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1. Deterministic Time Series Modelling 
 

To be subject of a separate textbook.  
 

2. Stationary Stochastic Processes 

2.1. Definitions 
 
A set of random variables X(t)   where   t � � � � (real numbers) is referred to as a stochastic 
process. A discrete stochastic process is defined as a sequence of random variables X(t) where 
t = t1 , t2 , ..., tT , ..., shortly   ..., X1 , X2 , ..., XT ...     or     Xt 
 
The mathematical expectations E(Xt) can differ from time to time and form a mean function 
depending on time 

]E[)( tt Xt == µµ
 ( 2.1) 

 
The same way the variances var(Xt) form the variance function, depending on time too: 

])E[()( 222
ttt Xt µσσ −== .

 ( 2.2) 

 
Generally, there is a certain variance at each point of time. Principally, this is not the same as 
variability of empirical data during the run of the process over time. 
 
The autocovariance 

)])(E[(),cov(
22112121 , tttttttt XXXX µµγ −−==

 ( 2.3) 

generally depends on each  t1  and  t2. 
 
One finite realization x1, x2, ..., xT of a discrete stochastic process … X1, X2,…XT… is called a 
time series. In this chapter we shall consistently distinguish between stochastic processes and 
time series generated by them. Processes are marked by capitals. Small letters mark time 
series. Exceptions are residual processes belonging to models for stochastic processes and not 
having any independent practical content. They are designed by small letters such as a, u and 
ε, too. The strict distinction is necessary for correctly deducing properties of time series from 
those of stochastic processes. When practically modelling empirical time series later on, this 
distinction can be more or less neglected. 
 
A stochastic process Xt is called strongly stationary, if the joint probability distribution of all 
variables 
  Xt

1
 , Xt

2
 , ... , Xt

n
  is the same as that   

of    Xt
��

  , Xt
��

 , ... , Xt
��

. 
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Xt   is weakly  stationary, if  
           
Mean   µ t = µ = const 
Variance  σ t

2 = σ 2 = const 
Autocovariance  γ 

t
1 
, t

2
    

= γ 
t
1 
- t

2  
= γ τ    with  τ = t 1 – t 2 (Lag)  

 
Being a function of only the lag τ, the autocovariance 

)])(E[()( µµγτγ ττ −−== −tt XX
 ( 2.4) 

is called autocovariance function. For τ = 0 it is equal to the variance. 
 
���������	�
���
���
��� 2 �� 0 the autocorrelation function of a stationary stochastic process 
is obtained: 

.                      11-with
0

≤≤= τ
τ

τ ρ
γ
γρ

 ( 2.5) 

A time series x1 , x2 , ..., xT that is one realization of a stationary stochastic process Xt is called 
stationary as well. 
 
In practical analytical work stationarity of a time series means 
• no trend 
• no systematic change of variance 
• no strictly periodic fluctuations 
• no systematically changing interdependencies between the elements of the time series 
 
Economic time series consisting of data observed in practice such as gross national product 
for a sequence of years usually are not stationary. 
 

2.2. Ergodicity 
 
A fundamental obstacle to estimating the distribution parameters of a stochastic process is that  
generally the sample size is n = 1, because usually here exists only one time series for a 
process. Thus a sensible estimation virtually is not possible. The stochastic process to be 
examined itself is unknown. Its stationarity or nonstationarity can be found only by analyzing 
this one existing time series. But on the other hand: Many analysis methods for time series 
assume stationarity. This leads to the sort of circular conclusion, that the property to be found 
firstly has to be assumed to exist. 
 
A solution can be found by using the notion of ergodicity: this is the behaviour of a large class 
of stationary processes, where the arithmetic mean over time periods converges to the 
mathematical expectation . Ergodicity makes it possible to estimate �� σ2, γ(τ) of the 
underlying process by using one time series only. 
 
Approaches for recognizing the stationarity of a time series are various: 
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• Graphical representation of the time series and visual check for trend, i.e. for changing 
mean, increasing or decreasing variance and strong periodicities  

•  Examination of the empirical autocorrelation 
•  Tests for a deterministic trend, e.g. t-test of a least squares estimation 
•  Tests for a stochastic trend, e.g. unit root test. 
 

2.3. Special Cases 
 
A process is called a normal process if the joint distribution of  Xt

1
 , Xt

2
 , ... , Xt

n
 is an n-

dimensional normal distribution. In this case, from weak stationarity follows strong 
stationarity.  
White noise is a purely random process i.e. a series of independent identically distributed 
random variables at (iid). The most important properties of white noise are 

21,

22

für0

)E(

21
tt

const

consta

tt

at

tt

≠=
==

===

       γ
σσ

µµ

 ( 2.6) 

Stationarity immediately follows from this. White noise plays an important role in modelling 
for the representation of the error or innovations part in a data generating stochastic process. 
 

Example 2.1:  

Let us consider two white noise processes 

 Xt = at  
and Yt = 3+1.5at  
where at is white noise with zero mean and unit variance. Obviously Yt  has the mean µ =3 and 
the variance 1.5. 
 
Figure 2.1 displays two independent realizations for each process generated by normally 
 
In order to find out whether or not a time series xt represents white noise it is useful to test its 
empirical autocorrelation rτ  (see section 4.1) by the Box-Pierce Q-statistic: 

∑
=

=
P

k

rTQ
1

2
τ  ( 2.7) 

Under the null hypothesis that Xt is white noise Q follows a χ2 – distribution with p degrees of 
freedom. In the case of example ( 2.1) Q assumes values between 1 and 14 for τ = 1 to 16, 
respectively. The values do not exceed the corresponding 1% critical values of χ2. Thus the 
null hypothesis of white noise cannot be rejected distributed random numbers for at. 
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Figure 2.1: Plots of white noise realizations with means 0 and 3, respectively. 

 
.  
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3. ARMA Processes 

3.1. MA Models 
 
Consider a process that is nothing more than a linear combination of two white noise elements 
following one after the other: 

11 −−= ttt aaX  θ
 ( 3.1) 

where at is white noise with µ = 0. Then Xt is called a first order moving average process 
MA(1). 
 
Here the white noise term sometimes is referred to as “innovations” or, more dramatically, as 
“shocks” because it is the only new, i.e. previously unknown, information entering the process 
in every point of time. 
 
 
A moving average process of order q [ MA(q)] is a process Xt with 

qtqttt aaaX −− −−−=   θθ �11 ,
  ( 3.2) 

where at is white noise with µ=0. 
 
By introducing the lag or backshift operator L with 

ktt
k

tt

tt

XX

XX

XX

−

−

−

=

=

=

)(L

)(L

)L(

2
2

1

 ( 3.3) 

an MA(q) process can be written shorter if we substitute 

)(L t
k

kt aa =−  ( 3.4) 

And use the operator function: 
q

qq L...LL1(L) 2
21 θθθ −−−−=Θ .

 ( 3.5) 

 
Then the MA(q) process ( 3.2) is simply defined by 

tqt aX (L)Θ=
 ( 3.6) 

 
An MA(q) process has the following properties: 
 

[ ]

[ ] ∑
=

=

=
q

i
it

t

X

X

0

22var

0E

 θσ  ( 3.7) 
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⎨
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=
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=
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−

=
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0

0

2 τθθσ

τ
τ

τ
 ( 3.8) 
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The mean, the variance and the covariance do not depend on time. Therefore a MA process is 
weakly stationary. 
 

Example 3.1:  

MA(2) processes. 

Figure 3.1 shows two time series generated by the MA(2) processes 

,

,

21
2

21
1

4,075,0

4,075,0

−−

−−

−−=

++=

tttt

tttt

aaaX

aaaX
 

respectively. The white noise innovations at are represented by zero mean normal random 
numbers. It is visible from the graph that the process Xt

2 with negative coefficients (i.e.θi > 0!) 
is more oscillating than the first one. 
 
 
 
 

 

Figure 3.1: MA(2) time series 

 

A second generation by each process with other random numbers at delivers time series 
different from the former ones in detail but similar to them in the general shape (figure 3.2). 
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Figure 3.2: MA(2) time series generated by the same processes 

 

3.2. AR Models 
 

An autoregressive process of order  p (AR(p)) is a stochastic process Xt with 

tptpttt aXXXX +++++= −−− φφφφ ...22110  ( 3.9) 

 
where at  is white noise with  a = 0. The intercept φ0 is often set to zero. 
By using the lag operator function  
 

p
pp ...)( LLL1L 2

21 φφφ −−−−=
 ( 3.10) 

it can be shortly written 

ttp a)X( += 0L φ
 ( 3.11) 

An AR process is not in every case stationary. If we know the representation ( 3.9) or ( 3.11) 
of the process, what is called the characteristic equation is helpful in finding whether the 
process is stationary or not. 
 
The characteristic equation is defined as 

0)(.e.i

0...1 2
21

=Φ

=−−−−

z

zzz

p

p
p

      

φφφ
 ( 3.12) 

where z is assumed a complex variable. The following necessary and sufficient condition for 
stationarity of an AR process can be proved:  
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If and only if all (complex) solutions (roots) of the characteristic equation lie outside the unit 
circle, i.e.  | z | > 1, the AR process is stationary. 
Particularly, if  | z | = 1, what is called a unit root, the process is just  nonstationary. 
 

Example 3.2:  

Let  Xt = 1.1 Xt-1  +  at  be an AR(1) process with zero mean white noise at. 

Its characteristic equation is 1 – 1.1 z = 0 with the root  z = 0.91, which lies inside the unit 
circle: | z | < 1. Thus the process is nonstationary. 
This is obvious also without solving the characteristic equation because the coefficient 1.1 
generates a permanent increase of the following values. Figure 3.3 displays the graphs of two 
independent realizations of this process. 
 
But the process  Xt = 0.8 Xt-1  +  at   has  the  characteristic  equation  1-0.8 z = 0  with the root 
z = 1.25, i.e. | z | > 1. It is stationary. Its values move around zero, what is visible from figure 
3.4. 
 
 
 

 
Figure 3.3: Two realizations of one nonstationary process. 
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Figure 3.4: Two realizations of one stationary AR process. 
 

Example 3.3:  

In order to present a unit root process a random walk is generated: 

Xt = Xt-1 + at   

Figure 3.5 shows two realizations. A random walk is nonstationary as the solution of the 
characteristic equation z-1=0 is z =1 and lies on the unit circle. It is a “unit root”. Later will be 
proved that despite Xt has a constant expectation its variance would be dependent on time. 

 

Figure 3.5: Two realizations of one random walk with zero mean. 

 



H. G. Strohe,  Time Series Analysis, Universität Potsdam 11 

3.3. ARMA Models 
 
A mixture of AR and MA processes of orders p and q, respectively, is called an 
autoregressive moving average process [ARMA(p,q)]: 

qtqttptpttt aaaXXXX −−−−− −−−+++++= θθφφφφ ...... 1122110  ( 3.13) 
or 

qtqttptptt aaaXXX −−−− −−−=−−− θθφφ ...... 1111  ( 3.14) 

Here the single error term at of an AR process is substituted by an MA(q) process. 
 
The ARMA(p,q) can be written shortly: 

tt aX (L)(L) q0p += φ
 ( 3.15) 

where (L)p and (L)q are the lag operator functions of the corresponding AR(p) and 

MA(q) processes, respectively, and 0φ  is mostly assumed to be zero.  

 

Example 3.4:  

Figure 3.6 displays the graph of a time series. Here the data generating process is 
ARMA(1,2): 

Xt = 0.8Xt-1 + at + 0.24at-1+ 0.4at-2 

 

 

 

Figure 3.6: Graph of an ARMA(1,2) process 
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Under very general conditions, a stationary ARMA process tqtp aX (L)(L) 0 Θ+=Φ φ  can be 

transformed in an infinite AR process as well as in an infinite MA process: 

tt

tttt

aX

aaaX

(L)or 0

22110

Ψ+=
−−−+= −−

φ
ψψφ

    

�

 ( 3.16) 

...LL1(L)with 2
21 −−−=Ψ ψψ  

 ( 3.17) 

The infinite lag polynom (L)Ψ is determined by 

.
(L)

(L)
���

p

q  =  

Particularly, stationary AR processes can be represented by infinite MA processes and most 
MA processes (under an invertibility condition) by infinite AR processes. In practical time 
series analysis, the representation with as few as possible parameters should be chosen. 
 

Example 3.5:  

Consider the MA(1) process 

1−−= ttt aaX θ
 ( 3.18) 

From          Xt-1 = at-1  - θ at-2 
follows       at-1 = Xt-1+θ at-2 

and from          Xt-2 = at-2  - θ at-3 
follows       at-2 = Xt-2+θ at-3 

and so further. By successive substitution of at-1, at-2 and so on in ( 3.18) we obtain: 

...21 −−−= −− tttt XXaX 2  θθ
 ( 3.19) 

i.e. an infinite AR process, which converges under the invertibility condition ⎪θ⎪<1. 
 

Example 3.6:  

Let us consider the stationary AR(1) process 

ttt aXX += −1φ
        

with     ⏐φ⏐<1
 ( 3.20) 

By backshifting the whole process we obtain 

121 −−− += ttt aXX φ
 

and ( 3.20) becomes .2
2

1  −− ++= tttt XaaX φφ  

Further back shifting gives .232 −−− += ttt aXX φ  

By successive substitution of these lagged elements of X, an infinite moving average process 
is produced: 

...a aaX 2t
2

1ttt +++= −− φφ
 ( 3.21) 

Because of ⎪φ ⎪ < 1 this representation converges. 
 
ARMA processes have a more complex structure than pure AR or MA processes of the same 
behaviour, but they have less parameters. Parsimony is one of their advantages compared with 
fitted AR or MA processes. 
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4. Autocorrelation and Spectrum 

4.1. Autocorrelation Function 
 
According to  ( 2.5) the autocorrelation function of a stationary process Xt is 
 

.)])(E[(
1

00

 µµ
γγ

γρ τ
τ

τ −−== +tt XX
 ( 4.1) 

 
The graph of  is called correlogram. The shape of the correlogram and other functions is 
characteristic for special ARMA processes. Therefore such functions are used in time series 
analysis for finding the type and order of a process and the corresponding model. 
For an AR(p) process the correlogram  is a mixture of exponential and sinuous curves. 
 
 

Example 4.1:  

Let Xt be an AR(1) process without constant and ⏐φ1⏐< 1 

From  t1t1t aXX += −φ  

and 2
tt1t1

2
1t

2
1

2
t1t1

2
t aaX2X)aX(X ++=+= −−− φφφ  

follows  2E a0
2
1

2
t0 0)(X ++== φ  

and by re-arranging 

2
1

a
0 1 φ−
=

2

 ( 4.2) 

For calculating 1 we consider 

1t2t11t aXX −−− += φ  

and t1t
2

1t11tt1t11tt aXX)XaX(XX −−−−− +=+= φφ  

Thus we obtain 

12
1

a2
1t11tt1

1
0)(X)X(X φ

φ
φ

−
=+== −−

2

EE
  

From this follows ρ1=φ1. In an analogous procedure we find 2
12 φρ = . 

Generally, a geometrically decreasing sequence will be obtained:  
k

k 1φρ = .
 ( 4.3) 
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Figure 4.1: Autocorrelation function of an AR(1) process with φ1 >0 

 

 

 
Figure 4.2: Autocorrelation function of an AR(1) process with φ1 <0 

 
 

Example 4.2: 

Now, the autocorrelation of the MA(1) process 1t1tt aaX −−=  is examined. 

From 2
1t1t1

2
t

2
t )a(a2aX −+−=  

follows 

)E()var(with)1()E( 2222
1

2
0 ttaat aaX ==+== σσθγ         

 ( 4.4) 

from 2t11t1t aaX −−− −=  

and 2t1t
2
1

2
1t12tt11tt2t11t1t1t1tt aaaaaaa)a)(aa(aXX −−−−−−−−− +−−=−−=  

we obtain  000XX 2
a1tt +−−== − )E( 11γ  
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and dividing this by the variance γ0: 

)(1 2
1

1
1 +

−
=

 ( 4.5) 

From 31
2

1211312312112 ))(( −−−−−−−−−− +−−=−−= tttttttttttttt aaaaaaaaaaaaXX θθθθθ  

follows because of the independence of the at, at-1…: 
0)E( 22 == −tt XXγ , 

All following autocovariances γ3, γ4,… and autocorrelations are equal zero, too. 
 
 
The generalization of this result to processes of higher order gives us the opportunity to 
recognise the order q of an MA(q): it is determined by the highest number q of autocorrelation 
coefficients significantly differing from zero, while all following values are zero or close to it. 
 

 

Figure 4.3: Correlogram of an MA(1) process with� 1<0 

 

 
Figure 4.4: Correlogram of an MA(1) process with� 1>0 
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Suitable estimators for the autocovariance function of an ergodic process on the base of one 
time series xt are 

           
T

xxxx
c

T

t
tt∑

−

=
+ −−

==

τ

τ

ττ γ 1

))((
ˆ

 ( 4.6) 

or 

τ
γ

τ

τ

ττ −

−−
==
∑
−

=
+

T

xxxx
c

T

t
tt

1

))((
ˆ        

 ( 4.7) 

Both estimators are mentioned here because they are used in different text books and 
computer packages and have slightly different properties for short time series only. 
The estimator for the autocorrelation function is the sample autocorrelation function 

2
0ˆ

ˆ
ˆ

xs

c
r ττ

ττ γ
γρ ===          

 ( 4.8) 

with sx being the sample standard deviation of the time series xt. 
 

 

Example 4.3:  

Let xt be a time series generated by the process 

Xt = 0.8 Xt-1 + at  with  at ∼N(0,1). 
 
 
Figure 4.5 shows the sample autocorrelation function of xt. 

 
Figure 4.5: Sample autocorrelation function of one realisation of the AR(1) process 
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The Box-Pierce statistic ( 2.7) results in values from 35 to 114 for τ =1 to 16, respectively. 
This allows to reject the null hypothesis of white noise on the 1% significance level. 

 

 

Example 4.4:  

Now, zt is a time series generated by the MA(2) process 

Zt = at + 0.25at-1 + 0.4at-2   with  at ∼N(0,1).  
 
Figure 4.6 displays the sample autocorrelation function. The values of the function beyond the 
lag τ =2 are close to zero. This indicates the MA(2) process. 
 
 
 

 

Figure 4.6: Sample correlogram of an MA(2) process. 

 

 
 

4.2. Partial Autocorrelation Function 
 
Another diagnostic function is the partial autocorrelation function (PAC) of a stationary 
stochastic process. 
For calculating this function we assume Xt approximated by an AR� ���	������ 

)()(
11

)( ... τ
τττ

τ
τ

τ φφ −− ++= ttt XXX   
 ( 4.9) 

Then the last coefficient φττ is referred to as partial autocorrelation coefficient of Xt  for the 

lag τ . 
The series ρpart(τ) = φττ  with varying τ  is called  partial autocorrelation function (PAC). 

 
For an AR(p) process ρpart(τ) is equal zero beyond the lag τ = p. 
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Figure 4.7: Partial autocorrelation function of an AR(1) process with φ1<0 

 

 

 

Figure 4.8: Partial autocorrelation function of an AR(1) process with φ1>0 

 
 
 
 
On the other hand, for an MA(q) process the PAC is an exponentially decreasing sequence. 



H. G. Strohe,  Time Series Analysis, Universität Potsdam 19 

 

Figure 4.9: Partial autocorrelation function of an MA(1) process with θ1<0 

 

 

Figure 4.10: Partial autocorrelation function of an MA(1) process with θ1>0 

 

 
The value of the PAC for a time series given at a selected lag τ can be estimated by OLS 

fitting an AR(τ) model and taking the estimated highest order coefficient ττφ̂ . 

 
 

Example 4.5:  

Let xt be a time series generated by the AR(1) process Xt = 0.8Xt-1 + at with unit variance 
white noise at. The linear regression of xt on xt-1 gives the estimated coefficient 0.791 with the 
standard error 0.023. OLS regression on xt-1 and xt-2 produces the estimation of φ22 in table 4.1. 
Then the regression of xt on  xt-1, xt-2,  xt-3 results in table 4.2 and so on. 
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Table 4.1: OLS regression of xt 

***************************************** 
Regressor              Coefficient            Standard Error 
 xt-1                            .89002                      .15171              
 xt-2                         -.057163                    .15181            
***************************************** 
 

Table 4.2: OLS regression of xt 

*****************************************  
Regressor               Coefficient            Standard Error        
 xt-1                          .88283                       .15609              
 xt-2                          .0029261                   .21856             
 xt-3                         -.063269                     .16234             
***************************************** 
Thus the first three values of the PAC estimated are 
ρpart(1) =  0.791 
ρpart(2) = -0.057 
ρpart(3) = -0.063 
It is recognizable that the graph of ρpart would drop down to approximately zero after the lag 
1. This is characteristic for AR(1) processes. 
 
 

4.3. Spectral Density 
 
The spectral density or the power spectrum is the Fourier transform of the autocovariance 
function or of the autocorrelation function, e.g. 

;   )2cos2(2)(
1

τπγγ
τ

τ ffp o ∑
∞

=

+=
 ( 4.10) 

where 
P

1
f =  is the frequency and P the period length of a supposed periodic component 

within the process. 

The value p(f) can be interpreted as the amplitude of this periodic cycle with 
2

1
0 ≤≤ f . 

The lower limit f=0 means an infinite period length, e.g. the trend component, and the 
maximum frequency f=0.5 means extremely short oscillations. 
 
The function p(f) as a whole distributes the variance to variations with frequencies between 0 

and 1/2: 

.)(
2

1

0

0
2  ∫== dffpx γσ

 ( 4.11) 

On the base of one empirical time series the estimator for the spectral density is the sample 
spectral density: 

)2cos2(2)(ˆ 0 ∑+=
T

fcgcfp
τ

ττ τπ
 ( 4.12) 
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where the empirical sample autocovariances are weighted by a suitable ‘window’ g
��

in order 
to obtain consistent estimations. Computer programs offer several spectral windows, mostly 
those by Parzen, Hannen or Bartlett.  
Some programs use the „circular frequency“ �2 �� instead of the frequency f. Then the 
special density is defined for �0 to �3.14. 
 
If the spectrogram, i.e. the plot of the spectral density over all frequencies under 
consideration, shows for a special frequency f or� �a high pique then the process contains a 

periodical component of the period length 
f

1
P =  and the share of the variance covered by 

this component totals to the share of the area concentrated under this pique. Therefore an 
important application field of spectral analysis is the analysis of cyclical variations. 
 
 
 

 

Figure 4.11: Spectral density of an AR(1) process with φ1>0 

 

 

 

Figure 4.11 shows the typical spectral density function of an AR(1) process with positive 
coefficient. The spectral power is concentrated at the frequency zero, i.e. the behaviour of the 
process is interpreted by the spectrum as an infinitely long periodic movement. In the same 
way, the oscillations of a process with negative φ1 occur in the spectrogram as a pique at the 

frequency 
2

1=f  or ω = π  what means the dominance of periodic oscillations with the 

minimum length of 2 time units (see figure 4.12). 
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Figure 4.12: Spectral density of an AR(1) process with φ1<0 

 

 

The spectral shapes of the corresponding MA(1) processes are similar, but the spectral power 
is not so sharply concentrated at the points 0 or 1/2 respectively. That means the variations 
concentrated in MA processes are distributed over a broader what is called band width than in 
AR processes. 

 

 

 

 

 

Figure 4.13: Spectral density of an MA(1) process with� 1>0. 
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Figure 4.14: Spectral density of an MA(1) process with� 1<0. 

 

 

While the curves at figures 4.11 to 4.14 display the theoretical spectral density of AR(1) and 
MA(1) processes the examples 4.6 and 4.7 present sample spectral densities of time series. 

 

Example 4.6:  

Let zt be a time series generated by the MA(2) process Zt = at+ 0.25at-1+ 0.4at-2 where at is 
zero mean white noise with variance 2. Two of the spectral density estimators indicate a pique 
at ω =0.2. But because of the large variation between the different estimators in the area 
around zero, this can be assumed as a random sample effect and it is rather a signal for a very 
flat extremum at ω =0. 
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Figure 4.15: Spectral density of an MA(2) process 
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Example 4.7: 

For a stationary time series of  quarterly data xt with a dominant seasonality the spectral 
density has been estimated. We find the highest peak of the graph in figure 4.16 in the very 
centre of the frequency range i.e. at circular frequency � ���� ��� 
��
��������¼ and a period 
length P= 4 quarters i.e. one year as previously expected for a seasonal component.  
 

 Various estimates of standardized spectral density of X
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Figure  4.16: Spectral density of quarterly seasonal time series 

 

 

 

 

Example 4.8: 

Figure 4.17 displays the development of the total value OR of monthly incoming orders for  
the construction industry in East Germany after the unification of Germany. Besides the 
changing trend there seem to be several periodicities. The graph of the spectrum in figure 4.18 
confirms the existence of very long waves or a trend by  a peak near frequency 0. Furthermore 
one can find minor peaks at circular frequencies  equal 0.52 and 2.1 what indicates 
periodicities with length 12 and 3 month, respectively. 
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Figure 4.17: Orders to East German construction industries 

 

 

 Various estimates of standardized spectral density of OR
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Figure 4.18: Spectral density of the orders to East German construction  industries 

 
 
In order to examine periodic fluctuations more detailed it can be useful to consider the 
increase rate of a variable. The increase rate of a time series xt is 

1t

1tt

x

xx

−

−−
 ( 4.13) 

 
that can be approximated by the logarithmic increase rate for comparatively small changes: 

)ln(lnlnln
1

1
−

− =−=∆
t

t
ttt x

x
xxx .

 ( 4.14) 

The next figure shows the increase rate ∆lnOR of the order value OR. The trend is eliminated 
and the periodicities seem to be amplified. 
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Figure 4.19: Growth rate of the orders to the construction industries 

 

 

 

 

Figure 4.20: Spectral density of the growth rate of the orders 

 

 

 
Figure 4.20 and table 4.3 show the spectral density of the growth rates. Surprisingly, now the 
highest peak occurs at the circular frequency �=2.1 i.e. the three month periodicity. That 
means the biggest part of the increase variance is produced by regular fluctuations within the 
quarters. We find a lower peak at  =5.2 what indicates an additional 12-month seasonality 
with a minor share at the variance. 
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Table 4.3: 

Standardized spectral density functions of ∆lnOR, sample 1991M2 to 2003M1 
  **************************************************** 
      Circular          Period           Bartlett          Tukey         Parzen 
     frequency         
        0.00                Inf.              .41414          .40327         .34745        
      .13090          48.0000          .42359          .28945         .31183        
      .26180          24.0000          .21619          .22185         .47551        
      .39270          16.0000          1.0765          1.1668         1.1293        
      .52360          12.0000          1.9989          2.0018         1.5528        
      .65450            9.6000          .97483          1.0439         1.0502        
      .78540            8.0000          .15450          .13615         .48733        
      .91630            6.8571          .68276          .63810         .65174        
      1.0472            6.0000          1.1892          1.1760         .91865        
      1.1781            5.3333          .70727          .68282         .67360        
      1.3090            4.8000          .16923          .15761         .36567        
          ... 
      1.8326            3.4286          .30370          .24614         .91571        
      1.9635            3.2000          2.1926          2.6362         2.7224        
      2.0944            3.0000          5.5038          5.5131         4.2373        
      2.2253            2.8235          2.8631          3.2895         3.1299        
      2.3562            2.6667          .49168          .56624         1.2268        
          ... 
      3.1416            2.0000          .24909          .21564         .20655 
  **************************************************** 
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5. Integrated Processes 

5.1. Nonstationary time series 
 
If  a time series contains a development tendency, the assumption of constant mean or 
constant variance is violated. Then this time series would be considered a realisation of a 
nonstationary process. 
Practically, a time series xt  should be subjectively judged for nonstationarity by means of its 
graph and its correlograms. If there are found 
 
           - trend 
           - Strongly deterministic periodicities  
           - Systematically varying variance 
 - Changing autocorrelation, 
 
then there would be good reason to assume the underlying process to be nonstationary. 
Theoretically it is nonstationary if the mean or the variance or the covariance of the 
generating process change by time. As a rule, most processes representing real economic 
phenomena prove nonstationary because economics grow or decrease or change in some other 
way. 
 

 

5.2. Differentiation and Integration 
 
On the one hand, most economic time series are nonstationary. On the other hand, many 
methods and models demand stationary time series. 
In many cases differentiation of the time series is a successful approach to obtaining 
stationary time series. 
 
The first differences of a stochastic process are 

1L)1( −−=∆=− tttt XXXX  

 
Or for a seasonal process with period length s: 

stttst
s XXXX −−=∆=− )L1(  

 
If the first differences of Xt are stationary, than Xt  is termed integrated of first order. 
Else further differentiation will lead to the second differences 

1
22L)1( −∆−∆=∆=− ttt XXX  

 

If this is stationary, than  Xt  is called integrated  of second order. If we obtain the first 
stationary result after k-fold differentiation, the process is said to be integrated of k-th order. 
A time series generated by a k-th order integrated process is said to be integrated of k-th order 
as well. 
 

Example 5.1:  

Let Xt=at  be white noise. Obviously it is at least weakly stationary, because E(at) = µ and 
var(at)=σa

2 are constant. As the elements at, at-1,… of the process are defined to be 
independent, the covariance  
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])][E([),cov( µµ ττ −−= −− tttt aaaa
 ( 5.1) 

would be constantly zero, i.e. not depending on time. 

 

5.3. Random Walk 
 
The process   ttt aXX += −1          ( 5.2) 

with white noise at is referred to as random walk. It is the most elentary case of a 
nonstationary process. Its characteristic function has the unit root z=1. 
The mean of xt  E(xt) = E(xt-1)+ E(at) = µ is constant. 
The nonstationarity can be proved only by considering the variance: 

2

2

1

...

)var()var()var(

)var()var()var(

a

ttt

ttt

t
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aXX

σ=

=
++=

+=

−

−

 ( 5.3) 

That means var(Xt) depends on time t. This property of Xt is what is called variance 
nonstationarity. 
The first differences of Xt are white noise at and stationary: ∆xt= xt - xt-1= at. Thus the random 
walk is integrated of first order. 
 
We know: the seemingly very similar process Yt = 0,999Yt-1 + at  with the root  z = 1,001 
outside the unit circle is stationary. Thus one of the most serious problems of time series 
analyse is the distinction between time series xt and yt as random realizations of an unit root 
process Xt and a stationary process Yt, respectively. Helpful instruments for this purpose are 
unit root tests. 
 
 
 

5.4. Unit Root Tests   
 
Dickey-Fuller-Test 
 
The most widespread method for checking whether or not a process is stationary was the unit 
root test developed by Dickey and Fuller til 1979. The basic idea consists in the assumption 
that the process is a random walk, i.e. nonstationary, and the possible rejection of this 
hypothesis. For the Dickey-Fuller-Test the process Xt is approximated by an  AR(1) process: 

( ) ttt aXX += −+ 110 φφ
 ( 5.4) 

The intercept (φ0) is set in brackets because it is often assumed zero. 
The  nontstatitonarity hypothesis to be tested  
H0:   1= 1 
means Xt is a unit root, i.e. nonstationary, whereas the alternative 
H1:   1< 1 
means stationarity. 
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For easier handling the test the process can be transformed into its 1st differences: 

( )
( )

  )1(  where
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  ( 5.5) 

The intercept o is often assumed zero 

Now the hypotheses show the more common shape of a one-side t-test of a regression 
coefficient: 
 

0:

0:

1

0

<
=

             

             

γ
γ

H

H
 

 
Practically, the following steps have to be performed: 
 
1. Backshifting xt to the lagged series xt-1 
�����������
���������������
���	������ xt-1 
3. OLS regression of� �t  (dependent variable) 
 on xt-1 (independent variable): 

               
( ) ttt egxx f += −+ 10∆

 ( 5.6) 

       with the estimates f0 and g and the residuals et. 

4. Calculating the empirical value of the test variable:  

 

)(gsdv

g
t emp =

 ( 5.7) 

 
    If the true intercept  φ0 = 0 then temp is asymptotically standard normal distributed, 
    else 
 
5. calculating the critical value: If there is no deterministic trend, the 5% critical values are 
    approximately 
 

    
36,874,2

86,2  
295.0

TT
t DF −−−=

 ( 5.8) 

  
   (it is always negative).  Otherwise they can be obtained out of tables (e.g. Eckey).  
 
6. If  t emp <  DF

1-     then the null hypothesis can be rejected  ������� ���
 �
�
��������!������ X 
    would be stationary.  
 
 
 
 

Example 5.2:  

Let yt be a realisation of a white noise process with σy
2 =2 and µ =0 
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For performing a DF-Test the first differences ∆yt of the time series are put in a linear 
regression relationship on the lagged time series yt-1  without an intercept (table 5.1). 
 

Table 5.1: Ordinary Least Squares Estimation 

*********************************************************** 
Dependent variable is ∆yt 
49 observations used for estimation from    2 to   50 
*********************************************************** 
 Regressor              Coefficient       Standard Error         t-Value          
 yt-1                           -1.1353                 .14202                   -7.99 
*********************************************************** 
Because of the lack of an intercept the empirical t-value can be compared with the left-sided 
5% quantile of the normal distribution, i.e. z0.05 = -1.65. The t-value –7.99 indicates rejection 
of the zero (nonstationarity) hypothesis. That means the process is to be considered  
stationary. 
 
While in the last example the intercept was dropped the next test takes the existence of a 
constant a0 into consideration: 

 

Example  5.3: 

Let us consider the same time series but without having the a-priori knowledge about the zero 
intercept. Then we are to include an intercept term in the regression (table 5.2). 
 

Table 5.2: Ordinary Least Squares Estimation 

************************************************************* 
 Dependent variable is ∆yt 
49 observations used for estimation from    2 to   50 
************************************************************* 
 Regressor              Coefficient           Standard Error      t-Value              
 C                               .49606                    .25257     1.964 
 yt-1                            -1.1353                     .14202                  -8.46 
************************************************************* 
Because of the intercept the normal distribution is not applicable. Formula 5.9 gives the 5% 
critical value. 
 
 
 
 
The test results in favour for stationarity, too. 
 
In the following example the assumption on nonstationarity should not be rejected because we 
have chosen and generated by simulation a unit root process: 

 

Example 5.4:  

A random walk is to be examined. Let xt be a realization of the process  

918,2
2500

36,8

50

74,2
86,295.0 −=−−−=DFt
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Xt= Xt-1+at  where at is normal with E(at)=0 and σa
2 =1. For the DF-Test again a regression of 

∆ xt on xt-1 without an intercept is estimated:  

 

Table 5.3: Ordinary Least Squares estimation 

*********************************************************** 
Dependent variable is ∆xt 
49 observations used for estimation from    2 to   50 
*********************************************************** 
 Regressor               Coefficient              Standard Error          
 xt-1                            .026941                     .023797              
*********************************************************** 
The coefficient is positive. Therefore the t-statistic cannot be smaller than any (always 
negative) critical value. Thus, nonstationarity cannot be rejected at any significance level. 
 
 
 
Augmented Dickey-Fuller Test 
 
In the above examples, fitting the processes by AR(1) was absolutely correct according to our 
knowledge of the generating processes. But in praxi, assuming an AR(1) process can be a 
gross simplification. Better and more general would be to allow for an AR(p) representation 
of the errors in ( 5.9): 
 

tptptttt XXXXX εφφφγφ +∆++∆+∆++=∆ −−−− �221110 )(
 ( 5.10) 

with white noise et . The hypotheses to be tested are the same as for the DF-Test 

ty)stationari(for        0  :

root)unit  a(for        0  :

1

0

<
=

γ
γ

H

H
 

 
"����� �
���#�����
$�����#��%�& simultaneously with the ’s. The t-test of � is performed in 
the same way as in the DF-Test. The critical values  for the t-value of the estimate g for �are 
equal to those of Dickey-Fuller. This improved unit root test is called Augmented Dickey-
Fuller Test (ADF). 
 
The order p of the AR(p) process in ( 5.13) can be found by the Akaike Information Criterion 
in the error variance form 

( ){ }
T

p2

T
21AIC

2 ⋅+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅+= ∑ ˆ

lnlnσ  ( 5.11) 

or in the likelihood form 

p(T,p)lAIC maxL −=
 ( 5.12) 

where lmax(T,p) is the logarithmic likelihood of the model estimated. 
 
The value of p  with minimum AIC  or maximum AICL is to be taken.  
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As an alternative, the Schwarz Criterion in its two forms SC  or SCL can be used in an 
analogous way 

( ){ }
T
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T
21SC

2
lnˆ

lnln
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⎠

⎞
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⎜
⎝

⎛
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σ  ( 5.13) 

or 

T
p

pTlSCL ln
2

),(max −=
. ( 5.14) 

 

 

 

Example 5.5:  

Let yt be a realization of the ARMA(2,1) process:  

Yt = 0.9Yt-1 – 0.3Yt-1 + at +0.25at-1  

with E(at)= 0 and σa
2 = 4. 

 

Table 5.4: Unit root tests for variable Y. 

The Dickey-Fuller Regressions include an intercept but not a trend 
******************************************************* 
46 observations used in the estimation of all ADF regressions 
Sample period from 5 to 50 
******************************************************* 
              Test Statistic      LL                AICL              SCL                   
 DF            -2.1556     -132.3946     -134.3946     -136.2233      
 ADF(1)     -3.3536     -127.1521     -130.1521     -132.8951      
 ADF(2)     -2.5808     -126.7647     -130.7647     -134.4220      
 ADF(3)     -2.0708     -126.4142     -131.4142     -135.9858      
******************************************************* 
 95% critical value for the augmented Dickey-Fuller statistic =  -2.9256        
 LL  = Maximized log-likelihood      AICL = Akaike Information Criterion         
 SCL = Schwarz Bayesian Criterion     
 
According to the higher values of both the ACIL and the SCL, the augmented Dickey-Fuller 
Test ADF(1) on the base of an AR(1) model for the first differences is to be preferred to the 
others. The corresponding value of the test statistic is smaller than the critical value. That 
means the zero hypothesis (nonstationarity) is to be rejected on the 5% level. The simple 
Dickey-Fuller Test would not allow for this decision. 
 
 

Example 5.6: 

Figure 5.1 presents the graph of the daily closing value of the Russian share price index 
Moscow Times from 1st July 1997 by 6th May 2003. It can be guessed from the 
growing curve that the time series is not stationary. This assumption would be 
confirmed by an augmented Dickey-Fuller Test as shown in table 5.5. The H0 of 
nonstationarity can neither by DF nor by ADF be rejected. Because of the unanimity 
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of the decision of the tests for nonstationarity there is no need for model choice 
according to ACIL or SCL. 
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Figure 5.1: The Moscow Times share price index from 1st July 1997 by 6th May 2003 

 

 

Table 5.5: Unit root tests for variable IMT 

      The Dickey-Fuller Regressions include an intercept but not a trend 
********************************************************* 
1391 observations used in the estimation of all ADF regressions.              
Sample period from 5 July 1997 by 6 May 2003  
********************************************************* 
   Test Statistic       LL             AICL            SCL                 
 DF             .12822       -7999.2       -8001.2       -8006.4           
 ADF(1)      .58275       -7969.7       -7972.7       -7980.6           
 ADF(2)      .63345       -7969.3       -7973.3       -7983.8           
 ADF(3)      .61590       -7969.3       -7974.3       -7987.4           
********************************************************* 
95% critical value for the augmented Dickey-Fuller statistic =  -2.8641       
 LL  = Maximized log-likelihood      AICL = Akaike Information Criterion        
 SCL  = Schwarz Criterion     
 
 
 

Example 5.7:  

It can be proved the same way as in example 5.6 that the natural logarithms of IMT are , too. 
But the finance market is more interested in the return drawn out of a share than in the share 
price level. The return usually is measured by the increase rate of the price, particularly by its 
logarithmic form ( 4.14). Therefore figure 5.2 displays the daily rate of return ∆lnIMT of the 
Moscow Times Index from 2nd July 1997 by 6th May 2003. Obviously, the graph does not 
show any trend and the time series can be expected to be stationary. This is verified by the test 
results shown in table 5.6. The test statistics of all test variants considered lie far beyond the 
critical value. Thus independently from any model choice, the null hypothesis of 
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nonstationarity can be rejected and it can be stated on a high level of significance that the time 
series of return rates is stationary. From this follows that lnIMTt is integrated of order 1 or 
I(1). 
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Figure 5.2: The daily return rate of the Moscow Times Index 

 

Table 5.6: Unit root tests for variable ∆lnIMT 

      The Dickey-Fuller Regressions include an intercept but not a trend 
******************************************************* 
1390 observations used in the estimation of all ADF regressions.              
Sample period from   July 1997 by 6 May 2003   
******************************************************* 
              Test Statistic        LL            AICL           SCL                 
 DF           -38.1617        2510.2        2508.2        2503.0          
 ADF(1)    -25.2673        2512.2        2509.2        2501.3            
 ADF(2)    -20.4274        2512.6        2508.6        2498.1           
 ADF(3)    -19.1745        2515.8        2510.8        2497.7           
******************************************************* 
95% critical value for the augmented Dickey-Fuller statistic =  -2.8641       
LL  = Maximized log-likelihood      AICL = Akaike Information Criterion        
SCL = Schwarz Criterion     
 
 
, 
6. ARIMA models 

6.1. Definition 
 
Let Xt be a nonstationary process with stationary dth differences, i.e. Yt = (1-L)dXt = ∆dXt is a 
stationary process but ∆d-1Xt is nonstationary. That means Xt is integrated of dth order. 
 
If Yt is an ARMA(p,q) process, i.e. 

qtqttptptt aaaYYY −−−− −−−++++= θθφφφ ...... 11110  ( 6.1) 
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then Xt is said to be an ARIMA(p,d,q) process. Often the mean or constant φ0 is dropped i.e. 
set to zero. 
 
Most empirical time series can be considered as realizations of ARIMA processes. In other 
words: for most time series can be found an ARIMA process, the ARIMA model, that can be 
thought as data generating process having generated this special time series. The main task of 
time series analysis is to specify the order of the ARIMA(p,d,q) model according to the 
properties of one time series und to estimate by statistical means the parameters of the model 
equation and the variance of the error term. As already mentioned, the problem is that 
generally there is only this one realization of the process. 
 
 

6.2. Model identification and parameter estimation. 
 
Modelling a time series usually consists of the following steps: 
 
a) Diagnosis, i.e. 

− Checking the time series for stationarity, a precondition of ergodicity 
• Graphical inspection of the time series 
• Unit root test 

− In the case of nonstationarity differentiation and repeated testing these differences 
− Estimation of diagnostic functions such as autocorrelation and inspection of their graphs 

b) Choice of a set of process types, what is called the identification of the model. 
In the result, three primary parameters are to be obtained: d - the order of integration, p and 
q – the orders of the AR and MA components, respectively.  
During the process of diagnosis the parameter d is easily found as the number of 
differentiations necessary for stationarity. For economic time series, d is typically 1 but 
sometimes 0 or two. More difficult is the search for p and q. Inspection of  autocorrelation 
function (ACF), partial autocorrelation function () and inverse autocorrelation function 
(IAC) would be helpful. Parameter parsimony should be the principle in the case of doubt. 

 
c) Estimation of the parameters for all versions by suitable methods such as 
 • Ordinary Least Squares (OLS) 
 • Maximum Likelihood (ML) 
 • Minimum squared forecast errors 
 • Marquardt algorithm 
 
 
d) Choice of the most suitable model among a number fitted ones 

• Model check 
• Analysis of residuals. They should be white noise 
• Consideration of the best fit and the most parsimonious representation. Again on the 
base of the residuals the Akaike Information Criterion or the Schwarz Criterion are to 
be calculated for each model and compared in order to find the optimum. 

 

Diagnostic functions can give useful hints to the type of underlying process but they are not 
unambiguous. In example 6.1 for time a series xt and its 1st and 2nd differences ACF and 
PAC are estimated in order to answer the question for the order of the underlying ARIMA 
process. 
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Example 6.1:  
Let us try to answer the question: What type of model is being indicated by the following 
diagnostics of a time series? 
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Figure 6.1: Sample autocorrelation function of the original time series 

 

Figure 6.1 suggest an AR(1) process with φ1 close to 1 or a nonstationary process because the 
ACF is decreasing very slowly. Figure 6.2 indicates stationary AR(1) first differences because 
there is an almost exponentially decreasing autocorrelation (compare figure 4.5). Figure 6.3 
let us guess MA(0) i.e. white noise second differences because ACF is sharply falling down 
after lag τ = 0 and then moving around zero. But Box-Pierce statistics Q reject the hypothesis 
of white noise (table 6.1). 
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Figure 6.2: Sample autocorrelation function of the 1st differences 
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2nd Diff. ACF
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Figure 6.3: Sample autocorrelation function of the 2nd differences 

 

 

Table 6.1: Box-Pierce statistic of the 2nd differences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Q-Stat  Prob    Q-Stat  Prob 

 1 63.087 0.000  19 99.236 0.000 
2 71.862 0.000  20 99.370 0.000 
3 78.373 0.000  21 100.57 0.000 
4 78.448 0.000  22 100.88 0.000 
5 78.682 0.000  23 100.98 0.000 
6 78.951 0.000  24 101.76 0.000 
7 79.169 0.000  25 102.91 0.000 
8 79.278 0.000  26 103.54 0.000 
9 81.352 0.000  27 106.32 0.000 

10 86.908 0.000  28 110.14 0.000 
11 91.571 0.000  29 113.31 0.000 
12 95.272 0.000  30 116.30 0.000 
13 95.852 0.000  31 117.49 0.000 
14 95.873 0.000  32 117.55 0.000 
15 96.190 0.000  33 117.56 0.000 
16 97.872 0.000  34 117.56 0.000 
17 97.878 0.000  35 119.12 0.000 
18 97.959 0.000  36 121.40 0.000 
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Figure 6.4: Sample partial autocorrelation functions of the original time series 

 
 
 
From figure 6.4 could be concluded that the levels of Xt are AR(1) (or AR(2)) because their 
PAC disappears beyond τ=1 (or 2). An AR(1) process can be taken for the 1st differences 
despite the negative pique at τ=2. In the same way PAC of the 2nd differences reflect MA(0) 
i.e. white noise. Figure 6.5 confirms the assumption of AR(1) first differences. 
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Figure 6.5: Sample partial autocorrelation function of the 1st differences 
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Figure 6.6: Sample partial autocorrelation function of the 2nd differences  

 
To sum up, there are three options for model choice: 
1. An nonstationary ARIMA(1,0,0) with φ1 ≥ 1 or perhaps ARIMA(2,0,0).  
2. An ARIMA(1,1,0) because of AR(1) first differences. 
3. An ARIMA(0,2,0) because of possible white noise second differences. 
 
Decision between the cases can be done by unit root tests in practice. But here we know the 
data generating process: it is an ARIMA(1,1,0), namely Yt = 0.97Yt-1 + at where Yt = ∆Xt and 

)1,0(~ Nat , i.e. case 2. On the other hand, this means that also the following relationship is 

valid: Xt=1.97Xt-1 -0.97Xt-2+at, what corresponds with case1. And finally by rounding up the 
coefficient of  Yt = 0.97Yt-1 + at to unity we obtain  the case 3. 
 
 
If the underlying process is a pure AR(q) or MA(p) with small p or q then this can be easily 
recognised by inspecting ACF and PAC. For mixed ARIMA(p,q) processes or AR(p) and 
MA(q) with high orders p and q it would be difficult to give an reliable rule for model 
identification on the base of a time series and its sample diagnostic functions. 
 
Anyway, after the difficult choice of suitable p and q the estimation of the more specific 
parameters φi, θi and σa

2 is the next complex problem. 
 
In the case of an AR process, there are among others the following options for estimating the 
parameters of an AR(p) model: 
 

1. Ordinary last squares regression of xt depending on xt-1, xt-2,…xt-p with certain 
deteriorated properties of the test statistics because of the lagged regressors. 

 
 2. Maximisation of the log-likelihood function (ML estimation). 
  The difference to OLS is for long time series negligible. 
 
 3. Solving the Yule-Walker equations. 
 
The Yule-Walker equations are an equations system describing linear relationships between 
AR coefficients and the autocovariances of the zero-mean AR(p) process 
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When substituting sample covariances for the γi the solutions jφ̂  of ( 6.2) are the Yule-Walker 

estimators for the φj. They are consistent. 
 
In the case of a pure MA(q) process software packages usually offer nonlinear least squares 
methods of parameter estimation. Such as the Conditional-Sum-of-Squares estimation (CSS): 
Here the missing white noise data at are generated as ex-post forecasting errors under the 
condition of minimum sum of squares. 

 

Example 6.2:  
For an MA(1) process 11 −−= ttt aaX θ  error data 11 ˆˆˆ −+= ttt axa θ  are generated with a 

coefficient 1θ
�

 to be estimated under the condition Min ˆ)ˆ( !

1

2
1 == ∑

T

taS θ  that is a nonlinear 

function of the parameter θ1 and is to minimize in an iterative process. 

 

If there is a moving average term in the ARMA model, an Ordinary Least Squares estimation 
such as in the AR case is not possible. Therefore the parameter estimation for ARMA(p,q) 
parameters mostly follows the same principle as that for MA processes but is extremely more 
complex, e.g. there is the problem of the choice of initial values for xt because of the lagged 
regressors. Analogously to the example 6.2 the conditional sum of squares 

∑
++=

=
T

qpt
tqp aS

1

2
10 ˆ)ˆ,...,ˆ;ˆ,...,ˆ( θθφφ

 ( 6.3) 

is to be minimized, where the error data tâ  are estimated by the provisional model itself. 

What is called nonlinear least squares estimation is the iterative procedure 
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 ( 6.4) 

 

where k
ˆ  and k

ˆ  are the vectors of the kth iteration of the estimated AR and MA 

coefficients respectively. kD denotes the (T-p-q)×(1+p+q) matrix of the derivatives of the 

estimated disturbances kâ with respect to the parameters φi and θj. Computer programs offer 

several options for the choice of initial values 0
ˆ and 0

ˆ . 

 
Another broadly used option offered by computer program packages is the maximum 
likelihood (ML) estimation. Here the autoregression coefficients of an AR(p) model are 
iteratively calculated by ML estimation under the condition that the model errors are MA(q). 
Initial values can be given or estimated such as with the nonlinear LS estimation. 
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Example 6.3:  

We try to find suitable models for the daily Moscow Times share price index (IMT). 
As shown in example 5.6, this time series is nonstationary. By augmented Dickey-Fuller-Test 
it can easily be demonstrated that the first differences are stationary (table 6.2). Consequently, 
the Moscow Times Index itself is first order integrated. 
 
Table 6.2:   Unit root tests for variable '�("                       
      The Dickey-Fuller Regressions include an intercept but not a trend       
********************************************************** 
 1390 observations used in the estimation of all ADF regressions.              
 Sample period from    6 to 1395                                               
********************************************************** 
                Test Statistic      LL              AICL           SCL                
 DF           -45.7675       -7964.6       -7966.6       -7971.8        
 ADF(1)    -29.5211       -7964.3       -7967.3       -7975.1        
 ADF(2)    -22.9344       -7964.2       -7968.2       -7978.7           
 ADF(3)    -20.3820       -7962.9       -7967.9       -7981.0           
********************************************************** 
 95% critical value for the augmented Dickey-Fuller statistic =  -2.8641       
 LL  = Maximized log-likelihood      AICL = Akaike Information Criterion        
 SCL = Schwarz Criterion     
 
In the following search for an ARIMA(p,1,q) Model of IMT we concentrate on the recent 
time, i. e. only on the last period from 3rd August 2002 by 6th May 2003. The sample 
autocorrelations function for this period gives some hints about the possible types of the 
model. According to the steep decrease after lag two it could be an MA(2) model for 'IMT. 
But the sample PAC (figure 6.8) has almost the same shape. Thus an AR(2) model could be as 
good.  If we take into consideration also minor peaks of the diagnostic functions one could 
also try models of order 10 and mixed 
mode
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Figure 6.7: Autocorrelation function of the first differences of the Moscow Times Index 
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Figure 6.8: Partial autocorrelation function of the first differences of the Moscow Times 
Index 

 
Our first trial is to deal with such a mixed one, namely an ARIMA(2,1,2) for IMT. The 
constant term can be dropped because of missing significance. The symbols AR(1), MA(2) 
etc. in table 6.3 to table  6.9 does not mean the model with this denomination but only the 
corresponding coefficient of the indicated order. Considering the values of the t-statistic in 
table 6.3 and the following we can decide about the significance of the corresponding model 
coefficient: shortly, it is called significant on the 5% level if the absolute value of the t-
statistic exceeds the two sided 5% critical value of the standard normal distribution, i.e. 1.96. 
We have tried to obtain significant coefficients only.  
 
 
Table 6.3: ARIMA(2,1,2) 
 
Dependent Variable: ∆IMT 
Method: Least Squares 
Date: 11/17/03   Time: 21:54 
Sample: 1200 1395 
Included observations: 196 
Convergence achieved after 21 iterations 
Backcast: 1198 1199 

Variable Coefficient Std. Error t-Statistic Prob.  

AR(1) -0.727445 0.040086 -18.14692 0.0000 
AR(2) -0.831707 0.046215 -17.99662 0.0000 
MA(1) 0.778122 0.009785 79.52184 0.0000 
MA(2) 0.983501 0.019035 51.66710 0.0000 

R-squared 0.102555     Mean dependent var 2.931173 
Adjusted R-squared 0.088533     S.D. dependent var 75.95919 
S.E. of regression 72.51885     Akaike info criterion (σ) 11.42577 
Sum squared resid 1009725.     Schwarz Criterion (σ) 11.49267 
Log likelihood -1115.725     Durbin-Watson stat 1.938888 
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The next trial is dedicated to a simpler type, the ARIMA(0,1,2) where the constant and θ1 

have been restricted to zero because of nonsignificance.  
 
Table 6.4: ARIMA(0,1,2), restricted 
 
Convergence achieved after 5 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

MA(2) 0.193886 0.070392 2.754370 0.0064 

R-squared 0.032978     Mean dependent var 2.931173 
S.E. of regression 74.69618     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.46982     Schwarz Criterion (σ) 11.48655 
Log likelihood -1123.043     Durbin-Watson stat 1.900061 

 
 
For completeness and because of the similarity between ACF and PAC, the ARIMA(2,1,0) 
model type will be analysed as well. After two steps of zero restricting nonsignificant 
coefficients we obtain the also very parsimonious model in table 6.5. 

 
 

Table 6.5: ARIMA(2,1,0) 
      
Convergence achieved after 2 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

AR(2) 0.159330 0.070053 2.274417 0.0240 

R-squared 0.024384     Mean dependent var 2.931173 
S.E. of regression 75.02736     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.47867     Schwarz Criterion (σ) 11.49540 
Log likelihood -1123.910     Durbin-Watson stat 1.903325 

 

As mentioned above, there is a certain chance of improving the models estimated by 
extending them to higher orders corresponding to peaks in the ACF and PAC�	
 ����	�$� ��)�
particu��	������ ��*��+�	���
����	���������$�����
�������#,���������$��	���	
��
���)���	�������	��
restrictions for the coefficient most remote from significance as is indicated by smallest 
absolute t-value. This way we can set to zero or exclude AR(3) to AR(9) and, after the next 
estimations not shown here, MA(3) to MA(9). We skip the procedure of numerous 
estimations and excluding nonsignificant coefficients one after the other and present only the 
final highly restricted results in table 6.6 to table 6.9. The coefficients in all four variants are 
significant at the 5% level. 

 
Table 6.6: ARIMA(10,1,0), restricted 
 
Convergence achieved after 3 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

AR(2) 0.167751 0.069113 2.427189 0.0161 
AR(10) -0.171843 0.065995 -2.603864 0.0099 

R-squared 0.057330     Mean dependent var 2.931173 
S.E. of regression 73.93952     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.45452     Schwarz Criterion (σ) 11.48797 
Log likelihood -1120.543     Durbin-Watson stat 1.908686 
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Table 6.7: ARIMA(0,1,10), restricted 
 
Convergence achieved after 11 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

MA(2) 0.160845 0.069857 2.302493 0.0224 
MA(10) -0.165091 0.071934 -2.295052 0.0228 

R-squared 0.049384     Mean dependent var 2.931173 
S.E. of regression 74.25048     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.46292     Schwarz Criterion (σ) 11.49637 
Log likelihood -1121.366     Durbin-Watson stat 1.889381 

 
 
Table 6.8:  ARIMA(10,1,2), restricted 
 
Convergence achieved after 6 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

AR(10) -0.156193 0.067173 -2.325237 0.0211 
MA(2) 0.186053 0.070843 2.626275 0.0093 

R-squared 0.059239     Mean dependent var 2.931173 
S.E. of regression 73.86460     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.45250     Schwarz Criterion (σ) 11.48595 
Log likelihood -1120.345     Durbin-Watson stat 1.899561 

 
 
Table 6.9: ARIMA(2, 1, 10) 
 
Convergence achieved after 10 iterations 

Variable Coefficien
t 

Std. Error t-Statistic Prob.  

AR(2) 0.144618 0.070392 2.054453 0.0413 
MA(10) -0.209273 0.072653 -2.880442 0.0044 

R-squared 0.050544     Mean dependent var 2.931173 
S.E. of regression 74.20519     S.D. dependent var 75.95919 
Akaike info criterion (σ) 11.46170     Schwarz Criterion (σ) 11.49515 
Log likelihood -1121.246     Durbin-Watson stat 1.888897 

 
Before continuing the search for the best of the seven models estimated the decision criteria 
should be considered more detailed. 
 
When comparing different models for the same time series we are to target competing aims: 
- in the case of any kind of least square estimation minimizing the error variance among the 
set of models estimated and at the same time minimizing the number of model parameters, 
- or in the case of ML estimation maximizing the likelihood among the set of models and at 
the same time minimizing the number of model parameters. 
 
Usually we would obtain a better fit of the model to be estimated if we choose higher orders p 
and q of the ARMA model. The price for this seemingly gain of accuracy is a loss of 
simplicity and parsimony. Therefore usually it is impossible to reach both aims by the same 
model selected. A compromise between best fit and lowest number of parameters is to be 
found. As known from section 5.4 useful instruments for finding such a  compromise are the 
Akaike Information Criterion and the Schwarz Criterion (often called Schwarz-Bayes 
Criterion SBC). 
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Again here the Akaike Information Criterion has got two forms 

T

qp
2 AIC 2

a

++++= ˆln}2ln1{ π
             to be minimized ( 6.5) 

or 

qp(T,p,q)lAIC maxL −−=
                                  to be maximized ( 6.6) 

with σa
2 being the error variance and lmax(T,p,q) the logarithmic likelihood of the ARMA 

model with p and q coefficients (not necessarily equal to the real order of the model!) 
estimated for time series with length T. 
 
The corresponding two shapes of the Schwarz Criterion are: 

T
T

qp
SC 2 lnˆln}2ln1{

++++= π
                 to be minimized ( 6.7) 

 

T
qp

qpTlSCL ln
2

),,(max

+−=
                                to be maximized ( 6.8) 

The Schwarz Criterion is more parsimonious concerning the number of parameters 

 

Example 6.3: (continued)  

Table 6.10 assembles the values of the error variance oriented Akaike Information Criterion 
AICσ of the models for the Moscow Times Index estimated in the first part of this example. 
Here p and q indicate the order of the model independently from the number of effectively 
estimated coefficients. Table  6.11 shows the corresponding values of the Schwarz Criterion 
SCσ. 

 
Table 6.10: AICσ 

      
 
 

 
Table 6.11: SCσ 

... 11.462 11.463 10 

11.453 11.426 11.470 2 

11.455 11.479... ... 0 

10 2 0           p   
q 
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The ARIMA(10,1,2) model for 'IMT proved best concerning the smallest values of both AIC 
and SC criteria. Its model equation is 
 

 'IMTt  =  -0.156193 'IMTt-10 + at + 0.186053 at-2            
( 6.9)

 

 
or for the levels of the original time series: 
 

 IMTt    =  IMTt-1 - 0.156193 IMTt-10 + 0.156193 IMTt-11 + at + 0.186053 at-2   ( 6.10)
   

But because it would be difficult to explain the meaning of the AR(10) term it could be 
sufficient to choose the best model among the ARIMA(2,1,2) and smaller models. By both 
criteria then   ARIMA(0,1,2) would be chosen: 
 

 'IMTt  =  at + 0.193886at-2          
( 6.11)

 

 

or   IMTt    =  IMTt-1  + at + 0.193886at-2           
( 6.12) 
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Figure 6.9:  MA(2) model for the stationary increase 'IMTt  of the Moscow Times Index 
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6.3. Multiplicative ARIMA models – Seasonality 
 
Seasonalities in time series can be dealt with by seasonal differences: 
e.g. for seasonal period  length s=12, i.e. for monthly data: 

12
12

12 )L1( −−=−=∆= ttttt ZZZZX
 ( 6.13) 

or by seasonal lags in ARMA models. 
Simple examples are the seasonal AR(1) model 

ttt aX�X += −
∗

121  
 ( 6.14) 

and the seasonal MA(1) model 

121 −
∗−= ttt a�aX

 ( 6.15) 

Model ( 6.14) can be written as 

tt aX =− ∗ )L1( 12
1φ . ( 6.16) 

 
If for a periodical monthly time series xt the residuals tâ  prove free of seasonal effects the 

assumed underlying stationary process at itself can be subject a second ARMA(p,q) 
modelling: 
 

tta (L)(L) qp =          where εt is white noise 

or, substituting ( 6.16), 

tt)X( (L)L1(L) q
12

1p =− ∗φ
 ( 6.17) 

 
If we take as examples for (L)p and (L)q the functions 

2
21

0
2 LLL(L) φφ −−=Φ  

LL(L) 1
0

1 θ−=Θ  
then ( 6.17) assumes the form 

tt)X( (L)L1(L) 1
12

12 =− ∗φ  

or 

ttX εθφφφ L)(L)L1)(LL(L 1
012

1
2

21
0 −=−−− ∗  

 
This results after multiplying the operator terms to  

ttX εθφφφφφφφ L)(L)LLLLL(L 1
014

12
13

11
12

1
2

21
0 −=++−−− ∗∗∗ . 

or explicitly to 

11141213111211211 −−
∗

−
∗

−
∗

−− −=−−++= tttttttt XXXXXX εθεφφφφφφφ  

 
Because the operator functions (L)pΦ  and 1212

1 L1)(L ∗∗ −=Φ  φ  to be executed one after the 

other can be formally multiplied like arithmetical terms this kind of model is called 
multiplicative.  

More generally, both parts of the “multiplication” can be full ARIMA models. Then the 
combined model is termed as a seasonal ARIMA(p,d,q)×(P,D,Q)s model, where P, D, Q 
denote the orders of the seasonal model for the period length s. 
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Then the differenced process tt
Dsd

t
D
s

d YXX =−−=∆∆ )L1(L)1(  is assumed to be a 

stationary ARMA process 
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 ( 6.18) 
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If we use instead of the symbol ∆ again the operator 1-L and introduce again the original 
process under consideration xt we find for the general multiplicative seasonal 
ARIMA(p,d,q)×(P,D,Q) process Xt with the seasonality s the representation 

t
s

Qqt
dDss

Pp aX )(L(L)L)1()L1)((L(L) ΘΘ=−−ΦΦ ∗
 ( 6.19) 

 

Example  6.4: 

In example 4.8 we introduced the nonstationary time series of monthly incoming orders for 
the construction industries in East Germany OR. This time series is first order integrated I(1). 
For the stationary first differences �OR a seasonal ARMA(3,3)×(0,1)12 is estimated. The 
coefficients and the standard error can be found in table 6.2. The model  for the levels OR is a 
seasonal ARIMA(3,1,1)×(0,0,1)12  

 
 
 
Table 6.12: 
 
Dependent Variable: �OR 
Method: Least Squares 
Sample(adjusted): 1991:05 2003:01 
Included observations: 141 after adjusting endpoints 
Convergence achieved after 11 iterations 

Variable Coefficient Std. Error t-Statistic Prob.  

AR(3) 0.984586 0.018048 54.55340 0.0000 
MA(1) -0.087409 0.044901 -1.946723 0.0536 
MA(3) -0.875578 0.044068 -19.86861 0.0000 

SMA(1) 0.223344 0.092243 2.421250 0.0168 

R-squared 0.473244     Durbin-Watson stat 1.996023 
Adjusted R-squared 0.461709     S.D. dependent var 17.90197 
S.E. of regression 13.13438     Akaike info criterion (σ) 8.016302 
Log likelihood -561.1493     Schwarz Criterion (σ) 8.099955 
 
Thus we have found for the representation ( 6.19) of OR the following details with s=12, d=1, 
D=0, p=3, P=0, q=3 and Q=1: 
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Then ( 6.19) is 

tt aOR )L223.01)(L876.0L087.01(L)1)(L985.01( 1233 −++=−−  

or writing it explicitly: 
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The last equation can be easily used as a forecast formula. 
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7. Forecasting 

7.1. Forecasting ARMA processes 
 
Let us consider the stationary ARMA model 

tt )a()X( LL =
 ( 7.1) 

transformed into the infinite MA representation (random shock model) 

...(L) 2211 +++=Ψ= −− ttttt aaaaX ψψ
 ( 7.2) 

or for t=T+h 

∑
∞

=
−++ =

0i
ihTihT aX ψ

 ( 7.3) 

 
Let T now be the origin for forecasting over a time horizon h taking into consideration that 
there is no information for the time points T+1, T+2, …T+h. The forecasting formula can be 
reduced to 

...),,E(...ˆ
212211)( −−+−+−++ =+++= TTThTThThThhT XXXXaaaX ψψψ

 ( 7.4) 

where )(
ˆ

hTX +  designs the h-step forecast on the base of the knowledge of  the process till t=T. 

 
The corresponding forecast error is 
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Because of  0)E( =−+ ihTa  for i = 0, 1,…h-1 the conditional expectation of the forecast error is 

0...),,E( 21)( =−−+ TTThT XXXe , 

therefore the estimator )(
ˆ

hTX + being unbiased. 

 
The forecast error variance 

∑
−

=
+ =

1

0

22var
h

i
iah)T( )(e

 ( 7.5) 

allows the calculation of limits for forecast intervals, if a special distribution of the white 
noise at is assumed, e.g. a normal distribution. 
In practical forecasting the true ARMA parameters kφ  and jθ  are substituted by estimated 

values kφ̂  and jθ̂ and the random shocks at by the residuals tâ  of the model fitted or the error 

eT+h-i of previous forecasts. 
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Example 7.1: 
The AR(1) model            1, 1110 <++= − φφφ     ttt aXX   

can be transformed for t = T+h  to 1110 −+−++ ++= hThThT aXX φφ , 

what gives the recursive forecast formula 

                )1(10)(
ˆˆ

−++ += hThT XX φφ  

 
If we substitute 

)2(10)1(
ˆˆ

−+−+ += hThT XX φφ  

and so further, we obtain the final formula 

T
hh

hT XX 1
1

1
2

110)( )...1(ˆ φφφφφ +++++= −
+  ( 7.6) 

 
In the long run this expression asymptotically tends to the expectation of X: 

xhT
n

XEX µ
φ

φ
==

−
=+∞→

)(
1

ˆlim
1

0
)(  

 
Furthermore it is easy to proof that in this example the coefficient of the representation   ( 7.2) 
are (compare example  3.6) 

      i
j 1φψ =  

 
Therefore the forecast error variance ( 7.5) is 

2
1

2
1212

1
4

1
2

1
2

1

1
1var

φ
φφφφ

−
−

=++++= −
+

h

a
)(h

ah)T( )...()(e  

In the long run this variance tends to the variance of the process X, namely 2
Xσ . 

 
 
 
 
 
Example 7.2: 
For the AR(2) model 22110 −− ++= ttt XXX φφφ  

the equivalent forecast formulae immediately follow: 

 one-step forecast: 1210)1(
ˆ

−+ ++= TTT XXX φφφ   

two-step forecast: TTT XXX 2)1(10)2(
ˆˆ φφφ ++= ++  

h-step forecast: )2(2)1(10)(
ˆˆˆ

−+−++ ++= hThThT XXX φφφ     for h≥3 

 
Equally to the result in example 7.1, the expectation of this forecast tends to the process 
mean:  

XthT
n

XX µ
φφ

φ
==

−−
=+∞→

)E(
1

lim
21

0
)(  

and 
.)var(lim 2

)( XhT
n

e σ=+∞→
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Example 7.3:  

For the MA(1) model 11 −−= ttt aaX θ  

the forecast formulae obviously are 

 TT aX 1)1(
ˆ θ=+  

and 2for0ˆ
)( ≥=+ hX hT     . 

Because of 

 

2for0

1

11

0

≥=
−=

=

ii     ψ
θψ

ψ
 

the forecast error variance according to ( 7.5) results in 

 2
)1( )var( aTe σ=+  

and 2for)1()var( 22
1

2
)( ≥=+=+ he XahT     σθσ . 

That means the forecast intervals have a constant width independent on the forecast horizon h. 

 

In the same way, we obtain for the MA(2) process 

 2211 −− −−= tttt aaaX θθ  

the forecast formulae 

 

3for0ˆ

ˆ

ˆ

)(

2)2(

121)1(

≥=

−=

−−=

+

+

−+

hX

aX

aaX

hT

TT

TTT

    

θ

θθ

 

and the forecast error variance 

           
)1()var(

)var(
2

1
2

)2(

2
)1(

θσ

σ

+=

=

+

+

aT

aT

e

e
 

22
2

2
1

2
)2( )1()var3forand XaT(eh σθθσ =++=≥ +    . 

 

 

Example 7.4:  

For the ARMA (1,1) model 11110 −− −+= ttt aXX θφφ  

again we easily find the forecast  formulae 

 TTT aXX 110)1(
ˆ θφφ −+=+    

and  )1(10)(
ˆˆ

−++ += hThT XX φφ     for h ≥2 

with     
X

XX hT
h

µ
φ

φ
==

−
=+∞→

)E(
1

lim
1

0
)(  
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and the forecast error variance 

 [ ] ⎟
⎠
⎞⎜

⎝
⎛ ++= ∑

−

=

−
+

1

1

2

11
1

1
2

)( )(1)var(
h

i

i
ahTe θφφσ  

with     2
2

1

2
112

)( 1

)(
1)var(lim XahT

h
e σ

φ
θφσ =⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
+

+=+∞→
 

As we have seen in all examples considered in this section, the forecast error of these ARMA 
models is limited by the value of the process variance σX  in the long run. 

This will change in the case of nonstationary processes, that means here: ARIMA processes. 

 

 

7.2. Forecasting ARIMA processes 
 
As defined in section 6.1, the nonstationary process Xt is called an ARIMA(p,d,q) process if 
the d-th differences t

d
t

d
t XXY L)1( −=∆=  is a stationary ARMA(p,q) process:  

 

qtqttptptt aaaYYY −−−− −−−++++= θθφφφ ...... 11110  

tt aY (L)(L)or 0 Θ+=Φ φ     
 ( 7.7) 

with p
p L...LL(L) 1

1
0 φφ −−−=Φ  

and   q
q L...LL(L) 1

1
0 θθ −−−=Θ  

 
The forecast of this ARIMA process Yt can be carried out as a two-stage procedure: 
First, the stationary ARMA process Xt is extrapolated the way shown in section 7.1. 
Secondly the differentiation is reversed into integration i.e. summation of the forecasted 

increments )()(
ˆˆ

hT
d

hT XY ++ ∆= in order to obtain firstly )(
1 ˆ

hT
d X +
−∆ , then in the same way 

)(
2 ˆ

hT
d X +
−∆  and finally )(

ˆ
hTX + . 

The estimation of the forecast error variance and consequently the width of the forecast 
interval is to be performed analogously by repeated summation of the error variances of the 
ARMA process Xt. 

 

Another option is the construction of individual one-stage forecast formulae. 
For this purpose the equation ( 7.7) is modified by substituting the differences 

t
d

t
d XX L)1( −=∆  for Yt: 

tt
d aX (L)L)1(L)( 0 Θ+=−Φ φ

 ( 7.8) 

By multiplying the operator functions on the left hand side and solving the equation for  Xt  we 
obtain a model formula that can be extrapolated for t=T+h and in this way transformed into 

an h-step forecast formula for )(
ˆ

hTX +  with the origin T. 

 
 

Example 7.5: 
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ARIMA (0,1,0) models 
 
If Xt is a random walk without drift (constant) 
 
where   tt aX =∆ , 

i.e.        tt aX =− L)1(  

or         ttt aXX += −1 , 

 
then the extrapolation formula can be written as 

thThT aXX += −++ 1  

 
That means on the base of the last known realisation at t=T the forecast formula is reduced to 
the simple constant relationship 

 ThT XX =+ )(
ˆ  

 
for all forecast horizons h ≥1 but with increasing error variance: 
 2

)( )var( ahT he σ=+  

 
If Xt is a random walk with shift 
 ttt aXX ++= − 01 φ  

 
 
then the forecast formula 

 0)(
ˆ φhXX ThT +=+  

corresponds to a simple linear trend line. 
 
The error variance is the same as in the above case of 00 =φ , that means in both cases, the 

width of the forecast interval increases proportionally with h . 

 

Example 7.6: 

The ARIMA (0,1,1) model ttt aaX +−=− −110L)1( θφ  

 
This becomes for t = T+h 
 thThThT aaXX +−−= −+−++ 1110 θφ  

 
or in the shape of a h-step forecast with origin T on the base of information prior T+1 

 TThT ahXX 10)(
ˆ θφ −+=+  

i.e. the forecast curve is linear in h. 
 
From this forecast error variance 
 ))1)(1(1()var( 2

1
2

)( θσ −−+=+ he zhT  

can be derived. 
 

Example 7.7: 
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The ARIMA (1,1,0) model tt aX +=−− 01 L)1L)(1( φφ  

 
gives explicitly for t = T+h 
 hThThThT aXXX +−+−++ +−++= 21110 )1( φφφ  

 
and the iterative forecast for h≥3 

 )2(1)1(10)(
ˆˆ)1(ˆ

−+−++ −++= hThThT XXX φφφ  

 
with the starting forecasts 

 1110)1( )1(ˆ
−+ −++= TTT XXX φφφ  

 TTT XXX 1)1(10)2(
ˆ)1(ˆ φφφ −++= ++ . 

 
Without further details should only be mentioned that the forecast error variance is a rather 
complex function of φ1 that tends to infinity in the long run. 
 
 
 

Example 7.8: 

From the ARIMA (1,1,1) model tt aX L)1(L)1L)(1( 101 θφφ −+=−−  

 
with the presentation for t = T+h,  
 1121110 )1( −++−+−++ −+−++= hThThThThT aaXXX θφφφ , 

 
the forecast formula for h≥3 follows: 

 )2(1)1(10)(
ˆˆ)1(ˆ

−+−++ −++= hThThT XXX φφφ  

with  TTTT aXXX 11110)1( )1(ˆ θφφφ −−++= −+  

and TTT XXX 1)1(10)2(
ˆ)1(ˆ φφφ −++= ++ . 

 
 
 

Example 7.9: 

For the Moscow Times Index (IMT) we had specified and estimated in example 6.3 and 
equation ( 6.12) among others the ARIMA(0,1,2) model 

.194.0 21 −− ++= tttt aaIMTIMT
 ( 7.9) 

 

That means for t = T+h  

21 194.0 −++−++ ++= hThThThT aaIMTIMT  

 
or for a one-step forecast from the origin T 

1)1( 194.0ˆ
−+ += TTT aIMTTMI

 ( 7.10) 
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and for a two-step forecast 

)(194.0194.0ˆˆ
1)1()2( −++ ++=+= TTTTTT aaIMTaTMITMI  

 
The latter forecast will not vary for any h>2: 

)(194.0ˆ
1)( −+ ++= TTThT aaIMTTMI

 ( 7.11) 

 

While the forecast equals to a constant for h≥2 the forecast error variance increases to infinity 
with growing forecast horizon h: 
 

))194.01)(2(2()var( 22
)( +−+=+ he ahT σ

 ( 7.12) 

 
This relationship follows from the general formula for the forecast error variance 

∑
−

=
+ =

1

0

22
)( )var(

h

i
îahTe ψσ

 ( 7.13) 

with ψi being the coefficients of the infinite MA representations of a process with the lag 

polynom Ψ(L). In the case of this example Ψ(L) must be equal to the model operator 
L)1(

(L)

−
Θ

 

or (L)L)1(L)( Θ=−Ψ  

i.e. 2
2

02
2

1
1

0
0 LL1L)1...)(LLL( θψψψ −=−+++  

 
By multiplying the terms in brackets and equalling the coefficients of the same powers of L 
on both sides of the equation we obtain 

194.0with1

1

1

1

21

22

1

0

−=−=

−=
=
=

− 2          θθψ

θψ
ψ
ψ

h

�

 

 
Substituting ψi in ( 7.13) we obtain ( 7.12). 
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Figure 7.1: Forecast of the Moscow Times share price index. 

 

 

Figure 7.1 displays the forecasts of the levels IMTFORECTMI hT =+ )(
ˆ of the Moscow Times 

Index on the base of the data till T=1395 for 6th May 2003 with forecast horizons h=1,2,…,15. 
The dotted lines below and above the forecast line indicate the one-sigma forecast limits 
corresponding to ( 7.12). The forecast values themselves remain constant after the first step of 
h while the width of the forecast interval increases. As expected, this model would not be a 
particular efficient tool for long-term forecasting the Russian finance market. But a repeated 
one-step calculation according to ( 7.10) on the base of the newest daily data would improve 
the forecast quality effectively. 
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8. ARCH and GARCH Processes 
 
Usually econometricians assume the autocorrelations of model disturbances to be zero. But in 
the last decade the interest of researchers increasingly focused on systematically changing 
errors and error variances because in time series of exchange rates and stock market return 
had been found sections of small error changing with sections of large errors or low with high 
volatility, respectively. 

8.1. Conditional Heteroscedasticity 
 
Volatility is usually measured by the variance t

2 of a time series or a stochastic process. 
 
Homoskedasticity of a model such as an AR model means that the error or disturbance term 
has a constant variance. The antonym is Heteroskedasticity, i.e. variability of the error 
variance. 
Conditional Heteroskedasticity (CH) means that the conditional error variance i.e. the 
variance under the condition of information given depends on time. It can occur in spite of 
general homoskedasticity (unconditional). 
 
The variance of the model disturbances at is 

22 )E()var( att aa σ==
 ( 8.1) 

The corresponding conditional variance on the base of the knowledge of the last value is 
defined as 

)E()var( 1
2

1 −− = tttt aaaa
 ( 8.2) 

 

8.2. The ARCH/GARCH Model 
 
The ARCH(1) model is the simplest example for an ARCH process, i.e. an autoregressive 
conditional heteroscedasticity process.  

Let    ttt uXX ++= −110 φφ
 ( 8.3) 

be an AR(1) process with an error term ut and the properties 

0)|E(

0)E(

1 =
=

−tt

t

uu

u
 

22
110

2 )( ttt auu ++= −λλ        

with λ1<1 and at being white noise. Then the conditional variance of the error is 

2
1101

2
1

2 )|E()|var( −−− +=== tttttt uuuuuh λλ
 ( 8.4) 

Obviously it depends on the last value of u and is not constant. That means varying 
conditional variance, i.e. conditional Heteroskedasticity occurs. 
 
But the unconditional variance is constant:  
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const
1

)1(

)E()E(

1

0

110

2
110

2

=
−

=

<=

+=

∑

−

λ
λ

λλλ

λλ

                          

                                      

                                  

                

i

tt uu

�

 ( 8.5) 

That means the process ( 8.3) proves homoscedastic despite its conditional heteroscedasticity.  
 
An AR model can be tested for ARCH(1) in the following way 
 
-  Fit Xt by an AR model with the error term ut. 
-  Calculate residuals tû  as estimates for ut. 

-  Calculate a linear regression for 2ˆtu  with regressor 2
1ˆ −tu  and the coefficient λ1. 

-  Test the coefficient �1 by  t-, F-, �2-test with the null hypothesis H0: λ1=0. 
If λ1 significantly differs from zero the model is ARCH(1). 
 
 
Let be again 

ttt uXX ++= −110 φφ  

But now we assume  
22

110,...,1
2 )|var( qtqtqtttt uuuuh −−−− +++== λλλ �  ( 8.6) 

Then Xt is considered as being an ARCH(q) process. 
A time series can be tested for ARCH(q) by extending the regression in the above described 
test to a multiple one. 
 
The generalized autoregressive conditional heteroskedasticity model (GARCH (p,q))describes 
a process where the conditional error variance on all information Ωt-1 available at time t 
 )(uh 1tt

2
t −= var  

is assumed to obey an ARMA(p,q) model: 
22

22
2

11
22

110
2 ...... qtqttptptt uuuhhh −−−−− +++++++= βββααα

 ( 8.7) 

 

 

Example 8.1: 

Here we try to model the return of the Moscow Times Index over the whole period from 1997 
to 2003. In example  5.3 this return was defined as '��IMT.  Table 8.1  shows the result of 
estimating of an ARCH (1) which coincides with a GARCH(0,1) 
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Table 8.1:  

GARCH(0,1) assuming a normal distribution                   
                         converged after 59 iterations                         
*************************************************************************** 
 Dependent variable is '��t                                                   
 1393 observations used for estimation from    3 to 1395                       
*************************************************************************** 
 Regressor              Coefficient       Standard Error         T-Ratio[Prob] 
 '���("t-1                  .12158            .034727             3.5012[.000] 
*************************************************************************** 
 R-Squared                   -.020937     DW-statistic                   2.2945                                          
S.E. of Regression           .040219   F-stat.    F(  1,1391)          *NONE* 
 Mean of Dependent Variable  .0012655    S.D. of Dependent Variable     .039790 
 Residual Sum of Squares       2.2500    Equation Log-likelihood         2634.8 
 AICL          2632.8    SCL         2627.6 
*************************************************************************** 
              Parameters of the Conditional Heteroscedastic Model              
*************************************************************************** 
        Dependent variable is the squared error e t

2 

                                     Coefficient        Asymptotic Standard Error         
        Constant                .0010248                     .4987E-4                     
        e2

 t-1                       .34542                         .052786                     
*************************************************************************** 
 
In contrast to the last examples, here the likelihood versions of the Akaike Information and 
Schwarz Criteria  that are to be maximized were used. 
 
An interesting modification of ARCH or GARCH models is the ARCH/GARCH model in 
mean (ARCH-M or GARCH-M) 
Here the conditional variance ht

2 of (8.8) is enclosed as an explicate term in the general model 
equation for Xt 

t
2
t1t10t u�XX +++= −   .g.e

 ( 8.8) 

In the case of asset return modelling, the GARCH-M model gives many opportunities to study 
the influence of the volatility of the process, represented by ht

2, and the risk of the assets 
under condition. 
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