- <
(-3 =

] —
Ty

Evgueniya Dyachenko | Nikolai Tarkhanov

Degeneration of Boundary Layer at
Singular Points

Preprints des Instituts fiir Mathematik der Universitit Potsdam
I (2012) 23






Preprints des Instituts fiir Mathematik der Universitdt Potsdam






Preprints des Instituts fiir Mathematik der Universitidt Potsdam
1 (2012) 23

Evgueniya Dyachenko | Nikolai Tarkhanov

Degeneration of Boundary Layer at Singular Points

Universitatsverlag Potsdam



Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet iiber http://dnb.de abrufbar.

Universitatsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Preprints des Instituts fiir Mathematik der Universitit Potsdam
wird herausgegeben vom Institut fiir Mathematik der Universitit Potsdam.

ISSN (online) 2193-6943

Kontakt:

Institut fir Mathematik

Am Neuen Palais 10

14469 Potsdam

Tel.: +49 (0)331 977 1028

WWW: http://www.math.uni-potsdam.de

Titelabbildungen:

1. Karla Fritze | Institutsgebdude auf dem Campus Neues Palais

2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation
Published at: http://arxiv.org/abs/1105.5089

Das Manuskript ist urheberrechtlich geschiitzt.

Online veroffentlicht auf dem Publikationsserver der Universitdt Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/6013/

URN urn:nbn:de:kobv:517-opus-60135
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60135


mailto:verlag@uni-potsdam.de

DEGENERATION OF BOUNDARY LAYER AT SINGULAR
POINTS

E. DYACHENKO AND N. TARKHANOV

ABSTRACT. We study the Dirichlet problem in a bounded plane domain for
the heat equation with small parameter multiplying the derivative in t. The
behaviour of solution at characteristic points of the boundary is of special
interest. The behaviour is well understood if a characteristic line is tangent to
the boundary with contact degree at least 2. We allow the boundary to not only
have contact of degree less than 2 with a characteristic line but also a cuspidal
singularity at a characteristic point. We construct an asymptotic solution of
the problem near the characteristic point to describe how the boundary layer

degenerates.
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INTRODUCTION

Discontinuities and quick transitions occur in various branches of physics. The
mathematical questions involved are also rather classical. However, they are quite
alive today and they will remain so for some time, cf. [Fri55]. Quick transitions
befall frequently in situations in which one perhaps would not speak of a disconti-
nuity. A case in point is Prandtl’s ingenious concept of the boundary layer, which
he presented at the 1904 Leipzig Mathematical Congress, see [Pra05]. This is a
narrow layer along the surface of a body, traveling in a fluid, across which the flow
velocity changes quickly. The paper began the study of fluid dynamical boundary
layers by analysing viscous incompressible flow past an object as the Reynolds num-
ber becomes infinite. Friedrichs called asymptotic all those phenomena which show
discontinuities, quick transitions, nonuniformities, or their incongruities resulting
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2 E. DYACHENKO AND N. TARKHANOV

from approximate description. In the mathematical treatment of such phenom-
ena, physicists have developed systematic mathematical procedures. In such an
approach one may introduce an appropriate quantity with respect to powers of
a parameter, €. This expansion is to be set up in such a way that the quantity
is continuous for € > 0 but discontinuous for ¢ = 0. Naturally, a series expan-
sion with this character must have peculiar properties. In general these series do
not converge. The use of a series which does not necessarily converge is a typi-
cal instance of a “formal procedure.” The idea of giving validity to these formal
series goes back at least as far as Poincaré [Poi86]. He proved that these formal
series represent asymptotic expansions of actual solutions. Thus it became clear
in which way formal series solutions may be regarded as “valid.” Let us explain
asymptotic phenomena in connection with singular perturbation problems. In a
singular perturbation problem one is concerned with a differential equation of the
form A(e)u. = f. with initial or boundary conditions B(g)u. = g, where ¢ is a
small parameter. The distinguishing feature of this problem is that the orders of
A(e) and B(e) for € # 0 are higher than the orders of A(0) and B(0), respectively.
The differential problem in question is referred to as a perturbed problem when
€ # 0 and a degenerate problem when ¢ = 0. We are interested not in solutions
of this problem for each fixed value of the parameter ¢, but in the dependence of
such solutions on this parameter, in particular, in a neighbourhood of ¢ = 0. A
discussion of the role of singular perturbation phenomena in mathematical physics
can be found in [KC81]. Some difficulties are inherent in singular perturbation
problems. Solutions of the degenerate problem will not in general be as smooth as
solutions of the perturbed problem. Moreover, solutions of the degenerate problem
usually will not satisfy as many initial or boundary conditions as do solutions of the
perturbed problem. Hence, if solutions of the perturbed problem are to converge to
solutions of the degenerate problem, the notion of convergence will probably have
to be rather weak. Due to the “loss” of initial or boundary data it may also happen
that solutions of the perturbed problem converge in a stronger sense in the interior
of the underlying domain, than in the vicinity of the boundary. This is precisely the
boundary layer phenomenon observed by Prandtl. There is by now a vast amount
of literature on singular perturbation problems for ordinary differential equations,
both linear and nonlinear. An extensive bibliography of this literature is contained
in [Was66]. There is also a considerable amount of literature on singular pertur-
bation problems for partial differential equations. A comprehensive theory of such
problems was initiated by the remarkable paper of Vishik and Lyusternik [VL57].
They obtained asymptotic expressions for solutions of the perturbed problem for
linear equations using boundary layer techniques. In this paper the main condition
on the dependence of A(e) on a small parameter was formulated and the asymp-
totics as e — 0 of the solution of the Dirichlet problem was constructed. [VL57]
also contains a sizable bibliography. In [Hue60], Huet published several theorems
on convergence in singular perturbation problems for linear elliptic and parabolic
partial differential equations. One particular feature distinguishes this paper from
those previously mentioned. This is that convergence theorems are first proven in
a Hilbert space setting and then applied to the differential problems as opposed to
starting directly with the differential equations. In the elliptic case, theorems on lo-
cal convergence and convergence of tangential derivatives at the boundary are also
proven. The work [Hue60] is fundamental to the considerations in [Gre68] aimed
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at obtaining rate of convergence estimates for solutions of singular perturbations of
linear elliptic boundary value problems. The problem can be described as follows.
Let X be a compact smooth manifold and let € be a positive real parameter. Con-
sider two elliptic boundary value problems on X, (e A1) + Ag)u. = f and Agu = f,
where the order of A; is greater than the order of Ay. The problem is to determine
in what sense u. converges to u on X as € — 0 and to estimate the rate of conver-
gence. In the 1970s pseudodifferential problems with small parameter were studied
in [Dem75] and [Esk73]. For boundary value problems of general type the theory of
singular perturbations was developed in the 1980s by Frank, see [Fra90]. In [Naz81]
the Vishik-Lyusternik method is developed for general elliptic boundary value prob-
lems in domains with conical points. However, this paper falls short of providing
explicit Shapiro-Lopatinskii type condition of ellipticity with small parameter, this
latter is replaced by a priori estimates for corresponding problems for ordinary
differential equations on the half-axis. In [Vol06], Volevich completed the theory
of differential boundary value problems with small parameter by formulating the
Shapiro-Lopatinskii type ellipticity condition and proving that it is equivalent to a
priori estimates uniform in the parameter. It should be noted that paper [Vol06]
restricts itself to operators with constant coefficients in the half-space. Asymptotic
analysis includes two basic steps. The first is the actual construction of asymptotics.
One has to choose the form in which the formal asymptotic expansion of a solution
is to be sought, and specify the way of constructing this expansion. The second
step includes the justification of asymptotics, i.e., a proof that the formal asymp-
totic expansion is an asymptotic solution indeed. This is achieved by estimating
the discrepancy. Matching of asymptotic expansions of solutions of boundary value
problems is presented in the book [[1’92]. The purpose of our paper is to describe
the boundary layer near a characteristic point of the boundary. We restrict the dis-
cussion to the Dirichlet problem for the heat equation in a bounded plane domain
G which contains a small parameter multiplying the time derivative. The boundary
points at which the tangent is orthogonal to the time axis are characteristic. The
boundary of G is moreover allowed to have singularities at characteristic points.
We construct an explicit asymptotic solution of the problem in a neighbourhood
of a characteristic point. It has the form of a Puiseux series in fractional powers
of t/e up to an exponential factor. Our asymptotic formula demonstrates rather
strikingly that the boundary layer degenerates at a characteristic point unless the
contact degree of the boundary and a characteristic line is sufficiently large (at least
2).

1. BLOW-UP TECHNIQUES

Consider the first boundary value problem for the heat equation in a domain
G C R? of the type of Figure 1. The boundary of G is assumed to be C* except
for a finite number of characteristic points. At points like P; and P the boundary
curve possesses a tangent which is horizontal, hence 9§ is characteristic for the heat
equation at such points. The characteristic touches the boundary with the degree
> 2, which is included in the treatise [Kon66]. At points like P, the boundary curve
is not smooth but it touches smoothly a characteristic from below and above. Such
points are therefore cuspidal singularities of the boundary, explicit treatable cases
have been studied in [AB96].
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Py

P Py
Ps

P3=(zo0,t0) t—to=|z—z0|”
xT

F1Gure 1. Typical domain.

In this paper we restrict our discussion to characteristic points like Ps and Ps.
These are cuspidal singularities of the boundary curve which touches smoothly a
vertical line at P3 and P5. Thus, the boundary meets a characteristic at Ps and
Ps at contact degree < 2. The study of regularity of such points for solutions of
the first boundary value problem for the heat equation goes back at least as far as
[Gev13]. The classical approach of [Gev13] rests on potential theory. A modern
approach to studying boundary value problems in domains with singular points is
based on the so-called blow-up techniques, cf. [RST00]. In [AT12] it was applied to
the first boundary value problem for the heat equation in domains with boundary
points like P3 and P5 to get both a regularity theorem and the Fredholm property
in weighted Sobolev spaces.

The first boundary value problem for the heat equation in G is formulated as
follows: Write X for the set of all characteristic points Py, P, ... on the boundary
of G. Given functions f in G and uy on G \ ¥, find a function v on G \ ¥ which
satisfies ) . fom g

EUp — Uy, = in G,

u = wug at 0G\ X, (1.1)
where ¢ € (0, 0] is a small parameter. By the local principle of Simonenko [Sim65],
the Fredholm property of problem (1.1) in suitable function spaces is equivalent to
the local invertibility of this problem at each point of the closure of G. Here we
focus upon the points like Ps.

Suppose the domain G is described in a neighbourhood of the point Ps = (xg, to)
by the inequality

t—1to > |$—£L'Q|p, (12)
where p is a positive real number. There is no loss of generality in assuming that
P is the origin and |z — | < 1.

We now blow up the domain G at P; by introducing new coordinates (w, r) with
the aid of "

x = t/Puw,

L= er (1.3)
where |w| < 1 and r € (0,1/¢). Tt is clear that the new coordinates are singular at
r = 0, for the entire segment [—1, 1] on the w-axis is blown down into the origin by
(1.3). The rectangle (—1,1) x (0,1/e) transforms under the change of coordinates
(1.3) into the part of the domain G nearby Ps lying below the line ¢ = 1. Note
that for ¢ — 0 the rectangle (—1,1) x (0,1/¢) stretches to the whole half-strip
(—=1,1) x (0, 00).
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In the domain of coordinates (w,r) problem (1.1) reduces to an ordinary dif-
ferential equation with respect to the variable r with operator-valued coefficients.
More precisely, under transformation (1.3) the derivatives in ¢ and x change by the
formulas

Ou  Ou 1w du

ot T or rp Ow’
o1
or  (er)l/p 0w’

and so (1.1) transforms into
1
U - G UL, - T‘H% U, = 19F in (=1,1) x (0,1/e), 14
U = Uy at {x1}x(0,1/e),

where U(w, r) and F(w,r) are pullbacks of u(z,t) and f(z,t) under transformation
(1.3), respectively, and
Q=2
p
We are interested in the local solvability of problem (1.4) near the edge r = 0
in the rectangle (—1,1) x (0,1/¢). Note that the ordinary differential equation
degenerates at 7 = 0, since the coefficient /7 of the higher order derivative in 7
vanishes at » = 0. For the parameter values € > 0, the exponent @ is of crucial
importance for specifying the ordinary differential equation. If p = 2 then it is a
Fuchs-type equation, these are also called regular singular equations. The Fuchs-
type equations fit well into an algebra of pseudodifferential operators based on the
Mellin transform. If p > 2, then the singularity of the equation at r = 0 is weak and
so regular theory of finite smoothness applies. In the case p < 2 the degeneracy at
r = 0 is strong and the equation can not be treated except by the theory of slowly
varying coefficients [RST00].

2. FORMAL ASYMPTOTIC SOLUTION

To determine appropriate function spaces in which a solution of problem (1.4)
is sought, one constructs formal asymptotic solutions of the corresponding homo-
geneous problem. That is

1
TQU;—E—QU:)’M—TQA%UL = 0 in (=1,1) x (0,00),
U(£l,r) = 0 on (0,00).

We first consider the case p # 2. We look for a formal solution to (2.1) of the
form

(2.1)

Ulw,r) =D V(w,r), (2.2)

where S is a differentiable function of » > 0 and V' expands as a formal Puiseux
series with nontrivial principal part

1 o« :
V(w,r) = i Z Vi_n(w) r,
3=0

the complex exponent N and real exponent ¢ have to be determined. Perhaps
the factor 7~V might be included into the definition of exp S as exp(—eN Inr),
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however, we prefer to highlight the key role of Puiseux series. Substituting (2.2)
into (2.1) yields

1
SV V) - g Vi - PQ 1Yy — 0 i (=1,1) % (0, 00),
’ p
V(£l,7) = 0 on (0,00).
In order to reduce this boundary value problem to an eigenvalue problem we

require the function S to satisfy the eikonal equation r€S’ = X with a complex
constant A. This implies

rl=@

1-Q

up to an inessential constant to be included into a factor of exp.S. In this manner
the problem reduces to

S(r)y=X

1 w
Qy/!' _ — yr _ Q-1 _ : _
re V. 0 Viw—T pr = =MV in (=1,1) x (0,00), (2.3)
V(£l,r) = 0 on (0,00).
Q-1
Ife= A for some natural number &, then
rOV = Y (- N—k)Vion g0,
j=k
Vi = D ViU,
; =~
POV = STV G,
Jj=k

as is easy to check. On substituting these equalities into (2.3) and equating the
coeflicients of the same powers of r we get two collections of Sturm-Liouville prob-
lems

—E%ij”_N+/\1/j_N = 0 in (=1,1), (2.4)
Viecy = 0 at F1,
for j=0,1,...,k—1, and
Vi = SV =i =N =R)Viexe i (-1,1)
‘/j—N = 0 at $1,
(2.5)
for j =mk,mk+1,...,mk+ (k — 1), where m takes on all natural values.

Given any j = 0,1,...,k — 1, the Sturm-Liouville problem (2.4) has obviously

simple eigenvalues
1 2
Ap=—— (zn)
eQ\2

for n = 1,2,..., a nonzero eigenfunction corresponding to A, being sin gn(w +1).
It follows that -
Vi_n(w) = ¢j—n sin §n(w +1), (2.6)

forj =0,1,...,k—1, where c¢;_n are constant. Without restriction of generality we
can assume that the first coefficient V_ in the Puiseux expansion of V is different
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from zero. Hence, V;_n = c;_nV_n for j = 1,...,k—1. For simplicity of notation,
we drop the index n.
On having determined the functions V_u, ..., Vk_1_n, we turn our attention to

problems (2.5) with j = k,...,2k — 1. Set

w .
fi-n = » Vi n_g—e(f—N—k)Vi_n_r,

then for the inhomogeneous problem (2.5) to possess a nonzero solution V;_y it is
necessary and sufficient that the right-hand side f;_n be orthogonal to all solutions
of the corresponding homogeneous problem, to wit V_y. The orthogonality refers
to the scalar product in L?(—1,1). Let us evaluate the scalar product (f;_n, V_n).
We get

(fi-N:VoN) = ¢j-N—k (% WV, Von) —e(i = N — k) (Von, V—N))

and

1
@V N Voen) = @lVanl?| | = (Vo Von) = (Vew,wV. )

= _(V—Nav—N) - (WVLNav—N)a

the latter equality being due to the fact that V_y is real-valued and vanishes at
+1. Hence,

(wViNaV*N) = (V*NaV*N)

1
2
and
1 .
(fiwVow) = —eoni (o +eG =N =R)(Vow. Vow) - (20)
forj=k,...,2k—1.
Since V_n # 0, the condition (f;j_n,V_n) = 0 fulfills for j = k if and only if
1
N=—. 2.8
Under this condition, problem (2.5) with j = k is solvable and its general solution
has the form

Vi-n = Vi—no +c-nNV_n,

where Vi_n is a particular solution of (2.5) and cx,_n an arbitrary constant.
Moreover, for (fj—n,V_n) = 0 to fulfill for j = k +1,...,2k — 1 it is necessary

and sufficient that ¢;_ny = ... =cp_1_ny =0, 1.e., all of Vi_n, ..., Vr_1_n vanish.
This in turn implies that fry1-nv = ... = fop—1-ny =0, whence V;,_n =c¢;_nV_nN
for all j = k+1,...,2k — 1, where c;_n are arbitrary constants. We choose the
constants cx_n, ..., cop—1 in such a way that the solvability conditions of the next

k problems are fulfilled.
More precisely, we consider the problem (2.5) for j = 2k, the right-hand side
being

w w
ka,N = (; Vk/fN,O — e(k—N)Vk,Nﬁo) —|—Ck,N(E VLN —e(k—N)V,N)

- (% Vi_wo = ek = N)Vieeno) + con (fion — ek Vo).
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Combining (2.7) and (2.8) we conclude that
(fka — ¢k VfN, VfN) = —¢k (VfN, VfN)
(1-Q)(Von,Von)

is different from zero. Hence, the constant cx_n can be uniquely defined in such
a way that (for—n,V_n) = 0. Moreover, the functions fogt1-n,..., f3k—1-N are
orthogonal to V_y if and only if cxy1-ny = ... = cop—1-n = 0. It follows that
V;_n vanishes for each j =k +1,...,2k - 1.

Continuing in this fashion we construct a sequence of functions V;_n(w, ¢), for
j = 0,1,..., satisfying equations (2.4) and (2.5). The functions V;_n(w,¢) are
defined uniquely up to a common constant factor c_y. They depend smoothly
on the parameter e?. Moreover, V;_x vanishes identically unless j = mk with
m =0,1,.... Therefore,

1 = emk
V(w,re) = i Z Vink—n(w, &) 7

m=0
1 -
= Q—/4 Z Vm (w, E) T(Qil)m
r
m=0

is a unique (up to a constant factor) formal asymptotic solution of problem (2.3)
corresponding to A = A,.

Theorem 2.1. Let p # 2. Then an arbitrary formal asymptotic solution of homo-
geneous problem (2.1) has the form

e = m(w, €)
U(w,re) = a7a OxP ()\ 1 —Q) mzzo —Q)ym
. . 1 /m \2
where \ is one of eigenvalues N\, = —— (—n) .
e@\2
Proof. The theorem follows readily from (2.2). O

In the original coordinates (z,t) close to the point P in G the formal asymptotic
solution looks like

o= () oo (g () S ia(r) () o

fore >0. If 1—Q > 0, i.e., p > 2, expansion (2.9) behaves in much the same way as
boundary layer expansion in singular perturbation problems, since the eigenvalues
are all negative. The threshold value p = 2 is a turning contact order under which
the boundary layer degenerates.

3. THE EXCEPTIONAL CASE p = 2

In this section we consider the case p = 2 in detail. For p = 2, problem (2.1)
takes the form
1
rUL - U~ 2 U 0 in (=1,1) x (0,00),
-,

U(xl,r) = 0 on (0,00). G
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The problem is specified as Fuchs-type equation on the half-axis with coefficients
in boundary value problems on the interval [—1,1]. Such equations have been well
understood, see [Esk80] and elsewhere.

If one searches for a formal solution to (3.1) of the form U(w,r) = 3" V(w,r),
then the eikonal equation 7S’ = X gives S(r) = Alnr, and so %" = r* where A
is a complex number. It makes therefore no sense to looking for V(w,r) being a
formal Puiseux series in fractional powers of . The choice ¢ = (Q —1)/k no longer
works, and so a good substitute for a fractional power of r is the function 1/Inr.
Thus,

Inr

o 1 j—N
Viw,r) =Y Vin(@) ()
j=0

has to be a formal asymptotic solution of

1

PV - SV - %VUL = AV in (=1,1) x (0,00),
o W
V(zl,r) = 0 on (0,00),

N being a nonnegative integer. Substituting the series for V(w, ) into these equa-
tions and equating the coefficients of the same powers of Inr yields two collections
of Sturm-Liouville problems

1 " W _ .
_giN—gV,N—i—)\V_N = 0 in (-1,1), (3.2)
Voy = 0 at =1,
for 7 =0, and
—EV»” ~ Yy + AV = (j—-N-1)V; in (—-1,1)
c j—N 2 j—N j—N — J j—N-—-1 3 ’ (33)
V}‘_N = 0 at $1,
for 7 > 1.

Problem (3.2) has a nonzero solution V_y if and only if A is an eigenvalue of the
operator

1, w
V= —vU + =

€ 2
whose domain consists of all functions v € H?(—1,1) vanishing at 1. Then,
equalities (3.3) for j = 1,..., N mean that V_x1, ..., Vj are actually root functions
of the operator corresponding to the eigenvalue A. In other words, V_n,..., Vp is

a Jordan chain of length N + 1 corresponding to the eigenvalue A\. Note that
for j = N + 1 the right-hand side of (3.3) vanishes, and so Vi, Va,... is also a
Jordan chain corresponding to the eigenvalue A. This suggests that the series
breaks beginning at j = N + 1. Moreover, a familiar argument shows that problem

(3.2) has eigenvalues
1 2 1
b= o)
e\2 €

for n =1,2,..., which are simple if ¢ is small enough. Hence it follows that N =0
and

Vo(w,e) = ¢o sin gn(w +1)+0(1) (3.4)

for e — 0.
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Theorem 3.1. Suppose p = 2. Then an arbitrary formal asymptotic solution of
homogeneous problem (2.1) has the form U(w,r, &) = Vo(w, €), where X is one of
the eigenvalues Ay, .

Proof. The theorem follows immediately from the above discussion. O

In the original coordinates (x,t) near the point Ps in G the formal asymptotic
solution proves to be

u(z,t,e) =c (%)7)\ Vo(tl%,a)

for € > 0. This expansion behaves similarly to boundary layer expansion in sin-
gular perturbation problems, since the eigenvalues are negative provided that ¢ is
sufficiently small.

4. DEGENERATE PROBLEM

If ¢ = 0 then the homogeneous problem corresponding to local problem (1.4)
degenerates to

Uo/.)/,w 0 in (_17 1) X (0700)7
U 0 at {£1} x (0,00).
Substituting the general solution U(w,r) = Uy (r)w + Up(r) of the differential equa-
tion into the boundary conditions implies readily U = 0 in the half-strip, i.e., (4.1)
has only zero solution.

(4.1)

Corollary 4.1. If p > 2 then the formal asymptotic solution of (2.1) converges to
zero uniformly in t > 0 bounded away from zero, as € — 0. Moreover, for p > 2 it
vanishes exponentially.

Proof. This follows immediately from Theorems 2.1 and 3.1. O

On the contrary, if p < 2 then the formal asymptotic solution of problem (2.1)
hardly converges, as € — 0.

5. GENERALISATION TO HIGHER DIMENSIONS

The explicit formulas obtained above generalise easily to the evolution equation
related to the bth power of the Laplace operator in R™, where b is a natural number.
Consider the first boundary value problem for the operator €9;+(—A)? in a bounded
domain G C R"*!. Note that the choice of sign (—1)° is explained exceptionally
by our wish to deal with parabolic (not backward parabolic) equation. By € > 0 is
meant a small parameter.

The boundary of G is assumed to be C* except for a finite number of charac-
teristic points. These are those points of 0G at which the boundary touches with a
hyperplane in R™*! orthogonal to the ¢-axis. As above, we restrict our attention to
analysis of the Dirichlet problem near a characteristic point like P3 or Ps in Figure
1.

The first boundary value problem for the evolution equation in G is formulated
as follows: Let X be the set of all characteristic points of the boundary of G. Given
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any functions f in G — R wug,uy,...,up_1 on 9G \ ¥, find a function u on G\ ¥
satisfying
euj+ (=A)P’u = f in G, (5.1)
dHu = wu; at 9G\ X, '
for j =0,1,...,b— 1, where 0, is the derivative along the outward unit normal

vector of the boundary. We focus upon a characteristic point P3 of the boundary
which is assumed to be the origin in R?*1.
Suppose the domain G is described in a neighbourhood of the origin by the
inequality
t> o), (5.2)

where § is a smooth function of x € R™ \ 0 homogeneous of degree p > 0. We blow
up the domain G at Ps by introducing new coordinates (w,r) € D x (0,1/¢) with
the aid of

r = t/Pw,

t = er, (5:3)

where D is the domain in R™ consisting of those w € R™ which satisfy f(w) < 1.
Under this change of variables the domain G nearby P; transforms into the half-
cylinder D x (0, 00), the cross-section D x {0} blowing down into the origin by (5.3).
Note that for e — 0 the cylinder D x (0,1/¢) stretches into the whole half-cylinder
D x (0,00).

In the domain of coordinates (w,r) problem (5.1) reduces to an ordinary differ-
ential equation with respect to the variable r» with operator-valued coefficients. It
is easy to see that under transformation (5.3) the derivatives in ¢ and = change by
the formulas

_ !/
Yor = (er)t/p oo

- 0
for k=1,...,n, where (w,u,)) = E wka—u stands for the Euler derivative. Thus,
Wk
k=1

(5.1) transforms into

1

1
rQU! 4 ol (—AL)'U — ErQ—l (w,U)) = r2F in D x(0,1/e),

_ (5.4)
U = U; at 90D x(0,1/e)

for j =0,1,...,b— 1, where U(w, r) and F(w,r) are pullbacks of u(z,t) and f(x,t)
under transformation (5.3), respectively, and

Q=2
p

We are interested in the local solvability of problem (5.4) near the base r = 0 in
the cylinder D x (0,1/¢). Note that the ordinary differential equation degenerates
at r = 0, since the coefficient 7@ of the higher order derivative in r vanishes at
r = 0. The theory of [RSTO00] still applies to characterise those problems (5.4)
which are locally invertible.
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To describe function spaces which give the best fit for solutions of problem (5.4),
one constructs formal asymptotic solutions of the corresponding homogeneous prob-
lem. That is

1 1
TQU;—l—E—Q(—Aw)bU—I—?rQ_l (w,U) = 0 in D x(0,00),
02U = 0 on 0D x(0,00)

(5.5)

for all |a] <b-—1.

We assume that p # 2b. Similar arguments apply to the case p = 2b, the only
difference being in the choice of the Ansatz, see Section 3. We look for a formal
solution to (5.5) of the form U(w,r) = %) V(w,r), where S is a differentiable
function of r > 0 and V' expands as a formal Puiseux series with nontrivial principal
part

1 & ,
V(w,r) = i Z Vien(w) r,
3=0

where N is a complex number and ¢ a real exponent to be determined.

On substituting U(w,r) into (2.1) we extract the eikonal equation r@S’ = X for
the function S(r), where X is a (possibly complex) constant to be defined. This
implies

S(r) = A2
(T) - 1 _ Q
up to an inessential constant factor. In this way the problem reduces to
1 1
eV, + o] (—A,)V — ETQA (w,V!) = =XV in D x(0,00), (5.6)
oV =0 on 9D x (0,00)

for all |a] <b-—1.

Analysis similar to that in Section 2 shows that a right choice of eise = (Q—1)/k
for some natural number k. On substituting the formal series for V(w, ) into (5.6)
and equating the coefficients of the same powers of r we get two collections of

problems
1

b . . — ]
) (=A)’Vi_ny+AV;_y = 0 in D, (5.7)
0% ‘/j—N = 0 at 0D
for all |a] <b—1, where j =0,1,...,k—1, and
1 1 . .

o) (=A)’V; N+ AV Ny = p (W, Vi nyp)—e(j—N—-k)Vjn in D,

0% ‘/j—N = 0 at 9D
(5.8)

for all |a] <b—1, where j =k, k+1,...,2k — 1, and so on.

Given any j =0,1,...,k — 1, problem (5.7) is essentially an eigenvalue problem
for the strongly nonnegative operator (—A)® in L?(D) whose domain consists of all
functions of H2*(D) vanishing up to order b—1 at dD. The eigenvalues of the latter
operator are known to be all positive and form a nondecreasing sequence A}, A\, . ..

which converges to co. Hence, (5.7) admits nonzero solutions only for
1

where n =1,2,....
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In general, the eigenvalues {\/ } fail to be simple. The generic simplicity of the
eigenvalues of the Dirichlet problem for self-adjoint elliptic operators with respect
to variations of the boundary have been investigated by several authors, see [PP08]
and the references given there. We focus on an eigenvalue A/, of multiplicity 1, in
which case the formal asymptotic solution is especially simple. By the above, this
condition is not particularly restrictive.

If A = A, there is a nonzero solution e, (w) of this problem which is determined
uniquely up to a constant factor. This yields

View (@) = ¢jow enlw), (5.9)

for j =0,1,...,k—1, where ¢;_n are constant. Without restriction of generality we
can assume that the first coefficient V_ in the Puiseux expansion of V is different
from zero. Hence, V;_n =c;_nV_n for j =1,...,k—1. For simplicity of notation,
we drop the index n.
On taking the functions V_u, ..., Vx_1_n for granted, we now turn to problems
(2.5) with j =k,...,2k — 1. Set
1

fi-n = ]; (vajLka) —e(j—N—k)Vi_n—k,

then for the inhomogeneous problem (5.8) to admit a nonzero solution V;_p it is
necessary and sufficient that the right-hand side f;_n be orthogonal to all solutions
of the corresponding homogeneous problem, to wit V_y. The orthogonality refers
to the scalar product in L?(—1,1). Let us evaluate the scalar product (f;_n, V_n).
We get

(3 V) = v (o (V) Vo) = o0 = N = ) (Vo Vo))

and, by Stokes’ formula,

((wv ViN)a V*N)

n 8 .
N2 ds — / _ N _nN)d
[ v as =3 [ Vg

= —nl[Von|? = ((w, VIx), Von),
the latter equality being due to the fact that V_y is real-valued and vanishes at
0D. Hence,
n
(@, V) Von) = =5 Vo

and n
(fi-n,Von) = —¢j-n—k (2—p
forj=k,...,2k—1.

Since V_n # 0, the condition (f;j_n,V_n) = 0 fulfills for j = k if and only if

—i—e(j—N—k)) Vo2 (5.10)

n

N = o (5.11)
Under this condition, problem (5.8) with j = k is solvable and its general solution
has the form

Vien = Vie_no + c—~NV_n,

where Vi_no is a particular solution of (5.8) and c;_n an arbitrary constant.
Moreover, for (fj—n,V_n) = 0 to fulfill for j = k +1,...,2k — 1 it is necessary
and sufficient that c;_ny = ... =cp_1_ny =0, 1.e., all of Vi_n,...,Vr_1_n vanish.
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This in turn implies that fr41—n = ... = for—1—n = 0, whence V;_ny =¢;_nV_n
for all j = k+1,...,2k — 1, where c;_n are arbitrary constants. We choose the
constants cx_n, ..., cop—1 in such a way that the solvability conditions of the next

k problems are fulfilled.
More precisely, we consider the problem (5.8) for j = 2k, the right-hand side
being

fgk_N = (% (w, Vk/—N,O) — e(k—N)Vk_N)Q) + Cr—N (%(w, VLN) - e(k—N)V_N)

1
= (5(“7 Vi_no) — e(k—N)Vk—N,o) +ck-nN (fk—N - ekV—N)'
Combining (5.10) and (5.11) we conclude that

(fr-n —e¢kV_N,V_N) = —ek(V_n,V_n)
(1-Q) (Von,V_n)

is different from zero. Hence, the constant cx_n can be uniquely defined in such
a way that (for—n,V_n) = 0. Moreover, the functions fort1-n,--., f3k—1-N are
orthogonal to V_p if and only if cxy1-ny = ... = coxr—1—n = 0. It follows that
V;_n vanishes for each j =k +1,...,2k - 1.

Continuing in this manner we construct a sequence of functions V;_y(w,¢), for
j = 0,1,..., satisfying equations (5.7) and (5.8). The functions V;_n(w,¢) are
defined uniquely up to a common constant factor c_y. They depend smoothly
on the parameter e?. Moreover, V;_py vanishes identically unless j = mk with
m =0,1,.... Therefore,

1 L)
V(W7T75) = TR—N Z mGfN(w,E) Tcmk

m=0
o

1 .
= Z Vin(w, g) r@-m

rn/2p
m=0

is a unique (up to a constant factor) formal asymptotic solution of problem (5.6)
corresponding to A = \,. Summarising, we arrive at the following generalisation of
Theorem 2.1.

Theorem 5.1. Let p # 2. Then an arbitrary formal asymptotic solution of homo-
geneous problem (5.5) has the form

c
U(w,r,e) = —j2p CXP (Al—Q

1

where X\ is one of eigenvalues A\, = __Q/\:r
€

Thus, the construction of formal asymptotic solution U of general problem (5.1)
follows by the same method as in Section 2.

In the original coordinates (z,t) close to the point P in G the formal asymptotic
solution looks like

=5 o (2550 S (@) e
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fore >0 If1-@Q >0, ie, p > 2b, expansion (5.12) behaves in much the
same way as boundary layer expansion in singular perturbation problems, since the
eigenvalues are all negative. The threshold value p = 2b is a turning contact order
under which the boundary layer degenerates.

The computations of this section extend obviously both to eigenvalues A, of
higher multiplicity and arbitrary self-adjoint elliptic operators A(x, D) in place
of (—A)®. When solving nonhomogeneous equations (5.8), one chooses the only
solution which is orthogonal to all solutions of the corresponding homogeneous
problem (5.7). This special solution actually determines what is known as Green
operator. However, formula (5.12) becomes less transparent. And so we omit the
details.
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