work.

Existing Pairwise Coupling Techniques

Generally, different techniques have appeared for this task besides the ones that will
be presented in full detail in the following [Duan et al. 2003; Hastie & Tibshirani 1998;
Krzyśko & Wołyński 2009; Moreira & Mayoraz 1998; Price et al. 1995]. All of them
finally predict the class with maximum posterior probability, thus their differences
only lie in the way how the binary probabilities are combined. Following existing
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works [Galar et al. 2010, 2011, 2013, 2017, 2014, 2015; García-Pedrajas & Ortiz-
Boyer 2011; Krzyśko & Wołyński 2009] that summarize and compare the different
approaches with each other, the three ones presented in the following are particularly
relevant [Galar et al. 2017].

The first option is a relatively straightforward generalization of the binary to a
probabilistic voting (Vote) [Fürnkranz 2002a,b, 2003; Ou & Murphey 2007; Park &
Fürnkranz 2007] such that each classifier simultaneously votes for its corresponding
classes with the respective probabilities. Consequently, the accumulated predictions
are obtained as

pVote
i (x) = 2

k · (k − 1) ·
k∑
j=1
j 6=i

φi,j(x) (2.24)

for each class i = 1, . . . , k. Probabilistic voting can also be interpreted as comput-
ing the row sums in (2.23), where normalization is applied to allow a probabilistic
interpretation of them. Furthermore, also variants motivated by extending weight-
ing voting to ranking were presented [Hüllermeier & Brinker 2008; Hüllermeier &
Vanderlooy 2010].

The second particularly relevant pairwise coupling approach is based on a non-
dominance criterion (ND) [Fernández et al. 2010; Galar et al. 2010] in fuzzy preference
relations. Using the pairwise probabilities, a strict preference relation with elements
φ′i,j(x) = max(φi,j(x) − φj,i(x), 0) for all 1 ≤ i, j ≤ k is computed that expresses a
non-negative, pairwise preference. Thereafter, a non-dominance vector ND as well as
the respective posterior probabilities estimate pND can be computed as

NDi(x) = 1−max
j 6=i

φ′j,i(x) and pND
i (x) = NDi(x)∑n

j=1 NDj(x) , (2.25)

respectively. It should be mentioned that the original works only compute the non-
dominance vector, still the normalization is a straightforward extension for consis-
tency with the other approaches. A slightly related idea to interpret a voting against
the respective class already appeared earlier [Cutzu 2003] and can be interpreted as
a connection between voting and the non-dominance approach.

Finally, the third important pairwise coupling technique (WLW) [Wu et al. 2004]
computes the posterior probabilities by solving the following quadratic optimization
problem:

min
p

k∑
i=1

k∑
j=1
j 6=i

(φj,i · pi − φi,j · pj)2 s.t.
k∑
i=1

pi = 1 (2.26)

The authors proved that problem (2.26) has a unique, non-negative solution pWLW(x)
that can be computed by solving an equivalent linear equation system if for all pairwise
probabilities hold φi,j(x) > 0. Furthermore, they presented an iterative algorithm that
globally converges to the optimal solution. Therefore, it can efficiently be applied
in practice despite formulating a relatively complex optimization problem that has
to be solved for each prediction. Additionally, the authors related their approach to
equivalent reformulations of other techniques to emphasize differences and similarities
between them.

2.3.2 Extended Decompositions

Besides the one-vs-all and one-vs-one decomposition, there is also a third family.
Even though many works describe it as an alternative to the former two techniques
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[Arruti et al. 2014; Bagheri et al. 2012; Chmielnicki 2015; Chmielnicki & Stąpor
2016; Galar et al. 2010; Garcia-Pedrajas & Ortiz-Boyer 2006; García-Pedrajas &
Ortiz-Boyer 2008; Lorena et al. 2008; Mendialdua et al. 2015; Montañés et al. 2013;
Rifkin & Klautau 2004; Rifkin 2002; Rocha & Goldenstein 2014; Wu et al. 2014], in
fact it can be interpreted as a generalization [Escalera et al. 2010; Quost & Destercke
2018; Wang & Xue 2014] that is based on encoding and decoding the classes in the
error correcting output code (ECOC) framework [Dietterich & Bakiri 1995; Kong &
Dietterich 1995]. In particular, a decomposition consisting of ` binary reductions is
represented using a ternary code word matrix W :

W = (Wi,j)1≤i≤k
1≤j≤`

=


1 class i is mapped to 1 in problem j

−1 class i is mapped to −1 in problem j

0 class i is excluded from problem j

(2.27)

Here, each column j defines an element of the decomposition that maps instances
with class label i to the (i, j)-th entry in W . Therefore, the columns W(·,j) can be
interpreted as the j-th subproblem’s mapping required at training time, while the
i-th row W(i,·) represents the codeword that encodes class i. Especially the intro-
ducing works restricted the codeword matrix to binary codewords in {−1, 1}k×` only
that cannot represent all reductions. Without this restriction, any reduction to bi-
nary problems can be represented using an accordingly selected codeword matrix in
the form of (2.27). For example, the one-vs-all decomposition corresponds to the
codeword matrix

W1vA =



1 −1 −1 · · · −1 −1
−1 1 −1 · · · −1 −1
−1 −1 1 · · · −1 −1
...

...
... . . . ...

...
−1 −1 −1 · · · 1 −1
−1 −1 −1 · · · −1 1


(2.28)

while the one-vs-one reduction is defined by

W1v1 =



1 1 1 · · · 1 1 0 0 · · · 0 · · · 0
−1 0 0 · · · 0 0 1 1 · · · 1 · · · 0

0 −1 0 · · · 0 0 −1 0 · · · 0 · · · 0
0 0 −1 · · · 0 0 0 −1 · · · 0 · · · 0
...

...
... . . . ...

...
...

... . . . ... . . . ...
0 0 0 · · · −1 0 0 0 · · · 0 · · · 1

︸ ︷︷ ︸
k − 1

0 0 0 · · · 0 −1 ︸ ︷︷ ︸
k − 2

0 0 · · · −1 · · · ︸︷︷︸
1

− 1


(2.29)

where each of the
(k

2
)
columns contains exactly a single 1 and −1, respectively. The

one-vs-one codeword matrix consists of k − 1 consecutive column blocks (indicated
by vertical bars) that define the pairwise classifiers to separate class i from the other
classes j > i. It could be added that reductions to non-binary problems can be
represented by extending the codeword elements to arbitrary values in {0, 1, . . . , k}.
However, in practice the main aim is to reduce multi-class problems to binary ones
such that these are of minor practical relevance.

To predict an instance x in the ECOC framework, all individual predictions fj(x),
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j = 1, . . . , `, are computed and have to be combined into an overall decision. Clas-
sically, all classifier predictions are concatenated to form a predicted codeword4

w ∈ {−1, 1}` that is compared to each of the k codeword rows in W to decode
it into a class prediction. If there is a class that is encoded with w, this class is
predicted. Still, the ECOC framework requires a similarity metric to resolve the gen-
eral case that the predicted word w is not contained in the cordword matrix and
has to be mapped to the most similar one. Traditionally, the Hamming distance
dHam(v, w) = |{i : vi 6= wi}| counting the number of different digits between its argu-
ments is used. The rationale behind this approach is that the Hamming decoding can
correct individual misclassifications as long as the codewords enconding the classes
are sufficiently different.

As long as there is exactly a single positive prediction in a one-vs-all ensemble, the
Hamming decoding coincides with the maximum’s predictions index. Consequently,
the one-vs-all reduction is a special case of the default binary ECOC approach if there
are no conflicting individual predictions. Similarly, as long as the binary voting in a
one-vs-one ensemble results in a single class receiving the maximum number of votes,
it is equivalent to Hamming decoding in the ECOC framework [Fürnkranz 2002b].
However, resolving the class using Hamming decoding can result in unclassifiable
regions and consequently requires tie-breaking techniques [Rätsch et al. 2002].

Other works deal with generalizing the ECOC framework’s predicting step be-
sides the Hamming decoding. Straightforward choices are other and particularly
non-discrete loss functions that are used to compare the codewords besides the Ham-
ming distance [James 1998; Kong & Dietterich 1995; Passerini et al. 2004], summa-
rized as loss-based decoding [Allwein et al. 2000]. Still, interesting alternatives also
cover approaches to estimate posterior probabilities by using an overconstrained lin-
ear equation system [Kong & Dietterich 1997] as well as ideas to generalize pairwise
coupling for arbitrary codeword matrices [Zadrozny 2002]. Complex approaches even
formulate the decoding step using regression algorithms [Chen et al. 2010].

All of these techniques are directly designed to target the ECOC framework. How-
ever, different approaches that are not directly introduced in this context can also
be interpreted as a respective decoding of a predicted word. Particular examples are
aforementioned tree-based approaches based on the one-vs-one reduction and exten-
sions of these into recursive merging of classes [Lei & Govindaraju 2005; Lorena et al.
2008; Madzarov et al. 2009; Montañés et al. 2013; Yang et al. 2013; Zhao et al. 2016].
The same holds for any decomposition-based approach given both, an accordingly
selected codeword matrix and a prediction function, respectively.

2.3.3 Existing Results

With respect to this thesis’ main aim, the first important observation is that all tech-
niques assume a fixed class set such that any approach realizing dynamic classification
requires to extend existing algorithms. Besides this, the question arises which com-
bination of decomposition and fusing technique should be preferred to maximize the
classification accuracy or minimize the corresponding loss function, respectively.

Codeword Design

As the ECOC framework comprises all reductions, this question can be reformulated
as to ask for good codeword design and fusing strategies. Here, an important property
is a large minimum distance between the codewords, i.e. rows in W . If the minimum

4Here, a zero prediction is impossible because always all classifiers are used.
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distance between rows (codewords) is dmin, then the Hamming decoding allows the
correction of up to bdmin−1

2 c individual misclassifications [Kong & Dietterich 1995].
Here, a first possibility is to construct a complete binary codeword matrix [Allwein
et al. 2000], containing all 2k−1 − 1 possible partitions covering all classes. In an
extended way also all ternary codewords can be constructed [Gebel 2009], which
yields 0.5 · (3k − 2k+1 + 1) columns in total. Both are exponential in k and thus are
intractable for more than a few classes.

A computationally feasible alternative is to use randomization during codeword
generation [Allwein et al. 2000]. In particular, either dense random codes randomly
select each digit as ±1 with probability 0.5. In contrast to this, sparse random
codes select each digit as 0 with probability 0.5 and as ±1 with equal probability of
0.25. Still, the number of digits (or equivalently, number of columns in the codeword
matrix) remains as a degree of freedom. The introducing work constructed the dense
and sparse random codes with d10 · log2(k)e as well as d15 · log2(k)e independently
generated columns, respectively, and selected the best codeword matrix with respect
to the largest minimum distance over 10000 iterations for aforementioned reasons.

However, selecting the best codeword length is a highly non-trivial problem. On
the one hand, increasing the code length ` (i.e. number of classifiers) easily increases
the minimum distance and consequently yields more robust codes. On the other hand,
longer codes also result in more and potentially harder classification problems. Here,
it has been proven in advance that finding a codeword matrix that minimizes the
empirical error is NP-complete [Crammer & Singer 2002]. Still, well designed codes
can improve the learning ability and the classification accuracy [Kong & Dietterich
1995, 1997].

Consequently, the loss-based ECOC framework requires to use some heuristics
for the codeword generation. Besides aforementioned complete and random codes,
different data-dependent strategies were introduced that use the given training data
to create or improve codeword matrices. Particular examples cover discriminant
ECOC [Pujol et al. 2006], data-driven ECOC (DECOC) [Zhou et al. 2008], topology-
preserving output codes [Zhang et al. 2013] as well as explicit improving of random
codes [Chmielnicki 2015].

Generally, the usefulness of ECOC decoding massively depends on the indepen-
dence of the classifiers [Garcia-Pedrajas & Ortiz-Boyer 2006; Kong & Dietterich 1994].
In particular, different codewords enforce to learn parts of the same decision bound-
ary multiple times [Kong & Dietterich 1995], but also are influenced by other classes
that are differently labeled in the respective codewords. This induces redundancy,
which at least partially explains why ECOC succeeds in improving the recognition
accuracy. Besides the aforementioned intractability of complete codewords, empirical
studies [García-Pedrajas & Ortiz-Boyer 2008, 2011] report similar results of dense
and sparse codeword design strategies, where the former are more robust, while the
latter are faster to train. Most interestingly, additionally no significant differences
between deterministic and random codeword generation strategies were reported and
thus, the latter is generally recommended.

However, the existing random codeword generation strategies generating 10000
codes can fail: If the number of classes is small, they might not even yield a single valid
codeword matrix. On the reverse, by an increasing number of classes the generation
of many random matrices takes much time, while in the same way the codewords
might become invalid due to equivalent rows encoding different classes [Gebel 2009].

Besides these drawbacks, other works compare the results of ECOC approaches
to the ones of the one-vs-all and one-vs-one decomposition. In particular, it is stated
that one-vs-all support vector machines yield comparable results to those of more
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complex ECOC-based approaches [Kikuchi & Abe 2003; Liu et al. 2008], especially if
the respective classifiers are carefully optimized [Rifkin & Klautau 2004; Rifkin 2002].
Later works reported similar [Galar et al. 2015] to superior [Escalera et al. 2010]
recognition performance of the one-vs-one decomposition in comparison with other
codeword design strategies. Since the one-vs-one and one-vs-all decompositions are
additionally more common [Bain et al. 2019; Chmielnicki & Stąpor 2016; Fernandez
et al. 2015; Galar et al. 2010, 2011, 2013, 2017, 2014; Hsu et al. 2019; Khalifa et al.
2019; Krzyśko & Wołyński 2009; Mendialdua et al. 2015; Morán-Fernández et al.
2016; Ribeiro et al. 2018] than other approaches, they are the most studied [Sáez
et al. 2012] de-facto standards, most likely due to their clarity [Arruti et al. 2014;
Bagheri et al. 2012].

One-vs-All or One-vs-One Decomposition?

The previously summarized results lead to the question which one of the two standard
decompositions should be preferred. Still at first, a few general properties can be re-
marked. The underlying concepts imply that the one-vs-all decomposition constructs
k binary classification problems consisting of all r training instances. On the con-
trary, the one-vs-one decomposition creates a quadratic number of binary problems.
The first conclusion might be that the one-vs-all decomposition is thus faster to train.
Interestingly, the reverse is true in most cases since the number of samples ri+rj is an
order of magnitude smaller than r. Hence, the optimization problems are also smaller
and faster or easier to solve, resulting in reduced overall training time requirements
as stated by many authors [Bagheri et al. 2012; Escalera et al. 2010; Fürnkranz 2001,
2002a,b, 2003; Gonzalez-Abril et al. 2010; Hsu & Lin 2002; Hüllermeier & Brinker
2008; Hüllermeier & Vanderlooy 2010; Park & Fürnkranz 2007; Platt et al. 1999; Saez
et al. 2019; Sáez et al. 2012; Wu et al. 2014].

Nevertheless, training the individual models with much less data can increase
their variances [Lee et al. 2004], and the overall classification should have a higher
tendency to overfit, at least if the individual classifiers are not sufficiently regularized
[Platt et al. 1999]. Furthermore, the quadratic complexity of the one-vs-one scheme
might be too high for large numbers of classes [Chmielnicki & Stąpor 2016], while
a one-vs-all decomposition might still be applicable. Similarly, the vast majority of
one-vs-one decomposition-based algorithms are less efficient at prediction time. Not
only a quadratic instead of a linear number of individual predictions needs to be
computed, also the fusion step based on pairwise coupling is required. However, for
many practical problems it is still sufficiently efficient such that this issue is of minor
practical relevance.

Another important aspect is that the one-vs-one scheme keeps the original class
ratios. In contrast to this, the one-vs-all decomposition’s training data sets are un-
avoidably imbalanced as there are much more samples from one class than from the
other one, actually consisting of k − 1 merged classes [Chmielnicki & Stąpor 2016;
Galar et al. 2011; Saez et al. 2019; Sáez et al. 2012, 2014; Zhang et al. 2016]. As
a consequence, the individual one-vs-all classifiers might tend to always predict the
negative class [Arruti et al. 2014; Bagheri et al. 2012; Chmielnicki & Stąpor 2016].

Besides these primarily theoretical properties, many authors report superior ac-
curacy of the one-vs-one over the one-vs-all approach [Allwein et al. 2000; Angulo
& Català 2000; Bagheri et al. 2012; Fürnkranz 2001, 2002b, 2003; Hsu & Lin 2002;
Hüllermeier & Brinker 2008; Hüllermeier & Vanderlooy 2010; Krzyśko & Wołyński
2009; Liu et al. 2006; Saez et al. 2019; Sáez et al. 2012; Tsujinishi et al. 2004; Wu
et al. 2014], which even is amplified with an increasing number of classes [Fürnkranz
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2003]. Especially relevant are available comprehensive studies [Galar et al. 2011;
García-Pedrajas & Ortiz-Boyer 2008, 2011; Krzyśko & Wołyński 2009] concluding
that one-vs-one in combination with pairwise coupling is often and sometimes even
significantly superior to the one-vs-all approach. Still, the best decomposition strat-
egy might also depend on the respective classifier and its parameterization.

Presumably, the one-vs-one decomposition is often superior to the one-vs-all
scheme because the decision boundaries between the classes are simpler [Fürnkranz
2001, 2002b; Mendialdua et al. 2015; Saez et al. 2019; Sáez et al. 2012, 2014] and
discriminant features are easier to learn in the pairwise problems [Lin & Davis 2008].
Other authors even state that the one-vs-all decomposition cannot be a good method
for complex class distributions [Park et al. 2009]. A family of different works em-
phasize the good results obtained with the one-vs-one decomposition [Chmielnicki &
Stąpor 2016; Fernandez et al. 2015; Moreira & Mayoraz 1998] and its widespread
application [Galar et al. 2013, 2017, 2014, 2015; Li et al. 2005a,b; Sáez et al. 2014],
however without explicitly contrasting it to possible alternatives.

Comparisons between the two decompositions that motivate to use the one-vs-all
approach instead exist [Rifkin & Klautau 2004; Rifkin 2002], however the authors
only conclude that fine-tuned one-vs-all support vector machines can compete with
one-vs-one-based ones if binary voting is used for the latter. Neither different clas-
sification algorithms nor more elaborated pairwise coupling strategies were used in
the respective experiments. Other works also note comparable performance between
both decompositions in combination with support vector machines [Platt et al. 1999],
still only during an experiment on three data sets applying the one-vs-one approach
with binary voting. Additionally, the one-vs-all decomposition is more robust towards
class noise [García-Pedrajas & Ortiz-Boyer 2008, 2011], which is easily explainable
since incorrect labels in groups of merged classes are irrelevant. In particular, this
was even generally observed for dense ECOC codes in comparison with sparse ones.

Further Applications of Decomposition-based Classification

Many of aforementioned research was conducted from the demand to apply binary
classification algorithms and in particular support vector machines for multi-class
problems. Still, one-vs-all classification is also prevalent in other machine learning
algorithms like neural networks or different native multi-class variants of support
vector machines [Doǧan et al. 2016]. Despite supporting more than two classes by
construction, here the important difference is that the classifier’s components are
jointly optimized – for example using a softmax combination in case of neural networks
– while in the classical reduction approach, the trainings are performed independently.
Nevertheless, once the classifier is fully trained, this difference does not really matter
anymore. In the same way, all one-vs-one or arbitrary ECOC classifiers could be
trained simultaneously in a large comprehensive optimization problem, at least in
theory.

In this regard, aforementioned results are particularly relevant to apply binary
classification algorithms for multi-class problems. Interestingly, there are also many
different works that apply [Fürnkranz 2002b, 2003; Galar et al. 2011; García-Pedrajas
& Ortiz-Boyer 2008, 2011; Kong & Dietterich 1995, 1997; Ou & Murphey 2007; Reid
2010; Sáez et al. 2012, 2014] or at least motivate [Chmielnicki 2015; Elkano et al.
2015; Fernandez et al. 2015; Galar et al. 2013, 2017, 2014, 2015; Morán-Fernández et
al. 2016; Quost & Destercke 2018] ECOC strategies and in particular the one-vs-one
decomposition in combination with native multi-class machine learning algorithms
like for example decision trees to increase their classification accuracy or robustness
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towards noise. In a similar way, the one-vs-one reduction was applied to improve
the results in the overlapping class problem [Saez et al. 2019], which both emphasizes
the advantages of the one-vs-one decomposition strategy besides its straightforward
application in combination with binary-only classifiers.

Non-Competence Problem

Besides these general recommendations regarding the one-vs-one decomposition, there
is still a mostly unsolved problem related to it - the non-competence problem: In total
there are

(k
2
)
different individual classifiers, but while predicting a newly observed

instance x with unknown class only a fraction out of them was actually trained using
data from the respective class. All other classifiers are incompetent to predict x and
their predictions influence the ensemble’s overall prediction. Ideally, the coupling of
the individual classifiers is restricted to the competent ones only, but it is unknown
in practice which are the competent ones, otherwise the classification problem would
be solved.

Clearly, in case of the one-vs-all decomposition there are no incompetent classi-
fiers, and the same holds for any ECOC-based approach whose codeword matrix does
not contain at least one zero. On the reverse, there are incompetent classifiers as soon
as there are zero entries in the codeword matrix. Since the one-vs-one scheme is the
most popular respective approach, the existing literature about the non-competence
problem focuses on it. Still, it is generally relevant for other but mainly uncommon
approaches.

Some works dealing with the one-vs-one decomposition mention it as an error
source, but assuming that all competent classifiers vote for the correct class will over-
rule all incompetent votes in combination with binary voting [Fürnkranz 2001, 2002b;
Sáez et al. 2012]. Additionally, the incompetent votes are likely to be independent,
which might also alleviate their influences. Different works mention it in the contexts
of ordinal classification and multipartite ranking [Fürnkranz et al. 2009] as well as
label ranking [Hüllermeier & Vanderlooy 2010].

Because there are only k − 1 competent classifiers, the number of incompetent
ones increases quadratically with respect to k. Therefore, the ratio of competent ones
even approaches zero for k → ∞. Even though this is only an asymptotic result, it
shows that the influence of the incompetent votes increases with the number of classes
[García-Pedrajas & Ortiz-Boyer 2008]. Other authors emphasize that there will be
more incompetent than competent classifiers as soon as k ≥ 5 [Quost & Destercke
2018]. Thus, works dealing with the non-competence problem should explicitly aim
at problems with more than a couple of classes. Besides these results, different works
explicitly formulated the non-competence problem as an open issue [Elkano et al.
2015; Fernández et al. 2013; Galar et al. 2011, 2014].

Extended Fusing Methods

The first work addressing the non-competence problem trained
(k

2
)
additional cor-

recting classifiers (CC) [Moreira & Mayoraz 1998] that separate each pair of classes
{i, j} from the set of all other ones {1, 2, . . . , k}\{i, j}. In particular, the authors
extended the probabilistic voting by multiplying the pairwise probabilities φi,j with
the respective probabilistic output wi,j of the corresponding correcting classifier and
reported a significant improvement. However, the respective study only evaluated five
data sets. In a second experiment they additionally presented a modified approach to
improve the efficiency. Here, the correction classifiers for the pair {i, j} were replaced
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by the corresponding one-vs-all classifiers, however the reported results are inferior
and most times even worse than an uncorrected probabilistic voting.

The same approach using correcting classifiers was independently reintroduced
a decade later [Reid 2010] with similar reported accuracy increases, however with a
deeper formal reasoning: The unknown posterior probability P (y | x) can be expressed
as

P (y = i | x) = P (y = i | x, y ∈ {i, j}) · P (y ∈ {i, j} | x) (2.30)

for any other class j 6= i, where the former term can be estimated from the pairwise
classifier fi,j , while the latter represents the weight. However, estimating the pairwise
posterior P (y ∈ {i, j} | x) is similarly complex as estimating P (y = i | x), but (2.30)
allows the averaging of the posterior probability for class i over all pairs {i, j} with
i 6= j. Here, P (y ∈ {i, j} | x) is replaced by the pairwise probability of the correcting
classifier (which is called pair-vs-rest in the respective work). Therefore, the two
approaches describe in fact the same technique.

Even though this formal interpretation is an interesting insight, unluckily it is
flawed: The correcting classifiers do not produce estimates of P (y ∈ {i, j} | x) in the
same way as independent one-vs-all classifiers do not produce estimates of P (y = i | x)
since the latter do not sum to one. This can be alleviated by normalizing the one-
vs-all probabilities, however most likely this will destroy the previously performed
calibration, and an equivalent normalization is impossible for the correcting classifiers.

Another drawback of this approach is that the corrected pairwise probabilities
do not sum to one anymore, therefore the application of all pairwise coupling tech-
niques is not possible. Here, they can be explicitly back-transformed into pairwise
probabilities [Li et al. 2005a,b], but in combination with the preceding weighting,
this results in a simple nonlinear transformation of the pairwise probabilities. This is
highly unjustified as it conflicts with the foregoing calibration step. Similarly to the
one-vs-all reduction, the correcting classifiers might also suffer from imbalanced data
sets [Chmielnicki & Stąpor 2016].

An alternative approach to tackle the non-competence problem constructs k mod-
ified one-vs-one ensembles in parallel, where the i-th one only contains the k−1 pair-
wise classifiers that are trained using instances from class i [Li & Tang 2002; Xu et al.
2005]. The presented, modified pairwise coupling approach for incomplete ensembles
introduced by the authors allows an estimation of the posterior probability distribu-
tion by each of the k ensembles. Overall, the class is predicted that yields the smallest
error with respect to its corresponding ensemble under either the Brier score or the
log-loss. However, this approach only addresses the non-competence problem in the
respective modified incomplete pairwise coupling, but does not address its influence
in complete one-vs-one ensembles.

Two other works independently introduced the same technique that avoids the
non-competence problem by first selecting the two most confident one-vs-all predic-
tions and thereafter applying the respective single one-vs-one classifier for the overall
classification [Garcia-Pedrajas & Ortiz-Boyer 2006; Ko & Byun 2003] to yield a sig-
nificant improvement. In a related way, also the combination of all one-vs-all and
one-vs-one classifiers can be used in a simple majority voting scheme [Arruti et al.
2014]. The same work additionally introduces NOV@ that adaptively combines both
approaches: If there is exactly one positive response from the one-vs-all classifiers, it
is accepted. Otherwise, if there are multiple positive one-vs-all responses, the pair-
wise coupling is restricted to the corresponding set of classes. Finally, if there are
no positive responses from the one-vs-all classifiers, pairwise coupling is applied on
the whole class set. Hence, the one-vs-all scheme controls the set of classes on which



2.3. Decomposition-based Classification 33

the pairwise coupling is applied. The results obtained with NOV@ were superior in
most of the performed experiments. Even before this, the one-vs-one ensemble was
restricted to the selection of most confident one-vs-all classifiers in previous work
[Böken 2014] to achieve similar advantages. However, the confidence threshold or the
number of classes have to be arbitrarily selected such that NOV@ can be interpreted as
an extended variant that avoids this disadvantage, even though it was independently
introduced later.

Besides these approaches, different strategies were presented that are based on
nearest neighbor searches. Hence, they use the instance x in question at prediction
time and compute its K nearest neighbors in the training data set. The existing
approaches differ in the way how they use these in combination with pairwise coupling
techniques, but these ideas are similar to those of aforementioned hybrid strategies.

A first option uses the two most frequent classes of the neighborhood in combi-
nation with the corresponding classifier or to restrict the pairwise coupling to neigh-
bored classes only [Bagheri et al. 2012]. In particular, the authors used the five
nearest neighbors in their experiments and reported accuracy increases over all other
alternative decomposition strategies and their corresponding prediction approaches.
The latter approach also was additionally independently introduced [Fernandez et al.
2015; Galar et al. 2013], however with an additional adaptive nearest neighbor search.
In particular, the number of neighbors was selected as three times the class count,
K = 3 · k, however this count is adaptively increased up to 6 · k if the neighborhood
contains only a single class. If this still also holds for K = 6·k, the whole set of classes
is used. In the performed empirical studies, also an increased prediction performance
is reported. In a follow-up work, the same idea was generalized to a nearest neighbor
classification based on the pairwise probabilities matrix [Galar et al. 2017]. Other
authors combine these techniques [Goienetxea et al. 2021] with dynamic classifier
selection [Mendialdua et al. 2015].

In contrast to these strategies performing a binary selection of classes, also nearest
neighbor-based weighting was introduced as an alternative [Galar et al. 2015]. Here,
at first the minimum distances di(x) of x to a training data instance of class i are
computed and used to construct weights

wi,j(x) =
d2
j (x)

d2
i (x) + d2

j (x)
, 1 ≤ i, j ≤ k (2.31)

from the distances. Thereafter, the pairwise probabilities are multiplied with the
weights φi,j(x)·wi,j(x) and coupled with a probabilistic voting. Hence, the approach is
analogous to the correcting classifiers and they only differ in the weight computation.
Furthermore, in both cases the rescaled probabilities do not sum to one anymore. Still,
the presented approach outperformed the alternative approaches in the performed
experiments.

Independent of its current approach (i.e. either one-vs-all classifiers or nearest
neighbor searches), any adaptive class selection technique alleviates the influence of
the non-competent classifiers but does not solve it. As long as there are at least three
remaining classes, there are still non-competent classifiers, only their number and con-
sequently the overall influence is decreased. Additionally, restricting the set of classes
can be combined with any other technique directly targeting the non-competence
in the remaining class set. Therefore, only the approaches multiplying the pairwise
probabilities by weights directly and systematically address the non-competence prob-
lem. However, these suffer from two drawbacks. First, they make general pairwise
coupling techniques inapplicable because the pairwise probabilities do not sum to
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one anymore. Furthermore, using nearest neighbor searches for both, selection and
weighting approaches, can be problematic in practice. For large data sets they are
expensive at prediction time, require to save the whole training data set and can be
unreliable in large feature dimensions. Besides this, if nearest neighbor searches yield
particularly reliable results in the current application, it is at least questionable why
they are not directly used to classify the instances. Therefore, it is easily explainable
that the respective technique’s scalability is already formulated as an open research
question [Galar et al. 2013].

Another important property of all decomposition-based approaches is the primar-
ily heuristic motivation and the lack of theoretical interpretation. The only exception
are jointly optimized probabilistic one-vs-all classifiers, however they are most likely
to be uncalibrated because even the estimation of calibrated binary posterior prob-
abilities is a very challenging problem. On the other hand, even if all individual
classifiers were independently predicting the true respective binary posterior proba-
bilities, fusing them into an overall estimation has no clear Bayesian interpretation.
The best possible one is interpreting them as marginals of the unknown posterior
distribution P (y | x), however how to combine them remains unclear. Here, adaptive
weighting of one-vs-one predictions in pairwise coupling empirically tends to perform
well in some studies but similarly lacks theoretical justification. Even though the
respective discussion aims at the correcting classifiers, the situation of (2.30) does
not depend on them, is equally valid for any weighting approach that adjusts the
pairwise probabilities and is similarly extendable for other decompositions.

2.4 Comparison of Methods
Based on the previous summary of existing methods, the following approaches, which
are also summarized in table 2.1, are used as references for an extended algorithmic
approach that generalizes multi-class classification into dynamic contexts:

• The one-vs-all decomposition using the softmax transformation (Softmax) al-
lows a probabilisitic interpretation of the predictions. It consists only of k
subproblems, thus is efficient after training, but the individual problems are
relatively complex and hence, hard to solve. As long as the prediction functions
are simultaneously estimated using a proper scoring function (as usually the
case during neural network training), it has a particular theoretic background
from posterior probability estimation. This has a strong relation to classifier
calibration and will be discussed in chapter 3. Additionally, there are no incom-
petent classifiers, but this also means that there is almost no real possibility to
integrate dynamic class information: The only option is to restrict the softmax
function to the dynamic setM. Still, each prediction depends on data from all
classes such that only a minor adaption to dynamic contexts is possible.

• The one-vs-one decomposition using probabilistic voting (Vote) as given by
(2.24) is less efficient at prediction time since a quadratic number of predictions
has to be computed. On the other hand, the individual problems are simpler
and thus easier to solve. Summing of probabilities with different interpretations
has no real theoretic justification such that it is a mainly heuristically motivated
approach. The non-competence problem is predominant, but its negative in-
fluences in practice remain unclear. The approach is not designed to integrate
dynamic information, still restricting the fusing process to class subsets only is
possible.
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• The one-vs-one decomposition using the non-dominance criterion (ND) as given
by (2.25) shares the same advantages and disadvantages of probabilistic voting.

• The one-vs-one decomposition in combination with solving (2.26) at prediction
time (WLW) similarly shares the same advantages and disadvantages of the
previous two approaches, however offers an improved theoretic background. The
squared errors (φj,i ·pi−φi,j ·pj)2 compensate individual deviations between φi,j
and pi ≈ P (y = i | x, y ∈ {i, j}) into an overall estimation that minimizes the
sum of squared errors. Still, it becomes problematic to condition on conflicting
events as all pairs are used simultaneously. This major issue will be discussed
in chapter 5.

• The correcting classifiers approach (CC) is presumably the most elaborated tech-
nique to tackle the non-competence problem, however this results in a reduced
efficiency. At prediction time, k · (k + 1) individual predictions are required,
while at training time the complex pair-vs-rest classifiers have to be computed
in addition to the pairwise predictors. A theoretic foundation is also not avail-
able and the support of restricting to a dynamic target set is limited because
the pair-vs-rest classifiers always depend on all data.

• Extending the combination by voting on the one-vs-all and one-vs-one predic-
tions (CombVote) is comparable efficient to the one-vs-one decomposition alone
at prediction time because only k additional predictions have to be computed
here. However, the real benefit remains unclear, performing voting with dif-
ferent kinds of classifiers is completely heuristically motivated and lacks any
theoretical justification. Similarly, it is unclear how useful this voting scheme
is with respect to the non-competence problem. There remain as many incom-
petent votes as there are incompetent classifiers in the one-vs-one reduction.

• Finally, combining both decompositions with NOV@ is presumably the most
elaborated technique to select the subset of classes on which probabilistic voting
is performed. It requires the training of all classifiers from both decompositions,
but at prediction time only the fraction of relevant one-vs-one predictions have
to be computed. Even though it is problem-dependent how many one-vs-one
predictions are required, it is still reasonable to expect a significantly smaller
fraction on average. Therefore, also the influence of the non-competent predic-
tions is expected to be alleviated in many cases. Besides this, dynamic class
information can be integrated, but the one-vs-all classifiers still implicitly de-
pend on all data.

It is important to emphasize that all methods only refer to the respective decom-
position and fusing approaches. To apply them in practice, they always depend on
an arbitrary machine learning algorithm to solve the decomposition’s base problems.
Here, classifier calibration is important in supplying the respective probabilistic pre-
dictions that are required for most fusing techniques, e.g. (2.23). In light of this,
the following chapter 3 presents both, theoretic and empirical results on classifier
calibration.

With particular focus on dynamic classification, the summarized methods share
two remarkable properties: First, they assume the target set to be fixed such that
no direct reference results are available on dynamic classification. Besides this, the
approaches often have no real theoretical justification and are mostly heuristically
motivated. Therefore, evidence theory is used in chapter 4 to develop a theoretically
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Method Number of
Classifiers

Avg. Problem
Complexity

Prediction
Efficiency

Theoretic
Justification

Non-Competence
Problem

Support of Dynamic
Class Information

Softmax
(1vA) k − + ◦ + −

Vote
(1v1)

1
2 · k · (k − 1) + ◦ − − ◦

ND
(1v1)

1
2 · k · (k − 1) + ◦ − − ◦

WLW
(1v1)

1
2 · k · (k − 1) + ◦ ◦ − ◦

CC
(1v1 + CC) k · (k − 1) ◦ ◦ − + −

CombVote
(1vA + 1v1)

1
2 · k · (k + 1) ◦ ◦ − − −

NOV@
(1vA + 1v1)

1
2 · k · (k + 1) ◦ ◦ − ◦ −

Table 2.1: Summarized properties of the most relevant existing
decomposition-based classification methods.

justified approach to decomposition-based classification that by design supports the
extension for a dynamic class set.

Here, the characteristics of the respective learning algorithm are particularly rel-
evant. Throughout many domains, deep neural networks gained much popularity in
recent years. In combination with multi-class classification, they are usually trained
using a softmax prediction layer, whose corresponding one-vs-all decision functions
are simultaneously optimized. Training other decompositions in combination with
large and complex models poses a challenging task: Even though from the theoretical
point of view, other reductions like the one-vs-one decomposition could be applied
and the respective optimizations be independently solved, this requires to train Ω(k2)
models. These depend on sufficiently large training sets, require time to optimize and
computing independent predictions massively increases the required computational
resources at prediction time. Still in combination with simpler models, there is a
consensus in the literature – as presented in full detail in section 2.3 – that the one-
vs-one decomposition often outperforms the one-vs-all reduction. Consequently, it
is an interesting and relevant question whether large-scale models similarly improve
from feasible approaches to apply other decomposition-based classification methods
besides the one-vs-all reduction. These can result in potential improvements of the
respective models in actual applications.
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Chapter 3

Classifier Calibration

The preceding summary of the existing results showed that probabilistic predictions
are either required for most decomposition-based classification techniques or at least
are useful to preserve comparability between different individual predictors. Addi-
tionally, there are many other particularly relevant applications as presented in full
detail before. Still, the focus of this thesis lies on the former kind of applications.

In this regard, this chapter presents both theoretical and empirical results that
are relevant to select the appropriate calibration methods for the extended algorithms
presented in the following chapters 4 and 5. Here, section 3.1 at first performs a the-
oretical analysis where the monotonic assumption is one of the main aims. Next, sec-
tion 3.2 presents two powerful model-free calibration techniques, which are especially
useful for non-monotonic settings. A different main aim is to review existing calibra-
tion evaluation metrics in section 3.3 and to show that bin-based ones, which gained
popularity in recent publications, are invalid as well as unreasonable and should not
be used at all. Finally, the theoretical findings are empirically supported using two
empirical studies in section 3.4. First, a simulation study is performed under perfect
information and thereafter, the results of different state-of-the-art calibration tech-
niques are analyzed on a collection of 46 large-scale real-world data. Excerpts of the
following results were already published [Böken 2021], in particular a summarized
version of the current research results previously presented in subsection 2.2.2, most
of the theoretical results as well as a slightly modified simulation study.

3.1 Theoretic Results
Accurate posterior probability estimation in general and classifier calibration in par-
ticular face the challenging problem that in practice, true reference probabilities are
unknown. Thus even for practical applications, theoretical results supporting certain
techniques are important in selecting appropriate calibration methods.

3.1.1 Monotonicity

Presumably one of the most controversially discussed issues related to classifier cal-
ibration is the question whether binary calibration techniques should be designed
monotonic or not, as presented in chapter 2. Most likely, this assumption originates
from the fact that the decision function’s magnitude can be interpreted as some mea-
sure of confidence, giving rise to a monotonic assumption. This explains why it is
often made in practice [Bennett 2006], even though it is strong but usually reason-
able [Wu et al. 2014; Xu et al. 2016] and can help to avoid overfitting. Another more
recent work even formulates non-decreasingness as a requirement [Wang et al. 2019].

Model-free calibration techniques like binning are by construction non-monoto-
nic in general, thus the monotonic discussion is strongly related to the parametric
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approaches as well as isotonic regression. Before proving theoretic properties of Platt
scaling and beta calibration, at first two incorrect statements related to monotonicity
that appeared in the literature are corrected.

Correction of Wrong Statements

The first particular example [Bella et al. 2013] motivates non-monotonic calibration
from general multi-class settings, where the authors assume a 1-of-k encoding scheme.
After independently calibrating the k one-dimensional decision functions, the prob-
abilities will not sum to one and thus, normalizing destroys monotonicity even if
all binary calibrations are monotonic. However, using this argumentation to criti-
cize monotonicity in the binary case is simply wrong. The correct way to embed
the binary case in the multi-class one is to interpret the prediction function f as a
two-dimensional equivalent one (f − f0, f0 − f)> relative to the decision threshold f0.
Generally, this two-dimensional function can also be independently calibrated, but
the sum-to-one constraint of a probability reduces it to a one-dimensional estimation,
which has a natural ordering. However in the multi-class case, there still remain
k− 1 > 1 degrees of freedom in the calibration map and thus, monotonicity is simply
undefined since there is no natural ordering on Rk for k > 1. Consequently, there
is no monotonicity in multi-class calibration and thus, it can neither criticize nor
support monotonicity in the binary case.

Another incorrect statement is made in the series of works that introduced the
state-of-the-art ensemble-based calibration techniques ENIR and ELiTE [Naeini 2016;
Naeini & Cooper 2015, 2016, 2018]. Here, the authors state that assuming a mono-
tonic relationship between classifier scores and posterior probabilities is equivalent to
assuming that the classifier has AUC = 1, at least asymptotically. Even though this
seems to be valid, in fact it is wrong and the opposite is true:

Proposition 3.1. For any AUC in (0.5, 1) there exist distributions of class-condi-
tional likelihoods p(f | y = ±1) such that the posterior probabilities take the form of
P (y = 1 | f) = (1 + exp(a · f + b))−1 for some real-valued parameters a and b. Thus,
the transformation from f into P (y = 1 | f) is strictly monotonic.

Proof. Select a uniform prior of 0.5 and unit-variance, Gaussian-distributed likeli-
hoods p(f | y = ±1) with means ±µ. By substituting these into Bayes’ theorem it
is straightforward to see that the posterior distribution takes the claimed form, for
any selected value of µ (in particular, even a = −2µ and b = 0 hold). Clearly, for
µ→∞ the AUC becomes arbitrarily close to one, while for µ→ 0, the AUC becomes
arbitrarily close to 0.5. Since the AUC obviously depends continuously on µ, the claim
is proven.

It is important to emphasize that the sigmoidal relationship in the extreme cases
of AUC = 1 and AUC = 0.5 is not valid because the posterior probability P (y = 1 | f)
is either binary or constant (but the transformation still is trivially monotonic).

However, neither do these results yield a justification to always enforce mono-
tonicity in calibration nor is a similar general reasoning likely to exist at all – there
always can be settings in which the transformation function is non-monotonic. Still,
it is an interesting question under which circumstances a monotonic transformation
can reasonably be defended and how it can be well approximated given finite training
data only. The theoretic results following in subsection 3.1.2 focusing on Platt scal-
ing enlighten that a monotonic transformation indeed is valid for different families of
score distributions.
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Analyzing Isotonic Regression

Besides results that will focus on parametric estimations of monotonic calibration
functions, it is also relevant to analyze problem settings in which none of these para-
metric models are valid, but still a monotonic transformation function should be
estimated. Isotonic regression is a straightforward selection here, but with focus on
classifier calibration, further results like convergence rate or approximation guaran-
tees were not discussed in the corresponding literature, and research in this particular
direction is still relatively rare. In light of this, a few interesting results should also
be mentioned.

First of all, it is important to note that isotonic regression is not primarily designed
for classifier calibration, but instead as a non-parametric regression technique to fit
independent and identically distributed data points zi ∈ R, i = 1, . . . , r, with given
continuous function values ti by non-decreasing estimates t̂i that minimize the sum
of squared distances ∑r

i=1(ti − t̂i)2. In this setting, the empirical `p risk is bounded
by r− 1

3 (
1
r
·
r∑
i=1

E
∣∣∣ti − t̂i∣∣∣p

) 1
p

∈ O
(
r−

1
3
)

(3.1)

for 1 ≤ p < 3 if the true relationship is monotonic but the observations are influenced
by zero-mean equal-variance Gaussian-distributed noise [Zhang 2002], similar to the
assumptions in linear regression. Thus, the estimator’s error converges to 0 in `p
for r → ∞, and consequently this convergence also holds in probability. Different
extended properties about the convergence of isotonic regression are discussed in the
respective literature [Robertson et al. 1988; Yang & Barber 2019].

A particular important result of these two works with focus on classifier calibra-
tion shows that the mapping computed using isotonic regression – or more precisely
the constrained maximum likelihood estimator computed using the PAV algorithm
– also equals the optimal solution for binary observations zi ≡ f(xi) with Bernoulli-
distributed labels yi according to p(f(xi)) = P (y = 1 | f(xi)). Thus, the simple
PAV algorithm enables to approximate the true function with high probability with-
out assuming anything else besides monotonicty of the transformation function, and
without restricting the interpolation between the given data points zi.

The next important observation is that isotonic regression does not necessar-
ily define piecewise constant and thus discontinuous transformations. Instead, the
PAV algorithm returns points from its training data set – with respect to calibration
from the set of predictions {f(x1), f(x2), . . . , f(xr)} – and returns associated posterior
probability estimates. These can be converted into a binning model in the same
way as being linearly interpolated to form a piecewise linear, continuous and strictly
monotonic transformation with non-differentiable points where the slopes of the line
segments change. Even any monotonic piecewise continuous function is a valid option
[Álvarez & Yohai 2011].

In a similar category fall the two existing strategies that interpolate the points
using splines or monotonic polynomials [Jiang et al. 2011; Wang et al. 2019]. From
a strictly formal point of view, these extensions can be advantageous over a discon-
tinuous, piecewise constant transformation. However, higher order polynomials were
already observed to overfit [Naeini & Cooper 2016, 2018] and given sufficient data
such that overfitting should be less problematic, especially a simple piecewise con-
stant (or piecewise linear to satisfy continuity and strict monotonicity) function will
probably accurately approximate the true one and simply by Occam’s razor will be
the better choice. If the results are still not satisfying, it should be interpreted as an
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evidence against monotonic calibration in the respective application instead, but not
as a demand for more complex, but still monotonic transformation functions. Addi-
tionally, it is particular challenging to objectively detect the invalidity of a monotonic
transformation, which is a consequence of the discussion following in section 3.3.

Still, a parametric model can be superior if its assumptions are met. In light of
this, the following part proves different sufficient conditions for the validity of Platt
scaling and an equivalence to beta calibration.

3.1.2 Platt Scaling’s Parametric Assumptions

Even though some works [Flach 2016] incorrectly state that Platt scaling assumes
Gaussian-distributed likelihoods p(f | y), the summary of the existing results related
to Platt scaling already showed that it is also valid for shifted exponential distribu-
tions [Platt 1999]. Consequently, a transformation function in the form of (2.7) is
an optimal choice for at least two different families of probability distributions. This
additionally shows that it is still relatively flexible, in contrast to aforementioned
criticism. Still, there are no results available clarifying its parametric assumptions.
In light of this, the main contribution of this section is to prove under which circum-
stances it is an optimal choice.

The key idea of the following analysis is to decompose the likelihoods into different
parts that cancel out in the likelihood estimation and thus, do not influence the
posterior probabilities.

Theorem 3.2. Let f : X → R be a given binary classifier on the input domain X . If
the class-conditional likelihoods are strictly positive and can be expressed as

p(f(x) | y = i) = gi(f(x);λi, θ) (3.2)

for f(x) ∈ I ⊆ R such that the gi can be factorized as

gi(z;λi, θ) = γ(z; θ) · βi(λi, θ) · exp(αi(λi, θ) · z) (3.3)

where

• the index i = ±1 refers to the respective class

• λi defines arbitrary class-specific parameters

• θ are the jointly used parameters

• αi(λi, θ) and βi(λi, θ) are arbitrary functions that are constant with respect to z

• γ is an arbitrary function that is independent of the class-specific parameters λi

then the posterior probabilities on I are distributed such that

P (y = 1 | f(x)) = σa,b(f(x)) = 1
1 + exp(a · f(x) + b) (3.4)

holds with real-valued parameters given by a = α−1(λ−1, θ) − α1(λ1, θ) as well as
b = log P (y=−1)

P (y=1) − log β1(λ1,θ)
β−1(λ−1,θ) . In particular, the posterior probabilities are non-

constant (i.e. a 6= 0) if and only if α1(θ, λ1) 6= α−1(θ, λ−1) and further, the sigmoid
assumption holds.
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Proof. Without loss of generality it holds γ(z; θ) > 0 and βi(λi, θ) > 0 as their product
is positive. Thus, the likelihood ratio is well defined and simplifies to

p(f(x)|y=1)
p(f(x)|y=−1) = g1(f(x);λ1,θ)

g−1(f(x);λ−1,θ)

= γ(f(x);θ) · β1(λ1,θ) · exp(α1(λ1,θ) · f(x))
γ(f(x);θ) · β−1(λ−1,θ) · exp(α−1(λ−1,θ) · f(x))

= β1(λ1,θ)
β−1(λ−1,θ) · exp(α1(λ1, θ) · f(x)) · exp(−α−1(λ−1, θ) · f(x))

= β1(λ1,θ)
β−1(λ−1,θ) · exp((α1(λ1, θ)− α−1(λ−1, θ)) · f(x))

= exp
(
(α1(λ1, θ)− α−1(λ−1, θ)) · f(x) + log

(
β1(λ1,θ)

β−1(λ−1,θ)

))
.

In the last line, taking the logarithm is valid since β1(λ1, θ)/β−1(λ−1, θ) > 0 holds
on I because otherwise, one of the densities would be non-positive. Substituting the
likelihood ratio and a as well as b into Bayes’ theorem yields the posterior probabilities
as

P (y = 1 | f(x)) = 1
1+P (y=−1)

P (y=1) ·
(
p(f(x)|y=1)
p(f(x)|y=−1)

)−1

=
(
1 + P (y=−1)

P (y=1) · exp
(
a · f(x)− log β1(λ1,θ)

β−1(λ−1,θ)

))−1

=
(
1 + exp

(
a · f(x)− log β1(λ1,θ)

β−1(λ−1,θ) + log P (y=−1)
P (y=1)

))−1

= (1 + exp (a · f(x) + b))−1

which proves the claim.

Clearly, the respective decomposition is not unique as constants can be arbitrarily
shifted between the factors. But for practical applications of the last result, there is
no requirement for unique decompositions. Next, also the reverse direction can be
proven.

Proposition 3.3. Let f : X → R be a given binary classifier on the input domain X .
If the class-conditional densities exist and the posterior distributions can be expressed
as a sigmoid function

P (y = 1 | f(x)) = 1
1 + exp(a · f(x) + b) (3.5)

for f(x) ∈ I ⊆ R, then there exist a function γ : I → (0,∞) and constants αi, βi ∈ R
such that the class-conditional likelihoods can be expressed as

p(f(x) | y = i) = γ(f(x)) · βi · exp(αi · f(x)) (3.6)

where i = ±1.

Proof. First, the sigmoid-shaped posterior implies that p(f(x) | y = i) > 0 holds for
y = ±1. Substituting the given posterior into Bayes’ theorem yields

1
1 + exp(a · f(x) + b) = 1

1 + P (y=−1)
P (y=1) ·

p(f(x)|y=−1)
p(f(x)|y=1)
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which is equivalent to:

p(f(x) | y = −1) = p(f(x) | y = 1) · P (y = 1)
P (y = −1) · exp(a · f(x) + b)

Thus, selecting α1 := 0, β1 := 1 and γ(f(x)) := p(f(x) | y = 1) as well as α−1 := a and
β−1 := P (y=1)

P (y=−1) · e
b yields

p(f(x) | y = 1) = γ(f(x)) = γ(f(x)) · β1 · exp(α1 · f(x)) and
p(f(x) | y = −1) = γ(f(x)) · β−1 · exp(α−1 · f(x)),

respectively, which finalizes the proof.

An important consequence of this result is that it enables to prove that Platt
scaling is especially optimal for likelihoods distributed according to the following four
different families of probability distributions.

Corollary 3.4. Let f : X → R be a given binary classifier on the input domain X .
The posterior probability distribution P (y = 1 | f(x)) has the sigmoid form of (3.4)
on I ⊆ R if there exist scalings si ∈ {−1, 1} such that the class-conditional likelihoods
for both classes i = ±1 are strictly positive and can be expressed as one of following
distributions over I:

1. As Gaussian distributions with mean λi and standard deviation θ:

p(f(x) | y = i) = 1√
2πθ
· exp

(
−(f(x)− λi)2

2 · θ2

)
(3.7)

2. As shifted exponential distributions controlled by a parameter λi > 0 and a
translation ti ∈ R:

p(f(x) | y = i) = λi exp(−λi · (si · f(x) + ti)) (3.8)

3. As gamma distributions parameterized by λi > 0, θ > 0 and the gamma function
Γ(z) =

∫∞
0 uz−1e−u du:

p(f(x) | y = i) = λθi
Γ(θ) · (si · f(x))θ−1 · exp(−λi · si · f(x)) (3.9)

4. As χ2-distributions of θ ∈ N degrees of freedom:

p(f(x) | y = i) = 1
2Γ( θ2)

·
(
si · f(x)

2

) θ
2−1
· exp

(
−si · f(x)

2

)
(3.10)

Proof. The Gaussian and the exponential case are known to be valid and are only
mentioned again for completeness. Still, it is straightforward to apply theorem 3.2
for them as well. For the gamma distribution, the likelihoods can be factorized as

p(f(x) | y = i) = λθi
Γ(θ)s

θ−1
i · (f(x))θ−1 · exp(−λisi · f(x)) (3.11)
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while for the χ2-distributions a possible factorization is

p(f(x) | y = i) = 1
2Γ( θ2)

(
si
2

) θ
2−1

· (f(x))
θ
2−1 · exp

(
−si2 · f(x)

)
(3.12)

such that the application of theorem 3.2 implies the claim.

The scalings si as well as the translations ti in case of the exponential distribution
are only used to flip and translate the distribution’s argument accordingly, without
changing the integral to ensure that the function remains a valid probability density.
They are not needed in the Gaussian case as here, the distribution is symmetric and
the mean value parameter already controls the shift. It might also be useful to prepro-
cess f before applying any of the previous results, for example by adding a constant or
by scaling it. Only as soon as densities are estimated, these transformations have to
be properly handled (i.e. back substituted) because they might result in the function
not integrating to one anymore. Further, as the Erlang distribution is a special case
of the gamma distribution, the last result holds for it as well.

A different important observation is that even if the sigmoid function has a sym-
metric shape, the class-conditional likelihoods do not have to be symmetric. For
example in the exponential case, the parameters λ1 and λ−1 are not constrained to
be equal.

3.1.3 Platt Scaling and Beta Calibration

Beta calibration is based on the observation that Platt scaling aims at calibrating
unbounded classifier scores, i.e. a reasonable probability can even be computed for
|f| → ∞. This does not make much sense if the classifier is bounded, for example
if it allows a probabilistic interpretation satisfying f(x) ∈ [0, 1]. Here, the authors
proposed to fit beta distributions to the likelihoods in form of (2.20) yielding posterior
probabilities given by (2.21).

A comparison between beta calibration and Platt scaling showed that the former
outperformed the latter in an experiment on 41 data sets. However, using a prob-
abilistic classifier in the respective experiments, which returns predictions in (0, 1),
the parametric assumptions of Platt scaling are violated. But a comparison in the
inverse setting where Platt scaling’s parametric assumptions hold, while the ones of
beta calibration are violated remains open. Doing so requires to extend the beta
distribution by zero to R, while the parametric form of (2.21) is not valid anymore
– the only reasonable posterior probability would be the constant class prior, simply
because nothing is known from the parametric model. It is straightforward to see
that applying this in practice unavoidably results in arbitrarily bad calibrations.

Hence, the correct conclusion from these experiments is that beta calibration
is not superior to Platt scaling on probabilistic classifiers but applying the former
on unbounded, real-valued classifiers is just as unreasonable as applying the latter
on probabilistic ones. Instead, the question remains how to map both prediction
functions to each other such that the application of both techniques is possible in any
case, yielding a fair comparison. Here, the following result holds.

Proposition 3.5. For the Platt scaling’s calibration function σa,b, as given by (2.7),
and the beta calibration’s one τa,b, as given by (2.21), hold the following identity:

σa,b(z) = τ−a,−b
(
(1 + exp(−z))−1

)
(3.13)
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Proof. Straightforward computation yields:

σa,b(z) = (1 + exp(a · z + b))−1 = (1 + exp(b) · (exp(−z))−a)−1

=
(

1 + exp(b) ·
(

1+exp(−z)−1
1

)−a)−1

=
(

1 + exp(b) ·
(

1−(1+exp(−z))−1

(1+exp(−z))−1

)−a)−1

=
(

1 +
(

exp(−b) ·
(

(1+exp(−z))−1

1−(1+exp(−z))−1

)−a)−1
)−1

= τ−a,−b
(
(1 + exp(−z))−1)

Thus, beta calibration is actually equivalent to Platt scaling. The only difference
is a sigmoidal preprocessing z 7→ (1 + exp(−z))−1. Similarly, beta-calibrating a
probabilistic classifier is equivalent to transforming the prediction to whole R using the
sigmoid mapping’s inverse z 7→ log(z/(1− z)) – also known as logit or log-odds – and
applying Platt scaling thereafter. Interestingly, the latter fact was already observed
in the work introducing beta calibration [Kull et al. 2017] to easily compute the
parameters using existing algorithms to solve for Platt scaling or logistic regression.
Similarly, the same transformation is used during the constructing of probability
calibration trees [Leathart et al. 2017] to apply Platt scaling on the leaf nodes of
logistic regression trees. Based on the provided insights, the respective approach can
equivalently be described as applying beta calibration to the leaf nodes of logistic
model trees.

Finally, comparing Platt scaling to beta calibration hardly makes any sense at
all. Actually, this just means that a transformation function of the form (3.4) is
fitted twice – once with a sigmoidal preprocessing and once again without it. So
comparing them actually means to analyze the influence of the preprocessing, but
not between different techniques. This question might be particularly interesting
for model-free calibration approaches where the sigmoid transformation serves as a
form of precalibration to approximate the calibration function on the compact unit
interval only. Even though some works assume the latter setting by using a sigmoid
[Naeini 2016; Naeini & Cooper 2015, 2016, 2018] or a linear [Zadrozny & Elkan 2002]
transformation, the provided insights show that the situation here actually is more
complex. In light of this, the empirical evaluations in section 3.4 will also compare
binning performed on unbounded scores to sigmoidally precalibrated ones. It should
also be noted that the precalibration function is a non-optimized variant of Platt
scaling obtained by simply selecting a = −1 and b = 0.

3.1.4 Parameter Estimation

Finally, applying parametric calibration techniques in practice should also be handled
carefully, especially if its results are to be criticized. Based on the proven equivalence
between Platt scaling and beta calibration as well as the fact that there is no other
well-accepted parametric calibration approach, the following discussion is strongly
focused on Platt scaling. Still, the main statements are valid for any parametric
approach in similar reformulations.

To find the optimal values for a and b in Platt scaling’s calibration function (3.4),
an optimization problem is formulated whose solution yields the two parameters. This
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optimization problem contains different degrees of freedom that influence the optimal
solution. In particular, Platt himself fitted the parameters by a maximum likelihood
approach, iteratively minimizing the following cross-entropy error

L(a, b) = −
r∑
i=1

[ti · log(σa,b(f(xi))) + (1− ti) · log(1− σa,b(f(xi)))] (3.14)

where the target values ti are defined as t+ = (r+ + 1)/(r+ + 2) for all positive in-
stances, while the target values for the negative instances are t− = 1/(r− + 2). Here,
r+ and r− refer to the overall number of positive and negative instances. Finding a
and b in this way is generally known as Platt scaling. However, differently parame-
terizing the optimization problem – for example by using the squared error between
ti and σa,b(f(xi)) – will result in a different solution and thus a different calibration
mapping. In light of this, Platt scaling should generally refer to any calibration map-
ping using a transformation function of the form (3.4). The question how to estimate
the parameters is a subsequent implementation detail but does not directly deal with
the general validity of a transformation whose parameters are properly estimated.

Next, fitting the parameters a and b indirectly corresponds to estimating the like-
lihoods p(f | y = ±1). This is advantageous in comparison with a direct likelihood
estimation since, as shown by theorem 3.2, the sigmoidal posterior is valid for different
likelihood models and thus fitting the posterior directly avoids to specify a probability
distribution whose parameters are fitted. Even though some well-known issues exist
[Lin et al. 2007] in this domain that have been handled in available implementations
[Chang & Lin 2011], directly fitting the likelihood distribution however might involve
selecting a real subset I ⊂ R (usually an interval) for each class where the respective
parametric model is expected to be valid. For example even in Platt’s introductory
work [Platt 1999], the exponential distributions are observed for all data points xi
satisfying yi · f(xi) ≤ 1. Consequently, the resulting sigmoid-shaped posterior prob-
ability generally will only be valid where each likelihood is distributed according to
the respective distribution. In this particular example, this is exactly where |f(x)| ≤ 1
holds. For all predictions f(x) /∈ I, the likelihood model is invalid.

Furthermore, such proper handling would even mean that while fitting the sigmoid
parameters, only data points f(x) whose predictions lie in a valid range of both like-
lihoods are used to estimate the parameters. If this does not hold but the respective
data points are still used to estimate the sigmoid parameters, it is implicitly assumed
that the sigmoid shape is valid even if the respective likelihoods are not. This can be
reasonable, for example at large predictions that correspond to extreme probabilities
of ≈ 0 or ≈ 1 since this is consistent with the sigmoid’s limits for f(x)→ ±∞. In prac-
tice it is hard to always check which instances should be used, which might explain
why this issue is often ignored. Even as long as all points are used and the results are
reasonably well, the practitioner does not really need to care about it. However, a
general justification to always include all data points in the parameter fitting simply
does not exist and thus at least should be respected as soon as suboptimal results are
obtained.

3.2 New Calibration Techniques
The previous results focusing on monotonic calibration showed that Platt scaling and
isotonic regression both have a solid theoretical background explaining good results
in many applications where a monotonic assumption can be reasonably defended.
In particular with respect to Platt scaling, detailed theoretical insights about its
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validity are given. Still, there might be applications where a calibration function
should be created non-monotonically. In this regard, this section aims explicitly at
non-monotonic calibration options.

Here as a first observation, the large majority of existing calibration techniques
are based on direct transformations of the scores f(x) to posterior estimates p(f(x))
without estimating likelihood distributions p(f | y). However, the discussion in sub-
section 3.1.4 showed that estimating parametric calibration functions also indirectly
estimates the likelihoods. This can be advantageous for several previously discussed
reasons. Still by using Bayes’ theorem,

P (y = 1 | f) = p(f | y = 1) · P (y = 1)
p(f | y = 1) · P (y = 1) + p(f | y = −1) · P (y = −1) (3.15)

any density estimation technique can be converted into an indirect calibration al-
gorithm. The prior probabilities are estimated by the respective frequencies on the
training data and the likelihoods using the respective density estimation technique. It
should be emphasized that this approach can also be used for more than two classes,
however the estimation of the densities p(f | y) becomes multi-dimensional. This can
suffer from the same problems as posterior class estimation based on Bayes’ theorem
itself, depending on the dimension of f.

Even though this is a straightforward application of Bayes’ theorem, this option
is relatively rarely discussed in the literature. Some works explicitly mention Bayes’
theorem as an explicit option for calibration [Gebel 2009], however focusing on para-
metric density estimation. Clearly, arbitrary parametric models can be applied, which
of course is highly problem-dependent. Thus, particularly interesting are model-free
density estimation techniques that allow a larger flexibility as they do not restrict to
a fixed parametric model. As a result, they will also be non-monotonic in general.
Typical problems caused by the input dimension are not present in binary calibration
since the densities p(f | y) remain one-dimensional. Besides aforementioned works
on binning – where direct posterior estimation based on histograms is equivalent to
estimating the likelihoods by binning and applying Bayes’ theorem – only a few other
works apply Bayes’ theorem for calibration based on non-parametric approaches. Ex-
isting works cover density estimation based on Polya trees [Connolly et al. 2017],
Dirichlet process modeling [Naeini 2016] and kernel density estimation [Naeini 2016],
however the latter only using a constant kernel and Silverman’s [Silverman 1986]
potentially suboptimal bandwidth estimation.

3.2.1 Kernel Density Estimation

The key idea of kernel density estimation (KDE) [Parzen 1962; Wasserman 2006] is
to transform a discrete unlabeled sample set D = {xi : i = 1, . . . , r} ⊂ Rn into
an estimate of the continuous density function. With respect to binary classifier
calibration, this will consist of the one-dimensional predictions f(x) from each of the
two classes, respectively. Additionally, let K(z) be a kernel function, i.e. K(z) ≥ 0
and

∫∞
−∞K(z) dz = 1 hold. The kernel density estimator is the function

f̂(z) = 1
r · h

r∑
i=1

K

(
z − zi
h

)
. (3.16)

where the real-valued bandwidth h > 0 is a free parameter that has to be selected
accordingly. There are a few remarkable properties that make kernel density esti-
mation a powerful alternative for classifier calibration. It can be shown [Wasserman
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2006] that given the optimal bandwidth h∗, the L2 risk is bounded by O(r− 4
5 )∫

E
(
f(z)− f̂(z)

)2
dz ∈ O(r−

4
5 ) (3.17)

under relative mild assumptions, where f denotes the unknown, true density function.
Consequently, the estimator converges in L2 and thus also in probability to the true
density function. The bandwidth can be interpreted as an equivalent counterpart
of the bin size that controls the amount of local smoothing performed by the kernel
function. The concrete selection of the latter usually is less important than the band-
width selection, still the kernel defines the analytic properties of the transformation
function.

It can be shown that the optimal bandwidth scales with O(r− 1
5 ), but the constant

depends on the unknown distribution [Venables & Ripley 2002]. However, in contrast
to relatively arbitrary selecting of bin sizes, there exist useful heuristics that can be
applied instead to estimate h. The same authors also motivate to apply the Sheather-
Jones bandwidth estimation [Sheather & Jones 1991] as being “close to optimal” and
thus, preferable to the aforementioned Silverman heuristic.

The next degree of freedom is the selection of the kernel. Using a constant one
results in a discontinuous calibration map, which can be counterintuitive. This could
be resolved by a Gaussian kernel (which would even yield an infinitely often differ-
entiable calibration function) but instead the Epanechnikov1 kernel [Epanechnikov &
Seckler 1969]

KEp(z) =
{3

4(1− z2) |z2| ≤ 1
0 otherwise

(3.18)

minimizes the mean integrated squared error over all kernels [Zambom & Dias 2012],
however only using a bandwidth that depends on the unknown density [Cybakov
2009]. But it still justifies to select it over a constant kernel since this yields a
continuous calibration mapping. Furthermore, the unknown, optimal bandwidth can
be approximated in practice using the aforementioned heuristics.

Finally, another improvement aims at a general problem prevalent in any den-
sity-based calibration technique. Similar to the proof of theorem 3.2, the posterior
distribution can completely be expressed

P (y = 1 | f(x)) =
(

1 + P (y = −1)
P (y = 1) ·

(
p(f(x) | y = 1)
p(f(x) | y = −1)

)−1)−1

(3.19)

using the likelihood ratio. Even if the priors are assumed as correctly estimated,
the likelihood ratio preserves no information about the magnitude of the individual
likelihoods. If both are reasonably large, the ratio is a good estimate. However, if
at least one of them approaches zero, unavoidable minor inaccuracies can have large
influences. Especially if both are very small, the ratio can take arbitrary large values
caused by random influences, which are completely unjustified based on the previously
observed training data. To resolve this issue, the class-conditional likelihoods are
not only estimated based on the training data, but dynamically extended with the
instance in question, x0, with predicted score f0 = f(x0). This is feasible as its class
value is not required while estimating the densities. Thus, the proposed approach
can be summarized as follows:

1It should be noted that the kernel function is sometimes differently scaled. This is not directly
important from the practical point of view as software implementations (for example these in R) scale
the kernels such that their standard deviations equal the bandwidth.
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1. Compute the training data sets Fi = {f(x) : (x, i) ∈ D} for both classes i = ±1
at training time.

2. At prediction time, extend both sets by f0 = f(x0) to form Fi = Fi ∪ {f0}.

3. Estimate both likelihoods using kernel density estimation (3.16).

4. Estimate the posterior probabilities for x0 using Bayes’ theorem by substituting
the obtained likelihoods into (3.19).

If the training data reasonably covers f0, there will unlikely be a large influence
by dynamically extending the training data. On the reverse, if f0 is not well covered
by the training data, the proposed approach lower bounds the estimated density. In
a Bayesian sense, this approach can be interpreted as a uniform prior over f.

3.2.2 Ensemble of Kernel Density Estimation

The last section motivated to use extended variants of kernel density estimation as a
classifier calibration technique, which mainly generalizes the idea to transform den-
sity estimation techniques into classifier calibration ones, but to be able to circumvent
the intrinsic drawbacks of binning, namely the choice of the bin size and the discon-
tinuous calibration function. The rationale behind calibration techniques like ENIR
and ELiTE as well as their predecessors can be summarized by instead of using only
one calibration binning model, multiple ones are combined. In case of ELiTE, in-
stead of binning models an ensemble of piecewise linear mappings is computed. The
prediction rule can jointly be described as

P (y = 1 | x) =
t∑
i=1

Ψ(Mi)∑t
j=1 Ψ(Mj)

· P (y = 1 | x,Mi) (3.20)

where Ψ is an accordingly selected scoring function and P (y = 1 | x,Mi) refers to
the i-th model’s posterior probability. In case of SBB, the scoring is binary since
actually only a single model is selected, still it can be expressed in form of (3.20).
The respective evaluations showed that this resulted in superior recognition results
in comparison with only a single model.

Here, it is important to note that this strategy to combine different techniques
is not constrained to be applied to binning models only and, because kernel density
estimation can also be interpreted as a continuously generalized variant of binning,
it is interesting to analyze whether ensemble strategies can also improve the results
here. This raises two questions: First, how to create such an ensemble or equivalently,
how to choose a reasonable set of parameterizations and second, how to select the
scoring function Ψ, i.e. how to combine these predictions?

Possible options to create an ensemble are the kernel function and the bandwidth
parameter. Because based on aforementioned results it is known that the bandwidth
has more relevance and is proportional to r−

1
5 , a starting point can be estimated

using the Sheather-Jones heuristic that thereafter can be scaled using a predefined
set of factors {s1, s2, . . . , sm}. Clearly, the selection of the latter remains arbitrary
in general, but it is still reasonable to neither select them too large nor too small as
doing so is likely to over- or under-smooth the estimation function. Thus, a small grid
{0.5, 0.75, 1, 1.5, 2} is used where each scaling factor is used for both, the Gaussian
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and the Epanechnikov kernel. Hence, an ensemble of t = 10 kernel density estimation
predictors is obtained2.

After estimating a posterior probability with each individual model, the second
step is to combine the models, i.e. to select the scoring function Ψ. Because each
kernel density estimation model depends on all data, there are no varying degrees
of freedom. As the log-likelihood is obtained by using the AIC or BIC scorings and
removing the degrees of freedom, here a kernel density estimation model Mi is scored
using the model’s log-likelihood Ψ(Mi) = log p(D | Mi). Finally, this yields the
overall posterior probability estimation by using (3.20).

3.3 Evaluation Metrics
The previous sections analyzed classifier calibration from a theoretical point of view
and presented different results for both, monotonic and non-monotonic approaches.
With respect to practical applications, there is a straightforward demand to evaluate
a calibration technique’s predictive performance, for example to choose the best out of
a set of available ones. For this purpose, an evaluation metric is required to compare
the estimated probability to the true one. Since the true posterior probabilities are
unknown, a direct error cannot be computed. Thus, some surrogate error functions
have to be used instead that are only based on a probability estimate p(x) of a given
test instance x and its true class value y.

3.3.1 Classification Metrics and Proper Scoring Rules

It is interesting to observe that even in the three works that introduced the most fre-
quently mentioned calibration techniques Platt scaling [Platt 1999], histogram bin-
ning [Zadrozny & Elkan 2001b] and isotonic regression [Zadrozny & Elkan 2002],
there is no well-accepted standard how calibration techniques should be evaluated
and compared. The first option is to interpret the posterior estimate as a classifi-
cation algorithm, i.e. to use well-accepted metrics like the classification rate or the
receiver-operator characteristic, summarized in the AUC statistic. Accuracy or equiv-
alently error statistics are included in all three aforementioned works. Besides these,
either the log-loss [Platt 1999; Zadrozny & Elkan 2001b] or the Brier score [Zadrozny
& Elkan 2001b, 2002] is used to evaluate the posterior probability estimates. Both
metrics are instances of the infinitely large family of proper scoring rules [Merkle &
Steyvers 2013] but the most commonly used ones [Kull & Flach 2015]. Both metrics
refer to the general case of k different classes and require a posterior probability es-
timate p = p(x) ≈ P (y | x) and a binary class vector y (i.e. the respective class is
encoded with a one). This enables to compute the log-loss ϕLL and the Brier score
ϕBS as

ϕLL(p, y) = − log py and ϕBS(p, y) =
k∑
i=1

(pi − yi)2, (3.21)

respectively. Brier score is equivalent to the mean squared error (MSE), which is
sometimes used instead3. Both metrics are minimized by the posterior probabilities,
however this requires to integrate over the whole distribution, i.e. only holds asymp-
totically. Still, it justifies to use them as an evaluation metric that has to be minimized

2It should be added that additionally each KDE calibration model consitis of two density estima-
tors, one for each class.

3It should be added that some authors prefer to use the root mean squared error (RMSE).
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over a test data set. However, the absolute error value is hardly interpretable and
non-zero, even if all instances would be predicted correctly.

An important difference between log-loss and Brier score in the general, multi-
class case is that the former only depends on the probability of the true class, while
the latter is also influenced by varying probabilities besides y. This property is known
as locality [Bickel 2010] of the log-loss, but obviously irrelevant in the binary case.
Next, the Brier score is bounded, while the log-loss has a singularity at 0. This is
problematic as a single outlier can cause an infinitely large overall loss. However,
the Brier score also has different limitations for very rare or very frequent events
[Benedetti 2010]. The same work shows that the Brier score in fact is a second-order
approximation to the log-loss.

3.3.2 Bin-based Evaluation Metrics

Both aforementioned scoring functions have a long history in forecast evaluation [De-
Groot & Fienberg 1983] and have been used in subsequent work on classifier cali-
bration [Bella et al. 2009a; Bennett 2006; Niculescu-Mizil & Caruana 2005b], but
interestingly some authors began to additionally use bin-based metrics [Bella et al.
2009b; Niculescu-Mizil & Caruana 2005b]. Here, the core idea is to discretize the unit
interval into m bins B1, B2, . . . , Bm such that for each bin Bi, the average predicted
probability can be compared to the fraction of instances from the respective class.
If the bin is sufficiently small, e.g. [p0 − ε, p0 + ε] for a certain fixed probability p0,
then the prediction is well calibrated if the fraction of class-1 occurrences in the bin
equals p0, at least asymptotically and sufficiently small ε. So the predicted average
probability e(Bi) of a bin can be computed and compared to the fraction of observed
class-1 instances o(Bi).

This idea is used to define two evaluation metrics, expected calibration error (ECE)
and maximum calibration error (MCE) [Naeini et al. 2014]. Given a data set D, these
are defined as

ECE(D) =
m∑
i=1

ri
r
· |o(Bi)− e(Bi)| and MCE(D) = max

i=1,...,m
|o(Bi)− e(Bi)|, (3.22)

respectively, where ri refers to the number of data points in the i-th bin Bi and r
to the overall number (i.e. ∑m

i=1 ri = r). These metrics are regularly used in recent
works on classifier calibration, by the introducing authors [Jabbari et al. 2017; Naeini
2016; Naeini et al. 2015a; Naeini & Cooper 2015, 2016, 2018; Naeini et al. 2015b] as
well as other works [Guo et al. 2017; Seo et al. 2019; Tran et al. 2018; Wang et al.
2019]. In many of these works, bin-based metrics are used as main evaluation criteria,
while others like AUC and sometimes the MSE or RMSE are given, too.

Bin-based evaluation metrics can also be related to reliability diagrams [Jiang et
al. 2012]. These are used to visualize calibration where the observed fractions in the
bins are plotted to illustrate deviations from perfect calibration, i.e. the x = y line.

3.3.3 Analyzing Evaluation Metrics

In summary, these three families of evaluation metrics are commonly used. Classifi-
cation-based ones like the AUC are useful to control the calibration to avoid patho-
logical solutions (i.e. constant predictors), but definitely are not useful in comparing
calibration techniques as the computed probabilities are mainly ignored. Only the
ranking or the location to decision threshold are relevant. Further, there is no need to
apply classifier calibration at all if the aim is to maximize the accuracy or the AUC.
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Thus to directly evaluate the probabilities, there are two common families of metrics,
proper scoring rules and bin-based ones.

The justification for introducing bin-based metrics in probabilistic predictions
over proper scoring rules has deeper reasons that boil down to the fact that proper
scoring rules can be decomposed into calibration and refinement loss. In practice, it
is common to evaluate both parts independently [Parmigiani & Inoue 2009], which
explains and justifies the introduction of the bin-based metrics. In particular, they
are used to measure the calibration loss, while the refinement loss is evaluated using
statistics like the AUC. However, it should be emphasized that both losses cannot be
computed directly. In fact, they are expected values of random variables over the
unknown distribution. The same holds for other decompositions of proper scoring
rules, which lies beyond the scope of this work and is discussed in the respective
literature [Kull & Flach 2015].

Even though this justifies to not use proper scoring rules as general probabilistic
classification evaluation metrics, the situation of comparing different calibration tech-
niques for a given, fixed classifier is inherently different. First, the refinement loss is
mainly optimized during the training of the underlying classifier that is completely
independent of the calibration optimizations. Even if the calibrated probabilities’
refinement loss does not have to coincide with the classifier’s one, it is still reasonable
to assume that the calibration only slightly influences the AUC, a strictly monotonic
transformation mapping is even guaranteed to preserve it. Thus, assuming only mi-
nor influences on the refinement loss, comparing error values of proper scoring rules
after applying calibration mainly means to compare the calibration losses. Therefore,
they are an appropriate choice as classifier calibration evaluation metrics.

Inappropriateness of Bin-based Metrics

On the other hand, there are three major omnipresent problems related to the bin-
based metrics. First, the selection of the number of bins (or equivalently, the bin
size) remains arbitrary. Some consequences of this issue and their influence to the
error values have already been observed and discussed in relatively recent work [Nixon
et al. 2019]. Second, the concrete probability values inside a bin are discarded. It is
only a metric measuring the closeness of averaged but not individual probabilities.
Symmetrically miscalibrating all predictions inside a bin will obviously change the
calibration, but not the ECE or MCE as the means remain unchanged. Thus, even an
error of zero does not mean that all probabilities are perfectly calibrated.

The third and major problem lies in the construction of the reference binning
model and the corresponding error function |o(Bi) − e(Bi)| itself. Computing the
error function values in this way consists of a two-step procedure. The first step
constructs the bins Bi and their reference probabilities o(Bi) =: pref(x;Bi) (to make
the dependency on x explicit, even though they are constant for a given Bi) as the
fraction of class-1 instances from the test data inside the bin Bi, which is the same
as applying binning calibration to the test data probabilities p(xj), j = 1, . . . , r,
obtained from the model and the calibration function in question. Using the identity∑

j:p(xj)∈Bi

1(yj = 1) =
∑

j:p(xj)∈Bi

pref(xj ;Bi) (3.23)

for the binning reference model (on the left-hand side, binary values are accumulated,
and their average is summed on right-hand side), in the second step the error is simply
computed as the discrepancy between the probabilities obtained from the reference
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model and the original model in question, respectively:

|o(Bi)− e(Bi)| =

∣∣∣∣∣∣ 1
ri
·

∑
j:p(xj)∈Bi

1(yj = 1) − 1
ri
·

∑
j:p(xj)∈Bi

p(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
ri
·

∑
j:p(xj)∈Bi

pref(xj ;Bi) −
1
ri
·

∑
j:p(xj)∈Bi

p(xj)

∣∣∣∣∣∣
= 1

ri
·

∣∣∣∣∣∣
∑

j:p(xj)∈Bi

(pref(xj ;Bi) − p(xj))

∣∣∣∣∣∣

(3.24)

The remaining difference between ECE and MCE only is how the bin-wise errors are
accumulated. For MCE, only the maximum average absolute error is computed, while
substituting (3.24) into the definition (3.22) yields:

ECE(D) = 1
r
·
m∑
i=1

∣∣∣∣∣∣
∑

j:p(xj)∈Bi

(pref(xj ;Bi) − p(xj))

∣∣∣∣∣∣ (3.25)

Consequently, actually only the signed differences per instance are accumulated inside
each reference model’s bin. Similarly, the same approach can easily be generalized for
every calibration technique by using it to compute the reference probabilities pref(x)
and substitute them into equation (3.24). Here, especially the sample grouping is
no longer required and thus, also emphasizes the problematic and arbitrary sample
grouping involved in binning. Additionally, there is no justification to use the same
sample grouping for both steps, reference model estimation and error computation.
In this sense, the error computation overfits to the reference model.

Besides this, it is questionable to perform the reference model estimation on the
probabilities p(x) instead of the underlying classifier’s predictions f(x). The former
adapts the reference model based on the predicted probabilities and thus directly
depends on the previously estimated calibration model that is to be evaluated. This
means that using bin-based evaluation metrics to compare different calibration models
based on the same classifier outputs yields error values that are computed using
different reference models. Thus, the overall errors are not as comparable as they
would be if the reference model was the same and independent of the probabilities in
question. To remedy these issues, it could be an option to omit the sample grouping
in the ECE and MCE computation and accumulate the pointwise absolute differences
instead, as well as replace the reference probability with the true class vector to be
independent of the reference binnig model. This results in an error metric similar
to the Brier score except that the absolute instead of squared errors are computed.
Even though this seems to be a valid alternative, it results in an improper socring
rule and thus is also unjustified.

In light of the analysis provided, bin-based evaluation metrics do nothing but
apply calibration by binning on the test data’s probabilities p(xi), i = 1, . . . , r, to
evaluate the previous calibration on the training/validation data and, therefore, sim-
ply lose any justification to be used as a calibration error function. They can still
be useful to evaluate the calibrateness of a classifier that has not been optimized
to produce calibrated probabilities – just like other calibration techniques. But as
soon as these techniques were already used to explicitly postprocess the outputs into
calibrated probabilities, it is unreasonable to apply one of these techniques again to
evaluate itself.
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Furthermore, these insights also may explain that bin-based metrics tend to prefer
bin-based calibration techniques because there is an interesting coincidence between
the introduction of bin-based state-of-the-art calibration techniques like ENIR and
bin-based evaluation metrics, as discussed in full detail in chapter 2.

On the contrary, the problems described above are not present with the proper
scoring rules. However, a prevalent problem for both, proper scoring rules and bin-
based metrics, is the fact that they assume a representative test set. Proper scoring
rules are at least provably valid if an integration over the whole data-generating
distribution is possible, but in practice only the test data can be used instead. Thus,
predicting the test data’s empirical posterior probabilities Pemp(y | x) or Pemp(y | f(x)),
respectively, will minimize the proper scoring rules on the test data. There simply is
no known error function that can identify the true posterior probabilities using finite
data that do not provide information about the actual probabilities. Thus, it is only
partly possible to compare calibration techniques at all. But if doing so, currently
the only reasonable error metrics are proper scoring rules.

This statement can further be supported if the perfectly calibrated probabilities
P (y | f) were given at testing time. It would be straightforward to compare the
estimated probabilities to the true ones using a regression error function L(p, q). Us-
ing the squared error L2(p, q) = ‖p − q‖22 recovers the Brier score, while using the
Kullback-Leibler divergence4 KL(p, q) = ∑k

i=1 qi log qi
pi

recovers the log-loss, respec-
tively, using a binary vector q encoding the given class value. Thus, proper scoring
rules are equivalent to using well-known error metrics, only restricted to binary ref-
erence vectors.

3.4 Comparison of Calibration Techniques
The preceding sections presented several theoretic results where for practical applica-
tions, the provided insights are particularly relevant as recent reference studies rely on
unjustified and invalid evaluation metrics. As presented in the summary of existing
results in chapter 2, there are different empirical comparisons of classifier calibration
techniques in the respective literature available, however all of them expose certain
drawbacks. In this regard, this section performs different experiments to empirically
compare the state-of-the-art techniques and to analyze several open issues related to
classifier calibration applied in practice.

As on real-world data true reference probabilities are not available, the first part
of the empirical comparison uses distributions to sample the data such that after com-
paring the different calibration techniques, the true posterior probabilities computed
from the distribution can be used as a reference. Thereafter, different real-world data
sets are evaluated.

3.4.1 Simulation Studies

The first empirical evaluations are performed using artificially generated data. Inter-
estingly, these are rather uncommonly applied in the classifier calibration literature,
but are at least in some even relatively recent works [Naeini 2016; Naeini et al. 2015a;
Naeini & Cooper 2015, 2018; Naeini et al. 2014, 2015b]. In particular, the authors
simulated different two-dimensional data sets that are correctly predictable using a
sufficiently parameterized support vector machine (a spherical and an XOR example).

4It should be emphasized that in this definition, the role of p and q is swapped for consistency.
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Figure 3.1: Illustration of the simulated score distributions used in
the first two calibration experiments.

A similar study is performed by other authors [Jiang et al. 2011] where Gaussian-
distributed data were generated and evaluated by training a logistic regression model
on it. The biggest advantage of simulated data sets is that the true data-generation
distribution is known and thus, the predicted probabilities directly can be compared
to the true ones. Still, in the following part the score instead of data distributions will
be selected and sampled. Interestingly, respective reference results are not available.

First Experiment: Calibration Accuracy

Based on aforementioned reasoning, this section applies different state-of-the-art clas-
sifier calibration techniques under artificially generated, optimal conditions to exclude
any influence of classifier training algorithms or sampling issues. For this, the cali-
bration data (fi, yi) were generated, for each of the two classes y = ±1 by sampling
from Gaussian distributions with mean µ = y, standard deviation σ and 100, 1000,
10000 and 100000 samples per class. The respective distributions are illustrated in
figure 3.1. The standard deviation was selected as 0.5, 1, 2 and 4, yielding 16 arti-
ficial data sets in total. This setting has two important properties: First, the true
posterior probabilities can be computed as P (y = 1 | f) =

(
1 + exp

(
−2 · f/σ2))−1

and thus second, a parametric model in the form of (3.4) is provably optimal. For
σ = 1, this sigmoid function is illustrated in figure 3.5b. All techniques are evaluated
using a 10-fold random, stratified cross validation on each data set, where the same
partitions are used for all techniques to preserve comparability.
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On these generated data sets the following calibration techniques were compared:
ENIR and ELiTE as the most recent state-of-the-art approaches from the literature,
isotonic regression and Platt scaling as monotonic and strictly monotonic, respec-
tively, techniques. Additionally, two binning variants were applied: One directly bins
the real-valued decision function into bins of size 0.1, another performs a sigmoidal
precalibration (pc) using z 7→ (1 + exp(−z))−1. Furthermore, the presented variant
of KDE and the newly introduced technique EKDE were applied as techniques that
are based on continuous density estimation, both also with a sigmoidal precalibration
to better focus on the decision boundary during bandwidth estimation. Addition-
ally, also the “calibration oracle” has been used that directly maps the score f to the
true posterior probability. It should be emphasized that the difference between Platt
scaling and directly predicting the true posteriors only lies in computing the param-
eters from data, or analytically from the known distributions. Thus, the predictions
between these two are close, whereas it is still especially interesting to analyze their
differences under the evaluation metrics.

Different evaluation metrics have been used to evaluate the respective probability
estimates. Based on the insights of section 3.3, the proper scoring rules log-loss
and Brier score are used as the main evaluation criteria for classifier calibration.
Additionally, the bin-based metrics ECE and MCE were computed as well. As they
depend on an arbitrarily selected bin number, both have been computed for varying
bin numbers of 10, 20, 30, 50 and 100, respectively. It was also tried to construct
a more robust bin-based error metric by averaging the former ten individual ones.
Finally, the Kullback-Leibler divergence and the squared error L2 between the true
posterior probabilities and the actually predicted ones are computed. Both can be
interpreted as the continuous equivalents of the two proper scoring rules as discussed
in section 3.3, while explicitly evaluating them is only possible in simulation studies
where the true posterior probabilities are known. Here, it is very interesting to
analyze the correlations between these direct and the other calibration error metrics
as the latter are the only feasible choices as soon as real-world data are evaluated.
Consequently, the calibration oracle necessarily always yields zero error under the
direct ones.

To compare the algorithms using any of the evaluation metrics over all data sets,
an established standard procedure was applied [Demšar 2006]. In particular, the
methods are ranked on each data set according to their errors, where the best per-
forming technique is ranked first and ties are broken by assigning average ranks. Next,
average ranks over all data sets are computed and combined with a non-parametric
Friedman test to test whether there are significant differences in the average ranks,
using the default α = 0.05 significance level. After rejecting the null hypotheses, the
post hoc Nemenyi test has been used, too.

The respective results are illustrated in critical difference diagrams in figures 3.2
and 3.3. In the former, the average ranks together with the critical difference are illus-
trated for the log-loss and the Brier score as well as the Kullback-Leibler divergence
and the L2 error to the true probabilities, while in the latter, the bin-based aver-
aged ranks are presented for ten bins and the overall average over all ten individual
bin-based ranks.

It is important to observe in figure 3.2 that both proper scoring rules succeed at
identifying that Platt scaling and predicting the true posteriors are optimal, without
significant differences, which indeed is true. The two binning variants are ranked last,
while the group of five different techniques yields roughly similar results under all four
metrics. It is especially interesting to observe that the two proper scoring rules yield
reasonably similar rankings as well as that the results obtained from both, log-loss
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(c) Nemenyi test results for the Kullback-Leibler divergence.
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Figure 3.2: Nemenyi test results for the log-loss, the Brier score,
the Kullback-Leibler divergence and the L2 error in the
simulation study.
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(b) Nemenyi test results for the maximum calibration error (MCE) with 10 bins.
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Figure 3.3: Nemenyi test results for the bin-based error metrics.

and Brier score, are similar to the ones of their respective continuous counterpart.
This is very interesting as the former two are computed using the known class values
(which are also available on real-world data), while the latter were directly computed
using the true posterior probabilities (which are unknown in general). It should be
noted that the Brier score and the L2 error ranks are slightly different to those of
the log-loss and the Kullback-Leibler divergence. However, this is easily explainable
since the latter have a singularity at 0.

On the contrary, figure 3.3 shows that the bin-based error metrics mostly suc-
ceeded at identifying5 the true posteriors as the best calibration technique, while
failing at identifying Platt scaling as equivalent. Furthermore, all techniques besides
predicting the true posteriors and the two variants of binning are roughly comparable,
while the binning variant without precalibration seems to be the worst technique. On

5The respective omitted figures are available in the supplementary material.
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the other hand, the precalibrated binning variant gave second-best results with re-
spect to ECE variants and those of MCE with 10 and 20 bins, while the MCE variants
with at least 30 bins even detect it as superior to the true posteriors, however without
significant differences. Still, most remarkably is the fact that the provably optimal
technique under this conditions is never detected as such, the best average rank 5.06
is obtained with MCE using 10 bins.

Besides interpreting this as a strong empirical evidence against the validity of
bin-based metrics and supporting their problematic aspects, as discussed in section
3.3, these results also show that at least under artificial conditions, a sigmoidal pre-
processing can massively improve the calibration results with respect to all metrics.
This empirically supports the application of sigmoidal transformations in classifier
calibration and thus also those of monotonic ones.

Additionally, it is interesting to analyze the difference between Platt scaling and
directly predicting the true posterior probabilities in more detail. As previously men-
tioned, they differ only in computing the sigmoid’s parameters by using the given
data or the data-generating distribution, respectively. Even though these differences
should be negligible, they resulted in a large gap with respect to the bin-based met-
rics (which will be addressed in the following experiment) and small differences under
the proper scoring rules. Still, the deviations between them are not symmetric un-
der the proper scoring rules either, because in both cases the true posteriors yield
smaller average ranks, even though these are not detected as significant in the (rank-
based) Nemenyi test. Thus, the proper scoring rules seem to be sensitive enough to
even detect these small differences, which also empirically supports their validity as
calibration error functions.

The existence of these differences can be explained from multiple sources of errors
that influence the parameter estimation and thus the predicted probabilities. First,
since there is no closed-form solution, the parameters are estimated iteratively, and
the estimation is terminated as soon as a certain target accuracy is reached. Thus,
there will always be a remaining error. Second, if a distribution is sampled, there
will always be errors resulting from the sampling. The sample simply contains less
information than the data-generating distribution. This is additionally amplified
from the random cross validation sampling that is used to estimate the parameters.
Third, the sigmoid parameters are estimated using a maximum likelihood approach
and thus can slightly overfit its training data, which is obviously strongly related to
the sampling issues. Finally, there are numerical inaccuracies in the involved floating-
point operations.

All these issues accumulate into small errors εi = P (y | f(xi))−σa,b(f(xi)) between
the true posterior probability and the one computed with Platt scaling, even if all
parametric assumptions hold. In particular, the signed mean error per data set is
positive in six and negative in ten cases with mean −5.5 · 10−4 and standard devi-
ation 4.8 · 10−3, respectively, and thus reasonably small but tends to be symmetric.
On the contrary, the scoring rules report a larger overall error from the symmetric
individual ones in almost all cases. This observation can be explained from the fact
that Brier score and log-loss can be interpreted as discrete versions of the squared
error and the Kullback-Leibler divergence, respectively. A continuous loss function’s
expectation E[L] over the whole distribution by definition has to show a larger error
for any individual difference L(p, p± ε). Assuming that a sample data set including
its posterior probabilities is given, by the law of large numbers the empirical error of
L will show the same behavior if the sample is sufficiently large. A very interesting
observation here is the fact that the proper scoring rules seem to also inherit this
property of their continuous counterparts, at least in this particular setting. If this
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generally holds, it will be a further justification for the viability of proper scoring
rules as classifier calibration evaluation metrics. This is an interesting open question,
but without the true posterior probabilities, unfortunately it can hardly be analyzed
under real-world conditions.

Second Experiment: Extended Bin-based Metrics

Evaluating the bin-based error metrics in the previous experiment yielded unexpect-
edly bad results with respect to the provably optimal technique Platt scaling. In the
same way, it is interesting to observe that the difference between an analytical and a
data-based estimation of the parameters resulted in a relatively small but detectable
difference with respect to the proper scoring rules, the Kullback-Leibler divergence
and the L2 error, while it caused a remarkably large performance gap with respect
to the bin-based metrics.

This is most likely caused by the inaccurateness of the binning calibration underly-
ing the computation of the bin-based error values, resulting from the issues discussed
in section 3.3. To support this hypothesis, an additional experiment reevaluating the
ECE and MCE values was performed. While the proper scoring rules are instance-
based error metrics (i.e. the error is computed per instance and averaged over the
whole data set), bin-based metrics are computed using a data set to fit the refer-
ence calibration model yielding a single error value on it. Based on the equivalence
shown in equation (3.24), at least the ECE value can be interpreted for each instance,
however only if the reference model and thus indirectly the reference data set is given.

This is an important consequence as during the performed cross validation iter-
ations, the reference data consist only of the respective cross validation fold’s test
data, while the remaining data were used to fit the calibration function and thus
were excluded during evaluation. Thus, after finishing all cross validation iterations,
there is a predicted probability available for each instance and, as a result, enables to
recompute the bin-based error values using all predicted probabilities simultaneously
as a reference instead of accumulating the fold-wise errors. It should be noted that
with respect to the proper socring rules, both approaches are equivalent, as these
only depend on the predicted probabilities (per instance) and the corresponding class
values, but not indirectly on a reference data set. Thus, ECE and MCE (using 10
bins) were recomputed in a follow-up step using all predicted probabilities per data
set. The respective results are illustrated in figure 3.4.

With respect to the surprisingly large difference between Platt scaling and the
true posteriors, the first observation here is that the differences in the average ranks
between these two now are more comparable to the respective ones under the proper
scoring rules. However, Platt scaling is detected as the superior one out of these
two approaches here. In particular, the true posteriors even yield a poor average
rank in both cases despite being optimal. Still, most differences were not detected as
significant using the Nemenyi test even though the Friedman test rejected the null
hypothesis.

These results can be explained by the inaccuracies of the binning models under-
lying the ECE and MCE computations, which simply might be too coarse to yield
reliable error metrics. An inferior model is simply unable to assess a superior or even
provably optimal one.

Third Experiment: Random Influences

Besides comparing the bare accuracies of the different techniques, another important
but actually not addressed issue in available studies are the predicted probabilities’
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Figure 3.4: Nemenyi test results for ECE and MCE using all samples.

variances. In particular, the minimum error is unknown and thus, the absolute error
function values are hardly interpretable. Thus, it is rather interesting to observe that
this question is not discussed in existing state-of-the-art works on classifier calibration.
A possible explanation is that it is hardly answerable at all. An analytical solving
requires a closed-form expression for the derivation of an optimization problem’s
solution (the training result) with respect to variations in the input data, which is
usually impossible as even a closed-form solution for the optimization problem itself
does not exist. However, a feasible alternative is to estimate the variance empirically
by analyzing the dependence of the overall results on random variations.

In a comprehensive study, this involves to use a data set, at least one classification
algorithm and a set of calibration techniques as well as to evaluate the predicted prob-
abilities’ variation caused by random changes in the input data. However, iterated
classifier trainings will bias these results because usually even the training algorithm
itself might be non-deterministic and thus, the analysis cannot distinguish between
controlled random influences in the input data and the remaining other ones.

To address these problems, a simulation study was performed to fully control
all random influences. Here it is important that, given a fixed sample of classifier
predictions and their corresponding class labels, the estimation of the calibration
functions as well as the error metrics are deterministic, i.e. do not depend on random
influences. This enables to repeat the experiments under carefully selected random
influences. In particular, two data sets were artificially generated, each consisting of
10000 instances per class by sampling Gaussian distributions with means µ = y = ±1.
The first data set is generated with equal standard deviations σ1 = σ−1 = 1, while
in case of the second asymmetric data set, the standard deviations were selected as
σ1 = 1 and σ−1 = 3. Both distributions and their resulting posterior probabilities
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Figure 3.5: Illustration of the simulated score distributions and the
resulting posterior probabilities used in the the third cal-
ibration experiment.

are illustrated in figure 3.5.
In contrast to the previous experiments, the aim of this study is not to evaluate

the calibration accuracies, but instead to focus on the variances of the predicted
results. For this, small but controlled random influences are necessary. It might be
possible to recreate the sample multiple times. Still, it remains at least unclear in
how far the results remain comparable as the sample data are not the same between
different iterations. For this reason, the score sample data are only generated once
and to introduce a minor randomization, only the cross validation was iterated 100
times with independently generated partitions that were used to fit the calibration
models. Consequently, each predicted score was calibrated 100 times.

The results are presented in table 3.1 where each row contains the estimated
standard deviation per instance, averaged over all samples in the respective data set.
In particular, the standard deviations are given for the predicted probability p as well
as the four evaluation metrics log-loss, Brier score, Kullback-Leibler divergence and
L2 error. It should be emphasized that the error metric variances per instance cannot
be computed using bin-based metrics because they are not instance-based and require
a respective reference set. Still based on the insights of the second experiment, the
variances of the bin-based metrics are expected to be an order of magnitude larger
than those of the proper scoring rules.

The results show that in any case, the average standard deviation of the prob-
ability and the two proper scoring rules is lower bounded by approximately 10−3.
Furthermore, the averaged standard deviations of the Kullback-Leibler divergence
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Platt Binning Binning pc IsoReg ENIR ELiTE KDE EKDE

σ−1 = 1

p 0.0009205 (1) 0.0049598 (6) 0.0030788 (4) 0.0050708 (8) 0.0050676 (7) 0.0045733 (5) 0.0025937 (3) 0.0025218 (2)
ϕLL 0.0018451 (1) 0.0107470 (8) 0.0062052 (4) 0.0105946 (7) 0.0103446 (5) 0.0103804 (6) 0.0051511 (3) 0.0049900 (2)
ϕBS 0.0010953 (1) 0.0056975 (6) 0.0037670 (4) 0.0063818 (8) 0.0063687 (7) 0.0053586 (5) 0.0031538 (3) 0.0030693 (2)
KL 0.0000228 (1) 0.0024396 (7) 0.0005205 (4) 0.0010718 (6) 0.0007349 (5) 0.0030416 (8) 0.0002243 (3) 0.0002131 (2)
L2 0.0000062 (1) 0.0001810 (7) 0.0001147 (4) 0.0001297 (6) 0.0001294 (5) 0.0003094 (8) 0.0000395 (3) 0.0000376 (2)

σ−1 = 3

p 0.0010478 (1) 0.0071715 (7) 0.0037350 (3) 0.0027193 (2) 0.0076770 (8) 0.0043480 (4) 0.0049298 (6) 0.0048488 (5)
ϕLL 0.0022614 (1) 0.0156614 (8) 0.0074887 (3) 0.0056306 (2) 0.0146863 (7) 0.0084944 (4) 0.0098044 (6) 0.0096305 (5)
ϕBS 0.0016643 (1) 0.0107569 (8) 0.0057044 (3) 0.0043269 (2) 0.0105483 (7) 0.0061493 (4) 0.0076498 (6) 0.0075377 (5)
KL 0.0012919 (6) 0.0019517 (8) 0.0006284 (4) 0.0008486 (5) 0.0019137 (7) 0.0005332 (3) 0.0004522 (2) 0.0004400 (1)
L2 0.0004036 (6) 0.0004520 (7) 0.0002154 (5) 0.0002131 (4) 0.0004711 (8) 0.0001251 (1) 0.0001646 (3) 0.0001619 (2)

Table 3.1: Estimated standard deviations per calibration technique
for the predicted probability p, the log-loss ϕLL, the Brier
score ϕBS, the Kullback-Leibler divergence KL and the L2

error, each averaged over the respective data set.

and the L2 error are smaller (in most cases even an order of magnitude), but this has
less practical relevance as these cannot be computed in practice. Thus, it is unlikely
that probabilities can be calibrated with errors smaller than those obtained under
relative mild random influences.

Finally, the most important conclusion from the performed simulation studies is
a strong empirical evidence against using bin-based error metrics while comparing
classifier calibration techniques, as well as an empirically justification to use proper
scoring rules for this purpose, supporting the theoretical insights of section 3.3.

3.4.2 Real-World Data

The summary of existing results in chapter 2 showed that there are different empirical
comparisons of classifier calibration techniques in the respective literature available,
however all of them expose certain drawbacks. Often the data sets are either large and
the experiments focus on a relative restricted number of different data sets (sometimes
even only a single one), or multiple data sets are used but many are relatively small.
There simply is no study available that evaluates calibration on 20 different data sets
where each has 10000 or more training instances. Since no direct evaluation metric
exists, it is hardly reasonable at all to evaluate calibration on data sets consisting of
about one hundred instances – the sample is highly likely to be not representative
enough. On the other hand, evaluations should also cover high-dimensional data sets
because here probability estimation becomes particularly challenging, as previously
discussed. However, simultaneously analyzing large-scale high-dimensional data sets
can easily become infeasible if multiple training iterations are necessary, as each one
easily takes too much time.

Thus in contrast to these existing studies, the experiments were preformed using
a set of 46 reference real-world data sets covering a large variety of domains. All are
publicly available, mostly in either the UCI Machine Learning Repository [Dua & Graff
2019] or by LIBSVM [Chang & Lin 2011]. The most important properties are presented
in table 3.2, while further details including the necessary steps to recompute the used
data files from their respective sources are given in the supplementary material, too.
Summarized aspects are illustrated in table 3.3 showing that the data sets used here
are on order of magnitude larger than in any comprehensive comparative study, as
summarized in subsection 2.2.3.

First Experiment: Calibration Accuracy

Besides comparing the pure accuracies of the respective techniques only, the per-
formed study especially addresses the open question whether the data set should be
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Name Samples (r) Class 1 Class -1 Features (n) Size [MB]
1 Adult 48842 7841 41001 41 4.57
2 Arcene 200 88 112 9961 5.48
3 Arrhythmia 452 207 245 257 0.35
4 Bank Marketing 41188 4640 36548 62 6.27
5 Code-RNA 488565 162855 325710 8 31.02
6 Connect-4 (With Draw) 67557 44473 23084 42 6.17
7 Connect-4 (Without Draw) 61108 44473 16635 42 5.58
8 Covertype 495141 211840 283301 49 59.92
9 Default of credit card clients 30000 6636 23364 23 2.75
10 Detect Malacious Executable (AntiVirus) 373 72 301 503 0.38
11 Dota2 Games Results 102944 54284 48660 114 24.55
12 First-order theorem proving 6118 2554 3564 51 2.69
13 Gas Sensor Array Drift 5935 2926 3009 128 7.43
14 Gesture Phase Segmentation 5691 2741 2950 32 2.01
15 Gisette 7000 3500 3500 4971 78.75
16 Give Me Some Credit 150000 10026 139974 8 5.76
17 Grammatical Facial Expressions 27936 9877 18059 300 57.78
18 Hill-Valley (No Noise) 1212 612 600 100 1.45
19 Hill-Valley (With Noise) 1212 606 606 100 0.84
20 HTRU2 17898 1639 16259 8 1.76
21 Human Activity Recognition Using Smartphones 10299 4672 5627 561 67.29
22 Ijcnn1 191681 18418 173263 22 26.04
23 Insurance Company Benchmark (COIL 2000) 9822 586 9236 85 1.72
24 KDD Cup 1998 Data 191779 9716 182063 313 158.90
25 Letter Recognition 1536 753 783 16 0.06
26 Localization Data for Person Activity 87190 32710 54480 32 9.90
27 Madelon 2600 1300 1300 500 5.21
28 MAGIC Gamma Telescope 19020 12332 6688 10 1.50
29 MicroMass 931 357 574 1139 3.34
30 MiniBooNE particle identification 130064 36499 93565 50 55.33
31 Multiple Features 400 200 200 649 1.36
32 Musk 1 476 207 269 167 0.32
33 Musk 2 6598 1017 5581 167 4.46
34 Nomao 34465 24621 9844 89 6.91
35 Occupancy Detection 20560 4750 15810 5 0.96
36 Online News Popularity 39644 19562 20082 59 16.95
37 p53 Mutants 31159 151 31008 5408 1115.00
38 Polish companies bankruptcy 10503 495 10008 20 1.70
39 PUC-Rio 165633 43390 122243 21 12.72
40 Quality Assessment of Digital Colposcopies 287 216 71 62 0.24
41 Skin Segmentation 245057 50859 194198 3 3.60
42 Spambase 4601 1813 2788 57 0.71
43 Statlog (Shuttle) 58000 45586 12414 9 1.61
44 Tamilnadu Electricity Board Hourly Readings 5811 2906 2905 2 0.23
45 UJIIndoorLoc 21048 9760 11288 520 43.86
46 Weight Lifting Exercises 39242 11159 28083 51 9.37

Table 3.2: Individual data sets and their most important properties.

Number of Instances Number of Features
39 / 46 with at least 1000 39 / 46 with at least 10
34 / 46 with at least 5000 27 / 46 with at least 50
27 / 46 with at least 10000 18 / 46 with at least 100
13 / 46 with at least 50000 9 / 46 with at least 500
9 / 46 with at least 100000

Table 3.3: Summary of the data set properties.



64 Chapter 3. Classifier Calibration

split into separate parts for training the classifier and the calibration function, respec-
tively. Each data set was partitioned using a 10-fold stratified cross validation into
train and test data, where each feature column was standardized to mean 0 and stan-
dard deviation 1. The test data were only used in the final evaluation and excluded
from anything else.

Here in case of fitted calibration, the train data were used for both, classifier
training and calibration estimation. To obtain comparable results with predicted
calibration, an additional inner 10-fold stratified cross validation was applied to use
9
10 of the training data to train the classifier and to predict the remaining fraction.
In total this results in 10 · (10 + 1) = 110 classifier trainings per data set to apply
both approaches with maximum comparability.

For aforementioned reasons, the data sets are relatively large. Thus, combining
large data sets with 110 training/test iterations on each requires highly efficient clas-
sification algorithms, otherwise a result cannot be computed in acceptable runtime.
For this reason, support vector machines based on LIBLINEAR [Fan et al. 2008] were
applied. Even though this means that only a single classification algorithm is used,
the analysis explicitly focuses on the influence of the learning algorithm’s parameteri-
zation. In particular, linear support vector machines solve the following optimization
problem at training time

arg min
w,b

{
1
2‖w‖

2
2 + C ·

r∑
i=1

ξi

∣∣∣∣∣ yi · (w>xi + b) ≥ 1− ξi, ∀i = 1, . . . , r
}

(3.26)

where the only free parameter C, which controls the amount of regularization between
margin width and margin violation, has to be selected accordingly. Thereafter, newly
observed instances can be predicted using f(x) = w>x + b and assigned to one of the
two classes using the sign of f.

It should be added that this formulation does not cover the case of kernelized (or
non-linear) support vector machines. Even though these are interesting alternatives,
currently their application requires to solve the dual version of (3.26) using the SMO
algorithm [Fan et al. 2005], which has a runtime of Ω(r2) and thus, is prohibitively slow
on large data sets such that a single training iteration takes multiple days [Alvarsson
et al. 2016]. Further details about kernelized variants and the corresponding solvers
are discussed in the respective literature [Chang & Lin 2011; Hsu et al. 2016], and
performing a similar large-scale study using them remains as an interesting open
issue.

Consequently, the only remaining parameter is the one that controls the amount
of regularization. A default choice of implementations [Chang & Lin 2011; Fan et
al. 2008] is C = 1, while most studies on calibration do not discuss the respective
classifiers’ parameterizations. Explicit optimization of the regularization is usually
performed using iterated cross validations over an exponential grid of predefined val-
ues [Hsu et al. 2016]. Since this ideally can be combined with the necessary inner
cross validation iterations for predicted calibration [Guo et al. 2017; Niculescu-Mizil
& Caruana 2005b], an explicit hyperparameter optimization over the exponential grid
{2−10, 2−8, . . . , 28, 210} was performed. The respective optimal value was selected as
the one with maximum cross-validated (referring to the inner cross validation) accu-
racy on the training data, where the actual value was scaled reciprocally to the class
priors to balance both classes during training. Consequently, the hyperparameter
optimization increases the number of overall training iterations by 11, which in total
results in 10 · (11 · 10 + 1) = 1110 optimizations per data set.

Following the discussion of section 3.3 and empirically supported by the insights
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Figure 3.6: Nemenyi test results for the log-loss and the Brier score
in the fitted calibration setting.
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Figure 3.7: Nemenyi test results for the log-loss and the Brier score
in the predicted calibration setting.
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obtained under perfect information, the two proper scoring rules log-loss and Brier
score were used to evaluate the calibrated probabilities. Similar to the previous simu-
lation study, the techniques are ranked by their respective scores on each data set such
that overall average ranks can be computed. Analogously, the Friedman and Nemenyi
tests were applied using the 0.05 significance level, figures 3.6 and 3.7 illustrate the
results in the fitted and predicted calibration setting, respectively.

The best results are obtained in any case using ENIR, however the difference
towards KDE and EKDE are never be detected as significant. Besides the log-loss in
case of the fitted calibration setting, also the results obtained with ELiTE and isotonic
regression are not detected to be significantly different. Besides this, there are two
other remarkable observations. First, the results obtained with binning are much
improved if a sigmoidal preprocessing is applied (similar to the results observed in
the previous simulation study). Second, isotonic regression’s results are much better
with respect to the Brier score than based on the log-loss. This can be explained by
the fact that isotonic regression optimizes the Brier score subject to a monotonicity
constraint. Thus on larger data sets, it is explainable that the computed probabilities
yield relatively small Brier scores.

Second Experiment: Inner Cross Validation?

In the previous results, the techniques’ predictive performances between the fitted
and predicted calibration setting were roughly comparable. In case of the Brier score,
the overall rankings of the techniques are even the same in both settings, while in case
of the log-loss, the respective relative performances slightly change. Nevertheless, it is
important to emphasize that this only means that their rankings not seem to be much
influenced by using the fitted or predicted sores as training data, but it does not say
anything about their absolute calibration accuracies. The demand for an additional
validation step to compute unbiased predictions means that the absolute errors are
expected to be smaller. Hence, a subsequent experiment was performed in which the
absolute error values in both settings were compared.

In particular, for each calibration technique and each evaluation metric (log-loss
and Brier score), each data set’s error in the predicted calibration setting is compared
to the fitted setting’s counterpart. The test hypothesis formulates that the predicted
calibration’s error is smaller than the one of the fitted calibration, i.e. that applying
the additional cross validation step reduces the calibration error. The number of
respective data sets where this holds is given in table 3.4. Additionally, this hypothesis
was combined with a one-sided sign test.

Here, it is interesting to observe that the maximum number of data sets where
the additional cross validation reduces the calibration error is 22, which is less than
the half of the overall number of data sets. Thus, in every comparison the error is
increased in more cases than it is decreased. Consequently, also the sign test’s p-
values are far away from rejecting the null hypothesis. In fact, even formulating the
inverse hypothesis that fitted calibration yields superior results would be significant at
α = 0.05 in six cases (the binomial distribution’s critical value is 16 in this particular
example). It should be emphasized that properly applying the latter would also
require to perform a Bonferroni correction. Still, the aim is not to derive too many
conclusions based on significance tests because the usefulness of statistical tests in
data mining can generally be criticized [Demšar 2008] in the same way as incorrect
conclusions about them are omnipresent [Goodman 2008].
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Platt Binning Binning pc IsoReg ENIR ELiTE KDE EKDE
Log-loss 14 (0.9977) 20 (0.8490) 17 (0.9730) 22 (0.6706) 17 (0.9730) 21 (0.7693) 19 (0.9080) 18 (0.9481)
Brier Score 14 (0.9977) 18 (0.9481) 16 (0.9871) 15 (0.9943) 13 (0.9992) 15 (0.9943) 18 (0.9481) 18 (0.9481)

Table 3.4: Number of data sets where predicted calibration reduces
the calibration error. Additionally, the p-value of a one-
sided sign test is given.

In conclusion of this experiment, there is no general indication available that
applying the additional cross validation step should be preferred. This is an interest-
ing result as it means a substantial speedup in practical applications if the data set
is large such that the respective additional cross-validated training iterations would
significantly increase the training time requirements.

However, it is important to emphasize that this result is only based on linear
support vector machines, which are usually sparse classifiers, i.e. the output function
does only depend on a fraction of the training samples. Consequently, there might
be sufficient data to unbiasedly estimate the score distribution even without cross
validation or a hold-out set in the predicted calibration setting, respectively. Thus, it
is an interesting open question to repeat a similar experiment with kernelized support
vector machines or even different classification algorithms and to analyze if the same
observations can be confirmed.

3.5 Summary
In summary there were many different results presented. With respect to monotonic
calibration, some incorrect statements that appeared in the literature were corrected.
Besides showing its equivalence to beta calibration up to a sigmoidal preprocessing,
most importantly proving Platt scaling’s optimality for different families of score
distributions gives a theoretical justification for its application and at least partially
provides a so far lacking explanation for its good results. Besides this, theorem 3.2
even enables to extend these properties for different families of likelihood distributions
as long as they fit the respective decomposition. Therefore despite of its simplicity,
Platt scaling is still a powerful calibration technique and simultaneously very versatile
due to its high efficiency.

More generally with respect to monotonic calibration, the combination of iso-
tonic regression’s convergence properties and its relation to observations of Bernoulli-
distributed random variables turn it into a straightforward selection in any case where
a monotonic transformation is assumed but Platt scaling’s parametric assumptions
do not hold. Artificial possibilities are distributions with non-differentiable density
functions, whose practical relevance is at least unclear. Thus, especially interesting
variants are likelihood distributions with differentiable density functions p(f | y) such
that the transformation into posterior probabilities is monotonic and, as a combina-
tion of differentiable functions, differentiable but not a valid instance of Platt scaling.
Here, it is an explicit interesting open question in which cases these distributions are
actually observed for sufficiently selected data and classification algorithms, respec-
tively.

Other important aspects of possible classifier calibration error metrics were an-
alyzed. Here, despite attracting much interest in recent years, bin-based evaluation
metrics are useful to evaluate the calibration of a classifier that has not been explicitly
optimized to produce calibrated probabilities, but they are inappropriate to evaluate
and compare calibration techniques. This is caused by the fact they rely on computing
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a reference calibration binning model and evaluate the previous calibration by com-
paring the different models’ probabilities. These insights were empirically supported
using a simulation study that showed a well correlation between the proper scoring
rules and their continuous counterparts, while the bin-based metrics yield biased and
wrong results. In light of this, conclusions based on bin-based evaluation metrics as
those that are available in reference results can be misleading.

With respect to the evaluated real-world data sets, the first observations are that
the presented extension to KDE calibration as well as EKDE are two powerful and
easy to apply non-monotonic calibration techniques. They successfully compete with
state-of-the-art techniques while being easier to apply as practically any statistical
software toolkit allows the application of kernel density estimation, whereas apply-
ing comparable state-of-the-art techniques like ENIR or ELiTE requires to solve the
respective optimization problems.

Additionally, there is no indication of any relevant accuracy difference between
KDE and EKDE. This can be explained by the fact that KDE (especially with the
extensions presented) already most probably well approximates the true likelihood
distributions and, consequently, an extension to ensembles might only have a minor
impact. Thus, improvements using density-based calibration are less likely to reduce
the error by using ensembles that share the same constant priors, but instead maybe
by constructing ensembles sharing the same likelihoods learned on the data in com-
bination with varying prior distributions. Here, the class priors P (y = ±1) could be
modeled alternatively by using Gaussian distributions whose means are selected as
the fractions estimated on the data. Sampling this distribution to construct an en-
semble with slightly different class priors presumably better improves the calibration
than varying the density estimations. This also enables to include the respective class
priors in the scoring of the different models in (3.20).

Still, the question remains whether well-performing density estimation-based mod-
els are already generally sufficient for any binary classifier calibration task. Their the-
oretical properties often guarantee that the densities are reasonably approximated,
while verifying the posterior estimation using error metrics is biased by the lack of
true posterior probabilities. Thus, it is impossible to differentiate between real im-
provements and those caused by the lack of true reference probabilities, i.e. effects
caused from an insufficient sampling of the test data.

With respect to practical applications, it is especially interesting that a direct
necessity for a separate hold-out calibration data set was not observed, at least in
this particular setting. Hence, applying calibration in practice without iterated train-
ings is very efficient. It is an interesting open issue to repeat a similar experiment
with kernelized support vector machines or other machine learning models. However,
even a quadratic training runtime complexity will most likely be too inefficient here.
Additionally, the sigmoidal precalibration massively improved the calibration results
of binning, which also empirically supports its application before applying density
estimation techniques, if not even its general application in the context of classifier
calibration. This is remarkable because also state-of-the-art techniques restrict their
application to probabilistic classifiers using sigmoidal preprocessings.

In the following chapters, classifier calibration will be applied in combination
with decomposition-based classification. In particular, classifiers will be used and
calibrated for different subproblems that are created according to the respective de-
composition. For this, at first a theoretical framework will be applied that offers
several advantages over existing, Bayesian-motivated or heuristic approaches, in par-
ticular with focus on dynamic classification.
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Chapter 4

Evidence Theory

An important part of decomposition-based classification is the estimation of compa-
rable individual predictions, thus calibration techniques are particularly relevant for
it. In combination with the one-vs-one decomposition, calibration is an important
basis for all most relevant pairwise coupling techniques, as presented in full detail in
chapter 2.

According to recent results, one of the main issues in decomposition-based classifi-
cation and in particular the one-vs-one decomposition is the non-competence problem.
Not only to deal with the related open issues but especially to integrate dynamic infor-
mation given by a varying class setM⊆ Y, this chapter introduces a new approach to
decomposition-based classification using evidence theory, which is a powerful frame-
work that generalizes Bayesian probability theory.

The motivation for this approach is three-fold: First, evidence theory allows the
structured modeling of partial information. For example, independently estimated
probabilistic one-vs-all predictions (f1(x), f2(x), . . . , fk(x)) have no real probabilistic
interpretation as they do not sum to one. Still, evidence theory allows a reasonable
interpretation. Next, the framework’s theoretical constraints yield a new understand-
ing of the non-competence problem. Most importantly, it allows a structured way to
combine partial into joint information such that decomposition-based classification
not only can be modeled, but also dynamic class information can be integrated in the
same way to obtain a consistent, theoretically justified evidence-theoretic approach
to dynamic classification.

First, section 4.1 shortly presents evidence theory and its concepts that are rele-
vant for the remaining work. Thereafter, section 4.2 applies the one-vs-all and one-vs-
one reductions using the presented evidence-theoretic modeling in subsections 4.2.1 as
well as 4.2.2, respectively, and demonstrates in subsection 4.2.3 how evidence theory
can be used to construct new decomposition-based approaches. Finally, section 4.3
presents how dynamic classification can be solved using evidence theory.

4.1 Introduction to Evidence Theory
Evidence theory [Shafer 1976], also known as Dempster-Shafer theory of evidence or
theory of belief functions, is a generalization of finite Bayesian probability theory.
Therefore, Ω = {1, 2, . . . , k} refers to a finite set of possible outcome events. In any
actual application, Ω will always equal the set of classes on which different predictions
are to be combined.
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4.1.1 Mass Functions

In a classical stochastic context, probabilities of events ω ∈ Ω are modeled using a
probability function

f : Ω→ [0, 1] satisfying
∑
ω∈Ω

f(ω) = 1 (4.1)

such that probabilities of arbitrary events A ⊆ Ω can be computed by the induced
probability measure P on the power set P(Ω) as P (A) = ∑

ω∈A f(ω). This has
several intuitive consequences, for example P (∅) = 0 and probabilities of disjoint
unions C = A ·∪ B can be computed by summing the respective sets’ probabilities
P (C) = P (A ·∪B) = P (A) + P (B) and in particular P (A) + P (AC) = 1.

Evidence theory models uncertainty differently using a mass function or basic
probability assignment

m : P(Ω)→ [0, 1] satisfying m(∅) = 0 and
∑
A⊆Ω

m(A) = 1 (4.2)

that assigns a basic probability number to each A ⊆ Ω. All subsets such thatm(A) > 0
holds are called focal sets or focal elements. Extending a probability function with
zero to all subsets containing more than a single element always induces a Bayesian
mass function, therefore the latter can be interpreted as a strict generalization of the
former.

In the context of evidence theory, Ω is often referred to as the frame of discern-
ment where the key concept is to model uncertainty using a two-dimensional measure
consisting of belief Bel(A) and plausibility Pl(A) of A ⊆ Ω that both are constructed
using m. In particular, the belief of A

Bel(A) :=
∑

B:B⊆A
m(B) (4.3)

is the sum of all masses assigned to A or any of its subsets, while the plausibility is
one minus the belief of AC

Pl(A) := 1−Bel(AC) = 1 −
∑

B:B∩A=∅
m(B) =

∑
B:B∩A 6=∅

m(B) (4.4)

where the two equivalences are simple reformulations. Using (4.3) and (4.4), it is
straightforward to see that Bel(A) ≤ Pl(A) always holds. Therefore, the belief
Bel(A) can be interpreted as a degree of strict support for A, while the plausibility
Pl(A) as a measure of non-conflict, both according to the evidence of m.

In the Bayesian case where the mass functionm is equivalent to a probability func-
tion f , the belief coincides with the plausibility and both are equal to the induced
probability measure P . Even though arbitrary mass functions do not represent prob-
ability distributions, it is still possible to create the pignistic probability distribution
[Smets & Kennes 1994]

BetP (ω) :=
∑

A⊆Ω:ω∈A

m(A)
|A|

, ∀ω ∈ Ω (4.5)

from an arbitrary mass function m. Here, each set’s mass is uniformly distributed
among its elements and each element’s masses are accumulated over all sets containing
it.
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Figure 4.1: Illustration of the belief Bel(A), the plausibility Pl(A)
and the pignistic probabilities BetP (ω) based on (4.7).

It is straightforward to verify that (4.5) indeed defines a valid probability distri-
bution over Ω. Moreover, the pignistic probability distribution coincides with the
respective probability function BetP (ω) = P ({ω}) = f(ω) for all ω ∈ Ω in case of a
Bayesian mass function m and probability function f , respectively.

The previous definitions can be demonstrated by using the following non-uniform
probabilities

f(ω) =



1
12 if ω = 1
1
4 if ω = 2
1
6 if ω = 3
1
2 if ω = 4

(4.6)

to model the rolling of a tetrahedron (i.e. a four-face die). This leads to the proba-
bilities P ({1, 2}) = 1

3 and P ({3, 4}) = 2
3 . Assuming that the probability function f

itself is unknown, these two properties alone can be expressed by a mass function

m1(A) =


1
3 if A = {1, 2}
2
3 if A = {3, 4}
0 otherwise

(4.7)

that models the partial evidence. Even though there are only two focal elements,
still belief and plausibility can be computed for any subset of Ω. The example is
illustrated in figure 4.1 that shows all non-empty subsets (for the empty set always
holds Bel(∅) = Pl(∅) = 0) as well as their corresponding beliefs and plausibilities in
a tree structure. Additionally, the leaves contain the pignistic and true probabilities.
It should be noted that these two distributions do not coincide because the mass
function simply does not capture enough information. In this regard, the pignistic
probabilities are an approximation of an unknown distribution that is computed only
from partial or incomplete information about it.
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4.1.2 Dempster’s Rule of Combination

Intuitive properties of probabilities generally do neither hold for beliefs nor plausi-
bilites. In the last example, neither belief nor plausibility of a set and its complement
in general sum to one. Even though these properties can be counterintuitive, the
evidence-theoretic modeling allows the combination of multiple mass functions. For
this, at first the conflict

κ = κ(m1,m2) :=
∑

B,C⊆Ω
B∩C=∅

m1(B) ·m2(C) (4.8)

between two mass functions m1 and m2 has to be defined. Here, 0 ≤ κ ≤ 1 always
holds and measures the amount of contradicting information between m1 and m2,
as shown below. In case of full conflict κ = 1, there is no hypothesis on which they
agree and evidence theory does not allow to combine them. Otherwise, they can be
combined into the mass function

(m1 ⊕m2)(A) := 1
1− κ ·

∑
B,C⊆Ω
B∩C=A

m1(B) ·m2(C) (4.9)

which is known as Dempster’s rule of combination. The sum in (4.9) accumulates all
possibilities such that m1 and m2 agree on A, which in general does not yield a valid
mass function. Therefore, the result is normalized using the non-conflict 1−κ. Here,
the closed-world assumption assumes that each possible hypothesis is in accordance
with both individual mass functions. It should be noted that (4.8) can equivalently
be expressed as

κ(m1,m2) = 1 −
∑

B,C⊆Ω
B∩C 6=∅

m1(B) ·m2(C) (4.10)

which shows that the combination using (4.9) is possible if and only if there are at
least two sets B,C ⊆ Ω with B ∩ C 6= 0 and m1(B) > 0 as well as m2(C) > 0.

In the previous four-face die example, m1 could be combined with

m2(A) =


1
4 if A = {1, 3}
3
4 if A = {2, 4}
0 otherwise

(4.11)

which is also consistent with the respective probabilities in the same way as m1 is.
Analogously to figure 4.1, the beliefs, plausibilities and pignistic probabilities obtained
with m2 can be computed. Still, the latter will also not equal the true ones. But
computing κ using (4.8) shows zero conflict and combining both using (4.9) recovers
the true probability function.

It should be emphasized that in this particular example, the pignistic probabilities
of both mass functions can alternatively be interpreted as two independent marginal
distributions such that the joint distribution factorizes into these two. Therefore,
their combination simplifies to a simple multiplication, which coincides with the true
distribution. This is recovered in the evidence-theoretic context by zero conflict and
exact information after combining them.

As (4.8) and (4.9) define a valid combination of two mass functions, iteratively
applying them enables to combine an arbitrary, finite number of mass functions.
Here, it is important that the operation is commutative and associative, thus the
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general combination⊕t
i=1mi is well defined as long as no combination has full conflict.

Furthermore, it should be emphasized that the combination is not idempotent, i.e.
m⊕m 6= m in general. Instead, m⊕m should be interpreted as the overall evidence
obtained by again observing the already existing one.

In general, an arbitrary mass function – in particular those obtained by combi-
nations – can be used to compute the pignistic probabilities, which can be used for
decision making. However, involved computations are exponential in the number of
elements in Ω. Thus, any application of evidence theory either has to be restricted to
small possible outcome event sets or requires further simplifications that circumvent
the exponential complexity.

Besides these practical relevant issues, further different theoretical aspects can
be discussed as well. Still, these are beyond the scope of this work and available in
the respective literature [Dezert & Tchamova 2014; Shafer 1976, 2016; Tchamova &
Dezert 2012; Voorbraak 1991; Wang 1994; Wilson 1993]. Here, particular interesting
aspects cover algorithmic applications [Reineking 2014] and counterintuitive combi-
nation results [Zadeh 1979, 1984, 1986], especially in situations with high conflict.

4.2 Application to Decomposition-based Classification
Evidence theory is not only used in fusion strategies [Xu et al. 2014; Zhong et al. 2008]
but offers two particular interesting properties with respect to decomposition-based
classification: First, a mass function allows a better modeling of partial knowledge
only than a probability function and second, it differentiates between two different
degrees of probabilities in form of belief and plausibility. It is well known that a simple
probability is incapable to differentiate between competent but insecure predictions
and incompetent decisions. This was also reported in form of conflict and ignorance
[Hüllermeier & Brinker 2008] as well as ambiguity and imprecision [Lachaize et al.
2016; Yang et al. 2017]. Both, conflict and ambiguity, refer to insecure decisions
caused by overlapping class distributions, i.e. multiple labels are possible with respect
to the data, but the decision remains competent. On the other hand, ignorance and
imprecision refer to situations with low or no data where the predictions are also
insecure, but due to missing competence from the data. Therefore, evidence theory
is well suitable to model decomposition-based classification with explicit focus on the
non-competence problem.

Besides works that discuss decomposition-based classification with imprecise prob-
abilities [Destercke & Quost 2011; Quost & Destercke 2018; Yang et al. 2017] that aim
at providing lower and upper bounds for the probabilities similar to interval-based
approaches [Elkano et al. 2017], the most related existing work applies the one-vs-
all and one-vs-one decomposition with an evidence-theoretic modeling [Quost et al.
2007]. However, the latter work exposes various drawbacks. Even though the authors
additionally present a modification for probabilistic classifiers, the original approach
requires to model the individual predictions with mass functions on the respective
subsets of Ω. The formal background on which they are combined requires to define
subnormal mass functions for which m(∅) > 0 is allowed to hold. Consequently, the
closed world assumption is relaxed such that the true state does not have to agree
with all observed evidences given by mass functions. This is required because the
true, but unknown class can be outside of the respective subset. Therefore, also the
combination rule has to generalized by omitting the normalization factor in (4.9)
such that masses of conflicting events are added to the empty set. Even though the
authors note that the respective plausibilities can be computed using one-vs-all or
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correcting classifiers as discussed in chapter 2, they alternatively motivate to com-
pute them using one-class classifiers that are trained by only using data from one
class. Finally, an overall mass function over {1, . . . , k} cannot be computed directly
and requires to solve a constrained optimization problem that scales exponentially in
k during each prediction. Therefore, it is only applicable for small number of classes,
but especially computing plausibilities from one-class classifiers is most likely to be
unreliable. As discussed in chapters 2 and 3, even estimating accurate probabilities
in supervised settings is extremely challenging. Thus, interpreting outputs from nov-
elty detection and thus necessarily unsupervised learning algorithms as plausibilities
is highly unjustified. Using evidential calibration [Xu et al. 2016], the approach still
had already been applied in combination with support vector machines as pairwise
classifiers besides the one-vs-all decomposition and a hybrid strategy [Lachaize et al.
2016].

In light of this, evidence theory offers an interesting option to model decompo-
sition-based classification, but avoiding the exponential complexity is a challenging
task. Therefore, the following part differently applies evidence theory such that the
overall complexity is not increased but instead is completely given by the underlying
reduction. Additionally, the presented techniques will be designed to only require
probabilistic classifiers to preserve a general applicability.

4.2.1 One-vs-All Decomposition

The one-vs-all decomposition consists of only k classifiers whose predictions are
slightly better interpretable than the ones of the one-vs-one decomposition. Addi-
tionally, there are no incompetent classifiers. Hence, it is preferable to start applying
evidence-theoretic modelings with it. In the following, each one-vs-all classifier fi,
i = 1, . . . , k, is assumed to compute probabilistic predictions (pi(x), 1− pi(x)). As in
chapter 2, the explicit dependency on x can be omitted.

Whenever the binary one-vs-all classifiers are computed independently, the proba-
bility vector (p1, . . . , pk) does not sum to one, therefore it does not define a posterior
probability estimate. From the Bayesian point of view, the probabilities can only
be interpreted as independently computed estimates of the i-th marginal distribu-
tion of the unknown posterior distribution P (y | x). Still, an estimate of the latter
requires further processing, e.g. a normalization or a softmax transformation. In con-
trast to this, evidence theory allows the alternative interpretation of the independent
estimates as respective mass functions that can be combined.

Therefore, the given one-vs-all predictions are used to define the following k mass
functions

mi(A) :=


pi if A = {i}

1− pi if A = {i}C

0 otherwise
(4.12)

for each class 1 ≤ i ≤ k. Using this modeling, the combination⊕k
i=1mi is of interest.

In general, this could be computed by k − 1 applications of (4.9) as long as there
is no full conflict. Still, for practical applications a naive, iterative application is
extremely inefficient as it is exponential in k. Therefore, a closed-form expression for
the combination will be derived that can be computed efficiently. As will be shown
in advance, this recovers a decision rule equivalent to the maximum rule arg maxi pi,
but extends this with a posterior probability estimate that differs from a simple
normalization.
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Here, the following result formulates one of the most important properties that
enables to derive a closed-form expression for the combination ⊕`

i=1mi for an arbi-
trary index 1 ≤ ` ≤ k. It is formulated more general than needed for the one-vs-all
decomposition only as it will be applied for the modelings presented in subsections
4.2.2 and 4.2.3 as well.

Lemma 4.1. Let m1 and m2 be two mass functions on Ω = {1, . . . , k} and I1, I2 ⊆ Ω
be two subsets such that

m1(A) =


ui if A = {i} for i ∈ I1

1−∑i∈I1 ui if A = IC
1

0 otherwise
(4.13)

and

m2(A) =


vi if A = {i} for i ∈ I2

1−∑i∈I2 vi if A = IC
2

0 otherwise
(4.14)

hold. Define λ : P(Ω)→ [0, 1],

λ(A) :=



m1({i}) ·m2({i}) if A = {i} ⊆ I1 ∩ I2

m1({i}) ·m2(IC
2 ) if A = {i} ⊆ I1 \ I2

m1(IC
1 ) ·m2({i}) if A = {i} ⊆ I2 \ I1

m1(IC
1 ) ·m2(IC

2 ) if A = (I1 ∪ I2)C 6= ∅
0 otherwise

(4.15)

as an unnormalized mass function on Ω. For the conflict of m1 and m2 holds

κ(m1,m2) = 1 −
∑

i∈I1∪I2

λ ({i}) − λ
(
(I1 ∪ I2)C

)
(4.16)

such that the combination m1 ⊕m2 using (4.9) is well defined if and only if λ 6≡ 0
(i.e. there is an A ⊆ Ω with λ(A) > 0) and satisfies:

(m1 ⊕m2)(A) = 1
1− κ(m1,m2) · λ(A) (4.17)

Proof. To prove the statement, in combination with (4.10) it suffices to show that

λ(A) =
∑

B,C⊆Ω
B∩C=A

m1(B) ·m2(C) (4.18)

holds for all A ⊆ Ω. First, assume λ(A) = 0. For any A = B ∩C ⊆ Ω with λ(A) = 0
also m1(B) ·m2(C) = 0 has to hold, thus the equality is straightforward to verify.

Thus, assume that λ(A) > 0 and in particular A 6= ∅ holds. This implies that
there are subsets B,C ⊆ Ω such that A = B ∩ C with m1(B) · m2(C) > 0, i.e.
m1(B) > 0 and m2(C) > 0 hold. By definition this is equivalent to either B = {i},
with i ∈ I1 sufficiently selected, or B = IC

1 6= ∅.

1. If B = {i} holds:
From ∅ 6= A = B ∩ C ⊆ B = {i} follows A = {i}. In particular, only a
unique selection for C such that m2(C) > 0 holds is possible: either C = {i}, if
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i ∈ I1 ∩ I2, or C = IC
2 , if i /∈ I2. Therefore,

λ(A) = m1(B) ·m2(C) =
{
m1({i}) ·m2({i}) if A = {i} ⊆ I1 ∩ I2

m1({i}) ·m2(IC
2 ) if A = {i} ⊆ I1 \ I2

(4.19)

holds.

2. If B = IC
1 6= ∅ holds:

From m2(C) > 0 follows C = {i}, with i ∈ I2 \ I1 = I2∩ IC
1 sufficiently selected,

or C = IC
2 6= ∅ and in particular B uniquely defines C. Since A = IC

1 ∩C, either
A = IC

1 ∩ {i} = {i} or A = IC
1 ∩ IC

2 = (I1 ∪ I2)C follows. Therefore,

λ(A) = m1(B) ·m2(C) =
{
m1(IC

1 ) ·m2({i}) if A = {i} ⊆ I2 \ I1

m1(IC
1 ) ·m2(IC

2 ) if A = (I1 ∪ I2)C 6= ∅
(4.20)

holds.

Combining the derived equations together with the definitions of m1 and m2 yields
the overall form of λ as claimed.

It should be emphasized that the combination m1⊕m2 in lemma 4.1 in particular
allows inductive applications to combine multiple mass functions. Furthermore, it
is not assumed that the weights ui and vi are non-zero. Similarly, they might even
sum to one such that IC

1 or IC
2 receives zero mass. Thus, these situations cause

the combination to place zero mass in some cases. The only constraint for the last
result to hold is that the combination exists at all. Here, the following equivalence is
obtained as a direct consequence:

Corollary 4.2. Let m1 and m2 be mass functions as in lemma 4.1. The combination
m1 ⊕m2 is well defined if and only if at least one of the following conditions holds:

1. There is an i ∈ I1 ∩ I2 with ui · vi > 0.

2. There is an i ∈ I1 \ I2 with ui > 0 and
∑
j∈I2 vj < 1 holds.

3. There is an i ∈ I2 \ I1 with vi > 0 and
∑
j∈I1 uj < 1 holds.

4.
∑
i∈I1 ui < 1, ∑i∈I2 vi < 1 and IC

1 ∩ IC
2 = (I1 ∪ I2)C 6= ∅ hold.

With respect to the one-vs-all decomposition’s modeling using (4.12), the induc-
tive application of lemma 4.1 enables to prove the following closed-form expression:

Theorem 4.3. Let mi be the one-vs-all decomposition’s mass functions as given by
(4.12) such that 0 < pi < 1 holds for all i = 1, . . . , k. Then, their overall combination
is well defined and can be expressed as

(
k⊕
i=1

mi

)
(A) =


1

1−κ · pi ·
k∏
j=1
j 6=i

(1− pj) if A = {i} for 1 ≤ i ≤ k

0 otherwise
(4.21)

while for the conflict

κ = 1−
k∑
i=1

pi ·
k∏
j=1
j 6=i

(1− pj) (4.22)

holds.
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Proof. First, define M` := ⊕`
i=1mi for 1 ≤ ` ≤ k and prove that M` is well defined

as well as satisfies

M`(A) =



1
1−κ` · pi ·

∏̀
j=1
j 6=i

(1− pj) if A = {i} for 1 ≤ i ≤ `

1
1−κ` ·

∏̀
i=1

(1− pi) if A = {1, . . . , `}C 6= ∅

0 otherwise

(4.23)

where for the conflict κ0 := 0 and

κ` = 1− 1
1− κ`−1

·

∑̀
i=1

pi ·
∏̀
j=1
j 6=i

(1− pj) + 1(` 6= k) ·
∏̀
i=1

(1− pi)

 (4.24)

hold1. For ` = 1, it holds M1 = m1 by definition and the claimed form is straightfor-
ward to verify.

If ` ≥ 2 and the claim is true for ` − 1, it holds M` = M`−1 ⊕m` by definition.
Thereafter, lemma 4.1 with I1 = {1, . . . , ` − 1} and I2 = {`} as well as 0 < p` < 1
implies that M` is well defined. Furthermore, also I1 ∩ I2 = ∅ holds such that lemma
4.1 yields three remaining relevant cases for the unnormalized combination λ(A):

1. A = {i} with i ∈ I1 \ I2 = I1, i.e. 1 ≤ i ≤ `− 1, yields:

λ(A) = M`−1({i}) ·m`({`}C) = 1
1− κ`−1

· pi ·
∏̀
j=1
j 6=i

(1− pj) (4.25)

2. A = {`} = I2 \ I1 = I2 yields:

λ(A) = M`−1(IC
1 ) ·m`({`}) = 1

1− κ`−1
·
`−1∏
j=1

(1− pj) · p` (4.26)

3. A = (I1 ∪ I2)C = {1, . . . , `}C with ` < k yields:

λ(A) = M`−1(IC
1 ) ·m`({`}C) = 1

1− κ`−1
·
∏̀
i=1

(1− pi) (4.27)

Besides noting that the second case extends the first to i = `, the remaining step is
the normalization. Here, lemma 4.1 leads to:

κ` = 1 −
∑

i∈I1∪I2

λ ({i}) − λ
(
(I1 ∪ I2)C

)

= 1 − 1
1− κ`−1

·

∑̀
i=1

pi ·
∏̀
j=1
j 6=i

(1− pj) + 1(` 6= k) ·
∏̀
i=1

(1− pi)

 (4.28)

1Here, the special case of ` = k is necessary because {1, . . . , k}C = ∅.
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In particular for ` = k, the normalization constant becomes

1− κk = 1
1− κk−1

·

 k∑
i=1

pi ·
k∏
j=1
j 6=i

(1− pj)

 (4.29)

and thus, normalizing (1− κk−1) · λ in (4.21) requires the normalization constant

1− κ = (1− κk) · (1− κk−1) =
k∑
i=1

pi ·
k∏
j=1
j 6=i

(1− pj) (4.30)

which finalizes the proof.

The last result yields a closed-form expression for the overall combination of all
k one-vs-all mass functions. In particular, it can efficiently be computed and it is
numerically more stable to compute the logarithm of the resulting probabilities to
transform the product into a sum. Thereafter, the latter can be back-transformed
into a probability using the exponential function. Furthermore, the result ⊕k

i=1mi

is a Bayesian mass function, thus it directly allows the interpretation as a posterior
probability estimation. Consequently, the presented evidence-theoretic modeling also
yields a multi-class calibration approach because it transforms predictions into an
overall posterior probability estimate. The latter even holds if the original proba-
bilities p1, . . . , pk sum to one, i.e. the presented modeling can be used to calibrate
multi-class probabilistic classifiers as well.

Besides this observation, the connection between this evidence-theoretic modeling
and the classical one-vs-all maximum rule to resolve the class deserves particular
interest. In fact, the class with maximum probability after applying (4.21) is the
same as the one with maximum base probability.

Proposition 4.4. Under the same assumptions of theorem 4.3, let M = ⊕k
i=1mi be

the overall combination (4.21) of the one-vs-all mass functions. Then

arg max
1≤i≤k

M({i}) = arg max
1≤i≤k

pi (4.31)

holds such that the resulting class prediction remains unchanged.

Proof. Using

qi := pi ·
k∏
j=1
j 6=i

(1− pj) (4.32)

for i = 1, . . . , k, it holds qi = 1
1−κ ·M({i}) such that the maximizers are the same.

Here, for two arbitrary indices 1 ≤ i, j ≤ k holds

qi − qj = pi ·
k∏
`=1
` 6=i

(1− p`) − pj ·
k∏
`=1
`6=j

(1− p`)

= (pi · (1− pj)− pj · (1− pi)) ·
k∏
`=1
`6=i,j

(1− p`) = (pi − pj) ·
k∏
`=1
` 6=i,j

(1− p`)

︸ ︷︷ ︸
>0
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such that qi ≥ qj holds if and only if pi ≥ pj as well as qi > qj holds if and only if
pi > pj , respectively. Therefore, the claim is proven.

In summary, the evidence-theoretic modeling based on the one-vs-all decomposi-
tion recovers the same decision rule, but also computes a posterior probability esti-
mation. Based on these insights, the next part performs a similar modeling based on
extended decompositions and in particular the one-vs-one reduction before focusing
on dynamic classification based on evidence theory.

4.2.2 One-vs-One Decomposition

As presented in chapter 2, there are many reference works that report superior results
of the one-vs-one decomposition in comparison with the one-vs-all reduction. Con-
sequently, it is especially interesting to also perform an evidence-theoretic modeling
of it. In full analogy to chapter 2, a probability matrix Φ = Φ(x) as in (2.23) is
assumed to be given that contains the individual pairwise probabilities φi,j(x) ∈ [0, 1]
satisfying φi,j(x) +φj,i(x) = 1. As before, the explicit dependency on the respectively
predicted instance x is omitted in the following part.

Based on the previous results, a feasible strategy to perform an evidence-theoretic
modeling of the one-vs-one decomposition that avoids the drawbacks, most impor-
tantly the exponential complexity, from existing works [Quost et al. 2007] is to trans-
form the pairwise probabilities into mass functions and thereafter prove a closed-form
expression for their combination. Ideally, this will also result in a Bayesian mass func-
tion such that no further steps are required to obtain a probabilistic interpretation.
Unluckily, this is not directly possible as it is in case of the one-vs-all decomposition.
More precisely, analogously modeling mass functions using the pairwise probabilities
would yield

mi,j(A) :=


φi,j if A = {i}
φj,i if A = {j}

0 otherwise
(4.33)

for all pairs 1 ≤ i < j ≤ k. However, the combination m1,2 ⊕m1,3 ⊕m2,3 even for
k = 3 classes does not exist as there is no event on which all mass functions induce
positive belief. Straightforward computation also yields full conflict.

Alternatively, for 1 ≤ i < j ≤ k the pairwise probabilities could be split into two
mass functions

mi,j(A) :=


φi,j if A = {i}
φj,i if A = {i}C

0 otherwise
and mj,i(A) :=


φj,i if A = {j}
φi,j if A = {j}C

0 otherwise
(4.34)

respectively. Here, a combination ⊕k−1
i=1

⊕k
j=i+1(mi,j ⊕mj,i) could be computed un-

der relatively mild assumptions regarding the pairwise probabilities. However, the
modeling is unjustified as it places positive mass on classes in the complements that
are not consistent with the underlying classifiers.

Furthermore, the mass function (4.33) places zero mass on all classes where the
underlying classifier used to compute the probabilities is incompetent. On the other
hand, the evidence theory’s closed world assumption requires at least a single set on
which all mass functions induce positive belief. Therefore, a reasonable strategy to
develop a similar evidence-theoretic modeling based on the one-vs-one decomposition
also requires to address the non-competence problem.
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As presented in full detail in section 2.3, one of the most promising existing
techniques to tackle the non-competence problem multiplies the pairwise probabilities
φi,j with a weight wi,j . In the respective works, the latter is computed by training
additional correcting classifiers to separate the pair of classes {i, j} from the remaining
set of all other ones. Still, there are possible generalizations on how to estimate the
weights that will be discussed in full detail in subsection 5.5.2. Here, it is only assumed
that wi,j ∈ [0, 1] as well as wi,j = wj,i holds (i.e. the weights are symmetric) for all
pairs {i, j}.

Even though there also is a formal reasoning [Reid 2010] for the multiplicative
combination of pairwise probabilities and weights given by (2.30), this is not valid in a
Bayesian sense because the weights cannot be interpreted as estimates of the posterior
probabilities P (y ∈ {i, j} | x), as discussed in full detail in chapter 2. However in an
evidence-theoretic context, this is unproblematic and emphasizes the advantages of
evidence theory for the current application. Therefore, the following mass functions

mi,j(A) :=


φi,j · wi,j if A = {i}
φj,i · wi,j if A = {j}
1− wi,j if A = {i, j}C

0 otherwise

(4.35)

are defined for all pairs 1 ≤ i, j ≤ k with i 6= j. These do not only enable to
systematically address the non-competence problem but also to prove a closed-form
expression for the combination of all pairwise mass functions.

As wi,j = wj,i holds, this definition consists of two equivalent subsets containing
all mass functions mi,j with index pairs (i, j) where either i < j or j < i holds. These
can be interpreted as an upper or a lower triangle, respectively. Here, the overall
combination over each triangular set

k−1⊕
i=1

k⊕
j=i+1

mi,j =
k⊕
i=2

i−1⊕
j=1

mi,j (4.36)

is of interest. Still, combining the mass functions in the right-hand side manner is
advantageous for the presented proof of the closed-form expression.

Clearly, computing the combination is more complex than in the previous case
based on the one-vs-all decomposition in theorem 4.3. As a first step, computing
a closed-form expression for the row-wise combinations ⊕i−1

j=1mi,j is possible using
lemma 4.1. Thereafter, all of them are combined into a single mass function that
equals the overall combination for which a closed-form expression will be proven.

Lemma 4.5. Let mi,j be the one-vs-one decomposition’s mass functions as given by
(4.35) such that 0 < φi,j < 1 and 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j.
For 1 ≤ ` < i ≤ k define λi,` : P({1, . . . , k})→ [0, 1],

λi,`(A) :=



∏̀
j=1

mi,j({i}) if A = {i}

mi,j({j}) ·
∏̀
s=1
s 6=j

mi,s({i, s}C) if A = {j} for 1 ≤ j ≤ `

∏̀
j=1

mi,j({i, j}C) if A = {1, . . . , `, i}C 6= ∅

0 otherwise

(4.37)
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as an unnormalized mass function. Then, for given 1 < i ≤ k the combination of the
first 1 ≤ ` < i mass functions mi,j is well defined and can be expressed as

Ri,`(A) :=

⊕̀
j=1

mi,j

 (A) = 1
1− κi,`

· λi,`(A) (4.38)

while for the conflict

κi,` = 1 −
∑̀
j=1

λi,`({j}) − λi,`({i}) − λi,`({1, . . . , `, i}C) (4.39)

holds.

Proof. For 1 = ` < i, λi,1 = mi,1 and κi,1 = 0 hold from the normalization of mi,1
such that the claim is true. Therefore, let the statement be true for Ri,`−1. By
definition Ri,` = Ri,`−1 ⊕mi,` holds. By the induction hypothesis and the definition
of mi,`, lemma 4.1 is applicable with index sets I1 = {1, . . . , `− 1, i} and I2 = {`, i},
respectively. Furthermore, it implies that Ri,` is well defined and using

λ(A) =



Ri,`−1({i}) ·mi,`({i}) if A = {i} = I1 ∩ I2

Ri,`−1({j}) ·mi,`(IC
2 ) if A = {j} ⊆ {1, . . . , `− 1} = I1 \ I2

Ri,`−1(IC
1 ) ·mi,`({`}) if A = {`} = I2 \ I1

Ri,`−1(IC
1 ) ·mi,`(IC

2 ) if A = {1, . . . , `, i}C = (I1 ∪ I2)C 6= ∅
0 otherwise

(4.40)

as well as

κ = 1 −
∑

j∈I1∪I2

λ({j}) − λ
(
(I1 ∪ I2)C

)

= 1 −
∑̀
j=1

λ({j}) − λ({i}) − λ({1, . . . , `, i}C)
(4.41)

yields:
Ri,`(A) = 1

1− κ · λ(A) (4.42)

Here, substituting (4.40) and (4.37) into Ri,`−1(A) = 1
1−κi,`−1

· λi,`−1(A) enables to
integrate mi,` into the products in Ri,`−1 by extending their ranges from ` − 1 to `.
In particular,

λ(A) · (1− κi,`−1) =



∏̀
j=1

mi,j({i}) if A = {i}

mi,j({j}) ·
∏̀
s=1
s6=j

mi,s({i, s}C) if A = {j} ⊆ {1, . . . , `− 1}

`−1∏
j=1

mi,j({i, j}C) ·mi,`({`}) if A = {`}

∏̀
j=1

mi,j({i, j}C) if A = {1, . . . , `, i}C 6= ∅

0 otherwise

is obtained and by noting that the third case is equivalent to the second one extended
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to `, λ(A) · (1− κi,`−1) = λi,`(A) holds. In combination with (4.38) as well as (4.42),
this implies 1− κi,` = (1− κi,`−1) · (1− κ) and thus

Ri,`−1(A) = 1
1− κ · λ(A) = 1

(1− κ) · (1− κi,`−1) · λi,`(A) = 1
(1− κi,`)

· λi,`(A)

finalizes the proof.

Using the last result, the overall combination of all one-vs-one mass functions
(4.35) can be simplified to

k⊕
i=2

i−1⊕
j=1

mi,j =
k⊕
i=2

Ri,i−1 (4.43)

such that the remaining task is to combine all Ri,i−1 where for the latter already
a closed-form expression exists. Arranging the combination in a lower triangular
shape, the Ri,i−1 can be interpreted as the i-th row’s mass function. Therefore, the
remaining task can be interpreted as combining the row mass functions. For this, a
closed-form expression is given by the following result:

Theorem 4.6. Let mi,j be the one-vs-one decomposition’s mass functions as given
by (4.35) such that 0 < φi,j < 1 and 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j
and Ri,i−1 be their combination as in lemma 4.5. Furthermore, for 2 ≤ i ≤ k define
λi : P({1, . . . , k})→ [0, 1],

λi(A) :=



j−1∏
s=1

mj,s({j})
i∏

t=j+1
mt,j({j})

i−1∏
s=1
s 6=j

i∏
t=s+1
t6=j

mt,s({s, t}C) if A = {j}, j ≤ i

i−1∏
s=1

i∏
t=s+1

mt,s({s, t}C) if A = {1, . . . , i}C 6= ∅

0 otherwise
(4.44)

as an unnormalized mass function. Then, the combination
⊕i

j=2Rj,j−1 is well defined
for each 2 ≤ i ≤ k and satisfies i⊕

j=2
Rj,j−1

 (A) = 1
1− κi

· λi(A) (4.45)

where for the conflict

κi = 1 −
i∑

j=1
λi({j}) − λi({1, . . . , i}C) (4.46)

holds.

Proof. By applying lemma 4.5 for i = 2, the base case of m2,1 = λ2,1 = λ2 is
straightforward to verify. Thus,

2⊕
j=2

Rj,j−1 = R2,1 = m2,1 = 1
1− κ2,1

· λ2,1 = 1
1− κ2

· λ2 (4.47)

holds by definition (4.38) with κ2,1 = κ2 = 0 as claimed. Therefore, let the statement
be true for 2 < i ≤ k − 1.
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By combining (4.45) from the induction hypothesis for i − 1 and (4.38) with
` = i− 1 from lemma 4.5

i⊕
j=2

Rj,j−1 =

i−1⊕
j=2

Rj,j−1

 ⊕ Ri,i−1 = 1
1− κi−1

·λi−1 ⊕
1

1− κi,i−1
·λi,i−1 (4.48)

is obtained. Here, lemma 4.1 is applicable with 1
1−κi−1

·λi−1 on I1 = {1, . . . , i− 1} by
the induction hypothesis and 1

1−κi,i−1
· λi,i−1 on I2 = {1, . . . , i} = I1 ∪ {i} by lemma

4.5, respectively. In particular, it implies that the combination is well defined such
that with

λ(A) =


λi−1({j}) · λi,i−1({j}) if A = {j} ⊆ I1 ∩ I2 = I1

λi−1(IC
1 ) · λi,i−1({i}) if A = {i} = I2 \ I1

λi−1(IC
1 ) · λi,i−1(IC

2 ) if A = (I1 ∪ I2)C = IC
2 6= ∅

0 otherwise

(4.49)

and

κ = 1 −
∑

j∈I1∪I2

λ({j}) − λ
(
(I1 ∪ I2)C

)
= 1 −

i∑
j=1

λ({j}) − λ({1, . . . , i}C) (4.50)

it holds:
i⊕

j=2
Rj,j−1 = 1

1− κ · λ (4.51)

It should be emphasized that the multiplication by 1
1−κi−1

· 1
1−κi,i−1

> 0 can be ignored
because it cancels out during the normalization of λ. Consequently, only the following
cases in (4.49) are relevant:

1. A = {j} with j ≤ i− 1:

λ(A) = λi−1(A) · λi,i−1(A) = λi−1({j})︸ ︷︷ ︸
i−1 in (4.44)

· λi,i−1({j})︸ ︷︷ ︸
`=i−1 in (4.37)

=
j−1∏
s=1

mj,s({j})
i−1∏
t=j+1

mt,j({j})
i−2∏
s=1
s 6=j

i−1∏
t=s+1
t6=j

mt,s({s, t}C) ·mi,j({j})
i−1∏
s=1
s 6=j

mi,s({i, s}C)

=
j−1∏
s=1

mj,s({j})
i∏

t=j+1
mt,j({j})︸ ︷︷ ︸

extended to t=i

i−2∏
s=1
s 6=j

i−1∏
t=s+1
t6=j

mt,s({s, t}C)
i−1∏
s=1
s 6=j

mi,s({i, s}C)

=
j−1∏
s=1

mj,s({j})
i∏

t=j+1
mt,j({j})

i−2∏
s=1
s 6=j

i∏
t=s+1
t6=j

mt,s({s, t}C)

︸ ︷︷ ︸
extended to t=i

mi,i−1({i− 1, i}C)

=
j−1∏
s=1

mj,s({j})
i∏

t=j+1
mt,j({j})

i−1∏
s=1
s 6=j

i∏
t=s+1
t6=j

mt,s({s, t}C)

︸ ︷︷ ︸
extended to s=i−1

(4.44)= λi({j}) = λi(A)
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2. A = {i}:

λ(A) = λi−1(IC
1 ) · λi,i−1({i}) = λi−1({1, . . . , i− 1}C)︸ ︷︷ ︸

i−1 in (4.44)

· λi,i−1({i})︸ ︷︷ ︸
`=i−1 in (4.37)

=
i−2∏
s=1

i−1∏
t=s+1

mt,s({s, t}C) ·
i−1∏
j=1

mi,j({i})

=
i−1∏
s=1

mi,s({i})
i∏

t=i+1
mt,i({i})︸ ︷︷ ︸
=1

·
i−1∏
s=1
s 6=i

i∏
t=s+1
t6=i

mt,s({s, t}C) (4.44)= λi({i}) = λi(A)

3. A = (I1 ∪ I2)C = IC
2 = {1, . . . , i}C 6= ∅:

λ(A) = λi−1(IC
1 ) · λi,i−1(IC

2 ) = λi−1({1, . . . , i− 1}C)︸ ︷︷ ︸
i−1 in (4.44)

· λi,i−1({1, . . . , i}C)︸ ︷︷ ︸
`=i−1 in (4.37)

=
i−2∏
s=1

i−1∏
t=s+1

mt,s({s, t}C) ·
i−1∏
j=1

mi,j({i, j}C)

=
i−2∏
s=1

i∏
t=s+1

mt,s({s, t}C) ·mi,i−1({i− 1, i}C)

=
i−1∏
s=1

i∏
t=s+1

mt,s({s, t}C) = λi({1, . . . , i}C) = λi(A)

Thus in total, λ(A) = λi(A) is proven. This implies 1−κi = 1−κ and in combination
with (4.51), the claim is proven.

Similar to the one-vs-all decomposition, the last result yields a closed-form expres-
sion for the combination of all one-vs-one mass functions. In particular, substituting
the definition (4.35) of mi,j into the extreme case λk in the last result (4.44) where
{1, . . . , k}C = ∅ holds, a Bayesian mass function is obtained.

Corollary 4.7. Let mi,j be the one-vs-one decomposition’s mass functions as given
by (4.35) such that 0 < φi,j < 1 and 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j.
Their overall combination is a well defined Bayesian mass function and satisfies k⊕

i=2

i−1⊕
j=1

mi,j

 (A) =


pi∑k

j=1 pj
if A = {i} for 1 ≤ i ≤ k

0 otherwise
(4.52)

such that for the unnormalized probabilities

pi =
k∏
j=1
j 6=i

(φi,j · wi,j) ·
k−1∏
s=1
s 6=i

k∏
t=s+1
t6=i

(1− ws,t) (4.53)

holds for all i = 1, . . . , k.

In full analogy to the one-vs-all decomposition, the overall combination allows the
interpretation as a posterior probability estimation and it is numerically more stable
to transform the product into a sum by computing the logarithm. Using (4.53) to
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compute the probabilities requires O(k2) operations, therefore applying it for each
class i = 1, . . . , k would require O(k3) calculations. However, by substituting

k−1∏
s=1
s 6=i

k∏
t=s+1
t6=i

(1− ws,t) =

k−1∏
s=1

k∏
t=s+1

(1− ws,t)

k∏
j=1
j 6=i

(1− wi,j)
(4.54)

into (4.53) yields

pi ∝
k∏
j=1
j 6=i

(φi,j · wi,j) ·

 k∏
j=1
j 6=i

·(1− wi,j)


−1

=
k∏
j=1
j 6=i

φi,j · wi,j
1− wi,j

(4.55)

for i = 1, . . . , k such that the remaining multiplicative constant is irrelevant after the
normalization in (4.52) and, as a result, can simply be ignored while computing the
unnormalized probabilities.

4.2.3 New Decompositions

Besides applying the one-vs-all and one-vs-one decomposition while especially aiming
at the non-competence problem in the latter, the presented approach can additionally
be used to create new approaches to decomposition-based classification. Usually, any
decomposition is designed such that varying (depending on the respective decompo-
sition) sets of classes are separated from each other, but at least one of them only
contains a single class.

Here, evidence theory even allows the application of decompositions that do not
restrict to this assumption. As an particular example, a two-vs-all decomposition
is presented that is constructed similarly to aforementioned correcting classifiers to
separate each pair of classes from all other k−2 classes, but it does not combine them
with other classifiers. Thus, there are

(k
2
)
individual ones in total, which coincides

with the one-vs-one decomposition, but each is trained on the whole training data
such that there is no non-competence problem.

At prediction time, each classifier computes a pairwise membership probability
wi,j , which – as previously discussed – is not an estimate of P (y ∈ {i, j} | x). Still,
this is unproblematic in an evidence-theoretic modeling. Here, it is consistent to
define the mass functions

mi,j(A) :=


wi,j if A = {i, j}

1− wi,j if A = {i, j}C

0 otherwise
(4.56)

for all pairs 1 ≤ i, j ≤ k with i 6= j. Similar to the previous modeling in subsection
4.2.2, this definition consists of two equivalent subsets containing the same mass func-
tions that are arranged in either an upper or a lower triangle, respectively. Similarly,
the task is to compute the overall combination over each triangular-shaped set

k−1⊕
i=1

k⊕
j=i+1

mi,j =
k⊕
i=2

i−1⊕
j=1

mi,j (4.57)
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where the right-hand side is advantageous for the presented derivation of a closed-form
expression for the combination.

Here, it is important to emphasize that even though the statement resembles the
expressions obtained with lemma 4.5, its assumptions are different. In case of the
one-vs-one decomposition, the respective individual mass function mi,j puts positive
mass on both sets, {i} and {j}, while in case of the presented modeling of two-vs-all
reduction, there are no focal sets containing only a single element. Therefore, lemma
4.1 is not applicable and thus, the following result is neither an implication nor a
generalization of lemma 4.5.
Lemma 4.8. Let mi,j be the two-vs-all decomposition’s mass functions as given by
(4.56) such that 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j. Furthermore, for
2 ≤ ` < i ≤ k let λi,` : P({1, . . . , k})→ [0, 1],

λi,`(A) =



wi,j ·
∏̀
s=1
s 6=j

(1− wi,s) if A = {j} for 1 ≤ j ≤ `

∏̀
j=1

wi,j if A = {i}

∏̀
j=1

(1− wi,j) if A = {1, . . . , `, i}C 6= ∅

0 otherwise

(4.58)

be an unnormalized mass function. Then, for given 3 ≤ i ≤ k the combination of the
first 2 ≤ ` < i mass functions is well defined and can be expressed as

Ri,`(A) :=

⊕̀
j=1

mi,j

 (A) = 1
1− κi,`

· λi,`(A) (4.59)

while for the conflict

κi,` = 1 −
∑̀
j=1

λi,`({j}) − λi,`({i}) − λi,`({1, . . . , `, i}C) (4.60)

holds.
Proof. To prove the statement, at first the unnormalized combination of mi,1 and
mi,2 is defined

λi,2(A) :=
∑

B,C⊆Ω
B∩C=A

mi,1(B) ·mi,2(C) (4.61)

such that the claim is true for ` = 2 < i if (4.58) is recovered and there is at least
one set A such that λi,2(A) > 0 holds, i.e. the normalization is possible. Therefore,
assume that A = B ∩ C is given with λi,2(A) > 0.

1. If i ∈ A holds:
From i ∈ A = B ∩ C follows i ∈ B and i ∈ C such that the properties of
mi,1 and mi,2 imply B = {i, 1} and C = {i, 2}, respectively. In particular,
both sets are uniquely defined such that A = {i} = {i, 1} ∩ {i, 2}, which yields
λi,2(A) = wi,1 · wi,2.

2. If 1 ∈ A holds:
Analogously to the previous case, it follows B = {i, 1}, C = {i, 2}C and A = {1}
with λi,2(A) = wi,1 · (1− wi,2) because i > 2.
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3. If 2 ∈ A holds:
Similarly, B = {i, 1}C, C = {i, 2} and A = {2} with λ(A) = (1 − wi,1) · wi,2 is
obtained because i > 2.

4. If {1, 2, i} ∩A = ∅ holds:
Finally, B = {i, 1}C, C = {i, 2}C has to hold, which implies A = {1, 2, i}C with
λ(A) = (1− wi,1) · (1− wi,2) for i < k because i > 2.

In total, no other options for A, B and C are possible such that exactly the claimed
form is recovered. Therefore, let the claim be true for ` − 1 < i ≤ k and similarly
define the unnormalized combination

λi,`(A) := (1− κ`−1) ·
∑

B,C⊆Ω
B∩C=A

Ri,`−1(B) ·mi,`(C) (4.62)

where the claim is proven if there is at least one A ⊆ Ω with λi,`(A) > 0 such that
the normalized combination exists and the functional form (4.58) is recovered for it
as well. Therefore, let A = B ∩ C be given with λi,2(A) > 0.

1. If i ∈ A holds:
From i ∈ A = B ∩ C with Ri,`−1(B) > 0 and mi,`(C) > 0 follows B = {i}
from the induction hypothesis and C = {i, `} from the definition of mi,`. In
particular, both B and C are uniquely defined implying A = {i} as well as

λi,`(A) =
`−1∏
j=1

wi,j · wi,` =
∏̀
j=1

wi,j (4.63)

which is positive as all wi,j are. Hence, the existence of the combination is
already proven.

2. If {1, . . . , `− 1} ∩A 6= ∅ holds:
Here, in particular {1, . . . , `− 1}∩B 6= ∅ has to hold from A ⊆ B. This implies
B = {j} for 1 ≤ j ≤ ` − 1 sufficiently selected by the induction hypothesis.
Thus, also A = {j} holds such that C = {i, `}C is the only possible selection.
In total

λi,`(A) = wi,j ·
`−1∏
s=1
s6=j

(1− wi,s) · (1− wi,`) = wi,j ·
∏̀
s=1
s 6=j

(1− wi,s) (4.64)

is obtained.

3. If ` ∈ A holds:
Now, ` ∈ A = B ∩ C implies B = {1, . . . , `− 1, i}C and C = {i, `} such that B
and C are uniquely defined as well as

λi,`(A) =
`−1∏
j=1

(1− wi,j) · wi,` = wi,` ·
∏̀
s=1
s 6=`

(1− wi,s) (4.65)

holds.

4. If {1, . . . , `, i} ∩A = ∅ holds:
In the last case, B = {1, . . . , `− 1, i}C as well as C = {i, `}C have to hold such
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that B and C are uniquely defined and

λi,`(A) =
`−1∏
j=1

(1− wi,j) · (1− wi,`) =
∏̀
j=1

(1− wi,j) (4.66)

is obtained.

In total, by noting that the third case actually extends the second one from `− 1 to
`, the claimed form is recovered where the normalization constant is 1

1−κi,` with

κi,` = 1 −
∑̀
j=1

λi,`({j}) − λi,`({i}) − λi,`({1, . . . , `, i}C) (4.67)

which finalizes the proof.

The last results yields a closed-form expression for all combinations Ri,i−1. There-
after, their combination

k⊕
i=2

i−1⊕
j=1

mi,j =
k⊕
i=2

Ri,i−1 (4.68)

is required to compute the resulting overall mass function. Even though the func-
tional form of the individual mi,j does not allow the application of lemma 4.1, the
combination Ri,i−1 is a valid instance for the selection. This enables to elegantly
prove the following result as an implication of the proof of theorem 4.6.

Theorem 4.9. Let mi,j be the two-vs-all decomposition’s mass functions as given by
(4.56) such that 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j and Ri,i−1 be their
combination as in lemma 4.8. Further, let

λi(A) =



i−1∏
s=1
s 6=j

i∏
t=s+1
t6=j

(1− ws,t)
i∏

s=1
s 6=j

wi,s if A = {j}, j ≤ i

i−1∏
s=1

i∏
t=s+1

(1− ws,t) if A = {1, . . . , i}C 6= ∅

0 otherwise

be an unnormalized mass function. Then, defining R2,1 := m2,1, the combination⊕i
j=2Rj,j−1 is well defined for each 3 ≤ i ≤ k and satisfies k⊕

i=2

i−1⊕
j=1

mi,j

 (A) =

 i⊕
j=2

Rj,j−1

 (A) = 1
1− κi

· λi(A) (4.69)

where for the conflict

κi = 1 −
i∑

j=1
λi({j}) − λi({1, . . . , i}C) (4.70)

holds.

Proof. For i = 3, it holds R3,2 ⊕ R2,1 = R3,2 ⊕ m2,1. Here, assuming that B ⊆ Ω
with R3,2(B) > 0 and C ⊆ Ω with m1,2(C) > 0 are given implies that B = {j}
with 1 ≤ j ≤ 3 or B = {1, 2, 3}C as well as C = {1, 2} or C = {1, 2}C has to hold.
The claimed form of the resulting combination is obtained from similar combinatorial
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reasoning as in the proof of lemma 4.8. Thereafter, combining Ri,i−1 with
⊕i−1
j=1Rj,j−1

can be performed using lemma 4.1, but additionally is completely analogous to the
proof of theorem 4.6.

By simply using the case of i = k in the last result, the following closed-form
expression for the overall combination is obtained. Again, it defines a Bayesian mass
function that is equivalent to the one obtained in corollary (4.7) by removing all
pairwise probabilities φi,j . Thus applying the same simplifications as in (4.55), the
combination can computed using O(k2) operations in practical applications.

Corollary 4.10. Let mi,j be the two-vs-all decomposition’s mass functions as given
by (4.56) such that 0 < wi,j < 1 hold for all i, j = 1, . . . , k with i 6= j. Their overall
combination is a well defined Bayesian mass function and satisfiesk−1⊕

i=1

k⊕
j=i+1

mi,j

 (A) =


pi∑k

j=1 pj
if A = {i}, 1 ≤ i ≤ k

0 otherwise
(4.71)

such that for the unnormalized probabilities

pi =
k∏
j=1
j 6=i

wi,j ·
k−1∏
s=1
s 6=i

k∏
t=s+1
t6=i

(1− ws,t) (4.72)

holds.

Besides creating a two-vs-all decomposition, evidence theory allows the creation of
other reduction approaches. For example, a three-vs-all decomposition can be created
by separating each triple of classes from the set of all other ones and in general, for
each ` ≤ k

2 the `-vs-all decomposition can be created by separating each possible
subset of ` classes from all other k − ` ones. However, from(

k

`

)
= k!

`! · (k − `)! = 1
`! ·

∏̀
i=1

(k − i+ 1) ∈ Θ(k`) (4.73)

follows that there are Θ(k`) individual classifiers in the respective `-vs-all decompo-
sition. This can quickly become too large even for ` = 3 or ` = 4 but still, it is an
interesting question to analyze the respective combination. Therefore, let τ(i) be the
corresponding i-th subset containing exactly ` out of k classes, i.e. 1 ≤ i ≤

(k
`

)
. Us-

ing a classifier for the obtained classification problem that each predicts a calibrated
binary membership probability qi ∈ (0, 1), a consistent evidence-theoretic modeling
is to create the mass functions

mi(A) :=


qi if A = τ(i)

1− qi if A = τ(i)C

0 otherwise
(4.74)

for all sets 1 ≤ i ≤
(k
`

)
. Thereafter, the remaining task is to compute the overall

combination and derive the necessary assumptions such that there is no full conflict.
Here, all previous combination results give rise to the following, unproven statement:
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Conjecture 4.11. Let mi be the `-vs-all decomposition’s mass functions as in (4.74).
Then, their combination exists and forms a Bayesian mass function(k`)⊕

i=1
mi

 (A) =


pi∑k

j=1 pj
if A = {i}, 1 ≤ i ≤ k

0 otherwise
(4.75)

such that for the unnormalized class probabilities, i = 1, . . . , k, holds:

pi =
(k`)∏
j=1

Plmj ({i}) (4.76)

A proof is not obvious but still, a reasonable generalization of the results proven
in the previous sections. It should be emphasized that the plausibilities simplify to

Plmj ({i}) =
{

qj if i ∈ τ(j)
1− qj if i /∈ τ(j)

(4.77)

and a general proof is mainly interesting from the theoretical point of view, but
presumably even for ` = 3 or ` = 4 of less practical relevance.

Besides this, the evidence-theoretic modelings generally allow the creation and
combination of incomplete ensembles. On the one hand, this is advantageous to keep
the computational complexity feasible, but, on the other hand, it remains highly
unclear how to decide which classifiers should be kept in the ensemble and which
not (and might even not be trained at all). Still, this general possibility of evidence
theory should be emphasized.

4.3 Dynamic Classification using Evidence Theory
The previous results share the common property of combining decomposition-based
classification with classifier calibration such that multiple probabilistic predictions
were used to model mass functions, which thereafter were combined by iteratively
applying Dempster’s rule of combination (4.9). Due to the selected modelings, the
respective overall mass function turned out to be Bayesian, therefore justifies the
interpretation as an estimate of the posterior probabilities P (y | x).

The only involved assumption under which the closed-form expressions for the
resulting posterior probability estimates were derived are non-binary probabilities,
i.e. not degenerated to zero or one, such that no involved product becomes zero. Even
though it is at least arguable whether a data-based model is sufficiently competent
to predict a probability of zero, it might still be reasonable in certain applications.

Besides this, another important aspect is to extend the prediction from a classical
into a dynamic context. This means that there is a dynamically changing set of classes
∅ 6= M ⊆ {1, . . . , k} such that the prediction is constrained to M. A particular
strategy is to compute a posterior probability estimate that is zero outside of M.
This information can be consistently represented using a mass function

mM(A) :=
{

1 if A =M
0 if A 6=M

(4.78)

such that in an evidence-theoretic context, the remaining task is to combine the over-
all mass function m, which could be obtained with any of aforementioned approaches,
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with mM. Computing the combination is relatively straightforward using the follow-
ing properties. Thereafter, the case of degenerated probabilities will be recovered as
a special case such that the presented results allow both, an extension to a dynamic
classification context as well as an integration of degenerated probabilistic predictions.

Proposition 4.12. Let m be an arbitrary mass function on Ω = {1, . . . , k}. Further,
let ∅ 6=M⊆ Ω and mM as given by (4.78). Then, the following properties hold:

1. The combination m⊕mM is well defined if and only if there is an A ⊆M such
that m(A) > 0.

2. If the combination is well defined, it holds:

(m⊕mM)(A) = 1∑
B⊆M

m(B) ·
∑

B:B∩M=A
m(B) (4.79)

3. If two different focal sets of m are always disjoint, i.e. for A,B ⊆ Ω with A 6= B
and m(A) > 0 as well as m(B) > 0 always holds A ∩ B = ∅, the combination
simplifies to:

(m⊕mM)(A) = m(A ∩M)∑
B⊆M

m(B) (4.80)

Proof. The combination is well defined if and only if κ(m,mM) < 1 holds. Using
definition (4.8) yields

κ(m,mM) =
∑

B,C⊆Ω
B∩C=∅

m(B) ·mM(C) =
∑

B⊆MC

m(B) = 1−
∑
B⊆M

m(B) (4.81)

which is < 1 if and only if there exists an A ⊆ M with m(A) > 0 as claimed. Next,
simplifying the resulting combination using (4.8) yields

(m⊕mM)(A) = 1
1− κ(m,mM) ·

∑
B,C⊆Ω
B∩C=A

m(B) ·mM(C)

= 1∑
B⊆M

m(B) ·
∑

B:B∩M=A
m(B)

(4.82)

as claimed. Furthermore for given A, the existence of B 6= A with A = B ∩M and
m(B) > 0 directly implies the existence of two non-disjoint focal sets.

With respect to a Bayesian mass function with focal elements {i} and respective
probabilities pi – for example those computed using the methods from section 4.2 –
the last result yields an integration of dynamic class information: A class probability
pi for class i ∈ M will be maintained because {i} ∩M = {i}. For i /∈ M, the class
probability becomes zero from {i} ∩M = ∅. Finally, all remaining class probabilities
are normalized as the normalization constant simplifies to the sum of all remaining
probabilities. Even though the approach recovers a straightforward selection and
renormalization, it should be emphasized that it is still additionally theoretically
justified by evidence theory.

Besides integrating dynamic classification against a formal background, a similar
approach allows the extension of the presented results for extreme probabilities of zero
whose exclusion is the only assumption of any previous result. As soon as probabilities
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become zero in the presented modelings, they induce sets with mass and plausibility
both equal to zero. Thus, this situation is in fact a special case of a mass function
that yields zero plausibility for non-empty sets. Combining such a mass function with
an arbitrary selection of other mass functions always yields zero plausibility:

Proposition 4.13. Let m1,m2, . . . ,m` be mass functions such that their combination
m = ⊕`

i=1mi is well defined, i.e. the overall conflict satisfies κ < 1. If there is an
index i ∈ {1, . . . , `} and a set M ⊆ Ω with Plmi(M) = 0, also Plm(M) = 0 holds.

Proof. Since the combination rule is commutative, assume without loss of generality
that i = 1 holds. By definition of the plausibility,

Plm1(M) =
∑
B⊆Ω

B∩M 6=∅

m1(B) = 0 (4.83)

impliesm1(B) = 0 for all B ⊆ Ω satisfying B∩M 6= ∅. Thus, the plausibility Plm(M)
satisfies

Plm(M) =
∑
B⊆Ω

B∩M 6=∅

m(B) =
∑
B⊆Ω

B∩M 6=∅

∑
C,D⊆Ω
C∩D=B

1
1− κ ·m1(C)·

(⊕̀
i=2

mi

)
(D) = 0 (4.84)

as m1(C) = 0 holds because B = C ∩D ⊆ C implies C ∩M ⊇ B ∩M 6= ∅.

In light of this, extreme probabilities simply yield mass functions with zero plausi-
bilities for certain non-empty sets. Clearly, as long as there are no conflicting extreme
probabilities, the combination still exists and also yields zero plausibility for any set
where a respective individual mass function does. Here, the combination even yields
zero plausibility for any union of the respective sets.

Proposition 4.14. Let m be a mass function such that for M1, . . . ,M` ⊆ Ω holds
Pl(Mi) = 0 for all i = 1, . . . , `. Then, also M := ⋃`

i=1Mi satisfies Pl(M) = 0.

Proof. It holds

Pl(M) =
∑
B⊆Ω

B∩M 6=∅

m(B) ≤
∑̀
i=1

∑
B⊆Ω

B∩Mi 6=∅

m(B) =
∑̀
i=1

Pl(Mi) = 0 (4.85)

which implies Pl(M) = 0 from the fact that mass functions are non-negative.

Based on the last two results, extreme probabilities occurring at arbitrary indi-
vidual classifiers in total only yield a single set with plausibility zero. Thus with
application to classification, extreme probabilities only restrict the prediction into a
dynamic target set M, which can be integrated in the combination using (4.80) as
long asM 6= ∅ holds.

In particular, the dynamic class set M becomes empty if and only if each class
yields plausibility zero under at least one individual mass function. This occurs if
and only if the mass functions cannot be combined. Hence, all previous results are
generally valid for arbitrary probabilities, the only remaining assumption is that the
combination still exists. This can be verified by simply computing the unnormalized
combination. As long as a normalization is possible, i.e. it is positive for at least a
single set of classes, the combination exists.
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4.4 Summary
This chapter applied evidence theory for decomposition-based classification, particu-
lar focusing on the one-vs-all and one-vs-one decompositions. Here, two alternative
combination strategies are obtained that both yield a Bayesian mass function for each
of the reductions, thus each overall combination result allows a classic probabilistic
interpretation.

With respect to the one-vs-all reduction, a class prediction equivalent to the clas-
sical maximum probability is recovered. Particular relevant are the presented results
with respect to the non-competence problem as in case of the one-vs-one decomposi-
tion, an evidence-theoretic modeling was only possible if each prediction is combined
with a weighting of the classifier that models its competence.

Thereafter, evidence theory led a systematic approach to dynamic classification
that yields zero plausibility (or probability in a Bayesian context) for all currently
impossible classes. This is an intuitive consequence, but interestingly obtained from
a complex formalism, i.e. modeling the calibrated predictions as basic mass functions
and thereafter applying Dempster’s rule of combination.

In light of this, the next chapter integrates the obtained results into existing
approaches to decomposition-based classification, yielding a generalization of classical
pairwise coupling to tackle the non-competence problem and to integrate dynamic
class information as well.
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Chapter 5

Generalized Pairwise Coupling

The last chapter was focused on evidence theory and decomposition-based classifica-
tion in general. Still, it is particularly interesting to analyze the results with respect
to the one-vs-one decomposition as comparing them to existing pairwise coupling
techniques will allow the derivation of a systematic approach to generalize them with
respect to dynamic classification and the non-competence problem.

In particular, an evidence-theoretic modeling was only possible by combining the
pairwise classifier differentiating between the classes i and j with a weighting wi,j such
that a prediction different to i or j is possible, but has estimated probability 1−wi,j
in a Bayesian context. One the reverse only restricting to the pairwise probabilities
φi,j(x), the predictions could be reasonably represented as mass functions in the form
of (4.33), however a combination is impossible. Therefore, the influence of a weight
that controls the competence deserves particular interest to systematically address
the non-competence problem in arbitrary pairwise coupling techniques.

Here, section 5.1 will interpret the existing variants presented in full detail in chap-
ter 2 as constant pairwise coupling approaches as each individual classifier receives the
same weight during the coupling. This also leads towards a Bayesian interpretation
of the non-competence problem in section 5.2, recovering the Bayesian counterpart
of the full-conflict situation using evidence theory observed in the previous chapter.
Thereafter, non-constant generalizations are presented in section 5.3 that extend con-
stant pairwise coupling using arbitrary weights. As will be presented in advance in
section 5.4, dynamic class information can simply be modeled by weighting a selection
of classifiers with zero. In sections 5.3 and 5.4, the focus lies on the most commonly
used approaches that were presented in subsection 2.3.1 in chapter 2. Still, similar
extensions most likely are possible for other pairwise coupling techniques as well. Fi-
nally, section 5.5 presents new methods to compute the required weights wi,j as well
as discusses how these extended algorithms can be applied in combination with large-
scale models like deep neural networks where a classical application of reductions
requires to train and deploy an impractically large number of individual models.

5.1 Constant Pairwise Coupling
Formally, combining the one-vs-one reduction’s predictions using evidence theory as
in subsection 4.2.2 is not a pairwise coupling technique, as it depends not only on the
predictions φi,j(x) but also on the weights wi,j(x). Still, the overall combination yields
the Bayesian mass function and therefore posterior probabilities estimates given by
(4.52). Here, a remarkable result is obtained if the pairwise weights are assumed as
constant wi,j ≡ w0 with the only restriction that w0 > 0 holds. Substituting this into
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(4.52) yields the posterior probability estimates

pi(x) ∝
k∏
j=1
j 6=i

φi,j(x) (5.1)

for each class i = 1, . . . , k because all other factors are independent of i (i.e. are
contained in the proportionality factor) and therefore cancel out in the remaining
normalization.

This has two important consequences: First, evidence theory using constant
weights can be used to construct a new pairwise coupling technique. Second, anal-
ogously to combining the evidence-theoretic modeling with both, constant and non-
constant weights, it is reasonable to interpret pairwise coupling as a special case of a
generalized approach that combines the pairwise predictions with a weighting. The
latter enables to systematically address the non-competence problem in any pairwise
coupling approach as long as it can be extended to integrate non-constant weights.

Here, combining each individual pairwise prediction φi,j(x) with a constant weight
w0 ≡ wi,j(x) is a reasonable first step. Motivated by (2.30) and the respective anal-
ysis, it is reasonable to multiplicatively combine the pairwise prediction φi,j(x) and
the weight. With respect to probabilistic voting (2.24), the weighted formulation is
obtained as

pVote
i (x) = 2

k · (k − 1) · w0
·
k∑
j=1
j 6=i

φi,j(x) · w0 (5.2)

where the weighting reduces the pairwise sum from 1 to w0 = w0·(φi,j(x)+φj,i(x)) such
that the sum of all probabilities changes from

(k
2
)
to
(k

2
)
·w0. Hence, the multiplication

by w0 simply cancels out during the normalization.
Integrating the constant weight into the non-dominance approach (2.25) requires

to equivalently reformulate the non-dominance vector. Originally, it is constructed
without weights for each component 1 ≤ i ≤ k as

1 − max
j 6=i

φ′j,i(x) = 1 − max
j 6=i

max(φj,i(x)− φi,j(x), 0)

= φi,j(x) + φj,i(x) + min
j 6=i

min(φi,j(x)− φj,i(x), 0)

= min(φi,j(x) + φj,i(x) + φi,j(x)− φj,i(x), φi,j(x) + φj,i(x))
= min(2 · φi,j(x), φi,j(x) + φj,i(x))

(5.3)

such that for the non-dominance vector equivalently

NDi(x) = 1−max
j 6=i

φ′j,i(x) = min
j 6=i

min(2 · φi,j(x), φi,j(x) + φj,i(x)) (5.4)

holds. Since the probabilities pND(x) are obtained by normalizing the non-dominance
vector, expressing the latter using the last equality shows that a multiplication φi,j ·w0
simply results in a non-dominance vector w0 ·ND(x). Therefore, the weighting cancels
out in the following normalization step, similar to the probabilistic voting.

The remaining pairwise coupling approach used to compute the probabilities
pWLW(x) solved the optimization problem (2.26). For a constant scaling, the objective
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function can be rewritten as

min
p

k∑
i=1

k∑
j=1
j 6=i

(w0 · φj,i(x) · pi − w0 · φi,j(x) · pj)2

= w2
0 ·min

p

k∑
i=1

k∑
j=1
j 6=i

(φj,i(x) · pi − φi,j(x) · pj)2

(5.5)

such that the constant w0 is independent of the optimization and shows that for each
respective value, the solution exists under the same assumptions.

Thus, each of the most relevant pairwise coupling techniques can be interpreted as
a special case of an algorithm using both, the pairwise probabilities and the weights.
Similar extensions most likely exist for other but less commonly used pairwise coupling
techniques as well, presumably the derivations are analogous to the presented ones.

5.2 Bayesian Interpretation
Before generalizing arbitrary pairwise coupling techniques for non-constant weights
wi,j(x), it is interesting to analyze pairwise coupling from a classical Bayesian proba-
bilistic point of view. Even though there are theoretical justifications for the existing
techniques, these are based on relationships between the true but unknown probabil-
ities. As a particular example,

P (y = i | x) · P (y = j | x, y ∈ {i, j}) = P (y = j | x) · P (y = i | x, y ∈ {i, j}) (5.6)

holds for all 1 ≤ i, j ≤ k satisfying P (y ∈ {i, j} | x) > 0.
Even though in practice none of the involved quantities is known, it still justifies

to replace P (y = i | x, y ∈ {i, j}) with φi,j(x) such that an overconstrained system
of
(k

2
)
equations with k unknown posterior class estimates is obtained. Finding a

solution that minimizes the squared differences is an alternative to derive problem
(2.26). Similar justifications exist for other approaches as well, which are discussed
in full detail in the respective aforementioned works. Still, all of them are based on
replacing the true but unknown pairwise probabilities P (y = i | x, y ∈ {i, j}) with
φi,j(x).

However from a strictly formal point of view, this justification becomes slightly
problematic. For an arbitrary pair of classes {i, j} such that P (y ∈ {i, j} | x) > 0
holds, the conditional probability P (y = i | x, y ∈ {i, j}) formally exists. However as
soon as multiple conditional probabilities are combined, they have to be multiplied
with the probability of the event under which they exist. With respect to pair-
wise coupling, this means that P (y = i | x, y ∈ {i, j}) needs to be combined with
P (y ∈ {i, j} | x). Omitting the latter at first can be interpreted as replacing it with
probability one, i.e. assume that y ∈ {i, j} holds. Simultaneously doing so for all pairs
results in the paradox situation that contradicting events are assumed as given. This
is the Bayesian counterpart of evidence-theoretic modeling using the mass functions
(4.35), which resulted in full conflict.

Based on the scaling invariance discussed in section 5.1, omitting probabilities can
also be interpreted as constant replacement of P (y ∈ {i, j} | x). This can similarly be
interpreted as a uniform prior over all classes, analogously to replacing the weights
wi,j with constants in (4.53). For this reason, the non-competence problem becomes



98 Chapter 5. Generalized Pairwise Coupling

in fact a constant competence problem instead as in practice, the pairwise poste-
rior probabilities are highly unlikely to be constant. This is empirically supported
by aforementioned significant improvements that are obtained by the application of
correcting classifiers in probabilistic voting. Therefore, the following part generalizes
pairwise coupling using non-constant weights.

5.3 Non-Uniform Generalization
Based on the previous insights, the competence of the individual one-vs-one classifiers
can systematically be addressed by extending pairwise coupling with a corresponding
weight. This means that during the actual coupling process, the pairwise predictions
φi,j(x) are always combined with the respective weight wi,j(x). Thus, there is a
straightforward demand for reasonable weight estimators.

From the theoretical point of view, the ideal weight would be the pairwise posterior
probability P (y ∈ {i, j} | x). Still, this does not help in practice because estimating
all pairwise posterior probabilities P (y ∈ {i, j} | x) is equivalently complex as directly
estimating P (y = i | x), similar to (2.30) and the related discussion. Therefore, it
is an interesting and relevant question to do both, compute non-constant weights
and integrate them into arbitrary pairwise coupling techniques. Here, theoretical
justifications are particularly relevant.

With respect to one-vs-all decomposition-based classifiers, there are k individual
discriminant functions fi, i = 1, . . . , k, such that an observed instance x is assigned to
the class whose associated discriminant function returns the largest value. Presum-
ably the most commonly used method to transform them into a posterior probability
estimation is to use the softmax function (2.22). The latter assumes that the sign
is used in the binary decisions, therefore analyzing its application with probabilistic
classifiers fi : X → [0, 1] (e.g. obtained from an explicit calibration step in each binary
classification problem) allows the derivation of an interesting insight. First, doing so
should be combined with a subtraction of 0.5 to shift the decision threshold to zero
accordingly. Applying the softmax transformation thereafter means to first apply the
exponential function on each component and to normalize the resulting vector. Be-
cause the inputs are probabilities, a first-order taylor series of exp(z−0.5) in z0 = 0.5
simplifies to

exp(z − 0.5) = exp(0) + exp(0) · (z − 1) + ε = z + ε (5.7)

such that on (0, 1), it holds exp(z − 0.5) ≈ z with an approximation error ε ∈ O(z2).
Thus, applying the softmax function this way on probabilistic functions is similar to
a simple normalization. As a matter of fact, reasonably approximating the poste-
rior probabilities this way assumes an approximate proportional relationship between
membership and unknown posterior probabilities, fi(x) = α · P (y = i | x) for all
i = 1, . . . , k where α > 0 is the respective proportionality constant. Equivalently,

fi(x)
fj(x) = P (y = i | x)

P (y = j | x) (5.8)

holds approximately for all functions i and j as long as the denominators are non-
zero. It should be emphasized that the latter only holds because the proportionality
constant α does not depend on i. Thus, additionally

P (y ∈ {i, j} | x) = P (y = i | x) + P (y = j | x) = α · (fi(x) + fj(x)) (5.9)
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holds approximately such that a reasonable modification is to replace the individual
predictions fi(x) and fj(x) with a combined estimate while approximately preserving
the proportional relationship to the unknown posterior probabilities, yielding

P (y ∈ {i, j} | x) = β · wi,j(x) (5.10)

for each pair 1 ≤ i, j ≤ k of classes as an assumption that holds at least approximately.

5.3.1 Generalized Pairwise Coupling

Based on the previous analysis, the product P (y = i | y ∈ {i, j}, x) ·P (y ∈ {i, j} | x) of
the unknown probabilities is approximately proportional to multiplying the pairwise
prediction φi,j(x) by the weights wi,j(x)

P (y = i | y ∈ {i, j}, x) · P (y ∈ {i, j} | x) = β · φi,j(x) · wi,j(x) (5.11)

such that generalized pairwise coupling can be formulated as the following task: Given
the inputs

• instance x ∈ X and an integer k such that Y = {1, . . . , k} holds

• pairwise probabilities matrix φi,j(x) and φj,i(x) = 1−φi,j(x) for all 1 ≤ i < j ≤ k

• pairwise weight matrix wi,j(x) = wj,i(x) for all 1 ≤ i, j ≤ k with i 6= j

compute a posterior probability estimation p(x) = (p1(x), . . . , pk(x)). Based on the
insights of section 5.1, the existing case of pairwise coupling is recovered by using a
constant weight matrix wi,j = w0 > 0 for all pairs (i, j). As rescaling the weight ma-
trix does not change the solution, wi,j ≤ 1 can be assumed without loss of generality
for all pairs (i, j).

Algorithmic Solutions

Generalized pairwise coupling at first can be solved using evidence theory as presented
in section 4.2, the result will be given by (4.52). Still, it is particularly interesting to
also extend the existing pairwise coupling techniques for this task. With respect to
probabilistic voting and the non-dominance criterion, this is relatively straightforward
based on the insights of section 5.1. In particular, only the constant weight w0 has
to be replaced by wi,j(x) in (5.2) and (5.3), yielding generalized probabilistic voting

pGVote
i (x) = 1

k−1∑
`=1

k∑
j=`+1

wi,j(x)
·
k∑
j=1
j 6=i

φi,j(x) · wi,j(x) (5.12)

as well as the generalized non-dominance criterion

GNDi(x) = min
j 6=i

min(2 · wi,j(x) · φi,j(x), wi,j(x) · (φi,j(x) + φj,i(x)))

= min
j 6=i

wi,j(x) ·min(2 · φi,j(x), φi,j(x) + φj,i(x))

= min
j 6=i

wi,j(x) ·min(2 · φi,j(x), 1)

(5.13)

with probabilities pGND
i (x) obtained by normalizing GND(x), respectively. Here, the

former coincides with the proposed approach first introducing the correcting classifiers
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[Moreira &Mayoraz 1998] if the weights are computed using the latter. Still besides an
extended theoretical justification, other options to compute the weights are possible as
well – these will be discussed in section 5.5. Generalizing the third pairwise coupling
approach given by (2.26) yields

min
p

k∑
i=1

k∑
j=1
j 6=i

[wi,j(x) · (φj,i(x) · pi − φi,j(x) · pj)]2 s.t.
k∑
i=1

pi = 1 (5.14)

whose solution is used as an estimate of P (y | x). However, there are some important
aspects to consider. Most importantly, the existence of a solution for arbitrary weights
wi,j has to be proven. If this holds, it is important to analyze if the solution is still
uniquely defined and satisfies pi ≥ 0 for all i = 1, . . . , k such that the interpretation as
a posterior probability estimate remains valid. For this, the prediction instance x can
be assumed as fixed such that the explicit dependency of all computed probabilities
on it is omitted in the following part, similar to chapter 4. Here at first, the following
generalized result holds:

Lemma 5.1. If φi,j > 0 as well as wi,j > 0 hold for all 1 ≤ i, j ≤ k with i 6= j,
problem (5.14) has a uniquely defined solution pGWLW(x) satisfying pGWLW

i (x) ≥ 0 for
all i = 1, . . . , k.

Proof. The proofs of these properties are generalizations of the constant-scaling coun-
terparts, in particular theorems 2 and 3 in the original work [Wu et al. 2004]. There-
fore using the property that wi,j = wj,i holds for all pairs (i, j), the most elegant way
is to define pairwise probability estimates ψi,j := wi,j ·φi,j and replace all occurrences
of φi,j with ψi,j in the original proofs1 for all pairs (i, j). From this, the only difference
is that ψi,j + ψj,i = wi,j ≤ 1 = φi,j + φj,i. However, both proofs in the original work
do not depend on the restriction that φi,j + φj,i = 1 has to hold. As a matter of fact,
the proofs remain valid without this restriction such that the claim is proven.

The last result guarantees that generalizing (2.26) into (5.14) does not influence
the existence of a solution satisfying all required properties. Still, it is important
to efficiently compute it with respect to practical applications. The authors of the
original work presented a direct algebraic way solving (2.26) as well as an efficient
numeric iterative alternative. Consequently, extending these is relevant for solving
(5.14). Generalizing the algebraic method, the matrix Q ∈ Rk×k with entries

Qi,j =


k∑
`=1
` 6=i

w2
`,i · φ2

`,i if i = j

−w2
i,j · φi,j · φj,i if i 6= j

(5.15)

has to be constructed. Now, p is optimal for (5.14) if and only if[
Q 1
1 0

]
·
[
p
b

]
=
[
0
1

]
(5.16)

holds for a real-valued parameter b. In the original work, the matrix Q does only
depend on the pairwise probabilities φi,j . Still, the given derivation does not depend
on the restriction that φi,j + φj,i = 1 holds for all pairs (i, j), analogously to the last

1It should be emphasized that the authors used the nomenclature of ri,j instead of φi,j for all
pairwise probability estimates.
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proof. Consequently, p is optimal for (5.14) if and only if it is a solution of (5.16).
The latter equation system sized (k+1)×(k+1) can be solved with O(k3) operations
using direct algebraic methods.

As the optimal solution has to be computed during each prediction, the iter-
ative numeric is usually preferred over the explicit algebraic solving based on the
linear equation system. In particular using an arbitrary initial solution, the iterative
computations converge to the optimal one. As neither the algorithm itself nor its
convergence proof depends on the fact that the pairwise probabilities sum to one,
the generalized variant given in algorithm 5.1 can be used to efficiently compute the
solution of (5.14).

Algorithm 5.1: Iteratively compute pGWLW in (5.14)
Result: Unique solution p of (5.16)
initialize ` = 1 and p (e.g. pi = 1

k for all i = 1, . . . , k)
while (5.16) does not hold for p with error ≤ ε do

p` := 1
Q`,`
·

p>Qp− k∑
j=1
j 6=`

Q`,jpj


normalize p
` := (` mod k) + 1

end
return p

Here, several important properties from the original work are maintained. The
optimal solution satisfies (Qp)i = −b for all components i = 1, . . . , k from (5.16),
such that b = −p>Qp holds as well. The latter can be used to efficiently check
for the termination criterion. Even though the involved computations require O(k2)
operations per iteration, they can be reduced to O(k) by caching Qp and performing
sequential updates as in the original algorithm. Still, the authors suggest to perform
a full update after k iterations to avoid accumulated numerical inaccuracies such that
the average complexity per iteration remains in O(k).

Monotonicity Property in Pairwise Coupling

The previous analysis showed that the three most relevant pairwise coupling ap-
proaches can be extended for non-constant weights. Still, similar extensions most
likely exist for any pairwise coupling technique as well. Next, there is another impor-
tant, theoretic difference between the presented techniques.

Both, probabilistic voting and the non-dominance criterion, satisfy the following
monotonicity property: For any fixed pair (i, j), the probabilities φi,j and φj,i can be
replaced by φi,j+∆ and φi,j−∆, respectively, such that the confidence in the pairwise
prediction moves a part ∆ ≥ 0 from φj,i to φi,j . For a given pairwise probabilities
matrix Φ and an index pair (i, j) – such that all other probabilities remain fixed –
the overall posterior probability estimate can be interpreted as a function of ∆. In
case of probabilistic voting and the non-dominance criterion, this will always result
in an overall increased probability pi for class i and a decreased one pj for class j.
Consequently, both coupling approaches are monotonic in this sense. Analogously,
the same holds for their generalized formulations assuming that the weight matrix
remains unchanged.

In contrast to these properties, computing pWLW and pGWLW by solving (2.26) and
(5.14), respectively, does not satisfy this monotonicity property, counterexamples
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Figure 5.1: Resultung Posterior probability pWLW(∆) and their ex-
trema for the system induced by Φ(∆) as given in (5.17).

can already be constructed using three classes. For example, the following pairwise
probabilities matrix depending on ∆ ∈ [0, 1]

Φ(∆) =

 • 0.95 0.95
0.05 • 1−∆
0.05 ∆ •

 (5.17)

can be defined such that the solution pWLW(∆) can be interpreted as a function of
∆. Here, selecting ∆ = 0.8 and ∆ = 0.9 increases φ3,2 by 0.1 but simultaneously
decreases the corresponding posterior probability estimation pWLW

3 (∆). This first
can be seen by solving both systems, yielding the solutions pWLW

3 (0.8) = 0.05231 as
well as pWLW

3 (0.9) = 0.05157, respectively, each rounded to five digits. Even though
pWLW

3 decreases from increasing φ3,2, the overall deviation might still be caused from
numerical inaccuracies as the absolute values are relatively small.

To exclude this possibility, an algebraic verification was performed. In partic-
ular using computer-algebraic methods, the optimal solution pWLW

3 (∆) is computed
in direct functional dependency on ∆. Differentiating allows the verification that it
has a uniquely defined maximum on [0, 1] in ∆max ≈ 0.77787 yielding the probabil-
ity pWLW

3 (∆max) ≈ 0.05234. The whole graph of pWLW
3 (∆max) with its maximum is

illustrated in figure 5.1.
As a result, the respective pairwise coupling approach as well as the presented gen-

eralization using non-constant pairwise weights wi,j are capable of discarding local
increased probabilities in favor of a globally more consistent estimation. However, the
additional cost for this is the requirement to solve an optimization problem at each
prediction. Still, this is an important advantage over pairwise coupling approaches
for which this property does not hold. As most of the pairwise classifiers are not com-
petent during each prediction, they can easily produce unreliable large probabilities
for one of the two classes. Consequently, discarding local information in favor of a
more consistent, global one is a remarkable property.

With respect to this difference between the existing pairwise coupling techniques,
it should be emphasized that the evidence-theoretic approach (5.1) is also monotonic
in this sense, i.e. any increase in pairwise probabilities increases the overall probability
for the respective class. Still, this only holds if all pairwise probabilities are strictly
positive. For degenerated probabilities of zero, the whole product remains zero even
if one factor increases.
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To prove this statement, assume that there is a counterexample, i.e. for any num-
ber of classes k and pairwise probability matrix Φ satisfying 0 < φi,j < 1 for all
1 ≤ i, j ≤ k such that moving ∆ > 0 from k−1 to k does not increase2 pk if the latter
is computed according to (5.1). In particular, the dependency on ∆ is represented by

φi,j(∆) :=


φi,j if i ≤ k − 1 ∨ j ≤ k − 1
φk−1,k −∆ if i = k − 1 ∧ j = k

φk,k−1 + ∆ if i = k ∧ j = k − 1
(5.18)

for all 1 ≤ i, j ≤ k and sufficiently selected ∆ (i.e. φk−1,k−∆ > 0 and φk,k−1 +∆ < 1)
such that the posterior probability estimates are computed as

pi(∆) = 1
Z(∆) ·

k∏
j=1
j 6=i

φi,j(∆) (5.19)

with normalization constant

Z(∆) =
k∑
i=1

k∏
j=1
j 6=i

φi,j(∆) (5.20)

such that p sums to one. Now, by assumption holds pk(∆) ≤ pk(0) for sufficiently
small ∆ > 0, i.e.

1
Z(∆) ·

k−1∏
j=1

φk,j(∆) ≤ 1
Z(0) ·

k−1∏
j=1

φk,j(0) (5.21)

holds, which implies Z(∆) > Z(0) because φk,k−1(∆) > φk,k−1(0). From this,

pi(∆) = 1
Z(∆) ·

k∏
j=1
j 6=i

φi,j(∆) <
1

Z(0) ·
k∏
j=1
j 6=i

φi,j(∆) <
1

Z(0) ·
k∏
j=1
j 6=i

φi,j(0) < pi(0) (5.22)

is obtained for all 1 ≤ i ≤ k − 1. Thus, ∑k
i=1 pi(∆) <

∑k
i=1 pi(0) = 1 yields a

contradiction such that a corresponding pairwise probabilities matrix cannot exist.

Summary

In summary, the evidence-theoretic approach to pairwise coupling has a strong the-
oretical background that revealed interesting insights with respect to the existing
alternatives. Particular relevant are their extended versions to allow a non-uniform
weight for each pairwise prediction, which is presumably the most systematic ap-
proach to deal with the non-competence problem.

With respect to influences in practice like noise, it still might be preferred to
solve the generalized problem (5.14) to combine both, robustness with systematic
addressing the non-competence problem. Thus, the insights from analyzing pairwise
coupling in the context of evidence theory were used to systematically improve the
existing pairwise coupling strategies. However from a practical point of view, it still
remains at least unclear whether non-constant weights are reasonably proportional

2It is assumed without loss of generality that ∆ is moved from k− 1 to k, simply from permuting
the indices accordingly.
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to the unknown pairwise posterior probability P (y ∈ {i, j} | x) in general. Neverthe-
less, the next section aims at recovering dynamic classification as a special case of
generalized pairwise coupling.

5.4 Dynamic Classification using Pairwise Coupling
One of the main aims of this work is the generalization of multi-class classification into
a dynamic context. Here, the strategies of the last section that integrated arbitrary,
non-constant weightings into pairwise coupling can also be used to systematically
integrate a dynamic target set. The respective results are similar generalizations to
the ones provided by using evidence theory as presented in section 4.3. Still, they
lack a similar theoretic foundation as pairwise coupling in general does.

If ∅ 6=M⊆ Y refers to the dynamic target class set such that |M| ≥ 2 is assumed
without loss of generality (otherwise the classification problem is trivial), a possible
strategy to integrate the dynamic class information is to modify the weights to

ŵi,j(x) :=
{

wi,j(x) if {i, j} ⊆ M
0 otherwise

(5.23)

which is reasonable for all generalized pairwise coupling approaches that multiplica-
tively combine the predictions φi,j(x) with the respective weights wi,j(x). This in
particular holds for the previously presented ones. Consequently, only classifiers that
differentiate between still recognizable classes inside the target setM receive non-zero
weights in the remaining coupling process. In particular, the similarity to modeling
(4.78) should be noted.

Besides this, an explicit additional constraint might be required in general that
the posterior probability estimation vector p(x) resulting from the pairwise coupling
is non-zero only on M, i.e. ∑i∈M pi(x) = 1 or equivalently ∑i/∈M pi(x) = 0 holds.
However for the three pairwise coupling techniques of main interest, this constraint
is redundant, as will be shown in advance.

Integrating (5.23) into generalized probabilistic voting (5.12) yields

pGVote
i (x) = 1

k−1∑
`=1

k∑
j=`+1

ŵi,j(x)
·
k∑
j=1
j 6=i

φi,j(x) · ŵi,j(x)

= 1∑
`∈M

∑
j∈M:j>`

wi,j(x) ·
∑

j∈M\{i}
φi,j(x) · wi,j(x)

(5.24)

as the respective coupling result. For the generalized non-dominance criterion the
extension is similarly straightforward, however requires to restrict the minimization
overM only such that

GNDi(x) = min
j∈M\{i}

min(2 · wi,j(x) · φi,j(x), wi,j(x) · (φi,j(x) + φj,i(x)))

= min
j∈M\{i}

wi,j(x) ·min(2 · φi,j(x), φi,j(x) + φj,i(x))

= min
j∈M\{i}

wi,j(x) ·min(2 · φi,j(x), 1)

(5.25)
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yields the non-dominance vector with respective posterior probability estimation by
normalization. Finally, the generalized problem (5.14) results in the modified version

min
p

∑
i∈M

∑
j∈M
j 6=i

[wi,j(x)·(φj,i(x)·pi − φi,j(x)·pj)]2 s.t.
∑
i∈M

pi = 1, pi = 0 ∀i /∈M (5.26)

which thereafter has to be solved analogously. In each of the three cases, the extension
is equivalent to applying the respective generalized version, but to restrict the pairwise
probabilities φi,j(x) as well as weights wi,j(x) to only those class indices insideM.

It should be emphasized that even though this modeling aims at generalized pair-
wise coupling using arbitrary weights wi,j(x) for the individual classifiers, it still re-
mains applicable for default pairwise coupling approaches as the latter are simply
special cases of the former with constant weights wi,j(x) ≡ w0 > 0, as discussed in
full detail in section 5.1. Here at least for the pairwise coupling techniques of main
interest, w0 = 1 can be assumed without loss of generality as the respective solu-
tions are already observed to be independent of constant multiplications. As a result,
extending the respective pairwise coupling techniques with weights given by (5.23)
is equivalent to perform pairwise coupling only with classifiers separating between
classes inside M. In particular, all theoretical properties of (5.14) remain valid for
(5.26), which is important for practical applications.

Even though the presented approaches to dynamic classification focus on three
pairwise coupling techniques, similar extensions are expected to be possible for most
if not all existing variants as well. The generalizations are mostly straightforward,
however they might require the additional constraint that each coupling method pro-
duces non-zero probabilities only onM. In most cases where the combination between
pairwise probabilities and weights remains multiplicative, the constraint is most likely
redundant, but still remains important in general.

5.5 Computational Aspects
The previous sections of this chapter generalized the classical pairwise coupling ap-
proach such that each individual prediction φi,j always has to be combined with a
weight wi,j , which in particular yields a structured way to integrate dynamic clas-
sification into the fusing process. Ideally, the weighting equals the pair’s unknown
posterior probability wi,j(x) = P (y ∈ {i, j} | x), which however is unknown in prac-
tice. Existing works introduced the pair-vs-rest correction classifiers for this task
and, as shown in section 5.3 by (5.10), this remains a valid surrogate if there is a
proportional relationship between posterior probabilities and weights.

Not only even this proportional relationship might be unreasonable to assume, it
additionally poses a challenging learning problem. The pair-vs-rest approach shares
the same disadvantages of the one-vs-all reduction as imbalanced learning problems
that are harder to solve than the ones of the one-vs-one decomposition – eventually
even harder than these of the one-vs-all reduction – which can result in unreliable
predictions. Using the latter during generalized pairwise coupling can skew the esti-
mation such that a constant weight might still be superior in practice, depending on
the respective task.

5.5.1 Extended Decompositions with Large-Scale Models

A related open issue was already presented in section 2.4. State-of-the-art models like
large-scale deep neural networks trained on millions of training examples are usually
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Figure 5.2: Illustration of the differences between a one-vs-all soft-
max model (top) and a one-vs-one neural network with
an optional dynamic classification fusing step (bottom).

equipped with a softmax layer that performs the final prediction. The corresponding
parameters are jointly estimated because independent trainings of the involved one-
vs-all functions have no clear advantage and require to train and deploy k models
instead of a single one. This might explain why combining decomposition-based
classification besides the one-vs-all reduction in combination with large-scale neural
networks received less attraction in the literature.

Two recent works try to extend these capabilities, however these are designed such
that the whole data are encoded and decoded, respectively, into different represen-
tations besides the one-hot encoding used for the one-vs-all reduction: First, using
binary ECOC codewords [Klimo et al. 2021] and applying techniques as presented in
full detail in section 2.3 achieving comparable results and second, into a one-vs-one
encoding as given by (2.29), where each class label is encoded by

(k
2
)
ternary outputs

from {−1, 0, 1} [Pawara et al. 2020]. Here, the last layer consists of
(k

2
)
hyperbolic

tangent functions (tanh) to encode the input accordingly. Even though the authors
reported comparable results, their approach in fact does not train one-vs-one classi-
fiers. Instead of separating only classes i and j, both are simultaneously separated
from all other classes. This increases the training complexity and also introduces
redundancies because each one-vs-all decision boundary in fact is learned k−1 times.

One-vs-One Neural Networks

The correct way of training one-vs-one neural networks requires to train the corre-
sponding pairwise prediction functions instead by only using data from the respective
two classes. This is computationally complicated as it cannot be integrated into usual
forward and backward passes that are performed during neural network training as
well as requires to simultaneously process all data forwards and backwards.

As a trade-off solution for this problem, the following approach is introduced as
a feasible solution to combine large-scale models with the one-vs-one decomposition.
First, an arbitrary neural network is trained containing a default softmax prediction
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layer based on the one-vs-all decomposition using the given training data. There-
after, the whole last layer is removed and the remaining network is extended by a
one-vs-one layer containing

(k
2
)
neurons. Each of the latter will be trained using a

sigmoidal activation function, which is commonly used for binary classification tasks.
Here, two parts are important. First, the sigmoid functions are trained only using
data from one pair of classes, supplied as a binary-only problem. This training can
be performed following default optimizations, e.g. forward/backward passes on the
respective model, which has to be iterated

(k
2
)
times on a network that only contains

a single output neuron. Second during these trainings, only the last layer’s parame-
ters are optimized, while the remaining network remains fixed. This is important to
ensure that all

(k
2
)
individual networks remain the same besides except only the last

layer. Thus after finishing all trainings, there are
(k

2
)
binary neural networks that

form the one-vs-one ensemble. Since they are the same except their last layer, they
can be combined into a single model whose last layer consists of all

(k
2
)
one-vs-one

neurons. The resulting network and its differences from a standard one-vs-all softmax
model are illustrated in figure 5.2.

It should be emphasized that these steps are only performed in this way to keep
the approach feasible for large-scale models. Otherwise, the trainings can either be
performed completely independently (as usual the case for simpler models) or after
finishing the one-vs-all training, the individual one-vs-one models can be optimized
as a whole and not only their last layer. Still, this also requires to deploy

(k
2
)
indepen-

dent models that share the same structure (i.e. layers and shapes), but use different
coefficients. Even though the approaches focus on neural networks, they can analo-
gously be applied for other large-scale models as long as the prediction characteristics
are similar and allow the respective modifications.

Extensions for Generalized Pairwise Coupling

In any case, the one-vs-one networks output a probability matrix Φ in form of (2.23).
Depending on the actual implementation, this can be represented by a 1D vector
with

(k
2
)
entries and, consequently, requires pairwise coupling techniques to transfer

the individual predictions into an overall posterior probability estimation. This di-
rectly points to extending the presented strategy for generalized pairwise coupling, i.e.
how to compute the weights using large-scale models, too. Here, combining the pre-
sented methods with existing approaches to compute the weights yields three possible
alternatives:

1. The first alternative replaces the softmax layer in the initial training by a joint
optimization of all pair-vs-rest classifiers. In particular, the last layer consists of(k

2
)
independent sigmoidal activation units in which each instance’s class value

y is encoded at training time with a binary vector that contains exactly k − 1
ones and

(k
2
)
− (k − 1) =

(k−1
2
)
zeros, respectively. Thereafter, the model can

be similarly extended to train the one-vs-one prediction functions. Finally, all
pair-vs-rest and one-vs-one predictions can be merged into a layer containing
k · (k − 1) neurons.

2. Learning the pair-vs-rest classifiers can be a difficult task and there is a qua-
dratic number in k of them. Therefore, it can be significantly faster to train
the network first using a softmax layer only (i.e. the one-vs-all decomposition)
and, thereafter, learn the pair-vs-rest classifiers by replacing the softmax layer
on an existing model. Here, the whole network can either be optimized during
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the pair-vs-rest optimization because all classifiers can be jointly optimized or
alternatively be fixed as during the one-vs-one training.

3. Both previous approaches directly train the pair-vs-rest classifiers using neural
networks. Alternatively, their predictions can also be replaced by the sum of
the respective one-vs-all probabilities, wi,j(x) = fi(x)+ fj(x). This approach was
introduced as a surrogate for the correction classifiers in their introductory work
[Moreira & Mayoraz 1998] to avoid a quadratic number of additional models,
however for the presented algorithms it is particularly relevant.
As discussed in section 2.3, the authors reported decreased classification ac-
curacy if the correcting classifiers were replaced this way. With respect to
neural networks, the one-vs-all classifiers are trained anyway to initialize the
model such that reusing them comes at practically no additional cost. Further-
more, this training is performed simultaneously such that adding the prob-
abilities might produce more reliable estimates of the posterior probability
P (y ∈ {i, j} | x) than summing independent one-vs-all predictions. Especially
since neural networks themselves often perform superior to simpler models like
decision trees, it is at least questionable if the respective negative results remain
valid here. In total, this approach constructs a neural network whose last layer
contains

(k
2
)

+ k =
(k+1

2
)
neurons, which at least turns it into the most efficient

alternative that computes both kinds of predictions.

All of these techniques can also be interpreted as a combination of transfer learning
– i.e. transferring models trained on one data set to another one – and classifier
calibration. The former since an initial training is performed, the latter because
estimating the binary predictors using either the log-loss or the mean squared error
is actually the same as performing a calibration step. The only difference is the fact
that the model was trained on not exactly the same problem, but a related one.

It might be advantageous – in particular for implementations – to arrange the
individual prediction functions into a compact representation given by the following
k × k matrix

f1(x) φ1,2(x) φ1,3(x) · · · φ1,k−1(x) φ1,k(x)
w2,1(x) f2(x) φ2,3(x) · · · φ2,k−1(x) φ2,k(x)
w3,1(x) w3,2(x) f3(x) · · · φ3,k−1(x) φ3,k(x)

...
...

... . . . ...
...

wk−1,1(x) wk−1,2(x) wk−1,3(x) · · · fk−1(x) φk−1,k(x)
wk,1(x) wk,2(x) wk,3(x) · · · wk,k−1(x) fk(x)


(5.27)

where the diagonal entries refer to the one-vs-all predictions, the upper triangle refers
to the one-vs-one pairwise probabilities and the lower triangle to the weights. This
yields a neural network with a square-shaped output layer whose k diagonal entries
are the default softmax predictions, i.e. existing models with a vector-valued output
layer are generalized and their predictions respectively recovered.

5.5.2 Weight Estimation

Aforementioned approaches generalize pairwise coupling algorithms with particular
focus on dynamic classification. Besides strategies that aim at keeping the algorithms
computationally tractable in combination with large-scale classification models (e.g.
deep neural networks), the computation of the required weights wi,j(x) is especially
relevant in contexts using dynamic class information.
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Following existing approaches, the weights can be computed using correction clas-
sifiers (WeightCC) or by pairwise sums of one-vs-all predictions (Weight1vA). In most
cases, both kinds of learning problems are presumably harder than those of the one-
vs-one reduction, where always two actual classes are separated instead of class sets
that are merged into new artificial classes.

Most importantly, these strategies expose an additional drawback with respect to
dynamic contexts. Applying pairwise coupling without one-vs-all or correcting clas-
sifiers maximally adapts to the dynamic context since no involved classifier depends
in any way on data observed from classes that are excluded from the dynamic target
set M. On the reverse, applying generalized pairwise coupling in combination with
weights computed in one of the aforementioned ways still implicitly depends on data
from all classes.

Weights by Pairwise Coupling

This situation might lead to a potential trade-off problem in practice: On the one
hand, applying pairwise coupling while simultaneously supplying dynamic class in-
formation becomes completely independent of classes that cannot be observed and
is likely to benefit better from the dynamic information than the generalized coun-
terparts that implicitly depend on all classes. On the other hand, the generalized
variants can yield improved results, at least according to the reported improvements
in respective reference works, as presented in full detail in chapter 2.

Here, the following alternative approach combines both advantages by comput-
ing the weights by pairwise coupling (Weight1v1). For this, the respective pairwise
coupling procedure is applied without supplying any weights to compute an ini-
tial posterior probability estimation q(x). Using this, the weights are computed as
wi,j(x) = qi(x)+qj(x). Thereafter, the generalized pairwise coupling approach is used
to compute the final posterior probability estimation p(x). In this way, the weight
computation does not depend on data from all classes in dynamic classification con-
texts. This presumably yields superior results in real-time applications with class sets
Y from which only a significantly smaller portionM should be predicted.

Generally, this approach can even be iterated: First, no weights are used to com-
pute an initial posterior probability estimation q(x). Thereafter, the weights are
initialized by pairwise sums and are used to compute a new posterior probability
estimation. After this, the weights are recomputed by summing. This approach can
be iterated arbitrarily often, for example until convergence. However, this can be
computationally complicated as long as there is no proven convergence property un-
der mild additional assumptions. Alternatively, it requires a different termination
criterion that remains arbitrary as well.

With respect to the evidence-theoretic approach to pairwise coupling (5.1), the
following result guarantees that these iterations are not required at all because they
will not change the predicted class.

Proposition 5.2. Let the unnormalized probabilities pi be as in corollary (4.7), i.e.

pi =
k∏
j=1
j 6=i

(φi,j · wi,j) ·
k−1∏
s=1
s 6=i

k∏
t=s+1
t6=i

(1− ws,t) (5.28)
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for all i = 1, . . . , k. If the weights additionally are computed as

wi,j = qi + qj
k∑̀
=1
q`

with qi =
k∏
j=1
j 6=i

φi,j (5.29)

it holds
arg max

1≤i≤k
pi = arg max

1≤i≤k
qi (5.30)

such that the induced class predictions are equivalent.

Proof. For each i = 1, . . . , k let j 6= i be arbitrarily selected. First, qi ≥ qj implies for
each ` 6= i, j

1− qi − q` ≤ 1− qj − q` ⇒ (1− qi − q`)−1 ≥ (1− qj − q`)−1 (5.31)

such that multiplying all these inequalities yields

k∏
`=1
` 6=i

(1− qi − q`)−1 ≥
k∏
`=1
`6=j

(1− qj − q`)−1 (5.32)

where strict inequality is maintained. By rescaling according to (4.55), it holds

pi ∝
k∏
`=1
` 6=i

φi,` · wi,`
1− wi,`

=
k∏
`=1
` 6=i

φi,` ·
k∏
`=1
` 6=i

wi,` ·
k∏
`=1
`6=i

(1− wi,`)−1 (5.33)

= qi ·
k∏
`=1
` 6=i

(qi + q`) ·
k∏
`=1
` 6=i

(1− qi − q`) (5.34)

= qi · (qi + qj) · (1− qi − qj)−1 ·
k∏
`=1
`6=i,j

(qi + q`) ·
k∏
`=1
`6=i,j

(1− qi − q`) (5.35)

as well as analogously

pj ∝ qj · (qi + qj) · (1− qi − qj)−1 ·
k∏
`=1
`6=i,j

(qj + q`) ·
k∏
`=1
`6=i,j

(1− qj − q`) (5.36)

such that qi ≥ qj implies pi ≥ pj as well as qi > qj implies pi > pj , respectively.
Therefore, the maximizing indices coincide as claimed.

The last result not only proves that the weighted and unweighted evidence-
theoretic predictions are equivalent, but additionally the proof shows that a mul-
tiplicative voting with probabilities

pi ∝
k∏
j=1
j 6=i

(φi,j · wi,j) (5.37)

would result in an equivalent class prediction under the same assumptions.
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The selection of the best weight estimation technique presumably remains task-
specific in practice. Still, the presented approach at least allows the computation of
the weights with a maximum adaption to dynamic class information.

5.6 Summary
Based on the provided insights of evidence theory in chapter 4, the further contri-
butions are three-fold: First, a new interpretation of the non-competence problem in
pairwise coupling is presented as an assumed constant weighting during the pairwise
coupling process, which results in both, an evidence-theoretic approach to pairwise
coupling using multiplicative instead of additive voting and a corresponding Bayesian
counterpart of a full-conflict evidence-theoretic modeling.

Thereafter, the second main contribution generalizes existing pairwise coupling
techniques such that the individual one-vs-one predictions φi,j(x) are combined with
non-constants weights wi,j(x). In particular, existing approaches are recovered as
special cases with constant weights, similar to existing works that introduced the cor-
recting classifiers for probabilistic voting. Here, the corresponding coupling result can
be computed using extended variants of existing algorithms, especially focusing on the
three most relevant ones. With focus on dynamic classification, the evidence-theoretic
approach was integrated into pairwise coupling by setting a corresponding selection
of weights to zero. This yields two different approaches to dynamic classification in
general: either based on standard or generalized pairwise coupling.

Finally, solutions for two different computational aspects are presented that are
particularly relevant for practical applications. First, transferring decomposition-
based classification approaches to large-scale models like deep learning neural net-
works, where for computational constraints a single final model is required and sec-
ond, computing the weights in generalized pairwise coupling such that no predictors
are used that depend on data from all classes.

In combination with the results of chapter 4, two different strategies for dynamic
classification are developed. For practical applications, it is interesting to compare
standard and generalized pairwise coupling as well as to analyze how supplying dy-
namic class information can improve the prediction accuracy. Thus, the next chapter
presents evaluation strategies and empirically compares the different algorithms.
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Chapter 6

Evaluation

The last two chapters 4 and 5 presented different strategies to integrate dynamic
class information into the fusing process of pairwise coupling, therefore a feasible in-
tegration into real-world applications is possible. All presented algorithms are based
on decomposition-based classification approaches, thus they require probabilistic pre-
dictions from the individual classifiers. These can be computed using calibration
algorithms as presented in chapters 2 and 3, respectively, which emphasizes their
relevance in the following evaluation.

With respect to integrating dynamic information into real-world applications, the
most important aspects are how large improvements yielded from integrating dynamic
information are and which techniques mostly improve the prediction accuracy from
this integration. Consequently, at first evaluation metrics for dynamic classification
are required that depend not only on data, but additionally on the respective target
setM.

Therefore, in section 6.1 at first evaluation metrics for dynamic classification are
derived. Thereafter, the introduced new algorithms are compared to state-of-the-
art reference techniques in section 6.2 in a thorough empirical evaluation comprising
several experiments. Finally, section 6.3 applies the algorithms in an actual real-world
application where the dynamic class information successfully improves the recognition
accuracy.

6.1 Evaluation Metrics
There is a natural demand to compare the different approaches with respect to both,
their main accuracy results obtained as classification algorithms in general as well as
their improvements gained from integrating dynamic class information that simplifies
the respective task in particular. For the former, standard evaluation metrics like
the classification or error rate, respectively, can be used, while for the latter, a direct
evaluation metric is not available. Here, every possible choice has to depend on the
corresponding dynamic target set M, which directly points to a related problem:
Existing reference data do not contain information about possible target sets, thus
they have to be approximated, which requires a respective strategy. Both issues are
addressed by the following part.

6.1.1 Dynamic Risk

Computing evaluation metrics for a given prediction algorithm f as an average error
Remp(f) on validation or test data using a loss function L – in case of classification
problems mostly the binary loss counting the incorrect classifications – means that
a Monte-Carlo approximation of the risk R(f) is computed, cf. equations (2.2) and
(2.3). Even though the latter cannot be computed in general because it depends
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on the unknown data-generating distribution P , it still allows a theoretical way to
integrate a dynamic target set into the risk calculation.

Integrating a set M ⊆ Y such that at prediction time P (y = i | x) = 0 holds
for all i /∈ M means that the classification function as well as the data-generating
distribution change, i.e. f = fM and P = PM depend on M. For the former, it is
assumed that f deterministically depends anM such that in particular f = fY holds.
Assuming that there is a density function p(x, y) = pM(x, y), the risk of fM with
respect to PM can be equivalently computed as

R(fM | PM) =
∫
X×Y

L(fM(x), y) · pM(x, y) d(x, y) (6.1)

such that the risk’s dependency onM is expressed by the joint density pM(x, y). For
each y /∈M, without loss of generality1 pM(x, y) = 0 can be assumed for each x ∈ X .
Otherwise, the joint distribution can be factorized as

pM(x, y) = pM(x | y) · PM(y) (6.2)

for each y ∈M. Here, it is reasonable to assume that the class-conditional likelihoods
do not depend on M such that pM(x | y) ≡ p(x | y) holds in (6.2). Therefore, the
dynamic class information cause a change in the prior probabilities PM(y). As they
are usually estimated as the fraction of respective training data, estimating them on
data with classes inside M is equivalent to assuming a simple rescaling of the prior
probabilities, which is the same as assuming a proportional relationship between the
non-zero prior probabilities over Y andM, respectively

PM(y) = 1∑
i∈M

P (i) · P (y) (6.3)

for each y ∈ Y. Using the last two equations allows the computation of a Monte-Carlo
approximation of (6.1), however this only holds for a fixed target setM.

A desired property of the target class setM⊆ Y is that it can change over time.
This means that there is a distribution Q(M) over the sets of possible class sets that
defines how likely each set M is to be observed at prediction time. Using this, the
expected value of (6.1) with respect to Q(M)

EM [R(fM | PM)] =
∑

∅6=M⊆Y
Q(M) · R(fM | PM)

=
∑

∅6=M⊆Y
Q(M) ·

∫
X×Y

L(fM(x), y) · p(x | y) · PM(y) d(x, y)
(6.4)

can be defined as the dynamic risk. It is a strict generalization of the risk because
the distribution Q(M) can degenerate into Q(Y) = 1 such that the dynamic risk
coincides with the risk. Thus, it is a natural generalization for arbitrary distributions
Q(M).

However, the dynamic risk cannot be computed directly for two different reasons:
Not only the data-generating distribution P = PM is unknown, the same also holds
for the dynamic target set distribution Q. If D = {(xi, yi) : i = 1, . . . , r} refers to a

1Formally, pM(x, y) = 0 only holds almost everywhere. Still, the remaining zero set does not
influence the integral.
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given test data set, for a givenM⊆ Y the induced subset

D(M) := {(xi, yi) : yi ∈M} (6.5)

allows the computation of

Remp(fM | D(M)) := 1
|D(M)| ·

∑
(xi,yi)∈D(M)

L(fM(xi), yi) (6.6)

as an approximation of (6.1), but extending this into an approximation of (6.4) is
not possible if Q is unknown. There might be applications where this distribution is
known, however to evaluate reference data sets, approximation strategies are neces-
sary. The latter yield probabilities q(M), thus the dynamic risk can be approximated
by

Remp(fM | q) :=
∑

∅6=M⊆Y
q(M) · 1

|D(M)| ·
∑

(xi,yi)∈D(M)
L(fM(xi), yi) (6.7)

such that defining the probabilities q(M) using respective sampling strategies re-
mains.

6.1.2 Sampling Strategies

The previous analysis shows that the computation of the dynamic risk depends on
sampling the class set distribution Q by defining probabilities q. The first reasonable
restriction is to assume |M| ≥ 2 because otherwise, the problem is already solved.
Consequently, there are 2k − (k + 1) different remaining sets. This leads to the first
strategy to exhaustively use all possible data sets at prediction time. Since this
involves an exponential complexity, it is only feasible for data sets with up to 10-15
classes. Still, the probabilities q(M) have to be defined.

Here, the first modeling assumes that all sets containing the same number of
classes receive in sum the same probabilities, i.e. on average observing a target set
M containing |M| = ` ≤ k classes is equally probable, independent of `. As there
are

(k
`

)
possible choices forM containing ` of k classes, this results in probabilities

qall(M) =


(
(k − 1) ·

(k
`

))−1
if ` = |M| ≥ 2

0 otherwise
(6.8)

where target sets containing only a single class are excluded for previously discussed
reasoning. Alternatively, also a uniform distribution over all setsM with at least two
remaining classes is possible. However, this would introduce a relatively strong bias
towards medium-sized sets as there are

(k
`

)
∈ Θ(k`) subsets for each ` ≤ k

2 .
In comparison with the default case where always all classes are possible (i.e.

M = Y), sampling according to (6.8) might still introduce a relatively strong skew
as only a 1

k−1 fraction of the probability mass is placed on Y. To mitigate this issue,
the following alternative modeling uses the probabilities

qt(M) =


1− t if M = Y

t
k if |M| = k − 1
0 otherwise

(6.9)
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such that an arbitrary probability mass t ∈ [0, 1] is equally distributed on all target
sets from which only a single class is removed (i.e. |M| = k− 1), while the remaining
probability remains on Y. Thus, it forms a reasonable lower bound for each setting
where at least sometimes any form of dynamic class information restricting the target
set is available.

Even though (6.9) depends on the actual value of t, it yields a reasonable lower
bound to any distribution observed under real-world conditions because t can be
selected sufficiently small. Now, an expected improvement means that the inequality

Remp(fM | qt)
!
< Remp(fM | q0) = Remp(f | D) (6.10)

holds for the respective value t > 0. Therefore, a reasonable lower-bound check is
obtained by criterion (6.10). Still for applying it as part of evaluations, it should not
be depend on a parameter. Here, the definitions of Remp(fM) in (6.6) and qt(M) in
(6.9), respectively, yield

Remp(fM | qt) = (1− t) · Remp(fM | q0) + t · Remp(fM | q1) (6.11)

such that condition (6.10) is equivalent to

(1− t) · Remp(fM | q0) + t · Remp(fM | q1)
!
< Remp(fM | q0) (6.12)

which simplifies into

Remp(fM | q1)
!
< Remp(fM | q0) = Remp(f | D) (6.13)

such that (6.13) is an easily verifiable criterion for the existence of an improvement.
For this reason, by sampling according to (6.8) and (6.9), respectively, two possible

evaluation metrics for dynamic classification are obtained. Even though the latter
depends on the free parameter t, selecting t = 1 yields a reasonable criterion to check
for an improvement.

In the same way as the empirical risk in combination with the binary loss can
be interpreted as an error rate – whose complement yields the accuracy – also the
dynamic classification accuracy

Acc(fM | q) :=
∑

∅6=M⊆Y
q(M) · 1

|D(M)| ·
∑

(xi,yi)∈D(M)
1(fM(xi), yi) (6.14)

can be defined for a given sampling q. Because classically it is often preferred to
present accuracies than error rates, in the following part also dynamic classification
accuracies instead of error rates are given. For M = Y, this recovers the standard
accuracy (2.4). Still, in the same way as the risk can be defined for each loss function,
the same holds for the dynamic risk.

6.2 Empirical Comparison
After presenting evaluation metrics, an empirical study is performed to compare the
different methods with respect to both, their accuracies as well as their improvements
yielded from integrating dynamic class information. Here, at first a short overview of
the methods that are compared in the following part is given.
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6.2.1 Overview of Methods

As a reference to existing approaches, all techniques presented in section 2.4 are used.
In addition to these, the following newly introduced methods are applied:

• The one-vs-one decomposition using the evidence-theoretic modeling (ET) given
by (4.52) that uses constant weights wi,j(x) ≡ w0 > 0, which can be interpreted
as an evidence-theoretic pairwise coupling approach as presented in section 5.1
and (5.1).

• The one-vs-one decomposition in combination with non-constant weights using
the evidence-theoretic modeling (GET) as part of generalized pairwise coupling.
In combination with weight estimation by pairwise coupling (Weight1v1), this
yields an equivalent approach to the previous one (cf. proposition 5.2).

• The one-vs-one decomposition in combination with non-constant weights using
generalized voting (GVote) as part of generalized pairwise coupling. It should be
emphasized that this is equivalent to the existing correcting classifiers approach
(1v1 + CC) discussed in full detail in section 2.3 as long as the weights are
computed using the latter. Still, other methods discussed in section 5.5 can be
used alternatively to supply the weights.

• The one-vs-one decomposition in combination with non-constant weights using
the generalized non-dominance criterion (GND) as part of generalized pairwise
coupling.

• The one-vs-one decomposition in combination with non-constant weights by
solving (5.14) as part of generalized pairwise coupling (GWLW).

It should be emphasized that the evidence-theoretic prediction based on the one-
vs-all decomposition given by (4.21) is excluded because its class prediction rule
is equivalent to the one of the softmax prediction (cf. proposition 4.4) such that
the classification accuracies coincide. As a consequence, there are no ambiguities
regarding the underlying reduction in combination with evidence theory as it always
refers to the one-vs-one decomposition.

Similarly to the methods described in section 2.4, each approach only refers to
the decomposing and fusing process, but still needs a learning algorithm to solve the
subproblems obtained from applying the respective decomposition. An important
difference to each of the existing methods is that here, each method is designed to
support the integration of dynamic context information. In case of the default pair-
wise coupling approaches, this extension recovers the restriction to pairwise coupling
on the remaining classes only.

Two particular algorithms are used to solve the base classification problems: First,
support vector machines (SVM) based on LIBLINEAR [Fan et al. 2008], which were
already applied during the calibration study in section 3.4. Besides this, random
forests (RF) consisting of 50 randomized decision trees using the implementation
from OpenCV [Bradski 2000] were used as a second classification model.

In combination with the respective fusing approaches, probabilistic predictions
are required from each binary classifier to transform them into an overall posterior
probability estimation. Based on the results of chapter 3, Platt scaling is applied
for the individual support vector machines. The sigmoidal parameters are computed
using the implementation from LIBSVM [Chang & Lin 2011], without creating a hold-
out data set. In case of the random forests, each tree is trained using a bootstrap,
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Name Samples (r) Features (n) Classes (k) Size [MB]
1 Annealing 898 8 5 0.02
2 Arrhythmia 452 257 13 0.35
3 Car Evaluation 1728 21 4 0.08
4 Covertype 581012 54 7 75.75
5 Crop mapping using fused optical-radar 325834 174 7 428.7
6 Dermatology 366 33 6 0.03
7 Ecoli 336 7 8 0.01
8 Gas Sensor Array Drift 13910 128 6 17.29
9 Gesture Phase Segmentation 9873 32 5 3.5
10 Glass Identification 214 9 6 0.01
11 Human Activity Recognition Using Smartphones 10299 561 6 67.29
12 Localization Data for Person Activity 164860 32 11 18.65
13 MoCap Hand Postures 78095 10 5 12.51
14 Multiple Features 2000 649 10 6.75
15 Nursery 12960 26 5 0.71
16 Optical Recognition of Handwritten Digits 5620 62 10 0.81
17 Page Blocks 5473 10 5 0.24
18 PAMAP2 Physical Activity Monitoring 175498 52 12 78.43
19 Pen-Based Recognition of Handwritten Digits 10992 16 10 0.55
20 PUC-Rio 165633 21 5 12.6
21 Sensorless Drive Diagnosis 58509 48 11 25.68
22 Statlog (Shuttle) 58000 9 7 1.6
23 UJIIndoorLoc 21048 520 3 43.85
24 Weight Lifting Exercises 39242 51 5 9.34
25 Yeast 1484 8 10 0.06
26 Zoo 101 16 7 0.004

Table 6.1: Individual data sets and their most important properties.

i.e. a randomized subselection of the original training data. Thereafter, each tree is
calibrated by traversing it with the whole data also including the out-of-bag data that
was not used to train the tree, and computing a probability associated to each leaf
node. During prediction, this yields a posterior probability from each tree such that
computing the respective average over the whole forest yields a posterior probability
estimation for the binary subproblem.

6.2.2 Reference Data

After summarizing the different methods, a selection of 26 real-world data sets cover-
ing various applications from the UCI Machine Learning Repository [Dua & Graff 2019]
were used in a thorough empirical study. Similar to the data sets used in section 3.4,
table 6.1 summarizes their most important properties, while all further information
including the necessary steps to compute the used data from publicly available sources
are presented in the supplementary material. Most importantly, the data sets were
selected such that the number of classes is sufficiently moderate such that an exhaus-
tive iteration over all 2k class sets remains challenging but feasible. Consequently,
evaluation metric (6.9) can be computed as well. The main aim of the study is to
answer the following questions:

• Is there a substantial or significant improvement from integrating dynamic class
information in the fusing process?

• If there is an improvement, how large is the benefit?

• Which decomposition and fusing method yields the best results, both with
respect to the base accuracy where all classes are possible as well as the im-
provement from integrating dynamic class information?

It is important to emphasize that all data sets contain no information about
possible dynamic target sets, still sampling according to the strategies presented in
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Algorithm Method WeightCC Weight1vA Weight1v1

SVM

GVote 2.115 2.596 1.288
GND 2.673 2.096 1.231
GWLW 2.596 1.942 1.462
GET 2.346 2.404 1.250

RF

GVote 2.308 2.019 1.673
GND 2.731 1.885 1.385
GWLW 2.231 1.885 1.885
GET 2.385 2.096 1.519

Table 6.2: Average ranks of the three weight estimation techniques
for each classifier and respective fusing method.

section 6.1 is possible. To compare the methods, a 10-fold stratified cross validation
was used to partition each data set into train and test data, where each feature column
was standardized to mean 0 and standard deviation 1 based on the respective training
data’s values.

Thereafter, all reductions were trained in combination with both classification
algorithms (support vector machines and random forests). To achieve a maximum
comparability, the same partitions are used for the individual trainings as well as the
respective classifiers are only trained once and shared between the different decom-
positions. Thus on each data set and each classification algorithm, the one-vs-all,
one-vs-one and correction classifiers are trained once per fold. The methods differ
in the final fusing step that transforms the individual predictions into an overall
posterior estimation and in the adaption capabilities of integrating dynamic context
information into these fusing approaches.

First Experiment: Weight Estimation

Before targeting the study’s main aims, the first evaluation focuses on the weight
estimation techniques required for generalized pairwise coupling used in the following
evaluations. As discussed in section 5.5, this is a particularly relevant issue because
computing weights by using pairwise coupling does not require to train the one-vs-all
or correction classifiers at all. Consequently, it substantially increases the training
efficiency as the induced problems of both reductions are harder learning tasks than
those of the one-vs-one decomposition. Furthermore, it allows the most flexibility
with respect to the integration of dynamic class information.

To compare the different weight estimation techniques, the weights were estimated
using the three different alternatives from section 5.5, i.e. either using the correction
classifiers (WeightCC), the sum of one-vs-all predictions (Weight1vA) or using iter-
ated pairwise coupling (Weight1v1). As only the four generalized pairwise coupling
techniques depend on the weights, this comparison restricts to just these approaches.

The methods are ranked by their respective classification accuracy per data set
using the same standard procedure [Demšar 2006] that was already used in section
3.4. Computing the average ranks yields an overall score for each classifier and weight
estimation technique, respectively, which are presented in table 6.2.

Generally, it is possible to combine each of the evaluations with the Friedman test
and the post hoc Nemenyi test. This results in eight critical difference diagrams that
are available in the supplementary material. The respective critical difference is 0.65
such that groups of not significantly different techniques can generally be identified in
table 6.2. However, it is important to emphasize that the tests are not independent
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SVM RF
Softmax 26 (0.0000003) 25 (0.0000080)
Vote 26 (0.0000003) 26 (0.0000003)
ND 26 (0.0000003) 26 (0.0000003)
WLW 24 (0.0001049) 26 (0.0000003)
CombVote 26 (0.0000003) 26 (0.0000003)
NOV@ 26 (0.0000003) 26 (0.0000003)
GVote 26 (0.0000003) 26 (0.0000003)
GND 26 (0.0000003) 26 (0.0000003)
GWLW 26 (0.0000003) 26 (0.0000003)
ET 26 (0.0000003) 26 (0.0000003)

Table 6.3: Number of data sets on which criterion (6.13) reports an
improvement for support vector machines and random
forests, respectively. Additionally, a Bonferroni-corrected
p-value is given.

such that an analysis focusing on the statistical significance additionally requires a
Bonferroni correction. Still, for the main conclusion this is not even necessary at all.
Most importantly, the weight estimation by iterated pairwise coupling (Weight1v1)
yields the best results (lowest average rank) in any case such that, even if the differ-
ences were not statistically significant, they still remain slightly superior to at least
comparable. The selection of the best technique might still remain task specific in
general, still these results clearly favor the weight estimation by iterated pairwise
coupling.

This is a remarkable result as this weight estimation does not need to train one-
vs-all or pair-vs-rest classifiers such that it avoids to solve hard unbalanced training
problems. Similarly, this might also be the explanation for this observation: The
complex learning tasks required to estimate the weights using either the one-vs-all or
pair-vs-rest classifiers yield less reliable results. Not only the learning task itself is
challenging, also the following calibration step might compute too unreliable posterior
probability estimations, which are used as weights.

Besides these empirically observed advantages, weight estimation by iterated pair-
wise coupling at least in theory allows an improved adaption to dynamic context
information. Therefore in the following evaluations focusing on the respective im-
provements, the weights were estimated this way. Proposition (5.2) shows that ET
and GET predictions and thus the classification accuracies coincide here, such that
the latter was skipped in the respective evaluations. Still, the same experiments can
be repeated with different weight estimation techniques such that both approaches
will not be equivalent.

Second Experiment: Improvement from Dynamic Information?

After comparing the three different weight estimation techniques, the next evaluation
particularly focuses on improvements that are obtained from integrating dynamic
class information into the coupling process. This evaluation does not target the
magnitude of the improvement, but only tries to evaluate whether it exists. As
dynamic class information simplifies the decision problem, it is expected to observe
an improvement.

With respect to the discussion of section 6.1, a reasonable evaluation criterion is
to verify whether (6.13) holds. The respective results are given in table 6.3 where
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q1 qall
SVM RF SVM RF

Softmax 0.019 ± 0.017 0.016 ± 0.016 0.072 ± 0.062 0.054 ± 0.052
Vote 0.019 ± 0.020 0.015 ± 0.016 0.062 ± 0.065 0.051 ± 0.054
ND 0.018 ± 0.019 0.015 ± 0.015 0.059 ± 0.061 0.051 ± 0.053
WLW 0.012 ± 0.028 0.015 ± 0.016 0.053 ± 0.065 0.050 ± 0.055
CombVote 0.018 ± 0.019 0.015 ± 0.016 0.061 ± 0.060 0.051 ± 0.053
NOV@ 0.019 ± 0.019 0.015 ± 0.016 0.062 ± 0.061 0.051 ± 0.053
GVote 0.019 ± 0.020 0.015 ± 0.016 0.061 ± 0.064 0.051 ± 0.054
GND 0.018 ± 0.019 0.015 ± 0.015 0.059 ± 0.061 0.051 ± 0.053
GWLW 0.018 ± 0.019 0.015 ± 0.016 0.059 ± 0.061 0.050 ± 0.053
ET 0.018 ± 0.019 0.015 ± 0.016 0.060 ± 0.062 0.051 ± 0.054

Table 6.4: Improvements from evaluating (6.15) on all data sets.
The given values are the average value and the standard
deviation computed over all data sets.

for each classification algorithm, the number of data sets on which the average error
decreased is given. Furthermore, each comparison was combined with a one-sided sign
test that formulates the null hypothesis that there is no improvement, i.e. criterion
(6.13) does not hold. Since the individual tests are not independent, a Bonferroni
correction was applied as well. The respective result are also given in table 6.3.

Because without any exception all p-values are smaller than 0.001, integrating
dynamic context information significantly reduces the error rate in almost all cases.
This confirms the expectation, but still is an important result because it empirically
supports the improvements in practical applications.

Third Experiment: Evaluating the Improvement

The previous result showed that dynamic class information significantly improves the
prediction accuracy, even though it provides no information about the improvement’s
magnitude. With respect to the insights of section 6.1, two different sampling strate-
gies generating the target sets are used: According to q1 in (6.9) as well as using
sampling qall in (6.8). Here, the parameter was selected as t = 1 in the former case
because it forms – together with using no dynamic class information, which is equiv-
alent to sampling according to q0 – both extreme cases of (6.9). The latter strategy
samples the classes such that all sets with 2 ≤ ` ≤ k elements are in total equally
probable with probability 1

k−1 . The respective number of classes k per data set is
given in table 6.1, too.

Both samplings were independently used to compute the respective empirical dy-
namic risks (6.6) as an approximation of (6.4). Still in general, these evaluations
can be performed with any sampling strategy, i.e. a distribution q that defines the
possible class sets with their respective probabilities. Similar to the deriving of crite-
rion (6.13), it is reasonable to subtract the respective fusing method’s base error rate
Remp(f | D) from the computed evaluation metric to obtain a direct measure of the
improvement

Imp(fM | q) := Remp(f | D) − Remp(fM | q) (6.15)

which measures the increase in accuracy obtained from integrating dynamic class
information according to sampling by q in comparison with no dynamic context in-
formation. In a comprehensive way, these could be presented in multiple tables, e.g.



122 Chapter 6. Evaluation

for each classifier and each evaluation metric reporting the respective value for each
data set (row) and each fusing method (column).

Generally, comparing algorithms by averaging their accuracies on different data
sets is criticized as unreasonable [Demšar 2006], but still it is not completely un-
common in practice to summarize results. Besides this, here the situation is slightly
different because the improvement computed using (6.15) can directly be interpreted
as the expected increase in classification accuracy, which is at least partially more
comparable than the classification accuracies themselves. Thus, the results are pre-
sented in this summarized way for an improved clarity in table 6.4. Here in summary,
the average classification accuracy is improved by roughly 2 % (SVM) and 1.5 %
(RF) as well as 6 % to 7 % (SVM) and 5 % (RF) in case of sampling according to
q1 and qall, respectively. In most cases, the standard deviations are comparable to
the improvements themselves. Furthermore on average, most fusing methods improve
comparably from the dynamic context information.

Fourth Experiment: Comparison

The previous two evaluations confirmed a significant improvement from integrating
dynamic class information as well as with respect to average improvements, all fusing
methods are roughly comparable. Here, the following part focuses on comparing the
fusing methods in full detail.

The first evaluation compares all approaches by their respective classification ac-
curacies without using any dynamic class information. Following the same comparison
method, the fusing techniques are ranked by their accuracies such that higher values
are ranked first. Thus, a rank on each data set is available, which thereafter can be
used to compute average ranks. The latter can be combined with the same hypothesis
testing done before in chapter 3. First by using the non-parametric Friedman test and
if the null hypothesis is rejected, by applying the post hoc Nemenyi test, both using
the default α = 0.05 significance level. The respective critical difference diagrams are
presented in figure 6.1, while the corresponding results are available in full detail in
the supplementary material.

Here, two interesting observations are possible. First, fusing based on the one-
vs-all reduction (Softmax) yields the worst results, i.e. highest rank. On the one
hand, this confirms the respective reference results, as presented in full detail in
chapter 2, but, on the other hand, may point to the question whether large-scale
state-of-the-art models like neural networks based on the one-vs-all reduction can
improve their recognition accuracies by using them in combination with other fusing
methods based on different reductions. Here, reference results are rare as summarized
in section 5.5. Additionally, the fusing methods combining one-vs-all and one-vs-one
predictions (CombVote and NOV@) also lead to relatively large average ranks. This
slightly contradicts with their introductory works that report improved results.

The second important observation is that the best results in any case are ob-
tained using fusing methods that only use pairwise one-vs-one predictions. This is
remarkable because current reference results identified the non-competence problem
as one of the major drawbacks in decomposition-based classification and in particular
the one-vs-one reduction. Empirically, this disadvantage is not confirmed because
even the opposite is observed here instead. In particular, the differences between the
pairwise coupling approaches and their generalized counterparts were not detected
as significantly different. Still, these results do not directly mean that existing state-
ments emphasizing the non-competence problem’s relevance are incorrect. Instead,
the correct estimation of the weights that alleviate the influence of the incompetent
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(b) Nemenyi test results for random forests.

Figure 6.1: Average ranks of the base classification rates for both
classifiers in combination with a Nemenyi test.

classifiers is the challenging part. The appropriate weights are the pairwise posterior
probabilities wi,j = P (y ∈ {i, j} | x), as discussed in full detail in sections 2.3 and 5.2.
Accurately estimating these is a more complex task than solving the classification
problem itself. This is also confirmed by the discussion on classifier calibration in
section 2.2 and chapter 3, respectively.

Hence, on the one hand identifying the non-competence problem as a major issue
in the one-vs-one decomposition is correct, but, on the other hand, adequately solving
it is mostly impossible. Thus, observing empirical results where pairwise coupling
approaches outperform their generalized counterparts does at first only mean that the
used weights insufficiently approximate the unknown pairwise posterior probabilities.

Besides these evaluations, particular relevant are accuracy results that are ob-
tained in combination with supplying dynamic class information. As these are not
directly contained in the reference data sets, this evaluation requires sampling strate-
gies. Similar to the previous part, both samplings q1 according to (6.9) as well as qall
in (6.8) were used to compute the empirical dynamic risk (6.6) as an approximation
of (6.4).

In full analogy to figure 6.1, the fusing techniques are ranked per data set. There-
after, average ranks over all data sets are computed and combined with the Friedman
and Nemenyi test, respectively, at the same α = 0.05 significance level as before.
These are illustrated in figures 6.2 and 6.3 where a few interesting observations are
possible. First, both fusing methods based on the one-vs-all reduction still yield the
worst results. Thus, also in dynamic contexts there are significant performance gaps,
which amplifies the previously discussed drawbacks of the one-vs-all decomposition.
Furthermore, the best results are obtained using pairwise coupling based on evidence
theory. In particular, integrating the weights also does not increase the classification
accuracy.
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Figure 6.2: Average ranks of the empirical dynamic risks according
to sampling q1 for both classifiers in combination with a
Nemenyi test.
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Name Samples (r) Classes (k) Size [MB]
1 AgrilPlant 3000 10 187
2 Animal 26126 10 601
3 Monkey 1370 10 581
4 Swedish Leaf 1125 15 3397
5 Tropic 14376 52 1976

Table 6.5: Overview of the deep learning data sets.

These observations mainly coincide between figures 6.1 and 6.2 as well as 6.3.
Still, now the best results in any case are obtained using the evidence-theoretic pair-
wise coupling approach (ET). Besides the one-vs-all decomposition-based techniques,
the approaches were mainly not detected to be significantly different. It should be
emphasized that the statistical tests are not independent to the preceding ones be-
cause the data and the statistical models are the same in both cases. Still, this does
not influence the main conclusions.

Besides this, it is a remarkable observation that for both classifiers, the rankings
of the fusing techniques are very well comparable if the possible target set changes.
This means that integrating dynamic information into the fusing process does not
change the rank order of the respective fusing methods, at least according to the
observations in the presented study.

6.2.3 Deep Learning Data

The previous study evaluated 26 reference data sets using support vector machines
and random forests. For practical applications, deep learning-based approaches are
particular relevant. First, because often deep learning neural networks outperform
other, more conventional data mining and machine learning algorithms such that
improvements from integrating dynamic class information are similarly interesting
and relevant. Second, because transferring the presented techniques to large-scale
deep learning models is a challenging task that was discussed in full detail in section
5.5. Finally and most importantly, the previous results confirmed that the one-vs-
one decomposition often outperforms the one-vs-all reduction. Since deep learning
classification models almost always use a softmax function – i.e. a jointly optimized
one-vs-all prediction – it is a particular interesting question how one-vs-one deep
learning models perform in comparison to those using a softmax prediction. For this
reasoning, also five deep learning benchmark data sets are similarly evaluated.

Because there are no direct reference results available, the five selected data sets2

were obtained from the most related existing work [Pawara et al. 2020] whose most
important properties are summarized in table 6.5. The authors train two deep con-
volutional neural networks using the state-of-the-art network structures Inception-V3
[Szegedy et al. 2016] and ResNet-50 [He et al. 2016], which are used here as well
to maintain a good comparability to the respective reference results. For the same
reasoning, the neural networks were trained using the same parameterization, even
though many of the involved training steps are randomized. Similarly, both network
architectures were trained from scratch as well as using pretrained weights based on
the ImageNet data3 [Deng et al. 2009].

In particular, the neural networks were trained for 200 epochs (i.e. complete it-
erations over the training data) where a randomized 80 % / 20 % split was used to

2The data sets are publicly available at: https://www.ai.rug.nl/~p.pawara/dataset.php
3https://www.image-net.org/

https://www.ai.rug.nl/~p.pawara/dataset.php
https://www.image-net.org/
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create training and test data, respectively. As there are no validation steps involved
for hyperparameter estimation, further splitting of the data was not required. The
running loss and accuracy during training both models with pretrained weights as
well as the developments of the test data loss and accuracy are illustrated in figures
6.4 and 6.5, respectively. The remarkable decreases in the losses and increases in the
accuracies, respectively, after 50 training epochs are explainable by the learning rate
decrease from 0.001 to 0.0001.

During training, a data augmentation using the same parameterization was used
that randomly shifts or horizontally flips each training image during each epoch.
Data augmentation was disabled on the test images such that all predictions remain
deterministic and thus comparable. After finishing the 200 training epochs, the one-
vs-one decision functions were trained on each network by fixing all neural network’s
parameters and iteratively creating the one-vs-one layer, as presented in full detail
in section 5.5. Here, each decision function was trained for additional ten epochs
on the respective two-class data set, including the same data augmentation steps as
before. The correction classifiers were not trained because of the large computational
complexity involved.

Using the presented procedure, the test data predictions for all fusing methods
were computed. Because there are many randomization steps involved, the whole
evaluation was iterated ten times such that for each fusing type’s accuracy, mean
value and standard deviation can be computed over the ten iterations. Consequently,
the methods are compared using their average values. Thereafter, the performed
experiments are analogous to those of subsection 6.2.2.

First Experiment: Weight Estimation

First, the weight estimation techniques are compared in combination with the two
neural network architectures as well as initialization variants. Because the weight
estimation based on the correcting classifiers was omitted due to its large complexity,
only the two approaches based one the one-vs-all (Weight1vA) and one-vs-one decom-
position (Weight1v1) are compared. The respective average test error accuracies per
data set were used to rank the two weight estimation techniques, following the same
evaluation procedure as before. The average ranks are presented in table 6.6.

Here, follow-up significance testing is generally possible, however the number of
data sets is too low for reasonable significance testing. Besides this, most impor-
tantly the weights based on the one-vs-all decomposition yield superior accuracy in
most cases. Consequently, the observation here is contrary to the ones in subsection
6.2.2, still this is also explainable because the one-vs-one decision functions are not
independent as in the previous study. Instead, they depend on the training of the
one-vs-all decision functions. Based on these observations, the weights are estimated
using the one-vs-all decision functions in the following experiments.

Second Experiment: Improvement from Dynamic Classification?

The next evaluation focuses on the improvements obtained from integrating dynamic
class information. Again, the accuracy increase by sampling the class set according
to (6.9) and comparing the respective differences in classification accuracy as given
by (6.15) yields the improvements presented in table 6.7. Sampling (6.8) was not
applied in this particular evaluation because its exponential complexity makes it
computationally intractable on a data set consisting of 52 classes. Still, sampling q1
is sufficient to reasonably lower bound a possible improvement.
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Algorithm Method Weight1vA Weight1v1

Inception-V3
(pretrained)

GVote 1.2 1.8
GND 1.2 1.8
GWLW 1.5 1.5
GET 1.2 1.8

Inception-V3
(not pretrained)

GVote 1.0 2.0
GND 1.0 2.0
GWLW 1.8 1.2
GET 1.0 2.0

ResNet-50
(pretrained)

GVote 1.0 2.0
GND 1.0 2.0
GWLW 1.3 1.7
GET 1.2 1.8

ResNet-50
(not pretrained)

GVote 1.0 2.0
GND 1.0 2.0
GWLW 1.7 1.3
GET 1.0 2.0

Table 6.6: Average ranks of the two weight estimation techniques for
each network structure and respective fusing method.

Here, two important observations are possible. First, there is an accuracy im-
provement of 0.1 % to 0.5 % and second, the pretrained models improve less than the
non-pretrained ones. Still, this is explainable from the fact that pretrained models
yield higher accuracies on each data set, as illustrated in figure 6.5. Similar to com-
paring the weight estimation techniques, further significance testing was not applied
because the number of data sets is too low.

Most importantly, dynamic classification according to sampling q1 in any case
improves the accuracy on all five data sets, all models and all fusing techniques. The
only exception is the pretrained Inception-V3 model where the respective classification
accuracy is not increased for five fusing methods (Vote, ND, WLW, GWLW and ET).

Comparing these results based on deep learning models to those of support vec-
tor machines and random forests as presented before, the absolute improvements in
the latter case are an order of magnitude larger. The first possible explanation for
this behavior is similar to the reduced improvement of the pretrained models: the
better the base classification task is solved, the smaller the possible improvements
are expected to be. Still, there is a further, less obvious difference with respect to
the fusing techniques based on the one-vs-one decomposition. In contrast to subsec-
tion 6.2.2, they still depend on the previous one-vs-all training. Thus, the generally
superior flexibility with respect to dynamic classification contexts is limited because
even though the individual decision functions are trained on two-class data only, the
most parts of the neural network still depend on all data such that the flexibility
is lost besides the final layer. For this reason, differences between the results from
subsection 6.2.2 and those based on deep neural networks are explainable.

Third Experiment: Comparison

The previous evaluation analyzed the improvement of integrating dynamic class in-
formation into the different fusing techniques based on deep neural networks. Still,
the performed evaluations did not compare the methods to each other.
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Inception-V3 ResNet-50
pretrained not pretrained pretrained not pretrained

Softmax 0.0011 ± 0.0011 0.0024 ± 0.0023 0.0017 ± 0.0015 0.0034 ± 0.0029
Vote 0.0011 ± 0.0011 0.0023 ± 0.0020 0.0018 ± 0.0013 0.0038 ± 0.0033
ND 0.0012 ± 0.0011 0.0025 ± 0.0023 0.0018 ± 0.0016 0.0036 ± 0.0029
WLW 0.0012 ± 0.0011 0.0025 ± 0.0023 0.0017 ± 0.0015 0.0036 ± 0.0030
CombVote 0.0012 ± 0.0011 0.0025 ± 0.0023 0.0017 ± 0.0015 0.0036 ± 0.0030
NOV@ 0.0012 ± 0.0011 0.0025 ± 0.0023 0.0016 ± 0.0015 0.0036 ± 0.0031
GVote 0.0011 ± 0.0010 0.0024 ± 0.0023 0.0017 ± 0.0015 0.0035 ± 0.0029
GND 0.0011 ± 0.0011 0.0024 ± 0.0023 0.0017 ± 0.0015 0.0034 ± 0.0029
GWLW 0.0012 ± 0.0011 0.0024 ± 0.0021 0.0018 ± 0.0016 0.0036 ± 0.0029
GET 0.0011 ± 0.0011 0.0024 ± 0.0022 0.0016 ± 0.0014 0.0034 ± 0.0029
ET 0.0013 ± 0.0011 0.0025 ± 0.0022 0.0018 ± 0.0016 0.0038 ± 0.0031

Table 6.7: Improvements from evaluating (6.15) on all deep learning
data sets. The given values are the average value and the
standard deviation computed over the five data sets.

Here, in theory critical differences diagrams could be computed. However as
before, the number of data sets remains too low to reasonably apply significance
tests based on critical differences of rank-transformed scores. Additionally, there are
almost no average ranks above the critical difference of 6.75 in this particular setting
(five data sets and eleven methods).

Because critical differences diagrams are not reasonable, instead the accuracy per
data set and each fusing type is computed. As the evaluation was iterated ten times
to alleviate effects of random influences, the given values are also averages over the
ten iterations per data set. The corresponding accuracy statistics for both pretrained
network structures are presented in table 6.8. Here, a few interesting observations are
possible. With respect to both pretrained network structures, GET, GVote and Soft-
max yield the best results, while the worst ones are observed by approaches based on
the one-vs-one decomposition. In particular for the pretrained Inception-V3 network
structure, ET and ND yield the worst results, as well as Vote for ResNet-50.

With respect to the non-pretrained models, the results are slightly different. In
full detail they can be summarized similarly to table 6.8, still the respective table
is omitted here and available in the supplementary material. Most importantly for
the Inception-V3 network structure, Softmax, GET and GND yield the best results,
while for ResNet-50 these are observed with GND, GET, and GVote. In both cases
GWLW yields the worst results followed by ND (in case of Inception-V3) and Vote (for
ResNet-50), respectively.

Furthermore, it is particularly interesting to compare these results to the situation
where dynamic class information according to sampling q1 is integrated as well. The
respective accuracy statistics are presented in table 6.8 for both pretrained network
structures, while those of the non-pretrained models are analogously available in the
supplementary material. Most importantly, comparing the fusing methods based on
their average ranks of the different approaches yields similar results, the ordering of
the ranks is almost identical. This confirms the previous observations of applying the
same algorithms in combination with support vector machines and random forests.
In particular, dynamic class information improves the classification accuracy, but at
most seems to have a minor influence on the methods’ orderings.
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Figure 6.4: Training and test data losses of the deep neural networks
(pretrained) on each of the five reference data sets.
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Figure 6.5: Training and test data accuracies of the deep neural net-
works (pretrained) on each of the five reference data sets.
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Besides this, it should be noted that in many cases one of the generalized pairwise
coupling approaches slightly outperforms the default softmax prediction. This is
a remarkable observation as it points to potential further improvements in neural
network prediction accuracies. Still, the involved weights are computed from the
one-vs-all probabilities that are also used by the softmax prediction itself.

Nevertheless, it is important to conclude that differences between the fusing meth-
ods are always small. This in particular holds for the situations in which one of the
one-vs-one approaches yields the best results. The maximum overall accuracy differ-
ence between two approaches for a fixed model is ≈ 0.022, i.e. approximately 2.2 %. In
particular, this was observed between Vote and GVote during one iteration evaluating
the non-pretrained ResNet-50 model.

Potential explanations for these observations are two fold. First, the classification
accuracies of the models are always very high. As a matter of fact, there is less room
for differences between the fusing techniques. Even though the decision problems
involved in the one-vs-one decomposition are usually easier to solve than those of
the one-vs-all reduction, this issue can be less relevant if both, the characteristic of
the problem and the learning capacity of the classification algorithm, allow a highly
accurate solving of it even using the one-vs-all decomposition. Besides this, the second
explanation is that the model’s one-vs-one decision functions depend on the previous
training of the one-vs-all decomposition such they are less independent as they would
be if a quadratic number of fully independent networks were trained. Still, this is
primarily of theoretic interest because training and deploying these requires too many
computational resources.

However, it is an interesting question for further research how to ideally train
one-vs-one networks and whether these can outperform one-vs-all softmax models.
Besides fixing the whole network architecture as presented in section 5.5, an alter-
native strategy is to similarly train each one-vs-one decision function, but update all
coefficients in the model during each training. Clearly, doing so will result in conflict-
ing parameter updates. Training a one-vs-one function modifies the respective values
that were optimized during all previous trainings. A straightforward choice to allevi-
ate this problem is an iterative training procedure where each one-vs-one function is
trained multiple times. Still, possible termination criteria remain at least unclear.

6.3 Real-World Application
The last section 6.2 evaluated and compared the different approaches that support
the integration of dynamic class information into the aggregation or fusing phase
of decomposition-based classification. Consequently, it is both relevant and inter-
esting to transfer these results to real processing environments where dynamic class
information is available or at least expected to be.

Here, meat processing in dissection factories was identified as a potential use case
for two reasons, as already discussed before in more detail. Not only machine learning
enables to automatize human classification tasks, the process is also controlled by
dissection lists that serve as dynamic class information.

The main problem regarding practical applications in any of these potential fac-
tories is that the conditions are not particularly research-friendly. There are many
potential customers for a working automatization solution, still they mostly expected
a proof-of-concept reference. On the other hand, creating the latter requires a respec-
tive processing factory that allows the installation of a prototype device to collect data
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Figure 6.6: Training and test data losses as well as accuracies, re-
spectively, of the deep neural networks on the real-world
data set.

that can be used to train and deploy a machine learning model solving the classifica-
tion task.

Luckily, a reference factory was found in Meckenheim, Germany, where a pro-
totype installation was possible. Still, the conditions in the respective factory are
not optimal for the prototype development because the installation of the device was
only possible on a conveyor belt where most times the transported raw meat products
were not the high-worth main parts. Additionally, it was not possible to receive online
information about the produced articles. Nevertheless, the factory was still chosen
for a prototype installation because for explained reasoning there was no better al-
ternative available and it was sufficient for a proof-of-concept development. In this
regard, the following task was to collect training data using a digital camera system,
create a reference data set, solve the respective classification task with a high accu-
racy and – with particular focus on dynamic classification – analyze improvements
from restricting the target set during the fusing process.

From August 2018 until May 2019, in total 136009 training images were collected.
Because no online identification data were available to the system, the images were
manually sorted into 57 classes by human experts. Furthermore based on the physical
properties of the respective classes, there are three main article groups such that each
is a member of one, two or all three groups. In particular, the first group refers to
the front part and contains 30 different articles. Similarly, the second group refers to
the middle part and consists 23 products, while the rear part comprises 28 classes.

As the sets are obviously not disjoint, the unions of two sets contains fewer classes
than summing the individual cardinalities. In particular, front and middle part to-
gether consist of 43 possible products, while the two other unions (i.e. front and rear
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Network Method Weight1vA Weight1v1

Inception-V3
(pretrained)

GVote 0.9611 ± 0.0011 0.9163 ± 0.0020
GND 0.9614 ± 0.0011 0.9566 ± 0.0011
GWLW 0.9557 ± 0.0013 0.9542 ± 0.0013
GET 0.9610 ± 0.0011 0.9307 ± 0.0012

ResNet-50
(pretrained)

GVote 0.9604 ± 0.0010 0.9286 ± 0.0016
GND 0.9614 ± 0.0009 0.9583 ± 0.0013
GWLW 0.9574 ± 0.0013 0.9575 ± 0.0012
GET 0.9604 ± 0.0010 0.9413 ± 0.0017

Table 6.10: Average accuracy and standard deviation computed over
the five iterations of the two weight estimation tech-
niques for each network structure and respective fusing
method on the real-world data set.

as well as middle and rear part) each contain 44 articles. Clearly, the union of all
three groups yields the overall class set comprising all 57 products. As no online
information about the possible class sets was available, these sets are a reasonable
choice and thus the best available surrogate for dynamic class information. Besides
this, sampling q1 according to (6.9) in the same way as in both previous studies can
be applied, while sampling according to (6.8) remains computationally intractable on
57 classes.

Similar to the last evaluation, both neural network architectures Inception-V3
and ResNet-50 were trained here, too. Still based on the previous results, only the
pretrained models were used. Because there are even more images available, the
number of epochs during one-vs-all training was reduced from 200 to 60. Similarly,
the number of epochs used for each one-vs-one training was reduced from ten to
three. Finally, also the number of overall iterations to alleviate the effect of random
influences was reduced from ten to five. Besides being a reasonable selection based
on previous observations, these modifications were made to keep the training runtime
requirements feasible.

During each iteration, a randomized 80 % / 20 % split was used to create train-
ing and test data, respectively, which was combined with a similar randomized data
augmentation as in the previous evaluation of the deep neural networks. The only
small extension in the data augmentation was a randomized vertical flip of the im-
ages because the respective products could be observed in both orientations. The
corresponding running losses and accuracies on the training data as well as the test
data loss and accuracy, respectively, are illustrated in figure 6.6. Here, each value
represents the average value of the five observations, while the error bars illustrate
the respective standard deviations.

First Experiment: Weight Estimation

Following the same evaluation procedure as in section 6.2, first the two weight esti-
mation techniques Weight1vA and Weight1v1 were compared. Due to its high compu-
tational effort at training time, the correction classifiers were not trained such that
WeightCC was excluded from the comparison, too.

In contrast to both preceding weight comparisons, here the comparison was per-
formed based on the respective accuracies instead of ranks. Applying the rank trans-
formation on a single data set only is equivalent to directly compare the methods
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Inception-V3 ResNet-50
Softmax 0.000560 ± 0.000019 0.000570 ± 0.000010
Vote 0.001156 ± 0.000052 0.001102 ± 0.000068
ND 0.000541 ± 0.000015 0.000541 ± 0.000013
WLW 0.000648 ± 0.000086 0.000589 ± 0.000033
CombVote 0.000556 ± 0.000019 0.000559 ± 0.000008
NOV@ 0.000559 ± 0.000022 0.000567 ± 0.000012
GVote 0.000557 ± 0.000025 0.000562 ± 0.000014
GND 0.000551 ± 0.000020 0.000554 ± 0.000009
GWLW 0.000542 ± 0.000018 0.000545 ± 0.000009
GET 0.000559 ± 0.000022 0.000566 ± 0.000015
ET 0.000796 ± 0.000073 0.000742 ± 0.000072

Table 6.11: Improvements from evaluating (6.15) on the real-world
data set. Mean value and standard deviation are com-
puted over the five iterations.

using the respective metric without applying the rank transformation at all, while
the respective metric itself captures more information.

The corresponding results are presented in table 6.10. Similar to table 6.6, the
weights based on the one-vs-all decomposition yield superior results here and thus
were used in the following evaluations.

Second Experiment: Improvement from Dynamic Classification?

After comparing the different weight estimation techniques, particular relevant are
the improvements yielded by integrating dynamic class information in the respective
fusing methods. Applying sampling q1 according to (6.9) is relatively straightforward,
analogous to the similar evaluations in section 6.2 and presented in table 6.11.

Here, the absolute accuracy improvement is 0.05 % to 0.1 %, depending on the
network structure and fusing method, respectively. Even though this is relatively
small, it is still an improvement that remains an order of magnitude larger than the
respective standard deviations, i.e. is highly unlikely to be caused by random effects
only.

Besides this experiment, analyzing the improvement by integrating dynamic class
information according to the article groups is particularly relevant. During each of the
five iterations, additionally the dynamic classification accuracies with sampling the
test data according to the respective class subset were computed. It should be noted
that this the same as computing (6.6), together with the corresponding dynamic class
set M. The respective average accuracies and standard deviations are presented in
table 6.12, which are computed over the five iterations. In the last column, the over-
all accuracy without any dynamic class information is given that can be used as a
reference to check for an improvement. Alternatively by subtracting the base classi-
fication rate from the corresponding one computed using dynamic class information,
the improvement could be evaluated directly. Still, here it is more useful to focus on
the classification accuracy instead of the improvement because – in contrast to the
previous evaluation on benchmark data – the former is more relevant for the actual
application than the latter.

First, it is important to observe that on the front and middle group, there is a
relatively large improvement between 0.3 % and 1 %, depending on the actual fusing
method. On the other hand, the classification accuracy on the rear group is decreased
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Front Middle Rear Front + Middle Front + Rear Middle + Rear All

In
ce

pt
io

n-
V3

Softmax 0.964 ± 0.001 0.970 ± 0.001 0.953 ± 0.001 0.962 ± 0.001 0.962 ± 0.001 0.954 ± 0.001 0.961 ± 0.001
Vote 0.937 ± 0.002 0.956 ± 0.002 0.925 ± 0.001 0.928 ± 0.002 0.916 ± 0.002 0.914 ± 0.002 0.910 ± 0.003
ND 0.961 ± 0.001 0.968 ± 0.001 0.951 ± 0.001 0.958 ± 0.001 0.958 ± 0.001 0.951 ± 0.001 0.957 ± 0.001
WLW 0.956 ± 0.001 0.966 ± 0.001 0.945 ± 0.001 0.953 ± 0.001 0.949 ± 0.001 0.944 ± 0.001 0.947 ± 0.001
CombVote 0.962 ± 0.001 0.968 ± 0.002 0.952 ± 0.002 0.960 ± 0.001 0.959 ± 0.001 0.952 ± 0.002 0.958 ± 0.001
NOV@ 0.964 ± 0.001 0.970 ± 0.001 0.953 ± 0.001 0.962 ± 0.001 0.962 ± 0.001 0.954 ± 0.001 0.961 ± 0.001
GVote 0.964 ± 0.001 0.970 ± 0.001 0.953 ± 0.001 0.962 ± 0.001 0.962 ± 0.001 0.955 ± 0.001 0.961 ± 0.001
GND 0.964 ± 0.001 0.970 ± 0.001 0.954 ± 0.001 0.962 ± 0.001 0.963 ± 0.001 0.955 ± 0.001 0.961 ± 0.001
GWLW 0.960 ± 0.001 0.968 ± 0.001 0.950 ± 0.001 0.958 ± 0.001 0.957 ± 0.001 0.950 ± 0.002 0.956 ± 0.001
GET 0.964 ± 0.001 0.970 ± 0.001 0.953 ± 0.001 0.962 ± 0.001 0.962 ± 0.001 0.954 ± 0.001 0.961 ± 0.001
ET 0.948 ± 0.001 0.962 ± 0.002 0.937 ± 0.001 0.942 ± 0.001 0.935 ± 0.001 0.930 ± 0.001 0.931 ± 0.001

Re
sN

et
-5

0

Softmax 0.963 ± 0.001 0.969 ± 0.001 0.954 ± 0.001 0.961 ± 0.001 0.963 ± 0.001 0.954 ± 0.001 0.960 ± 0.001
Vote 0.949 ± 0.002 0.964 ± 0.001 0.935 ± 0.002 0.940 ± 0.002 0.929 ± 0.002 0.926 ± 0.002 0.923 ± 0.002
ND 0.964 ± 0.002 0.970 ± 0.001 0.954 ± 0.002 0.961 ± 0.002 0.960 ± 0.001 0.953 ± 0.002 0.958 ± 0.001
WLW 0.962 ± 0.002 0.969 ± 0.001 0.952 ± 0.001 0.958 ± 0.002 0.956 ± 0.001 0.950 ± 0.001 0.954 ± 0.001
CombVote 0.963 ± 0.001 0.969 ± 0.001 0.954 ± 0.001 0.960 ± 0.001 0.961 ± 0.001 0.953 ± 0.001 0.959 ± 0.001
NOV@ 0.964 ± 0.001 0.969 ± 0.001 0.954 ± 0.001 0.961 ± 0.001 0.963 ± 0.001 0.954 ± 0.001 0.961 ± 0.001
GVote 0.964 ± 0.001 0.969 ± 0.001 0.954 ± 0.001 0.961 ± 0.001 0.963 ± 0.001 0.954 ± 0.001 0.960 ± 0.001
GND 0.964 ± 0.001 0.970 ± 0.001 0.955 ± 0.001 0.962 ± 0.001 0.964 ± 0.001 0.955 ± 0.001 0.961 ± 0.001
GWLW 0.963 ± 0.002 0.969 ± 0.001 0.953 ± 0.002 0.960 ± 0.002 0.960 ± 0.001 0.952 ± 0.001 0.957 ± 0.001
GET 0.964 ± 0.001 0.969 ± 0.001 0.954 ± 0.001 0.961 ± 0.001 0.963 ± 0.001 0.954 ± 0.001 0.960 ± 0.001
ET 0.956 ± 0.002 0.967 ± 0.001 0.945 ± 0.002 0.951 ± 0.002 0.945 ± 0.002 0.939 ± 0.002 0.941 ± 0.002

Table 6.12: Dynamic classification accuracies on the different article
groups. Mean value and standard deviation are com-
puted over the five iterations.

in comparison with the overall accuracy. This seems to be counterintuitive, still this
is not caused by dynamic class information that harm the fusing process. Instead,
the situation is more complex.

For a fixed model and fusing type, the classification accuracy or empirical risk is
computed as the fraction of correctly (or incorrectly, respectively) classified instances.
Extending this into a dynamic classification accuracy means that the fusing process is
constrained according to the dynamic class information, but also the data are sampled
according to this class subset only.

To analyze this issue in more detail, it is reasonable to group the data D according
to the classes

D =
k⋃
i=1

Di =
k⋃
i=1
{(x, y) ∈ D : y = i} (6.16)

and thereafter to compute the accuracies on each subset Di only

Acc(f;Di) = 1
|Di|

·
∑

(xj ,yj)∈Di

1(f(xi) = yi) (6.17)

to express the overall accuracy as their combination

Acc(f;D) =
k∑
i=1

|Di|
r
· Acc(f;Di) (6.18)

weighted by the respective number of instances. Here, the class-specific accuracies
Acc(f;Di) – usually called sensitivity in binary classification contexts – can differ.
Consequently, the accuracy can be changed even if no dynamic class information is
forwarded to the fusing step. This means that the accuracy computed on all classes
is an inadequate estimator for the accuracy on a class subset only. If the computation
of the dynamic classification accuracy respects all individual classes similarly (as in
the case of sampling q1), this is alleviated by the overall average. However, computing
dynamic classification accruacies based on an relatively arbitrary selection of classes
can increase the influence of those with low class-specific accuracy. Since this situation
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Front Middle Rear Front + Middle Front + Rear Middle + Rear
In

ce
pt

io
n-

V3
Softmax 0.954 ± 0.001 0.962 ± 0.001 0.944 ± 0.001 0.960 ± 0.001 0.955 ± 0.001 0.954 ± 0.001
Vote 0.922 ± 0.002 0.932 ± 0.003 0.908 ± 0.002 0.920 ± 0.003 0.908 ± 0.002 0.906 ± 0.003
ND 0.953 ± 0.001 0.960 ± 0.001 0.943 ± 0.001 0.958 ± 0.001 0.952 ± 0.001 0.951 ± 0.001
WLW 0.946 ± 0.001 0.954 ± 0.002 0.934 ± 0.001 0.950 ± 0.001 0.942 ± 0.001 0.942 ± 0.001
CombVote 0.953 ± 0.002 0.960 ± 0.002 0.943 ± 0.001 0.958 ± 0.001 0.953 ± 0.001 0.952 ± 0.002
NOV@ 0.955 ± 0.001 0.962 ± 0.001 0.944 ± 0.001 0.961 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
GVote 0.955 ± 0.001 0.962 ± 0.001 0.945 ± 0.001 0.961 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
GND 0.955 ± 0.001 0.963 ± 0.002 0.945 ± 0.001 0.961 ± 0.001 0.956 ± 0.001 0.955 ± 0.001
GWLW 0.952 ± 0.001 0.959 ± 0.001 0.943 ± 0.001 0.957 ± 0.001 0.951 ± 0.001 0.950 ± 0.002
GET 0.955 ± 0.001 0.962 ± 0.002 0.944 ± 0.001 0.961 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
ET 0.935 ± 0.001 0.944 ± 0.002 0.923 ± 0.001 0.937 ± 0.001 0.927 ± 0.001 0.926 ± 0.002

Re
sN

et
-5

0

Softmax 0.955 ± 0.002 0.961 ± 0.001 0.945 ± 0.002 0.960 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
Vote 0.933 ± 0.002 0.941 ± 0.001 0.918 ± 0.002 0.932 ± 0.002 0.921 ± 0.002 0.919 ± 0.002
ND 0.956 ± 0.002 0.963 ± 0.001 0.946 ± 0.002 0.960 ± 0.002 0.954 ± 0.001 0.953 ± 0.001
WLW 0.952 ± 0.002 0.960 ± 0.001 0.942 ± 0.001 0.957 ± 0.002 0.949 ± 0.001 0.949 ± 0.001
CombVote 0.954 ± 0.001 0.961 ± 0.001 0.945 ± 0.002 0.959 ± 0.001 0.955 ± 0.001 0.953 ± 0.001
NOV@ 0.955 ± 0.002 0.961 ± 0.001 0.946 ± 0.002 0.960 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
GVote 0.955 ± 0.002 0.961 ± 0.001 0.946 ± 0.002 0.960 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
GND 0.956 ± 0.002 0.963 ± 0.001 0.947 ± 0.001 0.961 ± 0.001 0.957 ± 0.001 0.955 ± 0.001
GWLW 0.955 ± 0.002 0.962 ± 0.001 0.945 ± 0.002 0.959 ± 0.002 0.953 ± 0.001 0.952 ± 0.001
GET 0.955 ± 0.002 0.961 ± 0.001 0.946 ± 0.002 0.960 ± 0.001 0.956 ± 0.001 0.954 ± 0.001
ET 0.945 ± 0.002 0.952 ± 0.001 0.932 ± 0.002 0.947 ± 0.002 0.938 ± 0.002 0.936 ± 0.002

Table 6.13: Classification accuracies Acc(f) on data sets induced by
M⊆ Y. The given values are computed using the same
data and models as in table 6.12 such that the difference
yields the improvement of forwarding the dynamic class
information to the fusing step.

can occur whenever these sensitivities differ between classes, it is particularly relevant
to still evaluate the improvements from integrating dynamic class information.

A possible solution is to analyze the respective class-specific accuracies in more
detail in any of these situations. For a given classifier f trained on all classes Y and
an arbitrary subselection M ⊆ Y, the respective accuracy Acc(f;M) on data sam-
pled according to M only can be computed. It should be noted that this is mainly
the same as computing the respective dynamic classification accuracy (6.14). The
important difference is the used classifier f and fM respectively, i.e. the computa-
tion evaluates the accuracy of f on data onM only without forwarding this dynamic
class information to the fusing step. Consequently, the difference between Acc(f) and
Acc(fM) yields the improvement from integrating the dynamic class information. The
respective classification accuracies Acc(f) are presented in table 6.13. For a maximum
comparability, these are computed under the same conditions as the dynamic classi-
fication accuracies Acc(fM) in table 6.12. It should be noted that the last column is
missing because forM = Y, the classification rates coincide.

By computing the element-wise differences, for both network architectures on each
of the three article groups an improvement of about one percent in classification accu-
racy is observed. For the unions of two article groups, the improvement is still about
0.3 % in classification accuracy. Relative to the remaining error of approximately 4 %
to 5 %, this means a relative improvement of roughly 10 % to 20 %.

Besides these drastic improvements, it should be emphasized that in table 6.13 the
classification accuracies computed on subsets cannot be averaged into the accuracy of
their respective union. Even though the classifier does not depend on the restricted
target class set, the different article sets are not disjoint.
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Third Experiment: Comparison

After analyzing the improvement from dynamic classification, the last part focuses
on comparing the methods on this particular data set. Still similarly to the study
performed on deep learning benchmark data, the differences between most methods
are small. Furthermore, the approaches based on the one-vs-one decomposition yield
lower classification accuracies than the methods using the one-vs-all reduction. Even
though this confirms the observations of the previous study evaluating the same
network structures on other data sets, it is still worth noting because at least in theory
the one-vs-one decomposition can better adapt to dynamic classification contexts.

6.4 Summary
After introducing two approaches realizing dynamic classification based on evidence
theory as well as generalized pairwise coupling in chapters 4 and 5, respectively, this
chapter performed different empirical evaluations. The first contribution introduces
evaluation metrics for dynamic classification. These are based on generalizing the
risk into the dynamic risk, still both cannot be computed directly as they depend on
unknown probability distributions. Therefore, a similar extension to the empirical
risk (equivalent to the error rate if the binary loss is used) is introduced as well. Still,
this depends on a distribution over possible target sets M, which can be approxi-
mated by respective sampling strategies. Because it yields a reasonable lower bound,
particularly relevant is sampling q1.

Thereafter, several comprehensive empirical experiments were performed. The
study evaluated a collection of eleven fusing approaches that are either state-of-the-
art reference methods presented in chapter 2 or newly introduced in chapters 4 and 5.
It should be emphasized that each method depends on different reduction strategies:
one-vs-all, one-vs-one or both.

In the first part of the performed experiments, all fusing methods are applied in
combination with support vector machines and random forests as base classifiers on
a collection of 26 reference data sets. Here, the one-vs-one reduction outperformed
the one-vs-all decomposition in almost all experiments. Similarly, the weight estima-
tion required for generalized pairwise coupling based on the one-vs-one reduction, as
introduced in section 5.5, outperformed both competing approaches here. Most im-
portantly, integrating dynamic class information improved the classification accuracy
in all cases, applied significance tests were even highly significant.

The second part of the experiments repeated a similar evaluation using the state-
of-the-art deep neural network structures Inception-V3 and ResNet-50. To compare the
fusing approaches, five reference data sets from a recent publication were used. Be-
cause training a quadratic number of similar networks is computationally intractable,
the techniques presented in section 5.5 were used that extend a previously trained
neural network with a softmax output layer by one-vs-one prediction functions.

Interestingly, here the jointly optimized one-vs-all softmax outputs yield better
results than their competing methods in the first study. In particular, they out-
performed the one-vs-one decomposition in estimating the weights for generalized
pairwise coupling as well as the softmax classification accuracy is either best or only
outperformed by approaches that also depend on the one-vs-all class probabilities.
However, the observed differences between the methods are always very small.

Besides this, all fusing approaches improve from integrating dynamic class infor-
mation according to sampling q1. Still, the absolute improvements are an order of
magnitude smaller than in the previous study based on support vector machines and
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random forests, most likely because the base accuracy is already very high in any
case.

In the last part of the empirical evaluation, a real-world application was analyzed.
For this, at first a reference data set consisting of 136009 images from 57 classes was
collected. Here, the same deep learning neural network structures were trained and
evaluated. Particularly relevant are the results with respect to dynamic classification
because besides evaluating sampling strategy q1, also task-specific target sets were
evaluated.

The results show that the integration of dynamic class information successfully
improves the classification accuracy. Particularly interesting is the insight that de-
pending on the actual target set, the classification accuracy on all classes can be an
inappropriate estimator for data sampled from a class subset only. If this is not suffi-
ciently well respected, it can yield to the wrong conclusion that dynamic classification
decreases the accuracy. To avoid this problem for a fixed target setM, the accuracies
with and without passing this information to the fusing step can be compared. This
yields to an increase in accuracy of up to 1 % absolute, i.e. reduces the remaining
error by 20 % to 25 %.
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Chapter 7

Conclusion

The main aim of this thesis was to introduce dynamic classification as a generalization
of classical multi-class classification such that at each time during two consecutive
predictions, the target set can change arbitrarily to a subset M ⊆ Y of the overall
target set. Since there were no direct reference results available, the introduced
approach combines two areas to remain computationally feasible.

Classifier Calibration

The first part thoroughly dealt with classifier calibration whose aim is to transform
uncalibrated predictions into probabilities that are intended to be well calibrated.
Existing works controversially discuss whether calibration mappings should be created
monotonic or not. The major contributions in chapter 3 corrected wrong statements
that appeared in the literature and most importantly proved that Platt scaling is
optimal for different families of probability distributions, while the independently
introduced approach Beta calibration is actually equivalent to Platt scaling up to a
sigmoidal preprocessing.

Further theoretical results show that bin-based classifier calibration evaluation
metrics are unreasonable because they apply another iteration of calibration on the
test data. Therefore, they are simply unjustified and should not be used at all. In-
stead, the discussion and the empirical results show that proper scoring rules are well
suited to compare calibration approaches. With respect to non-monotonic calibration,
KDE and EKDE are two powerful model-free approaches that yield state-of-the-art
results in the respective comprehensive empirical evaluation performed on 46 data
sets.

Still, there are many interesting lines for further research. First, the selection
of the appropriate calibration method remains unclear to arbitrary. Presumably,
discrete approaches are more useful for discrete classifier prediction functions like
decision trees and random forests, while continuous techniques like Platt scaling or
KDE calibration are better suited for continuous calibration functions like those of
support vector machines or neural networks. Furthermore, the choice between a
monotonic or non-monotonic calibration technique remains similarly unclear.

The presented results at least partially explain why Platt scaling often can yield
good results in practice. Still, one of the major problems is that probabilistic pre-
dictions can only be compared to class labels, but not to true posterior probabilities
as they are unknown in practice. In light of this, it can be unreasonable to create
increasingly complex and ensemble calibration methods – it is hardly possible at all to
really compare them objectively to less complicated methods such that comparisons
can easily be biased. Finally, it is unclear whether there are any justified evaluation
metrics besides proper scoring rules.
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Evidence Theory

Thereafter, chapter 4 presented an evidence-theoretic approach to reduction-based
classification. Even though this involved a complex formalism including some poten-
tially counterintuitive properties, evidence theory has several advantages that were
useful to model the different decompositions. After first using classifier calibration to
model mass functions for the individual classifiers instead of computing probabilities,
Dempster’s rule of combination allowed the predictions to be iteratively combined
under relatively mild assumptions. This resulted in a Bayesian mass function such
that the overall combination was obtained from a consistent base modeling and only
applying the tools of evidence theory. In particular, this avoided an exponential
complexity and therefore kept the approach computationally feasible.

With respect to the one-vs-all decomposition, a prediction rule equivalent to the
one of the standard softmax function was recovered. However, the posterior probabil-
ities induced by the respective mass function are different in general. Focusing on the
one-vs-one reduction, the modeling required the integration of weights for each one-
vs-one prediction function. Thereafter, a combination was possible and a closed-form
expression could be proven.

Even though this required a weighting for each individual one-vs-one prediction
function, thereafter assuming that the weights were constant but positive, they can-
celed out in the overall combination that simplified into a multiplicative voting. In
this regard, evidence theory did not only allow the analysis of decomposition-based
classification against a more formal background, it also yielded a unifying view to the
one-vs-all and one-vs-one reduction. Most importantly, evidence theory allowed the
integration of dynamic class information by modeling it as a mass function such that
this framework led to a feasible approach to dynamic classification and thus yielded
the first solution for this thesis’ main aim.

Generalized Pairwise Coupling

Based on the insights of the evidence-theoretic modeling, the algorithmic family gen-
eralized pairwise coupling was introduced in chapter 5. The core idea was to combine
pairwise classifier predictions with a corresponding weight during the coupling pro-
cess.

Using this extension, the – according to reference results – three most relevant
pairwise coupling approaches were generalized to be able to integrate these weightings,
too. This not only extended the insights of the evidence-theoretic modeling, but
additionally generalized the correcting classifiers approach that was independently
introduced twice to the community.

However, integrating dynamic classification into generalized pairwise coupling
was not similarly straightforward as in the evidence-theoretic case because there is
no equivalent of the combination rule. Still in the context of evidence theory, the
modeling obtained by integrating dynamic class information using a respective mass
function could equivalently be described by modifying the weights accordingly. In
particular, only those referring to pairs of classes inside the dynamic target set M
remain, while all others were set to zero. This step was also possible in combination
with generalized pairwise coupling and turned this algorithmic family into a second
computationally tractable model for dynamic classification.
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Empirical Results

Finally in chapter 6, a comprehensive empirical evaluation was performed to realize
two main aims. First, to compare the introduced methods to existing state-of-the-art
techniques and second, to analyze the improvement from integrating dynamic class
information. In combination with support vector machines and random forests, the
evidence-theoretic approaches yielded best or at least comparable results depending
on the respective evaluation, still the differences were not detected to be significant
in any case.

Applying deep learning networks on five benchmark data sets showed a different
situation. Here, the one-vs-all softmax prediction often yielded very high accuracy.
Even though there were situations where a more elaborated technique outperformed
the softmax prediction in accuracy, all respective methods also depended on the one-
vs-all predictions. Still, it should be emphasized that existing differences between the
fusing methods were always very small in combination with deep neural networks.

These observations are explainable by the fact that the one-vs-all training was
performed as an initialization step and all further trainings were added to the same
network to keep the approaches computationally tractable. Here, it is a very in-
teresting question whether and how training of one-vs-one networks can be realized
such that significant accuracy gains might be obtained while the approach remains
computationally feasible.

Besides this, applications of any of the introduced techniques in general multi-
class settings is similarly interesting, both with respect to classical machine learning
algorithms as well as large-scale deep neural networks. Due to their increased pop-
ularity in recent years, possible improvements of deep neural networks are highly
relevant for many practical applications. Therefore, comparing the newly introduced
methods on additional real-world data and maybe identifying problem characteristics
that are well suited for these new techniques and in particular the evidence-theoretic
methods remains an interesting question for further research.

According to reference results on decomposition-based classification, the non-
competence problem is one of the major drawbacks of the one-vs-one reduction.
In light of this, it is particularly interesting to observe that the pairwise coupling
approaches mostly outperformed their generalized counterparts in the performed
experiments. Additionally, estimating the weights by iterating pairwise coupling
(Weight1v1, as discussed in full detail in section 5.5) yielded the best results in the
first part of the study evaluating support vector machines and random forests. Even
though this seems to contradict existing results, the challenging part is the correct
estimation of the weights.

The non-competence problem does exist, but accurately solving it requires to solve
a more generalized problem than the classification task itself. Especially the latter
fact has also a direct connection to probability estimation and classifier calibration.
Here, it remains an interesting question for further research whether there are weight
estimation techniques that can be used in combination with generalized pairwise
coupling such that the respective approaches successfully outperform their constant
counterparts in almost any application.

Besides focusing on regular multi-class settings, the main aim of this thesis was to
introduce computationally tractable approaches for dynamic classification. This was
realized by two methods, an evidence-theoretic and a generalized pairwise coupling
model. Here, the performed evaluations showed an improvement by integrating them
into the fusing process. With respect to support vector machines and random forests,
the observed accuracy increases were even detected as highly significant while the
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best results are observed with fusing techniques based on one-vs-one classifiers only.
On the other hand in combination with deep neural networks, the softmax one-vs-all
predictions were not only highly accurate, but furthermore even remained among the
best approaches when dynamic class information was additionally integrated.

This is remarkable because in general, the one-vs-one classifiers can adapt to dy-
namic contexts much better than those of the one-vs-all reduction, where all classifiers
are trained on data from all classes. Here, the implicit dependency on the whole class
set to combine all decision functions into a single model or using independent mod-
els to better adapt to dynamic classification contexts using independently trained
one-vs-one prediction functions poses an interesting trade-off problem whose best so-
lution remains unclear. Thus, combining extended techniques to train the one-vs-one
decision functions in combination with large-scale neural networks has a strong re-
lation to evaluating improvements from integrating dynamic class information. It
is an interesting question whether sufficiently independently trained one-vs-one neu-
ral networks significantly outperform the one-vs-all softmax prediction as soon as a
sufficient amount of dynamic class information is integrated in the fusing process.

It should be emphasized that this issue is an extension of the previously discussed
one because it generalizes the question of improved one-vs-one neural networks to
dynamic classification contexts. Even if the answer was negative, i.e. even integrating
a substantial amount of dynamic class information would not outperform the one-vs-
all softmax prediction, at least evidence theory justifies to integrate the dynamic
class information in the fusing process by simply renormalizing the probability vector
because the respective softmax prediction is equivalent to the one based on the one-
vs-all evidence-theoretic modeling.

Real-World Application

With respect to a real-world application where also dynamic class information is avail-
able in general, the evaluation in section 6.3 showed that dynamic class information
did not only improve the classification accuracy in theoretic benchmarks, but instead
also in real-world settings. Sampling the dynamic class information, the observed
improvements were mostly small, but still these depend on the amount of dynamic
class information that can be supplied.

However, one of the main issues while realizing dynamic classification in the re-
spective application was the lack of digital infrastructure to supply this information
to the device. Still, this is highly task-/factory-specific and not a general statement
such that analyzing further real-world applications of dynamic classification remains
particularly relevant. It might be very interesting to focus on classification tasks
that are sufficiently complex such that they only can be solved with an acceptable
remaining error by integrating dynamic class information. It is unclear whether these
applications exist or not.

Additionally, the evaluation on reasonable dynamic target sets showed that eval-
uating the improvements is a non-trivial task. Even though reasonable evaluation
metrics were introduced in section 6.1, applying them in practice actually means that
two effects are combined: The integration of dynamic class information in the respec-
tive fusing methods as well as test data sampling according to a subset of classes only.
The latter fact alone can modify the classification accuracy, even though no dynamic
class information is passed to the fusing step. This can be alleviated by sampling the
test data only on the respective subset of classes and compare the respective classifi-
cation accuracy with and without supplying it to the fusing methods. However, it can
be counterintuitive for a user or a customer that an overall accuracy rating depends
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on the current dynamic class information and hence improvements are evaluated to
varying base accuracies.

Still, the evaluations showed that this can be reasonable because the overall ac-
curacy might be an inadequate estimator for data sampled to a class subset only.
Here, explicitly focusing on classes with a low class-specific sensitivity is particularly
interesting as well. These difficult classes might not be noticed at all if their prior
probabilities are sufficiently small and the evaluations focus only on accuracy. Here,
dynamic classification is likely to significantly improve the respective sensitivities if
other classes that cause ambiguities and misclassifications are excluded, even though
this is not easily noticeable by accuracy statistics only.

Further Open Issues

The discussed issues are different potential directions for further research that aim
directly on multi-class or dynamic classification, respectively. Besides this, it might
also be an idea to also apply these techniques with focus on classifier calibration.

In this work, the latter was used as part of the former. Still, even the binary case
is a very complicated problem such that multi-class calibration is even more chal-
lenging. Here, it is an interesting option to transform respective binary approaches
in combination with decomposition-based classification into multi-class calibration
techniques.

As reference results focus mostly on the binary case, existing works on multi-class
calibration are rare. Still, this is an interesting direction for further research on multi-
class calibration, for example compare respective approaches to those that solve it by
reducing it to the binary case.
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