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Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared
displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from
microscopic movement of molecules to macroscopic, large-scale paths of migrating birds. Using data from
multiple empirical systems, spanning 12 orders of magnitude in length and 8 orders of magnitude in time,
we employ a method to detect the individual underlying origins of anomalous diffusion and transport in the
data. This method decomposes anomalous transport into three primary effects: long-range correlations (“Joseph
effect”), fat-tailed probability density of increments (“Noah effect”), and nonstationarity (“Moses effect”). We
show that such a decomposition of real-life data allows us to infer nontrivial behavioral predictions and to resolve
open questions in the fields of single-particle tracking in living cells and movement ecology.

DOI: 10.1103/PhysRevResearch.4.033055

I. INTRODUCTION

Normal diffusion or transport processes obey the Gaussian
central limit theorem (CLT) and are ergodic, i.e., mean values
of various observables in the system do not depend on the
averaging method. The CLT states that if a random time series
x(t ) is the sum of random variables which are (i) identically
distributed (with a stationary distribution), (ii) have a finite
variance, and (iii) are independent, then the probability den-
sity function (PDF) P(x, t ) of x at time t has a Gaussian shape
(see Sec. III). The mean-squared displacement (MSD) then
satisfies 〈x2(t )〉 ∝ t at long times, where 〈·〉 denotes ensemble
averaging (EA). Yet, advances in high-fidelity methods for
single-particle tracking [1,2] and detailed data of animal paths
[3,4] show that many natural processes are in fact anomalous,
as they violate (some of) the CLT’s conditions [5]. Condi-
tion (i) can be violated, e.g., when the measured trajectories
are confined for increasingly long periods in certain spatial
regions, hindering their expansion. Condition (ii) can be vi-

*rmetzler@uni-potsdam.de
†michael.assaf@mail.huji.ac.il

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

olated, e.g., in financial time series, where large fluctuations
are highly probable. Condition (iii) can be violated, e.g., for
biased or correlated motion. Such violations typically yield

〈x2(t )〉 ∝ t2H , (1)

with the Hurst exponent being H �= 1/2.
Given an empirical time series displaying anomalous trans-

port, the ability to distinguish between the various violations
of the CLT is crucial, e.g., to determine the system’s expansion
rate [6,7], rare event statistics [8,9], and method of averaging
[10–12], as well as to infer features in the diffusion medium
[13–16] and elucidate the underlying microscopic processes.
However, this characterization remains a major challenge in
various fields, including single-particle tracking and move-
ment ecology [17–19], and much effort is made to develop
techniques to tackle it; see, e.g., Refs. [20–23]. Recently,
machine-learning methods for analyzing anomalous transport
data have been widely studied, see, e.g., Refs. [24,25], and for
many applications they were shown to outperform estimators
based on classical statistics [26]. Yet the “black box” nature of
these data-driven algorithms may hinder the ability to account
for the underlying reasons of the observed phenomena [26].

Here, based on positional (tracking) data, we employ a
specialized three-effect decomposition method [27,28] to dis-
entangle the effects leading to anomalous transport, without
making prior assumptions on the underlying model governing
the dynamics. By analyzing three independent properties of
the time series presented below, we determine whether the
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FIG. 1. Scheme of the three-effect decomposition of the origins of anomalous transport measured in data. Left to right: (i) Collect data
from an experiment. (ii) Generate multidimensional paths from experimental observations (e.g., a flight pattern of a stork tracked by GPS over
several hours). (iii) Generate the time series �x(t ) ≡ x(t ), and decompose it into vector increments δxi = xi� − x(i−1)� (i = 1, . . . , N) of equal
duration 0 < � � t . (iv) Obtain the statistics of increment sizes. (v) Determine whether the process is correlated, explicitly time dependent,
or prone to extreme fluctuations due to a fat-tailed velocity PDF.

measured diffusion is anomalous due to violation of condition
(i), (ii), and/or (iii) above. To establish the broad applicability
of the technique, we study empirical data sets that range
over 12 orders of magnitude in length (10−6–106 m) and 8
orders of magnitude in time (10−3–105 s). We also present re-
sults of numerical simulations of random-walk models, which
have been previously proposed to describe some of these
systems. Notably, applying this method provides important
insight into key open questions in various scientific fields, as
detailed below. Thus, we aim at promoting this method as a
common practice for future empirical studies of anomalous
transport.

In our analysis below, we study the empirical data from
the various experiments as a stochastic process of the form
x(t ), in d � 1 dimensions (vectors are denoted in bold). For
instance, x(t ) can represent a time series of the distance
traveled by a bird from its nest in the course of one day, as
function of time, where one can always set x(0) = 0. The
process x(t ), where t is the final measurement time, can be
described by a discrete sum of random increments, x(t ) =∑N

j=1 δx j , where δx j ≡ x( j�) − x([ j − 1]�) and N = t/�,
while 0 < � � t is an arbitrary time increment. Moreover,
v j ≡ δx j/� is the average velocity vector in the jth incre-
ment, and the velocity PDF, P(|v|, t ), is the probability density
of its absolute value. To distinguish between the above three
different ways of violating the CLT in an empirical time se-
ries, we compute the corresponding increments of x(t ) and
analyze their size statistics [27,28], as shown in Fig. 1. We
compute three numerical values that describe the temporal
scaling of three observables: (i) mean absolute velocity 〈|v|〉,
(ii) mean-squared velocity 〈v2〉, and (iii) ensemble-averaged
time-averaged MSD (TAMSD) 〈δ2(s, t )〉, see Ref. [29].

The manuscript is organized as follows. In Sec. II and
III, we detail our empirical setups and the mathematical
background for the three-effect decomposition method, re-
spectively. In Sec. IV, we provide the main results of our
analysis of the empirical setups. Finally, in Sec. V we provide
a data-based discussion on the relations between different
violations of the CLT in our empirical setups and discuss addi-
tional methods that may extend the analysis in future research.

II. EMPIRICAL SETUPS

We detect the origins of anomalous diffusion by employ-
ing the three-effect decomposition method in seven empirical
systems, composed of 16 empirical setups. Here we provide
technical details for all systems, which are organized by
ascending physical size and temporal range. For statistical
analysis and results see Sec. IV.

A. Rhodamine molecules

A solution of rhodamine 6G molecules was deposited onto
a cleaned borosilicate glass coverslip and then dried in a vac-
uum chamber for 30 min. The dry surface was then exposed
to various degrees of ambient relative humidity between 30%
and 100%, which resulted in the equilibrium condensation
of water nanofilms of a few (one to eight) molecular layers,
with thicknesses that increased systematically with increasing
humidity. Individual rhodamine molecules were traced and
recorded using a total internal reflection fluorescence micro-
scope (532-nm laser excitation) with image acquisition times
of 50 ms. Tracking (object localization and trajectory linking)
was performed using MATLAB code. Roughly 104 trajecto-
ries were captured for each condition; see Ref. [30] for details.

B. Tracer particles in the cytoplasm of mammalian cells

Tracer particles [Qdot 655 ITK carboxyl core (CdSe)-shell
(ZnS), ThermoFisher, Waltham, MA] were incorporated into
HeLa (human cervical cancer) cells by bead loading, followed
by a relaxation time of 1 h before imaging. In preparation for
this procedure, cells were plated 36–48 h prior to bead loading
on 35-mm-diameter �T dishes (Bioptech, Butler, PA) for tem-
perature control, coated with 0.5% matrigel matrix (Corning
Life Sciences, NY) for improved adhesion. Depolymerization
of actin filaments was induced by adding 200 nM latrun-
culin A to the medium directly after bead loading. Images
were acquired with an EMCCD camera at 10 frames/s on a
custom-built microscope equipped with an Olympus PlanApo
100 × NA1.45 objective, a CRISP ASI autofocus system, and
a MicAO 3DSR adaptive optics system (Imagine Optic, Orsay,
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France) to correct optical aberrations. Quantum dots were
excited at 561 nm under continuous illumination and trajecto-
ries were extracted from image stacks with FIJI/TrackMate.
Removing immobile tracks, this approach eventually yielded
large data sets from which a random selection of M = 1000
(M = 200) tracks with N = 100 (N = 500) positions were
used for untreated (latrunculin-treated) cells. For further de-
tails, see supplemental material of Ref. [22].

C. Motile amoeba

Tracking of motile cells was performed with the social
amoeba Dictyostelium discoideum, using AX2 wild-type cells
that were cultivated in HL5 medium on polystyrene Petri
dishes or in shaken suspension [31]. Prior to imaging, cells
were washed, the HL5 medium was renewed, and cells were
placed on a plastic Petri dish at an average density between 1
and 2 ×104 cells per cm2 and allowed to attach to the surface
for 30 minutes. Cells were then recorded for 6 h with a bright-
field microscope at a frame rate of 0.05 Hz. To track the cells,
images were segmented and the centers of mass of regions
corresponding to the cells were calculated and connected from
one frame to the next by nearest-neighbor particle tracking.
Segmentation and tracking were performed with a custom-
made MATLAB algorithm (MathWorks, Ismaning, Germany)
using well-established particle-tracking methods. If cells were
lost during the tracking procedure because they left the field
of view, collided with a neighboring cell, or divided, then
the recorded track ended, and a new trajectory was started
once a new cell could be detected in the field of view. Only
trajectories with over 60 time steps were used in the analysis;
see Ref. [31] for details.

D. Harvester ants

Movement paths of individual harvester ants (Messor are-
narius; a solitary foraging species) were mapped in 2005 as
part of research conducted in “Sayeret-Shaked” park, North-
Western Negev desert, Israel (see Ref. [32] for further details).
Individual ants, each from a different colony, were marked
with colored fluorescent powder and then tracked by placing
numbered pins at their positions every 10 s (with minimal
interference to the ant’s behavior). Route mapping started
once the ant departed the nest (after entering it at least once
since being marked) and ended after two consecutive foraging
trips (whether successful or not). Pins were then mapped at
1-cm resolution using measurement tapes and a costume-built
wooden frame, and the positional time series was digitized.

E. Black-winged kite

An individual black-winged kite (Elanus caeruleus), re-
siding in the Hula Valley, Israel, was tracked using ATLAS,
an innovative reverse global positioning system (GPS) sys-
tem. ATLAS localizes extremely lightweight, low-cost tags
[4,12,33], where each tag transmits a distinct radio signal
which is detected by a network of base stations dis-
tributed in the study area. Tag localization is computed
using nanosecond-scale differences in signal time-of-arrival
to each station, alleviating the need to retrieve tags or have
power-consuming remote-download capabilities. The kite was

tracked for 164 consecutive days in the years 2019–2020, with
a mostly constant tracking frequency of 0.25 Hz.

As in Ref. [12], the kite’s tracks are segmented into two
behavioral modes, local searches (area restricted search) and
commuting (directed flights between local searches). Local-
izations were segmented by detecting switching points in the
data—distinct points in which the bird switches between the
two behaviors [34]. Switching points were detected using
spatiotemporal criteria segmentation, such that localizations
that are in proximity to one another, both in space and time
were segmented together. In accordance with the conclusions
of Ref. [12] we independently analyze the time-series ensem-
bles representing instances of local searches and commuting
flights.

F. White stork

An adult white stork (Ciconia ciconia) was tracked be-
tween May 2012 and July 2020 with high-resolution GPS,
see Ref. [35] and Sec. II G for more details. Here the GPS
location and speed were recorded at a frequency of 1/300 Hz
when solar recharge was high (92% of the time) and otherwise
every 20 min. We omit days with lower frequency (<1% of
tracked days) and only include localizations that occur after
the first recorded velocity of >4 m/s (see below).

G. Eurasian griffon vulture

An Eurasian griffon vulture (Gyps fulvus, Hablizl 1783)
was tracked in Israel and surrounding countries with high-
resolution GPS between October 2012 and October 2015.
The 90-g GPS transmitters (E-Obs GmbH; Munich, Germany)
were fitted in a backpack configuration and set to a 13-h duty
cycle between 7:00 a.m. and 8:00 p.m. to correspond with the
vulture’s activity pattern [36]. Localizations were optimally
recorded at a frequency of 1/600 Hz (73% of the time) or
1/1200 Hz (23% of the time). Vulture days tracked at lower
frequencies were omitted from this study. See Ref. [36] for
more details.

As the time of the vulture’s departure from the nest can
drastically vary between different days, we only include lo-
calizations that occur after the first recorded velocity of >4
m/s (as done for the stork) [36].

III. THEORETICAL FUNDAMENTALS

In normal transport processes the first absolute moment
satisfies 〈|x(t )|〉 ∝

√
〈x2(t )〉, such that both observables pro-

vide the same information on the process. Thus, for these
processes, the MSD [Eq. (1)] is a direct measure of typi-
cal fluctuations. Yet, in anomalous processes, the MSD may
diverge, making the Hurst exponent inappropriate for charac-
terizing the dynamics. In other cases, the scaling with time
of 〈|x(t )|〉 and MSD, representing typical and large fluctu-
ations, respectively, is different. Consider, e.g., Lévy walks
[6,29,37–41], in one dimension; here the random walker, start-
ing at x = 0, moves with constant speed ±|v| (to the right
or left) in a series of independent motion intervals, where
the random interval duration, τ , is power-law distributed
∝τ−1−α (1 � α � 2), with diverging 〈τ 2〉. As a result, while
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FIG. 2. Prototypical examples of processes displaying anomalous diffusion. (a) A nonstationary accelerating process (scaled Brownian
motion), leading to the Moses effect. This can result, e.g., from movement in a (temporal) temperature gradient increasing fluctuations over
time. (b) A process with rare extreme events (Lévy flight), leading to the Noah effect. Such a process has been used, e.g., to model flight patterns
of the wandering albatross [41], but this characterization is under debate [43]. (c) A process with long-ranged temporal correlations (fractional
Brownian motion), giving rise to a trended motion and the Joseph effect. This may result, e.g., from long-range memory in network traffic
[44,45]. In all three panels, due to different violations of the CLT the rate of diffusion is different from normal diffusion. In addition, position
and time are shown in arbitrary units. Lower panels: The physical interpretation of the values of the Moses, Noah, and Joseph exponents. (i)
A Moses effect is a proxy for nonstationarity. Here M > 1/2 and M < 1/2, respectively, indicate an accelerating and decelerating process
(the latter entails aging), whereas for M = 1/2 the process is stationary. (ii) A Noah effect is a proxy for detecting extreme rare events. Here
L > 1/2 indicates susceptibility to large fluctuations due to a fat-tailed velocity PDF, whereas for L = 1/2 no Noah effect occurs. (iii) A Joseph
effect is a proxy for long-range correlations or anticorrelations. Here J > 1/2 indicates long-range positive temporal correlations which may
lead to superdiffusion, and J < 1/2 indicates anticorrelations which may lead to subdiffusion. When J = 1/2 no Joseph effect occurs.

most intervals are short, a small fraction are very long, with
a corresponding very large traveling distance [37]. Thus, of
a group of walkers that were released simultaneously at the
origin, most of the walkers will remain close to x = 0, while a
few may be found very far away. This results in 〈|x(t )|〉 ∝
t1/α , representing the expansion of the bulk of the walker
group (PDF width), whereas the MSD scales as 〈x2(t )〉 ∝
t3−α , as it is strongly affected by rare longest-travelling in-
dividuals (PDF tails) [37].

The decomposition method derived in Refs. [27,28] allows
one to fully account for such issues by describing anomalous
diffusion with three exponents instead of a single one, relying
in part on the above distinction between typical and large fluc-
tuations. The method also enables one to directly obtain the
Hurst exponent from a small ensemble of time series [26,42].
Below, and in Appendix A, we present the definition of the
three exponents in the context of the individual type of CLT
violation that they quantify, and explain how each violation
leads to anomalous diffusion, see also Fig. 2 [41,43–45].

A. The effect of nonstationarity

As shown in Appendix A, the first condition for the validity
of the CLT is that the process increments are identically dis-
tributed. This stems from the condition that the dynamics need
to be statistically invariant at each step of the process. Viola-
tion of the CLT due to increment nonstationarity, leading to
anomalous diffusion is called the “Moses effect” [28,29,46].
Here nonstationarity is quantified by the exponent M [28]
measured via the scaling of the absolute mean of the velocity

vector:

〈|v|(t )〉 =
〈

�

t

t/�∑
j=1

|v j |
〉

∝ tM−1/2, (2)

where the overline denotes time averaging (TA). If the process
has a stationary increment distribution, then M = 1/2. The
Moses effect occurs when M �= 1/2, implying either accel-
erating (M > 1/2) or decelerating (M < 1/2) dynamics, e.g.,
due to aging; the latter means that the process is slowing down
with time and thus the observed dynamics may seem different
depending on the measurement time. A key consequence of
this effect is weak-ergodicity breaking [10,11,47], as ergod-
icity requires stationarity. In Fig. 2(a) we plot an example
of a simulated nonstationary accelerating process; below this
panel we list the different regimes of M and their physical
interpretation. Notably, in analogy with the above distinction
between the mean absolute-position 〈|x(t )|〉 and the MSD,
〈|v|〉 is representative of typical increment fluctuations (PDF
bulk), described by the diffusion coefficient. Thus, the ex-
ponent M effectively represents the nonstationarity in the
diffusion coefficient, as observed for the prototypical scaled
Brownian motion (SBM) process.

B. Extreme events

The second condition for the validity of the CLT is that
the increment variance is finite. As stated above, for some
processes displaying anomalous diffusion, the increment vari-
ance (similarly as the MSD) is dominated by the tails of the
velocity PDF. If the increment variance is infinite or grows in
time, then condition (ii) of the CLT is violated, which may
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lead to faster than linear growth of the MSD (Appendix A).
This effect leading to anomalous diffusion is called the “Noah
effect” [27]. In accordance with Eq. (2), it is quantified by the
latent exponent L [48]:

〈v2(t )〉 =
〈

�

t

t/�∑
j=1

v2
j

〉
∝ t2L+2M−2. (3)

By definition L � 1/2 [27]. If, for a stationary velocity PDF
with M = 1/2, in addition L = 1/2, then 〈v2(t )〉 is constant.
Yet, if L > 1/2, its value will grow in time, even though M =
1/2. In the absence of extreme events 〈v2(t )〉 ∝ t2M−1, which
is asymptotically equivalent to 〈|v(t )|〉2, as occurs in Gaussian
processes. A deviation from this scaling, quantified by L, is a
proxy for detecting extreme (non-Gaussian) rare events, dom-
inating the path with increasing probability as time evolves.
This occurs, e.g., in Lévy flights [6,28,41], where the noise
is scale free. An example for a process with rare extreme
events is given in Fig. 2(b), where below this panel we list
the different regimes of L and their physical interpretation.

C. Temporal autocorrelations

Long-ranged temporal autocorrelations and anticorrela-
tions may lead to a nonlinear scaling of the MSD, via violation
of condition (iii) of the CLT. This is called the “Joseph ef-
fect” [27,28,44,45], quantified by the exponent 0 < J � 1,
and formally defined via the velocity autocorrelation function
(Appendix B) with a positive or negative sign, describing a
positively correlated (persistent) or anticorrelated (antipersis-
tent) process, respectively. While J can be measured in various
ways [28,29,42,46], here we use the TAMSD (Appendix B):

〈δ2(s, t )〉 =
〈

1

t − s

∫ t−s

0
[x(t ′ + s) − x(t ′)]2dt ′

〉

∝ t2L+2M−2s2J . (4)

For long-ranged temporal correlations (decaying very slowly
in time) one has J �= 1/2, thus violating the CLT, which is
valid only for short-ranged temporal correlations. Another op-
tion is temporal anticorrelations [27]. The driving mechanism
behind this effect can be, e.g., biased movement, diffusion
in confined space, or long-range memory. An example for a
process with long-range memory is given in Fig. 2(c), where
below this panel we list the different regimes of J and their
physical interpretation.

D. Connection between the exponents

The above definitions yield a fundamental summation rela-
tion among M, L, J , and H [28,29,46]:

H = J + L + M − 1. (5)

This relation, connecting these three effects, is central for all
the results presented below and is confirmed by analyzing
a large variety of empirical systems [49]. The summation
relation [Eq. (5)] is derived analytically for J > 1/2 using
the Green-Kubo relation [29,50], whereas for J < 1/2, it is
derived directly from the autocorrelation function of fractional
Gaussian noise [29], which is commonly used in model-
ing of processes with long-ranged anticorrelations, see, e.g.,

Ref. [51]. Importantly, it can be shown that the validity of the
three-effect decomposition method and the resulting summa-
tion rule hold for any process that satisfies (i) the power-law
scaling of Eqs. (2) and (3), at least locally over some finite
time interval, and (ii)

∫ s
0 〈v(t )v(t + s̃)〉ds̃ ∝ s2J−1 at large s

(see Appendix B and Refs. [29,52,53]) [54]. Note that the
summation rule means that the above three effects are exhaus-
tive for violating the CLT.

IV. RESULTS

For each setup described in Sec. II, represented by an
ensemble of time series, we obtain statistics in terms of the
quantities given by Eqs. (1)–(4); for details on the statistical
analysis see Appendix C. In Table I, we summarize the scaling
exponents J , L, and M, measured for all experimental systems,
along with the predicted value of H based on Eq. (5), denoted
by Hp. Remarkably, for all data sets we find good agreement
between H determined from 〈x2(t )〉 and Hp, with a relative
error �10%, thus confirming the validity of Eq. (5) in the
empirical data. In most of the studied data sets anomalous
diffusion is primarily caused by the Joseph and Moses effects;
the Noah effect was only observed for the stork and searching
kite. We now list the exponents found for each empirical
setup, suggest plausible models, and discuss various impli-
cations of our findings. Below we present figures for three
prototypical examples: amoebas, stork, and vulture; for the
rest see Supplemental Material [55], Sec. S1, Figs. S1-S11.

A. Rhodamine molecules

For the fluorescent rhodamine molecules [30], we have de-
tected a Joseph effect (anticorrelation), leading to subdiffusion
(Sec. S1.1 in [55]), where the effect is strongest at the lowest
relative humidity of 30% (J = 0.09), see Table I. This effect
can be interpreted as viscoelasticity in the water film, possibly
due to significant persistent ordering between H2O molecules
induced by strong coupling to the silicate or silanol groups of
the silica surface. As humidity increases and water nanofilms
grow in thickness, molecular ordering becomes more random
and less persistent, and the water film becomes more viscous
farther from the silica surface, resulting in a decrease of J . A
fractional Brownian motion (FBM)–like process [7] can be
used to model the movement of these particles, exhibiting
confined diffusion. Yet, contrary to “pure” FBM, we also
observed a negative (although weak) Moses effect at short
times for any humidity, suggesting a combined effect of FBM
with SBM or continuous-time random walk (CTRW) [7], see
simulation results in Table I. The subordination of FBM by a
CTRW is also suggested in Ref. [30] and is consistent with the
physical mechanisms of intermittent diffusion at solid/liquid
interfaces, whereby a molecule desorbs from the surface, dif-
fuses in the viscous phase, and readsorbs [56,57].

B. Tracer particles in mammalian cells

In both treated and untreated cells [22], the statistics dis-
play two temporal regimes (Sec. S1.2 in [55]). In the first
regime (t < 5 s and t < 2 s for the treated and untreated
cells, respectively) the dynamics are anticorrelated, with a
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TABLE I. Summary of the decomposition of the origins of anomalous diffusion, in various data sets and simulations. We present the
evaluated error on both H and Hp. We also present the relative error between the directly-measured value of H and its prediction via the sum
rule (5), |Hp − H |/H in percentages. In cases where the relative error of either the observed or predicted values exceeds the difference between
the two (marked by the ** symbol), we assume good agreement regardless of the relative error, which can naturally be large for small values of
the Hurst exponent. The simulations represent some prototypical examples of anomalous processes, and obey the summation relation. CTRW
simulations were done in the current study, see Appendix D and Sec. S3 in [55], and all other simulated systems are results quoted from
Ref. [28]. Legend: BM, Brownian motion; SBM, scaled BM; LM, Lévy motion (or Lévy flight); FBM, fractional BM; SFBM, scaled FBM;
SFLM, scaled fractional LM; CTRW, continuous-time random walk; BoCTRW, bounded CTRW; BiCTRW, biased CTRW; BiBM, biased BM.
Note that the errors in simulations quoted from Ref. [28] are less than 10−4.

Data set Ensemble size Regime J L M H measured H prediction |Hp−H |
H

Rhodamine 100% 174 50 < t < 1500 ms 0.50 0.50 0.41 0.38 ± 0.02 0.42 ± 0.04 10%
Rhodamine 90% 298 50 < t < 1500 ms 0.38 0.50 0.42 0.28 ± 0.02 0.30 ± 0.03 7%
Rhodamine 85% 239 50 < t < 1500 ms 0.34 0.50 0.40 0.22 ± 0.02 0.24 ± 0.05 9%
Rhodamine 75% 258 50 < t < 1500 ms 0.22 0.51 0.44 0.18 ± 0.02 0.18 ± 0.01 <1%
Rhodamine 30% 436 50 < t < 1500 ms 0.09 0.50 0.44 0.07 ± 0.02 0.04 ± 0.03 **
Tracers in 200 0.1 <t < 5 s 0.39 0.50 0.41 0.31 ± 0.01 0.30 ± 0.02 3%

treated cells 5 < t < 50 s 0.50 0.50 0.44 0.44 ± 0.01 0.44 ± 0.01 <1%
Tracers in 1000 0.1 <t < 2 s 0.39 0.50 0.44 0.31 ± 0.01 0.33 ± 0.02 6%

untreated cells 2 < t < 8 s 0.60 0.50 0.47 0.55 ± 0.01 0.57 ± 0.01 4%
Amoeba 1142 1 <t < 6 min 0.61 0.50 0.44 0.58 ± 0.01 0.55 ± 0.03 5%

10 <t < 100 min 0.52 0.52 0.37 0.42 ± 0.02 0.40 ± 0.02 5%
Harvester ants 67 10 <t < 100 s 0.88 0.50 0.57 0.92 ± 0.12 0.95 ± 0.08 3%

100 <t < 400 s 0.59 0.51 0.35 0.47 ± 0.03 0.45 ± 0.03 4%
Commuting kite 107 0.1 < t < 3 min 0.87 0.50 0.49 0.84 ± 0.02 0.86 ± 0.02 2%

3 < t < 12 min 0.80 0.50 0.50 0.76 ± 0.01 0.80 ± 0.02 5%
Searching kite 587 0.5 < t < 20 min 0.24 0.59 0.22 0.06 ± 0.02 0.06 ± 0.01 <1%
Stork (Jun–Jul) 687 0.2 < t < 2 h 0.43 0.85 −0.22 0.07 ± 0.03 0.06 ± 0.04 **

2 < t < 10 h 0.13 0.55 0.42 0.13 ± 0.06 0.10 ± 0.01 **
Stork (Aug–Sep) 165 0.2 < t < 4 h 0.97 0.50 0.71 1.18 ± 0.01 1.18 ± 0.06 <1%
Stork (Oct–Jan) 810 0.2 < t < 4 h 0.70 0.62 0.27 0.56 ± 0.01 0.59 ± 0.03 5%
Stork (Mar–Apr) 255 0.2 < t < 4 h 0.97 0.50 0.70 1.23 ± 0.01 1.18 ± 0.06 4%
Vulture 444 0.1 < t < 2 h 0.75 0.50 0.58 0.86 ± 0.02 0.84 ± 0.02 2%

2 < t < 5.5 h 0.56 0.50 0.63 0.64 ± 0.02 0.69 ± 0.04 8%
Simulations ensemble size parameters

Brownian motion 0.50 0.50 0.50 0.50 0.50 <1%
SBM 105 M = 0.3 0.50 0.50 0.30 0.30 0.30 <1%
LF 105 L = 0.71 0.50 0.71 0.50 0.71 0.71 <1%
FBM 105 J = 0.3 0.30 0.50 0.50 0.30 0.30 <1%
FBM 105 J = 0.7 0.70 0.50 0.50 0.70 0.70 <1%
SFBM 105 J=M=0.7 0.70 0.50 0.70 0.90 0.90 <1%
SFLM 105 J=L=0.6, M=0.3 0.60 0.60 0.30 0.50 0.50 <1%
CTRW 103 α = 0.8 0.50 0.62 0.27 0.38 ± 0.01 0.38 ± 0.01 <1%
CTRW 103 α = 0.4 0.50 0.80 −0.11 0.21 ± 0.01 0.20 ± 0.01 5%
BoCTRW 103 α = 0.7 0.15 0.66 0.18 0 ± 0.01 −0.01 ± 0.01 **
BiCTRW 103 α = 0.8 0.92 0.63 0.24 0.75 0.78 4%
BiBM 103 1 0.5 0.5 1 1 <1%

weak negative Moses effect and no Noah effect. Together,
these effects lead to significant subdiffusion with H = 0.31.
In contrast, in the second regime (t > 5 s and t > 2 s) the
Joseph effect is measurably different between treated and
untreated cells. While for untreated cells the dynamics are
positively correlated and hence superdiffusive, for the treated
cells they are not correlated, and a Moses effect leads to
subdiffusion. Our results are consistent with those of Ref. [22]
(Sec. S1.2 in [55]). The elevated values for J in the second
regime suggest that on timescales of a few seconds particles
are being kicked by an active ambient noise that arises by
cytoskeleton-associated transport processes in the surround-

ing [58–60]. This notion is in line with a reduction of J when
breaking down actin filaments which prevents the contribution
of slow active processes linked to cell reshaping and migra-
tion. The presence of a weak Moses effect at all timescales
is most likely due to the intermittent mobility change found
for these tracers, as they transiently adsorb to and desorb
from the cell’s vast endomembrane system [22]. Notably, in
temporal regimes with measurable Joseph and Moses effects,
the system can be modeled, e.g., by scaled FBM (SFBM),
see Table I. Yet, as the Moses effect is very weak, and as
particles are nonspecifically bound to a dynamic endoplasmic
reticulum [22], FBM cannot be discarded entirely.
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FIG. 3. Amoeba: From raw data to statistics—depiction of the workflow repeated for all empirical setups. Panel (a) is a snapshot of
tracked amoeba, measured experimentally in Ref. [31]. From the 1142 two-dimensional paths, we generate vector trajectories for x(t ) [setting
x(0) = 0], which we decompose into increments (see Fig. 1) and obtain one-dimensional paths indicating the distance traveled versus time
[(b)–(e)]. For each time series and measurement time t we compute the TAs and EAs of the squared-displacement δ2(s) (f), absolute-velocity
|v(t )| (h), and squared-velocity v2(t ) (i). To independently measure H , we further obtain the MSD 〈x2(t )〉 (g). Using the increment statistics in
panels (f)–(i) we visually identify two regimes, 1 < t < 6 min and 10 < t < 100 min, that fit local scaling exponents (within a certain finite
period of time, see Appendix C). Each regime is then fitted with a power law using the method of nonlinear least-squares. The measured values
are marked in blue triangles and the fits are plotted as red and black dashed lines for the first and second regimes, respectively. The fit values
are given in the legends and are used to extract the scaling exponents J , L, M, and H . Specifically, J and H are extracted from panels (f) and
(g), respectively, M is extracted from panel (h), and L is extracted from panel (i) using the previously found value of M [see Eq. (3)].

C. Amoebas

In Fig. 3 we plot the results for the tracked amoebas
[31], and depict the analysis workflow that we repeat for all
empirical data sets. Here the statistics display two temporal
regimes, with different scaling exponents, which indicates a
change in the amoeba dynamics at intermediate times. For
1 < t < 6 min the dynamics are positively correlated (J =
0.61), which is the dominant effect leading to superdiffusion
(H > 0.5), and exhibit a weak Moses effect and no Noah
effect. In contrast, for 10 < t < 100 min the dynamics are not
correlated; rather, a negative Moses effect, entailing statistical
slowing down, leads to subdiffusion (H < 0.5). Thus, the
primary cause for anomalous diffusion differs between the
regimes. In the first regime we conjecture that the underly-
ing process is FBM with positive correlations, while in the
second regime it resembles SBM resulting in a Moses effect,
in agreement with the analysis performed in Ref. [31]. A
consistency check of the observed exponents with concrete
stochastic simulations is given in Table I, while in Appendix E
and Fig. S14 in [55] we provide independent validation of
the above results using a p-variation test [61,62]. Importantly,
while the extracted exponents do not allow unique model
identification, they provide crucial insights into the detailed
dynamics of the observed motion.

D. Ants

For the harvester ants [32], we find (Sec. S1.3 in [55])
that for 10 < t < 100 s the movement is strongly corre-
lated (J = 0.88) with a small positive Moses effect, leading
to superdiffusion. In this regime the ants are behaviorally
persistent, primarily commuting between the nest and food
sources in relatively straight lines, leading to biased-correlated

movement. In contrast, for 100 < t < 400 s the movement is
less correlated and nonstationary (J = 0.59 and M = 0.35).
Both the positive Joseph and negative Moses effects likely
reflect behavioral shifts between commuting (superdiffusive)
and searching or handling seeds (diffusive or subdiffusive).
While the Hurst exponent may suggest (almost) Brownian
diffusion at these times, this is not the case; rather, we measure
H = 0.47 due to a nontrivial coupling of the Joseph and
Moses effects, likely common in many central-place foraging
movements.

E. Kite

We separately analyze ensembles of commuting and search
flights [12]. During commuting, for t < 3 min and t > 3 min
the dynamics are positively correlated (J = 0.87 and J =
0.80, respectively), leading to superdiffusion (Sec. S1.4 in
[55]). Here the Moses and Noah effects are negligible, and
since the MSD and TAMSD scale similarly with time, the
process is ergodic [7]. Indeed, the most efficient way to com-
mute between patches is to fly in a straight line directed
toward the target (strong positive Joseph effect). These com-
muting flights occur at a steady cruising speed (no Moses
effect) and also without extreme jumps (no Noah effect),
suggesting lack of support for the Lévy foraging hypothesis
[34,43,63]. During searches, the statistics display a single
regime (Sec. S1.4 in [55]). Here the dynamics are anti-
correlated with J = 0.24 and there are measurable Moses
and Noah effects, M = 0.22 and L = 0.59. Kites search
locally in a spatially confined manner to avoid departure from
a patch (negative Joseph effect), with relatively long stops
in particular locations (negative Moses effect) and also rare
long jumps between these locations (Noah effect). Our results
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FIG. 4. Stork: From raw data to statistics during June–July (A, breeding, 687 trajectories) and August–September (B, fall migration, 165
trajectories). In both A and B, the upper left panels are GPS tracks, where different colors represent different years. The five upper right panels
are examples for the distance traveled at a single day versus the measurement time in hours. The four lower panels are the statistics on the
ensemble of days during the relevant period, and the fit values are given in the plot legends (see Fig. 3 for details).

support Ref. [12] that the kite’s searches can be modeled as a
bounded CTRW, see Table I [64].

F. Stork

Daily paths are clustered into four subsets, based on
the time of year: June–July, August–September, October–
January, and March–April, respectively, corresponding to four
periods in a bird’s life cycle: breeding, fall migration, win-
tering, and spring migration [35]. During each of the above
periods we analyze the subset of days with total displacement
that is consistent with the assumed behavior (e.g., for a mi-
grating bird we only analyze paths with total displacement
>100 km). With this simple clustering we aim to capture im-
portant features of the stork’s life history (Fig. 4 and Fig. S11
in [55]).

During breeding (June–July) we observe subdiffusive
motion at all times (H < 0.5). For t < 2 h and t > 2 h sub-
diffusion is caused by a strong negative Moses effect coupled
to a strong Noah effect (M = −0.22, L = 0.85) and anti-
correlated movement (J = 0.13), respectively. In hot days,
breeding storks fly early in the morning to forage in neigh-
boring fields (>5 km away [35]) but remain longer times in
the nest during the hottest hours to thermoregulate the eggs or
nestlings. Flights occur earlier in the morning and are much
faster and less frequent than foraging walks or stops in the
nest, with relatively long waiting times, explaining the strong
Noah and negative Moses effects in the first regime. The
tendency to return to the nest during the remaining parts of

the day explains the strong negative Joseph effect appearing
in the second regime, while the disappearance of the Moses
and Noah effects in this regime may be since the waiting time
distribution is no longer scale free. Notably, the coupling of
the Moses and Noah effects was also found, e.g., in CTRW
simulations, see Table I and Appendix D, and is consistent
with known theoretical results for CTRW [29,42], see below.
In contrast, the observed exponents in the second regime may
emanate from movement within a (self-determined) bounded
domain, or from FBM, see Table I. Both long waiting times
and bounded movement are supported by the movement paths
[Fig. 4(a) and Appendix E] and may be generated by the
spatiotemporal constraints of a breeding animal.

During wintering (October–January) the movement pat-
terns are superdiffusive (H = 0.56). Here superdiffusivity is
primarily caused by long-range correlations (J = 0.70) and
a Noah effect (L = 0.62), which are balanced with a neg-
ative Moses effect (M = 0.27), such that the movement is
evidently nonergodic. Note that for times t > 4 h the statistics
do not display a clear power law [see Fig. S11(a) in [55]].
These movement patterns reflect a mixture between the stork’s
moves during breeding and migration, see below. On the one
hand, during winter they move much longer distances than
during breeding, including long migration-like directional
flights to distant wintering sites [Fig. S11(a) in [55]] that give
rise to a positive Joseph effect. On the other hand, wintering
storks resemble breeding ones in their confined movement for
days or weeks and roosting in a central place from which
they fly to their foraging sites early in the morning. In these
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FIG. 5. Vulture (444 trajectories): From raw data to statistics. Left panel: GPS tracks of the vulture. Middle panels: Examples for the
distance traveled (km) versus time (hours). As was done in Ref. [36], the individual paths are normalized to start at the first relocation in the
day with a velocity >4 m/s to avoid aging of the system due to long initial waiting times. The red dashed lines represent initial stationary
periods of the animal. Four right panels: Statistics fitted in two regimes, 0.1 < t < 2 h and 2 < t < 5.5 h (see Fig. 3 for details).

sites they search for food mostly by walking. The combina-
tion of long-range flights and local walks gives rise to Noah
and negative Moses effects (as in breeding, see above). The
Noah effect (L > 1/2), appearing during both breeding and
wintering, may stem from the fact that various aspects of the
stork’s daily routine remain constant, despite the underlying
seasonal behavior. Throughout the year the stork can move via
walking at a range of velocities [65], short-term flights (mostly
within a food patch) and long-term commuting (e.g., from the
nest to foraging ground). Thus, flights may appear as a heavy
tail compared to the bulk, composed mainly of short-distance
walks. This is in striking contrast to the lack of a Noah effect
for the vulture which travels only via flights, see below.

During fall and spring migrations (August–September and
March–April) the statistics are similar: For t < 2 h and t > 2 h
we find strongly correlated movement with a small positive
Noah effect and a strong positive Moses effect with no Noah
effect, respectively. Migrating storks take highly directional
flights from the breeding to wintering grounds during fall
[Fig. 4(b)], and vice versa during spring [Fig. S11(b) in [55]],
giving rise to a strong positive Joseph effect in both cases.
They roost in stopover sites during night and tend to depart in
late morning, when soaring conditions improve, facilitating
faster flights at lower energy costs [66]. This explains the
positive Moses effect in the second regime. Here a plausible
model for movement is a scaled FBM [47], see Table I and
Appendix E.

G. Vulture

For the daily paths of the vulture [36], for t < 2 h the
movement is superdiffusive and ergodic [7,67], as it is posi-
tively correlated (J = 0.75), with a weak Moses and no Noah
effects; for t > 2 h a positive Moses effect (J = 0.56 and
M = 0.63) leads to superdiffusive behavior and ergodicity
breaking. Vultures fly relatively straight away from, or back
to, their roost and to search for occasional carcasses or those

randomly (in time) supplied in a few dozens of feeding
stations scattered throughout their foraging area in Israel,
explaining the positive Joseph effect. Despite the occurrence
of very long flights (Fig. 5), the Lévy foraging hypothesis is
not supported for this species (no Noah effect), in accord with
Ref. [63]. Vultures tend to move faster toward a known target
compared to the preceding search phase [36], and like migrat-
ing storks, they fly faster when soaring conditions improve
(from late morning to early afternoon), altogether explaining
the positive Moses effect.

V. SUMMARY AND DISCUSSION

We have demonstrated the wide applicability of a general
method [27,28] to unravel the origins of anomalous transport
in empirical time series in chemistry, biology, and ecology
over multiple spatiotemporal scales. Using positional time
series, almost free from prior assumptions and with little to
no auxiliary information, the method decomposes the Hurst
exponent into three components: nonstationarity, fat-tailed
distributions, and long-range correlations. The decomposition
is manifested by a summation rule [Eq. (5)] and is verified for
all analyzed data sets. We stress that although the summation
rule was conjectured and applied in a number of previous
studies, our study is the first to empirically test this conjecture
over a wide range of data, thus confirming its validity.

Previous works have shown that in several models the ex-
ponents can be interconnected [28,29,46], and processes can
be associated with multiple effects. Indeed, our analysis points
to inherent correlations and physical differences between the
analyzed scaling exponents. In Fig. 6 we study these corre-
lations by plotting the relation between various combinations
of the exponents J , L, M, and H , using the values in Table I.
These relations allow us to conjecture regarding the interplay
between the exponents in real-life processes. In particular,
we find that J and H [Fig. 6(g)] are strongly correlated,
with J ∼ 0.70H when measured from the ensemble of all
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FIG. 6. Correlations between any two exponents measured for the empirical systems (values taken from Table I), and the relation between
H and the prediction of the summation relation. Blue pluses mark the chemical data sets, black crosses mark the biological data sets, and red
triangles mark the ecological data sets. The size of each marker reflects a typical (average) error of 0.03. The purple dashed line represents a
linear least-squares fit. The data was assumed to be correlated (anticorrelated) if Pearson’s correlation coefficient test showed a p value <0.05
and yielded a positive (negative) test statistics. For (anti-)correlated fits the results of the linear fit are explicitly written. Note that for panel (f)
the fit was performed only for the nontrivial points for which L > 0.5 (see text).

datasets; yet J alone is not sufficient to predict the value of
H . Rather, we find that J + M + L − 1 � 0.99H , in excellent
agreement with Eq. (5). The fact that J is generally smaller
than H indicates that, while some anomalous processes are
ergodic, many are not. Thus, the ergodicity assumption may
lead to erroneous analyses [67]. Figure 6 also reveals that
M and L are anticorrelated [Fig. 6(f), L ∼ −0.5M], while M
and J are correlated [Fig. 6(a), M ∼ 0.33J]. This suggests
inherent relations between the Moses and Noah (especially
evident in the ecological and biological data) and Moses and
Joseph effects. This entails that among the systems we study,
nonstationarity (e.g., M < 0.5) is not likely to be pure SBM;
rather, the process will also exhibit correlations (J < 0.5)
and/or a fat-tailed distribution (L > 0.5). The link found be-
tween M and L, which primarily emanates from the ecological
data sets, reproduces the known relation found in CTRW
[29,42]: L = −M/2 + 3/4 [compare to L = −M/2 + 0.73 in
Fig. 6(f)] and supports the suggestion that the processes with
L > 1/2 may be described by (anti)correlated CTRW. Finally,
considering the whole ensemble of data sets, we find that
L and H are uncorrelated, suggesting that Lévy-flight-like
processes are rarer, as L is subdominant compared to the other
exponents.

Although no unique model can be assigned to a system
based only on its given set of exponents, our framework plays
a key role as a decision tree, allowing us to identify a model
class and rule out inappropriate models [62]. For example,
in Lévy flights as defined in Ref. [28], one expects L > 1/2
and M = J = 0.5, which was not found for any of the data
sets we analyzed. Instead, as shown above, CTRW is a more
plausible model for searching kites and breeding storks. This
finding gives key insight into an open question in ecology,
of whether, for a given data set, an animal follows a Lévy

flight (Noah effect) or a combination of a biased-correlated
random walk (Joseph effect) and scaled motion (Moses effect)
[34,68]. Moreover, when the Joseph effect is present, spe-
cific empirical input is needed to distinguish between biased
and correlated processes. For example, within its large yet
spatially confined foraging range, the vulture searches for car-
casses in circular-like paths, whereas rare long-range forays
outside its home range are highly directional [36,63] (Fig. 5),
suggesting that the Joseph effect represents, respectively, cor-
related and biased movement.

Three restrictions can strongly impact the data analysis
in experiments involving anomalous diffusion. First, as pro-
cesses with a Moses effect are generally nonergodic and can
display aging [7], the values of M (and also L, see Fig. 6)
can change depending on the relative time lag between the
process’s initiation time and the initial measurement time.
Thus, minimizing this time lag is desirable to reflect the
properties of the measured phenomenon (Sec. S2 and Fig.
S12 in [55]). Second, nonergodic processes are sensitive to
the ensemble size, even for comparably large ensembles. As
nonergodic systems display large variability across different
realizations [7], removing even a few can strongly affect the
underlying statistics [67]. Third, results may be sensitive to
the sampling frequency, and in general, it is desirable to have
a sampling frequency higher than the natural frequency of the
process. In addition, when applying power-law fits to data,
there are various statistical methods that provide confidence
to the results. While J , L, and M may be sensitive to the above
restrictions and method of fitting, we checked that they vary in
such a way to maintain the validity of the summation relation.
Regardless, in future theoretical work, it would be useful to
generalize the theory [Eqs. (1)–(4)] to the case of nonpure
power laws.
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Notably, machine-learning algorithms, despite their “black
box” nature, may also be applicable to detect effects such
as aging, extreme events, and temporal autocorrelations. In-
deed, in recent years there has been a growing effort in the
scientific community to advance the study of anomalous trans-
port in data using a range of data-driven methods, such as
machine-learning. Using massive training data sets, such al-
gorithms often yield higher accuracy when extracting, e.g., the
Hurst exponent from single paths, or selecting between known
stochastic models [26]. In future works it would be very useful
to generalize these algorithms and to allow for the estimation
of the effects characterized by the three exponents M, L, and J ,
using data-driven algorithms. For example, aging effects can
be detected via the power spectrum of the time series [69,70],
which can possibly be analyzed using machine-learning tools.
Moreover, feature-based deep learning strategies [25] may
profit from the three exponent decomposition, especially for
H � 0.5 [24].

Finally, based on the evidence and agreement of our anal-
ysis, along 12 orders of magnitude in space and 8 orders of
magnitude in time, we foresee that this method will provide
useful results also in other fields such as cell biology and cli-
mate change, where anomalous time series are also common.
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APPENDIX A: DERIVATION AND VIOLATIONS
OF THE GAUSSIAN CLT

We present here a well-known pedestrian derivation of the
Gaussian CLT [71], with emphasis on the assumptions of
the theorem, which can be violated when the increments are
nonstationary or long-ranged (or anti-) correlated, or if their
mean square is not finite.

Consider, without loss of generality, the series of identi-
cally distributed random numbers δx0, δx1, . . . , δxn−1, with
zero mean and variance σ 2 > 0 (which also equals the second
moment in this case), as increments of the one-dimensional
discrete process xn = x0 + ∑n−1

i=0 δxi. We define the
probability density W (δxi ) ≡ W (xi+1 − xi ), of traveling
the distance xi+1 − xi, for i = 0..n − 1. If the increments

are identically distributed, and do not depend explicitly on
location and time, then the probability distribution P(x, n)
of being at xn = x after n steps is given by the recurrence
equation P(x, n) = ∫ ∞

−∞ dxn−1W (xn − xn−1)P(xn−1, n − 1).
Initially we assume that x0 = 0, namely P(x, 0) = δ(x0),
where δ(·) is the Dirac δ function. Since x0 = xn − ∑n−1

i=0 δxi,
and δ(x) is symmetric, one can write

P(x, n) =
∫ ∞

−∞
dδxn−1

∫ ∞

−∞
dδxn−2...

∫ ∞

−∞
dδx0

×W (δxn−1)W (δxn−2)...W (δx0)δ

(
x −

n−1∑
i=0

δxi

)
.

(A1)

Defining the Fourier transform as f (x) → f̂ (k) =∫ ∞
−∞ f (x)eikxdx and using the relation

∫ ∞
−∞ dx δ(x −∑n−1

i=0 δxi )eikx = eik
∑n−1

i=0 δxi , if the increments are also
independent, then we can separate the integrals in Eq. (A2)
and write

P̂(k, n) =
[ ∫ ∞

−∞
dxn−1W (δxn−1)eikδxn−1

]
[ ∫ ∞

−∞
dxn−2W (δxn−2)eikδxn−2

]

· · ·
[ ∫ ∞

−∞
dx0W (δx0)eikδx0

]
= [Ŵ (k)]n. (A2)

Finally, for a finite increment variance, it can be shown that in
the limit k → 0 (associated with large δxi), one has Ŵ (k) �
1 − σ 2k2/2 [71]. Performing the inverse Fourier trans-
form f̂ (x) → f (k) = 1

2π

∫ ∞
−∞ f (x)e−ikxdk, we thus obtain

P(x, n) = 1√
2πσ 2n

exp[−x2/(2nσ 2)], a Gaussian distribution,
as expected.

Violations of this derivation occur in the following scenar-
ios: (i) If the increment PDF in Eq. (A2) explicitly depends on
time (Moses effect), one has W (δxi ) → W (δxi, i). Thus, the
relation P̂(k, n) = [Ŵ (k)]n is no longer valid, since Ŵ (k) →
Ŵ (k, i) depends on i, and this may lead to time dependence in
the product Ŵ (k, 0)Ŵ (k, 1) · · ·Ŵ (k, n − 1). (ii) In the pres-
ence of temporal autocorrelations (Joseph effect), the integrals
cannot be separated, rendering Eq. (A2) invalid. (iii) If the
variance of the increments is infinite (Noah effect), the asymp-
totic shape of Ŵ (k) may include noninteger power laws in k
yielding a nonlinear-in-time MSD.

APPENDIX B: EVALUATION OF THE JOSEPH EXPONENT
J FROM THE TAMSD

The Joseph exponent J is defined via the scaling of the
integrated velocity-autocorrelation function, with respect to
the time gap between the two time points [29],∫ s

0

〈v(t ) · v(t + s′)〉
〈v2(t )〉 ds′ ∝ s2J−1, (B1)

for s ∈ [sc,∞), and sc > 0 is some lower cutoff. The autocor-
relation function 〈v(t ) · v(t + s′)〉, however, is often difficult
to measure directly from data, since it requires a very large
ensemble of long trajectories to overcome the noise. For
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this reason, several alternative numerical methods have been
developed to measure this exponent from various other ob-
servables that are mathematically linked to Eq. (B1), see, e.g.,
Refs. [26,28,72,73].

We chose to compute J using Eq. (4), which is compu-
tationally inexpensive compared to the other techniques, and
easy to implement. Here we generalize the derivation of the
link between Eqs. (B1) and (4) [29,52] for d � 1 dimensions.
We start from the TAMSD

〈δ2(s, t )〉 ≈ 1

t − s

∫ t−s

0
〈[x(t ′ + s) − x(t ′)]2〉dt ′. (B2)

Focusing on the long-time limit and also assuming t � s, we
can use the Green-Kubo relation to write [52]

〈[x(t ′ + s) − x(t ′)]2〉

= 2
∫ s

0
dt2

∫ t2

0
dt1〈v(t1 + t ′) · v(t2 + t ′)〉. (B3)

Equations (B2) and (B3) allow tying between the asymptotic
scaling shape of the TAMSD and the autocorrelation function,
given by Eq. (B1). The crux of the derivations in Refs. [29,52]
is to write the autocorrelation function in a general scaling
form, depending on the properties of the process, which even-
tually lead to 〈δ(s, t )〉 ∼ t2M+2L−1s2J . This scaling, although
different from that of the autocorrelation function, allows
finding the exponent J in an independent manner from M and
L, see main text. Note that these derivations were originally
done in one dimension but can be easily extended to the scalar
product 〈v(t1 + t ′) · v(t2 + t ′)〉. In addition, the details of the
derivation depend on the properties of the autocorrelation
function, e.g., whether J is above or below 1/2.

APPENDIX C: STATISTICAL ANALYSIS

1. Local scaling

In several data sets, the scaling regimes fitted to a power
law are local and do not span orders of magnitude. Nonethe-
less, in all cases reported here, a local scaling exponent can
be fitted to the data in discernible regimes. As the scal-
ing for all four of our empirical quantities is tied through
the summation relation, we view the local exponents as a
biologically/physically meaningful scaling. Naturally, in few
cases, fitting the data in other temporal regimes may reveal
slightly different scaling exponents. Yet, we expect all such
power-law scaling to maintain the summation relation and to
hold significant information at the fitted scale.

2. Error analysis

For all data sets the fits were performed using SciPy li-
brary’s curve-fit (nonlinear least squares method) in python
3.8. In order to satisfy the physical constraint of L � 0.50
we added bounds to the fits on the mean absolute velocity
and mean-squared velocity such that this physical constraint
is satisfied. As an initial error estimate we took one standard
deviation for the parameter of the fitted power-law exponent
(error 1). As the local regimes were visually identified, an-
other source of error can be the number of points included in

a fitted regime (error 2). To quantify this error we repeated the
fit after excluding 5% of data points on the sides of the cor-
responding regime and computed the difference between the
fits when including these points and when excluding them. In
cases where removing the points on the regime boundaries led
to large errors (>10% of a measured exponent), we deduced
that no local exponent exist. For instance, when measuring J ,
denoting by �J1 and �J2 error 1 and 2 in J , the total error

was �J =
√

�J2
1 + �J2

2 . Note that this is taken as the upper
bound on the error, since these two sources of error can be
correlated. The total error on the predicted value Hp is thus
given by �Hp = √

�J2 + �M2 + �L2. This formula gives
an upper bound for the error on H, as it assumes that the errors
on the exponents are independent, which is not necessarily the
case for these data.

3. Missing data points

In several data sets it is common to encounter missing
data points in a time series [21]. Discarding such time series
from the ensemble is possible yet undesirable. Hence, for any
time series that has >90% of the points present, we fill each
missing data point with a NaN (Not a Number), i.e., an empty
placeholder which is naturally not included in the averaging.
To verify that this choice does not affect the statistics, we
checked that our results do not change when varying the 90%
threshold between 70% and 95%. Furthermore, we checked
that in CTRW simulations, randomly replacing 10% of the
data points with NaNs does not significantly affect the results.

4. Multidimensional data

Previous works on the Joseph, Moses, and Noah effect
treated only unidimensional simulations [28,29,46]. Here we
expand the framework to multidimensional data by reducing
two-dimensional [x(t ), y(t )] to one-dimensional time series
|x(t )| (Fig. 1). In general, it is not trivial that such a projection
will yield results that are similar to any of the original x(t ) or
y(t ). Thus, in the cases studied here we verified that averag-
ing over any of the original variables gives similar results to
averaging over their projection.

5. Measuring the exponents

Here we provide a recipe to generate a time series from raw
empirical data and obtain the exponents M, L, and J for a path
ensemble.

(1) We choose a constant sampling frequency, to generate
uniformly sampled time series from the raw data sets. If a
small percentage of the time series is missing in the data
(<10%), then the missing locations are treated as NANs and
are excluded from any averaging (see above).

(2) For each trajectory x(t ) in d � 1 dimensions, where
t is the total measurement time, we choose an additional
constant time increment of duration 0 < � � t . The size of
� should be larger than the sampling rate of the data but much
smaller than the total duration of the time series. For different
values of � � t , we obtain:
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(a) Time-averaged absolute velocity,

|v|(t ) ≡ �

t

t/�∑
j=1

|δx j |
�

, (C1)

where δx j ≡ x( j�) − x([ j − 1]�) is the jth vector-
increment of the path.

(b) Time-averaged squared velocity,

v2(t ) ≡ �

t

t/�∑
j=1

(|δx j |)2

�2
. (C2)

(3) For each trajectory, compute the time-averaged
squared displacement,

δ2(s, t ) ≡ 1

t − s

∫ t−s

0
[x(t ′ + s) − x(t ′)]2dt ′, (C3)

as a function of s.
(4) After repeating steps 2 and 3 for all the time series, we

can compute the ensemble average of the quantities above, for
each time t [in the case of Eqs. (C1) and (C2)], and each value
of s ∈ [�, t] [in the case of Eq. (C3)] over all time series in
the ensemble.

(5) By plotting the statistics (see main text and Sec. S1 in
[55]) we visually identify regimes that can be described by
local scaling exponents. We then fit each regime with a power
law using the method of nonlinear least squares. In order to
satisfy the physical constraint of L � 0.50 we add this bound
by first fitting 〈v2〉 to a scaling exponent and then constrain
the fit of 〈|v|〉, in order to satisfy Eq. (2) of the main text
under the condition that L � 0.50. Note that when applying
power-law fits to data, one may consider to apply additional
statistical tests to gain confidence about the results of the local
exponents.

APPENDIX D: CONTINUOUS-TIME RANDOM
WALK SIMULATIONS

In Table I, in addition to the experimental results, we
added results of simulations, which were performed for mul-
tiple dynamical models. These models are not intended to
fully explain the dynamics of the experimental systems;
rather, they can provide valuable insights into the rela-
tions between the various exponents. Simulations for several
prototypical examples are cited from Ref. [28], whereas
CTRW simulations, with an asymptotic power-law waiting-
time distribution (see below), for free, bounded, and biased
random walkers were performed as part of the current
study (see, e.g., Fig. S13 in [55]).

CTRW is a random walk defined in terms of the wait-
ing time τ between successive jumps—a random variable
drawn from the PDF ψ (τ ). When the average waiting time
〈τ 〉 diverges, the process displays subdiffusive dynamics,
weak ergodicity breaking and aging [7]. In accordance with
empirical data, see, e.g., Ref. [12,74,75], we assume power-
law distributed waiting times, ψ (τ ) ∼ τ−(1+α), for 0 < α <

1. We simulated three cases: free CTRW, bounded CTRW
(BoCTRW), and biased CTRW (BiCTRW) for different

values of α. In BoCTRW the random walker is bounded
by a confining potential [7] in the sense that it cannot exit
predefined domain walls but can move freely within these
walls. In BiCTRW the direction of each jump is sampled
from a wrapped Cauchy distribution defined by f (x) = (1 −
ρ2)/[2π (1 + ρ2 − 2ρ cos x)] with ρ < 1. In Table I we simu-
lated the case of ρ = 0.3. The results for BiCTRW match the
theoretical results in Ref. [47]. For all processes we simulated
an ensemble of 1000 trajectories of length t = 1500 time
steps. Notably, for both free and bounded CTRW we obtain
similar values of L and M, but for the latter J decreases
dramatically due to boundary interactions [7], indicating a
transition from positive long-ranged correlations, to anticor-
related motion. Also note that CTRW couples between M and
L. For α < 1, a negative Moses effect arises due to increas-
ingly long waiting times experienced by the particle as time
evolves, which slow down the dynamics. The Noah effect
emerges since at most times, the random walker is stuck in
a single location, and practically any jump is a rare event.
As α approaches 1, the waiting times become shorter, and
jumps become more frequent (on average); hence these effects
vanish, and M and L approach 1/2 (for α > 1, 〈τ 〉 becomes
finite, and there is no longer significant aging [11,47]).

APPENDIX E: P-VARIATION TEST

For several of the processes detailed above we performed a
p-variation test to distinguish non-Gaussian CTRW from other
types of subdiffusive behaviors such as the Gaussian FBM
[7,61,76]; see also discussion in Ref. [77]. The test is defined
in terms of the sum of increments of a trajectory x(t ) on the
time interval [0, T ]:

V (p)
n (t ) =

2n−1∑
j=0

∣∣∣∣x
(

min

{
( j + 1)T

2n
, t

})

− x

(
min

{
jT

2n
, t

})∣∣∣∣
p

. (E1)

For FBM V (p)(t ) = limn→∞ V (p)
n (t ) displays the following

properties: For p = 1/H it tends to be linear with the ob-
servation time t , while for p > 1/H it is equal zero and for
p < 1/H it is equal to infinity [61]. In contrast, for subdif-
fusive CTRW, V (p)(t ) = limn→∞ V (p)

n (t ); for p = 2 it shows
a monotonic, steplike increase in time, while for p = 2/α,
V (2/α)(t ) = 0 [61,76], α being the parameter for the CTRW,
see Appendix D above. In Sec. S4 and Fig. S14 in [55], we
show an example of this test on randomly chosen amoeba
tracks, and the test shows good agreement with the sug-
gested FBM-like dynamics detailed above. In contrast, for
the searching kite (Fig. S15 in [55]) the test suggests CTRW
dynamics with α = 0.5 (as obtained in Ref. [12]). For the
stork we perform the test during all seasons and observe good
agreement with the models suggested above. For instance,
trajectories during breeding (June–July) show clear character-
istics of CTRW (Fig. S16 in [55]), while trajectories during
migration (e.g., September) show remarkable agreement with
the theory for FBM (Fig. S17 in [55]). Notably, in each of
the above cases we have repeated the test on many randomly
chosen trajectories.
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