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Abstract: Its properties make copper one of the world’s most important functional metals. Numerous
megatrends are increasing the demand for copper. This requires the prospection and exploration of
new deposits, as well as the monitoring of copper quality in the various production steps. A promising
technique to perform these tasks is Laser Induced Breakdown Spectroscopy (LIBS). Its unique feature,
among others, is the ability to measure on site without sample collection and preparation. In
this work, copper-bearing minerals from two different deposits are studied. The first set of field
samples come from a volcanogenic massive sulfide (VMS) deposit, the second part from a stratiform
sedimentary copper (SSC) deposit. Different approaches are used to analyze the data. First, univariate
regression (UVR) is used. However, due to the strong influence of matrix effects, this is not suitable
for the quantitative analysis of copper grades. Second, the multivariate method of partial least
squares regression (PLSR) is used, which is more suitable for quantification. In addition, the effects
of the surrounding matrices on the LIBS data are characterized by principal component analysis
(PCA), alternative regression methods to PLSR are tested and the PLSR calibration is validated using
field samples.

Keywords: LIBS; copper-bearing minerals; UVR; PCA; PLSR

1. Introduction

Non-ferrous metals (NF metals) are important materials in numerous areas of modern
life. NF metals are light and noble metals, such as copper, aluminum and gold [1]. They are
used in a wide range of applications, particularly in mechanical and vehicle engineering,
the electronics and electrical engineering industries, and in the building industry. They are
also a fundamental component of future technologies, such as electric traction engines and
thin film photovoltaic. As a result, the demand for NF metals will increase in the future [2].
Various options are available to secure the supply of raw materials. In addition to raw
material substitution and the more efficient use of resources in production and application,
as well as in recycling, ore mining and thus metal extraction can be optimized [2]. The
production of commodity metals comprises two main areas: mining, and thus also the
prospection and exploration of deposits; and the metallurgical process of the extracted ores
and concentrates.

The prospection and exploration of a potential deposit involves many steps and usually
takes years. Numerous methods and techniques are used in locating and exploring new
profitable deposits, including: remote sensing, geophysical techniques, mapping, drilling
and finally geochemical methods [3]. All these investigations are time-consuming and
cost-intensive. In particular, the systematic drilling and sampling as well as their analysis
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in the laboratory are expensive [3,4]. Alternatives could be investigation methods that can
be performed on site by using mobile sensor equipment. Examples of these include mobile
X-ray fluorescence analysis (XRF) or laser-induced breakdown spectroscopy (LIBS), which
allow to analyze the chemical (elemental) composition in situ [3]. An explored deposit
becomes a mine if the ore content and extent, as well as the infrastructure of the deposit,
make mining profitable [5]. This is carried out by open pit, underground mining or by
leaching. In all cases, the ore is concentrated on site by separating ore minerals and gangue.
Subsequently, the metallurgical process of the extracted NF ores and NF concentrates takes
place [1,3]. Pretreatment, e.g., by roasting and flotation, is followed by melting processes
and further thermal treatments. This is followed by thermal and electrical refining and final
processing [1]. This procedure leads to a gradual increase in the level of purity. Monitoring
metal concentration before, during and after the production process is essential to ensure
the quality of the product. Particular attention is paid to the incoming inspection of the
ores. In the NF metals industry, various sensor-based techniques are used for incoming
and process control; they provide information on properties and surface characteristics of
particles and ores, as well as on chemical and mineral composition [6]. The most commonly
used sensor techniques in the NF metals industry include X-ray fluorescence (XRF), X-ray
transmission (XRT), near-infra-red (NIR), as well as radiometric, optical and inductive
sensors [6,7]. In particular, the use of LIBS would also be feasible for ore or concentrate
input control. The method allows on site, real-time analysis. In addition, sample material
of all aggregate states can be examined almost without sample preparation and practically
non-invasively. In LIBS, laser radiation induces a plasma on the sample surface, which
excites the sample material. The elements can be identified from the spectral signature of
the resulting emission [8,9]. In contrast to other spectroscopic methods, such as XRF, LIBS
can be used to analyze all elements of the periodic table [9]. Thus, LIBS is suitable for the
analysis of all NFs metals.

Copper is a superlative NF metal: highest electrical conductivity, highest thermal
conductivity, highest ductility and only excelled by silver [10,11]. In addition to these
properties, the good ductility, corrosion resistance, antibacterial effect and the possibility of
recycling the raw material without loss of quality, make copper one of the world’s most
important functional metals [12,13]. The demand for copper is high and will continue
to increase in the upcoming years, driven by megatrends such as digitalization, energy
and transport transformation [13]. Copper occurs in nature in its native form or in miner-
als [14,15]. To date, about 630 copper-bearing minerals are known [16]. The copper ores of
economic interest include, in addition to native copper, the sulfidic ores chalcocite (Cu2S)
and chalcopyrite (CuFeS2), and the oxidic ores cuprite and malachite [3,13,14,17,18]. The
most important ore for copper production is chalcopyrite due to its frequent occurrence [3].
Copper is mainly extracted by open pit mining, but also by underground mining and
leaching [5,13]. However, copper mining has to accept new challenges. Environmental
protection, land consumption and social responsibility are essential aspects that must be
taken into account in modern mining [3]. At the same time, changes in ore quality are to
be expected due to lower ore contents and toxic accompanying elements such as arsenic,
mercury and bismuth [13,19]. The mineability of copper deposits has declined worldwide
over the last 100 years, as the demand for copper is constantly increasing. Currently, raw
material deposits with copper contents of 0.4% are mineable [13]. In order to be able to
meet the increasing demand for copper and to replace depleted mines, new deposits are
being prospected [3].

Copper mining is currently being carried out at numerous deposits worldwide. The
main sources of copper, in addition to porphyritic, hydrothermally induced deposits,
include volcanogenic massive sulfide deposits (VMS deposits) and stratiform sedimentary
deposits (SSC deposits) [3,13,14,20]. VMS deposits are accumulations of sulfides previously
formed by black smokers, i.e., geothermal ocean floor vents exhalating superheated metal
containing water, in the deep sea. Besides copper, they are sources of several other metals.
They are characterized by a wide distribution and a high quality of their ores. Based on
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mineralogy, several types can be distinguished. One representative of the VMS deposits is
the so-called Cyprus type, which describes important copper deposits on Cyprus [3,12,14].
These are mostly small deposits that have medium contents of copper and zinc. Copper-rich
veins are also found beneath the ophiolite-bound basalts. Cyprus was already a mining area
and production site for copper in the early Bronze Age [3,21]. At its peak, 17 copper mines
were active on Cyprus. Today, only the Skouriotissa mine is still in use. It is one of the
largest deposits on the island, with 6 million tons of copper estimated total reserves [3,21].
In this “Cyprus-type” deposit, the copper-bearing minerals occur in various associated
rocks, such as gabbros or basalts [12]. The main copper-bearing ore minerals of the SSC
deposit are chalcocite, bornite and chalcopyrite. One of the best-known European deposits
is the Polish Kupferschiefer (copper schist) in the Lubin district. It belongs to the Zechstein
Kupferschiefer formation and is part of the world’s most important copper deposits. About
500.000 tons of copper are extracted from the schist here annually [3,12,22].

The mined sulfide copper ore contains a maximum of 2% copper. It is still processed
on site. The resulting copper concentrate already has a copper content of up to 30%. The
sulfidic ore concentrates are heated to copper matte (~64% copper), which is then roasted.
In the process, sulfuric acid is recovered as a by-product of copper production. In further
steps, accompanying elements, such as iron, have to be removed. These components
are separated as slag. Through further roasting and heating, blister copper and finally
coarse copper is obtained from the copper matte, which has a copper content of up to
98%. After further oxidizing and reducing production steps, the obtained tough-pitch
copper (99.5% copper) contains only a few impurities and can be converted into cathode
copper by electrolytic refining. At 99.99%, cathode copper is the commercial metal with
the highest purity. From this, numerous copper forms are produced, which are finally
transferred to end-use products. Other important NF metals are recovered from the anode
slime [3,5,16,17].

With regard to exploration and smelting, LIBS can be used to determine the qualitative
as well as the quantitative elemental composition of copper-bearing ores and concentrates.
In addition to the content of copper in the raw material, the determination of the accompa-
nying elements is also relevant for smelting, since different processes are used for metal
extraction from sulfide and oxide ores [5]. By controlling the copper quality in the individ-
ual production steps of the cathode copper and of the final products, their quality grade can
be assured. In this respect, LIBS is often used for qualitative analysis and classification. The
determination of the content of the elements contained in a sample is difficult using LIBS
because the method has a limited reproducibility due to the experimental conditions [23].
In addition, the surrounding matrix can exhibit high variability in its composition, resulting
in numerous chemical and physical factors affecting in the spectra [23,24]. This poses a
challenge on the use of univariate regression (UVR) for content determination. Neverthe-
less, quantification can be achieved by using multivariate methods that take matrix effects
into account [23]. One of the most common multivariate analysis techniques is partial least
squares regression (PLSR). Here, in contrast to UVR, the entire spectrum is taken in account
for the analysis, reducing the susceptibility of the results to matrix effects [23].

In the present work, on the one hand, the use of LIBS in the exploration of copper
deposits by means of a handheld spectrometer was investigated. On the other hand, a
stationary LIBS was used for the analysis of copper-bearing ores. Only ground ore and rock
samples from a VMS deposit and an SSC deposit were used for this study. For calibration,
commercially available chalcopyrite and chalcocite minerals were ground up and blended
with basalt and schist rock powders, respectively, at various concentrations. UVR was used
to construct calibration graphs of the two studied minerals were obtained in both analyzed
rocks. In addition to UVR, PLS regression was used to quantify copper content and PCA
was used to investigate matrix effects in geologic samples.
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2. Materials and Methods
2.1. Samples and Reference Analysis

A total of 152 samples with different copper contents were analyzed in this work
whereof 70 are artificial samples (referred to here as synthetic) and 82 are field samples.
One subset of the field samples was taken from the Apliki and Skouriotissa VMS deposit of
Cyprus. The other subset was taken from the SSC deposit of Lubin in Poland. The accom-
panying matrix for a sample is either igneous rock basalt in the case of the VMS deposit
or schists in the case of the SSC deposit. All samples were in the form of homogenized
ground powders.

Reference analysis for the geological samples from Cyprus was performed by aqua
regia digestion followed by ultratrace ICP-MS analysis and by LiBO2/LiB4O7 digestion
followed by ICP-OES analysis, respectively. Sample copper concentrations range from
41–10,000 ppm. The samples from Poland were referenced by X-ray fluorescence (XRF).
Sample copper concentrations range from 0.8–2.4%. For the LIBS analyses, 3 g of ground
powders were pressed into pellets at a pressure of 80 kN (P 40, Herzog Maschinenfabrik,
Osnabrück, Germany).

2.2. Geological Overview of Deposits

The sample subset from Poland, where the copper deposits belong to the sediment-
hosted stratabound copper desposits originates from Lower Silesia, the central area of
the Pre-Sudetic Monocline and the North-Sudetic Basin. They are part of the Zechstein
copper schist formation. The copper-bearing minerals occur in separate lithological layers,
accompanied by dark gray sandstones in the bottom layer, black schists in the middle and
carbonate rocks in the top part. The most important copper minerals of this deposit are
chalcocite (Cu2S), chalcopyrite (CuFeS2) and bornite (Cu5FeS4) [22,25].

The second sample subset, which originates from Cyprus, are sulfide deposits that
are part of the volcanogenic massive sulfide deposits. The Cyprus type of this deposit
belongs to the Troodos ophiolite complex, whose copper-bearing stockwork is surrounded
by basaltic pillow lavas. Besides the dominant minerals chalcopyrite (CuFeS2), pyrite (FeS2)
and sphalerite ((Zn,Fe)S), secondary copper minerals such as chalcocite (Cu2S), covelline
(CuS) and digenite (Cu1.8S) occur [26,27].

2.3. Preparation of Synthetic Samples

Powders of the copper-bearing minerals chalcocite (minerals from the New Cornelia
Mine, Ajo, AZ, USA) and chalcopyrite (minerals from Füsseberg near Bierdorf, Siegerland,
Germany) were used for the preparation of the synthetic samples. The samples were
prepared by standard addition. In this process, the copper-bearing minerals were mixed
with the respective accompanying matrix of basalt or schist. The used basalt originate
from Cyprus and the used schist sample originates from east of the village of Lehesten
in the southeastern Thuringian Forest. The schists are from the Saxothuringian as part of
the Variscan Mountains. The formerly marine, clayey sediments were deposited in the
Missisippian (Lower Carboniferous, ca. 360 Ma). The weighed samples were homogenized
and pressed into pellets at a pressure of 80 kN (TP40, Herzog Maschinenfabrik, Osnabrück,
Germany). For one pellet a total of 3 g of sample material was used. Here, two pellets were
pressed for each concentration of copper, one in basalt the other in schist. A total of 35
samples were prepared for each mineral, 15 in schist and 20 in basalt.

2.4. LIBS Setup and Measurement Parameters

The samples were analyzed by two different LIBS spectrometers. One LIBS spectrome-
ter is a stationary laboratory benchtop instrument equipped with an Echelle spectrometer
(Aryelle Butterfly, LTB, Berlin, Germany). For the study, the samples were positioned on
a rotation and linear translation stage for enabling a spiral probing pattern during the
measurement. This ensured that each ablation was performed on a fresh surface. Plasma at
the sample surface was generated by a focused (f = 50 mm) Nd:YAG laser (Bernoulli LIBS,
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Litron Lasers, Rugby, England, Great Britain, λ = 1064 nm, E = 80 mJ, repetition rate 10 Hz,
pulse duration 7 ns). Using a concave mirror (ME-OPT-0007, Andor Technology, Belfast,
Northern Ireland, focal length 52 mm, λ = 200–1100 nm), the emission was collected and
focused onto an optical fiber that guides the light to the spectrometer. The spectrometer has
two wavelength ranges (UV: 190–330 nm, VIS: 278–769 nm). Both ranges were measured
separately with a resolution of 25 pm. An ICCD camera (iStar, AndorTechnology, Belfast,
UK) was used for detection. A total of about 200 spectra per sample were recorded in the
UV and VIS range. For this purpose, 2000 shots were taken in a spiral on the pellet. For
each of the 200 spectra, 10 consecutive single shots were accumulated.

The second LIBS spectrometer is a handheld instrument (Z-300, SciAps, WBN, MA).
The plasma is generated by the integrated laser (λ = 1064 nm, E = 7.5 mJ, repetition rate
10 Hz, pulse duration 5 ns). The spectrometer has a wide wavelength range (180–960 nm)
with a resolution of 100 pm. In order to amplify the LIBS signal, the measurements are
additionally purged with argon gas before the measurement. The measurements were
performed using the GeoChemPro app. Each sample probed by a grid of 8 by 8 spots,
resulting in 64 spectra for each sample. The sampled area was approximately 1 mm2. Each
pellet was measured three times to obtain a representative set of spectra of the sample.

2.5. Data Pretreatment

All spectra were prepared for analysis by background correction, standard normal
variate-normalization, and final averaging of the data. A top-hat filter was used for
the background correction. The structuring element length was 20 data points. This
corresponds to a filter width of about 0.26 mm. Following the background correction, a
SNV normalization was performed. For this, the mean value of the entire spectrum is
subtracted from the spectrum. The difference is divided by the standard deviation of the
spectrum. The resulting data were finally averaged to obtain a representative spectrum for
each sample.

Linear regression was performed using two specific copper lines (324.75 nm and
327.40 nm). The area of each was obtained by numerical integration with the trapezoidal
method. The sum of both peak areas represents the total peak area that is plotted against
the copper concentration.

The PLSR was performed with a 10-fold cross-validation. It was performed for the
number of components with the lowest estimated prediction error.

Outliers were identified using the robust PCA (ROBPCA) method of Hubert et al. [28].
Robust principal component analysis (ROBPCA) is an alternative to classical principal com-
ponent analysis (PCA), which is very sensitive to outliers due to the empirical covariance
matrix of the data. Robust PCA is designed for fast and robust observation of high dimen-
sional data. It uses projection pursuit techniques in the original data space and projects the
observations into a subspace with lower dimensions. Here, robust covariance estimates
are made. This allows the identification of outliers in a data set and the classification of
the data into four categories. Regular observations and good leverage points, which are
classified as belonging to the data set, and orthogonal outliers and bad leverage points,
which are designated as outliers. In the algorithm of Hubert et al. a so-called outlier map
is generated by plotting the orthogonal distance against the robust score distance. In the
resulting four quadrants the different data points are grouped. All data points in quadrants
I or II are orthogonal outliers or bad leverage points, and are subsequently removed from
the original data set [28].

For the principal component analysis (PCA), all spectra were fed after prior back-
ground correction, normalization and averaging.

The procedure for the determination of alternative regression models was analogous.
In addition, the outliers were identified using ROBPCA and eliminated before applying the
regression models.
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The preparation of the data, as well as the analyses were carried out with Matlab
(version 2021a, MathWorks, Natick, MA, USA). Origin (OriginLab, Northampton, MA,
USA) was used to display the results.

3. Results

In the present work, synthetic and field samples of the copper-bearing minerals
chalcopyrite (CuFeS2) and chalcocite (Cu2S) were analyzed by LIBS. The analyses were
performed on two different LIBS spectrometers. First, the samples were analyzed using
a handheld device. It is conceivable that mobile LIBS spectrometers could be used in the
exploration and prospection of new potential copper deposits. Second, the analysis was
carried out with an Echelle spectrometer. The high-resolution spectrometer could be used,
for example, in the process analysis of the incoming copper ores and concentrates in the
copper production.

3.1. LIB Spectra

The investigated copper-bearing field samples are from the basalt-related Cyprus-type
deposit and from the schist-related SSC deposit from Lubin. A comparison of the obtained
LIB spectra (Figure 1) highlights the differences and similarities between the host rocks,
basalt and schist. One aim also was to identify the spectral lines of the host rock interfering
with the copper lines in univariate regression and to estimate possible matrix effects.
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Figure 1. LIBS spectra measured with the Echelle spectrometer of the host rocks schist (top) and
basalt (bottom) with marked lines of the relevant elements.

The line-rich LIBS spectra of the host rocks basalt (bottom, Figure 1) and schist (top,
Figure 1) show a variety of elements present in both matrices. Differences between the
host rocks are mainly in the contents of the individual elements. For example, the mafic
minerals of basalt contain high amounts of magnesium and calcium [29]. In contrast, the
sedimentary rock of the SSC deposit is clay-bearing and chalky and contains mainly the
elements aluminum and silicon [30,31]. In addition, similar contents of manganese are
found in both matrices and titanium can be determined in schist. Similar results are also
obtained from the reference analysis of the two host rocks (Table 1). Furthermore, nickel
could be identified in basalt and schist.
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Table 1. Average contents of the elements in the host rocks basalt and schist from the reference
analyses.

Average Element
Content/% Al Ca Fe K Mg Mn Na Si Ti

in schist 9.37 0.14 4.65 2.39 1.24 0.08 0.81 29.69 0.58

in basalt 7.07 7.71 2.47 0.77 5.56 0.09 0.90 22.34 0.23

In order to detect possible interferences by the surrounding matrix, the LIBS spectra of
the field samples are compared with the spectra of the host rocks with respect to the copper
lines (Figure 2).
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Figure 2. LIBS spectra of the field sample compared with the corresponding host rock. (Top): Field
sample from Cyprus compared with basalt. (Bottom): Field sample from Poland compared with
schist. Eight copper lines are identified in each of the field sample spectra. Lines in the rock spectra
that are in the spectral vicinity of the copper lines are marked in grey. The measurements were
performed with the Echelle spectrometer.

In basalt, an iron line at 515.43 nm is found in close proximity to the copper line at
515.25 nm. Near to the Cu lines at 324.75 nm and 327.40 nm used in this work, titanium is
found in schist and basalt at 324.87 nm. While the accompanying matrix basalt has traces
of copper, no copper is found in the host rock schist.

However, since they do not show significant interfering lines, they are well suited as
host for the copper minerals in the synthetic samples. The copper lines at 324.75 nm and
327.40 nm are also nearly undisturbed and can be used for univariate regression of the
handheld and Echelle spectra.

3.2. Univariate Analysis

One of the most common methods to determine the element contents in different
matrices is univariate regression (UVR), in which a calibration function is generated [32].
The calibration function describes a linear or nonlinear relationship between the element
content and the area of the element line in the spectrum. Its quality is described by the
coefficient of determination R2 and the limit of detection (LOD). In the present case, the
linear calibration function describes the correlation between the copper concentration and
the peak area of the two copper lines at 324.75 nm and 327.40 nm in the spectrum, which
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could allow quantification of unknown copper concentrations. Other copper lines that
could also be used for the analysis, e.g., at 521.82 nm [33], are not sensitive enough due to
the low copper concentration in the field samples. This is also clear from the weighting
of the spectral lines in the PLSR. In the case of the basalt-containing field samples from
Cyprus, the lines at 521.82 nm are not detected. The coefficients of determination and the
LOD of the calibration functions which are obtained from the Echelle and handheld spectra
are summarized in Table 2.

Table 2. Coefficients of determination R2 and LOD of the univariate regressions of the synthetic
samples and the field samples in basalt and schist with the Echelle and handheld spectrometer.

Sample Basalt Schist LIB Spectrometer
R2 LOD/ppm R2 LOD/ppm

Cu2S 0.95 140 0.85 1000 Echelle
CuFeS2 0.98 110 0.55 1000 Echelle

Cypriot mines 1 + 2
(basalt) 0.73 110 - - Echelle

Polish mine - - 0.27 9000 Echelle

Cu2S 0.98 1600 0.41 1000 handheld
CuFeS2 0.96 1100 0.39 1000 handheld

Cypriot mines 1 + 2
(basalt) 0.63 1000 - - handheld

Polish mine - - 0.31 9000 handheld

The LOD are roughly estimated values. With respect to the coefficient of determination
three trends can be observed from the results:

1. The UVR obtained from the Echelle spectra have higher coefficients of determination
than the UVR obtained from the handheld spectra.

2. The UVR of the samples in schist (R2 = 0.27–0.85) have lower R2 than the UVR of the
samples containing basalt (R2 = 0.63–0.98).

3. The synthetic samples (R2 > 0.95 in basalt, R2 > 0.39 in schist) have UVR with higher
coefficients of determination than the corresponding field samples (R2 > 0.63 in basalt,
R2 > 0.27 in schist).

The reasons for the lower linear correlation in the handheld spectra are probably
the lower pulse energy, the lower spectrometer resolution and the purging with argon
before and during the measurement. Compared to the Echelle spectrometer, where a pulse
energy of 80 mJ was used, the handheld spectrometer has only about one tenth of this
pulse energy (7.5 mJ). The low pulse energy results in a cooler plasma, which affects the
overall line intensity. This change in line intensity can be partly compensated by using
argon gas in the sample space. At the same time, the use of a purge gas is associated with
uncertainties, since not all ambient air may be completely removed from the sample space.
The lower resolution of the handheld spectrometer probably also contributes to the lower
linear correlation. Compared to the Echelle spectrometer, which has a spectral resolution of
about 25 pm, the handheld spectrometer has a resolution larger than 100 pm. The lower
resolution may result in partially overlapping lines. As a result, the exact line position is
not known, and line identification becomes difficult. Partial superposition can also lead to
errors in the determination of peak areas and thus inaccuracies in the univariate regression,
which are reflected in the lower coefficients of determination. The samples in schist show
lower R2 than those in basalt. The reason could be the material properties of both rocks.
Although both rocks are fine-grained and relatively hard, schist has a lower density and
is more brittle. This was also observable during measurement. The pellets with a schist
matrix were significantly more frequently partially destroyed than the basalt pellets. This
destruction of the pellets primarily results in a more uneven surface and a less spatial
correspondence between laser focus and surface. This may influence the intensities of the
spectra, resulting in lower univariate regression curves.
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The univariate regression of the field samples yields lower R2 than the synthetic
samples. The field samples differ from the synthetic samples in copper content. In addition,
they are natural samples that can be more affected by matrix effects because they are
exposed to weathering and contamination. This makes the elemental composition of the
surrounding matrix more heterogeneous. Interfering spectral lines can occur, which in turn
can lead to partial superimpositions and interference of the relevant lines. These result
in correlations with lower linearity and thus lower coefficients of determination. Good
correlations can only be obtained for the synthetic samples in basalt with the Echelle and
handheld spectrometer. For the field samples and especially the samples in schist, the
univariate regressions are not suitable as effective calibration functions due to matrix effects.
For better quantification, the use of multivariate methods is necessary.

3.3. Multivariate Analysis—Partial Least Squares Regression (PLSR)

As multivariate regression method partial least squares regression (PLSR) was applied.
The regression model was validated twice. First, the stratified data set was separated into
a training and a validation data set (70:30). The regression model was developed on the
basis of the training data and was tested with the validation data. Second, a 10-fold cross-
validation of the training data was performed during model development. The coefficient
of determination R2 and the root mean square error (RMSE) of the validation (R2

V, RMSEV)
as well as the cross-validation (R2

CV, RMSECV) were used as figure of merit. Figure 3
shows an example of the correlation plot between observed and fitted response of the PLSR
of Cu2S in basalt from the Echelle spectrometer.
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Figure 3. PLSR of CuFeS2 data in basalt at Echelle spectrometer. The logarithms of the copper concen-
trations and 2 components were used for the regression model. Black dots represent calibration model
(R2

CV = 0.97, RMSECV = 5016 ppm), circles represent validation (R2
V = 0.95, RMSEV = 5012 ppm).

The black dots are the result of the PLS calibration (R2
CV > 0.97), while the circles

represent the validation of the model (R2
V > 0.95). Although the validation has a fairly high

goodness of fit, the plot shows potential outliers that could negatively affect the correlation.
To identify these potential outliers, the robust principal components analysis (ROBPCA)
method of Hubert et al. is applied [28]. As a result, an outlier map (Figure 4) is obtained,
which is plotted between score distance and orthogonal distance.

The first and second quadrants contain the outliers, the so-called bad leverage points
and the orthogonal outliers. They are removed from the original data. The remaining data
were again divided into a training and validation set. The subsequent PLSR (Figure 5) gives
better results in terms of linearity (R2

CV > 0.98) of the calibration model and validation
(R2

V > 0.96) after the removal of two data points.
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This procedure was applied to all the series of samples studied on the handheld
and Echelle spectrometer. The results are summarized in Table 3. In almost all cases, the
elimination of outliers results in a better regression model. The PLSR results of the data
measured on the handheld spectrometer show coefficients of determination of R2

CV > 0.55.
Exceptions are the sample series of the Cypriot samples (R2

CV > 0.35) and Cu2S in schist
(R2

CV > 0.22). In contrast to the PLSR results of the handheld spectrometer, the PLS
regressions of the samples analyzed by the Echelle spectrometer have higher coefficients
of determination (R2

CV > 0.85). An exception are again the Cypriot samples with a lower
R2

CV > 0.49.
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Table 3. PLSR results of the examined samples in basalt and schist at Handheld and Echelle spectrom-
eter after elimination of outliers by the robust principal components analysis (ROBPCA) method.

Sample Number of
Components

Cross-Validation Validation
R2

CV RMSECV R2
V RMSEV

handheld spectrometer

CuFeS2 in basalt 5 0.74 1.2358 0.61 1.2902
Cu2S in basalt 7 0.96 0.4915 0.92 0.6313

CuFeS2 in schist 5 0.68 1.2229 0.61 1.3138
Cu2S in schist 3 0.58 1.2960 0.60 1.2498

Cypriot mines 1 + 2
(basalt) 6 0.31 1.0249 0.25 1.0303

Polish mine (schist) 4 0.55 2922.8 0.45 3140.6

Echelle spectrometer

CuFeS2 in basalt 4 0.90 0.7628 0.87 0.8154
Cu2S in basalt 5 0.98 0.3454 0.97 0.3449

CuFeS2 in schist 2 0.87 0.8256 0.86 0.7759
Cu2S in schist 2 0.79 0.9538 0.73 1.0026

Cypriot mines 1 + 2
(basalt) 2 0.52 0.8397 0.36 0.9420

Polish mine (schist) 5 0.85 1897.9 0.80 2066.4

In both cases, Echelle and handheld spectrometers, better regression models are ob-
tained for the synthetic samples than for the field samples, except for the regression of
chalcocite in schist. As already mentioned, the synthetic samples have a much smaller vari-
ation in the matrix composition than the field samples. The latter ones are inhomogenious,
due to grain size variations, and are exposed to natural processes, such as chemical and
physical weathering. Due to climate, ground cover, rock properties and the duration of ex-
posure, the surrounding matrices weather very differently [34]. This results in matrices that
have a more complex chemical composition, which is dependent on the site of sampling.
Rock powders from the same rock were added to the synthetic samples, so that hardly any
differences in the matrix can be found. These differences of the rock matrices influence the
regressions.

Compared to the UVR, multivariate PLS regression improves the regression models,
especially for the synthetic and the field samples in schist measured by the Echelle and
handheld spectrometer. For the synthetic samples in basalt, similar regression results are
obtained. The UVR of the Cypriot field samples is better than the PLSR.

Wavelength Dependence

While UVR only considers two spectral lines of the entire spectrum, namely the copper
lines at 324.75 nm and 327.40 nm, PLSR includes all spectral lines in the analysis. The PLS
weights in Figure 6 show how strong the individual spectral lines of the LIB spectra affect
the PLS regression. In this figure, the PLS weights of the first two principal components as
a function of the wavelength are displayed for the field samples from Cyprus (top) and
Poland (bottom).

In both cases, numerous spectral lines have positive weights. This also includes
the two copper lines at 324.75 nm and 327.40 nm, which were used for the univariate
regression. In addition to other copper lines of the Cypriot and Polish samples, quite a
few lines of the elements of the host rocks basalt and schist can be identified. In the upper
spectrum of Figure 6, mainly copper lines and iron lines are found with positive weights.
In particular, the copper lines originate from the copper-bearing minerals chalcopyrite and
chalcocite. The iron lines may result from the mineral chalcopyrite (CuFeS2) and the matrix
basalt (Cf. Table 1). The negative weighs originate from the accompanying matrix basalt.
These include element lines from silicon, magnesium, manganese, aluminum, calcium and
sodium. A different picture emerges when looking at the weighting of the wavelengths
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for the Polish samples (Figure 6 below). In addition to numerous copper lines, many lines
with positive weights can be identified that are part of the schist matrix. As in the case of
the Cypriot samples, the Cu lines originate from the minerals chalcopyrite and chalcocite.
In contrast to the Cypriot samples, significantly more Cu lines can be found here, because
the copper contents of the Polish samples are significantly higher than those of the samples
from Cyprus. In addition to the copper lines, lines of Ca, Mg, as well as Ba, Na and Li have
positive weights. These are part of the schist matrix. Mainly iron lines, but also Ca lines,
have negative weights. While calcium is part of the accompanying matrix schist, iron lines
may originate from the copper mineral chalcopyrite and the matrix.
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3.4. Principal Component Analysis (PCA)

One way to investigate the matrix influence is clustering by the principal component
analysis (PCA). For this purpose, all samples examined with LIBS are characterized by
PCA. The score plot shows the first two principal components that explain most of the
variance. In the score plot, closely grouped data points indicate low variance in the chemical
composition of the matrix, whereas a wide distribution of data points visualizes significant
differences in the composition of the matrix.

Figure 7a shows the score plot of the handheld spectrometer. The first two principal
components explain about 71% of the variance of the analyzed samples. The samples
containing basalt (Cyprian mine 1 (red), Cyprian mine 2 (yellow), Cu2S (green) and CuFeS2
(blue) in basalt) are spatially well separated from the samples containing schist (Polish mine
(purple), Cu2S (orange) and CuFeS2 (pink) in schist). The samples form clusters which are
well separated depending on the deposit (field samples) or host rock (synthetic samples)
but the clusters of the two Cyprus deposits are poorly separated from each other. Synthetic
samples such as the Cu2S-bearing samples in basalt (green) and schist (orange), as well as
the chalcopyrite-bearing samples in basalt (blue), are closely grouped. This indicates small
differences in the chemical composition of the matrix and explains their excellent regression
fits (Table 3). The samples from the Polish mine (purple) and the synthetic CuFeS2 samples
in schist (pink) represent a slightly larger distribution. The matrices of these samples have
larger variances in their chemical composition. This results in slightly weaker correlations
in the PLS regression. However, the samples of Cyprus mines 1 (red) and 2 (yellow)
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have the widest distribution in the score plot, indicating larger differences in the chemical
composition of the matrices. This also results in a weak correlation of the PLS regression
(Table 3). The reason for the large variations in chemical composition in basalt is probably
chemical and physical weathering. Depending on the collection site, the field samples
were exposed to atmospheric conditions to varying degrees, which led to the differences in
composition. These differences were visible on the specimens macroscopically, especially by
color differences, but also inclusions and different grain sizes. They are clearly illustrated
by the score plot in Figure 7b. Here, the first two principal components from the Cypriot
samples (dark red) and the corresponding synthetic samples in basalt (dark green) are
shown. In addition to the two clusters that formed, the wide distribution of data points in
the cluster of Cypriot field samples is striking. In contrast, the data points of the samples
containing Cu2S and CuFeS2 in basalt have a rather narrow distribution, illustrating a
high similarity of chemical composition, which in turn can be found in the PLS regression,
indicated by a rather high coefficient of determination (R2

CV > 0.74. Table 3).
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Figure 7. (a) Score plot of PCA of all samples analyzed with LIBS on the handheld spectrometer
(red—Cypriot mine 1, yellow—Cypriot mine 2, green—Cu2S in basalt, blue—CuFeS2 in basalt,
purple—Polish mine, orange—Cu2S in schist, pink—CuFeS2 in schist). (b) Score plot of PCA of
Cyprian samples (dark red) and samples containing Cu2S and CuFeS2 in basalt (dark green).

The PCA of the samples analyzed by the Echelle spectrometer yields a better cluster
separation of the different sources (Figure 8). Similar to the score plot of the handheld
spectrometer, the basalt containing samples (Cyprian mine 1 (red), Cyprian mine 2 (yellow),
Cu2S (green) and CuFeS2 (blue) in basalt) are spatially separated from the schist containing
samples (Polish mine (purple), Cu2S (orange) and CuFeS2 (pink) in schist). The clusters
are more clearly separated from each other than in Figure 7a, which is also reflected in the
coefficients of determination (R2

CV > 0.79) of the PLS regressions (Table 3). At the same
time, the data points are more widely separated in the clusters. The regressions of the
samples analyzed on the Echelle spectrometer have higher coefficients of determination
than those of the samples measured on the handheld spectrometer. The score plot of the
samples measured on the Echelle spectrometer mainly shows better separated clusters and
more evenly distributed data points.

3.5. Alternative Regression Models

The PLS regression has become a standard tool of chemometrics in chemistry and
engineering [35]. In this paragraph, other regression methods are also investigated. For this
purpose, the samples were examined by three additional regression methods and different
kernel functions. Besides the linear methods principal component regression (PCR) and
linear support vector machine (SVM) regression, nonlinear methods such as the quadratic
and the cubic SVM, as well as Gaussian process regression (GPR) were examined. As kernel
functions, the rational quadratic GPR, exponential GPR and matern 5/2 GPR were used.
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Using the field samples from Poland measured on the Echelle spectrometer as an example,
the results are shown in Table 4.
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Table 4. Different regression models with coefficients of determination (R2) and root mean square
error (RMSE) of the regression and validation using the field samples from Poland measured on the
Echelle spectrometer after the elimination of outliers by the ROBPCA method.

Model
Cross-Validation Validation

R2
CV RMSECV R2

V RMSEV

PLS regression 0.85 1897.9 0.80 2066.4
PCR 0.73 2636.0 0.69 2943.1

linear SVM 0.71 2744.8 0.65 3161.1
quadratic SVM 0.67 2920.8 0.68 3023.5

cubic SVM 0.62 3125.1 0.74 2714.9
rational quadratic GPR 0.73 2646.3 0.59 3395.1

exponential GPR 0.76 2469.4 0.58 3420.7
matern 5/2 GPR 0.74 2564.8 0.59 3387.1

Table 4 shows that there are models which are able to describe the investigated
data well, e.g., the linear regression (R2

CV = 0.73. R2
V = 0.69), nevertheless none of the

shown models is able to describe the data as accurately as the PLS regression (R2
CV = 0.85,

R2
V = 0.80). All other models achieve lower coefficients of determination. This is the reason

for applying PLS regression as the method of choice in this work.

3.6. Validation of the PLSR Calibration Based on the Field Samples

In the exploration of copper deposits many samples have to be measured and only
a few samples can be drawn for a later investigation by laboratory-based methods (e.g.,
ICP-OES). This limited sample volume often results from limited transport capacity and
the high cost of reference analysis. The prerequisite for on site measurements in the field is
a reliable calibration model. One way of creating this is based on the standard addition
method, in which various amounts of the copper mineral are added to a representative
host rock. However, since the host rock often varies greatly in its chemical composition
in the field, strong deviations in the LIBS signal are to be expected. This is reflected in the
PCA score plot, where the clusters of synthetic and real samples are clearly separated and
differ in their area. One way of adjusting the calibration function to the field conditions can
be the addition of some real samples, which have been characterized (labeled) by reference
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analysis, to the calibration model. A way to validate the calibration is to apply the obtained
calibration model to the field samples. Besides validation, this also shows if and how
comprehensive the calibration can be. Additionally, an idea of the predictions on the basis
on the PLSR calibration models for other samples with similar associated rocks is gained.

The PLSR calibration models of the synthetic samples of Cu2S and CuFeS2 in basalt
and schist, respectively, were applied to the Cypriot and Polish field samples (all measured
on the Echelle and handheld spectrometers, respectively) for this purpose.

Figure 9a shows the result of the PLSR calibration of the synthetic samples of Cu2S
and CuFeS2 in schist (dark blue) and the validation with the Polish field samples (purple).
The validation only achieves a coefficient of determination of R2 = −1.95. Thus, the PLSR
calibration of the synthetic samples in schist is not suitable to quantitatively predict element
contents of the Polish field samples. To increase the prediction accuracy, data from the
field samples were successively added to the synthetic samples and the calibration and
validation were performed again. The best result was obtained after adding 22% randomly
chosen field samples to the calibration model of the synthetic samples (Figure 9b). A
coefficient of determination of the validation of R2 = 0.79 could be obtained (Table 5).
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Figure 9. (a) PLSR (4 components) of the synthetic samples (Cu2S and CuFeS2 in schist; dark
blue) applied to the Polish field samples (purple): R2

V = −1.95, RMSEV = 8228 ppm; (b) PLSR
(4 components) of the synthetic samples (Cu2S and CuFeS2 in schist) and 22% of the field samples
(dark blue) applied to the Polish field samples (purple): R2

V = 0.79, RMSEV= 2180 ppm; all measured
on Echelle spectrometer.

Table 5. Validation results (R2, RMSE) of PLSR of the synthetic samples in schist validated with the
Polish field samples.

Samples Spectrometer Components Validation
Training Data Validation Data R2

V RMSEV

syn. samples in schist
incl.

~22% polish field
samples

Polish field
samples Echelle 4 0.79 2180.3

syn. samples in schist
incl.

40.5% polish field
samples

Polish field
samples handheld 4 0.42 3560.4

Thus, this calibration method is suitable to quantitatively predict element contents in
unknown field samples. The corresponding investigations of the field samples obtained by
the handheld instrument and from the Cypriot field samples are not successful. This could
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be expected because the corresponding figures of merit of regression (Table 3) are poor but
in principle similar relative trends are obtained.

In contrast to the Polish samples (c(Cu) = 0.8–2.4%), the Cypriot samples (c(Cu) =
41–10,000 ppm) possess a much lower concentration of copper. This seems to be the reason
for the weaker correlation of the data. The necessary addition of the field samples to the
training data shows that the matrix effects of the field samples influence the calibration.
Since the complex chemical composition of the field samples cannot be represented in
the synthetic samples, the addition of some field samples to the calibration data is a
reasonable way.

Figure 10 shows the evolution of the R2
V of the validation data with increasing ratio

of field samples to the synthetic samples up to a ratio of about 50%.
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field samples in the training data for the Polish samples measured on the Echelle (purple). This
process was performed five times.

If this ratio increases, the coefficients of determination also increase and converge to a
plateau at almost 22% of the field samples added to the synthetic data. In the case of the
data measured on the Echelle spectrometer, the coefficient of determination reaches a value
of R2 = 0.79 at an admixture of 22% and of R2 = 0.81 at an admixture of 50%. Especially with
regard to the application during prospecting and exploration work, the use of a smaller
field sample data set is reasonable, since a smaller part of field samples has to be taken
and analyzed in the laboratory. This can save time, resources and costs and still achieve
good results.

4. Summary and Conclusions

LIBS is a promising method for the detection and quantification of copper in copper-
bearing samples, as this technique can rapidly determine numerous elements simulta-
neously in a matrix with little or no sample preparation. LIBS is compromised by its
strong matrix dependence. This requires careful calibration and the use of multivariate
methods. The handheld instrument used in this work is particularly suited for use in the
field. The semiquantitative investigations allow an orientation in the field. In addition
to the mobility offered by this handheld instrument, the simplicity of use, purging with
argon, and measurements in a grid are advantageous for field studies. In contrast, the
stationary LIBS system with an Echelle-based detector offers a higher spectral resolution
and a larger excitation energy, which also allow a more accurate view of the samples in
terms of multivariate analysis of the spectra.

In the present work, two data evaluation methods are used to quantify the copper
contents in the studied ores. The first approach is a calibration using synthetic samples
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in conjunction with univariate evaluation. Here, the peak areas of the copper peaks at
324.75 nm and 327.40 nm were used for the analysis. However, due to strong matrix
effects, the obtained univariate regressions are in the most cases not suitable as calibration
functions. Exceptions are the regressions of the Cypriot field samples measured with
Echelle and handheld spectrometer. In a second approach, the multivariate method of PLS
regression, after an elimination of outliers using ROBPCA, is used. This resulted in better
calibration models. PCA was performed to estimate the matrix effects. Applying alternative
regression models to the LIBS data did not improve predictions compared to PLSR. Finally,
the predictive power of the PLSR was tested. For this purpose, the regressions of the
synthetic samples were applied to the field samples. It turns out to be advantageous if
the training data set already contains some labeled field samples. The use of a mobile
LIBS spectrometer that can be deployed in the field can save on sampling, transportation
and analysis costs when prospecting and exploring for new copper deposits. At the same
time, the use of a high-resolution LIBS spectrometer allows more accurate determination
and monitoring of copper grades, e.g., during the refining and production process for
high-purity copper.

In the future, this work should be supplemented by field samples from additional
copper deposits, especially with regard to other host rocks. In addition, the samples could
be expanded to include copper concentrates of different processing stages.

Author Contributions: P.B., T.B., U.A. and H.-G.L. made the conceptualization. Data curation, formal
analysis and visualization was performed by P.B. Funding acquisition and project administration
carried out T.B. and H.-G.L. The resources were provided by N.K., U.A. and S.M. Methodology was
performed by P.B. and T.B. Supervision was conducted by T.B., U.A. and H.-G.L.; P.B. and T.B. wrote
the original draft. S.M., N.K., U.A. and H.-G.L. have reviewed and edited the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of this research work within the
framework of the State of Brandenburg (ILB) in the LIBSqOre project (No. 80172489) and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 491466077.

Data Availability Statement: The field samples from Cyprus are part of a dissertation at the Institute
of Geosciences at the University of Potsdam (Koerting 2021). All reference data are available on
request (beitz@uni-potsdam.de).

Acknowledgments: The authors would like to thank David Mory and Katarzyna Cieslik for supp-
porting during the project and Friederike Körting for providing the Cyprus field samples.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Umwelt Bundesamt Nichteisenmetallindustrie. Available online: https://www.umweltbundesamt.de/themen/wirtschaft-

konsum/industriebranchen/herstellung-verarbeitung-von-metallen/nichteisenmetallindustrie#die-nichteisenmetallindustrie-
in-deutschland (accessed on 9 November 2021).

2. Marscheider-Weidemann, F.; Langkau, S.; Eberling, E.; Erdmann, L.; Haendel, M.; Krail, M.; Loibl, A.; Neef, C.; Neuwirth,
M.; Rostek, L.; et al. Rohstoffe für Zukunftstechnologien 2021—DERA Rohstoffinformationen 50: 366 S., Berlin. Available
online: https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/
rohstoffinformationen-50.pdf?__blob=publicationFile&v=4 (accessed on 9 November 2021).

3. Neukirchen, F.; Ries, G. Die Welt der Rohstoffe, 2nd ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-
37738-9.

4. Gocht, W. Wirtschaftsgeologie und Rohstoffpolitik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1983; ISBN 978-3-540-12588-4.
5. Deutsches Kupferinstitut Berufsverband e.V. Produktionsprozesse. Available online: https://www.kupferinstitut.de/

kupferwerkstoffe/kupfer/produktionsprozesse/ (accessed on 9 November 2021).
6. Knapp, H.; Neubert, K.; Schropp, C.; Wotruba, H. Viable Applications of Sensor-Based Sorting for the Processing of Mineral

Resources. ChemBioEng Rev. 2014, 1, 86–95. [CrossRef]
7. Nadolski, S.; Samuels, M.; Klein, B.; Hart, C.J.R. Evaluation of Bulk and Particle Sensor-Based Sorting Systems for the New Afton

Block Caving Operation. Miner. Eng. 2018, 121, 169–179. [CrossRef]

https://www.umweltbundesamt.de/themen/wirtschaft-konsum/industriebranchen/herstellung-verarbeitung-von-metallen/nichteisenmetallindustrie#die-nichteisenmetallindustrie-in-deutschland
https://www.umweltbundesamt.de/themen/wirtschaft-konsum/industriebranchen/herstellung-verarbeitung-von-metallen/nichteisenmetallindustrie#die-nichteisenmetallindustrie-in-deutschland
https://www.umweltbundesamt.de/themen/wirtschaft-konsum/industriebranchen/herstellung-verarbeitung-von-metallen/nichteisenmetallindustrie#die-nichteisenmetallindustrie-in-deutschland
https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/rohstoffinformationen-50.pdf?__blob=publicationFile&v=4
https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/rohstoffinformationen-50.pdf?__blob=publicationFile&v=4
https://www.kupferinstitut.de/kupferwerkstoffe/kupfer/produktionsprozesse/
https://www.kupferinstitut.de/kupferwerkstoffe/kupfer/produktionsprozesse/
http://doi.org/10.1002/cben.201400011
http://doi.org/10.1016/j.mineng.2018.02.004


Minerals 2023, 13, 113 18 of 19

8. Pořízka, P. Using Laser-Induced Breakdown Spectroscopy (LIBS) for Material Analysis. Ph.D. Thesis, Brno University of
Technology, Brno, Czech Republic, 2014. Available online: https://theses.cz/id/zekxmz/Porizka_disertace.pdf (accessed on 9
November 2021).

9. Ostermann, M.; Schmid, T.; Büchele, D.; Rühlmann, M. In Echtzeit quer durch’s Periodensystem. LaborPraxis 2016, 1–7. Available
online: https://www.laborpraxis.vogel.de/in-echtzeit-quer-durchs-periodensystem-a-564401/ (accessed on 9 November 2021).

10. Wirtschaftsvereinigung Metalle die NE-Metalle. Available online: https://www.wvmetalle.de/die-ne-metalle/ (accessed on 9
November 2021).

11. Schorn, S. Mineralienportrait Kupfer—Eigenschaften. Available online: https://www.mineralienatlas.de/lexikon/index.php/
Mineralienportrait/Kupfer/Eigenschaften (accessed on 9 November 2021).

12. Sievers, H. Der Einfluss von Lagerstätteneigenschaften auf Eine Nachhaltige Rohstoffnutzung am Beispiel Kupfer; Rheinisch-Westfälischen
Technischen Hochschule Aachen: Aachen, Germany, 2005; ISBN 393253722X. Available online: https://d-nb.info/976934922/34
(accessed on 9 November 2021).

13. Dorner, U. Rohstoffrisikobewertung—Kupfer.—DERA Rohstoffinformationen 45: 58 S. Berlin. 2020. Available online: https:
//www.bgr.bund.de/DERA/DE/Aktuelles/rohstoff_kupfer.html (accessed on 9 November 2021).

14. British Geological Survey. Copper. Notthingham, UK. 2007. Available online: https://www2.bgs.ac.uk/mineralsuk/download/
mineralProfiles/copper_profile.pdf (accessed on 9 November 2021).

15. Sicius, H.; Reise, E. Kupfergruppe: Elemente der ersten Nebengruppe; Essentials; Springer Fachmedien Wiesbaden: Wiesbaden,
Germany, 2017; ISBN 9783658172046. [CrossRef]

16. Uhlendorff, A. Kupfergewinnung und -Produktion. Available online: https://institut-seltene-erden.de/kupfergewinnung-und-
produktion/ (accessed on 9 November 2021).

17. Angerer, G.; Mohring, A.; Marscheider-Weidemann, F.; Wietschel, M. Kupfer für Zukunftstechnologien: 52 S.; Karlsruhe, Germany.
2010. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2010/Bericht_FSEM_Cu.pdf (accessed
on 9 November 2021).

18. Neukirchen, F. Von der Kupfersteinzeit zu den Seltenen Erden; Springer Spektrum: Berlin/Heidelberg, Germany, 2016; ISBN
9783662493465. [CrossRef]

19. Quaiser, J. Internationales Forschungsprojekt ReAK zur Reduktion des Arsengehalts in Kupferkonzentraten 2020. Available
online: https://www.envirochemie.com/ecomaXL/files/20200527-ReAK-Reduktion-Arsengehalts-Kupferkonzentraten.pdf?
download=true. (accessed on 2 March 2022).

20. BGS Press Insights into the ‘Missing Link’ of How Copper Ore Deposits Form. Available online: https://www.bgs.ac.uk/news/
insights-into-the-missing-link-of-how-copper-ore-deposits-form/ (accessed on 14 September 2021).

21. Siebert, M. Neuzeitliche Minen auf Zypern. Available online: https://homersheimat.de/themen/minen-auf-zypern/minen_
zypern.php (accessed on 2 March 2022).
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