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Contemporary Mathematics

Renormalized Integrals and a Path Integral Formula for the Heat
Kernel on a Manifold

Christian Bär

Dedicated to Prof. Steven Rosenberg on the occasion of his sixtieth birthday

ABSTRACT. We introduce renormalized integrals which generalize conventional measure

theoretic integrals. One approximates the integration domain by measure spaces and de-

fines the integral as the limit of integrals over the approximating spaces. This concept is

implicitly present in many mathematical contexts such as Cauchy’s principal value, the

determinant of operators on a Hilbert space and the Fourier transform of an Lp-function.

We use renormalized integrals to define a path integral on manifolds by approxima-

tion via geodesic polygons. The main part of the paper is dedicated to the proof of a path

integral formula for the heat kernel of any self-adjoint generalized Laplace operator acting

on sections of a vector bundle over a compact Riemannian manifold.

1. Introduction

Path and functional integrals are an important tool in quantum field theory but in many

cases a solid mathematical foundation is still lacking. In some cases one knows that the

desired integral cannot be realized by a conventional integral because the necessary mea-

sure cannot exist. We propose a mathematical framework that might be able to deal with

this difficulty. We call it renormalized integrals. The idea is that the measure on the space

(or even the space itself) over which we want to integrate might not exist but we can ap-

proximate it by measure spaces and then define the integral as the limit of the conventional

integrals on these measure spaces. Details and examples are given in Section 2. It turns out

that a variety of mathematical concepts can be regarded as renormalized integrals such as

Cauchy’s principal value, the determinant of operators on a Hilbert space and the Fourier

transform of an Lp-function.
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2 CHRISTIAN BÄR

We then concentrate on the space of paths on a compact Riemannian manifold. We approx-

imate it by spaces of piecewise geodesics and define the path integral as a renormalized

integral. The functions we would like to path integrate are induced by integral kernels on

the manifold. This is explained in Example 6. We call two integral kernels heat-related
if their difference can be estimated by the heat kernel for the Laplace-Beltrami operator.

The central result of Section 3 is Proposition 1, where we show that heat-related integral

kernels give rise to functions on path space with equal path integrals. Lemma 1 is a useful

criterion that allows one to prove that two integral kernels are heat-related.

In Theorem 1 we give a path integral formula for the heat kernel of any self-adjoint gen-

eralized Laplace operator acting on sections of a vector bundle over the manifold. This

improves the results of [2] (and also those of the earlier article [1] which deals with scalar

operators) where one has a similar formula for the solutions to the heat equation but only

weaker results for the heat kernel itself. This difference is subtle; it is analogous to the

passage from Brownian motion to the Brownian bridge in stochastic analysis. The present

paper refines the analysis in [2]. The concept of Chernoff equivalence used in [2, 18, 19]

had to be replaced by more refined “heat bounds”.

It is also possible to write the heat kernel as an integral over path space equipped with the

Wiener measure. This is known as the Feynman-Kac formula. It has the advantage that the

whole machinery of measure and integration theory and stochastic analysis can be applied,

see e.g. [3, 6, 7, 8, 9, 11, 13, 20] for this approach. But it also has disadvantages: part

of the function that one wants to integrate over path space gets swallowed by the Wiener

measure. For this reason one can show that the Wiener measure cannot be modified in such

a way that one can write the solutions to the Schrödinger equation as a path integral; see

[14, Sec. 4.6]. This is a serious drawback because the Schrödinger equation in quantum

mechanics was Feynman’s original concern when he invented his path integral approach

which has turned out to be so influential in theoretical physics to date. There is promising

indication that renormalized integrals will be able to deal with the Schrödinger equation,

but the analytic details still have to be worked out.

2. Renormalized integrals

We start by describing the abstract concept of renormalized integrals. Let J be a directed

system, i.e., J is a set equipped with a relation � such that the following holds:

• Reflexivity ∀T ∈ J : T � T
• Transitivity ∀T ,S ,U ∈ J : T � S & S � U ⇒ T � U
• Antisymmetry ∀T ,S ∈ J : T � S & S � T ⇒ T = S
• ∀T ,S ∈ J ∃U ∈ J : T � U & S � U

We call a family of measure spaces Ω= {(ΩT ,μT )}T ∈J parameterized by J a measure
space family. We think of Ω as a virtual space that is approximated by the measure spaces

(ΩT ,μT ). Let (X ,‖ · ‖) be a Banach space.

DEFINITION 1. By a measurable function on a measure space family Ω with values in X
we mean a family f = { fT }T ∈J of measurable functions fT : ΩT → X . By abuse of
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notation, we write f : Ω → X and think of f as a function on the virtual space Ω. We call

f integrable if fT is eventually integrable† and the limit 
Ω

f (x)Dx := lim−→
T ∈J

ˆ
ΩT

fT (x)dμT (x) ∈ X

exists. In other words, we demand that the values of the integrals converge in the sense of

nets. We then call the limit
ffl

Ω f (x)Dx the renormalized integral of f over Ω.

Similarly, we can define measurable and integrable functions and their renormalized inte-

grals when they take values in R= [−∞,∞].

EXAMPLE 1. Let J = R+ = (0,∞) and “�” = “≤”. For T ∈ R+ let ΩT = [−T,T ]⊂ R

and μT = 1
2T × Lebesgue measure. Given a measurable function f : R → R we get a

measurable function on Ω in the sense described above by putting fT := f |ΩT . For example,

for f ≡ 1 we have ˆ
ΩT

f (x)dμT (x) =
1

2T

ˆ T

−T
f (x)dx = 1

and hence  
Ω

1Dx = lim
T→∞

ˆ
ΩT

f (x)dμT (x) = 1.

More generally, let α >−1 and f (x) = (|x|+1)α . Thenˆ
ΩT

f (x)dμT (x) =
1

2T

ˆ T

−T
(|x|+1)α dx =

1

T
1

α +1

(
(T +1)α+1 −1

)
hence

 
Ω
(|x|+1)α Dx =

⎧⎪⎨⎪⎩
0, α < 0

1, α = 0

∞, α > 0

Thus f (x) = (|x|+1)α is integrable if and only if α ≤ 0.

EXAMPLE 2. Let again J = R+ but this time “�” = “≥”. Let ΩT and μT be as above.

Then we have for any continuous function f : R→ R, 
Ω

f (x)Dx = lim
T↘0

1

2T

ˆ T

−T
f (x)dx = f (0).

EXAMPLE 3 (Cauchy’s principal value). Let J = (0,1) and “�” = “≥”. For T ∈ R+

let ΩT = [−1,−T ]∪ [T,1] and let μT be the usual Lebesgue measure. Any measurable

function f : [−1,1]→ R yields a measurable function on Ω by restriction. Now the renor-

malized integral is nothing but Cauchy’s principal value, 
Ω

f (x)Dx = lim
T↘0

(ˆ −T

−1

f (x)dx+
ˆ 1

T
f (x)dx

)
= CH

ˆ 1

−1

f (x)dx.

EXAMPLE 4 (Determinant of operators on a Hilbert space). Let H be a separable real

Hilbert space. Let J be the set of all finite-dimensional subspaces of H ordered by

inclusion, “�” = “⊂”. Every n-dimensional subspace H ⊂ H inherits an n-dimensional

Lebesgue measure dnx. We equip H with the renormalized measure μH := π−n/2 dnx and

consider the measure space family Ω = {(H,μH)}H⊂H ,dim(H)<∞. We let IH : H → H be

the inclusion and PH : H → H the orthogonal projection.

†i.e., ∃S ∈ J : fT is integrable for all S � T .
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Let us consider a bounded positive self-adjoint linear operator L on H . We assume that L
is of the form L = Id+A where A is of trace class. Then the determinant of L is defined

and satisfies

det(L) =
∞

∏
j=1

(1+λ j)

where λ j are the eigenvalues of A repeated according to their multiplicity, see [16,

Thm. XIII.106]. We order the eigenvalues such that |λ1| ≥ |λ2| ≥ · · · → 0.

If H ⊂ H is an n-dimensional subspace and μ1, . . . ,μn are the eigenvalues of PH ◦L ◦ IH ,

then we computeˆ
H

exp(−(Lx,x))dμH =

ˆ
H

exp(−(L◦ IH(x), IH(x)))dμH

=

ˆ
H

exp(−(PH ◦L◦ IH(x),x))dμH

= π−n/2

ˆ
Rn

exp(−μ1x2
1) · · ·exp(−μnx2

n)dx1 · · ·dxn

= π−n/2
n

∏
j=1

ˆ ∞

−∞
exp(−μ jx2)dx

=
1√μ1 · · ·√μn

= det(PH ◦L◦ IH)
−1/2.

Let ε > 0. Since B �→ det( Id+B) is continuous on the ideal of trace-class operators, there

is a constant δ > 0 such that |det(L)−1/2−det( Id+B)−1/2|< ε for all trace-class operators

B with trace-class norm ‖A−B‖1 < δ . Choose n so large that

‖A−PHn ◦A◦ IHn‖1 =
∞

∑
j=n+1

|λ j|< δ
2

where Hn is the span of the first n eigenvectors. Now let H ⊂ H be a finite dimensional

subspace which contains Hn. Write H = Hn ⊕V where V is the orthogonal complement of

Hn in H. We compute

‖A−PH ◦A◦ IH‖1 ≤ ‖A−PHn ◦A◦ IHn‖1 +‖PH ◦A◦ IH −PHn ◦A◦ IHn‖1

<
δ
2
+‖PV ◦A◦ IV‖1

=
δ
2
+‖PV ◦ (A−PHn ◦A◦ IHn)◦ IV‖1

≤ δ
2
+‖PV‖ · ‖A−PHn ◦A◦ IHn‖1 · ‖IV‖

=
δ
2
+‖A−PHn ◦A◦ IHn‖1

< δ .

Here we have freely identified operators acting on closed subspaces of H with the opera-

tors on H extended by zero to the orthogonal complement. Hence det(L)−1/2 differs from
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det( Id+PH ◦A◦ IH)
−1/2 =

´
H exp(−(Lx,x))dμH by an error smaller than ε . This shows 
Ω

exp((−Lx,x))Dx = det(L)−1/2.

EXAMPLE 5 (Fourier transform of Lp-functions). Fix n ∈ N. Let J be the set of all

compact subsets of R
n ordered by inclusion, “�” = “⊂”. For any K ∈ J , the corre-

sponding measure space is K together with the n-dimensional Lebesgue measure dnx in-

duced from R
n. Any measurable function on f : Rn → C yields a measurable function on

Ω = {(K,dnx)}K∈J by restriction. If f ∈ L1(Rn), then both the dominated convergence

theorem and the monotone convergence theorem imply 
Ω

f (x)Dx =
ˆ
Rn

f (x)dnx.

In this sense, the renormalized integral generalizes the usual integral in this example. For

integrable f the Fourier transform f̂ is defined by

f̂ (x) = (2π)−n/2

ˆ
Rn

e−i〈x,y〉 f (y)dny. (1)

Let 1 < p ≤ 2 and q such that 1/p + 1/q = 1. The Hausdorff-Young inequality [15,

Thm. IX.8] states that

‖ f̂‖Lq ≤ (2π)n/2−n/p‖ f‖Lp

for all f ∈ L1(Rn)∩Lp(Rn). Hence Fourier transformation extends uniquely to a bounded

linear map Lp(Rn)→ Lq(Rn). However, for general f ∈ Lp(Rn) the integral in the original

definition (1) no longer exists. We show that it does exist as a renormalized integral.

For K ∈ J , let χK : Rn → R be the characteristic function of K, i.e.,

χK(x) =

{
1, for x ∈ K
0, for x /∈ K

If K contains the ball with center 0 and radius R, we haveˆ
Rn

| f (y)−χK(y) f (y)|p dny =
ˆ
Rn
(1−χK(y))| f (y)|p dny ≤

ˆ
|y|≥R

| f (y)|p dny.

The dominated convergence theorem shows thatˆ
|y|≥R

| f (y)|p dny −→ 0

as R → ∞. This shows

lim−→
K∈J

χK f = f in Lp(Rn)

and hence

lim−→
K∈J

χ̂K f = f̂ in Lq(Rn).

By Hölder’s inequality, χK f ∈ L1(Rn). Therefore

χ̂K f (x) = (2π)−n/2

ˆ
K

e−i〈x,y〉 f (y)dny

and hence

f̂ = lim−→
K∈J

(2π)−n/2

ˆ
K

e−i〈·,y〉 f (y)dny = (2π)−n/2

 
Ω

e−i〈·,y〉 f (y)Dy. (2)
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Strictly speaking, this example requires a refinement of Definition 1. The limit in (2) exists

in Lq(Rn) but the integrands e−i〈·,y〉 f (y) for fixed y are not in Lq(Rn). Instead of having

one Banach space X we could require locally convex topological vector spaces X0 and X1,

X0 continuously embedded in X1, such that the functions fT take values in X1 and the

integrals converge in X1 but the integrals are actually in X0 and the directed limit exists in

X0. In our example we can then choose X0 = Lq(Rn) and X1 = L1
loc(R

n).

For the sake of simplicity we will use the simpler version of renormalized integrals as given

in Definition 1.

REMARK 1. In general, renormalized integrals have all properties of conventional integrals

which are preserved under limits. Given Ω = {(ΩT ,μT )}T ∈J and (X ,‖ · ‖) as above,

we obviously have

• Linearity: The space of integrable functions f on Ω with values in X forms a

vector space and 
Ω
(α f (x)+βg(x))Dx = α

 
Ω

f (x)Dx+β
 

Ω
g(x)Dx

for all integrable f and g and all numbers α and β .

• Monotonicity: If X = R and f and g are integrable with f ≤ g, i.e., if fT ≤ gT

holds eventually, then  
Ω

f (x)Dx ≤
 

Ω
g(x)Dx

• Triangle inequality: If f and the pointwise norm of f are integrable functions on

Ω, then ∥∥∥∥ 
Ω

f (x)Dx
∥∥∥∥≤

 
Ω
‖ f (x)‖Dx

Warning. In general, the monotone convergence theorem, the dominated convergence

theorem, and the Fatou lemma do not hold for renormalized integrals. In Example 1 the

functions fn(x) = (|x|+1)−1/n form a sequence of positive integrable functions converging

monotonically from below to the integrable function f (x)= 1. But for the integrals we have

lim
n→∞

 
Ω

fn(x)Dx = 0 <

 
Ω

f (x)Dx = 1.

This violates all three of the above theorems. This also shows that the renormalized integral

in Example 1 is not induced by a measure on R. In Example 2 the situation is different be-

cause here the renormalized integral coincides with the conventional integral with respect

to the Dirac measure supported at 0.

3. Path integrals on manifolds

By a partition we mean a finite sequence of increasing real numbers P = (0 = s0 <
s1 < · · · < sr = 1). We think of P as a subdivision of the interval [0,1] into subinter-

vals [s j−1,s j]. The mesh of P is given by |P| := max j=1,...,r |s j − s j−1|.
The set of partitions P forms a directed system. Here P � P ′ if and only if P ′ is a

subdivision of P , i.e., P is a subsequence of P ′.
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Let M be a Riemannian manifold. A piecewise smooth curve in M is a pair (P,γ)
where P is a partition and γ : [0,1] → M is a continuous curve whose restrictions

to the subintervals [s j−1,s j] are smooth. A piecewise smooth curve (P,γ) is called

a geodesic polygon if for every j = 1, . . . ,r the point γ(s j) is not in the cut-locus

of γ(s j−1) and γ|[s j−1,s j ] is the unique shortest geodesic joining its endpoints. Let

P(P,M) := {(P,γ) |(P,γ) is a geodesic polygon} be the space of all geodesic poly-

gons parameterized on the partition P . Moreover, given x,y ∈ M, we put P(P,M)x :=
{(P,γ) ∈P(P,M) |γ(0) = x}, P(P,M)y := {(P,γ) ∈ P(P,M) |γ(1) = y}, and

P(P,M)y
x :=P(P,M)x ∩P(P,M)y.

For a fixed partition P any geodesic polygon (P,γ) is uniquely determined by the tuple

of vertices (γ(s0), . . . ,γ(sr)). Hence P(P,M) can be identified with the set {(x0, . . . ,xr)∈
M × ·· · ×M |x j does not lie in the cut-locus of x j−1 for all j = 1, . . . ,r}. This is an open

and dense subset of M×·· ·×M = M×(r+1). We write (P,γ(x0, . . . ,xr)) for the geodesic

polygon parameterized on P with vertices γ(s j) = x j. Via this identification P(P,M)

inherits a measure induced by the Riemannian product volume measure on M×(r+1). Sim-

ilarly, P(P,M)x, P(P,M)y and P(P,M)y
x inherit measures from the Riemannian prod-

uct volume measures on M×r, M×r and M×(r−1) respectively. We denote these measures

on P(P,M), P(P,M)x, P(P,M)y, and on P(P,M)y
x by Dγ .

For any partition P = (s0 < s1 < · · · < sr), for any m ∈ N and any t > 0 we define the

renormalization constant by

Z(P,m, t) :=
r

∏
j=1

(4πt(s j − s j−1))
m/2 = trm/2

r

∏
j=1

(4π(s j − s j−1))
m/2.

Fix t > 0. For each partition P we now have a measure space

(P(P,M),Z(P,dim(M), t)−1 · Dγ). Denote the measure space family

{(P(P,M),Z(P,dim(M), t)−1 · Dγ)P}P by P(M, t). The measure space fami-

lies P(M, t)x, P(M, t)y, and P(M, t)y
x are defined similarly.

DEFINITION 2. Let (X ,‖ · ‖) be a Banach space. If F = {FP}P is an integrable function

on P(M, t) with values in X in the sense of Definition 1, then we call F path integrable.

We write  
P(M,t)

F(γ) Dγ

for the value of the integral and call it the value of the path integral.

There is a certain sloppiness in this notation because in general F is actually a function of

the pair (P,γ), not of γ alone.

In the same way, one defines path integrals of functions on P(M, t)x, on P(M, t)y, and on

P(M, t)y
x.

EXAMPLE 6. Let E(γ)= 1
2

´ 1
0 |γ̇(t)|2dt denote the energy of γ . The energy is defined for all

piecewise smooth curves, in particular for geodesic polygons. We will see that the function

F(γ) = exp(−E(γ)/2t) is path integrable on P(M, t)y
x. The value of the path integral 

P(M,t)y
x

exp

(
− 1

2t
E(γ)

)
Dγ

turns out to be the heat kernel of the operator Δ+ 1
3 scal, evaluated at the points x and y and

at time t. Here Δ = δd is the Laplace-Beltrami operator and scal denotes scalar curvature.
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EXAMPLE 7. Let E → M be a vector bundle over M. Denote by E �E∗ → M×M the ex-

terior tensor product whose fiber over (x,y)∈ M×M is given by (E�E∗)(x,y) = Ex ⊗E∗
y =

Hom(Ey,Ex). Let q(t,x,y) ∈ Hom(Ey,Ex) depend continuously on x,y ∈ M and t > 0. We

call such a map q a continuous time-dependent integral kernel in E.

Such a kernel induces a function Q on geodesic polygons by

Qt(P,γ) :=q(t(sr − sr−1),γ(sr),γ(sr−1))◦ · · · ◦q(t(s1 − s0),γ(s1),γ(s0))

∈ Hom(Eγ(0),Eγ(1)).

If we fix x and y ∈ M, then Q is a function on P(M)y
x with values in the vector space

Hom(Ex,Ey). If q has the semigroup property, i.e.,ˆ
M

q(t,x,y)◦q(t ′,y,z)dy = q(t + t ′,x,z)

for all x,z ∈ M and all t, t ′ > 0, then

Z(P,dim(M), t)−1

ˆ
P(P,M)

y
x

Z(P,dim(M), t)Qt(P,γ)Dγ

=

ˆ
P(P,M)

y
x

Qt(P,γ)Dγ

=

ˆ
M×(r−1)

q(t(sr − sr−1),y,zr−1)◦ · · · ◦q(t(s1 − s0),z1,x)dz1 · · ·dzr−1

= q(t,y,x).

Thus the function (P,γ) �→ Z(P,dim(M), t)Qt(P,γ) is path integrable in this case and 
P(M,t)y

x

Z(P,dim(M), t)Qt(P,γ) Dγ = q(t,y,x). (3)

Functions of the form Qt where q(t,x,y) does not have the semigroup property will be of

central importance. We need a criterion that ensures the path integrability of Qt .

DEFINITION 3. Let M be a compact Riemannian manifold and let E → M be a Hermitian

vector bundle. A continuous time-dependent integral kernel q in E is said to satisfy a heat
bound if there exist positive constants T,C,B1, . . . ,Bk such that

|q(t,x,y)| ≤ kΔ(t,x,y)+Ct
k

∑
j=1

kΔ(B jt,x,y)

for all t ∈ (0,T ] and x,y ∈ M. Here kΔ denotes the heat kernel of the Laplace-Beltrami

operator Δ on M.

DEFINITION 4. Let M be a compact Riemannian manifold, let E → M be a Hermitian

vector bundle and let q and q′ be continuous time-dependent integral kernels in E. We say

that q and q′ are heat-related if there exist positive constants T,C,B1, . . . ,Bk and β > 1

such that

|q(t,x,y)−q′(t,x,y)| ≤ Ctβ
k

∑
j=1

kΔ(B jt,x,y)

for all t ∈ (0,T ] and x,y ∈ M.
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We put

e(t,x,y) := (4πt)−m/2 exp

(
−d(x,y)2

4t

)
(4)

where m = dim(M). This is a continuous time-dependent integral kernel in the trivial line

bundle. It generalizes the Gaussian normal distribution on R
m to manifolds.

Here is a criterion which will allow us in concrete situations to check that two kernels are

heat-related.

LEMMA 1. Let M be a compact Riemannian manifold, let E → M be a Hermitian vector
bundle over M. Let q and q′ be continuous time-dependent integral kernels in E. If there
exist C,α,β ≥ 0 with β +α/2 > 1 and T > 0 such that

|q(t,x,y)−q′(t,x,y)| ≤ C · e(t,x,y) ·d(x,y)α · tβ

for all (t,x,y) ∈ (0,T ]×M×M, then q and q′ are heat-related.

PROOF. We choose a constant C1 > 0 such that τα ≤ C1 · exp(τ2) for all τ ∈ [0,∞).

With τ = d(x,y)/
√

8t this yields

d(x,y)α ≤ C1 · (8t)α/2 · exp

(
d(x,y)2

8t

)
. (5)

Hence

|q(t,x,y)−q′(t,x,y)| ≤C · e(t,x,y) ·d(x,y)α · tβ

(5)

≤ C2 · e(t,x,y) · tβ+α/2 · exp

(
d(x,y)2

8t

)
=C3 · e(2t,x,y) · tβ+α/2. (6)

The heat kernel of the Laplace-Beltrami operator satisfies the well-known bound

kΔ(t,x,y) ≥ C4 · e(t,x,y) (7)

for all (t,x,y) ∈ (0,1]×M×M, see e.g. [13, Cor. 5.3.5]. Inserting (7) into (6) yields

|q(t,x,y)−q′(t,x,y)| ≤ C5 · tβ+α/2 · kΔ(2t,x,y)

which proves the claim. �

The following proposition shows why heat bounds on kernels are important for path inte-

grals.

PROPOSITION 1. Let M be an m-dimensional compact Riemannian manifold, let E → M
be a Hermitian vector bundle over M. Let q and q′ be continuous time-dependent inte-
gral kernels in E. Let t > 0. Let Qt ,Q′

t : P(M, t)y
x → Hom(Ex,Ey) be the corresponding

measurable functions.
Suppose that q satisfies a heat bound and that Qt is path integrable. If q and q′ are heat-
related, then q′ also satisfies a heat bound, Q′

t is also path integrable and the path integrals
coincide,  

P(M,t)y
x

Z(P,m, t)Qt(P,γ)Dγ =

 
P(M,t)y

x

Z(P,m, t)Q′
t(P,γ)Dγ.
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PROOF. Let q and q′ be heat-related. It is clear from the definitions that q′ also satisfies

a heat bound. We put Bmin := min{1,B1, . . . ,Bk} and Bmax := max{1,B1, . . . ,Bk} for the

constants B j occurring in Definitions 3 and 4.

Let P be a partition whose mesh μ is sufficiently small so that the estimates in Defini-

tions 3 and 4 apply. Using the semigroup property of kΔ we estimateˆ
P(P,M)

y
x

∣∣Qt(P,γ)−Q′
t(P,γ)

∣∣ Dγ

=

ˆ
M×(r−1)

∣∣∣ r

∑
j=1

q(t(sr − sr−1),y,zr−1)◦ · · · ◦q(t(s j+1 − s j),z j+1,z j)◦

◦ (q−q′)(t(s j − s j−1),z j,z j−1)◦q′(t(s j−1 − s j−2),z j−1,z j−2)◦ · · ·
· · · ◦q′(t(s1 − s0),z1,x)

∣∣∣dz1 · · ·dzr−1

≤
ˆ

M×(r−1)

r

∑
j=1

|q(t(sr − sr−1),y,zr−1)| ◦ · · ·

· · · ◦ |(q−q′)(t(s j − s j−1),z j,z j−1)| ◦ · · · ◦ |q′(t(s1 − s0),z1,x)|dz1 · · ·dzr−1

≤
r

∑
j=1

ˆ
M×(r−1)

(
kΔ(t(sr − sr−1),y,zr−1)+Ct(sr − sr−1)

k

∑
ir=1

kΔ(Birt(sr − sr−1),y,zr−1)
)
·

· · ·
(

Ctβ (s j − s j−1)
β

k

∑
i j=1

kΔ(Bi j t(s j − s j−1),z j,z j−1)
)
· · ·

·
(

kΔ(t(s1 − s0),z1,x)+Ct(s1 − s0)
k

∑
i1=1

kΔ(Bi1t(s1 − s0),z1,x)
)

dz1 · · ·dzr−1

≤ max
s∈[Bmint,Bmaxt]

kΔ(s,y,x) ·
r

∑
j=1

(1+Ckt(sr − sr−1)) · · ·Cktβ (s j − s j−1)
β · · ·(1+Ckt(s1 − s0))

≤ max
s∈[Bmint,Bmaxt]

kΔ(s,y,x) · tβ−1 ·μβ−1 ·
r

∑
j=1

eCkt(sr−sr−1) · · ·Ckt(s j − s j−1) · · ·eCkt(s1−s0)

≤ max
s∈[Bmint,Bmaxt]

kΔ(s,y,x) · tβ−1 ·μβ−1 · eCkt ·
r

∑
j=1

Ckt(s j − s j−1)

= max
s∈[Bmint,Bmaxt]

kΔ(s,y,x) · tβ ·μβ−1 · eCkt ·Ck

The only term in this upper bound that depends on the partition is the term μβ−1. Since

β > 1 this shows that ˆ
P(P,M)

y
x

∣∣Qt(P,γ)−Q′
t(P,γ)

∣∣ Dγ −→ 0

as μ → 0. In the direct limit defining the path integral the mesh of the partitions tends to

zero. Thus the proposition is proved. �

4. The heat kernel

4.1. Generalized Laplacians. Throughout this section let M be a compact m-

dimensional Riemannian manifold without boundary and let E → M be a Hermitian vector
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bundle. Let H be a formally self-adjoint generalized Laplace operator acting on sections

of E. Locally, H can be written in the form

H =−
m

∑
j,k=1

g jk ∂ 2

∂x j∂xk + lower order terms.

Here (g jk) denotes the inverse of the matrix (g jk) describing the Riemannian metric in

the local coordinates, g jk =
〈
∂/∂x j,∂/∂xk

〉
. We assume that H has smooth coefficients.

Formal self-adjointness means that for all smooth sections u and v in E,

(Hu,v) = (u,Hv)

holds, where (u,v) =
´

M 〈u(x),v(x)〉 dx is the corresponding L2-scalar product. Here dx
denotes the volume measure induced by the Riemannian metric. It is well-known that H
is essentially self-adjoint in the Hilbert space L2(M,E) of square-integrable sections in E
when given the domain C∞(M,E) of smooth sections in E, see e. g. [4, Prop. 2.33, p. 89].

Moreover, one knows that H can be written in the form

H = ∇∗∇+V (8)

where ∇ is a metric connection on E and V is a smooth section in symmetric endomor-

phisms of E, compare [4, Prop. 2.5, p. 67]. We call ∇ the connection determined by H and

V its potential.

EXAMPLE 8. The simplest example for H as described above is the Laplace-Beltrami
operator H = Δ acting on functions. Here E is the trivial real line bundle, ∇ = d the usual

derivative and V = 0.

EXAMPLE 9. More generally, let E =
∧k T ∗M be the bundle of k-forms. Then we may

take the Hodge Laplacian H = dδ + δd acting on k-forms. Here d denotes exterior dif-

ferentiation and δ its formal adjoint. The Weitzenböck formula says that H = ∇∗∇+V ,

where ∇ is the Levi-Civita connection and V depends linearly on the curvature tensor of

M. For example, for k = 1 we have V = Ric, see e. g. [5, Ch. 1.I].

EXAMPLE 10. If M is a spin manifold one can form the spinor bundle E = ΣM and the

Dirac operator D acting on sections in E. Then H = D2 = ∇∗∇+ 1
4 scal is a self-adjoint

generalized Laplace operator.

More generally, the square of any generalized Dirac operator in the sense of Gromov and

Lawson yields a self-adjoint generalized Laplacian, see e. g. [10, Sec. 1,2].

4.2. The heat kernel. By functional calculus the self-adjoint extension of H gen-

erates a strongly continuous semigroup t �→ e−tH in the Hilbert space L2(M,E). For

u ∈ L2(M,E) the section U(t,x) := (e−tHu)(x), (t,x) ∈ [0,∞)×M, is the unique solution

to the heat equation
∂U
∂ t

+HU = 0

satisfying the initial condition U(0,x) = u(x).

For t > 0 the operator e−tH is smoothing and has an integral kernel kH , i.e.,

e−tHu(x) =
ˆ

M
kH(t,x,y)u(y)dy.

This integral kernel (t,x,y) �→ kH(t,x,y) is smooth on (0,∞)×M×M. It is called the heat
kernel for H.
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The aim of this section is to give a path integral formula for this heat kernel. Since the heat

kernel has the semigroup property we have the tautological path integral formula as in (3):

kH(t,y,x) =
 
P(M)

y
x

Z(P,dim(M), t)KH
t (P,γ) Dγ. (9)

To turn this into something useful we will replace the heat kernel appearing in the defini-

tion of KH
t in the RHS of (9) by heat-related continuous time-depend integral kernels (not

having the semigroup property). We will repeatedly use Proposition 1 and Lemma 1. To

get started we need

LEMMA 2. Let M be a compact Riemannian manifold without boundary and let E → M be
a Hermitian vector bundle. Then the heat kernel of any formally self-adjoint generalized
Laplace operator H satisfies a heat bound.

PROOF. Write the Laplace operator in the form H = ∇∗∇+V . Since M is compact

there exists a constant C > 0 such that V (x) ≥ −C for all x ∈ M. This means that all

eigenvalues of the symmetric endomorphism V (x) are bounded from below by −C. By the

Hess-Schrader-Uhlenbrock estimate, see [12, p. 32], we have

|kH(t,x,y)| ≤ kΔ−C(t,x,y) = eCt · kΔ(t,x,y)

for all (t,x,y) ∈ (0,∞)×M×M. For t > 0 sufficiently small we have eCt ≤ 1+2Ct, which

proves the heat bound. �

4.3. First kernel modification. For the first kernel modification we recall the heat

kernel asymptotics. Let M �� M := {(x,y) ∈ M |x and y are not cut-points}. Then M �� M
is an open and dense subset of M ×M containing the diagonal. There are unique smooth

sections a j of E �E over M �� M such that the formal heat kernel

e(t,x,y)
∞

∑
j=0

a j(x,y)t j

formally solves the heat equation with respect to the x-variable,(
∂
∂ t

+Hx

)(
e(t,x,y)

∞

∑
j=0

a j(x,y)t j

)
= 0,

and a0(x,x) = IdEx . Here e(t,x,y) is defined as in (4). For N ∈ N we get(
∂
∂ t

+Hx

)(
e(t,x,y)

N

∑
j=0

a j(x,y)t j

)
= e(t,x,y) ·HxaN(x,y) · tN (10)

for t ∈ (0,∞) and (x,y) ∈ M �� M. See [4, Thm. 2.26] for details. Pick η > 0 such that

2η is smaller than the injectivity radius of M. Choose a smooth cutoff function χ : R→ R

such that

• χ ≡ 1 on (−∞,η ]
• χ ≡ 0 on [2η ,∞)
• 0 ≤ χ ≤ 1 everywhere
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We put

kH
(N)(t,x,y) := χ(d(x,y)) · e(t,x,y) ·

N

∑
j=0

a j(x,y)t j.

Then kH
(N) is smooth on all of (0,∞)×M×M. From (10) we get(

∂
∂ t

+Hx

)
kH
(N)(t,x,y) = e(t,x,y) · (χ(d(x,y)) ·HxaN(x,y) · tN +bN(t,x,y)

)
where the support of bN is contained in the region where the gradient of χ(d(x,y)) does not

vanish, i.e., in the region (0,∞)×{(x,y) ∈ M×M |η ≤ d(x,y)≤ 2η}. Moreover, explicit

computation shows

bN(t,x,y) = O(t−1) as t ↘ 0 (11)

uniformly in x and y. Duhamel’s principle [17, Prop. 7.9] implies

kH(t,x,y)− kH
(N)(t,x,y)

=

ˆ t

0

ˆ
M

kH(t − s,x,z)
(
e(s,z,y) · (χ(d(z,y)) ·HxaN(z,y) · sN +bN(s,z,y)

))
dzds (12)

Using the Hess-Schrader-Uhlenbrock inequality and (7) we estimate for all t ∈ (0,1] and

x,y ∈ M∣∣∣ˆ t

0

ˆ
M

kH(t − s,x,z) · e(s,z,y) ·χ(d(z,y)) ·HxaN(z,y) · sNdzds
∣∣∣

≤
ˆ t

0

ˆ
M

∣∣kH(t − s,x,z)
∣∣ · e(s,z,y) ·χ(d(z,y)) · |HxaN(z,y)| · sN dzds

≤C1

ˆ t

0

ˆ
M

eC2(t−s) · kΔ(t − s,x,z) · kΔ(s,z,y) · sN dzds

=C1

ˆ t

0

eC2(t−s) · kΔ(t,x,y) · sN ds

≤C3 · kΔ(t,x,y) · tN+1. (13)

Using the Hess-Schrader-Uhlenbrock inequality, (7), (11), and the fact that bN(s,z,y) van-

ishes whenever d(z,y)≤ η we estimate

∣∣∣ˆ t

0

ˆ
M

kH(t − s,x,z) · e(s,z,y) ·bN(s,z,y)dzds
∣∣∣

≤
ˆ t

0

ˆ
M

eC2(t−s) · kΔ(t − s,x,z) · e(s,z,y) · |bN(s,z,y)| dzds

≤C4 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · e(s,z,y) · |bN(s,z,y)| dzds

=C4 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · e(t + s,z,y) ·
(

t + s
s

)m/2

· exp

(
− d(z,y)2t

4(t + s)s

)
· |bN(s,z,y)| dzds

≤C5 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · e(t + s,z,y) · s−m/2 · exp

(
−d(z,y)2

8s

)
· |bN(s,z,y)| dzds

≤C6 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · e(t + s,z,y) · s−m/2−1 · exp

(
−η2

8s

)
dzds
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≤C7 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · e(t + s,z,y) · sN dzds

≤C8 ·
ˆ t

0

ˆ
M

kΔ(t − s,x,z) · kΔ(t + s,z,y) · sN dzds

=C8 ·
ˆ t

0

kΔ(2t,x,y) · sN ds

=C9 · kΔ(2t,x,y) · tN+1. (14)

Inserting (13) and (14) into (12) yields∣∣∣kH(t,x,y)− kH
(N)(t,x,y)

∣∣∣≤C10 · (kΔ(t,x,y)+ kΔ(2t,x,y)) · tN+1.

This shows that kH and kH
(N) are heat-related if N ≥ 1. We use this with N = 1. Putting

k1(t,x,y) := kH
(1)(t,x,y) = χ(d(x,y)) · e(t,x,y) · (a0(x,y)+a1(x,y)t)

we have shown

LEMMA 3. Let M be a compact Riemannian manifold without boundary, let E → M be a
Hermitian vector bundle and let H be a formally self-adjoint generalized Laplacian acting
on sections of E.
Then the heat kernel kH and the smooth time-dependent integral kernel k1 are heat-related.
In particular, k1 satisfies a heat bound, K1

t is path integrable and

kH(t,y,x) =
 
P(M,t)y

x

Z(P,dim(M), t)K1
t (P,γ) Dγ. �

4.4. Second kernel modification. If we put

a(x,y) := a0(x,y)−1 ◦a1(x,y) ∈ Hom(Ey,Ey)

then the integral kernel k1 can written as

k1(t,x,y) = χ(d(x,y)) · e(t,x,y) ·a0(x,y)◦ (id+ ta(x,y)).

We set

k2(t,x,y) := χ(d(x,y)) · e(t,x,y) ·a0(x,y)◦ exp(ta(x,y)).

Since exp(ta(x,y))−(id+ta(x,y)) =O(t2) uniformly in x and y with d(x,y)≤ 2η we have

LEMMA 4. Let M be a compact Riemannian manifold without boundary, let E → M be a
Hermitian vector bundle and let H be a formally self-adjoint generalized Laplacian acting
on sections of E.
Then the smooth time-dependent integral kernels k1 and k2 are heat-related. In particular,
k2 satisfies a heat bound, K2

t is path integrable and

kH(t,y,x) =
 
P(M,t)y

x

Z(P,dim(M), t)K2
t (P,γ) Dγ. �
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4.5. Third kernel modification. For a piecewise smooth curve (P,γ) and s, t ∈ [0,1]
and a connection ∇ on E let τ(γ,∇)t

s : Eγ(s) → Eγ(t) denote the parallel transport along γ
with respect to ∇. We have

τ(γ,∇)u
t ◦ τ(γ,∇)t

s = τ(γ,∇)u
s and τ(γ,∇)s

t = (τ(γ,∇)t
s)
−1. (15)

We will use the metric connection ∇ corresponding to a generalized Laplacian as in (8).

Then τ(γ,∇)t
s is a linear isometry.

For x and y with d(x,y)≤ 2η we define

k3(t,x,y) := χ(d(x,y)) ·e(t,x,y) ·a0(x,y)◦exp
(

t ·
ˆ 1

0

τ(γ,∇)1
s ◦a(γ(s),γ(s))◦τ(γ,∇)s

1 ds
)
.

Here γ : [0,1]→ M denotes the shortest geodesic with γ(0) = x and γ(1) = y. This shortest

geodesic is unique because d(x,y) is smaller than the injecitivity radius of M. For d(x,y)>
2η set k3(t,x,y) := 0.

A proof similar to the one of [2, Lemma 4.6] shows∣∣k2(t,x,y)− k3(t,x,y)
∣∣≤C · e(t,x,y) ·d(x,y) · t.

Hence Lemma 1 says that k2 and k3 heat-related. Proposition 1 applies and yields

LEMMA 5. Let M be a compact Riemannian manifold without boundary, let E → M be a
Hermitian vector bundle and let H be a formally self-adjoint generalized Laplacian acting
on sections of E.
Then the smooth time-dependent integral kernels k2 and k3 are heat-related. In particular,
k3 satisfies a heat bound, K3

t is path integrable and

kH(t,y,x) =
 
P(M,t)y

x

Z(P,dim(M), t)K3
t (P,γ) Dγ. �

The advantage of k3 over k2 consists of the fact that we need to evaluate a1 only along the

diagonal. It is well-known that

a(x,x) = a0(x,x)−1 ◦a1(x,x) = a1(x,x) =
1

6
scal(x) · idEx −V (x)

where scal denotes the scalar curvature of M and V is the potential of H; compare [17,

p. 103ff]. Hence k3 is given by

k3(t,x,y) =χ(d(x,y)) · e(t,x,y) ·a0(x,y)

◦ exp

(
t ·
ˆ 1

0

(1

6
scal(γ(s)) · idEy − τ(γ,∇)1

s ◦V (γ(s))◦ τ(γ,∇)s
1

)
ds

)
.

4.6. Fourth kernel modification. We can now replace a0(x,y) by another scalar cur-

vature term. The same estimates as in [2, Section 4.5] show that k3 and k4 are heat-related,

where

k4(t,x,y) :=χ(d(x,y)) · e(t,x,y) · τ(γ,∇)0
1

◦ exp

(
t ·
ˆ 1

0

(1

3
scal(γ(s)) · idEy − τ(γ,∇)1

s ◦V (γ(s))◦ τ(γ,∇)s
1

)
ds

)
.
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LEMMA 6. Let M be a compact Riemannian manifold without boundary, let E → M be a
Hermitian vector bundle and let H be a formally self-adjoint generalized Laplacian acting
on sections of E.
Then the smooth time-dependent integral kernels k3 and k4 are heat-related. In particular,
k4 satisfies a heat bound, K4

t is path integrable and

kH(t,y,x) =
 
P(M,t)y

x

Z(P,dim(M), t)K4
t (P,γ) Dγ. �

We can rewrite k4 in the form

k4(t,x,y) =χ(d(x,y)) · e(t,x,y) · exp

(
t
3
·
ˆ 1

0

scal(γ(s))ds
)
· τ(γ,∇)0

1

◦ exp

(
−t ·

ˆ 1

0

(
τ(γ,∇)1

s ◦V (γ(s))◦ τ(γ,∇)s
1

)
ds

)
.

4.7. Path integral formula for the heat kernel. We now come to the main result of

this section.

DEFINITION 5. Let W be a continuous section of the endomorphism bundle Hom(E,E) =
E ⊗E∗ → M. Let ∇ be a connection on E. For any piecewise smooth curve (P,γ) in M
with P = (0 = s0 < s1 < · · ·< sr = 1) we define the (P,γ)-ordered exponential by

P∇exp

(ˆ
(P,γ)

W

)

:=
r

∏
j=1

τ(γ,∇)
s j
s j−1

◦ exp

(ˆ s j

s j−1

(
τ(γ,∇)

s j−1
s ◦W (γ(s))◦ τ(γ,∇)s

s j−1

)
ds

)

=τ(γ,∇)sr
sr−1

◦ exp

(ˆ sr

sr−1

(
τ(γ,∇)

sr−1
s ◦W (γ(s))◦ τ(γ,∇)s

sr−1

)
ds

)
◦ · · ·

· · · ◦ τ(γ,∇)s1
s0
◦ exp

(ˆ s1

s0

(
τ(γ,∇)s0

s ◦W (γ(s))◦ τ(γ,∇)s
s0

)
ds

)
=τ(γ,∇)1

0 ◦ exp

(ˆ sr

sr−1

(
τ(γ,∇)0

s ◦W (γ(s))◦ τ(γ,∇)s
0

)
ds

)
◦ · · ·

· · · ◦ exp

(ˆ s1

s0

(
τ(γ,∇)0

s ◦W (γ(s))◦ τ(γ,∇)s
0

)
ds

)

where the last equation follows from (15). Note that P∇exp
(´

(P,γ)W
)

∈
Hom(Eγ(0),Eγ(1)). If all τ(γ,∇)1

s ◦W (γ(s))◦ τ(γ,∇)s
1 commute with each other, then

P∇exp

(ˆ
(P,γ)

W

)
= τ(γ,∇)1

0 ◦ exp

(ˆ 1

0

(
τ(γ,∇)0

s ◦W (γ(s))◦ τ(γ,∇)s
0

)
ds

)
.

This is the case e.g. if W is scalar, i.e., W (x) = w(x) · idEx with w(x) ∈ R. Otherwise,

P∇exp
(´

(P,γ)W
)

depends on the subdivision P .
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THEOREM 1. Let M be a compact Riemannian manifold without boundary, let E → M
be a Hermitian vector bundle and let H be a formally self-adjoint generalized Laplacian
acting on sections of E. Let ∇ be the connection determined by H and V its potential.

Then the heat kernel of H can be written as a path integral as follows:

kH(t,y,x)

=

 
P(M,t)y

x

Ξ(P,γ) · exp

(
−E[γ]

2t
+

t
3

ˆ 1

0

scal(γ(s))ds
)
·P∇exp

(ˆ
(P,γ)

−tV

)
Dγ.

PROOF. We compute the integrand in the path integral formula for kH from Lemma 6.

K4
t (P,γ) =k4(t(sr − sr−1),γ(sr),γ(sr−1))◦ · · · ◦ k4(t(s1 − s0),γ(s1),γ(s0))

=
r

∏
j=1

χ(d(γ(s j),γ(s j−1))) ·
r

∏
j=1

e(t(s j − s j−1),γ(s j),γ(s j−1))

× exp

(
t
3

ˆ 1

0

scal(γ(s))ds
)
· τ(γ,∇)0

1 ◦P∇exp

(ˆ
(P,γ)

−tV

)

=Ξ(P,γ) ·Z(P,dim(M), t)−1 · exp

(
−

r

∑
j=1

d(γ(s j),γ(s j−1))
2

4t(s j − s j−1)

)

× exp

(
t
3

ˆ 1

0

scal(γ(s))ds
)
· τ(γ,∇)0

1 ◦P∇exp

(ˆ
(P,γ)

−tV

)
(16)

Since γ is a geodesic when restricted to one of the subintervals [s j−1,s j] it is parameterized

proportionally to arclength, so that

|γ̇(s)|= d(γ(s j−1,γ(s j))

s j − s j−1
,

for all s ∈ [s j−1,s j]. Thus the energy of γ|[s j−1,s j ] is given by

E[γ|[s j−1,s j ]] =
1

2

ˆ s j

s j−1

|γ̇(s)|2ds =
1

2

d(γ(s j−1,γ(s j))
2

s j−1 − s j
.

Hence the energy of γ : [0,1]→ M is given by

E[γ] =
1

2

r

∑
j=1

d(γ(s j−1,γ(s j))
2

s j−1 − s j
.

Inserting this into (16) yields

K4
t (P,γ) =Ξ(P,γ) ·Z(P,dim(M), t)−1 · exp

(
− 1

2t
E[γ]

)
× exp

(
t
3

ˆ 1

0

scal(γ(s))ds
)
· τ(γ,∇)0

1 ◦P∇exp

(ˆ
(P,γ)

−tV

)
Lemma 6 concludes the proof. �
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COROLLARY 1. Let M, E, H, ∇, and V be as in Theorem 1. Suppose in addition that the
potential V is scalar, i.e., V (x) = v(x) · idEx for a smooth function v : M → R.
Then the heat kernel of H can be written as a path integral as follows:

kH(t,y,x)

=

 
P(M,t)y

x

Ξ(P,γ) · exp

(
−E[γ]

2t
+ t

ˆ 1

0

(1

3
scal(γ(s))− v(γ(s))

)
ds

)
· τ(γ,∇)1

0 Dγ.

�
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UNIVERSITÄT POTSDAM, INSTITUT FÜR MATHEMATIK, AM NEUEN PALAIS 10, 14469 POTSDAM, GER-

MANY

E-mail address: baer@math.uni-potsdam.de

URL: http://geometrie.math.uni-potsdam.de/


	Title
	Imprint

	Abstract
	1. Introduction
	2. Renormalized integrals
	3. Path integrals on manifolds
	4. The heat kernel
	4.1. Generalized Laplacians
	4.2. The heat kernel
	4.3. First kernel modification
	4.4. Second kernel modification
	4.5. Third kernel modification
	4.6. Fourth kernel modification
	4.7. Path integral formula for the heat kernel

	References

