
A computational evaluation of feature distortion and cue weighting

in sentence comprehension

Himanshu Yadav

Cumulative doctoral dissertation

Submitted to the Faculty of Human Sciences of the University of Potsdam
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cognitive

Science

Year of submission: 2023

University of Potsdam
Faculty of Human Sciences



This work is protected by copyright and/or related rights. You are free to use this work in any way 
that is permitted by the copyright and related rights legislation that applies to your use. For other 
uses you need to obtain permission from the rights-holder(s). 
https://rightsstatements.org/page/InC/1.0/?language=en 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supervisors: 
Prof. Dr. Shravan Vasishth, Department of Linguistics, University of Potsdam 
Dr. Garrett Smith, Department of Linguistics, University of Potsdam 
 
Reviewers: 
Prof. Dan Parker, Department of Linguistics, The Ohio State University 
Prof. Dr. Shravan Vasishth, Department of Linguistics, University of Potsdam 
 
Date of oral defense: March 21, 2023 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-58505 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-585055 



Abstract

Successful sentence comprehension requires the comprehender to correctly figure out who did what
to whom. For example, in the sentence John kicked the ball, the comprehender has to figure out who
did the action of kicking and what was being kicked. This process of identifying and connecting the
syntactically-related words in a sentence is called dependency completion. What are the cognitive
constraints that determine dependency completion? A widely-accepted theory is cue-based retrieval.
The theory maintains that dependency completion is driven by a content-addressable search for the
co-dependents in memory. The cue-based retrieval explains a wide range of empirical data from
several constructions including subject-verb agreement, subject-verb non-agreement, plausibility
mismatch configurations, and negative polarity items.

However, there are two major empirical challenges to the theory: (i) Grammatical sentences’
data from subject-verb number agreement dependencies, where the theory predicts a slowdown at
the verb in sentences like the key to the cabinet was rusty compared to the key to the cabinets was
rusty, but the data are inconsistent with this prediction; and, (ii) Data from antecedent-reflexive
dependencies, where a facilitation in reading times is predicted at the reflexive in the bodybuilder
who worked with the trainers injured themselves vs. the bodybuilder who worked with the trainer
injured themselves, but the data do not show a facilitatory effect.

The work presented in this dissertation is dedicated to building a more general theory of
dependency completion that can account for the above two datasets without losing the original
empirical coverage of the cue-based retrieval assumption. In two journal articles, I present compu-
tational modeling work that addresses the above two empirical challenges.

To explain the grammatical sentences’ data from subject-verb number agreement dependen-
cies, I propose a new model that assumes that the cue-based retrieval operates on a probabilistically
distorted representation of nouns in memory (Article I). This hybrid distortion-plus-retrieval model
was compared against the existing candidate models using data from 17 studies on subject-verb
number agreement in 4 languages. I find that the hybrid model outperforms the existing models
of number agreement processing suggesting that the cue-based retrieval theory must incorporate a
feature distortion assumption.

To account for the absence of facilitatory effect in antecedent-reflexive dependencies, I pro-
pose an individual difference model, which was built within the cue-based retrieval framework
(Article II). The model assumes that individuals may differ in how strongly they weigh a syntactic
cue over a number cue. The model was fitted to data from two studies on antecedent-reflexive
dependencies, and the participant-level cue-weighting was estimated. We find that one-fourth of
the participants, in both studies, weigh the syntactic cue higher than the number cue in processing
reflexive dependencies and the remaining participants weigh the two cues equally. The result indi-
cates that the absence of predicted facilitatory effect at the level of grouped data is driven by some,
not all, participants who weigh syntactic cues higher than the number cue. More generally, the
result demonstrates that the assumption of differential cue weighting is important for a theory of
dependency completion processes. This differential cue weighting idea was independently supported
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ii ABSTRACT

by a modeling study on subject-verb non-agreement dependencies (Article III).
Overall, the cue-based retrieval, which is a general theory of dependency completion, needs

to incorporate two new assumptions: (i) the nouns stored in memory can undergo probabilistic
feature distortion, and (ii) the linguistic cues used for retrieval can be weighted differentially. This
is the cumulative result of the modeling work presented in this dissertation.

The dissertation makes an important theoretical contribution: Sentence comprehension in
humans is driven by a mechanism that assumes cue-based retrieval, probabilistic feature distor-
tion, and differential cue weighting. This insight is theoretically important because there is some
independent support for these three assumptions in sentence processing and the broader memory
literature. The modeling work presented here is also methodologically important because for the
first time, it demonstrates (i) how the complex models of sentence processing can be evaluated
using data from multiple studies simultaneously, without oversimplifying the models, and (ii) how
the inferences drawn from the individual-level behavior can be used in theory development.
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Chapter 1

Introduction

Humans possess a remarkable ability to compute meaning out of a linear stream of sounds or
signs that constitute a sentence. What are the cognitive processes that underlie this sentence
comprehension skill in humans? From years of research, we have understood that comprehending
a sentence requires the comprehender to correctly figure out who did what to whom. For example,
to comprehend the sentence John kicked the ball, one must work out who did the action of kicking
and what was being kicked. This process of identifying the linguistically related words in a sentence
is called dependency completion. In the sentence John kicked the ball, the comprehender has to
complete two noun-verb dependencies: the dependency between the subject noun John and the
verb kicked and the dependency between the verb kicked and the direct object the ball.

Dependency completion processes have been extensively investigated using controlled ex-
periments on several types of dependencies. One dependency type that has received considerable
attention in the last three decades is the subject-verb number agreement dependency. This de-
pendency is important for understanding the comprehension process because the reader sometimes
fails to register the ungrammaticality when a hard morphosyntactic constraint on the subject-verb
dependency is violated. In languages like English, the subject noun must agree in number with the
verb: the reader’s linguistic knowledge warrants that one must write The key was rusty and not
The key were rusty. In spite of this number agreement constraint, the reader is sometimes misled
into believing that the sentences like (1) are grammatical.

(1) * The key to the cabinets were rusty.

Such subject-verb agreement violations as in (1) — first noted by Mann (1982) — are
produced surprisingly often by native speakers of a language. For instance, in an English treebank,
12% of the subject-verb dependencies violates the number agreement constraint.1 Similarly, in
Spanish, the number mismatch is observed in around 5% cases. Why the native speakers would
produce the ungrammatical utterances like (1)?

The agreement violations were first investigated in sentence production studies. A consistent
observation from these studies is that of agreement attraction: the ungrammatical sentences like
(2a) are produced more often than sentences like (2b) (Bock and Miller, 1991).

(2) a. Ungrammatical, plural distractor
* The key to the cabinets were rusty.

1The conditional probabilities were computed from the Corpora from the Web (COW) (Schäfer, 2015, Schäfer
and Bildhauer, 2012).
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b. Ungrammatical, singular distractor
* The key to the cabinet were rusty.

While both (2a) and (2b) are ungrammatical due to number agreement violation, what
makes the sentence (2a) better than (2b) during production? A widely-accepted explanation comes
from the Marking and Morphing theory (Eberhard et al., 2005). The theory assumes that in
sentences like (2a), the plural feature of the non-subject noun the cabinets spreads to the subject
noun the key, which makes the subject noun more plural in (2a) compared to (2b). Consequently,
the plural verb is produced more often in (2a) than (2b). In other words, the number match between
the non-subject noun and the verb causes the observed agreement attraction effect in production.

Agreement attraction has been robustly found across different experimental paradigms; ex-
amples are acceptability judgments: (Hammerly et al., 2019, Häussler, 2009, Schlueter et al., 2018);
forced-choice response: (Lago and Felser, 2018, Staub, 2009, 2010); and reading studies (Dillon
et al., 2013, Lago et al., 2015, Tucker et al., 2015). For the work presented in this dissertation, I use
the reading time data from sentence comprehension experiments because of two reasons. First, I
am interested in evaluating the competing theories of sentence comprehension in humans. Second,
the reading data from number agreement dependencies present two interesting empirical puzzles
that remain unsolved by the existing theories.

In the reading studies (self-paced reading and eyetracking) on number agreement processing,
it has consistently been observed that the verb is read faster in sentences like (2a) — where a
non-subject noun matches the verb in number feature — compared to a baseline sentence (2b),
where a non-subject noun does not match the verb in number (e.g., Avetisyan et al., 2020, Dillon
et al., 2013, Jäger et al., 2020, Lago et al., 2021, 2015, Tucker et al., 2015, Wagers et al., 2009).
This speedup in reading times at the auxiliary verb were in sentence (2a) vs. (2b) is taken as an
online correlate of grammaticality illusion and has been referred to as agreement attraction effect in
reading. Figure 1.1 (left) shows the agreement attraction effects observed in 17 published studies
on subject-verb number agreement processing.

What is the underlying cognitive process that leads to this robust agreement attraction
phenomenon in reading? Two broad classes of theories exist, the representation distortion-based
theories and the cue-based retrieval theories. While these existing theories can account for the
agreement attraction effects, they all fail to explain some key aspects of the observed reading time
data on number agreement.

Representation distortion-based theories assume that the feature representation of the nouns
stored in memory can probabilistically change or be lost over time. An influential proposal based on
representation distortion is the feature percolation theory (e.g., Bock and Eberhard, 1993, Eberhard,
1997). The assumption is that, in some proportion of trials, the plural feature of the attractor noun
cabinets in (2a) percolates up to the singular-marked subject noun and changes its representation.
In trials where this percolation occurs, the subject is now plural-marked and matches the verb in
number, making the sentence seem grammatical compared to the ungrammatical baseline sentence
(2b).

In contrast to representation distortion theories, the cue-based retrieval theory (Lewis and
Vasishth, 2005, Lewis et al., 2006) assumes that the dependency between the subject and the verb is
resolved via a content-addressable search in memory (McElree, 2003, McElree et al., 2003). When
the verb is encountered, a search is triggered in memory using the feature specifications of the
verb’s arguments (e.g., a noun phrase with [+subject], [+plural] features) to identify the target
chunk for dependency completion. These feature specifications used for searching the co-dependent
in memory are called retrieval cues. In a sentence like (2a), the attractor noun cabinets matches
the [+plural] cue at the verb were; this cue-feature match leads to an occasional misretrieval of
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Figure 1.1: The pattern of effects in ungrammatical and grammatical subject-verb number agree-
ment dependencies across 17 published datasets. The agreement attraction effect is the reading time
(at the verb) in condition (2a) minus (2b); the number distractor effect is the reading time in (3a)
minus (3b). The red triangles represent the estimated mean effects and the errors bars represent
the 95% credible intervals.

the attractor noun (Patson and Husband, 2016, Wagers et al., 2009). This misretrieval is assumed
to cause the illusion of grammaticality and faster reading times at the verb in (2a) vs. (2b) (see
Engelmann et al., 2019).

As shown in the left panel of Figure 1.1, for ungrammatical sentences, the qualitative pre-
dictions of both the distortion-based and the retrieval-based theories are consistent with the data:
across the 17 studies, the estimated agreement attraction effect — the difference in reading times
between (2a) and (2b) — tends to be negative with some variation in the magnitude of the effect.

However, even though the existing theories can explain the ungrammatical sentences data
from subject-verb number agreement dependencies, these theories are challenged by two important
pieces of data:

1. The existing theories fail to explain the observed effects in the corresponding grammatical
sentences shown in (3a,b). For example, in sentence (3a), the number distractor cabinet may
either causes a slowdown, a speedup, or no effect at the verb compared to (3b) (see Figure 1.1;
right panel). The existing theories — that can explain the attraction effect in ungrammatical
sentences — cannot capture this number distractor effect in grammatical sentences. Thus, no
existing theory of number agreement can explain the grammatical as well as ungrammatical
sentences’ data simultaneously.

2. Another kind of number agreement dependency —the antecedent-reflexive dependency— does
not show an agreement attraction effect. For example, in the sentence the bodybuilder who
worked with the trainers injured themselves, the cue-based retrieval theory predicts a speedup
in reading times at the reflexive themselves, when compared with The bodybuilder who worked
with the trainer injured themselves, but the data are inconsistent with this prediction.
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My modeling work aims to address the above two empirical challenges. I discuss them in
detail one by one.

1.1 The number agreement effect in grammatical sentences

While the existing theories of number agreement processing can account for the agreement attraction
effects observed in ungrammatical sentences (see Figure 1.1; left panel), these theories falter when it
comes to explaining the observed reading time pattern in the grammatical sentences shown in (3a,b).
The estimated difference in reading time between (3a) and (3b) at the auxiliary verb fluctuates
between −50 and 25 milliseconds across the 17 studies (see Figure 1.1), with some studies showing
a slowdown in (3a) vs. (3b), and some studies a speed up. For convenience, I will refer to this
difference in reading time between (3a) and (3b) as the number distractor effect.

(3) a. Grammatical, singular distractor
The key to the cabinet was rusty.

b. Grammatical, plural distractor
The key to the cabinets was rusty.

The number distractor effect—which is sometimes negative, sometimes positive, and often
close to zero ms, depending on the study—cannot be fully captured by any of the existing theories.

The feature percolation theory —one of the representation distortion-based theories— main-
tains that in (3b), the plural feature on the distractor cabinets probabilistically percolate up to the
subject key, resulting in the sentence being perceived as ungrammatical in a proportion of trials.
Consequently, the average reading time at the verb in (3a) is predicted to be faster compared to
(3b). This prediction is not entirely supported by the data: several studies show effectively no
difference between (3a) and (3b), and some even suggest that (3a) is slower than (3b).

The cue-based retrieval theory makes the opposite qualitative prediction. Under the cue-
based retrieval assumption, the auxiliary verb in (3a) searches for a noun with the [+subject] and
[+singular] features but it takes longer to retrieve the subject noun due to the presence of a distractor
noun cabinet with [+singular] features. Therefore, this partially-matching distractor is predicted
to cause a slowdown at the verb (3a) compared to (3b), where no other noun partially matches the
retrieval cues. Figure 1.1 shows that the predicted slowdown in (3a) vs. (3b) is not consistent with
the estimates from the individual studies.

Thus, even though the predictions of both the representation distortion and cue-based re-
trieval are largely consistent with the agreement attraction effect in ungrammatical sentences, nei-
ther type of account can convincingly account for the observed range of number distractor effects in
grammatical sentences. There seems to be no existing theory that can fully explain the qualitative
pattern of number agreement effects.

Even though neither class of theories can fully account for the data, we can still investigate
which model performs quantitatively better compared to the other candidate models. The 17
published datasets on number agreement allow us to evaluate competing models to understand how
well the representation distortion theories and the cue-based retrieval theory perform when pitted
against each other.

In Article I, we evaluate the relative fit of two retrieval-based models, three distortion-
based models, and two hybrid models that combine representation distortion and the cue-based
retrieval mechanism. We find that a new theory that integrates probabilistic feature percolation
within the cue-based retrieval process shows the best predictive performance compared to all other
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models considered. This finding suggests that subject-verb number agreement processing is driven
by a cue-based retrieval process that operates on a probabilistically distorted representation of the
nouns stored in memory. The main theoretical insight from Article I is that a general theory of
dependency completion should incorporate the following two assumptions: (i) the co-dependents
are identified and connected together via a content-addressable search in memory, and (ii) the
representation of the co-dependents stored in memory gets probabilistically distorted over time.

1.2 The absence of agreement attraction in antecedent-reflexive
dependencies

The second empirical challenge comes from a different kind of number agreement dependency:
the antecedent-reflexive dependency. Consider the sentences (4a) and (4b). These sentences are
ungrammatical because the dependency between the antecedent bodybuilder and the reflexive them-
selves violates the number agreement constraint. The existing theories of number agreement, e.g.,
the cue-based retrieval, predict the agreement attraction effect: the reading times at the reflexive
are predicted to be faster in (4a) — where a non-antecedent noun matches the reflexive in number
feature — compared to (4b), where none of the nouns matches the reflexive in number. However,
the reading time data are inconsistent with this prediction.

(4) a. The bodybuilder who worked with the trainers injured themselves . . .

b. The bodybuilder who worked with the trainer injured themselves . . .

Dillon et al. (2013) demonstrated that the reflexive dependencies are immune to the agree-
ment attraction effect. They attribute the absence of agreement attraction effect to Principle A of
the binding theory (Chomsky, 1981), which states that an anaphor (e.g., a reflexive) must be bound
within its governing category (e.g., its clause). Thus, in sentences (4a) and (4b), the antecedent
would be a noun phrase that essentially c-commands the reflexive themselves. Following Sturt
(2003), Dillon and colleagues argued that the search for an antecedent for the reflexive is guided
exclusively by Principle A of the binding theory implying that the number marking on the reflexive
themselves is not used as a retrieval cue for these dependencies. Several other researchers have
taken a less extreme position; they hypothesized that the c-command cue dominates the number
cue in processing antecedent-reflexive dependencies (Cunnings and Sturt, 2014, Kush, 2013, Parker
and Phillips, 2017). I refer to these explanations collectively as the cue weighting explanation: the
syntactic cue is weighting higher than the number cue in processing reflexive dependencies. An
empirical challenge to the cue-weighting explanation comes from a large-scale replication of the
Dillon et al. study by Jäger et al. (2020). Jäger and colleagues find that the reflexive dependencies
do show a weak agreement attraction effect.

An important point missing from the above debate is that the individuals differ qualitatively
in their effects in the case of reflexive dependencies: some participants do show an agreement
attraction effect but some do not, and interestingly, this pattern persists across the two studies
(see Figure 1.2). Given the differences in attraction effect estimates, it is possible that some, but
not all, participants weigh the c-command cue higher than the number cue and the data from such
participants might be deriving the absence of agreement attraction effect in the reflexives. This
possibility raises an important question: Can individual differences in cue-weighting explain the
observed pattern of attraction effects across the two studies on antecedent-reflexive dependencies?

Article II investigates this question. For the studies that provided data on reflexive depen-
dencies (Dillon et al., 2013, Jäger et al., 2020), we found that only one-fourth of the participants
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Figure 1.2: The individual-level agreement attraction effects observed for antecedent-reflexive de-
pendencies in the two studies, Dillon et al. (2013) and Jäger et al. (2020). Under the cue-based
retrieval account, the attraction effects should be negative. The individuals whose effect estimates
are close to zero ms support the cue-weighting assumption: the structural cue is weighted higher
than the number cue. The individuals with negative effect estimates (of smaller than −7 ms) sup-
port the assumption that the cues are weighted equally.

did have higher weighting for the c-command cue than the number cue in these dependencies, but
also that most participants had equal weights for the two cues. The finding suggests that some
participants do indeed strongly adhere to Principle A during online sentence comprehension, but
the majority of participants weigh structural and non-structural cues approximately equally. Over-
all, the results suggest that the cue-weighting hypothesis only holds for a subset of English native
speakers.

A broader conclusion from the modeling work in Article II is that the population-level effects
inferred from a sample can mask theoretically important variation at the individual level. While
population-level effects from Dillon et al. (2013) and Jäger et al. (2020) produced theoretically
different conclusions, the individual-level effects reveal that the results from the two studies are
consistent: Approximately one-fourth of the individuals in the population weigh syntactic cue higher
than the number cue in processing reflexive dependencies.

Overall, Article II shows that the cue-weighting assumption — higher weighting of the
syntactic cue over the non-syntactic cue — within the cue-based retrieval model could explain
the apparent absence of agreement attraction effect in antecedent-reflexive dependencies. The im-
portance of the cue-weighting assumption was further demonstrated in Article III, where we find
that the higher weighting of the syntactic cue over the semantic cue can explain the processing of
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subject-verb non-agreement dependencies in German vs. English.
The collective theoretical insight from my three articles is that a theory of dependency

completion process should incorporate the following three assumptions: (i) dependency completion
is driven by a content-addressable search in memory, (ii) the feature representation of the linguistic
input stored in memory gets probabilistically distorted over time, and (iii) the linguistic cues used
in dependency completion can be weighted differentially.





Chapter 2

List of articles

The following three articles constitute the core of this dissertation. All three articles contribute
to understanding the cognitive processes that underlie dependency completion. The first article
addresses the question of which theoretical assumptions can best explain the observed pattern of
effects in subject-verb number agreement dependencies. The second article departs from the con-
ventional approach of studying the average behavior and shows how individual difference modeling
can be used to draw inferences for a theoretical question. The third article further demonstrates
the utility of the individual difference approach in studying cross-linguistic processing differences.

Article I
Number feature distortion modulates cue-based retrieval in reading . . . . . 11
Himanshu Yadav, Garrett Smith, Sebastian Reich, and Shravan Vasishth
Journal of Memory and Language, 129:104400, 2023

This article makes two main contributions to the study of dependency completion processes.
First, the results show that a general theory of dependency completion should consider two crucial
assumptions: (i) the co-dependents are identified and linked together via a content-addressable
search in memory, and (ii) the feature representation of the co-dependents gets probabilistically
distorted when they are stored in memory. The second contribution is methodological. The article
presents a Bayesian method to evaluate complex models of sentence processing using data from
multiple studies simultaneously, without compromising the complexity of the models. The algo-
rithms developed here can be easily adapted to compare computational models of any underlying
cognitive process.

Article II
Individual differences in cue weighting in sentence comprehension: An evaluation using Ap-
proximate Bayesian Computation . . . . . 53
Himanshu Yadav, Dario Paape, Garrett Smith, Brian Dillon, and Shravan Vasishth
Open Mind, 6:147–168, 2022

This article reveals an important theoretical insight that the linguistic cues used for depen-
dency completion can be weighted differentially by a comprehender. We find that some compre-
henders weigh the syntactic cue higher than the number cue, while some others weigh the two cues
equally in processing antecedent-reflexive dependencies. The result suggests that the individuals

9
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differ in how they weigh certain linguistic cues over the other cues. Moreover, the article demon-
strates the theoretical significance of modeling individual differences. In two previous studies that
investigated reflexive dependencies, the average behavior lead to theoretically different interpreta-
tions. But the distribution of individual-level behavior was consistent across the two studies: Only
one-fourth of the participants in both studies weighed the syntactic cue higher than the number
cue.

Article III
Individuals differ cross-linguistically in cue weighting: A computational evaluation of cue-
based retrieval in sentence processing . . . . . 79
Himanshu Yadav, Garrett Smith, Daniela Mertzen, Ralf Engbert, and Shravan Vasishth
Proceedings of the Annual Meeting of the Cognitive Science Society, 44, 2022

This short article provides an independent illustration of how individual differences can be
used for drawing theoretical inferences. The main finding is that English and German participants
differ in how they weigh syntactic cues relative to semantic cues. While most English participants
weigh the syntactic cue and the animacy cue equally, a majority of German participants weigh the
syntactic cue higher. The article supports the broader hypothesis that the native speakers of a
particular language may learn to use certain cues more strongly and reliably over the others which
may lead to cross-linguistic differences in processing.
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A B S T R A C T

In sentence comprehension, what are the cognitive constraints that determine number agreement computation?
Two broad classes of theoretical proposals are: (i) Representation distortion accounts, which assume that the
number feature on the subject noun gets overwritten probabilistically by the number feature on a non-
subject noun, leading to a non-veridical memory trace of the subject noun; and (ii) The cue-based retrieval
account, a general account of dependency completion processes which assumes that the features on the
subject noun remain intact, and that processing difficulty is only a function of the memory constraints on
dependency completion. However, both these classes of model fail to account for the full spectrum of number
agreement patterns observed in published studies. Using 17 benchmark datasets on number agreement from
four languages, we implement seven computational models: three variants of representation distortion, two
cue-based retrieval models, and two hybrid models that assume both representation-distortion and retrieval.
Quantitative model comparison shows that the best fit is achieved by a hybrid model that assumes both feature
distortion (specifically, feature percolation) and cue-based retrieval; numerically, the second-best quantitative
fit was achieved by a distortion-based model of number attraction that assumes grammaticality bias during
reading. More broadly, the work furnishes comprehensive evidence to support the idea that cue-based retrieval
theory, which aims to be a general account of dependency completion, needs to incorporate a feature distortion
process.

Introduction

Successful sentence comprehension requires that the reader cor-
rectly work out who did what to whom. To do so, the reader needs
to identify the syntactic relations between words, a process called de-
pendency completion. Dependency completion is a key step in sentence
processing because a prerequisite for comprehending a sentence is that
dependencies between nouns and verbs are resolved. The subject–verb
dependency is especially interesting because, surprisingly, a hard mor-
phosyntactic constraint on this dependency can sometimes be violated
without the comprehender even registering the resulting ungrammat-
icality: In languages like English, the number marking on the subject
must agree in number with the verb: the reader’s internalized grammar
stipulates that one must write The key was rusty and not The key were
rusty. In spite of this, the reader is sometimes misled into thinking
that the following sentence is grammatical: The key to the cabinets were
rusty. Such subject–verb agreement mismatches – colorfully labeled
atmosphere effects (Mann, 1982) – are produced surprisingly often by
native speakers.

Agreement attraction was first observed in sentence production
studies: participants produce sentences like (1a) more frequently than

∗ Corresponding author.
E-mail address: hyadav@uni-potsdam.de (H. Yadav).

(1b) (Bock & Miller, 1991). Since then, the effect has been robustly
found across different experimental paradigms; examples are accept-
ability judgments: (Hammerly, Staub, & Dillon, 2019; Häussler, 2009;
Schlueter, Williams, & Lau, 2018); forced-choice response: (Lago &
Felser, 2018; Staub, 2009, 2010b); and reading (self-paced reading and
eyetracking) studies (Dillon, Mishler, Sloggett, & Phillips, 2013; Lago,
Shalom, Sigman, Lau, & Phillips, 2015). In this paper, we focus on
reading time data from sentence comprehension experiments because
we are interested in evaluating the predictions of competing sentence
comprehension models. In these reading studies (self-paced reading and
eyetracking) using several languages, it has consistently been shown
that the verb is read faster in sentences like (1a) – where a non-subject
noun matches the verb in number feature – compared to an equally
ungrammatical baseline sentence (1b), where a non-subject noun does
not match the verb in number (e.g., Avetisyan, Lago, & Vasishth, 2020;
Dillon et al., 2013; Jäger, Mertzen, Van Dyke, & Vasishth, 2020; Lago,
Acuña Fariña, & Meseguer, 2021; Lago, et al., 2015; Tucker, Idrissi, &
Almeida, 2015; Wagers, Lau, & Phillips, 2009). The faster reading time
observed at the auxiliary verb were in sentence (1a) is usually taken
as an online correlate of a failure to register the ungrammaticality,

https://doi.org/10.1016/j.jml.2022.104400
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Fig. 1. The pattern of effects in ungrammatical and grammatical subject–verb number agreement dependencies across 17 published datasets. The agreement attraction effect is
the reading time (at the verb) in condition (1a) minus (1b); the number distractor effect is the reading time in (2a) minus (2b). The red triangles represent the estimated mean
effects and the errors bars represent the 95% credible intervals.

i.e., of an illusion of grammaticality. The phenomenon has in recent
years come to be referred to as agreement attraction. Fig. 1 (left) shows
the number agreement effects observed in 17 studies.

1. (a) Ungrammatical, plural distractor
* The key to the cabinets were rusty.

(b) Ungrammatical, singular distractor
* The key to the cabinet were rusty.

What is the underlying cognitive process that leads to this re-
markable illusion of grammaticality? Several theories exist, but all of
them fail to explain some key aspect or the other of the published
reading-time data on number agreement.

Two broad classes of theory offer an account for the agreement
attraction illusion. Representation distortion accounts assume that the
number-feature representation of the subject noun stored in memory
can probabilistically change or even be lost as a function of time. An
influential representation distortion account is the feature percolation
theory (e.g., Bock & Eberhard, 1993; Eberhard, 1997). The claim is
that, in some proportion of trials, the plural feature of the distractor
noun cabinets in (1a) percolates up to and overwrites the singular-
marked subject noun phrase. In trials where this percolation occurs,
the subject is now plural-marked and matches the verb in number,
making the sentence seem grammatical compared to the ungrammat-
ical baseline sentence. One further representation distortion account
that we will consider later is the recently proposed lossy compression
model (Futrell, Gibson, & Levy, 2020), which takes into consideration
how likely different verb number markings are given a noisy memory
representation of the preceding words. This model has never been
used to account for agreement attraction, but it can explain aspects of
number agreement processing. The predictions of lossy compression for
agreement phenomena will be discussed in the modeling section below.

In contrast to representation distortion accounts, the cue-based re-
trieval theory (Lewis & Vasishth, 2005; Lewis, Vasishth, & Van Dyke,
2006) assumes that subject–verb dependency completion is carried out
via a content-addressable search in memory (McElree, 2003; McElree,
Foraker, & Dyer, 2003). This search is triggered when the verb is
processed; the verb relies on the feature specifications of its arguments
to search for the relevant phrase (e.g., a noun phrase) in memory.
The retrieval triggered at the verb uses feature specifications such as
[+subject] and [+plural] to seek out the relevant syntactic argument.

These feature specifications used for searching memory are called re-
trieval cues. In a sentence like (1a), the distractor noun phrase cabinets
matches the [+plural] cue at the verb are; this match occasionally
leads to a misretrieval of the distractor noun (Patson & Husband, 2016;
Wagers et al., 2009). This misretrieval is assumed to cause the illusion
of grammaticality and faster reading time (for the technical details of
this misretrieval process, see Engelmann, Jäger, & Vasishth, 2019).

As shown in the left panel of Fig. 1, for ungrammatical sentences,
the qualitative predictions of both these types of model seem to be
correct: across the 17 studies,1 the estimated agreement attraction
effect — the difference in reading time between (1a) and (1b) — tends
to be negative with some variation in the magnitude of the effect.2

However, even though both classes of theory can explain the un-
grammatical sentences discussed above, all existing theories falter
when it comes to explaining the observed reading time pattern in the
grammatical sentences shown in (2a,b). The estimated difference in
reading time between (2a) and (2b) at the auxiliary verb fluctuates
around zero ms across the 17 studies (see Fig. 1), with some studies
showing a slowdown in (2a) vs. (2b), and some studies a speed up. For
convenience, we will refer to this fluctuating difference in reading time
between (2a) and (2b) as the number distractor effect, to distinguish it
from the agreement attraction effect (we will refer to the two classes
of effect – agreement attraction and the number distractor effect –
collectively as number agreement effects).

2. (a) Grammatical, singular distractor
The key to the cabinet was rusty.

(b) Grammatical, plural distractor
The key to the cabinets was rusty.

1 These 17 studies were chosen because these are the only ones for which
we have the original data; having the data made it possible to compute
the estimates and their uncertainty in a unified manner using maximally
conservative Bayesian linear mixed models (Schad, Betancourt, & Vasishth,
2021).

2 We focus here on modeling the observed effects and their uncertainty,
instead of focusing on whether the individual results were statistically signifi-
cant or not. See Vasishth and Gelman (2021) and Kruschke and Liddell (2018)
for the motivation for this approach.
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The number distractor effect – which is sometimes negative, some-
times positive, and often close to zero ms, depending on the study –
cannot be fully captured by any of the existing accounts.3

The feature percolation account maintains that in (2b), the plural
feature on the distractor cabinets should probabilistically percolate
up to the subject key, resulting in the sentence being perceived as
ungrammatical. As a result, the reading time at the auxiliary verb in
(2a) is predicted to be faster compared to (2b); the sign of the effect
at the auxiliary verb (2a minus 2b) should be negative. This prediction
is not entirely supported by the data: several of the individual studies
show effectively no difference between (2a) and (2b), and some even
suggest that (2a) is slower than (2b).

The cue-based retrieval theory makes the opposite qualitative pre-
diction to the feature percolation model. This prediction is also incon-
sistent with the data. In this account, the auxiliary in (2a) should be
read slower than in (2b). The slowdown at the verb is predicted to
occur because in (2a) the verb searches for a noun with the [+subject]
and [+singular] features but takes longer to retrieve the subject due
to the fan effect (Anderson, et al., 2004; Schneider & Anderson, 2012).
Under this view, the sign of the effect (2a minus 2b) should be positive.
Fig. 1 shows that the prediction of a positive sign on the effect is not
consistent with the estimates from the individual studies.

Thus, even though the predictions of both the representation dis-
tortion account (here, for expository purposes, we are only focusing
on feature percolation) and cue-based retrieval are largely consistent
with the observed agreement attraction effect, neither type of account
can convincingly account for the number distractor effects in these 17
studies. This leaves us at an impasse: there seems to be no model that
can explain the full pattern of effects from number agreement studies.4

Even though neither class of model can fully account for the data,
it is still informative to ask which model performs better compared
to the competitor models. The 17 datasets give us a unique oppor-
tunity to carry out a model comparison to understand how well the
representation distortion models and the cue-based retrieval models
perform when pitted against each other. For model comparison, it is
critical to evaluate models via their relative predictive fit on unseen
data. Evaluating model fit on unseen data is important because the
alternative – evaluating model fit using the same data that the model
was trained on – will lead to overfitting.

Given these considerations, the approach we will take is as fol-
lows: each of the models’ numerical parameters will be fit to the
estimates from a subset of the 17 studies taken together, holding out
the remaining studies’ estimates. Then, the quality of predictive fit
to the held-out estimates will be used to quantify relative model fit.
This approach – widely used in machine learning under the rubric
of cross-validation (Vehtari, Gelman, & Gabry, 2017; Vehtari, Ojanen,
et al., 2012) – yields a measure of the relative predictive accuracy
of the competing models. Cross-validation is especially useful when
comparing very different models.

Using this approach, we evaluate the relative fit of two retrieval-
based models, three distortion-based models, and two hybrid models
that combine representation distortion and the cue-based retrieval
mechanism. Anticipating our main result, the model comparison leads

3 The non-linear cue-combination proposals in Wagers et al. (2009)
and Parker (2019) can explain the close-to-zero effect in grammatical sen-
tences. However, they fail to fully capture the agreement attraction effect in
ungrammatical sentences; we illustrate this prediction in the modeling section.

4 However, a recent transformer-based model by Ryu and Lewis (2021) has
been shown to capture the typical number agreement effects in English for
both grammatical and ungrammatical sentences; we have not considered this
model here because this would take us far beyond the scope of the present
paper. But it would be a good candidate model for future work focusing on
English data.

us to a new theory that embeds feature percolation within the cue-
based retrieval process. This new theory, which shows the best predic-
tive accuracy compared to all other models considered, assumes that
cue-based retrieval at the verb operates on a probabilistically distorted
representation of the pre-verbal input.

Seven models of number agreement attraction

We first discuss the assumptions and predictions of the existing
retrieval-based and distortion-based models, and then we present our
hybrid model proposals.

For each model, we use a Bayesian approach to generate predictions
for the number agreement effects. The Bayesian method allows us
to compute a distribution of reading times and of the effects from a
model based on our prior assumptions about the parameters of the
model. First, a prior distribution is defined on the free parameters
of the model; this prior distribution reflects our knowledge, beliefs,
or assumptions about the plausible values of the parameter. Second,
parameter values are repeatedly drawn from the prior distribution and
used to generate reading times, from which the predicted effects (the
agreement attraction effect, and the number distractor effect) can be
derived. These simulations produce a distribution of predicted reading
times called the prior predictive distribution. In this section, we compare
the prior predictive distributions of each model with the estimates for
the agreement attraction and number distractor effects. Then, in the
following section, we test the models’ predictive accuracy on held-out
data.

Cue-based retrieval models

The cue-based retrieval models assume that the dependency comple-
tion between the subject and the verb is driven by a content-addressable
search in memory using retrieval cues at the verb. For example, to
identify the correct subject noun in sentences like the key to the cabinets
was rusty, the verb could use retrieval cues like [subject], [singular]
etc. The retrieval-based models may differ in how these individual
cues combine to search for the target noun. Some models assume
that the cues are combined linearly such that each cue contributes
independently in the retrieval process (Anderson, et al., 2004; Anderson
& Lebiere, 2014). By contrast, some models assume the non-linear cue-
combination: the contribution of a retrieval cue is not independent of
the other cues (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981).
We first present the cue-based retrieval model of Lewis and Vasishth
(2005) which assumes that the cues are combined linearly.

The cue-based retrieval model of Lewis and Vasishth (2005)
The cue-based retrieval theory described in Lewis and Vasishth

(2005) is computationally implemented and has been extensively tested
on a variety of constructions (Engelmann et al., 2019; Vasishth & En-
gelmann, 2022; Vasishth, Nicenboim, Engelmann, & Burchert, 2019). In
this paper, we consider the cue-based retrieval model as implemented
in Engelmann et al. (2019).

The cue-based retrieval model assumes that

(1) Dependency completion between the subject and the verb is
driven by a content-addressable search of nouns in memory.
Verbs carry feature specifications like [subject] or [plural].
These retrieval cues specify the features that nouns in memory
should have in order to fill the role of the verb’s subject.

(2) Each noun phrase that matches a retrieval cue receives a certain
amount of activation, and the chunk with the highest activation
gets retrieved for dependency completion.
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Fig. 2. Feature specifications at the nouns and the verb used by cue-based retrieval process. Each noun phrase receives activation proportional to the number of features it has
that match the verb’s retrieval cues. Features that match the retrieval cues are printed in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Consider the ungrammatical conditions (c) and (d) in Fig. 2. The
verb were requires a noun phrase with [+plural] and [+subject] fea-
tures to complete the subject–verb dependency. In condition (c), each
noun phrase partially matches the retrieval cues at the verb, i.e., the
key matches [subject] cue and the cabinets matches the [plural] cue.
Consequently, a race for retrieval is initiated such that either noun
phrase can be retrieved in each trial. This causes statistical facilitation
in retrieval times (Raab, 1962) in condition (c) compared to condition
(d), where only one noun phrase, the key, partially matches the retrieval
cues. Thus, the model predicts a facilitatory effect in ungrammatical
conditions, i.e., a speed-up in condition (c) compared to (d).

In the grammatical conditions shown in Fig. 2, the model predicts an
inhibitory effect —a slowdown in condition (a) compared to (b). This
slowdown is predicted to occur because of the fan effect (Anderson,
et al., 2004; Schneider & Anderson, 2012): the singular distractor noun
in (a), the cabinet, reduces the total amount of activation to be received
by the singular subject noun compared to that in condition (b).

The details of the model are shown in section The cue-based re-
trieval model. We generate prior predictions from the model assuming,
as is commonly done (Anderson, et al., 2004; Vasishth, 2020), one
free parameter, the scaling parameter 𝐹 . This parameter controls the
overall speed of processing. This parameter has to be estimated from
the observed data in order to map the model output onto the same scale
as the human reading times. For the prior distribution on this scaling
parameter 𝐹 , we choose a truncated normal distribution

𝐹 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) (1)

where 𝑙𝑏 = 0.05 indicates a lower bound of 0.05 on scaling values. We
choose this lower bound because the model generates unrealistically
fast reading times when 𝐹 < 0.05; 𝐹 > 0.05 generates reading times
that are more consistent with human reading data (see chapter 6,
Nicenboim, Schad, & Vasishth, 2022). Section Choice of priors on the
scaling parameter has a detailed discussion about how the priors on
the scaling parameter were chosen. The prior predictions of the model
given the above prior are shown in Fig. 3.

The non-linear cue-based retrieval model
The above cue-based retrieval model by Lewis and Vasishth (2005)

assumes that the retrieval cues are combined linearly: the total ac-
tivation received by a memory chunk is the sum of the activation
spread via each individual cue. Under this assumption, as the number
of matching cues increases, the total activation of the target chunk
increases linearly. By contrast, some memory models assume a non-
linear cue combination such that the total activation received by a chunk
is the product of activation spread via each retrieval cue (Gillund &
Shiffrin, 1984; Parker, 2019; Raaijmakers & Shiffrin, 1981; Van Dyke,
2007; Wagers, 2008). This multiplicative cue-combination implies that
the contribution of an individual cue is not independent of the other
cues. Wagers et al. (2009) argue that a cue-based retrieval model
assuming non-linear cue combination can capture the number agree-
ment effects in both grammatical and ungrammatical sentences. More
specifically, they suggest that a direct access mechanism (McElree,
2000) with non-linear cue-combination can account for the typical

pattern of close-to-zero effects in grammatical sentences. The idea is
that the distractor noun in condition (a) (see Fig. 2) – which matches
the number cue but not the subject cue – would cause almost zero
interference in processing. This is because the activation spread by
the [subject] cue to the distractor tends to be zero and therefore, the
total activation received by the distractor via [subject] cue and the
[number] cue would tend to zero if cues are combined non-linearly.
Consequently, the distractor in grammatical sentences would have no
effect on retrieval and the model would predict no difference between
conditions (a) and (b) (Fig. 2).

Here, we implement a non-linear cue-based retrieval model (see
Parker, 2019; Wagers, 2008) assuming direct access from memory
(McElree, 2000). The assumptions of the model are as follows,

1. The dependency completion between the subject and the verb is
driven by a content-addressable search for the subject noun.

2. Each noun in memory has a certain probability of retrieval
determined by its degree of match with the retrieval cues.

(a) The retrieval probability of a noun 𝑖 is a non-linear func-
tion of its degree of match with the retrieval cues, i.e. 𝑃𝑖 =

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑖𝑗

∑𝑛
𝑖=1

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑖𝑗

. Where 𝑗 indexes retrieval cues, 𝑖 indexes

nouns in memory, 𝑆𝑖𝑗 indicate the degree of match be-
tween a cue 𝑗 and noun 𝑖 (𝑆𝑖𝑗 takes the value 0.99 if the
noun matches the cue and the value 0.01 when it does
not), 𝑊𝑗 is the relative weight of cue 𝑗 (𝑊𝑗 is set to 1 for
all cues in our implementation).

(b) The cost of retrieval is the same regardless of what was
retrieved.

3. If retrieval fails, i.e., when the retrieved noun does not fully
match the retrieval cues, then backtracking occurs with some
probability such that the incorrectly retrieved noun is replaced
by the target noun in a proportion of trials (Martin & McElree,
2008; Nicenboim & Vasishth, 2018).

However, it is not clear from the literature how to operational-
ize the backtracking assumption (Assumption (c)) for ungrammatical
sentences. This is because in ungrammatical sentences, none of the
nouns fully match the retrieval cues. The previous implementations
of the direct access model for reading times have not specified what
should happen in the ungrammatical sentences (see Lissón, et al., 2021;
Nicenboim & Vasishth, 2018; Vasishth et al., 2019). The question is
whether backtracking can occur for both the subject and the attractor
noun, or whether it can occur only for the attractor noun.

Here, we assume that the backtracking can occur probabilistically
if any noun does not fully match the retrieval cues. That is, in gram-
matical sentences, only the distractor can cause backtracking but in
ungrammatical sentences, both the subject and the attractor can trigger
backtracking.5

5 We also explored the assumption that backtracking occurs only for the
non-subject noun, but such a model makes highly inconsistent predictions
with respect to observed effects in ungrammatical sentences (see section The
non-linear cue-based retrieval model).
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Fig. 3. Prior predictions of the cue-based retrieval model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by the model.
The red triangles and the error bars around them show the observed effects for each dataset specified on the 𝑦-axis.

Similar to the cue-based retrieval model with linear cues, we assume
only one free parameter in the model, i.e., the scaling parameter 𝑆. We
define the following prior on the scaling:

𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) (2)

This prior is a truncated normal distribution with mean 5.3, stan-
dard deviation 0.05, and a lower bound at 5.2. Similar to the cue-based
retrieval model, we choose this lower bound on scaling because the
model generates reasonable reading times under this constraint (see
section Choice of priors on the scaling parameter ).

The prior predictions of the model given the above priors are shown
in Fig. 4. As predicted, the model correctly captures the close-to-
zero number distractor effect in grammatical sentences but it fails to
capture the agreement attraction effect (in ungrammatical sentences).
In the ungrammatical sentence (c) (Fig. 2), the retrieval probability
is 50%–50% for the subject and the attractor, either of them can be
retrieved, but in condition (d), the subject noun has almost 100%
retrieval probability. But backtracking can occur regardless of which
noun is retrieved initially. Consequently, in both conditions (c) and (d),
reading times are sampled from the same mixture of distributions. Thus,
the model predicts no difference between conditions (c) and (d) with
some uncertainty (see Fig. 4).

The variants of the non-linear cue-based retrieval model with slightly
different assumptions, e.g., the model specified in Parker (2019), were
also implemented (see section The non-linear cue-based retrieval model
of Parker (2019)).6 These variants also fail to capture the observed
pattern in both grammatical and ungrammatical sentences; they make
either similar or more inconsistent predictions compared with the
above direct access-based model. See sections The non-linear cue-based
retrieval model, The non-linear cue-based retrieval model of Parker
(2019) for the implementational details and prior predictions of all
non-linear cue-based retrieval models.

One of the possible assumptions that we have not explored here
is that backtracking can occur only when the initially retrieved noun
mismatches the verb in number feature. That is, it does not matter
whether the initially retrieved noun is the subject or a non-subject;
backtracking is triggered only when the noun’s number feature is dif-
ferent from the verb’s. A non-linear cue-combination model with such

6 These models adopt the retrieval time equation defined in the ACT-R
architecture (Anderson, et al., 2004; Anderson & Lebiere, 2014).

an assumption can potentially explain the agreement attraction pattern
in ungrammatical sentences which cannot be fully explained by the
other variants of the non-linear cue-based retrieval model. We have not
tested such a model in this paper because such a model would require
an additional assumption to explain the grammatical sentences’ data
that would be different from the assumption for ungrammatical sen-
tences: backtracking in grammatical sentences can occur only when the
retrieved noun mismatches in structural features with the verb. Thus,
the model would have to make different assumptions for grammatical
and ungrammatical sentences regarding what triggers the backtracking
process. Such a model would go against our general constraint on the
models implemented here: a single set of assumptions should underlie
the number agreement effects in both grammatical and ungrammatical
sentences.

Representation distortion-based models

Several models share the representation distortion assumption, which
is that the representation of the linguistic input stored in memory can
get corrupted or be lost with time. We call these models representation
distortion-based models; the models differ in the assumed process by
which distortion occurs. We implement three of these models, the
feature percolation model, the marking and morphing model assuming
grammaticality bias, and the lossy compression model.

All three representation distortion models that we implement (as
well as the hybrid models discussed below) have a common free
parameter that determines the rate of change in the representation of
the subject and/or distractor nouns. We call this rate-of-change param-
eter the distortion rate parameter. The distortion rate determines the
probability that a pre-verbal noun changes its number representation
in a given trial. The way that this is implemented differs depending on
the model (see below for details). In general, a distortion rate of 0.2
would mean that the representation changes in 20% of the trials. What
would be a reasonable prior for the distortion rate parameter?

Agreement attraction errors observed in acceptability judgment
studies (e.g., Hammerly et al., 2019; Häussler, 2009; Schlueter et al.,
2018; Tanner, Nicol, & Brehm, 2014) can serve as an empirical basis
for deciding on plausible prior values for the distortion rate parameter.
In these studies, participants are given sentences like (a) the key to
cabinets were . . . and (b) the key to cabinet were . . . , and they are
asked to judge whether the given sentence is acceptable or not. A
consistent observation is that the participants occasionally rate sen-
tences like (a) and (b) as grammatically acceptable. But interestingly,
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Fig. 4. Prior predictions of the non-linear cue-based retrieval model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by
the model. The red triangles and the error bars around them show the observed effects for each dataset specified on the 𝑦-axis.

Table 1
The percentage of agreement errors observed in acceptability-judgment studies. The last column named ‘Agreement error due to number
attraction’ reports the difference in percentage of agreement errors between the agreement attraction condition e.g., the key to the cabinets were..
and the baseline condition e.g., the key to the cabinet were... The values in square brackets represent 95% confidence intervals.
Experiment Number of Language Agreement error (in percentage)

subjects due to agreement attraction

(Häussler, 2009) Exp 1 48 German 2 [−2, 6]
(Häussler, 2009) Exp 2 32 German 17 [8, 26]
(Häussler, 2009) Exp 3 64 German 15 [9, 21]
(Häussler, 2009) Exp 5 40 German 20 [11, 29]
(Häussler, 2009) Exp 6 (Adjacent RC) 40 German 12 [4, 20]
(Häussler, 2009) Exp 6 (Non-Adjacent RC) 40 German 8 [2, 14]
(Hammerly et al., 2019) Exp 1 40 English 20 [10, 30]
(Hammerly et al., 2019) Exp 2 20 English 24 [7, 41]
(Hammerly et al., 2019) Exp 3 40 English 16 [7, 25]
(Laurinavichyute & von der Malsburg, 2022) Exp 1 1072 English 21 [12, 30]
(Schlueter et al., 2018) Exp 1 30 English 28 [15, 41]
(Schlueter et al., 2018) Exp 3 30 English 38 [26, 50]
(Schlueter et al., 2018) Exp 4 30 English 24 [10, 38]
(Tanner et al., 2014) Exp 1 24 English 11 [−2, 24]
(Tanner et al., 2014) Exp 2 22 English 12 [3, 21]

sentence (a) is always rated more acceptable than sentence (b). The
higher acceptability ratings in (a) are often taken as evidence of a
change in the representation of the subject noun (Bock & Eberhard,
1993; Eberhard, Cutting, & Bock, 2005; Hammerly et al., 2019): for
example, the plural feature on the non-subject noun may overwrite
the feature representation of subject noun phrase in a proportion of
trials. Under the assumption that a change in the representation of
subject noun drives the higher acceptability in sentences like (a), one
can infer that the difference in acceptability between sentence (a)
and (b) reflects the rate of distortion in the system. The difference in
agreement errors has been found to mostly occur in the range of 10%
to 30% across five acceptability judgment studies as shown in Table 1
(with a meta-analytical estimate of 12%–22%).7 Given this observed
range of apparent agreement attraction errors, a prior distribution
that constrains the distortion rate to lie between approximately 10%
and 50% would be a reasonable one. We use such a prior on the
distortion rate parameter across all the models that assume some kind
of representation distortion.

7 For the details of the meta-analysis, see section 5.2.1 of the supplementary
workflow document here: https://osf.io/gqj3p/

The feature percolation model
The feature percolation model (Bock & Eberhard, 1993; Eberhard,

1997)8 was proposed exclusively for subject–verb number agreement
dependencies. The model assumes that

(1) The plural feature of the distractor noun percolates to the subject
noun in a proportion of trials, causing a change in the feature
representation of the subject.

(2) Dependency completion is faster when the subject noun matches
in number feature with the verb compared to when it does not.

Assumption (2) is not a part of the original proposals about feature
percolation. We make this additional assumption in order to generate
reading times from the model. The rationale for this assumption is
that when the subject noun matches in number feature with the verb,
it can license the number marking on the verb, resulting in easier

8 The feature percolation model is in the broader category of encoding-
based models. Another well-known encoding-based model is the Marking and
Morphing model (Eberhard et al., 2005). Both the models make almost similar
predictions about agreement attraction in reading; see section The Marking and
Morphing model.
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Fig. 5. Prior predictions of the feature percolation model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by the model.
The red triangles and the error bars around them show the observed effects for each dataset specified on the 𝑦-axis.

processing compared to when the verb’s number is not licensed by the
subject (Pearlmutter, Garnsey, & Bock, 1999).

Consider again the ungrammatical conditions (c) and (d) in Fig. 2.
The feature percolation model proposes that the [+plural] feature of
the cabinets in condition (c) percolates up to the subject the key in a
proportion of trials and changes the number of the subject noun from
singular to plural. Consequently, the plural subject is able to license the
plural verb in those trials, causing faster reading times on average com-
pared to condition (d) where no feature percolation happens. Thus, in
ungrammatical sentences, the model predicts the agreement attraction
effect—faster reading times in condition (c) compared to (d). In the
grammatical conditions (a) and (b) in Fig. 2, the model predicts faster
reading times in (a) vs. (b) because the plural feature on the distractor
in condition (b) percolates up to the subject noun, causing a disruption
in the licensing of the singular verb in a proportion of trials. See section
The feature percolation model for the implementational details of the
model.

We generate prior predictions from the model assuming two free
parameters, a scaling parameter 𝑆 and a distortion rate parameter 𝜃.
The scaling parameter determines the range of reading times generated
by the model. The prior on the scaling parameter 𝑆 is a truncated
normal distribution with mean 5.3, standard deviation 0.05, and a
lower bound at 5.2. Similar to the cue-based retrieval model, we choose
this lower bound on scaling because the model generates reasonable
reading times under this constraint (see section Choice of priors on the
scaling parameter ).

𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) (3)

The distortion rate parameter is the probability with which the
plural feature percolates to the subject noun. The higher the feature
distortion rate, the larger the effects in both grammatical and ungram-
matical conditions. Because the distortion rate modulates the size of the
attraction effect predicted by the model, and because the data show
considerable variability, we treat this parameter as a free parameter
and estimate it from the observed effects. We choose a truncated-
normal prior on the distortion rate 𝜃, so that the degree of distortion is
constrained between 10% and 50%:

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25) (4)

The term 𝑙𝑏 = 0.1 indicates a lower bound on distortion rate values.
The lower bound of 0.1 implies that the value of distortion rate lies
in the range [0.1, 0.5] — that is, the representation of the subject

noun changes in at least 10% and at most 50% of the trials.9 The prior
predictions of the model given the above priors are shown in Fig. 5.
The model correctly captures the observed agreement attraction effects
(in ungrammatical sentences) but it fails to entirely capture the number
distractor effect (in grammatical sentences).

The grammaticality bias model
In a recent paper, Hammerly et al. (2019) claimed that the asymme-

try of attraction effects in grammatical and ungrammatical sentences
is due to a phenomenon called response bias. Their claim relates
to grammaticality-judgment data, where participants have to judge
whether a given sentence is grammatical or ungrammatical. A consis-
tent finding from judgment studies is that of agreement attraction: the
participants make more incorrect and slower judgments in sentences
where a non-subject noun matches in number with the verb compared
to sentences where it does not. However, an asymmetry is observed
in judgment data between grammatical and ungrammatical sentences:
the attraction effects are relatively small in grammatical sentences com-
pared to ungrammatical sentences. Hammerly and colleagues explain
this asymmetry in acceptability judgments using a response bias pa-
rameter such that the participants are biased to respond ‘grammatical’
in judgment tasks. This response bias assumption (implemented in a
drift–diffusion model) explains the smaller effect sizes in grammatical
sentences.

The authors speculate that the response bias proposal can be ex-
tended to reading time studies and it can potentially explain the
asymmetry of number agreement effects in reading. To extend their
proposal for reading times, we implement a marking and morphing
model (Eberhard et al., 2005) assuming a grammaticality bias: the
comprehender has a strong expectation that the partially-seen sentence
will be followed by a grammatical continuation. For example, in the
case of subject–verb agreement dependencies, there is a bias that the
noun phrases will be followed by a verb that agrees in number with the
subject noun. Consequently, any increase in number-mismatch between
the subject and verb causes an exponential increase in the processing
difficulty at the verb. We operationalize this grammaticality bias idea
in the marking and morphing model as follows.

9 The upper bound of 0.5 is not a hard constraint; it is an approximate
upper bound that arises due to the normal prior with mean 0 and standard
deviation 0.25 (Johnson, Kotz, & Balakrishnan, 1995).
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The marking and morphing model assumes that the subject noun has
a continuous-valued representation of number such that an unequivo-
cally singular noun will have the lowest value and an unequivocally
plural noun will have the highest value. In addition, the plurality of
the non-subject nouns can spread to the subject noun to make it more
plural. This continuous-valued plurality of the subject noun determines
the processing difficulty at the verb such that a number-mismatch
between the subject and the verb would produce a processing cost at
the verb (on a continuous scale), which we call the mismatch cost. For
example, if 𝑆(𝑟) is the value of plurality of the subject and 𝑉𝑝𝑙 is the
value of plurality of the verb, the mismatch cost at the verb 𝛥 is given
by

𝛥 = |

|

|

𝑆(𝑟) − 𝑉𝑝𝑙
|

|

|

⋅ 𝛿 (5)

where 𝛿 is a constant used for scaling the degree of mismatch |𝑆(𝑟)−𝑉𝑝𝑙|
on the log milliseconds scale; 𝑆(𝑟) represents the continuous-valued
number of the subject noun (scaled between 0 and 1 such that 0
indicates unequivocally singular and 1 indicates unequivocally plural);
𝑉𝑝𝑙 indicates the plurality of the verb such that the value of 𝑉𝑝𝑙 is 1 if
the verb is plural and 0 if the verb is singular.

In order to implement the grammaticality bias idea, we introduce a
bias parameter in the above equation such that an increase in degree
of mismatch between the subject and the verb should cause an expo-
nential increase in the mismatch cost. The modified equation with the
grammaticality bias parameter 𝑏 is given by

𝛥 =
(

|

|

|

𝑆(𝑟) − 𝑉𝑝𝑙
|

|

|

⋅ 𝛿
)2𝑏

(6)

where the bias parameter 𝑏 can take values between 0.5 and 1. A value
of 0.5 would mean there is no grammaticality bias and the model would
be the same as the default marking and morphing model, while 𝑏 = 1
indicates the strongest grammaticality bias.

The above equation implies that the grammaticality bias parameter
minimizes the impact of a small mismatch between the subject and
the verb’s number (as in grammatical sentences) but maximizes the
impact of a large mismatch (as in ungrammatical sentences) on the
processing cost at the verb. As the value of this parameter increases,
the asymmetry between grammatical and ungrammatical sentence in-
creases. As implemented in this paper, what the grammaticality bias
model achieves is to formalize the extent to which a modest feature
mismatch is tolerated as a grammatical continuation, and the extent
to which a large feature mismatch is penalized during reading. Thus,
unlike the response bias parameter in Hammerly et al.’s model, our
grammaticality bias parameter does not directly represent a bias in
reading grammatical vs. ungrammatical sentences. Rather it reflects a
bias in the internal cognitive process that computes the cost of feature
mismatch between two co-dependents during reading: a minor feature
mismatch has a negligible effect on processing but a large mismatch
has a penalizing effect on processing. However, our grammaticality bias
proposal is similar to the response bias proposal of Hammerly et al.
in that it predicts an asymmetry in number agreement effects between
grammatical and ungrammatical sentences.

Fig. 6 illustrates the effect of grammaticality bias on processing
cost at the verb in grammatical and ungrammatical sentences. The
difference in mismatch cost between sentences (a) and (b) determines
the magnitude of the number distractor effect in grammatical sentences
and the difference between (c) and (d) determines the magnitude of
the agreement attraction effect in ungrammatical sentences. The figure
shows that as the grammaticality bias increases (e.g., 𝑏 = 1), the
asymmetry between the grammatical and the ungrammatical sentences
increases while the effect is symmetrical when there is no bias i.e. when
𝑏 is equal to 0.5.

To generate reading time predictions at the verb, we use a lognor-
mal distribution. The reading time in the 𝑘th trial as a function of

the number valuation of the subject noun and the grammaticality bias
parameter is given by

𝑇𝑘 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙

(

𝛼 +
(

|

|

|

𝑆(𝑟) − 𝑉𝑝𝑙,𝑘
|

|

|

⋅ 𝛿
)2𝑏

, 𝜎

)

(7)

where 𝛼 is the scaling parameter, it can be interpreted as the mean
reading time (in log ms) when the noun number exactly matches the
verb number; 𝑆(𝑟) represents the continuous-valued number of the
subject noun (scaled between 0 and 1), 𝑉𝑝𝑙,𝑘 indicates plurality of
the verb in trial 𝑘 (0 for singular, 1 for plural), and 𝑏 indicates the
grammaticality bias parameter. See section The grammaticality bias
model for the implementational details of the model.

Fig. 7 demonstrates the prior predictions of the model with and
without the grammaticality bias. The model without any grammatical-
ity bias becomes the default marking and morphing model and predicts
the effect sizes similar to the feature percolation model. But when the
model has a grammaticality bias, of say 0.75, it predicts close-to-zero
effects in grammatical sentences. The model is thus better than the
feature percolation model at capturing the number distractor effect
in grammatical sentences but it still fails to capture the entire range,
especially the positive effects, in grammatical sentences.

The lossy compression model
Another type of representation distortion-based model is based on

the lossy compression of the linguistic input. Here, the assumption is that
the feature representation of the linguistic input changes probabilisti-
cally when it is stored in memory. The comprehender thus has access to
only a potentially distorted memory representation of the true intended
message. The representation distortion in these models is constrained
by information-theoretic principles. One model of this type is the lossy-
context surprisal model of Futrell et al. (2020) which has been shown
to explain structural forgetting effects in English and German (Gibson &
Thomas, 1999; Vasishth, Suckow, Lewis, & Kern, 2010) and information
locality across languages (Futrell, 2019).

We implement a lossy compression model of number agreement
effects in subject–verb number agreement dependencies. The model
makes the following assumptions:

(1) The actual representation of the pre-verbal input gets distorted
to an imperfect memory representation for the comprehender
such that the plural marker on the nouns can be inserted or
deleted at constant rates.

(2) From the possibly-distorted memory representation, the compre-
hender reconstructs a set of possible true representations condi-
tional on their prior linguistic knowledge and their uncertainty
about the degree of distortion.

(3) The processing difficulty at the verb is the expected surprisal –
the negative log probability – of encountering the verb given all
possible memory representations of the pre-verbal input.10

Consider the grammatical sentence The key to the cabinets was rusty.
Here the linguistic material preceding the verb is a noun phrase modi-
fied by a prepositional phrase and contains two nouns, key and cabinets.
The first noun is singular and the second noun is plural. The observed
input thus has the representation 𝐍𝐏𝐍.𝐩𝐥, where the first 𝐍 represents
the singular head noun of the phrase, 𝐏 represents the preposition, and
𝐍.𝐩𝐥 represents the plural-marked noun inside the prepositional phrase.

The lossy compression model assumes that the comprehender has
access only to a memory representation of the observed input 𝐍𝐏𝐍.𝐩𝐥.
For instance, it is possible that the input distorts to 𝐍.𝐩𝐥𝐏𝐍.𝐩𝐥, where
a plural marker is inserted at the first noun due to lossy memory.
There are four such possible memory representations that can arise

10 The probability of seeing the verb given a memory representation is
calculated by marginalizing out the possible true representations; see section
The lossy compression model .
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Fig. 6. An illustration of mismatch cost at the verb as a function of subject’s plurality and the grammaticality bias. The labels (a), (b), (c), and (d) on the 𝑥-axis mark the number
value of the subject noun in four conditions shown below the graph. The red arrows – indicating the difference in mismatch costs between a pair of conditions – can be interpreted
as the number agreement effects on the log scale when there is a grammaticality bias (𝑏 = 1); similarly, the blue arrows indicate agreement effects (on log scale) when there is
no bias (𝑏 = 0.5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Prior predictions of the grammaticality bias model: The shaded gray bands represent the 95% credible interval of attraction effect predicted by the model. The red
triangles and the error bars around them show the observed effects for each dataset.

Fig. 8. An schematic illustration of lossy compression mechanism: a given input 𝐈 = 𝐍𝐏𝐍.𝐩𝐥 can distort to the four possible memory representations due to insertion and/or deletion
of plural markers on the nouns.
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due to insertion or deletion of plural morphemes when constructing
the memory representation (see Fig. 8).

For each possible memory representation, one can calculate the
conditional probability of seeing a verb with a particular number
marking given that memory representation. Lossy compression assumes
that the processing difficulty at the verb is proportional to the average
of the negative logarithm of these conditional probabilities. In other
words, how hard a verb is to process is related to how unexpected
the verb would be given all of the different ways the preceding noun
phrase might be misremembered. A detailed discussion of the model’s
implementation can be found in section The lossy compression model .

We generate the prior predictions from the model assuming three
free parameters, the scaling parameter 𝑆, and two distortion rate
parameters 𝑎 and 𝑑, where 𝑎 represents the rate of inserting a plural
marker and 𝑑 represents the rate of deleting a plural marker. The
scaling parameter determines the slope of the linear function that links
the processing difficulty to the reading times at the verb. For the prior
on the scaling parameter 𝑆, we used a truncated normal distribution,

𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.15(0.25, 0.05) (8)

where 𝑙𝑏 = 0.15 indicates a lower bound of 0.15 on scaling values.
The two distortion rate parameters, the insertion rate 𝑎 and the

deletion rate 𝑑, determine the degree of information loss when the
intended message transforms to a memory representation. We set the
same prior on distortion rate parameters 𝑎 and 𝑑 as we did for distortion
rate in the feature percolation model.

𝑎, 𝑑 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25) (9)

where 𝑙𝑏 = 0.1 indicates a lower bound of 0.1 on insertion and deletion
rate values.

Two other parameters in the model – the prior knowledge about the
possible pre-verbal input and the surprisal at the verb – are estimated
from the corpus data (Nivre, Abrams, et al., 2018; Schäfer, 2015;
Schäfer & Bildhauer, 2012) and their values differ across different
experimental designs and languages. Therefore, the model generates
slightly different predictions for the eight different experimental de-
signs (which include different languages). The prior predictions of the
model given the above priors are shown in Fig. 9. The observed number
distractor effects (in grammatical sentences) are mostly consistent with
the model’s predictions but the number agreement effects are not fully
captured by the model.

Two hybrid representation distortion-plus-retrieval models

We propose a new class of models that assumes a hybrid mechanism
combining representation distortion- and retrieval-based processes: the
representation of the pre-verbal linguistic material can get distorted
before the retrieval is triggered at the verb. The content-addressable
search that happens during retrieval now involves potentially distorted
noun representations instead of a veridical representation of the input.
We propose two models of this type—the first model combines feature
percolation and cue-based retrieval, and the second model combines
lossy compression and cue-based retrieval. We discuss these next.

The feature percolation-plus-retrieval model
The feature percolation-plus-retrieval model proposes that the rep-

resentation of the subject noun changes due to feature percolation
before retrieval is triggered at the verb. The model assumes that

(1) Dependency completion between the subject and the verb is
driven by cue-based retrieval.

(2) The retrieval at the verb is preceded by a probabilistic feature
percolation from the distractor noun to the subject noun.

Consider the grammatical conditions (a) and (b) shown in Fig. 10.
The distractor noun in condition (b) has a plural feature that can
percolate up to the subject noun and change its representation. Suppose
that the rate of feature percolation is 𝜃. The plural feature would
percolate up to the subject noun in 𝜃 proportion of trials. If there were
a total of 𝑁 trials, the subject noun in condition (b) will have a plural
feature in 𝜃 ×𝑁 number of trials and a singular feature in (1 − 𝜃) ×𝑁
trials. In the 𝜃 × 𝑁 trials in which the subject noun becomes plural,
processing will be slowed during retrieval because the subject is no
longer a full feature match for the verb’s retrieval cues. In the (1−𝜃)×𝑁
trials where no percolation occurs, retrieving the unmodified subject
happens quickly because it is a good feature match with the verb.

By contrast, in condition (a), there is no plural feature in the
input that could percolate up to the subject, so the subject’s feature
representation remains intact in all 𝑁 trials. This makes the subject a
good feature match with the verb, but processing is still slowed due to
the fan effect: The singular distractor is a partial feature match with
the verb and thus receives some activation that would have otherwise
gone to the subject, slowing processing. As a result, depending on the
value of 𝜃, the model can predict facilitation, inhibition, or no effect in
the grammatical conditions when considering the difference between
(a) and (b). In the ungrammatical conditions, the model always pre-
dicts a facilitatory effect regardless of the value of 𝜃. See section The
feature percolation-plus-retrieval model for a detailed explanation of
the model’s implementation and predictions.

We generate prior predictions from the model assuming two free
parameters, the scaling parameter 𝐹 , and the distortion rate parameter
𝜃. The scaling parameter serves the same function as in the cue-based
retrieval model. So we choose the same prior on the scaling parameter
as in the cue-based retrieval model,

𝐹 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) (10)

For the distortion rate parameter 𝜃 – which represents the probabil-
ity of feature percolation – we choose the same prior as in the feature
percolation model,

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25) (11)

Here, as discussed earlier, 𝑙𝑏 = 0.1 indicates a lower bound of 0.1
on distortion rate values. The prior predictions of the model given the
above priors are shown in Fig. 11. The model predictions are largely
consistent with observed effects in both grammatical and ungrammati-
cal sentences. To our knowledge, this is the first implemented computa-
tional model that captures the qualitative pattern observed in published
subject–verb number agreement studies on sentence comprehension.

The lossy compression-plus-retrieval model
Another model we propose is the lossy compression-plus-retrieval

model. Here, the idea is that the representation of the pre-verbal input
changes due to lossy compression before the retrieval is triggered at the
verb. The model assumes that

(1) Dependency completion between the subject and the verb is
driven by cue-based retrieval.

(2) The retrieval at the verb is preceded by the distortion of the pre-
verbal input to an imperfect memory representation such that
the plural marker on the nouns can be deleted or inserted.

The above assumptions imply that the retrieval process takes place
on a potentially-distorted memory representation of the nouns, which
affects the activation received by each noun and consequently, the
retrieval times at the verb. For example, in the sentence The key to
the cabinets was rusty, if the representation of preverbal nouns remains
intact, then the subject noun the key receives activation from both
[subject] and [singular] cue at the verb. But if the input distorts to
an imperfect memory representation, say the keys to the cabinets..., the
subject noun then receives activation only from the [subject] cue at
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Fig. 9. Prior predictions of the lossy compression model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by the model; the
predicted range of effect differs across experimental designs involving subject–verb number agreement. Because the lossy compression model’s predictions depend on corpus data,
the different designs and languages used in the experiments need to be differentiated. Design 1 refers to English prepositional phrase constructions with singular subject noun;
Designs 2 and 7 refer to relative clause constructions in Spanish and Armenian respectively; Designs 3 and 4 refer to English object relative clause constructions with singular
and plural subject respectively; Designs 5 and 6 refer to subject relative clause constructions in English and Arabic respectively; Design 8 refers to English prepositional phrase
constructions where the subject noun’s number is manipulated. The red triangles and the error bars around them show the observed number agreement effects for each dataset
specified on the 𝑦-axis.

Table 2
The priors on the scaling parameter and the feature distortion rate parameter for each model used in the
evaluation; 𝑁𝑜𝑟𝑚𝑎𝑙 represents a normal distribution, 𝑙𝑏 stands for lower bound.
Model Prior on Prior on

scaling parameter distortion rate

Cue-based retrieval model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) –
Non-linear cue-based retrieval model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) –
Feature percolation model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)
Grammaticality bias model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)
Lossy compression model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.15(0.25, 0.05) 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)
Feature percolation-plus-retrieval model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)
Lossy compression-plus-retrieval model 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)

the verb. The implementational details of the model are discussed in
section The lossy compression-plus-retrieval model.

We generate prior predictions from the model assuming three free
parameters, the scaling parameter 𝐹 and two distortion rate parame-
ters, insertion rate 𝑎, and deletion rate 𝑑. We choose the same priors
on the scaling and distortion rate as in the feature percolation-plus-
retrieval model. The prior predictions of the model given these priors
are shown in Fig. 12. As with the lossy-compression model, the prior
predictions depend on the experimental design in each study.

Table 2 shows the priors on the scaling and the distortion rate
parameter for each of the above-discussed five models. Next, we com-
pare the predictive accuracies of these five models on the data from
published studies on subject–verb number agreement.

Model comparison

To quantify the evidence for each model, we estimate their predic-
tive accuracies on the observed data using cross-validation. The data
consist of agreement attraction and number distractor effect estimates
from the 17 published datasets on subject–verb number agreement
studies (Avetisyan et al., 2020; Dillon et al., 2013; Jäger et al., 2020;
Lago, et al., 2015; Patson & Husband, 2016; Smith, Franck, & Ta-
bor, 2021; Tucker et al., 2015; Wagers et al., 2009).11 The effects in

11 To estimate number agreement effects for each dataset, we fit a Bayesian
linear-mixed model with the main effect of grammaticality and the nested
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Fig. 10. Schematic illustration of activation received by the nouns in the feature percolation-plus-retrieval model: Feature percolation modulates the amount of activation
received by the subject noun during the retrieval process. In 𝜃 ×𝑁 trials, the subject noun receives less activation in condition (b) compared to condition (a).

grammatical and ungrammatical conditions from these 17 datasets are
shown in Fig. 1.

We use cross-validation for estimating predictive accuracies. Cross-
validation allows us to compute how accurately a model performs on
a portion of the data after being trained on a different portion of the
same data. We implement cross-validation as follows. First, 17 sets of
training and test data are created by leaving out one dataset as the test
data and taking the other 16 as training data. Second, in each iteration
𝑖, the models are fitted on training data 𝐷train,𝑖 and their predictive

effects of attractor type (matching vs. mis-matching attractor) within gram-
matical and ungrammatical conditions; the dependent variable was reading
time in milliseconds.

accuracies are computed on the test data 𝐷test,𝑖.12 The code and data
are available from https://osf.io/gqj3p/.

For model fitting, we use approximate Bayesian computation (ABC)
(Palestro, Sederberg, Osth, Van Zandt, & Turner, 2018; Sisson, Fan,
& Beaumont, 2018). ABC compares the training data and the model-
simulated data to infer what values of the parameter(s) would have
generated the given training data. A simple ABC algorithm works
as follows: (i) a parameter value say 𝛩∗ is sampled from the prior
distribution, (ii) data is generated from the model conditional on the
sampled value 𝛩∗, i.e., by plugging 𝛩∗ into the model, (iii) if the model-
generated data is close enough to the training data, 𝛩∗ is accepted
as a sample from the posterior distribution. See section Parameter

12 Each training set contained 16 × 2 data points — the mean estimates of
agreement attraction and number distractor effects from 16 (training) datasets.
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Fig. 11. Prior predictions of the feature percolation-plus-retrieval model: The shaded gray bands represent the 95% credible interval of attraction effect predicted by the
model. The red triangles and the error bars around them show the observed effects for each dataset.

estimation for details of the implementation of ABC that we used. ABC
allows us to fit a model using the Bayesian method without requiring
us to define an explicit likelihood function. We use this method because
parameter estimation becomes computationally infeasible if we use the
exact likelihood function for three of the models we evaluated here,
the cue-based retrieval model and the two hybrid models. A further
motivation for using ABC is that the framework we have developed in
this paper can be used for any process model of sentence processing
that makes reading time predictions, even if no likelihood function can
be derived for the model. Examples of such models are the dynamical
systems models discussed in Engbert, et al. (2022), Rabe, et al. (2021),
Smith et al. (2021), and Smith and Vasishth (2022).

The model fit using ABC provides the posterior distributions of
the parameters of a model. To compute the predictive accuracy of a
model, parameter values are sampled repeatedly from the posterior
distribution of each parameter. Then, the likelihood of generating the
test data given each set of sampled parameter values is computed.
The predictive accuracy of a model on the test data 𝐷test,𝑖 is the log
of likelihoods averaged over the posterior distribution estimated from
the training data 𝐷train,𝑖. A model’s overall predictive accuracy, the
expected log predictive density (𝑒𝑙𝑝𝑑), is computed as the sum of its
log predictive densities over 17 iterations along with the standard error
of sum. See section Cross-validation method for a detailed note on the
method. We get a measure of predictive performance for each model
— the 𝑒𝑙𝑝𝑑 value. From the 𝑒𝑙𝑝𝑑 values, we can compute the difference
in performance of each pair of models, represented by 𝛥𝑒𝑙𝑝𝑑.

Results

Fig. 13 shows the 𝛥𝑒𝑙𝑝𝑑 values – the difference in predictive per-
formance – for each pair of models along with the standard error (SE)
of difference. The 𝛥𝑒𝑙𝑝𝑑 value represents the strength of evidence in
favor of one model over another. The 𝛥𝑒𝑙𝑝𝑑 values are interpreted as
follows. If the 𝛥𝑒𝑙𝑝𝑑 for a pair of models is larger than 2×𝑆𝐸, then the
two models are distinguishable in their performance and one of them
has clear evidence in its favor over the other.

In Fig. 13, the positive difference in 𝑒𝑙𝑝𝑑 values implies that the
model shown in a graph’s title performs better than the other model. A
pair of models is distinguishable if the error bar does not cross the zero
line (where 𝛥𝑒𝑙𝑝𝑑 = 0). The 𝛥𝑒𝑙𝑝𝑑 analysis reveals four key results.

1. The feature percolation-plus-retrieval model shows positive 𝛥𝑒𝑙𝑝𝑑
values when compared with each of other six models. But the
hybrid model is indistinguishable from the feature percolation
model and the grammaticality bias model. This implies that the
feature percolation-plus-retrieval model outperforms all other
models except the feature percolation and the grammatical-
ity bias model, with which the hybrid model has comparable
performance.

2. The feature percolation model and the grammaticality bias
model show mostly positive 𝛥𝑒𝑙𝑝𝑑 values against the lossy com-
pression model and the lossy compression-plus-retrieval model.
But the error bars around the 𝛥𝑒𝑙𝑝𝑑 values always cross zero,
implying that there is no clear evidence in the favor of the
feature percolation and the grammaticality bias model over the
two lossy compression-based models.

3. The lossy-compression-plus-retrieval model shows positive 𝛥𝑒𝑙𝑝𝑑
values against the lossy compression model and two cue-based
retrieval models, indicating decisive evidence in favor of this
hybrid model over the lossy compression and cue-based retrieval
models.

4. The non-linear cue-based retrieval model performs better than
the cue-based retrieval model of Lewis and Vasishth (2005)
(positive 𝛥𝑒𝑙𝑝𝑑 value) and performs almost similar to the lossy-
compression model (𝛥𝑒𝑙𝑝𝑑 value is close to zero with large
standard errors); the model shows negative 𝛥𝑒𝑙𝑝𝑑 values against
the all other distortion-based and hybrid models indicating that
it is one of the worst performing models.

5. The cue-based retrieval model shows negative 𝛥𝑒𝑙𝑝𝑑 values
against the other six models, meaning that the cue-based re-
trieval model has the worst predictive performance of all the
models considered. However, the error bars around the 𝛥𝑒𝑙𝑝𝑑
values indicate that the model’s performance is not distinguish-
able from the feature percolation and the lossy compression
model.

A model’s predictive performance can in principle be sensitive to
the choice of priors on the parameter of interest (Schad, Nicenboim,
Bürkner, Betancourt, & Vasishth, 2022); here, this parameter is the
distortion rate. To understand the impact of prior specification, we also
evaluated each model’s performance under different prior assumptions
about the degree of distortion in the system. The overall pattern of
results remains the same; only the feature percolation model and the
grammaticality bias model’s performance slightly decreases with an
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Fig. 12. Prior predictions of the lossy compression-plus-retrieval model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by
the model; the predicted range of effect differs across experimental designs. The red triangles and the error bars around them show the observed effects for each dataset specified
on the 𝑦-axis.

increase in lower bound on distortion rate. For example, under the
assumption that the distortion rate is higher than 0.25, both the feature
percolation model and the grammaticality bias model perform (distin-
guishably) worse than the hybrid percolation-plus-retrieval model. The
prior sensitivity analysis is shown in section Prior sensitivity analysis.

Discussion

The model comparison shows that, among the seven models con-
sidered here, the hybrid feature-percolation-plus-retrieval model shows
the best performance numerically in explaining the observed patterns
across the subject–verb number agreement datasets. As Fig. 13 shows,
the hybrid model decisively outperforms all the other models except

the feature-percolation model and the grammaticality bias model.13

The feature percolation and the grammaticality bias models do slightly
better than the two lossy compression models and the cue-based re-
trieval models, but this improvement in fit in these models is not
convincing. The lossy compression-plus-retrieval model outperforms
the lossy compression and the cue-based retrieval models. Finally, the
cue-based retrieval model has the worst performance of all the models
considered.

13 The hybrid model outperforms the feature percolation and the grammat-
icality bias model only if we assume that the distortion rate is relatively high
(>20%); see section Prior sensitivity analysis.
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Fig. 13. The difference in predictive accuracies of the models represented by 𝛥𝑒𝑙𝑝𝑑 values: A positive 𝛥𝑒𝑙𝑝𝑑 value means that the model shown in the facet’s title performs
better than the other model. Error bars show two times the standard error of the difference in 𝑒𝑙𝑝𝑑 values.

A clear implication is that explanations for number agreement
effects that exclusively invoke cue-based retrieval are ruled out: proba-
bilistic representation distortion must be added to a theory of subject–
verb number agreement processing. Previous modeling and empirical
work has also suggested that representation distortion is necessary for
explaining number agreement effects (e.g., Lago et al., 2021; Paape,
Avetisyan, Lago, & Vasishth, 2021; Vasishth, Jäger, & Nicenboim, 2017;
Villata, Tabor, & Franck, 2018).

Our work provides converging evidence broadly consistent with
the general idea of representation distortion, but goes beyond this
prior research in several important ways. First, ours is the first to
use a computational implementation of multiple competing accounts
to carry out a large-scale quantitative model comparison. Second, our
model evaluation allows us to distinguish between two alternative
accounts of representation distortion, lossy compression and feature
percolation. Despite the fact that lossy compression is an important
special case of representation distortion in sentence processing (Futrell
et al., 2020), its predictive performance has, to our knowledge, never
been evaluated in number agreement processing. Third, the numeri-
cally best-performing hybrid model is novel in that it combines feature
percolation and cue-based retrieval. To our knowledge, no previous
computational models of representation distortion in number agree-
ment have combined feature percolation and cue-based retrieval to
explain the patterns in the existing data.

The present work also advances our understanding of one well-
known proposal in the literature on number agreement (Wagers et al.,
2009). Under this view, retrieval occurs only in the ungrammatical
sentence once the unexpected plural verb is encountered: the reader
predicts a singular-marked auxiliary after reading The key to the cabi-
nets. . . , and if the sentence continues with are, an error signal is raised,
triggering a retrieval. This retrieval leads to misretrieval of the non-
subject noun cabinets due to a number feature match of the verb with
that noun. By contrast, in the grammatical sentence, no retrieval is trig-
gered because once one has read The key to the cabinets. . . , encountering
is leads to no error signal and therefore no retrieval: the singular verb
that was expected is the one that is encountered. Thus, the Wagers
et al. (2009) proposal relies only on cue-based retrieval and critically
depends on the assumption that the features on the subject noun remain
intact over time. This intact-feature assumption is untenable given our
modeling results.

In fact, the Wagers et al. (2009) proposal was already difficult to
reconcile with the broader literature on cue-based retrieval because,
as also discussed in Villata and Franck (2020), there exists an array
of data showing retrieval-driven processing difficulty in grammatical
sentences (Mertzen, Paape, Dillon, Engbert, & Vasishth, 2022; Van
Dyke, 2007; Van Dyke & McElree, 2006, 2011).

However, a reviewer suggests that these findings from Van Dyke and
others cannot be invoked to challenge the Wagers et al. proposal. Recall
that the key idea in Wagers et al.’s account is that in ungrammatical
sentences, a particular number marking is predicted for the upcoming
verb, and it is the mismatch between the input and the prediction
that triggers the retrieval in ungrammatical conditions. The reviewer
suggests that perhaps prediction does not occur in the Van Dyke design;
if this were the case, then indeed, one cannot bring up the Van Dyke
type design to challenge the Wagers et al. (2009) account: In the
Van Dyke type grammatical sentences, if no prediction is made at all,
retrieval would be carried out at the verb; this is in contrast to the
grammatical number agreement design, e.g., in Wagers et al. (2009),
where a number marking is predicted at the upcoming verb, and this
prediction turns out to be correct, leading to no retrieval.

However, it seems very unlikely that no prediction occurs in the
grammatical constructions used in the Van Dyke type design. Predic-
tive processing is a well-established property of the human sentence
comprehension system (e.g., Resnik, 1992). The central role that pre-
diction plays in sentence comprehension has been demonstrated across
a wide range of different syntactic configurations (see Hale, 2001;
Levy, 2008a; Linzen & Jaeger, 2016; Staub, 2010a, among others). It
would be odd to assume that the Van Dyke (2007) design differs from
most other designs by somehow preventing prediction. Furthermore, as
discussed in Mertzen, et al. (2022), there are good reasons to assume
that prediction is happening in the Van Dyke designs: the effects of
the interference manipulation show up consistently in the pre-critical
region.14 Under the cue-based retrieval account, one plausible reason
why interference effects could show up in the pre-critical region would
be that the verb features are already known (predicted) before the verb
is encountered. This is because the retrieval process uses the feature
specification of the verb to trigger a search for the target noun in
memory. If the verb features are already available in the pre-critical
region due to prediction, they could be used to retrieve the target noun,
and consequently, the retrieval-based effects would show up in the
pre-critical region.15

If we grant that prediction can occur in the Van Dyke designs, one
could still argue that this prediction is not strong enough to avoid
the retrieval process. Such an argument could follow from the Wagers
et al. (2009) proposal: ‘‘ .... When the verb is encountered its number
features can be checked against the predicted features, and if they

14 Also see the replications in Mertzen, et al. (2022) using the Van Dyke
design in English and German.

15 There could be other explanations as well for the effects observed in the
pre-critical region, e.g., encoding interference (see the discussion in Mertzen,
et al., 2022, p.34–39).
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match, nothing more needs to be done; in particular, there is no need
to retrieve material from the prior context. ...’’. If the Wagers et al.
proposal assumes that the prediction is absolute, i.e., the verb features
are always correctly predicted in grammatical cases, then no retrieval
effect should occur in the Van Dyke designs. On the contrary, if the
strength of prediction matters, one could argue that the prediction
in the grammatical number-agreement design is much stronger than
in the Van Dyke design; such an additional assumption would imply
that retrieval does not occur in grammatical number agreement designs
but does occur in the Van Dyke type design. But such an assumption
raises a serious modeling problem: exactly how strong should be pre-
diction in order to avoid triggering the retrieval (reanalysis) process?
We think such a proposal (invoking strength of prediction) would be
underspecified about how the initial agreement computation is driven
by a predictive process. Therefore, under any of these assumptions, it
is difficult to reconcile the Wagers et al. (2009) proposal with the data
from Van Dyke and others showing that retrieval occurs in grammatical
sentences.

Finally, there is a technical problem with the conclusion that
no retrieval occurs in grammatical sentences: the statistical infer-
ence is based on null results from studies that are very likely under-
powered (Jäger, Engelmann, & Vasishth, 2017).16 Nevertheless, even
though the Wagers et al. (2009) proposal in its original form is not
tenable, it was the first sentence comprehension study to empirically
demonstrate that cue-based retrieval could play a role in number agree-
ment processing. Our work can be seen as building on and extending
this important insight.

General discussion

What assumptions are necessary to explain the highly variable
patterns of number agreement data observed in reading comprehen-
sion? To answer this question, we implemented two broad classes of
models and proposed a new class of hybrid models. We compared the
performance of these models on 17 published datasets to answer our
question. The models and their key assumptions are summarized below:

1. Representation distortion-based models (Existing proposals)

(a) Feature percolation model: The feature representation of
the subject noun changes in memory due to probabilis-
tic feature percolation from a non-subject noun in the
pre-verbal input.

(b) Grammaticality bias model: The continuous-valued rep-
resentation of the subject’s number changes due to the
spread of plurality from a non-subject noun; an increase
in number-mismatch between the subject and the verb
causes an exponential increase in processing difficulty at
the verb.

(c) Lossy compression model: The feature representation of
pre-verbal linguistic input can change probabilistically
when it is stored in memory and the comprehender pre-
dicts the upcoming verb based on this lossy memory
representation of the true pre-verbal context.

2. Cue-based retrieval models (Existing proposal)

• Dependency completion between the subject and the verb
is driven by a content-addressable search in memory based
on feature specifications at the verb.

• The feature representations on the noun remain intact over
time.

16 In fact, a large-sample study using self-paced reading did find a 9 ms
[0,18] effect of number agreement, consistent with the predictions of
cue-based retrieval (Nicenboim, Vasishth, Engelmann, & Suckow, 2018).

3. Hybrid distortion-plus-retrieval models (New proposals)

(1) Lossy compression-plus-retrieval model: The representa-
tion of preverbal linguistic input changes due to informa-
tion loss before retrieval is triggered at the verb.

(2) Feature percolation-plus-retrieval model: The represen-
tation of the subject noun changes probabilistically due
to feature percolation before retrieval is triggered at the
verb.

Table 3 shows the results of the model evaluation. A key result is
that the hybrid feature percolation-plus-retrieval model shows the best
performance numerically. Why does this hybrid model achieve the best
fit? The reason is the model’s behavior in grammatical sentences. In
the sentences the key to the cabinets was rusty and the key to the cabinet
was rusty, the retrieval mechanism of the model tries to retrieve the
singular subject noun when the verb is encountered. In sentence the key
to the cabinets was. . . , the probabilistic percolation of the plural feature
sometimes changes the subject noun to plural, which causes difficulty
in retrieval at the verb because there is no noun that fully matches the
retrieval cues. In other trials, no feature percolation occurs, and the
singular subject can be retrieved quickly. In sentences like the key to
the cabinet was. . . , there is no plural feature that could percolate, so
the verb is processed consistently slowly due to the fan effect from the
second singular noun the cabinet. Consequently, the effect of distractor
number in grammatical sentences is predicted to be neither decisively
positive nor decisively negative; it fluctuates around 0. The data from
17 individual studies is consistent with this prediction.17

Fig. 14 shows the joint prior predictive distributions of this hybrid
model for the agreement attraction effect (ungrammatical sentences)
and the number distractor effect (grammatical sentences). The range of
predicted effects covers the range of variation observed in the literature
(compare to Figs. 1 and 11).

Another important result is that the grammaticality bias model out-
performs the cue-based retrieval model of Lewis and Vasishth (2005),
and the model’s performance is statistically indistinguishable from the
numerically best-performing hybrid model. This result implies that
the grammaticality bias is one of the best candidates for explaining
the observed number agreement effects. As we have demonstrated
earlier in Fig. 7, the prior predictions of the grammaticality bias model
are largely consistent with the qualitative pattern of effects in both
grammatical and ungrammatical sentences.

Why does the grammaticality bias model achieve such a good fit
to the data considered here? The model assumes that the processing
cost at the verb increases exponentially as a function of the number
mismatch between the subject and the verb. Consequently, a large
number mismatch produces a large processing cost at the verb, but
a small mismatch induces an almost negligible cost at the verb. This
assumption predicts that the grammatical sentences (a) the key to
cabinet is rusty and (b) the key to cabinets is rusty would not differ
much in reading times at the verb; this is because the number mismatch
between the subject the key and the verb is is quite small. Thus, even
when the subject noun in (b) receives some plurality from the cabinets, it
does not cause a big difference in processing cost at the verb compared
to (a). However, in the case of ungrammatical sentences like (c) the key
to cabinets are rusty vs. (d) the key to cabinet are rusty, the reading times
at the verb would have a relatively large difference; this is because
the number mismatch between the subject and the verb is high. As
a consequence, compared to (d) a minor reduction in the number
mismatch in (c) due to the spread of the plural feature from the cabinets
would induce a large reduction in the processing cost at the verb. As

17 The non-linear cue-based retrieval model also predicts an effect
fluctuating-around-zero in grammatical sentences but this model entirely fails
to capture the agreement attraction effects in ungrammatical sentences (see
Fig. 4).
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Table 3
The differences in expected log predictive densities (𝑒𝑙𝑝𝑑) of the models. The decisive evidence and the winning model are highlighted in bold face. The positive values imply
evidence in favor of models written in the leftmost column compared to the models in topmost row. Also shown in brackets is the 95% confidence interval of the estimate of the
difference in 𝑒𝑙𝑝𝑑.

Cue-based retrieval Non-linear cue-based
retrieval

Lossy compression
(LC)

LC+retrieval Feature percolation
(FP)

Grammaticality
bias

FP+retrieval

Cue-based retrieval
Non-linear cue-based
retrieval

433 [−225, 1091]

Lossy compression (LC) 387 [−73,847] −46 [−410, 318]
LC+retrieval 759 [371, 1147] 326 [−32, 684] 372 [28,716]
Feature percolation (FP) 939 [−229,2107] 506 [−90, 1102] 552 [−328, 1432] 180 [−672, 1032]
grammaticality bias 1076 [290, 1862] 643 [−79, 1365] 690 [−176, 1556] 317 [−287, 921] 138 [−684, 960]
FP+retrieval 1401 [669, 2133] 968 [530, 1406] 1015 [407, 1623] 642 [204, 1080] 463 [−85,1011] 325 [−65, 715]

Fig. 14. The range of number agreement effects (in milliseconds) predicted by the feature percolation-plus-retrieval model is shown as a contour of the joint distribution of effects
in the grammatical and ungrammatical conditions.

mentioned above, this happens because of the exponential nature of
the processing cost function. Overall, the grammaticality bias model
would predict an asymmetry between grammatical and ungrammatical
sentences, which is consistent with the observed pattern of number
agreement effects (see Fig. 7).

In sum, the quantitative model evaluation revealed two insights:
First, cue-based retrieval alone (assuming intact representations) is
insufficient for explaining the data. A representation distortion as-
sumption is necessary: the subject noun’s feature representation gets
distorted through a process of percolation (feature migration). Second,
adding a feature percolation assumption within the cue-based retrieval
model makes it a good candidate explanation for the number agreement
effects without losing the model’s original empirical coverage of a
variety of other constructions (e.g., see Vasishth & Engelmann, 2022).
Given its overall empirical coverage, cue-based retrieval remains an
important, independently motivated theoretical construct in models of
sentence processing, although the grammaticality bias model is also
competitive if one limits the comparison to the subject–verb agreement
constructions considered here. We discuss these points next.

The representation distortion assumption is necessary in dependency com-
pletion theories

A priori, it seems reasonable to question the assumption that mem-
ory representations get distorted over time. Is such a position justifiable
when we go beyond number agreement and look more broadly at
the literature on sentence processing? Is there any other evidence in
sentence processing, and more generally in working memory research
within cognitive psychology, that input strings get probabilistically
distorted?

In the early days, sentence processing theories generally took a
different direction. From the 1970s onwards, a default (if implicit)
assumption was that feature representations of nouns remain intact,
and a single veridical representation is the end-result when one parses
a sentence (e.g., Frazier, 1979). Early models like the garden-path the-
ory (Frazier, 1987) implicitly assumed a deterministic parsing process
that always carried out the same steps given a particular input string.
The same holds for the well-known Dependency Locality Theory (Gib-
son, 2000): under this account, no aspect of the input string ever
experiences any distortion; the only metric that quantifies dependency
completion difficulty is memory load (storage cost and/or integration
cost), computed deterministically.

A significant departure from this intact-representation perspective
gained momentum with the arrival of alternative accounts like good-
enough processing (Ferreira, Ferraro, & Bailey, 2002). Good-enough
processing makes a major departure from this classical view by as-
suming that once non-veridical syntactic representations of the input
string are created in memory, these mis-parses remain in memory as
retrievable chunks. For example, when we read While Mary bathed the
baby played in the crib, an initial mis-parse assigns the baby as an object
to bathed, but a subsequent reanalysis undoes this mis-parse and the
baby becomes the subject of the main verb played. Interestingly, if the
participant is asked whether Mary bathed the baby, the participant
tends to give the incorrect answer ‘‘yes’’. This suggests that non-
veridical representations of an initial mis-parse can remain in memory.
As Ferreira et al. (2002) put it: ‘‘the meaning people obtain for a
sentence is often not a reflection of its true content’’.

More recent models of comprehension that rely on Bayesian infer-
ence (so-called rational inference, Anderson, 1991), such as the noisy
channel model (Gibson, Bergen, & Piantadosi, 2013; Levy, 2008b) and
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the lossy-context surprisal model (Futrell et al., 2020), go even further:
the input string can be modified by inserting or deleting material,
changing the string into one that is informed by their prior beliefs
about what is likely to occur in their language. For example, if one
reads The dog was bitten by the man, one might mentally reverse the
roles of the biter and bitee to match real-world probabilities of events
and perceive the sentence as meaning The man was bitten by the dog.
There are also connectionist models that assume that the relative
plausibility of event representations drive the semantic interpretation
of a sentence (Rabovsky, Hansen, & McClelland, 2018).

Thus, in recent decades, representation distortion at the sentence
level has become an increasingly plausible explanatory construct for
theories of comprehension. These accounts – good-enough processing,
noisy channel, lossy compression, etc. – generally focus on the represen-
tation distortion of the entire input string, not just the internal feature
representations of individual words in the string.

In contrast to assumptions about sentence-level distortion of the
input, research in the cognitive psychology of memory has historically
focused on understanding the constraints on single isolated units of in-
formation, such as words, letters, numbers, visual shapes, etc. Jonides,
et al. (a comprehensive review is in 2008). Even when memory re-
searchers look beyond these minimal units of information, they usually
investigate extremely simple syntactic frames like A is B (Anderson
et al., 1983). Despite this narrow focus, theories of memory in cognitive
psychology have evolved into quite a sophisticated account of how
these units of information experience representation distortion. For
example, the feature overwriting model (Nairne, 1990) formalizes the
idea of feature-level representation distortion (also see Oberauer &
Kliegl, 2006). As Nairne (1990, p. 252) puts it: An individual feature
of a primary memory trace is assumed to be overwritten, with probability
𝐹 , if that feature is matched in a subsequently occurring event. Interference
occurs on a feature-by-feature basis, so that, if feature 𝑏 matches feature 𝑎,
the latter will be lost with probability 𝐹 . This implies that the more similar
two items are, the harder they are to distinguish, which will make both
harder to retrieve given some retrieval cues.

There is also independent evidence in memory research that sup-
ports some form of feature transfer from one item to another in mem-
ory. Researchers in psychology have investigated what kind of errors
occur when participants have to report the feature(s) of target item that
was recently presented along with a distractor item. An important find-
ing is that in some proportion of trials, participants make swap errors:
they mistakenly report the features of the distractor item when probed
about the target item (Bays, 2016; Bays, Catalao, & Husain, 2009;
Scotti, Hong, Golomb, & Leber, 2021). Swap errors support the idea
that feature migration among items may explain why representations
get distorted in working memory.

Within psycholinguistics, it was only some 30 years ago that the
connection between memory research in psychology and the con-
straints on sentence processing was articulated (Lewis, 1993, 1996),
although the focus was primarily on interference effects at the sentence
level. The importance of word-level feature encoding in sentence pro-
cessing gained prominence through a thread of research that falls under
the broad rubric of encoding interference (e.g., Barker, Nicol, & Garrett,
2001; Gordon, Hendrick, & Johnson, 2001; Hofmeister & Vasishth,
2014; Jäger, Benz, Roeser, Dillon, & Vasishth, 2015; Smith et al., 2021;
Villata et al., 2018). The idea – which derives from feature overwriting
and other related accounts (e.g., Nairne, 1990) – is that if two nouns
have similar features (such as two animate nouns), they will be more
difficult to maintain in memory compared to the case where the nouns
have no overlapping features (e.g., animate vs. inanimate nouns).

This general idea of encoding interference appeared in number
agreement research as well, but the initial theoretical explanations
came from sentence production; memory processes were considered,
but only cursorily (Bock & Miller, 1991). In production, the puzzle
that needed an explanation was that people tend to write or utter
ungrammatical constructions like The key to the cabinets are rusty. As

discussed earlier, this agreement attraction phenomenon eventually
gained importance in empirically driven sentence comprehension the-
ory as well (e.g., Clifton, Frazier, & Deevy, 1999; Nicol, Forster, &
Veres, 1997; Pearlmutter et al., 1999), and representation distortion
accounts like feature percolation (Eberhard, 1997; Franck, Vigliocco, &
Nicol, 2002b; Nicol, 1995; Nicol et al., 1997) and the closely related
Marking and Morphing model of Eberhard et al. (2005) (see also
Bock, Eberhard, & Cutting, 2004; Bock, Eberhard, Cutting, Meyer, &
Schriefers, 2001; Brehm & Bock, 2013; Eberhard et al., 2005; Staub,
2009) became candidate explanations in work on comprehension. In
the agreement literature, the cue-based retrieval account was invoked
much later (Wagers et al., 2009). The close connection between the
representation distortion accounts in number agreement and the exist-
ing theories of feature overwriting within cognitive psychology only
became apparent in subsequent work (e.g., Smith et al., 2021; Villata
et al., 2018).

In summary, it seems that, in language processing, as in memory
research, there are in fact good reasons to assume that some form
of probabilistic representation distortion occurs at both the word and
sentence level. Considering that there is plenty of independent evidence
for representation distortion from pure memory research in cognitive
psychology, it therefore seems reasonable that some type of feature
overwriting mechanism should be an integral part of sentence com-
prehension models. More focused experimental work is required to
understand the underlying representation distortion process in sentence
comprehension, e.g., what types of distortion are possible and under
what circumstances distortion can occur.

Cue-based retrieval is an important component of sentence processing

A key finding of the present work is that, when combined with
representation distortion, cue-based retrieval becomes one of the best
candidates for explaining number agreement effects. With that finding
and the discussion of encoding interference above, one interesting ob-
servation here (articulated in Laurinavichyute, 2021; Lewis et al., 2006;
Villata et al., 2018) is that encoding and retrieval accounts are not
opposing but complementary explanations, and both processes could
be in operation simultaneously. As a consequence, it seems obvious
that the existing cue-based retrieval architecture should also have a
representation distortion mechanism that probabilistically distorts a
noun’s feature specification. The best-performing models across prior
specifications always include some mechanism for feature distortion in
addition to cue-based retrieval, which, on its own, was not enough to
explain the full pattern of reading times. What was missing until now
was a comprehensive demonstration that the additional complexity
of representation distortion is needed in the model. Providing such a
demonstration is one of the achievements of the present paper.

Our hybrid feature-percolation-plus-retrieval model is a minimal
modification of the original cue-based retrieval model and adds only
one parameter to the model. The hybrid model assumes that the
subject noun’s number feature is probabilistically distorted according
to a distortion rate parameter. In any particular trial, regardless of
whether distortion occurs or not, the standard cue-based retrieval
constraints will apply, and reading time will be determined by the
classical constraints on retrieval derived from the cognitive archi-
tecture ACT-R. Embedding the representation distortion assumption
into the cue-based retrieval model has a great advantage because the
cue-based retrieval model can already account for a broad range of
empirical data from a variety of constructions, including subject–verb
non-agreement dependencies (Mertzen, et al., 2022; Van Dyke, 2007;
Van Dyke & McElree, 2011), plausibility mismatch configurations (Cun-
nings & Sturt, 2018), negative polarity item licensing (Drenhaus, Saddy,
& Frisch, 2005; Vasishth, Brüssow, Lewis, & Drenhaus, 2008; Xiang,
Dillon, & Phillips, 2009), and honorific processing (Kwon & Sturt,
2016), in both unimpaired and impaired populations such as individu-
als with aphasia (Vasishth et al., 2019). Assuming that only encoding
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Fig. 15. The difference in predictive accuracies of the models represented by 𝛥𝑒𝑙𝑝𝑑 values for each design: A positive 𝛥𝑒𝑙𝑝𝑑 value means that the model shown in the
facet’s title performs better than the other model. Error bars show two times the standard error of the difference in 𝑒𝑙𝑝𝑑 values.

interference is in operation would lead to poorer empirical coverage
than the hybrid architecture.

However, the comparable performance of the hybrid model and the
distortion-based models (see Fig. 13) indicates that number agreement
effects can be potentially explained by a distortion-based mechanism
alone, without requiring the cue-based retrieval assumption. One might
conclude that cue-based retrieval theory can be abandoned completely
as a theory of dependency completion. However, as discussed above,
cue-based retrieval is a much more general theory of dependency
completion than the grammaticality bias model, which seeks to explain
only one phenomenon: number agreement.

Even for the number agreement dependency considered here, a
minor modification to the cue-based retrieval process, i.e., adding a
feature distortion mechanism in the model, makes it the numerically
best-performing model given the data. This hybrid distortion-plus-
retrieval model also captures the qualitative pattern of number agree-
ment effects in both grammatical and ungrammatical sentences (see
Fig. 11). Therefore, if we want as general a theory of number agreement
as possible, cue-based retrieval remains an important component of the
explanation.

The distortion rate may differ across designs and across participants

An interesting open question is whether the rate of feature distortion
differs across experimental designs and among individual participants
in a study. There are good reasons to think that the percolation rate
might differ across experimental designs because it is arguably sensitive
to factors like syntactic distance between the nouns and syntactic
position of the nouns relative to each other (Franck, Lassi, Frauenfelder,
& Rizzi, 2006; Franck, Soare, Frauenfelder, & Rizzi, 2010; Franck,
Vigliocco, & Nicol, 2002a). It has been suggested that there are con-
straints on how far a number feature can migrate in a tree (Eberhard
et al., 2005; Nicol et al., 1997). For instance, a feature from a noun
inside a prepositional phrase can migrate more easily compared to

that from a noun in an embedded relative clause. Another proposal
is that a number feature is constrained to migrate only upwards in
a tree (Eberhard, 1997; Vigliocco, Butterworth, & Semenza, 1995).
Similar constraints can also be implicated for the deletion rate and the
insertion rate parameters in the lossy compression models.

Our models are currently agnostic to these factors. More specifically,
we make a cross-design homogeneity assumption: the data for all 17
studies, regardless of their construction type and language, are assumed
to come from the same underlying (true) model and same parameter
value(s). This assumption may lead to inaccurate generalization if there
is any systematic across-design variation in the underlying process.
Would our model comparison results still hold if we do not assume the
cross-design homogeneity?

We can test this concern using a within-design model compari-
son as suggested by one of the reviewers. We consider three designs
which were employed in at least three experiments: (a) English prepo-
sitional phrase, (b) English relative clause, and (c) Spanish relative
clause. Within each design, the models are evaluated in terms of
their predictive performance: Each model is fitted and tested on the
design-specific data using cross-validation. So that even if there is
any cross-design parametric variation, it does not impact the model
evaluation performed within a design.

Fig. 15 shows the model comparison results within each of the
three designs considered here. We find that the models’ predictive
performance patterns are similar to the results obtained under the
cross-design homogeneity assumption (Figure 13): the models assuming
some kind of feature distortion outperform the cue-based retrieval
models, and the hybrid feature percolation-plus-retrieval model and the
grammaticality bias model are the best-performing models numerically.
The analysis indicates that our main results hold independent of the
cross-design homogeneity assumption.
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A noteworthy result from the within-design analysis is that the
grammaticality bias model performs almost as well as the hybrid fea-
ture percolation-plus-retrieval model, which is numerically the best-
performing model. This parallels the results for the cross-design ho-
mogeneity analyses. Together, the results raise the question of which
mechanism best explains the number agreement effects, the hybrid
feature distortion-plus-retrieval, or a grammaticality bias mechanism?
We cannot conclusively answer this question given the current results.
As noted above, cue-based retrieval is an empirically-grounded theory
of dependency completion with support from a variety of sentence
processing effects. Thus, the hybrid mechanism involving a retrieval
process would have better generalizability across different construction
types. On the other hand, grammaticality bias is a fresh, emerging
perspective on the agreement attraction phenomenon (see Hammerly
et al., 2019). The proposal holds promise to become a new theory of
dependency completion, where the cost of dependency completion is
a non-linear function of the quantitative feature mismatch between
the two co-dependents. However, for the grammaticality bias model
to become a theory of dependency completion in general, a detailed
empirical investigation will be necessary. This empirical investigation
would have to consider model fit to data on other kinds of depen-
dencies, such as subject–verb non-agreement dependencies (Mertzen,
et al., 2022; Van Dyke, 2007; Van Dyke & McElree, 2011), antecedent-
reflexive dependencies (Dillon et al., 2013; Sturt, 2003), plausibil-
ity mismatch configurations (Cunnings & Sturt, 2018), and negative
polarity constructions (Vasishth et al., 2008).

The rate of feature distortion can also differ across individuals:
some individuals can be better at retaining the original representation
of nouns in memory than others. Systematic modeling of individ-
ual differences can reveal important insights about the underlying
process (Yadav, Paape, Smith, Dillon, & Vasishth, 2022). For exam-
ple, one can model individual differences in number agreement ef-
fects as variation in the percolation rate parameter of the feature
percolation-plus-retrieval model. We plan to investigate design-level
and individual-level differences in feature migration in future work.

The markedness effect in number agreement processing

A well-explored issue in the number attraction literature is the
markedness effect : the overtly marked nouns, e.g., plural nouns can
cause agreement attraction but not the unmarked nouns (e.g., singular
nouns) (Bock & Eberhard, 1993; Eberhard, 1997; Wagers et al., 2009,
inter alia). The effect has been frequently observed in production stud-
ies on agreement attraction (Bock & Cutting, 1992; Bock & Eberhard,
1993; Bock & Miller, 1991). However, in the reading studies considered
here, there is only one experiment that demonstrated the markedness
effect, experiment 3 in Wagers et al. (2009) (but also see Pearlmutter
et al., 1999). A prominent explanation for the markedness effect is that
only the overtly marked features can migrate from the attractor noun
to the subject noun (Eberhard, 1997). For example, when the attractor
noun is singular, the number feature is unmarked, hence the singular
feature cannot percolate to the subject noun. The feature percolation
model would predict no attraction effect in this situation. Similarly,
the feature-percolation-plus-retrieval (FPR) model would predict the
same attraction effects as the cue-based retrieval model because the
percolation rate would become zero. Therefore, the feature percolation-
based models predict an asymmetry in the attraction effects in design
A vs. design B (see Fig. 16) under the markedness assumption.

In this work, we do not make an explicit markedness assumption in
our models. This is because we want our models to be simple, gener-
alizable, and have fewer constraints so that the models can be easily
extended to generate predictions for interference in other construction
types, such as non-agreement subject–verb dependencies (Van Dyke,
2007; Van Dyke & McElree, 2011), dependencies involving a semantic
plausibility manipulation (Cunnings & Sturt, 2018), and antecedent-
reflexive dependencies (Cunnings & Felser, 2013; Dillon et al., 2013;
Jäger et al., 2020).

However, if needed one can easily build the markedness constraint
in our models by simply assuming that the feature percolation rate is
zero whenever the distractor/attractor is singular. Does the markedness
assumption provide a better fit to the data? To test this, we imple-
ment the feature percolation and the FPR model under the marked-
ness constraint and then compare them against the corresponding
unconstrained models. This approach would allow us to infer whether
the markedness assumption is better at capturing the observed data.
We find that the models-with-markedness perform only slightly better
than their unconstrained counterparts: the 𝛥𝑒𝑙𝑝𝑑 value for the feature
percolation-with-markedness model vs. the feature percolation model
is 71[−37, 179] and for the FPR-with-markedness vs. the FPR model is
28[−16, 72]. Thus, given the available data, there seems to be little rea-
son to add the markedness assumption in our feature percolation-based
models.

Can the lossy compression assumption explain number agreement effects?

In our model evaluation, the lossy compression model performs
better than the cue-based retrieval model. What makes this model
achieve a better fit to the number agreement data?

Consider the grammatical sentences (a) the key to the cabinet was
rusty vs. (b) the key to the cabinets was rusty. The model’s behavior can
be understood as an interaction between representation distortion and
the probabilistic expectation at the verb. When there is no information
loss and the representation of the nouns remains intact, the model relies
on only the probabilistic expectation of the upcoming verb. Based on
corpus statistics, the singular verb is more expected to occur after pre-
verbal contexts like the key to the cabinet, where both nouns are singular.
Consequently, when the distortion rate is small, the model predicts a
higher processing difficulty in sentence (b) compared to (a) because
processing difficulty is inversely proportional to how expected the verb
is given the preceding context. As the distortion rate increases, this
effect starts diminishing (see Fig. 17, right panel). For example, as the
rate of inserting a plural marker increases, the pre-verbal input in (a)
the key to the cabinet is more likely to get distorted to other possible
contexts that generate less accurate predictions and hence cause more
processing difficulty. The model therefore predicts an effect consistent
with negative, zero, or a small, positive effect in grammatical sentences;
this prediction captures the data better than the cue-based retrieval
model, which only predicts negative effects.

However, the lossy compression model performs worse than the
hybrid distortion-plus-retrieval models. A follow-up study is needed
to explore whether some other assumptions about the nature of in-
formation loss can improve the model’s fit; for example, whether the
representation gets distorted due to only insertion noise or due to
both insertion and deletion noise. In our implementation of lossy com-
pression, we observe that the insertion rate parameter modulates the
magnitude of number agreement effects; see Fig. 17. As the insertion
rate increases, the number distractor effect (in grammatical sentences)
decreases and the agreement attraction effect (in ungrammatical sen-
tences) increases. In contrast, the deletion rate parameter does not seem
to influence number agreement effects, indicating that only insertion
noise might be driving the effects in subject–verb number agreement.

Another assumption worth exploring is that the information loss
may increase over time. For example, it is possible that the represen-
tations of nouns that appear early in sentence are more likely to get
distorted compared to the nouns that appear later. This could happen
because the nouns that appear earlier have been stored in memory
for a longer time and thus experience more information loss than the
nouns that appear later (Futrell et al., 2020). We plan to implement
and compare different versions of the lossy compression assumption on
agreement data in a future study.
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Fig. 16. Prior predictions of the feature percolation and the hybrid model under the markedness constraint: When the percolation-based models assume markedness, they
predict a different pattern of effects in Design A vs. Design B; in Design B, the singular feature of the non-subject noun in conditions (b) and (c) cannot percolate to the subject.

Fig. 17. The agreement attraction and the number distractor effect predicted by the lossy compression model as a function of insertion rate (right) and deletion rate (left).

Desiderata for a complete theory of dependency completion

The work reported here is a detailed investigation of one type of
syntactic dependency, involving subject–verb number agreement. The
theoretical ideas developed here should ideally have broader applica-
tion across sentence processing more generally. What should a more
general theory look like? What should it be able account for? We
discuss this question next.

A complete theory of dependency completion in sentence compre-
hension should have at least the following three properties. First, it
should capture the joint distribution of effects in grammatical and un-
grammatical sentences. Second, it should be able to account for system-
atic variation in individual-level effects. Third, it should explain data
across different constructions, such as argument-verb dependencies,
antecedent-pronoun and antecedent-reflexive dependencies, etc.

We have focused on the first property in this work. We asked which
theoretical assumptions find the strongest support in the data from
both grammatical and ungrammatical sentences. Modeling this joint
distribution is critical for a theory of subject–verb number agreement
processing because it holds some crucial information about the un-
derlying comprehension process. As we can see in Fig. 1, the effect
in ungrammatical conditions tends to be facilitatory but the effect in
grammatical conditions fluctuates around zero. Although there is a
tendency in the literature to oversimplify the grammatical results as
showing that the effect is 0 ms (Hammerly et al., 2019), this simplified
conclusion ignores the uncertainty of the estimates in the 17 studies,
and their variability. A theory that can account for the range of vari-
ation observed (in both grammatical and ungrammatical conditions)
may be a more realistic account of the underlying cognitive processes
in sentence comprehension.

The second property that a theory should explain (individual dif-
ferences in observed effects) has historically been largely neglected in

sentence comprehension. Modeling individual-level behavior can lead
to new theoretical insights (Kidd, Donnelly, & Christiansen, 2018), and
focusing only on average behavior can lead to inaccurate generaliza-
tions (Fific, 2014; Tanner, 2019). For example, in a recent study, Yadav,
et al. (2022) have shown that a hypothesis inferred from averaged data
– that syntactic cues are preferred over non-syntactic cues in processing
antecedent-reflexive dependencies – holds only for some, not all, of
the participants. In future work, one could experimentally obtain an
independent measure of the feature percolation-plus-retrieval model’s
percolation rate parameter for each participant in a study using, for
example, a participant’s error rates on comprehension questions that
directly probe the number marking on the nouns (Avetisyan et al.,
2020). The individual-level percolation rate parameters estimated in
this way could be used to generate reading time predictions from the
model which could then be evaluated using the same participants’
reading time data.

Finally, a complete theory of dependency completion should be gen-
eralizable to constructions other than subject–verb number agreement
dependencies. An example is gender agreement dependencies. The cur-
rent work has focused on subject–verb number agreement dependency
because this construction has a relatively large amount of published
data that is also publicly available.18 Other dependencies have also
been investigated for interference effects in comprehension, including
subject–verb constructions in which syntactic and semantic similarity

18 Data availability is important because, as documented in previous meta-
analysis attempts that we have carried out (Jäger et al., 2017; Nicenboim,
Roettger, & Vasishth, 2018), it is often difficult or even impossible to infer the
relevant statistics from published analyses alone. Published results often focus
on reporting statistical significance, and neglect to report mean differences and
the standard errors of these differences.
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is manipulated (Mertzen, et al., 2022; Van Dyke, 2007; Van Dyke &
McElree, 2011); negative polarity items (Vasishth et al., 2008); and
antecedent-reflexive dependencies (Cunnings & Felser, 2013; Dillon
et al., 2013; Jäger et al., 2020).

A limitation of our work, and of research on number agreement
more generally, is that the two feature percolation models have only
been instantiated in terms of the percolation of a number feature. The
feature percolation-based models cannot predict anything for construc-
tions showing interference due to gender or semantic features (e.g.,
Cunnings & Sturt, 2018). However, one could relax this assumption of
the model so that it is possible to percolate non-number features as
well. In future work, we plan to extend the current models to eval-
uate them on data from non-agreement subject–verb and antecedent-
reflexive dependencies. We turn now to other future directions before
we conclude.

Future directions

Our model evaluation results imply two obvious investigations that
must be carried out. First, how well do the competing models do against
a much broader range of benchmark data that go beyond number
agreement? Second, are there other models that can outperform the
hybrid model presented above? These two future directions are not
without their own challenges, as we discuss now.

Future model comparisons must deploy a broader spectrum of high-powered,
open access benchmark data

One major barrier to testing model performance against a broader
spectrum of benchmark data is that psycholinguistics, like other ad-
jacent areas in cognitive science (Open Science Collaboration et al.,
2015), is still in the process of catching up with the open access and
transparency revolution that is unfolding in other areas of science. In
addition, the psycholinguistic data that happen to be publicly available
are usually severely underpowered (this is discussed in Jäger et al.,
2017, 2020; Vasishth & Gelman, 2021; Vasishth, Mertzen, Jäger, &
Gelman, 2018; Vasishth, Yadav, Schad, & Nicenboim, 2022). Low
power, coupled with publication bias (Francis, 2012), leads to effect
size estimates that are too large and are unlikely to reflect a realistic
range of effect sizes, a phenomenon referred to as Type-M and Type-S
error (Gelman & Carlin, 2014). Fortunately, more and more researchers
are responding to this problem by running larger-sample experiments
and carrying out direct replication attempts (e.g., Lago et al., 2021;
Villata et al., 2018). Such higher-powered studies will be very useful
as benchmark data for future model development.

New candidate models should be pitted against existing ones using quanti-
tative methods

Several new computational models have emerged in recent years
that attempt to explain number agreement data. Two prominent exam-
ples are self-organized parsing (Smith, Franck, & Tabor, 2018; Smith
et al., 2021) and neural network models (Linzen & Dupoux, 2016; Ryu
& Lewis, 2021). Current evaluations of these models are generally very
limited in scope; the focus of the model evaluation is often restricted to
modeling average error rates in production (Linzen & Dupoux, 2016) or
qualitative patterns in reading times without regard to the magnitude
and range of variation in the data (Ryu & Lewis, 2021; Smith et al.,
2018, 2021). Current implementations of self-organized models of num-
ber agreement (Smith et al., 2018, 2021) make reading time predictions
similar to those of the feature percolation model: a distractor noun
with the same number marking as the subject always leads to slower
processing than a distractor noun that differs in number from the
subject. The implemented models assume a veridical representation of
the input, although Smith et al. (2021), Villata and Franck (2020),
Villata et al. (2018) discuss possible extensions that involve a form
of feature distortion on the nouns in the subject NP. However, these

ideas have not yet been implemented, so their exact predictions and
predictive performance have not yet been determined.

The methodologies we have used in this work, approximate Bayesian
computation for parameter fitting and cross-validation for model com-
parison, can easily be extended to other classes of models, facilitating
future work comparing new classes of competing theory.

Conclusion

We have proposed a new model of agreement attraction that ex-
hibits a superior fit to the number agreement data compared to existing
competing models. We compared the predictive performance of seven
models, including two new proposals, using benchmark data from 17
experiments that investigated subject–verb number agreement depen-
dencies. The model comparison revealed two major theoretical insights.
First, a well-accepted explanation of agreement attraction – cue-based
retrieval – alone is insufficient for explaining the data, and an assump-
tion that the nouns stored in memory can undergo feature distortion
seems necessary. Second, number agreement effects are possibly caused
by either (i) a hybrid mechanism such that the cue-based retrieval op-
erates on the potentially-distorted representation of nouns in memory
due to feature percolation, or (ii) a grammaticality bias during reading
such that the cost of dependency completion increases exponentially as
the feature mismatch between the two co-dependents increases. To our
knowledge, this work is the first attempt at quantitatively evaluating
the competing theories of number agreement processing using data
from multiple studies simultaneously. The approach presented here can
be easily adapted to compare computational models of any underlying
cognitive process without compromising the complexity of the models.
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Fig. A.1. A schematic illustration of activation received by the nouns through each retrieval cue in the cue-based retrieval model of Lewis and Vasishth (2005). The dashed box
represents the retrieval cues, the thick box represents the noun feature that matches the retrieval cue, the thin box represents the noun feature that does not match the retrieval
cue. The thickness of the arcs from a retrieval cue to the nouns represent the amount of activation received by the nouns from each cue; the thicker lines mean larger activation
received by the noun and vice versa. For example, in condition (a), both the nouns match the number cue SG and hence the activation gets divided among the nouns represented
by thin lines. While in condition (b), the subject noun receives all the activation from the number cue which is represent by the thicker line.

The cue-based retrieval model

The cue-based retrieval model developed by Lewis and Vasishth
(2005) adopts general principles of ACT-R cognitive architecture (An-
derson, et al., 2004; Anderson & Lebiere, 2014). The model assumes
that the dependency completion is driven by a cue-based retrieval
process: a content-addressable search in memory based on feature
specifications such as [subject], [plural], called retrieval cues. Each
chunk in memory that matches a retrieval cue receives a certain amount
of activation. The total activation of a memory chunk 𝑖 is given by,

𝐴𝑖 = 𝐵𝑖 +
𝑁
∑

𝑗=1
𝑊𝑗𝑆𝑗𝑖 + 𝜖𝑖 (A.1)

where 𝐵𝑖 is the base-level activation of the chunk; 𝑊𝑗𝑆𝑖𝑗 is the amount
of activation received by chunk 𝑖 from the retrieval cue 𝑗; ∑𝑁

𝑗=1 𝑊𝑗𝑆𝑗𝑖 is
the sum of activations received by the chunk through each retrieval cue;
𝜖𝑖 is the trial-level noise in the activation such that 𝜖𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎).

The model further assumes that a chunk with the highest total
activation gets retrieved and the activation of the retrieved chunk
determines the retrieval time at the verb.

𝑅𝑇𝑖 = 𝐹𝑒−𝐴𝑖 (A.2)

where 𝐴𝑖 is the activation of the retrieved chunk 𝑖 and 𝐹 is a scaling
parameter, called the latency factor. The latency factor is the only free
parameter in the model in the present paper.

Using the above retrieval time equation, we derive predictions for
number agreement effects in grammatical and ungrammatical condi-
tions for subject–verb agreement dependencies. Suppose, the effect in
grammatical and ungrammatical conditions is, 𝛿𝑔 and 𝛿𝑢 respectively.
The effects come from the model conditioned on its one free parameter,
the latency factor,
(

𝛿𝑔
𝛿𝑢

)

∼ 𝑀𝑜𝑑𝑒𝑙(𝐹 ) (A.3)

Fig. A.2. The agreement attraction and the number distractor effect predicted by the
cue-based retrieval model.

where 𝐹 – the scaling parameter – is assumed come from the following
prior distribution,

𝐹 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) (A.4)

where 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) means a normal distribution with mean
0.15, standard deviation 0.05, and truncated at 0.05 so that it does not
allow values lower than 0.05. The justification for the choice of priors
on the scaling parameter is given in section Choice of priors on the
scaling parameter .

Fig. A.1 shows the activation profiles for the grammatical and
ungrammatical subject–verb number agreement dependencies. In con-
dition (a), both the noun phrases, the key and the cabinet receive
activation from the number cue [SG]. As a result, the amount of total
activation available through the number cue gets divided among the
two noun phrases. This is called the fan effect (Anderson, et al., 2004;
Schneider & Anderson, 2012). Due to the fan effect, the subject noun
in condition (a) receives less activation compared to condition (b),

34 CHAPTER 3. ARTICLE I



Journal of Memory and Language 129 (2023) 104400

24

H. Yadav et al.

where only the subject noun matches the number cue. Consequently,
the retrieval at the verb is predicted to be slower in condition (a)
compared to condition (b). Hence, the model predicts an inhibition due
to the distractor noun in the grammatical conditions (see Fig. A.2).

In the ungrammatical sentences, in condition (c), the subject noun
receives activation only through the subject cue [SUBJ] and the dis-
tractor noun phrase the cabinets receives activation only through the
number cue [PL]. Hence, the two noun phrases receive an equal amount
of activation, which leads to a race for retrieval between the two (En-
gelmann et al., 2019; Logačev & Vasishth, 2016). This race process
produces faster retrieval times in condition (c) compared to (d) where
there is no race for retrieval. So, the model predicts a facilitation due
to the attractor noun in ungrammatical conditions (see Fig. A.2).

Choice of priors on the scaling parameter

All the models that we evaluated in this work have a free parameter
called the scaling parameter. The scaling parameter maps the reading
time output from the model on the same scale as the reading time distri-
bution from experimental studies on subject–verb number agreement.
How should we choose the priors on the scaling parameter? Our choice
of priors on the scaling parameter for a model is based on the following
two criteria:

1. The model should not generate unreasonably fast reading
times. A typical distribution of reading times from the self-
paced reading or eye-tracking experiments (e.g., total fixation
time) has the property that the reading time values are usually
larger than approximately 100–150 ms (chapter 6, Nicenboim
et al., 2022). A model that generates a large proportion of
reading times smaller than 100–150 ms would be an inaccurate
characterization of the underlying generative process. Indeed,
the reading times from agreement attraction studies have a 2.5th
percentile of approximately 150 ms, and the 97.5th percentile
varies between studies from 250 to 800 ms (see Fig. B.1). Fol-
lowing the prior distribution guidelines in Schad et al. (2021),

we choose a prior on the scaling parameter such that the 2.5th
percentile is approximately equal to 150 ms.

2. All the models should generate approximately the same
range of reading time distribution. We want the models to
generate reading times in a similar 95% credible interval. Having
fixed the lower bound of the interval at 150 ms (see the previous
point), we choose a reasonable credible interval of [150, 300] ms;
each model should generate reading times with a 95% credible
interval of approximately [150, 300] ms. We choose this range
because we do not want our models to be wildly different in
terms of their reading time distribution. This is necessary for cal-
ibrating models with the experimental reading times data and for
drawing meaningful comparisons between their performance.

The non-linear cue-based retrieval model

We implement the cue-based retrieval model assuming direct-access
and non-linear cue-combination proposed by Wagers et al. (2009) (also
see Wagers, 2008). Wagers and colleagues speculate that a direct-
access mechanism (McElree, 2000) where cues are combined non-
linearly can capture the observed pattern of number agreement effects
in grammatical and ungrammatical sentences. In order to implement
their proposal, we use the earlier implementations of the direct access
model (e.g., Lissón, et al., 2021; Nicenboim & Vasishth, 2018) and
make some additional assumptions for non-linear cue-combination and
processing in ungrammatical sentences.

The main assumption of the model is that subject–verb dependency
completion is driven by a content-addressable search in memory based
on feature specifications such as [subject], [plural], called retrieval
cues. Each chunk in memory that matches a retrieval cue competes for
retrieval; a chunk’s probability of initial retrieval is determined by its
degree of match with the retrieval cues. The retrieval probability of a
chunk increases non-linearly with an increment in number of matching-
cues implying that a chunk matching 1 out of 2 cues and a chunk

Fig. B.1. The distribution of reading times at the verb across subject–verb number agreement studies. The vertical line in each block is drawn at 150 ms.
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Fig. C.1. A schematic illustration of multinomial processing tree used to implement the non-linear cue-based retrieval model.

matching 0 out of 2 cues would have almost equal probability of initial
retrieval. The retrieval probability of a memory chunk 𝑖 is given by,

𝑃𝑖 =

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

∑𝑛
𝑖=1

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

(C.1)

where 𝑆𝑖𝑗 is the degree of match between a chunk 𝑖 and a cue 𝑗, 𝑆𝑖𝑗
takes the value 0.99 if the chunk matches the cue and the value 0.01
when it does not; 𝑊𝑗 is the weight of retrieval cue 𝑗. The initial retrieval
takes a fixed time, say 𝛼, regardless of a chunk’s degree of match with
the retrieval cues.

The model further assumes that if the initially retrieved chunk
does not fully match the retrieval cues, a backtracking can occur with
some probability 𝑃𝑏. For example, in case of grammatical sentences,
the backtracking occurs with probability 𝑃𝑏 whenever the distractor is
retrieved initially. Consequently, if the distractor was initially retrieved
in some trials, these trials would increase the overall dependency
completion time because of additional backtracking time 𝛿.

However, the ungrammatical sentences pose an implementational
challenge: Neither the subject nor the attractor fully match the retrieval
cues, should backtracking occur for both the nouns or for only the
attractor?

We present a model assuming that the backtracking can occur for
the subject and the attractor noun in ungrammatical sentences.19 To

19 The model assuming that backtracking occurs only for the non-subject
(attractor/distractor) noun is also presented in this subsection; the model

generate reading time predictions from the model, we use a multi-
nomial processing tree following (Lissón, et al., 2021; Nicenboim &
Vasishth, 2018). Fig. C.1 shows the decision tree of processing steps
assumed in the model. The labels shown in the tree are as follows: 𝛼
is the time taken (in log milliseconds) for initial retrieval, 𝑃𝑖 is the
probability of initial retrieval, 𝛿 is the time taken for backtracking
(reanalysis of the incorrectly retrieved chunk).

Fig. C.1 shows that the reading times in both grammatical and
ungrammatical sentences come from a mixture of two lognormal distri-
butions - (i) when backtracking occurs, 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛿, 𝜎), (ii) when
backtracking does not occur, 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎).

In grammatical sentences, the probability of backtracking in the 𝑘th
trial (regardless of what is retrieved initially) is (1 −𝑃𝑖) ⋅𝑃𝑏. Hence, the
reading time in the 𝑘th trial can be sampled using

𝑇𝑘 ∼
{

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛿, 𝜎), if 𝑧𝑘 = 1
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎), if 𝑧𝑘 = 0

where 𝑧𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃 = (1 − 𝑃𝑖) ⋅ 𝑃𝑏) (C.2)

However, in the ungrammatical sentences, the backtracking can
occur for both the subject and the attractor. The probability of back-
tracking in the 𝑘th trial (regardless of what is retrieved initially) is
𝑃𝑖 ⋅ 𝑃𝑏 + (1 − 𝑃𝑖) ⋅ 𝑃𝑏 = 𝑃𝑏. Hence, the reading time in the 𝑘th trial

shows qualitatively opposite predictions with respect to observed effects in
ungrammatical sentences.
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Fig. C.2. The agreement attraction and the number distractor effect predicted by the
non-linear cue-based retrieval model.

can be sampled as

𝑇𝑘 ∼
{

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛿, 𝜎), if 𝑧𝑘 = 1
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎), if 𝑧𝑘 = 0

where 𝑧𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃 = 𝑃𝑏)

(C.3)

Using the above retrieval time equations, we derive predictions for
the number agreement effects in grammatical and ungrammatical con-
ditions for subject–verb agreement dependencies. Suppose, the effect in
grammatical and ungrammatical conditions is 𝐸𝑔 and 𝐸𝑢 respectively.
The effects come from the model conditional on its one free parameter,
the scaling parameter 𝛼,
(

𝐸𝑔
𝐸𝑢

)

∼ 𝑀𝑜𝑑𝑒𝑙(𝛼, 𝛿, 𝑃𝑖, 𝑃𝑏) (C.4)

where 𝑃𝑖 is the probability with which the subject noun is retrieved
initially, Eq. (C.1) determines the value of 𝑃𝑖. The probability of back-
tracking 𝑃𝑏 is sampled from a Beta prior 𝐵𝑒𝑡𝑎(2, 2). Finally, the scaling
parameter 𝛼 is assumed come from the following prior distribution
(similar to the scaling parameter in the feature percolation model),

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) (C.5)

where 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05) means a normal distribution with mean
5.3, standard deviation 0.05, and truncated at 5.2 so that it does not
allow values lower than 5.2. The justification for the choice of priors on
the scaling parameter is given in section Choice of priors on the scaling
parameter .

Fig. C.2 shows the model predictions for the grammatical and
ungrammatical subject–verb number agreement dependencies. In gram-
matical sentences, the probability of retrieving the subject noun is
close to 100% in both conditions (a) and (b) (see Table C.1). As a
result, the reading times in almost all the trials are sampled from
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎) and hence, the model predicts close-to-zero effect in
grammatical sentences along with some uncertainty. In ungrammatical
sentences, the retrieval probability is 50%–50% for the subject and the
attractor in condition (c) and approximately 100%–0% in condition (d)
(see Table Table C.1). However, whatever is retrieved initially is sub-
ject to probabilistic backtracking. Consequently, in both conditions (c)
and (d), reading times are sampled from a mixture of 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎)
and 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛿, 𝜎) depending on the probability of backtracking
𝑃𝑏. Thus, the model again predicts no difference between conditions (c)
and (d) with some uncertainty (see Fig. C.2).

The non-linear cue-based retrieval model assuming that backtracking occurs
only for the non-subject nouns

In the previous model, we have assumed that the backtracking can
occurs for both the subject and the attractor in the ungrammatical

sentences. We now turn to the second plausible scenario where back-
tracking occurs only for the distractor/attractor noun. In this model,
the multinomial processing tree for the ungrammatical sentences will
be same as for the grammatical sentences (see Fig. C.1). Consequently,
the reading time equations will be the same for the grammatical and
ungrammatical sentences:

𝑇𝑘 ∼
{

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛿, 𝜎), if 𝑧𝑘 = 1
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎), if 𝑧𝑘 = 0

where 𝑧𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃 = (1 − 𝑃𝑖) ⋅ 𝑃𝑏) (C.6)

where (1−𝑃𝑖)⋅𝑃𝑏 is the probability of backtracking, 𝑃𝑖 is the probability
of retrieving the subject noun initially, 𝛼 is the time taken (in log
milliseconds) in the initial retrieval, and 𝛿 is the time taken (in log ms)
in the backtracking step.

Fig. C.3 shows the model predictions against the observed effects in
grammatical and ungrammatical sentences. In grammatical sentences,
since the probability of retrieving the subject noun is close to 100%
in both conditions (a) and (b), the reading times are sampled from
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎). Therefore, the model predicts close-to-zero effect in
grammatical sentences. In ungrammatical sentences, the initial retrieval
probability is 50%–50% for the subject and the attractor in condition
(c) and approximately 100%–0% in condition (d) (see Table Table C.1).
Consequently, in condition (c), the backtracking occurs in 0.5 × 𝑃𝑏 ×𝑁
trials out of total 𝑁 trials, while in condition (d), the backtracking
almost never occurs. This implies that the reading times in condition (c)
are sampled from a mixture of 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎) and 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼+ 𝛿, 𝜎),
but in condition (d), they are sampled only from 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼, 𝜎). Thus,
the model predicts a slowdown in condition (c) compared to condition
(d) in ungrammatical sentences; this prediction is inconsistent with the
observed data (see Fig. C.3).

The non-linear cue-based retrieval model of Parker (2019)

Parker (2019) developed a non-linear cue-based retrieval model
within the ACT-R cognitive architecture (Anderson, et al., 2004; An-
derson & Lebiere, 2014). The model assumes that the dependency
completion is driven by a cue-based search process in memory based on
feature specifications such as [subject], [plural], called retrieval cues.
Each chunk in memory receives activation via matching-cues in a non-
linear (multiplicative) fashion. The total activation of a memory chunk
𝑖 in trial 𝑘 is given by,

𝐴𝑖,𝑘 = 𝐵𝑖 +

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

∑𝑛
𝑖=1

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

+ 𝜖𝑘 (D.1)

where 𝐵𝑖 is the base-level activation of the chunk; 𝑆𝑖𝑗 is the strength of
association between the chunk 𝑖 and the retrieval cue 𝑗, 𝑆𝑖𝑗 takes the
value 0.99 if the chunk matches the retrieval cue, and it takes the value
0.01 the chunk mismatches the retrieval cue. ∏𝑁

𝑗=1 𝑆
𝑊𝑗
𝑗𝑖 is the non-linear

function that determines total activation received by the chunk from all
the retrieval cues; 𝜖𝑘 is the trial-level noise in the activation such that
𝜖𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎).

The model further assumes that a chunk with the highest total
activation gets retrieved and the activation of the retrieved chunk
determines the retrieval time at the verb. The retrieval time in the 𝑘th
trial is given by

𝑅𝑇𝑘 = 𝐹𝑒−𝐴𝑟𝑒𝑡𝑟,𝑘 (D.2)

where 𝐴𝑟𝑒𝑡𝑟,𝑘 is the activation of the retrieved chunk in the 𝑘th trial and
𝐹 is a scaling parameter, called the latency factor. The latency factor
𝐹 is the only free parameter in the model which is assumed to come
from the following prior distribution

𝐹 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) (D.3)

Based on the above prior, we derive predictions for the num-
ber agreement effects in grammatical and ungrammatical sentences.
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Fig. C.3. Prior predictions of the non-linear cue-based retrieval model assuming that backtracking occurs only for the attractor/distractor noun: The shaded gray bands
represent the 95% credible intervals of number agreement effects predicted by the model. The red triangles and the error bars around them show the observed effect for each
dataset specified on the 𝑦-axis.

Table C.1
The probability of initial retrieval in four conditions; 𝑃𝑖 indicate the probability of retrieving the subject noun; 0.99 is the value of match
between a chunk and a retrieval cue, 0.01 is the value of mismatch between a chunk and a retrieval cue.

The probability of retrieving the
Condition Subject noun Distractor/Attractor noun

𝑃𝑖 (1 − 𝑃𝑖)

(a) Grammatical, singular distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.99×0.99

0.99×0.99+0.99×0.01
= 0.990 1 − 0.990 = 0.010

(b) Grammatical, plural distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.99×0.99

0.99×0.99+0.01×0.01
= 0.999 1 − 0.999 = 0.001

(c) Ungrammatical, plural attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡𝑠−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.99×0.01

0.99×0.01+0.99×0.01
= 0.500 1 − 0.500 = 0.500

(d) Ungrammatical, singular attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.99×0.01

0.99×0.01+0.01×0.01
= 0.990 1 − 0.990 = 0.010

Table D.1
The activation received by the subject and the distractor/attractor noun; 0.99 indicate the value of match between a chunk and a retrieval cue,
0.01 indicate the value of mismatch between a chunk and a retrieval cue.

Activation received by the
Condition Subject noun Distractor/Attractor noun

(a) Grammatical, singular distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.99×0.99

0.99×0.99+0.99×0.01
= 0.990 1 − 0.990 = 0.010

(b) Grammatical, plural distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.99×0.99

0.99×0.99+0.01×0.01
= 0.999 1 − 0.999 = 0.001

(c) Ungrammatical, plural attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡𝑠−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.99×0.01

0.99×0.01+0.99×0.01
= 0.500 1 − 0.500 = 0.500

(d) Ungrammatical, singular attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.99×0.01

0.99×0.01+0.01×0.01
= 0.990 1 − 0.990 = 0.010

Fig. D.1 shows the prior predictions of the model against the observed
data. In grammatical sentences, the model predicts close-to-zero effect
along with some uncertainty, a typical prediction of the non-linear
cue combination. In case of ungrammatical sentences, both the subject
and the attractor nouns receive same amount of activation (i.e. 0.5)
in condition (c), but in condition (d) the subject receives most of
the activation that is 0.99 (see Table D.1). Consequently, the chunk
retrieved in condition (c) would have an approximate activation of
0.5 while the retrieved chunk in (d) would mostly have activation of
approx. 0.99. Therefore, the model predicts a slowdown in condition
(c) compared to condition (d). The model is thus able to capture the
observed effects in grammatical sentences, but fails to capture the
agreement attraction effects in ungrammatical sentences (see Fig. D.1).

The non-linear cue-based retrieval model of Parker (2019) assuming acti-
vation sampling

The previous model based on Parker (2019) assumes that activation
received by a chunk is normalized by the sum of activations received

by all the chunks in memory i.e.
∏𝑁

𝑗=1 𝑆
𝑊𝑗
𝑗𝑖

∑𝑛
𝑖=1

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

, and the chunk with

highest activation is retrieved. However, we can make slightly different
assumptions about how cue matching affect retrieval:

1. Each chunk in memory has a certain probability of retrieval
based on their degree of match with the retrieval cues. The
retrieval probability of a chunk 𝑖 is given by
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Fig. D.1. Prior predictions of the non-linear cue-based retrieval model of Parker (2019): The shaded gray bands represent the 95% credible intervals of number agreement
effects predicted by the model. The red triangles and the error bars around them show the observed effect for each dataset specified on the 𝑦-axis.

Table D.2
The activation and the retrieval probabilities of the subject and the distractor/attractor noun.

Activation received by the Retrieval probability of the
Condition Subject Distractor/ Subject Distractor/

Attractor Attractor

(a) Grammatical, singular distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.9801 0.0099 0.990 0.010
(b) Grammatical, plural distractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑠𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 rusty. 0.9801 0.0001 0.999 0.001
(c) Ungrammatical, plural attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡𝑠−𝑠𝑢𝑏𝑗𝑒𝑐𝑡+𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.0099 0.0099 0.500 0.500
(d) Ungrammatical, singular attractor condition
The 𝑘𝑒𝑦+𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 to the 𝑐𝑎𝑏𝑖𝑛𝑒𝑡−𝑠𝑢𝑏𝑗𝑒𝑐𝑡−𝑝𝑙𝑢𝑟𝑎𝑙 𝑤𝑒𝑟𝑒𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑝𝑙𝑢𝑟𝑎𝑙 rusty. 0.0099 0.0001 0.990 0.010

𝜃𝑖 =
∏𝑁

𝑗=1 𝑆
𝑊𝑗
𝑗𝑖

∑𝑛
𝑖=1

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

The retrieval probabilities associated with the chunks in memory
determine which of them is retrieved in a trial.

2. The activation of a chunk 𝑖 is given by
𝐴𝑖 =

∏𝑁
𝑗=1 𝑆

𝑊𝑗
𝑗𝑖

3. In the 𝑘th trial, one of the chunks from memory is retrieved
conditional on their respective probabilities of retrieval. For
example, if there are two chunks in memory with activations 𝐴1
and 𝐴2 and retrieval probabilities 𝜃1 and 1 − 𝜃1, the activation
of the retrieved chunk in the 𝑘th trial can be derived as 𝐴𝑟𝑒𝑡𝑟,𝑘 =
{

𝐴1, if 𝑧𝑘 = 1
𝐴2, if 𝑧𝑘 = 0

where 𝑧𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃1)

4. Finally, the retrieval time in the 𝑘th trial is determined by the
activation of the retrieved chunk
𝑇𝑘 = 𝐹𝑒−𝑓𝐴𝑟𝑒𝑡𝑟,𝑘

Fig. D.2 shows the prior predictions of the Parker (2019) model
assuming retrieval probability-based sampling of nouns for dependency
completion. In grammatical sentences, the subject nouns has almost
100% probability of retrieval in both conditions (a) and (b). Therefore,
the retrieved chunk in both (a) and (b) would almost always have the
same activation of 0.9801 (see Table D.2). Therefore, the model pre-
dicts no difference between conditions (a) and (b) consistent with the
observed pattern of effects. In ungrammatical sentences, the retrieval
probability is 50%–50% in condition (c), therefore, the retrieved chunk
would always have the activation 0.0099. In condition (d), the subject
is retrieved most of the time, but it also has the same activation 0.0099
(see Table D.2). Therefore, the model again predicts no difference

between conditions (c) and (d). This prediction is inconsistent with the
observed agreement attraction effects in ungrammatical sentences (see
Fig. D.2).

The feature percolation model

The feature percolation model assumes that the number feature of
the noun which is not the subject of the verb percolates to the subject
noun in 𝜃 proportion of trials. For example, consider the sentence The
key to the cabinets were rusty. The plural feature of the noun phrase the
cabinets percolates up to the subject, the key in 𝜃 ×𝑁 number of trials
out of total 𝑁 trials; this changes the representation of subject from
singular to plural in 𝜃 ×𝑁 trials. Consequently, the subject will match
in number feature with the verb in 𝜃 ×𝑁 trials, and will not match in
the remaining (1 − 𝜃) × 𝑁 trials. The model further assumes that the
processing at the verb is faster when the subject and the verb match in
number feature compared to when they do not. The reading times at
the verb thus come from different distributions in these two situations:
when the subject matches the verb in the number feature and when it
does not.

Suppose that when the subject matches the verb in the number
feature, the reading times 𝑥 at the verb come from a probability density
function 𝑝1(𝑥|𝜁 ); and, when the subject mismatches the verb in number,
the reading times 𝑥 come from a probability density function 𝑝2(𝑥|𝜁 );
where 𝜁 is the vector of parameters in the model. As we know for the
above sentence that the subject matches the verb in 𝜃 proportion of
trials, we can say that the reading times are generated from 𝑝1(𝑥|𝜁 )
with a probability of 𝜃 and from 𝑝2(𝑥|𝜁 ) with a probability of (1 − 𝜃).
We can express this process using a two-component (finite) mixture
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Fig. D.2. Prior predictions of the non-linear cue-based retrieval model of Parker (2019) assuming activation sampling: The shaded gray bands represent the 95% credible
intervals of number agreement effects predicted by the model. The red triangles and the error bars around them show the observed effect for each dataset specified on the 𝑦-axis.

model (Frühwirth-Schnatter, 2006; McLachlan & Peel, 2004). The read-
ing times 𝑥 come from a mixture of probability density functions 𝑝1(𝑥|𝜁 )
and 𝑝2(𝑥|𝜁 ) with probabilities 𝜃 and (1−𝜃) respectively. The distribution
of reading times over all the trials can be represented by a density
function 𝑓 (𝑥|𝜁 ) such that

𝑓 (𝑥|𝜁 ) =
{

𝑝1(𝑥|𝜁 ), with probability 𝜃
𝑝2(𝑥|𝜁 ), with probability (1 − 𝜃)

(E.1)

The reading time at the verb in the 𝑖th trial, 𝑅𝑇𝑖 will be

𝑅𝑇𝑖 ∼
{

𝑝1(𝑥|𝜁 ), if 𝑧𝑖 = 1
𝑝2(𝑥|𝜁 ), if 𝑧𝑖 = 0

where 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃) (E.2)

For 𝑝1(𝑥|𝜁 ) and 𝑝2(𝑥|𝜁 ), we choose lognormal distributions with
means 𝜇𝑚𝑎𝑡𝑐ℎ and 𝜇𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ respectively, and the same standard devi-
ation 𝜎. The rationale behind choosing the lognormal distributions is
that the reading times from the self-paced reading experiments can be
modeled as log-normally distributed: the reading times can only take
positive real values and tend to have a long tail of relatively large
values (Nicenboim et al., 2022). The reading time is thus assumed to
come from a mixture of two lognormal distributions.

𝑅𝑇𝑖 ∼
{

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑚𝑎𝑡𝑐ℎ, 𝜎), if 𝑧𝑖 = 1
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ, 𝜎), if 𝑧𝑖 = 0

where 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

(E.3)

As the model assumes that the reading times in the subject–verb
number match situation are faster than in mismatch situation, we can
write 𝜇𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ as

𝜇𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 𝜇𝑚𝑎𝑡𝑐ℎ + 𝑑 (E.4)

where 𝑑 is constrained be positive, 𝑑 > 0. Let us call 𝜇𝑚𝑎𝑡𝑐ℎ the scaling
parameter and represent it as 𝑆. We can rewrite the reading time
function as,

𝑅𝑇𝑖 ∼
{

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑆, 𝜎), if 𝑧𝑖 = 1
𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑆 + 𝑑, 𝜎), if 𝑧𝑖 = 0

where 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

(E.5)

where the scaling parameter, 𝑆 and the percolation rate 𝜃 are assumed
to be the free parameters, with the following priors

𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05),

and

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25),

Here, 𝑙𝑏 = 0.1 indicates a lower bound on distortion rate values. The
lower bound of 0.1 implies that the distortion rate lies in the range [0.1,
0.5] — that is, the representation of the subject noun changes in at least
10% and at most 50% of the trials.

The marking and morphing model

The Marking and Morphing model (Eberhard et al., 2005) gen-
erates almost the same predictions as the feature percolation model;
although, unlike the feature percolation model, the marking and mor-
phing model predicts an asymmetry in the effect sizes for grammatical
vs. ungrammatical sentences. The model assumes that

1. The nouns in memory have continuous-valued number informa-
tion such that an unequivocally singular noun would have the
lowest value and an unequivocally plural noun would have the
highest value.

2. The number information for the subject noun comes from two
sources, the number marking on the subject and the lexical
number specifications of the subject and the local nouns.

3. The reading time at the verb is determined by the degree of
number match between the subject and the verb.

Consider the sentence the key to the cabinets was rusty. The number
value of the subject noun the key, 𝑆(𝑟) is determined by (a) the number
marking of the subject, 𝑆(𝑛), (b) lexical number specification of the sub-
ject noun, 𝑆(𝑚1), and (c) lexical number specification of the distractor
noun the cabinets, 𝑆(𝑚2),

𝑆(𝑟) = 𝑆(𝑛) +
∑

𝑗
𝑊𝑗 ⋅ 𝑆(𝑚𝑗 ) (F.1)

where 𝑆(𝑚𝑗 ) represent the lexical number specification of the 𝑗th noun,
𝑊𝑗 represent the weights for feature transmission from 𝑗th noun. Here,
𝑆(𝑚𝑗 ) has value 0 if the 𝑗th noun is a singular count noun, similarly
it has value 1.16 for the plural count noun, 1 for the invariant plural
noun, 0.09 for the singular collective noun, and 1.25 for the plural
collective noun.

Suppose the weight for the subject noun is 𝑊1 and weight for the
local noun is 𝑊2, the equation can be rewritten as

𝑆(𝑟) = 𝑆(𝑛) +𝑊1 ⋅ 𝑆(𝑚1) +𝑊2 ⋅ 𝑆(𝑚2) (F.2)
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The above valuation of plurality of the subject noun can be used to
determine the probability of producing/predicting a plural verb using
𝑃 (𝑝𝑙𝑢𝑟𝑎𝑙) = 1

1+𝑒−(𝑆(𝑟)+𝑏) where 𝑏 is a constant fixed to a value of −3.42.
But we are interested in predicting reading times at the verb.

We need a linking function to derive reading time predictions from
the model. In order to maintain the continuous number valuation
property of the marking and morphing model, we compute the degree
of match between the subject noun and the verb on a continuous scale.
The degree of match in plurality of the verb and the subject noun is
given by

𝑃𝐿𝑚𝑎𝑡𝑐ℎ =
|

|

|

|

𝑆(𝑟)
𝑚𝑝

− 𝑉𝑝𝑙,𝑘
|

|

|

|

(F.3)

where 𝑚𝑝 – maximum plurality – is a normalizing constant to scale the
value of 𝑆(𝑟) on a scale of 0–1; 𝑚𝑝 takes the value of maximum possible
plurality the subject noun can have; 𝑉𝑝𝑙,𝑘 indicate the plurality of the
verb in trail 𝑘 such that the value of 𝑉𝑝𝑙 is 1 if the verb is plural and 0
if the verb is singular.

The degree of match 𝑃𝐿𝑚𝑎𝑡𝑐ℎ is multiplied with a constant 𝛿 to
compute the number mismatch cost 𝛥𝑘 on log milliseconds scale:

𝛥𝑘 =
|

|

|

|

𝑆(𝑟)
𝑚𝑝

− 𝑉𝑝𝑙,𝑘
|

|

|

|

⋅ 𝛿 (F.4)

The mismatch cost 𝛥𝑘 can have values on a continuous scale be-
tween 0 and 𝛿; 0 if the subject number completely match the verb
number and 𝛿 if the subject number completely differs from the verb
number.

The reading times at the verb in the 𝑘th trial come from a lognormal
distribution,

𝑅𝑇𝑘 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛥𝑘, 𝜎) (F.5)

where 𝛼 is the scaling parameter, it can be interpreted as the mean
reading time (in log ms) when the subject noun completely match the
verb in number, 𝛥𝑘 is the number-mismatch penalty in the 𝑘th trial
computed using Eq. (G.1). We assume the scaling parameter 𝛼 and the
weight for local noun 𝑊2 are two free parameters in the model. The
scaling parameter has the following prior,

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=5.2(5.3, 0.05),

For 𝑊2, we set a prior on 𝜃 such that 𝜃 = 𝑊2∕𝑘 (where k is fixed at
9), 𝜃 will determine the rate of number feature spread from the local
noun to the subject noun:

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25),

where 𝑙𝑏 = 0.1 indicate a lower bound of 0.1 on the distortion rate.
Given the above priors, the prior predictions of the model are shown

in Fig. G.1.

The grammaticality bias model

Following Hammerly et al. (2019)’s idea of response bias, we as-
sume a similar bias in reading such that the comprehender has a strong
expectation to encounter grammatical continuation of a partially-read
sentence. For example, after the participants have read the key to the
cabinets..., they have a bias to expect a singular verb phrase. When a
singular verb is encountered, any change in continuous-valued number
of the subject does not cause much difference in processing at the
verb. But when a plural verb is encountered, the processing is already
difficult, and as a result, any slight evidence of plurality in subject’s
number causes a facilitation at the verb. To operationalize this idea,
we use an exponential mismatch cost function: As the degree of number-
mismatch between the verb and the subject increases, the processing
cost at verb increases exponentially. We can implement the grammati-
cality bias model within the framework of the marking and morphing
mechanism (section ‘The Marking and Morphing model’).

The grammaticality bias model replaces the linear mismatch cost
(see Eq. (G.1)) of the marking and morphing model by an expo-
nential mismatch cost function. The mismatch cost in trial 𝑘 for the
grammaticality bias model is given by

𝛥𝑘 =

(

|

|

|

|

𝑆(𝑟)
𝑚𝑝

− 𝑉𝑝𝑙,𝑘
|

|

|

|

⋅ 𝛿

)2𝑏

(G.1)

where 𝑏 is the grammaticality bias and it can take values between 0.5
and 1 such that 𝑏 = 0.5 corresponds to no bias (default marking and
morphing model) and 𝑏 = 1 means the maximum bias; 𝑚𝑝 – maximum
plurality – is a normalizing constant to scale the value of 𝑆(𝑟) on a
scale of 0–1; 𝑉𝑝𝑙,𝑘 indicate the plurality of the verb in trail 𝑘 such that
the value of 𝑉𝑝𝑙 is 1 if the verb is plural and 0 if the verb is singular.

The mismatch penalty 𝛥𝑘 can now have values between 0 and 𝛿2;
0 if the subject number completely match the verb number and 𝛿2 if
the subject number completely differs from the verb number and the
grammaticality bias 𝑏 is equal to 1. The mismatch cost exponentially
increases with increase in degree of mismatch when the grammaticality
bias is greater than 0.5. For higher grammaticality bias, the mismatch
cost has more exponential growth.

The reading time at the verb in the 𝑘th trial is assumed to come
from a lognormal distribution

𝑅𝑇𝑘 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝛼 + 𝛥𝑘, 𝜎) (G.2)

where 𝛼 is the scaling parameter. Using the same priors as in the
marking and morphing model, we derive model predictions for the
grammatical and ungrammatical sentences. Fig. F.1 shows the prior
predictions of the model. Why does the grammaticality bias reduce
the effect size in grammatical sentences? This is illustrated is Fig. G.2.
The mismatch cost function is an exponential curve; the grammatical
sentences that are on the lower side of the curve would have very small
influence of the plurality of the subject compared to ungrammatical
sentences which are on the higher side of the curve.

The lossy compression model

The lossy compression model assumes that the comprehender has
access to only an imperfect memory representation of the linguistic
input and the processing difficulty at a verb is the expected surprisal
of seeing the verb over all possible memory representations of the
preverbal input. For example, consider the sentence The key to the
cabinets was rusty, The input here is 𝐼 = 𝑁 P 𝑁.𝑝𝑙 where 𝑁
represents a noun, P represents a preposition, and .𝑝𝑙 represents a plural
marker on a noun.

The input 𝐼 gets distorted to a possible memory representations
𝑟𝑖 such that the plural maker on a noun is inserted or deleted. The
following memory representations are possible,

𝑟1 = 𝑁.𝑝𝑙 P 𝑁.𝑝𝑙 𝑟2 = 𝑁.𝑝𝑙 P 𝑁
𝑟3 = 𝑁 P 𝑁.𝑝𝑙 𝑟4 = 𝑁 P 𝑁
The processing difficulty for the upcoming verb 𝑉 will be the

expected surprisal of the verb given all possible memory representations
𝑟1, 𝑟2,… , 𝑟𝑁 :

𝐷(𝑉 |𝐼) =
𝑁
∑

𝑖=1
− log𝑃 (𝑉 |𝑟𝑖) ⋅ 𝑃 (𝑟𝑖|𝐼) (H.1)

where 𝑃 (𝑟𝑖|𝐼) is the probability of obtaining a memory representation
𝑟𝑖 from the actual pre-verbal input 𝐼 . And, − log𝑃 (𝑉 |𝑟𝑖) is the surprisal
– negative log conditional probability – of seeing a plural/singular
verb given a memory representation 𝑟𝑖. The model further assumes
that the comprehender reconstructs a set of possible, true preverbal
contexts from their memory representation 𝑟𝑖 based on their prior lin-
guistic knowledge and their uncertainty about the degree of distortion
in the system. We can derive the conditional probability 𝑃 (𝑉 |𝑟𝑖) by
marginalizing out the all possible true contexts 𝑐1, 𝑐2,… , 𝑐𝑛

𝑃 (𝑉 |𝑟𝑖) =
𝑛
∑

𝑗=1
𝑃 (𝑉 |𝑐𝑗 )𝑃 (𝑐𝑗 |𝑟𝑖) (H.2)
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Fig. F.1. Prior predictions of the Marking and Morphing model: The shaded gray bands represent the 95% credible intervals of number agreement effects predicted by the
model. The red triangles and the error bars around them show the observed effect for each dataset specified on the 𝑦-axis.

Fig. G.1. The agreement attraction and the number distractor effect predicted by the grammaticality bias model.

where 𝑃 (𝑉 |𝑐𝑗 ) is the conditional probability of seeing the verb given a
possible true context 𝑐𝑗 . We computed conditional probabilities from
the COW corpora (Schäfer, 2015; Schäfer & Bildhauer, 2012) (for
English and Spanish studies) and the Universal Dependencies tree-
banks (Nivre et al., 2018) (for Arabic and Armenian). The search
criteria used for computing probabilities from the corpora were as fol-
lows. Fully structural queries were used to look for each construction.
For example, to search the prepositional phrase (PP) constructions, a
noun phrase followed by an embedded PP was set as a probe. Similarly,
for searching relative clause (RC) constructions, the probe was: a noun
phrase followed by an RC that starts with a relative pronoun and
contains a subject noun modifying a finite verb. The information used
in the queries include Part-of-Speech tags, verb type (finite vs. non-
finite), dependency relation, and number (singular vs. plural). We do
not use lexical information from the corpora, implying that we do not
make distinction between different types of prepositions and relative
pronouns.

We can derive the probability 𝑃 (𝑐𝑗 |𝑟𝑖) up to proportionality using
Bayes’ rule,

𝑃 (𝑐𝑗 |𝑟𝑖) ∝ (𝑟𝑖|𝑐𝑗 )𝑃 (𝑐𝑗 ) (H.3)

where 𝑃 (𝑐𝑗 ) represents the probability of seeing the representation 𝑐𝑗
in the corpus, and (𝑟𝑖|𝑐𝑗 ) is the likelihood of generating the memory
representation 𝑟𝑖 from a possible true representation 𝑐𝑗 .

Based on Eqs. (H.2) and (H.3), we can rewrite the processing
difficulty function as follows,

𝐷(𝑉 |𝐼) =
𝑁
∑

𝑖=1
− log𝑃 (𝑉 |𝑟𝑖) ⋅ 𝑃 (𝑟𝑖|𝐼) (H.4)

where

𝑃 (𝑉 |𝑟𝑖) ∝
𝑛
∑

𝑗=1
𝑃 (𝑉 |𝑐𝑗 )(𝑟𝑖|𝑐𝑗 )𝑃 (𝑐𝑗 )

The likelihood function (𝑟𝑖|𝑐𝑗 ) is called the lossy memory encoding
function: the likelihood that a true representation 𝑐𝑗 gets distorted to
memory representation 𝑟𝑖 given a deletion rate 𝑑 and insertion rate 𝑎
(see Table H.1).20

𝑟𝑖|𝑐𝑗 ∼ 𝑀𝑒𝑚𝑜𝑟𝑦(𝑑, 𝑎) (H.5)

20 The same memory function also underlies 𝑃 (𝑟𝑖|𝐼): the probability of
generating a memory representation 𝑟𝑖 from the observed linguistic input 𝐼 .
The probability 𝑃 (𝑟𝑖|𝐼) can be calculated from insertion and deletion rates
in the same way as we calculate (𝑟𝑖|𝑐𝑗 ) (see Table H.1). The function
𝑃 (𝑟𝑖|𝐼) represents the experimenter’s uncertainty about the memory represen-
tation formed by the comprehender and the function (𝑟𝑖|𝑐𝑗 ) represents the
comprehender’s uncertainty about the true intended representation.
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Fig. G.2. An illustration of number-mismatch cost, 𝛥 at the verb as a function of subject’s plurality and the grammaticality bias. When there is no grammaticality bias (i.e., bias
= 0), the mismatch cost increases linearly w.r.t. plurality of the subject but as the value of bias increases, the mismatch cost grows exponentially. The labels (a), (b), (c), and (d)
on the 𝑥-axis mark the number value of the subject noun in four conditions shown below the graph. The red arrows – indicating difference in mismatch costs between a pair of
conditions – can be interpreted as the attraction effects on the log scale when there is a grammaticality bias (𝑏 = 1); similarly, the blue arrows indicate attraction effects (on log
scale) when there is no bias (𝑏 = 0.5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table H.1
The lossy memory encoding function: the likelihood of obtaining the memory
representation 𝑟𝑖 from the distortion of a possible true representation (𝑁 P 𝑁 .pl).

Memory representation Likelihood of obtaining 𝑟𝑖 from 𝑐𝑗 = 𝑁 P 𝑁 .pl

𝑟𝑖 (𝑟𝑖|𝑐𝑗 )

𝑁 .pl P 𝑁 .pl 𝑎(1 − 𝑑)
𝑁 .pl P 𝑁 𝑎𝑑
𝑁 P 𝑁 .pl (1 − 𝑎)(1 − 𝑑)
𝑁 P 𝑁 (1 − 𝑎)𝑑

where 𝑑 is the rate of deleting a plural marker and 𝑎 is the rate of
inserting a plural marker. Table H.1 shows the likelihood of obtaining
memory representation 𝑟𝑖 from a possible true representation 𝑐𝑗 = 𝑁 P
𝑁.𝑝𝑙.

Finally, we transform processing difficulty into reading times using
a linear linking function. Reading times in 𝑘th trial, 𝑅𝑇𝑘, will be:

𝑅𝑇𝑘 = 𝐴 + 𝑆 ⋅𝐷(𝑉 |𝐼) + 𝜖𝑘 (H.6)

where 𝑆 is a scaling parameter and 𝜖𝑘 is the random noise in the 𝑘th
trial such that 𝜖𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 20); the parameter 𝐴 is the intercept of
the linear function and represents the shift in reading times, we keep
𝐴 fixed at 120 ms.

Thus, the model has three free parameters: scaling parameter 𝑆,
deletion rate 𝑑, and insertion rate 𝑎, with the following priors,

𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.15(0.25, 0.05)

𝑑 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)

𝑎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25)

where 𝑙𝑏 = 0.1 is the lower bound on the deletion rate and insertion
rate values. The parameters 𝑎 and 𝑑 represent the rate of information
loss when the linguistic input is stored in memory.

The feature percolation-plus-retrieval model

The feature percolation-plus-retrieval model assumes that the num-
ber feature of the non-subject noun probabilistically percolates to the
subject noun which changes the subject’s representation in a proportion
of trials before the retrieval is triggered at the verb. For example,
consider the sentence The key to the cabinets was rusty. The plural feature
of the cabinets percolates up to the subject noun phrase the key with a
probability 𝜃. Suppose there are total 𝑁 trials in an experiment. In 𝜃×𝑁
trials, the subject noun would now have plural feature and in remaining
(1 − 𝜃) × 𝑁 trials it would have the singular feature (see Fig. I.1).
Thus, the representation of nouns in 𝑖th trial, say 𝑟𝑖, is a function of
percolation probability, 𝜃 and the original preverbal input 𝐼 ,

𝑟𝑖 ∼ 𝑓 (𝐼, 𝜃) (I.1)

The probability of feature percolation 𝜃 is called a distortion rate
parameter as it determines the rate of change in representation of the
preverbal input in our implementation.

The model further assumes that each noun phrase would receive
activation based on their degree of match with the retrieval cues. For
example, if the retrieval cues at verb are [subject], [singular], then a
singular subject noun would receive more activation compared to a
plural subject noun. Therefore, the amount of activation received by
each noun phrase depends on their feature representation (see Fig. I.1
for the schematic illustration). The activation of noun phrases 𝑛1 and
𝑛2 in the 𝑖th trial is given by
(

𝐴𝑛1 ,𝑖
𝐴𝑛2 ,𝑖

)

= 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑟𝑖) + 𝜖𝑖 (I.2)

where 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 represent the activation function that determines the
activation received by a chunk based on its degree of match with the
retrieval cues, 𝑟𝑖 is the representation of the nouns in the 𝑖th trial (see
Eq. (I.1)), and 𝜖𝑖 is the trial-level Gaussian noise in the activation.

A chunk with the highest activation gets retrieved at the verb and
the retrieval times are determined by the activation of the retrieved

43



Journal of Memory and Language 129 (2023) 104400

33

H. Yadav et al.

Fig. I.1. Schematic illustration of activation received by the nouns in the feature percolation-plus-retrieval model: Feature percolation modulates the amount of activation
received by the subject noun during the retrieval process. In 𝜃 ×𝑁 trials, the subject noun receives less activation in condition (b) compared to condition (a).

chunk. The retrieval times at the verb in the 𝑖th trial is given by

𝑅𝑇𝑖 = 𝐹𝑒−𝑚𝑎𝑥(𝐴𝑛1 ,𝑖 ,𝐴𝑛2 ,𝑖) (I.3)

where 𝑚𝑎𝑥(𝐴𝑛1 ,𝑖, 𝐴𝑛2 ,𝑖) represent the maximum of the activation of the
nouns in the 𝑖th trial. 𝐹 is the scaling parameter.

The model has two free parameters, the distortion rate 𝜃 and the
scaling parameter 𝐹 , with the following priors. On the distortion rate
𝜃, we choose the same truncated normal priors as we did for distortion
rate parameters in other representation distortion-based models.

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.1(0, 0.25) (I.4)

where 𝑙𝑏 = 0.1 represents the lower bound of 0.1 on distortion rate
values. For the scaling parameter 𝐹 , which comes from retrieval-part of
the model, we choose the same prior as for latency factor in cue-based
retrieval model,

𝐹 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=0.05(0.15, 0.05) (I.5)

The lossy compression-plus-retrieval model

The lossy compression-plus-retrieval model assumes that when the
preverbal linguistic input is stored in memory, it gets distorted proba-
bilistically to an imperfect memory representation before the retrieval
is triggered at the verb. For example, in the sentence the key to the
cabinets was rusty, the preverbal input is 𝑁𝑃𝑁.𝑝𝑙 meaning that the
first noun is singular and the second noun is plural. When stored
in memory, this input can get distorted to a memory representation
𝑁.𝑝𝑙𝑃𝑁 such the plural marker is inserted at the first noun and deleted
from the second noun. Thus, the likelihood of obtaining a memory
representation 𝑟 from an input 𝐼 is a function of the rate of deleting
plural markers 𝑑, and the rate of inserting plural markers on nouns 𝑎.
In the 𝑗th trial, the input 𝐼 transforms to memory representation 𝑟𝑗 ,
such that,

𝑟𝑗 |𝐼 ∼ 𝑓 (𝑎, 𝑑) (J.1)

For parameters 𝑎 and 𝑑, we choose the same priors as for insertion
and deletion rates in the lossy compression model (see section ‘The
lossy compression model’).

The lossy-compression-plus-retrieval model assumes that the chunk
with the highest activation gets retrieved in each trial. And, the ac-
tivation of a chunk is determined by the amount of activation it
receives based on the degree of match between the chunk’s features and
retrieval cues. For example, a singular subject noun would receive more
activation from [subject], [singular] cues at the verb compared to a
plural subject noun. The activation of the retrieved chunk is, therefore,
a function of memory representation of preverbal noun phrases in the
𝑗th trial,

𝐴𝑗,𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 ∼ 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑟𝑗 ) (J.2)

As discussed in section ‘The cue-based retrieval model’, the retrieval
time at the verb in the 𝑗th trial, 𝑅𝑇𝑗 , is an exponential function of the
activation of the retrieved chunk in that trial,

𝑅𝑇𝑗 = 𝐹𝑒−𝐴𝑗,𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 (J.3)

where 𝐹 is a scaling parameter called the latency factor which reflects
overall processing time; 𝐴𝑗,𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 is the activation of chunk retrieved
in trial 𝑗. We choose same prior on the scaling parameter 𝐹 as on the
scaling parameter in the cue-based retrieval model (see section ‘The
cue-based retrieval model’).

Parameter estimation

A key step in model evaluation is parameter estimation. One needs
to estimate what values of the parameter, say 𝜃, of the model would
have generated the observed data 𝑦. Under the Bayesian approach, we
can estimate the posterior distribution of parameter values given the
observed data, 𝜋(𝜃|𝑦), using Bayes’ rule

𝜋(𝜃|𝑦) =
(𝜃|𝑦)𝜋(𝜃)

𝜋(𝑦)
(K.1)

where (𝜃|𝑦) is the likelihood function, i.e., the probability density
of obtaining the data for given parameter value; 𝜋(𝜃) is the prior
distribution of 𝜃, which represents the prior knowledge about 𝜃 before
the data is available; 𝜋(𝑦) is the marginal likelihood of obtaining the
data 𝑦 taken over all possible parameter values.
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Fig. K.1. Estimated posterior distributions for the latency factor and the percolation rate are shown using gray density graphs and true parameter values are shown as black
vertical lines.

Posterior simulation methods, like Markov Chain Monte Carlo, use
the likelihood function and the prior density function to estimate
the posterior distribution of the parameter. But for the models that
we evaluated here, parameter estimation is challenging because the
likelihood function cannot be expressed analytically for most of the
models, at least not without considerable simplification. This is one
reason why we do not use the standard Bayesian estimation methods
but rather use Approximate Bayesian Computation. This method has
the advantage that we can extend the approach that we used in the
present paper to even more complex models, such as the extended
SWIFT model of eye-movement control and reading (Engbert, et al.,
2022; Rabe, et al., 2021) and recent implementations of the SOPARSE
model (Smith et al., 2021; Smith & Vasishth, 2022).

Approximate Bayesian Computation (ABC) is a well-established and
effective tool for parameter estimation (Palestro, et al., 2018; Sisson
et al., 2018) but has only recently attracted attention within the cogni-
tive science modeling community (Kangasrääsiö, Jokinen, Oulasvirta,
Howes, & Kaski, 2019; Turner & Van Zandt, 2014). ABC uses the
discrepancy between observed data and model generated data for given
parameter values to approximate the likelihood. For instance, suppose
the model simulates data 𝑥∗ for a parameter value 𝜃∗; if the simulated
data 𝑥∗ is ‘close’ to the observed data 𝑦, then the parameter value
𝜃∗ would have higher likelihood. One approach to approximating the
likelihood is to weight the proposal 𝜃∗ based on the difference between
simulated and observed data, 𝐷(𝑥∗, 𝑦). The weights can be assigned
using a Gaussian kernel density function, 𝛹 (.|𝛿), such that the difference
𝐷(𝑥∗, 𝑦) comes from a Gaussian distribution with mean zero and stan-
dard deviation 𝜎. ABC uses summary statistics 𝑆(⋅) – such as the mean
– of the observed and the simulated data to compute the difference,
𝐷(𝑥, 𝑦), such that 𝐷(𝑥, 𝑦) ≈ 𝐷(𝑆(𝑥), 𝑆(𝑦)). So, the weighting function,
𝛹 (𝐷(𝑥∗, 𝑦)|𝛿) approximates the likelihood for a given parameter value.

We use ABC Sequential Monte Carlo (ABC-SMC) algorithm (Sis-
son, Fan, & Tanaka, 2007; Toni, Welch, Strelkowa, Ipsen, & Stumpf,
2009) to estimate the posterior distributions of the parameters in our
models. The algorithm uses the idea of particle filtering: the posterior
distribution evolves through successive populations of proposals, called
particles; at each step, particles from the previous population are
sampled, perturbed, evaluated, and filtered to form the next population.
The steps of an ABC-SMC sampler are shown in Algorithm K1.

To determine the exact weighting function (Line 10 in Algorithm K1),
we need to make reasonable choices about the tolerance parameter 𝛿𝑡
and summary statistics 𝑆(.) depending on our data and the models.
Our training data consist of estimates of number agreement effects in
grammatical and ungrammatical conditions from 16 studies. Suppose 𝑖
indexes 𝑖th study such that 𝑖 ≤ 16, and 𝑔 and 𝑢 index grammatical and
ungrammatical data respectively; 𝑦𝑖,𝑔 represents grammatical data from
the 𝑖th study, and 𝑦𝑖,𝑢 represents ungrammatical data from the 𝑖th study.
A sample 𝜃𝑡,𝑘, which is the 𝑘th particle in population 𝑡, is weighted as

follows (Line 10 in Algorithm K1):

𝑊𝑡,𝑘 =

(

∏16
𝑖=1 𝛹

(

𝐷(𝑆(𝑥), 𝑆(𝑦𝑖,𝑔)) ∣ 𝛿𝑡,𝑖,𝑔
)

⋅ 𝛹
(

𝐷(𝑆(𝑥), 𝑆(𝑦𝑖,𝑢)) ∣ 𝛿𝑡,𝑖,𝑢
)

)

⋅ 𝜋(𝜃𝑡,𝑘)
∑𝐾

𝑗=1 𝑊𝑡−1,𝑗𝑄(𝜃𝑡−1,𝑗 |𝜃𝑡,𝑘)

(K.2)

where 𝑆(𝑥) represents the summary statistic of the model-generated
data; 𝑆(𝑦𝑖,𝑔) and 𝑆(𝑦𝑖,𝑢) represent the summary statistic of grammatical
and ungrammatical data from study 𝑖. We choose one summary statistic,
the mean of the data. This is because the posterior estimation accuracy
does not really improve if we add more summary statistics other than
the mean.

The term 𝛿𝑡,𝑖,𝑔 in the above equation represents the tolerance pa-
rameter associated with sampling population 𝑡 and grammatical data
of 𝑖th study, and 𝛿𝑡,𝑖,𝑢 represents the tolerance parameter associated
with sampling population 𝑡 and ungrammatical data of 𝑖th study. We
determine 𝛿𝑡,𝑖,𝑔 and 𝛿𝑡,𝑖,𝑔 as follows:

𝛿𝑡,𝑖,𝑔 =
3𝜎𝑦𝑖,𝑔
𝑡

; 𝛿𝑡,𝑖,𝑢 =
3𝜎𝑦𝑖,𝑢
𝑡

where 𝜎𝑦𝑖,𝑔 and 𝜎𝑦𝑖,𝑢 represent the standard deviation of grammatical
and ungrammatical data from study 𝑖; 𝑡 indexes the sampling popu-
lation in the ABC-SMC sampler (see Algorithm K1). The parameter 𝛿
determines the degree of approximation of the likelihood: the smaller
the value of 𝛿, the better is the approximation. In ABC-SMC sam-
plers, the tolerance parameter is (usually) adaptive to the successive
populations, so that the approximation becomes better and better as
the sampling proceeds. In our sampler, the value of 𝛿 is inversely
proportional to the population index: the 𝛿 becomes smaller and smaller
as the successive populations are sampled.

But why do we make 𝛿 adaptive to the data? The training data
from 16 studies differs a lot in terms of uncertainty in the estimates
of number agreement effects. This is because these studies had varying
sample sizes: some studies had less than 50 participants while some
had over 100 participants. We want the proposal weighting function
to be sensitive to this information such that a dataset with larger
sample size should contribute more in determining the weight of the
proposed sample compared to a dataset with smaller sample size. To
capture this information, we make the tolerance parameter adaptive
to the variance of the training data. The value of 𝛿 in our sample is
directly proportional to standard deviation of the data from study 𝑖;
this function ensures that a dataset with smaller variance would have
more impact on likelihood approximation. The term 3 in the numerator
is a scaling factor to ensure that 𝛿 is large enough to sample from the
high posterior density regions in a reasonable amount of time. If the 𝛿
becomes too small, most proposals would be weighted zero, and we will
need a very large number of proposal, and consequently a huge amount
of time, for getting a reasonable approximation of the posterior.

The term 𝑄(𝜃𝑡−1,𝑗 |𝜃𝑡,𝑘) in Eq. (K.2) is the backward transition kernel
that determines the probability density of generating a sample 𝜃𝑡−1,𝑗
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Algorithm K1
ABC-SMC algorithm for parameter estimation: Given the observed data 𝑦, prior distribution 𝜋(𝜃), we have to estimate the posterior distribution of the parameter 𝜃. The density
function 𝑄(𝜃|𝜃∗) is the transition kernel; 𝑡 indexes the successive populations and 𝑘 indexes the particles in a population.

1 In population t=1
2 Initialize a population of 𝐾 samples for the parameter 𝜃 as 𝜃1,1∶𝐾
3 Set equal weights for each sample of 𝜃 as 𝑊1,1∶𝐾 = 1∕𝐾
4 for population 2 ≤ 𝑡 ≤ 𝑇
5 for sample 1 ≤ 𝑘 ≤ 𝐾
6 Sample 𝜃∗ from the previous population 𝜃𝑡−1,1∶𝐾 with weights 𝑊𝑡−1,1∶𝐾
7 Perturb 𝜃∗ by sampling 𝜃∗∗ ∼ 𝑄(𝜃|𝜃∗)
8 Simulate data from the model given parameter value 𝜃∗∗ : 𝑥 ∼ 𝑀𝑜𝑑𝑒𝑙(𝜃∗∗)
9 Set 𝜃𝑡,𝑘 = 𝜃∗∗

10 Calculate weight for 𝜃𝑡,𝑘 as 𝑊𝑡,𝑘 = 𝛹 (𝐷(𝑆(𝑥),𝑆(𝑦))|𝛿𝑡 )⋅𝜋(𝜃𝑡,𝑘 )
∑𝐾

𝑗=1 𝑊𝑡−1,𝑗𝑄(𝜃𝑡−1,𝑗 |𝜃𝑡,𝑘 )

11 end for
12 Normalize the weights
13 end for

Fig. K.2. Estimated posteriors for the percolation rate and the latency factor parameter are shown using solid-lined density graphs; the corresponding prior distributions are shown
using dash-lined density graphs.

in the previous population from the current sample 𝜃𝑡,𝑘. The same
transition kernel is also used in Line 7 in the Algorithm K1. The sample
drawn from the previous population is perturbed using a transition
kernel, 𝑄(𝜃|𝜃∗). Suppose 𝜃∗ is a sample from the previous population
𝑡 − 1; the sample 𝜃∗ is perturbed to get a new proposal 𝜃∗∗ such that
𝜃∗∗ ∼ 𝑄(𝜃|𝜃∗). We use a Gaussian distribution with standard deviation
0.02 for the transition kernel. The proposal 𝜃∗∗ is generated using
𝜃∗∗ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃∗, 0.02). The standard deviation of 0.02 is chosen such
that the proposal 𝜃∗∗ does not lie too far away from 𝜃∗, which is likely
to be in the higher posterior density region, and also not too close to 𝜃∗

that sampler does not explore the parameter space beyond the previous
population.

Fig. K.1 shows that ABC-SMC algorithm is able to accurately es-
timate the parameter values that were used to generate data. We
validated the algorithm’s performance as follows. Using a set of pa-
rameter values (latency factor 0.2, percolation rate 0.3), we generated
fake data from the feature percolation-plus-retrieval model. Taking
this fake data as the observed data, we used ABC-SMC algorithm to
estimate model parameters. Fig. K.1 compares the estimated posterior
distributions against the ‘true’ parameter values that were used to
generate fake data.

Using the above ABC-SMC algorithm, we estimated parameters for
the five models on 17 sets of training data. The parameter estimation
time varied across models from 2 to 20 h. For example, the feature
percolation-plus-retrieval model took approximately 3 h.21 Fig. K.2
shows the estimated posterior distributions for the percolation rate and

the latency factor parameter of the feature percolation-plus-retrieval
model when the model was fitted to one of the training sets.

Cross-validation method

We compute predictive accuracy of a model using cross-validation
(Stone, 1977; Vehtari et al., 2017).

As described in the following steps, our method is an extension of
the k-fold cross-validation technique in which a dataset is partitioned
into 𝑘 subsets and each subset is iteratively held out for testing the
model. Since we have 17 datasets here, we hold out each full dataset
for testing.

(1) Prepare 17 sets of training and test data by leaving out one
dataset as the test data and taking other 16 as training data

(2) In each iteration 𝑖 (ranging from 1 to 17), fit the model on the
training data, 𝑦𝑡𝑟𝑎𝑖𝑛,𝑖 using approximate Bayesian computation as
described in section ‘Parameter estimation’, and get the posterior
distribution of the parameters of the model, say 𝜋̂(𝛩|𝑦𝑡𝑟𝑎𝑖𝑛,𝑖);
where 𝜋̂ represent that it is an estimate of the true posterior
𝜋(𝛩|𝑦𝑡𝑟𝑎𝑖𝑛,𝑖).

(3) Compute the log predictive density of the model (explained
below) in the 𝑖th iteration, i.e., 𝑙𝑝𝑑𝑖 using corresponding test
data, 𝑦𝑡𝑒𝑠𝑡,𝑖

(4) After getting log predictive densities, 𝑙𝑝𝑑𝑖 for 17 iterations,
compute the expected log predictive density of the model, 𝑒𝑙𝑝𝑑
as the sum of all 𝑙𝑝𝑑𝑖

21 The reproducible posterior estimation code for each model can be found
at https://osf.io/gqj3p/
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Fig. M.1. The predictive accuracies of the five models on 17 datasets under different assumptions about the distortion rate: Less-negative values imply better performance,
and large-negative values imply poorer performance. The best-performing model is highlighted in red. The error bar around an 𝑒𝑙𝑝𝑑 value shows its standard error multiplied by
two.

Let us unpack steps (3) and (4).
The log predictive density of a model in iteration 𝑖 is given by

logarithm of the average probability density of observing the test data
𝑦𝑡𝑒𝑠𝑡,𝑖 given samples from the estimated posterior, 𝜋̂(𝛩|𝑦𝑡𝑟𝑎𝑖𝑛,𝑖)

𝑙𝑝𝑑𝑖 = log 1
𝑁

𝑁
∑

𝑗=1
𝜋(𝑦𝑡𝑒𝑠𝑡,𝑖|𝛩𝑗 ) with 𝛩𝑗 ∼ 𝜋̂(𝛩|𝑦𝑡𝑟𝑎𝑖𝑛,𝑖) (L.1)

where 𝑗 indexes samples from the posterior, 𝑁 is the total number of
samples drawn from the posterior, 𝛩𝑗 represents the 𝑗th sample from
the posterior. We apply step (3) in 17 iterations i.e., for 17 sets of
training and test data and get an estimates of 𝑙𝑝𝑑𝑖 in each iteration.

Because the likelihood for the most of our models is difficult to
be expressed in explicit functional form (see section ‘Parameter es-
timation’), we cannot directly estimate the likelihood of test data,
𝜋(𝑦𝑡𝑒𝑠𝑡,𝑖|𝛩𝑗 ). We use a Gaussian kernel 𝛹 (.|𝛿), similar to approximate
Bayesian computation in section ‘Parameter estimation’, to approxi-
mate the likelihood for each sample of parameter values

𝜋(𝑦𝑡𝑒𝑠𝑡,𝑖|𝛩𝑗 ) ≈ 𝛹
(

𝐷(𝑆(𝑦𝑡𝑒𝑠𝑡,𝑖), 𝑆(𝑦𝑠𝑖𝑚,𝑗 ))|𝛿𝑖
)

with 𝑦𝑠𝑖𝑚,𝑗 ∼ 𝑀𝑜𝑑𝑒𝑙(𝛩𝑗 ) (L.2)

where the statement 𝑦𝑠𝑖𝑚,𝑗 ∼ 𝑀𝑜𝑑𝑒𝑙(𝛩𝑗 ) means that the data 𝑦𝑠𝑖𝑚,𝑗
is simulated from the model conditioned on parameter value 𝛩𝑗 ;
𝐷(𝑆(𝑦𝑡𝑒𝑠𝑡,𝑖), 𝑆(𝑦𝑠𝑖𝑚,𝑗 )) represents the difference between the test data
and model generated data for the 𝑗th sample from the posterior.
We use the mean summary statistic of the test and simulated data
to calculate 𝐷(𝑆(𝑦𝑡𝑒𝑠𝑡,𝑖), 𝑆(𝑦𝑠𝑖𝑚,𝑗 )) (see section ‘Parameter estimation’).
The kernel density function 𝛹

(

𝐷(𝑆(𝑦𝑡𝑒𝑠𝑡,𝑖), 𝑆(𝑦𝑠𝑖𝑚,𝑗 ))|𝛿𝑖
)

weights the
parameter samples such that the samples that generate data close to
the test data 𝑦𝑡𝑒𝑠𝑡,𝑖 are weighted higher than those generate data far
from 𝑦𝑡𝑒𝑠𝑡,𝑖. The term 𝛿𝑖 determines the degree of approximation of the
likelihood: as 𝛿𝑖 approaches zero, the approximation becomes exact. We
set 𝛿𝑖 to be sensitive the variance of test data using 𝛿𝑖 =

𝜎𝑦𝑡𝑒𝑠𝑡,𝑖
𝑘 , where

𝜎𝑦𝑡𝑒𝑠𝑡,𝑖 is the standard deviation of the test data 𝑦𝑡𝑒𝑠𝑡,𝑖; the constant term
in the denominator i.e., 𝑘 (here 𝑘 = 9) scales the value of 𝛿 such that
approximated likelihood is not zero. Making 𝛿 adaptive to the variance

of test data ensures that a dataset with smaller variance (i.e., larger
sample size) has more weightage in determining the evidence for a
model compared to dataset with larger variance.

The expected log predictive density of a model, 𝑒𝑙𝑝𝑑, is computed
as,

𝑒𝑙𝑝𝑑 =
𝑛
∑

𝑖=1
𝑙𝑝𝑑𝑖 (L.3)

where 𝑛 represent the total number of training and test sets, i.e., 𝑛 = 17
The standard error of 𝑒𝑙𝑝𝑑 can be calculated as,

𝑆𝐸𝑒𝑙𝑝𝑑 =
√

𝑛 ⋅ 𝑉 𝑎𝑟(𝑙𝑝𝑑𝑖) (L.4)

where 𝑉 𝑎𝑟(𝑙𝑝𝑑𝑖) represents the variance of the 𝑙𝑝𝑑𝑖 values

Prior sensitivity analysis

To verify whether each model’s performance is sensitive to the prior
on the distortion rate, we first specify seven different priors on the
distortion rate parameter and then compare models under each prior
assumption.

The prior on the distortion rate 𝜃 is given by

𝜃 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑏=𝑡(0, 0.25) (M.1)

where 𝑙𝑏 = 𝑡 represents the lower bound of 𝑡 on distortion rate values
such that 𝑡 ∈ {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}; it expresses different
prior assumptions about the degree of feature distortion in the model.

Fig. M.1 shows a comparison of the models’ predictive performance
– in terms of expected log predictive density (𝑒𝑙𝑝𝑑) values – under
different prior assumptions about the distortion rate. A larger value
of 𝑒𝑙𝑝𝑑, i.e., a less negative value of 𝑒𝑙𝑝𝑑, implies higher predictive
performance. For the data considered here, we find that

1. The cue-based retrieval model has the lowest 𝑒𝑙𝑝𝑑 values mean-
ing that it shows the worst predictive performance among all the
models.
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Fig. M.2. The difference in 𝑒𝑙𝑝𝑑 values of the models under different assumptions about the distortion rate: A positive difference in 𝑒𝑙𝑝𝑑 values means that the model
shown in the facet’s title performs better than the other models. Error bars show two times the standard error of the difference in 𝑒𝑙𝑝𝑑 values.

2. The new feature percolation-plus-retrieval model outperforms all
other models under each prior assumption about the distortion
rate.

3. The lossy compression-based models – the lossy compression
model and the lossy compression-plus-retrieval model – perform
better than the cue-based retrieval model but worse than the two
feature percolation-based models. This pattern holds for most
of the prior assumptions about the distortion rate, but when
the distortion rate is greater than 25%, the lossy compression-
plus-retrieval model performs better than the feature percolation
model.

We also measure the difference in 𝑒𝑙𝑝𝑑 values (𝛥𝑒𝑙𝑝𝑑) for each pair
of models along with the standard error (SE) of difference. Fig. M.2
shows the 𝛥𝑒𝑙𝑝𝑑 values for each pair of models under seven different
prior assumptions about the distortion rate. The positive difference in
𝑒𝑙𝑝𝑑 values implies that the model shown in a graph’s title performs
better than the other models.

The 𝛥𝑒𝑙𝑝𝑑 analysis reveals three key results. First, the feature
percolation-plus-retrieval model shows positive 𝛥𝑒𝑙𝑝𝑑 values when
compared with each of other four models. But the hybrid model is
distinguishable from the feature percolation model only when the
distortion rate is assumed to be greater than 25%. This implies that the

feature percolation-plus-retrieval model outperforms the all other mod-
els except the feature percolation model, with which the hybrid model
has comparable performance under most of the prior assumptions about
distortion rate.

Second, the feature percolation model shows mostly positive 𝛥𝑒𝑙𝑝𝑑
values against the lossy compression model and the lossy compression-
plus-retrieval model when the prior allows small distortion rates. But
the error bars around the 𝛥𝑒𝑙𝑝𝑑 values always cross zero, implying that
there is no clear evidence in the favor of feature percolation model over
the two lossy compression-based models.

Third, the cue-based retrieval model shows negative 𝛥𝑒𝑙𝑝𝑑 values
against the other four models, meaning that the cue-based retrieval
model has the worst predictive performance of all the models consid-
ered. However, the error bars around the 𝛥𝑒𝑙𝑝𝑑 values indicate that
the model’s performance is not always distinguishable from the feature
percolation model.
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ABSTRACT

Cue-based retrieval theories of sentence processing assume that syntactic dependencies are
resolved through a content-addressable search process. An important recent claim is that in
certain dependency types, the retrieval cues are weighted such that one cue dominates. This
cue-weighting proposal aims to explain the observed average behavior, but here we show that
there is systematic individual-level variation in cue weighting. Using the Lewis and Vasishth
cue-based retrieval model, we estimated individual-level parameters for reading speed and
cue weighting using 13 published datasets; hierarchical approximate Bayesian computation
(ABC) was used to estimate the parameters. The modeling reveals a nuanced picture of cue
weighting: we find support for the idea that some participants weight cues differentially, but
not all participants do. Only fast readers tend to have the predicted higher weighting for
structural cues, suggesting that reading proficiency (approximated here by reading speed)
might be associated with cue weighting. A broader achievement of the work is to demonstrate
how individual differences can be investigated in computational models of sentence
processing without compromising the complexity of the model.

INTRODUCTION

Awell-established claim in sentence processing is that dependency completion—establishing
who did what to whom—is driven by a cue-based retrieval process (Lewis & Vasishth, 2005;
McElree, 2000; Van Dyke, 2007; Van Dyke & McElree, 2011). The key idea behind cue-based
retrieval is that codependents like verbs and their associated subjects are identified and con-
nected together via a content-addressable search in memory.

For example, consider the ungrammatical sentences in (1) below.

(1) a. *The bodybuilder who worked with the trainers were complaining …

b. *The bodybuilder who worked with the trainer were complaining …

Within the cue-based retrieval framework, the auxiliary verb were in (1) is assumed to ini-
tiate a search in memory for an appropriate subject noun phrase, using feature specifications
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such as plural (PL) and subject (SUBJ).1 In example (1a), one of the retrieval cues (SUBJ)
matches with the subject, bodybuilder, which is the correct codependent of were. The other
retrieval cue (PL), matches a distractor noun, trainers. A signature property of the retrieval
framework is that a distractor noun can be probabilistically misretrieved due to such a
partial feature match (Paape et al., 2021; Vasishth et al., 2019). These misretrievals have the
effect that reading time at the auxiliary were is faster in (1a) compared to (1b), in which the
distractor does not match any of the retrieval cues. The explanation for this so-called
facilitatory interference effect is a race process resulting in statistical facilitation (Raab,
1962): In every trial, two processes are initiated simultaneously, each corresponding to one
matching feature (SUBJ: bodybuilder, PL: trainers). Whichever process finishes first is the
winner in that trial. Statistical facilitation refers to the fact that when the mean finishing
times of the two processes are very similar, the mean reading time resulting from the race
process will be faster than both of the mean finishing times corresponding to the individual
processes.2 Facilitatory interference has been robustly observed in number-agreement
configurations such as (1).

Similar effects have been shown in plausibility mismatch configurations (Cunnings & Sturt,
2018), negative polarity item licensing (Drenhaus et al., 2005; Vasishth et al., 2008; Xiang
et al., 2009), and honorific processing (Kwon & Sturt, 2016). Given that cue-based retrieval
parsing is intended as a comprehensive model of sentence processing, the phenomenon
should generalize to any construction in which two partially matching nouns are available
as retrieval candidates.

However, a construction that has been argued by Dillon et al. (2013) to be immune to
facilitatory interference effects are antecedent-reflexive dependencies, as shown in the
ungrammatical sentences in (2).

(2) a. *The bodybuilder who worked with the trainers injured themselves …
b. *The bodybuilder who worked with the trainer injured themselves …

Building on work by Sturt (2003), Dillon et al. (2013) argue that the search for an anteced-
ent of a reflexive is guided exclusively by Principle A of the binding theory (Chomsky, 1981),
which states that an anaphor must be bound by a c-commander within the same clause (see
also Nicol & Swinney, 1989). The specific claim is that in examples like (2a) vs (2b), number
marking on the reflexive (himself vs. themselves) is not used as a retrieval cue. This has the
consequence that no difference in reading time is predicted at the reflexive in (2a) vs (2b).
Other researchers (Cunnings & Sturt, 2014; Kush, 2013; Parker & Phillips, 2017) have
proposed that although the c-command and plural retrieval cues are present at the
reflexive, they are weighted differently in reflexives compared to subject-verb agreement: In
reflexives, the weight of the structural cue versus the number cue is arguably higher, while in
subject-verb agreement the cues have equal weights.3 The increased cue weighting reduces or

1 SUBJ is an abstract proxy feature that stands in for all kinds of information that may help identify subjects,
including but not limited to a structural dominance relationship with the verb (c-command), case information,
and linear order.
2 Other explanations for the observed facilitatory interference effect have been proposed in the literature; in

this article, we only investigate the implications of the cue-based retrieval account.
3 There are some complications associated with treating c-command as a retrieval cue: c-command is a rela-

tion between two nodes in a tree, which must be determined dynamically as the syntactic tree is incrementally
built. This issue is generally circumvented by the simplifying assumption that the antecedent is in the subject
position of the sentence. See the discussion in Dillon et al. (2013).
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eliminates the role of the plural cue, so that very little or no facilitatory interference occurs.
This is shown schematically in Figure 1.

Dillon et al. (2013) experimentally compared facilitatory interference effects in agreement
and reflexive dependencies. They present data from 40 participants, which are summarized in
Figure 2. Consistent with the cue-weighting account, we see a facilitatory interference effect in
agreement dependencies, but no such effect in reflexive dependencies. The figure also shows
the cue-based retrieval model’s quantitative predictions with equal weights for the retrieval
cues across dependencies.

Consistent with the standard practice in psycholinguistics, the claim made by Dillon et al.
and others that structure has a privileged role at retrieval in reflexives focuses on average
behavior across all items and participants. However, focusing only on average behavior misses
two potentially important details.

First, the 40 individual participants in the Dillon et al. study show differences in both
dependency types in the magnitude of the facilitatory interference effect. Figure 3 (top) shows
that in both reflexives and agreement dependencies, the magnitude of the estimated effect for
individuals ranges from 0 ms to effects as large as −150 ms.4 This pattern of individual-level

Figure 1. The cue-weighting proposal: A box represents a retrieval cue, a box rep-
resents a feature that matches a retrieval cue, and a box represents a feature that does not
match a retrieval cue. In agreement dependencies, the cues are weighted equally, while in reflexive
dependencies the c-command cue is assumed to be weighted more highly than the number cue, as
indicated by the thickness of the lines.

Figure 2. The facilitatory interference effect in ungrammatical agreement vs. reflexive depen-
dencies in the Dillon et al. (2013) data; also shown is the cue-based retrieval model’s predicted
facilitatory interference effect for both dependency types (marked “LV05”). The figure is reused
with permission from Jäger et al. (2020).

4 These estimates were extracted from a Bayesian hierarchical linear model fit to the data; the individual esti-
mates, shown here with 80% and 95% Bayesian credible intervals, are so-called shrunken estimates for each
participant. Such shrunken estimates are informed by the grand mean, and are more conservative than the esti-
mates computed by estimating each individual’s mean effect in isolation (Bates et al., 2014).
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variability is replicable: In a large-scale replication attempt of the Dillon et al. (2013) experi-
ment, Jäger et al. (2020) found a similar pattern in 181 new participants; see Figure 3 (bottom).
Thus, while the population-level estimates are consistent with the cue-weighting theory, some
of the individual-level effects for reflexives across studies are not consistent with it: There are
people who do show facilitatory interference for reflexives.

Figure 3. Individual-level facilitatory interference effects in ungrammatical agreement vs. reflexive
dependencies in the Dillon et al. (2013) and Jäger et al. (2020) data. Shown are the shrunken estimates
from a Bayesian hierarchical linear model fit to the data. The circle is the individual’s mean effect, the
solid error bar is an 80% Bayesian credible interval, and the thinner line a 95% credible interval.
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The second interesting aspect of the individual-level data is that the individual participants’
average reading speed5 is correlated with the magnitude of the facilitatory interference effect:
the slower the participant, the larger the magnitude of the facilitatory interference effect. This
correlation is displayed in Figure 4 for the Dillon et al. (2013) and the Jäger et al. (2020)
datasets.

A simple explanation for this correlation would be that slower participants simply have
higher standard deviations: a mean reading time with a relatively large value allows more
room for variability around it than a mean reading time that has a small magnitude. There
is, however, an alternative, theoretically grounded explanation for the observed variability
as well as for the correlation with reading times: Individuals might differ in their cue weighting,
and comparatively lower weight for the structural cue could be associated with slower reading
speed, making less-fluent readers more susceptible to facilitatory interference.6

Under these assumptions, participants with higher cue weighting for the structural (c-
command or subject) cue should show no facilitatory interference, while participants with
approximately equal cue weighting should show facilitation.

5 We use the term reading speed informally to refer to reading latency.
6 Reading speed refers to an individual’s overall reading fluency, which is assumed to be constant throughout

the experimental trials. Since we do not have any independent measure of reading speed, as a first approxima-
tion we use reading times to estimate the reading speed parameter for an individual. We discuss this later in
detail.

Figure 4. The relationship between mean reading times and the magnitude of the interference
effect in the Dillon et al. (2013) data and the Jäger et al. (2020) data. Shown are the by-participant
random intercept adjustments and the slope adjustments for the facilitatory interference effect. Both
datasets show a clear pattern: slower participants show a larger magnitude of the facilitatory inter-
ference effect.
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There is evidence for individual differences in cue weighting in the literature: memory
research suggests that some individuals learn to use certain cues more effectively and reliably
compared to other cues (Danker et al., 2011). Sohn et al. (2004) have shown that different
training procedures lead participants to weight retrieval cues differently in a recall task. In sen-
tence processing, some individuals could learn to use structural cues more effectively and reli-
ably compared to nonstructural cues, and these individuals may also be more fluent readers.
This view receives some support from the study reported by Traxler et al. (2012) on relative
clauses: Traxler et al. found that readers with slower mean reading times experienced more
processing difficulty in object relative clauses with misleading semantic cues (The director that
the movie pleased …) than readers with faster mean reading times. Traxler et al. hypothesized
that due to fast readers’ greater experience with the object-relative structure, the detrimental
effect of the misleading semantic cue was reduced in fast readers.

Assuming that fast readers presumably also have more experience with other linguistic
structures such as reflexives, their susceptibility to interference from structurally unavailable
distractor nouns may be reduced in a similar manner.

Our proposed connection between language experience and cue weighting would also be
consistent with results from nonnative speakers, whose reading speed has been found to correlate
with their proficiency (Roberts & Felser, 2011), andwhohavebeen argued to assign higherweights
to discourse-based cues over structural cues (Cunnings, 2017). In children, reading speed is pos-
itively correlated with text-level comprehension (Cutting & Scarborough, 2006; Jenkins et al.,
2003), and among adults, highly skilled readers have been found to have shorter average fixation
durations in eye-tracking than less-skilled readers (Underwood et al., 1990). Furthermore, reading
speed as a measure has high reliability (Cunnings & Fujita, 2020; James et al., 2018), suggesting
that it captures stable underlying differences between individuals.

Given the possibility of differences in cue weighting among individuals, the claim by Dillon
et al. (2013) and others could be reformulated as follows: in reflexives, the majority of the
individual participants should have higher cue weighting for the c-command cue than for
the plurality cue. By contrast, in subject-verb number agreement, the majority of participants
should exhibit equal cue weighting for the subject and plurality cues. Furthermore, if faster,
more-skilled readers are less vulnerable to facilitatory interference, faster reading speed should
correlate with higher weight for the structural cue over the plurality cue.

These predictions about individual-level variability in cue weighting and reading speed can
be investigated quantitatively in the Lewis and Vasishth (2005) cue-based retrieval model. The
predictions can be evaluated by (a) estimating, within the cue-based retrieval model, cue
weighting and reading speed parameters separately for each individual participant, (b) deriv-
ing the predicted reading times from the model for each participant, and then (c) comparing
these predicted reading times to the observed reading times for individuals. Stable alignment
between the predicted and observed values would suggest that the model adequately captures
the assumed underlying processes. Furthermore, given the observed correlation between read-
ing speed and facilitatory interference in the data, a correlation between the model parameters
that encode reading speed and cue weighting is expected.

We discuss the details of the cue-based retrieval model and the relevant parameters next.

The Lewis and Vasishth (2005) Model

The Lewis and Vasishth (2005) cue-based retrieval model, abbreviated below as LV05, is based
on Adaptive Control of Thought—Rational (ACT-R) (Anderson & Lebiere, 2014) and assumes
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that during retrieval, activation spreads to the memory chunks that match the retrieval cue. The
more cues are matched by a chunk, the more activation it receives.

Simplifying slightly (cf. Engelmann et al., 2019), the total activation of a memory chunk i is
given by

Ai ¼ Bi þ
X
j

WjSji þ �i (1)

where Bi is the baseline activation of the chunk i determined by past retrievals. A memory
chunk i receives spreading activation from all matching cues j depending on the associative
strength Sji between the cue j and the chunk i, and the cue’s weight Wj. The amount of
activation spread determines the total activation of the memory chunks.

�i is Gaussian noise added to activation of the chunk i, such that �i ∼ Normal(0, σ); σ rep-
resents the standard deviation of the normal. The fact that the activation values are noisy is
crucial to the facilitatory interference effect: Even when two chunks receive the same amount
of activation from the retrieval cues—such as bodybuilder and trainers in (1a)—the final acti-
vation values and the associated latencies can differ from trial to trial due to noise.

In a particular trial, the memory chunk that happens to have the highest activation is
retrieved.7 The time taken to complete the retrieval is determined by the activation level of
the retrieved item: when activation is higher, the retrieval is faster. The retrieval time, RTi, of
a chunk is a negative exponential function of its activation at the time of retrieval:

RTi ¼ Fe −fAið Þ: (2)

F and f are two scaling parameters—the latency factor and the latency exponent, respectively.
Latency factor and latency exponent reflect “surface-level” processing independent of the acti-
vation level of the chunks and, unlike the activation level, do not vary between trials. The
latency factor represents the general reading speed of an individual and may, inter alia, include
lexical access time, encoding time and motor response time.

In multiple-match scenarios, as in (1a), the activation distributions—and therefore the
latency distributions—of the two candidate chunks have a larger overlap compared to (1b).
The larger the overlap, the larger the observed speedup due to statistical facilitation. Since
retrieval time of a chunk is a function of cue weights, the amount of facilitatory interference
is modulated by the relative weights of the retrieval cues; see Figure 5. If each candidate chunk
matches one retrieval cue and the cues have equal weights, the spreading activation for both
chunks is the same. By contrast, if the structural cue has higher weight, the target chunk
receives more activation, leading to reduced overlap and less facilitation. To understand the
inner workings of the model in detail, see Lewis and Vasishth (2005) and Engelmann et al.
(2019).

A convenient way to operationalize cue weighting is as the ratio of the weights of structural
versus the nonstructural cue used in the retrieval (Engelmann et al., 2019). Cue weighting
larger than 1 means more weight is given to the structural subject cue over the nonstructural
number cue.8

7 In ACT-R, a retrieval threshold parameter determines whether the activation is high enough for successful
retrieval; when the activation falls below this threshold, retrieval failure occurs. This is how occasional retrieval
failures are modeled in ACT-R.
8 Given our prior specifications for the cue weighting parameter, a large cue weighting here is approximately

equal to 4.
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For the present purposes, we are interested in estimating the parameters Wj, that is, the
weights of the c-command and number cues, expressed as a ratio, and F, that is, the latency
factor, for each individual participant. It is plausible to assume that the latency factor is the
main source of variability in average reading speed between participants: The word-level pro-
cessing of more experienced, fluent readers can be expected to be faster and more automatic
(e.g., Joo et al., 2021; Kuperman & Van Dyke, 2011; Logan, 1997; Samuels & Flor, 1997),
which should lead to faster reading irrespective of the memory processes triggered during
the completion of dependencies. For the present purpose, we will use reading speed as a
proxy for language experience.9

Our hypothesis is that fast word-level processing as indexed by small values of F tends to
coincide with high values for the Wj parameter that controls the weight of structural over non-
structural cues used at the sentence level, and that language experience is the connecting fac-
tor. Participants who read fluently and automatically should therefore be less susceptible to
interference from structurally illicit distractors, and there should thus be a negative correlation
between latency factor and cue weighting.

Robust Estimation of Individual Differences Using Approximate Bayesian Computation

Parameter estimation is a key challenge in modeling individual differences. Suppose that we
collect some data, y, from participants in an experiment, and we assume that the data y come
from a function of a vector of parameters Θ: y ∼ f (Θ). The statement y ∼ f (Θ) represents a model
where Θ = {θ1, θ2, …, θm}. The aim of parameter estimation is to compute the join posterior
distributions of the parameters Θ that would have generated the observed data y.

9 This is a simplifying assumption, as reading speed may be influenced by a multitude of factors. We will
discuss alternative approaches in the general discussion.

Figure 5. The facilitatory interference effect (in milliseconds) predicted by the model as a function of latency factor and cue weighting. The
gradient from the light to darker shade represents the increasing magnitude of the facilitatory interference effect for the given values of cue
weighting and latency factor. Cue weighting is the ratio of the weights of structural and nonstructural cues. The facilitatory effect increases
linearly with latency factor when cue weighting is small; the effect decreases exponentially with increase in cue weighting.
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Parameter estimation for the LV05 model is difficult because the model is nondeterministic
and its likelihood cannot easily be expressed analytically, unless we drastically simplify the
model (e.g., in Lissón et al., 2021; Nicenboim & Vasishth, 2018; Paape et al., 2020). Therefore,
we cannot employ the standard Bayesian estimation method for estimating parameters of the
LV05 model.

In the published modeling work on cue-based retrieval, grid search is the standard
approach used to estimate the parameters in the model (Engelmann et al., 2019; Mätzig
et al., 2018). In grid search, the parameter space for each parameter θi is divided into n equally
spaced points, {vi,1, …, vi,n} and all possible combinations are taken to create nm grid points.
Each grid point is evaluated by generating a model prediction, and a grid point that provides
the best fit to the observed data is chosen as the estimated parameter value (or set of values, in
case multiple parameter values provide the best fit).

There are several important limitations to the grid search method (Kangasrääsiö et al., 2019).
First, grid search is a brute-force method, and therefore inefficient; the number of computa-
tions increases exponentially as the number of parameters m increases. It is therefore not com-
putationally feasible to compute individual-level as well as population-level estimates using
this approach. Second, grid search usually delivers a point estimate of the parameter value;
uncertainty about the parameter estimates cannot be computed.

As Kangasrääsiö et al. (2019) point out, a better way to estimate model parameters is Bayes-
ian estimation. This approach allows us to estimate the posterior distributions of the parameter
values given the observed data, that is, π(θ|y) using Bayes’s rule, which is shown in Equation 3.

π θjyð Þ ¼ π y jθð Þπ θð Þ
π yð Þ (3)

As Bayes’s rule states, the estimation of the posterior distribution, π(θ|y) requires knowledge
about the likelihood, π (y|θ) (i.e., probability density of seeing the data for given parameter
value) and the prior knowledge about θ before y is available, that is, π(θ). However, for the
LV05 model, the likelihood function, that is, π (y|θ) is difficult to express mathematically.

For such situations, approximate Bayesian computation (ABC) has emerged as an effective
tool for approximating the posterior distributions of the parameters (Palestro et al., 2018; Sisson
et al., 2018). ABC uses an approximation of the likelihood function to estimate the posterior
distribution for the parameters. Even when the likelihood function is unknown, the model can
still generate simulated data for given parameter values. The ABC method consists of compar-
ing the observed data with the simulated data. Since ABC is rooted in Bayesian estimation
techniques, it also computes the uncertainty bounds on the parameter estimates.

A simple ABC sampler works as follows:

1. Draw a proposal θ* from the prior distribution, that is, θ* ∼ π (θ).
2. Simulate data x from the model conditional on θ*.
3. If the simulated data x is “close” to the observed data y, accept θ* as a sample for the

posterior distribution. The “closeness” between simulated data x and observed data y,
that is, dist (x, y) approximates the likelihood for θ*.

If the above steps are carried out repeatedly, we can obtain samples from the approximate
posterior distribution.

One approach to approximating the likelihood is to weight the proposal θ* based on dis-
tance between simulated and observed data, dist (x, y). If the simulated data x corresponding to

OPEN MIND: Discoveries in Cognitive Science 9

Modeling Individual Differences Yadav et al.

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00052/2033481/opm
i_a_00052.pdf by guest on 29 O

ctober 2022

62 CHAPTER 4. ARTICLE II



a proposed value θ* is closer to the observed data y, the proposed θ* will have higher weight.
The weights can be assigned using a distribution centered at zero, such that if dist(x, y) is zero,
the proposed θ* will have highest weight, and as dist(x, y) increases, weight decreases. ABC
uses summary statistics S(·)—such as the mean—of the observed and the simulated data to
compute dist(x, y). The weight assigning function is called a kernel function. Suppose that
the kernel function is Ψ(dist(x, y)|δ ).

Here, δ is the tolerance parameter, which determines the degree of the approximation. The
lower the value of δ, the better the approximation. When δ approaches 0, the approximation
becomes exact:

π θjyð Þ∝
Z
X
Ψ dist S xð Þ; S yð Þð Þjδð Þπ xjθð Þπ θð Þdx; (4)

where X is the support of the simulated data from the model.

The intractable likelihood term π(x|θ) cancels out while calculating the probability of
accepting a proposal in posterior simulation algorithms.

We use the ABC method to estimate the participant-level and population-level parameters
of the cue-based retrieval model. Our parameter estimation problem is more complex than the
simple ABC algorithm presented above: in order to model individual differences, we need to
estimate both individual- and population-level parameters simultaneously. For such a situa-
tion, Turner and Van Zandt (2014) propose a hierarchical Gibbs ABC algorithm. The details
of this method are explained later, but in essence, the idea is to first draw samples for the
individual-level parameters using ABC and then sample for each population-level parameter
from a distribution conditioned on all other parameters.

Returning to our main research question, we now describe a computational evaluation of
the two claims that follow from the cue-weighting proposal: (i) in reflexives, most individuals
should have higher cue weighting for the c-command cue compared to the plurality cue and
(ii) in agreement, most individuals should have equal cue weighting for the subject and
plurality cues. Furthermore, we investigate (iii) whether there is a correlation between cue
weighting and reading speed.

MODELING INDIVIDUAL DIFFERENCES IN THE CUE-BASED RETRIEVAL MODEL

We obtained 13 datasets from four published studies (Dillon et al., 2013; Jäger et al., 2020;
Lago et al., 2015; Wagers et al., 2009) that report the facilitatory interference effect. Table 1
lists the datasets along with number of participants in the experiment and population-level
mean facilitatory interference effect. Out of these 13 datasets, 11 tested subject-verb agree-
ment dependencies (Dillon et al., 2013; Lago et al., 2015; Wagers et al., 2009), and the
remaining two datasets (Dillon et al., 2013; Jäger et al., 2020) investigated both subject-verb
agreement and reflexive dependencies.

Using these datasets, we implemented hierarchical ABC to estimate the participant-level
and population-level parameters. The code and data are available from https://osf.io/3na9q/.
The latency factor (which modulates retrieval time) and cue weighting were estimated simul-
taneously for each participant; the computational details behind the ABC algorithm are
explained in Appendix S1 in the Supplemental Materials.

For each dataset, we fit a Bayesian hierarchical model with varying intercepts and slopes for
participants and items, where reading time is the dependent variable and condition (multiple-
match vs. single-match) is a sum-coded predictor (Schad et al., 2020). As discussed earlier,
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each fitted model provided shrunken estimates of individual-level facilitatory interference effects.
We used these individual-level shrunken estimates as data for the cue-based retrieval model.

As we describe now, the hierarchical ABC method provided estimates of participant-level
latency factor and cue weighting, population-level mean latency factor and cue weighting,
population standard deviation for latency factor and cue weighting, and the correlation
between latency factor and cue weighting.

Suppose that yj are the data (interference effect) associated with the jth participant. LFj and
CWj are the latency factor and the cue weighting parameters, respectively, for the jth partici-
pant. We assume that the human data yj are generated by the LV05 model with the parameters
LFj and CWj:

yj∼Model LFj ;CWj
� �

: (5)

We further assume that LFj and CWj come from a bivariate normal distribution with population
means μLF and μCW, standard deviations σLF and σCW, and correlation parameter, ρ:

LFj
CWj

� �
∼N 2

μLF
μCW

� �
;

σ2
LF ρσLFσCW

ρσLFσCW σ2
CW

� �� �
: (6)

Table 1. Facilitatory interference effect data used for estimating parameters of the LV05 model.

Dataset
Number of
Participants

Interference Effect
(in milliseconds)

Subject-verb agreement dependency

Dillon et al. (2013) Exp 1 40 −60 [−111, −11]

Jäger et al. (2020) 181 −27 [−47, 2]

Lago et al. (2015) Exp 1 32 −27 [−55, 0]

Lago et al. (2015) Exp 2 32 −23 [−54, 7]

Lago et al. (2015) Exp 3a 32 −13 [−29, 2]

Lago et al. (2015) Exp 3b 32 −13 [−33, 6]

Wagers et al. (2009) Exp 2 28 −23 [−49, 1]

Wagers et al. (2009) Exp 3 (Singular subject) 60 −18 [−46, 9]

Wagers et al. (2009) Exp 3 (Plural subject) 60 −4 [−39, 30]

Wagers et al. (2009) Exp 4 44 −28 [−53, −3]

Wagers et al. (2009) Exp 5 60 −20 [−44, −4]

Antecedent-reflexive dependency

Dillon et al. (2013) Exp 1 40 −18 [−73, 36]

Jäger et al. (2020) 181 −23 [−49, 2]

Note. The table lists the published datasets along with the number of participants and population-
level mean interference effect. The square brackets show 95% credible intervals around the
population-level interference effects, that is, there is a 95% probability that the value of the
population-level interference effect lies within this range, given the statistical model and data.
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The goal here is to obtain posterior estimates of the individual-level parameters LFj and CWj

and the population-level parameters μLF, μCW, σLF, σCW, and ρ. Assuming that the data come
from n participants, we have 2n + 5 parameters to estimate, that is, LFj, CWj for each partic-
ipant and five population-level parameters μLF, μCW, σLF, σCW, and ρ.

Results

Cue Weighting in Agreement and Reflexive Dependencies. First, we focus on the Dillon et al.
(2013) and Jäger et al. (2020) experiments. Figures 6 and 7 compare the distribution of
participant-level cue weighting in agreement and reflexive dependencies for these two studies.

The individual-level estimates for agreement show that in the Dillon et al. (2013) and Jäger
et al. (2020) data, almost all participants have equal cue weighting, that is, the weight ratio
between the structural cue and the number cue is close to 1:1, consistent with the cue-
weighting account. For reflexives, the two experiments show similar patterns: About one quar-
ter of participants in the original Dillon et al. (2013) have estimates for cue weighting close to
or higher than 2:1 in favor of the structural cue, which is consistent with the cue-weighting

Figure 6. Participant-level cue weighting for agreement dependency data in Dillon et al. (2013) and Jäger et al. (2020). Shown are the 95%
credible intervals for each individual’s estimate, along with the estimated mean parameter value for each participant.
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account. At the same time, many participants have cue weighting close to 1:1. The reflexives
data from Jäger et al.’s (2020) replication study also have a minority of participants with high
cue weighting, but there are also many participants with cue weighting estimates close to 1:1.
The overall pattern in the replication study is noticeably more graded, but this may be due to
the larger sample size.

For the Jäger et al. (2020) study, simulating data based on the individual participants’
parameter estimates for cue weighting and latency factor and computing the facilitatory inter-
ference effect yields values very close to the shrunken estimates based on the original data.
Figure 8 shows the model estimates alongside the shrunken estimates from the hierarchical
linear models. Although not shown here, the model can also capture the individual-level
estimates from the Dillon et al. (2013) data (see Appendix).

Correlation Between Cue Weighting and Reading Speed. We now analyze each of the 13 datasets
separately to investigate the relationship between cue weighting and latency factor. Figure 9
shows the posterior distribution of the correlation between cue weighting and reading speed,
that is, the latency factor, across the 13 datasets. Most of the estimates are negative, in line with

Figure 7. Participant-level cue weighting for reflexive dependency data in Dillon et al. (2013) and Jäger et al. (2020). Shown are the 95%
credible intervals for each individual’s estimate, along with the estimated mean parameter value for each participant.
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Figure 8. Posterior predicted interference effects for individuals in agreement and reflexive
dependencies, derived from the cue-based retrieval model after estimating individual-level param-
eters for cue weighting. Shown are the posterior mean and 95% credible interval, along with the
estimate of the shrunken mean for each participant.
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the prediction that slower, less-skilled readers who have high latency factors should have low
cue weighting, that is, weight ratios close to 1:1. In order to synthesize the evidence relating to
the correlation from all the available studies, we conducted a random-effects meta-analysis.
We use a Bayesian meta-analysis method that is based on the Fisher z-transformation of cor-
relation estimates (Fisher, 1921; Zhang et al., 2017). The meta-analysis model is described in
Appendix S2 in the Supplemental Materials.

The meta-analytical estimate for the correlation parameter is −0.26, and the associated 95%
credible interval is [−0.38, −0.12], as shown by the shaded region in Figure 9. Taken together,
the data thus indicate a negative correlation between cue weighting and latency factor, con-
sistent with the idea that slower readers tend to have equal cue weighting, and that the faster
the participant, the higher the weighting in favor of the structural cue.

Discussion

Based on the two studies that investigated both subject-verb agreement and reflexive depen-
dencies, Dillon et al. (2013) and Jäger et al. (2020), we compared individual-level cue weight-
ing for each of the dependencies. Results for agreement dependencies showed equal cue
weighting for the majority of participants in both experiments, consistent with the cue-
weighting account. By contrast, the results for reflexive dependencies showed that both the
Dillon et al. (2013) and Jäger et al. (2020) data do have some participants with higher cue
weighting for the structural cue, but the majority of the participants do not have higher cue
weighting.

Figure 9. Estimated correlations between participant-level latency factor and cue weighting for 13 datasets that investigated the facilita-
tory interference effect. Shown are the posterior distributions of the correlation parameters (mean and 95% credible interval); the dark band is
the posterior distribution of the overall correlation, derived from a random-effects meta-analysis.
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It is interesting to note here that, based on the average estimates from their respective data-
sets, Dillon et al. (2013) and Jäger et al. (2020) came to different conclusions. Dillon et al.
concluded that reflexives are processed differently from subject-verb agreement, in that num-
ber features are effectively ignored during retrieval due to Principle A. In contrast, Jäger et al.
concluded, again based on average estimates, that their larger dataset had showed no indica-
tion of a difference in processing between agreement and reflexive dependencies.

The individual-level estimates qualify both conclusions: in both the Dillon et al. (2013) and
the Jäger et al. (2020) data, there are in fact participants that mostly ignore the number features
of structurally inaccessible noun phrases in reflexive dependencies, as indicated by higher
weighting of the structural cue. On the other hand, a majority of participants show processing
profiles for reflexives that are similar to agreement dependencies, where the number cue of the
distractor matters.

The present findings are thus inconsistent with the strongest possible version of the cue-
weighting proposal, which is that all readers should show high cue weighting for reflexives.
They are also inconsistent with the next-strongest version of the proposal, which is that most
readers should show high cue weighting for reflexives. Instead, our findings show that there is
only a nonnegligible minority group of readers in the two studies who show high cue weight-
ing for reflexives.

The meta-analysis of our simulations based on all 13 available datasets shows that cue
weighting in favor of the structural cue correlates with reading speed, such that faster readers
are more likely to assign higher weight to the structural cue. The correlation estimates vary
between studies, and the credible intervals of the correlation parameter cross zero in many
cases, especially for studies with much fewer participants than the higher-powered study of
Jäger et al. (2020). Nevertheless, the evidence as a whole, as quantified by the meta-analysis,
is compatible with the notion that faster, more skilled readers assign more weight to structural
cues during sentence processing. While most of the studies used in our simulation tested
subject-verb agreement dependencies, this relationship also holds for reflexive dependencies,
as shown by the estimate for the Jäger et al. and Dillon et al. (2013) studies (see Figure 9).

GENERAL DISCUSSION

The present article addressed two questions related to individual differences in sentence com-
prehension. The first question was whether retrieval cues are weighted differently in subject-
verb agreement and reflexive agreement configurations. The second question was whether
participants who read more quickly on average also show larger facilitatory interference
effects. In order to answer these questions, we used approximate Bayesian computation to
fit individual- and population-level parameters of the cue-based retrieval model of Lewis
and Vasishth (2005) to 13 datasets. ABC allows us to use well-motivated but complex models
of sentence processing to directly test our questions using experimental data. We now discuss
the results for the cue weighting and correlation questions in turn.

Cue Weighting in Agreement and Reflexive Dependencies

For the studies that provided data on reflexive dependencies (Dillon et al., 2013; Jäger et al.,
2020), we found that a minority of participants did have higher cue weighting for the structural
cue than the nonstructural cue in these dependencies, but also that most participants did not.
This suggests that some participants do indeed strongly adhere to Principle A during online
sentence comprehension. This prevents misretrievals of a distractor word and thus blocks
the facilitatory interference effect that is often observed in number agreement contexts.

OPEN MIND: Discoveries in Cognitive Science 16

Modeling Individual Differences Yadav et al.

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00052/2033481/opm
i_a_00052.pdf by guest on 29 O

ctober 2022

69



However, for the majority of participants, there is no indication of a difference in processing
between agreement and reflexives. For participants who weigh structural and nonstructural
cues approximately equally, facilitatory interference occurs in both constructions (see
Figure 10). Overall, the results suggest that the cue-weighting hypothesis only holds for a sub-
set of English native speakers.

The subset of participants who have higher weighting for the structural cue show weak or
absent facilitatory interference, that is, a magnitude of smaller than 8 ms. The estimated value
of cue weighting for these participants has a logarithmic relationship with facilitatory interfer-
ence: the smaller the magnitude of the facilitatory interference effect, the higher the weighting
for the structural cue over the nonstructural cue. By contrast, participants with facilitatory
interference effects of a magnitude over 8 ms have equal cue weighting for structural and non-
structural cues.

For the subset of participants who do weight the structural cue more highly, it is reasonable
to ask what the cause of the different weighting is. Two possible reasons are as follows:

1. There are differences in the “level of representation” accessed by each dependency
(Dillon et al., 2013). The reflexive dependencies are possibly keyed to more
semantic/notional number than are agreement dependencies, which causes reflexives
to be less sensitive to morphosyntactic number and hence to have higher weight for the
structural cue. This claim has independent support in Kreiner et al. (2013), who found
that in processing reflexive dependencies where the antecedent and reflexive matched
in notional number, the mismatch in morphosyntactic number between the reflexive
and the antecedent noun did not incur a processing cost. By contrast, subject-verb
agreement showed a reliable mismatch cost due to morphosyntactic number even
when the subject noun and the verb had the same notional number.

2. Reflexives and agreement dependencies differ in predictability. In antecedent-reflexives
constructions, the reflexive is generally not expected given the preceding context.

Figure 10. The facilitatory interference effect associated with the participants who had approx-
imately equal cue weights for c-command and number cue in reflexive dependencies.
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Hence, unlike agreement dependencies, there is no prediction for an upcoming co-
dependent that could facilitate dependency completion. A possible implication is that
comprehenders adopt a more conservative approach to resolving reflexive dependen-
cies. This could change the priority given to different cues in the retrieval strategy
used to resolve a reflexive, by giving more priority to the more diagnostic structural
cues (see also Parker & Phillips, 2017).

However, the above possibilities are underspecified and untested in the context of the cue-
based retrieval model, which we used in this study. In order to verify them, future work with
cue-based retrieval theories will need to formalize how linguistic cues get learned over time
for different dependencies.

A broader conclusion to be drawn from our simulations is that a focus on modeling
population-level effects may mask theoretically interesting variation at the individual level.
While it has become the norm in psycholinguistics to include random intercepts and slopes
by participant and by item to guard against anticonservative conclusions at the population
level (Barr et al., 2013), the magnitude and shape of the observed interindividual variation
is seldom discussed. In principle, any two linguistic constructions may be distinguished both
by the amount of possible variation between individuals, as has been claimed for subject-verb
agreement versus reflexive dependencies, but also by whether differences between speakers
are more quantitative or more qualitative in nature (Navarro et al., 2006; Rouder & Haaf, 2021).
With regard to the weighting of structural cues in sentence processing, our results suggest that
there is more variability between speakers for reflexive dependencies than for agreement depen-
dencies. However, whether it is possible to experimentally identify a clearly delimitable sub-
group of speakers who show strong adherence to Principle A during the processing of reflexive
dependencies is not yet clear.

What underlying factors could plausibly distinguish readers with high cue weighting from
readers with low cue weighting? One candidate factor we suggest is language experience, as
indexed by reading speed (see discussion below). Nevertheless, it is an open question whether
readers with a high weighting of the structural cue generally have a more strongly developed
or less “gradient” grammar compared to those with low cue weighting. Rather than having a
general preference for structural cues, it is also possible that they treat Principle A in particular
as a “hard” constraint, whereas other participants may treat it as more of a “soft” constraint
(Sorace & Keller, 2005). This latter view seems to be more consistent with the data, given that
structural cues are also used in the resolution of agreement dependencies, for which our data-
sets show no participants with high cue weighting estimates.

The Relationship Between Latency Factor and Cue Weighting

We turn now to the relationship between reading speed and cue weighting. The possibility of a
population-level correlation between latency factor and cue weighting is suggested by the
empirical data of Dillon et al. (2013) and Jäger et al. (2020), as well as by the hypothesis that
more skilled readers read more quickly and might apply syntactic constraints more strictly. We
evaluated this question using all 13 datasets available. After fitting the cue-based retrieval
model using ABC, a meta-analysis of the population-level correlations between the latency
factor (a parameter indexing average reading speed in the model) and cue weighting showed
a correlation of −0.26 (95% CrI [−0.38, −0.12]): The faster participants read, the higher they
tend to weight the structural cue over the number cue. This preliminary result should be tested
in a new, confirmatory experiment; however, it is suggestive first evidence for a relationship
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between reading speed as an index of reading skill and how strongly participants adhere to
grammatical constraints during reading.

Limitations of the Present Study, and Future Directions

Our method provides new ways of investigating individual differences in sentence compre-
hension; however, there are a number of limitations that should be addressed in follow-up
studies.

First, we have focused on facilitatory interference effects in ungrammatical sentences in this
article. The main reason behind this decision is that the evidence for facilitatory interference in
ungrammatical sentences—that is, distractor-induced speedups—in the literature is relatively
robust. By contrast, the evidence for inhibitory interference in grammatical sentences—that is,
distractor-induced slowdowns—which is also predicted by the Lewis and Vasishth (2005)
model, is much more mixed ( Jäger et al., 2017). While it is important to understand how
individual-level latency factors, cue weightings, and their correlation behave in grammatical
sentences (e.g., The bodybuilder who worked with the trainer[s] was complaining … ), the
LV05 model likely needs to be augmented to account for the full range of results. Work is
underway to apply an augmented version of the LV05 model to both grammatical and ungram-
matical configurations simultaneously to gain amore complete picture of the individual variabil-
ity in agreement and reflexive constructions. Nevertheless, it is still worthwhile to investigate
howwell the base LV05model captures participants’ behavior across the different dependencies
in ungrammatical sentences, as we have done in the present work.

An additional limitation comes from the fact that we used the individual-level estimates of
the facilitatory interference effect from the published data as the basis for our simulations.
These estimates come with a high degree of uncertainty. That is not an issue specific to the
data we used: reading times are highly variable and studies are often underpowered (see
appendix B of Jäger et al., 2017). The high uncertainty of the data increases the uncertainty
of our simulation-based parameter estimates. One solution to this problem is to collect more
data from each participant. This provides more accurate estimates of individual parameter
values, even though longer experiments may result in adaptation to the linguistic manipulation
and reduced differences between conditions (Fine et al., 2013). Finding the right balance here
is a challenging task for future work.

Our implementation of the Lewis and Vasishth (2005) model assumes that individual-level
parameter values are sampled from a unimodal Gaussian distribution that is centered around
the population-level mean. This assumption constrains the allowed variability across individ-
uals, which is assumed to be quantitative rather than qualitative in nature (Haaf & Rouder,
2019; Navarro et al., 2006). In future work, we plan to compare models under the following
assumptions: (1) participant-level cue weighting comes from a unimodal Gaussian distribution,
(2) participant-level cue weighting comes from a bimodal distribution such that a participant
either has cue weighting 1 or cue weighting > 1, and (3) participant-level cue weighting is
constant, that is, 1 for all participants. If models (1) and (2) are better than (3), then there
are individual differences in cue weighting. If model (2) is better than model (1), then cue-
weighting variation among participants is split into two groups: participants with cue weight-
ing 1 and participants with higher cue weighting.

Regarding our choice of parameters to fit, there are alternative choices available, which
may result in different conclusions. While the choice of cue weighting is based on claims
in the literature, the choice of the latency factor as representing reading speed and, by exten-
sion, language experience and fluency, may be somewhat more contentious. The latency
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factor is one of the most frequently estimated parameters in the ACT-R literature (Wong et al.,
2010), but it is usually used to account for differences between studies rather than differences
between individuals (Anderson et al., 1998). Other candidate sources of individual differences
in ACT-R and the LV05 model are the activation noise parameter, the goal activation param-
eter, or the default action time parameter, which have been used in work on aphasia (Mätzig
et al., 2018; Patil et al., 2016).

Additionally, reading speed as a global parameter, as indexed by the latency factor, is a
multifaceted concept that can be measured with different tasks, only a subset of which may
correlate with reading comprehension (Gerst et al., 2021; Jackson & McClelland, 1979).
Ideally, in order to test the proposed connection between reading speed and cue weighting,
participants’ reading speed should be measured independently, in a separate task. Another
possibility is to compute average reading speed for filler sentences (Traxler et al., 2012), which
we plan to do in future work.

We have assumed a simple relationship between reading speed and language skill: higher
speed should be associated with more thorough syntactic processing. However, the data on
this relationship are not as straightforward as one might hope. For instance, Roberts and Felser
(2011) found lower comprehension accuracy for the faster readers in their native-speaker
group for some garden-path sentences. Kaan et al. (2015) observed faster average reading
in English for Dutch L2 learners than for English native speakers, as well as weaker online
sensitivity to agreement errors for fast readers, both for native speakers and L2 learners. Find-
ings like these suggest that reading speed does not necessarily correlate positively with expe-
rience or with comprehension. Readers may trade in accuracy for speed during reading, in
accordance with whether their goal is detailed, holistic comprehension or something else,
such as skimming the text for a particular type of information (Rayner et al., 2016). Reading
may also become faster when memory retrievals fail due to lower working memory capacity
(Nicenboim et al., 2016) or when certain aspects of the structural and semantic representation
of the sentence are strategically left underspecified (Swets et al., 2008; von der Malsburg &
Vasishth, 2013). Even if there is a stable underlying relationship between language experience,
reading speed and comprehension, it may thus be obscured by varying task demands and
differences in intrinsic and experiment-specific motivation (Schiefele et al., 2012). This is a
challenge for almost all implemented models of sentence comprehension: Only a few imple-
mented models (Logačev & Vasishth, 2015, 2016) explicitly address task effects on processing.
Future work should investigate ways of including task effects in the LV05 model.

It is also not clear whether each individual has characteristic, fixed values for cue weighting
and latency factor within a single study, as we have assumed here. This question can be
answered by evaluating test-retest reliability, that is, by running the same experiment twice
with each participant and checking whether the latency factor and cue weighting estimates
from the first and second studies correlate. The reliability of individual differences in reading
measures has recently started receiving more attention, as it is often unclear whether the
observed differences between participants represent stable individual characteristics. While
global reading speed has relatively high reliability, low reliability has been reported for the
participant-level effects of some linguistic manipulations (Cunnings & Fujita, 2020; James
et al., 2018; Staub, 2021), casting doubt on the assumption that individual differences can
reliably be estimated in standard psycholinguistic experiments. Addressing this issue in the
context of computational modeling is a further challenge. An important achievement of the
present work is that we make these challenges explicit by using a computationally imple-
mented model. Such a computational approach makes hypotheses more constrained and
falsifiable than with a merely verbal model.
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CONCLUSION

Within sentence processing research, this work is, to our knowledge, the first attempt at simul-
taneously estimating multiple individual-level parameters and their correlation using approx-
imate Bayesian computation. We have presented a novel investigation of the cue-weighting
hypothesis and its implications for dependency completion in sentence comprehension. The
theoretical insight from our modeling approach is that there is variation among individual
speakers in the application of linguistic constraints, and that psycholinguistic hypotheses
should be evaluated with regard to whether they hold for all, some, or none of the sampled
participants. Furthermore, there is some indication that cue weighting may be tied to language
experience, as reflected in average reading speed. While there are still many open questions,
the computational and statistical approach pioneered by Turner and Van Zandt (2014) and
others that we have applied here is broadly applicable across cognitive science; it can be
easily adapted to different computational modeling settings.
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APPENDIX
MODEL PREDICTIONS CONDITIONAL ON PARAMETER ESTIMATES FROM DILLON
ET AL.’S (2013) DATASET

Figure A1. Posterior predicted values for individuals in agreement and reflexive dependencies,
derived from the cue-based retrieval model after estimating individual-level parameters for cue
weighting. Shown are the posterior mean and 95% credible interval, along with the estimate of the
shrunken mean for each participant.
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Abstract

Cue-based retrieval theories of sentence processing assume
that subject-verb dependencies are resolved through a content-
addressable search in memory. The model assumes that multi-
ple nouns with similar syntactic or semantic features increase
dependency completion difficulty. English eyetracking data
(reading) are consistent with model predictions; interestingly,
a similar experiment with German–a language marking case
overtly–suggests that only syntactic features affect dependency
completion difficulty. Why would German show different be-
havior than English? Using a computational implementation
of the cue-based retrieval model and model comparison using
Bayes factors, we show that the reason is systematic variation
at the individual-participant level: German participants over-
whelmingly give higher weighting to syntactic cues over se-
mantic cues, whereas English participants mostly give equal
weighting to syntactic and semantic cues. The richer mor-
phosyntax of German leads to syntactic cues being favoured;
if such cues are largely absent (as in English) the parser relies
on both cue types equally.
Keywords: Similarity-based interference; cue-based retrieval;
individual differences

Introduction
Comprehending a sentence requires the reader to correctly
figure out who did what to whom. This process of identifying
the syntactic relations between words is called dependency
completion. A well-established claim in sentence processing
is that dependency completion between a verb and its associ-
ated subject is driven by a cue-based retrieval process (Lewis
& Vasishth, 2005; McElree, 2000; Van Dyke, 2007). Under
the cue-based retrieval account, the target noun is identified
via a content-addressable search in memory based on feature
specifications at the verb, such as [subject], called retrieval
cues. When multiple nouns in memory match the retrieval
cues, it is difficult to identify the target noun, which leads to
a slowdown in retrieval times at the verb compared to a situ-
ation where only one noun matches the retrieval cues.

For example, in sentence (a) below, both the nouns the res-
ident and the neighbour are in subject position, i.e., they both
match the retrieval cue [subject], compared to sentence (b)

where only one noun the resident matches the [subect] cue.
The reading times at the verb was complaining are predicted
to be slower in sentence (a) compared to sentence (b). This
predicted effect is called syntactic interference (Van Dyke,
2007; Van Dyke & Lewis, 2003).
(a) . . . the resident who said that the neighbour was danger-

ous was complaining . . .
(b) . . . the resident who was living near the dangerous neigh-

bor was complaining . . .

Similarly, when multiple nouns match the verb’s semantic
cues, such as [animate], they are assumed to cause seman-
tic interference (Van Dyke, 2007). For example, in sentence
(c) where both the resident and the neighbour are animate,
the retrieval times at the verb are predicted to be slower than
sentence (d), where only the resident is animate.
(c) . . . the resident who said that the neighbour was danger-

ous was complaining . . .
(d) . . . the resident who said that the warehouse was danger-

ous was complaining . . .

The predicted syntactic and semantic interference effects
are consistently found in English reading studies (Van Dyke,
2007; Van Dyke & Lewis, 2003; Arnett & Wagers, 2017; Van
Dyke & McElree, 2011). In a recent cross-linguistic study
(Mertzen, Paape, Dillon, Engbert, & Vasishth, 2021), both
syntactic and semantic interference were observed in English,
but in German, only syntactic interference was observed at
the verb (see Figure 1). Semantic interference was absent at
the verb and appeared only later in the post-verbal region.

In sum, at the critical region (the verb phrase was com-
plaining), syntactic interference predicted by the cue-based
retrieval account is observed in both English and German,
but semantic interference is observed only in English. The
default assumption in cue-based retrieval models is that syn-
tactic and semantic cues are used in the same way, so the
magnitude of semantic and syntactic interference is predicted
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Figure 1: Syntactic and semantic interference predicted by
a cue-based retrieval model (shaded areas; Lewis & Vasishth,
2005) compared with the observed effects in English and Ger-
man from Mertzen et al. (2021); the effects are estimated
from regression path durations at the verb. The error bars
show 95% credible intervals of predicted or observed effects.

to be the same. The absence of semantic interference in Ger-
man is, therefore, puzzling.

Mertzen et al. propose an explanation: a noun’s syntac-
tic cue is weighted higher than its semantic cue in German,
while the two cues are weighted equally in English. The high
weighting for syntactic cues in German could be due to the
overt case marking on the nouns; it is possible that the overt
case marking is highly reliable in identifying the grammatical
functions of the nouns.

The cue weighting proposal is not entirely new. Sev-
eral researchers have hypothesized that syntactic cues may
be weighted more strongly over non-syntactic cues in pro-
cessing antecedent-reflexive dependencies (Dillon, Mishler,
Sloggett, & Phillips, 2013; Cunnings & Sturt, 2014; Kush,
2013; Parker & Phillips, 2017). A major limitation of these
cue-weighting proposals is that they aim to explain the data
averaged across all the participants. However, it is possible
that individual differences in cue weighting exist. For exam-
ple, a recent study on English (Yadav et al., 2021) showed that
only one-third of the participants weigh syntactic cues more
strongly over number cues in processing antecedent-reflexive
dependencies. This result implies that the claim based on
the average behavior holds only for a small subset of partici-
pants. This study demonstrates that the average behavior may
mask theoretically important information which can only be
revealed by modeling individual-level differences.

Modeling individual differences in syntactic and semantic
interference in English and German might reveal a more nu-
anced picture of cue weighting differences among individuals
and among the two language groups. For instance, it is possi-
ble that only a small subset of German participants, who have
high weighting for the syntactic cue, is responsible for the
absence of semantic interference in German. Therefore, the
cue weighting hypothesis — that syntactic cues are weighted
more strongly over semantic cues in German, but not in En-
glish — should be formulated for individual participants. The
important questions to be asked are: (1) whether individuals
differ in how they weight syntactic cues relative to semantic
cues, and (2) whether individual German participants differ

from individual English participants in cue weighting.
We test these questions by implementing two hierarchical

models based on the Lewis and Vasishth (2005) cue-based
retrieval model: (i) the equal cue-weighting model, which as-
sumes that all the individuals have equal weights for syntactic
and semantic cues, and (ii) the varying cue-weighting model,
which assumes that individuals may differ in how highly they
weight syntactic cues over semantic cues. The models are fit-
ted to data from Mertzen et al. (2021) and then compared us-
ing Bayes factors (Rouder, Haaf, & Vandekerckhove, 2018).

The main finding is that there are cross-linguistic differ-
ences in individual-level cue-weighting: most German par-
ticipants have higher weights for syntactic cues over semantic
cues, while most English participants have equal weights for
syntactic and semantic cues.

We first present the two individual difference models.
Next, we quantify relative evidence for the two models and
show the individual-level cue weighting estimates. We then
discuss the broader implications of the work and conclude.

Two models of individual-level cue weighting
We implement two hierarchical models that differ in their
assumption about the distribution of individual-level cue
weighting. The models are implemented within the cue-based
retrieval framework of Lewis and Vasishth (2005).

The Lewis and Vasishth (2005) model (see Engelmann,
Jäger, & Vasishth, 2020, for the latest implementation) as-
sumes that each noun phrase that matches a retrieval cue re-
ceives a certain amount of activation (see Figure 2). The total
activation of a noun phrase i is given by

Ai = Bi +
n

∑
j=1

WjS ji + εi (1)

where Bi is the baseline activation of the noun i determined
by its past retrievals, and εi is Gaussian noise added to acti-
vation of the noun i, such that εi ∼ Normal(0,σ). The term
∑n

j=1 WjS ji represents that the noun phrase i receives activa-
tion from all matching cues j depending on the associative
strength S ji between the cue j and the noun i, and the cue’s
weight Wj (Engelmann et al., 2020). The cue’s weight is de-
termined by a parameter called cue weighting. Cue weight-
ing encodes the ratio of weights of syntactic cues and non-
syntactic cues. Following Yadav et al. (2021), we assume that
the cue weighting can have a value between 1 and 4, such that
the cue weighting of 1 means equal weights for syntactic and
semantic cues and the cue weighting of 4 means four times
higher weight for the syntactic cue over semantic cues.

The Lewis and Vasishth model further assumes that a noun
phrase with the highest activation gets retrieved for depen-
dency completion. The retrieval time at the verb is deter-
mined by the activation level of the retrieved noun, Ai.

T = Fe−Ai (2)

where the latency factor F reflects overall reading speed and
may, inter alia, include lexical access time, motor response
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+subject +subject subject
(2a) . . . the attorney whose secretary had forgotten that the visitor was important frequently complained about . . .

+animate +animate animate

+subject +subject subject
(2b) . . . the attorney whose secretary had forgotten that the meeting was important frequently complained about . . .

+animate -animate animate

+subject -subject subject
(2c) . . . the attorney whose secretary had forgotten about the important visitor frequently complained about . . .

+animate +animate animate

+subject -subject subject
(2d) . . . the attorney whose secretary had forgotten about the important meeting frequently complained about . . .

+animate -animate animate

Figure 2: Activation received by the nouns based on cue-feature match, with a thick arrow denoting more activation spreading
compared to a thin arrow. A dashed box represents a retrieval cue, a thick box represents a feature that matches a retrieval cue,
and a thin box represents a feature that does not match a retrieval cue.

time, etc. The latency factor is commonly considered a free
parameter in the model.

Figure 2 shows how activation spreads to each noun phrase
in the four example conditions from Mertzen et al. (2021).
In conditions (2a) and (2b), multiple nouns match the [sub-
ject] cue at the verb; as a result, the activation spread via the
[subject] cue gets divided among these nouns. This is called
the fan effect (Anderson et al., 2004; Schneider & Anderson,
2012). Due to the fan effect, the retrieval times at the verb in
conditions (2a) and (2b) are predicted to be slower compared
to conditions (2c) and (2d); this slowdown is referred to as
syntactic interference. Similarly, due to the fan effect of the
[+animate] feature in conditions (2a) and (2c), the retrieval
times in (2a) and (2c) are predicted to be slower than in (2b)
and (2d), which is called semantic interference.

Based on the equations 1 and 2, the model predicts syntac-
tic and semantic interference, (Xsyn,Xsem) as a function of cue
weighting W and latency factor F ,

(Xsyn,Xsem)∼ Model(W,F) (3)

The magnitude of both syntactic and semantic interference
increases linearly with an increase in latency factor. But the
cue weighting affects only semantic interference: the mag-
nitude of semantic interference decreases with an increase
in cue weighting. This is because with the increase in cue
weighting, the semantic cue gets weaker, and consequently,
the fan effect caused by the semantic cue gets weaker, which
leads to the decrease in semantic interference.

We implement two hierarchical models that predict syntac-
tic and semantic interference for each individual participant

as a function of individual-level cue weighting and latency
factor. The models make different assumptions about how
the cue weighting varies among individuals, which we dis-
cuss next.

The equal cue-weighting model
The equal cue-weighting model assumes that all participants
have equal weighting for syntactic and semantic cues.

Suppose that (Xsyn j,g ,Xsem j,g) represent syntactic and se-
mantic interference effects for a participant j from language
g.

(Xsyn j,g ,Xsem j,g)∼ Model(Wj,g,Fj,g) (4)

where Wj,g is the cue weighting and Fj,g is the latency factor
of the participant j of language g.

Under the equal cue-weighting model, all the participants
regardless of their language have cue weighting equal to 1,
i.e., they have equal weights for syntactic and semantic cues.

Wj,g = 1 (5)

The individual-level latency factor Fj,g is assumed to come
from a normal distribution with population-level mean la-
tency factor µFg and population-level variance τ2

Fg
for lan-

guage g:
Fj,g ∼ Normallb=0.05(µFg ,τ

2
Fg) (6)

where lb = 0.05 represent a lower bound of 0.05 on latency
factor values. We choose this lower bound because a la-
tency factor of less than 0.05 would generate unreasonably
fast reading times for an individual (see Jäger, Engelmann, &
Vasishth, 2017, for a meta-analysis of reading times).
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The varying cue-weighting model
The varying cue-weighting model assumes that participants
may differ in weighting of syntactic cues over semantic cues.

Suppose that (Xsyn j,g ,Xsem j,g) represents the syntactic and
semantic interference effects for a participant j from the lan-
guage g.

(Xsyn j,g ,Xsem j,g)∼ Model(Wj,g,Fj,g) (7)

The individual-level latency factor Fj,g is assumed to come
from the same distribution as shown in Equation 6.

Under the varying cue-weighting model, the cue weighting
for the participant j of language g, i.e., Wj,g comes from a
normal distribution with population-level mean cue weight-
ing µWg and between-participant variance τ2

Wg
:

Wj,g ∼ Normallb=1,ub=4(µWg ,τ
2
Wg) (8)

where lb = 1,ub = 4 constrains the individual-level cue
weighting to be between 1 and 4. A cue weighting of 1
means equal weights for syntactic and semantic cues and a
cue weighting of 4 means 4 times higher weight for the syn-
tactic cue.

The population-level cue weighting parameters, the mean
cue weighting µWg and between-participant variance τ2

Wg
, are

the main parameters that make the varying cue-weighting
model different from the equal weighting model. A com-
parative evaluation of the two models can be sensitive to the
priors on these population-level cue weighting parameters.
Following the recommendation in Schad et al. (2021), we
choose a range of priors on mean cue weighting and between-
participant variance in cue weighting so that we can compare
the models under different assumptions about the distribution
of cue weighting in the populations.

For the population-level mean cue weighting µWg , we spec-
ify the following prior:

µWg ∼ Normallb=1,ub=4(1,σm) (9)

where σm ∈ {0.05,0.1,0.5,1}. The different values of σm
express our assumptions about possible values of mean cue
weighting. For example, Normallb=1,ub=4(1,0.05) represents
that the mean cue weighting is retricted to be very close to
1, while Normallb=1,ub=4(1,1) represents that the mean cue
weighting is allowed to be somewhere between 1 and 3.

For the between-participant variance in cue weighting τ2
Wg

,
we use an inverse-gamma prior.

τ2
Wg ∼ InvGamma(1,scale) (10)

where scale ∈ {0.005,0.01,0.05,0.1,0.5}. The different val-
ues of scale express our assumptions about how much varia-
tion in cue weighting is allowed across individuals.

We fit these two models of individual-level cue weight-
ing on data from Mertzen et al. (2021) and compute their
marginal likelihoods given the data.

Model comparison
Mertzen et al. investigated both semantic and syntactic inter-
ference in a single design across two languages, English and
German. From their dataset, we obtain shrunken estimates of
individual-level syntactic and semantic interference for each
participant as shown in Figure 3.1

We fit the equal cue weighting model and the varying
cue-weighting model on the individual-level interference ef-
fects using hierarchical Approximate Bayesian Computation
(Turner & Van Zandt, 2014; Sisson, Fan, & Beaumont, 2018)
and obtained the marginal likelihoods for the each model
given the data.

We then quantified the evidence for the varying cue-
weighting model against the equal cue-weighting model us-
ing the Bayes factors (Rouder et al., 2018; Schönbrodt & Wa-
genmakers, 2018). The Bayes factor in favor of a model M1
compared to a model M2, i.e., BF12 is computed as the ratio
of the marginal likelihoods of M1 and M2. The Bayes fac-
tor BF12 represents the extent to which the model M1 is more
likely than M2 given the data. Following the convention from
Jeffreys (1939/1998), a Bayes factor value of larger than 10
is interpreted as strong evidence in favor of M1 and a value
between 3 and 10 is interpreted as moderate evidence in favor
of M1.

Figure 4 shows the estimated Bayes factor under each prior
assumption about the population-level cue weighting. We
find that the Bayes factors are larger than 3 when the mean
cue weighing is assumed to be very close to 1, suggest-
ing moderate evidence in favor of the varying cue-weighting
model. Under the assumption that the mean cue weighting
could lie in the range of 1 to 2 or 1 to 3, the Bayes factors
are larger than 10, indicating strong evidence in favor of the
varying cue-weighting model.

Overall, the Bayes factors suggest moderate to strong evi-
dence for the varying cue-weighting model compared to the
equal cue-weighting model.

Individual-level cue weighting estimates
The model comparison shows evidence in favor of the as-
sumption that individuals differ in cue weighting. But how
do they differ? What is the distribution of individual-level
cue weighting in English and German? We can answer this
using individual-level cue weighting estimates from the vary-
ing cue-weighting model.

Figure 5 shows the estimated posterior distribution of cue-
weighting for each individual participant from English and
German. We find that 85% of the German participants have
cue weighting larger than 2 meaning that 85% of the German
participants give at least two times higher weights to syntactic
cues over semantic cues. And, 84% of English participants
have cue weighting of less than 1.5, which means that 84%

1To obtain individual-level interference effects, we fit a Bayesian
hierarchical model with varying intercepts and slopes for partic-
ipants and items, where regression path durations are the depen-
dent variable and conditions (syntactic vs semantic, feature-match
vs mismatch) are sum-coded predictors (Schad et al., 2020).
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Figure 3: Individual-level syntactic and semantic interference effects from the Mertzen et al. (2021) data. Shown are the
shrunken estimates from a Bayesian hierarchical model fit to regression path durations at the verb. English had 61 participants,
German had 121 participants. The circles represent mean effects, the error bars represent 95% credible intervals of the effects.

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

Population mean 
 cue weighting 

 1 − 2

Population mean 
 cue weighting 

 1 − 4

Population mean 
 cue weighting 

 1 − 1.1

Population mean 
 cue weighting 

 1 − 1.2

In
vG

am
m

a(
1,

0.
00

5)
In

vG
am

m
a(

1,
0.

01
)

In
vG

am
m

a(
1,

0.
05

)
In

vG
am

m
a(

1,
0.

1)
In

vG
am

m
a(

1,
0.

5)
In

vG
am

m
a(

1,
0.

00
5)

In
vG

am
m

a(
1,

0.
01

)
In

vG
am

m
a(

1,
0.

05
)

In
vG

am
m

a(
1,

0.
1)

In
vG

am
m

a(
1,

0.
5)

0

5

10

0

5

10

Prior on between−participant variance in cue weighting

E
vi

de
nc

e 
in

 fa
vo

r 
of

 th
e 

va
ry

in
g 

cu
e−

w
ei

gh
tin

g 
m

od
el

 
 B

ay
es

 fa
ct

or

Figure 4: Estimated Bayes factors given different priors on
the population-level mean cue weighting, µWg and between-
participant variance in cue weighting, τ2

Wg
(see Equation 8).

of English participants give approximately equal weights to
syntactic and semantic cues.

In sum, the cue weighing estimates indicate that the most
of the German participants have high weighting (> 2) for the
syntactic cue, while the most of the English participants have
equal weighting (≈ 1) for syntactic and semantic cues.

Discussion
Are syntactic and semantic retrieval cues weighted differ-
ently by English and German speakers? To answer this ques-
tion, we implemented two hierarchical models, the equal cue-
weighting model and the varying cue-weighting model. The
equal cue-weighting model assumed that all English and Ger-
man participants have equal weights for the syntactic and the
semantic cues when retrieving a verb’s subject from memory;
the varying cue-weighting model assumed that individual par-
ticipants can differ in how strongly they weight syntactic cues
over semantic cues.

The models were evaluated on individual-level syntactic
and semantic interference data from Mertzen et al. (2021).
The model comparison and the model fits show that

1. There is moderate to strong evidence in favor of the varying
cue-weighting model, suggesting that individuals vary in
how they weight retrieval cues.

2. Most German participants give higher weights to syntactic
cues over semantic cues, while most English participants
give equal weights to syntactic and semantic cues.
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Figure 5: Individual-level cue weighting estimates from the
varying cue-weigting model fitted to Mertzen et al. (2021)
data. The solid circles represent mean cue weighting, the er-
ror bars represent 95% credible intervals of estimated values.

The results indicate that German speakers differ from En-
glish speakers in how they weight syntactic cues relative to
non-syntactic cues. The conclusion is important for theo-
ries of sentence processing, because there is some indepen-
dent support for the idea that the native speakers of a par-
ticular language may learn to use certain cues more strongly
and reliably over the others (Dittmar et al., 2008; Sokolov,
1988; Bates et al., 1984). It is possible that German speak-
ers weight the syntactic cues higher because the overt case
marking in German is highly reliable in identifying the gram-
matical functions of the nouns in a sentence. For example,
in the experimental items used in Mertzen et al. (2021), the
grammatical role of every pre-verbal noun was identifiable ei-
ther by (i) unambiguous case marking of the noun (if it was a
masculine noun), or by (ii) the properties of its case-assigning
head (verb or preposition).

A principled test of our conclusion would be in verifying
whether the distribution of individual-level cue weighting in
German and English is replicated in future experiments. If
the inferred distribution — that most German speakers have
high weighting for syntactic cues — holds for the language
population, one would expect to see the same distribution of
cue weighting in repeated experiments with larger samples
of German participants. We plan to run a relatively large-
sample-size study to test this prediction.

An interesting question that remains to be investigated is
whether cue weighting is correlated with the general reading
speed of an individual. There are reasons to believe that fast
readers may weigh syntactic cues more strongly than slow

readers (see Yadav et al., 2021). The strong weighting of syn-
tactic cues in German speakers compared to English speakers
might be associated with differences in their reading speed.
Systematic experimental and modeling work is required to
investigate the relationship between individual-level reading
speed and cue weighting.

We have implemented only two models of individual dif-
ferences in cue weighting, but one can explore other assump-
tions about how individuals vary in cue weighting. For exam-
ple, it could be assumed that all German participants have a
fixed cue weighting, which is different from English partic-
ipants. Another assumption could be that only German par-
ticipants vary in cue weighting while all English participants
have equal cue weighting. It would be interesting to compare
models under different assumptions about the distribution of
individual-level cue weighting in German and English lan-
guage populations.

A weakness of the current modeling work is that we do
not have an independent measure of cue weighting for each
individual; we can only infer it indirectly through reading
times. The cue-weighting differences that are used to explain
the observed individual differences in the data are estimated
from the same data. It is possible that the individual-level
cue weighting is overfitted to these data and that we may not
get stable estimates of cue weighting for an individual in re-
peated experiments. A better approach would be to measure
cue weighting independently for each participant on a sepa-
rate processing task and then test the phenomenon of interest
on the same group of participants. Using this approach, we
can directly investigate whether the model can predict an in-
dividual’s behavior based on their cue weighting. We plan to
take this up in future work.

The current work reveals new insights about the con-
straints on processing subject-verb dependencies: The de-
pendency between a verb and its associated subject is re-
solved via a cue-based retrieval process where the cues can be
weighted differently by individuals depending on their native
language. To our knowledge, this is the first investigation of
cross-linguistic cue-weighting differences in a computational
model of sentence comprehension. Our work contributes to
understanding how different sources of linguistic information
are employed during processing.
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Chapter 6

Discussion

In the articles presented in the previous chapters, I have addressed two questions. First, which
theory can best explain the observed range of number agreement effects in both grammatical and
ungrammatical sentences? Second, why does the antecedent-reflexive dependency not show an
agreement attraction effect?

My modeling work has revealed three key insights: (a) A hybrid model that assumes both
cue-based retrieval and probabilistic feature distortion can best explain the number agreement effects
observed for subject-verb number agreement dependencies, (b) Some participants weigh syntactic
cue higher than the number cue in processing reflexive dependencies which leads to the absence
of the number attraction effect in these dependencies, and (c) Individual difference modeling is
important for theory development.

In this chapter, I discuss the above three insights in detail. In section 6.1, I propose a general
theory of dependency completion processes based on the insights (a) and (b). In section 6.2, I discuss
the theoretical significance of modeling individual differences in sentence comprehension.

6.1 The distortion-retrieval theory of sentence comprehension

The cue-based retrieval (Lewis and Vasishth, 2005, Lewis et al., 2006, McElree, 2003) is a well-
established theory of how the comprehender identifies and links the linguistically related words in a
sentence to interpret the intended message. The key assumption is that the dependencies between
the words, such as dependencies between verbs and their associated subjects, are resolved via a
content-addressable search in memory. The theory has been invoked to explain a broad range of
empirical data from a variety of constructions, including subject-verb non-agreement dependencies
(Mertzen et al., 2022, Van Dyke, 2007, Van Dyke and McElree, 2011), number agreement depen-
dencies Dillon et al. (2013), Jäger et al. (2020), Lago et al. (2015), Wagers et al. (2009), plausibility
mismatch configurations (Cunnings and Sturt, 2018), and negative polarity item licensing (Drenhaus
et al., 2005, Vasishth et al., 2008).

However, as we discussed in our articles, there are at least two empirical challenges to
the cue-based retrieval account: (i) the grammatical sentences’ data from subject-verb number
agreement dependencies, and (ii) the data from antecedent-reflexive dependencies. The theory in
its original form fails to explain these data. But as we demonstrated, a few modifications in the
assumptions of a cue-based retrieval model could account for these two datasets without losing
the original empirical coverage of the model. A cue-based retrieval model that allows probabilistic
feature distortion and the differential cue weighting assumption can explain the observed range
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of effects for subject-verb number agreement dependencies and antecedent-reflexive dependencies.
This is the main cumulative result of the modeling work presented in my three articles.

The result brings a fresh perspective to our understanding of cognitive processes that un-
derlie sentence comprehension in humans. That is, a theory of sentence comprehension needs to
incorporate the following three assumptions: (i) the representations stored in memory undergo prob-
abilistic feature distortion, (ii) dependency completion is driven by a content-addressable search in
memory, and (iii) the linguistic cues used for dependency completion can be weighted differentially.

I first discuss these three assumptions in detail followed by their implementation in the cue-
based retrieval model of Lewis and Vasishth (2005). The model allows us to unify these assumptions
within its architecture using only three free parameters. I call this modified model the distortion-
retrieval model. After presenting the formal description of the model, I discuss the model predictions
for different construction types studied in sentence comprehension.

6.1.1 Three important assumptions for a theory of sentence comprehension

The combined results from my three articles indicate that a theory of sentence comprehension
needs to incorporate the assumptions of probabilistic representation distortion, cue-based retrieval,
and differential cue-weighting. These assumptions find independent empirical support in psycholin-
guistics, and more generally in working memory research. I discuss the empirical and theoretical
background of the three assumptions below.

(a) Probabilistic distortion of representations stored in memory

Comprehending a sentence requires the reader to temporarily maintain the relevant linguistic chunks
in memory. The original cue-based retrieval theory assumes that the feature representation of the
linguistic units stored in memory remains intact, i.e., the representations do not change over time.1

The results from Article I provide a strong basis to consider the probabilistic feature distortion
assumption: Some of the features of the nouns stored in memory can get changed or lost with
time. For example, a singular noun can probabilistically change to plural when it is stored in
memory along with a plural-marked noun. Two existing theories of sentence processing, the feature
percolation theory (Bock and Eberhard, 1993, Eberhard, 1997) and the lossy-context surprisal
theory (Futrell et al., 2020), already have the feature distortion assumption; however, they differ
in terms of mechanism behind such a distortion. The feature percolation theory assumes that the
number feature from a non-subject noun percolates to the subject noun probabilistically, and the
noisy channel theory assumes that the features can get inserted or deleted over time constrained
by information-theoretic principles. The exact nature of feature distortion remains an empirical
question but the assumption has some independent support in memory literature. For example,
when participants are asked to report the feature(s) of the target item that was recently presented
along with a distractor item, then in a proportion of trials, participants make swap errors: they
mistakenly report the features of the distractor item when probed about the target item (Bays,
2016, Bays et al., 2009, Scotti et al., 2021). Swap errors support the idea that features can migrate
from one memory item to others. As we also show in Article I, a feature distortion assumption
is necessary to explain the data from subject-verb number agreement dependencies. Thus, the
probabilistic feature distortion is a well-motivated assumption and it would increase the empirical
coverage of a sentence processing model.

1Although, the cue-based retrieval model of Lewis and Vasishth (2005) assumes that the accessibility of the
representations can degrade over time, but it still assumes that the representations remain veridical in their content.
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(b) Content-addressable search in memory

Sentence comprehension requires that the comprehender should figure out who did what to whom:
the dependencies between linguistically related words must be completed. The cue-based retrieval
theory assumes that the dependency completion is driven by a content-addressable search in mem-
ory. For instance, to complete a subject-verb dependency, a search is triggered at the verb based on
its feature specification, such as [subject, plural], and a best-matching noun is retrieved from mem-
ory. The content-addressable search has been a key assumption in many theories that deal with
working memory operations, including theories of sentence comprehension (Lewis and Vasishth,
2005, McElree, 2000), memory recall (Gillund and Shiffrin, 1984, Raaijmakers and Shiffrin, 1981),
item recognition (Ratcliff, 1978), frequency judgments (Hintzman, 1984), etc. The assumption is
supported by a range of empirical phenomena observed in sentence processing, such as agreement
attraction (Avetisyan et al., 2020, Dillon et al., 2013, Lago et al., 2015, Tucker et al., 2015, Wagers
et al., 2009), similarity-based interference (Mertzen et al., 2022, Van Dyke, 2007, Van Dyke and
McElree, 2006, 2011), and semantic attraction (Cunnings and Sturt, 2018, Laurinavichyute and
von der Malsburg, 2022). Our results in Article I also show that a content-addressable mechanism
is important for explaining the data on subject-verb number agreement processing. Specifically, we
find that a feature distortion assumption must be combined with the cue-based retrieval assumption
to achieve the best fit. Given this overwhelming empirical support, the content-addressable search
remains a very important assumption for modeling sentence comprehension.

(c) Differential weighting of the linguistic cues used for dependency completion

A widely-held assumption in sentence processing is that the comprehender combines different sources
of linguistic information to resolve a dependency (Lewis and Vasishth, 2005, MacDonald et al.,
1994, McElree, 2000, McRae et al., 1998). For instance, early constraint-based models (MacDonald
et al., 1994, McRae et al., 1998) maintained that different types of constraints, including thematic
fit, tense/voice information, frequency biases, etc., are simultaneously active in resolving local
ambiguities in sentences like the cop arrested by the detective was guilty of taking bribes. The
cue-based retrieval models Lewis and Vasishth (2005), McElree (2000) make a similar assumption:
in order to complete a dependency, a set of linguistic cues such as case, number, and animacy, is
used to search the co-dependents in memory. These linguistic cues are often assumed to be weighted
equally, i.e., all types of cues are assumed to make an equal contribution in the retrieval process
(but see Cunnings and Sturt, 2014, Dillon et al., 2013, Kush, 2013, Parker and Phillips, 2017). Our
results from Article II and III suggest that syntactic cues might be weighted more strongly over
the morphological and semantic cues in processing certain dependencies and in certain languages.
Moreover, the individuals might differ in how they weigh different linguistic cues. These results
call for considering the differential cue weighting assumption: the comprehender can weigh a
particular linguistic cue more strongly over the others during dependency completion.

There is also independent support for the cue-weighting assumption that comes from the
thematic role assignment studies in children and adults. In these studies, the participant is asked
to identify the agent and the patient of the action in transitive sentences like the cat/ball ate
the ball/cat. It is assumed the participants use different linguistic cues such as word order, case,
and animacy to identify the correct thematic role of a noun. The cross-linguistic differences are
observed in cue-reliability : English speakers strongly rely on word order, Italian speakers rely on
agreement or semantic cues over word order cues, and German speakers rely on case marking cues
(Bates et al., 1982, Dittmar et al., 2008, MacWhinney et al., 1984). Moreover, this differential
cue reliability develops in children over time. For example, five-years-old German children use the
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word order cues over case marking, but the seven-year-olds rely on case markers in identifying the
agent-patient roles Dittmar et al. (2008).

Not only in sentence processing, cue weighting has also had some support in broader memory
research. In a recall task, Sohn et al. (2004) showed that when the participants were trained on
different types of information in the training session, they weighed retrieval cues differently in
the main recall task. Similarly, Danker et al. (2011) observed that some individuals learn to use
certain cues more effectively and reliably compared to other cues. Given this considerable empirical
support for the cue-weighting assumption and its strong theoretical roots, the assumption should
be considered for a theory of sentence processing.

6.1.2 The distortion-retrieval model: Implementation of the three key
assumptions in a cue-based retrieval model

The three assumptions discussed above can be implemented in the cue-based retrieval model of
Lewis and Vasishth (2005). The model can integrate these additional components without losing
its original empirical coverage of sentence processing data. I would refer to this modified cue-based
retrieval model as the distortion-retrieval model.

To summarize, the distortion-retrieval model makes the following key assumptions:

(1) The cue-based retrieval assumption: The dependency completion between a pair of words
is driven by a content-addressable search in memory.

(2) Feature distortion assumption: The co-dependents stored in memory can undergo a prob-
abilistic change in feature representation over time; Consequently, the cue-based retrieval
process operates on the probabilistically distorted representation of chunks.

(3) Cue-weighting assumption: The cues used for searching a target chunk in memory may
have different weighting. In processing sentences like the bodybuilder who worked with the
trainers injured themselves, the c-command cue at themselves can have higher weight than
the plural number cue. The cues with higher weights exert greater influence in identifying
and completing the dependencies.

To include the above three assumptions, the unified distortion-retrieval model would have
three free parameters: (a) the scaling parameter F , which represents the average reading speed for
an individual or a population, (b) the distortion rate parameter θ, which determines the degree of
feature distortion in the nouns when they are stored in memory, and (c) the cue weighting parameter
W , the ratio of weights of two linguistic cues used in dependency completion. The formal description
of the distortion-retrieval model is presented below.

The distortion-retrieval model assumes that the representation of a noun phrase i stored in
memory can get distorted with probability θ. Suppose Ri is the veridical representation of a noun
i stored in memory.2 The probabilistically-distorted representation of the noun i in the kth trial as
a function of distortion rate parameter θ is given by

Ri,k =

{
Ri,d if zk = 1
Ri if zk = 0

where zk ∼ Bernoulli(θ) (6.1)

Ri,k is the representation of the noun i in the kth trial, Ri,d is the non-veridical representation of
the noun produced by the feature distortion process. For the feature distortion process, I assume

2The nouns stored in memory refer to the noun phrases that appear in a sentence before a retrieval site, e.g., a
verb.
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that certain features of a noun stored in memory can migrate to another noun in memory with a
probability θ. What kind of features can migrate from one noun to another? In the current model,
the probabilistic distortion is allowed for only those features that are deemed to be encoded in
real-time in memory, e.g., number, gender, and case. A reasonable approximation of such features
comes from the inflectional morphemes in a language: the features that are encoded using inflectional
morphemes in a language can undergo probabilistic distortion.

Following the Lewis and Vasishth (2005) model (see Engelmann et al., 2019, for the latest
implementation), the distortion-retrieval model assumes that each noun phrase that matches a
retrieval cue receives a certain amount of activation (see Figure 6.1). The total activation of a noun
phrase i in the trial k is given by

Ai,k = Bi +
n∑

j=1

WjSji,k + ϵk (6.2)

where Bi is the baseline activation of the noun i determined by its past history of retrievals, and ϵk
is Gaussian noise added to activation of the noun i in the kth trial, such that ϵk ∼ Normal(0, σ).

The term
∑n

j=1WjSji,k in Equation eq:activation represents that the noun phrase i receives
activation from all matching cues j depending on the associative strength Sji,k between the cue j and
the noun i, and the cue’s weight Wj Engelmann et al. (2019). The cue’s weight Wj is determined by
a parameter called cue weighting. Cue weighting encodes the ratio of weights of syntactic cues and
non-syntactic cues. Similar to Article II, I assume that the cue weighting can have a value between
1 and 4, such that the cue weighting of 1 means equal weights for syntactic and non-syntactic cues
and the cue weighting of 4 means four times higher weight for the syntactic cue over the other cue.

The associative strength Sji,k between a noun and a cue is determined by the number of
nouns in memory that matches the cue j: As the number of nouns that matches the cue j increases,
the associative strength between a noun i and cue j decreases. This is called the fan effect Anderson
et al. (2004), Schneider and Anderson (2012). Since the cue-feature match in a trial depends on the
feature representation of the nouns in a trial, the associative strength Sji,k would be the function
of the noun’s representation in the kth trial, Ri,k (see Equation 6.1).

The model further assumes that a noun with the highest activation gets retrieved for de-
pendency completion. Suppose A1,k, A2,k, ..., Am,k represent the respective activation levels of the
m nouns in memory, the activation of the noun that is retrieved from the memory in the kth trial
is given by

Ar,k = maxmi=1Ai,k (6.3)

The retrieval time in the kth trial is determined by the activation level of the retrieved noun
Ar,k.

Tk = Fe−Ar,k (6.4)

where the latency factor F reflects the overall reading speed and may, among others, include visual
processing time, lexical access time, motor response time, etc. The latency factor is commonly
considered a free parameter in the original cue-based retrieval model of Lewis and Vasishth (2005).

Figure 6.1 demonstrate the model’s assumption of how activation spreads to each noun
phrase in an example sentence when the retrieval process is triggered at the reflexive themselves.
At the retrieval site themselves, a search is triggered in memory for the target antecedent noun: a
noun that c-commands the reflexive themselves and has plural features. In a proportion of trials, the
plural feature of the noun trainers can migrate to the noun bodybuilder causing the noun bodybuilder
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Probabilistic percolation of the plural feature

*The bodybuilder who worked with the trainers ... injured themselves ...
+plural

θ

(a) Activation received by the nouns in (1− θ)×N trials where the representations
are veridical

+ccom -ccom ccom
*The bodybuilder who worked with the trainers ... injured themselves ...

-plural +plural plural

(b) Activation received by the nouns in θ ×N trials where the representations are
non-veridical

+ccom -ccom ccom
*The bodybuilder who worked with the trainers ... injured themselves ...

+plural +plural plural

Figure 6.1: A densely dotted edge represents the probabilistic migration of a feature from one noun
to another with probability θ. Activation received by the nouns based on cue-feature match is
represented by solid arrows, with a thick arrow denoting more activation spreading compared to a
thin arrow. A dashed box represents a retrieval cue, a shaded box represents a feature that matches
a retrieval cue, and a thin box represents a feature that does not match a retrieval cue. The [ccom]
and the [plural] cues together trigger a search in memory for a plural noun that c-commands the
reflexive themselves.

to possess a plural feature in those trials. When the retrieval is triggered at themselves, multiple
nouns (partially or fully) match the retrieval cues [c-command] and [plural]. All the matching nouns
receive a certain amount of activation based on Equation 6.2. The noun with the highest activation
gets retrieved and the retrieval time is determined by the activation level of the retrieved noun
according to Equation 6.4.

6.1.3 The predictions of the distortion-retrieval model

A good model of sentence comprehension should be able to predict the processing difficulty exhibited
by humans in resolving different kinds of dependencies. That is, the model-generated effects should
be consistent with the effects observed in experimental data from humans on different dependency
types. Some of the well-studied dependency types in this regard are subject-verb non-agreement
dependencies, number agreement dependencies, antecedent-reflexive dependencies, and plausibility
(mis)match configurations. I generate quantitative predictions from the distortion-retrieval model
for each of these dependencies. Such quantitative predictions can be compared against future data to
test if the distortion-retrieval theory can account for the effects observed for a particular dependency
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type.
I use a Bayesian approach to generate model predictions: First, a prior distribution is

specified for each free parameter of the model; this prior distribution could be based on our prior
knowledge about a dependency or some reasonable assumptions about the plausible values of the
parameter. Second, parameter values are repeatedly sampled from the priors and are used to
simulate reading times, from which the effect of interest can be derived.

Subject-verb non-agreement dependencies

Consider the following pair of sentences:

(5) a. . . . the resident who said that the neighbour was dangerous was complainingsubject . . .

b. . . . the resident who was living near the dangerous neighbor was complainingsubject . . .

In both (5a) and (5b), when the verb phrase was complaining is encountered, the com-
prehender should figure out who was doing the act of complaining. Under the cue-based retrieval
assumption, a search is triggered in memory for a subject noun phrase. In sentence (5a), both the
nouns the resident and the neighbour are in subject position, i.e., they both match the retrieval
cue [subject], compared to sentence (5b) where only one noun the resident matches the [subject]
cue. The reading times at the verb was complaining are predicted to be slower in sentence (5a)
compared to sentence (5b). This predicted effect is called syntactic interference (Van Dyke, 2007,
Van Dyke and Lewis, 2003).

Similarly, when multiple nouns match the verb’s semantic cues, such as [animate], they are
assumed to cause semantic interference Van Dyke (2007). For example, in sentence (6c) where
both the resident and the neighbour are animate, the retrieval times at the verb are predicted to be
slower compared to sentence (6d), where only the resident is animate. The syntactic and semantic
interference are the key predictions of the original cue-based retrieval model of Lewis and Vasishth
(2005) and these predictions are supported by reading times data from English (Arnett and Wagers,
2017, Mertzen et al., 2022, Van Dyke, 2007, Van Dyke and Lewis, 2003, Van Dyke and McElree,
2011).

(6) a. . . . the resident who said that the neighbour was dangerous was complaininganimate . . .

b. . . . the resident who said that the warehouse was dangerous was complaininganimate . . .

What would the distortion-retrieval model predict for sentences in (5) and (6)? We first
need to specify the prior distributions for the three parameters of the model, the latency factor,
the feature distortion, and the cue-weighting. The latency factor F is the scaling parameter of the
model and determines the range of reading times generated by the model. For example, a smaller
value of F would produce faster reading times and a larger value of F would produce slower reading
times. Thus, the parameter should be constrained in such a way that the model-generated reading
times are neither too fast nor too slow compared to human reading times in sentence processing
studies. As we discussed in Article I, the reading times are typically distributed such that their
2.5% quartile is greater than 150 milliseconds and their median is around 250–300 milliseconds. To
match these properties, I choose the same prior on latency factor that we used in our articles.

F ∼ Normallb=0.05(0.15, 0.05)

where lb = 0.05 represents the lower bound on values of the values of F . This lower bound is
required to ensure that the model-generated reading times are not too fast compared to human
reading times.
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The second parameter, the distortion rate θ, determines the degree of feature distortion
when the nouns are stored in memory, e.g., in what proportion of trials a feature migrates from one
noun to the others. However, we need to specify what kind of features are allowed to be distorted
when the nouns are stored in memory. For the current model, I assume that the features that are
probably encoded in real-time during reading can undergo distortion, e.g., features like number,
gender, case, etc. Other features like animacy, and lexical properties are unlikely to get distorted.
Thus, for the non-agreement dependencies in 5 and 6, I assume that no feature distortion is possible;
one can relax this assumption if the empirical data say otherwise.

θ = 0

Finally, the cue-weighting encodes the relative weights of the cues that are used for retrieval.
More specifically, it specifies the ratio of weights of a syntactic cue and a non-syntactic cue. For
the subject-verb dependencies in (5) and (6), is the syntactic cue [subject] weighted higher than
the semantic cue [animate]? This is possible! As we find in Article III, it is possible that the
English speakers weigh the syntactic and semantic cues equally but the German speakers weigh the
syntactic cue more strongly over the semantic cue in resolving subject-verb dependencies. There
could be cross-linguistic differences in cue-weighting for these dependencies: In some languages, the
syntactic and the semantic cues are weighted equally and in some languages, the syntactic cue is
allowed to be weighted higher than the semantic cue. Thus, both assumptions should be considered
for the cue weighting W ; the data observed for a language can be generated by either of these two
assumptions.

Equal cue weighting assumption: W = 1
Stronger cue weighting assumption: W ∼ Normallb=1(1, 1)

I generate predictions from the distortion-retrieval model conditional on the above assump-
tions about cue weighting, distortion rate, and latency factor. Figure 6.2 shows the prior predictions
of the model under the two sets of assumptions. Assumption set 1 specifies equal cue-weighting and
assumption set 2 allows stronger weighting for the syntactic cue. Under the stronger cue-weighting
assumption, the model predicts a smaller semantic interference in the range of 2 to 25 milliseconds.
All other predictions are the same as the original cue-based retrieval model’s predictions. The future
data for sentences like (5) and (6) in a language can be compared against these predictions to infer
whether the distortion-retrieval theory explains the subject-verb non-agreement processing.

Subject-verb agreement dependencies

Consider the following sentences containing a subject-verb dependency between the key and was/were.
In sentences (7a) and (7b), the subject agrees in number feature with the verb, while in (7c) and
(7d), the subject-verb number agreement is violated making these sentences ungrammatical. The
sentences containing such subject-verb number agreement dependencies have been extensively stud-
ied in sentence processing.

(7) a. The key to the cabinet was rusty.

b. The key to the cabinets was rusty.

c. * The key to the cabinets were rusty.

d. * The key to the cabinet were rusty.
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Assumption set 1 Assumption set 2
(Equal cue weighting) (Stronger cue weighting)

Distortion rate: θ = 0 Distortion rate: θ = 0
Cue weighting: W = 1 Cue weighting: W ∼ Normallb=1(1, 1)

Latency factor: F ∼ Normallb=0.05(0.15, 0.05) Latency factor: F ∼ Normallb=0.05(0.15, 0.05)
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Figure 6.2: Syntactic and semantic interference effects (in milliseconds) predicted by the distortion-
retrieval model for subject-verb non-agreement dependencies. The predicted effects are shown as
a contour of the joint distribution of syntactic (on the x-axis) and semantic interference (on the
y-axis). The left panel shows model predictions under the equal cue-weighting assumption and the
right panel shows model predictions when the syntactic cue is allowed to be weighted higher than
the semantic cue.

For the subject-verb number agreement dependencies, the predictions of the distortion-
retrieval model have already been discussed in Article I.3 The crucial assumption we made is that
the plural feature of the non-subject noun cabinets in (7b) and (7c) can percolate to the subject
noun and change its representation with a probability θ. This probability θ is the distortion rate.
The following priors were set for the three parameters.

Distortion rate: θ ∼ Normallb=0.1(0, 0.25)
Cue weighting: W = 1
Latency factor: F ∼ Normallb=0.05(0.15, 0.05)

For the ungrammatical sentences, the model predicts agreement attraction: the reading times
at the verb are predicted to be faster in (7c) compared to (7d). And, for the grammatical sentences,
the model predicts that the effect of the number distractor can be positive, negative, or zero: the
reading times in (7a) can be faster, slower, or comparable to (7b). I call this agreement distractor
effect. Figure 6.3 shows the prediction space of the model for subject-verb number agreement effects.
As we show in Article I, the data from 17 published studies on subject-verb number agreement are
consistent with these predictions. Under the assumption that other agreement features such as
gender can also get distorted, the model would predict the same attraction effects as shown in
Figure 6.3 for any subject-verb agreement dependency.

3See the section “the feature-percolation-plus-retrieval model” in Article I (page 10).
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Figure 6.3: The agreement attraction and the agreement distractor effect (in milliseconds) predicted
by the distortion-retrieval model for subject-verb agreement dependencies. The predicted effects
are shown as a contour of the joint distribution of effects in the grammatical and ungrammatical
sentences.

Dependencies involving semantic plausibility manipulation

Another kind of construction that has been used to investigate dependency completion process
is the plausibility (mis)match configuration (Cunnings and Sturt, 2018). In these configurations,
the semantic plausibility of the nouns is manipulated with respect to a verb; see sentences (8a-d).
In sentences (8a) and (8b), the head noun phrase the plate is semantically compatible with its
dependent relative clause verb shattered, making them semantic plausible sentences; but in (8c) and
(8d), the noun phrase the letter is incompatible with the relative clause verb shattered, making them
semantically implausible sentences. Under the cue-based retrieval account, the intervening noun the
cup in (8a) and (8c) is predicted to cause an interference effect: In (8a), the cup would cause difficulty
in retrieving the target head noun the plate as they both are semantic compatible with the verb
shattered ; in (8c), the cup would get occasionally retrieved at the verb shattered causing statistical
facilitation compared to (8d), where neither of the nouns matches the verb semantically. Thus,
the cue-based retrieval model of Lewis and Vasishth (2005) predicts — (i) plausibility attraction
effect, a speedup in reading times at the verb in condition (8c) compared to (8d); and, (ii) plausible
distractor effect : a slowdown at the verb in (8a) vs. (8b). The data from Cunnings and Sturt (2018)
support these predictions.

(8) a. Plausible Sentence, Plausible Distractor

. . . Sue remembered the plate that the butler with the cup accidently shattered today . . .

b. Plausible Sentence, Implausible Distractor

. . . Sue remembered the plate that the butler with the tie accidently shattered today . . .

c. Implausible Sentence, Plausible Attractor

. . . Sue remembered the letter that the butler with the cup accidentaly shattered today

. . .

d. Implausible Sentence, Implausible Attractor

. . . Sue remembered the letter that the butler with the tie accidently shattered today . . .
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What are the predictions of the distortion-retrieval model for these configurations? Consis-
tent with my assumption about other semantic features such as [+animate], I maintain that the
semantic feature [+shatterable] is unlikely to get distorted when the nouns are stored in memory.
Therefore, the distortion rate is assumed to be zero for the plausibility (mis)match configurations.
However, regarding cue-weighting, the syntactic cue can be assumed have either equal or higher
weight than the plausibility cue. Thus, two alternative assumptions can be made regarding cue
weighting: (i) the syntactic and the semantic cues are weighted equal, or (ii) the syntactic cue can
be weighted higher than the semantic cue. We get the same two sets of assumptions as we had for
the subject-verb non-agreement dependencies.

Distortion rate: θ = 0
Assumption set 1 Cue weighting: W = 1

Latency factor: F ∼ Normallb=0.05(0.15, 0.05)

Distortion rate: θ = 0
Assumption set 2 Cue weighting: W ∼ Normallb=1(1, 1)

Latency factor: F ∼ Normallb=0.05(0.15, 0.05)

Figure 6.4 shows the predictions of the distortion-retrieval model given the above prior
assumptions. The only dataset on plausibility mismatch configurations (Cunnings and Sturt, 2018)
supports the model predictions under the equal cue-weighting assumption. More experimental
studies are needed to test these predictions of the distortion-retrieval theory.

Assumption set 1 Assumption set 2
(Equal cue weighting) (Stronger cue weighting)

Distortion rate: θ = 0 Distortion rate: θ = 0
Cue weighting: W = 1 Cue weighting: W ∼ Normallb=1(1, 1)

Latency factor: F ∼ Normallb=0.05(0.15, 0.05) Latency factor: F ∼ Normallb=0.05(0.15, 0.05)
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Figure 6.4: The plausibility attraction effect and the plausible distractor effect predicted by the
distortion-retrieval model for plausibility (mis)match configurations. The predicted effects are
shown as a contour of the joint distribution of effects in the plausible and the implausible sen-
tences. The left panel shows model predictions under the equal cue-weighting assumption and the
right panel shows model predictions when the syntactic cue is allowed to be weighted higher than
the semantic cue.
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Antecedent-reflexive dependencies

In sentences like (9a) and (9b), the reflexive pronoun themselves refers back to a noun phrase
called its antecedent. The comprehender must identify the correct antecedent and link it with the
reflexive. There is a hard syntactic constraint that plays a critical role in resolving the antecedent-
reflexive dependency, Principle A of the binding theory (Chomsky, 1981). The principle states that
an anaphor (e.g., a reflexive) must be bound within its governing category (e.g., its clause). Thus,
in sentences (9a) and (9b), the antecedent would be a noun phrase that essentially c-commands the
reflexive themselves. Under the cue-based retrieval assumption, a search is triggered in memory for
a plural noun phrase that c-commands the reflexive themselves. Thus, the retrieval cues consist of
a syntactic cue [c-command] and the number cue [plural]. In sentence (9a), the bodybuilder matches
the c-command cue and the trainers matches the number cue. Consequently, a race for retrieval
is initiated between the two nouns in (9a) compared to (9b) where only the bodybuilder matches a
retrieval cue. This race process causes a statistical facilitation in retrieval times in sentence (9a)
compared to (9b), i.e., the reading times at the reflexive are predicted to be faster in (9a) vs. (9b).

(9) a. The bodybuilder who worked with the trainers injured themselves . . .

b. The bodybuilder who worked with the trainer injured themselves . . .

However, a well-studied claim is that the c-command cue dominates the number cue in
resolving antecedent-reflexive dependencies (Cunnings and Sturt, 2014, Dillon et al., 2013, Kush,
2013, Parker and Phillips, 2017). For example, Dillon et al. (2013) argued that the search for an
antecedent of a reflexive is guided exclusively by Principle A of the binding theory implying that
the number marking on the reflexive themselves is not used as a retrieval cue for these dependencies
(also see Sturt, 2003). Several other researchers have hypothesized that the c-command cue may be
weighted more strongly over number cues in processing reflexive dependencies (Cunnings and Sturt,
2014, Kush, 2013, Parker and Phillips, 2017). Our results in Article II support this cue weighting
hypothesis. Specifically, we find that some individuals weigh the c-command cue higher than the
number cue. Thus, the distortion-retrieval model should assume stronger weighting for the syntactic
cue.

I generate predictions from the distortion-retrieval model under the following assumptions
about its parameters.

Distortion rate: θ ∼ Normallb=0.1(0, 0.25)
Cue weighting: W ∼ Normallb=1(1, 1)
Latency factor: F ∼ Normallb=0.05(0.15, 0.05)

For the distortion rate, I have specified the same prior as in the case of subject-verb agree-
ment dependencies. This is because the plural feature of the trainers can percolate to the bodybuilder
in a proportion of trials; this number migration condition is the same as in subject-verb number
agreement dependencies.

Figure 6.5 shows the prior predictions of the distortion-retrieval model given the above prior
assumptions. Note that both representation distortion and differential cue-weighting components
are contributing to these predictions. The percolation of plural feature from the trainers to the
bodybuilder would enlarge the facilitatory effect in (9a) but the higher weights of the c-command
cue attenuates the facilitatory effect to a larger extent causing an overall effect in the range of −29
to −3 milliseconds.

Table 6.1 summarizes the predictions of the distortion-retrieval model for different depen-
dency types under different assumptions about cue weighting and distortion rate.
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Figure 6.5: The agreement attraction and the number distractor effect (in milliseconds) predicted
by the distortion-retrieval model for the antecedent-reflexive dependencies. The predicted effects
are shown as a contour of the joint distribution of effects in the grammatical and ungrammatical
sentences.

Table 6.1: Predictions of the distortion-retrieval model for different dependency types:
the table shows the quantitative model predictions under each assumption for different dependency
types. The square brackets represent 95% credible intervals of the predicted effect.

Dependency Assumptions Predicted effects
(in milliseconds)

Syntactic interference Semantic interference
Subject-verb non-agreement Equal cue weighting [9, 36] [9, 36]

Stronger cue weighting [12, 51] [4, 28]

Plausibility attraction Plausible distractor effect
Plausibility (mis)match (implausible sentences) (plausible sentences)

Equal cue weighting [-28, -7] [6, 23]
Stronger cue weighting [-19, 0] [4, 20]

Agreement attraction Agreement distractor effect
Subject-verb agreement Probabilistic distortion, (ungrammatical sentences) (grammatical sentences)

Equal cue weighting [-40, -10] [-20, 14]

Agreement attraction Agreement distractor effect
Antecedent-reflexive Probabilistic distortion, (ungrammatical sentences) (grammatical sentences)

Stronger cue weighting [-29, -3] [-13, 9]
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6.2 Individual differences in sentence comprehension

Theories of sentence comprehension aim to describe the underlying cognitive process that uses
linguistic knowledge to compute meaning out of a linear stream of words. To build these theories,
one needs to infer the properties of the underlying process given a sample of individuals from
the population. A conventional approach is to draw inferences from the average behavior of the
sample (Kidd et al., 2018). The focus remains on the question of whether the processing behavior
predicted by a theory is supported, or not, by the average behavior of the individuals in a sample.
Even though the differences in processing behavior across individuals are commonly observed, this
variability is either ignored or treated as a nuisance variable during modeling. For instance, in the
case of mixed-effect regression models, the individual differences in model parameters are taken into
account, but hypothesis testing still relies on the population-level estimates of the parameter(s) of
interest.

The conventional approach of drawing inferences from the average behavior makes the ho-
mogeneity assumption: the cognitive process that underlies the observed behavior is invariant across
individuals in a population. This assumption of homogeneity in the underlying cognitive process
has been challenged by a number of methodological studies since the 1950s (see Estes, 1956, Hayes,
1953, Sidman, 1952, Underwood, 1975). For example, Estes (1956) demonstrated that the infer-
ences drawn about the population from a curve fitted to grouped data may not generalize to the
individuals in the population. While in many cases, the grouped behavior may reflect a great deal
about the individuals’ cognitive system, it would not hold in all cases. All these studies point out
that individual-level behavior cannot be completely ignored in theory building.

The above argument finds considerable support in the data. Plenty of empirical studies in
the last few decades have observed that individual differences are common and that the distribution
of individual-level behavior may considerably deviate from the average behavior. The observations
come from studies on perceptual decision making (Fific, 2014, Houpt et al., 2016), item recognition
and free recall (Oberauer, 2005, Unsworth and Brewer, 2009, 2010), and psycholinguistics (Just
and Carpenter, 1992, King and Just, 1991, MacDonald et al., 1992, McCauley and Christiansen,
2015, Pearlmutter and MacDonald, 1995), among others. Given these accumulating empirical data
in favor of individual differences, it is hard to justify the conventional approach of focusing on the
average behavior.

In sentence processing research, the individual differences gained traction in the 1990s when
King and Just (1991) noted individual differences in processing object vs. subject relative clause
in English and correlated these processing differences with the working memory capacity at the
individual-level. This was followed by the Just and Carpenter (1992) study, where the authors
theorized that working memory capacity differs across individuals, and the sentence comprehension
behavior observed for an individual is determined by the individual’s working memory score. Since
then, many empirical studies have pointed out that individual differences do occur in sentence
processing (see Farmer et al., 2012, for an overview) and the distribution of individual-level behavior
may considerably diverge from the average behavior but the use of individual differences in theory
building remains non-existent (see Kidd et al., 2018).

In the next two sections, I discuss the theoretical and empirical justifications for studying
individual differences in sentence processing. After that, I discuss the challenges and future direction
in drawing inferences from individual-level behavior.
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6.2.1 Empirical reasons for studying individual differences

A growing number of studies have revealed individual differences in sentence processing (see Farmer
et al., 2012, Kidd et al., 2018, for an overview). A commonly observed difference is that of quan-
titative differences in reading speed across individuals (Cheng et al., 2021, Cunnings and Fujita,
2021, Traxler et al., 2012). When the participants are asked to read sentences in an experiment,
their average reading times per word differ from each other in a graded manner: some participants
are faster than others. Figure 6.6 shows the distribution of individual-level reading speeds from
a large-scale study on number agreement processing (Jäger et al., 2020). Here, reading speed is
calculated as the reciprocal of the average reading time per word. The participants vary from a
reading speed of 2 words per second to approximately 5 words per second (see Figure 6.6). Such
differences in reading times, and by extension reading speed, have been shown to be highly reliable
implying that a particular participant is likely to exhibit the same average reading speed across
repeated experiments (Cunnings and Fujita, 2021, James et al., 2018).
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Figure 6.6: The distribution of individual-level reading speeds in the Jäger et al. study. The x-axis
shows the average reading speed for a participant in the number of words per second; the average
reading speed was calculated by taking the reciprocal of the average reading time (in seconds) per
word. The y-axis represents each of the 181 participants in the study. The average reading speed
across individuals varies between 2 words per second to approximately 5 words per second. The
error bars show the uncertainty in the reading speed of an individual when it is measured across
multiple sentences, possibly, driven by the processing difficulty level of the sentences.

It is not only the quantitative individual differences such as above, the qualitative differences
in sentence processing have also been observed. In a recent study, Tanner (2019) observed that
participants varied in their brain response on a continuum between N400 and P600 responses when
they were asked to read subject-verb agreement violations like The roses is ... vs. The roses
are .... Some participants showed N400 dominant response, while others showed P600 dominant
response. However, the grand mean analysis of the brain response data suggested a typical left-
negativity/P600 biphasic complexes. In such a situation, most of the individuals in the population
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are not represented by the average behavior, thus, any inference based on average behavior may
lead to inaccurate generalizations.

Many other studies in the last few decades have noted individual differences in sentence
processing on a variety of different empirical phenomena including ambiguity resolution, pronoun
resolution, and object vs. subject relative clause (e.g., Just and Carpenter, 1992, King and Just,
1991, MacDonald et al., 1992, Mätzig et al., 2018a, Novick et al., 2005, Pearlmutter and MacDonald,
1995, Swets et al., 2007). These processing differences have been attributed to varying working-
memory capacity across individuals (Just and Carpenter, 1992, King and Just, 1991, Nieuwland
and Van Berkum, 2006), or differences in language experience and learning (MacDonald and Chris-
tiansen, 2002, Misyak et al., 2010, Troyer and Kutas, 2020), or other sources such as cognitive
control (January et al., 2009, Novick et al., 2005), perceptual processes (Dick et al., 2001, Leech
et al., 2007), and chunking ability (McCauley and Christiansen, 2015).

Other comprehensive demonstrations of individual differences come from second language
learners and from individuals with impaired sentence comprehension. In second language learning,
it is observed that individuals differ in their language aptitude, motivation, learning strategy, and
learning style (see Skehan, 1991, for an overview). This combination of learning factors impacts the
development of second language in an individual (Dörnyei and Skehan, 2003), and consequently,
produces individual differences in second language processing (Cheng et al., 2021, Hopp, 2015).
In impaired comprehension studies, the individuals are shown to exhibit large variability in their
performance on certain sentence processing tasks (Caplan et al., 2015, Mack et al., 2016, Mätzig
et al., 2018b, Shammi et al., 1998). However, it is not entirely clear whether this variability is
systematic or simply an artifact of noise, because, in a recent study, the observed rank of individuals
with Aphasia in terms of their response time performance could not be replicated in a retest phase
(Pregla et al., 2021).

In sum, a considerable number of studies have highlighted the occurrence of individual
differences in sentence processing and have also indicated how these differences have implications
for theory development.

6.2.2 Theoretical significance of drawing inferences from the individual-level
behavior

When we focus on the average behavior of the participants to draw inferences, we make a critical
assumption: The underlying cognitive process is homogeneous and the observed variability among
individuals is due to the random noise in the homogeneous process (Levinson, 2012). This assump-
tion implies that all the individuals in the population share the exactly same underlying system
which is subject to measurement error in the experimental settings. This assumption is often either
unstated or unjustified. While this assumption may be true in certain cases, there are other pos-
sibilities that remain under-explored. For example, it is possible that the observed individual-level
differences are implicated by the systematic differences in the underlying cognitive processes across
individuals. Several assumptions can be made about the linkage between the underlying cognitive
process and the distribution of individual-level behavior in the population.

1. Homogeneity assumption: The individual-level behavior comes from a homogeneous pro-
cess subject to noise, i.e., there are no differences in the underlying process across individuals.
This assumption implies that a model with exactly the same set of mechanisms and the same
set of parameter values should be able to correctly predict the behavior of all individuals on
a processing task.
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2. Quantitative difference assumption: The individual-level behavior comes from a het-
erogeneous process that has a continuous, graded distribution of parameter values across
individuals in the population. According to this assumption, the model which allows graded
variation in its parameter values can correctly predict individual-level behavior.

3. Qualitative difference assumption: The individual-level behavior comes from a hetero-
geneous process that either has a discontinuous distribution of the parameter values or a
distinct set of underlying mechanisms across the individuals. This assumption implies that
the underlying process can differ qualitatively across the individuals, either in terms of the
range of parameter values or in the nature of underlying mechanisms. For example, one can
assume that a certain parameter in the model takes a value 1 for most of the individuals and a
value greater than 1 for some of the individuals, and these two parameter values have distinct
theoretical implications. This approach allows us to constrain the source of individual-level
variability in the model which aids in testing questions like whether are there any qualitative
differences in the underlying cognitive processes across individuals.

Most of the studies in sentence processing rely on assumption (1), the homogeneity assump-
tion. It could be the case that assumption (1) is correct in many cases, but this is an empirical
question, which can be answered only by comparing the performance of the models under different
assumptions. However, for that, we need to develop models under the assumption (2) and (3). The
conventional approach of drawing inferences based on homogeneity assumption could posit several
problems to theory development (Estes, 1956, Fific, 2014, Kidd et al., 2018, Maddox, 1999, Pachur
et al., 2014).

First, the homogeneity assumption may lead to inaccurate description of the underlying
cognitive process. This is because, in certain cases, the average behavior masks the theoretically
important details about the underlying process (e.g., see Fific, 2014, Tanner, 2019). Consider the
case of antecedent-reflexive dependencies, discussed in Article II. In sentences like the bodybuilder
who worked with the trainers injured themselves, the cue-based retrieval theory predicts the facili-
tatory effect: the reading times at the reflexive themselves should be faster compared to a baseline
sentence the bodybuilder who worked with the trainer injured themselves. However, Dillon et al.
(2013) found no facilitation in these sentences which goes against the predictions of the cue-based
retrieval theory. Their interpretations were based on the group-level reading times at the reflexive,
not the individual-level data. In a large-scale replication of the same experiment, Jäger et al. (2020)
did find a facilitatory effect based on the grouped data. The inferences based on average behavior in
these two studies led to different, and possibly inaccurate, theoretical conclusions. In our Article II,
we analyzed the individual-level data from these two studies. We found a strikingly similar pattern:
in both studies, approximately three-fourth of the participants show a facilitatory effect and the
remaining one-fourth do not show an effect. This result has an important theoretical implication:
the reflexive dependencies are resolved via a cue-based retrieval process but individuals differ in how
they weigh retrieval cues; only one-quarter of the population weighs the syntactic cue higher than
the number cue in processing these dependencies. The models under the homogeneity assumption
cannot produce such theoretical insight and they might produce an inaccurate description of the
underlying process based on group-level data from a single study.

Second, the homogeneity assumption limits the prediction space of the model such that
the model cannot capture the qualitatively distinct behavior across individuals on the same task.
However, the researchers may not want too much degree of freedom in the model and they may
intentionally limit the prediction space of the model; in certain cases, the qualitatively distinct
behavior across individuals on the same task may contain theoretically important information.
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Consider, the processing differences between healthy adults and Individuals with Aphasia (IWAs).
Mätzig et al. (2018a) showed that a model of sentence processing implemented for healthy adults can
also capture the qualitatively different comprehension behavior in IWAs by allowing individual-level
variation in three parameters of the model. They showed that systematic variations in values of
three parameters of the model are linked to individual-level processing behavior observed in healthy
adults as well as IWA. Thus, the models of individual differences allow us to test theories that
assume that the same set of underlying processes can generate qualitatively distinct behavior on an
experimental task.

Third, the models under the homogeneity assumption may lead to oversimplified descrip-
tion of the underlying processes. Consider, the role of working memory constraints in sentence
comprehension. The limited working memory resource has been implicated in determining pro-
cessing difficulty in sentence comprehension (Gibson, 1998, Lewis and Vasishth, 2005). Just and
Carpenter (1992) proposed that the differences in the working memory capacity lead to individual-
level differences in performance on sentence processing tasks. This proposal opens up a window of
possibility that working memory capacity could be a complex function in itself arising from different
sub-processes which may vary across individuals. This exploration would not be possible if we make
an oversimplified assumption that working memory capacity is homogeneous across the individuals
in a population. Thus, the attempts to model individual differences based on assumptions (2) or
(3) could benefit in developing a more specified description of underlying processes.

Finally, the models of individual differences based on assumption (2) could reveal theo-
retically important relationships among the components of the underlying system. Consider the
hypothesis that during sentence comprehension, some individuals rely on predicting the upcoming
linguistic material while others rely on minimizing working memory constraints. And, these two
components of the comprehension system may interact to maximize the ease of the meaning com-
putation process for an individual. Studying individual-level data is important for exploring such
hypotheses. Thus, in situations where different components of the system may interact to opti-
mize the functionality of the system, such a property of the system can be detected by modeling
individual-level differences, which would otherwise be difficult to infer from the average behavior.

In summary, modeling individual differences is important for theory building because - (i)
it allows a more accurate and more specified description of the underlying cognitive processes, (ii)
it allows the model to capture qualitatively distinct behavior across populations using the same
set of mechanisms, and (iii) it could reveal theoretically important relationships among different
components of the underlying system.

6.2.3 Challenges and future direction

Using individual differences for theory development poses several challenges. A well-documented
challenge is the reliability paradox (Hedge et al., 2018). When we interpret individual differences,
we assume that the observed rank of participants in their scores on a task is not merely due to
noise but reflects an underlying, true reality. The assumption implies that when we repeat the
same task on the same set of participants, we should be able to rank the participants in the
same order. The extent to which we can consistently rank the individuals across repeated tasks
is called reliability. In a replication of seven classic cognitive tasks including Stroop task, Flanker
task, etc., Hedge et al. (2018) found that most of these tasks produce surprisingly low reliability
for individual differences. Similar observations were made by several other researchers: Individual
differences exhibit low reliability especially when the between-subject variability is low or dominated
by measurement errors such as trial-level noise (Cunnings and Fujita, 2021, Draheim et al., 2019,
Hedge et al., 2018, Rouder and Haaf, 2019). These findings raised concerns because the same tasks
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that produced robust effects at the level of average behavior were found unsuitable for measuring
individual differences. Why do even the classical tasks produce such low reliability? Rouder et al.
(2019) noted that the traditional experimental designs are incapable of separating the true between-
subject variability from the trial-level noise. Due to a low number of trials per condition per subject
in these tasks, the trial-level noise is large enough to mask the true individual differences. Given
that the true individual-level variability could be quite low in certain scores, a reliable estimation
of individual differences may require a very large number of trials, say 400 trials, per participant.
Thus, the challenge of reliability emerges from a measurement challenge: we often do not have
enough measurements from an individual to detect the true individual-level differences.

Another challenge comes from the modeling practices in sentence processing research. The
computational models of sentence processing primarily focus on predicting the average behavior.
When it comes to modeling the individual differences, a commonly taken approach is the correlation-
based approach, where the correlation is computed between the hypothesized source of individual
differences and the observed individual-level behavior (e.g., McCauley and Christiansen, 2015,
Troyer and Kutas, 2020, Van Dyke et al., 2014). This approach provides a good starting point
to identify the cognitive factors which may lead to individual-level variability in the processing
behavior. But in order to use individual differences to draw direct inferences about the properties
of the underlying cognitive process, one should attempt to model individual-level behavior in a
computationally implemented model of sentence processing. A very few attempts have been made
in this direction (e.g., Mätzig et al., 2018a).

The computational models need to be adapted to predict individual differences as a function
of systematic variation in the parameter(s) or the structure of the model. An empirical bottleneck
is in identifying which parameters of the model derive the observed differences in individual-level
behavior. A two-step empirical test can be used to verify whether a particular parameter θ could be
the source of individual differences: (i) Measure the parameter’s value in each individual participant
using a battery of tests and verify whether the parameter varies across individuals, (ii) Test whether
the parameter value measured for an individual can predict the effect of interest for that individual
on an independent task.

To summarize, both the above challenges arise because the experimental designs and the
computational models have been developed for studying the average behavior. It would take a fo-
cused effort to develop the tools that are suited for drawing inferences from individual-level behavior.
What approaches one can take to draw theoretical inferences from the individual-level behavior in
a sample?

A sample of individuals from a population contains two types of information: (i) the distribu-
tion of individual-level behavior, which can answer how many participants show an effect consistent
with model 1 and how many participants are consistent with model 2, and (ii) the behavior associ-
ated with each particular individual, which can answer whether a model predicts the effect observed
for an individual X conditional on other measures taken from the same individual.

A method for testing theories using the first type of information, the distribution of individual-
level behavior, has been demonstrated by Haaf and Rouder (2019). The authors propose that the
models under different assumptions about the distribution of individual-level behavior can be used
to draw inferences about the underlying process. Consider a model of the underlying process with
a free parameter θ. We can make several assumptions about the distribution of the individuals in
terms of parameter θ. Suppose, the first assumption is that all the individuals have positive θ but
they differ quantitatively in its value; and suppose, the second assumption is that some individuals
have positive θ and some have zero value of θ. Using participant-level data from an experiment,
we can quantify evidence for each of these assumptions about the distribution of individuals in
the population. We have used a similar approach in our Article III where a model assuming equal
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weights for syntactic and semantic cues for all the individuals is compared against a model assuming
varying cue weighting across individuals.

The second type of information, the behavior associated with each particular individual, is
commonly used in psychometrics and, more generally, in the correlation-based approach to studying
individual differences. In sentence processing research, the correlation-based approach has been used
to link an individual’s working memory capacity, reading experience, etc. with the individual’s effect
observed on an independent sentence processing task (McCauley and Christiansen, 2015, Troyer and
Kutas, 2020, Van Dyke et al., 2014). However, the approach may not be useful in theory development
because it oversimplifies the underlying relationship between individual-level processes and observed
behavior. A more principled approach would be to directly model individual-level behavior as a
variation in the model of the underlying processes. Under this approach, an individual will be
measured on a battery of tasks in order to obtain independent measures of certain parameters such
as working memory capacity and cue weighting; these individual-level parameter estimates will
then be plugged into the model to generate predictions for that particular individual on a different
experimental task. For example, one can first estimate the cue weighting and the reading speed for
an individual and then use those estimates in a cue-based retrieval model to predict the magnitude
of the agreement attraction effect for that individual; this predicted effect for the individual can
be compared against observed attraction effect for the same individual on a number agreement
processing task.

In sum, we can use a sample of individual-level behavior to infer: (i) the distribution of
individuals in a population in terms of their underlying cognitive processes, and (ii) the properties
of underlying processes associated with a particular individual.

The above approaches will help in developing more complete theories of sentence processing
that can predict: (a) population-level behavior, (b) distribution of individual-level behavior, and
(c) behavior of an individual on a task given other independent measures from the same individual.
Such new approaches to theory building have implications for other areas of research in psychology
and linguistics. The experimental and statistical methods in psychological sciences have primarily
focused on whether inferences drawn from a sample are generalizable to the whole population or
not. But, for the theoretical and empirical reasons I discussed here, one must ask whether the
inferences drawn for a population are generalizable to an individual of the population or not. This
question is important because we are ultimately interested in a theory of an individual’s mind, not
an abstract, ideal mind of the population. The study of individual differences will complement the
average behavior approach in building a more accurate description of the underlying processes that
govern processing behavior in humans.



Chapter 7

Conclusion

In this dissertation, I presented my theoretical and methodological contributions to the study of
agreement attraction, a well-attested phenomenon in sentence comprehension. The main findings
can be summarized as follows:

1. The feature distortion assumption — that the feature representation of nouns stored in mem-
ory can change with time — is necessary for explaining the number agreement effects in both
grammatical and ungrammatical sentences.

2. A general account of dependency completion processes —the cue-based retrieval— alone is
insufficient for explaining the agreement attraction data; the best fit is achieved by a hybrid
model that combines cue-based retrieval and a feature distortion process.

3. Probabilistic feature distortion of nouns stored in memory modulates the content-addressable
search for the target noun.

4. The absence of the number attraction effect in antecedent-reflexive dependencies is because
of the stronger weighting of the syntactic cue over the number cue by some participants.

5. Individuals may differ in cue weighting: some, but not all, individuals weigh the syntactic cue
higher than the number cue in resolving antecedent-reflexive dependencies.

6. Individual differences can reveal theoretically important details which may otherwise be
masked by the average behavior. For instance, in two studies on number attraction in re-
flexive dependencies, the average effect produced different theoretical conclusions, but the
distribution of individual-level effects is strikingly the same.

7. The absence of semantic interference effect in German is, possibly, because most German
readers weigh the syntactic cue higher than the semantic cue.

8. Approximate Bayesian Computation — a likelihood-free Bayesian inference method — can
be used to compare computational models of any underlying cognitive process without com-
promising the complexity of the models.

Overall, these findings advance our theoretical understanding of the dependency completion
processes implicated in sentence comprehension. Three assumptions seem necessary for a complete
theory of dependency completion: (i) the co-dependents stored in memory undergo probabilistic
feature distortion, (ii) dependency completion is driven by a content-addressable search in memory,
and (iii) the linguistic cues used for searching a co-dependent can be weighted differentially.
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The work presented here is an important step in the direction of building a general archi-
tecture to explain all key phenomena observed in sentence comprehension. For example, a model
incorporating the above three assumptions would be able to explain all number agreement effects,
similarity-based interference, reflexive processing, and semantic attraction. Future work should
evaluate these assumptions using benchmark data from other phenomena including garden path
effects, local coherence, structural forgetting, etc.

This research direction is inspired by Allen Newell’s vision of developing a “sufficient theory
of a genuine slab of human behavior”: a sufficiently specified and well-constrained computational
model built for a complete analysis of a complex cognitive task (Newell, 1973). My work focuses
on developing a sufficient theory of sentence comprehension that can generate constrained quan-
titative predictions for multiple phenomena observed in sentence processing tasks. And, for the
reasons discussed in the previous chapter, I would also add the individual difference component to
this research goal: A general theory of sentence comprehension should also be able to predict an
individual’s behavior on a task conditional on other independent measures, such as cue weighting,
from the same individual. Such a theory should find independent support for its assumptions in
the broader cognitive science literature, which would help in developing a single unified theory of
cognition that can account for many phenomena across different tasks, as envisioned by Newell
(1973). The modeling work presented in this dissertation is an important attempt in this direction.

Methodologically, this work lays a framework to build and evaluate complex computational
models of sentence processing without compromising the complexity of the models. The algorithms
I have developed here use a likelihood-free Bayesian approach for parameter estimation and model
comparison. These methods are important because future research in sentence processing would
inevitably go towards more complex process models, for example, the extended SWIFT model of
eye-movement control and reading (Engbert et al., 2022, Rabe et al., 2021) and the self-organized
parsing models (Smith et al., 2021, Smith and Vasishth, 2022), where the likelihood function is
unknown or difficult to derive analytically. With the growing complexity of the models, it is useful
to develop methods based on Bayesian inference as it allows us to estimate uncertainty in model
parameters and model performance.
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