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Abstract
Non-local boundary conditions – for example the Atiyah–Patodi–Singer (APS) conditions – for
Dirac operators on Riemannian manifolds are rather well-understood, while not much is known for
such operators on Lorentzian manifolds. Recently, Bär and Strohmaier [15] and Drago, Große, and
Murro [27] introduced APS-like conditions for the spin Dirac operator on Lorentzian manifolds
with spacelike and timelike boundary, respectively. While Bär and Strohmaier [15] showed the
Fredholmness of the Dirac operator with these boundary conditions, Drago, Große, and Murro
[27] proved the well-posedness of the corresponding initial boundary value problem under certain
geometric assumptions.
In this thesis, we will follow the footsteps of the latter authors and discuss whether the APS-like
conditions for Dirac operators on Lorentzian manifolds with timelike boundary can be replaced
by more general conditions such that the associated initial boundary value problems are still well-
posed.
We consider boundary conditions that are local in time and non-local in the spatial directions. More
precisely, we use the spacetime foliation arising from the Cauchy temporal function and split the
Dirac operator along this foliation. This gives rise to a family of elliptic operators each acting on
spinors of the spin bundle over the corresponding timeslice. The theory of elliptic operators then
ensures that we can find families of non-local boundary conditions with respect to this family of
operators. Proceeding, we use such a family of boundary conditions to define a Lorentzian boundary
condition on the whole timelike boundary. By analyzing the properties of the Lorentzian boundary
conditions, we then find sufficient conditions on the family of non-local boundary conditions that
lead to the well-posedness of the corresponding Cauchy problems. The well-posedness itself will
then be proven by using classical tools including energy estimates and approximation by solutions
of the regularized problems.
Moreover, we use this theory to construct explicit boundary conditions for the Lorentzian Dirac
operator. More precisely, we will discuss two examples of boundary conditions – the analogue
of the Atiyah–Patodi–Singer and the chirality conditions, respectively, in our setting. For doing
this, we will have a closer look at the theory of non-local boundary conditions for elliptic operators
and analyze the requirements on the family of non-local boundary conditions for these specific
examples.
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Zusammenfassung
Über nicht-lokale Randbedingungen – zumBeispiel die Atiyah–Patodi–Singer (APS)-Bedingungen
– für Dirac Operatoren auf Riemannschen Mannigfaltigkeiten ist recht viel bekannt, während für
die hyperbolischen Dirac Operatoren auf Lorentz-Mannigfaltigkeiten dies noch nicht der Fall ist.
Kürzlich haben Bär und Strohmaier [15] und Drago, Große und Murro [27] APS-ähnliche Bedin-
gungen für den Spin Dirac Operator auf Lorentz-Mannigfaltigkeiten mit raumartigen bzw. zeitarti-
gen Rand eingeführt. Während Bär und Strohmaier [15] zeigten, dass der Dirac Operator mit diesen
Randbedingungen Fredholm ist, bewiesen Drago, Große und Murro [27] die Wohlgestelltheit des
entsprechenden Anfangsrandwertproblems unter bestimmten geometrischen Annahmen.
In dieser Arbeit werden wir in die Fußstapfen der letztgenannten Autoren treten und diskutieren, ob
die APS-ähnlichen Bedingungen für Dirac Operatoren auf Lorentz-Mannigfaltigkeiten mit zeitar-
tigen Rand durch allgemeinere Bedingungen ersetzt werden können, sodass die zugehörigen An-
fangsrandwertprobleme immer noch wohlgestellt sind.
Wir betrachten Randbedingungen, die in der Zeit lokal und in den Raumrichtungen nicht-lokal sind.
Genauer gesagt verwendenwir die Raumzeitblätterung, die sich aus der Cauchy Zeitfunktion ergibt,
und spalten den Dirac Operator entlang dieser Foliation auf. Daraus ergibt sich eine Familie ellip-
tischer Operatoren, die jeweils auf Spinoren des Spinbündels über den entsprechenden Zeitschnitt
wirken. Die Theorie der elliptischen Operatoren stellt dann sicher, dass wir Familien von nicht-
lokalen Randbedingungen bezüglich dieser Familie von Operatoren finden können. Im weiteren
Verlauf verwenden wir solche Familien von Randbedingungen, um eine Lorentzsche Randbedin-
gung auf dem gesamten zeitartigen Rand zu definieren. Durch das Analysieren der Lorentzschen
Randbedingungen finden wir dann hinreichende Bedingungen für die Familie der nicht-lokalen
Randbedingungen, die zur Wohlgestelltheit der entsprechenden Cauchy-Probleme führen. Die
Wohlgestelltheit selbst wird dann mit Hilfe klassischer Methoden bewiesen, einschließlich En-
ergieabschätzungen und Annäherung durch Lösungen der regularisierten Probleme.
Außerdem verwenden wir diese Theorie, um explizite Randbedingungen für den Lorentzschen
Dirac Operator zu konstruieren. Genauer gesagt werden wir zwei Beispiele für Randbedingungen
diskutieren - das Analogon der Atiyah-Patodi-Singer- bzw. Chiralitäts-Bedingungen für unseren
Fall. Dazu werden wir uns die Theorie der nicht-lokalen Randbedingungen für elliptische Opera-
toren genauer ansehen und die Anforderungen an die Familie der nicht-lokalen Randbedingungen
für diese Beispiele analysieren.



5

Acknowledgments
First, I wish to express my sincere thanks to my supervisor Christian Bär for his continuing guid-
ance and support over the years of my PhD studies. His commitment to hard work and passion for
Mathematics are lessons that I will carry with me to the future.
I am also very grateful to Lashi Bandara and Mehran Seyedhosseini for their help and guidance
to me, both professional and personal, during my studies and the writing of this thesis. They have
always listened to my problems and put in a great deal of effort to assist me in improving in math-
ematics.
My special gratitude also to all the amazing Mathematicians for many interesting discussions, con-
versations and advice. Thank you Nicoló Drago, Nadine Große, Sebastian Hannes, Rubens Longhi,
Jan Metzger and Simone Murro.
Furthermore, I would like to thank Ariane Beier, Claudia Grabs and Rubens Longhi for proofread-
ing my thesis and correcting my written English.
I am indebted to the "International Max Planck Research School" for giving me this great opportu-
nity to do my PhD studies both at the University of Potsdam and the Albert Einstein Institute.
I am also grateful to all the marvelous people from the geometry working group. I would like
to thank you for all the great times throughout these years: Ariane Beier, Claudia Grabs, Florian
Hanisch, Onirban Islam, Rubens Longhi, Alberto Richtsfeld and Mehran Seyedhosseini.
My parents deserve a special thanks for all their support, love and care throughout all my life.
Thank you for always encouraging me and believing in me through all the ups and downs of my
PhD studies.



6

Statement of Originality
This thesis contains no material which has been accepted for the award of any other degree or
diploma at any other university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person, except where due
reference has been made in the text. I give consent to this copy of my thesis, when deposited in the
University Library, being made available for loan and photocopying.



CONTENTS

1 Introduction 9

2 Preliminaries 13
2.1 Spacetimes with timelike boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The spin Dirac operator on spacetimes with timelike boundary . . . . . . . . . . . 15
2.3 The spin Dirac operator on closed Riemannian manifolds . . . . . . . . . . . . . . 18
2.4 Standard setup on spacetimes with timelike boundary . . . . . . . . . . . . . . . . 19

3 Boundary Conditions 20
3.1 Boundary conditions for elliptic operators . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 The range of the restriction map and boundary conditions . . . . . . . . . 22
3.1.3 Elliptic and∞-regular boundary conditions . . . . . . . . . . . . . . . . . 25
3.1.4 Examples for non-local boundary conditions . . . . . . . . . . . . . . . . 36

3.2 Continuity of functional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Lorentzian boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 MIT boundary conditions on Minkowski halfspace . . . . . . . . . . . . . 42
3.3.2 Transmission conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Admissible boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 47

4 Initial Boundary Value Problems 53
4.1 The Cauchy problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Energy estimate and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



8

4.3 Well-posedness of the Cauchy problems . . . . . . . . . . . . . . . . . . . . . . . 55
5 Pseudo Local Boundary Conditions 61

5.1 Grassmannian projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Atiyah–Patodi–Singer conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Remarks on modified Atiyah–Patodi–Singer conditions . . . . . . . . . . . . . . . 66
5.4 Boundary chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Examples on ℝ × B1(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Outlook 76
6.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Spacetimes with spacelike boundary . . . . . . . . . . . . . . . . . . . . . 76
6.1.2 Spacetimes with timelike boundary . . . . . . . . . . . . . . . . . . . . . 78

6.2 Open questions and possible new research directions . . . . . . . . . . . . . . . . 80
A Dirac Operators in the Sense of Gromov–Lawson 83

A.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 Boundary conditions and Cauchy problems . . . . . . . . . . . . . . . . . . . . . 87

B Some Auxiliary Discussions 89
B.1 Some properties of twisted operators . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 The spin Dirac operator on ℝ1,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 93

Alphabetical Index 99



1
INTRODUCTION

The Atiyah–Patodi–Singer index theorem [3] for elliptic first order operators on compact manifolds
with boundary is one of the central mathematical discoveries of the 20th century. This index theo-
rem requires non-local boundary conditions, which are based on the spectral decomposition of the
operator induced on the boundary – the so called Atiyah–Patodi–Singer (APS) conditions. These
boundary conditions are essential for making sure that the operator is indeed a Fredholm opera-
tor and, hence, that the analytical index is well-defined. Bär and Ballmann [8] and later Bär and
Bandara [10] introduced general boundary conditions for elliptic first order operators and analyzed
their influence on elliptic regularity and Fredholmness; in [8] the authors additionally assumed the
boundary operator to be formally selfadjoint. For elliptic operators of general order, Bandara, Gof-
feng, and Saratchandran [7] discussed boundary conditions connected to the Calderón projectors.
Their results, in the first order case, are equivalent to the results of Bär and Bandara [10].
Recently, Bär and Strohmaier [15] showed a Lorentzian index theorem for the (twisted) spin Dirac
operator on spatially compact globally hyperbolic spin manifolds with boundary that consists of two
disjoint smooth spacelike Cauchy hypersurfaces. Although the spin Dirac operator is hyperbolic
in this case, the boundary operator is elliptic so that the APS conditions still make sense. In [15],
the authors showed that under these conditions the Dirac operator becomes Fredholm and its index
is given formally by the same geometric expression as in the Riemannian case. Bär and Hannes
[13] investigated to what extend these boundary conditions can be replaced by more general ones
and how the index changes with respect to them. Furthermore, an analogous result to [15] was
obtained by Shen and Wrochna [44] for asymptotically static spacetimes with only one spacelike
Cauchy hypersurface as "lower" boundary. As an application to the Lorentzian index theorem the
chiral anomaly in algebraic quantum field theory on curved spacetimes was computed by Bär and
Strohmaier in [14].
In physics, the Anti-de Sitter (AdS) or the asymptotically AdS spacetimes became increasingly im-
portant – especially in the context of studying the properties of Green-hyperbolic operators like
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the wave, the Klein–Gordon, or the Dirac operator; see for example [5, 34, 50, 48]. The man-
ifolds considered in these results are spacetimes with timelike boundary, i. e. spacetimes (M,g)
with boundary )M , such that �∗g is also a Lorentzian metric, where � ∶ )M → M is the natural
inclusion map. Further studies of Green-hyperbolic operators on spacetimes with timelike bound-
ary were accomplished, for example, in [23, 24, 25, 29, 31]. These results are concerned with local
boundary conditions. However, to establish a possible index theorem for this class of manifolds,
one should also investigate the behavior of non-local boundary conditions for hyperbolic first order
operators such as the Lorentzian Dirac operator.
As a first step, one should prove the well-posedness of the Cauchy problem for the Dirac operator
with non-local boundary conditions. In full generality, this would require an analog of the theory
of [8, 10] for hyperbolic operators on a non-compact manifold, which should be highly non-trivial
since the spectrum of the boundary operator would be difficult to control. Thus, we will instead
restrict ourselves to boundary conditions that are local in time and non-local in the spatial direction
such that we can use for each timeslice the theory of elliptic operators.
More precisely, we consider globally hyperbolic spinmanifoldswith timelike boundary, i. e. (M,g) ≅
(ℝ × Σ,−N2 dt2 + gt) withN ∈ C∞(ℝ × Σ) strictly positive and {(Σ, gt)}t∈ℝ being a smooth fam-
ily of Riemannian manifolds with smooth boundary )Σ. On such manifolds, the Dirac operator
D∶ C∞(M,SM)→ C∞(M,SM) splits as

D = −
(�)
[

∇SM
� + iDt −

n
2
Ht

]

,

where∇SM is the spin connection on the complex spin bundle SM , 
(v) the Clifford multiplication
of the unit normal field � to (Σ, gt),Ht the mean curvature of Σt, andDt a family of elliptic operators
acting on spinors on SM|Σt . This setting will be made more precise in Section 2.1.
Using the conformal change ĝ = N−2g and identifying the Cauchy hypersurfaces, we can bring D
to the form

D̃ = −
(�)()t + iD̃t),
where D̃ is acting on C∞(ℝ, C∞(Σ, SM|Σ)) and D̃t is an elliptic operator acting on C∞(Σ, SM|Σ).
Using the theory of [8, 10], one can find elliptic boundary conditions Bt ⊆ H

1
2 (Σt, SM|Σt) withrespect toDt. We consider certain families of boundary conditionsB ∶= {Bt}t∈ℝ called admissible

boundary conditions (see Definition 3.3.13), which – briefly speaking – should be continuous in t
in a suitable sense and induce∞-regular selfadjoint boundary conditions B̃t ⊆ Ȟ(Ãt), where Ãt isthe boundary operator of D̃t and B̃t are the boundary conditions associated with Bt by going from
Dt to D̃t. A thorough investigation is presented in Chapter 3.
If we have an admissible boundary condition B, we can define the Lorentzian boundary condition
as

C∞()M,B) ∶= {u ∈ C∞()M,SM|)M ); u|)Σt ∈ Bt}.
With respect to these boundary conditions, we will prove the following well-posedness result:
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Main Theorem 1. Let (M,g) be a globally hyperbolic, spatially compact spin manifold with time-
like boundary )M . Let Σ be a spacelike Cauchy hypersurface. Let t∶ M → ℝ be a temporal func-
tion such that Σ0 = Σ and the gradient of t is tangential to )M . Let B be an admissible boundary
condition with respect to t and D. Then, there exists a unique smooth solution  ∈ C∞(M,SM)
to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (Σ, SM|Σ)

 |)M ∈ C∞()M,B)
(1.0.1)

that depends continuously on the Cauchy data (f,  0).

This theorem will be proven in Chapter 4 and is a generalization of the result of Drago, Große,
and Murro [27], which were the first authors to consider non-local boundary conditions in the
above setting. In Chapter 5, we will discuss some examples for admissible boundary conditions.
In particular, we show for boundary conditions defined over Grassmannian projections:
Main Theorem 2. Let (M,g) = (ℝ × Σ, g = −N2dt2 + gt) be a globally hyperbolic, spatially
compact spin manifold with timelike boundary )M . Let � be the unit normal field to )M and Σ
be a spacelike Cauchy hypersurface. Let t∶ M → ℝ be a temporal function such that Σ0 = Σ
and the gradient of t is tangential to )M . Let {Pt}t∈ℝ be a family of orthogonal pseudo differential
operators on L2()Σt, SM|)Σt) such that

1. Pt = N−1P ∗
t N ,

2. Pt = Id + �Dt
(�♭t )Pt�Dt

(�♭t ),

3. P̃t = UN
n
2PtN

n
2U−1 is aGrassmannian projection onL2(Σ̂0, SM|)Σ̂0), where Σ̂t ∶= (Σt, N

−2gt)
and U ∶ L2(Σ̂t) → L2(Σ̂0) is the identification of the L2 spaces with respect to the parallel
transport along the t lines, and

4. there exists a sequence {kj}j∈ℕ0 of non-negative integers with k0 = 0 and kj →∞ for j →∞
such that t↦ P̃t isHkj norm continuous for all j.

Then B ∶= {Bt}t∈ℝ with Bt ∶= PtH
1
2 ()Σt, SM|)Σt) is an admissible boundary condition and in

particular there exists a unique smooth solution  ∈ C∞(M,SM) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (Σ, SM|Σ)

 |)M ∈ C∞()M,B)
(1.0.2)

that depends continuously on the Cauchy data (f,  0).
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This theorem will then be used to discuss more explicit boundary conditions like for example
the Atiyah–Patodi–Singer conditions or chirality conditions.
This thesis is organized as follows:
In Chapter 2, we recall the most important facts of spin geometry and the spin Dirac operator on
spacetimes with timelike boundary. In Chapter 3, we will first summarize the theory of non-local
boundary conditions for elliptic operators and then apply this theory to define non-local boundary
conditions in the setting of spacetimes with timelike boundary. These boundary conditions will be
used in Chapter 4 to prove the well-posedness of the corresponding initial boundary value problems.
In Chapter 5, we will discuss pseudo local boundary conditions and apply this discussion to some
examples of boundary conditions. We will conclude this thesis by putting our results into context
of recent research on boundary value problems on spacetimes in Chapter 6. In Appendix A, we
briefly discuss a more general class of operators suitable for the non-local boundary conditions
constructed in this work.



2
PRELIMINARIES

In this chapter, we will introduce the most important aspects about spacetimes with timelike bound-
ary and the Lorentzian Dirac operator. In the last section, we will also give some more comments
on the Riemannian Dirac operator on manifolds with or without boundary. We will require some
familiarity with Lorentzian geometry and spin geometry. However, the reader may consult [39] for
an introduction to Lorentzian geometry and [11, 17] for semi-Riemannian spin geometry.

2.1 Spacetimes with timelike boundary
In this section, we will introduce the basic facts about spacetimes with timelike boundary. For this
let us start with their definition.
Definition 2.1.1. A Lorentzian manifold with timelike boundary (M,g) is a Lorentzian manifold-
with-boundary such that �∗g, with �∶ )M → M being the natural inclusion, defines a Lorentzian
metric on the boundary.
A spacetime with timelike boundary is a time-oriented Lorentzian manifold with timelike boundary.

By time-oriented one means – as in the boundaryless case – that the time-cones have been
chosen continuously, i. e. locally selected by a continuous timelike field. Note that (M,g) being a
spacetime with timelike boundary is equivalent to the interior and the connected components of the
timelike boundary being spacetimes without boundary, which is shown in Proposition 2.4 in [1].
Let us briefly discuss some examples before we continue with our discussion of globally hyperbolic
spacetimes with timelike boundary.
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Example 2.1.2.

1. Consider the manifold-with-boundaryM = B1(0) × ℝ with B1(0) being the 2-dimensional
closed unit ball. LetM be embedded into the Minkowski space (ℝ1,2, gMin), then (M,gMin)is a spacetime with timelike boundary.

2. Two famous exampleswould be theAnti-de Sitter space (AdS) and theAnti-de Sitter Schwarzschild
spacetime, which have conformal timelike boundary, i. e. after compactifying in radial direc-
tion and carefully gluing in the boundary, they become spacetimes with timelike boundary.
We refer the interested reader to, for example, [45, 2].

As in the case of spacetimes without boundary, we call (M,g) globally hyperbolic, when it is
causal and all causal diamonds J+(p) ∩ J−(q) for p, q ∈M are compact. Also we call a set Σ ⊆ M
a Cauchy hypersurface if it is intersected exactly once by every inextensible timelike curve. In the
boundaryless case, Bernal and Sánchez [18] characterized globally hyperbolic spacetimes, but also
in the setting of spacetimes with timelike boundary there is an analogous result:
Theorem 2.1.3 (Theorem 1.1 in Aké–Flores–Sánchez [1]). Let (M,g) be a spacetime with timelike
boundary of dimension greater or equal two. Then the following conditions are equivalent:

1. (M,g) is globally hyperbolic,

2. (M,g) possesses a Cauchy hypersurface, and

3. (M,g) is isometric to ℝ × Σ endowed with

g = −N2 dt2 + gt,

where t∶ M → ℝ is a Cauchy temporal function, whose gradient is tangential to )M ,N ∈
C∞(ℝ×Σ) being strictly positive whileℝ ∋ t↦ (Σt ∶= {t}×Σ, gt) identifies a one-parameter
family of Riemannianmanifolds with boundary. EachΣt is a Cauchy hypersurface for (M,g).

If one compares Theorem 2.1.3 with its boundaryless analogue in [18], one notices two dif-
ferences. Firstly, the family of spacelike Cauchy hypersurfaces {Σt}t∈ℝ consists of Riemannian
manifolds with boundary, while in the boundaryless case they have no boundary. Secondly, the
Cauchy temporal function is chosen such that its gradient is tangential to the boundary. This as-
sumption is related to the method of identifying the Cauchy hypersurfaces by the integral curves
of )t. If )t is not tangential to the boundary, the integral curves do not exist for all time and hence
also not the parallel transport along these curves, see Figure 2.1 for an intuition.
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)M

Σ0

Σ1


 )t
�

Figure 2.1: The integral curve 
 of )t hitting the boundary )M .

Example 2.1.4. Let us put Example 2.1.2 into the context of globally hyperbolic manifolds. While
the first example is clearly globally hyperbolic, the discussion for the second one is more involved.
The boundaryless AdS space has compact time, hence it is obviously non-globally hyperbolic. By
carefully compactifying the AdS space and gluing in the conformal boundary, one ends up with a
spacetime with infinite time and timelike boundary, which indeed is globally hyperbolic as well.
Note, that without gluing in the boundary the compactified AdS is not globally hyperbolic in the
sense of boundaryless spacetimes.

2.2 The spinDirac operator on spacetimeswith timelike bound-
ary

Let us now introduce the Lorentzian spin Dirac operator. For this let (M,g) be a globally hyper-
bolic spin manifold with timelike boundary and let us denote the dimension ofM by n + 1. Note
that for the physical relevant case n = 3, globally hyperbolic spacetimes are always spin.
From now onwards, we will always assumeM to be spatially compact, i. e. all Cauchy hypersur-
faces are compact.
Let SM →M be the complex spin bundle with its invariantly defined non-degenerate inner prod-
uct ⟨⋅, ⋅⟩SM and ∇SM its metric connection. Let us denote with C∞(M,SM) the space of smooth
section of SM . Furthermore, let us denote for tangent vectors X ∈ TxM the Clifford multiplica-
tion by 
(X)∶ SxM → SxM .
The Clifford multiplication is symmetric with respect to ⟨⋅, ⋅⟩SM and also satisfies the Clifford re-
lation


(X)
(Y ) + 
(Y )
(X) = −2g(X, Y ) (2.2.1)
for all x ∈ M and X, Y ∈ TxM . Furthermore, note that the Clifford multiplication is parallel
with respect to ∇SM and the Levi-Civita connection ∇ on TM , i. e. for X, Y ∈ C∞(M,TM) and



16 CHAPTER 2. PRELIMINARIES

 ∈ C∞(M,SM) one has
∇SM
X (
(Y ) ) = 
(Y )∇SM

X  + 
(∇XY ) . (2.2.2)
Since M is globally hyperbolic, we can choose a temporal function, which induces a spacetime
foliation {Σt}t∈ℝ consisting of Riemannian manifolds with boundary. Let � be the past pointing
timelike unit vector field perpendicular to {Σt}t∈ℝ.Let us briefly discuss how the spin bundle SΣt, its Clifford multiplication 
t and its metric ⟨⋅, ⋅⟩SΣtare related to the corresponding objects on SM|Σt . If n is even then

SM|Σt ≅ SΣt

with 
(X) = −i
(�)
t(X) and ⟨⋅, ⋅⟩SM = ⟨
(�), ⋅, ⋅⟩SΣt .On the other hand, if n is odd,
SM|Σt ≅ SΣt ⊕SΣt,

with

(X) =

(

0 i
(�)
t(X)
−i
(�)
t(X) 0

)

,

and
⟨⋅, ⋅⟩SM =

⟨(

0 
(�)

(�) 0

)

⋅, ⋅
⟩

SΣt⊕SΣt

.

Remark 2.2.1.

1. Let us briefly discuss the intuition behind the case of n being odd. Here, we have SM =
S−M⊕S+M , whereS±M are the bundles of negative and positive chirality. ThenS+M|Σt ≅
SΣt with 
(X) = i
(�)
t(X), while for S−M|Σt ≅ SΣt we have 
(X) = −i
(�)
t(X). Hence,one sees that with respect to the splitting SM|Σt ≅ SΣt ⊕ SΣt Clifford multiplication splits
as


(X) =
(

0 
(X)

(X) 0

)

=
(

0 i
(�)
t(X)
−i
(�)
t(X) 0

)

.

Similarly, one can see how the inner products relate.
2. Note that for both cases, n being odd or even, since ⟨⋅, ⋅⟩SΣt is positive definite, the inner

product
⟨⋅, ⋅⟩0 ∶= ⟨
(�)⋅, ⋅⟩SM . (2.2.3)

is positive definite on SM|Σt . We denote the corresponding norm by |⋅|0 ∶=
√

⟨⋅, ⋅⟩0. For
each t ∈ ℝ, letL2(Σt, SM|Σt) be the canonicalL2-space on the spinor bundle SM|Σt definedusing the volume form d�Σt(gt) and the metric ⟨⋅, ⋅⟩0.
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On the complex spin bundle SM , we consider the Lorentzian spin Dirac operator
D∶ C∞(M,SM)→ C∞(M,SM).

Locally, if e0, e1,… , en is a Lorentzian orthogonal tangent frame, the Lorentzian spin Dirac operator
is given by

D =
n
∑

j=0
gjj
(ej)∇SM

ej
,

where gjj = g(ej , ej)−1. It is easy to see that this does not depend on the choice of orthogonal
tangent frame. If e0,… , en is even orthonormal, then D simplifies to

D =
n
∑

j=0
"j
(ej)∇SM

ej
,

where "j = g(ej , ej) = ±1. Let � be the inward pointing spacelike unit normal field to )M , then
the divergence theorem implies for all  , � ∈ C∞

c (M,SM)1

∫M
⟨D ,�⟩SM + ⟨ ,D�⟩SM d�M = −∫)M

⟨
(�) , �⟩SM d�)M , (2.2.4)
where d�M is the volume element onM with respect to g and d�)M is the induced one on )M .
Remark 2.2.2. Note that Equation 2.2.4, does not imply thatD is formally anti-selfadjoint or sym-
metric. Since the Green formula above is using an inner product that is not positive definite, the
integral over it does not define a L2-scalar product on M . Hence, talking about formally anti-
selfadjointness in this case does not make sense.

Using the Gauß formula for ∇SM , i. e.
∇SM
X  = ∇SΣt

X  − 1
2

(�)
(W (⋅)) ,

whereW is the Weingarten map of the Levi-Civita connection on the tangent bundle, we get
D = −
(�)

[

∇SM
� + iDt −

n
2
Ht

]

, (2.2.5)

where Ht is the mean curvature of Σt with respect to � and Dt = ��Dt or Dt =
(

��Dt 0
0 −��Dt

)

for n
even and odd, respectively, where��Dt is the Riemannian spin Dirac operator on SΣt. Hence,Dt is aDirac type operator (see 3.1.4) and is in particular elliptic with principal symbol of Dt is given by

�Dt
(� ) = −i�D(�)�D(� ),

for � ∈ TxΣt.
1C∞c (M,SM) is the space of smooth spinors with compact support
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Remark 2.2.3. Note that the principal symbol �Dt
is symmetric with respect to ⟨⋅, ⋅⟩SM but is

skew-symmetric with respect to ⟨⋅, ⋅⟩0. Furthermore, Dt is formally selfadjoint with respect to the
L2-scalar product arising from ⟨⋅, ⋅⟩0.

2.3 The spin Dirac operator on closed Riemannian manifolds
Since Dt is a Dirac operator in the sense of Gromov and Lawson, see [9], or simply is the Rieman-
nian Dirac operator, one can discuss the splitting along the hypersurface )Σt ⊆ Σt, which is given
as follows

Dt = �Dt
(�♭t )

−1
(

∇SΣt
�t
+ At −

n − 1
2

H)Σt
t

)

, (2.3.1)

where �t ∶= �(t, ⋅) is the unit normal field � to the timelike boundary )M restricted to Σt2,H)Σt
t is

the mean curvature of )Σt inside Σt with respect to �t and At is the double of the Riemannian Dirac
operator on )Σt. Since )Σt is a closed manifold, we see that At is essentially selfadjoint.
For later use, let us recall one important fact on Dirac operators on closed Riemannian manifolds.
Theorem 2.3.1. Let X be a closed Riemannian spin manifold with Dirac operator A. Then the
spectrum of A is real and discrete. Furthermore, all eigenspaces E(A, �) of A are finite dimen-
sional, consist of smooth sections, and one has

L2(X,SX) =
⨁

�
E�(A)

L2

as Hilbert space sum decomposition.

The proof of this theorem is classical, but can, for example, be found in [21]. Furthermore, note
that Theorem 2.3.1 is still true for selfadjoint elliptic first order operators on closed manifolds.

2Since � is tangential to )M, i. e. � ⟂ �, we see that �(t, ⋅) is tangent to Σt for all t.
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2.4 Standard setup on spacetimes with timelike boundary
Except we mention otherwise, we are working in the following setting:

• (M,g) is a globally hyperbolic spatially compact spin manifold with timelike boundary )M ;
� is the interior unit normal field to )M ,

• Σ is a compact spacelike Cauchy hypersurface ofM ,
• t∶ M → ℝ is a temporal function with Σ0 = Σ and its gradient being tangential to )M ; � is

the past pointing unit normal field perpendicular to the Σt,
• with respect to t, the metric is given by g = −N2 dt2 + gt and {Σt}t∈ℝ is the smooth foliation

ofM by compact Riemannian manifolds with boundary as in Theorem 2.1.3,
• D∶ C∞(M,SM)→ C∞(M,SM) is the Lorentzian spin Dirac operator, and
• Dt∶ C∞(Σt, SM|Σt)→ C∞(Σt, SM|Σt) is the induced Dirac type operator on Σt.



3
BOUNDARY CONDITIONS

In this chapter, we will discuss non-local boundary conditions, first for Riemannian manifolds and
then for spacetimes with timelike boundary. This will be done in three parts. First, we will sum-
marize known results for the Riemannian setting (see [8, 9, 10]). Next, we will have some more
detailed technical discussion regarding elliptic regularity (see Subsection 3.1.3) and continuity of
of functional calculus depending on families of operators and boundary conditions (see Section
3.2), respectively. In the last part of this chapter we will use the first two parts to define Lorentzian
boundary conditions.

3.1 Boundary conditions for elliptic operators
The goal of this section is to give a brief summary of the theory of non-local boundary conditions.
We will restrict ourselves only to a special case, but the theory can be done in more generality.

3.1.1 Motivation
Before discussing the theory of non-local boundary conditions in the following subsections, let us
spend a little bit of time on the question why we are interested in these kind of boundary conditions
for first order operators. For this we follow [38], that includes a nice overview on known results
regarding index theory for manifolds with boundary and corners. Since we did not introduce any
theory yet, we will not go into too many details here.
Let us start with a brief discussion of Fredholm operators on closed Riemannian manifolds. First,
recall the abstract definition of a Fredholm operator on Hilbert spaces.
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Definition 3.1.1 (Fredholm). Leti be Hilbert spaces for i = 1, 2 and letD∶ dom(D) ⊆ 1 → 2be an unbounded operator with domain dom(D) being dense in 1. Then D is called a Fredholm
operator if and only if

1. its range ran(D) is closed in 2,
2. its kernel is finite dimensional, and
3. its cokernel cokerD ∶= 2∕ranD is also finite dimensional.

If D is a Fredholm operator then we call the integer
ind(D) ∶= dim(kerD) − dim(cokerD)

the index of D.
Example 3.1.2. LetM be a 2-dimensional closed Riemannian manifold. Then the Gauß–Bonnet
operator1

DGB ∶= d + d∗∶ H1(M,ΛevM)→ L2(M,ΛoddM)

is Fredholm and has index
ind(DGB) = �(M) = 1

2� ∫M
K,

where �(M) is the Euler characteristic and K is the Gauß curvature ofM .
The generalization of the example above is the Atiyah–Singer index theorem [4], which is one of

the main mathematical achievements of the 20th century due to its many applications and because
of the conceptual insights it provides. Atiyah and Singer [4] computed the index of an elliptic first
order operator on a compact manifold without boundary and in particular show that every Dirac
type operator (see Definition 3.1.4) is Fredholm fromH1 to L2.
IfM is a compact Riemannian manifold with boundary, then the situation is totally different. One
can see that a Dirac type operator D∶ H1 → L2 can never be Fredholm. In fact, it is surjective
and has infinite dimensional kernel, which is shown for example in [20]. This is the point where
boundary conditions come into play. The choice of boundary conditions for first order operators is
more involved than for operators of order two. For an intuition, consider the following example.
Example 3.1.3. LetM = B1(0) ⊆ ℝ2 be the unit disk with Riemannian metric g = dr2 + d�2 in
polar coordinates (r, �). The elliptic first order operator D∶ C∞(M,ℂ)→ C∞(M,ℂ) with

D = )r + i)�,
1or Euler operator
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has kernel consisting of all holomorphic functions on M . Hence, the kernel is clearly infinite
dimensional and in particular the operator cannot be Fredholm. But on the other hand the real and
imaginary parts of an element in the kernel are harmonic and they determine each other up to a
constant. Thus for most smooth functions ℎ∶ )M → ℂ on the boundary the Dirichlet problem

{

Df = 0
f |)M = ℎ

is not solvable.
The example above illustrates that local boundary conditions are often "too strong" for first order

operators. In the following subsections we will discuss which boundary conditions are "good" in
the sense of restricting the domain in such a way that the operator becomes Fredholm.

3.1.2 The range of the restriction map and boundary conditions
In this subsection we will introduce non-local boundary conditions for elliptic first order operators.
The general theory in [8, 10] is for general elliptic operators on Riemannian manifolds with com-
pact boundary. For our purpose the case of formally selfadjoint Dirac type operators on compact
Riemannian manifolds will be sufficient, so we will reduce the theory to this class of operators. In
the following subsections, we will mostly follow [8, 9].
Let (Σ, g) be a compact Riemannian manifold with smooth boundary )Σ, whose unit conormal field
will be denoted by �. Furthermore, let (E, ℎE)→ Σ be a Hermitian bundle.
Definition 3.1.4 (formally selfadjoint Dirac type operator).
Let D∶ C∞(Σ, E) → C∞(Σ, E) be a formally selfadjoint differential operator of order one. Then
we call D a Dirac type operator if its principal symbol �D satisfies the Clifford relations

�D(� )�D(�) + �D(�)�D(� ) = −2g(�, �) ⋅ idEx , (3.1.1)
for all x ∈ Σ and �, � ∈ T ∗xΣ.
Remark 3.1.5. The Riemannian spin Dirac operator is an important example for a Dirac type op-
erator. Another important subclass of operators are the Dirac operators in the sense of Gromov and
Lawson as in [30], [36] and [9].
Note, that these operators are elliptic, i. e. �D(� ) is invertible for all x ∈ Σ and all 0 ≠ � ∈ T ∗xΣ,since by the Clifford relations the inverse can be explicitly written down as

�D(� )−1 = − |� |−2g �D(� ), 0 ≠ � ∈ T ∗xΣ. (3.1.2)
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Before discussing boundary conditions for Dirac type operators, let us spend some time on
introducing the maximal and minimal domain of an operator and the range of the restriction map
to the boundary mapping from these domains.
The graph norm ‖⋅‖D is defined by

‖⋅‖2D ∶= ‖D⋅‖2L2 + ‖⋅‖2L2

and the maximal domain by
dom(Dmax) ∶= { ∈ L2(Σ, E); D ∈ L2(Σ, E)}.

The minimal domain is the closure of C∞
cc (Σ, E) with respect to the graph norm of D, where

C∞
cc (Σ, E) is the space of smooth sections compactly supported in the interior of Σ, i. e. supp ∩

)Σ = ∅ for ∈ C∞(Σ, E). Themaximal operatorDmax and theminimal operatorDmin are themaxi-
mal andminimal closed extensions ofD∶ C∞

cc (Σ, E)→ C∞
cc (Σ, E). In particular, (dom(Dmax), ‖⋅‖D)and (dom(Dmin), ‖⋅‖D) are Banach spaces.

Now we will introduce the candidate for the range of the restriction map to the boundary mapping
from the maximal domain. For this, we start by discussing the boundary operator.
Definition 3.1.6. An operator A ∶ C∞()Σ, E|)Σ) → C∞()Σ, E|)Σ) is called a boundary operator
for D if its principal symbol is given by

�A(x, �) = �D(x, �(x))−1◦�D(x, �)

for all x ∈ )Σ and � ∈ T ∗x )Σ.
Remark 3.1.7.

1. In this setting, we can choose A to anti-commute with �D(�) and selfadjoint, see Lemma
2.2. in [9], but in general that is not necessarily the case. For Dirac operators in the sense
of Gromov and Lawson there is a natural choice of a selfadjoint boundary operator A, which
anti-commutes with �D(�). This operator has a lower order term depending on the mean
curvature of the boundary, see for example [9]. This can also be seen directly for the spin
Dirac operator as we discussed in Section 2.3.

2. The compactness of the boundary implies that the elliptic selfadjoint operator A has discrete
and real spectrum, see Theorem 2.3.1. If )Σ is not compact the behavior of the spectrum
of A can be hard to control. In the case of non-compact boundary, [32] discussed boundary
values of the Dirac operator associated with a spinc-structure, when Σ and )Σ are complete
and geometrically bounded in a suitable way.
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Let r ∉ spec(A) and define the operator A(r) ∶= A − r, which is then invertible.Let �±(A(r))∶ L2()Σ, E|)Σ) → L2()Σ, E|)Σ) be the spectral projections on the spectral subspaces
corresponding to the eigenvalues with positive and negative real parts, respectively. These are
pseudo-differential operators of order zero and therefore

�±(A(r))H s()Σ, E|)Σ)

are closed subspaces of the Sobolev spacesH s()Σ, E|)Σ) for all s ∈ ℝ.
Definition 3.1.8. We define the check space corresponding to the boundary operator A as

Ȟ(A(r)) ∶= �−(A(r))H
1
2 ()Σ, E|)Σ)⊕ �+(A(r))H

− 1
2 ()Σ, E|)Σ),

with norm
‖ ‖2Ȟ(A(r)) ∶=

‖

‖

‖

�−(A(r)) 
‖

‖

‖

2

H
1
2
+ ‖

‖

‖

�+(A(r)) 
‖

‖

‖

2

H− 12
.

Since the check space does not depend on the chosen r ∉ spec(A), see [8], in the following we
will drop the r in the notation of the space. Using the check space, Bär and Ballmann [8] showed,
that one can uniquely extend the trace map2 R∶ C∞(Σ, E) → C∞()Σ, E|)Σ),  ↦  |)Σ to the
maximal domain of the operator, such that the image of the extension is the check space. More
precisely:
Theorem 3.1.9 (Theorem 6.7 in [8]). In the setting introduced above, the following claims hold:

1. C∞(Σ, E) is dense in dom(Dmax) with respect to ‖⋅‖D,

2. the trace map extends uniquely to a continuous surjection R∶ dom(Dmax) → Ȟ(A) with
kernel ker R = dom(Dmin), and in particular R induces an isomorphism

Ȟ(A) ≅ dom(Dmax)∕dom(Dmin),

3. for all �,  ∈ dom(Dmax)

∫Σ
ℎE(Dmax�,  ) − ℎE(�,Dmax ) d�Σ = −∫)Σ

ℎE(�D(�)R�,R ) d�)Σ, and (3.1.3)

4. H1(Σ, E) ∩ dom(Dmax) = { ∈ dom(Dmax); R ∈ H
1
2 ()Σ, E|)Σ)}.

2Or restriction map.
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Note that the pairing in Equation 3.1.3 is well defined because �D(�) maps Ȟ(A) to Ȟ(−A),
since it anti-commutes with A.
Theorem 3.1.9 gives us the necessary tools to define boundary conditions:
Definition 3.1.10. A boundary condition is a closed linear subspace B ⊆ Ȟ(A). The domains of
the associated operators are

dom(Dmax,B) ∶= { ∈ dom(Dmax); R ∈ B}, and
dom(DB) ∶= { ∈ dom(Dmax) ∩H1(Σ, E); R ∈ B}.

Remark 3.1.11. Since R∶ dom(Dmax)∕dom(Dmin) → Ȟ(A) is an isomorphism, the check space Ȟ(A) as
a topological space does not depend on the choice of boundary operatorA. Furthermore, we have a
one to one relation between boundary conditions and closed extensions of D between the minimal
and maximal domain. Hence, (dom(Dmax,B), ‖⋅‖D) is a Banach space for all boundary conditions
B.
Moreover, a boundary condition B satisfies B ⊆ H

1
2 ()Σ, E|)Σ) if and only if DB = Dmax,B.

Motivated by the third part of Theorem 3.1.9, the associated adjoint boundary condition denoted
by B∗ is given by

B∗ ∶= {� ∈ Ȟ(A); ∫)Σ
ℎE(�D(�) , �) d�)Σ = 0 ∀ ∈ B}.

We call a boundary condition B selfadjoint, if B∗ = B. By Subsection 7.2 in [8], the domain of the
adjoint of Dmax,B is given by

dom((Dmax,B)∗) = { ∈ dom(Dmax);  |)Σ ∈ B∗} = dom(Dmax,B∗).

In particular, if B is a selfadjoint boundary condition then Dmax,B is a selfajoint operator.

3.1.3 Elliptic and∞-regular boundary conditions
The goal of this subsection is to discuss the connection between boundary conditions and the reg-
ularity of sections in the corresponding domains. For this we will consider elliptic and∞-regular
boundary condition, which we will introduce in the following.
Let us denote V s ∶= V ∩H s()Σ, E|)Σ) for V ⊆ L2()Σ, E|)Σ) and s ∈ ℝ.
Definition 3.1.12. Let B ⊆ H

1
2 ()Σ, E|)Σ) be a linear subspace and r ∉ spec(A). Suppose

1. W±, V± are mutually complementary subspaces of L2()Σ, E|)Σ) such that
V± ⊕W± = �±(A(r))L2()Σ, E|)Σ),
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2. W± are finite dimensional withW±,W ∗
± ⊆ H

1
2 ()Σ, E|)Σ), and

3. there exists a bounded linear map g∶ V− → V+ with g(V
1
2
− ) ⊆ V

1
2
+ and g∗((V ∗

+ )
1
2 ) ⊆ (V ∗

− )
1
2

such that
B = W+ ⊕ {v + gv; v ∈ V

1
2
− }.

Then we say that B can be elliptically decomposed with respect to r.
Remark 3.1.13. A priori Definition 3.1.12 depends on r ∉ spec(A), but Theorem 2.9 in [10] shows
that if B can be elliptically decomposed with respect to some r then it can be with respect to all.
Definition 3.1.14. Let B ⊆ H

1
2 ()Σ, E|)Σ) be a linear subspace such that B ⊆ Ȟ(A) is closed and

B∗ ⊆ H
1
2 ()Σ, E|)Σ), then B is called elliptic.

The following result proven in [8], shows that B being elliptic is equivalent to B being ellipti-
cally decomposed:
Theorem 3.1.15 (Theorem 7.11 [8]). Let B ⊆ H

1
2 ()Σ, E|)Σ) be a subspace. Then the following

are equivalent:

1. dom(Dmax,B) ⊆ H1(Σ, E) and dom(Dmax,B∗) ⊆ H1(Σ, E),

2. B is elliptic,

3. B can be elliptically decomposed.

Moreover, for an elliptic boundary condition B, we have that B∗ is an elliptic boundary condition
as well.

The following is a direct consequence of Theorem 3.1.15:
Corollary 3.1.16. LetB be an elliptic boundary condition. Then dom(Dmax,B) is a closed subspace
ofH1(Σ, E). Moreover, ‖⋅‖D and ‖⋅‖H1 are equivalent on dom(Dmax,B).

Proof. We first show that dom(Dmax,B) is closed inH1(Σ, E). Let
{ n}n∈ℕ ⊆ dom(Dmax,B) ⊆ H1(Σ, E) ⊆ dom(Dmax)

such that  n →  inH1(Σ, E). Since ‖⋅‖D ≤ C ‖⋅‖H1 and (dom(Dmax,B), ‖⋅‖D) is a Banach space,we know that  n →  ∈ dom(Dmax,B) and, thus, dom(Dmax,B) is closed inH1(Σ, E).
In particular, (dom(Dmax,B), ‖⋅‖D) and (dom(Dmax,B), ‖⋅‖H1) are both Banach spaces with ‖⋅‖D ≤
C ‖⋅‖H1 . Hence, the identity map id ∶ (dom(Dmax,B), ‖⋅‖H1)→ (dom(Dmax,B), ‖⋅‖D) is continuousand bijective. By the open mapping theorem this is an isomorphism, which implies the second
claim of the corollary.
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The closedness of the domain of DB for B being an elliptic boundary condition implies in par-
ticular the following: Recall that the initial motivation for defining non-local boundary conditions
was to analyze the Fredholmness for elliptic operators on manifolds with boundary. It turns out that
elliptic boundary conditions are the right ones to look at:
Theorem 3.1.17 (Theorem 8.5 [8]). Let B ⊆ H

1
2 ()Σ, E|)Σ) be an elliptic boundary condition for

D. Then
DB ∶ dom(DB)→ L2(Σ, E)

is a Fredholm operator and its index is given by

ind(DB) = dim(ker(DB)) − dim(kerDB∗) ∈ ℤ.

In particular, for B being a selfadjoint boundary condition the index of DB vanishes.

In Subsection 3.3.3 we will define admissible boundary conditions, where we consider for each
timeslice a selfadjoint boundary condition. Hence, let us briefly discuss the existence of selfadjoint
boundary conditions for formally selfadjoint Dirac type operators.
Theorem 3.1.18 (Theorem 3.12 [9]). Let D∶ C∞(Σ, E) → C∞(Σ, E) be a formally selfadjoint
Dirac type operator and let A be a selfadjoint boundary operator that anti-commutes with �D(�).
Then an elliptic boundary condition B is selfadjoint if and only if there is

1. an orthogonal decomposition �−(A)L2(−∞,0)()Σ, E|)Σ) = V ⊕W , whereW is a finite dimen-
sional subspace of C∞()Σ, E|)Σ),

2. an orthogonal decomposition ker A = L⊕ �D(�)L,

3. and a selfadjoint operator g∶ V ⊕ L → V ⊕ L of order zero such that

B = �D(�)W ⊕ {v + �D(�)gv; v ∈ V
1
2 ⊕L}.

Remark 3.1.19. Note that in Theorem 3.1.18, the case of trivial kernel ofA is not excluded. In this
case, the representation of B is unique since V = �−(A)B and W is the orthogonal complement
in �−(A)L2()Σ, E|)Σ). Furthermore, the orthogonal decomposition of the kernel requires that the
kernel of A is even dimensional.

The following definition gives us a useful notion to allow for higher regularity of solutions up
to the boundary:
Definition 3.1.20. We say an elliptic boundary conditionB is∞-semi-regular ifW+ ⊆ H s()Σ, E|)Σ)
and g(V s

− ) ⊆ V
s
+ for all s ≥ 1

2
. HereW±, V± and g are as in Definition 3.1.12. If, in addition, B∗ is

also∞-semi-regular, then we say B is∞-regular.
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This class of boundary conditions can now be used for higher boundary regularity:
Theorem 3.1.21 ( Theorem 7.17 in [8]). Let B be an∞-regular boundary condition, then

Dmax ∈ Hk(Σ, E) ⇔  ∈ Hk+1(Σ, E).

for all k ∈ ℕ and  ∈ dom(DB).

Proceeding, we will use Theorem 3.1.21 to define closed subspaces of Sobolev spaces with re-
spect to∞-regular selfadjoint boundary conditions. Let B be a fixed∞-regular selfadjoint bound-
ary condition. Then we define the operator

ΔB ∶= Id +D2
B

with domain
dom(ΔB) = dom(Id) ∩ dom(D2

B)
= dom(D2

B)
= { ∈ dom(Dmax,B);D ∈ dom(Dmax,B)}
= { ∈ dom(Dmax,B);D ∈ dom(Dmax,B) ∩H1(Σ, E)}
= { ∈ dom(Dmax,B) ∩H2(Σ, E);R(D ) ∈ B}
= { ∈ H2(Σ, E); R( ) ∈ B and R(D ) ∈ B} ⊆ H2(Σ, E)

Let us summarize the most important properties ofΔB in the following Lemma. The proof is based
on methods used in [6], where similar results are shown for elliptic operators on closed manifolds.
Lemma 3.1.22.

1. The operator ΔB is a selfadjoint Laplace type operator,

2. The domain dom(ΔB) is closed inH2(Σ, E) with ‖⋅‖B,2 ∶= ‖

‖

ΔB⋅‖‖L2 ≃ ‖⋅‖H2 on dom(ΔB).

3. The spectrum of ΔB is discrete and the eigenspaces are finite dimensional and consist of
smooth sections.

Proof.

1. Since D is a formally selfadjoint Dirac type operator and B is a selfadjoint boundary condi-
tion, ΔB is a selfadjoint Laplace type operator by functional calculus.
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2. Let  n ∈ dom(ΔB) ⊆ dom(Dmax,B) with  n →  ∈ H2(Σ, E) with respect to ‖⋅‖H2 , then for
m < n

‖

‖

 n −  m‖‖D ≤ C1 ‖‖ n −  m‖‖H1 ≤ C2 ‖‖ n −  m‖‖H2 ,

where Ci are independent of  and n, m. Hence, { n}n∈ℕ is a Cauchy sequence with respect
to ‖⋅‖D and since (dom(Dmax,B), ‖⋅‖D) is a Banach space, we directly know that  n →  ∈
dom(Dmax,B). Similarly, one sees for m < n

‖

‖

D( n −  m)‖‖D ≤ C3 ‖‖D( n −  m)‖‖H1 ≤ C4 ‖‖ n −  m‖‖H2 ,

henceD n is again a Cauchy sequence with respect to ‖⋅‖D. Since {D n}n∈ℕ ⊆ dom(Dmax,B)we can again conclude that D ∈ dom(Dmax,B). Thus, we already know that
 ∈ {� ∈ dom(Dmax,B);D� ∈ dom(Dmax,B)} = dom(ΔB),

and dom(ΔB) is closed in H2(Σ, E). Since ΔB is a second order differential operator, we
see that ‖

‖

ΔB⋅‖‖L2 ≤ C ‖⋅‖H2 . Then the open mapping theorem implies (similar as in Corol-
lary 3.1.16) that ‖⋅‖B,2 ≃ ‖⋅‖H2 .

3. Since res(ΔB) ≠ ∅, we have � ∈ res(ΔB) and we can factor the map (�−ΔB)−1 ∶ L2(Σ, E)→
L2(Σ, E) as

(� − ΔB)−1 ∶ L2(Σ, E)→ dom(ΔB)
closed
⊆ H2(Σ, E)

compact
↪ L2(Σ, E).

Hence, (� −ΔB)−1 is a compact operator by applying Theorem 4.8 in Chapter III Section 4 in
[35]. Then Theorem 6.29 in Chapter II Section 6 in [35] guarantees discrete isolated spectrum
and that the eigenspaces are finite dimensional. SinceB is∞-regular, Theorem 3.1.21 implies
that the eigensections are smooth up to the boundary.

Remark 3.1.23. Let us briefly recall some functional analytic theory. For being a Hilbert space
and T ∶ dom(T ) ⊆  →  being selfadjoint and densely-defined, there is a spectral measure dETvalued in  such that

T u = ∫ℝ
� dET (�)[u]

for all u ∈ dom(T ). The existence of this measure, often called the spectral theorem, is an important
result of functional analysis.
For a continuous function f ∶ ℝ → ℝ, we then can define

dom(f (T )) ∶=
{

u ∈ ; ∀R > 0 ∶ ∫

R

−R
|f (�)|2 ‖

‖

dET (�)[u]‖‖
2
L2 < C

}

, and
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f (T )u ∶= ∫ℝ
f (�) dET (�)[u].

Furthermore, if ‖f‖L∞ <∞, then f (T ) is a bounded operator on  and
‖f (T )‖, ≤ ‖f‖L∞ ,

where ‖⋅‖, is the operator norm for operators that map from  to itself. A detailed discussion
can, for example, be found in Chapter 13 in [43] by Rudin.

Applying Remark 3.1.23 to ΔB and noting that spec(ΔB) = {�i; i ∈ ℕ} ⊆ [1,∞), where we
count multiplicity, we see that for u ∈ dom(ΔB)

ΔBu = ∫ℝ
� dEΔB (�)[u] =

∞
∑

i=1
�i P�i[u]

where P�i is the projection on the eigenspace of �i. Furthermore, we see that for any continuous
f ∶ [1,∞)→ ℝ, we have

dom(f (ΔB)) ∶=

{

u ∈ L2(Σ, E);
∞
∑

i=1

|

|

f (�i)||
2 ‖
‖

‖

P�i[u]
‖

‖

‖

2

L2
<∞

}

, and

f (ΔB)u ∶=
∞
∑

i=1
f (�i)P�i[u].

For defining the closed subspaces of Hk(Σ, E), let us consider the explicit continuous function f
given by f ∶ [1,∞) → [1,∞); x ↦ x

k
2 for k ∈ ℕ. Then we can define the following:

Definition 3.1.24. Let B be an∞-regular boundary condition, then we can define for k ∈ ℕ

Hk
B(Σ, E) ∶= dom(Δ

k
2
B) =

{

u ∈ L2(Σ, E);
∞
∑

i=1
�ki

‖

‖

‖

P�i[u]
‖

‖

‖

2

L2
<∞

}

and with scalar product
⟨ , �⟩B,k ∶=

⟨

ΔkB , �
⟩

L2(Σ,E) .

Remark 3.1.25. Similar to the discussion before Lemma 3.1.22, one can characterize the spaces
Hk
B(Σ, E) also as

Hk
B(Σ, E) = dom(Δ

k
2
B) = dom(D

k
B)

= { ∈ Hk(Σ, E); R(Dl ) ∈ B for all 0 ≤ l ≤ k − 1}.
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The next lemma shows that these spaces are indeed closed in the corresponding Sobolev spaces,
and hence are Banach spaces themselves:
Lemma 3.1.26.

1. Δ
k
2 is a closed densely defined operator for all k ∈ ℕ, in particularH∞

B (Σ, E) ∶=
⋂∞

k=1H
k
B(Σ, E)

is a dense subspace of L2(Σ, E),

2. H l
B(Σ, E) is contained inH

k
B(Σ, E) for all k, l ∈ ℕ with k < l, and

3. Hk
B(Σ, E) is closed inH

k(Σ, E) with ‖⋅‖B,k ≃ ‖⋅‖Hk onHk
B(Σ, E) for all k ∈ ℕ.

4. OnHk
B(Σ, E), we have

‖⋅‖2k,B ≤ C
(

‖⋅‖2B,k−1 + ‖D⋅‖2B,k−1
)

, (3.1.4)

for a constant C > 0.

Proof. The first two points directly follow from Theorem 6.8 in Chapter 2 in [40]. Hence, we only
have to show the last two claims. The third claims follows by Remark 3.1.25 and a similar argument
as in the proof of Lemma 3.1.22. For the fourth claim, let  ∈ Hk

B(Σ, E) and estimate

‖ ‖2k,B =
⟨

(Id +D2
B)
k 

⟩

L2

=
k
∑

l=0

⟨(

k
l

)

D2l , 
⟩

L2

= ‖

‖

Dk ‖
‖

2
L2 +

k−1
∑

l=0

(

k
l

)

‖

‖

Dl ‖
‖

2
L2

≤ C1
(

‖D ‖2Hk−1 + ‖ ‖2Hk−1

)

≤ C2
(

‖D ‖2B,k−1 + ‖ ‖2B,k−1
)

,

where we used that ΔB and D (as well as their powers) are symmetric and the third claim of the
same lemma.
Remark 3.1.27. Note that the third and fourth part of Lemma 3.1.26 in particular imply that on
Hk
B(Σ, E) ⊆ H

k−1
B (Σ, E) we have the estimate

‖⋅‖2Hk ≤ C
(

‖⋅‖2Hk−1 + ‖D⋅‖2Hk−1

)

. (3.1.5)
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Moreover, the third part of Lemma 3.1.26 in particular implies that a differential operator
D ∶ C∞(Σ, E)→ C∞(Σ, E) of order l is bounded seen as

D ∶ Hk+l
B (Σ, E)→ Hk(Σ, E).

It is also important to mention that C∞
cc (Σ, E) ⊆ H

∞
B (Σ, E) by construction. This will be important

later, when we will look at the well-posedness of certain Cauchy problems in Section 4.3.

Later we use mollifiers to define regularized versions of our Cauchy problems, see Section
4.3. Thus, let us discuss the exponential semigroup with respect to ΔB as a convenient example of
mollifiers.
Let us consider the family of continuous functions f" ∶ [1,∞) → [0,∞); x ↦ e−" x for " > 0
and apply to it Remark 3.1.23. Since f" is in L∞ for all " > 0 with norm equals to e−", we see that
J (")B ∶= f"(ΔB) is a bounded operator on L2 with operator norm smaller or equal e−". Furthermore,
it can be written as

J (")B  =
∞
∑

i=1
e−2"�i P�i[ ].

Remark 3.1.28. By Theorem 3.1.30 in [40], the operators Dk
BJ

(")
B are bounded so that we have

a bounded operator J (")B ∶ L2(Σ, E) → Hk
B(Σ, E) for every " > 0 and k ∈ ℕ0. In particular,

J (")B  ∈ H
∞
B (Σ, E) for each  ∈ L2(Σ, E). Thus J (")B is a smoothing operator.

Since J (")B is a function of DB, these two operators commute. This and ‖‖
‖

J (")B
‖

‖

‖L2,L2
≤ e−" implies

‖

‖

‖

J (")B  
‖

‖

‖

2

k,B
≤ e−" ‖ ‖2k,B

for each  ∈ Hk
B(Σ, E). Thus J (")B ∶ Hk

B(Σ, E)→ Hk
B(Σ, E) is a contraction.

Since the family of functions x ↦ e−"x is uniformly bounded and converges pointwise to 1, the
family of operators J (")B converges strongly to IdL2(Σ,E) as " ↘ 0. For  ∈ Hk

B(Σ, E) we have
J (")B  →  in L2(Σ, E) and Dk

BJ
(")
B  = J (")B D

k
B → Dk

B in L2(Σ, E). Thus J (")B  →  in
Hk
B(Σ, E), i.e. the family of operators J (")B converges strongly to IdHk

B(Σ,E)
in the space of bounded

operators onHk
B(Σ, E).

Showing that a boundary condition is elliptic or ∞-regular can be quite hard in practice, but
for some classes of boundary conditions one has convenient criteria at hand. For constructing
some examples of Lorentzian boundary conditions later on, let us briefly talk about such classes of
boundary conditions:
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Definition 3.1.29 ( pseudo local boundary condition).
1. We say that a linear subspace B ⊆ H

1
2 ()Σ, E|)Σ) is a local boundary condition if there is a

subbundle E′ ⊆ E|)Σ such that B = H
1
2 ()Σ, E′).

2. We say that a linear subspace B ⊆ H
1
2 ()Σ, E|)Σ) is a pseudo local boundary condition if

there is a pseudo differential operator P of order zero, acting on sections ofE over )Σ, which
induces a projection on L2()Σ, E|)Σ) such that B = P (H

1
2 ()Σ, E|)Σ)).

Note that we do not assume here that they are boundary conditions as defined in Definition
3.1.10 since they are not necessarily closed in the check space. Hence, this has to be shown addi-
tionally to ellipticity, which will both be characterized in the following handy way:
Theorem 3.1.30 (Theorem 7.20, Corollary 7.23 & 7.24 [8]).

1. It is equivalent:

(a) B = P (H
1
2 ()Σ, E|)Σ)) is closed in Ȟ(A) and is elliptic,

(b) P − �+(A)∶ L2()Σ, E|)Σ)→ L2()Σ, E|)Σ) is an elliptic operator, and

(c) P − �+(A)∶ L2()Σ, E|)Σ)→ L2()Σ, E|)Σ) is a Fredholm operator.

2. Let E|)Σ ∶= E′ ⊕ E′′ be a decomposition such that the boundary operator A interchanges
E′ and E′′ for all � ∈ T ∗)Σ. Then B′ ∶= H

1
2 ()Σ, E′) and B′′ ∶= H

1
2 ()Σ, E′′) are closed in

Ȟ(A) and are elliptic.

3. Every pseudo local elliptic boundary condition is∞-regular.

This implies directly the following Corollary:
Corollary 3.1.31. Let P ∶ L2()Σ, E|)Σ) → L2()Σ, E|)Σ) be a pseudo differential orthogonal
projection such that

1. P ∗ = P ,

2. P = Id + �D(�)P�D(�), and

3. P − �+(A) ∶ L2()Σ, E|)Σ)→ L2()Σ, E|)Σ) is a Fredholm operator.

Then B = P (H
1
2 ()Σ, E|)Σ)) is a selfadjoint elliptic boundary condition for D.
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Proof. First, note that by Theorem 3.1.30 and the third assumption of Corollary 3.1.31, we see that
B is an elliptic boundary condition. Thus, it is only left to show that B is also selfadjoint.
By the first two assumptions of Corollary 3.1.31, we see

∫)Σ
ℎE(�D(�)P , �) d�)Σ = −∫)Σ

ℎE(�D(�)P�D(�)2 , �) d�)Σ

= −∫)Σ
ℎE((P − Id)�D(�) , �) d�)Σ

= ∫)Σ
ℎE(�D(�) , (Id − P )�) d�)Σ.

This implies

B∗ = {� ∈ Ȟ(A); ∫)Σ
ℎE(�D(�) , �) d�)Σ = 0 ∀ ∈ B = PH

1
2 ()Σ, E|)Σ)}

= {� ∈ H
1
2 ()Σ, E|)Σ); ∫)Σ

ℎE(�D(�)P , �) d�)Σ = 0 ∀ ∈ H
1
2 ()Σ, E|)Σ)}

= {� ∈ H
1
2 ()Σ, E|)Σ); ∫)Σ

ℎE(�D(�) , (Id − P )�) d�)Σ = 0 ∀ ∈ H
1
2 ()Σ, E|)Σ)}

= PH
1
2 ()Σ, E|)Σ),

where we used in the second line that B∗ is elliptic and hence contained inH 1
2 and in the third line

we used the first two assumptions of Corollary 3.1.31.
We will call a pseudo differential projection as in Corollary 3.1.31 a Grassmannian projection.

Let us end this section by discussing some important estimates for elliptic pseudo local boundary
conditions, which we will use later. First, let us discuss a direct consequence of Theorem 3.1.17:

Corollary 3.1.32. Let P ∶ H
1
2 ()Σ, E|)Σ)→ H

1
2 ()Σ, E|)Σ) be a pseudo differential operator, such

that B = P (H
1
2 ()Σ, E|)Σ)) is an elliptic boundary condition. Then we have for  ∈ H1(Σ, E) the

estimate
‖ ‖2H1 ≤ C

(

‖ ‖2D + ‖(1 − P )R( )‖2
H

1
2

)

,

for a constant C > 0.

Proof. This follows directly by Theorem 3.1.17 by applying Proposition A.1 and Proposition A.3
in [8].
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Since we know by the third part of Theorem 3.1.30 that every elliptic pseudo local boundary
condition is also∞-regular, we can also show analogous estimates as in Corollary 3.1.32 for Hk-
norms. For this, let us define for k ∈ ℕ the map

P̃ ∶ Hk(Σ, E)→
k−1
⨁

l=0
(1 − P )Hk−l− 1

2 ()Σ, E|)Σ)

 ↦ ((1 − P )R , (1 − P )R(D ),… , (1 − P )R(Dk−1 ))

for P being a pseudo differential operator on the boundary as above.
Corollary 3.1.33. Let P ∶ H

1
2 ()Σ, E|)Σ) → H

1
2 ()Σ, E|)Σ) be a pseudo differential operator such

that B = P (H
1
2 ()Σ, E|)Σ)) is an elliptic boundary condition. Furthermore, let k ∈ ℕ. Then

D⊕ P̃ ∶ Hk(Σ, E)→ Hk−1(Σ, E)⊕
k−1
⨁

l=0
(1 − P )Hk−l− 1

2 ()Σ, E|)Σ),

has finite dimensional kernel and closed image. In particular, we have for  ∈ Hk(Σ, E) the
estimate

‖ ‖2Hk ≤ C

(

‖ ‖2Hk−1 + ‖D ‖2Hk−1 +
k−1
∑

l=0

‖

‖

(1 − P )R(Dl )‖
‖

2

Hk−l− 12

)

,

for a constant C > 0.

Proof. By Proposition A.1 in [8], we see thatD⊕P̃ has finite dimensional kernel and closed image
if and only if D|ker P̃ ∶ ker P̃ → Hk−1(Σ, E) has finite dimensional kernel and closed image. Note
that by the construction of P̃ , we have ker P̃ = Hk

B(Σ, E).Proposition A.3 in [8] gives us two things. Firstly, it shows that the first claim of Corollary 3.1.33
directly implies its second claim. Secondly, it gives us thatD|ker P̃ has finite dimensional kernel and
closed image if and only if every bounded sequence { n}n∈ℕ inHk

B(Σ, E) such thatD n convergesinHk−1(Σ, E) has a convergent subsequence inHk
B(Σ, E).So let us start with such a bounded sequence { n}n∈ℕ ⊆ Hk

B(Σ, E) with D n → � inHk−1. Since
Hk
B(Σ, E) embeds compactly intoHk−1(Σ, E), we know that there is a subsequence { ni} such that

 ni →  inHk−1(Σ, E). Hence, we get by Estimate 3.1.5 for all i, j ∈ ℕ

‖

‖

‖

 ni −  nj
‖

‖

‖

2

Hk
≤ C

(

‖

‖

‖

 ni −  nj
‖

‖

‖

2

Hk−1
+ ‖

‖

‖

D( ni) −D( nj )
‖

‖

‖

2

Hk−1

)

,

and in particular { ni} is a Cauchy sequencewith respect to theHk-norm. But since (Hk
B(Σ, E), ‖⋅‖Hk)

is a Banach space, we have that  ni →  ∈ Hk
B(Σ, E). With this the first claim of the corollary

follows.
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3.1.4 Examples for non-local boundary conditions
Finally, let us give some examples for elliptic and∞-regular boundary conditions that we will use
later on.

1. Let � be a selfadjoint involution of E along )Σ and E|)Σ = E+ ⊕ E− be the orthogonal
splitting into the eigenbundles of � for the eigenvalues ±1. One calls � a boundary chirality
(w.r.t. A) if � anti-commutes withA. The associated boundary conditionsB± = H

1
2 ()Σ, E±)

are elliptic, by Theorem 3.1.30. Also we have B∗±� = �D(�)B∓� , hence if we additionally
assume that � anti-commutes with �D(�), we have B∗±� = B±� .

2. Let Σ be a compact Riemannian spin manifold with boundary )Σ. Let � be the unit conormal
along )Σ. LetD be the spin Dirac operator acting on spinors on Σ. The boundary operator A
on )Σ can be chosen in such a way that it is essentially the Dirac operator on Σ. In particular,
it is selfadjoint and has real spectrum. The Atiyah–Patodi–Singer (APS) condition BAPS =
�−(A)H

1
2 ()Σ, SΣ|)Σ) is then one of the most prominent examples of non-local boundary

conditions. One can see that this boundary condition is elliptic using Theorem 3.1.15 by
putting V± = �±(A)L2()Σ, SΣ|)Σ), W± = {0} and g = 0. This is an elliptic decomposition
as in Definition 3.1.12. On the other hand, one sees that the APS boundary conditions are
pseudo local, see for example Proposition 14.2 in [20]. Then by Theorem 3.1.30 the APS
boundary condition is elliptic and even ∞-regular. Furthermore, note that in this setting
B∗APS = BAPS if and only if ker A = {0}.

3. Let us stay in the same setting as in the previous example. Additionally assume that there is
an orthogonal decomposition ker A = L⊕ �D(�)L as in Theorem 3.1.18. Let us look at the
following modified Atiyah–Patodi–Singer (mAPS) condition

BmAPS ∶= �−(A)H
1
2 ()Σ, SΣ|)Σ)⊕L.

This is an∞-regular selfadjoint boundary condition by Theorem 3.1.18 with
V = �−(A)L2()Σ, E|)Σ), W = {0} and g ≡ 0.

4. Let Σ be a closed Riemannian manifold and E → Σ be a Hermitian vector bundle andD be a
Dirac type operator fromE on itself. LetN ⊆ Σ be a hypersurface with trivial normal bundle.
Cut Σ alongN to obtain a compact Riemannian manifold Σ′ with boundary )Σ′ = N1 ⊔N2,where N1 and N2 are two copies of N with opposite relative orientations in Σ′. We get an
induced vector bundle E′ → Σ′ and a Dirac type operator D′ from E′ to itself.
For  ∈ H1(Σ, E), we get  ′ ∈ H1(Σ′, E′) such that  ′

|N1
=  ′

|N2
. Using this one can

define the transmission conditions for D′ on Σ′. We set
B ∶= {( , ) ∈ H

1
2 (N1, E|N1

)⊕H
1
2 (N2, E|N2

); ∈ H
1
2 (N,E|N )},
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where we identify
H

1
2 (N1, E|N1

) = H
1
2 (N2, E|N2

) = H
1
2 (N,E|N ).

Let A = A0⊕−A0 be a boundary operator forD′, where A0 is a selfadjoint Dirac type oper-ator on C∞(N,E|N ). The transmission conditions are another example for elliptic boundary
conditions. For this we put

V+ ∶= �+(A)L2()Σ′, E|)Σ′) = �+(A0)L2(N1, E|N1
)⊕ �−(A0)L2(N2, E|N2

),
V− ∶= �−(A)L2()Σ′, E|)Σ′) = �−(A0)L2(N1, E|N1

)⊕ �+(A0)L2(N2, E|N2
),

W± ∶= {( ,± ) ∈ ker(A0)⊕ ker(A0)},

and
g∶ V− → V+, g =

(

0 id
id 0

)

.

With these choices, B is of the form required in Definition 3.1.12 and even∞-regular since
W± consist of smooth functions and g maps H s sections to H s sections by definition. Fur-
thermore, note that transmission conditions are not pseudo local.

3.2 Continuity of functional calculus
Before we consider Lorentzian boundary conditions in the next section, let us briefly talk about the
continuity of the functional calculus of an operator family with respect to a corresponding family
of boundary condition.
Let (Σ, g) be a compact Riemannianmanifold with boundary,E → Σ a Hermitian vector bundle and
Dt ∶ C∞(Σ, E)→ C∞(Σ, E) a family of formally selfadjoint Dirac type operators with coefficients
depending smoothly on t ∈ ℝ. Let � be the interior unit conormal to )Σ. Furthermore, let {Pt}t∈ℝbe a family of orthogonal Grassmannian projections (see Corollary 3.1.31) and {Bt}t∈ℝ the family
of corresponding boundary conditions Bt = Pt(H

1
2 ()Σ, E)Σ)).In this setting, we will discuss conditions on the family {Pt}t∈ℝ such that the functional calculus

Dl
t,Bt
J (")Bt is strongly continuous in t for all l ∈ ℕ with respect to all Hk-norms. This will be done

by first discussing the case k = 0 and then using an induction argument for k > 0.
Lemma 3.2.1. Let {Dt}t∈ℝ be as described above, {Pt}t∈ℝ be a family of Grassmannian projections
and additionally assume that t↦ Pt is L2 norm continuous. Then

t↦ Dl
t,Bt
J (")Bt

is L2 norm continuous for all l ∈ ℕ and " > 0.



38 CHAPTER 3. BOUNDARY CONDITIONS

Proof. First note that Dt,Bt is a closed, selfadjoint operator on dom(Dt,Bt). Using the Cayley trans-form � ∶ ℝ → ℂ, x ↦ x−i
x+i

, we can transform {Dt,Bt}t∈ℝ into a family of unitary bounded operators
{Ut}t∈ℝ with Ut = �(Dt,Bt). By Theorem 1.1 in [19] the path t ↦ Ut is L2 norm continuous if and
only if Dt,Bt is gap continuous (for a Definition see, for example, [35]).
Since t ↦ Pt is L2 norm continuous, Theorem 3.9 in [19] indeed implies that Dt,Bt is gap continu-
ous, hence Ut is L2 norm continuous.
Furthermore, we have that

Dl
t,Bt
J (")Bt = (x

l ⋅ e−"(1+x2))(Dl) = (xl ⋅ e−"(1+x
2))(�−1(Ut)) =

(

i1 + z
1 − z

)l
⋅ e

−"
(

1+i
(

1+z
1−z

)2
)

(Ut).

Note that the inverse of the Cayley transform is a priori not defined for z = 1 but since (i1+z
1−z
)2 is

real valued and positive for z ∈ spec(Ut), we can continuously extend
(

i1+z
1−z

)l
⋅ e

−"
(

1+i
(

1+z
1−z

)2
)

(Ut)
with zero at z = 1. Hence, the function

f ∶ S1 → ℝ, z↦
(

i1 + z
1 − z

)l
⋅ e

−"
(

1+i
(

1+z
1−z

)2
)

is continuous on the spectrum of Ut for all t. Lemma 1.2.5 in [42] then implies that f (Ut) is L2norm continuous.
Using this Lemma, we prove strongly continuity of t↦ Dl

t,Bt
J (")Bt with respect toHk:

Lemma 3.2.2. Let {Dt}t∈ℝ be as described above, {Pt}t∈ℝ be a family of Grassmannian projections
and additionally assume that there exists a sequence of integers {kj}j∈ℕ0 with k0 = 0 and kj →∞
for j →∞ such that t↦ Pt isHkj norm continuous for all j ∈ ℕ. Then for all l ∈ ℕ and " > 0

t↦ Dl
t,Bt
J (")Bt

is strongly continuous with respect toHk for all k ∈ ℕ.

Proof. We prove this lemma by induction over k. Since the case k = 0 is already done in Lemma
3.2.1, we now will consider the induction step k ↦ k + 1. Let  ∈ Hk+1(Σ, E), then we can
estimate for t, t′ ∈ ℝ
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)

,

where we used Corollary 3.1.33. Let us now look at the terms (I) to (III) separately. The first
term (I) is converging to zero for |t − t′| → 0 by induction hypothesis for k. So we only need to
continue estimate (II) and (III). Let us look at the second term (II):
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where we used the triangle inequality and that J (")Bt′ is smoothing. We see that (IIa) is converging to
zero for |t − t′| → 0 by induction hypothesis for k. Furthermore, since on the range of J (")Bt′ theHk+1-
norm is equivalent to the Hk

Bt′
-norm, which by Lemma 3.2.1 is a continuous real function, we see

that for |t − t′| small enough (IIc) is bounded. This together withDt having coefficients smoothly
depending on t – which controls (IIb) – implies that (II) is converging to zero for |t − t′| → 0.
It remains to control (III), which we do as follows:
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where we used that the range of J (")Bt′ isH∞
Bt′
, classical norm inequalities and also that there exists a

j0 ∈ ℕ such that kj0 > k + 1
2
. Let us now look at (IIIa) to (IIId). By assumption ‖

‖

Pt′ − Pt‖‖Hkj0converges to zero for |t − t′| → 0, and since (IIIb) is a continuous real valued function, we see that
the first term in the last estimate is converging to zero for |t′ − t| → 0. Furthermore, by assumption
we know that 1−Pt isHk

j0
norm continuous and thus, (IIIc) is bounded for small |t − t′|. As seen

before also (IIIe) is bounded for small |t′ − t| and since Dm
t has coefficients depending smoothly

on t for all m we as well know that (IIId) is converging to zero for |t′ − t| → 0. Hence, also the
second term in the last estimate is converging to zero for |t − t′| → 0.
In total, we showed that (I) to (III) are converging to zero for |t − t′| → 0. This concludes the
proof.

We end this section by proving the following special case of Lemma 3.2.2. This will be handy
later for discussing explicit examples in Chapter 5. In the following, we denote for two Hilbert
spaces 1,2 the operator norm between the by ‖⋅‖1,2

.
Lemma 3.2.3. Let {Dt}t∈ℝ be as described above, let {At}t∈ℝ be the corresponding family of
boundary operators on )Σ and assume that this family can be chosen such that the coefficients
of At depend smoothly on t. Let {Pt}t∈ℝ be a family of Grassmannian projections with PtAt = AtPt
and assume that t↦ Pt is L2 norm continuous. Then for all l ∈ ℕ and " > 0

t↦ Dl
t,Bt
J (")Bt

is strongly continuous with respect toHk for all k ∈ ℕ.

Proof. Wewant to apply Lemma 3.2.2, hence, we have to show that t↦ Pt isHkj norm continuous
for a sequence {kj}j∈ℕ0 with k0 = 0 and kj → ∞ for j → ∞. In this particular case, we even get
that t↦ Pt isHk norm continuous for all k ∈ ℕ. This will be shown via induction over k.
By assumption the continuity for k = 0 is satisfied. Now we will do the induction step k↦ k + 1:
Let t, t′ ∈ ℝ, then
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]
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≤C2
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]

,

where we used in the first line the elliptic estimate for first order operators on a closed manifold
and that for |t − t′| small enough the constant a priori depending on t can be bounded from above.
In the second line we used triangle inequality, and that At commutes with Pt. Let us look at the
three terms in the last estimate and see why they all are converging to zero for |t − t′| → 0. The last
term converges to zero by induction hypothesis and the second term converges to zero since At isa bounded operator from Hk+1 to Hk and has coefficients depending smoothly on t. The first one
converges to zero by both arguments combined.
Hence we see that also forHk+1k the projection is norm continuous and the claim follows.
Remark 3.2.4. In Section 2.3, we discussed the natural boundary operator for the Riemannian spin
Dirac operator. One can see that this choice of boundary operator depends on the spinDirac operator
itself and also on the mean curvature. Hence, in this setting Dt having coefficients depending
smoothly on t implies directly that At has also coefficients depending smoothly on t.
Remark 3.2.5. Note that instead of assuming that Pt commutes with At for all t ∈ ℝ one can also
assume that Pt anti-commutes with At, since the change of sign does not influence the estimates in
the proof of Lemma 3.2.3.
Remark 3.2.6. We can directly apply Lemma 3.2.3 to the APS boundary conditions. Let us addi-
tionally assume that ker At = {0} for all t ∈ ℝ. Since At has coefficients that depend smoothly
on t and )Σ is a closed manifold, we can use Lemma 3.3 in [37] to see that �−(At) is L2 normcontinuous. Furthermore, we know that the projection �−(At) commutes with At. Thus, we canuse Lemma 3.2.3 to archive the continuity of the functional calculus as desired.

3.3 Lorentzian boundary conditions
In this section we will introduce Lorentzian non-local boundary conditions that will later lead to the
well-posedness of the corresponding Cauchy problems. Wewill first motivate briefly how boundary
conditions in this context should be looked at by giving an easy example in the two dimensional
Minkowski space. After that we will discuss the transmission conditions and also the class of
admissible boundary conditions in the following subsections.
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3.3.1 MIT boundary conditions on Minkowski halfspace
Later in Chapter 4 we will use boundary conditions to show the well-posedness for the correspond-
ing initial value problem. So let us discuss the initial boundary value problem for the Dirac operator
on the Minkowski half space (M,g) = (ℝ × [0,∞), gMin = −dt2 + dx2), where we can identify
the spin bundle SM with the trivial bundle M × ℂ2. Let us first have a look at the following
homogeneous initial value problem

{

D = 0
 |{x=0} =  0 ∈ C∞([0,∞),ℂ2).

(3.3.1)

After choosing an initial value  0, we can extend it to the Minkowski space ℝ1,1 and can solve the
corresponding homogeneous initial value problem, see Appendix B.2. The restriction of such a
solution toM then solves the homogeneous initial value problem onM , if we do not assume any
boundary conditions on )M = {x = 0}. Hence, the existence of solutions is not a problem, but
since there is a priori no unique way of extending the Cauchy data fromM to ℝ1,1 the uniqueness
is not anymore fulfilled. The boundary conditions should now make sure that the solution is unique
by putting restrictions on the possible extensions of the Cauchy data on M to ℝ1,1. Since in this
example the boundary of the Cauchy hypersurfaces each only consist of a point, we cannot talk
about non-local boundary conditions, but let us have a brief look at a local one. So let us consider
the chirality condition (see also Section 5.4) induced by the boundary chirality

�t = i�1 =
(

−1 0
0 1

)

∶ {(t, 0)} × ℂ2 → {(t, 0)} × ℂ2.

We can solve the initial boundary value problem
⎧

⎪

⎨

⎪

⎩

D = 0 onM
 |{t=0} =  0 ∈ C∞([0,∞),ℂ2)
(�t − 1) (t, 0) = 0 for all t ∈ ℝ,

(3.3.2)

where this boundary condition is also called MIT condition, see for example [31].
For an initial value  0 let  ̃0 ∈ C∞(ℝ,ℂ2) be an arbitrary smooth extension of  ̃0. Then one can
solve the homogeneous initial value problem on ℝ1,1, see B.2. The boundary chirality �t acts onthe solution  ̃ restricted to {x = 0} by

�t( ̃(t, 0)) =
(

− ̃1(t, 0)
 ̃2(t, 0)

)

.
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This gives us that  ̃(t, 0) ∈ E(�t, 1) if and only if  ̃1(t, 0) = 0. This implies that if  ̃ fulfill the
boundary conditions, then

( ̃0)1(x) + ( ̃0)1(−x) =
1
2

[

( ̃0)1(x) − ( ̃0)2(x) + ( ̃0)1(−x) + ( ̃0)2(−x)
]

+ 1
2

[

−( ̃0)1(x) + ( ̃0)2(x) + ( ̃0)1(−x) + ( ̃0)2(−x)
]

=  ̃1(x, 0) +  ̃1(−x, 0)
= 0

and similarly

( ̃0)2(x) − ( ̃0)2(−x) =  ̃1(−x, 0) −  ̃1(x, 0) = 0

Hence, we see that the initial data  0 can only be extended as

 ̃0(x) =
(

−1 0
0 1

)

 ̃0(−x).

This in particular implies the uniqueness of the solutions by looking at  0 ≡ 0 on [0,∞).Hence, for all  0 ∈ C∞
cc ([0,∞),ℂ

2) we get a unique smooth solution to the initial value problem
3.3.2. If we want to allow the support of the initial value to touch the boundary, then we have to
assume compatibility conditions. In this case, they can be written as

d
dx2k

( 0)1(0) = 0, and
d

dx2k+1
( 0)2(0) = 0

for all k ∈ ℕ.
Since the solutions to the homogeneous initial value problem can easily be written in terms of the
initial value one directly sees that the solutions depend continuously on the Cauchy data. Hence,
we see that the homogeneous initial value problem is well-posed.
Furthermore, one could also impose the boundary condition (�t + 1) (t, 0) = 0 or equivalently
 (t, 0) ∈ E(�t,−1). This also leads to the well-posedness of the corresponding initial boundary
value problem. Note that by construction of the solution one could not mix the two boundary
conditions, because this would lead to a non-continuous extension of the initial value and hence
also to a discontinuous solution. Later we will see that one indeed has to assume some continuity
assumptions on the Lorentzian boundary conditions to make sure that the solutions are continuous
in time direction.



44 CHAPTER 3. BOUNDARY CONDITIONS

3.3.2 Transmission conditions
Let us start with some less involved boundary conditions, the transmission boundary conditions.
First, let us briefly recall the definition of finite energy spaces on globally hyperbolic spin manifolds
with closed Cauchy hypersurfaces. For this we are following [15] and [16].
Let (M,g) be a globally hyperbolic spin manifold with closed Cauchy hypersurfaces and a temporal
function t∶ M → ℝ such that the metric splits as

g = −N2 dt2 + gt,

where N is the lapse function and gt is a family of Riemannian metrics on the spacelike Cauchy
hypersurfaces Σt.For all k ∈ ℤ, the family {Hk(Σt, SM|Σt)}t∈ℝ is a bundle of Hilbert spaces over ℝ, which is
globally trivialized by the parallel transport along the t-lines. We call continuous sections of this
bundle spinors of finite k-energy and we denote the space of such sections by FEk(M,SM). This
space can be topologized as follows: Let I ⊆ t(M) be a compact subinterval, then we get the
semi-norms

‖ ‖FEk,I ∶= maxt∈I
‖ (t)‖Hk .

Letting I vary over all compact subintervals of ℝ, we turn FEk(M,SM) into a Fréchet space.
Furthermore, let us denote the space of L2-sections of the bundle {Hk(Σt, SM|Σt)}t∈ℝ by

L2(ℝ,Hk(Σ∙, SM|Σ∙)),

where ∙ is referring to the t slot being empty and to be filled. We equip this space with the corre-
sponding semi-norm

‖ ‖2L2,Hk,I ∶= ∫I
‖

‖

‖

(N
1
2 (t) (t))|Σt

‖

‖

‖

2

Hk
dt,

where I runs through all compact subintervals of ℝ. This turns L2(ℝ,Hk(Σ∙, SM|Σ∙)) into a
Fréchet space. Using these spaces, we can define the following

FEk(M,D) ∶= { ∈ FEk(M,SM); D ∈ L2(ℝ,Hk(Σ∙, SM|Σ∙))}

with semi-norms
‖u‖2I,FEk,D ∶= ‖ ‖2FEk,I + ‖D ‖2L2,Hk,I ,

where I runs again through all compact subintervals of ℝ.
Now we have all the spaces to be able to write down the well-posedness of the inhomogeneous
Cauchy problem for the Dirac equation on spacetimes without boundary:
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Theorem 3.3.1 (Theorem 2.1 in Bär–Strohmaier [15]). For any t ∈ ℝ the mapping

rest⊕D∶ FEk(M,D)→ Hk(Σt;SM|Σt)⊕L2(ℝ,Hk(Σ∙, SM|Σ∙))
 ↦ ( |Σt , D )

is an isomorphism of Fréchet spaces.

Using this theorem, wewill showwell-posedness for the Cauchy problem arising from transmis-
sion conditions. For this we again start with a global hyperbolic spin manifold (M,g), with closed
Cauchy hypersurfaces. LetN ⊆ M be a timelike hypersurface with trivial normal bundle. CutM
alongN to obtain a globally hyperbolic spacetimeM ′ with timelike boundary )M ′ = N1⊔N2 (seeFigure 3.3.2). Consider now on SM ′ → M ′ the induced bundle onM ′ and D′ the induced Dirac
operator. For any temporal function t∶ M → ℝ we get an induced temporal function t′∶ M ′ → ℝ
such that t′|N1

= t′|N2
.

M
Σt

N

Figure 3.1: The hypersurfaceN ⊆ M .
For  ∈ FE1(M,SM), we get  ′ ∈ FE1(M ′, SM ′) with  ′

|N1∩Σ′t
=  ′

|N2∩Σ′t
for all

t ∈ t′(M ′). Using this we can define the following family of boundary conditions B = {Bt}t∈ℝwith
Bt ∶= {( , ) ∈ H

1
2 (Σ′t ∩N1)⊕H

1
2 (Σ′t ∩N2); ∈ H

1
2 (N ∩ Σt)}

being a transmission condition as defined in Definition 3.1.4 (3). Hence, Bt elliptic and
dom(D′

t,Bt
) = { ∈ H1(Σ′t, SM

′
|Σ′t
); |Σ′t∩N1

=  |Σ′t∩N2
},
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where D′
t is the induced operator of D′ on Σt, see Equation 2.2.5.

Let us now consider the following space
C0(ℝ, dom(D′

t,Bt
))

consisting of all continuous sections that map into dom(D′
t,Bt
) and with semi-norms

‖ ‖I,B ∶= maxt∈I
‖ ‖D′t ,

which turns C0(ℝ, dom(D′
t,Bt
)) into a Fréchet space. Proceeding, we define the following space

FE(D′, B) ∶= { ∈ C0(ℝ, dom(D′
t,Bt
));D ∈ L2(ℝ, dom(D′

t,Bt
))}

with semi-norms
‖ ‖2D′,B,I ∶= ‖ ‖2I,B + ‖

‖

D′ ‖
‖

2
L2,D′t

.

This turns FE(D′, B) into a Fréchet space. Using the identification ofN1 = N2 = N , we see that
the following diagram commutes

FE(D′, B) ≅ //

rest⊕D′

��

FE1(M,D)

rest⊕D
��

dom(D′
t,Bt
)⊕L2(ℝ, dom(D′

t,Bt
)) H1(Σt, SM|Σt)⊕L2(ℝ,H1(Σ∙, SM|Σ∙)).≅
oo

Applying this diagram we get the following direct consequence of Theorem 3.3.1
Corollary 3.3.2. LetM ′ and {Bt}t∈ℝ be as above. Then

rest ⊕D′∶ FE(D′, B)→ dom(D′
t,Bt
)⊕L2(ℝ,H1(Σ′∙, SM

′
|Σ′∙
))

 ↦ ( |Σ′t , D
′ )

is a Fréchet isomorphism.

Remark 3.3.3. The well-posedness result of Corollary 3.3.2 does not give much insight in the prob-
lem of defining non-local boundary conditions, since the transmission conditions are by definition
the boundary conditions that relate the initial value problem onM ′ to the initial value problem on
M . Still, it should give us a first intuition on how to define non-local boundary conditions in the
setting of spacetimes with timelike boundary, since we can already see here why it is convenient
to look at non-local boundary conditions inside the Cauchy hypersurfaces and then build them to-
gether to a Lorentzian boundary condition that is local in time direction and non-local in spatial
direction. This idea will also be used in the next subsection, where we will define a bigger class of
Lorentzian boundary conditions.
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3.3.3 Admissible boundary conditions
The goal of this subsection is to define boundary conditions that will lead to the well-posedness of
the associated Cauchy problem of the Lorentzian Dirac operator, which we will discuss in Section
4.1.
For constructing the desired boundary conditions, we will first simplify the form of the Lorentzian
Dirac operator to get an operator of the form )t + iD̃t acting on sections in C∞(ℝ, C∞(Σ, SM|Σ)).This will be done in two steps. First we will do a conformal change such that )t becomes geodesic
and then we identify the Cauchy hypersurfaces with each other via parallel transport along )t.

Conformal change

We apply the conformal transformation ĝ = N−2g. Let us denote for the unit vectorsX for g, X̂ =
N ⋅X the corresponding unit vectors for ĝ. Similarly, we will denote all other objects corresponding
to the new metric with a hat as well. This leads to the following changes (see for example [33]):

1. the inner product ⟨⋅, ⋅⟩SM is invariant,
2. 
̂(X) = N−1
(X), which also implies that 
̂(�̂) = 
(�) and hence, ⟨⋅, ⋅⟩0 is also invariant,
3. ∇̂SM

X = ∇SM
X + N

2

(


(X)
(∇N−1) −X(N−1)
), and

4. D̂ = N
n+2
2 DN− n

2 .
Remark 3.3.4. One first could think that D̂ being of this form cannot be formally anti-selfadjoint
anymore, but note that the volume form d�M (ĝ) = N−n−1 d�)M (g) is making sure that D̂ is still the
formally anti-selfadjoint Lorentzian Dirac operator with respect to the metric ĝ.
Remark 3.3.5. In the following we will denote Σ̂t and M̂ for (Σt, ĝt) and (M, ĝ), respectively, to
emphasize the change of metric on these manifolds.
Using Equation 2.2.5 on D̂, we see that

D̂ = −
̂(�̂)
(

∇SM̂
�̂ + iD̂t −

n
2
Ĥt

)

,

where D̂t = �̂�Dt for n even and D̂t =

(

�̂�D 0
0 −�̂�Dt

)

for n odd. Since the Riemannian Dirac operator

changes under this conformal change as �̂�Dt = N
n+1
2 ��DtN

− n−1
2 , we see that

D̂t = N
n+1
2 DtN

− n−1
2 . (3.3.3)
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Remark 3.3.6. Note that D̂t is indeed formally selfadjoint and its principal symbol is given as
�D̂t
(� ) = N

n+1
2 �Dt

(� )N− n−1
2 = N�D(� ), (3.3.4)

for all x ∈ Σt and � ∈ T ∗xΣt.

Identifying the Cauchy hypersurfaces

Let e0,… , en be an orthonormal frame of T M̂ such that e0 = �̂ = )t and en = �̂, where � is the unitnormal to the timelike boundary. For t, s ∈ ℝ, let �st ∶ SM̂|Σ̂t → SM̂|Σ̂s be for each y ∈ Σ̂t theparallel transport along the integral curves of )t and we denote the same way the parallel transport
�st ∶ T Σ̂t → T Σ̂s. We denote �t ∶= �0t to simplify the notation.
Remark 3.3.7.

1. Recall, that we discussed in Section 2.1 that it is essential to assume that the Cauchy temporal
function has gradient tangential to the boundary, for making sure that the parallel transport
is globally defined and being able to identify the Cauchy hypersurfaces with each other.

2. Another implication of )t being tangential to )M̂ is that the restriction of the parallel transport
to the boundary �st |)M̂ also identifies the spinor bundles SM̂|)Σ̂t (as well as T Σ̂t|)Σ̂t) of the
Cauchy hypersurfaces of the globally hyperbolic (possibly non-connected) spacetime )M̂
with each other.

3. Furthermore, since )t is geodesic, we see that the Clifford multiplication on SM̂|Σt changesunder �t as
�t(
̂(X)v) = −i
̂(e0)�t(
̂t(X)v) = i
̂(e0)
̂0(�tX)�tv = 
̂(�tX)�tv

for n being even and for n being odd analogously. Furthermore, since e0 is geodesic, we havefor u, v ∈ SM̂|Σ̂t

�∗t ⟨u, v⟩0 = �
∗
t ⟨
̂(e0)u, v⟩SM = ⟨
̂(e0)�tu, �tv⟩SM = ⟨�tu, �tv⟩0

for n being even (similar for n being odd). Hence, since �t is an isometry for ⟨⋅, ⋅⟩SM it is also
an isometry for ⟨⋅, ⋅⟩0.

Let us define the function �(t) ∶= |

|

ĝ0||
− 1
4 |
|

ĝt||
1
4 , where we denote |ℎ| ∶= det(ℎ) for a Riemannian

metric ℎ. Then the map
U (t) ∶= �(t)�t∶ L2(Σ̂t, SM̂|Σ̂t)→ L2(Σ̂, SM̂|Σ̂)
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is unitary and U (0) = Id.
The family {L2(Σ̂t, SM̂|Σ̂t)}t∈ℝ and more generally the family {H s(Σ̂t, SM̂|Σ̂t)}t∈ℝ of Sobolev
spaces for s ∈ ℝ can be considered as a bundle of Hilbert spaces over ℝ trivialized by the par-
allel transport �t. Let Ck(ℝ, L2(Σ̂t, SM̂|Σ̂t)) or more generally Ck(ℝ,H s(Σ̂t, SM̂|Σ̂t)) be the space
ofCk-sections of that bundle. Semi-norms of ∈ Ck(ℝ,H s(Σ̂t, SM̂|Σ̂t)) are by definitionCk-semi
norms of ℝ ∋ t↦ ‖ (t)‖Hs . Furthermore, if we set (U )(t) ∶= U (t) (t), then

U ∶ Ck(ℝ,H s(Σ̂t, SM̂|Σ̂t))→ Ck(ℝ,H s(Σ̂, SM̂|Σ̂))

is an isomorphism.
Remark 3.3.8. Since e0 is tangential to )M̂ , we also know that

U (t)|)Σ̂t ∶= �(t)|)Σ̂t�t|)Σ̂t ∶ L
2()Σ̂t, SM̂|)Σ̂t))→ L2()Σ̂, SM̂|)Σ̂)

is unitary, and if we set (U |)M̂ )(t) ∶= U (t)|)Σ̂t (t) then we can also have isomorphisms for the
boundary sections as above.

We will use the following lemma, which is based on computations in [47], see also [50, 27], to
reduce D̂ to Hamiltonian form:
Lemma 3.3.9. The operator D̂ satisfies

D̂ = −
̂(e0)U−1(t)()t + iD̃t)U (t),

where D̃t ∶= U (t)D̂tU (t)−1.

Proof. Recall that D̂ = −
̂(e0)(∇SM̂
e0

+ iD̂t −
n
2
Ĥt). For  ∈ C∞(M̂, SM̂) we then have

()t◦U )(t) = lim"→0 "
−1(U (t + ") |Σ̂t+" − U (t) |Σ̂t)

= lim
"→0

"−1(�(t + ")�t+" |Σ̂t+" − �(t)�t |Σ̂t)

= �t(lim"→0 "
−1(� tt+" |Σ̂t+" − �(t) |Σ̂t))

= �t((∇SM̂
e0
�(t) )(t)).

Hence, we get
)t = �(t)−1U (t)∇SM̂

e0
◦�(t)U (t)−1

which is equivalent to
U (t)∇SM̂

e0
U (t)−1 = �(t)◦)t�(t)−1. (3.3.5)
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Furthermore, one sees that
−2�(t)−1()t�(t)) = divĝ e0 = nĤt,

which implies

U (t)
(n
2
Ĥt

)

U (t)−1 = −�(t)−1)t(�(t)). (3.3.6)

Noting that U (t)−1
̂(e0) = 
̂(e0)U (t)−1, and putting Equation 3.3.5 and Equation 3.3.6 together, weget

D̂ = 
̂(e0)U (t)−1
[

U (t)∇SM̂
e0
U (t)−1 + iD̃t − U (t)

n
2
ĤtU (t)−1

]

U (t)

= 
̂(e0)U (t)−1(�(t)◦)t(�(t)−1) + iD̃t + �(t)−1)t(�(t))U (t)
= 
̂(e0)U (t)−1()t + iD̃t)U (t),

where we used
)t = �(t)�(t)−1)t(�(t)�(t)−1) = �(t)−1)t(�(t)) + �(t))t(�(t)−1).

This concludes the proof.
Remark 3.3.10. Note that D̃t has principal symbol

�D̃t
(� ) = �t◦�D̂t

(�−1t � )◦�
−1
t (3.3.7)

which is skew symmetric and satisfies the Clifford relations on SM̂|Σ̂. Since U is an isometry
on the L2-spaces we also see that D̃t is again formally selfadjoint. Hence, D̃t is again a formally
selfadjoint Dirac type operator.
Furthermore, by Equation 3.3.7, we see that, since Dt has coefficients depending smoothly on t3
also D̃t has coefficients depending smoothly on t.
Remark 3.3.11. Looking at the proof of Lemma 3.3.9, one sees that )t being geodesic is not needed.Even if we would not have done the conformal change first, we could have identified the Cauchy
hypersurfaces and brought the operator on Hamiltonian form. But if )t would not be geodesic, then
U would not be an isometry and also the principal symbol of �D̃t

would not be of the convenient
form in Equation 3.3.7.

3Recall, that the coefficients of Dt depend on gt, which is smooth in t.



3.3. LORENTZIAN BOUNDARY CONDITIONS 51

Admissible boundary conditions

Since D̃t is a family of elliptic formally selfadjoint Dirac type operators, we can use the theory of
Section 3.1 to define boundary conditions in this setting. Let Ãt be a boundary operator of D̃t suchthat it is formally selfadjoint and anti-commuting with �D̃t

(en). Then we can consider the check
space Ȟ(Ãt).
Remark 3.3.12. The principal symbol of Ãt can be computed as follows:

�Ãt(� ) = �D̃t
(�̂(0)♭)−1�D̃t

(� )

= (�t�D̂t
(�−1t �̂(0)

♭)�−1t )
−1(�t�D̂t

(�−1t � )�
−1
t )

= �t�D̂t
(�−1t �̂(0)

♭)−1�D̂t
(�−1t � )�

−1
t

= �t�Dt
(�−1t �̂(0)

♭)−1�Dt
(�−1t � )�

−1
t

where we used Equation 3.3.4, Equation 3.3.7 and �t being an isometry for gt.
This shows that in general Ãt cannot easy be related toAt since the principal symbols do not directly
relate to each other. But assuming N|)M = 1 and � being parallel transported along )t, one seesthat

�Ãt(� ) = �t�Dt
(�(t)♭)−1�Dt

(�−1t � )�
−1
t ,

and hence one can choose Ãt = UAtU−1.
Furthermore, since D̃t is a Dirac operator in the sense of Gromov and Lawson, Ãt can be chosen
naturally in terms ofDt and themean curvature of )Σ. Thus, Ãt has coefficients depending smoothly
on t.

Next we will define suitable families of boundary conditions to construct Lorentzian boundary
conditions later on.
Definition 3.3.13. We call a family B = {Bt}t∈ℝ of boundary conditions Bt ⊆ H

1
2 (Σt, SM|Σt) an

admissible boundary condition for D if
1. N 1

2 (t)Bt is a selfadjoint boundary condition for all t ∈ ℝ,
2. B̃t ∶= U (t)N

n
2 (t)Bt ⊆ Ȟ(Ãt) is a selfadjoint ∞-regular boundary condition for all t ∈ ℝ,

and
3. t↦ D̃t,B̃tJ

(")
B̃t

is strongly continuous with respect to ‖⋅‖Hk for all k ∈ ℕ.
Remark 3.3.14. Let us give an intuition for the conditions above. The first condition is needed for
the boundary term in the Green formula 2.2.4 to vanish if the boundary condition is satisfied. The
second condition is needed for higher regularity of solution, while the third condition is needed for
finding continuous solutions in time.
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We will often use the norm equivalence of ‖⋅‖B̃t,k and ‖⋅‖Hk . For example, we now define for
l, k ∈ ℕ

C l(ℝ,Hk
B̃∙
(Σ̂, SM̂|Σ̂)) ∶= { ∈ C l(ℝ,Hk(Σ̂, SM̂|Σ̂));  (t) ∈ Hk

B̃t
(Σ̂, SM̂|Σ̂)}

as a subspace of C l(Σ̂, SM̂|Σ̂). Semi-norms of  ∈ C l(ℝ,Hk
B̃∙
) are by definition C l-semi norms of

ℝ ∋ t ↦ ‖ (t)‖Hk . Furthermore, C l(I,Hk
B̃∙
(Σ̂, SM̂|Σ̂)) are Banach spaces for compact intervals

I . In this case, we will denote the norms by
‖⋅‖l,I,Hk .

Let B be an admissible boundary condition. Then let us define the Lorentzian boundary condition
as

C∞()M,B) ∶= { ∈ C∞()M,SM|)M ); |)Σt ∈ Bt for all t ∈ ℝ}.

Lemma 3.3.15. Assume the Standard Setup 2.4 and let B be an admissible boundary condition.
Then

∫M
⟨D ,�⟩ + ⟨ ,D�⟩ d�M = 0,

for all  , � ∈ C∞(M,SM) with  |)M , �|)M ∈ C∞()M,B).

Proof. Since the gradient of the temporal function is tangential to )M , we have by Fubini’s Theo-
rem

∫)M
⟨
(�) , �⟩SM d�)M = ∫ℝ ∫)Σt

⟨
(�) , �⟩N(t) d�)Σt dt

= −i∫ℝ

⟨

�Dt
(�) , �

⟩

0
N(t) d�)Σt dt

= −i∫ℝ

⟨

�Dt
(�)N

1
2 (t) ,N

1
2 (t)�

⟩

0
d�)Σt dt

= 0,

where we used additionally how the inner products and Clifford multiplications are related as well
as the first part of Definition 3.3.13. Now by Equation 2.2.4, the claim follows.



4
INITIAL BOUNDARY VALUE PROBLEMS

In this chapter we will discuss the Cauchy problems arising from the Lorentzian boundary condi-
tions defined in Definition 3.3.13. In the first part of this Chapter we will introduce these Cauchy
problems and discuss how they relate to the Cauchy problems for the operator in Hamiltonian form.
The main goal of this chapter is to show well-posedness of these Cauchy problems. For this we
will show uniqueness using an L2-estimate in Section 4.2. Proceeding, we will show the existence
of smooth solutions which depend continuously on the Cauchy data in Section 4.3. For the whole
chapter, we will assume the Standard Setup 2.4.

4.1 The Cauchy problems
In this section, we will use the Lorentzian boundary conditions to write down initial boundary value
problems for the Lorentzian Dirac operator. For this, let B = {Bt}t∈ℝ be an admissible boundary
condition as defined in Definition 3.3.13. Then consider the following Cauchy problem:

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (M,SM|Σ)

 |)M ∈ C∞()M,B)
. (4.1.1)

Applying the reduction we did in Subsection 3.3.3, we see that  ∈ C∞(M,SM) is a solution to
the Cauchy problem 4.1.1 if and only if  ̃ = UN n

2 is a solution to the following Cauchy problem
⎧

⎪

⎨

⎪

⎩

D̃ ̃ = f̃ ∈ C∞
c (ℝ, C

∞
cc (Σ̂, SM̂|Σ̂))

 ̃(0) = N
n
2 (0) 0 ∈ C∞

cc (Σ̂, SM̂|Σ̂)
 ̃|)Σ̂ ∈ C∞(ℝ, B̃),

(4.1.2)
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where f̃ = UN n+2
2 f and
C∞(ℝ, B̃) ∶= { ∈ C∞(ℝ, C∞()Σ̂, SM̂|)Σ̂));  (t) ∈ B̃t ∀ t ∈ ℝ}.

Furthermore, note that  ̃ is a solution to the Cauchy problem 4.1.2 if and only if it is a solution to
⎧

⎪

⎨

⎪

⎩

−
̂(e0)D̃ = ()t + iD̃t) ̃ = −
̂(e0)f̃
 ̃(0) = N

n
2 (0) 0

 ̃|)Σ ∈ C∞(ℝ, B̃) .
(4.1.3)

We will abuse notation and denote −
̂(e0)D̃ and −
̂(e0)f̃ by D̃ and f̃ as well.
We aim for proving the well-posedness for the Cauchy problem 4.1.1, which consists of three parts;
uniqueness, existence and continuous dependence on the Cauchy data. In the next subsection, we
will talk about the uniqueness of the solution.

4.2 Energy estimate and uniqueness
Here we are following the approach of [12, 27], by first proving an L2 energy estimate, which we
will then use for the proof of uniqueness.
For t0, t1 ∈ ℝ, we will denoteM[t0,t1] ∶= �

−1([t0, t1]) and )M[t0,t1] ∶=M[t0,t1] ∩ )M .
Proposition 4.2.1. Assume the Standard Setup 2.4 and let B be an admissible boundary condition.
Then for all t0, t1 ∈ ℝ there exists a constant C = C[t0, t1] such that

∫Σt1
| |20 d�Σt1 ≤ eC(t1−t0)

[

C ∫

t1

t0
∫Σs

|D |20 d�Σs ds + ∫Σt0
| |20 d�Σt0

]

, (4.2.1)

applies for all  ∈ C∞(M,SM) such that  |)M ∈ C∞()M,B).

Proof. By the divergence theorem on the setM[t0,t1] with piecewise smooth boundary
)(M[t0,t1]) = )M[t0,t1] ∪ Σt1 ∪ Σt0

we get

∫M[t0 ,t1]

⟨D , ⟩SM + ⟨ ,D ⟩SM d�M

= −∫)M[t0 ,t1]

⟨
(�) , ⟩SM d�)M + ∫Σt1
| |20 d�Σt1 − ∫Σt0

| |20 d�Σt0
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The right hand side can be estimated as

∫M[t0 ,t1]

⟨D , ⟩SM + ⟨ ,D ⟩SM d�M ≤ C ∫

t1

t0

|D |20 + | |20 d�Σt dt,

where we used Cauchy–Schwarz, Fubini (whereN can be bounded from above on the compact set
M[t0,t1] ) and that 
(�) is bounded. For the left hand side, note that by Lemma 3.3.15 the first term
vanishes, hence we get in total

∫Σt1
| |20 d�Σt1 ≤ ∫Σt0

| |20 d�Σt0 + C ∫

t1

t0

|D |20 + | |20 d�Σt dt.

Gronwall’s Lemma now gives us the desired estimate.

Now we can use Proposition 4.2.1 to prove the following uniqueness statement:
Corollary 4.2.2. Assume the Standard Setup 2.4 and let B be an admissible boundary condition.
A section  ∈ C∞(M,SM) with  |)M ∈ C∞()M,B) is uniquely determined by D and  on
Σ0.

Proof. Choose t1 ∈ ℝ arbitrary and t0 = 0. If  |Σ0 = 0 and D = 0, then Proposition 4.2.1
implies that  |Σt1 = 0. Since t1 was chosen arbitrarily, we see that  ≡ 0.

4.3 Well-posedness of the Cauchy problems
In this section we will prove our main result, the well-posedness of the Cauchy problem 4.1.1.
The main part of the proof will be showing the existence of solutions, which will be done by an
Arzelà–Ascoli argument similar as in [12, 27].
Theorem 4.3.1. Assume the Standard Setup 2.4 and let B be an admissible boundary condition,
then there exists a unique smooth solution  ∈ C∞(M,SM) to the Cauchy problem 4.1.1, which
depends continuously on the Cauchy data (f,  0).

Proof. Recall that we proved uniqueness in Corollary 4.2.2.
A. Existence of smooth solutions
For showing existence of smooth solutions to the Cauchy problem 4.1.1, we will show the existence
of smooth solutions to the Cauchy problem 4.1.3. Now let us define the space

C∞(M̂, B̃) ∶= { ∈ C∞(ℝ, SM̂|Σ̂); (t)|)Σ̂ ∈ B̃t}.
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We follow the strategy of [12, 27] and show first the existence of regularized solutions. Then
we will apply Arzelà–Ascoli to get a converging subsequence, whose limit will be our smooth
solution. In the following, we will only work on SM̂|Σ̂, so let us shorten the notation by setting
Hk ∶= Hk(Σ̂, SM̂|Σ̂) andHk

B̃t
∶= Hk

B̃t
(Σ̂, SM̂|Σ̂).

1. Regularized problem
First, let us show that for all " > 0 there is a unique solution to the regularized problem

()t + iD̃t,B̃tJ
(")
B̃t
) ̃ (")(t) = f̃ (t), (4.3.1)

with  ̃ (")(0) = N
n
2 (0) 0. Since {D̃t,B̃tJ

(")
B̃t
}t∈ℝ is aHk strongly continuous family of bounded

operator from Hk
B̃t
to Hk

B̃t
, Theorem X.69 in [41] implies the existence of a unique solution

 ̃ ("),k ∈ C1(ℝ,Hk
B̃∙
) for all k ∈ ℕ. Since Hk

B̃t
⊆ H l

B̃t
for l < k, we get by the uniqueness

of solutions, that there is one solution  ̃ (") independent of k. In particular ¸ ̃ (") is smooth in
spatial directions.

2. Requirements of the Arzelà–Ascoli theorem
Consider now  ̃ (") ∈ C1(ℝ,Hk

B̃∙
). We will derive estimates for the growth of  ̃ (") in time,

and the important fact is that the bounds cj do not depend on u, u0, f and ". They do depend
on time t, but continuously, hence they are bounded on compact time intervals. So let us
compute the following t-derivative:
d
dt

‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
= d
dt

⟨

ΔkB̃t ̃
(")(t),ΔkB̃t ̃(t)

⟩

L2

= 2Re
(⟨

)tΔkB̃t ̃
(")(t),ΔkB̃t ̃

(")(t)
⟩

L2

)

= 2Re
(⟨

[)t,ΔkB̃t] ̃
(")(t),ΔkB̃t ̃

(")(t)
⟩

L2
+
⟨

ΔkB̃t)t ̃
(")(t),ΔkB̃t ̃

(")(t)
⟩

L2

)

.

Note that in contrast to [12], we do not need to differentiate the volume element, since we are
working on a constant L2-space. A priori, the commutator [)t,∇k] is a differential operator
of order 2k + 1, but we see that the principal symbol is vanishing:

�[)t,ΔkB̃t ]
(� ) = [�)t(� ), �ΔkB̃t

(� )] = [�)t(� ),− |� |2k] = 0,

where we used that ΔB̃t is of Laplace type. Hence, [)t,ΔkB̃t] is of order 2k, and we can boundthe norm of the commutator by ‖⋅‖2k,B̃k,. So we continue to estimate
d
dt

‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
≤ c1

‖

‖

‖

 (")(t)‖‖
‖

2

B̃t,2k
+ 2Re

(⟨

ΔkB̃t)t ̃
(")(t),ΔkB̃t ̃

(")(t)
⟩

L2

)

,
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where we also used Cauchy–Schwarz. Now we use that  (") is a solution to the regularized
problem 4.3.1 to estimate

d
dt

‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
≤c1

‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
+ 2Re

(⟨

ΔkB̃t f̃ (t),Δ
k
B̃t
 ̃ (")(t)

⟩

L2

)

+ 2 Im
(⟨

ΔkB̃tD̃t,B̃tJ
(")
B̃t
 ̃ (")(t),ΔkB̃t 

(")(t)
⟩

L2

)

.

We estimate the second summand by

2Re
⟨

ΔkB̃t f̃ (t),Δ
k
B̃t
 ̃ (")

⟩

L2
≤ ‖

‖

f̃ (t)‖
‖

2
B̃t,2k

+ ‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
,

wherewe again usedCauchy–Schwarz. For the third summand, we note that theC0-semigroup
J
( "2 )

B̃t
commutes with ΔB̃t as well as with D̃t,B̃t and is selfadjoint. Thus

2 Im
⟨

ΔkB̃tD̃t,B̃tJ
(")
B̃t
 ̃ (")(t),ΔkB̃t 

(")(t)
⟩

L2
= 2 Im

⟨

ΔkB̃tD̃t,B̃tJ
( "2 )

B̃t
 ̃ (")(t),ΔkB̃tJ

( "2 )

B̃t
 ̃ (")(t)

⟩

0

= 2 Im
⟨

D̃t,B̃tΔ
k
B̃t
J
( "2 )

B̃t
 ̃ (")(t),ΔkB̃tJ

( "2 )

B̃t
 ̃ (")(t)

⟩

0

= 0

wherewe also used that D̃t,B̃t commutes with its functional calculus and is formally selfadjoint
onHk

B̃t
. Putting everything together, we get the estimate

d
dt

‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
≤ ‖

‖

f̃ (t)‖
‖

2
B̃t,2k

+ c1
‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
.

Using Gronwall’s Lemma we get
‖

‖

‖

 ̃ (")(t)‖‖
‖

2

B̃t,2k
≤
[

‖

‖

‖

 (")(t)‖‖
‖

2

B̃t,2k
+ ∫

t

0

‖

‖

f̃ (t)‖
‖

2
B̃t,2k

ds exp
(

∫

t

0
c1(s) ds

)]

and know that c1 is independent of ". For t < 0 one obtains an analogue estimate by inte-
grating over [t, 0]. Hence, we see that for t ∈ ℝ fixed, the set { ̃ (")(t); " > 0} is bounded in
H2k
B̃t
, for all k and hence it is bounded in H2k for all k. By Rellich–Kondracchov theorem

{ (")(t), " > 0} is relatively compact inHk for all k.
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Now taking D̃t,B̃tJ
(")
B̃t

being bounded fromHk
B̃t
toHk

B̃t
into account, we get

‖

‖

‖

)t ̃
(")(t)‖‖

‖B̃t,k
= ‖

‖

‖

f̃ (t) − iD̃t,B̃tJ
(")
B̃t
 ̃ (")(t)‖‖

‖B̃t,k

≤ ‖

‖

f̃ (t)‖
‖B̃t,k

+ c2
‖

‖

‖

 ̃ (")(t)‖‖
‖B̃t,k

≤ c3,

where c3 does not depend on ". Using that ‖⋅‖B̃t,k ≃ ‖⋅‖k on Hk
B̃t
, we see that t ↦  ̃ (")(t) is

equicontinuous.
3. Arzelà–Ascoli theorem

For fixed T > 0 and fixed k the Arzelà–Ascoli theorem implies that { ̃ ("); " > 0} ⊆
C0([−T , T ],Hk) is relatively compact. Thus we obtain a subsequence  ̃ ("j ) of  ̃ (") with
 ̃ ("j ) →  ̃ ∈ C0([−T , T ],Hk) for "j → 0. By a diagonal subsequence argument we can
without loss of generality assume that  ̃ ("j ) →  ̃ ∈ C0([−T , T ],Hk) for all k ∈ ℕ, T > 0.
Therefore the convergence  ̃ ("j ) →  is locally uniform in C0(ℝ,Hk) for all k. This entails
in particular that  ̃ ("j )(t) →  ̃(t) for all t ∈ ℝ in Hk. Since Hk

B̃t
⊆ Hk closed, this implies

that  ̃(t) ∈ Hk
B̃t
for all t. In particular,  ̃ satisfies the Lorentzian boundary condition.

4. Solution to Cauchy problem 4.1.3
First we see that for t = 0

 ̃ (")(0) = N
n
2 (0) 0 for all "j ,

and therefore  ̃(0) = N n
2 (0) 0.Showing D̃ ̃ = f̃ is more complicated since we also have to control the convergence of the

time derivatives of  ̃ ("j ) to the time derivatives of  ̃ . In order to get rid of the time derivatives
we integrate the regularized problem 4.3.1 and we obtain

 ̃ ("j )(t) −N
n
2 (0) 0 = ∫

t

0

[

−iD̃s,B̃sJ
("j )
B̃s
 ̃ ("j )(s) + f̃ (s)

]

ds. (4.3.2)

Now we let " → 0. For the left hand side of Equation 4.3.2 we find  ̃ ("j )(t) − N
n
2 (0) 0 →

 ̃(t) − N
n
2 (0) 0. For the right hand side of Equation 4.3.2 we consider the first summand

under the integral which is the one depending on "j . For all k the Hk-norm of this can be
estimated as

‖

‖

‖

‖

‖

∫

t

0
D̃s,B̃sJ

("j )
B̃s
 ̃ ("j )(s) ds

‖

‖

‖

‖

‖k

≤ ∫

t

0

‖

‖

‖

D̃s,B̃sJ
("j )
B̃s
 ̃ ("j )(s)‖‖

‖k
ds

≤ ∫

t

0

‖

‖

‖

D̃s,B̃s ̃
("j )(s)‖‖

‖k
ds,
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where we used that J ("j )
B̃s

commutes with D̃s,B̃s and is a contraction. Moreover, notice that the
integrand on the right hand side is a continuous function of s, which pointwise converges to
‖

‖

‖

D̃s,B̃s ̃(s)
‖

‖

‖k
as j →∞. A dominant convergence argument leads to

 ̃(t) − UN
n
2 0 = ∫

t

0
f̃ (s) ds − i∫

t

0
D̃s,B̃s ̃(s) ds,

which is equivalent to the fulfillment for the reduced Dirac equation 4.1.3 together with the
initial value  ̃(0) = N n

2 (0) 0.
5. Regularity

So far we know continuity in time direction and smoothness in spatial direction. Next, we
want to prove smoothness in time direction. We have  ̃ ∈ C0(ℝ,Hk) for all k and by the
equation in the Cauchy problem 4.1.3 we see that )t ̃ ∈ C0(ℝ,Hk−1) for all k. Hence
 ̃ ∈ C1(ℝ,Hk) for all k. For the second derivative, we differentiate the equation in the
Cauchy problem 4.1.3 in time and by comparing both sides of the equation, we see that
 ̃ ∈ C2(ℝ,Hk). By iterating this argument, we see that  ̃ ∈ C∞(ℝ, C∞(Σ̂, SM̂|Σ̂)). Hencewe showed the existence of a smooth solution to the Cauchy problem 4.1.3 and equivalently
to the Cauchy problem 4.1.1.

B. Continuity of the solution map
For this part let us have a look at the Cauchy problem 4.1.1 itself, and let us denote

C∞(M,B) = { ∈ C∞(M,SM);  |)M ∈ C∞()M,B)}.

The continuous dependence on the Cauchy data means in other words that the solution map
C∞
cc (M,SM)⊕C∞

cc (Σ, SM|Σ)→ C∞(M,B)
(f,  0)↦  

is continuous. Let us define the following map
P ∶= D⊕ res0∶ C∞(M,B)→ C∞(M,SM)⊕C∞(Σ, SM|Σ)

 ↦ (D , |Σ),

which is clearly continuous and linear. Fix compact sets Ai ⊆ M such that Ai ∩ )M = ∅ for
i = 1, 2. Then defineC∞

A1
(M,SM) as the space of smooth sections with support inA1, and similarly

we also define C∞
A2
(Σ, SM|Σ) as the set of the smooth sections with support in A2 ∩ Σ. Then

C∞
A1
(M,SM)⊕C∞

A2
(Σ, SM|Σ) is closed in C∞

cc (M,SM)⊕C∞
cc (Σ, SM|Σ), and hence

A1,A2 ∶= P
−1
(

C∞
A1
(M,SM)⊕C∞

A2
(Σ, SM|Σ)

)



60 CHAPTER 4. INITIAL BOUNDARY VALUE PROBLEMS

is closed in C∞(M,B). In particular all these spaces are Fréchet spaces. By step (1) and (2) of this
proof, P maps A1,A2 bijectively on C∞

A1
(M,SM) ⊕ C∞

A2
(Σ, SM|Σ). The open mapping theorem

for Fréchet spaces then gives us that
(P |A1 ,A2 )

−1;C∞
A1
(M,SM)⊕C∞

A2
(Σ, SM|Σ)→ A1,A2

is continuous as well. The arbitrariness of the Ai shows the claim.
Remark 4.3.2.

1. Note, that we do not prove that the solution map is surjective, which can also not be true in
general, since we assume that  0 and f being supported away from the boundary.

2. Note that one can extend this result to the case of not necessarily compact Cauchy hyper-
surfaces, but with still compact boundary. This follows by an covering argument, see for
example [12, 27], where it is also shown that the well-posedness implies that the Lorentzian
Dirac operator is Green-hyperbolic with respect to these boundary conditions.



5
PSEUDO LOCAL BOUNDARY CONDITIONS

Up to now we worked with a class of admissible boundary conditions, which fulfill properties such
that the Cauchy problem is well-posed. In this chapter we will discuss the special case of pseudo
local boundary conditions and how to simplify the properties of Definition 3.3.13. First we will
discuss the well-posedness for pseudo local boundary conditions with respect to Grassmannian
projections and then we will apply this to the discussion of the Atiyah–Patodi–Singer conditions.

5.1 Grassmannian projections
In this section, we will discuss the well-posedness of Cauchy problems with pseudo local bound-
ary conditions with respect to Grassmannian projections. For this we will discuss the properties
of Definition 3.3.13 in terms of pseudo differential operators and then show the well-posedness by
using Theorem 4.3.1.

Theorem 5.1.1. Let (M,g) be a globally hyperbolic, spatially compact spin manifold with timelike
boundary )M . Let Σ be a spacelike Cauchy hypersurface. Let t∶ M → ℝ be a temporal function
such that Σ0 = Σ and the gradient of t is tangential to )M . Let {Pt}t∈ℝ be a family of orthogonal
pseudo differential operators on L2()Σt, SM|)Σt) such that

1. Pt = N−1P ∗
t N ,

2. Pt = Id + �Dt
(�♭t )Pt�Dt

(�♭t ),

3. P̃t ∶= UN
n
2PtN

n
2U−1 is a Grassmannian projection on L2(Σ̂0, SM|)Σ̂0), and

4. there exists a sequence {kj}j∈ℕ0 of non-negative integers with k0 = 0 and kj →∞ for j →∞
such that t↦ P̃t isHkj norm continuous for all j.
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Then B ∶= {Bt}t∈ℝ with Bt ∶= PtH
1
2 ()Σt, SM|)Σt) is an admissible boundary condition and in

particular there exists a unique smooth solution  ∈ C∞(M,SM) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (Σ, SM|Σ)

 |)M ∈ C∞()M,B)
(5.1.1)

that depends continuously on the Cauchy data (f,  0).

Proof. First note that 1. and 2. implies, with a similar argument as in Corollary 3.1.31, thatN 1
2Btis a selfadjoint boundary condition. By Corollary 3.1.31, Theorem 3.1.30 and the third assumption

on Pt, we see that B̃t is a selfadjoint∞-regular boundary condition. Furthermore, by Lemma 3.2.2,
we see that the fourth assumption on Pt implies that D̃t,B̃tJ

(")
B̃t

is strongly continuous with respect to
allHk-norms.
All of this together implies that {Bt}t∈ℝ is an admissible boundary condition (see Definition 3.3.13)
and hence, Theorem 1 implies the well-posedness of Cauchy problem 5.1.1.
Remark 5.1.2. Note that if we would additionally assume that Pt (anti-) commutes with the bound-
ary operator Ãt in Theorem 5.1.1, we could us weaken the fourth assumption of the same theorem
and only require the projections to be L2 norm continuous. Then Lemma 3.2.3 would still give us
that D̃t,B̃tJ

(")
B̃t

is strongly continuous with respect to allHk-norms.
By adding additional assumptions on the geometry of the spacetime, we can simplify the as-

sumptions on the pseudo differential operators as follows:
Corollary 5.1.3. Let (M,g) be as in Theorem 5.1.1. Additionally assume that the normal field �
to the timelike boundary is transported parallel along )t andN|)M = 1. Let {Pt}t∈ℝ be a family of
orthogonal Grassmannian projections onL2()Σt, SM|)Σt), and assume that there exists a sequence
{kj}j∈ℕ0 of non-negative integers with k0 = 0 and kj → ∞ for j → ∞ such that t ↦ P̃t is Hkj

norm continuous for all j. Then the Cauchy problem 5.1.1 is well-posed.

Proof. Since N|)M = 1 and � is transported parallel along the integral curves of )t, we see that
P̃t being a Grassmannian projection in particular implies assumptions 1 and 2 of Theorem 5.1.1.
Thus, the claim directly follows by Theorem 5.1.1.
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5.2 Atiyah–Patodi–Singer conditions
Recall the second part of Example 3.1.4, where we defined the APS conditions for an elliptic op-
erator D as BAPS = �−(A)H

1
2 (Σ, E), where A is the boundary operator of D. In the following we

will construct admissible boundary conditions, which are arising from this kind of conditions.
For this recall that the Lorentzian Dirac operator has the splitting

D = −
(�)
(

∇SM
� + iDt −

n
2
Ht

)

,

where Dt is an elliptic differential operator acting on sections of SM|Σ. Let At be a boundary
operator ofDt, which can be chosen selfadjoint and such that it anti-commutes with �Dt

(�♭). Recall
(see Section 2.3) that for the Riemannian Dirac operator this choice of boundary operator can be
made depending on the operator itself and the mean curvature on the boundary, which also implies
that the resulting operators At have coefficients depending smoothly on t.
Furthermore, assume that At has trivial kernel.
Then also the operator Ât = N(t)−

1
2AtN(t)

1
2 is a boundary operator of Dt, which also has trivial

kernel and anti-commutes with �Dt
(�♭), but is not formally selfadjoint anymore.

Then {BAPS,t}t∈ℝ with
BAPS,t ∶= �−(Ât)H

1
2 ()Σ, SM|)Σt)

is a family of∞-regular boundary conditions in Ȟ(At) = Ȟ(Ât).
Remark 5.2.1. Since At has no kernel and is selfadjoint, we see that (�−(At)H

1
2 )∗ = �−(At)H

1
2

and hence

∫)Σt

⟨

�Dt
(�♭)N(t)

1
2 ,N(t)

1
2�
⟩

0
d�)Σt = 0 (5.2.1)

for all  , � ∈ C∞(Σt, SM|Σt) with  , � ∈ BAPS,t. Then we see that BAPS is satisfying the first
condition of Definition 3.3.13.

For making sure that also the second condition of Definition 3.3.13 is fulfilled, we make the
following assumption:
Assumption 5.2.2. Let (t, x) ∈ )M be the coordinates induced by the temporal function, then
assume that

�♭(t, x) ≠ −N(0, x)2�−1t (�̂(0, x)
♭). (5.2.2)
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Remark 5.2.3. Suppose
�♭(t) = −N(0)2�−1t �̂(0)

♭,

then 1 = ‖

‖

‖

�(t)♭‖‖
‖gt
= N2 ‖

‖

‖

�−1t �̂(0)
♭‖
‖

‖gt
= N(0) impliesN(0) = 1 and

�(t)♭ = −�−1t �(0)
♭.

Hence, if N ≠ 1 on the boundary then Condition 5.2.2 is directly satisfied. Note that in [27], the
authors assume that N = 1 on )M and � being parallel along )t, which also implies Condition
5.2.2.

Using Condition 5.2.2, we can discuss the ellipticity of B̃APS,t.
Lemma 5.2.4. Assume the Standard Setup 2.4 and Condition 5.2.2. Then {B̃t,APS}t∈ℝ is a family
of elliptic (and hence equivalently∞-regular) boundary conditions.

Proof. Note that one can rewrite B̃APS,t as

B̃APS,t = �−
(

UN(t)
n−1
2 AtN(t)

1−n
2 U−1

)

H
1
2 ()Σ, SM|)Σ), (5.2.3)

which implies that B̃APS,t ⊆ Ȟ(Ãt) is a pseudo local boundary condition. By the third part of
Theorem 3.1.30, we see that it suffices to show that B̃APS is elliptic, which we will do by using
the first part of the same theorem. For simplifying notation, let us define the pseudo differential
operator

Pt ∶= �−
(

UN(t)
n−1
2 AtN(t)

1−n
2 U−1

)

.

To apply the first part of Theorem 3.1.30, we have to show that Ft ∶= Pt − �+(Ãt) is an elliptic
operator.
The principal symbol of Ft is given as follows: Let (0, x̃) ∶= x ∈ Σ and � ∈ TxΣ ⧵ {0}, then

�Ft(� ) = �Pt(� ) − ��+(Ãt)(� )

=

(

1 −
i�
UN(t)

n−1
2 AtN(t)

1−n
2 U−1

(� )

|� |

)

−
(

1 +
i�Ãt(� )
|� |

)

= −i
|� |

(

�
UN(t)

n−1
2 AtN(t)

1−n
2 U−1

(� ) + �Ãt(� )
)

.
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Let us discuss the two principal symbols separately. For the first one, we have
�
UN(t)

n−1
2 AtN(t)

1−n
2 U−1

(� ) = �t�N(t) n−12 AtN(t)
1−n
2
(�−1t � )�

−1
t

= �t�At(�
−1
t � )�

−1
t

= �t�Dt
(�(t)♭)−1�Dt

(�−1t � )�
−1
t

= −�t�Dt
(�(t)♭)�Dt

(�−1t � )�
−1
t ,

where we first used how the the principal symbol changes under parallel transport and conformal
change, and in the last step we used that �Dt

satisfies the Clifford relations and is skew-symmetric.
For the second one, Remark 3.3.12 and the Clifford relations give us

�Ãt(� ) = �t�Dt
(�−1t �̂(0)

♭)−1�Dt
(�−1t � )�

−1
t

= −N(0)2�t�Dt
(�−1t �̂(0)

♭)�Dt
(�−1t � )�

−1
t ,

Putting the two principal symbols back together to the principal symbol of Ft, we get
�Ft(� ) =

i
|� |
�t
(

�Dt
(�(t)♭) +N(0)2�t�Dt

(�−1t �̂(0)
♭)
)

�Dt
(�−1t � )�

−1
t

= i
|� |
�t�Dt

(

�(t)♭ +N(0)2�−1t �̂(0)
♭) �Dt

(�−1t � )�
−1
t .

Since � ≠ 0 and Dt is elliptic, we see that we only have to show that �(t)♭ +N(0)2�−1t �̂(0)♭ ≠ 0,
which is exactly Condition 5.2.2. Hence, Ft is elliptic and by using the first part of Theorem 3.1.30
this concludes our proof.

Up to now, we only additionally assume Condition 5.2.2, which would be more general than the
assumptions in [27], but unfortunately the continuity of the functional calculus needed for {Bt,APS}to be a family of admissible boundary conditions, needs B̃t,APS to be a selfadjoint boundary condi-
tion as well. In general, this is difficult to control since we would need to show that the projection
on B̃t,APS is still a Grassmannian projection under certain assumptions. The most handy and least
technical assumptions remain the ones used in [27], which we will also use in the following corol-
lary:
Corollary 5.2.5. Assume the Standard Setup 2.4 and additionally assume that N|)M = 1, � is
parallel transported along )t and the kernel of At is trivial for all t ∈ ℝ. Then there exists a unique
smooth solution  ∈ C∞(M,SM) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (Σ, SM|Σ)

 |)M ∈ C∞()M,BAPS)

that depends continuously on the Cauchy data (f,  0).



66 CHAPTER 5. PSEUDO LOCAL BOUNDARY CONDITIONS

Proof. Using the additional assumptions on the geometry (see also Remark 3.3.12), we see that by
Remark 5.2.1, Lemma 5.2.4, Lemma 3.2.3 and Remark 3.2.6, that all conditions of Corollary 5.1.3
are satisfied. Thus, the well-posedness follows.
Remark 5.2.6. Corollary 5.2.5 coincides with the result of [27], but we filled a gap in their proof of
the existence of smooth solution in Subsection 4.2.3 in [27]. In the first step – finding a regularized
solution – they do not specify which kind of continuity of the operators is needed to make sure that
indeed there is a solution to the regularized problem. This gap we filled in the more general setting
of Grassmannian projections, see Section 3.2. A little more detailed discussion can be found in
Chapter 6.

5.3 Remarks on modified Atiyah–Patodi–Singer conditions
In this section, we will discuss some possibility to generalize1 the Atiyah–Patodi–Singer conditions
for the case of non-trivial kernel. The purpose of this section is rather to give some more ideas on
the class of admissible boundary conditions and will not be focused on finding new results.
As discussed in the Example 3.1.4, one possibility to generalizeAPS conditions to non-trivial kernel
are the modified Atiyah–Patodi–Singer conditions. One then could instead of trivial kernel assume
that

ker At = Lt ⊕ �Dt
(�t)Lt,

as in Example 3.1.4. As in the previous section, we consider Ât = N
− 1
2 (t)AtN

1
2 (t). Then the kernel

of Ât is given by

ker Ât = { ∈ C∞()Σt, SM|)Σt); N
− 1
2 (t)AtN

1
2 (t) = 0}

= { ∈ C∞()Σt, SM|)Σt); AtN
1
2 (t) = 0}

= N− 1
2 (ker At)

= N− 1
2 (t)Lt ⊕ �Dt

(�t)N
− 1
2 (t)Lt.

Define L̂t = N− 1
2 (t)Lt. Then let us consider the BmAPS = {BmAPS,t}t∈ℝ with

BmAPS,t ∶= �−(Ât)H
1
2 (Σt, SM|Σt)⊕ L̂t.

1For non-trivial kernel, the APS conditions are still elliptic boundary conditions, but since they are not selfadjoint
anymore they do not fit into the setting of admissible boundary conditions. So with generalization, we mean here to
generalize the selfadjoint APS conditions to another selfadjoint boundary condition that does not require trivial kernel.
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Remark 5.3.1. Since �−(At)H
1
2 ()Σt, SM|)Σt)⊕Lt is selfadjoint, we see that

∫)Σt

⟨

�Dt
(�♭)N(t)

1
2 ,N(t)

1
2�
⟩

0
d�)Σt = 0 (5.3.1)

for all  , � ∈ C∞(Σt, SM|Σt) with  , � ∈ BmAPS,t. Thus BmAPS satisfies the first condition in
Definition 3.3.13.

Similar to before, the Condition 5.2.2 implies the following:
Lemma 5.3.2. Assume the Standard Setup 2.4 and additional suppose that there is an orthogonal
splitting ker A0 = L0 ⊕ �Dt

(�0)L0 and that Condition 5.2.2 is satisfied.
Then there exist an orthogonal splitting ker At = Lt ⊕ �D(�t)Lt for all t. Moreover, {B̃t,mAPS}t∈ℝ
is a family of elliptic (and in particular∞-regular) boundary conditions.

Proof. Firstly, note that from �D(�t) anti-commuting with At, it follows that the spectrum of At issymmetric around zero. Furthermore, it also implies that for 0 ≠ � ∈ spec(At) the eigenspaces of
� and −� have the same dimension. Since the family {At}t∈ℝ is smooth in t, the spectrum spec(At)is moving continuously in t. Hence, the spectral flow of the family {At}t∈ℝ keeps ker At evendimensional and since �Dt

(�t)E(�, At) = E(−�, At), we see that the spectral flow also keeps the
orthogonal splitting imposed in t = 0 intact. Hence, there exists an orthogonal splitting ker At =
Lt ⊕ �Dt

(�t)Lt for all t ∈ ℝ.
Next we have to show that

B̃mAPS,t ∶= U (t)N
n
2 (t)(BmAPS)

= U (t)N
n
2 (t)(�−(Ât)H

1
2 ()Σt, SM|)Σt))⊕U (t)N

n
2 (t)L̂t,

is elliptic for all t ∈ ℝ.
In the proof of Lemma 5.2.4 we showed thatU (t)N n

2 (t)(�−(Ât)H
1
2 ()Σt, SM|)Σt)) is elliptic if Con-

dition 5.2.2 is satisfied. Since, U (t)N n
2 (t)L̂t is a finite dimensional subspace consisting of smooth

section, it directly follows that B̃mAPS,t is elliptic and also∞-regular as well.
Remark 5.3.3. Similar to the APS-conditions, if we assume thatN|)M = 0 and that the unit normal
field � to the boundary is parallel transported along )t, we know that B̃t,mAPS is selfadjoint as well.
The one thing missing is the continuity, for this we need that �−(Ãt) as well as the projection onto
L̃t isHk-norm continuous. This is more involved than for the APS-conditions since in this setting
there is indeed some spectral flow over zero which has to be controlled for this. This requires more
detailed analysis, which we will not do at this point.
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5.4 Boundary chirality
For our second example, we consider families of boundary chiralities, which we already discussed
briefly in the first part of Example 3.1.4. We call {�t}t∈ℝ a selfadjoint boundary chirality if it is
a family of selfadjoint (with respect to ⟨⋅, ⋅⟩0) involutions, such that �t anti-commutes with �Dt

(�♭)
and withAt, respectively. Then one has the orthogonal decompositionSM|)Σt = S

−1)Σt⊕S+1)Σt,
where S±1)Σt is the eigenbundle of �t for the eigenvalues ±1.

Remark 5.4.1.

1. Recall that since�t anti-commuteswithAt, the boundary conditionsB±,t ∶= H
1
2 ()Σt, S±1)Σt)are∞-regular by Theorem 3.1.30 part 2 and 3.

2. Since � anti-commutes with �Dt
(�♭) and is selfadjoint, we see that for all x ∈ )Σt and u, v ∈

S±1x )Σt
⟨

�Dt
(�♭)u, v

⟩

0
= 0,

and hence we also know that
⟨

�Dt
(�♭)N(t, x)

1
2u,N(t, x)

1
2v
⟩

0
= 0.

This implies that B± ∶= {B±,t}t∈ℝ satisfies the first part in Definition 3.3.13.
Using Theorem 4.3.1 we get for the boundary conditions B± the following well-posedness re-

sult:
Corollary 5.4.2. Assume the Standard Setup 2.4 and let {�t}t∈ℝ be a selfadjoint boundary chi-
rality which depends continuously on t. Additionally assume that N|)M = 1 and � is parallel
transported along the gradient of the temporal function. Then there exists a unique smooth solu-
tion  ∈ C∞(M,SM) to the Cauchy problem

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ =  0 ∈ C∞
cc (Σ, SM|Σ)

 |)M ∈ C∞()M,B±) ,
(5.4.1)

that depends continuously on the Cauchy data (f,  0).

Proof. First note that
B̃t = UN(t)

n
2H

1
2 (Σt, S±1)Σt) = UNH

1
2 (Σt, S±1)Σt) = H

1
2 (Σ0, P̃ ±

t SΣ0)
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where
P̃ ±
t ∶=

1
2
(

1 ± �̃t
) (5.4.2)

is a projection on the ±1 eigenspaces of �̃t ∶= U�tU−1. Note that since U is an isometry between
the L2 spaces of the Cauchy hypersurfaces, �̃t is selfadjoint as well. Furthermore, by Remark
3.3.12 we see that the boundary operator Ãt of D̃t can be chosen as Ãt = UAtU−1. Thus Ãt clearlyanti-commutes with �̃t. The additional geometric assumptions onN and � also imply

�D̃t
(�̂♭(0))�̃t = �t�Dt

(�♭(t))�−1t U (t)�tU (t)
−1

= U�Dt
(�♭(t))�tU−1

= −U�t�Dt
(�♭(t))U−1

= −�̃t�D̃t
(�̂♭(0)),

and hence {�̃t}t∈ℝ is a selfadjoint boundary chirality. Hence, we apply the second part Theorem
3.1.30, which implies that B̃± is∞-regular as well. Furthermore, since U (t) depends continuously
on t, we see that �̃t is as well continuous in t and P̃ ±

t is L2 norm continuous. Remark 3.2.5 and
Lemma 3.2.3 then gives us that we satisfy the requirements of Theorem 4.3.1, which implies the
well-posedness of the Cauchy problem 5.4.1.
Remark 5.4.3. The well-posedness for this kind of local boundary conditions is already known in
more generality, see for example [31] for MIT conditions or [29] for Friedrich systems. We only
show this result here to emphasize that also local boundary conditions are in the class of admissible
boundary conditions. A more detailed discussion about the relation of Corollary 5.4.2 to these
results can be found in Chapter 6.

5.5 Examples on ℝ × B1(0)
Let us end our discussion on examples of boundary conditions with some explicit examples on
a simple manifold. For this we follow [27] and consider the globally hyperbolic spin manifold
(M,g) = (ℝ × B1(0),−dt2 + dr2 + r2 d�2) with coordinates (t, r, �). On this manifold, we can
choose a spin structure such that we can identify SM with the trivial bundle M × ℂ2. In the
standard coordinates on Minkowski space, the Dirac operator is given by

D = −
(e0))t + 
(e1))x + 
(e2))y,

where 
(ei) are the following Pauli matrices:


(e0) =
(

1 0
0 −1

)

, 
(e1) =
(

0 i
i 0

)

, and 
(e2) =
(

0 1
−1 0

)

.
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Using the transformation rules for vector fields and that )r, )� is not orthonormal, we can write the
spin Dirac operator in spherical coordinates as follows

D = −
(e0))t +
(


(e1) cos(�) + 
(e2) sin(�)
)

)r +
1
r

(


(e2) cos(�) − 
(e1) sin(�)
)

)�.

Using the explicit form of the Clifford multiplications, we can rewrite D as

D = −
(

1 0
0 −1

)

)t +
(

0 ie−i�
iei� 0

)

)r +

(

0 1
r
e−i�

− 1
r
ei� 0

)

)�

Let us now compute the induced operators Dt on Σt = {t} × B1(0) by computing the principal
symbol �Dt

(� ) for � ∈ T ∗xΣt with � = �t dr + �� d�:
�Dt
(� ) = −i�D(dt)−1◦�D(� )

= i
(e0)◦
(� )

=
(

i 0
0 −i

)[

�r

(

0 ie−i�
iei� 0

)

+
��
r

(

0 e−i�
−ei� 0

)]

= �r

(

0 −e−i�
ei� 0

)

+
��
r

(

0 ie−i�
iei� 0

)

.

Hence, we get the operator Dt on Σt given by

Dt =
(

0 −e−i�
ei� 0

)

)r +

(

0 i
r
e−i�

i
r
ei� 0

)

)�.

The operator Dt induces the boundary operator At on )Σt = {t} × S1, which is defined over its
principal symbol �At given as follows: Let � ∈ T ∗x )Σt with � = � d�, then

�At(� ) = �Dt
(dr)−1◦�Dt

(� )

= �
(

0 −e−i�
ei� 0

)−1( 0 ie−i�
iei� 0

)

= �
(

i 0
0 −i

)

.

One could choose the boundary operator

A0t =
(

i 0
0 −i

)

)�,
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but note that this operator does not anti-commute with �Dt
(dr). Let us compute the anti-commutator

ourselves: Let  ∈ C∞()Σt, SM|)Σt) with  (�) =
(

 1(�)
 2(�)

)

, then we compute
[

A0t �Dt
(dr) + �Dt

(dr)A0t
]

 (�)

=
(

i 0
0 −i

)

)�

(

0 −e−i�
ei� 0

)(

 1(�)
 2(�)

)

+
(

0 −e−i�
ei� 0

)(

i 0
0 −i

)

)�

(

 1(�)
 2(�)

)

=
(

−i ′
1(�)e

i� −  2(�)ei�
−i ′

2(�)e
−i� +  1(�)e−i�

)

+
(

iei� ′
2(�)

ie−i� ′
1(�)

)

=
(

− 2(�)ei�
 1(�)e−i�

)

= �Dt
(dr) (�).

Hence, we can choose the boundary operator At as
At = A0t −

1
2
Id.

Remark 5.5.1. One could also use the theory of Dirac type operators in the sense of Gromov and
Lawson (see for example [36]) and see that the lower order term to subtract is given by 1

2
Ht, where

Ht is the mean curvature of )Σt. Since Ht = 1 in our case, we see that both lower order terms
coincide.

The operator At has eigenvalues �k = −k − 1
2
for k ∈ ℤ with eigenfunctions

 1
k ∶ � ↦

(

eik�
0

)

and  2
k ∶ � ↦

(

0
e−ik�

)

.

In particular At has trivial kernel and all eigenvalues have multiplicity two. Using these eigenfunc-
tions, we can write down BAPS,t simply as

BAPS,t = span
H

1
2 ()Σt)

{

 i
k; k ≥ 0; i = 1, 2

}

.

Since At is constant along t, this is of course also true for BAPS,t. Furthermore, since At has nokernel, BmAPS,t = BAPS,t.
Let us briefly discuss the solutions of the homogeneous Cauchy problem

⎧

⎪

⎨

⎪

⎩

D = 0
 |{t=0} =  0
 |{r=1} ∈ C∞()M,BAPS) .

(5.5.1)
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For this, we first will compute the eigenbasis of D0 under the APS boundary conditions. We will
look for smooth eigenfunctions of possibly generalized eigenvalues of D0 first without boundaryconditions and then we will compute how the APS conditions enforce requirements on the possible
eigenvalues. SinceD0 is a Dirac type operator on a compact manifold with boundary, we know that,
seen as an operator fromH1 to L2, it has an infinite dimensional kernel, but by direct computation
one can see that the periodicity condition in � prevents the existence of non-trivial smooth elements
in the kernel.
Let us do the following formal ansatz by separation of variables. For a possibly generalized eigen-
value 0 ≠ � ∈ spec(D0) we make the formal ansatz

 �,k1,k2(r, �) =
(

�1,�,k1(r) 1,k1(�)
�2,�,k2(r) 2,k2(�)

)

, (5.5.2)
where k1, k2 ∈ ℤ and �i,�,k smooth complex valued functions. Here, we abused notation by denoting
the first component of  1

k and the second component of  2
k as well by  1

k and  2
k , respectively.Since D0 is a formally adjoint Dirac operator and the APS conditions in this case are selfadjoint

boundary conditions, we can restrict to the case of � ∈ ℝ and we know that
−Δ �,k1,k2 = �

2 �,k1,k2 . (5.5.3)
Equation 5.5.3 is also called the spatial Helmholtz equation for vibrating membrane and by sepa-
ration of variables and periodicity in �, one sees that

�1,�,k(r) = c�,kJk(�r),

where c�,k are constants and Jk are the k-th Bessel functions. For a more detailed discussion see,
for example, [46].
Remark 5.5.2. There are different kind of Bessel functions, but here we are talking about the Bessel
functions Jk of the first kind for integers k ∈ ℤ. These satisfy the following properties:

1. J−k = (−1)kJk, and
2. d

dr
Jk(r) −

k
r
J (r) = Jk+1(r).

For an overview on the theory of Bessel functions and their use in mathematics and physics, we
refer the reader to [49].

Up to now we only know how the eigenfunctions of the Laplace equation can be written, but
not all solutions to the Laplace equation are again solutions to the Dirac equation. Hence, we put
 �,k1,k2 back into the eigenvalue equation for D0 and see the following:

�
(

c1,k1Jk1(�r) 1,k1(�)
c2,k2Jk2(�r) 2,k2(�)

)

= D0

(

c1,k1Jk1(�r) 1,k1(�)
c2,k2Jk2(�r) 2,k2(�)

)
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= �
⎛

⎜

⎜

⎝

−c2,k2
[

d
dr
Jk2(�r) −

k2
r�
Jk2(�r)

]

 2,k2+1(�)

c1,k1
[

d
dr
Jk1(�r) −

k1
r�
Jk1(�r)

]

 1,k1+1(�)

⎞

⎟

⎟

⎠

= �
(

−c2,k2Jk2+1(�r) 1,−k2−1(�)
c1,k1Jk1+1(�r) 2,−k1−1(�)

)

= �
(

(−1)k2c2,k2J−k2−1(�r) 1,−k2−1(�)
(−1)k1+1c1,k1J−k1−1(�r) 2,−k1−1(�)

)

,

where we used the explicit form of D0 and the properties of the Bessel function mentioned in
Remark 5.5.2. The linear independence of  i

k implies
k1 = −(k2 + 1) and c1,k1 = (−1)

k2c2,k2 .

Hence, we get the following eigenfunctions for D0:

 �,k(r, �) ∶=  �,k,−(k+1)(r, �) = ck,1

(

Jk(�r) 1,k(�)
(−1)kJk+1(�r) 2,−(k+1)(�)

)

. (5.5.4)

Now, we can apply the APS condition on  �,k(1, �). We see that  �,k(1, �) satisfies the APS condi-
tion if and only if

Jk+1(�) = 0 if k ≥ 0, and Jk(�) = 0 if k ≤ −1.

Hence, we see that the �’s have to be the roots �n,k of the Bessel functions Jk, which implies that
spec(D0,APS) = {�n,k; k ≥ 0, n ∈ ℕ},

and the domain dom(D0,APS) is spanned by the eigenbasis

 1,k,n(r, �) ∶=
(

Jk(�k+1,nr) 1,k(�)
(−1)kJk+1(�k+1,nr) 2,−(k+1)(�)

)

, and

 2,k,n(r, �) ∶=
(

Jk(�k+1,nr) 1,−(k+1)(�)
(−1)kJk+1(�k+1,nr) 2,k(�)

)

.

Hence, for any  0 ∈ dom(D0,APS) ∩ C∞(Σ0, SM|Σ0), we see that

 (t, r, �) ∶= e−it D0 0(r, �) =
∑

k,n
e−it�k+1,n

[

an,k 1,k,n(r, �) + bn,k 2,k,n(r, �)
]

solves the Cauchy problem 5.5.1, where an,k and bn,k are the coefficients of the expansion of  0 inthe eigenbasis  i,k,n.
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Remark 5.5.3. Let us have a brief look at an example for the chirality conditions. For this let us
consider the involution �t ∶= i
()r)(x) ∶ SxM → SxM for x ∈ )Σt. By construction, we see that
�t is anti-commuting with At. Furthermore, since 
(dr) is symmetric with respect to ⟨⋅, ⋅⟩SM and
anti-commuting with �D(dt), we see that �t is selfadjoint with respect to ⟨⋅, ⋅⟩0. Hence, �t is is anselfadjoint boundary chirality. Using the explicit form of the Clifford multiplication, we can write
�t also as

�t =
(

0 −e−i�
−ei� 0

)

.

Since �t is an involution, its eigenvalues are ±1. The eigenspaces are given by

E(�t,±1) =
{(

x
y

)

; y = ∓e−i�x
}

.

Hence, the boundary conditions B±t are given by
B±t = H

1
2 ()Σt, E(�t,±1)) = { ∈ H

1
2 ()Σt);  2(�) = ∓e−i� 1(�)},

where  (�) =
(

 1(�)
 2(�)

)

.

Remark 5.5.4. The manifold M = ℝ × B1(0) with the Lorentzian metric g = −N2 dt2 + dr2 +
f 2 d�2, where N, f ∈ C∞(M,ℝ) are positive functions, is a globally hyperbolic spin manifold
with timelike boundary as well. We additionally assume that N and f depend only on r and t but
not on �. Then we can do the same computations as above and get the following operators:

D = −N−2(t, r)
(

1 0
0 −1

)

)t +
(

0 ie−i�
iei� 0

)

)r +
r

f 2(r, t)

(

0 e−i�
−ei� 0

)

)�,

Dt = N2(t, r)
(

0 −e−i�
ei� 0

)

)r +
N2(t, r)r
f 2(t, r)

(

0 ie−i�
iei� 0

)

)�, and

At = f (t, 1)−2
[(

i 0
0 −i

)

)� −
N2(t,1)
2
Id

]

.

Then At has eigenvalues (�k)t = − 1
f 2(t,1)

(

k + N2(t,1)
2

)

for k ∈ ℤ with eigenfunctions

 1
k ∶ � ↦

(

eik�
0

)

, and  2
k ∶ � ↦

(

0
e−ik�

)

.
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Hence, we can write the APS conditions as
BAPS,t = spanH 1

2 ()Σt)

{

( i
k)t; k > −

N2(t,1)
2

and i = 1, 2
}

.

Furthermore note, that in this case At can have a non-trivial kernel. More precisely, we see

ker At =

{

{0} if 1
2
N2(t, 1) ∉ ℤ,

span{( i
k)t; i = 1, 2 and k = −1

2
N2(t, 1)} otherwise.

Thus, depending on the choice of N the kernel does not need to be trivial but it is always two di-
mensional and �Dt

()r) is mapping span{( 1)k; k = −1
2
N2(t, 1)} to span{( 2)k; k = −1

2
N2(t, 1)} and

vice versa. This allows us to define the modified APS conditions also for this case. Note that since
the lapse functionN is not necessarily equal to one, we would need to look atN− 1

2 (t)(mAPS(At))to define admissible boundary conditions.



6
OUTLOOK

6.1 Related results

In this section, we will put our results into the context of current research on boundary value prob-
lems on spacetimes. We will only focus on the case of first order operators, but of course there are
a lot of interesting results for operators for higher order.

6.1.1 Spacetimes with spacelike boundary

In this section, we will discuss some results on non-local boundary conditions for the case of space-
like boundary and will point out the differences to the case of timelike boundary.
Spacetimes with spacelike boundary, i. e. the inducedmetric on the boundary is Riemannian, are of-
ten seen as follows. Let (X, g) be a globally hyperbolic spacetime, Σ− andΣ+ be two disjoint smooth
spacelike Cauchy hypersurfaces, and without loss of generality let Σ− lie in the past of Σ+. Thenthere exists a temporal function t∶ M → ℝ such that Σt1 ∶= t−1(t1) = Σ− and Σt2 ∶= t−1(t2) = Σ+for t1, t2 ∈ t(M). One then understandsM ∶= t−1([t1, t2]) as a globally hyperbolic spacetime with
spacelike boundary )M = Σ+ ⊔Σ−. If one does not want to refer to a temporal function, one could
characterizeM also asM ∶= J+(Σ−) ∩ J−(Σ+).
For M being spatially compact, spin and even dimensional, Bär and Strohmaier [15] showed a
Lorentzian index theorem for the Lorentzian Dirac operator on the complex spin bundle. Since
M is even dimensional the Dirac operator D can be split with respect to the negative and positive
chirality into

D =
(

0 
̃ 0

)
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where ∶ C∞(M,S+M) → C∞(M,S−M) and ̃ = †. Even if in this case the operator is – as
in our setting – hyperbolic, the boundary operator D = Dt1 ⊕Dt2 is elliptic, hence one can make
sense of non-local boundary conditions. This is a fundamental difference to our settings, since the
induced operator on timelike boundary is still hyperbolic, which makes it difficult for us to define
non-local boundary conditions in an analogous way.
Let us briefly discuss the boundary conditions that are considered in [18]. Recall the finite energy
spaces defined in Section 3.3.2. Using these spaces one can define the following space associated
to the APS conditions

FEAPS(M,) ∶= { ∈ FE0(M,);P[0,∞)(t1)( |Σt1 ) = 0 = P(−∞,0](t2)( |Σt2 )},

where for an interval I ⊆ ℝ PI (t) is the spectral projection onto the eigenspaces of Dt with cor-
responding eigenvalues inside I , which is well-defined since Dt is chosen selfadjoint on a closed
Riemannian manifold. In [15], they show that  is Fredholm under these boundary conditions:
Theorem 6.1.1 (Theorem 3.3 [15]). The operator

APS ∶= |FEAPS ∶ FEAPS(M,D)→ L2(M,S−M)

is Fredholm.

Furthermore, they show that even the anti-Atiyah–Patodi–Singer conditions (aAPS) conditions
defined as follows

FEaAPS(M,) ∶= { ∈ FE1(M,);P(−∞,0](t1)( |Σt1 ) = 0 = P[0,∞)(t2)( |Σt2 )}

lead to Fredholmness as well:
Theorem 6.1.2 (Theorem 3.4 [18]). The operator

aAPS ∶= |FEaAPS ∶ FEaAPS(M,D)→ L2(M,S−M)

is Fredholm with index
ind[DaAPS] = − ind[DAPS].

This is specially interesting, since aAPS does not lead to Fredholmness in the Riemannian
setting, where aAPS is not an elliptic boundary condition. Hence, the analogue of aAPS in our
setting is also not a suitable boundary condition.
Furthermore, note that in [15] they do not make any assumptions on the kernel of the boundary
operator. In this setting the spectral flow over zero is considered a feature that is represented in
the corresponding index formula, while in our setting the spectral flow is something that we have



78 CHAPTER 6. OUTLOOK

to control to make our methods work. In Section A.1, we define Lorentzian Dirac operator in the
sense of Gromov and Lawson, which include twisted operators. We require that the bundle that
we are twisting with is Hermitian, which indeed is the same assumption as in the result of [15] for
twisted Dirac operators. They run into the same difficulty that the induced inner product on the
bundle restricted to the spacelike Cauchy hypersurface could be indefinite for more general inner
products.
In the case of spacelike boundary, Bär and Hannes [13] later also investigated to what extend the
(a)APS boundary conditions can be replaced by more general ones and found sufficient conditions
for graph type boundary conditions, which lead to Fredholmness.

6.1.2 Spacetimes with timelike boundary
In this section, we will discuss well-posedness results of the Cauchy problem for the Dirac operator
on globally hyperbolic spacetimes with timelike boundary.
In the presence of timelike boundary, one can consider the Cauchy problem with MIT boundary
conditions. The MIT boundary conditions, first introduced in [22], are given as

(
(�) − i) |)M = 0. (6.1.1)
Note that 
(�)2 = −1, hence 
(�) has eigenvalues ±i. Hence, the Condition 6.1.1 is equivalent to
saying that  |)M (x) has to lie in E(−i, 
(�(x))) for all x ∈ )M . Clearly these boundary conditions
are local. Using these boundary conditions Finster and Röken [28] showed for stationary spacetimes
with timelike boundary admitting a suitable timelike vector field, and Große and Murro [31] for the
general case the following well-posedness:
Theorem 6.1.3. Let (M,g) be a globally hyperbolic spin manifold with timelike boundary. Then
there exists a unique spacelike compact solution  ∈ C∞

sc (M,SM) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ0 =  0 ∈ C
∞
cc (Σ0, SM|Σ0)

(
(�) − i) |)M = 0

that depends continuously on the Cauchy data (f,  0).

Note, that the MIT conditions are chirality conditions as defined in Section 5.4. While our well-
posedness result Corollary 5.4.2 arises from the theory of non-local boundary conditions, Große
andMurro [31] use tools for local boundary conditions, which include showing that a weak solution
is a strong solution and the associated regularity theory. Both of these tools need localization not
only in the interior but also at the boundary. This localization is a strong tool in the setting of local
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boundary conditions, but cannot be used in the context of non-local boundary conditions. Thus,
even if we also get a well-posedness result - in particular - for MIT conditions, our tools need
to require some geometric assumptions, that are not needed in [31]. Later Ginoux and Murro [29]
generalized this well-posedness result to a bigger class of operators - the so called Friedrich systems
- and to a bigger class of suitable local boundary conditions. Furthermore, note that recently Drago,
Ginoux, and Murro [26] used the well-posedness in [31] to prove the existence of Hadamard states
for Dirac fields satisfying the MIT conditions.
In the context of non-local boundary conditions Drago, Große, and Murro [27] considered the
Lorentzian Dirac operator and defined for a spacetime foliation {Σt}t∈ℝ the corresponding family
{APS(At)}t∈ℝ, where At are the induced boundary operators of the Riemannian Dirac operators
Dt on Σt. Using these boundary conditions, they showed the following:
Theorem 6.1.4 (Theorem 1.3 [27]). Let (M,g) = (ℝ × Σ,−N2 dt2 + gt) be a globally hyperbolic
spin manifold with timelike boundary. Let )Σ be compact and ker At be trivial for all t ∈ ℝ.
Additionally assumeN|)M ≡ 1 and that the unit normal � to )M is parallel transported along the
vector field � = N−1)t, then there exists a smooth solution  ∈ C∞(M,SM) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞
cc (M,SM)

 |Σ0 =  0 ∈ C
∞
cc (Σ0, SM|Σ0)

 |)M ∈ C∞()M,APS)

which depends continuously on its Cauchy data (f,  0).

Corollary 5.2.5 coincides with Theorem 6.1.4 and also the tools used in Chapter 4 are highly
motivated by the tools used in the proof of Theorem 6.1.4. But on the other hand, the argument
why the regularized problem 4.3.1 has a strong solution is not complete is in Subsection 4.2.3 in
6.1.4. First, they do not specify which kind of continuity the operator family D̃t,B̃tJ

(")
B̃t

is needed to
make sure that there is indeed a strong solution to the regularized problem 4.3.1. Also there is no
argument, why the family of APS conditions should lead to any kind of continuity of this functional
calculus. We filled this gap by analyzing families of pseudo local boundary conditions and finding
continuity conditions on the corresponding families of pseudo differential projections.
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6.2 Open questions and possible new research directions
Let us conclude this thesis, by briefly discussing some open problems and possible future research
questions. This will be done less rigorously and should be more seen as a collection of ideas that
could be worked on at a later time.

1. Analysis of class of boundary conditions: In Section 3.3.3, we define admissible boundary
conditions and in Section 5 we discuss some examples contained in this class of boundary
conditions. Still, it is not yet overly clear how restricting the assumptions in Definition 3.3.13
really are. One possible ansatz to get a better understanding of these boundary conditions,
could be to analyze how the check space is changing along a family of elliptic operators,
or more generally establish a perturbation theory for check spaces and elliptic (∞-regular)
boundary conditions. This could give us the tools to have a better understanding on how
restrictive the condition {Bt}t∈ℝ being∞-regular for all t is.

2. Bigger class of boundary conditions: Recall that in Definition 3.3.13, we assume that the
family of boundary condition B̃t is a selfadjoint boundary condition. This is a quite restrictiveassumption but also very necessary for our methods, since we need the operator D̃t,B̃t to be
selfadjoint on its domain. Changing the methods and going away from the classical theory,
one could consider dropping the selfadjointness assumption and see if one still can obtain the
well-posedness of the corresponding Cauchy problems.

3. Lower regularity: Our well-posedness results are (except for the transmission conditions)
only making statements about smooth solutions. Another natural question to ask is if we can
get lower regularity well-posedness and how the lower regularity is encoded in the boundary
conditions. One ansatz could be to use an Hk energy estimate and use a density argument,
but note that our Cauchy data is compactly supported away from the boundary. The spaceC∞

ccis not dense inHk for k > 0. If one wants to look at solutions to the Cauchy problems with
Cauchy data in some Sobolev spaces, one has to consider compatibility conditions on the
Cauchy data. This leads to the interesting question of how one could encode such compati-
bility conditions into the boundary conditions and if it is possible in a non-local way. Related
to this, one should also mention that we are considering∞-regular boundary conditions, but
for lower regularity one would rather consider k-regular boundary conditions.

4. More general operators: Our methods require operators of a certain form, see Section A.1,
since the reduction process to Hamiltonian form needs a good splitting of the operator into
normal part and tangential part along the spacetime foliation. In the Riemannian setting,
[8, 10] showed that one can write elliptic operators D in normal form, i. e.

D = �D(�)()t + A + Rt), (6.2.1)
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where Rt is an error term, whose operator norm can be controlled for small t. This motivates
to look for conditions on hyperbolic operators, such that they form a similar splitting as in
Equation 6.2.1 and then one could transfer our methods to such more general hyperbolic
operators. The discussion of such hyperbolic operators should maybe first be done in the
boundaryless case, where this could also lead to a generalization of [15].
For the reduction to Hamiltonian form, we chose explicitly the parallel transport along the
t-lines for identifying the Cauchy hypersurfaces, since this fits well the lower order term
consisting of the mean curvature of the Cauchy hypersurfaces. It could possible also be of
help to be more flexible in this step and consider a bigger range of identifications, such that
one can also look at operators whose splitting along the Cauchy hypersurfaces contain other
lower order terms (as for example Rt above).

5. Fredholmness: Coming back to the initial motivation to look at non-local boundary condi-
tions, let us briefly talk about Fredholmness. The well-posedness of the initial value problems
is not yet suitable, since for example the homogeneous Cauchy problem

⎧

⎪

⎨

⎪

⎩

D = 0
 |Σ0 =  0 ∈ C

∞
cc (Σ)

 |)M ∈ C∞()M,B)

has solutions for all  0 and hence the kernel of D with respect to the boundary condition
is infinite dimensional. Hence, one also needs to put non-local boundary conditions on the
initial time slice or the additional spacelike boundary.

6. Temporal function: The boundary conditions we defined in Definition 3.3.13 depend on the
temporal function chosen at the beginning. This can also be seen in the example of APS,
where the parallel transport of the unit normal to the timelike boundary along the t-lines
can make the boundary condition non-elliptic. This leads to the question of how much the
well-posedness itself depends on the temporal function and if there is a better description of
non-local boundary conditions independent of the temporal function.

7. Non-local in time: Note that even if we are considering non-local boundary conditions in
spatial directions, we still are local in time-direction. It would also be interesting – and
also natural – to consider boundary conditions which are non-local in time. This would
then require an analogue of the theory of [8, 10] for hyperbolic operators on a non-compact
manifold, which should be highly non-trivial since the spectrum of the boundary operator
would be difficult to control.

8. Spatially non-compact boundary: Recall, that for all our results, we assumed the timelike
boundary to be spatially compact. This assumption is needed, since the theory of boundary
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conditions for elliptic operators is (in this generality) only known for compact boundary. For
special elliptic operators, [32] discussed boundary conditions for non-compact boundary with
bounded geometry. Thus, it would be also interesting to see if one could for example use the
theory of [32] to construct boundary conditions on not necessarily spatially compact timelike
boundaries.



A
DIRAC OPERATORS IN THE SENSE OF
GROMOV–LAWSON

In this chapter we will briefly discuss one possible generalization of our well-posedness result to a
bigger class of operators. Here, we will look at the a Lorentzian equivalent of Dirac operators in
the sense of Gromov and Lawson. These operators are more abstract than the spin Dirac operator
but they still behave quite similar, which we will see in the following sections.

A.1 Definition and properties
The following definition is an analogue of the Dirac operators in the sense of Gromov and Law-
son, which are defined like this in [9], but are first introduced by [30] and [36]. This is as in the
Riemannian case a direct generalization of the spin Dirac operator.
Definition A.1.1. Let (M,g) be a Lorentzian manifold with complex vector bundle E → M with
a non-degenerate sesquilinear form ⟨⋅, ⋅⟩E .Then we call an operator D∶ C∞(M,E) → C∞(M,E) a Lorentzian Dirac operator in the sense
of Gromov–Lawson, if there exists a metric connection ∇E such that

1. D =
∑n

j=0 �D(e
♭
j)∇ej for any local orthonormal tangent frame (e1,… , en),

2. the principal symbol �D is parallel with respect to ∇E and the Levi-Civita connection ∇ on
TM ,

3. the principal symbol is symmetric and satisfies for all x ∈M and �, � ∈ TxM
�D(� )�D(�) + �D(�)�D(� ) = −2g(�, �), and (A.1.1)
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4. for any timelike � ∈ T ∗xM
⟨�D(�)⋅, ⋅⟩E ,

is positive definite.
Remark A.1.2. This definition is quite close to the Riemannian one in [9]. The biggest difference
is surely the last condition, which is in general not needed, but for our methods it is essential. For
(M,g) being a globally hyperbolic spacetime, we want – like for the case of the spin Dirac operator
– that the induced operators Dt on the foliating spacelike Cauchy hypersurfaces are Riemannian
Dirac type operators in the sense of Gromov and Lawson acting on Hermitian vector bundles. The
last condition of Definition A.1.1 ensures that the induced inner product is indeed positive definite
and hence a Hermitian inner product.
Note that a Lorentzian Dirac operator in the sense of Gromov–Lawson also satisfies the analog
Greens formula as in Equation 2.2.4. Furthermore note thatD2 is normally hyperbolic1 since it has
principal symbol �D2(� ) = − |� |2g.
Remark A.1.3. Following the computation in the proof of Proposition 2.5 in [30], we see that for
a Lorentzian Dirac operator in the sense of Gromov–Lawson, one has

D2 = (∇E)∗∇E +E , (A.1.2)
whereE = 1

2

∑

i,j �D(e♭i )◦�D(e
♭
j)◦R

E(ei, ej) with RE being the curvature tensor of ∇E .
Before we talk about some properties of these operators, let us discuss some examples.
Example A.1.4.

1. By the proprieties, discussed in Subsection 2.2, we see that the Lorentzian spin Dirac operator
on the complex spin bundle is indeed a Lorentzian Dirac operator in the sense of Gromov–
Lawson.

2. Let (M,g) be a Lorentzian spin manifold andD∶ C∞(M,F )→ C∞(M,F ) be a Lorentzian
Dirac operator in the sense of Gromov–Lawson. Let C → M be a Hermitian vector bundle
with metric connection ∇C . Now we can define the twisted Dirac operator

D∇C =
n
∑

j=0
(�D(ej)⊗ idC)∇E

ej
.

Here E = F ⊗ C and ∇E is the metric connection characterized by
∇E(f ⊗ c) ∶= ∇Ff ⊗ c + f ⊗ ∇Cc.

1For a Definition see [12].
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This connection is metric with respect to the natural inner product ⟨⋅, ⋅⟩E on E, see Lemma
B.1.1. The principal symbol D given by �D(� ) = �D(� ) ⊗ idC is indeed parallel with re-
spect to ∇E and the Levi-Civita connection on TM and also satisfies the Clifford relation,
see Lemma B.1.2. By Lemma B.1.3, we also see thatD∇C satisfy as well an analogue Greens
formula as in Equation 2.2.4. Since we twist with an Hermitian bundle, we also directly
know that the last point of Definition A.1.1 is satisfied, and hence,D∇C is a Lorentzian Dirac
operator in the sense of Gromov–Lawson.
This implies that for the Lorentzian spin Dirac operator on the complex spin bundle, all
twisted operators with Hermitian bundles are Lorentzian Dirac operators in the sense of
Gromov–Lawson.

3. If the twist bundle C is a natural bundle induced by the geometry ofM itself, then the last
point of Definition A.1.1 may not be necessarily satisfied. For example forC = TM , we have
that for any timelike vector field � the inner product ⟨�D∇C (�)⋅, ⋅

⟩

E is not positive definite,
since for the pure tensor f ⊗X ∈ Fx ⊗ TxM and X being timelike the inner product

⟨

�D∇C (�)f ⊗X, f ⊗ X
⟩

E = ⟨�D(�)f, f⟩E ⋅ g(X,X),

cannot be positive.
Now, let us assume that (M,g) is a globally hyperbolic spin manifold without boundary. Let

t∶ M → ℝ a temporal function and {Σt}t∈ℝ be the corresponding foliation of M consisting of
spacelike Cauchy hypersurfaces. Let � be the past directed timelike unit vector field, that is induced
by the temporal function t. Following the strategy of [9], we will compute how the Lorentzian Dirac
operator in the sense of Gromov–Lawson is splitting along this foliation.

Let e0,… , e1 be a Lorentzian orthonormal frame such that e0 = � and consider the following
operator

Dt,0 ∶= −i
(

�D(�♭)D − ∇E
�

)

= −i�D(�)
n
∑

j=1
�D(e∗j )∇

E
ej
, (A.1.3)

Then we see that the principal symbol of Dt,0 is given by
�Dt,0

(� ) = −i�D(�♭)�D(� ), (A.1.4)
which is symmetric. Furthermore, we can compute for �,  ∈ C∞(M,E)

0 =∫M

(⟨

D2�,  
⟩

E −
⟨

(∇E)∗∇E�,  
⟩

E −
⟨

E�,  
⟩

E

)

d�M
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=∫M

(

⟨D�,−D ⟩E −
⟨

∇E�,∇E 
⟩

E −
⟨

E�,  
⟩

E

)

d�M

+ ∫Σt

(⟨

�D(�♭)(−D)�,  
⟩

E −
⟨

�(∇E )∗(�♭)∇E�,  
⟩

E

)

d�Σt

= − ∫M

(

⟨D�,D ⟩E +
⟨

∇E�,∇E 
⟩

E +
⟨

E�,  
⟩

E

)

d�M

+ ∫Σt

(

−
⟨

�D(�♭)D�, 
⟩

E +
⟨

∇E
� �,  

⟩

E

)

d�Σt

= − ∫M

(

⟨D�,D ⟩E +
⟨

∇E�,∇E 
⟩

E +
⟨

E�,  
⟩

E

)

d�M

− ∫Σt

⟨

iDt,0�,  
⟩

E d�Σt ,

where we used Σt as a fake boundary and applied the Weizenböck formula A.1.2 as well as the
Green formula. This computation implies

∫M

(⟨

D2�,  
⟩

E −
⟨

(∇E)∗∇E�,  
⟩

E −
⟨

E�,  
⟩

E

)

d�M = −∫Σt

⟨

iDt,0�,  
⟩

E d�Σt ,

and since all objects on the right hand side are symmetric, we see that iDt,0 is formally selfadjoint
with respect to ⟨⋅, ⋅⟩E .
Now we want to find an operator Dt such that it anti-commutes with �D(�♭). For this we compute
the anti-commutator for  ∈ C∞(M,E) as follows

[

�D(�♭)iDt,0 + iDt,0�D(�♭)
]

 

=
n
∑

j=1

[

�D(e♭j)∇
E
ej
+ �D(�♭)�D(e♭j)�D(�

♭)∇E
ej
+ �D(�♭)�D(e♭j)�D(∇ej�

♭)
]

 

= �D(�♭)
n
∑

j=1
�D(e∗j )�D(∇ej�

♭) ,

where we see that ∇ej� is the Weingarten map. Now let us choose the frame e1,… , en as the
eigenbasis of the Weingarten map, then we get

[

�D(�♭)iDt,0 + iDt,0�D(�♭)
]

�

= �D(�♭)
n
∑

j=1
(�t)i�D(e∗j )�D(e

∗
j )�
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= −�D(�♭)nHt�

where (�t)i are the principal curvatures andHt is the mean curvature of Σt. Rearranging the terms
above, we get

D = �D(�♭)
(

∇E
� + iDt −

n
2
Ht

)

, (A.1.5)

where now Dt ∶= −i
(

iDt,0 +
n
2
Ht

)

is anti-commuting with �D(�♭) and it is formally selfadjoint
with respect to

⟨⋅, ⋅⟩0 =
⟨

�D(�♭)⋅, ⋅
⟩

E .
All of the above implies thatDt∶ C∞(Σ, E|Σt)→ C∞(Σ, E|Σt) is a Riemannian Dirac type operator
(in the sense of Definition 3.1.4), which is formally selfadjoint with respect to the positive inner
product ⟨⋅, ⋅⟩0.
Remark A.1.5. The computations above show that the splitting of the spin Dirac operator also fol-
lows from the more general theory of Lorentzian Dirac operators in the sense of Gromov–Lawson.

A.2 Boundary conditions and Cauchy problems
In this section we will talk about boundary conditions for Lorentzian Dirac operators in the sense
of Gromov–Lawson. Firstly, not that the transmission conditions defined in Section 3.3.2 can be
directly transferred to these operators, hence let us rather talk about how the admissible boundary
conditions can be looked at in this context.
Let us first discuss about the reduction of the Dirac equation to Hamiltonian form. In general, one
does not know how these operators are changing under the conformal change ĝ = N−2g, hence let
us restrict our discussion to the ultrastatic case, i. e.

g = −dt2 + gt.

So we can skip the step of the conformal change and directly look at the identification of Cauchy
hypersurfaces. For t, s ∈ ℝ let �st ∶ E|Σt → E|Σs the parallel transport along the integral curves of
� with respect to the metric connection ∇E .
Remark A.2.1. Since �D is parallel and � is parallel along itself, one sees that

�t�Dt
(� )u = −i�t�D(�t)−1�D(� )u = −i�D(�0)−1�D(�t� )�tu = �D0(�t� )�tu.

Furthermore, since � is parallel along itself and ∇E is metric the map
U = �(t)�t∶ L2(Σt, E|Σt)→ L2(Σ0, E|Σ)

is a unitary isomorphism.
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As in Section B.1.3, one has the following Lemma:
Lemma A.2.2. Let D be a Lorentzian Dirac operator in the sense of Gromov–Lawson, then D
satisfies

D = −�D(�)U−1(t)()t + iD̃t)U (t),
where D̃t = U (t)DtU (t)−1.

Proof. Recall that for a Lorentzian Dirac operator in the sense of Gromov–Lawson, we have the
splitting D = �D(�♭)

(

∇E
� + iDt −

n
2
Ht

)

. Using that ∇E is metric and � being parallel along itself
and following the computation in the proof of Lemma 3.3.9, the claim follows.

This gives us again the tools to define admissible boundary conditions:
DefinitionA.2.3. Wecall a familyB = {Bt}t∈ℝ of selfadjoint boundary conditionsBt ⊆ H

1
2 (Σt, SM|Σt)an admissible boundary condition for D if

1. B̃t ∶= U (t)Bt ⊆ Ȟ(Ãt) is a selfadjoint∞-regular boundary condition for all t ∈ ℝ, and
2. the operator D̃BtJ

(")
B̃t

is strongly continuous with respect to ‖⋅‖Hk for all k ∈ ℕ.
As before, we can define the Lorentzian boundary condition by

C∞()M,B) ∶= { ∈ C∞()M,E|)M );  |)Σt ∈ Bt ∀ t ∈ ℝ}.

Now we can proof the following well-posedness:
Theorem A.2.4. Let (M,g) be a globally hyperbolic, spatially compact manifold with Lapse func-
tion equals to one and timelike boundary )M . Let Σ be a spacelike Cauchy hypersurface and
t∶ M → ℝ be a temporal function such that Σ0 = Σ and the gradient of t is tangential to )M . Let
B be an admissible boundary condition with respect to t andD. Then there exists a unique smooth
solution  ∈ C∞(M,E) to

⎧

⎪

⎨

⎪

⎩

D = f ∈ C∞(M,E)
 |Σ =  0 ∈ C∞(Σ, SM|Σ)
 |)M ∈ C∞()M,B),

that depends continuously on the Cauchy data (f,  0).

Proof. After reducing the Cauchy problem to Hamiltonian form, we again can use Lemma 3.1.22
to define closed subspaces of the Sobolev spaces Hk(Σ0, E|Σ0) and the corresponding mollifiers.
The rest of the proof works analogously to the one done for Main Theorem 1,
Remark A.2.5. Using the same methods as in Chapter 5, one can also show the corresponding
well-posedness results for APS conditions and chirality conditions.
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SOME AUXILIARY DISCUSSIONS

B.1 Some properties of twisted operators
Let (M,g) be a Lorentzian spin manifold andD∶ C∞(M,F )→ C∞(M,F ) be a Lorentzian Dirac
operator in the sense of Gromov and Lawson. Let C → M be a Hermitian vector bundle with
metric connection ∇C . Now we can define

D∇C =
n
∑

j=0
(�D(ej)⊗ idC)∇E

ej
.

Here E = F ⊗ C and ∇E is the metric connection characterized by
∇E(f ⊗ c) ∶= ∇Ff ⊗ c + f ⊗ ∇Cc.

Lemma B.1.1. The connection ∇E is metric with respect to the non-degenerate sesquilinear form
⟨⋅, ⋅⟩E , which is characterized by

⟨f1 ⊗ c1, f2 ⊗ c2⟩F ∶= ⟨f1, f2⟩F ⋅ ⟨c1, c2⟩C .

Proof. We show this for pure tensors and then by linearity the whole claim follows. Let f1 ⊗
c1, f2 ⊗ s2 ∈ C∞(M,E) and X ∈ C∞(M,TM), then we can compute pointwise

⟨

∇E
X(f1 ⊗ c1), f2 ⊗ c2

⟩

E =
⟨

∇F
Xf1 ⊗ c1 + f1 ⊗ ∇C

Xc1, f2 ⊗ c2
⟩

E

=
⟨

∇F
Xf1 ⊗ c1, f2 ⊗ c2

⟩

E +
⟨

f1 ⊗ ∇C
Xc1, f2 ⊗ c2

⟩

E

=
⟨

∇F
Xf1, f2

⟩

F ⋅ ⟨c1, c2⟩C + ⟨f1, f2⟩F ⋅
⟨

∇C
Xc1, c2

⟩

C

=)X(⟨f1, f2⟩F ) ⋅ ⟨c1, c2⟩C + ⟨f1, f2⟩F ⋅ )X(⟨c1, c2⟩C)
−
⟨

f1,∇F
Xf2

⟩

F ⋅ ⟨c1, c2⟩C − ⟨f1, f2⟩F ⋅
⟨

c1,∇C
Xc2

⟩

C ,
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where we used the definition of the inner product and the connection on E and also that the con-
nections on F and C are metric. Using now the product rule on the first two summands, we can
continue to compute as follows

⟨

∇E
X(f1 ⊗ c1), f2 ⊗ c2

⟩

E

= )X(⟨f1, f2⟩F ⋅ ⟨c1, c2⟩C) −
⟨

f1,∇F
Xf2

⟩

F ⋅ ⟨c1, c2⟩C − ⟨f1, f2⟩F ⋅
⟨

c1,∇C
Xc2

⟩

C

= )X(⟨f1 ⊗ c1, f2 ⊗ c2⟩E) −
⟨

f1 ⊗ c1,∇F
Xf2 ⊗ c2

⟩

E −
⟨

f1 ⊗ c1, f2 ⊗ ∇C
Xc2

⟩

E

= )X(⟨f1 ⊗ c1, f2 ⊗ c2⟩E) −
⟨

f1 ⊗ c1,∇E
X(f2 ⊗ c2)

⟩

E ,

where we additionally just used again the definitions of the inner product and the connection on
E.
Lemma B.1.2. The principal symbol ofD satisfies the Clifford relation and is parallel with respect
to ∇E and the Levi-Civita connection ∇.

Proof. Let f ⊗ c ∈ C∞(M,E) be a pure tensor, letX ∈ C∞(M,TM) and let � ∈ C∞(M,T ∗M).
Then

∇E
X(�D∇C (� )f ⊗ c) = ∇F

X�D(� )f ⊗ c + �D(� )f ⊗ ∇C
Xc

= (�D(� )∇F
Xf + �D(∇X� )f )⊗ c + �D(� )f ⊗ ∇C

Xc
= (�D(� )∇F

Xf + �D(� )f ⊗ ∇C
Xc) + �D(∇X� )f )⊗ c

= �D∇C (� )∇
E(f ⊗ c) + �D∇C (∇X� )(f ⊗ c),

where we only used that that �D is parallel with respect to ∇F and ∇. This implies that �D∇C is as
well parallel. For showing the Clifford relations let x ∈M and �, � ∈ T ∗xM . Then we can compute
for a pure tensor f ⊗ c

[�D∇C (� )�D∇C (�) + �D∇C (�)�D∇C (� )]f ⊗ c = �D∇C (� )(�D(�)f ⊗ c) + �D∇C (�)(�D(� )f ⊗ c)
= (�D(� )�D(�)f )⊗ c + (�D(�)�D(� )f )⊗ c
= ([�D(� )�D(�) + �D(�)�D(� )]f )⊗ c
= −2g(�, �)f ⊗ c,

hence also �D∇C is satisfying the Clifford relations.
Lemma B.1.3. For all  , � ∈ C∞

c (M,E) we have the Greens formula

∫M

⟨

D∇C , �
⟩

E
+
⟨

 ,D∇C�
⟩

E
d�M = −∫)M

⟨

�D∇C (�) , �
⟩

E d�)M , (B.1.1)

where d�M is the volume element onM with respect to g and d�)M is the induced one on )M .
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Proof. Note first that for pure tensors f ⊗ c ∈ F ⊗ C , one can rewrite D∇C as

D∇C (f ⊗ c) = Df ⊗ c +
n
∑

j=0
�D(e♭j)f ⊗ ∇C

ej
c. (B.1.2)

Using Equation B.1.2, we can compute for pure tensors the following:

∫M

⟨

D∇Cf1 ⊗ c1, f2 ⊗ c2
⟩

E
d�M

=∫M

⟨

(Df1)⊗ c1 +
n
∑

j=0
�D(e♭j)f1 ⊗ ∇C

ej
c2, f2 ⊗ c2

⟩

E

d�M

=∫M
⟨(Df1)⊗ c1, f2 ⊗ c2⟩E +

⟨

n
∑

j=0
�D(e♭j)f1 ⊗ ∇C

ej
c2, f2 ⊗ c2

⟩

E

d�M

=∫M
⟨Df1, f2⟩F ⋅ ⟨c1, c2⟩C d�M + ∫M

n
∑

j=0

⟨

�D(e♭j)f1, f2
⟩

F
⋅
⟨

∇C
ej
c1, c2

⟩

d�M

= − ∫M

⟨

f1, D(⟨c1, c2⟩C f2)
⟩

F d�M − ∫)M

⟨

�D(�)f1, ⟨c1, c2⟩C f2
⟩

F d�)M

+ ∫M

n
∑

j=1

⟨

f1, �D(e♭j)f2
⟩

F

(

)ej (⟨c1, c2⟩C) −
⟨

c1,∇C
ej
c2
⟩

C

)

d�M

= − ∫M
⟨f1, Df2⟩F ⟨c1, c2⟩C +

⟨

f1, �D(d(⟨c1, c2⟩C))f2
⟩

F d�M − ∫M

n
∑

j=1

⟨

f1, �D(e♭j)f2
⟩

F

⟨

c1,∇C
ej
c2
⟩

C

−

⟨

f1, �D

(

n
∑

j=0
)ej (⟨c1, c2⟩C)e

♭
j

)

f2

⟩

F

d�M − ∫)M

⟨

�D∇C (�)f1, f2
⟩

E d�)M

= − ∫M
⟨f1, Df2⟩F ⟨c1, c2⟩C +

n
∑

j=1

⟨

f1, �D(e♭j)f2
⟩

F

⟨

c1,∇C
ej
c2
⟩

C
d�M − ∫)M

⟨

�D∇C (�)f1, f2
⟩

E d�)M

+ ∫M

⟨

f1, �D

(

n
∑

j=0
)ej (⟨c1, c2⟩C)e

♭
j

)

f2

⟩

F

−
⟨

f1, �D(d(⟨c1, c2⟩C))f2
⟩

F d�M

= − ∫M

⟨

f1 ⊗ c1,−D∇Cf2 ⊗ c2
⟩

E
d�M − ∫)M

⟨

�D∇C (�)f1, f2
⟩

E d�)M ,

where we used the Greens formula for D, that �D is symmetric, that ∇C is metric and in the last
step we just used the definition of the exterior derivative in an orthonormal frame.
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B.2 The spin Dirac operator on ℝ1,1

Let us consider the Minkowski space (M,g) = (ℝ1,1, g = −dt2 + dx2), where we can identify the
spin bundle SM ≃M ×ℂ2. Then we have for the orthonormal frame {)t, )x} the following Diracoperator

D = −�0)t + �2)x =
(

0 i
−i 0

)

)t +
(

i 0
0 −i

)

)x,

where
�0 =

(

0 −i
i 0

)

, and �1 =
(

i 0
0 −i

)

represent the Clifford multiplications. Let us have a look at the homogeneous initial value problem
{

D = 0
 |{t=0} =  0 ∈ C∞(ℝ,ℂ2)

(B.2.1)

for  ∈ C∞(M,ℂ2). Firstly, note that  is a solution to the Cauchy problem B.2.1 if and only if it
is a solution to

{

D̂ = 0
 |{t=0} =  0 ∈ C∞(ℝ,ℂ2)

(B.2.2)

where
D̂ = )t + C)x

with
C =

(

0 1
1 0

)

.

Recall, that et)x 0(x) =  0(x + t) and also note that
C =MWM−1,

with
W =

(

−1 0
0 1

)

, M =
(

−1 1
1 1

)

, andM−1 = 1
2
M.

Using these two facts, the solution  to the reduced Cauchy problem B.2.2 can be computed as
follows:

 (t, x) = e−tC)x 0(x)
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= 1
2
M

(

et)x 0
0 e−t)x

)

M
(

( 0)1(x)
( 0)2(x)

)

= 1
2
M

(

et)x 0
0 e−t)x

)(

−( 0)1(x) + ( 0)2(x)
( 0)2(x) + ( 0)2(x)

)

= 1
2
M

(

−( 0)1(x + t) + ( 0)2(x + t)
( 0)1(x − t) + ( 0)2(x − t)

)

= 1
2

(

( 0)1(x + t) − ( 0)2(x + t) + ( 0)1(x − t) + ( 0)2(x − t)
−( 0)1(x + t) + ( 0)2(x + t) + ( 0)1(x − t) + ( 0)2(x − t)

)

= 1
2

[(

1 −1
−1 1

)

 0(x + t) +
(

1 1
1 1

)

 0(x − t)
]

.
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