
About the Analysis of Algorithms on Networks
with Underlying Hyperbolic Geometry

Maximilian Katzmann

Universitätsdissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

in der Wissenscha�sdisziplin
Theoretische Informatik

eingereicht an der
Digital-Engineering-Fakultät
der Universität Potsdam

Datum der Disputation: 20. Januar 2023

This work is licensed under a Creative Commons License:
A�ribution 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
http://creativecommons.org/licenses/by/4.0/

Betreuer
Prof. Dr. Tobias Friedrich
Hasso Pla�ner Institute, University of Potsdam

Gutachter
Prof. Dr. Marcos Kiwi
Universidad de Chile

Prof. Dr. Tobias Müller
University of Groningen

Prof. Dr. Sebastian Siebertz
Universität Bremen

Published online at the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-58296
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-582965

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25932/publishup-58296
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-582965

0Abstract
Many complex systems that we encounter in the world can be formalized using
networks. Consequently, they have been in the focus of computer science for
decades, where algorithms are developed to understand and utilize these systems.
Surprisingly, our theoretical understanding of these algorithms and their

behavior in practice often diverge signi�cantly. In fact, they tend to perform
much better on real-world networks than one would expect when considering
the theoretical worst-case bounds. One way of capturing this discrepancy is
the average-case analysis, where the idea is to acknowledge the di�erences
between practical and worst-case instances by focusing on networks whose
properties match those of real graphs. Recent observations indicate that good
representations of real-world networks are obtained by assuming that a network
has an underlying hyperbolic geometry.
In this thesis, we demonstrate that the connection between networks and

hyperbolic space can be utilized as a powerful tool for average-case analysis.
To this end, we �rst introduce strongly hyperbolic unit disk graphs and identify
the famous hyperbolic random graph model as a special case of them. We then
consider four problems where recent empirical results highlight a gap between
theory and practice and use hyperbolic graph models to explain these phenom-
ena theoretically. First, we develop a routing scheme, used to forward information
in a network, and analyze its e�ciency on strongly hyperbolic unit disk graphs.
For the special case of hyperbolic random graphs, our algorithm beats exist-
ing performance lower bounds. Afterwards, we use the hyperbolic random
graph model to theoretically explain empirical observations about the perfor-
mance of the bidirectional breadth-�rst search. Finally, we develop algorithms
for computing optimal and nearly optimal vertex covers (problems known to be
NP-hard) and show that, on hyperbolic random graphs, they run in polynomial
and quasi-linear time, respectively.
Our theoretical analyses reveal interesting properties of hyperbolic random

graphs and our empirical studies present evidence that these properties, as well
as our algorithmic improvements translate back into practice.

iii

0Zusammenfassung

Viele komplexe Systeme mit denen wir tagtäglich zu tun haben, können mit
Hilfe von Netzwerken beschrieben werden, welche daher schon jahrzehntelang
im Fokus der Informatik stehen. Dort werden Algorithmen entwickelt, um diese
Systeme besser verstehen und nutzen zu können.

Überraschenderweise unterscheidet sich unsere theoretische Vorstellung die-
ser Algorithmen jedoch oft immens von derem praktischen Verhalten. Tatsäch-
lich neigen sie dazu auf echten Netzwerken viel e�zienter zu sein, als man im
schlimmsten Fall erwarten würde. Eine Möglichkeit diese Diskrepanz zu erfas-
sen ist die Average-Case Analyse bei der man die Unterschiede zwischen echten
Instanzen und dem schlimmsten Fall ausnutzt, indem ausschließlich Netzwerke
betrachtet werden, deren Eigenschaften die von echten Graphen gut abbilden.
Jüngste Beobachtungen zeigen, dass gute Abbildungen entstehen, wenn man
annimmt, dass einem Netzwerk eine hyperbolische Geometrie zugrunde liegt.

In dieser Arbeit wird demonstriert, dass hyperbolische Netzwerke als mächti-
ges Werkzeug der Average-Case Analyse dienen können. Dazu werden stark-
hyperbolische Unit-Disk-Graphen eingeführt und die bekannten hyperbolischen
Zufallsgraphen als ein Sonderfall dieser identi�ziert. Anschließend werden auf
diesen Modellen vier Probleme analysiert, um Resultate vorangegangener Experi-
mente theoretisch zu erklären, die eine Diskrepanz zwischen Theorie und Praxis
aufzeigten. Zuerst wird ein Routing Schema zum Transport von Nachrichten
entwickelt und dessen E�zienz auf stark-hyperbolischen Unit-Disk-Graphen
untersucht. Allgemeingültige E�zienzschranken können so auf hyperbolischen
Zufallsgraphen unterboten werden. Anschließend wird das hyperbolische Zu-
fallsgraphenmodell verwendet, um praktische Beobachtungen der bidirektionalen
Breitensuche theoretisch zu erklären und es werden Algorithmen entwickelt, um
optimale und nahezu optimale Knotenüberdeckungen zu berechnen (NP-schwer),
deren Laufzeit auf diesen Graphen jeweils polynomiell und quasi-linear ist.

In den Analysen werden neue Eigenschaften von hyperbolischen Zufallsgra-
phen aufgedeckt und empirisch gezeigt, dass sich diese sowie die algorithmischen
Verbesserungen auch auf echten Netzwerken nachweisen lassen.

v

0Acknowledgments

While my journey as a PhD student started a couple of years ago, it is as though
it went by in an instant. Yet, so much has happened in this time and I am grateful
for all the memories that were made. Of course, none of it would mean a thing,
had I not shared them with the friends I had and the ones I made on the way.
First and foremost, I want to thank Tobias Friedrich for almost a decade of

continued advice and support, for the challenges you posed and the assistance
you gave as I tried mastering them, which eventually helped me to grow as a
person. You provided protection from all kinds of uncertainties that arise in
the world of academia and allowed me to focus on what is the most fun and
rewarding for me: research. Thank you.

Special thanks also go to Thomas Bläsius. What started as a mentoring quickly
grew into a friendship that I am very grateful for. You taught me so much about
how to be a good scientist and helped me cope with the setbacks and the stress
that go along with it. This continues on from mental to physical gymnastics,
where your repeatedmotivations to joining beach volleyball or bouldering guided
me to leading a healthier life. Thank you.
My time at the chair was accompanied by so many more people that helped

me in one way or the other, including Samuel Baguley, Katrin Casel, Sarel Cohen,
Ankit Chauhan, Philipp Fischbeck, Andreas Göbel, Hazar Harmouch, Katrin
Heinrich, Timo Kötzing, Martin Krejca, Simon Krogmann, Anton Krohmer, Gre-
gor Lagodzinski, Pascal Lenzner, Xiaoyue Sherry Li, Michael Loster, Nadym
Mallek, Anna Melnichenko, Louise Molitor, Stefan Neubert, Aikaterini Niklano-
vits, Marcus Pappik, Francesco Quinzan, Aishwarya Radhakrishnan, Ralf Rothen-
berger, Janosch Ru�, Leon Schiller, Martin Schirneck, Karen Seidel, Christopher
Weyand, Marcus Wilhelm, Ziena Zeif, and even Vanja Doskoč. Ranging from
fun activities like the board games after lunch or sports, to discussing research
and tackling the challenges that were thrown at us, you were there with me and
I am thankful for that.

And of course, I also received support from outside university. My bouldering
friends Hendrik, Madeleine, and Simon presented delightful distractions from

vii

work. My brother Lukas was with me the whole time, always quick to respond
for fun exchanges and to discuss all aspects of life. I am also grateful for the
support from my parents Sabine and Andreas, my grandparents Hildrun and
Volker, as well as the family I found in Janine, Daniel, Lina, Leo, and Jens.

Last, but most certainly not least (as she made sure I included here), I want to
thank Denise for everything. You provide me with daily support, bring balance
to my life, and help me cope in trying times. Whether it is going for a walk,
laughing at my jokes, or listening to my ideas, you make sure that I feel well
and improve every aspect of my life. I am looking forward to our journey ahead.
Safe travels.

viii

0Contents
Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1

2 Preliminaries 11
2.1 Graph Theory . 11
2.2 Probability Theory . 12

2.2.1 Cherno� Bounds . 15
2.2.2 Bounded Di�erences . 17
2.2.3 Typical Bounded Di�erences 18

2.3 Useful Inequalities . 21

3 Networks with Underlying Hyperbolic Geometry 23
3.1 The Polar-Coordinate Model . 23
3.2 Hyperbolic Unit Disk Graphs . 28

3.2.1 The Structure of Unit Disk Graphs 29
3.2.2 Adjacency in Strongly Hyperbolic Unit Disk Graphs . . 30
3.2.3 Cliques in Strongly Hyperbolic Unit Disk Graphs 35
3.2.4 Related Concepts . 38

3.3 Hyperbolic Random Graphs . 39
3.3.1 De�nition . 39
3.3.2 Properties . 40
3.3.3 Vertex Distribution . 41
3.3.4 Hyperbolic Random Graphs with = Vertices in Expectation 42
3.3.5 Neighborhoods . 44

ix

4 Routing in Strongly Hyperbolic Unit Disk Graphs 47
4.1 Introduction . 47
4.2 A Brief History of Routing Schemes 48

4.2.1 Routing Schemes . 50
4.2.2 Local and Greedy Routing Schemes 51
4.2.3 Routing in Practice . 52

4.3 Greedy Routing . 53
4.3.1 Combining Graph Distances 53
4.3.2 Finding a Suitable Neighbor 56
4.3.3 Tree-Cover-Based Greedy Routing 57

4.4 Tree-Cover Algorithm . 58
4.5 Performance on Strongly Hyperbolic Unit Disk Graphs 61
4.6 Empirical Evaluation . 68

5 Bidirectional BFS in Hyperbolic Random Graphs 71
5.1 Introduction . 71
5.2 Bidirectional Breadth-First Search 73

5.2.1 Euclidean Random Graphs 74
5.2.2 Hyperbolic Random Graphs 75

5.3 Concentration Bounds for the Sum of Vertex Degrees 89
5.3.1 The Inner Part of the Disk 90
5.3.2 The Central Part of the Disk 91
5.3.3 The Outer Part of the Disk 100
5.3.4 The Complete Disk . 105

5.4 Discussion . 107

6 Exact Vertex Cover in Hyperbolic Random Graphs 109
6.1 Introduction . 109
6.2 Vertex Cover on Hyperbolic Random Graphs 111

6.2.1 Dominance . 112
6.2.2 Simple Structure in the Outer Band 119

6.3 Empirical Evaluation . 129

7 Approximate Vertex Cover in Hyperbolic Random Graphs 133
7.1 Introduction . 133
7.2 An Improved Greedy Algorithm 135

x

7.3 Approximation Performance . 136
7.3.1 The Inner Disk . 140
7.3.2 The Outer Band . 141
7.3.3 The Complete Disk . 158

7.4 Empirical Evaluation . 161

8 Conclusions and Outlook 165

Bibliography 171

List of Publications 189

xi

1 Introduction

Networks are a powerful tool to capture the ubiquitous relationships between
entities that are encountered on all scales in our universe. Starting at the atomic
level where networks describe the relationships between atoms that connect to
form molecules, on to protein-interaction networks describing the ways certain
molecules interact, and up to the human connectome capturing the relationships
between neurons in our brains. This continues on larger scales, where social
networks represent relationships between people, to the internet that connects
the whole world, eventually reaching the cosmic web of galaxies. As a general
framework encompassing all of the above, networks or graphs model entities as
vertices and the relationships as edges between them.
Some networks are small. The water molecule, for example, consists of two

hydrogen atoms that connect to a single oxygen atom, i.e, there are two edges
among three vertices. Understanding and working with such a network is rather
straight-forward. On the other hand, we often encounter huge networks like
the internet containing billions of connected devices. Such graphs are harder
to process. Even simple tasks, like �nding the shortest path, i.e., the smallest
number of edges that lead from one vertex to another, can become challenging on
networks of this size. Even worse are harder problems, like �nding the smallest
set of vertices that cover all edges, for which no e�cient, i.e., polynomial-time
algorithm exists, unless veri�cation in polynomial time is equivalent to solving
in polynomial time (i.e., % = #%).
The e�ciency of an algorithm is typically measured in terms of how long it

takes to compute a solution, depending on the size of the input. Most commonly,
this running time considers the worst case, yielding a reliable bound that holds
for all inputs. For many interesting problems, including Karp’s famous 21 NP-
complete problems [Kar72], it is generally assumed that no algorithms exist
that can solve them e�ciently, i.e., in running time polynomial in the input size.
Thus, computing a solution is practically intractable, in the worst case.

Therefore, it comes as a surprise that recent practical observations indicate
that such problems can often be solved rather e�ciently, yielding a huge gap

1

Chapter 1 Introduction

between empirical measurements and theoretical bounds. For one of the most
fundamental NP-complete problems, Boolean satis�ability, solvers have proven
to be remarkably e�cient in practice [GV21]. Similar observations have been
made in the context of complex networks, where NP-complete problems such as
the classical vertex cover problem, can be solved in a matter of seconds, even if
input and solution contain millions of vertices and edges [AI16]. Furthermore,
this contrast has been repeatedly highlighted by the results of recent PACE
challenges, which are set up to encourage the development of practical algorithms
for notoriously hard problems [Del+18; DFH19; Kel+21].

A lot of research has focused on this discrepancy between theory and practice,
as bridging this knowledge gap has several advantages. The �rst is educational.
If we can prove that certain algorithms perform better than others in practice,
people can make more pro�cient choices when using algorithms for practical
purposes. Secondly, understanding the underlying cause for why algorithms
perform well on certain networks may allow us to further exploit this behavior
in order to develop even better algorithms.

Among various approaches to bridging the theory-practice gap the basic idea
is typically to consider di�erences between the encountered instances. Theo-
retical bounds are often obtained by designing worst-case instances. However,
real-world networks rarely resemble the worst case. In the context of parameter-
ized complexity, this is acknowledged by �nding parameters, i.e., quanti�able
properties of input or solution, which yield better running times if they ful-
�ll certain criteria, like being su�ciently small [Cyg+15]. Another approach
is smoothed analysis, where worst-case inputs are considered after applying
small random perturbations, motivated by the fact that real-world data is often
noisy and thus unlikely to re�ect the worst case [ST09]. A similar method is
average-case analysis, which is the focus of this thesis. Instead of considering all
possible inputs, including the worst case, the analysis is restricted to instances
that are drawn from certain probability distributions. This allows us to focus on
instances whose properties match what has been observed in practice.

Unfortunately, capturing real-world networks from a theoretical point of view
is far from trivial. Typically, we can observe the relations between entities
and reconstruct the network using these observations, but we are missing the
knowledge of where the relations originate from. For example, we may not know
why speci�c friendships in a social network have formed or why certain proteins
interact. Consequently, we do not know a mathematical model describing how

2

Introduction Chapter 1

Figure 1.1: An Erdős-Rényi random graph with roughly 2000 vertices and an average
degree of about 8. Colors represent the vertex degrees from low (blue) to high (red, not
realized in this �gure). They are consistent throughout all �gures in this section.

edges in a real-world network form, which we could then analyze theoretically.
In fact, such a model may not even exist. However, over time people have come
up with their own models to represent real-world graphs as closely as possible.

Probably the most famous graph model are Erdős-Rényi random graphs, where,
given a set of vertices, all vertex pairs are independently connected by an edge
with the same probability [ER59; Gil59]. On the one hand, the model is mathe-
matically very accessible, due to its simplicity. We refer the reader to the book by
Bollobás for a comprehensive description of the model and its properties [Bol01].
On the other hand, the properties of the generated networks do not really match
the above mentioned practical observations. In particular, since all edges exist
independently with the same probability, all vertices have the same expected
degree, see Figure 1.1. However, many real-world networks feature a hetero-
geneous degree distribution, where most vertices have similar, small degree but
there are also a few vertices that have very high degree. In social networks, for
example, most people have only few connections, while there are a couple of
celebrities that are connected to a lot of people. Mathematically, such a degree

3

Chapter 1 Introduction

Figure 1.2:AChung-Lu random graph with roughly 2000 vertices and an average degree
of about 8. The power-law exponent of the degree distribution is approximately 2.5.
Colors match the assignment in the previous �gure. However, here they move further
into the red, since there are a few vertices of higher degree.

distribution often resembles a power law [Art+20; Ser+21; Voi+19]. That is, the
number of vertices in the network that have a degree of : is proportional to :�V ,
where V is called the power-law exponent. In order to represent networks with
heterogeneous degree distributions, other models have been proposed.

The Chung-Lu model allows for more diverse distributions, by assigning each
vertex a weight and sampling an edge between two vertices with a probability
that is proportional to the product of their weights [ACL01; CL02a; CL02b]. The
expected degrees of the vertices then match the corresponding weights in the
generated graph. Thus, if the weights follow a power-law distribution, so does
the resulting degree sequence, in expectation; see Figure 1.2. Another model
that allows for power-law degree distributions is the Barabási-Albert model.
It follows a preferential attachment mechanism, where a graph is generated
incrementally [BA99]. Starting with a simple graph, in each step a new vertex is
added and connected to a �xed number of prior vertices, where the probability
for an edge to form is proportional to their degrees, i.e., new vertices prefer

4

Introduction Chapter 1

Figure 1.3:A Euclidean random graph with roughly 2000 vertices and an average degree
of about 8. Colors match the assignment in the previous �gures.

existing ones that have a high degree. For an overview of this and further such
graph models, we refer to the book by Frieze and Karoński [FK15b] and the one
by van der Hofstad [Hof16]. A drawback of these models is that edges form
independently of each other, which leads to a clustering coe�cient that vanishes
with increasing graph size (see, e.g.,[Fou15; KE02]). However, in many real-world
networks the clustering is rather high [New01; WS98]. In social networks, for
example, two people are more likely to be friends, if they have a common friend.
Thus, relations are not independent, which leads to clustering. One approach to
obtain a network model with high clustering is to introduce geometry.

Euclidean random graphs (typically referred to as random geometric graphs) are
obtained by distributing points uniformly at random within the unit hypercube
and connecting any two of them, if and only if their Euclidean distance is below
a certain threshold '. In the two-dimensional case, the points are distributed in
the unit square [0, 1]2, as illustrated in Figure 1.3, and one can imagine a disk of
radius ' around each point, which contains all other points that it is adjacent to.
For a more detailed description of such graphs and their properties, we refer to
the book by Penrose [Pen03]. Note that, given a set of points, we can set ' = 1

5

Chapter 1 Introduction

and scale the ground space accordingly, while still obtaining the same graph.
Consequently, such graphs can also be seen as randomly generated unit disk
graphs (see, e.g., [Fis04]). In such networks the clustering coe�cient does not
vanish as the graph size increases. Instead, it is a constant that only depends on
the dimension of the ground space [DC02]. To get an intuition for why this is the
case, imagine two points that have a common neighbor. This means that they
both lie within a disk of radius ' centered at this neighbor. Consequently, the
distance between them cannot be arbitrarily large (it is bounded by the diameter
of the disk), making it more likely that they are adjacent themselves. Thus,
the edges are not independent in this graph model and we obtain clustering.
However, the geometry has another e�ect on the structure of the graph. Since
the points are distributed uniformly at random, most points are expected to
contain the same number of points in their neighborhood disks, leading to a
rather homogeneous degree distribution.

To obtain networks that have clustering and a heterogeneous degree distribu-
tion, we can utilize the very same process but in the hyperbolic geometry instead
of the Euclidean one. Research has shown that several real-world networks, like
the internet, the network of international trade, and social networks, �t well into
the hyperbolic plane (a two-dimensional surface on which space expands expo-
nentially fast), which means that we can map the vertices in the graph to points
in a hyperbolic disk, such that path lengths between vertices roughly match the
hyperbolic distances between the corresponding points [BPK10; Gar+16; VS14].

Krioukov et al. formalized this relationship between complex networks and
hyperbolic geometry with the introduction of the hyperbolic random graph
model [Kri+10]. Instead of taking a graph and trying to map its vertices to points
in the hyperbolic plane, points are �rst distributed at random in a disk of radius '
in this plane, and a graph is generated by connecting any two points with an edge
if their hyperbolic distance is below a threshold that matches the disk radius '.
See Figure 1.4 for an exemplary illustration. The resulting graphs feature a
power-law degree distribution [GPP12]. In fact, it was shown that hyperbolic
random graphs are, in a sense, a variant of the above mentioned Chung-Lu
model with the addition of dependencies between edges due to the underlying
geometry [BFM15; Fou15]. Consequently, hyperbolic random graphs feature a
non-vanishing clustering coe�cient [GPP12]. In addition, they also have a small
diameter [FK18; KM15; MS19], meaning they exhibit the small-world phenomenon
describing that graph distances are typically short in practice [Bac+12; TM69;

6

Introduction Chapter 1

Figure 1.4:Ahyperbolic random graphwith roughly 2000 vertices and an average degree
of about 8. The power-law exponent of the degree distribution is approximately 2.5.
Colors match the assignment in the previous �gures.

7

Chapter 1 Introduction

WS98]. Since hyperbolic random graphs feature all of these properties, which
are often collected under the term scale-freeness, they are a good representation
of many real-world networks where the same properties have been observed,
including the internet, social networks, as well as protein-protein interaction
networks [AB02; Alb05; Dor10].
As a consequence, hyperbolic random graphs are a promising model to be

studied in the context of average-case complexity, in order to explain why algo-
rithms tend to perform much better on real-world graphs than in the worst case.
Not only do the generated graphs resemble practical instances well, the model is
also conceptually simple enough such that it is accessible from a mathematical
point of view. We note that, of course, the generative process of hyperbolic
random graphs does not resemble how real-world networks form. People in a
social network do not bond over being close in a hyperbolic disk. The model
should rather be seen as a tool to facilitate the analysis of processes on real-world
graphs.

Contribution and Outline

Throughout this thesis our goal is to support the validity of modelling networks
using an underlying hyperbolic geometry for the purpose of average-case anal-
ysis. To this end, we consider several algorithmic problems that feature a gap
between theoretical and practical understanding and analyze them using hyper-
bolic graph models. That is, each research e�ort is motivated by prior empirical
observations, which we aim to explain theoretically. As a byproduct of our anal-
yses we derive several predictions the model makes about network properties,
which we empirically demonstrate to translate back to real-world networks.
Eventually, we use these �ndings to further improve the performance of an
existing algorithm on practical instances. The thesis is structured as follows.
In Chapter 2, we give a brief overview of the basics of graph theory and a

more comprehensive introduction to probability theory, which is heavily used
throughout the thesis due to the inherent randomness of the considered network
model. In particular, we explain certain concentration bounds that are used to
obtain meaningful statements. They include the method of bounded di�erences,
as well as the method of typically bounded di�erences that, to the best of our
knowledge, has not been applied in this context before.

In Chapter 3, we introduce networks with an underlying hyperbolic geometry

8

Introduction Chapter 1

in greater detail. To this end, we start with an introduction to the hyperbolic
plane and the polar-coordinate model, which we use to represent hyperbolic
space. Additionally, we explain how the curvature (a parameterized property of
the space) can be used to scale the plane. Afterwards, we introduce hyperbolic
unit disk graphs as a graph class encompassing Euclidean unit disk graphs and
strongly hyperbolic unit disk graphs on two ends of a spectrum that ranges from
grid-like to hierarchical structures in sparse networks. We then continue with a
detailed description of the hyperbolic random graph model, which we identify
as a special case of hyperbolic unit disk graphs.

Chapter 4 provides the �rst insights into how hyperbolic unit disk graphs can
be used to theoretically explain an empirically observed phenomenon. There, we
study routing, i.e., the task of e�ciently forwarding messages through a network,
which is at the heart of communication networks like the internet. We develop
and analyze a routing scheme that utilizes the hierarchies exhibited by strongly
hyperbolic unit disk graphs and show that greedy routing can be implemented
e�ciently on such graphs. For the special case of hyperbolic random graphs, the
scheme improves below existing performance lower bounds. There, the worst-
case stretch, i.e., the deviation between routed paths and shortest paths in the
graph, is at most 3 and at each vertex the scheme, asymptotically almost surely,
stores O

�
log(=)4

�
bits and makes routing decisions in O

�
log(=)2

�
time. Further,

our empirical analysis indicates that these results translate well to real-world
networks.

In Chapter 5, we consider the breadth-�rst search (BFS), another fundamental
path �nding algorithm. A standard approach to accelerating this method is to
consider a bidirectional version, which explores the graph from the start and the
destination, simultaneously. In practice this strategy performs particularly well
on scale-free real-world networks, as observed by Borassi and Natale [BN16]. To
explain this behavior, we analyze the running time of the bidirectional BFS on
hyperbolic random graphs and prove that it is Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�

with high probability, where U 2 (1/2, 1) controls the power-law exponent of the
degree distribution, and degmax(⌧) is the maximum degree of the graph. This
bound is sublinear, improving the obvious worst-case linear bound. We note
that, although our analysis depends on the underlying geometry, the algorithm
itself is oblivious to it.

In Chapter 6, we turn our attention to the vertex cover problem, which is one
of Karp’s famous 21 NP-complete problems [Kar72]. Despite its computational

9

Chapter 1 Introduction

hardness, recent experiments by Akiba and Iwata [AI16] suggest that on many
real-world networks the run time to �nd a solution is way smaller than even
the best known approaches in the �eld of parameterized complexity can explain.
We link these observations to the heterogeneity of the degree distribution and
high clustering that are often observed in real-world networks, by analyzing
how a branch-and-reduce algorithm performs on hyperbolic random graphs. In
fact, we are able to show that the vertex cover problem on hyperbolic random
graphs can be solved in polynomial time, with high probability. The proof relies
on interesting structural properties of hyperbolic random graphs, which we
empirically �nd to be present in real-world networks as well.

In Chapter 7, we further investigate the vertex cover problem with a focus on
its approximability. While the above mentioned results show that an optimal
vertex cover can be computed in polynomial time, the degree of the polynomial
is unknown and for large networks, even a quadratic running time may be too
much to be practically tractable. One approach to dealing with the computational
hardness of such a problem is to trade the qualitative performance of an algorithm
(allowing non-optimal outputs) for an improved running time. When it comes to
understanding this trade-o� for the vertex cover problem, there is, again, a gap
between theory and practice. On the one hand, it is known that it is NP-hard to
approximate a minimum vertex cover within a factor of

p
2. On the other hand, a

simple greedy algorithm yields close to optimal approximations in practice. We
close the theory-practice gap by providing an algorithm that e�ciently computes
nearly optimal vertex cover approximations on hyperbolic random graphs. More
precisely, our algorithm computes a (1 + o(1))-approximation, asymptotically
almost surely, and has a running time of O

�
< log(=)

�
. The proposed algorithm

is an adaptation of the successful greedy approach, enhanced with a procedure
that improves on parts of the graph where greedy is not optimal. This makes it
possible to introduce a parameter that can be used to tune the trade-o� between
approximation performance and running time. Our empirical evaluation on
real-world networks shows that this allows for improving over the near-optimal
results of the greedy approach.

We conclude our �ndings in Chapter 8 and present several directions in which
our research can be extended, including extensions to noisy settings that allow
for slack in the otherwise strict generative rules of hyperbolic unit disk graphs,
on to extensions of the model to other graph types such as trees, and further
generalizations regarding the dimensionality of the considered space.

10

2 Preliminaries

2.1 Graph Theory

In this thesis, we study how algorithms behave on certain graphs or networks.
They provide a mathematical model to study relations between entities in the
real world, like friendships among people in a social networks or links between
routers in the internet. In the following, we give a brief overview of the basic
graph theoretic concepts and the notation used in the thesis. For a more detailed
introduction to graph theory, we refer the reader to the book by Diestel [Die17].
Formally, a graph ⌧ = (+ , ⇢) models the entities as a �nite set of vertices +

and the relations as a set of edges ⇢ ✓ + ⇥+ . We use | · | to denote cardinalities.
In particular, the number of vertices and edges in a graph are denoted by = = |+ |

and < = |⇢ |, respectively. When using big-O notation, the asymptotics are
assumed to be in = and we use Õ(·) to suppress polylogarithmic factors in =.
Two vertices D, { 2 + are adjacent, if they are connected by an edge 4 =

{D, {} 2 ⇢. We say that the edge 4 is incident to D and {. Note that we consider
undirected graphs, as {D, {} = {{,D}. The neighborhood # ({) of a vertex { is the
set of vertices adjacent to {. The size of the neighborhood is called the degree
of { and is denoted by deg({) = |# ({) |. Moreover, the clustering coe�cient of
a vertex { denotes the probability for two randomly chosen neighbors of { to
be adjacent and the clustering coe�cient of a graph denotes the average of the
coe�cients of all vertices.

A vertex D is indirectly connected to a vertex { outside of its neighborhood if
there exists a path from D to {, which is a sequence (D, . . . , {) of vertices where
every vertex is adjacent to its successor. The length of the path is one less than
the length of the sequence. The distance between D and { is the length of a
shortest path between them and the diameter of⌧ , written as diam(⌧), denotes
the maximum distance among vertices in⌧ . Unless stated otherwise, we consider
graphs that are connected, meaning there exists a path between all vertex pairs.

For a subset (✓ + , we use⌧ [(] to denote the induced subgraph of⌧ obtained
by removing all vertices in + \ (together with their incident edges.

11

Chapter 2 Preliminaries

2.2 Probability Theory

Throughout the thesis, we analyze graphs that are generated using a mechanism
involving randomness. Intuitively, we consider all possible graphs that may be
generated by the mechanism and observe their properties or how an algorithm
performs on them. However, since the number of graphs the mechanism may
produce is in�nite, we instead make probabilistic predictions about them, which
are typically of the form: “When a graph is generated using the mechanism,
it is very likely that it has a certain property.” In the following, we give an
overview of how this can be formalized. For a more comprehensive introduction
to probability theory, we refer the reader to book by Ross [Ros19].

A random experiment can be described by a probability space, which is a tuple
(S, O, %) that consists of a sample space S , containing all possible outcomes of
the experiment, a f-algebra O containing sets of outcomes in the sample space,
called events, and a probability function % assigning each event a probability, i.e.,
a number in [0, 1]. For example, S could contain all graphs on = vertices and the
event “the graph is connected” would be represented by a set in O that contains
all =-vertex graphs where each vertex pair is connected by a path. We denote
the probability for an event � 2 O to occur by Pr[�]. The complementary event
of �, denoted by ¬�, represents the case where � does not occur. Its probability
is given by Pr[¬�] = 1 � Pr[�]. Given another event ⌫ 2 O , the probability that
� or ⌫ occurs is given by

Pr[� [⌫] = Pr[�] + Pr[⌫] � Pr[� \ ⌫] .

Since Pr[� \ ⌫] is non-negative, we have Pr[� [⌫]  Pr[�] +Pr[⌫]. In general,
for a subset O 0

✓ O the union bound states that Pr
⇥–

�2O 0 �
⇤


Õ
�2O 0 Pr[�].

The probability that the event � occurs, under the assumption that an event ⌫
has already occurred is called the conditional probability of � given ⌫ and is
denoted by Pr

⇥
� | ⌫

⇤
= Pr[� \ ⌫]/Pr[⌫]. The events � and ⌫ are said to be

independent if

Pr[� \ ⌫] = Pr[�] · Pr[⌫], or equivalently, if Pr
⇥
� | ⌫

⇤
= Pr[�] .

Intuitively, this means that whether ⌫ occurs has no impact on whether � does.
A random variable describes a value that depends on the outcome of a random

experiment. We could de�ne a random variable whose value is 1 if the generated

12

Probability Theory Section 2.2

graph is connected and 0 if it is not. Another random variable is the number of
vertices in the graph that have a degree of 1. Formally, we consider a random
variable - as a function that assigns each possible outcome a value in a measur-
able set (, i.e., - : S ! (. The probability that - takes on a certain value G 2 (,
is described using a cumulative distribution function �- : (! [0, 1], which is
given by

�- (G) = Pr[-  G] .

Given two random variables - and . , their joint distribution function is given by

�- ,. (G,~) = Pr
⇥
-  G ^ .  ~

⇤
.

We say that - and . are independent if �- ,. (G,~) = �- (G) · �. (~).

If - maps to a countable set (, we call it a discrete random variable. Its
distribution is then often described using a probability mass function 5- , which
is de�ned as

5- (G) = Pr[- = G] = Pr
⇥
{l 2 S | - (l) = G}

⇤
.

This function relates to the cumulative distribution function as

�- (G) =
’
G
0
2(,

G
0
G

5- (G
0
) .

The expected value or expectation E[-] intuitively describes the average outcome
for an in�nite amount of trials. It is de�ned as

E[-] =
’
G2(

G · 5- (G)

=
’
G2(

G · Pr[- = G] .

Moreover, the expected value of - conditioned on an event � 2 O with non-zero
probability (i.e., Pr[�] > 0) is

E
⇥
- | �

⇤
=

’
G2(

G · Pr
⇥
- = G | �

⇤
.

13

Chapter 2 Preliminaries

This allows us to express the expected value of a random variable - as a sum
over a partition & of the sample space S , via the law of total expectation, which
states that

E[-] =
’
�2&

E
⇥
- | �

⇤
· Pr[�] . (2.1)

On the other hand, we consider continuous random variables- : S ! (, where
(✓ R. Then, 5- is typically called the probability density function. In this case,
the conditional distribution of - given an event � 2 O (with Pr[�] > 0) is
de�ned as

5- |� (G) =
8><
>:

5- (G)

Pr[�]
, G 2 �,

0, G 8 �.

Moreover, the joint probability density function of two continuous random vari-
ables - and . is given by

5- ,. (G,~) =
�- ,. (G,~) d2

dG d~
= 5- |.=~ (G) · 5. (~) .

Analogous to the de�nition for discrete random variables, the expected value of
a continuous random variable - is

E[-] =
π
G2(

G · 5- (G) dG,

and the conditional expectation given an event � 2 O with non-zero probability
is de�ned as

E
⇥
- | �

⇤
=

π
G2(

G · 5- |� (G) dG .

Often, determining the expected value of a random variable is not su�cient to
obtain meaningful statements. When considering random experiments related to
graphs, we therefore classify events depending on how likely they are to occur.
We say that an event happens with high probability and asymptotically almost
surely, if it occurs with probability 1 � O

�
1/=

�
and 1 � o(1), respectively.

14

Probability Theory Section 2.2

2.2.1 Cherno� Bounds

To show that certain random variables are concentrated around their expectation,
i.e., with high probability the outcome does not deviate much from the expected
value, we regularly use the following Cherno� bounds.

Theorem 2.1 (Cherno� Bounds [MU05, Theorems 4.4 and 4.5]). Let -1, . . . ,-=

be independent random variables taking values in the set {0, 1} and let - be their
sum. Then,

Pr[- � C]  2�C for C � 6E[-],

Pr
⇥
- � (1 + Y)E[-]

⇤
 4

�Y
2
/3 · E[-] for Y 2 (0, 1], and

Pr
⇥
-  (1 � Y)E[-]

⇤
 4

�Y
2
/2 · E[-] for Y 2 (0, 1) .

Usually, it su�ces to show that a random variable does not exceed a certain
upper bound or drop below a lower bound with high probability. The following
corollaries show that (su�ciently large) upper and lower bounds on the expected
value su�ce to obtain concentration.

Corollary 2.2. Let -1, . . . ,-= be independent random variables taking values in
the set {0, 1}, let - be their sum, and let 5 (=) be an upper bound on E[-]. Then,
for all Y 2 (0, 1) it holds that

Pr
⇥
- � (1 + Y) 5 (=)

⇤
 4

�Y
2
/3 · 5 (=)

.

Proof. Consider a random variable - 0 with E[-
0
] = 5 (=) such that -  -

0 for
every outcome. Note that - 0 exists as 5 (=) � E[-]. Since -  -

0, it holds that

Pr
⇥
- � (1 + Y) 5 (=)

⇤
 Pr

⇥
-

0
� (1 + Y) 5 (=)

⇤
= Pr

h
-

0
� (1 + Y)E

⇥
-

0
⇤ i
.

Using Theorem 2.1 we can derive that

Pr
h
-

0
� (1 + Y)E

⇥
-

0
⇤ i

 4
�Y

2
/3 · E[- 0]

= 4�Y
2
/3 · 5 (=)

. ⇤

In particular, the above corollary implies that - does not exceed an upper
bound on the expected value E[-] with high probability, if this bound is su�-
ciently large.

15

Chapter 2 Preliminaries

Corollary 2.3. Let -1, . . . ,-= be independent random variables taking values in
the set {0, 1} and let - be their sum. Further, let 5 (=) = ⌦

�
log(=)

�
be such that

E[-]  5 (=) and let 2 � 0 be a constant. Then, with probability 1 � O(=
�2
) it

holds that - = O
�
5 (=)

�
.

Proof. We prove the statement by showing that the probability for the comple-
mentary event, i.e., - is more than a constant factor larger than 5 (=), is O(=�2)
for any 2 � 0. Since E[-]  5 (=), we can choose a constant 21 su�ciently large
such that 21 5 (=) � 6E[-]. Thus, by Theorem 2.1 it holds that

Pr
⇥
- � 21 5 (=)

⇤
 2�21 5 (=) .

Moreover, we have 5 (=) = ⌦
�
log=

�
. Consequently, there exists another constant

22 such that 5 (=) � 22 log(=) for su�ciently large =. We obtain

Pr
⇥
- � 21 5 (=)

⇤
 2�2122 log(=)  =�2122

for= su�ciently large. Then, choosing 21 such that 21 > 2/22 yields the claim. ⇤

Similarly, a super-logarithmic lower bound on E[-] implies that - does not
fall below the bound with high probability.

Corollary 2.4. Let -1, . . . ,-= be independent random variables taking values in
the set {0, 1} and let - be their sum. Further, let 5 (=) = !

�
log(=)

�
be such that

5 (=)  E[-] and let 2 � 0 be a constant. Then, with probability 1 � O(=
�2
) it

holds that - = ⌦
�
5 (=)

�
.

Proof. Analogous to the proof of Corollary 2.3 we prove the statement by show-
ing that the probability for the complementary event, i.e., - is more than a
constant factor smaller than 5 (=), is O(=

�2
) for any 2 � 0. Let Y 2 (0, 1) be a

constant. The following inequalities are obtained by �rst using the fact that
5 (=)  E[-], applying the third statement of Theorem 2.1, again applying
5 (=)  E[-], and �nally using 5 (=) = !

�
log(=)

�
:

Pr
⇥
-  (1 � Y) 5 (=)

⇤
 Pr

⇥
-  (1 � Y)E[-]

⇤
 4

�Y
2
/2 · E[-]

 4
�Y

2
/2 · 5 (=)

= 4�Y
2
/2 · !(log(=)) = =�!(1) . ⇤

16

Probability Theory Section 2.2

2.2.2 Bounded Di�erences

While the Cherno� bound considers the sum of indicator random variables, we
also have to deal with di�erent functions of random variables. In this case tight
bounds on the probability that the function deviates a lot from its expected value
can be obtained using the method of bounded di�erences.
Let -1, . . . ,-= be independent random variables taking values in a set (. We

say that a function 5 : (= ! R satis�es the bounded di�erences condition if for
all 8 2 [=] there exists a J8 � 0 such that

|5 (x) � 5 (x0
) |  J8 , (2.2)

for all x, x0
2 (

= that di�er only in the 8-th component.

Theorem 2.5 (Method of Bounded Di�erences [DP12, Corollary 5.2]). Let
-1, . . . ,-= be independent random variables taking values in a set (and let
5 : (= ! R be a function that satis�es the bounded di�erences condition with
parameters J8 � 0 for 8 2 [=]. Then for J =

Õ
82 [=] J

2
8
it holds that

Pr
h
5 > E

⇥
5
⇤
+ C

i
 4

�2C2/J
.

As before, we are usually interested in showing that a random variable does
not exceed a certain upper bound with high probability. Analogously to the
Cherno� bound in Corollary 2.2, one can show that, again, an upper bound on
the expected value su�ces to show concentration.

Corollary 2.6. Let -1, . . . ,-= be independent random variables taking values
in a set (and let 5 : (= ! R be a function that satis�es the bounded di�erences
condition with parameters J8 � 0 for 8 2 [=]. If 6(=) is an upper bound on E

⇥
5
⇤

then for J =
Õ

82 [=] J
2
8
and 2 � 1 it holds that

Pr
⇥
5 > 26(=)

⇤
 4

�2((2�1)6 (=))2/J
.

Proof. Let ⌘(=) � 0 be a function with 5̂ = 5 +⌘(=) such that E
⇥
5̂
⇤
= 6(=). Note

that ⌘(=) exists since 6(=) � E
⇥
5
⇤
. As a consequence, we have 5  5̂ for all

outcomes of -1, . . . ,-= and it holds that
�� 5̂ (x) � 5̂ (x0

)
�� = �� 5 (x) + ⌘(=) � 5 (x0

) � ⌘(=)
�� = �� 5 (x) � 5 (x0

)
��,

17

Chapter 2 Preliminaries

for all x, x0
2 (

= . Consequently, 5̂ satis�es the bounded di�erences condition
with the same parameters J8 as 5 . Since 5  5̂ it holds that

Pr
⇥
5 > 26(=)

⇤
 Pr

h
5̂ > 26(=)

i
= Pr

h
5̂ > 2E

⇥
5̂
⇤ i
.

Choosing C = (2 � 1)E
⇥
5̂
⇤
allows us to apply Theorem 2.5 to conclude that

Pr
h
5̂ > 2E

⇥
5̂
⇤ i

= Pr
h
5̂ > E

⇥
5̂
⇤
+ C

i
 4

�2((2�1)E[5̂])2/J = 4�2((2�1)6 (=))
2
/J
. ⇤

2.2.3 Typical Bounded Di�erences

A disadvantage of the method of bounded di�erences is that one has to consider
the worst possible change in 5 when changing one variable and the resulting
bound becomes worse the larger this change. A way to overcome this issue is
to consider the method of typical bounded di�erences instead. Intuitively, it
allows us to milden the e�ect of the change in the worst case, if it is su�ciently
unlikely, and to focus on the typical cases where the change should be small,
instead. Formally, we say that a function 5 : (= ! R satis�es the typical bounded
di�erences condition with respect to an event � ✓ (

= if for all 8 2 [=] there exists
a J�

8
 J8 such that

|5 (x) � 5 (x0
) | 

(
J
�

8
, if x 2 �,

J8 , otherwise,
(2.3)

for all x, x0
2 (

= that di�er only in the 8-th component.

Theorem 2.7 (Method of Typical Bounded Di�erences, [War16, Theorem 2]1).
Let-1, . . . ,-= be independent random variables taking values in a set (and let� ✓

(
= be an event. Furthermore, let 5 : (= ! R be a function that satis�es the typical
bounded di�erences condition with respect to � and with parameters J�

8
 J8 for

8 2 [=]. Then for all Y1, . . . , Y= 2 (0, 1] there exists an event ⌫ satisfying ¬⌫ ✓ �

and Pr[⌫]  Pr[¬�] ·
Õ

82 [=] 1/Y8 , such that for J =
Õ

82 [=] (J
�

8
+ Y8 (J8 � J

�

8
))

2

and C � 0 it holds that

Pr
h
5 > E

⇥
5
⇤
+ C ^ ¬⌫

i
 4

�C
2
/(2J)

.

1 We state a slightly simpli�ed version in order to facilitate understandability. The original
theorem allows for the random variables -1, . . . ,-= to take values in di�erent sets.

18

Probability Theory Section 2.2

Intuitively, the choice of the values for Y8 has two e�ects. On the one hand,
choosing Y8 small allows us to compensate for a potentially large worst-case
change J8 . On the other hand, this also increases the bound on the probability
of the event ⌫ that represents the atypical case. However, in that case one can
still obtain meaningful bounds if the typical event � occurs with high enough
probability. Again, it is usually su�cient to show that the function 5 does not
exceed an upper bound on its expected value with high probability. The proof of
the following corollary is analogous to the one of Corollary 2.6.

Corollary 2.8. Let -1, . . . ,-= be independent random variables taking values in
a set (and let � ✓ (

= be an event. Furthermore, let 5 : (= ! R be a function
that satis�es the typical bounded di�erences condition with respect to � and with
parameters J�

8
 J8 for 8 2 [=], and let 6(=) be an upper bound on E

⇥
5
⇤
. Then

for all Y1, . . . , Y= 2 (0, 1], J =
Õ

82 [=] (J
�

8
+ Y8 (J8 � J

�

8
))

2, and 2 � 1 it holds that

Pr
⇥
5 > 26(=)

⇤
 4

� ((2�1)6 (=))2/(2J)
+ Pr[¬�] ·

’
82 [=]

1/Y8 .

Proof. Let ⌘(=) � 0 be a function with 5̂ = 5 +⌘(=) such that E
⇥
5̂
⇤
= 6(=). Note

that ⌘(=) exists since 6(=) � E
⇥
5
⇤
. As a consequence, we have 5  5̂ for all

outcomes of -1, . . . ,-= and it holds that
�� 5̂ (x) � 5̂ (x0

)
�� = �� 5 (x) + ⌘(=) � 5 (x0

) � ⌘(=)
��

=
�� 5 (x) � 5 (x0

)
��,

for all x, x0
2 (

= . Consequently, 5̂ satis�es the typical bounded di�erences
condition with respect to� with the same parameters J�

8
 J8 as 5 . Since 5  5̂ ,

it holds that

Pr
⇥
5 > 26(=)

⇤
 Pr

h
5̂ > 26(=)

i

= Pr
h
5̂ > 2E

⇥
5̂
⇤ i
.

By choosing C = (2 � 1)E
⇥
5̂
⇤
this can be written as

Pr
h
5̂ > 2E

⇥
5̂
⇤ i

= Pr
h
5̂ > E

⇥
5̂
⇤
+ C

i
.

19

Chapter 2 Preliminaries

Theorem 2.7 now guarantees the existence of an event ⌫ with ¬⌫ ✓ � and

Pr[⌫]  Pr[¬�] ·
’
82 [=]

1/Y8 ,

such that

Pr
h
5̂ > E

⇥
5̂
⇤
+ C ^ ¬⌫

i
 4

�C
2
/(2J)

.

To bound Pr
⇥
5̂ > E

⇥
5̂
⇤
+ C

⇤
we apply the law of total probability and consider

the events ⌫ and ¬⌫ separately

Pr
h
5̂ > E

⇥
5̂
⇤
+ C

i
= Pr

h
5̂ > E

⇥
5̂
⇤
+ C

��� ¬⌫ i
· Pr[¬⌫]

+ Pr
h
5̂ > E

⇥
5̂
⇤
+ C

��� ⌫ i
· Pr[⌫] .

The �rst part of the sum can be simpli�ed using the de�nition of conditional
probabilities. Moreover, it holds that Pr

⇥
5̂ > E

⇥
5̂
⇤
+ C

�� ⌫⇤  1. Thus, we can
bound the above term by

Pr
h
5̂ > E

⇥
5̂
⇤
+ C

i
 Pr

h
5̂ > E

⇥
5̂
⇤
+ C ^ ¬⌫

i
+ Pr[⌫] .

Both remaining summands can now be bounded using the upper bounds that
we previously obtained by applying Theorem 2.7, i.e.,

Pr
h
5̂ > E

⇥
5̂
⇤
+ C ^ ¬⌫

i
 4

�C
2
/(2J) and Pr[⌫]  Pr[¬�] ·

’
82 [=]

1/Y8 .

Then, it follows that

Pr
h
5̂ > E

⇥
5̂
⇤
+ C

i
 4

�C
2
/(2J)

+ Pr[¬�] ·
’
82 [=]

1/Y8 .

Finally, since C was chosen as C = (2 � 1)E
⇥
5̂
⇤
and since E

⇥
5̂
⇤
= 6(=), we obtain

the claimed bound. ⇤

20

Useful Inequalities Section 2.3

2.3 Useful Inequalities

Computations can often be simpli�ed by making use of the fact that 1 ± G

can be closely approximated by 4±G for small G . More precisely, we use the
following lemmas, which have been derived previously using the Taylor approx-
imation [Kro16].

Lemma 2.9 ([Kro16, Lemma 2.1]). Let G 2 R. Then, 1 + G  4
G .

Lemma 2.10 ([Kro16, Corollary of Lemma 2.2]). Let G > 0 with G = o(1). Then,

1 � G � 4
� (1+o(1))G

.

Proof. Consider Y = log(1/(1 � G)) = o(1) and note that 4�Y = 1 � G . To prove
the claim, it su�ces to show that 4�Y � 4� (1+Y)G . It is easy to see that

4
�Y = 4�(1+Y�

1+Y
1+Y) = 4� (1+Y) (1� 1

1+Y) .

By Lemma 2.9 we have 1 + Y  4Y and, thus, 1/(1 + Y) � 4�Y . Since Y is chosen
such that 4�Y = 1 � G , we can bound 1/(1 + Y) � 1 � G in above equation, which
yields

4
�Y

� 4
� (1+Y) (1� (1�G)) = 4� (1+Y)G

. ⇤

Moreover, the following lemma can often be used to simplify error terms.

Lemma 2.11 ([Kro16, Lemma 2.3]). Let G 2 R with G = ±o(1) be given. Then,

1
1 + G

= 1 � ⇥(G) .

21

3 Networks with
Underlying Hyperbolic Geometry

Hyperbolic and Euclidean geometry di�er in several fundamental ways. Com-
monly, hyperbolic geometry is introduced as a variation of Euclidean geometry,
where the parallel axiom is replaced by a di�erent one that allows for a given
line to have more than one parallel that goes through a given point. Another
distinguishing property is that, in contrast to �at Euclidean space, hyperbolic
space is negatively curved. For us, the most important di�erence is the rate at
which space expands. In the Euclidean plane the area of a disk grows with its
radius ' as c'2, i.e., polynomially in '. In contrast, this growth is described by
2c (cosh(') � 1), with cosh(') = (4

'
+ 4

�'
)/2, in the hyperbolic plane. That is,

space expands exponentially fast there.
To capture these properties and facilitate the study of hyperbolic space, various

models of hyperbolic geometry have been developed over time. While most of
them are used to represent hyperbolic space of arbitrary dimensionality, we
focus on the two-dimensional hyperbolic plane in this thesis. Formally, this
plane is described using an abstract two-dimensional surface that is equipped
with the axioms of hyperbolic geometry. We refer the reader to the book by
Ramsay and Richtmyer [RR95] for an in-depth introduction. Intuitively, the
di�erent models of hyperbolic geometry present di�erent ways of addressing
points in the abstract surface. Arguably the most famous model is the Poincaré
disk model, where the in�nite hyperbolic plane is mapped into the Euclidean
unit disk. Other commonly used representations include the upper-half-plane
model and the hyperboloid model. We refer to [RR95, Chapter 7] for an overview
of several models.

3.1 The Polar-Coordinate Model

In this thesis, we work with the polar-coordinate model, which is also called the
native representation (see, e.g.,[Kri+10]) or Gans model after David Gans, who
(to the best of our knowledge) proposed it �rst [Gan66].

In the following, we introduce the polar-coordinate model and present certain

23

Chapter 3 Networks with Underlying Hyperbolic Geometry

O

P

Q

Ji (P,Q)

X (P,Q)

A

A (P)

i (P)

Figure 3.1: Visualization of the polar-coordinate model of the hyperbolic plane with
curvature �1. Point P is identi�ed using the radius A (P) and angle i (P) (both red). The
angular distance between P and Q is shown in orange. The line segment representing
the hyperbolic distance between them is shown in blue. A circle (green) of radius A is
centered at Q.

properties of the hyperbolic plane that are relevant for our analyses. Throughout
the thesis, we use calligraphic symbols to denote geometric objects. Consider
the two-dimensional hyperbolic plane H2

Z
of negative curvature = �Z

2 for a
constant Z > 0. To address points in the plane, we use polar coordinates. After
de�ning a designated pole or origin O 2 H

2
Z
together with a polar axis, i.e., a

reference ray starting at O, a point P 2 H
2
Z
is uniquely determined by a tuple

(A (P),i (P)), where A (P) denotes the radius of P, which is the hyperbolic
distance to O, and i (P) denotes angle (or angular coordinate) of P, which is
the angle between the reference ray and the ray from O through P, measured
in counterclockwise direction around O. For visualizations, these coordinates
are then interpreted as polar coordinates in the Euclidean plane; see Figure 3.1.
Since hyperbolic space expands faster than Euclidean space, this projection leads
to a distortion. Consequently, line segments bend towards the origin O and
circles appear tear-drop shaped.

Intuitively, the curvature can be used to “scale” the space, i.e., it a�ects the
hyperbolic distance between points, which can be determined using the hyper-
bolic law of cosines. For a triangle, it allows us to compute the length 2 of one
side, given the lengths 0,1 of the other sides and the angle i opposite of 2 . In

24

The Polar-Coordinate Model Section 3.1

particular, it states that

cosh(Z2) = cosh(Z0) cosh(Z1) � sinh(Z0) sinh(Z1) cos(i),

where sinh(G) = (4
G
� 4

�G
)/2. To compute the hyperbolic distance between two

points P,Q 2 H
2
Z
, we consider the triangle de�ned by P,Q, and the origin O.

Two side lengths are given by the radii A (P) and A (Q), and the angle opposite
of the third side, i.e., the side representing the hyperbolic distance between P

and Q (blue in Figure 3.1), is the angular distance between the two points, i.e., the
angle between the rays from the origin through P and Q (orange in Figure 3.1).
Formally, the angular distance is de�ned as

Xi (P,Q) = c � |c � |i (P) � i (Q)| |.

Then, the hyperbolic distance between P and Q is given by

X
H
2
Z
(P,Q) =

1
Z
acosh

�
cosh(ZA (P)) cosh(ZA (Q))

� sinh(ZA (P)) sinh(ZA (Q)) cos(Xi (P,Q))
�
,

where acosh(G) = log(G +
p
G2 � 1) is the inverse of the hyperbolic cosine. Note

how the angular coordinates make simple de�nitions cumbersome as angles are
considered modulo 2c , leading to a case distinction depending on where the
reference ray lies. Whenever possible, we implicitly assume that the reference
ray is chosen such that we do not have to compute modulo 2c . Moreover, we
can utilize two properties of the cosine function to simplify the above distance
function. First, we can use the identity cos(G�~) = cos(G) cos(~) +sin(G) sin(~),
from which we can derive

cos(c � G) = cos(c)| {z }
�1

cos(G) + sin(c)| {z }
0

sin(G) = � cos(G) . (3.1)

Second, we can make use of the fact that the cosine function is symmetric about
the ~-axis, which means cos(�G) = cos(G) and thus

cos(|G |) = cos(G) . (3.2)

25

Chapter 3 Networks with Underlying Hyperbolic Geometry

Then, the cosine of the angular distance between two points can be simpli�ed to

cos(Xi (P,Q)) = cos
�
c � |c � |i (P) � i (Q)| |

�
(3.1)
= � cos

�
|c � |i (P) � i (Q)|

�
(3.2)
= � cos

�
c � |i (P) � i (Q)|

�
(3.1)
= cos

�
|i (P) � i (Q)|

�
(3.2)
= cos

�
i (P) � i (Q)

�
.

Consequently, the hyperbolic distance between P and Q can be written as

X
H
2
Z
(P,Q) =

1
Z
acosh

�
cosh(ZA (P)) cosh(ZA (Q))

� sinh(ZA (P)) sinh(ZA (Q)) cos(i (P) � i (Q))
�
.

Note that this distance depends on the choice of the curvature Z , which mainly
acts on the radii of the two points. In fact, we can utilize this to scale the distances
between P and Q, by changing the curvature and adjusting the radii accordingly,
as formalized in the following lemma.

Lemma 3.1. Let Z > 0 be a constant and let P,Q 2 H
2
Z
be two points. Further,

consider Z 0 = Z /2 for a constant 2 > 0. Then, the hyperbolic distance between the
points P0 = (2 · A (P),i (P)) 2 H

2
Z 0
and Q

0 = (2 · A (Q),i (Q)) 2 H
2
Z 0
is given by

X
H
2
Z 0
(P

0
,Q

0
) = 2 · X

H
2
Z
(P,Q) .

Proof. We start by computing X
H
2
Z 0
(P

0
,Q

0
) using the distance function as de�ned

above.

X
H
2
Z 0
(P

0
,Q

0
) =

1
Z 0

acosh
✓
cosh

�
Z
0
A (P

0
)
�
cosh

�
Z
0
A (Q

0
)
�

� sinh
�
Z
0
A (P

0
)
�
sinh

�
Z
0
A (Q

0
)
�
· cos

⇣
Xi (P

0
,Q

0
)

⌘◆
.

There, we can now utilize that A (P0
) = 2 · A (P) and A (Q0

) = 2 · A (Q), together

26

The Polar-Coordinate Model Section 3.1

with the fact that Xi (P0
,Q

0
) = Xi (P,Q), which yields

X
H
2
Z 0
(P

0
,Q

0
) =

1
Z 0

acosh
✓
cosh

�
Z
0
2 · A (P)

�
cosh

�
Z
0
2 · A (Q)

�

� sinh
�
Z
0
2 · A (P)

�
sinh

�
Z
0
2 · A (Q)

�
· cos

⇣
Xi (P,Q)

⌘◆
.

Moreover, we have Z 0 = Z /2 and thus Z 02 = Z , and obtain

X
H
2
Z 0
(P

0
,Q

0
) =

1
Z 0

acosh
✓
cosh

�
ZA (P)

�
cosh

�
ZA (Q)

�

� sinh
�
ZA (P)

�
sinh

�
ZA (Q)

�
· cos

⇣
Xi (P,Q)

⌘◆

=
Z

Z
·
1
Z 0

acosh
✓
cosh

�
ZA (P)

�
cosh

�
ZA (Q)

�

� sinh
�
ZA (P)

�
sinh

�
ZA (Q)

�
· cos

⇣
Xi (P,Q)

⌘◆

=
Z

Z 0
· X

H
2
Z
(P,Q)

= 2 · X
H
2
Z
(P,Q). ⇤

In the remainder of this thesis, we follow the commonly used constraint of
�xing = �1. That is, we set Z = 1 and use the shorthand notation H

2
1 = H

2.
For our purposes, this is not actually a constraint since we can simply translate
point sets in hyperbolic planes of di�erent curvatures to H

2 and take the scaled
distances into account. However, by choosing Z = 1 the function describing the
hyperbolic distance between two point P,Q 2 H

2 simpli�es to

XH2 (P,Q) = acosh
�
cosh(A (P)) cosh(A (Q))

� sinh(A (P)) sinh(A (Q)) cos(Xi (P,Q))
�

(3.3)
= acosh

�
cosh(A (P)) cosh(A (Q))

� sinh(A (P)) sinh(A (Q)) cos(i (P) � i (Q))
�
.

27

Chapter 3 Networks with Underlying Hyperbolic Geometry

'0 = 8.5 ' = '0,'0 = 4.9 ' = '0/2,'0 = 0.001 ' = '0/5,

Figure 3.2: Hyperbolic unit disk graphs with di�erent ground space and threshold
radii. The representations have been scaled such that the ground spaces appear to
have the same size, when in fact they are very di�erent, as indicated by the di�erent
values for '0. (Left) The ground space is very small and the threshold radius even
smaller, leading to grid-like structures. (Center) Ground space and threshold radius are
increased, hierarchies start form but grid like structures remain. (Right) Ground space
and threshold have the same large value, leading to hierarchical structures.

3.2 Hyperbolic Unit Disk Graphs

Recall that randomly generated Euclidean unit disk graphs are one way to
create graphs that exhibit clustering, but that the resulting networks feature a
homogeneous degree distribution (see Figure 1.3). The basic idea is to distribute
points uniformly at random in a region in the Euclidean plane and to connect
each point to all other points that lie within a disk of a �xed radius around it.
In the following, we generalize the class of unit disk graphs by replacing

the Euclidean with the hyperbolic plane, which is based on joint work with
Thomas Bläsius, Tobias Friedrich, and Daniel Stephan [Blä+23]. Within the
resulting class, we de�ne the subclass of strongly hyperbolic unit disk graphs,
as a counterpart to Euclidean unit disk graphs. Given a graph ⌧ = (+ , ⇢), a
(Euclidean) unit disk representation of ⌧ is a mapping ? : + ! R

2 together with
a threshold radius ' such that {D, {} 2 ⇢ if and only if the distance between ? (D)
and ? ({) is at most '. The graph⌧ is a (Euclidean) unit disk graph if it has a unit
disk representation. The terms hyperbolic unit disk representation and hyperbolic
unit disk graph are de�ned analogously, except that ? maps to the hyperbolic
plane H2 instead of the Euclidean plane R2. We note that the threshold radius
' is part of the representation and can thus depend on the graph. As argued

28

Hyperbolic Unit Disk Graphs Section 3.2

before, the choice of ' does not matter in Euclidean space, since scaling ' and
all coordinates ? (·) by the same factor yields the same adjacencies. However,
in the hyperbolic plane H2 of �xed curvature �1, there is no scaling operation
that shrinks radii while leaving relative distances intact. The term “unit disk”
is still justi�ed as we could instead �x ' = 1 and allow di�erent curvatures
(see Lemma 3.1).

A graph is a strongly hyperbolic unit disk graph if it admits a hyperbolic unit
disk representation in which ? maps all vertices to points within a disk whose
radius is equal to the threshold radius '.

3.2.1 The Structure of Unit Disk Graphs

In the following, we discuss how di�erent hyperbolic unit disk representa-
tions lead to di�erent structures in hyperbolic unit disk graphs, as illustrated
in Figure 3.2. For better understanding, we recommend using the interactive
visualization2 while reading the following. It lets the user change the size of the
ground space, allowing to smoothly transition between Euclidean and strongly
hyperbolic unit disk graphs. We note that, throughout the thesis, we draw edges
of networks in the hyperbolic plane as straight lines and not bent towards the
origin. This improves the clarity of the drawings and better highlights the struc-
ture of the networks. Nevertheless, it is important to keep in mind that distances
in the resulting drawings are typically larger than suggested by the drawn edges.

Let D' (P) denote a disk of radius ' centered at a point P. If P is the origin
of the considered space, we omit the center and simply write D' instead. For
a radius '0, consider a disk D'0 ⇢ R

2 in the Euclidean plane and assume we
distribute vertices evenly in it. Then the Euclidean unit disk graph, obtained by
connecting any two points whose Euclidean distance is at most a threshold ',
resembles a grid-like structure (with a density depending on ' and the radius of
'
0 of the ground space). As the hyperbolic plane resembles the Euclidean plane

locally, we can achieve the same grid-like structures by choosing a diskD'0 ⇢ H
2

with a very small disk radius '0, together an even smaller threshold radius ', as
shown in Figure 3.2 (left). Beyond that, we can increase the radius of D'0 and
the threshold ', and start to observe the formation of hierarchical structures,
which are not obtainable with Euclidean unit disks, see Figure 3.2 (center). In

2 https://thobl.github.io/hyperbolic-unit-disk-graph/

29

https://thobl.github.io/hyperbolic-unit-disk-graph/

Chapter 3 Networks with Underlying Hyperbolic Geometry

the strongly hyperbolic setting (where ' = '0), we only have hierarchical and
no grid-like structures, as shown in Figure 3.2 (right).
Thus, to paint the big picture, hyperbolic unit disk graphs comprise two

extremes: Euclidean unit disk graphs with grid-like structures on one side and
strongly hyperbolic unit disk graphs with hierarchical structures on the other.
Therefore, if we want to design algorithms for grid-like structures, it makes
sense to analyze them on Euclidean unit disk graphs. For hierarchical structures,
strongly hyperbolic unit disk graphs are a good choice. In particular, this allows
us to model graphs that feature a heterogeneous degree distribution, while also
exhibiting clustering due to the underlying geometry.

3.2.2 Adjacency in Strongly Hyperbolic Unit Disk Graphs

Recall that a strongly hyperbolic unit disk graph ⌧ is equipped with a repre-
sentation ? , mapping the vertices into a disk of radius ' that, without loss of
generality, is centered at the origin of the hyperbolic plane. From now on and
throughout the thesis, we associate a vertex { with its mapping ? ({). Moreover,
we denote the set of vertices that lie in an area A with + (A).

By de�nition, two vertices in the graph ⌧ are adjacent, if and only if their
hyperbolic distance is at most '. Consequently, we can imagine that each
vertex { is equipped with a neighborhood diskD' ({) containing all its neighbors.
That is, # ({) = + (D' ({)). The following lemma shows that moving such a
neighborhood disk closer to the center of D' only increases the region of D'

that it covers. From this, we can derive that moving a vertex towards the center
of D' only increases its neighborhood.

Lemma 3.2. Let ' be a radius and let P1,P2 2 D' be points with A (P1)  A (P2)

and i (P1) = i (P2). Then, D' (P1) ◆ D' (P2) \D' .

Proof. Let P 2 D' (P2) \ D' be a point and note that XH2 (P,P2)  '. Now
consider the triangle spanned by the points P,P2, and the origin O. This triangle
is completely contained in the disk D' (P), as XH2 (P,P2)  ' and A (P)  ', as
shown in Figure 3.3. Since disks are convex and P1 lies on the line from O to P2,
it is part of the triangle and therefore also contained in the disk. Consequently,
XH2 (P,P1)  ' and thus P 2 D' (P1). ⇤

Corollary 3.3. Let⌧ be a strongly hyperbolic unit disk graph with radius ' and let
{1, {2 be vertices with A ({1)  A ({2)  ' and i ({1) = i ({2). Then, # ({1) ◆ # ({2).

30

Hyperbolic Unit Disk Graphs Section 3.2

O P1 P2

P

D' (P2)

D' (P1)

D' (P)

D'

Figure 3.3: Visualization of the proof of Lemma 3.2. Point P1 has a smaller radius
than P2, both having the same angular coordinate. Consequently, D' (P1) (green
region) is a superset of D' (P2) \D' (blue region). The triangle formed by the points
P,P2, and O is contained in D' (P) (both red).

In the following, we investigate in greater detail under which circumstances
two vertices are adjacent. Consider two vertices {1 and {2 in ⌧ with radii A1
and A2, respectively. The two are adjacent, if their hyperbolic distance is at
most '. Clearly, this is the case, if A1 + A2  '. However, when A1 + A2 > ', it
depends on their angular distance Xi ({1, {2) whether their hyperbolic distance
is at most '. Considering the hyperbolic distance function in Equation (3.3),
it is easy to see that this distance increases with increasing angular distance
Xi ({1, {2) 2 [0, c], since cos(G) decreases for increasing G 2 [0, c] and acosh(G)
increases in G . We use \ (A1, A2) to denote the angular distance, such that the
hyperbolic distance between {1 and {2 is exactly'. Then, for Xi ({1, {2)  \ (A1, A2)
we have XH2 ({1, {2)  ', meaning {1 and {2 are adjacent. Whereas for Xi (A1, A2) >
\ (A1, A2) the two vertices are not adjacent. We can compute \ (A1, A2) by using the
hyperbolic distance function in Equation (3.3), setting the distance equal to ',
and solving for the angular distance. That is,

\ (A1, A2) = acos
✓
cosh(A1) cosh(A2) � cosh(')

sinh(A1) sinh(A2)

◆
. (3.4)

31

Chapter 3 Networks with Underlying Hyperbolic Geometry

The following lemma, gives upper and lower bounds on \ (A1, A2) that are easier
to work with than this expression.

Lemma 3.4. Let ' > 0 and A1, A2 2 (0,'] with A1 + A2 � ' be given. Then,

2
p
4'�A1�A2 + 4�'�A1�A2 � (4�2A1 + 4�2A2)  \ (A1, A2)  c

p

4'�A1�A2 .

Proof. We start by applying the cosine function on both sides of Equation (3.4),
which makes it easier to deal with the right hand side for now. This yields

cos(\ (A1, A2)) =
cosh(A1) cosh(A2) � cosh(')

sinh(A1) sinh(A2)
. (3.5)

We consider the upper bound on \ (A1, A2) �rst. Note that we aim to eventually
apply the inverse cosine function to revert the above step. Since this function is
monotonically decreasing, we �rst determine a lower bound on cos(\ (A1, A2)), in
order to obtain an upper bound on \ (A1, A2). Recall that cosh(G) = (4

G
+ 4

�G
)/2

and sinh(G) = (4
G
� 4

�G
)/2, and note that sinh(G)  4

G
/2. Thus, the above

equation can be bounded by

cos(\ (A1, A2)) �
1/4(4A1 + 4�A1) (4A2 + 4�A2) � 1/2(4' + 4

�'
)

1/44A1+A2

=
4
A1+A2 + 4A1�A2 + 4A2�A1 + 4�A1�A2 � 24' � 24�'

4A1+A2

= 1 � 24'�A1�A2 + 4�2A1 + 4�2A2 + 4�2(A1+A2) � 24�'�A1�A2 .

We now argue that the remaining expression can be bounded by dropping the
last four terms since their sum is non-negative. First note that 4G � 0 for all
G 2 R. Consequently, the second to last term is non-negative and it remains
to show that 4�2A1 + 4�2A2 � 24�'�A1�A2 , which can be done by showing that
4
�2A1, 4�2A2 � 4�'�A1�A2 . In the following, we show that this is the case for 4�2A1 .
The proof for 4�2A2 is analogous. Note that A1 � A2  ', since A1, A2 2 (0,'] by
assumption. It follows that A1  ' + A2 and thus 4�2A1 � 4

�'�A1�A2 . We can
conclude that cos(\ (A1, A2)) � 1 � 24'�A1�A2 . The claimed upper bound now
follows by applying the inverse cosine and observing that acos(1 � G)  c

p
G/2

holds for all G 2 [0, 2].
It remains to prove that the claimed lower bound on \ (A1, A2) is valid. Again,

we start with Equation (3.5). However, this time we determine an upper bound

32

Hyperbolic Unit Disk Graphs Section 3.2

on cos(\ (A1, A2)). First, we apply the identity

cosh(G) cosh(~) = sinh(G) sinh(~) + cosh(G � ~),

which yields

cos(\ (A1, A2)) =
sinh(A1) sinh(A2) + cosh(A1 � A2) � cosh(')

sinh(A1) sinh(A2)

= 1 �
cosh(') � cosh(A1 � A2)

sinh(A1) sinh(A2)
.

Using the de�nition of cosh and the fact that sinh(G)  4G/2, we conclude that

cos(\ (A1, A2))  1 �
1/2(4' + 4

�'
) � 1/2(4A1�A2 + 4A2�A1)
1/44A1+A2

= 1 � 2(4'�A1�A2 + 4�'�A1�A2 � (4
�2A2 + 4�2A1)) .

The claim then follows by applying the inverse cosine function and observing
that acos(1 � G) �

p
2G is valid for all G 2 [0, 2]. ⇤

We note that, while the above bounds are easier to work with than the exact
function and are generally applicable due to the few constraints on the considered
radii, the lower bound is still a bit tedious to work with. However, by introducing
some minor requirements, we can obtain a slightly weaker bound that can be
worked with more easily.

Corollary 3.5. Let ' � 1 and A1, A2 2 (0,'] with A1 + A2 � ' and |A1 � A2 |  ' � 1
be given. Then,

p

4'�A1�A2  \ (A1, A2)  c

p

4'�A1�A2 .

Proof. The upper bound immediately follows from Lemma 3.4. By utilizing the
lower bound from the same lemma, we obtain

\ (A1, A2) � 2
p
4'�A1�A2 + 4�'�A1�A2 � (4�2A1 + 4�2A2) .

� 2
p
4'�A1�A2 � (4�2A1 + 4�2A2) .

= 2
q
4'�A1�A2

�
1 � 4�' (4A1�A2 + 4� (A1�A2))

�
,

where the second inequality is valid since 4�'�A1�A2 � 0. To prove the claim, it

33

Chapter 3 Networks with Underlying Hyperbolic Geometry

thus su�ces to show that the remaining negative part is at most 3/4, which can
be done as follows. First note that

4
�'

(4
A1�A2 + 4

� (A1�A2)) = 24�' ·
1
2
(4

A1�A2 + 4
� (A1�A2)) = 24�' · cosh(A1 � A2) .

Now note that cosh(G) is symmetric about the ~-axis and thus cosh(A1 � A2) =
cosh(|A1 � A2 |). Moreover, since cosh(G) is monotonically increasing for G � 0,
we can utilize the assumption that |A1 � A2 |  ' � 1 to conclude

4
�'

(4
A1�A2 + 4

� (A1�A2))  24�' · cosh(' � 1).

Finally, since cosh(G) = 1/2(4G + 4�G)  4G for all G � 0, we obtain

4
�'

(4
A1�A2 + 4

� (A1�A2))  24�' · 4
'�1 = 2/4  3/4. ⇤

Apart from the above bounds, we highlight another property of the function
\ (A1, A2), for the special case where A1 = A2.

Lemma 3.6. The function \ (A , A) is monotonically decreasing for A � 0.

Proof. Consider the de�nition of \ (A1, A2) in Equation (3.4). By utilizing the fact
that A1 = A2 = A , the equation simpli�es to

\ (A , A) = acos

cosh(A)2 � cosh(A)

sinh(A)2

!
.

We can now apply the identities cosh(G)2 = (cosh(2G) + 1)/2 and sinh(G)2 =
(cosh(2G) � 1)/2, both being valid for G 2 R, to obtain

\ (A , A) = acos
✓
1/2(cosh(2A) + 1) � cosh(A)

1/2(cosh(2A) � 1)

◆

= acos
✓
(cosh(2A) + 1) � 2 cosh(A)

cosh(2A) � 1

◆

= acos
✓
cosh(2A) � 1 + 2 � 2 cosh(A)

cosh(2A) � 1

◆

= acos
✓
1 � 2

cosh(A) � 1
cosh(2A) � 1

◆
.

34

Hyperbolic Unit Disk Graphs Section 3.2

Further, utilizing the fact that

cosh(G) � 1
cosh(2G) � 1

=
1

2 cosh(G) + 2
,

which is valid for all G 2 R, the above term can be simpli�ed to

\ (A , A) = acos
✓
1 �

1
cosh(A) + 1

◆
.

Note that cosh(G) is monotonically increasing for G � 0, and so is the argument
in the inverted cosine. The claim follows as acos is monotonically decreasing. ⇤

3.2.3 Cliques in Strongly Hyperbolic Unit Disk Graphs

As mentioned above, strongly hyperbolic unit disk graphs exhibit clustering
due to the underlying geometry. In the following, we examine how this a�ects
the formation of cliques. We start by showing that the vertices lying in a disk
D' (P) having smaller radius than P, form two cliques. More precisely, we say
that a vertex set (✓ + can be covered by : cliques, if there exists a partitioning
(1, . . . , (: of (such that the induced subgraphs ⌧ [(8] for 8 2 [:] are cliques.

Lemma 3.7. Let⌧ be a strongly hyperbolic unit disk graph with radius ' > 0 and
let P 2 D' be a point with A (P) = A . Then, + (D' (P) \DA) can be covered by
two cliques.

Proof. Assume without loss of generality that i (P) = 0. We divide the region
D' (P) \ DA into two halves A and A

0 containing all points with angles in
[0, c) and [c, 2c), respectively, as illustrated in Figure 3.4. The goal now is
to show that the vertices in + (A) and the ones + (A

0
) induce a clique. More

precisely, we show that this is the case for A. For symmetry reasons this then
also holds for A0. Consider two vertices {1, {2 2 A and assume without loss of
generality that i ({1)  i ({2). Since {2 2 A ✓ D' (P) and since by Lemma 3.2
moving D' (P) towards the origin increases the region of D' that it covers, we
know that {2 is contained in the disk D' (P

0
) for P0 = (A ({1), 0) (dark green

in Figure 3.4). It follows that XH2 (P0
, {2)  '. Note that {1 has the same radius as

P
0 and that Xi (P0

, {2) � Xi ({1, {2). As established above, decreasing the angular
distance between two points with �xed radii decreases their hyperbolic distance.
Therefore, XH2 ({1, {2)  XH2 (P0

, {2)  ', meaning {1 and {2 are adjacent. ⇤

35

Chapter 3 Networks with Underlying Hyperbolic Geometry

P
P

0
D' DA

D' (P)

D' (P
0
)

O

A

D' (P
0
) \DA

{2
{1

Figure 3.4: Visualization of the proof of Lemma 3.7. Vertices {1, {2 (blue) are in the
half A (orange) of the region D' (P) \DA (red) and are adjacent.

We note that the above lemma implies that the neighbors of a vertex { with
smaller radius than { form two cliques. We continue by investigating the number
of cliques required to cover a strongly hyperbolic unit disk graph.

Lemma 3.8. Let ⌧ be a strongly hyperbolic unit disk graph with radius ' > 0.
Then, ⌧ can be covered by max{2c

p
2, 2c4'/2} cliques.

Proof. To prove the claim, we utilize the underlying geometry by covering the
ground space D' with a set of : disks D1

, . . . ,D
: , such that each + (D

8
) for

8 2 [:] can be covered by two cliques. All of these disks have radius ' and
their centers lie on the boundary of the disk D' . The center of the �rst disk
has an angular coordinate of 0. All other disks D8 are placed at an angular
distance of 2\ (',') to their predecessor D8�1 in counterclockwise direction.
See Figure 3.5 for an illustration. As a consequence, the boundaries of two
consecutive disks intersect on the boundary of D' , which is therefore covered
completely by the : disks. It follows that each vertex is contained in at least one
disk D

8 .
Since by Lemma 3.7 each + (D

8
) for 8 2 [:] can be covered by two cliques,

36

Hyperbolic Unit Disk Graphs Section 3.2

D' O

D
1

D
2

D
3

D
4

D
5

2\ (',')

Figure 3.5: Visualization of the proof of Lemma 3.8, showing the �rst �ve of the : disks
D

1
, . . . ,D

: (blue) and the angular distance between two consecutive centers (green).

it su�ces to show that :  max{c
p
2, c4'/2} in order to �nish the proof. To

this end, recall that two consecutive disks are placed at an angular distance
of 2\ (','). Consequently, it takes : = 2c/(2\ (',')) = c/\ (',') disks to cover
the whole disk D' . Using Lemma 3.4 we can conclude

\ (',') � 2
p

4�' + 4�3' � 24�2'

= 2
q�
4�'/2 � 4�3/2·'

�2
= 2

⇣
4
�'/2

� 4
�3/2·'

⌘
= 24�'/2(1 � 4�') .

It follows that : can be bounded by

: =
c

\ (',')


c

24�'/2
�
1 � 4�'

� = c4'/2 ·
1

2
�
1 � 4�'

� . (3.6)

We now distinguish between two cases depending on the size of ' and start

37

Chapter 3 Networks with Underlying Hyperbolic Geometry

with ' < log(2). Recall that the function \ (',') is monotonically decreasing
in ' (see Lemma 3.6). As a consequence, we have \ (',') � \ (log(2), log(2)).
Then, it follows that

: 
c

\ (log(2), log(2))

 c4
log(2)/2 1

2
�
1 � 4� log(2) �

= c
p
2,

which we account for with the �rst part of the maximum. When ' � log(2),
note that we have (1� 4�') � 1/2. Consequently, we can bound the last fraction
in Equation (3.6) by 1, which yields the claim. ⇤

3.2.4 Related Concepts

To the best of our knowledge, intersection graphs of hyperbolic unit disks, or
hyperbolic unit balls, have so far only been considered by Kisfaludi-Bak [Kis20].
There, for every d > 0, a graph is said to be in the graph class UBGH3 (d) (UBG
= unit ball graph) if its vertices can be mapped into H

3 such that vertices have
distance at most 2d if and only if they are adjacent. There are two core di�erences
compared to our de�nition of hyperbolic unit disk graphs. First, it allows for
higher dimensions. Secondly, it is parameterized by the radius, i.e., UBGH3 (d)

describes an in�nite family of graph classes rather than a single class.
This second di�erence is somewhat subtle but rather important. Consider

the class UBGH3 (d) for a �xed radius d . Moreover, assume we want to study
graphs in UBGH3 (d) that are sparse; for the sake of argument, assume constant
average degree. Then, for an increasing number of vertices =, the region of H3

spanned by the vertices has to grow, as otherwise the density of the graph
grows with =. Thus, for su�ciently large =, the radius d is arbitrarily small
compared to the region spanned by the vertices, yielding grid-like structures
(see discussion above). Consequently, for �xed d , large graphs in UBGH3 (d) are
grid-like rather than hierarchical. This means that asymptotic statements for
the classes UBGH3 (d) do not translate to the hierarchical structures in the class
of strongly hyperbolic unit disk graphs.

A second related concept are hyperbolic random graphs, which we consider in
greater detail in the following section.

38

Hyperbolic Random Graphs Section 3.3

3.3 Hyperbolic Random Graphs

Hyperbolic random graphs were introduced by Krioukov et al., as a model that
features a power-law degree distribution and high clustering [Kri+10]. They
are basically random strongly hyperbolic unit disk graphs3. In particular, every
hyperbolic random graph is a strongly hyperbolic unit disk graph and thus any
statement shown for the latter also holds for the former.

3.3.1 Definition

Formally, a hyperbolic random graphwith= vertices is obtained by �rst assigning
each vertex a random point in a disk D' ⇢ H

2 of radius ' that is centered at the
origin. Afterwards, two vertices D and { are connected by an edge, if and only if
XH2 (D, {)  '. The choice of ' a�ects the properties of the generated network.
In particular, to obtain a power-law exponent V = 2U + 1 (for U 2 (1/2, 1)) with
high probability and an expected average degree of ^ , both of which are assumed
to be constant, ' has to be chosen as ' = 2 log(=) +⇠ for a constant

⇠ = 2 log

2
c^

✓
U

U � 1/2

◆2
(1 + o(1))

!
. ([GPP12, Theorems 3 & 4])

The coordinates of the vertices are independently drawn as follows. For a vertex
the angular coordinate is drawn uniformly at random from [0, 2c) and its radius
is sampled according to the probability density function

5 (A) =
U sinh(UA)

cosh(U') � 1
,

for A 2 [0,']. For A > ', 5 (A) = 0. This function can be closely approximated as

5 (A) = 4�U ('�A)
�
1 + ⇥

�
4
�U'

� 4
�2UA � �

. ([Kro16, Lemma 3.1])

Thus, the joint probability density function of radius and angle is given by

5 (A ,i) =
1
2c

U sinh(UA)
cosh(U') � 1

=
U

2c
4
�U ('�A)

✓
1 + ⇥

⇣
4
�U'

� 4
�2UA

⌘◆
. (3.7)

3 In general, hyperbolic random graphs feature an additional temperature that is not captured by
strongly hyperbolic unit disk graphs. Here, we focus on the version without temperature.

39

Chapter 3 Networks with Underlying Hyperbolic Geometry

3.3.2 Properties

The above probability density function is a natural choice as the probability for
a vertex ending up in a certain region is proportional to its area (at least for
U = 1). Note that the exponential growth in A re�ects the fact that the area of a
disk grows exponentially with its radius. It follows that most vertices lie close
to the boundary of the hyperbolic disk D' and only few vertices are close to
its center. Moreover, the exponential expansion of space has another a�ect. As
for Euclidean unit disk graphs, we can imagine that each vertex { is equipped
with a neighborhood disk D' ({) ⇢ H

2, i.e., a disk of radius ' centered at {, that
contains all other vertices that { is adjacent to. Now if { lies at the center of
the ground space D' then it covers the hole disk D' and is therefore adjacent
to all other vertices. However, if { lies on the boundary of the ground space,
then its neighborhood disk only covers a ⇥

�
1/=

�
-portion of the disk, meaning

its expected number of neighbors is constant and not linear. It follows that a
hyperbolic random graph has few vertices with high degree close to the center
of the disk and many vertices with low degree near its boundary, leading to a
heterogeneous degree distribution. As mentioned above, this degree distribution
follows a power law with exponent V = 2U + 1, with high probability. The
parameter U is assumed to be in the range (1/2, 1), yielding power-law exponents
V 2 (2, 3). Exponents outside of this range are atypical for hyperbolic random
graphs. For U < 1/2 the average degree of the generated networks diverges
and the graph is connected asymptotically almost surely [BFM16]. For U > 1
the graphs decompose into small components (of size sublinear in =) [BFM15],
the diameter is at most logarithmic [FK18], and the variance of the degree
distribution is no longer unbounded.

In this thesis, we focus on the typical range U 2 (1/2, 1). There, the variance of
the degree sequence is unbounded, leading to very heterogeneous degree distri-
butions. The properties of hyperbolic random graphs in this range are researched
comprehensively. If not stated otherwise, the following results hold with high
probability. The average degree is constant [BKL19] (its value being ^ in expecta-
tion), while the maximum degree is bounded by O

�
=
1/(2U�Y) � for Y > 0 [Keu18],

with a bound of =1/(2U)+o(1) holding asymptotically almost surely [GPP12].
The obtained networks have a giant component of size ⌦(=) [BKL19]. Prior
insights about the giant component give bounds depending on U that hold
asymptotically almost surely [BFM13]. All non-giant components have size at
most O

�
log(=)1/(1�U)

�
[FK18, Corollary 13], with a matching lower bound that

40

Hyperbolic Random Graphs Section 3.3

holds asymptotically almost surely [KM19]. The diameter of a hyperbolic ran-
dom graph is bounded by ⌦

�
log(=)

�
from below and by O

�
log(=)1/(1�U)

�
from

above [FK18], with a logarithmic upper bound that holds asymptotically almost
surely [MS19]. Additionally, the average path length in the giant component is
⇥
�
log log(=)

�
asymptotically almost surely [BKL19]. The clustering coe�cient

is constant (and thus non-vanishing) [BKL19]. The actual constant has been
determined as a limit in = [Fou+21]. Moreover, other clustering properties have
been researched [CF16b; Ste20], and further insights about the connectivity have
been obtained by studying the spectrum of the normalized Laplacian [KM18].
Aside from structural properties, hyperbolic random graphs have also been

analyzed from an algorithmic perspective. They can be generated in expected
linear time [BKL19; Blä+19]. The maximum clique (subgraph where all pairs of
vertices are adjacent) can be computed in polynomial time [BFK18] and there
are several algorithmic results based on the fact that hyperbolic random graphs
have small balanced separators and therefore sublinear treewidth (they can be
decomposed into speci�c trees whose vertices represent sets of vertices in the
original graph) [BFK16]. There is a compression algorithm that can store a
hyperbolic random graph using O(=) bits in expectation [BKL19], and a close
approximation of the shortest path between two vertices can be found using
greedy routing, which visits only O

�
log log=

�
vertices for most start–destination

pairs [Bri+17]. Moreover, bootstrap percolation processes have been studied on
hyperbolic random graphs, where it was shown that even small infection rates
are su�cient to infect at least a constant fraction of all vertices [CF16a].
In the following, we present some preliminary mathematical tools that are

useful for further exploration of algorithmic properties of hyperbolic random
graphs in the remainder of the thesis.

3.3.3 Vertex Distribution

Recall that a hyperbolic random graph is obtained by distributing = points at
random in the diskD' ⇢ H

2, according to the probability density function 5 (A ,i)
in Equation (3.7). The probability that a sampled vertex falls into a given subset
A ✓ D' of the disk is given by its probability measure ` (A) =

∞
A
5 (A ,i) di dA ,

which can be thought of as the area of A. Now consider the random variables
-1, . . . ,-= with-8 = 1 if vertex 8 lies inA, i.e., if 8 2 + (A), and-8 = 0 otherwise.
Then, the number of vertices inA is given by |+ (A)| =

Õ
=

8=1-8 . By the linearity

41

Chapter 3 Networks with Underlying Hyperbolic Geometry

of expectation, we obtain that the expected number of vertices in A is

E
⇥
|+ (A)|

⇤
=

=’
8=1

E[-8] = =` (A) .

When analyzing hyperbolic random graphs, there are two types of regions A
that we encounter regularly: disks DA with radius A centered at the origin and
disks D' (P) of radius ' centered at a point P 2 H

2. Gugelmann et al. [GPP12,
Lemma 3.2] showed that

` (DA) = 4�U ('�A) (1 + o(1)), and (3.8)

` (D' (P)) =
2U4�A (P)/2

(U � 1/2)c

✓
1 ± O

⇣
4
� (U�1/2)A (P)

+ 4
�A (P)

⌘◆
= ⇥

⇣
4
�A (P)/2

⌘
. (3.9)

Note that, for a vertex {, the measure of D' ({) gives the probability that a given
vertex lies in the neighborhood of {. Consequently, the expected degree of { is
given by

E
⇥
deg({)

⇤
= E

⇥
|+ (D' ({)) |

⇤
= =` (D' ({)) = ⇥

⇣
=4

�A ({)/2
⌘
.

Moreover, if the expected degree of a vertex { is at least logarithmic, we can
apply Corollaries 2.3 and 2.4 to conclude that the actual degree of { matches the
expectation up to constant factors, with high probability.

3.3.4 Hyperbolic Random Graphs with n Vertices in Expectation

Even though the vertices are distributed independently from each other, comput-
ing the probability for single vertex { to lie in a region A becomes signi�cantly
harder once the positions of some vertices are already known, since that intro-
duces stochastic dependencies. For example, if all = vertices are sampled into A,
the probability for a vertex to lie outside of A is 0. In order to overcome such
issues, we use an approach that was already used on hyperbolic random graphs
before [BFM15; FK18; FM18; Fou+21; KM15], where the vertex positions in the
hyperbolic disk are sampled using an inhomogeneous Poisson point process. For a
given number of vertices =, we refer to the resulting model as hyperbolic random
graphs with = vertices in expectation. After analyzing properties of this simpler
model, we can translate the results back to the original model, by conditioning

42

Hyperbolic Random Graphs Section 3.3

on the fact that the resulting distribution is equivalent to the one originally used
for hyperbolic random graphs. More formally, this can be done as follows.

A hyperbolic random graph with = vertices in expectation is obtained using an
inhomogeneous Poisson point process to distribute the vertices in the hyperbolic
disk. In order to get = vertices in expectation, the corresponding intensity
function 5% (A ,i) at a point (A ,i) 2 D' is chosen as

5% (A ,i) = 4 ('�⇠)/2
5 (A ,i),

where 5 (A ,i) is the original probability density function used to sample hy-
perbolic random graphs (see Equation (3.7)). Let % denote the set of random
variables representing the points produced by this process. Then % has two
properties. First, the number of vertices in % that are sampled into two disjoint
areas are independent random variables. Second, the expected number of points
in % that fall within an area A is given by

∫
A

5% (A ,i) di dA = =
∫

A

5 (A ,i) di dA = =` (A).

By the choice of 5% the number of vertices sampled into the disk matches =
only in expectation, i.e., E

⇥
|% |

⇤
= =. However, we can now recover the original

distribution of the vertices, by conditioning on the fact that |% | = =, as shown
in the following lemma. Intuitively, it states that probabilistic statements on
hyperbolic random graphs with = vertices in expectation can be translated
to the original hyperbolic random graph model by taking a small penalty in
certainty. We note that proofs of how to bound this penalty have been sketched
before [FK18; KM15]. For the sake of completeness, we give an explicit proof. In
the following, we use⌧% to denote a hyperbolic random graph with = vertices in
expectation and point set % . Moreover, we use V to denote a property of a graph
and for a given graph⌧ we denote the event that⌧ has property V with ⇢ (⌧, V).

Lemma 3.9. Consider a hyperbolic random graph⌧% with= vertices in expectation,
a property V , and a constant 2 > 0, such that Pr

⇥
⇢ (⌧% , V)

⇤
= O

�
|% |

�2
�
. Then, for

a hyperbolic random graph ⌧ 0 with = vertices, Pr
⇥
⇢ (⌧

0
, V)

⇤
= O

�
=
�2+1/2� .

Proof. The probability that ⌧ 0 has property V can be obtained by taking the
probability that a hyperbolic random graph ⌧% with = vertices in expectation
has it, and conditioning on the fact that exactly = vertices are produced during

43

Chapter 3 Networks with Underlying Hyperbolic Geometry

its sampling process. That is,

Pr
⇥
⇢ (⌧

0
, V)

⇤
= Pr

⇥
⇢ (⌧% , V)

�� |% | = = ⇤ .
This probability can now be computed using the de�nition of conditional proba-
bilities (see Section 2.2). That is,

Pr
⇥
⇢ (⌧% , V)

�� |% | = = ⇤ = Pr
⇥
⇢ (⌧% , V) \ |% | = =

⇤
Pr

⇥
|% | = =

⇤ .

For the numerator, we have Pr
⇥
⇢ (⌧% , V)

⇤
= O

�
|% |

�2
�
. Constrained to events

where |% | = =, this yields Pr
⇥
⇢ (⌧% , V) \ |% | = =

⇤
= O(=�2). For the denominator,

recall that |% | is a random variable that follows a Poisson distributionwithmean=.
Therefore, we have

Pr
⇥
|% | = =

⇤
=
4
�=
=
=

=!
= ⇥

⇣
=
�1/2

⌘
.

The quotient can, thus, be bounded by

Pr
⇥
⇢ (⌧

0
, V)

⇤
=

O(=
�2
)

⇥
�
=�1/2

� = O
⇣
=
�2+1/2

⌘
. ⇤

3.3.5 Neighborhoods

Section 3.2 already describes some basic properties of neighborhoods in strongly
hyperbolic unit disk graphs, which also hold in hyperbolic random graphs. There,
we establish that the hyperbolic distance between two vertices with �xed radii A1
and A2 grows with increasing angular distance between them. Recall that we
use \ (A1, A2) to denote the maximum angular distance such that they are still
adjacent. Lemma 3.4 gives bounds on \ (A1, A2) that hold for all values of ' > 0.
Additionally, there are tighter bounds that hold asymptotically (recall that '
grows logarithmically in =) [GPP12; Kro16]. In particular, [Kro16, Lemma 3.2]
states that

\ (A1, A2) = 24 ('�A1�A2)/2
✓
1 ± ⇥

⇣
4
'�A1�A2

⌘◆
, (3.10)

44

Hyperbolic Random Graphs Section 3.3

D8+1

D8

D8+2

D8+3
D8+4

DAD'

D 0

P 0

P8

P8+1

P

Figure 3.6: Visualization of the proof of Lemma 3.10. When constrained to the disk D' ,
the disk D

0 (red) with center P0 at radius A is completely contained in two consecutive
disks D8 and D

8+1 (green and blue regions). Point P8 is between P and P
0.

assuming A1 + A2 � '. Otherwise, we have A1 + A2 < ', meaning two vertices
with these radii are adjacent, independent of their angular distance.

Finally, the following lemma shows that statements about the neighborhood
of a vertex with �xed angular coordinate can be extended to hold for arbitrary
angular coordinates, with a small penalty in certainty. While we cannot take a
union bound over in�nitely many possible angular coordinates, the basic idea of
the proof is to discretize the disk D' into �nitely many regions on which the
union bound can then be applied.

Lemma 3.10. Let ⌧ be a hyperbolic random graph. For | 2 + , let -| � 0 be
random variables, and for D ✓ D' let - (D) =

Õ
|2D -|. Further, let J' (A) be

the set of disks of radius ' with center at radius A . If for each D 2 J' (A) it holds
that Pr

⇥
- (D)  5 (=)

⇤
� 1 � ? , then

Pr
⇥
8D 2 J' (A) : - (D)  25 (=)

⇤
� 1 � O

�
=?

�
.

45

Chapter 3 Networks with Underlying Hyperbolic Geometry

Proof. Let D0
2 J' (A) be a disk with radius ' centered at radius A and arbitrary

angular coordinate. To bound - (D
0
), we cover the disk D' with a circular

sequence of =0 disks D1
, . . . ,D

=
0 , such that D0 is completely contained in two

consecutive disks (when constrained to the whole disk D'). That is, there exists
an 8 2 {1, . . . ,=0} such that D0

\D' ✓ D
8
[D

8+1. Since -| � 0 for all | 2 + ,
it then holds that

- (D
0
) =

’
|2D0

-| 

’
|2D8[D8+1

-| 

’
|2D8

-| +

’
|2D8+1

-| = - (D
8
) + - (D

8+1
) .

Since Pr
⇥
- (D)  5 (=)

⇤
� 1 � ? holds for each D 2 J' (A), we can apply the

union bound to conclude that - (D
8
)  5 (=) holds for all 8 2 {0, . . . ,=0} with

probability 1 � =0? . Consequently, - (D
0
)  25 (=) with probability 1 � =0? .

To complete the proof, it remains to show that there exists such a sequence
D

1
, . . . ,D

=
0 with =0 2 O(=). See Figure 3.6 for an illustration of how the

sequence is constructed. All disks D8 for 8 2 {1, . . . ,=0} have their center at
radius A . The center of the �rst disk is placed at angular coordinate 0 and each
subsequent disk is placed at an angular distance of 2\ (A ,') (see Equation (3.4))
to its predecessor until the whole disk is covered. Note that, as a consequence,
the boundaries of two consecutive disks intersect at the boundary of the whole
disk D' .
Let P0 be the center of D0. To see that D0 is contained in two consecutive

disksD8 andD8+1 (when constrained to the whole diskD'), �rst note that there
exists an 8 2 {1, . . . ,=0} such that P0 is between the centers P8 and P8+1 of two
consecutive disks D8 and D

8+1. We show that any point P 2 D
0 is contained

in D
8
[D

8+1. Clearly, D8
[D

8+1 contains all points between P8 and P8+1 (blue
region in Figure 3.6). For the case where P does not lie between P8 and P8+1,
assume without loss of generality, that P8 is between P and P

0, as depicted
in Figure 3.6. Since XH2 (P,P0

)  ' and since P0 and P8 have the same radius
but P8 is between P and P

0, it follows that XH2 (P,P8)  ', and thus P 2 D
8 .

Finally, it remains to show that=0 = O(=) disks are su�cient to cover thewhole
diskD' . Since two consecutive disks are placed at an angular distance of 2\ (A ,'),
we need =0 = 2c/(2\ (A ,')) = O

�
1/\ (A ,')

�
disks. Further, since \ (A ,') �

\ (','), it follows that =0 = O
�
1/\ (',')

�
= O

�
4
'/2� due to Equation (3.10).

Substituting ' = 2 log(=) +⇠ then yields the claim. ⇤

46

4 Routing in Strongly
Hyperbolic Unit Disk Graphs

This chapter is based on joint work with Thomas Bläsius, Tobias Friedrich, and
Daniel Stephan [Blä+23]. The foundation was laid as part of the master thesis of
Daniel Stephan, where it was shown that there exists a routing scheme that allows for
routing on hyperbolic random graphs with stretch 5, while storing O

�
log(=)4

�
bits

per vertex, asymptotically almost surely. Here, we extend this work by generalizing
the results to strongly hyperbolic unit disk graphs and introducing parameters that
can be used to adjust the trade-o� between stretch and coordinate size, leading to
an improved stretch bound, while simplifying the corresponding proofs.

4.1 Introduction

The internet is arguably the most important communication network in the
world and while it is used for a variety of tasks like messaging, video streaming,
gaming, and sharing resources, they all rely on a fundamental process: routing
information from one network participant to another. This is done using a
routing scheme, which is given two vertices in a graph and then tries to �nd a
path between them.
While path �nding is one of the simplest graph problems, the internet is a

decentralized network, which does not allow for the use of a central data structure.
Instead, each vertex can only use local information to perform a routing decision,
i.e., the decision to which vertex the information is forwarded next such that it
eventually reaches the target. This situation is further complicated by the fact
that the internet consists of billions of vertices. In order to be able to handle a
network of this scale, a routing scheme has to be optimized with respect to three
criteria. The �rst two are the space requirement (the amount of information that
the scheme uses to forward information) and the query time (the time it takes to
make a routing decision). The third criterion is the stretch, i.e., how much longer
the routed path is compared to a shortest path in the network. More formally, if a
path between two vertices is at most 2 times longer than a shortest path between

47

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

them, it has multiplicative stretch 2 � 1. If it has at most at most 3 more vertices
than a shortest path, it has an additive stretch of 3 . Note that obtaining small
stretch bounds becomes harder the closer two vertices are in the graph, even
if the routed path is not much longer than a shortest path in absolute terms. A
better representation of the performance of the routing scheme is thus obtained
by considering short detours separately. A multiplicative stretch 2 with additive
bound 3 denotes that the routed paths have multiplicative stretch 2 or additive
stretch 3 . Note that this implies a multiplicative stretch of max{2, 1 + 3}.
There is a long line of research on how to obtain e�cient routing schemes

with respect to these criteria, together with tight bounds on the trade-o�s that
have to be made to optimize one criterion over another. In particular, it was
shown that routing with a stretch of 2 � 1 (i.e., allowing that paths are 2 times
longer than the shortest paths) requires a total storage of ⌦

�
=
1+1/(22+4) � bits in

general graphs [PU89].
In this chapter, we show that this lower bound can be beaten by making use

of the hierarchical structures observed in graphs like the internet. To this end,
we utilize strongly hyperbolic unit disk graphs, a graph class that intrinsically
captures hierarchical network structures, as introduced in Section 3.2. In partic-
ular, we �rst formalize a framework of routing schemes by combining existing
techniques like greedy routing with respect to tree-covers [FPW09; Hou+14],
and distance labeling schemes [Fre+17], with an adaptation of an approach that
iteratively reduces a graph [Coh98] while descending in the hierarchy. Our
analysis on strongly hyperbolic unit disk graphs shows that stretch, space re-
quirement, and query time can be adjusted using the parameters of the scheme.
In particular, for hyperbolic random graphs, which have been shown to represent
graphs like the internet well [BPK10], we obtain a routing scheme with stretch 3,
while asymptotically almost surely using O

�
= log(=)4

�
bits of storage in total

and answering queries in O
�
log(=)2

�
time. Finally, a brief empirical evaluation

indicates that our results translate well to real-world networks.

4.2 A Brief History of Routing Schemes

In the following, we summarize the main approaches to adjusting the trade-o�
between stretch and required space. The query times of the considered schemes
are at most polylogarithmic. Figure 4.1 gives an overview of existing schemes.

48

A Brief History of Routing Schemes Section 4.2

Multiplicative Stretch

Sp
ac
e

exp. Õ
�
=4/3<1/3

log(=)2/3
�

2, [AG13]

⇤

Õ
�
=<1/3 + =2/<1/3�

3, [DHZ96]

sparse

Õ
�
<1+2/(2+1) �

22 + 1 ± Y , [PRT12]

sparse

Õ
�
=1+1/2�

2, [AGH11]

⇤
Õ
�
2=1+1/2 �

22 � 1, [TZ05]

planar

Õ
�
= log(=)/Y

�
1 + Y , [�o04]

⇤

exp. Õ
�
=4/3<1/3�

2, [PR14]

⇤

O
�
=1+2/3

log(=)4/3
�

3, [Cow01]

Erdős-Rényi

w.h.p. Õ
�
=1+2/(2+1)+Y �

2 , [EWG08]
O
�
2=1+1/2

log(=) diam)
�

O
�
22

�
, [AP92]

Õ
�
=1+1/2�

3, [Abr+08] O
�
=3/2

log(=)3/2
�

5, [EGP03]

Õ
�
=1+1/2 �

22 � 1, [TZ01]

O
�
23=1+1/2

log(=)
�

122 + 3, [PU89]

Chung-Lu

a.a.s. Õ
�
=1+1/3�

3, [TYZ09]

sparse

Õ
�
=
�

3, [AGH11]

Chung-Lu

w.h.p. O
✓
=
1+ V�2

2V�3 +Y
log(=)

◆
3, [Che+12]

Õ
�
=1+1/2

log(diam)
�

O
�
2
�
, [AGM04]

⌦
�
=1+1/2) �

22 + 1, [TZ05]

⌦
�
=1+1/(22+4) �
2 , [PU89]

chordal

O

⇣
= log(=)3

log log(=)

⌘
+2, [DG02]

O
�
<= log(=)

�
?, [ZG11]

⇤

CUDG

O
�
< log(=)3

�
O
�
1
�
, [FPW09]

⇤
O
�
< log(=)3

�
O
�
log(=)

�
, [FPW09]

⇤

O
�
< log(=)2

�
O
�
log(=)

�
, [Cam+14]

⇤
O
�
< log(=)2

�
?, [WP09]

⇤

HRG

a.a.s. O
�
= log(=)4

�
3,�is chapter

3-connected planar

O
�
= log(=)

�
?, [GS09]

⇤

Õ
�
22=1+1/2

log(=)3
�

O
�
2
�
, [AGM06] O

�
2=1+1/2

log(=)2
�

2
2 � 1, [Awe+90]

3-chordal

O
�
= log(=)2

�
+3 + 1, [Dou05]

Figure 4.1: Distance oracles (red), routing schemes (green), and local routing schemes
(blue) arranged by space requirements (�rst line) and multiplicative stretch (second
line). Additive stretch is denoted with a preceding +. Lower bounds are shown with
rectangular corners. We note that in order to be able to compare di�erent results, we
uni�ed the representation of the required space. That is, when the bounds on the
space only account for the size of the considered data structures but not its content or
only bound the space required for a single vertex, we adjusted the bounds such that
they represent the space required for all content stored for all vertices and marked the
corresponding entry with an asterisk (∗). In particular, greedy routing schemes typically
require that every vertex stores the information of all its neighbors. The total space
requirement is then obtained by summing over all vertex degrees, which introduces a
factor of< (the number of edges in the graph) over the storage required to address a
single vertex.

49

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

4.2.1 Routing Schemes

In general networks, routing with a stretch of 1, i.e., always routing along
the shortest paths, requires storing ⇥

�
=
2 log=

�
bits in total [GP96]. The most

commonly used approach to reducing the required space is to only store shortest
path information for certain vertex pairs. That is, a representation of a subgraph
(typically a tree or a collection of trees) of the original graph is stored and the
routing takes place on the subgraph. This is usually done by selecting a set
of landmark (or pivot) vertices. Then, for each vertex only the information
about how to get to the closest landmark is stored [Abr+08; AGM04; AGM06;
AP92; Awe+90; Cow01; EGP03; PR14; TZ01]. These schemes basically partition
the graph based on the landmark vertices. A related approach starts with a
partition and de�nes the landmarks afterwards [PU89; RT16]. The scheme
then routes via the landmarks closest to the source and target. This general
approach can be optimized in several ways. First, the network can be partitioned
with several levels of granularity, such that messages that need to travel larger
distances are routed to landmarks whose associated vertex set is larger [Awe+90;
PU89]. Improvements for shorter distances can be obtained by storing the actual
shortest path information for vertices in close vicinity of each vertex [Awe+90;
EGP03]. Moreover, the selection of the landmarks itself can have an impact on
the routing performance. In general graphs they are typically selected at random.
A more careful selection can lead to better results on Erdős-Rényi random
graphs [EWG08], or when assuming that the network has certain properties like
a power-law degree distribution [Che+12; TYZ09]. Similarly, better results can
be obtained on chordal graphs [DG02; Dou05; DYL04].

Closely related to routing schemes are approximate distance oracles. Virtually
the only di�erence is that, there, we are only interested in the length of a short
path instead of the path itself. As before, the most commonly used techniques are
based on landmarks [AG13; DHZ96; PRT12; TZ05], and compared to general net-
works, better results can be obtained when assuming that the considered graphs
have certain properties like being planar [Tho04], or being sparse (although at
the expense of an increased query time) [AGH11].
In general, routing schemes and distance oracles are based on one central

data structure that holds the information required for routing. This can become
an issue with increasing network size, since achieving a stretch of 2 requires a
data structure of size ⌦

�
=
1+1/(22+4) � on general graphs [PU89]. One approach to

overcoming this problem is to consider local routing schemes instead.

50

A Brief History of Routing Schemes Section 4.2

4.2.2 Local and Greedy Routing Schemes

In local routing schemes the routing information is distributed and each ver-
tex can only use its own information to forward messages. One approach to
achieving this are interval routing schemes, where each vertex is equipped with
a mapping from its outgoing edges to a partition of the vertices in the graph and
the message is forwarded along the edge whose assigned vertex set contains the
target [EGP03; PU89; SK85].

Another popular approach is geographic or greedy routing. There, each vertex
is assigned a coordinate in a metric space and a message is routed to a neighbor
that is closer to the target with respect to the metric. While initially being moti-
vated by real-world networks with actual geographic locations [KK00; TK84],
later adaptations assigned virtual coordinates [Rao+03].

In addition to the previously mentioned criteria, greedy routing is also evalu-
ated regarding the success rate, since the virtual coordinates may be assigned such
that forwarding messages greedily leads to a dead end. Even simple graphs like a
star with six leaves cannot be embedded in the Euclidean plane such that greedy
routing always succeeds [PR05]. Worse yet, even if a graph admits a greedy
embedding into the Euclidean plane, there are graphs that require ⌦(=) bits per
coordinate [ADF12]. However, it was shown that delivery can be guaranteed on
every graph when embedding it in the hyperbolic plane [Kle07]. Unfortunately,
due to the properties of hyperbolic space, this requires high-precision coordi-
nates, which leads to an increased space requirement [Blä+20]. While attempts
have been made to reduce the coordinate size [EG08], it has been shown that
this remains an open problem [Blä+20; KK15]. However, in many greedy routing
schemes the space per coordinate is at most polylogarithmic [BC06; Cam+14;
EG11; GS09; Muh07; WP09; ZG11].

Unfortunately, not much is known about stretch in local routing schemes.
There are bounds in the order of O

�
log=

�
for general graphs [Cam+14; FPW09],

and on graphs of bounded hyperbolicity, we can use a distance labeling scheme
(the local equivalent to approximate distance oracles) to obtain a greedy routing
scheme with an additive stretch of O

�
log=

�
[GL05]. However, it has been ob-

served that greedy routing schemes can achieve much better stretch in practice,
which we discuss in the following.

51

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

4.2.3 Routing in Practice

Real-world networks rarely resemble the worst cases considered in the previ-
ously mentioned results. More realistic insights can be obtained by analyzing
networks whose properties resemble those of real-world graphs, like the small-
world phenomenon [Kle00]. The previously mentioned Euclidean unit disk
graphs (Chapter 1) are used to model wireless sensor networks. In such graphs
greedy routing can be performed with constant stretch [FPW09], compared to
logarithmic in general graphs. Additionally, better trade-o�s between stretch
and space have been obtained on sparse graphs [AGH11; PRT12], and Chung-Lu
random graphs [ACL01]. There, the best known space bound of Õ

�
=
1+1/2� for

a stretch of 3 on general graphs [TZ01], was improved to O
�
=
1+(V�2)/(2V�3)+Y � ,

with high probability, for power-law exponent V 2 (2, 3) and Y > 0 [Che+12].
Experiments on internet-like networks further indicate that the landmark-based
routing schemes due to Thorup and Zwick [TZ01] yield a rather low stretch of
about 1.1 while the information stored at the vertices is small as well [KFY04;
Kri+07]. Similar results have been obtained in experiments on internet topolo-
gies and random graphs with power-law degree distributions [AGH11; Che+12;
TYZ09].

Additionally, it was observed that greedy routing works remarkably well on
internet graphs, when assuming an underlying hyperbolic geometry. There,
a network is embedded into the hyperbolic plane and a message is always
forwarded to the neighbor with the smallest hyperbolic distance to the target.
While delivery is not guaranteed in the resulting scheme, experiments show that
it achieves success rates of at least 97% and a stretch of about 1.1 on internet
topologies [BPK10; Pap+10]. Partly motivated by these results Krioukov et al.
introduced the hyperbolic random graph (HRG) model that is used to represent
real-world networks like the internet (see Chapter 3). For a generalized version
of this model it was already shown that a greedy routing procedure that succeeds
with constant probability can almost surely achieve an average stretch of 1 +
o(1) [Bri+17]. Nevertheless, it was unclear whether, in a addition to the small
stretch, greedy routing on realistic representations of internet-like graphs can
be implemented, such that delivery is always guaranteed, while keeping the
space requirement low. In this chapter, we answer this question by developing a
greedy routing scheme that always succeeds with small stretch. Additionally, the
space requirement is small on networks with underlying hyperbolic geometry.

52

Greedy Routing Section 4.3

4.3 Greedy Routing

The basic idea of greedy routing is to always forward a message to a neighbor of
a vertex that is closer to the target. We note that the term greedy is often used to
refer to a scheme that routes to a neighbor that is closest to the target. However,
for our purposes this constraint is not required. When designing a greedy routing
scheme, we need to compute distances between vertices and select a suitable
neighbor with respect to these distances. Moreover, both processes need to be
done quickly and with as little information as possible, in order to keep the query
time and the space requirement low.
In the following, we �rst de�ne a distance function by combining graph dis-

tances of subgraphs with bounded stretch and show that routing with respect
to this function yields the same stretch. Afterwards, we explain how the func-
tion can be computed e�ciently using distance labeling schemes. A simple
greedy routing scheme is then obtained by storing at each vertex the labels of
its neighbors and, in a routing step, computing the distances from all of them
to the target in order to �nd one that is closer than the current vertex. We
then reduce the required space and query time by extending the labels in a way
that allows us to quickly identify a suitable neighbor without considering all of
them. Finally, these insights are combined with the fact that there exist e�cient
labeling schemes for trees, to obtain an e�cient greedy routing scheme.

4.3.1 Combining Graph Distances

Let ⌧ = (+ , ⇢) be a graph and let X : + ⇥ + ! R�0 be a semi-metric on ⌧ .
That is, for all B, C 2 + we have X (B, C) � 0, X (B, C) = 0 if and only if B = C ,
and X (B, C) = X (C, B). A greedy routing scheme routes with respect to X , if at B
a message to C is forwarded to a neighbor { of B where X ({, C) < X (B, C). Note
that, depending on X such a neighbor may not exist and the message cannot
be forwarded, which is called starvation. In contrast, a routing scheme with
guaranteed delivery is called starvation-free. It is known that greedy routing is
starvation-free, if at every vertex B < C there is a neighbor { with X ({, C) < X (B, C)
(see, e.g., [ZG13]).

We say that X is integral if it maps to the natural numbers, i.e., X : + ⇥+ ! N.
Note that, if X is integral and routing with respect to X is starvation-free, the
distance to the target decreases by at least one in each step. Thus, the length of

53

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

the routed path between B and C is bounded by X (B, C). When this is the case, we
say that routing with respect to X is X-bounded.
Given a connected graph ⌧ , a natural choice for determining a distance be-

tween B and C is to use the length of a shortest path between them, which we
denote by X⌧ (B, C). Note that X⌧ is integral and that the successor of B on a short-
est B-C-path is a neighbor of B and is closer to C . Thus, routing with respect to X⌧
yields perfect stretch. However, X⌧ cannot be computed while simultaneously
keeping the required space and query time low (see Section 4.2). Therefore, we
relax the constraint on routing with respect to exact graph distances and use
upper bounds instead. This can be achieved by taking a subgraph ⌧ 0 of ⌧ and
routing on ⌧ with respect to X⌧ 0 . The stretch of the resulting routing scheme
depends on how well the distances in ⌧ 0 approximate the distances in ⌧ . Unfor-
tunately, �nding a subgraph with good stretch is hard in general [Cai94; PS89].
However, instead of routing with respect to the distances in a single subgraph,
we can combine the distances in multiple subgraphs. To obtain a good stretch, it
then su�ces to �nd low-stretch subgraphs for small parts of the graph.

A collection of graphs I is a (2,3,:)-graph-cover of⌧ = (+ , ⇢), if for all B, C 2 +
there exists a connected subgraph ⌧ 0 of ⌧ in C with X⌧ 0 (B, C)  2 · X⌧ (B, C) or
X⌧ 0 (B, C)  X⌧ (B, C) + 3 , and every vertex { 2 + is contained in at most : graphs
in I . We say that I has multiplicative stretch 2 with additive bound 3 . For two
vertices B and C we de�ne XI (B, C) = min⌧ 0 2I X⌧ 0 (B, C).

Lemma 4.1. Let ⌧ be a graph and let I be a (2,3,:)-graph-cover of ⌧ . Then,
greedy routing on ⌧ with respect to XI has multiplicative stretch 2 with additive
bound 3 .

Proof. Let B < C be two vertices. To prove the claim, we need to show that an
B-C-path obtained by greedily routing with respect to XI has length at most
2 ·X⌧ (B, C) or X⌧ (B, C) +3 . To this end, we prove that the resulting routing scheme
is XI -bounded. The claim then follows, due to the fact that consequently the
routed B-C-path has length at most XI (B, C) = min⌧ 0 2⌧ X⌧ 0 (B, C) and the fact that
there exists a ⌧ 0

2 ⌧ with X⌧ 0 (B, C)  2 · X⌧ (B, C) or X⌧ 0 (B, C)  X⌧ (B, C) + 3 by
assumption.
Since XI is the minimum of integral semi-metrics, it is itself an integral

semi-metric. Therefore, it su�ces to show that routing with respect to XI is
starvation-free, which is the case, if for every two vertices B < C there exists a
neighbor { of B in ⌧ with XI ({, C) < XI (B, C). Consider the connected subgraph

54

Greedy Routing Section 4.3

⌧
0
2 I for which X⌧ 0 (B, C) = XI (B, C). Then, there exists a shortest path from B

to C in⌧ 0. For the successor { of B on this path, it holds that X⌧ 0 ({, C) = X⌧ 0 (B, C)�1
and thus XI ({, C)  X⌧ 0 (B, C) � 1 = XI (B, C) � 1 < XI (B, C). Finally, since ⌧ 0 is a
subgraph of ⌧ , it follows that { is also a neighbor of B in ⌧ . ⇤

In order to show that XI can be computed e�ciently, we use distance labeling
schemes [Gav+04]. A distance labeling scheme implements a semi-metric X
by assigning each vertex a distance label, such that for two vertices B, C we can
compute X (B, C) by looking at their distance labels only. The label size of a distance
labeling scheme denotes the maximum number of bits required to represent the
label of a vertex. The query time is the time it takes to compute X using the labels.
Given a graph-cover I , we obtain a distance labeling scheme that implements XI
by combining distance labeling schemes for the contained subgraphs.

Lemma 4.2. Let ⌧ be a graph and let I be a (2,3,:)-graph-cover of ⌧ such that
for every ⌧ 0

2 I there exists a distance labeling scheme that implements X⌧ 0 with
label size ✓ and query time @. Then, there exists a distance labeling scheme for ⌧
that implements XI with label size O

�
: (✓ + log: + log=)

�
and query time O

�
:@

�
.

Proof. We assign each subgraph⌧ 0
2 I a unique graph-ID in [|I |] and compute

the distance labels for all vertices in⌧ 0. By combining the distance labels with
the corresponding graph-ID, we obtain an identi�able distance label that can be
used to uniquely identify to which graph a distance label belongs. The label of a
vertex { is then obtained by collecting the identi�able distance labels of { for all
subgraphs that { is contained in and sorting them by graph-ID.
The label size can now be bounded as follows. Since each vertex { is contained

in at most : subgraphs, we can conclude that |I |  :=. Therefore, the graph-
IDs can be encoded using O

�
log: + log=

�
bits. Moreover, by assumption the

distance labels in the subgraphs can be represented using ✓ bits. It follows
that a single identi�able distance label takes O

�
✓ + log: + log=

�
bits. Again,

since every vertex is contained in at most : subgraphs, {’s label consists of at
most : identi�able distance labels. Consequently, the label size is bounded by
O
�
: (✓ + log: + log=)

�
.

It remains to bound the query time. Given the collection of identi�able distance
labels of two vertices, we can identify the ones with matching graph-IDs in time
O(:), since they are sorted by graph-ID. For each match we compute the distance
in the corresponding subgraph in time @. Afterwards the minimum distance can
be found in O(:) time. It follows that XI can be computed in time O

�
:@

�
. ⇤

55

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

4.3.2 Finding a Suitable Neighbor

Given a distance labeling scheme, a simple greedy routing scheme is obtained by
storing at each vertex B the distance label of B , as well as the ones of all neighbors
of B . Using the distance label of a target C , we can compute the distances between C
and all neighbors of B , in order to �nd one that is closer to C . Compared to the
labeling scheme, the required space and the query time at B then increase by
a factor of deg(B). This dependence on the degree can be undesirable as many
real-world networks contain vertices with large degrees for which the label size
would be large as well. This can be avoided by utilizing another kind of label
that allows us to compute the successor of B on an B-C-path instead of the length
of this path.
First note that we need to be able to identify a neighbor directly, if we want

to avoid performing a linear search over all neighbors. To this end, we assign
each neighbor { of B a unique port ?B ({) : # (B) ! {1, . . . ,=}. Finding a neighbor
of B that is closer to a target C with respect to a semi-metric X then boils down
to determining the corresponding port. To this end, we can use a port labeling
scheme that implements X . Such a scheme assigns each vertex in a graph a port
label such that we can determine the port of a neighbor of B that is closer to C
with respect to X , by only looking at the port labels of B and C . The corresponding
label sizes and query times are de�ned analogous to how they are de�ned for
distance labels.

In the followingwe show how, given a graph-cover I , we can combine distance
and port labels of the subgraphs in the cover, to obtain a port labeling scheme
that implements XI .

Lemma 4.3. Let ⌧ be a graph and let I be a (2,3,:)-graph-cover of ⌧ such that
for every⌧ 0

2 I there exist distance and port labeling schemes that implement X⌧ 0

with label size ✓ and query time @. Then, there exists a port labeling scheme for ⌧
that implements XI with label size O

�
: (✓ + log: + log=)

�
and query time O

�
:@

�
.

Proof. For every vertex B in ⌧ we �x a port assignment for the neighbors of B .
Afterwards, we assign the same ports in the subgraphs ⌧ 0 of ⌧ in I that B is
contained in. More precisely, if { is a neighbor of B in ⌧ 0, then the port ?B ({)
is identical in ⌧ and ⌧ 0. As a consequence, we can use a port labeling scheme
in ⌧ 0 to determine the port of a neighbor of B in ⌧ .
Now consider the distance labeling scheme described in Lemma 4.2, where

we assign each subgraph⌧ 0
2 I a unique graph-ID and compute distance labels

56

Greedy Routing Section 4.3

for all vertices in all subgraphs to obtain identi�able distance labels. In addition,
we now compute port labels for all vertices in all subgraphs. By combining them
with the previously obtained identi�able distance labels, we obtain identi�able
distance port labels. As before, the label of a vertex { then consists of the collection
of identi�able distance port labels of { in all subgraphs that { is contained in,
sorted by graph-ID.
We continue the proof by showing that, given the labels of two vertices

B < C , we can compute the port of a neighbor of B in ⌧ that is closer to C with
respect to XI . As described in the proof of Lemma 4.2, we can use the labels
to �nd the graph-ID of a subgraph ⌧ 0 of ⌧ for which X⌧ 0 (B, C) = XI (B, C). We
then use the corresponding port labels of B and C to determine the port ?B ({)
of a neighbor { of B that is closer to C with respect to X⌧ 0 . Clearly, we have
XI ({, C)  X⌧ 0 ({, C) < X⌧ 0 (B, C) = XI (B, C). Moreover, since ?B ({) is identical in⌧ 0

and ⌧ , it follows that ?B ({) is a suitable port in ⌧ .
The label size can be bounded as follows. By Lemma 4.2 we can encode all :

identi�able distance labels stored at a vertex using O
�
: (✓ + log: + log=)

�
bits.

Since a single identi�able distance label is extended with a port label that takes at
most ✓ bits, it follows that the label size increases by an additive O(:✓), yielding
a size of O

�
: (✓ + log: + log=)

�
bits.

To �nish the proof, it remains to bound the query time. Again, as described in
the proof of Lemma 4.2, determining the graph-ID of the subgraph ⌧ 0 for which
X⌧ 0 (B, C) = XI (B, C) takes O

�
:@

�
time. Computing the port ?B ({) of a suitable

neighbor { of B then takes an additional time @. Consequently, we obtain a query
time of O

�
:@

�
in total. ⇤

4.3.3 Tree-Cover-Based Greedy Routing

We are now ready to combine the above results to obtain our greedy routing
scheme. To this end, we need to �nd (2,3,:)-graph-covers with small values
for 2 , 3 , and : , as well as distance and port labeling schemes with small label
sizes and query times, as all of these properties a�ect the performance of the
routing scheme. While distance labeling schemes require large labels in general
graphs [Gav+04], better results can be obtained by restricting the graph-cover
to only contain trees as subgraphs. Such a cover is then called tree-cover. Tree-
covers are standard in routing [AKP94; AP92; EGP03; FPW09; Hou+14; Tan+10;
TZ01], and while it is known that greedy routing with respect to XI for a
(2,3,:)-tree-cover I is starvation-free (see e.g., [Hou+14]), we also know that the

57

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

resulting routing scheme has stretch 2 with additive bound 3 due to Lemma 4.1.
Moreover, for trees there are distance and port labeling schemes with O

�
log(=)2

�
bit labels and constant query time [Fre+17; TZ01]. Together with Lemma 4.3 we
obtain the following theorem.

Theorem 4.4. Let ⌧ be a graph. Given a (2,3,:)-tree-cover of ⌧ , greedy routing
on ⌧ can be implemented such that the resulting routing scheme is starvation-free,
has stretch 2 with additive bound 3 , storesO

�
: (log(=)2 + log:)

�
bits at each vertex,

and takes O(:) time for a routing decision.

4.4 Tree-Cover Algorithm

With the basic framework set up, it remains to �nd tree-covers with bounded
stretch. To this end, we propose an algorithm that is an adaptation of a previously
proposed algorithm for computing graph spanners [Coh98]. The idea is to
compute a tree-cover of a graph using repeated breadth-�rst searches (BFS)
while removing parts of the graph after each search. On the one hand, utilizing
BFS-trees allows us to ensure that the distances between vertices in the trees
of the cover are not much larger than the distances in the original graph. On
the other hand, removing vertices while processing the graph ensures that the
number of trees a vertex is contained in is small. More precisely, we introduce
two parameters 0 and 1 that can be used to tune both aspects. Throughout the
procedure the number of levels explored in a single BFS grows exponentially,
where 1 is the base of the exponent and 0 is part of an additional factor. The
larger 1, the quicker grows the portion of a tree that gets removed after a BFS,
which also increases the graph distances in the remaining graph more quickly
than when using a small value for 1. As a consequence, the distances captured
in succeeding BFSs are more likely to deviate from shortest paths in the original
graph, which increases the stretch. To counteract this, we can choose 0 large,
which increases the depth of the BFS tree without a�ecting the part that gets
removed. Then vertices appear together in more trees, making it more likely that
a short path between them is captured by one of the trees. The resulting stretch,
thus, depends on the choice of 0 and 1, but is independent of the considered
input graph.
Before presenting the algorithm, we �rst characterize a setting in which we

can easily bound the stretch of a subtree of a graph.

58

Tree-Cover Algorithm Section 4.4

Lemma 4.5. Let⌧ = (+ , ⇢) be a graph,D, { 2 + , and let� be an induced subgraph
that contains all vertices on a shortest D{-path % in ⌧ . Let) be a partial shortest-
path tree in � rooted at C that contains D and {. Then, for every vertex | in) that
lies on % , X) (D, {)  X⌧ (D, {) + 2X� (C,|).

Proof. Let C 0 be the lowest common ancestor of D and { and consider the paths
%D and %{ from C

0 to D and {, respectively. Note that %D and %{ are shortest paths
in � as they are descending paths in a shortest-path tree. Thus,

X) (D, {) = |%D | + |%{ | = X� (C 0,D) + X� (C 0, {).

Observe that clearly X� (C 0,D)  X� (C,D). Moreover, by the triangle inequality,
we have X� (C,D)  X� (C,|) + X� (|,D). Analogously for {, we obtain X� (C 0, {) 
X� (C,|) + X� (|, {). Thus, we get

X) (D, {) = X� (C 0,D) + X� (C 0, {)  X� (C,|) + X� (|,D) + X� (C,|) + X� (|, {)

= X� (D, {) + 2X� (C,|),

where the last equality holds as| lies on a shortest D{-path % in⌧ , which is also
a shortest D{-path in � , since � is an induced subgraph of ⌧ that contains all
vertices of % . For the same reason, we get X� (D, {) = X⌧ (D, {), which proves the
claim. ⇤

Consider the setting as in the above Lemma, let| be chosen such that X� (C,|)
is minimal, and let b = 2X� (C,|)/X⌧ (D, {). Then, we can bound the distance
between D and { in) by X) (D, {)  (1 + b)X⌧ (D, {). That is,) has stretch (1 + b).
The following algorithm computes a tree-cover with the same stretch.

Let ⌧ be the input graph. The algorithm operates in phases, starting with
phase 0. For each phase 8 , we de�ne a radius A8 = 18 , for a base 1 > 1. Then, for
0 > 0, we choose a vertex C in the current graph and compute the partial shortest-
path tree with root C containing all vertices with distance at most (1+0)A8 from C .
Afterwards, we delete all vertices with distance at most A8 to C from the current
graph. This is iterated until all vertices are deleted. Afterwards, phase 8 is done
and we restore the original input graph⌧ before starting phase 8+1. This process
is stopped, once the whole graph is deleted after processing the �rst tree in a
phase. The output of the algorithm is the set of all computed trees. Since the
algorithm produces tree-covers of networks, we call it P�����.

59

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

Note that P����� has several degrees of freedom. We can choose the param-
eters 0 > 0 and 1 > 1, as well as the order in which the roots of the partial
shortest-path trees are selected. The following lemma holds independent of the
root selection strategy.

Lemma 4.6. The tree-cover computed by P����� has stretch (1 + 21/0) with
additive bound 2.

Proof. Let I be the tree-cover computed by P�����, let ⌧ = (+ , ⇢) be the input
graph, and let D < { 2 + be two arbitrary vertices. We have to show that I
contains a tree) that includes D and { such that X) (D, {)  (1 + 21/0)X⌧ (D, {) or
X) (D, {)  X⌧ (D, {) + 2.

Let 8 be minimal such that X⌧ (D, {)  0A8 . Assume for now that P����� did
not stop before phase 8; we deal with the other case later. As phase 8 continues
until all vertices are deleted, at one point a vertex | on a shortest D{-path in ⌧
is deleted. Let � be the current graph before that happens for the �rst time and
let) be the partial shortest-path tree computed in � rooted at C . To show that)
is the desired tree, we aim to apply Lemma 4.5.
First note that � is an induced subgraph of ⌧ that contains all vertices on a

shortest D{-path of ⌧ . Moreover,) contains D and { for the following reason.
As | is deleted, we know that X� (C,|)  A8 . Moreover, as | lies on a shortest
D{-path, the distance from | to either D or { cannot exceed X� (D, {) = X⌧ (D, {).
Thus, by the triangle inequality and the above choice of 8 , we have X� (C,D) 
X� (C,|) + X� (|,D)  A8 + 0A8 = (1 + 0)A8 , which implies that D is a vertex of) .
Analogously, { is also contained in) .
With this, we can apply Lemma 4.5, yielding a stretch of (1 + b) where b is

given by b = 2X� (C,|)/X⌧ (D, {). To bound b , recall that we chose 8 minimal such
that X⌧ (D, {)  0A8 . Thus, if 8 > 0, then X⌧ (D, {) > 0A8�1 = 0/1 · A8 . Together with
the fact that X� (C,|)  A8 , we obtain b  21/0, as desired. In the special case
that 8 = 0 we have A8 = 1 and therefore X� (C,|)  1. Thus, Lemma 4.5 directly
yields X) (D, {)  X⌧ (D, {) + 2, which is covered by the additive bound 2.
Finally, we assumed above that P����� did not stop before phase 8 and it

remains to consider the case where it stops in phase 9 < 8 . In this case, let) be the
tree we get in phase 9 , which includes all vertices of⌧ . Let C be the root of) . As
all vertices have distance at most A 9 from C , we get X) (D, {)  2A 9 . Moreover, as 8
was chosen minimal such that X⌧ (D, {)  0A8 , we have X⌧ (D, {) > 0A 9 . Together
with the previous inequality, this gives a stretch of 2/0, which is smaller than
the desired (1 + 21/0), as 1 > 1. ⇤

60

Performance on Strongly Hyperbolic Unit Disk Graphs Section 4.5

4.5 Performance on Strongly Hyperbolic Unit Disk
Graphs

As explained above, the stretch of the tree-cover obtained by P����� directly
translates to our routing scheme. To further assess the performance of the
scheme with respect to the storage requirements and query time, it remains to
determine : , which denotes the maximum number of trees that a single vertex
is contained in. In contrast to the stretch, its value does depend on the input
graph. In the following, we consider how the algorithm performs on strongly
hyperbolic unit disk graphs (see Section 3.2). As mentioned earlier, these capture
hierarchical structures as often observed in real-world graphs. We can utilize
this property by descending in the hierarchy as we remove parts of the graph.
In the underlying hyperbolic geometry, this is re�ected by moving towards
the boundary of the hyperbolic disk that the vertices are contained in. That
is, the roots of the BFS trees are chosen in order of increasing distance to the
center of the disk in the corresponding unit disk representation of the graph.
We refer to this as the radially increasing root selection strategy. By utilizing
the fact that graph distances roughly represent hyperbolic distances between
vertices, we can identify areas in the disk that cannot contribute trees to the
cover without removing each other, which in turn allows us to bound : . We
obtain the following theorem.

Theorem 4.7. Let ⌧ be a strongly hyperbolic unit disk graph with radius ' > 0.
Given the disk representation of⌧ , 0 > 0, and 1 > 1, the P����� algorithm with
the radially increasing root selection strategy computes a (2,3,:)-tree-cover of ⌧
with 2 = 1 + 21/0, 3 = 2, and

: = c4
✓
1 + 0
1 � 1

(1
2 diam(⌧) � 1)' + 2

�
log

1
(diam(⌧)) + 2

� ◆
.

First, note that the correctness of the claimed stretch immediately follows
from Lemma 4.6. However, bounding : is more involved. In the following, we
�rst compute an upper bound on : that holds for a given phase and afterwards
sum over all phases. To this end, we analyze several aspects about paths in
strongly hyperbolic unit disk graphs, depending on the positions of the vertices.

Consider the roots of the partial shortest-path trees that contain a vertex { in a
given phase, which we refer to as the roots of {. We partition the hyperbolic disk

61

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

'/2
{

Figure 4.2: Illustration of the proof of Theorem 4.7. The hyperbolic disk is divided into
bands. The roots (black vertices) of { (red vertex) in a band lie in an angular interval of
bounded width (blue). Each root reserves a portion of that interval (red) that no other
root can lie in. All vertices with radius at most '/2 are removed after processing the
�rst root.

into annuli, which we call bands, and compute an upper bound on the number
of roots of { in each band, see Figure 4.2 for an illustration. We then utilize two
key ingredients. First, since { is contained in the partial shortest-path trees of
its roots, the length of the path between { and a root is bounded, and so is the
angular distance between them. Consequently, all roots in a band lie in a bounded
angular interval (blue areas in Figure 4.2). Secondly, roots cannot be adjacent
as they would otherwise delete each other, which means that the hyperbolic
distance between them has to be su�ciently large. For roots in the same band,
this can only be achieved if their angular distance is large. Consequently, each
root in a band reserves a portion of the angular interval (red areas in Figure 4.2)
that no other root can lie in, from which we can derive an upper bound on the
number of roots that lie in the band.

The following lemma bounds the angular distance Xi (D,D:) between a vertexD
and another vertex D: , assuming that there exists a path of length : between
them that consists only of vertices whose radii are not smaller than the one of D.
In particular, this applies to roots of {: In a given phase, the length of the paths
considered in the partial shortest-path trees is bounded. Moreover, when the
partial shortest-path tree of a root d of { is computed, all vertices of smaller

62

Performance on Strongly Hyperbolic Unit Disk Graphs Section 4.5

radii than d have been deleted (since roots are considered in order of increasing
radius), meaning the path from d to { cannot contain vertices of smaller radius.

Lemma 4.8. Let⌧ be a strongly hyperbolic unit disk graph with radius ' > 0 and
let D be a vertex with A (D) � '/2. Further, let % = (D,D1, . . . ,D:) be a path with
A (D)  A (D8) for all 8 2 [:]. Then, Xi (D,D:)  : · c4

'/2�A (D) .

Proof. For convenience, we de�ne D0 = D. Then, Xi (D,D:) can be bounded by

Xi (D,D:) 

:’
8=1

Xi (D8�1,D8) .

Note that D8�1 and D8 are adjacent and recall that \ (A (D8�1), A (D8)) denotes the
maximum angular distance between them, such that this is the case (see Sec-
tion 3.2.2). Thus,

Xi (D,D:) 

:’
8=1

\ (A (D8�1), A (D8)) .

Since '/2  A (D)  A (D8) for all 8 2 [:] is a precondition of this lemma, we have
A (D8�1) + A (D8) � ' for all 8 2 [:]. Consequently, we can apply Lemma 3.4 to
bound \ (A (D8�1), A (D8)), which yields

Xi (D,D:) 

:’
8=1

c4
('�A (D8�1)�A (D8))/2



:’
8=1

c4
('�A (D)�A (D))/2

= : · c4
'/2�A (D)

,

where the second inequality is valid since A (D)  A (D8) for all 8 2 [:]. ⇤

The second key ingredient is a lower bound on the minimum angular distance
between two non-adjacent vertices in a radial band of �xed width in the hyper-
bolic disk. We note that in order to obtain a bound that is easy to work with,
we aim to utilize Corollary 3.5. However, this requires that ' is not too small.
For now, we assume that this requirement is met and afterwards resolve the
constraint in the analysis of the algorithm.

63

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

Lemma 4.9. Let⌧ be a strongly hyperbolic unit disk graph with radius ' � 1 and
let A � '/2 be a radius. Further, let D, { be non-adjacent vertices with A (D), A ({) 2
[A , A + g] for g 2 [0,' � 1]. Then, Xi (D, {) � 4'/2� (A+g) .

Proof. Recall that \ (A (D), A ({)) denotes the maximum angular distance such
that D and { are adjacent. As the two vertices are not adjacent in our case, it
follows that Xi (D, {) > \ (A (D), A ({)). We now aim to apply Corollary 3.5 in
order to obtain a lower bound on \ (A (D), A ({)). To this end, we �rst validate
that its preconditions are met. Since A (D), A ({) � A � '/2, we have A (D) +
A ({) � '. Moreover, by assumption we know that A (D), A ({) 2 [A , A + g] for
g 2 [0,' � 1], which implies that |A (D) � A ({) |  g  ' � 1. Consequently, we
can apply Corollary 3.5 to conclude that

\ (A (D), A ({)) � 4
('�A (D)�A ({))/2

� 4
('�2A�2g)/2

= 4'/2� (A+g)
,

where the second inequality is valid, since by assumption A (D), A ({)  A + g . ⇤

We can now combine the two key ingredients to compute an upper bound on
the number of the roots of { in a given phase 8 , which we denote by 18 ({).

Lemma 4.10. Let⌧ be a strongly hyperbolic unit disk graph with radius ' > 0.
Let the disk representation of ⌧ , 0 > 0, and 1 > 1 be given and consider phase 8 of
the P����� algorithm. Then, for every vertex { it holds that

|18 ({) |  c4 ('(1 + 0)18 + 2) .

Proof. In the following, we aim to utilize Lemmas 4.8 and 4.9, both of which
require that the considered vertices have a radius of at least '/2 and one addi-
tionally assumes that ' � 1 Therefore, we �rst argue about the case where these
conditions are not met. First note that after the �rst root in a phase is processed,
all vertices with radius at most '/2 are removed since (if they exist in the �rst
place) they form a clique. Additionally, when ' < 1, the whole graph can be
covered by few cliques. More precisely, by Lemma 3.8 a strongly hyperbolic
unit disk graph with radius ' can be covered by max{2c

p
2, 2c4'/2} cliques. In

particular, for ' < 1, this yields a bound of 2c
p
4 . Since processing each root

removes at least one such clique from the graph, the number of roots in the

64

Performance on Strongly Hyperbolic Unit Disk Graphs Section 4.5

Angular Distance to {
0

'

'/2 + 9 + 1

'/2 + 9Ra
di
us

{

Xi (d, d 0)

Xi ({, d)

Q d d 0

Figure 4.3: Illustration of the proof of Lemma 4.10. A vertex { (red dot) and the roots
(black vertices) that are contained in the 9th band and are connected to { (via the green
paths). All roots lie in the angular intervalQ (blue region). Other than d , no root can lie
in the red region.

phase is bounded by the number of cliques. It follows, considering the �rst clique
in D'/2 and the remaining cliques when ' < 1, that we can bound the roots of {
in phase 8 as |18 ({) |  1 + 2c

p
4  2c4 , which we account for with the +2 in the

lemma statement.
For the remaining roots of { we can now assume that ' � 1 and that all

vertices have radius at least '/2. Furthermore, it su�ces to show that there are
at most c4'(1 + 0)18 such roots. We cover the remainder of the disk with '/2
bands of radial width 1, where the 9 th band (for 9 2 {0, . . . ,'/2� 1}) contains all
points with radius in ['/2+ 9,'/2+ 9 + 1], see Figure 4.2. The claim then follows
if we can bound the number of roots of { in a single band by 2c4 (1 + 0)18 .
Let 18, 9 ({) denote the roots of { that lie in the 9th band (see Figure 4.3). We

�rst bound the angular distance between { and a root in 18, 9 ({), and with that
the width of the angular interval Q that contains all of them (blue region in
Figure 4.3). Afterwards, we show that each root reserves a portion of Q that
no other root can be in. An upper bound on |18, 9 ({) | is then obtained by the
quotient of the widths of the two intervals.
Consider a root d 2 18, 9 ({). Since the roots are processed in order of in-

creasing radius, all vertices of radius at most A (d) have been removed before.
Consequently, the path from d to { in the partial shortest-path tree rooted at d
consists only of vertices with radius at least A (d). Moreover, in phase 8 the depth
of this tree is (1 + 0)18 , which means that the path between d and { is at most

65

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

this long. Therefore, we can apply Lemma 4.8 to conclude that the maximum
angular distance between { and a root d is at most

max
d218,9 ({)

Xi ({, d)  max
d218,9 ({)

(1 + 0)18 · c4'/2�A (d)

 (1 + 0)18 · c4� 9
,

where the second inequality stems from the fact that A (d) � '/2 + 9 holds for all
d 2 18, 9 ({). Moreover, since roots cannot be adjacent (as they would otherwise
remove each other) and all roots in 18, 9 ({) have their radii in ['/2+ 9,'/2+ 9 +1],
we can apply Lemma 4.9 to conclude that the minimum angular distance between
two roots d, d 0 2 18, 9 ({) is at least

min
d<d 0 218,9 ({)

Xi (d, d
0
) � 4

'/2� ('/2+9+1)

= 4� (9+1)
.

Note that the angular intervalQ extends to both angular directions from {. It
follows that

|18, 9 ({) |  2 ·
maxd218,9 ({) Xi ({, d)

mind<d 0 218,9 ({) Xi (d, d
0)


2(1 + 0)18 · c4� 9

4� (9+1)

= 2c4 (1 + 0)18 . ⇤

Recall that the radius of the shortest-path trees that are removed from the
graph in two consecutive phases increases by a factor of 1 and that the algorithm
terminates when the �rst tree in a phase deletes the whole graph. It follows that
there are at most dlog

1
(diam(⌧))e phases. By summing over all phases, we can

complete the proof of Theorem 4.7, which we restate for the sake of readability.

Theorem 4.7. Let ⌧ be a strongly hyperbolic unit disk graph with radius ' > 0.
Given the disk representation of⌧ , 0 > 0, and 1 > 1, the P����� algorithm with
the radially increasing root selection strategy computes a (2,3,:)-tree-cover of ⌧
with 2 = 1 + 21/0, 3 = 2, and

: = c4
✓
1 + 0
1 � 1

(1
2 diam(⌧) � 1)' + 2

�
log

1
(diam(⌧)) + 2

� ◆
.

66

Performance on Strongly Hyperbolic Unit Disk Graphs Section 4.5

Proof. First note that the values for 2 and 3 hold for any graph due to Lemma 4.6.
It remains to show that the stated bound on : is valid. To that end, we make use
of Lemma 4.10, which states that { is contained in at most c4 ('(1 + 0)18 + 2)
trees in phase 8 , and sum over all phases. Since the radius of the shortest-path
trees that are removed from the graph in two consecutive phases increases by a
factor of 1 and the algorithm terminates when the �rst tree in a phase deletes
the whole graph, there are at most dlog

1
(diam(⌧))e phases. Thus,

: =
log1 (diam(⌧))+1’

8=0
c4 ('(1 + 0)18 + 2)

= c4
©≠≠
´
'(1 + 0)©≠

´
log1 (diam(⌧))+1’

8=0
1
8™Æ
¨
+ 2

�
log

1
(diam(⌧)) + 2

�™ÆÆ
¨
.

Note that the remaining sum is a partial sum of a geometric series with 1 > 1,
which can be computed as

Õ
✓

8=0 1
8 = (1

✓+1
� 1)/(1 � 1). We obtain

: = c4

'(1 + 0)

1
log1 (diam(⌧))+2

� 1
1 � 1

+ 2
�
log

1
(diam(⌧)) + 2

�!

= c4
✓
1 + 0
1 � 1

(1
2 diam(⌧) � 1)' + 2

�
log

1
(diam(⌧)) + 2

� ◆
. ⇤

While this result holds for all strongly hyperbolic unit disk graphs, more
speci�c results can be obtained when looking at hyperbolic random graphs,
which are strongly hyperbolic unit disk graphs where vertices are drawn in-
dependently and uniformly at random from a disk of radius ' = O

�
log(=)

�
,

see Section 3.3. Since these graphs have a diameter of O
�
log(=)

�
asymptotically

almost surely [MS19], we obtain the following corollary.

Corollary 4.11. Let⌧ be a hyperbolic random graph. Given the disk representation
of ⌧ , 0 > 0, and 1 > 1, the P����� algorithm with the radially increasing root
selection strategy computes a (2,3,:)-tree-cover of⌧ with 2 = 1 + 21/0, 3 = 2, and,
asymptotically almost surely

: = O

(1 + 0)12

1 � 1
· log(=)2

!
.

67

Chapter 4 Routing in Strongly Hyperbolic Unit Disk Graphs

Together with Theorem 4.4, it follows that greedy routing on hyperbolic
random graphs can be implemented such that the resulting scheme is starvation-
free and has stretch 1 + 21/0 with additive bound 2. Moreover, by setting
0 = 1 = 2 we obtain a multiplicative stretch of 3, and can derive that the scheme,
asymptotically almost surely, stores O

�
log(=)4

�
bits at each vertex and takes

O
�
log(=)2

�
time per query.

4.6 Empirical Evaluation

Finally, to evaluate how well our results translate to real-world networks, we
performed experiments on 50 graphs from the Network Data Repository [RA15],
with sizes ranging from 14 k to over 2.3M vertices. Since we do not have unit
disk representations for these, we used the degrees of the vertices as a proxy
for their place in the hierarchical structure. That is, the root selection strategy
processed the vertices by decreasing degree. For each graph, we computed a tree-
cover using the P����� algorithm with parameters 0 = 1 = 2, and sampled 10 k
vertex pairs for which the path obtained by our routing scheme was compared
to a shortest path between them. Figure 4.4 shows boxplots aggregating our
observations.
As expected, the maximum observed stretch is 3. However, this stretch oc-

curred only rarely. In all networks most of the sampled routes had a stretch of at
most 1.5 and in 16 of the 50 graphs the median stretch was 1. At the same time,
the number of trees that a vertex was contained in on average remained small.
In 42 of the 50 networks this number was less than 50, even in networks with
over 2.3M vertices.

68

Empirical Evaluation Section 4.6

bio-human-gene2
socfb-Indiana69

graph500-scale19-ef16-adj
graph500-scale18-ef16-adj

cit-HepTh
bio-CE-CX

ia-wiki-Talk-dir
email-EU

rec-yelp-user-business
tech-as-topology
email-enron-large

ca-AstroPh
soc-Slashdot0902
tech-internet-as

soc-�ickr
tech-as-skitter
ia-digg-reply

ia-stackexch-user-marks-post-und
rec-github

ca-coauthors-dblp
ia-yahoo-messages

tech-RL-caida
tech-p2p-gnutella

rec-amazon-ratings
bn-human-BNU-1-0025890-session-1

ca-citeseer
wing

sc-pkustk13
inf-roadNet-PA

sc-shipsec5
sc-msdoor

sc-pkustk11
thermal1

rgg-n-2-16-s0
rec-eachmovie

citeulike-u2p-u2t
movielens-10m-noRatings

socfb-UCF52
web-frwikinews-user-edits

epinions
ia-wiki-user-edits-page

fb-pages-company
rt-retweet-crawl

rt-higgs
ia-wikiquote-user-edits

web-sk-2005
delaunay-n20

econ-poli-large
ckt11752-dc-1
web-Stanford

Stanford-Berkeley
degme

1.0 1.5 2.0 2.5 3.0
Multiplicative Stretch

N
et
w
or
k

20 40 60 80
Trees per Vertex

Figure 4.4:Multiplicative stretch when routing with a tree-cover obtained using the
P����� algorithm with 0 = 1 = 2. Colors show the number of trees : that an average
vertex is contained in. The boxes denote the interquartile range extending to the 25th
and 75th percentile with horizontal bars showing the median. Whiskers extend to 0.1%
and 99.9%, while circles show values beyond that.

69

5 Bidirectional BFS in
Hyperbolic Random Graphs

This chapter is based on joint work with Thomas Bläsius, Cedric Freiberger, Tobias
Friedrich, Felix Montenegro-Retana, and Marianne Thie�ry [Blä+18; Blä+22]. It
started as a student project where we developed some of the core ideas of the paper,
yielding a bound of the size of the search space of the bidirectional breadth-�rst
search on hyperbolic random graphs in terms of the number of visited vertices.
This was later extended to a bound on the running time by also considering the
visited edges, while making the probabilistic statements stronger, and by adding a
comparison to the performance of the bidirectional breadth-�rst search on random
graphs with an underlying Euclidean geometry.

5.1 Introduction

In this chapter, we consider another path-�nding algorithm. In contrast to
the previous chapter, we are now interested in �nding an actual shortest path
between two vertices, instead of an approximation of it. Besides being of in-
dependent interest, many algorithms use shortest path queries as a subroutine.
On unweighted graphs, such queries can be answered in linear time using a
breadth-�rst search (BFS). Though this is optimal in the worst case, it is not
e�cient enough when dealing with large networks or problems involving many
shortest path queries.

Away to heuristically improve the run time, is to use a bidirectional BFS [Poh69].
It runs two searches, simultaneously exploring the graph from the start and the
destination. The shortest path is found once the two search spaces touch. Being
one of the standard heuristics, the bidirectional BFS is widely used in practice
(e.g., in route planning). On homogeneous networks (where most vertices have
similar degrees, like road networks) this typically leads to a speedup factor of
about two. However, on heterogeneous networks, where several approaches to
computing shortest paths have been studied extensively [ASK12; LFC17; Pen+12],
experiments indicate that the bidirectional BFS yields an asymptotic running
time improvement [BN16].

71

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

Homogeneous Heterogeneous

Independent
Edges

Bounded
Variance

O
�
=

1
2+n

�
[BN16]

Unbounded
Variance

O
�
=

4�V
2 +n

�
[BN16]

Underlying
Geometry

Euclidean
Random Graphs

⇥(=) [Folklore]

Hyperbolic
Random Graphs

Õ
�
=
2 V�2
V�1 + =

1
V�1

�
[This chapter]

Table 5.1: Probabilistic bounds on the running time of the bidirectional BFS obtained
by analyzing di�erent random graph models. The models (and associated results) are
arranged by the heterogeneity of the corresponding degree distributions of the graphs
and the (in)dependence of edges. Here, = denotes the number of vertices in the graph
and n is an arbitrarily small constant. The parameter V 2 (2, 3) denotes the power-law
exponent of the degree distribution in the considered heterogeneous networks.

Despite being such a fundamental heuristic, theory fails at predicting and
explaining the observed behavior. The theoretical worst-case running time
overshoots the observations by a lot. A more promising approach to explain the
performance of the bidirectional BFS is an average-case analysis [BN16; LR89].
There, the idea is to consider instances that are drawn from certain probability
distributions instead of assuming the worst case. The results of Borassi and
Natale are summarized in the �rst row of Table 5.1 [BN16]. Their analysis covers
a variety of random graph models. On the one hand these include homogeneous
networks where the degree distribution has bounded variance, e.g. Erdős-Rényi
random graphs. On the other hand, they also consider heterogeneous networks
where the variance of the degree distribution is unbounded, e.g. Chung-Lu
random graphs with power-law exponent V 2 (2, 3). However, the results, again,
do not match what is observed in practice, as it predicts shorter running times
on homogeneous networks than on heterogeneous ones.
The fundamental obstacle that prevents the average-case analysis from pro-

ducing convincing explanations is that the considered random graph models
are not realistic. They assume that edges in the graph are independent of each
other, leading to low clustering. However, as explained in Chapter 1, real-world
networks typically exhibit locality, i.e., edges in an evolving network tend to
form between vertices that are already close in the network.

72

Bidirectional Breadth-First Search Section 5.2

We resolve this discrepancy by modeling edge dependencies using geometry
and extend the comparison in Table 5.1 by adding the second row. More precisely,
in this chapter, we analyze the bidirectional BFS on random graph models with
underlying geometry. We prove that, with high probability, the bidirectional
BFS has a sublinear worst-case running time on the heterogeneous networks
generated by the hyperbolic random graph model (see Section 3.3). Additionally,
it is not hard to see why there is no asymptotic speedup on the homogeneous
networks generated by the Euclidean random graph model. Both results match
previous empirical observations. Finally, we interpret these insights and discuss
how the heterogeneity of the degree distribution and an underlying geometry
a�ect the running time of the bidirectional breadth-�rst search.

5.2 Bidirectional Breadth-First Search

In an unweighted and undirected graph ⌧ = (+ , ⇢), a BFS �nds the shortest
path between two vertices B, C 2 + by starting at B and exploring the graph in
levels, where the 8th level !B

8
contains the vertices with distance 8 to B . More

formally, the BFS starts with the set !B0 = {B} on level 0. Assuming the levels
!
B

0, . . . , !
B

8
have been computed already, one obtains the next level !B

8+1 as the
set of neighbors of vertices in level !B

8
that are not contained in earlier levels.

Computing !B
8+1 from !

B

8
is called an exploration step, obtained by exploring the

edges between vertices in !B
8
and !B

8+1.
The bidirectional BFS runs two BFSs simultaneously. The forward search

starts at B and the backward search starts at C . The shortest path between the two
vertices can then be obtained, once the search spaces of the forward and backward
search touch. Since the two searches cannot actually be run simultaneously, they
alternate depending on their progress. When exactly the two searches alternate
is determined by the alternation strategy. We note that we only swap after full
exploration steps, i.e., we never explore only half of level 8 of one search before
continuing with the other. This has the advantage that we can be certain to
know the shortest path once a vertex is found by both searches.
In the following we de�ne the greedy alternation strategy as introduced by

Borassi and Natale [BN16] and show that it is not much worse than any other
alternation strategy. Assume the latest levels of the forward and backward
searches are !B

8
and !C

9
, respectively. Then the next exploration step of the

73

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

forward and backward search would cost time proportional to

2
B

8
=

’
{2!

B
8

deg({), and 2
C

9
=

’
{2!C9

deg({),

respectively. The greedy alternation strategy then greedily continues with the
search that causes the fewer cost in the next exploration step, i.e., it continues
with the forward search if 2B

8
 2

C

9
and with the backward search otherwise.

Theorem 5.1. Let ⌧ be a graph with diameter 3 . If there exists an alternation
strategy such that the bidirectional BFS explores 5 (=) edges, then the bidirectional
BFS with greedy alternation strategy explores at most 3 · 5 (=) edges.

Proof. Let � be the alternation strategy that explores only 5 (=) edges. First
note that the number of explored edges only depends on the number of levels
explored by the two di�erent searches and not on the actual order in which
they are explored. Thus, if the greedy alternation strategy is di�erent from �,
we can assume without loss of generality that the greedy strategy performed
more exploration steps in the forward search and fewer in the backward search
compared to �. Let 2B and 2C be the number of edges explored by the forward
and backward search, respectively, when using the greedy strategy. Moreover,
let 9 be the last level of the backward search (which is actually not explored) and,
accordingly, let 2C

9
be the number of edges the next step in the backward search

would have explored. Then 2C +2C
9
 5 (=) as, when using�, the backward search

still explores level 9 . Moreover, the forward search with the greedy strategy
explores at most 2C + 2C

9
(and therefore at most 5 (=)) edges in each step, as

exploring the backward search would be cheaper otherwise. Consequently, each
step in the forward and backward search costs at most 5 (=). As there are at
most 3 steps in total, we obtain the claimed bound. ⇤

5.2.1 Euclidean Random Graphs

Recall that, Euclidean random graphs, i.e, random Euclidean unit disk graphs,
are generated by distributing = vertices uniformly at random in the unit square
[0, 1]2 and connecting any two vertices if the Euclidean distance between them
is at most some threshold ' 2 R, as explained in Chapter 1. One can imagine,
that each vertex is equipped with a disk of radius ' and an edge is added to
all other vertices that lie in this disk. The threshold ' a�ects the properties of

74

Bidirectional Breadth-First Search Section 5.2

the generated network and in order to obtain graphs with a giant component
of linear size (as is the case for hyperbolic random graphs), ' has to be chosen
from the so called supercritical regime [Pen03]. In contrast to hyperbolic random
graphs, the uniform sampling of the vertices in the Euclidean space leads to a
distribution where the number of vertices falling into each disk is roughly the
same, which in turn leads to a homogeneous degree distribution.
We examine how a BFS explores such a graph, by considering the region of

the plane containing the vertices visited after several exploration steps. When '
is chosen from the supercritical regime, then for two vertices at graph theoretic
distance 3 it holds that ' ·3 is at most a constant factor larger than the Euclidean
distance between them, if 3 is super-logarithmic [FSS13]. Additionally, it is easy
to see that the Euclidean distance between them can be at most ' · 3 . Therefore,
we can assume that after : (su�ciently many) steps the region in the plane that
contains the visited vertices resembles a disk of radius proportional to : . Since
the area of a disk with radius A grows as cA 2, the expected number of explored
vertices is in ⇥

�
=:

2� , as the vertices are distributed uniformly.
In this scenario it is easy to see that the performance of a bidirectional BFS

improves by a constant factor, compared to a standard BFS. Let B and C be two
vertices with (su�ciently large) graph theoretic distance3 from each other. Then,
the expected number of vertices explored by a standard BFS from B to C is ⇥

�
=3

2� .
If we run two searches instead (one starting at B , the other at C), then the expected
explored search space is minimized when the two BFSs touch after half as many
steps, exploring two disks of half the radius. (Note that this holds independent
of the chosen alternation strategy.) In that case the expected number of explored
vertices is proportional to 2=c (3/2)2 which is again ⇥

�
=3

2� , indicating that the
bidirectional variant yields no asymptotic speedup over the standard BFS.
In the following, we focus on the performance of the bidirectional BFS on

hyperbolic random graphs. They feature a heterogeneous degree distribution,
leading to signi�cant di�erences in the performance of the bidirectional BFS.

5.2.2 Hyperbolic Random Graphs

In this section, we analyze the running time of the bidirectional BFS and obtain
an upper bound on the maximum running time over all possible start–destination
pairs. Our results are summarized in the following main theorem, where the
bound is expressed as a function of the number of vertices = in the graph, as
well its maximum degree, denoted by degmax(⌧).

75

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

Theorem 5.2. Let ⌧ be a hyperbolic random graph with = vertices. With high
probability the shortest path between any two vertices in ⌧ can be computed in
time Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
.

Note that this bound on the running time also holds in expectation. Our
bound fails with probability O

�
1/=

�
, in which case the worst-case running time

is still bounded by the size of the hyperbolic random graph, which is O(=).
Consequently, this case contributes O(1) to the expectation, which is dominated
by the above bound.
Recall that for the relevant regime of the parameter U 2 (1/2, 1), hyperbolic

random graphs contain a giant component, while all other components have
polylogarithmic size, with high probability (see Section 3.3). Since a bidirectional
BFS could completely explore a non-giant component in Õ(1) time and either
return the shortest path (if both vertices are in the same non-giant component)
or conclude that the vertices are in di�erent components, we focus on the non-
trivial case in the following, where the two considered vertices are both in the
giant component.

To prove Theorem 5.2, we make use of the hyperbolic geometry by bounding
the numbers of vertices and edges that lie in certain regions within a hyperbolic
disk. See Figure 5.1 for an illustration of such regions. In particular, they include
sectors, i.e., restrictions of a disk DA to all points whose angular coordinates lie
in a certain interval. The angular width of a sector is the length of this interval.
For an arbitrary set of points A, we use A|

A2
A1 to denote the restriction of A to

points with radii in [A1, A2], i.e., A|
A2
A1 = A \ (DA2 \ DA1).

The general idea for the proof of Theorem 5.2 now is as follows; see Figure 5.2.
As long as the two searches visit only low-degree vertices, all explored vertices
lie within a small region, i.e., the searches operate locally. Once the searches
visit high-degree vertices closer to the center of the hyperbolic disk (green area
in Figure 5.2), it takes only few steps to complete the search, as hyperbolic
random graphs have a densely connected core. Thus, we split our analysis in
two phases: a �rst phase in which both searches advance towards the center
and a second phase in which both searches meet in the center. Note that this
strategy assumes that we know the coordinates of the vertices as we would like
to stop a search once it reached the center. However, as shown above, the greedy
alternation strategy is oblivious to the geometry but performs not much worse
than any other alternation strategy.

We can capture the two phases geometrically by separating the whole diskD'

76

Bidirectional Breadth-First Search Section 5.2

DA

A1

A2

A

DA |
A2
A1

O

S|
A2
A1

i

SA|
A2
A1

A

Figure 5.1: Geometric shapes and their intersections. Sector S (green) has an angular
width of i . Red shaded areas are restricted to points with radii in [A1, A2].

into two parts. One is the inner disk D' |
d

0 centered at the origin. Its radius d is
chosen in such a way that any two vertices in D' |

d

0 have a common neighbor
with high probability. The second part is the annulus D' |

'

d
, the remainder of

the whole disk, which we call outer band. A single BFS now explores the graph
in two phases. In the �rst phase, the BFS explores vertices in the outer band.
The phase ends, when the next vertex to be encountered lies in the inner disk.
Once both BFSs completed the �rst phase, they only need at most two more
steps for their search spaces to share a vertex. One step to encounter the vertex4
in the inner disk and another step to meet at their common neighbor that any
two vertices in the inner disk have with high probability; see Figure 5.2.

Note that this scenario describes the worst case. Depending on the positions of
the two considered vertices the two searches may touch earlier, e.g., when both
vertices are close to each other in the outer band or when at least one of them is
already contained in the inner disk. However, since we want to determine an
upper bound on the running time, we consider the case where both vertices lie
in the outer band and the two searches touch in the inner disk. In the remainder

4 We note that this vertex has a degree of ⌦̃
�
=
1�1/(2U) � with high probability. Consequently, a

non-giant component of size Õ(1) is detected (at the latest) before exploring this vertex.

77

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

B

C

⇡'

⇡' |d0

Figure 5.2: Visualization of the two phases of each BFS in a hyperbolic random graph.
Vertices visited during the �rst phase are red. The red edges denote the �rst encounter
of a vertex in the inner disk D' |

d

0 (green region). This corresponds to the �rst step in
the second phase. The last step then leads to a common neighbor via the blue edges.

of the chapter we only consider how one of the two searches explores the graph.
The obtained bounds also hold for the other search, meaning the total search
space increases only by a constant factor when considering both searches instead
of only one.
For our analysis we assume an alternation strategy in which each search

stops once it explored one additional level after �nding the �rst vertex in the
inner disk D' |

d

0 . Of course, this cannot be implemented without knowing the
underlying geometry of the network. However, by Theorem 5.1 the search space
explored using the greedy alternation strategy is only a polylogarithmic factor
larger, as the diameter of hyperbolic random graphs is polylogarithmic with
high probability [FK15a]. The following lemma shows for which choice of d the
above sketched strategy works.

78

Bidirectional Breadth-First Search Section 5.2

Lemma 5.3. Let ⌧ be a hyperbolic random graph with = vertices. With high
probability, ⌧ contains a vertex that is adjacent to every other vertex in D' |

d

0 , for
d = 1/U (log= � log log=).

Proof. Consider a vertex { 2 D'�d . Note that the distance between two points
is upper bounded by the sum of their radii. Thus, every vertex in D' |

d

0 has
distance at most ' to {, and is therefore adjacent to {. Hence, to prove the claim,
it su�ces to show the existence of this vertex { with radius at most ' � d . As
described in Section 3.3.3, the probability for a single vertex to have radius at
most ' � d is given by the measure ` (D' |

'�d

0). Using Equation (3.8) we obtain

`

⇣
D' |

'�d

0

⌘
= 4�Ud (1 + o(1))

=
log=
=

(1 + o(1)) .

Thus, the probability that none of the = vertices lies in D' |
'�d

0 is given by

Pr

+

⇣
D' |

'�d

0

⌘
= ;

�
=

✓
1 � `

⇣
D' |

'�d

0

⌘◆=

=
✓
1 �

log=
=

(1 + o(1))
◆=
.

Since 1 � G  4
�G for all G 2 R (Lemma 2.9), this term can be bounded by

Pr

+

⇣
D' |

'�d

0

⌘
= ;

�
 4

�
log(=)

= (1+o(1)) ·=

= 4� log(=) (1+o(1))

= =� (1+o(1))

= O
�
1/=

�
.

Consequently, there is at least one vertex in D' |
'�d

0 with high probability. ⇤

In the following, we �rst bound the search space explored in the �rst phase,
i.e., before we enter the inner disk D' |

d

0 . Afterwards we bound the search space
explored in the second phase, which consists of two exploration steps. The �rst
one to enter D' |

d

0 and the second one to �nd a common neighbor, which exists
due to Lemma 5.3.

79

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

d

\ (d, d)
'

{2

{1

S
{

i = 23\ (d, d)

Figure 5.3: The sector S (red) of angular width i contains the search space of a BFS
starting at {, in the outer band D' |

'

d
. The vertices {1 and {2 are at maximum angular

distance to still be adjacent.

Search Space in the First Phase

To bound the size of the search space in the outer band, we make use of the
geometry in the following way. For two vertices in the outer band to be adjacent,
their angular distance has to be small. Moreover, the number of exploration
steps is bounded by the diameter of the graph. Thus, the maximum angular
distance between vertices visited in the �rst phase cannot be too large. Note
that the following lemma restricts the search to a sublinear portion of the disk,
which we later use to show that also the number of explored edges is sublinear.

Lemma 5.4. With high probability, all vertices that a BFS on a hyperbolic random
graph explores before �nding a vertex with radius at most d = 1/U (log=� log log=)
lie within a sector of angular width Õ

�
=
� (1/U�1) � .

Proof. For an illustration of the proof see Figure 5.3. Recall that \ (A1, A2) denotes
the maximum angular distance between two vertices of radii A1 and A2 such that
they are still adjacent, as described in Section 3.3.5. Since A1 and A2 only appear as
negative exponents in the expression for \ (A1, A2) (see Equation (3.10)), this angle
increases with decreasing radii. Thus, \ (A1, A2)  \ (d, d) holds for all vertices in
the outer band D' |

'

d
.

80

Bidirectional Breadth-First Search Section 5.2

Now assume we start a BFS at a vertex { 2 D' |
'

d
and perform 3 exploration

steps without leaving the outer bandD' |
'

d
. Then no explored vertex has angular

distance more than 3\ (d, d) from {. Thus, the whole search space lies within
a disk sector of angular width 23\ (d, d). The number of steps 3 is at most
polylogarithmic as the diameter of a hyperbolic random graph is polylogarithmic
with high probability [FK15a]. Using Equation (3.10) for \ (d, d), we obtain

\ (d, d) = 24
'�2d

2

⇣
1 ± ⇥

�
4
'�2d � ⌘

= 24⇠/2=1�1/U log(=)1/U©≠
´
1 + ⇥

 ✓
log=
=1�U

◆2/U !™Æ
¨

= O
⇣
=
� (1/U�1) log(=)1/U

⌘
,

which proves the claimed bound. ⇤

Note that the expected number of vertices in a sector S of angular width i is
linear in =i due to the fact that the angular coordinate of each vertex is chosen
uniformly at random. Thus, Lemma 5.4 already shows that the expected number
of vertices visited in the �rst phase of the BFS is Õ

�
=
2�1/U � , which is sublinear

in =. It is also not hard to see that this bound holds with high probability
(see Corollary 2.3). To also bound the number of explored edges, we sum the
degrees of vertices in S. It is not surprising that this yields the same asymptotic
bound in expectation, as the average degree in a hyperbolic random graph is
constant, with high probability (again, see Section 3.3). However, to obtain
meaningful results, we need a bound that holds with high probability. Though
we can use techniques similar to those that have been used to show that the
average degree of the whole graph is constant [GPP12; Keu18], the situation is
complicated by the restriction to a sublinear portion of the disk. Nonetheless,
we obtain the following theorem.

Theorem 5.5. Let ⌧ be a hyperbolic random graph with = vertices. Then, the
degrees of vertices in every sector of angular width i = ⌦

�
log(=)2/=1/2

�
sum to

Õ
�
i= + =

1/(2U)
+ degmax(⌧)

�
with high probability.

We note that degmax(⌧) has to be included here, as the theorem states a bound
for every sector, and thus in particular for sectors containing the vertex of maxi-
mum degree. Recall, that degmax(⌧) = Õ

�
=
1/(2U) � holds almost surely [GPP12],

81

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

and that there exists a bound of O
�
=
1/(2U�Y) � for all Y > 0 that holds with high

probability [Keu18]. Moreover, we note that the condition i = ⌦
�
log(=)2/=1/2

�
is crucial for our proof, i.e., the angular width of the sector has to be su�ciently
large for the concentration bound to hold. Also note that, depending on U , the
angular width determined in Lemma 5.4 may be smaller than this lower bound.
However, if this is the case, we can choose i = Õ

�
=
�1/2� as an upper bound

for the angular width of the sector and obtain Õ
�
i=

�
= Õ

�
=
1/2� = Õ

�
=
1/(2U) �

for U 2 (1/2, 1). Consequently, the bound holds for the previously determined
angular width Õ

�
=
� (1/U�1) � for all U 2 (1/2, 1).

As the proof for Theorem 5.5 is rather technical, we defer it to Section 5.3.
Together with Lemma 5.4, we obtain the following corollary. Note that since
U 2 (1/2, 1), this shows that the running time spend in the �rst phase (not
accounting for the maximum degree) is sublinear in = with high probability.

Corollary 5.6. On a hyperbolic random graph the �rst phase of the bidirectional
search explores Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
edges with high probability.

Search Space in the Second Phase

The �rst phase of the BFS is completed when the next vertex to be encountered
lies in the inner disk. Thus, the second phase consists of only two exploration
steps. One step to encounter the vertex in the inner disk and another step to meet
the other search. Thus, to bound the running time of the second phase, we have
to bound the number of edges explored in these two exploration steps. To do this,
let +1 be the set of vertices encountered in the �rst phase. Recall that all these
vertices lie within a sector S of angular width i = Õ

�
=
� (1/U�1) � , by Lemma 5.4.

The number of explored edges in the second phase is then bounded by the sum
of degrees of all neighbors # (+1) of vertices in+1. To bound this sum, we divide
the neighbors of +1 into two categories: # (+1) \+ (S) and # (+1) \+ (S). Note
that we already bounded the sum of degrees of vertices in S for the �rst phase
(see Theorem 5.5), which clearly also bounds this sum for # (+1) \+ (S). Thus,
it remains to bound the sum of degrees of vertices in # (+1) \+ (S).
To bound this sum, we introduce two hypothetical vertices (i.e., vertices with

speci�c positions that are not actually part of the graph) 21 and 22 such that
every vertex in # (+1) \+ (S) is a neighbor of 21 or 22. Then it remains to bound
the sum of degrees of neighbors of these two vertices. To de�ne 21 and 22, recall
that the �rst phase is restricted to points in the sector S that have a radius

82

Bidirectional Breadth-First Search Section 5.2

d

'

S

{

21|

22

Figure 5.4: Neighbor | of vertex { (blue) is in S (red) or a neighbor of 21 or 22 (green).

greater than d , i.e., all vertices in +1 lie within S|
'

d
. The hypothetical vertices

21 and 22 are basically positioned at the corners of this region, i.e., they both
have radius d , and they assume the maximum and minimum angular coordinate
within S, respectively. Figure 5.4 shows these positions. We obtain the following.

Lemma 5.7. Let ⌧ be a hyperbolic random graph, let S be a sector, and let
{ 2 + (S|

'

d
) be a vertex. Then, every neighbor of { lies in S or is a neighbor of one

of the hypothetical vertices 21 or 22.

Proof. Let { = (A ,i) 2 + (S|
'

d
) and | 2 # ({) \+ (S) be two vertices. Without

loss of generality, assume that 21 lies between { and|, as is depicted in Figure 5.4.
Now consider the point {0 = (d,i) obtained by moving { to the same radius as 21.
According to Corollary 3.3 we have # ({) ✓ # ({

0
). In particular, it holds that

| 2 # ({
0
) and the hyperbolic distance between {0 and | is therefore bounded

by XH2 ({0,|)  '. Since {0 and 21 have the same radial coordinate and 21 is
between {0 and |, meaning Xi ({0, 21) + Xi (21,|) = Xi ({

0
,|), it follows that

XH2 (21,|)  '. Consequently, | is a neighbor of 21. ⇤

83

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

By the above argument, it remains to sum the degrees of neighbors of 21 and 22.
In the following, we show that the degrees of the neighbors of a vertex with
radius A sum to ⇥

�
=4

� (U�1/2)A � in expectation. We note that, for large values of A ,
i.e., for a vertex lying close to the boundary of the disk, this term is surprisingly
large. This is due to the fact that, although vertices near the center of the disk
are rather unlikely to exist in the �rst place, their degree would be su�ciently
large such that they dominate the expected degree sum.

Lemma 5.8. Let ⌧ be a hyperbolic random graph and let { be a vertex. Then, the
degrees of the neighbors of { sum to ⇥

�
=4

� (U�1/2)A ({) � in expectation.

Proof. Let /{ be the sum of the degrees of the neighbors of {, which is a random
variable that depends on the positions of all vertices in the graph. Formally, we
can express /{ by assigning each vertex | 2 + \ {{} two random variables -|

and .|. The �rst is an indicator random variable with -| = 1 if | is a neighbor
of { and -| = 0 otherwise. Additionally, the random variable .| denotes the
degree of |. The sum of the degrees of the neighbors of { can then be written as

/{ =
’

|2+ \{{}

-| · .|.

The expected value of /{ is given by

E[/{] = E

266664
’

|2+ \{{}

-| · .|

377775
=

’
|2+ \{{}

E[-| · .|],

where the second equality holds due to the linearity of expectation. To com-
pute the expected value of -| · .| we can apply the law of total expectation
(see Section 2.2) and obtain

E[/{] =
’

|2+ \{{}

’
G2{0,1}

E
⇥
-| · .| | -| = G

⇤
· Pr[-| = G] .

Clearly, the case where -| = 0 does not contribute anything to the sum, which
can thus be simpli�ed as

E[/{] =
’

|2+ \{{}

E
⇥
.| | -| = 1

⇤
· Pr[-| = 1] .

84

Bidirectional Breadth-First Search Section 5.2

Recall that -| = 1 denotes the event where | is a neighbor of {. That is,

Pr[-| = 1] = Pr
⇥
| 2 # ({)

⇤
= Pr

⇥
| 2 + (D' ({))

⇤
= ` (D' ({)) .

Moreover, recall that .| denotes the random variable representing the degree
of |. Consequently, we can now write E[/{] as

E[/{] =
’

|2+ \{{}

` (D' ({)) · E
⇥
.|

�� | 2 + (D' ({))
⇤

= (= � 1) · ` (D' ({)) · E
⇥
deg(|)

�� | 2 + (D' ({))
⇤
. (5.1)

We continue by computing the expected degree of a vertex | conditioned on the
fact that it is contained in D' ({). To this end, we �rst consider the expected
value without the condition, analogous to how it was done previously [GPP12,
Proof of Theorem 2.3], and afterwards explain how to incorporate the condition.
The expected degree of a vertex | with �xed radius A is given by

E
⇥
deg(|)

�� A (|) = A ⇤ = (= � 1)` (D' (|)) .

To obtain the expected degree of | without �xing its radius (or angle for that
matter) we then integrate E

⇥
deg(|)

�� A (|) = A ^ i (|) = i ⇤
· 5 (A ,i) (note the

joint distribution) over the whole disk. That is,

E
⇥
deg(|)

⇤
=

∫
D'

E
⇥
deg(|)

�� A (|) = A ^ i (|) = i ⇤
· 5 (A ,i) di dA

=
∫

D'

E
⇥
deg(|)

�� A (|) = A ⇤ · 5 (A ,i) di dA ,

where the second step follows from the fact that the expected degree of a vertex
is independent of its angular coordinate.

It remains to include the condition on the fact that | cannot be anywhere
in the whole disk but lies in D' ({) instead. First, we have to accommodate for
the fact that if | is a neighbor of {, as then conversely { is also a neighbor of |.
Consequently, we know that | has at least one neighbor, which we re�ect in the
expected value by introducing the condition on { lying inside D' (|). Moreover,
in general the conditional expectation of a random variable - conditioned on an
event � (with Pr[�] > 0) is given by E

⇥
- | �

⇤
=

Ø
1

�1
G · 5- |� (G) dG , where 5- |�

85

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

is de�ned as

5- |� (G) =
8><
>:

5- (G)

Pr[�]
, G 2 �,

0, G 8 �,

as explained in Section 2.2. Therefore, the above expression for the expected
degree of | can be adjusted to include the condition as

E
⇥
deg(|)

�� | 2 + (D' ({))
⇤
=

∫
D' ({)

E
⇥
deg(|)

�� A (|) = A ^ { 2 + (D' (|))
⇤

·
5 (A ,i)

Pr
⇥
| 2 + (D' ({))

⇤ di dA .

Note that the probability Pr
⇥
| 2 + (D' ({))

⇤
in the denominator is, again, the

measure ` (D' ({)) of the disk of radius ' centered at {. Substituting this expres-
sion in the above Equation (5.1) for the expected sum E[/{] of the degrees of
the neighbors of {, we get

E[/{] = (= � 1) · ` (D' ({)) · E
⇥
deg(|)

�� | 2 + (D' ({))
⇤

= (= � 1) · ` (D' ({)) ·

∫
D' ({)

E
⇥
deg(|)

�� A (|) = A ^ { 2 + (D' (|))
⇤

·
5 (A ,i)

` (D' ({))
di dA

= (= � 1) ·
∫

D' ({)

E
⇥
deg(|)

�� A (|) = A ^ { 2 + (D' (|))
⇤
· 5 (A ,i) di dA .

To compute the integral, we determine the expected degree of | conditioned on
the fact that A (|) = A and on { being in the neighborhood of | deterministically.
Therefore, we obtain the expected degree by adding 1 (for {) to the expected
number of vertices among the remaining+ \ {{,|} that are sampled into D' (|)

and obtain

E
⇥
deg({)

�� A (|) = A ^ { 2 + (D' (|))
⇤
= 1 + (= � 2)` (D' (|)),

which is 1 + ⇥
�
=4

�A/2� due to Equation (3.9). Note that ⇥
�
=4

�A/2� is ⌦(1) for all

86

Bidirectional Breadth-First Search Section 5.2

'
{

|

D' ({)

D' (|)
D'�A ({)

D' ({) |''�A ({)

Figure 5.5: Situation in the proof of Lemma 5.8. Vertex| is a neighbor of {. To integrate
D' ({) \ D' , we split the region into two parts: D' ({) |

'�A ({)

0 = D'�A ({) (blue) and
D' ({) |

'

'�A ({)
(red).

A 2 [0,'], allowing us to further simplify the expected value to

E
⇥
deg({)

�� A (|) = A ^ { 2 + (D' (|))
⇤
= ⇥

⇣
=4

�A/2
⌘
.

Moreover, recall that 5 (A ,i) = 0 for A > ' and that it can otherwise be bounded
by 5 (A ,i) = ⇥

�
4
�U ('�A)

�
, see Equation (3.7). We obtain

E[/{] = ⇥

(= � 1) ·

∫
D' ({)\D'

=4
�A/2

· 4
�U ('�A) di dA

!

= ⇥

=
2
4
�U'

·

∫
D' ({)\D'

4
(U�1/2)A di dA

!
.

We can now split the integral into two parts, where the �rst contains the disk
D' ({) |

'�A ({)

0 = D'�A ({) and the other contains the remainder of D' ({) \ D' ,
which is given by D' ({) |

'

'�A ({)
(see Figure 5.5). For the second part we can

use Equation (3.10) to bound the angle \ (A ({), A) up to which we need to integrate

87

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

depending on A . As a result, we get

E[/{] = ⇥

=
2
4
�U'

·

 π
'�A ({)

0

π 2c

0
4
(U�1/2)A di dA

+

π
'

'�A ({)

π
\ (A ({),A)

0
4
(U�1/2)A di dA

!!
.

Regarding the �rst part of the sum, note that evaluating the inner integral
only contributes a constant factor that can be dropped due the ⇥-notation.
Computing the outer integral then yields⇥

�
4
(U�1/2) ('�A ({)) � . For the second part

of the sum we, again, �rst evaluate the inner integral and substitute \ (A ({), A) =
⇥
�
4
('�A ({)�A)/2� , see Equation (3.10). We obtain

E[/{] = ⇥
©≠
´
=
2
4
�U'

·

4
(U�1/2) ('�A ({))

+ 4
('�A ({))/2

π
'

'�A ({)

4
� (1�U)A dA

!™Æ
¨
.

The last integral evaluates to O
�
4
� (1�U) ('�A ({)) � , which multiplied by the factor

4
('�A ({))/2 yields asymptotically the same expression as the �rst summand and

we get

E[/{] = ⇥
⇣
=
2
4
� (U�1/2)A ({)

· 4
�'/2

⌘
.

Finally, we can substitute ' = 2 log(=) +⇠ in order to obtain the claimed bound
E[/{] = ⇥

�
=4

� (U�1/2)A ({) � . ⇤

For 21 and 22, which both have radius d , the degrees of their neighbors thus
sum to Õ

�
=
1/(2U) � in expectation. However, to actually prove Theorem 5.2, we

need a bound that holds with high probability for all possible angular coordinates
of 21 and 22. As with the sum of the degrees in a sector, we prove a slightly weaker
bound that matches the one in Theorem 5.2 and holds with high probability. We
obtain the following lemma.

Lemma 5.9. Let⌧ be a hyperbolic random graph and let { be a hypothetical vertex
with radius d = 1/U (log= � log log=) and arbitrary angular coordinate. Then, the
degrees of the neighbors of { sum to Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
with high

probability.

88

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

Again, the proof is rather technical and thus deferred to Section 5.3. Together
with the bounds on the sum of degrees in a sector of width i = Õ

�
=
� (1/U�1) �

(Theorem 5.5), we obtain the following corollary, which concludes the proof
of Theorem 5.2.

Corollary 5.10. On a hyperbolic random graph the second phase of the bidirec-
tional search explores Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
edges with high probability.

5.3 Concentration Bounds for the Sum of Vertex
Degrees

Here we prove the concentration bounds that were announced in the previous
section. For the �rst phase, we already know that the search space is contained
within a sector S of sublinear width (Lemma 5.4). Thus, the running time in
the �rst phase is bounded by the sum of vertex degrees in this sector. Moreover,
all edges explored in the second phase also lie within the same sector S or are
incident to neighbors of the two hypothetical vertices 21 and 22 (Lemma 5.7).
Thus, the running time of the second phase is bounded by the sum of vertex
degrees in S and in the neighborhood of 21 and 22.

In both cases, we have to bound the sum of vertex degrees in certain areas of
the disk, which can be done as follows. For each degree, we want to compute the
number of vertices of this degree in the considered area and multiply it with the
degree. As all vertices with a certain degree have roughly the same radius, we
can separate the disk into small annuli, which we call bands, one for each degree.
Then, summing over all degrees comes down to summing over all bands and
multiplying the number of vertices in this band with the corresponding degree.
If we can prove that each of these values is highly concentrated, i.e., holds with
probability 1 � O

�
=
�2� , we obtain that the sum is concentrated as well (using

the union bound, see Section 2.2). Unfortunately, this fails in two situations.
For small radii, the number of vertices within the corresponding band (i.e., the
number of high degree vertices) is too small to be concentrated. Moreover, for
large radii the degree is too small to be concentrated around its expected value.
To overcome this issue, we partition the disk D' into three parts. An inner

partD' |
d� (i)

0 , containing all points of radius at most d� (i), an outer partD' |
'

d$
,

containing all points of radius at least d$, and a central partD' |
d$

d� (i)
, containing

all points in between. We choose d� (i) such that the number of vertices with

89

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

maximum degree in a sector part S|
d$

d� (i)
of angular width i is ⌦

�
log(=)

�
, which

ensures that for each vertex degree, the number of vertices with this degree is
concentrated. Moreover, we choose d$ in such a way that the vertex degrees
in S|

d$

d� (i)
are su�ciently concentrated. To achieve this, we set

d� (i) = ' �
1
U

log

✓
i

2c

◆
+ log= � log log=

!
and d$ = ' � (2 + Y) log log(=),

for any constant Y 2 (0, 1), and show concentration for the sum of the degrees
in a sector and in the neighborhood of a vertex with radius d , separately for the
three parts of the disk.

5.3.1 The Inner Part of the Disk

The inner part D' |
d� (i)

0 contains vertices of high degree. It is not hard to see
that there are only logarithmically many vertices with radius at most d� (i).

Lemma 5.11. Let ⌧ be a hyperbolic random graph, let i 2 [0, 2c] be an angle,
and let b > 0 be a constant. A sector S|

d� (i)

0 of angular width bi 2 [0, 2c] contains
O
�
log(=)

�
vertices, with probability 1 � O

�
=
�2

�
for any constant 2 .

Proof. By Equation (3.8) the expected number of vertices in D' |
d� (i)

0 is given by

E

h
|+ (D' |

d� (i)

0) |

i
= =4�U ('�d� (i)) (1 + o(1)) .

Since the angular coordinates of the vertices are distributed uniformly in [0, 2c),
the expected number of vertices in a sector portion S|

d� (i)

0 of angular width bi
is

E

h
|+ (S|

d� (i)

0) |

i
=
bi

2c
=4

�U ('�d� (i)) (1 + o(1))

=
bi

2c
=4

� (log(i/2c)+log=�log log=)
(1 + o(1))

= b log(=) (1 + o(1)) .

Since b > 0 is constant, this bound is in ⌦
�
log(=)

�
and we can apply Corollary 2.3

to conclude that |+ (S|
d� (i)

0) | = O
�
log(=)

�
holds with probability 1 � O

�
=
�2

�
for

any constant 2 . ⇤

90

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

Note that, if i = ⌦
�
1/=

�
, we can choose at most O(=) sectors of width 2i

such that any sector of width i lies completely in one of them. Thus, the
probability that there exists a sector portionS|

d� (i)

0 where the number of vertices
is superlogarithmic, is bounded by the probability that it is too large in at least
one of these O(=) sectors (of twice the width). By choosing b = 2, we can
apply Lemma 5.11 to conclude that a single sector S|

d� (i)

0 of twice the angular
width contains at most O

�
log(=)

�
vertices with probability 1 � O

�
=
�2� . After

applying the union bound we can bound the number of edges in every such
sector portion using the maximum degree degmax(⌧) to obtain the following
corollary.

Corollary 5.12. Let⌧ be a hyperbolic random graph. For every sectorS of angular
width i = ⌦

�
1/=

�
, the degrees of the vertices in S|

d� (i)

0 sum to Õ
�
degmax(⌧)

�
with high probability.

Note that, in particular the statement holds for the previously determined
angle i = Õ

�
=
� (1/U�1) � for U 2 (1/2, 1). Additionally, by setting i = 2c , we can

use Lemma 5.11 to bound the sum of the degrees of the high degree vertices in
the neighborhood of a vertex with radius d .

Corollary 5.13. Let ⌧ be a hyperbolic random graph. For every vertex { of
radius d , the degrees of the neighbors of { in D' |

d� (2c)
0 sum to Õ

�
degmax(⌧)

�
with

high probability.

5.3.2 The Central Part of the Disk

For each possible vertex degree : , we want to compute the number of vertices
with this degree in the central part D' |

d$

d� (i)
. First note, that by Equation (3.9)

a vertex with �xed radius has expected degree ⇥(:) if this radius is 2 log(=/:).
Motivated by this, we de�ne A: = 2 log(=/:). To bound the sum of degrees in
the central part D' |

d$

d� (i)
, we use that vertices with radius signi�cantly larger

than A: also have a smaller degree. To this end, we �rst prove that a vertex
with degree : can actually not have a radius much larger than A: . This has the
advantage, that we can bound the number of degree-: vertices by bounding the
number of vertices with these radii.

Lemma 5.14. Let⌧ be a hyperbolic random graph. Then, for every constant 2 > 0,
there exist constants _, g > 0, such that all vertices with degree at least : � _ log(=)
have radius at most A: + g with probability 1 � O

�
=
�2

�
.

91

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

Proof. To prove this lemma, it su�ces to show that there exist constants _, g > 0,
such that the probability of a vertex with radius greater than A: +g having degree
at least : , i.e. Pr

⇥
9 { 2 + : deg({) � : ^ A ({) � A: + g

⇤
, is small. To obtain the

following sequence of inequalities, we �rst use the union bound, then apply the
de�nition of conditional probabilities, and �nally use Corollary 3.3.

Pr
⇥
9 { 2 + : deg({) � : ^ A ({) � A: + g

⇤
 = · Pr

⇥
deg({) � : ^ A ({) � A: + g

⇤
 = · Pr

⇥
deg({) � :

�� A ({) � A: + g ⇤
 = · Pr

⇥
deg({) � :

�� A ({) = A: + g ⇤ .
To prove the lemma, it remains to show that Pr

⇥
deg({) � :

�� A ({) = A: + g ⇤ is
su�ciently small, i.e., O

�
=
� (2+1) � .

Recall that by Equation (3.9), the expected degree of a vertex with radius A
is ⇥

⇣
=4

�A/2
⌘
. For a vertex { with radius A: + g we obtain =4� (A:+g)/2 = 4�g/2: .

It follows that there exists a constant 20 > 0, such that E
⇥
deg({)

⇤
 2

0
4
�g/2

: .
By choosing g large enough we can ensure that : � 6E

⇥
deg({)

⇤
, allowing us

to apply the Cherno� bound in Theorem 2.1. We obtain Pr
⇥
deg({) � :

⇤
 2�: .

Finally, since we have : � _ log(=), we can choose _ such that this probability
is bounded by O

�
=
� (2+1) � . ⇤

We are now ready to bound the number of vertices in a sector that have degree
at least : . As mentioned earlier, this bound only works for large : as the degree
is not su�ciently concentrated otherwise. Moreover, the degree cannot be too
large, as otherwise the number of vertices of this degree is not concentrated.
The upper bound on : in the following lemma directly corresponds to our choice
for d� (i). Additionally, d$ is chosen such that the degrees of vertices with radii
smaller than d$ meet the lower bound on : , i.e., the lemma holds for the central
part S|

d$

d� (i)
.

Lemma 5.15. Let⌧ be a hyperbolic random graph and let S be a sector of angular
width i . If : = !

�
log(=)

�
and : = O

�
(i=/log(=))1/(2U)

�
, then the number of

vertices in S with degree at least : is O
�
i=:

�2U � with probability 1 � O
�
=
�2

�
for

any constant 2 > 0.

Proof. By Lemma 5.14 we know that, for any constant 20 > 0, there are constants
_, g > 0 such that all vertices of degree at least : � _ log(=) have radius at most
A: + g , with probability 1 � O

�
=
�2

0 � . Since : = !
�
log(=)

�
we have : � _ log(=)

92

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

for large enough = and obtain that, with the same probability, all vertices of
degree at least : that are in S are in S|

A:+g

0 . Moreover, since the angular width of
S is i and since the angular coordinates of the vertices are distributed uniformly,
the expected number of vertices in S|

A:+g

0 is given by i/(2c) ·=` (D' |
A:+g

0). Now
we can apply Equation (3.8), which states that a disk of radius A: + g centered at
the origin has measure 4�U ('� (A:+g)) (1 + o(1)) and obtain

E
⇥
|+ (S|

A:+g

0 |)
⇤
=
i

2c
=` (D' |

A:+g

0)

=
i

2c
=4

�U ('� (A:+g)) (1 + o(1))

=
i

2c
=4

�2U log(:)�U (⇠�g)
(1 + o(1))

= ⇥
⇣
i=:

�2U
⌘
.

Note that : = O
�
(i=/log(=))1/(2U)

�
, which is a precondition of this lemma,

implies that i=:�2U = ⌦
�
log(=)

�
. Thus, we can apply the Cherno� bound

in Corollary 2.3 to conclude that |+ (S|
A:+g

0) | = O
�
i=:

�2U � holds with probability
1 � O

�
=
�2

�
for any constant 2 > 0. ⇤

Using these results, we can now bound the size of the search space in the
central part S|

d$

d� (i)
of our sector S, yielding the following lemma. We note that

the lower bound on i that is a requirement of the following lemma, is weaker
than the one we need for Theorem 5.5.

Lemma 5.16. Let ⌧ be a hyperbolic random graph. For every sector S of angular
width i = ⌦

�
log(=)2U+1/=

�
, the degrees of the vertices in S|

d$

d� (i)
sum to O

�
i=

�
with high probability.

Proof. First note that, analogous to the argumentation about sectors in the inner
part of the disk, we can choose at most O(=) sectors of width 2i such that any
sector of width i lies completely in one of them. Thus, the probability that there
exists a sector where the sum of the vertex degrees in the central part of the disk
is too large, is bounded by the probability that it is too large in at least one of
these O(=) sectors (of twice the width). In the following, we show for a single
sector S of angular width i 0 = 2i that the probability for the sum being too
large is O

�
=
�2� . The union bound then yields the claim, that the bound holds for

every sector of angular width i .

93

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

G = deg({)1 2 3 4
0
1
2
3
4
5
6 ��+ |deg({)�G

��

1 2 3 4
0
1
2
3
4
5
6 ��+ |deg({)�max(2,deg(G))

��

0 0 G = deg({)

~ ~

��+ |deg({)>3
��

Figure 5.6: (Left) Turning the sum over the degrees into an integral. (Right) Summing
the degrees of vertices with degree in [2, 3] is equivalent to considering the region up
to G = 3 and taking the di�erence of the areas under the red and green curve.

To sum the degrees of all vertices in S, think of a vertex { of degree deg({) as a
rectangle of height 1 and width deg({). For a small graph, Figure 5.6 (left) shows
all such rectangles stacked on top of each other, sorted by their degree. Note that
the sum of degrees is equal to the area under the function 6(G) =

��+ (S)|deg({)�G
��

where + (S)|deg({)�G = {{ 2 + (S) | deg({) � G} is the set of vertices in S

that have degree at least G . Also note that the above considerations do not
take into account that we sum only the degrees of vertices in the central part
S|

d$

d� (i
0)
of S. To resolve this, let :min and :max be the minimum and maximum

degree of vertices in S|
d$

d� (i
0)
, respectively. One can see in Figure 5.6 (right)

that summing only those degrees that are larger than :min is equivalent to
integrating over

��+ (S)|deg({)�max(:min,G)

�� instead of
��+ (S)|deg({)�G

��. Then, we
need to accommodate for the fact that we are only interest in degrees up to :max,
which is done by subtracting the area under

��+ (S)|deg({)>:max

��. Thus, we can
compute the sum of all degrees as

’
{2+

✓
S|

d$
d� (i

0)

◆ deg({) 
’

{2+ (S),

:mindeg({):max

deg({)

=
π

:max

0

��+ (S)|deg({)�max(:min,G)

�� � ��+ (S)|deg({)>:max

�� dG
 :min

��+ (S)|deg({)�:min

�� +
π

:max

:min

��+ (S)|deg({)�G
�� dG .

94

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

To compute this integral, we �rst calculate the minimum and maximum de-
grees :min and :max. Afterwards, we apply Lemma 5.15 to bound

��+ (S)|deg({)�G
��.

For :min, assume that vertex { has radius d$ = ' � (2 + Y) log log(=) for any
constant Y 2 (0, 1). Using Equation (3.9) the expected degree of { is

E
⇥
deg({)

⇤
= ⇥

⇣
=4

�'/2+(1+Y/2) log log(=)
⌘
= ⇥

⇣
log(=)1+Y/2

⌘
.

Since Y > 0, this bound is !
�
log=

�
, allowing us to apply the Cherno� bounds

in Corollary 2.3 and Corollary 2.4 to conclude that deg({) = ⇥
�
log(=)1+Y/2

�
with

high probability. Note that this only holds under the assumption that { has radius
exactly d$. However, by Corollary 3.3 vertices with smaller radius have larger
expected degree. Thus, ⇥

�
log(=)1+Y/2

�
is a lower bound on the expected degrees

of all such vertices, allowing us to apply Corollary 2.4 together with a union
bound, to conclude that, with high probability, no vertex with smaller radius has
smaller degree. Hence, with high probability, the minimum degree in S|

d$

d� (i
0)
is

:min = ⇥
⇣
log(=)1+Y/2

⌘
.

Analogously, the bound on the maximum degree :max of a vertex in S|
d$

d� (i
0)
can

be obtained as follows. Let { be a vertex with radius

d� (i
0
) = ' � 1/U (log(i 0

/(2c)) + log(=) � log log(=)) .

By Equation (3.9) the expected degree of { is

E
⇥
deg({)

⇤
= ⇥

⇣
(i

0
=/log(=))1/(2U)

⌘
.

Since i 0 = 2i = ⌦
�
log(=)2U+1/=

�
, which is a precondition of this lemma, we can

conclude that this bound on the expected degree of { is ⌦
�
log(=)

�
, allowing us

to apply Corollary 2.3 to conclude that E
⇥
deg({)

⇤
= O

�
(i=/log(=))1/(2U)

�
holds

with high probability. Again, this only holds under the assumption that { has
radius exactly d� (i 0

). However, by Corollary 3.3 all vertices with larger radius
have smaller expected degree. Therefore, O

�
(i=/log(=))1/(2U)

�
is a valid upper

bound on all their expected degrees, allowing us to apply Corollary 2.3 together
with a union bound, to conclude that no vertex with larger radius has larger

95

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

degree. Thus, with high probability the maximum degree in S|
d$

d� (i
0)
is

:max = O

 ✓
i=

log(=)

◆1/(2U) !
.

Using Lemma 5.15 we obtain
��+ (S)|deg({)�G

�� = O
�
i=G

�2U � with probability
1�O(=�2) for any constant 2 > 0. Note that the requirements G = !

�
log(=)

�
and

G = O
�
(i=/log(=))1/(2U)

�
in Lemma 5.15 are satis�ed as :min  G  :max. By

choosing 2 = 2 and applying the union bound over all degrees, we can conclude
that, with high probability

’
{2+

✓
S|

d$
d� (i

0)

◆ deg({) = O
⇣
i=:

� (2U�1)
min

⌘
+ O

i= ·

π
:max

:min

G
�2U dG

!

= O
⇣
i=:

� (2U�1)
min

⌘
+ O

⇣
i= · :

� (2U�1)
min (1 � (:min/:max)

2U�1
)

⌘
.

As :min  :max and since :min = !
�
log(=)

�
this is O

�
i=:

� (2U�1)
min

�
= O

�
i=

�
. ⇤

It remains to bound the sum of the degrees of vertices in the central part of
the disk D' |

d$

d� (2c)
that lie in the neighborhood of a vertex { with radius d , i.e.,

vertices lying in D' |
d$

d� (2c)
\ D' ({). Similar to the bounds for a sector S, we

bound the sum of degrees in D' ({) by bounding the number of vertices with
a �xed degree : for every possible value of : . If all these bounds hold with
probability 1�O

�
=
�3� , then the union bound shows that the sum is concentrated

with probability 1 � O
�
=
�2� . To obtain a bound that holds for every possible

angular coordinate of { (as claimed in Section 5.2.2), we apply Lemma 3.10. There,
we choose the random variables -| to represent the degrees of the vertices. Our
bound on the sum that holds with probability 1 � O

�
=
�2� at a �xed angular

coordinate, can then be translated to the same asymptotic bound that holds with
probability 1 � O

�
=
�1� at every possible angular coordinate.

For a �xed degree : = !
�
log(=)

�
, all vertices with degree at least : have radius

at most A: + g with high probability due to Lemma 5.14, where A: = 2 log(=/:)
and g is constant. Thus, all vertices of degree at least : inD' ({) lie inD' ({) |

A:+g

0 ,
with high probability. In analogy to Lemma 5.15, we obtain the following bound
on the number of vertices in D' ({) |

A:+g

0 .

96

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

d

' {

D'�d

D' ({)

D' ({) |A:+g'�d

A: + g

Figure 5.7: Determining the sum of degrees of the neighbors of vertex { that are all
contained in D' ({) (green). To compute the measure of D' ({) |

A:+g

0 we divide it into
two regions D' ({) |

'�d

0 = D'�d (blue) and D' ({) |
A:+g

'�d
(red).

Lemma 5.17. Let ⌧ be a hyperbolic random graph and let { be a vertex with
radius d = 1/U (log(=) � log log(=)). If : = !

�
log(=)

�
, the number of neighbors

of { with degree at least : is

|{| 2 # ({) | deg(|) � :}| = O
⇣
=
1�1/(2U) log(=)1/(2U):� (2U�1)

+ log(=)
⌘

with probability 1 � O
�
=
�2

�
for any constant 2 > 0.

Proof. Since : = !
�
log(=)

�
, we can apply Lemma 5.14 stating that all vertices

of degree at least : in D' ({) lie within D' ({) |
A:+g

0 with high probability. To
bound the number of neighbors of { with degree at least : we �rst compute
the measure ` (D' ({) |

A:+g

0). To do this, we separate D' ({) |
A:+g

0 into the disk
D' ({) |

'�d

0 = D'�d and D' ({) |
A:+g

'�d
; see Figure 5.7. Due to Equation (3.8), we

have

` (D'�d) = O
�
4
�U ('� ('�d))

�
= O

�
log(=)/=

�
,

97

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

which is already an upper bound on ` (D' ({) |
A:+g

0) for the case where A: + g 

' � d . When A: + g > ' � d , we need to add the measure of D' ({) |
A:+g

'�d
, which is

`

⇣
D' ({) |

A:+g

'�d

⌘
=

π
A:+g

'�d

2
π

\ (d,A)

0
5 (A ,i) di dA = O

 π
A:+g

'�d

\ (d, A) 5 (A) dA

!

Since A 2 [' � d, A: + g] in the integral, we have A � ' � d , allowing us to
apply Equation (3.10) to conclude that \ (d, A) = O

�
4
('�d�A)/2� . Furthermore, we

can bound 5 (A) = O
�
4
�U ('�A)

�
by Equation (3.7) and obtain

`

⇣
D' ({) |

A:+g

'�d

⌘
= O

 π
A:+g

'�d

4
('�d�A)/2

· 4
�U ('�A) dA

!

= O

4
('�d)/2

· 4
�U'

·

π
A:+g

'�d

4
(U�1/2)A dA

!

= O
✓
4
� (U�1/2)'

· 4
�d/2

·

h
4
(U�1/2) (A:+g) � 4 (U�1/2) ('�d)

i ◆
.

Dropping the negative term in the brackets and substituting ' = 2 log(=) +⇠ ,
d = 1/U (log(=) � log log(=)), and A: = 2 log(=/:), we obtain

`

⇣
D' ({) |

A:+g

'�d

⌘
= O

⇣
4
� (U�1/2)'

· 4
�d/2

· 4
(U�1/2) (A:+g)

⌘

= O
⇣
=
� (2U�1)

· =
�1/(2U) log(=)1/(2U) · =2U�1 · :� (2U�1)

⌘

= O
⇣
(log(=)/=)1/(2U) · :� (2U�1)

⌘
.

The expected number of vertices in D' ({) |
A:+g

0 is now obtained by reversing
the previous split and adding the measures ofD'�d andD' ({) |

A:+g

'�d
, which yields

E
⇥
|+ (D' ({) |

A:+g

0) |
⇤
= = ·

✓
`

⇣
D'�d

⌘
+ `

⇣
D' ({) |

A:+g

'�d

⌘◆

= O
⇣
log(=) + =1�1/(2U) log(=)1/(2U):� (2U�1)

⌘
.

Clearly, this bound is at least logarithmic. Thus, we can apply Corollary 2.3 to
conclude that it holds with probability 1 � O

�
=
�2

�
for any constant 2 . ⇤

98

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

With this, we are now ready to bound the sum of the degrees of the vertices in
the central part of the disk that are in the neighborhood of a vertex with radius d .
The proof of the following lemma is analogous to the one of Lemma 5.16.

Lemma 5.18. Let ⌧ be a hyperbolic random graph and let { be a hypothetical
vertex with radius d = 1/U (log(=) � log log(=)) and arbitrary angular coordinate.
The degrees of neighbors of { in D' |

d$

d� (2c)
sum to Õ

�
=
1/(2U) � with high probability.

Proof. Recall that D' ({) is the disk containing all neighbors of {. To bound the
sum of the degrees of the vertices in D' ({) |

d$

d� (2c)
, we use basically the same

proof as in Lemma 5.16 except we use Lemma 5.17 instead of Lemma 5.15. Thus,
’

|2+

⇣
D' ({) |

d$
d� (2c)

⌘ deg(|)  :min
��+ (D' ({)) |deg({)�:min

��

+

π
:max

:min

��+ (D' ({)) |deg({)�G
�� dG,

where + (D' ({)) |deg({)�G is the set of vertices of degree at least G in D' ({) and
:min and :max are the minimum and maximum degree in D' ({) |

d$

d� (2c)
, respec-

tively.
We start with computing :min and :max. Using Equation (3.9), Corollary 2.3,

and Corollary 2.4, we obtain that a vertex of radius d$ = '� (2+Y) log log(=), for
any Y 2 (0, 1), has degree :min = ⇥

�
log(=)1+Y/2

�
with high probability. Moreover,

by the same argumentation as in the proof of Lemma 5.16 no vertex with smaller
radius has smaller degree, with high probability. Additionally, a vertex with ra-
dius d� (2c) = '�1/U (log(=)�log log(=)) has degree :max = O

⇣
(=/log(=))1/(2U)

⌘
and no vertex with larger radius has larger degree, with high probability. It fol-
lows that we can use the bound on

��+ (D' ({)) |deg({)�G
�� established in Lemma 5.17.

Thus, we obtain
’

|2+

⇣
D' ({) |

d$
d� (2c)

⌘ deg(|) = Õ
⇣
:min · =

1�1/(2U)
:
� (2U�1)
min

⌘

+ Õ

=
1�1/(2U)

π
:max

:min

G
� (2U�1) dG

!
.

Replacing :min and simplifying the �rst term in the sum yields Õ
�
=
1�1/(2U) � ,

99

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

which is smaller than the claimed bound. For the second term, we obtain

Õ

=
1�1/(2U)

π
:max

:min

G
� (2U�1) dG

!
= Õ

✓
=
1�1/(2U)

h
:
2�2U
max � :

2�2U
min

i ◆
.

Finally, dropping the negative term and replacing :max = Õ
�
=
1/(2U) � , we obtain

Õ
�
=
1�1/(2U)+1/U�1� = Õ

�
=
1/(2U) � . ⇤

5.3.3 The Outer Part of the Disk

At this point we have bounded the sum of the degrees of the vertices with radius
at most d$ = '� (2+Y) log log(=) (for any constant Y 2 (0, 1)) that lie in a sector
of angular width i = ⌦

�
log(=)2U+1/=

�
or in the neighborhood of a vertex with

radius d . It remains to bound the sums when considering vertices with radii
larger than d$. We start by computing the expected value of the sum of vertex
degrees in the outer part of a sector S|

'

d$
.

Lemma 5.19. Let ⌧ be a hyperbolic random graph. For a sector S of angular
width i , the degrees of vertices in S|

'

d$
sum to ⇥

�
i=

�
in expectation.

Proof. Let deg({) be the random variable describing the degree of a vertex {.
Moreover, let-{ be the indicator variable that is 1 if { 2 + (S|

'

d$
) and 0 otherwise.

Then the expected sum of the degrees of vertices in S|
'

d$
is given by

E

266664
’
{2+

-{ · deg({)
377775
=

’
{2+

E
⇥
-{ · deg({)

⇤

= = · Pr

{ 2 +

⇣
S|

'

d$

⌘�
· E


deg({)

���� { 2 +
⇣
S|

'

d$

⌘ �
.

Note that Pr
⇥
{ 2 + (S|

'

d$
)
⇤
is equivalent to the measure ` (S|

'

d$
). As the

angular coordinates are distributed uniformly at random, the whole sector S
has a measure of ⇥

�
i
�
. Moreover, the region of the disk containing the points

with constant distance to the boundary has constant measure. As a consequence,
the measure of S|

'

d$
is also ⇥

�
i
�
. For the sake of completeness, we formally

compute the measure of S|
'

d$
by considering a complete sector and subtracting

100

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

the inner part, which yields

`

⇣
S|

'

d$

⌘
= `

⇣
S \ S|

d$
0

⌘

=
i

2c

✓
1 � `

⇣
Dd$

⌘◆

=
i

2c

⇣
1 � 4�U ('�d$)

�
1 + o(1)

� ⌘

=
i

2c

✓
1 � O

⇣
log(=)�U (2+Y)

⌘◆

= K (i) .

It remains to determine E
⇥
deg({)

�� { 2 + (S|
'

d$
)
⇤
, which can be done as follows.

E


deg({)

���� { 2 +
⇣
S|

'

d$

⌘ �
=

∫
S|'d$

E
⇥
deg({)

�� A ({) = A ⇤ 5 (A ,q)

`

⇣
S|'d$

⌘ dq dA

=
1

`

⇣
S|'d$

⌘
π

'

d$

π
i

0
E
⇥
deg({)

�� A ({) = A ⇤ 5 (A ,q) dq dA

= ⇥(1) ·
π

'

d$

E
⇥
deg({)

�� A ({) = A ⇤ 5 (A) dA
= ⇥(1) · = · 4

�U'

π
'

d$

4
(U�1/2)A dA

= ⇥(1) · = · 4
�U'

h
4
(U�1/2)'

� 4
(U�1/2)d$

i

= ⇥(1) · = · 4
�'/2

h
1 � 4� (U�1/2) ('�d$)

i

Note that the part in brackets can be bounded by a constant. Moreover, since
' = 2 log(=) + ⇠ , we know that = · 4

�'/2 is constant as well. It follows that
E
⇥
deg({)

�� { 2 + (S|
'

d$
)
⇤
is in ⇥(1). Consequently, the expected sum of the

degrees is ⇥
�
i=

�
. ⇤

Unfortunately, the sum of the vertex degrees in S|
'

d$
is not concentrated

su�ciently well around its expectation to conclude that this bound also holds
with high probability. The problem lies with the high-degree vertices in the
graph, which can be adjacent to none or all vertices in S|

'

d$
depending on their

101

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

positions. That is, small perturbations of the position of a single high-degree
vertex can change the sum by too much. To overcome this issue, we consider the
impact of high-degree vertices separately. To this end, we partition the edge set
that contributes to the degrees of the vertices in S|

'

d$
into two sets ⇢� and ⇢$,

denoting the inner edges where the other endpoint is in D' |
d$
0 and the outer

edges where the other endpoint is inD' |
'

d$
, respectively. The sum of the degrees

of the vertices in S|
'

d$
can then be bounded by taking the number of inner edges

and adding them to twice the number of outer edges. That is,
’

{2+

⇣
S|'d$

⌘ deg({)  |⇢� | + 2|⇢$ |.

Since ⇢� denotes all edges with one endpoint inS|
'

d$
and the other in the inner

or central part of the disk, we can obtain an upper bound on the �rst summand
by summing the degrees of the vertices in D' |

d$
0 that are adjacent to any vertex

in S|
'

d$
. Since d  d$, we have S|

'

d$
✓ S|

'

d
, allowing us to apply Lemma 5.7

to conclude that all such vertices are contained in S or are neighbors of the
two hypothetical corner vertices 21 and 22, which both have radius d . Thus,
|⇢� | can be bounded by the sum of the degrees of vertices in a sector and in
the neighborhood of a vertex with radius d , but constrained to vertices in the
inner and central parts of the disk. Corresponding bounds that hold with high
probability have been determined above. For the sector we obtain an upper
bound of Õ

�
degmax(⌧)

�
for the inner part (Corollary 5.12) and O

�
i=

�
for the

central part (Lemma 5.16). For the neighborhood of a vertex with radius d we
have Õ

�
degmax(⌧)

�
for the inner part (Corollary 5.13) and Õ

�
=
1/(2U) � for the

central part (Lemma 5.18). Taking them together, we obtain the following.

Corollary 5.20. Let⌧ be a hyperbolic random graph. For every sectorS of angular
width i = ⌦

�
log(=)2U+1/=

�
, the number of edges with one endpoint in S|

'

d$
and

the other in D' |
d$
0 is Õ

�
i= + =

1/(2U)
+ degmax(⌧)

�
, with high probability.

To obtain an upper bound on the second part of the above sum, we aim to
apply a method of typical bounded di�erences (see Section 2.2.3) based on the
fact that changing the position of a single vertex has typically only little impact
on the number of outer edges. The idea is as follows. We consider |⇢$ | as a
function that only depends on the random variables %1, . . . , %= denoting the
positions of the vertices in the graph and we ask ourselves: How much can |⇢$ |

102

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

change, if we alter the position of a single vertex 8? Clearly, this change can be
large in the worst case. Assume that we move 8 from outside D' |

'

d$
into S|

'

d$
.

Then, 8 does not contribute anything to |⇢$ | before the move and the increase
in |⇢$ | depends on the number of outer edges that are incident to 8 after the
move, which can be = � 1 in the worst case. However, it is very unlikely that
a vertex in S|

'

d$
has this many neighbors that lie in the outer part of the disk.

In fact, its degree is typically much smaller. To formalize this, we represent the
typical case using an event �, denoting that the degree of such a vertex is at
most a constant factor larger than the expected degree of a vertex with radius
d$ = ' � (2 + Y) log log(=) for any constant Y 2 (0, 1). More precisely, � denotes
the event in which all disks of radius ' with center in D' |

'

d$
contain at most

O
�
log(=)1+Y/2

�
vertices. In this case, moving a vertex 8 in the same way as before

leads to a much smaller increase in the number of outer edges. Assuming that �
holds before the move, there are at most O

�
log(=)1+Y/2

�
outer edges incident to 8

after the move, which corresponds to the increase of |⇢$ |. The following lemma
de�nes the event � formally and shows that it holds with high probability.

Lemma 5.21. Let ⌧ be a hyperbolic random graph and let d$ = ' � (2 + Y) ·

log log(=) for any constant Y 2 (0, 1). Then, all disks D with radius ' and center
in D' |

'

d$
contain at most |+ (D)| = O

�
log(=)1+Y/2

�
vertices, with probability

1 � O
�
=
�2

�
for any constant 2 .

Proof. Let D be a disk of radius ' and center P 2 D' |
'

d$
. By Corollary 3.3, a

valid upper bound on the expected number of vertices in D can be obtained
by considering the disk D

0 at center P0 instead, which has the same angular
coordinate as P and radius d$. The expected number of vertices in D

0 can be
computed using Equation (3.9), which yields

E
⇥
|+ (D)|

⇤
 E

⇥
|+ (D

0
) |
⇤
= O

⇣
=4

�d$/2
⌘
= O

⇣
log(=)1+Y/2

⌘
.

Moreover, since Y > 0, this bound is !
�
log(=)

�
and we can apply Corollary 2.3 to

conclude that |+ (D)| = O
�
log(=)1+Y/2

�
holds with probability 1�O

�
=
�2

0 � for any
constant 20. To obtain a bound that holds for every possible angular coordinate
for P, we apply Lemma 3.10, which allows us to translate our bound that holds
for any given disk D with probability 1�O

�
=
�2

0 � to the same asymptotic bound
that holds with probability 1 � O

�
=
�2

0
+1� for all possible angular coordinates.

Choosing 20 = 2 + 1 then yields the claim. ⇤

103

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

So while moving a single vertex leads to a large change in the number of outer
edges |⇢$ | in the worst case, we observe only small changes in the typical case�.
We are now ready to bound the number |⇢$ | of outer edges, i.e, edges that are
incident to vertices in a sector S|

'

d$
and have their other endpoint in D' |

'

d$
.

Lemma 5.22. Let ⌧ be a hyperbolic random graph. For every sector S of angular
width i = ⌦

�
log(=)2/=1/2

�
, the number of edges with one endpoint in S|

'

d$
and

the other in D' |
'

d$
is O

�
i=

�
, with high probability.

Proof. First note that, analogous to the proof of Lemma 5.16, we can cover the
disk with O(=) sectors of angular width 2i such that any sector of angular
width i lies completely in one of them. In the following, we show that the
claimed bound holds with probability O

�
=
�2� for a single sector S of twice the

width5. Applying the union bound then yields the claim.
We consider |⇢$ |, the number of edges with one endpoint in S|

'

d$
and the

other inD' |
'

d$
, as a function hat only depends on the random variables %1, . . . , %=

denoting the positions of the vertices in the graph. To show that |⇢$ | does not
exceed an upper bound with high probability, we aim to apply the method of
typical bounded di�erences (Corollary 2.8). We represent the typical case with
an event �, denoting that all disks D of radius ' and center in D' |

'

d$
contain at

most O
�
log(=)1+Y/2

�
vertices for any constant Y 2 (0, 1). In order to determine

the parameters J�

8
 J8 for 8 2 [=] with which |⇢$ | ful�lls the typical bounded

di�erences condition with respect to � (Equation (2.3)), we have to bound the
maximum change in |⇢$ | obtained by moving a single vertex. As argued before,
this change is at most J8 = = � 1 for all 8 2 [=] in the worst case. To bound the
J
�

8
, we start with a con�guration of vertex coordinates in which the event �

holds. In this case, it is easy to see that moving a single vertex 8 changes |⇢$ | by
at most J�

8
= O

�
log(=)1+Y/2

�
for all 8 2 [=], since the degree of 8 is at most this

large after the move and so is the number of outer edges it contributes to |⇢$ |.
We are now ready to apply the method of typical bounded di�erences (Corol-

lary 2.8). For an upper bound 6(=) on |⇢$ |, any constant 2 > 1, and all
Y1, . . . , Y= 2 (0, 1] it states that

Pr
⇥
|⇢$ | > 26(=)

⇤
 4

� ((2�1)6 (=))2/(2J)
+ Pr[¬�]

’
82 [=]

1/Y8 ,

5 We note that this factor of 2 vanishes in the asymptotics throughout the proof.

104

Concentration Bounds for the Sum of Vertex Degrees Section 5.3

where J =
Õ

82 [=] (J
�

8
+ Y8 (J8 � J

�

8
))

2. First note that a valid upper bound on
the expected number of outer edges incident to vertices in S|

'

d$
is given by the

expected sum of the degrees of these vertices. Thus, by Lemma 5.19 we can
choose 6(=) = ⇥

�
i=

�
. Moreover, by choosing Y8 = 1/= for all 8 2 [=] and since

J8 = = � 1 and J�

8
= O

�
log(=)1+Y/2

�
for all 8 2 [=], we can compute J as

J =
’
82 [=]

(J
�

8
+ Y8 (J8 � J

�

8
))

2

= O
✓
= ·

⇣
log(=)1+Y/2 + 1/=(= � log(=)1+Y/2)

⌘2◆

= O
✓
= ·

⇣
log(=)1+Y/2 + (1 � o(1))

⌘2◆

= O
⇣
= · log(=)2+Y

⌘

Consequently, the above probability can be bounded by

Pr
⇥
|⇢$ | > 26(=)

⇤
 exp©≠

´
�⇥

(i=)

2

= log(=)2+Y

!™Æ
¨
+ Pr[¬�] · =2

 exp©≠
´
�⇥

i
2
=

log(=)2+Y

!™Æ
¨
+ Pr[¬�] · =2.

Since i = ⌦
�
log(=)2/=1/2

�
is a precondition of this lemma and since Y < 1, we

can conclude that the fraction is !
�
log(=)

�
, which means that the �rst summand

is O
�
=
�2

0 � for any constant 20. Moreover, by Lemma 5.21 event � holds with
probability 1 � O

�
=
�2

0 � for any constant 20. Choosing 20 = 3 then yields the
claim. ⇤

5.3.4 The Complete Disk

Having obtained the required bounds for the inner, central, and outer parts
of the disk, we can now combine them to bound the sum of the degrees in a
sector and in the neighborhoods of the hypothetical corner vertices. We start
with Theorem 5.5, which bounds the sum of degrees in a sector. To improve
readability, we restate the theorem here.

105

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

Theorem 5.5. Let ⌧ be a hyperbolic random graph with = vertices. Then, the
degrees of vertices in every sector of angular width i = ⌦

�
log(=)2/=1/2

�
sum to

Õ
�
i= + =

1/(2U)
+ degmax(⌧)

�
with high probability.

Proof. For the inner and central parts of every sector the sum of the vertex
degrees is bounded by Õ

�
i= + degmax(⌧)

�
with high probability due to Corol-

lary 5.12 and Lemma 5.16. As argued above, the sum of the degrees of the
remaining vertices, i.e., vertices with radius at least d$, can be bounded by
counting the number of inner edges and adding twice the number of outer edges.
Since i = ⌦

�
log(=)2/=1/2

�
, we can apply Corollary 5.20 and Lemma 5.22 to con-

clude that the corresponding sum is bounded by Õ
�
i= + =

1/(2U)
+ degmax(⌧)

�
,

with high probability. ⇤

Lastly, it remains to bound the sum of the degrees of the neighbors of the
hypothetical corner vertices that were used to bound the size of the search
space in the second phase. Again, for the sake of readability, we restate the
corresponding lemma here.

Lemma 5.9. Let⌧ be a hyperbolic random graph and let { be a hypothetical vertex
with radius d = 1/U (log= � log log=) and arbitrary angular coordinate. Then, the
degrees of the neighbors of { sum to Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
with high

probability.

Proof. For the inner and central parts of the neighborhood of a vertex with
radius d and arbitrary angular coordinate the sum of the degrees is bounded
by Õ

�
degmax(⌧) + =

1/(2U) � with high probability, as a result of Corollary 5.13
and Lemma 5.18. For the sum of the degrees in the outer part of the disk, note that
all neighbors of radius at least d have angular distance at most i = O

�
=
� (1/U�1) � ,

as explained in Section 5.2.2. As a consequence, we can use Theorem 5.5 to
conclude that the claimed bound holds for the sum of their degrees. Note
that if i is too small to meet the requirements of Theorem 5.5, we can choose
i = Õ

�
=
�1/2� as a valid upper bound instead, in order to conclude that the sum

of degrees in the outer part of the neighborhood is Õ
�
=
1/2� , which is Õ

�
=
1/(2U) �

for all U 2 (1/2, 1). ⇤

106

Discussion Section 5.4

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.950

0.2

0.4

0.6

0.8

1

U

Se
ar
ch

Sp
ac
eE

xp
on

en
t

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
U

2 � 1
U

1
2U

0

0.2

0.4

0.6

0.8

1

Figure 5.8: (Left) The exponent of our theoretical bound depending on U . (Right) The
corresponding empirically measured search spaces. The data was obtained by generating
20 hyperbolic random graphs with average degree roughly 8 for each shown U and
each = 2 {100k, 200k, 300k}. For each graph we sampled 300k start–destination pairs
and report the maximum number of edges explored in one search. The numbers are
normalized with the total number of edges< of the graph such that G is plotted for a
search space of size<G .

5.4 Discussion

In the following, we brie�y discuss why we think that the running time bound
of Õ

�
=
2�1/U

+ =
1/(2U)

+ degmax(⌧)
�
is rather tight; see Figure 5.8 (left) for a plot

of the exponents. Clearly, the maximum degree of the graph is a lower bound,
i.e., we cannot improve the degmax(⌧). As degmax(⌧) = ⇥̃

�
=
1/(2U) � holds almost

surely [GPP12], we also cannot improve below Õ
�
=
1/(2U) � . For the term =

2�1/U

we do not have a lower bound. Thus, the blue region in Figure 5.8 (left) is the
only part where our bound can potentially be improved. However, by only
making a single step from a vertex with radius d = 1/U (log(=) � log log(=)), we
can already reach vertices with angular distance ⇥

�
=
� (1/U�1) � . Thus, it seems

likely, that there exists a start–destination pair such that all vertices within a
sector of this angular width are actually explored. As such a sector contains
⇥
�
=
2�1/U � vertices, our bound seems rather tight (at least asymptotically and up

to poly-logarithmic factors). For a comparison of our theoretical bound with
actual search-space sizes in hyperbolic random graphs; see Figure 5.8.

Finally, in order to put our results into perspective, we discuss the following
question: How does a heterogeneous degree distribution impact the exponent in

107

Chapter 5 Bidirectional BFS in Hyperbolic Random Graphs

the running time of the bidirectional BFS? First, considering networks with no
underlying geometry, the exponent is 1/2 for homogeneous networks and (4 �
V)/2 = 3/2 � U for heterogeneous networks with power-law exponent V [BN16].
That is, when increasing the heterogeneity by letting U go from 1 to 1/2, the
exponent increases from 1/2 to 1. This can be explained by the fact that a
heterogeneous degree distribution leads to high-degree vertices, which leads to
a higher running time when they are explored.

On hyperbolic random graphs, we get the same e�ect. The 1/(2U)-part of the
exponent (the red function in Figure 5.8) is very similar to the above 3/2 � U .
However, due to the underlying geometry, the heterogeneity has another e�ect,
expressed by the 2 � 1/U-part of the exponent (the green function in Figure 5.8).
This can be explained as follows. The underlying geometry constrains the parts
of the graph that a vertex can connect to. As a result, the search space cannot
expand su�ciently fast on homogeneous networks and we only get a constant
speed-up, i.e., the exponent is 1. However, increasing the heterogeneity leads
to high degree vertices, which accelerate the expansion of the search spaces,
leading to a lower exponent.
In conclusion, we can say that heterogeneity has two e�ects on the bidirec-

tional BFS:

1. More heterogeneity leads to higher running times as exploring high degree-
vertices is costly.

2. More heterogeneity leads to lower running times as high degree-vertices
let the search spaces expand quickly.

For networks without underlying geometry, the second e�ect is irrelevant, as the
search space always expands quickly due to the independence of edges. Thus, the
running time is better the more homogeneous the network. For networks with
underlying geometry, both e�ects play an important role leading to the v-shape
in Figure 5.8. For high heterogeneity (U < 0.75), the cost of exploring high-degree
vertices dominates, leading to the exponent 1/(2U). For lower heterogeneity
(U > 0.75), the slower expanding search space due to the underlying geometry
dominates, leading to the exponent 2 � 1/U .

108

6 Exact Vertex Cover in
Hyperbolic Random Graphs

This chapter is based on joint work with Thomas Bläsius, Philipp Fischbeck, and
Tobias Friedrich [Blä+21a].

6.1 Introduction

A vertex cover of a graph ⌧ is a subset (of the vertices that leaves the graph
edgeless upon deletion. That is, each edge in ⌧ is incident to at least one vertex
in (. The problem of �nding a smallest vertex cover of a graph is highly relevant
due to its applications in computational biology [Abu+04], scheduling [ELW16],
and internet security [Fil+07]. Unfortunately, since �nding a minimum vertex
cover is one of the most fundamental NP-complete graph problems [Kar72],
there are probably no algorithms that solve it e�ciently.

The best known algorithm to compute a minimum vertex cover runs in time
1.1996=poly(=) [XN17]. We note that this is actually an algorithm to solve the
maximum independent set problem. There, the goal is to �nd the largest set of
vertices such that no two of them are adjacent. However, since by de�nition all
vertices, that are not in the minimum vertex cover, form an independent set, one
can easily derive a maximum independent set from a minimum vertex cover,
and vice versa.
To analyze the complexity of vertex cover on a �ner scale, several parame-

terized solutions have been proposed. One can determine whether a graph has
a vertex cover of size : by applying a branch-and-reduce algorithm. The idea
is to build a search tree by recursively considering two possible extensions of
the current vertex cover (branching), until a vertex cover is found or the size of
the current cover exceeds : . Each branching step is followed by a reduce step in
which reduction rules are applied to make the considered graph smaller. This
technique yields a simple O

�
2:poly(=)

�
algorithm, where the exponential por-

tion comes from the branching. The best known FPT (�xed-parameter tractable)
algorithm runs in O

�
1.2738: + :=

�
time [CKX10], and unless ETH (exponential

time hypothesis) fails, there can be no 2o(:)poly(=) algorithm [CJ03].

109

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

While these FPT approaches promise relatively small running times if the
considered network has a small vertex cover, a recent study shows that the
optimal solution is large for many real-world networks [AI16]. However, it
was also observed there that applying a branch-and-reduce technique on real
instances is very e�cient. Some of the considered networks had millions of
vertices, yet an optimal solution (also containing millions of vertices) was com-
puted within seconds. Most instances were solved so quickly since the expensive
branching was not necessary at all. In fact, the application of the reduction rules
alone already yielded an optimal solution. In this chapter, we investigate the
performance of one of these rules called the dominance reduction rule, which
eliminates vertices whose neighborhood contains a vertex together with its
neighborhood. It reduces the graph to a very small remainder on which the
branching, if necessary, can be done quickly. We trace the e�ectiveness of the
dominance rule back to two properties that are often observed in real-world
networks: a heterogeneous degree distribution and high clustering.

In particular, we use the hyperbolic random graph model (see Section 3.3)
to formalize these properties and analyze the performance of the dominance
rule on such networks. Our results show that this rule performs su�ciently
well such that vertex cover can be solved in polynomial time on hyperbolic
random graphs, with high probability. The proof is based on the fact that
even a single application of the dominance reduction rule reduces a hyperbolic
random graph to a remainder with small pathwidth on which a vertex cover
can then be obtained e�ciently. We note that, while we focus on hyperbolic
random graphs with power-law exponent V = 2U + 1 for U 2 (1/2, 1), it was
previously shown for V > 3, where hyperbolic random graphs degenerate into
small components, none having a size linear in =, that the obtained graphs have
logarithmic treewidth [BFK16], meaning the vertex cover problem can be solved
e�ciently in that case.

Our analysis provides an explanation for why the vertex cover problem can be
solved e�ciently on practical instances. We note that, while our analysis makes
use of the underlying hyperbolic geometry, the algorithm itself is oblivious to
it. Since our proof relies on certain structural properties of hyperbolic random
graphs, we further conducted experiments to test whether these are also found in
real-world networks. Our results indicate that these predictions actually match
the real world for a signi�cant fraction of networks.

110

Vertex Cover on Hyperbolic Random Graphs Section 6.2

Figure 6.1: A hyperbolic random graph with 979 vertices, average degree 8.3, and a
power-law exponent of 2.5. In such a graph the red vertices and edges are removed
by the dominance reduction rule, with high probability. Additionally, the remaining
subgraph in the outer band (consisting of the blue vertices and edges) has a small path
width, with high probability.

6.2 Vertex Cover on Hyperbolic Random Graphs

Reduction rules are often applied as a preprocessing step, before using a brute
force search or branching in a search tree. They simplify the input by removing
parts that are easy to solve. For example, an isolated vertex does not cover any
edges and can thus never be part of a minimum vertex cover. Consequently, in a
preprocessing step all isolated vertices can be removed, which leads to a reduced
input size without impeding the search for a minimum.

The dominance reduction rule, de�ned by Gar�nkel and Nemhauser [GN72],
has been applied to solve the independent set problem [FGK09], and later to
compute vertex cover solutions in the experiments by Akiba and Iwata [AI16].

111

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

Formally, a vertex D dominates a neighbor { 2 # (D) if (# ({) \ {D}) ✓ # (D),
i.e., if all neighbors of { are also neighbors of D. We say that D is dominant
if it dominates at least one vertex. The dominance rule states that D can be
added to the vertex cover (and afterwards be removed from the graph), without
impeding the search for a minimum vertex cover. To see that this is correct,
assume that D dominates { and let (be a minimum vertex cover that does not
contain D. Since (has to cover all edges, it contains all neighbors of D. These
neighbors include { and all of {’s neighbors, since D dominates {. Therefore,
removing { from (leaves only the edge {D, {} uncovered, which can be �xed
by adding D instead. The resulting vertex cover has the same size as (. When
searching for a minimum vertex cover of a graph ⌧ , it is thus safe to assume
that D is part of the solution and to reduce the search to the induced subgraph
⌧ [+ \ {D}], obtained by removing D and its incident edges.

In the remainder of this section, we study the e�ectiveness of the dominance
reduction rule on hyperbolic random graphs and conclude that the vertex cover
problem can be solved e�ciently on these graphs. Our results are summarized
in the following main theorem.

Theorem 6.1. Let ⌧ be a hyperbolic random graph on = vertices. Then the vertex
cover problem on ⌧ can be solved in poly(=) time, with high probability.

The proof of Theorem 6.1 consists of two parts that make use of the underlying
hyperbolic geometry. In the �rst part, we show that applying the dominance
reduction rule once removes all vertices in the inner part of the hyperbolic disk
with high probability, as depicted in Figure 6.1. We note that this is independent
of the order in which the reduction rule is applied, as dominant vertices remain
dominant after removing other dominant vertices. In the second part, we consider
the induced subgraph containing the remaining vertices near the boundary of
the disk (blue vertices in Figure 6.1), and show that this part has simple structure,
which can be utilized to compute an optimal vertex cover e�ciently.

6.2.1 Dominance

Recall that a hyperbolic random graph is obtained by distributing = vertices in a
hyperbolic disk D' and that any two are adjacent if their distance is at most '
(see Section 3.3). Consequently, one can imagine the neighborhood of a vertex D
as another disk D' (D). Vertex D dominates another vertex { if its neighborhood
disk completely contains that of { (assuming the one of { is constrained to D'),

112

Vertex Cover on Hyperbolic Random Graphs Section 6.2

D' ({)

D' (D)

'
D

{
O

'

Adom (D)

Xi,dom (A (D), A ({))

O
D

{

Figure 6.2: (Left) Vertex D dominates vertex {, since D' ({) \ D' (shaded red) is
completely contained in D' (D) (blue). (Right) All vertices that lie in Adom (D) (red) are
dominated by D.

as depicted in Figure 6.2 (left). We de�ne the dominance area Adom(D) of D to be
the area containing all such vertices {. That is,

Adom(D) =
�
P 2 D' | D' (P) \D' ✓ D' (D)

.

The result is illustrated in Figure 6.2 (right). We note that it is su�cient for
a vertex { to lie in Adom(D) in order to be dominated by D, however, it is not
necessary.

Given the radius A (D) of vertex D we can now compute a lower bound on the
probability that D dominates another vertex, i.e., the probability that at least one
vertex lies in Adom(D), by determining the measure ` (Adom(D)). To this end,
we �rst de�ne Xi,dom(A (D), A ({)) to be the maximum angular distance between
two vertices D and { such that { lies in Adom(D).

Lemma 6.2. Let D, { be two vertices in D' . Then, { 2 Adom(D) if and only if
A ({) � A (D) and Xi (D, {)  Xi,dom(A (D), A ({)), where

Xi,dom(A (D), A ({)) = 2(4�A (D)/2 � 4�A ({)/2) + ⇥
⇣
4
�3/2 · A (D)

⌘
� ⇥

⇣
4
�3/2 · A ({)

⌘
.

Proof. To prove the claim, we consider the possible positions that { can have
relative to D and identify the ones for which { 2 Adom(D) holds.
Assume without loss of generality that i (D) = 0, as depicted in Figure 6.3. By

de�nition, { 2 Adom(D) if and only if D' ({) \D' ✓ D' (D). First note that this

113

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

D {

D' (D)

D' ({)

ID,{

I
0
D,{

ID,O
I{,O

Xi,dom (A (D), A ({))

D
{

D' (D)

D' ({)

I
0
D,{

ID,O = I{,O = ID,{

Figure 6.3: (Left) Vertex { is in the dominance area of D, since D' ({) \ D' (red
area) is contained in D' (D). The intersections ID,{,I0

D,{
mark the separation between

D' ({) \ D' (D) (orange area) and the rest of D' ({). If { is rotated in counterclockwise
direction, I{,$ and ID,{ move along the red lines towards ID,$. (Right) Vertex { is rotated
such that ID,{ = ID,$.

is not the case if A ({) < A (D), as then for the point P = (' � A ({), c) it holds
that P 2 D' ({) \D' but P 8 D' (D) for all i ({) 2 [0, 2c). When A ({) � A (D),
we know that D' ({) \D' ✓ D' (D) holds when D and { have the same angular
coordinate, due to Lemma 3.2. This shows that the �rst condition (A ({) � A (D))
is necessary for { to be in the dominance area of D, and it remains to determine
the maximum angular deviation between the two, such that this is still the case.
To this end, we argue about intersections ofD' (D),D' ({), andD' , which we

use as indicators whether { 2 Adom(D) holds. For now assume that i ({) = i (D)
and consider the two intersections ID,{,I0

D,{
of D' (D) with D' ({), as depicted

in Figure 6.3 (left). SinceD' ({)\D' ✓ D' (D) holds by Lemma 3.2 and since cir-
cles are convex, we know thatD' ({) \D' (D) (the orange area in Figure 6.3 (left))
lies outside of D' and so do the two intersections ID,{,I0

D,{
. For the same reason,

we know that I{,$, the intersection of D' ({) with D' whose angular coordinate
is i (I{,$) 2 [0, c], lies in D' (D). It follows that, for the analogously de�ned
intersection ID,$ we have i (I{,$)  i (ID,$).
We now relax the assumption that i ({) = i (D) and instead imagine that we

increase the angle betweenD and { by some X > 0, which denotes a counterclock-
wise rotation of { around the origin. (For symmetry reasons the argumentation
about a clockwise rotation is analogous.) Then, ID,{ and I

0
D,{

move along the
boundary of D' (D) and, in particular, ID,{ moves towards ID,$. Note that at
the same time I{,$ moves towards ID,$ as well. Both movements are depicted

114

Vertex Cover on Hyperbolic Random Graphs Section 6.2

using red lines in Figure 6.3 (left). As long as ID,{ has not surpassed ID,$, neither
of the two intersections of D' ({) with D' (D) lies inside of D' , which means
that D' ({) \ D' (D) remains outside of D' and we maintain the property that
D' ({) \D' ✓ D' (D). As we keep increasing X , we eventually get to the point
where ID,{ reaches ID,$, as depicted in Figure 6.3 (right). Note that at this point
we also have I{,$ = ID,{. Consequently, if we were to rotate { any further, we
would have I{,$ 8 D' (D), meaning D' ({) \D' would no longer be a subset of
D' (D). It follows that D' ({) \D' ✓ D' (D) if and only if i (I{,$)  i (ID,$).
To compute the maximum angular distance between D and { such that this is

the case, we again start with the assumption thati ({) = i (D) = 0, and determine
the maximum angle Xi,dom(A (D), A ({)) such that

i (I{,$) + Xi,dom(A (D), A ({))  i (ID,$).

Since ID,$ and I{,$ have radius ' and hyperbolic distance ' from D and {, re-
spectively, we can apply Equation (3.10) to compute their angular coordinates as
i (ID,$) = \ (A (D),') and i (I{,$) = \ (A ({),'), respectively. Substituting these
angles in the above inequality yields

\ (A ({),') + Xi,dom(A (D), A ({))  \ (A (D),').

We can now solve for Xi,dom(A (D), A ({)) and apply Equation (3.10) to obtain

Xi,dom(A (D), A ({)) = \ (A (D),') � \ (A ({),')

= 2(4�A (D)/2 � 4�A ({)/2) + ⇥
⇣
4
�3/2 · A (D)

⌘
� ⇥

⇣
4
�3/2 · A ({)

⌘
. ⇤

Using Lemma 6.2 we can now compute the probability for a given vertex to
lie in the dominance area of D. We note that this probability grows roughly like
2/c ·4�A (D)/2, which is a constant fraction of themeasure of the neighborhood disk
ofD, which grows as U/(U�1/2) ·2/c ·4�A (D)/2, see Equation (3.9). Consequently,
the expected number of vertices that D dominates at least is a constant fraction
of the expected number of its neighbors.

Lemma 6.3. Let D be a vertex with radius A (D) � '/2. The probability for a given
vertex to lie in Adom(D) is given by

`
�
Adom(D)

�
=

2
c
4
�A (D)/2

✓
1 � O

⇣
4
�U ('�A (D))

⌘◆
± O

�
1/=

�
.

115

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

Proof. The probability for a given vertex { to lie in Adom(D) is obtained by
integrating the probability density (given by Equation (3.7)) over Adom(D).

`
�
Adom(D)

�
= 2

π
'

A (D)

π
Xi,dom (A (D),A)

0
5 (A ,i) di dA

= 2
π

'

A (D)

Xi,dom(A (D), A) 5 (A) dA

= 2
π

'

A (D)

✓
2
⇣
4
�A (D)/2

� 4
�A/2

⌘
+ ⇥

⇣
4
�3/2 · A (D)

⌘
� ⇥

⇣
4
�3/2 · A

⌘◆

·
U

2c
4
�U ('�A)

✓
1 + ⇥

⇣
4
�U'

� 4
�2UA

⌘◆
dA

Since A (D) � '/2 and A 2 [A (D),'] we have

⇥
⇣
4
�3/2 · A (D)

⌘
� ⇥

⇣
4
�3/2 · A

⌘
= ±O

⇣
4
�3/4 · '

⌘

as well as ⇣
1 + ⇥

�
4
�U'

� 4
�2UA � ⌘ = ⇣

1 + O
�
4
�U'

� ⌘
.

Due to the linearity of integration, constant factors within the integrand can be
moved out of the integral, which yields

`
�
Adom(D)

�
=
U

c
4
�U'

✓
1 + O

⇣
4
�U'

⌘◆

·

π
'

A (D)

✓
2
⇣
4
�A (D)/2

� 4
�A/2

⌘
± O

⇣
4
�3/4 · '

⌘◆
· 4

UA dA

=
2U
c
4
�A (D)/2

4
�U'

✓
1 + O

⇣
4
�U'

⌘◆ π '

A (D)

4
UA dA

�
2U
c
4
�U'

✓
1 + O

⇣
4
�U'

⌘◆ π '

A (D)

4
(U�1/2)A dA

± O

4
� (3/4+U)'

π
'

A (D)

4
UA dA

!
.

116

Vertex Cover on Hyperbolic Random Graphs Section 6.2

The remaining integrals can be computed easily and we obtain

`
�
Adom(D)

�
=

2
c
4
�A (D)/2

✓
1 + O

⇣
4
�U'

⌘◆ ⇣
1 � 4�U ('�A (D))

⌘

�
2U

(U � 1/2)c
4
�'/2

✓
1 + O

⇣
4
�U'

⌘◆ ⇣
1 � 4� (U�1/2) ('�A (D))

⌘

± O
✓
4
�3/4 · '

⇣
1 � 4�U ('�A (D))

⌘◆
. (6.1)

It remains to simplify the remaining error terms. To do this, we consider the
three summands in the above expression separately, starting with the �rst. There,
the error term can be expanded to obtain

⇣
1 + O

⇣
4
�U'

⌘⌘ ⇣
1 � 4�U ('�A (D))

⌘

= 1 + O
⇣
4
�U'

⌘
� 4

�U ('�A (D))
� O

⇣
4
�U'

· 4
�U ('�A (D))

⌘

= 1 + 4�U'
✓
O(1) � 4UA (D) � O

⇣
4
�U ('�A (D))

⌘◆
.

Now recall that ' = 2 log(=) +⇠ for a constant⇠ 2 R (see Section 3.3). Moreover,
since A (D) � '/2 holds by assumption, we have 4UA (D) = !(1) and thus O(1) �
4
UA (D) = �O

⇣
4
UA (D)

⌘
. We obtain

✓
1 + O

⇣
4
�U'

⌘◆ ⇣
1 � 4�U ('�A (D))

⌘
= 1 + 4�U'

✓
�O

⇣
4
UA (D)

⌘
� O

⇣
4
�U ('�A (D))

⌘◆
.

Again, since ' = 2 log(=) +⇠ for a constant ⇠ , we have 4�U' = o(1) and thus
O
�
4
�U ('�A (D))

�
= O

�
4
UA (D)

�
. Therefore, the error term further simpli�es to�

1 � O
�
4
�U ('�A (D))

� �
and Equation (6.1) becomes

`
�
Adom(D)

�
=

2
c
4
�A (D)/2

✓
1 � O

⇣
4
�U ('�A (D))

⌘◆

�
2U

(U � 1/2)c
4
�'/2

✓
1 + O

⇣
4
�U'

⌘◆ ⇣
1 � 4� (U�1/2) ('�A (D))

⌘

± O
✓
4
�3/4 · '

⇣
1 � 4�U ('�A (D))

⌘◆
.

117

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

Now consider the second summand. Since U is constant, so is the �rst fraction.
Moreover, as ' = 2 log(=) +⇠ for a constant ⇠ , we have

⇣
1 + O

�
4
�U'

� ⌘
=

�
1 + o(1)

�
= O(1).

And since A (D)  ', the exponent in the last factor is non-positive, from which
we can conclude that this factor is also O(1). The second summand therefore
simpli�es to O

�
4
�'/2� = O

�
=
�1� . Finally, the last summand can be reduced to

O
�
4
�3/4 · ' � = O

�
=
�3/2� , which yields

`
�
Adom(D)

�
=

2
c
4
�A (D)/2

✓
1 � O

⇣
4
�U ('�A (D))

⌘◆
� O

⇣
=
�1

⌘
± O

⇣
=
�3/2

⌘
.

Combining the last two summands then yields the claim. ⇤

The following lemma shows that, with high probability, all vertices that are
not too close to the boundary of the disk dominate at least one vertex.

Lemma 6.4. Let ⌧ be a hyperbolic random graph on = vertices with power-
law exponent 2U + 1 and expected average degree ^. Then, there is a constant
2 > 2/(^ (1 � 1/(2U))2), such that all vertices D with A (D)  d = ' � 2 log log(=2)
are dominant, with high probability.

Proof. Vertex D is dominant if at least one vertex lies in Adom(D). To show this
for any D with A (D)  d , it su�ces to show it for A (D) = d , since ` (Adom(D))

increases with decreasing radius. To determine the probability that at least one
vertex lies in Adom(D), we use Lemma 6.3 and obtain

`
�
Adom(D)

�
=

2
c
4
�d/2

✓
1 � O

⇣
4
�U ('�d)

⌘◆
± O

�
1/=

�

=
2
c
4
�'/2+log log(=2)

✓
1 � O

⇣
4
�2U log log(=2)

⌘◆
± O

�
1/=

�
.

By substituting the value for ' (see Section 3.3), which is

' = 2 log

2=
c^

·

✓
U

U � 1/2

◆2 �
1 + o(1)

�!
,

118

Vertex Cover on Hyperbolic Random Graphs Section 6.2

we obtain

`
�
Adom(D)

�
=
^

=

✓
U � 1/2
U

◆2 1
1 + o(1)

2 log(=)
✓
1 � O

⇣
log(=)�2U

⌘◆
± O

�
1/=

�
.

Moreover, since 1/(1 + G) = 1 � ⇥(G) for G 2 R with G = ±o(1) (Lemma 2.11),
we can conclude that

`
�
Adom(D)

�
= 2^

✓
1 �

1
2U

◆2 log(=)
=

�
1 � o(1)

�
± O

�
1/=

�
.

The probability of at least one vertex falling into Adom(D) is now given by

Pr
⇥
+
�
Adom(D)

�
< ;

⇤
= 1 �

⇣
1 � `

�
Adom(D)

� ⌘=
� 1 � 4�=`(Adom (D))

= 1 � ⇥
⇣
=
�2^ (1�1/(2U))2 (1�o(1))

⌘
,

where the second inequality is due to the fact that 1 + G  4
G for all G 2 R

(see Lemma 2.9). As a consequence, for large enough = we can choose a constant
2 > 2/(^ (1 � 1/(2U))2), such that the probability of a vertex at radius d being
dominant is at least 1 � ⇥

�
=
�2� , allowing us to apply the union bound. ⇤

Corollary 6.5. Let ⌧ be a hyperbolic random graph on = vertices with power-law
exponent 2U + 1 and expected average degree ^. Then, there exists a constant 2 >
2/(^ (1� 1/(2U))2), such that all vertices with radius at most d = '� 2 log log(=2)
are removed by the dominance rule, with high probability.

6.2.2 Simple Structure in the Outer Band

By Corollary 6.5 the dominance rule removes all vertices of radius at most d .
Consequently, all remaining vertices have radius at least d . We refer to this part
of the disk as outer band. More precisely, the outer band is de�ned as D' \ Dd .

To show that we can solve the vertex cover problem e�ciently on this part of
the graph, we utilize the fact that it has a simple structure. More precisely, we
prove that this remainder has a small pathwidth, which is a parameter related to
tree decompositions. A tree decomposition of a graph ⌧ is a tree) where each
vertex in the tree represents a subset of the vertices of⌧ called a bag, and the fol-

119

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

lowing requirements have to be satis�ed: Each vertex in⌧ is contained in at least
one bag, all bags containing a given vertex in ⌧ form a connected subtree of) ,
and for each edge in ⌧ , there exists a bag containing both endpoints. The width
of a tree decomposition is the size of its largest bag minus one. The treewidth
of ⌧ is the minimum width over all tree decompositions of ⌧ . In our analysis,
we consider special tree decompositions called path decomposition, which are
de�ned analogously, with the added constraint that the tree has to be a path.
Additionally, the pathwidth of a graph ⌧ , denoted by pw(⌧), is the minimum
width over all path decompositions of ⌧ . In the following, we prove that the
remaining graph in the outer band has a small pathwidth. Since the pathwidth
is an upper bound on the treewidth, we can utilize existing results stating that,
in that case, tree decompositions can be computed e�ciently [Cyg+15, Theorem
7.18], which in turn allows us to solve the vertex cover problem, e�ciently
[Cyg+15, Theorem 7.9].

The idea now is to utilize the underlying geometry to �nd a circular arc super
graph of the remainder, for which the pathwidth can be bounded easily. Circular
arc graphs are a super class of interval graphs. In an interval graph each vertex {
is identi�ed with an interval on the real line and two vertices are adjacent if
and only if their intervals intersect. The interval width of an interval graph ⌧ ,
denoted by iw(⌧), is its maximum clique size, i.e., the maximum number of
intervals that intersect in one point. For any graph the interval width is de�ned
as the minimum interval width over all of its interval supergraphs. In circular
arc graphs each vertex is identi�ed with a subinterval of the circle called circular
arc or simply arc. The interval width of a circular arc graph ⌧ is at most twice
the size of its maximum clique, since one obtains an interval supergraph of⌧ by
mapping the circular arcs into the interval [0, 2c] on the real line and replacing
all intervals that were split by this mapping with the whole interval [0, 2c].
Consequently, for any graph⌧ , if : denotes the minimum over the maximum
clique number of all circular arc supergraphs ⌧ 0 of ⌧ , then the interval width
of ⌧ is at most 2: . It is known that for any graph ⌧ and any : � 0, the interval
width of ⌧ is at most : + 1 if and only if its pathwidth is at most : [Cyg+15,
Theorem 7.14]. Consequently, if : 0 is the maximum clique size of a circular arc
supergraph of ⌧ , then 2: 0 � 1 is an upper bound on the pathwidth of ⌧ .

In the following, we use ⌧ |A ({)�A = ⌧ [{{ 2 + } | A ({) � A] to denote the
induced subgraph of ⌧ that contains all vertices with radius at least A . To show
that the pathwidth of⌧ |A ({)�d (the induced subgraph in the outer band) is small,

120

Vertex Cover on Hyperbolic Random Graphs Section 6.2

{

D' ({)

�{

Figure 6.4: The angular intervals representing the circular arc supergraph ⌧̂ of a
hyperbolic random graph ⌧ . The arc �{ (orange) of a vertex { extends to the boundary
of its neighborhood disk D' ({) (green) at the radius of {.

we �rst show that there is a circular arc supergraph ⌧̂ |A ({)�d of ⌧ |A ({)�d with
a small maximum clique. We use ⌧̂ to denote a circular arc supergraph of a
hyperbolic random graph ⌧ , which is obtained by assigning each vertex { an
angular interval �{ on the circle, such that the intervals of two adjacent vertices
intersect. More precisely, for a vertex {, we set

�{ = [i ({) � \ (A ({), A ({)),i ({) + \ (A ({), A ({))],

where \ (A (D), A ({)) denotes the maximum angular distance such that to vertices
D and { are adjacent, see Section 3.3.5. Intuitively, this means that the interval of
a vertex contains a superset of all its neighbors with larger radius, as can be seen
in Figure 6.4. The following lemma shows that ⌧̂ is actually a supergraph of ⌧ .

Lemma 6.6. Let⌧ = (+ , ⇢) be a hyperbolic random graph. Then, the graph ⌧̂ is
a supergraph of ⌧ .

Proof. Let {D, {} 2 ⇢ be any edge in ⌧ . To show that ⌧̂ is a supergraph of ⌧
we need to show that D and { are also adjacent in ⌧̂ , i.e., �D \ �{ < ;. Without

121

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

O A

{
�{

'/2

'
A|A ({)�'/2

A|A ({)�A

Figure 6.5: The area that contains the vertices whose arcs intersect angle 0. Area
A|A ({)�A (red) contains all such vertices with radius at least A . Vertex { lies on the
boundary of A|A ({)�A and its interval �{ extends to 0.

loss of generality assume A (D)  A ({). Since D and { are adjacent in ⌧ , the
hyperbolic distance between them is at most '. It follows, that their angular
distance Xi (D, {) is bounded by \ (A (D), A ({)). Since \ (A (D), A ({))  \ (A (D), A (D))
for A (D)  A ({), we have Xi (D, {)  \ (A (D), A (D)). As �D extends by \ (A (D), A (D))
from i (D) in both directions, it follows that i ({) 2 �D . ⇤

Note that ⌧̂ is still a supergraph of ⌧ , after removing a vertex from both ⌧
and ⌧̂ . Consequently, ⌧̂ |A ({)�d is a supergraph of ⌧ |A ({)�d . It remains to show
that ⌧̂ |A ({)�d has a small maximum clique number, which is given by the maxi-
mum number of arcs that intersect at any angle. To this end, we �rst compute
this number at a given angle, which we set to 0 without loss of generality.
Let A|A ({)�A denote the area of the disk containing all vertices { with radius
A ({) � A whose interval �{ intersects 0, as illustrated in Figure 6.5. The following
lemma describes the probability for a given vertex to lie in A|A ({)�A .

Lemma 6.7. Let⌧ be a hyperbolic random graph and let A � '/2. The probability
for a given vertex to lie in A|A ({)�A is bounded by

`

⇣
A|A ({)�A

⌘


2U
(1 � U)c

4
� (U�1/2)'� (1�U)A

·

✓
1 + O

⇣
4
�U'

+ 4
� (2A�')

⌘
� O

⇣
4
� (1�U) ('�A)

⌘◆
.

122

Vertex Cover on Hyperbolic Random Graphs Section 6.2

Proof. We obtain the measure of A|A ({)�A by integrating the probability density
function over A|A ({)�A , see Section 3.3. Due to the de�nition of �{ we can
conclude thatA|A ({)�A includes all vertices { with radius A ({) � A whose angular
distance to 0 is at most \ (A ({), A ({)), de�ned in Equation (3.10). We obtain,

`

⇣
A|A ({)�A

⌘
=

π
'

A

2
π

\ (G,G)

0
5 (G,i) di dG

= 2
π

'

A

✓
24 ('�2G)/2

✓
1 ± ⇥

⇣
4
'�2G

⌘◆

·
U

2c
4
�U ('�G)

✓
1 + ⇥

⇣
4
�U'

� 4
�2UG

⌘◆◆
dG .

As before, we can conclude that
�
1 + ⇥

�
4
�U'

� 4
�2UA � � = �

1 + O
�
4
�U'

� �
, since

A � '/2. By moving constant factors out of the integral, the expression can be
simpli�ed to

`

⇣
A|A ({)�A

⌘


2U
c
4
� (U�1/2)'

✓
1 + O

⇣
4
�U'

⌘◆ π '

A

4
� (1�U)G

✓
1 + ⇥

⇣
4
'�2G

⌘◆
dG .

We split the sum in the integral and deal with the resulting integrals separately.

`

⇣
A|A ({)�A

⌘


2U
c
4
� (U�1/2)'

✓
1 + O

⇣
4
�U'

⌘◆

·
©≠
´
π

'

A

4
� (1�U)G dG + ⇥

 π
'

A

4
� (1�U)G+'�2G dG

!™Æ
¨

=
2U
c
4
� (U�1/2)'

✓
1 + O

⇣
4
�U'

⌘◆

·

1

1 � U
4
� (1�U)A

⇣
1 � 4� (1�U) ('�A)

⌘

+ ⇥

✓
4
'
4
� (3�U)A

⇣
1 � 4� (3�U) ('�A)

⌘◆!
.

123

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

By placing 1/(1 � U) · 4� (1�U)A outside of the parentheses, we obtain

`

⇣
A|A ({)�A

⌘


2U
(1 � U)c

4
� (U�1/2)'� (1�U)A

✓
1 + O

⇣
4
�U'

⌘◆

·

 ⇣
1 � 4� (1�U) ('�A)

⌘
+ ⇥

✓
4
'�2A

⇣
1 � 4� (3�U) ('�A)

⌘◆!
.

Simplifying the remaining error terms then yields the claim. ⇤

We can now bound the maximum clique number in ⌧̂ |A ({)�d and with that its
interval width iw

�
⌧̂ |A ({)�d

�
.

Theorem 6.8. Let ⌧ be a hyperbolic random graph on = vertices and let A � '/2
be a radius. Then, there exists a constant 2 such that, with high probability, it holds
that iw

�
⌧̂ |A ({)�A

�
= O

�
log(=)

�
, if A � ' � 1/(1 � U) · log log(=2), and otherwise

iw
�
⌧̂ |A ({)�A

�


5U
(1 � U)c

=4
� (U�1/2)'� (1�U)A

·

✓
1 + O

⇣
4
�U'

+ 4
� (2A�')

⌘
� O

⇣
4
� (1�U) ('�A)

⌘◆
.

Proof. We start by determining the expected number of arcs that intersect at a
given angle. This can be done by computing the expected number of vertices in
A|A ({)�A using Lemma 6.7, which yields.

E

h��+ �
A|A ({)�A

� ��i 
2U

(1 � U)c
=4

� (U�1/2)'� (1�U)A

·

✓
1 + O

⇣
4
�U'

+ 4
� (2A�')

⌘
� O

⇣
4
� (1�U) ('�A)

⌘◆
.

We denote this upper bound with 6(A). It remains to show that it also holds
with high probability at every angle. To this end, we apply a Cherno� bound
(Corollary 2.2) to conclude that for any Y 2 (0, 1) it holds that

Pr
h��+ �

A|A ({)�A

� �� � (1 + Y)6(A)
i
 4

�Y
2
/3 · 6 (A)

.

In order to see that this probability is su�ciently small, we �rst take a closer
look at 6(A 0) with A 0 = ' � 1/(1 � U) · log log(=2) and afterwards argue about

124

Vertex Cover on Hyperbolic Random Graphs Section 6.2

the di�erent values that A can take relative to A 0.

6(A
0
) =

2U
(1 � U)c

=4
� (U�1/2)'� (1�U) ('�1/(1�U) · log log(=2))

·

⇣
1 + O

⇣
4
�U'

+ 4
� (2('�1/(1�U) · log log(=2))�')

⌘

� O
⇣
4
� (1�U) ('� ('�1/(1�U) log log(=2)))

⌘⌘

=
2U

(1 � U)c
=4

�'/2+log log(=2)

·

✓
1 + O

⇣
4
�U'

+ 4
� ('�2/(1�U) · log log(=2))

⌘
� O

⇣
4
� log log(=2)

⌘◆

Substituting the value for ' as de�ned in Section 3.3.1, which is

' = 2 log

2=
c^

·

✓
U

U � 1/2

◆2 �
1 + o(1)

�!
,

we obtain

6(A
0
) = 2^

(U � 1/2)2

(1 � U)U
log(=) (1 ± > (1)) .

Now consider the case where A < A
0. Then, 6(A) > 6(A

0
) and applying Corol-

lary 2.2 with Y = 1/4 yields

Pr
h��+ �

A|A ({)�A

� �� � 5/4 · 6(A)
i
 4

�
Y2
3 6 (A)  4

�
1
486 (A

0
)
 =

�2^
(U�1/2)2
48(1�U)U (1±o(1))

.

For the case, where A � A
0, note that E

⇥
|+ (A|A ({)�A) |

⇤
decreases with increas-

ing A . Therefore, 6(A 0) = O
�
log(=)

�
is a pessimistic but valid upper bound on6(A)

and we obtain the same bound on Pr
⇥
|+ (A|A ({)�A) | � 5/4 · 6(A 0)

⇤
.

In both cases, we can choose 2 such that |+ (A|A ({)�A) |  5/4 ·6(A) holds with
probability 1�O

�
=
�2

0 � for any 20 at a given angle. In order to see that it holds at
every angle, note that it su�ces to show that it holds at all arc endings as the
number of intersecting arcs does not change in between arc endings. Since there
are exactly 2= arc endings, we can apply the union bound and obtain that the
bound holds with probability 1 � O

�
=
�2

0
+1� for any 20 at every angle. Since 6(A)

125

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

is an upper bound on the maximum clique size of ⌧̂ |A ({)�A , the interval width of
⌧̂ |A ({)�A is at most twice as large, as argued above. ⇤

Since the interval width of a circular arc supergraph of⌧ is an upper bound
on the pathwidth of ⌧ [Cyg+15, Theorem 7.14] and since d � ' � 1/(1 � U) ·
log log(=2) for U 2 (1/2, 1), we immediately obtain the following corollary.

Corollary 6.9. Let⌧ be a hyperbolic random graph on = vertices and let⌧ |A ({)�d

be the subgraph obtained by removing all vertices with radius at most d = ' �

2 log log(=2). Then, with high probability it holds that

pw(⌧ |A ({)�d) = O
�
log(=)

�
.

We are now ready to prove our main theorem, which we restate for the sake
of readability.

Theorem 6.1. Let ⌧ be a hyperbolic random graph on = vertices. Then the vertex
cover problem on ⌧ can be solved in poly(=) time, with high probability.

Proof. Consider the following algorithm that �nds a minimum vertex cover
of ⌧ . We start with an empty vertex cover (. Initially, all dominant vertices
are added to (, which is correct due to the dominance rule. By Lemma 6.4, this
includes all vertices of radius at most d = ' � 2 log log(=2), for some constant 2 ,
with high probability. Obviously, �nding all vertices that are dominant can
be done in poly(=) time. It remains to determine a vertex cover of ⌧ |A ({)�d .
By Corollary 6.9, the pathwidth of ⌧ |A ({)�d is O

�
log(=)

�
, with high probability.

Since the pathwidth is an upper bound on the treewidth, we can �nd a tree
decomposition of ⌧ |A ({)�d and solve the vertex cover problem in ⌧ |A ({)�d in
poly(=) time [Cyg+15, Theorems 7.18 and 7.9]. ⇤

Moreover, linking the radius of a vertex in Theorem 6.8 with its expected
degree leads to the following corollary, which is interesting in its own right.
It links the pathwidth to the degree 3 in the graph ⌧ |deg({)3 = ⌧ [{{ 2 + |

deg({)  3}], i.e., the subgraph of ⌧ induced by vertices of degree at most 3 .

Corollary 6.10. Let ⌧ be a hyperbolic random graph and let 3 
p
=. Then, with

high probability, pw(⌧ |deg({)3) = O
�
3
2�2U

+ log(=)
�
.

Proof. Consider the radius A = ' � 2 log(b3) for some constant b > 0, and the
graph⌧ |A ({)�A that is obtained by removing all vertices of radius at most A . In the

126

Vertex Cover on Hyperbolic Random Graphs Section 6.2

following, we show that⌧ |A ({)�A is a supergraph of⌧ |deg({)3 for large enough b .
Afterwards, we bound the pathwidth of ⌧ |A ({)�A .

As established in Section 3.3, the expected degree of a vertex with radius A is
given by

E
⇥
deg({)

�� A ({) = A ⇤ = 2U
(U � 1/2)c

=4
�A/2

✓
1 ± O

⇣
4
� (U�1/2)A

⌘◆
,

see Equation (3.9). By substituting A = '�2 log(b3) together with the expression
for ', which is given by

' = 2 log

2=
c^

·

✓
U

U � 1/2

◆2 �
1 + o(1)

�!
,

we obtain

E
⇥
deg({)

�� A ({) = A ⇤ = 2U
(U � 1/2)c

=4
�'/2+log(b3)

·

✓
1 ± O

⇣
4
� (U�1/2) ('�2 log(b3))

⌘◆

=
2U^

2(U � 1/2)

✓
U � 1/2
U

◆2 1
1 + o(1)

b · 3

·

✓
1 ± O

⇣
(3/=)

(2U�1)
⌘◆

= b^ (1 � 1/(2U)) · 3
�
1 ± o(1)

�
.

Note that for large enough = we can choose b su�ciently large, such that

Pr
⇥
deg({)  3

�� A ({) = A ⇤  Pr
h
deg({)  (1 � Y)E

⇥
deg({)

�� A ({) = A ⇤ i,
for any Y 2 (0, 1). This allows us to apply the third inequality in the Cherno�
bound in Theorem 2.1 to conclude that

Pr
⇥
deg({)  3

�� A ({) = A ⇤  exp
⇣
�Y

2
/2 · b: (1 � 1/(2U)) · 3

�
1 ± o(1)

� ⌘
.

First assume that 3 � log(=)1/(2�2U) . We handle the other case later. Note that
1/(2�2U) > 1 for U 2 (1/2, 1) and, thus, 3 � log(=). Therefore, we can choose =

127

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

and b su�ciently large, such that

Pr
⇥
deg({)  3

�� A ({) = A ⇤  =� Y2
2 b: (1�1/(2U)) (1±o(1))

 =
�2
.

Since by Corollary 3.3 smaller radius implies larger expected degree, we can
derive the same bound for a given vertex of radius at most A . By applying the
union bound it follows that, with high probability, no vertex with radius at most A
has degree less than or equal to 3 . Conversely, all vertices with degree at most 3
have radius at least A . Consequently, ⌧ |A ({)�A is a supergraph of ⌧ |deg({)3 .

To prove the claim, it remains to bound the pathwidth of ⌧ |A ({)�A . When
A > ' � 1/(1 � U) · log log(=2), we can apply the �rst part of Theorem 6.8 in
order to conclude that iw(⌧̂ |A ({)�A) = O

�
log(=)

�
. Otherwise, we use the second

part of the theorem, allowing us to derive that the interval width of ⌧ |A ({)�A is
at most

iw
⇣
⌧̂ |A ({)�A

⌘


5U
(1 � U)c

=4
� (U�1/2)'� (1�U)A

·

✓
1 + O

⇣
4
�U'

+ 4
� (2A�')

⌘
� O

⇣
4
� (1�U) ('�A)

⌘◆

=
5^Ub2�2U

2(1 � U)

✓
U � 1/2
U

◆2 1
(1 + o(1))

·

✓
1 + O

⇣
=
�2U

+ (3
2
/=)

2
⌘
� O

⇣
3
� (2�2U)

⌘◆

=
5^ (U � 1/2)2b2�2U

2(1 � U)U
3
2�2U �1 ± O(1)

�
= O

⇣
3
2�2U

⌘
.

As argued above, the interval width is an upper bound on the pathwidth.

For the case where 3 < log(=)1/(2�2U) (which we excluded above), consider
⌧ |deg({)3 0 for 3 0 = log(=)1/(2�2U) > 3 . As we already proved the corollary for 3 0,
we obtain pw(⌧ |deg({)3 0) = O

�
3
02�2U

+ log(=)
�
= O

�
log(=)

�
. Since ⌧ |deg({)3

is a subgraph of ⌧ |deg({)3 0 , the same bound holds for ⌧ |deg({)3 . ⇤

128

Empirical Evaluation Section 6.3

6.3 Empirical Evaluation

Our results show that a heterogeneous degree distribution as well as high clus-
tering make the dominance rule very e�ective. This matches the behavior for
real-world networks, which typically exhibit these two properties. However, our
analysis actually makes more speci�c predictions: (I) vertices with su�ciently
high degree usually have at least one neighbor they dominate and can thus safely
be included in the vertex cover; and (II) the graph remaining after deleting the
high-degree vertices has simple structure, i.e., small pathwidth.

To seewhether thismatches the real world, we ran experiments on 59 networks
from several network datasets [Are+; BM06; Kun13; LK14; RA15]. Out of the 59
instances, we can solve the vertex cover problem for 47 networks in reasonable
time. We refer to these as easy, while the remaining 12 are called hard. Note that
our theoretical analysis aims at explaining why the easy instances are easy.

Recall from Lemma 6.4 that all vertices with radius at most ' � 2 log log(=2),
with 2 > 2/(^ (1�1/(2U))2), probably dominate. This corresponds to an expected
degree of 2U/(U �1/2) · log(=). Figure 6.6 shows the percentage of dominant ver-
tices among the ones above this degree, for the considered real-world networks.
For more than 66 % of the 59 networks, more than 75 % of these vertices were in
fact dominant (red and blue). For more than 40 % of the networks, more than 95 %
were dominant (blue). Restricted to the 47 easy instances, these increase to 82 %
and 51% of networks, respectively.

Experiments concerning the pathwidth of the resulting graph are much more
di�cult, due to the lack of e�cient tools. Therefore, we used the tool by Tamaki
et al. [Tam+17] to heuristically compute upper bounds on the treewidth instead.
As in our analysis, we only removed vertices that dominate in the original graph
instead of applying the reduction rule exhaustively. On the resulting subgraphs,
the treewidth heuristic ran with a 15min timeout. The resulting treewidth is at
most 50 for 44 % of the networks and at most 5 for 25 %, see Figure 6.7. Restricted
to easy instances, the values increase to 55 % and 32%, respectively. Note how
on most graphs where almost all high-degree vertices are dominant (blue), we
obtained the smallest treewidths. This indicates, that on networks where our
�rst prediction was ful�lled, so was the second one.
While hyperbolic random graphs are clearly an idealized representation of

real-world graphs, these experiments indicate that the predictions derived from
the model match the real world, at least for a signi�cant fraction of networks.

129

Chapter 6 Exact Vertex Cover in Hyperbolic Random Graphs

livemocha
cit-HepTh

petster-friendship-cat
petster-friendship-dog
facebook-wosn-links

petster-friendship-hamster
c�nder-google
p2p-Gnutella09
p2p-Gnutella08
p2p-Gnutella05
p2p-Gnutella06

OClinks
wiki-Vote
as-skitter

p2p-Gnutella04
airlines

advogato
digg-friends

citeseer
loc-gowalla_edges

EuroSiS
US-Air

loc-brightkite_edges
munmun_twitter_social

petster-carnivore
bn-�y-drosophila_medulla_1

p2p-Gnutella24
soc-Epinions1
web-Google
ca-cit-HepPh

�ixster
YeastS

youtube-links
p2p-Gnutella30

email-Enron
p2p-Gnutella31

youtube-u-growth
ca-HepTh

com-amazon
moreno_names
wordnet-words

ca-AstroPh
hyves

ca-GrQc
com-dblp

as-22july06
as-caida20071105

as20000102
bio-CE-HT
bio-CE-LC

bio-DM-HT
bio-yeast-protein-inter

bn-mouse-kasthuri_graph_v4
ca-CondMat
cpan-authors
ego-facebook

ego-gplus
moreno_propro
p2p-Gnutella25

0% 25% 50% 75% 100%
Dominant Vertices (%)

N
et
w
or
k

Figure 6.6: Percentage of dominant vertices among ones with degree above 2U/(U �

1/2) log(=). Red bars denote networks where this value is above 75%. Blue bars denote
networks where it is above 95%. Transparent bars denote hard instances.

130

Empirical Evaluation Section 6.3

100

101

102

103

104

105

106

103 104 105 106

Number of Vertices

Tr
ee
w
id
th

Up
pe
rB

ou
nd

Figure 6.7: Upper bounds on the treewidth of the considered graphs, after removing
initially dominant vertices. Dashed and dotted green lines denote a bound of 5 and 50,
respectively. Colors represent the percentage of initially dominant high-degree vertices,
analogous to Figure 6.6. Transparent dots represent hard instances.

131

7 Approximate Vertex Cover in
Hyperbolic Random Graphs

This chapter is based on joint work together with Thomas Bläsius as well as Tobias
Friedrich [BFK21a].

7.1 Introduction

As established in the previous chapter, �nding a minimum vertex cover is a
fundamental NP-complete graph problem with several relevant applications,
which is why there is an ongoing e�ort in exploring methods that can be used in
practice [ACL12; AI16]. While they often work well, they still cannot guarantee
e�cient running times. This includes the previously shown polynomial running
time bound (Chapter 6). There the degree of the polynomial is unknown and
on large networks even quadratic algorithms are not e�cient enough to obtain
results in a reasonable amount of time.

A commonly used approach to overcoming this issue are approximation algo-
rithms. There, the idea is to settle for a near-optimal solution while guaranteeing
an e�cient running time. For the vertex cover problem, a simple greedy approach
computes an approximation in quasi-linear time by iteratively adding the vertex
with the largest degree to the cover and removing it from the graph. In general
graphs, this algorithm, which we call standard greedy, cannot beat an approxi-
mation ratio of ⌦

�
log(=)

�
, i.e., there are graphs where it produces a vertex cover

whose size exceeds the one of an optimum by a factor of ⌦
�
log(=)

�
[Joh74].

This can be improved to a 2-approximation using a simple linear-time algo-
rithm. The best known polynomial time approximation reduces the factor to
2 �⇥

�
log(=)�1/2

�
[Kar09]. However, there is reason to believe that it is NP-hard

to approximate an optimal vertex cover within a factor of 2�Y for all Y > 0 [KR08]
and it is proven that �nding a

p
2-approximation is NP-hard [SMS18].

Therefore, it is very surprising that the standard greedy algorithm does not
only beat the 2-approximation on autonomous systems graphs like the inter-
net [PW05], it also performs well on many real-world networks, obtaining

133

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

approximation ratios that are very close to 1 [SGS13]. So, again, there is a gap
between the theoretical bounds and what is observed in practice, and we can
get more realistic insights by focusing on networks featuring properties that
are also observed in the real world, like a power-law degree distribution, high
clustering, and the small-world phenomenon, as explained in Chapter 1.

Previous e�orts to obtain better insights into the approximability of the vertex
cover problem have focused on networks that feature only one of these properties,
namely a power-law degree distribution [CFR16; GH14; VS16]. With this ap-
proach, guarantees for the approximation factor of the standard greedy algorithm
were improved to a constant, compared to log(=) on general graphs [CFR16].
Moreover, it was shown that it is possible to compute an expected (2 � Y)-
approximation for a constant Y, in polynomial time on such networks [GH14],
and this was later improved to about 1.7 depending on properties of the distri-
bution [VS16]. However, it was shown that even on graphs with a power-law
degree distribution, the vertex cover problem remains NP-hard to approximate
within some constant factor [CFR16]. This indicates that focusing on networks
that only feature a power-law degree distribution, is not su�cient to explain
why vertex cover can be approximated so well in practice.

The goal of this chapter is to close this gap between theory and practice, by
considering the hyperbolic random graph model that features all of the three
mentioned properties of scale-free networks, as explained in Section 3.3. To this
end, we link the success of the standard greedy approach to structural properties
of hyperbolic random graphs, identify the parts of the graph where it does
not behave optimally, and use these insights to derive a new approximation
algorithm. On the giant component of a hyperbolic random graph, this algorithm
achieves an approximation ratio of 1 + o(1), asymptotically almost surely, and
maintains an e�cient running time of O

�
< log(=)

�
. Since the average degree

of hyperbolic random graphs is constant with high probability [Keu18], this
implies a quasi-linear running time on such networks. Moreover, we introduce a
parameter that can be used to tune the trade-o� between approximation quality
and running time of the algorithm, facilitating an improvement over the standard
greedy approach. While our algorithm depends on the coordinates of the vertices
in the hyperbolic plane, we propose an adaptation of it that is oblivious to
the underlying geometry and compare its approximation performance to the
standard greedy algorithm on a selection of real-world networks. On average our
algorithm reduces the error of the standard greedy approach to less than 50%.

134

An Improved Greedy Algorithm Section 7.2

7.2 An Improved Greedy Algorithm

In the previous chapter, we considered the dominance reduction rule, which
reduces a hyperbolic random graph to a remainder of simple structure, see
Section 6.2.1. This rule states that a vertex D can be safely added to the vertex
cover (and, thus, be removed from the graph) if it dominates at least one other
vertex, i.e., if there exists a neighbor { 2 # (D) such that all neighbors of { are
also neighbors of D.
On hyperbolic random graphs, vertices near the center of the disk domi-

nate with high probability (Lemma 6.4). Therefore, it is not surprising that the
standard greedy algorithm that computes a vertex cover by repeatedly taking
the vertex with the largest degree achieves good approximation rates on such
networks: Since high-degree vertices are near the disk center, the algorithm
essentially favors vertices that are likely to dominate and can be safely added to
the vertex cover anyway.

On the other hand, after (safely) removing high-degree vertices, the remaining
vertices all have similar (small) degree, meaning the standard greedy algorithm
basically picks the vertices at random. Thus, in order to improve the approxima-
tion performance of the algorithm, one has to improve on the parts of the graph
that contain the low-degree vertices. Based on this insight, we derive a new
greedy algorithm that achieves close to optimal approximation rates e�ciently.
More formally, we prove the following main theorem.

Theorem 7.1. Let⌧ be the giant component of a hyperbolic random graph. Given
the radii of the vertices, an approximate vertex cover of ⌧ can be computed in
time O

�
< log(=)

�
, such that the approximation ratio is

�
1 + o(1)

�
asymptotically

almost surely.

Consider the following greedy algorithm that computes an approximation of
a minimum vertex cover on hyperbolic random graphs. We iterate the vertices
in order of increasing radius. Each encountered vertex { is added to the cover
and removed from the graph. After each step, we then identify the connected
components of size at most g log log(=) in the remainder of the graph, solve
them optimally, and remove them from the graph as well. The constant g > 0
can be used to adjust the trade-o� between quality and running time.

This algorithm determines the order in which the vertices are processed based
on their radii, which are not known for real-world networks. However, in
hyperbolic random graphs, there is a strong correlation between the radius of a

135

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

vertex and its degree, see Section 3.3.3. Therefore, we can mimic the considered
greedy strategy by removing vertices with decreasing degree instead. Then,
the above algorithm represents an adaptation of the standard greedy algorithm:
Instead of greedily adding vertices with decreasing degree until all remaining
vertices are isolated, we increase the quality of the approximation by solving
small components exactly.

7.3 Approximation Performance

To analyze the performance of the above algorithm, we utilize structural proper-
ties of hyperbolic random graphs. While the power-law degree distribution and
high clustering are modelled explicitly using the underlying geometry, other
properties of the model, like the logarithmic diameter, emerge as a natural con-
sequence of the �rst two. Our analysis is based on another emerging property:
Hyperbolic random graphs decompose into small components when removing
high-degree vertices.

More formally, we proceed as follows. We compute the size of the vertex cover
obtained using the above algorithm, by partitioning the vertices of the graph
into two sets: +Greedy and +Exact, denoting the vertices that were added greedily
and the ones contained in small separated components that were solved exactly,
respectively (see Figure 7.1). Clearly, we obtain a valid vertex cover for the
whole graph, if we take all vertices in +Greedy together with a vertex cover ⇠Exact
of ⌧ [+Exact]. Then, the approximation ratio is given by the quotient

b =
|+Greedy | + |⇠Exact |

|⇠OPT |
,

where ⇠OPT denotes an optimal solution. Since all components in ⌧ [+Exact] are
solved optimally and since any minimum vertex cover for the whole graph
induces a vertex cover on ⌧ [+

0
] for any vertex subset + 0

✓ + , it holds that
|⇠Exact |  |⇠OPT |. Consequently, it su�ces to show that |+Greedy | = o

�
|⇠OPT |

�
in

order to obtain the claimed approximation factor of 1 + o(1).
To bound the size of +Greedy, we identify a time during the execution of the

algorithm at which only few vertices were added greedily, yet, the majority of the
vertices were contained in small separated components (and were, therefore, part
of+Exact), and only few vertices remain to be added greedily. Since the algorithm
processes the vertices by increasing radius, this point in time can be translated to

136

Approximation Performance Section 7.3

Figure 7.1: A hyperbolic random graph with 1942 vertices, average degree 7.7, and
power-law exponent 2.6. The vertex sets +Greedy and +Exact are shown in red and blue,
respectively. The dashed line shows a possible threshold radius d .

137

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

�

⇢

Figure 7.2: The disk is divided into the inner disk (red) and the outer band. It is
additionally divided into sectors of equal width W . Consecutive non-empty sectors form
a run. Wide runs (blue) consist of many sectors. Each blue sector is a widening sector.
Narrow runs (green) consist of few sectors. Small narrow runs contain only few vertices
(light green), while large narrow runs contain many vertices (dark green).

a threshold radius d in the hyperbolic disk (see Figure 7.1). Therefore, we divide
the disk into two regions: an inner disk and an outer band, containing vertices
with radii below and above d , respectively. The threshold d is chosen such that
a hyperbolic random graph decomposes into small components after removing
the inner disk. When adding the �rst vertex from the outer band, greedily, we
can assume that the inner disk is empty (since vertices of smaller radii were
chosen before or removed as part of a small component). At this point, the
majority of the vertices in the outer band were contained in small components,
which have been solved exactly. In our analysis, we now overestimate the size
of +Greedy by assuming that all remaining vertices are also added to the cover
greedily. Therefore, we obtain a valid upper bound on |+Greedy |, by counting the
total number of vertices in the inner disk and adding the number of vertices in
the outer band that are contained in components that are not solved exactly, i.e.,
components whose size exceeds g log log(=). In the following, we show that both
numbers are sublinear in = with high probability. Together with the fact that
an optimal vertex cover on hyperbolic random graphs, asymptotically almost
surely, contains ⌦(=) vertices [CFR16], this implies |+Greedy | = o

�
|⇠OPT |

�
.

138

Approximation Performance Section 7.3

Themain contribution of our analysis is the identi�cation of small components
in the outer band, which is done by discretizing it into sectors, such that an
edge cannot extend beyond an empty sector (see Figure 7.2). The foundation
of this analysis is the delicate interplay between the angular width W of these
sectors and the threshold d that de�nes the outer band. Recall that d is used to
represent the time in the execution of the algorithm at which the graph has been
decomposed into small components. For our analysis we assume that all vertices
seen before this point (all vertices in the inner disk; red in Figure 7.2) were added
greedily. Therefore, if we choose d too large, we overestimate the actual number
of greedily added vertices by too much. As a consequence, we want to choose d
as small as possible. However, this con�icts our intentions for the choice of W and
its impact on d . Recall that the maximum angular distance between two vertices
such that they are adjacent increases with decreasing radii (Section 3.3.5). Thus,
in order to avoid edges that extend beyond an angular width of W , we need to
ensure that the radii of the vertices in the outer band are su�ciently large. That
is, decreasing W requires increasing d . However, we want to make W as small as
possible, in order to get a �ner granularity in the discretization and, with that, a
more accurate analysis of the component structure in the outer band. Therefore,
W and d need to be chosen such that the inner disk does not become too large,
while ensuring that the discretization is granular enough to accurately detect
components whose size depends on g and =. To this end, we adjust the angular
width of the sectors using a function W (=, g), which is de�ned as

W (=, g) = log

g log(2) (=)
2 log(3) (=)2

!
,

where log(8) (=) denotes iteratively applying the log-function 8 times on = (e.g.,
log(2) (=) = log log(=)), and set

d = ' � log(c/2 · 4⇠/2W (=, g)),

where ' = 2 log(=) +⇠ is the radius of the hyperbolic disk (see Section 3.3).

In the following, we �rst show that the number of vertices in the inner disk
is sublinear with high probability, before analyzing the component structure
in the outer band. To this end, we make use of the discretization of the disk
into sectors, by distinguishing between di�erent kinds of runs (sequences of

139

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

non-empty sectors), see Figure 7.2. In particular, we bound the number of wide
runs (consisting of many sectors) and the number of vertices in them. Then we
bound the number of vertices in large narrow runs (consisting of few sectors but
containing many vertices). The remaining small narrow runs represent small
components that are solved exactly.

7.3.1 The Inner Disk

The inner disk Dd contains all vertices whose radius is below the threshold d .
The number of them that are added to the cover greedily is bounded by the
number of all vertices in Dd .

Lemma 7.2. Let ⌧ be a hyperbolic random graph on = vertices with power-law
exponent V = 2U + 1. Then, with high probability,

��+ (Dd)
�� = O

�
= · W (=, g)

�U
�
.

Proof. We start by computing the expected number of vertices in Dd and show
concentration afterwards. To this end, we �rst compute the measure ` (Dd).
The measure of a disk of radius A that is centered at the origin is given by
4
�U ('�A)

(1 + o(1)), see Equation (3.8). Consequently, the expected number of
vertices in Dd is

E

h��+ (Dd)
��i = =` ⇣Dd

⌘

= O
⇣
=4

�U ('�d)

⌘

= O
⇣
=4

�U log(c/2·4⇠/2
W (=,g))

⌘
= O

�
= · W (=, g)

�U
�
.

Since W (=, g) = O
�
log(3) (=)

�
, this bound on E

⇥
|+ (Dd) |

⇤
is !

�
log(=)

�
, and we

can apply the Cherno� bound in Corollary 2.3 to conclude that
��+ (Dd)

�� =
O
�
= · W (=, g)

�U
�
holds with probability 1 � O

�
=
�2

�
for any 2 > 0. ⇤

Since W (=, g) = !(1), Lemma 7.2 shows that, with high probability, the number
of vertices that are greedily added to the vertex cover in the inner disk is sublin-
ear. Once the inner disk has been processed and removed, the graph has been
decomposed into small components and the ones of size at most g log log(=)
have already been solved exactly. The remaining vertices that are now added
greedily belong to large components in the outer band.

140

Approximation Performance Section 7.3

7.3.2 The Outer Band

To identify the vertices in the outer band that are contained in components
whose size exceeds g log log(=), we divide it into sectors of angular width

W = \ (d, d) = c ·
W (=, g)

=
·
�
1 + o(1)

�
,

where \ (d, d) denotes the maximum angular distance between two vertices with
radii d to be adjacent (see Section 3.3.5). This division is depicted in Figure 7.2.
The choice of W (combined with the choice of d) has the e�ect that an edge
between two vertices in the outer band cannot extend beyond an empty sector,
i.e., a sector that does not contain any vertices, allowing us to use empty sectors
as delimiters between components. To this end, we introduce the notion of runs,
which are maximal sequences of non-empty sectors (see Figure 7.2). While a run
can contain multiple components, the number of vertices in it denotes an upper
bound on the combined sizes of the components that it contains.

To show that there are only few vertices in components whose size exceeds
g log log(=), we bound the number of vertices in runs containing more than this
many vertices. For a given run this can happen for two reasons. First, it may
contain many vertices if its angular interval is too large, i.e., it consists of too
many sectors. This is unlikely, since the sectors are chosen su�ciently small,
such that the probability for a given one to be empty is high. Second, while the
angular width of the run is not too large, it contains too many vertices for its
size. However, the vertices of the graph are distributed uniformly at random in
the disk, making it unlikely that too many vertices are sampled into such a small
area. To formalize this, we introduce a threshold | and distinguish between two
types of runs: A wide run contains more than | sectors, while a narrow run
contains at most | sectors. The threshold | is chosen such that the probabilities
for a run to be wide and for a narrow run to contain more than g log log(=)
vertices are small. To this end, we set | = 4W (=,g) · log(3) (=).

In the following, we �rst bound the number of vertices in wide runs. After-
wards, we consider narrow runs that contain more than g log log(=) vertices.
Together, this gives an upper bound on the number of vertices that are added
greedily in the outer band.

141

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Wide Runs

We refer to a sector that contributes to a wide run as a widening sector. In the
following, we bound the number of vertices in all wide runs in three steps. First,
we determine the expected number of all widening sectors. Second, based on the
expected value, we show that the number of widening sectors is small, with high
probability. Finally, we make use of the fact that the area of the disk covered by
widening sectors is small, to show that the number of vertices sampled into the
corresponding area is sublinear, with high probability.

Expected Number of Widening Sectors. Let =0 denote the total number
of sectors and let S1, . . . ,S=0 be the corresponding sequence. For each sector S: ,
we de�ne the random variable (: indicating whether S: contains any vertices,
i.e., (: = 0 if + (S:) = ; and (: = 1 otherwise. The sectors in the disk are then
represented by a circular sequence of indicator random variables (1, . . . , (=0 , and
we are interested in the random variable, that denotes the sum of all runs
of 1s that are longer than |. In order to compute E[,], we �rst compute the
total number of sectors, as well as the probability for a sector to be empty or
non-empty.

Lemma 7.3. Let⌧ be a hyperbolic random graph on = vertices. Then, the number
of sectors of width W = \ (d, d) is =0 = 2=/W (=, g) ·

�
1 ± o(1)

�
.

Proof. Since all sectors have equal angular width W = \ (d, d), we can use Equa-
tion (3.10) to compute the total number of sectors as

=
0 =

2c
\ (d, d)

= c4�'/2+d
✓
1 ± ⇥

⇣
4
'�2d

⌘◆�1
.

By substituting d = ' � log(c/2 · 4⇠/2W (=, g)) and ' = 2 log(=) +⇠ , we obtain

=
0 =

c4
'/2

c/2 · 4⇠/2W (=, g)

✓
1 ± ⇥

⇣
4
�'
W (=, g)

2
⌘◆�1

=
2=

W (=, g)

©≠
´
1 ± ⇥

 ✓
W (=, g)

=

◆2!™Æ
¨
�1

.

It remains to simplify the error term. Note that W (=, g) = O
�
log(3) (=)

�
. Con-

sequently, the error term is equivalent to
�
1 ± o(1)

��1. Finally, it holds that
1/(1 + G) = 1 � ⇥(G) for G = ±o(1), according to Lemma 2.11. ⇤

142

Approximation Performance Section 7.3

Lemma 7.4. Let ⌧ be a hyperbolic random graph on = vertices and let S be a
sector of angular width W = \ (d, d). For su�ciently large =, the probability that S
contains at least one vertex is bounded by

1 � 4�W (=,g)/4  Pr
⇥
+ (S) < ;

⇤
 4

�

⇣
4
�W (=,g)

⌘
.

Proof. To compute the probability that S contains at least one vertex, we �rst
compute the probability for a given vertex to be sampled into S, which is given
by the measure ` (S). Since the angular coordinates of the vertices are distributed
uniformly at random and since the disk is divided into =0 sectors of equal width,
the measure of a single sector S can be obtained as ` (S) = 1/=0. The total
number of sectors =0 is given by Lemma 7.3 and we can derive

` (S) =
W (=, g)

2=
�
1 ± o(1)

��1 = W (=, g)
2=

�
1 ± o(1)

�
,

where the second equality is obtained by applying 1/(1 + G) = 1 � ⇥(G) for
G = ±o(1), see Lemma 2.11.

Given ` (S), we �rst compute the lower bound on the probability that S
contains at least one vertex. Note that

Pr
⇥
+ (S) < ;

⇤
= 1 � Pr

⇥
+ (S) = ;

⇤
. (7.1)

Therefore, it su�ces to show that Pr
⇥
+ (S) = ;

⇤
 4

�W (=,g)/4. The probability
that S is empty is (1 � ` (S))= . By Lemma 2.9 it holds that 1 � G  4

�G for all
G 2 R. Consequently, we have

Pr
⇥
+ (S) = ;

⇤
 4

�=` (S)
 4

�W (=,g)/2 · (1�o(1))

and for large enough = it holds that 1 � o(1) � 1/2.

It remains to compute the upper bound. Again, using Equation (7.1) and since
Pr

⇥
+ (S) = ;

⇤
= (1 � ` (S))= , we can compute the probability that S contains

at least one vertex as

Pr
⇥
+ (S) < ;

⇤
= 1 �

�
1 � ` (S)

�=
.

Note that ` (S) = o(1). Therefore, we can apply Lemma 2.10, which states that

143

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

1 � G � 4
�G (1+o(1)) for G = o(1), and obtain the following upper bound

Pr
⇥
+ (S) < ;

⇤
= 1 �

�
1 � ` (S)

�=
 1 � 4�=` (S) (1+o(1))

 1 � 4�W (=,g)/2· (1+o(1)) .

For large enough =, we have
�
1 + o(1)

�
 2. Therefore,

Pr
⇥
+ (S) < ;

⇤
 1 � 4�W (=,g)

holds for su�ciently large =. Finally, 1 � G  4
�G is valid for all G 2 R

by Lemma 2.9, and we obtain the claimed bound. ⇤

We are now ready to compute an upper bound on the expected number of
widening sectors, i.e., sectors that are part of wide runs. To this end, we aim to
apply the following lemma.

Lemma 7.5 ([MPP07, Proposition 4.36]). Let (1, . . . , (=0 denote a circular se-
quence of independent indicator random variables, such that Pr[(: = 1] = ? and
Pr[(: = 0] = 1 � ? = @, for all : 2 [=

0
]. Furthermore, let, denote the sum of the

lengths of all success runs of length at least |  =
0. Then, E[,] = =0?|(|@ + ?).

We note that the indicator random variables (1, . . . , (0= are not independent
on hyperbolic random graphs. To overcome this issue, we compute the expected
value of, on hyperbolic random graphs with = vertices in expectation (see Sec-
tion 3.3.4) and subsequently derive a probabilistic bound on, for hyperbolic
random graphs.

Lemma 7.6. Let ⌧ be a hyperbolic random graph with = vertices in expectation
and let, denote the number of widening sectors. Then,

E[,] 
21/4 · g3/4 · =

W (=, g) · log(2) (=)1/4 · log(3) (=)1/2
�
1 ± o(1)

�
.

6 The original statement has been adapted to �t our notation. We use =0,|, and, to denote the
total number of random variables, the threshold for long runs, and the sum of their lengths,
respectively. Theywere previously denoted by=,: , and (, respectively. In the original statement
B = 0 indicates that the variables are distributed independently and identically, and 2 indicates
that the sequence is circular.

144

Approximation Performance Section 7.3

Proof. A widening sector is part of a run of more than | = 4
W (=,g)

· log(3) (=)
consecutive non-empty sectors. To compute the expected number of widening
sectors, we apply Lemma 7.5. To this end, we use Lemma 7.3 to bound the total
number of sectors =0 and Lemma 7.4 to bound the probability ? = Pr[(: = 1]
(i.e., the probability that sector S: is not empty) as ?  exp(�(4�W (=,g))), as well
as the complementary probability @ = 1 � ?  4

�W (=,g)/4. We obtain

E[,] = =0? (|+1)
((| + 1)@ + ?)


2=

W (=, g)

�
1 ± o(1)

�
· 4

�

⇣
(|+1)4�W (=,g)

⌘
·

✓
(| + 1)4�

W (=,g)
4 + 1

◆


2=

W (=, g)
4

⇣
�4

W (=,g) log(3) (=)4�W (=,g)
⌘

·

✓⇣
4
W (=,g) log(3) (=) + 1

⌘
4
�

W (=,g)
4 + 1

◆ �
1 ± o(1)

�
.

Now the �rst exponential simpli�es to exp(� log(3) (=)) = log(2) (=)�1, since
the W (=, g) terms cancel. Factoring out exp(3/4 · W (=, g)) log(3) (=) in the third
term then yields

E[,] 
2=43/4·W (=,g) log(3) (=)
W (=, g) · log(2) (=)

·

1 +

1
4W (=,g) log(3) (=)

+
1

43/4·W (=,g) log(3) (=)

! �
1 ± o(1)

�
.

Since W (=, g) = !(1), the �rst error term can be simpli�ed as
�
1 + o(1)

�
. Addi-

tionally, we can substitute W (=, g) = log(g log(2) (=)/(2 log(3) (=)2)) to obtain

E[,]  21/4
g
3/4

· = · log(3) (=)
W (=, g) · log(2) (=)

·
log(2) (=)3/4

log(3) (=)3/2
·
�
1 ± o(1)

�
.

Further simpli�cation then yields the claim. ⇤

Concentration for the Number of Widening Sectors. The above lemma
bounds the expected number of widening sectors and it remains to show that
this bound holds with high probability. To this end, we �rst determine under
which conditions the sum of long success runs in a circular sequence of indicator

145

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

(1 (2
(3

(4

. . .

(=0
(=0�1

(=0�2

. . .

(8

| |

2| + 1

Figure 7.3: A circular sequence of random variables (1, . . . , (=0 that can either be 0
(white) or 1 (blue). Dark blue runs are as large as possible without being wide. Depending
on the value of (8 , the two runs of length | are merged into one run of length 2| + 1.

random variables can be bounded with high probability in general. Afterwards,
we show that these conditions are met for our application.

Lemma 7.7. Let (1, . . . , (=0 denote a circular sequence of independent indicator
random variables and let, denote the sum of the lengths of all success runs of
length at least 1  |  =

0. If 6(=0) = !
�
|

p
=0 log(=0)

�
is an upper bound on E[,],

then, = O
�
6(=

0
)
�
holds with probability 1 � O

�
(=

0
)
�2

�
for any constant 2 .

Proof. In order to show that, does not exceed 6(=0) by more than a constant
factor with high probability, we aim to apply a method of bounded di�erences
(Corollary 2.6). To this end, we consider, as a function of =0 independent
random variables (1, . . . , (=0 and determine the parameters J8 with which,
satis�es the bounded di�erences condition (see Equation (2.2)). That is, for each
8 2 [=

0
] we need to bound the change in the sum of the lengths of all success

runs of length at least|, obtained by changing the value of (8 from 0 to 1 or vice
versa.

146

Approximation Performance Section 7.3

The largest impact on, is obtained when changing the value of (8 from 0
to 1 merges two runs of size|, i.e., runs that are as large as possible but not wide,
as shown in Figure 7.3. In this case both runs did not contribute anything to,
before the change, while the merged run now contributes 2| + 1. Then, we can
bound the change in, as J8 = 2| + 1. Note that the other case in which the
value of (8 is changed from 1 to 0 can be viewed as the inversion of the change
in the �rst case. That is, instead of merging two runs, changing (8 splits a single
run into two. Consequently, the corresponding bound on the change of, is the
same, except that, is decreasing instead of increasing.

Thus, , satis�es the bounded di�erences condition for J8 = 2| + 1 for
all 8 2 [=

0
]. By Corollary 2.6, we can now bound the probability that, exceeds

an upper bound 6(=0) on its expected value by more than a constant factor as

Pr
⇥
, > 216(=

0
)
⇤
 4

�2((21�1)6 (=0
))

2
/J
,

where J =
Õ

82 [=0] J
2
8
and 21 � 1. Since we have J8 = 2| + 1 for all 8 2 [=

0
], it

follows that J = =0(2| + 1)2. Thus,

Pr
⇥
, > 216(=

0
)
⇤
 4

�
2((21�1)6 (=0))2

=0 (2|+1)2

 4
�

2(21�1)2
=0 ·

⇣
6 (=0)
3|

⌘2
,

where the second inequality is valid since| is assumed to be at least 1. Moreover,
we can apply 6(=0) = !

�
|

p
=0 log(=0)

�
(a precondition of this lemma), which

yields

Pr
⇥
, > 216(=

0
)
⇤
 4

�
2(21�1)2

9=0 ·

✓
!
⇣p

=0 log(=0)

⌘◆2

= 4�!(log(=
0
))

= (=
0
)
�!(1)

.

As a consequence, for any constant 2 , it holds that

Pr
⇥
, = O

�
6(=

0
)
� ⇤

= 1 � (=
0
)
�!(1)

= 1 � O
�
(=

0
)
�2

�
. ⇤

147

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Lemma 7.8. Let ⌧ be a hyperbolic random graph on = vertices. Then, with
probability 1 � O

�
=
�2

�
for any constant 2 > 0, the number of widening sectors,

is bounded by

, = O

g
3/4

· =

W (=, g) · log(2) (=)1/4 · log(3) (=)1/2

!
.

Proof. We show that the claimed bound holds with probability 1 � O
�
=
�21

�
for

any constant 21 > 0 on hyperbolic random graphs with = vertices in expectation.
By Lemma 3.9 the same bound then holds with probability 1 � O

�
=
�21+1/2

�
on

hyperbolic random graphs. Choosing 2 = 21 � 1/2 then yields the claim. Recall
that we represent the sectors using a circular sequence of independent indicator
random variables (1, . . . , (=0 and that, denotes the sum of the lengths of all
success runs spanning more than | sectors, i.e., the sum of all widening sectors.
By Lemma 7.6 we obtain an upper bound on E[,] by choosing

6(=
0
) = ⌘(=) =

21/4 · g3/4 · =
W (=, g) · log(2) (=)1/4 · log(3) (=)1/2

�
1 ± o(1)

�

and it remains to show that this bound holds with su�ciently high probability.
To this end, we aim to apply Lemma 7.7, which states that, = O

�
6(=

0
)
�
holds

with probability 1 � O
�
(=

0
)
�22

�
for any constant 22, if 6(=0) = !

�
|

p
=0 log(=0)

�
.

In the following, we �rst show that ⌘(=) ful�lls this criterion7, before arguing
that we can choose 22 such that 1�O

�
(=

0
)
�22

�
= 1�O

�
=
�21

�
for any constant 21.

Since g = ⇥(1) and =0 = ⇥
�
=/W (=, g)

�
by Lemma 7.3, we can bound ⌘(=) by

⌘(=) = ⇥

=
0

log(2) (=)1/4 log(3) (=)1/2

!

= ⇥

log(2) (=) · =0

log(2) (=)5/4 log(3) (=)1/2

!

= !

log(2) (=)
log(3) (=)

·
=
0

log(2) (=)5/4

!
,

7 Note that since we are interested in runs of strictly more than | sectors, we need to show
6(=

0
) = l ((| + 1)

p
=0 log(=0)). However, it is easy to see that this is implied by showing

6(=
0
) = l (|

p
=0 log(=0)).

148

Approximation Performance Section 7.3

where the last bound is obtained by applying log(3) (=)1/2 = !(1). Recall that |
was chosen as | = 4W (=,g) log(3) (=). Furthermore, we have

W (=, g) = log
�
g log(2) (=)/

�
2 log(3) (=)2

� �
.

Thus, it holds that | = ⇥
�
log(2) (=)/(log(3) (=))

�
, allowing us to further bound

⌘(=) by

⌘(=) = !

|

=
0

log(2) (=)5/4

!

= !
©≠
´
|

s
=0 ·

=0

log(2) (=)5/2
™Æ
¨

= !
©≠
´
|

s
=0 log(=0) ·

=0

log(=0) log(2) (=)5/2
™Æ
¨
.

To �nish the proof, it now remains to show that the last factor in the root is !(1).
Note that =0 = ⌦

�
=/log(3) (=)

�
and =0 = O(=). Consequently, it holds that

=
0

log(=0) log(2) (=)5/2
= ⌦

=

log(=) · log(2) (=)5/2 · log(3) (=)

!

= !

✓
=

log(=)3

◆

= !(1) .

As stated above, we thus have, = O
�
⌘(=)

�
with probability 1 � O

�
(=

0
)
�22

�
for

any constant 22. Again, since =0 = ⌦
�
=/log(3) (=)

�
, we have =0 = ⌦

�
=
1/2� . There-

fore, we can conclude that, = O
�
⌘(=)

�
holds with probability 1 � O

�
=
�22/2

�
.

Choosing 22 = 221 then yields the claim. ⇤

Number of Vertices in Wide Runs. Let W denote the area of the disk
covered by all widening sectors. By Lemma 7.8 the total number of widening
sectors is small, with high probability. As a consequence,W is small as well and
we can derive that the size of the vertex set + (W) containing all vertices in all
widening sectors is sublinear with high probability.

149

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Lemma 7.9. Let ⌧ be a hyperbolic random graph on = vertices. Then, with high
probability, the number of vertices in wide runs is bounded by

��+ (W)
�� = O

g
3/4

· =

log(2) (=)1/4 · log(3) (=)1/2

!
.

Proof. We start by computing the expected number of vertices in W and show
concentration afterwards. The probability for a given vertex to fall into W is
equal to its measure ` (W). Since the angular coordinates of the vertices are
distributed uniformly at random, we have ` (W) =, /=

0, where, denotes the
number of widening sectors and =0 is the total number of sectors, which is given
by Lemma 7.3. The expected number of vertices inW is then

E

h��+ (W)
��i = =` (W) = =

,

=0
=
1
2
, · W (=, g)

�
1 ± o(1)

�
, (7.2)

where the last equality holds since 1/(1 + G) = 1 � ⇥(G) is valid for G = ±o(1),
see Lemma 2.11. Note that the number of widening sectors, is itself a random
variable. Therefore, we apply the law of total expectation and consider di�erent
outcomes of, weighted with their probabilities. Motivated by the previously
determined probabilistic bound on , (Lemma 7.8), we consider the events
,  6(=) and, > 6(=), where

6(=) =
2 · g

3/4
· =

W (=, g) · log(2) (=)1/4 · log(3) (=)1/2
,

for su�ciently large 2 > 0 and =. With this, we can compute the expected
number of vertices inW as

E

h��+ (W)
��i = E

h��+ (W)
�� ���,  6(=)

i
· Pr

⇥
,  6(=)

⇤
+

E

h��+ (W)
�� ���, > 6(=)

i
· Pr

⇥
, > 6(=)

⇤
.

To bound the �rst summand, note that Pr
⇥
,  6(=)

⇤
 1. Further, by applying

Equation (7.2) from above, we have

E

h��+ (W)
�� ���,  6(=)

i
· Pr

⇥
,  6(=)

⇤


1
2
6(=) · W (=, g)

�
1 ± o(1)

�
.

150

Approximation Performance Section 7.3

In order to bound the second summand, note that = is an obvious upper bound
on E

⇥
|+ (W)|

⇤
. Moreover, by Lemma 7.8 it holds that Pr

⇥
, > 6(=)

⇤
= O

�
=
�21

�
for any 21 > 0. As a result we have

E

h��+ (W)
�� ���, > 6(=)

i
· Pr

⇥
, > 6(=)

⇤
 = · Pr

⇥
, > 6(=)

⇤
= O

⇣
=
�21+1

⌘
,

for any 21 > 0. Clearly, the �rst summand dominates the second and we can
conclude that E

⇥
|+ (W)|

⇤
= O

�
6(=)W (=, g)

�
. Consequently, for large enough =,

there exists a constant 22 > 0 such that 6̂(=) = 226(=)W (=, g) is a valid upper
bound on E

⇥
|+ (W)|

⇤
. This allows us to apply the Cherno� bound in Corol-

lary 2.2 to bound the probability that |+ (W)| exceeds 6̂(=) by more than a
constant factor as

Pr
h��+ (W)

�� � (1 + Y)6̂(=)
i
 4

�Y
2
/3 · 6̂ (=)

.

Finally, since 6̂(=) can be simpli�ed as

6̂(=) = 22 ·
2 · g

3/4
· =

log(2) (=)1/4 · log(3) (=)1/2
,

it is easy to see that 6̂(=) = !
�
log(=)

�
and, therefore, |+ (W)| = O

�
6̂(=)

�
holds

with probability 1 � O
�
=
�23

�
for any 23 > 0. ⇤

Narrow Runs

It remains to bound the number of vertices in large components contained in
narrow runs. In the following, we di�erentiate between small and large narrow
runs, containing at most and more than g log log(=) vertices, respectively. To
obtain an upper bound on the number # of vertices in all large narrow runs, we
determine the areaN of the disk that is covered by them. We start by computing
the expected number of vertices contained in a single narrow run from which
we can derive that the probability for a narrow run to be large is low.

Expected Number of Vertices in Large Narrow Runs. The following
lemma bounds the expected number of vertices in a given narrow run R.

Lemma 7.10. Let ⌧ be a hyperbolic random graph on = vertices and let R be a
narrow run. Then, E

⇥
|+ (R)|

⇤
 1/2 · 4W (=,g) log(3) (=)W (=, g)

�
1 ± o(1)

�
.

151

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Proof. A narrow run consists of at most | = 4W (=,g) log(3) (=) sectors. Since the
angular coordinates of the vertices are distributed uniformly at random and since
we partitioned the disk into =0 disjoint sectors of equal width, we can derive an
upper bound on the expected number of vertices in R as E

⇥
|+ (R)|

⇤
 =|/=

0.
As =0 = 2=/W (=, g) ·

�
1 ± o(1)

�
according to Lemma 7.3, we have

E

h��+ (R)
��i  1/2 · 4W (=,g) log(3) (=)W (=, g)

�
1 ± o(1)

��1
.

Since 1/(1 + G) = 1 � ⇥(G) for G = ±o(1), due to Lemma 2.11, we obtain the
claimed bound. ⇤

Using this upper bound, we can bound the probability that the number of
vertices in a narrow run exceeds the threshold g log log(=) by a certain amount.

Lemma 7.11. Let ⌧ be a hyperbolic random graph on = vertices and let R be a
narrow run. For : > g log log(=) and = large enough, it holds that

Pr
h��+ (R)

�� = :i  4
�:/18

.

Proof. First note that Pr
⇥
|+ (R)| = :

⇤
 Pr

⇥
|+ (R)| � :

⇤
. To show that this

probability is small, we apply the Cherno� bound in Corollary 2.2, stating that

Pr
h��+ (R)

�� � (1 + Y)6(=)
i
 4

�Y
2
/3 · 6 (=)

holds for any Y 2 (0, 1), if 6(=) is an upper bound on E
⇥
|+ (R)|

⇤
. To this end, we

set 6(=) = 1/(1+Y) ·: . To show that this is a valid choice, we can use Lemma 7.10
and substitute W (=, g) = log(g log(2) (=)/(2 log(3) (=)2)), which yields

E

h��+ (R)
��i 

1
2
4
W (=,g) log(3) (=)W (=, g)

�
1 ± o(1)

�

=
g log(2) (=)
4 log(3) (=)2

· log(3) (=) · log

g log(2) (=)
2 log(3) (=)2

! �
1 ± o(1)

�

=
g log(2) (=)
4 log(3) (=)

·

✓
log(3) (=) �

⇣
2 log(4) (=) � log(g/2)

⌘◆ �
1 ± o(1)

�

=
1
4
· g log(2) (=) ·

1 �

2 log(4) (=) � log(g/2)
log(3) (=)

! �
1 ± o(1)

�
.

152

Approximation Performance Section 7.3

Note, that the �rst error term is equivalent to
�
1 � o(1)

�
and that for large

enough =, we have
�
1 ± o(1)

�
 2. Consequently, for su�ciently large =, we

obtain E
⇥
|+ (R)|

⇤
 1/2 · g log(2) (=). Since : > g log log(=), it follows that

6(=) = 1/(1 + Y) · : is a valid upper bound on E
⇥
|+ (R)|

⇤
for any Y 2 (0, 1).

Therefore, we can apply the Cherno� bound in Corollary 2.2 to conclude that

Pr
h��+ (R)

�� � :i  4
�Y

2
/3 · 6 (=)

= 4�Y
2
/(3(1+Y)) · :

.

Choosing Y = 1/2 then yields the claim. ⇤

We can now bound the expected number of vertices in all large narrow runs.

Lemma 7.12. Let⌧ be a hyperbolic random graph on= vertices. Then, the expected
number of vertices in all large narrow runs is bounded by

E[#] = O

g · = · log(2) (=)
W (=, g) log(=)g/18

!
.

Proof. Let =00 denote the total number of narrow runs. We can compute the
number of vertices in all large narrow runs, by summing over all narrow runs
R1, . . . ,R=00 and discarding the ones that are not large. That is,

=
=
00’

8=1

��+ (R8)
�� ·

|+ (R8) |>g log(2) (=) .

Consequently, the expected value of # is given by

E[#] =
=
00’

8=1
E

h��+ (R8)
�� ·

|+ (R8) |>g log(2) (=)

i

=
=
00’

8=1

=’
:=g log(2) (=)+1

: · Pr
h��+ (R8)

�� = :i .

Using Lemma 7.11, we can now obtain a valid upper bound on Pr
⇥
|+ (R8) | = :

⇤
for all 8 2 [=

00
]. Furthermore, the number of narrow runs =00 is bounded by the

153

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Si

ww

Figure 7.4: The random variable (8 indicates whether S8 contains any vertices. Chang-
ing (8 from 0 to 1 or vice versa merges two narrow runs or splits a wide run into two
narrow ones, respectively. If all vertices were placed in the blue area, moving a single
vertex in or out of S8 may change the number of vertices in large narrow runs by =.

number of sectors =0. Therefore, we obtain

E[#]  =
0

=’
:=g log(2) (=)+1

: · 4
�:/18

.

To get an upper bound, we replace the sum with an integral, which yields

E[#]  =
0

π
=

g log(2) (=)
:4

�
:
18 d:

 =
0
⇥
184�g/18 log

(2)
(=)

(g log(2) (=) + 18) � 184�=/18(= + 18)
⇤

 18=0 ·
g log(2) (=) + 18

log(=)g/18
,

where the last inequality holds since 4�=/18(= + 18) � 0. Finally, substituting
=
0 = 2=/W (=, g) (1±> (1)) (Lemma 7.3) andmore simpli�cation yield the claim. ⇤

Concentration for the Number of Vertices in Large Narrow Runs. To
show that the actual number of vertices in large narrow runs# is not much larger
than the expected value, we consider # as a function of = independent random

154

Approximation Performance Section 7.3

variables %1, . . . , %= representing the positions of the vertices in the hyperbolic
disk. In order to show that # does not deviate much from its expected value
with high probability, we would like to apply the method of bounded di�erences,
which builds on the fact that # satis�es the bounded di�erences condition,
i.e., that changing the position of a single vertex does not change # by much.
Unfortunately, this change is not small in general.

In the worst case, there is a wide run R that contains all vertices and a sector
S8 ✓ R contains only one of them. Moving this vertex out of S8 may split the
run into two narrow runs (see Figure 7.4). These still contain = vertices, which
corresponds to the change in # . However, this means that R consists of only
few sectors (since it can be split into two narrow runs) and that all vertices lie
within the corresponding (small) area of the disk. Since the vertices of the graph
are distributed uniformly, this is very unlikely. To take advantage of this, we
apply the method of typical bounded di�erences (see Section 2.2.3), which allows
us to milden the e�ects of the change in the unlikely worst case and to focus
on the typically smaller change of # instead. Formally, we represent the typical
case using an event� denoting that each run of length at most 2| + 1 contains at
most O

�
log(=)

�
vertices. We now show that� occurs with probability 1�O

�
=
�2

�
for any constant 2 , which proves that the atypical case is very unlikely.

Lemma 7.13. Let ⌧ be a hyperbolic random graph. Then, each run of length at
most 2| + 1 contains at most O

�
log(=)

�
vertices with probability 1 � O

�
=
�2

�
for

any constant 2 .

Proof. We show that the probability for a single run R of at most 2|+1 sectors to
contain more then O

�
log(=)

�
vertices is O

�
=
�21

�
for any constant 21. Since there

are at most =0 = O(=) runs, applying the union bound and choosing 21 = 2 + 1
then yields the claim.

Recall that we divided the disk into =0 sectors of equal width. Since the angular
coordinates of the vertices are distributed uniformly at random, the probability
for a given vertex to a lie in R is given by

` (R) 
2| + 1
=0

=
24W (=,g) log(3) (=) + 1

=0
.

By Lemma 7.3 the total number of sectors is given as =0 = 2=/W (=, g) ·
�
1 ± o(1)

�
.

155

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Consequently, we can compute the expected number of vertices in R as

E

h��+ (R)
��i  =` (R)

=
⇣
4
W (=,g) log(3) (=) + 1/2

⌘
W (=, g)

�
1 ± o(1)

�
.

Substituting W (=, g) = O
�
log(log(2) (=)/log(3) (=)2)

�
, we can derive that

E

h��+ (R)
��i  O©≠

´
log(2) (=)
log(3) (=)2

log(3) (=) · log

log(2) (=)
log(3) (=)2

!™Æ
¨

= O
⇣
log(2) (=)

⌘
.

Consequently, it holds that 6(=) = 22 log(=) is a valid upper bound for any 22 > 0
and large enough =. Therefore, we can apply the Cherno� bound in Corollary 2.2
to conclude that the probability for the number of vertices in R to exceed 6(=)
is at most

Pr
h��+ (R)

�� � (1 + Y)6(=)
i
 4

�Y
2
/3 · 6 (=)

= =�22Y
2
/3
.

As a consequence, 22 can be chosen su�ciently large such that we obtain
Pr

⇥
|+ (R)| � (1 + Y)6(=)

⇤
= O(=

�21) for any constant 21. ⇤

The method of typical bounded di�erences now allows us to focus on this
case and to milden the impact of the worst case changes as they occur with small
probability. Consequently, we can show that the number of vertices in large
narrow runs is sublinear with high probability.

Lemma 7.14. Let ⌧ be a hyperbolic random graph on = vertices. Then, with high
probability, the number of vertices in large narrow runs is bounded by

= O

g · = · log(2) (=)
W (=, g) log(=)g/18

!
.

Proof. Recall that the expected number of vertices in all large narrow runs is
given by Lemma 7.12. Consequently, we can choose 2 > 0 large enough, such

156

Approximation Performance Section 7.3

that for su�ciently large = we obtain a valid upper bound on E[#] by choosing

6(=) =
2 · g · = · log(2) (=)
W (=, g) log(=)g/18

.

In order to show that # does not exceed 6(=) by more than a constant factor
with high probability, we apply the method of typical bounded di�erences
(Corollary 2.8). To this end, we consider the typical event �, denoting that
each run of at most 2| + 1 sectors contains at most O

�
log(=)

�
vertices, and it

remains to determine the parameters J�

8
 J8 with which # satis�es the typical

bounded di�erences condition with respect to � (see Equation (2.3)). Formally,
we have to show that for all 8 2 [=]

��# (%1, . . . , %8 , . . . , %=) � # (%1, . . . , %
0

8
, . . . , %=)

�� 
(
J
�

8
, if (%1, . . . , %8 , . . . , %=) 2 �,

J8 , otherwise.

As argued before, changing the position %8 of vertex 8 to % 08 may result in a change
of = in the worst case. Therefore, J8 = = is a valid bound for all 8 2 [=]. To
bound the J�

8
, we have to consider the following situation. We start with a set of

positions such that all runs of 2| + 1 sectors contain at most O
�
log(=)

�
vertices

and we want to bound the change in # when changing the position %8 of a single
vertex 8 . In this case, splitting a wide run or merging two narrow runs can only
change # by O

�
log(=)

�
. Consequently, we can choose J�

8
= O

�
log(=)

�
for all

8 2 [=]. By Corollary 2.8 we can now bound the probability that # exceeds 6(=)
by more than a constant factor 21 as

Pr
⇥
> 216(=)

⇤
 4

� ((21�1)6 (=))2/(2J)
+ Pr[¬�] ·

’
82 [=]

1
Y8

,

for any Y1, . . . , Y= 2 (0, 1] and J =
Õ

82 [=] (J
�

8
+Y8 (J8 �J

�

8
))

2. By substituting the
previously determined J�

8
and J8 , as well as, choosing Y8 = 1/= for all 8 2 [=],

we obtain

J = O
⇣
= ·

�
log(=) + 1/= · (= � log(=))

�2⌘ = O
⇣
= · log(=)2

⌘
.

157

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Thus,

Pr
⇥
> 216(=)

⇤

 exp
©≠≠
´
�⇥

©≠
´
=
2
·

log(2) (=)

W (=, g) log(=)g/18

!2™Æ
¨
·

1
O
�
= log(=)2

� ™ÆÆ
¨
+ Pr[¬�] ·

’
82 [=]

1
Y8

= exp
©≠≠
´
�⌦

©≠
´
= ·

log(2) (=)

W (=, g) log(=)1+g/18

!2™Æ
¨
™ÆÆ
¨
+ Pr[¬�] ·

’
82 [=]

1
Y8

= exp
©≠≠
´
�⌦

©≠
´
= ·

log(2) (=)

log(3) (=) log(=)1+g/18

!2™Æ
¨
™ÆÆ
¨
+ Pr[¬�] ·

’
82 [=]

1
Y8

,

where the last equality holds, sinceW (=, g) = O
�
log(3) (=)

�
. By further simplifying

the exponent, we can derive that the �rst part of the sum is exp
�
�!

�
log(=)

� �
. It

follows that

Pr
⇥
> 216(=)

⇤
 =

�22 + Pr[¬�] ·
’
82 [=]

1
Y8

holds for any 22 > 0 and su�ciently large =. It remains to bound the second part
of the sum. Since Y8 = 1/= for all 8 2 [=], we have

Pr[¬�]
’
82 [=]

1
Y8

= Pr[¬�] · =2.

By Lemma 7.13 it holds that Pr[¬�] = O
�
=
�23

�
for any 23. Consequently, we can

choose 23 such that Pr[¬�] · =2 = O
�
=
� (23�2)

�
for any 23, which concludes the

proof. ⇤

7.3.3 The Complete Disk

In the previous subsections we determined the number of vertices that are
greedily added to the vertex cover in the inner disk and outer band, respectively.
Before proving our main theorem, we are now ready to prove a slightly stronger

158

Approximation Performance Section 7.3

version that shows how the parameter g can be used to obtain a trade-o� between
approximation performance and running time.

Theorem 7.15. Let⌧ be a hyperbolic random graph on = vertices with power-law
exponent V = 2U + 1 and let g > 0 be constant. Given the radii of the vertices, an
approximate vertex cover of ⌧ can be computed in time O

�
= log(=) +< log(=)g

�
,

such that the approximation factor is
�
1 + O

�
W (=, g)

�U
� �

asymptotically almost
surely.

Proof. Running Time. We start by sorting the vertices of the graph in order of
increasing radius, which can be done in time O

�
= log(=)

�
. Afterwards, we iterate

them and perform the following steps for each encountered vertex {. We add {
to the cover, remove it from the graph, and identify connected components of
size at most g log log(=) that were separated by the removal. The �rst two steps
can be performed in time O(1) and O

�
deg({)

�
, respectively. Identifying and

solving small components is more involved. Removing { can split the graph
into at most deg({) components, each containing a neighbor D of {. Such a
component can be identi�ed by performing a breadth-�rst search (BFS) starting
at D. Each BFS can be stopped as soon as it encounters more than g log log(=)
vertices. The corresponding subgraph contains at most (g log log(=))2 edges.
Therefore, a single BFS takes time O

�
log log(=)2

�
. Whenever a component of

size at most =2 = g log log(=) is found, we compute a minimum vertex cover for
it in time 1.1996=2 · =O(1)

2 [XN17]. Since =O(1)
2 = O

�
(4/1.1996)=2

�
, this running

time is bounded by O
�
4
=2
�
= O

�
log(=)g

�
. Consequently, the time required to

process each neighbor of { is O
�
log(=)g

�
. Since this is potentially performed

for all neighbors of {, the running time of this third step can be bounded by
introducing an additional factor of deg({). We then obtain the total running
time) (=,<, g) of the algorithm by taking the time for the initial sorting and
adding the sum of the running times of the above three steps over all vertices,
which yields

) (=,<, g) = O
�
= log(=)

�
+

’
{2+

O(1) + O
�
deg({)

�
+ deg({) · O

�
log(=)g

�

= O
�
= log(=)

�
+ O©≠

´
log(=)g ·

’
{2+

deg({)™Æ
¨

= O
�
= log(=) +< log(=)g

�
.

159

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

Approximation Ratio. As argued before, we obtain a valid vertex cover for the
whole graph, if we take all vertices in +Greedy together with a vertex cover ⇠Exact
of ⌧ [+Exact]. The approximation ratio of the resulting cover is then given by the
quotient

b =
|+Greedy | + |⇠Exact |

|⇠OPT |
,

where ⇠OPT denotes an optimal solution. Since all components in ⌧ [+Exact] are
solved optimally and since any minimum vertex cover for the whole graph
induces a vertex cover on ⌧ [+

0
] for any vertex subset + 0

✓ + , it holds that
|⇠Exact |  |⇠OPT |. Therefore, the approximation ratio can be bounded by

b  1 +
|+Greedy |

|⇠OPT |
.

To bound the number of vertices in +Greedy, we add the number of vertices in
the inner disk Dd , as well as the numbers of vertices in the outer band that are
contained in the area W that is covered by wide runs and the area N that is
covered by large narrow runs. That is,

b  1 +

��+ �
Dd

� �� + ��+ �
W

� �� + ��+ �
N

� ��
|⇠$%) |

.

Upper bounds on |+ (Dd) |, |+ (W)|, and |+ (N)| that hold with high probability
are given by Lemmas 7.2, 7.9 and 7.14, respectively. Furthermore, it was previ-
ously shown that the size of a minimum vertex cover on a hyperbolic random
graph is |⇠$%) | = ⌦(=), asymptotically almost surely [CFR16, Theorems 4.10
and 5.8]. We obtain

b = 1 + O©≠
´
1
=

=

W (=, g)U
+

g
3/4

· =

log(2) (=)1/4 · log(3) (=)1/2
+
g · = · log(2) (=)
W (=, g) log(=)g/18

!™Æ
¨

= 1 + O

1

W (=, g)U
+

g
3/4

log(2) (=)1/4 · log(3) (=)1/2
+

g · log(2) (=)
W (=, g) log(=)g/18

!
.

Since W (=, g) = O
�
log(3) (=)

�
, the �rst summand dominates asymptotically. ⇤

160

Empirical Evaluation Section 7.4

We are now ready to prove our main theorem in this chapter, which we restate
for the sake of readability.

Theorem 7.1. Let⌧ be the giant component of a hyperbolic random graph. Given
the radii of the vertices, an approximate vertex cover of ⌧ can be computed in
time O

�
< log(=)

�
, such that the approximation ratio is

�
1 + o(1)

�
asymptotically

almost surely.

Proof. By Theorem 7.15 we can compute an approximate vertex cover in time
O
�
= log(=) +< log(=)g

�
, such that the approximation factor is 1 + O

�
W (=, g)

�U
�
,

asymptotically almost surely. By choosing g = 1 we get W (=, 1) = !(1), which
yields an approximation factor of

�
1 + o(1)

�
, since U 2 (1/2, 1). Additionally,

the bound on the running time can be simpli�ed to O
�
= log(=) +< log(=)

�
. The

claim then follows since we assume the graph to be connected, which implies
that the number of edges is< = ⌦(=). ⇤

7.4 Empirical Evaluation

It remains to evaluate how well the predictions of our analysis on hyperbolic
random graphs translate to real-world networks. According to themodel, vertices
near the center of the disk can likely be added to the vertex cover safely, while
vertices near the boundary need to be treated more carefully (see Section 7.2).
Moreover, it predicts that these boundary vertices can be found by identifying
small components that are separated when removing vertices near the center.
Due to the correlation between the radii of the vertices and their degrees, as
explained in Section 3.3.3, this points to a natural extension of the standard
greedy approach: While iteratively adding the vertex with the largest degree to
the cover, small separated components are solved optimally. To evaluate how
this approach compares to the standard greedy algorithm, we measured the
approximation ratios on the largest connected component of a selection of 42
real-world networks from several network datasets [Kun13; RA15]. The results
of our empirical analysis are summarized in Figure 7.5.
Our experiments con�rm that the standard greedy approach already yields

close to optimal approximation ratios on all networks, as it has been observed
previously [SGS13]. In fact, the “worst” approximation ratio is only 1.049 for the
network dblp-cite. The average lies at just 1.009.

161

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

1.049

1.044
dblp-cite

petster-friendships-hamster
p2p-Gnutella31

livemocha
petster-friendships-dog

c�nder-google
hyves

bn-�y-drosophila-medulla-1
advogato

bio-DM-HT
loc-gowalla

citeseer
loc-brightkite

petster-friendships-cat
digg-friends

petster-carnivore
bio-CE-HT

moreno-propro
bio-yeast-protein-inter

web-Google
as-skitter

com-amazon
moreno-names
ca-cit-HepPh
ca-cit-HepTh

�ixster
soc-Epinions1

youtube-u-growth
com-youtube
youtube-links

wordnet-words
ca-AstroPh
as-22july06
com-dblp
topology

ego-facebook
bn-mouse-kasthuri-graph-v4

ego-gplus
as-caida20071105

bio-CE-LC
munmun-twitter-social

as20000102

1.000 1.005 1.010 1.015 1.020
Approximation Ratio

N
et
w
or
k

Approximation Algorithm Standard Improved

Figure 7.5: Approximation ratios obtained using the standard greedy approach (blue)
and our improved version (red) on a selection of real-world networks. The parameter
adjusting the component size threshold was chosen as g = 10. For the sake of readability
the bars denoting the ratios for the dblp-cite network were cropped and the actual
values written next to them.

162

Empirical Evaluation Section 7.4

Clearly, our adapted greedy approach performs at least as well as the standard
greedy algorithm. In fact, for g = 1 the sizes of the components that are solved
optimally on the considered networks are at most 3. For components of this size
the standard greedy approach performs optimally. Therefore, the approxima-
tion performances of the standard and the adapted greedy match in this case.
However, the adapted greedy algorithm allows for improving the approximation
ratio by increasing the size of the components that are solved optimally. In our
experiments, we chose 10dlog log(=)e as the component size threshold, which
corresponds to setting g = 10. The resulting impact can be seen in Figure 7.6,
which shows the error of the adapted greedy compared to the one of the standard
greedy algorithm. This relative error is measured as the fraction of the number
of vertices by which the adapted greedy and the standard approach exceed an
optimum solution. That is, a relative error of 0.5 indicates that the adapted
greedy halved the number of vertices by which the solution of the standard
greedy exceeded an optimum. Moreover, a relative error of 0 indicates that
the adapted greedy found an optimum when the standard greedy did not. The
relative error is omitted if the standard greedy already found an optimum, i.e.,
there was no error to improve on. For more than 69% of the considered networks
(29 out of 42) the relative error is at most 0.5 and the average relative error is 0.39.
Since the behavior of the two algorithms only di�ers when it comes to small
separated components, this indicates that the predictions of the model that led
to the improvement of the standard greedy approach do translate to real-world
networks. In fact, the average approximation ratio obtained using the standard
greedy algorithm is reduced from 1.009 to 1.004 when using the adapted greedy
approach.

163

Chapter 7 Approximate Vertex Cover in Hyperbolic Random Graphs

ego-facebook
ego-gplus

munmun-twitter-social
hyves

c�nder-google
p2p-Gnutella31

dblp-cite
�ixster

petster-friendships-hamster
petster-friendships-dog
petster-friendships-cat

petster-carnivore
advogato

bio-yeast-protein-inter
livemocha

digg-friends
bn-�y-drosophila-medulla-1

ca-cit-HepTh
ca-cit-HepPh
loc-gowalla

moreno-propro
citeseer

loc-brightkite
bio-DM-HT
web-Google
as-22july06
ca-AstroPh

moreno-names
as-skitter

wordnet-words
soc-Epinions1

bio-CE-HT
com-amazon
youtube-links
com-youtube

youtube-u-growth
com-dblp
topology

as-caida20071105
as20000102
bio-CE-LC

bn-mouse-kasthuri-graph-v4

0.00 0.25 0.50 0.75 1.00
Relative Error

N
et
w
or
k

Figure 7.6: Relative error of the improved greedy compared to the standard approach.
The parameter adjusting the component size threshold was chosen as g = 10. Gray
bars indicate that no error could be determined since the standard approach found an
optimum already.

164

8 Conclusions and Outlook

Throughout the thesis, we have examined algorithms on networks that feature
an underlying hyperbolic geometry. To this end, we �rst introduced strongly
hyperbolic unit disk graphs as a subclass of hyperbolic unit disk graphs and
identi�ed the commonly used version of hyperbolic random graphs as a special
case thereof. We then analyzed algorithmic solutions to several fundamental
problems in graph theory, including routing, path �nding, and the vertex cover
problem. For each of them, empirical observations have shown that solutions
can often be obtained much more e�ciently than one would expect in the worst
case, which indicates that real networks are inherently di�erent from worst-case
instances with respect to certain properties. By analyzing networks through
the lens of hyperbolic geometry, we captured these properties and were able to
reduce the gap between observed performance and worst-case bounds for all
considered problems.

Naturally, all our analyses exploited the underlying geometry. To this end,
we discretized the considered hyperbolic disk using various geometric shapes
such as sectors and annuli (i.e., bands). Most commonly, distinguishing between
an inner region of the disk and an outer one, in order to consider high-degree
vertices and ones with smaller degree separately proved to be of essence. In
combination with stochastic tools, in particular certain concentration bounds like
the method of typically bounded di�erences, and the use of a poissonized version
of hyperbolic random graphs, this allowed us to uncover interesting properties
of the model, which can be exploited algorithmically. These include a bound on
the size of the 2-neighborhood of a vertex, i.e., the number of vertices at distance
two from it, which we then utilized to bound the number of edges explored in
a breadth-�rst search (see Chapter 5). Moreover, we showed that high-degree
vertices are likely to dominate other vertices, i.e., they are neighbors to them
and all their neighbors, and proved that removing high-degree vertices from
a hyperbolic random graph yields a remainder of small pathwidth. Combined,
both properties build the foundation of the proof that optimal vertex covers can
be obtained in polynomial time on such graphs (see Chapter 6). Additionally,

165

Chapter 8 Conclusions and Outlook

when removing more vertices, hyperbolic random graphs are decomposed into
small components, which we utilized in the proof that a good vertex cover
approximation can be computed e�ciently on such graphs (see Chapter 7). Our
empirical evaluations on real-world networks then gave evidence that these
properties can also be observed in practice.

In conclusion, by utilizing networks with an underlying hyperbolic geometry,
we were able

• to understand and explain prior empirical observations from a theoretical
point of view,

• to derive network properties, which we then also observed in real-world
networks, and

• to utilize these insights in order to improve an existing algorithm, which
lead to a performance gain in practice.

This shows that exploiting the connection between complex real-world networks
and hyperbolic geometry yields a powerful tool in the context of average-case
analysis.
To further utilize this connection, our research could be extended in sev-

eral ways that basically involve three general approaches: further algorithmic
analyses, improving the framework, and utilizing hyperbolic geometry in other
contexts.

Further Algorithmic Analyses. While we have demonstrated how to make
use of the underlying hyperbolic geometry in several algorithmic analyses in
the context of routing, path �nding, and the famous vertex cover problem, an
obvious question is whether the approach can be applied to other problems as
well. An example would be the graph reconstruction problem. There, we are
given the vertex set of a graph, but are missing the information about the edges.
Instead, there is some kind of oracle that can be queried to obtain information
about the topology of the network. The goal then is to uncover the edge set of
the graph by using the oracle e�ciently. An exemplary real-world application
is the internet, which is a decentralized network, meaning there is no single
instance that knows the whole graph at a given point in time. Therefore, graph
reconstruction approaches are applied to get an understanding of its structure.
In recent work, a simple algorithm was developed that solves the problem on

166

Conclusions and Outlook Chapter 8

random 3-regular graphs (every vertex has the same degree 3), requiring only
few queries to the oracle [MZ21]. Since the algorithm exploits the locally tree-
like property of such networks, the authors conjecture that the method is also
applicable on scale-free graphs. In particular, investigating the performance of
their approach (and the graph reconstruction problem in general) on hyperbolic
random graphs may yield insights that translate to the key application of the
problem on the internet, as prior work has shown that the internet �ts well into
hyperbolic space [BPK10].
Additionally, it would be interesting to study algorithms for computing the

diameter of a network, which are often based on breadth-�rst searches (as studied
in Chapter 5) and observed to work well in practice [Cre+10]. Moreover, recent
results in the context of �nding the connected components in a graph [Bro+21], as
well as an empirical study of heuristics for the vertex connectivity problem [FY21]
further motivate the analysis of algorithms on hyperbolic random graphs to
theoretically explain good performance on real-world networks.

Improving the Framework. As we have seen, network models with under-
lying hyperbolic geometry yield good representations of real-world networks.
However, the real world is typically rather noisy and does not perfectly match
the rules that are used to generate hyperbolic random graphs. To accommodate
for this, hyperbolic random graphs have also been studied in a noisy setting
where, with some small probability, distant vertices are connected and close
vertices are not connected [Kri+10]. Similarly, the hyperbolic unit disk graph
variant of Kisfaludi-Bak [Kis20] is also studied in a noisy version. Consequently,
it would be interesting to also study (strongly) hyperbolic unit disk graphs in a
noisy variant. To the best of our knowledge, algorithmic results in noisy versions
of these models have not been obtained so far. However, a promising approach
was proposed in the context of Boolean satis�ability [Blä+21b]. There, the au-
thors propose a model for generating formulas with an underlying geometry,
which they also study in a noisy setting. More precisely, the building blocks of a
formula, variables and clauses, are mapped into a geometric space and then vari-
ables are assigned to clauses if their distance is su�ciently small. The introduced
noise then allows for assignments where the distances are large, or inhibits
assignment, even if the distance is small. Their analysis of the model builds on
the concept of nice clauses, i.e., clauses where the assignment turned out just as
it would have in a non-noisy setting. In a similar fashion, one could consider

167

Chapter 8 Conclusions and Outlook

nice vertices in noisy variants of network models with underlying hyperbolic
geometry. These are vertices whose neighborhood is the same as it would have
been in the non-noisy setting. If the noise is not too large, i.e., if there are su�-
ciently many nice vertices, the properties we utilized in the analyses throughout
the thesis may then still hold. For example, in the vertex cover problem, a vertex
needs to dominate only one other vertex in order to be eligible for removal by
the reduction rule. Thus, even if the majority of the vertices are not nice, it
su�ces if high-degree vertices are and have at least one nice neighbor in their
dominance area.
In addition to the noisy variant of the model, other extensions may be of

interest. Recent work has started looking into a weighted version of hyperbolic
random graphs [KL20], and while the current model uses the two-dimensional
hyperbolic plane as the underlying space, there are adaptations that extend to
higher dimensions [YR20]. In particular, the geometric inhomogeneous random
graph (GIRG)model seems to be a very approachable generalization of hyperbolic
random graphs that easily generalizes to higher dimensionality [BKL19].

Utilizing Hyperbolic Geometry in Other Contexts. While de�ning the
model using two-dimensional hyperbolic space yields several advantages, such
as the mathematical accessibility and the ability to visualize the graphs, it is ques-
tionable whether the intrinsic dimensionality of complex real-world networks is
always this low. In fact, when researching the connection between networks
and an underlying hyperbolic geometry in the context of deep learning, recent
work suggests that data often �ts better in higher dimensions (in the order of
10 to more than 100) [Pen+21]. This leaves a huge gap in our understanding.
Investigating this discrepancy may help in improving our tools in order to obtain
even better representations of real-world networks. The idea of researching the
dimensionality of a graph is not new (see, e.g., [EHT65]). However, prior work
has mainly focused on the network dimension in Euclidean geometry [KL07;
RRŠ89]. There, one way to empirically measure the dimensionality of a graph
would be to perform several breadth-�rst searches and to observe how the size
of the search space grows with each step. In a Euclidean random graph, where
vertices are distributed uniformly in the hypercube [0, 1]3 , one would expect that
this growth roughly matches how the volume of a 3-ball grows with increasing
radius. In hyperbolic geometry, a similar approach may face di�culties due to
the heterogeneity of the networks and the exponential expansion of hyperbolic

168

Conclusions and Outlook Chapter 8

space. Performing a breadth-�rst search from a high-degree vertex behaves
rather di�erently compared to starting from a vertex with small degree. Addi-
tionally, since the diameter of such networks is typically small (e.g., logarithmic),
the whole graph is explored in only very few steps, potentially making it di�cult
to distinguish between di�erent exponentially growing functions. However, on
the examined networks it may su�ce to only consider lower-degree vertices. As
we have seen in Chapter 6, removing high-degree vertices leaves a remainder
with a path-like structure. We conjecture that this extends to grid-like structures
of higher dimensionality, when considering hyperbolic random graphs in higher
dimensions. In that case we may still be able to measure the network dimension
by constraining the breadth-�rst searches to the low-degree portions of the
graph.

Another approach to measuring the dimensionality of a network are embed-
dings. There, the idea is to map the vertices of a graph into some metric space,
such that the distances in the graph are re�ected by the distances in the metric.
A prominent example is the embedding of an internet topology into the hyper-
bolic plane [BPK10]. Moreover, being of fundamental interest in the �eld of
knowledge representation, the problem has gained a lot of attention in the deep
learning community [Pen+21]. For hyperbolic random graphs, several embed-
ding algorithms have been proposed [AMA16; Blä+16; Mus+17; PAK15; PPK15]
and we have previously shown that the well-known and versatile force-directed
embedding approach can be adapted to work in hyperbolic space [BFK21b].
While this technique can be easily extended to work in higher dimensions, the
standard approach is inherently slow, requiring further extensions to improve its
running time. On the other hand, a maximum likelihood embedder has proven
to be very e�cient in computing good embeddings of large networks in the two-
dimensional hyperbolic plane [Blä+16]. Extending such a performant embedder
to work in higher dimensions may allow for embedding a given network into
spaces of increasing dimensionality, until further increases do not improve the
quality of the embedding signi�cantly, which indicates that this is the smallest
dimension that the network �ts in well.

Finally, we can extend the hyperbolic random graph model to produce other
kinds of networks, like trees. Insights in the context of epidemiology suggest
that infections in a network spread heterogeneously, in the sense that there
are a few super spreaders (i.e., high-degree vertices) that are responsible for
the vast majority of all infections [GM05]. Consequently, having a model that

169

produces heterogeneous trees may provide useful to represent and analyze
epidemiologic transmission trees [HWR16]. Following the success of utilizing
hyperbolic geometry to represent real-world networks, in such a model we may
start with a hyperbolic random graph, weight the edges using the hyperbolic
distances between the vertices, and obtain a tree by removing edges such that
the sum of the edge weights is minimized. Alternatively, instead of starting
with containing all edges whose length is below a certain threshold, one could
consider the complete graph on the sampled point set and reduce the edge set in
the same way. This would yield a random version of the hyperbolic equivalent to
Euclidean minimum spanning trees (see, e.g., [SH75]). An e�cient algorithm for
the generation of such trees consists of computing the Delaunay triangulation of
the points, which reduces the size of the relevant edge set from quadratic to linear,
and subsequently applying a minimum-spanning-tree algorithm to obtain the
desired graph. Unfortunately, the polar-coordinate model of the hyperbolic plane
is not as well suited for geometric applications as other models and conversion
between di�erent representations of hyperbolic space can lead to numerical
issues. However, our preliminary work shows that the Voronoi diagram, i.e., the
dual graph of the Delaunay triangulation, can be computed natively in the polar-
coordinate model [FKS21]. Furthermore, preliminary experiments indicate that
the trees computed this way do feature a power-law degree distribution and we
believe that further theoretical and empirical analyses may prove worthwhile.

170

8Bibliography
[AB02] Réka Albert and Albert-László Barabási. Statistical Mechanics of Com-

plex Networks. Reviews of Modern Physics 74 (2002), 47–97. ���: 10.1103/
RevModPhys.74.47 (see page 8).

[Abr+08] Ittai Abraham, Cyril Gavoille, DahliaMalkhi, NoamNisan, andMikkel Tho-
rup. Compact Name-Independent Routing with Minimum Stretch.
ACM Transactions on Algorithms 4:3 (2008). ���: 10.1145/1367064.1367077
(see page 50).

[Abu+04] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A.
Langston, W. Henry Suters, and Christopher T. Symons. Kernelization
Algorithms for the Vertex Cover Problem: Theory and Experiments.
In: Sixth Workshop on Algorithm Engineering and Experiments and the First
Workshop on Analytic Algorithmics and Combinatorics. 2004, 62–69 (see
page 109).

[ACL01] William Aiello, Fan Chung, and Linyuan Lu. A Random Graph Model
for Power Law Graphs. Experimental Mathematics 10:1 (2001), 53–66.
���: 10.1080/10586458.2001.10504428 (see pages 4, 52).

[ACL12] Eric Angel, Romain Campigotto, and Christian Laforest. Implementation
and Comparison of Heuristics for the Vertex Cover Problem on
Huge Graphs. In: International Symposium on Experimental Algorithms.
2012, 39–50. ���: 10.1007/978-3-642-30850-5_5 (see page 133).

[ADF12] Patrizio Angelini, GiuseppeDi Battista, and Fabrizio Frati. SuccinctGreedy
Drawings Do Not Always Exist. Networks 59:3 (2012), 267–274. ���:
10.1002/net.21449 (see page 51).

[AG13] Rachit Agarwal and Philip Brighten Godfrey. Brief Announcement: A
Simple Stretch 2 Distance Oracle. In: ACM Symposium on Principles
of Distributed Computing (PODC). Ed. by Panagiota Fatourou and Gadi
Taubenfeld. 2013, 110–112. ���: 10.1145/2484239.2484277 (see page 50).

[AGH11] Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. Approxi-
mate Distance Queries and Compact Routing In Sparse Graphs. In:
2011 Proceedings IEEE INFOCOM. 2011, 1754–1762. ���: 10.1109/INFCOM.
2011.5934973 (see pages 50, 52).

171

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1145/1367064.1367077
https://doi.org/10.1080/10586458.2001.10504428
https://doi.org/10.1007/978-3-642-30850-5_5
https://doi.org/10.1002/net.21449
https://doi.org/10.1145/2484239.2484277
https://doi.org/10.1109/INFCOM.2011.5934973
https://doi.org/10.1109/INFCOM.2011.5934973

[AGM04] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Routing with Im-
proved Communication-Space Trade-O�. In: 18th International Sym-
posium on Distributed Computing (DISC). Vol. 3274. 2004, 305–319. ���:
10.1007/978-3-540-30186-8_22 (see page 50).

[AGM06] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On Space-Stretch
Trade-O�s: Upper Bounds. In: Annual ACM Symposium on Parallelism
in Algorithms and Architectures. Vol. 2006. 2006, 217–224. ���: 10.1145/
1148109.1148144 (see page 50).

[AI16] Takuya Akiba and Yoichi Iwata. Branch-and-Reduce Exponential/FPT
Algorithms in Practice: A Case Study of Vertex Cover. Theoretical
Computer Science 609 (2016), 211–225. ���: 10.1016/j.tcs.2015.09.023 (see
pages 2, 10, 110, 111, 133).

[AKP94] Baruch Awerbuch, Shay Kutten, and David Peleg.On Bu�er-economical
Store-and-forward Deadlock Prevention. IEEE Transactions on Com-
munications 42:11 (1994), 2934–2937. ���: 10.1109/26.328973 (see page 57).

[Alb05] RékaAlbert. Scale-FreeNetworks inCell Biology. Journal of Cell Science
118:21 (2005), 4947–4957. ���: 10.1242/jcs.02714 (see page 8).

[AMA16] Gregorio Alanis-Lobato, Pablo Mier, and Miguel A. Andrade-Navarro.
Manifold Learning and Maximum Likelihood Estimation For Hy-
perbolic Network Embedding. Applied Network Science 1:10 (2016), 1–14.
���: 10.1007/s41109-016-0013-0 (see page 169).

[AP92] Baruch Awerbuch and David Peleg. Routing with Polynomial Commu-
nication-Space Trade-O�. SIAM Journal on DiscreteMathematics 5 (1992),
151–162. ���: 10.1137/0405013 (see pages 50, 57).

[Are+] Alexandre Arenas, Albert-László Barabási, Vladimir Batagelj, Andrej Mr-
var, Mark Newman, and Tore Opsahl. Gephi Datasets. https://github.com/
gephi/gephi/wiki/Datasets (see page 129).

[Art+20] Igor Artico, Igor E. Smolyarenko, Veronica Vinciotti, and Ernst C. Wit.
How Rare Are Power-Law Networks Really? Proceedings of the Royal
Society A 476:2241 (2020), 20190742. ���: 10.1098/rspa.2019.0742 (see
page 4).

[ASK12] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. Shortest-
Path Queries for Complex Networks: Exploiting Low Tree-Width
Outside the Core. In: Proceedings of the 15th International Conference
on Extending Database Technology (EDBT). 2012, 144–155. ���: 10.1145/
2247596.2247614 (see page 71).

172

https://doi.org/10.1145/1148109.1148144
https://doi.org/10.1145/1148109.1148144
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1109/26.328973
https://doi.org/10.1242/jcs.02714
https://doi.org/10.1007/s41109-016-0013-0
https://doi.org/10.1137/0405013
https://github.com/gephi/gephi/wiki/Datasets
https://github.com/gephi/gephi/wiki/Datasets
https://doi.org/10.1098/rspa.2019.0742
https://doi.org/10.1145/2247596.2247614
https://doi.org/10.1145/2247596.2247614

[Awe+90] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Im-
proved Routing Strategies with Succinct Tables. Journal of Algorithms
11:3 (1990), 307–341. ���: 10.1016/0196-6774(90)90017-9 (see page 50).

[BA99] Albert-László Barabási and Réka Albert. Emergence of Scaling in Ran-
dom Networks. Science 286:5439 (1999), 509–512. ���: 10.1126/science.
286.5439.509 (see page 4).

[Bac+12] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano
Vigna. Four Degrees of Separation. In: 4th Annual ACM Web Science
Conference. 2012, 33–42. ���: 10.1145/2380718.2380723 (see page 6).

[BC06] Arthur Brady and Lenore Cowen, 119–128. In:Workshop on Algorithm Engi-
neering and Experiments (ALENEX). 2006. ���: 10.1137/1.9781611972863.12
(see page 51).

[BFK16] Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic Ran-
dom Graphs: Separators and Treewidth. In: 24th Annual European
Symposium on Algorithms (ESA). 2016, 15:1–15:16. ���: 10.4230/LIPIcs.ESA.
2016.15 (see pages 41, 110).

[BFK18] Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in Hy-
perbolic Random Graphs. Algorithmica 80 (2018), 2324–2344. ���: 10.
1007/s00453-017-0323-3 (see page 41).

[BFK21a] Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann. E�ciently
Approximating Vertex Cover on Scale-Free Networks with Under-
lying Hyperbolic Geometry. In: 29th Annual European Symposium on
Algorithms (ESA). 2021, 20:1–20:15. ���: 10.4230/LIPIcs.ESA.2021.20 (see
page 133).

[BFK21b] Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann. Force-Di-
rected Embedding of Scale-Free Networks in the Hyperbolic Plane.
In: 19th International Symposium on Experimental Algorithms (SEA). 2021,
22:1–22:18. ���: 10.4230/LIPIcs.SEA.2021.22 (see page 169).

[BFM13] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the Giant
Component of Random Hyperbolic Graphs. In: The Seventh European
Conference on Combinatorics, Graph Theory and Applications (EUROCOMB).
2013, 425–429. ���: 10.1007/978-88-7642-475-5_68 (see page 40).

[BFM15] Michel Bode, N. Fountoulakis, and Tobias Müller.On the Largest Compo-
nent of a Hyperbolic Model of Complex Networks. Electronic Journal
of Combinatorics 22 (2015), 1–46. ���: 10.37236/4958 (see pages 6, 40, 42).

173

https://doi.org/10.1016/0196-6774(90)90017-9
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1145/2380718.2380723
https://doi.org/10.1137/1.9781611972863.12
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.4230/LIPIcs.ESA.2021.20
https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://doi.org/10.1007/978-88-7642-475-5_68
https://doi.org/10.37236/4958

[BFM16] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. The Probabil-
ity of Connectivity in a Hyperbolic Model of Complex Networks.
Random Structures & Algorithms 49:1 (2016), 65–94. ���: 10.1002/rsa.20626
(see page 40).

[BKL19] Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric Inho-
mogeneous Random Graphs. Theoretical Computer Science 760 (2019),
35–54. ���: 10.1016/j.tcs.2018.08.014 (see pages 40, 41, 168).

[Blä+16] Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. E�-
cient Embedding of Scale-Free Graphs in the Hyperbolic Plane. In:
24th Annual European Symposium on Algorithms (ESA). 2016, 16:1–16:18.
���: 10.4230/LIPIcs.ESA.2016.16 (see page 169).

[Blä+18] Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katz-
mann, Felix Montenegro-Retana, and Marianne Thie�ry. E�cient Short-
est Paths in Scale-Free Networks with Underlying Hyperbolic Ge-
ometry. In: 45th International Colloquium on Automata, Languages, and
Programming (ICALP). 2018, 20:1–20:14. ���: 10.4230/LIPIcs.ICALP.2018.20
(see page 71).

[Blä+19] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer,
Manuel Penschuck, and Christopher Weyand. E�ciently Generating
Geometric Inhomogeneous and Hyperbolic Random Graphs. In:
27th Annual European Symposium on Algorithms (ESA 2019). Vol. 144. 2019,
21:1–21:14. ���: 10.4230/LIPIcs.ESA.2019.21 (see page 41).

[Blä+20] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Kroh-
mer. Hyperbolic Embeddings for Near-Optimal Greedy Routing.
ACM Journal of Experimental Algorithmics 25 (2020). ���: 10.1145/3381751
(see page 51).

[Blä+21a] Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Maximilian Katz-
mann. Solving Vertex Cover in Polynomial Time onHyperbolic Ran-
dom Graphs. Theory of Computing Systems (2021). ���: 10.1007/s00224-
021-10062-9 (see page 109).

[Blä+21b] Thomas Bläsius, Tobias Friedrich, Andreas Göbel, Jordi Levy, and Ralf
Rothenberger. The Impact of Heterogeneity and Geometry on the
Proof Complexity of Random Satis�ability. In: Symposium on Discrete
Algorithms (SODA). 2021, 42–53 (see page 167).

[Blä+22] Thomas Bläsius, Cedric Freiberger, Tobias Friedrich,Maximilian Katzmann,
Felix Montenegro-Retana, and Marianne Thie�ry. E�cient Shortest
Paths in Scale-Free Networks with Underlying Hyperbolic Geome-
try. ACM Trans. Algorithms 18 (2022), 19:1–19:32. ���: 10.1145/3516483
(see page 71).

174

https://doi.org/10.1002/rsa.20626
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.4230/LIPIcs.ESA.2016.16
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1145/3381751
https://doi.org/10.1007/s00224-021-10062-9
https://doi.org/10.1007/s00224-021-10062-9
https://doi.org/10.1145/3516483

[Blä+23] Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Daniel Step-
han. Strongly Hyperbolic Unit Disk Graphs. In: 40th International
Symposium on Theoretical Aspects of Computer Science (STACS). Accepted
for publication. 2023 (see pages 28, 47).

[BM06] Vladimir Batagelj and Andrej Mrvar. Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/data/. 2006 (see page 129).

[BN16] Michele Borassi and Emanuele Natale. KADABRA is an ADaptive Al-
gorithm for Betweenness via Random Approximation. In: 24th An-
nual European Symposium on Algorithms (ESA). 2016, 20:1–20:18. ���:
10.4230/LIPIcs.ESA.2016.20 (see pages 9, 71–73, 108).

[Bol01] Béla Bollobás. Random Graphs. 2nd ed. Cambridge University Press,
2001. ���: 10.1017/CBO9780511814068 (see page 3).

[BPK10] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustain-
ing the Internet with Hyperbolic Mapping. Nature Communications 1
(2010), 1–8. ���: 10.1038/ncomms1063 (see pages 6, 48, 52, 167, 169).

[Bri+17] Karl Bringmann, Ralph Keusch, Johannes Lengler, YannicMaus, andAnisur
Rahaman Molla. Greedy Routing and the Algorithmic Small-World
Phenomenon. In: ACM Symposium on Principles of Distributed Computing.
2017, 371–380. ���: 10.1145/3087801.3087829 (see pages 41, 52).

[Bro+21] Gerth Stølting Brodal, Rolf Fagerberg, David Hammer, Ulrich Meyer,
Manuel Penschuck, and Hung Tran. An Experimental Study of Ex-
ternal Memory Algorithms for Connected Components. In: 19th
International Symposium on Experimental Algorithms (SEA). 2021, 23:1–
23:23. ���: 10.4230/LIPIcs.SEA.2021.23 (see page 167).

[Cai94] Leizhen Cai. NP-completeness of Minimum Spanner Problems. Dis-
crete Applied Mathematics 48:2 (1994), 187–194. ���: 10.1016/0166-218X(94)
90073-6 (see page 54).

[Cam+14] Miguel Camelo, Dimitri Papadimitriou, Lluís Fàbrega, and Pere Vilà. Ge-
ometric Routing With Word-Metric Spaces. IEEE Communications
Letters 18:12 (2014), 2125–2128. ���: 10.1109/LCOMM.2014.2364213 (see
page 51).

[CF16a] Elisabetta Candellero and Nikolaos Fountoulakis. Bootstrap Percolation
and the Geometry of Complex Networks. Stochastic Processes and their
Applications 126:1 (2016), 234–264. ���: 10.1016/j.spa.2015.08.005 (see
page 41).

[CF16b] Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the
Hyperbolic Geometry of Complex Networks. Internet Mathematics
12:1-2 (2016), 2–53. ���: 10.1080/15427951.2015.1067848 (see page 41).

175

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://doi.org/10.4230/LIPIcs.ESA.2016.20
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1145/3087801.3087829
https://doi.org/10.4230/LIPIcs.SEA.2021.23
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1016/0166-218X(94)90073-6
https://doi.org/10.1109/LCOMM.2014.2364213
https://doi.org/10.1016/j.spa.2015.08.005
https://doi.org/10.1080/15427951.2015.1067848

[CFR16] Ankit Chauhan, Tobias Friedrich, and Ralf Rothenberger. Greed is Good
for Deterministic Scale-Free Networks. In: 36th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Sci-
ence. 2016, 33:1–33:15. ���: 10.4230/LIPIcs.FSTTCS.2016.33 (see pages 134,
138, 160).

[Che+12] Wei Chen, Christian Sommer, Shang-Hua Teng, and Yajun Wang. A Com-
pact Routing Scheme and Approximate Distance Oracle for Power-
Law Graphs. ACM Transactions on Algorithms 9:1 (2012). ���: 10.1145/
2390176.2390180 (see pages 50, 52).

[CJ03] Liming Cai and David Juedes. On the Existence of Subexponential
Parameterized Algorithms. Journal of Computer and System Sciences 67
(2003), 789–807. ���: 10.1016/S0022-0000(03)00074-6 (see page 109).

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved Upper Bounds for
Vertex Cover. Theoretical Computer Science 411:40 (2010), 3736–3756. ���:
10.1016/j.tcs.2010.06.026 (see page 109).

[CL02a] Fan Chung and Linyuan Lu. Connected Components in Random
Graphs with Given Expected Degree Sequences. Annals of Combina-
torics 6:25 (2002), 125–145. ���: 10.1007/PL00012580 (see page 4).

[CL02b] Fan Chung and Linyuan Lu.TheAverage Distances in RandomGraphs
with Given Expected Degrees. Proceedings of the National Academy of
Sciences 99:25 (2002), 15879–15882. ���: 10 .1073/pnas .252631999 (see
page 4).

[Coh98] Edith Cohen. Fast Algorithms for Constructing t-Spanners and Paths
with Stretch t. SIAM Journal on Computing 28:1 (1998), 210–236. ���:
10.1137/S0097539794261295 (see pages 48, 58).

[Cow01] Lenore J. Cowen. Compact Routing with Minimum Stretch. Journal of
Algorithms 38:1 (2001), 170–183. ���: 10.1006/jagm.2000.1134 (see page 50).

[Cre+10] Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi,
and Andrea Marino. Finding the Diameter in Real-World Graphs. In:
18th Annual European Symposium on Algorithms (ESA). 2010, 302–313. ���:
10.1007/978-3-642-15775-2_26 (see page 167).

[Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameter-
ized Algorithms. Springer, 2015. ����: 978-3-319-21274-6. ���: 10.1007/
978-3-319-21275-3 (see pages 2, 120, 126).

[DC02] Jesper Dall and Michael Christensen. Random Geometric Graphs. Phys-
ical Review E 66 (2002), 016121. ���: 10.1103/PhysRevE.66.016121 (see
page 6).

176

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.33
https://doi.org/10.1145/2390176.2390180
https://doi.org/10.1145/2390176.2390180
https://doi.org/10.1016/S0022-0000(03)00074-6
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1007/PL00012580
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1006/jagm.2000.1134
https://doi.org/10.1007/978-3-642-15775-2_26
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1103/PhysRevE.66.016121

[Del+18] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.
The PACE 2017 Parameterized Algorithms and Computational Ex-
periments Challenge: The Second Iteration. In: 12th International
Symposium on Parameterized and Exact Computation (IPEC). 2018, 30:1–
30:12. ���: 10.4230/LIPIcs.IPEC.2017.30 (see page 2).

[DFH19] M. Ayaz Dzul�kar, Johannes K. Fichte, and Markus Hecher. The PACE
2019 Parameterized Algorithms and Computational Experiments
Challenge: The Fourth Iteration (Invited Paper). In: 14th International
Symposium on Parameterized and Exact Computation (IPEC). 2019, 25:1–
25:23. ���: 10.4230/LIPIcs.IPEC.2019.25 (see page 2).

[DG02] Yon Dourisboure and Cyril Gavoille. Improved Compact Routing Sche-
me for Chordal Graphs. In: International Symposium on Distributed
Computing (DISC). 2002, 252–264. ���: 10.1007/3-540-36108-1_17 (see
page 50).

[DHZ96] Dorit Dor, Shay Halperin, and Uri Zwick. All Pairs Almost Shortest
Paths. In: 37th Conference on Foundations of Computer Science. 1996, 452–
461. ���: 10.1109/SFCS.1996.548504 (see page 50).

[Die17] Reinhard Diestel. Graph Theory. Springer Berlin, 2017. ����: 978-3-662-
53621-6 (see page 11).

[Dor10] SergeyDorogovtsev. Lectures onComplexNetworks. Oxford University
Press, Inc., 2010. ����: 0199548935. ���: 10.1093/acprof:oso/9780199548927.
001.0001 (see page 8).

[Dou05] YonDourisboure.CompactRouting Schemes forGeneralisedChordal
Graphs. Journal of Graph Algorithms and Applications 9:2 (2005), 277–297.
���: 10.7155/jgaa.00109 (see page 50).

[DP12] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge Univer-
sity Press, 2012. ����: 978-1-107-60660-9 (see page 17).

[DYL04] Feodor Dragan, Chenyu Yan, and Irina Lomonosov. Collective Tree
Spanners of Graphs. In: SIAM Journal on Discrete Mathematics. Vol. 20.
2004. ���: 10.1007/978-3-540-27810-8_7 (see page 50).

[EG08] David Eppstein and Michael T Goodrich. Succinct Greedy Graph Draw-
ing in the Hyperbolic Plane. In: International Symposium on Graph
Drawing. 2008, 14–25. ���: 10.1007/978-3-642-00219-9_3 (see page 51).

[EG11] David Eppstein and Michael T. Goodrich. Succinct Greedy Geometric
Routing Using Hyperbolic Geometry. IEEE Transactions on Computers
60:11 (2011), 1571–1580. ���: 10.1109/TC.2010.257 (see page 51).

177

https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1007/3-540-36108-1_17
https://doi.org/10.1109/SFCS.1996.548504
https://doi.org/10.1093/acprof:oso/9780199548927.001.0001
https://doi.org/10.1093/acprof:oso/9780199548927.001.0001
https://doi.org/10.7155/jgaa.00109
https://doi.org/10.1007/978-3-540-27810-8_7
https://doi.org/10.1007/978-3-642-00219-9_3
https://doi.org/10.1109/TC.2010.257

[EGP03] Tamar Eilam, Cyril Gavoille, andDavid Peleg.CompactRouting Schemes
with Low Stretch Factor. Journal of Algorithms 46:2 (2003), 97–114. ���:
10.1016/S0196-6774(03)00002-6 (see pages 50, 51, 57).

[EHT65] Paul Erdös, Frank Harary, and William T. Tutte. On the Dimension of a
Graph.Mathematika 12:2 (1965), 118–122. ���: 10.1112/S0025579300005222
(see page 168).

[ELW16] Leah Epstein, Asaf Levin, and Gerhard J. Woeginger. Vertex Cover Meets
Scheduling. Algorithmica 74 (2016), 1148–1173. ���: 10.1007/s00453-015-
9992-y (see page 109).

[ER59] Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Math-
ematicae Debrecen 6 (1959), 290–297 (see page 3).

[EWG08] M. Enachescu, M. Wang, and A. Goel. Reducing Maximum Stretch in
Compact Routing. In: 27th IEEE Conference on Computer Communications
(INFOCOM). 2008, 336–340. ���: 10.1109/INFOCOM.2008.76 (see page 50).

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure &
Conquer Approach for the Analysis of Exact Algorithms. Journal
of the ACM 56:5 (2009), 25:1–25:32. ���: 10.1145/1552285.1552286 (see
page 111).

[Fil+07] Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, and Guil-
laume Roblot. Combinatorial Optimisation of Worm Propagation
on an Unknown Network. International Journal of Computer, Electrical,
Automation, Control and Information Engineering 1 (2007), 2931–2937 (see
page 109).

[Fis04] Aleksei V. Fishkin. Disk Graphs: A Short Survey. In: Approximation and
Online Algorithms. 2004, 260–264. ���: 10.1007/978-3-540-24592-6_23 (see
page 6).

[FK15a] Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic
Random Graphs. In: 42nd International Colloquium on Automata, Lan-
guages, and Programming (ICALP). 2015, 614–625. ���: 10.1007/978-3-662-
47666-6_49 (see pages 78, 81).

[FK15b] Alan Frieze and Michał Karoński. Introduction to Random Graphs.
Cambridge University Press, 2015. ���: 10.1017/CBO9781316339831 (see
page 5).

[FK18] Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic
RandomGraphs. SIAM Journal on Discrete Mathematics 32:2 (2018), 1314–
1334. ���: 10.1137/17M1123961 (see pages 6, 40–43).

178

https://doi.org/10.1016/S0196-6774(03)00002-6
https://doi.org/10.1112/S0025579300005222
https://doi.org/10.1007/s00453-015-9992-y
https://doi.org/10.1007/s00453-015-9992-y
https://doi.org/10.1109/INFOCOM.2008.76
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/978-3-540-24592-6_23
https://doi.org/10.1007/978-3-662-47666-6_49
https://doi.org/10.1007/978-3-662-47666-6_49
https://doi.org/10.1017/CBO9781316339831
https://doi.org/10.1137/17M1123961

[FKS21] Tobias Friedrich, Maximilian Katzmann, and Leon Schiller. Computing
Voronoi Diagrams in the Polar-CoordinateModel of the Hyperbolic
Plane. CoRR (2021). ���: https://arxiv.org/abs/2112.02553 (see page 170).

[FM18] Nikolaos Fountoulakis and Tobias Müller. Law of Large Numbers for the
Largest Component in a Hyperbolic Model of Complex Networks.
The Annals of Applied Probability 28:1 (2018), 607–650. ���: 10.1214/17-
AAP1314 (see page 42).

[Fou+21] Nikolaos Fountoulakis, Pim van der Hoorn, Tobias Müller, and Markus
Schepers. Clustering in a Hyperbolic Model of Complex Networks.
Electronic Journal of Probability 26:none (2021), 1–132. ���: 10.1214/21-
EJP583 (see pages 41, 42).

[Fou15] Nikolaos Fountoulakis. On a Geometrization of the Chung–Lu Model
For Complex Networks. Journal of Complex Networks 3:3 (2015), 361–387.
���: 10.1093/comnet/cnu049 (see pages 5, 6).

[FPW09] R. Flury, S. V. Pemmaraju, and R. Wattenhofer. Greedy Routing with
Bounded Stretch. In: 28th IEEE Conference on Computer Communications
(INFOCOM). 2009, 1737–1745. ���: 10.1109/INFCOM.2009.5062093 (see
pages 48, 51, 52, 57).

[Fre+17] Ofer Freedman, Paweł Gawrychowski, Patrick K. Nicholson, and Oren
Weimann. Optimal Distance Labeling Schemes for Trees. In: Proceed-
ings of the ACM Symposium on Principles of Distributed Computing. 2017,
185–194. ���: 10.1145/3087801.3087804 (see pages 48, 58).

[FSS13] Tobias Friedrich, Thomas Sauerwald, and Alexandre Stau�er. Diameter
and Broadcast Time of Random Geometric Graphs in Arbitrary
Dimensions. Algorithmica (2013), 65–88. ���: 10.1007/s00453-012-9710-y
(see page 75).

[FY21] Max Franck and Sorrachai Yingchareonthawornchai.EngineeringNearly
Linear-Time Algorithms for Small Vertex Connectivity. In: 19th
International Symposium on Experimental Algorithms (SEA). 2021, 1:1–1:18.
���: 10.4230/LIPIcs.SEA.2021.1 (see page 167).

[Gan66] David Gans. A New Model of the Hyperbolic Plane. The American
Mathematical Monthly 73:3 (1966), 291–295 (see page 23).

[Gar+16] Guillermo García-Pérez, Marián Boguñá, Antoine Allard, and M. Serrano.
The Hidden Hyperbolic Geometry of International Trade: World
Trade Atlas 1870–2013. Scienti�c Reports 6 (2016), 33441. ���: 10.1038/
srep33441 (see page 6).

179

https://arxiv.org/abs/2112.02553
https://doi.org/10.1214/17-AAP1314
https://doi.org/10.1214/17-AAP1314
https://doi.org/10.1214/21-EJP583
https://doi.org/10.1214/21-EJP583
https://doi.org/10.1093/comnet/cnu049
https://doi.org/10.1109/INFCOM.2009.5062093
https://doi.org/10.1145/3087801.3087804
https://doi.org/10.1007/s00453-012-9710-y
https://doi.org/10.4230/LIPIcs.SEA.2021.1
https://doi.org/10.1038/srep33441
https://doi.org/10.1038/srep33441

[Gav+04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance
Labeling in Graphs. Journal of Algorithms 53:1 (2004), 85–112. ���: 10.
1016/j.jalgor.2004.05.002 (see pages 55, 57).

[GH14] Mikael Gast and Mathias Hauptmann. Approximability of the Vertex
Cover Problem In Power-Law Graphs. Theoretical Computer Science
516 (2014), 60–70. ���: 10.1016/j.tcs.2013.11.004 (see page 134).

[Gil59] Edgar Nelson Gilbert. Random Graphs. The Annals of Mathematical
Statistics 30:4 (1959), 1141–1144. ����: 00034851. ���: http://www.jstor.
org/stable/2237458 (see page 3).

[GL05] Cyril Gavoille and Olivier Ly.Distance Labeling in Hyperbolic Graphs.
In: Algorithms and Computation. Vol. 3827. 2005, 1071–1079. ���: 10.1007/
11602613_106 (see page 51).

[GM05] Alison P. Galvani and Robert M. May. Dimensions of Superspreading.
Nature 438 (2005), 293–295. ���: 10.1038/438293a (see page 169).

[GN72] Robert Gar�nkel and George L. Nemhauser. Integer Programming. John
Wiley & Sons, 1972 (see page 111).

[GP96] Cyril Gavoille and Stéphane Pérennès.Memory Requirement for Rout-
ing in Distributed Networks. In: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing. 1996, 125–133.
���: 10.1145/248052.248075 (see page 50).

[GPP12] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random
Hyperbolic Graphs: Degree Sequence and Clustering. In: 39th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP).
2012, 573–585. ���: 10.1007/978-3-642-31585-5_51 (see pages 6, 39, 40, 42,
44, 81, 85, 107).

[GS09] Michael T. Goodrich and Darren Strash. Succinct Greedy Geometric
Routing in the Euclidean Plane. In: Algorithms and Computation. 2009,
781–791 (see page 51).

[GV21] Vijay Ganesh and Moshe Y. Vardi. “On the Unreasonable E�ectiveness of
SAT Solvers.” In: Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2021, 547–566. ���: 10.1017/9781108637435.032 (see
page 2).

[Hof16] Remco van der Hofstad. Random Graphs and Complex Networks.
Vol. 1. Cambridge University Press, 2016. ���: 10.1017/9781316779422 (see
page 5).

180

https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.1016/j.tcs.2013.11.004
http://www.jstor.org/stable/2237458
http://www.jstor.org/stable/2237458
https://doi.org/10.1007/11602613_106
https://doi.org/10.1007/11602613_106
https://doi.org/10.1038/438293a
https://doi.org/10.1145/248052.248075
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1017/9781108637435.032
https://doi.org/10.1017/9781316779422

[Hou+14] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Fault-tolerant Greedy Forest Routing for Complex Networks.
In: 2014 6th International Workshop on Reliable Networks Design and Mod-
eling (RNDM). 2014, 1–8. ���: 10.1109/RNDM.2014.7014924 (see pages 48,
57).

[HWR16] Matthew Hall, Mark Woolhouse, and Andrew Rambaut. Epidemic Re-
construction in a Phylogenetics Framework: Transmission Trees
as Partitions of the Node Set. PLOS Computational Biology 11:12 (2016),
1–36. ���: 10.1371/journal.pcbi.1004613 (see page 170).

[Joh74] David S. Johnson. Approximation Algorithms for Combinatorial
Problems. Journal of Computer and System Sciences 9:3 (1974), 256–278.
���: 10.1016/S0022-0000(74)80044-9 (see page 133).

[Kar09] George Karakostas. A Better Approximation Ratio for the Vertex
Cover Problem. ACM Transactions on Algorithms 5:4 (2009), 41:1–41:8.
���: 10.1145/1597036.1597045 (see page 133).

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In:
Proceedings of a Symposium on the Complexity of Computer Computations.
1972, 85–103 (see pages 1, 9, 109).

[KE02] Konstantin Klemm and Víctor M. Eguíluz.Growing Scale-free Networks
with Small-World Behavior. Physical Review E 65 (2002), 057102. ���:
10.1103/PhysRevE.65.057102 (see page 5).

[Kel+21] LeonKellerhals, Tomohiro Koana, AndréNichterlein, and Philipp Zschoche.
The PACE 2021 Parameterized Algorithms and Computational Ex-
periments Challenge: Cluster Editing. In: 16th International Symposium
on Parameterized and Exact Computation (IPEC). Vol. 214. 2021, 26:1–26:18.
���: 10.4230/LIPIcs.IPEC.2021.26 (see page 2).

[Keu18] Ralph Keusch.Geometric InhomogeneousRandomGraphs andGraph
Coloring Games. PhD thesis. ETH Zurich, 2018. ���: 10.3929/ethz-b-
000269658 (see pages 40, 81, 82, 134).

[KFY04] Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Compact Routing on
Internet-like Graphs. In: IEEE INFOCOM 2004. Vol. 1. 2004, 219. ���:
10.1109/INFCOM.2004.1354495 (see page 52).

[Kis20] Sándor Kisfaludi-Bak.Hyperbolic Intersection Graphs and (Quasi)-
Polynomial Time. In: Symposium on Discrete Algorithms (SODA). 2020,
1621–1638. ���: 10.1137/1.9781611975994.100 (see pages 38, 167).

181

https://doi.org/10.1109/RNDM.2014.7014924
https://doi.org/10.1371/journal.pcbi.1004613
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1103/PhysRevE.65.057102
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.3929/ethz-b-000269658
https://doi.org/10.3929/ethz-b-000269658
https://doi.org/10.1109/INFCOM.2004.1354495
https://doi.org/10.1137/1.9781611975994.100

[KK00] Brad Karp and Hsiang-Tsung Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In: Proceedings of the 6th Annual Inter-
national Conference on Mobile Computing and Networking. 2000, 243–254.
���: 10.1145/345910.345953 (see page 51).

[KK15] Zoltán Király and Sándor Kisfaludi-Bak. A Succinct Tree Coding for
Greedy Navigation. Tech. rep. TR-2015-02. egres.elte.hu. Egerváry
Research Group, Budapest, 2015 (see page 51).

[KL07] Robert Krauthgamer and James R. Lee. The Intrinsic Dimensionality
of Graphs. Combinatorica 27:2 (2007), 551–585. ���: 10.1007/s00493-007-
2183-y (see page 168).

[KL20] Júlia Komjáthy and Bas Lodewijks. Explosion in Weighted Hyperbolic
Random Graphs And Geometric Inhomogeneous Random Graphs.
Stochastic Processes and their Applications 130:3 (2020), 1309–1367. ���:
10.1016/j.spa.2019.04.014 (see page 168).

[Kle00] Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Per-
spective. In: Thirty-Second Annual ACM Symposium on Theory of Com-
puting (STOC). 2000, 163–170. ���: 10.1145/335305.335325 (see page 52).

[Kle07] Robert Kleinberg. Geographic Routing Using Hyperbolic Space. In:
26th IEEE International Conference on Computer Communications (INFO-
COM). 2007, 1902–1909. ���: 10.1109/INFCOM.2007.221 (see page 51).

[KM15] Marcos A. Kiwi and Dieter Mitsche. A Bound for the Diameter of Ran-
dom Hyperbolic Graphs. In: Twelfth Workshop on Analytic Algorithmics
and Combinatorics (ANALCO). 2015, 26–39. ���: 10.1137/1.9781611973761.3
(see pages 6, 42, 43).

[KM18] Marcos Kiwi and Dieter Mitsche. Spectral Gap of Random Hyperbolic
Graphs And Related Parameters. The Annals of Applied Probability 28:2
(2018), 941–989. ���: 10.1214/17-AAP1323 (see page 41).

[KM19] Marcos Kiwi and Dieter Mitsche. On the Second Largest Component
of Random Hyperbolic Graphs. SIAM Journal on Discrete Mathematics
33:4 (2019), 2200–2217. ���: 10.1137/18M121201X (see page 41).

[KR08] Subhash Khot and Oded Regev. Vertex Cover Might Be Hard to Ap-
proximate to Within 2� 9. Journal of Computer and System Sciences 74:3
(2008), 335–349. ���: 10.1016/j.jcss.2007.06.019 (see page 133).

[Kri+07] Dmitri Krioukov, k c cla�y k c, Kevin Fall, and Arthur Brady.OnCompact
Routing for the Internet. SIGCOMM Comput. Commun. Rev. 37:3 (2007),
41–52. ���: 10.1145/1273445.1273450 (see page 52).

182

https://doi.org/10.1145/345910.345953
https://doi.org/10.1007/s00493-007-2183-y
https://doi.org/10.1007/s00493-007-2183-y
https://doi.org/10.1016/j.spa.2019.04.014
https://doi.org/10.1145/335305.335325
https://doi.org/10.1109/INFCOM.2007.221
https://doi.org/10.1137/1.9781611973761.3
https://doi.org/10.1214/17-AAP1323
https://doi.org/10.1137/18M121201X
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1145/1273445.1273450

[Kri+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat,
and Marián Boguñá. Hyperbolic Geometry of Complex Networks.
Physical Review E 82 (2010), 036106. ���: 10.1103/PhysRevE.82.036106 (see
pages 6, 23, 39, 167).

[Kro16] Anton Krohmer. Structures & Algorithms in Hyperbolic Random
Graphs. PhD thesis. University of Potsdam, 2016 (see pages 21, 39, 44).

[Kun13] Jérôme Kunegis. KONECT: The Koblenz Network Collection. In: In-
ternational Conference on World Wide Web (WWW). 2013, 1343–1350. ���:
10.1145/2487788.2488173 (see pages 129, 161).

[LFC17] Zheng Lu, Yunhe Feng, andQing Cao.Decentralized Search for Shortest
Path Approximation in Large-Scale Complex Networks. In: IEEE In-
ternational Conference on Cloud Computing Technology and Science (Cloud-
Com). 2017, 130–137. ���: 10.1109/CloudCom.2017.36 (see page 71).

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. 2014 (see page 129).

[LR89] Michael Luby and Prabhakar Ragde. A Bidirectional Shortest-path
Algorithmwith Good Average-Case Behavior. Algorithmica 4:1 (1989),
551–567. ���: 10.1007/BF01553908 (see page 72).

[MPP07] Frosso S. Makri, Andreas N. Philippou, and Zaharias M. Psillakis. Success
Run Statistics De�ned on an Urn Model. Advances in Applied Probabil-
ity 39:4 (2007), 991–1019. ���: 10.1239/aap/1198177236 (see page 144).

[MS19] Tobias Müller and Merlijn Staps. The Diameter of KPKVB Random
Graphs. Advances in Applied Probability 51:2 (2019), 358–377. ���: 10.
1017/apr.2019.23 (see pages 6, 41, 67).

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge Univer-
sity Press, 2005. ���: 10.1017/CBO9780511813603 (see page 15).

[Muh07] Rashid Bin Muhammad. A Distributed Geometric Routing Algorithm
for Ad HocWireless Networks. In: Fourth International Conference on
Information Technology (ITNG). 2007, 961–963. ���: 10.1109/ITNG.2007.4
(see page 51).

[Mus+17] Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra
Bianconi, and Carlo Vittorio Cannistraci.Machine LearningMeets Com-
plex Networks Via Coalescent Embedding in the Hyperbolic Space.
Nature Communications 8:1 (2017), 1615. ���: 10.1038/s41467-017-01825-5
(see page 169).

183

https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1109/CloudCom.2017.36
http://snap.stanford.edu/data
https://doi.org/10.1007/BF01553908
https://doi.org/10.1239/aap/1198177236
https://doi.org/10.1017/apr.2019.23
https://doi.org/10.1017/apr.2019.23
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1109/ITNG.2007.4
https://doi.org/10.1038/s41467-017-01825-5

[MZ21] Claire Mathieu and Hang Zhou. A Simple Algorithm for Graph Re-
construction. In: 29th Annual European Symposium on Algorithms (ESA).
2021, 68:1–68:18. ���: 10.4230/LIPIcs.ESA.2021.68 (see page 167).

[New01] Mark Newman. Clustering and Preferential Attachment in Growing
Networks. Physical Review E 64 (2001), 025102. ���: 10.1103/PhysRevE.64.
025102 (see page 5).

[PAK15] Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. Net-
work Geometry Inference Using Common Neighbors. Physical Re-
view E 92:2 (2015), 022807. ���: 10.1103/PhysRevE.92.022807 (see page 169).

[Pap+10] Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguñá, and Amin
Vahdat.Greedy Forwarding inDynamic Scale-Free Networks Embed-
ded in Hyperbolic Metric Spaces. In: 2010 Proceedings IEEE INFOCOM.
2010, 1–9. ���: 10.1109/INFCOM.2010.5462131 (see page 52).

[Pen+12] Wei Peng, Xiaofeng Hu, Feng Zhao, and Jinshu Su. A Fast Algorithm
to Find All-Pairs Shortest Paths in Complex Networks. Procedia
Computer Science 9 (2012), 557–566. ���: 10.1016/j.procs.2012.04.060 (see
page 71).

[Pen+21] Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and
Guoying Zhao. Hyperbolic Deep Neural Networks: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2021), 1–1. ���:
10.1109/TPAMI.2021.3136921 (see pages 168, 169).

[Pen03] Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003. ����: 9780198506263 (see pages 5, 75).

[Poh69] Ira Sheldon Pohl. Bi-directional and Heuristic Search in Path Prob-
lems. PhD thesis. Stanford University, 1969 (see page 71).

[PPK15] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov.
Network Mapping by Replaying Hyperbolic Growth. IEEE/ACM
Transactions on Networking 23:1 (2015), 198–211. ���: 10 . 1109 /TNET.
2013.2294052 (see page 169).

[PR05] Christos Papadimitriou and David Ratajczak. On a Conjecture Related
to Geometric Routing. Theoretical Computer Science 344:1 (2005), 3–14.
���: 10.1016/j.tcs.2005.06.022 (see page 51).

[PR14] Mihai Pǎtraşcu and LiamRoditty.DistanceOracles beyond the Thorup–
Zwick Bound. SIAM Journal on Computing 43:1 (2014), 300–311. ���:
10.1137/11084128X (see page 50).

184

https://doi.org/10.4230/LIPIcs.ESA.2021.68
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1103/PhysRevE.92.022807
https://doi.org/10.1109/INFCOM.2010.5462131
https://doi.org/10.1016/j.procs.2012.04.060
https://doi.org/10.1109/TPAMI.2021.3136921
https://doi.org/10.1109/TNET.2013.2294052
https://doi.org/10.1109/TNET.2013.2294052
https://doi.org/10.1016/j.tcs.2005.06.022
https://doi.org/10.1137/11084128X

[PRT12] Mihai Pǎtraşcu, Liam Roditty, and Mikkel Thorup. A New In�nity of
Distance Oracles for Sparse Graphs. In: IEEE 53rd Annual Symposium
on Foundations of Computer Science (FOCS). 2012, 738–747. ���: 10.1109/
FOCS.2012.44 (see pages 50, 52).

[PS89] David Peleg and Alejandro A. Schä�er.Graph spanners. Journal of Graph
Theory 13:1 (1989), 99–116. ���: 10.1002/jgt.3190130114 (see page 54).

[PU89] David Peleg and Eli Upfal. A Trade-o� between Space and E�ciency
for Routing Tables. Journal of the ACM 36:3 (1989), 510–530. ���: 10.
1145/65950.65953 (see pages 48, 50, 51).

[PW05] Kihong Park and Walter Williger. The Internet As a Large-Scale Com-
plex System. Oxford University Press, Inc., 2005. ����: 0195157214 (see
page 133).

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. The Network Data Repository
with Interactive Graph Analytics and Visualization. In: AAAI. 2015.
���: http://networkrepository.com (see pages 68, 129, 161).

[Rao+03] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and
Ion Stoica. Geographic Routing without Location Information. In:
Proceedings of the 9th Annual International Conference on Mobile Computing
and Networking. 2003, 96–108. ���: 10.1145/938985.938996 (see page 51).

[Ros19] Sheldon M. Ross. A First Course in Probability. Pearson Education
Limited, 2019 (see page 12).

[RR95] Arlan Ramsay and Robert D. Richtmyer. Introduction to Hyperbolic
Geometry. Springer, 1995. ����: 978-1-4757-5585-5. ���: 10.1007/978-1-
4757-5585-5 (see page 23).

[RRŠ89] Jan Reiterman, Vojtĕch Rödl, and Edita Šiňajová. Geometrical Embed-
dings of Graphs. Discrete Mathematics 74:3 (1989), 291–319. ���: 10.1016/
0012-365X(89)90142-8 (see page 168).

[RT16] Liam Roditty and Roei Tov. Close to Linear Space Routing Schemes.
Distributed Computing 29:1 (2016), 65–74. ���: 10.1007/s00446-015-0256-5
(see page 50).

[Ser+21] Matteo Sera�no, Giulio Cimini, Amos Maritan, Andrea Rinaldo, Samir
Suweis, Jayanth R. Banavar, and Guido Caldarelli. True Scale-free Net-
worksHidden by Finite Size E�ects. Proceedings of the National Academy
of Sciences 118:2 (2021). ���: 10.1073/pnas.2013825118 (see page 4).

[SGS13] Mariana O. da Silva, Gustavo A. Gimenez-Lugo, and Murilo V. G. da Silva.
Vertex Cover in Complex Networks. International Journal of Modern
Physics C 24:11 (2013), 1350078. ���: 10 .1142/S0129183113500782 (see
pages 134, 161).

185

https://doi.org/10.1109/FOCS.2012.44
https://doi.org/10.1109/FOCS.2012.44
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1145/65950.65953
https://doi.org/10.1145/65950.65953
http://networkrepository.com
https://doi.org/10.1145/938985.938996
https://doi.org/10.1007/978-1-4757-5585-5
https://doi.org/10.1007/978-1-4757-5585-5
https://doi.org/10.1016/0012-365X(89)90142-8
https://doi.org/10.1016/0012-365X(89)90142-8
https://doi.org/10.1007/s00446-015-0256-5
https://doi.org/10.1073/pnas.2013825118
https://doi.org/10.1142/S0129183113500782

[SH75] Michael Ian Shamos and Dan Hoey. Closest-point Problems. In: 16th
Annual Symposium on Foundations of Computer Science (SFCS). 1975, 151–
162. ���: 10.1109/SFCS.1975.8 (see page 170).

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing in
Networks. The Computer Journal 28:1 (1985), 5–8. ���: 10.1093/comjnl/28.
1.5 (see page 51).

[SMS18] Khot Subhash, DorMinzer, andMuli Safra. Pseudorandom Sets in Grass-
mann Graph Have Near-Perfect Expansion. In: IEEE 59th Annual Sym-
posium on Foundations of Computer Science (FOCS). 2018, 592–601. ���:
10.1109/FOCS.2018.00062 (see page 133).

[ST09] Daniel A. Spielman and Shang-Hua Teng. Smoothed Analysis: An At-
tempt to Explain the Behavior of Algorithms in Practice. Communi-
cations of the ACM 52:10 (2009), 76–84. ���: 10.1145/1562764.1562785 (see
page 2).

[Ste20] Clara Stegehuis. Closure Coe�cients in Scale-free Complex Net-
works. Journal of Complex Networks 8:3 (2020). ���: 10.1093/comnet/
cnaa020 (see page 41).

[Tam+17] Hisao Tamaki, Hiromu Ohtsuka, Takuto Sato, and Keitaro Makii. TCS-Meiji
PACE2017-TrackA. github.com/TCS-Meiji/PACE2017-TrackA. 2017 (see
page 129).

[Tan+10] Mingdong Tang, Hongyang Chen, Guoqing Zhang, and Jing Yang. Tree
Cover Based Geographic Routing with Guaranteed Delivery. In:
IEEE International Conference on Communications. 2010, 1–5. ���: 10.1109/
ICC.2010.5502391 (see page 57).

[Tho04] Mikkel Thorup. Compact Oracles for Reachability and Approximate
Distances in Planar Digraphs. Journal of the ACM 51:6 (2004), 993–1024.
���: 10.1145/1039488.1039493 (see page 50).

[TK84] Hideaki Takagi and Leonard Kleinrock. Optimal Transmission Ranges
for Randomly Distributed Packet Radio Terminals. IEEE Transactions
on Communications 32:3 (1984), 246–257. ���: 10.1109/TCOM.1984.1096061
(see page 51).

[TM69] Je�rey Travers and Stanley Milgram. An Experimental Study of the
Small World Problem. Sociometry 32:4 (1969), 425–443. ���: http://www.
jstor.org/stable/2786545 (see page 6).

[TYZ09] Mingdong Tang, Jing Yang, and Guoqing Zhang. Compact Routing on
Random Power Law Graphs. In: 8th IEEE International Symposium on
Dependable, Autonomic and Secure Computing (DASC). 2009, 575–578. ���:
10.1109/DASC.2009.133 (see pages 50, 52).

186

https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1093/comjnl/28.1.5
https://doi.org/10.1093/comjnl/28.1.5
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1093/comnet/cnaa020
https://doi.org/10.1093/comnet/cnaa020
github.com/TCS-Meiji/PACE2017-TrackA
https://doi.org/10.1109/ICC.2010.5502391
https://doi.org/10.1109/ICC.2010.5502391
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1109/TCOM.1984.1096061
http://www.jstor.org/stable/2786545
http://www.jstor.org/stable/2786545
https://doi.org/10.1109/DASC.2009.133

[TZ01] Mikkel Thorup and Uri Zwick. Compact Routing Schemes. In: Proceed-
ings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and
Architectures. 2001, 1–10. ���: 10.1145/378580.378581 (see pages 50, 52, 57,
58).

[TZ05] Mikkel Thorup and Uri Zwick. Approximate Distance Oracles. Journal
of the ACM 52:1 (2005), 1–24. ���: 10.1145/1044731.1044732 (see page 50).

[Voi+19] Ivan Voitalov, Pim van der Hoorn, Remco van der Hofstad, and Dmitri
Krioukov. Scale-free Networks Well Done. Physical Review Research 1
(3 2019), 033034. ���: 10.1103/PhysRevResearch.1.033034 (see page 4).

[VS14] Kevin Verbeek and Subhash Suri.Metric Embedding, Hyperbolic Space,
and Social Networks. In: Thirtieth Annual Symposium on Computational
Geometry (SoCG). 2014, 501–510. ���: 10 . 1145 / 2582112 . 2582139 (see
page 6).

[VS16] André L. Vignatti and Murilo V.G. da Silva. Minimum Vertex Cover in
Generalized Random Graphs with Power Law Degree Distribution.
Theoretical Computer Science 647 (2016), 101–111. ���: 10.1016/j.tcs.2016.
08.002 (see page 134).

[War16] Lutz Warnke. On the Method of Typical Bounded Di�erences. Com-
binatorics, Probability and Computing 25:2 (2016), 269–299. ���: 10.1017/
S0963548315000103 (see page 18).

[WP09] Cédric Westphal and Guanhong Pei. Scalable Routing Via Greedy Em-
bedding. In: IEEE INFOCOM 2009. 2009, 2826–2830. ���: 10.1109/INFCOM.
2009.5062240 (see page 51).

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ‘Small-
world’ Networks. Nature 393 (1998), 440–442. ���: 10.1038/30918 (see
pages 5, 8).

[XN17] Mingyu Xiao and Hiroshi Nagamochi. Exact Algorithms for Maximum
Independent Set. Information and Computation 255 (2017), 126–146. ���:
10.1016/j.ic.2017.06.001 (see pages 109, 159).

[YR20] Weihua Yang and David Rideout. High Dimensional Hyperbolic Ge-
ometry of Complex Networks. Mathematics 8:11 (2020). ���: 10.3390/
math8111861 (see page 168).

[ZG11] Huaming Zhang and Swetha Govindaiah. Greedy Routing via Embed-
ding Graphs onto Semi-metric Spaces. In: Frontiers in Algorithmics
and Algorithmic Aspects in Information and Management. 2011, 58–69 (see
page 51).

187

https://doi.org/10.1145/378580.378581
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1103/PhysRevResearch.1.033034
https://doi.org/10.1145/2582112.2582139
https://doi.org/10.1016/j.tcs.2016.08.002
https://doi.org/10.1016/j.tcs.2016.08.002
https://doi.org/10.1017/S0963548315000103
https://doi.org/10.1017/S0963548315000103
https://doi.org/10.1109/INFCOM.2009.5062240
https://doi.org/10.1109/INFCOM.2009.5062240
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.ic.2017.06.001
https://doi.org/10.3390/math8111861
https://doi.org/10.3390/math8111861

[ZG13] Huaming Zhang and Swetha Govindaiah. Greedy Routing via Embed-
ding Graphs onto Semi-Metric Spaces. Theoretical Computer Science
508 (2013), 26–34. ���: 10.1016/j.tcs.2012.01.049 (see page 53).

188

https://doi.org/10.1016/j.tcs.2012.01.049

8List of Publications
Articles in Refereed Journals

[1] Solving Vertex Cover in Polynomial Time onHyperbolic Random
Graphs. Theory of Computing Systems (2021). ���: 10.1007/s00224-021-
10062-9. Joint work with Thomas Bläsius, Philipp Fischbeck, and Tobias
Friedrich.

[2] Hyperbolic Embeddings for Near-Optimal Greedy Routing. ACM
Journal of Experimental Algorithmics 25 (2020). ���: 10.1145/3381751. Joint
work with Thomas Bläsius, Tobias Friedrich, and Anton Krohmer.

[3] E�cient Shortest Paths in Scale-Free Networks with Underlying
Hyperbolic Geometry. ACM Trans. Algorithms 18 (2022), 19:1–19:32.
���: 10.1145/3516483. Joint workwith Thomas Bläsius, Cedric Freiberger,
Tobias Friedrich, Felix Montenegro-Retana, and Marianne Thie�ry.

[4] Unbounded Discrepancy of Deterministic Random Walks on
Grids. SIAM Journal on DiscreteMathematics 32:4 (2018), 2441–2452. Joint
work with Tobias Friedrich and Anton Krohmer.

Articles in Refereed Conference Proceedings

[5] Towards explainable real estate valuation via evolutionary algo-
rithms. In: Genetic and Evolutionary Computation Conference GECCO.
2022, 1130–1138. ���: 10.1145/3512290.3528801. Joint work with Sebas-
tian Angrick, Ben Bals, Niko Hastrich, Maximilian Kleissl, Jonas Schmidt,
Vanja Doskoc, Louise Molitor, and Tobias Friedrich.

[6] E�ciently Approximating Vertex Cover on Scale-Free Networks
with Underlying Hyperbolic Geometry. In: 29th Annual European
Symposium on Algorithms (ESA). 2021, 20:1–20:15. ���: 10.4230/LIPIcs.
ESA.2021.20. Joint work with Thomas Bläsius and Tobias Friedrich.

189

https://doi.org/10.1007/s00224-021-10062-9
https://doi.org/10.1007/s00224-021-10062-9
https://doi.org/10.1145/3381751
https://doi.org/10.1145/3516483
https://doi.org/10.1145/3512290.3528801
https://doi.org/10.4230/LIPIcs.ESA.2021.20
https://doi.org/10.4230/LIPIcs.ESA.2021.20

[7] Force-Directed Embedding of Scale-Free Networks in the Hyper-
bolic Plane. In: 19th International Symposium on Experimental Algo-
rithms (SEA). 2021, 22:1–22:18. ���: 10.4230/LIPIcs.SEA.2021.22. Joint
work with Thomas Bläsius and Tobias Friedrich.

[8] Solving Vertex Cover in Polynomial Time on Hyperbolic Ran-
dom Graphs. In: 37th International Symposium on Theoretical Aspects of
Computer Science (STACS). 2020, 25:1–25:14. ���: 10.4230/LIPIcs.STACS.
2020.25. Joint work with Thomas Bläsius, Philipp Fischbeck, and Tobias
Friedrich.

[9] Hyperbolic Embeddings for Near-Optimal Greedy Routing. In:
Algorithm Engineering and Experiments (ALENEX). 2018, 199–208. ���:
10.1137/1.9781611975055.17. Joint work with Thomas Bläsius, Tobias
Friedrich, and Anton Krohmer.

[10] Strongly Hyperbolic Unit Disk Graphs. In: 40th International Sym-
posium on Theoretical Aspects of Computer Science (STACS). Accepted
for publication. 2023. Joint work with Thomas Bläsius, Tobias Friedrich,
and Daniel Stephan.

[11] E�cient Shortest Paths in Scale-Free Networks with Underly-
ing Hyperbolic Geometry. In: 45th International Colloquium on Au-
tomata, Languages, and Programming (ICALP). 2018, 20:1–20:14. ���:
10.4230/LIPIcs.ICALP.2018.20. Joint work with Thomas Bläsius, Cedric
Freiberger, Tobias Friedrich, Felix Montenegro-Retana, and Marianne
Thie�ry.

[12] Towards a Systematic Evaluation of Generative Network Mod-
els. In:Workshop on Algorithms and Models for the Web Graph (WAW).
2018, 99–114. Joint work with Thomas Bläsius, Tobias Friedrich, Anton
Krohmer, and Jonathan Striebel.

[13] E�ciently Generating Geometric Inhomogeneous and Hyper-
bolic Random Graphs. In: 27th Annual European Symposium on Al-
gorithms (ESA 2019). 2019, 21:1–21:14. ���: 10.4230/LIPIcs.ESA.2019.
21. Joint work with Thomas Bläsius, Tobias Friedrich, Ulrich Meyer,
Manuel Penschuck, and Christopher Weyand.

190

https://doi.org/10.4230/LIPIcs.SEA.2021.22
https://doi.org/10.4230/LIPIcs.STACS.2020.25
https://doi.org/10.4230/LIPIcs.STACS.2020.25
https://doi.org/10.1137/1.9781611975055.17
https://doi.org/10.4230/LIPIcs.ICALP.2018.20
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21

[14] Unbounded Discrepancy of Deterministic Random Walks on
Grids. In: International Symposium on Algorithms and Computation
(ISAAC). 2015, 212–222. Joint work with Tobias Friedrich and Anton
Krohmer.

[15] Algorithms for Hard-Constraint Point Processes via Discretiza-
tion. In: Computing and Combinatorics - 28th International Conference,
COCOON. 2022, 242–254. ���: 10.1007/978-3-031-22105-7_22. Joint
work with Tobias Friedrich, Andreas Göbel, Martin S. Krejca, andMarcus
Pappik.

[16] Systematic Exploration of Larger Local Search Neighborhoods for
the Minimum Vertex Cover Problem. In: Conference on Arti�cial In-
telligence (AAAI). 2017, 846–852. Joint work with Christian Komusiewicz.

191

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Graph Theory
	2.2 Probability Theory
	2.2.1 Chernoff Bounds
	2.2.2 Bounded Differences
	2.2.3 Typical Bounded Differences

	2.3 Useful Inequalities

	3 Networks with Underlying Hyperbolic Geometry
	3.1 The Polar-Coordinate Model
	3.2 Hyperbolic Unit Disk Graphs
	3.2.1 The Structure of Unit Disk Graphs
	3.2.2 Adjacency in Strongly Hyperbolic Unit Disk Graphs
	3.2.3 Cliques in Strongly Hyperbolic Unit Disk Graphs
	3.2.4 Related Concepts

	3.3 Hyperbolic Random Graphs
	3.3.1 Definition
	3.3.2 Properties
	3.3.3 Vertex Distribution
	3.3.4 Hyperbolic Random Graphs with n Vertices in Expectation
	3.3.5 Neighborhoods

	4 Routing in Strongly Hyperbolic Unit Disk Graphs
	4.1 Introduction
	4.2 A Brief History of Routing Schemes
	4.2.1 Routing Schemes
	4.2.2 Local and Greedy Routing Schemes
	4.2.3 Routing in Practice

	4.3 Greedy Routing
	4.3.1 Combining Graph Distances
	4.3.2 Finding a Suitable Neighbor
	4.3.3 Tree-Cover-Based Greedy Routing

	4.4 Tree-Cover Algorithm
	4.5 Performance on Strongly Hyperbolic Unit Disk Graphs
	4.6 Empirical Evaluation

	5 Bidirectional BFS in Hyperbolic Random Graphs
	5.1 Introduction
	5.2 Bidirectional Breadth-First Search
	5.2.1 Euclidean Random Graphs
	5.2.2 Hyperbolic Random Graphs

	5.3 Concentration Bounds for the Sum of Vertex Degrees
	5.3.1 The Inner Part of the Disk
	5.3.2 The Central Part of the Disk
	5.3.3 The Outer Part of the Disk
	5.3.4 The Complete Disk

	5.4 Discussion

	6 Exact Vertex Cover in Hyperbolic Random Graphs
	6.1 Introduction
	6.2 Vertex Cover on Hyperbolic Random Graphs
	6.2.1 Dominance
	6.2.2 Simple Structure in the Outer Band

	6.3 Empirical Evaluation

	7 Approximate Vertex Cover in Hyperbolic Random Graphs
	7.1 Introduction
	7.2 An Improved Greedy Algorithm
	7.3 Approximation Performance
	7.3.1 The Inner Disk
	7.3.2 The Outer Band
	7.3.3 The Complete Disk

	7.4 Empirical Evaluation

	8 Conclusions and Outlook
	Bibliography
	List of Publications

