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Quantifying neurological disorders from voice is a rapidly growing field of research and

holds promise for unobtrusive and large-scale disorder monitoring. The data recording

setup and data analysis pipelines are both crucial aspects to effectively obtain relevant

information from participants. Therefore, we performed a systematic review to provide

a high-level overview of practices across various neurological disorders and highlight

emerging trends. PRISMA-based literature searches were conducted through PubMed,

Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly

recorded) datasets were collected. Disorders of interest were psychiatric as well as

neurodegenerative disorders, such as bipolar disorder, depression, and stress, as

well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer’s, and

Parkinson’s disease, and speech impairments (aphasia, dysarthria, and dysphonia).

Of the 43 retrieved studies, Parkinson’s disease is represented most prominently with

19 discovered datasets. Free speech and read speech tasks are most commonly

used across disorders. Besides popular feature extraction toolkits, many studies

utilise custom-built feature sets. Correlations of acoustic features with psychiatric and

neurodegenerative disorders are presented. In terms of analysis, statistical analysis for

significance of individual features is commonly used, as well as predictive modeling

approaches, especially with support vector machines and a small number of artificial

neural networks. An emerging trend and recommendation for future studies is to collect

data in everyday life to facilitate longitudinal data collection and to capture the behavior

of participants more naturally. Another emerging trend is to record additional modalities

to voice, which can potentially increase analytical performance.

Keywords: neurological disorders, voice, speech, everyday life, multiple modalities, machine learning, disorder

recognition
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1. INTRODUCTION

1.1. Neurological Disorders and Speech
The burden of neurological disorders on the healthcare system
is heavy (1). Neurological disorders manifest themselves with
various symptoms at different disease stages. Recognition and
diagnosis of most neurological disorders still rely on clinical
examinations, mostly upon the manifestation of prominent
symptoms. With modern machine learning approaches,
researchers have attempted to quantify neurological disorders
through various modalities from unobtrusive sensors to gain
a longitudinal and holistic picture of the individual patient
and course of disease (2). Speech, in particular, is a promising
modality, since its production is shown to be very susceptible to
slight perturbations caused by those disorders (3). Furthermore,
voice recordings are unobtrusive and readily available through
the widespread usage of smartphones and other smart devices (4).

To record voice data in a clinical setting, the principle
approach is to access a patient cohort and compare it with a
representative healthy control cohort. An experimental protocol
is developed, which includes a medical assessment to quantify the
disorder as well as the recording of voice samples according to
clearly defined speech elicitation tasks. The medical assessment
provides a ‘ground truth’ description of the disease status, and
the voice recordings are then used to indirectly infer that
disease status.

Existing studies have regarded a multitude of neurological
disorders, which were reported to have a measurable impact
on voice. Those can be loosely grouped, for the scope of this
review, into psychiatric disorders, neurodegenerative disorders
and speech impairments. Psychiatric disorders encompass
depression (3), anxiety, obsessive-compulsive disorder (OCD),
post-traumatic stress disorder (PTSD) (5), schizophrenia (6),
and, to a certain extent, stress (7). Neurodegenerative disorders
include disorders leading to cognitive decline, such as
Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) (8, 9), as well as a broader range of disorders that do not
primarily affect cognition, such as amyotrophic lateral sclerosis
(ALS) (10), multiple sclerosis (MS) (11), and Parkinson’s disease
(PD) (12). Lastly, there are several disorders, which affect speech
production itself, such as aphasia, dysarthria, and dysphonia.
Aphasia is the inability to comprehend or formulate language,
dysarthria emerges when muscle coordination for speech
production is impaired and dysphonia is when voice is hoarse
due to problems with the larynx.

1.2. Data Processing Pipeline
1.2.1. Speech Tasks
The human voice can be produced in various ways, such as
reading text, singing or laughing. Recommendations for the
technical details on how data for the acoustic assessment of
voice production in a clinical setup should be recorded, are
provided by Patel et al. (13). These guidelines are compiled by
an expert panel from the American Speech-Language-Hearing
Association (ASHA), and we strongly recommend consulting
these suggestions before setting up novel data collection efforts.

In research settings, participants are asked to produce specific
vocalisations, which elicit distinct information for comparable
analyses. Those speech tasks, which provide the basis for voice-
based disorder quantification, can be grouped into certain
categories for the scope of this review. Participants can be asked
to produce a sustained phonation of a phone, typically the
vowel /a/. Diadochokinesis is the ability to produce antagonistic
movements in quick succession, these are typically rapid
syllable successions in the case of speech tasks, such as pa-ta-
ka. Read speech categorizes tasks, in which written material
is provided to be read out aloud. Those materials can be
customized for a specific research question or standardised text
passages, for example ‘the north wind and the sun,’ which is
constructed to contain every phone in the English language. Free
speech encompasses tasks, which do at most provide an initial
association point, but then require the participant to associate
or behave freely. Examples are clinical interviews between a
physician and a patient or a ‘picture description task,’ in which
the patient is asked to describe a picture in their own words.

1.2.2. Feature Extraction
With the obtained data at hand, data analysis is performed next.
The typical data analysis pipeline consists of preprocessing the
collected data and then applying analytical methods to obtain
quantitative insights. The very first step here is to enhance
the quality of the raw audio signal by applying, amongst
others, denoising and dereverberation. For data preprocessing,
audio recordings are often filtered for segments containing
speech through voice activity detection (VAD). If multiple
speakers are present in one recording, speaker diarisation can
be applied to try to separate voice segments, for example, from
the patient and a doctor in a clinical interview setting. To
perform linguistic analysis, recent advances in automated speech
recognition (ASR) enable automatic transcription of the content.
With transcriptions, analysis can include, for example, aspects of
the semantic structure of the recorded speech [e.g., as done by
Tóth et al. (14)].

To make the raw audio signal accessible for automated
analysis, statistical derivatives of the signal, namely, features,
are extracted. To quantify voice, several features stem from the
acoustic aspects of the speech signal that account for the structure
of the vocal production system. Prominent and commonly
used acoustic feature sets in the community are the expert-
knowledge driven Geneva Minimalistic Acoustic Parameter Set
[GEMAPS, Eyben et al. (15)] on one hand and the large-scale,
general-purpose driven Computational Paralinguistics Challenge
[COMPARE, Weninger et al. (16)] feature set. Further, there are
features, which are tailored for disease-specific vocal dynamics
[e.g., (8) on AD]. Low et al. (17) provide a comprehensive
overview of the commonly used acoustic features derived from
speech in neurological disorder quantification. They regard the
GEMAPS features and provide a glossary on the regarded features
[based on Cummins et al. (3) and Horwitz et al. (18)], to which
we refer the interested reader.

Recent additions to those ‘traditional’ acoustic features were
introduced at COMPARE 2018 and 2019 (19, 20), and are based
on representations of the audio signal found through deep
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neuronal networks (see 1.2.3 Analysis), as well as a high-level
summary of speech segments through the Bag-of-Audio-Words
(BOAWS) approach. There are out-of-the-box toolkits to extract
features, most prominently PRAAT (21), OPENSMILE (22), and
VOICEBOX. BOAWS can be extracted using the OPENXBOW
framework (23), and learnt representations of the speech
signal can be extracted with the DEEPSPECTRUM (24) and
AUDEEP (25, 26) toolkits. Nonetheless, it is not uncommon to
write custom code to perform feature extraction.

1.2.3. Analysis
After preprocessing and feature extraction, data analysis is
performed. There are two general approaches for data analysis:
statistical analysis and predictive modeling.

For statistical analysis, extracted features are tested with
various statistical means to find significant correlations of
individual features for the tested conditions, which then express
changes in vocal characteristics. The sum of those identified
correlating features can ideally serve as general and reliable
indicators for different disorders, and are occasionally referred
to as ‘vocal biomarkers.’

In predictive modelling, on the other hand, machine learning
approaches are used to try and build statistical models, which
can discriminate between different categories or a general
scale, relevant for the regarded disease at hand. Common
machine learning models employed for categorical classification
are, support vector machines (SVM), the k-nearest neighbors
algorithm (k-NN), decision trees (DT), random forests (RF),
Gaussian Mixture Models (GMMs), and Hidden Markov Models
(HMM). If values from continuous scales are to be predicted,
regression models, such as linear regression, logistic regression,
support vector regression, and regression trees can be utilised.

If sufficient data is available, artificial neural networks (ANN)
can be employed as well, which promise a high performance
on large data sets. For ANNs, organizational architectures of
neuronal networks inspired by the dynamics in the human
brain, are constructed for specific tasks in specific domains.
In the field of disease recognition from voice, convolutional
neural networks (CNNs) and long short-term memory (LSTM)
networks are commonly used, see Cummins et al. (27)
for a review of recent developments and examples in the
field. Foremost, CNNs learn feature representations of input
spectrograms of the audio signal or directly from the raw audio
waveform. They either contain architectural elements to perform
a classification decision right within the network architecture or
other predictive modeling approaches are employed based on
those feature representations.

With COMPARE 2018 and 2019 (19, 20), learnt deep
representations are used as additional baseline feature sets.
With the DEEPSPECTRUM toolkit, CNNs pre-trained for image
recognition tasks, are used to extract abstract representations
of spectrograms from the raw audio signal. AUDEEP first
uses spectrograms from the input audio signal to train
encoder-decoder networks without providing class labels
(sequence-to-sequence autoencoder), specific to the data at
hand. The outputs of the trained encoder can then be used to

output features in the form of abstract representations based on
the spectrograms of the input signal.

1.3. Related Work
Previous reviews in the field have summarized the state of voice
analysis for individual disorders and a few reviews outlined
the state of research across several neurological disorders.
One prominent systematic review was performed by Low et al.
(17), in which they regarded a variety of psychiatric disorders
(depression, PTSD, OCD, bulimia, anorexia, schizophrenia,
hypomania, and anxiety). Therein, they synthesised which
acoustic features are prominently changed in voice in each
disorder. They further provided an overview of recent
developments and guidelines for data collection. Another
review was performed by Voleti et al. (28), which regarded
neurological thought disorders (such as AD, schizophrenia, etc.)
and created a taxonomy for speech and language features used.

However, the scope of the review of Low et al. (17) was
limited to psychiatric disorders and Voleti et al. (28) did
not perform a systematic literature search. In this context, a
comprehensive review that provides a broad overview of the
field of neurological disorder recognition from voice is needed.
Therefore, we extended to the scope of Low et al. (17) by also
including the neurodegenerative disorders ALS, AD, MCI, MS,
and PD. Further, we adopted a reproducible, systematic approach
by querying bibliographic databases.

1.4. Scope of the Review
The aim of this review is to provide a general overview of the
field of neurological disorder recognition from voice. The main
contribution is to survey how voice data is commonly collected
across psychiatric and neurodegenerative disorders, how data is
frequently analysed, and to highlight emerging trends. The novel
insights from this review will be helpful when setting up future
data collection efforts.

We do this by searching for publications on original datasets.
From these retrieved publications, we extract information on
the study setup, the speech tasks utilised, the analysis methods
used, and particularities in the voice recording setup (to uncover
emerging trends). Furthermore, we provide an overview of
significantly correlating acoustic features in common psychiatric
and neurodegenerative disorders by extending the work of
Low et al. (17). Figure 1 presents an overview of these outlined
topics addressed within this review.

2. MATERIALS AND METHODS

This systematic review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (29).

2.1. Literature Screening
2.1.1. Information Sources/Identification
The following electronic databases were searched for relevant
articles: PubMed, Web of Science (Web of Science Core
Collection, version 5.35), and IEEE Xplore. Those databases
were queried in August 2020 with the following search term:
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FIGURE 1 | Overview of the topics addressed within this review. Studies

which recorded original datasets to assess neurological disorders from voice

were screened. From those, information was extracted to assess which

speech tasks are commonly employed, which methods are frequently used to

extract features, and which analysis methods are prevalent. In addition,

significantly correlating acoustic features in common psychiatric and

neurodegenerative disorders were summarised. The emerging trends to

record data in daily life and from multiple modalities were uncovered by

screening for particularities in the recording setup of the retained studies.

((speech OR voice) AND (dataset OR ‘data set’) AND <disorder
specification>). In place of <disorder specification>, a search
term for each regarded disorder was inserted:

• (‘mental health’ OR psychiatry OR psychiatric OR ‘affective
disorder’ OR ‘psychological disorder’ OR ‘mental illness’)

• (Anxiety)
• (Depress∗)
• (Stress)
• (‘Acute stress reaction’)
• (‘Obsessive-compulsive disorder’ OR OCD)
• (‘Post-traumatic stress disorder’ OR PTSD)
• (Schizophrenia)
• (Hypomania)
• (Bulimia)
• (Anorexia)
• (Alzheimer∗)
• (Dementia)
• (‘Cognitive impairment∗’)
• (‘Multiple sclerosis’)
• (Parkinson∗)
• (Aphasia).

The disorders to be regarded were primarily based on work from
other reviews on individual and multiple disorders. The aim
was to cover psychiatric as well as prominent neurodegenerative
disorders, stress as well as speech impairments such as aphasia.
No restriction on the date of publication was imposed.

Google Scholar is an ambivalent source for systematic
literature reviews. On one hand, it covers a broad range of
publications, especially those in conference proceedings, but
on the other hand, it is crawler-based instead of bibliographic
and more focused on exploitative instead of systematic search
behavior and does not allow bulk downloads of the returned
results (30). Therefore, we decided not to use Google Scholar

for the systematic search here but can recommend it as well as
explicit dataset search engines such as Google Dataset Search to
the interested reader to explore individual disorders and aspects
of the field.

2.1.2. Screening
Only articles published in English language were considered.
After duplicate removal, the first author (P.H.) screened the title
and abstract of all records. The focus was to include studies,
which report a newly recorded (‘original’) dataset, and whose
research was primarily based on voice and speech. Emphasis
was put on studies, which regraded acoustic features (omitting
purely linguistic analyses to keep the scope manageable). Studies
had to focus on the above-mentioned disorders and include
recording voice data from patients. The exclusion criteria for
screening were: (a) publications that used existing datasets
(i.e., did not record data themselves), (b) publications that
were not focused on the above-mentioned neurological and
psychiatric disorders, studies involving children, publications,
which focused on qualitative or quantitative interview analyzes as
well as literature reviews. 203 duplicates were removed with the
‘check for duplicates’ function in the referencemanagerMendeley
Desktop (version 1.19.6, Elsevier, Amsterdam, Netherlands); the
other bibliography organization of this literature reviewwas done
in Zotero (version 5.0.90, Corporation for Digital Scholarship,
Vienna, Virginia, USA).

2.2. Data Extraction
Data extraction was performed by P.H. with assistance of N.S.
Our approach was to extract a wealth of information to assess
common practices and to identify emerging trends in the field
later on. Data to be extracted consisted of information on
(a) the study setup (number of patients and patient assessment),
(b) the voice recording setup (additional modalities, recording
conditions: in everyday life or laboratory), (c) the speech tasks
(elicitation protocols) used in the study (elicitationmaterial used,
if applicable: performance comparison), and (d) analysismethods
employed (features extracted, analysis methods used: statistical
and predictive modeling and validation schemes).

In published studies, the focus is often put on analysis and it
is not clearly stated in the title or abstract, whether original data
was recorded or an existing dataset was used. The search term
(‘dataset’ or ‘data set’) in this systematic review was introduced to
search for original datasets However, some original studies might
not have been covered. Therefore, we conducted an additional
systematic search for literature reviews, which are focused on
acoustic analysis of individual disorders and synthesized their
identified features.

2.3. Acoustic Features
The aspect of which acoustic features are found to correlate
with which neurological disorder was addressed prominently by
Low et al. for psychiatric disorders (17). In the broader scope of
this review, we aimed to extend their synthesis to also incorporate
acoustic features of the neurodegenerative disorders addressed in
this review.
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Several recent reviews summarized significantly correlating
acoustic features in individual neurodegenerative disorders, and
we systematically screened an electronic database to retrieve
those. We queriedWeb of Science and used their ‘refine’ function
to retain only review articles published from 2015 on. The search
terms to retrieve reviews were:

• TS=((ALS) AND (speech OR voice) AND (analysis))
• TS=((Alzheimer∗) AND (speech OR voice) AND (analysis))
• TS=((Multiple sclerosis ORMS) AND (speechOR voice) AND

(analysis))
• TS=((Parkinson∗) AND (speech OR voice) AND (analysis))
• TS=((stress) AND (speech OR voice) AND (analysis)).

Title and abstract were screened and full-text articles were
retrieved for the matching candidates. Reviews that provided
syntheses in which publications were explicitly listed that
found correlating acoustic features with the respective disorder,
were retained.

With the publicly available source code1 and permission
provided by Low et al. (17), we extended their synthesis of
Figure 3 by adding data of the studies listed in the found reviews.
Studies identifying a significant positive correlation received
a score of 1, studies finding a significant negative correlation
received a score of –1 and non-significant or contradictory
studies were scored with 0. Only the most comprehensive
review on each disorder (clearly stating the studies found with
correlating acoustic features) was used so to cover a comparable
number of studies. Reviews used to extract data for extending
the figure were the following (9–12). The code to extend the
figure of Low et al. (17), and to plot all figures from this review,
can be found at GitHub2. The aspects of stress and speech
impairments were omitted from that overview to fully focus on
neurodegenerative disorders.

Furthermore, stress and speech impairments were found to
be very heterogeneous. Different manifestations of stress were
described by Van Puyvelde et al. (7) for physical, delirious,
emotional, and cognitive load and they presented an own model
for Voice and Effort (MOVE) to characterize those interactions
with voice. Speech impairments such as aphasia, dysarthria, and
dysphonia amongst others, stem from general dysfunctions of the
speech production systems, and for example, dysarthria can be
the consequence of stroke as well as MS.

3. RESULTS

The PRISMA flow diagram is depicted in Figure 2 and shows the
study selection process.

The search terms described in 2.1.1 were used to
retrieve 1,492 publications and ultimately, 43 studies
were included.

1https://github.com/danielmlow/review/tree/389fc387a91f2d38004775ba
7c94a970e3d1ae02
2https://github.com/Pascal-H/speech_analysis_for_neurological_disease_
recognition

After obtaining the final included studies, we noticed that the
disorders described in those studies fell into slightly different
categories than searched for in the search terms. The categories
that started to emerge after data extraction were the following: the
neurodegenerative disorders ALS, AD, and PD, the psychiatric
disorders bipolar disorder, depression and, to some extend, stress
as well as the group of speech impairments, such as aphasia,
dysarthria, and dysphonia. Our results and the discussion are
therefore based on those categories.

Table 1 presents the number of studies found for each disorder
and summary statistics on the number of participants (patients
and controls) for all studies of each disorder. Most studies
describing original datasets were included for PD followed by
stress. PD also has on average most patients included, while
for datasets on stress, usually no patients but only healthy
participants are recruited.

3.1. Speech Tasks
Figure 3 is a synthesis of the included studies and provides
an overview of the proportion of how often each speech task
was recorded for each disorder. To provide an overview of the
proportion of speech tasks represented in general, dependent on
disorder, Figure 3B is an inverse view on the data of Figure 3A.
Here, it is noticeable that speech tasks eliciting free speech (FS)
are used most frequently in the included studies. Furthermore,
that speech task category was used in all disorders analysed,
except for ALS.

Since studies could employ multiple speech tasks, the number
of speech tasks may differ from the number of original datasets
(Table 1). Roughly half of the speech tasks described were utilised
in datasets collected from PD patients, stress was represented
second often.

In comparison to the other speech tasks regarded in
this review, free speech and read speech tasks are less
strictly defined. Nevertheless, several typical setups could be
identified. Common setups for free speech tasks include (clinical)
interview situations (31–37), acted interactions (38–40), picture
description (41–44), letting participants talk about a specific
question or topic (45–47), or even smartphone conversations (48,
49), as well as specific memory and association tasks suitable
for quantifying AD (44). Read speech includes standardised (36,
42, 47, 50) and custom (51–60) sentences or text passages,
such as ‘the north wind and the sun’ (46, 61), ‘the rainbow
passage’ (62, 63), and other passages (64, 65) as well as disease
specific tasks, such as constructed sentences with emotionally
evoking words for depression quantification (31, 66). Especially
in PD, utilising sustained phonation of the vowel /a/ appear
to be popular [e.g., (60, 67–71)]. The most specific speech task
used was diadochokinesis (DD), which was only used in datasets
concerned with PD [e.g., (67)].

Data underlying Figures 3A,B, resulting from data extraction,
are included in Supplementary Tables S1, S2.

3.2. Feature Extraction
Figure 4A presents a synthesis of the feature extraction
toolkits used. PRAAT, OPENSMILE, and VOICEBOX emerged
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FIGURE 2 | PRISMA flow chart for study selection.

TABLE 1 | Overview of the included studies reporting on original (newly recorded)

datasets from neurological disorders to provide a survey over emerging trends in

the field.

Disorder # studies Patients Controls

Median (range) Median (range)

Parkinson’s 20 36 (3–1,513) 20 (8–64)

Stress 6 - 44 (4–60)

Depression 5 92 (12–224) 61 (12–397)

Speech impairments 4 12 (8–21) 13 (8–21)

Alzheimer’s 3 82 (71–214) 93 (82–268)

ALS 3 13 (11–25) 12 (11–13)

Bipolar 2 31 (10–51) 9 (9)

as commonly used out-of-the-box toolkits for feature extraction.
Roughly half of the included studies used custom code or did not
specify the toolkit used.

3.3. Analysis
3.3.1. Statistical Analysis
Figure 4B aggregates broad categories of analysis methods.
Statistical analyses, where individual features are tested for
significance, are relatively frequently used.

Figure 5 is an extended version of the synthesis created
by Low et al. (17). Acoustic feature categorisation is based
on Eyben et al. (15). Each cell represents a summary of
the studies with statistical tests performed for the respective
feature. The more studies were found for a respective feature,
the larger the cell. The found correlation of each study
determines the shading: if a feature correlates positively with
the disorder, the cell is shaded red. In case of a negative
correlation, the cell is shaded blue and if non-significant
findings are presented, the shading is gray. The final shading
of a cell is determined by accounting for all correlations for
all reported studies: the more intense, the more unanimous
the findings across all studies and the less intense, the
less unanimous are the aggregated studies. For each of the
added neurodegenerative conditions, a review was systematically
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FIGURE 3 | Sunburst charts describing the proportion of speech tasks and neurological disorders. (A) speech task categories on the inner circle, (B) disorders on the

inner circle. Only publications describing original (newly recorded) datasets were considered to provide an overview of emerging trends in the field. PD, Parkinson’s

disease; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; SV, sustained vowels; DD, diadochokinesis; RS, read speech; FS, free speech.

FIGURE 4 | (A) Sunburst chart describing the proportion of feature extraction toolkits used and neurological disorders. ‘Custom’ describes studies which did not

mention the toolkit used or which utilised custom methods to extract features. (B) Sunburst chart describing the proportion of predictive modeling approaches used

and neurological disorders. Categorical classification: SVM, support vector machines; k-NN, k-nearest neighbors algorithm; DT, decision trees; RF, random forests;

GMM, Gaussian Mixture Models; HMM, Hidden Markov Models; Regression models: LR, linear regression; regression: other regression methods. ANNs, Artificial

neural networks; CNN, convolutional neural networks; LSTM, long short-term memory networks; PD, Parkinson’s disease; AD, Alzheimer’s disease; ALS, amyotrophic

lateral sclerosis.
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FIGURE 5 | Extended heatmap based on Figure 3 from Low et al. (17). In addition to psychiatric disorders, significantly correlating features from neurodegenerative

disorders were extracted and added based on recent reviews of the respective disorders. Features that are significantly higher in a psychiatric population than healthy

controls or that correlate positively with the severity of a disorder receive a score of 1 (red), features that are lower or correlate negatively receive a score of –1 (blue),

and non-significant or contradicting findings receive a score of 0 (gray). The mean is computed for features with multiple results. The cell size is weighted by the

number of studies. Features not studied in a disorder are blank. Additionally, the number of studies (n), of which the correlating features are extracted, is given for each

disorder. OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder; ALS, amyotrophic lateral sclerosis; ALS, amyotrophic lateral sclerosis; AD,

Alzheimer’s disease; MCI, mild cognitive impairment; MS, multiple sclerosis; PD, Parkinson’s disease.

identified, which synthesized several studies which reported
correlations of acoustic features with the respective condition.
The review used to extract studies for ALS was (10), the one for
AD and MCI was (9), the one for MS was (11), and the one for
PD was (12).

3.3.2. Predictive Modeling
The predictive modeling approaches pursued by the retrieved
studies are presented in Figure 4B. Classical (non-neural-
network-based) approaches are in the majority. Of those
approaches, support vector machines followed by regression
approaches, are most prominent. General artificial neural
networks (ANNs) and convolutional neural networks (CNNs) are
most widespread in the included studies. Neural networks can
consume the raw audio signal in various ways. The introduced

learnt representations with DEEPSPECTRUM and AUDEEP were
used in Baird et al. (61), and AUDEEP achieved the best results.
Often, features based on the mel-frequency cepstral coefficients
(MFCCs) are used as input to the studies that employ deep
learning approaches. MFCCs, simplified, aim to represent a
spectrum based on how speech is perceived by human hearing.
Mendiratta et al. (46), Khorram et al. (48), and An et al. (56)
use MFCCs to represent the speech signal for their deep learning
approaches. In addition, Khorram et al. (48), Baird et al. (61),
An et al. (56), and Prince et al. (72) provide hand-crafted feature
sets to the neural network, for example, Khorram et al. (48) used
eGeMAPS features as input for a ANN.

Table 2 shows datasets, in which furthermodalities in addition
to audio were recorded. Only included datasets for ALS, PD and
stress recorded multiple modalities.
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TABLE 2 | Included studies with original datasets, in which multiple modalities were recorded.

Year Condition Additional modalities

Garcia-Gancedo et al. (65) 2019 ALS Physical activity, heart rate variability (HRV)

An et al. (56) 2018 ALS Articulatory movement data

Wang et al. (53) 2016 ALS Articulatory movement data

Prince et al. (72) 2019 Parkinson’s Sensor data: Finger tapping, walking, memory

task

Barnish et al. (36) 2017 Parkinson’s Video, Respiratory Sinus Arrhythmia (RSA) and

Heart Rate (HR)

Gratch et al. (32) 2014 Depression Videos

Baird et al. (61) 2019 Stress Biosignals:

Blood volume pulse (BVP),

Skin conductance (SC)

Lefter et al. (38) 2014 Stress

TABLE 3 | Included studies with original datasets, in which data was collected outside a traditional laboratory setup: in everyday life.

Year # Subjects Condition Recording condition

Khorram et al. (48) 2018 60 Bipolar disorder Conversations during daily smartphone usage

Maxhuni et al. (49) 2016 10 Bipolar disorder Smartphone recorded constantly in the

background

Zhang et al. (45) 2020 222 Depression Web forms

Prince et al. (72) 2015 1,513 Parkinson’s User smartphones

Dubey et al. (55) 2015 Parkinson’s Smartwatch in group session for vocal

exercises

Palacios-Alonso et al. (40) 2019 32 Stress Smartphone

Garcia-Gancedo et al. (65) 2019 25 ALS Home monitoring and clinical site visits for

sensor data recording; audio only collected at

clinical site

Table 3 presents datasets, in which data was collected outside
a controlled laboratory setup (‘in everyday life’). Recordings here
were most prominently done via user smartphones or web forms.

4. DISCUSSION

In this review, we systematically screened for publications,
in which voice data for various neurological disorders were
recorded. Syntheses of included studies provide a high-level
overview of different disorders and insights into emerging
trends in the field. Previous work was extended to provide an
overview of which features are correlated with changes in voice
in psychiatric and neurodegenerative disorders.

The respective subsections in the discussion aim to provide
valuable guidance when performing such data collection. We
cover the aspects of which speech tasks are frequently used, which
confounders might be encountered, which feature extraction
toolkits are available, which analysis methods are common, and
which validation procedures should be employed.

4.1. Neurological Conditions and Speech
As presented in Table 1, systematic literature screening
returned the most original datasets for PD. Research done
in this domain was one of the earliest approaches in the

whole field of speech analysis for disease recognition (73)
and therefore, the high aggregation of datasets could be
reasonable. ALS and bipolar disorder, on the other hand, appear
to be relatively under-explored research areas in terms of
datasets published.

4.1.1. Speech Tasks
When regarding the numbers of speech tasks used for different
disorders as presented in Figure 3, it appears that the free speech
task category is most commonly used in existing datasets, closely
followed by read speech with only one dataset less. Both task
categories show broad heterogeneity and can be divided into
individual subcategories. In essence, however, free speech tasks
aim at capturing ‘naturally flowing’ speech, in which especially
hesitations and pauses can be valuable disease indications, for
example, when regarding AD or MCI (9). A very standardised
approach used across multiple disorders appears to be the
picture description task, utilised in PD (41), stress (42), and
AD (43, 44). Recently, Slegers and Filiou (74) reviewed several
studies that employ picture description tasks to describe their
potential in clinical practice to assess AD. Similarly, Mueller et al.
(75) assessed how picture description tasks can be used in
diagnosing AD and even potentially already inMCI. Speech tasks
prompting read speech cover a wide range of the participant’s
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language (in contrast to e.g., the task of the constrained sustained
pronunciation of vowels), while still having a fixed body of text
that is consistent for all participants.

A few publications ced the performances of different speech
tasks used in the same dataset. This can provide valuable insights
into which tasks appear to cover the best information on a
disorder status in an actual recording setup. However, only 6
of the included publications provide those analyses, therefore,
unfortunately, these reports can be only regarded as anecdotal.
Sakar et al. (57) and Karan et al. (51) each report in their
analysis on PD that performance on sustained phonations of
vowels performed better than read speech. Interestingly, (59)
recorded Czech speaking participants with and without PD and
regarded a neutral and a word-stress-modified reading passage
and found that the passage with word stress modifications
performed better. Further, they achieved their best performance
with a free speech task, in which participants had to recite a
poem from memory. Alghowinem et al. (31), Liu et al. (37), and
Zhang et al. (45) reported that tasks using free speech performed
better than sustained vowels and read speech for depression,
respectively. A recent study assessed differences in performance
of various speech tasks eliciting connected speech in patients with
early AD and MCI. That study, therefore, offers some practical
consideration for which particular free speech task might be best
suitable for these conditions (76). Analysing the performance of
speech tasks is valuable for the community, since choosing the
best performing speech task can reduce time effort and burden
imposed on the patient in a clinical as well as in an everyday-life
setup.

4.1.2. Confounders
In their review (section 4.2), Low et al. (17) portray several
relevant confounding factors, which should be considered and
avoided during data collection. Regarding rather symptoms and
problems and not only disorder rating scales promises to provide
a more fine-grained view of a patient and account for disorders,
in which more heterogeneous symptoms are present (77). A
central aspect that needs to be controlled for in voice analysis, are
confounding factors that influence voice production. Commonly
assessed factors are, for example, age, sex, and native language,
less common are comorbidities, race, education, height, weight,
and dialect. Especially medication is not frequently reported
but plays a crucial role since its side effects might influence
speech production.

4.2. Data Processing Pipeline
4.2.1. Feature Extraction Toolkits
Regarding the toolkits used for feature extraction, as portrayed
in Figure 4A, of all studies actually extracting features, almost
half used custom methods. In particular, in the field of PD,
datasets are described, which validate and explore the impact
of Lee Silverman Voice Treatment (LSVT) (78) to mitigate
voice-based impairments due to PD. Success in that treatment
routine is measured in increased vocal intensity [e.g., (63, 79)],
and therefore in those studies, features are very specific and
focused only on that outcome. As pointed out by Low et al. (17),

standardising feature extraction yields the benefit of better
comparability across studies, but specific approaches in which
anatomically informed and manually constructed features can
reflect an aspect of a disorder, which might not be covered by
standardised feature sets, can be valuable as well. Within the
scope of this review, relevant feature extraction toolkits were
presented. Studies using custom methods are hard to quantify
systematically since the performance obtained on one dataset
might not transfer well to another dataset. Further, it is worth
emphasising that, since studies included in this review are limited
to original datasets, the actual usage in all analytical studies
might vary.

4.2.2. Features Correlating With Neurodegenerative

Conditions
We extended the figure of the synthesis of significantly
correlating features for neurological disorders in Low et al. (17)
by adding the neurodegenerative conditions ALS, AD and MCI,
MS, and PD (Figure 5). Findings regarding the disorder-related
features are summarized as the following:

Amyotrophic lateral sclerosis: Chiaramonte and Bonfiglio (10)
conducted a meta-analysis and found that jitter and shimmer
correlate positively, and maximum phonation time (MPT)
correlates negatively, significantly with progression of bulbar
ALS. The predominantly initial spinal type of ALS, characterised
by muscle weakening, usually transitions to show some bulbar
involvement at a later stage, at which speech impairments are
surfacing. No significant correlations between F0 mean and
F0 variability were observed in the meta-analysis.

Alzheimer’s disease and mild cognitive impairment: Martínez-
Nicolás et al. (9) systematically reviewed altered acoustic features
in patients with AD and MCI. Decreased speech and articulation
ratio, as well as an increased number of pauses, are characteristic
for the early stages of AD. Fewer studies are concerned withMCI,
but increased pause duration and longer speech and phonation
time are reported. Language impairments are already present in
the prodromal (pre-symptomatic) stage and the challenge of the
field is to distinguish cognitive impairments due to age from the
onset of AD.

Multiple sclerosis: Noffs et al. (11) systematically screened for
studies describing speech impairments in MS and found, for
acoustic analyses, that a slowing in tongue movement causes a
lower speech and articulation rate. Further, glottal inefficiency
causes increased jitter and shimmer, and intensity variability and
symptoms are expected to worsen upon disease progression.

Parkinson’s disorder: Chiaramonte and Bonfiglio (12)
conducted a meta-analysis and concluded that jitter, shimmer
and F0 variability are significantly increased in patients with PD.
Increased F0 variability is likely to be caused by increased rigidity
in laryngeal and respiratory muscles and the associated inability
to keep the laryngeal muscles in a fixed position.

4.2.3. Analysis Methods
As depicted in Figure 4B, statistical analyses, where individual
features are tested for significance, are described along with
datasets for PD, speech impairments, stress, and depression. Lee
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Silverman Voice Treatment (LSVT) is usually assessed in such
manner (63, 79), and studies describing novel ways in collecting
datasets [e.g., (45)] rely on such statistical descriptions.

From the ‘traditional’ predictive modeling approaches,
support vector machines (SVMs) are most frequently used,
which is in line with the baseline of the Interspeech COMPARE
challenge (16). Regression approaches are suitable to map
disorder assessment scales (e.g., UPDRS for PD) but can
potentially struggle with small sample sizes and unbalanced
class distributions.

Approaches using neural networks are gaining popularity in
recent years and are discussed in the following review (27). The
recent COMPARE 2018 and 2019 (19, 20) introduced features
from deep representations as baseline methods in the domain
of computational paralinguistics. This approach was pursued by
Baird et al. (61) in the retrieved studies. In the other studies
utilising neural networks, various network architectures are
used. The way in which raw audio signals are processed and
fed into neural networks depends strongly on the employed
network architecture.

The overall goal of predictive modeling approaches is to
create models that learn to generalise and therefore could
classify voice samples of speakers, who were not present in
the original dataset. To evaluate how well suggested predictive
modeling approaches would perform at that task, the dataset
should be split up into train, validation and test partitions. The
train partition serves to adjust and fine-tune parameters of the
model and those adjustments are then tested on the validation
partition. The best performing model is then evaluated on the
test partition, a hold-out part of the dataset (or ideally even
a completely independent dataset with samples from the same
disorder). This hold-out part should provide a sound judgement
on how the model performs on data that it did not encounter
during training/validation. Speakers have to be separated through
all partitions since otherwise, the model can learn to identify
a user and not learn the underlying information about the
disease itself.

For imbalanced class distributions, which can be common
in datasets with neurological disorders, the unweighted average
recall (UAR) is the metric used in COMPARE and should be
used for comparing results across different predictive modeling
approaches. Low et al. (17) provide some further, helpful advice
for evaluation and validation of modeling approaches. Foremost,
they advocate for using nested bootstrapping for a more robust
performance estimation on small (< 100 patients) datasets.
Ideally, the train, validation and test partitions would each
represent the whole subject population of the dataset, but since
this is unlikely for smaller subject numbers, nested bootstrapping
provides a means to describe the mean or median estimate over a
multitude of evaluation runs.

4.3. Emerging Trends
Some of the studies included in this review used a non-
conventional clinical data recording setup. Those approaches can
be categorized in a) data collection performed ‘in everyday life’
and b) data collected from multiple modalities. Both categories

are introduced further in the following section to provide an
overview of these emerging trends.

4.3.1. Everyday-Life Data Collection
Traditionally, medical datasets for analysing the impact of
a disorder on voice were recorded in controlled recording
conditions with relatively small sample sizes, since access to
patients is a big obstacle to overcome and only possible through
clinical institutions. Predictive modeling approaches and results
from statistical analyses should be as general and flexible as
possible, and also work on novel participants, who were not part
of the initially recorded data. This requirement led to efforts
in recent years to collect large-scale datasets. In those datasets,
participants are often recruited not only at a clinic, but through
interest groups and networks for disorders (80). Data collection
itself is then being done remotely, in an offsite setup, through
mobile devices such as smartphones (45) and smartwatches (55).
These efforts are very promising to push the field toward a
real-world use case, in which enough data can be collected to
extrapolate models to work sufficiently well when confronted
with completely novel data.

4.3.1.1. Example Studies
In most clinical datasets, participants are only screened once
since there is an increased effort to track and re-invite
participants. Systems with which participants can provide several
samples over a given observation time (49), are a big advantage
and opportunity of large-scale data collection efforts. This can
provide valuable insights in researching longitudinal disease
courses [e.g., (48)], but recording sessions have to be designed
differently than clinical sessions to put particular emphasis on
adherence, therefore reducing user burden, and to motivate the
user to record multiple times.

The overview in Figure 3 presenting which speech tasks
are most commonly used in existing datasets, can provide
some considerations on which speech tasks can be prioritized
when user time is a considerable factor. Therefore, a legit
approach could be to design aminimalist, user-friendly recording
protocol, set up a small, clinical pre-study to validate that
the relevant indications for the disease to be assessed are
covered, and then use that minimalist protocol in a large scale
data collection effort. According to our systematic screening,
it depends on the disorder, but free speech and read speech
tasks are most commonly used and could therefore make up a
minimalist protocol.

After literature screening for this review, a publication was
released, which showcases the highlighted points for everyday-
life data collection (81). The authors managed to gather voice
samples via a web app of over 6,650 participants, of which roughly
10% reported to be depressed. They are piloting an extensive
survey with 17 speech tasks, which on one hand seems to impair
adherence (of 6,650, only 1,382 participants completed at least
two of the total four survey versions), but on the other hand,
can provide valuable insights into which speech tasks indeed
carry most relevant information. This goes to show that a careful
balance between user burden and the information to be collected
is to be considered.

Frontiers in Digital Health | www.frontiersin.org 11 July 2022 | Volume 4 | Article 842301

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Hecker et al. Neurological Disorder Recognition From Voice

4.3.1.2. Practical Considerations
The effort to bridge the gap between research and a real-world
use case, however, is very high in the healthcare setup, since
stakes are exceedingly more grave than in other fields. For
example, providing an unsuitable product recommendation in an
e-commerce setup is intuitively less detrimental thanmislabelling
a potential patient in a healthcare setup, where diagnosis or
therapy decisions might be impacted. Therefore, even in large-
scale data collection efforts, representing a whole population of
potential later users is still a challenge, but a big step toward
the right direction. Before generalising to everyday-life use cases,
rigorous validation of experimental results is required, including
quantification of changes in speech with time or treatment, as
emphasised by Robin et al. (82).

Other challenges in large-scale data collections are non-
standardised recording conditions. In controlled, clinical setups,
high-quality microphones and even recording booths are used
[e.g., (31)], but when collecting the data remotely from the
user, microphone types might vary along with the variety of
different smartphones on the market [e.g., (45)]. A few studies
reported experiences and ideas to combat those issues [e.g., (83)].
Additionally, knowing beforehand which features are expected to
be affected by the disorder to be studied can help when trying to
adjust the data analysis pipeline respectively [e.g., (17)].

Obtaining reliable ground truth labels is another relevant
aspect when participants are not recorded in a controlled clinical
setup. Usually, participants are asked to self-annotate their data.
To ensure a sufficient quality for these labels, it has to be ensured
that participants can properly understand the applied labels
themselves, and that the labeling process should be made as
straightforward and effortless as possible (84).

A further consideration for large-scale data collection efforts
is recruitment and user adherence. In clinical setups, cohorts are
usually available through patients who are regularly treated in the
clinic itself. If those patients are usually belonging to a rather
elderly cohort (e.g., PD), specific considerations are required to
ensure that smart devices to be used for large-scale data collection
can be intuitively used and do not cause user frustration (72).
To obtain data from a larger number of patients, the available
cohort at a clinic might not be sufficient. Interest groups and
networks for particular disorders can be a viable source to recruit
patients (80), and healthy participants can be reached through
online marketing or platforms such as Amazon Mechanical Turk
[e.g., as done in R’mani Haulcy et al. (85)].

Another consideration and challenge for large-scale data
collection is the identification of unique users. Machine learning
systems in the voice analysis domain can easily overfit when
no clear speaker separation is done. Since in anonymous data
collection efforts [e.g., Zhang et al. (45)], it cannot be ruled out
that the same speaker donates multiple samples, evaluation of
the system’s performance might be biased. Recruiting a clear set
of speakers can be a solution, or using a setup in which the user
has to register with a unique ID [e.g., via email address, Hecker
et al. (86)].

4.3.1.3. Data Privacy
A major and not negligible caveat in data collection approaches
in everyday life is that the collected voice data might contain

identity revealing aspects, and therefore, potential misuse
could bear severe consequences. Especially in longitudinal data
collection efforts, the longer the data collection effort continues,
the more information from a patient is being collected, and the
likelier a potential breach could be.

In a commercial setting, the technology of voice assistants
seems promising at first glance to be utilised to quantify the
status of disorders from voice. Voice assistants like Amazon Echo
and Google Home are widespread and people interact readily
with them through ‘free speech’ prompts. Recently, some research
has been done to find ways in which health-related processing
of voice assistant queries can be implemented in a privacy-
preserving way [e.g., (87, 88)]. However, privacy considerations
on medical (voice) data collected in everyday life are a magnitude
higher in the medical context than in private usage scenarios,
and therefore, the technology is not yet widely used for medical
voice collection yet (89). The majority of data collection efforts in
everyday life identified within this review nevertheless focuses on
dedicated implementations: custom apps on the smartphone (48,
49, 55, 72) and web sites (40, 45, 65). That way, data is not
being processed or residing on the third party system of a
voice assistant.

4.3.2. Multiple Modalities
Another trend is the collection of data from multiple modalities.
Predictive modeling approaches can gain performance when
using more than a single modality, and this approach is
known for some time already (90). In PD for example, gait
is prominently affected besides voice (91). In affect-related
disorders, such as major depression and bipolar disorder, video
as an additional modality can carry complementary information
on expressed emotion. The prominent Audio/Visual Emotion
Challenge andWorkshop (AVEC) addressed this aspect: featured
sub-challenges in which audio and video data or features from
clinical interviews (92) and interviews with virtual agents (93, 94)
from the Distress Analysis Interview Corpus [DAIC, (32)] are
provided as well as data on bipolar disorder (95). In addition,
setups in which data is collected from the smartphone’s camera as
additional video input within a commercial setup are nowadays
easily conceivable (96). The number of smart devices with sensors
is constantly growing and therefore this topic has also been
increasingly reflected in more recent dataset publications in this
review (40, 48, 65, 72).

4.3.2.1. Example Studies
The datasets we identified, which used multiple modalities,
were recorded from voice data from patients with PD, stress,
and ALS. Interestingly, apart from the traditional pairing of
voice and video [as in Gratch et al. (32) for depression], some
other modalities in combination with speech emerged. For PD,
researchers used sensor data to additionally assess the motoric
capabilities of the patients through a commonly used finger
tapping task, a walking task, and a memory task (72). In another
dataset, video, respiratory sinus arrhythmia, and heart rate
data (36) were combined. Since PD affects motor coordination,
assessing those modalities can yield some benefit, especially
since (72) was done in a remote care setup.
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Similarly, ALS affects muscle coordination and the studies
using additional modalities to voice recorded physical activity
and heart rate variability (65) as well as articulatory movement
data (53, 64).

For stress, datasets were retrieved, which recorded biosignals
such as blood volume pulse and skin conductance (61), as well
as video data (38). Video data is frequently used to assist in the
quantification of the expression of affect and therefore might also
yield valuable additional information in a setting to elicit stress.
Biosignals, such as skin conductance and blood volume pulse,
are traditionally used to predict stress, and the attempt to infer
them from the audio signal could pave the way to detect stress
unobtrusively by voice only.

4.3.2.2. Adapting the Data Processing Pipeline
When recording and analysing data collected from multiple
modalities, however, the complexity of the recording setup and
analysis pipeline is increased, since the different modalities need
to be fused at some point in the analysis pipeline. If features
are fused before predictive modeling algorithms are employed,
the approach is termed ‘early fusion,’ if multiple models for the
respective modalities are created and their outputs are fused, it is
termed ‘late fusion.’

In practice, increased complexity when conducting a study
to record and analyse data as well as the need to still fully
understand the effect of disorders on the voice modality are
likely the reasons for focused datasets. But in line with the
emerging trend toward everyday-life data collection, multimodal
approaches could gain further popularity. When utilising
participants’ smartphones for data collection, their sensors
already provide intrinsic additional modalities such as video,
location, movement, and even device usage data. On the other
hand, relying only on the voice modality could in practice lead to
applications in settings where only that modality is available, for
example when assessing phone calls (48).

4.4. Future Work
Based on the systematic screening of various original datasets
from voice recordings of neurological disorders, we further
highlight the following emerging trends. Future data collection
endeavors will benefit prominently from collecting data in
an everyday-life setup. Recording data in a clinical setup
is a good means to explore specific nuances and aspects
(e.g., symptoms) of a disorder further while recording data
in everyday life enables insights into longitudinal disorder
manifestation. Recording further modalities apart from audio
can boost the performance of predictive modeling approaches.
More research should be done on multi-modal data processing
to balance the benefit of additional information and the cost of
increased complexity.

5. CONCLUSION

To summarize, a variety of speech tasks are used in clinical
practice, and usually, multiple tasks are recorded within one
study to ensure that the relevant, distinct information for

comparable analyses are covered. When regarding the common
analysis methods utilised, we observe that custom feature
extraction methods are quite prominent. However, established
feature extraction toolkits within the research community
yield the benefit of better comparability of the analysed
features across different studies. Recently, learnt representations
from deep learning toolkits are finding their way into the
research community and offer an addition to the standard
acoustic features.

The main contribution of this review is to provide a general
overview of the field of neurological disorder recognition from
voice. We emphasise how data collection efforts are undertaken,
which trends emerge in the field, and aim to provide the readers
with valuable practical insights. Lastly, we extend the overview
of significantly correlating features for psychiatric disorders
from Low et al. (17) and added prominent neurodegenerative
disorders. This overview is particularly helpful when planning a
data collection approach for a respective disorder to see which
manifestations in voice are to be expected and to see with which
speech task these could be captured.
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