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Abstract

Cargo transport by molecular motors is ubiquitous in all eukaryotic cells and is typically
driven cooperatively by several molecular motors, which may belong to one or several motor
species like kinesin, dynein or myosin. These motor proteins transport cargos such as
RNAs, protein complexes or organelles along filaments, from which they unbind after a
finite run length. Understanding how these motors interact and how their movements are
coordinated and regulated is a central and challenging problem in studies of intracellular
transport. In this thesis, we describe a general theoretical framework for the analysis of such
transport processes, which enables us to explain the behavior of intracellular cargos based
on the transport properties of individual motors and their interactions. Motivated by recent
in vitro experiments, we address two different modes of transport: unidirectional transport
by two identical motors and cooperative transport by actively walking and passively diffusing
motors.
The case of cargo transport by two identical motors involves an elastic coupling between

the motors that can reduce the motors’ velocity and/or the binding time to the filament.
We show that this elastic coupling leads, in general, to four distinct transport regimes.
In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a
strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted
to attain a reduced velocity regime. All of these regimes, which we derive both by ana-
lytical calculations and by general time scale arguments, can be explored experimentally
by varying the elastic coupling strength. In addition, using the time scale arguments, we
explain why previous studies came to different conclusions about the effect and relevance of
motor-motor interference. In this way, our theory provides a general and unifying framework
for understanding the dynamical behavior of two elastically coupled molecular motors.
The second mode of transport studied in this thesis is cargo transport by actively pulling

and passively diffusing motors. Although these passive motors do not participate in active
transport, they strongly enhance the overall cargo run length. When an active motor
unbinds, the cargo is still tethered to the filament by the passive motors, giving the unbound
motor the chance to rebind and continue its active walk. We develop a stochastic description
for such cooperative behavior and explicitly derive the enhanced run length for a cargo
transported by one actively pulling and one passively diffusing motor. We generalize our
description to the case of several pulling and diffusing motors and find an exponential
increase of the run length with the number of involved motors.
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1. Introduction

The basic functional unit of every living organism is the cell [1]. Thousands of molecules
constantly participate in various biochemical reactions to maintain the complex internal
structure of the cell [2]. Although these reactions typically take place on length scales on
which thermal fluctuations are dominant, processes such as DNA replication or separation of
chromosomes during cell division, are highly organized and occur in a precisely defined man-
ner. Special types of proteins, so-called enzymes, catalyze specific chemical reactions and
thus determine which biochemical pathways occur in the cell [2]. Hydrolases are enzymes
that catalyze the hydrolysis of a chemical bond. One important subclass of hydrolases are
motor proteins that are also called molecular motors [3]. Various motor proteins hydrolyze
adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and free inorganic phos-
phate (Pi), see fig. 1.1. In other words, they cleave ATP into ADP. This reaction releases
free energy which the motor proteins convert into directed active motion.

The specific function of converting chemical energy into mechanical energy is at heart of
various cellular processes and keeps the cell in a state far from equilibrium. Active pumps,
embedded in membranes, maintain certain concentration gradients. Different polymerases
process DNA and RNA sequences in a directed manner. During cell division, several active
processes are involved in keeping the genomic information consistent between the divided
cells. Even cell motility by the beating of flagella and muscle contraction are founded on the
principle of converting chemical energy into mechanical work. Another class of processes
based on this principle is intracellular cargo transport by molecular motors which, is the
subject of this thesis.

1.1. Molecular motors

Active transport by molecular motors is ubiquitous in all eukaryotic cells [4]. In these
cells, various processes are spatially separated by compartmentalization. Hence, the cell
has to rely on a transport system to ensure the exchange of cargos such as RNAs, protein
complexes, filaments and organelles. Passive transport driven by diffusion would be too
slow in the crowded environment of the cytoplasm and its direction is difficult to regulate.
For example, in an axon, an organelle like a mitochondrion has to be transported from the
synapse to the region next to the nucleus for degradation, see fig. 1.2. In this case, a micro-
meter object has to cover a distance of up to one meter in an extended neuron cell, which
would certainly take longer than the lifetime of the organism.1 Thus, only passive diffusion

1The time for one-dimensional diffusion in aqueous solution is estimated for several objects in [3]. For an
organelle with a 500 nm diameter it takes 1012 s to diffuse a distance of one meter.
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1. Introduction
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Figure 1.1 A molecular model of kinesin-1 converting chemical energy into mechanical by
hydrolyzing ATP into ADP and Pi; taken from [5]. Because of the periodic structure of
the filament, the motor performs a discrete step to the next binding site.

is insufficient for the cell and an active transport system by motor enzymes is required.

Molecular motors walk along the filament network of the cytoskeleton, which is the cell’s
skeleton made of proteins. Eukaryotic cells contain three different types of cytoskeletal fila-
ments: actin filaments, intermediate filaments and microtubules [1]. Cargos are transported
by motor proteins only along microtubules and actin filaments [6]. Microtubules consist of
13 protofilaments [5] and each of these protofilaments provides a track for a molecular motor.
The filaments are polar with a plus and a minus end. This polarity can be recognized by
motors, such that a single motor walks along the filament in a directed fashion. In cells, the
filaments are differently organized according to their type: microtubules form long tracks
from the cell center to the cell periphery, and the much shorter actin filaments act as a
dense meshwork mainly in the cell periphery. Typically, microtubules are mostly arranged
in such a way that their minus ends are close to the nucleus, where the microtubule orga-
nizing center is located, and their plus ends are pointing towards the cell periphery [7]. The
organization of actin filaments is more complicated and varies with cell type [1,8]. However,
in motile cells, actin is oriented primarily with the plus end towards the cell membrane [9].

Cytoskeletal motor proteins fall into two classes based on their substrate: actin-based mo-
tors and microtubule-based motors. The microtubule-based motors are further subdivided
into two superfamilies: kinesins and dyneins [12]. There is only one known superfamily for
transport on actin, namely the myosin superfamily [4, 13]. Many different members belong
to these superfamilies and vary widely between different organisms. For example, mammals
have genes for over 40 kinesins, 40 myosins and several dyneins [4]. The most prominent
members involved in cargo transport are kinesin-1, cytoplasmic dynein and myosin V. The
repeating structure of the filaments provides equally spaced binding sites for the motors.
Therefore, motors move in discrete steps along these filaments. Kinesin and dynein take
8 nm steps along microtubules and myosin V walks in 36 nm steps along actin filaments [3].
Most of the kinesins walk towards the plus end of microtubules and all dyneins walk towards
the minus end. As mentioned above, this directed movement requires energy supplied by the
hydrolysis of ATP. The free energy released from this reaction induces an conformational
change in the motor molecule. Thereby, the motor is able to move in a certain direction and
to perform mechanical work. The occurrence of a step can be considered as a stochastic
event with a frequency that depends on the ATP concentration. In addition, the stepping

2



1.1. Molecular motors

Figure 1.2 Cargo transport in a neuron cell, adapted from [10]. Microtubules (yellow
rods) are arranged isopolarly in the axon. Actin filaments (red rods) are located in
the cell periphery, the growth cone and the synapse. Large proteins (APOER2, TrkA,
TrkB), mitochondria, synaptic vesicles and building blocks of the plasma membrane are
transported by different motors. Myosins pull cargo along actin filaments and kinesins
(KIFs) and dyneins along microtubules. Here, the kinesin motors are named by their gene
sequence, usually starting with ‘KIF‘ which is an acronym for the kinesin superfamily [11].

frequency can also depend on an external force-induced by a load. Typical load forces,
which motors are able to bear, are on the order of pN.

Since motors constantly undergo thermal collisions with surrounding molecules, they un-
bind from their track after a finite run length. Motors that take many steps before unbinding
are called processive motors [14]. For example, processive kinesin-1 performs roughly 100
steps before it unbinds from the filament.

Taken together, processive molecular motors stochastically step along the filaments by
the hydrolysis of ATP and, in this way, cover distances of µm. Different types of motors use
different filaments and walk in different directions. They can be characterized by different
physical quantities, such as the maximum load they are able to bear, their velocity and their

3



1. Introduction

(a) (b)

Figure 1.3 Examples of cargo transport by several molecular motors. (a) Electron mi-
croscopy image of a mitochondria transported by four motors indicated by arrows;
from [15]. (b) Cargo transported by three different types of motors: kinesin (K), dynein
(D) and myosin (M); taken from [16]. The motors are drawn approximately to scale.
The background image is an electron micrograph showing a vesicle (colored in yellow), a
microtubule (colored in green) and actin filaments (colored in red).

binding time.

1.2. Cargo transport by cooperative action of molecular motors

In cells, cargo transport relies on the cooperative action of molecular motors as revealed
by electron microscopy [15, 17, 18] and optical tracking of cargo particles [19–21]. From
electron microscopy pictures, it is evident that several motors are attached to the same
cargo, see fig. 1.3(a). The observation of cargos reversing their direction of motion along
the filament and switching between microtubules and actin lead to the notion that different
types of motors are involved in transporting the same cargo, see fig. 1.3(b). How multiple
motors are coordinated, in particular when the transport involves two or more species of
motors, is currently an area of active research [16,22,23]. Although various combinations of
different types of motors are possible and presumably occur in the cell, we discuss three basic
cases: unidirectional transport by one team of motors, bidirectional transport by two teams
of motors and transport on different tracks, involving both actin- and microtubule-based
motors. All three cases have been studied extensively in recent years, both experimentally
[24–29] and theoretically [23, 30–32].

1.2.1. Unidirectional transport

Even though a single motor molecule can power processive motion, transport in cells is often
driven by more than one motor [33]. One advantage of cargo transport by several motors

4



1.2. Cargo transport by cooperative action of molecular motors

Figure 1.4 Kinesin assembly as studied in the Diehl lab [25]; figure adapted from [25]. Two
kinesins are coupled via polypeptide linkers to a 50 nm DNA scaffold. The movement of
the assembly is observed by following the attached quantum dot.

is a higher velocity if the cargo experiences a high viscosity [24, 34, 35]. Another advantage
of cooperative transport is an increased run length compared to the run length of a single
motor, which is typically about 1µm: if one motor unbinds, the cargo is still transported by
the other motors and the unbound motor has a chance to rebind to the filament. In this way,
cargos can be transported over cellular distances that are on the order of tens of micrometers.
A theoretical study, based on the assumption of non-interacting motors, indicates that the
run length increases exponentially with the number of motors [30]. Qualitatively, an increase
in the run length has been known for a long time for kinesin [36] and recently also reported
for dynein [37] and myosin V [38]. However, quantitative experiments remain challenging,
because it is difficult to determine the number of motors involved in the transport [39]. Two
recent studies of the run lengths of beads covered with different amounts of kinesin-1 have
attempted to estimate the motor number on the basis of force measurements [40] or run
length distributions [24]. While the observations from the latter study were consistent with
the theoretical predictions, the former study found longer run lengths than expected.

However, in both studies only the average number of motors could be determined and
the actual number of motors engaged in transport varied from bead to bead. Furthermore,
the precise geometric arrangement of the motors was not known. These difficulties have
been overcome in a recent study that used synthetic complexes of two kinesin motors con-
nected through a rigid DNA scaffold [25], see fig. 1.4. The experiments suggest that motors
strongly interfere in such a way that they pull each other from the filament. In the discus-
sion of these findings, the notion of induced elastic strain forces arises. These strain forces
influence the dynamics of the individual motor. In addition, in a surface gliding assay exper-
iment, involving however a large number of processive kinesins, the influence of the elastic
coupling between the motors on the overall velocity was studied [41]. These experiments
suggest that elastically coupled motors slow each other down depending on the strength of
the elastic coupling. Therefore, loose mechanical coupling between motors is required for
efficient transport. Recently, much theoretical effort [23,30,42–47] has been devoted to these
transport processes but different studies came to different conclusions about the relevance of
strain and interference effects. Nevertheless, the observations of interference effects indicate
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1. Introduction

that, while run lengths of cargo do increase with the number of pulling motors, the increase
may be less pronounced than what is estimated based on non-interacting motors and that
more motors than previously thought may be necessary for transport over typical cellular
distances.

1.2.2. Bidirectional transport

Many intracellular cargos, such as mitochondria, pigment granules, endosomes, lipid droplets
and viruses, move in a bidirectional manner, reversing direction every few seconds [20, 48].
Bidirectional motion requires at least two types of motors that are attached to one cargo,
e.g. kinesin-1 and cytoplasmic dynein. Two mechanisms for bidirectional transport have
been proposed [20,48]: (i) biochemical coordination by a hypothetical coordination complex
which ensures that only one type of motor is active at any given time; and (ii) mechanical
coordination through a tug-of-war between the motors, which pull on each other until one
type of motor team wins and drags the cargo in its direction. Several recent experiments
provide clear evidence for such mechanical interactions between the two motor teams [27,49,
50]. A systematic theory for bidirectional transport based on a stochastic tug-of-war model
has been developed in [31,51,52]. This framework is fully consistent with experimental data
and explains the bidirectional motion of lipid-droplets [31] and of endosomes [27,28] without
any putative coordination complex.

1.2.3. Transport on different filaments

Long-range transport within a eukaryotic cell is typically microtubule-based, whereas short-
range transport at the cell periphery is actin-based. Various cellular cargos such as mito-
chondria, pigment granules and synaptic vesicles use both transport systems as reviewed
in [21, 53, 54]. To be able to switch from one transport system to the other without any
interruption, actin motors as well as microtubule motors are attached simultaneously on
the same cargo [21, 53, 54]. Switching between filament species depends on cellular regula-
tion, on the cargo and on the number and type of motors [55–57]. Recently, it has been
discovered that, when a cargo is transported on one kind of filament, say a microtubule,
both microtubule- and actin-based motors can interact with that filament. The microtubule
motor is strongly bound and actively pulls the cargo, whereas the actin-based motor tethers
the cargo to the filament, presumably via an unspecific electrostatic interaction. It has been
found that the actin-based motor myosin V can diffuse randomly on a microtubule [58] and
that the microtubule motor kinesin-1 has a weak affinity for actin [29]. A cargo transported
along a microtubule by kinesin-1 and myosin V exhibits fast directed motion interrupted by
diffusive events [29]. During these diffusive events, kinesin is not bound to the microtubule
but the cargo is still tethered to the filament by the myosin motor, which gives kinesin the
chance to rebind. Overall, the run length of such a cargo is more than twice that of a cargo
transported by a single kinesin alone.

This enhancement of motor processivity has also been observed in other systems. For
example, the non-processive myosin motor Myo2p was shown to transport a cargo proces-
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1.3. Overview

sively along an actin filament if the kinesin-related protein Smy1p was present on the same
cargo [59]. Similarly, effects of diffusing linkers have also been discussed on the level of
single-motor molecules [60]. For example, dynein and kinesin-2 use the large complex dy-
nactin [61–63] and myosin V uses melanophilin [64] as tethers. The role of these tethers is
to prevent the motor from unbinding from the filament and thus to enhance its run length.

1.3. Overview

In this thesis, we study cooperative transport by molecular motors from a theoretical per-
spective. We address unidirectional transport by two identical motors and transport in-
volving different filaments by actively pulling and passively diffusing motors, based on a
description for the dynamics of a single motor. In chapter 2, we introduce such a reduced
single motor description incorporating the stochastic motor dynamics as known from exper-
iments. For a probabilistic treatment, we discuss Markovian dynamics and review a method
to obtain averaged quantities for time dependent processes. Furthermore, we introduce a
generalization of this method for arbitrary initial conditions.

The unidirectional transport by two elastically coupled motors is addressed in chapter
3. We introduce a general state space for two elastically coupled motors based on sin-
gle motor parameters. From this state space, we derive four different transport regimes
for a motor pair. The emergence of these regimes can be understood intuitively by the
comparison of three different time scales. These time scale arguments allow us to predict
which of the different transport regimes should be observed for different motor types when
their coupling strength is varied. Several extensions of the single motor description are
studied quantitatively and an intuitive understanding is developed by means of the time
scale arguments. Finally, we apply the framework developed here to quantitatively discuss
experimental results from the Diehl lab obtained with two coupled kinesin-1 motors [25].

Chapter 4 deals with the observed enhanced run length of cargo transport involving
motors that move along different filaments. We focus on the case of a cargo transported
along a microtubule by one microtubule-based motor kinesin and one actin-based motor
myosin V. For the corresponding quantitative description of such a cargo, we deduce all
parameters from experimental quantities and explain the cooperative effect of the enhanced
run length in terms of single motor properties. Once we know the single motor properties,
we study cargo transport by the cooperative action of several passively diffusing and several
actively pulling motors, which leads to an exponential increase of the cargo’s run length and
to an effect on the cargo’s velocity: more diffusing motors reduce the overall cargo velocity,
whereas more pulling motors keep the velocity constant.

Chapter 5 concludes with a summary and raises further questions concerning cooperative
transport, some of which can be addressed with an appropriate extension of the framework
developed in this thesis.

Supplementary material is presented in the appendix, including detailed calculations,
further extension and discussions of the reduced single motor description and its influence
on the dynamics of a motor pair.

7
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1.3.1. List of publications

This thesis contributed to the following publications:

• ’Distinct transport regimes for two elastically coupled molecular motors’
F. Berger, C. Keller, S. Klumpp, and R. Lipowsky, submitted (2011)

• ’Co-operative transport by molecular motors’
F. Berger, C. Keller, M. J. I. Müller, S. Klumpp, and R. Lipowsky, Biochem. Soc.
Trans. 39, 1211 (2011).

• ’Cargo transport by teams of molecular motors: Basic mechanisms for intracellular
drug delivery’
M. J. I. Müller, F. Berger, S. Klumpp, and R. Lipowsky, Organelle-specific Phar-
maceutical Nanotechnology, edited by V. Weissig and G. G. D’Souza, pp. 289-309.
(Wiley, Hoboken NJ, 2010).

• ’Enhancement of the processivity of kinesin-transported cargo by myosin V’
F. Berger, M.J.I. Müller, and R. Lipowsky, EPL 87, 28002 (2009).
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2. Basic description of transport by molecular
motors

In this chapter, we introduce a reduced single motor description which is suitable for the
length and time scales that we are interested in. We discuss experiments, from which we
deduce all parameters to describe processive molecular motors such as kinesin-1, dynein,
myosin V, and myosin VI. The basic motor processes of stepping along, binding to and
unbinding from the filament are of stochastic nature. For an appropriate description, we
introduce continuous-time Markovian dynamics. Furthermore, we present a generalization
of a method originally introduced by T. Hill that is, to our knowledge, new. This method
enables us to calculate quantities such as average velocities, average binding times and
average run lengths of cargos for arbitrary initial conditions.

2.1. Transport on different scales

Transport by molecular motors covers a wide range of time and length scales. Different
experimental setups and theoretical descriptions have been established to reveal and under-
stand the transport behavior of molecular motors on these different scales. Three regimes
of transport can be identified with typical time and length scales [65]:

• On the molecular level, motor proteins step discretely on a nanometer scale by hy-
drolyzing ATP, see fig. 2.1(a). For kinesin-1, the time for the actual step is very short
and about 15µs [69]. However, the time to complete one enzymatic cycle depends on
the ATP concentration. Kinesin-1 takes a step every 10ms in the case of saturating
ATP concentration [69]. The details of the enzymatic motor cycles governing the mo-
tion of molecular motors have been studied in single molecule experiments [70,71], as
well as in theoretical descriptions based on a discrete Markovian state space [72, 73].

• Cargo particles transported by processive motor proteins cover distances of µm before
they unbind from their track after a binding time of seconds, see fig. 2.1(b) [36, 74].
Therefore, typical cargo velocities are of the order of µm/s. The walking distance
and the binding time can be increased by the cooperative action of several motors of
the same species [24, 30]. Cargos that are transported by different species of motors
exhibit interesting transport properties like bidirectional motion [20,31,48], enhanced
processivity [29,32] or mutual motor activation [75]. Transport on the µm scale can be
accessed experimentally by different microscopy techniques [76]. Theoretical studies
describe the rich behavior of cooperative transport based on the known single molecule
properties, reviewed in [23].
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2. Basic description of transport by molecular motors

30nm

(a) (b) (c)

Figure 2.1 Transport by molecular motors on different scales: (a) Time-series of one step
by myosin V recorded with high-speed atomic force microscopy [66]. The typical length
scale is nanometer and the typical time scale for stepping is of the order of milliseconds.
(b) TIRF microscopy image of quantum dot (green) transported by several kinesins along
red-labeled microtubules [67]. Here, the typical length and time scales are micrometers
and seconds, respectively. (c) Live cell confocal image of cargo transport through a
whole alveolar epithelial cell on large length scales of tens of micrometers and long time
scales exceeding minutes [68]. Vesicles (green dots) are transported along red-labeled
microtubules. Bottom panels: magnification (white square) of two time windows showing
a single vesicle indicated by the white arrow that moves along the microtubule over time
(0 s and 30 s).

• On the length scale of cells, which ranges from a few micrometers up to meters in axons,
cargo transport can be divided into two processes: active transport by motors along
the filament and diffusion in the cellular environment when the cargo is detached from
the filament [77]. Cycles of reattachment to, being transported along and unbinding
from the filament leads to cargo transport on large length and time scales exceeding
micrometers and seconds, see fig. 2.1(c). However, in vivo , additional processes like
motor recruitment to the cargo and other functions of adapter proteins influence the
details of the cycles [4, 7]. This large scale transport can be accessed experimentally
with different microscopy techniques [76]. Theoretical studies describe the interplay
of active movement, unbound diffusion, binding and unbinding of motors [78, 79].

In this thesis, we focus on the second regime of time and length scale. Using a reduced single
motor description that is consistent with results obtained in the first regime, we deduce
and predict properties of cooperative transport in the second regime. In the following,
we introduce the reduced description of a single molecular motor that provides the basic
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2.2. A single molecular motor

(a)

force-free

inactive motor

active motors

sharing the load force 

(b)

Figure 2.2 Motor parameters: (a) A processive molecular motor in an optical trap walking
on a discrete lattice with step size l. In general, the forward stepping rate α and the
backward stepping rate β depend on the external force F and the ATP concentration.
The motor unbinds with the force-dependent unbinding rate ǫ1(F ). (b) Several motors
transport a common cargo. Motors that are bound to and step along the filament are
active motors governed by the dynamics depicted in (a). These active motors share the
external load force F . For example, the left motor is exposed to half the load force.
Motors that are attached to the cargo but unbound from the filament are called inactive
motors. They do not participate in active transport. These inactive motors can rebind
to the filament with binding rate π.

dynamical processes for our study.

2.2. A single molecular motor

In this section, we introduce a coarse-grained description of a single molecular motor. Similar
reduced models have been used successfully in several theoretical studies [30, 31, 43, 45].
Since the motor is influenced by the thermal environment, the basic processes of binding to,
unbinding from and stepping along the filament occur stochastically. Therefore, we associate
rates to these processes defined as the average frequency per time for the corresponding
process to occur. In general, the rates depend on additional parameters like the external
force and ATP concentration. Our generic description can be applied to a large variety
of different motors by adapting the rates to characterize specific functions. The numerical
values for the parameters of our description are taken from force-dependent single molecule
experiments that we discuss later in this section.

2.2.1. Theoretical description of processive motors

Processive motors bind to, walk along and unbind from the filament. In general, these pro-
cesses depend on external parameters such as the load force and ATP concentration. Their
precise details have been revealed in force-dependent single molecule experiments, mostly
done with the best-studied motor kinesin-1. Following the convention of the literature, the
direction of the applied load force is positive if it is opposite to the forward stepping di-
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2. Basic description of transport by molecular motors

rection of the motor, see fig. 2.2. A negative force towards the walking direction is termed
assisting force. In our reduced description, we consider the motor as a point particle, to
which an external force is transmitted via an elastic element.

Active, inactive and passive motors

Next, we comment on some of the terminology used in our study. We call a motor active,
if it is bound to the filament and walks along it by hydrolyzing ATP. On the other hand,
motors are inactive, if they are not bound to the filament, but still attached to the cargo.
For example, we consider a fixed number of motors attached to a cargo. During cargo
transport, motors unbind and rebind to the filament. In this way, the number of active
and inactive motors fluctuates, see fig. 2.2(b). In the biochemical literature, in contrast,
inactive refers to the state of motors, in which they are not attached to a cargo and in an
inhibited conformation [80]. Presumably, such a conformation ensures that the motor is not
needlessly burning ATP or clogging up the microtubule roadways. Furthermore, we term a
motor passive, if it is bound to the filament, but not able to move actively by hydrolyzing
ATP. For example, this is the case when the actin motor myosin V binds unspecifically to
and diffuses along microtubules, as studied in chapter 4.

Binding to the filament

In the context of cargo transport by molecular motors, two distinct situations are usually
termed as binding processes. The first is the binding of a freely diffusing cargo, or motor,
from the solution to the filament. This process depends on the geometry and the diffusive
dynamics. The second process is the binding of the motor, when it is close to the filament,
i.e., binding of an inactive motor attached to a cargo which is tethered by other motors to
the filament, see fig. 2.2(b). As we will see later, our study focus on cargos that are already
close to the filament, and therefore we only have to take the second process into account.
The binding of the motor protein to the filament is a complicated process on the atomistic
level. From a coarse-grained point of view, as a first order approximation, we assume that
the motor can be in a bound state or in an unbound state. We describe the transition
from the unbound state to the bound state with a single binding rate π. Since the binding
process is not very well studied in experiments, we consider the binding rate as constant
and independent of other parameters, particularly independent of an external force. This
is reasonable because even if there is a force acting on the cargo, an inactive motor is in a
relaxed force-free state and the binding process should be independent of it, see fig. 2.2(b).
In principle, the rate could depend on parameters which influence the finding of the binding
site on the filament and the formation of the motor-filament bond.

Stepping along the filament

When a motor is bound to the filament, it moves forward and backward in discrete steps.
In our reduced description, we consider the motor as a stochastic stepper with a forward

12



2.2. A single molecular motor

stepping rate α, a backward stepping rate β and a step size l. Generally, these stepping
rates could depend on the external load force F and the ATP concentration,

α = α(F, [ATP ]) (2.1)

β = β(F, [ATP ]). (2.2)

We relate these rates to experimentally accessible quantities. Usually, analyzed data from
single molecule experiments provide the force-velocity relation V(F, [ATP ]), which is the
average velocities of the motor, and the ratio of forward to backward steps q(F, [ATP ]).
Both quantities can be written in terms of the stepping rates [77], leading to

V(F, [ATP ]) = l[α(F, [ATP ])− β(F, [ATP ])] (2.3)

and

q(F, [ATP ]) =
α(F, [ATP ])

β(F, [ATP ])
. (2.4)

From these equations we obtain the forward stepping rate,

α(F, [ATP ]) =
q(F, [ATP ])

q(F, [ATP ])− 1

V(F, [ATP ])
l

(2.5)

and the backward stepping rate,

β(F, [ATP ]) =
1

q(F, [ATP ])− 1

V(F, [ATP ])
l

. (2.6)

The precise form of V(F, [ATP ]) and q(F, [ATP ]) differ between different motor species.
However, as a common feature the velocity vanishes for a high load force, the stall force Fs

that we implicitly define as
V(Fs, [ATP ]) ≡ 0. (2.7)

Hence, in case of F = Fs, we obtain from eq. (2.4) the stepping ratio

q(Fs, [ATP ]) = 1. (2.8)

Subjected to a force smaller than stall force, highly processive motors perform much more
forward steps than backward steps, i.e., q(F, [ATP ]) ≫ 1 [69]. For this reason, we have

q(F, [ATP ])

q(F, [ATP ])− 1
≈ 1 (2.9)

and
1

q(F, [ATP ])− 1
≈ 0. (2.10)

In case of small forces, we neglect backward steps and the forward stepping rate is given by

α(F, [ATP ]) =
V(F, [ATP ])

l
. (2.11)
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bound

unbound

(a)

bound

unbound

(b)

Figure 2.3 Kramer’s escape rate problem: (a) The state, in which the motor is bound to
the filament, is associated with the minimum at x0 of the potential V (x). Kramer’s theory
describes unbinding as the transition over a potential barrier at xb driven by diffusion.
(b) Applying an external force F to the bond leads to a tilted potential U(x) = V (x)−Fx
with a reduced barrier height U(xb)− U(x0) = V (xb)− V (x0)− F (xb − x0). The escape
rate under force is higher than in the force-free case.

On a micrometer and second scale, this stepping dynamics appears as a smooth directed
movement with a constant velocity. From this point of view, a motor, or a cargo, can also
be considered as a particle which performs a directed motion that starts and ends in a
stochastic manner. Such a semi-stochastical description has been used in previous studies
of cooperative motor transport [30, 31] and will be applied in chapter 4.

Unbinding from the filament

The motor heads1 form a biomolecular bond with the filament. Similar to the binding
process, we describe the bond dissociation with a single rate. This idea of reducing the
intrinsic complexity of the molecular details based on Kramers’ escape rate theory [81] has
widely been used and extended in biophysical studies [82–84]. Here, the dissociation of
the bond is associated with the diffusive escape of an over-damped Brownian particle with
diffusion coefficient D over a one dimensional potential barrier. The spatial coordinate for
the particle corresponds to the reaction coordinate. Let x0 be the position of the bound
state and xb the position of the maximum of the barrier of the potential V (x), see fig. 2.3(a).
The rate for escape follows from a mean first passage time calculation with a saddle point
approximation for the potential [85] and depends exponentially on the height of the potential
barrier,

ǫ ∼ e−(V (xb)−V (x0))/kBT , (2.12)

here kBT is the product of the Boltzmann constant and the temperature. The prefactor,
which is not shown here, depends on the second derivatives of the potential [85]. This

1Motor heads are the motor domains that bind to the filament, see fig. 2.7
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2.2. A single molecular motor

Kramers rate is valid for a large potential barrier, i.e., V (xb) − V (x0) ≫ kBT and non
equilibrium steady state condition [85, 86].
When a constant force is applied to the bond, the dissociation rate increases. The Kramers

rate as in eq. (2.12) allows us to estimate the influence of the force. In this one dimensional
reduced description, a constant force adds the energy −Fx to the potential and lowers the
barrier, see fig. 2.3(b). Together with the tilted potential U(x) ≡ V (x) − Fx, we obtain a
force-dependent dissociation rate from eq. (2.12),

ǫ(F ) = ǫeF (xb−x0)/kBT . (2.13)

This exponential force-dependence of the rate has been first discussed by Bell [82].
Despite of the complexity of the molecular details of the motor-filament bond, we assume

that the force dependency of the bond dissociation can be described according to Bell’s
equation (2.13). Furthermore, as a first approximation, we treat all directions equally and
thus the unbinding rate increases under an external force independent of its direction. To
account for these assumptions, we use the absolute value of the force and obtain from
eq. (2.13) the force-dependent unbinding rate of a single motor,

ǫ1(F ) = ǫe|F |/Fd . (2.14)

Here, we introduce the force scale Fd ≡ kBT/(xb − x0), which we term the detachment
force. In general, forces in different directions, for example perpendicular to the filament,
have different impact on the motors [87]. However, in our description only forces parallel
to the filament occur. These forces arise from other motors attached to the cargo. As
a refinement of the assumptions entering into eq. (2.14), we distinguish the forward and
backward direction of the motor in section 3.4.4. In general, other functional forms of the
force-dependent unbinding rate can also be incorporated into our description.

Elasticity of motor proteins and cargos

Not only motor proteins, but also adapter proteins for the motor cargo linkage and cargos
themselves are often soft objects with a considerable elasticity [80]. When studying cooper-
ative cargo transport forces between the motors are exerted via these elastic elements. As
mentioned above, we only consider forces parallel to the filament and thus we describe the
relation between the elastic strain force and the deformation with a one dimensional force
extension relation F (∆x), where the extension ∆x is along the filament. In order to develop
a general understanding, we will not account for specific elastic elements, but rather study
four different generic types of elasticity: a linear spring, a cable, a freely jointed chain (FJC)
and a worm like chain (WLC).
A linear spring is described by a linear force extension relation, i.e.,

F = κ∆x, (2.15)

with spring constant κ. The force extension relation for a cable is split in two regions.
In the compression mode, where the actual end to end distance of the elastic element is
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2. Basic description of transport by molecular motors

smaller than a rest length l0 no forces are needed for extension. In the stretch mode, where
the actual length is larger than the rest length a linear force extension relation applies.
Therefore, the force extension relation for a cable reads

F (∆x) =

{

0 ∆x < l0
κ(∆x− l0) ∆x ≥ l0.

(2.16)

The linear spring and the cable are good approximations for small extensions. However,
for large extensions, we expect that the force needed for further extension increases rapidly.
From a more realistic point of view, every elastic element has a maximal extension length
before it ruptures. To account for a non-linear increase in force and a finite extension, we
use the force extension relations from two simple models for describing polymers, namely
the freely jointed chain and the worm like chain.
The FJC is composed of segments each with length Ls and connected in such a way that

they are able to swivel freely in three dimensions. Stretching such a chain by a force in a
certain direction leads to an extension ∆x along this direction. This extension as a function
of the magnitude of that force can be derived theoretically as [3]

∆x = Lc

(

coth

[

FLs

kBT

]

− kBT

FLs

)

, (2.17)

with two parameter: the maximal contour length Lc and the segment’s length Ls.
A very flexible slender rod should qualitatively behave like a FJC with many segments.

This case is described by a worm-like chain (WLC) with maximal length Lc and persistence
length Lp. The persistence length is a parameter describing the resistance to thermal forces.
Qualitatively, if Lp ≫ Lc the object is rigid, whereas for Lp ≪ Lc the object is very flexible.
The force as a function of the extension can be approximated by [88]

F (∆x) =
kBT

Lp

(

1

4(1−∆x/Lc)
− 1

4
+

∆x

Lc

)

. (2.18)

An intuitive derivation of this equation can be found in [89].

2.2.2. Experimental values for the single motor properties

In the previous section, we introduced a reduced single motor description which incorporates
generic features of molecular motors. In this section, we discuss experimental results from
which we obtain the numerical values of the parameters for that description.

Binding rate

Since it is difficult to measure the binding rate π directly, it is often used as a fit parameter.
In an experiment, where kinesin-1 motors extract a membrane nanotube from a vesicle in
contact with a microtubule, a binding rate π ≃ (4.7± 2.4) s−1 has been obtained [90]. The
run length distribution of beads transported by several kinesin-1 motors could be fitted
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2.2. A single molecular motor

parameter kinesin-1 dynein myosin V myosin VI

π [s−1] 5∗ [24, 90] 1.6∗ [31] - -
l [nm] 8 [70] 8 [91] 36 [92] 36 [93]

q0 800 [69] - - -
Fs [pN] 6 [94, 95], 5 [96], 7 [69] 7 [97] 1.1 [98] 1.7 [92], 3 [99] 2.8 [100]

v [nm/s] 1000 [94], 490 [25] 650∗ [31], 700 [62] 400 [92], 380 [101] 150 [101], 291 [100]

ǫ [s−1] 1 [94], 0.6 [25] 0.27∗ [31], 0.16 [37] 0.48 [99], 0.3 [101] 0.25 [101], 1.3 [100]

Fd [pN] 3 [94] 1.1∗ [31] 4∗ [101] 2.6∗ [101]

κ [pN/nm] 0.3 [96], 0.5 [102], 0.2 [25] 0.1− 0.5 [103,104] 0.2− 0.45 [105] -
l0 [nm] 80 [12] 40 [106] 80 [107] -

Table 2.1 Overview of parameters for the different molecular motors, kinesin-1, dynein,
myosin V and myosin VI. The parameters are the binding rate π, the step size l, the
force-free forward to backward stepping ratio q0, the stall force Fs, the force-free velocity
v, the force-free unbinding rate ǫ, the detachment force Fd, the molecule stiffness κ and
the molecule length l0. The parameters have been obtained in the cited studies. The
stared values are indirectly obtained from theoretical modeling of experimental data.

with a binding rate of 5 s−1 [24]. In both experiments, the inactive motors are close to
the filament and therefore, they have a fairly high chance to rebind. In contrast, in an
two motor experiment with kinesin-1, the run length could be fitted with a binding rate
of 1.03 s−1 [25]. Obviously, the binding rate depends on the geometry of the cargo, on the
arrangement of the motors on the cargo [108] and on the buffer used in the experiment.
Therefore, it should not be taken as an inherent motor parameter.
For other motor species, the binding rate can only be estimated from the dissociation

constant [109] or used as a fit parameter, since there are no experimental data available to
our knowledge.

Stepping rates from force-velocity relations

The stepping rates are determined by the step size l, the ratio of forward and backward steps
q(F ), and the force-velocity relation V(F ) as explained in section 2.2.1. Two experimental
methods are widely used to study the force-dependence of motor dynamics: a stationary
optical trap and a force-feedback trap [76, 110], see fig. 2.4. In both setups the filaments
are immobilized on a substrate. Beads coated with motor proteins are transported along
these filaments. The dielectrical beads can be manipulated with focused laser beams, so-
called optical tweezers or optical traps. The radiation pressure provides a potential for
the dielectric beads [111], which can be approximated as a quadratic potential with a trap
stiffness [112]. In the case of a stationary trap, the distance between the trap center and
the bead increases as the motor pulls the bead along the filament, see fig. 2.4(a). In this
way, the force on the motor heads increases in time [96]. In order to attain a large force
before the motor unbinds, in some experiments, this force increase is supported by moving
the stage on which the microtubules are immobilized [95]. In contrast, in a force-feedback
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Figure 2.4 Kinesin-1 in optical traps with corresponding trajectories. The motors, the
filaments and the optical trap are not drawn to scale. (a) In a stationary trap the distance
∆l between the bead and the trap center increases as kinesin-1 walks along the filament.
Hence, the force applied on the motor also increases. The example trajectory is taken
from [95]. The plateaus of the trajectories correspond to the stall force. The sudden
drops indicate unbinding from the filament and the bead falls back to the center of the
trap. (b) In a force-feedback trap, the force applied to the motor is kept constant by
readjusting the position of the center of the trap in such a way that ∆l is kept constant.
The trajectory, taken from [70], reveals discrete steps.
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Figure 2.5 Experimental data for kinesin-1 stepping taken from [69]. (a) Ratio q(F )
of forward to backward stepping rates as a function of load force F for different ATP
concentrations: 1mM ATP (blue) and 10µM ATP (red). The line in the logarithmic plot
is given by eq. (2.19) with q0 ≃ 800 and Fs ≃ 7pN as suggested in [69]. (b) Force-velocity
relation for kinesin-1 for different ATP concentrations taken from [69]. The two lines are
approximate force-velocity relations discussed in appendix A.4.
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trap the distance between the bead and the trap center is kept constant by adjusting the
trap according to the position of the bead [110, 113]. One advantage of the force-feedback
trap is that the movements of the motor is directly displayed as the movements of the bead,
see fig. 2.4(b). In the case of a stationary trap, the movements of the beads are smaller
than those of the motor because of the compliance of the motor bead linkage [96, 112].

Both, the stationary trap as well as the force-feedback trap have been used to determine
the force-dependent dynamics of single motor proteins. From these trajectories, a discrete
step size l of the motor can be detected: l ≃ 8 nm for kinesin-1 [70], as well as for dynein [91]
and l ≃ 36 nm for the actin motors myosin V [92] and myosin VI [93].

Kinesin-1 is the best studied motor protein. Carter and Cross obtained the force-dependent
ratio of forward and backward steps for kinesin-1 [69], which could be approximated with

q(F ) = q
1− F

Fs
0 , (2.19)

where q0 ≃ 800, see fig. 2.5(a). They found that this ratio q(F ) is not affected by the ATP
concentration.

In general, motors under an external load force slow down. Increasing the load force F
decreases the velocity until the average velocity is zero under stall force Fs. The precise
shape of the force-velocity relation is different for different motor species [69,91,114]. Even
for the same motor, different experimental groups came to different conclusions [69,94–96].
As an example, the force-velocity relation for different ATP concentrations obtained by
Carter and Cross [69] is shown in fig. 2.5(b).

In order to capture the main feature of a decreasing velocity with an increasing force, we
choose as a first approximation a piecewise linear form for the force-velocity relation and
will study different functional forms later. Such a force-velocity relation,

V(F ) ≡







v F < 0
v(1− F/Fs) 0 ≤ F < Fs

0 F ≥ Fs

(2.20)

has a constant velocity v under assisting forces and backward steps are neglected, see fig. 2.6.
In this way our force-velocity relation is determined by two parameters, the force-free single
motor velocity v and the stall force Fs. These two parameters have been measured for
different motors, see table 2.1. Further refinements of the force-velocity relation that, for
example, include backward stepping, are possible and will be discussed in appendix A.5.

In general, one expects that the average motor velocity for fixed forces F increases in
a Michaelis Menten like behavior with increasing ATP concentration [115]. Indeed, such
behavior has been found for several motors [70, 116]. In experiments with single kinesin-1,
it has been demonstrated that the average motor velocity decreases with increasing phos-
phate concentration as well as with increasing ADP concentration [117]. However, here,
we only focus on the effect of the ATP concentration on the force-velocity relation. In
general the force velocity relation is a function of the force and the ATP concentration,
V = V(F, [ATP ]). For a qualitative treatment, we write the dependence in a product of two
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Figure 2.6 Simplified piecewise linear force-velocity relation as used in our reduced de-
scription. It is characterized by two parameters: the stall force Fs and the force free
velocity v.

functions,

V(F, [ATP ]) = V(F ) ·K([ATP ]). (2.21)

We use the force-velocity relations of fig. 2.6 as V(F ) and a Michaelis Menten like behavior
for

K([ATP ]) ≡ [ATP ]

[ATP ] +KM
, (2.22)

with KM ≃ 100µM , which is in the same order of magnitude for low forces as in [70].
The oversimplified [ATP] dependence of the force-velocity relation in eq. (2.21) captures
the characteristic behavior of an increasing velocity that saturates with increasing the ATP
concentration. However, a more complicated dependency has been revealed in experiments
[70,94] and theoretical studies considering the chemomechanical coupling of motor proteins
[72, 73]. Different force-velocity relations can easily be incorporated into our description.
As an example, an empirical [ATP] dependence based on kinesin-1 data is discussed in
appendix A.6.

The unbinding rate and the detachment force

The force-dependent description of the unbinding rate ǫ1(F ) of eq. (2.14) involves two
parameters: the force-free unbinding rate ǫ and the detachment force Fd. The unbinding
rate ǫ is determined by the inverse of the force-free binding time t1 of a single motor to the
filament. Values for different motor species are summarized in table 2.1.

As already mentioned in section 2.2.1, the detachment force is related to the distance
xb−x0 of the potential between the bound and unbound state. This distance is typically in
the nanometer range and has been used to estimate a detachment force of Fd = kBT/(xb −
x0) ≃ 3 pN for kinesin-1 [30].

In other studies, Fd has been used as a fit parameter in order to obtain a good agreement
between a model and experimental data. For example in a gliding assay experiment with
kinesin-1 a lower detachment force Fd ≃ 1.8 pN has been determined from a fit [41]. In a
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tug-of-war model, which successfully described the experimental data of Drosophila lipid-
droplet transport, a dynein detachment force of Fd ≃ 1.1 pN has been used [31]. The
detachment force for myosin V, Fd ≃ 4 pN, and for myosin VI, Fd ≃ 2.6 pN have been
estimated recently to explain the trajectories of a tug-of-war between these two motors [101].

However, in general the whole shape of the unbinding rate ǫ1(F ) can be obtained experi-
mentally. One method is to measure the life time of the motor-filament bond under various
constant loads F . In studies of molecular bonds a widely used method is to pull at con-
stant speed on the molecular complex and measure the distribution of rupture forces [84].
The average life time for a constant load can directly be obtained from these rupture force
distribution [118]. It has been shown for kinesin-1 and myosin V, that the rupture force
distributions depend on the pulling direction [102,119,120] . As a consequence, the detach-
ment force could be also different for assisting forces and opposing forces. Such mechanical
differences has been discussed to explain the intrinsic directionality of processive motors. In
the last decades, a lot of work has been done, mainly with kinesin-1, to reveal the precise
mechanism of the coordination of the two motor heads that leads to processive movement.
Not only different nucleotide states of the heads,2 but also mechanical strain forces between
the heads are necessary for breaking the symmetry [120, 121]. In this way, the probability
to detach is higher for the trailing head during double-headed binding than for the leading
head. This dependence of the kinesin-microtubule binding on both the nucleotide state and
the loading direction has been explicitly demonstrated for single headed motors [119]. In
a later experiment, the same group studied both the equilibrium of and transition between
single- and double-headed binding of kinesin and found that the unbinding force obtained
by loading directed toward the minus end of microtubule was 45% greater than that for plus
end-directed loading [102]. This is consistent with the idea that unbinding for the trailing
head, which feels a load in the plus direction, is more probable than for the leading head.
Conclusively, it is plausible to introduce a direction dependent detachment force and study
its influence on the dynamics of a motor pair, as we will present in section 3.4.4.

Elastic motor linkers

In general, the elasticity of the elements between the cargo and the motor heads is very
complicated. For example, the stalk of kinesin-1 consists of different coiled-coils and flexible
regions, see fig. 2.7. All these region contribute to the overall elasticity of the motor.
Although the elastic details of motor stalks are, in principle, accessible in experiments with
atomic force microscopy (AFM), a detailed force extension relation has only been reported
for muscle myosin II to our knowledge [123]. For other motors, the elasticity has been
determined indirectly, mostly from bead fluctuations in optical traps. Kawaguchi et al.
found a simple linear force extension relation with a spring constant of κ ≃ 0.5 pN/nm for
kinesin-1 [102]. In contrast, Coppin et al. determined a non-linear behavior which saturates
at κ ≃ 0.3 pN/nm [96]. Furthermore, a study of kinesin-1 combining molecular dynamic

2Nucleotide states of the heads are chemical states associated with the type of nucleotide (ATP, ADP-Pi,
ADP) that is bound to the head.
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Figure 2.7 Overview of the domain organization of kinesin-1 taken from [122]. Stalk and
tail consist of different elastic regions (coil 1, coil 2, coiled-coil tail) and very flexible joints
(hinge, kink, stalk-tail linker)

simulations with experimental data, suggested a cable like behavior, with a small stiffness
in the compression mode and a constant stiffness of 0.3 pN/nm for stretching [124].

In several optical trapping experiments, the compliance between the bead and the filament
has been estimated for several different species of motors. The typical values are of the order
of pN/10nm, see table 2.1.

To account for the non-linearity and the finite length of the motor stalk, we introduced
the FJC and the WLC model in section 2.2.1. Both models are based on two parameter.
One is the contour length Lc that is the maximal extension of the molecule. The other one
is the segment length Ls for the FJC model and the persistence length Lp for the WLC
model. We relate the later two parameter to the stiffness κ by requiring the linear behavior,
F ≈ κ∆x, for small extensions. This constrain leads to a segment length

Ls =
3kBT

Lcκ
(2.23)

and a persistence length

Lp =
3kBT

2Lcκ
. (2.24)

By comparing these two equation, one finds the general relation 2Lp = Ls which is also called
the Kuhn length [3]. For a rough estimate of the order of magnitude for the contour length,
we assume that there are no folded domains in the stalk. Then, a reasonable maximal
extension is 50% of the molecule length which is known from electron microscopy. The
length of myosin V and kinesin-1 are similar between 60 − 100 nm [12, 107], whereas the
molecular length of dynein is 35− 50 nm [106]. From these considerations a contour length
of 20− 80 nm seems reasonable.
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2.3. Mathematical description of transport by motors

In cellular biological systems, on small length scales, typically processes are influenced by
the thermal environment. The resulting stochasticity requires a probabilistic description.
Methods for studying stochastic processes are discussed in several textbooks [85,86,125]. In
the following, we review continuous-time Markovian dynamics for describing such stochastic
processes. Furthermore, for calculating averaged quantity of time dependent processes, we
explain a method introduced by Hill in the 1980ies [126–128]. Additionally, we introduce a
generalization of this method, which is necessary to establish a general framework for the
description of transport by molecular motors.

2.3.1. Discrete state space with continuous-time Markovian dynamics

In order to develop an appropriate theoretical description, one has to choose a state space
and the dynamics on that state space. However, it is not straightforward to find a state
space which, on the one hand, accounts for the characteristic behavior of the system and on
the other hand is still manageable to get an intuitive understanding. Since in experiments
usually the position of the cargo over time is measured, we focus on the cargo and we
introduce a discrete state space for the cargo. We associate the states with a discrete
physical quantity, such as the number of active motors or an effective number of steps
between two active motors. We denote the states by (i), where i numerates for example the
states from 0 to N . Next, we specify the propagation of the system in time on the introduced
state space. The time evolution of such a system can be represented by X(t), which is the
state of the system at time t. Since X(t) describes a stochastic process, we can only predict
its time evolution probabilistically. We consider the dynamics as a continuous-time random
process with the Markov property. The Markov property implies a memoryless stochastic
process, meaning that its future only depends on the present state and not on its history.
This can be formally expressed with conditional probabilities, i.e.,

p[X(t) = j|X(s) = i,X(tn−1) = in−1, . . . , X(t1) = i1] = p[X(t) = j|X(s) = i], (2.25)

where 0 ≤ t1 ≤ t2 ≤ t3 ≤ . . . tn−1 ≤ s ≤ t is a non-decreasing sequence of times and
i1, i2 . . . in−1, i, j are any states in the state space. Despite of its simplicity, this ab initio
assumption has proved to be useful in many cases when constructing a theoretical description
for stochastic processes, especially in the context of molecular motors [30,31,72,73,77]. The
system attains different states over time. A system in state (i) makes a transition to the
next state (j) according to a transition probabilityW (i, j). Once the system is in a state (i)
it sojourns in this states according to a sojourn time distribution also called waiting time
distribution. The only waiting time distribution with a Markov property in continuous time
is an exponential distribution [129] with a probability density function

ψi(t) =
1

〈∆ti〉
e−t/〈∆ti〉, (2.26)
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2. Basic description of transport by molecular motors

where 〈∆ti〉 is the average waiting time in state (i). The probability that the system waits
the time τ in state (i) and changes to state (j) over time t is then given by

p[τ ≤ t]W (i, j) =

∫ t

0

1

〈∆ti〉
e−t′/〈∆ti〉dt′W (i, j) = (1− e−t/〈∆ti〉)W (i, j). (2.27)

For later purposes, we expand this equation in a Taylor series for small t = δt,

p[τ ≤ δt]W (i, j) ≈ W (i, j)

〈∆ti〉
δt. (2.28)

We define the transition rate

ωij ≡
W (i, j)

〈∆ti〉
(2.29)

for a transition from state (i) to state (j) with the property that ωii = 0. Thus ωijδt is the
probability that a transition from state (i) to state (j) occurs in the time interval δt.
In order to derive a differential equation describing the time evolution, we consider a three

point process {X(t) = j,X(s) = i,X(0) = z} with 0 ≤ s ≤ t. Its probability can be written
using the Markov property (2.25) as

p[X(t) = j,X(s) = i,X(0) = z] =

p[X(t) = j|X(s) = i]p[X(s) = i|X(0) = z]p[X(0) = z] (2.30)

By summing this equation over i, we eliminate the state X(s) on the left hand side,

p[X(t) = j,X(0) = z] =
∑

i

p[X(t) = j|X(s) = i]p[X(s) = i|X(0) = z]p[X(0) = z]. (2.31)

From the definition of the conditional probability, p(A|B) = p(A ∩ B)/p(B) [129], i.e.,
p[X(t) = j|X(0) = z] = p[X(t) = j,X(0) = z]/p[X(0) = z], we obtain the discrete form of
the Chapman-Kolmogorov equation [85]

p[X(t) = j|X(0) = z] =
∑

i

p[X(t) = j|X(s) = i]p[X(s) = i|X(0) = z]. (2.32)

Next, we consider this equation for a small time step, such that t = s+ δt,

p[X(s+ δt) = j|X(0) = z] =
∑

i

p[X(s+ δt) = j|X(s) = i]p[X(s) = i|X(0) = z] (2.33)

Now, we use the Taylor expansion of eq. (2.28) and the definition of the transition rates
from eq. (2.29) to rewrite the conditional probability for small δt as

p[X(s+ δt) = j|X(s) = i] =

(

1−
∑

k

ωikδt

)

δij + ωijδt+O(δt2), (2.34)
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where δij is the Kronecker symbol. The parenthesized expression is the probability of staying
in state (i) after the time interval δt and ωijδt is the probability for a transition from state
(i) to state (j) during the time δt. Putting this expansion into eq. (2.33), we obtain after
rearranging,

p[X(s+ δt) = j|X(0) = z]− p[X(s) = j|X(0) = z]

δt
=

∑

i

ωijp[X(s) = i|X(0) = z]−
∑

k

ωjkp[X(s) = j|X(0) = z]. (2.35)

Taking the limit δt→ 0, we derive the master equation [86]

dpj(t)

dt
=
∑

i

pi(t)ωij −
∑

i

pj(t)ωji, (2.36)

where pi(t) is a simplified notation for the probability of being in state (i). We like to
emphasize here, that in our theoretical description, we use the master equation as the
fundamental equation for the time evolution of probabilities. In general, the solution of
this differential equation depends on the initial condition. If the probabilities pi(t) are time
independent, the stochastic process is called stationary or in other words the system is in a
steady state. We denote such time independent probabilities Pi.
A convenient way for illustrating a finite state space with possible transitions is a network

representation. Each state corresponds to a node and the transitions are represented as
directed arrows weighted with the transition rate, see fig. 2.8(a). A state is called an
absorbing state, if there are only transitions going into that state and no transition going out
of it, like state (0) in the network shown in fig. 2.8(a). Once the system reaches an absorbing
state, it is trapped, since there are no transitions going out of that state. A meaningful
steady state solution does not exist for a network with absorbing states. However, in the
1980ies Hill introduced a framework to study networks with absorbing states, which we
will briefly review in the next section. Other standard methods to treat master equations,
involve matrix algebra can be found in textbooks [85, 86].

2.3.2. The average time to absorption: Hill’s method

Certain averaged quantities, such as the average time to absorption or the average number
of visits to a state before absorption, are of particular interest. For example, in the context
of transport by molecular motors, the average time to absorption is associated with the
binding time of the cargo to the filament. Such averaged quantities can be derived from
a steady state probability distribution of a modified network without the absorbing states
[126–128]. This method introduced by Hill is based on the idea of replacing time averages by
ensemble averages. For networks with absorbing states, these averages depend on the initial
condition. Before we introduce a generalization of Hill’s method for the average absorption
time for arbitrary initial conditions, we give a rather intuitive explanation of the method by
considering the time to absorption for a simple three state system with one absorbing state
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(0) (1) (2)
ω12

ω10 ω21

(a)

(1) (2)
ω12

ω10

ω21

(b)

Figure 2.8 Network representation of a three state system with one absorbing state (0).
(a) Original network with absorbing state (0) and starting state (1), in which all runs
start. The time dependent state probability distribution for this network is denoted pi(t).
(b) Closed network, where the absorbing state (0) is eliminated by redirecting the arrow
going into the absorbing state to the starting state (1). The steady state distribution of
this closed network is denoted by Pi. Note, the self loop with the transition rate ω10 does
not contribute to the Pi.

(0) shown in fig. 2.8(a). The process always starts in state (1). The average time spent in
one of the non-absorbing states before absorption is given by,

τi ≡
∫ ∞

0
pi(t)dt for i = 1, 2 (2.37)

where pi(t) is obtained from the time dependent solution of the master equation. Summing
up all times spent in non-absorbing states gives the average time to absorption,

〈∆t〉 =
2
∑

i=1

τi =
2
∑

i=1

∫ ∞

0
pi(t)dt. (2.38)

Here the pi(t) are the ensemble-average state probabilities at time t. Now, we explain how
to derive the average time to absorption using time averages instead of ensemble averages.
Instead of considering an ensemble of runs from start to end, we follow a single system over
a long time. This system immediately starts a new run when it reaches the absorbing state
(0), which is equivalent to concatenating the trajectories of the original runs. A network
that represents such a repeating process is constructed by ’closing’ the network of fig. 2.8(a),
i.e., by eliminating the absorbing state (0) and redirecting all arrows that end in state (0)
to the starting state (1), see fig. 2.8(b). We denote the time-averaged state probabilities
Pi of the closed network. It can be obtained from the corresponding steady state master
equation. In the original network including the absorbing state, Pi is the probability of
being in state (i) before absorption. Therefore, the probability Pi can be written in terms
of the relative time that the system sojourns in state (i) before absorption, leading to

Pi =
τi

〈∆t〉 =
1

〈∆t〉

∫ ∞

0
pi(t)dt, (2.39)

where τi is the average time spent in state (i) and 〈∆t〉 is the time to absorption. Note,
from the normalization

∑

Pi = 1 follows eq. (2.38).
Now, the average time to absorption is the inverse rate of arrivals in the absorbing state

(0), which is connected to the probability current J ≡ P1ω10. Thus, we obtain the average
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(1) (2)
ω12

w(1)ω10

w(2)ω10

ω21

Figure 2.9 Closed network of the original network of fig. 2.8(a), taking a new initial
probability distribution into account. Runs start with probability w(1) in state (1) and
with w(2) = 1 − w(1) in state (2). To close the network, we duplicate the arrow going
into the absorbing state and redirect it to each of both starting states (1) and (2). The
new transitions have to be weighted with the initial probabilities w(1) and w(2).

time to absorption

〈∆t〉 = 1

J
=

1

P1ω10
. (2.40)

Note, this equation only depends on the steady state probability P1 of the closed network.
Obtaining steady state probabilities from the master equation is in general more convenient
than solving the time dependent master equation for the pi(t). In addition to the standard
linear algebra methods for obtaining the steady state solution of the master equation [86],
a powerful diagrammatic method has been proposed [130,131].

2.3.3. Generalization of Hill’s method to arbitrary initial conditions

Hill’s method for the average absorption time applies only for networks with several ab-
sorbing states and one initial starting state [126–128]. We introduce a to our knowledge
novel generalization of Hill’s method for the average absorption time for several starting
states. We consider the three state system of fig. 2.8(a) with a new initial condition: the
process starts with probability w(1) in state (1) or with probability w(2) = 1−w(1) in state
(2). When closing this network, the initial condition has to be taken into account. The
arrow going into the absorbing state has to be redirected to both starting states (1) and
(2) weighted with the starting probabilities w(1) and w(2) respectively, see fig. 2.9. Such
a closed network gives the correct state probability distribution in the steady state from
which we obtain the average time to absorption according to eq. (2.40). Note that P1 now
depends on the initial probabilities w(1) and w(2).

In the following, we mathematically derive the average time to absorption for a general
network with several absorbing states and an initial probability distribution for several
starting states. We assume that all states of the network are connected. Next, we divide
the states into four different sets: (i) set B contains all states; (ii) subset A contains all
absorbing states; (iii) subset S contains all starting states and (iv) subset A′ contains all
states with at least one transition into an absorbing state. Obviously, the two sets A′ and
A are mutually disjoint, S and A are disjoint sets as well, whereas, in general, S and A′

may have a non empty intersection.
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We start with the master equation for a state (s) ∈ S of the original network,

dps(t)

dt
=
∑

j∈B

pj(t)ωjs −
∑

j∈B

ps(t)ωsj (2.41)

and integrate this equation over t, leading to

ps(∞)− ps(0) =
∑

j∈B

ωjs

∫ ∞

0
pj(t) dt−

∑

j∈B

ωsj

∫ ∞

0
ps(t) dt. (2.42)

Because (s) /∈ A, we know that ps(∞) = 0. Multiplying by 1/ 〈∆t〉 and using eq. (2.39)
yields

−ps(0)〈∆t〉 =
∑

j∈B

Pjωjs −
∑

j∈B

Psωsj . (2.43)

Now, we add the sum of all probability currents ps(0)
∑

a′∈A′

∑

a∈A Pa′ωa′a from the redi-
rected arrows of the closed network which are weighted with the initial probability distri-
bution ps(0) and obtain

−ps(0)〈∆t〉 + ps(0)
∑

a′∈A′

∑

a∈A

Pa′ωa′a =
∑

j

Pjωjs −
∑

j

Psωsj + ps(0)
∑

a′∈A′

∑

a∈A

Pa′ωa′a

= 0. (2.44)

The right hand side of this equation vanishes, because we recover the steady state equation
for state (s) of the closed network. Hence the left hand side of eq. (2.44) gives

1

〈∆t〉 =
∑

a′∈A′

∑

a∈A

Pa′ωa′a. (2.45)

Then, the average time to absorption reads

〈∆t〉 = 1
∑

a∈A Ja
, (2.46)

where Ja is the total probability current into the absorbing state (a).

2.3.4. The average run length of a cargo

As mentioned above, molecular motors unbind from their filament after a finite run length.
As a consequence, cargo particles also unbind. The distance covered by these particles can
be obtained in experiments and from our description. In order to obtain the average run
length of a cargo, one has to assign the dynamics of a spatial coordinate x to every state
(i). This dynamic can either be stochastic or deterministic. For a deterministic motion,
we assign a constant velocity vi to every state (i). Since we know the time spent in state
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(i) before absorption τi = 〈∆t〉Pi, where Pi is the steady state probability of the closed
network, we obtain the average run length as

〈∆xca〉 =
∑

i

τivi = 〈∆t〉
∑

i

viPi. (2.47)

In order to treat the spatial coordinate stochastically, we introduce the probability dis-
tribution pi(x, t). For state (i), the time evolution of the probability distribution p(x, t)
is governed by the Fokker-Planck equation [125]. The form of the Fokker-Planck equation
that we use is only valid under two assumptions. First, the noise resulting from the thermal
environment has to be uncorrelated. Second, the coordinate x is over-damped, meaning
that friction dominates in such a way that the momenta relax very fast. The time evolution
of the probability distribution p(x, t) of a particle with friction coefficient γ and diffusion
coefficient D in a potential V (x) is given by

∂tp(x, t) = Lp(x, t), (2.48)

where L ≡ ∂x[(∂xV (x)/γ) + D∂x] is the usual Fokker-Planck operator. A purely diffusive
motion is represented by

L = D∂2x (2.49)

and a deterministic motion with constant velocity vi by

Li = −∂xvi. (2.50)

In this way, we describe the time evolution of the spatial coordinate for a fixed state (i)
with a Fokker-Planck operator Li. Now, we extend the master equation eq. (2.36) to take
the evolution of this coordinate explicitly into account, leading to

∂tpi(x, t) =
∑

j

pj(x, t)ωji −
∑

j

pi(x, t)ωij + Lipi(x, t). (2.51)

In our description we only deal with Fokker-Planck operators of the type as in eq. (2.49)
and eq. (2.50). Together with an initial condition, this set of ordinary differential equations
can be transformed into a set of linear equations using the Fourier-Laplace transform

p̂i(k, λ) ≡
∫ +∞

−∞

∫ +∞

0
pi(x, t) e

ikx−λtdt dx. (2.52)

In networks with absorbing states, the average time to absorption and the average run
length is obtained from derivatives of the Fourier-Laplace transform of the time dependent
probability current into the absorption state

Ĵ(k, λ) =
∑

a′∈A′

∑

a∈A

p̂a′(k, λ)ωa′a, (2.53)
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where A is the set containing all absorbing states and A′ contains all states with a transition
into an absorbing state. Thus, the average binding time is given by

〈∆tca〉 =
∫ +∞

−∞

∫ +∞

0
t J(x, t)dt dx = −∂λĴ(0, λ)|λ=0 (2.54)

and the average run length is given by

〈∆xca〉 =
∫ +∞

−∞

∫ +∞

0
x J(x, t)dt dx = −i∂kĴ(k, 0)|k=0, (2.55)

For a specific network, these two equation yield the same result as eq. (2.46) and eq. (2.47)
and provide a non-trivial check of the derivation using closed networks. However, the
advantage of taking explicitly care of the spatial coordinate is to obtain some information
about p(x, t) that we will need in the following subsection.

2.3.5. Two different average velocities of the cargo

When validating a theoretical description with experimental data, one would like to compare
as many quantities as possible. The average velocity defined as

vca ≡
〈∆xca〉
〈∆tca〉

(2.56)

does not yield any new information when the average run length 〈∆xca〉 and the average
binding time 〈∆tca〉 is already known. However, we can define a different average velocity
as the average of the velocities of the single trajectories,

〈v〉ca ≡
〈

∆xca
∆tca

〉

. (2.57)

In general 〈v〉ca 6= vca. We derive 〈v〉ca from the Fourier-Laplace transform as

〈v〉ca =
∫ +∞

−∞

∫ +∞

0

x

t
J(x, t)dt dx = −i

∫ +∞

0
∂kĴ(k, λ)|k=0 dλ. (2.58)

This averaging of the velocities provides a new quantity which can be evaluated from run
time and run length measurements of a specific system and thus compared to a theoretical
description as we will do in chapter 4, see eq. (4.28).

2.4. Summary

In this chapter, we have introduced a reduced single motor description, which includes the
basic motor dynamics of stepping along, binding to and unbinding from the filament. This
description is based on several parameters and force-dependencies, which can be determined
by single molecule experiments. Numerical parameters as obtained from such experiments
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2.4. Summary

are summarized in table 2.1. Furthermore, we have presented the mathematical framework
based on continuous-time Markovian dynamics and an extension of Hill’s method for the
average absorption time that we use to describe cargo transport in general.
In the following chapters, we use the reduced single motor description to study transport

by the cooperative action of molecular motors. In this way, we are able to explain and
predict cooperative transport behavior based on a single motor description, which is fully
consistent with the available experimental data.
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3. Cargo transport by two identical motors

In this chapter, we develop a systematic theory for two elastically coupled motors and show
that this system exhibits four different transport regimes: one regime of weak coupling
without motor-motor interference and three distinct regimes of interference. Some of these
regimes have been discussed separately in previous experimental [24, 25] and theoretical
studies [30,43–47,132–134]. We present a unifying theory based on timescale arguments for
the strain force generation of a motor pair. In general, these arguments are independent of
the details of the model and therefore suitable to explain why different previous studies came
to different results. Furthermore, based on this description, we use single motor properties
as determined experimentally to quantitatively predict the effects of mutual interference for
several species of molecular motors. We discuss refinements of our single motor description
such as different shapes of force-velocity relations and non-linear elastic motor linkers, just
to mention two. As a relevant example, we apply our theory to explain quantitatively the
results of experiments with two coupled kinesin-1 motors from the Diehl lab [25]. Finally,
we implement our results into a general framework to determine observables of a cargo
transported by two motors.

3.1. Previous studies

Experimental methods for studying single motor molecules or motility driven by a large
number of motors are nowadays routinely used in many labs. However, for intermediate
motor numbers, it is still challenging to set up experiments in which the number of involved
motors is known precisely [39]. In several studies, the average number of motors has been
estimated from different methods, such as combination of light scattering and theoretical
analysis [24], force measurements [40] and biochemical analysis with modeling [28]. Quali-
tatively, an increase in the cargo run length has been known for a long time [36, 74], but a
detailed explanation how this increase is related to the number of motors is difficult, since
the exact number of motors is unknown. Nevertheless, the run length distributions of beads
covered with different numbers of kinesin-1 have successfully been recovered theoretically
by assuming no interaction between the motors [24]. In this study, however, only the av-
erage number of motors could be determined and the actual number of engaged motors
varied from bead to bead. Furthermore, the precise geometric arrangement of the motors
was not known. These difficulties have been overcome in a recent study that used syn-
thetic complexes of two kinesin motors connected by a rigid DNA scaffold [25]. The group
found that the binding time of both motors was substantial smaller than expected for non-
interacting motors. This indicates a strong interference between the motors in a sense that
they pull each other from the filament. However, the average velocity of the cargo was the
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(C0) (C1) (C2)

Figure 3.1 Activity states of a cargo transported by two identical motors. The cargo is
pulled by one active motor (in state (C1)), by two active motors (in state (C2)) or unbinds
from the filament into the absorbing state (C0).

same whether it was transported by one motor or by two. In contrast, in a gliding assay
experiment, a reduced velocity has been reported that results from mutual motor-motor
interference induced by elastic strain force generation [41]. All of these results indicate
that the motors interfere in various ways with different impact on the transport properties.
Much theoretical work has been devoted to elucidate cooperative transport by molecular
motors [30, 43–47, 132–134]. In some of these studies interference has been found, but not
in others. Prior to discussing these issues in more detail, we review a general framework to
describe cargo transport by two identical motors.

3.1.1. Semi-stochastic description of cargo transport by two identical motors

In this section, we review the theoretical description of a cargo transported by two identi-
cal motors, which also serves as a common ground to compare different experimental and
theoretical studies. The model we use is a special case of a general description of cargo
transport by several molecular motors [30]. This framework is quite general. It relates
experimentally accessible quantities like the average and the distribution of the run length
to general transition rates. Whether the motors interfere or act independently depends on
the numerical values of these rates.

As mentioned in section 2.2.1, a motor with a cargo binds to the filament, walks along its
track in a directed way, and unbinds from it. We characterize the cargo state space by the
number of active motors, see fig. 3.1. We call these states activity states (Ci). In state (C1),
the cargo is transported by only one active motor and in state (C2) both motors are active.
Since we want to describe the motion of the cargo on length scales that are large compared
to the motor step size l, we associate a deterministic velocity v1 and v2 with the cargo
states (C1) and (C2), respectively. Since it is not likely that both motors unbind exactly
at the same time, we assume that the cargo unbinds from the filament into the absorbing
state (C0) only from the state in which one motor is active. Following this description, the
transition from state (C1) into the absorbing state (C0) is described by the unbinding rate
of a single motor ǫ1. When one motor is active, the other motor can bind with the binding
rate π and the cargo is in state (C2). The transition from state (C2) back to state (C1)
is associated with the effective unbinding rate ǫ2 of a motor of a motor pair. We assume
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that an unbound cargo first binds with one motor into the state (C1). With this initial
condition, the average run time or binding time of the cargo 〈∆tca〉 is obtained from closing
the network of fig. 3.1 as described in section 2.3.2 and is given by

〈∆tca〉 ≡
π + ǫ2
ǫ1ǫ2

. (3.1)

We determine the average run length

〈∆xca〉 ≡
πv2 + ǫ2v1

ǫ1ǫ2
, (3.2)

as described in section 2.3.4. The distributions of these quantities can be also calculated
analytically as presented in [30] and given in appendix A.1. We obtain the average velocity
from eq. (3.1) and eq. (3.2),

vca ≡
〈∆xca〉
〈∆tca〉

=
πv2 + ǫ2v1
π + ǫ2

. (3.3)

All of these experimentally accessible quantities depend on the transition rates. The state
(C1) is equivalent to the situation of a cargo transported by only one motor. Therefore,
the values for the unbinding rate ǫ1 and the velocity v1 can be taken from single molecule
experiments, see section 2.2.2. Numerical values for the binding rate π are also discussed
in section 2.2.2. The parameters ǫ2 and v2 that characterize state (C2), depend, in general,
on the dynamical parameters of a single motor and on the interaction between the motors.
In the case of cargo transport by two motors, the average time that both motors are bound
simultaneously to the filament is given by t2 ≡ 1/ǫ2. As mentioned at the beginning of
this chapter, different studies obtained different values for t2 and v2 indicating either no
interaction or a motor-motor interference, which we briefly review in the following.

3.1.2. Different studies, different results

Bead experiments with a small number of motors could be fitted consistently with a model
based on non-interacting motors [24]. In this case, ǫ2 = 2ǫ1, since the rate for an unbinding
event when both motors are active, equals the sum of the single rates [30]. Under no external
force, the velocities for non-interacting motors do not depend on the state of the cargo, i.e.
v2 = v1. In an experiment with two coupled kinesin-1 motors, the Diehl lab was able to
estimate ǫ2 and v2 directly from the trajectories of the motor pair [25]. Although there
was almost no effect on the velocity, vca = v1, the unbinding rate ǫ2 was found to be six
times greater than the single unbinding rate, ǫ2/ǫ1 ≃ 6. These findings suggest a strong
interference between the motors.
Likewise, theoretical studies stimulated by these experiments show different results. In

some cases, interference between the motors could be found to affect the velocity and/or
the binding time t2 and thus the run length of the cargo [25,44,46,47,132], but not in other
cases [43,45,133]. A systematic description of two interacting molecular motors, which also
leads to an intuitive understanding, is necessary to obtain a consistent picture of cooperative
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3. Cargo transport by two identical motors

(a)

(C1) (0) (1) (2) (N − 1) (N)
ωs(0) ωs(1) ωs(N − 1)

ωoff(0) ωr(1) ωr(2) ωr(N)

ωoff(1)
ωoff(2) ωoff(N − 1)

ωoff(N)

(b)

Figure 3.2 (a) State space with corresponding motor configurations. In state (C1), only
one of the two motors is active. In state (0), the motors are bound with relaxed linkers
in such a way, that there is no force between the motors. When the motors step either
towards each other or away from each other, a strain force is generated between them,
like in state (1); two motor configurations correspond to this state. (b) Reduced state
space for a cargo simultaneously transported by two motors. The cargo is transported by
a single motor in state (C1). The numbered states (0) . . . (N) correspond to the effective
extension of the linkers between the motors, when both are bound to the filament. Since
it is not likely that both motors unbind exactly at the same time, one of both motors
unbinds from the numbered states (0) . . . (N) to the single motor state (C1).

transport. In the following, we introduce a microscopic model on the level of the individual
motors to determine t2 and v2 from well established single motor properties. Thus, we
explain the emergence of different motor-motor interference and clarify the inconclusive
theoretical results of different studies.

3.2. Motor pair description

Let us introduce a microscopic description to calculate the motor pair parameters t2 and
v2. We focus on the activity state (C2) in detail. In this state, both motors are bound
to the filament and pull on the cargo together. The cargo then mediates an interaction
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3.2. Motor pair description

between the motors, which we model as the stretching of an elastic element associated with
the motor linkers, see fig. 3.2(a). The elastic force generated in this flexible element is a
function of the extension. Because of the discrete stepping of the motors the extension ∆xi
is a discrete quantity, and thus the elastic force is defined as

Fi ≡ F (∆xi). (3.4)

When motors that start in the state (0), in which both linkers are relaxed, step either
towards each other or away from each other, the linkers are stretched, see fig. 3.2(a).1 In
this way, a motor step leads to stretching or relaxation of the two linkers and thereby to
a displacement of the cargo. Note, we do not consider steric effects between the motors
as theoretically studied in [132]. Here, we rather assume that the distance between the
attachment points of the motors on the cargo is larger than twice the maximal extension of
their linkers or that the motors walk on different filaments or protofilaments next to each
other.

To calculate t2 and v2, we describe the cargo in the state space of the discrete extension
of the linkers, see fig. 3.2(b). We assign to every state (0) . . . (N) the forces Fi acting on the
motors. In state (0), the linkers are relaxed. If one of the motors steps forward or backward,
the absolute extension of both linkers increases by the motor step size l and the cargo is
in state (1). For identical motors, each linker is stretched by l/2. This stretching induces
an elastic force between the motors. One motor feels the force F1 = F (l/2) and the other
motor feels the opposing force −F1 = −F (l/2). This force symmetry arising from Newton’s
actio est reactio principle is very important for developing an intuitive understanding of the
system, as we will see later on. Since we know, from section 2.2.1, the dynamics of a single
motor subject to an external force, we are able to assign rates to every state (i). We denote
the transition rates for stretching of the linkers by ωs(i), and by ωr(i) for their relaxation.
These transition rates can be written in terms of forward and backward stepping rates of
the single motors. When the cargo is in state (0) with both linkers relaxed, the force on
each motor is zero, F (0) = −F (0) = 0. From this state (0), there are four possible pathways
to state (1): either one motor steps forward or backward or the other motor steps forward
or backward and thus

ωs(0) ≡ 2[α(0) + β(0)]. (3.5)

For the other states i 6= 0, the transitions are governed by the rates

ωs(i) ≡ α(Fi) + β(−Fi) (3.6)

and

ωr(i) ≡ α(−Fi) + β(Fi). (3.7)

Beside stepping, motors also unbind from their filaments. Since it is not likely that both
motors unbind exactly at the same time, we introduce transitions from every state (0) . . . (N)

1Since the cargo is rigid and able to move perpendicular to the filament, the motor linkers are stretched
even when they walk towards each other.
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3. Cargo transport by two identical motors

(0) (1) (2) (N − 1) (N)
ωs(0) ωs(1) ωs(N − 1)

ωr(1) ωr(2) ωr(N)

w(0)ωoff(1) w(1)ωoff(2)

w(0)ωoff(2)

w(2)ωoff(N − 1)

w(1)ωoff(N − 1)

w(0)ωoff(N − 1)

w(N − 1)ωoff(N)

w(2)ωoff(N)

w(1)ωoff(N)

w(0)ωoff(N)

w(1)ωoff(0) w(2)ωoff(1)

w(2)ωoff(0)

w(N − 1)ωoff(2)

w(N − 1)ωoff(1)

w(N − 1)ωoff(0)

w(N)ωoff(N − 1)

w(N)ωoff(2)

w(N)ωoff(1)

w(N)ωoff(0)

Figure 3.3 Closed network of network in fig. 3.2(b) obtained by redirecting all arrows that
lead into the absorbing state (C1) back into all starting states weighted with the initial
probability distribution w(i) as explained in section 2.3.3. We omitted the self loop of
state (0), since it does not contribute to the calculations of the state probabilities.

to state (C1), in which the cargo is transported by a single motor. These transitions are the
sum of the force dependent unbinding rates of each motor,

ωoff(i) ≡ ǫ1(Fi) + ǫ1(−Fi). (3.8)

Since we are interested in the quantities t2 and v2, which are determined by the dynamics of
both motors being active, we promote the state (C1) to an absorbing state, see fig. 3.2(b).
For a general description, we introduce the initial probability w(i) to start in state (i), where
∑

iw(i) = 1. Now, t2 is related to the probability current J into the absorbing state,

t−1
2 = J =

N
∑

i=0

ωoff(i)Pi, (3.9)

as explained in section 2.3.3. Here, the Pi is the steady state probability distribution before
absorption, which is obtained from the closed network taking account of the initial condition,
as shown in fig. 3.3.

Since the unbinding rate ωoff(i) increases exponentially with i, the probability Pi decreases
with i. For this reason, it is sufficient to study a finite chain. We chose N large enough and
always check that the results do not depend on N , meaning that they converged. For such
a finite system, Pi can be calculated from the steady state master equation,
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3.2. Motor pair description

0 = ∂tP0 = ωr(1)P1 − ωs(0)P0 −
N
∑

j=1

w(j)ωoff(0)P0 +
N
∑

j=1

w(0)ωoff(j)Pj (3.10)

0 = ∂tPi = ωs(i− 1)Pi−1 + ωr(i+ 1)Pi+1 − ωr(i)Pi − ωs(i)Pi

−
N
∑

j 6=i

w(j)ωoff(i)Pi +
N
∑

j 6=i

w(i)ωoff(j)Pj (3.11)

0 = ∂tPN = ωs(N − 1)PN−1 − ωr(N)PN

−
N−1
∑

j=0

w(j)ωoff(N)PN +
N−1
∑

j=0

w(N)ωoff(j)Pj . (3.12)

In general, this set of linear equations is difficult to solve in a closed form. However, for a
specific model, the numerical values for the rates are known and the solution can be obtained
with numerical methods [135–137].

Next, we derive the average velocity v2 of two active motors. The stepping rate of the
motors depend on the force. It is straightforward to define the velocity of the cargo as the
average forward stepping rate 〈ωf〉 minus the average backward stepping rate 〈ωb〉 times
the displacement of the cargo l/2 per motor step l,

v2 ≡ (〈ωf〉 − 〈ωb〉)
l

2
. (3.13)

Because both motors are identical and the two linkers are connected in series, one motor
step of size l leads to a displacement of the cargo of l/2. The quantities 〈ωf〉 and 〈ωb〉
are related to transitions associated with forward and backward steps before absorption,
respectively. The rate of a transition from state (i) associated with a forward step reads

ωf(i) ≡











2α(F0) i = 0

α(Fi) + α(−Fi) 0 < i < N

α(−FN ) i = N.

(3.14)

Likewise, we obtain the rate of backward steps from state (i) as

ωb(i) ≡











2β(F0) i = 0

β(Fi) + β(−Fi) 0 < i < N

β(−FN ) i = N.

(3.15)

Following the methods introduced in [128], the averaged rate of forward steps before ab-
sorption is

〈ωf〉 ≡
∑

i

ωf(i)Pi, (3.16)
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3. Cargo transport by two identical motors

rates

ωs(0) = 2V(0)/l = 2v/l

ωs(i) = V(Fi)/l =
v
l (1− Fi

Fs
)

ωr(i) = V(−Fi)/l =
v
l

ωoff(i) = ǫ1(Fi) + ǫ1(−Fi) = 2ǫeFi/Fd

parameters

Fi = κli/2

N = ⌈2Fs
κl ⌉

l ≃ 8 nm
v ≃ 1µm/s
ǫ ≃ 1 s−1

κ ≃ 0.3 pN/nm
Fs ≃ 6 pN
Fd ≃ 3 pN

Table 3.1 Complete set of rates and parameters for the network shown in fig. 3.4 based
on the reduced description of a molecular motor as explained in the text. The numerical
values are taken from table 2.1 and have been measured for kinesin-1.

where Pi is again the steady state probability distribution before absorption, obtained from
the closed network of fig. 3.3. Likewise, we obtain for the backward steps,

〈ωb〉 ≡
∑

i

ωb(i)Pi. (3.17)

Using the definition of the force-velocity relation of a single motor eq. (2.3), the average
velocity of two active motors eq. (3.13) can alternatively be rewritten as

v2 =
1

2

∑

i

(V(Fi) + V(−Fi))Pi. (3.18)

In this section, we established a rather general description of two elastically coupled iden-
tical motors. So far, this description is based on general characteristics of single motors:
force-dependent forward and backward stepping and force-dependent unbinding. We cou-
pled the motors via an elastic force, which depends on the distance between the motors. In
addition, we incorporated a general initial condition that takes into account how the motors
start working together. In the following, we will specify all of these parameters and study
their influence on cargo transport by two motors in more detail.

3.2.1. Reduced description of a single molecular motor

In the following, we specify a minimal model based on kinesin-1 data that captures the
characteristic properties of processive molecular motors, as discussed in section 2.2.1. The
advantage of such a minimal model is to understand the origin of certain effects without
getting lost in details. Furthermore, without specifying details, it is applicable to different
motor species with similar behavior, at least in a qualitative manner.
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3.2. Motor pair description

The dynamics of a single motor has been introduced in section 2.2.1. Neglecting backward
stepping2 of the motor, the stepping rates attain the simple form,

α(F ) =
V(F )
l

and (3.19)

β(F ) = 0. (3.20)

Using these rates with the piecewise-linear force-velocity relation V(F ), eq. (2.20), we obtain,
from eq. (3.5) - eq. (3.7), the rates for stretching,

ωs(0) = 2α(0) = 2
V(0)
l

= 2
v

l
, (3.21)

and for i 6= 0,

ωs(i) = α(Fi) =
V(Fi)

l
=
v

l

(

1− Fi

Fs

)

, (3.22)

and for relaxation,

ωr(i) = α(−Fi) =
V(−Fi)

l
=
v

l
. (3.23)

We assume that the force-dependent unbinding does not depend on the direction of the
force and use the unbinding rate ǫ1(F ) from eq. (2.14), leading to the effective unbinding
rate from eq. (3.8),

ωoff(i) = 2ǫeFi/Fd . (3.24)

As a first approximation, we describe the elastic motor linker as a linear spring with spring
constant κ as introduced in section 2.2.1. A cargo transported by two active motors moves
the distance l/2 if one of the motors takes a step of length l. Therefore, the elastic force

Fi = κ
il

2
≡ iFκ (3.25)

is generated per motor step in each elastic linker. Here, we introduce the elastic force per
motor step

Fκ ≡ κl

2
. (3.26)

The highest state N of the network corresponds to the largest force NFκ that can occur. In
our reduced description without back stepping the highest force is the stall force Fs. Thus,
from NFκ = Fs it follows that N = ⌈Fs/Fκ⌉ = ⌈2Fs/κl⌉, where we use the ceiling function
⌈ ⌉ to map the, in general, continuous variable Fs/Fκ to the discrete variable N correctly.
Finally, we have to specify the initial conditions. We assume that, when one motor is active,
the second motor initially binds to the filament in such a way that the linkers are relaxed.
This is justified by estimating the energy that is needed to reach the next binding site

2Backward stepping can be included into the model and does not change the results substantially as
discussed in appendix A.5
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3. Cargo transport by two identical motors

(0) (1) (2) (N − 1) (N)
ωs(0) ωs(1) ωs(N − 1)

ωr(1) ωr(2) ωr(N)
ωoff(1)

ωoff(2) ωoff(N − 1)
ωoff(N)

Figure 3.4 Closed network of network in fig. 3.3 with the special initial condition w(0) = 1
and w(i) = 0 for i 6= 0.

rates

ωs(0) = 2V(0)/l = 2v
l

ωs(i, fs) = V(i, fs)/l = v
l (1− i

fs
)

ωr(i) = V(−i, fs)/l = v
l

ωoff(i, fd) = ǫ1(i, fd) + ǫ1(−i, fd) = 2ǫei/fd

parameters
N(fs) = ⌈fs⌉
v/l ≃ 125 s−1

ǫ ≃ 1 s−1

Table 3.2 Rates and parameters for the network shown in fig. 3.4 with the scaled forces
fs = 2Fs/κl and fd = 2Fd/κl as variables. The only two numerical values, the single
motor stepping rate v/l and the single motor unbinding rate ǫ are taken from table 2.1
for kinesin-1.

purely by diffusion. The elasticity of both motor linkers in series has an effective spring
constant of κ/2. Using the equipartition theorem, we obtain the energy κ

〈

(∆l)2
〉

/2 for
such a thermally driven spring. With a distance to the next binding site of ∆l = 8nm and
a reasonable spring constant κ ≃ 0.3 pN/nm from table 2.1, the needed energy is 9.6 pNnm,
which is more than twice of the thermal energy at room temperature, kBT ≃ 4.1 pNnm.
Hence, it is most likely that the motors always start pulling the cargo in the relaxed state
(0). Therefore, we let all runs start in state (0) with probability w(0) = 1 and w(i) = 0
for i 6= 0. However, our results are surprisingly robust to more general initial conditions,
which will be discussed and explained in appendix A.8. For the initial condition w(0) = 1,
the network of fig. 3.3 simplifies to the network shown in fig. 3.4 with rates summarized in
table 3.1. The steady state master equation for this network can be solved iteratively, since
the equation (3.12) for PN , only depends on PN−1, see appendix A.2.

3.3. Different transport regimes and the associated force scales

The average binding time t2 and the average velocity v2 characterize the activity state (C2),
as shown in fig. 3.1, in which both motors are active. Both quantities are determined from
stepping and unbinding of the motors. Due to the stochastic stepping of the coupled motors,
the distance between them fluctuates and induces an elastic force. In turn, this force dictates
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3.3. Different transport regimes and the associated force scales

the stepping of the motors via the force-velocity relation. In addition, stepping is terminated
by the force-dependent unbinding. Thus, stepping and unbinding are coupled by the elastic
force generation and lead to a strong interdependence. In other words: both quantities
depend on the single motor dynamics and on the strength of their elastic coupling. In this
way, strongly coupled and/or fast motors can quickly build up a large elastic strain force
that pulls one of the motors from the filament, while weakly coupled and/or slow motors
may unbind spontaneously prior to reaching such a large force, see fig. 3.5. These processes
are related to three force scales: (i) the detachment force Fd, which is the force scale for
single motor unbinding from eq. (2.14), (ii) the stall force Fs which is the force scale for
single motor steps from eq. (2.7), and (iii) the strain force Fκ, which is the force scale for the
elastic coupling as in eq. (3.26). Since unbinding and stepping are governed by the strain
force, we introduce the scaled detachment force

fd ≡ Fd

Fκ
(3.27)

and the scaled stall force

fs ≡
Fs

Fκ
. (3.28)

Together with these scaled forces, we rewrite the force-dependent part of the force-velocity
relation, eq. (2.20),

V(i) = v

(

1− iFκ

Fs

)

= v

(

1− i

fs

)

, (3.29)

and the unbinding rate, eq. (2.14)

ǫ1(i) = ǫe
iκl
2Fd = ǫe

i
fd . (3.30)

The influence of the elastic force onto stepping and/or unbinding now depends on the scaled
forces fs and fd, respectively. In order to compare the motor pair quantities t2 and v2 to
single motor parameters, we introduce the scaled binding time

t̃2 ≡
t2
t1

(3.31)

and the scaled velocity

ṽ2 ≡
v2
v
. (3.32)

For independent motors without interference, we have t̃2 = 1/2 and ṽ2 = 1. To obtain t̃2
and ṽ2 as a function of the scaled forces fs and fd, the only free parameters that we have
to specify are the force-free stepping rate v/l and the single motor binding time t1 = 1/ǫ.
We take the standard values for kinesin-1 from table 2.1 for these parameters, v/l ≃ 125 s−1

and ǫ ≃ 1 s−1. In this way, we have now specified all rates of the network shown in fig. 3.4,
with rates summarized in table 3.2. Now, we solve the master equation for this network
using a recursion explained in appendix A.2. With the probability distribution Pi, we plot
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3. Cargo transport by two identical motors

time

strong coupling

weak coupling

Figure 3.5 Two molecular motors coupled via elastic linkers to their cargo. The motors step
forward stochastically and stretch their linkers, thereby inducing an elastic interaction
that generates the strain force F . Strong elastic coupling leads to a fast build-up of large
forces whereas weakly coupled motors experience only relatively small forces.

the scaled binding time from eq. (3.31) with eq. (3.9) and the scaled velocity from eq. (3.32)
with eq. (3.18) as a function of the scaled forces fs and fd, see fig. 3.6. In both plots we
restrict fs ≥ 1 and fd ≥ 1. This is reasonable, since for fs < 1 and fd < 1 the induced
strain force would exceed the stall force or the detachment force already for an extension
that corresponds to one motor step. The four corners of fig. 3.6 correspond to different
transport regimes. In the upper right corner, both the velocity and the binding time are
hardly affected by the coupling. This region corresponds to a weak coupling regime (I).
In contrast, both quantities are strongly reduced in a strong coupling regime (II) located
at the lower left corner. Furthermore, in the upper left corner, we find a reduced velocity
regime (III) that is characterized by a reduced value of ṽ2 but an essentially unchanged
binding time t̃2. In contrast, the lower right corner exhibits a reduced binding time but
an essentially unchanged velocity. We call this transport regime the enhanced unbinding
regime (IV). Thus, in addition to the weak and the strong coupling regimes, which one may
expect naively, we identify the two regimes (III) and (IV).

The four different transport regimes can be understood, in a qualitative manner, from
the competition of the three different force scales. In the weak coupling regime (I), Fκ ≪
Fd and Fκ ≪ Fs. When Fκ is comparable to both Fd and Fs, the coupling affects the
unbinding and the stepping which is the case in the strong coupling regime (II). In the
reduced velocity regime (III), Fκ ≃ Fs ≪ Fd and thus unbinding is not affected. For
Fκ ≃ Fd ≪ Fs, unbinding is enhanced without a reduced velocity, which characterized the
enhanced unbinding regime (IV). Which of the processes of either stepping or unbinding
are predominantly induced by the strain forces, depends on the relative magnitude of the
detachment and stall forces. Force-induced unbinding dominates for Fd ≪ Fs, whereas the
reduction of the motor velocity occurs for Fs ≪ Fd. In previous studies, the ratio f ≡ Fs

Fd

has been introduced to characterize the dynamics of cargo transport by two antagonistic
motor teams resulting in a tug of war [51, 109]. Qualitatively, it is the ratio of the force a
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Figure 3.6 (a) Average scaled binding time t̃2 and (b) velocity ṽ2 of a cargo pulled by two
active motors with rates and parameters from table 3.2. The scales are the single motor
binding time t1 and single motor velocity v, respectively. Both quantities are displayed
in a colored contour plot as a function of the rescaled single motor stall force fs ≡ Fs/Fκ

and the rescaled detachment force fd ≡ Fd/Fκ, where the force scale Fκ ≡ κl/2 is the
elastic strain force between the motors per motor step. Four distinct transport regimes
can be identified: (I) weak coupling with essentially unchanged velocity and binding time;
(II) strong coupling with both reduced binding time and reduced velocity; (III) reduced
velocity with no effect on the binding time and (IV) enhanced unbinding with no effect
on the velocity.

motor can produce and the force a motor can sustain for an extended period of time. In
this way, motors with large f are ’strong’, and those with small f are ’weak’. Interestingly,
only strong motors with f > 1 can access the enhanced unbinding region (IV), whereas the
reduced velocity region (III) is only accessible for weak motors with f < 1.

However, how quickly the strain force is generated between the motors, depends both on
Fκ and on the stepping dynamics. For example, in the extreme case that the motors do not
move at all, no strain force is generated between them and hence, there is no interference.
So far, we have identified the different regimes of transport. For a more precise description
of the boundaries between these transport regimes, we need to take the dynamics and thus
different time scales into account.

3.3.1. Different timescale for strain force generation

In this section, we compare different time scales in order to estimate which of the processes
of spontaneous unbinding, force-induced unbinding or reduced stepping of the motors occurs
first. In this way, we obtain the crossover lines between the four transport regimes. These
time scales provide a framework to qualitatively predict and explain the behavior of two
coupled motors based on the description of a single motor. Therefore, we can use these
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3. Cargo transport by two identical motors

Figure 3.7 Illustration of different time scales. It takes the time tu for one of two non-
interacting motors to unbind. The time tFd

is required to build up strain forces between
two motors comparable to the detachment force Fd. It takes the time tFs to generate
strain forces that are in the order of the stall force Fs.

arguments to discuss refinements and extensions of our description, as we present in section
3.4. Furthermore, it provides a way to understand why previous studies arrived at different
conclusions about cooperative motor transport.

The dynamics of motors that collectively pull the cargo is governed by the interplay
of two processes: the unbinding of the motors and the generation of elastic forces via
stepping. We now consider these processes separately, and identify the characteristic time
scales associated with them. Similar considerations have been used to study the dynamics
and force generation during the rupture of biomolecular bonds [138,139]. We compare three
different time scales as illustrated in fig. 3.7: (i) The time tu for spontaneous unbinding
of one of the two motors, (ii) the time tFd

required to build up elastic strain forces that
are greater than or equal to the detachment force, and (iii) the time tFs required to build
up strain forces greater than or equal to the stall force. The timescale tu for spontaneous
unbinding is estimated by ignoring interactions between the motors and therefore given by

tu ≡ 1

2ǫ
. (3.33)

To obtain the other two times tFs and tFd
, we neglect unbinding, i.e. we set all rates

ωoff(i) = 0 and consider two motors that start in the relaxed state (0). We estimate the
time tFd

from the time that passes until these motors first reach the target state with index
it = ⌈Fd/Fκ⌉ = ⌈fd⌉, in which the strain force is greater than or equal to the detachment
force. In the same way, we derive the time tFs with the corresponding target state index
it = ⌈fs⌉. To calculate this mean first passage time, we use a network with a reflecting and
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(0) (1) (2) (it − 1) (it)
ωs(0) ωs(1) ωs(it − 1)

ωr(1) ωr(2)

Figure 3.8 Network to calculate the average time that it takes for a run to start in state
(0) and end in state (it). This network is a modification of the network in fig. 3.4. The
state (it) is promoted to an absorbing state and unbinding is omitted.

an absorbing boundary shown in fig. 3.8 and, in this way, obtain the time

tit =

it−1
∑

i=0

i
∑

j=0

ωr(i)ωr(i− 1) . . . ωr(j + 1)

ωs(i)ωs(i− 1) . . . ωs(j + 1)ωs(j)
, (3.34)

as explained in section 2.3.2 and in [86].
Using the definition of the rates form eq. (3.21) - eq. (3.23) and the force-velocity relation

eq. (3.29), we obtain the time scale associated with the detachment force,

tFd
=

⌈fd⌉−1
∑

i=0





∏i
k=1 α(−kFκ)

2
∏i

k=0 α(kFκ)
+

i
∑

j=1

∏i
k=1+j α(−kFκ)
∏i

k=j α(kFκ)



 (3.35)

=
l

v

⌈fd⌉−1
∑

i=0





1

2
∏i

k=0(1− k
fs
)
+

i
∑

j=1

1
∏i

k=j(1− k
fs
)



 . (3.36)

Note that this sum diverges for fd > fs, since the forces between the motors are bounded
by the stall force Fs. Hence, they never reach the detachment force if Fd > Fs.
The comparison of the two time scales tu and tFd

leads to two distinct unbinding regimes:
(i) A regime of spontaneous unbinding for tFd

> tu, in which motors spontaneously unbind
before they build up sufficiently large strain forces; and (ii), a regime of strain-induced
unbinding for tFd

< tu. In this regime, the time to generate forces comparable to the de-
tachment force is shorter than the time for spontaneous unbinding. The transport regimes
of weak coupling (I) and reduced velocity (III) belong to the category of spontaneous un-
binding, whereas unbinding in the transport regimes of strong coupling (II) and enhanced
unbinding (III) is strain-induced. In this way, the crossover line between the regimes is
defined by tFd

= tu, leading to

l

v

⌈fd⌉−1
∑

i=0





1

2
∏i

k=0(1− k
fs
)
+

i
∑

j=1

1
∏i

k=j(1− k
fs
)



 =
1

2ǫ
. (3.37)

This equation implicitly defines the crossover line fd(fs). The numerical solution [137] of the
crossover line exhibits steps arising from the ceiling function in eq. (3.37) that is discussed
in more detail in appendix A.3. In order to describe this crossover line qualitatively, we
approximate it with a Michaelis-Menten like behavior

fd(fs) =
f∗dfs

f∗d + fs − 1
(3.38)
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3. Cargo transport by two identical motors

that satisfies the constraint fd(1) = 1. The saturation value f∗d is obtained by taking the
limit fs → ∞ of eq. (3.37), leading to

l⌈fd⌉2
2v

=
1

2ǫ
. (3.39)

The left hand side of this equation is discrete, while the right hand side is continuous.
Therefore, we determine the smallest value f∗d for which tFd

≥ tu, leading to

f∗d =

⌈
√

v

lǫ

⌉

. (3.40)

Here, we see that f∗d increases for increasing v/lǫ. This approximation is displayed in fig. 3.9
as the broken black line.
The time tFs , required to generate forces comparable to the stall force is obtained from

eq. (3.35) with the target state index it = (⌈fs⌉),

tFs =
l

v

⌈fs⌉−1
∑

i=0





1

2
∏i

k=0(1− k
fs
)
+

i
∑

j=1

1
∏i

k=j(1− k
fs
)



 . (3.41)

Whether the velocity is reduced before one of the motors unbinds can be concluded from
the comparison of the time tFs and the unbinding time tu,

l

v

⌈fs⌉−1
∑

i=0





1

2
∏i

k=0(1− k
fs
)
+

i
∑

j=1

1
∏i

k=j(1− k
fs
)



 ≃ 1

2ǫ
. (3.42)

This equation is independent of the scaled detachment force fd. However, solving the
equation for fs in a unique way is not straightforward, because fs appears in the ceiling
function and in the denominator, see also discussion in appendix A.3. To circumvent these
issues, we define the crossover line as the smallest integer f∗s for which tFs ≥ tu holds; it
is displayed as a blue line in fig. 3.9. This crossover line distinguishes whether there is a
reduction in the velocity or not. In this way, it divides the strong coupling regime (II)
and the reduced stepping regime (III) from the weak coupling regime (I) and the enhanced
unbinding regime (IV). To show that f∗s increases with increasing v/lǫ, we rewrite tFs as

tFs =
l

v
A(fs), (3.43)

where

A(fs) ≡
⌈fs⌉−1
∑

i=0





1

2
∏i

k=0(1− k
fs
)
+

i
∑

j=1

1
∏i

k=j(1− k
fs
)



 . (3.44)

From the numerical evaluation of this sum, we find that A(fs) can be approximated by
A(fs) ≃ 0.65 exp(fs) for integer fs, see appendix A.3. Therefore, the sum increases expo-
nentially, i.e.,

A(fs) ∼ efs . (3.45)
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Using the definition of the crossover line, we derive the scaling of this line as

f∗s ∼
⌈

ln
v

2lǫ

⌉

. (3.46)
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Figure 3.9 Distinct transport regimes of a cargo pulled by two active motors as a function
of the rescaled stall force fs = Fs/Fκ and the rescaled detachment force fd = Fd/Fκ.
The crossover lines separating these regimes are obtained from the comparison of time
scales, with the associated rates and parameters listed in table 3.2. Both contour plots
are taken from fig. 3.6 and represent (a) the averaged scaled binding time t̃2 and (b)
the averaged scaled velocity ṽ2 with the four transport regimes: (I) weak coupling, (II)
strong coupling, (III) reduced velocity and (IV) enhanced unbinding. The solid blue
line separates the region with and without a reduced velocity, whereas the solid black
line separates the region of spontaneous and force-induced unbinding. The dashed lines
correspond to the approximated crossover line as given by eq. (3.38).

To summarize in terms of these time scales, the four transport regimes are now (I) weak
coupling for tu < tFd

and tu < tFs ; (II) strong coupling for tu > tFd
and tu > tFs ; (III)

reduced velocity for tFs < tu < tFd
; and (IV) enhanced unbinding for tFd

< tu < tFs . These
crossover lines take the single motor parameters and especially the dynamics into account.
Furthermore, the time scales allow us to estimate the change of parameters. The values f∗d
and f∗s decrease with decreasing v/lǫ, see eq. (3.40) and eq. (3.46), which is the single motor
run length in units of the motor step size. Therefore, for highly processive motors with a
large run length, such as kinesin-8 [140], the crossover lines are shifted to higher values of
fs and fd leading to a reduced weak coupling regime. If the motors are slowed down, e.g. by
decreasing the ATP concentration, the crossover lines are shifted to smaller values leading
to an increased weak coupling region, compare section 3.4.3 and appendix A.6.
The time scales tFd

and tFs also provide an intuitive understanding of the effects arising
from the elastic coupling. For stiffer linkers, it takes less time to build up high strain
forces between the motors and thus the times tFd

and tFs are rather small. In previous
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Figure 3.10 Transport regimes for pairs of different motors characterized by different
dependencies between the rescaled detachment force fd = Fd/Fκ and the rescaled stall
force fs = Fs/Fκ corresponding to different straight lines fd(fs) = (Fd/Fs)fs. Each line
represents a pair of two identical motors with fixed single motor parameters but variable
elastic coupling strength κ which enters via fs = Fs/Fκ = 2Fs/κl. We compare kinesin-
1Bl [94], kinesin-1Di [25], weak dynein, strong dynein, myosin V, and myosin VI; the
corresponding single motor parameters are listed in table 3.3. The different transport
regimes (I) - (IV) are color coded and separated by crossover points (black diamonds);
the precise locations of these points are given in table 3.4. The star indicates the pair of
kinesin motors studied experimentally in [25].

models [43, 45], the motor linkers were described as cables to mimic a flexible polymer, see
section 2.2.1. When both motors start working together in a compressed state, no force is
built up until their linkers are stretched. This leads to an offset time, which is the time it
takes until the motors start to interact via their linkers, and which contributes to the times
tFd

and tFs . Therefore, in models with cable-like linkers, one typically has tFd
> tu and

tFs > tu and thus relatively small interference effects [43,45]. This will be discussed in more
detail in section 3.4.5.

3.3.2. Transport regimes for pairs of different motor species

Next, we use the framework that we developed above to study the transport regimes for pairs
of different motor species. In our reduced description, a specific motor is characterized by five
parameters: the stall force Fs, the detachment force Fd, the force-free unbinding rate ǫ, the
force-free velocity v and the step size l. These parameters have been measured or estimated
for different motor species, see section 2.2.2. In the following, we use, for all motor species,
the same shape of the force velocity relation and the same force-dependence of the unbinding
rate. This first approximation can be refined as soon as more experimental data for different
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3.3. Different transport regimes and the associated force scales

motor species are available. We consider the coupling stiffness κ as the variable. In principle,
the coupling stiffness can be changed by connecting the motors with different elastic elements
or truncating their stalks [41]. In the Diehl lab, two kinesins have been coupled via a rigid
DNA scaffold [25], but a connection with more flexible polypeptides should, in principle,
be possible. For each motor species, varying the elastic coupling strength κ leads to the
line fd(fs) = (Fd/Fs)fs in the (fs, fd)-plane, see fig. 3.10. These lines intersect different
transport regimes, which are indicated by different colors on each line. The crossover points
between the transport regimes on a line are obtained as explained in the following. For each
species of motor we calculate the two crossover lines of the transport regimes according to
the time scales as presented in the previous section. These two crossover lines depend on
the single motor stepping rate v/l and the force-free unbinding rate ǫ. Next, we determine
the intersection of the crossover lines with the line fd(fs) = (Fd/Fs)fs that depend on the
stall and detachment force. In this way, we obtain the transport regimes for different motor
species on the corresponding line. For the different motor species, we use the parameters
of table 3.3. The different sections on the lines are related to different ranges of coupling
stiffness that we summarized in table 3.4. All of the motors access the weak coupling regime
for a coupling stiffness that is sufficiently small. Pairs of kinesin-1 and weak dynein only
operate in region (I), (II) or (IV). For kinesin-1, the different transport regimes have been
discussed separately in the theoretical studies [30, 42–47, 134]. Myosin V and myosin VI,
on the other hand, are only able to access region (I) or (III), provided that Fd > Fs, as
indicated by a recent estimate [101].

Fs [pN] Fd [pN] v [µm/s] ǫ [s−1] l [nm]

kinesin-1Bl 6 [94, 95] 3 [94] 1 [69, 94] 1 [94] 8 [69]

kinesin-1Di 7 [26, 69] 3 [94] 0.5 [25] 0.61 [25] 8 [25]

strong dynein 7 [97] 0.75 [31] 0.65 [31] 0.27 [31] 8 [97]

weak dynein 1.1 [98] 0.75 [31] 0.65 [31] 0.27 [31] 8 [97]

myosin V 2 [101] 4 [101] 0.38 [101] 0.3 [101] 36 [101]

myosin VI 2 [101] 2.6 [101] 0.15 [101] 0.25 [101] 36 [101]

Table 3.3 Values of the single-motor parameters used to study the motor-motor inter-
ference of different pairs of elastically coupled motors. The values for kinesin-1Bl were
obtained in the Block lab with kinesin-1 extracted from squid. The values for kinesin-1Di

are obtained in the Diehl lab with human kinesin-1 and in the Cross lab with kinesin-1
from drosophila. For dynein two different stall forces were reported using dynein from
different organisms. Therefore, we use two sets of parameters and label them with ’strong’
dynein (from porcine brain) and ’weak’ dynein (from bovine brain) according to the rel-
ative magnitude of their stall forces.

For a consistency check of our theory with the experimental data available, we determined
the transport regimes for the kinesins that have been coupled in the Diehl experiment [25].
We denote this motor kinesin-1Di in contrast to kinesin-1Bl characterized by the parameters
found in the Block lab [94]. In the Diehl experiment, two kinesin-1 motors have been
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3. Cargo transport by two identical motors

(I) [pN/nm] (II) [pN/nm] (III) [pN/nm] (IV) [pN/nm]

kinesin-1Bl κ < 0.125 κ > 0.3 - 0.125 < κ < 0.3
kinesin-1Di κ < 0.125 κ > 0.35 - 0.125 < κ < 0.35
strong dynein κ < 0.014 - - κ > 0.014
weak dynein κ < 0.027 κ > 0.046 - 0.027 < κ < 0.046
myosin V κ < 0.028 - κ > 0.028 -
myosin VI κ < 0.037 - κ > 0.037 -

Table 3.4 Ranges for the different transport regimes in terms of the coupling strength κ in
pN/nm for different motor pairs with parameters from table 3.3. As discussed in the text,
(I) is the weak coupling regime, (II) is the strong coupling regime, (III) is the reduced
velocity regime and (IV) is the enhanced unbinding regime.

connected via a rigid DNA scaffold with an elastic coupling strength of κ ≃ 0.2 pN/nm [25].
This system is represented by the star on the kinesin-1Di line in fig. 3.10, which lies in the
enhanced unbinding regime. Indeed, the motor pair studied in [25] was characterized by
a strong reduction of the binding time, but essentially no effect on the cargo velocity as
appropriate for this transport regime.

3.4. A motor pair with refined single motor properties

In the following, we apply the theoretical framework, developed in the previous section,
to study the influence of refinements and extensions of our reduced motor description on
the cooperative transport. In this way, we present several examples how our framework
leads to additional insight into the dynamics of a motor pair. The extensions discussed in
this subsection include different shapes of force-velocity relations, the dependence on ATP
concentration and cable-like linkers.

3.4.1. Distribution of distances and forces between the two motors

First, we study the distributions of the distances and forces between two elastically coupled
motors. We use the kinesin-1 rates and parameters given in table 3.1 and vary the stiffness
κ of the coupling. Due to the stochastic stepping of the motors, the distance between the
two motors fluctuates while they pull the cargo together. The distribution of the distances
in units of the step size is given by the steady state probability distribution of the network
shown in fig. 3.4. For decreasing κ, i.e., for weaker coupling, the tails of these distributions
becomes longer, see fig. 3.11(a). They all exhibit a maximum at i = 1. The maximum is a
consequence of the four pathways from state (0) to state (1) as discussed in section 3.2. The
probability for distances of several steps between the motor decays. This decay results from
the fact that large distances correspond to large forces, which in turn enhances unbinding
and thus depopulates these states. For high strain forces, i.e. large values of κ, only a few
steps between the motors are sufficient to induce unbinding, see fig. 3.11(a). Therefore,
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Figure 3.11 (a) Distribution Pi of the effective distance in units of the step size corre-
sponding to the index i of our description. (b) Distribution P (F ) of the forces acting on
one motor for different values of the coupling stiffness κ. The rates and parameters are
for kinesin-1, as listed in table 3.1.

strongly coupled motors have a narrow distribution.

According to the force extension relation, eq. (3.4), each distance between the motors
corresponds to a certain strain force. Therefore, we map the distribution of the distances
to a distribution of forces,

P (Fi) ≡











Pi/2 Fi < 0

P0 Fi = 0

Pi/2 Fi > 0.

(3.47)

Because one motor feels Fi and the other −Fi, the probability distribution is symmetric
with respect to Fi = 0. We plot the distribution of forces for different values of the coupling
stiffness κ in fig. 3.11(b). For a reasonable coupling stiffness of κ ≃ 0.3 pN/nm, only forces
smaller than stall force occur. Stronger coupling leads to broader probability distribution,
see fig. 3.11(b). For a coupling constant of κ = 0.7 pN/nm, there is even a nonzero proba-
bility for a force larger than the stall force, see fig. 3.11(b). Such a large force is due to our
reduced description, in which the force acting on the motor is determined by the present
state and does not change during the transition to the next state. This means, the transition
into a state with a force that exceeds the stall force is determined by its previous state, that
is associated with a small force.

3.4.2. Influence of the shape of the force-velocity relation

Prior to discussing two generic types of force-velocity relations, we introduce a symmetry
argument that we apply in our further study. The velocity of the cargo pulled by both
motors is the average of the velocities of the single motors. One motor feels the force Fi

and the other motor the opposing force −Fi. For a force-velocity relation that is point
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Figure 3.12 The scaled binding time t̃2 (upper row) and velocity ṽ2 (lower row) of two
active motors as a function of the scaled forces fs and fd, respectively. The shape of the
force-velocity relation of the single motor is varied through the parameter a, as shown
in fig. 3.13(a), with a = 0 for the left, a = 0.5 for the middle and a = 1 for the right
column. The other parameters are summarized in table 3.2. The black line separates
the regime of spontaneous unbinding (above the line) from the force-induced unbinding
(below the line) determined from the time scale argument of section 3.3.1. For a = 1, the
force-velocity relation is symmetric and ṽ2 is independent of the force and thus constant.
The star represents the kinesin system with parameters from table 3.1 and is studied in
detail in fig. 3.13.

symmetric with respect to F = 0, i.e.

V(−F ) + V(F ) = 2V(0), (3.48)

the average velocity of two active motors from eq. (3.18) does not depend on force,

v2 = V(0)
∑

i

Pi = V(0). (3.49)

In this case, the average velocity of the cargo is never affected by forces between the
motors, i.e. vca = v = v2. For this property, it is sufficient that the force-velocity relation
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Figure 3.13 (a) Force-velocity relation V(F ) as defined in eq. (3.50) for different parameters
a. The force-velocity relation of (a) and the kinesin-1 parameters of table 3.1 are used to
determine: (b) the distribution P (F ) of forces between the motors, (c) the scaled binding
time t̃2 and (d) the scaled velocity ṽ2 as a function of the force-velocity parameter a.

is symmetric over the range of forces, that are generated between the motors. This range
of forces can be obtained from the width of the probability distribution of the forces as
discussed in the previous subsection.

This symmetry argument indicates that the shape of the force-velocity relation influences
the different transport regimes for a motor pair. In this way, for a symmetric force-velocity
relation, the velocity v2 is not reduced if the forces between the motors approach stall force.
In this case, the stall force is not a suitable force scale to characterize the reduced stepping.
Hence, the time scale tFs given by eq. (3.41) is not meaningful. Therefore, we only focus on
the other time scale tFd

for strain-induced unbinding, given by eq. (3.35). Note, both, the
measured force-velocity relation, fig. 2.5(b), as well as the force-velocity relation used in our
reduced description, fig. 2.6, are not symmetric and the time scale argument with respect
to tFs is also applicable. In the following, we study the influence of the shape of the force-
velocity relation in more detail using, as an example, two generic force-velocity relations.
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3. Cargo transport by two identical motors

The shapes of both force-velocity relations can lead to a force-independent velocity v2, i.e.,
no interference effect on the velocity. However, in one case the interference effect on the
binding time is pronounced, but not in the other.

First, we vary the force-dependence of the velocity for assisting forces, F < 0. In this
range, experimental force-velocity curves from different studies exhibit the most pronounced
differences [109]. We use piecewise linear force-velocity relations and vary the slope of the
linear segment for F < 0 through the parameter a,

V(Fi) ≡







v(1− aFi/Fs) Fi < 0
v(1− Fi/Fs) 0 ≤ Fi < Fs

0 Fi ≥ Fs

(3.50)

see fig. 3.13(a). For a = 0, the velocity is constant for assisting forces F < 0, whereas for
a = 1 the slopes of the force velocity relation for the region F < 0 and the region 0 < F < Fs

are identical.

Using the scaled forces fs and fd as variables with V(F ) from eq. (3.50), we determine
the scaled binding time t̃2 and scaled velocity ṽ2 for different values of a, see fig. 3.12. In
addition, we calculate the crossover lines between induced and spontaneous unbinding from
the timescale argument tFd

= tu, see black line in fig. 3.12. As a → 1, the force-velocity
relation approaches a symmetric one and the region of induced unbind (below the black
line) is slowly reduced. In the case of a = 1, the velocity is constant and independent of the
strain force, see fig. 3.12.

Let us study the influence of the force-velocity parameter a onto the properties of a
specific motor pair which is represented as a point marked with a star in fig. 3.12. We
vary a between 0 and 1 and calculate the force distribution according to eq. (3.47), see
fig. 3.13(b). The range of occurring forces is smaller than the stall force. For a = 1, the
motors experience a linear force-velocity relation that is point symmetric with respect to
V(0) over the range of occurring forces, leading to v2 = v, i.e. ṽ2 = 1, see fig. 3.13(d).

Such a linear force-velocity relation with a = 1 reduces the strain between the motors,
see fig. 3.13(c). The forward stepping rate V(−F )/l for the motor under −F is higher than
the forward stepping rate for the other motor under the force F . This motor pair tends to
reduce the distance that separates the motors and thus the elastic strain force.

Decreasing the slope of the force-velocity relation for assisting forces leads to a smaller
motor pair velocity ṽ2, since the motor under assisting force is slower, see fig. 3.13(d).
Because of this slow motor, the tendency to step towards each other is also reduced. Hence,
the binding time t̃2 decreases with decreasing a, see fig. 3.13(c).

Next, we study force-velocity relations that exhibit a plateau around F = 0 motivated by
force-velocity relations found in experiments [96]. To keep things simple, we use a piecewise
linear force-velocity relation with a variable width of the plateau via the parameter b,

V(Fi) ≡







v Fi < bFs
v

Fs(b−1)(Fi − Fs) bFs ≤ Fi < Fs

0 Fi ≥ Fs

(3.51)
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Figure 3.14 The scaled binding time t̃2 (upper row) and velocity ṽ2 (lower row) of two
active motors as a function of the scaled forces fs and fd. The shape of the single
motor force velocity relation is varied through the parameter b as shown in fig. 3.15(a),
with b = 0 for the left, b = 0.5 for the middle and b = 1 for the right column. The
other parameters are summarized in table 3.2. The black line separates the regime of
spontaneous unbinding (above the line) from the force-induced unbinding (below the line)
determined from the time scale argument of section 3.3.1. For b = 1, the average velocity
is almost not reduced, whereas unbinding is strongly enhanced. The star represents the
kinesin system with parameters listed in table 3.1 and is studied in detail in fig. 3.15.

see fig. 3.15(a). For b = 0, the plateau is only in the region of the force-velocity relation for
F < 0, whereas for b = 1, the force velocity relation is constant for all forces smaller than
the stall force.

Using V(F ) as defined by eq. (3.51), we determine t̃2 and ṽ2 and the crossover line between
induced and spontaneous unbinding from eq. (3.37) as a function of the scaled forces fs and
fd, see fig. 3.14. For b→ 1, the induced unbinding region below the black line increases and
the region with a reduced velocity shrinks, see fig. 3.14.

Next, we again focus on kinesin-1 represented as a star in fig. 3.14. As long as the
forces between the motors are smaller than bFs, the force-velocity relation is constant and
the motors step independently of each other. Therefore, the forces between the motors
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Figure 3.15 (a) Force-velocity relation V(F ) as defined in eq. (3.51) for different parame-
ters b. (b) Distribution of forces P (F ) between the motors for the force-velocity relations
shown in (a) and parameters taken from table 3.1. For the same parameters, the scaled
binding time t̃2 and velocity ṽ2 as a function of the force velocity parameter b are shown
in (c) and (d), respectively.

fluctuate strongly, which leads to a broad distribution of forces, see fig. 3.15(b). Note that
even for b = 1 the distribution of forces has a considerably large contribution for forces
around the stall force. For forces that are comparable to the stall force, it is reasonable to
question the assumption of neglecting the occurrence of backward steps. We will address
this issue in appendix A.5.

Inspection of the distribution of forces reveals the range of occurring forces between the
motors, see fig. 3.15(b). The corresponding region of the force-velocity relation always
includes the decreasing part. Therefore, the symmetry argument does not hold and we
expect that v2 6= v, i.e. ṽ2 6= 1. Indeed, even for b = 1, forces larger than stall force
occur and thus the region of the force-velocity relation accessed by the motors is not point
symmetric. In fig. 3.15(d), we find that ṽ2 < 1, which is a consequence of the concave
shape of the force velocity relation. Following this line of argument, a convex force-velocity
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3.4. A motor pair with refined single motor properties

relation leads to ṽ2 > 1 which indeed has been found in a previous theoretical study [44].
As the force-velocity relation becomes flatter, the steps of each of the two motors turn more
independent. Hence, the induced elastic strain force fluctuates strongly, and the binding
time decreases with increasing values of b, see fig. 3.15(c). Note, these considerations lead
to a qualitative insight and are of theoretical rather than of experimental interest, since
the force-velocity relation with b = 1 has the form of a step function, which seems rather
unlikely for a real motor system.

Taken together, as both force-velocity relations approach a symmetric function, i.e. for
a → 1 and b → 1, respectively, the interference effect on the velocity is reduced. However,
as we explained above, the effect on the binding time is different: in one case unbinding is
enhanced, but not in the other, see fig. 3.13(c) and fig. 3.15(c). In addition, the results for
an empirical force velocity relation based on experimental data for kinesin-1 are presented
in appendix A.5.

3.4.3. Magnitude of the single motor velocity: [ATP] dependence

In single molecule experiments with molecular motors, the ATP concentration has been
varied over a large range of a few µM to a few mM [94]. High ATP concentrations increase
the frequency of stepping, and we thus expect that the build-up of forces between the motors
is faster, which in turn leads to a smaller time scale tFd

to generate forces comparable to
the detachment force. For this reason, not only v2 depends on the ATP concentration, but
also the binding time t2. For a qualitative study, we use the [ATP] dependent force-velocity
relation introduced in section 2.2.1. A further example for two different ATP concentrations,
based on an empirical force-velocity relation for kinesin-1, is presented in appendix A.6 and
exhibits the same behavior. We determine the scaled binding time t̃2 and scaled velocity ṽ2
as a function of the scaled forces fs and fd for different concentrations of ATP, see fig. 3.16.
In addition, we calculate the crossover lines between the transport regimes as introduced
in section 3.3.1 and include them in fig. 3.16. Slow motors with a low ATP concentration
unbind before generating substantial strain forces. Hence, the regions of strong coupling,
reduced velocity and enhanced unbinding are small. A higher ATP concentration enhances
the generation of strain force between the motors, which leads to a shrinkage of the weak
coupling region, see fig. 3.16. We expect exactly such a behavior from the approximated
values f∗d given by eq. (3.40) and f∗s as in eq. (3.46) for smaller values of the single motor
velocity v.

Next, we focus on kinesin-1 to study the impact of changing the ATP concentration
in more detail. For vanishing ATP concentration, the motors do not step, no forces are
built up between the motors and the scaled binding time t̃2 approaches the value 0.5 for
non-interacting motors, see fig. 3.17(a). Increasing the ATP concentration leads to faster
stepping and the binding time t̃2 decreases until it saturates at a minimum. Because of the
motor-motor interference, the scaled average velocity decreases for increasing ATP concen-
tration until it saturates at a minimum, see fig. 3.17(b).

In this section, we have shown that the interference of two motors depends on the con-
centration of ATP. This holds especially with respect to the binding time t̃2. These generic
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Figure 3.16 Scaled binding time t̃2 (upper row) and velocity ṽ2 (lower row) for two active
motors as a function of the scaled forces fs and fd for different concentrations of ATP.
The single motors are described by the rates and parameters listed in table 3.2, and
the ATP dependence is incorporated via eq. (2.21). The crossover lines between the
transport regimes are obtained as explained in section 3.3.1. The solid blue and black
line separates (I) the weak coupling, (II) the strong coupling, (III) reduced velocity and
the (IV) enhanced unbinding regime. The dashed lines correspond to the approximated
crossover line as given by eq. (3.38). Slow motors with low ATP concentration unbind
before generating large strain forces between them. Therefore, the regions with a reduced
velocity and an enhanced unbinding are rather small compared to the case of high ATP
concentration.

predictions could, with the methods used in single molecule experiments, be tested experi-
mentally.

3.4.4. Direction dependent detachment force

Several experiments, studying the rupture of motor-filament bonds, indicate that motor
unbinding depends on the loading direction [102,119,120], see also section 2.2.2 for a detailed
discussion. In order to study this effect, we introduce a direction dependent detachment
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Figure 3.17 Scaled binding time (a) and velocity (b) as a function of the ATP concentration
for two active kinesins with parameters from table 3.1. The single motor velocity depends
on the ATP concentration as introduced in eq. (2.21). Slow motors with low [ATP] do
not interfere. Higher ATP concentrations lead to motor-motor interference which reduces
the binding time (a) and the average velocity (b).

force,

Fd(F ) =

{

F−
d F ≤ 0
F+
d F > 0.

(3.52)

Note that the plus and minus signs in the notation are chosen to be consistent with the
definition of the direction of the load force. We extend our description with a modified
unbinding rate from eq. (2.14),

ǫ1(F ) = ǫ exp(|F |/Fd(F )). (3.53)

So far, we used a detachment force of Fd ≃ 3 pN for kinesin-1, which has been deduced from
an experiment where a positive load force was applied [94]. Therefore, we set F+

d ≃ 3 pN
and introduce the ratio

Θ ≡ F−
d

F+
d

. (3.54)

To obtain a qualitative estimate what to expect from this refinement, we use our time scale
arguments developed in section 3.3.1: The time tFd

it takes to generate forces between
the motors that are larger or equal to the detachment force, has to be redefined. It is
straightforward to define the time tFd

as the time it takes to generate forces larger or equal
to the smallest detachment force. This definition is motivated by the fact that the motor
which pulls along the direction corresponding to the smaller detachment force is more likely
to unbind than the other motor. Unbinding leads to termination of the two motor run.
Therefore, reducing Θ decreases the time scale tFd

and motor unbinding is induced.
Using the force-dependent detachment force given by eq. (3.52) and the rates and pa-

rameters for kinesin-1 listed in table 3.1, we plot the scaled binding time t̃2 and the scaled
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Figure 3.18 Scaled binding time (a) and velocity (b) for a pair of kinesins described by
the rates and parameters from table 3.1 with a direction dependent detachment force, see
eq. (3.52). The variable Θ = F−

d /F
+
d is the ratio of the detachment force towards the

minus and the plus load direction, F−
d and F+

d , respectively. Reducing this ratio leads to
enhanced unbinding with a reduced interference effect on the velocity.

velocity ṽ2 as a function of the ratio Θ. For small Θ, the binding time is reduced and
the motors unbind before generating considerably large forces, see fig. 3.18(a). Since the
strain force generation between the motors is reduced by reducing Θ, we find an increase of
the scaled velocity ṽ2 when decreasing Θ, see fig. 3.18(b). The experiments by Ishiwata et
al. [102] indicate that Θ ≃ 0.69.

3.4.5. Cables as non-linear elastic motor linkers

The description of elastic molecules as linear springs is only valid for small forces. For
biomolecules, we expect a non-linear relation between the force and the extension of the
molecule, that is, in contrast to the spring, limited by a finite length before rupture. In
addition to the linear spring, we introduced a freely jointed chain (FJC), a worm like chain
(WLC) and a cable model in section 2.2.1. Whereas our description, or, more precisely,
the state space, has to be extended for the cables, the FJC and the WLC or any other
force extension relation can be easily included into our description via eq. (3.4). A detailed
study presented in appendix A.7 reveals that the overall effect of non-linear linkers, like the
FJC and the WLC, on the properties of a motor pair is rather small. This result justify
the approximation of the linkers as linear springs. In the following, we study the more
interesting case of cable-like linkers and explain how to describe them with an extension of
the state space.

In several different studies of cooperative motor transport, the elastic linker of a motor
has been described by a cable model introduced in section 2.2.1. In this simple model
of a polymer, the force extension relation is split into two regions, see eq. (2.16). In the
compression mode, where the extension is smaller than its rest length l0, no strain forces
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Figure 3.19 Extended state space of the network shown in fig. 3.4 to account for cable
like linkers. In the states with the negative index (−1) . . . (−N−), the linkers are in the
compression mode and no force is generated between the motors. All these states are
possible starting states and the unbinding transitions are redirected to these states with
equal probability w(i) = w.

are generated. In the stretch mode, where the extension is larger than the rest length l0, a
linear force extension relation applies.

In the case of two coupled motors, two cables corresponding to the stalk of each motor
are connected, which results in an effective rest length of 2l0. Before we incorporate such
a behavior into our description, let us use the timescale arguments from section 3.3.1 to
discuss what we expect qualitatively. When both motors start working together in the
compression mode, where the linkers are relaxed, no forces are built up between the motors
until their linkers are stretched at a distance larger than 2l0. The motors need a certain
time to leave the compression mode. This results in an offset time, which is the time it takes
until the motors interact via their linkers. For the extreme case, where two kinesins have
to walk away from each other for a distance of 2l0 ≃ 160 nm [122] to leave the compression
mode, we estimate the offset time. Since the motors do not interact in the compression
mode, the distance between them is either increased by a step of the motor and decreased
by a step of the other motor and both transitions take place with the same rate α. This

results in a one dimensional random walk with a mean first passage time τD = (2l0)2

2D ,
where D = l2α, since the average dwell time per site is 1/2α. Thus, we estimate, using
α ≃ 125 s−1 from table 3.1, an offset time τ ≃ 1.6 s, which contributes to the time tFd

it
takes to generate forces comparable to the detachment force. For this reason, we expect,
that in models using cable-like linkers, tFd

> tu, and thus the interference is rather small or
even vanishing [43, 45, 133].

To account for such cable-like linkers in our description, we have to extend the state
space of fig. 3.4. We add N− states with a negative index3, which are associated with the

3The choice of a negative index ensures that the state in which the motors are one step apart still corresponds
to state (1) as before.
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3. Cargo transport by two identical motors

Figure 3.20 State space and the corresponding motor configurations. Because of the ge-
ometry assumed, all states except for state (−N ) have two motor configurations. The
areas shaded in gray are associated with the compression mode of the linkers. When the
motors are in this area, no force is built up.

compression mode, i.e. Fi = 0 for all these states, see fig. 3.19. The number N− of these
states depends on the rest length l0. For example, if l0 = 0, there is no compression mode
and therefore N− = 0 and we recover the case of a linear spring. For convenience, we choose
the rest length l0 as a multiple of the step size l and therefore N− = 2l0/l. Otherwise an
appropriate rounding function has to be introduced. We illustrate the system in fig. 3.20,
in which the shaded gray areas are associated with the compression modes. Because of the
assumed geometry, we do not distinguish whether motors walk towards each other or away
from each other, compare fig. 3.2(a). Therefore, we assign to every state (−N− +1) . . . (N)
two configurations that correspond to the two columns in fig. 3.20. The only state with a
unique configuration is the state (N−), in which the effective distance is zero. Accordingly,
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Figure 3.21 (a) Scaled binding time t̃2 and (b) scaled velocity ṽ2 of two active kinesins
described by the rates and parameters from table 3.1 with cable like linkers as a function
of the rest length l0 of the cable. For l0 approaching the length of kinesin-1, 80 nm, see
table 2.1, the interference effect of the binding time and the velocity is strongly reduced.

we adjust the rates for stretching, relaxation and unbinding:

ωs(i) =







2[α(0) + β(0)] i = N−

α(0) + β(0) N− < i ≤ 0
α(Fi) + β(−Fi) 0 < i < N,

(3.55)

ωr(i) =

{

α(0) + β(0) N− < i ≤ 0
α(−Fi) + β(Fi) 0 < i ≤ N,

(3.56)

ωoff(i) =

{

2ǫ1(0) N− ≤ i ≤ 0
ǫ1(Fi) + ǫ1(−Fi) 0 < i ≤ N.

(3.57)

Note, for N− = 0, we obtain the rates specified in eqs. (3.5) - (3.7).
There are now N− + 1 force-free states, in which the linkers are relaxed. All of these

states are possible initial states. Again, we assume that when on motor is active, the other
motor binds with equal probability w = 1/(N− + 1) into one of these N− + 1 force-free
states shown in fig. 3.19.
Using the standard rates and parameters from table 3.1, we determine the steady state

probability distribution for the closed network of fig. 3.19. In fig. 3.21, we show the scaled
binding time t̃2 and the scaled velocity ṽ2 as a function of the rest length l0. This rest
length determines the number of states in the compression mode. For large rest length l0,
the interference effect on the binding time and the velocity vanishes. Hence, the motors
unbind spontaneously before generating substantially large forces. Returning to our time
scale argument, we calculate the time scale tFd

by setting all ωoff = 0 and promoting the
state, where the force is equal to or higher than the detachment force, to an absorbing state.
As argued in the beginning of this section, the time tFd

increases with the rest length l0,

65



3. Cargo transport by two identical motors

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80

ti
m

e 
[s

]
l0 [nm]

tFd
tu

Figure 3.22 Time scale tFd
and tu as a function of the rest length l0 of cable-like linkers.

For large rest length, the time tFd
to generate forces comparable to the detachment force

is longer than the time tu for spontaneous unbinding. Thus, the system mainly unbinds
spontaneously and the interference effect is rather small.

see fig. 3.22. Already for a rest length of l0 > 30 nm, we have tFd
> tu = 1/2ǫ ≃ 0.5 s and

the system is dominated by spontaneous unbinding.
In summary, describing the motor linkers as cables leads to a decrease of the elastic

coupling strength and thus of the interferences. Therefore, the interference was rather
small or even vanishing in previous studies, where motor linkers were described as cables
[43, 45, 133].

3.5. General inequalities involving transport quantities of motor
pairs

In this section, we derive quite general relations between transport quantities of two elas-
tically coupled motors. These relations are useful to estimate and deduce single motor
parameters and coupling forces from experimental data.
Using the probability distribution of the fluctuating forces between the motors, we rewrite

the inverse binding time, eq. (3.9), with eq. (3.47) as

t−1
2 =

∑

i

2ǫe|Fi|/FdP (Fi) ≡
〈

2ǫe|F |/Fd

〉

. (3.58)

For an estimate, we use Jensens’s inequality, exp(〈x〉) ≤ 〈exp(x)〉, and obtain an upper
bound for the average of the absolute value of the force exerted on one motor,

Fd ln
t1
2t2

≥ 〈|F |〉 , (3.59)

where t1 = 1/ǫ. The left hand side of this equation should be, in principle, accessible in
experiments. The values Fd and ǫ can be determined by force-dependent run time measure-
ments of single motor proteins [94] and t2 has been estimated in the Diehl experiment [25].
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Figure 3.23 Illustration of the inequality given by eq. (3.63). We use the standard kinesin
rates and parameters summarized in table 3.1 and calculate t̃2 and ṽ2 using our framework
as discussed in the text. We plot the left hand side (l.h.s.) of eq. (3.63) and ṽ2 as a function
of κ.

Note, this inequality is independent of the precise description of the coupling, which makes
the relation remarkably general. Obviously, for non-interacting motors, where t2 = t1/2,
there are no average forces between the motors, i.e. 〈|F |〉 = 0. Using the experimental values
for kinesin-1, ǫ2 ≃ 4 s−1 and ǫ ≃ 0.61 s−1 from the Diehl experiment [25] and Fd ≃ 3 pN [94],
we obtain the estimated average force 〈|F |〉 = 3.56 pN that is roughly one half of the stall
force. Assuming the linear force extension relation given by eq. (3.25), we find

〈|F |〉 = κl

2
〈i〉 , (3.60)

where 〈i〉 is the effective distance between the motors.

In future experiments, it should be possible to obtain values for this distance. Recently,
the distances between molecular motors have been measured with nanometer precision using
a method that combines different colored Qdots and TIRF-microscopy [101]. Another pos-
sibility might be to use quick-freeze deep-etch EM [10] to image a large ensemble of motor
pair complexes constructed as in the Diehl experiment [25] and analyze their motor-motor
distance.

Using the force-velocity relation of eq. (2.20), we rewrite the definition of the average
velocity given by eq. (3.18), as

v2 =
1

2

(

2v +
κl

2Fs

∑

i

iPi

)

. (3.61)

Inserting eq. (3.60) and eq. (3.59) into this expression, we obtain the inequality

1− Fd

2Fs
ln

t1
2t2

≤ v2
v
, (3.62)
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which becomes, with using the scaled time and velocity given by eq. (3.31) and eq. (3.32),

1 +
Fd

2Fs
ln 2t̃2 ≤ ṽ2. (3.63)

This inequality relates the average binding time and the average velocity of two active
motors. For non-interacting motors, we have v2 = v and t2 = t1/2 and the equality holds.
For the standard kinesin rates and parameters summarized in table 3.1, we calculate t2 and
v2 from our two motor description as a function of the coupling strength κ and plot the
inequality in fig. 3.23. As expected, the inequality approaches the equality as the coupling
becomes small.

3.6. Analytical estimates for the binding time and velocity of a

motor pair

In this section, we derive a non-algebraic equation for approximating t2. Furthermore, we
use this approximation to estimate the average velocity v2. To calculate t2 according to
eq. (3.9), we need to know the distribution Pi of the distances between the motors. The
basic idea of the approximation is to use the distribution of distances from non-interacting
motors. For non-interacting motors which are not able to unbind, the distribution of the
absolute value of the effective distance is obtained from the Skellam distribution [141],

Psk(i, t) =

{

e−2αtI(0)(2αt) i = 0

2e−2αtI(i)(2αt) i > 0
(3.64)

where i is the absolute value of the distance in units of the step size l between the two
motors, α is the stepping rate, t the time and I(i) are the modified Bessel functions. This
distribution of the distance between two identical Poisson walkers has been first derived by
Irwin [142]. It is obtained from the cross-correlation of two identical Poisson distributions.
Since the elastic coupling of the motors leads to an effective attractive interaction, the

distances between the motors have a finite distribution. In contrast, the average distance
between two non-interacting motors increases with time. Using the distances between two
non-interacting motors to calculate the forces between two coupled motors, we always over-
estimate the distance and thus the forces between the motors. Next, we have to choose a
point in time to evaluate the distribution given by eq. (3.64). On average, one of the two
coupled motors unbinds after the time t = 1/ǫ2. Therefore, we use the Skellam distribution
at that time and obtain the non-algebraic equation for the binding time from eq. (3.9)

t−1
2 = 2e−2αt2I(0)(2αt2) +

∞
∑

i=1

4ǫe
Fi
Fd

−2αt2I(i)(2αt2). (3.65)

Since we overestimate the forces, this equation provides a lower bound for t2. A very good
and reasonable improvement of this lower bound is to restrict the summation in such a way
that only forces equal to or smaller than the stall force appear. Together with the linear
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Figure 3.24 (a) Scaled binding time t̃2 = t2/t1 as estimated via eq. (3.66) with parameters
from table 3.2 as a function of the scaled detachment force fd and the scaled stall force
fs. (b) Scaled velocity ṽ2 = v2/v as estimated via eq. (3.67) with parameters listed in
table 3.2 and t2 from eq. (3.66) as a function of the scaled detachment force fd and the
scaled stall force fs. Both quantities are underestimated compared to the exact solution
shown in fig. 3.6. (c) Approximated scaled binding time t̃2 and (d) scaled velocity ṽ2 as
a function of the stiffness κ with kinesin rates and parameters of table 3.1 compared to
the corresponding exact solution.

force extension relation of eq. (3.25) and the scaled forces, the approximation for the binding
time reads

t−1
2 = N2e−2αt2I(0)(2αt2) +N

⌈fs⌉
∑

i=1

4ǫe
i
fd

−2αt2I(i)(2αt2). (3.66)

Here, N is a normalization factor which ensures that the truncated probability distribution

is normalized, i.e.
∑⌈fs⌉

i=0 PS(i, t2) = 1, and α = v/l is the stepping rate. Using a numerical
root finding algorithm [137], we plot this approximation as a function of the scaled forces
in fig. 3.24(a). In comparison to the exact solution shown in fig. 3.9(a), we underestimate
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3. Cargo transport by two identical motors

the binding time as expected. The sharp steps in the contour lines arise from the ceiling
function in the upper limit of summation in eq. (3.66).

Together with the approximated binding time t2, it is straightforward to determine the
average velocity from eq. (3.18),

v2 =
1

2
N

⌈fs⌉
∑

i=0

(V(Fi) + V(−Fi))Psk(i, t2). (3.67)

We plot the average velocity as a function of the scaled forces in fig. 3.24(b). Compared to
the full solution displayed in fig. 3.9(b), the average velocity is also underestimated and the
spikes of the contour line are artifacts from the ceiling function.

As a detailed example, we consider a pair of kinesin-1 motors and approximate the scaled
binding time t̃2 form eq. (3.66) and the and the scaled velocity ṽ2 from eq. (3.67) as a
function of the coupling stiffness κ and compare them to the exact solution from eq. (3.9) and
eq. (3.18) in fig. 3.24(c) and fig. 3.24(d). In both cases, the approximation underestimates
the exact solution. Note, the steps in the function arise again from the ceiling function in
the equation.

Furthermore, the advantage of the approximation is that it relates t2 to single motor
parameters. With the parameters listed in table 3.1, the binding time from eq. (3.65) is
t2 ≃ 0.15 s. This lower bound value can be used to estimate, through eq. (3.59), an upper
bound for the average force between the motors, 〈|F |〉 < 3.6 pN. This force is comparable
to the detachment force Fd ≃ 3 pN for kinesin.

In conclusion, the strain force estimated from the approximation is large enough to en-
hance the unbinding. Indeed, such an effect on the binding time has been found experimen-
tally and will be discussed quantitatively in the next section.

3.7. Comparison to experimental results

In this section, we quantitatively discuss the experiments of the Diehl lab carried out by
Rogers et al. [25]. In this study, the transport of two coupled kinesins has been characterized.
Using our framework, we propose a set of single motor parameters, which reproduces the
experimental results of the two kinesin constructs.

Recently, the Diehl lab successfully fused two kinesin-1 (K560) via a DNA scaffold, see
fig. 1.4. The kinesins are truncated after 560 amino acids and fused with a polypeptide linker
to a DNA strand. This DNA scaffold provides a spacing of 50 nm between the motors [25].
Following a Qdot attached to the DNA, they have been able to study transport by precisely
two kinesin-1 motors. The average velocity was (492 ± 85) nm/s, similar to single kinesin
assays of (490 ± 132) nm/s determined in a control experiment. The overall average run
length of the cargo was (1380±81) nm and, as expected larger compared to the run length of
a single kinesin (800± 60) nm recorded in the corresponding control experiment. Analyzing
their trajectories Rogers et al. were able to estimate the effective unbinding rate of two
active motors as ǫ2 ≃ 4 s−1, where as the single unbinding rate has been determined as
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(i) simple approach
without fit

(ii) simple
approach with fit

results from Diehl
experiment

input

V(F ) eq. (3.50), a = 1 eq. (3.50), a = 1 -
v [nm/s] 490 [25] 490 [25] 490± 132 [25]

κ [pN/nm] 0.2 [25] 0.2 [25] 0.2 [25]

Fs [pN] 6 [95] 6 [95] -
Fd [pN] 3 [94] 3 [94] -
Θ - - -
ǫ [s−1] 0.61 [25] 0.61 [25] 0.61 [25]

π [s−1] 5 [24] fit -

fit - π ≃ 1.46 s−1

results

ǫ2 [s
−1] 1.89 1.89 4 [25]

v2 [nm/s] 490 490 -
〈∆xca〉 [nm] 2928 1424 1380± 81 [25]

vca [nm/s] 490 490 492± 85 [25]

(iii) Carter and
Cross data

(iv) proposed
parameters

results from Diehl
experiment

input

V(F ) eq. (A.13) eq. (A.13) -
v [nm/s] 490 [25] 490 [25] 490± 132 [25]

κ [pN/nm] 0.2 [25] 0.2 [25] 0.2 [25]

Fs [pN] 7 [26] 7 [26] -
Fd [pN] 3 [94] 1.8 [41] -
Θ - 0.69 [102] -
ǫ [s−1] 0.61 [25] 0.61 [25] 0.61 [25]

π [s−1] fit fit -

fit π ≃ 1.84s−1 π ≃ 3.39 s−1

results

ǫ2 [s
−1] 2.24 4.35 4 [25]

v2 [nm/s] 450 459 -
〈∆xca〉 [nm] 1409 1390 1380± 81 [25]

vca [nm/s] 472 476 492± 85 [25]

Table 3.5 Overview of different sets of parameters used to explain the results from the
Diehl experiment (right column) of a cargo transported by two kinesin-1 motors. The
parameters of the row named ’input’ are used for the single motor description. In the case
of using a fit parameter, it is listed in the row ’fit’ and the fitting procedure is explained in
appendix A.9. The unbinding rate ǫ2 = 1/t2 and the velocity v2 of two active motors are
obtained from our two motor descriptions and summarized in the row ’results’. There,
the average run length of a cargo transported by two motors is calculated from eq. (3.2)
and its velocity from eq. (3.3).
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3. Cargo transport by two identical motors

ǫ ≃ 0.61 s−1, leading to a single motor binding time t1 = 1/ǫ ≃ 1.64 s and a motor pair
binding time t2 = 1/ǫ2 ≃ 0.25 s. These results are summarized in table 3.5.

As already discussed in section 3.3.2, we expect the two kinesins to operate in the enhanced
unbinding region, see the star in fig. 3.10. From this point of view, our two motor description
is qualitatively consistent with the experimental data. In order to compare numerical values
from our two motor description to the experimental data, we have to specify all single motor
parameters. Since no force-dependent measurements of the single motors have been done
in the Diehl experiment, we use single motor parameters obtained in other experiments.
However, we also discuss the case of fitting the binding rate π, since we expect that this
parameter could be very different for different experiments as discussed in section 2.2.2. In
this case the binding rate is obtained from a least square fit to the run length distribution
of the experimental data as explained in appendix A.9. We present results for four different
sets of single motor parameters, summarized in table 3.5: (i) Rates from the most simple
approach with a linear force-velocity relation, eq. (3.50) with a = 1, and all parameters
taken from experiments; (ii) The same parameters as (i), except that the binding rate is
obtained from a fit; (iii) Forward and backward stepping rates from an empirical force-
velocity relation, eq. (A.13), introduced in appendix A.4 and scaled to match the single
motor velocity obtained in the Diehl experiment. The binding rate π is fitted; (iv) Proposed
set of parameters that yield a good agreement to the experimental data. Here, we use the
force-velocity realtion as for (iii) with the stall force obtained by Carter and Cross [69] and
the detachment force estimated from an assay experiment [41] with the direction dependence
discussed in section 3.4.4. Additionally, we obtain the binding rate π from a fit.

The results from our two motor description for each set of parameters are summarized in
table 3.5 and compared to the results from the Diehl experiment. The enhanced unbinding
rate obtained in the experiment is rather large. With the coupling stiffness κ ≃ 0.2 pN/nm
determined in the same experiment, a good agreement between experiment and theory can
be obtained by reducing the single motor detachment force. In this way, our proposed
parameters, listed in table 3.5, are in a good agreement with the experimental data, see
also fig. 3.25. The unbinding rate ǫ2 = 1/t2 is too small for all other sets of parameters.
However, a good agreement of the average run length is always obtained when π is fitted
via the run length distribution.

3.8. Properties of the overall cargo run

Finally, we integrate our results into the general framework developed in [30], to describe
the properties of a cargo transported by two motors. Such a cargo is described by three
states shown in fig. 3.1. Since we introduced a theory that relates the parameters ǫ2 = 1/t2
and v2 to single motor properties, we are able to determine all rates and velocities for the
network from single motor parameters. Together with the rebinding rate π ≃ 5 s−1 (see
table 2.1), the parameters given in table 3.2 and the two motor parameters ǫ2 = 1/t2 and v2
as determined in fig. 3.9, we obtain the average binding time 〈∆tca〉, eq. (3.1), the average
run length, 〈∆xca〉, eq. (3.2), and the average velocity vca of the cargo, eq. (3.3), as a

72



3.9. Summary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7  8

p
ro

b
ab

il
it

y
 d

en
si

ty

<∆xca>[µm]

exp. data
theory

Figure 3.25 Probability density for the run length distribution of the overall run length of
the two kinesin complex. The experimental histogram is taken from the Diehl experiment
[25] and has been normalized. The theoretical probability density is determined from the
parameters we proposed, listed in table 3.5 and the binding rate π as a single fit parameter.

function of the scaled detachment force fd and scaled stall force fs, shown in fig. 3.26. The
average binding time and the average velocity of the cargo reveal the four distinct transport
regimes of: (I) weak coupling, (II) strong coupling, (III) reduced velocity and (IV) enhanced
unbinding. The crossover lines are taken from fig. 3.9 and separate the transport regimes.
However, the occurrence of these regimes on the cargo level crucially depends on the binding
rate. For small binding rates, the cargo is primarily transported by one active motor and
the transport regimes of the state, in which both motor actively pull the cargo, does not
influence the overall cargo run substantially. The average run length shown in fig. 3.26(c)
is larger compared to the single motor run length of 1µm in all transport regimes, even in
the strong coupling regime in the lower left corner.

3.9. Summary

We introduced a general theoretical framework to describe and understand cooperative
cargo transport by two identical molecular motors. The stochastic stepping of the motors
leads to the build-up of elastic strain forces between them. However, whether these forces
have a significant effect on the binding time and/or the velocity, depends on the single
motor parameters and on the type and strength of the elastic coupling. More precisely, we
identified four distinct transport regimes: (I) a weak coupling regime in which the binding
time and the velocity are hardly affected by coupling; (II) a strong coupling regime with a
reduced velocity and a reduced binding time; (III) a reduced velocity regime characterized
by a reduced velocity without an effect on the binding time and (IV) an enhanced unbinding
regime with a reduced binding time but an essentially unchanged velocity, see fig. 3.9.
To understand the emergence of these transport regimes, we introduced three time scales
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Figure 3.26 Quantities describing a cargo transported by two motors considering the
overall cargo run. The motors can unbind from and rebind to the filament as described by
the reduced model introduced in section 3.2.1 with rates from table 3.2 and the additional
binding rate π ≃ 5 s−1. Together with v2 and t2 of fig. 3.9, we plot (a) the average binding
time 〈∆tca〉 of the cargo from eq. (3.1), (b) the average velocity vca of the cargo from
eq. (3.3) and (c) the average run length 〈∆xca〉 of the cargo from eq. (3.1) as a function
of the scaled detachment force fd and scaled stall force fs. The binding time and the
velocity reveal the four distinct transport regimes as in fig. 3.9 even on this cargo level
taking the state with only one bound motor explicitly into account. The crossover lines
are taken from fig. 3.9.

associated with the three main processes: spontaneous unbinding, force-induced unbinding,
and reduced stepping. Together with the time scale arguments our description allowed us
to study transport by two motors using refined single motor properties. In this way, we
elucidated the influence of different functional forms of force-velocity relations, of a force-
dependent detachment force and cables as motor-cargo linkers. Furthermore, we could
clarify why previous studies based on different single motor descriptions came to different
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3.9. Summary

conclusions about the relevance of strain forces and motor-motor interference.
We found a set of single motor parameters, which leads to a transport behavior of a

motor pair as found experimentally in the Diehl lab [25], see table 3.5. From our study with
different types of motor-cargo linkers, we concluded that the strong motor-motor interference
revealed in the experiments can not be explained by a description with cable-like motor-
cargo linkers.
Our theory is consistent with the available experimental data [25] and provides quanti-

tative predictions which can be tested experimentally. We predict that different subsets of
transport regimes should be observed for different motor types when their coupling strength
is varied, see fig. 3.10. In addition, we find that the binding time depends on the ATP con-
centrations. This effect could also be verified in future experiments.
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4. Cargo transport by actively pulling and
passively diffusing motors

In the following we present a stochastic description for the transport of a single cargo by one
myosin V and one kinesin-1 along a microtubule, as considered in the in vitro experiment
in [29], see fig. 4.1. Each motor can bind to and unbind from the filament. When bound,
the kinesin actively walks into one direction, while myosin V diffuses along the filament.
We infer the rates for these stochastic events from part of the experimental data, and then
use our model to predict all experimentally measured quantities, finding good agreement.
The latter argument implies that the motion of the actively pulling kinesin-1 motor is
not influenced by the passively diffusing myosin V. This situation is different from the
one discussed in the previous chapter. Now, we consider two different motor species: the
passive motor is dragged along the filament and no strain forces are induced that influence
the dynamics of the pulling motor. In this way, all kinesin rates remain unchanged in the
presence of myosin V. In contrast, however, the myosin V motor experiences a force arising
from the kinesin motor and is thus more likely to unbind from the microtubule. Despite
this enhanced unbinding, myosin V is still capable of increasing the cargo processivity by
a factor of two. We also investigate the effect of several myosins and several kinesins on a
cargo, which leads to an exponential increase of the cargo’s run length and to an effect on
the velocity depending on which motor number is increased.

4.1. Experimental findings

In this section, we briefly review the relevant experimental findings and the setup of the
in vitro experiment by Ali et al. [29]. First, they mixed 10 nm sized quantum dots (Qdots),
which serve as cargos, with full length kinesin-1 in a molar ratio 16:1 to ensure that 95%
of Qdots have only a single motor bound [38]. Using a total internal reflection fluorescence
(TIRF) microscope, they recorded the trajectories of the Qdots along microtubules which
were adhered to a glass coverslip. These Qdots performed a directed movement with an
average velocity of vk ≃ (0.88 ± 0.2)µm/s and a average run length of 〈∆xca〉 ≃ (1.7 ±
0.1)µm. Similar to a previous experiment [58], they found that Qdots coated with full length
myosin V diffuse on microtubules with a diffusion coefficient of Dm ≃ (0.18± 0.16)µm2/s,
presumably due to a nonspecific electrostatic interaction [58]. To construct Qdots with both
motors bound, first Qdots and kinesin were mixed in a 16:1 molar ratio and then excess
myosin V was added. Therefore, the precise number of attached myosins was unknown;
however, the small size of the cargo suggests that only a single myosin V was attached to it.
Since myosin V and kinesin are roughly of the same length of 80 nm, see table 2.1, Qdots
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kinesin-1

myosin V

cargo

microtubule

Figure 4.1 A cargo particle that is bound to a microtubule by one actively pulling kinesin-
1 and one passively diffusing myosin V. The cargo is transported towards the plus end
of the microtubule by kinesin, whereas it diffuses along the microtubule when it is only
bound by myosin V, as indicated by the arrows. Motors and filament are not drawn to
scale.

could in principle be bound simultaneously by both motors to the filament. Such Qdots
coated with both types of motors exhibited a average run length of 〈∆xca〉 ≃ (3.7± 0.3)µm
and an averaged velocity of 〈v〉ca ≃ (0.73 ± 0.3)µm/s on microtubules. These trajectories
consisted of directed motion interrupted by diffusive events, see fig. 4.5(a). The parts of the
trajectories corresponding to the directed motion had an average length of (1.8 ± 0.1)µm
and a average velocity of (0.84± 0.13)µm. An overview of the quantities measured in [29]
is given in table 4.1.

4.2. Stochastic network description

As pointed out in section 2.3.1, in order to establish an appropriate theoretical description,
we have to chose a state space and introduce the dynamics on that state space. Our goal is
to understand the cooperative motor behavior based on the single motor properties. Since
we know the transport properties of the cargo when it is only transported by kinesin or
myosin V from the experiment, we chose a state space, in which these cases are included.
In this way, we described the cargo in a discrete state space, in which we associate every
state with the number of motors bound to the filament.

Since the motors stochastically bind to and unbind from the filament, the cargo trans-
ported by one kinesin and one myosin V can be in one of four possible states (nm, nk)
characterized by the numbers nm and nk of bound myosins and kinesins to the filament, re-
spectively, see fig. 4.2. In state (1, 0) only myosin V is bound and in state (0, 1) only kinesin.
The dynamics of these states are known from the experiments with only kinesin and only
myosin V attached to the cargo. Both motors are bound to the filament in state (1, 1). The
state (0, 0) refers to the case in which both motors are unbound. Since in experiments only
trajectories on the filament are recorded, we consider the state (0, 0) as an absorbing state.
Stochastic motor binding and unbinding events correspond to transitions between the four
states, as indicated by the arrows in fig. 4.2. It is unlikely for a freely diffusive cargo to bind
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4.2. Stochastic network description

kin. myo. 〈∆xca〉[µm] 〈v〉ca[µm/s] Dm[µm
2/s] n type of events analyzed

+ - 1.7± 0.1 0.88± 0.2 - 61 all runs
- + - - 0.18± 0.16 - diffusive motion
+ + 3.7± 0.3 0.73± 0.3 0.11± 0.12 74 all runs
+ + 7.1± 1.7 0.55± 0.15 - 21 only runs that had ob-

vious diffusive events in-
terspersed

+ + 1.8± 0.2 0.84± 0.13 - 54 analysis of run segments
between diffusive events

Table 4.1 Experimental results from [29] where the transport of Qdots on microtubules
has been monitored. The first two columns indicate if kinesin or myosin V is present on
the cargo (+) or not (-). Here 〈∆xca〉 is the average cargo run length, 〈v〉ca the average
velocity of the cargo, Dm the diffusion coefficient of the cargo and n is the number of
analyzed trajectories. Cargos that are transported by kinesin and myosin V exhibit longer
run length compared to single kinesin transport.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

ǫk

ǫm

ǫ̂m

π̂m

ǫ̂k π̂k

Figure 4.2 State space of a cargo particle transported by one kinesin and one myosin V.
The particle can be bound to the microtubule by kinesin only [state (0, 1)], myosin V
only [state (1, 0)], or both motors [state (1, 1)], or be in the unbound state (0, 0). The
transition rates are summarized in table 4.2. Whenever the cargo is bound by kinesin
it moves with the velocity vk. Whereas when the cargo is only bound by myosin V, it
diffuses along the microtubule with the diffusion constant Dm. Motors and filaments are
not drawn to scale.
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kinesin parameter myosin V bound? symbol value

binding rate yes π̂k 0.2 s−1

unbinding rate no ǫk 0.52 s−1∗

unbinding rate yes ǫ̂k 0.52 s−1

velocity vk 0.88µm/s∗

binding probability wk 0.95

myosin V parameter kinesin bound? symbol value

binding rate yes π̂m 0.2 s−1

unbinding rate no ǫm 0.020 s−1∗

unbinding rate yes ǫ̂m 0.1 s−1

diffusion coef. no Dm 0.18µm2/s∗

Table 4.2 Single motor parameters for kinesin-1 and myosin V of the model defined in
fig. 4.2. Values with an asterisk are determined from the experiments in [29]. The other
values were deduced from our model as described in the text.

to the filament in state (1, 1) because then kinesin has to bind exactly at the same time as
myosin V. Thus, we assume that runs only start either with one kinesin in state (0, 1), with
probability wk or with one myosin V in state (0, 1), with probability (1 − wk). We expect
that the probability for a ’kinesin start’ in state (1, 0), is much higher than the probability
(1−wk) for a ’myosin V start’ in (1, 0) since it should be more probable for kinesin to bind
to its appropriate filament, the microtubules, than for the actin-motor myosin V. After a
kinesin of a freely diffusive cargo has bound to the filament in state (0, 1), it can either
unbind with transition rate ǫk to the absorbing state (0, 0) or myosin V of the cargo can
bind with binding rate π̂m leading to state (1, 1). Taking possible interactions, which might
influence the transition rates, into account, we denote the rates of a motor with a hat when
the other motor is bound. From state (1, 1) kinesin unbinds with rate ǫ̂k and myosin V with
rate ǫ̂m. Two transitions from the state (1, 0) with only one myosin V bound are possible:
into the absorbing state (0, 0) with unbinding rate ǫm and into state (1, 1) with binding rate
of kinesin π̂k. An overview of the notation of the rates are given in table 4.2.

In state (0, 1) with only kinesin bound, the cargo is pulled with the kinesin velocity
vk ≃ 0.88µm/s measured experimentally in [29]. Since single myosin V diffuses randomly
on microtubules, a cargo in state (1, 0) moves on average with zero velocity. According to
the Einstein relation [143], myosin V’s diffusion constant Dm ≃ 0.18µm2/s [29] corresponds
to a friction coefficient

γ =
kBT

Dm
≃ 0.02 pN s/µm (4.1)

for motion of myosin V on microtubules. When kinesin and myosin V are both bound, the
moving kinesin experiences a rather small friction coefficient. It can easily drag myosin V
along when moving with its velocity of vk ≃ 0.88µm/s, since myosin V’s friction force is
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(0, 1)

(1, 0)

(1, 1)

w k
ǫm
ǫ̂k

(1− wk)ǫm

ǫ̂m

π̂m

(1
− w

k
)ǫ k

π̂k
wkǫk

Figure 4.3 (b) Closed network obtained from fig. 4.2 by redirecting all arrows that lead
into the absorbing state (0, 0) back into the starting states (0, 1) and (1, 0), weighted with
the respective starting probabilities wk and (1− wk).

only about
Fm = γvk ≃ 0.02 pN (4.2)

and thus negligible for kinesin that has a stall force of about 6−7 pN, see table 2.1. Therefore,
we assume that a cargo in state (1, 1) moves with the kinesin velocity vk.

4.3. Analytical expressions for experimental quantities

To specify the parameters of our model from the experimental data, we derive analytical
expressions for averaged quantities measured in the experiments, such as the average run
length and the average duration of stepping events.
In order to calculate such quantities, we use our generalization of the method proposed

by Hill [126,128] as presented in section 2.3.3. We recall this method for the calculation of
the average run time 〈∆tca〉, which is the average time to absorption in state (0, 0). The
time 〈∆tca〉 can be determined by averaging the run times of an ensemble of trajectories,
each of which starts at time t = 0 in state (0, 1) with probability wk and in state (1, 0) with
probability (1− wk). If one concatenates these trajectories, one obtains a single trajectory
which, upon reaching the absorbing state (0, 0), immediately continues at state (0, 1) with
probability wk, or at state (1, 0) with probability (1−wk). The network that describes such
a trajectory is shown in fig. 4.3, which is constructed by ’closing’ the ’open’ network shown
in fig. 4.2, i.e. by eliminating the absorbing state (0, 0) and redirecting all arrows that ended
in (0, 0) to the starting states. For example, the arrow from state (0, 1) to state (0, 0) with
rate ǫk is redirected to state (0, 1) with the probability weight wk and to state (1, 0) with
probability weight (1 − wk). The stationary probabilities P (nm, nk) of the closed network
can be calculated by matrix methods [86] or using a diagrammatic method [130,131], which
leads to

P (0, 1) ≡ [ǫ̂mπ̂k + ǫmwk(ǫ̂k + ǫ̂m)] /N , (4.3)

P (1, 0) ≡ [ǫ̂kπ̂m + (1− wk)ǫk(ǫ̂k + ǫ̂m)] /N , (4.4)

P (1, 1) ≡ [(1− wk)ǫkπ̂k + π̂m(π̂k + ǫmwk)] /N , (4.5)
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w1,1ǫ̂k(1− w1,1)ǫk

ǫ̂m
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(1 − w1,1)ǫ̂k

π̂m

(b)

Figure 4.4 (a) Network with absorbing states (0, 0) and (1, 0) modified from fig. 4.2; (b)
Closed network obtained from (a) by redirecting the arrows from the states (0, 0) and
(1, 0) into the states (0, 1) and (1, 1). The transitions are weighted with the probability
w1,1 to start in state (1, 1) and 1− w1,1 to start in state (0, 1).

where N is determined by the normalization condition P (0, 1) + P (1, 0) + P (1, 1) = 1.

Now, we derive the average run length of the cargo. In the steady state, the average
rate of arrivals at state (0, 0) is given by the probability current J ≡ ǫmP (1, 0) + ǫkP (0, 1),
see section 2.3.2. For the open network in fig. 4.2, this arrival rate corresponds to the
average rate of absorptions in (0, 0). Thus, the average time to absorptions is given by

〈∆tca〉 ≡
1

J
=

1

ǫmP (1, 0) + ǫkP (0, 1)
. (4.6)

This average absorption time can also be calculated for the open network in fig. 4.2 using
the general theory of Markov processes. The latter calculation confirms the expression (4.6)
and provides a non-trivial check of our approach.

The probability P (nm, nk) gives the average fraction of time spent in state (nm, nk) per
run [126], as explained in section 2.3.2. Since there is no cargo displacement in the state
(1, 0), the cargo moves only in the kinesin-bound states (0, 1) and (1, 1), i.e. during the time
[P (0, 1) + P (1, 1)] 〈∆tca〉. Since it moves with velocity vk in these states, the average run
length is

〈∆xca〉 ≡ vk[P (0, 1) + P (1, 1)] 〈∆tca〉

= vk
π̂k(ǫk + ǫ̂m + π̂m) + wk(ǫm(ǫ̂k + ǫ̂m + π̂m)− ǫkπ̂k)

ǫkǫ̂m(ǫm + π̂k) + ǫmǫ̂k(ǫk + π̂m)
. (4.7)

Next, we calculate the average time 〈∆tse〉 of a stepping event, i.e. the average time
spent continuously in the stepping states (0, 1) and (1, 1). In the open network in fig. 4.2,
a stepping event can start either from (0, 1) or (1, 1). We first determine the probability
w1,1 for a stepping event to start in state (1, 1). The average number of transitions from
(1, 0) to (1, 1) per unit time in the network of fig. 4.3 is given by the probability current
Jk(1, 1) ≡ π̂kP (1, 0). Since a stepping event which starts in state (0, 1) can only occur at the
beginning of a run, the average number of these latter events per unit time in the network
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of fig. 4.3 corresponds to the probability current

Jk(0, 1) ≡ wkǫkP (0, 1) + wkǫmP (1, 0) (4.8)

from (0, 1) and (1, 0) to (0, 1). This is exactly the sum of the redirected currents which
represent a new run starting in state (0, 1). Hence, the probability for a stepping event to
start in state (1, 1) takes the form

w1,1 ≡
Jk(1, 1)

Jk(1, 1) + Jk(0, 1)
. (4.9)

A stepping event is finished when the diffusive state (1, 0) or the unbound state (0, 0) in
the network of fig. 4.2 is reached. We therefore promote the state (1, 0) to an absorbing
state, so that we now have the two absorbing states (0, 0) and (1, 0), see fig. 4.4(a). By
redirecting all arrows from the absorbing states (0, 0) and (1, 0) to the starting states (1, 1)
and (0, 1), we obtain the network in fig. 4.4(b). Using the stationary probabilities for the
latter network, given by

Q(0, 1) ≡ ǫ̂m + ǫ̂k(1− w1,1)

ǫ̂k(1− w1,1) + w1,1ǫk + π̂m + ǫ̂m
(4.10)

Q(1, 1) ≡ 1−Q(0, 1), (4.11)

and the starting probability w1,1 from eq. (4.9), we derive the average time of a stepping
event 〈∆tse〉 from the sum of the probability current into the absorbing states,

〈∆tse〉 ≡
1

ǫkQ(0, 1) + ǫ̂kQ(1, 1)
=

A+B

ǫkA+ ǫ̂kB
, (4.12)

where
A ≡ wkǫmǫ̂k + wkǫmǫ̂m + π̂kǫ̂m (4.13)

and
B ≡ wkǫmπ̂m + π̂kπ̂m + (1− wk)π̂kǫk. (4.14)

Another quantity which has been measured in the experiment is the fraction φnde of
runs without diffusive events. All of these runs start in state (0, 1), and leave the network
of fig. 4.2 with the transition to state (0, 0) without ever visiting state (1, 0). Equivalently,
we may ask for the probability of starting in state (0, 1) in the network of fig. 4.4(a) and
being absorbed in state (0, 0) rather than in state (1, 0). This splitting probability w0,0

is given by the ratio of the probability current from state (0, 1) to (0, 0) and the total
probability current out of the network [128,131],

w0,0 ≡
ǫkQ(0, 1)

ǫkQ(0, 1) + ǫ̂kQ(1, 1)
. (4.15)

Since we now consider only runs that start in state (0, 1), we use the relations (4.10) and
(4.11) with w1,1 = 0. Finally, we have to take into account that only the fraction wk of runs
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4. Cargo transport by actively pulling and passively diffusing motors

in the original network in fig. 4.2 can contribute to runs without diffusive events. Therefore,
the fraction of these latter runs is found to be

φnde = wkw0,0 = wk
ǫk(ǫ̂k + ǫ̂m)

ǫk(ǫ̂k + ǫ̂m) + ǫ̂kπ̂m
. (4.16)

Next, we calculate the average time 〈∆tde〉 of a diffusive event. Since only (1, 0) is
a diffusive state, the average waiting time 〈∆tde〉 in this state is given by

〈∆tde〉 =
1

ǫm + π̂k
. (4.17)

In order to compare the velocity of the cargo particle with our network description, we
point out that the run length and the binding time of the cargo are not independent. In
the following, we determine the average over the velocities of the single trajectories,

〈v〉ca ≡
〈

∆xca
∆tca

〉

. (4.18)

This velocity 〈v〉ca provides a new quantity, which is useful for the comparison of our de-
scription with the experimental data. To calculate the average of the velocities 〈v〉ca as
explained in section 2.3.5, we need the probability distribution P (∆xca,∆tca) of the run
length and the binding time of the cargo. We consider the full network of fig. 4.2 with the
absorbing state (0, 0) and introduce a spatial coordinate x for the position of the cargo.
Its position at time t is then described by explicitly taking into account that the cargo
moves with velocity vk in state (0, 1) and (1, 1) and diffuses with diffusion constant Dm in
state (1, 0). The probability rnm,nk

(x, t) of being in state (nm, nk) is then governed by the
following set of equations:

∂tr0,0(x, t) = ǫkr0,1(x, t) + ǫmr1,0(x, t) (4.19)

∂tr0,1(x, t) = −vk∂xr0,1(x, t)− (ǫk + π̂m)r0,1(x, t) + ǫ̂mr1,1(x, t) (4.20)

∂tr1,1(x, t) = −vk∂xr1,1(x, t)− (ǫ̂m + ǫ̂k)r1,1(x, t) + π̂mr0,1(x, t) + π̂kr1,0(x, t) (4.21)

∂tr1,0(x, t) = Dm∂
2
xr1,0(x, t)− (π̂k + ǫm)r1,0(x, t) + ǫ̂kr1,1(x, t). (4.22)

To solve this set of ordinary differential equations, we have to specify an initial condition.
We place the cargo particle at time t = 0 at the position x = 0 in state (0, 1) with probability
wk and in state (1, 0) with probability 1− wk resulting in

r0,0(x, 0) = 0 (4.23)

r0,1(x, 0) = wkδ(x) (4.24)

r1,1(x, 0) = 0 (4.25)

r1,0(x, 0) = (1− wk)δ(x). (4.26)

Here, δ(x) is the Dirac delta function. Using the Fourier-Laplace transform from eq. (2.52),
the set of equations for rnm,nk

(x, t) can be transformed in a set of linear equations for
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r̂nm,nk
(k, λ) and the average cargo run length and binding time are obtained from derivatives

of the current into the absorbing state

Ĵ(k, λ) ≡ ǫkr̂0,1(k, λ) + ǫmr̂1,0(k, λ), (4.27)

see section 2.3.4. In this way, following from the definition of the Fourier-Laplace transfor-
mation of eq. (2.52), we obtain the average run length of the cargo 〈∆xca〉 from eq. (2.55)
and the average binding time 〈∆tca〉 from eq. (2.54). These two equation yield the same
result as eq. (4.7) and eq. (4.6) and provide a non-trivial check of the derivation using
the closed networks. The actual quantity that we are interested in is the average of the
velocities, which we also derive from the Fourier-Laplace transform as in eq. (2.58),

〈v〉ca =
〈

∆xca
∆tca

〉

=

∫ +∞

−∞

∫ +∞

0

x

t
J(x, t) dt dx = −i

∫ +∞

0
∂kĴ(k, λ)|k=0 dλ. (4.28)

We have now obtained expressions for the average run length 〈∆xca〉, the average time
〈∆tse〉 of stepping events, the average time 〈∆tde〉 of diffusive events, the fraction φnde of
runs without diffusive events and the velocity 〈v〉ca. Next, we use these expressions to
determine all parameters of our description from the measured quantities.

4.4. Parameters deduced from experiment

When combining the results derived above with the experimental data of [29], we are able
to determine all six rates of our model in fig. 4.2, as well as, the starting probability wk.
All parameters are summarized in table 4.2. From different single molecule experiments
with only kinesin (Nm = 0, Nk = 1) and with only myosin V (Nm = 1, Nk = 0), the
unbinding rates of myosin V, ǫm, and kinesin, ǫk, can directly be derived as the inverse
of the average binding time 〈∆tk〉 ≃ 1.93 s of kinesin and 〈∆tm〉 ≃ 50 s of myosin V on
microtubules [29]. From the measured average time 〈∆tde〉 ≃ 4.5 s of a diffusive event, we
obtain with eq. (4.17) the binding rate π̂k ≃ 0.2 s−1. In the experiments, the average time
〈∆tse〉 of a stepping event has numerically the same value as the binding time for single
kinesin 〈∆tk〉 = 1/ǫk. Therefore, we deduce from eq. (4.12) that the unbinding rate ǫ̂k is
equal to the unbinding rate ǫk. Furthermore, they found in the experiments an average cargo
run length 〈∆xca〉 ≃ 3.7µm, a fraction of 72% of runs that did not show diffusive events
and a average velocity 〈v〉ca ≃ 0.73µm/s. Using these values, we determine by combining
eq. (4.7), eq. (4.16) and eq. (4.28), the remaining parameters ǫ̂m ≃ 0.1 s−1, π̂m ≃ 0.2 s−1

and the probability wk ≃ 0.95.
In the following, we like to discuss two interesting facts of the values determined above.

First, the observation that the binding time of single kinesin 〈∆tk〉 is numerically equal to
the time of a stepping event suggests that kinesin unbinding is not affected by the presence
of myosin V. Second, the binding rates π̂k, for kinesin, and π̂m, for myosin V, are numerically
the same. It is important to emphasize here, that these rates are associated with the binding
process, when the cargo is bound by the other motor not with the binding process of a freely
diffusive cargo to the filament. Our study suggests that the probability wk for a free cargo
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Figure 4.5 Trajectory of a cargo transported by one myosin V and one kinesin. (a) Ex-
perimental trajectory taken from [29]. (b) Simulated trajectory with parameters as in
table 4.2.

to initially bind to the microtubule via a kinesin is 0.95. If we introduce an initial binding
rate πk and πm for kinesin and myosin V, respectively when the other motor is not bound,
we obtain from wk = πk/(πk + πm) ≃ 0.95 the ratio πk/πm ≃ 19. In contrast, this ratio
is reduced when the cargo is bound by the other motor, π̂k/π̂m ≃ 1. Since the molecular
details for the binding of myosin V to the microtubule is not know, we can only speculate
about the reduction of the ratio of the binding rates. Using the literature value for kinesin’s
binding rate πk ≃ 5 s−1 [24, 90], we deduce from πk/πm ≃ 19 that πm ≃ 0.26 s−1 which is
about the same value as π̂m. This suggests, that myosin V’s binding rate is not affected by
the presence of kinesin, whereas kinesin’s binding rate is strongly reduced, when the cargo
diffuses along the filament by the myosin V tether.

4.5. Comparison between theory and experiment

We have now determined all parameters needed in our description by using a subset of the
experimental data of [29]. Next, we test our description by comparing it to additional data
measured in the experiment [29]. In order to do so, we simulate the system depicted in
fig. 4.2 with the rates of table 4.2 using Gillespie’s algorithm [144]. With this algorithm the
dwell time in each state is drawn from an exponential distribution. Once the dwell time
is determined, we determine the position of the cargo over this time window according to
the dynamics of the state. In state (0, 1), the cargo performs a discrete time continuous
space random walk with the diffusion constant Dm of myosin V. In states (1, 0) and (1, 1),
the cargo moves deterministically with a velocity chosen according to a Gaussian distribu-
tion with average value vk ≃ 0.88µm/s and standard deviation 0.2µm/s, as determined
experimentally in [29]. A sample trajectory of our simulation is shown in fig. 4.5(b); it
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Figure 4.6 Run length distribution of a cargo transported by one kinesin and one myosin V
on microtubule. Simulated run length distribution from the network description shown in
fig. 4.2 with parameters as given in table 4.2. The results of two simulation are shown: (i)
with 74 runs as in the experiment and (ii) with 10000 runs. The experimental distribution
is taken from [29]. The simulation with n = 74 mimics qualitatively the limited statistics
of the experiment.

exhibits alternating sequences of diffusive and stepping events and is remarkably similar to
the experimental trajectories, shown in fig. 4.5(a).

First, these simulations reproduce the experimental values that we used to determine the
model parameters, namely the run length 〈∆xca〉 ≃ 3.7µm, the stepping time 〈∆tse〉 ≃
1.93 s, the fraction of runs without diffusive events φnde ≃ 0.72, the cargo average velocity
〈v〉ca ≃ (0.73± 0.3)µm/s and the diffusive time 〈∆tde〉 ≃ 4.5 s in agreement with eqs. (4.7),
(4.12), (4.16), (4.17) and (4.28). Second, we find (i) that the average length of runs which
exhibit at least one diffusive event is 9.83µm, which is comparable to the experimental
value of 7.1 ± 1.7µm, and (ii) that the average velocities of runs with diffusive events
in the simulation are 0.36µm/s, which is comparable to the experimental results 0.55 ±
0.15µm/s. In fig. 4.6 and fig. 4.7 we compare the run length and velocity distribution from
the simulations with the experimental data. We show the results of a simulation with 10000
runs, for a good convergence, and additional of a simulation with only 74 runs to illustrate
a possible effect of the limited statistics of the experimental data.

There is a clear difference between the run length distribution from the simulations and the
experimentally obtained run length distribution in the region 〈∆xca〉 < 5µm, see fig. 4.6.
This discrepancy could result from the fact that only a limited number of trajectories,
namely 74, were recorded in the experiment. To get an idea how strongly the run lengths
vary between single realizations, we calculate its standard deviation. From the Fourier-
Laplace transform of probability current Ĵ(k, λ) into the absorbing state, we obtain the
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Figure 4.7 Velocity distribution of a cargo transported by one kinesin and one myosin V
on microtubule. Simulated velocity distribution from the network description shown in
fig. 4.2 with parameters given in table 4.2. The results of two simulation are shown: (i)
with 74 runs as in the experiment and (ii) with 10000 runs. The experimental distribution
is taken from [29]. The simulation with 74 runs mimics qualitatively the limited statistics
of the experiment.

mean square run length as

〈

∆x2ca
〉

=

∫ +∞

−∞

∫ +∞

0
x2 J(x, t) dt dx = −∂2k Ĵ(k, 0)|k=0. (4.29)

Using this equation together with eq. (4.7) and the values given in table 4.2, we find the
standard deviation

σ(〈∆xca〉) =
√

〈∆x2ca〉 − 〈∆xca〉2 ≃ 6.1µm. (4.30)

This rather large standard deviation indicates a large variance in the run length. There-
fore, we suspect that the 74 trajectories evaluated experimentally are not enough to obtain
the probability distribution for the steady state. As an illustration of the fluctuation, we
simulate only 74 trajectories and calculate a probability distribution for the run length, see
fig. 4.6.

We expect the velocity distribution to consist of two overlapping Gaussian distributions,
since there are two types of trajectories with different velocities realized in our system.
Trajectories with diffusive events have lower average velocities compared to trajectories
without diffusive events. The distribution from our simulations shows two peaks at around
0.2µm/s and 0.9µm/s, see fig. 4.7. The ratio of the two areas under these two Gaussian
peaks should be the same as the ratio of the number of trajectories with diffusive events and
the number of trajectories without diffusive events; this ratio is ≃ 0.28, see table 4.1. This
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Figure 4.8 Generalized state space of a cargo transported by one kinesin and Nm myosins.
Transitions between the states are associated with effective binding and unbinding rates.
The rates πk and ǫk are the binding and unbinding rates for kinesin and πm and ǫm are
the binding and unbinding rates for the myosin V motors.

crosscheck is somehow not apparent in the distribution of the experimental data. There,
both areas under the two peaks are almost equal. It could be possible that the limited
statistics with only 74 trajectories are not good enough as argued above. We use our
simulations to obtain the standard deviation

σ(〈v〉ca) =
√

〈v2〉ca − 〈v〉2ca ≃ 0.31µm/s, (4.31)

which is almost 50% of the average value. To illustrate the spread in the data from a
simulation with only 74 realizations, we show a distribution obtained from such a simulation
in fig. 4.7.
In summary, concerning the run length and velocity distribution, we found a qualitative

agreement between the experimental data and the results from our stochastic description.
The discrepancy might be caused by the large variance of these quantities.

4.6. Generalization to several molecular motors

4.6.1. One kinesin motor and several myosin V motors

Before generalizing our model to the case of cargo transport by Nk kinesins and Nm myosins,
we study cargo transport with one kinesin and several passive myosins. For this reason we
extend the network in fig. 4.2 to the network shown in fig. 4.8. In this network, the unbinding
and binding rates for a single myosin V in the cargo state (nm, nk) with nm bound myosins
and nk bound kinesins are denoted as ǫm(nm, nk) and πm(nm, nk), respectively.
As we have seen before, the kinesin unbinding rate is not influenced by the presence

of a single myosin V, i.e., ǫ̂k = ǫk. This equality reflects the very low friction of myosin V
motion on the microtubule, leading to frictional forces of the order of 0.02 pN, as in eq. (4.2).
Comparing this value to the kinesin stall force of about 6-7 pN, see table 2.1, we conclude
that the kinesin unbinding rate remains equal to ǫk even if several myosins are bound.
Since an unbound motor is under no force, we take the binding rate of a single motor to

be equal to its single motor binding rate, as discussed in [30]. This assumption implies that
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the binding rate of kinesin is πk ≡ π̂k, independent of the number of bound myosins, and
that the rate for binding of one of the (Nm − nm) unbound myosins in state (nm, nk) is

πm(nm, nk) ≡ (Nm − nm)πm, (4.32)

with πm ≡ π̂m. Likewise, the unbinding rate of one of the nm bound myosin V in state
(nm, 0) without bound kinesin is

ǫm(nm, 0) = nmǫm. (4.33)

We deduced from our stochastic description that the unbinding rate of myosin V changes
from the single motor unbinding rate ǫm to ǫ̂m > ǫm when it is dragged along the microtubule
by kinesin, see table 4.2. We will now present two possible mechanisms for this effect, which
lead to different unbinding rates ǫm(nm, nk) of a single bound myosin V in the cargo state
(nm, nk). Because of the small frictional force in eq. (4.2), this enhanced unbinding is not
caused by strain forces between the motors as it is the case of two actively pulling motors
discussed in chapter 3.

Spring model versus free energy model for cooperativity

In the first scenario, the free energy model, we assume that the myosin V’s motion along the
microtubule can be described as diffusion on a rough free energy landscape formed by the
microtubule. When myosin V is pulled along this landscape by kinesin, it is more likely to
be dragged over free energy hills that it would not have passed when moving freely, which
lowers its average free binding energy by ∆G. Using Kramer’s theory [81,85], the unbinding
rate of one bound myosin V pulled along by one kinesin is

ǫm(1, 1) = ǫm exp[∆G/kBT ]. (4.34)

With the rate ǫm(1, 1) = ǫ̂m ≃ 0.1 s−1 and ǫm ≃ 0.02 s−1 from table 4.2, we find the
exponential factor exp[∆G/kBT ] ≃ 5.1 If we now assume that the myosins do not influence
each other, the unbinding rate of one of the nm bound myosins in the cargo state (nm, 1) is

ǫm(nm, 1) = nmǫm exp[∆G/kBT ]. (4.35)

In the second scenario, the the spring model, we treat the motion of a myosin V head
pulled along by kinesin as diffusion in a moving potential generated by the walking kinesin.
Since myosin V and kinesin head are connected via the two motor linkers and a rigid cargo,
we can approximate this potential by a harmonic spring potential with spring constant κtot.
Because the two motor linkers are in series, we have

κ−1
tot ≡ κ−1

m + κ−1
k , (4.36)

1For a high precision, we used in the simulations the numerical value ǫ̂m ≃ 0.104 s−1, leading to
exp[∆G/kBT ] ≃ 5.2.
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Figure 4.9 Unbinding rate ǫm for myosin V in the presence of one kinesin as a function
of the number nm of bound myosins. Here we compare two different models: myosin V’s
binding energy to the microtubule is reduced because kinesin pulls myosin V ’up the hills’
on the ragged free energy landscape (free energy model), see eq. (4.35). In the second
model, kinesin generates a moving potential for myosin V, which pulls myosin V along
and off the filament (spring model), see eq. (4.40).

where κm and κk are the spring constants for myosin V and the kinesin linker, respectively,
which are both of the order of 0.3 pN/nm [96, 102, 105]. We can thus consider the motion
of the myosin V head as diffusion with friction coefficient γ in a harmonic potential. This
motion is reminiscent of the motion of a single motor in an optical trap. This leads to a
Gaussian distribution of the spring extension ∆x,

P (∆x) =

√

κtot
2πkBT

exp

[

− κtot
kBT

(

∆x− vkγ

κtot

)2
]

, (4.37)

with average 〈∆x〉 = vkγ/κtot, as enforced by mechanical equilibrium, and variance σ2(∆x) =
kBT/κtot, as follows from the fluctuation-dissipation theorem [145]. Note, π is the circle
number not the binding rate π. Hence, the average force F = κtot 〈∆x〉 ≃ 0.02 pN exerted
onto myosin V is negligible, but the force fluctuations F = κtot

√

σ2(∆x) ≃ 0.8 pN are com-
parably large. Note that a force of 0.8 pN is a small force for kinesin with a stall force of
6-7 pN but a large force for myosin V with a stall force of 2 pN on actin, see table 2.1. For
a myosin V that feels the force F , the unbinding rate is given by ǫm exp(F/F̂d,m), compare
the force-dependent unbinding rate in eq. (2.14). This relation defines a detachment force
F̂d,m for myosin V on microtubule. Averaging the unbinding rate over the Gaussian force
distribution from eq. (4.37), we obtain

ǫm(1, 1) =
〈

ǫm exp[F/F̂d,m]
〉

= ǫm

〈

exp[κtot∆x/F̂d,m]
〉

= ǫm exp

[

κtotkBT + 2F̂d,mγvk

2F̂ 2
d,m

]

(4.38)
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for one myosin V and one kinesin. Using the experimentally determined values for vk, ǫm
and ǫm(1, 1) = ǫ̂m as given in table 4.2, κtot ≃ 0.15 pN/nm (where we used κk = κm ≃
0.3 pN/nm [96, 102, 105]), and γ = 0.02 pNs/nm from eq. (4.1), we obtain the detachment
force F̂d,m ≃ 0.4 pN of myosin V on microtubule.

If there are nm bound myosins pulled along by one kinesin, we can consider the myosins
as nm springs in parallel, such that the effective spring constant of the system becomes

κ−1
tot[nm] = (nmκm)

−1 + κ−1
k . (4.39)

Hence, the effective unbinding rate of the nm identical myosins in state (nm, 1) reads

ǫm(nm, 1) = nmǫm exp

[

κtot(nm)kBT + 2F̂d,mγvk

2F̂ 2
d,m

]

. (4.40)

In fig. 4.9, we show the unbinding rate of myosin V calculated from the the free energy
model eq. (4.35) and the spring model eq. (4.40). Since the exponential factor of eq. (4.40)
in the spring model is larger than the factor of the free energy model, the unbinding rate
increases more rapidly.

To study the effect of the two models onto the quantities observed experimentally, we
consider a cargo transported by one kinesin and up to Nm = 7 myosins with the rates listed
in table 4.2, using both models for myosin V unbinding. We simulate such a system that
corresponds to the network in fig. 4.8 using Gillespie’s algorithm [144]. In fig. 4.10(a), the
cargo run length 〈∆xca〉 increases with the number Nm of myosins for both models. Because
the unbinding rates of myosin V in the spring model are larger compared to the free energy
model, there is a slower increase of the run length as a function of the number of myosins.
Both models lead to a dramatic increase of the run lengths: it is of the order of 100µm for
3 to 4 myosins already, which is very large compared to the single motor run length of a
few µm.

The cargo velocity decreases as a function of the number of myosins, see fig. 4.10(b).
Whenever the cargo is in a diffusive state, i.e. only bound by myosins, the binding time
increases, but its average position remains the same. Therefore the velocity decreases as
the number or the duration of diffusive events increases. Interestingly, there is almost no
difference in the velocity between the two models, indicating that the ratio of the run length
and run time is independent of the details of myosin V unbinding rate.

4.6.2. Several kinesin motors and several myosin V motors

In this section, we extend our analysis to cargo transport by Nm passively diffusing myosins
and Nk actively pulling kinesins. It is described by the network shown in fig. 4.11.

Assuming that the kinesins act independently from each other and are not influenced by
the myosins, we use the effective binding rate

πk(nm, nk) ≡ (Nm − nm)πk, (4.41)
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Figure 4.10 (a) Logarithmic plot of the run length 〈∆xca〉 as a function of the number Nm

of myosins attached to the cargo. The increase is faster in the free energy model compared
to the spring model. (b) Average velocity 〈v〉ca of the cargo as a function of the number
Nm of myosins attached to the cargo. Both models lead to a similar behavior.

the effective unbinding rate
ǫk(nm, nk) ≡ nkǫk (4.42)

and the velocity vk for all states where at least one kinesin is bound, for details see [30]. As
we learned in chapter 3, in general, elastically coupled motors can influence each other. Here,
this simplification of independent motors is a first approximation and can be considered as
the case of the weak coupling regime. In other words, we assume that the motors work in
the weak coupling regime (I) in fig. 3.9; for example for large detachment forces Fd.
For myosin V, we use two sets of rates as specified in the free energy model and in the

spring model discussed in the previous subsection and compare the two cases.
In the case of the free energy model, we have assumed that the myosins do not influence

each other. Since the cargo velocity is vk as long as at least one kinesin is pulling, we deduce
from eq. (4.34) the unbinding rates

ǫm(nm, nk) =

{

nmǫm for nk = 0
nmǫm exp[∆G/kBT ] for nk > 0,

(4.43)

as shown in fig. 4.12(a). Note that this rate is independent of the number nk of active
kinesins for nk > 0. In contrast, in the spring model, we have to take into account that the
effective spring constant depends on both the number of active kinesins and the number of
active myosins,

κ−1
tot[nm, nk] = (nmκm)

−1 + (nkκk)
−1. (4.44)

Hence, the unbinding rate defined in eq. (4.40) for the myosin V motors is a function of
both numbers of active motors,

ǫm(nm, nk) = nmǫm exp

[

κtot(nm, nk)kBT + 2F̂d,mγvk

2F̂ 2
d,m

]

, (4.45)
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Figure 4.11 Generalized state space of a cargo transported by Nk kinesin and Nm myosins.
Kinesin’s binding and unbinding rates are denoted by πk and ǫk, respectively and myosin’s
binding and unbinding rates are denoted by πm and ǫm, respectively.

see fig. 4.12(b). Since κtot increases with the number of motors, the unbinding rate increases
exponentially with the number of motors. For both models the binding rate for the myosin
V motors is defined in eq. (4.32).

With the specified transition rates, and the values from table 4.2 and the previous sub-
section, we obtain the average cargo run length and velocity from a simulation using a
Gillespie’s algorithm [144] for the corresponding network shown in fig. 4.11. We determine
results for the free energy model and the spring model shown in fig. 4.13. In the free energy
model, the run length increases as a function of the motor number. This increase is more
rapid with increasing the number of myosins Nm rather than the number of kinesins Nk,
see fig. 4.13(a). Having more myosin V on the cargo increases the probability for diffusive
events and thus the velocity decreases, see fig. 4.13, while increasing the number of kinesins
keeps the cargo velocity constant. For Nm = 7 and Nk = 7, the cargo is transported over
large distances with a velocity which almost equals the single kinesin velocity. Using the
spring model for calculation of the unbinding rates, we find the same qualitative behavior
for both 〈∆xca〉 and 〈v〉ca, see fig. 4.13(c) and fig. 4.13(d), with an overall shorter run length
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Figure 4.12 Effective unbinding rates ǫm for the myosin V motors as a function of the
number nk of active kinesin and of the number nm of bound myosin V motors. In both
plots, the color code is a guide to the eye to indicate the value of the plotted quantities.
(a) Unbinding rates obtained from the free energy model, eq. (4.43). The rates are
independent of the number nk of active kinesins. (b) Logarithmic plot of the unbinding
rates obtained from the spring model, eq. (4.45). The rates depend on the number nk of
active kinesins.

compared to the free energy model. This shorter run length is a consequence of the large
unbinding rate for the myosin motors in the spring model, see fig. 4.12(b). For Nm > 4,
the run length decreases with the number of kinesins due to the dependence of the myosins’
unbinding rate on the number of kinesins. Using the spring model, the effective unbinding
rate of the myosins increases with the number of active kinesins, see fig. 4.12(b). Therefore,
more active kinesins enhance the unbinding of the myosin V motors and thus the probability
for diffusive events is reduced. Less diffusive events result in a smaller run length, but a
higher velocity.
Although both models lead to a similar behavior, there is an apparent difference in the

dependence of the run length on the number of involved motors. Compared to the case
of only one actively pulling motor, see fig. 4.10, a cargo transported by several active and
passive motors covers large distances with a considerable velocity.

4.7. Summary and discussion

We presented a stochastic theory for cargo transport by simultaneously actively pulling
and passively diffusing molecular motors. Our theoretical description is in good agreement
with the results of a recent in vitro experiment on cargo transport along a microtubule
by one active kinesin-1 and one passive myosin V motor [29]. In particular, our theory
provides an analytical expression, eq. (4.7), for the observed increase of the cargo’s run
length, based on the single motor properties. Our study further showed that the kinesin
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Figure 4.13 Comparison of (a,b) free energy model and (c,d) spring model. In all plots,
the color code is a guide to the eye and indicates the value of the quantities shown. (a)
Logarithmic plot of the cargo run length 〈∆xca〉 as a function of the kinesin number Nk

and myosin number Nm, as obtained from the free energy model discussed in the text. (b)
Average cargo velocity 〈v〉ca as a function of the kinesin number Nk and myosin number
Nm in the free energy model. (c) Logarithmic plot of the cargo run length 〈∆xca〉 as a
function of the kinesin number Nk and myosin number Nm as obtained from the spring
model. The cargo run length increases less steeply in comparison to the free energy
model. It attains its maximal value at the boundary with one kinesin and 7 myosins. (b)
Average cargo velocity as a function of the kinesin number Nk and myosin number Nm

in the spring model.

motion on the filament is not influenced by the presence of myosin V: the velocity of kinesin
and its unbinding rate remain unchanged. In contrast, a myosin V that is dragged along by
the kinesin exhibits an unbinding rate that is increased by a factor of five. We interpreted
the latter observation within two models: In the first model, myosin’s binding energy to
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the microtubule is reduced because kinesin pulls myosin V ’up the hills’ on the ragged free
energy landscape experienced by myosin V while diffusing along the microtubule. In the
second, kinesin generates a moving potential for myosin V, which pulls myosin V along and
off the filament.
A generalization to several myosins based on these two models led to an increase of the run

length, resulting in run lengths of tens of µm for already 2 or 3 myosins, see fig. 4.10(a). This
large increase is independent of the precise form of the interaction of the myosins and the
kinesins and has also previously been found for cargo transport with only actively pulling
and no diffusive motors as tethers [30]. Combining several pulling kinesin and passively
diffusing myosin V motors, we found that the run length increases more rapidly with the
number of passive motors, which in turn slows the cargo down, see fig. 4.13. In order to
transport the cargo at a high velocity more pulling kinesins have to be recruited to the
cargo.
Although the qualitative behavior fo cargo transport is independent of the two models,

quantitatively, they lead to different results. For example, the rate of the increase of the run
length was found to depend on the precise model, see fig. 4.10(a) and fig. 4.13. An in vitro
experiment could therefore be used to decide whether the myosins act as independent teth-
ers, as in the free energy model, or influence each other, as in the spring model.
The fact that the motion of kinesin remains unchanged in the presence of myosin V

motors while myosin V reacts strongly to kinesin’s presence is consistent with the general
observation that kinesin is a robust microtubule motor [14]. Myosin V, a robust motor
on actin filaments, is only weakly bound to microtubules compared to kinesin. Therefore,
myosin V can easily be influenced by kinesin when moving along microtubules. This feature
is certainly useful for intracellular transport: the passive motor can be dragged along without
effort which prevents hindrance of the pulling motor.
Our theory describes the case of kinesin as the pulling motor and myosin V as the diffusive

tether. For this scenario, a sufficient amount of data is available to determine all rates used
in our description. In [29], enhanced cargo transport on actin has been observed, where
myosin V is the actively pulling motor and kinesin is the passively diffusing tether. Due
to an insufficient amount of data, it is not possible, at present, to find all rates for the
corresponding network description. However, a study discussing parameter spaces can be
found in [146].
Finally, it is tempting to speculate that having kinesin and myosin V attached to the same

cargo is advantageous, as the cargo is able to switch between actin to microtubule tracks and
even has an increased run length on microtubule. Whether this type of motor cooperation
is realized under physiological conditions, is however still an open question [147].
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5.1. Summary

Cargo transport by the cooperative action of molecular motors is ubiquitous in all eukaryotic
cells. In this thesis, we focused on two generic transport modes: unidirectional transport by
two identical motors and transport on different filaments by actively pulling and passively
diffusing motors, both studied by recent in vitro experiments.
Our theory was based on a reduced single motor description as introduced in section 2.2.

We described the fundamental stochastic motor dynamics of stepping along, binding to,
and unbinding from the filament with force-dependent rates. The parameters for such a
description were deduced from single motor experiments as explained in section 2.2.2. To
study a cargo transported by several molecular motors, we introduced a discrete state space
associated with the single motor dynamics, see fig. 3.2(b) and fig. 4.2. Then, we considered
a continues-time Markov process on the state space. We have developed a generalization
of Hill’s method for the average absorption time, which allowed us to calculate averaged
quantities for arbitrary initial conditions, see section 2.3.3. After establishing this general-
ized method, we addressed cargo transport by two elastically coupled identical motors in
chapter 3 and cargo transport by active and passive motors in chapter 4.
Two identical motors, elastically coupled via the cargo, exhibit four distinct regimes of

transport, see fig. 3.9. In the weak coupling regime, both the binding time and the velocity
are hardly effected by the coupling. In contrast, both quantities are reduced in the strong
coupling regime. In addition to these two regimes that one may expect naively, there are two
further transport regimes: a reduced velocity regime, in which the motors slow each other
down without influencing the binding time and an enhanced unbinding regime, in which
motors pull each other from the filament without reducing their velocity. The occurrence of
these regimes depends on the coupling strength and on the parameters of the dynamics of the
single motors. This complex interplay of force-dependent stepping, strain force generation
and force-dependent unbinding can be understood by comparing three different time scales:
(i) the time for spontaneous unbinding, (ii) the time for developing a strain force between
the motors that is comparable to the detachment force and (iii) the time it takes to generate
a strain force comparable to the stall force. These time scale arguments provide not only a
quantitative but also an intuitive understanding of the cooperative behavior.
Our theoretical results are fully consistent with the available experimental data for two

coupled kinesin-1 motors from the Diehl lab. We have found a set of parameters for the single
motor description, which leads to very good agreement between theory and experiment, see
table 3.5. Beyond explaining these experimental findings, we make novel predictions for
different motor types. We predicted that different subsets of the transport regimes should
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be observed for different motor types when their elastic coupling strength is varied. In this
way, pairs of kinesins or dyneins exhibit the weak coupling regime, strong coupling regime
and enhanced unbinding regime, whereas myosin motors attain a reduced velocity regime
and the weak coupling regime, see fig. 3.10. These findings should be directly accessible
to experiments using complexes of two coupled motors that can be synthesized by recently
established methods [25].
The rather general framework together with the time scale arguments allowed us to study

the dynamics of the motor pair for more detailed description of the single motor properties.
To name a few, we discussed different force-velocity relations including backward steps,
the [ATP] dependence of the strain force generation, and non-linear springs as motor-cargo
linkers. In this way, we could clarify why previous studies based on different single motor
descriptions came to different conclusions about the influence of motor-motor interference.
Our study provides a detailed description of the state, in which both motors are active.

However, the whole trajectory of a cargo transported by two motors also contains segments
in which only one motor is actively pulling the cargo. Our results can be integrated into the
general framework for describing the dynamics of cargo transport by several motors [30].
Inspection of the binding time and the mean velocity of the overall cargo run reveals again
the four distinct transport regimes, see fig. 3.26.
The other cooperative transport mode considered in this thesis was transport by actively

pulling and passively diffusing motors in chapter 4. We presented a stochastic description
for the transport of a single cargo by actively pulling and passively tethering motors. We
applied this general model to the case of transport by one myosin V and one kinesin-1 along
a microtubule, as investigated in the in vitro experiment in [29]. We deduced all rates for
the description from a subset of the experimental data, and then used our model to describe
all experimentally measured quantities, finding good agreement. Such a cargo exhibits fast
directed motion interrupted by diffusive events. The overall run length of this cargo particle
is more than twice that of a cargo transported by a single kinesin. We derived an analytical
expression, eq. (4.7), for the enhanced run length of the cargo in terms of single motor
parameters. Furthermore, our results suggested that the actively pulling kinesin motion
is not influenced by the passive presence of myosin V. We also investigated the effect of
several myosins on a cargo pulled by a single kinesin, which led to an exponential increase
of the cargo’s run length, see fig. 4.10(a). Finally, we addressed the case of several active
kinesins and several passive myosins transporting the same cargo. In this case, the cargo’s
run length also increases exponentially with the number of motors, but the effect on the
velocity is different depending on which motor number is increased: more passive motors
slow the cargo down, whereas more active motors keeps the mean velocity of the cargo
constant, see fig. 4.13.
In summary, we presented a theoretical approach that integrates the well-established

properties of individual motors into a predictive theory for cooperative transport. In this
way, it relates the behavior on the cargo level to the behavior of the individual motors work-
ing collectively. The comparison of quantitative theoretical predictions and experiments can
then provide insights into mechanistic details that are not directly accessible in experiments.
Until now, little is known experimentally about the detailed behaviors of individual motors
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during collective transport, but our theory provides a general framework to address such
problems and it suggests how to analyze data. For example, in the case of unidirectional
transport, we predict different transport regimes depending on the single motor parameters
that can be compared to new experimental data. In this way, our theory contributes to a
quantitative understanding of cargo transport by several molecular motors.

5.2. Outlook

We presented a general theory of cooperative cargo transport based on a reduced single
motor description. As soon as more experimental data for single motors are available and
methods to couple motors in a defined way, our theory can be extended to make additional
quantitative predictions. In the case of two coupled identical motors, our description can
be extended to systematically study cargo transport by two motors with different single
motor properties. A particular scenario is the cooperative action of slow and fast motors,
in which the slow motor exerts drag on the fast motor and vice versa [148, 149]. Another
example provides a very recent in vitro experiment [101], in which the stepping patterns of
a tug-of-war between myosin V and myosin VI has been studied. Moreover, in our study,
we didn’t consider external forces, which is an interesting perspective, recently addressed
experimentally [26], as well as theoretically [42, 43, 150]. We expect that the time scale
arguments developed in this thesis will again be applicable, but further, more systematic
studies are needed in order to reach definite conclusions.
With respect to transport by active and passive molecular motors, a recent in vitro ex-

periment [59] found a nonprocessive actin motor Myo2p to be able to transport a cargo
processively in the presence of a kinesin-related protein called Smy1p on the same cargo.
In this case, Smy1p acts as a tether to enable the nonprocessive motor to transport cargo
processively. Such a transport process can be understood by an appropriate adaptation of
our theory.
In order to develop a systematic understanding of cooperative transport properties, it is

important to study biomimetic model systems. It is necessary to reveal the relation between
the single motor behavior and the transport properties involving several different motors.
It is most likely that it will be possible to couple different motors in different defined ways
within the next couple of years. Such a bottom-up approach together with a theoretical
framework will lead to a comprehensive understanding of cooperative cargo transport. Such
understanding may also be useful for the pathology of transport related diseases [151], as
well as for constructing nanotechnological devices integrating molecular motors [152, 153].
The latter machines will work collectively in a lab on a chip and as carriers for specific drug
delivery within organisms [154]. It is rather likely that the further development of such
nano-bio applications will provide many fundamental and challenging questions about the
complexity and diversity of cooperative cargo transport by molecular motors.
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A. Appendix

A.1. Properties of the overall cargo run: distribution of binding

time and run length

The state space of a cargo transported by two motors is shown in fig. 3.1. The distribution
of the binding time is given from the time dependent solution of the master equation for
such a network. This distribution of the binding time has been derived in a previous study
of cargo transport by several motors [30] and reads

P (∆tca) =
ǫ1
2

[(

1− ǫ1 + π − ǫ2
√

(ǫ1 + ǫ2 + π)2 − 4ǫ1ǫ2

)

e−
1
2
∆tca(ǫ1+ǫ2+π−

√
(ǫ1+ǫ2+π)2−4ǫ1ǫ2)
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√
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2
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]

. (A.1)

The distribution of the run length of the cargo is obtained from the distribution of binding
times eq. (A.1) by expressing the rates in units of the inverse distances rather than in units
of inverse times, i.e., by substituting 〈∆tca〉 by 〈∆xca〉 and ǫi by ǫi/vi and π by π/v1, leading
to
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2v1
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. (A.2)

Note, in the force-free case, v1 = v and ǫ1 = ǫ.

A.2. Iterative solution of master equations

In this section, we solve the master equation for the reduced motor description of section
3.2.1 by using a backward substitution. The steady state master equation describing the
dynamics on the network shown in fig. 3.4 is given by

0 = ωr(1)P1 − ωs(0)P0 +
N
∑

j=1

ωoff(j)Pj , (A.3)
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for 0 < i < N ,

0 = ωs(i− 1)Pi−1 + ωr(i+ 1)Pi+1 − ωr(i)Pi − ωs(i)Pi − ωoff(i)Pi (A.4)

and
0 = ωs(N − 1)PN−1 − ωr(N)PN − ωoff(N)PN . (A.5)

Now, we use a backward substitution to obtain from eq. (A.5),

PN−1 =
ωr(N) + ωoff(N)

ωs(N − 1)
PN , (A.6)

and from eq. (A.4)

Pi−1 =
ωr(i) + ωs(i) + ωoff(i)

ωs(i− 1)
Pi −

ωr(i+ 1)

ωs(i− 1)
Pi+1, (A.7)

where the index i runs backwards from i = N−1 to i = 1. In this way, for i < N , we obtain
all Pi as a function of PN . Either from eq. (A.3) or from the normalization,

N
∑

i=0

Pi = 1, (A.8)

PN can be obtained and thus all Pi are determined. For a numerical implementation of this
backward substitution algorithm it is convenient first to choose an arbitrary value for PN ,
obtain all Pi from eq. (A.7) and eq. (A.6) and then renormalize all Pi in such a way that
∑

i Pi = 1.

A.3. Detailed discussion of the time scales for strain force
generation

In this section, we discuss difficulties that arise from the mapping of continuous variables to
discrete values and from our reduced motor description. The crossover line fd(fs) between
the regimes with and without strain-induced unbinding is implicitly given by the equation

tFd
(fd, fs) = tu. (A.9)

However, for obtaining tFd
, we map the continuous variable fd to a discrete variable by using

the ceiling function, see eq. (3.35). As an example, we plot tFd
(fd) for fs ≃ 6 and tu ≃ 0.5 s

in fig. A.1(a). The intersection point at fd = 5 distinguishes strain-induced unbinding for
fd < 5 and spontaneous unbinding for fd > 5. The steps in the function tFd

(fd) arise from
the ceiling function in the upper limit of summation in eq. (3.37). Therefore, it can happen
that for fixed fs several values of fd satisfy eq. (A.9) leading to steps in the crossover line
fd(fs). The numerical solution [137] of the crossover line exhibits such steps and is displayed
as a solid black line in fig. 3.9.
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Figure A.1 (a) The average time tFd
(red line) it takes to generate a force comparable

to the detachment force between the two coupled motors as a function of the scaled
detachment force fd for fs = 6. (b) The average time tFs it takes to generate a force
comparable to the stall force between the motors as a function of the scaled stall force fs
(red line). Both times are compared to the characteristic time for spontaneous unbinding
tu (blue broken line). For both plots, the rates and parameters are taken from table 3.2.
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Figure A.2 Logarithmic plot of the sum A(fs) as given by eq. (3.44) and the numerical
approximation 0.65 exp(fs).

To estimate whether there is an interference effect on the velocity or not, we introduce
the time scale tFs in section 3.3.1. The basic idea is the following: as soon as the motors
produce a strain force which is comparable to the stall force, the average velocity of the cargo
is strongly reduced. This is the case for our standard force-velocity relation in eq. (2.20).
If the time tFs to reach such a force is smaller compared to the time for spontaneous
unbinding tu, the system exhibits a reduced velocity on average. For estimating tFs , we
neglect unbinding and therefore eq. (3.41) is independent of the detachment force and thus
tFs is only a function of fs. Again, the continuous variable fs appears in the ceiling function
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in the upper limit of summation. In addition, the time tFs(fs) displays discontinuities,
see fig. A.1(b). This behavior can be understood from the following considerations. For
fs = 1+ δ with δ ≪ 1, the upper limit of summation in eq. (3.41) becomes ⌈fs⌉− 1 = 1 and

tFs =
l

v

[

1

2
+

1

2(1− 1
1+δ )

+
1

(1− 1
1+δ )

]

. (A.10)

In the denominator, the factor (1− 1/(1 + δ)) can be arbitrarily small for arbitrarily small
δ. As a consequence tFs is large for small δ. Beside of this rather mathematical explana-
tion, we can also consider our two motor system for a more intuitive understanding. The
discontinuity arises for fs slightly larger than an integer value. As an example, we consider
again the case fs = 1+ δ with δ ≪ 1. The state associated with a force larger than or equal
to the stall force is then (⌈fs⌉) = (2). However, the transition from state (1) to state (2) is
very small, since the the transition is determined by state (1). In this state the associated
force is almost stall force, because fs ≈ 1. A force comparable to the stall force means that
the rate for the next forward step which is the transition to state (2) is very small. For this
reason, the time it takes to reach the state (2) is very long. To deal with these issues, we
define the crossover line as the smallest integer f∗s for which tFs ≥ tu. Note, other choice are
also possible, but the essential point of our choice is that it ensures that there is on fs > f∗s
for which tFs < tu.
Next, we explain the numerical approximation for tFs . As in eq. (3.44), the time tFs can

be rewritten as

tFs =
l

v
A(fs). (A.11)

For more convenience, we restrict fs to integer values and approximate A(fs) with the
function A(fs) ≈ a0 exp(fs). The fit parameter a0 ≃ 0.65 is obtained from a least square fit
to the numerical solution of the sum for fs ∈ [1, 6].

A.4. Empirical stepping rates based on kinesin-1 experiments

Now, we consider an empirical force-velocity relation obtained from a fit to the kinesin-1
data from [69] including back stepping. In [69], Carter and Cross have measured the force-
dependent ratio of forward and backward steps for kinesin-1, which could be approximated
with

q(F ) = q
1− F

Fs
0 , (A.12)

where q0 ≃ 800 independent of the ATP concentration, see fig. A.3(a). Furthermore, they
obtained the force-velocity relation for opposing and assisting forces for two different ATP
concentrations, see fig. A.3(b). This data can be described by

V(F ) =
vmax

vmin−v
v−vmax

+ vmin

(

vmax
vmin

vmin−v
v−vmax

)F/Fs

vmin−v
v−vmax

+
(

vmax
vmin

vmin−v
v−vmax

)F/Fs
. (A.13)
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Figure A.3 Experimental data for kinesin-1 stepping taken from [69]. Figures (a) and (b)
are the same as fig. 2.5(a) and fig. 2.5(b). (a) Ratio of forward to backward stepping
rates q(F ) as a function of load force F for different ATP concentrations: 1mM ATP
(blue) and 10µM (red). The line in the logarithmic plot is given by eq. (A.12) with
q0 ≃ 800 and Fs ≃ 7 pN as suggested in [69]. (b) Force-velocity relation for kinesin-1
for different ATP concentrations taken from [69]. The two lines are the force-velocity
relations from eq. (A.13) and Fs ≃ 7 pN, where we use a least square fit to obtain the
parameters v ≃ 547 nm/s, vmax ≃ 573 nm/s and vmin ≃ −12 nm/s for 1mM ATP (blue)
and v ≃ 126 nm/s, vmax ≃ 225 nm/s and vmin ≃ −3 nm/s for 10µM ATP (red). (c)
Forward α(F ) and backward β(F ) stepping rates obtained from (a) and (b) for 1mM
ATP concentration and (d) corresponding stepping rates for 10µM ATP concentration.

107



A. Appendix

-800

-400

 0

 400

 800

-10 -5  0  5  10

V

F [pN] 

vb=1µm/s

(a)

 0

 20

 40

 60

 80

 100

 120

 140

-10 -5  0  5  10

st
ep

p
in

g
 r

at
e 

[s
-1

]

F [pN]

α
β

(b)

Figure A.4 (a) Piecewise linear force-velocity relation with backward velocity vb ≃ 1µm/s,
given by eq. (A.14) and (b) the corresponding forward stepping rate α and backward
stepping rate β.

Here, we determine the maximal velocity vmax, the minimal velocity vmin and the force-free
velocity v from a least square fit to the measured data, see blue and red line in fig. A.3(b)
and values in the caption. Using the ratio of eq. (A.12) and the force velocity relation of
eq. (A.13), we determine the forward and backward stepping rates eq. (2.5) and eq. (2.6) for
our network description. The stepping rates are displayed in fig. A.3(c) and in fig. A.3(d).

A.5. Backward stepping

As discussed in section 2.2.2, backward stepping of molecular motors has been revealed in
various single molecular experiments. Under stall force, the number of forward steps is
equal to the number of backward steps. In this case, the distance between two elastically
coupled motors fluctuates, although the cargo is not moving on average. In principle, these
fluctuations could enhance unbinding. In the following, we quantify this effect and discuss
whether it is significant for the parameters used in our study. To account for backward
stepping in our description, we use the stepping rates α and β given by eq. (2.5) and eq. (2.6),
the ratio of forward to backward steps, see eq. (A.12), and a force-velocity relation with a
backward velocity vb 6= 0,

V(F ) ≡







v F < 0
v(1− F/Fs) 0 ≤ F < Fs

vb(1− F/Fs) F ≥ Fs,
(A.14)

shown in fig. A.4(a). Inspection of the corresponding force dependent stepping rates α(F )
and β(F ) reveals, that these rates are not defined for F = Fs; they even are discontinuous
for v1 6= vb as shown in the following. From eq. (2.5), the forward stepping rate is defined
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Figure A.5 (a)-(b) Scaled binding time t̃2 and (c)-(d) scaled velocity ṽ2 as a function
of the scaled forces fs and fd. The single motors are able to step backwards and their
parameters are taken from table 3.2, except for the stepping rates. For (a) and (c),
the stepping rates correspond to the piecewise linear force-velocity relation shown in
fig. A.4(a). They are shown in fig. A.4(b). The stepping rates fitted to the data by
Carter and Cross as shown in fig. A.3(c) are used for the plots (b) and (d). The crossover
lines between the transport regimes are obtained as explained in section 3.3.1, but taking
backward stepping into account. The solid blue line separates the region with and without
a reduced velocity, whereas the solid black line separates the region of spontaneous and
force-induced unbinding. The dashed lines correspond to the approximated crossover line
as given by eq. (3.38).

as

α(F ) =
q(F )

q(F )− 1

V(F )
l

, (A.15)
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Figure A.6 Detailed comparison of the effect of backward stepping for different force-
velocity relations: V1 does not include backward stepping and is given by eq. (2.20), V2

as in eq. (A.13) and V3 as in eq. (A.14) with vb ≃ 1µm/s. V2 and V3 include backward
stepping. (a) Scaled binding time t̃2 and (b) velocity ṽ2 for two active kinesins with
parameters from table 3.1 and corresponding force-velocity relations as a function of the
stiffness κ. All other parameters are for kinesin-1 from table 3.2.

where q(F ) = q
(1−F/Fs)
0 as in eq. (2.19). Using l’Hôpital’s rule, we obtain the one-sided limit

from below,

lim
F→Fs−

α(F ) =
v

l ln(q0)
(A.16)

and from above
lim

F→Fs+
α(F ) =

vb
l ln(q0)

. (A.17)

We complete the stepping rate with the average value of the limits, such that

α(Fs) ≡
1

2

(

lim
F→Fs−

α(F ) + lim
F→Fs+

α(F )

)

. (A.18)

This results in the stepping rates shown in fig. A.4(b).
In addition to the rather simple linear force-velocity relation given by eq. (A.14), we

consider the empirical force velocity relation including backward steps as introduced in
section A.4
Let us compare the results from the two velocity relations with backward stepping to the

ones from the reduced description without backward stepping, discussed in section 3.3. As a
technical remark, we like to note that, in the case of backward stepping, the forces between
the motors are not limited any more, since backward stepping could lead to higher forces
than stall force. Thus, we have to choose the number of states N , see fig. 3.3, large enough,
i.e., such that the results do not depend on N .
Using the scaled forces as variables, we determine the scaled binding time t̃2 and the

scaled velocity ṽ2 for the linear force velocity relation, eq. (A.14), with vb = 1µm/s and for
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A.6. [ATP] dependence in the empirical force-velocity relation

Figure A.7 Stepping rates of a motor pair under a strain force F . Considering the rates
from fig. A.4(b), the most probable event for F < Fs is a forward step of the trailing (left)
motor. Thus, the strain is reduced between the motors.

the empirical force-velocity relation, eq. (A.13), and compare them to the results without
backward stepping shown infig. 3.9. Note that in order to see an effect at all, we use a
rather large backward velocity vb. Typical values for vb are in the range of nm/s, see also
the experimentally determined force-velocity relation for F > Fs, where backward stepping
dominates, shown in fig. A.3(b). Comparing the contour plots including backward stepping
of fig. A.5 to the ones without backward stepping fig. 3.9, only a small difference in the
system with the empirical force-velocity relation fig. A.5(b) and fig. A.5(d) can be found.
However, this system exhibits a larger average velocity for high forces compared to the other
cases. This difference arises from the fact that the empirical force-velocity relation has a
different shape and, more significantly, a different force-free velocity v.
For a more quantitative comparison, we plot the scaled average velocity and the binding

time as a function of the stiffness for kinesin-1 parameters of table 3.1. In case there is an
effect from backward stepping, we expect it to occur for high coupling strength, where large
forces are generated between the motors. However, the effect of backward stepping is small,
see fig. A.6. A small difference occurs for coupling stiffnesses κ > 0.8 pN/nm.
To conclude, the effect of backward stepping is rather small. Even when high forces are

generated between the motors, they tend to reduce the strain force by stepping towards
each other. In order to understand this behavior, we consider the stepping rates for the
motor pair shown in fig. A.7. The trailing motor is always under the force −F , and thus,
its stepping rate is α(−F ) = v/l, assuming a constant force-velocity relation for assisting
forces. Suppose that the strain force between the motors is on the order of the stall force. In
this situation, the rate of forward stepping α(F ) ≃ β(F ) for the leading motor, but it is still
small compared to α(−F ) of the trailing motor, i.e. α(F ) ≪ α(−F ). As a consequence, it is
most likely that the trailing motor steps forward, thereby reducing the strain force between
the motors.

A.6. [ATP] dependence in the empirical force-velocity relation

The oversimplification of the [ATP] dependence of the force-velocity relation introduced in
eq. (2.21) essentially scales the velocity without changing the shape of force-dependent part
V(F ). However, in experimental studies, it has been revealed that the shape of the force
velocity relation also depends on the ATP concentration [69].
For a more detailed study, we consider the empirical force-velocity ration for low [ATP] by

111



A. Appendix

1 5 10 15 20
1

5

10

15

20

fs

f d

0.5

0

(I)

(II)

(III)

(IV)

(a)

1 5 10 15 20
1

5

10

15

20

fs

f d

0.5

0

(I)

(II)

(III)

(IV)

(b)

1 5 10 15 20

1

5

10

15

20

fs

f d

1

0.5

(I)

(II)

(III)

(IV)

(c)

1

0.5

1 5 10 15 20

1

5

10

15

20

fs

f d

(I)

(II)

(III)

(IV)

(d)

Figure A.8 (a) and (b) scaled binding time and (c) and (d) scaled velocity of two active
kinesins with values from table 3.2, taking backward stepping into account. The stepping
rates are determined from the fit to the data by Carter and Cross for [ATP]=1mM (a)
and (c) and for [ATP]=10µM (b) and (d), see fig. A.3(c) and fig. A.3(d). The crossover
lines between the transport regimes are obtained as explained in section 3.3.1, taking
backward stepping into account. The solid blue line separates the region with and without
a reduced velocity, whereas the solid black line separates the region of spontaneous and
force-induced unbinding. The dashed lines correspond to the approximated crossover line
as given by eq. (3.38). Slow motors typically unbind before generating substantial strain
forces. Therefore, the interference regions (II), (III) and (IV) are small.

Carter and Cross, shown in fig. A.3(b). In combination with the step ratio q(F ), eq. (A.12),
we determine the stepping rates for our single motor description and use, for the remaining
parameters, the values from table 3.2. The scaled binding time t̃2 and the scaled velocity
ṽ2 are shown in fig. A.8. As expected for an ATP concentration this low, the regions with
an effect on the unbinding and on the velocity are rather small compared to the results
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Figure A.9 Comparison of different force extension relations. The linear spring used
throughout the work is compared to the freely jointed chain (FJC) and the worm like chain
(WLC) model for different contour lengths Lc. In the case of a WLC with Lc ≃ 20 nm,
a few steps between the motors are enough to generate forces on the order of the stall
force.

for high [ATP]. Note, the shape of the force-velocity relation is now linear in the vicinity
of F = 0, leading to a weak force-dependence of the average velocity, as explained by the
symmetry argument in section 3.4.2. As also discussed in this section, the stall force might
not be the appropriate force scale to characterize the reduced stepping for a symmetric
force-velocity relation. However, the crossover line obtained from the time scale argument
tFs = tu from section 3.3.1 separating the region with and without an effect on the velocity
is shifted to the left compared to the case with a higher ATP concentration, compare blue
lines in fig. A.8(c) and fig. A.8(d).

A.7. Non-linear springs as motor linkers

In this section, we discuss non-linear springs as motor linkers. A non-linear force extension
relation can be incorporated in our model via eq. (3.4). In the case of the FJC, the extension
is given as a function of the force eq. (2.17). In order to assign a force to a state of the
network shown in fig. 3.4, we have to use a numerical algorithm for finding roots [137]. In
this way, we obtain the force for a given extension. In fig. A.9, we plot the force extension
relations for the FJC form eq. (2.17), for the WLC from eq. (2.18) and for the linear spring
as a function of the distance between the two motors in units of the motor step size. The
parameters are obtained from eq. (2.23) and eq. (2.24) with the kinesin value κ ≃ 0.3 pN/nm
from table 3.1.

Using the FJC and the WLC to mimic the elastic linkers, we consider the scaled binding
time t̃2 and the scaled velocity ṽ2 as a function of the contour length Lc. For the single
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motor description, we use two sets of parameters: (i) the rates and parameters listed in
table 3.1; (ii) the description based on the empirical force-velocity relation of appendix A.4
taking backward stepping into account. In general, for decreasing contour length Lc, both
the binding time and the velocity decrease, see fig. A.10. This behavior arises from a larger
strain force generation between the motors for small contour length, compare fig. A.9. In
case of the linear force-velocity relation without backward stepping, case (i), the time t̃2
and the velocity ṽ2 exhibit a kink. Further inspection reveals that this kink is an artifact
that arises due to the combination of the simple force-velocity relation and the steep force
extension relation for the WLC. Such a kink does not appear when describing the single
motor with the empirical force-velocity relation including backward stepping, see fig. A.10(c)
and fig. A.10(d).

However, the overall effect of the non-linear force extension relation is rather small and
the linear spring as an approximation seems to be reasonable.

A.8. Initial conditions: binding under strain

In this section, we discuss the role of the initial condition. Until now, we assumed that when
one motor is active the other motor binds into a state where the linkers are relaxed, the
force-free state (0). In a real system, thermal fluctuations can lead to stretching of the linker
of the inactive motor such that it reaches a different binding site. In this way, the motor
binds under a strain force to the filament. Taking this into account, we assign a starting
probability to every state, which is the Boltzmann distribution for the strain energy of two
serial springs with the effective spring constant κ/2. This strain energy reads

E(i) =
1

4
κ(li)2, (A.19)

where l is the motor step size, here the distance to the next binding site. This energy leads
to the starting weights

w(i) =
1

∑

i e
−E(i)/kBT

e−E(i)/kBT (A.20)

for the initial states introduced in the network of fig. 3.3. The softer the springs are, the
further they can, in principle, be pushed away by thermal fluctuations and therefore the
starting probability distribution is broader, see fig. A.11(a). Nevertheless, the influence of
’binding under strain’ is very small. For example, for the rates and parameter listed in
table 3.1 with the initial probability distribution given by eq. (A.20), the scaled binding
time and the average velocity are t̃2 ≃ 0.239 and ṽ2 ≃ 0.8450, respectively. These values are
only slightly different compared to the results, t̃2 ≃ 0.240 and ṽ2 ≃ 0.8456, obtained for the
same parameters but with binding exclusively into the state (0). Even when we compare
the binding time and the average velocity over a range of stiffness κ for these two different
initial conditions, we see no substantial difference fig. A.12. This rather weak dependence
arises from the fact that although the second motor binds under strain force, the most
probable pathway is to reduce the strain force by reducing the distance between the motors.
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Figure A.10 Scaled binding time t̃2 and velocity ṽ2 of two active kinesin with a FJC
(straight red lines) or a WLC (dashed blue lines) as elastic linkers, as a function of a
reasonable range of contour lengths Lc, see discussion in section 2.2.2. For (a) and (b),
the single motor dynamics described by the rates and parameters from table 3.1 without
backward stepping are used. With this reduced description, a kink appears for a WLC
with small contour length in (a) and (b). This artifact disappears for the empirical force-
velocity relation of fig. A.3(b) taking backward stepping into account, see (c) and (d).

We illustrate an extreme case in fig. A.11(b), where the inactive motor just has bound into
a state, in which one motor is under stall force. Neglecting backward stepping, the forward
stepping rate for the trailing motor is the largest rate, an order of magnitude larger than
the unbinding rates. Therefore, it is most likely that the next transition reduces the strain
force.
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Figure A.11 (a) Starting probability w(i) for state (i) for different values of the coupling
stiffness κ as in eq. (A.20). (b) Numerical values for the stepping rates and unbinding
rates, when the strain force between the motors is of the order of the stall force Fs. The
most probable transition is a step by the trailing motor and thus the elastic strain is
reduced.
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Figure A.12 Comparison of the effect of different initial probability distributions. (a)
Scaled binding time t̃2 and (b) scaled velocity ṽ2 for two kinesins with rates and parameters
from table 3.1, as a function of the stiffness κ. The motors start working exclusively in
the relaxed state (0) with w(0) = 0 (green line). Starting in different states weighted with
w(i) from the Boltzmann distribution, eq. (A.20), does not change the results substantially
(blue line).

A.9. Binding rate obtained from run length distribution

In this section, we explain how we obtain the binding rate π from a fit of the run length
distribution. From the experimental data Rogers et al. determined a histogram of the
overall cargo run length [25]. The bin-width of this histogram is ∆b = 1µm. We numerate
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the bins with the index i starting from i = 1 and denote the height of each bin hi. To satisfy
the normalization condition, we rescale all heights, such that

∑

i hi = 1.
In case of fitting the binding rate π, all other parameters are known and we obtain

the distribution of the cargo run length from eq. (A.2) as a function of 〈∆xca〉 and π,
P (〈∆xca〉 , π). In the scaled histogram, the height of the bin corresponds to the probability
that the measurement of an event lies in the range of the bin. To compare the height of the
bin with P (〈∆xca〉 , π), we have to integrate P (〈∆xca〉 , π) over the bin-width. Using a least
square fit, we obtain the binding rate π from minimizing

∑

i

(

∫ i∆b

(i−1)∆b
P (〈∆xca〉 , π) d 〈∆xca〉 − hi

)2

. (A.21)

This can be done numerically [137] and gives a numerical value for the binding rate π.
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List of mathematical symbols

A(fs) . . . . . . numerical approximation used in eq. (3.43)

A′ . . . . . . . . set of all states with at least one transition into an absorbing state

A . . . . . . . . set of all absorbing states

a . . . . . . . . . parameter for the slope of the force-velocity relation in eq. (3.50)

a0 . . . . . . . . fit parameter in the numerical approximation A(fs)

α . . . . . . . . . forward stepping rate

B . . . . . . . . . set of all states

b . . . . . . . . . parameter for the plateau-width of the force-velocity relation in
eq. (3.51)

∆b . . . . . . . . bin-width of a histogram

β . . . . . . . . . backward stepping rate

(Ci) . . . . . . . activity state of a cargo, in which the cargo is bound to the fila-
ment by i active motors, see fig. 3.1

D . . . . . . . . diffusion coefficient

δ . . . . . . . . . small increment

Dm . . . . . . . diffusion coefficient of myosin V on microtubule

E(i) . . . . . . . strain energy corresponding to the state (i), see eq. (A.19)

ǫ . . . . . . . . . force-free unbinding rate of a single motor

ǫ1 . . . . . . . . force-dependent unbinding rate of single motor

ǫ2 . . . . . . . . effective unbinding rate of a motor of a motor pair or the inverse
of the time two motors are bound simultaneously to the filament

ǫk . . . . . . . . kinesin unbinding rate
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List of mathematical symbols

ǫ̂k . . . . . . . . kinesin unbinding rate when myosin V is bound to the filament

ǫm . . . . . . . . myosin V unbinding rate

ǫ̂m . . . . . . . . myosin V unbinding rate when kinesin is bound to the filament

F . . . . . . . . load force

Fd . . . . . . . . detachment force

fd . . . . . . . . scaled detachment force as in eq. (3.27)

F̂d,m . . . . . . . detachment force of myosin V diffusing on microtubule

F−
d . . . . . . . . detachment force for the assisting force direction

F+
d . . . . . . . . detachment force for the opposing force direction

Fi . . . . . . . . discrete elastic force induced by a discrete extension, see eq. (3.4)

Fκ . . . . . . . . strain force between two elastically coupled motors per motor
step, see eq. (3.26)

Fm . . . . . . . . myosin V’s friction force, when it is pulled along a microtubule
by kinesin.

Fs . . . . . . . . stall force of a single motor

fs . . . . . . . . scaled stall force as in eq. (3.28)

∆G . . . . . . . average free binding energy of myosin V to microtubule

γ . . . . . . . . . friction coefficient

hi . . . . . . . . height of bin i of a histogram

I(i) . . . . . . . . modified Bessel function

it . . . . . . . . . index of the target state of the network shown in fig. 3.8

J . . . . . . . . . probability current

κ . . . . . . . . . spring constant

κk . . . . . . . . spring constant of kinesin

κm . . . . . . . . spring constant of myosin V
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List of mathematical symbols

κtot . . . . . . . total effective spring constant

L . . . . . . . . . Fokker-Planck operator

∆l . . . . . . . . spatial distance

l . . . . . . . . . step size of a molecular motor

l0 . . . . . . . . . rest length of a cable of the motor-cargo linker

Lc . . . . . . . . contour length of a polymer (the motor-cargo linker)

Lp . . . . . . . . persistence length for the WLC

Ls . . . . . . . . segment length of the FJC

N . . . . . . . . total number of states

N . . . . . . . . normalization constant

n . . . . . . . . . number of analyzed trajectories

Nk . . . . . . . . number of kinesins attached to the cargo

nk . . . . . . . . number of kinesins bound to the filament

Nm . . . . . . . . number of myosins attached to the cargo

nm . . . . . . . . number of myosins bound to the filament

N− . . . . . . . number of states corresponding to the compression mode of cable
like motor-cargo linkers

ωij . . . . . . . . rate for a transition from state (i) to state (j)

〈ωb〉 . . . . . . . average rate of a backward step of two elastically coupled motors
before one of the motors unbinds

〈ωf〉 . . . . . . . average rate of a forward step of two elastically coupled motors
before one of the motors unbinds

ωb(i) . . . . . . . effective rate of backward steps out of state (i)

ωf(i) . . . . . . . effective rate of forward steps out of state (i)

ωoff . . . . . . . unbinding rate of a motor in a motor pair for the network shown
in fig. 3.2(b) taking the strain in each state into account

ωr . . . . . . . . rate for relaxing the elastic element between two elastically cou-
pled motors by one motor step
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List of mathematical symbols

ωs . . . . . . . . rate for stretching the elastic element between two elastically cou-
pled motors by one motor step

Psk(i, t) . . . . . modified Skellam distribution for the absolute distance i at time
t, see eq. (3.64)

Pi . . . . . . . . steady state probability of being in state (i)

pi(t) . . . . . . . probability of being in state (i) at time t

p . . . . . . . . . probability

φnde . . . . . . . fraction of runs without diffusive events

π . . . . . . . . . circle number

π . . . . . . . . . binding rate of a single motor

πk . . . . . . . . kinesin binding rate

π̂k . . . . . . . . kinesin binding rate when myosin V is bound to the filament

πm . . . . . . . . myosin V binding rate to microtubule

π̂m . . . . . . . . myosin V binding rate to microtubule when kinesin is bound to
the filament

ψi . . . . . . . . probability density function of the waiting time in state (i)

Q . . . . . . . . steady state probability of network in fig. 4.4(b)

q(F ) . . . . . . . force-dependent ratio of forward to backward steps

q0 . . . . . . . . force-free ratio of forward to backward steps

rnm,nk
(x, t) . . . probability of being in state (nm, nk) at position x at time t

S . . . . . . . . . set of all starting states

σ() . . . . . . . . standard deviation of the quantity in the brackets

σ2() . . . . . . . variance of the quantity in the brackets

Θ . . . . . . . . ratio of the detachment forces associated with different direction,
see eq. (3.54)

t . . . . . . . . . time

δt . . . . . . . . small time increment

122



List of mathematical symbols

〈∆tca〉 . . . . . . average binding time of a cargo

∆tca . . . . . . . binding time of a cargo

τD . . . . . . . . estimated time for motors with cable-like linkers to step out of
the compression mode

〈∆t〉 . . . . . . . average time to absorption

〈∆tde〉 . . . . . . average time of a diffusive event

tFd
. . . . . . . . time it takes to generate strain forces between two elastically cou-

pled motors comparable to the detachment force Fd

tFs . . . . . . . . time it takes to generate strain forces between two elastically cou-
pled motors comparable to the stall force Fs

〈∆ti〉 . . . . . . average waiting time in state (i)

τi . . . . . . . . . time spent in state (i) before absorption

t1 . . . . . . . . average binding time of one motor to the filament

t2 . . . . . . . . average binding time of two elastically coupled motors simultane-
ously to the filament

t̃2 . . . . . . . . average scaled binding time of two elastically coupled motors si-
multaneously to the filament in units of the single motor binding
time t1

〈∆tk〉 . . . . . . average binding time of kinesin on microtubule

〈∆tm〉 . . . . . . average binding time of myosin V on microtubule

〈∆tse〉 . . . . . . average time of a stepping event

tu . . . . . . . . time scale for spontaneous unbinding of a motor in a motor pair

U(x) . . . . . . . tilted potential

V(F ) . . . . . . . velocity as a function of the force F used as the force-velocity
relation for a single motor

V (x) . . . . . . . potential

v . . . . . . . . . force-free single motor velocity

v1 . . . . . . . . average velocity of one molecular motor or of a cargo transported
by one motor
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List of mathematical symbols

v2 . . . . . . . . average velocity of two elastically coupled molecular motors or of
a cargo transported by two motors simultaneously

ṽ2 . . . . . . . . average scaled velocity of two elastically coupled motors in units
of the single motor velocity v

vb . . . . . . . . backward velocity of a motor

〈v〉ca . . . . . . . average over the single trajectory velocity of a cargo

vca . . . . . . . . average velocity of a cargo bound to the filament

vi . . . . . . . . velocity of the cargo particle in state (i)

vk . . . . . . . . velocity of kinesin on microtubule

〈

v2
〉

ca
. . . . . . mean square velocity of a cargo

vmax . . . . . . . maximal velocity of the empirical force velocity relation in
eq. (A.13)

vmin . . . . . . . minimal velocity of the empirical force velocity relation in
eq. (A.13)

w . . . . . . . . . constant starting probability

w0,0 . . . . . . . splitting probability of starting in state (0, 1) and being absorbed
in state (0, 0) in the network shown in fig. 4.4(a)

w1,1 . . . . . . . probability for a stepping event to start in state (1, 1) of the net-
work shown in fig. 4.2

w(i) . . . . . . . initial probability to start in state (i)

W (i, j) . . . . . transition probability from state (i) to state (j)

wk . . . . . . . . probability for a ’kinesin start’ in state (0, 1) in fig. 4.2

X(t) . . . . . . . stochastic process in time

x . . . . . . . . . spatial coordinate

x0 . . . . . . . . position of the minimum of the potential, see fig. 2.3(a)

xb . . . . . . . . position of the barrier of the potential, see fig. 2.3(a)

〈∆xca〉 . . . . . . average run length of a cargo

∆xca . . . . . . . run length of a cargo
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List of mathematical symbols

∆x . . . . . . . . extension of an elastic element

∆xi . . . . . . . discrete extension of an elastic element

〈

∆x2ca
〉

. . . . . mean square run length of a cargo

⌈ ⌉ . . . . . . . . the ceiling function gives the smallest integer not less than the
value in the brackets
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Acronyms

[ATP] . . . . . . adenosine triphosphate concentration

ADP . . . . . . . adenosine diphosphate

AFM . . . . . . atomic force microscopy

ATP . . . . . . . adenosine triphosphate

DNA . . . . . . deoxyribonucleic acid

EM . . . . . . . electron microscope

FJC . . . . . . . freely jointed chain

KIF . . . . . . . kinesin superfamily

Pi . . . . . . . . inorganic phosphate

Qdot . . . . . . . quantum dot

RNA . . . . . . . ribonucleic acid

TIRF . . . . . . total internal reflection fluorescence as in total internal reflection
fluorescence microscope (TIRFM)

WLC . . . . . . worm like chain
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