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In intervention research, single-case experimental designs are an important way to gain
insights into the causes of individual changes that yield high internal validity. They are
commonly applied to examine the effectiveness of classroom-based interventions to
reduce problem behavior in schools. At the same time, there is no consensus on good
design characteristics of single-case experimental designs when dealing with behavioral
problems in schools. Moreover, specific challenges arise concerning appropriate
approaches to analyzing behavioral data. Our study addresses the interplay between
the test power of piecewise regression analysis and important design specifications
of single-case research designs. Here, we focus on the influence of the following
specifications of single-case research designs: number of measurement times, the initial
frequency of the behavior, intervention effect, and data trend. We conducted a Monte-
Carlo study. First, simulated datasets were created with specific design conditions
based on reviews of published single-case intervention studies. Following, data were
analyzed using piecewise Poisson-regression models, and the influence of specific
design specifications on the test power was investigated. Our results indicate that
piecewise regressions have a high potential of adequately identifying the effects of
interventions for single-case studies. At the same time, test power is strongly related
to the specific design specifications of the single-case study: Few measurement times,
especially in phase A, and low initial frequencies of the behavior make it impossible
to detect even large intervention effects. Research designs with a high number of
measurement times show robust power. The insights gained are highly relevant for
researchers in the field, as decisions during the early stage of conceptualizing and
planning single-case experimental design studies may impact the chance to identify
an existing intervention effect during the research process correctly.

Keywords: single-case design, single case analysis, Monte-Carlo simulation, behavior problems, special
education, research design, single-case experimental design
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INTRODUCTION

While experimental group designs are the most common way of
testing educational and psychological research hypotheses,
single-case experimental designs (SCED) experienced a
renaissance over the last decades (Smith, 2012). In intervention
research, SCEDs are a vital way to gain insight into the causes of
individual changes that yield high internal validity (Kratochwill
et al., 2010; Shadish et al., 2015). Among others, SCEDs are
commonly applied to examine the effectiveness of classroom-
based interventions to reduce behavioral problems in schools.
Several literature reviews of SCED behavioral intervention
studies have been published in the past few years. For example,
Briesch and Briesch (2016) summarize the findings of single-case
research on 48 behavioral self-management intervention studies.
Soares et al. (2016) synthesized results of 28 single-case studies
focusing on the effect size of token economy use in classroom
settings. More recently, Moeyaert et al. (2021) summed up the
body of research on the effects of peer-tutoring on academic and
social-emotional outcomes and included 46 single-case studies.
Several additional examples of the application of SCED in similar
fields can be identified (e.g., Busacca et al., 2015; Harrison et al.,
2019). However, at the same time, there is no consensus on
good design characteristics of SCED when dealing with count
data. Moreover, specific challenges arise concerning appropriate
approaches to analyzing behavioral SCED data.

This paper aims to clarify these questions by specifying which
factors (hereafter design specifications) influence the chance (i.e.,
statistical test power) of detecting an intervention effect in a
single-case behavioral intervention study. In addition, based on
the results gained, we aim to provide recommendations for SCED
or at least to identify criteria for a researcher to consider when
planning a single-case study.

Design Recommendations for
Single-Case Studies
The most basic structure of a SCED consists of time series
measurements on one individual divided into two phases:
Continuous measurements occur before the start of a specific
event (phase A) and continuous measurements taken after the
event, e.g., the manipulation of an independent variable (phase
B). This design can be extended to numerous variations regarding
the number and order of phases (e.g., ABAB or AB1B2B3) based
on specific research questions and assumptions on the nature of
the behavior and the resulting data (Nock et al., 2007). Following
the experimental logic of counterfactual thinking, the data of
phase A serve as a reference for what would have happened
in phase B if no intervention had taken place. Therefore, the
level and development in phase B are compared to the level and
development in phase A.

Despite the usefulness and importance of such SCEDs in
applied research, researchers have to find common ground on
how many measurements and phases should be included in
SCED. Kratochwill et al. (2013) provide an overview of single-
case intervention research design standards developed by a panel
of experts in SCED methodology. However, these important

design recommendations include only very general design
specifications and do not consider the specific characteristics of
the measured feature (scaling and distribution). In contrast, we
hypothesize that recommendations should be different when the
measurements are count data (e.g., problem or error frequencies,
which are Poisson distributed) or standardized scales (e.g., T or Z
test scores, which are Gaussian distributed). We also hypothesize
that choosing a particular SCED design depends on several design
specifications (see Figure 1): the initial problem intensity at the
start of a study, the intervention effect’s expected strength (a level
or a slope effect), and an expected data trend.

Single-Case Data Analyses
In addition to the design specifications, we also need to determine
the method of data analysis since not all methods have the
same sensitivity (or power). If someone decides to base the data
analysis solely on visual inspection, one might recommend a
different design than if the data analysis is based on a piecewise
regression model.

Traditionally, single-case data have been analyzed through
visual analysis (Parker and Brossart, 2003). Specifically,
visual analysis is based on visual inspection of graphed
time-series data where patterns related to level, trend, and
overlapping/non-overlapping phases are evaluated to determine
intervention effects (e.g., Parker and Vannest, 2012). Critics
point out that visual analysis is overly subjective, vulnerable to
misinterpretations due to data trends or outliers, and has less
power (an increased type II error risk) compared to statistical
analyses (Greenwald, 1976; Jones et al., 1978; Keppel, 1982;
Matyas and Greenwood, 1990; Allison, 1992; Klapproth, 2018;
Wilbert et al., 2021). There is evidence that agreement among
multiple analysts and the consistency of their conclusions could
be increased by using systematic protocols (Maggin et al., 2013;
Wolfe et al., 2019).

Several statistical analysis techniques have been developed
to overcome these critics throughout the last decades, either
as a complement or a substitute for visual analysis. These
procedures comprise overlapping indices (see Parker and
Brossart, 2003) and “classical” statistical tests for comparing
differences between groups like Student’s t-tests and Mann-
Whitney U-tests. These approaches have both benefits and
significant limitations (e.g., not addressing autocorrelation and
the existence of a trend throughout the data). Consequently,
more complex statistical approaches have been applied to single-
case data. These primarily include regression-based accounts
(Huitema, 1986; Beretvas and Chung, 2008), randomization tests
(Edgington and Onghena, 2007; Dugard et al., 2012; Heyvaert
and Onghena, 2014), and mixed-effect models (Davis et al., 2013;
Shadish et al., 2013; Moeyaert et al., 2014). These approaches
address many of the former shortcomings like autocorrelation
and the existence of a trend throughout the data (piecewise-
regression models and randomization test), differentiate between
immediate and continuous effects of an intervention (piecewise
regression models), and allow the mutual analysis of several
SCEDs (mixed models).

Many criteria considered in visual analysis are included and
modeled in these more sophisticated statistical approaches (e.g.,
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FIGURE 1 | Design specifications potentially influencing the test power of single-case experimental designs (SCEDs).

immediate and evolving intervention effects, data trends, data
variability, complex phase contrasts). Other criteria specific to
visual inspection may have to be investigated in more detail so
they can be added to the statistical models explicitly (e.g., non-
linearity of effects, outliers, lagged onset of intervention effects).

It is not easy to decide which approach is the “best”
for analyzing single-case data. The underlying approaches
to data analyses and statistics are fundamentally different:
Piecewise regression analyses model data according to
a complex theoretic model about the structure of single
cases. Conversely, visual inspection relies on human
expertise, pattern recognition, and intuition while overlap
indices are targeted toward practitioners as an easy and
accessible way to calculate effect sizes to validate their
subjective judgment.

Based on the abovementioned arguments and studies,
we consider piecewise regression models as one potentially
appropriate and versatile approach among other alternatives.
Notwithstanding, applying regression-based analyses (piecewise
regression models and mixed models) comes with additional
questions about the adequate distribution for modeling the
dependent variable (more precisely, the error term) and the
proper link function. Most implementations of regression
analyses for SCED data are based on OLS estimators (e.g.,
Huitema and Mckean, 2000) or generalized models with ML
estimators based on Gaussian distributions (Ferron, 2002;
Beretvas and Chung, 2008). While these estimators are adequate
when the measured variable is continuous and normally
distributed (e.g., a score in a standardized math test), they are less
suitable for analyzing count data.

However, in single-case research, there are multiple types
of dependent measures including count or frequency data.
This is predominantly the case in SCEDs focusing on
behavioral problems in schools: the dependent variable is
often conceptualized as the frequency of a specific behavior
within a certain period (e.g., disruptive or aggressive behavior).
Frequencies are discrete numbers in nature; the Gaussian
distribution models continuous values. Furthermore, frequencies
can never be negative. Nevertheless, all negative numbers are
modeled with a certain probability in a Gaussian probability
density function. In line with this, Shadish and Sullivan (2011),
in their overview of published SCED studies, argue:

Of particular interest is the fact that nearly all outcome
variables were some forms of a count. Most parametric statistical
procedures assume that the outcome variable is normally
distributed. Counts are unlikely to meet that assumption and,
instead, may require other distributional assumptions. In some
cases, for example, the outcome is a simple count of the number
of behaviors emitted in a session of a fixed length, which has a
Poisson distribution (p. 979).

Binomial and Poisson distributions might be adequate
alternatives. Binomial distributions display the probability of
an outcome frequency given the number of events and the
probability of an outcome for each event. Therefore, they are
adequate for modeling count data and proportions (e.g., the
frequency of behaviors). In cases where the occurring number
of events is low, but the potential number of events is high,
Poisson distributions are a viable alternative. These distributions
depict a binomial distribution when the number of potential
events approximates infinity, and the expected frequency of an
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outcome (λ) is given. While a binomial distribution gives the
probabilities of frequencies in the case of a finite exact number
of possible occurrences, the Poisson distribution depicts the
expected frequencies of an outcome when the number of possible
occurrences approximates infinity. Such conditions are often
met when behavioral data are measured. Consider, for example,
a researcher investigating the occurrence of inappropriate
behavior. At its extreme, a student might show inappropriate
behavior at any second. At the same time, it is also realistically
possible that no inappropriate behavior occurs at all.

Despite these arguments, piecewise Poisson-regression
models are not widespread in SCED research. This depicts
a potential limitation to existing studies as effects might
not have been adequately identified as relying on flawed
distributional assumptions impacts the power of the chosen
analytical approach. In addition, the use of Poisson distributions
in regression models as means of analyzing SCED has not
been examined in detail. Insights into test power and alpha
error rate are lacking. However, such insights might yield
crucial additional information on the adequacy of the design
specifications of SCED.

Study Aims
The present paper aims to investigate the test power of piecewise
regression analyses for analyzing SCEDs with count data.
Thereby, we aim to address the impact of essential design
specifications of SCEDs on test power. More specifically, we
examine the influence of the following aspects on the test power:

(1) The initial frequency of the (problem) behavior,
(2) The strength of the intervention effect,
(3) The number of measurement times in phase A (baseline)

and phase B (intervention),
(4) The interaction between initial frequency, the strength of

the intervention effect, and the number of measurement
times,

(5) The interaction of the number of measurement times in
phase A and phase B, and the initial frequency of the
behavior,

(6) The presence of a trend in the data,
(7) The interaction of a trend in the data, the strength of the

intervention effect, and the number of measurement times.

Besides the test power, we will also report the alpha-error
probabilities (type I errors) for all investigated conditions. Our
regression approach will extend the piecewise regression model
proposed by Huitema and Mckean (2000) to include Poisson
distributed dependent variables. These insights might depict an
important orientation for deriving design principles of adequate
SCED in the context of behavioral data.

MATERIALS AND METHODS

To answer the research questions mentioned above, we set up
several Monte-Carlo simulation studies that focused on specific
design specifications of SCEDs. The general idea behind such
simulations is to generate a high number of random single-case

datasets with specified conditions (e.g., a specific intervention
effect). Afterward, these datasets are analyzed (here, using a
piecewise Poisson-regression model). Comparing the results of
each analysis to the initial setup of the random case generates four
results:

(1) True-positive: The initial setup contained an intervention
effect, and the analysis found a significant effect.

(2) True-negative: The initial setup did not contain an
intervention effect, and the analysis did not find a
significant effect.

(3) False-positive: The initial setup did not contain
an intervention effect, and the analysis found a
significant effect.

(4) False-negative: The initial setup did contain an
intervention effect, and the analysis did not find a
significant effect.

The proportion of true positive results is the power, and
the proportion of the false-positive results is the alpha error
probability of a test for the given design specifications.

Data Simulation Rationale
The data simulation followed the rationale elaborated below.
For any studies applying a Monte-Carlo approach, the validity
of the findings and their relevance to practice depend on
the characteristics of the data generated. Therefore, we paid
particular attention to aligning the simulated data, if reasonable,
with the reality of published SCED studies.

Phase Design
AB-Designs are the simplest form of a SCED comprised of a
baseline (phase A) and an intervention phase (phase B). At
the same time, AB depicts the building block for any multiple-
phase design, and the multiple baseline design (MBD) – the
most frequent SCED (Shadish et al., 2014). Therefore, we decided
to choose an AB design as the underlying phase design of
the simulated data.

Outcome Variable
We were particularly interested in analyzing intervention
studies in which a teacher or researcher attempts to reduce
a specific (problematic) behavior during classroom learning.
Here, the target behavior is captured through systematic direct
observations (e.g., Hintze et al., 2002; Lane and Ledford, 2014;
Ledford et al., 2018), which are the “most widely used outcomes
in single-case research” (Pustejovsky, 2018, p. 100). Thus, we used
Poisson-regression models. The simulated data should represent
count data (frequency of the observed behavior).

Initial Problem Behavior Frequency
Another potential factor influencing the test power and alpha-
error probability of the analyses is the frequency of the dependent
variable. The behavior of interest to the particular research
question may be scarce (e.g., self-harming behavior during class)
or widespread (e.g., disturbing behavior). Hence, the problem
behavior frequency depends on the behavior of interest and
the exact operationalization. Therefore, we decided to set up a

Frontiers in Education | www.frontiersin.org 4 July 2022 | Volume 7 | Article 917944

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-07-917944 June 30, 2022 Time: 15:43 # 5

Wilbert et al. Power of SCED Regression Analyses

simulation where we vary the expected problem intensity starting
with a low frequency of 5 to a high frequency of 30. These
frequencies follow the mean baseline frequencies of adverse
valence outcomes described in the overview of 303 published
SCEDs provided by Pustejovsky et al. (2019, p. 24). In simulations
where we did not focus on the relevance of behavior frequencies,
we chose an expected behavior frequency of 15.

Number of Measurement Times in Phase A
A certain proportion of published SCED studies include fewer
than three phase A measurement times (Pustejovsky et al.,
2019). This contradicts both current recommendations (e.g.,
Kratochwill et al., 2013) and the basic requirements of regression
methods. We simulated single-case data using a minimum of
three measurements per phase following usual conventions (e.g.,
Hitchcock et al., 2014). Further, Pustejovsky et al. (2019) found
that the number of phase A measurements was below 20 for
the overwhelming majority of SCED studies. Most studies had
between 2 and 15 phase A measurement times. Therefore, we
set up a simulation varying the length of phase A between 3
and 19 measurements. In line with Smith (2012), who found
an average of 10.2 phase A observations in their review of 400
published SCED studies, we used 10 phase A measurements for
the other simulations.

Number of Measurement Times in Phase B
In addition to varying phase A (baseline) lengths, the number
of measurement times in phase B (intervention) also varies, for
example, due to the number of sessions of an implemented
intervention. We, therefore, varied the number of measurement
times (the length) of phase B in one simulation. Usually, the
length of phase B exceeds the length of phase A. We took this
into account by setting the minimum length of phase B to 10
measurements and the maximum to 50. We set 20 phase B
measurements as a fixed value for the other simulations.

Intervention Effect
Another essential characteristic of SCED studies is the strength
of the intervention effect (i.e., the reduction of the problem
behavior). Most of the published research using SCEDs usually
reports quite significant effects; however, it needs to be considered
that this might also be due to a publication bias (Travers
et al., 2016; Dowdy et al., 2022). In addition, the majority
of the published SCED studies report different measures of
effect sizes (such as overlap indices). Only a few studies report
effect sizes associated with regression analysis. Therefore, it is
difficult to derive an expected “mean” intervention effect from
existing studies. We addressed this challenge by setting up
a simulation with varying intervention effects employing the
level effect between 20% and 80% problem reduction. We used
a reduction of the dependent variable by 50% for the other
simulations. In practice, behavior reductions of this magnitude
are considered substantial (Vannest and Sallese, 2021, p. 17). We
further assumed that, on average, no additional slope effect would
be present in the data, but we included a slope effect for each case
randomly drawn from a gaussian distribution with a mean of zero
and a standard deviation of 10% of the initial problem behavior

frequency. We considered that an intervention does not exactly
exert the same effects on every individual.

Trend Effect
Another common feature of single-case data is the presence
of a trend effect in the data. This trend indicates an overall
development in the problem behavior, which already appears
in phase A (baseline) and is independent of the intervention.
This trend might be positive (increasing the problematic
behavior frequency across time) or negative (reducing the
problematic behavior) and depends on many individual variables
(e.g., additional support from home; negative peer influence;
maturation). Therefore, we set up a simulation for positive and
negative trend effects by varying the trend’s strength between
a decrease of 60% to an increase of 60% of the problem
behavior frequency throughout all measurements. For all the
other simulations, we included a random trend effect for each
simulated single-case drawn from a gaussian distribution with
a mean of zero and a standard deviation of 10% of the initial
problem behavior.

Monte-Carlo Design
We conducted three simulations. Each simulation varied specific
SCED specifications.

For simulation 1, we varied the intervention effect (4
iterations: −0.2; −0.4; −0.6; −0.8), the number of measurement
times in phases A (9 iterations: 3, 5, 7, 9, 11, 13, 15, 17, 19), and
the number of measurement times in phase B (7 iterations: 10, 15,
20, 25, 30, 40, 50), resulting in 4× 9× 7 = 252 design conditions.

For simulation 2, we varied the initial frequency of the
behavior (6 iterations: 5; 10; 15, 20; 25; 30), the intervention
effect (4 iterations: −0.2; −0.4; −0.6; −0.8), and number of
measurement times (6 iterations: 15, 21, 27, 33, 39, 45 where
1/3 of the measurements belong to phase A and 2/3 to phase B),
resulting in 6× 4× 6 = 144 design conditions.

For simulation 3, we varied the initial frequency of the
behavior (6 iterations: 5; 10; 15, 20; 25; 30), the trend effect (5
iterations: −0.6; −0.4; 0; 0.4; 0.6), and number of measurement
times (6 iterations: 15, 21, 27, 33, 39, 45 where 1/3 of the
measurements belong to phase A and 2/3 to phase B), resulting
in 6× 5× 6 = 180 design conditions.

For each design condition within each simulation, 10,000
random single cases with the respective design specifications
were generated (the generation algorithm below). Each case
was analyzed with a piecewise Poisson-regression model (see
below). The proportion of significant intervention effects in these
analyzes is the test power for the respective attributes for that
design condition.

In a second step, another 10,000 random single-cases were
created for each design condition. This time, the intervention
effect was set to zero for all cases. Again, each case was analyzed
with a piecewise Poisson-regression model. The proportion of
significant intervention effects detected in these analyses is the
design condition’s alpha-error probability.

Preparatory tests have shown that we need a rather high
number of 10 000 cases per variant to achieve a stable estimate.
This is due to various random parameters and several interactions
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TABLE 1 | Overview of the parameter settings and iterations (runs) for the three simulations.

Parameter Simulation 1 Simulation 2 Simulation 3

Initial behavior frequency (start) 15 {5, 10, 15, 20, 25, 30} {5, 10, 15, 20, 25, 30}

Phase A and B length (MTA/MTB) MTA = {3, 5, 7, 9, 11, 13, 15,
17, 19} crossed1 with
MTB = {10, 15, 20, 25, 30, 40,
50}

MTA+B = {15, 21, 27, 33, 39,
45} with MTA = 1/3 and
MTB = 2/3 of the length.

MTA+B = {15, 21, 27, 33, 39,
45} with MTA = 1/3 and
MTB = 2/3 of the length.

Intervention effect (level) {−0.2, −0.4, −0.6, −0.8} {−0.2, −0.4, −0.6, −0.8} −0.5

Trend effect2 (trend) N (µ = 0, σ2
= 0.1× start

MTA+B
) N (µ = 0, σ2

= 0.1× start
MTA+B

) {−0.6, −0.4, 0, 0.4, 0.6} * start/
MTA+B

Slope effect3 (slope) N (µ = 0, σ2
= 0.1× start

MTB
) N (µ = 0, σ2

= 0.1× start
MTB

) N (µ = 0, σ2
= 0.1× start

MTB
)

Curly brackets depict iterations. 1Crossed means that each iteration in MTA is combined with each iteration in MTB. 2A trend effect is a continuous change of the
behavior frequency independent of the intervention effect and across all measurement times. 3A slope effect is a continuous change of the behavior frequency due to the
intervention and across Phase B.

that go into the data generation algorithm (see section “Results”
and Table 1).

The random cases were generated with the R package scan
(Wilbert and Lüke, 2022). The same package was used for
calculating the test power and alpha error probability. The source
code for all analyzes is available as an online supplement to
this paper1.

Data Generation Algorithm
Firstly, a random single-case was created by calculating the
expected behavior frequency (λ) for each measurement (i). The
formula adapts a piecewise-regression model for single cases:

λi = start + level × start × phasei + trend ×mti

+slope× phasei × (mti −MTA) (1)

where,
i = The index of a measurement.
start = The initial problem frequency at the start of the study.
phase = A variable with 0 for phase A and 1 for

phase B measurements.
level = The change of expected problem behavior frequency

due to the intervention (e.g.,−0.5 for a 50% reduction).
mt = The measurement time.
trend = A trend effect leading to a change in problem behavior

frequency for each measurement. Calculated by N (µ = 0, σ2
=

0.1× start
MTA+B

).
slope = A change of expected problem behavior frequency

for each measurement that starts with the onset of phase B. For
simulations 1 and 2 calculated by N (µ = 0, σ2

= 0.1× start
MTB

).
MTA = The number of measurement times of phase A.
Second, the observed values for each measurement y were

drawn from a Poisson distribution with the expected probability:

P(y;λ) =
e−λλy

y!
(2)

Depending on the respective aim of the simulation, start,
MTA, MTB (the total number of measurements – MTA), level, and
trend were varied.
1https://osf.io/ys3a9/

Figure 2 shows three corresponding examples of single cases.

Data Analyses Model
Each randomly generated case was re-analyzed with a piecewise
regression model (Huitema and Mckean, 2000) adapted for
Poisson distributed data:

log(yi) = β0 + β1mti + β2phasei + β3phasei(mti −MTA)+ ei
(3)

Table 2 shows an example of a piecewise Poisson-regression
analysis for the first example case of Figure 2. Here, the level
phase B effect is significant (B = −1.18, p < 0.01). As the
original construction algorithm for that single case entailed an
intervention effect, the result of this analysis is true-positive.

RESULTS

In the present study, we investigated how various specifications
of SCEDs affect the statistical power of regression-based analyses
assuming Poisson-distributed behavioral data. In addition, we
focused on those design parameters that we believe are most
frequently discussed and most likely to be influenced by
researchers when planning a SCED. All figures in this paper
are created with the software packages ggplot (Wickham,
2016) and scplot (Wilbert, 2022). All data and analyses are
reproducible and made available on the project page (see text
footnote 1).

Simulation 1: Intervention Effect and
Number of Measurement Times in
Phases A and B
First, we examined the statistical power as a function of the
intervention effect and the number of measurement times in
phases A and B. The initial frequency of the behavior is kept
constant, and the trend- and slope effect sizes are randomly
generated for each case with an expected value of zero (see
Table 1).

Figures 3A-D depict the power (blue lines) and alpha-error
probability (red lines) for all design conditions. The figures also
include lines marking the usually recommended minimal power
level of 80% and the maximum alpha-error probability of 5%.
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FIGURE 2 | Three random single cases based on exemplary design specifications.

TABLE 2 | Piecewise Poisson-regression table, for case 1 in Figure 2.

Parameter B 2.5% 97.5% SE t P

Intercept 2.73 2.38 3.05 0.17 15.81 < 0.01

Trend 0.01 −0.05 0.06 0.03 0.30 0.76

Level phase B −1.18 −1.65 −0.71 0.24 −4.93 < 0.01

Slope phase B 0.02 −0.04 0.08 0.03 0.65 0.52

X2(3) = 54.38; p < 0.001; AIC = 154.

The length of phase A is plotted on the x-axis (between 3 and
19). The shape of the dots describes the respective length of phase
B (between 10 and 50). The facets (Figures 3A-D) refer to the
strength of the intervention effect (between−0.2 and−0.8).

No relevant power is obtained for a small intervention effect
(20% reduction of the problem behavior) regardless of the
number of measurement times in phases A and B (Figure 3D).
With a reduction of problem behavior by 40% at the beginning
of phase B (Figure 3C), a significant power of more than 80%
is only achieved with a large number of measurement times;
more precisely, with 11 measurement times in phase A and ≥50
measurement times in phase B, as well as with 13 measurement
times or more in phase A and ≥40 measurement times in phase
B. If the intervention reduces the problem behavior by 60%
(Figure 3B), sufficient power is achieved with designs of ≥5
measurement times in phase A and ≥15 measurement times
in phase B, improving further with ≥11 measurement times in
phase A. For designs with ≤ 10 measurement times in phase B,
sufficient power is achieved only with ≥9 measurement times
in phase A. With an 80% reduction of the problem behavior

with the intervention’s start, statistical power is satisfactory
across all design conditions (Figure 3A). In particular, with
≥15 measurement times in phase B, the probability of detecting
an intervention effect is high regardless of the number of
measurement times in phase A.

The alpha-error probability is stable at 5% across all
design conditions.

Simulation 2: Initial Frequency of the
Behavior, Intervention Effect, and
Number of Measurement Times
Next, we consider the influence of the intervention effect size, the
initial behavior frequency, and the total length of the design (see
Table 1 for a list of all parameters in this simulation). Figure 4
shows the results and is analogous to Figure 3. The number of
measurement time points (1/3 phase A and 2/3 phase B) is plotted
on the x-axis (between 15 and 45). The shape of the dots describes
the strength of the intervention effect (between −0.2 and −0.8).
The facets (Figures 4A–F) refer to the initial frequency of the
behavior (between 5 and 30).

Both a very low initial behavior frequency and few
measurement times lead to poor test power. Regardless of the
other specifications of the design, small intervention effects
(20% reduction of problem behavior at the beginning of phase
B) cannot be detected reliably (Figures 4A-D, lines with
crosses).When the intervention reduces the target behavior by
40% (lines with squares), sufficient power is achieved only when
the initial behavior frequency and the number of measurement
times are high (≥20 initial behavior frequency and ≥33 MT;
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FIGURE 3 | Power and alpha error rates (line colour) for different intervention effect sizes (part) and measurement times per phase (dot shape and x-axis)
(simulation 1).

≥25 initial behavior frequency and ≥27 MT). Large intervention
effects such as an 80% reduction in problem behavior can
be reliably detected at initial behavior frequencies of ≥10.
For medium-level effects of the intervention (60% reduction;
Figure 4, lines with triangles), a sufficient power depends on
the combination of the other conditions: If the initial behavior
frequency is ≥20, sufficient power is reliably achieved. With ≥30
measurement time points, sufficient power is achieved even with
an initial frequency of 10 or 15. With an initial behavior frequency
of 5, on the other hand, even a large number of measurement
times no longer helps to achieve sufficient power.

The alpha-error probability is stable at 5% for all
design conditions.

Simulation 3: Initial Frequency of the
Behavior, Data Trend, and Number of
Measurement Times
Finally, we would like to consider in more detail the interplay of
the initial behavior frequency, the number of measurement times,
and the data trend (see Table 1 for a list of all parameters in this

simulation). Figure 5 depicts the results and is built analogous
to the previous figures. The number of measurement time points
(1/3 phase A and 2/3 phase B) is plotted on the x-axis (between 15
and 45). The shape of the dots describes the strength of the trend
effect (between −0.6 and 0.6). The facets (Figures 5A-F) refer to
the initial frequency of the behavior (between 5 and 30).

A data trend of 60% reduction in the problem behavior
frequency throughout the study (Figure 5, lines with circles)
strongly reduces the test power for all design conditions. Only
exceptionally high initial levels of the problem behavior (≥25)
and large numbers of measurement times (≥33; Figure 5E)
show a power level ≥80%. In cases with a weaker, negative
data trend (≥−40%), this problem is no longer observed
(lines with triangles), and the power is comparable to designs
without a trend.

The effect of the initial behavior frequency on the test power
described in section “Simulation 3: Initial Frequency of the
Behavior, Data Trend, and Number of Measurement Times” can
be similarly identified here: Only for designs with an initial
behavior frequency ≥15 sufficient power is achieved for most
cases. Especially in Figures 5C-E, the interaction between all
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FIGURE 4 | Power and alpha error probability (line colour) for different intervention effect sizes (dot shape), initial behavior frequency (part), and number of
measurement times (x-axis) (simulation 2).

three parameters becomes apparent: While sufficient power is
not achieved for designs with a substantial negative data trend,
the detection rate is acceptable for increasing (or stable) problem
behavior (≥0) and designs with≥27 measurement times. In cases
with a high initial behavior frequency (≥25; Figure 5E), the
power approaches 100% quite rapidly.

Again, the alpha-error probability is stable at 5% for all
design conditions.

DISCUSSION

The goal of the paper at hand was to shed light on the usefulness
of applying piecewise Poisson-regression models (in terms of
statistical power) to analyze single-case data under varying design

specifications. Specifically, we investigated the influence of phase
length, intervention effect size, initial frequency of the dependent
variable, and the size of a trend effect on test power.

Overall, the results of the conducted simulations indicate that
Poisson-regressions have a high potential of identifying (i.e.,
a test power of 80% or higher) intervention effects. However,
at the same time, the test power was low under specific
conditions. Hence, following our theoretical assumptions, test
power seems to be related to the specific design specifications
of the SCED study. The alpha-error probability was 5% for all
conditions, even with very strong trend effects. The insights
gained are highly relevant for researchers in the field, as design
decisions during the early stage of conceptualizing and planning
SCED studies might impact the overall potential of correctly
identifying an existing intervention effect. Our results might
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FIGURE 5 | Power and alpha error probability (line colour) for trend effects (dot shape), initial behavior frequency (part), and number of measurement times (x-axis)
(simulation 3).

guide researchers on crucial elements of SCEDs to prevent
unfavorable decisions.

In our study, the level effect of the intervention had a powerful
influence on statistical power. Strong effects, where the behavior
was reduced by 60% or higher, were correctly identified under
almost all conditions. However, the exact characteristics played a
crucial role when the intervention effects were medium or low.
Effects that were equivalent to a reduction of 20% could not be
correctly identified (independent of the design characteristics).
Prior knowledge about the intervention’s expected effect size
might help researchers make research design decisions that lead
to higher statistical power. However, such knowledge might not
be available for all kinds of interventions. Moreover, the expected
intervention effect is not something researchers have control
over. Therefore, the following discussion will primarily focus on

parameters that are at least under partial control of the researcher,
designing and conducting the study.

Initial Behavior Frequency
In contrast to the effect size, researchers can influence the
operationalization of the outcome variable. A dependent variable
can be operationalized differently, leading to different outcome
variable frequencies (e.g., a higher sampling rate or larger
observation intervals for each measurement time). This is an
asset for researchers as the results of our study indicate that the
outcome variable frequency has a substantial impact on statistical
power, too. Low initial behavior frequencies set high demands
on the number of measurement times required to correctly
identify effects (especially when the intervention effect is small)
or might even wholly prevent its identification (initial behavior
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frequency ≤ 5). Based on our results, we would recommend
targeting operationalizations that allow initial problem behavior
frequencies greater than 20. Such frequencies are in line with the
existing state of research in SCED (Pustejovsky et al., 2019).

Number of Measurement Times in
Phase A
The number of measurement times is one of the main design
elements of SCEDs that the investigator can influence. Our study
indicates that the length of phase A has a significant influence
on the resulting test power: Low numbers of measurement times
in phase A (≤7), which are common, hinder the identification
of even strong intervention effects (60% reduction). Nonetheless,
such low numbers of measurement times (e.g., 3) depict the
lower end of the recommendations in the relevant literature
(e.g., Kratochwill et al., 2013). This suggests that many published
single-case studies have low power due to a short phase A length.
It is better to prolong phase A than phase B in those cases.
This seems to be a particularly relevant finding, as researchers
might feel forced to begin an intervention (phase B) as quickly as
possible due to ethical (stressful classroom situation) or economic
(costs which come along with the extension of phase A) reasons.
However, our results emphasize the need to extend phase A
(even under challenging conditions) as the costs for a short
phase A might be the failure to identify a potentially helpful
intervention. Extending phase B cannot compensate for a low
number of measurement times in phase A. Based on our results,
we recommend at least nine measurement times during phase A
when the estimated intervention effect is an estimated reduction
of 60% or more. When the reduction is between 40% and 60%,
collect data for at least 15 measurement times in phase A and
extend phase B to at least 30 measurement times.

Number of Measurement Times in
Phase B
A similar pattern of results occurs when focusing on the number
of measurement times in phase B. Again, an increment in the
number of measurement times leads to an overall increase in
statistical power. However, the number of measurement times
in phase A and intervention effect size seem to be of higher
relevance (given a reasonable number of at least 15 measurements
in phase B). This implies that extending phase B does not
improve statistical power to a sufficient level if the number
of measurement times in phase A is too small. For smaller
intervention effects (i.e., a reduction of 40%), the length of
phase B seems of additional relevance when the length of
phase A increases.

Trend Effect
Depending on the situation, one can make assumptions about
the presence, intensity, and direction of a data trend (e.g., when
researchers receive information about the student’s development
prior to the study). In many situations, however, trend effects are
difficult to predict. Our results suggest that piecewise Poisson-
regressions are robust to the possible influence of trend effects
(i.e., the results showed no increased alpha error risk even

when very strong trend effects were prevalent). Nevertheless,
a strong negative trend effect (i.e., a reduction of 60% across
all measurements of a single case) affects test power. Since this
finding occurs mainly in situations where the initial frequency
of the behavior is low, a possible explanation could be a floor
effect (e.g., due to the data trend frequencies being so low that the
intervention effect cannot develop its full strength). Since trend
effects thus might play an important role in predicting test power,
it seems crucial to control for the presence of such effects during
data analysis. Here, the results of a piecewise regression analysis
might help detect a strong trend effect after the data collection.
Recognizing a data trend could subsequently serve as further
evidence for a potential limitation of test power.

The results of our study clearly emphasize the power
of piecewise Poisson-regressions in analyzing SCED studies.
Despite the usefulness of the chosen analytical approach,
it becomes clear that important design specifications must
be considered. Despite our efforts to derive some guiding
principles, it becomes clear that the test power depends on an
intricate interplay between various design specifications. What an
adequate single-case experimental design looks like depends on
the context, the type of intervention, and the behavior to address.
As with all other hypothesis-testing research designs, researchers
planning SCED studies should include power analyses in their
research planning. Factors such as the number of measurement
times or the precise operationalization of the dependent variable
can often be adjusted to improve the design of studies from the
very beginning. In addition, post hoc power analyses also help
to provide at least a rough estimate of the statistical power and
uncover the strength and caveats of a design. Based on our results,
it additionally becomes clear that the characteristics of SCEDs
that come along with high test power deviate from common
practice, especially regarding the number of measurement times.

Limitations
Despite the insights gained, the study at hand has some
limitations. First, our insights are limited to a specific scenario
(i.e., count data; an intervention aiming at a frequency
reduction), which cannot be generalized to all potential
scenarios that might occur in practice. Therefore, additional
simulation studies addressing other scenarios are recommended.
Specifically, our intervention effect only comprised a level effect
and no additional slope effect. However, a slope effect might
occur (depending on the interventional approach). Second, we
focused on AB designs as the essential ingredient of many SCED
variants. In research practice, AB designs only represent one
design among other SCEDs. Therefore, the validity of our results
is restricted to AB designs.

Implications for Analysis of Single-Case
Experimental Designs
We focused on the use of regression analysis in this study. Other
procedures exist to estimate phase differences in SCED data, such
as overlap indices or randomization tests. Our results are not
simply generalizable to these procedures. However, we would
argue that the power of these procedures is no higher than that
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of the regression analyses analyzed here. Thus, the requirements
for achieving sufficient power are likely to be even higher.
Fortunately, software packages are available today to calculate
exact power estimations for specific design specifications. All
analyses in this study have been calculated with the R package
scan (Wilbert and Lüke, 2022), which also allows for calculating
the power for different SCEDs (e.g., multiple baseline and
multiphase designs; gaussian or binomial distributed data) and
other methods of data analysis (e.g., randomization tests or
Tau-U).

Based on the result of our analyses, we would like
to recommend that researchers conduct a priori power
analysis for any SCED they are planning. If the intended
research design yields insufficient power (usually below
80%) or the alpha-error probability is too high (usually
above 5%), two optional modifications to the SCED can
increase the power of the design: (1) Increasing the
number of measurement times, especially in phase A (often
phase A is too short). (2) Implement a more sensitive
operationalization that increases the frequency of the dependent
variable (ideally to an initial frequency of at least 20). In
addition, conducting a multiple-baseline design with three
or more cases/situations or adding a second A and B
phase (withdrawal design) may also increase the statistical
power of the design.

Researchers cannot and will not always optimize decisions
regarding their specific research design in favor of statistical
power. Sometimes, the specific circumstances in which SCEDs
are applied prevent this (e.g., ethical reasons, opportunities
to implement an intervention in the institutional context).
Whenever possible, however, we consider it necessary for

research in SCEDs to take into account the test power and
alpha-error probability and, accordingly, to conduct only those
studies that can realistically detect an existing intervention effect.
We believe that it would be beneficial in the future to present
and demand considerations of statistical power for publications
reporting SCEDs as well.
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