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Summary
The electrical resistivity tomography (ERT) method is widely used to investigate geo-

logical, geotechnical, and hydrogeological problems in inland and aquatic environments

(i.e., lakes, rivers, and seas). The objective of the ERT method is to obtain reliable

resistivity models of the subsurface that can be interpreted in terms of the subsurface

structure and petrophysical properties. The reliability of the resulting resistivity mod-

els depends not only on the quality of the acquired data, but also on the employed

inversion strategy. Inversion of ERT data results in multiple solutions that explain the

measured data equally well. Typical inversion approaches rely on different deterministic

(local) strategies that consider different smoothing and damping strategies to stabilize

the inversion. However, such strategies suffer from the trade-off of smearing possible

sharp subsurface interfaces separating layers with resistivity contrasts of up to several

orders of magnitude. When prior information (e.g., from outcrops, boreholes, or other

geophysical surveys) suggests sharp resistivity variations, it might be advantageous to

adapt the parameterization and inversion strategies to obtain more stable and geologi-

cally reliable model solutions. Adaptations to traditional local inversions, for example, by

using different structural and/or geostatistical constraints, may help to retrieve sharper

model solutions. In addition, layer-based model parameterization in combination with

local or global inversion approaches can be used to obtain models with sharp boundaries.

In this thesis, I study three typical layered near-surface environments in which prior

information is used to adapt 2D inversion strategies to favor layered model solutions. In

cooperation with the coauthors of Chapters 2-4, I consider two general strategies. Our

first approach uses a layer-based model parameterization and a well-established global

inversion strategy to generate ensembles of model solutions and assess uncertainties re-

lated to the non-uniqueness of the inverse problem. We apply this method to invert

ERT data sets collected in an inland coastal area of northern France (Chapter 2) and

offshore of two Arctic regions (Chapter 3). Our second approach consists of using geo-

statistical regularizations with different correlation lengths. We apply this strategy to a

more complex subsurface scenario on a local intermountain alluvial fan in southwestern

Germany (Chapter 4). Overall, our inversion approaches allow us to obtain resistivity

models that agree with the general geological understanding of the studied field sites.

These strategies are rather general and can be applied to various geological environ-

ments where a layered subsurface structure is expected. The flexibility of our strategies

allows adaptations to invert other kinds of geophysical data sets such as seismic refrac-

tion or electromagnetic induction methods, and could be considered for joint inversion

approaches.
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Zusammenfassung
Die ERT-Methode (Electrical Resistivity Tomography) wird häufig zur Untersuchung

geologischer, geotechnischer und hydrogeologischer Probleme im Binnenland und in

Gewässern wie beispielsweise Seen, Flüssen oder dem Meer eingesetzt. Das Ziel der

ERT-Methode ist es, zuverlässige Widerstandsmodelle des Untergrunds zu erhalten, die

in Bezug auf die Struktur des Untergrundes und dessen petrophysikalischer Eigenschaften

interpretiert werden können. Die Zuverlässigkeit der resultierenden Widerstandsmodelle

hängt nicht nur von der Qualität der erfassten Daten ab, sondern auch von der angewen-

deten Inversionsstrategie. Die Inversion von ERT-Daten führt zu mehreren Lösungen,

die die gemessenen Daten gleich gut erklären. Typische Inversionsansätze basieren auf

verschiedenen deterministischen (lokalen) Strategien, die verschiedene Glättungs- und

Dämpfungsstrategien berücksichtigen, um die Inversion zu stabilisieren. Diese Strate-

gien haben jedoch den Nachteil, möglicherweise auftretende scharfe Grenzflächen zu

verwischen. Es gibt jedoch Szenarien, in denen der Untergrund durch Schichten mit

scharfen Grenzflächen gekennzeichnet ist, die Schichten mit hohem Widerstandskon-

trast (z. B. bis zu mehreren Größenordnungen) voneinander trennen. Wenn Vor-

wissen (z. B. aus Aufschlüssen, Bohrungen oder anderen geophysikalischen Unter-

suchungen) auf scharfe Widerstandsvariationen hindeutet, kann es von Vorteil sein, die

Parametrisierungs- und Inversionsstrategien anzupassen, um stabilere und geologisch zu-

verlässige Modelllösungen zu erhalten. Anpassungen traditioneller lokaler Inversionen,

beispielweise durch die Verwendung verschiedener struktureller und/oder geostatistis-

cher Bedingungen, können helfen, schärfere Modelllösungen zu erhalten. Zusätzlich

kann eine schichtbasierte Modellparametrisierung in Kombination mit lokalen oder glob-

alen Inversionsansätzen verwendet werden, um Modelle mit scharfen Grenzen zu erhalten.

In dieser Arbeit habe ich drei typische geschichtete oberflächennahe Umgebungen un-

tersucht, in denen Vorabinformationen verwendet werden, um 2D-Inversionsstrategien so

anzupassen, dass geschichtete Untergrundlösungen bevorzugt werden. In Zusammenar-

beit mit den Co-Autoren der Kapitel 2-4 habe ich zwei allgemeine Strategien in Betracht

gezogen. Unser erster Ansatz verwendet eine schichtbasierte Modellparametrisierung

und eine gut etablierte globale Inversionsstrategie. Diese Strategie erzeugt Ensembles

von Modelllösungen mithilfe derer die Unsicherheiten im Zusammenhang der Nicht-

Eindeutigkeit des inversen Problems bewertet werden können. Wir wenden diese Meth-

ode an, um ERT-Datensätze zu invertieren, die in einem Binnenküstengebiet in Nord-

frankreich (Kapitel 2) und vor der Küste zweier arktischer Regionen (Kapitel 3) gesam-

melt wurden. Unser zweiter Ansatz besteht darin, geostatistische Regularisierungen mit

unterschiedlichen Korrelationslängen zu verwenden. Wir wenden diese Strategie auf ein
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komplexeres Untergrundszenario an, das sich auf einen lokalen Schwemmfächer in einem

Mittelgebirge im Südwesten Deutshclands umfasst (Kapitel 4). Insgesamt ermöglichen

uns unsere Inversionsansätze, Widerstandsmodelle zu erhalten, die mit dem allgemeinen

geologischen Verständnis der untersuchten Feldstandorte übereinstimmen. Diese Strate-

gien sind allgemeingültig und können in verschiedenen geologischen Umgebungen ange-

wandt werden, in denen eine geschichtete Struktur des Untergrunds zu erwarten ist.

Zudem erlaubt es die Flexibilität unserer Strategien, dass diese an die Inversion an-

derer geophysikalischer Datensätze wie seismischer Refraktionsmessungen oder elektro-

magentischer Induktionsverfahren angepasst werden können. Außerdem könnten solche

Strategien für gemeinsame Inversionsansätze in Betracht gezogen werden.
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Introduction

Direct observations from outcrops and boreholes are key to studying and understanding

different near-surface environments. However, outcrops may be scarce, have unrevealing

orientations, and be far from our study area (Hickin et al., 2009). In contrast, borehole

soundings can be performed at selected locations and provide detailed vertical records

of the subsurface geology; nevertheless, they only provide punctual information. There-

fore, creating interpolations and extrapolations in vertical and horizontal directions based

on available outcrops and boreholes might be inadequate (Bazin and Pfaffhuber, 2013;

Nickschick et al., 2019), especially in highly heterogeneous environments such as braided

sedimentary systems (e.g., Hermans and Irving, 2017; Klingler et al., 2020).

To complement the understanding of the spatial variation of the subsurface configu-

ration, indirect observation using near-surface geophysical techniques, with investigation

depths of up to 30 m (as in our later shown examples), can reveal the general stratigraphy

and hydrogeological conditions. Among the most used geophysical imaging techniques

to study the near-surface structure and/or composition are different electric, electro-

magnetic, and seismic methods (Day-Lewis et al., 2005; Reynolds, 2011; Everett, 2013).

Because this thesis focuses on the electrical resistivity tomography (ERT) method ap-

plied to layered sedimentary environments, I first introduce some general background

of the ERT method, followed by a revision of typical inversion approaches and their

adaptations to investigate layered geological environments. Finally, I present the main

objectives and an outline of this thesis.

1.1 The electrical resistivity tomography method

The ERT method has been broadly used to estimate the distribution of subsurface resis-

tivity (or its reciprocal electrical conductivity) and has been successfully applied to differ-

ent geological, geotechnical, hydrogeological, and environmental problems (e.g., Dahlin,

2001; Loke et al., 2013). The resistivity of subsurface materials depends on porewater

fluids, porosity, bulk rock composition, temperature, and particle’s size, shape, and ori-

entation, which typically varies within different geological layers (e.g., Revil and Glover,
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Chapter 1. Introduction

1998; Rey and Jongmans, 2007; Shevnin et al., 2007; Kang and Lee, 2015; Wu et al.,

2017). Therefore, the ERT method is a suitable tool to investigate the content, com-

position, and state of the water (e.g., Robinson et al., 2008; Garré et al., 2012; Wagner

et al., 2019); the grain size distribution (e.g., Baines et al., 2002; Hickin et al., 2009;

Gonzales Amaya et al., 2019; Schoch-Baumann et al., 2022); and the general subsurface

composition and structure (e.g., Gourry et al., 2003; Hirsch et al., 2008; Schrott and

Sass, 2008). In resistivity surveying, the standard workflow consists of data collection,

processing, inversion, and interpretation.

Fig. 1.1. 2D ERT data collection in (a) inland (source: Julien Guillemoteau) and (b) offshore
(source: Michael Angelopoulos) field sites.

To collect 2D ERT data, an array of typically equally spaced electrodes are coupled

to the ground or water along a straight profile line (Fig. 1.1a and b). An electrical

current is injected into the ground using two current electrodes (A and B in Fig. 1.2)

and the voltage is measured in two voltage electrodes (M and N in Fig. 1.2). Here, this

set of four electrodes is referred to as a quadripole. In Fig. 1.2, the electric current flows

from electrode B (source) to A (sink) which generates different voltages recorded by

electrodes M and N. By repeating such measurements considering different quadripoles

along a profile line, we can investigate different subsurface sections. To obtain the

distribution of the apparent resistivities, we need to calculate the product between the

measured impedances (i.e., injected current divided by the measured voltage) and the

geometric factors (Rücker et al., 2006; Günther et al., 2006), which are in function of

the relative distances between electrodes for each considered quadripole (e.g., Reynolds,

2011). The measured apparent resistivity data are typically visualized as pseudosec-

tions where the horizontal axes represent the center position of each quadripole and the

vertical axes the relative penetration or levels (i.e., deeper levels often indicate larger

penetration depths). Although 2D ERT data is collected along a profile line, we should

be aware that every measured apparent resistivity depends on the resistivity distribution

of a 3D volume. Therefore, to reduce the influence of 3D resistivity variations, 2D ERT

2



1.1. The electrical resistivity tomography method

profiles should be perpendicular to the strike of the major structures (Loke et al., 2013).

Within the most popular acquisition configurations in 2D ERT surveying are sym-

metric array configurations such as Wenner and Schlumberger configurations. In these

array configurations, the potential electrodes are located in the center while the current

electrodes are on the outer sides (see Fig. 1.2). When the distance between the neigh-

boring electrodes (A-M, M-N, and N-B) are equal, this corresponds to the Wenner array

configuration. If the distance between M-N is smaller than between A-M and N-B is

called the Schlumberger array configuration. The mix of these geometric configurations

results in the Wenner-Schlumberger array configuration, which was adopted to acquire

our ERT data in our later shown examples. For more details regarding these and other

standard array configurations and their associated sensitivity distributions, please refer

to Furman et al. (2003), Dahlin and Zhou (2004), and Stummer et al. (2004).

The acquisition strategy differs for ground-based and aquatic ERT surveys. In

ground-based ERT surveys, the measurements are typically collected using stainless-

steel stakes at fixed positions. Moving a subset of electrodes from the beginning to the

end of the profile (roll-along) allows for extending the length of the profile while keeping

similar investigation depths; i.e., when having comparable subsurface resistivity distribu-

tions. ERT data acquisition in water bodies (e.g., sea, lake, or river) is often performed

using floating graphite electrodes that allow for continuous resistivity profiling; i.e., while

the boat pulling the electrode streamer is in motion (e.g., Day-Lewis et al., 2006; Over-

duin et al., 2012; Befus et al., 2014; Hermans and Paepen, 2020). Another acquisition

approach is to deploy electrodes on the water bottom, which is used to decrease the

effect of current channeling under saltwater conditions (e.g., Befus et al., 2014).

After data collection, data with a low signal-to-noise ratio may be removed to avoid

artifacts during data inversion (e.g., Zhou and Dahlin, 2003; Coscia et al., 2011). We

can derive data quality indicators (e.g., standard deviation) from repeated and/or recip-

rocal measurements (e.g., Zhou and Dahlin, 2003; Nickschick et al., 2019). Repeated

measurements are acquired considering the same position of the current and voltage

electrodes, while reciprocal measurements reverse the position of the current and volt-

age electrodes. Repeated/reciprocal data are not always performed to reduce acquisition

time or logistic difficulties (e.g., during continuous resistivity profiling). Still, when ac-

quired, they provide helpful information to estimate data errors and filter bad-quality

data points (i,e., values larger than an expected noise level). In addition, such error es-

timations can be used later as weighting factors during inversion; e.g., data points with

less variation may have a more significant influence during inversion (e.g., Günther et al.,

2006). However, we should be aware that such error estimations are not always accu-

3



Chapter 1. Introduction

Fig. 1.2. Normalized potential distribution after applying a constant current and consid-
ering a homogeneous half-space resistivity. The labels A and B represent the current elec-
trodes, and M and N are the voltage electrodes. The current flow is presented as simplified
streamlines and the voltage as discretized colors from -1 and 1. Modified from pyGIMLi
(https://www.pygimli.org/).

rate, as there may be other sources of noise that are not revealed by repeated/reciprocal

measurements (Zhou and Dahlin, 2003). Another approach might consist in removing

data with large geometrical factors or low recovered voltages (e.g., Ronczka et al., 2015).

Once the low-quality data points have been removed, the remaining apparent resistivities

are inverted. Coscia et al. (2011) used a two-step approach to remove low-quality data

points. After a first inversion, they remove data points whose residuals are greater than

five times the standard deviation of the distribution of the residuals, and the inversion is

performed again. Furthermore, one might resample the original data set (e.g., by using

a bootstrap approach) to create sub-sets of data points that are inverted and analyzed

to infer possible errors introduced into the model by data noise while also providing

hints about feature robustness (Schnaidt and Heinson, 2015). A brief overview of some

inversion strategies is presented in the following section.

1.2 Inversion

The inversion of ERT data is an ill-posed problem; i.e., a set of model solutions (ensem-

ble) describes the data equally well in terms of data fit (Ramirez et al., 2005; Fernández-

Mart́ınez et al., 2017; Aleardi et al., 2021b). To solve the inverse problem in geophysics,

deterministic or local (e.g., Gauss-Newton and conjugate gradient) and stochastic or

4
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1.2. Inversion

global (e.g., genetic algorithms and particle swarm optimization) methods are often

used (Aster et al., 2013; Sen and Stoffa, 2013). For this, the space is discretized con-

sidering unstructured and structured meshes. The main limitation of structured grids

is that it needs to add a large number of mesh cells when having abrupt topography

and subsurface interfaces. In contrast, unstructured meshes allow for local mesh refine-

ment in areas of interest (e.g., subsurface interfaces) without significantly increasing the

number of mesh cells. Libraries like Triangle (Shewchuk, 1996) and Tetgen (Si, 2015)

allow for rapid creation of unstructured meshes and have boosted geophysical software

development like the Python library pyGIMLi (Rücker et al., 2017), which is used to

process and invert our later shown 2D ERT examples.

During the optimization process, the resistivities of each cell or a set of cells (e.g.,

layer-based model parameterization, in the following abbreviated as LBMP) are updated

in every iteration until it results in data misfit values comparable with the expected noise

level. Typical measures of data misfit are the L1 norm (sum of the absolute values of the

data residuals), L2 norm (square root of the sum of the squares of the data residuals),

and chi-square (sum of the squares of the ratio between data residuals and data errors).

Models obtained using the L1 norm often result in models with sharper resistivity con-

trasts than when using the L2 norm (Loke et al., 2003; Auken and Christiansen, 2004;

Barboza et al., 2018). Additionally, the L1 norm is more robust in the presence of noise

and data outliers (Fernández-Mart́ınez, 2015). On the other hand, Günther et al. (2006)

suggests that chi-square misfit values between 1 and 5 result in reliable models without

overfitting or underfitting the data. Updating the model in a cell-wise fashion may result

in a highly non-unique problem where many models might not be realistic regarding

geological structures. Therefore, different regularization strategies are employed in most

local inversion approaches.

Local inversion approaches with different regularization schemes (i.e., based on

smoothing and damping strategies) favor minimum structure models by keeping small dif-

ferences between resistivity values of neighboring cells and from a reference model (e.g.,

Loke and Barker, 1996; Günther et al., 2006). Applying such regularization schemes

results in more stable model solutions while decreasing the non-uniqueness of the inverse

problem. Furthermore, adaptations of smooth inversions of ERT data allow constraining

the inverse problem by weighting the model parameters by known resistivity values (e.g.,

from well log measurements) or boundaries derived from geological and/or other kinds

of geophysical methods (e.g., Bazin and Pfaffhuber, 2013). Adding prior information

may help to obtain more realistic model solutions. For example, the water resistivity

and bathymetric profiles are often measured during aquatic surveys using conductivity

meter and echo sounder devices, respectively. Such information can be used to fix or
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Chapter 1. Introduction

allow small variations of the resistivity and depth of the water layer during inversion

(e.g., Overduin et al., 2012; Angelopoulos et al., 2019). Similarly, we could also include

interfaces derived from other geophysical methods like ground-penetrating radar (e.g.,

Doetsch et al., 2012) and seismics (Bergmann et al., 2014; Ronczka et al., 2017).

One limitation of smooth inversion approaches (with isotropic constraints) is that

these yield structures with comparable horizontal and vertical sizes. However, this is not

a typical case for many near-surface geological environments where the lateral extent

of different geological units can be more than an order of magnitude larger than their

vertical extent as reported in alluvial systems (e.g., Gelhar, 1993). To favor model solu-

tions with structures with different horizontal/vertical ratios, one strategy is weighting

the spatial derivative to control the degree of smoothness in different directions (e.g.,

Coscia et al., 2011). In addition, geostatistical constraints might help to guide the inver-

sion results for structures with different correlation lengths in the horizontal and vertical

directions (Jordi et al., 2018).

When inverting ERT data, the objective function topography is typically character-

ized by several hills and valleys. Models falling in the same topography region have

similar models in terms of the data misfit, general structure, and resistivity distribution

(e.g., Ramirez et al., 2005; Fernández-Mart́ınez et al., 2017). The objective function

topography is typically smoothed by local inversion approaches, which requires a good

starting model to converge to a plausible solution (Sen and Stoffa, 2013). In contrast

to local inversion approaches, global inversion strategies do not rely on gradient-based

strategies, and the starting model is usually randomly defined. Therefore, to better study

and characterize the solution space, different global inversion approaches could be used

instead.

Repeating several inversion runs to generate multiple model solutions (ensemble) us-

ing a global inversion algorithm will likely converge into different valleys of the objective

function topography (i.e., equivalent model solutions). Additionally, we can use clus-

ter analysis to obtain equivalent model solutions (clusters) from the original ensemble

of model solutions (e.g., Ramirez et al., 2005; Fernández-Mart́ınez et al., 2017). To

summarize the information of each cluster, we can use different statistical descriptors;

for example, the central trend can be described by using the mean or the median, and

the variability by using the standard deviation or the interquartile range (e.g., Ramirez

et al., 2005; Fernández-Mart́ınez et al., 2017; Aleardi et al., 2021a,b). These statistical

descriptors might be calculated in a pixel-wise fashion or by adapting more advanced

approaches like structural similarity attributes commonly used in time-lapse geophysical

experiments (e.g., Allroggen and Tronicke, 2016).
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It is well known that global inversion algorithms are computationally expensive be-

cause they typically require evaluating the forward operator thousands of times for every

inversion run (i.e., until we reach a certain misfit value or a number of iterations).

Therefore, it is always wished to have a reduced number of model parameters to speed

up conversion rates. It is important to consider that model reduction simplifies the to-

pography of the cost function, reducing the variability within a set of plausible model

solutions, but it compromises the model resolution (Fernández-Mart́ınez, 2015; Grana

et al., 2019). For example, Vinciguerra et al. (2022) used discrete cosine transform

(DCT) to describe ERT models with a reduced number of parameters and perform in-

version using a differential evolution Markov chain sampling strategy. Although results

are comparable to those from traditional smooth inversion approaches, their strategy also

allows for recovering model uncertainties. Similar compression strategies to DCT are the

wavelet discrete transform and the Chebyshev discrete transform (Fernández-Mart́ınez,

2015). Alternative to these compression strategies, LBMP can also significantly reduce

the number of model parameters while favoring sharp subsurface resistivity distributions

as often found in many geological environments (e.g., Auken and Christiansen, 2004;

Akça and Basokur, 2010; De Pasquale et al., 2019).

1.3 Investigating layered environments

Near-surface geological environments typically consist of different layers, which are likely

characterized by different resistivity distributions. Therefore, the ERT method can be

a valuable tool for investigating such layered subsurface configurations. As illustrated

above, local inversion methods typically result in smoothed model solution where any

naturally occurring interface is smeared out (e.g., De Pasquale et al., 2019). However,

user-specified resistivity thresholds based on additional field data or the expertise of the

interpreter can be used to infer sharp interfaces that separate different subsurface units.

For example, Overduin et al. (2016) and Angelopoulos et al. (2019) studied two subsea

permafrost field sites and suggested that the depth to the ice-bearing permafrost table

(IBPT) is defined for an approximate value of resistivity between 10 Ωm and 100 Ωm.

In a similar fashion (but considering models with different resistivity distributions and

user-defined thresholds), Hilbich et al. (2022) studied the contact between unfrozen and

frozen sediments in high mountain areas; Beauvais et al. (2004), Giao et al. (2008),

and Clair et al. (2015) distinguished regolith from unweathered bedrock; Schrott and

Sass (2008) and Crawford et al. (2015) delineated failure surfaces of landslides; Baines

et al. (2002), Gonzales Amaya et al. (2019), and Hirsch et al. (2008) interpreted alluvial

layers with different grain size distributions, and Ronczka et al. (2015) distinguished a

freshwater-saltwater interface in an aquifer system.
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Different image processing techniques might be applied to avoid defining arbitrary

resistivity thresholds to interpret sharp interfaces in smooth models. For example, Hsu

et al. (2010) used a laplacian edge detection algorithm to study the sediment fill above

the bedrock in alluvial floodplain deposits. To study a similar geological setting, Cham-

bers et al. (2012) employed an edge detection algorithm based on the first derivative of

resistivity profiles while Ward et al. (2014) considered a distribution-based fuzzy c-means

clustering strategy. The main drawback of these image processing methods is that their

performance highly depends on the reliability of the inverted models, which might result

in shifted and/or unrealistic interfaces. In this case, other approaches like constraining

the smooth inversion or adapting the parameterization strategies might be more helpful.

Structural and petrophysical information can be used to constrain smooth inversions

(e.g., Günther et al., 2006; Wagner and Uhlemann, 2021). For example, Nickschick

et al. (2019) studied a sedimentary basin using a smoothness-constrained approach and,

following Coscia et al. (2011), weighted the vertical gradients such that they are ten

times less penalized than the horizontal gradients. Thus, they obtained more realis-

tic layered structures as suggested by available borehole data. In addition, Jordi et al.

(2018) used geostatistical regularizations to obtain more layered model solutions con-

sistent with stratified and inclined calcareous rocks. Because correlation lengths of the

resistivity model parameters are not often known, these authors suggested testing dif-

ferent reasonable correlation lengths and evaluating their impact in the final inverted

model. Doetsch et al. (2012) included GPR reflection interfaces to invert ERT data

decoupling the regularization across the interfaces to obtain sharp interfaces and, thus,

characterize the layering in an alluvial aquifer. Thibaut et al. (2021) combined a smooth

constraint solution and a minimum gradient support approach to derive sharp interfaces

from ERT data. After applying this approach to a data set collected in a gold deposit,

they distinguished sedimentary rocks from crystalline rocks and identified the mineral-

ized areas. The reader is referred to Caterina et al. (2014) for a detailed comparison of

different smoothness-constrained inversions.

Although smoothness-constrained inversions can provide layered resistivity models,

they still smear plausible sharp interfaces. Alternatively, sharp interfaces can be obtained

by using LBMP. For example, Olayinka and Yaramanci (2000) compared smooth and

block inversion results. For the block inversion, these authors investigated the influence

of using a two layers model as starting model to resolve sharp subsurface models associ-

ated with a waste dump deposit overlying bedrock. Additionally, Auken and Christiansen

(2004) proposed a layered laterally constrained 2D inversion algorithm and illustrated

its applicability to resolve alluvial sedimentary layers with different grain size distribu-

8



1.4. Objectives and outline of this thesis

tions and the depth to bedrock. Considering borehole data, these authors demonstrated

how such an approach outperforms traditional smooth inversion considering L1 and L2

norms. Juhojuntti and Kamm (2015) based on the parameterization strategy of Auken

and Christiansen (2004) developed a method to jointly invert ERT and seismic refraction

data. These authors showed that such a strategy helps separate the water table and

bedrock interfaces. Alternatively, instead of using 2D inversion algorithms, Auken et al.

(2005) proposed a 1D laterally constrained approach to invert resistivity data collected

using continuous resistivity profiling. To demonstrate the applicability of this algorithm,

these authors investigated a sedimentary environment where they separated sandy from

clayey layers. This parameterization approach was later adopted by Angelopoulos et al.

(2020b) to investigate the thawed and frozen sediments in an Arctic lagoon. A simple

and interesting approach is proposed by Hoffmann and Dietrich (2004), who used a set

of 1D resistivity model solutions to generate different starting models for local 2D ERT

inversions. These authors suggested that the 1D model solutions could be used to sup-

port the interpretation of possible layered structures that were smeared during the 2D

local inversion.

It is important to note that in terms of an objective function, the minimum-structure

smooth inversion usually results in smaller data misfit than layer-based inversion due to

more freedom to introduce heterogeneity, especially in the shallowest levels (Juhojuntti

and Kamm, 2015). However, using LBMP has shown to be a powerful strategy to obtain

realistic model solutions while decreasing the number of parameters which is attractive

for different global optimization algorithms. For example, Akça and Basokur (2010)

used a genetic algorithm and a LBMP consisting of interfaces defined by piecewise cubic

Hermite interpolation to delineate the landfill area of a waste disposal site. De Pasquale

et al. (2019) used an empirical-Bayes-within-Gibbs inversion algorithm using a model

with one interface defined by connected nodes to image the regolith-bedrock interface.

1.4 Objectives and outline of this thesis

This thesis aims to illustrate the potential of different adapted inversion strategies for

2D electrical resistivity data to investigate and elucidate the general subsurface struc-

ture in layered near-surface environments. Additionally, this thesis aims to quantify the

uncertainties associated with the non-uniqueness of the ERT inversion problem.

In Chapter 2, I propose a workflow to derive uncertainties of globally inverted ERT

data associated with layered models. Using a three-layer synthetic model and a field

example in an onshore coastal aquifer, I demonstrate that the non-uniqueness of the

2D ERT inversion problem can be addressed by (1) incorporating prior and geological
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background information into the inversion procedure, (2) simplifying the parameteriza-

tion strategy (e.g., LBMP), and (3) generating and analyzing an ensemble with multiple

model solutions. To analyze the ensemble from step (3), I first use cluster analysis to

group or cluster similar model solutions where the central trend models (e.g., median

models) represent equivalent model solutions, and the variabilities (e.g., interquartile

range model) represent the associated uncertainties.

In Chapter 3, I use the workflow developed in Chapter 2 to investigate layered sub-

sea permafrost environments. In this Chapter, I investigate the capabilities of the ERT

method to identify the interface defined by the thawed and frozen sediments in two Arctic

regions with different environmental conditions (e.g., water depth and water resistivity).

For this, I evaluate the impact of constraining the water layer depth and resistivity, which

show, after sensitivity analysis, to be the parameters with the most significant influence

during inversion.

In Chapter 4, I study the influence of applying different geostatistical regularizations

to invert ERT data collected in a more complex subsurface scenario (i.e., in terms of

the horizontal and vertical resistivity variations) on a local intermountain alluvial fan in

southwestern Germany. Furthermore, I compare the ERT inversion results with electro-

magnetic induction and ground-penetrating radar models.

Finally, in Chapter 5, I discuss the main findings of this thesis and highlight possible

research paths in the direction of global inversion and parameterization strategies to

investigate layered subsurface environments.
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2

A comprehensive workflow to analyze ensem-

bles of globally inverted 2D electrical resistiv-

ity models

This chapter is published as:

Arboleda-Zapata, M., Guillemoteau, J., and Tronicke, J., 2022. A comprehensive work-

flow to analyze ensembles of globally inverted 2D electrical resistivity models, Journal of

Applied Geophysics, 196, 104 512, https://doi.org/10.1016/j.jappgeo.2021.104512.

Abstract

Electrical resistivity tomography (ERT) aims at imaging the subsurface resistivity dis-

tribution and provides valuable information for different geological, engineering, and

hydrological applications. To obtain a subsurface resistivity model from measured ap-

parent resistivities, stochastic or deterministic inversion procedures may be employed.

Typically, the inversion of ERT data results in non-unique solutions; i.e., an ensemble

of different models explains the measured data equally well. In this study, we perform

inference analysis of model ensembles generated using a well-established global inversion

approach to assess uncertainties related to the non-uniqueness of the inverse problem.

Our interpretation strategy starts by establishing model selection criteria based on differ-

ent statistical descriptors calculated from the data residuals. Then, we perform cluster

analysis considering the inverted resistivity models and the corresponding data residuals.

Finally, we evaluate model uncertainties and residual distributions for each cluster. To

illustrate the potential of our approach, we use a particle swarm optimization (PSO)

algorithm to obtain an ensemble of 2D layer-based resistivity models from a synthetic

data example and a field data set collected in Loon-Plage, France. Our strategy performs

well for both synthetic and field data and allows us to extract different plausible model

scenarios with their associated uncertainties and data residual distributions. Although we

demonstrate our workflow using 2D ERT data and a PSO-based inversion approach, the

proposed strategy is general and can be adapted to analyze model ensembles generated

from other kinds of geophysical data and using different global inversion approaches.
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Chapter 2. A comprehensive workflow to analyze ensembles of globally inverted 2D
electrical resistivity models

2.1 Introduction

Electrical resistivity tomography (ERT) is a popular geophysical method typically used in

different hydrological, geotechnical, environmental, geological, and engineering applica-

tions (Loke et al., 2013). In resistivity surveying, the standard workflow consists of data

acquisition, processing, inversion, and interpretation. During 2D ERT data acquisition,

two electrodes inject an electrical current into the ground while another pair of elec-

trodes measure the voltage. Such quadripole configurations are performed at different

positions and spacings along a profile to obtain a 2D pseudo-section of the apparent

resistivities calculated from the measured voltages. The next step is data evaluation and

processing, which typically consists of checking data quality and editing/filtering erro-

neous readings (e.g., related to electrode coupling problems). Subsequently, the filtered

data are inverted to reconstruct a 2D resistivity model of the subsurface. Finally, in-

verted resistivity models are interpreted (e.g., in terms of geological structures) typically

considering the sensitivity matrix (e.g., Oldenburg and Li, 1999; Furman et al., 2003) to

exclude unresolved model areas from the interpretation.

According to Günther et al. (2006) and Loke et al. (2013), if the data set is in-

complete, inconsistent, or noisy, the inverse problem is ill-posed and characterized by

a non-unique solution; i.e., an ensemble of model solutions describes the data equally

well (e.g., Fernández-Mart́ınez et al., 2017; De Pasquale et al., 2019). Different ap-

proaches have been suggested to generate an ensemble of models that are consistent

with a given geophysical data set. On the one hand, there are strategies that use lo-

cal inversion routines considering different initial conditions (e.g., Vasco et al., 1996)

and/or regularization parameters (e.g., Constable et al., 2015). On the other hand,

there are strategies whose objective is to obtain solutions independent of starting mod-

els or regularization parameters using global optimization approaches. For example, such

global inversion strategies are based on genetic algorithms (e.g., Stoffa and Sen, 1991;

Akça and Basokur, 2010), particle swarm optimization (e.g., Shaw and Srivastava, 2007;

Fernández-Mart́ınez et al., 2010; Tronicke et al., 2012), simulated annealing (e.g., Roth-

man, 1985; Sen and Stoffa, 1991), and Monte Carlo methods (e.g., Tarantola, 2005;

Cordua et al., 2012).

To analyze and interpret the generated ensemble of solutions, different approaches

have been proposed in the literature. For example, Sen and Stoffa (1996) and de Groot-

Hedlin and Vernon (1998) analyzed the correlation matrix to estimate the trade-off

between individual model parameters. Sambridge (1999) used a neighborhood algorithm

to resample the parameter space and, then, calculated the resolution matrix and the

trade-off in the model parameter space. Tompkins et al. (2011) proposed a strategy
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called cut-off maps which consists of a pixel-wise calculation of specific quantiles of

the model ensemble. Tronicke et al. (2012), Fernández-Mart́ınez et al. (2012), and

Zhu and Gibson (2018) used statistical measures such as the ensemble mean or median

to characterize the central tendency of the ensemble whose uncertainties are assessed

through dispersion measures such as the standard deviation or the interquartile range.

Furthermore, Hermans et al. (2015), Fernández-Mart́ınez et al. (2017), and De Pasquale

et al. (2019) applied probability maps to study the uncertainties for a particular range of

model parameters such as resistivities associated, for example, with a specific geologic

unit, and Scheidt et al. (2018) studied the variability of a set of models using orthogonal

component analysis.

Whether to use the entire ensemble of solutions for posterior analysis or not, is a

question that has been addressed in previous studies. Lomax and Snieder (1995) in a

synthetic experiment of seismic dispersion curves apply a threshold criteria accepting the

inverted models which are less than 0.85 times the applied noise level of the synthetic

data to ensure suitable model solutions. Douma et al. (1996) and Douma and Haney

(2013) used empirical orthogonal functions to reject the models that add the most vari-

ability to the ensemble. Alternatively, Vasco et al. (1996) and Sambridge (1999) consider

all model solutions but introduce different weighting criteria to derive posterior statistics.

Such an approach helps to consider information that may be contained in not converged

models and, thus, might also be useful to guide resampling strategies (e.g., Sambridge,

1999). Barboza et al. (2018, 2019) proposed a quality measure for a set of solutions

considering both the global error and the quantile 90 % of the residuals (i.e., the differ-

ences between the measured and calculated data). Vasco et al. (1996), Ramirez et al.

(2005), and Fernández-Mart́ınez et al. (2017) used cluster analysis strategies to group

models that are similar to each other and, then, performed posterior statistical analysis

for each cluster.

In this study, we adapt some of these ideas and propose a logical and unified workflow

to interpret ensembles of 2D ERT inversion results. Our ensemble inference strategy

starts with formulating a model rejection criterion that considers different statistical

measures calculated from the residuals. Then, we evaluate the variability of the resulting

reduced ensemble, including the identification of potential model groupings using cluster

analysis. Finally, we assess model uncertainties including the structure of residuals for

each identified group of models. To illustrate our workflow, we use a global inversion

strategy for generating an ensemble of possible model solutions for two 2D ERT data

sets. The first data set corresponds to a synthetic example created considering a three-

layer input model, while the second one represents a field data set collected in a coastal

environment in Loon-Plage, France.
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2.2 Methodology

We summarize our workflow for ensemble interpretation in Fig. 2.1. In the first step, we

create an ensemble of resistivity models representing possible solutions for the considered

2D ERT inverse problem. Then, we filter this ensemble considering a statistical analysis

of the corresponding residual distributions. Previous to any further posterior analysis,

we interpolate all models to a common mesh to allow for pixel-wise calculations and

analyses. Next, we perform cluster analysis to group the models and their corresponding

residual data. Finally, we use the models from each cluster to assess uncertainties

using probability maps and statistical descriptors of the central tendency and dispersion.

Similarly, we use the data residuals from each cluster to evaluate the residual distribution

in a pixel-wise fashion using global statistical descriptors. In the following subsections,

we explain each of these steps in more detail.

Generate ensemble
of solutions

Model selection based
on residual statistics

Interpolate accepted models
to a common finer mesh

Clustering in nk families considering
model values and residual error

Analyzing
sets of models

Analyzing sets of
data residuals

Probability map
(pixel-wise)

Central tendency
and dispersion

(pixel-wise)

Global statistical
descriptors

Fig. 2.1. Flow diagram illustrating the proposed interpretation strategy of model ensembles
containing potential solutions of a 2D ERT inversion problem. The individual steps of this
workflow are explained in more detail in Sections 2.2.1 to 2.2.6.

2.2.1 Generating an ensemble of solutions

To generate an ensemble consisting of nm solutions (the first step in Fig. 2.1), we invert

our 2D ERT data sets using a particle swarm optimization (PSO) algorithm considering

a layer-based model parameterization as described in more detail by Tronicke et al.

(2012) and Rumpf and Tronicke (2014, 2015). Our model parameterization relies on

sums of arc-tangent functions (Roy et al., 2005), which represent the interfaces between

individual layers. For a single interface, this can be written as

14



2.2. Methodology

z(x) = z0 +

nnod∑
j=0

∆zj

(
0.5 +

1

π
tan−1

(
x− xj

bj

))
, (2.1)

where z is the depth, nnod is the number of arc-tangent nodes, z0 is the average depth

of the interface, xj is the horizontal location of an arc-tangent node, and ∆zj is the

vertical throw attained asymptotically over a horizontal distance of bj. One advantage

of this strategy is its flexibility because Eq. (2.1) allows the representation of various

interface geometries including, for example, step-like or smooth variations with depth.

When inverting 2D ERT data using this model parameterization, the number of model

parameters npar required to describe a resistivity model m consisting of nint interfaces

is given by

npar = (nint + 3

nint∑
i=1

nnodi) + (nint + 1), (2.2)

where the first term indicates the number of parameters needed to describe the in-

terface structure and the second term the number of homogeneous layers (i.e., layers

with specific resistivity ρ). It should be noted that such a layer-based parameterization

may introduce some bias, and some features may not be resolved (e.g., Rosas-Carbajal

et al., 2014). However, if a priori information (e.g., regarding the geological settings) in-

dicates a layered subsurface, such an approach may help to provide more realistic model

solutions (e.g., Smith et al., 1999; Auken and Christiansen, 2004; Boiero and Socco,

2014; Juhojuntti and Kamm, 2015; De Pasquale et al., 2019) and to reduce the number

of model parameters making it attractive for global inversion approaches such as the

PSO-based strategy used in this study.

During PSO-based inversion, a swarm of particles explores the model-parameter space

and the goodness of a model (i.e., parameter combination) is evaluated by a predefined

objective function. Here, we use the root mean square logarithmic error RMSLE defined

as

RMSLE =

√√√√ 1

nd

nd∑
i=0

e2
i , (2.3)

where nd is the number of data points, and e is the vector of residuals calculated by

e = log(dcal)− log(dobs). (2.4)

Here, dobs represents the observed and dcal the calculated data vector (note that

e can be rewritten as log(dcal/dobs) which results in a dimensionless quantity). To

obtain dcal, we use the forward operator as implemented in the software package BERT
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(Günther et al., 2006; Rücker et al., 2006) considering an adaptive unstructured mesh

(i.e., a new mesh is generated for each particle and for each iteration during the PSO-

based inversion) that is created using the python library pyGIMLi (Rücker et al., 2017).

During optimization, the PSO algorithm assesses two points of attraction; i.e., the best

solution of each individual particle and the best solution of all particles. Together with

some random perturbations, these control the movement of the particle swarm in the

model parameter space. If the optimization meets a predefined stopping criterion, such

as a threshold of the objective function or a maximum number of iterations, we save

the final best model. By repeating the inversion using different seeds of the random

number generator, we generate an ensemble of independent model solutions M =

[m1,m2, ...,mnm ] and the corresponding residuals δ = [e1, e2, ..., enm ]. Further details

regarding this PSO-based global inversion strategy are given by Fernández-Mart́ınez et al.

(2010) and Tronicke et al. (2012). To evaluate if we obtained a representative ensemble

of models, we inspect that there are no significant variations in the posterior correlation

matrix after adding more model solutions to our ensemble as outlined by Sen and Stoffa

(2013).

2.2.2 Model selection process

Although we employ a global inversion method, some optimization runs might not con-

verge; i.e., get trapped in a local minimum and resulting in an inverted model with

poorly fitted data. Considering these models in the posterior analysis could be mislead-

ing for the interpretation (e.g., Lomax and Snieder, 1995; Douma et al., 1996). Thus,

we use a model selection criterion based on globally evaluating δ (the second step in

Fig. 2.1) considering the root mean square logarithmic error RMSLE(δ), the interquartile

range IQR(δ), and the quantile 90 % q90(δ). In the end, we accept models satisfying

RMSLE(δ) ≤ t1, IQR(δ) ≤ t2, and q90(δ) ≤ t3, where t1, t2, and t3 are thresholds

defined empirically or by considering error estimates from repetition or reciprocity mea-

surements (e.g., Zhou and Dahlin, 2003). However, in our data sets such information

is not available and, thus, we use histograms and scatter plots of RMSLE(δ), IQR(δ),

and q90(δ) as tools to estimate plausible thresholds values to remove those models and

residuals from M and δ, respectively. A further complementary visualization strategy

(not implemented in this study) could be to plot the cumulative distribution function

which might be helpful to filter by a quantile criteria (e.g., accepting 80 % of the mod-

els in M). These simple but informative visualization strategies may need some user

validation, for example, by inspecting the models around the defined threshold. Once

we are confident with the chosen threshold, we define a reduced set of accepted models

M acc and residuals δacc.
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2.2.3 Interpolation to a common mesh

Our layer-based model parameterization strategy results in a different finite-element

mesh for each model in M acc (as needed by the used forward solver). To perform

posterior statistical analyses, these models are interpolated (the third step in Fig. 2.1)

using the nearest-neighbor technique on a densely discretized mesh; i.e., to ensure no

critical loss of model resolution. Having all models with the same discretization allows

us to perform pixel-wise calculations and analyses to derive, for example, the central

trend and dispersion models.

2.2.4 Cluster analysis

We perform cluster analysis to identify and separate possible groups of models reflecting

different subsurface scenarios. The most straightforward way to cluster the resulting

model ensemble is to define the cluster input matrix as K = M acc (e.g., Fernández-

Mart́ınez et al., 2017). Alternatively, one could also set K = δacc in order to group

models that show similar misfit distributions and patterns within the pseudo-section. Al-

though these two strategies may provide reasonable results independently, in this study,

we propose that defining K considering information from both M acc and δacc might

potentially improve the clustering output (the fourth step in Fig. 2.1).

When clustering using M acc and δacc together, we have to consider resampling and

rescaling (because M acc and δacc have different sizes and physical meanings) to ensure

a well balanced influence from M acc and δacc on the result of cluster analysis. Typically,

each model vector in M acc is significantly larger than the number of corresponding data

residuals. Therefore, if we consider M acc and δacc with their original sizes, the cluster

output might be biased towards M acc. To avoid such a bias, we first resample the

models in M acc in to a set of vertical resistivity profiles to obtain comparable sizes of

M acc and δacc. Note that for a grid-based parameterization strategy, random resampling

may be more appropriated than resampling along vertical profiles, also other resampling

strategies might be considered, but they are out of the scope of this study. Furthermore,

because M acc values are given in Ωm and δacc dimensionless, we standardize M acc and

δacc such that they show a mean of zero and standard deviation of one. With this, our

input matrix K is defined as the concatenation

K = M r,s
acc

⌢ δs
acc, (2.5)

where the superscripts r and s indicate resampled and scaled variables, respectively.

To perform a cluster analysis of K, we use the well-known k-means algorithm (Mac-
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Queen, 1967). In the k-means algorithm, we must pre-define the number of clusters

nk. To get a first idea of nk, we use the variance ratio criterion (VRC) of Caliński

and Harabasz (1974), which considers the relationship between the within-group aver-

age squared distances and the between-group average squared distances. Additionally,

we inspect other reasonable values for nk, for example, considering nk ± 2 after nk is

established using the VRC. This flexibility choosing nk is helpful, for instance, to include

a priori information or empirical knowledge in the interpretation. As the result of clus-

ter analysis, we obtain nk clustered families Fi (where i = 1, 2, ..., nk) of models and

corresponding sets of residuals denoted by MFi and δFi, respectively.

2.2.5 Analyzing sets of models

Different statistical measures can summarize the information from a set of models (see

the last two steps in Fig. 2.1). For example, we derive a representative (i.e., central ten-

dency) model from a set of models M (e.g., M acc, MF1, or MF2) by calculating the

median model µ1/2(M ) and estimate the variability within the set by the interquartile

range IQR(M ) as used, for example, by Tronicke et al. (2012) and Fernández-Mart́ınez

et al. (2012). We want to highlight that when using robust statistics (e.g., median), we

are less affected by outliers than when using non-robust statistics (e.g., mean) and, thus,

less sensitive to the thresholds defined in the model selection process (Section 2.2.2).

Additionally, uncertainties for a specific resistivity range are assessed using probability

maps as suggested, for example, by Hermans et al. (2015), Fernández-Mart́ınez et al.

(2017), and De Pasquale et al. (2019). Here, we estimate the probability P of a certain

range of resistivities P (M , [ρmin, ρmax]) by counting the cells in M falling in the speci-

fied resistivity range and dividing it by the number of models in M . This interpretation

tool is useful if there is a well-defined geophysical target; i.e., a layer in the subsurface

characterized by well-constrained resistivity values. These statistical analyses are per-

formed in a pixel-wise fashion considering that all models have the same discretization

(Section 2.2.3).

A critical point when working with resistivity models and values, respectively, is to

define whether the statistical calculations (e.g., µ1/2(M ) and IQR(M )) are performed

on a linear or logarithmic scale. We perform a preliminary statistical analysis using both

scales (also for our later shown examples) to decide which scale is more appropriate. We

find that calculations using a linear scale typically favor smooth solutions. In contrast, we

notice that when using a logarithmic scale, we favor more blocky solutions. Because in

our examples we aim to image subsurface interfaces using a layer-based parameterization,

we decide to use the logarithmic scale to perform all calculations needed by our statistical

analyses.
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2.2.6 Analyzing sets of data residuals

A careful analysis of the data residuals (see Eq. (2.4)) can provide further insights into

the solutions of the formulated inverse problem; for example, to identify any systematic

effects, outliers, or biases that may distort our inversion results (e.g., Zhou and Dahlin,

2003; Juhojuntti and Kamm, 2015; Constable et al., 2015). In this study, we derive the

central tendency and dispersion from a set of data residuals δ (e.g., δacc, δF1, or δF2)

by a pixel-wise calculation of the median of the residuals µ1/2(δ) and the interquartile

range of the residuals IQR(δ), respectively. Additionally, in the same way as discussed

in Section 2.2.2, we globally evaluate the statistical descriptors RMSLE(δ), IQR(δ), and

q90(δ) because they are useful to make comparisons between the clustered residuals (see

the last two steps in Fig. 2.1). Finally, we also want to highlight that the clustered

families may be further filtered using our model selection strategy (Section 2.2.2).

2.3 Case studies

We use two 2D ERT data sets to illustrate our workflow (Fig. 2.1). The first one is a

synthetic example where we know the underlying input resistivity model and the noise

level of the data. The second one is a field example where our geological background

knowledge suggests a layered subsurface consisting of sedimentary layers with different

pore fillings.

2.3.1 Synthetic example

Our synthetic input model consists of three layers (Fig. 2.2a). The uppermost layer

represents a channel fill-like structure with ρ = 300 Ωm, the middle layer is a conduc-

tive layer with ρ = 10 Ωm, and the lowermost layer is characterized by ρ = 200 Ωm.

To obtain the resistivity response of this model, we employ the BERT forward solver

(Günther et al., 2006; Rücker et al., 2006) using a Wenner array configuration and 48

electrodes equally spaced in 1 m intervals along the surface. The simulated data set

is contaminated by adding 0.01 of Gaussian noise (in terms of our objective function

Eq. (2.3)) to simulate small-scale variabilities and noise as often observed in field data

sets. In total, we obtain a pseudo-section with 360 apparent resistivity measurements as

shown in Fig. 2.2b.

We invert our synthetic data using the layer-based global inversion strategy as de-

scribed in Section 2.2.1. We use three interfaces (four layers) with four nodes for each

interface resulting in a total of 43 model parameters (see Eq. (2.2)). To perform the

global inversion, we use the PSO-based inversion strategy with a swarm size of 88 parti-

cles and save the best model after 400 iterations. These PSO parameters, as well as the
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Fig. 2.2. (a) Synthetic input resistivity model indicating electrode positions along the surface
and (b) synthetic apparent resistivity ρa data visualized as a Wenner pseudo-section.

model parameterization, are selected after some initial parameter testing. We repeated

the inversion until we got a representative ensemble consisting of 1103 models.

To evaluate and filter the generated ensemble (Section 2.2.2), we explore possible

threshold values using histograms and scatter plots of RMSLE(δ), IQR(δ), and q90(δ) as

shown in Fig. 2.3. From the histograms in Fig. 2.3a-c we notice a bimodal distribution in

all variables. In order to reject models where the optimization may not have converged,

we define upper thresholds (see the dashed vertical lines in Fig. 2.3a-c) to exclude models

with rather high RMSLE(δ), IQR(δ), and q90(δ) values, respectively. Then, we refine

these threshold values using the scatter plots shown in Fig. 2.3d-f to select the models

belonging to the main cloud of points. In Fig. 2.3d-f, we consider the smallest value of

the statistical descriptor to define our model selection criteria. In the end, we accept

models satisfying RMSLE(δ) ≤ 0.019, IQR(δ) ≤ 0.022, and q90(δ) ≤ 0.028 resulting

in 503 accepted models and residual vectors representing the ensembles M acc and δacc,

respectively. Furthermore, because the remaining 503 models in M acc have different

discretizations containing 4600±750 cells, we interpolate them to a finer common mesh

with 16502 cells (see Section 2.2.3).

Having all models with the same discretization, we calculate µ1/2(M acc), IQR(M acc),

and P (M acc, ρ ∈ [3, 15] Ωm) to get a first impression regarding the characteristics of

M acc (Fig. 2.4a-c). Although the median model (Fig. 2.4a) represents a reasonable

solution compared to the input model (Fig. 2.2a), we notice (when analyzing individual

models) that some models show significant deviations from this median model; especially

for depths z < 5 m. Thus, to further analyze M acc and to identify potential groups
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Fig. 2.3. Determination of the acceptance thresholds using RMSLE(δ), IQR(δ), and q90(δ)
to filter the initial model ensemble of our synthetic example. (a-c) Histograms indicating by
the grey dashed lines the first estimation of the acceptance thresholds. (d-f) Scatter plots
indicating by the grey rectangles the refined and final threshold values (note that the grey
dashed lines highlight the thresholds defined by analysing the histograms). For visualization
purposes, we limit all axis to fits up to 0.055.

of similar models, we perform cluster analysis taking into account M acc and δacc (see

Section 2.2.4). Because each model in M acc significantly differs in size to the corre-

sponding residuals in δacc (16502 versus 360 values, respectively), we resample each

model in M acc by extracting 18 vertical resistivity profiles (up to a depth of z = 10 m)

located between x = 8 m and x = 40 m with a lateral spacing of 1.88 m resulting in

771 values for each model. Moreover, we standardize the resampled model values and

residuals and define K according to Eq. (2.5). Using the VRC and visual inspection, we

found that nk = 3 (i.e., three model families F1, F2, and F3) is sufficient to describe

the variability within our reduced model ensemble. With this, 199 models are assigned

to F1, 139 to F2, and 165 to F3.

The central tendency, dispersion, and probability models for the clustered model

families Fi are shown in Fig. 2.4d-l. All median models µ1/2(MFi) (Fig. 2.4d, g, and j)

indicate a three-layer solution. However, when comparing these models in more detail,

we notice some differences in the structures of the lower boundary of the conductive layer

and in the resistivity of the lowermost layer. Also the IQR(MFi)models (Fig. 2.4e, h, and

k) indicate a three-layer case and highlight the variabilities around the layer interfaces.

Because the conductive layer is the one controlling the resulting model structure (also our

hypothetical target), we further investigate the uncertainties associated with this layer
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using the probability map P (MFi, ρ ∈ [3, 15] Ωm) (Fig. 2.4f, i, and l). These maps

show high probabilities on both sides of and below the central channel-like structure,

and the probability decreases as we approach the bottom of the conductive layer.

Fig. 2.4. Representation of the pixel-wise calculation of the µ1/2(M), IQR(M), and P (ρ ∈
[3, 15] Ωm) for our synthetic example. (a-c) statistics for the accepted models Macc and (d-l)
for the clustered families MF1, MF2, and MF3. nm represents the size of each ensemble of
models.

Furthermore, we analyze the corresponding sets of data residuals in a pixel-wise and

global fashion (as outlined in Section 2.2.6). The pixel-wise representations of the central

tendency and dispersion for all residuals δacc and for each family of residuals δFi are

shown in Fig. 2.5. The µ1/2(δFi) pseudo-sections present similar patterns as µ1/2(δacc).

This indicates that the models in these families fitted individual data points in a similar

fashion, where the highest residuals are observed along diagonal lines around 18 m and

30 m in the first levels of the pseudo-sections. On the other hand, all IQR(δFi) pseudo-

sections show similar variability patterns, while the IQR(δacc) shows slightly higher values,

especially in the central part. In Fig. 2.6, we additionally illustrate the global evaluation

of the RMSLE, IQR, and q90 for δacc and for all δFi by histograms. We see that the

histograms of δF1 and δF3 show a similar shape compared to the histogram of δacc in

all three statistical measures. However, for δF2, the histograms of these measures are

different and slightly shifted toward higher values (compared to all other histograms).

Overall, this residual analysis indicates that the three families fit the data to equivalent
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levels; i.e., if this was an actual field example, we could not distinguish the best family

without any further information. However, if we consider the information of the known

input model (Fig. 2.2a), we can conclude that F1 (Fig. 2.4d) represents the best family

of models to solve our inverse problem. Although in this example we knew the noise level

of our data, we decide to work with models that fit the data at lower and higher values

than the added noise level. This avoids focusing on models suspected to under-fitting

or over-fitting the data and, thus, ensures more detailed insights of the inverse problem

(e.g., Vasco et al., 1993).

Fig. 2.5. Pseudo-section representation of the pixel-wise calculation of µ1/2(δ) and IQR(δ)
for our synthetic example. (a-b) statistics for the accepted data residuals δacc and (c-h) for the
clustered families δF1, δF2, δF3. nm represents the size of each ensemble of residual vectors.

2.3.2 Field example

In September 2019, we performed a 2D ERT survey in a coastal environment west of

the town Loon-Plage, Northern France. This experiment was performed during an ar-

chaeological site evaluation by the French national institute for preventive archaeological

research (INRAP), in the framework of the Port of Dunkirk extension project. To ac-

quire our ERT data, we used 96 electrodes with a regular spacing of 2 m and collected
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Fig. 2.6. (a-c) Histograms of the global statistical descriptors RMSLE(δ), IQR(δ), and q90(δ)
for the synthetic example. Notice that the corresponding counts of δF1, δF2, and δF3 are
represented by the left axis, and of δacc by the right axis. The legend in (a) also applies for
(b) and (c).

our data using the Wenner array configuration. A single roll-along was performed by

moving half of the electrodes. In the end, we recorded 2501 apparent resistivities along

a 284 m long profile. After a first data quality evaluation, we removed the first level

(186 data points) from the pseudo-section to reduce the influence of near-surface soil

heterogeneities because the goal of this survey was to characterize deeper geological

structures as needed to develop a hydrogeological understanding of this field site. In

Fig. 2.7, we present the measured raw data.

Following our workflow, we invert our field data set using our layer-based model pa-

rameterization which is consistent with preliminary geological information of the study

area. For example, Houthuys et al. (1993) describe the local geology as a transitional en-
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Fig. 2.7. Raw field data recorded at our field site in Loon-Plage, France using the Wenner
array configuration.

vironment, where the first 15 m to 25 m of the subsurface is characterized by horizontally

stratified sandy Holocene sediments with clayey and peaty intercalations. Considering

this a priori information, we invert our data set using four interfaces and three nodes for

each interface, resulting in 45 model parameters (see Eq. (2.2)). In the PSO, we use

50 particles and a stopping criterion of a maximum of 400 iterations. In the end, we

generate an ensemble of 802 models using this inversion strategy.

Similarly to our synthetic study, we use the histograms and scatter plots shown in

Fig. 2.8 to obtain the thresholds values t1, t2, and t3 to remove models from the en-

semble representing non-converged inversions runs (Section 2.2.2). As indicated in the

plots of Fig. 2.8, we accept models satisfying RMSLE(δ) ≤ 0.027, IQR(δ) ≤ 0.03, and

q90(δ) ≤ 0.038 resulting in a reduced ensemble consisting of 744 models and residuals

(M acc and δacc, respectively). Furthermore, because the remaining 744 models in M acc

have different discretizations containing 4700±700 cells, we interpolate them to a finer

common mesh with 75679 cells (see Section 2.2.3).

Having all models with the same discretization, we calculate µ1/2(M acc), IQR(M acc),

and P (M acc, ρ ∈ [1, 3] Ωm) as shown in Fig. 2.9a-c. From µ1/2(M acc)model (Fig. 2.9a),

we learn that four layers (i.e., three interfaces) are sufficient to characterize the subsur-

face; i.e., two uppermost layers of approximately five meters thickness with a lateral

contact at x ≈ 160 m, a layer at depths between z ≈ 5 m and z ≈ 10 m, and a lower-

most layer below z ≈ 10 m. Furthermore, from the IQR(M acc) model (Fig. 2.9b), we

notice that the dominant variability is found at z ≈ 10 m, but there is also some variability

associated to the overlying layer at depths between z ≈ 5 m and z ≈ 10 m. Additionally,

when analyzing individual models (not shown here), we notice several models showing a

layer at depths below 20 m with slightly increased resistivities compared to the overlying

layer. To study this structure in more detail, we calculate P (M acc, ρ ∈ [1, 3] Ωm) as

shown in Fig. 2.9c where this resistivity range is defined after inspecting in more detail

typical resistivities values (e.g., using histograms) of the deeper layers (z < 10 m) for
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Fig. 2.8. Determination of the acceptance thresholds using RMSLE(δ), IQR(δ), and q90(δ) to
filter the initial model ensemble of our field example. (a-c) Histograms indicating by the grey
dashed lines the first estimation of the acceptance thresholds. (d-f) Scatter plots indicating
by the grey rectangles the refined and final threshold values (note that the grey dashed lines
highlight the thresholds defined by analysing the histograms). For visualization purposes, we
limit all axis to fits up to 0.055.

each ensemble. Note that choosing different resistivity ranges may be motivated by a

well-defined geophysical target, which in our case is a saltwater-saturated layer charac-

terized by the lowest resistivity values in our inverted models. Alternatively, we could

have used other resistivity ranges, for example, P (MFi, ρ > 40 Ωm) to study the near-

surface structures in more detail if these model features are of interpretational interest.

From the probability map, we notice, at depths between z ≈ 10 m and z ≈ 23 m, a prob-

ability of ∼ 1. However, this probability slightly decreases below z ≈ 23 m. The analysis

of individual models and Fig. 2.9c indicates the existence of different groups of models

describing different geological scenarios difficult to be identified by analyzing Fig. 2.9a-c.

To further explore this, we perform cluster analysis as outlined in Section 2.2.4.

Before clustering, the models M acc are resampled along 50 vertical resistivity profiles

up to a depth of z = 30 m, laterally distributed between x = 20 m and x = 260 m

with an equal spacing of 4.9 m. In total, we extract 3556 values for each model, which

is comparable to the number of data and residuals points, respectively. Then, we stan-

dardize the resampled models and residual values to define K according to Eq. (2.5).

In cluster analysis, by using the VRC and visual inspections, we find that three families

(F1, F2, and F3) are sufficient to explain the data and to obtain a reasonable solution.

Finally, we thus obtain a solution with 258 models in F1, 119 in F2, and 367 in F3.
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The statistics of the clustered model families Fi are shown in Fig. 2.9d-l. The median

models µ1/2(MFi) (Fig. 2.9d, g, and j) suggest three different subsurface scenarios. For

example, the median model µ1/2(MF1) (Fig. 2.9d) represents a resistive layer above

z ≈ 10 m including a ∼ 5 m thick more conductive top layer for x > 160 m. In

contrast, µ1/2(MF2) (Fig. 2.9g) and µ1/2(MF3) (Fig. 2.9j) represent a similar near-

surface-structure, where above z ≈ 10 m there is a more conductive layer embedding

a more resistive top layer for x < 160 m. However, MF2 also shows a resistivity con-

trast at z ≈ 23 m. Additionally, we infer the uncertainties associated with the layer

interfaces in µ1/2(MFi) calculating the IQR(MFi) models (Fig. 2.9e, h, and k). From

the IQR models, we learn that the main uncertainties are associated with the layer at

z ≈ 10 m, where, for example, we notice higher variations for MF1 than for MF2

and MF3. Furthermore, MF2 contains the highest increased variability for the layer

at z ≈ 23 m. Finally, we use P (MFi, ρ ∈ [1, 3] Ωm) to better explore the models

at depths below z ≈ 10 m (Fig. 2.9f, i, and l). Here, we observe that MF2 is most

different compared with MF1 and MF3. This is in agreement with Fig. 2.9g, where

we notice that the resistivity increases at depths below z ≈ 23 m. In the hypothetical

case that we are asked to identify the resistivity range that maximize the probability of

the conductive layer, we would have to modify iteratively the resistivity range applied to

MF2 (e.g., trying P (MF2, ρ ∈ [3, 8] Ωm), P (MF2, ρ ∈ [5, 10] Ωm), ...). Overall, we

notice significant differences between the three families, which is illustrating the benefit

of performing such a cluster analysis step.

To complement our ensemble analysis, we calculate and examine the corresponding

sets of data residuals (for all residuals δacc and each family of residuals δFi) as outlined

in Section 2.2.6. In the pixel-wise analysis of the residuals (Fig. 2.10), we observe that

the µ1/2(δF1) and µ1/2(δF3) pseudo-sections show similar overall patterns compared to

the µ1/2(δacc) pseudo-section. However, µ1/2(δF2) is different and the corresponding

pseudo-section (Fig. 2.10e) shows reduced residual values for levels > 15 compared to

Fig. 2.10a, c, and g. Although the µ1/2(δ) pseudo-sections are indicating high relative

error values (0.04-0.05) for the first and deeper levels, these values are still in an accept-

able range for an ERT survey. Additionally, we find that the IQR(δ) pseudo-sections

(Fig. 2.10b, d, f, and h) present the same main patterns for all sets of residuals (δacc,

δF1, δF2, δF3) where the highest variabilities are located in the uppermost and low-

ermost levels. Furthermore, we notice a diagonal pattern originating in the uppermost

level at x ≈ 160 m. These diagonals are related to the location of the lateral resistivity

contrast discussed above. Complementary to the pixel-wise analysis, we globally assess

the RMSLE, IQR, and q90 for δacc and δFi (Fig. 2.11). From these histograms, we

learn that δF1 and δF3 are characterized by the highest values for all variables, while
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Fig. 2.9. Representation of the pixel-wise calculation of the µ1/2(M), IQR(M), and P (ρ ∈
[3, 15] Ωm) for our field example. (a-c) statistics for the accepted models Macc and (d-l) for
the clustered families MF1, MF2, and MF3. nm represents the size of each ensemble of
models.

the histograms of δF2 are shifted towards lower values compared to δF1 and δF3. From

the pixel-wise and global analysis of the residuals, we notice a better performance of F2,

where it is important to highlight that F2 is the one indicating a layer boundary at a

depth of ∼ 23 m (see Fig. 2.9g). This indicates that the data points collected at the

lowest levels are still sensitive to the small resistivity contrasts of the models collected

in F2.

2.4 Discussion

Inversion of ERT data is a non-linear and non-unique problem. However, using global

optimization algorithms such as PSO, we can obtain an ensemble of equivalent solutions.

This study compiles a workflow (Fig. 2.1) that allows us to extract the main structures

needed by the data and to assess the variability within the ensembles including the un-

derlying residual distributions. To demonstrate our approach we used two 2D ERT data

sets, which have been inverted using PSO and a layer-based model parameterization.
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Fig. 2.10. Pseudo-section representation of the pixel-wise calculation of µ1/2(δ) and IQR(δ)
for our field example. (a-b) statistics for the accepted data residuals δacc and (c-h) for the
clustered families δF1, δF2, δF3. nm represents the size of each ensemble of residual vectors.

Although we iteratively use a global-search approach to invert a 2D ERT data set,

some optimization runs might not converge (e.g., Lomax and Snieder, 1995; Douma

et al., 1996). Furthermore, defining a reliable stopping criterion is not straightforward,

especially when there is no clear knowledge of the data noise level. When an approxi-

mation of the noise level is obtained by repeated measurements (e.g., Zhou and Dahlin,

2003), it is recommended to obtain models whose misfits values fall within a range

contemplating smaller and larger misfit values and, thus, avoid the influence of data

perturbation or modification of the inversion strategy (e.g., Vasco et al., 1993). We

must consider that such an approach may result in considering models that are under-

fitting or over-fitting the data. This is why in the second step of our workflow (Fig. 2.1),

we propose a model selection criteria that not only considers the models exceeding a

certain threshold in the objective function (RMSLE(δ) in this study) but also considers

other statistical descriptors such as q90(δ) as in Barboza et al. (2019) and IQR(δ). In

our examples, thresholds were initially defined in such a way that models located in the

high-value tails of the RMSLE(δ), IQR(δ), and q90(δ) histograms are discarded. How-

ever, just using simple thresholding may result in inaccuracies associated, for example,
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Fig. 2.11. (a-c) Histograms of the global statistical descriptors RMSLE(δ), IQR(δ), and
q90(δ) for the field example. Notice that the corresponding counts of δF1, δF2, and δF3 are
represented by the left axis, and of δacc by the right axis. The legend in (a) also applies for
(b) and (c).

with the bin size of the histograms. We found that scatter plots help to further refine

the threshold levels (see Fig. 2.3 and Fig. 2.8). Overall, the proposed way of filtering

and formulating the model selection criteria allows for a detailed and robust selection of

models from a generated ensemble.

To study model ensembles, some examples in the literature have successfully shown

that central trends, dispersion measures, and probability maps are effective ways to

summarize the information contained in an ensemble including the communication of

uncertainties (e.g., Tronicke et al., 2012; Fernández-Mart́ınez et al., 2012; De Pasquale

et al., 2019). Such global ensemble statistics are useful if similar models compose the en-

semble. This can be inspected, for example, by visually comparing the calculated median
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model with individual models from the ensemble. If the ensemble is rather heteroge-

neous, the median model might not be representative for most models and, thus, cluster

analysis can be considered as a useful tool to analyze the ensemble in more detail. In this

study, we extend previous ideas by using a cluster strategy that not only considers the

model values (e.g., Vasco et al., 1993, 1996; Ramirez et al., 2005; Fernández-Mart́ınez

et al., 2017) but also the corresponding data residuals. This strategy results in clusters

of similar models and ensures that they fit the data in a similar fashion (as shown by the

two examples in this study). Further extensions of our strategy could be, for example,

to apply a weighted k-means algorithm, where the sensitivity matrix, the configuration

factors, and/or measurement errors are used to weight the model and residual values,

respectively. Although in this study we focus on the classical k-means algorithm, other

algorithms such as spectral or agglomerative clustering might be considered to perform

the classification.

Apart from analyzing sets of models, studying the corresponding sets of data residuals

adds further valuable information to better understand the clustered ensemble. Typically,

global evaluations of the residuals are used to get an overall view of each ensemble’s per-

formance. In this study, we additionally use a pixel-wise representation of the residuals.

This visualization strategy might be used, for example, to explore the areas where the

fit performs better or worse, find outliers, or determine numerical errors. We also high-

light that when using a layer-based model parameterization the spatial error distribution

may create some characteristic patches which can be explained by the limitation of a

layer-based approach to fit small-scale heterogenities. Using both global and pixel-wise

evaluations of the residuals provides a more robust criterion to accept/reject a specific

set of models and to evaluate or modify the used inversion strategy (e.g., to adapt the

parameterization strategy or the objective function).

Understanding uncertainties associated with the non-uniqueness of the inverse prob-

lem is crucial to create, for example, probabilistic structural and petrophysical trans-

lations. Nevertheless, this kind of analysis requires an ensemble composed of up to

hundreds of independent solutions. Generating such ensembles through global opti-

mization algorithms is computationally demanding. However, with recent computer

developments, the calculation time has been considerably reduced. Furthermore, dif-

ferent methods help to mine the parameter solution space and to increase the number

of model solutions (e.g., Sambridge, 1999; Tompkins et al., 2011; Fernández-Mart́ınez

et al., 2017).
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2.5 Conclusions

This paper presents a workflow to assess ensembles of 2D ERT inversion results gener-

ated using global optimization strategies such as genetic algorithms, different simulate

annealing varieties, PSO (as implemented in this study), and others. We found, in a first

step, that using the global evaluation of RMSLE(δ), IQR(δ), and q90(δ) is a robust crite-

rion to remove models that might not have completely converged and, thus, improve the

posterior statistical characterization of the ensemble. Furthermore, the cluster analysis

using the k-means algorithm considering both model and residual values shows to be an

efficient and robust approach to better explore and understand our ensembles and, thus,

allows us to identify different equivalent families of models with their corresponding data

residuals. To summarize the information in such sets of clustered models, the central

trend for each family can be treated as different plausible subsurface scenarios whose

uncertainties can be derived by dispersion measurement statistics and probability maps.

Additionally, analyzing the corresponding residual distributions for each family provides

valuable information to further understand and assess the validity of the clustering out-

put. In conclusion, our workflow eases and refines the interpretation of model ensembles

resulting from the global inversion of 2D ERT data and might be easily adapted to other

kinds of geophysical data and inverse problems, respectively.

32



3

Exploring the capabilities of electrical resistiv-

ity tomography to study subsea permafrost

This chapter is accepted for publication and is under production:

Arboleda-Zapata, M., Angelopoulos, M., Overduin, P., Grosse, G., Jones, B., and Tron-

icke, J., (in press*). Exploring the capabilities of electrical resistivity tomography to

study subsea permafrost, The Cryosphere, https://doi.org/10.5194/tc-2022-60.

*This accepted version may contain slight formatting changes after proofreading.

Abstract

Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submer-

gence by warm and saline waters increases the rate of inundated permafrost thaw compared

to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sedi-

ments below the seabed, also known as the ice-bearing permafrost (IBPT), provides valuable

information to understand the evolution of sub-aquatic permafrost, which is key to improving

and understanding coastal erosion prediction models and potential greenhouse gas emissions.

In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the

nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g.,

seawater depth and resistivity) to image and study the subsea permafrost. The inversion of

2D ERT data sets is commonly performed using deterministic approaches that favor smoothed

solutions, which are typically interpreted using a user-specified resistivity threshold to identify

the IBPT position. In contrast, to target the IBPT position directly during inversion, we use

a layer-based model parameterization and a global optimization approach to invert our ERT

data. This approach results in ensembles of layered 2D model solutions, which we use to

identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including

estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and

perform sensitivity analyses to study, in a simpler way, the correlations and influences of our

model parameters. The set of methods provided in this study may help to further exploit

ERT data collected in such permafrost environments as well as for the design of future field

experiments.
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3.1 Introduction

In arctic coastal regions, contemporary subsea permafrost thawing starts following the inun-

dation caused by sea level rise and coastal erosion. Seawater is typically warmer than mean

annual air temperatures, and the presence of saltwater (mostly through diffusive processes)

lowers the freezing point of the seabed (Harrison and Osterkamp, 1978; Are, 2003). Addition-

ally, groundwater flow of freshwater from inland areas might play an important role in thawing

permafrost (Frederick and Buffett, 2015; Pedrazas et al., 2020), comparable to warm discharge

from large rivers (Shakhova et al., 2017). Subsea permafrost is estimated to contain a large

quantity of organic carbon (Sayedi et al., 2020), which can decompose microbially to generate

carbon dioxide and/or methane after the permafrost thaws. Furthermore, gas hydrates are

present in subsea permafrost and may act as an additional source of methane if they dissociate

(Ruppel and Kessler, 2017). Understanding the development of permafrost degradation rates

helps to fine-tune predictive models of greenhouse gas emissions that may represent a positive

feedback for climate warming (Schuur et al., 2015). Furthermore, the correlation between per-

mafrost degradation and coastal erosion proposed by Are (2003) and Overduin et al. (2012,

2016) might be used to refine coastal dynamics models.

Subsea permafrost is a perennially cryotic (< 0 °C) layer or body of sediments underneath

a marine water column (Angelopoulos et al., 2020a). These sediments can be frozen or un-

frozen. A layer of unfrozen ground in a permafrost area is known as talik, and in particular,

the perennially cryotic unfrozen sediments forming part of the permafrost are known as cry-

opegs (Permafrost Subcommittee, 1988). Cryopegs can be isolated pockets or layers and are

commonly found along Arctic coasts in saline marine sediments that are exposed following a

marine regression, for example, due to isostatic uplift (O’Neill et al., 2020). Offshore, cryotic

unfrozen sediment in between the water column and frozen ground is still generally referred to

as a talik (Osterkamp, 2001). The subsea permafrost that contains ice is known as ice-bearing

permafrost, and when the soil particles are cemented together by ice, it is termed ice-bonded

permafrost (Permafrost Subcommittee, 1988). Because traditional geophysical methods such

as electrical resistivity tomography (ERT) and seismic techniques can only distinguish between

sediments with no or low ice content from those with high ice content (note that direct sam-

pling is required for a quantitative estimation of ice-content), we refer to them as unfrozen

and frozen sediments in this study, and the interface that separates them is the ice-bearing

permafrost (IBPT). Imaging and determining the position of the IBPT (e.g., using geophys-

ical or borehole data) is important for a better process understanding of subsea permafrost

evolution and to infer degradation rates. For example, dividing the depth to the IBPT by the

time since inundation results in the mean annual degradation rate (e.g., Are, 2003; Overduin

et al., 2012, 2016).

Among the most used geophysical imaging techniques to study the subsea permafrost are

different electromagnetic and seismic methods as well as ERT (Scott et al., 1990; Kneisel
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et al., 2008; Hubbard et al., 2013). Electromagnetic induction (EMI) methods are promising

techniques to map both the top and bottom boundaries of the permafrost and might be used

for a wide range of water depths (e.g., Sherman et al., 2017). EMI methods can properly work

under low-resistive seawater layers, while the use of ground-penetrating radar (GPR) is limited

to freshwater bottom-fast ice environments characterized by high electrical resistivity values

as found in delta areas (e.g., Stevens et al., 2008). Seismic methods have been employed

widely in deep-water environments (e.g., Rekant et al., 2015; Brothers et al., 2016) and, more

recently, researchers have used recordings of ambient seismic noise in shallow waters to map

the IBPT (e.g., Overduin et al., 2015a). The ERT method is a suitable tool to investigate

the resistivity distribution of the unfrozen sediments (e.g., talik and cryopeg) and for studying

and delineating the IBPT position (e.g., Sellmann et al., 1989; Overduin et al., 2012, 2016;

Angelopoulos et al., 2019, 2020b; Angelopoulos, 2022; Pedrazas et al., 2020).

In marine ERT surveying, floating electrodes are typically used to inject a current and

measure potential differences that are used to calculate apparent electrical resistivity data. In

the summer season of the Arctic, the measured values are often influenced by the resistivity

and thickness of the water layer and by the unfrozen and frozen sediments. The ERT method

can detect the IBPT but does not necessarily distinguish non-cryotic from cryotic taliks above

the IBPT. The resistivity of seawater depends mainly on the amount of dissolved salts and

temperature. The dissolved salts are mostly affected by water inflows from rivers and the cycles

of sea ice melting, freezing, and brine release. The resistivity of the seawater is commonly in

the range of 0.1 Ωm to 40 Ωm (e.g., Sellmann et al., 1989; Lantuit et al., 2011). On the other

hand, the resistivity of the underlying sediments is influenced by porosity, pore size, grain size,

water and ice content, porewater salinity, and temperature (Kneisel et al., 2008; Wu et al.,

2017). For example, the resistivity of unfrozen sediments typically ranges from 1 Ωm to 25 Ωm

(e.g., Sellmann et al., 1989; Overduin et al., 2012; Angelopoulos et al., 2019), while the resis-

tivities of frozen sediments might vary from 10 Ωm up to more than 1,000 Ωm (e.g., Overduin

et al., 2012, 2016; Pedrazas et al., 2020; Rangel et al., 2021). The higher the ice content, the

more resistive is the medium (Pearson et al., 1986; Fortier et al., 1994; Kang and Lee, 2015).

In cases where the resistivity of the frozen sediments is several orders of magnitude higher than

the resistivity of the overlying unfrozen sediments, the electrical current injected through the

electrodes is expected to be channeled through the less resistive layers (e.g., Spitzer, 1998)

resulting in a limited penetration of the current system into the frozen sediment layers.

When analyzing ERT data collected in subsea permafrost environments, defining an appro-

priate inversion and model parameterization strategy is critical for deriving reliable resistivity

models and interpreting these models in terms of the IBPT position. For example, when a

priori information suggests that the nature of the contact between the unfrozen and frozen

sediments is gradual, a grid-based model parameterization and a local inversion algorithm fa-

voring vertical and/or horizontal smoothness in the final models might be an appropriate choice

(e.g., Loke and Barker, 1996; Günther et al., 2006). Here, the experience of the interpreter
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might help to guess a specific resistivity threshold value to define the IBPT position (e.g.,

Overduin et al., 2016; Sherman et al., 2017; Angelopoulos et al., 2021). Additionally, one may

also consider different gradient-based image processing approaches to extract interfaces from

the inverted resistivity model (e.g., Hsu et al., 2010; Chambers et al., 2012). Finally, when

we have ample evidence of a sharp contact between the unfrozen and frozen sediments (e.g.,

Overduin et al., 2015b; Angelopoulos et al., 2020a), a layer-based model parameterization

combined with a local and/or global inversion algorithms might be more suitable (e.g., Auken

and Christiansen, 2004; Akça and Basokur, 2010; De Pasquale et al., 2019; Arboleda-Zapata

et al., 2022b).

In this study, we adapt the inversion and ensemble interpretation strategies as proposed by

Arboleda-Zapata et al. (2022b) to study submarine permafrost environments of the Arctic in

terms of the resistivity distribution of the unfrozen and frozen sediments and the position of

the IBPT, including estimates of uncertainties. We analyze and compare ERT data collected

at two field sites in the Arctic characterized by different environmental conditions regarding

seawater depth and resistivity, coastal erosion rate, and the sediments porewater chemistry.

Additionally, we generate and interpret ensembles of globally inverted 1D electrical data to get

a deeper understanding of the inverse problem for typical resistivity distributions in these kinds

of environments. Finally, we also implement local and global sensitivity analyses to recognize

the most influential parameters during 2D and 1D inversions.

3.2 Study sites

Our field data were collected at two field sites; one offshore of the southern part of the

Bykovsky Peninsula in the Siberian Laptev Sea (Fig. 3.1a), and the other one offshore of Drew

Point in the Alaskan Beaufort Sea (Fig. 3.1d). To relate these data sets to the site-specific

environmental settings, we summarize the main characteristics of each study area in a regional

framework.

3.2.1 Regional setting of Bykovsky Peninsula

The Bykovsky Peninsula is located in northeastern Siberia in the vicinity of the Lena River

Delta. The peninsula is mainly characterized by the presence of ice-rich sediments (volumetric

ice content exceeding 80 %, also known as the Yedoma Ice Complex) that accumulated during

the Late Pleistocene (Schirrmeister et al., 2002; Grosse et al., 2007). The Yedoma deposits

extend to 15 m below sea level (Grigoriev, 2008). The sediments at or below sea level are

composed of silt, sand, and gravel with variable grain size distributions (Grosse et al., 2007).

During the early to middle Holocene, a general landscape transformation started resulting in a

thermokarst-dominated relief characterized by thermo-erosional valleys and thermokarst lakes

(Schirrmeister et al., 2002; Grosse et al., 2007). The mean coastal erosion rates at different

locations of the peninsula typically range between 0.4 m yr-1 to 1.5 m yr-1 with maximum
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values of up to 10 m yr-1 mainly caused by storms and thermomechanical erosion of ice-rich

sediments (Lantuit et al., 2011). The seawater around the peninsula is strongly influenced by

freshwater and sediments originating from the Lena River (Lantuit et al., 2011). Additionally,

the resistivity of the seawater is influenced by seasonal sea ice freezing and melting as shown

by Lantuit et al. (2011) who report resistivity values for the eastern shore of the Bykovsky

Peninsula of less than 1 Ωm in winter and above 10 Ωm in summer. Similar water resistivity

values are also reported by Overduin et al. (2016) for the seawater near Muostakh Island. The

depth of the seawater for the southern part of the Bykovsky peninsula deepens 2 m within a

distance of 100 m from the shoreline and increases to 5 m at about 2,000 m from the coast

(Lantuit et al., 2011; Fuchs et al., 2022).

3.2.2 Regional setting of Drew Point

Drew Point is located on the coast of the Alaskan Beaufort Sea. The local geology is char-

acterized by glaciomarine, fine-grained, ice-rich sediments deposited in the late Pleistocene

(Black, 1964; Ping et al., 2011). The inland geomorphology is characterized by 3-5 m high

coastal bluffs, thermokarst channels and lakes, and ice-wedge polygons on tundra plains with

maximum elevations of ∼ 10 m (Barnhart et al., 2014; Jones et al., 2018). The average coastal

erosion rate between 1979 and 2002 was around 9 m yr-1 (Jones et al., 2009) and increased

for the period 2002 to 2016 up to approximately 20 m yr-1 (Jones et al., 2018). Lück (2020)

reports brackish water resistivities observed during fieldwork in July 2018 of 0.4-0.5 Ωm, with

weak stratification visible in the water column profiles. The depth of the seawater offshore of

Drew Point deepens to 2 m within a distance of 500 m from the shoreline and increases to

3 m at distances of about 2,000 m from the coast (Jones et al., 2018).

3.3 Data acquisition

In marine ERT data acquisition, there is typically an excellent coupling between the floating

electrodes and the seawater. This allows us to perform voltage measurements while the boat

pulling the electrode streamer is in motion (preferably at constant speed) and, thus, to effi-

ciently measure also profiles with a length in the order of km. The sources of errors during data

acquisition are mainly related to misalignments of the electrode streamer (e.g., due to water

currents), the precision of electrode positioning (which are given relative to boat position),

vertical oscillation of electrodes (e.g., due to wavy conditions), and surface area limitation of

injection voltage. Furthermore, due to the large variety of environmental settings, one must

tailor the survey parameters to each field site, which includes varying the electrode spacing,

the transmitter voltage, the measurement duration, the boat speed, the digital resolution of

the potential measurements, and the sampling frequency.

In Table 3.1, we compare the acquisition parameters for our ERT data from Bykovsky and

Drew Point, which were collected during two fieldwork campaigns in July 2017 and July 2018,
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Fig. 3.1. Location and ERT data of our field studies. (a) Bykovsky field site located at
the coast of the Laptev Sea in Northern Siberia (Sakha Republic, Russian Federation) and
(d) Drew Point field site located at the coast of the Beaufort Sea in Northern Alaska (AK,
United States of America), where the red lines indicate ERT profile locations and the black
dashed line in panel (d) indicates the position of the 1955 coastline for Drew Point (Jones
et al., 2008). (b) The recorded bathymetric profile along the ERT profile for Bykovsky and (e)
for Drew Point indicating the 1969 (Schirrmeister et al., 2018) and 1955 coastline positions,
respectively. The current coast position for both profiles is at x ≈ -10 m. (c) Pseudosection
of the recorded raw ERT data for Bykovsky, and (f) for Drew Point. Satellite image Bykovsky:
Worldview3 satellite product from September 2nd, 2016; copyright Digital Globe. Satellite
image Drew Point: Planet satellite image from September 3rd, 2017.

respectively. The two ERT data sets were collected using an IrisTM Syscal Pro Deep Marine

system employing a streamer cable with 13 equally spaced floating electrodes. The resistiv-

ity measurements were acquired using a reciprocal Wenner-Schlumberger array configuration,

where current was injected through the inner pair of electrodes and quasi-symmetric voltages

were measured simultaneously with 10 channels using the outer pairs of electrodes (e.g., Over-

duin et al., 2012). The transmitter voltage was set at approximately 48 V at Bykovsky while,

at Drew Point, it was reduced to 24 V to avoid exceeding the electrode surface area limits.

Additionally, different electrode spacings were used. The Bykovsky data were recorded using

a 10 m spacing between electrodes while, at Drew Point, 5 m spacing was chosen because

the rapid coastal erosion rates suggested that the IBPT position at this field site should be

shallower than at our Siberian field site for a given distance offshore. To collect the data along

every profile, a cable was towed behind a small inflatable boat and voltages were measured

as the boat moved at approximately constant speed of ∼ 1 m/s perpendicular to the shore.
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The Bykovsky soundings were collected at spacings of ∼ 7.7 m along an 418 m long profile

resulting in 540 measurements. At Drew Point, the soundings were collected at spacings of

∼ 4.7 m along a 854 m long profile resulting in 1,830 measurements. At both field sites, the

electrode positions were estimated relative to the position of a GPS aboard the boat assuming

a straight streamer cable. Complementary to the ERT measurements, we also recorded the

water depth at each sounding location using a Garmin echo sounder attached to the boat

(Fig. 3.1b, and e). Furthermore, we measured during each field campaign water resistivity and

temperature at different depths close to our ERT profiles (the mean values are shown in the

last two rows of Table 3.1) using a SontekTM CastAway device also known as CTD. In general,

at our Drew Point field site, the seawater was shallower, less resistive, and slightly cooler than

at our Bykovsky field site. Furthermore, the CTD measurements suggest low vertical and

horizontal variations in the resistivity of the water layer at both field sites. For example, the

largest variations are in the horizontal direction and are in the order of 1 Ωm and 0.04 Ωm for

our Bykovsky and Drew Point data sets, respectively.

Table 3.1. Acquisition parameters for our ERT data sets and further site-specific information
for our two field sites.

Bykovsky,
Siberia

Drew Point,
Alaska

Number of electrodes 13 13
Electrode spacing (m) 10 5
Transmitter voltage (V) 48 24
Mean sounding separation (m) 7.7 4.7
Length of profile (m) 418 854
Number of data points 540 1830
Water resistivity (Ωm) 13.7 0.5
Water temperature (◦C) 7 5.5

The measured apparent resistivities ρa are presented as pseudosections in Fig. 3.1c and f.

Here the x coordinates represent the center position of each quadripole, and the vertical

axes represent the relative penetration also known as levels; i.e., level = 1 is the shortest

quadripole, while level = 10 is the quadripole with maximum electrode spacing. The range

of ρa for Bykovsky is 5.9 Ωm to 43 Ωm and for Drew Point 0.9 Ωm to 7.6 Ωm. The lower

ρa values at Drew Point are mainly due to the lower resistivity of the seawater at the Alaskan

coast, which is less influenced by freshwater discharge from large rivers than at our Bykovsky

field site. Additionally, we notice that levels larger than seven in our Bykovsky data set are

characterized by higher variations due to noise or 3D subsurface structures. In contrast, the

Drew Point data not show obvious variations depending on the level number.
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3.4 Methodology

In this study, we follow the workflow of Arboleda-Zapata et al. (2022b) who propose a layer-

based model parameterization to globally invert 2D ERT data, which is used to generate an

ensemble of representative model solutions. For completeness, we present a brief summary of

this workflow in the following. For a more detailed analysis, we will also address complementary

strategies such as 1D inversion tests as well as local and global sensitivity analyses.

3.4.1 2D layer-based model parameterization

One of the most important steps in any geophysical inversion workflow is defining a model

parameterization that can properly represent the studied geological environment. Because a

priori information suggests a layered subsurface (i.e., unfrozen sediments overlying frozen sed-

iments) at both of our field sites, we choose a layer-based model parameterization considering

an unstructured mesh with local refinements along the interfaces separating individual layers.

Additionally, because resistivity variations within each layer are negligible compared to the

variations between different layers, we assume homogeneous layers; i.e., each layer is char-

acterized by one resistivity value. For more complex geological settings, one might allow for

lateral and/or vertical variations within the layers (e.g., Auken and Christiansen, 2004; Akça

and Basokur, 2010). To parameterize the interface geometry that defines the contact between

the individual layers, we may use different strategies, for example, based on spline interpolation

(e.g., Koren et al., 1991), Fourier coefficients (e.g., Roy et al., 2021), or sums of arctangent

functions (Gebrande, 1976).

Allowing for abrupt changes along the interfaces is considered to be a critical point in subsea

permafrost environments where high structural variability is often found. In such environments,

we expect sharp boundaries and variations along the interfaces due to inundated thermokarst

structures (Angelopoulos et al., 2021), pingo-like features, bottom-fast ice versus floating

ice regime transitions in winter, or changes in the ratio of coastal erosion vs. degradation

rate; i.e., changing from a period of fast thawing and low coastal erosion to a period of fast

coastal erosion and slow thawing can result in a heterogeneous structure of the IBPT (e.g.,

Overduin et al., 2016). Because we expect some of these processes and structures at our field

sites, we adopt a strategy based on the sums of arctangent functions because it allows for

abrupt and smooth changes along the interfaces (e.g., Roy et al., 2005; Rumpf and Tronicke,

2015). Following Arboleda-Zapata et al. (2022b), the sums of arctangent functions for a single

interface can be written as

z(x) = z0 +

nnod∑
j=0

∆zj

(
0.5 +

1

π
tan−1

(
x− xj

bj

))
, (3.1)

where z is the depth, nnod is the number of arctangent nodes, z0 is the average depth of

the interface, xj is the horizontal location of an arctangent node, and ∆zj is the vertical throw
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attained asymptotically over a horizontal distance of bj . Such sets of coefficients are used to

obtain z(x) at horizontal distances x. Increasing the number of nodes allow to resolve more

complex interfaces. During preliminary experiments and parameter testing, we noticed that

using three to seven nodes allows to model rather complex interfaces. For both of our field

studies, we fix the number of nodes to five, which results in 16 model parameters (1+ 3nnod)

per interface. Because we consider two interfaces, one for the seabed and the other for the

IBPT separating three layers with homogeneous resistivities, our parameterization strategy

results in total of 35 model parameters.

3.4.2 Inversion strategy

During inversion, we search for a combination of model parameters (i.e., those describing the

geometry of interfaces using Eq. (Eq. (3.1)) and the resistivities of the homogeneous layers)

that minimizes the root mean squared logarithmic error (RMSLE). To reduce the space of

possible solutions, we consider some constraints in our layer-based parameterization approach.

For both case studies, we constrain the seabed position (Fig. 3.1b and e) allowing vertical

variations of up to ± 0.15 m which is the approximate error level of our echo sounder data

for water depths < 5 m. Considering our CTD measurements, we allow the resistivity of the

water to vary between 11 Ωm to 15 Ωm for our Bykovsky data, and between 0.2 Ωm to 2 Ωm

for our Drew Point data. Note that we consider additional freedom beyond the variabilities

reported in Section 3.3 (1 Ωm for Bykovsky and 0.04 Ωm for Drew Point) to account for

additional variations related to the different sensitivities and resolutions of our CTD and ERT

data. Additionally, we set our search parameter range for the resistivity of the talik from 1 Ωm

to 100 Ωm, and for the resistivity of the ice-bearing permafrost from 1 Ωm to 300,000 Ωm for

both field studies.

Because we aim to find an inverse model independent of a reference or starting model,

we use a global inversion strategy based on the particle swarm optimization (PSO) technique,

which was originally introduced by Kennedy and Eberhart (1995). Over the last decade, the

PSO algorithm has been widely used to invert different types of geophysical data sets because

it has proven to be an effective tool for finding different local minima in objective functions

with complicated topography (e.g., Tronicke et al., 2012; Fernández-Mart́ınez et al., 2017).

In a first step, the PSO requires defining a set of particles where each particle represents a

different model. The particles are initialized with random parameters bounded within realistic

physical ranges. This defines our model space. The position of each particle is updated

iteratively considering the best global position found so far by the entire swarm (i.e., the

particle with the best fit performance in terms of the RMSLE), the best local position (i.e., the

best fit performance in the history of each particle), and the inertia (i.e., the direction in which

the particle is moving). These parameters are weighted and perturbed with random numbers

drawn from a uniform distribution which helps avoid getting trapped in a local minimum. For

every particle and every iteration, we calculate the forward response using the Python library
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pyGIMLi (Rücker et al., 2017). Note that each particle contains model parameters that result

in two different interface geometries, one representing the seabed and the other the IBPT.

Thus, adding these interfaces to our finite-element mesh results in a different mesh geometry

for each particle. To ensure good mesh quality, we constrain the minimum angle within each

cell to 33.5◦ (Shewchuk, 1996). This parameterization strategy allows to calculate the forward

response with high precision and with a reasonable amount of time (Arboleda-Zapata et al.,

2022b). At the end, when the optimization reaches the maximum number of iterations or a

minimum threshold in the objective function, we save the final best model. Using different

seeds of the random number generator, we repeat this process until we obtain an ensemble

MF0 consisting of several hundred independent models and an ensemble of corresponding

residuals δF0. In this study, each residual vector is calculated as the difference between the

observed and the corresponding modeled log-apparent resistivity values.

3.4.3 Ensemble interpretation

In a first step, to ease our ensemble analysis and interpretation in a pixel-wise fashion, all

models in MF0 are interpolated using the nearest-neighbor algorithm on a densely discretized

structured mesh (note that we use a unstructured mesh during inversion, Section 3.4.1). In a

second step, we perform a cluster analysis using the k-means algorithm (MacQueen, 1967) and

considering MF0 and δF0 as input to group similar solutions from our ensembles. To find an

optimal number of clusters nk, we use the criterion proposed by Caliński and Harabasz (1974)

supported by a visual inspection of the clustering results. Finally, we characterize in a pixel-wise

fashion each found cluster MFi and δFi (where i = 0, 1, ..., nk; note i = 0 correspond to the

whole ensemble and i > 0 to the clustered ensembles) by the median values µ1/2(MFi) and

µ1/2(δFi) and the interquartile ranges IQR(MFi) and IQR(δFi). Additionally, we describe

δFi in an overall fashion assessing the RMSLE(δFi), the IQR(δFi), and the quantile 90 %

q90(δFi).

3.4.4 1D inversion

Often, we prefer 2D inversion algorithms in comparison to 1D strategies; especially for field data

where the subsurface situation and its complexity are largely unknown. However, to investigate

and understand, for example, the relationship between specific model parameters and the in-

fluence of a priori information and constraints, 1D approaches (also considering synthetic data

examples) represent helpful interpretation tools (e.g., Sen and Stoffa, 1996; Malinverno, 2002).

In this study, we use 1D models consisting of five parameters, the depth of the seawater

zw, the depth of the contact between unfrozen and frozen sediments zpt (i.e., IBPT), the

water resistivity ρw, the resistivity of the unfrozen sediments ρuf , and the resistivity of the

ice-bearing permafrost ρp. As for our 2D examples, we also consider PSO to invert our 1D

synthetic data. Because for such 1D inversions the computational cost is significantly lower

than for 2D problems, we can run several tests and create larger model ensembles. We use
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such a 1D approach to tackle some specific questions regarding the considered application. For

example, we investigate how constraining the depth of the water layer and its resistivity affects

the final ensemble of 1D model solutions. Additionally, the limited number of parameters

in our 1D model parameterization strategy allows us to study in a simpler way the posterior

correlation matrix as proposed by Sen and Stoffa (2013). Although in this study we not

consider cluster analysis to classify our 1D ensembles as implemented for our 2D analyses, this

step may be adapted in future studies (e.g., investigating more complex model scenarios).

3.4.5 Sensitivity analysis

Sensitivity analysis is a powerful tool that can provide additional information to improve sys-

tem or process understanding (Wainwright et al., 2014). In the context of subsea permafrost

applications, several studies have shown the potential of the ERT method to image the IBPT

position (e.g., Sellmann et al., 1989; Overduin et al., 2012). However, the sensitivity distribu-

tion of the ERT model parameters for such environments characterized by resistivity contrasts

up to several orders of magnitude between unfrozen and frozen sediments is poorly understood.

Adding sensitivity analysis to the interpretation workflow helps investigate the impact of our

chosen model parameterization and the used constraints. Furthermore, such sensitivity stud-

ies might also help optimize ERT acquisition geometries and strategies before a field campaign.

In this study, we use 2D-local and 1D-global sensitivity analyses. To investigate which

regions of the 2D discretized model have the greatest influence on our objective function,

we consider the difference-based local sensitivity method of Günther et al. (2006), which is

available within the pyGIMLi library (Rücker et al., 2017). For example, we assess the sensitivity

of the shortest electrode configurations to understand if the corresponding measurements are

influenced by both the water layer and the underlying unfrozen sediments. In turn, this helps to

evaluate the reliability of imaging the uppermost water layer (e.g., for measurements where no

CTD measurements are available). Furthermore, the longest electrode spreads (corresponding

to the deepest levels in 2D pseudosections) and/or cumulative sensitivity distributions provide

information on whether our ERT data are sensitive to the IBPT and/or the frozen sediments.

For 1D model parameterizations and synthetic studies (considering zw, zpt, ρw, ρuf , and ρp

as described in Section 3.4.4), we use the variance-based global sensitivity method of Sobol

(Sobol, 2001; Saltelli et al., 2008) as implemented in the Python library SALib (Herman and

Usher, 2017). Using this approach, we aim to understand how the total influence of the

considered parameters might be affected by variations in ρp and zpt.

3.5 Results

In the following, we present the 2D inversion results for the Bykovsky and Drew Point data

sets in two separate subsections. Each subsection is complemented with 1D inversion results

of synthetic data simulated considering the site-specific environmental and electrode settings
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as well as with a 2D-local and a 1D-global sensitivity analysis.

3.5.1 Bykovsky

The geological and environmental settings of the Bykovsky area are described in Section 3.2.1

and a summary of the acquisition parameters and measured seawater properties is provided in

Table 3.1. We invert the 540 apparent resistivity measurements recorded along a 418 m long

profile (Fig. 3.1c) using a layer-based model parameterization as described in Section 3.4.1 and

a PSO-based inversion strategy as outlined in Section 3.4.2. In the PSO, we use 60 particles

and a maximum of 600 iterations as stopping criterion. To obtain a single inverted model

(i.e., after one inversion run), we have to evaluate the forward response 36,000 times, which

takes on average ∼ 40 h on a single core of a modern desktop computer. We repeat these

inversion runs considering different initial seeds of the random number generator (note that

this approach allows for a straightforward parallelization when multiple cores are available)

until we obtain an ensemble MF0 consisting of 690 models.

Ensemble analysis

After the inversion, we interpolated all models to a refined structured mesh before perform-

ing any posterior statistical analyses (see Section 3.4.3). In Fig. 3.2a and b, we show the

µ1/2(MF0) and IQR(MF0) models calculated from the Bykovsky model ensemble. The

µ1/2(MF0)model indicates that ρuf is∼ 4 Ωm and ρp is∼ 60,000 Ωm. However, when analyz-

ing individual models, we note a bimodal distribution of ρp (some models with ρp < 2,000 Ωm

and others with ρp > 100,000 Ωm) which is also illustrated by increased IQR(MF0) values

for the lowermost layer. These observations already indicate different groups of models with

distinct resistivity characteristics.

In the next step, we performed cluster analysis (Section 3.4.3) and found that our ensem-

ble MF0 can be divided into two model families MF1 and MF2. In Fig. 3.2b-c and e-f, we

present the µ1/2(MFi) and IQR(MFi) models (where i = 1, 2). Comparing these models

illustrates that MF1 and MF2 show a similar IBPT shape dipping toward the open sea (i.e.,

depth of the IBPT increases with increasing profile distances). However, the IBPT position in

MF1 is shallower than in MF2. We learn from this that for models favoring larger ρp values,

the depth of the IBPT increases highlighting the trade-off between these two parameters that

cause model variations along the IBPT. According to the depth of the IBPT and its gradients

in the profile direction, we laterally subdivide the models into three main parts. The first part

is found at x < 130 m and is characterized by a gentle dipping slope with minor convexities

and concavities. The second part is found at 130 m < x < 280 m, where the IBPT is relatively

flat with a minor change in depth at x ∼ 200 m. Finally, the abrupt change at x = 280 m

marks the transition to the third part, where the IBPT reaches its deepest point and extends

until the end of the profile at depths > 20 m.
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Fig. 3.2. Inversion results for the Bykovsky data set illustrated as summary statistics for all
obtained models MF0 and for two model families MF1 and MF2 as found by cluster analysis.
(a-c) Median and (d-f) interquartile range models. For each MFi, nm represents the number
of models in the corresponding ensemble.

We assess the fit performance in a pixel-wise and in an overall fashion for the residuals

associated with the ensemble containing all models δF0, as well as for the two clustered

model families δF1 and δF2 (Fig. 3.3). Thus, we calculate µ1/2(δFi) and IQR(δFi) (where

i = 0, 1, 2) in a pixel-wise fashion and present them as pseudosections in Fig. 3.3a-f. When

comparing these pseudosections to each other, we notice that the µ1/2(δFi) and IQR(δFi)

indicate similar fits of the data in terms of amplitudes and pseudosection patterns. The abrupt

change from positive to negative residuals at x ≃ 200 m coincides with the highest point of the

bathymetric profile for x > 150 m which also corresponds to a general change in the gradients

of the bathymetric profile (Fig. 3.1b). Therefore, a 3D subsurface structure (which cannot be

explained by our 2D inversion strategy) and related 3D effects are a reasonable explanation of

the discussed features in the residuals. For example, because the landscape was partly covered

by lakes (that acted as a source of heat) prior to seawater submergence, lateral temperature

gradients and heterogeneous sediment properties could affect subsurface resistivity and its 3D

variations. The overall statistics RMSLE(δFi), IQR(δFi), and q90(δFi) (where i = 0, 1, 2)

are presented as histograms in Fig. 3.3g-i. The histograms are characterized by bimodal

distributions, especially evident in all shown RMSLE(δFi) histograms. When comparing the
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histograms of δF1 and δF2, we notice that they follow similar distributions (although in δF1

there are less models). From these analyses of the residuals, we are not able to prefer one of

the model families and, thus, we perform some synthetic exercises to deepen our understanding

of this inverse problem and the found model solutions.

Fig. 3.3. Summary statistics of the residuals for the Bykovsky data set corresponding to
all models δF0 and for the two clustered families δF1 and δF2. (a-c) Median and (d-f)
interquartile range calculated in a pixel-wise fashion. (g-i) Histograms illustrating the overall
distribution of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

1D inversion of synthetic data

To complement our understanding of the formulated inverse problem, we perform 1D inver-

sions of a synthetic data set created considering a 1D subsurface model (see ”Input model” in

Table 3.2) as described in Section 3.4.4. The 1D subsurface model parameters were chosen by

analyzing our 2D model solutions (e.g., Fig. 3.2b-c at x ≃ 150 m). We calculate the forward

response of 10 quadripoles considering the same electrode configurations as used for recording

the Bykovsky field data (Table 3.1). We invert the simulated apparent resistivity data using

two scenarios for constraining zw and ρw, while the constraints for all other parameters remain

unchanged (see Table 3.2). The resulting inverted models are shown in Fig. 3.4a and c. For all

models, we have achieved RMSLE < 0.028, which is equivalent to the noise level applied to the

calculated synthetic data and comparable to the RMSLE achieved for the 2D inversion results

of the Bykovsky field data. Comparing the results shown in Fig. 3.4a and c illustrates that

constraining the water layer significantly decreases the non-uniqueness of the inverse problem.

We also notice that the median model represents a good approximation to the input model
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except for ρp which is overestimated as illustrated by the larger ρp of the quantile 25 % model

compared to the input ρp. Additionally, from all models visualized in Fig. 3.4a and c, we

calculate the corresponding posterior correlation matrices (Fig. 3.4b and d). For both cases,

we see that [ρuf , zpt] is the model parameter pair with the highest positive correlation while

the rest of the model parameter pairs are characterized by negative correlations with different

amplitudes (except for pairs with ρp which show correlations approaching zero).

Table 3.2. Parameters of the 1D synthetic model of Bykovsky and for two scenarios indicating
the lower and upper bounds parameter constraints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 4.5 3, 6 4, 5
Depth IBPT zpt (m) 15 6.5, 25 6.5, 25
Resistivity seawater ρw (Ωm) 13.7 1, 50 11, 15
Resistivity unfrozen sediments ρuf (Ωm) 4 1, 100 1, 100
Resistivity permafrost ρp (Ωm) 4,000 1, 200,000 1, 200,000

Sensitivity analysis

To understand the sensitivity distribution for our three-layer model (representing seawater

and unfrozen sediments overlying frozen sediments), we calculate the cumulative sensitivity,

and the sensitivity for the shortest and widest quadripoles considering two model scenarios

(Fig. 3.5). In the first scenario, we consider the same input model as for the 1D inversion

exercise (Table 3.2). In the second scenario, we set zpt = 25 m while all other parameters

remain unchanged. From the cumulative sensitivity plots (Fig. 3.5a and d), we learn that

areas of sensitivities extend throughout the layer of unfrozen sediments for both scenarios.

This suggests that we could interpret our inverted models even underneath the outer electrode

positions; i.e., if the boat together with the electrode streamer is moving toward the right

(i.e., increased x coordinates) to collect additional sounding curves, our interpretation of the

inverted model should start at x ∼ -60 m. Note that a more conservative model interpretation

might start at x ∼ -25 m, where we start having more significant cumulative sensitivities.

When analyzing Fig. 3.5b and e, we see that the shortest quadripole is sensitive to both the

water layer and the unfrozen sediments. For a wider electrode spacing and an IBPT located

at a depth of 15 m (Fig. 3.5c), the sensitivities are focused around the inner electrodes but

also with some minor contributions from the outer electrodes (note the reddish colors in the

unfrozen sediments at x < -60 m and at x > 60 m), which may be critical when significant 2D

or 3D resistivity variations are present. For a deeper IBPT (Fig. 3.5f), we notice that we are

still sensitive at depths of ∼ 25 m; however, the lateral extensions of the sensitivity patterns

within the unfrozen sediments appear to be reduced.

As noticed in our 2D sensitivity analysis, the high resistivity contrast between the unfrozen

and frozen sediments seems to limit the penetration depth down to the IBPT. To complement
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Fig. 3.4. 1D inversion results of synthetic data for 1D subsurface scenarios developed for the
Bykovsky field site. (a) Ensemble with nm model solutions and b) the corresponding symmetric
correlation matrix for scenario 1 (water layer parameters with large freedom during inversion),
and (c-d) the same for scenario 2 (with constrained zw and ρw). Black lines in panels (a)
and (c) are plotted with transparency and, therefore, the darker areas indicate higher density
models. The numbers in panels (b) and (d) are the corresponding correlation values.

and better understand our results of 2D sensitivity analysis, we investigate the global sensi-

tivities (Section 3.4.5) of different 1D model parameterizations. Specifically, we use models

where zw = 4.5 m, ρw = 13.7 Ωm, and ρuf = 4 Ωm are fixed, while ρp varies between 10 Ωm

and 10,000 Ωm (eight values in total) and the IBPT is located at three different depths;

i.e., zpt = 25 m, zpt = 15 m, and zpt = 5 m (Fig. 3.6a-c). Note, defining eight different

values for ρp and three for zpt results in 24 different 1D models. For the calculation of the

total sensitivity for each of our five parameters in these 24 models, we set the parameters

ranges to zw = [4, 6] m, zpt = [6.5, 30] m, ρw = [0.2, 20] Ωm, ρuf = [1, 20] Ωm, and

ρp = [5, 20000] Ωm. For these specific models and parameter ranges, our results (Fig. 3.6)

suggest ρw is the most influential parameter followed by ρuf , which shows approximately half

of the influence compared to ρw. The influence of zpt is slightly larger than zw, although zpt

is set up with a wider range than zw. Furthermore, although we allow ρp to vary over three

orders of magnitude the result of this sensitivity analysis demonstrates that ρp is the parameter

with the lowest influence, but it is not null as indicated by the results of our 2D sensitivity

analyses (Fig. 3.5a and d). Such low sensitivity values help to explain the large variation of ρp
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Fig. 3.5. 2D normalized sensitivities for two different model scenarios developed for the
Bykovsky field site. Position of the the IBPT at a depth of (a-c) 15 m, and (d-f) 25 m. From
top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest and
widest quadripole, respectively.

in our 1D and 2D ensembles. Interestingly, we also notice in Fig. 3.6a-c that in general when

increasing ρp (for ρp < 100 Ωm) the total sensitivity index of the other parameters tend to

decrease.

Fig. 3.6. Global sensitivity results for the Bykovsky field site considering different 1D model
scenarios with an IBPT at a depth of (a) 25 m, (b) 15 m, and (c) 5 m.

3.5.2 Drew Point

The geological and environmental settings of the Drew Point area are described in Section 3.2.2

and a summary of the acquisition parameters and measured seawater properties is provided

in Table 3.1. We invert the 1830 apparent resistivity measurements recorded along an 854 m

long profile (Fig. 3.1f) considering a layer-based model parameterization as described in Sec-

tion 3.4.1 and a PSO-based inversion strategy as outlined in Section 3.4.2. In the PSO,

because we notice that the inversion of the Drew Point data set converges much faster than
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in our Bykovsky example, we decide to lower the number of particles to 30 and the number

of iterations to 400, thus, allowing us to save some computational cost. Considering these

settings, to obtain a single inverted model, we have to evaluate the forward response 12,000

times, which takes on average 57 h on a single core of a modern desktop computer. We repeat

these inversion runs considering different initial seeds of the random number generator (using

different processors in parallel) until we obtain an ensemble MF0 consisting of 416 models.

Ensemble analysis

After the inversion, we interpolate all models to a refined structured mesh before perform-

ing any posterior statistical analyses (Section 3.4.3). In Fig. 3.7a and b, we present the

µ1/2(MF0) and IQR(MF0) models calculated from the Drew Point model ensemble. The

irregular variations in the IQR(MF0) model and the bimodal distribution of ρp (some models

with ρp < 500 Ωm and others with ρp > 100,000 Ωm) already indicate different groups of

models with distinct resistivity characteristics and IBPT positions.

In the next step, we performed cluster analysis (Section 3.4.3) and found that our ensemble

MF0 can be divided into three model families (MF1, MF2, and MF3). In Fig. 3.7b-d and

f-h, we present the µ1/2(MFi) and IQR(MFi) models (where i = 1, 2, 3). Comparing these

models illustrates that MF1 and MF2 present a similar IBPT shape dipping toward the open

sea. However, for MF3 the IBPT position is dipping toward the coast which is not in agree-

ment with our background knowledge of this field site. When comparing the MF1 and MF2

models in more detail, we note that the IBPT position in MF1 is shallower than in MF2.

Comparable to the Bykovsky example, models favoring high ρp values tend to show increased

depths of the IBPT resulting in thicker unfrozen sediments also near the coast. According to

the depth of the IBPT and its gradients in the profile direction for MF1 and MF2, we laterally

subdivide the model into four main parts. The first part is found at x < 100 m and it is char-

acterized by an intermediate convex slope. The second part is found at 100 m < x < 500 m

and the IBPT shows a gentle convex slope whereas in the third part (at 500 m < x < 700 m)

the IBPT is almost flat. Finally, the fourth part is found at x > 750 m, where the IBPT may

be located at depths ≥ 20 m.

We assess the fit performance for the residuals associated with the ensemble containing all

models δF0, as well as for the three clustered model families δF1, δF2, and δF3 (Fig. 3.8). We

calculate µ1/2(δFi) and IQR(δFi) (where i = 0,1,2,3) in a pixel-wise fashion and present them

as pseudosections in Fig. 3.8a-h. When comparing these pseudosections to each other, we no-

tice that µ1/2(δFi) indicate similar fits of the data in terms of amplitudes and pseudosection

patterns (although with slightly higher values for δF3). When comparing the IQR(δFi) plots,

we note that IQR(δF0) is characterized by several patches which are less prominent in the

clustered residuals Fig. 3.8f-h. This indicates that our clustering results are properly grouping

models with similar residuals. Furthermore, we associate the vertical feature at x = 400 m in

Fig. 3.8e-h to the variation in our models to locate the left edge of a bulge structure of the
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Fig. 3.7. Inversion results for the Drew Point data set illustrated as summary statistics for all
obtained models MF0 and for three model families MF1, MF2, and MF3 as found by cluster
analysis. (a-d) Median and (e-h) interquartile range models. For each MFi, nm represents
the number of models in the corresponding ensemble.

seabed (see Fig. 3.1e). This illustrates the applicability of exploring such residual statistics

to identify possible drawbacks in our inversion results and, thus, allow us to re-evaluate our

parameterization strategy. For example, we might consider to improve the inversion results by

adding a node to our sums of arctangent functions around x = 400 m. The overall statistics

RMSLE(δFi), IQR(δFi), and q90(δFi) (where i = 0, 1, 2, 3) are presented as histograms in

Fig. 3.8i-l. The histograms in Fig. 3.8i are characterized by bimodal distributions. Such bi-

modal distributions are less pronounced for the clustered families (Fig. 3.8j-l), however, small

tails to the right are also evident for δF1 and δF2. One may tend to reject the models falling

in these tails, especially, when using the mean to estimate the central trend. However, because

we consider robust statistical measures (e.g., median and IQR), we do not expect a significant

impact from these models on our results and conclusions.
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Fig. 3.8. Summary statistics of the residuals for the Drew Point data set corresponding to all
models δF0 and for the three clustered families δF1, δF2, and δF3. (a-d) Median and (e-h)
interquartile range calculated in a pixel-wise fashion. (i-l) Histograms illustrating the overall
distributions of different statistical measures including RMSLE(δ), IQR(δ), and q90(δ).

1D inversion of synthetic data

Following Section 3.4.4 and Section 3.5.1, we perform 1D inversions of a synthetic data set

created considering a 1D subsurface model (see ”Input model” in Table 3.3). The 1D model

parameters were chosen by analyzing our 2D model solutions (e.g., Fig. 3.7b-c at x ≈ 600 m).

Note ρp is the same as in the 1D synthetic example from Section 3.5.1 which allows us to

better compare the results of our 1D synthetic exercises. We calculate the forward response of

10 quadripoles considering the same electrode configurations as used for recording the Drew

Point field data (Table 3.1). We invert the simulated apparent resistivity data considering

two scenarios for constraining zw, ρw, and ρuf , while the constraints for zpt and ρp remain

unchanged (see Table 3.3). The resulting inverted models are shown in Fig. 3.9a and c. For

all models, we have achieved RMSLE < 0.007, which is equivalent to the noise level applied

to the calculated synthetic data and comparable to the RMSLE achieved for the 2D inversion

results of the Drew Point field data. Comparing the results shown in Fig. 3.9a and c illustrates

that the applied constraints improve the median model. However, we also observe an increase

in the variability of the models around zpt in Fig. 3.9c. Additionally, from all the models visu-

alized in Fig. 3.9a and c, we calculate the corresponding posterior correlation matrix (Fig. 3.9b
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and d). For both cases, we see that the largest negative correlations are found for the model

parameter pairs [ρuf , ρw] and [ρw, zpt] while the most significant positive correlation is found

for [ρuf , zpt]. Note that the absolute correlations of these model parameter pairs are larger

in Fig. 3.9d compared to Fig. 3.9c. Finally, we want to point out that the signs for the most

significant parameter correlations are the same as the ones found for Bykovsky in Fig. 3.4d.

Table 3.3. Parameters of the 1D synthetic model of Drew Point and for two scenarios
indicating the lower and upper bounds parameter constraints.

Input model Scenario 1 Scenario 2

Depth seawater zw (m) 2 1.5, 2.5 1.9, 2.1
Depth IBPT zpt (m) 12 3.5, 20 3.5, 20
Resistivity seawater ρw (Ωm) 0.4 0.2, 2 0.2, 0.6
Resistivity unfrozen sediments ρuf (Ωm) 5 0.2, 100 0.2, 20
Resistivity permafrost ρp (Ωm) 4,000 1, 200,000 1, 200,000

Sensitivity analysis

For the sensitivity analysis, we consider the two model scenarios indicated in Fig. 3.10. In the

first scenario, we consider the same input model as for the 1D inversion exercise (Table 3.3).

In the second scenario, we set zpt = 16 m while all other parameters remain unchanged. From

analyzing the cumulative sensitivity plots (Fig. 3.10a and d), we infer that an interpretation

of our inversion results should focus on the area around the inner electrodes; i.e., if the boat

is moving toward the right to collect additional sounding curves, our interpretation of the

inverted model should start at x ∼ -10 m. When analyzing Fig. 3.10b and e, we see that we

are most sensitive to the water layer. Interestingly, when comparing Fig. 3.10c and f in detail,

we realize that the sensitivity distribution in Fig. 3.10c reaches the IBPT interface while the

sensitivity distribution in Fig. 3.10f is almost null for depths > 12 m.

We perform the global sensitivity analyses (Section 3.4.5) considering 1D models described

by five model parameters as used for the above presented 1D inversions. We consider models

where zw = 2 m, ρw = 0.4 Ωm, and ρuf = 5 Ωm are fixed, while ρp varies between 10 Ωm

and 10,000 Ωm (eight values in total), and the IBPT is located at three different depths; i.e.,

zpt = 16 m, zpt = 10 m, and zpt = 4 m (Fig. 3.11a-c). For the calculation of the total

sensitivity for each of our five parameters in the resulting 24 models, we set the parameter

ranges to zw = [0.5, 3] m, zpt = [3.5, 20] m, ρw = [0.2, 20] Ωm, ρuf = [1, 20] Ωm, ρp =

[5, 20,000] Ωm. For these specific models and parameters ranges, our results (Fig. 3.11)

suggest that ρw and ρuf are the most influential parameters and the other three parameters

(zpt, zw and ρp) are characterized in all cases by rather low total sensitivities. Furthermore,

we also notice in Fig. 3.11a-c that ρw is the parameter showing the most significant changes

when varying ρp and zpt.
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Fig. 3.9. 1D inversion results of synthetic data for 1D subsurface scenarios developed for
the Drew Point field site. (a) Ensemble with nm model solutions and (b) the corresponding
symmetric correlation matrix for scenario 1 (water layer parameters with large freedom during
inversion), and (c-d) the same for scenario 2 (with constrained zw, ρw, and ρuf ). Black lines
in panels (a) and (c) are plotted with transparency and, therefore, the darker areas indicate
higher density models. The numbers in panels (b) and (d) are the corresponding correlation
values.

3.6 Discussion

Knowledge of how fast permafrost thaws would improve predictive models of greenhouse gas

release and coastal erosion, as well as coastal infrastructure design. The ERT method has

been successfully used to image the unfrozen sediments overlying the permafrost layer in

subsea permafrost environments, especially using smooth inversion approaches (e.g., Overduin

et al., 2012; Pedrazas et al., 2020). In typical subsea permafrost environments, there might be

a gradual transition zone consisting of a mixture of water and ice between fully unfrozen and

frozen ice-bonded sediments. However, during ERT inversion, the nature of this transition can

be either enlarged when using smooth inversion approaches, or reduced to a single interface

when using layer-based strategies. Whether we have a smooth or sharp transition between

unfrozen and frozen sediments, there must be a threshold in the ice content that creates

sufficient contrast in resistivity also influencing the penetration of the injected current and,

thus, our apparent resistivity measurements (e.g., Kang and Lee, 2015). Because we wanted
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Fig. 3.10. 2D normalized sensitivities for two different model scenarios developed for the
Drew Point field site. Position of the the IBPT at a depth of (a-c) 12 m, and (d-f) 16 m.
From top to bottom, we show the cumulative sensitivity and the sensitivity for the shortest
and widest quadripole, respectively.

Fig. 3.11. Global sensitivity results for the Drew Point field site considering different 1D
model scenarios with an IBPT at a depth of (a) 16 m, (b) 10 m, and (c) 4 m.

to target the interface defined by such a resistivity contrast (interpreted here as the IBPT),

we considered a layer-based model parameterization to invert our ERT data. Additionally, we

obtained estimates of uncertainties using an ensemble approach. For the sake of completeness,

we provide the smooth inversion models for both of our field studies in Appendix Section 3.8.

3.6.1 Insights from our parameterization and inversion strategies

We used a 2D layer-based model parameterization to globally invert marine ERT data and ob-

tain different ensembles (e.g., after cluster analysis) of model solutions. We demonstrated with

the two case studies that such ensembles allow us to reliably image the IBPT position with its

associated uncertainties. The main advantage of using a layer-based model parameterization

strategy is that we do not assume an arbitrary resistivity threshold or gradient to interpret
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the IBPT position, as we would need to do for our smooth inversion results (see Fig. 3.12a-

b). This may be advantageous to compare ERT profiles collected at the same position in

different years to track changes along the IBPT or in environments where the freezing point

of the sediment porewater changes spatially. For example, offshore surveys that encounter

submerged hypersaline lagoon deposits may show relatively low resistivity values for partially

frozen sediments compared to colder ice-bonded permafrost with fresh porewater (Angelopou-

los et al., 2021). Indeed, this interface may be related to a threshold in ice content. However,

associating the IBPT with a certain ice content requires calibration by using borehole data

or by additional geophysical information; e.g., by using the joint inversion approach of ERT

and seismic refraction data of Wagner et al. (2019). Such thresholds may vary from site to

site depending on properties of the sediments including temperature, grain size distribution,

and the salinity of the porewater. Furthermore, we consider it convenient to use the sum of

arctangent functions to parameterize the IBPT because there may be cases where the IBPT

position varies steeply (as the ones we identified at the end of the median models in Figs.

Fig. 3.2a-c and Fig. 3.7a-c) associated, for example, with submerged thermokarst structures

or changes in the ratio of coastal erosion vs. degradation rate.

To find reliable and stable 2D model solutions, we performed experiments in which we ran

the PSO several times to find the appropriate parameter settings for our layer-based ERT inver-

sion. In a first stage, when performing our 2D inversions without considering any constraints,

we found model solutions that were unrealistic according to our prior knowledge of our field

sites. Therefore, we constrained our inversions considering our bathymetric and CTD measure-

ments (see Section 3.4.2). Although the 2D inverted models without considering constraints

are not shown in this study, we demonstrated with our 1D inversions how such constraints

significantly improved the inversion results while reducing the number of possible solutions.

Another exercise in the experimental phase consisted in using more than three layers in our

parameterization strategy. However, we did not observe any significant improvement in the

final median models when increasing the number of layers and, thus, restricted our inversion

and analyses to three-layer scenarios.

One disadvantage of using a layer-based model parameterization relying on homogeneous

layers is that it is not possible to resolve small-scale resistivity variations (e.g., horizontal het-

erogeneities at a spatial scale of meters). However, our workflow allowed us to inspect and

evaluate model performance including the appropriateness of the model parameterization. For

example, in the Bykovsky and Drew Point case studies, we observed in the residual pseudo-

sections some regular lateral variations (see Fig. 3.3 and Fig. 3.8). This indicates that we

were not completely explaining the data, either because of lateral subsurface resistivity varia-

tions or 3D effects. To tackle this problem, it could be beneficial to measure 3D bathymetric

data around each ERT profile and collect additional parallel and perpendicular ERT profiles

to better understand 3D resistivity variations at our field sites. Furthermore, direct measure-

ment of the resistivity of water and unfrozen sediments (e.g., using additional water samples
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and drilling cores) might help to inform the model parameterization (e.g., account for lateral

variations) and inversion strategies. We should notice that adding complexity to our model

parameterization comes with the trade-off of increased computational cost to solve the inverse

problems. An alternative to obtaining more complex resistivity models is to use our layer-based

global inversion results as reference models to perform smoothness-constrained inversions (e.g.,

Günther et al., 2006).

The error level of ERT data is usually unknown; especially for marine data, where repeated

or reciprocal measurements are not practical because the data are acquired while the boat is

moving. This represents a challenge during the inversion when specifying an appropriate fit

level. One alternative to get insights into the noise level is to perform repeated measurements

in a static fashion (avoiding bending of the cable by wind or swells) for a certain section of the

profile. For example, this can be achieved at the coast on a calm day where one end of the

cable is secured to the beach and the other end is fastened to an anchored boat. However,

such repeat measurements were not available for our field sites. Therefore, we set our stopping

criterion by considering a fixed number of iterations rather than using a minimum threshold

in our objective function. With this approach, we obtained model solutions characterized by

different fit levels. For example, for the Bykovsky data, we found RMSLE values between

0.025 and 0.038 (Fig. 3.3g-i), while for our Drew Point data, we found RMSLE values between

0.007 and 0.016 (Fig. 3.8i-l). Although the RMSLE values for Drew Point are significantly

lower than for Bykovsky, we found a family of models in the Drew Point study, which was

considered as geologically unrealistic (Fig. 3.7d). This highlights the importance of estimating

different ensembles of solutions with different fit levels, and having an accurate estimate of data

noise. Because the misfits for the model in Fig. 3.7d were higher, this family of models could

potentially be discarded if they were found to exceed expected error levels without considering

any prior knowledge of the environmental setting.

3.6.2 Parameter learning from 1D inversion

Our 2D inversion results showed large variations in the modeled resistivities of the permafrost,

and we also noticed that, typically, the variabilities of IBPT position increase with depth. These

observations indicate decreasing resolution capabilities of our ERT data with depth and lim-

ited penetration of the injected current in the frozen permafrost layers. To better understand

these results in a more quantitative fashion, we reduced the number of parameters to five and

performed selected 1D inversion experiments using synthetic data inspired by our 2D inversion

results. Because such 1D inversions are significantly faster than 2D inversions, they represent

an efficient way to explore the influence of constraining different parameters. For example, we

noticed from our 1D inversion results that constraining the water layer significantly decreased

the non-uniqueness of the inverse problem. This is essential for a reliable estimation of the

IBPT position and for establishing petrophysical relations, for example, to estimate porewater

salinity and ice content. Additionally, we noticed that the 1D inversion results for the Bykovsky

data (Fig. 3.4c) provided similar uncertainties around the IBPT as the 2D inversion results at
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x = 150 m (Fig. 3.2d-f). However, the 1D inversion results for the Drew Point data (Fig. 3.9c)

showed uncertainties around the IBPT three times larger compared to the 2D inversion results

at x ≈ 600 m (Fig. 3.7f and g). This indicates that there is no general best way of using the

results of such complementary synthetic 1D studies; the success and feasibility rather depends

on the characteristics of the field site and analyzed data set. On the other hand, we can use

our 1D inversion results to assess the posterior correlation matrix that, as we showed in our

examples, can be helpful to identify interactions between the model parameters. Furthermore,

comparing the changes across different posterior correlation matrices (e.g., associated with

different model constraints) can help us detect changes in the parameters interactions and,

thus, quantify the impact of our model constraints. Such straightforward but informative anal-

ysis provides a deeper understanding of the inversion process and the suitability of the entire

inversion strategy.

Our 1D inversion results indicated some problems if we want to infer relative permafrost

characteristics from ERT measurements. The 1D input models for our 1D synthetic examples

(see Table 3.2 and Table 3.3) assumed identical resistivities of the ice-bearing permafrost

layer (ρp = 4,000 Ωm) and similar resistivities for the unfrozen sediments as found by our

2D inversion results. In contrast, the resistivity and depth of the seawater layer between both

models were set according to field measurements at our field sites. Although the resistivities

of the unfrozen and frozen layers were similar in both models, we noticed that for model

scenarios derived from the Bykovsky site, the inverted ρp values were generally overestimated

where already the q25 model indicate ρp values larger than the input ρp (Fig. 3.4c). On the

contrary, for settings inspired by the Drew Point field site, the input ρp fell within the range

defined by q25 and q75 models but showed more significant variabilities than our 1D Bykovsky

experiment (Fig. 3.9c). These results demonstrated the influence of the depth and resistivity of

the seawater layer in the inverted models which may be critical for subsequent interpretations.

For example, assuming the same temperature and porewater salinity, the resistivity of the

sediments increases with ice-content (e.g., Pearson et al., 1986; Fortier et al., 1994; Kang and

Lee, 2015). Thus, our results may lead us to conclude that the ice-bearing permafrost layer

holds higher ice content at Bykovsky compared to Drew Point. Over- or under-estimating

the ice-bearing permafrost resistivity may lead to potentially erroneous interpretations, for

example, related to the sediment’s ice content, temperature, and composition. We would

need complementary field information or further analyses like sensitivity assessments to avoid

misleading interpretations.

3.6.3 System understanding with sensitivity analysis

We obtained an additional model understanding (e.g., in view of delineating confident and

reliable model areas) by performing sensitivity analyses. From our examples, we learned that

if the resistivity of the seawater were higher than the resistivity of the unfrozen sediments (as

in the Bykovsky case study, Fig. 3.5), this would result in increased sensitivities inside the

unfrozen sediments and, thus, to changes along the IBPT position. This type of situation may

58



3.6. Discussion

be prevalent in subsea permafrost areas affected by freshwater river discharge in summer. On

the other hand, if the seawater were less resistive than the unfrozen sediments (e.g., as in the

Drew Point case study, Fig. 3.10), we were more sensitive to the water layer and, therefore, to

bathymetric changes. This emphasizes the importance of accurate water depth measurements.

We highlight the fact that although the local 2D sensitivities for the Drew Point data were

rather small for the unfrozen sediments, the IQR of the models (Fig. 3.7f-g) showed equivalent

variability around the depth of IBPT (1.5 m to 2 m for depths ∼ 12 m) in comparison to the

Bykovsky example (Fig. 3.2d-f), where the sensitivities showed a more pronounced influence

within the unfrozen sediments.

This study used global sensitivity analysis considering only five parameters as needed for

our 1D inversion examples. The Sobol approach proved to be a powerful method to distinguish

the most influential parameters. After evaluating how the permafrost resistivity and the IBPT

position may influence the rest of the parameters in our 1D three-layer examples, we noted

some relevant differences. For example, in the Bykovsky example (Fig. 3.6), we noticed that for

larger values of ρp and shallower zpt the total influence of the rest of the parameters decreased.

On the other hand, for the Drew Point example (Fig. 3.9), increasing ρp increased the total

sensitivity of the rest of the parameters, while varying zpt at shallower depths mainly increased

the influence of ρw. We also want to highlight that ρw, ρuf , and zpt were the parameters with

the largest total sensitivity in both examples and were also the parameters that formed model

parameter pairs showing the largest correlation (see Fig. 3.4d and Fig. 3.9d). Encouragingly,

ρw and ρuf can be informed from CTD casts and shallow sediment sampling, respectively. We

must be aware that such a global sensitivity analysis is highly dependent on the pre-defined

constraining parameter range and should be applied to address specific questions to allow, for

example, parameter reduction or to guide our sampling strategies and experimental design.

3.6.4 Subsea permafrost features (Bykovsky vs. Drew Point)

The inverted ERT profiles yielded new insights into how subsea permafrost thaws because

the Bykovsky Peninsula and Drew Point are characterized by distinct seawater properties and

geological histories. The Bykovsky 2D inversion results at x = 150 m, which corresponds

to an inundation period of 357 years assuming an erosion rate of 0.42 m yr-1 (e.g., Lantuit

et al., 2011), showed a median depth to the IBPT of ∼ 15 m (Fig. 3.2). This resulted in an

average degradation rate of ∼ 0.04 m yr-1. On the other hand, the Drew Point 2D inversion

results at x ≈ 600 m showed a median depth to the IBPT of ∼ 12 m. Note that this location

coincides with the 1955 coastline position (see Fig. 3.1d-e), which corresponds to 63 years of

inundation yielding an average degradation rate of ∼ 0.19 m yr-1. At Bykovsky, 63 years of

inundation (again assuming an erosion rate of 0.42 m yr-1) correspond to an offshore distance

of ∼ 26 m which corresponds to a median IBPT depth in the 2D inversion results at most 6 m

(Fig. 3.2). Although the mean annual IBPT degradation rate slows with inundation time as

the temperature gradient driving diffusive heat fluxes weakens (Angelopoulos et al., 2019), it

is evident that the permafrost at Drew Point may thaw faster, presumably because Drew Point
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sediments are primed with salts in the pore space prior to inundation (Black, 1964; Sellmann,

1989).

Since salt diffusion is typically slower than heat diffusion (Harrison and Osterkamp, 1978),

the IBPT degradation rate at Bykovsky should theoretically be faster than at Drew Point, pro-

vided that the permafrost sediments are similar. However, it appears that dissolved salts in the

pore space of the sediments at Drew Point play an important role in lowering the permafrost

freezing point and resulting in higher IBPT degradation rates than at Bykovsky. In fact, the

top of onshore cryotic and saline unfrozen sediment layers (cryopegs) were observed near the

Drew Point shoreline during coring (Bull et al., 2020; Bristol et al., 2021). This can lead us to

interpret a faster IBPT degradation rate at Drew Point compared to Bykovsky in two ways: 1)

a layer of submerged Drew Point sediments was already unfrozen upon inundation (e.g., MF2

in Fig. 3.7); 2) the frozen layers at Drew Point contained less ice and had a lower freezing

point. Jones et al. (2018) suggested that warming permafrost temperatures at Drew Point

(3 ◦C to 4 ◦C over the past several decades) have made saline permafrost more susceptible

to erosion, potentially contributing to the enhanced coastal erosion rate (2.5 times that of

the historical average) observed between 2007 and 2016. Warming by seawater submergence

would presumably result in cryopeg spreading and IBPT degradation.

As shown in Fig. 3.1a and d, the coastal plains at our field sites consist of numerous

thermokarst lakes and drained lake basins. When thermokarst lakes are breached by coastal

erosion, the unfrozen sediments underneath the lake become integrated into the subsea per-

mafrost environment, leading to bowl-shaped electrical resistivity structures. For example,

Angelopoulos et al. (2021) showed steep IBPT gradients along ERT profiles parallel to the

southern Bykovsky shoreline that traverse submerged thermokarst and undisturbed permafrost.

These authors also suggested that drained lake basins, which have undergone thaw-refreeze

cycles, are more susceptible to quicker thaw compared to undisturbed terrain. Comparing the

first 400 m of our inverted median models for our field sites, we noticed that, in general, the

IBPT at Drew Point is smoother than at Bykovsky. This might be the result of the higher

erosion rates at Drew Point (> 10 m yr-1) than at Bykovsky (< 1 m yr-1) that expose coastal

areas to inundation in a shorter time. Because of the longer inundation time at Bykovsky,

we expect fluctuations in different environmental controls (e.g., water temperature, seawater

salinity) that might result in step-like features as the one at x ≈ 280 m. Furthermore, layered

strata alternating between ice-rich and relatively ice-poor sediment may also contribute to

step-like IBPT features. Similarly, in the Drew Point 2D inversion (Fig. 3.7a-c), there was a

steep median IBPT decline observed at x ≈ 750 m where the IBPT deepened from ∼ 12 m

to ≥ 20 m. Although the resolution capabilities of our ERT data at these depths are limited,

we suggest that thermokarst processes prior to seawater submergence may be responsible for

the nature of this IBPT dip.
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3.7 Conclusions

In this study, we illustrated how we could use ERT data to reliably estimate the IBPT position in

shallow coastal areas of the Arctic. We found that using a layer-based model parameterization

helps us target the IBPT position directly from the inversion of ERT data with the trade-

off of omitting small-scale heterogeneities. To improve the inversion result, we noticed that

constraining the water layer depth and resistivity reduces the non-uniqueness of the ERT

inverse problem improving the estimation of the resistivity of the unfrozen sediments (talik

and/or cryopeg) and the IBPT position. However, even when constraining the water layer,

we still found large variabilities in the resistivity of the frozen sediments. We suggest that

constraining the resistivity of the unfrozen sediments (e.g., sediment sampling) during ERT

inversion could improve resistivity estimates of the frozen layer and, thus, further permafrost’s

physical properties (e.g., ice content). Properly imaging the IBPT position may allow us

to improve the estimation of the permafrost degradation rate, which might be used to better

understand greenhouse gas emissions and coastal erosion processes. The workflow and methods

presented in this study can guide future field campaigns and may be used as a reference for

more detailed parameterizations and/or inversion strategies.

3.8 Appendix - Smooth inversion

Although comparing different inversion strategies is beyond the scope of this study, for the

sake of completeness, we show the smooth inversion results for our Bykovsky and Drew Point

data sets in Fig. 3.12a-b. To invert these data sets, we use the inversion routine of the Python

library pyGIMLi (Rücker et al., 2017). For both cases, we constrain the seawater layer by using

the bathymetric profile data as collected by a Garmin echo sounder (see Section 3.3). The

Bykovsky model (Fig. 3.12a) show the highest resistivities to the left (near the coast), while

resistivities drop in the offshore direction. For our Drew Point model (Fig. 3.12b), the highest

resistivities are also present near the coast, but the resistivities decrease in the offshore direction

more gradually than in the Bykovsky model. To derive the IBPT position from these models,

we would need to assume or measure (e.g., through borehole data) the resistivity threshold

that separates the talik from the ice-bearing permafrost layer (e.g., Overduin et al., 2016;

Sherman et al., 2017; Angelopoulos et al., 2021). Because no ground-truth data is available

and to avoid assuming a resistivity threshold, we decide to target such an interface using a

layer-based model parameterization approach as explained in Section 3.4.1. Please refer to

Angelopoulos et al. (2019) where a smooth inversion of the Bykovsky data set presented in

this study is discussed in more detail, as well as Angelopoulos et al. (2021) where laterally

constrained inversions of additional datasets offshore of Bykovsky are shown.
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Fig. 3.12. Smooth inversion models for (a) the Bykovsky and (b) Drew Point data sets. To
enhance the resistivity contrast in our ERT models presented in panels (a) and (b), we limited
the lower and upper resistivities considering quantiles 0.04 and 0.96, respectively.
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Tracing past extreme floods on an alluvial fan

using geophysical surveying
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Abstract

In May 2016, a rare flash flood caused unprecedented erosion and sedimentation in several

low-order tributaries of the Kocher and Jagst valleys in the cuesta landscape of southwestern

Germany. While comparable events and their geomorphic and sedimentary legacy have been

studied mostly in mountainous terrain, little evidence of such events in much gentler topog-

raphy is known. In this study, we consider the Grimmbach alluvial fan near the village of

Braunsbach, which was heavily impacted by sediment and wood loads during the 2016 flood.

Sedimentary units in alluvial fans may reveal gradual transport and deposition during multiple

floods or sediment-laden flows or, conversely, during few catastrophic events. To gain insights

into the local sedimentary architecture and past floods, we explore the fanhead deposits of the

Grimmbach using detailed topographic data and geophysical imaging based on electromag-

netic induction, electrical resistivity tomography (ERT), and ground-penetrating radar. Our

geophysical results reveal former channel courses and two coarse bar deposits up to 3 m below

the surface, which are comparable with the more extensive bar deposits of the 2016 flood.

From the ERT models, we interpret coarse, up to 5 m thick, gravel lag overlying bedrock at

a maximum depth of 10 m. Our geophysical results also highlight patches of finer materials

derived from gradual sedimentation and soil development. Overall, our results indicate that

the Grimmbach alluvial fan may have formed and reshaped during catastrophic flows, which

likely caused channel avulsions. Independent evidence comes from outcrops of cobble-rich

layers that are comparable to those mobilised in the 2016 flood. Published radiocarbon dates

indicate that at least three floods similar to the one in 2016 may have occurred since the 17th

century. Our findings highlight the need to reconsider flash flood and debris-flow hazards in

many similar headwaters and fans of this cuesta landscape in southern Germany.
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4.1 Introduction

On May 29, 2016, heavy rainstorms delivered about 150 mm precipitation in a single day,

and with a peak of 130 mm in only two hours (Bronstert et al., 2018), to different low-order

tributaries of the Kocher and Jagst valleys in the cuesta landscape of southwestern Germany

(Fig. 4.1). The rainstorm triggered flash floods and sediment-laden flows that entrained large

amounts of soil from the plateau and coarse debris from the steeper creeks and hillslopes re-

sulting in sediment-laden floods (Lućıa et al., 2018; Ozturk et al., 2018). Judging from the

extreme rainfall intensities, discharge, and sediment loads, the May 2016 flash flood has been

considered a rare event for this region of moderate relief (Bronstert et al., 2018). Among the

most affected areas were different catchments of the Braunsbach municipality, especially the

Orlacher Bach catchment, which drains an area of ∼ 6 km2 with an average slope of 0.12.

This creek flows through the village centre of Braunsbach, and had a specific peak discharge

of 12-30 m3s-1km-2 estimated from a rainfall-runoff model (Bronstert et al., 2018); the lower

limit of this estimate already exceeds the 100-year return level. Ozturk et al. (2018) inferred

the volume of sediments moved at ∼ 7,000 m3km-2 with yield rates that rival those of flash

flood prone catchments in semiarid to Mediterranean climates. The adjacent catchment to

the south, the Grimmbach catchment, was also severely affected. This catchment drains an

area of ∼ 30 km2, with an average slope of 0.11. Lućıa et al. (2018) estimated a specific peak

discharge for the Grimmbach creek of 23-25 m3s-1km-2 using the Manning-Strickler formula.

They also reported large wood recruitment of ∼ 167 m3km-2, similar to that in Orlacher Bach

(∼ 172 m3km-2). These rates are characteristic of much steeper catchments draining moun-

tainous terrain (Lućıa et al., 2018). Based on aerial photographs before and after the 2016

event, Lućıa et al. (2018) also reported that the Grimmbach widened seven-fold on average,

while the Orlacher Bach widened three-fold on average.

The alluvial fans impacted by the 2016 event may record information about past flash

floods, thus filling in substantial knowledge gaps about the recurrence of such destructive

events. The sediments stored in an alluvial fan are a fraction of those transported from its

feeder catchment, but nonetheless document the legacy of floods, sediment-laden flows, and

debris flows (Korup, 2004; Davies and Korup, 2007; Bruni et al., 2021). Careful investigations

and analyses of such sediments may provide a key understanding of how and under which

conditions sediments were transported, deposited, and preserved (e.g., Crosta and Frattini,

2004; Bardou and Jaboyedoff, 2008). Inferring the frequency of such events may help to

inform and improve hazard models of extreme sediment transport (Santangelo et al., 2012;

Crosta and Frattini, 2004; Schürch et al., 2016). The sedimentary architecture of alluvial fan

systems results from different cycles of erosion and sedimentation (e.g., Harvey, 2012; Mather

et al., 2017; de Haas et al., 2019). Yet studies in aggrading or recently aggraded settings can

rely only on few, if any, natural exposures (Hickin et al., 2009). In this context, near-surface

geophysical techniques can constrain the dimensions, internal architecture, composition, and

petrophysical properties of different sedimentary units of alluvial fans (Hornung et al., 2010;
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Schoch-Baumann et al., 2022).

Electrical, electromagnetic, and seismic imaging are among the most popular geophysical

techniques for studying alluvial fans. For example, Hornung et al. (2010) and Franke et al.

(2015) used ground-penetrating radar (GPR) data to probe the sedimentary architecture of two

alluvial fans in the Swiss Alps up to depths of 10 m. These studies used GPR with 100 MHz

and 200 MHz antennas to delineate former fan surfaces and depositional structures, which

were attributed to environmental changes. Similarly, Ékes and Hickin (2001) used GPR with

50 MHz antennas to study a 40 m thick alluvial fan in the Coast Mountains of British Columbia,

Canada. Schoch-Baumann et al. (2022) combined GPR with 40 MHz and 200 MHz anten-

nas and electrical resistivity tomography (ERT) to characterise massive postglacial debris-flow

deposits (up to 40 m deep) that generated large fans in the upper Rhone valley, Swiss Alps.

Gonzales Amaya et al. (2019) applied ERT and transient electromagnetic induction methods

to distinguish sediment calibre up to depths of 150 m on two alluvial fans in Valle Alto, Bolivia,

to refine hydrogeological models in the area. Dietrich and Krautblatter (2017) showed that

ERT can help to identify contacts between debris-flow deposits and morainic till of an alluvial

fan in the Austrian Alps. Considering the interpreted interface and using an idealised pyramid

model and inter- and extrapolations, these authors estimated the total Holocene/Lateglacial

debris-flow volume of the studied alluvial fan. Savi et al. (2014) and Brardinoni et al. (2018)

used seismic methods together with borehole data and radiocarbon dating to understand the

postglacial sedimentary development of two alluvial fans in the Italian Alps with thicknesses

exceeding 100 m. Both studies concluded that sedimentation rates in the investigated catch-

ments decreased after the Last Glacial Maximum and provide evidence that the sediments of

the corresponding alluvial fans are impacted by deep-seated gravitational slope deformations.

Most geophysical studies of alluvial fans have thus focused on mountainous terrain, where

erosion and sediment deposition rates are high. Little is known, however, about the sedimentary

architecture of alluvial fans in more moderate terrain with commensurately lower rates of

geomorphic process activity. Even such seemingly quiescent fans can be subject to catastrophic

events, such as those in the Olacher Bach and Grimmbach streams in 2016. Our objective

is to test and evaluate whether and how well we can resolve evidence of past floods in the

Grimmbach alluvial fan sediments with different geophysical imaging techniques, including

electromagnetic induction (EMI), ERT, and GPR.

4.2 Study area

Our study focuses on the catchment outlet of the Grimmbach, with its ∼ 0.1 km2 large allu-

vial fan at the confluence with the Kocher river near the village of Braunsbach, northeastern

Baden-Württemberg, Germany (Fig. 4.1a). The annual average temperature in this region is

8.6 ◦C, and the mean annual precipitation is 860 mm, representing a temperate oceanic climate

(Bronstert et al., 2018). The Grimmbach catchment is part of the regional cuesta landscape,
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Fig. 4.1. General setting of our study area and context of the 2016 flash flood.
(a) Hillshaded digital elevation model of the cuesta landscape in northeastern Baden-
Württemberg, Germany derived from the Shuttle Radar Topography Mission data (lp-
daac.usgs.gov/products/srtmgl1v003/). (b) Geological map in scale 1:300,000 adapted from
the Landesamt für Geologie, Rohstoffe und Bergbau, Baden-Württemberg. (c) Google Earth
image of the Grimmbach alluvial fan taken in December 2008. (d) Orthophoto taken one
month after the May 2016 sediment-laden flood with the location of cut-bank profiles, G1
and G2, from Schönleber et al. (2022). Photos of coarse debris deposits (e) upstream and
(f) downstream moved during the 2016 flash flood. We used UTM zone 32 N (EPSG:25832)
coordinate system in panels (a-d).
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where numerous creeks dissect the Kocher-Jagst plateau forming short, steep, and gully-like

valleys with rectangular drainage patterns (Fig. 4.1a). The headwaters of the Grimmbach are

located on a plateau at a height between 420 m and 460 m a.s.l. The plateau surface is

gently inclined (slopes up to ∼ 0.05) and mainly used for agriculture, small settlements, and

rural roads except for highway A6, which crosses the plateau along the southern catchment

boundary. The headwater streams are narrow, steep (local slopes of up to 1.1), and mostly

covered by forest. In total, the Grimmbach drains an area of about 30 km2 with an average

slope of ∼ 0.11. The stream flows across the plateau for ∼ 4 km before cutting into bedrock

at the plateau margin, running another 6.6 km before joining the Kocher river at the height

of ∼ 245 m a.s.l. The average slope of the stream along 4 km upstream of this confluence is

0.024, characterised by a single-thread to braided river pattern (Schönleber et al., 2022).

The geological map in scale 1:300,000 by the Landesamt für Geologie, Rohstoffe und

Bergbau, Baden-Württemberg (LGRB, maps.lgrb-bw.de/) depicts the underlying geology as

mainly horizontal Triassic calcareous rocks (Fig. 4.1b). The plateau is mainly formed by

the Lower Keuper formation (Upper Triassic), featuring claystone, marlstone, sandstone, and

dolomite beds. When weathered, these rocks produce loamy-clayey Cambisols and Luvisols,

while some soils on the plateau derive from Quaternary loess. These plateau soils have low

permeability and saturate quickly following rain (Schönleber et al., 2022). According to the

LGRB, the plateau soils are prone to moderate to high annual erosion rates ranging from

100 t/km2 to 600 t/km2. Incised creeks expose different sections of the Middle Triassic

Muschelkalk formation including the Upper, Middle, and Lower Muschelkalk units, featuring

limestone, marlstone, dolomite rocks, claystone, and sandstone. Lenses of gypsum, anhydrite,

and salt are common, especially in the Middle Muschelkalk formations. The uppermost reaches

of the Grimmbach run along the Upper Muschelkalk, whereas the middle reaches are dominated

by the Middle Muschelkalk, which can be traced topographically by more gentle slopes. The

lower Muschelkalk is present in the lowermost flanks of the last 2 km of the Grimmbach and

exposed in a cliff on the left flank of the Kocher opposite the Grimmbach outlet. The main

soil types are Calcaric Leptosols and Calcaric Regosols, which are less than 0.5 m thick. The

active channel bed of the Grimmbach alluvial fan runs along the true right and is incised into

the floodplain by up to 2 m, exposing alternating unconsolidated fine and coarse beds.

4.3 Geophysical surveying

To gain insights into the sedimentary architecture of the Grimmbach alluvial fan, we performed

two geophysical field campaigns in November 2019 and September 2020. In the first campaign,

we collected ERT and GPR data, while in the second we collected EMI (including topography

as a by-product of our EMI surveying strategy) and additional ERT data. In this study, we

use the term ”electrical conductivity” instead of its reciprocal, ”electrical resistivity”, to avoid

switching units when referring to EMI and ERT data and models. We are not considering other

kinds of conductivities (e.g., hydraulic or thermal conductivities); therefore, in this study, con-
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ductivity refers to electrical conductivity.

Fan sediments feature high electrical conductivity contrasts (e.g., Gonzales Amaya et al.,

2019; Schoch-Baumann et al., 2022), which is ideal for electromagnetic and ERT techniques.

Low conductivity values (resulting from EMI and ERT measurements) and high GPR am-

plitudes are often related to coarse materials, while high conductivity values and low GPR

amplitudes indicate sandy to loamy materials. We perform soundings along different profile

lines (Fig. 4.2a) to visualise the general structural sedimentation patterns and to infer the

spatial context of sub-surface deposits like channels, lobes, levees, and soils.

Our geophysical measurements focused on the fanhead (Fig. 4.2a-e), where there is an

inactive 2 m high floodplain to the left of the active channel of the Grimmbach. This location

allowed us to focus more on past geomorphic processes associated with the Grimmbach rather

than those resulting from the interactions of the Grimmbach with the Kocher. The surveyed

area is mainly used for grazing and is free of infrastructure, except for a minor unpaved road

parallel to the Grimmbach stream (Fig. 4.2c-d). Some 50 m downstream from our surveyed

area, the state road L1045 with a parallel cycle-path crosses the alluvial fan (Fig. 4.1c). To

avoid repetition, we provide in the following brief outlines of each geophysical technique used

at our field site together with the relevant findings.

4.3.1 Electromagnetic induction (EMI)

An EMI device (loop-loop system) consists of one transmitter loop emitting a time-harmonic

electromagnetic field that induces eddy currents in the subsurface. These eddy currents gen-

erate a secondary magnetic field, which is sensed by a receiver loop. The recorded secondary

magnetic field is proportional to the subsurface electrical conductivity (McNeill, 1980). Using

coils with different orientations (e.g., vertical and horizontal) and spacings allows the estima-

tion of the subsurface electrical conductivity at different depths and within different subsurface

volumes. By moving an array of coils along multiple profile lines, we can recover (after inver-

sion) a 3D subsurface distribution of conductivity (e.g., von Hebel et al., 2014; Guillemoteau

and Tronicke, 2016; Guillemoteau et al., 2017).

We collected our EMI data in September 2020 using a DUALEM-21S system mounted on a

cart at a fixed height of 0.25 m above the ground surface. This system consists of a horizontal

transmitter coil (operating at 9 kHz), and two horizontal (HCP) and two vertical (PERPx)

receiver coils. The HCP coils are located at 1 m and 2 m offset from the transmitter coil,

while the PERPx coils are at distances of 1.1 m and 2.1 m. Following Böniger and Tronicke

(2010), we recorded the relative positions (x-, y-, and z-coordinates) using a self-tracking total

station to localise our EMI data and to generate a digital elevation model of the surveyed area

(Fig. 4.2b). We collected data points following profile lines approximately perpendicular to the

Grimmbach valley axis to target linear or elongated deposits such as channel fills, bars, and

levees with suspected main axes aligned along that of the valley. In total, we collected 387
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Fig. 4.2. Details of our study area on the Grimmbach alluvial fan. (a) location of geophysical
soundings; the tail and head of the thin arrows indicate the origin and end of each profile,
respectively. (b) Elevation map (altitude above a reference point) obtained alongside EMI
measurements. (c) Photo of the study area from upstream and (d) downstream. (e) Detail of
the active channel and its right cut bank deposits. Thick blue arrows in panels (b-e) indicate
flow direction. In panels (a-b), we used a background Google Earth image (2020) presented
in the UTM zone 32 N (EPSG:25832) coordinate system.

lines with a spacing of ∼ 0.5 m and an in-line average point spacing of ∼ 0.07 m covering an

area of ∼ 13,800 m2, which resulted in 397,544 four-configuration soundings (after removing

low-quality data points).

We inverted the EMI data set using the full non-linear 1D laterally constrained inversion
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based on the minimum gradient support regularisation, as proposed by Klose et al. (2022).

For the inversion, we resampled our data to obtain in-line and cross-line sounding spacings of

∼ 0.5 m in the resulting pseudo-3D model. The focusing parameter was set to 1, and the

number of layers to 15 with increasing thickness towards deeper layers. The deepest layer is

an infinite homogeneous half-space whose top boundary was set at a depth of 4 m.

In Fig. 4.3a-e, we present our EMI inversion results. To visualise our 3D model, we ex-

tracted two horizontal slices at depths of 1 m and 2 m, and two profiles (vertical slices EMI1

and EMI2) at the locations of profiles ERT2 and ERT5, respectively (see also Fig. 4.2a). In

Fig. 4.3a, we highlight three main structures labelled C1, R1, and R2. Structure C1 spans

the entire length of the southern survey area and shows high conductivities (> 0.02 Sm-1). It

appears to be several meters wide upstream (eastward) and narrows in the downstream (west-

ward) direction. The low conductive structure R1 represents a linear pattern of conductivities

< 0.003 Sm-1 that separates into two sub-parallel branches downstream. Another notable low

conductivity structure (labelled R2) in the northeastern part of the survey area is characterised

by a semicircular shape and slightly higher conductivities than R1. In the vertical slices at 1 m

and 2 m (Fig. 4.3b-c), C1 and R1 are still traceable at these depths, while R2 is almost absent

at a depth of 2 m. Our 2D profiles EMI1 and EMI2 (Fig. 4.3d-e) show that C1 is well defined

down to 1 m depth, though it can reach depths below 3 m with sightly lower conductivities

(Fig. 4.3d). Profiles EMI1 and EMI2 indicate that R1 is ∼ 3 m thick while profile EMI1 shows

a maximum depth of ∼ 2 m for R2. The effective investigation depths for our EMI models is

∼ 3 m; hence the maximum depth of R1 needs to be evaluated using our deeper penetrating

ERT data.

4.3.2 Electrical resistivity tomography (ERT)

During ERT data collection, an electric current is injected into the ground through two elec-

trodes (current electrodes) and the voltage is measured using another pair of electrodes (voltage

electrodes). Systematically moving such a four-electrode array configuration along a profile

and increasing the electrode spacing allows for recording a 2D pseudo-section of apparent elec-

trical conductivity, which needs to be inverted to obtain a 2D subsurface model of electrical

conductivity.

We collected five semi-parallel profiles about 30 m apart from each other during two

different field campaigns (Fig. 4.2a). Two ERT profiles (ERT2 and ERT5) were collected in

November 2019 under moist conditions with some light rain and wet soils, while the other three

(ERT1, ERT3, and ERT4) were collected in September 2020 (like the EMI data) under dry

conditions without rain before or during surveying. We used a Syscal Pro system considering

a Wenner-Schlumberger array configuration with an in-line electrode spacing of 1 m. Using

48 electrodes for profile ERT1 and 96 electrodes for profiles ERT2 to ERT5, we recorded 564,

2209, 2376, 2376, and 2209 apparent conductivity measurements for profiles ERT1 to ERT5,

respectively.
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Fig. 4.3. Inverted electrical conductivity model of the EMI data. (a) 3D view of the EMI
conductivity model. (b) Horizontal slices at 1 m and (c) 2 m depth. (d) Vertical slices (2D
profiles) EMI1 and (e) EMI2 with effective investigation depth shown as grey lines. Panels
(b-e) share the same colour map as shown in panel (a). In panels (b) and (c), the tail and
head of the arrows indicate the origin and end of each profile, respectively.

We inverted our ERT data using the open-source finite-element library pyGIMLi (Rücker

et al., 2017). To favour geologically plausible models consistent with our geological under-

standing of the Grimmbach fan, we considered different geostatistical regularisation constraints

as proposed by Jordi et al. (2018). For this inversion strategy, we need to set four parameters:

the regularisation or trade-off parameter λ, the correlation lengths along the horizontal (Cx)

and vertical (Cz) axes, and a rotation angle to describe inclined structures. After some initial

parameter testing, we found that 1 < λ < 20 provided similar and stable results and fixed

λ = 10. For the correlation lengths, we follow Gelhar (1993) and Tronicke and Holliger (2005)

who suggest a ratio Cz/Cx of about 0.1 to characterise alluvial sediments. We considered

Cx-Cz pairs (in units of meters) of [10, 1], [20, 2], [30, 3], and [40, 4], which is also consis-

tent with the size of the structures observed in the channel bank and current channel deposits

(Fig. 4.1e-f, and Fig. 4.2c, and e), as well as our EMI results (Fig. 4.3). Because we expect

horizontal to sub-horizontal structures, we fix the rotation angle at zero degrees.

In Fig. 4.4, we present the inversion results for ERT2, which show consistent models of the

overall electrical conductivity structure for the different pairs of correlation lengths considered.

Larger correlation lengths result in slightly smoother models with similar relative root mean
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square errors (RRMSE) shown at the bottom right of Fig. 4.4a-d. These results demonstrate

that using different reasonable correlation lengths yields similar results, which is comparable to

the findings of Jordi et al. (2018). Therefore, we chose Cx = 20 m and Cz = 2 m to invert all

our ERT data sets consistently. In Fig. 4.5a-e, we illustrate the resulting electrical conductivity

models. All of these models are characterised by alternating (sub-)horizontal layers of high and

low conductivity with some horizontal variations. We recall that, because of different weather

and soil moisture conditions, the conductivity values of the ERT profiles collected in summer

2020 show overall lower conductivity values than those collected in autumn 2019, especially

in the shallowest parts. Thus, we display our results considering different colour scales to

highlight conductivity contrasts and structures, respectively. Yet, some of the most prominent

structures, although showing different absolute values of conductivity, can be tracked between

neighbouring profiles. For example, the low conductive structure on the right side of all profiles

between 5 m to 10 m depth is evident in all models.

Fig. 4.4. Inverted electrical conductivity models of profile ERT2 considering different hori-
zontal (Cx) and vertical (Cz) correlation lengths for geostatistical regularisation during data
inversion. (a) Cx = 10 m and Cz = 1 m, (b) Cx = 20 m and Cz = 2 m, (c) Cx = 30 m
and Cz = 3 m, and (d) Cx = 40 m and Cz = 4 m.

4.3.3 Ground-penetrating radar (GPR)

A GPR system emits a high-frequency electromagnetic wavelet (for geological applications,

commonly in the order of 40 MHz to 500 MHz) from a transmitter antenna into the sub-

surface. The wavefield is reflected at interfaces where the dielectric properties change and is

recorded by a receiver antenna. By moving the pair of antennas along a profile, we obtain,

after some data processing, a 2D image of subsurface structures such as layer interfaces in

sedimentary environments.

We collected our GPR data in November 2019 using a PulseEKKo Pro GPR system

equipped with a pair of 100 MHz antennas mounted on a sledge with a fixed offset of 1 m.
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Fig. 4.5. Inverted electrical conductivity models of the five profiles ERT1 to ERT5 (for
locations see Fig. 4.2a) considering correlation lengths of Cx = 20 m and Cz = 2 m. Note
that the colour bar varies for the data sets collected in late autumn 2019 (ERT2, ERT5) and
late summer 2020 (ERT1, ERT3, ERT4).

Similar to our EMI survey, the positions of the recorded traces were measured using a self-

tracking total station (Böniger and Tronicke, 2010). We also collected common-midpoint

(CMP) data to derive a subsurface propagation velocity of 0.077 m/ns using spectral velocity

analysis. This velocity estimate is used for migrating our common-offset data and to perform

a time-to-depth conversion. We also consider other standard data processing steps such as

band-pass filtering, amplitude scaling, and removing the direct arrivals of the air and ground

waves by applying a local background removal.

In Fig. 4.6 and Fig. 4.7a, we present the migrated profiles GPR1, GPR2, and GPR3 using

a conventional grey-scale colour map ranging from white (minimum negative amplitudes) to

black (maximum positive amplitudes) colors. These GPR lines are characterised by continuous

events that vary laterally in amplitude. We can also identify locally some concave-up reflec-

tors as pointed by the white arrows in Fig. 4.6 and Fig. 4.7a and a concave-down reflector

highlighted by the dashed line in Fig. 4.7a. In general, areas with higher amplitudes are partly
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associated with larger penetration depths (up to 3 m). The overall penetration depth is limited

to ∼ 2 m. For a qualitative comparison between the profile GPR3 and the subsurface electrical

conductivity from our EMI and ERT data, we superimpose the EMI1 (Fig. 4.3d) and ERT2

(Fig. 4.4d) models onto the migrated GPR3 data Fig. 4.7b-c, respectively. A one-one com-

parison of the conductivities from EMI1 and ERT2 is intractable because they were collected

under different soil moisture conditions. However, we still expect some correlation associated

with the main structures. For example, we notice in profile GPR3 that the high amplitudes in

the concave-down structure correspond to low conductivities in models EMI1 and ERT2. In

contrast, low amplitudes like the ones observed at the beginning of our profile (x < 10 m) and

at 35 m < x < 55 m are associated with high conductivities.

Fig. 4.6. GPR cross sections. (a) GPR1, (b) GPR2 profiles (see locations in Fig. 4.2). The
white arrows point to concave-up structures.

Fig. 4.7. Comparing GPR with electrical conductivity responses. (a) GPR3 profile overlying
(b) EMI1 and (c) ERT2 models. The white dashed line in panel (a) indicates a general concave-
down structure with a little concave-up structure marked by the white arrow. In panels (b)
and (c), we use the same colour map as in Fig. 4.3a and Fig. 4.5b.
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4.4 Discussion

4.4.1 Past hydro-geomorphic events recorded in the Grimmbach

fan

Our geophysical data provide insights into the geomorphic and sedimentary history of the lower

Grimmbach. Reconciling all geophysical and geological information, we identify both elliptic

structures and linear patterns below the fan surface (black and blue dashed lines, respectively,

Fig. 4.8). We interpret the elliptical structures as former bars, while the linear structures likely

correspond to former channels.

Fig. 4.8. Sedimentary evidence of abrupt channel shift (avulsion) and inferred past flash
floods deposits. (a) EMI slice at 1 m depth (with the same colour map for visualising EMI
conductivities as in Fig. 4.3) including elevation contours (Fig. 4.2b), and profile locations (with
the same symbols and colours as in Fig. 4.2a). (b) Panoramic view of an outcrop upstream
of our study area (blue arrow indicates flow direction); approximate location is shown in panel
(a).

The bar structure to the far left of the current channel has an area of ∼ 4000 m2 (Fig. 4.8a)

and is ∼ 3 m thick (Fig. 4.7b-c). Judging by the shape of this structure, we are likely only

seeing a fraction of its total size, which may extend in the downstream direction. Our pro-

file GPR3 (Fig. 4.7a) crosses this structure upstream and shows a concave-down structure at
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10 m < x < 35 m, with a minor concave-up structure at x = 17 m. Although our profiles

GPR1 and GPR2 do not cross this inferred bar, they also show concave-up structures (Fig. 4.6)

that can be followed downstream in our EMI model as low conductive bodies (Fig. 4.8). These

linear structures are likely former channels that are associated with the bar; a modern analogy

of this sedimentary association is exposed along the active cut banks as in Fig. 4.1e.

The interpreted bar closer to the current channel has an area of ∼ 5000 m2 (Fig. 4.8a)

and is ∼ 2 m thick (Fig. 4.3). This structure is characterised in our EMI model (Fig. 4.8a)

by low conductivities upstream that gradually increase downstream, likely reflecting sediments

of decreasing calibre. We extended the interpretation of this structure in the direction of the

current channel considering the ERT2 and GPR3 profiles (Fig. 4.7c), in which we noticed at

35 m < x < 60 m and z = -2 m low conductivities and at 60 m < x < 80 m and z = 0 m

intermediate conductivities and a flat-lying, high-amplitude GPR reflector. We interpret the

low conductive and high-amplitude GPR reflectors at 80 m < x < 100 m in Fig. 4.7c as

amalgamated bar deposits containing in the shallowest part coarse deposits from the 2016

flood (see Fig. 4.8a). Profiles GPR1 and GPR2 also cross this structure upstream with similar

responses to GPR3; however, these profiles are too short for delineating the outer boundary

of the bar. Therefore, we delineate the upstream limit of this bar structure by considering a

2 m height outcrop (Fig. 4.8b) characterised by a sudden transition of layered sediments to

a poorly stratified layer consisting of up to 50 cm large cobbles, which are consistent with a

coarse-grained bar deposit.

To investigate deeper structures in the Grimmbach valley fill including the depth to bedrock,

we rely on our ERT conductivity models, which effectively reach depths of up to ∼ 16 m. We

interpret bedrock in our ERT models as the lowermost conductive layer at maximum depths

of ∼ 10 m. This interpretation agrees with two boreholes in the nearby Orlacher Bach alluvial

fan, in which depth to bedrock was found at 12 m to 13 m below ground surface (Ozturk

et al., 2018). However, to confirm and validate this interpretation, complementary geophys-

ical surveys such as seismic refraction (e.g., Juhojuntti and Kamm, 2015) or borehole-based

explorations are needed. Furthermore, using layer-based parameterisation approaches to invert

the geophysical data (e.g., Arboleda-Zapata et al., 2022a,b) might be helpful to resolve the

bedrock structure. Overlying this inferred bedrock, all ERT profiles show a low conductive

layer with a thickness of up to 5 m, which may represent coarse gravel lag deposits. The

layer may also indicate massive sedimentation following bedrock incision in the early history

recorded by this alluvial fan. This coarse layer is topped by a more conductive layer, indicating

finer sediments deposited by either less competent flows or distal portions of high-energy flows

linked to sediment depletion upstream. Like in our EMI inversions, the shallowest sediments

(< 3 m) are characterised by low conductivities associated with channels and bars, and may

indicate a new, younger cycle of fine to coarse sedimentation.

Repeated deposition and entrenchment have formed intercalated fine and coarse beds,
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such as those exposed along the cut channel banks in the Grimmbach fanhead (Fig. 4.2e, and

Fig. 4.8b). While the gravel beds can be interpreted as evidence of past floods, the fine layers

were likely formed during periods of relative geomorphic quiescence, favouring the gradual

accumulation of fine particles and soil development. Some loamy to sandy layers could also

represent overbank deposits dumped by the Kocher river (e.g., Schönleber et al., 2022). From

our geophysical results, we can infer the location of some fine-grain lenses in the floodplain.

For example, we interpret the linear, high conductive structure at the extreme left of the active

channel (C1 in Fig. 4.3a) as a silty/clayey bed. This bed likely corresponds to a colluvial

deposit associated with the steep and vegetated slope that abuts the Grimmbach channel to

the south (Fig. 4.8a). These colluvial deposits correspond to the slightly inclined low amplitude

reflector located in the first section of our GPR profiles (Fig. 4.6 and Fig. 4.7a). In the profile

GPR3 (Fig. 4.7a), a similar structure is observed adjacent to the interpreted former channel at

35 m < x < 55 m. Assuming a common origin for these units, we can infer that such colluvial

deposits were incised by the inferred former channel in Fig. 4.8a.

4.4.2 Independent evidence

Sedimentary records and historical evidence suggest that flash floods like the one in 2016 had

occurred in this region earlier. Ozturk et al. (2018) showed photographic records of massive

sedimentation of debris, mud, and large wood on June 12, 1927, covering houses and roads

in Cröffelbach, which has a similar-sized alluvial fan 5 km southeast of Braunsbach. These

authors also interpreted poorly rounded limestone clasts of the uppermost 4 m of a borehole in

the alluvial fan of the Orlacher Bach (in the village of Braunsbach) as past debris-flow deposits.

Ozturk et al. (2018) suggested that the Orlacher Bach is prone to major sediment pulses

even during rainstorms of lower intensities than the one observed in 2016. The situation may

differ for the Grimmbach given its wider floodplain, larger channel, and lower slope. These

characteristics only favour sediment transport over short distances. Only major flash floods

such as the one in 2016, which transported blocks of up to 0.5 m, may be capable of leaving

distinct sedimentary evidence in the alluvial fan beds (e.g., Lućıa et al., 2018). The displace-

ment of the Kocher channel by the fans of the Grimmbach and Orlacher Bach indicates that

these creeks contribute substantial sediment loads that the trunk channel is unable to evacuate

swiftly.

Assuming that coarser materials of the Grimmbach can only be mobilised by discharges

similar to that during the 2016 flood of up to 25 m3s-1km-2 (Lućıa et al., 2018), we inter-

pret the coarse layers intercalated with sandy-loamy layers as deposits from past flash floods.

Schönleber et al. (2022) reported detailed sedimentary analyses and radiocarbon dates of two

cut-bank profiles of the Grimmbach alluvial fan (G1 and G2 Fig. 4.9a-b) and proposed that

at least another three flash floods may have occurred in the Grimmbach catchment since the

17th century. These historical events may have had magnitudes similar to the one in 2016.
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Fig. 4.9. Stratigraphic sections of the Grimmbach alluvial fan from Schönleber et al. (2022).
(a) profile G1 and (b) G2 with the locations indicated in Fig. 4.1d. The units G1-9 and G2-15
highlighted in red were sampled for radiocarbon dating.

The 2016 flood highlighted how the Grimmbach alluvial fan had changed during a single

flash flood, when most of the sediments that reached the alluvial fan were deposited in the

widened channel and also on the ∼ 2 m high floodplain. These overbank deposits top a fine

material layer with a sharp contact between units G1-1 and G1-2 (Fig. 4.9a). Similar contacts

are at deeper levels like the one between units G1-8 and G1-9. Aerial photos taken after the

2016 flood show that coarser sediments remained on the fanhead, while finer sediments spread

out over the distal fan after overcoming the state road L1045 (Fig. 4.1d). Without any engi-

neering interventions, this event could have caused an avulsion, thus pushing the Grimmbach

toward its right flank (Fig. 4.1d).

The 2016 flood formed bar deposits with sizes of up to 5,000 m2 with thickness < 1 m.

Our two inferred bars have similar areas (Fig. 4.8a) though they are likely thicker. For the

bar deposit adjacent to the current channel, some faint bedding supports the idea of several

deposition episodes instead of a single one, calling for a more detailed and rigorous sedimen-

tological study of more outcrops as they emerge. However, we lack available outcrops in the

southern part of our surveyed area to check if this gravelly deposit may correspond to a single

or multiple floods.

In Fig. 4.10d, we summarise our general understanding of the sedimentary architecture of

the Grimmbach fanhead. We consider the section along the profile ERT2 and extend it to

both flanks of the current channel. The bedrock is interpreted as a bowl-shaped valley with a

maximum depth of 10 m. The bedrock at this location corresponds to the Lower Muschelkalk

formation, which is outcropping on the left flank of the Kocher opposite the Grimmbach outlet

(see Fig. 4.10f). The valley fill has a basal gravel lag, especially in the central part, and is
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likely mixed with lateral contributions from hillslopes similar to modern conditions some 3-4

km upstream of our survey area (Fig. 4.10g). In general, we expect thicker colluvial deposits

close to the hillslopes but also soil development in the middle of the valley (Fig. 4.10c and e),

as also has been suggested in a study in a similar setting by Hirsch et al. (2008). The sedi-

ments overlying the gravel lag deposits have larger concentrations of fine materials related to

a period that favoured soil accumulation and development. In the shallowest part, in contrast,

we identified accumulations of several bar deposits such as the ones interpreted in Fig. 4.8a

and visualised in Fig. 4.10b. The bar deposit at the far left flank has been reworked, forming

channel-like structures (as observed in Fig. 4.10a) characterised by concave-up GPR reflectors

and low conductivities.

To learn more about the history of this alluvial fan, direct exploration via boreholes that

allow for centimetre-scale resolution of the stratigraphy and dating at different depth levels

may be necessary. In this context, the fanhead area may be more informative than the distal

alluvial fan, which is likely influenced by the trunk channel of the Kocher. In terms of hazard

assessment, alluvial fan information may be complemented with other catchment processes

like supply of sediments and their renewal development, as well as possible triggering factors

such as rainfall thresholds (Bardou and Jaboyedoff, 2008; Schürch et al., 2016; Savi et al.,

2014).

4.5 Conclusions

The 2016 flash floods in southern Germany have shown that this cuesta landscape with gentle

relief is prone to rare (> 100 years return period) but catastrophic episodes of erosion and

sedimentation that rival those in mountain regions. Our study shows that events such as the

May 2016 flash floods in northeastern Baden-Württemberg can be recorded in alluvial deposits

of tributary fans. While outcrops are a valuable source of direct information to constrain past

processes, such exposures are scarce, especially in aggrading rivers or those that have been

subject to recent catastrophic sedimentation. Non-invasive geophysical surveying elucidates

the sedimentary architecture and offers insights into the past dynamics of alluvial fan systems.

For the Grimmbach fan, we inferred traces of two bars and former channel fills at shallow

depths below the surface, as well as buried soils. Such characteristics indicate that the cur-

rent channel has been incising, favouring stable floodplains and soil development interrupted

only by sudden channel avulsions. Future sampling in the floodplain (e.g., using trenches)

may focus on patches of intermediate conductivities and low GPR amplitudes, because these

areas may be characterised by intercalated fine and coarse materials (e.g., overbank deposits)

with sharp contacts indicative of different floods. The methods and workflow presented in

this study might be followed to guide similar geophysical exploration of valley fills in the area.

Stratigraphic information archived in alluvial fans may be useful in hazard models of extreme

sediment transport, especially in areas with poor records of such events.
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Fig. 4.10. Sedimentary architecture of the Grimmbach fan. (a) Channel fill structure found
∼ 500 m upstream of the Grimmbach-Kocher confluence. (b) Detail of the interpreted bar
deposit of Fig. 4.8b. (c) Colluvial deposits are overlying channel-bed deposits ∼ 570 m up-
stream from the Grimmbach-Kocher confluence. (d) Inferred and idealised fan stratigraphy
considering profiles ERT2, EMI1, GPR3, and available outcrops, where x = 0 m corresponds
to the origin of the ERT2 profile and x = 95 m to its end. (e) Deposits of the last flood overlay
a layer composed of fine materials in the middle reach of the Grimmbach (1-2 km upstream
from our field site). (f) Outcrop of the bedrock on the left flank of the Kocher opposite the
Grimmbach outlet. (g) Coarse material in the left flank and fine material to the right flank
overlying bedrock in the upper reach of the Grimmbach (3-4 km upstream from our field site).

In summary, the hazard of extreme geomorphic and hydrologic processes (e.g., flash floods

and debris flows) may have been underestimated in this southern German region, as demon-

strated by the widespread damage to settlements of villages and towns in the alluvial fan

areas. One lesson from the 2016 flash flood is the importance of low-permeable soils of the

plateau tops that are mainly used for agriculture, promoting fast runoff and high amounts of

soil erosion during major rainstorms. Both runoff and erosion created a dense flow of water

and fine particles that mobilised coarser material and woody debris from channel banks and

shallow landslides and deposited this material on downstream alluvial fans. Hence, we expect

similar deposits on many of the small tributary fans in the greater region.
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General discussion and conclusions

Many applications of the ERT method aim at imaging layers with rather sharp contacts or inter-

faces as illustrated in our field examples in Chapter 2 and Chapter 3. Local inversion methods

based on smoothing and damping strategies usually fail to retrieve layered structures, resulting

in smeared images of the subsurface. Common approaches to favor more layered structures

during local inversions consist of weighting (at different levels) the horizontal and vertical

gradients and using geostatistical regularization approaches. In the end, such approaches will

always smear sharp interfaces. Therefore, a user-specified threshold or gradient-based edge

detection algorithm might be used to interpret a plausible sharp boundary; however, its reli-

ability highly depends on the accuracy of the inverted model. When prior information from

outcrops, boreholes, and other geophysical methods suggests a layered subsurface, a practical

strategy is to consider a layer-based model parameterization (LBMP) strategy.

In Chapter 2 and Chapter 3, we used a LBMP and a global inversion algorithm (PSO)

to generate ensembles of inverted models associated with 2D ERT data acquired in a coastal

aquifer and two subsea permafrost environments, respectively. In these examples, we demon-

strated how such parameterization and inversion strategies helped to obtain plausible model

solutions and the associated uncertainties around the found interfaces. In our synthetic (Sec-

tion 2.3.1) and two permafrost examples (Section 3.5.1 and Section 3.5.2), we showed that

using a parameterization relying on the arctangent function was helpful and allowed us to

resolve abrupt changes along the subsurface interfaces. Furthermore, we demonstrated in our

Dunkirk example (Section 2.3.2) that the arctangent function can also result in sub-horizontal

interfaces. Overall, these examples illustrated the capabilities of the arctangent function to

adapt to complex and simple subsurface scenarios, which is useful when we do not know the

general shape of the subsurface interfaces. It is important to highlight that there are also

other popular interface parameterization strategies, such as the ones relying on cubic spline

interpolations (Koren et al., 1991) and Fourier coefficients (e.g., Roy et al., 2021). These

strategies may be considered if preliminary information suggests that smoothed interfaces are

expected. However, a comparative study in terms of the applicability (suitable scenarios) and

performance (i.e., adaptability and development during inversion) of these parameterization

strategies have not yet been performed. Finally, instead of using layers with homogeneous

resistivities like in Chapter 2 and Chapter 3, we could also allow lateral variation to account for

slight variations as suggested by Auken and Christiansen (2004) and Akça and Basokur (2010).
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During the global inversion of our ERT data sets, we only considered the RMSLE as our

objective function. However, other cost functions could be studied to infer their impact in the

final inverted models (e.g., Barboza et al., 2018). To our knowledge, for example, comparing

the results of L1 and L2 norms (or other objective functions) for inversion approaches based

on LBMP has not yet been performed. In addition, one aspect we did not discuss in our

manuscripts is that when we considered the logarithm of the resistivity, our inversion runs

converged faster than when considering the resistivity on a linear scale. This highlights the

logarithmic behavior of this physical property and the importance of its representation on a

logarithmic scale.

Global evaluation of the residual (e.g., RMSE) may help to compare the performance across

models, while residual analysis across pseudosection pixels is helpful to qualitatively infer which

areas of the model fit the data the best or worst. Auken and Christiansen (2004) suggested

that when using a LBMP strategy to invert 2D ERT data, we should seek the model with the

minimum possible error to account for the reduced number of model parameters that cannot

result in complex model solutions. They also indicate that this approach is not wanted for

highly undetermined smooth inversion problems, which may result in huge overfitting. How-

ever, regardless of the inversion strategy, it is challenging to ensure if we are overfitting or

underfitting the data. For example, our residual pseudosections in Chapter 3 showed that

some areas were better fitted than others. This can be a compromise of the LBMP strategy,

which is trying to fit most data points while likely overfitting and/or underfitting some areas of

the model. This problem can be better addressed and understood by considering ensembles of

model solutions. For example, when calculating the median model in an ensemble of models,

the areas that could have been overfitted are smeared if they are not persistent across the

ensemble of models. Additionally, the variability in each ensemble will indicate the persistence

of the structures across the models and can be interpreted as model uncertainties.

Generating ensembles of 2D ERT model solutions with a global inversion algorithm is com-

putationally expensive. Therefore, it might be helpful to perform several tests to learn about

the impact of different hyperparameters (e.g., number of particles in PSO) or model param-

eters (e.g., number of layers and resistivity ranges). An alternative to learning and obtaining

important hints about model parameter ranges and trade-offs is using a 1D global inversion

approach, which is significantly faster than 2D global inversions. However, we should be aware

that 1D and 2D inversions can result in partially different models at the same considered verti-

cal profile. Therefore, as we already pointed out in Chapter 3, the success and feasibility of 1D

inversion results rather depend on the characteristics of the field site and analyzed data set.

Additionally, we could also take advantage of the fast convergence rates of the local inversion

approaches for obtaining a general idea about a plausible subsurface structure and resistivity

distributions (e.g., Fernández-Mart́ınez et al., 2017).

As illustrated in Chapter 2 and Chapter 3, a global inversion algorithm does not ensure
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convergence into a global minimum. Therefore, the model solutions may be characterized by

ensembles or families of equivalent model solutions (i.e., similar structures and misfit values).

To group equivalent model solutions, we used a k-means algorithm. However, before perform-

ing cluster analysis, in Chapter 2, we proposed a model selection criteria where we first choose

the models with better misfits and then perform cluster analysis. Another practical approach

that we could have evaluated is first to perform cluster analysis and, after analyzing misfit

distributions, remove the non-converged models from each cluster. In our clustering strategy,

we consider not only the model resistivities but also their corresponding data residuals and,

thus, ensure models that fit the data in a similar fashion. In addition, it might be interesting

to test the impact of including the first principal components (i.e., after principal component

analysis) of each model as an additional input parameter in the clustering strategy. An ad-

ditional aspect that can be considered when performing cluster analysis of ERT models is to

account for resolution loss with depth; for example, by weighting the model parameters and

data by considering the sensitivity matrix and the geometrical factors, respectively.

A critical parameter in most clustering techniques is to define an optimum number of

clusters or families. To address this problem, several indexes like the variance ratio criterion

(Caliński and Harabasz, 1974) can provide a good reference for the expected number of fam-

ilies. However, we should always be careful with such indexes and try to visualize scenarios

considering also different numbers of families. Although in this thesis we only consider the

k-means algorithm to group equivalent models, evaluating and comparing the performance

of other clustering strategies like spectral or agglomerative clustering approaches might be

beneficial to guide future studies considering ensembles of ERT model solutions.

It is important to highlight that the statistical descriptors chosen to summarize the infor-

mation within each cluster of models have an impact on the resulting model. For example, to

evaluate the central trend model the mean model can result in smeared interfaces because it

is highly influenced by the resistivity values falling at the extremes of the considered resistivity

distributions. In contrast, median models are less affected by the values in the tails of resistivity

distributions and result in sharper models than the mean models.

There may be complex geological scenarios where LBMP may be unsuitable or require

more complex adaptations. Such scenarios can be, for example, subsurface models with short

wavelength structures like karstic and alluvial systems (e.g., Hermans and Irving, 2017; Bar-

boza et al., 2019). For example, in Chapter 4, we applied the workflow of Chapter 2 to invert

our ERT data sets from Grimmbach. However, models usually converged to a local minimum

with large misfit values and unrealistic solutions (note that such results are not shown in this

thesis). Therefore, geostatistical regularizations, which are broadly used to investigate alluvial

sediments (Irving and Singha, 2010), were adopted instead and yielded models more consistent

with our geological understanding of the studied area. One interesting approach to broadly

explore the space of solutions could be to combine geostatistical regularizations and a global
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inversion approach. Additionally, a zonal parameterization approach could also allow for de-

riving sharp layers and might be more suitable when dealing with more complex subsurface

scenarios (Paasche and Tronicke, 2007; Herman and Usher, 2017).

In Chapter 3, we showed how sensitivity analyses provide additional model understanding.

In addition, we noted that 2D local sensitivity analyses presented some differences from 1D

global sensitivity analyses. For example, while the 2D local sensitivity analyses in Chapter 3

indicated no sensitivity within the frozen sediments, the 1D global sensitivity analyses showed

some sensitivity associated with the frozen layer. However, to have a more explicit and clear

comparison, it might be interesting to assess 2D global sensitivities and, thus, explore the

sensitivities associated with different regions of the cost function topography. Additionally,

performing sensitivity analysis before a field campaign (e.g., considering conceptual subsurface

models) may help to anticipate logistics aspects like defining an appropriated array configura-

tion.

In summary, the ERT method is a powerful tool and can offer significant understanding

in different terrestrial and aquatic environments. Many applications of the ERT method are

usually performed in layered environments. In such cases, considering LBMP may be more re-

vealing than traditional cell-based model parameterizations. Additionally, by obtaining several

solutions to the ERT inverse problem using a LBMP approach and performing summary statis-

tics, it is possible to derive representative or equivalent model solutions with their associated

uncertainties. We could use such results to propagate the uncertainties associated with the

position of the found interfaces to report, for example, the area of a specific layer (e.g., the 2D

section of a sediment fill). On the other hand, uncertainties associated with resistivity may be

considered for petrophysical translation. To reduce uncertainties related to the non-uniqueness

of the inverse problem, we should consider all available and reliable information (e.g., known

depths to interfaces by boreholes) to constrain model parameters. This way, we can guide

the inversion towards more realistic model solutions. Although the strategies presented in

this thesis focused on 2D ERT data to investigate layered environments, they are general and

might be adapted to investigate other environments and to solve the inverse problem of other

kinds of geophysical data sets such as those obtained from seismic, gravity, magnetic, and

electromagnetic surveys. In addition, global inversion strategies offer enormous flexibility to

perform the inversion of individual data sets, which could also be advantageous for performing

more advanced inversion strategies like joint inversions.

84



Bibliography
Akça, I. and Basokur, A. T. (2010). Extraction of structure-based geoelectric models by hybrid

genetic algorithms. Geophysics, 75(1):F15–F22.

Aleardi, M., Vinciguerra, A., and Hojat, A. (2021a). A geostatistical Markov chain Monte

Carlo inversion algorithm for electrical resistivity tomography. Near Surface Geophysics,

19(1):7–26.

Aleardi, M., Vinciguerra, A., and Hojat, A. (2021b). Ensemble-based electrical resistiv-

ity tomography with data and model space compression. Pure and Applied Geophysics,

178(5):1781–1803.

Allroggen, N. and Tronicke, J. (2016). Attribute-based analysis of time-lapse ground-

penetrating radar data. Geophysics, 81(1):H1–H8.

Angelopoulos, M. (2022). Mapping subsea permafrost with electrical resistivity surveys. Nature

Reviews Earth & Environment, 3(1):6.

Angelopoulos, M., Overduin, P. P., Jenrich, M., Nitze, I., Günther, F., Strauss, J., Westermann,

S., Schirrmeister, L., Kholodov, A., Krautblatter, M., Grigoriev, M. N., and Grosse, G.

(2021). Onshore Thermokarst Primes Subsea Permafrost Degradation. Geophysical Research

Letters, 48:e2021GL093881.

Angelopoulos, M., Overduin, P. P., Miesner, F., Grigoriev, M. N., and Vasiliev, A. A. (2020a).

Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial

Processes, 31(3):442–453.

Angelopoulos, M., Overduin, P. P., Westermann, S., Tronicke, J., Strauss, J., Schirrmeister,

L., Biskaborn, B. K., Liebner, S., Maksimov, G., Grigoriev, M. N., and Grosse, G. (2020b).

Thermokarst Lake to Lagoon Transitions in Eastern Siberia: Do Submerged Taliks Refreeze?

Journal of Geophysical Research: Earth Surface, 125(10):e2019JF005424.

Angelopoulos, M., Westermann, S., Overduin, P. P., Faguet, A., Olenchenko, V., Grosse,

G., and Grigoriev, M. N. (2019). Heat and Salt Flow in Subsea Permafrost Modeled with

CryoGRID2. Journal of Geophysical Research: Earth Surface, 124(4):920–937.

Arboleda-Zapata, M., Angelopoulos, M., Overduin, P. P., Grosse, G., Jones, M., and Tronicke,

J. (2022a). Exploring the capabilities of electrical resistivity tomography to study subsea

permafrost. The Cryosphere, 16:4423–4445.

Arboleda-Zapata, M., Guillemoteau, J., and Tronicke, J. (2022b). A comprehensive workflow

to analyze ensembles of globally inverted 2D electrical resistivity models. Journal of Applied

Geophysics, 196(January):104512.

85



Bibliography

Are, F. (2003). Shoreface of the Arctic seas - A natural laboratory for subsea permafrost

dynamics. In Philips, M. and Springman, S. M., editors, Proceedings of the 8th International

Conference on Permafrost, pages 27–38. Balkema, Lisse, Netherlands.

Aster, R. C., Borchers, B., and Thurber, C. H. (2013). Parameter estimation and inverse

problems. Elsevier.

Auken, E. and Christiansen, A. V. (2004). Layered and laterally constrained 2D inversion of

resistivity data. Geophysics, 69(3):752–761.

Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N., and Sørensen, K. I. (2005).

Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting,

53:497–506.

Baines, D., Smith, D. G., Froese, D. G., Bauman, P., and Nimeck, G. (2002). Electrical

resistivity ground imaging (ERGI): A new tool for mapping the lithology and geometry of

channel-belts and valley-fills. Sedimentology, 49(3):441–449.

Barboza, F. M., Medeiros, W. E., and Santana, J. M. (2018). Customizing constraint incor-

poration in direct current resistivity inverse problems: A comparison among three global

optimization methods. Geophysics, 83(6):E409–E422.

Barboza, F. M., Medeiros, W. E., and Santana, J. M. (2019). A user-driven feedback approach

for 2D direct current resistivity inversion based on particle swarm optimization. Geophysics,

84(2):E105–E124.

Bardou, E. and Jaboyedoff, M. (2008). Debris flows as a factor of hillslope evolution controlled

by a continuous or a pulse process? In Gallagher, K., Jones, J., and Wainwright, J., editors,

Landscape evolution: Denudation, climate and tectonics over different time and space scales,

volume 296, pages 63–78. Geological Sociaty of London.

Barnhart, K. R., Anderson, R. S., Overeem, I., Wobus, C., Clow, G. D., and Urban, F. E.

(2014). Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea

coast. Journal of Geophysical Research: Earth Surface, 119(5):1155–1179.

Bazin, S. and Pfaffhuber, A. A. (2013). Mapping of quick clay by electrical resistivity tomog-

raphy under structural constraint. Journal of Applied Geophysics, 98:280–287.

Beauvais, A., Ritz, M., Parisot, J. C., Bantsimba, C., and Dukhan, M. (2004). Combined ERT

and GPR methods for investigating two-stepped lateritic weathering systems. Geoderma,

119(1-2):121–132.

Befus, K. M., Cardenas, M. B., Tait, D. R., and Erler, D. V. (2014). Geoelectrical signals of

geologic and hydrologic processes in a fringing reef lagoon setting. Journal of Hydrology,

517:508–520.

86



Bibliography
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Rücker, C., Günther, T., and Spitzer, K. (2006). Three-dimensional modelling and inver-

sion of dc resistivity data incorporating topography - I. Modelling. Geophysical Journal

International, 166(2):495–505.

96



Bibliography
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