
Business Process Model Abstraction

Sergey Smirnov

Business Process Technology Group
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany

dissertation
zur erlangung des grades eines

doktors der naturwissenschaften
– dr. rer. nat. –

november 2011

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2012/6025/
URN urn:nbn:de:kobv:517-opus-60258
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60258

Abstract

Business process models are used within a range of organizational initiatives,
where every stakeholder has a unique perspective on a process and demands
the respective model. As a consequence, multiple process models capturing the
very same business process coexist. Keeping such models in sync is a challenge
within an ever changing business environment: once a process is changed, all
its models have to be updated. Due to a large number of models and their
complex relations, model maintenance becomes error-prone and expensive.
Against this background, business process model abstraction emerged as an
operation reducing the number of stored process models and facilitating model
management. Business process model abstraction is an operation preserving
essential process properties and leaving out insignificant details in order to
retain information relevant for a particular purpose. Process model abstraction
has been addressed by several researchers. The focus of their studies has been
on particular use cases and model transformations supporting these use cases.

This thesis systematically approaches the problem of business process
model abstraction shaping the outcome into a framework. We investigate the
current industry demand in abstraction summarizing it in a catalog of busi-
ness process model abstraction use cases. The thesis focuses on one prominent
use case where the user demands a model with coarse-grained activities and
overall process ordering constraints. We develop model transformations that
support this use case starting with the transformations based on process model
structure analysis. Further, abstraction methods considering the semantics of
process model elements are investigated. First, we suggest how semantically
related activities can be discovered in process models—a barely researched
challenge. The thesis validates the designed abstraction methods against sets
of industrial process models and discusses the method implementation aspects.
Second, we develop a novel model transformation, which combined with the
related activity discovery allows flexible non-hierarchical abstraction. In this
way this thesis advocates novel model transformations that facilitate business
process model management and provides the foundations for innovative tool
support.

Zusammenfassung

Geschäftsprozessmodelle werden in einer Fülle organisatorischer Initiativen
eingesetzt, wobei verschiedene Stakeholder individuelle Ansprüche an die
Sicht auf den jeweiligen Prozess haben. Dies führt dazu, dass zu einem
Geschäftsprozess eine Vielzahl unterschiedlicher Modelle existiert. In einer
sich ständig verändernden Geschäftsumgebung ist es daher schwierig, diese
Vielzahl von Modellen konsistent zu halten: Ändert sich sich ein Prozess,
müssen alle Modelle, die ihn beschreiben, aktualisiert werden. Aufgrund der
schieren Menge an Prozessmodellen und ihrer komplexen Beziehungen zuein-
ander, erhöhen sich Aufwand und Kosten zur Pflege aller Modelle enorm. Vor
diesem Hintergrund ermöglicht die Abstraktion von Geschäftsprozessmodellen,
die Menge der Modelle zu reduzieren und damit ihre Verwaltung zu vereinfa-
chen. Abstraktion von Geschäftsprozessmodellen bezeichnet eine Transforma-
tion eines Prozessmodells, so dass es für einen bestimmten Zweck besonders
geeignet ist. Bei der Abstraktion von Geschäftsprozessen bleiben essentiel-
le Eigenschaften eines Modells erhalten, während irrelevante Eigenschaften
verworfen werden. Mehrere Studien stellen Prozessmodellabstraktion in den
Fokus und konzentrieren sich auf konkrete Anwendungsfälle, für die sie geeig-
nete Transformationen entwickelt haben.

Diese Dissertation untersucht das Problem der Prozessmodellabstraktion
und systematisiert die Lösung in einem Framework. Aktuelle Anforderungen
der Industrie an die Abstraktion von Prozessmodellen wurden recherchiert
und in einem Katalog von Anwendungsfällen zusammengefasst, von denen ein
besonderer für die weiteren Untersuchungen ausgewählt wurde. In diesem Fall
erwartet der Nutzer ein Modell niedrigeren Detailgrades, in welchem die Kon-
trollflussbeziehungen des Ursprungsmodells erhalten bleiben. Beginnend bei
Modelltransformationen, die auf der Analyse der Prozessmodellstruktur auf-
bauen, entwickeln wir neuartige Abstraktionsoperationen zur Unterstützung
dieses Anwendungsfalles. Darüber hinaus untersuchen wir Abstraktionsme-
thoden, welche die Semantik von Prozessmodellelementen berücksichtigen.
Zum einen zeigen wir, wie Aktivitäten ermittelt werden können, die mit-
einander in semantischer Beziehung stehen – ein Problem, das bisher nur

VIII

unzureichend betrachtet wurde. Die vorgeschlagenen Methoden werden mit-
hilfe industrieller Prozessmodellsammlungen validiert und deren Umsetzung
diskutiert. Zum anderen schlagen wir eine innovative Modelltransformation
zur nicht-hierarchischen Abstraktion von Prozessmodellen vor. Dieser liegt
die Ermittlung in Beziehung stehender Aktivitäten zugrunde. Demzufolge
präsentiert diese Arbeit eine originäre Methode zur Prozessmodellabstrak-
tion, die die Verwaltung von Geschäftsprozessmodellen vereinfacht und den
Grundstein für innovative Softwarewerkzeuge legt.

Acknowledgments

At this point I would like to express gratitude to those people without whom
this thesis could not be written.

I would like to thank Mathias Weske who supervised my doctoral stud-
ies at Hasso Plattner Institute. Professor Weske fostered my scientific activ-
ities throughout the master studies and encouraged my participation in the
doctoral program. Being the doctoral student at his chair I enjoyed the pro-
fessional spirit within the group, a great research freedom, and the unique
opportunity to collaborate with the leading BPM research groups.

It was great pleasure to work with Jan Mendling. I appreciate Jan’s vision
and exceptional capability to inspire, develop, and complete ideas. I had the
luck to work with Hajo Reijers who motivated me to revise the vision of my
research and align it with the industry demand. I am thankful to Manfred
Reichert and Karsten Wolf for being the reviewers of this thesis and their
valuable feedback.

I was happy to collaborate on several research contributions with Matthias
Weidlich, Artem Polyvyanyy, Remco Dijkman, Henrik Leopold, Ahmed Awad,
Thijs Nugteren, Andreas Meyer, Christian Wiggert, and Armin Zamani Fara-
hani. I highly value the feedback of my colleagues Evellin Cardoso, Gero
Decker, Rami-Habib Eid-Sabbagh, Markus Güntert, Nico Herzberg, Jens
Hündling, Matthias Kunze, Dominik Kuropka, Alexander Lübbe, Harald
Meyer, Hagen Overdick, Emilian Pascalau, Nicolas Peters, Frank Puhlmann,
Maria Rastrepkina, Andreas Rogge-Solti, and Juliane Siegeris. I would like to
thank the anonymous reviewers of the papers and the articles I co-authored. I
appreciate the expertise of the employees of Pallas Athena and AOK Nord. In
particular, I am grateful to John Hoogland, Paul Eertink, Anke-Britt Möhr,
Norbert Sandau, and Anja Niedersätz. I appreciate the organizational support
of Katrin Heinrich. Finally, I thank my family and friends who encouraged
my research initiatives. In particular, I am grateful to my wife, Alina, and
parents, Tatiana and Vladimir.

Contents

1 Introduction . 1
1.1 Problem Statement . 1
1.2 Research Contributions . 7
1.3 Thesis Structure . 10

2 Preliminaries . 13
2.1 Graphs . 13
2.2 Petri Nets . 16
2.3 Process Models . 20

2.3.1 Process Model Notion . 21
2.3.2 Process Model Decomposition . 22
2.3.3 Behavioral Profiles . 27

2.4 Summary . 28

3 Business Process Model Abstraction: Theory and Practice . 31
3.1 Instance, Model, and Abstract Model . 31
3.2 Business Process Model Abstraction Framework 33

3.2.1 Why . 33
3.2.2 When . 36
3.2.3 How . 37

3.3 Properties of Business Process Model Abstraction 40
3.3.1 Hierarchical Abstraction . 40
3.3.2 Order-Preserving Abstraction . 41
3.3.3 Abstraction Preserving Process Non-Functional

Properties . 43
3.4 Catalog of Abstraction Use Cases . 44

3.4.1 Catalog Design . 44
3.4.2 Initial Use Cases . 45
3.4.3 Use Case Validation . 48
3.4.4 Additional Insights . 50

3.5 Summary . 51

XII Contents

4 Structural Methods of Business Process Model Abstraction 53
4.1 Pattern-Based Methods . 56

4.1.1 Elementary Abstractions . 56
4.1.2 Composition of Elementary Abstractions 61
4.1.3 Limitations of Pattern-Based Abstraction 64

4.2 Decomposition-Based Methods . 65
4.3 Discussion . 69

4.3.1 User Control . 70
4.3.2 Order Preservation . 70
4.3.3 Evaluation of Activity Non-Functional Properties 70
4.3.4 Abstraction Smoothness . 71
4.3.5 Limitations of Structural Methods 74

4.4 Summary . 76

5 Discovery of Related Activities in Process Models 77
5.1 Meronymy-Based Activity Aggregation . 80

5.1.1 Basic Concepts . 81
5.1.2 Matching Activities: from Process Models to

Meronymy Forest . 82
5.1.3 Aggregation Candidates Ranking . 84
5.1.4 Activity Aggregation Mining Algorithm 85

5.2 Activity Aggregation as Cluster Analysis Problem 87
5.2.1 Towards Annotated Process Model 89
5.2.2 Activity Clustering using K-means Algorithm 90

5.3 Evaluation . 92
5.3.1 Goal and Method . 93
5.3.2 Meronymy-Based Activity Aggregation 93
5.3.3 Activity Aggregation based on Cluster Analysis 96
5.3.4 Key Observations . 97

5.4 Discussion . 99
5.5 Summary . 100

6 Controlling Control Flow Loss . 101
6.1 Deriving Behavioral Relations from a Process Model 104
6.2 Construction of Abstract Model Behavioral Profile 105
6.3 Abstract Process Model Synthesis . 108

6.3.1 Well-Structured Behavioral Profiles 108
6.3.2 Synthesis of a Process Model from a Well-Structured

Behavioral Profile . 114
6.4 Software Implementation . 117

6.4.1 Oryx . 117
6.4.2 Oryx Mashup Framework. 117
6.4.3 FLEXAB . 118

6.5 Discussion . 120
6.5.1 Application Perspective . 120

Contents XIII

6.5.2 Related Work on Process Model Synthesis 121
6.6 Summary . 122

7 Related Work . 123
7.1 Abstraction State of the Art . 124

7.1.1 Cardoso et al. 124
7.1.2 Liu and Shen . 125
7.1.3 Chiu et al. 126
7.1.4 Pankratius and Stucky . 127
7.1.5 Günther and van der Aalst . 128
7.1.6 Bobrik et al. 129
7.1.7 Eshuis and Grefen . 130
7.1.8 Polyvyanyy et al. 131
7.1.9 Summary. 132

7.2 Potential Abstraction Enablers . 132
7.3 Farther Afield . 134
7.4 Discussion . 135

7.4.1 Retrospective . 136
7.4.2 Perspective . 136

7.5 Summary . 138

8 Conclusion . 139
8.1 Summary of the Results . 139
8.2 Discussion . 141
8.3 Future Work . 142

References . 143

List of Figures

1.1 An industrial business process model of high complexity 4
1.2 Three models of one business process varying in precision 6

2.1 Some graph examples . 14
2.2 An arborescence . 15
2.3 A control flow graph . 15
2.4 Two Petri nets modeling a business process 17
2.5 A Petri net with two markings . 18
2.6 A non-free choice Petri net . 19
2.7 An unsound workflow net . 20
2.8 A process model . 21
2.9 A process model decomposed into canonical SESE fragments . . . 23
2.10 A PST of the process model in Fig. 2.9 . 25
2.11 A process model decomposed into canonical components 25
2.12 An rPST of the process model in Fig. 2.11 26
2.13 Behavioral relation hierarchy . 28

3.1 The business process model abstraction concepts allocated to
MOF levels . 32

3.2 Two examples of business process model abstraction 35
3.3 Comparison of aggregation and elimination 39
3.4 Two abstractions: order-preserving and not order-preserving . . . 42

4.1 Two models of the “Forecast request handling” business process 54
4.2 Sequence elementary abstraction . 57
4.3 Block elementary abstractions . 58
4.4 Loop elementary abstraction . 60
4.5 Abstraction as a composition of elementary abstractions 63
4.6 A challenge for pattern-based abstraction . 64
4.7 Abstraction by means of process model decomposition 67
4.8 A fragment resulting high abstraction smoothness 71

XVI List of Figures

4.9 An evaluation of the abstraction smoothness 73
4.10 Shortcomings of structural business process model abstraction . 75

5.1 A model of the “Forecast request handling” business process . . . 78
5.2 A meronymy tree . 80
5.3 The meronymy tree µ . 82
5.4 Two models of the “Forecast request handling” business process 88
5.5 A vector space with dimensions FA data, QA data, and Raw

data . 90
5.6 Precision, recall, and F-score observed within the evaluation

of meronymy-based activity aggregation . 95
5.7 Precision, recall, and F-score observed within the evaluation

of activity aggregation based on cluster analysis 98

6.1 Descriptions of the “Forecast request handling” business process102
6.2 Abstraction as a block box . 103
6.3 Discovery of a behavioral relation for an activity pair 108
6.4 Process model fragments restricting the execution of a, b, and c 108
6.5 Not well-structured process models PM1 and PM2 109
6.6 The order relations graphs of the models in Fig. 6.5 111
6.7 The modular decomposition of the order relations graph in

Fig. 6.6(b) . 112
6.8 The order relations graphs for the behavioral profile in

Table 6.2 and its modular decomposition . 112
6.9 Insertion of a trivial circuit . 114
6.10 Abstract model of the process “Forecast request handling” 117
6.11 Flexab architecture overview (FMC notation) 118
6.12 The screenshots presenting the user interface of the Flexab . . . 119

7.1 Illustration of the abstraction developed by Cardoso et al. 125
7.2 Illustration of the abstraction developed by Liu and Shen 126
7.3 Illustration of the abstraction developed by Chiu et al. 127
7.4 Illustration of the abstraction developed by Pankratius and

Stucky . 127
7.5 Illustration of the abstraction developed by Guenther and van

der Aalst . 128
7.6 Illustration of the abstraction developed by Bobrik et al. 129
7.7 Illustration of the abstraction developed by Eshuis and Grefen . 130
7.8 Illustration of the abstraction developed by Polyvyanyy et al. . . 131

List of Tables

1.1 A description of the business process “Forecast request handling” 5

2.1 The behavioral profile of the model presented in Fig. 2.9. 28

3.1 Support of use cases by interviewees . 48
3.2 Outlook of the contributions in the upcoming chapters 52

5.1 Properties of business process models used in the evaluation . . . 97

6.1 The behavioral profile of model PM in Fig. 6.1. 105
6.2 The behavioral profile of model PMa . 107

7.1 Overview of existing business process model abstraction
methods. 133

7.2 Existing techniques related to identified business process
model abstraction use cases. 137

1

Introduction

Chapter 1 introduces the reader to this doctoral thesis. The start of this chap-
ter motivates the investigated research problem. Then, we explain the main
research contributions and conclude with an outline of the thesis’s structure.

1.1 Problem Statement

In the last decades businesses have found themselves in the volatile market
with tight competition. Small- and mid-size companies are threatened by large
corporations. The latter, in turn, have to cope with disruptive technologies
developed by competitors [36]. To survive in this harsh environment businesses
seek means to differentiate themselves from the rivals. The companies identify,
secure, and develop their core competencies—factors that are not easy to
imitate, could be applied to numerous products and markets, and contribute to
the consumer benefits. Business processes are a vivid example of a company’s
core competency [41, 69, 71, 149]. According to [41], a business process is

“a structured, measured set of activities designed to produce a specific
output for a particular customer or market. It implies a strong emphasis
on how work is done within an organization, in contrast to a product
focus’s emphasis on what. A process is thus a specific ordering of work
activities across time and space, with a beginning and an end, and clearly
defined inputs and outputs: a structure for action.”

Business processes have been discussed by economic practitioners and re-
searchers for centuries. For instance, the fundamental work of Adam Smith,
[148], refers to the example of a pin production business process when arguing
about the division of labor. However, the recognition of business processes as
the core competency of a company has happened only recently. The prolific
work of Davenport, [41], along with [69] by Hammer and Champy focused
the attention on business processes as valuable artifacts. This new perspec-
tive gave birth to a new management approach—business process manage-

2 1 Introduction

ment (BPM). Business process management focuses on designing, enacting,
managing, analyzing, adapting, and mining business processes [5]. Essentially,
each of the aforementioned tasks implies that a description of the business
process is available or the task creates the description. While in some cases a
textual description of the process suffices, formal business process models got
wide spread in industry and academia. Following [165] we assume that

“a business process model consists of a set of activity models and execu-
tion constraints between them. A business process instance represents
a concrete case in the operational business of a company, consisting of
activity instances. Each business process model acts as a blueprint for
a set of business process instances, and each activity model acts as a
blueprint for a set of activity instances.”

Among the advantages of formal models are their low ambiguity and a large
choice of methods and software applications for model validation [59].

While the use of process models gives clear benefits to BPM practition-
ers and researchers, there is no consensus on one common business process
modeling language. On the one hand, there is a large family of modeling lan-
guages that formalize business processes as graphs. The graph nodes capture
activities, events, and decisions, while edges reflect the ordering constraints.
This family includes such languages as ADEPT [39, 127], Business Process
Model and Notation (BPMN) [113], Event-driven Process Chains (EPCs) [80],
Petri nets [108, 116], UML Activity Diagrams [114], workflow nets [2, 9], and
Yet Another Workflow Language (YAWL) [7]. The execution semantics of the
languages in this family can be traced back to the semantics of Petri nets. Sim-
ilarly, Business Process Execution Language (BPEL) puts the focus on the
process control flow [111]. At the same time, business artifacts [26, 27, 76],
as well as case handling [11, 130], emphasize the role of data in business
processes. However, the graph-based process modeling languages got widely
accepted both by industry and academia. Against this background, this thesis
studies process models formalized as graphs and having the semantics resem-
bling that of Petri nets. We assume a process model to contain a set of activity
models along with the ordering constraints formalized by means of gateways
and control flow relation (for technical details see Chapter 2).

Process models facilitate numerous tasks, among them configuring work-
flow software systems [62, 92], training new employees, identifying perfor-
mance improvement opportunities [69], aligning conflicting views of stakehold-
ers on business operations, and demonstrating an organization’s compliance
with external regulations [18], to name but a few. Obviously, this variety of
modeling goals requires a process modeler to focus on the business process
aspects relevant for a task at hand. Following this demand, companies design
new process models, each supporting a particular business task, yet contribut-
ing to the overall number of maintained models. As an outcome, organizations
are challenged by large process model repositories consisting of hundreds or
even thousands of models. The stored models have complex interrelations:

1.1 Problem Statement 3

they overlap, describe processes that subsume each other, describe one pro-
cess from different perspectives or at varying levels of precision. Obviously, the
owner of such a collection demands adequate means to manage this plethora
of models and their interrelations. The BPM community delivered a number
of methods that help managing the complexity of large process model collec-
tions. For example, there are methods to deal efficiently with process model
variety [68, 86, 126, 134, 153] and algorithms to search for process models that
fit a particular profile [46, 48, 52, 78, 84].

This thesis studies process models that describe one business process, but
with different amounts of details. As we argued earlier, the demand for such
models is motivated by the model pragmatics: each model supports a specific
business task and, hence, has a particular modeling goal [150]. Unfortunately,
multiple models describing one business process with different precision fre-
quent to be stored independently. Since no formal relations between these
models exist, the model owner is challenged by the effort of keeping them in
sync. Indeed, each change of the business process needs to be propagated to
all its models, which incurs a significant overhead. Hence, the storage of such
models is error-prone and leads to model inconsistencies.

We illustrate the discussed challenge referring to the two examples de-
manding several models capturing one business process with different preci-
sion. First, consider the model of the business process “Registration form pro-
cessing” presented in Fig. 1.1. The model adheres to the EPC notation and
describes a business process of a German health insurance company AOK.
This EPC is developed by the process modeling experts at AOK and contains
well over 300 nodes with about 150 activities among them. The model is an-
notated with information about the average activity execution duration and
the path execution probabilities. This information allows the AOK human re-
sources department to estimate the average time needed for process realization
and the amount of consumed resources. The high complexity of this model
stems from its pragmatic feature—the modeling goal and the intended use.
The presented model is clearly inappropriate for the communication between
business users: the huge model size overwhelms the reader with exhaustive de-
tails and impedes rapid process understanding. Since AOK wants to support
its management with process specifications, its designers have to deliver yet
another model of this business process. According to the established business
process modeling guidelines, such a model should be bounded to the size of
approximately 50 elements [20, 103]. Obviously, these two models increase the
maintenance effort threatening model consistency: once a business process is
changed, all its models must be updated accordingly. Being already in posses-
sion of the detailed process model AOK demands a method for the derivation
of an abstract process specification from the existing one in order to lower the
model management burden.

The AOK scenario is real world and perfectly illustrates the complexity
of industrial process models. However, we consistently reference the business
process “Forecast request handling” throughout this thesis as a motivating ex-

4 1 Introduction

Fig. 1.1. An industrial business process model of high complexity. The model is
an EPC capturing the business process “Registration form processing” by means of
more than 300 nodes including around 150 activities.

1.1 Problem Statement 5

The forecast request processing begins, once a clerk receives an email
with a forecast request. Upon request receipt, the clerk requests
gathering of data for the forecast. Then, the clerk records the
request and awaits until the requested data is available. The clerk
archives the received data. From this point the forecast handling has
two alternative evolutions. The first option is a “quick” analysis per-
formed by an analyst that includes a data preparatory step and the
quick analysis itself. The second evolution of the process consists of
a “full” data analysis and an auxiliary simulation. In this case a se-
nior analyst creates the forecast. The senior analyst first prepares
the data for the full analysis; the prepared data is used as the input
for the fully fledged data analysis and the simulation. The results
of the analysis and the simulation are consolidated. Disregard of the
chosen analysis type, the clerk always concludes the business process
generating a forecast report and sending it to the customer.

Table 1.1. Description of the business process “Forecast request handling”.

ample: it is simple and easy to follow. Table 1.1 textually describes the process,
while Fig. 1.2 visualizes its three models. Model PM provides the most precise
process description. Model PMa provides less details, while model PM′a is the
most abstract one of the three. Model PM contains several semantically related
activities that can be aggregated together into more coarse-grained ones. In
model PM the groups of related activities are marked by areas with a dashed
border, for instance, group g1 with members {Receive request via email, Record
request}. Each activity set corresponds to a respective high-level activity in
the abstract model PMa, e.g., {Receive request via email, Record request} re-
lates to Receive forecast request. Model PM′a provides a more abstract view
on “Forecast request handling” business process: its activities are refined by
the activities of model PMa and can be further refined with activities of PM.
This constellation results in model maintenance challenges: a change of the
business process implies the update of all the three models.

Against this background, business process model abstraction emerged as a
technique reducing the number of models describing one business process at
different abstraction levels. Business process model abstraction is an opera-
tion on a business process model preserving essential process properties and
leaving out insignificant details in order to retain information relevant for a
particular purpose. In this way, abstraction allows to derive less detailed pro-
cess models from precise ones. We notice that abstraction is a fundamental
concept in computer science as well as in software engineering. Our notion of
business process model abstraction aligns with the understanding of abstrac-
tion in these disciplines. For instance, Aho and Ullman argue that “computer
science is a science of abstraction, creating the right model for a problem
and devising the appropriate mechanizable techniques to solve it”, see [12].
In the context of software engineering Larman defines abstraction as “the

6 1 Introduction

g
8

 g
7

g
6

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
a

in
it
ia

l
m

o
d

e
l,
 P

M

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

P
e

rf
o

rm
 f
u

ll

a
n

a
ly

s
is

P
e

rf
o

rm
 q

u
ic

k

a
n

a
ly

s
is

H
a

n
d

le

d
a

ta

R
e

c
e

iv
e

 f
o

re
c
a

s
t

re
q

u
e

s
t

Is
s
u

e
 r

e
p

o
rt

P
e

rf
o

rm
 d

a
ta

a
n

a
ly

s
is

R
e

c
e

iv
e

 f
o

re
c
a

s
t

re
q

u
e

s
t

Is
s
u

e
 r

e
p

o
rt

g
3

g
4

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
' a

g
5

g
1

 g
2

S
e

n
d

re
p

o
rt

A
rc

h
iv

e

d
a

ta

Fig. 1.2. Three models capturing business process “Forecast request handling” at
different levels of abstraction.

1.2 Research Contributions 7

act of concentrating the essential or general qualities of similar things. Also,
the resulting essential characteristics of a thing” in [87]. Against this back-
ground, we position business process model abstraction as a specific type of
abstraction related to process modeling.

Business process model abstraction has been addressed by several research
endeavors. We observe that the existing contributions share two properties.
First, each paper investigates one method of business process model abstrac-
tion, either addressing a specific abstraction scenario, or even leaving the
application perspective out of scope. The examples of research contributions
in the first category are [32, 34, 35, 55, 66, 121, 122], while [28, 30, 94, 115] ad-
vocate generic abstraction methods. This situation leads to a paradox: while
technical solutions for individual subproblems are available, no coherent de-
scription of the problem’s “big picture” exists. This means that the related
work lacks a consistent description of abstraction concepts. In addition, the de-
mand for various abstraction methods is explored sporadically. Second, to the
best of our knowledge, the existing abstraction methods are realized as model
transformations driven by process model structure and ignore the business
semantics of model elements. In other words, the existing abstraction meth-
ods consider only the process model structure to conceal insignificant process
details. For instance, in [94] Liu and Shen realize abstraction by means of the
reduction rules developed by [135]. According to [94], an insignificant activity
can be aggregated with its neighboring activity increasing the model abstrac-
tion level. Polyvyanyy et al. argue how process model decomposition can be
leveraged to conceal insignificant process details, see [122, 123]. Such abstrac-
tion methods are agnostic to the business semantics of model elements: they
neither take into account the semantics of abstracted elements, nor the se-
mantics of the outcome. Hence, it is the user who assures that an abstraction
delivers a process model having business meaning. This state of the art in
business process model abstraction motivates the research goal of this thesis
and its key contributions.

1.2 Research Contributions

The research goal of this thesis is to investigate the problem of business process
model abstraction and develop abstraction methods addressing the actual user
demand. To achieve this goal we first establish a framework that describes the
domain of business process model abstraction. This framework distinguishes
two types of model transformations that realize an abstraction: elimination
and aggregation. While elimination omits model elements, aggregation puts
them together into more coarse-grained ones. This thesis also extends the
body of knowledge with a catalog of abstraction use cases demanded by in-
dustry. Building on the analysis of the use case catalog, we further focus on
the category of use cases most demanded by practitioners. Due to this, we
scope our study to abstraction realized as activity aggregation. We approach

8 1 Introduction

the problem from different angles. First, we investigate how analysis of the
process model structure facilitates business process model abstraction. Sec-
ond, we develop and evaluate advanced methods that enable non-hierarchical
abstraction addressing the business semantics of model elements. Finally, we
systematically investigate the related work and organize it by means of the
developed framework. Notice that this thesis studies the impact of business
process model abstraction on the process model activities and the ordering
constraints between them. Thereafter, model elements capturing such artifacts
as process data or organizational roles play only an auxiliary part. Against
this state of the art, we position the main research contributions of this thesis.

Business Process Model Abstraction Framework

The BPM community tackled the research challenges of business process
model abstraction by a number of papers [29, 30, 32, 55, 94]. However, typi-
cally each research endeavor focuses on one particular user demand and the
related abstraction use case. Thereafter, the existing research contributions
add “tiles” to the “big picture” of business process abstraction. This thesis
builds on top of the existing contributions and establishes a framework of
business process model abstraction. This framework decomposes the problem
into three subproblems: why the abstraction is invoked, when model elements
are abstracted, and how the abstraction is realized. The developed framework
provides a coherent view on business process model abstraction and, hence,
enables the comparison of the existing abstraction methods facilitating the
identification of research gaps.

Catalog of Business Process Model Abstraction Use Cases

To the best of our knowledge there is no comprehensive study of a user de-
mand in abstraction methods. This thesis presents a novel catalog of business
process model abstraction use cases. The catalog is the outcome of an em-
pirical study that analyzed the related research contributions, e.g., [29, 34,
35, 55, 66, 94, 123], and summarized the interviews with BPM experts from
industry: consultants, software vendors, and end users. The catalog relates
the abstraction use cases by means of the previously introduced framework.
Furthermore, the use cases are prioritized according to the user demand. The
added value of the catalog is twofold. On the one hand, the BPM practitioners
and researchers benefit form the catalog, as it provides a consistent view on
the industrial demand for business process model abstraction. On the other
hand, the most prominent use cases determine the research direction of this
thesis: the developed abstraction methods enable these use cases.

Abstraction of a Process Model According to Model Structure

This thesis engineers two approaches to process model abstraction analyzing
process model structure: pattern-based and decomposition-based. The pro-

1.2 Research Contributions 9

posed pattern-based method leverages well-established model transformation
rules [4, 29, 32, 55, 135]. It extends the body of knowledge with a new al-
gorithm orchestrating the pattern application. While process model decom-
position recently became a prominent topic, e.g., see [73, 124, 154, 155], this
thesis develops a novel algorithm of business process model abstraction that
uses process model decomposition. In addition, we discuss the pros and cons
of pattern-based and decomposition-based structural abstraction methods.

Discovery of Semantically Related Activities within a Process
Model

Several identified abstraction use cases synthesize a process model with the
activities more coarse-grained than the activities of the initial model. Each of
such coarse-grained activities abstracts a set of activities in the initial model.
Thereafter, there is a demand for methods discovering sets of semantically re-
lated activities of one model. While the change of activity granularity has been
tackled by a number of research papers [65, 66, 90, 128, 129, 131], this the-
sis introduces and empirically validates two novel methods. The first method
argues how activity meronymy relation facilitates identification of related ac-
tivity sets enabling a non-hierarchical abstraction. The second method implies
availability of process models enriched with non-control flow information and
adapts clustering analysis for activity aggregation. Both methods deliver sets
of activities that semantically belong together. In contrast to the related re-
search on process mining [65, 66], the developed methods focus on the infor-
mation inherent to the process model level, rather than the instance level.
Meanwhile, our contribution complements the related research on activity
granularity in process models [90, 128, 129, 131] arguing how the activity sets
are discovered. To evaluate the newly developed activity aggregation meth-
ods, we use the sets of industrial process models and the modeling expert
judgment.

Control Flow Discovery within a Non-Hierarchical Business
Process Model Abstraction

The majority of available business process model abstraction methods en-
able hierarchical abstraction, for instance, see [29, 55, 94, 66]. However,
there is a demand for non-hierarchical refinement and generalization oper-
ations [49, 60, 82, 157]. This thesis develops a novel algorithm enabling non-
hierarchical business process model abstraction. Given as inputs 1) a process
model and 2) activity groups in this model, the algorithm synthesizes an
abstract process model with activities corresponding to the groups. The al-
gorithm generalizes the ideas of structural process model abstraction, since it
allows free definition of a related activity set. We complement the conceptual
discussion with a presentation of the algorithm’s software implementation—
the application Flexab. Along with the discussion of this concrete implemen-
tation we argue about the application aspects of the proposed algorithm.

10 1 Introduction

1.3 Thesis Structure

This thesis is organized into 8 chapters. We start introducing the basic con-
cepts and the formalization of business process model abstraction. After the
thesis presents the catalog of abstraction use cases, we elaborate on meth-
ods that realize abstraction: from basic structural to advanced addressing the
semantics of model elements. Finally, the thesis outlines the related work con-
cluding with a contribution summary and an outlook of the future research.

Chapter 1: Introduction

The Introduction briefly motivates the research problem investigated by this
thesis. Further, the chapter names the thesis’s main research contributions
and defines the thesis’s structure.

Chapter 2: Preliminaries

This chapter provides the formal background for the rest of the thesis. The
goal of the “Preliminaries” chapter is twofold. On the one hand, it brings the
reader to the formal notion of a process model. On the other hand, this chapter
introduces auxiliary concepts used throughout this thesis. For instance, we
postulate the notions of a graph and its special classes, discuss two types of
process model decomposition and explain the concept of behavioral profiles—a
process behavioral abstraction.

Chapter 3: Business Process Model Abstraction: Theory and
Practice

The “Business Process Model Abstraction: Theory and Practice” chapter ar-
gues about business process model abstraction from theoretical and practical
perspectives. First, the chapter develops a framework identifying the main
concepts of business process model abstraction and relations between them.
We elaborate on the operations realizing abstraction and discuss prominent
operation classes. Second, the chapter presents a novel catalog of use cases
that reflects the demand of practitioners.

Chapter 4: Structural Methods of Business Process Model
Abstraction

Chapter 4 shows how process model structure can be used for business pro-
cess model abstraction. The key idea of structural abstraction is to conceal
insignificant model details transforming the process model fragments contain-
ing these details. Each such fragment is either omitted or substituted for a
more coarse-grained model element. While the former abstraction method is

1.3 Thesis Structure 11

trivial, we focus on the latter one—aggregation. Building on the well estab-
lished methods of process model analysis we propose two algorithms for ag-
gregation: pattern-based and decomposition-based. We discuss the properties
of each algorithm and compare them.

Chapter 5: Discovery of Related Activities in Process Models

Building on the lessons learned within the user study in Chapter 3, we in-
vestigate abstraction methods that increase activity granularity. Since the
structural methods of activity aggregation discover related activity sets as-
suming that they belong to a particular process model fragment, they enable
hierarchical abstraction only. This property is a strong limitation of the struc-
tural methods. To eliminate this restriction, Chapter 5 investigates alternative
means to discover sets of related activities within one process model. The out-
come of the study are two new methods that analyze the information about
process model activities and find sets of related activities. The chapter not
only engineers the two methods, but provides their empirical evaluation.

Chapter 6: Controlling Control Flow Loss

This chapter argues how the control flow information of the abstract pro-
cess model is derived, once the initial process model and the sets of related
activities are available. In contrast to the abstraction methods advocated in
literature, e.g., see [55, 94, 123], and in Chapter 4, this original approach al-
lows for non-hierarchical abstraction, where the related activities of the initial
process model are freely distributed over the model. The model transforma-
tion approach makes use of behavioral profiles—an abstraction of the process
behavior. Providing a thorough conceptual discussion of the approach, the
chapter supplements it by a brief summary of abstraction method implemen-
tation. The proposed solution complements the contribution of Chapter 5 and
overcomes the limitations of traditional structural abstraction methods.

Chapter 7: Related Work

The “Related Work” chapter elaborates on the research contributions related
to business process model abstraction. We organize the related work into
three streams. First, we in detail survey the existing business process model
abstraction methods. Second, we describe the model transformations that can
be used as process model abstraction enablers. Third, we outline the contri-
butions on software engineering and business process management that relate
to the topic of business process model abstraction. Finally, the chapter com-
pares the works on business process model abstraction using the framework
introduced in Chapter 3. As an outcome, we contrast the most investigated
questions within business process model abstraction with the research gaps.

12 1 Introduction

Chapter 8: Conclusion

The concluding chapter summarizes the contributions of this thesis, points to
the research areas in the close proximity of business process model abstraction,
and provides an outlook of the next research steps.

2

Preliminaries

This chapter accumulates the formalisms fundamental for modeling of busi-
ness processes and process model transformations advocated by this thesis.
Section 2.1 briefly summarizes the concept of a graph and its special classes
this thesis refers to. In Section 2.2 we familiarize the reader with Petri nets—
the formalism enabling compact representation of concurrent systems. First,
we explain the basic concepts of Petri nets and then elaborate on their special
class—workflow nets. Workflow nets have been introduced by van der Aalst
in [1] and are of particular importance for modeling working procedures of
organizations. Building on the formalism of Petri nets Section 2.3 postulates
the notion of a process model this thesis adheres to. Furthermore, Section 2.3
provides the formal background for process model decomposition methods and
behavioral abstraction of processes—behavioral profiles. Section 2.4 concludes
this chapter.

2.1 Graphs

As the first step we postulate the notion of a graph, e.g., see [70].

Definition 2.1 (Graph).
A graph is a tuple G = (N,E), where N is a finite nonempty set of nodes and
E ⊆ N ×N is a set of edges.

Fig. 2.1 presents several graph examples. The graphs G1, G2, G3, and G4 are
undirected graphs, for their edges are unordered pairs. A complete graph is an
undirected graph in which every pair of distinct nodes is connected by a unique
edge, e.g., see graph G4. A graph G = (N,E) is bipartite, iff N can be divided
into two disjoint sets U and V such that for every edge (u, v) ∈ E : u ∈ U
and v ∈ V . Among the graphs in Fig. 2.1, G3 is the only bipartite graph
(with U = {n1, n2, n3} and V = {n4, n5}). If graph edges are ordered activity
pairs, the graph is directed. The graphs G5 and G6 are directed graphs, see
Fig. 2.1(e) and Fig. 2.1(f), respectively.

14 2 Preliminaries

n1

n2

n3

n4

n5

n6

n7

n8

(a) Undirected not con-
nected graph G1.

n1

n2
n3

n4 n5

n6 n7

(b) Acyclic con-
nected graph G2.

n1

n2

n3

n4

n5

(c) Bipartite graph G3.

n1

n3

n2

n4

(d) Complete graph G4.

n3

n2 n1

n4

(e) Directed graph G5.

n1

n2

n3 n4

n5

n6

(f) Directed graph G6.

Fig. 2.1. Some graph examples.

We use the notions of postset and preset for the nodes in a directed graph.
Let G = (N,E) be a directed graph. A node n′ ∈ N belongs to the preset of a
node n ∈ N , iff there is an edge (n′, n), i.e., (n′, n) ∈ E. The preset of a node
is denoted as •n. The postset of a node n ∈ N contains such nodes n′ ∈ N
that (n, n′) ∈ E. We reference a postset of node n as n•. For instance, in the
graph G5 we observe •n2 = {n1} and n1• = {n2, n4}. For a node n ∈ N of the
directed graph G = (N,E) the set in(n) is the set of incoming edges such that
in(n) = {(n′, n)|n′ ∈ •n}. Analogously, the set of outgoing edges of a node n
is defined as out(n) = {(n, n′)|n′ ∈ n•}. Returning to the example graph G5,
we notice in(n2) = {(n1, n2)} and out(n1) = {(n1, n2), (n1, n4)}.

Definition 2.2 (Path).
A path in the graph G = (N,E) is a sequence of nodes (n1, . . . , nl) such that
(ni, ni+1) ∈ E, where i, l ∈ N and 1 ≤ i ≤ l − 1.

Graph G1 exhibits paths (n1, n2, n3, n1) and (n4, n5, n6, n8, n7). A cycle in the
graph G = (N,E) is a path (n1, . . . , nl), where n1 = nl. Paths (n1, n2, n3, n1)
and (n5, n6, n8, n7, n5) in graph G1 are cycle examples. Graph G2 does not
contain cycles.

A graph G = (N,E) is a connected graph, if for each pair of nodes n, n′ ∈ N ,
where n 6= n′, there is a path from n to n′. Graph G2 is a connected graph,
since from each node of G2 there is a path to every other node of this graph.
At the same time, G1 is not a connected graph: for instance, there is no path
from n3 to n5. A directed graph is weakly connected if replacing all of its
directed edges with undirected edges produces a connected undirected graph,
see graph G5 in Fig. 2.1 as an example.

Definition 2.3 (Tree).
A connected graph that has no cycles is a tree.

2.1 Graphs 15

n1

n2

n3 n5n4

n6 n7

Fig. 2.2. The graph G7 that is an arborescence.

Graph G2 is a tree: it is acyclic and connected. As G1 is not a connected graph
and has cycles, it is not a tree. A directed tree is a directed graph which would
be a tree, if the directions on the edges were ignored. A tree is called a rooted
tree if one vertex is the designated root, i.e., E ⊆ N × (N\{r}). We denote
a rooted tree with G = (N, r,E), where r is the root. For instance, tree G2

can be rooted to nodes n1 or n2. We make use of a special class of rooted
trees—arborescence. An arborescence is a directed rooted tree, where there is
exactly one directed path from the root r to each node, see Fig. 2.2 for an
arborescence example.

The lowest common ancestor (LCA) is defined between two nodes n1 and
n2 as the lowest node in G = (N, r,E) that has n1 and n2 as descendants,
where a node is a descendant of itself. In Fig. 2.2 we observe, for example,
that n2 is the LCA of n3 and n6, while n5 is the LCA of n6 and n7. While
the lowest common ancestor concept is well defined for a pair of nodes, we
extend it to a node set. For a set of nodes N ′ ⊆ N in the tree G = (N, r,E) its
lowest common ancestor is the lowest node having all the activities of N ′ as
descendants. For a given arborescence G = (N, r,E) we introduce a mapping
lca : P(N) → N that for a set of nodes returns its lowest common ancestor.
Returning to the example graph in Fig. 2.2 we see that n2 = lca({n3, n6, n7})

A directed graph is called weakly connected if a replacement of all its
directed edges with undirected edges produces a connected undirected graph,
for an example consider the graph G7 in Fig. 2.3. In the sequel we are interested
in a special class of directed graphs referenced as control flow graphs.

Definition 2.4 (Control Flow Graph).
A tuple G = (N,E, ns, ne) is a control flow graph, where:

– (N,E) is a weakly connected directed graph
– ns ∈ N is exactly one node having no incoming edges, the start node
– ne ∈ N is exactly one node having no outgoing edges, the end node
– every node n ∈ (N\{ns, ne}) is on a path from ns to ne.

ns n2n1

n3

n4

n5 ne

Fig. 2.3. G8 is a control flow graph.

16 2 Preliminaries

Fig. 2.3 exemplifies a control flow graph concept. The node ns is the start
node of G8, while node ne is its end node. The nodes n1, n2, n3, n4, n5 are on
the paths from ns to ne. For the nodes of control flow graphs the dominance
and postdominance relations are introduced.

Definition 2.5 (Dominance).
Let G = (N,E, ns, ne) be a control flow graph. We say that node n ∈ N
dominates node n′ ∈ N if every path from ns to n′ includes n. We denote this
fact as n . n′. Node n is a dominator of node n′.

Definition 2.6 (Postdominance).
Let G = (N,E, ns, ne) be a control flow graph. We say that node n ∈ N
postdominates node n′ ∈ N if every path from n′ to ne includes n. We denote
this as n / n′. Node n is a postdominator of node n.

In the example control flow graph in Fig. 2.3 we observe n2 . n5, since both
paths from ns to n5 contain n2. Meanwhile, n3 is not a dominator of n5, as
there is path (ns, n1, n2, n4, n5) that does not contain n3. However, n5/n3: the
only path from n3 to ne contains n5. We transfer the concepts of dominance
and postdominance to edges.

2.2 Petri Nets

Petri nets is the formalism well suited for modeling concurrent systems: they
enable succinct representation of concurrency [116, 132]. Since concurrency
is inherent to processes, practitioners and researchers leverage Petri nets to
model the business processes [1, 2, 9, 165]. This section elaborates on the
Petri net classes and properties important in the context of business process
modeling. We start by defining the Petri net syntax.

Definition 2.7 (Petri Net).
Petri net is a tuple PN = (P, T, F), where:

– P is a finite nonempty set of places
– T is a finite nonempty set of transitions
– P ∩ T = ∅
– F ⊆ (P × T) ∪ (T × P) is the flow relation.

Definition 2.7 is equivalent to the definition of a Petri net as a bipartite
graph. Places and transitions are the graph nodes, where places are depicted
as circles and transitions—as rectangles. The flow relation is the edges of the
graph. Further we assume the edges of the Petri net to have a weight of 1.
Notice that in the context of process modeling transitions represent activities,
while places capture conditions and the flow relation corresponds to process
model control flow. As an example we consider the Petri net PN2 = (P, T, F),
where:

2.2 Petri Nets 17

Forecast

received

Data

ready

Analysis

completed

Forecast

processed

Receive

forecast request

Handle

data

Perform full

analysis

Perform quick

analysis

Issue

report

Request

awaited

(a) Petri net PN1.

p2 p3 p4

t1 t2

t3

t4

t5

p1 p5

(b) Petri net PN2.

Fig. 2.4. Two examples of Petri nets: the net PN1 models the business process
“Forecast request handling” , while the net PN2 is the anonymized version of PN1.

– P = {p1, p2, p3, p4, p5}
– T = {t1, t2, t3, t4, t5}
– F = {(p1, t1), (p2, t2), (p3, t3), (p3, t4), (p4, t5), (t1, p2), (t2, p3), (t3, p4),

(t4, p4), (t5, p5)}.

An equivalent graph definition for the Petri net PN2 is provided in Fig. 2.4(b).
The net PN2 is the anonymized version of the Petri net PN1 in Fig. 2.4(a)
that models the business process “Forecast request handling” introduced as
the running example in Chapter 1. For the sake of brevity and readability the
remainder of this section illustrates the Petri net concepts by means of the
net PN2.

A place p ∈ P is called an input place of a transition t ∈ T , iff there
exists an edge from p to t: (p, t) ∈ F . Following the conventions introduced
for directed graphs, we denote the set of input places for a transition t as •t.
A place p is an output place of a transition t, iff there exists an edge from t
to p: (t, p) ∈ F . The set of output places for transition t is denoted as t•. p•
and •p denote the sets of transitions that share p as an input place and an
output place, respectively. In the Petri net PN2, we observe:

– p1 (p2) is the input (output) place of t1
– •t2 = {p2} and t2• = {p3}
– •p3 = {t2} and p3• = {t3, t4}.

The dynamic process evolution is captured by behavioral semantics of Petri
nets. Each place of a Petri net contains zero or more tokens at any moment.
A token is visualized as a black dot allocated within a circle denoting the
place marked by this token, see Fig. 2.5. The process state is captured by
marking—a distribution of tokens over the Petri net places.

18 2 Preliminaries

p2 p3 p4

t1 t2

t3

t4

t5

p1 p5

(a) Petri net with marking [p1, p2, p4].

p2 p3 p4

t1 t2

t3

t4

t5

p1 p5

(b) Petri net with marking [2 · p2, p4].

Fig. 2.5. Two markings for the Petri net PN2 in Fig. 2.4(b).

Definition 2.8 (Petri Net Marking).
For a Petri net PN = (P, T, F) Petri net marking is a function M : P → N0

mapping a set of places onto the natural numbers with zero.

A common notation for Petri net markings is [k1 · p1, . . . , k|P | · p|P |], where pi
is the place of the Petri net PN = (P, T, F) and ki = M(pi) is the number of
tokens in place pi. According to the notation, places without tokens are omit-
ted, while ki = 1 are skipped. Fig. 2.5 provides two examples of marking for
Petri net PN2: [p1, p2, p4] and [2 ·p2, p4] illustrated, respectively, in Fig. 2.5(a)
and Fig. 2.5(b).

Definition 2.9 (Petri Net System).
A Petri net system (PN,M0) is a Petri net PN = (P, T, F) with an initial
marking M0 of PN.

For instance, (PN2, [p1, p2, p4]) is a Petri net system. While a Petri net system
describes the state at a point in time, the Petri net semantics defines the rules
how one state evolves into another. Let (PN,M) be a Petri net system, where
PN = (P, T, F) is the Petri net and M—its marking. A transition t ∈ T is
enabled, iff ∀p ∈ •t : M(p) > 0. The reached marking after firing of t is M ′,
such that:

– M ′(p) = M(p)− 1, ∀p ∈ •t/t•
– M ′(p) = M(p) + 1, ∀p ∈ t • / • t
– M ′(p) = M(p).

In Fig. 2.5(a) transitions t1 and t2 are enabled. At the same time, t2, t3,
and t4 are not enabled. Firing of the transition t1 brings Petri net system
(PN2, [p1, p2, p4]) to system (PN2, [2 · p2, p4]). Firing of the transition t is de-

noted as (PN,M)
t→ (PN,M ′) shortcuted as M

t→ M ′. We write M1
∗→ Ml

2.2 Petri Nets 19

p1

t1

t4

t3

t2

t5

p2

p3

p6

p4 p5

Fig. 2.6. Petri net PN3 is not free choice: •t2 ∩ •t5 6= ∅, but | • t2| = 2 = | • t5|.

iff there is a sequence of transitions t1, t2, . . . , tl−1 such that Mi
ti→ Mi+1,

where i, l ∈ N and i = 1, . . . , l. The state M ′ is reachable from the state M iff

M
∗→ M ′. Using this notation we write (PN2, [p1, p2, p4])

t1→ (PN2, [2 · p2, p4])

and (PN2, [p1, p2, p4])
∗→ (PN2, [3 · p5]).

A Petri net PN = (P, T, F) is live, iff for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t. If
for the transition t there is no such state M ′′, t is called a dead transition.

Further we consider a special class of Petri nets—free choice nets. Free
choice nets are of practical significance, as they combine expressive power
with possibilities to verify their formal properties [23, 44].

Definition 2.10 (Free Choice Petri Net).
Petri net PN = (P, T, F) is a free choice Petri net, iff ∀t, t′ ∈ T : •t∩•t′ 6= ∅ ⇒
•t = •t′.

Whilst the Petri nets in Fig. 2.4 are free choice nets, the net in Fig. 2.6 is
not free choice. Indeed, •t2 ∩ •t5 6= ∅, but •t2 6= •t5. Notice that in [23]
Best references the class of models described by Definition 2.10 as extended
free choice Petri nets. Further, [23] defined free choice nets as those where
∀t, t′ ∈ T, t 6= t′ : •t ∩ •t′ 6= ∅ ⇒ | • t| = 1 = | • t′|. The latter are the subclass
of nets discussed in Definition 2.10.

In the context of business process modeling another class of Petri nets,
workflow nets (WF-nets), gets into focus [1, 3]. Such nets exhibit a distin-
guished start and end places that signify the beginning and the completion of
the working procedure.

Definition 2.11 (Workflow Net).
A workflow net is a tuple WFN = (P, T, F, i, o), where:

– (P, T, F) is a Petri net
– (P, T, F) has a distinguished place i ∈ P , such that •i = ∅
– (P, T, F) has a distinguished place o ∈ P , such that o• = ∅
– ∀n ∈ P ∪ T n is located on a path from i to o.

Both Petri nets in Fig. 2.4 are the WF-nets. Let WFN = (P, T, F, i, o) be a
WF-net and M,M ′ its markings. Let i be the state in which there is exactly

20 2 Preliminaries

t2

t4

t5

i

t1

t6

p1

p3

p2

p4

o
t3

Fig. 2.7. Workflow net WFN1 exemplifies the class of unsound WF-nets. Indeed,
the transition t6 awaits for two tokens in places p2 and p4, whilst only one arrives.

one token in place i ∈ P and no token in any other place of the workflow
net. Respectively, we reference as o the state in which there is exactly one
token in place o ∈ P and no token in any other place of the workflow net.
From a business process modeling perspective the class of sound WF-nets
plays an important role. For a sound WF-net three conditions hold 1) each
task participates in an instance, 2) each instance terminates, and 3) when an
instance terminates, there is exactly one token in the place o. Formally the
class of sound WF-nets is defined as follows.

Definition 2.12 (Sound Workflow System).
A workflow system (WFN, i) with a workflow net WFN = (P, T, F, i, o) is
sound, iff:

– for every state M reachable from state i there exists a firing sequence leading
from M to o: ∀M(i

∗→M)⇒ (M
∗→ o)

– state o is the only state reachable from state i with at least one token in
place o: ∀M(i

∗→M ∧M ≥ o)⇒ (M = o)
– there are no dead transitions in the workflow net in state i: ∀t ∈ T∃M,M ′ :

i
∗→M

t→M ′.

We consider a workflow net to be sound iff the corresponding workflow system
is sound. Thereby, the WF-net PN2 is sound, while WFN1 in Fig. 2.7 is not.

We conclude this section returning the example Petri net PN1. This is a
sound free choice WF-net. According to the described Petri net semantics,
PN1 models the business process “Forecast request handling”: first Receive
forecast request is executed, then Handle data. Afterwards, there is a choice
whether to Perform full analysis or Perform quick analysis. Finally, an Issue
report activity is executed.

2.3 Process Models

This section introduces the notion of a process model this thesis adheres to.
We also elaborate on two types of process model decomposition used in the

2.3 Process Models 21

remainder of the work. Finally, we explain the concept of behavioral profiles—
a process behavioral abstraction facilitating the abstraction method developed
in Chapter 6.

2.3.1 Process Model Notion

This thesis leverages the notion of a process model introduced by Defini-
tion 2.13.

Definition 2.13 (Process Model).
A tuple PM = (A,G,F, t, s, e) is a process model, where:

– A is a finite nonempty set of activities
– G is a finite set of gateways
– N = A ∪G is a finite set of nodes with A ∩G = ∅
– F ⊆ N ×N is the flow relation, such that (N,F) is a connected graph
– ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1
– ∀ g ∈ G : (| • g| = 1 ∧ |g • | ≥ 2) ∨ (| • g| ≥ 2 ∧ |g • | = 1)
– s ∈ A is the only start activity, such that •s = ∅
– e ∈ A is the only end activity, such that e• = ∅
– t : G→ {and, xor} is a mapping that associates each gateway with a type.

The execution semantics of a process model is given by a translation into a
Petri net following on common formalizations [3, 47]. As a process model has
a dedicated start activity and a dedicated end activity, the resulting Petri net
is a WF-net. All gateways are of type and or xor, such that the WF-net is
free choice. Fig. 2.8 visualizes a process model example.

Further we reference the gateways with multiple incoming edges as joins
and gateways with multiple outgoing edges as splits. In the Fig. 2.8 we observe
that the left gateway is the XOR split, while the right gateway is the XOR
join. Finally, we make use of a short circuited process model concept. Given
a process model PM, the respective short circuited process model is obtained
from PM through the introduction of a back edge leading from the end activity
e to the start activity s. For instance, if we add the edge from the Issue report
activity to the Receive forecast request, we obtain a short-circuited process
model.

Perform full

analysis

Perform quick

analysis

Handle

data

Receive forecast

request
Issue report

Fig. 2.8. Example of a process model. The model describes the business process
“Forecast request handling” and can be mapped to a sound free choice WF-net, e.g.,
see the net PN1 in Fig. 2.4(a).

22 2 Preliminaries

2.3.2 Process Model Decomposition

This thesis refers to two process model decomposition methods. Each method
results in a unique decomposition of a process model into a hierarchy of frag-
ments. To introduce the two decomposition methods we define the notion of
a process model fragment first.

Definition 2.14 (Process Model Fragment).
Let PM = (A,G,F, t, s, e) be a process model. A fragment f of process model
PM is a tuple f = (Af , Gf , Ff , tf), where (Af ∪ Gf , Ff) is the connected
subgraph of the graph (A ∪ G,F) and function tf is the restriction of t of
PM to set Gf .

Given a process model, one can discover numerous fragments in it. Con-
sider fragments PMF1, PMF2, PMF3, and PMF4 in Fig. 2.9. A process model
can be decomposed into fragments in several ways, e.g., see [73]. In practice,
however, only special kinds of process model decompositions are of value. This
thesis builds upon two decomposition types. The first type is a decomposition
into fragments with single entry edge and single exit edge, while the second
type is the decomposition into fragments with single entry node and single
exit node. The two decompositions have several important properties. First,
in the context of process modeling the resulting fragments can be considered
as self-contained process parts. As such fragments have single entry node and
single exit node, structurally they can be isolated into a subprocess. Second,
fragments do not “interleave”: either one fragment fully contains another, or
two fragments do not intersect. In other words, each decomposition results in
a hierarchy of process model fragments according to the fragment containment
relation. In the case of fragments with single entry/exit edge the decomposi-
tion results in a process structure tree (PST) [155], while in the case of single
entry/exit node—a refined process structure tree (rPST) [154]. Third, these
decompositions are unique. Against this background, these two decomposi-
tions are used as divide and conquer techniques in process model analysis,
e.g., see [59, 154, 155, 163].

Process Structure Tree

First we elaborate on the process model decomposition into canonical single
entry single exit (SESE) fragments. This decomposition has been proposed
by Johnson, Pearson, and Pingali in the context of the program control flow
analysis [79]. Vanhatallo, Voelzer, and Leymann introduced this decomposi-
tion technique to the area of business process modeling [155]. Informally, a
SESE fragment is a fragment which has exactly one incoming edge and exactly
one outgoing edge. Fig. 2.9 provides several examples of SESE fragments. Two
SESE fragments, PMF2 and PMF4, are visualized as rectangles with dashed
border, while the other two SESE fragments, PMF1 and PMF3, are high-
lighted with gray background. We formalize the concept of canonical SESE

2.3 Process Models 23

fragments by means of dominance and postdominance, see Definition 2.5 and
Definition 2.6, respectively.

Definition 2.15 (Single Entry Single Exit (SESE) Fragment).
Let PM = (A,G,F, t, s, e) be a process model containing a process model
fragment PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a single
entry single exit (SESE) fragment, if it is defined by an ordered edge pair
((a1, b1), (a2, b2)) of distinct control flow edges (a1, b1) and (a2, b2), where
(a1, b1) . (a2, b2), (a2, b2) / (a1, b1), and every cycle containing (a1, b1) also
contains (a2, b2) and vice versa. The sets APMF, GPMF, FPMF and the mapping
GPMF are defined as follows:

– an edge (a, b) ∈ F belongs to the fragment PMF, i.e., (a, b) ∈ FPMF, if
(a, b) / (a1, b1) and (a3, b3) . (a2, b2). The entry edge (a1, b1) and the exit
edge (a2, b2) also belong to the fragment PMF

– a ∈ APMF if all incident edges of a belong to this fragment
– g ∈ GPMF if all incident edges of g belong to the fragment PMF
– a function tPMF is the restriction of t to set GPMF.

We are interested in a specific class of SESE fragments—canonical SESE frag-
ments. Formally, canonical SESE fragments are defined as follows.

Definition 2.16 (Canonical SESE Fragment).
Let PM = (A,G,F, t, s, e) be a process model containing a SESE fragment
PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a canonical SESE
fragment, if it is defined by the edge pair ((a1, b1), (a2, b2)) such that:

– (a2, b2) . (a4, b4) for any SESE fragment defined by ((a1, b1), (a4, b4))
– (a1, b1) / (a3, b3) for any SESE fragment defined by ((a3, b3), (a2, b2)).

Fig. 2.9 references three canonical SESE fragments: PMF0, PMF2, and PMF4.
Notice that the model in this figure contains trivial canonical SESE fragments
each including one activity only. However, Fig. 2.9 does not visualize them for
the sake of readability. Given a process model PM we denote with Θ the set

PMF3

PMF1

c

f

g

i l

k

h

j

s ba ed

PMF4
PMF2PMF0

Fig. 2.9. A process model decomposed into canonical SESE fragments.

24 2 Preliminaries

of all its canonical SESE fragments. We define two types of relations between
canonical SESE fragments: parent-child and predecessor-successor.

From Definition 2.16 it follows that the node sets of two canonical SESE
fragments are either disjoint or one contains the other. That is why a parent-
child relation can be introduced for canonical SESE fragments. If the node set
of the SESE fragment PMF is the subset of the node set of SESE fragment
PMF′, then PMF is the child of PMF′ and PMF′ is the parent of PMF. If
PMF is the child of PMF′ and there is no PMF′′, such that PMF′′ is the child
of PMF′ and PMF′′ is the parent of PMF, PMF is the direct child of PMF′.
In Fig. 2.9 the canonical SESE fragment PMF2 is the direct parent of the
fragment PMF4.

Canonical SESE fragments can be organized into a hierarchy according
to the parent-child relation—PST [155]. The tree nodes represent canonical
SESE fragments. Let tree nodes n1 and n2 correspond to SESE fragments
PMF1 and PMF2 respectively. An edge leads from tree node n1 to n2, once
the SESE fragment PMF1 is the direct parent of the SESE fragment PMF2.
Fig. 2.10 presents the PST for the process model from Fig. 2.9. Node PMF0

is the root and corresponds to the whole process model. Since the canonical
SESE fragment PMF4 is the direct child of PMF2, there is a directed edge
between the corresponding nodes in the tree.

Two canonical SESE fragments can be in the predecessor-successor re-
lation. We say that PMF precedes PMF′ (and PMF′ succeeds PMF) if the
outgoing edge of PMF is the incoming edge of PMF′. The fact that PMF
precedes PMF′ is denoted as PMF ↪→ PMF′, while PMF′ succeeding PMF is
denoted as PMF′ ←↩ PMF. One can observe that only the sibling nodes can be
in the predecessor-successor relation. We define the PST formally using the
parent-child and predecessor-successor relations.

Definition 2.17 (Process Structure Tree (PST)).
Let PM = (A,G,F, t, s, e) be a process model. The process structure tree
(PST) of a process model PM is a tuple PSTPM = (Θ, r, λ, ↪→,←↩), where:

– Θ is a set of all canonical SESE fragments of PM
– λ ⊆ Θ ×Θ) is a parent-child relation
– (Θ, r, λ) is an arborescence rooted to the fragment r
– ↪→⊆ Θ ×Θ is a successor relation
–←↩⊆ Θ ×Θ is a predecessor relation

In the PST we visualize sequences of nodes which are in predecessor-successor
relation using dotted border rectangles. For instance, the canonical SESE
fragments f and PMF4 are put in the rectangle. The PST tree of the process
model can be constructed in linear time [79].

Refined Process Structure Tree

The rPST discovers fragments with the single entry node and the single exit
node. As an outcome, the decomposition is more fine grained. For instance,

2.3 Process Models 25

a b c ds PMF2 l e

PMF4

g i

f h j k

PMF0

Fig. 2.10. A PST of the process model in Fig. 2.9.

the rPST directly distinguishes branches within blocks as the block’s child
fragments. To introduce the rPST, we start with the definition of a boundary
node concept.

Definition 2.18 (Boundary Node).
Let PM = (A,G,F, t, s, e) be a process model with a process model fragment
PMF = (APMF, GPMF, FPMF, tPMF). A node n ∈ NPMF is a boundary node of
PMF if ∃e ∈ in(n)∪ out(n) : e /∈ FPMF. If n is a boundary node, it is an entry
of PMF, if in(n) ∩ FPMF = ∅. A node n is an exit of PMF, if it is a boundary
node of PMF and out(n) ∩ FPMF = ∅.

Considering the example in Fig. 2.11 we discover the two AND gateways to
be the boundary nodes of the fragment B2, while the XOR gateways bound
the fragment B1.

Definition 2.19 (Component).
Let PM = (A,G,F, t, s, e) be a process model with a process model fragment
PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a component if it has
exactly two boundary nodes: one entry node and one exit node.

c

f

g

i l

k

h

j

s ba ed

B2

B1
P1

P3

P2

P4

P5

Fig. 2.11. A process model decomposed into canonical components.

26 2 Preliminaries

P1

B1

P2 P3

B2

P4 P5

Fig. 2.12. An rPST of the process model in Fig. 2.11.

Let F be the set of all components in a process model PM.

Definition 2.20 (Canonical Component).
A component PMF = (APMF, GPMF, FPMF, tPMF) is canonical if ∀PMF′ ∈ F :
PMF 6= PMF′ ⇒ (FPMF ∩ FPMF′ = ∅ ∨ (FPMF ⊂ FPMF′) ∨ (FPMF′ ⊂ FPMF)).

Fig. 2.11 shows all the canonical components in the model. Given a process
model PM we denote with Ω the set of its all canonical components. As
our notion of a process model allows no nodes with multiple incoming and
outgoing edges, each canonical component is classified into one of the four
classes: trivial, polygon, bond, and rigid. A trivial component is formed by a
one edge. A polygon corresponds to a sequence of nodes or components. A set
of components sharing common boundary nodes form a bond. A component
of any other structure is a rigid. We shortcut the trivial type by T , polygon
by P , bond by B, and rigid by R. Let ft : Ω → {T, P,B,R} be a function
that assigns a type to a component. In Fig. 2.11 we see that P1, P2, P3, and
P4 are polygons, while B1 and B2 are bonds. If the two boundary nodes of
a bond component are AND (XOR) gateways, we reference it as an AND-
(XOR-)gateway-bordered bond component. Notice that Fig. 2.11 does not
highlight the trivial components in the decomposition, i.e., the edges in the
process model. Finally, we define the rPST.

Definition 2.21 (Refined Process Structure Tree (rPST)).
Let PM = (A,G,F, t, s, e) be a process model. The refined process structure
tree (rPST) of a process model PM is an arborescence RPSTPM = (Ω, r, χ)
such that:

– Ω is a set of all canonical components of PM
– r is a component that is the root of the tree
– χ ⊆ Ω ×Ω is a relation between a component and its child component

Fig. 2.12 presents the rPST for the process model in Fig. 2.9. Finally, we note
that the RPST can be constructed in time linear to the number of nodes in
the process model [61, 67, 75, 124].

2.3 Process Models 27

2.3.3 Behavioral Profiles

Behavior of systems described by our notion of a process model can be de-
scribed in terms of behavioral profiles [162]. To arrive at a behavioral profile,
we consider the set of all complete traces (or execution sequences) from start
s to end e. The set of complete process traces TPM for a process model PM con-
tains lists of the form s ·A∗ · e such that a list comprises the execution order
of activities. We use a ∈ σ with σ ∈ TPM to denote that an activity a is a
part of a complete process trace. The behavioral profile is based on weak order
between activities. Two activities are in weak order, if there exists a complete
trace in which one activity occurs after the other. This relation requires the
existence of such a trace and does not have to hold for all traces of the model.

Definition 2.22 (Weak Order Relation).
Let PM = (A,G,F, t, s, e) be a process model, and TPM its set of traces. The
weak order relation �PM ⊆ (A×A) contains all pairs (a, b), such that there is
a trace σ = n1, . . . , nl in TPM with j ∈ {1, . . . , l − 1} and j < k ≤ l for which
holds nj = a and nk = b.

Depending on how two activities of a process model are related by weak order,
we define three relations forming the behavioral profile.

Definition 2.23 (Behavioral Profile).
Let PM = (A,G,F, t, s, e) be a process model. A pair (a, b) ∈ (A × A) is in
one of the following relations:

– strict order relation PM, if a �PM b and b 6�PM a
– exclusiveness relation +PM, if a 6�PM b and b 6�PM a
– interleaving order relation ||PM, if a �PM b and b �PM a.

The set of all three relations BP = { PM,+PM, ||PM} is the behavioral profile
of PM.

An example of the behavioral profile is given in Table 2.1. Every activity
a in a behavioral profile is either exclusive to itself, i.e., (a, a) ∈ +, or in
interleaving order with itself, i.e., (a, a) ∈ ||. The latter case is observed,
once an activity is within a loop structure in the process model. We also
denote the identity relation for activities in the behavioral profile BP as idBP.
The relations of the behavioral profile, along with the inverse strict order
 −1= {(a, b) ∈ (A × A) | (b, a) ∈ }, partition the Cartesian product of
activities. For the class of the process models we address in this thesis the
behavioral profile can be constructed in polynomial time O(n3), where n is
the number of activities in a process model [162].

To conclude our discussion on behavioral profiles we make the following
observation. The behavioral profile relations allow different degree of freedom
for activities. While interleaving order relation allows the process activities to
appear in an arbitrary order, (inverse) strict order specifies a particular exe-
cution order, and exclusiveness prohibits appearance of two activities in one

28 2 Preliminaries

s a b c d f g h i j k l e

s +PM PM PM PM PM PM PM PM PM PM PM PM PM

a +PM PM PM PM PM PM PM PM PM PM PM PM

b +PM PM PM PM PM PM PM PM PM PM PM

c +PM PM PM PM PM PM PM PM PM PM

d +PM PM PM PM PM PM PM PM PM

f +PM PM PM PM +PM +PM PM PM

g +PM PM ||PM +PM +PM PM PM

h +PM
−1
PM +PM +PM PM PM

i +PM +PM +PM PM PM

j +PM PM PM PM

k +PM PM PM

l +PM PM

e +PM

Table 2.1. The behavioral profile of the model presented in Fig. 2.9.

trace. Thus, we organize the relations into a hierarchy presented in Fig. 2.13.
At the top of the hierarchy the “strictest” relation appears, while at the
bottom—the least restrictive.

2.4 Summary

This chapter postulated the key formal concepts of the thesis. While this thesis
uses the generic concepts of graph theory in different contexts, the notion of

→
-1

+

→

||

Fig. 2.13. Behavioral relation hierarchy.

2.4 Summary 29

Petri nets helps the reader to understand our notion of the business process
model. The two introduced methods of process model decomposition serve
as the mathematical foundations of the abstraction operations advocated by
the thesis. Finally, the explained concept of behavioral profiles is the formal
foundation of the abstraction method presented in Chapter 6.

3

Business Process Model Abstraction:
Theory and Practice

Although business process model abstraction has been debated in several re-
search papers, e.g., see [30, 55, 94, 122, 123], the term still lacks one coherent
view. This chapter discusses business process model abstraction bringing to-
gether theoretical and practical perspectives. We open the discussion sketching
the relations between process instance, process model, and abstract process
model. Further, we present a framework that points out the core concepts
of business process model abstraction and the relations between them. The
chapter continues the theoretical discussion elaborating on the operations real-
izing business process model abstraction and mentioning prominent operation
classes. The conceptual contribution is complemented by a catalog of use cases
that reflects the demand of practitioners for business process model abstrac-
tion. The value of the catalog is twofold. One the one hand, it provides the
insights into which use cases are demanded. On the other hand, the catalog
indicates the user demand strength. Altogether, the chapter has two contri-
butions: the business process model abstraction framework and the catalog of
abstraction use cases.

The remainder of this chapter is structured as follows. Section 3.1 outlines
the relations between the concepts of a process instance, process model, and
abstract model. Section 3.2 presents the business process model abstraction
framework. Section 3.3 argues about the properties of business process model
abstraction operations. The designed catalog of business process model ab-
straction use cases is presented in Section 3.4. Finally, Section 3.5 summarizes
the discussion.

3.1 Instance, Model, and Abstract Model

Chapter “Introduction” motivated the problem of business process model ab-
straction by the two examples. In addition, we briefly outlined the key abstrac-
tion artifacts. This section clarifies the relations between a process instance,
a process model PM, and an abstract process model PMa. First, we postulate

32 3 Business Process Model Abstraction: Theory and Practice

M0
instance

M1
model

M2
metamodel

PM PMa

inst(PM)

<<abstracts>>

n

<<describes>><<describes>>

<<describes>> <<describes>>

Fig. 3.1. The business process model abstraction concepts allocated to MOF levels.

a finite non-empty set of process models PM and an infinite non-empty set
of process instances I. A business process instance represents a concrete case
in the operational business of a company consisting of activity instances. A
mapping inst : PM → P(I) sets up a correspondence between a process
model and the set of instances it describes. As we argued earlier, one business
process can be described by multiple models. This thesis focuses on such mod-
els of one business process that differ in levels of abstraction. For instance, for
a pair of models PM and PMa it holds that inst(PM) = inst(PMa). We for-
malize the relations between models of various abstraction levels as follows.
For a process model PM ∈ PM there is a set of abstract process models,
where each model describes the set of instances inst(PM), but with less detail
abstr : PM → P(PM). If the user has model PM, any abstract model PMa

∈ abstr(PM) provides no new information about inst(PM).
In essence, business process model abstraction is an engineering task. To

give the reader a better insight into the relations between the described
business process model abstraction artifacts, we refer to the Meta Object
Facility (MOF)—a standard for model-driven engineering which organizes
(meta–) modeling artifacts into 4 levels [112]. We allocate the artifacts on
different levels of MOF and show their relations, see Fig. 3.1. In this way we
reuse the established vocabulary and the formalism of MOF. A set of process
instances inst(PM) related to process model PM is allocated to level M0. The
business process model PM is put on level M1, as it describes/models a set of
instances inst(PM). Process model PM conforms to the modeling notation in
which it is described—metamodel n. The process model PMa∈ abstr(PM) is
an abstraction of PM and also belongs to level M1. Model PMa describes the
set of instances inst(PM). Notice that we require models PM and PMa to con-
form to one metamodel. For instance, if the detailed process model is created
using BPMN [113], an abstract process model conforms to BPMN as well.
However, in the general case, models PM and PMa may adhere to different
notations.

3.2 Business Process Model Abstraction Framework 33

3.2 Business Process Model Abstraction Framework

Until now we did not address in detail what the goal of abstraction is, when the
abstraction is applied, and how abstraction is exactly performed. These issues
have been partially studied in [120]. The current section proposes a framework
organizing these aspects systematically and enabling their formal discussion.
Rather than creating the framework from scratch, we reuse the knowledge of
cartographic generalization, a discipline existing for centuries. Cartographic
generalization is the process of selecting and representing information of a map
in a way that adapts to the scale of the display medium. Hence, cartographic
generalization copes with a problem that resembles that of business process
model abstraction.

There exist several cartographic generalization models, e.g., [31, 98, 109].
We adopt the overall structure of the first comprehensive generalization model
focused on digital generalization as proposed by McMaster and Shea in [98].
McMaster and Shea claim that cartographic generalization consists of three
components: a consideration of objectives of why to generalize; a cartometric
evaluation of the conditions that indicate when to generalize; a selection of
spatial and attribute transformations providing techniques on how to gener-
alize. We will consider these components in the context of business process
model abstraction, which will help us to arrive at a precise understanding of
what business process model abstraction entails.

3.2.1 Business Process Model Abstraction: Why

The why aspect of abstraction considers the reasons for abstracting a process
model, i.e., the goal of a process model abstraction. The abstraction goal is
driven by the purpose of an abstract process model and its intended audience.
On the one hand, stakeholders may vary from technical specialists, interested
in a particular technical perspective of a process, to managers, who are seeking
for a high-level business process overview. On the other hand, even one user
alone may demand a whole spectrum of abstraction scenarios. For instance, a
manager may both be interested in activities which have a high execution cost
and in the paths in the model that are executed most often. The purposes
and the stakeholders of these scenarios are different, and, so are the goals.

Depending on an abstraction goal, different objects attract the user’s at-
tention. Consider an example in Fig. 3.2. Models in Fig. 3.2 describe a business
process, where a forecast request is processed, see Table 1.1 in Section 1.1 for
process details. Model PM1 is the most comprehensive process description
among the three. Notice that each activity is annotated with its average exe-
cution cost. The models in Fig. 3.2 illustrate two abstraction examples.

Abstraction Example 1 One abstraction scenario results from a user demand
in a high-level process outline, i.e., a model describing coarse-grained ac-
tivities of the process and the ordering constraints between them. Model

34 3 Business Process Model Abstraction: Theory and Practice

PM2 is an example of such a process overview discoverable from model
PM1. In comparison to activities of model PM1, activities of PM2 are more
abstract and each comprises a set of activities of the initial model. For
instance, activity Perform quick analysis corresponds to the set {Prepare
data for quick analysis, Perform quick data analysis}. Thereby, in this
scenario the user focuses on the granularity change of activities.

Abstraction Example 2 In the other abstraction scenario the user wants to ob-
serve “expensive” distributed process runs by means of a model. A dis-
tributed run is a behavioral model of a distributed system that describes
one complete system evolution [133]. In this scenario an abstraction mech-
anism has to analyze all the distributed runs defined by a process model
and select those that represent expensive ones. Model PM3 presents the re-
sult of abstraction addressing such a user demand: among two alternative
runs the most expensive is preserved.

Every business process model abstraction operates with a set of objects of one
type. We refer to these objects as abstraction objects. By applying abstraction,
a decision is made for each of those objects whether it is significant or insignif-
icant with respect to a specific goal. While significant abstraction objects are
preserved, insignificant ones are abstracted from. For the two aforementioned
abstraction examples, we identify activities (Abstraction Example 1) and model
parts capturing distributed process runs (Abstraction Example 2) as abstrac-
tion objects. Formally, each abstraction object is a part of the process model,
a subset of model elements.

Definition 3.1 (Abstraction Object).
Let PM = (A,G,F, t, s, e) be a process model. An abstraction object is a set
ω ⊆ (A ∪ G ∪ F) that describes one fact about a business process. This fact
is considered relevant during one act of abstraction.

Definition 3.1 formalizes the abstraction object as a subset of model elements.
However, not every subset of model elements is an abstraction object: Defini-
tion 3.1 requires the set of model elements to describe a fact about a process
that is either abstracted or preserved by abstraction operation. In this way
an abstraction object has a pragmatic aspect, i.e., captures information about
the abstraction goal. Thereafter, the set of abstraction objects may vary from
one abstraction operation to another, even when the same initial model is
considered. We reference the finite non-empty set of abstraction objects in
model PM during one abstraction operation as Ω.

Returning to the Abstraction Example 1, demanding a process model with
more coarse-grained activities, we identify activities as abstraction objects.
Hence, the set of abstraction objects contains 13 activities of process model
PM1. If we consider the Abstraction Example 2, where the user is interested
in expensive process runs, we discover two abstraction objects in model PM1:
the run with the lower branch and the run with the upper branch. Model
PM3 describes only one process run and, hence, has one abstraction object.

3.2 Business Process Model Abstraction Framework 35

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
2

in
it
ia

l
m

o
d

e
l,
 P

M
1

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
3

€
5

€
7

€
2

0
€

5

€
8

0
0

€
1

6
0

0

€
8

0
0

€
1

5
0

0

€
7

0
0

€
4

0
0

€
6

0
0

€
2

0

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

S
e

n
d

re
p

o
rt

A
rc

h
iv

e

d
a

ta€
1

0

P
e

rf
o

rm
 f
u

ll

a
n

a
ly

s
is

P
e

rf
o

rm
 q

u
ic

k

a
n

a
ly

s
is

H
a

n
d

le

d
a

ta

R
e

c
e

iv
e

 f
o

re
c
a

s
t

re
q

u
e

s
t

Is
s
u

e
 r

e
p

o
rt

€
5

€
7

€
2

0
€

5
€

8
0

0

€
1

6
0

0

€
8

0
0

€
1

5
0

0
€

6
0

0
€
2

0

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n

G
e

n
e

ra
te

fo
re

c
a

s
t
re

p
o

rt

C
o

n
s
o

lid
a

te

re
s
u

lt
s

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

S
e

n
d

re
p

o
rt

A
rc

h
iv

e

d
a

ta€
1

0

Fig. 3.2. Two examples of business process model abstraction: one process model
PM1, due to two different transformations, results in models PM2 and PM3. Model
PM2 presents high-level activities, while model PM3 describes the most expensive
distributed process run.

36 3 Business Process Model Abstraction: Theory and Practice

This abstraction scenario evidences another phenomenon. While we distin-
guish two subsets of model elements that capture distributed runs, these two
subsets share common model elements. Disregard of the common elements, we
clearly distinguish the two abstraction objects. This phenomenon originates
from the definition of an abstraction object as the subset of model elements
enriched with a pragmatic aspect.

An abstraction goal defines an abstraction criterion—a property of an ab-
straction object that enables object comparison and allows the identification
of objects relevant for the task at hand. For instance, in the Abstraction Ex-
ample 2 the abstraction criterion is the process run execution cost. At the
same time, we claim that the Abstraction Example 1 leverages user input as
the abstraction criterion: the user manually selects significant activities. In
particular, only activity Generate forecast report is considered significant and
appears in model PM2 as is.

3.2.2 Business Process Model Abstraction: When

The next component of business process model abstraction deals with the con-
ditions under which abstraction objects are affected. An abstraction criterion
allows for a comparison of abstraction objects. Subsequently, an abstraction
criterion classifies abstraction objects of a process model into significant and
insignificant. We formalize this classification with the function.

Definition 3.2 (Abstraction Object Significance).
Let PM = (A,G,F, t, s, e) be a process model and Ω—the set of abstraction
objects of this model. Mapping sign : Ω → {true, false} is an abstraction
object significance function such that for every ω ∈ Ω:

sign(ω) =

{
true, if ω is significant,
false, else.

For the Abstraction Example 1 we assume the abstraction object significance
function to be user-defined: during abstraction the user manually specifies
which activities are insignificant. The Abstraction Example 2 in Fig. 3.2 vividly
illustrates the idea of abstraction significance function: while model PM1 cap-
tures two possible distributed process runs, PM3 describes only one process
run with the highest execution cost. In this case the run of a process with
the lower execution cost of 2410e is considered insignificant. Hence, function
sign evaluates to true in the former case and to false in the latter case. The
significant abstraction object appears in model PM3, while the insignificant
object is abstracted.

If an abstraction criterion displays at least an ordinal scale, the classifica-
tion into significant and insignificant elements can be realized by an abstrac-
tion threshold value. The threshold value partitions the set of model elements
into two classes: elements with a criterion value greater or equal to the thresh-
old, and the rest. One of these classes is considered to be significant, while

3.2 Business Process Model Abstraction Framework 37

the other—insignificant (the choice depends on the concrete abstraction goal).
[120] proposes an abstraction slider, which is an implementation of the func-
tion sign.

3.2.3 Business Process Model Abstraction: How

The how component of business process model abstraction covers the method
that enables the transformation of a process model into a more abstract pro-
cess representation. While the abstraction relates process models, we makes
use of an auxiliary binary relation Rα. The Rα relation sets up correspon-
dences between abstraction objects of PM and PMa. In this way the relation
characterizes business process model abstraction on the level of process model
elements.

Definition 3.3 (Abstraction Object Correspondence).
Let PM be a process model with the set of abstraction objects Ω. Let also
PMa ∈ abstr(PM) be a more abstract model of the same business process
where the set of abstraction objects is Ωa. An abstraction object correspon-
dence is a surjective binary relation Rα ⊆ Ω ×Ωa.

Since a correspondence relation is surjective, every abstraction object of the
process model PMa corresponds to at least one abstraction object in the ini-
tial process model PM. Returning to our running examples we observe the
following in the Abstraction Example 1:

– (Generate forecast report, Generate forecast report) ∈ Rα
– (Prepare data for quick analysis, Perform quick analysis) ∈ Rα
– (Perform quick data analysis, Perform quick analysis) ∈ Rα

In the Abstraction Example 2 the distributed process run defined by the upper
branch in model PM relates to the only remaining distributed process run.
The abstraction object correspondence relation allows to design the business
process model abstraction operation. Definition 3.4 formalizes the operation.

Definition 3.4 (Business Process Model Abstraction).
Business process model abstraction is a function α : PM → PM that trans-
forms a process model PM with the set of abstraction objects Ω into model
PMa with the set of abstraction objects Ωa to conceal abstraction objects
Ω′ ⊆ Ω, where ∀ω ∈ Ω′ : sign(ω) = false such that:

– |Ω| > |Ωa|
– ∀ωa ∈ Ωa : sign(ωa) = true
– there is an abstraction object correspondence Rα ⊆ Ω×Ωa such that ∀ω ∈
Ω′:

1. either 6 ∃ωa ∈ Ωa that ωRαωa
2. or ∃ωa ∈ Ωa : ωRαωa ⇒ ∃ω′ ∈ Ω : ω 6= ω′ ∧ ω′Rαωa.

38 3 Business Process Model Abstraction: Theory and Practice

Definition 3.4 reflects several of our design decisions. First, it requires the
business process model abstraction to deliver a process model with less ab-
straction objects, |Ω| > |Ωa|. Second, all the insignificant abstraction objects
are abstracted, see the second condition. Finally, we design two options to
conceal an insignificant abstraction object ω. Either abstraction eliminates
an insignificant abstraction object (option 1 in the third condition of Defi-
nition 3.4), or aggregates it with another abstraction object (option 2 in the
third condition). This design decision implies that the two operations are suf-
ficient to conceal any abstraction object. In other words we suggest to realize
business process model abstraction by means of elimination and aggregation.
Further we elaborate on the two operations in detail.

The first option is to deliver an abstract process model with no abstrac-
tion object corresponding to ω. Consider the pair of models PM1 and PM3 in
Fig. 3.2 as an example, where PM3 is the abstraction of PM1. Model PM1 de-
scribes two process runs, low cost (insignificant abstraction object) and expen-
sive (significant abstraction object). Model PM3 describes only one run—the
expensive run. While the expensive run in PM1 corresponds to the expensive
run in PM3, the low cost run has no correspondence.

The second option is to aggregate ω with other abstraction objects of
PM1 and absorb them into one abstraction object of PM2. As an example we
consider Abstraction Example 1 illustrated by models PM1 and PM2 in Fig. 3.2.
In this abstraction scenario the abstraction object is an activity and several
activities of PM1 are aggregated into single activity of PM2. Hence, each in-
significant abstraction object in PM1 corresponds to an abstraction object in
PM2 through relation Rα, while other abstraction objects in PM1 correspond
to the same abstraction object in PM2.

The two options to conceal abstraction objects relate to two different types
of abstractions: elimination (π) and aggregation (σ). Elimination produces a
model that contains no information about the omitted abstraction objects Ω′,
while the other abstraction objects are preserved.

Definition 3.5 (Elimination).
A business process model abstraction π : PM→ PM transforming a process
model PM with the set of abstraction objects Ω into model PMa with the
set of abstraction objects Ωa to conceal abstraction objects Ω′ ⊂ Ω, where
∀ω ∈ Ω′ : sign(ω) = false, is an elimination, iff:

– |Ω| = |Ωa|+ |Ω′|
– ∀ω ∈ Ω′ there is no ωa ∈ Ωa such that ωRαωa
– the restriction of the abstraction object correspondence relation Rα to

(Ω\Ω′)×Ωa is a bijection.

Elimination results in a process model with no insignificant abstraction objects
(in the context of the abstraction goal). Significant abstraction objects that
are not handled by elimination are preserved as is. That is why the restriction

3.2 Business Process Model Abstraction Framework 39

 a

g
g

re
g

a
ti
o

n

g
ra

n
u

la
ri
ty

 l
e

v
e

l

coverage level

 elimination

Fig. 3.3. Comparison of aggregation and elimination: elimination changes the pro-
cess coverage level, while aggregation impacts granularity level of model elements.

of the auxiliary relation Rα is a bijection. Once again, as an outcome of elimi-
nation, the abstract process model provides no information about insignificant
process details. In contrast, aggregation—the other type of business process
model abstraction—partially preserves information about such details.

Definition 3.6 (Aggregation).
A business process model abstraction σ : PM→ PM transforming a process
model PM with the set of abstraction objects Ω into model PMa with the
set of abstraction objects Ωa to conceal abstraction objects Ω′ ⊂ Ω, where
∀ω ∈ Ω′ : sign(ω) = false, is an aggregation, iff:

– the abstraction object correspondence relation Rα is left-total
– ∀ω ∈ Ω′ there exist ω′ ∈ Ω and ωa ∈ Ωa such that (ω, ωa), (ω′, ωa) ∈ Rα.

Aggregation produces an abstract model, where each insignificant abstraction
object ω ∈ Ω′, together with several other abstraction objects, is represented
with a newly introduced abstraction object ωa. Object ωa inherits the prop-
erties of objects it aggregates. For instance, if two sequential activities are
aggregated into one activity, properties of the new activity comprise proper-
ties of the aggregated activities: the execution cost of an aggregating activity
may be defined as the sum of execution costs of its aggregated activities.

Fig. 3.3 compares the effects of elimination and aggregation operations.
Aggregation decreases the granularity of the process model, i.e., it makes a
process model more coarse-grained. In the ultimate case, the whole business
process is described by one high-level activity. Elimination omits model el-
ements, but does not change their granularity level. Hence, elimination and
aggregation enable navigation along two orthogonal axes: the granularity level
of model elements and the coverage level of a business process by a model.

40 3 Business Process Model Abstraction: Theory and Practice

3.3 Properties of Business Process Model Abstraction

This section elaborates on properties of business process model abstraction as
a model transformation. We begin discussing a prominent class of abstraction
operations—hierarchical abstractions in Section 3.3.1. Sections 3.3.2 and 3.3.3
identify two other abstraction classes important in practice: order-preserving
abstraction and abstraction preserving non-functional properties of model el-
ements.

3.3.1 Hierarchical Abstraction

The study of related work, e.g., see [30, 94, 122, 123], reveals that one special
class of business process model abstraction, hierarchical abstractions, prevails
the rest. Hierarchical abstraction allows only such aggregation that each ab-
straction object of the initial model PM corresponds to exactly one abstraction
object of PMa. Due to this, we argue that a hierarchical abstraction can be seen
as a composition of basic abstraction operations. We start formalizing the hi-
erarchical abstraction introducing the notion of a basic abstraction operation.
A basic abstraction operation allows to abstract from a single insignificant
abstraction object.

Definition 3.7 (Basic Abstraction Operation).
A business process model abstraction αω : PM→ PM transforming process
model PM into model PMa is a basic abstraction operation, if it abstracts from
an insignificant abstraction object ω ∈ Ω, sign(ω) = false, so that:

– αω is associated with an auxiliary surjective binary relation Rαω
⊆ Ω ×Ωa

– the restriction of Rαω to (Ω\{ω})×Ωa is functional.

At this point we emphasize the difference between business process model
abstraction as captured by Definition 3.4 and a basic abstraction operation.
While the former conceals a set of abstraction objects, the latter handles
one insignificant object at a time. Following, the hierarchical elimination is
defined.

Definition 3.8 (Hierarchical Elimination).
A basic abstraction operation πω : PM → PM is a hierarchical elimination
handling insignificant abstraction object ω ∈ Ω, sign(ω) = false, iff |Ω| =
|Ωa| + 1 and the restriction of its auxiliary relation Rαω

to (Ω\{ω}) × Ωa is
a bijection.

The hierarchical aggregation is defined accordingly.

Definition 3.9 (Hierarchical Aggregation).
A basic abstraction operation σω : PM → PM is a hierarchical aggregation
handling abstraction object ω ∈ Ω, iff an auxiliary relation Rαω

is left-total
and ∃ω′ ∈ Ω, ∃ωa ∈ Ωa : (ω, ωa), (ω′, ωa) ∈ Rαω

.

3.3 Properties of Business Process Model Abstraction 41

Business process model abstraction is then realized as a composition of basic
abstraction operations. Basic abstraction operations are applied until every
insignificant abstraction object is handled.

Definition 3.10 (Hierarchical Business Process Model Abstraction).

Business process model abstraction is an operation α : PM → PM trans-
forming process model PM into model PMa such that α = αωl

◦αωl−1
◦· · ·◦αω1

is the function composition, where:

– ∀ω ∈ Ωa : sign(ω) = true ∧ (@k < l,∀ω ∈ Ωk : sign(ω) = true),
– αω1

is a basic abstraction operation αω1
(PM) = PM2, ω1 ∈ Ω ∧ sign(ω1) =

false,
– for k = 2, . . . , (l − 1), αωk

is a basic abstraction operation αωk
(PMk) =

PMk+1, ωk ∈ Ωk ∧ sign(ωk) = false,
– αωl

is a basic abstraction operation αωl
(PMl) = PMa, ωl ∈ Ωl ∧ sign(ωl) =

false.

Notice that Definition 3.10 implicitly deals with the abstraction goal by ref-
erencing the abstraction objects and a significance function.

3.3.2 Order-Preserving Abstraction

As an intrinsic property of abstraction is information loss, an abstract model
contains fewer ordering constraints than its detailed counterpart. Depend-
ing on the exact abstraction use case and the underlying abstraction goal, the
tolerance level for the loss of ordering constraints may differ. Several works fo-
cusing on activity abstraction introduce the notion of order-preserving model
transformation, e.g., see [30, 55, 94, 122]. The idea of order preservation is
illustrated by Fig. 3.4. The example shown in Fig. 3.4(a) captures an order-
preserving abstraction. Activities in the process model PMa abstract the ac-
tivity groups g1 and g2 in the model PM. The ordering constraints between
the two coarse-grained activities coincide with the ordering constraints be-
tween the two activity groups. In the abstract model activity Receive forecast
request is executed before Perform data analysis, while in the initial model
activity group g1 precedes g2. In contrast, the abstraction in Fig. 3.4(b) is not
order-preserving: activities of groups g3 and g4 interleave. This contradicts the
sequential execution of activities Receive forecast request and Handle data. To
formalize the notion of order-preserving business process model abstraction
we assume that each high-level activity in PMa = (Aa, Ga, Fa, ta, sa, ea) is the
result of aggregation of several activities in PM = (A,G,F, t, s, e). Then, the
construction of coarse-grained activities is formalized by the auxiliary function
aggregate.

Definition 3.11 (Function Aggregate).
Let PM = (A,G,F, t, s, e) be a process model and PMa = (Aa, Ga, Fa, ta, sa, ea)—
its abstract counterpart. Function aggregate : Aa → (P(A)\∅) specifies a
correspondence between one activity in PMa and the set of activities in PM.

42 3 Business Process Model Abstraction: Theory and Practice

 g2

g1

initial model, PM

Perform full

analysis

Perform quick

analysis

Handle

data

Receive forecast

request

Perform data

analysis

Receive forecast

request

abstract model, PMa

(a) Order-preserving abstraction

Receive

data

Prepare data for

full analysis

Prepare data for

quick analysis

abstract model, PMa

initial model, PM

Receive request

via email

Record

request

Request data

gathering

Handle

data

Receive forecast

request

g3

 g4

Archive

data

(b) Not order-preserving abstraction

Fig. 3.4. Two abstractions: order-preserving and not order-preserving.

In this context, Definition 3.12 formalizes the concept of order preservation for
business process model abstraction, with abstraction objects being activities.
It makes use of behavioral profile relations, see Definition 2.23, to compare
the behavior of initial and abstract process models.

Definition 3.12 (Order-Preserving Business Process Model Abstrac-
tion).
Let PM = (A,G,F, t, s, e) be a process model and business process model
abstraction α maps PM to PMa = (Aa, Ga, Fa, ta, sa, ea), so that activities
of PM are abstraction objects. Let also function aggregate establish a corre-
spondence between activities of PM and PMa. Operation α is order-preserving
business process model abstraction, iff ∀x, y ∈ Aa, x 6= y holds that ∀a, b ∈ A
such that a ∈ aggregate(x) and b ∈ aggregate(y):

– a PM b⇒ x PMa y
– a −1PM b⇒ x −1PMa

y
– a+PM b⇒ x+PMa

y

3.3 Properties of Business Process Model Abstraction 43

– a||PMb⇒ x||PMa
y.

Definition 3.12 constraints the order of activities in models PM and PMa re-
lated by mapping aggregate. Fig. 3.4 illustrates the formal definition. The
abstraction presented in Fig. 3.4(a) has a mapping aggregate such that:

– Receive forecast request ∈ aggregate(Receive forecast request)
– Handle data ∈ aggregate(Perform data analysis)
– Perform full analysis ∈ aggregate(Perform data analysis)
– Perform quick analysis ∈ aggregate(Perform data analysis).

We notice that Receive forecast request PMa
Perform data analysis. Fur-

ther, each pair of activities in model PM corresponding to Receive forecast
request and Perform data analysis is also in strict order relation, for instance,
Receive forecast request PM Handle data. Hence, the presented abstraction
is order-preserving. Upon the other hand, abstraction in Fig. 3.4(b) is not
order-preserving. This follows from the observation that Receive forecast re-
quest PMa

Handle data, while Request data gathering PM Record request.

3.3.3 Abstraction Preserving Process Non-Functional Properties

To complete our reflection on business process model abstraction, we briefly
discuss preservation of process non-functional properties [77]. Business pro-
cess non-functional properties may be more or less important to be preserved
when applying abstraction [32, 53, 121]. Companies often use process models
to analyze operational business processes, for example to analyze their cost
or bottlenecks. Model elements of the models supporting such an analysis are
annotated with additional information. If the user leverages abstract models
in the analysis, a process model abstraction has to ensure that the analy-
sis of model PMa delivers the same results as the analysis of model PM. If
the abstraction operation fulfills this requirement, we call it an abstraction
that preserves process non-functional properties. Consider the setting, where
an HR department leverages process models to evaluate the number of re-
sources required for process execution. To enable this task, the process model
designers enrich the model with information about activity execution time,
hand-off times, activity execution probabilities, and actors executing the ac-
tivities. Once a detailed process model is annotated with this information,
while a more abstract model is in demand, the users require an abstraction
that preserves process non-functional properties. In this context, the abstract
process model should provide the same evaluation of the resources consumed
by the process as the initial process model. Among the existing abstraction
methods several preserve process non-functional properties, e.g., see [32, 121],
while the majority leaves this aspect out of discussion.
At this point, we have arrived at a formal and complete view of business
process model abstraction. Furthermore, we have stressed the context-specific
importance of preserving the control-flow and non-functional properties in a

44 3 Business Process Model Abstraction: Theory and Practice

process model when applying abstraction operation. We will be using the var-
ious notions that have been introduced in this section in the structuring of a
catalog of abstraction uses cases in the next section.

3.4 Catalog of Abstraction Use Cases

This section presents a catalog of business process model abstraction use cases
which are identified with the help of BPM experts. First, we explain the
method that has been applied to derive and validate the use cases. Next, we
present the initial version of the catalog used as the input for the validation
stage. Then, we discuss the feedback that we received during the validation
stage and summarize the modified use case catalog.

3.4.1 Catalog Design

In order to understand the user demand for process model abstraction tech-
niques we referred to the expertise of our industry partners. As the problem
of process model abstraction is relatively new, we followed an exploratory
approach and conducted a series of semi-structured interviews with BPM ex-
perts. The study was separated into the two phases of (1) generation and (2)
validation, which overall involved three categories of stakeholders, i.e., end
users, consultants, and software developers.

In the first phase we considered use cases that emerged out of a joint
project with a large German health insurance company, AOK. The goal of the
project was to develop abstraction techniques enabling a fast comprehension
of large business process specifications containing, for example, more than 300
nodes. The abstraction use cases were retrieved and elaborated in interviews
with AOK employees:

– a business process leader
– a coordinator of IT infrastructure for process management
– a business process knowledge manager
– three business process modelers.

All these employees are interested in business process model abstraction as
the end users of a set of over 4,000 process models. The use cases derived
from the interviews were complemented by use cases from the literature. The
literature study includes papers from the reputable conferences on business
process management and information systems, e.g., Business Process Man-
agement and International Conference on Service Oriented Computing, and
journals, e.g., IEEE Transactions of Software Engineering and Information
Systems, within the timespan of the last decade. The outcome of the first
phase were 14 use cases organized into four groups.

In the second phase the use cases were validated by involving two further
companies: Infosys, an Indian information technology services company with a

3.4 Catalog of Abstraction Use Cases 45

specific focus on BPM, and Pallas Athena, a Dutch software vendor developing
BPM systems. From these parties, ten and eight professionals participated in
this study respectively. All of the involved Infosys employees fulfill a role as
business process consultant; their experience with BPM had an average value
of 6.5 years. The spectrum of job descriptions of the interviewees at Pallas
Athena varied from that of software engineer to the chief executive officer. The
BPM experience of the participants within this group had an average value
of 11.5 years. The primary goal in this phase was to reflect on the relevance
of the initial set of use cases. Secondly, we encouraged the interviewees to
generate new use cases. The output of the second phase was a validated use
case catalog. In comparison with the initial set of 14 cases, one use case was
dropped and two new use cases were added leading to a total of 15 use cases
in the end.

3.4.2 Initial Use Cases

The set of initial use cases that were derived from the first phase of our
exploratory approach will be discussed in this section by distinguishing four
groups, each of which contains use cases that have similar properties. In this
discussion, we will use the notions as introduced in Section 3.2 to characterize
the various groups of use cases. Specifically, the description of each group
contains the central abstraction object, the used abstraction criterion, the
basic abstraction operation being involved, and the importance of preserving
a model’s control-flow and non-functional properties.

Group 1: Preserving Relevant Activities

The user analyzes a business process captured by a process model. The model
specifies numerous activities. However, the user wants to focus on activities
that are significant for the task at hand. The distinction between what the
significant and insignificant activities are is based on the threshold value of
a non-functional property of these activities. All the activities with a value
for this property that is lower than the threshold are insignificant and these
are eliminated. The use cases in this group share two things in common: they
have the activity as abstraction object and elimination as a basic abstraction
operation. The ordering constraints between the significant activities are pre-
served, while the use of elimination leads to a change of the non-functional
properties of the overall process. We distinguish four abstraction use cases
that belong to this group.

Use Case 1: Preserve Pricey Activities
The user optimizes a business process and is interested in the activities with
a high execution cost.

Use Case 2: Preserve Frequent Activities
The user improves a business process and focuses on frequently executed ac-
tivities.

46 3 Business Process Model Abstraction: Theory and Practice

Use Case 3: Preserve Long Activities
The user is interested in process optimization and focuses on activities with
a high duration.

Use Case 4: Show High Hand-off Times
The user optimizes a business process and focuses on activities with high
hand-off times.

Group 2: Preserving Relevant Process Runs

The user analyzes a business process described by a precise model specifying
the life cycle for a wide variety of process instances. The user does not want
to know about each distributed process run, but needs to focus on a spe-
cific subset of runs. We call such runs significant. The significant process runs
are visualized in the process model with model parts capturing distributed
process runs. A business process model abstraction eliminates the parts cor-
responding to insignificant process runs and preserves the parts describing
significant ones. To summarize, the use cases in this group have distributed
process runs as an abstraction object, have elimination as a basic abstraction
operation, preserve the ordering constraints among the significant abstrac-
tion objects, and do not allow to preserve the non-functional properties of the
overall process. We have encountered the following use cases.

Use Case 5: Preserve Pricey Runs
The user optimizes a process and considers costly process runs as significant.
She specifies a cost threshold, distinguishing significant process runs from
insignificant ones: distributed process runs with an execution cost that is
higher than the threshold value are significant, the rest are not.

Use Case 6: Preserve Frequent Runs
The user performs process optimization and considers frequent distributed
process runs as significant. By means of a run execution frequency threshold,
the user distinguishes significant runs from insignificant ones. The runs with an
execution frequency higher than the threshold are considered to be significant,
while the rest are insignificant.

Use Case 7: Preserve Runs with Long Duration
The user optimizes the process and considers distributed process runs with
long durations as significant. She specifies a path execution duration threshold
value, distinguishing significant runs from insignificant ones: the distributed
runs with execution times higher than the threshold are important, while runs
with lower execution times are unimportant.

Use Case 8: Trace a Case
The user is interested in the question how special cases evolve in a business
process. For instance, she wants to know how orders with a cost higher than
1000 euros unfold. Hence, the user specifies a case to be traced and obtains a
model capturing only the significant process evolutions.

3.4 Catalog of Abstraction Use Cases 47

Group 3: Filtering of Model Elements

The process model in possession of the user is overspecified for the task at
hand. Only a subset of model elements is relevant and have to be disclosed.
In contrast to the use cases of Group 1, the significance of model elements is
determined according to their qualitative properties. To simplify model com-
prehension, irrelevant model elements are eliminated. The relevant elements
are preserved, as well as the ordering constraints between them. The use
cases of this group exhibit common properties: abstraction objects are model
elements and a basic abstraction operation is elimination. The ordering con-
straints between significant model elements are preserved, while non-functional
properties of the overall process are changed.

Use Case 9: Adapt Process Model for an External Partner
The user adapts an existing business process model for the presentation to
an external partner. The available model either captures confidential, internal
process details, or details which are of no interest to the partner. The user
manually marks model elements, which are relevant for inter-organizational
collaboration and which are significant.

Use Case 10: Trace Data Dependencies
The user modifies a data object interface. Beforehand she needs to know which
data dependencies exist in the business process. Hence, the significant model
elements are those that access the data object of interest.

Use Case 11: Trace a Task
The user evaluates the effect of an activity in a process model. To achieve
this, a transitive closure of model elements dependent on this activity has to
evaluated. Model elements of this closure are significant, while other model
elements are not.

Group 4: Obtaining a Process Quick View

The user needs a business process overview for fast process comprehension.
The available model is a process specification formalizing every minor detail.
A study of this model is time consuming and is not necessary for the ongoing
work. The user needs a representation of this business process on a higher
level, capturing more coarse-grained activities and overall information about
the ordering constraints. For all of the use cases in this group, activities are
abstraction objects. Aggregation is the basic abstraction operation. While Use
Cases 12 and 13 aim to preserve the ordering constraints, Use Case 14 does not
consider the ordering constraints. Similarly, as the non-functional properties
of the process are preserved by Use Case 12 and Use Case 13, Use Case 14
does not aim to preserve them. The following use cases belong to this group.

Use Case 12: Get Process Quick View Respecting Ordering Con-
straints
The user needs a process specification, capturing coarse-grained activities, as
well as the ordering constraints between them. She does not know in advance

48 3 Business Process Model Abstraction: Theory and Practice

which abstraction level is sufficient and wants to control this level gradually.
The user prefers to preserve non-functional properties of the process.

Use Case 13: Get Process Quick View Respecting Roles
Activities performed by a special role, e.g., Manager, are considered to be
significant. The rest of activities are not. Insignificant activities are aggregated
into coarse-grained ones, significant activities are preserved as is, and the
ordering constraints are preserved where possible. Non-functional properties
of the process, e.g., execution time or execution cost, should be preserved.

Use Case 14: Retrieve Coarse-grained Activities
The user wants to grasp the coarse-grained activities that appear in the busi-
ness process. She does not require an abstraction mechanism to deliver the
ordering constraints between the high level activities: once these activities are
available, she can manually order them.

3.4.3 Use Case Validation

During the validation phase of the catalog design, each participant received
a booklet that described the initial set of use cases. The participants were
asked to study these descriptions and the researchers were available for clar-
ification. Each participating BPM expert expressed her demand for each of
the presented use cases. To express her opinion, each participant had three
options. If the participant found the use case important and the intended
abstraction approach helpful, she could mark the use case with a yes. If the
participant saw no value in the presented use case, she could answer no. If the
participant had doubts about the relevance of the use case, she was able to
respond with undecided. For the evaluation we encoded the responses: positive
responses correspond to 1, negative responses were encoded with -1, whilst
neutral answers—with 0. Participants had the opportunity to give comments
and discuss the use cases with the researchers.

Relevance and Completeness

Table 3.1 presents the aggregated values of the response codes. As can be
seen, the table differentiates between the 4 groups of stakeholders: novice and
experienced consultants as well as novice and experienced (software) vendors.

hhhhhhhhhhhCategory

Use case ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Experienced consultant (5) 2 5 3 3 3 5 1 5 3 3 3 5 3 1
Novice consultant (5) -1 1 1 2 1 3 3 2 0 0 2 3 3 -2
Experienced vendor (2) -1 1 1 2 2 2 1 0 1 0 1 2 2 0
Novice vendor (6) 0 6 0 5 5 6 5 0 4 3 2 6 3 -1
Total 0 13 5 12 11 16 10 7 8 6 8 16 11 -2

Table 3.1. Support of business process model abstraction use cases by interviewees.

3.4 Catalog of Abstraction Use Cases 49

First, we observe that the number of novice consultants involved is equal to
the number of experienced consultants (5), while for the vendors the situation
is uneven - the novices outnumber the experts (6 vs. 2). Second, there is
a tendency notable of experts expressing a higher appreciation of the use
cases than novices. This is clearly visible for the consultants, but this relation
also holds for the whole group: The average score that an expert provides
for a use case equals 0.60, while this is 0.38 for the novices. Finally, the
opinions of the two groups, consultants and vendors, are highly consistent,
with the notable exception of “Use Case 8: Trace a Case”. The latter use
case is favorably perceived by consultants (total score of 7), while the vendor
representatives take a neutral stance (total score of 0). Overall, the use cases
“Use Case 6: Preserve Frequent Runs” and “Use Case 12: Get Process Quick
View Respecting Ordering Constraints” find the most outspoken support. The
former is associated with finding a so-called “happy path” in the process or its
“sunny day scenario”. The latter use case is interpreted by most participants
as the type of abstraction that is most in demand.

Surprisingly, the participants seem to differentiate between use cases that
exploit the same abstraction technique, but operate with different non-
functional properties of model elements. This is most vividly illustrated by the
contrast between the values for “Use Case 1: Preserve Pricey Activities” and
“Use Case 2: Preserve Frequent Activities”. Whilst the former use case is of not
much interest for interviewees (score of 0), the latter is in high demand (score
of 13). A less pronounced differentiation can be observed for “Use Case 5:
Preserve Pricey Runs” and “Use Case 6: Preserve Frequent Runs”. We con-
clude that frequency is perceived as a more natural abstraction criterion by
users. Furthermore, these observations highlight the importance of an explicit
choice for the abstraction criterion in question.

A study of Table 3.1 also reveals that use case 14 is a clear outlier. This
use case is the only one that completely neglects control flow: it exclusively
delivers a set of activities to the user. We deduce that for the abstraction
stakeholders ordering constrains are of vital importance and belong to the
essential model information to be preserved. Hence, we interpret “Use Case
14: Retrieve Coarse-grained Activities” as an example of a false abstraction
use case and drop it from the final catalog.

During the evaluation of use cases that belong to Group 1 the partic-
ipants noticed that the elimination of insignificant activities often leads to
unacceptable information loss. Instead of eliminating insignificant activities,
the interviewees saw benefits of aggregating them. We summarize these user
requests in a new use case.

Use Case 15: Preserve Frequent Activities Summarizing Rare Ac-
tivities The user analyzes a process captured in a detailed process model. She
has to focus on activities relevant for the current analysis. The distinction be-
tween significant and insignificant activities bases on the threshold value of
an activity frequency: the activities with a frequency value lower than the

50 3 Business Process Model Abstraction: Theory and Practice

threshold are insignificant. Significant activities are preserved as-is, while in-
significant activities are aggregated, when possible.

The introduction of this use case raises the issue whether a whole new family
of use cases should be created that is based on the initial members of Group 1.
However, despite the external similarity to the use cases of Group 1, such new
use cases would heavily rely on the technique needed for “Use Case 13: Get
Process Quick View Respecting Roles”. As such, we decided not to pursue
this larger extension.

Interviewees also pointed to business process model abstraction scenarios
where only model elements relevant for a certain perspective, e.g., a business
perspective or a data flow perspective, are presented to the user. Notice that
this abstraction depends on the existence of information that is relevant to
make this distinction in the initial process model. Abstractions of this type
belong to Group 4: Filter Model Elements. We formulate the user demand in
the following use case:

Use Case 16: Get Particular Process Perspective The user analyzes
a process model captured in a detailed process model. She wants to see a
particular process perspective. Model elements which belong to the desired
perspective are significant and preserved in the model as-is. Model elements
which do not belong to this perspective are insignificant and are eliminated.

No needs for further use cases were found. In sum, this leads us to a final
set of 15 use cases, which is one of the contributions of this paper.

3.4.4 Additional Insights

While the second phase in our validation approach mainly aimed at the rel-
evance and completeness of the use case catalog, the discussions with the
involved participants raised additional insights. First of all, other visualiza-
tion techniques came forward as important alternatives to deal with some of
the use cases. In particular, we can distinguish the following techniques that
were brought forward:

Highlighting Instead of completely abstracting from model objects that do
not need to be visualized, it is also possible to highlight the objects that
deserve attention, for example by coloring these or changing their shape.
The main advantage is that it provides the context of the highlighted ob-
jects. A good example where this could be useful is “Use Case 6: Preserve
Frequent Runs”, where a “happy path” is highlighted within the process
model.

Tagging Depending on the exact use case, it may be important to see more
rather than less information in a process model, which is the objective of

3.5 Summary 51

abstraction. Such additional information could be presented as tags, anno-
tations, or even icons that are added to existing process model elements.
For instance, in the context of “Use Case 13: Get Process Quick View
Respecting Roles” it could also be useful to see relevant role information
along with tasks in the model.

Animation While business process model abstraction is focused on the static
representation of the process model content, for some use cases a more
dynamic representation mode is desirable. Specifically, for the use cases
in Group 2 (Preserving Relevant Process Runs) it is useful to see how a
particular process evolution unfolds step-by-step.

Textual Reporting For the considered use cases, it is not always important to
obtain the information that one seeks in the form of a process model. In-
stead, a textual or tabular enumeration can suffice. Recall that we dropped
“Use Case 14: Retrieve Coarse-grained Activities” as a use case for process
model abstraction, even though the participants can imagine the intended
overview to be relevant in the form of a tabular visualization.

This overview is by no means meant as comprehensive, but it puts the impor-
tance of business process model abstraction into the right perspective. After
all, it would be improper to consider abstraction as the only viable way to
present relevant information in a process model. At the same time, we do ar-
gue that the value of business process model abstraction in comparison with
other techniques can be explicitly found in use cases that involve very large
process models. For all of the alternatives we listed, one can foresee a range of
problems in such cases. For example, if highlighting is applied in an extremely
large process model, it will become difficult to distinguish, let alone focus, on
the emphasized objects.

A final insight relates to the specific feedback of one of the participants,
who argued that he did not see value in business process model abstraction for
any of the proposed use cases. He explained that in his environment a strictly
hierarchical modeling approach is employed, such that each process is modeled
on five different levels of granularity (using subprocesses). Therefore, accord-
ing to this participant, the abstraction techniques add limited additional value
with respect to navigating through these levels. Clearly, it is open to debate
whether switching between subprocesses can provide exactly the same insights
as the process model abstraction techniques do. Yet, it is important to realize
that built-in features of process models can of course greatly contribute to an
improvement of large process model understanding. This is also in line with
the earlier work on the value of modularity [128].

3.5 Summary

This chapter framed the domain of business process model abstraction. On
the one hand, we have conceptualized business process model abstraction:

52 3 Business Process Model Abstraction: Theory and Practice

identified the main concepts and their relations. On the other hand, we have
presented the results of an empirical study illustrating the user demand in ab-
straction methods. While the former finding provides a theoretical perspective
on business process model abstraction, the latter reveals its practical impor-
tance. In this way the two contributions complement each other and provide
one coherent view on the process model abstraction.

A substantial finding of the user study is the high demand for abstraction
use cases of “Group 4: Obtaining a Process Quick View”. Motivated by this
observation the current thesis develops methods that enable abstraction use
cases within this group. Since the use cases in “Group 4: Obtaining a Process
Quick View” treat activities as abstraction objects, the designed methods of
abstraction also excel the role of activities. At the same time, Section 3.2.3
distinguished abstraction operations into elimination and aggregation. While
elimination operation is well-studied [4, 30, 55, 94], this thesis focuses on ag-
gregation as means of abstraction. Altogether, Chapters 4–6 elaborate on the
activity aggregation and address the how aspect of business process model
abstraction. Table 3.2 sketches the upcoming contributions: it relates the con-
tributions of the upcoming chapters to the classes of hierarchical and order-
preserving abstractions.

hhhhhhhhhhhhhhThesis part

Abstraction class
Hierarchical Order-preserving

Section 4.1 • •
Section 4.2 • •
Section 5.1 ∗ ∗
Section 5.2 ∗ •
Chapter 6 ∗ ∗

Table 3.2. Outlook of the contributions in the upcoming chapters: • denotes that
the contribution belongs to the abstraction class specified in the column; ∗ indicates
that the contribution belongs to the superclass of the class specified in the column.

4

Structural Methods of
Business Process Model Abstraction

The commitment of each business process model abstraction operation to
a particular goal explains the variety of abstraction use cases. Section 3.4
witnesses: among the 15 identified business process model abstraction use
cases, the use case group “Group 4: Obtaining a Process Quick View” and,
in particular, the use case “Use Case 12: Get Process Quick View Respecting
Ordering Constraints”, experience a high user demand. Therefore, we focus
our study on this group of use cases. The investigated use cases imply that the
granularity level of activities is increased. Thereby, we select activities as the
abstraction object. Identifying aggregation and elimination as two primitive
operations of business process model abstraction, we face the challenge of
designing a concrete implementation of these operations.

We steer our research towards the design of aggregation and leave elimina-
tion out of scope. There are three reasons for this. First, we consider process
models where activities have exactly one incoming and one outgoing edge.
Thereby, elimination is trivial: an insignificant activity along with its adjacent
edges can be substituted with one edge. Second, elimination has been exten-
sively studied by the related work on abstraction, see, for instance, [30, 55, 45].
Finally, activity elimination is inappropriate against the use cases in focus.
Elimination does not change the granularity level of model elements, while
the studied use cases require that activities become more coarse-grained. To
this end, aggregation increases granularity of model elements. At the same
time, the principle of activity aggregation is a significant variation point in
the design of the aggregation operation. This principle defines which activities
belong together and constitute a more coarse-grained activity.

In this chapter we analyze how information on process model structure
facilitates activity aggregation. Activity aggregation driven by structural in-
formation seeks for a process model fragment that 1) is the minimal frag-
ment containing an insignificant activity and 2) can be securely replaced by
one more coarse-grained activity. Securely here means that a model transfor-
mation must not introduce such behavioral anomalies as deadlocks or live-
locks [2, 23, 165]. To guarantee the secure transformation, we seek for process

54 4 Structural Methods of Business Process Model Abstraction

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
a

in
it
ia

l
m

o
d

e
l,
 P

M

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

P
e

rf
o

rm
 f
u

ll

a
n

a
ly

s
is

P
e

rf
o

rm
 q

u
ic

k

a
n

a
ly

s
is

Is
s
u

e
 r

e
p

o
rt

g
1

g
2

g
3

S
e

n
d

re
p

o
rt

A
rc

h
iv

e

d
a

ta

R
e

c
e

iv
e

d
a

ta

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

A
rc

h
iv

e

d
a

ta

Fig. 4.1. Two models capturing “Forecast request handling” business process.
Model PM captures the process with higher precision than model PMa. The three
activities of model PMa are refined by activity groups in PM.

4 Structural Methods of Business Process Model Abstraction 55

model fragments that have exactly one incoming edge and one outgoing edge,
see [21, 22, 101, 108, 155]. Once such a fragment is discovered, it is substituted
by an aggregating activity. Thereby, structural methods of business process
model abstraction assume that there exists a coarse-grained activity semanti-
cally equivalent to the replaced fragment. For an example consider the model
PM capturing the business process “Forecast request handling” in Fig. 4.1.
The activities of group g1 constitute together a coarse-grained activity Per-
form full analysis. Furthermore, the activities of the group g1 belong to a
fragment with one entry edge and one exit edge—the fragment is marked by
the dashed line. Hence, in the abstract process model PMa we replace the
whole fragment with the coarse-grained activity Perform full analysis. The
activities of g2 and g3 form, respectively, activities Perform quick analysis
and Issue report. Analyzing the initial model PM in this way and aggregating
process model fragments, we arrive at the abstract model PMa.

There are several ways to define process model fragments to be substituted.
One approach is to capture the process model fragments explicitly by patterns,
where a pattern prescribes fragment’s structure. The majority of the existing
business process model abstraction techniques build on top of this idea, e.g.,
see [30, 32, 55, 94]. Further, the research on process model analysis delivers a
wide spectrum of reduction rules, e.g., see [21, 44, 50, 102, 107, 135, 167], that
can be adopted for abstraction purposes. An alternative solution is to define
process model fragments by their property. In particular, we are interested
in process fragments that have single entry and single exit, as activities do.
The decomposition-based approach is followed by [122, 123] and, partially, by
[30]. These abstraction approaches make use of process model decomposition
methods advocated in [73, 154, 155].

This chapter argues how business process model structure enables activ-
ity aggregation. In particular, we propose two novel business process model
abstraction algorithms. Both algorithms adapt well established methods for
process model structure analysis to the context of business process model ab-
straction. The first algorithm relies on structural patterns, while the second
algorithm leverages process model decomposition. In addition, we systemati-
cally elaborate on the properties of the two abstraction methods and identify
their pros and cons. According to the framework introduced in Section 3.2, this
chapter excels the how aspect of abstraction, extending our body of knowledge
about the abstraction why as well.

The remainder of this chapter is structured as follows. Section 4.1 elabo-
rates on a pattern-based process model abstraction. Section 4.2 argues how a
decomposition of process models into fragments enables abstraction. We re-
flect on the properties of the developed abstraction methods in Section 4.3.
Finally, Section 4.4 summarizes the chapter.

56 4 Structural Methods of Business Process Model Abstraction

4.1 Pattern-Based Methods

It is a widely used observation that process models exhibit recurrent struc-
tures [8, 14, 63, 88, 146, 147]. For instance, the model in Fig. 4.1 contains
a sequence of activities Prepare data for quick analysis and Perform quick
data analysis and another sequence of Generate forecast report and Send re-
port. At the same time, model PM contains two blocks: the AND block and
the XOR block. Consideration of such recurrent structures facilitates several
formal model analysis methods, e.g., [59, 107, 108] argue how recurrent struc-
tures fasten the soundness checking. The first step towards operationaliza-
tion of recurrent structures is describing their topology by patterns. Next, for
each pattern a transformation method is specified. For example, a recurrent
structure of a sequence with two nodes is captured as a pattern. The associ-
ated transformation may specify to substitute such a sequence with one node.
Finally, the model is transformed by matching patterns against the model
structure and subsequent corresponding transformation.

Structural patterns can be used to realize process model abstraction: pat-
terns along with the associated transformations are natural candidates for the
implementation of aggregation. We reference the combination of the structural
pattern and its transformation specification as an elementary abstraction. This
section argues about the use of elementary abstractions. Section 4.1.1 formal-
izes three elementary abstractions, while Section 4.1.2 presents an algorithm
that coordinates their work.

4.1.1 Elementary Abstractions

We discuss three elementary abstractions: sequence, block, and loop. As it
follows from the names, each elementary abstraction is associated with a par-
ticular structural pattern. Notice that the considered set of patterns is by no
means “complete” and can be extended. For instance, [121] proposes a dead
end elementary abstraction. However, disregard of the underlying structural
pattern, each elementary abstraction conceals the details of the initial process
model replacing model elements by more coarse-grained.

Sequence Elementary Abstraction

Business process models of high fidelity typically contain sequences of ac-
tivities. Sequence elementary abstraction replaces a sequence of activities by
one aggregating activity. An aggregating activity has a coarse granularity and
brings a process model to a higher level of abstraction. The replaced sequence
is formalized by Definition 4.1.

Definition 4.1 (Sequence Process Model Fragment).
Let PM = (A,G,F, t, s, e) be a process model containing a process model
fragment PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a sequence

4.1 Pattern-Based Methods 57

a b

aagg

initial model

abstract model

Fig. 4.2. Sequence elementary abstraction.

process model fragment defined by two sequential activities a and b if it is a
process model fragment such that:

– APMF = {a, b}
– GPMF = ∅
– FPMF = {(n, a), (a, b), (b, n′)}, where {n} = •a and {n′} = b•
– tPMF is undefined, as GPMF is empty.

Definition 4.1 limits a sequence process fragment to a sequence of two ac-
tivities. Sequences of greater length can be abstracted through a recurrent
application of sequence abstraction. Fig. 4.2 exemplifies sequence elementary
abstraction. Activities a and b form a sequence. Sequence elementary ab-
straction substitutes a and b with an aggregating activity aagg. Semantics of
activity aagg implies that first activity a is executed and then—activity b.
Definition 4.2 introduces the sequence elementary abstraction.

Definition 4.2 (Sequence Elementary Abstraction).
Let PM = (A,G,F, t, s, e) be a process model. Sequence elementary abstrac-
tion is an aggregation operation σs : M →M that replaces a sequence process
model fragment PMF = ({a, b}, ∅, {(n, a), (a, b), (b, n′)}, tPMF) with activity
aagg transforming process model PM into PMa = (Aa, Ga, Fa, ta, sa, ea) so
that:

– Aa = (A\{a, b}) ∪ {aagg}
– Ga = G
– Fa = (F\{(n, a), (a, b), (b, n′)}) ∪ {(n, aagg), (aagg, n′)}
– if s = a, then sa = aagg, i.e., aagg is the start node of PMa

– if e = b, then ea = aagg, i.e., aagg is the end node of PMa.

In addition to the structural transformation we can also specify how the non-
functional properties of the aggregating activity are deduced from the proper-
ties of the aggregated activities. We consider average activity execution cost as
an example of such a property. In case of sequence elementary abstraction the
average execution cost of an aggregating activity aagg depends on the average
execution costs of functions a and b: costavg(aagg) = costavg(a) + costavg(b).

58 4 Structural Methods of Business Process Model Abstraction

a1

ak-1

ak

a1

ak-2

aagg

initial model

abstract model

(a) Abstraction of a XOR block.

a1

ak-1

ak

a1

ak-2

aagg

initial model

abstract model

(b) Abstraction of an AND block.

Fig. 4.3. Block elementary abstractions.

Block Elementary Abstraction

To model parallelism or to show that a decision is made in a process, a mod-
eler encloses several branches of control flow between split and join gateways.
Depending on the desired execution semantics, an appropriate gateway type
is selected: AND or XOR. Replacing several branches enclosed by gateways
with one branch containing a coarse-grained activity reduces the number of
details. A recurrent application of this transformation abstracts the process
fragment enclosed by gateways to one coarse-grained activity. Block abstrac-
tion enables this operation. We start specifying the transformed block process
model fragment.

Definition 4.3 (Block Process Model Fragment).
Let PM = (A,G,F, t, s, e) be a process model containing a process model
fragment PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a block
process model fragment defined by activities a1, . . . , ak, where k ∈ N, k > 1 if
it is a SESE process model fragment such that:

– APMF = {a1, . . . , ak}
– GPMF = {gs, gj}
– ∀a ∈ APMF : •a = {gs} ∧ a• = {gj}
– |gs • | = | • gj |
– |APMF| ≤ |gs • | ≤ |APMF|+ 1
– a function tPMF is the restriction of t to set GPMF

– tPMF(gs) = tPMF(gj)

4.1 Pattern-Based Methods 59

– the fragment’s entry edge is (n, gs), where {n} = •gs
– the fragment’s exit edge is (gj , n), where {n} = gj•.

Fig. 4.3 shows an example of a block defined by activities a1, . . . , ak. After
block abstraction, two branches of the original process fragment are replaced
by one branch with an aggregating activity aagg. Semantics of the aggregat-
ing activity conforms to the execution semantics of the abstracted block and
depends on the block type. In case of a XOR block the aggregating activity
aagg means that only one activity of the abstracted branches is executed. In
case of an AND block the aggregating activity denotes that both abstracted
activities are executed.

Definition 4.4 (Block Elementary Abstraction).
Let PM = (A,G,F, t, s, e) be a process model. Block elementary abstraction
associated with the block model fragment PMF = (APMF, {gj , gs}, FPMF, t)
and activities ai, aj ∈ APMF, where i, j ∈ N and i < j ≤ k is an aggregation
operation σb : M → M that transforms process model PM into PMa =
(Aa, Ga, Fa, ta, sa, ea) so that:
if k = 2:

– aagg is the newly introduced aggregating activity
– Aa = (A\APMF) ∪ {aagg}
– Ga = G\{gj , gs}
– Fa = (F\FPMF) ∪ {(a, aagg), (aagg, b)}, where {a} = •gs and {b} = gj•,
else:

– aagg is the newly introduced aggregating activity
– Aa = (A\{ai, aj}) ∪ {aagg}
– Ga = G
– Fa = (F\{(gs, ai), (ai, gj), (gs, aj), (aj , gj)}) ∪ {(gs, aagg), (aagg, gj)}.

In case of the block elementary abstraction the average execution cost of the
aggregating activity is evaluated as follows. For an XOR block:

costavg(aagg) = p(ai) · costavg(ai) + p(aj) · costavg(aj),
where p(ai) and p(aj) are the execution probabilities of activities ai and aj ,
respectively. For an AND block an average execution cost of the aggregating
activity is:

costavg(aagg) = costavg(ai) + costavg(aj).

Loop Elementary Abstraction

It is a common situation when a set of tasks is iterated to complete the
business process. In a model capturing such a process the set of tasks is put
into a loop construct. Loops can be modeled by means of control flow. Wide
application of loops by modelers makes support of abstraction from loops an
essential part of the approach. Therefore, we introduce one more elementary
abstraction—loop elementary abstraction. Let us define what kind of process
fragment is considered to be a loop fragment.

60 4 Structural Methods of Business Process Model Abstraction

a

b

aagg

pl

1-pl

initial model

abstract model

Fig. 4.4. Loop elementary abstraction.

Definition 4.5 (Loop Process Model Fragment).
Let PM = (A,G,F, t, s, e) be a process model containing a process model frag-
ment PMF = (APMF, GPMF, FPMF, tPMF). The fragment PMF is a loop process
model fragment, if it is a SESE fragment such that:

– GPMF = {gj , gs}
– | • gj | = |gs • | = 2
– there is exactly one path from gs to gj and exactly one path from gj to gs
– the entry edge of PMF is (n, gj), where {n} = •gj\(APMF ∪GPMF)
– the exit edge of PMF is (gs, n

′), where {n′} = gs • \(APMF ∪GPMF)
– |APMF ∩ •gs ∩ gj • |+ |APMF ∩ •gj ∩ gs • | > 0
– a function tPMF is the restriction of t to set GPMF

– tPMF(gj) = tPMF(gs) = xor.

Definition 4.5 allows a loop with no more than two activities, but no less than
one. Loop elementary abstraction replaces a loop fragment by one aggregating
function l, see Fig. 4.4. An aggregating function states that functions a and b
are executed iteratively. Notice that Definition 4.5 allows either a or b to be
missing. Finally, Definition 4.6 describes the mechanism of loop elementary
abstraction.

Definition 4.6 (Loop Elementary Abstraction).
Let PM = (A,G,F, t, s, e) be a process model. Loop elementary abstraction
is an aggregation operation σl : M → M that replaces a loop process model
fragment PMF = (APMF, GPMF, FPMF, tPMF) with activity aagg transforming
process model PM into PMa = (Aa, Ga, Fa, ta, sa, ea) so that:

– Aa = (A\APMF) ∪ {aagg}
– Ga = G\GPMF

– ta is a restriction of t to Ga
– Fa = (F\FPMF) ∪ {(n, aagg), (aagg, n′)}, where {n} = •gj\(APMF ∪ GPMF)

and {n′} = gs • \(APMF ∪GPMF).

4.1 Pattern-Based Methods 61

The average execution cost of aggregating activity aagg can be found as:
costavg(aagg) = 1

1−pl · (costavg(b) + costavg(a) · pl),
where pl is the probability of continuing the loop iteration.

4.1.2 Composition of Elementary Abstractions

This chapter engineers a business process model abstraction supporting the
use cases in the group “Group 4: Obtaining a Process Quick View”. These use
cases imply that activities of a process model become more coarse-grained. Ac-
cording to our terminology, see Section 3.2, these coarse-grained activities are
significant. Notice that each such activity corresponds to a set of insignificant
activities of the initial process model. We propose to arrive at coarse-grained
activities gradually, abstracting from one insignificant activity at a time. Each
elementary abstraction provisions the desired effect: it conceals one insignif-
icant activity aggregating it with other activities of the model. However, to
conceal several insignificant activities within a process model, a composition
of elementary abstractions is required.

While there are many ways how elementary abstractions can be composed,
we provide one concrete method. The key idea of this method is to abstract
from insignificant activities one by one using the available elementary abstrac-
tions. Algorithm 1 implements this idea. The inputs of the algorithm are:

Model PM a process model to be abstracted
SortedList AL a sorted list of insignificant activities
Set elementaryAbstractions a set of available elementary abstractions

Here we assume that the algorithm’s input is the sorted list of insignificant
activities. As it follows from Definition 3.4, business process model abstraction
conceals all insignificant abstraction objects (insignificant activities in our
case). In general case these insignificant objects form a set, where each element
is a process detail to be abstracted. Following our earlier observation that
frequently abstraction objects can be ordered, we order the set’s elements and
obtain a sorted list that we use as the algorithm’s input. We assume that the
list of insignificant activities is sorted so that the least insignificant activity
is the first element in the list. The output of the algorithm is the abstract
process model.

Algorithm 1 begins creating a short circuit version of the process model
to be abstracted, line 2. The algorithm iterates over the list of insignificant
activities selecting the activity of the lowest significance a, lines 3–4. The
activity to be abstracted is removed from the list, line 5. Algorithm 1 tries
to find an elementary abstraction capable of abstracting a, line 6. If there is
no such elementary abstraction, the next insignificant activity from the list
is processed. If a suitable elementary abstraction is found, the corresponding
process model fragment is processed, lines 7–9. First, all the activities of the
fragment are removed from the sorted list AL. Then, the model PM is updated

62 4 Structural Methods of Business Process Model Abstraction

according to the elementary abstraction, line 10. If the aggregating activity
aagg is considered to be insignificant, it is inserted in the list AL to enable
further abstraction, lines 11–12. Finally, the algorithm removes the back edge
in the short circuited process model producing the abstract process model
PMa.

Fig. 4.5 illustrates the work of Algorithm 1. The starting point is the
initial model PM, where activities b and i are insignificant. The figure visual-
izes the work of the algorithm presenting the final outcome—model PM2 and
the intermediate result of abstraction—model PM1. Notice that to arrive at
PM1 from PM one activity is abstracted, as well as to arrive at PM2 from
PM1. In the first step activity i is abstracted by means of block elementary
abstraction, resulting activity gi. As gi is considered to be significant, the list
of insignificant activities contains b only. Step 2 abstracts from b by means
of sequence elementary abstraction bringing us to model PM2 and the empty
list of insignificant activities. As a result, model PM2 is obtained.

Proposition 4.7. Algorithm 1 terminates and after termination the sorted
list activityList is empty or the model contains exactly one activity.

Proof. First, we reason that Algorithm 1 terminates. The algorithm termi-
nates if the while loop terminates, which happens if the list of insignificant
activities gets empty or the model contains one activity. Hence, we need to
show that at least one of the two conditions eventually holds. Consider the
body of the while loop. Each iteration starts removing one activity from the
list. After this there are two options. The first option is that there is no ele-
mentary abstraction that can handle this activity. No element is inserted into
the list and within the iteration the list decreases in size by one. The model
remains unchanged. The second option is that the activity can be handled.
In this case an aggregating activity might be inserted into the list. Thus,
the list of insignificant activities has a non-increasing size. Assuming that

Algorithm 1 Abstraction as composition of elementary abstractions

1: abstract(Model PM, SortedList AL, Set elementaryAbstractions)
2: ShortCircuitModel PMc = shortCircuit(PM)
3: while !AL.isEmpty() OR |A| == 1 do
4: a = AL.getFirst()
5: AL.remove(a)
6: if exists elementary abstraction aggregating a in PMc then
7: PMF= abstraction.getFragment(a)
8: for all fragmentActivity ∈ APMF do
9: AL.remove(fragmentActivity)

10: apply elementary abstraction to aggregate a in PMc

11: if aagg is insignificant then
12: AL.insert(aagg)
13: Model PMa = toProcessModel(PMc)
14: return PMa

4.1 Pattern-Based Methods 63

initial model, PM

abstract model, PM1

abstract model, PM2

c

f

l

k

h

j

s ab ed

gi

c

f

l

k

h

j

s ba ed

gi

c

f

g

i l

k

h

j

s ba ed

Fig. 4.5. Abstraction as a composition of elementary abstractions. Activities b
and i are insignificant. First, we abstract from i by means of block elementary
abstraction. The resulting model PM1 contains only one insignificant activity b. It
is aggregated using sequence elementary abstraction that brings us to model PM2

with no insignificant activities.

elementary abstraction aggregates two activities, we observe the decrease of
activities number in the model by one through each application of an ele-
mentary abstraction. Hence, the number of activities in a process model is
a non-increasing number as well. Furthermore, according to the logic of the
while loop body, each iteration decreases either the size of insignificant ac-
tivity list, or the number of activities in the model. Thereby, eventually we
arrive at the situation when one of the two conditions of the while loop holds
and Algorithm 1 terminates.

The number of activities in the AL is not higher than in the process model.
Indeed, each iteration removes one activity first and then may insert an ag-
gregating activity that belongs to the model as well. As soon as the size of
AL and process model activity set decrease through abstraction process, the
algorithm concludes in one of the following states. Either there is nothing to
abstract, i.e., the list AL gets empty, or there is one insignificant activity in
the process model (AL contains exactly this activity). ut

The computational complexity of Algorithm 1 is defined by two factors.
First, it is the number of iterations of the while loop. In the worst case scenario
we have to abstract each activity of a process model, i.e., do |A| iterations,

64 4 Structural Methods of Business Process Model Abstraction

where A is the set of activities in the initial process model. Second, a pro-
cess model fragment containing each activity has to be recognized. For the
considered set of elementary abstractions, the fragments can be recognized in
constant time: it is enough to analyze the adjacent nodes of an insignificant
activity. Thereby, the running time of the algorithm is O(|A|), where A is the
set of activities in the initial process model.

The design of Algorithm 1 reflects that elementary abstractions cannot
handle process models with an arbitrary topology. Namely, if no elementary
abstraction can handle the fragment containing an insignificant activity, it
is preserved in the model. We say that Algorithm 1 acts at the best effort
principle: it tries to abstract from all the given insignificant activities, but does
not guarantee this. The next section elaborates on the conceptual challenge
explaining this phenomenon.

4.1.3 Limitations of Pattern-Based Abstraction

The identified set of process model fragment types is by no means complete
with respect to the structure of process models observed in practice. As a
consequence, not every process models can be abstracted by the presented
set of elementary abstractions. Fig. 4.6 illustrates a process model challeng-
ing the debated abstraction approach. Consider the situation when activity
f is insignificant. Among the three proposed elementary abstractions none is
capable of abstracting f : no elementary abstraction prescribes the transfor-
mation of the fragment PMF. Against this background, various research en-
deavors suggest broader elementary abstraction sets. For instance, the study
in [121] complements sequence, block, and loop elementary abstractions with
the dead end elementary abstraction. [29, 53, 94] advocate more sophisticated
elementary abstractions. However, abstraction methods based on elementary
abstractions face a common challenge. Each elementary abstraction set re-
quires an argument about the model class reducible with the given elemen-
tary abstractions. The need for such an argument is the main limitation of

s a

g

b

h

i

j

c

d

e

f

PMF

Fig. 4.6. A challenge for pattern-based abstraction. The fragment PMF cannot be
handled by the elementary abstractions introduced in Section 4.1.1. Hence, either
this activity is preserved, or a new elementary abstraction has to be developed.

4.2 Decomposition-Based Methods 65

pattern-based approaches. To abstract arbitrarily structured process models,
we have to overcome this limitation. The next section explains how process
model fragments can be discovered in an alternative way.

4.2 Decomposition-Based Methods

Rather than referencing process model fragments explicitly specifying their
structure, we can identify them by properties. In the context of business pro-
cess model abstraction, fragments with exactly one incoming edge and exactly
one outgoing edge are of particular value. Such fragments are called single en-
try single exit (SESE) fragments, see Section 2.3, and can be safely replaced
with one coarse-grained activity. The current section argues how we can lever-
age SESE fragments for business process model abstraction.

As we argued earlier, the discovery of SESE fragments in process mod-
els is well studied. In particular, we can make use of algorithms that deliver
a unique hierarchy of canonical SESE fragments—a process structure tree
(PST), see Section 2.3. Once a process model is decomposed into canonical
SESE fragments and the corresponding PST is built, an abstraction can be
realized. Our abstraction approach relies solely on aggregation of activities.
This means that in every abstraction step two or more activities are aggre-
gated. Let a be an activity to be abstracted in the current step. We aim to find
the minimal canonical SESE fragment sesemin, containing a and at least one
more activity. Every activity has one incoming edge and one outgoing edge.
Thus, it constitutes a canonical SESE fragment represented by a leaf in the
PST. We traverse all the leaves in the PST and find the one containing the
activity a. Let us call it sesea. Since the discovered fragment contains only
the activity a, it is of no use for abstraction: sesea cannot be used as sesemin.
There are two options for the selection of sesemin:

1. There is a canonical SESE fragment sesea′ which is in the predecessor-
successor relation with the fragment sesea. Then sesemin is the SESE
fragment with the incoming edge of the predecessor and the outgoing
edge of the successor in the pair sesea, sesea′ .

2. If there is no canonical SESE fragment, which is in the predecessor-
successor relation with the fragment sesea, then sesemin is a SESE frag-
ment which is the parent of sesea.

Once the fragment sesemin is identified, it is replaced with one aggregating
activity in the process model. The incoming edge of the aggregating activity
is the incoming edge of sesemin, whilst its outgoing edge is the outgoing edge
of sesemin. Definition 4.8 formalizes this operation.

Definition 4.8 (SESE Fragment Abstraction).
Let PM = (A,G,F, t, s, e) be a process model. SESE fragment abstraction is an
aggregation σ : M →M that replaces a SESE process model fragment PMF =

66 4 Structural Methods of Business Process Model Abstraction

Algorithm 2 Abstraction based on process model decomposition

1: abstract(Model PM, SortedList AL)
2: ShortCircuitModel PMc = shortCircuit(PM)
3: PST PST = constructPST(PMc)
4: while !AL.isEmpty() OR |A| == 1 do
5: a = AL.getFirst()
6: AL.remove(a)
7: using PST find sesea the minimal SESE fragment containing a
8: if in PST ∃sese′a : sesea ↪→ sese′a then
9: sesemin is defined by the entry edge of sesea and the exit edge of sese′a

10: else if in PST ∃sese′a : sese′a ←↩ sesea then
11: sesemin is defined by the entry edge of sese′a and the exit edge of sesea
12: else
13: sesemin is the direct parent of sesea
14: for all a′ ∈ sesemin.Asesemin do
15: AL.remove(a′)
16: apply SESE fragment abstraction to sesemin in PMc and update PST
17: if aagg is insignificant then
18: AL.insert(aagg)
19: Model PMa = toProcessModel(PMc)
20: return PMa

(APMF, GPMF, FPMF, tPMF) defined by a pair of edges ((a, b), (c, d)) with activity
aagg transforming process model PM into PMa = (Aa, Ga, Fa, ta, sa, ea) so
that:

– Aa = (A\APMF) ∪ {aagg}
– Ga = G\GPMF

– ta is a restriction of t to Ga
– Fa = (F\FPMF) ∪ {(a, aagg), (aagg, d)}.

Algorithm 2 formalizes the discussion above. The inputs of the algorithm are:

Model PM a process model to be abstracted
SortedList AL a sorted list of insignificant activities

Algorithm 2 returns the abstract process model. It starts with creating the
short circuit process model from PM, line 2. Further, the short circuit model is
decomposed resulting the PST, see line 3. The algorithm iterates over the list
AL starting from the activity of the least significance a, lines 4–6. Once a SESE
fragment sesea for activity a is found, line 7, sesemin is chosen, lines 8–13.
All the insignificant activities that belong to this fragment are removed from
AL, lines 14–17. Furtheron, sesemin is replaced with an aggregating activity
aagg. The aggregating activity aagg may be added to the list of insignificant
activities AL if required. Finally, the abstract process model is obtained from
the short circuit model PMc and returned as the result, lines 19–20.

4.2 Decomposition-Based Methods 67

initial model, PM

abstract model, PM1

abstract model, PM2

s a

g

b

h

i

j

c

d

e

f

s a

g

b

h

i

j

cdf

e

s a

g

b

hi j

cdf

e

Fig. 4.7. Abstraction by means of process model decomposition. Activities f and
i are insignificant. The abstraction from activity f brings us to model PM1, while
the abstraction from i results in model PM2.

Fig. 4.7 illustrates the work of Algorithm 2. The starting point is the initial
model PM, where activities f and i are insignificant. The figure visualizes
the work of the algorithm presenting the final outcome—model PM2 and the
intermediate result of abstraction—model PM1. To arrive at PM1 from PM one
activity is abstracted. Also to obtain PM2 from PM1 two activities are handled.
In the first step activity f is abstracted, resulting activity cdf . Activity cdf
is considered to be significant and the list of insignificant activities contains i
only. Step 2 abstracts from i aggregating h and i. This brings us to the model
PM2 and the empty insignificant activity list.

Proposition 4.9. Algorithm 2 terminates. Upon termination the abstract
process model contains no insignificant activity (list AL is empty) or the ab-
stract model contains exactly one activity.

Proof. The termination of Algorithm 2 can be proven in the same fashion as
in Proposition 4.7. Similarly, we can show that the abstract process model

68 4 Structural Methods of Business Process Model Abstraction

either contains no insignificant activity or exactly one activity, following the
argumentation used in Proposition 4.7. ut

The running time of Algorithm 2 is O(|A|2), where A is the set of activities
in the process model to be abstracted. Indeed, we have to iterate over the while
loop in the worst case |A| times. Further, within each iteration we handle one
SESE fragment, which size is also proportional to |A|. Although the number
of iterations and the size of analyzed SESE fragments are related, we estimate
the upper bound of running time for Algorithm 2 as O(|A|2).

Theorem 4.10. Algorithm 2 results in an order-preserving business process
model abstraction.

Proof. Algorithm 2 realizes abstraction concealing one insignificant activity
at a time. An activity is abstracted, once a SESE process model fragment
containing it is replaced by one coarse-grained activity. We notice that Algo-
rithm 2 results in a hierarchical abstraction. This implies that each process
model activity is included into exactly one activity group that becomes a
more coarse-grained activity. The latter can be aggregated at the later stage
of abstraction, but, again, this coarse-grained activity is assigned to exactly
one group. Hence, abstraction results in a hierarchy of activity groups. Since
abstraction is hierarchical, Algorithm 2 is order-preserving, if abstraction of
each insignificant activity is order-preserving. Indeed, the overall abstraction
is then the composition of order-preserving abstractions. This composition is
order-preserving, since we deal with hierarchical abstraction.

When we argue about abstraction hiding insignificant activity a, we dis-
tinguish two process models: the model, where a is the less significant activity
and the model obtained as a result of aggregation of a. We reference the for-
mer model as PM and the latter model as PMa. To arrive at PMa from PM,
a SESE process model fragment PMF is replaced by an activity x. Hence, to
proof that Algorithm 2 is order-preserving, we study the behavioral relations
between activity x and the rest of activities in the model PMa. We denote
an activity that does not belong to fragment PMF as b, b /∈ APMF . Notice
that every such activity appears in both models, PM and PMa. As we discuss
one abstraction step, only the activities in the fragment PMF got concealed,
while the others appear in PMa. Against this background, we adapt the Def-
inition 3.12 of order-preserving abstraction as follows. We want to show that
for x and ∀b ∈ Aa, b 6= x:

– a PM b⇒ x PMa b
– a −1PM b⇒ x −1PMa

b
– a+PM b⇒ x+PMa

b
– a||PMb⇒ x||PMa

b.

To show that Algorithm 2 delivers order-preseerving abstraction, it is enough
to show that these four statements hold. We prove these statements one by
one. The proofs make use of the observation that for the considered class

4.3 Discussion 69

of process models there is a correspondence between the behavioral profile
relations and the model structure [162]:

– a b iff aF+b and b��F+a
– a −1 b iff a��F+b and bF+a
– a+ b iff a��F+b and b��F+a
– a||b iff (aF+b and bF+a) or (a��F+b and b��F+a).

First, we show that a PM b ⇒ x PMa
b. From a PM b it follows that

aF+
PMb and b�

��F+
PMa. Since b does not belong to PMF, the exit edge exit of PMF

is on the path from a to b. Hence, there is a path from exit to b. As soon as
exit becomes the outgoing edge of x in the model PMa, there is a path from
x to b in PMa. At the same time, there is no path from b to a in PM. As soon
as there is a path from the entry edge entry of PMF to a, we conclude that
there is also no path from b to entry. Subsequently, there is no path from b
to x in the abstract model PMa. Thereafter, we have shown that x PMa b.

Second, we show that a −1PM b⇒ x −1PMa
b. a −1PM b means that a�

��F+
PMb

and bF+
PMa. Subsequently, there is no path from the exit edge of PMF to b

and there is a path from b to entry. Hence, there is no path from x to b, while
there is a path from b to x. From the latter two statements it follows that
x −1PMa

b.
Following the same line of argumentation we can show that a +PM b ⇒

x +PMa
b and a||PMb ⇒ x||PMa

b. As we have shown that the four properties
of order-preserving abstraction hold, we state that abstraction of one activity
according to Algorithm 2 is order-preserving. ut

4.3 Discussion

This chapter developed the structural methods of business process model ab-
straction: the pattern-based and decomposition-based. The former gives a lot
of fine tuning capabilities, e.g., the user can specify methods for non-functional
properties estimation. The latter handles a broader model class. Notice that
both methods can be extended. In the case of the pattern-based method, new
patterns can be introduced, e.g., see [53, 121]. Similarly, more advanced pro-
cess model decomposition techniques, like rPST [124, 152, 154], can be used
as abstraction enablers, see [123]. This section compares the two structural
methods with respect to model transformation properties important from the
application perspective. Section 4.3.1 argues how the user can control the ab-
straction methods. Section 4.3.2 elaborates on the order preservation property,
Section 4.3.3—on non-functional properties evaluation, and Section 4.3.4 on
the measure of information loss during abstraction. We conclude discussing
the limitations of structure-based abstraction methods in Section 4.3.5.

70 4 Structural Methods of Business Process Model Abstraction

4.3.1 User Control

Operationalization of structural abstraction methods assumes that a user has
means to control the abstraction procedure. The user should be capable of
specifying which abstraction objects are significant and which are not. One
can notice that both algorithms, Algorithm 1 and Algorithm 2, consider the
list of insignificant activities as the input. We propose to leverage this list as
means to control the abstraction process. Indeed, once the list is populated,
the abstraction evolves without user interference.

4.3.2 Order Preservation

Both aforementioned abstraction approaches are order-preserving, see Defi-
nition 3.12. While Theorem 4.10 formally shows that Algorithm 2 is order-
preserving, the abstraction based on sequence, block, and loop elementary
abstractions is order-preserving as well. This follows from two observations.
As sequence and loop process model fragments are SESE process model frag-
ments, the corresponding element abstractions are SESE fragment abstrac-
tions, see Definition 4.8. At the same time, from a structural perspective the
block abstraction removes only one branch in a block. Hence, block elemen-
tary abstraction does not impact the other ordering constraints of the model.
Notice that an expansion of the elementary abstraction set might yield an
abstraction that is not order-preserving. Therefore, choosing the structural
patterns and corresponding model transformation rules, the designer of ab-
straction method controls whether it is order-preserving.

4.3.3 Evaluation of Activity Non-Functional Properties

As Section 3.4 witnesses, there are several scenarios of business process model
abstraction. While some scenarios demand transformation of the process
model structure only, others imply transformation of additional model infor-
mation. Furthermore, since such scenarios as “Use Case 15: Preserve Frequent
Activities Summarizing Rare Activities” employ non-functional properties of
model elements as a significance criterion, model abstraction cannot be limited
to structural transformation only. Indeed, for each newly introduced model
element, e.g., aggregating activity, it is essential to decide if the model ele-
ment is significant or not. Hence, the abstraction should also prescribe how
to transform the values of non-functional properties of model elements. For
instance, consider scenario “Preserve Frequent Activities Summarizing Rare
Activities”, where the significance criterion is the average activity frequency.
In this scenario the abstraction method should provide means to evaluate the
average frequency of an aggregating activity.

Business process model abstraction based on structural methods provides
a varying level of support for transformation of non-structural information.

4.3 Discussion 71

For instance, Section 4.1.1 discusses not only the structural aspects of elemen-
tary abstractions, but also exemplifies how the average activity execution cost
can be estimated. In general case, the designer of elementary abstractions may
specify how non-functional properties of aggregating activities can be evalu-
ated using the information in the initial model, e.g., see [32, 53, 121]. The
abstraction approach presented in Section 4.1 evaluates such non-functional
properties as the average activity execution cost and the average activity ex-
ecution probability. An abstraction based on process model decomposition
requires more sophisticated methods for non-functional properties evaluation:
the inner structure of the transformed model fragments is unknown. Abstrac-
tion presented in Section 4.2 provides no means to evaluate activity non-
functional properties.

4.3.4 Abstraction Smoothness

Abstraction leads to information loss. For instance, if a user intentionally
aggregates a sequence of activities into one activity, the loss of information
about particular activities and their ordering constraints is intended. An ab-
straction technique should provide precise mechanisms to achieve (and not
to under- or overachieve) the desired level of information loss. Against this
background, each abstraction method should be capable to hide only insignif-
icant details preserving significant ones. Unfortunately, this is not always the
case. Consider the example of the business process model abstraction based
on the process model decomposition presented in Section 4.2. Depending on
the process model structure, this abstraction may conceal significant process
details. The example model fragment in Fig. 4.8 illustrates the problem. If
activity f has to be concealed, activities c and d are affected as well: they are
contained in the same canonical SESE fragment sesemin to which activity f
belongs. As an outcome, this abstraction operation hides three activities, c,
d, and f , two of them being significant process details. From the theoretical
perspective, however, to abstract from activity f by means of aggregation one
more activity is enough (to aggregate f with this activity). For instance, a
sequence elementary abstraction, see Section 4.1.1, always aggregates an ac-
tivity with exactly one of its neighboring activities. Thereafter, an abstraction

c

d f

Fig. 4.8. A process model fragment resulting high abstraction smoothness if ab-
straction is realized according to the Algorithm 2. As the Algorithm 2 relies on
process model decomposition into SESE fragments, the abstraction of activity f
implies that the whole process model fragment is replaced by one activity. Hence,
activities c and d are abstracted as well.

72 4 Structural Methods of Business Process Model Abstraction

that aggregates three activities to hide one leads to undesirable information
loss. In general, the “smaller” the effect of a basic abstraction operation (the
less process information it abstracts), the better it caters for achievement of
a precise model information level. This situation motivates us to introduce a
measure that indicates how precisely aggregation performs.

In order to measure the precision of the abstraction technique quantita-
tively, we introduce a notion of abstraction smoothness. Abstraction smooth-
ness quantitatively estimates the information loss produced by the application
of one basic abstraction operation. In case of an abstraction which is based
on activity aggregation, the abstraction smoothness reflects the difference be-
tween the number of activities in the process model before and after one basic
abstraction operation. The less activities are aggregated by a single operation,
the smoother it is. From the user perspective it is important to have a smooth
abstraction which allows reaching required model information level and forbids
undesired side effects. Notice that the purpose of smoothness is to indicate
how much an abstraction technique diverges from the best theoretically possi-
ble result—aggregation of two activities only. That is why smoothness ignores
if the aggregated activities belong together in terms of business semantics.

The smoothness of an abstraction technique can be measured as the mean
of smoothness for every abstraction step. Theoretically abstraction demon-
strates the best smoothness if every activity aggregation results in only two
activities being abstracted. The elementary abstractions introduced in Sec-
tion 4.1.1 fulfill this property: the sequence, block, and loop elementary ab-
stractions aggregate exactly two activities. Thereby, the user has an opportu-
nity to design such elementary abstractions that assure appropriate abstrac-
tion smoothness values. However, this optimal condition may not hold.

We provide empirical insights into expected abstraction smoothness values.
The evaluation studies the smoothness of the abstraction approach based on
process model decomposition into canonical SESE fragments. The approach is
evaluated against a collection of 50 real world process models capturing busi-
ness processes of a large German health insurance company. The models vary
in size from 50 to 204 nodes. Each model is abstracted to one activity. While
models are being abstracted, information about the smoothness is collected.

The experiment includes observation of two abstraction scenarios: “opti-
mistic” and “pessimistic”. For both scenarios we employ greedy algorithms.
In the optimistic scenario the algorithm abstracts a process model in the way
that the minimal number of activities is reduced in every abstraction step.
In the pessimistic scenario the algorithm abstracts the maximal number of
activities per step. The smoothness of model abstraction is found as the mean
value of activities reduced at every step. Fig. 4.9 presents the distribution of
abstraction smoothness obtained in the experiment. Results for the optimistic
scenario are shown in Fig. 4.9(a) and for pessimistic—in Fig. 4.9(b). In the
optimistic scenario all the models were abstracted with the smoothness be-
tween 2.0 and 3.0; more than a half—with the smoothness under 2.5. This
means that very often only two activities were aggregated, which is close to

4.3 Discussion 73

0

0,1

0,2

0,3

0,4

0,5

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3

Sh
ar

e
of

 m
od

el
s

Abstraction smoothness
 2.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2

 0.5

 0.4

 0.3

 0.2

 0.1

 0

(a) Abstraction smoothness in the “optimistic” abstraction scenario: in
every abstraction step the SESE fragment that contains the least number
of nodes is selected.

0

0,1

0,2

0,3

0,4

0,5

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Sh
ar

e
of

 m
od

el
s

Relative abstraction smoothness

0.5

 0.3

 0.1 0.9 0.8 1.0 0.7 0.6 0.5 0.4 0.3 0.2

0.4

0.2

0.1

 0

(b) Relative abstraction smoothness in the “pessimistic” abstraction sce-
nario: in every abstraction step the SESE fragment that contains the high-
est number of nodes is selected.

Fig. 4.9. An evaluation of the abstraction smoothness for the abstraction based on
process model decomposition into SESE fragments. The set of 50 real world process
models is used for the evaluation, where the model size varies from 50 to 204 nodes.

74 4 Structural Methods of Business Process Model Abstraction

the best theoretically possible result. Pessimistic strategy aims to abstract the
maximal number of activities in every step. Since models vary in size, in this
scenario we use normalized smoothness, dividing abstraction smoothness by
the number of nodes in a model. According to the diagram, around 40% of
the models were abstracted in huge steps—about half of the model per step.
This statistics reveals that the smoothness of the approach relying solely on
activity aggregation can be poor.

4.3.5 Limitations of Structural Methods

To illustrate the shortcomings of purely structural business process model
abstraction methods, we refer to the structural abstraction based on process
model decomposition, see Section 4.2. We demonstrate the abstraction mech-
anism by a “Forecast request handling” process model example in Fig. 4.10.
The model is decomposed into several fragments: the top level sequence that
includes activities Receive request via email, Request data gathering, Record
request, Receive data, Archive data, Generate forecast report, Send report, and
the fragment g1. The fragment g1 contains two branches: one branch is a
sequence of two activities, and the other branch—a sequence of activity “Pre-
pare data for full analysis”, fragment g2, and activity “Consolidate results”.
The abstraction algorithm enables aggregation of either a pair of sequential
activities, or branches in fragments g1 and g2. Activity aggregation may con-
tinue and end up with a process model containing one coarse-grained activity.
The structural method exhibits the following properties.

Property 1 The model structure defines which model elements belong to-
gether.

Property 2 The model structure defines the control flow relations between
model elements of the abstract process model.

Property 3 The structural abstraction enables hierarchical activity aggrega-
tion.

In this way structural abstraction methods address several issues arising
within model transformation. At the same time, Properties 1–3 put strong
assumptions on the abstraction approach. Property 1 implies that activities of
one process model fragment in PM semantically belong together and corre-
spond to a more coarse grained activity in PMa. Assuming this, a structural
algorithm neglects the domain semantics of activities. Property 2 follows from
Property 1, as the relations between such coarse-grained activities of PMa are
directly deduced from the relations of fragments in the initial model PM. Fi-
nally, Property 3 means that each activity of the initial model PM belongs to
exactly one activity of the abstract model PMa. Together these three prop-
erties put strong limitations on the applicability of the abstraction based on
structure. We exemplify the limitations of Property 1 asking the following
questions with respect to activities Receive request via email, Request data
gathering, and Record request in Fig. 4.10:

4.3 Discussion 75

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

S
e

n
d

re
p

o
rt

R
e

c
e

iv
e

d
a

ta

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

A
rc

h
iv

e

d
a

ta

Fig. 4.10. Shortcomings of structural business process model abstraction: while
the structural methods allow to aggregate activities Receive request via email and
Request data gathering or Receive request via email and Record Request or all the
three at once, they do not suggest which aggregation makes sense in terms of business
semantics, i.e., which aggregation is meaningful.

76 4 Structural Methods of Business Process Model Abstraction

1. Does an aggregation of Receive request via email and Request data gath-
ering makes sense from the point of view of the domain semantics?

2. Is aggregation of activities Receive request via email and Request data
gathering any better than an aggregation of Receive request via email and
Record Request or than an aggregation of all the three named activities?

Apparently, structural information is insufficient to answer these questions.
To overcome the limitations of the structural approach we investigate two
questions separately:
1. How to discover groups of related activities within a process model?
2. How to discover the control flow relation of an abstract process model

PMa?
Decomposition of the initial problem into two subproblems requires us to cater
several methods, each addressing one separate question. However, we gain an
abstraction method that is more flexible and better suits the requirements of
the real world. Following this path of argumentation the next chapter focuses
on the discovery of groups of related activities, while Chapter 6 suggests an
alternative approach to the abstract model control flow relation generation.

4.4 Summary

This chapter argued about structural methods enabling business process
model abstraction. Doing so, the chapter explored the why and how of busi-
ness process model abstraction with the main focus on the how. Building
upon the findings in Section 3.4, we have designed the abstraction methods
that align with the abstraction use cases demanded by practitioners. This
chapter has developed two abstraction algorithms that rely on the well estab-
lished techniques for process model analysis. The first algorithm makes use of
structural patterns, while the second exploits process model decomposition.
Both algorithms leverage process model structure to decide which activities
are impacted by abstraction and how the model is transformed. The chapter
provided an in depth discussion of the advocated algorithms, their advantages
and limitations. We have elaborated on how the algorithms can be controlled
by a user, discussed their properties, like order preservation and capability to
evaluate activity non-functional properties. In particular, we have thoroughly
explained the drawbacks of the presented structural abstraction, since they
motivate the research contributions of chapters 5 and 6.

5

Discovery of Related Activities in
Process Models

Multiple business process model abstraction use cases demand the increase of
activity granularity. Vivid examples are the use cases of the group “Group 4:
Obtaining a Process Quick View” demanding more coarse-grained activities
to appear in the abstract process model, see Section 3.4. As we argued in
Section 3.2.3, coarse-grained activities can be obtained by means of activ-
ity aggregation. In this context, each coarse-grained activity of the abstract
model relates to a group of detailed activities in the initial model. Obviously,
there are alternative ways to aggregate activities. From the user perspective,
groups of activities that semantically belong together are of particular value.
Therefore, this chapter investigates methods that aggregate activities accord-
ing to their business meaning. In other words, given a business process model
PM = (A,G,F, t, s, e), we search for such activity sets C ⊂ A,C 6= ∅ that
each C has a self-contained business semantics. This research question can be
related to both why and how of business process model abstraction. While
Chapter 4 studied these two aspects by means of process model structure
analysis, this chapter advocates an alternative solution considering the model
element semantics.

The challenge of activity aggregation has been addressed by the BPM com-
munity in various contexts. For instance, activity aggregation is a recurrent
problem in process mining where logs contain fine-grained activities. Against
this backdrop, several process mining research endeavors developed methods
for activity aggregation, e.g., see [65, 66, 100]. Since these solutions emerge
from the process mining domain, they intensively exploit information about
process instances. The analysis of the instance level information impedes the
direct reuse of these methods in the context of business process model abstrac-
tion. Another approach to activity aggregation was demonstrated by [45].
Again, the authors considered the specific setting of the navigation flow in
the web application. Looking back into Chapter 4, we observe that structural
methods of business process model abstraction cater for identification of ac-
tivity groups as well, e.g., see [30, 32, 94, 122, 123]. However, the control flow
gives little if any information about the semantic relatedness of activities.

78 5 Discovery of Related Activities in Process Models

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

S
e

n
d

re
p

o
rt

R
e

c
e

iv
e

d
a

ta

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

A
rc

h
iv

e

d
a

ta

Fig. 5.1. A model of the “Forecast request handling” business process.

5 Discovery of Related Activities in Process Models 79

Indeed, [129] recently confirmed that multiple factors have to be considered,
once activities are aggregated into a subprocess (which can be seen as a coarse-
grained activity).

The example in Fig. 5.1 emphasizes the drawbacks of structural ap-
proaches. The figure presents the model of the “Forecast request handling”
business process which detailed textual description can be found in Table 1.1.
Consider the sequence of activities Receive request via email, Request data
gathering, and Record request. According to the structural approach advo-
cated in Chapter 4 this sequence, and its subsequences, can be considered as
a coarse-grained activity. However, the structural approach does not answer
the following questions:

– Does an aggregation of Receive request via email and Request data gathering
makes sense from the point of view of the domain semantics?

– Is aggregation of activities Receive request via email and Request data gath-
ering any better than an aggregation of Receive request via email and Record
Request or an aggregation of all the three named activities?

We notice that these two questions challenge every structural approach. To
overcome the limitations of structural abstraction, this chapter expands the
scope of information considered by activity aggregation beyond the control
flow. In particular, we deal with two information sources: domain ontologies
and non-control flow process model elements.

This chapter develops two novel methods of activity aggregation. First,
we study how domain ontologies describing activities and relations between
them support aggregation. Namely, we investigate ontologies specifying activ-
ity meronymy (part-of) relation and design 1) a metric evaluating the relat-
edness of activities within a sample set and 2) an algorithm selecting sets of
related activities in a process model. Second, we study how model elements
that do not relate to the control flow, e.g., data objects and roles, help to
identify groups of related activities. In this context, we adapt a well-known
algorithm of cluster analysis and a model from information retrieval to real-
ize aggregation. Notice that the discovery of related activity groups ignores
the process ordering constraints. Instead, we shift the focus on the activity
business semantics analysis. This allows us to overcome the limitations of tra-
ditional structural aggregation. Finally, we reason about the validity of both
methods by an empirical argument.

The remainder of this chapter is structured into five sections. Section 5.1
argues about meronymy-based activity aggregation, while Section 5.2 dis-
cusses the application of cluster analysis for activity aggregation. Section 5.3
evaluates the two activity aggregation methods. The properties of the de-
signed activity aggregations are discussed by Section 5.4. Finally, Section 5.5
concludes the chapter with a summary.

80 5 Discovery of Related Activities in Process Models

5.1 Meronymy-Based Activity Aggregation

Once we neglect process model structure as the criterion for activity aggre-
gation, we are in the quest for alternative criteria search. One approach is
to consider domain semantics of activities. We use business process domain
ontologies as a formal representation of domain knowledge. The applications
of ontologies in BPM have been throughly investigated by academia, e.g.,
see [33, 74, 85]. These research endeavors witness that while ontologies enable
(semi-)automatic reasoning, the laborious step of ontology modeling impedes
their wide application in industry. Thereafter, we notice that the assumption
of an ontology existence limits the approach’s applicability.

Ontologies may specify various relations between activities, e.g., meronymy,
hyponymy, or equivalence. Meanwhile, activity aggregation explores the rela-
tions between coarse-grained activities and their parts. This context allows us
to focus on the meronymy relation in the remainder of this section. Meronymy
is a semantic relation denoting that one entity is a part of another entity.
Meronymy is often referenced as a part-of relation and has been extensively
studied in object-oriented analysis and design. In [17] Barbier et al. extend the
formalization of this relation beyond the UML specification. Guizzardi focused
on the modal aspects of the meronymy relation and the underlying objects
in [64]. Finally, Dapoigny and Barlatier introduce a formalism that facilitates
a precise and unambiguous description of a meronymy relation [40]. In the
context of activity aggregation meronymy relation naturally hints on which
activities belong together and which coarse-grained activity they constitute.

The meronymy relation organizes activities into a hierarchy, or a meronymy
tree. Activities at the top of the tree are more coarse-grained than those deeper
in the tree. Given an activity in the meronymy tree, its direct descendants
are low-level activities to be accomplished to fulfill the given activity. Hence,
each non-leaf activity can be iteratively refined down to leaves. Consider an
example meronymy tree in Fig. 5.2. According to the tree, to complete activity
Receive forecast request, activities Receive request via email and Record request
have to be executed. The activity meronymy trees, or their close analogs, can
be found in the works of BPM researchers and practitioners. For instance,
the MIT Process Handbook specifies several activity meronymy trees [95].

Provide forecast

Request data

gathering

Receive request

via email
Record request

Receive forecast

request

Fig. 5.2. A meronymy tree.

5.1 Meronymy-Based Activity Aggregation 81

The function view of ARIS framework [138] is a vivid example of activity
meronymy trees application in an industrial setting. As we leave other activity
relations out of scope, each ontology can be formalized as several meronymy
trees. From a practical perspective, the focus on activity meronymy relation
decreases the ontology modeling effort in comparison to a full-fledged ontology.

We propose to use meronymy trees for activity aggregation. We reference
a set of activities which is in question to be aggregated as an aggregation can-
didate. If all the activities of an aggregation candidate appear in a meronymy
tree, they have a lowest common ancestor (LCA), see Section 2.1. We assume
that the LCA can be used as a representative for the aggregation candidate.
Returning to the example, we observe that Receive request via email and
Record request are the direct descendants of activity Receive forecast request
in the meronymy tree. According to our argument, this is a strong indication
that these two activities should be aggregated. One can notice that Request
data gathering appears in the tree as well. This allows us to consider the set
Receive request via email, Record request, and Request data gathering as an
aggregation candidate. Which of the two candidates is preferable? To answer
this question we make an assumption that a good aggregation candidate com-
prehensively describes its LCA. In other words, we assume activities to be
related, if they have a subsuming activity, LCA, and this activity is compre-
hensively described by the considered activities. According to this assumption,
aggregation candidate Receive request via email and Record request is prefer-
able, as it fully describes the ancestor Receive forecast request. At the same
time, the set Receive request via email, Record request, and Request data gath-
ering does not provide a comprehensive description of Provide forecast : there
are other activities in the meronymy tree that contribute to its execution. Fol-
lowing this argumentation we mine activity aggregations in a process model
and guide the user with recommendations on which activities belong together.

Against this background, this section develops activity aggregation that
leverages meronymy relation. Once we formalize the problem, the chapter
elaborates on the relation between model and ontology activities. The core
contributions of this section are the metric enabling aggregation candidate
comparison and the algorithm for the discovery of related activity groups.

The remainder of the current section is structured as follows. Section 5.1.1
formalizes the basic concepts, while Section 5.1.2 elaborates on the methods
relating process model activities to ontology activities. Section 5.1.3 introduces
a metric for aggregation candidate ranking. Finally, Section 5.1.4 develops an
algorithm for the discovery of related activity groups.

5.1.1 Basic Concepts

This section formalizes the intuitive discussion sketched above. We postu-
late a universal alphabet of activities A. For each process model PM =
(A,G,F, t, s, e) it holds A ⊆ A. According to the employed formalism an
aggregation candidate C ⊆ A is a subset of activities in a process model

82 5 Discovery of Related Activities in Process Models

PM = (A,G,F, t, s, e). The search for activity aggregations utilizes a domain
ontology formalized as a meronymy forest.

Definition 5.1 (Meronymy Tree and Meronymy Forest).
A meronymy tree is an arborescence µ = (Aµ, rµ,Mµ), where:

– Aµ ⊆ A is a finite non-empty set of activities
– rµ ∈ Aµ is a special node tree, root, capturing the most coarse-grained

activity
– Mµ ⊆ Aµ × (Aµ\{rµ}) is a set of edges such that (a, b) ∈Mµ, if b is part of
a, i.e., they are in meronymy relation.

A meronymy forest F is a directed graph all of which weakly connected com-
ponents are meronymy trees. We denote the set of activities in the meronymy
forest F as AF =

⋃
∀µ∈F Aµ.

An example meronymy tree µ is presented in Fig. 5.3. Notice that according to
a meronymy forest definition, each activity appears exactly in one meronymy
tree. Indeed, an activity is modeled by one node that belongs to exactly one
tree. Next, Definition 5.1 does not assume the existence of one activity sub-
suming all the others. This is consistent, for instance, with ontologies, like the
MIT Process Handbook, in which there are eight root activities [95].

We make use of the LCA for a set of nodes, see Section 2.1 for formal
details. Let µ = (Aµ, rµ,Mµ) be a meronymy tree. We introduce an auxiliary
function lcaµ : P(Aµ) → Aµ, which for a set of activities C ⊆ Aµ returns
a node l ∈ Aµ that is the lowest node having all the activities in C as de-
scendants. The function is defined for a concrete meronymy tree and can be
illustrated by the following two examples in tree µ: lcaµ({e, f}) = n2 and
lcaµ({e, g}) = n0.

5.1.2 Matching Activities: from Process Models to Meronymy
Forest

To enable aggregation we need to relate process model activities to the in-
formation in an ontology, i.e., a meronymy forest. In the trivial case, each
process model activity is captured in the ontology. In practice this is true
only if a process model is designed using the activities predefined by the on-
tology. However, we do not want to impose the restriction that a process model
is constructed exclusively of ontology activities. Therefore, we use a matching

n0

n1 n2 g n3

e f n6 n7 n8n4 n5

Fig. 5.3. The meronymy tree µ.

5.1 Meronymy-Based Activity Aggregation 83

step to determine which process model activity matches which activity in the
meronymy forest. The matching step is a necessity if a process model and a
meronymy forest have been designed independently, but we reuse the ontology
for the activity aggregation problem.

Definition 5.2 (Activity Match).
Let PM = (A,G,F, t, s, e) be a process model and F be a meronymy for-
est. The function matchPM : A → P(AF) maps a process model activity to
a set of activities in the meronymy forest. We extend match to sets such
that matchPM : P(A) → P(P(AF)) and that for Q ⊆ A it is defined as
matchPM(Q) = {matchPM(q)| q ∈ Q}, which returns a set of match-sets, each
corresponding to an element of Q.

Activity match function can be illustrated by mapping of a process model
activity Receive request via email to meronymy forest activities Receive email,
Get email, and Receive message and activity Record request to meronymy
forest activities Record request and Log request :

match(Receive request via email) = {Receive email, Get email, Receive
message}

match(Record request) = {Record request, Log request}
Then, the extension of function match to an activity set looks as follows.

match({Receive request via email, Record request}) = {{Receive email, Get
email, Receive message}, {Record request, Log request}}
Further we use function activity mixmatch to capture the possible mappings
of an aggregation candidate on the meronymy forest activities.

Definition 5.3 (Activity Mixmatch).
Let PM = (A,G,F, t, s, e) be a process model and F be a meronymy for-
est. Function mixmatchPM returns all potential combinations of matches for
each process model activity from an input set. This function mixmatchPM :
P(A) → P(AF) is defined so that for a set of activities Q ⊆ A holds that
S ∈ mixmatchPM(Q), if |S| = |Q| and ∀u, v ∈ S holds that ∃a1,a2∈A[a1 6=
a2 ∧ u ∈ matchPM(a1) ∧ v ∈ matchPM(a2)].

The activity mixmatch function is illustrated by the following example.
mixmatch({Receive email, Record request}) = {(Receive email, Record re-

quest), (Receive email, Log request), (Get email, Record request), (Get email,
Log request), (Receive message, Record request), (Receive message, Log re-
quest)}
The match mapping enables activity mapping in both cases: if the process
model was designed in the presence of a meronymy forest, or independently.
In the former case function match maps an activity to a trivial set, containing
only this activity. In the latter case match maps a process model activity to
a set of similar activities in the meronymy forest.

One can foresee several implementations of functions activity match and
activity mixmatch. In the trivial case the mapping can be realized by a user.

84 5 Discovery of Related Activities in Process Models

However, various methods for automation can be used. The reader can con-
sult [143] for further insights.

5.1.3 Aggregation Candidates Ranking

Without any prior knowledge, every subset of a process model activity set
might be considered as a potential aggregation candidate. However, we aim
to select only those aggregation candidates which activities are strongly se-
mantically related. There are various options for defining semantic relations
among activities, for instance, based on operation on the same data object or
execution by the same resource. In this section we utilize meronymy relations
between activities in order to judge on their semantic relatedness. We say
that activities in an aggregation candidate are strongly related, if together
they comprehensively describe another activity—their LCA in a meronymy
tree. The comprehensiveness depends on the existence of the LCA descendants
that do not belong to the aggregation candidate. The larger share of the LCA
descendants belongs to the aggregation candidate, the more comprehensive is
the description. For example, activity set {e, f} in Fig. 5.3 fully describes its
LCA n2. In contrast, activity set {e, g} describes only a small part of its LCA,
activity n0.

We define a metric to measure how comprehensively a set of activities
describes its LCA. We impose the following requirements on the metric. The
metric must reflect, whether the activities of an aggregation candidate de-
scribe the LCA comprehensively. The more descendants, which do not belong
to the aggregation candidate, the LCA has, the smaller share of the LCA is
described by the aggregation candidate. The metric must be neutral to the
distance between activities of an aggregation candidate and the LCA, as the
distance has no direct influence on how comprehensively activities describe
their ancestor. Similarly, the relative position of the LCA to the tree root is
not characteristic in this context. This position reflects the abstraction level
of an activity. However, we have no interest in LCA abstraction level. We
also require the metric to be neutral to the size of an aggregation candidate.
In other words, the metric enables comparison of aggregation candidates of
different sizes and even comparison of an aggregation candidate with aggre-
gation candidates, which are its subsets. Finally, it is handy, if a metric has a
value between 0 and 1. We summarize this discussion as a list of requirements.

R1 Reflect, if the LCA has other descendents, except aggregation candidate
activities.

R2 Be neutral to the depth of aggregation candidate in the LCA-rooted sub-
tree.

R3 Be neutral to the depth of the LCA in the meronymy tree.
R4 Be neutral to the size of the aggregation candidate.
R5 Have a value between 0 and 1.

5.1 Meronymy-Based Activity Aggregation 85

To present the designed function we first introduce an auxiliary function
meronymy leaves. The function sets up a correspondence between a meronymy
tree node and its descending leaves.

Definition 5.4 (Meronymy Leaves).
Let µ = (Aµ, rµ,Mµ) be a meronymy tree in a meronymy forest F . A
meronymy leaves function wµ : Aµ → P(Aµ) maps an activity a ∈ Aµ to
a set of nodes that are the leaves of the subtree rooted to activity a.

Returning to the example tree µ, consider wµ(g) = {g} and wµ(n2) = {e, f}.
Thereon, we propose the following metric for aggregation candidate ordering.

Definition 5.5 (Degree of Aggregation Coverage).
Let µ = (Aµ, rµ,Mµ) be a meronymy tree in a meronymy forest F and C ⊆ Aµ
be an aggregation candidate. A function cover : (P(Aµ)\∅)→ (0, 1] describes
the degree of aggregation coverage, defined as:

cover(C) =

∣∣∣∣∣ ⋃
∀a∈C

wµ(a)

∣∣∣∣∣
|wµ(lcaµ(C))|

.

The function captures the extent to which the activity set covers the LCA
activity. The larger the share, the more “comprehensive description” pro-
vides the activity set. For the motivating example in the tree µ, see Fig. 5.3,
the metric has values cover({e, f}) = 1 and cover({e, g}) = 0.25, i.e.,
cover({e, f}) > cover({e, g}). Due to this we conclude that {e, f} is a better
aggregation than {f, g}. As the aggregation metric makes use of meronymy
leaves function, it considers the presence of other LCA descendents rather
than those in the aggregation candidate. As the metric makes no use of dis-
tance measures, it is neutral to the depth of aggregation candidates in the
LCA-rooted subtree, as well as the depth of the LCA in the meronymy tree.
The metric is indifferent to the size of the aggregation candidate, but consid-
ers the number of leaves in the tree “covered” by the candidate. Finally, the
metric value is always greater than 0, and reaches 1 at most. We conclude
that the proposed aggregation metric satisfies requirements R1–R5.

5.1.4 Activity Aggregation Mining Algorithm

Building on the designed activity matching function and the metric for aggre-
gation candidate ranking, we propose an algorithm for mining of activity ag-
gregations from a process model. The mining algorithm has two subproblems:
generation of aggregation candidates out of a process model and selection of
aggregations from aggregation candidates. While the later problem exploits
the developed aggregation metric cover, the former requires a discussion.

86 5 Discovery of Related Activities in Process Models

Generation of aggregation candidates from the model can be approached
in a brute force fashion, if all the possible activity combinations are consid-
ered. However, the number of combinations in this case is P(|A|), where A is
the set of activities in a process model. As business process model abstrac-
tion addresses complex process models with a large number of activities, this
brute force method is insufficient. We need a method for coping with the
computational complexity. A wholesome observation is that related activities
are co-located within a process model [129]. According to this observation,
we assume that for a given activity, the related activities can be found within
a fixed graph distance. In this way we effectively manage the computational
complexity problem. The computational complexity is further reduced, if we
iteratively construct aggregation candidates pruning redundant ones. First,
all the aggregation candidates of size two are created and analyzed. Candi-
dates, which matches do not appear in one meronymy tree, are pruned. In the
next iteration aggregation candidates of size three are constructed from the
candidates of size two. Hence, the construction of aggregation candidates of
size k + 1 makes use of aggregation candidates of size k and their pruning.

Algorithm 3 formalizes the discussion above. The input of the algorithm
is a process model PM = (A,G,F, t, s, e), a meronymy forest F , an aggrega-
tion metric threshold value cover0, and dist—the graph node distance. The
threshold value cover0 and distance dist allow to set up the algorithm. The
values can be selected by the user or empirically obtained, see Section 5.3.2.
The output of the algorithm is the set of aggregations. The iterative construc-
tion of aggregations of increasing size is realized by two functions: mine and
kStep. The entry point of the algorithm is function mine. For each activity
in a process model, line 3, the algorithm finds a set of neighboring activities
within a specified distance dist. Function findNeigbours(activity, dist) re-
turns the set of activities allocated within a distance not greater than dist
from activity in the process model, line 5. Within this set all the subsets of
size two are considered as aggregation candidates, line 6. Each candidate is
evaluated against the ontology. If the candidate has no mappings to the on-
tology activities that belong to one tree, it is pruned, lines 7–8. Otherwise,
the candidate mappings are evaluated against the specified metric threshold
value cover0. If there is at least one mapping of an aggregation candidate,
for which the value of cover is greater than m0 the candidate is considered
to be an aggregation, lines 10–11. All the aggregation candidates that have
not been pruned are used as the input for function kStep, line 12. Function
kStep iteratively increases the size of aggregation candidates by one, pruning
and evaluating them, lines 16–29. The pruning and evaluation of candidates
follows the same principle as in function mine.

Algorithm 3 terminates, since functions mine and kStep iterate over finite
sets. Upon termination the algorithm delivers set aggregations. The set aggre-
gations contains those activity sets that fulfill the requirements imposed by
the threshold cover0 and are allocated within the radius of dist in the process
model PM. As we argued earlier, in general case function mine iterates over

5.2 Activity Aggregation as Cluster Analysis Problem 87

Algorithm 3 Activity aggregation mining

1: mine(Model PM = (A,G, F, t, s, e), Forest F , double cover0, int dist)
2: Set aggregations = ∅
3: for all activity ∈ A do
4: Set candidates = ∅
5: for all activityPair ∈ findNeighbours(activity, dist) do
6: candidate = {activityPair[1], activityPair[2]}
7: for all ontologyCandidate ∈ mixmatchm(candidate) do
8: if ∃µ ∈ F, µ = (Aµ, rµ,Mµ) : ontologyCandidate ⊆ Aµ then
9: candidates = candidates ∪ {candidate}

10: if cover(ontologyCandidate) ≥ cover0 then
11: aggregations = aggregations ∪ {candidate}
12: aggregations = aggregations ∪ kStep(candidates, PM, F , cover0, dist)
13: return aggregations
14:
15: \\Inductive step of aggregation mining

16: kStep(Set kCandidates, Model PM = (A,G, F, t, s, e), Forest F , dou-
ble cover0, int dist)

17: Set aggregations = ∅
18: Set (k + 1)Candidates = ∅
19: int k = kCandidates[1].size
20: for all candidatePair from kCandidates do
21: newCandidate = candidatePair[1] ∪ candidatePair[2]
22: if newCandidate.size == k + 1 then
23: for all ontologyCandidate ∈ mixmatchPM (newCandidate) do
24: if ∃µ ∈ F, µ = (Aµ, rµ,Mµ) : ontologyCandidate ⊆ Aµ then
25: (k + 1)Candidates = (k + 1)Candidates ∪ {newCandidate}
26: if cover(ontologyCandidate) ≥ cover0 then
27: aggregations = aggregations ∪ {newCandidate}
28: aggregations = aggregations ∪ kStep((k + 1)Candidates, PM, F , cover0,

dist)
29: return aggregations

all activity tuples in the model, which is exponential to the activity number.
Due to the application of divide and conquer technique, see line 5, the size of
the search space decreases rapidly. However, the search is still exponential to
the number of activities within a graph distance dist.

5.2 Activity Aggregation as Cluster Analysis Problem

Alternatively, we interpret activity aggregation as a problem of cluster analy-
sis. In this case we do not inspect the information external to the model, but
study an activity environment within a process model. Examples of elements
constituting such an environment are data objects accessed by activities and
roles supporting activity execution, e.g., see model in Fig. 5.4. The list of such

88 5 Discovery of Related Activities in Process Models

g
2

g
3

g
1

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n

G
e

n
e

ra
te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
a

in
it
ia

l
m

o
d

e
l,
 P

M

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

P
e

rf
o

rm
 f
u

ll

a
n

a
ly

s
is

P
e

rf
o

rm
 q

u
ic

k

a
n

a
ly

s
is

H
a

n
d

le

d
a

ta

R
e

c
e

iv
e

 f
o

re
c
a

s
t

re
q

u
e

s
t

Is
s
u

e
 r

e
p

o
rt

g
4

g
5

S
e

n
d

re
p

o
rt

Forecast company

R
a

w

d
a

ta

Q
A

d
a

ta

F
A

d
a

ta

ClerkSenior analyst Analyst

R
e
-

p
o

rt

R
e

q

u
e

s
t

R
a

w

d
a

ta

A
rc

h
iv

e

d
a

ta

Fig. 5.4. Two models of the “Forecast request handling” business process at differ-
ent levels of abstraction (BPMN notation).

5.2 Activity Aggregation as Cluster Analysis Problem 89

model element types varies depending on the process modeling language, the
tool at hand, modeling procedures taken into account, and the modeler’s style.
We formulate the clustering problem as follows. Let PM = (A,G,F, t, s, e) be
a process model to be abstracted. The set of objects to be clustered is the set
of activities A. The cluster analysis outcome, activity clusters, correspond to
coarse-grained activities of the abstract process model.

The core contribution of this section is a method for activity aggregation
based on cluster analysis. We argue how activity aggregation can be inter-
preted as the cluster analysis problem, choose a clustering algorithm that
suits our context, and introduce a distance measure between the activities.

The remainder of this section is structured as follows. Section 5.2.1 in-
troduces the notion of an annotated process model. Section 5.2.2 interprets
activity aggregation as a cluster analysis problem.

5.2.1 Towards Annotated Process Model

In this section we design an activity aggregation neutral to control flow infor-
mation, but considering other information contained in the model. To reason
about this information formally, we introduce several auxiliary concepts and
the notion of an annotated process model.

Definition 5.6 (Activity Property Value and Activity Property Type).

Let V be a finite nonempty set of activity property values. Alongside, T is a
finite nonempty set of activity property types. Mapping type : V → T assigns
a type to each value.

The process model in Fig. 5.4 illustrates Definition 5.6. Raw data, FA data, and
Analyst are examples of activity property values. The process model presents
two activity property types: Role and Data object. For instance, type(Raw
data) = Data object, type(FA data) = Data object, and type(Analyst) = Role.
Then, we define an annotated process model as follows.

Definition 5.7 (Annotated Process Model).
A tuple APM = (A,G,F, t, s, e, V, props) is an annotated process model, where:

– (A,G,F, t, s, e) is a process model, see Definition 2.13
– V ⊆ V is a set of activity property values
– props : A→ P(V) is a mapping that assigns property values to an activity.

Mapping props assigns activity property values to model activities. Referring
to model PM in the motivating example of Fig. 5.4, mapping props can be
illustrated as props(Collect data) = {Clerk, Raw data}. Definitions 5.6 and 5.7
allow to manage the considered activity property types in a flexible fashion: it
is enough to introduce a new activity property type to set T , the values to set
V, and respectively update mapping type. Thereafter, new activity properties
can be easily considered within the activity aggregation.

90 5 Discovery of Related Activities in Process Models

Raw

data

QA

data

FA

data

Raw

data

Receive

data

Receive

data

Prepare data for

full analysis

Prepare data for

quick analysis

(a) Excerpt of the process model in Fig. 5.4
emphasizing the activities and their activity
properties of type “Data object”.

Raw

data

QA

data

FA

data
P

re
p
a
re

 d
a
ta

fo
r fu

ll a
n
a
lysis

P
re

pa
re

 d
at

a
fo

r

qu
ic
k
an

al
ys

is

(b) Representation of the activities as
vectors in the vector space.

Fig. 5.5. A vector space with dimensions FA data, QA data, and Raw data.

5.2.2 Activity Clustering using K-means Algorithm

Cluster analysis provides a large variety of algorithms, e.g., see [137]. In this
chapter we engineer activity aggregation motivated by the abstraction use
cases in the group “Obtaining a Process Quick View”. In the considered use
cases, the user demands control over the number of activities in the abstract
process model. For example, a practical guideline is that five to seven activities
are displayed on each level in the process model [140]. Provided a fixed number
the clustering algorithm has to assure that the number of clusters equals the
request by the user. We turn to the use of k-means clustering algorithm,
as it is simple to implement and typically exhibits good performance [72].
K-means clustering partitions an activity set into k clusters. The algorithm
assigns an activity to the cluster, which centroid is the closest to this activity.
To evaluate an activity distance, we analyze activity property values V . We
foresee a number of alternative activity distance measures and elaborate on
them in this section.

To introduce the distance measure among activities we represent activities
as vectors in a vector space. Such an approach is inspired by the vector space
model, an algebraic model widely used in information retrieval [136]. While
this thesis makes use of the vector space model, activity clustering may profit
from advanced models building on the basic idea of the vector space. Examples
are the generalized vector space model, see [166], and enhanced topic vector
space model, see [19], that allow to capture relations between activity proper-
ties. We leverage the vector space model, where the space dimensions corre-
spond to activity property values V and the vector space can be captured as
vector (v1, . . . , v|V |), where vj ∈ V for j = 1, . . . , |V |. Consider an example set
of property values V ′ = {FA data, QA data, Raw data} and the corresponding

5.2 Activity Aggregation as Cluster Analysis Problem 91

vector space presented in Fig. 5.5(b). The vector a representing an activity
a ∈ A in the annotated process model APM = (A,G,F, t, s, e, V, props) is con-
structed as follows. If activity a is associated with a property value vj ∈ V , the
corresponding vector dimension πj(a) has value 1; otherwise, the dimension
πj(a) has value 0:

πj(a) =

{
1, if vj ∈ props(a);

0, otherwise.

For the annotated process model APM in Fig. 5.4, activities Prepare data for
quick analysis and Prepare data for full analysis correspond, respectively, to
vectors a1 = (0, 1, 1) and a2 = (1, 0, 1) in the vector space with dimensions
FA data, QA data, and Raw data, see Fig. 5.5.

Similarity of two vectors in the space is defined by the angle between these
vectors: the larger the angle, the more distant the vectors are. Typically, the
cosine of the angle between two vectors is used as a vector similarity measure.
Let θ be the angle between the vectors a1 and a2. Then, the similarity of a1

and a2 is:

sim(a1, a2) = cosθ =
a1 · a2

‖a1‖ ‖a2‖
(5.1)

For instance, the similarity of activities Prepare data for quick analysis and
Prepare data for full analysis is 0.5 according to Equation 5.1. The distance
between two activities is:

dist(a1, a2) = 1− sim(a1, a2) (5.2)

By construction the vector dimension values are non-negative. Hence, the
activity similarity and activity distance measures vary within the interval
[0, 1]. According to Equation 5.2 we obtain the distance between activities
Prepare data for quick analysis and Prepare data for full analysis to be 0.5.

We distinguish two types of vector spaces. On the one hand, a vector space
can be formed by the dimensions corresponding to the activity property val-
ues disregard their type, i.e., all elements of V . We reference such spaces as
heterogeneous vector spaces. An example of a heterogeneous vector space is a
space with 6 dimensions Analyst, Clerk, FA data, QA data, Raw data, and
Senior analyst. On the other hand, a vector space can be formed by the di-
mensions corresponding to the activity property values of a particular type.
Given an activity property type t, such a space is formally defined by the set
Vt = {∀v ∈ V : type(v) = t}. We refer to such spaces as homogeneous vector
spaces. Fig. 5.5(b) provides an example of a homogeneous vector space formed
by activity properties of type Data object. We denote the activity distance in
a heterogeneous space with disth(a1, a2) and in a homogeneous vector space
with distt(a1, a2), where t is the respective activity property type. Both dis-
tance measures can be employed for activity aggregation. If the user wants to
make use of one activity property type t only, the distance is defined by distt.
To cluster activities according to several activity property types, disth can be

92 5 Discovery of Related Activities in Process Models

employed. In addition, we introduce an alternative distance measure distagg
that aggregates multiple homogeneous distance measures distt:

distagg(a1, a2) =
1

|T |
∑
∀t∈T

wt · distt(a1, a2) (5.3)

In Equation 5.3, the set T corresponds to the activity property types that
appear in an annotated process model. Then, function distagg is the weighted
average value of distance measures in the vector spaces corresponding to the
available activity property types. Coefficient wt is the weight of distt indicat-
ing the impact of the activity distance according to property type t. We ref-
erence all the weights in Equation 5.3 as W = (wt1 , . . . , wtn), where n = |T |.
In the remainder of this section we will explain the role of vector W.

The application of different abstraction operations to one process model
leads to various abstract representations of the modeled business process. The
differences between abstraction operations are explained by their pragmatics,
i.e., various abstraction purposes. If the abstraction is realized by a human,
the modeling habits of the designer are reflected in the abstraction operation
as well. Hence, abstraction pragmatics and modeling habits of the designer
are inherent properties of the abstraction operation and together form an
abstraction style. We use vector W in Equation 5.3 to model an abstraction
style.

From the user perspective vector W is the tool to express the desired
abstraction style. We foresee two scenarios how vector W can be obtained.
In the first scenario, the user explicitly specifies W. This approach is useful if
the user wants to introduce a new abstraction style. However, coming up with
an appropriate value for W may be challenging. Hence, the second scenario
implies that vector W is mined from a process model collection enriched with
subprocess relation. The discovered vector is a “fingerprint” of the process
model collection with respect to the used abstraction style. An approach to
discover a fingerprint for a process model collection is elaborated and validated
in [145].

5.3 Evaluation

The presented methods for activity aggregation call for an evaluation. This
section empirically evaluates the advocated activity aggregation methods by
means of industrial process models. We start defining the evaluation goal
and the sketching the evaluation method in Section 5.3.1. Then, Section 5.3.2
evaluates meronymy-based activity aggregation. Subsequently, Section 5.3.3
presents an evaluation of aggregation based on cluster analysis. We conclude
reflecting on the key properties of the two activity aggregation methods in
Section 5.3.4.

5.3 Evaluation 93

5.3.1 Goal and Method

The goal of the evaluation is to estimate the quality of activity aggregation
methods developed in Section 5.1 and Section 5.2. To achieve this goal we
compare the activity aggregations delivered by the advocated methods (re-
trieved activity aggregations) against the aggregations specified by humans
(relevant activity aggregations). As quantitative measures we use the stan-
dard notions of recall, precision, and F-score [16]. A precision indicates the
share of retrieved aggregations that are relevant, while a recall is the fraction
of relevant aggregations that are retrieved. An F-score is the harmonic mean
of the precision and the recall.

Precision, recall, and F-score assume the comparison of retrieved and rel-
evant activity aggregations. The reader may notice that activity aggregations
are of different size, often containing more than two activities. This fact com-
plicates the comparison of activity aggregations. Consider an example of two
activity aggregations, one of size five and the other of size six. The two aggre-
gations share four common activities. If we compare the two aggregations as
sets, we learn that the aggregations are unequal. Meanwhile, the two activity
aggregations are very similar, as they have several activities in common. To
consider the intersection of activity aggregations, we compare activity pairs
only. Given an activity aggregation we decompose it into a set of all its sub-
sets of size two. In this context the comparison of two activity aggregations
turns into comparison of two sets of activity pairs. Consider, for instance, the
set {a, b, c}, where activity c is weakly related to a and b. This set can be
decomposed into pairs {a, b}, {a, c}, {b, c}. The fact that c is weakly related
to a and b can be easily pointed out by claiming (a, c) and (b, c) irrelevant.
Against this background, we evaluate the similarity of two activity aggrega-
tion sets comparing each pair from the first activity pair set with each pair in
the second activity pair set. We claim that two pairs coincide if they contain
the same elements. Further we evaluate both activity aggregation methods
against industrial process model collections.

5.3.2 Meronymy-Based Activity Aggregation

This section focuses on the evaluation of meronymy-based activity aggrega-
tion. We start by introducing the experiment setting and then present the
observed results.

Experiment Setting

We evaluated the meronymy-based activity aggregation by applying it to a set
of models capturing the business processes of a large electronics manufacturer.
The model collection considered in the experiment includes 6 business process
models. Each model contains on average 42 activities, with a minimum of

94 5 Discovery of Related Activities in Process Models

18 activities and a maximum of 81 activities. On average, an activity label
contains 4.1 words.

A meronymy forest is represented by the MIT Process Handbook [95]. The
MIT Process Handbook describes business processes elicited by researchers
in the interviews with business process experts. It spans several business do-
mains, like sales, distribution, and production. The handbook describes about
5 000 activities and specifies hyponymy and meronymy relations between
them. We make use of activities and a meronymy relation only. The process
models were not aligned with the Handbook in advance: no relations between
process model activities and the MIT Process Handbook activities were estab-
lished. We matched process model activities to the activities of the Handbook
according to the semantics of their labels, as discussed in Section 5.1.2.

To obtain relevant activity aggregations we asked a process modeling ex-
pert from TU Eindhoven, who was unfamiliar with the technique, to select
sets of related activities within the model collection. We gave the instruction
to consider an activity aggregation relevant, if a given set of activities could
be reasonably “abstracted” into a single activity. The means for abstraction
that could be considered were: aggregating the activities in the abstraction,
generalizing the activities, putting the activities into a common subprocess,
or any other means that the evaluator considered relevant.

Observed Results

We have conducted a series of experiments in which we varied the parameters
of our aggregation technique. In each run of the experiments we have fixed
the parameters of match function (each process model activity was mapped
to at most 10 activities in the Handbook). At the same time we varied the
node distance and cover threshold value. The node distance runs the values
from 1 to 4, while the cover threshold values were 0.2 and 0.3. Within the
experiment we observed the precision, recall, and F-score values.

Fig. 5.6 illustrates the observed results. The precision value varies between
0.27 (the node distance equals to 4 and the cover threshold value is of 0.2) and
0.46 (the node distance equals to 1 and the cover threshold value is of 0.3),
see Fig. 5.6(a). One can see two tendencies in the experiment. First, a higher
cover0 threshold value leads to a higher precision. Indeed, a high threshold
prunes more aggregation candidates, as it imposes more strict search con-
ditions. The total number of aggregations declines, increasing the precision.
Second, the increase of node distance leads to a precision decrease. This ob-
servation can be explained by the fact that a node distance increase brings
more activities into algorithm’s consideration. As [129] argues the greater the
distance is, the less related activities appear in the set. Thereby, the preci-
sion decrease is expected. The recall value varies between 0.10 and 0.41, but
behaves differently, see Fig. 5.6(b). First, we observe that the higher cover0
threshold value leads to a lower recall. As a high cover0 value signifies a strict
selection of activity aggregations, the probability that a relevant aggregation is

5.3 Evaluation 95

0

0.2

0.4

0.6

0.8

1

Precision

0
1 2 3 4 Node distance

cover threshold 0.3 cover threshold 0.2

(a) Variation of activity aggregation precision with respect to the selected node distance

0

0.2

0.4

0.6

0.8

1

Recall

0
1 2 3 4 Node distance

cover threshold 0.3 cover threshold 0.2

(b) Variation of activity aggregation recall with respect to the selected node distance

0

0.2

0.4

0.6

0.8

1

F-score

0
1 2 3 4 Node distance

cover threshold 0.3 cover threshold 0.2

(c) Variation of activity aggregation F-score with respect to the selected node distance

Fig. 5.6. Precision, recall, and F-score observed within the evaluation of meronymy-
based activity aggregation.

96 5 Discovery of Related Activities in Process Models

retrieved gets low. Meanwhile, the recall grows and reaches its local maximum
at the value of node distance of 3. We explain this phenomenon as follows:
until the node distance value reaches the value of 3, the number of retrieved
aggregations increases, along with the number of relevant aggregations. How-
ever, at the value of 4 the overall number of aggregations increases while the
share of relevant aggregations decreases. Finally, the F-score is presented in
Fig. 5.6(c). The F-score varies between 0.17 and 0.33 and summarizes the
co-evolution of recall and precision.

While the technique returns a considerable amount of helpful suggestions,
there is still quite a number of irrelevant aggregations proposed. Hence, we
aim to improve the technique precision. Further, the conducted experiment
evaluated both aggregation mining algorithm and match function. Since the
process models and the used ontology were not aligned beforehand, there is
also a contribution to a gap in precision by the match technique. To study the
behavior of aggregation mining algorithm further, we need a setting, where
process models are created using activities from a domain ontology. We per-
ceive such an evaluation as the future work.

5.3.3 Activity Aggregation based on Cluster Analysis

Section 5.2 has demonstrated how cluster analysis enables activity aggrega-
tion. However, the practical utility of the proposed solutions has not been
estimated. This section evaluates the usefulness of the designed activity ag-
gregation based on K-means clustering. We perform an empirical evaluation of
the approach by conducting an experiment with a real world business process
model collection. This section describes the evaluation experiment setting,
and presents the observed results.

Experiment Setting

We evaluate the activity aggregation based on cluster analysis by means
of a set of business process models from a large telecommunication service
provider. This organization is currently in the process of setting up a repos-
itory with high-quality process models, which are brought together for the
purpose of consultation and re-use by business users. The model set includes
48 elaborate models, enriched with activity properties of the following two
types roles and data objects. Notice that the models used for evaluation in the
previous could not boast such an elaborate modeling approach. In addition
to these non-control flow types of information, we also study the impact that
activity labels have on the decision to aggregate activities into the same sub-
process. To compare activities with respect to their labels, the corresponding
vector space is formed by the words that appear in the labels. Against this
background, finding the distance between activities becomes an information
retrieval task as labels can be treated as documents in information retrieval.
Table 5.1 outlines the relevant properties of the process models. In the model

5.3 Evaluation 97

Nodes Activities Role Data object

Average 15.5 6.3 0.76 0.76
Minimum 5 1 0 0
Maximum 48 20 2 17

Table 5.1. Properties of business process models used in the evaluation.

set we have identified 28 models where activities are refined by a subprocess.
Within the experiment we consider each subprocess as a relevant activity
aggregation.

Observed Results

Within the evaluation we have varied two parameters: the distance value and
the vector space type. The distance value varies between 0 and 1 with the step
of 0.2. As the vector space types we have explored homogeneous spaces with
types Role, Label, and Data object, as well as the heterogeneous vector space.
The obtained precision, recall, and F-score values are plotted in Fig. 5.7. The
precision value varies between 0.00 and 0.34, the recall is between 0.00 and
0.86, and the F-score varies from 0.00 to 0.40. First, we notice that the values
moderately depend on the distance value. However, the graphs vividly illus-
trate the large difference in the performance of clustering in heterogeneous
vector space and homogeneous vector space with type role on the one hand,
and the homogeneous vector spaces with types label and data object on the
other hand. In particular, the recall of aggregation according to the heteroge-
neous space stands out: it lies between 0.64 and 0.86. Meanwhile, the recall
value in a data object vector space is 0. Finally, we mention that the activity
aggregation based on clustering demonstrates a significant difference between
the precision and recall values, where recall excels precision.

Another look at the obtained results show the advantages of heterogeneous
vector space and a homogeneous space of type “Role”. We attribute this
phenomenon to two facts. First, the model designers consider information
about roles when they identify subprocesses. Second, a high performance of the
heterogeneous vector space can be explained by the fact that it encapsulates
information about roles.

5.3.4 Key Observations

To summarize the evaluation of the activity aggregation we conclude with
several key observations:

Recall vs. precision First, we compare the obtained recall and precision values.
In the case of meronymy-based activity aggregation we see there is a
tendency that the precision exceeds the recall. In contrast, for activity

98 5 Discovery of Related Activities in Process Models

0

0.2

0.4

0.6

0.8

1

Precision

0
0 0.2 0.4 0.6 0.8 1 Distance

Heterogeneous Role Data object Label

(a) Variation of activity aggregation precision with respect to the distance

0 0

0.2

0.4

0.6

0.8

1.0

Recall

0.0
0 0.2 0.4 0.6 0.8 1 Distance

Heterogeneous Role Data object Label

(b) Variation of activity aggregation recall with respect to the distance

0 0

0.2

0.4

0.6

0.8

1.0

F-score

0.0
0 0.2 0.4 0.6 0.8 1 Distance

Heterogeneous Role Data object Label

(c) Variation of activity aggregation F-score with respect to the distance

Fig. 5.7. Precision, recall, and F-score observed within the evaluation of activity
aggregation based on cluster analysis.

5.4 Discussion 99

aggregation based on clustering we notice that the recall dominates the
precision.

F-score We continue contrasting the F-score of the two activity aggregation
methods. The F-score of meronymy-based activity aggregation is incon-
sistent: it varies between 0.17 and 0.34. At the same time, activity aggre-
gation based on clustering exhibits high consistency: its F-score fluctuates
around the value of 0.40. We conclude that with respect to the F-score
values there is a slight advantage of the clustering method.

Possible applications The two activity aggregation methods can be differen-
tiated with respect to their precision and recall. If the application con-
text implies that the recall is more significant, activity aggregation based
on clustering is preferable. If the application requires high precision,
meronymy-based aggregation outperforms aggregation based on cluster-
ing. Finally, the obtained precision, recall, and F-score values witness that
the developed aggregation methods can be barely used in a fully automatic
fashion. Against this background, we propose to use the methods to sup-
port the user with suggestions on activity aggregations.

5.4 Discussion

This chapter addressed the challenge of finding groups of related activities
in process models. The two developed methods for activity aggregation are
independent of the control flow information. Against this background, both
methods expect information-rich business process models as the input. No-
tice that this implies elaborate business process modeling. However, both de-
signed activity aggregation methods are free of the limitations inherent to
abstraction methods based on the process model structure. For instance, the
meronymy-based activity aggregation explicitly enables non-hierarchical ac-
tivity aggregation. The advocated activity clustering approach results in a
hierarchical activity aggregation. Indeed, as k-means clustering partitions the
observation into k clusters, the activity aggregation that builds on clustering
approach partitions the activity set of an initial process model. Hence, no
activity of the initial model PM is assigned to several clusters corresponding
to coarse-grained activities of PMa. However, as cluster analysis exhibits nu-
merous algorithms, non-hierarchical aggregation can be realized as well. One
possible direction is fuzzy clustering, where fuzzy c-means algorithm, see [25]
can be seen as an analogue of K-means clustering.

Both presented activity aggregation methods equip the user with efficient
means to control the abstraction. Meronymy-based aggregation can be used
to provide the user with suggestions on which activity groups can be ag-
gregated [143]. Potentially, the system can also recommend the name of an
aggregating activity derived from the ontology. Activity aggregation based on
k-means clustering provides the user a direct control over of the abstraction

100 5 Discovery of Related Activities in Process Models

level in a process model: specifying the value of k the user changes the number
of process model activities.

The practical applicability of both methods depends on their running time.
In general case the k-means clustering problem is NP-hard. However, various
heuristics allow to devise an efficient solution. Similarly, the meronymy-based
aggregation explores the power set of a model activity set. However, we sug-
gested heuristics that decrease the state space.

5.5 Summary

This chapter has engineered two methods for activity aggregation. In contrast
to the existing abstraction approaches, both methods focus on the business
meaning of the aggregated activities and aim to deliver activity groups that
have a self-contained business semantics. In this way each obtained activ-
ity group can be related to a coarse-grained activity of the abstract process
model. Since control flow information does not suffice for meaningful activity
aggregation, both methods study additional information. The first method
considers domain ontologies enriched with activity meronymy relation, while
the second method analyzes non-control flow model elements, like roles and
data objects. Within the framework of meronymy-based activity aggregation
we have proposed a novel metric enabling activity set comparison and an
algorithm for selecting strongly related activity sets. The analysis of process
model non-control flow elements adapts the well-established algorithm of clus-
ter analysis and the model of information retrieval. We have supported the
conceptual discussion by an empirical evidence witnessing that the designed
aggregation approaches are applicable in a real world setting. Finally, we have
compared the properties of the developed aggregation methods relevant in an
application context. As soon as the developed activity aggregation methods
take into account the semantics of model elements, the chapter addresses the
why of abstraction. In addition, the methods suggest ways to aggregate activ-
ities contributing to the how aspect.

The focus of this chapter is on methods increasing the coarse-granularity of
process model activities. Hence, the proposed solutions allow to synthesize the
set of activities for the abstract process model PMa. However, PMa lacks the
control flow relation. To complete business process model abstraction, we lack
a method for the discovery of the ordering constraints in PMa. The upcoming
Chapter 6 advocates an advanced method for identification of ordering con-
straints in the abstract process model that complements the findings of this
chapter.

6

Controlling Control Flow Loss

The desired effect of business process model abstraction is information loss [30,
120, 151]. Each abstraction use case has an implication on the kind of infor-
mation allowed to be lost. Following the user demand, see Section 3.4, we
concentrate on the abstraction use cases in the group “Group 4: Obtaining a
Process Quick View”. These use cases motivate two types of information loss.
First, they require process models with more coarse-grained activities, i.e., the
details about activities are lost. Second, the use cases demand models with
the overall ordering constraints between activities, i.e., the precise ordering
constraints of the initial model are to be “generalized”. The former type of
information loss has been addressed by Chapter 4 and Chapter 5: the chapters
argued how to arrive at coarse-grained activities by means of aggregation. The
latter type of information loss has been discussed in Chapter 4. However, the
solution relied on the strong assumptions. This chapter revises the problem of
abstracting the process ordering constraints and proposes a novel solution. In
this way the chapter concentrates on the how aspect of abstraction (for details
see the framework introduced in Section 3.2). This introduction revises the
abstraction problem, argues about the drawbacks of the methods in place,
and sketches the contribution of this chapter.

We revisit the problem describing it is a black box with inputs and out-
puts and specifying the desired properties of the transformation. Naturally,
the problem input is the process model to be abstracted. In addition, we
know methods telling which activities belong together within the abstracted
model, see Chapters 4–5. Hence, groups of related activities become the sec-
ond component of the input. The origin of these groups is out of scope of this
chapter. They can be manually created by the user, discovered according to
the meronymy-based activity aggregation, see Section 5.1, or obtained through
activity clustering, see Section 5.2. The abstraction output is a process model
with coarse-grained activities and their ordering constraints. Fig. 6.2 visualizes
the problem’s inputs and outputs.

Following the idea of the abstraction use cases, every coarse-grained ac-
tivity in the output model corresponds to a group of detailed activities in

102 6 Controlling Control Flow Loss

R
e

c
e

iv
e

d
a

ta

P
re

p
a

re
 d

a
ta

 f
o

r

fu
ll

a
n

a
ly

s
is

P
e

rf
o

rm
 f
u

ll

d
a

ta
 a

n
a

ly
s
is

P
e

rf
o

rm

s
im

u
la

ti
o

n
G

e
n

e
ra

te

fo
re

c
a

s
t
re

p
o

rt

P
e

rf
o

rm
 q

u
ic

k

d
a

ta
 a

n
a

ly
s
is

C
o

n
s
o

lid
a

te

re
s
u

lt
s

P
re

p
a

re
 d

a
ta

 f
o

r

q
u

ic
k
 a

n
a

ly
s
is

a
b

s
tr

a
c
t
m

o
d

e
l,
 P

M
a

in
it
ia

l
m

o
d

e
l,
 P

M

R
e

c
e

iv
e

 r
e

q
u

e
s
t

v
ia

 e
m

a
il

R
e

c
o

rd

re
q

u
e

s
t

R
e

q
u

e
s
t
d

a
ta

g
a

th
e

ri
n

g

P
e

rf
o

rm
 f
u

ll

a
n

a
ly

s
is

P
e

rf
o

rm
 q

u
ic

k

a
n

a
ly

s
is

H
a

n
d

le

d
a

ta

R
e

c
e

iv
e

 f
o

re
c
a

s
t

re
q

u
e

s
t

Is
s
u

e
 r

e
p

o
rt

g
3

g
4

g
5

g
1

 g
2

S
e

n
d

re
p

o
rt

A
rc

h
iv

e

d
a

ta

?
?

?

Fig. 6.1. Two descriptions of the “Forecast request handling” business process.
Model PM describes the process in detail. Partial model PMa defines coarse-grained
activities, but lacks the control flow. Each activity of PMa is refined by an activity
group in PM. Notice that the activity refinement is not hierarchical.

6 Controlling Control Flow Loss 103

Abstraction

Initial model

Activitiy groups

Abstract model

Fig. 6.2. Abstraction as a block box.

the input model. Unfortunately, the related research, e.g., [32, 55, 94, 123],
as well as Chapter 4, puts strong assumptions on such activity groups. The
first assumption is that abstraction is hierarchical: every activity of the input
model is assigned to exactly one activity group, see Section 3.3.1. The second
assumption is that related activities always belong to one process model frag-
ment. Two observations motivate us to discard both of these assumptions.
On the one hand, the interviews with practitioners indicate that these as-
sumptions are too strong in practice, see Section 3.4. Upon the other hand,
the research on software engineering, as well as on business process mod-
eling, [60, 82, 110, 157] motivates the demand for abstraction free of these
limitations.

The example in Fig. 6.1 motivates why the two aforementioned assump-
tions are too restrictive. The figure presents two descriptions of the business
process “Forecast request handling”. Model PM specifies fine-grained activi-
ties and the control flow relation. Specification PMa strictly speaking is not
a model: it contains coarse-grained activities, but no ordering constraints.
Fig. 6.1 also visualizes the activity groups in PM and relates them to activi-
ties in PMa. We notice that activity groups of PM make sense from a business
perspective, yet go beyond the borders of both limitations. For instance, ac-
tivity Prepare data for quick analysis belongs to groups g2 and g3, i.e., the
abstraction is not hierarchical. The group g1 contains activities Receive request
via email and Record request split by activity Request data gathering, i.e., one
activity group does not constitute a process model fragment. Fig. 6.1 once
more illustrates the abstraction setting. While precise process ordering con-
straints and coarse-grained activities are known, the control flow relation of
the abstract model is missing. This is reflected by the partial model PMa that
lacks the control flow. To the best of our knowledge, none of the existing
abstraction methods allows to derive the ordering constraints between the
activities of PMa given the specified activity grouping.

The contribution of this chapter is a business process model abstraction
overcoming the aforementioned limitations and capable of delivering the ab-
stract model control flow relation in the described setting. The abstraction in
question allows such activity groups that:

Property 1 one activity belongs to several activity groups
Property 2 activity groups are distributed over the process model in an arbi-

trary fashion.

Inspecting the existing abstraction methods we admit that they directly study
process model structure, i.e., the model control flow relation. Since all these

104 6 Controlling Control Flow Loss

methods suffer from the discussed limitations, we conclude that the control
flow relation is too strict to support an abstraction, where Properties 1 and
2 hold. Thereby, we develop an alternative abstraction approach leveraging a
process behavioral abstraction—behavioral profiles, see Section 2.3.3. Behav-
ioral profiles describe the process ordering constraints, yet in a less detailed
way than the process model control flow relation. The use of behavioral profiles
helps us to deliver an abstraction featuring Properties 1 and 2. The proposed
method contains the following four steps:

Step 1 derive the behavioral profile BPPM for model PM
Step 2 construct the behavioral profile BPPMa for model PMa

Step 3 if the behavioral profile BPPMa is well-structured
Step 4 then synthesize PMa, else report a not well-structuredness.

The chapter not only provides a conceptual discussion of the abstraction ap-
proach, but also its implementation. We briefly outline Flexab—the tool
enabling business process model abstraction based on behavioral profiles.

The structure of this chapter aligns to a large extend with the above
mentioned steps. Section 6.1 argues how to construct a behavioral profile
for a process model. Section 6.2 shows how an abstract model behavioral
profile is derived, while Section 6.3 elaborates on abstract model synthesis.
The software implementation of the approach is presented in Section 6.4.
Section 6.5 discusses the practical and theoretical properties of the proposed
solution. Finally, Section 6.6 summarizes the chapter.

6.1 Deriving Behavioral Relations from a Process Model

There exist several methods for construction of a behavioral profile describing
the process behavior. Each of these methods implies a system description by
means of a Petri net. A generic approach enabling behavioral profile derivation
for a Petri net relies on the computation of a net unfolding [57, 99], which
is NP-complete [161]. An efficient algorithm has been proposed for the class
of sound free-choice WF-nets [162]. The algorithm deduces the behavioral
profile relations from the WF-net structure. It enables the derivation of the
behavioral profile in O(n3) time with n being the number of nodes of the WF-
net. In this thesis we operate with process models that can be mapped to sound
free-choice WF-nets. Hence, we are able to reuse techniques for the derivation
of behavioral profiles introduced for this model class. Leveraging a behavioral
profile construction method introduced in [162] we derive a behavioral profile
for model PM in Fig. 6.1, see Table 6.1. For the sake of compact representation
we abbreviate the names of activities using the first letters of each word in
the label, e.g., Perform full data analysis is acronymed to PFDA.

6.2 Construction of Abstract Model Behavioral Profile 105

RE RDG RR RD AD PDFA PFDA PS CR PDQA PQDA GFR SR

RE +PM PM PM PM PM PM PM PM PM PM PM PM PM

RDG +PM PM PM PM PM PM PM PM PM PM PM PM

RR +PM PM PM PM PM PM PM PM PM PM PM

RD +PM PM PM PM PM PM PM PM PM PM

AD +PM PM PM PM PM PM PM PM PM

PDFA +PM PM PM PM +PM +PM PM PM

PFDA +PM ||PM PM +PM +PM PM PM

PS +PM PM +PM +PM PM PM

CR +PM +PM +PM PM PM

PDQA +PM PM PM PM

PQDA +PM PM PM

GFR +PM PM

SR +PM

Table 6.1. The behavioral profile of model PM in Fig. 6.1.

6.2 Construction of Abstract Model Behavioral Profile

Every high-level activity in PMa = (Aa, Ga, Fa, ta, sa, ea) is the result of
aggregation of several activities in PM = (A,G,F, t, s, e). We formalize the
construction of coarse-grained activities by the function aggregate, see Def-
inition 3.11. The function aggregate can be illustrated by the example in
Fig. 6.1, where aggregate(Perform quick analysis) = {Prepare data for quick
analysis, Perform quick data analysis} and aggregate(Handle data)={Collect
data, Archive data, Prepare data for full analysis, Prepare data for quick anal-
ysis}. The behavioral profile of model PMa defines the relations between each
pair of activities in PMa. To discover the behavioral profile for PMa we analyze
the relations among activities in PM and consider the function aggregate. For
each pair of coarse-grained activities x, y, where x, y ∈ Aa, we study the rela-
tions between a and b, where (a, b) ∈ aggregate(x)×aggregate(y). This study
reveals a dominating behavioral relation between elements of aggregate(x)

106 6 Controlling Control Flow Loss

Algorithm 4 Derivation of a behavioral relation for an activity pair

1: deriveBehavioralRelation(Activity x, Activity y, Double wt)
2: w(x �PMa y) = |{∀(a, b) ∈ aggregate(x)× aggregate(y) : a PM b ∨ a||PMb}|
3: w(y �PMa x) = |{∀(a, b) ∈ aggregate(x)× aggregate(y) : a −1

PM b ∨ a||PMb}|
4: w(x 6�PMa y) = |{∀(a, b) ∈ aggregate(x)× aggregate(y) : a −1

PM b ∨ a+PM b}|
5: w(y 6�PMa x) = |{∀(a, b) ∈ aggregate(x)× aggregate(y) : a PM b ∨ a+PM b}|
6: wprod = |aggregate(x)| · |aggregate(y)|
7: w(x+PMa y) =

min(w(x 6�PMay),w(y 6�PMax))

wprod

8: w(x PMa y) =
min(w(x�PMay),w(y 6�PMax))

wprod

9: w(x −1
PMa

y) =
min(w(y�PMax),w(x 6�PMay))

wprod

10: w(x||PMay) =
min(w(x�PMay),w(y�PMax))

wprod

11: if w(x+PMa y) ≥ wt then
12: return x+PMa y
13: if w(x PMa y) ≥ wt then
14: if w(x −1

PMa
y) > w(x PMa y) then

15: return x −1
PMa

y
16: else
17: return x PMa y
18: if w(x −1

PMa
y) ≥ wt then

19: return x −1
PMa

y
20: return x||PMay

and aggregate(y). We assume that the behavioral relations between activity
pairs of PMa can be discovered independently from each other, i.e., the re-
lation between x and y, where x, y ∈ Aa depends on the relations between
activities in aggregate(x) and aggregate(y), but does not depend on the re-
lations between aggregate(x) and aggregate(z),∀z ∈ Aa, where z 6= x and
z 6= y.

Algorithm 4 formalizes the derivation of behavioral relations. The input of
the algorithm is a pair of activities, x and y, and wt—the user-specified thresh-
old telling significant relation weights from the rest and, hence, managing the
ordering constraints loss. The output of the algorithm is the behavioral pro-
file relation between x and y. Algorithm 4 derives behavioral profile relations
between x and y from the frequencies of relations between activities a and
b, where (a, b) ∈ aggregate(x) × aggregate(y). According to Definition 2.23,
each of the behavioral profile relations is specified by the corresponding weak
order relations. Thereby, to conclude about the behavioral profile relation be-
tween x and y, we first evaluate the frequencies of weak order relations for
x and y. The latter are found in the assumption that each weak order rela-
tion holding for (a, b) ∈ aggregate(x)×aggregate(y), contributes to the weak
order relation between x and y. This rationale helps to find the weight for
each weak order relation between x and y (lines 2–5). The overall number of
relations is stored in variable wprod (line 6). Algorithm 4 continues finding the

6.2 Construction of Abstract Model Behavioral Profile 107

RFR HD PFA PQA IR

RFR +PMa PMa PMa PMa PMa

HD +PMa PMa PMa PMa

PFA +PMa +PMa PMa

PQA +PMa PMa

IR +PMa

Table 6.2. The behavioral profile of PMa constructed given model PM and function
aggregate as informally defined in Fig. 6.1. The used weight threshold is wt = 0.5.

relative weight for each behavioral profile relation (lines 7–10). The relative
weights of behavioral relations together with the relation hierarchy are used
to choose the dominating relation (lines 11–20). The behavioral relations are
ranked according to their relative weights. Threshold wt selects significant
relations, omitting those for which the relative weights are less than wt. Fi-
nally, the relation hierarchy allows us to choose the strictest relation among
the significant ones. The input parameter wt implements the slider concept:
using wt a user expresses the preferred ordering constraint loss level to obtain
the respective behavioral relations for model PMa.

To illustrate Algorithm 4 we refer to the example in Fig. 6.1 and derive the
behavioral relations between activities of model PMa. As before, we acronym
the names of activities. Assuming the threshold wt = 0.5, abstraction results
in a behavioral profile presented in Table 6.2. As relations of the behavioral
profile are derived independently, we illustrate the construction of the behav-
ioral profile in Table 6.2 looking at one activity pair. We elaborate on the
derivation of a behavioral relation for activities Handle data (HD) and Per-
form quick analysis (PQA). Following Algorithm 4, w(HD�PMa

PQA) = 6,
w(PQA�PMa

HD) = 0, w(HD 6�PMa
PQA) = 4, w(PQA 6�PMa

HD) = 10,
and wprod = 10. Then, w(HD+PMaPQA) = 0.4, w(HD PMaPQA) = 0.6,
w(HD −1PMa

PQA) = 0, and w(HD ||PMaPQA) = 0. The constellation of be-
havioral relation weights is shown in Fig. 6.3. Each relation weight wr defines
a segment [0, wr], where the respective behavioral relation r is valid. If the
maximum weight of the relations wmax is less than 1, we claim that the inter-
leaving order relation is valid in segment [wmax, 1] (it provides most freedom in
execution of two activities). While the resulting segments overlap, the relation
hierarchy defines the dominating relation in a particular point of [0, 1]. For
w(HD PMa

PQA) ≥ 0.5 we state Handle data PMa
Perform quick analysis

according to the behavioral relation hierarchy.

108 6 Controlling Control Flow Loss

0
10 + ||

0.5

→

w(x→y)w(x+y)

w(x||y)

w(x→
-1
y)

Fig. 6.3. Discovery of a behavioral relation for an activity pair HD and PQA of
model PMa Fig. 6.1. The weights of behavioral relations are evaluated according to
the Algorithm 4, assuming wt = 0.5.

The Algorithm 4 terminates: it iterates over finite sets aggregate(x) and
aggregate(y) and then compares the discovered relations. Given a pair of
activities x and y in the abstract model PMa, the time complexity of the
Algorithm 4 is O(k · l), where k = |aggregate(x)| and l = |aggregate(y)|. To
construct the behavioral profile of model PMa we need to derive the behavioral
relations for each pair of activities in PMa. Thereby, we need to investigate
|Aa|2

2 relations.

6.3 Abstract Process Model Synthesis

The creation of the behavioral profile as introduced in Section 6.2 might yield
a profile for which we cannot generate a process model. We use the notion of
a well-structured behavioral profile to distinguish a class of behavioral profiles
for which we construct a process model. This section introduces the notion of
a well-structured behavioral profile before we target process model synthesis.

6.3.1 Well-Structured Behavioral Profiles

The notion of a well-structured behavioral profile is coupled with the exis-
tence of a process model that satisfies the profile constraints. Whether such
a process model exists depends on the applied notion of a process model and

a

b

c

b

c

a

(a) The fragment fulfills the con-
straints a b, b c, and c a at
the expense of activity duplication.

a b c

(b) The fragment contains exactly one
occurrence of a, b, and c. While the frag-
ment complies with a b and b c, it
violates c a.

Fig. 6.4. Process model fragments restricting the execution of a, b, and c.

6.3 Abstract Process Model Synthesis 109

b

d

c

e

f

a g

(a) Model PM1 is not well-structured.

b

c

d

e

a f

(b) Model PM2 is not well-structured.

b

c

d

e

a f

(c) Model PM3 is well-structured.

Fig. 6.5. The process models PM1 and PM2 are not well-structured. While the
process model PM1 cannot be structured according to [117], PM2 can be structured,
resulting the behavior equivalent model PM3.

its structural and behavioral characteristics. For instance, the strict order re-
lation may define a cyclic dependency between three activities a, b, and c:
a b, b c, and c a. The process model fragment in Fig. 6.4(a) satisfies
these behavioral constraints at the expense of activity duplication. The result
is clearly inappropriate against the background of our use case: an abstract
model should provide a concise and compact view on the process. For our no-
tion of a process model, the aforementioned behavioral constraints cannot be
satisfied as exemplified by the model in Fig. 6.4(b), where c a is violated.

For the model synthesis, we focus on well-structured process models. Notice
that our notion of a process model implies that models can be mapped to
sound free-choice WF-nets. While soundness means the absence of behavioral
anomalies, well-structuredeness refers to model topology. In a well-structured
process model every split gateway has a corresponding join gateway, whereas
both gateways bound a process model fragment with one entry node and
one exit node [81]. The class of well-structured process models is of high
practical importance. On the one hand, such models are easy to understand
for humans [89]. On the other hand, well-structured process models can be
efficiently handled by various analysis techniques, e.g., the computation of
temporal constraints [37]. The class of well-structured process models can be
defined by means of process model decomposition, the rPST, discussed in
Section 2.3.2.

Definition 6.1 (Well-Structured Process Model).
Let PM = (A,G,F, t, s, e) be a process model. The model PM is well-
structured, iff the set of canonical components of the rPST of PM contains no
rigid component.

Fig. 6.5 exemplifies well-structured process models. Models PM1 and PM2 are
not well-structured, as both contain rigids, while PM3 is well-structured. Re-

110 6 Controlling Control Flow Loss

cently, [117, 118] developed an algorithm enabling process model structuring—
construction of behaviorally equivalent well-structured process models for not
well-structured process models. The behavioral equivalence is understood in
terms of fully concurrent bisimulation [24]. However, not every process model
can be structured. For instance, the algorithm of [117, 118] delivers no well-
structured process model that is behavior equivalent to PM1. However, the
algorithm structures model PM2 delivering PM3.

We design the synthesis of a well-structured process model following the
structuring algorithm introduced by [117, 118]. The structuring bases on the
relations induced by a complete prefix unfolding and guarantees the preser-
vation of a rather strong behavior equivalence. In the following we show how
the model synthesis defined for these relations is adapted to the behavioral
profile relations.

To decide whether a well-structured process model can be constructed
for a behavioral profile, we use the notion of an order relations graph. [117]
introduced an order relations graph capturing the order relations of a complete
prefix unfolding. We construct an order relations graph for the behavioral
profile relations.

Definition 6.2 (Order Relations Graph). Let BP = { ,+, ||} be a be-
havioral profile over a finite set of activities ABP. A tuple G = (V,E) is an
order relations graph of BP such that:

• V = ABP, i.e., the nodes are activities within ABP

• E = ∪ + \ idABP
, i.e., the edges correspond to the strict order relation

and exclusiveness relation without self-relation of activities.

Edges in the order relations graph denote strict order and exclusiveness rela-
tions. We assume the strict order relation to be asymmetric and the exclusive-
ness relation to be symmetric. Thereafter, the strict order and exclusiveness
relations are denoted in the graph as unidirectional or bidirectional edges, re-
spectively. Fig. 6.6 shows the order relations graphs for the behavioral profiles
of the models depicted in Fig. 6.5. As models PM2 and PM3 have equivalent
behavior, they share one order relations graphs. That is due to the fact that
the notion of equivalence assumed for structuring, fully concurrent bisimula-
tion, is much stronger than behavioral profile equivalence, see [162].

The topology of a well-structured process model relates to the order re-
lations graph structure. According to Definition 6.1 all the canonical compo-
nents of the rPST of a well-structured process model are of types trivial, poly-
gon, or bond. Such components are represented in the order relations graph by
node subsets that have uniform relations with all the remaining graph nodes.
We refer to such node subsets as modules. Definition 6.3 formalizes the notion
of a module and module types following [117].

Definition 6.3 (Module).
Let G = (V,E) be an order relations graph.

6.3 Abstract Process Model Synthesis 111

b

d

c

e

a

f

g

(a) The order relations graph for
process model PM1.

b

c

d

e

a

f

(b) The order relations graph for
process models PM2 and PM3.

Fig. 6.6. The order relations graphs of the models in Fig. 6.5.

– A module M ⊆ V is a non-empty set of nodes that have uniform relations
with nodes in V \M , i. e., ∀ x, y ∈ M, z ∈ (V \M) it holds (x, z) ∈ E ⇔
(y, z) ∈ E and (z, x) ∈ E ⇔ (z, y) ∈ E.

– Two modules M,M ′ ⊆ V overlap, iff they intersect and neither is a subset
of the other.

– A module M ⊆ V is strong, iff there is no module M ′ ⊆ V , such that M
and M ′ overlap.

– The empty set of nodes ∅, V , and the node sets of the from {v},∀v ∈ V are
trivial modules.

– A non-trivial module M ⊆ V is complete, iff M induces the subgraph of
G that is either complete or edgeless. If the subgraph is complete, we say
that M is XOR-complete. If the subgraph is edgeless, we say that M is
AND-complete.

– A non-trivial module M ⊆ V is linear, iff there exists a linear order
(v1, . . . , v|M |) of elements of M , such that (vi, vj) ∈ E and (vj , vi) /∈ E
for i, j ∈ N, 1 ≤ i, j ≤ |M | and i < j.

– A non-trivial module M ⊆ V is primitive, iff it is neither complete nor
linear.

To discover modules we leverage the modular decomposition [97]. Modular
decomposition of a graph results in a unique arborescence of maximal non-
overlapping modules.

Definition 6.4 (Modular Decomposition).
Let G = (V,E) be an order relations graph. The modular decomposition tree
is a tuple MDTG = (Ω, ξ), such that Ω is a set of all strong modules and
ξ : Ω → P(Ω) is a function that assigns child modules to modules with
∀ ω, γ ∈ Ω [(ξ(ω) ∩ ξ(γ) 6= ∅)⇒ ω = γ].

Fig. 6.7 exemplifies the modular decomposition for the order relations graph
in Fig. 6.6. The order relations graph is stepwise decomposed into a hier-
archy of strong modules. Two sets of nodes, {b, c} and {d, e}, are identified
as strong modules that have equal relations to all other nodes in the graph.
Both modules constitute together another module, as the former modules are
of equal relations to the nodes a and f . Finally, we return to the illustrative

112 6 Controlling Control Flow Loss

b

c

d

e

a

f

(a) Order relations
graph.

b

c

d

e

a

f

C1

C2

(b) Complete modules C1

and C2 are discovered.

b

c

d

e

a

f

C1

C2
L

(c) Nodes a and f with
modules C1 and C2 consti-
tute a linear module L.

Fig. 6.7. The step-wise modular decomposition of the order relations graph in
Fig. 6.6(b). In the initial order relations graph node sets {b, c} and {d, e} are dis-
covered as strong modules. Module C1 is XOR-complete, while C2 is AND-complete.
Nodes a and f with modules C1 and C2 constitute linear module L.

example. Fig. 6.8 shows the order relations graph and its decomposition for
the behavioral profile in Table 6.2.

The modular decomposition of an order relations graph characterizes be-
havioral profiles for which we construct a well-structured process model. That
is, we check for the absence of a primitive module in the modular decom-
position. Note that we implicitly assume that the relational properties of a
behavioral profile are satisfied.

Definition 6.5 (Well-Structured Behavioral Profile).
Let BP = { ,+, ||} be a behavioral profile over a finite set of transitions
ABP and G—the order relations graph of BP. The behavioral profile BP is
well-structured, iff the modular decomposition tree of G, MDTG, contains no
primitive module.

In the example with the three activities a, b, and c, where a b, b c, and
c a the profile is not well-structured. The modular decomposition of the
respective order relations graph comprises a primitive module covering the
three activities. Fig. 6.6 visualizes the order relations graphs for the process
models in Fig. 6.5. The graph in 6.6(a) does not represent a well-structured

HD

PFAPQA

IR

RFR

(a) The order relations graph for
the behavioral profile in Table 6.2.

HD

PFAPQA

IR

RFR

C
L

(b) Decomposition of the order rela-
tions graph.

Fig. 6.8. The order relations graphs for the behavioral profile in Table 6.2 and its
modular decomposition.

6.3 Abstract Process Model Synthesis 113

behavioral profile since the modular decomposition tree contains a primitive
module. The modular decomposition of the graph in Fig. 6.6(b) is shown in
Fig. 6.7. As the modular decomposition contains no primitive module, graph in
Fig. 6.6(b) represents a well-structured behavioral profile. We conclude that 1)
model PM1 in Fig. 6.5 has a non-well-structured behavioral profile, and 2) the
behavioral profile of models PM2 and PM3 is well-structured. Returning to the
running example, we consider Fig. 6.8. Fig. 6.8(a) shows the relations graph
corresponding to the behavioral profile of the abstract process model. The
modular decomposition of this order relations graph is presented in Fig. 6.8(b).
The decomposition has two modules: the complete module C and the linear
module L.

We use the existing methods for graph modular decomposition to decide
if a behavioral profile is well-structured. Verification of a behavioral profile
well-structuredeness can be done in linear time. According to Definition 6.5,
we create the modular decomposition tree of the order relations graph of
the validated behavioral profile. The modular decomposition tree can be con-
structed in linear time [97]. The number of strong modules in the modular
decomposition tree is linear to the size of the graph [97].

Finally, we show that well-structuredness of a behavioral profile is a neces-
sary condition for the existence of a well-structured process model exhibiting
this profile.

Lemma 6.6. The behavioral profile of a sound well-structured process model
is well-structured.

Proof. Let RPSTPM = (Ω, r, χ) be the rPST of a sound process model PM =
(A,G,F, t, s, e). According to our notion of a process model each activity is a
boundary node of at most two trivial components of RPSTPM. Let α, β ∈ Ω
be two trivial components for which the fragment entries are two distinct
activities a, b ∈ A, a 6= b. Since PM is well-structured, RPSTPM does not
contain any rigid component. According to the Proposition 4.1 in [163], the
profile relation for a pair of transitions in a sound free-choice WF-net with
no rigids can be deduced from 1) the type of the lowest common ancestor
(LCA), see Section 2.1, component of the respective rPST, γ = lca(α, β), and
2) the existence of a loop fragment on the path from the root of the tree to
the LCA component γ. As we consider process models that can be mapped
to sound free-choice WF-nets, we apply this observation to our notion of a
process model. If the trivial components α, β ∈ Ω related to two distinct
activities a, b ∈ A are part of a loop fragment, the corresponding module is
AND-complete. If they are not a part of the loop fragment, the type of the
LCA component, γ = lca(α, β), determines the type of the module.

For any fragment of the rPST, there is a module in the respective modu-
lar decomposition tree MDTG of the order relations graph G of the behavioral
profile. A polygon yields a linear module, an AND-gateway-bordered bond
component—an AND-complete module, a XOR-gateway-bordered acyclic

114 6 Controlling Control Flow Loss

Algorithm 5 Synthesis of a sound well-structured process model from a well-
structured behavioral profile

1: synthesizeModel(BP = { ,+, ||})
2: G = constructOrderRelationsGraph(BP)
3: MDT (Ω, ξ) = modularDecomposition(G)
4: for all ω ∈ Ω following on a postorder traversal using ξ do
5: if ω is trivial then
6: add activity to PM
7: if ω is AND-complete then
8: construct AND-bordered bond in PM
9: if ω is XOR-complete then

10: construct XOR-bordered acyclic bond in PM
11: if ω is linear then
12: construct trivial or polygon in PM
13: if PM misses start or end activity then
14: add start and/or end activity to PM
15: for all a ∈ APM such that a||a do
16: insert control flow cycle around a in PM
17: return PM

bond component—a XOR-complete module. Hence, MDTG does not contain
any primitive module and the behavioral profile is well-structured. ut

6.3.2 Synthesis of a Process Model from a Well-Structured
Behavioral Profile

Once well-structuredness of a behavioral profile is verified, we proceed with
the model synthesis. The synthesis algorithm iteratively constructs a model
from the modules identified by the modular decomposition. We largely rely
on the synthesis algorithm presented in [117, 118].

Algorithm 5 outlines the steps of the model synthesis. First, we construct
the order relations graph of the behavioral profile (line 1). Modular decom-
position discovers modules in the order relations graph (line 2). The algo-
rithm iterates over all the identified modules to construct the model skeleton
(lines 2–14). Trivial modules contribute only single activities to the model. A
complete module leads to the creation of an AND-gateway-bordered bond or
a XOR-gateway-bordered acyclic bond. Such a bond comprises all activities
or model fragments encapsulated by this complete module. A linear module
leads to the creation of a polygon connecting the respective activities or model

aa

Fig. 6.9. Insertion of a XOR-bordered cyclic bond for an activity with interleaving
order as a self-relation.

6.3 Abstract Process Model Synthesis 115

fragments. If the resulting model structure is gateway-bordered, it is normal-
ized to satisfy the structural requirements of the process model (lines 13–14).
For all activities that have interleaving order as their self-relation according
to the behavioral profile, we insert circuits into the created process model
structure (lines 15–26). Those comprise a XOR-gateway-bordered cyclic bond
and polygons. This transformation step is illustrated in Fig. 6.9. As the final
step, the algorithm returns the process model.

We prove the correctness of the Algorithm 5 as follows.

Proposition 6.7. Algorithm 5 terminates and after termination the sound
well-structured process model PM = (A,G,F, t, s, e) shows the behavioral
profile used as the algorithm’s input.

Proof. First, we show that the resulting model is indeed a sound well-
structured model. Second, we prove that the behavioral profile used as the
input coincides with the behavioral profile of the created model for the re-
spective activities.

Termination The set of activities of the behavioral profile is finite. Thus,
the order relations graph and the number of modules identified in the de-
composition are finite. Once we iterate over all activities and modules, the
algorithm terminates.

Result We first prove the correctness of syntax, then of semantics. Finally,
we consider the behavioral profile correctness.
Syntax The algorithm creates a process model PM = (A,G,F, t, s, e) by a

postorder traversal of the modular decomposition tree. Hence, for all nodes
there is a path from (to) the node that represents the entry (exit) of
the component created for the root module. If those nodes are gateways,
the algorithm adds a start and end activities. Hence, PM aligns with
the process model notion described in Definition 2.13. As the algorithm
constructs only trivial, polygon, and bond components (the trivial circuit
is a bond as well), model PM can be mapped to a free-choice WF-net.

Semantics As it follows from step Syntax the Algorithm 5 delivers a process
model that can be mapped to a WF-net. The model is constructed by
nesting trivial, polygon, and bond components. The constructed bond
fragments are acyclic, bordered by either AND- or XOR-gateways. The
construction of a trivial circuit inserts polygons and cyclic XOR-bordered
bonds. Trivial and polygon components do not cause unsoundness. Fur-
ther, Lemma 1 and Lemma 2 in [163] argue that place- and transition-
bordered bonds do not cause unsoundness. As XOR- and AND-gateway-
bordered bonds are mapped, respectively, to place- and transition-bordered
bonds the created model satisfies the soundness requirements. Thereafter,
the produced process model is sound.

Behavioral Profile The constructed process model PM = (A,G,F, t, s, e) is
well-structured and can be mapped to a sound WF-net. According to
Lemma 6.6, the behavioral profile of PM is well-structured. This behav-
ioral profile coincides with the behavioral profile used as the algorithm’s

116 6 Controlling Control Flow Loss

input. The latter follows from the types of the constructed fragments. Ne-
glecting the trivial circuits inserted at the end, the algorithm creates a
trivial, polygon, or bond component depending on the type of the mod-
ule, i.e., depending on the relations observed between the activities of the
module in the order relations graph. For two distinct activities a, b ∈ A,
a 6= b, this component is the LCA of the trivial components α, β ∈ Ω
for which the component entries are a and b, respectively. Neglecting the
trivial circuits, the type of the LCA component determines the profile rela-
tion, see Proposition 1 in [163]. A trivial circuit includes only one activity
causing the interleaving order as the self-relation for this activity. There-
fore, an insertion of trivial circuits has no impact on the relation between
two distinct activities. Trivial circuits are introduced only for activities
with interleaving order as the self-relation. Thus, the behavioral profile of
the constructed process model coincides with the behavioral profile used
as the algorithm input. ut

Corollary 6.8. Given a well-structured behavioral profile, the construction
of a process model exhibiting this behavioral profile can be solved in linear
time.

Proof. We represent the relations used in the process model synthesis as bi-
dimensional arrays that map to zero or one. Against this background, adding
an entry to a relation and checking a tuple membership is done in constant
time. The construction of order relations graph takes linear time to the size
of the behavioral profile. Further, the modular decomposition tree for order
relations graph is realized in linear time [97]. We proceed iterating the strong
modules in the modular decomposition tree. The number of strong modules is
linear to the graph size [97]. The construction of a respective model fragment
takes linear time to the behavioral profile size. Process model normalization
implies the check for the start and end activities. This operation also takes
linear time. Finally, insertion of trivial circuits takes linear time to the size of
the behavioral profile. ut

Now we can make the following statement.

Theorem 6.9. There exists a sound well-structured free-choice WF-system,
if and only if, the behavioral profile is well-structured.

Proof. ⇒ follows from Lemma 6.6, ⇐ from Proposition 6.7. ut

We conclude this section returning to the motivating example presented in
Fig. 6.1. Fig. 6.10 illustrates the complete abstract model derived from the
initial model according to the developed abstraction technique. Following Al-
gorithm 5 the model in Fig. 6.10 is obtained from the modular decomposition
presented in Fig. 6.8.

6.4 Software Implementation 117

6.4 Software Implementation

In this section, we elaborate on Flexab—an application enabling the pre-
sented abstraction and presented in [164]. Flexab extends the Oryx frame-
work [42], which we introduce first. Then, we describe the Flexab architecture
and illustrate the usage to demonstrate the capabilities of Flexab.

6.4.1 Oryx

We implemented the proposed business process model abstraction approach
within the Oryx Framework. Oryx is an extensible modeling framework bring-
ing Web 2.0 technologies to business process designers. It allows for web-based
modeling following a zero-installation approach. Oryx identifies each model
by a URL, so that models can be shared by passing references rather than by
exchanging model documents in email attachments. The framework can be
extended in various directions. New languages are added by stencil sets that
define explicit model element typing, rules of the composition and connection
of elements, and the visualization of elements. Further, Oryx features a plugin
infrastructure to add new functionality.

Oryx is organized into client and server components. The client compo-
nent, the Oryx editor, realizes the modeling functionality. The editor is a
JavaScript application running in a web-browser. The server component, the
Oryx backend, stores process models, stencil sets, and fulfills other tasks, e.g.,
user management and rendering of various model representations (SVG, PNG,
or PDF). The backend is implemented in Java.

6.4.2 Oryx Mashup Framework

The Oryx editor addresses use cases that center around a single model, i.e., a
designer edits one model at a time and does not need to trace dependencies
with other models. However, several use cases, and process model abstraction
is one of them, require the designer to observe several models simultane-
ously. The Oryx Mashup Framework provides an API for developing applica-
tions in which several models are manipulated on one screen. Similar to the

Perform full

analysis

Perform quick

analysis

Handle

data

Receive forecast

request
Issue report

Fig. 6.10. Abstract model of the process “Forecast request handling”. This model
is obtained from the model PM in Fig. 6.1 using the abstraction algorithm based on
behavioral profiles with the threshold of 0.5 and the activity groups as defined in
Fig. 6.1.

118 6 Controlling Control Flow Loss

 Mashup

 backend

 Browser

Mashup Framework

Viewer

gadget

Abstraction

gadget

 Oryx

 backend

Backend

Models Stencil sets

R R

SVG

servlet

Abstraction

servlet

R

R

R

Fig. 6.11. Flexab architecture overview (FMC notation)

Oryx Editor, the Mashup Framework is written in JavaScript and runs within
a browser. The framework organizes functionality by gadgets and provides
means to support communication between different gadgets. Each gadget not
only accumulates business logic, but also has a UI representation. The UI
components of gadgets are allocated on a dashboard. Typical gadgets provide
model viewing functionality or enable selection of model elements. Hence, the
Oryx Mashup Framework enables developers to create mashups for analyzing
existing Oryx models and for concurrent interaction with several models.

6.4.3 FLEXAB

We have used the Oryx Mashup Framework as the basis for Flexab. Logically,
the application is decomposed into the client-side and server-side components.
The client-side component is built as an extension of the Oryx Mashup Frame-
work. The server-side component is further distributed into the Oryx backend
and Mashup backend, see Fig. 6.11. The communication between these three
components is established by HTTP requests. The client-side component ren-
ders the user interface of the application. A viewer gadget presents the initial
model that should be abstracted. The abstraction gadget, in turn, enables
the user to define activity groups. This is supported by the viewer gadget to
allow for populating groups with activities by simply selecting the activities
in the viewer. Finally, another instance of a viewer gadget is used to show the
abstract model.

Once the abstraction is triggered, the abstraction gadget sends the user-
defined activity groups along with the initial process model to the abstraction
servlet on the server side. Given this input, the abstraction servlet performs
the abstraction algorithm and produces an abstract model. The abstraction

6.4 Software Implementation 119

Viewer gadget: initial model Abstraction gadget

A B

C
D

F
E

I

HG

(a) Screenshot of Flexab at the stage of activity group creation.

Viewer gadget: abstract model

A BCG

GH I

CDEF

(b) Flexab presents the process model emerging from abstraction.

Fig. 6.12. The screenshots presenting the user interface of the Flexab.

servlet is supported by an SVG servlet that is responsible for the generation of
a SVG representation of the abstract model. To this end, it needs to retrieve
the respective stencil set from the Oryx backend.

From a user perspective, abstracting a process model in Flexab works as
follows. The user starts selecting the model to be abstracted. In response, the
application caters two gadgets: a viewer gadget and an abstraction gadget,
see Fig. 6.12(a). The user creates named activity groups, edits, and deletes
the groups using the controls of the abstraction gadget. The viewer gadget
not only renders the process model and provides zoom functionality, but also
supports activity group creation: the user populates groups selecting activ-
ities directly in the model. Once the groups are finalized, the user initiates
model transformation clicking the abstraction button in the abstraction gad-

120 6 Controlling Control Flow Loss

get. Then, Flexab abstracts the model in the background and instantiates a
new viewer gadget to visualize the result of abstraction. Fig. 6.12(b) presents
the UI constellation in terms of the complete Mashup dashboard once model
abstraction completes.

6.5 Discussion

This section summarizes the properties of the developed business process
model abstraction. First, we argue about the application context of the pro-
posed control flow relation discovery method. Second, we position the devel-
oped approach against the research on process model synthesis.

6.5.1 Application Perspective

The developed abstraction exhibits two features that distinguish it from the
already available methods, e.g., see [30, 94, 122, 123]:
Property 1 one activity may belong to several activity groups
Property 2 activity groups may be distributed over the process model in an

arbitrary fashion.
This turns the proposed abstraction into a powerful tool, yet having side ef-
fects that limit its applicability. First, the process model abstraction based on
behavioral profiles has a high degree of information loss. This phenomenon
follows from the fact that behavioral profile relations provide much less infor-
mation about the process behavior than the process model control flow rela-
tion. Consider, for instance, the interleaving order relation, which stems from
structures capturing concurrency or cyclic structures. Second, process model
abstraction based on behavioral profiles is not order preserving. This obser-
vation directly follows from Property 1 and Property 2. However, if activity
groups are obtained from structural process model decomposition, see Chap-
ter 4, the abstraction based on behavioral profiles is order preserving. Against
this background, the advocated approach is the generalization of structural
abstraction methods. Third, the complexity of activity groups impedes the
evaluation of the non-functional property values for coarse-grained activities.
For instance, it follows from Property 1 that one activity of the initial pro-
cess model may contribute to several coarse-grained activities of the abstract
model. Hence, the non-functional properties of this single activity impact the
properties of multiple coarse-grained activities. Thereafter, the deduction of
properties becomes non-trivial.

The three identified features limit the application of the abstraction ap-
proach advocated in this chapter. However, they are balanced by the advan-
tage of non-hierarchical process model abstraction. Furthermore, the three
limiting factors are the direct consequences of non-hierarchical abstraction.
Thereafter, we conclude that the user has to consider the pros and cons of

6.5 Discussion 121

the proposed model transformation during the design of the abstraction ap-
proach. For instance, if the user tolerates a considerable information loss for
the sake of non-hierarchical abstraction, the approach based on behavioral
profile relations is suitable. This approach, for instance, fits well the use cases
of the group “Group 4: Obtaining a Process Quick View”.

6.5.2 Related Work on Process Model Synthesis

We outline the streams of work related to the synthesis of an abstract process
model form a behavioral profile. On the one hand, this discussion includes
the synthesis of Petri nets. On the other hand, behavioral profile relations is
only one of the many approaches to describe the process behavior. Hence, we
present the alternative relation families and argue about their advantages and
disadvantages in the abstraction context.

The developed method for the construction of an abstract process model
extends the family of process model synthesis techniques. As our notion of a
process model is tightly coupled with the Petri nets formalism, we consider
the problem of Petri net synthesis [54]. In [56] Esparza discusses the reduction
rules for live and bounded free choice Petri nets. The article argues that the
rules inverse to these reduction rules address the problem of model synthesis.
A number of research endeavors considered generation of Petri nets from finite
state machines [38, 43]. A series of works studied the generation of a Petri net
as a composition of several other nets [96, 139].

While this thesis proposed process model synthesis from the behavioral
profile relations, there are other relation families that abstract behavior of
systems with concurrency. For many of these families the researchers defined
methods for the synthesis of models. Here we discuss the applicability of these
relations in the context of business process model abstraction. In process min-
ing the alpha algorithm is used for the construction of a process model from
event logs [10]. The primary difference between the alpha relations and the
behavioral profile relations is the definition of the strict order. Two activities
belong to the alpha strict order relation, if one activity is the direct successor of
the other. In this setting, the exclusiveness relation quickly dominates the be-
havioral abstraction of the initial process model. This fact impedes the behav-
ior generalization procedure defined by Algorithm 4. Another set of relations
suggested by Li, Reichert, and Wombacher in [93] describes the model behav-
ior in the form of an order matrix. While order matrix relations are semanti-
cally very close to behavioral profile relations, they are defined for the class
of well-structured process models only. Meanwhile, the order matrix relations
provide more detailed information about the activities within cyclic structures
than the behavioral profile relations. Finally, in [117] Polyvyanyy et al. use
the family of relations with a similar semantics, but defined for the complete
prefix unfoldings of a Petri net, see [57, 99]. These relations preserve more
information about the process ordering constraints. Unfortunately, the un-

122 6 Controlling Control Flow Loss

folding mechanism implies duplication of activities within a process model,
which is undesirable in the context of process model abstraction.

The literature study witnesses of other numerous abstractions of process
behavior. For instance, [51] advocate the concept of causal footprints to judge
about process model similarity. However, the construction of causal footprints
is rather inefficient. This circumstance impedes the use of causal footprints, as
business process model abstraction deals with large process models. Another
example are precedes and leads to relations used for checking the compliance
of process models to regulations [13, 15]. However, these two relations pro-
vide less information about the process ordering constraints. This limits the
application of leads to and precedes in the context of our problem.

The outlook of process behavior abstractions shows that each technique
has its pros and cons, while there is no clear “leader”. As some relation families
preserve the behavioral constraints in a precise manner, they fall short on the
class of models that can be handled or have side effects that contradict the
abstraction use case.

6.6 Summary

This chapter introduced a novel approach to business process model abstrac-
tion. As an input the approach takes a process model and groups of related
activities in this model. Each activity group corresponds to one coarse-grained
activity of the abstract process model. In this setting, the advocated abstrac-
tion focuses on the synthesis of the control flow relation in the abstract process
model. In comparison to the existing business process model abstraction meth-
ods, our approach allows 1) one activity to belong to multiple groups and 2)
an activity group to be freely spread over the model. Because of this, the advo-
cated method overcomes the limitations of the structural approaches presented
in Chapter 4 and in the related work, see, for instance, [30, 55, 66, 94, 123].
Due to the flexibility of the novel abstraction, it can be combined with various
methods for the discovery of related activities, both manual and automatic,
see Chapter 5. Among the limitations of the proposed method, one can name
the capability to synthesize well-structured process models only. In addition,
the abstraction is sensible to the presents of cycles in process models. Finally,
we have complemented the theoretical discussion of the abstraction approach
with an overview of its software implementation.

The current chapter focused on the how of business process model abstrac-
tion. Against this background, its contribution complements the findings of
Chapter 5. Furthermore, the novel abstraction approach can be seen as the
generalization of the abstraction proposed in Chapter 4.

7

Related Work

This chapter outlines the research contributions related to the topic of business
process model abstraction. We organize the related work in three tiers, each
providing a different perspective on business process model abstraction.

The first tier includes papers and articles that directly discuss the prob-
lem of business process model abstraction. We have discovered eight methods
that are devoted to this topic and provide a detailed description for each of
them. The second tier of the related work is formed by the papers develop-
ing methods and algorithms that might become abstraction enablers. While
these papers do not discuss the problem of business process model abstrac-
tion directly, their contributions can be reused in the abstraction context.
Therefore, the papers of this tier may be used as a theoretical foundation for
new abstraction methods. The chapter complements the discussions of indi-
vidual abstraction methods and potential abstraction enablers by a summa-
rizing comparison. The comparison presents the “big picture” of the existing
abstraction methods: highlights the most explored fields and reveals the re-
search gaps. The third tier discusses the aspects of model management that
are similar to business process model abstraction problem. Among other top-
ics this stream of work comprises the studies of intermodel relations and the
problem of process modularization. Notice that this tier puts the problem
of business process model abstraction in a wider context and compares it to
other business process model management tasks.

Against this background, the contribution of this chapter is twofold. First,
it provides a discussion of the related work organized into three tiers. Second,
the chapter provides a comparison of the existing methods distinguishing the
already explored areas from those with the research opportunities.

The remainder of this chapter is organized as follows. Section 7.1 presents
the state-of-the-art business process model abstraction methods. Section 7.2
mentions the research contributions that can support new abstraction meth-
ods. Section 7.3 discusses problems similar to business process model abstrac-
tion. Finally, Section 7.5 concludes this chapter with a summary.

124 7 Related Work

7.1 Abstraction State of the Art

Scientific papers that discuss business process model abstraction by no means
always use this exact label, but rather refer to process views, see [30, 55],
or focus on process simplification, see [66]. However, the essential purpose of
these methods is in line with the way we characterized abstraction in this
thesis. While a number of papers, e.g., [30, 94, 141], discuss generic process
model abstraction methods, others address concrete use cases, e.g., see [55].
This section presents an overview of the available business process model
abstractions preceded with their short summary.
Cardoso et al. [32] Propose a quality of service evaluation method for work-

flows enriched with information on transition probability and activity ex-
ecution time/cost.

Liu and Shen [94, 141] Suggest an order-preserving abstraction approach
making use of reduction rules developed in [135].

Chiu et al. [34, 35] Focus on the business process model abstraction in the
context of cross-organizational interaction, where the generic model cap-
tures overall interaction, while abstract models are partner-specific.

Pankratius and Stucky [115] Adapt the principles of views in relational
databases to the context of business process models delivering operations
for constructing abstract process specification.

Günther and van der Aalst [66] Develop an abstraction technique for pro-
cess models mined from logs, where the technique exploits metrics based
on log information.

Bobrik et al. [28, 29, 30] Propose a process model abstraction with an em-
phasize on how aspect, specifying abstraction operations and their com-
position rules.

Eshuis and Grefen [55] Address the abstraction scenario, where an internal
process model is adapted for an external partner in two steps: 1) the
private details are concealed, 2) excessive information is hidden.

Polyvyanyy et al. [122, 123] Argue that process model decomposition can
be employed in business process model abstraction and develop abstrac-
tion algorithms based on decomposition.

In the remainder of this section, we elaborate on each approach using the
business process model abstraction framework introduced in Section 3.2. Each
approach is positioned against the use cases elaborated in Section 3.4. To
illustrate the approaches we employ examples in the notations of the original
papers.

7.1.1 Cardoso et al.

In [32] Cardoso et al. evaluate the workflow quality of a service. The au-
thors assume that every workflow activity is annotated with a non-functional
property value, e.g., execution time or cost, and an execution probability.

7.1 Abstraction State of the Art 125

t7t3

t4

t8

t6

t1 t2

t9

t10 t11

seq

and

loop

p1

p2
* *

+ +
t5

(a) Initial model PM

t7t3 tloop t11

tand = max(t4,t5,t6)

tloop =
t8+t9+t10-(1-p1)t9

1-p1
tseq = t1+t2

tandtseq

(b) Abstract model PMa

Fig. 7.1. Illustration of the business process model abstraction approach developed
by Cardoso et al. in [32].

Quality of service for a workflow is evaluated through aggregation of work-
flow activities, where non-functional properties of an aggregating activity are
determined by the properties of the aggregated ones. The paper considers
activities as abstraction objects and utilizes aggregation as the basic abstrac-
tion operation. The proposed solution addresses the business process model
abstraction problem, namely the use cases of the group “Group 1: Preserving
Relevant Activities” and the use cases “Use Case 12: Get Process Quick View
Respecting Ordering Constraints” and “Use Case 13: Get Process Quick View
Respecting Roles”.

The paper concentrates on the how aspect of abstraction. While the em-
ployed model is formalized as a graph with nodes being tasks and edges being
transitions between tasks, the process model is well-structured, see Defini-
tion 6.1. In such a setting the authors specify the abstraction algorithm based
on patterns and corresponding reduction rules. Once a workflow fragment is
matched against a pattern, it is reduced according to the reduction rule. Four
patterns are identified: sequence, AND-block, XOR-block, and two types of
loop blocks. Fig. 7.1 demonstrates the application of these rules to model
PM in Fig. 7.1(a). The reduction rules for sequence, AND-block, and the loop
block are applied to fragments seq, and, and loop, respectively. The resulting
abstract model is presented in Fig. 7.1(b). The reduction rules specify not
only the structural transformations, but also the non-functional properties
evaluation method. In this way the approach advocates a hierarchical order-
preserving abstraction that preserves process non-functional properties.

7.1.2 Liu and Shen

In [94, 141] Liu and Shen study the construction of process views and, in
particular, order-preserving process views. The paper regards activities as the
abstraction objects and employs aggregation as the basic abstraction opera-
tion. The proposed business process model abstraction can support the use
cases of the group “Group 1: Preserving Relevant Activities” along with the
use cases “Use Case 9: Adapt Process Model for an External Partner”, “Use
Case 12: Get Process Quick View Respecting Ordering Constraints”, “Use
Case 13: Get Process Quick View Respecting Roles”, and “Use Case 15: Pre-
serve Frequent Activities Summarizing Rare Activities”.

126 7 Related Work

a1

b c e
f

g

ha

a3

d

a2

(a) Initial model PM

b c efgha d

(b) Abstract model PMa

Fig. 7.2. Illustration of the business process model abstraction approach developed
by Liu and Shen in [94, 141].

The authors provide a formal definition of a process model and specify
a process execution semantics. The formalism allows for one type of model
nodes, activities, that may realize the splitting and joining logic of ANDs and
XORs. Loop dependency is considered as a special dependency type and pro-
cess models may contain only single entry-single exit loops. Fig. 7.2 presents
process model examples that adhere to the notation used in [94]. The paper
elaborates on an algorithm for abstract process model construction based on
the reduction rules proposed in [135]. The algorithm obeys three principles:
activity membership, activity atomicity, and order preservation. The latter
principle is of great practical importance and is thoroughly discussed in the
paper. The example in Fig. 7.2(a) illustrates capabilities of the abstraction
approach. While aggregations a1 and a2 violate the declared principles, a3
is valid. Fig. 7.2(b) presents the result of order-preserving abstraction: ac-
tivities e, f , g, and h in the initial model are aggregated, see Fig. 7.2(a).
While the paper elaborates on the abstraction how, it does not discuss the
why and when questions. The developed abstraction is hierarchical, but does
not discuss preservation of non-functional properties.

7.1.3 Chiu et al.

Chiu et al. discuss the business process model abstraction in the context of
cross-organizational interaction in a web service environment [34]. The au-
thors concentrate on the use case, where an existing process model describes
interorganizational interaction, while partner-specific models hiding confiden-
tial details are in demand. Effectively, this approach maps to “Use Case 9:
Adapt Process Model for an External Partner”. The abstraction approach
selects activities as abstraction objects and uses elimination as the basic ab-
straction operation to deliver partner-specific views and narrow the scope
within a party. The paper argues about the how, delegating the why and
when questions to the human user.

Chiu et al. employ UML activity diagrams to capture processes and in-
troduce a metamodel for workflow views. The metamodel defines a view as a
graph with activities that can be organized into sequences enriched with choice
logic. Each activity can either be optional or iterative. Fig. 7.3 illustrates the
approach. Model PM in Fig. 7.3(a) is the initial model, while abstract model
PMa in Fig. 7.3(b) captures the process from the point of view of one par-
ticipant. The paper informally discusses the transition from the initial model

7.1 Abstraction State of the Art 127

a

b

c

Partner1 Partner2

o1

o2

(a) Initial model PM

a

c

Partner1

o1

o2

(b) Abstract model PMa

Partner1 Partner2

m1

m2

(c) Abstract model PM′a

Fig. 7.3. Illustration of the business process model abstraction approach developed
by Chiu et al. in [34].

to the abstract one. The authors argue that the partner interaction speci-
fied in the initial UML activity diagram can be captured on the high level
by means of a sequence diagram. The paper gives the general idea of such a
transformation. Fig. 7.3(c) presents an example of a sequence diagram that
can be mined from the initial model PM. Finally, the paper specifies con-
sistency criteria for process model views with respect to the initial model.
While the discussion of model transformation is rather informal we attribute
it to hierarchical order-preserving abstraction that does not address process
non-functional properties.

7.1.4 Pankratius and Stucky

Pankratius and Stucky relate process views to views in relational databases,
see [115]. The authors define process models as Petri nets and adapt rela-
tional database operations to the Petri net formalism. This results in eight
operations enabling process view creation: selection, difference, place projec-
tion, transition projection, place join, transition join, theta join, and union.
The designed operations may support the business process model abstraction,
where activities and, potentially, events are abstraction objects. Elimination
and aggregation can be realized through place projection and transition pro-

p1 t1 p2 p3t2 p4t3

tx
p5t4

px

(a) Initial model PM

p1 tx px p5t4

(b) Abstract model PMa

Fig. 7.4. Illustration of the business process model abstraction approach developed
by Pankratius and Stucky in [115].

128 7 Related Work

jection, respectively. Fig. 7.4 exemplifies an application of place projection and
transition projection for an abstraction realization. Fig. 7.4(a) shows process
model PMwith two fragments, tx and px, to be abstracted. Application of a
transition projection to fragment tx and a place projection to fragment px in
PM results in transition tx and place px in model PMa, respectively. Fig. 7.4(b)
exhibits the abstract model PMa.

It should be noted that the developed operations consider only the struc-
ture of Petri nets, ignoring the execution semantics. As a consequence, im-
portant properties, e.g., soundness, of delivered process models may be vio-
lated [156]. In essence, the paper addresses the business process model ab-
straction how. The developed abstraction supports the use cases of the group
“Group 1: Preserving Relevant Activities” together with the use cases “Use
Case 9: Adapt Process Model for an External Partner”, “Use Case 12: Get
Process Quick View Respecting Ordering Constraints”, “Use Case 13: Get
Process Quick View Respecting Roles”, “Use Case 15: Preserve Frequent Ac-
tivities Summarizing Rare Activities”, and “Use Case 16: Get Particular Pro-
cess Perspective”.

7.1.5 Günther and van der Aalst

In [66] Günther and van der Aalst investigate the simplification of “spaghetti-
structured” process models as mined from event logs. The paper addresses all
three aspects of process model abstraction: why, when, and how. The authors
choose activities and edges as abstraction objects. The abstraction mechanism
assumes the availability of substantial process logs enriched with activity and
transition frequencies. The authors elaborate on how this information can be
used within abstraction. They suggest metrics, e.g., activity frequency, distin-
guishing significant abstraction objects from insignificant ones. The metrics
are classified into significance and correlation metrics and orchestrate abstrac-
tion operations. Fig. 7.5 exemplifies the abstraction approach. The elements of

A

B

C

D E
F

0.8

0.73

0.6

0.67 0.47
0.51

0.67
0.7

0.17

0.4 1

0.30
0.9

0.09

(a) Initial model PM

A

B

C

D E
F

0.8

0.73

0.6

0.67 0.47
0.51

0.67
0.7

0.4 1

0.30
0.9

(b) Result of edge elimination PMa

Cluster

ABCD 0.30

0.7 0.5

Cluster

EF

(c) Result of activity aggregation PM′a

Fig. 7.5. Illustration of the business process model abstraction approach developed
by Guenther and van der Aalst in [66].

7.1 Abstraction State of the Art 129

the initial model PMare annotated with execution frequencies, see Fig. 7.5(a).
In Fig. 7.5(b) the edges with low frequencies are eliminated, while Fig. 7.5(c)
shows the outcome of activity aggregation. The designed business process
model abstraction is potentially capable of supporting the use cases of the
groups “Group 1: Preserving Relevant Activities” and “Group 2: Preserving
Relevant Process Runs” and the use cases “Use Case 12: Get Process Quick
View Respecting Ordering Constraints”, “Use Case 13: Get Process Quick
View Respecting Roles”, “Use Case 15: Preserve Frequent Activities Summa-
rizing Rare Activities”, and “Use Case 16: Get Particular Process Perspec-
tive”.

The authors formalize a process model as a graph, where nodes are activ-
ities, and edges—control flow relation. Unfortunately, such a simplistic model
limits the applicability of the approach to some extent, as process modeling
notations typically specify more than one node type. Moreover, the assumed
availability of rich process logs is rather restrictive: models are rarely enriched
with such detailed execution information. On the other hand, the approach
preserves process non-functional properties and enables hierarchical process
model abstraction.

7.1.6 Bobrik et al.

Bobrik et al. study process views in [28, 29, 30]. The authors concentrate on
the abstraction’s how component, leaving the why and when out of scope.
These works consider activities as the abstraction objects. The basic abstrac-
tion operations are aggregation and elimination. The developed abstraction
method addresses the use cases of the group “Group 1: Preserving Relevant
Activities” along with the use cases “Use Case 9: Adapt Process Model for an
External Partner”, “Use Case 12: Get Process Quick View Respecting Order-
ing Constraints”, “Use Case 13: Get Process Quick View Respecting Roles”,
“Use Case 15: Preserve Frequent Activities Summarizing Rare Activities”,
and “Use Case 16: Get Particular Process Perspective”.

a b X

c

e

d
fX

sese2

sese1

(a) Initial model PM

a X

c

e

d
fX

sese2

(b) Result of sese1 elimination PMa

a cde f

(c) Result of sese2 aggregation PM′a

Fig. 7.6. Illustration of the business process model abstraction approach developed
by Bobrik et al. in [28, 29, 30].

130 7 Related Work

The process model is formalized as a graph with two node types, activi-
ties and gateways (subsequently typed to ORs, XORs, and ANDs), and the
edges representing the control flow. Aggregation and elimination make use
of SESE fragments—fragments with exactly one incoming and exactly one
outgoing edge. Elimination substitutes a SESE fragment with an edge, while
aggregation—with an activity. The paper studies the abstraction properties,
paying attention to control-flow preservation. The resulting abstraction is hi-
erarchical, but does not address the aspect of non-functional properties. The
abstraction proposed by Bobrik et al. is not order-preserving in general case.

Along with the model views, the authors discuss view construction for
visualizations of process instances. The distinction of completed and not com-
pleted activities allows to extend basic abstraction operations beyond SESE
fragment transformations. The completed activities are abstracted in a more
flexible fashion. Fig. 7.6 illustrates the proposed abstraction. The initial model
PM is shown in Fig. 7.6(a). Two basic abstraction operations are sequentially
applied. The SESE fragment sese1 is eliminated, resulting in model PMa, see
Fig. 7.6(b). Then, the fragment sese2 is aggregated resulting model PM′a, see
Fig. 7.6(c).

7.1.7 Eshuis and Grefen

In [55] Eshuis and Grefen are challenged by the adaptation of process mod-
els to support interorganizational communication. The designed approach has
two steps: 1) the process owner specifies internal activities to be aggregated,
2) the process consumer omits and hides unnecessary activities. The selection
of activities to be abstracted is manual. Thereby, the paper focuses on the
how, ignoring why and when. The paper selects activities as the abstraction
object. Aggregation and elimination are employed as abstraction operations.
The abstraction is hierarchical, order-preserving, yet ignores preservation of
process non-functional properties. While the paper directly addresses the use
case “Use Case 9: Adapt Process Model for an External Partner”, the de-
veloped business process model abstraction indirectly supports the use cases

b
a

c

d

e f g

(a) Initial model PM

a bcd e f g

(b) Abstract model PMa

a bcd hidden g

(c) Customized model PM′a

Fig. 7.7. Illustration of the business process model abstraction approach developed
by Eshuis and Grefen in [55].

7.1 Abstraction State of the Art 131

of the group “Group 1: Preserving Relevant Activities” and the use cases
“Use Case 9: Adapt Process Model for an External Partner”, “Use Case 12:
Get Process Quick View Respecting Ordering Constraints”, “Use Case 13:
Get Process Quick View Respecting Roles”, “Use Case 15: Preserve Frequent
Activities Summarizing Rare Activities”, and “Use Case 16: Get Particular
Process Perspective”.

The processes are captured in UML Activity Diagrams. The formalization
of a process model restricts models to well-structured ones, allowing AND-
and XOR-blocks along with loops. The approach ensures that the resulting
abstract models are order-preserving. The first phase is based solely on activity
aggregation, concealing the private activities. Fig. 7.7(a) captures the initial
model PM, where the user selects to aggregate activities b and d. Fig. 7.7(b)
shows the abstraction result: activities b, c, and d are aggregated into bcd. Ac-
tivity c is aggregated, as the abstraction method constructs order-preserving
views. The second phase, customization, employs aggregation and elimination
to preserve only activities demanded by the consumer. In the example model
PMa, see Fig. 7.7(b), the user preserves activities a, bcd, and g. Model PM′a in
Fig. 7.7 shows the final result of abstraction, where irrelevant activities are
hidden.

7.1.8 Polyvyanyy et al.

In [122, 123] Polyvyanyy et al. study how process model decomposition sup-
ports business process model abstraction. The developed abstractions make
use of aggregation as an abstraction operation and choose activities as ab-
straction objects. The papers superficially discuss why and when, bringing
how in the focus. The developed abstraction supports the use cases of the
group “Group 1: Preserving Relevant Activities”, as well as the use cases
“Use Case 9: Adapt Process Model for an External Partner”, “Use Case 12:
Get Process Quick View Respecting Ordering Constraints”, “Use Case 13:
Get Process Quick View Respecting Roles”, “Use Case 15: Preserve Frequent
Activities Summarizing Rare Activities”, and “Use Case 16: Get Particular
Process Perspective”.

The paper formalizes a process model as a graph, where nodes are activities
and gateways (ANDs and XORs), and edges correspond to the control flow.

b Xa

c

e f

dX

X

X g

R

S

(a) Initial model PM

ab cdef g

(b) Abstarct model PMa

Fig. 7.8. Illustration of the business process model abstraction approach developed
by Polyvyanyy et al. in [122, 123].

132 7 Related Work

However, the obtained results can be extended for BPMN, see [142]. While
[122] decomposes the model into fragments with exactly one incoming and
exactly one outgoing edge, [123] seeks for fragments having exactly one entry
node and exactly one exit node. The latter approach results in more fine-
grained decomposition making the abstraction more flexible. The proposed
business process model abstractions are order-preserving and hierarchical. The
authors do not discuss preservation of process non-functional properties. The
approach is illustrated by the example in Fig. 7.8. Fig. 7.8(a) shows the initial
model PM, where fragments S and R can be aggregated. Fig. 7.8(b) presents
the abstraction result with the given fragments being aggregated.

7.1.9 Summary

Table 7.1 summarizes the main properties of the aforementioned abstractions.
One can notice that the majority of business process model abstraction ap-
proaches puts the focus on the how component, leaving why and when out of
scope. However, even within the how aspect the focus is on the structural side
of the model transformation. Typically, the decision which activities should
be abstracted is delegated to the user. Furthermore, the business meaning of
the coarse-grained activities created during abstraction has to be defined by
the user as well. In this setting, it is important to realize if users can link the
abstraction methods to their business needs without a detailed study of the
why and when.

As can be seen, activities dominate the “abstraction object” column of
Table 7.1. This confirms that in practice the end users perceive activities to be
in the center of process model abstraction. The observation is supported by the
analysis of the use cases addressed by the existing techniques. The majority
focuses on activities. Indeed, most approaches are capable of supporting use
cases of the group “Group 1: Preserving Relevant Activities”, as well as the
use cases “Get Process Quick View Respecting Ordering Constraints” and
“Get Process Quick View Respecting Roles”.

Finally, Table 7.1 bears witness of the fact that the elimination π and
aggregation σ are used relatively homogeneously. However, the aggregation
prevails the table, being used in each abstraction method, but one.

7.2 Potential Abstraction Enablers

The second tier of related research includes a series of papers that do not target
business process model abstraction specifically, yet the research on abstraction
can profit from their insights. This category of contributions include formal
methods for process modeling, study of model properties and transformations.
In particular, we refer to the works on process model transformation and
workflow inheritance.

7.2 Potential Abstraction Enablers 133

Name Why When How π σ Supported Abstraction
use cases Object

Cardoso et al. + + + – + 12, 13, 15 activity
Liu and Shen – – + – + 1–4, 9, 12, activity

13, 15
Chiu et al. – – + + – 9 activity
Pankratius and Stucky – – + + + 1–4, 9, 12, model

13, 15, 16 element
Günther and + + + + + 1–8, 12, 13, edge,
van der Aalst 15, 16 activity
Bobrik et al. – – + + + 1–4, 9, 12, activity

13, 15, 16
Eshuis and Grefen – – + + + 1–4, 9, 12, activity

13, 15, 16
Polyvyanyy et al. – – + – + 1–4, 9, 12, activity

13, 15, 16

Table 7.1. Overview of existing business process model abstraction methods.

Among the papers on process model transformation a vast share of works
concentrates on reduction rules and process model decomposition. Within
decades the Petri net community studied reduction rule sets facilitating anal-
ysis of process models. In [21, 22] Berthelot suggested a rule set capable of
reducing live and bounded marked graphs to a single transition. Murata pro-
posed reduction rules preserving the liveness, safeness, and boundedness prop-
erties in [108]. Desel and Esparza came up with a complete set of reduction
rules for free-choice Petri nets, see [44]. [135] developed a set of graph reduc-
tion rules for identification of structural conflicts in process model. Recently,
van Dongen and Mendling used reduction rule sets for analysis of process
model soundness, see [50, 107]. Such rules have also been defined for workflow
graphs [135], EPCs [50, 102] and YAWL [167].

In the context of abstraction, for every set of reduction rules it is essential
to show that one of the following statements holds:

– The set of reduction rules is complete to abstract a process model of an
arbitrary structure into one node.

– There is a description of the class of models that can be reduced to one
node by this set of rules.

As in practice process models have an arbitrary, non-compositional structure,
the above requirements are highly relevant to reflect on the applicability of a
reduction rules set.

Process model decomposition approaches are free of this limitation: they
enable unique decomposition of a process model into a hierarchy of frag-
ments. The generic results for decomposition of graphs have been obtained by
Johnson, Pearson, and Pingali in [79] and Tarjan and Valdes in [152]. Later

134 7 Related Work

Vanhatalo et al. adapted these decomposition techniques for business pro-
cesses [154, 155]. We argue that both reduction techniques and decomposition
techniques support elimination and aggregation as the most prominent forms
of abstraction.

Preservation of process model behavior during model transformation can
be defined in several ways. In [4] van der Aalst and Basten use Petri nets
as process formalism and define the notion of process inheritance, which re-
lates to the behavioral aspect of the model. In particular, they identify four
types of inheritance: protocol, projection, protocol/projection, and life-cycle
inheritance. Further, the authors specify operations on models maintaining
inheritance property. The defined operations can be used in different context,
for instance, refinement of business process models [6]. The contribution of [4]
relates to business process model abstraction, as models PM and PMa can be
seen as those belonging to one of the proposed inheritance relations.

7.3 Farther Afield

We finalize the discussion of the related work looking further afield and con-
sidering challenges of model management related to business process model
abstraction. In particular, we identify several substreams of the research that
relate to abstraction: the research on process model modularization, model
refactoring, and relations between already existing models of one business
process. The remainder of this section elaborates on these issues one by one.

Business process model abstraction manages the model complexity. Indus-
trial business process modeling notations, like EPCs [80] and BPMN [113],
tackle this problem allowing modularization in process models. For instance,
BPMN has a subprocess concept, while EPCs use the term process path. Both
languages allow to capture a process part in a model and subsequently refer-
ence it in other models. The principles and properties of process model mod-
ularization has been studied by Reijers and Mendling in a series of papers,
see [105, 128, 129].

Recently, the BPM community investigated methods for process model
refactoring. While various refactoring methods vary in goals, it is always the
case that one process model is transformed into another describing the same
process at the same level of abstraction. For instance, in [117, 119] Polyvyanyy
et al. argue if and how unstructured process models can be transformed into
well-structured. Similarly, Fahland and van der Aalst proposed a method for
simplification of process models mined from logs, see [58]. Leopold, Smirnov,
and Mendling discuss the refactoring of activity labels in [91].

While business process model abstraction delivers an abstract process rep-
resentation given a starting model, multiple models of one process might be
already in place. Such models reflect the views of various stakeholders on
one business process [83]. Typically, numerous relations exist between these
models, which leads to new challenges in model management.

7.4 Discussion 135

First, it is crucial to manage the consistency of multiple process specifi-
cations. In [49] Dijkman et al. addressed the problem of information system
design, where multiple stakeholders contribute to the system creation. The
authors developed a framework suggesting 1) the use of basic concepts shared
by the stakeholders to be facilitate communication, 2) means to manage con-
sistency between relations of system specifications. The paper illustrates the
applicability of the approach, establishing relations between structural and be-
havioral models. Recently, Weidlich et al. investigated the consistency of mod-
els formalizing one business process, see [158, 159]. While [159] focuses on the
behavioral aspects of process models, [158] studies methods for identification
of correspondence relations between elements of different specifications. The
existence of multiple models for one object is inherent not only for BPM, but
also for software engineering and requirements engineering [82]. Finkelstein
et al. in [60] argued that model inconsistencies are inevitable and suggested
a formal approach to deal with them. [110] suggested a framework for man-
aging multiple views and their inconsistencies in the context of requirements
engineering. The aforementioned papers study intra- and intermodel relations
between model elements. We believe that their results can be useful in the
context of abstraction’s when and how.

Second, the multiple models of a process can be seen as its “partial” mod-
els: each model presents one perspective on the subject. Integration of such
partial models into one facilitates more comprehensive process understand-
ing. Preuner, Conrad, and Schrefl designed a method for integration of models
that capture business object life cycles [125]. Two integration types are distin-
guished: integration of type hierarchies and integration of behavior of object
types. The integration makes use of generalization/specialization and exten-
sion/refinement operations. In [106] Mendling and Simon propose another
approach for process view integration. The approach implies that one busi-
ness process can have several specifications, each—an EPC model. It assumes
that the correspondences between elements of different models are known.
Given two views of one business process and the element correspondences,
the approach delivers an integrated process model. The relations between the
integrated model and the initial models can be traced back to relation between
PM and PMa, respectively.

7.4 Discussion

We conclude the discussion of the related work establishing a connection be-
tween the discussed contributions and the findings of Chapter 3—the abstrac-
tion framework and the use case catalog. In particular, we position the existing
business process model abstraction methods along with the abstraction en-
ablers against the identified use cases and the why, when, and how aspects of
abstraction. As an outcome, we observe the “big picture” of the existing meth-

136 7 Related Work

ods. Section 7.4.1 describes the abstraction retrospective, while Section 7.4.2
presents its perspective.

7.4.1 Retrospective

Table 7.2 provides correspondences between the abstraction use cases from
the catalog, see Section 3.4, and the existing techniques for business process
model abstraction. Notice that the table refers to the works directly addressing
process model abstraction along with the techniques potentially helpful in the
abstraction context. A table row specifies the papers related to one or several
use cases from the catalog. The columns distinguish the papers according
to the three aspects: why, when, and how. The how aspect further refines
the classification into papers on process model transformation and papers
specifying how to apply algorithms for business process model abstraction.

Table 7.2 allocates several papers on dedicated rows by which we emphasize
the role of these works. [55, 66, 121] propose comprehensive solutions for
particular abstraction use cases. By this, we mean that the papers discuss
all the three aspects of process model abstraction. We emphasize [32], as it
discusses not only a structural perspective on model transformations, but also
the principles for the evaluation of non-functional properties.

Finally, we relate the contributions of this thesis to the abstraction use
cases and the three abstraction aspects: why, when, and how. First, we notice
that the when aspect was barely addressed by this work. The when aspect
has been taken into account by the threshold values that parameterize ab-
straction algorithms introduced in Chapters 4–6. The why of abstraction was
tackled by Chapter 4 and Chapter 5 arguing about activity aggregation crite-
ria. Altogether, the work has a sharp focus on the abstraction how discussing
it through all the core chapters, Chapters 4–6. With respect to the supported
abstraction use cases, the thesis elaborates on the use cases of the group
“Group 4: Obtaining a Process Quick View” that are of the great interest
for practitioners. In particular, this thesis advances the existing abstraction
methods with respect to semantics of process model elements.

7.4.2 Perspective

Another look at the Table 7.2 reveals a disproportion in the related work: as
the how is thoroughly investigated, the why and when are hardly touched. The
why calls for research on how the user can formulate the abstraction goal and
what is the frontier of abstraction application. The when question is concerned
with the definition of the sign function, which can be non-trivial, e.g., consider
Use Case 9. We conjecture that a more complete coverage of these components
will simplify the uptake of the available techniques by industry.

As we argued earlier, the how also displays some white spots. For instance,
a high user demand for Use Case 12 is a strong motivation to develop tech-
niques delivering aggregations of activities that semantically belong together.

7.4 Discussion 137

Use case name Why When How
Model Abstraction
transformation algorithm

Use Case 1–4 [4, 21, 22, 28, 29, 30,
44, 50, 55, 66, 79, 106,
107, 108, 115, 122,
123, 125, 135, 152,
158]

[30, 94, 141]

Use Case 5–8 [21, 22, 44, 50, 66, 79,
107, 108, 135, 152]

Use Case 9 [55] [55] [55] [55]
[4, 21, 22, 28, 29, 30,
44, 50, 79, 94, 107,
106, 108, 115, 122,
123, 125, 135, 141,
152, 154, 155, 158]

[30, 94, 141]

Use Case 10–11 [4, 21, 22, 44, 50, 79,
107, 106, 108, 125,
135, 152, 154, 155,
158]

[30]

Use Case 12 [32] [32]
[66, 121] [66, 121] [66, 121] [66, 121]

[4, 21, 22, 28, 29, 30,
44, 50, 55, 66, 79,
94, 107, 106, 108, 115,
122, 123, 125, 135,
141, 152, 154, 155,
158]

[28, 29, 30, 94, 122,
123, 141, 142]

Use Case 13,15 [4, 21, 22, 28, 29, 30,
32, 44, 50, 55, 66, 79,
94, 107, 106, 108, 115,
121, 122, 123, 125,
135, 141, 152, 154,
155, 158]

[28, 29, 30, 94, 141,
142]

Use Case 16 [4, 21, 22, 28, 29, 30,
44, 50, 55, 66, 79, 107,
106, 108, 115, 122,
123, 125, 135, 152,
158]

[28, 29, 30]

Table 7.2. Existing techniques related to identified business process model abstrac-
tion use cases.

By semantics we mean the domain semantics of the model elements. A related
problem is how to label an aggregating activity delivered by the abstraction.
Finally, it is interesting to determine, when abstraction methods are preferable
over alternative visualization techniques and textual reports.

138 7 Related Work

Furthermore, even the referenced techniques provide only partial support
for some of the use cases. For instance, although [55] proposes an abstraction
method covering all the aspects of abstraction, the approach is only capable of
handling well-structured process models. Similarly, a business process model
abstraction developed in [121] is restricted by a set of rules that enable it. Fi-
nally, in [66] Günther and Van der Aalst propose an approach that supports
Use Case 12, but it is only capable of handling process models in a very sim-
plistic notation. While the contributions of all these papers are acknowledged,
it is also apparent that their applicability can be enhanced.

Table 7.2 illustrates that abstraction has been studied by a number of
researchers and that various techniques have become available in the past
years. Yet, there is still considerable room for improvement and extension, on
the one hand by tackling the almost unexplored why and when aspects and
one the other hand by extending the range of advanced techniques addressing
the how.

7.5 Summary

This chapter outlined the research related to business process model abstrac-
tion. Structuring this research in three tiers, the chapter discussed the existing
abstraction methods, formal techniques that might enable abstraction, and
model management challenges similar to abstraction. The contributions of
the first group were explained in detail using the vocabulary of the framework
introduced in Section 3.2 and related to the abstraction use cases identified
in Section 3.4. The papers and articles of the first two tiers are compared.
The comparison reveals a “big picture” view on business process model ab-
straction. Finally, the third tier puts business process model abstraction in
the context of other process model management tasks.

8

Conclusion

The current chapter concludes this thesis. The chapter summarizes the core
contributions, briefly discusses the relation of abstraction to other research
areas, and gives an outline of the future work.

8.1 Summary of the Results

This doctoral thesis investigated the problem of business process model ab-
straction and developed methods addressing the actual user demand in ab-
straction techniques. The core contributions of this thesis are as follows.

Business Process Model Abstraction Framework

We have systematically investigated business process model abstraction and
proposed a new framework that organizes this domain. Our study includes the
analysis of the related work, as well as the opinions of the BPM practition-
ers. As an outcome, the framework brings together various issues of business
process model abstraction and provides a coherent view on process model
abstraction. Using the framework we have compared the existing abstraction
methods, identified the well researched areas of abstraction, and discovered
the research gaps.

Catalog of Business Process Model Abstraction Use Cases

To the best of our knowledge the existing research papers are limited to the
investigation of isolated abstraction use cases, providing no reflection on the
“big picture” of abstraction. To fill this research gap we conducted an ex-
ploratory study of the user demand for business process model abstraction
and drew up a catalog of abstraction use cases. The catalog describes each
use case, organizes them into groups, and ranks the use cases according to the

140 8 Conclusion

user demand. We notice that the catalog is an outcome of the study that ana-
lyzed the related research contributions and the interviews with BPM experts
from industry: consultants, software vendors, and end users.

Abstraction of a Process Model According to Model Structure

This thesis developed two abstraction methods based on process model struc-
ture analysis. While the first method builds on the well known idea of model
transformation by means of structural patterns, the second approach relies on
the process model decomposition. In this way we extend the body of knowl-
edge with the two novel abstraction algorithms. The introduction of the two
approaches is complemented by the discussion of their properties and the
application context.

Discovery of Semantically Related Activities within a Process
Model

Since several business process model abstraction use cases demand obtaining
coarse-grained activities, we designed two novel methods for activity aggrega-
tion. Both methods aim at delivering activity groups with the self-contained
business semantics. In this vein the methods procure such activity groups,
where a group corresponds to a coarse-grained activity of the abstract process
model. As both methods are agnostic to the process model control flow rela-
tion, they leverage alternative information sources. The first method analyzes
the activity meronymy relation provided by an ontology, while the second
method considers non-control flow model elements. The thesis provided an
empirical argument witnessing that the aggregation methods perform well in
practice. Against this background, the thesis extends the research on business
process model abstraction in the new direction considering the semantics of
process model elements.

Control Flow Discovery within a Non-Hierarchical Business
Process Model Abstraction

Motivated by the demand for non-hierarchical refinement and generaliza-
tion, see [49, 60, 82, 157], the current thesis developed an approach for non-
hierarchical abstraction. Assuming that groups of related activities in the ini-
tial process model are in place (see the previous contribution), the approach
focuses on the synthesis of the abstract model control flow relation. The use
of process model behavioral abstraction, behavioral profiles, allows to relax
assumptions about groups of related activities: one activity may belong to
multiple groups and an activity group can be freely spread over the model.
Against this background, the engineered abstraction approach is novel and can
be seen as the generalization of the existing structure-based abstraction meth-
ods. We complement the conceptual discussion of the abstraction approach
by the presentation of its software implementation.

8.2 Discussion 141

8.2 Discussion

Business process model abstraction enjoys the close vicinity of several research
directions that mutually enrich each other. Briefly positioning the abstraction
against such topics, this section exposes the “big picture” of abstraction.

Business process model abstraction is motivated by the user demand for
process models with an appropriate level of model element granularity. At
the same time, the models should fulfill other requirements. A broad spec-
trum of research studies the quality aspects of process models. Vivid quality
aspect examples are the quality of model element labels [91, 104], structural
complexity of models [101], and behavioral correctness of process models [2].
Among various process model quality aspects we distinguish process model
modularization that studies the principles of model modularization and its im-
pact on the model understandability. Modularization directly deals with the
challenges of model complexity management. In this context, business pro-
cess model abstraction can be seen as the tool delivering appropriate model
complexity and assuring model quality.

As it follows from this thesis, model transformation methods are the promi-
nent tool of business process model abstraction. The Petri net community,
along with the BPM researchers, has thoroughly investigated model trans-
formation methods, e.g., see [4, 6, 21, 22, 50, 108, 135] to name but a few.
Obviously, business process model abstraction profits from this knowledge:
various abstraction use cases can be supported through the adaption of the
existing model transformations.

As soon as the user requests an abstract process model, one can treat
business process model abstraction as the model synthesis problem. Since our
notion of a process model explicitly supports concurrency, we consider the
research on Petri net synthesis to be related. While this thesis adapted and
extended methods for the synthesis of models from behavioral relations, see
Section 6.5.2, abstraction may synthesize models from states as well. Against
this background, model synthesis methods can procure the formal foundation
for business process model abstraction.

While business process model abstraction investigates model synthesis, it
also studies the relations between the initial detailed model and its abstract
counterpart. Thereby, abstraction explores the relations between various mod-
els of one system, a business process in our case. Several software engineering
contributions discuss the relations between different models of one system,
e.g., see [60]. The specific aspects of process model consistency have been ad-
dressed as well [49, 160]. As the two areas are rather close, we conclude that
business process model abstraction and the research on model consistency
mutually enrich each other.

142 8 Conclusion

8.3 Future Work

Putting business process model abstraction at the core of the thesis, we make
several scoping decisions. As an outcome, there are research directions that
remain out of scope of this thesis. The remainder of this chapter presents the
emerging challenges of business process model abstraction to be addressed by
the future work.

First, we scope our study to the analysis of the control flow model ele-
ments. We studied the impact of abstraction on the activities and the order-
ing constraints between them. Meanwhile, process models are often enriched
with non-control flow elements capturing, for instance, data or organizational
roles. While we have studied how non-control flow model elements facilitate
activity aggregation, the impact of abstraction on such elements calls for in-
vestigation. Second, this thesis argues about the process models that can be
mapped to sound free choice workflow nets. Sometimes we impose further re-
strictions requiring models to be well-structured. In this setting the natural
next step is to widen the class of abstracted models. Third, this thesis ex-
plored the features of abstraction as a model transformation. In particular,
we argued which properties of the abstract process model can be guaranteed
given the initial model, e.g., we discussed abstractions that preserve soundness
or are order-preserving. At the same time, we leave open the question which
statements about the initial process model can be made, once we possess an
abstract model.

Further, this thesis has identified a catalog of 15 abstraction use cases.
Subsequently, we have scoped our research to the methods supporting the
use cases of the group “Group 4: Obtaining a Process Quick View”. The use
cases with no developed abstraction methods are the obvious future research
candidates.

The dominating share of our discussion excelled the role of process models
in the abstraction context. In this way, the process instances remain out of
scope. However, the relations between abstract process models and process in-
stances can be quite complex [28, 160, 144]. One can suggest several scenarios
where the relation between abstract model and the instance has to be de-
fined. Consider, for instance, the capabilities of monitoring process instances
by means of abstract process models. This setting opens a new unexplored
research field.

References

1. W. M. P. van der Aalst. A Class of Petri Net for Modeling and Analyzing Busi-
ness Processes. Technical Report 95/26, Eindhoven University of Technology,
Eindhoven, 1995.

2. W. M. P. van der Aalst. Verification of Workflow Nets. In Application and
Theory of Petri Nets 1997, pages 407–426, Berlin, Germany, 1997. Springer.

3. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Manage-
ment. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

4. W. M. P. van der Aalst and T. Basten. Life-Cycle Inheritance: A Petri-Net-
Based Approach. In ICATPN 1997, LNCS, pages 62–81, London, UK, 1997.
Springer.

5. W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business
Process Management: A Survey. In BPM 2003, volume 2678 of LNCS, pages
1–12. Springer, 2003.

6. W. M. P. van der Aalst, N. Lohmann, P. Massuthe, Ch. Stahl, and K. Wolf.
From public views to private views—correctness-by-design for services. In WS-
FM 2007, volume 4937 of LNCS, pages 139–153. Springer, 2007.

7. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

8. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14:5–51, July
2003.

9. W. M. P. van der Aalst and K. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

10. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow
Mining: Discovering Process Models from Event Logs. IEEE Transactions on
Knowledge and Data Engineering, 16(9):1128–1142, 2004.

11. W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: a New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

12. A. V. Aho and J. D. Ullman. Foundations of Computer Science. W. Freeman
and Company, New York, USA, 1995.

13. A. Awad, G. Decker, and M. Weske. Efficient Compliance Checking Using
BPMN-Q and Temporal Logic. In BPM 2008, volume 5240 of LNCS, pages
326–341. Springer, 2008.

144 References

14. A. Awad, S. Smirnov, and M. Weske. Resolution of Compliance Violation in
Business Process Models: A Planning-Based Approach. In OTM Conferences
2009, volume 5870 of LNCS, pages 6–23. Springer, 2009.

15. A. Awad, M. Weidlich, and M. Weske. Visually Specifying Compliance Rules
and Explaining their Violations for Business Processes. Journal of Visual Lan-
guages and Computing, 22(1):30–55, 2011.

16. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.

17. F. Barbier, B. Henderson-Sellers, A. Le Parc-Lacayrelle, and J.-M. Bruel. For-
malization of the Whole-Part Relationship in the Unified Modeling Language.
IEEE Transactions on Software Engineering, 29(5):459–470, 2003.

18. J. Becker, M. Kugeler, and M. Rosemann. Process Management: A Guide for
the Design of Business Processes. Springer, Berlin, Germany, 2003.

19. J. Becker and D. Kuropka. Topic-based Vector Space Model. In BIS 2003,
pages 7–12. GI, 2003.

20. J. Becker, M. Rosemann, and Ch. von Uthmann. Guidelines of Business Process
Modeling. In BPM 2000, volume 1806 of LNCS, pages 30–49. Springer, 2000.

21. G. Berthelot. Checking Properties of Nets using Transformation. In Advances
in Petri Nets 1985, volume 222 of LNCS, pages 19–40, London, UK, 1986.
Springer.

22. G. Berthelot. Transformations and Decompositions of Nets. In Advances in
Petri nets 1986, volume 254 of LNCS, pages 359–376, London, UK, 1987.
Springer.

23. E. Best. Structure Theory of Petri Nets: the Free Choice Hiatus. In Advances
in Petri Nets 1986, volume 254 of LNCS, pages 168–205. Springer, 1986.

24. E. Best, R. R. Devillers, A. Kiehn, and L. Pomello. Concurrent Bisimulations
in Petri Nets. Acta Informatica, 28(3):231–264, 1991.

25. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell, MA, USA, 1981.

26. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal
Analysis of Artifact-Centric Business Process Models. In BPM 2007, volume
4714 of LNCS, pages 288–304. Springer, 2007.

27. K. Bhattacharya, R. Guttman, K. Lyman, F. F. Heath III, S. Kumaran,
P. Nandi, F. Y. Wu, P. Athma, Ch. Freiberg, L. Johannsen, and A. Staudt. A
Model-driven Approach to Industrializing Discovery Processes in Pharmaceu-
tical Research. IBM Systems Journal, 44(1):145–162, 2005.

28. R. Bobrik, Th. Bauer, and M. Reichert. Proviado—Personalized and Config-
urable Visualizations of Business Processes. In EC-Web, pages 61–71, 2006.

29. R. Bobrik, M. Reichert, and T. Bauer. Parameterizable Views for Process
Visualization. Technical Report TR-CTIT-07-37, Centre for Telematics and
Information Technology, University of Twente, Enschede, April 2007.

30. R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In
BPM 2007, volume 4714 of LNCS, pages 88–95, Berlin, 2007. Springer.

31. K. E. Brassel and R. Weibel. A Review and Conceptual Framework of Auto-
mated Map Generalization. International Journal of Geographical Information
Science, 2(3):229–244, 1988.

32. J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Modeling Quality of Service for
Workflows and Web Service Processes. Technical report, University of Georgia,
2002. Web Services.

References 145

33. F. Casati and M.-Ch. Shan. Semantic Analysis of Business Process Executions.
In EDBT 2002, volume 2287 of LNCS, pages 287–296, London, UK, 2002.
Springer.

34. D. K. W. Chiu, S. C. Cheung, S. Till, K. Karlapalem, Q. Li, and E. Kafeza.
Workflow View Driven Cross-Organizational Interoperability in a Web Service
Environment. Information Technology and Management, 5(3–4):221–250, 2004.

35. D. K. W. Chiu, K. Karlapalem, Q. Li, and E. Kafeza. Workflow View Based
E-Contracts in a Cross-Organizational E-Services Environment. Distributed
and Parallel Databases, 12(2–3):193–216, 2002.

36. C. M. Christensen. The Innovator’s Dilemma: When New Technologies Cause
Great Firms to Fail. Harvard Business School Press, Boston, 1997.

37. C. Combi and R. Posenato. Controllability in Temporal Conceptual Workflow
Schemata. In BPM 2009, volume 5701 of LNCS, pages 64–79. Springer, 2009.

38. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri
Nets from Finite Transition Systems. IEEE TC, 47(8):859–882, August 1998.

39. P. Dadam, K. Kuhn, M. Reichert, Th. Beuter, and M. Nathe. ADEPT: Ein
integrierender Ansatz zur Entwicklung flexibler, zuverlässiger, kooperierender
Assistenzsysteme in klinischen Anwendungsumgebungen. In GI Jahrestagung,
pages 677–686, 1995.

40. R. Dapoigny and P. Barlatier. Towards an Ontological Modeling with Depen-
dent Types: Application to Part-Whole Relations. In ER 2009, volume 5829
of LNCS, pages 145–158, Gramado, Brazil, 2009. Springer.

41. T. Davenport. Process Innovation: Reengineering Work through Information
Technology. Harvard Business School Press, Boston, MA, USA, 1993.

42. G. Decker, H. Overdick, and M. Weske. Oryx - Sharing Conceptual Models on
the Web. In ER 2008, volume 5231 of LNCS, pages 536–537. Springer, 2008.

43. J. Dehnert and W. M. P. van der Aalst. Bridging The Gap Between Business
Models And Workflow Specifications. International Journal of Cooperative
Information Systems, 13(3):289–332, 2004.

44. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
New York, NY, USA, 1995.

45. C. Di Francescomarino, A. Marchetto, and P. Tonella. Cluster-based Modu-
larization of Processes Recovered from Web Applications. Journal of Software
Maintenance and Evolution: Research and Practice, 2010.

46. R. M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph Matching Algo-
rithms for Business Process Model Similarity Search. In BPM 2009, LNCS,
pages 48–63, Berlin, 2009. Springer.

47. R. M. Dijkman, M. Dumas, and Ch. Ouyang. Semantics and Analysis of
Business Process Models in BPMN. Information and Software Technology,
50(12):1281–1294, 2008.

48. R. M. Dijkman, M. M. Dumas, B. F. van Dongen, R. Käärik, and J. Mendling.
Similarity of Business Process Models: Metrics and Evaluation. Information
Systems, 36(2):498–516, 2011.

49. R. M. Dijkman, D. A. C. Quartel, and M. J. van Sinderen. Consistency in
Multi-Viewpoint Design of Enterprise Information Systems. Information and
Software Technology, 50(7–8):737–752, 2008.

50. B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek, and W. M. P. van
der Aalst. Verification of the SAP Reference Models using EPC Reduction,
State-Space Analysis, and Invariants. Computers in Industry, 58(6):578–601,
2007.

146 References

51. B. F. van Dongen, J. Mendling, and W. M. P. van der Aalst. Structural
Patterns for Soundness of Business Process Models. In EDOC 2006, pages
116–128. IEEE Computer Society, 2006.

52. M. Dumas, L. Garćıa-Bañuelos, and R. M. Dijkman. Similarity Search of
Business Process Models. IEEE Data Engineering Bulletin, 32(3):23–28, 2009.

53. M. Dumas, L. Garćıa-Bañuelos, A. Polyvyanyy, Y. Yang, and L. Zhang. Ag-
gregate Quality of Service Computation for Composite Services. In ICSOC
2010, volume 6470 of LNCS, pages 213–227. Springer, 2010.

54. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-structures. Part II: State
Spaces of Concurrent Systems. Acta Informatica, 27:343–368, January 1990.

55. R. Eshuis and P. Grefen. Constructing Customized Process Views. Data and
Knowledge Engineering, 64(2):419–438, 2008.

56. J. Esparza. Reduction and Synthesis of Live and Bounded Free Choice Petri
Nets. Information and Computation, 114(1):50–87, 1994.

57. J. Esparza, S. Römer, and W. Vogler. An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

58. D. Fahland and W. M. P. van der Aalst. Simplifying Mined Process Models:
An Approach Based on Unfoldings. In BPM 2011, volume 6896 of LNCS, pages
362–378. Springer, 2011.

59. D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf. Analy-
sis on Demand: Instantaneous Soundness Checking of Industrial Business Pro-
cess Models. Data and Knowledge Engineering, 70(5):448–466, 2011.

60. A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency Handling in Multiperspective Specifications. IEEE Transactions
on Software Engineering, 20(8):569–578, 1994.

61. D. S. Fussell, V. Ramachandran, and R. Thurimella. Finding Triconnected
Components by Local Replacement. SIAM Journal on Computing, 22(3):587–
616, 1993.

62. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow
Management: from Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3:119–153, April 1995.

63. Th. Gschwind, J. Koehler, and J. Wong. Applying Patterns during Business
Process Modeling. In BPM 2008, volume 5240 of LNCS, pages 4–19. Springer,
2008.

64. G. Guizzardi. Modal Aspects of Object Types and Part-Whole Relations and
the de re/de dicto Distinction. In CAiSE 2007, volume 4495 of LNCS, pages
5–20. Springer, 2007.

65. C. W. Günther and W. M. P. van der Aalst. Mining Activity Clusters from
Low-Level Event Logs. Technical Report WP 165, Eindhoven University of
Technology, Eindhoven, 2006.

66. C. W. Günther and W. M. P. van der Aalst. Fuzzy Mining-Adaptive Process
Simplification Based on Multi-perspective Metrics. In BPM 2007, volume 4714
of LNCS, pages 328–343, Berlin, 2007. Springer.

67. C. Gutwenger and P. Mutzel. A Linear Time Implementation of SPQR-Trees.
In Graph Drawing 2001, volume 1984 of LNC, pages 77–90. Springer, 2001.

68. A. Hallerbach, T. Bauer, and M. Reichert. Capturing Variability in Business
Process Models: The Provop Approach. Journal of Software Maintenance,
22(6-7):519–546, 2010.

69. M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for
Business Revolution. HarperBusiness, April 1994.

References 147

70. F. Harary. Graph Theory. Addison-Wesley, 1969.
71. P. Harmon. Business Process Change, Second Edition: A Guide for Business

Managers and BPM and Six Sigma Professionals. Morgan Kaufmann, 2007.
72. J. Hartigan. Clustering Algorithms. John Wiley and Sons, New York, USA,

1975.
73. R. Hauser, M. Friess, J. M. Küster, and J. Vanhatalo. Combining Analysis

of Unstructured Workflows with Transformation to Structured Workflows. In
EDOC 2006, pages 129–140. IEEE Computer Society, 2006.

74. M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic
Business Process Management: A Vision Towards Using Semantic Web Services
for Business Process Management. In ICEBE 2005, pages 535–540. IEEE CS,
2005.

75. J. E. Hopcroft and R. E. Tarjan. Dividing a Graph into Triconnected Compo-
nents. SIAM Journal on Computing, 2(3):135–158, 1973.

76. R. Hull, N. Narendra, and A. Nigam. Facilitating Workflow Interoperation
Using Artifact-Centric Hubs. Service-Oriented Computing, pages 1–18, 2009.

77. J. Hündling. Modellierung von Qualittsmerkmalen fr Services. PhD thesis,
Hasso Plattner Institut, Potsdam, Germany, 2008.

78. T. Jin, J. Wang, N. Wu, M. La Rosa, and A. H. M. ter Hofstede. Efficient and
Accurate Retrieval of Business Process Models through Indexing. In OTM
2010, volume 6426 of LNCS, pages 402–409. Springer, 2010.

79. R. Johnson, D. Pearson, and K. Pingali. The Program Structure Tree: Com-
puting Control Regions in Linear Time. SIGPLAN Not., 29:171–185, June
1994.

80. G. Keller, M. Nüttgens, and A. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report
Heft 89, Veröffentlichungen des Instituts für Wirtschaftsinformatik University
of Saarland, 1992.

81. B. Kiepuszewski, A. H. M. ter Hofstede, and Ch. Bussler. On Structured
Workflow Modelling. In CAiSE 2000, volume 1789 of LNCS, pages 431–445.
Springer, 2000.

82. A. Knoepfel, B. Groene, and P. Tabeling. Fundamental Modeling Concepts:
Effective Communication of IT Systems. John Wiley and Sons, Ltd., 2005.

83. J. Koehler, R. Hauser, J. M. Küster, K. Ryndina, J. Vanhatalo, and M. Wahler.
The Role of Visual Modeling and Model Transformations in Business-driven
Development. Electronic Notes in Theoretical Computer Science, 211:5–15,
2008.

84. M. Kunze, M. Weidlich, and M. Weske. Behavioral Similarity—A Proper Met-
ric. In BPM 2011, volume 6896 of LNCS, pages 166–181. Springer, 2011.

85. D. Kuropka, P. Tröger, S. Staab, and M. Weske. Semantic Service Provisioning.
Springer, 2008.

86. M. La Rosa. Managing Variability in Process-Aware Information Systems. PhD
thesis, Queensland University of Technology, Brisbane, Australia, 2009.

87. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

88. J. M. Lau, C. Iochpe, L. Thom, and M. Reichert. Discovery and Analysis of
Activity Pattern Co-occurrences in Business Process Models. In ICEIS 2009,
pages 83–88, 2009.

148 References

89. R. Laue and J. Mendling. Structuredness and its Significance for Correctness of
Process Models. Information Systems and E-Business Management, 8(3):287–
307, 2010.

90. H. Leopold, J. Mendling, and Hajo A. Reijers. On the Automatic Labeling
of Process Models. In CAiSE 2011, volume 6741 of LNCS, pages 512–520.
Springer, 2011.

91. H. Leopold, S. Smirnov, and J. Mendling. Refactoring of Process Model Ac-
tivity Labels. In NLDB 2010, volume 6177 of LNCS, pages 268–276. Springer,
2010.

92. F. Leymann and D. Roller. Production Workflow—Concepts and Techniques.
Prentice Hall, 2000.

93. C. Li, M. Reichert, and A. Wombacher. Mining Business Process Vari-
ants: Challenges, Scenarios, Algorithms. Data and Knowledge Engineering,
70(5):409–434, 2011.

94. D. Liu and M. Shen. Workflow Modeling for Virtual Processes: an Order-
Preserving Process-View Approach. Information Systems, 28(6):505–532, 2003.

95. Th. W. Malone, K. Crowston, and G. A. Herman. Organizing Business Knowl-
edge: The MIT Process Handbook. The MIT Press, Cambridge, MA, USA, 1st
edition, 2003.

96. P. Massuthe, A. Serebrenik, N. Sidorova, and K. Wolf. Can I Find a Partner?
Undecidability of Partner Existence for Open Nets. Information Processing
Letters, 108(6):374–378, 2008.

97. R.M. McConnell and F. de Montgolfier. Linear-time Modular Decomposition
of Directed Graphs. Discrete Applied Mathematics, 145(2):198–209, 2005.

98. R. B. McMaster and S. K. Shea. Generalization in Digital Cartography. In
Resource Publication of the Association of American Geographers, Washington
D.C., USA, 1992.

99. K. L. McMillan. A Technique of State Space Search Based on Unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

100. A. K. A. De Medeiros, W. M. P. van der Aalst, and C. Pedrinaci. Semantic
Process Mining Tools: Core Building Blocks. In ECIS 2008, pages 1953–1964,
Galway, Ireland, 2008.

101. J. Mendling. Detection and Prediction of Errors in EPC Business Process
Models. PhD thesis, Institute of Information Systems and New Media Vienna
University of Economics and Business Administration, Vienna, Austria, 2007.

102. J. Mendling and W. M. P. van der Aalst. Formalization and Verification of
EPCs with OR-Joins Based on State and Context. In CAiSE 2007, volume
4495 of LNCS, pages 439–453, Trondheim, Norway, 2007. Springer.

103. J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven Process Modeling
Guidelines (7pmg). Information and Software Technology, 52(2):127–136, 2010.

104. J. Mendling, H. A. Reijers, and J. Recker. Activity Labeling in Process
Modeling: Empirical Insights and Recommendations. Information Systems,
35(4):467–482, 2010.

105. J. Mendling, H.A. Reijers, and J. Cardoso. What Makes Process Models Un-
derstandable? In BPM 2007, volume 4714 of LNCS, pages 48–63. Springer,
2007.

106. J. Mendling and C. Simon. Business Process Design by View Integration. In
Business Process Management Workshops 2006, volume 4103 of LNCS, pages
55–64. Springer, 2006.

References 149

107. J. Mendling, H. Verbeek, B. F. van Dongen, W. M. P. van der Aalst, and
G. Neumann. Detection and Prediction of Errors in EPCs of the SAP Reference
Model. Data and Knowledge Engineering, 64(1):312–329, 2008.

108. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541–580, 1989.

109. B. G. Nickerson and H. R. Freeman. Development of a Rule-based System for
Automatic Map Generalization. In ISSDH, pages 537–556, Seattle, Washing-
ton, USA, January 1986.

110. B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification. IEEE
Transactions on Software Engineering, 20(10):760–773, 1994.

111. OASIS. Web Services Business Process Execution Language Version 2.0, April
2007.

112. OMG. Meta Object Facility (MOF) Core Specification, 2.0 edition, January
2006.

113. OMG. Business Process Modeling Notation (BPMN) Version 1.2, January
2009.

114. OMG. Omg unified modeling language (omg uml) 2.3, May 2010.
115. V. Pankratius and W. Stucky. A Formal Foundation for Workflow Composi-

tion, Workflow View Definition, and Workflow Normalization based on Petri
Nets. In APCCM 2005, pages 79–88, Darlinghurst, Australia, 2005. Australian
Computer Society, Inc.

116. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instru-
mentelle Mathematik, Bonn, Germany, 1962.

117. A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas. Structuring Acyclic Pro-
cess Models. In BPM 2010, volume 6336 of LNCS, pages 276–293. Springer,
2010.

118. A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas. Structuring Acyclic Pro-
cess Models. Information Systems, 2011.

119. A. Polyvyanyy, L. Garćıa-Bañuelos, D. Fahland, and M. Weske. Maximal
structuring of acyclic process models. CoRR, abs/1108.2384, 2011.

120. A. Polyvyanyy, S. Smirnov, and M. Weske. Process Model Abstraction: A
Slider Approach. In EDOC 2008, pages 325–331, 2008.

121. A. Polyvyanyy, S. Smirnov, and M. Weske. Reducing Complexity of Large
EPCs. In EPK 2008 GI-Workshop, Saarbrücken, Germany, 11 2008.

122. A. Polyvyanyy, S. Smirnov, and M. Weske. On Application of Structural De-
composition for Process Model Abstraction. In BPSC 2009, pages 110–122,
Leipzig, 2009.

123. A. Polyvyanyy, S. Smirnov, and M. Weske. The Triconnected Abstraction of
Process Models. In BPM 2009, volume 5701 of LNCS, pages 229–244, Ulm,
Germany, 2009. Springer.

124. A. Polyvyanyy, J. Vanhatalo, and H. Völzer. Simplified Computation and
Generalization of the Refined Process Structure Tree. In WS-FM 2010, volume
6551 of LNCS, pages 25–41. Springer, 2011.

125. G. Preuner, S. Conrad, and M. Schrefl. View Integration of Behavior in Object-
Oriented Databases. Data and Knowledge Engineering, 36(2):153–183, 2001.

126. M. Rastrepkina. Managing Variability in Process Models by Structural De-
composition. In BPMN, volume 67 of LNBIP, pages 106–113. Springer, 2010.

150 References

127. M. Reichert and P. Dadam. ADEPTflex-Supporting Dynamic Changes of
Workflows Without Losing Control. Journal of Intelligent Information Sys-
tems, 10(2):93–129, 1998.

128. H. A. Reijers and J. Mendling. Modularity in Process Models: Review and
Effects. In BPM 2008, volume 5240 of LNCS, pages 20–35, Milan, Italy, 2008.
Springer.

129. H. A. Reijers, J. Mendling, and R. M. Dijkman. On the Usefulness of Subpro-
cesses in Business Process Models. BPM Center Report BPM-10-03, BPMcen-
ter.org, 2010.

130. H. A. Reijers, J. H. M. Rigter, and W. M. P. van der Aalst. The Case Handling
Case. International Journal Cooperative Information Systems, 12(3):365–391,
2003.

131. H. A. Reijers and I. T. P. Vanderfeesten. Cohesion and Coupling Metrics for
Workflow Process Design. In BPM 2004, volume 3080 of LNCS, pages 290–305.
Springer, 2004.

132. W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical
Computer Science. An EATCS Series. Springer, 1985.

133. W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer, 1998.

134. M. Rosemann and W. M. P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, 2007.

135. W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Re-
duction Techniques. Information Systems, 25(2):117–134, 2000.

136. G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic
Indexing. Communications of the ACM, 18(11):613–620, 1975.

137. S. E. Schaeffer. Graph Clustering. Computer Science Review, 1(1):27–64, 2007.
138. A.-W. Scheer. ARIS – Modellierungsmethoden, Metamodelle, Anwendungen.

Springer, 4 edition, 2001.
139. K. Schmidt. Controllability of Open Workflow Nets. In EMISA, volume 75 of

LNI, pages 236–249. GI, 2005.
140. A. Sharp and P. McDermott. Workflow Modeling: Tools for Process Improve-

ment and Applications Ddevelopment. Artech House Publishers, 2008.
141. M. Shen and D. Liu. Discovering Role-Relevant Process-Views for Recom-

mending Workflow Information. In DEXA 2003, pages 836–845, 2003.
142. S. Smirnov. Structural Aspects of Business Process Diagram Abstraction. In

International Workshop on BPMN 2009, pages 375–382, Vienna, Austria, July
2009.

143. S. Smirnov, R. M. Dijkman, J. Mendling, and M. Weske. Meronymy-based
Aggregation of Activities in Business Process Models. In ER 2010, volume
6412 of LNCS, pages 1–14. Springer, 2010.

144. S. Smirnov, A. Z. Farahani, and M. Weske. State Propagation in Abstracted
Business Processes. In ICSOC 2011, LNCS. Springer, 2011. to appear.

145. S. Smirnov, H. A. Reijers, and M. Weske. A Semantic Approach for Business
Process Model Abstraction. In CAiSE 2011, volume 6741 of LNCS, pages
497–511. Springer, 2011.

146. S. Smirnov, M. Weidlich, J. Mendling, and M. Weske. Action Patterns in
Business Process Models. In ICSOC/ServiceWave 2009, volume 5900 of LNCS,
pages 115–129. Springer, 2009.

References 151

147. S. Smirnov, M. Weidlich, J. Mendling, and M. Weske. Object-Sensitive Action
Patterns in Process Model Repositories. In Business Process Management
Workshops, volume 66 of LNBIP, pages 251–263. Springer, 2010.

148. A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations.
W. Strahan and T. Cadell, 1776.

149. H. Smith and P. Fingar. Business Process Management (BPM): The Third
Wave. Meghan-Kiffer Press, 2003.

150. H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973.
151. A. Streit, B. Pham, and R. Brown. Visualization Support for Managing Large

Business Process Specifications. In BPM 2005, volume 3649 of LNCS, pages
205–219. Springer, 2005.

152. R. E. Tarjan and J. Valdes. Prime Subprogram Parsing of a Program. In
POPL 1980, pages 95–105, New York, NY, USA, 1980. ACM.

153. R. Uba, M. Dumas, L. Garćıa-Bañuelos, and M. La Rosa. Clone Detection in
Repositories of Business Process Models. In BPM 2011, volume 6896 of LNCS,
pages 248–264. Springer, 2011.

154. J. Vanhatalo, H. Völzer, and J. Koehler. The Refined Process Structure Tree.
In BPM 2008, volume 5240 of LNCS, pages 100–115, Milan, Italy, September
2008. Springer.

155. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In
ICSOC 2007, volume 4749 of LNCS, pages 43–55. Springer, 2007.

156. I. Weber, J. Hoffmann, and J. Mendling. Beyond Soundness: on the Verifica-
tion of Semantic Business Process Models. Distributed and Parallel Databases,
27:271–343, June 2010.

157. M. Weidlich, A. Barros, J. Mendling, and M. Weske. Vertical Alignment of
Process Models - How Can We Get There? In BPMDS 2009, volume 29 of
LNBIP, pages 71–84. Springer, 2009.

158. M. Weidlich, R. M. Dijkman, and J. Mendling. The ICoP Framework: Identi-
fication of Correspondences between Process Models. In CAiSE 2010, volume
6051 of LNCS, pages 483–498. Springer, 2010.

159. M. Weidlich, R. M. Dijkman, and M. Weske. Deciding Behaviour Compatibility
of Complex Correspondences between Process Models. In BPM 2010, volume
6336 of LNCS, pages 78–94. Springer, 2010.

160. M. Weidlich, R. M. Dijkman, and M. Weske. Deciding Behaviour Compatibility
of Complex Correspondences between Process Models. In BPM 2010, volume
6336 of LNCS, pages 78–94. Springer, 2010.

161. M. Weidlich, F. Elliger, and M. Weske. Generalised Computation of Be-
havioural Profiles based on Petri-Net Unfoldings. In WS-FM 2010, volume
6551 of LNCS, pages 101–115. Springer, 2010.

162. M. Weidlich, J. Mendling, and M. Weske. Efficient Consistency Measurement
based on Behavioural Profiles of Process Models. IEEE Transactions on Soft-
ware Engineering, 37(3):410–429, 2011.

163. M. Weidlich, A. Polyvyanyy, J. Mendling, and M. Weske. Efficient Computa-
tion of Causal Behavioral Profiles Using Structural Decomposition. In Petri
Nets 2010, volume 6128 of LNCS, pages 63–83. Springer, 2010.

164. M. Weidlich, S. Smirnov, Ch. Wiggert, and M. Weske. Flexab—Flexible Busi-
ness Process Model Abstraction. In CAiSE Forum 2011, volume 734 of CEUR
Workshop Proceedings, pages 17–24. CEUR-WS.org, 2011.

152 References

165. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer Verlag, 2007.

166. S. K. M. Wong, W. Ziarko, and P. C. N. Wong. Generalized Vector Spaces
Model in Information Retrieval. In SIGIR 1985, pages 18–25, New York, NY,
USA, 1985. ACM.

167. M. Th. Wynn, H. M. W. Verbeek, W. M. P. van der Aalst, A. H. M. ter Hofst-
ede, and D. Edmond. Reduction Rules for YAWL Workflows with Cancellation
Regions and OR-joins. Information and Software Technology, 51(6):1010–1020,
2009.

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Problem Statement
	Research Contributions
	Thesis Structure

	Preliminaries
	Graphs
	Petri Nets
	Process Models
	Process Model Notion
	Process Model Decomposition
	Behavioral Profiles

	Summary

	Business Process Model Abstraction: Theory and Practice
	Instance, Model, and Abstract Model
	Business Process Model Abstraction Framework
	Why
	When
	How

	Properties of Business Process Model Abstraction
	Hierarchical Abstraction
	Order-Preserving Abstraction
	Abstraction Preserving Process Non-Functional Properties

	Catalog of Abstraction Use Cases
	Catalog Design
	Initial Use Cases
	Use Case Validation
	Additional Insights

	Summary

	Structural Methods of Business Process Model Abstraction
	Pattern-Based Methods
	Elementary Abstractions
	Composition of Elementary Abstractions
	Limitations of Pattern-Based Abstraction

	Decomposition-Based Methods
	Discussion
	User Control
	Order Preservation
	Evaluation of Activity Non-Functional Properties
	Abstraction Smoothness
	Limitations of Structural Methods

	Summary

	Discovery of Related Activities in Process Models
	Meronymy-Based Activity Aggregation
	Basic Concepts
	Matching Activities: from Process Models to Meronymy Forest
	Aggregation Candidates Ranking
	Activity Aggregation Mining Algorithm

	Activity Aggregation as Cluster Analysis Problem
	Towards Annotated Process Model
	Activity Clustering using K-means Algorithm

	Evaluation
	Goal and Method
	Meronymy-Based Activity Aggregation
	Activity Aggregation based on Cluster Analysis
	Key Observations

	Discussion
	Summary

	Controlling Control Flow Loss
	Deriving Behavioral Relations from a Process Model
	Construction of Abstract Model Behavioral Profile
	Abstract Process Model Synthesis
	Well-Structured Behavioral Profiles
	Synthesis of a Process Model from a Well-Structured Behavioral Profile

	Software Implementation
	Oryx
	Oryx Mashup Framework
	FLEXAB

	Discussion
	Application Perspective
	Related Work on Process Model Synthesis

	Summary

	Related Work
	Abstraction State of the Art
	Cardoso et al.
	Liu and Shen
	Chiu et al.
	Pankratius and Stucky
	Günther and van der Aalst
	Bobrik et al.
	Eshuis and Grefen
	Polyvyanyy et al.
	Summary

	Potential Abstraction Enablers
	Farther Afield
	Discussion
	Retrospective
	Perspective

	Summary

	Conclusion
	Summary of the Results
	Discussion
	Future Work

	References

